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Abstract

The peptide-based drug design process requires the identification of a wide
range of candidate molecules with specific biological, chemical and physical
properties. The laboratory analysis in terms of in vitro methods for the disco-
very of several physiochemical properties of theoretical candidate molecules is
time- and cost-intensive. Hence, in silico methods are required for this purpose.
Metaheuristics like evolutionary algorithms are considered to be adequate in
silico methods providing good approximate solutions to the underlying multi-
objective optimization problems. The general issue in this area is the design
of a multi-objective evolutionary algorithm to achieve a maximum number of
high-quality candidate peptides that differ in their genetic material, in a mi-
nimum number of generations.
A multi-objective evolutionary algorithm as an in silico method of discovering
a large number of high-quality peptides within a low number of generations
for a broad class of molecular optimization problems of different dimensions is
challenging, and the development of such a promising multi-objective evolutio-
nary algorithm based on theoretical considerations is the major contribution
of this thesis. The design of this algorithm is based on a qualitative landsca-
pe analysis applied on a three- and four-dimensional biochemical optimization
problem. These problems are generic in the sense that sequence-derived struc-
tural and physiochemical features of peptides are calculated from amino acid
descriptor values. This is a widely used method in the area of machine learning
to predict peptide features and molecular interactions.
Qualitative and quantitative landscape analysis are common techniques to gain
insights into the landscape structure and the potential difficulties in guiding the
search process of an evolutionary algorithm in the direction of the optimal so-
lutions. Landscape analysis methods characterizing real-valued multi-objective
landscapes are challenging. The transfer and the re-definition of the establis-
hed landscape properties which arise in single-objective landscape analysis and
are applied to molecular multi-objective landscapes is another contribution of
this thesis. The conclusions drawn from the empirical landscape analysis of the
three- and four-dimensional optimization problem result in the formulation of
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hypotheses regarding the types of evolutionary algorithm components which
lead to an optimized search performance for the purpose of peptide optimiza-
tion.
Starting from the established types of variation operators and selection stra-
tegies, different variation operators and selection strategies are proposed and
empirically verified on the three- and four-dimensional molecular optimizati-
on problem with regard to an optimized interaction and the identification of
potential interdependences as well as a fine-tuning of the parameters. Moreo-
ver, traditional issues in the field of evolutionary algorithms such as selection
pressure and the influence of multi-parent recombination are investigated. The
experiments are evaluated according to the evolutionary algorithm objectives:
convergence, diversity and relative quality of the non-dominated solutions.
Another contribution of this thesis is the presentation of a convergence in-
dicator which is statistically reasonable, does not require the knowledge of a
Pareto optimal solution set and allows the comparison of differently sized so-
lution sets. The properties of this convergence indicator are discussed. Based
on this indicator, a further measurement reflecting the relative quality of the
non-dominated solutions is proposed. A scaled version of this convergence in-
dicator is further used and investigated as a selection criterion in a selection
strategy.
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Zusammenfassung

Die Identifikation einer großen Bandbreite an potentiellen Molekülen mit spe-
zifischen biologischen, chemischen und physikalischen Eigenschaften ist ein we-
sentlicher Bestandteil der Peptide-basierten Wirkstoffentwicklung. Die in vitro
Analyse potentieller Wirkstoffkandidaten ist zeit- und kostenintensiv. Daher
sind für diesen Zweck in silico Methoden erforderlich. Metaheuristiken wie
evolutionäre Algorithmen sind als hinreichend gute in silico Verfahren zur
approximativen Lösung der zugrundeliegenden multiobjektiven Optimierungs-
probleme bekannt. Die generelle Problemstellung in diesem Bereich ist die
Entwicklung eines multiobjektiven evolutionären Algorithmus mit dem Ziel,
eine möglichst hohe Anzahl an potentiellen hoch-qualifizierten Peptiden, die
sich in ihrem genetischen Material deutlich unterscheiden, in einer möglichst
geringen Anzahl an Generationen zu erhalten.
Ein multiobjektiver evolutionärer Algorithmus als in silico Methode, der ei-
ne große Anzahl an hoch qualifizierten Peptiden in einer geringen Anzahl an
Generationen für eine breite Klasse von molekularen Optimierungsproblemen
verschiedener Dimensionen detektiert, ist herausfordernd und die Entwicklung
eines solchen vielversprechenden multiobjektiven Algorithmus unter theore-
tischen Betrachtungen ist der Hauptbeitrag dieser Arbeit. Die Konstruktion
dieses Algorithmus basiert auf einer qualitativen Analyse der Fitnesslandschaft
angewandt auf ein drei- und vierdimensionalen Optimierungsproblems. Diese
Optimierungsprobleme sind generisch in der Hinsicht, dass Sequenz-abgeleitete
strukturelle und physikalisch-chemische Peptideigenschaften anhand von De-
skriptorenwerten der Aminosäuren berechnet werden. Dies ist eine weit ver-
breitete Methode im Bereich des maschinellen Lernens um Peptideigenschaften
und molekulare Interaktionen vorherzusagen.
Die qualitative und quantitative Analyse der Fitnesslandschaft sind übliche
Techniken zur Analyse der Fitness-Landschaft-Struktur und der potentiellen
Schwierigkeiten bei der Lenkung des Suchprozesses eines evolutionären Algo-
rithmus in Richtung der optimalen Lösungen. Analysemethoden für Fitness-
Landschaften, welche reell-wertige multiobjektive Fitness-Landschaften analy-
sieren, sind eine Herausforderung. Der Transfer und die Neudefinition der eta-
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blierten Fitness-Landschaft-Eigenschaften, welche aus der singulär-objektiven
Fitness-Landschaft-Analyse hervorgehen und auf die drei- und vierdimensio-
nale Landschaft übertragen werden, ist ein weiterer Beitrag dieser Arbeit. Die
Schlussfolgerungen aus der empirischen Fitness-Landschaft-Analyse des drei-
und vierdimensionalen Optimierungsproblems resultieren in der Formulierung
von Hypothesen hinsichtlich der Arten von evolutionären Algorithmenkompo-
nenten, welche zur optimierten Suchperformanz des evolutionären Algorithmus
zum Zweck der Peptidoptimierung führen. Ausgehend von den etablierten Ar-
ten der Variationsoperatoren und Selektionsstrategien werden verschiedene Va-
riationsoperatoren und Selektionsstrategien vorgestellt und empirisch anhand
des drei- und vierdimensionalen Optimierungsproblems im Hinblick auf eine
optimale Interaktion und gegenseitige Abhängigkeit sowie einer Feineinstellung
der Parameter getestet. Darüber hinaus werden die traditionellen Fragestel-
lungen im Bereich der evolutionären Algorithmen wie Selektionsdruck und der
Einfluss von mehreren Eltern bei der Rekombination untersucht. Die Experi-
mente werden hinsichtlich Zielsetzungen des evolutionären Algorithmus aus-
gewertet: Konvergenz, Diversität und relative Qualität der nicht-dominierten
Lösungen. Ein weiterer Beitrag dieser Arbeit ist die Vorstellung eines solchen
Konvergenzindikators, der statistisch sinnvoll, keine Referenzmenge an Pareto
optimalen Lösungen benötigt und den Vergleich von unterschiedlich großen Lö-
sungsmengen ermöglicht. Die Eigenschaften dieses Konvergenzindikators wer-
den diskutiert. Basierend auf diesem Indikator wird ein weiteres Maß vorge-
stellt, welches die relative Qualität der nicht-dominierten Lösungen reflektiert.
Eine skalierte Version dieses Konvergenzindikators wird darüber hinaus als
Selektionkriterium in einer Selektionsstrategie angewendet und untersucht.
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1 Introduction

1.1 Motivation

Drug development is a systematical and multi-level step that has its starting
point in pre-clinical research. Drugs are developed with the aim of treating
a disease safely and effectively. The drug discovery process consists of four
main steps: target identification, target validation, lead identification and lead
optimization. The target identification step analyzes the target related to the
disease to understand how the target influences a health body instead of a di-
seased one. The target validation steps analyzes if the target is directly involved
in the disease process. The lead identification step identifies and evaluates mo-
lecules regarding the biological activity on the disease target or function. In
the fourth step, the lead is optimized as a potential drug candidate. The most
challenging step of the drug design process is the identification of a target
peptide or protein. These identified peptides usually miss the high specificity
that is essential to avoid the mentioned negative side effects like toxicity, dige-
stion or expulsion. Additionally, they miss the suitable molecular features that
are important for successful drugs. Beneath the traditional biochemical expe-
riments, the prediction of the molecular properties of peptides and proteins is
one of the main application fields for chemoinformatics [109].
In general, peptides play an important role in the area of biological, medical
and pharmaceutical research. Due to their physiological features and bioche-
mical activity, the application fields of peptides are therapeutic and diagnostic
interventions. The favorable characteristics of peptides include the generally
high activity on their target receptor, a good target specificity and a relatively
small mass. This results in high effectiveness at a low dose. Furthermore, pep-
tides tend to have low adverse side effects and have a high binding affinity on
the target receptor. Peptides are physiologically accepted as natural biological
products that are associated with less accumulation in body issue and fewer
toxic adverse effects [121].
The focus in the area of drug design is the identification of peptides that opti-
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1 Introduction

mize several molecular properties and reduce the following - for the purpose of
drug design challenging - pharmaceutical features of native peptides: Peptides
typically have a very short half-life, this means that they have a general active
time of 2 to 30 minutes before they break down to reuse the amino acids for
building blocks. Furthermore, peptides are metabolically unstable due to the
protease cleavage of the backbones. Peptides usually cannot be administered
orally as this leads to destruction of the peptides by the digestive system to
ineffective amino acids. Another potentially unfavorable property is the solubi-
lity of peptides in aqueous solutions, meaning that peptides are only stable in
aqueous solutions for a few days and this limits their utility. These challenging
pharmaceutical properties of peptides are well known [51], [27].
Designer peptide drugs elude the negative pharmacological properties of nati-
ve peptides and impress by optimized biochemical properties. Especially small
peptides with a length of 10 to 20 amino acids are interesting since they com-
bine the molecular requirements of reduced ligand size while maintaining spe-
cificity in biological interactions [130]. Drug development requires the cha-
racterization of peptides. Since the synthesis of peptides and the laboratory
analysis are cost-intensive, in silico methods are required to design short pep-
tide sequences with diverse optimized molecular features. In this field, multi-
objective evolutionary algorithms are effective methods [158], [116], [94], [134].
Singh reports a specific property of a Genetic Algorithm (GA) in the area of
molecular optimization [145]: a genetic algorithm is introduced that optimizes
active leads. From the 206 possible hexapeptides, only less than 300 had to be
synthesized, found by the GA within only five generations as optimized leads.
More precisely, the experiments show that each successive generation provides
an optimization progress by attaining high quality leads in each of the succes-
sive generation.
This thesis is generally motivated by this work of Singh. Design considerati-
ons are presented regarding the composition of a Multi-Objective Evolutionary
Algorithm (MOEA) with the final aim of multi-objective molecular optimiza-
tion under specific conditions: Highly diverse peptide sequences with multiple
optimized molecular features have to be recovered within a low number of ge-
nerations. The recovering of optimized peptides in each succeeding generation
(overall less than 20 generations) is intended and termed early convergence
in this thesis. Less work has been done so far to empirically analyze MOEAs
regarding the effect of early convergence while maintaining a genetic diversity
within the candidate solutions, in particular in the area of peptide optimizati-
on.
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1 Introduction

1.2 Terminology

The main goal of an Evolutionary Algorithm (EA) is to find optimal solu-
tions for the underlying optimization problems by imitating the processes of
Darwinian evolution. The EA terminology refers to the Darwinian evolution
terminology and is transferred to the context of search heuristic as follows:

• Chromosome: Chromosomes are encoded strings of parameters (binary,
float, character, etc. ) and represent possible solutions of the optimization
problem. Chromosomes are also termed as genotypes.

• Gene: A gene is a position or a set of positions in a chromosome.

• Allele: Possible values of a gene from a fixed set of symbols are termed
alleles.

• Individuals: Individuals are candidate solutions to an optimization pro-
blem.

• Population: A set of structural similar individuals is termed population.

• Fitness: The quality of an individual is measured by a function. The
function value is an indicator for the quality of a solution and is termed
fitness.

• Recombination: The recombination is an operator that is used on two
or more individuals (in this context termed parents) to generate new
individuals (termed as offspring).

• Mutation: The mutation is an operator that is used on each individual
to modify it randomly.

• Selection: The selection decides which individual is becoming a parent
for recombination or which individual finds its way in the succeeding
population.

• Generation: An iteration step in EAs consists of recombination, mu-
tation and selection with the aim of producing a new population, which
is termed generation.

Generally, EAs differ from each other with respect to their individual repre-
sentation and in the composition of the used operators for mutation, recombi-
nation and selection.

3



1 Introduction

Fig. 1.1: Exemplary illustration of a chromose or individual.

In the case of a Multi-objective Optimization Problem (MOP), a number k

of objective functions have to be optimized simultaneously. Without loss of
generality, it is assumed that all objectives have to be minimized. A maximi-
zation problem is easily converted into a minimization problem by multiplying
the objective functions with minus one. The minimization of a MOP with k

objective functions is defines as:

min
x∈Q
{F (x)} (1.1)

where Q is the decision (variable) space and F (x) is defined as the objective
vector consisting of k objective functions F : Q −→ Rk, F (x) = (f1(x), ..., fk(x))

with fi : Q −→ R. F (x) is denoted as the objective space.
In real-life application problems, objectives are conflicting with each other. It
is nearly impossible to find a solution that optimizes all objectives perfectly.
Therefore, a solution is termed optimal if it satisfies all objective functions
sufficiently well and there is no other solution that dominates it. For a uni-
que understanding of a Multi-Objective Optimization (MOO) concept, some
definitions have to be clarified:

Definition 1 Pareto-dominance
A vector u ∈ Rk is said to dominate v ∈ Rk (denoted as u ≺ v) in the case of
the MOP (1.1) if and only if u is partially less than v:
∀i ∈ {1, ..., k}: ui ≤ vi and there exists at least one i ∈ {1, ..., k}: ui < vi.
A vector u is said to weakly dominate v (denoted as u ⪯ v) if
∀i ∈ {1, ..., k}: ui ≤ vi.

Definition 2 Pareto-optimal
Consider a set of decision solutions X ∈ Q of the MOP (1.1). The set X is
termed a global Pareto-optimal set if ∀x ∈ X, ̸ ∃y ∈ Q : F (y) ≺ F (x).
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1 Introduction

In contrast to the Pareto dominance, two vectors are termed indifferent if one
of them is superior in some dimensions, but worse in other dimensions - with
regard to the optimization problem. Especially two Pareto-optimal points are
indifferent to each other.

Definition 3 Indifference
A vector u ∈ Rk is indifferent with regard to a vector v ∈ Rk (denoted as
u ∼ v) precisely when neither u dominates v nor v dominates u.

The main goal of a MOEA is to find the Pareto optimal set. The Pareto optimal
set refers to the variable space, whereas the Pareto-optimal front (briefly Pareto
front) refers to the set of objective vectors corresponding to the solutions in
the Pareto set.

Definition 4 Pareto-optimal set
For a given MOP ((1.1)), the Pareto-optimal set (P ∗) is defined as:
P ∗ := {x ∈ Q| ̸ ∃x′ ∈ Q : F (x′) ≺ F (x)}

Definition 5 Pareto front
For a given MOP ((1.1)) and the Pareto-optimal set (P ∗) the Pareto-optimal
front (PF ∗) is defined as: PF ∗ := {F (x)|x ∈ P ∗}

EAs as MOO approaches are evolved to fulfill the following three general and
conflicting goals that have first been declared by Zitzler et al. [181]:

1. The approximate Pareto-optimal solution set has to be as close as possi-
ble to the Pareto front. In the best case, the approximate Pareto-optimal
solution set is a subset of the Pareto front.

2. Individuals in the approximate Pareto-optimal solution set have to be
uniformly distributed and widespread over the Pareto front.

3. The approximate Pareto-optimal solution set has to capture the whole
spectrum of the Pareto front. This requires investigating solutions at the
extreme ends of the objective function space.

The first goal is referred to as convergence and the second goal is denoted as
diversity throughout this thesis.
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1.3 Research Issues

The focus of this thesis is the design of a MOEA for peptide optimization
providing a wide range of high quality peptides within a very low number of
generations. More precisely, a customized NSGA-II is designed with the pur-
pose of optimized algorithm performance in terms of convergence, diversity
and non-dominated solution quality. Since the configuration and types of the
algorithm components have a large influence on this search process, a suitable
choice of the components regarding the purpose of early convergence in the
application field of peptide optimization is challenging. In the following, ques-
tions and hypotheses are raised that will be answered, confirmed or ruled out
in this thesis based on theoretical considerations and empirical investigations.
According to previous work [117], the variation operators mutation and recom-
bination in a GA cannot be optimized independently regarding the mutation
and recombination rates. Moreover, the optimal mutation rates depend on the
existence of recombination in a GA procedure. Therefore, the following hypo-
thesis and question are important:

(H1) The configuration and types of recombination and mutation operators
as well as their interaction influence the search behavior of the proposed
MOEA.

(Q1) Is it feasible to define a category of recombination operators or mutation
operators - or at least a combination of these two operators - that result
in efficient and robust MOEA performance for biochemical optimization
problems?

A common topic in the EA research field is the improvement of algorithm per-
formance by a variation of the parent number for recombination. The following
common hypothesis has to be examined:

(H2) The increase of the parent number for recombination results in an im-
provement of the algorithm performance.

In addition to the basic variation operators, the selection procedure is also
responsible for a suitable balance between exploration and exploitation within
the search process. This leads to the following hypothesis.

(H3) A suitable selection procedure is configured under the aspects of chance
and an appropriate balance between diversity preserving method and
suitable assignment of selection probabilities to high quality solutions in
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the way that these solution have a higher chance to be selected into the
succeeding generation than lower qualified solutions.

The balance between the diversity preserving method and selection probability
assignment to high quality peptides as well as the influence level of change have
to be controlled by selection parameters. This leads to the next question:

(Q2) Is it possible to define a range of settings for the selection parameters
which allow a further improvement of the MOEA performance?

Early convergence as the most important property of the proposed MOEA
is defeated since an increase of the population size results in a steady im-
provement of the algorithm performance. Less work has been done so far to
investigate the influence of the MOEA parameter population size as well as
the interdependence between the population size and the selection procedu-
re on the MOEA performance. Therefore, the following questions are further
considered in this thesis:

(Q3) Do large populations steadily speed up the algorithm performance of the
proposed MOEA for the biochemical MOPs?

(Q4) Is there a range of population sizes that is able to provide optimized
algorithm performance?

(Q5) Is there a predictable impact between population size and selection stra-
tegy?

(Q6) More precisely, is it possible to justify a configuration rule for the se-
lection parameters and the population size that provides an optimized
MOEA performance for the biochemical optimization problems?

According to the three goals declared in the last subparagraph, the experiments
of the configurations are evaluated with regard to convergence, diversity and
relative non-dominated solution quality. A convergence indicator is develo-
ped and introduced for the evaluation and comparison of configurations with
differently sized populations in a statistically reasonable way. Furthermore, an
intuitive diversity is proposed that calculates the spread of the solutions within
a population in a statistically reasonable way as well. Moreover, a measure-
ment is proposed that evaluates relative non-dominated solution quality and
is based on the convergence indicator.
The theoretical basis of the MOEA design is the consideration of the molecular
MOP according to the following question:
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(Q7) How difficult and complex are the multi-objective molecular optimization
problems, why is it difficult and which are the characteristic features of
these landscapes?

An answer to this question requires an analysis concept that analyzes the
corresponding molecular landscapes according to their fundamental properties.
The specific landscape properties are discussed with respect to the explorative
and exploitative search properties of the proposed customized NSGA-II to
improve the performance.

1.4 Contributions

This thesis comprises methodological contributions and contributions to the
current state of knowledge within evolutionary algorithm arising out of the re-
search tasks of the BMBF project OPTOPROBE [69]. Another starting point
of research work in this thesis is the statement of Singh [145]: Each generation
of an evolutionary process for lead optimization represents an optimization
progress by discovering high qualified leads in each generation. The central re-
search tasks of the project OPTOPROBE was the rational and efficient iden-
tification of suitable ligands as tumor markers and special fluorescent probes
to label intracellular targets. The theoretical foundation of the evolutionary
process as well as the empirical comparison and discussion of the concepts is
the main contribution of this thesis. Based on the project objectives to design a
multi-objective evolutionary algorithm for the identification of peptide-based
candidate probes, this thesis undertakes fundamental research work in desi-
gning a suitable evolutionary concept founded on theoretical considerations.
This thesis does not disclose any data or technical details of the OPTOPROBE
project.
A single-objective evolutionary process has been developed to identify pep-
tide ligands with specific characteristics to target glycostructures [130]. An
important insight from this research work is the exponential fitness improve-
ment within the first five generations of the evolutionary process. The fitness
improvement is slowed down for the generations 5 to 10. This characteristic is
termed early convergence in this thesis. The identification of suitable peptide
ligands requires the fulfillment of multiple objectives. The specification of a
multi-objective evolutionary process based on the single-objective model with
similar characteristics is required. Thus, the main contribution of this thesis is
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• a concept of a multi-objective evolutionary process for peptide optimi-
zation providing early convergence.

This concept is based on the results and the insights of a molecular lands-
cape analysis performed on two generic and different dimensional molecular
optimization problems. The results are generalized to improve the search per-
formance of the evolutionary process. Thus, the methodological contribution
of this thesis is

• a concept for a qualitative real-valued multi-objective molecular lands-
cape analysis.

The influence of the component parameters of the evolutionary process on
the optimization performance is empirically analyzed on two generic and dif-
ferent dimensional molecular optimization problems. The performance results
are statistically evaluated regarding the convergence and diversity behavior.
For the purpose of convergence analysis in a statistically reasonable way, the
following methodological contribution is part of this thesis:

• introduction of a convergence indicator and discussion of its properties.

1.5 Publications

Different parts of the research presented in this thesis have been published in
the proceedings of several conferences, a journal and a book chapter after a
double-blind peer-reviewed process. The publications included in this thesis
are listed below.

Paper 1
S. Rosenthal, N. El-Sourani, and M. Borschbach, „Introduction of a Mutation
Specific Fast Non-dominated Sorting GA Evolved for Biochemical Optimiza-
tion“, Proceedings of the 9th International Conference on Simulated Evolution
and Learning (SEAL 2012), LNCS 7673, pp. 158-167, 2012

Paper 2
S. Rosenthal, N. El-Sourani, M. Borschbach, „Impact of Different Recombina-
tion Methods in a Mutation-Specific MOEA for a Biochemical Application“.
L. Vanneschi, W.S. Bush, and M. Giacobini (eds.): Proceedings of the 11th Eu-
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ropean Conference on Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics (EvoBIO 2013) LNCS 7833, pp. 188-199, 2013

Paper 3
S. Rosenthal and M. Borschbach, „A Benchmark on the Interaction of Basic
Variation Operators in Multi-Objective Peptide Design evaluated by a Three
Dimensional Diversity Metric and a Minimized Hypervolume“, M. Emmerich
et al. (eds.): EVOLVE - A Bridge between Probability, Set Oriented Numerics
and Evolutionary Computation IV, pp. 139-153, 2013

Paper 4
S. Rosenthal, and M. Borschbach, „Fine-Tuning of Genetic Algorithm Aggre-
gate Selection for Multi-Objective Biochemical Optimization“. Emmerich et al.
(Eds.): EVOLVE - A Bridge between Probability, Set Oriented Numerics and
Evolutionary Computation IV, pp. 41-46, 2013

Paper 5
S. Rosenthal and M. Borschbach, „Impact of Population Size and Selection
within a Customized NSGA-II for Biochemical Optimization Accessed on the
basis of the Average Cuboid Volume Indicator“, Proceedings of the 6th Inter-
national Conference on Bioinformatics, Computational Systems and Biotech-
nologies (BIOTECHNO 2014), IARIA, pp. 1-7, 2014.

The latter publication has been awarded to submit an extended article of this
publication to the IARIA Journal on Advances in Life Sciences:

Paper 6
S. Rosenthal and M. Borschbach, „Impact of Population Size, Selection and
Multi-Parent Recombination within a Customized NSGA-II for Biochemical
Optimization“, International Journal on Advances in Life Sciences, IARIA,
vol. 6, nr. 3&4, pp. 310-324, 2014.

Paper 7
S. Rosenthal and M. Borschbach, „A Concept for Real-Valued Multi-Objective
Landscape Analysis Realized on Biochemical Optimization Problems“, Procee-
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dings of the 18th European Conference on the Applications of Evolutionary
Computation (EvoApplications 2015), LNCS 9028, pp. 897-909, 2015.

Paper 8
S. Rosenthal, B. Freisleben and M. Borschbach „Aggregate Selection in Multi-
Objective Biochemical Optimization via the Average Cuboid Volume Indica-
tor“, Emmerich et al. (Eds.): EVOLVE - A Bridge between Probability, Set
Oriented Numerics and Evolutionary Computation VI, 2015, to appear.

Paper 9
S. Rosenthal and M. Borschbach „Average Cuboid Volume as a Convergence
Indicator and Selection Criterion for Multi-Objective Biochemical Optimiza-
tion“. Emmerich et al. (Eds.): EVOLVE - A Bridge between Probability, Set
Oriented Numerics and Evolutionary Computation VII, DOI 10.1007/978-3-
319-49325-1_9, 2017.

The experiments presented in the publications (1) to (6) have been performed
with the software tool developed in the BMBF project OPTOPROBE wi-
thin the research laboratory Optimized Systems of the University of Applied
Sciences FHDW in Bergisch Gladbach under the supervision of PD Dr. Markus
Borschbach. This project is a collaborative project of the research group of PD
Dr. Andreas Frey at the Leibniz Research Center Borstel and several research
partners. The foundation of the developed evolutionary platform roots back to
several earlier research cooperations with the same research group of PD Dr.
Andreas Frey and PD Dr. Markus Borschbach while being a visiting Profes-
sor at the Technical University in Chemitz and at the Institute of Computer
Science in Münster. The experiments presented in (8) and the experimental
results presented in this thesis have been performed with the extension of the
open source tool jMetal.
The author of this thesis has developed all main contributions of the papers
listed above, performed the experiments, wrote the publications and presented
the publications 2, 3, 4, 5 and 7 at the different conferences. The developed
components of the publications have also been included in the OPTOPROBE
software tool by the author of this thesis as well as in the extension of the tool
jMetal.
The theoretical part of the publications 1 and 2 are included in Sections 4.5
and 4.4. The theoretical part of the publications 3, 4 and 8 are included in
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Section 4.6. The theoretical and experimental landscape analysis parts of the
publications 6, 7 and 9 are included in Section 3. The cost-utility analysis of the
open software tools in Section 5.1 has been partly published in the publications
5 and 6.

1.6 Organization

This thesis is organized as follows. Chapter 2 presents a summary of related
work regarding established MOEA approaches as well as an overview of re-
lated research in the field of MOEA adaptation for the final aim of peptide
optimization. Furthermore, the biochemical objective functions constituting
the three- and four-dimensional multi-objective molecular optimization pro-
blems are presented in this chapter.
Chapter 3 presents a review of existing qualitative and quantitative techni-
ques for landscape analysis. For a deep insight into the problem complexity
of the proposed three- and four-dimensional molecular optimization problem,
this chapter proposes a landscape analysis of the multi-objective molecular
landscapes based an analysis concept in particular applicable for real-valued
Multi-objective Molecular Landscapes (MOML).
Chapter 4 describes the customized NSGA-II for peptide optimization - termed
as VONSEA - in detail. At the beginning of this chapter, the traditional proce-
dure of NSGA-II is presented, followed by the introduction and the motivation
of the VONSEA components. Thereby, a thorough review of the traditional
operators for each component (recombination, mutation, selection) is presen-
ted, including a classification of these operators. The VONSEA components
are further classified by these categories.
Chapter 5 introduces the indicators for the EA objectives convergence, diver-
sity and relative non-dominated solution quality. The established convergence
and diversity indicators for the assessment of MOEA performance are pre-
sented, and a new convergence indicator is introduced and its properties are
discussed.
Chapter 6 presents the experimental results of VONSEA in the case of the
three- and four-dimensional MOP with the focus on the hypotheses and ques-
tions raised above.
Chapter 7 summarizes the results, discusses the hypotheses and questions and
gives an outlook of future research directions.
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2.1 Multi-objective Evolutionary Algorithms

EAs are heuristic methods that are categorized into three research areas:
The biggest and most popular part is the area of GA beneath the areas
of Evolutionary Strategy (ES) and Evolutionary Programming (EP). In the
1970s, GA and ES were developed in parallel by Holland [84] in the case
of GA and by Rechenberg [127] in the case of ES. The three categories ha-
ve commonalities as well as differences: GA and ES operate on fixed length
strings. However, GAs traditionally make use of a bit string encoding, whereas
ESs prefer real-value vectors as ESs have once been designed for parameter
optimization problems. Furthermore, all categories of EAs incorporate a mu-
tation operator, GAs and ESs additionally use recombination operators. All
algorithms of the EA areas make use of selection operators. GAs prefer proba-
bilistic operators for parent selection, whereas ESs use deterministic selection
strategies to choose the individuals for the succeeding population. Another
difference between GA and ES is the population size, GAs operate with fixed
population sizes, whereas the population size within ESs is variable. Further-
more, it is established in the GA research area to evolve algorithm with a
problem specific coding according to the optimization problem. The problem-
specific encoding is not common in the area of ES. A more detailed comparison
of these research areas is described in related work [89].
The terminology EA is mainly used throughout this thesis and refers to the
abstract commonalities of ES and GA. The terms ES and GA are used in the
context of metaheuristics as related work.
The first MOGA was proposed by Schaffer in 1985 [136] and is an extension
of the simple GA. This algorithm is termed Vector-Evaluated Genetic Algo-
rithm (VEGA). A special selection process is used in VEGA based on propor-
tional selection and the objective switching rule: The population of the size N

is divided into q subpopulations Pi of the size N/q, whereas q is the number
of objective functions. These subpopulations are created by performing pro-
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portional selection according to each objective function zi ( for i = 1, ..., q).
The subpopulations Pi are then stored together into a mating pool of size N .
This mating pool is shuffled and crossover as well as mutation are applied.
The crossover and mutation operators are like the one in the simple GA. The
disadvantage of VEGA is a consequence of the selection process: the solutions
tend to converge to the optimum of each objective function.
From 1985 to 1997 the method of weighted objectives was predominant in the
area of MOO. Multiple objectives are combined into one single-objective scalar
function via a weight vector. The main difficulty arose in the determination
of the optimal pre-defined weights. In 1993, Fonseca and Fleming proposed
the first GA which explicitly uses a Pareto dominance scheme for comparison
of the solutions (Pareto-based ranking) and niching techniques, termed Multi-
Objective Genetic Algorithm (MOGA) [65]. The motivation of MOGA is an
acceleration of the search process towards the true Pareto front while main-
taining diversity within the solutions. In order to fulfill these requirements,
a fitness sharing is only used between solutions with the same Pareto rank.
Niching distance measures of two solutions are determined to compare them
with a sharing parameter. If the distance is less than the sharing parameter,
the associated niche count of the solution is adjusted. Unfortunately, MOGA
usually provides slow convergence and the performance depends on the sharing
parameter. An improved version of MOGA was introduced and benchmarked
in 2001 by Purshouse and Fleming [124].
In 1994, Horn, Nafpliotis and Goldberg presented the Niched Pareto Gene-
tic Algorithm (NPGA), which introduces the Pareto domination tournament
and the class fitness sharing [87]. The selection is realized by a tournament
selection scheme based on Pareto dominance [76]. Two solutions are chosen by
binary tournament selection. Both are compared to a tournament set (usually
of a size of 10% from the population) randomly chosen from the entire popu-
lation. If only one of both solutions is dominated by the tournament set, then
the non-dominated one is selected. If both solutions are either dominated or
non-dominated, the selection is decided by class fitness sharing. Thereby, the
solution in the less crowded niche is selected. The disadvantage of NPGA is
its performance dependence on the niche parameter and the size of the tour-
nament set. An improved version of NPGA termed NPGA-2 was published in
2001 by Erickson et al. [57].
Hajela and Lin introduced the Weight-Based Genetic Algorithm (WBGA) at
the beginning of the nineties [79], which is related to VEGA. WBGA trans-
forms the MOP into a scalar optimization problem by multiplying each objec-
tive function with a weight. These weights are not fixed and encoded in the
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individual vectors. The fitness values of a solution are calculated by adding the
weighted objective function values. To maintain diversity, subpopulations of
individuals are evaluated for different objectives analogous to VEGA. Multiple
solutions are simultaneously searched in a single run. A niching method is used
on the weight vectors to maintain diversity.
The Random-Weighted Genetic Algorithm (RWGA) introduced by Murata
and Ishibuchi in the middle of the nineties [114], [97] is also based on a weigh-
ted sum of objective functions, but the weights are assigned randomly to allow
a flexible search direction over the search space. Elite solutions are maintained
by elitism strategy [97]. Non-dominated solutions are stored in an external po-
pulation, which is distinguished from the current population. Elitism is realized
by selecting a specific number of the external set for the succeeding generati-
on. RWGA as well as WBGA have difficulties in finding solutions uniformly
distributed over non-convex true Pareto fronts.
Scrinivas and Deb present one of the mostly used MOGAs, the Non-dominated
Sorting Genetic Algorithm (NSGA) in 1994 [142]. NSGA is built upon the basic
framework introduced by Holland [84]. The innovation of NSGA is the selec-
tion procedure: the stochastic remainder proportional selection (SRS). This
procedure is implemented to have a good convergence of the solutions to the
Pareto front. The ranking is based on the Pareto dominance principle. More
precisely, solutions are assigned to a dummy fitness value for each dominance
class, proportional to the population size. Fitness sharing within each class is
incorporated to ensure diversity within the solutions. NSGA is criticized for
the high computational complexity O(MN3) (where M is the number of ob-
jectives and N the population size), its lack of elitism and the challenge of
determining the sharing parameter. An improved version of NSGA including
elitism was published in 2001 by Deb [37].
An improved version of NSGA was proposed in 2002 by Deb and is termed
NSGA-II [44]. The computational complexity for the used fast non-dominated
sorting is reduced to O(MN2). The selection procedure is based in the soluti-
ons rank and the crowding distance operator. Elitism is included and a sharing
parameter is implemented, which is not chosen a priori. A more detailed des-
cription of NSGA-II is given in a later chapter.
In 1999, Zitzler et al. proposed the elitist evolutionary algorithm termed Strength
Pareto Evolutionary Algorithm (SPEA) [185]. SPEA assigns better fitness va-
lues to non-dominated solutions in less crowded parts of the objective space.
Therefore, an external population of a fixed size stores all non-dominated solu-
tions up to the actual generation. The individuals for the succeeding generation
are selected from the current and an external set. The selection probability of
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an individual depends on a strength value that reflects the number of indivi-
duals dominated by or equal to this individual. To ensure diversity among the
non-dominated solutions, a deterministic clustering technique is used, but it
does not include a distance measure between solutions. The point of criticism
is the high complexity of the clustering algorithm. Furthermore, SPEA does
not converge to the Pareto front in the case that the front is concave as the
used fitness assignment is sensitive to concave fronts. Zitzler et al. published
an improved variant of SPEA termed SPEA2 in 2001 [183]. SPEA2 differs to
SPEA in the fitness assignment and the diversity mechanism. A density measu-
re based on the k-th neighbors is used as diversity mechanism. The clustering
technique of SPEA is replaced by a truncation method in SPEA2.
Knowles and Corne proposed a simple (1+1) local evolutionary algorithm ter-
med Pareto Archived Evolutionary Strategy (PAES) in 2000 [95] that uses an
archive pool for selection and a hypergrid strategy. A solution is randomly ge-
nerated at the beginning of the algorithm and stored in the archive pool. After
that, another solution is generated by mutating the initial one. The mutant
is compared to the initial solution and only accepted as new parent if it is
non-dominated, otherwise it is discarded. In the case that both are indifferent,
the archive is used for comparison. An archive pool of fixed size is used to sto-
re all non-dominated solutions. The objective space is divided by a grid and
the areas are evaluated with regard to its crowdedness. If the newly generated
solution does not dominate any other solution in the pool, the decision for the
current solution or the entry in the pool is done by crowding measure. In the
case that a non-dominated solution enters the archive pool, solutions domina-
ted by this one are deleted.
In 2001, Corne und Knowles introduced the Pareto-Envelope-based Selection
Algorithm (PESA) [32] that uses principles of SPEA and PAES. To ensu-
re a high diversity within the solutions, the objective space is divided into
k-dimensional hyper-boxes. The characteristic feature of PESA is the selecti-
on method. The aim of this selection is that non-dominated solutions in less
crowded boxes have a higher chance to be selected. The selection probability
of an individual depends on a squeeze factor that is the number of individuals
sharing the same box. Binary tournament selection is used and the individual
with the lowest squeeze factor is chosen. An improved version of PESA ter-
med PESA-II was published by Corne et.al. in 2001 [31]. The difference to
PESA is the replacement of the individual-based selection. A selective fitness
is assigned to all solutions in a hyper-box and the whole hyper-box is selected.
Solutions are chosen randomly as parents of this hyper-box. The motivation
for PESA-II is the fact that hyper-box selection ensures a better spread of
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the solutions than individual-based selection. A priori information about the
objective space is mentioned as a disadvantage of these algorithms.
In 2003, Deb proposed a steady-state MOEA based on the ϵ-concept of Lau-
mann [101] termed ϵ-MOEA [43]. The motivation for this algorithm is a good
compromise between convergence, a high diversity of the solutions and a low
computation time. ϵ-MOEA comprises a parent and archive update strategy.
An offspring is created from a solution of the parent and one of the archive
pool. Both offspring are used to update the parent pool and archive pool. The
usual Pareto dominance principle is used to update the parent population and
the ϵ-dominance principle is used to update the archive pool. In the sense of
the ϵ-dominance, two solutions which have a difference less than ϵi in the i-th
objective are not non-dominated to each other.
In 2003, the Rank-Density based multi-objective Genetic Algorithm (RDGA)
was proposed by Lu and Yen [107]. This algorithm is characterized by a spe-
cial ranking method - Automatic Accumulated Ranking Strategy (AARS), a
rank-density based fitness assignment and a forbidden region concept. The
rank value of a solution is determined as the summation of the rank values
of the solutions which are dominated by the first one plus 1. The value 1 is
the assigned rank value for non-dominated solutions. To maintain diversity,
a modified cell density evaluation scheme like the one in PESA is used. The
rank and the density are two features calculated for each solution. Then, a
modified VEGA is applied to fulfill the fitness assignment. A forbidden region
concept is implemented to prevent the ’backward’ effect. The forbidden regions
include all cells dominated by the selected parents for crossover and mutation.
Offspring from these cells will not take part in the succeeding generation.
In 2004, Zitzler and Künzli introduced the Indicator-based Evolutionary Al-
gorithm (IBEA) [182]. Practically, it is of the same procedure as NSGA-II
and SPEA2, but it differs in the selection process and it uses one population
of variable size (instead of a fixed actual population and an archive of the
best solutions like in SPEA2). The main goal of the selection process is the
dominance preserving by a binary quality measure (indicator) which is used
within the selection process. In IBEA, the fitness of the individuals is determi-
ned according to the value of the binary quality measure. Within the binary
tournament selection only pairs of individuals are compared and the worst are
removed from the population. IBEA does not make use of a crowding or den-
sity concept for diversity preserving like in NSGA-II or SPEA2.
In 2005, Emmerich et al. [54], [17] proposed the S-metric Selection Evolutiona-
ry MO Algorithm (SMS-EMOA). This algorithm is a steady-state EMOA that
combines the concept of non-dominated sorting with a selection operator based
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on the S-metric. SMS-EMOA is similar to NSGA-II except for the selection
procedure and the ranking. In each iteration, only one individual is generated
by variation operators. The selection of SMS-EMOA chooses the subset of indi-
viduals for the succeeding population according to the subset with the maximal
S-metric under all possible subsets. The disadvantage of this algorithm is the
computational complexity for the calculation of the hypervolume, especially if
the number of objectives is greater than 3. Otherwise, SMS-EMOA features
convergence behavior to the Pareto front even in the case of high dimensional
solution space - where NSGA-II and SPEA2 failed [167].
In 2007, Zhang and Li presented the MOEA using Decomposition (MOEA/D)
[178]. The concept of MOEA/D is to composite the MOP into different sub-
problems that are solved simultaneously. The objective of each sub-problem is
an aggregation of several objectives. A method for converting an MOP into se-
veral scalar optimization problems is for example the weighted sum approach.
Each subproblem is solved by using information about the neighbored sub-
problems: neighbored subproblems are defined on the basis of the distances
between the coefficient vectors obtained by the aggregation. Consequently, the
population in each generation is composed of the best solutions found so far for
each subproblem. This algorithm is of lower computational complexity than
NSGA-II. A short overview of the characteristic features of the most tradi-
tional MOGAs is given in Table 2.1 and a further short description as well
as a comparative overview of the established MOEAs is available in other
work [97], [72].

2.2 Multi-objective Evolutionary Peptide

Optimization

Molecule optimization formulated as optimization problems usually provides
several conflicting objectives. Therefore, MOEAs have become established me-
thods in the field of peptide- or protein-based drug design. Some work has been
published in the recent years regarding the use and the adaptations of state-
of-the-art MOEAs for the purpose of multi-objective molecular optimization.
This section gives an overview of this work published so far.
Cutello, Narzisi and Nicosia presented a more sophisticated version of the
(1+1) local search evolutionary strategy PAES to predict the native structure
of a protein from the amino acid sequence [33]. The popular protein structure
prediction problem is reformulated as a 2-objective optimization problem by
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decomposing the CHARMM energy function. The test runs are performed on a
set of medium to large proteins with 26 to 70 amino acids. First test runs with
the traditional PAES algorithm revealed poor performance caused by a pre-
mature convergence and a trapping in local minima. The more sophisticated
version I-PAES makes use of polypeptide chains as solution representations,
a cloning, a hypermutation and a selection strategy based on the Pareto do-
minance principle. Two clones are produced and both are mutated by the
hypermutation. The first mutation changes the conformation more drastically
and the second mutation ensures a more local search. The mutation probabili-
ties are determined by an exponential function, which decreases as the search
method proceeds. Then, the non-dominated clone serves as a new mutated
solution and the other one is added to the archive. After that, the standard
procedure of PAES follows.
Hohm, Limbourg and Hoffmann published a MOEA for the design of effective
peptide-based drugs [83]. This MOEA is applied on a 3-objective optimization
problem referring to the mimic antibody epitopes of the proteins thrombin
and blood coagulation factor VIII as first objective, short peptide sequence as
second objective and conformationally stable peptides as third objective. The
procedure of the proposed MOEA starts with the initialization of a population
of sequences. Mutation, crossover and swapping are used as variation operators
and a three-criteria based selection strategy is used to include the idea of eli-
tism as well as genetic diversity. The mutation process makes use of a mutation
pool comprising single amino acids for mutation as well as short amino acid
sequences. Therefore, an amino acid is replaced by another amino acids or by
an insertion of a short sequence. Also the mutation pool undergoes a selection
process: a fitness value is assigned to the members of this pool according to
the number of times they have been chosen as well as the number of times
they have been successful. Pairwise single mutation crossover is used and the
crossover points are chosen randomly. Since molecules sometimes provide good
motifs, but in a suboptimal ordering, the motives are swapped. The selection
process makes use of the idea of elitism ensuring that the best individuals are
not lost. Therefore, a fixed number of the best individuals from the archive find
their way into the succeeding generation. Furthermore, binary tournament is
applied to select the remaining individuals of the succeeding generation. The
individuals are selected based on three criteria:

1. Pareto dominance principle,

2. Diversity preserving strategy realized by assigning a value to each solu-
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tion based on the number of individuals sharing the same hypercube,

3. Principle of change realized by the random selection of an individual.

The test runs are performed with a population size of 10. The mutation pool
consists of 8 motifs and 20 amino acids.
Oduguwa, Tiwari, Fiorentino and Roy use three different MOEAs to determine
a good protein-ligand configuration for a given target protein and its binding
components [118]. The three algorithms PAES, SPEA and NSGA-II are inves-
tigated regarding their drug candidate discovery abilities for the protein-ligand
docking problem. The framework including these three algorithms makes use
of a specific chromosome structure comprising three coordinates of the chro-
mosome in the target axes system, two angles of the chromosome compared to
the reference compound and a set of relative coordinates of the chromosome
in the compound axes system. PAES, SPEA and NSGA-II are compared to
each other in solving a 3-objective MOP comprising the internal energy of the
compound, the protein-compound couple’ s Van der Waals and electrostatic
energy of interaction as well as the shape complementaries. The population
size was set to 100, and 500 generations were performed. NSGA-II and PAES
performed best, but the optimal solutions were found by all three MOEAs.
Lee, Shin and Zhang published the NSGA-II with constrained tournament
selection for the DNA sequence optimization [104]. The DNA sequence pro-
blem is formulated as a 4-objective MOP with two constraints. The constraints
are the number of bases G and C and the melting temperature. This specific
NSGA-II uses a two-stage crossover process. The first stage is a sequence set
level crossover, which is performed by an exchange of the sequences between
two chromosomes. The second step is the one-point crossover. Furthermore,
the one-point mutation is used on every chromosome. The constrained tourna-
ment selection favors solutions, which are feasible, have less penalty or belong
to a better front. Therefore, the selection process comprises three cases: First-
ly, the feasible solutions are selected, secondly the one with less penalty is
selected and thirdly the dominating one is selected or otherwise the one with
the larger crowding distance. The sum of penalties is used for each constraint
as the penalty of the chromosome. The experiments were performed with a
population size of 1000 and 200 generations.
Rajapakse, Schmidt and Brusic presented a work using the NSGA-II to search
for a motif that unravels rules governing peptide binding to medically im-
portant receptors in the application field of drug design and vaccines target
discovery [125]. The NSGA-II makes use of a chromosome presentation by an
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ensemble of k · n real numbers, where k presents the motif length and n the
number of residues. The performance is investigated on a 2-objective MOP
with a population size of 500 and 300 performed generations. NSGA-II is su-
perior to other computational techniques.
Gilles, Willet, Flemming and Green proposed the program MoSELECT that
includes MOGA [65] for the purpose of combinatorial library optimization
regarding different properties like diversity and ’drug-like’ physiochemical pro-
perties [73]. In a further work, MoSELECT has been used to optimize the
library size and the configuration of the combinatorial libraries [174].
Deb and Reddy published experiments on three NSGA-II variants for the iden-
tification of the optimal gene subsets for the three commonly used cancer data
sets Leukemia, Lymphoma and Colon [45]. The traditional NSGA-II as well
as the two alternatives are applied on a 3-objective MOP, where the objecti-
ves refer to the gene subset size, the number of misclassified training samples
and the number of misclassified test samples with a population size of 500
and a performed generation number of 500. The alternative NSGA-II makes
use of the biased dominance principle referring to the objective i. The biased
dominance principle ensures that two solutions with identical complementary
objective values j and j ̸= i are not dominating each other. Furthermore, so-
lutions lying along the fi axis have the potential to be non-dominated to each
other. The third provided alternative NSGA-II is the multimodal NSGA-II. So-
lutions that are equal in the objective space but have different phenotypes are
termed multimodal solutions. The solutions providing identical classifications
are of special interest in the field of biology. The selection process determining
the succeeding generation is modified: The selection of the solutions proceeds
like in the traditional NSGA-II until the last front. If the number of distinct
solutions (distinct solutions are differing in at least one objective function) is
higher than the number of solutions required to fill the succeeding population,
the crowding distance measure is used as criterion. Otherwise, a procedure is
used that fills the population with a proportional number of multi-modal so-
lutions of every distinct solution corresponding to their appearance in the last
front.
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3 Multi-objective Molecular
Landscape Analysis

Fitness landscape analysis is commonly used to gain an insight into the dif-
ficulties and complexity of an optimization problem as well as to provide the
opportunity to predict the ability of heuristic search algorithm in finding consi-
derably good solutions [112]. The use of MOEAs for molecule optimization has
increased significantly, but the general understanding of the molecular lands-
cape properties with the aim of designing an appropriate MOEA to search the
molecular space is missing [55]. The analysis of landscape structures provides
information about landscape difficulties of molecular optimization problems.
This information provides a better insight into the composition of a MOEA
with optimized search performance regarding a particular type of algorithm,
the types of variation probabilities as well as the selection pressure for a sui-
table balance of global and local search behavior. The components of a fitness
landscape are a set of genotypes, the fitness functions, which evaluate the ge-
notypes and the genetic operators, which represent the move operator for the
exploration of the neighborhood. Stadler presented the formal description of
landscape composition [149]:

Definition 6 A landscape consists of three ingredients:

• A set X of configurations,

• a notation X of the neighborhood, the nearness, distances or accessibility
on X, and

• a fitness function f : X → R.

The local optima as the fundamental characteristics are defined as:

Definition 7 The space X is assumed to be metric and x∗ ∈ X is a local
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maximum (minimum) if there exists ϵ > 0 such that

f(x∗) ≥ f(x) or (f(x∗) ≤ f(x)) (3.1)

for all x in the neighborhood of x∗: x ∈ Nϵ(x
∗).

Global optima are defined as the absolute maxima or minima of the search
space.
The main goal of landscape analysis is to determine landscape characteristics
that state the structure of the landscape and have a strong influence on the
heuristic search performance [103], [55]: modality1, correlation2, ruggedness3

and plateaus4.
A concrete landscape analysis starts by specifying metrics that characterize the
geometric properties. The selection of suitable metrics depends on the organi-
zation of the configuration space X and has to take account of the optimization
problem. Reidys and Stadler [129] summarized three distinct approaches for
the organization of the configuration space X:

1. Transition probabilities are used to describe the movement from one con-
figuration to another. The process is describable by Markov chains and
is especially applied in the case of combinatorial optimization problems.

2. In the field of computer science, genetic operators are usually used as
move operators to create new solutions.

3. Rigorous mathematical analysis is performed via specified metrics or
topologies on X.

The landscape analysis used in this thesis is oriented on the analysis of phy-
siochemical functions predicting peptide properties. According to Definition
6, the three ingredients are assigned as follows: the configuration set X con-
sists of all feasible peptides with a length of 20 composed of 20 amino acids.
Referring to the three approaches of the configuration space organization, the
use of Markov chains is not advisable caused by the general difficulty to ef-
ficiently design highly complex spaces [28], especially for the highly complex

1Modality is a feature that provides an overview of the tendency of the fitness landscape
to produce local optima.

2Correlation describes the dependence between two solutions.
3Ruggedness is a characteristic of the landscape for fitness variation between the fitness

values of a solution and its neighbored points.
4A plateau is a feature that represents neutrality referring to a solution set with equal

fitness.

24



3 Multi-objective Molecular Landscape Analysis

space X. Furthermore, the configuration set allows no mathematical definitions
of metrics or topologies. Consequently, the organization of such a biochemical
landscape is based on the second approach. According to the second ingredient,
a genetic operator is used to explore the neighborhood of a configuration, as
proposed by several authors [103], [55], [111]. According to the third ingredient,
biochemical fitness functions usually compose discrete5 search spaces as there
are real-valued solutions which have no corresponding feasible peptide in the
search space. The fitness functions composing the three- and four-dimensional
MOP used as benchmark problems in this thesis and presented in section 3.4
are discrete.
The analysis techniques described in the following section are common for
landscape analysis performed on sequences of solutions obtained by random
walks.

3.1 Single-objective Fitness Landscape Analysis

Different techniques have been introduced to analyze the characteristics of
single-objective fitness landscapes. These techniques are divided into two cate-
gories: Statistical analysis and information analysis [110]. In the case of both,
statistic and information analysis, the fitness landscapes are considered as sta-
tistically isotropic6 [161].

3.1.1 Statistical Analysis

Statistical analysis comprises different correlation metrics to estimate the struc-
ture of a landscape. The autocorrelation function and the correlation length
are two established measures of the category statistical analysis. The autocor-
relation function measures the ruggedness of the landscape and was introduced
by Weinberg [170]. The autocorrelation function p is defined as:

p(d) =
< (f(x)− < f >) · (f(y)− < f >) >d(x,y)=d

var(f)
, (3.2)

5Definition of a discrete set:
X is a topological space and the set S ⊂ X. S is said to be discrete if every point x ∈ S

has a neighborhood U such that S ∩ U = x.
6The term isotropic refers to the fact that the statistics of the time series {fi}, resulting

of the random walks, are the same and independent of the starting point. Concluding,
this means that the landscape has globally the same structure everywhere [88].
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where < x >= 1
N
·

N∑
i

xi denotes the average value of all xi and var(f) the

variance. This measure defines the correlation of solution points at the distance
d in the search space. Weinberg also proposed an alternative, the random walk
correlation function. Thereby, r(s) is used as an autocorrelation function along
a random walk [170]:

r(s) =
< (f(xi)− < f >) · (f(xi+s)− < f >) >

var(f)
, (3.3)

where {f(xi)} are the time series containing the fitness values of the random
walk steps {xi}. This correlation function calculates the correlation between
two solution points with a distance step length of s on the random walk path.
In general, r(s) starts with a values of 1 for s = 0 and results in r(s) = 0 for
a distance step s > 0. The faster the descent of r(s), the more rugged is the
landscape.
On the basis of these random walk correlation functions, another established
measure of the statistical analysis is defined. The correlation length defines the
distance beyond which two solution sets become uncorrelated:

l = − 1

ln(|r(1)|)
, (3.4)

for r(1) ̸= 0. For interpretation, the higher the correlation length, the smoo-
ther is the landscape. The smoother a landscape, the higher is the correlation
of neighbored solutions and the search process is less challenging for the search
heuristic [112].
Fitness Distance Correlation (FDC) was proposed by Jones [90] as an ana-
lyzing technique to detect search difficulties with the aim of examining GA
performance on optimization problems with known optima. The FDC coeffi-
cient measures the relation of the fitness and the distance of the solutions {si}
to the nearest optimum x∗ in the search space:

FDC =
cov(f(si); d(si))√

var(f(si)) · var(d(si))
, (3.5)

where d is the distance function to x∗ and cov(x; y) is the covariance. The
coefficient values are in the interval [−1; 1]. Jones further introduced three
categories to classify the FDC coefficients according to the prediction of GA
effectiveness in solving optimization problems:

• FDC ≥ 0.15: The fitness increases with the distance. The GA is poten-
tially not effective or the problem is misleading.
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• −0.15 < FDC < 0.15: There is virtually no correlation between fitness
and distance. The problem is categorized as difficult.

• FDC ≤ −0.15: The fitness increases as the optimum approaches. The
GA is potentially effective or the problem is straightforward.

A great disadvantage of FDC is that the nearest optimum or at least the best
known solution has to be known in advance.

3.1.2 Information Analysis

Information analysis from a global perspective is a quantitative landscape ana-
lysis. The aim of information analysis is to quantify the characteristics of the
landscape like modality, ruggedness and regularity degree by the size, form and
distribution [161]. Therefore, Vassilev et al. [161] introduced three threshold-
based indicators analyzing the structure of a fitness landscape: these indicators
are termed Information Content, Partial Information Content and Informati-
on Stability and are based on the landscape path {ft} containing the fitness
values in form of real numbers that are obtained by random walks. ft is the
fitness value of the genotype xt achieved at step t from the start point. The
path {ft} is transformed into a string S(ϵ) = s1s2...sn with si ∈ {−1, 1, 0},
where

si =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if fi − fi−1 < −ϵ

1 if fi − fi−1 > ϵ

0 if |fi − fi−1| ≤ ϵ

(3.6)

and ϵ ∈ [0; l], where l is the maximal difference between two fitness values.
The indicator is more sensitive to movements of the random walk the smaller
the value for ϵ.
The Information Content is an entropic measure and defined via:

H(ϵ) = −
∑
p ̸=p

P[pq]log6(P[pq]), (3.7)

where p, q ∈ {−1, 1, 0}, P[pq] =
n[pq]

n
are the probabilities presenting frequencies

of possible blocks pq and n[pq] is the number of occurrences of the blocks pq

in S(ϵ). The base of the logarithm is chosen as 6. This is the number of all
possible blocks pq. This indicator measures the ruggedness of the landscape
path. Thereby, the variation of parameter ϵ has the effect of a more detailed
or a more global look on the landscape path.
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For the determination of the Partial Information Content, a string S ′(ϵ) is
constructed of S(ϵ) by deleting the elements 0, and consecutive equal elements
are reduced to one element of the string S(ϵ). The partial information content
is defined as:

M(ϵ) =
v(ϵ)

n
, (3.8)

where v(ϵ) is the length of S ′(ϵ) and n the length of S(ϵ). Furthermore, v(ϵ)
indicates the number of extrema along the landscape path. In the case of
M(ϵ) = 0, the landscape path is nearly flat or monotonously increasing or
decreasing. Otherwise, M(ϵ) = 1 indicates that the landscape path is maximal
rugged.
Information Stability as the third indicator for information analysis is proposed
by Vassilev. It is an indicator for the highest difference between neighboring
points in the landscape path. The information stability is defined as the smal-
lest value of ϵ for which the landscape path becomes flat. In this case, the
string S(ϵ) comprises only zeros.
Another information indicator was proposed by Leier et al. [105]. This indica-
tor gives information about the basin7 density as well as length of flat areas.
Therefore, it is an indicator for the ratio between flat and smooth parts of a
landscape path and therefore an optimal measure for neutrality. It is defined
as:

h(ϵ) = −
∑

p∈{−1,1,0}

P[pp]log3(P[pp]), (3.9)

where P[pp] is the frequency of blocks pp in S(ϵ).

3.2 Related Work on Molecular and

Multi-objective Landscape Analysis

The aim of molecular landscape analysis is to gain an insight into the hypo-
thesis: the similarity in the molecule structure is often related to the similarity
in its molecule properties [55]. More generally, molecular landscape analysis
provides an understanding of molecular search space properties, which is ne-
cessary to design an appropriate search algorithm with regard to the landscape

7Definition: Basin of attraction [128]
Basin of attraction of an optimum x0 is the set B(x0) = {x ∈ X : µ(x) = x0}, where
µ : X → X0 is the neighborhood search. If x ∈ X is an initial point, µ(x) is the nearby
optimum that x reaches. The size of the basin of attraction of a local optimum xi is the
cardinality of B(xi). The basin size is also used as a measure for ruggedness.
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structure.
In previous work [103], four molecular fitness landscapes are investigated regar-
ding the properties of modality, ruggedness, neutrality, local optima and basins
via correlation measures and information analysis. The essential components
of a molecular landscape are the representatives of the peptides (genotypes)
and the fitness functions. The search space is given by the set of all feasible
peptides of a length of 5 comprising 23 amino acids. The analysis of the molecu-
lar landscapes Oestrogen Receptor, Peptide Receptor, Lipoxygenase Inhibitor
and Neuropeptide Y2 Receptor is performed on the basis of random walks.
The solutions are encoded as character strings and the initial solutions of the
random walks are determined randomly. Taking account of this genotype re-
presentation, the random walk is performed by mutation as move operator,
which explores the neighborhood of a solution. The neighborhood of a pepti-
de is defined by the peptides differing in one amino acids at any position of
the peptide. Therefore, a new solution or the succeeding time series step of
the random walk is generated by mutating one amino acid at any position.
The performed random walks are evaluated by a correlation measure to reveal
the ruggedness of the landscape. As the molecular search space is of a high
complexity (235 feasible peptides), the random walks of a length of 100 are
relatively small compared to the complexity. Consequently, the average values
and the standard deviations among the various time series steps are usually
time varying instead of stationary and this phenomena is termed time-varying
volatility. In a more abstract term, the variance of the fitness function values
achieved by a random walk changes over the random walk steps. To overcome
this problem, the autocorrelation of Weinberg (eq. (2.31)) is adapted by de-
termining the average value and the standard deviation over all configurations
of the random walks and the average value is applied on the starting point to
prevent high errors in estimation:

ps =

1
n+1

n∑
i=0

(xi0 − µ)(xis − µ)

σ2
, (3.10)

where µ is the average value calculated by

µ =
1

n

n∑
i=1

f(xi), (3.11)

σ is the standard deviation determined by

σ =

√ 1

n

n∑
i=1

(f(xi)− µ)2 (3.12)
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and xi0 is the starting point of the i-th random walk. The self-correlation value
of the starting point p0 has to be 1 or at least approximately 1. Furthermore,
information content (eq. 3.7), partial information content (eq. 3.8) and neu-
trality measure (eq. 3.9) are applied to analyze the structure of the molecular
landscape [103].
Regarding the used analysis techniques, Lee [103] provides a traditional lands-
cape analysis for each of the four molecular fitness landscapes. An analysis
concept for MOML is still an open research task to date. Garrett and Das-
gupta [70] however provide a multi-objective fitness landscape analysis accor-
ding to local and Pareto optima, fitness distance correlation and ruggedness
in the form of a high-level overview and discussion. A number of potential
analysis methods are described and discussed to analyze these characteristics
for single- and multi-objective fitness landscapes. The following resume refers
to the statements of the multi-objective landscape analysis [70]:
Information about the landscape are intuitively obtained by the distribution
and the number of local and Pareto optima. The number and distribution of
local optima have a significant impact on the performance of a general-purpose
search algorithm. The higher the number of local optima, the higher the pro-
bability that the search algorithm traps in a local optimum. Furthermore, the
distribution of local optima has also a strong impact on the search algorithm
performance. The common example is the highly differing optima distribution
of the Traveling Salesman Problem (TSP) and the Quadratic Assignment Pro-
blem (QAP): TSP reveals a Big-Valley-Structure, where all local optima are
positioned around a line that approaches the global optima. Such a specific
structure provides the opportunity to be exploited by the search algorithm.
Otherwise, the local optima in the case of QAP are nearly uniformly distribu-
ted over the search space, but reveal no certain structure such as in the case of
the TSP landscape. Therefore, the detection of a single local optima provides
no information about how to reach the other local optima or even the global
optima. Consequently, QAP is more challenging for a search algorithm than
the TSP.
In the sense of single-objective optimization, FDC is the correlation coeffi-
cient between the distance in the objective and the distance in the solution
space. This correlation is commonly visualized by scatter plots of objective
distances and distances in the solution space. Ideally, the changes on a so-
lution required to move from a local to a global optima have to be minor,
Otherwise a search algorithm potentially fails in finding the optimal solution.
In the case of multi-objective optimization, global optima are referred to as
non-dominated solutions. Many of the Pareto optimal solutions are also global
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optima of different single-objective functions. Thus, the correlation between
the non-dominated solutions is not necessarily resembling to the correlation
between different local optima of a single-objective function. The correlation
between non-dominated solutions reveals important information about the dif-
ficulty to exploit the Pareto front. FDC requires the mapping of distances to
the optima into a single distance value. Therefore, Garret proposes two poten-
tial distance measures: The Euclidean distance between the fitness vectors is a
potential metric for this purpose. Another proposed possibility is to define the
angles between these vectors as ’distances’. These analysis techniques and the
impact on the analysis have not been investigated theoretically or empirically
so far.
Garrett defines ruggedness of landscapes intuitively: Many local optima of
highly varying fitness values are positioned in any region of the landscape.
Different techniques for the investigation of the landscape ruggedness are esta-
blished in the case of single-objectives problems. The distribution and the
number of local and Pareto optima are indicators for ruggedness. The correla-
tion between adjacent solutions is another method to detect ruggedness, where
the definition of adjacency depends on the used move operator. A high corre-
lation between neighbored solutions indicates very similar fitness values and
therefore reveals a smooth landscape. Another established indicator is the au-
tocorrelation measured among the time series steps of random walks. Garrett
proposes the autocorrelation also as an indicator for ruggedness in the case of
MOPs. Especially the autocorrelation between Pareto optimal solutions provi-
des information about the opportunity to find further Pareto optimal solutions
by a guided local search starting from a local optima, in contrast to the per-
formance of a random restart for the search of further optimal solutions.
Some work has been done regarding multi-objective landscape analysis for
combinatorial optimization problems, especially for the multi-objective QAP.
Garrett provides a framework for multi-objective fitness landscape analysis in
his thesis on the basis of multi-objective fitness distance correlation, a directed
and undirected random walk analysis from one Pareto optimal solution to ano-
ther one as well as a random walk and basin analysis. Furthermore, Garrett
defined the multi-objective generalized assignment problem and compared its
landscape structure to those of the multi-objective QAP. Knowles and Cor-
ne [96] presented a search algorithm to solve the multi-objective QAP that
is designed with regard to the multi-objective landscape structure. A number
of landscape measures and techniques are proposed to explore the landscape
of the multi-objective QAP. Generally, the landscape is analyzed by a rough
objective correlation.
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Garrett and Dasgupta [71] presented the plateau connection structure analy-
sis, where the search space is divided into a set of equivalent classes according
to the Pareto dominance relation. The probabilities of a specific neighborhood
structure like moving from one class to another one is empirically investigated.
This concept has been examined on a number of benchmark multi-objective
combinatorial optimization.
Aguirre and Tanaka [2] analyzed the properties of MNK-landscapes by an enu-
meration on small landscapes: the number of fronts, the number of solutions
on each front, the probability to pass from one front to another and the hy-
pervolume of the Pareto optimal set.
Verel et al. [165] defined a further type of multi-objective fitness landscape
analysis on the basis of detecting search space properties of defined set levels.
The contribution of this work is the definition of the multi-objective fitness
landscapes based on a search space divided into solution sets. Furthermore, a
neighborhood search operator is defined for the exploration between the soluti-
on sets, and an indicator-based fitness function is proposed. Empirical studies
have been performed on multi-objectives NK-landscapes.
In a further work, Verel et al. [164] proposed a multi-objective combinatorial
search space analysis with the focus on the correlation between the objective
functions and with the aim of providing guidelines for the design of a multi-
objective local search algorithm based on the main fitness landscape properties.
The multi-objective NK-landscapes have been extended to take account of the
objective correlation. More precisely, the co-influence of the problem dimen-
sion, the degree of non-linearity, the number of objectives and the objective
correlation on the structure of the Pareto optimal set in terms of cardinality,
number of supported solutions as well as the number of Pareto local optima
are investigated.

3.3 Concepts of Multi-objective Molecular

Landscapes Analysis

The aim of multi-objective landscape analysis is the design of a metaheuristic
algorithm with optimized performance. The structure of the search space gives
some information about an adequate search pattern of the metaheuristic: How
- and more general - is the metaheuristic able to outperform a random search
in discovering of optimal solutions by guiding the search from a previous op-
timal solutions to other ones? By answering these questions, the evaluation
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of the landscape analysis provides a hint for a suitable explorative behavi-
or of the search algorithm. In general, local properties strongly influence the
effectiveness of local search, whereas global properties strongly influence the
effectiveness of a metaheuristic [111].
MOML analysis is performed with the aim of providing an analysis concept
that characterizes the multi-dimensional molecular landscapes regarding the
important landscape properties modality or optima density, correlation or line-
ar relationship between the molecular fitness functions, ruggedness and neutra-
lity in form of plateaus. Suitable analysis techniques are intuitive with regard
to the landscape composition according to Definition 6 and the investigated
properties. Furthermore, these techniques are simple to calculate and most
important - independent of the optimization problem dimension. Inspired by
the work of Emmerich and Lee, the analysis techniques are based on random
walks with one-point mutation as move operator to investigate the neighbo-
red molecular landscape. The one-point mutation is used as move operator
for an insight into the mutation potential of a MOEA and to avoid highly
differing consecutive configurations, which are potentially produced by a re-
combination operator. Small changes in the configurations provide information
about the effectiveness of the local search of a MOEA, whereas large changes
in the configurations - potentially provided by a higher mutation probability
or the recombination operator - provide an insight into the effectiveness of the
global search pattern of a MOEA. Another argument for the use of the one-
point mutation is the verification of the similarity hypothesis for molecules:
The similarity of the molecule structure is often related to the similarity of
the molecule properties. In general, the start solution of the random walk is
initialized randomly. The objectives of the multi-objective fitness landscapes
are real-valued vectors of the length k according to the number of objective
functions.

Modality. Modality (i.e., the investigation of optima density) is examined ba-
sed on measurements of the random walk part consisting only of non-dominated
solutions - or said differently - the individuals of the first front. According to
Garrett, these individuals are the global optima. The modality requests infor-
mation about the number of non-dominated solutions, a potential clustering of
those or otherwise a large distribution over the MOML. For this purpose, the
individuals of the random walk are ranked into fronts. For an Optima Distribu-
tion Analysis (ODA), the average Euclidean distance dODA between all possible
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combinations of non-dominated fitness values x⃗i (solutions) is determined.

dODA =
1

K

∑
i,j

dij with dij = |x⃗i − x⃗j| for i, j = 1, ...,M and i < j, (3.13)

where M is the number of fitness vectors in the first front and K =
(
M
2

)
the

number of all possible combinations of differences dij. In the case that the range
of the objective functions are very differently to one another, the use of the
normalized Euclidean distance is advisable. The value of dODA is a measure for
the central tendency of non-dominated solution diversity and dODA is regarded
as the mean distance between all non-dominated solutions. In the statistical
sense, a mean has its limitation in the case of extremal boundary values as
the calculated mean value is skewed in the case of extremal values in the data
set. To overcome this problem, the diversity of the non-dominated solutions is
quantified by the average deviation of all distances dij:

dMAD =
1

K

∑
i,j

|dij − d̄| with i, j = 1, ...,M and i < j. (3.14)

with d̄ = dODA. This diversity measure is also used to evaluate MOEA perfor-
mance and is further discussed in section 5.2.4. The higher the diversity value,
the wider is the spread of the non-dominated solutions over the search space.
Another indicator for the distribution of non-dominated solutions is the mea-
surement of the beeline between two consecutive non-dominated solutions
along the random walk path (Figure 3.1). Therefore, the magnitude of the be-
eline between two fitness vectors x⃗i+1 and x⃗i (symbolizing the non-dominated
fitness vectors ordered according to their position in the random walk) is de-

termined and set in relation to c̄ = 1
N−1

N−1∑
i=1

|y⃗i+1 − y⃗i|, the average Euclidean

distance between two consecutive fitness vectors y⃗i+1 and y⃗i of the random
walk with N as the number of random walk steps to classify the distribution
tendency:

bi =
|x⃗i+1 − x⃗i|

c̄
with i, j = 1, ...,M − 1. (3.15)

A low number of relational beelines bi indicates that the corresponding distance
between two consecutive non-dominated solutions is relatively small compared
to the average distance between the consecutive distances of the random walk.

Correlation. Correlation coefficients are commonly known as a measurement
for the strength of (linear) association between variables [147]. Therefore, the
correlation is usable as a measure for the relationship between two solutions
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Fig. 3.1: Beelines between the consecutive non-dominated solutions depicted on an idealized
landscape.

in a landscape. A correlation analysis of the single fitness functions provides
some information about the correlation tendency of the corresponding fitness
values. In the case of MOMLs, the correlation between the single molecular
fitness functions is of great interest, because the high correlation between two
time series of different fitness functions theoretically reduces the optimization
problem dimension and therefore the problem difficulty. The correlation matrix
is a suitable analysis technique for this purpose:

Mcorr =

⎛⎜⎜⎜⎜⎝
1 corr(f1, f2) ... corr(f1, fk)

corr(f2, f1) 1 ... corr(f2, fk)
...

... . . . ...
corr(fk, f1) corr(fk, f2) ... 1

⎞⎟⎟⎟⎟⎠ , (3.16)

where Mcorr is symmetrical and consists of the Pearson correlation coefficients
of the fitness function fi and fj:

corr(fi, fj) =

n∑
i=0

(fi − f̄) · (fj − f̄)

σfi · σfj

(3.17)

In this context, the correlation coefficients lie in a range of [−1; 1], where a
negative value symbolize a potential anti-proportional linear relationship and
a positive value a possible proportional linear relationship. Furthermore, no or
at least a low correlation is given by |corr(x, y)| < 0.3. A moderate correlation
is given by 0.3 ≤ |corr(x, y)| ≤ 0.8 and |corr(x, y)| > 0.8 indicates a high
linear correlation.
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Ruggedness. The ruggedness refers to the relationship between each soluti-
on and its neighbors. A landscape is said to be rugged if it reveals high varying
fitness values: the greater the fitness differences, the more rugged is the lands-
cape. From this point of view, the analysis technique for MOML ruggedness
is based on the difference vectors determined between each two consecutive
fitness vectors of a random walk. A measure for the variation of the fitness
vector values is the magnitude of the absolute value calculated of the diffe-
rence vectors. The absolute value of the difference vectors provides an insight
in the magnitude of differences between the single molecular fitness functions.
A closer consideration of the absolute values as a measure for fitness difference
- in the case of MOML - leads to the insight that this value does not take ac-
count of the fitness variation of the different single molecular fitness functions
in the sense that potentially only a few of the fitness functions are responsible
for a high absolute value. Furthermore, another view on the absolute value
reveals that it is no indicator for the direction of the single molecular functi-
on moving and therefore no indicator for the increase, decrease or stagnation
of the different fitness functions. These considerations lead in conclusion to a
definition of ruggedness for real-valued multi-objective fitness landscapes: A
real-valued multi-objective fitness landscape is regarded as rugged if the sin-
gle fitness functions are moving differently with high fitness differences. As a
consequence, this landscape is regarded as smooth if all fitness functions are
moving equally or only a very few of these functions are directed differently
and with small fitness differences.
The information about the single fitness function directions are provided by
the difference vectors between the consecutive fitness vectors. A suitable in-
dicator for the direction of the difference vectors is the angle between the
difference vectors as - in general - an angle between vectors is an indicator for
similarity [151]:

similarity(x⃗, y⃗) = cos(θ) =
x⃗ · y⃗
|x⃗| · |y⃗|

(3.18)

This is the key connection between linear algebra and probability theory: The
vectors x⃗ and y⃗ are centered by subtracting the means x⃗ ′, y⃗ ′ from these
vectors:

u⃗ = x⃗− x⃗ ′ and v⃗ = y⃗ − y⃗ ′. (3.19)

Then, it holds

cos(θ) =
u⃗ · v⃗
|u⃗| · |v⃗|

=

k∑
i=1

(xi − xi
′) · (yi − yi

′)√
k∑

i=1

(xi − xi
′)2 ·

√
k∑

i=1

(yi − y′i)
2

= corr(u⃗, v⃗), (3.20)
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For the angle between two consecutive difference vectors, which provide in-
formation about the relative position of three consecutive fitness vectors and
therefore of the fitness variance direction of a solution and its neighbors along
the random walk, the following geometrical interpretation is stated: an angle
of 0◦ refers to two vectors pointing in the same direction. This implies that the
single fitness values of the consecutive random walk steps, which define these
two difference vectors, are all positioned in the same direction. Otherwise, an
angle of more than 90◦ indicates a moving of a majority of the single fitness
functions in different directions. In the case of the stagnation of all objective
function values, the different vector is the zero vector and the angle is not
defined. Then, the angle is set to 0◦.
Hence, to gain an insight into the potential ruggedness and structure of the
MOML, the angle between each two consecutive difference vectors are cal-
culated. Furthermore, the random walk path length of the difference vectors
enclosing a particular angle ∡(xi+1, xi) = a with a ∈ [0; 180] is determined to
gain information about the magnitude of fitness differences. The summarized
length of this path parts allows no statistically interpretation, since this value
depends on the subspace dimension of the search space relative to the random
walk steps. Therefore, this path length is set in relation to the total number
of random walk steps.

plength,a =

∑
i, ∡(xi+1,xi)=a

|xi+1|+ |xi|

N − 1
with a ∈ [0; 180]. (3.21)

Plateaus. Plateaus are another important structure of a landscape. The
number and size of plateaus are investigated by neutrality measures [55]. In
MOMLs, plateaus are characterized in two different aspects: Firstly, plateaus
are characterized according to the stagnation of all objective functions values
over several steps of the time series and secondly - from a more global view -
according to the number of consecutive time series steps in the same Pareto
front. The plateau characterization in the sense of objective function stagna-
tion is determined via:

|xi+1 − xi| ≤ 1 for i = 1, ..., N − 1. (3.22)

These proposed analysis techniques are applied on random walks of different
lengths. The mutation of the same amino acid is excluded to avoid a stagnation
of the random walk. For statistical reasons, these random walks are repeated
at least 30 times. The methods of the statistical evaluation and representation
are described in section 5.3.
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3.4 Molecular Fitness Functions

A MOP is composed of several fitness functions also denoted as objective
functions. Each fitness function returns a value that reflects the quality of a
particular solution in solving the MOP. In general, these fitness functions have
to be generated and most efficiently implemented to reduce the computational
complexity, since a high number of fitness function evaluations have to be per-
formed in a MOEA run. The number of fitness function evaluations depends on
the number of objective functions and the number of performed generations.
The benchmark problems used in this thesis are composed of four different ob-
jective functions describing physiochemical properties of peptides. These func-
tions have been selected under different aspects: The functions have to compose
a benchmark problem that is as generic as possible, firstly in the sense that the
predicted properties allow conclusions on a range of peptide features. Secondly,
there exist a range of common approximate calculation methods for physio-
chemical peptide properties, which are calculated by the specific descriptor
values of the amino acids contained in a peptide sequence. Three of the four
fitness functions are based on such an approximate calculation. Furthermore,
the functions are associated to the three structural levels of peptides: Two phy-
siochemical objective functions refer to the primary structure8 of a peptide.
One objective function gives information about the secondary structure9 and
the last one gives a clue about possible early tertiary structure10 disruption
or an inadequate folding. These four objective functions act comparatively as
they reflect the similarity of a particular peptide or solution to a pre-defined
reference peptide. This is implemented by the difference between the fitness
function value of a particular peptide and the reference peptide:

f(CandidatePeptide) := |f(CandidatePeptide)− f(ReferencePeptide)| (3.23)

Therefore, the four objective functions have to be minimized and the bench-
mark problem is a minimization problem according to eq. (1.1). The fitness
function values f(CandidatePeptide) are always positive realized by the use
of the absolute value on the difference.

8The primary structure is the linear sequence of the involved amino acids. The primary
structure is listed starting from the free amino acid group.

9The secondary structure describes regularities of the local structure referred to a few
amino acids. Therefore, the secondary structure is determined to a large extend by the
primary structure.

10The tertiary structure describes the spatial organization of a peptide. Elements of the
secondary structure are grouped together as domains. The spatial organization of a
peptide is responsible for its effect.
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Three of the objective functions are implemented via the open source project
BioJava [123]. BioJava is a Java tool that provides different tools to compute
physiochemical properties as well as a module for sequence alignment for pep-
tides and proteins composed of the 20 canonical amino acids. In the following,
the fitness functions are motivated and described.

3.4.1 Needleman-Wunsch Algorithm

The motivation for the Needleman-Wunsch Algorithm (NMW) [115] is the de-
tection of similarities between peptides or proteins with regard to biochemical
functionality and structure. This similarity is qualitatively recognized by a
global sequence alignment. NMW is implemented by the BioJava library. The
main goal of NMW is to find the optimal global alignment of a candidate solu-
tion peptide to a pre-defined reference peptide. The optimal global alignment
is detected by maximizing the number of amino acids matches and minimizing
the number of gaps to align the candidate solution peptide and the reference
peptide. NMW makes use of dynamic programming and allows the use of op-
timal scoring models.
Dynamic programming ensures to find the optimal alignment in a quantitative
way by assigning scores for matches, mismatches, gaps and stores them into a
scoring matrix. NMW allows the use of different scoring models in the way that
different values are assigned for matches or mismatches. Special scoring matri-
ces are pre-defined in the case of amino acid substitutions. Here, the BLOcks
SUbstitution Matrix (BLOSUM) developed by Henikoff and Henikoff [81] is
used in form of the percentage identity 100 (BLOSUM100)11. After filling the
matrix, the last step is the tracing back through the matrix elements for the
best alignment. The highest scoring path through the matrix gives the best
alignment. The computational complexity of NMW is O(M ·N), where M and
N are the sequence lengths of the two peptides or proteins.

3.4.2 Molecular Weight

The design of a new drug candidate for oral bioavailability requires a num-
ber of specific molecular properties. One of these important properties is the
Molecular Weight (MW) [162] to ensure oral bioavailability. The BioJava li-
brary also provides the objective function calculating the molecular weight of

11BLOSUM100 is derived from sequence alignment with 100% identity.
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the candidate solution peptides. MW of a peptide sequence of the length l is
determined in a most simple way, by the sum of the mass of each amino acid
(ai) plus a water molecule:

l∑
i=1

mass(ai) + 17.0073(OH) + 1.0079(H), (3.24)

where O (oxygen) and H (hydrogen) are the elements of the periodic system.
The computational complexity for the determination of the MW of a peptide
or protein with the length l is O(l + 1).

3.4.3 Average Hydrophilicity

Hydrophilicity is one of the most important physiochemical parameters in the
area of drug design [148]. Hydrophilicity reflects the tendency of a peptide to
be dissolved in aqueous solutions. One of the main goals in peptide-based drug
design is the optimization of the hydrophilic-hydrophobic balance as drug cha-
racteristic. On one side, hydrophobic peptides govern the biological processes
like transport through body fluids, metabolism and folding. The drawback of
hydrophobic drugs is an inhibition of biological systems compared to hydro-
philic ones and they are slower eliminated by a biological system. On the other
side, the hydrophilic character of peptide-based drugs is essential for the abili-
ty to cross cell membranes. [80]
The hydrophilic character of a candidate solution peptide is determined by
the method and hydrophilicity scales of Hopp and Woods [86]. This method is
evolved to identify the potential antigenic sites in proteins. Hopp and Woods
determine hydrophilic parts of a peptide or protein by sliding a window of
fixed size over the sequence. The hydrophilic scales of the amino acids within
the window are averaged. The window size refers to the number of amino acids
examined to identify the hydrophilic character of this peptide or protein site.
The advisable window size is six [85].
In this thesis, a hydrophilicity value is assigned to each candidate solution
peptide with a window size equal to the peptide length l using the scales of
Hopp and Woods for each amino acid ai:

1

l
· (

l∑
i=1

hydro(ai)). (3.25)

The computational complexity for the determination of the average hydrophi-
licity of a peptide or protein with the length l is O(l).
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3.4.4 Instability Index

Peptides are used as highly specific and effective therapeutic agents, but their
use is potentially restricted by their instability. They are usually evolved for
targets inside cells [154].
The peptide conformation is responsible for the disruption of the tertiary struc-
ture or an unfavorable folding. Guruprasad et al. proposed a method to pre-
dict the instability characteristic of a peptide by using a sliding window of
the length of two amino acids to analyze the primary structure of a peptide
sequence with the aim of predicting the potential intracellular instability of a
peptide [78]. More precisely, the Dipeptide Instability Weight Values (DIWV)
of each two consecutive amino acids in the peptide sequence are summarized
and the final sum is normalized by the peptide length l:

Instability Index =
10

l

l∑
i=1

DIWV (xi, xi+1) (3.26)

DIWV are provided by the GRP-Matrix. This matrix has been constituted by
statistical analysis of the primary structure on different sets of unstable and
stable proteins and contains the condition-based instability weight values for
the 400 possible dipeptide compositions [78].
The computational complexity for the determination of the average hydrophi-
licity of a peptide or protein with the length l is O(l + 1).

3.5 Analysis of Single Molecular Fitness

Functions

A first insight into the four molecular landscapes - NMW, MW, Average Hy-
drophilicity (Hydro) and Instability Index (InstInd) - is exemplarily illustrated
by six random walks over each fitness function landscape of a length of 100
in Figure 3.2 to Figure 3.5. All four molecular fitness functions provide large
variations of the fitness values over the 100 random walk steps and therefore
indicate rugged landscapes. From the global point of view, NMW reveals some
plateaus over two to five random walk steps as well as some areas with smaller
fitness value differences (Figure 3.2). The InstInd function also reveals some
plateaus, but to a lesser extent and on average over a lower number of random
walk steps (Figure 3.5). The fitness values of the MW function are scaled by a
factor of 10 and achieve large jumps of the fitness values as well as some areas
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Fig. 3.2: Needleman-Wunsch fitness function values of six random walks.

Fig. 3.3: Molecular Weight fitness function values of six random walks.

with oscillating parts with a low frequency (Figure 3.3). The Hydro fitness
function appears similar to MW regarding the jumps and the oscillating parts
(Figure 3.4). Otherwise, it also reveals some isolated flat areas or plateaus.
The rugged properties of the four molecular landscapes are further quantified
via the autocorrelation function p(s) (eq. (3.10)) as introduced by Emmerich et
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Fig. 3.4: Average Hydrophilicity fitness function values of six random walks.

Fig. 3.5: Instability Index fitness function values of six random walks.

al. [55]. The time series to determine the autocorrelation functions are compo-
sed of 30 random walks of a length of 100. The start configuration is randomly
determined. In general, all autocorrelation functions decrease from p(0) on and
reveal a more or less strong oscillating behavior mainly in the range of −0.3 and
+0.3 apart from some outliers (Figure 3.6). This range statistically indicates a
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Fig. 3.6: Autocorrelation p(s) for NMW, MW, Hydro and InstInd over 100 random walk
steps.

weak correlation. The outliers of the autocorrelation values after p(13) are up
to 0.5 and down to −0.4, which indicates only a moderate correlation. The-
refore, the autocorrelation functions of all molecular time series reveal mostly
weak correlation values and as a consequence, the four molecular landscapes
are highly rugged.
In general, the self-correlation coefficient p(0) is approximately 1 for the four
fitness function. This indicates that the mean squared deviation of the star-
ting points is approximately equal to the variance of all configurations of the
performed random walks (eq. (3.10)). The time series on InstInd have the lo-
west self-correlation coefficient with p(0) = 0.87 and the time series of NMW
have the highest value with p(0) = 1.32 compared to the other functions. The
autocorrelation values of Hydro reveal the strongest decrease, which indicates
the highest ruggedness. Moreover, the highest ruggedness is indicated by the
Hydro autocorrelation values, which are weakly oscillating around −0.1 from
p(45) on. The MW autocorrelation values provide the slowest decrease after
p(0) as well as the highest number of outliers from the weak correlation range.
The autocorrelation values of NMW increases only for p(1) and the times series
of NMW provide the lowest number of negative autocorrelation values.
A further landscape analysis of the four single molecular landscapes is perfor-
med by a quantitative MOML analysis. The dimension of the MOML depends
on the correlation or the relationship between the participating molecular fit-
ness functions. Therefore, the correlation matrix (3.16) has been determined
for the four molecular functions (NMW (f1), MW (f2), Hydro (f3) and InstInd
(f4)). The 30 time series of all molecular functions over 100 random walk steps
serve as data set for the determination of the correlation matrix (Figure (3.7)):
The matrix entries reveal only low correlations between the time series of each
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Fig. 3.7: Correlation plot of the molecular fitness functions NMW (f1), MW (f2), Hydro
(f3) and InstInd (f4).

two molecular fitness functions: The highest correlation values beneath the dia-
gonal of the matrix are between NMW and MW (eq. (3.17): corr(f1, f3) = 0.25)
as well as between InstInd and Hydro (eq. (3.17): corr(f3, f4) = −0.27). As
a consequence, the dimension of a MOML constituted of these four molecular
functions is equal to the number of participating objective functions.
In the following, the 3D-MOML is first analyzed followed by the 4D-MOML
on the basis of the presented MOML analysis concept.

3.6 3D Molecular Landscapes

The 3D-MOML is constituted of the three molecular functions NMW, MW
and Hydro. The 3D-MOML is characterized by modality, ruggedness and pla-
teaus according to the proposed concept in Section 3.3. The modality of the
3D-MOML is first investigated on the basis of the number of non-dominated
solutions identified in a random walk of a length of 100 and 500 respectively.
For statistical reasons, 50 random walks of each length have been performed
and boxplots have been created to depict the number of non-dominated so-
lutions (Figure 3.8) and the number of detected fronts in the random walks
(Figure 3.9). The left boxplot of Figure 3.8 reveals that the middle 50% of the
non-dominated solutions or the solutions in the optimal front are in the range
of 10% to 17% of the random walk length represented by the inter-quartile
range of the boxplot. The median divides the box equally with a value of 13.
An increase of the random walk length (right boxplot) results in an increase
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Fig. 3.8: Number of non-dominated solutions
in time series of length 100 and 500.

Fig. 3.9: Number of detected fronts in time
series of length 100 and 500.

Fig. 3.10: Diversity (dMAD, eq. (3.14)) mea-
sured of the non-dominated solu-
tions obtained by time series of a
length of 100 and 500.

Fig. 3.11: Beeline distance of two consecuti-
ve non-dominated solutions relatio-
nal to the average distance between
all consecutive solutions of the time
series (eq. (3.15)).

of the solution number in the optimal front by approximately 83.9%12 regar-
12This value is the geometric mean applied on the percentage increase of the five boxplot

values. The geometric mean characterizes the global tendency of the averaged percentage
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ding to the results of the random walks with a length of 100. The black dots
in the figure represent the outliers indicating some remarkably higher results.
Concluding, the investigation of larger times series of the 3D-MOML achieves
a larger solution number in the optimal front, but this increase is of a lower
percentage level than the increase of the random walk length. The reason for
this observation is the increase of the detected number of fronts from the ran-
dom walks of the length 500 compared to those of the length 100 (Figure 3.9).
The left boxplot of Figure 3.9 reveals that the middle 50% of the detected
fronts are in a range of 8 to 10 fronts represented by the inter-quartile ran-
ge. The median divides the box equally with a value of 9. An increase of the
random walk length results in an increase of the detected number of fronts
by approximately 104% regarding the results of the time series of a length of
100. The front numbers 17 and 20 determine the inter-quartile range of the
right boxplot. Concluding, the increase of the solution number in the optimal
front is of a lower level, since the number of fronts increases significantly by
an increase of the time series length.
Figure 3.10 depicts two boxplots for the diversity of the non-dominated soluti-
ons, once more calculated of 50 random walks of a length of 100 (left boxplot)
and 500 (right boxplot) respectively. The left boxplot reveals a large spread of
the inter-quartile range and therefore indicates that there exists a wide range
of diversity abilities within the non-dominated solutions of the time series. The
increase of the time series length results in an average increase of 24.4%.
The relational beeline between each consecutive non-dominated solution has
been determined for 30 random walks of a length of 100 and 500 respectively.
The left boxplot in Figure 3.11 depicts the averaged five boxplot values of (eq.
3.15) of the 30 random walks. The spread of the inter-quartile range indicates
that some of the non-dominated solutions are more clustered in the landsca-
pe (lower quartile of 0, 5 indicates that the distance between the consecutive
non-dominated solutions is half of the average distance between all consecu-
tive solutions of the time series) and some are positioned in a wide distance
(25% of the relational beeline values are above 2.0, which indicates that the
distance between the consecutive non-dominated solutions is more than twi-
ce of the average distance between all consecutive solutions time series). The
right boxplot in Figure 3.11 represents the spread of the relational beelines
between the non-dominated solutions in the random walks of the length 500.
The comparison of both boxplots in this figure reveals that an increase of the
random walk length results in a significant decrease of the relational beeli-

increase/decrease of the boxplot.
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ne lengths between the non-dominated solutions, whereas the right boxplot
of Figure 3.11 reveals some outliers indicating some high distances between
the non-dominated solutions of the random walks with the length 500. These
results allow the conclusion that the non-dominated solutions are mainly clus-
tered in the MOML.
The relational beeline and the number of non-dominated solutions - as already

Fig. 3.12: Average number of angles between two consecutive difference vectors categorized
in degree intervals of the length 10.

Fig. 3.13: Average length of each two consecutive difference vectors enclosing a particular
angle (eq. (3.15)). The angles are categorized in degree intervals of the length 10.

proposed above - provide a rough inside into the ruggedness of the 3D-MOML.
For a quantified insight in this ruggedness, the difference vectors between all
consecutive solutions of the time series with a length of 100 are determined
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and the angles between each two consecutive difference vectors are calculated
(eq. (3.20)) to gain an insight into the movement characteristics of the single
objective functions. The angle between two consecutive difference vectors gi-
ves information about the similar movement behavior of the single objective
function over three consecutive solutions of the time series.
Figure 3.12 depicts the average number of angles - categorized in intervals of
ten degree on the x-axis - over the 30 random walks of the length 100. The
depicted upper and lower boundaries mark the 95%-significance interval. The
highest number of angles is detected in the interval of [170◦; 180◦). This indica-
tes that the difference vectors are oppositely directed and the single objective
functions are increasing, decreasing or stagnating over three steps of the time
series in very different manners. Exemplary spoken: One objective function in-
creases from a time series step to the next one and decreases afterwards. The
second function is moving exactly the other way around and the third function
is stagnating from the first to the second solution and increasing or decreasing
afterwards.
This reveals that the landscape is very rugged along a large number of random
walk steps. The second highest number of angles is in the interval of [0◦; 10◦).
This indicates that the difference vectors are similarly directed and the single
objective functions are increasing, decreasing or stagnating in a similar man-
ner. Exemplary spoken: One of the objective functions is stagnating over three
time series steps and the other two functions are increasing or decreasing over
these three steps. The number of angles in the interval of [40◦; 150◦) are al-
most stable. The larger the angle, the larger the number of objective functions
revealing oscillating moving behavior in different manner over three steps of
the random walks.
A similar pattern is achieved by calculating the average path length with a par-
ticular bending (Figure 3.13) provided by the difference vectors, which enclose
specific angles categorized once more in intervals of 10◦ (eq. (3.21)). The hig-
hest length is achieved in the interval [170◦; 180◦) indicating large differences
between the single molecular function values with mainly oscillating behavior.
The second highest length is achieved in the interval [20◦; 30◦) indicating large
differences between the solutions of the time series, which are mostly positio-
ned in the same direction. The length of the difference vectors enclosing angles
in the interval [40◦; 150◦) are small and reveal therefore only slight changes of
the single objective function values.
Plateaus are a further structural property that provides some information

about clustered similar qualified solutions. Firstly, plateaus are identified in
MOMLs by consecutive equal or nearly equal fitness values for each molecular
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Fig. 3.14: Average number of plateaus cha-
racterized by consecutive time se-
ries steps in the same Pareto front
in time series of the length 100.

Fig. 3.15: Average number of plateaus cha-
racterized by consecutive time se-
ries steps in the same Pareto front
in time series of the length 500.

function (see eq. (3.22)). In 30 random walks of length 100, 20 plateaus have
been identified totally: Two plateaus, each consisting of two consecutive equal
fitness values, have been identified in five random walks. A plateau of three
consecutive equal fitness values has been found in one random walk and the
remaining 9 plateaus have been identified in different random walks, each con-
sisting of two consecutive equal fitness values.
Secondly, plateaus are characterized more globally by consecutive time series
steps in the same Pareto front. The Figures 3.14 and 3.15 depict the number
of consecutive solutions assigned to the same Pareto front within time series
steps of the length 100 (Figure 3.14) and 500 (Figure 3.15) respectively. In the
time series of the length 100, 50% of the plateaus numbers are in the range of
14 to 19 with a median of 16 plateaus. An increase of the time series length
results in an increase of the plateaus by approximately 264%. Thus, the incre-
ase of the plateau number is significantly lower than the increase of the time
series length. This is once more a consequence of the high front diversity wi-
thin larger time series (see Figure 3.9). 14, 5% of the plateaus detected in the
time series of the length 100 are first front plateaus. In the time series of the
length 500, only 7% of the plateaus are first front plateaus. This is once more
a consequence of the larger front diversity. The magnitude of the plateaus is
defined by the number of consecutive solutions in the same Pareto front. The
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average plateau size is decreased from 2.31 to 2.18 by the increase of the time
series length with a standard deviation of 0.033 and 0.012 respectively. The
average plateaus size of the first front plateaus is on average larger with 2.7

and 2.3 (standard deviation of 0.13 and 0.11 respectively) in the time series of
length 100 and 500. The plateaus are distributed unevenly along the random
walks: Some plateaus are only separated by one time series step, others by a
wide range of steps.

3.7 4D Molecular Landscapes

The 4D-MOML is constituted by inclusion of the molecular function InstInd
to the 3D-MOML. More precisely, the 4D-MOML consists of the molecular
functions NMW, MW, Hydro and InstInd. The 4D-MOML is characterized by
modality, ruggedness and plateaus and the results of these structural proper-
ties are discussed in comparison to the landscape properties of the 3D-MOML.
Furthermore, a direct comparison of the 3D- and 4D-MOML based on the
achieved non-dominated solutions identified in a random walk is visualized.
The modality of the 4D-MOML is quantified by the number of non-dominated

Fig. 3.16: Number of non-dominated soluti-
ons in time series of a length of 100
and 500.

Fig. 3.17: Number of detected fronts within
the time series of a length of 100

and 500.

solutions detected in random walks of the length 100 and 500 respectively (Fi-
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Fig. 3.18: Diversity (dMAD, eq. (3.14)) mea-
sured of the non-dominated soluti-
ons obtained by random walks with
a length of 100 and 500.

Fig. 3.19: Beeline distance of two consecuti-
ve non-dominated solutions relatio-
nal to the average distance between
all consecutive solutions of the time
series (eq. (3.15)).

gure 3.16). These boxplots are the results of 50 random walks for each length.
The inter-quartile range of the left boxplot in Figure 3.16 is determined by 23%

to 36% of the random walk length. The median nearly divides the box with a
value of 27.5. Compared to the number of non-dominated solutions within the
random walks over the 3D-MOML (Figure 3.8), the 4D-MOML achieves about
approximately 53% more non-dominated solutions. An hypothesis about the
reason for this observation is that the front diversity is significantly lower than
in the case of the 3D-MOML. An increase of the random walk length from
100 to 500 (right boxplot of Figure 3.16) results in an increase of the non-
dominated solutions about approximately 84.2%. This increase is comparable
to the observed increase in the case of the 3D-MOML with 83.9%. The hypo-
thesis mentioned above is verified by the investigation of the front diversity
(Figure 3.17). The front numbers 5 and 7 determine the inter-quartile range of
the left boxplot in Figure 3.17. The median divides the box exactly with the
values 6. Compared to the front diversity of the random walks over the 3D-
MOML (Figure 3.9), a decrease of the front diversity about approximately 30%

is observable. The increase of the random walk length from 100 to 500 (right
boxplot in Figure 3.17) results in a front diversity increase of approximately
52.3%. This percentage increase is only a half of the average increase observed
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in the 3D-MOML. This is a logical consequence of the fact that the average
number of non-dominated solutions in the random walks of a length of 100 is
significantly higher than in the case of the 3D-MOML, but the increase of the
non-dominated solution number by an increase of the random walk length is
comparable. Therefore, the increase of the front diversity by an increase of the
random walk length is considerably lower.
The spread of non-dominated solution diversity in 50 random walks of the
length 100 and 500 are depicted in Figure 3.18. In the case of the random
walks of the length 100 (left boxplot of Figure 3.18), the spread of the inter-
quartile range is comparable to the spread in the random walks of the length
500 (right boxplot of Figure 3.18). In the latter case, the average increase is on-
ly slight with a value of 14.4%. This indicates that the level of spread provided
by the non-dominated solution is comparable for both time series of different
length.
Figure 3.19 depicts the spread of the average rational beeline between each
consecutive non-dominated solution over 30 random walks of the length 100

and 500 respectively. In the case of the left boxplot, the size of the inter-
quartile range reveals that some of the non-dominated solutions are clustered
and others are positioned in a wide range of distances: 50% of the average
relational beeline values are between 0.58 and 1.7, which indicates that the di-
stance between the corresponding consecutive non-dominated solutions is more
than a half and up to more than 1.5 of the average distance between all con-
secutive solutions of the time series. The median nearly divides the box with
a value of 1, which corresponds to a distance that is equal to the average di-
stance between all consecutive solutions of the random walk. However, the left
boxplot in Figure 3.19 reveals some outliers up to a value of 10. This indicates
that the distances between the non-dominated solutions are partly considera-
bly higher than in the case of the 3D-MOML. The comparison of the left and
the right boxplot reveals that an increase of the random walk length results
in a significant decrease of the relational beeline between the non-dominated
solutions. The number of outliers is even higher in the case of the random
walks of the length 500 compared to those of the length 100. These results
are comparable to those of the 3D-MOP. Furthermore, the comparison of the
left boxplot to the corresponding results of the 3D-MOML analysis (Figure
3.11) reveals that the upper quartile and even the maximum remains under
the level of the average relational beeline values in the case of the 3D-MOML.
Otherwise, the relational beeline results of the random walks of the length 500

are nearly comparable in the case of the 3D- and 4D-MOML, indicating that
the non-dominated solutions in both MOMLs are mainly clustered.
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The ruggedness of the 4D-MOML is further quantified by the investigation

Fig. 3.20: Average number of angles between two consecutive difference vectors categorized
in degree intervals of the length 10.

Fig. 3.21: Average length of each two consecutive difference vectors enclosing a particular
angle (eq. (3.15)). The angles are categorized in degree intervals of the length 10.

of the difference vectors determined of the consecutive solutions of 30 times
series with a length of 100. Firstly, the average number of angles between the-
se difference vectors are determined and presented in Figure 3.20, where the
angles are categorized in intervals of the length 10 and depicted on the x-axis.
The upper and lower boundaries highlight once again the 95%-significance in-
tervals. The highest angles number is achieved in the interval of [160◦, 170◦).
In this case, the difference vectors are nearly oppositely directed and the single
molecular functions are moving (increasing, decreasing and stagnating) very
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differently over three time series steps. By way of example: The value of two
single molecular functions are oscillating, meaning the function values increa-
se or decrease from a time series step to the succeeding one and are moving
the other way round afterwards. The values of the other two single molecular
functions increase and decrease or stagnate respectively over the three steps.
In general, higher angle values are more probable than lower ones in the time
series, which signals a very rugged landscape. Nevertheless, a local maximum
is achieved in the interval of [10◦, 20◦), which reveals that a considerable num-
ber of difference vectors are nearly similarly directed and a great amount of
the single molecular functions are moving in the same direction. By way of
example: The values of three single molecular functions are increasing or de-
creasing and stagnating simultaneously over three steps of the time series. The
values of the other single molecular function are oscillating. The number of the
angles in the intervals of [30◦; 150◦) are slightly oscillating on a low level. As
in the case of the 3D-MOML, the larger the angles, the larger the number of
objective functions revealing oscillating behavior over three time series steps.
The comparison of the average angle number distribution over the angles cate-
gories of the 3D-MOML (Figure 3.12) and the 4D-MOML (Figure 3.20) reveals
that in both cases the probability of high angle values (> 160◦) and lower an-
gle values (< 20◦) are significantly higher than the angles values of the other
categories. The increase of the MOML dimension results in a shift of the ma-
xima in the direction of the central angles category. This is the consequence of
the fact that the probability of these four objective functions moving similarly
or oscillating simultaneously is lower than for three objective functions. Fur-
thermore, the lower probability for a similar or oscillating moving behavior of
the four molecular functions results in a more even distribution of the angle
number over the angle categories.
The investigation of the average path length with particular bending provided
by the difference vectors which enclose particular angles categorized once more
in intervals of 10 reveals a similar pattern (Figure 3.21): The highest length
is achieved for high angle values in the interval [160◦; 170◦). In general, higher
lengths are more probable in the case of high angles values. This indicates lar-
ge differences of the single molecular function values moving differently. The
second highest length is achieved for angle values in the interval [20◦; 30◦) indi-
cating large differences between the movements of the single molecular function
values, which are mainly positioned in the same direction. Slight changes of
the single molecular function values are revealed in the interval [40◦; 150◦) with
the lowest length.
The comparison between the results of the average path length to the cor-
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responding average number of angles in the case of the 3D- and 4D-MOML
reveals similar shapes. This indicates that usually large differences between the
single molecular function values of three time series steps are either positioned
in different directions or nearly in the same directions.
The 4D-MOML is further investigated according to plateaus, which provides

Fig. 3.22: Average number of plateaus cha-
racterized by consecutive time se-
ries steps of the length 100 in the
same Pareto front.

Fig. 3.23: Average number of plateaus cha-
racterized by consecutive time se-
ries steps of the length 500 in the
same Pareto front.

some information about clustered similar qualified solutions. In the first step,
the number of plateaus identified by consecutive equal of nearly equal fitness
values for each of the four molecular functions are determined (see eq. 3.22)).
In 30 random walks of the length 100, eight plateaus have been detected. These
plateaus are of a size of only two consecutive (nearly) equal solutions and only
on times series comprises two of these plateaus.
In the second step, the number and size of plateaus in the more globally sense
of multiple consecutive time series steps assigned to the same Pareto front are
presented: Figures 3.22 and 3.23 depict the spread of the average number of
plateaus in the time series of the length 100 (Figure 3.22) and 500 (Figure
3.23). 50% of the plateaus numbers in the time series of the length 100 are
in a range of 17 to 20.5 with a median of 18. This result reveals a moderate
increase of approximately 19% compared to the corresponding results of the
3D-MOML. An increase of the time series length results in an increase of the
plateau number of approximately 396%. This percentage increase is significant-

56



3 Multi-objective Molecular Landscape Analysis

ly higher than the corresponding value of 264% in the case of the 3D-MOML
and is a consequence of the considerably lower front diversity of the 4D-MOML
compared to the results of the 3D-MOML, as described above (Figure 3.17).
The percentage of the detected plateaus assigned to the first front is 36.5%,
which is also significantly higher compared the corresponding value of 14.5%
in the case of the 3D-MOML. The percentage of the plateaus assigned to the
first front in the time series of the length 500 is 12.9%. This value is marginally
higher than the corresponding value in the case of the 3D-MOML with 7%.
These percentage increases are also a consequence of the lower front diversity.
The average size of these plateaus is determined by the average number of

consecutive time series steps belonging to the same Pareto front: The average
plateau size is decreased of 3.04 to 2.42 by the increase of the time series length
with a standard deviation of 1.63 and 0.83 respectively. The average plateaus
size of the first front plateaus is on average larger with 3.08 and 2.75 (standard
deviation of 1.42 and 1.29 respectively) determined of the time series of the
length 100 and 500 respectively. As the number of non-dominated solutions
increases and the front diversity is reduced at the same time compared to the
results of the 3D-MOML, the average plateau size is accordingly higher. As in
the case of 3D-MOML, the plateaus are unevenly distributed along the random
walks.
The final step of the MOML analysis is the direct comparison and visualiza-
tion of the non-dominated solutions achieved by the 3D- and 4D-MOP in a
random walk. Figure 3.24 depicts the objective values of the non-dominated
solutions identified in a random walk of the length 100 over the 3D-MOML.
Figure 3.25 presents the objective values of the non-dominated solutions iden-
tified in the same random walk evaluated by means of the 4D-MOP. The blue
path in Figure 3.25 highlights the non-dominated solutions that have also be-
en identified as non-dominated solutions in the case of the 3D-MOP, the red
path are further non-dominated solutions, which are not non-dominated in the
case of the 3D-MOP. All 10 solutions of the 3D-MOP have also been detected
in the case of the 4D-MOP. These two figures exemplarily presents the cohe-
rence between the achieved non-dominated solutions of the 3D- and 4D-MOP
from the same random walk: usually all 3D-non-dominated solutions are also
non-dominated in the case of the 4D-MOP, but the latter one detects some
more non-dominated solutions, which are not non-dominated in the case of the
3D-MOP.

57



3 Multi-objective Molecular Landscape Analysis

Fig. 3.24: Objective value paths of 10 non-dominated solutions identified in a random walk
of the length 100 over the 3D-MOML.

Fig. 3.25: Objective value paths of 19 non-dominated solutions identified in a random walk
of the length 100 over the 4D-MOML.

3.8 Consequences of MOML for MOEA Design

The results of the 3D- and 4D-MOML analysis provide some important hin-
ts regarding the design of a MOEA. Both, the 3D- and 4D-MOML are very
rugged and no specific structure is discernible according to the distribution of
non-dominated solutions over the investigated parts of these landscapes of dif-
ferent sizes. The 3D-MOML reveals a higher front diversity and therefore fewer
solutions are in the optimal front compared to the 4D-MOML. These results
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point out the known fact and challenge for domination-based MOEA that the
number of non-dominated solutions increases exponentially with the problem
dimension [144]. This observation is thus valid in the case of the proposed 3D-
and 4D-MOP and the design of a MOEA has to take account of this fact.
Due to the higher number of non-dominated solutions and the lower front
diversity in the case of the 4D-MOP, a far-reaching differentiation of the non-
dominated solutions is required. The most intuitive way to perform this dif-
ferentiation is by assistance of the selection procedure. A selection procedure
only based on the non-dominated sorting of the solutions does not provide
enough differentiation and as a consequence, a further selection criterion is
challenging for this purpose.
Moreover, the 4D-MOP has a higher number of front-based plateaus compared
to the 3D-MOP, but this average front-based plateau size of the first front is
accordingly smaller. The number of plateaus identified by consecutive equal
or nearly equal fitness values for each molecular function is lower in the case
of the 4D-MOP compared to the 3D-MOP. The existence of this considerable
number of front-based plateaus with approximately 10% first front plateaus in
both MOMLs suggests the common approach to balance the search behavior
of a MOEA towards exploration in early generations and exploitation in later
generations. Thus, variation operators of the MOEA have to support a global
search in the first generations of the MOEA to tap potentially high quality so-
lutions, spread over the landscape. In the later generations, a more local search
behavior of the MOML supports the search process in the neighborhood of the
previously detected high quality solutions.
The increase of the time series length and therefore of the investigated MOML
does not result in a proportional increase of non-dominated solutions neit-
her in the case of the 3D-, nor in the case of the 4D-MOML. Moreover, the
non-dominated solutions are unevenly distributed over the search space. The-
se facts allow some considerations with regard to the population size: A large
population size increases the probability to detect high quality solutions, espe-
cially in a very rugged landscape. Therefore, the search performance benefits
from a high population size in early generations, but a high population size
is counterproductive in later generations, since the probability for the selec-
tion of already detected high quality solutions into the succeeding generation
decreases with the population size.
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4.1 Exact Methods versus Metaheuristics

The justification of the design and the use of a metaheuristic to solve the pro-
posed 3D- and 4D-MOP requires a calculation of the runtime complexity to
solve these problems exactly. The general advantage of an exact solution me-
thod is the calculation of the optimal solutions as opposed to approximative
compromise solutions in the case of metaheuristics. The runtime complexity of
the exact methods is reducible by the exclusion in advance of some of the feasi-
ble solutions based on theoretical considerations. The search space complexity
in the present 3D- and 4D-MOP is 2020 due to the short peptide sequences of
the length 20, composed of the 20 canonical amino acids.
Theoretical considerations of the feasible solutions usually allow the exclusion
of different solution categories. The a priori exclusion of peptides depends on
the application field of peptide optimization. The proposed 3D- and 4D-MOP
are selected with the aim of being as generic as possible regarding the deter-
mination of their physiochemical properties. Therefore, any a priori exclusion
is difficult without a concrete application area. Generally, in the field of drug
design, peptides have to fulfill the essential properties of being synthesizable
and soluble in aqueous solutions. A general guideline is given for the solubility
of a peptide in aqueous solutions regarding its primary structure: hydrophobic
peptides containing at least 50% hydrophobic residue (A, F, I, L, M, P, V, W,
Y)1 are potentially insoluble or only partly soluble. The number of peptides
comprising 20 canonical amino acids of which at least 50% are hydrophobic is

20∑
i=10

(
20

i

)
· 9i · 11(20−i) ≈ 4.285x1025, (4.1)

1http://www.anaspec.com/content/pdfs/PeptidesolubilityguidelinesFinal.pdf
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where
(
20
i

)
is the number of possible orderings of the hydrophobic amino acids

on i of 20 positions of the peptide, 9i is the number of possible orderings
of the 9 hydrophobic amino acids on i positions and 11(20−i) are the num-
ber of possible orderings of the remaining amino acids on the complemen-
tary positions of the peptide. This reduces the search space only slightly to
2020−4.285x1025 ≈ 6.2x1025. Such guidelines as those, for solubility in aqueous
solutions, do not exist for the synthesizability by today. Therefore, an exclu-
sion of potentially not synthesizable peptides is not possible. Instead of the
exclusion based on theoretical considerations without empirical verification, it
is more advisable to take the preferred properties as objective functions and
therefore as a part of the molecular optimization problem.
An exact solution of the 3D- or 4D-MOP requires the evaluation of the ob-
jective functions MW, NMW, hydro and InstInd for each peptide followed by
fast non-dominated sorting. As the computational complexity of NMW is the
highest of the objective functions (section 3.4), the complexity of the objective
function evaluation is approximately O(N · l2), where l is the peptide length
and N the number of feasible peptides. The following fast non-dominated sor-
ting has a computational complexity of O(k · N2), where k is the number of
objective functions. Even for the 3D-MOP, the computational complexity is
O(N ·l2)+O(k ·N2) ≥ 6.2x1025 ·202+(6.2x1025)2 ·3 = 1.15x1052. Assuming the
use of world’s top soft computer Tianhe-2 developed by China’s National Uni-
versity of Defense Technology2, which performs 30, 86x1015 floating operations
per second, this leads to a runtime of 3.74x1035sec. =̂ 1.19x1028 years.

4.2 Introduction to VONSEA

The selection of a MOEA with the focus on customization for molecular op-
timization is guided by the following expectations: A large number of high
quality peptides have to be found within a very low number of generations
(less than 20 generations) and within a limited range of population size. The
idea of early convergence is motivated by the statement of Singh et al. [145]
that each successive generation of an EA provides a progress by discovering
high qualified leads in each generation. The specification of a MOEA with the
described property by Singh is in the focus of this thesis.
The most established MOEA - NSGA-II - is selected for customization based

2http://www.techtimes.com/articles/20429/20141118/worlds-fastest-
supercomputer-tianhe-2-is-still-no-1-a-year-later.htm
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firstly on the related work of evolutionary peptide optimization as presented
in section 2.2. Secondly, the attractiveness of NSGA-II to the present is cau-
sed by its simple and intuitive optimization cycle according to an evolutionary
process. These advantages are the elaborated design of the NSGA-II operati-
ons [4], the usability in many real-world applications ( [48], [169], [24]) and its
excellent performance in most test problems. Moreover, NSGA-II is very popu-
lar as it provides good convergence rates to the Pareto optimal front as well as
a good spread of solutions [44]. In the following, the procedure and specificity
of NSGA-II is presented. These results justify the design of a metaheuristic to
optimize the 3D- and 4D-MOP.

4.2.1 NSGA-II

NSGA-II [44] is an improved MOGA variant of NSGA [143]. The motivation
for the evolution of NSGA-II lies in the three drawbacks of NSGA [44]:

1. The non-dominating sorting of NSGA-II as fitness assignment has a high
computational complexity of O(MN3), where M is the number of objec-
tives and N the population size.

2. NSGA provides no elitism. It has been shown that elitism can speed up
the performance of a MOEA significantly [181]. Moreover, it prevents the
loss of previously found good solutions.

3. NSGA makes use of a sharing parameter. This is part of the diversity
preserving mechanism. The sharing parameter is user-defined and influ-
ences the performance. Fonseca proposed a dynamic sizing of this para-
meter [66].

In general, NSGA-II inherits two special features of the MOEA variants MO-
GA, NSGA and NPGA (Table 1.1): fitness assignment on the basis of non-
dominating sorting and the diversity preservation among solutions of the same
front. In the following, the advanced components within NSGA-II compared
to NSGA are presented [44]:
Firstly, the non-dominated sorting of NSGA-II is improved with the focus on
lower computational complexity. This customized sorting starts with the deter-
mination of np, which denotes the number of solutions dominated by a solution
p. Then, the solution set Sp is constructed, which contains the solutions domi-
nated by p. These two steps require a computational complexity of O(MN2)

for comparison. All solutions with np = 0 are stored in a list F1 defined as
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the current front. The number nq is reduced by one for each solution q in the
set Sp. After that, the solutions with nq = 0 are stored in a separate list Q.
After all solutions of the current front have been examined, F1 is defined as
the first front and the process continues with Q as the new current front. The
overall computational complexity of this non-dominated sorting is reduced to
O(MN2), but the storage requirement is O(N2). The procedure of the fast
non-dominated sorting is described in the pseudo-code of Algorithm 1 [44].
Secondly, the diversity preserving sharing parameter is replaced by a crowding
comparison operator. The definition of this operator makes use of a crowding
distance value that is assigned to each solution. For this purpose, a sorting of
the population according to each objective function value in ascending order is
required. The crowding distance value idistance of boundary solutions for each
objective function is assigned to infinity. The crowding distance operator is
part of the solution process and is responsible for the uniform spread of the
solutions on the Pareto front. The infinity assignment to boundary solutions
ensures that these points are always selected. For the other intermediate so-
lutions, idistance is determined by the average distance of the two solutions on
either side along each of the objective. The overall crowding distance of the
intermediate solution i is calculated by:

I[i]distance = I[i]distance +
I[i+ 1]m − I[i− 1]m

fmax
m − fmin

m

(4.2)

where I[i]m refers to the m-th objective function value of the i-th solution and
I[i]distance is initialized with 0. fmax

m and fmin
m are the maximal and the minimal

value of the m-th objective function. The crowding distance assignment has a
computational complexity of O(MN 1

2
logN), which is governed by the sorting

of the objective function values in an ascending order to assign the distance
values. The computational complexity is calculated on the basis of M indepen-
dent sorts of at most N solutions in the case that all solutions are in the same
front. The crowding comparison operator ≺n is defined on the basis of the two
attributes irank and idistance of a solution i, where idistance is a measure for the
perimeter of the cuboid that is spanned by the two neighboring solutions on
either side of solution i, and irank is the rank of solution i. The crowding com-
parison operator is defined as a partial order that prefers the solution i with
a lower (and better) rank to a solution j. In the case that the two solutions i

and j are in the same front, the solution in the less crowded area is preferred:
i ≺n j if (irank < jrank) or ((irank = jrank) and (idistance > jdistance)). [44]
The sorting on ≺n has a computational complexity of O(2N · log(2N)). [44]
Finally, binary tournament selection (introduced in section 2.3.4.1) is used as
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Algorithm 1: Pseudocode: Non-dominated sorting of population P

1 foreach p ∈ P : do
2 initialize Sp ≠ 0, np = 0

3 foreach q ∈ P : do
4 if (p ≺ q) then Sp = Sp ∪ {q} ; // If p dominates q,

// add q to the solution set dominated by p

5 ;
6 else if (q ≺ p) then
7 np = np + 1;
8 end
9 end

10 if np = 0 then
11 prank = 1;
12 F1 = F1 ∪ {p}; // p belongs to the first front

13 end
14 end
15 initialize the front counter: i = 1:
16 while Fi ̸≠ 0 do
17 Q ≠ 0; // Q stores the members of the next front
18 foreach p ∈ Fi do
19 foreach q ∈ Sp do
20 nq = nq − 1;
21 if nq = 0 then
22 qrank = i+ 1;
23 Q = Q ∪ {q}; // q belongs to the next front

24 end
25 end
26 end
27 i = i+ 1;
28 Fi = Q;

29 end
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a selection strategy within NSGA-II. The selection criterion is based on the
crowding comparison operator ≺n.

Procedure of NSGA-II

1. Initialization of the start population

a) Initialization: Start population P0 is randomly initialized with size
N , the generation counter is set to t = 0.

b) Ranking: Non-dominated sorting of the individuals into fronts. A
fitness value is assigned to each individual equal to its front3.

c) Creation of the offspring population Q0 of size N .
while |Q0| < N :

i. Binary tournament selection: Selection according to the rank
and the crowding distance.

ii. Recombination and mutation

2. Main loop

a) Combination of parent and offspring set: Rt = Pt ∪Qt

b) Ranking: Non-dominated sorting is applied on Rt into the fronts Fi.
A fitness value is assigned to each individual equal to its front.

c) Set Pt+1 = { }, i=1.
while ( |Pt+1|+ |Fi| < N ) {

crowding distance assignment in Fi,

Pt+1 = Pt+1 ∪ Fi,

i = i+ 1, }

Sorting of (Fi,≺n) in ascending order,
Pt+1 = Pt+1 ∪ F ′

i with F ′
i ⊂ Fi such that |Pt+1|+ |F ′

i | = N .

d) Creation of the succeeding population Qt+1 of size N .
until |Qt+1| < N :

3The front is the non-domination level: front 1 is the front with the best or non-dominated
solutions, front 2 is the next best level, and so on.
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i. Binary tournament selection: Selection according to the rank
and the crowding distance.

ii. Recombination and mutation

e) t = t+ 1

f) if t == T : STOP,
else repeat the main loop

The procedure of NSGA-II starts in step 1.a) with the random initialization of
the start population P0. In step 1.b), the individuals of the start population are
ranked into fronts, where the first front contains all non-dominated solutions.
The offspring population Q0 of size N is determined in step 1.c). Therefore,
the individuals for reproduction are selected by binary tournament selection
according to the rank and the crowding distance of the individuals. Two se-
lected individuals are recombined and mutated to create two offspring. The
main loop starts in step 2.a) with the combination of the parent population P0

and the offspring population Q0 to the population R0 of size 2N . Step 2.b) is
the repetition of step 1.b) applied on R0. The succeeding population is created
in step 2.c), where the population P1 is filled with the N -best individuals of
R0 according to the rank and the crowding distance. The succeeding offspring
population Q1 is determined in step 2.d), which is a repetition of step 1.c)
applied on P1. If the total number of generations T is achieved, the main loop
stops, otherwise the main loop continues with the combination of the current
population P1 and the offspring population Q1.
A well-known disadvantage of NSGA-II is the fact that the performance of
NSGA-II worsens with an increase of the objective number, more precisely for
more than three objectives [98], [92]. The main reason for this is the increasing
number of solutions with irank = 1 or the number of non-dominated solutions
in the population at an early search stage compromising the convergence pro-
perties. Instead of the standard Pareto dominance, Sato [135] proposed a mo-
dified dominance definition that clearly improves the performance of NSGA-II
for many-objectives problems (more than three objectives). Another alterna-
tive is the replacement of the crowding distance operator.
A lot of research has been done to adapt NSGA-II for different improvements:
D’Souza et al. improved the NSGA-II by the principle of space-time trade-
off in the non-dominated sorting stage to reduce run-time complexity and to
improve convergence [48]. The performance of the modified NSGA-II is tes-
ted on the classification problem of leukemia based on microarray data. Fang
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et al. adapted the NSGA-II to improve run-time complexity [62]. The com-
putational complexity of the non-dominated sorting algorithm - as used in
the NSGA-II - is reduced by reducing the number of redundant comparisons,
which arises by the recording of the dominance information among solutions
from their first comparison. A new data structure termed dominance tree and
the divide-and-conquer mechanism are introduced. Tran introduced a MOEA
termed Adaptable NSGA-II (ANSGA-II) which overcomes the problem of re-
quired parameter tuning to achieve a good performance for an arbitrarily com-
plex problem [155]. ANSGA-II includes an adaptive population size as well as
a self-adaptive crossover and mutation operator. Li et al. adapted the NSGA-II
in the crowding distance method, which is designed by the minimum spanning
tree to improve the diversity of the solutions [106]. The performance is tested
on two and three objective test problems and reveals a comparative conver-
gence and a good diversity performance compared to the NSGA-II. A hybri-
dization of NSGA-II is presented by Bechikh et al. [15]. Pareto Hill Climbing
NSGA-II (PHC-NSGA-II) provides the specific local search procedure Pareto
Hill Climbing. The aim of PHC-NSGA-II is to enhance the convergence rates
and the spread of the solutions by improving the search pattern. An adaptive
mutation variant for NSGA-II is introduced by Carvalho and Araujo [26] with
the same goal of improving diversity and convergence. The mutation rates are
controlled by using information about the diversity of the candidate solutions.
Fortin and Parizeau [68] address the instability of the crowding distance that
appears in the case of two or more solutions sharing the same fitness. The bias
induced by the individuals sharing the same fitness during the selection process
is fixed by crowding distance computation with unique fitnesses. Furthermore,
unique fitness based tournament selection is used to select the parent soluti-
ons. Studies performed with two-objective optimization problems are evaluated
with regard to the influence of the adapted binary tournament selection on the
performance. The convergence is improved by the additional selection pressu-
re, but the diversity is unaffected by this adaption. Deb and Jain presented
the reference-point based Many-Objective NSGA-II (MO-NSGA-II) [40]. MO-
NSGA-II emphasizes non-dominated solutions close to a set of well-distributed
reference points. Experiments have been performed on three to 10 objectives
in comparison to the performance of MOEA/D, where MO-NSGA-II revealed
superior performance. Seada and Deb recently proposed the unified EA termed
U-NSGA-II, especially developed for many-objective problems [144]. U-NSGA-
II performs well on mono- as well as multi- and many-objective problems. It
uses a set of reference points as well as a niching-based selection operator.
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4.2.2 The procedure of VONSEA

NSGA-II as described in the last section is customized in its components with
the main goal of molecular optimization under the special expectation of early
convergence. This customized NSGA-II is termed Variation Operator specific
Non-dominated Sorting EA (VONSEA). The more general denotation ’EA’
refers to the fact that the proposed algorithm is in general a customization
of NSGA-II, but comprises ES components and strategies. More precisely, the
role of the component selection strategy as well as the types of the variation
operators within VONSEA are characteristic for ES, but unfamiliar in the area
of GA: Firstly, the selection process within VONSEA is not used to determi-
ne the individuals for reproduction. Instead of using the binary tournament
selection according to the rank and the crowding distance, a sophisticated se-
lection strategy is applied to determine the succeeding population. The use of
a selection process as a method for the determination of the succeeding popu-
lation is the characteristic role of the selection within the area of ES. Secondly,
the denotation ’Variation Operator Specific’ reflects the opportunity to choose
between several recombination and mutation variants. Some of these variation
operators have been either evolved in the area of ES or are designed according
to these models.
The procedure of VONSEA is depicted in the flow chart (Fig. 4.1) and only the
parts differing from the NSGA-II procedure - as presented in the last section
- are mentioned. A detailed description of these components and the motiva-
tion for their evolution or the parameter settings are given in the following
chapter. The individuals for reproduction are selected by Stochastic Universal
Sampling (SUS) instead of binary tournament selection according to the rank
and the crowding distance as used within NSGA-II. An individual is allowed
to be selected multiple times. The individuals of the population are assigned
to different segments representing the Pareto fronts. The front-based SUS is
implemented in VONSEA as illustrated in the pseudocode of Algorithm 2.
Three individuals are selected as parents for recombination and mutation. The-
refore, the number of pointers is set to three (line 1). The individuals of the
population are ranked into front sets by fast non-dominated sorting (line 2).
Figuratively speaking, the front sets are arranged on the roulette wheel accor-
ding to their front set size (line 3). The first pointer is assigned to the wheel
by a random number in the interval [0, 1/numberOfPointers) (line 5) from
the segment forefront of the front set with the largest size. The pointers are
positioned by the distance from the first pointer (line 7). The indexes of the
individuals associated to the pointers are determined in line 8. The individuals
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Fig. 4.1: Procedure of the Variation Specific Non-dominated Sorting Evolutionary Algorithm
(VONSEA)

selected by these pointers are added to the parent population (line 9).
Additionally, VONSEA differs from NSGA-II in the components recombina-
tion and mutation. Optionally, different recombination and mutation opera-
tors are implemented to compose a VONSEA configuration instead of the
default variation operators of NSGA-II. Furthermore, VONSEA differs in the
procedure to determine the succeeding population Qt. Instead of ranking the
composed population of parents and children and selecting the N best indivi-
duals, three kinds of selection strategy are proposed that use a combination
of fitness-proportionate selection and a discerning selection criterion, which is
front-based in one case and indicator-based in the other. These components
are motivated and described in the following sections in more detail.
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Algorithm 2: Pseudocode: front-based SUS in VONSEA

1 numberOfPointers = 3;
2 FastNondominatedSorting(population, fronts);
3 FrontSortingMagnitude(population);
4 distance=(numberOfPointers)−1;
5 ptr(0)= randomNumber · distance;
6 for i=0, ..., numberOfPointers-1 do
7 ptr(i+1) = (int) (ptr(0)+ i · distance);
8 index = ptr(i+1) · population_size;
9 parent_population.add(population.getIndividuals(ptr(index)));

10 end

4.3 Encoding Scheme of VONSEA

4.3.1 Encoding Principles

A GA works on two types of spaces: the coding space (genotype) and the
solution space (phenotype). The encoding of the genotype is important from
two points of view: Firstly, a genotype-phenotype encoding for the individual
representation necessitates the use of a transformation or decoding to map a
variable from the coding space into the solution space for fitness evaluation
and selection. Secondly, the GA components recombination and mutation ha-
ve to be developed according to the encoding as these operators directly work
on the variables of the coding space: It has been shown that a special selection
of recombination and mutation operators work well on different types of enco-
ding [82]. Furthermore, the encoding has a strong impact on the performance
of a GA and has to be chosen carefully. (see e.g. [3], [1]) Goldberg was one of
the first who presented recommendations for the construction of binary repre-
sentations. He formulates two abstract and general principles for the design of
representations on the basis of theoretical schemata considerations [75]:

• The principle of building blocks: The encoding scheme has to be
short, of low order and is relatively unrelated to schemata over other fixed
positions. This prevents a long and high ordered scheme being disrupted
by recombination and mutation.

• The principle of minimal alphabet: The encoding scheme has to be
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as small as possible while still allowing a natural representation of the
variables.

The principle of meaningful building blocks is motivated by the scheme theo-
rem [21]. The principle of minimal alphabet advises the increase of the potential
number of schemata by reducing the cardinality of the alphabet. The princip-
les are provided for binary strings and are not advisable as design criteria
for non-binary strings. Kershenbaum formulates more precise and applicable
guidelines. The recommendations are originally tailored for tree representati-
ons, but they are also applicable to other representation types. Five possibly
conflicting properties are advised for an ideal encoding [91]:

1. The encoding scheme has to represent all feasible solutions.

2. The encoding scheme has to represent only feasible solutions.

3. All feasible solutions have an equal probability of being represented.

4. The encoding scheme has to represent a useful scheme in a small number
of genes that are close to one another in the chromosome.

5. The encoding scheme has to possess locality in the way that small changes
to the chromosome result in small changes in the solution.

The first recommendation is a property that is usually easily satisfied. The
second recommendation sometimes requires a compromise: A small number of
infeasible solutions is better than a high number as this increases the probabi-
lity of creating infeasible solutions by the variation operators and makes a GA
ineffective. The third recommendation ensures the creation of diverse random
starting solutions. Furthermore, the GA is more effective in exploring the entire
solution space. The fourth recommendation is the most difficult property of an
encoding and it is generally challenging to develop a suitable encoding accor-
ding to this property. The property locality in the fifth recommendation refers
to a genotype-phenotype mapping. It describes how well neighbored genotypes
correspond to neighbors in the phenotype space. This fifth recommendation
ensures that the GA is able to perform a guided local search. Otherwise, a low
locality results in a more random search instead of a guided search of the GA.
Goldberg further classified the encoding schemata referring to the fact that the
fitness functions for each encoding scheme depend either on the factor ’value’,
’order’ or both:

(i) a scheme where fitness depends on order only.
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(ii) a scheme where fitness depends on order and value.
(iii) a scheme where fitness depends on value only.

In the following, the most common encoding schemes in GAs for each category
are presented:
The best-known encoding scheme of category (i) is the permutation and it
is used in combinatorial optimization problems like the Traveling Salesman
Problem [139]. This problem is specified by a list of cities. The goal of the
search process is to find a route that visits each city only once and has minimal
length. A natural representation is an ordered list of city numbers:

Example 1 Individual: 1 2 4 3 5 6 9 8 7.

The permutation is used in another application example from bioinforma-
tic [173]. It is used as encoding scheme in a GA to predict the secondary
structure of RNA! molecules. The secondary structure is encoded as per-
mutation and the GA predicts the specific canonical base pairs that perform
hydrogen bonds and build helixes. Specific variation operators are reasonable
for permutation encoding: recombination and mutation corrections have to be
performed to leave chromosome consistent [100]. The recombination operators
associated with permutation are the Partially Mapped Crossover (PMC) [77],
the Cycle Crossover (CX) [34] and the Order Crossover (OX) [119]. The mu-
tation operator associated with permutation is the inversion that changes the
location of characters. The disadvantage of the recombination operators for
permutation encoding is the high implementation complexity of these crosso-
ver operators [100].
The most common encoding scheme of category (ii) is the binary encoding.
Each individual is represented as a binary string of the bits 0 and 1. The
following example shows a hexadecimal encoding:

Example 2 Individual: 1101011101101.

Moreover, each allele represents a value. An advantage of binary encoding is its
support of a wide range of recombination operators. Furthermore, it fulfills the
design principles of Goldberg [75] best. Binary encoding causes problems in the
case of a continuous search space with large dimension [82]: If a variable has a
finite number of discrete valid values, some of the binary codes are redundant.
The most common encoding scheme of category (iii) is the value encoding.
Individuals are represented as strings of some kind of value like integer, real
or character:
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Example 3 Individual (real encoding): 1.23 2.54 3.55 6.73 2.12.
Individual (character encoding): ABDKGWUFEKZWBS

Real encoding is of increasing interest in the field of real-world optimization
problems, like in the field of chemometry [108] or biotechnology [133]. The
popularity of real coding is due to the following advantages [82]: Firstly, real
coding is very close to the natural representation of the variables for many
optimization problems. As there is no difference between genotype and pheno-
type in these cases, a genotype-phenotype mapping is not necessary. Secondly,
real coding is very natural in optimization problems with variables in conti-
nuous domains. Thirdly, real coding has the potential to exploit the concept
of graduality of the fitness functions with continuous variables. This means
that small changes in the variables correspond to small changes in the fitness
function values.

4.3.2 Encoding of Individuals in VONSEA

The individuals in VONSEA represent short peptide sequences composed of
20 amino acids. These amino acids are the 20 canonical amino acids as listed
in Table 4.1. Three different individual encodings of these peptide sequences
within MOEA are conceivable: Firstly, the encoding of a peptide sequence as
character string, secondly an encoding of the single amino acids as nucleotide
triples and thirdly an encoding of the amino acids by bit strings. These enco-
ding approaches are discussed in the following.
Several tools providing molecular functions to determine physiochemical or
structural properties of peptides make use of a single-letter code for the amino
acids, depicted in the right column of Table 4.1 (e.g. see [123], [81], amino acids
substitution matrices from protein blocks used within the Needleman-Wunsch
Algorithm for global sequence alignment). The individuals within VONSEA
are encoded as character strings composed of 20 different characters according
to the single-letter code to provide the required input structure for the mo-
lecular fitness functions and to avoid a transferring into this input structure
before the evaluation of every fitness function.

Example 4 Individual in VONSEA: ADIHMNLKFPSTVWYRCEQG

Therefore, this encoding represents a value encoding and is classified in ca-
tegory (ii) ’a scheme where fitness depends on order and value’ in a broader
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Amino Acid Char code

Alanine A
Arginine R

Asparagine N
Aspartic acid D

Cystein C
Glutamic acid E

Glutamine Q
Glycine G
Histidine H
Isoleucine I
Leucine L
Lysine K

Methionine M
Phenylalanine F

Proline P
Serine S

Threonine T
Tryptophan W

Tyrosine Y
Valine V

Table 4.1: List of the 20 canonical amino acids and the established one letter code used for
the encoding in VONSEA

sense: In the case of molecular functions predicting peptide properties, each
amino acid or character is identified with physiochemical property values and
the molecular functions work on these single characters as well as on the orde-
ring of the amino acids (or characters) in a sequence, which is a decisive factor
on several peptide properties.
In the following, the properties of the proposed character encoding are sum-
marized and related to the recommendations of Kershenbaum:

• every peptide of the solution space is exactly represented by a character
string

• every feasible character string presents exactly one peptide

• all peptides are equally represented
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• a genotype-phenotype mapping is not necessary

• small changes performed by a variation operator on the character strings
preserve similarity of the created offspring to their parents

The first two properties ensure that all feasible - and only the feasible - so-
lutions are represented by this character encoding. The characters used have
an equal probability of being represented in a solution and therefore each fea-
sible solution has the same probability of being represented. The phenotype
representation allows a depiction as string with the letter code of the cano-
nical amino acids; therefore a genotype-phenotype mapping is not necessary.
The last property allows the assessment whether small changes in the molecule
structure is related to similar molecule properties [55]
Another potential encoding scheme of the peptide strings is the presentation

Fig. 4.2: Peptide presentation as character string and nucleotide string encoding.

of the canonical amino acids by code triples. The single amino acids are re-
presented by nucleotide triples consisting of the four nucleotides A, U, G and
C. Figure 4.2 depicts the genotype-phenotype representation of a peptide of 5
amino acids and the corresponding code triple encoding. With 43, the number
of nucleotide combinations is much higher than the number of coded amino
acids, thus revealing a high number of unfeasible combinations. Therefore, this
encoding scheme has the following undesirable properties:

• the peptides have different representation forms as most of the single
amino acids are encodable by differing nucleotide triples (see Table 4.2
in section 4.5)

• a very high number of nucleotide triple encoded peptides are unfeasible

• a genotype-phenotype mapping is necessary

• the peptides have a differing number of representation forms and have a
different probability to be presented
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Nucleotide triple encoding requires a higher implementation complexity and
storage. Therefore, the character string encoding is preferred over nucleotide
triple encoding.
A similar approach is the encoding of the single amino acids as bit strings. As
20 amino acids have to be coded, the bit strings require at least a bit string
length of at least 5, as the number of bit string combinations provides 25 = 32

possible combinations. According to the advice of Goldberg referring to binary
encoding, this encoding scheme is not advisable: The disadvantage of binary
encoding for the presented purpose of peptide optimization is the representa-
tion of infeasible peptides which is a general disadvantage of binary encoding
as mentioned above. An exclusion of these infeasible encodings implies a hig-
her implementation complexity. Compared to nucleotide triple encoding, bit
strings encoding also requires a genotype - phenotype mapping. Otherwise,
all bit string encoded peptides are equally represented and every feasible bit
string peptide represents exactly one peptide.

4.4 Recombination Operators of VONSEA

The use of recombination - also termed crossover - operators in genetic algo-
rithms is motivated by their property of disruption. This encourages the explo-
ration of the search space and makes the search more robust. The disruption
is realized by a genetic exchange of information between different individuals
chosen as parents. The genetic material of the parents is reassembled in order
to produce offspring with a combination of good structures of the parents im-
proving the overall fitness. Recombination is established as a primary search
operator (e.g. see [84]).
Recombination theory is mainly developed in the GA area. As an optimizati-
on problem specific encoding is established in the GA area, the recombination
operator has to be adjusted to the individuals’ representation. As a conse-
quence, the conventional recombination operators are classified into binary,
floating-point and real-valued types.

4.4.1 Traditional Recombination Operators

Fogel was one of the first to introduce recombination in EAs (e.g. see [64]),
otherwise Holland [84] was the first who proposed a theoretical emphasis on
recombination. Holland was focused on schemata which provide a basis for pro-
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mising attribute combinations with the goal of improving the GA performance.
The one-point recombination was the first which was theoretically investigated
by Holland [84]. The procedure of this operator is the selection of two random
individuals as parents. Then, one random crossover point is selected with uni-
form probability and the genetic material at this point is exchanged. The key
aspect of one-point recombination is the fact that the offspring start with the
schematic part of one of the parents and potentially provide a promising buil-
ding block. The potential of this block in optimizing the performance is tested
in new contexts afterwards. Due to this, the disruption of long schemata is
much more likely than small ones.
De Jong proposed the analysis of n-point recombination [35]. In contrast to
one-point recombination, n random recombination points are selected and the
genetic material between these points is exchanged. Compared to the one-point
recombination, n-point recombination is less likely to disrupt long schemata.
Syswerda introduced a new form of recombination - the uniform recombination
- as a consequence of empirical studies which show an advantage in using more
than two crossing points [150]. Uniform crossover creates an offspring by ran-
domly selecting each bit either from the first or the second parent. Syswerda
analyzed uniform recombination in comparison to one- and two-point recombi-
nations. In this context, uniform recombination surprisingly has no length bias
and its more disruptive nature has been interpreted in the sense that it is mo-
re likely to create instances of new high-ordered schemata from lower-ordered
ones than the one- or two-point recombinations. Uniform crossover is very ef-
fective for some problems in the case of an average of (L/2) crossings (L is
the chromosome length) [150]. Another important but more general conclusion
of this theoretical analysis is that a broader theory is necessary to indicate a
balance between exploration and exploitation by appropriate choices of the po-
pulation size, genetic operator rates and selection pressure [35]. In the work of
Eshelman [58], it is demonstrated that uniform crossover has a more powerful
exploration property than n-point crossover. In this work, Eshelman further
introduced a characterization of recombinations: recombinations with positio-
nal or distributional bias. Recombinations have positional bias if the creation
of a new scheme by recombining existing ones depends on the location of the
alleles in a chromosome. The positional bias is similar to length bias. Other-
wise, a recombination has distributional bias in the case that the amount of
material to be exchanged is not uniformly distributed. Furthermore, Eshelman
assigns one-point, two-point and uniform recombination to these two charac-
terizations: One-point recombination has high positional bias as all alleles over
the chromosome are potentially exchanged with uniform probability of 1/L.
Two-point recombination is of a lower positional but no distributional bias,
whereas uniform recombination has no positional but high distributional bias
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as the amount of material exchanged is binomially distributed.
Besides one-point, n-point and uniform recombination, shuffle crossover is also
classified as a recombination type of binary-encoded GA: Shuffle crossover is
related to uniform crossover. One crossing point is randomly chosen, but be-
fore the alleles of the two parents are exchanged, both parents are shuffled at
random. After the recombination, the alleles of the offspring are shuffled again.
This procedure ensures the removal of positional bias [25].
The recombination methods for floating-point encoded GAs are either a straight-
forward imitation of the recombination types for binary-coded GAs or they are
performed by averaging the alleles of each two parents. The disadvantage of
the imitation is the fact that only mutation operators are able to insert new
values into the population, since the recombination is only able to combine the
existing ones in a different manner [122]. Arithmetic recombinations are esta-
blished in floating-point GAs and are based on the averaging of the parents
alleles [113]. There are three versions of arithmetic recombination (an over-
view is given by Picek et al. [122]): Simple arithmetic recombination chooses
k recombination points. Then, the first k float alleles of a randomly selected
parent are copied into the offspring. The remaining alleles are the arithmetic
averaging of the two parents xi

p and xj
p. The two offspring are of the following

form:

xi
p+1 = ⟨xi,1 p, xi,2

p, ..., a · xj,k+1
p + (1− a) · xi,k+1

p, ..., a · xj,n p + (1− a) · xi,n p⟩
(4.3)

xj
p+1 = ⟨xj,1 p, xj,2

p, ..., a · xi,k+1
p + (1− a) · xj,k+1

p, ..., a · xi,n p + (1− a) · xj,n p⟩ ,
(4.4)

where a is the weighting factor with a ∈ [0, 1]. There are three variants
regarding the choice of a: This factor is constant, it is picked at random in every
recombination step or it is a variable that depends on the current generation
number.
Single arithmetic recombination differs from the simple one in the averaging
of only one randomly selected allele of the two parents. The remaining alleles
are copied from the parent:

xi
p+1 = ⟨xi,1

p, xi,2
p, ..., a · xj,k

p + (1− a) · xi,k
p, xi,k+1

p, ..., xi,n
p⟩ (4.5)

xj
p+1 = ⟨xj,1

p, xj,2
p, ..., a · xi,k

p + (1− a) · xj,k
p, xj,k+1

p, ..., ·xj,n
p⟩ . (4.6)

The most commonly used arithmetic recombination strategy is the ’whole
arithmetic crossover’. All alleles of the offspring are calculated by the arithme-
tic average of all parents alleles.

xp+1
i = a · xp

i + (1 + a) · xp
j (4.7)

xp+1
j = (1− a) · xp

i + a · xp
j , (4.8)
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In the case of real-coded GAs, two types of categorization are proposed for re-
combinations. The first category divides the recombination operators in mean-
centric and parent-centric operators [42]: In the case of mean-centric operators,
the offspring are created around the mean of the participating parents and
around one participating parent in the case of parent-centric recombinations.
The Unimodal Normal Distribution Crossover (UNDX), the SimPlex Crosso-
ver (SPX) and the BLend Crossover (BLX)-α are mean-centric, whereas the
Simulated Binary Crossover (SBX) and the Parent-Centric Crossover (PCX)
are parent-centric.
Deb et al. present a categorization of recombination operators in variable-wise
and vector-wise operators [47]: Variable-wise operators recombine the variables
of the participating parents independently from one another. These operators
do not take linkages between variables into account. Representatives of this
category are BLX-α and SBX. In the case of vector-wise recombination opera-
tors, a linear combination of the complete variable vectors of the participating
parents is created to produce offspring. These operators take account of the
linkages between the variables. Representatives of this category are UNDX,
PCX and SPX. The recombination operators UNDX, BLX-α, SPX, SBX, and
PCX are described in the following.

4.4.1.1 Mean-centric Recombination Operators

UNDX [120] was proposed by Ono and Kobayashi and creates offspring around
the mean center g⃗ of the participant parents. With a small probability, offspring
are created away from this center. UNDX chooses (µ−1) individuals as parents
at random and then the mean vector g⃗ of these individuals is computed. The
offspring is created as follows:

y⃗ = g⃗ +

µ−1∑
i=1

wi|d⃗ (i)|e⃗ (i) +
n∑

i=µ

viDe⃗ (i), (4.9)

where wi and vi are zero-mean normally distributed random numbers de-
noted as N(0, σ1) and N(0, σ2). Kita and Yamamura [93] advised values of
σ1 = 1/

√
µ− 2 and σ2 = 0.35/

√
n− µ− 2, where n is the size of the variable

vector. D is the length of d⃗µ+1 orthogonal to d⃗1, ..., d⃗µ−1 with d⃗(i) = x⃗(i) − g⃗.
e⃗(i) = d⃗(i)/|d⃗(i)| is the orthonormal basis. The goal of this recombination me-
thod is that the offspring are created around the mean vector. The probability
for producing an offspring far away from its parent is reduced and the maximal
probability is assigned at the mean vector. The computational complexity to
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produce an offspring is O(µ2), mainly caused by Gram-Schmidt orthonormali-
zation process [42].
BLX-α is a variable-wise recombination operator and was introduced by Es-
helman and Schaffer [60]. The offspring are uniformly created around the two
parent values. Two individuals x1 and x2 are selected randomly as parents and
two offspring are created. For that purpose, each component xi

c of an offspring
vector xc is a randomly chosen value from [xi

1, x
i
2] with

xi
1 = min(xi

1, x
i
2)− α · di (4.10)

xi
2 = max(xi

1, x
i
2) + α · di (4.11)

di = |xi
1 − xi

2| (4.12)

where xi
1,2 are the i-th components of x1,2 and a positive parameter α. The

user-defined parameter α is responsible for the creation of an offspring inside
or outside the parent range. Herrera tested different values for α [82]. The
value α = 0.5 achieved the best performance. The component-wise creation
of an offspring causes difficulties in optimizing non-separable fitness functions
because of the mutual dependency among the variables that are not well con-
sidered [120]. To overcome these difficulties, Eshelman et al. extended the first
version to BLX-α-β and BLX-α-β-γ [59]. The parameters are problem-specific
and difficult to determine.
SPX is presented by Tsutsui et al. [157]. This operator is an extension of
BLX-α. It generates offspring vector values by uniform sampling values from
m parent vectors with (2 ≤ m ≤ number of parameters +1). The goal of this
operator is that offspring are created around the mean of the parents, but they
are restricted within a predefined region. This region is

√
µ+ 1 times bigger

than the parents simplex. Furthermore, the offspring are uniformly distributed
over this region. The selection of three parents is advised for low dimensio-
nal problems and four parents are advised for higher dimensions [157]. The
computational complexity for creating an offspring is about O(µ) [42].

4.4.1.2 Parent-centric Recombination Operators

The variable-wise operator SBX is presented by Deb and Agarwal [38]. SBX is
evolved for real-coded GAs to simulate the effect of one-point recombination in
binary-coded GAs. Individuals close to their parents are created with the help
of a polynomial probability distribution and two parent values of a particular
variable. Two particular parent values pi1,2 of the i-th variable are linearly
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combined to create two offspring ci1,2 by

ci1,2 = 0.5 · (1± P (u)) · pi1 + 0.5 · (1∓ P (u)) · pi2 (4.13)

P (u) is the probability density function depending on a random number u ∈
[0; 1]:

P (u) =

⎧⎨⎩(2u)
1

ν+1 if u ≤ 0.5(
1

2(1−u)

) 1
ν+1 otherwise

(4.14)

High values for the distribution index ν provide a higher probability for crea-
ting individuals near their parents.
The multi-parent crossover operator PCX is a modified version of UNDX and
is introduced by Deb [42]. µ individuals are selected as parents and the mean
vector g⃗ is calculated of these individuals. The direction vectors are determined
by d⃗ (p) = x⃗ (p)− g⃗. The offspring are created by a biased linear combination of
three parents and are positioned around one of these parents x⃗ p:

y⃗ = x⃗ p + w1|d⃗ (p)|+
µ∑

i=1,i ̸=p

w2D̄e⃗ (i), (4.15)

where w1,2 are zero-mean normally distributed variables. D̄ is the average of
the perpendicular distances Di which are computed from each of the other
(µ− 1) parents to the line d⃗ (p). The goal of this operator is that offspring are
created around each parent and the probability to remain close to the parents
is higher.

4.4.1.3 Multi-parent Recombinations

Diverse recombination operators were extended to multi-parent recombination
mechanism (e.g. see [53], [157]). The recombination mechanisms imitate the
natural reproduction processes that are either asexual or sexual. In the case
of asexual recombination, only one parent is used to create an offspring. The
main disadvantage of this asexual reproduction is the lack of genetic material
exchange from another parent. Biologically sophisticated individuals are cha-
racterized by sexual reproduction, therefore the reproduction of two parents
to create offspring has become the state-of-the-art variant in ES history.
Bäck and Schwefel started with the recombination of information from more
than two parents [12] in ES. In the empirical work of Eiben and Bäck, the im-
pact of different multi-parent recombination strategies (from two parents up to
sixteen) on the performance of a float-point genotype ES in the case of seven
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test problems [52] is empirically examined. The aim of these experiments is the
investigation of the question: Does increasing the number of parents lead to an
improvement of the EA performance? In most cases, a significant performance
increase is observed in combination with an increase in the parent number,
although the algorithm performance depends on the recombination type and
the optimization problem.
In the previous work of Eiben [53], genetic algorithms with multi-parent recom-
binations - generalized uniform and n-point crossover - have been extensively
tested on different problem types: In most cases, more than two parents result
in an increase of the GA performance, but the optimal number of parents va-
ries greatly within the test runs. Otherwise, for some optimization problems
the parent number has no influence on the GA performance. Furthermore, the-
se extensive experiments reveal that the largest performance improvement is
achieved by an increase of 2 to 3 parents. Eiben also proposes geometrical con-
siderations of the parent number: A larger number of parents do not provide
information about the same solution and consequently create offspring which
are between but far away from their parents.

4.4.2 Recombination Operators Used in VONSEA

The recombination operators presented in the following are developed accor-
ding to the model of nature, adjusted to the problem of peptide optimization
and based on the conclusions from the empirical studies of the state-of-the-art
recombinations. The following operators are classified into three categories:
’deterministic dynamic’, ’position-specific’ and ’Gaussian-distributed’. These
operators determine either the number of recombination points or the position
for recombination. All these recombination operators are used as multi-parent
mechanisms. The default number of parents for recombination is three accor-
ding to the work of Eiben [53] as described above. Nevertheless, the impact
of the parent number on algorithm performance is the subject of the expe-
riments on the different dimensional biochemical optimization problems that
are presented in this thesis.

4.4.2.1 Deterministic Dynamic Recombination Operators

Two different deterministic dynamic recombination operators are optionally
applied in VONSEA. These operators are n-point recombination operators,
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Fig. 4.3: LinDeRP: Number of recombina-
tion points for l = 20, l = 50 and
T = 20

Fig. 4.4: LinDeRP: Number of recombina-
tion points for l = 20, l = 50 and
T = 50

where the number n of recombinations points is determined by deterministic
decreasing functions. The motivation of these operators is a high explorative
search behavior in the early generations and a highly motifs-maintaining re-
combination in later generations. The velocity of the descent specified by a
decreasing function determines the velocity of the transition from the explora-
tive search to the motifs-maintaining recombination and therefore local search.
These recombination operators have been introduced in [131].
The Linear Decreasing ReProduction operator (LiDeRP) varies the number of
recombination points over the generations via a linearly decreasing function:

x(t) =
l

2
− l/2

T
· (t− 1), (4.16)

which depends on the length of the individual l, the total number of the GA
generations T and the actual generation number t. The number of recombina-
tion points in the first generation (t = 1) is l/2 and decreases linearly until one
recombination point in the last generation (t = T ). The recombination points
themselves are determined randomly, but it is not excluded that recombination
points are determined more than once. The magnitude of the preserved motifs
especially in the later generations increases. Fig. 4.3 and Fig. 4.4 exemplarily
depict the number of recombination points for a peptide length of 20, 50 and
a total number of generations of 20 or 50 respectively.
The Exponential Decreasing ReProduction operator (ExpoDeRP) determines
the number of recombination points over the generations by an exponentially
decreasing function:

xR(t) = 2 + (0.2 · l − 1) · 2
−l/2
T

·(t−1) (4.17)

The number of recombination points in the first generation (t = 1) is (0.2·l+1)

and decreases exponentially until two recombination points in the last genera-
tion (t = T ). The recombination points themselves are determined randomly,
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Fig. 4.5: ExpoDeRP: Number of recombi-
nation points for l = 20, l = 50

and T = 20

Fig. 4.6: ExpoDeRP: Number of recombina-
tion points for l = 20, l = 50 and
T = 50

but it is not excluded that recombination points are determined more than
once. Fig. 4.5 and Fig. 4.6 exemplarily depict the number of recombination
points for a peptide length of 20, 50 and a total number of generations of 20
or 50 respectively.

Fig. 4.7: Positions of recombination points by 2-point-edges exemplarily depicted on a pep-
tide of the length 10 over 5 generations.
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4.4.2.2 Position-specific Recombination Operator

One position-specific recombination operator is used in VONSEA. This ope-
rator is a dynamic 2-point recombination operator, where the recombination
points move linearly from the middle of a peptide to the ends of the peptide se-
quence. The motivation for this operator is an increasing motifs-maintenance
of the genetic material over the generations and a variation of the C- and
N-termini of the peptides in later generations. The ends of a peptide have a
specific influence on the properties of peptides (e.g. [18]). In the first genera-
tion the peptides are divided into two parts (see Fig. 4.7). In the following
generations the genetic material of the peptide ends are exchanged, where the
number of amino acids at the ends is decreasing over the generations. In the
last generation, only the N-terminus4 and C-terminus5 are exchanged. There-
fore, the recombination in the last generation is interpretable as mutation. The
recombination points are determined by the following two functions:

p1(t) =
l

2
− l/2

T
· (t− 1) (4.18)

p2(t) =
l

2
+

l/2

T
· (t− 1). (4.19)

This operator is further termed ’2-point-edges’ and has been introduced in
[131].

4.4.2.3 Random Recombination Operator

A Gaussian-distributed recombination operator is used in VONSEA. This ope-
rator is a n-point recombination operator, where the number n of recombina-
tion points is varied according to a Gaussian distribution. This recombination
method is an imitation of the natural recombination procedure. The number
n of recombination points is determined by the integer result of the product of
the individual length and a Gaussian distributed random number. The actua-
rial expectation as the most frequent number has the highest probability to be
selected as the number of recombination points. Therefore, the parameters of
the recombination operator are the parameters of the Gaussian distribution,
the actuarial expectation ρ (the most frequent number for n) and the standard

4The N-terminus is determined as the start of a peptide that is terminated by the amino
acid with a free amine group (NH2). The N-terminus of a peptide is important for the
determination of its half-life.

5The C-terminus is the end of a peptide that is terminated by a free carboxyl group
(−COOH) and it contains retention signals.
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deviation σ. The default values are set to ρ = 2 and σ = 2.5. Obviously, only
positive values n ≥ 0 are permitted, therefore negative values are multiplied
by −1. This recombination operator has been introduced in [130].

4.5 Mutation Operators in VONSEA

The mutation operator in evolutionary algorithms is a reproduction opera-
tor which is primarily applied for diversity preservation regarding the genetic
material. It operates on single solutions of a population and modifies them
independently of the remaining members of the population in contrast to the
recombination operator. The important role of a mutation operator is the over-
all search efficiency by avoiding premature convergence. Mutation strategies
are mainly evolved in the field of ES, but several mutation procedures have
also been proposed for GAs according to the individual encoding. More effort
and research have been investigated in the evolution of the variation operator
’mutation’ than for ’recombination’ to improve the performance of a GA. The
first part of the following section describes the mutation operators evolved
in the area of GAs. The following part describes a special category of mu-
tation operators evolved in the area of ES which make use of dynamic and
self-adaptive parameters to find the optimal mutation rate for improving the
algorithm performance.

4.5.1 Traditional Mutation Operators

Several mutation operators have been introduced in the field of GAs depending
on the GA encoding. The mostly used operator in binary-coded GAs is the
bitwise mutation operator. A bit is flipped with a specific probability pm. The
choice of pm = 1

l
achieved the best performance in comparative studies as

demonstrated by Schaffer et al. [137], where l denotes the number of total bits.
Different operators have been proposed for real-coded GAs: The most popular
operators are the parameter-based mutation operator [38], the Gaussian [141]
and the polynomial mutation operator [39].
Parameter-based mutation uses a polynomial probability distribution and a
user-defined parameter ν to create a new solution p′ in the vicinity of a solution
p ∈ [xl;xu], where xl and xu are the lower and upper bounds of a variable. The
creation of a new solution is based on this probability distribution enclosing
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the variable values by an upper and lower boundary. A mutated solution p′ of
a parent solution p is created with a random number u ∈ [0; 1] by

p′ =

⎧⎨⎩p+ δL(p− x
(L)
i ), for u ≤ 0.5

p+ δR(x
(U)
i − p), for u > 0.5,

(4.20)

where the two parameters δL and δR are calculated by

δL = (2u)
1

ηm+1 − 1 for u ≤ 0.5, (4.21)

δR = 1− [2(1− u)]
1

ηm+1 for u > 0.5 (4.22)

The parameter ηm is the distribution index for the mutation that takes any
non-negative value and determines the peakedness of the distribution. A value
ηm ∈ [20; 100] revealed to be adequate in most optimization problems. For
small values of ηm, new solutions are produced far away from their parents.
Higher values for ηm result in higher probabilities of new solutions within the
vicinity of the parents. The spread factor δ is calculated via a probability
distribution. A problem of the original polynomial mutation is that the mu-
tation becomes useless in the case of very small spread factors δ. Algorithms
using polynomial mutation often trap in local optima, especially in the case of
multi-modal problems. The polynomial mutation was originally introduced by
Deb [37], used in NSGA [143] and in the early version of NSGA-II. It was later
improved by Deb and Tiwari [46], and Carvalho et al. proposed an adaptive
version of this operator in NSGA-II [26]. The improved polynomial mutati-
on [46] differs from the original one in the choice of δ. This modified version
allows big jumps within the search space and therefore does not stick in lo-
cal optima. But the big jump potentially results in unsmooth approximations
to the Pareto front. The adaptive mutation of Carvalho [26] uses information
about the diversity of the population through the component crowding distan-
ce in NSGA-II to control the strength of the mutation. Thereto, the parameter
ηm is changed adaptively using information about the greatest and lowest di-
stance value of idistance (calculated by the component crowding distance for
each solution i of the population with idistance ̸= ∞) and about the current
stage of the evolutionary process. This provides high mutation rates in early
generations of the genetic process and the rates are reduced during the pro-
cess.
The classical mutation method in the field of ES is the Gaussian mutation
which was described by Bäck and Schwefel [12]. Gaussian mutation has also
been used in real-coded GAs [36]. According to [12], a new solution is created
by the addition of a scaled Gaussian normally distributed random number to
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the previous parameter values. The motivation for this mutation is to avoid
the sticking in a vicinity of low-qualified solutions. For an improvement of new
solutions, larger mutation probabilities are required, but occur only occasio-
nally. This lead to the idea of using continuous variables and changing them
with values determined by Gaussian distribution. A solution is presented as a
pair of real-valued vectors (xi, σi), where xi is the ith variable and σi is the
associated strategy parameter. A new solution (x′

i, σ
′
i) from a parent (xi, σi) is

determined by

σ′
i(j) = σi(j) · exp(τN(0, 1) + τ ′Ni(0, 1)) (4.23)

x′
i(j) = xi(j) + σ′

i(j) · Nj(0, 1), (4.24)

where N(0, 1) is a normally distributed random number, Nj(0, 1) is a different
random number for each j and x′

i(j), xi(j), σ′
i(j), σi(j) denote the jth compo-

nent of the vectors x′
i, xi, σ′

i, σi. According to Schwefel, the parameters τ and
τ ′ are typically set to 1√

2n
and 1√

2
√
n

[8].

It is a well-known fact that GA performance is influenced by the mutation
rate (pm) and recombination rate (pr) as well as the interaction of these two
basic variation operators. The mutation and recombination rates are usually
kept static. Optimal setting for these rates possibly improve GA performan-
ce, but empirical tuning is very time consuming and practically impossible in
examining all combinations of pm and pr systematically. Furthermore, several
studies have shown that the variation of mutation probability is preferable to
a constant mutation rate ( [5], [6], [11]). A solution for this problem is the
introduction of dynamically changing parameters in the mutation. Different
dynamic and self-adaptive parameters have also been proposed in the field of
EA. (e.g. [56])
These mutation operators with dynamically changing parameter values are
classified into three types [9]:

• deterministic dynamic (the parameters are varied by deterministic func-
tions usually depending on the generation number)

• (dynamic) adaptive

• (dynamic) self-adaptive.

The mutation operators associated with these categories are presented in the
following.

88



4 Design of a MOEA for Peptide Optimization

4.5.1.1 Deterministic Dynamic Mutation Operators

The early dynamic mutation operator was introduced by Fogarty [63] in the
early 1960s. The mutation rate decreases as the generation number increases.
The main idea of this operator is that high mutation rates in early generations
favor exploration and lower mutation rates in later generation favor exploi-
tation. Mutation probabilities are determined via an exponentially decreasing
function depending on the actual generation number t:

pm(t) =
1

240
+

0.11375

2t
. (4.25)

Alternatively, Fogarty proposed a mutation operator for binary representations
by changing the mutation rates per bit: For j = 1, ..., nb (with nb is being the
least significant bit):

pm(j) =
0.3528

2j−1
(4.26)

Bäck and Schütz proposed a mutation operator that determines the mutation
probability via a deterministic decreasing function [11]. The motivation for
the evolution of this mutation operator is that higher mutation probabilities
in early generations of a GA lead to a good exploration. Lower mutation pro-
babilities in later generations provide a good exploitation in the local area of
the landscape. The mutation rates are calculated via:

pBS(t) = (2 +
l − 2

T − 1
t)−1, (4.27)

where T is the maximal number of generations, l is the length of the individual
and t the actual generation number. The mutation rates are bounded by (0; 1

2
],

the initial generation has a mutation rate of 1
2
.

4.5.1.2 Dynamic Adaptive Mutation Operators

The early adaptive mutation operator is Rechenberg’s ’1
5

success rule’ [127].
The basic idea is to control the parameter values by a feedback from the per-
formance of the search process. The mutation strength σ is increased if the
ratio of successful candidate solutions is greater than 1

5
. σ is decreased if the

ratio is less than 1
5
. In general, σ ∈ (0, 1).

Thierens introduced the dynamic adaptive mutation operator for binary strings
termed ’Thierens’ constant gain adaptive mutation scheme’ [153]. The muta-
tion scheme tries three different mutation rates on a current individual. The
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comparison of the fitness values of the three offspring gives a rough hint whe-
ther the current mutation rate should be increased or decreased. The modifica-
tion of the current mutation rate is carried out proportionally by multiplying
or dividing the current rate with the constant learning factor α. During the
evaluation, a factor ω called exploration factor is used. Usually ω > α > 1 to
avoid oscillations of the mutation rates. Formally M(x, pm) −→ (x∗, p∗m) sym-
bolizing that the individual x with mutation rate pm generates the offspring
x∗ with the new mutation rate p∗m. The mutation scheme of Thierens:

1. Mutate the current individual (x, pm):
M(x, pm/ω) −→ (x1, pm/α)

M(x, pm) −→ (x2, pm)

M(x, pm · ω) −→ (x3, pm · α)

2. Select the fittest individual of
{(x, pm), (x1, pm/α), (x2, pm), (x3, α · pm)}

Thierens advised appropriate values with α = 1.1 and ω = 1.5. Furthermore,
Thierens proposed a variant of the constant gain scheme [153]: The ’Decli-
ning adaptive mutation scheme’ allows a more aggressive step size within the
mutation probabilities than the constant gain method, but it suppresses the
oscillating behavior caused by the learning factor α. The current mutation
probability of a current individual is decreased by a small factor termed de-
clination factor γ. The procedure of Thierens’ declining adaptive scheme is
defined as:

1. Mutate the current individual (x, pm):
M(x, ω · pm) −→ (x1, α · pm)
M(x, pm) −→ (x2, pm)

M(x, pm · ω) −→ (x3, pm · α)

2. Decrease the mutation probability of the parent (x, pm) −→ (x, γ · pm)

3. Select the fittest individual of
{(x, γ · pm), (x1, α · pm), (x2, pm), (x3, α · pm)}

Appropriate choices are published as ω = α = 2.0 and 0.9 ≤ γ < 1. The muta-
tion schemes of Thierens are not transferable to a MOEA without adaption in
step 2 or 3 respectively, as a strategy to determine the fittest individual in the
multi-objective sense is challenging. In general, two alternatives are possible:
The fittest individual in the multi-objective sense is determined by a Pareto
front ranking or alternatively by an appropriate indicator.
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The ACV-indicator ACVscaled as introduced in section 5.2.2 is used as such
an indicator in an adapted version of Thierens’ constant gain adaptive mu-
tation scheme. The individual with the lowest ACVscaled is the fittest in the
multi-objective sense. The alternative of the Pareto front ranking is not in the
focus as the low number of individuals has a high potential to be indifferent
or multiple solutions are ranked into the first front. As a consequence, the
determination of the succeeding mutation rate has to be done by chance.

4.5.1.3 Self-adaptive Mutation Operator

Bäck and Schütz introduced the self-adaptive mutation operator [11]. The mo-
tivation for the evolution of this mutation operator is the idea that individuals
with good parameter choices receive an evolutionary advantage and the indivi-
duals themselves will proliferate in the population. This self-adaptive operator
was originally designed for binary strings. The mutation probabilities are cal-
culated via the following function:

pm(t+ 1) = (1 +
1− pm(t)

pm(t)
· e−γN(0,1))−1, (4.28)

where N(0, 1) is a normally distributed random number and the learning rate
γ controls the adaption steps of the mutation rate. A traditional choice for the
learning rate is γ = 0.22. This operator has desirable features: pm(t) ∈ (0, 1)⇒
pm(t + 1) ∈ (0, 1) and small changes between the probabilities of consecutive
mutation rates are more likely than large ones.

4.5.2 Mutation Operators used in VONSEA

The adapted variant of Thierens’ constant gain adaptive mutation scheme as
well as the self-adaptive mutation operator of Bäck and Schütz, as presen-
ted in the last section, are used in VONSEA. Further mutation operators are
evolved for VONSEA to solve molecular optimization problems and belong to
the types ’deterministic dynamic’ and ’random’ mutations. The random mu-
tation operators are evolved with the aim of imitating the natural mutation
procedure. The general idea of deterministic dynamic mutation operators is:
High mutation rates in early generations support the explorative search and
therefore allow the discovery of new regions of the fitness landscape. Lower
mutation rates in later generations support the exploitive search, which allows
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Fig. 4.8: Mutation rates of padapBS with a = 5,
l = 20, l = 50 and T = 20

Fig. 4.9: Mutation rates of padapBS with a = 5,
l = 20, l = 50 and T = 50

the convergence to other optima in the vicinity. The start mutation rates are
set to p0 = 0.2 exceeding the random mutation operators.

4.5.2.1 Deterministic Dynamic Mutation

Three different deterministic dynamic mutation operators are used in VON-
SEA. They have in common that mutation probability is determined by a
decreasing function depending on the actual and total number of generations.
The difference between these decreasing functions is the level of the mutation
rate decrease:
The deterministic dynamic mutation operator of Bäck and Schütz is imple-
mented in VONSEA in an adapted version: The start mutation rate is reduced
as it is not used in a mutation-only GA. According to [117], sufficiently low
mutation rates are preferred in GAs with a recombination operator. Apart
from this, a high mutation rate in the early generations results in an inappro-
priately high destruction of the sequence structure and the offspring are highly
different in appearance compared to their parents. As a consequence, a high
mutation rate increases the probability that an optimal partial structure is lost
by the succeeding population. The mutation probabilities are determined by
the function

padaptBS = (a+
l − 2

T − 1
(t− 1))−1, (4.29)

where T is the total number of generations and t is the actual generation
number. The usual choice of the parameter is a = 5. Mutation rates here are
bounded by (0; 1

4
]. Fig. 4.8 and Fig. 4.9 depict the mutation probabilities of

the adapted deterministic dynamic operator for different maximal generati-
on numbers and solution lengths as functions. This adapted version has been

92



4 Design of a MOEA for Peptide Optimization

Fig. 4.10: LinDeMut: Number of mutati-
ons for l = 20, l = 50 and T = 20

Fig. 4.11: LinDeMut: Number of mutations for
l = 20, l = 50 and T = 50

introduced in [132]. Herein it is benchmarked for a three-dimensional bioche-
mical minimization problem, and the customized NSGA-II with this mutation
operator yields pretty good results with regard to early convergence and a
good diversity within the solutions.
Based on these experiences, two further deterministic dynamic mutation opera-
tors are evolved according to this model and have been proposed in [131]. The
first mutation operator is the mutation ’LiDeMut’ which varies the number of
mutations by a linearly decreasing function:

xM(t) =
l

5
− l/5

T
· (t− 1), (4.30)

where T and t are once again the total or the actual generation number. LiDe-
Mut is developed taking account of specific requirements: The initial mutation
rate is 0.2 and the number of mutations is 1 in the latest generation indepen-
dent of the individual length. Fig. 4.10 and Fig. 4.11 depict the numbers of
mutations of LinDeMut for different maximal generation numbers and solution
lengths as functions.
The second mutation operator is the mutation ’QuadDeMut’, which determi-
nes the number of mutations by a quadratically decreasing function:

xM(t) =
1− l/5

T 2
· (t− 1)2 +

l

5
, (4.31)

where T and t are the total or the actual generation number. QuadDeMut is
evolved under the same requirements as LiDeMut. Furthermore, the mutation
rates have to be changed slightly within the first few generations, meaning
that the function that describe the number of mutation changes has to be
a shrunken quadratic function for each individual length. Fig. 4.12 and Fig.
4.13 depict the numbers of mutations of QuadDeMut for different maximal
generation numbers and solution lengths as functions.
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Fig. 4.12: QuadDeMut: Number of mu-
tations for l = 20, l = 50 and
T = 20

Fig. 4.13: QuadDeMut: Number of mutations
for l = 20, l = 50 and T = 20

Fig. 4.14: Shapes of the probability density functions N(4, 1.25) (red) and N(4, 2.5) (blue).

4.5.2.2 Random Mutation

Two mutation operators are evolved in an highly intuitive way according to
the model of nature. For both mutation schemes, it holds that the number of
mutations is determined randomly by a Gaussian distributed random number.
The parameters of these mutation operators are the parameters of the Gaus-
sian distribution, the actuarial expectation µ and the standard deviation σ.
The default values are σ = 1.25 and µ = 4, denoted as N(4, 1.25). The sha-
pes of the probability density functions N(4, 1.25) and N(4, 2.5) are depicted
in Fig. 4.14. These default values are set in the way that the most frequent
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number (µ = 4) corresponds to the start mutation rates of the other mutation
operators and a small shape of the density function (σ = 1.25) is preferred
to provide only a low range of mutation variations. The number of mutations
is the integer result of the product of the individual length and the Gaussian
distributed random number. Once more, mutation numbers have to be non-
negative and are otherwise multiplied with −1.
The difference between the mutation operator termed ’Random’ to its alterna-

2nd position
1st position U C A G 3rd position

U

Phe F Ser S Tyr Y Cys C U
Phe F Ser S Tyr Y Cys C C
Leu L Ser S – – A
Leu L Ser S – Trp W G

C

Leu L Pro P His H Arg R U
Leu L Pro P His H Arg R C
Leu L Pro P Gln Q Arg R A
Leu L Pro P Gln Q Arg R G

A

Ile I Thr T Asn N Ser S U
Ile I Thr T Asn N Ser S C
Ile I Thr T Lys K Arg R A

Met M Thr T Lys K Arg R G

G

Val V Ala A Asp D Gly G U
Val V Ala A Asp D Gly G C
Val V Ala A Glu E Gly G A
Val V Ala A Glu E Gly G G

Table 4.2: Table of the code sun: coding of the amino acids by base triples.

tive denoted as ’AAweighted’ is that AAweighted is an imitation of nature with
regard to the selection of the characters symbolizing the 20 canonical amino
acids. In AAweighted, each of these 20 characters (canonical amino acids) has
its specific frequency to be mutated to (according to their natural incidence).
Table 4.2 shows the table of the circle of the decoded 20 amino acids using the
messenger Ribonucleic Acid (mRNA) codon that is the basis for the frequency.
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4.6 Selection Strategies of VONSEA

The major task of the selection procedure within an evolutionary strategy is to
scan the search space and to guide the search in the direction of high quality
solutions. In general, the selection in EA has two tasks: The selection of the
parent solutions for reproduction and the determination of the members of the
succeeding generation. The choice of the selection strategy has a considerable
influence on algorithm performance and particularly on convergence veloci-
ty [49]. There are no fixed rules regarding an appropriate selection strategy
for all optimization problems. A selection strategy that prefers high quality
solutions and discards low ones does not necessarily lead to a good algorithm
performance as low quality solutions have in some cases useful genetic material
that is able to produce high quality solutions in later generations. In general,
a good selection strategy is characterized by a good balance between explora-
tion and exploitation for a well-spread solution set over the Pareto front. Bäck
shows in his study of selective mechanisms that the selection process controls
the balance of exploration and exploitation by varying the guidance of the
search process in the direction of the fittest individuals [7]. A selection process
that is more stringent in the direction of the fitter solutions is oriented towards
exploitation, whereas a less stringent selection is oriented towards exploration.

4.6.1 Traditional Selection Strategies

Several selection strategies have been evolved for EA with the main focus on
the phenotype or genetic material that is to be passed on the gene pool of
the succeeding generation. Bäck et al. proposed a classification of selection
strategies with respect to different criteria [7]:

1. Classifications according to the selection probabilities of the solutions

• Dynamic or static selections
Selection strategies are characterized under the terms of dynamic or
static selection probabilities. A selection is classified as dynamic if
the selection probabilities of the individuals depend on their actual
fitness values and are different in each generation. In the case that
the fitness values depend only on the ranking of the fitness values
and in addition these fitness values are fixed for all generations, the
selection is characterized as static.
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• Extinctive or preservative selections
A selection is termed extinctive if some individuals are excluded
from reproduction. These individuals have a probability of zero to
be selected. Thus, a selection is termed preservative if all solutions
have a non-zero probability to be selected for reproduction.
Extinctive selections are further classified into left and right extinc-
tive selection: An extinctive selection is termed right if the worst
individuals achieve a selection probability of zero. In the case that
the high quality individuals achieve a selection probability of zero
and are not selected for reproduction to avoid premature conver-
gence, the name left extinctive selection is used.

2. Classification according to the life or reproduction time of the solutions

• Elitist or pure selection
Within a pure selection, each individual has a life time of only one
generation independent of its fitness values. If all individuals - pa-
rents and offspring - undergo the selection with the result that high
quality individuals achieve an unlimited life time, this is referred to
as elitist selection.

• Generational or steady-state selection
In the case of generational selection, the parent set is fixed until
all members of the succeeding generation have been produced. A
special variant of elitist selection is steady-state selection; offspring
replace parents only if they are of higher quality. Therefore, the
parents set changes for each reproduction step.

A formal description of these classifications referring to (µ, λ) selections in ES
are presented by Bäck and Hoffmeister [10].
In this thesis, a further characterization of selection strategies is proposed:
Selection strategies are characterized according to their fundamental issues in
an evolutionary process. Three objectives are defined that are not excluding:

• Diversity of the genetic material
This objective refers to the production of an maximally high diversity of
the genetic material within the succeeding generation.

• Maximization of the solutions spread
This objective refers to the detection of high quality individuals with
maximally wide spread among themselves.
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• High fitness-directional guidance
This objective refers to the strong guidance of the selection process in
direction of the highest quality individuals.

The commonly-used selection strategies within GAs are described and charac-
terized according to the classifications and objectives presented above:

4.6.1.1 Truncation Selection Strategies

The truncation method is the most natural selection as well as the most useless
in GAs as it does not give any chance to low quality solutions to be selected.
Therefore, potentially high quality genetic material in low quality solutions is
lost. The procedure starts by sorting the individuals according to their fitness.
The pre-defined parameter ’truncation threshold’ T is used to select only the
best T individuals. A common choice for T and therefore for the proportion of
individuals with the opportunity of producing offspring are values in the range
of 50% to 10%. Truncation selection is characterized as a right extinctive - since
it excludes low quality solutions from the selection by the threshold parameter
- and dynamic strategy, as the sorting of the individuals depends on their
actual fitness values. High fitness-directional guidance is the main selection
objective of this strategy.

4.6.1.2 Fitness-proportionate Selection

This category of selection strategies includes stochastic methods. Fitness- pro-
portionate selection was first described by Holland [84]. The main idea of these
methods is that every individual has a non-zero chance to be selected: High
quality solutions have a higher probability to be selected than lower ones. The
selection probability of every individual is therefore proportional to its fitness.
Furthermore, a scaling of the fitness values is usually necessary to map the va-
lues into a suitable range. This category of selection strategy is characterized
as static and preservative as each individual has a non-zero probability to be
selected [152]. Diversity of the genetic material and solutions spread are the
main selection objective of these methods.
The most common strategy of this category is Roulette Wheel Selection

(RWS). Each individual is assigned a segment on an imaginary roulette wheel.
The size of the segments is proportional to the individuals’ fitness. The selec-
tion procedure - an individual is selected by spanning the wheel and a pointer
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Fig. 4.15: Illustration of RWS for a five-member population. Each individual is assigned
a segment whose size is proportional to its fitness. The percentages denote the
selection probabilities.

determines the segment as well as the associated individual - is described as
follows:

1. Determination of the total fitness F as the sum of all solutions.

2. A random number n is chosen in the interval [0;F ].

3. The individual with a fitness greater or equal n is returned.

Steps 1. − 3. repeat until the desired number of individuals is selected. The
probability of the j-th individual to be selected is given by P (fj) =

fj∑N
i=1 fi

,
where N is the number of individuals in a generation and fi the fitness of the
individual xi.
The selection process is guided in the direction of high quality individuals. The
main disadvantage of RWS is that there is no guarantee for the best individual
to be selected.
Stochastic Universal Sampling (SUS) is the most widely used strategy in

GA literature nowadays and was originally developed by Baker [14]. SUS is
motivated by overcoming the main disadvantage of RWS. It is a single-phase
sampling based on the RWS approach: Individuals are assigned to segments on
the roulette wheel that are equal in size to their fitness. However, SUS differs
in the number of selection pointers: Instead of a single pointer, K pointers are
equally spaced around the wheel, where K is the number of selections required.
The selection procedure is described as follows:

1. Determination of a single number ptr ∈ [1;F/K] with the total fitness
F .
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Fig. 4.16: Illustration of SUS for a five-member population. A spinner with three evenly
spaced pointers is spun once to obtain three individuals.

2. Individuals are chosen by generating K pointers on the wheel, starting
with pointer ptr and the remaining are spaced by 1: [ptr, ptr+1, ..., ptr+

N − 1].

As the individuals are selected according to their position in the population,
SUS has zero bias6. Furthermore, the number of copies of a solution is equal to
the number of pointers that are pointed on the associated segment. Therefore,
an individual xi is selected between Ni,min = [N · fi/F ] and Ni,max = [N · fi/F ]

times. On this account, SUS provides minimum spread7.
These two features - zero bias and minimum spread - are preferred features for
a selection method and make SUS one of the best established selection strategy
in the area of EA.

4.6.1.3 Rank-based Selection

Rank-based selection (RBS) is a strategy that assigns a selection probability to
each individual on the basis of its fitness value relative to the entire population.
Rank-based selection was first suggested by Baker [13] and was evolved in order
to overcome the scaling problem of the direct fitness based strategies. RBS
uses a mapping function for this probability assignment that is either a linear
or a non-linear function. The selection performance strongly depends on this
mapping function. The selection procedure starts by sorting the population

6Absolute difference between an individual’s normalized fitness and its expected probability
of reproduction. [14]

7The range of possible values for the number of offspring assigned to an individual.
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according to the individuals fitness values. Then, selection probabilities are
assigned to each individual via the linear formula in the case of linear rank-
based selection:

rank(pos) = 2− SP +

(
2(SP − 1) · pos− 1

N − 1

)
(4.32)

where pos is the position of the individual in the sorted list of the population
and SP is the parameter selection pressure of RBS. SP controls the bias and
is chosen as 2 ≥ SP ≥ 1. The sampling rate of the best individual is SP and
(2 − 1

2
SP ) for the worst one. RBS requires a further selection method such

as RWS to select the individuals. The selection probability of the solutions
depends in the their position in the sorted list. As the n-th individual in one
generation has the same selection probability as the n-th individual in the suc-
ceeding generation, rank-based selection is categorized as static [74].
The advantage of RBS is the uniform scaling across the population: The se-
lection probabilities are assigned regardless of the concrete fitness values. This
prevents premature convergence to ’super’-individuals as the fittest individual
always achieves the same selection probability. Bäck et al. showed that RBS
is more robust than other methods [10]. A disadvantage of this strategy is the
computational complexity caused by the necessary sorting of the population.

4.6.1.4 Tournament Selection

Tournament selection is the most widely used selection strategy due to its
efficiency: No fitness scaling or sorting is necessary and it is simple to imple-
ment [179]. Its computational complexity is O(kN), where k is the number of
random individuals from the population and N the population size. In the case
of a tournament size of k = 2, the terminology binary tournament selection is
used [44]. A particular number k of individuals are selected from the populati-
on and set to competed with each other. The fittest one according to a specific
criterion is selected. The main selection objectives of this strategy are the so-
lutions spread and the fitness-directional guidance provided by controlling the
selection pressure via the parameter ’tournament size’. Tournament selection
is characterized as dynamic and right extinctive as the selection probability
depends on the actual fitness values and the worst individual has a zero pro-
bability to be selected in the succeeding generation.
The particular number k is termed tournament size and is challenging: The
convergence rates of an EA are determined by selection pressure:8 the hig-

8Selection pressure is the degree to which the high quality solutions are favored. [14]
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her the selection pressure, the higher are the convergence rates. Otherwise,
selection pressure is influenced by tournament size [176]: Larger tournament
sizes ensure higher selection pressure. Blickle and Thiele proved in their work
that tournament selection has the smallest loss of diversity9 and the highest
selection variance10 for the same selection intensity11 compared to truncation
selection [19]. Furthermore, they proved that binary tournament selection and
linear ranking have identical average behavior.
Zhong et al. compare the proportional roulette wheel with tournament se-
lection with a tournament size of 6 on several general test functions [179].
Tournament selection reveals itself as more efficient in convergence. Razali et
al. compare tournament selection, proportional roulette wheel and rank-based
roulette wheel in solving the Traveling Salesman Problem [126]. Tournament
selection outperforms both. Tournament selection and proportional roulette
wheel are superior to rank-based roulette wheel in the case of small problems,
but they sometimes become susceptible to premature convergence in the case
that the problem size increases.
Due to these advantages, the popularity of tournament selection is growing ra-
pidly and a number of variants has been developed. A short overview of these
variants is presented by Xie et al. [176].

4.6.2 Selection Strategies of MOEA

The selection strategies presented in this section have been developed in recent-
ly introduced and established MOEAs. Their common feature is the selection
objective: a good spread of the individuals over the Pareto front. These strate-
gies provide different schemes of assigning higher selection probabilities to the
individuals in less crowded areas of the objective space.

4.6.2.1 Indicator-based Selection

The selection strategies of this category make use of an indicator as a selection
criterion. IBEA [182] determines fitness values for each individual based on

9The proportion of individuals of a population that is not selected during the selection
phase [19]

10The expected variance of the fitness distribution of the population after applying a selec-
tion method to the normalized Gaussian distribution [19]

11The expected average fitness value of the population after applying a selection method to
the normalized Gaussian distribution [19]
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a binary quality indicator and selects the individuals for the mating pool by
binary tournament selection. The fitness assignment is performed via three
iteration steps as long as the population size is not exceeded:

1. The individual x∗ with the smallest fitness value (least fit individual) is
selected and deleted from the population P .

2. P ←− P\{x∗}

3. The fitness values of the remaining individuals are updated by
F (X) = F (X) + e−I(x∗,x)/K for all X ∈ P , where I is the binary quality
indicator and K the fitness scaling factor.

The commonly used binary quality indicators with the aim of comparing the
quality of two different Pareto optimal sets are the ϵ-indicator [182]

Iϵ+(A,B) = minϵ+{∀x2 ∈ B, ∃x1 ∈ A : fi(x1)− ϵ ≤ fi(x2) for i ∈ {1, ..., n}}
(4.33)

and the hypervolume indicator. The latter one presents the volume of the space
that is dominated by the solution set A, but not by B:

IHD(A,B) =

⎧⎨⎩IH(B)− IH(A) if ∀x2 ∈ B, ∃x1 ∈ A : x1 ≻ x2

IH(A+B)− IH(A) otherwise
(4.34)

In general, several other dominance preserving indicators are potential indi-
cators for the selection strategy. Binary tournament selection is further used
to fill the temporary mating pool in IBEA. As the hypervolume is used as a
measure for convergence and diversity (see 5.2.1), a good spread of high quality
solutions is ensured.
Another indicator-based selection strategy is the selection based on domina-
ted hypervolume within the steady-state SMS-EMOA [17]. This strategy is
a steady-state selection and the selection criterion is based on the hypervo-
lume measure S(X) [54]. SMS-EMOA stores non-dominated and dominated
solutions in a population of constant size. This classification is realized by the
non-dominated sorting of NSGA-II. In each iteration, a new individual is pro-
duced. The selection decides if this new individual s0 enters the population
P . The hypervolume-based selection criterion ensures that no non-dominated
individual is replaced by a dominated one, therefore the selection strategy is
regarded as elitist. The selection procedure decides which individual is kept
in the population by deleting the least fittest individual that minimizes the
hypervolume:

1. Non-dominated sorting of P ∪ {s0}.
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2. s ∈ RI is discarded, where RI is the worst ranked front.
If |RI | > 1: s̄ = argmins∈RI

|∆s(s, RI)| with
∆s(s, RI) = S(RI)− S(RI\{s})

3. RI ←− RI\{s̄}

Regarding computational complexity, the hypervolume of each solution subset
RI\{s}, ∀s ∈ RI has to be computed.

4.6.2.2 Individual-and Region-based Selection

The selection strategies of this category are individual-based as the unit of
these selections are individuals ( [32]). This category comprises the MOEAs
PAES [95], PESA [32] and SPEA [185]. The main goal of this category is to
increase the selection probability of solutions in less crowded areas and there-
fore the solutions spread. Hence, these selection strategies require estimations
of the level of individual isolations. In PAES as well as in PESA, the objec-
tive space is divided into hyperboxes. In PESA, selection is used to choose
individuals for reproduction. PESA makes use of two populations: the internal
population storing the current candidate solutions, the external population or
archive contains the non-dominated solutions. A ’squeeze factor’ is assigned to
each individual, which is the total number of solutions in the archive sharing
the same hyperbox. Individuals for reproduction are only selected from the
archive. Binary tournament selection is used to choose two individuals from
the archive at random; the one with the lowest squeeze factor is selected.
PAES is a hillclimbing algorithm and therefore does not use a selection stra-
tegy in the common sense. Selection is performed between two solutions, the
current solution and its mutant. Furthermore, the selection is used to decide
if the mutant enters the archive of non-dominated solutions and if the mu-
tant becomes the new current solution. The selection criterion is once again
the squeeze factor. If the archive is not full, and if the mutant dominates the
current solution and has a lower squeeze factor, the mutant enters the archi-
ve and becomes the new current solution. The selection of PAES is therefore
characterized as a steady-state selection strategy.
SPEA uses a strength measure as a selection criterion. Individuals are assigned
to two populations, an internal and an external one. The latter only contains
the non-dominated solutions. The strength measure is determined for each in-
dividual of the external population according to the number of solutions in the
internal population which is dominated. The strength measure for each indivi-
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dual of the internal population is calculated by adding the strength measure of
dominating individuals in the external population. The selection is performed
with the focus on minimizing the strength factor. This prefers an exploration of
the search process in less crowded regions of the objective space. The selection
strategy in SPEA is characterized as elitist.

4.6.2.3 Direct Region-based Selection

A region-based selection strategy is introduced in PESA-II [31]. The motivation
for this selection strategy is to achieve an increase of the selection probability
for individuals in less crowded regions of the search space more directly. Instead
of immediately selecting an individual, a hyperbox is selected by a traditional
selection strategy like tournament selection. Then the preferable individual is
randomly chosen from the selected hyperbox.

4.6.2.4 Crowded-comparison Operator based Selection

NSGA-II [44] uses binary tournament selection with two selection criteria:
the rank of the individuals and the crowding distance. Binary tournament
selection is used and individuals are selected according to the lowest rank and
the highest crowding distance. Primarily, the solution with the lowest rank and
therefore the fittest individual is selected. In the case that both solutions of the
tournament set are in the same rank, the solution with the highest crowding
distance is preferred.

4.6.3 Selection Strategies Used in VONSEA

There are several issues when designing an appropriate selection strategy for
a MOEA with the aim of biochemical optimization. The first issue concerns
the question of how to guide the search in the direction of the Pareto optimal
solutions. The second issue is to ensure a high spread of the non-dominated
solutions. The third issue is due to the specific purpose of biochemical opti-
mization: The selection has to ensure a high diversity of the genetic material
passed on the succeeding population. The high diversity of the genetic mate-
rial supports the global search process. Ideally, the selection strategy has to
comply with these three issues at the same time. Furthermore, another compo-
nent is important for the selection process especially in the field of molecular
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optimization. The role of change in the selection procedure imitates the aspect
of change in a natural evolutionary process.
Two different types of selection strategies are evolved for VONSEA under three
essential subjects for selection: a high diversity of genetic material within a ge-
neration, the guidance of the search process in the direction of the high quality
solutions and the aspect of change. These two types of selection strategies are
based on tournament selection, a combination of fitness proportionate selec-
tion and a discerning selection criterion, which is rank-based in the case of
’Aggregate Selection’ and indicator-based in the case of ’ACV-based Selection’
as well as ’ACV-random Selection’.

4.6.3.1 Aggregate Selection

This selection strategy is motivated by the idea of guiding the search in the
direction of high-quality solutions while maintaining a high diversity of the ge-
netic material within the succeeding generation. This strategy is tournament-
based and uses a combination of front-based SUS and a rank-based discer-
ning selection criterion. The use of tournament selection provides the subject
of change in the selection process. Front-based SUS ensures the diversity of
the genetic material and a potentially high solutions spread. Furthermore, it
provides the opportunity for low quality solutions to find their way into the
succeeding generation. Low quality solutions potentially have high quality ge-
netic motifs, which produce high quality solutions in later generations. The
rank-based discerning selection criterion ensures fitness-directional guidance.
The procedure of Aggregate Selection is depicted in Fig 4.17. It starts with the
tournament selection of ts individuals from the population. These individuals
are ranked among themselves. From this ranked tournament set, individuals
are chosen from the first front with a probability p0 to guide the search pro-
cess in direction of high quality solutions with a particular probability. With
a probability 1− p0, the individuals are chosen from different fronts via SUS.
The number of pointers in front-based SUS is equal to the number of fronts
detected in the ranking process. The segments are equal in size to the number
of individuals in each front. These steps repeat until the succeeding filial gene-
ration is complete. Consequently, Aggregate Selection has two parameters, the
tournament size and the probability p0 for choosing the individuals from the
first front. The fine-tuning of these parameters is subject of the experiments
in order to find a good balance between high selection pressure and high di-
versity. The default parameters are a tournament size of 10 and a probability
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of p0 = 50%.

Fig. 4.17: The procedure of the aggregate selection strategy.

4.6.4 ACV-based Selection

The procedure of ACV-based selection is equal to the Aggregate Selection in
the procedure, but the rank-based discerning selection is substituted by an
indicator-based selection criterion. The scaled convergence metric ACVscaled

(eq. (5.11)) as introduced in section 5.2.2 is used as indicator to ensure in-
dicator values that are independent of the objective scaling and ensures the
selection of the fittest individual according to the objectives. The ACV-based
selection proceeds as follows: The ACVscaled value for each individual x0 of
the tournament set is determined with X = {x0} and the individual with the
lowest ACVscaled value is selected. The procedure is depicted in Fig. 4.18. The
selection criterion differing from Aggregate Selection is highlighted. The ba-
sic idea for the ACV-based selection criterion is motivated by the following
consideration of the Aggregate Selection strategy: The individuals randomly
chosen by tournament selection are ranked and a random individual from the
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first front is selected. The random selection of one individual from the first
front does not guarantee the selection of the fittest individual with respect to
all objective values, since the ranking into the first front is due to the objective
values of other individuals in the tournament set. Therefore, an ACV value is
determined for each individual in the tournament set: The ACV value of an
individual x0 is calculated by applying eq. (5.11) to X = x0 with n = 1. The
individual with the lowest ACVscaled value is the fittest one and selected for
the succeeding generation. In the case of multiple lowest ACVscaled values, a
random one of these is selected. The ACV-based selection strategy does not
make use of a ranking method. The parameters of this strategy are once more
the tournament size and the probability value p0.

4.6.4.1 ACV-random Selection

Fig. 4.18: ACV-based selection with SUS. Fig. 4.19: ACV-random selection strategy.

The motivation for an alternative ACV-based selection is the empirical investi-
gation of the influence of the fitness-proportionate selection ’front-based SUS’
on the search process. The procedure of ACV-random selection is presented in
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Fig. 4.19. More precisely, the comparison of the performance achieved by the
VONSEA configurations with ACV-based and ACV-random selection allows
the empirical conclusion on wether the fitness-proportionate selection is more
promising regarding selection pressure and solution diversity than change as
a selection criterion. Front-based SUS as a selection criterion is substituted
by a simple random selection of an individual from the tournament set. Once
again, the differing selection criteria compared to the Aggregate Selection are
highlighted.

4.6.5 Computational Complexity Comparison of Selection
Strategies

The selection components that are mainly responsible for the difference in
computational complexity between the aggregate and the ACV-based selection
are the non-dominated sorting of the tournament set and the determination of
the ACVscaled values for each solution in the tournament set. In the following,
k is the number of objective functions and N the size of the tournament set.
The computational complexity of non-dominated sorting is O(k · N2) [44].
The selection of the solutions with the lowest ACVscaled value starts with the
determination of the maximal value for each objective: This takes k · (N −
1) operations for comparison. Furthermore, k · N divisions are performed to
complete the scaling. The calculation of ACVscaled for a tournament set of the
size N takes k subtractions and (k − 1) multiplications. The determination of
the minimal ACVscaled value takes (N −1) operations for comparison. In total,
this procedure has a computational complexity of k · (N − 1) + k · N + N ·
(k + (k − 1)) + (N − 1) = 4kN − k − 1 operations which is a total complexity
of O(k · N) and therefore lower than the complexity for the non-dominated
sorting.
ACV-random selection has the lowest computational complexity as the front-
based SUS, which is mainly responsible for the magnitude of the computational
complexity of ACV-based Selection, is replaced by the random selection of an
individual.
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5.1 Cost-utility Analysis of Open Source

MOEA Frameworks

The aim of cost-utility analysis is the selection of a framework that allows
a simple customization of the tool and a simple implementation of further
components to conceive an efficient and robust MOEA for biochemical op-
timization. For this purpose, several criteria have been emphasized that are
decisive for the selection of the framework:
The selection is focused on Java tools providing multi-objective evolutionary
strategy implementations. The criterion of a Java tool is important as this
allows the simplest implementation of the open source project BioJava [123]
that is used for the implementation of the fitness functions. BioJava provides a
set of APIs for the determination of commonly used physiochemical properties
of peptide sequences composed of the canonical amino acids.
The framework has to provide the potential of multi-objective evolutionary
strategies; ideally the traditional NSGA-II is preset. Moreover, the framework
allows a simple extension of the implementation, which means that interfaces
for the variation operators and selection method already exist. Another criteri-
on is an intuitive program structure according to the MOEA components that
supports the simple extension of the framework. The existence of a string or
character encoding or at least an interface for a simple implementation of this
encoding is preferable as the other MOGA components have to be adapted
according to these encodings. Table 5.1 gives an overview of these criteria with
the associated weightings.
Eleven open source frameworks have been qualified according to the previous-
ly mentioned criteria and are described in the following:
The framework JAGA (Java API for Genetic Algorithm) in its version 1.0
beta is a research tool developed and supported by the Computer Science
Department of University College London (www.jaga.org). JAGA exhibits a
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Criterion Weights

Java framework 25 %
multi-objective evolutionary algorithms (MOEA), incl. NSGA-II 25 %
arranged program structure acc. to. MOEA comp. 20 %
character or string encoding 15 %
potential for a simple extension 15 %

Table 5.1: Overview of the weighted criteria for the selection of a suitable MOEA framework

plug-in design for simple extensibility. It provides different simple and/or eli-
tist GAs optionally with specified initial populations. The main disadvantage
of JAGA is the lack of multi-objective evolutionary algorithm implementati-
on. Nevertheless, JAGA is qualified as it provides a protein string sequence
encoding which uses 20 different characters symbolizing the 20 canonical ami-
no acids. Each canonical amino acid is characterized in terms of the eight
properties small, hydrophobic, polar, positive, negative, tiny, aliphatic and
aromatic. Regarding the GA components, for each genotype JAGA contains
a parameter-dependent crossover and mutation method and an elongation for
amino acid patterns. The selection methods roulette wheel, tournament and
two-tournament probabilistic selection are available. The user who is interested
in a MOGA application has to extend this tool for this purpose, but the amino
acid character encoding is a clear benefit. Moreover, JAGA has other useful
functions such as BLOSUM62 (BLOcks SUbstitution Matrix) that is used for
local (Smith-Waterman algorithm [146]) or global (Needleman-Wunsch algo-
rithm [115]) sequence alignment of proteins in bioinformatics. Another useful
function is the possibility to create a random initial population of protein se-
quences and an analysis tool. This provides a graphical and numerical analysis
of each population such as the calculation of the best/worst/average fitness
and standard deviation of the fitness for each generation.
The framework jMetal (Metaheuristic Algorithms in Java) in its version 4.5
(jmetal.sourceforge.net) is an extensive and complex tool especially focused on
multi-objective optimization with evolutionary algorithms [50]. It includes a
very large collection of metaheuristics - 20 state-of-the-art MOEAs. Therefore,
jMetal provides a wide range of classical as well as recently evolved MOEAs
such as NSGA-II (variants: adaptive and random NSGA-II), PESA, SPEA2,
PESA2, SMS-EMOA, IBEA and MOEA-D. A graphical interface is available
to support extensive experiments. Moreover, a wide set of established bench-
mark problems is implemented such as ZDT, WFG and DTLZ functions as
well as the optimization problems of Schaffer and Scrinivas. The definite ad-
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vantage of jMetal is the intuitive and clear program construction with regard
to the MOEA components. Abstract classes have been defined for encoding,
variation operators and selection. All in all, this framework is clearly arran-
ged with regard to its features: metaheuristic, GA components, optimization
problems, quality indicators and utilities. Within the GA components, jMetal
provides abstract classes for variation operators and selection. Furthermore,
different variation operators are implemented such as single-point, two-point,
SBX crossover and polynomial, (non-)uniform and swap mutation. ’Ranking &
crowding selection’ is included as the traditional NSGA-II selection method in
addition to tournament and PESA2 selection. These components are available
for the genotypes integer, binary, real values and permutation. Additionally,
jMetal provides several established metrics to evaluate the performance of the
metaheuristics with regard to convergence and diversity. Indicators for both
are implemented such as the hypervolume, inverse general distance (IGD), ge-
neral distance (GD), R2 and measures for diversity. jMetals’s disadvantage
is its lack of character or string encoding and even the potential of genotype
extension.
The framework ECJ (Java-based Evolutionary Computation Research Sys-
tem) in its version 21 is designed for the general purpose of evolutionary com-
putation. ECJ is developed at George Mason University’s Evolutionary Com-
putation Laboratory (cs.gmu.edu/∼edab/projects/ecj ) for the research purpo-
ses. Therefore, it is a stable and a most sophisticated framework. It is highly
flexible with regard to the wide range of possible combinations of genotypes,
methods for breeding individuals and forming a new population, fitness and se-
lection procedures and evolutionary algorithms. The design of a specific MOEA
requires an intuitive and clear program structure that lacks in the case of ECJ.
A GUI system is available by a further module. Moreover, two vector repre-
sentations are implemented: integer-type (byte, short, int, long) and float-type
(float, double). Different variation operators are included for these vector repre-
sentations such as bit-flip, uniform, polynomial and Gaussian mutation as well
as one-point, two-point, uniform crossover, line recombination and SBX. Fur-
thermore, different vector representations with corresponding variation opera-
tors are included as well as SUS and tournament selection, among others. The
components vector representation, mutation and recombination allow a simple
implementation of a new genotype or variation operator by overridable default
methods. The ECJ implementation is mainly focused on single-objective opti-
mization, but includes the MOEA variants NSGA-II and SPEA2.
EvA2 (Evolutionary Algorithms workbench, version 2) is a Java framework
developed by the department of computer science at the Eberhard Karls Uni-
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versity in Tübingen (www.ra.cs.uni-tuebingen.de/software/EvA2 ). It is not on-
ly intended for research, but is also deployed for industrial applications and is
available under LGPL license. Its specificity is its easy-to-use graphical user
interface which allows access to all main components. It also provides a client-
server structure as well as the MOEA variants NSGA-II, PESA and SPEA2.
Though the source packages are extensible, the GUI makes an extension ge-
nerally rather complicated. Different variation operators are implemented op-
tionally for the evolutionary algorithms and strategies: one-point, two-point,
uniform crossover even for k parents, arithmetical and BLX-α crossover, invert-
, swap-bit and Gaussian mutation. Furthermore, the selection strategies SUS,
roulette and tournament selection are available. One special feature is the
simple extensibility by a user-defined problem class as well as an interface
for variation operators and selection by user-defined strategies. Furthermore,
EvA2 provides a MATLAB interface to optimize functions in MATLAB with
standard algorithm implementations in EvA2.
The framework JCLEC (Java Class Library for Evolutionary Computation)
in its current version 4 is proposed for evolutionary computation in general.
JCLEC includes the classical evolutionary algorithms NSGA-II and SPEA2.
Furthermore, it provides the genotypes binary, integer and real encoding. For
each genotype corresponding variation operators are implemented such as one
and several loci and uniform mutation as well as one-point, two-point and
uniform crossover. For real encoding the BLX-α and arithmetic crossover as
well as random and non-uniform mutation are provided. SUS, tournament and
roulette wheel selection are included as selection strategies. This framework
has an expandable program structure as it provides abstract classes for the
MOEA components mutation, recombination, selection and even genotypes.
Nevertheless, its program structure is neither intuitive nor clear. With regard
to program structure JCLEC is especially evolved for single-objective optimi-
zation.
MOEA framework in its current version 2.1 (www. moeaframework.org) is
module-based and provides a wide range of MOEA variants as it includes the
jMetal library in version 4.3. Therefore, classical as well as current MOEA
variants such as MOEA-D, NSGA-II, IBEA, PAES, PESA-II, SMS-EMOA
and SPEA2 are available. Furthermore, MOEA framework has nearly the sa-
me features as jMetal: It provides the same indicators for convergence and
diversity and the benchmark problems ZDT, DTLT and WFG. A great num-
ber of different variation operators and selection strategies are also included.
The main advantage of MOEA framework compared to jMetal is its capability
for designing new genotypes as MOEA framework has a built-in encoding for
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programs (i.e. expression tress) that is supported by some MOEA variants.
The MOEAs provided by jMetal within MOEA framework only support bina-
ry, real-values and permutation encoding. However, NSGA-II is provided by
MOEA framework and allows a new genotype implementation by the program
elements support.
The Java framework OPT4J (opt4j.sourceforge.net) in its version 3.1 makes
use of aspect-oriented programming and is a modular tool for metaheuristic
optimization. It is developed under two main goals: a simple evolutionary op-
timization of user-defined problems and the potential of an arbitrary optimi-
zation algorithm implementation. For these purposes, it is basically modular,
but provides only a limited number of MOEA implementations - NSGA-II and
SPEA2. Furthermore, different benchmark problems are implemented such as
ZDT, DTLZ and WFG. The genotypes integer, real, binary values and permu-
tation are available, including a map functionality for each genotype. OPT4J
offers a GUI the algorithm configuration. The modular program structure and
the use of the GUI makes an extension of this framework regarding a new
encoding more complicated. A special feature of OPT4J is the graphical vi-
sualization of the optimization process in form of a convergence and a Pareto
plot.
Evolving Objects is an evolutionary computation framework written in C++
(eo.dev.sourceforge.net). Its version is 1.3.1. It is developed by a project team
around Maarten Keijzer and Marc Schoenauer. The special feature of this fra-
mework is that it provides no explicit NSGA-II implementation, but NSGA-II
is able to be designed by building the required structure from the following
blocks: initialization, variation, selection, stopping criteria, replacement, eva-
luation. A clear advantage is the potential of writing a user-defined encoding
beneath the state-of-the-art encodings. Furthermore, several selection strate-
gies like rank-based, stochastic tournament, roulette and elitist are available.
Moreover, variation operators as well as statistics for the purpose of evaluation
and a graphical display are provided.
ParadisEO is a metaheuristic framework written in C++ for MOO based on
evolving objects in its version 2.0 (paradiseo.gforge.inria.fr). ParadisEO is de-
veloped by the DOLPHIN project team of Inria Lille. It provides the metaheu-
ristics MOGA, NSGA(-II), SPEA2 and IBEA. Beneath the usual encodings, a
user-defined genotype is creatable. Moreover, the well-known benchmark pro-
blems ZDT, DTLZ and WFG are provided as well as statistic tools to measure
diversity and convergence like the hypervolume and the Euclidean distance.
It lacks an intuitive and clear program structure or the state-of-the-art va-
riation operators. But these are available via the implementation of external
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tools termed ’problem repository’, which include different operators and the
mentioned benchmark problems. Consequently, these variation operators are
genotype-dependent.
The framework Heuristic Lab (A paradigm - Independent and Extensible
Environment for Heuristic Optimization, version 3.3.10) is written in C♯ and
won the second place at the Microsoft Innovation Award 2009. It is developed
by a project team around Stefan Wagner (dev.heuristiclab.com). A NSGA-II
implementation is available. It provides a graphical algorithm design to mo-
dify an algorithm for interactive algorithm development, analysis, application
of the heuristic method and possibility of solving user-defined problems. Its
implementation is strongly focused on the GUI and therefore makes a custo-
mization very complicated.
The framework Open BEAGLE (a generic evolutionary computation frame-
work, version 3.0.3) is written in C++ and is developed by the ’Laboratoire
de vision et Système numériques’ (code.google.com/p/beagle). It provides the
following state-of-the-art genotypes: bit string, integer- and real-value, permu-
tation. An implementation of NSGA-II is available for float values as well as
different standard variation operators. BEAGLE lacks of the arranged pro-
gram structure and the implementation of further genotypes is complicated.
It is interesting that the same developer team provides a similar framework
written in Python, termed DEAP.

The features of the frameworks’ criteria are assessed with the help of a point
system from 0 (missing) to 5 (completely available). Points between 1 and 4

denote a partial availability in an ascending level. Tables 5.2 and 5.3 evaluate
the alternative frameworks and constitute a ranking of these. The tables reve-
al that none of the open source Java frameworks attain all required aspects.
The frameworks jMetal and ’MOEA framework’ achieve the highest scoring.
As jMetal is a part of ’MOEA framework’, the experiments presented in this
thesis are performed with an implementation of VONSEA within jMetal. Ne-
vertheless, some programming effort is necessary regarding this implementa-
tion. Furthermore, the protein string sequence encoding of JAGA serves as a
model for the targeted peptide encoding.
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5.2 Metrics for Convergence and Diversity

The evaluation of the performance of MOEAs has to fulfill specific criteria.
The evolution of performance measures is a complicated issue as the results
of a MOEA are provided as a set of vectors and not single values, which are
statistically easy to analyze. Theoretically, any two vectors have to be compa-
red component-wise under the aspect of domination. The aim is to propose a
measure which compares non-dominated solution sets by mapping the quality
of such a set into a single value. The criteria for such an appropriate measure
has been suggested by Zitzler [181]:

1. The distance of the approximate non-dominated solution set to the Pa-
reto optimal front has to be minimized.

2. The distribution of the non-dominated solution set over the solution
space is desirably uniform.

3. The extension of the approximated non-dominated solution front is desi-
rably maximal. This means that for each objective function a wide range
of function values are present.

Therefore, two types of criteria are established to representatively evaluate the
performance of a MOEA: diversity and convergence metrics. For both criteria,
a wide range of metrics have been proposed in the past. Diversity metrics have
been introduced, which assess the distribution of non-dominating solutions by
calculating the average distance of the solutions. Convergence metrics have
been presented, which compare the non-dominating solution sets with the true
Pareto front (PFtrue), respectively with an approximation set of Pareto optimal
solutions (PFapprox). The measure of a population’s convergence is also an
established method to terminate or re-start a MOEA.

5.2.1 Review of Convergence Metrics

In the following, the established measures that reflect the convergence behavior
of a population to PFtrue or PFapprox are presented.

The S-metric or Hypervolume Metric. The hypervolume [184] is also
known as S-metric [180] and is equivalent to the Lebesgue measure [102]. It
measures the space spanned by the non-dominated solutions to a pre-defined
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anti-optimal point r, where doubly overlapping regions are only counted once.
Therefore, the more the solutions uniformly approximate PFtrue, the more the
metric value increases. Hence, the hypervolume determines the convergence of
a Pareto optimal solution set as well as the diversity of the non-dominated
solutions in the search space.

Definition 8 Let {v(1), v(2), ..., v(n)} ⊂ Rd define a finite set of elements and
r ∈ Rd the anti-optimal point with v(i) ≺ r for all i = 1, ..., n ∈ N. The quantity

H(v(1), ..., v(n); r) = Leb(∪ni=1[v
(i), r]) (5.1)

is termed S-metric or hypervolume metric in Rd.

For d = 2 with the elements v(1), v(2), ..., v(n) ascendingly ordered, i.e. v(1) <
v(2) < ... < v(n) equation (5.1) arises to

H(v(1), ..., v(n); r) = (r1 − v
(1)
1 )(r2 − v

(1)
2 ) +

n∑
i=2

(r1 − v
(i)
1 )(v

(i−1)
2 − v

(i)
2 ). (5.2)

The hypervolume is one of the most established metrics because of its favor-
able mathematical properties [186]. One disadvantage of this operator is the
choice of the anti-optimal point as it influences the results and is the subject of
ongoing research. Other disadvantages are its sensitivity to the relative scaling
of the objectives, the presence or absence of extreme points of a front and the
high computational complexity caused by the necessary point ordering [54].
Furthermore, this metric prefers convex regions to non-convex ones [184]. The
hypervolume indicates the closeness to PFtrue and diversity [185]. A great
amount of research has been done to find an implementation of the hyper-
volume with reduced computational complexity. An overview of established
algorithms for calculating the hypervolume with the worst-case computational
complexities is given in Table 5.4. Short descriptions and pseudo-codes of some
of these algorithms are presented in the work of Bradstreet et al. [20].

D-metric. Another convergence metric is the D-metric introduced by Zitzler
[181]. Starting point are two sets of Pareto optimal solutions A and B. This
metric calculates the size of the space dominated by A and not dominated by
B.

D(A,B) = H(A+B; r)−H(B; r),

where H(A; r) denotes the hypervolume with the anti-optimal point r. A re-
ference set of PFtrue is needed to use this metric as convergence measure for a
set of non-dominated solutions.
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Algorithm Comput. complexity Ref.

Inclusion-Exclusion O(k · 2n) [175]
LebMeasure O(nk) [172]
Hypervolume by Slicing Objectives (HSO) O(nk−1) [172]
Optimal 3D Hypervolume O(n log(n)) [16]
Fonseca Paquete López-Ibánez (FPL) O(nk−2 · log(n)) [67]
Hypervolume Overmars and Yap (HOY) O(n · log n+ nd/2) [29]
Brinkmann O(n(k+2)/3) [22]
Yildiz and Suri O(n(k−1)/2log(n)) [177]
Walking Fish Group (WFG) O(2n) [171]

Table 5.4: Algorithms for calculating the hypervolume with reduced computational comple-
xity. The number of non-dominated solutions is n, and k is the number of objectives.

Set Coverage Metric (C-metric). Zitzler also proposed the C-metric [184],
which is an appropriate measure to compare the dominance of two Pareto
optimal sets PF1 and PF2. The C-metric maps the ordered pair (PF1, PF2)

into the interval [0; 1]:

C(PF1, PF2) :=
| {b ∈ PF2 | ∃a ∈ PF1 : a ⪯ b} |

| PF2 |
(5.3)

Therefore, the value C(PF1, PF2) = 0 means that no solution of PF2 is weakly
dominated by at least one solution of PF1, whereas C(PF1, PF2) = 1 implicate
that all points of PF2 are weakly dominated by PF1. This metric is usually
not symmetric, therefore C(PF1, PF2) is not a metric in a mathematical sense
and consequently C(PF1, PF2) and C(PF2, PF1) have to be determined.

Error Ratio. The Error Ratio (ER) [159] is introduced by Veldhuizen and is
a percentage measure for the number of solutions in a set that lies on PFtrue.
PFapprox is used as a reference set of Pareto optimal solutions in this metric.

ER(PFapprox) =
1

|PFapprox|

|PFapprox|∑
i=1

ei whereas (5.4)

ei =

⎧⎨⎩0 if the solution vector i is in PFapprox

1 if the solution vector i is not in PFapprox

(5.5)

A measure of ER ≈ 1 means that PFapprox comprises only a low number
of solutions in PFtrue, whereas a lower measure value indicates that many
solutions are in PFtrue. ER is exceptionally sensitive to the reference set PFtrue:
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If a Pareto optimal solution is not in PFtrue, it is treated as a non-optimal
solution by ER. Furthermore, ER does not take the closeness of PFapprox to
PFtrue into account.

General Distance. Generational Distance (GD) is also proposed by Veldhui-
zen [160]. This metric is a measure of the average distance between solutions
of PFapprox and PFtrue and is defined as:

GD(PFapprox) =

(
n∑

i=1

dpi

)2

n
,

where n is the number of solutions in PFapprox, usually p = 2 and di is the
Euclidean distance between each solution in PFapprox to its nearest member in
PFtrue. A value of GD(PFapprox) = 0 denotes that PFapprox = PFtrue. Howe-
ver, the GD provides no information about homogeneity, spread or dominance
of PFapprox compared to PFtrue.

Convergence Metric of Deb. Deb [41] proposes a convergence metric that
evaluates the distance of PFapprox to a reference set of PFtrue, further denoted
as PF ∗. PF ∗ = {a1, a2, ..., an} is either a solution set of the Pareto optimal
front or an approximate Pareto optimal set obtained from previous MOEA
runs. In each generation, the following steps have to be performed for the
determination of this metric:

• Generate the non-dominated solution set PFapprox = {p1, p2, ..., pn}.

• The smallest normalized Euclidean distance di for each solution of PFapprox

to PF ∗ is calculated via:

di = min
j=1,...,n

√ M∑
k=1

(
fk(ai)− fk(pj)

fmax
k − fmin

k

)2

,

where M denotes the number of objective functions, fmax
k is the maximal

and fmin
k is the minimal function value of the k-th objective function of

PF ∗.

120



5 Evaluation Criteria

• The convergence metric value is determined as the average normalized
distance for all solutions in PFapprox

C(PFapprox) =

|PFapprox|∑
i=1

di
|PFapprox|

(5.6)

The lower the values for this metric the better the convergence.

Averaged Hausdorff Distance. This recently proposed performance mea-
sure for convergence is introduced by Schütze [140]. The Averaged Hausdorff
Distance (∆p) is a combination of the slightly modified GD [163] and the In-
verted General Distance (IGD) [30]. ∆p is defined by:

∆p(XY ) = max(GD(X, Y ), IGD(X, Y )) (5.7)

= max

(
1

m
(

m∑
i=0

dist(xi, Y )p)1/p,
1

n
(

n∑
i=0

dist(yi, X)p)1/p

)
(5.8)

with the finite non-empty sets X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn},
where X is regarded as a set of approximate Pareto optimal solutions and
Y = PFtrue.

R2 Indicator. Trautmann [156] recently proposed the R2 indicator that eva-
luates the quality of PFapprox regarding the convergence to PFtrue, the solutions
spread and the representation of the Pareto front shape. The R2 indicator is
defined by:

R2(S,W, r) =
1

N

∑
w∈W

min
s∈S

max
j

wj · (sj − rj), (5.9)

where W = {w1, ..., wN} ⊂ Rk is a set of N weight vectors, S ⊂ Rk a set of
solutions and r ∈ Rk is an ideal point that usually is chosen as an optimal
objective vector better than all feasible solutions.
This indicator is popular for its computational complexity O(Nk · |S|) indi-
cating that the complexity is linear with the number of weights, the problem
dimension and the number of the solution sets. The number of weight vec-
tors is an open issue, especially for k > 3. The volume of the space increases
exponentially with k and potentially also the number of weight vectors. This
makes the calculation of R2 from a specific number of k on as expensive as the
hypervolume. [168]
Empirical results have shown that the R2 indicator and the hypervolume are
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correlated by Pearson’s correlation coefficient with a statistically significant
value of 0.76 [23].

5.2.2 A Statistical Indicator as a Convergence Metric:
The Average Cuboid Volume

For the purpose of evaluating the VONSEA populations in terms of conver-
gence, a statistical indicator is introduced. There are three major aspects for
the use of the Average Cuboid Volume (ACV) as a convergence indicator:
Firstly, the disadvantage of the established metrics D-metric, ER, GD, ∆p

and of the convergence metric of Deb is the requirement of the knowledge of
PFtrue or at least a reference set of Pareto optimal solutions that are usually
unknown in real-world MOPs and also for the presented biochemical optimi-
zation problems in this thesis. Secondly, this indicator measures the quality
of the solutions set relative to the set size. As a consequence, this indicator
allows an entire ranking between populations of different sizes in a statisti-
cally reasonable way. Thirdly, another reason for using a statistical measure
as a convergence indicator is the aim of evaluating the convergence progress
of the entire population. Intuitive hints for this purpose are the distances of
the different fronts to the true Pareto front and the changes of the different
front sizes through the generations. This requires an adequate metric mapping
of the information into one value is missing. The proposed statistical measure
provides the information of the population progress through the generations.
Therefore, the proposed indicator is intended to measure the quality of the
entire population, not only of a non-dominated solution set.
The indicator calculates the average cuboid volume of the cuboids spanned by
the solution points of an entire population to a pre-defined ideal point r. ACV
is defined by eq. (5.10). This ideal point is chosen as a theoretical optimal
point of eq. (1.1). In many MOPs, it is easier to find an optimal point than an
anti-optimal one - especially in the case of the multi-dimensional biochemical
minimization problems. In contrast, the ideal point is the objective vector that
is simply better in each objective than all feasible solutions.

ACV (X) =
1

n

n∑
i=1

(
k∏

j=1

(xij − rj)

)
, (5.10)

where n is the population size, k is the number of objectives, xi are the solutions
on the population X and xij is the j − th component of a solution xi. It
is xij − rj ≥ 0 as rj is assumed to be the theoretical optimal point of a
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minimization problem. The lower the indicator values, the better the global
quality of the solution set X, since the ideal point is chosen as a theoretical
optimal point.
ACV is evolved according to the model of the hypervolume, but differs from
the hypervolume in several aspects: ACV and the hypervolume measure the
space covered by the solutions to a pre-defined point. This point is chosen as an
optimal point in the case of ACV rather than an anti-optimal one in the case of
the hypervolume. The covered spaces of the solutions to this point are averaged
in the case of ACV, whereas multiple covered space is counted only once in the
case of the hypervolume. As a consequence, adding a dominating solution to a
set of non-dominated solutions, where the objective values of the dominating
solution are not extremal compared to those of the non-dominated solutions,
does not modify the hypervolume value. Moreover, as the hypervolume does
not take the number of solutions into account, it is not a statistical measure
and does not allow a direct comparison of differently sized solutions sets. In
terms of convergence, the overall quality of a population is better the lower the
ACV value, whereas the quality of a non-dominated set is better the higher
the hypervolume value. Furthermore, the computational complexity of ACV is
lower than that of the hypervolume even if the number of objectives increases,
as no point ordering is required. For each solution, k subtractions and (k − 1)

multiplications have to be performed. Therefore, the computational complexity
of ACV for a solution set of n individuals and k objectives amounts to O(n ·k).
A normalized version of the ACV indicator is proposed to ensure that all
objective function values have the same influence on the indicator values and
to avoid potential problems with the scaling of the objective space. A different
scaling of the objectives results in a different influence of the objective values
on the indicator values and has been stated as a point of criticism with regard
to the hypervolume indicator [54]. Therefore, a further ACV-based indicator
is proposed, where every objective function value is divided by the maximum
norm. Therefore, ACVscaled maps all objective values in the same range of [0; 1]:

ACVscaled =
1

n

n∑
i=1

(
k∏

j=1

(xij − rj)

x̄j

)
, with x̄j = maxi{xij − rj}, ∀j = 1, ..., k

(5.11)
A relative ACV indicator is proposed to evaluate the average cuboid volume
of the first front solutions relative to the average cuboid volume of the entire
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population:

ACVrel =

1
f

f∑
i=1

(
∏k

j=1(xij − rj))

1
n

n∑
i=1

(
∏k

j=1(xij − rj))
, (5.12)

where f is the number of solutions in the first front. A very small value of ACV
(ACV ≈ 0) indicates that ACV of the first front is much smaller than ACV of
the entire population and a particular number of high quality peptides have
been identified. In the case of ACVrel ≈ 1, the ACV value of the first front is
relatively high compared to the ACV value of the entire population. A further
interpretation of the relative ACV values has to take account of the absolute
ACV of the entire population.

5.2.2.1 Discussion of ACV (X)

The suitability of a metric for evaluation depends on the intention of the
investigation object and analysis preferences. ACV is intended to evaluate the
global convergence behavior of an entire population with the ultimate aim
of comparing solution sets of different sizes in a statistically reasonable way
according to the proximity to PFtrue.
The first important aspect in favor of the use of ACV is that convergence
quality does not change in the case of multiple copies of one solution. ACV
does not fulfill this averaging strategy that can be manifested through the
following example: Let x ∈ Rk be a solution of equation (1.1). Furthermore,
Y = {x, x, ..., x} is a bag containing n copies of the solution x, then

ACV (Y ) =
1

n

n∑
i=0

(
k∏

j=1

(xj − rj)

)
=

1

n
·n

k∏
j=1

(xj−rj) =
k∏

j=1

(xj−rj) = ACV (X)

The second aspect is due the following observation: An intuitive indicator
reflecting the quality of approximation sets of different Pareto front refinements
requires ’better’ indicator values for the finest approximation set. The following
example demonstrates this effect for ACV:

Example 5 The Pareto front is given by the bounded convex function f(x) =

1/x2 between the points y1 = (0.1, 100) and y2 = (1.1, 0.826) meaning

PFtrue = {(x, y)|y = 1/x2 with x ∈ [0.1, 1.1]}. (5.13)
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We consider the following three approximation sets of increasing refinement of
the Pareto front

Y1 = {(0.1 + 0.2 · i, 1/(0.1 + 0.2 · i)2)|i ∈ {0, 1, ..., 5}}, (5.14)

Y2 = {(0.1 + 0.1 · i, 1/(0.1 + 0.1 · i)2)|i ∈ {0, 1, ..., 10}}, (5.15)

Y3 = {(0.1 + 0.01 · i, 1/(0.1 + 0.01 · i)2)|i ∈ {0, 1, ..., 100}}. (5.16)

Table 5.5 depicts the indicator values of ACV for the three approximation sets
with the ideal point (0, 0).

These results are reproducible for a concave function if the ideal point is chosen
as the theoretical maximal limit of the objective functions.
The third aspect of this indicator is the averaging effect. It is obvious that
a dominating solution x yields better indicator values than the dominated

solution y, because ACV ({x}) =
k∏

i=1

(xj − rj) <
k∏

i=1

(yj − rj) = ACV ({y}).

This observation allows the interpretation that if one dominated solution x1

in the solution set X = {x1, x2, ..., xn} is replaced by a dominating one x̄1,
then ACV ({x1, x2, ..., xn}) > ACV ({x̄1, x2, ..., xn}). The averaging effect is
illustrated by the following example [140]:

Example 6 The true discrete Pareto front is described by P = {pi|pi = (0.1 ·
(i−1); 1− (i−1) ·0.1) with i = 1, ..., 11}. Two solution sets are given by X1 =

{x1,1, p2, ..., p11} and X2 = {x2,1, x2,2, ..., x2,11} with the elements x1,1 = (ϵ, 10)

and x2,i = pi+( ϵ
2
, 5) with i = 1, ..., 11. For the outlier x1,1 the values ϵ = 0.001

is used for numerical evaluations. X1 is a better approximation of the true
Pareto front than X2 as all solutions exceeding the outlier x1,1 are positioned
on the Pareto front. All points of X2 are shifted by ( ϵ

2
, 5) from the Pareto front,

but the difference of each element to PFtrue is less than the outlier x1,1. As we
are interested in an averaging effect, the indicator values of X1 have to be
better than the one of X2. This is true for ACV (X) as ACV (X1) = 0.15 and
ACV (X2) = 2.65 with the ideal point (0, 0).

Apart from these preferences, ACV fulfills the important complement property
of location parameters [166]. This complement property is formulated as an
axiom:

X Y1 Y2 Y3

ACV(X) 3.13 2,75 2.43

Table 5.5: Indicator values of ACV for approximation sets Y1 − Y3 with ideal point (0, 0).
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Axiom 1 Given are n values x1, x2, ..., xn with the location parameter Mn. In
the case that a further value xn+1 enters the set, the following statements hold
for the new location parameter M({x1, x2, ..., xn+1}) = Mn+1:
if xn+1 ≥Mn , then Mn+1 ≥Mn;
if xn+1 ≤Mn , then Mn+1 ≤Mn

The complement property is important for the robustness of a measure and
this property is further proven for the ACV indicator regarding the comparison
of two solution sets:

Proposition 1 Given are two solutions sets X = {x1, ..., xn} and
Y = {y1, ..., ym+l} with m,n, l ∈ N and it holds:
(i) ∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m} yj ⪯ xi and
(ii) ∀i ∈ {1, ..., n}, ∀j ∈ {m+ 1, ...,m+ l} yj ≺ xi

Then ACV (Y ) < ACV (X).

Proof: It has to be shown that

ACV (X) > ACV (Y )⇔ 1

n

n∑
i=1

(
k∏

j=1

(xij − rj)

)
>

1

m+ l

m+l∑
i=1

(
k∏

j=1

(yij − rj)

)

⇔ (m+ l)
n∑

i=1

(
k∏

j=1

(xij − rj)

)
> n

m+l∑
i=1

(
k∏

j=1

(yij − rj)

)
(5.17)

It holds

(m+ l)
n∑

i=1

(
k∏

j=1

(xij − rj)

)
≥ (m+ l) · n · min

i=1,...,n

(
k∏

j=1

(xij − rj)

)
.

According to the conditions (i) and (ii), it holds

(m+l) min
i=1,...,n

⎛⎝ k∏
j=1

(xij − rj)

⎞⎠ ≥ (m+l) max
i=1,...,m+l

⎛⎝ k∏
j=1

(yij − rj)

⎞⎠ >

m+l∑
i=1

⎛⎝ k∏
j=1

(yij − rj)

⎞⎠
From this inequalities eq. (5.17) is proven:

(m+l)
n∑

i=1

⎛⎝ k∏
j=1

(xij − rj)

⎞⎠ ≥ (m+l)·n· min
i=1,...,n

⎛⎝ k∏
j=1

(xij − rj)

⎞⎠ > n·
m+l∑
i=1

⎛⎝ k∏
j=1

(yij − rj)

⎞⎠
q.e.d.
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The use of ACV (X) as a convergence and as a diversity metric is not in the
focus since ACV (X) is not a reliable indicator for diversity. A solution set
with clustered solutions does not always achieve worse indicator values than a
less clustered solution set. This is demonstrated by the following example:

Example 7 Once more PFtrue is described by equation (5.13) and the so-
lution set Y4 = {(0.29, 11.89), (0.3, 11.11), (0.31, 10.4), (0.32, 9.77), (0.33, 9.18),
(0.34, 8.65)} contains clustered solutions on the true Pareto front, then
ACV (Y4) = 3.18 ≈ ACV (Y1) Though the solutions of Y4 are much more clus-
tered than those of Y1, Y4 receive nearly the same indicator values as Y1.

Moreover, this effect has also been empirically investigated. Therefore, the
Pearson’s correlation coefficient [99] has been determined between the ACV
and diversity values (calculated by eq. (5.24)) arising from the evaluation of
400 populations from VONSEA test runs. A coefficient of 0.24 is achieved
indicating only a very weak correlation between the diversity and the ACV
values.

Fig. 5.1: Visualization of Example 3 (left figure) and Example 4 (right figure).

As a consequence, the use of the ACV indicator as a selection criterion results
in very clustered solutions on one part of the Pareto front and makes a fur-
ther diversity preserving method necessary. This effect is demonstrated by the
following simple example.

Example 8 Two Pareto fronts are given by the bounded convex functions
f(x) = 2/x and g(x) = 1/x2 between the x-coordinates 0.1 and 1.1, meaning

PF1true = {(x, y)|y = 2/x with x ∈ [0.1, 1.1]} (5.18)

PF2true = {(x, y)|y = 1/x2 with x ∈ [0.1, 1.1]} (5.19)

127



5 Evaluation Criteria

We consider an approximation set for each Pareto front: X1 is an approxi-
mation set for PF1true and X2 is one for PF2true. The solutions are each
positioned at the boundaries of the Pareto fronts.

X1 ={x1(0.13, 15.38), x2(0.15, 13.33), x3(0.21, 9.52), x4(0.92, 2.17), x5(0.95, 2.11),

x6(0.98, 2, 04), x7(1.05, 1.91)},
X2 ={x1(0.13, 59.17), x2(0.15, 44.44), x3(0.21, 22.68), x4(0.92, 1.18), x5(0.95, 1.11),

x6(0.98, 1.04), x7(1.05, 0.91)},

Table 5.6 depicts the indicator values of each solution in the approximation
sets determined with the ideal point (0, 0).

In the case of the approximation set X1, all solutions have the same probability
to be chosen for reproduction. In contrast, the solutions at the right boundary
of X2 are preferred by the selection strategy based on the ACV indicator. In
conclusion, if the solutions on the Pareto front do not exhibit the same ACV
values, the search process is guided in the direction of the lowest ACV values
and therefore results in clustered solutions on one part of the Pareto front.
The ACVrel indicator is based on the ACV to measure the quality of the
non-dominated solutions relative to the convergence of the entire population.
Though the ACVrel indicator is quite different in its significance from the hy-
pervolume indicator, since the quality of the non-dominated solutions in the
latter case is not related to the quality of the entire population. For a deeper
insight into the relation of ACVrel to the standard quality measure hyper-
volume that is commonly used to evaluate the quality of the non-dominated
solutions, ACVrel is statistically compared to the hypervolume by Pearson’s
correlation coefficient. For this purpose, correlation coefficients are determined
out of ACVrel and hypervolume values from 200 populations of VONSEA test
runs to assess statistical significance and a value of 0.6 is achieved indicating
a moderate correlation.

ACV(X) x1 x2 x3 x4 x5 x6 x7

X1 2 2 2 2 2 2 2
X2 7.7 6.66 4.76 1.1 1.05 1.02 0.95

Table 5.6: ACV value for each solution of the approximation sets with the ideal point (0, 0).
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5.2.3 Review of Diversity Metrics

Spacing Metric of Deb. The Spacing metric of Deb [44] measures the spread
of the obtained N non-dominated solutions and characterizes the homogeneity
and the evenness of the solutions’ distribution over the solution space:

∆ =

df + dl +
N−1∑
i=1

| di − d̄ |

df + dl + (N − 1)d̄
, (5.20)

where di denotes the Euclidean distance between two consecutive solutions of
the non-dominated set and d̄ is the average distance of all these distances. df ,
dl are the Euclidean distances between the extreme (feasible) solutions and the
boundary solutions of the non-dominated solutions. In general, the diversity of
the solutions is better the smaller ∆. Therefore, the widest and most uniform
solutions spread is reached in the case that di ≈ d̄ ∀i and df = dl = 0. The
main disadvantage of this metric is that it is only suitable for two-dimensional
objective spaces as consecutive solutions need a more sophisticated definition
in higher dimensions. This metric provides no information about convergence,
hence a second metric is needed to evaluate the performance of a MOEA.

Spacing Metric of Schott. Another spacing metric has been introduced by
Schott [138] which determines how evenly the points in a finite approximate
Pareto optimal set PFapprox are distributed over the solution space:

∆s(PFapprox) =

√ 1

| PFapprox | −1

|PFapprox|∑
i=1

(d̄− di)2, where (5.21)

di = min
j
{

M∑
m=1

| fm(ai)− fm(aj) |: ai, aj ∈ PFapprox; i, j = 1, ..., | PFapprox |},

(5.22)
where d̄ denotes the average distance of all di and M is the number of objective
functions. A benefit of this metric is its low computational cost and the fact
that it is suitable for all dimensions. A value of ∆s(PFapprox) ≈ 0 indicates
that all non-dominated solutions are equidistant in the solution space.

Region-based Diversity Metric of Deb. Deb proposes a region-based di-
versity metric providing a fast calculation of the solutions spread. The main
idea of this metric is to project the non-dominated solutions of a generation
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on a suitable hyper-plane and therefore to reduce the solution dimension. This
hyper-plane is divided into (k-1) dimensional boxes, where k is the number of
objectives. Diversity is calculated by determining whether each grid cell con-
tains one of the non-dominated solutions or not. Optimal diversity is reached
if all grid cells contain at least one non-dominated solution. The following
steps present the procedure to determine diversity [41]. P ∗ denotes a set of
Pareto optimal solutions, P (t) the population of generation t and F (t) the
non-dominated solution set of the current generation:

1. Determination of F (t) from P (t) with F (t) is non-dominated to P ∗.

2. For each grid denoted by (i, j, ...) calculate the arrays:

H(i, j, ...) =

⎧⎨⎩1 if the grid has a representative point in P ∗

0 otherwise

h(i, j, ...) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if H(i, j, ...) = 1 and the grid has a representative point

in F (t)

0 otherwise

3. Assignment of a value m(h(i, j, ...)) to each grid depending on its and its
neighbor’s h(i, j, ...). Similarly, calculate m(H(i, j, ...)) using H(i, j, ...)

as reference point.

4. Calculation of the diversity metric by averaging the individual m(h(i, j, ...))

values with respect to m(H(i, j, ...)):

D(P (t)) =

∑
i,j,...

H(i,j,...)̸=0

m(h(i, j, ...))

∑
i,j,...

H(i,j,...)̸=0

m(H(i, j, ...))
(5.23)

5.2.4 A New Diversity Metric: The Average Spacing
Metric

The Average Spacing Metric (ASM) is motivated by the diversity metric of
Deb. The main disadvantage of Deb’s metric is its limited use regarding the
dimension of the search space. The determination of Euclidean distances bet-
ween two consecutive solutions is only possible for a two-dimensional search
space. Two aspects are important for the motivation of ASM: Firstly, it has
to be suitable for higher dimensional spaces and it has to map the spread of
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a population into a statistically reasonable indicator value. The meaning and
calculation is quite intuitive: ASM determines the Euclidean distance of all
possible combinations of solutions without repetition and without taking the
point order into account:

∆ =
∑

i,j=1...n,i<j

|dij − d̄|
N

with N =
n!

2!(n− 2)!
=

(
n

2

)
, (5.24)

where dij symbolizes the Euclidean distance between the solutions i and j, n
is the total number of solutions, d̄ the average distance over all determined
distances and N is the number of calculated distances. More precisely, N is
the number of possible considerations of two objects from a set of n objects.
The computational complexity of ASM for a solution set of n individuals and
k objectives is composed of n2 subtractions, n2 + 1 operations for d̄ and a
complexity of O(n2 · k) for the calculation of all Euclidean distances dij. The-
refore, the worst computational complexity for ASM is O(n2 · k). ASM is used
as diversity metric in the experiments of this thesis and is always denoted as
diversity.

5.3 Statistical Evaluation

The experimental results of the landscape analysis and the test series of diffe-
rent VONSEA configurations are evaluated by descriptive methods: Determi-
nation of the location parameters and of the distribution of the numerical data.
For a suitable graphical representation, boxplots are created of the different
test series to provide an overview of the average and spread of the numeri-
cal data at one glance. Boxplots are commonly used to graphically present a
numerical data set, since they provide a simple insight into data symmetry
and skewness. Boxplots or Box-Whisker-Plots are a five-point-summarization
of the numerical data. The characteristic five points of a boxplot are the mini-
mum xmin, the 25%-quartile, the median, the 75%-quartile and the maximum
xmax of the numerical data. The box labels 50% of the data limited by the first
and third quartile. The length of the box is determined by the 25% and 75%

quartile and is termed inter-quartile range. The median is depicted by the ad-
ditional line in the box. The whiskers represent xmin and xmax of the data. The
length of the whiskers is not more than 1.5-times of the inter-quartile range.
Otherwise, minimal or maximal values which differ more than 1.5-times from
the inter-quartile range are outliers and presented as dots in the figures. [99]
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The interpretation of the experimental results of the landscape analysis as-
sumes a comparison of the boxplots to formulate some hypothesis regarding
the design of VONSEA. This comparison is performed by the determination
of the average increase or decrease of the five-point boxplot values (xmin, 25%-
quartile, median, 75%-quartile and xmax). The geometric mean is the most
common average value to determine the central tendency of an increase or de-
crease of a data set. It is defined via the n-th root of the product of n numbers

n
√
x1 · x2 · · · xn, (5.25)

where n = 5 is the number of the boxplot values and x1, x2, ..., x5 are the fi-
ve percentage deviations of these five values [61]. The boxplots depicting the
VONSEA performance present averaged five-point boxplot values of the total
number of test runs for each configuration. The significance of the averaged
five-point boxplot values is verified on a two-sampled t-test [147]. These ave-
raged five-point value sets are divided into two equally sized samples and the
t-test is performed on these two samples. The t-test is a hypothesis test that
analyze if the mean difference of two sample means is a consequence of the
sample distributions. The two-sample t-test for unpaired data1 is performed.
The precondition of a t-test is that the numerical data follow a Gaussian nor-
mal distribution.
The first step of the t-test is the formulation of the null hypothesis (H0) and
the alternative hypothesis (H1):

H0 : µ1 = µ2, H1 : µ1 ̸= µ2. (5.26)

The second step is the calculation of the test value t.

t =
x̄1 − x̄2

σ(x̄1−x̄2)

, (5.27)

where x̄1, x̄2 are the sample means and σ(x̄1−x̄2) is the estimated standard error
of the mean difference in the data set. The calculation of the standard error
depends on whether the samples have a variance homogeneity. The sample
variances are homogeneous in the case that there is no significant difference
between the sample variances, otherwise the sample variance is termed hete-
rogeneous. In the case of homogeneous sample variances, the standard error is
calculated by:

σ(x̄1−x̄2) =

√
(N1 − 1) · s21 + (N2 − 1) · s22

(N1 − 1) + (N2 − 1)
·
√

1

N1

+
1

N2

, (5.28)

1Unpaired data have no affecting connection to each other. [99]
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where N1, N2 are the sample sizes and s21, s
2
2 are the sample variances. In the

case of heterogeneous sample variances, the standard error is determined by:

σ(x̄1−x̄2) =

√
s21
N1

+
s22
N2

(5.29)

The third step is the decision if the null hypothesis has to be rejected. Therefo-
re, the probability for the test value t and the critical value of the t-distribution
have to be determined. The null hypothesis H0 is then rejected if |t| > t1−α/2,ν ,
where t1−α/2,ν with ν = N1 +N2 − 2 is the critical value of the t-distribution.
The significance level is chosen as α = 0.05. [99]
Result matrices are given as a summarization of the experimental results in
form of confidence limits for the mean. The 95%-confidence limits for the mean
are defined by:

Ȳ ± ta−α/2,N−1
s√
N
, (5.30)

where Ȳ is the sample mean, s is the sample standard deviation, N is the
sample size, α is the significance level and t1−α/2,N−1 is the percentile of the
t-distribution with N − 1 degrees of freedom. [147]
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In this chapter, the VONSEA components are systematically investigated on a
3D-MOP consisting of the molecular fitness functions NMW, MW and Hydro
as well as on a 4D-MOP comprising NMW, MW, Hydro and InstInd. The-
se fitness functions act comparatively in the way that candidate solutions are
compared to a pre-defined reference solution (eq. (3.23)). Therefore, the fitness
functions have to be minimized. Only positive fitness values are possible due
to the use of the absolute value on the differences between the fitness values
of the pre-defined reference and the candidate solution.
The experiments are evaluated by the ACV , ACVscaled, ACVrel and diversi-
ty indicator. The ACV and ACVscaled (eq. (5.10) and eq. (5.11)) are applied
as the convergence indicators for the entire populations with the zero point
as pre-defined ideal point for both MOPs. The diversity indicator ASM (eq.
(5.24)) is applied to measure the solution distribution for the entire population
and is further denoted as diversity. ACVrel (eq. (5.12))is applied to analyze the
relative non-dominated solution quality.
Each configuration is run 30 times until the 18th generation, and every gene-
ration of each run is evaluated according to the four indicators. The boxplots
presented are created according to the descriptions in Section 5.3. A very lar-
ge number of configurations have been examined, especially of the different
component parameters, but to achieve a clear and structured overview which
demonstrates the essential messages, the most meaningful indicators were used
to choose the necessary number of configuration results for representation.
Firstly, the variation operators are investigated regarding an improved VON-
SEA performance. Afterwards, the selection strategies are examined for a fur-
ther improvement of the performance. Then, the interaction between popula-
tion size and selection is in the focus. The last series of tests is concerned with
the direct comparison of VONSEA to the traditional NSGA-II in terms of the
non-dominated solutions in the first generations.

134



6 Experimental Results

Recombinations
Mutations Random LiDeRP ExpoDeRP 2-point-edges

Random RanRan RanLin RanExpo RanEdges
AAWeighted AAWeiRan AAWeiLin AAWeiExpo AAWeiEdges

BSself BSselfRan BSselfLin BSselfExpo BSselfEdges
BSadap BSRan BSLin BSExpo BSEdges

LiDeMut LinRan LinLin LinExpo LinEdges
QuadDeMu QuadRan QuadLin Quad Expo QuadEdges
Thierens CGainRan CGainLin CGainExpo CGainEdges

Table 6.1: Overview of all possible variation operator combinations and their denotation

6.1 Recombination and Mutation

The following test series investigate the interaction of the different recombi-
nation and mutation operators with regard to their characteristic interaction
behavior. Table 6.1 gives an overview of the investigated configurations with
various variation operators and their abbreviations that are used in the followi-
ng. These configurations make use of the default selection strategy, the default
population size and the default number of parents for recombination: The ag-
gregate selection is applied with the parameters p0 = 50% and ts = 10 as well
as a population size of 100 and three parents for recombination. The main goal
of these test series is to find a recombination-mutation combination providing
constantly good performance for both MOPs. Ideally, this combination has a
high potential to provide remarkably good performance results for a wide range
of similar multi-objective biochemical optimization problems similar to those
proposed in this thesis. Some of these operators are parameter-dependent and
a fine-tuning is advisable to improve performance.

6.1.1 Random Recombination with Mutation Variation

6.1.1.1 Experiments with Configuration RanRan

The first test series examine the performance of the configuration RanRan. As
these random operators have two parameters, the actuarial expectation µ and
the standard deviation σ, different parameter settings have to be investigated
for µ and σ. Figure 6.1 and 6.2 depict the convergence and diversity perfor-
mance of configuration RanRan in the case of the 3D-MOP with a mutation
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Fig. 6.1: Performance of configuration Ran-
Ran in the case of 3D-MOP with a
variation of the mutation parameter
µ and σ = 1.25.

Fig. 6.2: Performance of configuration Ran-
Ran in the case of 3D-MOP with a
variation of the mutation parameter
µ and σ = 2.5.

parameter variation of µ and σ, denoted by N(µ, σ). The recombination para-
meter are fixed with µ = 2 and σ = 2.5 and a variation of these parameters are
subject of investigations in a later part of this paragraph. Figure 6.1 presents
the performance results of the actuarial expectation variation with σ = 1.25.
In general, the increase of µ results in an increase of the ACV and the diversity
values and therefore in worse convergence behavior with an improvement of
the diversity at the same time. N(2, 1.25) is the preferable choice with regard
to a good balance between convergence and diversity performance as this con-
figuration achieves the lowest ACV values and acceptable diversity values. An
increase of the diversity values correlates to an increase of the ACV values.
Figure 6.2 depicts the performance results for σ = 2.5 and a variation of µ. In
general, the ACV and diversity values are more balanced to each other com-
pared to Figure 6.1. The ACV values reveal a slight increase by the increase of
µ up to 5. N(6, 2.5) is nearly of the same convergence level like N(3, 2.5). The
diversity values reveal an oscillating behavior by the increase of µ. The prefera-
ble parameter setting with regard to a suitable convergence-diversity balance
is N(3, 2.5), which is comparable to N(4, 1.25) in performance. However, the
inter-quartile range of N(3, 2.5) is higher compared to N(4, 1.25) whose are
the default settings of the random mutation. A further increase of σ is not
advisable as the performance values are becoming more and more balanced.
This is a potential consequence of the flatter shape of the probability density
function (Figure 4.14). A decrease of the σ values results in nearly constant
mutation rates, visible by the shape of the probability function.
Figure 6.3 and 6.4 present the performance of the configuration RanRan achie-
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Fig. 6.3: Performance of configuration Ran-
Ran in the case of 4D-MOP with a
variation of mutation parameter µ

and σ = 1.25.

Fig. 6.4: Performance of configuration Ran-
Ran in the case of 4D-MOP with a
variation of mutation parameter µ

and σ = 2.5.

ved in the case of the 4D-MOP. The variation of σ generally reveals a higher
influence on the convergence behavior than on diversity. The diversity values
(Figure 6.3, 6.4) are oscillating by an increase of µ for σ = 1.25 and 2.5. The
convergence is slowed down by an increase of µ presented by the ACV values
up to µ = 5 (Figure 6.3) and up to µ = 4 (upper boxplots in Figure 6.4). The
preferable parameter settings regarding a good convergence-diversity balance
are given by N(2, 1.25). The ACV values for σ = 2.5 are generally higher than
for σ = 1.25, whereas the diversity values are comparable.
These first experiments of the mutation parameter variation with the 3D- and
4D-MOP reveal that a small shape of the probability density function with
σ = 1.25 is generally more advisable than higher values. Otherwise, a lower
number of µ is more advisable in the case of an increase of the problem dimen-
sion. As a consequence, µ has to be adapted for each optimization problem
making random mutation quite unattractive.
The second test series examine the influence of random recombination pa-

rameter variation on the VONSEA performance in the case of the 3D- and
4D-MOP. Figure 6.5 presents the 3D-MOP performance results of configurati-
on RanRan with fixed mutation parameters of N(4, 1.25) and a variation of the
recombination parameters µ, σ. The mutation settings N(4, 1.25) are default
settings for the random mutation and used within these test series instead of
the preferable settings identified in the previous test runs. As there is an in-
terdependence between the parameters µ and σ of the random recombination
and mutation operator, a fine-tuning of one random operator requires fixed
parameter settings of the other. An increase of µ results in an increase of the
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Fig. 6.5: Performance of configuration Ran-
Ran with a variation of recombi-
nation parameter µ, σ with mutati-
on parameter settings of N(4, 1.25).
(3D-MOP)

Fig. 6.6: Performance of configuration Ran-
Ran with a variation of recombi-
nation parameter µ, σ with mutati-
on parameter settings of N(2, 1.25).
(4D-MOP)

ACV values independent of σ. This is a consequence of the fact that a signi-
ficantly higher number of recombination points results in a higher number of
disruptions of potentially high qualified genetic material. The highest diversity
values are achieved for σ = 2.5 and are nearly constant by an increase of µ.
Otherwise, the diversity values increase by an increase of µ for σ = 1.25. The
preferable settings for good convergence-diversity balance are N(2, 2.5) with
the highest diversity values and slightly increased ACV values compared to
N(3, 1.25).
Figure 6.6 depicts the 4D-MOP performance results of RanRan with the fi-
xed mutation parameter of N(2, 1.25) and variable recombination parameters.
Once more, an increase of µ results in an increase of the ACV values (Figure
6.6) for σ = 1.25 and σ = 12.5. The highest diversity values (lower boxplots
of Figure 6.6) are achieved for σ = 2.5. The preferable parameter settings for
a good convergence-diversity balance are N(2, 2.5) with comparable and con-
stant low ACV values.
The second test series of recombination parameter variation with the 3D- and
4D-MOP advises the same preferable parameter settings for both optimization
problems. However, these results are not generalizable without further expe-
riments with several others optimization problems. A remarkable influence of
the recombination parameters is clearly visible and makes the use of the ran-
dom recombination operators as a black-box configuration operator for other
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similar multi-objective biochemical optimization problems unattractive.

6.1.1.2 Experiments with Configuration AAWeiRan

Fig. 6.7: Performance of configuration AA-
WeiRan with varying mutation pa-
rameter parameter µ, σ and fixed
recombination parameter settings
of N(2, 2.5). (3D-MOP)

Fig. 6.8: Performance of configuration AA-
WeiRan with varying mutation pa-
rameter parameter µ, σ and fixed
recombination parameter settings
of N(2, 2.5). (4D-MOP)

These test series investigate the performance of configuration AAWeiRan in
the case of the 3D- and 4D-MOP. Mutation operator AAWeighted is similar
to random mutation and has therefore the same parameters µ and σ, but the
mutated amino acids have a specific frequency to be mutated. The frequencies
are equal to the natural incidence of each amino acid. Figure 6.7 presents the
3D-MOP performance results of AAWeiRan with different parameters µ, σ. An
increase of µ results in an increase of the ACV values as well as the diversi-
ty values, independent of σ. Once more, there is an interdependence between
the parameter settings of µ, σ of the mutation and recombination operator. A
fine-tuning of the mutation parameters requires fixed recombination parame-
ters, which are set to N(2, 2.5). The preferable settings for good convergence-
diversity balance are N(4, 2.5). The comparison of these results to those of
RanRan with preferable parameter settings (N(2, 1.25) in the case of mutati-
on, N(2.2.5) in the case of recombination) reveals that the ACV values and
the diversity values are both slightly decreased compared to RanRan (Figure
6.1). Consequently, there is no advantage in general of AAWeighted mutation
compared to random mutation.
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Figure 6.8 depicts the 4D-MOP performance results of AAWeiRan with fixed
recombination parameters N(2.2.5). In general, there is no noticeable effect
on the performances caused by a variation of the mutation parameter µ, σ.
The preferable parameters for good convergence-diversity balance and con-
stant results - specified by the lower inter-quartile range - is N(4, 1.25). The
comparison of these results to those of RanRan with preferable parameter set-
ting (N(2, 1.25) in the case of mutation N(2.2.5) in the case of recombination)
reveals that the ACV values are on average remarkably higher in the case
of AAWeiRan compared to RanRan (Figure 6.3). The diversity values are on
average slightly higher in return. Once more, there is no remarkable benefit of
configuration AAWeiRan over RanRan.

6.1.1.3 Experiments of the Configuration BSselfRan

Fig. 6.9: Performance of configuration BSsel-
fRan with variation of learning rate
γ and fixed recombination parame-
ters N(2, 2.5). (3D-MOP)

Fig. 6.10: Performance of configuration BS-
selfRan with variation of learning
rate γ and fixed recombination pa-
rameters N(2, 2.5). (4D-MOP)

The following test series examine the 3D- and 4D-MOP performance results of
configuration BSselfRan. Mutation BSselfadaptive has a start mutation rate of
0.2, which is the default start mutation probability of the mutation operators
in VONSEA except in the case of mutations LiDeMut and QuadDeMut. Figure
6.9 presents the 3D- performance results of BSselfRan with fixed recombinati-
on parameters N(2, 2, 5) and different values for the learning rate γ. In general,
there is no significant influence of the γ values, neither on the diversity nor
on the convergence. Compared to configuration RanRan, the diversity values
are on the same level, but the ACV values are in general remarkablly higher
in the case of BSselfRan compared to RanRan (Figure 6.5). This allows the
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hypothesis that the random recombination is mainly responsible for the solu-
tions diversity. Furthermore, the learning rate γ is not able to use its influence
on the performance results.
Figure 6.10 depicts the 4D-performance results of BSselfRan with different γ

values and fixed recombination parameters N(2, 2.5). Once again, the variation
of γ reveals no visible regularity. The diversity level is comparable to RanRan
(Figure 6.6), but the convergence is significantly slowed down in the case of
BSselfRan compared to RanRan. Further experiments with the aim of perfor-
mance improvement by an adaption of the recombination parameters are not
reasonable, since these fine-tuned parameters are generally problem-oriented.

6.1.1.4 Experiments with Configurations BSRan, LinRan, QuadRan
and CGainRan

Fig. 6.11: Performance of BSRan, Lin-
Ran, QuadRan and CGainRan
with fixed recombination parame-
ters N(2, 2.5). (3D-MOP)

Fig. 6.12: Performance of CGainRan with
different parameter settings (α, ω)

and fixed recombination parameters
N(2, 2.5). (3D-MOP)

Figure 6.11 depicts the 3D-performance results of the configuration BSRan,
LinRan, QuadRan and CGainRan with the recombination parameters N(2, 2.5)

and the exploration and learning factor ω = 1.5, α = 1.1. Configuration CGain-
Ran achieves the lowest ACV values and therefore the best convergence per-
formance, but the diversity is significantly lower. The convergence behavior
of configuration LinRan and QuadRan are comparable and reveal the highest
ACV values compared to BSRan and CGainRan. QuadRan achieves the hig-
hest diversity values as mutation QuadDeMut provides constant high mutation
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probabilities in the first generations. BSRan achieves the lowest ACV values
with slightly decreased diversity values. As the convergence improvement is
significantly higher than the decrease of the diversity values compared to Lin-
Ran, BSRan is regarded as the preferable configuration. BSRan, is further
comparable in performance with AAWeiRan (Figure 6.7) and RanRan (Figure
6.1) with mutation parameters N(3, 1.25) and N(2, 1.25) respectively.
Figure 6.12 presents the 3D-performance results of CGainRan with different
parameter settings. In general, CGainRan achieves the best convergence beha-
vior compared to the other configurations, but reveals also the lowest diversity.
This allows the conclusion that the use of the mutation probability according
to the lowest ACV results in highly qualified but clustered solutions. The pre-
ferable setting of these parameters for good convergence-diversity balance is
ω = 1.8, α = 1.4, since the diversity values are at most high and the ACV
values are the lowest compared to the other settings.
Figure 6.13 presents the 4D-performance results of the configurations BSRan,

Fig. 6.13: Performance of BSRan, Lin-
Ran, QuadRan and CGainRan
with fixed recombination parame-
ters N(2, 2.5). (4D-MOP)

Fig. 6.14: Performance of CGainRan with
different parameter settings (α, ω)

and fixed recombination parameters
N(2, 2.5). (4D-MOP)

LinRan, QuadRan and CGainRan with the recombination settings N(2, 2.5).
The results are very similar to those of the 3D-performance results above in
a qualitative way: QuadRan achieves the highest diversity, but also the worst
convergence. CGainRan has the best convergence behavior at the cost of diver-
sity. BSRan reveals good convergence values with only a very slight decrease
of the diversity values compared to LinRan. Therefore, LinRan is regarded as
preferable configuration. In general, BSRan achieves the best convergence be-
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havior compared to the configurations BSselfRan (Figure 6.10) and AAWeiRan
6.8 with comparable diversity values. BSRan has comparable performance to
RanRan (Figure 6.3) with the advisable mutation parameters N(2, 1.25).
Figure 6.14 depicts the 4D-performance configurations of CGainRan with diffe-
rent parameter settings. Once more, CGainRan achieves the best convergence
behavior of all configurations so far at the cost of diversity. The preferable pa-
rameter settings for a good convergence-diversity balance are ω = 2.1, α = 1.7

and therefore different to the preferable settings in the case of the 3D-MOP.

6.1.2 LiDeRP with Mutation Variation

Fig. 6.15: Performance of BSLin, Lin-
Lin, QuadLin and CGainLin, (3D-
MOP)

Fig. 6.16: Performance of BSselfLin with dif-
ferent parameter settings γ, (3D-
MOP)

The following series of tests comprise the configurations of the linear recom-
bination LiDeRP with various mutation operators. The presented results are
additionally discussed with regard to a performance comparison of these con-
figurations to Random recombination.
Figure 6.15 depicts the 3D-performance results of the configurations BSLin,
LinLin, QuadLin and CGainLin (with the default setting (α, ω) = (1.1, 1.5)).
CGain achieves once again the lowest diversity as well as ACV values, whe-
reas QuadLin achieves the highest diversity and ACV values. BSLin and Lin-
Lin achieve comparable results for diversity and convergence. These results
are compared to 3D-performance results of BSRan, LinRan, QuadRan and
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Fig. 6.17: Results of CGain-
Lin with different
parameter settings
(α, ω), (3D-MOP)

Fig. 6.18: Results of Ran-
Lin with different
parameter settings
(µ, σ), (3D-MOP)

Fig. 6.19: Results of AAWei-
Lin with different
parameter settings
(µ, σ), (3D-MOP)

CGainRan (Figure 6.11) to gain an insight into the influence of the recombi-
nation operator. In general, the recombination operators in combination with
these mutation operators have no significant influence on the performance re-
sults. The general tendency according to diversity and convergence are similar
for both recombinations. Although, the general performance differences of the
configurations are lower in the case of LiDeRP. Figure 6.17 presents the perfor-
mance results of the configuration CGainLin with different parameter settings.
The parameter settings (1.4, 1.8) are preferable, since the ACV values have a
tendency towards lower values and the diversity values are higher compared
to the other settings. The results are highly comparable to those of CGainRan
(Figure 6.12).
Figure 6.16 depicts the 3D-performance results of configuration BSselfLin with
different parameter settings of the learning factor. The learning factor γ = 0.22

and γ = 0.25 achieve comparable results. A further increase of the learning
factor reveals an increase of the ACV values and therefore a slowing down of
the convergence with only a slight increase of the diversity values for the hig-
hest value γ = 0.32. Therefore, a lower learning factor is more advisable, since
the performance results are more consistent for these values. The comparison
of these results to BSselfRan (Figure 6.9) reveals highly comparable results.
Once again, the recombination operator in combination with mutation BSself
has no visible influence on the performance results.
Figure 6.18 and Figure 6.19 present the performance results of the random mu-
tation operators Random and AAWeighted with different parameter settings.
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RanLin with N(2, 1.25) achieves the lowest ACV and diversity values of all
configurations. An increase of µ reveals significantly higher ACV and diversi-
ty values. The results of N(3, 1.25) and N(4, 1.25) are comparable. Higher µ

values are advisable with regard to a good convergence-diversity balance. Hig-
her values of σ are not suitable, since the performance results are becoming
more and more unstable. The performance results of configuration AAWeiLin
with different parameter settings (Figure 6.19) are in general comparable to
the other configurations, although higher σ-values provide a higher spread of
the performance values. The comparison of the RanLin performance to Ran-
Ran (Figure 6.1) reveals comparable results except for the settings N(3, 1.25).
RanLin provides comparable diversity values but remarkable improved con-
vergence values. The comparison of AAWeiLin with AAWeiRan (Figure 6.7)
reveals a quite different performance: The configurations of AAWeiLin with
different parameter settings are very similar to one another in contrast to AA-
WeiRan. The parameters of AAWeighted mutation have less influence on the
performance in combination with LiDeRP.
The comparison of Figure 6.15 - Figure 6.19 reveals that BSselfLin with high
parameter values provide the highest diversity as well as the highest ACV
values. The configuration of CGainLin provides the lowest diversity and ACV
values. The advisable configuration with regard to a good convergence-diversity
balance is provided by the configurations BSLin and LinLin.
Figure 6.20 - Figure 6.24 present the 4D-performance results of the configura-

Fig. 6.20: Performance of BSLin, Lin-
Lin, QuadLin and CGainLin, (4D-
MOP)

Fig. 6.21: Performance of BSselfLin with dif-
ferent parameter settings γ, (4D-
MOP)
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Fig. 6.22: Results of CGain-
Lin with different
parameter settings
(α, ω), (4D-MOP)

Fig. 6.23: Results of Ran-
Lin with different
parameter settings
(µ, σ), (4D-MOP)

Fig. 6.24: Results of AAWei-
Lin with different
parameter settings
(µ, σ), (4D-MOP)

tions BSLin, BSselfLin, LinLin, QuadLin, CGainLin, RanLin and AAWeiLin.
The upper boxplots depict the spread of the ACV and the lower ones the spread
of the diversity values. Figure 6.20 depicts the results of the configurations BS-
Lin, LinLin, Quadlin and CGainLin with (α, ω) = (1.1, 1.5). The performance
of QuadLin has a tendency towards the highest diversity and ACV values, whe-
reas the performance of CGainLin achieves the lowest diversity and ACV values
(Figure 6.20). The performance results of BSLin and LinLin are comparable.
These results have also been observed in the case of the 3D- performance results
of the corresponding configurations (Figure 6.15). Furthermore, the compari-
son of these results to BSRan, LinRan, QuadRan and CGainRan in the case
of the 4D-MOP (Figure 6.13) reveals similar performance results, although the
performance differences in the case of the configurations with LiDeRP are re-
markablly smaller than those of the configurations with Random recombinati-
on. The performance results of configurations BSselfLin with different learning
rates γ are quite undifferentiated (Figure 6.21). The configuration with the
learning rate γ = 0.25 achieves the highest diversity as well as ACV values.
The configurations with γ = 0.28 and γ = 0.3 achieve the lowest diversity and
ACV values. This undifferentiated performance behavior is comparable with
the configurations BSselfRan with the corresponding learning rates (Figure
6.10). The configurations of CGainLin with different parameter settings provi-
de very low metric values. The performance differences between these settings
are very small, nevertheless, the settings (α, ω) = (1.4, 1.8) tend to have lo-
west ACV values and comparable diversity values. In general, the lowest ACV
and diversity values are achieved by configuration RanRan with N(2, 1.25).
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An increase of µ results in a slight increase of the ACV values and higher
diversity values. N(3, 1.25) are advisable settings with lower ACV and higher
diversity values compared to the other settings. Once again, the performan-
ce differences are smaller than in the case of RanRan with the corresponding
parameter settings (Figure 6.4) or in the case of the 3D-performance results
of RanLin (Figure 6.18). The configurations AAWeiLin (Figure 6.24) with dif-
ferent parameter settings generally achieve higher metric values compared to
RanLin. The settings N(3, 1.25) achieve the lowest metric values compared to
the other (µ, σ) settings in Figure 6.24. An increase of µ results in an increase
of the metric values. An increase of σ reveals comparable performance results
to N(4, 1.25). Once again, the performance differences of AAWeiLin are small
compared to AAWeiRan (Figure 6.8). Regarding a good convergence-diversity
balance, N(4, 1.25) is regarded as advisable settings for the configuration AA-
WeiRan. The comparison of Figure 6.20 - Figure 6.24 reveals that the con-
figuration BSselfLin with different parameter settings generally achieves the
highest metric values, whereas CGainLin as well as RanLin with N(3, 1.25)

achieve the lowest metric values. The configurations BSLin and LinLin are re-
garded as preferable configurations for a good convergence-diversity balance.

6.1.3 ExpoDeRP with Mutation Variation

Fig. 6.25: Performance of BSExpo, LinExpo,
QuadExpo and CGainExpo, (3D-
MOP)

Fig. 6.26: Performance of BSselfExpo with
different parameter settings γ, (3D-
MOP)

These test series comprise the configurations of recombination ExpoDeRP with
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Fig. 6.27: Results of CGain-
Expo with different
parameter settings
(α, ω), (3D-MOP)

Fig. 6.28: Results of Ran-
Expo with different
parameter settings
(µ, σ), (3D-MOP)

Fig. 6.29: Results of AAWei-
Expo with different
parameter settings
(µ, σ), (3D-MOP)

various mutation operators. The presented results are additionally discussed
regarding a comparison of these configurations with Random recombination
and LiDeRP.
Figure 6.25 presents the 3D-configuration results of BSExpo, LinExpo, Quad-
Expo and CGainExpo with the parameters (α, ω) = (1.1, 1.5). As in the cases
of LiDeRP and Random, QuadExpo achieves the highest diversity values at
the cost of convergence. Otherwise, CGainExpo reveals the lowest ACV va-
lues and therefore the best convergence at the cost of diversity. BSExpo and
LinExpo reveal similar results compared to the corresponding configurations
with the recombinations LiDeRP and Random and therefore a good balance of
convergence and diversity, although the ACV values of BSExpo have a tenden-
cy towards lower ACV values as well as a tendency towards higher diversity
values. Figure 6.26 depicts the 3D-configurations of BSselfExpo with different
learning rates. The performance results are pretty undifferentiate in the ca-
ses of BSselfLin (Figure 6.16) and BSselfRan (Figure 6.9). The ACV values
are in general higher that for BSExpo and LinExpo, but the diversity values
are not increased at a corresponding level. The influence of the performance
results does not reveal any regularity like in the cases of BSselfLin. Figure
6.27 depicts the 3D-performance results CGainExpo with different parame-
ters. The settings (α, ω) = (1.4, 1.8) reveal a tendency towards higher ACV
values compared to the other settings, but also the highest diversity values.
In general, CGainExpo achieves the lowest performance metrics values. Con-
figuration RanExpo with different parameters reveals no regularity in terms
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of the metric values by an increase of µ (Figure 6.28). The increase of µ = 2

to µ = 3 results in an increase of the metric values, but a further increase
to µ = 4 reveals lower ACV values but comparable diversity values. Similar
performance is observed in the case of the configurations AAWeiExpo (Figure
6.29) with different parameters. For σ = 1.25, an increase of µ results in an
increase of the metric values in general, otherwise the metric values decrease
for σ = 2.5 and an increase of µ. The parameter settings N(4, 2.5) achieve
comparable performance compared to BSExpo, although the diversity values
tends to be lower in the case of AAWeiExpo. In general, BSExpo and LinEx-
po are advisable configurations and their performance is on the same level as
BSLin and LinLin. Otherwise, ExpoDeRP provides a high number of recom-
bination points in the first generations that makes the performance prediction
more difficult, especially in combination with parameter-dependent mutation
operators.
Figure 6.30 - Figure 6.34 present the 4D-performance results of the configurati-

Fig. 6.30: Performance of BSExpo, LinExpo,
QuadExpo and CGainExpo, (4D-
MOP)

Fig. 6.31: Performance of BSselfExpo with
different parameter settings γ, (4D-
MOP)

ons with recombination ExpoDeRP and various mutation variants. Figure 6.30
presents the performance results of BSExpo, LinExpo, QuadExpo and CGain-
Expo with (α, ω) = (1.1, 1.5). BSExpo has a significant tendency towards lower
ACV values and therefore a better convergence performance with a tendency
towards lower diversity values at the same time compared to LinExpo. As in
the case of the configurations QuadLin and QuadRan, QuadExpo achieves the
highest ACV and diversity values, but this tendency towards higher metric
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Fig. 6.32: Results of CGain-
Expo with different
parameter settings
(α, ω), (4D-MOP)

Fig. 6.33: Results of Ran-
Expo with different
parameter settings
(µ, σ), (4D–MOP)

Fig. 6.34: Results of AA-
WeiExpo with diffe-
rent parameter set-
tings (µ, σ), (4D–
MOP)

values is only low. Once again, CGainExpo achieves the lowest metric values.
Figure 6.31 presents the performance results of BSselfExpo with different lear-
ning rates. The configuration with γ = 0.25 achieves the lowest metric values,
whereas the configuration with γ = 0.3 has the highest metric values. There
is no regularity observable regarding the performance results by an increase
of the learning rate. Otherwise, these performance results are comparable to
the 3D-performance results of BSselfExpo (Figure 6.25). The configurations
of CGainExpo with different parameter setting achieve comparable diversity
values for all parameter settings (Figure 6.32). The configuration with the pa-
rameters (α, ω) = (1.4, 1.8) reveals the highest ACV values and the ACV values
of the other parameter settings are comparable. In general, there is no regu-
larity observable with regard to the performance for the different parameter
settings. In the case of the configurations RanExpo with different parameter
settings (Figure 6.33), an increase of µ tends to result in an increase of the
metric values. The lowest ACV inter-quartile range is achieved with the con-
figuration N(3, 1.25) and these parameter settings are regarded as preferable
settings. Regarding the performance results of the configuration AAWeiExpo
(Figure 6.34), no regularity is observable for the different parameter settings.
An increase of µ for σ = 1.25 results in an increase of the metric values. Other-
wise, the increase of µ for σ = 2.5 results in an decrease of the metric values.
The preferable parameter settings are N(3, 2.5) with low ACV values and a
tendency towards higher diversity values.
The comparison of the 4D-performance results of the configurations BSExpo,
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LinExpo, QuadExpo, CGainExpo and BSselfExpo are comparable to those of
BSLin, LinLin, QuadLin, CGainLin and BSselfLin, although the metric values
tend to be lower in the case of the configurations with ExpoDeRP. The prefera-
ble configurations regarding a good convergence-diversity balance are BSExpo
and LinExpo that is comparable in its performance results to BSselfExpo with
γ = 0.22.

6.1.4 2-Point-Edges with Mutation Variation

Fig. 6.35: Performance of BSEdges, LinEd-
ges, QuadEdges and CGainEdges,
(3D-MOP)

Fig. 6.36: Performance of BSselfEdges with
different parameter settings γ, (3D-
MOP)

The following series of tests present the performance results of the configu-
rations with the 2-point-edges recombination and various mutation operators.
The 3D-performance results of BSEdges, LinEdges, QuadEdges and CGainEd-
ges are similar to the performance results of the corresponding configurations
with Random, LiDeRP and ExpoDeRP recombination (Figure 6.11, Figure
6.15 and Figure 6.25): The configuration QuadEdges reveals the highest me-
tric values and CGainEdges with the parameter settings (α, ω) = (1.1, 1.5) the
lowest metric values (Figure 6.35). BSEdges and LinEdges achieve compara-
ble diversity values, but BSEdges reveals remarkably lower ACV values and
therefore a better convergence behavior. Figure 6.36 presents the performan-
ce results of the configurations BSselfEdges with different parameter settings.
Once again, the different learning rates do not reveal any regularity regarding
the convergence and diversity results: The ACV values are comparable but
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Fig. 6.37: Results of CGai-
nEdges with diffe-
rent parameter set-
tings (α, ω), (3D-
MOP)

Fig. 6.38: Results of RanEd-
ges with different
parameter settings
(µ, σ), (3D-MOP)

Fig. 6.39: Results of AAWei-
Edges with different
parameter settings
(µ, σ), (3D-MOP)

reveal high inter-quartile ranges for the values γ = 0.25 and 0.28. The highest
diversity values are achieved for γ = 0.28. A preferable setting for the learning
rate is γ = 0.2 regarding a good convergence-diversity balance. In general,
BSselfEdges achieves remarkably higher ACV and diversity values than the
configurations in Figure 6.35. The increase of the parameters settings of the
configuration CGainEdges achieves similar diversity values, but remarkably in-
creased ACV values (Figure 6.37). Hence, the parameters (α, ω) = (1.1, 1.5) are
regarded as the preferable settings for the configuration CGainEdges achieving
a good convergence-diversity balance. The increase of the parameter µ in the
case of RanEdges results in an increase of the metric values in general (Figure
6.38). The parameters N(3, 1.25) achieve the highest inter-quartile range of
the metric values. The tendency towards higher ACV values is significantly in-
creased compared to the other parameter settings. The parameters N(3, 1.25)

reveal comparable ACV values and higher diversity values than the settings
N(2, 1.25) and are therefore regarded as the preferable settings for the con-
figuration RanEdges. The performance results of AAWeiEdges with different
settings reveal once again no regularity according to an increase of µ or σ (Fi-
gure 6.39). An increase of µ for σ = 1.25 results in increased metric values,
whereas an increase of µ for σ = 2.5 results in a decrease of the metric values.
In general, the metric values of AAWeiEdges have a tendency towards hig-
her values compared to RanEdges. The settings N(4, 2.5) are regarded as the
preferable settings for AAWeiEdges. From a global point of view, the configu-
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rations of CGainEdges achieve the lowest metric values and the configurations
QuadEdges and BSselfEdges reveal a tendency towards the highest metric va-
lues. The configurations BSEdges and LinEdges achieve a good performance
regarding the convergence-diversity balance.
The performance values of all configurations with 2-point-edges recombination
tend to lower metric values than those of LiDeRP and slightly lower than those
of ExpoDeRP.
Figure 6.40 - Figure 6.44 present the 4D-performance results of the configurati-

Fig. 6.40: Performance of BSEdges, LinEd-
ges, QuadEdges and CGainEdges,
(4D-MOP)

Fig. 6.41: Performance of BSselfEdges with
different parameter settings γ, (4D-
MOP)

ons with 2-point-edges recombination. The 4D-performance results of BSEdges,
LinEdges, QuadEdges and CGainEdges with the settings (α, ω) = (1.1, 1.5)

are presented in Figure 6.40. Once again, QuadEdges reveal the highest me-
tric values and CGainEdges the lowest ones. BSEdges and LinEdges achieve
comparable performance results. BSselfEdges with different learning rates re-
veal similar performance results for all learning rate settings (Figure 6.41). In
general, the metric values are of a similar level than QuadEdges. CGainEd-
ges with different parameter settings achieves the lowest metric values of all
configurations (Figure 6.42). The highest metric values are achieved with the
settings (α, ω) = (1.4, 1.8) compared to the other settings, but the performan-
ce differences are quite small. The increase of the parameter µ of RanEdges
results in an increase of the diversity values, the ACV values tend to oscilla-
te with an increase of µ (Figure 6.43). The performance results of RanEdges
with the settings N(3, 1.25) are similar to those of BSEdges and LinEdges.
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Fig. 6.42: Results of CGai-
nEdges with diffe-
rent parameter set-
tings (α, ω), (4D-
MOP)

Fig. 6.43: Results of Ra-
nEdges with diffe-
rent parameter set-
tings (µ, σ), (4D–
MOP)

Fig. 6.44: Results of AAWei-
Edges with different
parameter settings
(µ, σ), (4D–MOP)

The performance results of AAWeiEdges with different parameter settings re-
veal a tendency towards higher ones than those of RanEdges (Figure 6.44). An
increase of µ results in an increase of the diversity values independent of the
parameter σ, whereas no regularity is observable regarding the convergence
behavior by an increase of µ for σ = 1.25 and σ = 2.5. AAWeiEdges with
the settings N(3, 1.25) achieves similar performance results like BSEdges and
LinEdges. From a global point of view, QuadEdges achieves the highest metric
values of all configurations followed by BSselfEdges. The lowest metric values
are achieved by CGainEdges. BSEdges and LinEdges provide very small ACV
values with respectably high diversity values at the same time. The performan-
ce values of the configurations BSEdges and LinEdges are lower than those of
the configurations BSLin and LinLin.
The performance values of all configurations with 2-point-edges recombination
tend to be lower than those of LiDeRP.

6.1.5 Discussion

The results of the test series presented above are summarized under the aspect
of variation operator influence on the performance. The results are further dis-
cussed in a qualitative way. In general, the experiments reveal that mutation
operators mainly influence convergence and diversity performance: QuadDe-
Mut and BSself achieve the highest metric values (lowest convergence and
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highest diversity) in the case of the 3D- and 4D-MOP independent of the re-
combination operator. Furthermore, Thierens’ constant gain mutation achieves
the lowest metric values (highest convergence and lowest diversity) compared
to the other configurations. The configurations with BSadapt result in a good
convergence-diversity balance. The observations are summarized in the results
matrices in the case of the 3D- and 4D-MOP. The results matrices compri-

Table 6.2: Results matrix representing the performance of VONSEA with different variation
operators in the case of 3D-MOP. ACV confidence interval is the upper one in each
cell, diversity confidence interval is the lower one.

Table 6.3: Results matrix representing the performance of VONSEA with different variation
operators in the case of 4D-MOP. ACV confidence interval is the upper one in each
cell, diversity confidence interval is the lower one.

se the confidence intervals for the mean of the VONSEA performance with
various variation operators: The upper intervals in each cell represent the con-
fidence interval of the convergence metric ACV, the lower intervals are the
confidence intervals of the diversity values. The confidence intervals are de-
termined according to the description in Section 5.3. The configurations with
the default mutation parameters are used for comparison. The results of Thie-
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rens’ mutation scheme with the settings α = 1.4 and ω = 1.8 are presented
as these settings have proven to be the best choice in many cases. The op-
timal parameters for BSself, Random mutation and AAWeighted depend on
the configuration composition and the dimension of the MOP. The highest
performance values for diversity and convergence are highlighted in red, the
lowest performance values are highlighted in green. Performance results with
an equally good convergence-diversity balance are highlighted in blue.
Table 6.2 presents the confidence intervals of the different configurations in the
case of the 3D-MOP. The observations of the presented experimental results
are reflected by the confidence intervals: The configurations with Thierens’ mu-
tation scheme are highlighted in green since they revel the lowest performance
values for ACV and diversity compared to the other configurations. BSEdges
is highlighted in lighter green since the confidence limits for the convergence
values are relatively low compared to those of CGainEdges, but the diversi-
ty confidence limits are significantly higher. BSselfRan is also highlighted in
lighter green. In this case, the diversity confidence limits tend to lower values
than those of CGainRan, but the convergence confidence limits are significant-
ly higher. BSLin, BSExpo and RanRan achieve the best convergence-diversity
balance. Otherwise, QuadDeMut reveals the highest metric values in combina-
tion with LiDeRP and ExpoDeRP compared to the other configurations. AA-
Weighted with default settings in combination with 2-point-edges and Random
recombination achieves the highest metric values compared to configurations
with the other configurations.
Table 6.3 presents the confidence intervals of the VONSEA performance with
various variation operators in the case of the 4D-MOP. The configurations with
Thierens’ mutation scheme reveal the lowest performance values compared to
the other configurations, whereas QuadDeMut achieves the highest metric va-
lues. BSRan provides comparable low diversity values with a significant smal-
ler convergence confidence interval. The configurations with AAWeighted also
provide some very high performance metric values. In the case of ExpoDeRP,
QuadDeMut provides significantly lower convergence values than AAWeighted
but tends to higher diversity values, whereas these results are reversed in the
case of 2-point-edges. In the case of Random recombination, QuadDeMut pro-
vides higher diversity values than BSself but a smaller convergence confidence
interval. The configurations with BSadapt reveal a good convergence-diversity
balance in general.
Since the aim of these experiments is the identification of a variation opera-
tor combination that provides a constantly good convergence-diversity balan-
ce independent of the MOP, the comparison of the 3D- and 4D-MOP result
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matrices reveals an accordance in the case of the configurations BSLin and
BSExpo, both revealing an equally good convergence-diversity balance. As a
consequence, BSLin and BSExpo have a high potential as advisable variati-
on operator combination for similar MOPs. In general, the experiments have
shown that the mutation operator has a stringent influence on the VONSEA
performance and this influence is almost independent of the recombination
scheme and the MOP. As assumed in the conclusions of the MOML analysis,
the dynamic deterministic mutation operators comply best with the idea of
supporting the search process of a MOEA in view of a specific global-local
search balance. Mutation operators with varying - in the sense of oscillating -
mutation rates over the performed generations like Random, AAWeighted and
BSself achieve unpredictable performance results.

6.2 Selection Strategies

The following experiments investigate the search performance of the selection
strategies: aggregate selection, ACV-based selection and ACV-random selec-
tion. The selection performance is analyzed regarding high solution diversity
and good selection pressure1 of the entire population at the same time. Special
attention addresses the quality of the non-dominated solutions relative to the
convergence behavior of the entire population. Therefore, the indicator ACVrel

(eq. (5.12)) is determined for each generation. The investigations comprise a
fine-tuning of the selection parameters of the selection strategies: The selection
probability for selecting the currently optimal individuals into the succeeding
generation. The gain of the experimental results is an insight into the guidance
of the search process by the selection strategies and recommendations for the
parameter settings for a potential improvement of the search guidance.
The other components of the configurations are BSadapt mutation, LiDeRP as
recombination, a population size of 100 and three parents for recombination.
BSadap and LiDeRP have been identified as a good variation operator com-
bination with regard to a constantly good convergence-diversity balance and
are therefore used for the following investigations. The indicator ACVscaled

(eq. (5.11)) is used as convergence metric for a more differentiated conside-
ration of the convergence behavior, since all objective values have a scaling-

1The term ’selection pressure’ is used to characterize the strong (high selection pressure)
or respectively weaker (smaller selection pressure) emphasis of selection on the best
individuals. [7]
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independent influence on the indicator values. Special attention is paid to the
non-dominated solutions in each generation. Boxplots are presented to compa-
re the relative quality of the non-dominated solutions identified by the different
configurations.

Fig. 6.45: Performance of aggregate selection
with p0 variation. (3D-MOP)

Fig. 6.46: Performance of ACV-based selecti-
on with p0 variation. (3D-MOP)

Fig. 6.47: Diversity of aggregate selection
with a p0 variation. (3D-MOP)

Fig. 6.48: Diversity of ACV-based selection
with p0 variation. (3D-MOP)

6.2.1 Variation of the Selection Probability by Fixed
Tournament Size

The first series of tests investigate the performance of the three selection stra-
tegies with a variation of the selection probability parameter p0 for selecting
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Fig. 6.49: ACVrel of aggregate selection with
a p0 variation. (3D-MOP)

Fig. 6.50: ACVrel of ACV-based selection
with p0 variation. (3D-MOP)

currently optimal individuals into the succeeding generation. Different proba-
bilities are tested with the fixed tournament size parameter t.s. = 10, firstly
in the case the 3D-MOP. Figure 6.45 represents the effect on the convergence
performance of the aggregate selection with varying probability values p0. The
increase of p0 results in a stringent decrease of the ACVscaled values at different
intensities. The increase of p0 from 0% to 20% results in the strongest and
most continuous decrease of the ACVscaled values. For p0 = 30%, the ACVscaled

results are nearly comparable to p0 = 20% and a further increase of p0 results
in an attenuated decrease of the ACVscaled values. The configuration with the
probability value p0 = 0% - denoted as SUS in the figures - achieves a re-
markably high spread of the ACVscaled values indicating an unstable selection
process. In general, the decrease of p0 also results in a continuous decrease of
the ACVscaled value spread, which is observable by the decrease of the inter-
quartile range.
Figure 6.47 represents the diversity achieved by the configurations with aggre-
gation selection and varying p0 values. The configuration with SUS selection
achieves highest diversity. The further increase of p0 results in an oscillating
decrease of diversity. Furthermore, the SUS configuration also achieves the hig-
hest spread of diversity values at all. The diversity is significantly decreased by
an increase of p0 to 10%. The diversity results of p0 = 30% are comparable to
those of p0 = 10%, the same is valid for the configurations with p0 = 40% and
p0 = 50%. The lowest diversity results are achieved with p0 = 70%. In general,
the comparison of Figure 6.45 to 6.47 reveals that the convergence improve-
ment is once again at the cost of diversity. As the convergence improvement
of p0 = 50% to p0 = 60% is on average higher than the average decrease of
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the diversity values for the same p0 values, the optimal choice is regarded as
p0 = 60%.
The relative quality results of the non-dominated solutions achieved by the con-
figurations with aggregate selection and varying probability values is presented
in Figure 6.49, which depicts the ACVrel values of the different configurations.
The lowest ACVrel values on average are achieved by the configurations with
SUS and p0 = 20%. This indicates that the ACVrel values of the non-dominated
solutions are on average relatively low compared to the ACV-values of the en-
tire population. The configurations with the probability values of p0 = 0% to
p0 = 30% reveal oscillating ACVrel values. The further increase from p0 = 40%

results in a continuous increase of the ACVrel values. This indicates increa-
sing ACV values of the non-dominated solutions compared to the ACV values
of the entire population. Furthermore, the spread of the ACVrel values is al-
so increasing, observable by the increasing inter-quartile ranges. The highest
ACVrel values are achieved by the configuration with p0 = 70%. Nearly all
configurations reveal upwards outliers for the ACVrel values, which indicates
that there are significantly higher values.
These results of aggregate selection strategy reveal that the configurations
with sole front-based SUS or a high probability for selecting individuals into
the succeeding generation by front-based SUS results in unsteady performan-
ce with regard to convergence and diversity. The outcomes of the relative
non-dominated solution quality reveal that an increase of the first-front-based
selection of the tournament set does not guarantee the selection of the highest
quality solutions, since no continuous improvement of the ACVrel values is ob-
servable by an increase of p0.
Figure 6.46, 6.48 and 6.50 present the performance results of the configurati-
ons with ACV-based selection and a variation of the selection probability. The
ACVscaled values presented in Figure 6.46 reveal once again a stringent decre-
ase of the ACVscaled values with an increase of the probability from p0 = 30%

to p0 = 70%. The comparison of convergence performance of the aggregate
selection to the ACV-based selection reveals that the performance results of
the configuration with aggregate selection and p0 = 40% are equal to those
of ACV-based selection with p0 = 30%. Moreover, the performance results of
aggregate selection with p0 = 50% and p0 = 60% are comparable to those
of ACV-based selection with p0 = 40% and p0 = 50%, respectively. Otherwi-
se, the ACV-based selection convergence performance of p0 = 70% tends to
be lower than the aggregate selection convergence performance of p0 = 60%.
These results indicate that the ACV-based selection criterion is more relia-
ble in selecting high quality solutions than the rank-based selection criterion.
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The diversity values of the ACV-based configurations are presented in Figure
6.48. Once again, the improved convergence performance is achieved at the
cost of diversity. The increase of the selection probability results in a steady
decrease of the diversity values except from the configuration with p0 = 40%,
which represents an outlier. The comparison of the diversity performance of
the ACV-based selection with p0 = 30%, 50%, 60% to the one of aggregate
selection with p0 = 40%, 60%, 70% exposes that the diversity values are high-
ly related. The relative quality of the non-dominated solutions detected by
the configurations with ACV-based selection is depicted in Figure 6.50. The
highest ACVrel values are achieved by the configuration with p0 = 40%. In ge-
neral, an increase of the selection probability results in a decrease of the ACVrel

values. Furthermore, every configuration provides upwards outliers revealing
significantly higher values. The ACVrel performance of the configurations with
p0 = 50% and 60% are equal. The decrease of the ACVrel values in the light of
the convergence improvement of the entire population in the case of p0 increase
indicates that the ACV -based selection guarantees the selection of the highly
qualified solutions to a corresponding level. The comparison the the ACVrel

performance of the ACV-based selection to those of the aggregate selection
exposes that the ACVrel values of the ACV-based selection are generally lower
than the corresponding values of the aggregate selection, though the conver-
gence results of the entire population are comparable for different p0 settings.
Since the aggregate selection performance with p0 = 60% is comparable to the
performance results of the ACV-based selection with p0 = 50% with regard
to convergence and diversity and the ACVrel values of the ACV-based selec-
tion are significantly improved compared to aggregate selection, p0 = 50% is
regarded as the optimal parameter setting for ACV-based selection and the
advisable selection configuration in general.
Figure 6.51, 6.53 and 6.55 present the performance results of the configura-

tions with ACV-random selection and a variation of the selection probability.
The convergence performance depicted in Figure 6.51 exposes a stringent de-
crease of the ACVscaled values by an increase of the selection probability. Once
again, the probability decrease for selecting individuals via front-based SUS
results in a decrease of the ACVscaled value spread, observable by the decrease
of the inter-quartile ranges. The diversity performance of the configurations
with ACV-random selection depicted in Figure 6.53 reveals a similar decrease
of the diversity values by an increase of p0. The comparison of the conver-
gence performance of ACV-random selection to the corresponding aggregate
(Figure 6.45) and ACV-based selection performance (Figure 6.46) exposes that
the convergence values of the ACV-random selection performance are general-
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Fig. 6.51: Performance of ACV-random selec-
tion with p0 variation. (3D-MOP)

Fig. 6.52: Performance of aggregate selection
with p0 variation. (4D-MOP)

Fig. 6.53: Diversity of ACV-random selection
with p0 variation. (3D-MOP)

Fig. 6.54: Diversity of aggregate selection
with p0 variation. (4D-MOP)

ly significantly lower than those of the ACV-based and aggregate selection
performance for high p0 settings: More precise, the ACV-random convergence
performance with p0 = 10% is comparable to aggregate selection convergence
performance with p0 = 50% and to ACV-based selection performance with
p0 = 40%. Furthermore, ACV-random selection with p0 = 20% achieves a con-
vergence performance between the performance results of aggregate selection
with p0 = 60% (advisable setting) and 70%. The ACV-random results with
p0 = 30% are comparable to aggregate selection with p0 = 70%. The compari-
son results of the diversity performance are similar: The diversity performance
of ACV-random selection with p0 = 10% is comparable to the results of aggre-
gate selection with p0 = 60% (Figure 6.47) and to ACV-based selection with
the advisable setting p0 = 50% (Figure 6.48). Furthermore, the ACV-random
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Fig. 6.55: ACVrel of ACV-random selection
with p0 variation. (3D-MOP)

Fig. 6.56: ACVrel of aggregate selection with
p0 variation. (4D-MOP)

performance with p0 = 20% tends to be lower than the performance of ag-
gregate selection and the ACV-random performance of p0 = 30%, which is
slightly higher than the performance of ACV-based selection with p0 = 70%.
Figure 6.55 presents the performance results of the relative non-dominated
solution quality of the configurations with ACV-random selection. The incre-
ase of the selection probability results tends to an oscillating decrease of the
ACVrel values. Once again, all configurations provide outliers revealing signifi-
cantly higher ACVrel values. The range of ACVrel values for the configuration
with p0 = 30% is the highest of all configurations and the ACVrel values for
p0 = 40% tend to be the lowest for all configurations. The comparison of
the ACVrel values of ACV-random selection to the ACVrel values of aggregate
(Figure 6.49) and ACV-based selection (Figure 6.50) reveals that the level of
ACVrel values is generally lower than those of aggregate selection, but tends
to be higher than those of ACV-based selection in general. As the highest di-
versity values are achieved for the ACV-random configurations with p0 = 10%

with the lowest ACVrel values for the same configuration, this configuration is
regarded as the advisable setting for the 3D-MOP. In general, the results of
the ACV-random selection performance reveal the worst overall performance.
This empirically verifies that the fitness-proportionate selection is superior to
a random individual selection.

The presentation of the following experimental results refers to the performan-
ce of the selection strategies with a variation of the selection probability in the
case of the 4D-MOP. The results are additionally discussed in the light of the
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corresponding performance results of the 3D-MOP.
Figure 6.52, 6.54 and 6.56 present the 4D-performance results of configurations
with aggregate selection and a variation of the selection probability. The con-
vergence performance of these configurations is depicted in Figure 6.52. Similar
to the 3D-performance results of the configurations with aggregate selection
(Figure 6.45), an increase of the selection probability results in a continuous
decrease of the ACVscaled values. Equally to the 3D-performance results, the
ACVscaled results of the configurations with p0 = 20% and 30% are compara-
ble. The spread of the ACVscaled values of the different configurations slightly
decreases with an increase of p0. This level of decrease is lower than in the
case of the corresponding 3D-performance results as a consequence of the hig-
her percentage of the non-dominated solutions and the lower front diversity,
as documented in the landscape analysis chapter 3.7. Figure 6.54 depicts the
diversity results of the different configurations with aggregate selection. Simi-
lar to the corresponding 3D-diversity results (Figure 6.47), an increase of the
selection probability results in an oscillating decrease of the diversity values,
albeit to a lesser extent. In contrast to the 3D-results, the tendency towards
highest diversity values are achieved for the configuration with p0 = 10% in-
stead of the SUS configurations. The diversity results of the configurations
with p0 = 40% and 50% are comparable. The relative quality results of the
non-dominated solutions achieved by configurations with aggregate selection
and varying probability values are presented in Figure 6.56. Similar to the
corresponding 3D-results (Figure 6.49), there is a continuous increase of the
ACVrel values observable by an increase of p0 starting at p0 = 40% indicating
that the ACV values of the non-dominated solutions increase more sharply
relative to the ACV values of the entire population. Nearly all configurations
provide outliers, who are closest to the maximal value. The tendency towards
lowest ACVrel values are achieved for configurations with p0 lower than 40%.
As the diversity values of the configurations with p0 = 40% and 50% are
comparable, a slight decrease of the diversity values achieved by the configu-
ration with p0 = 60% is observable in comparison to the configurations with
p0 = 40%, 50%. The ACVscaled decrease by an increase of p0 = 50% to 60% is
significant. Therefore, the setting of p0 = 60% is advisable.
Figure 6.57, 6.59 and 6.61 present the 4D-performance results of the configura-
tions with ACV-based selection and a variation of the selection probability. The
convergence performance depicted in Figure 6.57 exposes a stringent decrease
of the ACVscaled values by an increase of the selection probability and there-
fore reveals similar performance results as in the case of the 3D-performance
results (Figure 6.46). Figure 6.59 presents the diversity results: Configurati-
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Fig. 6.57: Performance of ACV-based selecti-
on with p0 variation. (4D-MOP)

Fig. 6.58: Performance of ACV-random selec-
tion with p0 variation. (4D-MOP)

Fig. 6.59: Diversity of ACV-based selection
with p0 variation. (4D-MOP)

Fig. 6.60: Diversity of ACV-random selection
with p0 variation. (4D-MOP)

ons with p0 = 10% and 30% are comparable in the performance results. The
configuration with p0 = 20% achieves the highest diversity values. Configura-
tions starting by p0 = 30% reveal a continuous decrease of the diversity values.
The comparison of these results to the performance results of aggregate se-
lection reveals lower convergence performance on average for the ACV-based
selection (Figure 6.52). The comparison of the diversity values reveals that the
performance results with p0 = 10% and 30% are similar to those of aggre-
gate selection with p0 = 40% and 50%. The relative non-dominated solution
quality is presented in Figure 6.61. The ACVrel values continuously decrease
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Fig. 6.61: ACVrel of ACV-based selection
with p0 variation. (4D-MOP)

Fig. 6.62: ACVrel of ACV-random selection
with p0 variation. (4D-MOP)

by an increase of the probability values. The ACVrel values of the configu-
rations p0 = 20% and 30% are nearly comparable. The comparison of these
performance results to the ACVrel values of the aggregate selection (Figure
6.56) reveals that the values of configurations with ACV-based selection are
in general significantly lower. The convergence results of ACV-based selection
with p0 = 50% tend to be lower than the convergence performance of aggre-
gate selection with p0 = 60%, but the diversity values of these configurations
with ACV-based selection are remarkably lower than those of configurations
with aggregate selection. Furthermore, the ACVrel values of ACV-based se-
lection are significantly lower than those of aggregate selection for the latter
mentioned probability values. The clear performance advantage of ACV-based
selection over aggregate selection - as described in the case of the 3D-MOP - is
not given by these observations. Therefore, the question concerning an optimal
selection strategy for the 4D-MOP is a question concerning a trade-off between
higher diversity and higher relative non-dominated solution quality.
The 4D-performance results of the configurations with ACV-random selection
and various probability values are presented in the Figure 6.58, 6.60 and 6.62.
The convergence performance reveals once more a continuous decrease of the
ACVscaled values with an increase of the probability values (Figure 6.58). The
convergence performance results of the configurations with p0 = 30% and 40%

are similar. The diversity values also reveal a nearly continuous decrease of
the diversity values with an increase of p0. The configurations with p0 = 20%

tend to have the highest diversity values. The performance results of the con-
figurations with p0 = 30% and 40% are comparable, though the configurations
with p0 = 40% provide slightly increased diversity values. Figure 6.62 presents
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the relative non-dominated solution quality of the configurations with ACV-
random selection. In general, the performance results of ACVrel decrease in an
oscillating manner. The configurations with p0 = 10% and 30% provide a wide
spread of ACVrel values, which is observable by higher inter-quartile ranges
as well as outliers. All configurations provide outliers, partly in a remarka-
ble distance from the maximal value. The comparison of these performance
results to the 4D-results of aggregate and ACV-based selection reveals that
ACV-random selection provides the worst performance results: ACV-random
configurations achieve in general a tendency towards lower convergence perfor-
mance compared to the configurations with aggregate selection (Figure 6.52),
the ACV-random configuration with p0 = 10% is comparable in convergence
performance to the aggregate configurations with p0 = 50%. A further increa-
se of p0 starting from 10% results in lower ACVscaled values. Compared to the
ACV-based configurations (Figure 6.57), the convergence performance of the
ACV-random configurations tends to be higher than those of the ACV-based
configurations. The configurations of the selection strategies with p0 = 50% are
comparable. Therefore, the convergence performance of ACV-random selecti-
on lies somewhere in-between those of aggregate and ACV-based selection. On
the other side, the diversity performance of the ACV-random configurations
is in general lower than the diversity of aggregate and ACV-based selection.
Only, the configurations results of ACV-random selection with p0 = 10% are
of the same level than the one of ACV-based configuration with p0 = 50%.
Moreover, the quality performance results of the ACV-random configurations
are in general significantly lower than those of aggregate selection, but tend
to be higher than those of ACV-based selection. The ACVrel results of ACV-
random and ACV-based selection for p0 = 10% are comparable. Therefore,
ACV-random is not able to outperform the ACV-based or aggregate selection,
but the parameter p0 = 10% in the case of ACV-random selection is regarded
as advisable for the 4D-MOP.

6.2.2 Variation of the Tournament Size by Fixed
Selection Probability

The following series of tests investigate the configurations with different selec-
tion strategies and a variation of the parameter ts with the aim of a further
performance improvement in terms of a good convergence-diversity balance
and a high relative non-dominated solution quality. The advisable selection
probability settings p0 of each selection strategy, which are considered as the
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most advisable according to the experiments presented above, are applied for a
further performance improvement by a variation of the parameter ts. The ex-
pected results are a closer insight into the performance changes by an increase
or decrease of the default setting ts = 10 in the case of the 3D- and 4D-MOP.
Moreover, the hypothesis with regard to the interdependence of the tourna-
ment size and selection pressure is empirically verified: the selection pressure is
modifiable by varying the ts setting. More precisely, the increase of ts results
in a higher selection pressure.
Figure 6.63, 6.65 and 6.67 present the 3D-performance results of the confi-

Fig. 6.63: Performance of aggregate selection
with ts variation and p0 = 60%. (3D-
MOP)

Fig. 6.64: Performance of ACV-based selecti-
on with ts variation and p0 = 50%.
(3D-MOP)

Fig. 6.65: Diversity of aggregate selection
with ts variation and p0 = 60%. (3D-
MOP)

Fig. 6.66: Diversity of ACV-based selection
with ts variation and p0 = 50%. (3D-
MOP)

168



6 Experimental Results

Fig. 6.67: ACVrel of aggregate selection with
ts variation and p0 = 60%. (3D-
MOP)

Fig. 6.68: ACVrel of ACV-based selection
with ts variation and p0 = 50%. (3D-
MOP)

gurations with aggregate selection and a variation of ts. The increase of ts

starting by 10 results in an improvement of the convergence performance by a
decrease of the ACVscaled values as depicted in Figure 6.63. The convergence
performance of the configurations with ts < 10 are equal. This indicates that
the higher solution number in the tournament set provides a more discerning
selection of an individual from the first front. The diversity of these configura-
tions depicted in Figure 6.65 reveals on average only very slight changes of the
values by the increase of ts. The tendency towards highest diversity values are
achieved for ts = 10. The relative non-dominated solution quality, as presented
in Figure 6.67, reveals comparable ACVrel values for the configurations with
ts = 6 and 8. The highest ACVrel values are achieved for ts = 12, the tendency
towards very low values is achieved by the configurations with ts = 15. Nearly
all configurations provide outliers, which are very close to the maximal values.
In general, the question for the advisable ts value is a trade-off between a
higher computational complexity in every iteration caused by the ranking of
the higher number of solutions in the tournament set and the performance im-
provement regarding the convergence-diversity balance as well as the relative
non-dominated solution quality. According to these results, ts = 10 is regarded
as advisable setting in the case of aggregate selection.
Figures 6.64, 6.66 and 6.68 present the 3D-performance results of the confi-
gurations with ACV-based selection and different ts values. The convergence
results of these configurations are generally comparable among each other, sin-
ce the differences between the ACVscaled values of the various ts-configurations
are only slight. The lowest range of ACVscaled values are achieved for the confi-
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guration with ts = 10. The tendency towards lowest ACVscaled values in general
are achieved for ts = 15, since the higher number of solutions in the tournament
set provides a more discerning selection within the solutions with the lowest
ACVscaled values. The diversity performance of the ACV-based configurations
is presented in Figure 6.66. The increase of the ts reveals an improvement of
diversity up to ts = 12, the diversity results of the configurations ts = 12 and
15 are similar. The highest improvement is achieved by the increase of ts = 6

to 10. The relative non-dominated solution quality is depicted in Figure 6.68
and reveals a decrease of the ACVrel values by an increase of ts, only the per-
formance of the configuration ts = 12 are slightly increased in this row. The
nearly continuous decrease of the ACVrel in the light of the convergence results
of the entire population is once more a consequence of the increasing solution
number in the tournament set providing a more and more discerning selection.
An advisable setting for ts is - as a consequence of these results - the choice
of ts = 10 as a trade-off between a good convergence-diversity performance,
high relative non-dominated solution quality and an acceptable computatio-
nal complexity in each iteration step. The computational complexity is mainly
caused by the calculation of the ACVscaled values of all solutions in the tourna-
ment set, which is comparably lower than the ranking of the these solutions.
Furthermore, the comparison results of the configurations with aggregate and
ACV-based selection reveals once again an advantage of ACV-based selection
over aggregate selection in the case of ts = 10 for both configurations: The con-
vergence performance of the configurations with AVC-based selection are on
the same level than the convergence performance of aggregate configurations
with ts = 10 (Figure 6.63). Moreover, the diversity performance of configu-
rations with ACV-based selection and ts starting by 10 is comparable to the
diversity performance of aggregate selection (Figure 6.65). The main advan-
tage of ACV-based selection is the exceptionally high relative non-dominated
solution quality, which is generally significantly better than for the configura-
tions with aggregate selection. Therefore, ACV-based selection with ts = 10 is
regarded as superior to configurations with aggregate selection.
The performance results of the configurations with ACV-random selection

and a variation of ts are presented in Figure 6.69, 6.71 and 6.73. In general,
the variation of ts does not reveal an observable performance alteration: The
convergence performance of the configurations are nearly comparable, the ten-
dency towards lowest ACVscaled values is achieved for ts = 8 and tend to be the
highest for ts = 10 as well as 12. Diversity is improved by an increase of ts up
to ts = 10 (Figure 6.71), but decreases afterwards. Therefore, the best diversity
performance is achieved for ts = 10. The relative non-dominated solution qua-
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Fig. 6.69: Performance of ACV-random selec-
tion with ts variation and p0 = 10%.
(3D-MOP)

Fig. 6.70: Performance of aggregate selection
with ts variation and p0 = 60%. (4D-
MOP)

Fig. 6.71: Diversity of ACV-random selection
with ts variation and p0 = 10%. (3D-
MOP)

Fig. 6.72: Diversity of aggregate selection
with ts variation and p0 = 60%. (4D-
MOP)

lity is continuously improved with an increase of ts. The lowest range of ACVrel

values is achieved for ts = 10. All configurations provide outliers indicating in
some cases remarkably higher values. These results reveal that the variation of
the tournament size has no clear effect neither on the convergence nor on the
diversity in the case of ACV-random selection with p0 = 10%. Furthermore,
configurations with ACV-random selection do not provide the opportunity to
outperformance the configurations with ACV-based or aggregate selection by
a variation of ts.
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Fig. 6.73: ACVrel of ACV-random selection
with ts variation and p0 = 10%. (3D-
MOP)

Fig. 6.74: ACVrel of aggregate selection with
ts variation and p0 = 60%. (4D-
MOP)

Summarizing, the influence of the selection parameter variation on the perfor-
mance of the different configurations depends on the specific selection strategy.
In the case of the configurations with aggregate selection, higher values of ts
result in an improved convergence performance as a consequence of the more
discerning selection caused by the larger range of solutions in the tournament
set. However, the diversity is stagnating and the relative non-dominated so-
lution quality is not generally improved. This demonstrates the effect that
the random selection of a first-front solution does not guarantee the selection
of the fittest individual according to all objectives. In the case of configura-
tions with ACV-random selection, lower values of ts result in a decrease of
the diversity values as well as a worse relative non-dominated solution quality.
Otherwise, higher values of ts achieve stable convergence and diversity per-
formance with significantly increased relative non-dominated solution quality.
ACV-based selection overcomes the disadvantage of aggregate selection, since
the larger solution range in the tournament set provides a higher range of high
quality solutions to be selected into the succeeding generation. No regular in-
fluence of ts variation is observed in the case of ACV-random selection. This is
a consequence of the fact that random individual selection is not a discerning
selection strategy, which is generally affected by a larger solution range in the
tournament set.

The following experiments present the performance of the configurations with
different selection strategies and a variation of ts in the case of the 4D-MOP.
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Fig. 6.75: Performance of ACV-based selecti-
on with ts variation and p0 = 50%.
(4D-MOP)

Fig. 6.76: Performance of ACV-random selec-
tion with ts variation and p0 = 10%.
(4D-MOP)

Fig. 6.77: Diversity of ACV-based selection
with ts variation and p0 = 50%. (4D-
MOP)

Fig. 6.78: Diversity of ACV-random selection
with ts variation and p0 = 10%. (4D-
MOP)

The results are additionally discussed in the light of the observations of the
selection strategy-specific parameter influence in the case of the 3D-MOP. Fi-
gure 6.70, 6.72 and 6.74 present the 4D-performance results of the configu-
rations with aggregate selection and a ts variation. An increase of ts results
in continuous decrease of the ACVscaled values and therefore in improved con-
vergence behavior (Figure 6.70). These convergence results are comparable to
those of the corresponding 3D-results of the configurations with aggregate se-
lection (Figure 6.63). Furthermore, the convergence results of ts = 10 and 12
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Fig. 6.79: ACVrel of ACV-based selection
with ts variation and p0 = 50%. (4D-
MOP)

Fig. 6.80: ACVrel of ACV-random selection
with ts variation and p0 = 10%. (4D-
MOP)

are comparable. The diversity results reveal no regularity by an increase of
ts (Figure 6.72). The tendency towards highest diversity values is achieved
for ts = 8, 10 and 15, lowest diversity is achieved for ts = 6. The relative
non-dominated solution quality of these configurations is presented in Figure
6.74. The ACVrel values are increased by an increase of ts. The tendency to-
wards the highest ACVrel values are achieved with ts = 12. All configurations
provide outliers, which are mostly close to the maximal values. Once again,
the relative non-dominated solution quality is comparable to the correspon-
ding 3D-results (Figure 6.67). The configurations with ts = 10 achieve once
again a good convergence-diversity balance with a tendency towards highest
diversity values and the second lowest convergence values as well as a relative
non-dominated solution quality on a medium level in comparison to the other
configurations. Therefore, the configuration with aggregate selection ts = 10

is regarded as an advisable parameter setting.
The performance results of the configurations with ACV-based selection are
depicted in Figure 6.75, 6.77 and 6.79. In general, these performance results
are similar to those of the 3D-performance results: The ACVscaled values are
very similar independent of ts (Figure 6.75). The lowest range of ACVscaled

values is achieved for the configurations with ts = 12. The diversity values
are increased by a rise of ts and are more similar for ts values equal or higher
than 10 (Figure 6.77). The relative non-dominated solution quality is depicted
in Figure 6.79 and reveals generally decreasing ACVrel values by an increase
of ts. Otherwise, the highest range of ACVrel values as well as the highest
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values in general are achieved for ts = 15. All configurations achieve outliers,
which are in some cases remarkably higher than the maximal values. Com-
pared to the 3D-performance results of the configurations with ACV-based
selection, the decrease is more stringent in the case of the 3D-MOP (Figure
6.68). As the convergence values tend to be very low for the configurations
with ACV-based selection and ts = 10, the diversity values are the second
highest and the relative non-dominated solution quality is on a medium level
compared to the other configurations, the setting ts = 10 is regarded as the
advisable setting for this configuration. The comparison of these results to the
4D-performance results of the configurations with aggregate selection reveals
that the convergence performance of both are absolutely comparable, but the
diversity level is in general significantly lower in the case of the configurati-
ons with ACV-based selection. Otherwise, the relative non-dominated solution
quality is significantly improved in the case of ACV-based selection compared
to aggregate selection. The decision for the better selection strategy- aggrega-
te or ACV-based selection - is a trade-off between higher diversity within the
selected solutions or higher relative non-dominated solution quality.
The performance results of configurations with ACV-random selection and a
variation of ts are presented in Figure 6.76, 6.78 and 6.80. The performan-
ce results are comparable to the corresponding 3D-results: The convergence
performance does not reveal any regular performance variation by an increase
of ts (Figure 6.76). The median values are equal for all configurations. The
diversity performance also reveals no regularity in performance variation by
an increase of ts (Figure 6.78). The configuration with ts = 10 tends to achie-
ve the lowest range of diversity values among the different ts settings as well
as the lowest ones in general. The relative non-dominated solution quality is
nearly comparable (Figure 6.79). The tendency towards lowest performance
results are achieved for ts = 8, 10 and 12. All configurations provide outliers
indicating in some cases significantly higher performance values. Once again,
since the random selection criterion is not discernible, the increased solution
range of the tournament set does not influence the performance results in a
predictable way and therefore does not influence the selection pressure. The
comparison to the 4D-performance results of aggregate and ACV-based selec-
tion with the ts variation reveals that ACV-random selection performance lies
somewhere in-between aggregate and ACV-based selection: Convergence and
diversity results are remarkably higher than those of ACV-based selection and
on the similar level than the aggregate selection performance. Otherwise, the
relative non-dominated solution quality of the configurations with ACV-based
selection is significantly lower than the performance of ACV-random selection.
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The relative quality performance level of the configurations with ACV-random
selection is lower compared to aggregate selection. As a consequence, the con-
figurations with ACV-random selection are not able to outperform neither
aggregate nor ACV-based selection.

6.2.3 Investigation of the Interdependency between ts

and p0

The following series of tests investigate the interdependence between ts and p0

of the selection strategies in the case of the 3D- and 4D-MOP. The different
configurations with various settings for ts and p0 are examined according to
convergence, diversity and relative non-dominated solutions quality to gain an
insight into the issue of a performance regularity referring to these two selec-
tion parameters. The remaining configuration settings are the same as in the
last series of tests. Theoretical considerations result in the hypothesis that a
great tournament set in combination with a high selection probability result in
a more discerning selection performance and therefore ensure a higher selection
probability for high quality solutions.
Figure 6.81 depicts the 3D-performance results of aggregate selection strategy

Fig. 6.81: 3D-results of aggregate selection with p0 = 20% and a variation of ts.

with a selection probability of p0 = 20%. Convergence and diversity perfor-
mance is comparable for ts = 6 and ts = 8, since the ACVscaled and diversity
values are of the same level. Furthermore, the convergence and the diversity
metric values for ts = 6, 8 are the highest. An increase of ts results in a decre-
ase of these metric values. The ACVrel performance values, which assess the
ACV values of the first front individuals in relation to the ACV values of the
entire population, are the lowest for ts = 10. The configurations with ts = 6
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Fig. 6.82: 3D-results of aggregate selection with p0 = 40% and a variation of ts.

Fig. 6.83: 3D-results of aggregate selection with p0 = 60% and a variation of ts.

Fig. 6.84: 3D-results of aggregate selection with p0 = 70% and a variation of ts.

and ts = 14 reveal a tendency towards highest ACVrel values.
Figure 6.82 presents the performance results of the aggregate selection with
p0 = 40%. There is no regularity observable regarding the convergence and di-
versity metric values by an increase of ts. The highest ACVscaled and diversity
values are achieved for ts = 6. From a global point of view, the convergence
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and diversity performance are lower for higher ts values. The diversity results
of ts = 6 and ts = 12 are comparable. The ACVrel values are all of the same
level for different ts settings and are therefore comparable.
The performance results of aggregate selection with p0 = 60% are presented
in Figure 6.83. Once again, convergence and diversity metric values are the
highest for ts = 6 and 8. A further increase of ts results in a decrease of the
ACVscaled values and therefore in an improved convergence behavior. Diversity
performance and ACVrel values are comparable for all ts settings.
The performance results of aggregate selection with p0 = 70% are depicted in
Figure 6.84. The convergence behavior is improved by an increase of ts ob-
servable by the ACVscaled values. Diversity values are slightly increased and
comparable for ts = 10 and higher. There is no regularity observable regar-
ding the ACVrel values. The highest ACVrel values are achieved for ts = 12. In
general, the configurations with higher p0 and ts values achieve a better per-
formance in form of lower ACVscaled values and higher or comparable diversity
values. A significant improvement of the ACVrel values is not observable by
these settings.
Figure 6.85 depicts the 3D-performance results of ACV-based selection with

Fig. 6.85: 3D-results of ACV-based selection with p0 = 10% and a variation of ts.

p0 = 10%. A tournament size lower than 10 results in similar performance
results for ACVscaled, diversity and ACVrel. These performance results reveal
the highest ACVscaled and diversity values as well as the lowest ACVrel values.
The configurations with ts = 10 and higher achieve decreased convergence and
diversity values, whereas the ACVrel values are increased. Figure 6.86 presents
the performance results of the configurations with p0 = 30%. The highest
convergence and diversity values are achieved for ts = 6. A further increase
of ts results in remarkably decreased convergence and diversity values. The
performance values are generally lower for p0 = 30% than for p0 = 10% in-
dependent of ts. This is a potential consequence of the higher probability to
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Fig. 6.86: 3D-results of ACV-based selection with p0 = 30% and a variation of ts.

Fig. 6.87: 3D-results of ACV-based selection with p0 = 50% and a variation of ts.

Fig. 6.88: 3D-results of ACV-based selection with p0 = 70% and a variation of ts.

select individuals with the lowest ACV values. The performance results of the
configurations with p0 = 50% reveal a quite different behavior (Figure 6.87):
The ACVscaled values are indifferent by the variation of ts, whereas the di-
versity values are remarkably increased for ts = 10 and higher. The ACVrel

values are decreased for ts = 10 and higher. The performance results of the
configurations with p0 = 70% are completely different (Figure 6.88): The lo-
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west convergence and diversity values are achieved for ts = 6. An increase of
ts results in an increase of convergence and diversity. The ACVrel values are
decreased by an increase of ts.
These results (Figure 6.85 - Figure 6.88) do not reveal any interdependency
between ts and p0. Otherwise, the hypothesis mentioned in the introduction of
this section is regarded as confirmed: Higher values for p0 - or more concrete
for p0 = 50% and higher - in combination with high ts settings reveal a mo-
re discerning selection, since the ACV values of the non-dominated solutions
are small relative to the ACV values of the entire population, observable by
the generally lower ACVrel values for p0 = 50% or higher as well as ts = 10

and higher. Moreover, the configurations with the settings p0 = 30% and 50%

achieve lower or comparable ACVscaled values with comparable or higher di-
versity values at the same time in the case of ts = 10 or higher.
Figure 6.89 depicts the 3D-performance results of ACV-random selection with

Fig. 6.89: 3D-results of ACV-random selection with p0 = 0% (random selection) and a
variation of ts.

Fig. 6.90: 3D-results of ACV-random selection with p0 = 10% and a variation of ts.

a selection probability of p0 = 0% referring to the selection of individuals with
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Fig. 6.91: 3D-results of ACV-random selection with p0 = 20% and a variation of ts.

Fig. 6.92: 3D-results of ACV-random selection with p0 = 30% and a variation of ts.

the lowest ACVscaled value. This means that the individuals for the succeeding
generation are sole randomly selected. The ACVscaled values are decreased by
an increase of ts. The diversity values do not reveal any regularity, the highest
diversity values are achieved for ts = 10. The lowest ACVrel values are achie-
ved for ts = 10. The ACVrel performance of the configurations with ts = 6, 8

and 14 are on the same level.
Figure 6.90 depicts the performance results of the ACV-random selection with
p0 = 10%. There is no regularity observable regarding the ACVscaled values
by an increase of ts. The diversity is slightly increased by an increase of ts.
The ACVrel values are decreased by an increase of ts as the ACVrel values are
decreased. This indicates relatively small ACV values of the non-dominated
solutions compared to the ACV values of the entire population
The performance results of aggregate selection with p0 = 20% are presented
in Figure 6.91. The worst convergence behavior is achieved with ts = 6. A
further increase of ts results in a slight decrease of the ACVscaled values and
therefore in an optimized convergence performance. A regularity is not obser-
vable regarding the diversity values by an increase of ts. Otherwise, a decrease
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of the ACVrel values is observable by an increase of ts. Figure 6.92 presents
the performance results of the configurations with p0 = 30%. The convergence
is improved for ts = 10 and higher. Furthermore, the ACVscaled values are
comparable for ts values of 6 and 8. The lowest diversity values are achieved
for ts = 6, those of ts = 8 and higher are remarkably improved and nearly
comparable. The ACVrel values increase slightly with an increase of ts from 6

to 10. The lowest ACVrel values are achieved with ts = 12. A further increase
to ts = 14 presents high ACVrel values. In general, the hypothesis stated at
the beginning of this section is regarded as confirmed: The configurations with
p0 = 20% and 30% achieve improved convergence behavior with increased or
comparable diversity behavior at the same time in the case of ts = 10 and
higher. Except from some outliers, the ACVrel values are also increased for
higher ts values.

Fig. 6.93: 4D-results of aggregate selection with p0 = 20% and a variation of ts.

Fig. 6.94: 4D-results of aggregate selection with p0 = 40% and a variation of ts.

In the following, the 4D-performance results of the selection strategies with a
p0 and ts variation are presented. Figure 6.93 depicts the performance results of
aggregate selection with p0 = 20%, which indicates that 20% of the individuals
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Fig. 6.95: 4D-results of aggregate selection with p0 = 60% and a variation of ts.

Fig. 6.96: 4D-results of aggregate selection with p0 = 70% and a variation of ts.

are selected from the first front into the succeeding generations. The boxplots
reveal similar convergence and diversity performance for ts = 6 and ts = 8

as well as the highest ACVscaled and diversity values compared to the other ts
settings. An increase of ts to 10 and higher reveals a tendency towards lower
diversity and ACVscaled values. The configurations with ts = 12 and ts = 14

achieve the highest ACVrel values and therefore the highest ACV values of the
non-dominated solutions relative to the ACV value of the corresponding entire
population. Furthermore, the ACVrel values reveal no regularity by a decrease
of ts.
Figure 6.94 presents the 4D-performance results of aggregate selection with
p0 = 40%. Once again, similar convergence and diversity results are achieved
for ts = 6 and ts = 8. An increase of ts results in a decrease of the ACVscaled

value and therefore in an improved convergence performance. The variation of
ts does not reveal any regularity regarding the diversity values. Highest diver-
sity is achieved for ts = 8 and 14 and the lowest for ts = 10 and 12. The lowest
ACVrel values are achieved for ts = 6 and 8. An increase of ts results in an
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increase of the ACVrel values.
The 4D-performance results of the configurations with p0 = 60% are presen-
ted in Figure 6.95. The highest ACVscaled values are achieved for ts = 6. The
increase of ts results in a significant decrease of the ACVscaled values. The con-
vergence performance for ts = 10 and ts = 12 are similar. The highest and also
comparable diversity performance is achieved for ts = 8, 10 and 12. Regarding
the ACVrel values, an increase of ts results in an increase of the ACVrel values.
The 4D-performance results of the last category of configurations with ag-
gregate selection and p0 = 70% are depicted in Figure 6.96. Once again, the
configuration with ts = 6 reveals the highest ACVscaled values. An increase of
ts results in a general decrease of the ACVscaled values and in a slight decrease
of the diversity values. Furthermore, the increase of ts results in a continuous
increase of the ACVrel values. The ACVrel are comparable for ts = 12 and 14.
From a global point of view, the increase of the selection probability to select
individuals from the first front results in a decrease of the ACVscaled values
with the increase of ts. The decrease of ACVscaled values often correlates with
the decrease of diversity. Furthermore, these performance results confirm the
hypothesis that the individual selection from the first front does not guarantee
the selection of the fittest individuals according to all objectives: The increase
of ts results in an increase of ACVrel values indicating no clear improvement
of the non-dominated solution quality.

Fig. 6.97: 4D-results of ACV-based selection with p0 = 10% and a variation of ts.

Figure 6.97 presents the 4D-performance results of the configurations with
ACV-based selection and p0 = 10%. The highest ACVscaled values are achie-
ved for ts = 6 and a further increase of ts results in a slight decrease of the
ACVscaled values. The highest diversity values are achieved with ts = 6 and
ts = 14. The diversity values for the other ts setting are slightly lower. The
lowest ACVrel values are achieved for ts = 6. An increase of ts results in an
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Fig. 6.98: 4D-results of ACV-based selection with p0 = 30% and a variation of ts.

Fig. 6.99: 4D-results of ACV-based selection with p0 = 50% and a variation of ts.

Fig. 6.100: 4D-results of ACV-based selection with p0 = 70% and a variation of ts.

increase of the ACVrel values. The ACVrel values for ts = 8 and ts = 14 are
comparable.
The 4D-performance results of the configurations with p0 = 30% are depicted
in Figure 6.98. In this case, there is no regularity observable regarding conver-
gence and diversity by a variation of ts. The highest ACVrel values are achieved
for ts = 6, 10. Higher ts values reveal a tendency towards lower ACVrel values
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indicating improved non-dominated solution quality relative to the convergence
performance of the entire population.
The 4D-performance results of the configurations with p0 = 50% (Figure 6.99)
reveal comparable ACVscaled values and the increase of ts results in a remar-
kable increase of the diversity values. The increase of ts results in a decrease
of the ACVrel values and therefore once again in improved non-dominated so-
lutions.
The 4D-performance results of the configurations with p0 = 50% (Figure 6.100)
reveal comparable ACVscaled values for ts = 6, 10 and 12. The highest ACVscaled

values are achieved for ts = 8, 14. A slight increase of the diversity values is
observable by an increase of ts. The ACVrel values are significantly decreased
by an increase of ts, except from the outlier ts = 14.
In general, the increase of the selection probability up to 50% and higher re-
veals improved ACVscaled values, usually independent of ts at the same time.
The diversity is increased by higher ts values up to 10 and higher. Furthermo-
re, ts ≥ 10 reveals a more discerning selection. Concluding, higher ts values
in combination with higher selection probabilities support a more discerning
selection.

Figure 6.101 presents the 4D-performance results of the configurations with

Fig. 6.101: 4D-results of ACV-random selection with p0 = 0% (random selection) and a
variation of ts.

ACV-random selection and a selection probability of p0 = 0%, the percentage
of selecting individuals into the succeeding generation according to the lowest
ACV value. The ACVscaled values are highly comparable for all ts settings.
Furthermore, there is no regularity observable regarding the diversity perfor-
mance and the increase of ts. The highest diversity values are achieved for
ts = 10 and 14. The ACVrel values are the highest for ts = 6 and 8, a further
increase of ts results in a general decrease of ACVrel values.
The performance results of the configurations with ACV-random selection and
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Fig. 6.102: 4D-results of ACV-random selection with p0 = 10% and a variation of ts.

Fig. 6.103: 4D-results of ACV-random selection with p0 = 20% and a variation of ts.

Fig. 6.104: 4D-results of ACV-random selection with p0 = 30% and a variation of ts.

p0 = 10% (Figure 6.102) reveal an oscillating convergence and diversity perfor-
mance by an increase of ts. The ACVrel values are nearly comparable for all ts
settings. The performance results of a further increase of p0 to 20% reveal once
again highly comparable ACVscaled values (Figure 6.103). The lowest ACVscaled

values are achieved for ts = 8. The highest diversity values are achieved for
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ts = 6 and 10. A further increase of ts results in a continuous decrease of
the diversity values. The highest ACVrel values are achieved for ts = 6. An
increase of ts up to 10 and higher results in lower ACVrel values.
The performance results of the configurations with p0 = 30% reveal once again
highly comparable ACVscaled values for ts = 6 and 8 (Figure 6.104). A general
decrease of the ACVscaled values is achieved for higher values ts = 12 and 14.
The diversity values are nearly comparable and no regularity is observable by
an increase of ts. Also the ACVrel values are comparable for all ts settings.
In general, there is no regularity observable regarding convergence, diversity or
relative non-dominated solution quality by a variation of ts and p0. In the case
of this relatively low probability, the ACV indicator as selection criterion is
not able to reveal the more discerning selection effect. Therefore, the random
selection is pre-dominant and results in comparable or oscillating metric values
by a variation of ts.

6.2.4 Discussion

The performance results of the test series focused on selection strategies are
further summarized regarding the influence of the selection parameters on the
performance in the case of the 3D- and 4D-MOP. Furthermore, the search per-
formance of different selection strategies is discussed in a qualitative way. The
preferable selection strategy including advisable parameter settings is assessed
under the aspects of a good-convergence-diversity balance, an optimal relative
non-dominated solution quality and computational complexity arising in each
iteration step. In general, the experimental results reveal that the advisable
parameter settings for each selection strategy are equal and independent of
the problem dimension. However, the parameters ’selection probability’ and
’tournament size’ have a different influence on performance, depending on the
selection strategy. This strategy-specific influence is the same in the case of the
3D- and 4D-MOP. The increase of the selection probability, which is responsi-
ble for the percentage of selecting individuals either from the first front or the
individuals with the lowest ACV values, results in improved convergence per-
formance, mostly at the cost of diversity. In general, the experimental results
reveal that the best performance results are achieved in the case of the three
selection strategies with ts = 10 and higher. The worst performance results
are achieved for ts = 6 and acceptable results for ts = 8 in the case of all three
selection strategies as well as the 3D- and 4D-MOP.
The result matrix presents the performance of the three selection strategies
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Table 6.4: Results matrix of convergence, diversity and relative non-dominated solution
quality achieved by VONSEA configurations with various selection strategies in the
case of the 3D- and 4D-MOP.
Backgrounds: the optimal indicator result (green), medium performance (blue), the
worst indicator result (red).

with advisable parameter settings for the 3D- and 4D-MOP (Table 6.4). The
presented intervals are 2σ-confidence limits of the means of the indicator re-
sults achieved by different configurations. The optimal indicator results are
each highlighted in green, the worst one in red and indicator values of a me-
dium performance are in blue. In the case of the 3D-MOP, there is a clear
advantage of the ACV-based selection observable compared to aggregate se-
lection: The convergence-diversity balance is similarly good in both cases, but
the non-dominated solution quality is significantly improved compared to the
configuration with aggregate selection. This effect is the initial motivation for
ACV-based selection. The aim of ACV-based selection is to overcome the di-
sadvantage of aggregate selection, which does not guarantee the selection of
the fittest individual of the tournament set according to all objectives by the
random selection of a first front individual.
In the case of the 4D-MOP, the advantage of the ACV-based selection is not
as obvious as in the case of the 3D-MOP. Configurations with ACV-based
selection generally achieve better convergence and a significantly better relati-
ve non-dominated solution quality relative to the convergence performance of
the entire population than the configurations with aggregate selection, but the
diversity is remarkably lower. The performance of configurations with ACV-
random selection usually lies in-between those of aggregate and ACV-based
selection and is therefore not able to outperform these selection strategies. Fur-
thermore, ACV-random selection allows no predictable performance results by
a variation of the parameter p0. These ACV-random selection results reveal
that fitness-proportionate selection used as selection criterion has a particular
importance in the area of peptide - or more generally - biochemical optimiza-
tion.
Table 6.5 presents the result matrix of the three selection strategies with advi-
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Table 6.5: Results matrix of convergence, diversity and relative non-dominated solution
quality achieved by configurations with various selection strategies, advisable p0

settings and a variation of ts in the case of the 3D-MOP.
Backgrounds: the optimal indicator result (green), medium performance (blue), the
worst indicator result (red).

Table 6.6: Results matrix of convergence, diversity and relative non-dominated solution
quality achieved by configurations with various selection strategies, advisable p0

settings and a variation of ts in the case of the 4D-MOP.
Backgrounds: the optimal indicator result (green), medium performance (blue), the
worst indicator result (red).

sable p0 settings and a variation of ts in the case of the 3D-MOP. The optimal
indicator results are each highlighted in green, the worst one in red and in-
dicator values of a medium performance are in blue. The upper intervals in
each box are 2σ-confidence limits of the means of ACVscaled values, the second
intervals are diversity 2σ-confidence limits and the intervals given below are
2σ-confidence limits of ACVrel values. The result matrix of the 3D-MOP per-
formance reveals a superficial impact of ts variation on convergence, diversity
and relative non-dominated solution quality in the case of the three selection
strategies: The worst indicator results are mainly achieved for ts = 6, an incre-
ase of ts results in an improvement or a stagnation of the performance results
in most cases. More precisely, the influence of ts on the indicator results is
different for the selection strategies and also different in the case of different p0
settings. The configurations with aggregate selection and a high ts value result
in improving convergence behavior but worse performance results regarding
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the non-dominated solution quality relative to the convergence results of the
entire population. The aggregate selection chooses the individuals from the
first front of a different sized tournament set with the advisable probability of
p0 = 60%. The rising size of the tournament set results in more sophisticated
first front individuals, but the random selection of one individuals from the
first front does not guarantee the selection of the highest qualified individual
according to all objectives. The configurations with ACV-based selection, a
probability value of p0 = 50% and a variation of ts reveal highly comparable
convergence results. Furthermore, the relative non-dominated solution quality
is slightly improved by an increase of ts and are the best results in general
compared to the other ACVrel results of aggregate or ACV-random selecti-
on. High relative non-dominated solution quality is referred to the fact that
50% of the individuals are selected based on the lowest ACVscaled value. The
convergence performance is only slightly decreased compared to the results of
aggregate selection. The configurations with ACV-random selection reveal no
regularity regarding the increase of ts. The relative non-dominated solution
quality is nearly comparable for all ts settings and is of medium performance
compared to the other configurations. Diversity and convergence performance
are oscillating. This is a consequence of the fact that the selection process is
highly dominated by a random selection of individuals into the succeeding ge-
neration, since only 10% of the individuals are selected according to the lowest
ACVscaled value.
Table 6.6 presents the corresponding confidence limits of the configurations
with the three selection strategies, advisable p0 settings and a variation of ts
in the case of the 4D-MOP. The conclusions of this results matrix are the same
as in the case of the 3D-MOP: Higher ts values result in better convergence
performance in the case of aggregate selection, but the relative non-dominated
solution quality is the worst compared to the other results. The configurations
with ACV-based selection provide the best convergence performance indepen-
dent of ts settings, at the cost of diversity. The relative non-dominated solution
quality improvement is independent of ts settings. In the case of ACV-random
selection, the relative non-dominated solution quality is on a medium level for
all ts settings, while convergence and diversity performance are once again os-
cillating.
As a consequence, a ts setting of approximately 10 is regarded as an advi-
sable setting for all selection strategies with respect to a good and reliable
convergence-diversity balance. A higher number for ts results in an increasing
computational complexity.
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6.3 Number of Parents for Recombination

The test series documented in this section investigate the influence of the
parent number for recombination on convergence and especially on diversity
performance. Furthermore, this influence is investigated in combination with
a population size (ps) variation to gain an insight into the interdependence
between the parent number for recombination and the population size. The
previous experiments revealed that the recombination has only a low influence
on the algorithm performance. This allows the hypothesis that the variation
of the parent number has no considerable influence in general on the per-
formance. The influence of the multi-parent recombination is investigated for
LiDeRP and ExpoDeRP, which themselves have been revealed as advisable
recombination operators in Section 6.1. The further algorithm parameters and
components are set as follows: The default parent number for recombination
is pn = 3, BSadapt is used as mutation and ACV-based selection with the pa-
rameters p0 = 50% and ts = 10. These components have proven to compose
an advisable combination regarding a robust performance. However, the ACV-
based selection reveals superior performance in the case of the 3D-MOP, but
the question of an advisable selection strategy for the 4D-MOP is a trade-off
between lower diversity and high non-dominated solution quality or high di-
versity at the cost of non-dominated solution quality. For a better comparison
of the 3D- as well as 4D-performance results of the test series, ACV-based
selection is also used as selection strategy in the case of the 4D-MOP.

Fig. 6.105: Performance of multi-parent Li-
DeRP with ps = 60, (3D-MOP)

Fig. 6.106: Performance of multi-parent Li-
DeRP with ps = 80, (3D-MOP)
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Fig. 6.107: Performance of multi-parent LiDeRP with ps = 100, (3D-MOP)

Fig. 6.108: Performance of multi-parent Li-
DeRP with ps = 120, (3D-MOP)

Fig. 6.109: Performance of multi-parent Li-
DeRP with ps = 140, (3D-MOP)

6.3.1 LiDeRP: Multi-parent Variation

In the following, the results of the multi-parent recombination with LiDeRP
as recombination operator are presented. Firstly, the experimental results of
the 3D-MOP are discussed: Figure 6.107 depicts the performance results of the
configurations with the default population size of 100 and a variation of the
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parent number in the range from 2 to 5. The performance results do not reveal
any regularity by the increase of the parent number. The tendency towards the
highest metric values is achieved by the choice of three parents for recombina-
tion followed by the performance results of the configuration with five parents.
The best convergence results are achieved by two parents for recombination,
at the cost of diversity. Figure 6.105 and 6.106 present the performance results
of the configurations with a lower population size of 60 and 80. The decrease
of the population size produces the same results by a variation of the parent
number, compared to the population size of 100: In general, there is no re-
gularity observable regarding the metric results by an increase of the parent
number. The tendency towards the lowest metric results is achieved by three
parents in the case of a population size of 80, the highest is achieved by two
parents (Figure 6.106). The convergence performance is equal in the case of
four and five parents for recombination. The performance results of the con-
figuration with a population size of 60 are more equal and in-differentiable
(Figure 6.105): The tendency towards the highest diversity results is achieved
by four parents with the tendency towards acceptable convergence results. The
highest ACV values are achieved with five parents, revealing the widest range
of diversity values at the same time. Figure 6.108 and 6.109 present the per-
formance results of the configurations with the higher population size of 120
and 140. In general, the metric values are increased by higher parent number
pn = 4 and 5 for both configurations (population sizes 120 and 140) compared
to the configuration with a population size of 100. The configurations with a
population size of 120 reveal an increase of the metric values with an increase
of the parent number from pn = 2 up to pn = 4 and decrease afterwards for
pn = 5 (Figure 6.108). The configurations with a population size of 140 reveal
a tendency towards the lowest metric values for two parents and the highest
for five parents. The performance results are generally more comparable than
in the case of the configurations with lower population sizes.
The performance results of a parent number variation achieved by configura-

tions with different population sizes in the case of the 4D-MOP are depicted
in the figures 6.110 to 6.114. The performance results are further discussed
in comparison to the corresponding results in the case of the 3D-MOP. The
configurations with the default population size of 100 reveal an increase of the
metric values by an increase of the parent number up to pn = 4 (Figure 6.112).
The results of pn = 5 are on the same level as the configuration with pn = 3. A
decrease of the population size to 80 results in similar performance compared
to the configurations with ps = 100 (Figure 6.111). The ACV values of pn = 3

and pn = 5 achieve the highest ACV values compared to the other configu-
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Fig. 6.110: Performance of multi-parent Li-
DeRP with ps = 60, (4D-MOP)

Fig. 6.111: Performance of multi-parent Li-
DeRP with ps = 80, (4D-MOP)

Fig. 6.112: Performance of multi-parent LiDeRP with ps = 100, (4D-MOP)

rations. A further decrease of ps to 60 reveals similar performance compared
to the performance results of the 3D-MOP in the sense that no regularity is
observable by an increase of the parent number. Once again, the configuration
with pn = 3 achieves the highest performance results. An increase of ps to
120 and 140 results in an increase of the diversity values by an increase of pn
(Figure 6.113, Figure 6.114). Furthermore, in both cases the ACV values are
comparable for pn = 2 and pn = 4. The highest metric values are achieved for
the configuration with pn = 5. The comparison of these observations compared
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Fig. 6.113: Performance of multi-parent Li-
DeRP with ps = 120, (4D-MOP)

Fig. 6.114: Performance of multi-parent Li-
DeRP with ps = 140, (4D-MOP)

to the performance results of the 3D-MOP reveals a general influence of the
parent number on the performance results that is mostly independent of the
population size: As theoretically expected, the increase of the parent number
results in an increase of the diversity values. But this higher diversity of the
genetic material goes along with an increase of the ACV values at the same
time and therefore results in an overall worse convergence performance. In the
cases of ps = 60, 80 and ps = 140, the ACV values of the configurations with
pn = 3 have a tendency towards exceptionally high values compared to the
results of the pn = 2 and pn = 4.

6.3.2 ExpoDeRP: Multi-parent Recombination

In the following, the experimental results of the multi-parent recombination
with ExpoDeRP are presented. Firstly, the results of the 3D-MOP are discus-
sed. Generally, ExpoDeRP provides a lower number of recombination points
from the second generation on caused by the decreasing exponential function.
From a theoretical point of view, a lower parent number for the ExpoDeRP
recombination is therefore more motif-maintained from the second generation
on, referring to the genetic material, than a lower parent number in combina-
tion with LiDeRP.
Figure 6.117 depicts the performance results of the configurations with the
default population size of 100 and a variation of the parent number in the ran-
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Fig. 6.115: Performance of multi-parent Ex-
poDeRP with ps = 60, (3D-MOP)

Fig. 6.116: Performance of multi-parent Ex-
poDeRP with ps = 80, (3D-MOP)

Fig. 6.117: Performance of multi-parent ExpoDeRP with ps = 100, (3D-MOP)

ge from 2 to 5. The diversity is nearly comparable for pn = 2 to pn = 4, the
highest diversity is achieved for pn = 5. The convergence reveals a tendency
towards increased ACV values and therefore to a slowed down convergence by
an increase of pn. The performance of the configurations with decreased ps

values of 60 and 80 are depicted in Figure 6.115 and 6.116. Generally, there is
no regularity observable by an increase of pn, regarding convergence and di-
versity. The diversity is oscillating for ps = 60 (Figure 6.115): The diversity for
pn = 2 and pn = 4 are comparable and remarkably higher than the diversity
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Fig. 6.118: Performance of multi-parent Ex-
poDeRP with ps = 120, (3D-MOP)

Fig. 6.119: Performance of multi-parent Ex-
poDeRP with ps = 140, (3D-MOP)

values of pn = 3 and pn = 5. The convergence results of pn = 2, 3 and pn = 5

are comparable, the results of pn = 4 are remarkably increased and therefore
reveal a lower convergence. The convergence results of the configurations with
ps = 80 are oscillating, the ACV values of pn = 2 and pn = 4 are higher than
those of pn = 3 and pn = 5. The diversity values for pn = 2 and pn = 5 are
higher than those of pn = 2 and pn = 3. Figure 6.118 and 6.119 present the
performance results of the configurations with ps = 120 and 140. In the case
of ps = 120, the convergence as well as diversity performance are comparable
for pn = 2 and pn = 4. The diversity and convergence values are increased
for higher pn values, revealing an improvement of the diversity at the cost of
convergence. In the case of ps = 140, convergence and diversity are nearly
comparable for pn = 2 to pn = 4. The diversity and convergence values are
increased for pn = 5.
The performance results of a parent number variation achieved by configura-

tions with different population sizes in the case of the 4D-MOP are depicted
in the figures 6.120 to 6.124. Figure 6.122 presents the performance results of
the configurations with ps = 100. The increase of pn results in an increase
of diversity as well as the ACV values until pn = 4. The performance results
of pn = 5 are on the same level as those of pn = 3. Figure 6.120 depicts the
performance results of the configurations with ps = 60. Convergence and di-
versity reveal a slight oscillating behavior: The ACV and diversity values tend
to be lower for pn = 2 and pn = 4 compared to the other pn settings. In the
case of the configurations with ps = 80 (Figure 6.121), there is a remarkable
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Fig. 6.120: Performance of multi-parent Ex-
poDeRP with ps = 60, (4D-MOP)

Fig. 6.121: Performance of multi-parent Ex-
poDeRP with ps = 80, (4D-MOP)

Fig. 6.122: Performance of multi-parent ExpoDeRP with ps = 100, (4D-MOP)

increase of diversity and a slight increase of the ACV values observable by an
increase of pn = 2 to pn = 3. A further increase of pn settings results in similar
performance results of convergence and diversity. In the case of the configura-
tions with ps = 120 (Figure 6.123), the increase of pn results in an increase of
the ACV values and therefore in lower convergence. Otherwise, the diversity is
significantly reduced by an increase of pn = 2 to pn = 3. A further increase of
pn reveals a remarkable increase of the diversity values. Figure 6.124 depicts
the performance results of the configurations with ps = 140. An increase of
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Fig. 6.123: Performance of multi-parent Ex-
poDeRP with ps = 120, (4D-MOP)

Fig. 6.124: Performance of multi-parent Ex-
poDeRP with ps = 140, (4D-MOP)

pn results in a slight oscillating performance and the ACV values are slightly
increased, revealing lower convergence values.
The comparison of the performance results in the case of the 3D- and 4D-MOP
reveals that there is no interdependence observable with regard to a variation
of pn for different ps settings. Interdependent of the population size, pn set-
tings higher than 3 result in increased diversity at the cost of convergence in
most cases. The performance results of the 3D- and 4D-MOP provide no regu-
larity regarding convergence and diversity by an increase of pn for ps smaller
than 100, whereas the 3D-performance results for ps = 100 and higher reveal
increased performance results for pn higher than 3, indicating improved diver-
sity at the cost of convergence. The 3D-performance of the configurations with
pn = 2 and pn = 3 are comparable in most cases.

6.3.3 Discussion

The influence of multi-parent recombination is investigated in the case of the
3D- and 4D-MOP with the recombination operators LiDeRP and ExpoDeRP.
The investigations of parent number variation in the case of LiDeRP and Ex-
poDeRP reveal different performance results. Both recombination operators
with a variation of the parent number and population size reveal comparable
performance results for both MOPs.
Result matrices are presented for the parent number variation of LiDeRP to

give an overview of the multi-parent number influence on the performance and
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Table 6.7: Result matrix of the 3D-MOP presenting the performance of the ps and pn

variation with LiDeRP. The upper intervals in each cell represent the confidence
limits of the convergence means, the lower intervals represent the confidence limits
of the diversity means. The optimal performance results are highlighted in green,
the worst in red and the blue one highlights the compromise results

Table 6.8: Result matrix of the 4D-MOP presenting the performance of the ps and pn

variation with LiDeRP. The upper intervals in each cell represent the confidence
limits of the convergence means, the lower intervals represent the confidence limits
of the diversity means. The optimal performance results are highlighted in green,
the worst in red and the blue one highlights the compromise results.

of the interdependence between parent number variation and population size in
the case of the 3D-MOP (Table 6.7) and the 4D-MOP (Table 6.8). The upper
interval in each cell is the confidence limit of ACV means, and the lower inter-
val is the confidence interval of diversity means. Best and worst performance of
the configurations with different population sizes are highlighted. Green high-
lighted cells mark the best performance results in the sense of a comparable
good convergence-diversity balance. Red highlighted cells mark the worst per-
formance results in the sense of the highest metric values or an inadequate
convergence-diversity balance. A blue box highlights the configuration which
represents a compromise between the second highest ACV confidence limits
and comparable diversity values. The results matrices do not reveal a specific
interaction between the population size and the parent number for recombi-
nation. Furthermore, there is no particular parent number that achieves good
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performance results independent of the population size. The 3D-result matrix
(Table 6.7) reveals that an increase of the parent number from 2 to 3 results in
increased or comparable diversity results with mostly comparable convergence
results. An increase of the parent number from 3 to 4 reveals increased diversity
for ps ≥ 100 at the cost of convergence and decreased diversity for ps < 100.
A further increase of the parent number from 4 to 5 reveals a considerable
diversity increase at the cost of convergence, especially for ps ≥ 100. As a
consequence, the parent number increase from 2 to 3 is the most successful
with regard to diversity increase with comparable convergence results at the
same time.
The 4D-result matrix (Table 6.8) reveals similar performance results compa-
red to the 3D-results matrix: The parent number increase from 2 to 3 mostly
results in comparable diversity results with improved convergence. A further
increase of the parent number from 3 to 4 results in decreased diversity in the
case of ps ≥ 100 and improved convergence. A diversity increase is achieved
by an increase from 4 to 5 parents, mostly at the cost of convergence. Once
again, the increase from 2 to 3 parents is most successful.
The experimental results of the multi-parent variation with ExpoDeRP reve-
al no regularity regarding convergence and diversity performance. In general,
there is no general interdependence observable between parent number and
population size. The 3D-result matrix (Table 6.9) reveals a diversity increase
at the cost of convergence in the case of ps ≥ 100 and an increase of 2 to
3 parents for recombination. The increase of the parent number from 3 to 4

mostly reveals a diversity increase for ps ≥ 100 and a diversity decrease for
ps < 100. The convergence performance is indifferentiable at the same time. A
further increase of the parent number from 4 to 5 achieved increased diversity
at the cost of convergence.
The 4D-result matrix (Table 6.10) reveals that an increase of the parent num-
ber mostly results in a diversity increase at the cost of convergence. The issue
of an advisable parent number for ExpoDeRP is rather complex, since the
diversity improvement is mostly at the cost of convergence. Generally, a pa-
rent number lower than five is advisable, since the worst performance results
are achieved for pn = 5 independent of the population size. Furthermore, the
3D-result matrix allow the conclusion that a lower parent number is more ad-
visable in combination with a population size of 100 and higher in the case of
the 3D-MOP.
Summarizing, advisable settings for the parent number depend on the recom-
bination type: A higher parent number in combination with a population size
of 100 and higher is more advisable in the case of LiDeRP, a parent number
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Table 6.9: Result matrix of the 3D-MOP presenting the performance of the ps and pn

variation with ExpoDeRP. The upper intervals in each cell represent the confidence
limits of the convergence means, the lower intervals represent the confidence limits
of the diversity means. The optimal performance results are highlighted in green,
the worst in red and the blue one highlights the compromise results.

Table 6.10: Result matrix of the 4D-MOP presenting the performance of the ps and pn

variation with ExpoDeRP. The upper intervals in each cell represent the confidence
limits of the convergence means, the lower intervals represent the confidence limits
of the diversity means. The optimal performance results are highlighted in green,
the worst in red and the blue one highlights the compromise results.

smaller than five with a population size of 100 and higher is generally more
advisable in the case of ExpoDeRP.
The following theoretical considerations emphasize the experimental results:
From a theoretical point of view, a lower parent number for recombination
produces peptides which are very similar to their parents according to their
primary structure, whereas a high parent number produces peptides which are
very different in their primary structure compared to their parent. On the ba-
sis of these considerations, pn = 3 is regarded as an adequate choice for the
parent number in recombination: The configurations with pn = 5 mainly result
in worse performance, the offspring of the configurations with pn = 4 differ
more in the genetic appearance compared to their parents than in the case
of pn = 3 and pn = 2 and therefore causes uncontrollable fitness jumps. The
setting pn = 2 does not comply with the aspired genetic diversity concept.
This makes a setting of pn = 3 highly recommended.

203



6 Experimental Results

6.4 Selection Pressure

The experiments presented in this section provide an insight into the impact
of the interdependence between selection procedure and population size. The
impact is examined with the objective of giving a configuration rule for the
population size and the selection parameter p0, which has shown a significant
influence on the VONSEA performance. Furthermore, these experiments are
an empirical verification of the focused early convergence behavior of VON-
SEA within a limited range of population sizes. Otherwise, the early conver-
gence is defeated, since an unlimited increase of the population size results
in improved convergence and diversity performance. More precisely, this sec-
tion answers the questions raised in the research issue section of this thesis:
Firstly, do larger populations speed up the convergence behavior? Secondly, is
there a predictable impact between population size and selection procedure?
An import request is the justification of a configuration rule for the range of
population sizes and suitable selection parameters ensuring a good VONSEA
performance, exemplarily examined in the case of the 3D- and 4D-MOP.

6.4.1 Experiments with ACV-based Selection

The interdependence is examined between the population size and the three
selection strategies. The other components of the investigated configurations
are BSadapt mutation, LiDeRP as recombination, three parents for recombi-
nation and ts = 10. The selection of ts = 10 refers to the observations and
consequences of the experimental results presented in Section 6.2.3. The mo-
tivation for the recombination parameter pn is given in Section 6.3. These
components have proven to provide a good VONSEA performance on the 3D-
and 4D-MOP. The configurations are further composed of a different popula-
tion size (30, 60, 80, 90, 100, 110, 120, 140) and a variation of p0, depending
on the selection strategy. The test runs are once again evaluated by the ACV

indicator that has especially evolved to compare the convergence performance
of differently sized populations: ACVscaled is used as convergence indicator to
ensure an insight into the convergence performance with an equal influence of
each objective function on the indicator value. The ACVrel results are further
proposed to reflect the relative non-dominated solution quality. The proposed
diversity indicator also takes account of the population size and therefore al-
lows a comparison of different sized populations.

Figure 6.125 presents the 3D-performance results of the configurations with
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Fig. 6.125: 3D-Performance results of configurations with ACV-based selection (p0 = 40%)
and a variation of ps.

Fig. 6.126: 3D-Performance results of configurations with ACV-based selection (p0 = 50%)
and a variation of ps.

Fig. 6.127: 3D-Performance results of configurations with ACV-based selection (p0 = 60%)
and a variation of ps.

ACV-based selection, the selection parameter p0 = 40% and a variation of
ps (ps = 30, 60, 80, 90, 100, 110, 120, 140, 200). The left figure presents the
ACVscaled values, the right figure depicts the ACVrel results and diversity is
presented in the middle figure. The increase of ps results in a significant de-
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crease of the ACVscaled values as well as a decrease of the range of ACVscaled

values and therefore in a continuous improvement of the convergence beha-
vior. The level of decrease is remarkably higher in the case of ps under 100.
The level of decrease flattens for ps above 100. The ACVscaled results are com-
parable for ps = 110 and 120. The diversity performance reveals a tendency
towards higher diversity values for ps settings of 80 and higher. The range
of diversity values is also decreased by an increase of ps. The relative quality
of the non-dominated solutions is generally decreased for increased ps values.
Therefore, the convergence quality of the non-dominated solutions is relative
high compared to the convergence quality of the entire population. There is
no significant ACVrel improvement for ps values higher than 110. In general,
the decrease of the ACVrel values is observable by an increase of ps of 30 up
to 90. The performance results of the different configurations with varying ps

values reveals skewed results as well as outliers for nearly every configuration
indicating that ACVrel results have remarkably higher indicator values.
The performance results of the configurations with ACV-based selection, p0 =
50% - the advisable selection parameter setting according to Section 6.2 - and
a variation of ps are depicted in Figure 6.126. The ACVscaled values in general
as well as the range of ACVscaled values are decreased significantly by an in-
crease of ps as in the case of the configurations with p0 = 40%. The ACVscaled

results are nearly comparable for ps = 110 and ps = 120. The diversity re-
sults reveal that an increase of the diversity is observable by an increase of
ps = 60 up to ps = 110. For higher ps values, the diversity values are general-
ly reduced compared to the other configurations. The relative quality of the
non-dominated solutions is decreased by an increase of ps = 30 to ps = 110.
The ACVrel results are comparable for ps = 80 and ps = 90. Furthermore, the
ACVrel values are significantly decreased for ps higher than 120. Once, again,
the ACVrel values are skewed revealing a tendency to remarkably higher indi-
cator values. In general, the three metric values are decreased compared to the
configurations with p0 = 40% (Figure 6.125), indicating improved convergence
and non-dominated solutions quality at the cost of diversity. This effect has
also been reported in the chapter 6.2.
The performance results of the configurations with p0 = 60% and a variation
of ps is depicted in Figure 6.127. The ACVscaled performance is nearly compa-
rable for ps = 30 and ps = 60 as well as for the configurations with ps = 90 to
ps = 110 and generally decreased but similar for ps = 120 and 140. General-
ly, ACVscaled values decrease by an increase of ps. The diversity performance
increases by an increase of ps = 30 up to ps = 80. The diversity values are
generally lower but similar in the cases of ps settings higher than ps = 80. Also
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the ACVrel values decrease by an increase of ps. The ACVrel values are com-
parable for ps = 80 to ps = 100. Once again, the ACVrel values are skewed for
all configurations with different ps settings. Furthermore, the metric values are
once again decreased compared to the configurations with p0 = 40% (Figure
6.125) and p0 = 50% (Figure 6.126). The increase of the selection parameter
p0 reduces the decrease of the ACVscaled as well as the ACVrel values by an
increase of ps.
The decrease of the ACVscaled and ACVrel values is observable for all ps set-
tings by an increase of ps. Furthermore, no improvement of the diversity values
is observable by an increase of ps above 110. As a consequence, an advisable
range of ps settings regarding the performance results is in the range of 80 to
100. The slight performance improvement for ps values higher than 110 regar-
ding the convergence and non-dominated solution quality is in contrast to the
higher computational complexity.
The performance results of the configurations with the ACV-based selection

Fig. 6.128: 4D-Performance results of configurations with ACV-based selection (p0 = 40%)
and a variation of ps.

Fig. 6.129: 4D-Performance results of configurations with ACV-based selection (p0 = 50%)
and a variation of ps.
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Fig. 6.130: 4D-Performance results of configurations with ACV-based selection (p0 = 60%)
and a variation of ps.

and a variation of ps in the case of the 4D-MOP are presented in the following.
The results are discussed in comparison to the corresponding 3D-performance
results. Figure 6.128 depicts the 4D-performance results of the configurations
with the selection parameter p0 = 40%. The ACVscaled values are in general
significantly decreased as well as the range of ACVscaled values by an increa-
se of ps, as in the case of the corresponding 3D-performance (Figure 6.125).
Furthermore, the level of decrease is reduced for ps values higher than 110.
Moreover, the ACVscaled performance of ps = 10 and ps = 110 are comparable.
The diversity performance is similar for ps = 90 and higher. The diversity per-
formance provides a wide range of indicator values for ps = 30 and the highest
diversity performance is achieved for ps = 80. The ACVrel values are decreased
by an increase of ps, as in the case of the corresponding 3D-performance re-
sults (Figure 6.125). Once again, the level of decrease is reduced for ps values
higher than 100. However, the ACVrel results are skewed, which is visible by
the outliers and reveals a tendency to remarkably higher performance results.
The 4D-performance results of the configurations with the selection parameter
p0 = 50% and a variation of ps are presented in Figure 6.129. The ACVscaled

results reveal the same observations as in the case of the configurations with
p0 = 40% and the corresponding 3D results (Figure 6.126): The ACVscaled va-
lues are decreased by an increase of ps and the level of decrease is reduced for
higher ps values. The diversity performance provides a wide range of indicator
values for ps = 30 and becomes more comparable for ps = 60 and higher.
The diversity values are slightly reduced and comparable by an increase of ps
above ps = 100. Once again, a decrease of the ACVrel values is observable by
an increase of ps. The ACVrel results are comparable for ps = 90 to ps = 110.
Moreover, the ACVrel results are skewed, which is also visible by the number
of outliers. Furthermore, this relative non-dominated solution quality is also
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comparable to the corresponding 3D-performance results (Figure 6.126).
The 4D-performance of the configurations with p0 = 60% reveals once again a
significant decrease of the ACVscaled and therefore a convergence improvement
by an increase of ps. The ACVscaled results are comparable for ps = 90 and
100 as well as for the configurations with ps = 110 and 120, though slightly
decreased. The diversity performance reveals only slight diversity variations
and are nearly comparable for the configurations with ps = 100 and higher
ps values. The highest diversity performance is achieved for ps = 90. Once
again, the ACVrel values are remarkably decreased by an increase of ps, as in
the case of the configurations with p0 = 40% and 50% and the corresponding
3D-performance results (Figure 6.130).
Summarizing, the 4D-performance results of the configurations with ACV-
based selection, different selection parameter settings for p0 and a variation of
ps reveal comparable ACVscaled and ACVrel by an increase of ps and for each
p0: An increase of ps reveals a continuous decrease of the ACVscaled and ACVrel

values independent of the p0 settings. Furthermore, these results are compara-
ble to the corresponding 3D results. At the same time, the diversity results do
not reveal any significant improvement by an increase of ps. Moreover, the di-
versity results are becoming more and more comparable for higher ps settings
and increasing selection parameters p0. Otherwise, an increase of the selection
parameter p0 results in a general decrease of the metric values, as in the case
of the 3D-performance results. An advisable range of ps settings regarding a
performance improvement and an appropriate computational complexity is gi-
ven by a range of ps = 90 to ps = 110. The performance improvement caused
by higher ps values forms a contrast to the remarkably higher computational
complexity.

6.4.2 Experiments with ACV-random Selection

The following experimental results demonstrate the convergence, diversity and
relative non-dominated solution quality of the configurations with ACV-random
selection, different selection parameter settings of p0 and a variation of ps in
the case of the 3D-MOP. These results are also discussed in contrast to the
performance of the configurations with ACV-based selection presented above.
Figure 6.131 presents the 3D-performance results of the configurations with
p0 = 0%, indicating a pure front-based SUS. The increase of ps reveals a
continuous decrease of the convergence performance, visible by the decrease
of the ACVscaled values, whereas the decrease is reduced by ps values higher
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Fig. 6.131: 3D-Performance results of configurations with ACV-random selection (p0 = 0%)
and a variation of ps.

Fig. 6.132: 3D-Performance results of configurations with ACV-random selection (p0 = 10%)
and a variation of ps.

Fig. 6.133: 3D-Performance results of configurations with ACV-random selection (p0 = 20%)
and a variation of ps.

than 100. This convergence behavior is comparable to the general convergence
performance of the configurations with ACV-based selection. The ACVscaled

results of ps = 100 and 110 are comparable. The diversity behavior reveals
generally no regularity by an increase of ps. However, the diversity perfor-
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mance is generally reduced by an increase of ps. The highest diversity results
are achieved for ps = 30 and ps = 80, the range of the diversity results is
reduced by increasing ps settings. The relative non-dominated solution quality
is improved by an increase of ps, visible by the ACVrel values. The ACVrel

results are comparable for the configurations with ps = 100 and ps = 120. The
ACVrel results are also comparable to the general convergence performance of
configurations with ACV-based selection.
Figure 6.132 presents the 3D-performance results of the configurations with
p0 = 10% and the advisable selection parameter setting according to Section
6.2. Once again, the convergence is improved by an increase of ps, the conver-
gence behavior of the settings ps = 100 and ps = 120 are nearly comparable.
The diversity performance reveals no regularity by an increase of ps. The per-
formance differences between the configurations with different ps settings are
reduced. The diversity performance is generally reduced for ps higher than 140.
The ACVrel values are once again decreased by an increase of ps. The ACVrel

results of ps = 100 and 120 as well as ps = 140 and 200 are comparable. The
ACVrel performance differences are reduced compared to the configurations
with p = 0%. The general performance tendency of ACVscaled and ACVrel va-
lues are comparable to the general performance tendency of the ACV-based
configurations.
These observations are transferable to the performance of the configurations
with ps = 20% (Figure 6.133). The ACVscaled values are decreased by an incre-
ase of ps as well as the ACVrel values. The highest diversity results are achieved
for ps = 90 to ps = 110. The range of the diversity results are reduced as well
as the diversity values in general for ps = 140 and 200.
In the following, the 4D-performance results of the configurations with ACV-

Fig. 6.134: 4D-Performance results of configurations with ACV-random selection (p0 = 0%)
and a variation of ps.

random selection and a variation of ps are presented. The experimental results
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Fig. 6.135: 4D-Performance results of configurations with ACV-random selection (p0 = 10%)
and a variation of ps.

Fig. 6.136: 4D-Performance results of configurations with ACV-random selection (p0 = 20%)
and a variation of ps.

evaluated in the following present the 4D-performance results of the configu-
rations with ACV-random selection, different p0 values and a variation of ps.
The convergence and the relative non-dominated solution quality of the confi-
gurations with p0 = 0% - indicating front-based SUS selection - are improved
by an increase of ps, visible by the decreasing ACVscaled and ACVrel results
(Figure 6.134). These performance results have already been achieved by the
corresponding 3D-performance results. The diversity performance reveals a si-
gnificant decrease in the range of ps = 30 to ps = 100. Diversity is slightly
increased for ps values higher than 100.
The ACVscaled and ACVrel results of the configurations with p0 = 10% are
already familiar to the previous 3D-experimental results with regard to the
improvement by an increase of ps (Figure 6.135). Furthermore, the ACVrel

results of the configurations with ps = 100 and ps = 140 are comparable as
well as ps = 120 and ps = 140, though reduced. Moreover, the performance
improvement is reduced for higher ps values. The diversity results are decrea-
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sed in general as well as for ps values higher than ps = 110.
The decrease of the ACVscaled and ACVrel values by an increase of ps is also
observable in the case of the configurations with p0 = 20%, whereas the level of
decrease is reduced compared to the previous experimental results, especially
in the case of the ACVrel values (Figure 6.136). The ACVrel values are nearly
comparable for ps = 80 to ps = 120 and slightly reduced for higher ps values.
The range of diversity values is reduced for ps = 80 and higher ps values.

Summarizing, these 3D- and 4D-performance results of the configurations with
ACV-random selection reveal that these results are generally comparable to
the experimental results of the configurations with ACV-based selection regar-
ding the influence of ps and p0 on the performance: The convergence as well
as the relative non-dominated solution quality is improved by an increase of
ps for every p0 setting. Furthermore, the performance differences between the
different ps settings are reduced by an increase of the p0 settings. The diversity
performance does not reveal any general regularity depending on the p0 or ps

variation. Otherwise, the diversity performance becomes more comparable for
the different ps settings in the case of higher p0 values. Beneath the relative
non-dominated performance improvement by an increase of ps, the ACVrel va-
lues become more comparable for higher ps values in combination with higher
p0 settings. Furthermore, these results are usually skewed revealing a tenden-
cy towards remarkably higher indicator values. In general, the metric values
are reduced by an increase of p0. This is also observable in the case of the
configurations with the ACV-based selection presented above and in the test
series of Section 6.2. As the indicator results of ACVrel and diversity are nearly
comparable for ps values in a range of 80 to 120 and the performance impro-
vement of the ACVscaled values is relative small compared to the increase of
the computational complexity caused by higher ps values, an advisable range
of ps settings is the interval of ps = 90 to ps = 110.

6.4.3 Experiments with Aggregate Selection

The following series of tests present the 3D-performance results of the confi-
gurations with aggregate selection, different p0 settings and a variation of ps.
The convergence behavior of the configurations with p0 = 50% (Figure 6.137)
is continuously improved by an increase of ps, such as in the other series of
tests presented above. The range as well as the tendency towards maximal
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Fig. 6.137: 3D-Performance results of configurations with aggregate selection (p0 = 50%)
and a variation of ps.

Fig. 6.138: 3D-Performance results of configurations with aggregate selection (p0 = 60%)
and a variation of ps.

Fig. 6.139: 3D-Performance results of configurations with aggregate selection (p0 = 70%)
and a variation of ps.

diversity results are reduced for ps values higher than 80 except for ps = 110,
which is comparable to the diversity results of ps = 80. The highest diversity
results are achieved for ps = 80 and 110, the lowest range of diversity values as
well as a tendency towards lower values is achieved for ps = 140. The ACVrel
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values are continuously decreased by an increase of ps, only the performance
of the configuration with ps = 140 is regarded as an outlier. Furthermore, the
ACVrel results reveal outlier for ps = 90 and higher ps values, revealing some
remarkably higher indicator values.
The ACVscaled and ACVrel performance results are transferable to the con-
figurations with p0 = 60% (Figure 6.138, advisable p0 setting according to
the Section 6.2): The ACVscaled and ACVrel values reveal an improved perfor-
mance by an increase of ps. The highest diversity performance is achieved for
ps = 100, 110 and is nearly comparable to the configurations with ps = 60

and 80. The range of diversity results is decreased and the diversity values are
in general lower for ps higher than 110 compared to the configurations with
ps = 60 to 90.
The performance results of the configurations with p0 = 70% reveal similar
metric results of ACVscaled and ACVrel: The increase of ps results in a decre-
ase of these indicator values and the range of diversity values (Figure 6.139).
Diversity performance is more comparable for different ps values. The highest
diversity values are achieved for ps = 80 and 100. Diversity is generally redu-
ced for ps higher than 100.
In general, ACVscaled performance tendency is reduced by an increase of p0.
Diversity performance is more comparable for higher p0 settings and different
values of ps. In contrast to the performance results of the configurations with
ACV-based or ACV-random selection, the ACVrel indicator values are not de-
creased by an increase of p0 and therefore, the indicator values are in the same
range for all p0 settings.

The following series of tests are performed on the 4D-MOP and the confi-

Fig. 6.140: 4D-Performance results of configurations with aggregate selection (p0 = 50%)
and a variation of ps.

gurations with aggregate selection, different p0 values and a variation of ps.
In general, the performance results are once again comparable in their general
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Fig. 6.141: 4D-Performance results of configurations with aggregate selection (p0 = 60%)
and a variation of ps.

Fig. 6.142: 4D-Performance results of configurations with aggregate selection (p0 = 70%)
and a variation of ps.

tendency to the performance results of the configurations by ps variation, as
presented above: Figure 6.140 depicts the performance results of the configu-
rations with p0 = 50% and a variation of ps. The convergence performance is
significantly improved by an increase of ps, the ACVscaled results are nearly
comparable for ps = 100 and ps = 120. The highest diversity results are achie-
ved for ps = 90. The diversity results are more constant but tend to be slightly
lower for ps values higher than ps = 90. The relative non-dominated solution
quality is significantly improved by an increase of ps. The ACVrel performance
of the configurations with ps = 80 and 100 are comparable. Once again, the
ACVrel results are skewed and outliers are achieved nearly for every ps setting
revealing a tendency towards higher ACVrel results.
Figure 6.141 presents the performance results of the configurations with p0 =

60%, the advisable parameter setting and a variation of ps. The convergence
results are generally improved by an increase of ps, the ACVscaled results of
ps = 120 and 140 are comparable as well as those of ps = 100 and 110. The
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results of the configuration with ps = 200 are skewed with the tendency to
lower ACVscaled results. The tendency towards the highest diversity results is
achieved for ps = 90 and the diversity performance of the configurations with
ps = 100 to 120 is nearly comparable. The relative non-dominated solution
quality is improved by an increase of ps. The ACVrel results of ps = 60 and
80 are comparable to each other as well as the results of ps = 90 and 100 and
those of ps = 110 to 140. The results are slightly skewed, but outliers are only
achieved for ps = 100, 120 and 200.
Figure 6.142 presents the performance results of the configurations with p0 =

70% and a variation of ps. The convergence performance is continuously im-
proved by an increase of ps. The fluctuations of the diversity values are si-
gnificantly decreased by an increase of ps. The ACVscaled results of ps = 90

and 100 as well as those of ps = 110 and 120 are comparable. Furthermore,
the tendency to higher diversity results is more equivalent for all ps settings
compared to the diversity performance of configurations with p0 = 50% and
p0 = 60%. The relative non-dominated solution quality is improved by an an
increase of ps, but the results are once again slightly skewed with a tendency
towards remarkably higher ACVrel values also visible by the outliers.
In general, the convergence behavior as well as the relative non-dominated so-
lution quality is comparable to the performance results of the corresponding
3D-results (Figure 6.137 - Figure 6.139) with regard to the general performance
tendency of the results by an increase of ps: The ACVscaled and ACVrel results
are decreased in the span as well as with regard to the absolute indicator va-
lues. The ACVrel indicator values are almost in the same range independent of
the p0 settings and different ps settings. This is different to the performance
results of configurations with ACV-based and ACV-random, where the span
is reduced by an increase of p0 with regard to the absolute indicator values.
Since the convergence performance and the relative non-dominated solution
quality is continuously decreased by an increase of ps, but diversity reveals no
significant improvement by an increase of ps above 110, the advisable range of
ps settings is in the range of 90 to 110. Once again, the advisable range of ps
settings is a compromise between improved performance results and computa-
tional complexity, which is significantly increased for higher ps settings.

6.4.4 Discussion

The test series resented in this section provide an insight into the interdepen-
dence between the selection strategies and the population size. The test results
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reveal some general observations for all selection strategies independent of the
p0 settings: The range of the three indicator values is remarkably reduced by an
increase of ps exposing smaller deviations of the indicator results. The conver-
gence and relative non-dominated solution quality is improved by an increase
of ps for all selection strategies and independent of the selection parameter
p0. The level of improvement is reduced for ps settings higher than 100. The
tendency towards higher diversity values is also reduced for ps settings higher
than 100.
The results matrix 6.11 presents the 2σ-confidence limits of the performance

Table 6.11: Results matrix presenting convergence, diversity and relative non-dominated
solution quality achieved by different selection configurations with advisable p0 set-
tings and a variation of ps in the case of the 3D-MOP.
Backgrounds: improving indicator results (green), optimal indicator results (red),
constant indicator results (yellow), medium performance (blue).

means obtained by the configurations with the three selection strategies and
the advisable selection parameter settings p0 according to Section 6.2, in the
case of the 3D-MOP. The 2σ-confidence limits of the 4D-performance means
are depicted in Table 6.12. The green highlighted intervals identify continuous-
ly improving indicator results, the red highlighted intervals indicate the best
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Table 6.12: Results matrix presenting convergence, diversity and relative non-dominated
solution quality achieved by different selection configurations with advisable p0 set-
tings and a variation of ps in the case of the 4D-MOP.
Backgrounds: improving indicator results (green), optimal indicator results (red),
constant indicator results (yellow), medium performance (blue).

achieved indicator results, the yellow ones mark the constant indicator results
and the blue one the intervals positioned in a medium performance range. The
result matrix 6.11 reveals a continuous improvement of the convergence by an
increase of ps, indicated by the green highlighted ACVscaled confidence limits
in the case of all three selection strategies. A great proportion of optimal diver-
sity and ACVrel results are achieved for ps settings higher than 100, indicated
by the high number of red highlighted intervals in Table 6.11. The relative
non-dominated solution quality achieves a considerable number of constant
performance results in the range of ps = 100 to 120 for all three selection
strategies, indicated by the high amount of yellow highlighted intervals. Since
the improvement of convergence and relative non-dominated solution quality
is significantly at the cost of diversity for ps settings higher than 110, the range
of ps = 90 to ps = 110 is regarded as the advisable range of ps settings for all
three selection strategies.
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The results matrix 6.12 presents the 2σ-confidence limits of the performan-
ce means in the case of the 4D-MOP. Such as in the case of the 3D-MOP,
convergence is continuously improved by an increase of ps indicated by the
green highlighted ACVscaled intervals. Optimal diversity is generally achieved
for the three selection strategies in a range of ps = 80 to 110. Moreover, the
relative non-dominated solution quality is also improved by an increase of ps,
but provides some constant results from ps = 100 on. Since the improvement
of convergence and relative non-dominated solution quality is significantly at
the cost of diversity for ps settings higher than 110 and the ACVrel results are
nearly constant for ps = 100 to ps = 140, the advisable range of ps settings is
regarded as ps = 90 to ps = 110 for all three selection strategies.
In the following, the questions raised in the first part of this section are answe-
red: Firstly, the investigation goal is aimed at the influence of large populations
on the convergence speed. Early convergence as a main goal of VONSEA is
defeated since an increase of the population size results in higher speed of
convergence. There is a continuous convergence improvement observable by an
increase of ps, but the level of improvement is reduced for higher ps values
at the cost of diversity, as demonstrated by the experimental results in this
section. Secondly, the investigations are analyzed regarding an impact of the
population size and the selection parameter. A configuration rule for the se-
lection parameter depending on the population size is necessary in the case of
a large interdependence of both. However, the experiments do not reveal an
interdependence of the population size and the selection parameter in general.
An advisable range of ps values providing optimal performance is set in the
range of 90 to 110 for the 3D-MOP as well as 4D-MOP and independent of
the selection strategy.

6.5 Comparison of VONSEA and NSGA-II

The last experimental section presents the performance differences between
VONSEA and the character-encoded state-of-the-art NSGA-II with a diversity
preserving selection strategy in the case of the 3D- and 4D-MOP. The compa-
rison is performed under practical points of view and gives an insight into the
different search properties of VONSEA and NSGA-II. These algorithms are
compared to each other regarding convergence and diversity properties and
are exemplarily analyzed on the basis of the achieved non-dominated soluti-
ons detected in the first five generations. From a practical point of view, an
algorithm has to provide a large number of diverse and maximally qualified
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solutions in each generation since these candidate peptides will be synthesized
and analyzed in the subsequent in vitro drug design step. For this purpose, the
non-dominated solutions of the first five generations provided by NSGA-II and
VONSEA are analyzed regarding the quantity of high quality solutions, the
quality range within the non-dominated solutions and the detection progress
of high quality solutions over the first generations. Moreover, the number of
identified non-dominated solutions by VONSEA and NSGA-II are evaluated
according to the average number of dominated solutions per solution in each
other’s set of non-dominated solutions for a deeper insight into the abilities of
VONSEA.

6.5.1 Simulation Settings

NSGA-II VONSEA
population size 100 100

generations 5 5
recombination one-point crossover LiDeRP

parent number: 2 parent number: 3
pc = 1.0

mutation one-point mutation BSadap

pm = 1.0

selection diversity preserving method ACV-based
1. the 10 best solutions p0 = 50%

are selected in Pt+1 ts = 10

2. binary tournament selection:
selection criterion: crowding distance

Table 6.13: Algorithm settings of NSGA-II and VONSEA for the performance comparison

Table 6.13 gives an overview of the algorithm settings. The procedure of NSGA-
II used for the experiments is kept similar to the traditional NSGA-II, whereas
the individuals for the succeeding generations are selected by a combination
of elitism and diversity preserving method: One-point recombination is used,
whereby the recombination points are selected randomly. Furthermore, two pa-
rent are selected for recombination according to the traditional procedure. The
recombination probability is set to 1.0. Afterward, each solution is mutated by
one-point mutation. Once again, the mutation points are chosen randomly.
The selection strategy of the traditional NSGA-II has been adapted to preser-
ve diversity in the population. Firstly, the 10 best solutions of the combined
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Fig. 6.143: 3D-Performance results of NSGA-II and VONSEA.

parent and offspring population are selected into the succeeding generation.
The remaining individuals for the succeeding generation are selected by bina-
ry tournament selection and the individual with the higher crowding distance
value is chosen into the succeeding generation. The settings of VONSEA are
the advisable components and parameter values, as stated in the preceding
sections.
The total number of non-dominated solutions identified by VONSEA and
NSGA-II in each generation are evaluated by comparing the average num-
ber of dominated solutions per solution in each other’s set of non-dominated
solutions for a deeper insight into the abilities of VONSEA. The following
indicator is used for this comparison:

avg(F1, F2) =

(
|F1|∑
i=1

ni)/|F2|

m
with (6.1)

ni = {b ∈ F2| ai ≺ b with ai ∈ F1} and m = {a ∈ F1| ∃b ∈ F2 : a ≺ b},

where F1 and F2 are two sets of non-dominated solutions that are to be compa-
red. The sum of dominated solutions in F2 per solution in F1 is set in relation
to the total number of solutions in F2 to ensure the independence of this indi-
cator from the cardinality. This indicator is not symmetric and both values of
avg(F1, F2) and avg(F2, F1) have to be determined. A value of avg(F1, F2) = 1

implicates that F1 strongly dominates F2 and a values of avg(F1, F2) = 0

indicates that F2 strongly dominates F1.
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6.5.2 Results of the 3D-MOP

Figure 6.143 presents the convergence, diversity and relative non-dominated
solution quality of NSGA-II and VONSEA in the case of the 3D-MOP. NSGA-
II generally reveals similar ACVscaled values with a tendency towards higher
convergence indicator values compared to VONSEA. Diversity of NSGA-II is
drastically reduced compared to VONSEA, though the individuals for the suc-
ceeding generations are selected by a diversity preserving method. The relative
non-dominated solution quality is remarkably high compared to the correspon-
ding ACVrel results of VONSEA, revealing a general tendency towards non-
dominated solutions with a remarkably lower quality compared to those of
VONSEA. This conclusion is obvious since the ACVrel values are calculated
using the ACV values of the non-dominated solutions relative to the ACV

values of the entire population, which are nearly comparable in the case of
VONSEA and NSGA-II. The following analysis of the non-dominated solu-
tions within the first five generations, detected by VONSEA and NSGA-II,
underlines this conclusion.

Figures 6.144 - 6.148 represent the bar graphs with error indicators (stan-
dard deviation) of the averaged three molecular function values obtained by
the non-dominated solutions of NSGA-II and VONSEA in the first five ge-
nerations. Standard deviations are depicted by the whiskers. The objective
function values of Hydro have been scaled for a better visualization. Figure
6.144 reveals that the three objective functions values of the non-dominated
solutions detected by VONSEA are generally better and in the case of MW
and Hydro even significantly better under the condition that the objective
functions have to be minimized. Standard deviations are higher for the three
objective functions values achieved by NSGA-II compared to VONSEA reve-
aling a wide quality spread of the objective function values and more abstract,
of non-dominated solutions. Figure 6.145 presents the mean values plot of the
objective functions values from the non-dominated solutions detected by VON-
SEA and NSGA-II in the second generations. The objective values of MW and
Hydro are on average considerably lower in the case of VONSEA compared to
NSGA-II, similar to the standard deviations. Only the NMW objective values
of VONSEA are slightly higher than those of NSGA-II. The objective NMW
is used as a similarity measure and the NMW values therefore allow an insight
into the genetic diversity of the solutions. The higher NMW values achieved by
VONSEA are potentially a consequence of the higher genetic diversity within
the non-dominated solutions caused by the considerably higher mutation and
recombination probability of VONSEA in the first five generations. Generally,
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Fig. 6.144: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the first generation. (3D-MOP)

Fig. 6.145: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the second generation. (3D-MOP)

all objective functions values - except NMW in the case of VONSEA - are on
average improved from the first to the second generation, indicating that both
algorithms proceeds in the term convergence. The averaged objective values
of non-dominated solutions in the third generation detected by VONSEA are
furthermore remarkably better than those of NSGA-II except in the case of
NMW values. These are stagnating compared to the last generation in the case
of VONSEA (Figure 6.147). The standard deviations of NSGA-II are also hig-
her than those of VONSEA revealing once again a wide quality spread of the
non-dominated solutions. NSGA-II remarkably proceeds in the term of con-
vergence, but is not able to outperform the performance results of VONSEA.
In the case of VONSEA, the NMW values of the non-dominated solutions are
stagnated, those of MW are on average slightly higher and those of Hydro are
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Fig. 6.146: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the third generation. (3D-MOP)

Fig. 6.147: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the fourth generation. (3D-MOP)

improved compared to the results of the second generation. The results of the
fourth generation reveal a similar pattern (Figure 6.147): The average objecti-
ve values of VONSEA are considerably better for MW and Hydro compared to
those of NSGA-II, the NMW values of VONSEA are slightly higher than tho-
se of NSGA-II revealing a higher genetic diversity within the non-dominated
solutions of VONSEA. This time, NSGA-II achieves worse averaged objecti-
ve values for MW and Hydro, whereas VONSEA reveals improved averaged
objective values for NMW and MW and stagnated values for Hydro. Further-
more, the averaged objective values of the non-dominated solutions detected
by VONSEA are remarkably better in the case of MW and Hydro compa-
red to NSGA-II in the fifth generation (Figure 6.148). The NMW objective
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Fig. 6.148: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the fifth generation. (3D-MOP)

values of VONSEA are once again stagnated compared to those of the last
generation. Also the standard deviations of NSGA-II are higher than those of
VONSEA, revealing less stable results. The convergence performance regar-
ding the non-dominated solutions of NSGA-II achieves the highest progress
except in the case of the NMW values, which are slightly higher. VONSEA
achieves a progress in the objective MW, stagnating performance for NMW
and slightly increased values on average for Hydro.
Figure 6.149 presents the spread of the number of non-dominated solutions

Fig. 6.149: Number of non-dominated solutions provided by NSGA-II (left figure) and VON-
SEA (right figure) in the first five generations (G1)-(G5). (3D-MOP)

detected by NSGA-II and VONSEA in the first five generations. NSGA-II
generally achieves a considerably higher number of non-dominated solutions.
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The first generation achieves the lowest number of non-dominated solutions
followed by the fifth generation. The higher number of non-dominated soluti-
ons is achieved in the fourth generation, whereas the boxplot reveals skewed
results with a clear tendency towards a higher solution number. The number
of non-dominated solutions achieved by VONSEA is generally in the same nu-
merical range, which is significantly lower than in the case of NSGA-II. The
boxplots of generation three and four reveal that the number of solutions is
strongly skewed. Furthermore, the number of solutions is continuously reduced
in the generations four and five. These results and the results of the mean value
plots allow the following conclusions: VONSEA provides a significantly lower
but nearly reliable number of non-dominated solutions, which are on avera-
ge of a considerably higher quality and a slightly higher genetic diversity than
NSGA-II. On the contrary, NSGA-II achieves a high number of non-dominated
solutions, which have a wide quality range. From the practical point of view,
VONSEA provides an adequate number of high quality peptides in each of
the first five generation, whereas NSGA-II provides a wide range of currently
optimal peptides, which require a further thorough selection.
Figure 6.150 gives a more precise insight into the quality of the non-dominated
solutions detected in the test runs. The quality is evaluated according to the
average number of dominated solutions per solution in each other’s set of non-
dominated solutions per generation using the indicator (6.1). The figure pres-
ents a performance superiority of the non-dominated solutions of VONSEA
in each generation compared to those of NSGA-II, since the indicator values
avg(VONSEA, NSGA-II) are significantly higher than avg(NSGA-II, VONSEA)

in each generation. This indicates that each non-dominated solution detec-
ted by VONSEA dominates on average a considerably high number of non-
dominated solutions detected by NSGA-II. As a consequence, VONSEA provi-
des a lower and chosen number of highly qualified candidate peptides, whereas
NSGA-II detects a large number of candidate peptides revealing a wide quali-
ty range. Therefore, the set of non-dominated solutions detected by NSGA-II
needs a further target-oriented sorting. This allows the conclusion that the
search performance of VONSEA is more efficient and target-orientated than
the one of NSGA-II.

6.5.3 Results of the 4D-MOP

In the following, NSGA-II and VONSEA performance is compared in the ca-
se of the 4D-MOP. Figure 6.157 depicts convergence, diversity and relative
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Fig. 6.150: Comparison of the detected non-dominated solutions of VONSEA and NSGA-II
per generation by the average number of dominated solutions per solution in each
other’s set of non-dominated solutions. (3D-MOP)

Fig. 6.151: 4D-Performance results of NSGA-II and VONSEA.

non-dominated solution quality of the NSGA-II and VOSEA configuration as
described in Table 6.13. The ACVscaled values of NSGA-II are compared to
those of VONSEA with a slight tendency towards higher values. Otherwise,
the diversity of NSGA-II is significantly lower compared to VONSEA. Further-
more, the ACVrel results of NSGA-II are considerably higher than the results
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of VONSEA. Once again, the ACVscaled values of NSGA-II and VONSEA are
generally comparable. This allows the conclusion that the non-dominated solu-
tions of NSGA-II are of a lower quality than those of VONSEA. The following
non-dominated solution analysis of the first five generations in the case of
VONSEA and NSGA-II underlines this conclusion.

Figure 6.152 - 6.156 represent the bar graphs with error indicators (stan-

Fig. 6.152: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the first generation. (4D-MOP)

Fig. 6.153: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the second generation. (4D-MOP)

dard deviation) of the averaged tour molecular function values obtained by
the non-dominated solutions of NSGA-II and VONSEA in the first five gene-
rations. The objective function values of Hydro and InstInd have been scaled
for a better visualization. The comparison of the non-dominated objective
function values of NSGA-II and VONSEA in the first generation reveals that
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Fig. 6.154: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the third generation. (4D-MOP)

Fig. 6.155: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the fourth generation. (4D-MOP)

VONSEA provides non-dominated solutions with remarkably better objective
values for MW, Hydro, InstInd and comparable NMW function values com-
pared to NSGA-II (Figure 6.152). Furthermore, the standard deviation of the
objective function values achieved by NSGA-II is generally higher indicating a
wide range of objective values. Therefore, the peptides provided by VONSEA
outperform those of NSGA-II on average in three objective function values.
Furthermore, the range of the peptide quality is generally lower in the case of
VONSEA. The non-dominated solutions provided by VONSEA in the second
generation also outperform those of NSGA-II on average in the objective va-
lues of MW, Hydro and InstInd (Figure 6.153). Otherwise, the objective values
of NMW are on average slightly higher in the case of VONSEA compared to
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Fig. 6.156: Average objective function values and standard deviation of the non-dominated
solutions achieved by NSGA-II and VONSEA in the fifth generation. (4D-MOP)

NSGA-II revealing a tendency towards a higher genetic diversity. The stan-
dard deviation of NSGA-II is also higher for all objective values compared to
VONSEA. Compared to the results of the first generation, the non-dominated
solutions of NSGA-II and VONSEA progresses in the three objective values
MW, Hydro and InstInd, whereas the genetic diversity slightly increases from
the first to the second generation in the case of VONSEA and NSGA-II. A si-
milar pattern is achieved by the results of the third generation (Figure 6.154):
The non-dominated solutions of VONSEA outperform those of NSGA-II in
the objectives MW, Hydro and InstInd, whereas the objective values of NMW
reveal a higher genetic diversity of the non-dominated solution in the case of
VONSEA. Moreover, the standard deviations achieved by NSGA-II are once
again higher than those of VONSEA. A progress regarding the improvement
of the non-dominated solutions in the third generation compared to the pre-
ceding generation is observable for all objective functions values in the case
of NSGA-II. Also the non-dominated solutions of VONSEA are improved in
three of the four objective function values, but the NMW values are on ave-
rage increased compared to the results of the second generations, revealing a
higher genetic diversity. VONSEA also outperforms NSGA-II in the three ob-
jective MW, Hydro and InstInd in the fourth generation (Figure 6.155). Once
again, NMW values of VONSEA are on average higher than those of NSGA-II.
Standard deviations of NSGA-II are higher for at least three objectives; only
the standard deviation of the MW objective is higher in the case VONSEA.
The progress of the non-dominated solutions proceeds in two of four objecti-
ves in the case on NSGA-II compared to the preceding generation, whereas
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VONSEA reveals a reduction of the objective function values in three cases.
However, the provided peptides of VONSEA are on average of a higher quality
and of a higher genetic diversity compared to those of NSGA-II. This pattern
is also observable by the results of the fifth generation (Figure 6.156): VON-
SEA provides non-dominated solutions with better objective function values
on average, only the NMW values are once again higher compared to NSGA-II.
The standard deviations are all higher in the case of NSGA-II, whereas the
difference between the standard deviations of NSGA-II and VONSEA are re-
duced. A progress regarding the non-dominated solution quality on average is
achieved in the three objective functions NMW, Hydro and InstInd in the case
of NSGA-II compared to the preceding generation, whereas the values of MW
are slightly decreased. Also VONSEA improved the non-dominated solution
quality in the objective functions NMW, MW and Hydro, whereas those of
InstInd are reduced.
Figure 6.157 compares the number of non-dominated solutions achieved by

Fig. 6.157: Number of non-dominated solutions provided by NSGA-II (left figure) and VON-
SEA (right figure) in the first five generations (G1)-(G5). (4D-MOP)

NSGA-II and VONSEA in the first five generations. The lowest number of
non-dominated solutions in general is provided by NSGA-II in the first gene-
ration, the highest number on general in the fifth generation. The results of
the first two generations are skewed with a tendency towards higher values
in the case of the first generation and a tendency towards lower values in the
case of the second generation, observable by the median values. The number
of provided non-dominated solutions is remarkably lower in the case of VON-
SEA. In the first three generations, the number of solutions is continuously
decreased on average, whereas the results in the second generation are skewed,
revealing a tendency towards a lower number of non-dominated solutions. Af-
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ter the third generation, a significant leap is observable by a strong rise of
the solution number. As a consequence, VONSEA provides generally a low
but well-selected number of high quality non-dominated solutions, which are
on average of a better quality than those provided by NSGA-II. Furthermore,
VONSEA outperforms NSGA-II regarding the proposed ’best’ peptide candi-
dates in the case of the 3D-MOP and 4D-MOP.
Figure 6.158 gives a more precise insight into the quality of the non-dominated

Fig. 6.158: Comparison of the detected non-dominated solutions of VONSEA and NSGA-II
per generation by the average number of dominated solutions per solution in each
other’s set of non-dominated solutions. (4D-MOP)

solutions detected in the test runs by the average number of dominated soluti-
ons per solution in each other’s set of non-dominated solutions in each genera-
tion, using the indicator (6.1). Figure 6.158 presents a performance superiority
of the non-dominated solutions of VONSEA in each generation compared to
those of NSGA-II, since the indicator values avg(VONSEA, NSGA-II) are si-
gnificantly higher than avg(NSGA-II, VONSEA) in each generation. Also in
case of the 4D-MOP, each non-dominated solution detected by VONSEA do-
minates on average a considerably higher number of non-dominated solutions
detected by NSGA-II. VONSEA provides a lower and very well-selected num-
ber of highly qualified candidate peptides, whereas NSGA-II detects a large
number of candidate peptides revealing a wide quality range. This confirms
the hypothesis that the search performance of VONSEA is more efficient and
target-orientated than the one of NSGA-II.
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6.5.4 Discussion

The last series of test refers to the comparison of the VONSEA configuration
with the advisable components and parameter settings to the state-of-the-art
NSGA-II with a diversity-preserving selection strategy in terms of convergence,
diversity and progress regarding the non-dominated solution progress in the
direction of the optimal solutions. The results matrices present confidence li-
mits for the means of the NSGA-II and VONSEA performance and confidence
limits for the mean of the non-dominated solution number detected by NSGA-
II and VONSEA in the case of the 3D- and 4D-MOP are given in Table 6.14.
The convergence indicator values ACVscaled of NSGA-II as well as VONSEA

Table 6.14: Results matrix of VONSEA and NSGA-II performances and the number of non-
dominated solutions detected in the first five generations in the case of the 3D- and
4D-MOP.
Backgrounds: optimal indicator results (green), similar indicator results (blue),
worst performance (blue).

are similar or on the same level in the case of the 3D-MOP and 4D-MOP.
Otherwise, VONSEA achieves a significantly increased diversity compared to
NSGA-II, though a diversity-preserving method is used to determine the in-
dividuals of the succeeding generation. Moreover, the relative non-dominated
solution quality of VONSEA is considerably better than the one of NSGA-II
in the case of the 3D- and 4D-MOP, as indicated by the confidence limits of
the ACVrel values. A further analysis of the non-dominated solutions detected
by NSGA-II and VONSEA in the first five generations reveals that VONSEA
achieves a lower and well-selected number of candidate peptides with a higher
quality on average compared to NSGA-II in each of the first five generations
and for both MOPs.
In general, these results confirm the preferred VONSEA property of early con-
vergence in contrast to the state-of-the-art NSGA-II. Furthermore, VONSEA
confirms the statement of Singh [145] regarding an observable MOGA progress
in each successive generation by providing a specific number of highly qualified
candidate peptides.
The evolutionary concept of VONSEA has been applied in the practical re-
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search work of OPTOPROBE. This project aims to discover fluorescent and
peptide-based probes to detect tumor cells of a very small size (< 1mm) by an
innovative multi-channel fluorescence endoscopy system [69]. Such a peptide-
based probe has to comply with several molecular objectives like an optimal
binding to the desired target, a high stability and optimized cell permeabili-
ty. Algorithms based on the analysis of the peptide sequence are available to
predict some of these molecular objects. For the evolution of the probes, the
evolutionary process has usually performed for five generations and the non-
dominated solutions of each generations have been manually inspected regar-
ding further desired molecular properties as fluorescent probes. Summarizing
from these practical experiences with the evolutionary concept of VONSEA
and the experimental results presented in this section, the benefit of VONSEA
compared to the NSGA-II in the case of biological and pharmaceutical research
lies in the potential of VONSEA to:

• provide a well-selected number of non-dominated solutions of a high qua-
lity per generation instead of a significantly higher number of candidate
peptides detected by NSGA-II revealing a wide - and on average worse -
quality range.

• provide an chosen number of highly qualified peptides in the very first
generation of the evolutionary process. The optimization progress is con-
siderably high in the first five generations. In contrast, the detected can-
didate peptides of NSGA-II require a further reasonable selection achie-
vable by additional generation runs.

As a consequence, VONSEA selects a modest number of highly qualified pepti-
des in the first few generations and therefore in a robust search process, which
subsequently allows an effective and therefore cost-effective manual inspection
in the laboratory.
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The main contribution of this thesis is the development of a MOEA for pep-
tide optimization. The proposed VONSEA has been designed with the aim of
providing a considerable number of high-quality peptides within a low num-
ber of generations. The configuration of VONSEA as well as its components
have been designed based on theoretical considerations. The different optio-
nal VONSEA configurations and the common EA objectives, such as selection
pressure and the influence of multi-parent recombination on the algorithm per-
formance, have been investigated empirically on two molecular optimization
problems of different dimensions. The hypotheses and questions raised in the
Section ’Research Issues’ are summarized and discussed in the following:
Hypothesis 1 (H1) concerns the role of mutation and recombination as well
as their interdependence on the performance of VONSEA. The experiments
allow the interpretation that the algorithm performance of VONSEA in sol-
ving the 3D- and 4D-MOP is mainly influenced by the mutation operators. A
characteristic convergence and diversity behavior is observable for each muta-
tion operator, and these results are nearly independent of the four presented
recombination operators and similar for the 3D- and the 4D-MOP.
The first question (Q1) concerns an advisable combination of the proposed
seven mutation and four recombination operators that potentially provide op-
timized performance for the purpose of peptide optimization investigated by
the 3D and 4D-MOP. Two combinations of variation operators are proposed as
advisable default settings: the adapted mutation operator of Bäck and Schütz
in combination with either the linear or the exponential recombination ope-
rator. These combinations provided a good convergence-diversity balance for
both MOPs.
Hypothesis 2 (H2) concerns the influence of multi-parent recombination on
convergence and diversity performance in the case of the 3D- and 4D-MOP.
Moreover, the interdependence between parent number and population size
is investigated in the case of two different recombination operators, LiDeRP
and ExpoDeRP. The experiment results reveal that the influence of the parent
number on the performance is recombination-specific but comparable for both
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MOPs. In general, an increase of the parent number higher than 3 mostly re-
sults in diversity improvement at the cost of convergence, as a consequence of
the high sequence disruption and a simultaneous high difference in appearance
of the offspring to their parents. Promising and robust performance results are
achieved for a parent number of 3 and a population size ps ≥ 100 in the case of
LiDeRP. Acceptable and robust performance results are achieved for a parent
number smaller than 5 and a population size of 100 and higher in the case of
ExpoDeRP.
Hypothesis 3 (H3) refers to the guidance of the search process by the selecti-
on strategies. The three proposed selection strategies combine the aspects of
change by tournament selection and the preference of high-quality solutions
by assigning higher selection probabilities to these individuals by random se-
lection from the first front in one case and a more discerning indicator-based
selection in the other. Diversity within the solutions is implied in the selection
process by fitness-proportionate front-based SUS. The experimental results al-
low the conclusion that front-based SUS, as compared to the random selection
of a solution for the succeeding generation, provides a good search performance
regarding the convergence-diversity balance. Generally, the selection strategies
aggregate selection and ACV-based selection are comparable for convergence
and diversity by a suitable probability balance between front-based SUS selec-
tion and individual selection from the first front or selection of the individual
with the best indicator value. The difference between aggregate and ACV-
based selection is the more discerning selection of ACV-based selection which
results in remarkably better relative non-dominated solution quality. The pro-
perties specific for the selection strategy are observable in the 3D- as well as
4D-MOP.
The second question (Q2) concerns the selection parameters tournament size
(ts) and the probability (p0) of selecting individuals from the first front or the
individual with the best indicator value. The parameter p0 is mainly responsi-
ble for convergence-diversity balance, independent of the ts settings and of the
problem dimension. But the parameter setting of p0 depends on the selection
criterion for the selection of high-qualified solutions. An advisable parameter
setting for p0 independent of problem dimension is given. The parameter ts

is responsible for a more distinctive selection. Independent of the problem di-
mension and the parameter setting of p0, a ts setting of at least 8 or higher
usually achieves a good convergence-diversity balance.
Question 3 (Q3) concerns a potential convergence improvement by an increase
of the population size (ps). A continuous improvement of the convergence per-
formance by an increase of ps is contrary to the early convergence property.

237



7 Conclusion

Convergence as well as relative non-dominated solution quality is improved
by an increase of ps for all selection strategies, but the level of improvement
decreases remarkably or even stagnates for ps settings above 100. Otherwi-
se, diversity is not improvable by an increase of ps or even reducible with ps

settings above 100. Therefore, a convergence improvement by an unlimited in-
crease of ps is not observable. These observations are similar for the 3D- and
4D-MOP.
The fourth question (Q4) concerns a possible interdependence between popula-
tion size and the selection strategies. The experiment results reveal no general
interdependence between the three selection strategies and ps. The influence of
different ps settings on performance is similar for the three selection strategies
and even for the 3D- and 4D-MOP.
Question 5 (Q5) is a logical consequence of Q3 and Q4 and concerns an advi-
sable range of ps settings which potentially provide robust algorithm perfor-
mance. Advisable ps settings have been stated in the range of 90 to 110 for
the 3D- as well as the 4D- MOP.
These results imply the answer to Question 6 (Q6): Since the influence of the
different ps settings on algorithm performance is similar for the three selection
strategies and independent of the selection parameter settings, the advisable
selection parameters are not influenced by the advisable population sizes. The
experimental results reveal that there is a superficial influence of the selection
parameter tournament size on algorithm performance. A good performance is
generally achieved for at least ts = 8 or higher. The higher the ts settings,
the more discerning are the selection processes, but computational complexity
increases. This tendency is observable for all selection configurations as well as
for the 3D- and 4D-MOP. The selection parameter p0 determines the balance
between the probability of selecting high quality solutions and the selection
of solutions by front-based SUS. The advisable p0 settings depend on the se-
lection strategies, but are equal for the 3D- and 4D-MOP, providing a robust
convergence-diversity balance.
Question 7 (Q7) refers to the characterization of the 3D- and 4D-multi-objective
landscapes and the resulting challenges of a MOEA in solving these problems.
The characteristic features have been analyzed with regards to modality, rug-
gedness and characterization of plateaus. In general, both landscapes are very
rugged and reveal no specific or even structure. Furthermore, this landscape
analysis reveals the common fact that the number of non-dominated solutions
increases with the dimension increase and front diversity is reduced. This ob-
servation is challenging for a MOEA, and the design of its selection strategy
has to take account of this fact. Moreover, the existence of the considerable
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number of front-based plateaus spread over the 3D- and 4D-MOML suggests
the common approach of balancing the search behavior of the MOEA towards
exploration in early generations and exploitation in later generations. This
balance is performed by variation operators in a MOEA.

7.1 Summary of Results

The basic results of this thesis are summarized in the following:

1. The presentation of the multi-objective evolutionary algorithm VON-
SEA, especially designed for peptide optimization. The configuration of
VONSEA as well as the variation operators and the selection strate-
gies have been adapted or invented based on theoretical considerations.
These considerations are firstly an exemplary multi-objective molecular
landscape analysis on two different dimensional and generic molecular
optimization problems. Furthermore, different established components
have been discussed as to their respective advantages. Some of these
components have been adapted and additional components have been
introduced for the purpose of peptide optimization.

2. The introduction of a concept for qualitative real-valued multi-objective
molecular landscape analysis. The analysis techniques arising from single-
objective landscape analysis have been transferred and re-defined for
MOMLs. This concept has been used to analyze the two different dimen-
sional generic molecular optimization problems with the aim of formula-
ting hypotheses regarding the design of a MOEA with optimized search
performance.

3. The introduction of a global convergence indicator ACV that allows the
statistically reasonable evaluation of populations with different sizes. The
properties of this indicator have been discussed and a further indicator
based on ACV has been introduced as an indicator for the non-dominated
solution quality relative to the entire population.

4. The presentation of the experimental results of the systematically inves-
tigated different VONSEA configurations as well as a fine-tuning of the
selection parameters. Furthermore, the common EA objectives such as
selection pressure and the influence of the parent number variation for
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recombination have been systematically analyzed. The experiments re-
veal a MOEA that provides a potentially robust performance for peptide
optimization problems of different sizes.

5. The VONSEA configuration with the advisable components and para-
meter settings has been compared to the state-of-the-art NSGA-II with a
diversity-preserving method for the determination of the individuals for
the succeeding generation. In general, VONSEA outperforms NSGA-II
in terms of convergence, diversity and relative non-dominated solution
quality in the case of the 3D- and 4D-MOP. Furthermore, in the first five
generations VONSEA provides a low but specific number of high quality
non-dominated solutions, which are on the average of a higher quality
than the non-dominated solutions provided by NSGA-II.

7.2 Future Research Directions

VONSEA provides an exemplary robust performance for a 3D- and 4D-MOP.
To manifest the efficiency and the robustness of VONSEA, its performance
needs to be investigated further on a variety of other molecular optimizati-
on problems, especially for high-dimensional optimization problems with more
than four objectives. Further experiments will establish VONSEA as an op-
timized metaheuristic in the field of peptide optimization if the hypotheses
stated in this thesis and exemplarily verified on the 3D- and 4D-MOP will be
confirmed for a wide range of molecular optimization problems. If necessary,
some adaptations will have to be made in these cases.
A further improvement that is of specific interest for a practical application
in the field of peptide optimization is the integration of the principle of archi-
ving into VONSEA to provide the opportunity of a continuous self-controlled
peptide improvement. This research niche requires investigation concerning a
good balance of the relational size of the internal and external population as
well as a suitable archive-update technique. Furthermore, an advisable ratio
of individuals from the external and internal population for recombination is
challenging. Moreover, a selection strategy is required that ensures a discerning
and well-proportional selection of individuals from the external an internal po-
pulation.
The consequences of the landscape analysis of the 3D- and 4D-MOP allow a
further hypothesis that results in a more fundamental restructuring of a basic
MOEA component: the number of non-dominated solutions will increase with
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the optimization problem dimension and the front diversity will consequently
be reduced, as observed in the case of the 3D- and 4D-MOP. This fact makes a
domination-based MOEA less effective, especially in the case of a front-based
selection strategy. The consequence of this consideration is an adaptation of
the domination principle or a replacement of the Pareto dominance principle to
achieve a more discerning ranking of the solutions in the case of higher dimen-
sional optimization problems. An alternative concept to the Pareto dominance
principle does not exist to date, opening up a further research direction.
From a more general point of view, the components selection strategies and
variation operators are abstract enough to be used in other MOEAs to solve
a variety of other real-world and real-valued optimization problems. Extensive
experiments in this direction are desirable and of specific interest for the ex-
ploitation of the abstract ideas of these operators for other MOEA applications.
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