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Abstract 

Subjects of the present dissertation are the synthesis, and the characterization of colloidal 

Quantum dots and their application in electrochemical biosensors for biological and life 

sciences. This study splits into two parts. The first part consists on the synthesis and the 

characterization of various types of quantum dots (QDs), i.e., doped (CdS:Mn and 

CdS/Mn:ZnS/ZnS core/shell) and undoped (CdS, CdS/ZnS core/shell, CdSe and CdSe/ZnS 

core/shell QDs) QDs. The second part concerns the fabrication of a bioelectrochemical 

sensor based on CdS/ZnS QDs. 

Mn-doped CdS and CdS/ZnS QDs were synthesized in organic solvent; Mn ions were 

incorporated into CdS QDs (CdS:Mn) and in the case of the CdS/ZnS QDs, Mn ions were 

incorporated into a thin (2 atomic monolayers) ZnS shell, which after Mn doping was further 

grown (2 atomic monolayers). In order to study the optical properties of Mn doped CdS/ZnS 

core shell QDs, a fluorescence resonance energy transfer (FRET) system was performed, in 

which the Mn2+ ions and organic dyes(ATTO633) as acceptors were incorporated into the 

ZnS shell and polymer shell, respectively. The polymer shell was used to provide colloidal 

stability for the CdS/ZnS QDs. In this study, we propose that the double energy transfer 

process take place among the three fluorescence sources, first within the Mn-doped 

CdS/ZnS QDs, i.e., from the CdS/ZnS QDs to the Mn ions and then, from the excited Mn ions 

to the organic dye, the organic fluorophore ATTO633 incorporated within the polymer 

coating of Mn-doped CdS/ZnS QDs. 

A bioelectrochemical sensor for specific detection of guanosine monophosphate (GMP) is 

demonstrated based on the combination of three enzymatic reactions. We have combined 

all three enzymatic reactions with the detection at the QD electrode. In both cases, all three 

enzymes (i.e., Guanylate monophosphate kinase (GMPK), pyruvate kinase (PK) and lactate 

dehydrogenase (LDH)) were immobilized together, on top of the QD electrodes, or added 

directly to the electrolyte solution. Photocurrent measurements were performed with 

varying concentrations of GMP, but with fixed concentration of the three enzymes and 

other enzymes /coenzymes like adenosine triphosphate (ATP), phosphoenolpyruvat (PEP), 

and nicotinamide adenine dinucleotide hydrogen NADH.  Clearly the photocurrent response 
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was found to be dependent on the GMP concentration added to the solution. This verifies 

that a signal cascade from the first GMPK reaction through the PK and LDH reaction, and 

finally to the NADH to NAD+ oxidation at the QD electrode could be measured. In the first 

reaction, the enzymatic conversion of GMP by GMPK produces adenosine diphosphate 

(ADP). In the second reaction, ADP and phosphoenolpyruvate (PEP) are converted into 

Adenosine triphosphate (ATP) and pyruvate. In the third reaction pyruvate (Py) and 

nicotinamide adenine dinucleotide hydrogen (NADH) are converted to lactate and 

nicotinamide adenine dinucleotide (NAD+). Finally Py was converted by LDH under 

consumption of NADH, which was electrochemically determined. The photocurrent 

response to GMP for the combined reaction demonstrates that GMP could be detected 

electrochemically.  
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Zusammenfassung 

Gegenstand der vorliegenden Dissertation ist die Synthese und Charakterisierung kolloidaler 

Quantenpunkte und ihre Anwendung in elektrochemischen Biosensoren für Biologie- und 

Lebenswissenschaften. Diese Studie teilt sich in zwei Teile. Der erste Teil setzt sich aus der 

Synthese und Charakterisierung verschiedener Arten von Quantenpunkten (QPs) zusammen 

wie dotierte (CdS:Mn und CdS/Mn:ZnS/ZnS Kern/Hülle) sowie undotierte (CdS, CdS/ZnS 

Kern/Hülle, CdSe und CdSe/ZnS Kern/Hülle) QPs. Der zweite Teil bezieht sich auf die 

Herstellung eines bio-elektrochemischen Sensors auf Basis von CdS/ZnS QPs. 

Mn-dotierte CdS und CdS/ZnS-QPs wurden in organischen Lösungsmittel synthetisiert wobei 

Mn-Ionen zunächst in CdS-QPs (CdS:Mn) eingebracht wurden. Im Falle der CdS/ZnS-QPs 

wurden Mn-Ionen in eine dünne Schicht aus ZnS (bestehend aus 2 molekularen 

Einzelschichten) eingebracht, welche nach Mn-dotierung mit zwei weiteren ZnS-

Einzelschichten versiegelt wurde. Um die optischen Eigenschaften Mn-dotierter CdS/ZnS-

QPs zu untersuchen, wurde ein System basierend auf strahlungsfreiem Fluoreszenz-

Resonanzenergietransfer erarbeitet, wobei zusätzlich Farbstoffmoleküle (ATTO633) als 

Akzeptor in die Polymerhülle eingebracht wurden. Die Polymerhülle wurde verwendet, um 

die kolloidale Stabilität der CdS/ZnS-QPs zu gewehrleisten. Es ist anzunehmen dass der 

Energieübertragungsprozess zwischen den drei Fluoreszenzquellen in bestimmter 

Reihenfolge stattfindet. Zunächst innerhalb der QPs, d.h. zwischen CdS/ZnS-QPs und Mn2+-

Ionen und dann von den angeregten Mn2+-Ionen zu den Farbstoffmolekülen innerhalb 

Polymerhülle. 

Ein bio-elektrochemischer Sensor für den spezifischen Nachweis von 

Guanosinmonophosphat (GMP) wird vorgestellt, basierend auf der Kombination dreier 

enzymatischer Reaktionen. Alle drei enzymatische Reaktionen wurden mit der Detektion an 

der QP-Elektrode kombiniert. In beiden Fällen wurden alle drei Enzyme (Guanylat-

Monophosphatkinase (GMPK), Pyruvatkinase (PK) und Lactatdehydrogenase (LDH)) auf der 

Oberseite der QP-Elektrode immobilisiert oder direkt zu der Elektrolytlösung gegeben. 

Photostrommessungen wurden mit variierenden Konzentrationen von GMP durchgeführt 

aber mit festen Konzentration der drei Enzyme sowie weiterer Enzyme bzw. Coenzyme wie 
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Adenosintriphosphat (ATP), Phosphoenolpyruvat (PEP) und Nicotinamidadenindinukleotid 

Wasserstoff (NADH). Die Resonanz des Photoelektronenstroms war proportional zur GMP-

Konzentration in Lösung. Dies lässt auf eine Signalkaskade schließen, anfangend mit der 

ersten GMPK-Reaktion, weiter zur PK- und LDH-Reaktion und schließlich auf die 

Oxidationsreaktion von  NADH zu NAD+, welche an der QP-Elektrode gemessen werden 

konnte. In der ersten Reaktion erzeugt die enzymatische Umwandlung von GMP durch 

GMPK, Adenosindiphosphat (ADP). In der zweiten Reaktion werden ADP und 

Phosphoenolpyruvat (PEP) in Adenosintriphosphat (ATP) und Pyruvat umgewandelt. In der 

dritten Reaktion werden Pyruvat (Py) und Nicotinamidadenindinukleotid Wasserstoff 

(NADH) zu Lactat und Nicotinamidadenindinukleotid (NAD+) umgewandelt. Schließlich 

wurde Py von LDH unter Verbrauch von NADH umgewandelt was elektrochemisch bestimmt 

wurde. Die Resonanz des Photoelektronenstroms zu GMP der kombinierten Reaktion 

beweist den elektrochemischen Nachweis von GMP. 
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1. Introduction 

Nanotechnology deals with nano-meter sized objects. Nanosized structures are formed of 

clusters of few numbers of atoms or molecules. Nanostructure size is in-between atoms or 

molecules and bulk materials. The term ‘Nanotechnology’ is realized by three levels: 

materials, devices and systems.1 The nanomaterial level, both in scientific understanding 

and in commercial usage, is the more advanced one during the last decade. Advancement in 

nanoscience has permitted scientists to develop materials that have highly controlled and 

unique properties. Later on, nanomaterials have started to be used in different applications 

of the biological sciences, such as therapy, diagnostic tools, labeling, and drug delivery to 

enumerate.2 Importantly, nonmaterial’s properties can be regulated by manipulating their 

physical dimensions and composition. A number of eminent physical properties of the 

nanometrials are related to different origins: for example large fraction of surface atoms per 

unit volume, large surface energy, special confinement effect etc. 2-7 

The term colloid was initially used to explain a wide range of solid-liquid solution, all of 

which contain different solid particles dispersed to various degrees in a solution. 

Remarkable advancement has been made in fabrication of colloidal nanoparticles (NPs) with 

well-defined sizes and shapes.3 Many efforts have been devoted for the investigation of the 

synthesis, characterization and application of NPs.4-7 

Some metals, namely gold and silver, exhibit poor reactivity on the bulk scale. Gold (Au), a 

noble material for example, is exceptionally non reactive in bulk state. On the other hand, 

Au clusters are found to be catalytically very active in reactions; numerous potential reasons 

have been suggested.8, 9  Concerning biomedical applications, silver (Ag), being another 

noble metal, at nanoscale plays an important role in daily life goods, mainly due to their 

antimicrobial properties.10, 11  The applications of Ag NPs are very much similar to those of 

Au NPs. Furthermore silver NPs catalytic activity is strongly dependent on particle size. 12, 13 

Semiconductor nanocrystals, i.e., colloidal QDs, are in the range of few nanometers in 

diameter, with unique photophysical and chemical properties which depend on their size.14-

17  The fluorescent QDs are metal chalcogenide alloys mainly consisting of cadmium selenide 
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(CdSe)17 and cadmium sulfide (CdS)17. However, cadmium substitutes like Zinc and Lead 

have been reported.18-20 QDs have been suggested as surrogates for conventional organic 

fluorophore and fluorescent proteins in bioimaging.21-23 These are also used in lasers24, light 

emitting diodes25, solar cells26, 27 and different electronic and optical devices.  

1.1. Nanofabrication  

The two major approaches involved in the nanofabrication are typically categorized into 

top-down and bottom-up techniques. Top-down techniques begin with a pattern made on a 

larger scale and reducing its dimensions into nanoscale. Top-down means getting a bulk 

material and breaking into small pieces; the main advantages are universality and cost 

effective.28, 29
 Top-down techniques for nanostructure fabrication are based on a number of 

tools and techniques, which relies on the thin film deposition/coating technique on a 

substrate, lithography and etching technique etc. In recent years, electron beam lithography 

is used for fabricating semiconductor components, and nanoscale devices.30, 31 

The second approach is the so-called bottom-up, in which nanosized objects like 

nanoparticles, nanowires and nanotubes are produced by self-assembly of nano-objects or 

thin layers to form arrays or phase parting molds.28-34 Inorganic NPs are synthesized through 

wet chemical methods by swiftly mixing suitable reagents, leading to a solid phase 

formation, i.e., nucleation (the formation of the first small solid particles range of 1-2 nm or 

less, mentioned in Figure 1). The growth of small crystals into larger crystals is 

thermodynamically favored to decrease in the specific surface energy during crystal growth. 

The growth of crystals must be prevented by suitable capping agents (charged molecules, 

surfactants, or polymers), which also prevent agglomeration. The colloidal stability can be 

obtained due to electrostatic repulsion (as measurable by zeta potential), due to steric 

stabilization (by polymer shell), or due to combination of both (electrostatic stabilization by 

a polyelectrolyte). 
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Figure 1: Simple demonstration of the nucleation, growth and ripening process. In particular here is possible to 

see that stopping the synthesis after a certain interval of time from the nucleation is possible to synthesize 

nanoparticles with approximately the same size. Figure adapted from Goesmann at el.
35 

1.2. Doped CdS / ZnS core/shell QDs 

Semiconductor nanocrystals CdS has a Bohr radius of 2.4 nm36 and direct band with band 

gap of 2.4 eV.37 Various methods to synthesize the CdS quantum dots of particular size and 

shape have been studied. Emission spectrum of CdS quantum dots lies in the visible 

spectrum range between 350 nm(violet) and 500 nm (green). CdS QDs are used in many 

research areas including single-electron transistors, light emitting diodes, solar cells, lasers 

and biological labels.14, 22, 38-44 The key advantage offered by these systems over traditional 

CdSe quantum dots is their relatively small red shift with increasing size. This allows more 

comfort during the synthesis for tailor made sizes of such QDs. 

Transition metals such as Cr52, Mn45, 46, Co47-49, Ni50, Cu 51, , Hg53 have been introduced in 

semiconductor QDs as dopant. 51, 52, 54-57 These doped semiconductors have recently gained 

fabulous attraction due to their unique optical and magnetic properties.  The presence of 

dopant atoms in QDs establishes new energy levels, which are responsible for the optical 
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absorption at longer wavelengths. The additions of dopants are also widening the range of 

fluorescence properties.58 

Fluorescent Manganese (Mn) doped II-VI semiconductor nanocrystals have been thoroughly 

studied in the last decade. CdS, ZnS and ZnSe semiconductor materials have been utilized as 

host for Mn-dopant prepared via different synthetic paths.57, 59-62 Additionally, doping with 

magnetic material (in this case Mn) has paved the way for dilute magnetic semiconductors 

(DMS).63 Mn2+ ions in the semiconductor nanocrystal can act as paramagnetic hubs. Mn2+ 

ion has d5 electronic configuration. The bulk dilute magnetic semiconductors (DMS) show 

interesting magnetic properties, due to exchange interaction of the sp-d orbitals between 

magnetic impurities and semiconductor host nanoparticles.56, 64 Mn2+ ion shows a broad 

emission peak when incorporated into the CdS host structure.45  Due to changes in crystal 

field strength with respect to host crystal, Mn2+ ion position depends on the host QDs lattice 

45. The emission color can vary from green to deep red, depending on the transition. The 

typical fluorescent relaxation time of this emission is of the order of milliseconds.55, 65, 66 The 

Mn doping growth scheme is used to control the radial position of dopants within the 

core/shell NPs. 45, 54, 67, 68. The ZnS shell helps not only for holding the dopants in the core or 

shell, but additionally increases the range of optical properties that can be derived from the 

dopant inclusion with QDs. Yang et al. reported the synthesis of Mn2+ doped CdS/ZnS 

core/shell NPs.45 The diameter of the starting host core and the thickness of the host shell 

determined the radial position of Mn2+ inside the CdS/ZnS core/shell NPs. The authors 

discovered the effects of position controlled Mn-doping on the optical properties by 

synthesizing three different types of CdS/ZnS core/shell NPs with Mn2+ ions in three 

different locations: within the CdS core, at the core/shell interface, and within the ZnS shell. 

The electron paramagnetic resonance (EPR) spectra in these three types of core/shell 

structures indicated that the Mn-dopants were indeed located inside the QDs. The 

measured quantum yield of the Mn emission was much higher when the dopants resided 

within the ZnS shell. This was interpreted as an effect partially caused by the inhomogeneity 

of local crystal-field strain inside the shell. The narrowing of the EPR-peak line-width was 

also consistent with weaker Mn−Mn interactions and less local strain on the Mn-dopants 
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when they were located in the ZnS shell. For the same system, an interesting strong 

dependence of the rate of exciton-Mn energy transfer on the doping radial location within 

the ZnS shell for a given dopant concentration was found by Chen et al. 58  

 

Figure 2: (1) Synthesis of CdS/ZnS Quantum dots, (2) Mn-dopant growth, and (3) hostshell growth; (i) CdS/ZnS 

host particles, (ii) CdS/ZnS nanoparticle with surface-bound Mn, and (iii) Mn doped CdS/ZnS nanoparticles. 

(taken from Yang et al.) 
46 

1.2.1. Photoluminescence of Mn doped CdS/ZnS QDs 

The photoluminescence properties of Mn-doped nanoparticles have been extensively 

investigated in the last two decades. Generally, while a photon is absorbed by a Mn-doped 

QDs, an exciton (an electron-hole) is created and confined within this QDs.69 This exciton 

can recombine via three ways, explained by Chen at el: radiative recombination at the 

nanoparticles band edge, non-radiative recombination at the nanoparticles band edge, and 

energy transfer to a Mn ion within the QD (as shown in the Figure 3). Later the energy is 

transferred to Mn; the excited Mn (at 4T1) relaxes to its ground state (6A1) with the constant 

rate.58 

 

Figure 3: Energy states and carrier relaxation pathways in aMn doped CdS/ZnS NPs. CB conduction band, VB 

valence band, ET energy transfer, BE band edge, PL photoluminescence (taken from Chen at el.). 
58
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1.2.2. Förster resonance energy transfer (FRET) in Mn doped NPs. 

The Förster resonance energy transfer (FRET) associates a donor fluorophore living in an 

excited electronic state, which may transfer its energy due to excitation to a neighboring 

acceptor chromophore in a non-radiative way. The Förster resonance energy transfer (FRET) 

between two molecules is an important physical phenomenon with considerable interest for 

the understanding of some biological systems and with potential applications in 

optoelectronic and thin film device development.70-71 

FRET phenomenon can take place in the QDs based system, in which QDs incorporated with 

organic fluorophores, or with doped material or with combination of both may exchange 

energy in a non-radiative manner. QDs may be used as acceptors as in case of lanthanides 

and multiplexed read-out of fluorescence with long lifetimes is possible.72, 73 QDs can also be 

used as donors for organic fluorophores and as acceptors.74, 75 76 Due to their optical 

properties, the QDs can be continuously tuned and it is possible to create a FRET donor for 

any number of organic fluorophores that emit between 510 to 640 nm.72, 77-82 Recently, we 

have demonstrated that lifetime multiplexing is an interesting alternative to spectral 

multiplexing.83 In this previous study ATTO590 dye molecules incorporated with gold 

nanoparticles (NPs) exhibited a exponential decay with a lifetime of a few ns (corresponding 

to the lifetime of free dye molecules), while dye molecules incorporated to CdSe/ZnS QDs 

confirmed a non-exponential decay with a slow component of more than 100 ns due to the 

FRET from the QDs to the dye. Kaiser et al. demonstrated the fundamental possibility to find 

out the mixing ratio for dyes with equal luminescence spectra but very different 

transients.83, 84 Doping of CdS/ZnS QDs with Mn ions leads to long-lived fluorescence 

lifetimes based on the dipole forbidden internal 3d-transition.85, 86 Uwe at el. [A2] reported 

that the photoluminescence decay time of organic fluorophores can be amplified up to the 

millisecond time scale by combining them to Mn-doped CdS/ZnS QDs. These Mn doped CdS/ 

ZnS core/shell nanocrystals were reported by Yang et al., based on a four step synthesis 

(Figure 2). 46 
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In a recent study, we demonstrated that the double energy transfer process occurred within 

the three fluorescence sources, first among the Mn-doped CdS/ZnS QDs, i.e. from the 

CdS/ZnSQDs to the Mn ions, and then second from the excited Mn ions to an organic dye, 

the organic fluorophore ATTO633 incorporated at the surface of Mn-doped CdS/ZnS QDs 

(Figure 4). The fluorescent spectrum of Mn-doped CdS nanocrystals shows yellow emission 

at 585 nm as well as blue emission at 400 nm (Figure 4).The comparison of two emission 

spectra, where emission 1 and emission 2 were collected by monitoring blue and yellow 

emission, respectively, also suggested that Mn-related yellow emission results from the 

energy transfer from the photoexcited CdS host core to the Mn activator resided in ZnS 

shell. 

 

Figure 4: On the left a sketch of CdS/Mn:ZnS/ZnS QDs incorporated dye molecules is shown. The Mn ions are 

located inside the ZnS shell. A scheme of the different energy states is shown on the right. The excitation of the 

CdS core is indicated by the blue waved arrow and the green arrows show the possible energy transfer 

pathways. The QD, the Mn
2+

 ions, and the dye can all undergo a radiative recombination to the respective 

ground state under emission of photons. This Figure was adapted from Uwe et al.[A2]. 

Mn ions are adsorbed onto the surface of CdS or CdS/ZnS core/shell nanocrystals. Mn 

adsorption on the surface of nanocrystals includes the formation of weakly and strongly 

attached Mn.  The creation of weakly attached Mn is linked with a chemical equilibrium 

between adsorbed Mn atoms on the nanocrystal surface and the unattached Mn atoms in 

the reaction solution. An activation-energy barrier (211 ±13 kJ/mol)46 is calculated by 

unimolecular decomposition reaction for the formation of strongly attached Mn atom. 
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Additionally, both weakly and strongly attached Mn atoms can be detached through ZnS 

shell growth. The substitution of weakly attached Mn can occur at or below 240 °C, although 

the substitution of strongly attached Mn atom needs a slight higher temperature. The 

reaction yield of substitution is strongly dependent on ZnS shell growth temperature, 

explaining that the Mn substitution to overcome activation energy limit. The Mn growth 

yield is not dependent on the size, shape and nanocrystal structure of nanocrystals.46 The 

diameter of the core and the thickness of the shell determined the radial position of Mn 

dopants within the host core/shell. The calculated quantum yield of the Mn florescence was 

much higher while the dopants were placed within the ZnS shell. This was explained as a 

result partially caused by the inhomogeneity of host crystal field strain inside the ZnS shell.46 

1.3. Biosensors 

Biomolecular sensing is a pivotal tool for diagnostics of various diseases. For instance, 

abnormal protein/gene expression may be triggered during a functional disorder of an 

organ from a living organism. However sensing can be really onerous owing to very weak 

signals from the analyte. The signal can be enhanced by the use of catalysts which not only 

accelerate the reaction but also can amplify the signal if properly handled. 

The first biosensor based on glucose was introduced by Clark and Lyons.87 After that, 

hundreds of biosensors have been developed by many researchers around the world. 

Sensors are instruments that count a physical, chemical, or biological change and convert 

them into a recordable data.88 The sensor contains a detection element that allows the 

selective response to a specific analyte or a group of analytes, therefore minimizing 

interferences from other sample components (Fig. 7). One more important part of a sensor 

is the transducer or the detector device that generates a signal. A signal processor collects, 

amplifies, and displays the output signal.  
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Figure 7: A Biosensor schematic for electrochemical detection (adopted from Ronkainen et al.). 
89

 

Electrochemical biosensors (a part of chemical sensors) are electrochemical transducers 

with high specificity of biological detection systems. Electrochemical biosensors can be 

divided into two major categories based on the type of the biological recognition process 

that is biocatalytic devices and affinity sensors.90, 91 Electrochemical biosensors based 

devices contain a biological recognition element (proteins, enzymes, antibodies, nucleic 

acids, cells, tissues or receptors) that selectively responds with the specific analyte and 

generates an electrical signal that is connected to the concentration of the analyte being 

investigated. Electrochemical biosensors are recognized for the detection of glucose and 

lactose. Affinity sensors rely on a selective binding interaction between the analyte and a 

biological component such as an antibody (Figure7).89, 92-95 

1.3.1. Enzymes 

Enzymes are commonly used biocatalysts in biosensors. They have a task to speed up 

reactions by providing an alternative reaction pathway of lower activation energy. Similar to 

all catalysts, enzymes take part in the reaction. Enzymes do not undergo permanent 

changes and so remain unchanged at the end of the reaction. They can change the rate of 

reaction, not the position of the equilibrium. Most organic chemical catalysts catalyze a 

wide range of reactions. Numerous enzymes consist of a protein and a non-protein (called 

the coenzymes). Enzymes are generally highly selective due to the structure and catalyze 

specific reactions only. Ureases are highly specific for one type of compound.96, 97 Some of 

them are specific for one group of substrates. Alkaline Phosphatase (ALP) is specific for the 

phosphate group and can cleave it from a wide range of mono-phosphate esters.98-102 The 

structure of enzymes consists of single peptide chain; the active molecule for selectivity can 
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be a separate molecule, attached with the polypeptide backbone. Some of the molecules 

are permitted to contact the active part, so that specificity of enzyme is mostly determined 

by access through the protein shell and the binding part, and not by the active part itself.98, 

103-105 

1.3.1.1. Guanylate kinase (GMPK) 

GMPK is crucial enzyme for the establishment of prodrugs used for the treatment of viral 

infections and cancers dieses106 Thus, it is medically important to reveal its enzymatic 

mechanism and the structural foundation for its nucleotide specificity. GMPK could play a 

part in the design of enhanced antiviral and antineoplastic agents. Guanylate kinase is 

an enzyme that catalyzes the chemical reaction given in Equation 1. 

GMP + ATP
GMPK
     GDP + ADP  (Eq. 1) 

Therefore, the two substrates of this enzymeare ATP (adenosine triphosphate) and GMP 

(guanosine monophosphate), where as its two products are ADP (adenosine diphosphate) 

and  GDP (guanosinediphosphate). This enzyme belongs to the family of transferases 

(enzymes that enact the transfer of specific functional groups).107-109 The enzymatic activity 

of GMPK was measured by a standard NADH-dependent LDH/pyruvate kinase-coupled assay 

using a UV–Vis spectrophotometer.110 

 

Figure 5: Ribbon diagram of mGMPKGMP-ADP(adopted from Sekulic et al.) 
107
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1.3.1.2. Guanylatemonophosphate (GMP) 

Guanylate monophosphate is a cofactor and belongs to a nucleotide, significant in 

metabolism and RNA synthesis. GMP consists of the phosphate group, the pentose sugar 

ribose, and the nucleo base guanine; therefore it is a ribonucleoside monophosphate. GMP 

and other nucleotide metabolites have traditionally been detected by assays based on the 

use of radiolabeled substrates, or via spectroscopic multi-step coupled-enzyme assays.110-113 

1.3.1.3. Pyruvate kinase (PK) 

Pyruvate kinase(PK) is an enzyme that converts glucose (C6H12O6) into pyruvate (called 

glycolysis). It catalyzes the transfer of a phosphate group from phosphoenol pyruvate (PEP) 

to adenosine diphosphate (ADP), resulting of pyruvate and of ATP. 

ADP + PEP  
PK
    ATP + pyruvate   (Eq. 2) 

PK deficiency is a genetic disorder (lack of the enzyme PK), which is used by red blood cells. 

Without this PK enzyme, red blood cells break down too easily, consequentially in low levels 

of these cells (hemolytic anemia).114 Pyruvate kinase (PK) deficiency and related  disorders 

of the red cell glycolysis, initially diagnosed in the early 1960s115 is the most frequent 

enzyme irregularity of the glycolytic pathway, and the most common reason of inherited 

non-spherocytic haemolytic anaemia, mutually with class of glucose-6-phosphate 

dehydrogenase deficiency116. The disease is transmitted as an autosomal recessive trait, 

clinical symptoms usually occur in compound heterozygotes for two mutant alleles and in 

homozygotes.115, 117 

 

Figure 6:  Pyruvate kinase diagram (taken from  Cook at el.)
114
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1.3.1.4. Lactate dehydrogenase (LDH)  

Lactate dehydrogenase (LDH) is a common and well-studied enzyme, which is found in all 

types of cells. LDH catalyzes the conversion of pyruvate to lactate and back, as it converts 

NADH to NAD+. 118, 119 

Pyruvate + NADH + H+LDH    lactate + NAD+  (Eq. 3) 

Lactate dehydrogenase (LDH) is a LDH has been used as a marker enzyme to detect cell 

damage and cell toxicity induced by many diseases and hazardous exposures.91 

1.3.1.5. Nicotinamide adenine dinucleotide hydrogen (NADH)  

NADH is a significant coenzyme originates in vivo during dehydrogenase based enzymatic 

reactions and it has a number of essential parts in biological systems.120 NADH is a 

dinucleotide, because it contains two nucleotides attached through their phosphate groups. 

First contains an adenine base and the second nicotinamide. Nicotinamide adenine 

dinucleotide exists in an oxidized and reduced form as NAD+ and NADH respectively.121 

Consequently many researchers have consider the electrochemical oxidation of NADH to 

construct NAD+-dependent enzymatic electrochemical biosensors using for food and 

medical diagnosis. 122, 123 124 

1.3.2. QD-Based Electrochemical biosensors 

Quantum dots can be immobilized on gold (Au), silver (Ag) and platinum (Pt) substrate 

electrodes through covalent coupling (SAMs of dithiols125) and electrostatic coupling (Layer 

by layer assembly)126
. In previous study, QD modified metal electrodes were used to detect 

different analytes and their corresponding enzymatic reactions with electrochemical 

methods like voltammetry etc.127-129 QDs play a very important role in this type of 

electrochemical detection system. They can be fabricated with different size and shape 

assisting the mediation of electrons from redox active group within the electrolyte. While 

their surfaces can be modified as well, they have become very useful technique for sensitive 

and selective recognition of specific species. With the incorporation of different 
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immobilization techniques (covalent or electrostatic) complex nanostructures can be 

fabricated. Since the selectivity to detect a particular analyte depends upon the material of 

the QD. Beside surface functionalization it is also feasible to synthesize hybrid structures of 

metals or magnetic semiconductor QDs.130 For the electrochemical detections, QDs 

incorporated with metal electrodes are possible through light illumination.  

Parak et al reported electrochemical biosensors based on modified electrode with quantum 

dots especially II_VI semiconductors (e.g., CdSe, CdS, ZnS, ZnSe) and FePt nanoparticles 

(NPs).127-129, 131, 132 They immobilized nanoparticles via self assembled monolayer (SAM) for 

the detection of hydrogen peroxide, glucose oxidase, nicotinamide adenine 

dinucleotide(NADH), p-aminophenyl phosphate (pAPP) with alkaline phosphatase (ALP). 

 

Figure 8: a) The CdS QDs immobilized on Au electrode via a BDT layer. pAPP is in solution  degraded by ALP to 

4AP. b) Without QDs Energy diagram c) Energy diagram with Illuminated QDs can act as  redox mediator. 

(adopted from Khalid et al.) 
128

. 

In a previous study, Khalid et al.128 investigated the feasibility of a light controlled 

electrochemical biosensor for detection of the substrate p-aminophenyl phosphate (pAPP) 

with the enzyme alkaline phosphatase (ALP). QDs were immobilized on gold surfaces 

through 1,4-benzenedithiol (BDT) chains. Illumination of QDs promoted the oxidation of 4AP 

which could be detected through a corresponding photocurrent. Excited QDs conduction-

band electrons can flow into an electrode or alternatively, to an electron acceptor in 
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solution. Electrons can also be transferred from an electrode or a solubilized electron donor 

to QDs valence-band holes. A bias voltage U is applied across Au electrode and an Ag/AgCl 

reference electrode in the electrochemical biosensor’s bath solution. p-aminophenyl 

phosphate (pAPP) degraded into 4-aminophenol (4AP) in the presence of  alkaline 

phosphatase (ALP) in the solution. Electron hole pairs are generated due to illumination of 

QDs. This directs to oxidation of 4AP to 4-quinoneimine (4QI) on the surface of QD, and here 

electrons are transferred to the QD. Electrons are transferred to the Au electrode and can 

be perceived as oxidation current I (figure 8(a)).  Energy levels E are shown in figure 8(b). 

The absences of the QDs on the gold electrode as redox mediator oxidation of 4AP cannot 

happen in case the bias potential U is not sufficiently positive. For the condition of oxidation 

the Fermi level EF of the Au electrode would need to be lower than the energy level at which 

electrons upon 4AP oxidation are released. In figure 8(c), illuminated QDs can act as redox 

mediator. Defect states (DS) on the surface of QD (which are vigorously above the valance 

band (VB)) avoid immediate recombination of the light generated electron hole pairs. In this 

way resulting electron from the oxidation of 4AP to 4QI can be transferred to the DS of the 

QD. The electrons from the conduction band (CB) can be passed through the BDT layer to 

the gold electrode, which is perceived as oxidation/photocurrent.128 

A light-addressable modified Au electrode with CdS@FePt nanoparticles was immersed via 

dithiol linker layer.127 This study revealed that trans-stilbenedithiol provides high quality 

self-assembled monolayers (SAM) compared to benzene dithiol and biphenyl dithiol, in case 

they are formed at elevated temperatures. CdS QDs in good electrical contact with the 

electrode permit the generation of the current under appropriate illumination. FePt NPs 

have been used as catalytic sites for the reduction of hydrogen peroxide (H2O2) to water 

(H2O).  Either only CdS QDs or only FePt NPs immobilized at the Au electrode surface 

resultant no response of the photocurrent to H2O2 was found.127 

1.3.2.1. Guanosine Monophosphate detection 

Recently, we show that photocurrent generation at QDs modified electrode can be 

effectively combined with a cascade enzymatic reaction to product in a light addressable 
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sensor for detecting the nucleotide GMP. Here, GMPK, which catalyzes the phosphoryl 

group transfer from ATP to GMP to form ADP and GDP, is an essential enzyme in the 

guanine nucleotide metabolism of cellular organisms.107-109 GMPis required for a variety of 

cellular metabolic processes, as well as for RNA and DNA formation.106 Such metabolic 

processes include the recycling of GMP, products of RNA and DNA deterioration, and act as 

a second messenger cyclic GMP (cGMP) through the so-called cGMP cycle (cGMP → GMP → 

GDP → GTP → cGMP).133 

The first reaction (equation no.1) involves catalytic conversion of GMP by GMPK, which 

warrants for specificity. The reaction product ADP is a co-enzyme for the enzymatic 

conversion of phosphoenol pyruvate to pyruvate in a second reaction (equation no. 2) 

mediated by pyruvate kinase. Pyruvate in turn is co-enzyme for oxidation of NADH to NAD+. 

This third enzymatic reaction(equation no.3) mediated by LDH is then finally 

electrochemically detected.133  

 

Figure 9: Detection of GMP using a NADH-dependent electrochemical assay.133   
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2. Synthesis and Characterization of QDs 

 

2.1. Synthesis of CdS QDs 

Zinc-blend CdS nanocrystals were synthesized according to a previously published 

method.67, 134  In a typical synthesis, cadmium oxide (0.126 g, 0.98mmol), oleic acid (2.02 g, 

7.1mmol), and 1-octadecence (ODE,12.0 mL) were loaded into a three-neck flask, degassed 

under vacuum for 10 minutes, and heated at 300 °C under nitrogen atmosphere.  A solution 

of sulfur in ODE (0.25 M, 2.0 mL) was then injected into the mixture and the temperature 

dropped to 250 °C.  After the injection, the solution was left for 5 minutes at 250 °C for the 

growth of the nanocrystals. The solution then was allowed to cool to room temperature by 

removing the heating mantle. The CdS QDS were precipitated with acetone and then 

precipitate was rinsed twice by dissolving and precipitating with chloroform and methanol. 

Finally, CdS nanocrystals were redispersed in chloroform for further use. 

 

Figure 10: a) TEM image of CdS QDs.  b) Typical CdS QD size (dc) distribution, the mean diameter of QD is dc = 

3.02 ± 0.61 nm. c) Normalized absorbance and emission spectra of CdS QDs. The higher emission narrow band 

is assigned to band edge emission, while the lower emission broad band comes from trap states.
135

 This Figure 

was adapted and modified from Uwe et al. [A2]. 

The concentration of CdS quantum dots was determined by using the Beer-Lambert law as 

follows, A = c × ε × L. Where A is the absorbance, ε is the molar extinction coefficient of the 

sample (M-1 - cm-1), L is the path length (cm) and c is the concentration of the sample. Here 

the value ε = 297788 M-1cm-1 corresponding to their first exciton peak at 392 nm was 
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used.136 The concentration is c = (A/ ε/ L) (dilution factor) = (0.26638/297788 M-1 -cm-1/1cm) 

(50) = 44.72 µM. The absorbance was obtained from the first exciton peak of the UV/Vis 

spectra. The UV/Vis spectra were recorded with an Agilent Tech. 8453UV/ Vis 

spectrophotometer. 

2.2. Synthesis of ZnS shell around CdS core (CdS/ZnS QDs) 

Zinc-blend CdS quantum dots (QDs) were synthesized according to previously published 

methods 67, 134. The most significant reactions conditions are N2 atmosphere and high 

temperature. Cadmium precursor and sulfur precursors are dissolved in surfactant (ODE, 

oleic acid). At high temperature, nucleation occurs and lowering temperature a little 

(around 250 0C), growth starts and monodisperse quantum dots appear. Following 5min the 

injection of the stock solution(S:ODE) a “shoulder” at about 392 nm is clearly visible in the 

absorbance spectrum (Figure 5) and this shows the formation of the CdS QDs in solution. 

After washing steps, QDs were dissolved in chloroform for further used. 

 

Figure 11:a) TEM image of CdS/ZnS QDs (2monolayer (ML) of ZnS Shells).  b) Typical CdS/ZnS QD size (dc) 

distribution, the mean diameter of CdS/ZnS QD (2 monolayer (ML) of ZnS Shells) is dc = 3.62 ± 0.25 nm. c) 
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Normalized absorbance and emission spectra of CdS/ZnS NPs (2monolayer (ML) of ZnS shell). d) TEM image of 

CdS/ZnS QDs (6 monolayer (ML) of ZnS Shells). e) Typical CdS/ZnS QDs (6 monolayer (ML) of ZnS shell) size (dc) 

distribution, the mean diameter of QD is dc = 4.5 ± 0.8 nm. f) Normalized absorbance and emission spectra of 

CdS/ ZnS QDs (6 monolayer (ML) of ZnS shell). This Figure was adapted and modified from Uwe et al. [A2]. 

ZnS shells were grown around the CdS QDs to passivate the CdS QDs core and enhance their 

fluorescence using zinc stearate and sulfur as zinc (Zn) and sulfur (S) precursors.46 The 

amount of the Zn/S precursor solution of shell was calculated according to the previously 

published methods.137 The ZnS shells were grown monolayer by monolayer; by alternate 

injections of a solution of zinc stearate (40 mM) in ODE and sulfur in ODE (40 mM). Growth 

time was 10 minutes after each injection of zinc stearate or sulfur. When the desired shell 

thickness (6 monolayers) was attained, the temperature of the solution was reduced to 

room temperature. The resulting nanocrystals were further purified by three precipitation-

redispersion cycles using methanol and chloroform. Finally, CdS/ZnS nanocrystals were 

redispersed in chloroform. The resulting size distribution as determined with TEM is shown 

in Figure 11(b). 

2.3. Doping of Mn in ZnS shell of the CdS/ZnS QDs (CdS/Mn:ZnS  QDs) 

Mn2+ ions were introduced in the host ZnS shell. Briefly, CdS/ZnS NPs (25.2 M, 50.4 nmol, 

QDs concentration calculated as previously reported 46) dissolved in chloroform were added 

into a three neck flask to a mixture of 1-octadecence (ODE) and oleylamine (OAm) (8 ml, 

ODE/OAm: 3:1) and the chloroform was removed under vacuum. Under N2 flow, the 

solution was heated to 250℃. The precursors for doping (220 µl, 1.2 µmol, Mn precursor 

(Mn(S2CNEt2)2) was prepared according to the literature described by Yang et al. 46)) were 

introduced into the solution by dropwise addition. After the addition, the mixture was 

stirred at 250 ℃ for 20 min. The reaction was stopped by removing the heating mantle and 

allowing the solution to cool at room temperature. The resulting CdS/Mn:ZnS NPs were 

purified via precipitation by adding acetone, and redispersed in chloroform. 
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Figure 12: a) TEM image of CdS/Mn:ZnS QDs.  b) Typical CdS QD size (dc) distribution, the mean diameter of QD 

is dc = 3.65 ± 0.3 nm. c) Normalized absorbance and emission spectra of CdS/Mn:ZnS NPs.  

2.4. Passivation of CdS/Mn:ZnS NPs with ZnS shell 

Zinc-blend CdS quantum dots (QDs) were synthesized according to previously published 

methods. 67, 134 Similarly two monolayers were grown around CdS cores as described in 

section 2.4.1. The dopant precursors (Mn(S2CNEt2)2, as described by Yang at el.), were 

introduced into the host ZnS Shell. 46  The precursors were added into the host solution 

dropwise at growth temperature. The solution was left stirring at this point for 20 minutes 

before removing the heating mantle to cool down the solution at room temperature. The 

resulting CdS/Mn:ZnS NPs were purified via precipitation method. Further four ML of ZnS 

shell were grown as described in above. 

 

Figure 13: a) TEM image of CdS/Mn:ZnS/ZnS NPs. b) Typical CdS/Mn:ZnS/ZnS QD size (dc) distribution, the 

mean diameter of QD is  dc = 4.48 ± 0.7 nm. c) Normalized absorbance and emission spectra of 

CdS/Mn:ZnS/ZnS NPs. This Figure was adapted and modified from Uwe et al[A2]. 
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2.5. Synthesis of Mn doped CdS quantum dots (CdS:Mn QDs) 

The Mn2+ ions were incorporated into the CdS quantum dots using the previously published 

method developed by Yang et al. [5]. The CdS quantum dots suspended in chloroform 

solution of host particles, CdS (2 mL, 12.6 μM; CdS QDs synthesis were explained in the 

section2.1; QDs concentration calculated as previously reported [4]), was added into a 

mixture solution of 1-octadecence (ODE) and oleylamine (OAm) (8.0 mL, ODE:OAm 3:1) in a 

three-neck flask, and then chloroform was removed under vacuum. Under N2 flow and with 

continuous stirring, the solution was heated to 250 °C), and 0.22 mL of the doping precursor 

solution (5 mM, 1.2 μmol of Mn (S2CNEt2)2) were introduced into the solution by dropwise 

addition. After the addition, the mixture was stirred at 250 °C for 20 min, and then was 

allowed to cool to room temperature by removing the heating mantle. The resulting CdS:Mn 

nanocrystals were purified by precipitation by adding acetone, and re-dispersed in 

chloroform. 
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Figure 14:  a) TEM image of CdS QDs.  b) Typical CdS QD size (dc) distribution, the mean diameter of QD is dc = 

3.01 ± 0.39 nm. c) Normalized absorbance and emission spectra of CdS QDs. d) TEM image of CdS:Mn QDs.  e) 

Typical CdS:Mn QD size (dc) distribution,  the mean diameter of doped QD is  dc = 3.01 ± 0.42 nm. f) Normalized 

absorbance and emission spectra of CdS:Mn QDs.  

2.6. Synthesis of the CdSe/ZnS core/shell QDs 

CdSe QDS were synthesized according to a procedure previously described.138, 139 In a typical 

synthesis, 5.75 g of hexadecylamine (HDA, technical grade, Sigma-Aldrich #H7.40-8), 2.26 g 

of trioctylphosphine oxide (TOPO, 99%, Sigma-Aldrich #22.330-1), 2.20 g of 

dodecylphosphonic acid (DDPA 98%,Sigma-Aldrich) and 501 mg of CdO (99.99+%, Sigma-

Aldrich #20.289-4) were added in a 50 ml 3-necked flask connected to an N2 vacuum line 

assembled in an N2 in the glove box. The mixture was degassed at 120 °C for 10 minutes and 

then heated to 300-320 °C until solution turned colorless and clear. 1 ml of TBP 

(tributylphosphine, 99%, ABC #15-5800) was then injected in to the solution and the 

temperature was lowered to 260 °C. Mean while, 320 mg of Se powder (99.99%, Sigma 

Aldrich #22.986-5) were dissolved in 1.28 g of TBP under vigorous stirring and the resulting 

solution was injected in the CdO/TOPO/HDA mixture. After injection, the temperature 

dropped but was allowed to recover to 260 °C and was then maintained at this level 

throughout the synthesis. 3-5 minutes after the injection the color of the solution turned 

from colorless to slightly yellow, indicating the nucleation of CdSe nanocrystals. This color 

turned yellow to light orange 2-5 minutes after the injection (first exciton absorption peak 

at 515 nm). The growth rate slightly varied from synthesis to synthesis, but it was always 

sufficiently low so that the synthesis could be stopped whenever the first exciton peak in 

the absorption spectrum reached at desired value. The synthesis was stopped by removing 

the heating mantle and by cooling the reaction mixture of the flask at room temperature. 

The resulting CdSe QDs were purified by precipitation by adding methanol, and redispersed 

in toluene. 
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Figure 15: a) Normalized absorbance and emission spectra of CdSe QDs, absorbance of the QDs 515 nm and 

emission at 530nm. b) Normalized absorbance and emission spectra of CdSe/ZnS core-shell QDs, absorbance of 

the QDs 531 nm and emission at 543nm. 

For the growth of the ZnS shell, 12 g of TOPO (technical grade, Alfa Aesar #14114) were 

added in a50 ml 3-necked flask, switched to vacuum at 120 °C for 10 minutes. One ml of 

TOP (Trioctylphosphine, technical grade, Sigma-Aldrich #11.785-4) was injected into the 

flask. 60 mg of a dry QDs powder were dissolved in 3 mL of chloroform and the resulting 

solution was injected into the flask. The chloroform was removed by switching to vacuum 

for few minutes. The temperature of the solution was then increased to 160 °C. The ZnS 

shell precursor was freshly prepared by adding 0.647 g of a solution of diethylzinc (C4H10Zn, 

1.0 M solution in heptane, Sigma-Aldrich #40.602-3) and 0.19 g of hexamethyldisilathiane 

(C6H18Si2S) (Aldrich#28.313-4) in 4.73 g of TBP. Several drop-wise injections of the ZnS 

precursor were added (1 mL each) at 160 °C. The waiting time after each injection was of 

the order of 5-10 minutes. The injections were done dropwise, to permit a slow and uniform 

shell growth on the QDs and to prevent the nucleation of ZnS crystals. After the first few 

injections, the luminescence from the nanocrystals increased, indicating the growth of a ZnS 

shell. The luminescence then reached a maximum intensity, which was dependent on the 

particular QDs size. The best possible number of injections which maximized the final 

fluorescence quantum yield varied by synthesis, and ranged from 3-5 for the largest QDs 

sizes to 6-7 for the smallest QDs. After the injections were completed, the solution was 
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cooled to room temperature. The resulting CdSe/ZnS QDs were purified by precipitation by 

adding methanol and the mixture was centrifuged for 10 minutes at 300 rpm, and the 

precipitate was redispersed in chloroform. 
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3. Conclusions and outlook 

Two amply different applications of semiconductor quantum dots have been discussed in 

this doctoral work mainly. In the first part it has been demonstrated that the incorporation 

of Mn ions as dopants within the ZnS shell of CdS/ZnS core-shell QDs leads to an efficient 

energy transfer from the excitonic QD states to the Mn states.[A2] A multistep growth of 

the ZnS shell was carried out to control the location of the Mn ions. The effective 

incorporation of the Mn ions into the QD core-shell structure was confirmed by a clearly 

observable PL band around 585 nm, which is due to the typical Mn transition.[A2]  This PL 

band showed a mono-exponential decay with a lifetime of about 4.6 ms. These Mn-doped 

CdS/Mn:ZnS/ZnS QDs were further functionalized with an organic dye decorated 

amphiphilic polymer leading to a third fluorescence emitter centre, and therefore to a third 

PL band. Continuous wave spectra indicated a complex interaction of the different energy 

states within the QD system. Investigation of the decay characteristics of the respective PL 

bands through time resolved spectroscopy revealed the non-radiative energy pathways. It 

was concluded that the QD states act as an energy donor for the Mn as well as for the dye 

states. Interestingly, the Mn states have a two-fold transfer characteristic, as they also 

worked as an acceptor from the QD states and as a donor for the dye states. Especially the 

feeding of the dye states from the Mn excitation led to tremendous increase of the dye PL 

lifetime. By choosing a certain dye and thereby a certain spectral overlap it was able to 

control the lifetime of the dye PL in range of a few milliseconds. 

In the second part it was demonstrated that photocurrent generation at QD electrodes can 

be effectively combined with a sequential enzymatic reaction cascade to result in a light-

triggered sensor. Such a system can be used for detecting and quantifying the nucleotide 

guanosine monophosphate (GMP), which is a physiological metabolite generated by nucleic 

acid degradation, or by de novo biosynthesis in all cells. Here, three enzymes have been 

coupled in a reaction system where the last step is a redox reaction that was detected by 

photocurrent measurement. Whereas the enzyme GMPK catalyzing the first step ensured 

selectivity of the detection, NADH was consumed in the last enzyme reaction step, and this 

was subsequently detected at the QD electrode by an oxidation reaction at rather low 
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potential. It has to be emphasized that GMP detection can categorically provide access to 

the analysis of biochemical processes that produce or consume this nucleotide, e.g. GMPK 

activity, and in a more general context, we anticipate that adapted similar sensing platt 

forms can be used for detection of almost any physiologically occurring nucleoside and 

nucleotide metabolite, and even nucleoside analogues used as drugs, which can be 

phosphorylated by kinases.  

 

Hybrid NPs can be immobilized on gold substrate electrodes with dithiols (covalent 

coupling) and LbL assembly (electrostatic coupling). Hybrid NPs modified Au electrodes can 

be used to detect different analytes and their subsequent enzymatic reaction with photo 

electrochemical techniques. Hybrid NPs not only provide the selectivity but also allow 

constructing a unique system.  
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The author contributed to the experiments of Mn doped CdS NPs synthesis, 

characterization and their data evaluation. 

[A4] Z. Yue, F. Lisdat, W. J. Parak, S. G. Hickey, L. Tu, N. Sabir, D. Dorfs, and N. C. Bigall. 

Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological 

Detection. ACS Appl. Mater. Interfaces 5(8) (2013), pp. 2800 – 2814. 

This review article is regarding the Quantum dots based photoelectrochemical sensors. 

Although, QD-based photoelectrochemical sensors are still in their formative years, this 

review paper summarizes the fabrication methods, improvements, and applications of 

QDs based sensors for biochemical detection. 

The author contributed in the literature survey, manuscript writing and edition. 

[A5] K. Kantner, S. Ashraf, S. Carregal-Romero, C. Carillo-Carrion, M. Collot, P. del Pino, 

W. Heimbrodt, D. Jimenez de Aberasturi, U. Kaiser, L. I. Kazakova, M. Lelle, N. Martinez 

de Baroja, J. M. Montenegro, M. Nazarenus, B. Pelaz, K. Peneva, P. R. Gil, N. Sabir, L. M. 

Schneider, L. I. Shabarchina, G. B. Sukhorukov, M. Vasquez, F. Yang, and W. J. Parak. 

Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium – What Are 

the Experimental  Pitfalls?   Small 11(8) (2015), pp. 896 - 904. 

This review illustrates that particle-based intracellular ion-sensing is insignificant and 

involves several drawbacks. Some prominent problems are delivery, intracellular 

location, crosstalk of fluorescence readout under the influence of pH, analytes, and 

spectral overlap of emission spectra of different fluorophores. These problems have 

been discussed by virtue of experimental examples and a potential future perspective 

for particle-based intracellular ion sensing has been proposed. 

The author contributed in the literature research and in the manuscript writing and 

edition. 
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 Photo-electrochemical Bioanalysis of Guanosine 
Monophosphate Using Coupled Enzymatic Reactions at a 
CdS/ZnS Quantum Dot Electrode 

   Nadeem    Sabir     ,        Nazimuddin    Khan     ,        Johannes    Völkner     ,        Felix    Widdascheck     ,    
    Pablo    del Pino     ,        Gregor    Witte     ,        Marc    Riedel     ,        Fred    Lisdat     ,   *        Manfred    Konrad     ,   *    
   and        Wolfgang J.    Parak   *   

  1.     Introduction 

 Guanylate kinase (GMPK), which catalyzes the easily revers-

ible phosphoryl group transfer from adenosine triphosphate 

(ATP) to (deoxy) guanosine monophosphate (GMP, dGMP) 

to form adenosine diphosphate (ADP) and (deoxy) guano-

sine diphosphate (GDP, dGDP), is an essential enzyme in 

the guanine nucleotide metabolism of unicellular and mul-

ticellular organisms. [ 1–3 ]  Guanine nucleotides are required 

for a variety of cellular metabolic processes, as well as for 

RNA and DNA synthesis. [ 4 ]  Such metabolic processes 

include the recycling of GMP and dGMP, products of RNA 

and DNA degradation, and of the second messenger cyclic 

GMP (cGMP) through the so-called cGMP cycle (cGMP → 

GMP → GDP → GTP → cGMP), thus providing guanine 

nucleotides to signal transduction pathways. [ 5–8 ]  Moreover, 

cellular GMPK is a critical and rate-limiting enzyme for 

metabolic activation of a number of guanine analogs (e.g., 

6-thioguanine, mercaptopurine) that are used in anticancer 

therapy. [ 1,9–13 ]  GMP and other nucleotide metabolites have 

 A photo-electrochemical sensor for the specifi c detection of guanosine 
monophosphate (GMP) is demonstrated, based on three enzymes combined in a 
coupled reaction assay. The fi rst reaction involves the adenosine triphosphate (ATP)-
dependent conversion of GMP to guanosine diphosphate (GDP) by guanylate 
kinase, which warrants substrate specifi city. The reaction products ADP and GDPare 
co-substrates for the enzymatic conversion of phosphoenolpyruvate to pyruvate in a 
second reaction mediated by pyruvate kinase. Pyruvate in turn is the co-substrate for 
lactate dehydrogenase that generates lactate  via  oxidation of nicotinamide adenine 
dinucleotide (reduced form) NADH to NAD + . This third enzymatic reaction is 
electrochemically detected. For this purpose a CdS/ZnS quantum dot (QD) electrode 
is illuminated and the photocurrent response under fi xed potential conditions 
is evaluated. The sequential enzyme reactions are fi rst evaluated in solution. 
Subsequently, a sensor for GMP is constructed using polyelectrolytes for enzyme 
immobilization. 
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traditionally been detected by assays based on the use of 

radio-labeled substrates, or via spectroscopic multi-step 

coupled-enzyme assays. [ 14–17 ]  In the coupled assays, the 

enzymes usually are free in solution. Here, we report on the 

electrochemical detection of GMP with GMPK, whereby 

the enzyme is either free in solution or immobilized on the 

surface of quantum dots (QD) electrodes, coupled to the 

oxidation of NADH. For the selective recognition of GMP 

we harness the natural selectivity of enzymes for their sub-

strates. Thus, for GMP detection we utilize GMPK. The 

enzymatic reaction is given by: 

 GMP ATP GDP ADP
GMPK

+ → +   (1)   

 However, as neither reaction product is particularly well 

suited for electrochemical detection, two subsequent reac-

tions need to be linked to the fi rst one, as follows: 

 
ADP/GDP+PEP ATP/GTP+pyruvate

PK

→
  (2)  

 
pyruvate+NADH+H lactate+NAD

LDH
+→+

  (3)   

 In this coupled-enzyme system, the two auxiliary enzymes, 

pyruvate kinase (PK) and lactate dehydrogenase (LDH), 

are involved. In the second reaction, ADP (and GDP, though 

with less kinetic effi ciency) and phosphoenolpyruvate (PEP) 

are converted to ATP (and GTP), which feeds the reaction 

in Equation  ( 1)   again, and pyruvate, respectively. In the third 

reaction, pyruvate and the reduced form of nicotinamide 

adenine dinucleotide (NADH) are converted to lactate and 

NAD + . Thus, the consumption of NADH is proportional to 

the GMPK activity, thereby indirectly detecting the presence 

of GMP. 

 Based on the reaction scheme shown above, NADH-

dependent spectroscopic assays were developed, which mon-

itor the absorbance change at 340 nm (extinction coeffi cient 

 ε  = 6.2 mM −1  cm −1 ) due to NADH oxidation. This allows for 

studying the steady-state kinetics of nucleoside/nucleotide 

kinases, in particular GMPK. [ 1,6,14 ]  However, due to the cost 

of enzymes discarded after each measurement, investiga-

tions in solution are unfavorable, and a fi xation of the whole 

enzyme system to a sensor surface would be benefi cial for 

the analysis. The third reaction is a redox reaction and, thus, 

is also suited for electrochemical detection, whereby the 

detection relies on the analysis of the NADH concentration. 

NADH electrochemistry on metal electrodes is, however, 

rather ill-defi ned, and thus surface modifi cations have been 

shown to be necessary. [ 18–20 ]  

 One possibility for NADH detection, as we have dem-

onstrated previously, applies quantum dot (QD)-modifi ed 

electrodes, and uses the oxidation of NADH at a rather low 

potential. [ 21 ]  The electrodes hereby are fabricated by coupling 

QDs to gold (Au) electrodes via dithiols. [ 22 ]  The advantage of 

such a measurement scheme lies in the light-addressability of 

the detection, with a photocurrent as the analytical signal. [ 23,24 ]  

Upon illumination, electron–hole pairs are generated in the 

QDs. A redox reaction at the QD surface attracts electrons 

across the solution interface to the QDs, from where they 

fl ow to the Au electrode or vice versa. [ 25 ]  Without light, there 

are no light-generated electron–hole pairs, and no photocur-

rent can fl ow. Cycles of illumination and darkness thus serve 

to switch the photocurrent on and off, which can be recorded 

for example by a lock-in-amplifi er-based detection scheme. [ 26 ]  

The amplitude of the photocurrent (at fi xed bias voltage) then 

depends on the concentration of the redox couple in solution. 

This principle has been applied for analyzing a redox pro-

tein, [ 27 ]  but also different enzymatic reactions. [ 25,28–30 ]  Similar 

photoelectrochemical detection schemes have been recently 

published by several groups. [ 31–33 ]  

 In the present study, we combined an enzymatic reac-

tion cycle with the sensitive detection of NADH at a QD 

electrode.  Figure    1   illustrates the general scheme: For the 

selective detection of GMP, the enzyme GMPK is used. It 

catalyzes the fi rst, rate-limiting step in the reaction pathway. 

The subsequent two reactions, catalyzed by PK and LDH, are 

limited only by the formation of products in the GMPK-cat-

alyzed reaction. Reactions 1 and 2 are phosphorylation reac-

tions that involve a phosphoryl group transfer from a donor 

(ATP or PEP) to an acceptor molecule (GMP or ADP). In 

contrast, reaction 3 is a redox reaction that results in the for-

mation of NAD + . As outlined before, NADH can serve as 

electron donor to light-excited quantum dots. [ 21 ]  Light-gener-

ated holes (h + ) in the QDs hereby react with NADH, thereby 

oxidizing the molecule.  

 Thus, we detect the LDH-catalyzed reaction 

(Equation  ( 3)  ) via the concentration change of NADH. 

Upon addition of pyruvate and LDH to the reaction mixture, 

the enzymatic conversion of pyruvate to lactate takes place 

causing NADH depletion, and consequently those electrons 

are no longer available for transfer to the QDs. In this way, 

an increase in pyruvate concentration reduces the photo-

current. Involving all three reactions (Equations  ( 1)  – ( 3)  ), 

the presence of GMP reduces the equilibrium current due 

to the oxidation of NADH, which was experimentally dem-

onstrated in this work as proof-of-concept study for GMP 

sensing.   
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 Figure 1.    Detection of GMP using an NADH-dependent electrochemical 
assay.
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  2.     Results and Discussion 

 In this study, we fi rst investigated the possibility to use the 

QD electrode arrangement for the detection of pyruvate, as 

the LDH-catalyzed conversion of pyruvate to lactate is the 

signal-generating reaction. For this purpose CdS/ZnS QDs 

(see the Supporting Information for more details) were fi xed 

on thin-fi lm gold electrodes with the help of stilbenedithiol 

(StDT), resulting in a defi ned photocurrent. 

 Based on NADH sensitivity studies reported previ-

ously, [ 21 ]  we fi rst tested the photoelectrochemical response of 

the QD/StDT/Au/Si electrode in the presence of NADH and 

pyruvate, as well as after addition of the NADH-consuming 

enzyme, LDH. In the absence of LDH the photocurrent 

remained stable as there is no conversion. After enzyme addi-

tion, the catalytic activity could be followed by measuring 

the decrease in photocurrent. This can be attributed to the 

competition between the QD electrode and LDH for NADH 

and provides the basis for the subsequent GMP detection. 

As there was no signifi cant change in the magnitude of the 

NADH-dependent photocurrent when applying a constant 

potential of around 0 mV vs. Ag/AgCl, for all ensuing meas-

urements we used a constant bias of +50 mV vs. Ag/AgCl, in 

agreement with a previous study. [ 21 ]  For details of the bias 

dependence of the photocurrent, we refer to the Supporting 

Information. 

 The photocurrent was found to depend on the pyruvate 

concentration. As can be seen in  Figure    2  , the amplitude of 

the photocurrent Δ I  max  decreased with increasing pyruvate 

concentrations due to the oxidation of NADH by LDH 

(Equation  ( 3)  ). By analyzing the concentration-dependent 

photocurrent changes, pyruvate could be detected in the 

range from 0.05 mM to 1 mM (see Figure  2 ). At higher pyru-

vate concentrations, the photocurrent was saturated under 

the present conditions. This was due to the limiting con-

centration of the co-substrate NADH, which was fi xed to 

1.2 mM. These data demonstrate that the electrode system 

allowed for pyruvate detection by measuring the consump-

tion of NADH. This implicates that any reaction that changes 

the pyruvate concentration can be detected via coupling to 

the reaction given by Equation  ( 3)  , that is, through electro-

chemical detection of the light-triggered current response.  

 In a second set of experiments, controls were carried out 

to demonstrate that the reactions according to Equations  ( 1)   

and  ( 2)   do not interfere with the electrochemical readout. 

The results showed that the presence of all individual com-

ponents used in the fi rst two enzymatic reactions, namely, the 

enzymes GMPK and PK, and the substrates GMP (varied 

from 0.05 mM to 1.6 mM), ATP (4 mM), and PEP (2 mM), 

did not change the photocurrent. This was analyzed for reac-

tion 1 alone (see Supporting Information) and then for both, 

reactions 1 and 2. The results of the latter experiments are 

small 2015, 
DOI: 10.1002/smll.201501883

 Figure 2.    Examples of photocurrent measurements  I ( t ) of a QD-coated Au electrode with the following reaction conditions for Equation  ( 3)  : 1.2 mM 
NADH and optionally 15 units mL −1  LDH in solution upon addition of: a) 0.8 mM pyruvate and b) 1.6 mM pyruvate. In all studies, the bias voltage 
 U  bias  was fi xed to +50 mV. Illumination was switched on and off in cycles of 30 s. During periods of illumination, a photocurrent with amplitude  I  max  
fl owed. c) Dependence of the photocurrent amplitude on the pyruvate concentration, with (“w”) or without (“wo”) 15 unit mL −1  LDH in solution. 
d) Plot of the photocurrent difference with and without LDH: Δ = −I I Imax

wLDH
max
woLDH

max  ,  showing a response depending on the pyruvate concentration. 
All data points of  I  max  and –Δ I  max  (c and d panels) result from mean values of  I  max  taken during three ON/OFF cycles of illumination and the 
corresponding standard deviations are given as error bars.
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compiled in  Figure    3  . These control measurements clearly 

demonstrate that all these substances do not disturb the 

read-out based on NADH oxidation. Changes in the photo-

current are thus mediated only by the reaction described in 

Equation  ( 3)   upon changes in the pyruvate concentration due 

to NADH oxidation. As the reactions according to Equations 

 ( 1)   and  ( 2)   alone did not lead to changes in the photocurrent, 

an important precondition for the application of a sequential 

enzymatic reaction cascade is fulfi lled with this transduction 

system.  

 In the next step for developing a GMP-detecting sensor, 

we combined all three enzymatic reactions with the detec-

tion at the QD electrode. In a fi rst approach, all enzymes 

(GMPK, PK, LDH) were added directly to the electro-

lyte. Photocurrent measurements were performed with 

varying concentrations of GMP, but with fi xed activities of 

the three enzymes and fi xed concentrations of ATP, PEP, 

and NADH. Furthermore, a control experiment was per-

formed in which no GMPK was added to the solution, yet 

all other substances were retained as in the previous experi-

ment. No signal change was detected for this control series, 

thus verifying the selectivity of the signal originating from 

the enzymatic reaction chain. The difference in photocur-

rent max max
wGMPK

max
woGMPKI I IΔ = −  (with and without GMPK) 

was used as the fi nal electrode read-out. The results shown 

in  Figure    4   indicate that the photocurrent response was 

dependent on the concentration of added GMP. This dem-

onstrates that a signal chain was established from the 

GMPK reaction in the fi rst step through the PK and LDH-

dependent reactions and fi nally to the NADH oxidation at 

the QD electrode. The dependency of the response on the 

GMP concentration, as shown in Figure  3  for the coupled-

enzyme reaction system, verifi ed that GMP can be detected 

photoelectrochemically.  

 By comparing the response of the QD electrode to 

pyruvate (Figure  2 ) with its response to GMP (Figure  4 ) it 

becomes evident that the sensing behavior of the three-

enzyme system is determined by the response of the QD 

electrode to NADH. The GMP is quantitatively converted by 

the used enzymes and thus the presence of GMP is “trans-

lated” into a decrease of NADH at the QD electrode. This 

also means that reaction 2 and 3 are not rate limiting and that 

they can convert all the produced intermediates. Reaction 1 

is consequently the reaction which governs the coupled enzy-

matic reaction cascade. 

 In the ultimate step of the GMP sensor development, the 

enzymes PK, LDH, and GMPK were immobilized on top of 

the QD electrode. To do so, the enzymes were fi rst adsorbed 

and then covered by two bilayers of the polyelectrolytes 

poly(sodium-4-styrene sulfonate) (PSS) and poly(allylamine) 

hydrochloride (PAH). Such polyelectrolyte multilayer sys-

tems have been shown to provide a benefi cial matrix for 

protein immobilization, as well as to improve the stability of 

enzymes and preserve their activity, but also the photocur-

rent behavior of QD electrodes. [ 26,34 ]  
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 Figure 3.    Photocurrent response of a CdS/ZnS-modifi ed gold electrode 
in dependence of varying GMP concentrations and in the presence 
of 4 mM ATP, 2 mM PEP, 12 units mL −1  PK in 100 mM HEPES, pH 7.5, 
100 mM KCl, 20 mM MgCl 2 , measured at  U  bias  = +50 mV,  T  = 25 °C. 
GMPK was optionally added at a concentration of 18 nM. All data points 
of  I max were the mean value of  I  max  taken during three ON/OFF cycles 
of illumination and the corresponding standard deviations are given as 
error bars.

 Figure 4.    a) Amplitude of the photocurrent  I  max  versus the GMP concentration with all enzymes directly added to the solution. Reaction conditions 
for Equations  ( 1)  – ( 3)  : 1.2 mM NADH, 4 mM ATP, 2 mM PEP, 12 units mL −1  PK, 15 units mL −1  LDH, 100 mM HEPES, pH 7.5, 100 mM KCl, 20 mM 
MgCl 2 ,  U  bias  = +50 mV,  T  = 25 °C. GMPK was optionally added at a concentration of 18 nM. The GMP concentration was varied. b) The difference in 
photocurrent amplitude with (“w”) and without (“wo”) GMPK is plotted: Δ = −I c I c I cw( (GMP)) ( (GMP)) ( (GMP))max max

GMPK
max
woGMPK

. All data points of  I  max  
and –Δ I  max  (c and d panels) represent the mean values of  I  max  during three ON/OFF illumination cycles and the corresponding standard deviations 
are given as error bars.
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 As GMPK was now bound to the electrode, reference 

measurements without GMPK (such as shown in Figure  4 ) 

could not be performed, and therefore photocurrent meas-

urements without added GMP were used as reference: 

(c(GMP)) (c(GMP))ax max
wGMP

max
woGMPI I ImΔ = − . The change 

in current was detected by the sensor within a few minutes 

after mixing the reactants. A stable photocurrent signal was 

always obtained. In  Figure    5  , the changes in photocurrent are 

plotted against the GMP concentration, resulting in a well-

defi ned response curve verifying the sensitivity in the concen-

tration range from 0.05 to 1 mM.  

 The current change Δ I  max  recorded in the system with the 

immobilized enzymes was similar to that detected with the 

enzymes in solution. This demonstrates that GMP can also be 

detected with a completely prefabricated electrode in which 

all enzymes have been readily incorporated and do not have 

to be added separately into the solution. The concentration 

range and sensitivity is rather similar to some other elec-

trochemical systems based on the direct oxidation of GMP 

at modifi ed electrode surfaces. [ 35–37 ]  However, such systems 

need a rather high working potential, which also increases 

the susceptibility for interfering reactions with other mole-

cules (e.g., ascorbic acid or other nucleotides), and are there-

fore less benefi cial for GMP sensing. In contrast, the sensor 

illustrated in this study combines a low operation potential 

of the QD electrode-based NADH detection with a high 

selectivity of the enzymatic reactions, resulting in superior 

electrochemical GMP detection. Furthermore, the construc-

tion of such enzymatic reaction cascades on QD electrodes 

has great potential for the detection of other nucleotides by 

simply replacing the nucleotide-consuming substrate-specifi c 

enzyme. In particular, our system can easily be adapted to 

monitoring ATPase, GTPase, and protein kinase reactions 

that generate ADP or GDP. Thus, the combination of the 

light-triggered read-out by spatially resolved illumination 

and spatially resolved immobilization of the corresponding 

enzymes may allow for the parallel analysis of different 

nucleotides in solution. However, the defi ned fi xation of 

small enzyme spots on the QD electrodes needs further 

investigation.  

  3.     Conclusions 

 This study demonstrates that photocurrent generation at 

QD electrodes can be effectively combined with a sequen-

tial enzymatic reaction cascade to result in a light-triggered 

sensor for detecting and quantifying the nucleotide guano-

sine monophosphate (GMP, dGMP), which is a physiolog-

ical metabolite generated by nucleic acid degradation, or by 

de novo biosynthesis in all cells. Here, three enzymes were 

coupled in a reaction system where the last step is a redox 

reaction that is detected by photocurrent measurements. 

The enzyme GMPK catalyzes the fi rst step and thus ensures 

the selectivity of the detection. NADH is then consumed in 

the last enzyme reaction step, which is subsequently detected 

at the QD electrode by an oxidation reaction at rather low 

potential. We have shown that all three enzymes required in 

this system of GMP detection can be co-immobilized on top 

of the QD electrodes by making use of protein adsorption 

and a layer-by-layer deposition method to fi x the enzymes 

with the help of the polyelectrolytes PSS and PAH. The 

sensor operated at rather low potential and could be read-

out using short illumination pulses. This bio-hybrid electrode 

combined nanoparticles and enzymes which resulted in a 

new functional system. It showed a distinct concentration-

dependent response, which is absent when GMPK is not 

present. Importantly, the signal generation was not disturbed 

by auxiliary enzymes and co-substrates necessary for the 

sequential enzymatic conversion of GMP. 

 Such a light-triggered read-out would particularly be ben-

efi cial in a non-structured electrode setup with spatially sepa-

rated immobilized enzymes for analyzing different substrates 

in parallel. Localized illumination then allows for individual 

sensor read-out. As many enzymatic assays rely on a dehydro-

genase reaction with participation of NADH, or NADPH, as 

the co-substrate, good prospects are expected for such kind 

of photoelectrochemical sensing schemes. We emphasize that 

sensorial GMP detection can also provide access to the anal-

ysis of biochemical processes that produce or consume this 

nucleotide, for instance GMPK activity, and in a more general 

context, we anticipate to develop sensor systems for detection 

of almost any physiologically occurring nucleoside and nucle-

otide metabolites, and even nucleoside analogs used as drugs, 

which can be phosphorylated by kinases.  

  4.     Experimental Section 

  QDs Synthesis : CdS QDs were synthesized using established 
protocols. [ 38,39 ]  The CdS QDs were surrounded by a ZnS shell. [ 40 ]  
The average diameter of the inorganic core of the CdS/ZnS QDs 
was 4.38 nm, as calculated from transmission electron microscopy 
(TEM), and the wavelength of the fi rst excitation peak was  λ  abs  = 
399 nm. For details we refer to the Supporting Information. 

  Electrode Preparation : The CdS/ZnS QDs were immobilized 
on the stilbenedithiol (StDT)-coated Au/Si substrates acting as 
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 Figure 5.    Sensitivity plot of the photobioelectrochemical sensor: 
Amplitude of the photocurrent change Δ I  max  versus GMP concentration 
with PK, LDH, and GMPK immobilized on top of the CdS/ZnS Au electrode. 
(Solution: 1.2 mM NADH, 4 mM ATP, 2 mM PEP, 100 mM HEPES, pH 7.5, 
100 mM KCl, 20 mM CaCl 2 ;  U  bias  = +50 mV,  T  = 25 °C). All data points 
of –Δ I  max  were obtained from the mean values of  I max during three ON/
OFF cycles of illumination and the corresponding standard deviations 
are given as error bars.
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working electrodes. The method has been explained in a previ-
ously published protocol. [ 22 ]  The StDT-coated Au/Si electrodes 
were mounted on the vacuum holder of a spin coater, and a solu-
tion of CdS/ZnS QDs (dissolved in toluene at a QD concentration of 
12.6 µM) was added while rotating the electrode at 6000 rpm for 
1 minute. This type of electrode was used for the studies with the 
enzymes in solution, or as the basis for the enzyme immobilization 
during sensor development. 

  Enzyme Immobilization : Enzymes were immobilized on the sur-
face of a QDs-modifi ed Au electrode (surface area of 1 cm 2 ) using 
a layer-by-layer (LbL) assembly technique. [ 41 ]  For this, 18 nM of 
human guanylate kinase GMPK (purifi ed as highly pure recombi-
nant fusion protein with His 6 -SUMO tag, [ 1 ]  8 µL of pyruvate kinase 
PK (12 units mL −1  solution; Sigma-Aldrich), and 10 µL of lactate 
dehydrogenase LDH (15 units mL −1  solution; Sigma-Aldrich) were 
adsorbed on the surface of each electrode, followed by applica-
tion of a 20 to 30 µL solution containing the strong poly-anion 
poly(sodium-4-styrene sulfonate) (PSS,  M  W  = 70 kDa, 59 µM; 
Sigma-Aldrich) on top of the enzyme solution. After incubation for 
15 minutes, without letting the solution dry, the electrodes were 
spun for 1 minute at 6000 rpm in order to remove the non-attached 
macromolecules. The electrodes were rinsed with water, and once 
they were dried, 20 to 30 µL of a solution containing the weak 
poly-cation poly(allylamine) hydrochloride (PAH,  M  W  = 56 kDa, 
33 µM; Sigma-Aldrich) was added to the PSS layer. After rinsing, 
another PSS/PAH bilayer was deposited following the same proce-
dure. This resulted in two PSS/PAH bilayers, with PAH forming the 
outermost layer. The overall structure of the assembled electrode 
can be expressed as (PSS/PAH) 2 /LDH;PK;GMPK/QD/StDT/Au/Si. 

  Photocurrent Measurements : The homebuilt set-up for 
recording the photocurrents has been described in previous 
publications. [ 22,25,26 ]  A Xe arc lamp (emission spectrum  λ  = 
300 – 700 nm) controlled by a lamp power supply LPS 220 
(Photon Technology International) was used as the light source. 
An optical chopper (Scitec instruments) was introduced in the light 
path ahead of the lens, which focused the light onto the working 
electrode, thus allowing us to modulate the incident light at a 
desired frequency. A plano-convex lens and a 45° mirror (Linos 
Germany) were used to focus light from the Xe arc lamp on the 
working electrode in the electrochemical cell. The illumination was 
periodically modulated with a chopper. The electrochemical cell 
(1 mL solution volume) with the three-electrode arrangement was 
connected to a potentiostat. In this arrangement, the working elec-
trode (WE, i.e., the CdS@ZnS/StDT/Au/Si chip) was set to ground 
potential. The fi xed potential  U  bias  = +50 mV was controlled via 
the reference electrode (RE, i.e., the Ag/AgCl electrode) using an 
operational amplifi er (OP), which supplied the required voltage 
through the counter electrode (CE, i.e., a platinum wire). In order 
to improve the signal-to-noise ratio for the photocurrent measure-
ments  I ’( t ), a lock-in amplifi er (EG&G Model # 5210) was used. All 
measurements were performed at room temperature in 100 mM 
HEPES buffer, pH 7.5, containing 100 mM KCl and 20 mM MgCl 2.  A 
modulation frequency of 17.3 Hz was applied for the lock-in of the 
chopper. The time constant was set to 300 ms during the meas-
urements. The modulated illumination was switched on and off for 
fi xed periods of 30 s with a shutter (15 s on, 15 s off). The output 
of the lock-in amplifi er, namely, the rectifi ed mean amplitude  I  = 
<| I ’|> of the photocurrent, was recorded through the serial port 
interface using a personal computer (PC).  
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I) Materials and Methods 

 

 

I.1) Reagents 

 

Cadmium oxide (99.99%), sulfur powder (99.99%), trioctylphosphine oxide (TOPO, 99%), 

hexadecylamine (HDA, technical grade 90%), diethyl zinc solution (C4H10Zn, 1.0 M solution 

in heptane), hexamethyldisilathiane (C6H18Si2S), 1-octadecene (ODE, technical grade 90%), 

oleylamine (OA, technical grade 70%), poly(sodium 4-styrenesulfonate) (PSS, Mw ≈ 70 kDa, 

#243051) and poly(allylamine hydrochloride) (PAH, Mw ≈ 56 kDa, #283223), Adenosine 5′-

triphosphate (ATP), guanosine-5′-monophosphate (GMP), pyruvic acid,  pyruvate kinase (PK), 

lactate dehydrogenase (LDH), and 4,4’-dimercaptostilbene (StDT,>96%) were purchased from 

Sigma-Aldrich; zinc stearate (count as ZnO% ≈ 14%)  from Alfa Aesar;  tri-n-butylphosphine 

(TBP, 99%) from ABCR GmbH & Co. KG; MgCl2 and KCl from Merck (Darmstadt, 

Germany); methanol, acetone, toluene, hexane and HEPES from Carl Roth GmbH + Co. KG 

(Karlsruhe, Germany); nicotinamide adenine dinucleotide reduced (NADH) and 

phosphoenolpyruvate (PEP) from Roche Diagnostic GmbH (Mannheim, Germany). Human 

guanylate kinase (GMPK) was expressed and purified as highly pure recombinant fusion 

protein with His6-SUMO tag
[1]

. 

 

 

I.2) Quantum dot synthesis 

 

Synthesis of CdS nanoparticle (NP) cores, i.e. quantum dots (QDs), was carried out by using 

the procedure reported by Yu and Chen.
[2,3]

 Briefly, cadmium oxide (0.126 g), oleic acid (2.02 

g), and ODE (12.0 mL) were added in a three-neck flask. The system was heated to 300 °C 

under nitrogen atmosphere after degassing. At this temperature, sulfur dissolved in ODE (0.25 

M, 2.0 mL) was swiftly injected into the mixture. After the injection, the temperature was 

reduced to 240 °C for 3.5 minutes. For the precipitation of the QDs, toluene (10 mL) was added 

followed by 20-30 mL of acetone. The resulting solution was then centrifuged at 2000 rounds 

per minute (rpm) for 5 minutes, and the precipitate was re-dispersed in toluene. One more 

washing step was performed by adding 20-30 mL of methanol. The precipitate (after discarding 

of the supernatant) containing the CdS NPs was re-dispersed in hexane. 

 

Growth of a ZnS shell on top of the CdS cores. A previously described protocol was used for 

the growth of a ZnS shell onto the CdS QDs.
[4]

 For this purpose, 4 g of TOPO and 1 g of HDA 

were weighed in a 50 mL 3-necked flask. The temperature of this mixture was increased under 

vacuum up to 120 °C for 20 minutes under stirring. After switching the vacuum to argon flow, 

an appropriate amount of CdS QD solution (NP concentration ca cNP = 4 μM, NP 

concentrations were determined by UV/Vis absorption spectra according to Yu et al.
[5]

) was 

injected into the TOPO/HDA mixture, and the chloroform was then removed under vacuum. 

After switching the vacuum to nitrogen, the temperature was raised to 170 °C according to 

published procedures
[6]

. A stock solution for the ZnS shell growth was prepared by dissolving 

0.31 g of diethylzinc solution and 0.45 g of hexamethyldisilathiane in 20.0 g TBP.  The stock 

solution was added dropwise to the CdS/TOPO/HAD mixture. The amount of added stock 
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solution for growing the ZnS shell was calculated according to a previously published 

protocol.
[6]

 After adding the ZnS precursor, the temperature was reduced to 100 °C, and the 

solution was kept stirring for 2 hours. Then the reaction was stopped by removing the heating 

mantle, and the CdS/ZnS NPs were precipitated by adding methanol. After discarding of the 

supernatant, the NPs were re-dispersed in toluene. UV/Vis absorption and fluorescence spectra, 

as well as transmission electron microscopy (TEM) images of the resulting CdS/ZnS QDs are 

shown in Figure SI-I.2.1. 

 

 

Figure SI-I.2.1: a) Normalized absorption A() (black line) and fluorescence I() spectra (blue 

line, emission at 409 nm) of CdS/ZnS QDs dissolved in toluene. The wavelengths of the first 

excitation peak in the absorption spectrum and of the maximum of the fluorescence emission of 

the CdS/ZnS NPs are  = 399 nm and  = 409 nm, respectively. The wavelengths of the first 

excitation peak in the absorption spectrum and of the maximum of the fluorescence emission of 

the underlying, original CdS NPs were  = 390 nm and  = 398 nm, respectively.  b) TEM 

image of the CdS/ZnS QDs. The scale bar corresponds to 10 nm. The mean core diameter dc of 

the CdS/ZnS NPs as determined from the size distribution N(dc) is dc = 4.4 ± 0.4 nm.  

 

 

1.3) Preparation of the Au electrode and immobilization of dithiol on Au 

 

Polished silicon wafers covered with a native oxide layer (SilchemHgmbh) were cut into pieces 

of 1 cm², rinsed with 2-propanol and ethanol and subsequently dried in a nitrogen stream. Gold 

was deposited via sputter deposition in argon plasma yielding a homogeneous film with a 

thickness of about 15 nm (Au/SiO2).  

 

Self-assembling monolayers (SAMs) of stilbenedithiol were prepared following previously 

established protocol.
[7]

 Au/SiO2 substrates were immersed in a 100 nM solution of StDT in 

toluene for 24 hours at 75 °C, followed by subsequent rinsing with toluene and drying in a 

nitrogen stream to remove excess molecules. For daily experiments, individual solutions were 

prepared from a 100 µM stock solution in toluene which was renewed every month and stored 

refrigerated in the dark to avoid aging.  
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Please note that in this study instead of a massive Au electrode a thin Au film deposited on a Si 

chip was used as working electrode (Au/Si substrate). While for linking off the StDT layer to 

the surface of the working electrode the underlying Si substrate does not play a role, it may 

well influence details of signal generation. As Si is a semiconductor, electron-hole pairs may be 

also generated in the Si chip upon illumination, which can contribute to the photocurrent. In 

this way the underlying Si chip may be involved in the photocurrent in addition to the 

photocurrent originating from the QDs. However, the detailed source of the basic photocurrent 

is not of importance for the here described sensor assay. 

 

 

I.4) Electrochemical cell and measurement set-up 

 

The electrochemical measurement set-up consisted of five main parts: A light source, a 

chopper, an electrochemical cell, a three-electrode system, and a lock-in amplifier. This set up 

was described in previously published protocols.
[7-9]

 

 

Light Source: A Xe arc lamp (emission spectrum λem = 300 – 700 nm), controlled by a lamp 

power supply (LPS 220 by Photon Technology International), was used as a light source. The 

light from the arc lamp to the electrochemical cell was focused through a convex and a plano-

convex lens coupled to a 45° mirror, as shown in the schematic diagram Figure SI-I.4.3. All the 

optical parts were purchased from Linos Germany. The illumination power (Pillum) of the 

resulting light spot of approximately 6 mm diameter was measured with a photometer 

(Fieldmaster photometer, Coherent). An illumination power of Pillum = 23 mW was used for 

electrochemical measurements reported in this work. 

 

Optical chopper: An optical chopper (Scitec instruments) was used in the light prior to the 

convex lens to modulate the incident light at a desired frequency. 

 

Electrochemical measurement cell: The electrochemical measurement cell harboring the Au 

chips is shown in Figure SI-I.4.3. It comprised a rectangular container which contained the 

buffer solution of up to 2 mL, and built a support for both, the reference and the counter 

electrode. Light entered the chamber from the top to hit the gold electrode on the bottom. At 

the bottom, the rectangular container contained a small hole of 6 mm diameter. The 

electrochemical cell was tightly sealed with screws as shown in Figure SI-I.4.1. 
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Figure SI-I.4.1:  a) Complete view of the electrochemical cell showing the arrangement of the 

counter and reference electrode. b) Intersection view of the electrochemical cell. The Au 

electrode (working electrode) lies on the gold plated holder which is squeezed between the 

Teflon rectangular container and Teflon sheet with the help of an O-ring.     

 

Three-electrode system: The important components of the three-electrode system were three 

electrodes and a microcomputer with an interface card for digital-to-analog (DAC) and analog-

to-digital (ADC) conversion. An Ag/AgCl-saturated reference electrode (RE), a spiral wire of 

platinum as counter electrode (CE), and a gold chip as working electrode (WE) were assembled 

within the electrochemical cell as shown in Figure SI-I.4.3. The operational amplifiers OP1, 

OP2, and OP3 were mounted within the three-electrode arrangement as shown in Figure SI-

I.4.2. The voltage UExt was applied by the DAC at the positive input of OP1 through OP3. The 

operational amplifier OP3 acted as an inverter and gave stable input. The RE was connected 

with the negative input of OP1. The resultant current IOP1 is zero, according to the 

characteristics of an OP (all input currents = 0), and thus no current flows through the RE.  The 

potential difference between the RE and WE remains constant. To adjust the sensitivity of the 

instrument, a variable resistor was R2 introduced in the circuit around OP2 between the 

negative input and the output of the OP2. This setup is called current-to-voltage converter. The 

output Uout of OP2 was measured by a lock-in amplifier followed by the ADC. 
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Figure SI-I.4.2:  Schematics of a three-electrode system. 

 

Lock-in amplifier: A lock-in amplifier (EG&G, Model # 5210) was used to improve the signal-

to-noise ratio.
[9]

 A modulation frequency of 17.3 Hz for the chopper was used as a reference 

frequency for the lock-in. The lock-in amplifier filtered out all additional frequencies and 

amplified only the part of the input signal at the reference frequency. Throughout the 

experiment, for all the measurements, a time constant of 30 ms was used. The output of the 

lock-in amplifier was read by a serial port interface (DAC). 
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Figure SI-I.4.3: Schematic diagram of the set-up of the electronics to connect the 

electrochemical cell. 

 
Figure SI-I.4.4: Photographs of the set-up. 
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II) Measurements 

 

II.1) Photocurrent measurements of the QD electrode following the pyruvate conversion (third 

reaction) 

 

The reaction according to Eq. 3 in the main text is sketched in Figure SI-II.1.1. Photocurrent 

measurements I(t) in the presence of NADH, with and without LDH, and variable pyruvate 

concentrations, are shown in Figure SI-II.1.2. The modulated light was switched on and off in 

cycles of 30 s, and photocurrent only flew upon illumination. The concentration dependence is 

shown in Figure 2 of the paper. Enzymes (here LDH) were free in solution.  

 
Figure SI-II.1.1: Schematic of the 3rd reaction catalyzed by lactate dehydrogenase. 

 

 
Figure SI-II.1.2: Photocurrent measurements I(t) following the reaction of Eq. 3 with the 

following conditions: 1.2 mM NADH, 100 mM HEPES pH 7.5, 100 mMKCl, 20 mM MgCl2, 
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Ubias = +50 mV, T = 25 °C. LDH was optionally added (15 units/mL). Pyruvate concentrations 

c(pyruvate) were varied from 0.05 mM to 1.6 mM. The resulting amplitudes of the photocurrent 

versus the pyruvate concentration Imax(c(pyruvate)) are displayed in Figure SI-II.1.3. In Figure 

2 of the main text, the amplitude of the photocurrent Imax versus the pyruvate concentration 

c(pyruvate) is plotted as the difference in photocurrent amplitude with (“w LDH”) and without 

LDH (“wo LDH”): Imax(c(pyruvate)) = 𝐼𝑚𝑎𝑥
𝑤 𝐿𝐷𝐻(c(pyruvate)) - 𝐼𝑚𝑎𝑥

𝑤𝑜 𝐿𝐷𝐻(c(pyruvate)). 

 

Photocurrent measurements I(t) for the reaction given in Eq. 3 and Figure SI-II.1.1 were also 

carried out for different bias voltages Ubias, cf. Figure SI-II.1.3 and Figure SI-II.1.4. Ubias is the 

applied voltage of the working electrode versus a homemade Ag/AgCl electrode. As in the 

investigated range there was no significant dependence from Ubias, in all following 

measurements Ubias was fixed to Ubias = + 50 mV. 

 

 
Figure SI-II.1.3: Photocurrent measurements I(t) following the reaction of Eq. 3 with the 

following conditions: 1.2 mM NADH, 15 units/mL LDH, 100 mM HEPES pH 7.5, 20 mM 

MgCl2, T = 25 °C. Measurements without and with 1.2 mM pyruvate were carried out. The 

bias voltage Ubias was varied. The resulting amplitudes of the photocurrent versus the bias 

voltage are displayed in Figure SI-II.1.4. 
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Figure SI-II.1.4: a) Amplitude of the photocurrent Imax versus the applied bias Ubias, as derived 

from the data shown in Figure SI-II.1.3. The reaction according to Eq. 3 was carried out using 

the following conditions: 1.2 mM NADH, 15 units/mL LDH, 100 mM HEPES pH 7.5, 100 

mMKCl, 20 mM MgCl2, T = 25 °C. Measurements without and with 1.2 mM pyruvate were 

performed. The bias voltage Ubias was varied. b) The difference in photocurrent amplitude with 

and without pyruvate is plotted: Imax(Ubias) = 𝐼𝑚𝑎𝑥
𝑤 𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒

(Ubias) - 𝐼𝑚𝑎𝑥
𝑤𝑜 𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒

(Ubias). 

 

II.2) Photocurrent measurements of the QD electrode with the reactants of the first enzyme 

reaction 

 

The guanylate kinase reaction is sketched in Figure SI-II.2.1. Photocurrent measurements I(t) 

in the presence of ATP, with and without GMPK, and variable GMP concentration are shown 

in Figure SI-II.2.2. The concentration dependence is shown in Figure SI-II.2.3. Enzymes (here 

GMPK) were free in solution.  

 

 
Figure SI-II.2.1: Schematic of the 1st reaction representing phosphoryl group transfer from 

ATP to GMP catalyzed by the enzyme guanylate kinase. 
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Figure SI-II.2.2: Photocurrent measurements I(t) following the reaction of Eq. 1 with the 

following conditions: 4 mM ATP, 100 mM HEPES, pH 7.5, 100 mMKCl, 20 mM MgCl2, Ubias = 

+50 mV, T = 25 °C. GMPK was optionally added at 18 nM. The GMP concentrations were 

varied from 0.05 mM to 1.6 mM. The resulting amplitudes of the photocurrent versus the GMP 

concentration Imax(c(GMP) are displayed in Figure SI-II.2.3. 

 

 

 
Figure SI-II.2.3: Amplitude of the photocurrent Imax versus GMP concentration, as derived 

from the data shown in Figure SI-II.2.2.  
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II.3) Photocurrent measurements of the QD electrode in solutions with the reactants of the first 

and second enzyme reaction 

 

The pyruvate kinase reaction is sketched in Figure SI-II.3.1. Photocurrent measurements I(t) in 

the presence of ATP, with and without GMPK, and variable GMP concentration are shown in 

Figure SI-II.3.2, i.e. reactions combining steps 1 and 2. The concentration dependence is shown 

in Figure SI-II.3.3. Enzymes (here PK and GMPK) were free in solution.  

 

 
 

Figure SI-II.3.1: Schematic of the 2nd reaction catalyzed by pyruvate kinase. 

 

 
Figure SI-II.3.2: Photocurrent measurements I(t) following the combined reactions of Eq. 1 

and Eq. 2 with the following conditions: 4 mM ATP, 2 mM PEP, 12 units/mL PK, 100 mM 
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HEPES, pH 7.5, 100 mMKCl, 20 mM MgCl2, Ubias = +50 mV, T = 25 °C. GMPK was 

optionally added at 18 nM. The GMP concentrations were varied from 0.05 mM to 1.6 mM. 

The resulting amplitudes of the photocurrent versus the GMP concentration Imax(c(GMP)) are 

displayed in Figure SI-II.3.3. 

 

 
Figure SI-II.3.3: Amplitude of the photocurrent Imax versus GMP concentration, as derived 

from the data shown in Figure SI-II.3.2.  

 

 

II.4) Photocurrent measurements of the QD electrode with all the three enzymes in solution  

 

In this paragraph, results for the combination of all three reactions according to equations 1-3 

are shown. Enzymes (i.e. PK, LDH, and GMPK) were free in solution. Photocurrent 

measurements I(t) in the presence of ATP, PEP, NADH, PK, LDH, with and without GMPK, 

and variable GMP concentration are shown in Figure SI-II.4.1. The concentration dependence 

is shown in Figure 4 of the main text.  
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Figure SI-II.4.1: Photocurrent measurements I(t) following the combined reactions of Eq. 1, 

Eq. 2, and Eq. 3 with the following conditions: : 1.2 mM NADH, 4 mM ATP, 2 mM PEP, 12 

units/mL PK,  15 units/mL LDH, 100 mM HEPES, pH 7.5, 100 mMKCl,  20 mM MgCl2, Ubias = 

+50 mV, T = 25 °C. GMPK was optionally added at 18 nM. The GMP concentrations were 

varied from 0.05 mM to 1.6 mM. The resulting amplitudes of the photocurrent versus the GMP 

concentration Imax(c(GMP)) are displayed in Figure 3 of the main text. 
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II.5) Photocurrent measurements of the QD sensor electrode immobilized enzymes 

 

In this paragraph, results for the combination of all three reactions according to equations 1-3 

are shown. Here, LDH, PK and GMPK were immobilized on the QD-modified electrode. 

Photocurrent measurements I(t) in the presence of ATP, PEP, NADH, LDH, PK, GMPK and 

with/ without variable GMP concentration are shown in Figure SI-II.5.1. The concentration 

dependence is shown in Figure 5 of the main text.  

 

 
Figure SI-II.5.1: Photocurrent measurements I(t) following the combined reactions of Eq. 1, 

Eq. 2, and Eq. 3 with the following conditions: 1.2 mM NADH, 4 mM ATP, 2 mM PEP, 100 

mM HEPES, pH 7.5, 100 mMKCl, 20 mM MgCl2, Ubias = +50 mV, T = 25 °C. Here, 6 µL of 18 

nM GMPK, 12 units PK and 15 units LDH were immobilized on the QDs layer. The GMP 

concentrations were varied from 0.05 mM to 1.6 mM. The resulting amplitudes of the 

photocurrent versus the GMP concentration Imax(c(GMP)) are displayed in Figure 5 of the 

main text. 
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As in all coupled enzymatic test systems the presence of intermediates such as ADP or GDP in 

the conversion cycle would change the response of the read-out of the coupled three reactions. 

However the three-step coupled-enzyme assay as presented in this work has the advantage of 

being a modular setup allowing for independent detection of each reaction. Therefore, in the 

absence of guanylate kinase, the pyruvate kinase-catalyzed reaction can be monitored to first 

detect the presence of ADP and/or GDP, thus excluding interference with the detection of 

GMP, and this applies even to cellular extracts. 
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Abstract
Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like
resonance energy transfer (FRET) process to enhance the effective lifetime of organic
fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders
of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-
doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a
model system for investigating the multiple energy transfer process and the specific interaction
between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules
was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime
of about 150 ns, following a non-exponential transient. Manganese-doped core–shell quantum
dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a
pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such
lifetime multiplexing would be an interesting alternative to the commonly used spectral
multiplexing in fluorescence detection schemes.

S Online supplementary data available from stacks.iop.org/NANO/27/055101/mmedia

Keywords: energy transfer, time-resolved fluorescence, quantum dots

(Some figures may appear in colour only in the online journal)

1. Introduction

Using quantitative fluorescence [1, 2] for the detection of
fluorophores is a common method for quantifying the con-
centration of analytes in a solution, e.g. via fluorescence-
labelled antibodies which selectively bind to the analyte [3],
or by using analyte-sensitive fluorophores [4, 5]. By using
several fluorophores in parallel, in principle the concentration

of different analytes can be determined simultaneously. This
is possible by using fluorophores with a different colour of
emission, although this is hampered by spectral overlap as
determined by the bandwidth of the emission of the different
fluorophores [1]. Alternatively, discriminating the fluores-
cence emission of different fluorophores can also be achieved
in the time domain [6]. In cases where fluorophores possess
different emission lifetimes, their emission can be
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distinguished via time-dependent fluorescence measurements.
This principle is used for fluorescence lifetime imaging,for
example, in which the lateral distribution of different fluor-
ophores is detected by the deconvolution of the respective
recorded emissions in the time domain [7]. Unfortunately,
variation in the fluorescence lifetime of organic fluorophores
is limited, typically within a range of a few nanoseconds. This
lies within the same region as the autofluorescence lifetimes
of biological samples such as cells [8]. The use of inorganic
fluorophores based on quantum dots (QDs) allows for slightly
higher fluorescence lifetimes. QDs can be combined with
other fluorophores in Förster-like resonance energy transfer
(FRET) schemes. In cases where lanthanides are used as
donors and QDs as acceptors, a multiplexed read-out of
fluorescence with long lifetimes is possible [9, 10]. Alter-
natively, QDs can be used as donors for organic fluorophores
as acceptors [11, 12]. Based on the last detection scheme, we
have recently shown that lifetime multiplexing is an inter-
esting alternative to spectral multiplexing. In this previous
work, ATTO590 dye molecules bound to gold nanoparticles
(NPs) exhibited a mono-exponential decay with a lifetime of a
few ns (equivalent to the lifetime of free dye molecules),
whereas dye molecules bound to CdSe/ZnS QDs showed a
non-exponential decay with a slow component of more than
100 ns due to the FRET from the QDs to the dye. We
demonstrated the fundamental possibility of determining the
mixing ratio for dyes with equal luminescence spectra but
very different transients [13]. The doping of CdS/ZnS QDs
with Mn ions leads to long-lived fluorescence lifetimes based
on the dipole forbidden internal 3d-transition [14, 15]. In the
present paper we demonstrate that in this way the fluores-
cence decay time of organic fluorophores can be shifted up to
the ms time scale by coupling them to Mn-doped CdS/
ZnS QDs.

2. Methods

In order to demonstrate the double energy transfer process
among the three luminescence centres—first within the Mn-
doped CdS/ZnS QDs, i.e. from the CdS/ZnS matrix to the
Mn ions, and then second from the excited Mn ions to an
organic dye—we conjugated the organic fluorophore
ATTO633 to the surface of the Mn-doped CdS/ZnS QDs, see
figure 1. For this purpose, firstly undoped and Mn-doped
CdS/ZnS core–shell QDs were synthesized in the organic
phase, as adopted from a previously reported method [16–19].
It must be pointed out that the Mn ions were incorporated into
the ZnS shell and not the CdS core, followed by an additional
ZnS shell which was grown on top of the doped shell. We
thus refer to these NPs as CdS/Mn:ZnS/ZnS QDs. Transfer
of the hydrophobic QDs to the aqueous phase was then
achieved by overcoating the hydrophobic QDs in the organic
phase with an amphiphilic polymer, followed by the eva-
poration of the organic phase and redispersion of the QDs in
water, as reported in previous work [20–22]. The used
amphiphilic polymer consisted of a polyisobutylene-alt-
maleic anhydride hydrophilic backbone modified with dode-
cylamine hydrophobic side chains (PMA). This polymer
wraps around the QDs with its hydrophobic side chains
intercalating the hydrophobic surfactant molecules present on
the QD surface after synthesis in organic solvent, while its
hydrophilic backbone points towards the solution, thus pro-
viding colloidal stability. NH2-modified ATTO590 (absorp-
tion maximum at 594 nm, emission maximum at 624 nm),
NH2-modified ATTO633 (absorption maximum at 629 nm,
emission maximum at 657 nm), or NH2-modified ATTO655
(absorption maximum at 663 nm, emission maximum at
684 nm), was directly incorporated into the polymer, and after
the polymer coating of the QDs is thus present on the QD
surface. In the present work, 2% of the maleic anhydride rings

Figure 1. On the left, a sketch of the Mn-doped CdS/ZnS QDs with attached dye molecules is shown. The Mn ions are incorporated within
the ZnS shell. A scheme of the different energetic states is depicted on the right. The excitation of the CdS core is indicated by the blue wavy
arrow. The green arrows show the possible energy transfer pathways. The QD, the Mn ions, and the dye can all undergo radiative
recombination to the respective ground state under the emission of photons.
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in the polymer backbone were conjugated with ATTO dye,
similar to previous reports [2, 20–23]. After the polymer
coating procedure, several purification steps combining fil-
tration and gel electrophoresis were carried out to remove the
empty polymer micelles, which form in addition to the
polymer-coated QDs as a by-product. For details, refer to the
supporting information. Despite purification, some residual
polymer micelles containing ATTO dye but with no QDs
inside may remain.

Once the QDs had been purified and concentrated (via
ultrafiltration) the following QD samples were prepared at the
same QD concentration: undoped QDs (CdS/ZnS/ZnS); Mn-
doped QDs (CdS/ZnS:Mn/ZnS); undoped QDs with
ATTO633 on their surface (ATTO633-CdS/ZnS/ZnS), and
Mn-doped QDs with ATTO633 on their surface (ATTO633-
CdS/ZnS:Mn/ZnS). All QD samples were characterized by
ultraviolet-visible (UV/Vis) absorption spectroscopy and
fluorescence spectroscopy (see the supporting information for
details). All measurements were performed in water. For
spectrally resolved fluorescence measurements, the con-
tinuous wave photoluminescence (PL) spectra for the differ-
ent samples were recorded with a Fluorolog-3 fluorescence
spectrometer (model FL3-22, Horiba) under wavelength
excitation at 350 nm. These steady-state fluorescence mea-
surements were carried out by working with a sample volume
of 30 μl in UV-compatible ultra-micro-cuvettes with a path-
length of 1 cm. Time-resolved fluorescence measurements
were made with a frequency triple-pulsed Nd:YAG laser
operating at a wavelength of 355 nm with a fixed repetition
rate of 10 Hz. The decay time of the exciting laser pulse was
around 3 ns, which is the lower limit for lifetime determina-
tion. A sample volume of 100 μl was used in UV-compatible
micro-cuvettes with a path-length of 1 cm. The excited area
had a diameter of 1 mm resulting in an excitation density of
around 1 J m−2 per pulse. The PL was collected perpendicular
to the excitation and analysed with a 250 mm
spectrograph using a 300-line-per-millimetre grating with a
blaze wavelength of 500 nm. The resulting spectra were
recorded with a gated iStar intensified charge-coupled device
(ICCD), featuring a minimum gate width of 2 ns. For mea-
suring long decay times, the gate width of the ICCD was
gradually increased when the recorded intensity decreased to
the background noise level. Due to this rise in exposure time
for long periods after excitation it was possible to achieve a
sensitivity of up to nine orders of magnitude. The decay
curves were obtained by integrating the intensity of the
particular PL band for the spectra measured at different times
after the excitation pulse.

3. Results

In the first analysis, steady-state emission of the different QD
samples was recorded. In figure 2, the normalized PL spectra
are depicted for three different conjugates under continuous
wavelength excitation at 350 nm. The solid red line shows the
PL of undoped CdS/ZnS QDs with attached ATTO633
molecules (QD-ATTO633). The two featured bands can be

assigned to QD emission around 430 nm and the dye emission
around 655 nm. From the corresponding QD absorption peak
at around 392 nm (shown in the SI) the size of the CdS core of
the QD was estimated to be 3.1 nm [24], neglecting the shift
of the first exciton peak in the absorption spectrum, as well as
the increase of the extinction coefficient of the QD upon the
growth of a ZnS shell around the core. Corresponding
transmission electron microscopy (TEM) results display a
mean diameter of 4.5±0.8 nm of the inorganic part of the
CdS/ZnS/ZnS QDs (without the organic shell, which does
not provide contrast), which is in reasonable agreement with
the value determined from the UV/Vis absorption spectra
(shown in the SI).

It is known from the literature that when Mn ions are
incorporated into the ZnS shell, the quantum yield of Mn
emission increases substantially in comparison with Mn
dopants inside a CdS core or at the core–shell interface [25].
Moreover, the growth of several additional ZnS layers over
CdS/Mn:ZnS (leading to CdS/Mn:ZnS/ZnS) was demon-
strated to increase chemical stability, photostability and
optical quality in terms of quantum yield [25, 26]. Note that in
the present study, no structural analysis regarding the location
of the Mn ions in the ZnS shell was performed, as a strict
verification of doping would require [27–31]. However, due
to synthesis protocol we can assume that the Mn ions are
situated within the ZnS shell and not on the QD surface. The
dashed black line in figure 2 shows the PL spectrum of the
resulting CdS/Mn:ZnS/ZnS QDs. Here, the QD fluorescence
at 430 nm is broader in comparison with the PL band of the
undoped QDs. This fact indicates a slightly increased size
distribution for the doped QDs, as the width of the PL band is

Figure 2. Normalized PL spectra are shown for three different QD
conjugates under continuous wavelength excitation at 350 nm. The
blue area shows the PL of the doped QDs with attached dye
molecules (ATTO633-CdS/ZnS:Mn/ZnS), which is dominated by
the dye band around 655 nm. The PL of undoped QDs with attached
dye (ATTO633-CdS/ZnS/ZnS) is depicted by the solid red line and
the PL of doped QDs without dye (CdS/ZnS:Mn/ZnS) is displayed
by the dotted black line. All fluorescence spectra show a PL band
around 430 nm caused by the QDs.
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mainly determined by their size distribution [32]. The PL
band around 590 nm can be assigned to the typical
4T1→6A1 transition of the Mn ions on cation sites in ZnS
[33]. The diameter of the inorganic part of the doped QDs as
determined by TEM was 4.4±0.7 nm (shown in the SI), and
thus very similar to that of the undoped QDs.

The blue area in figure 2 shows the normalized PL
spectrum of Mn-doped CdS/ZnS QDs with attached
ATTO633 molecules. The spectrum is dominated by dye
emission around 655 nm. Additionally, a Mn emission band
around 590 nm can be observed, which only appears as a
small shoulder in the low energetic region of the dye PL due
to the relatively low intensity. At 430 nm, the PL band ori-
ginating from the QD core is also visible. The low intensity of
the QD fluorescence in comparison to the Mn PL and the
ATTO633 bands indicates an effective energy transfer from
the QD to the Mn states. The role of the Mn ions within the
transfer process cannot be ascertained by continuous wave
experiments. For a thorough investigation of the interaction
between the Mn ions and the attached dye molecules, a study
on Mn-doped QDs with different dye molecules was
performed.

As the spectral overlap between the donor emission and
the acceptor absorption is crucial for efficient energy transfer
[34], a variation of this overlap was performed by using three
different dye molecules with distinct absorption and emission
spectra. In figure 3(a) the absorption spectra for the three
different dye molecules, i.e. ATTO590, ATTO633 and
ATTO655, are shown, which were attached to the CdS/Mn:
ZnS/ZnS QDs. It is obvious that the characteristic absorption
bands are very similar and differ only in the wavelength of the
absorption maximum. Additionally, the normalized Mn
emission of the doped QDs is depicted by the orange area. For
the ATTO590 dye there is a very high spectral overlap
between the Mn emission and the dye absorption, as the
respective maxima lie at the same wavelength. Due to the

shifted absorption maximum of the ATTO633 dye, the
spectral overlap is clearly reduced, which should lead to a less
efficient energy transfer. For the ATTO655 dye this is even
more valid.

In figure 3(b) the normalized emission spectra for the
three Mn-doped QD dye conjugates with the different dye
molecules at a 355 nm wavelength excitation are depicted (i.e.
ATTO590-CdS/Mn:ZnS/ZnS, ATTO633-CdS/Mn:ZnS/
ZnS, and ATTO655-CdS/Mn:ZnS/ZnS). The spectra were
recorded from 10 to 20 μs after the pulsed excitation. The
dotted black line shows the emission of the doped ATTO590-
CdS/Mn:ZnS/ZnS conjugate. Only the typical emission
bandoriginating from the dye molecules at around 620 nm is
visible. As there is no emission band originating from the Mn
ions, this implies a rather effective energy transfer from the
Mn to the dye molecules. The spectrum of the ATTO633-
CdS/Mn:ZnS/ZnS conjugate is depicted by the solid red line
and is dominated by the dye emission as well. Nevertheless, a
small band around 590 nm is visible, which can be assigned
to the Mn transition. The emission spectrum of the
ATTO655-CdS/Mn:ZnS/ZnS conjugate is given by the blue
area in figure 3(b). Here, two PL bands of similar intensity are
visible, which can be assigned to the Mn and dye emission,
respectively. A comparison of these three spectra clearly
shows a variation in the effectiveness of energy transfer for
the different conjugates. For the highest spectral overlap,
energy transfer leads to the disappearance of the Mn band in
the ATTO590-CdS/Mn:ZnS/ZnS conjugate. In cases where
there is a small overlap integral, the transfer is less effective
leading to clearly visible Mn emission.

The rate of QD exciton to Mn state energy transfer was
found by others to be strongly dependent on the doping
location, i.e. the distance between the CdS core and the Mn
ion in the ZnS shell [17]. We refer again to the schematic
drawing of the Mn-doped QDs in figure 1. The CdS core is
responsible for the typical QD emission band. The CdS core

Figure 3. (a) The full (orange) area shows the normalized Mn emission (I/Imax) band of doped CdS/Mn:ZnS/ZnS QDs excited with 355 nm.
The lines depict the normalized absorption bands for three different dye molecules, namely ATTO590, ATTO633 and ATTO655. (b) The
normalized PL spectra for the Mn-doped QD dye conjugates with the three different dye molecules excited with 355 nm, i.e. ATTO590-CdS/
Mn:ZnS/ZnS (black), ATTO633-CdS/Mn:ZnS/ZnS (red), and ATTO655-CdS/Mn:ZnS/ZnS (blue).
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is overcoated by a ZnS shell, which is grown in a multi-step
process as indicated by the dotted line. During this growth
mechanism the Mn ions are incorporated within the ZnS shell
[19]. After the additional ZnS shell, this CdS/Mn:ZnS/ZnS
core–shell QD is then wrapped with an amphiphilic polymer
onto which the dye molecules are attached. The excitation of
the QD via impinging light is shown by the wavy line in
figure 1, whereas the subsequent energy transfer is depicted
by the green arrows. On the right-hand side of figure 1, the
respective energy levels and the energy transfer are depicted
schematically. It is clear that the excitation of the QD can
undergo a direct energy transfer to the dye molecule or a
stepwise transfer via the Mn ion. All three energy states
corresponding to the three fluorescence emitters, namely that
of the QD, the Mn ion and the dye molecule, can undergo a
transition into the respective ground state by emitting a
photon. The detection of the emitted PL, especially by time-
resolved measurements, provides detailed information about
the possible transfer processes.

In figure 4 the normalized PL decay curves are given for
the different bands for the three conjugates—except for the
ATTO590-CdS/Mn:ZnS/ZnS conjugate in (a), where the Mn
PL band could not be observed. In all three graphs the decay
of the Mn PL at 585 nm for the doped QDs without any
attached dye molecules is given by the blue area. The Mn PL
shows a fast decay for short times after excitation due to the

transfer of the excitation energy to the defect or trap states
[35, 36]. After approximately one millisecond this transfer
seems to be irrelevant to further decay characteristics, leading
to a mono-exponential decay with a lifetime of about 4.6 ms,
as indicated by the dotted line in figure 4. This value is sig-
nificantly larger in comparison with the radiative lifetime of
Mn states reported by others for pure bulk ZnS with very low
Mn concentrations, which have been determined to be in the
range between 1.8 ms and 2 ms [14, 37]. Higher Mn con-
centrations usually yield a faster non-exponential decay. From
detailed concentration dependence analysis, an intrinsic life-
time of 3.3 ms has been revealed [38]. Longer lifetimes have
also been reported for Mn PL in similar QD systems
[12, 17, 39]. This can be explained by the influence of the
reduced effective refractive index on the transition matrix
element for QD materials with extensions much smaller than
the emission wavelength [12].

For the conjugates with different dye molecules attached
to the Mn-doped QDs we obtained smaller values for the
decay times. This reduced lifetime of the Mn PL is proof of
the non-radiative energy transfer from the Mn ions incorpo-
rated into the ZnS shell of the QDs, as simple reabsorption
would not change the lifetime of the Mn donor states. It is
obvious that the attached dye molecules operate as an energy
acceptor for Mn excitation here. These dye molecules nor-
mally show a fast decay with a lifetime of several ns [40].

Figure 4. The normalized PL decay curves of Mn-doped QD conjugates with attached (a) ATTO590, (b) ATTO633, and (c) ATTO655
molecules are depicted. The full (blue) area in the graphs gives the decay of the Mn PL band at 585 nm for doped QDs without any attached
dye molecules excited at 355 nm. The black squares show the Mn PL transient at 585 nm if the dyes are bound to the QD. The red points give
the decay of the dyes at (a) 620 nm, (b) 655 nm and (c) 680 nm and the dotted lines represent a mono-exponential fit with the respective
lifetimes given in the graph. For the ATTO590-CdS/Mn:ZnS/ZnS conjugate shown in (a), no Mn band was observable, and therefore only
the dye PL decay is shown.
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Even the coupling to different QDs rarely extends their life-
time to the μs range [6, 13]. By attaching these molecules to
Mn-doped QDs we obtained a dye PL lifetime of several ms.
From the determined lifetimes the efficiency of the energy
transfer (E) can be estimated by the following equation [41]:

E 1 1DA

D
( )t

t
= -

Here Dt is the lifetime of the donor in the absence of an
acceptor and DAt is the lifetime of the donor in the presence of
an acceptor. For the ATTO590-CdS/ZnS:Mn/ZnS conjugate
in figure 4(a) we can assume a Mn state lifetime of 0.7 ms,
although the PL band is not visible due to the high dye
intensity. With equation (1) we get a FRET efficiency of 0.85,
0.61 and 0.41 for the QD conjugates with ATTO590,
ATTO633 and ATTO655 dyes respectively. As can be seen
in figure 3 efficient energy transfer from the Mn to the dye
states leads to a well-observable dye PL band. However,
highly effective energy transfer is not always desirable as the
energy transfer leads to a reduced lifetime of the Mn PL. This
fact eventually limits the accessible lifetimes for the dyes after
energy transfer.

For a detailed analysis of the possible transfer pathways,
we selected the ATTO633-CdS/ZnS:Mn/ZnS conjugates. As
can be seen in figure 1, three energy transitions of the con-
jugates are relevant, namely the QD excitons, the Mn internal
transition and the dye transition. In the following, the time
behaviour of the three respective luminescence bands is dis-
cussed individually. In figure 5 the transients are depicted. In
figure 5(a) the QD PL is compared for CdS/ZnS/ZnS QDs
with and without attached ATTO633 dye molecules. The
decay is non-exponential in both systems with a PL

observable up to several ms. A significant change in the decay
curve can be observed by attaching ATTO633 dye molecules
to the CdS/ZnS/ZnS QDs. The QD PL decays faster due to
radiationless energy transfer from the QD states to the dye
states.

In figure 5(b), the PL decay of CdS/ZnS/ZnS QDs is
compared to that of CdS/Mn:ZnS/ZnS QDs. In general, the
QD PL is less intense for the doped QDs and can therefore
only be observed in a limited intensity range of about two
orders of magnitude. This reduced intensity is due to the
effective energy transfer from the excitonic QD states to the
Mn 3d-shell [20]. This is confirmed by the faster exciton
decay of the Mn-doped QDs. For Mn-doped QDs with
ATTO633 dye molecules the excitonic lifetime is reduced
even further. Now both channels act as energy acceptors, and
the energy transfers from the QDs to the Mn ions as well as
directly to the dye states. The role of Mn ions as an energy
donor has already been revealed in figure 4, where a faster Mn
PL decay was observed for the QDs with attached dye
molecules in comparison to QDs without.

In figure 6, the transients are depicted for the ATTO633
dye PL in a double logarithmic scale, which allows for a
better separation of the different time regimes. The single dye
molecules show a mono-exponential decay for several ns
(blue triangles). The time behaviour is completely different
when the molecules are bound to CdS/ZnS/ZnS QDs (red
circles). The characteristic lifetime is now in the μs range. If
dyes are attached to doped CdS/Mn:ZnS/ZnS QDs the decay
characteristic changes again substantially (black squares). Up
to a few μs the transients for dye molecules attached to doped
and undoped QDs look very similar. The underlying char-
acteristic time is caused by the energy transfer from the QD

Figure 5. Decay curves of the QD PL around 430 nm for different QD conjugates excited at 355 nm. (a) Time behaviour of the QD PL band
of CdS/ZnS/ZnS QDs with (red circles) andwithout (black squares) attached ATTO633 dye molecules. (b) Decay of the QD PL band for
CdS/ZnS/ZnS (black squares) and CdS/Mn:ZnS/ZnS (blue triangles) QDs. The QD PL decay for ATTO633-CdS/Mn:ZnS/ZnS QDs (red
circles) is also depicted.
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excitons to the dye molecules, which is the dominant feeding
mechanism in this time window. The small difference in this
time window is due to the somewhat faster exciton decay in
Mn-doped QDs, which is caused, as mentioned before, by the
additional transfer to the Mn states. In the time regime of
several μs up to ms, the distinction between doped and
undoped QDs is most striking. Here the dye features a life-
time of several ms, which is identical to the lifetime of the
Mn PL.

4. Conclusion

It has been demonstrated that the incorporation of Mn ions as
dopants within the ZnS shell of CdS/ZnS core–shell QDs
leads to an efficient energy transfer from the excitonic QD
states to the Mn states. A multistep growth of the ZnS shell
was carried out to control the location of the Mn ions. The
effective incorporation of the Mn ions into the QD core–shell
structure was confirmed by a clearly observable PL band
around 580 nm, which is due to the typical Mn transition.
This PL band showed a mono-exponential decay with a
lifetime of about 4.6 ms. These Mn-doped CdS/Mn:ZnS/ZnS
QDs were further functionalized with organic dye molecules
leading to a third fluorescence emitter centre, and therefore to
a third PL band. Continuous wave spectra indicated the
complex interaction of the different energy states within the
QD system. With a thorough investigation of the decay
characteristics of the respective PL bands, it was possible to
explore the non-radiative energy pathways. We thereby con-
cluded that the QD states act as an energy donor for the Mn as
well as for the dye states. Interestingly, the Mn states have a
two-fold transfer characteristic, as they also work as an
acceptor from the QD states and as a donor for the dye states.
In particular, the feeding of the dye states from Mn excitation

led to a tremendous increase in the dye PL lifetime. By
choosing a certain dye, and thereby a certain spectral overlap,
it was possible to control the lifetime of the dye PL in the
range of a few milliseconds.

The attachment of dye molecules to CdS/Mn:ZnS/ZnS
QDs led to dye conjugates which could easily be dis-
tinguished by means of time-resolved PL measurements from
single dye molecules and dye molecules attached to undoped
QDs. Mn-doped CdS/Mn:ZnS/ZnS QDs as donors for
fluorophores open up a new time regime and potentially allow
for the use of dye molecules in complex temporal multi-
plexing applications. In earlier works [13] we were able to
show that the use of undoped QDs leads to the unique and
precise determination of the mixing ratio of single and
attached dye molecules by time-resolved PL measurements
with the same spectral response. Now, we have pointed out
that the use of Mn-doped QDs may extend the possibilities of
temporal multiplexing even further.
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 Colloidal particles with fl uorescence read-out are 
commonly used as sensors for the quantitative 
determination of ions. Calcium, for example, is a 
biologically highly relevant ion in signaling, and thus 
knowledge of its spatio-temporal distribution inside cells 
would offer important experimental data. However, the 
use of particle-based intracellular sensors for ion detection 
is not straightforward. Important associated problems 
involve delivery and intracellular location of particle-
based fl uorophores, crosstalk of the fl uorescence read-out 
with pH, and spectral overlap of the emission spectra 
of different fl uorophores. These potential problems are 
outlined and discussed here with selected experimental 
examples. Potential solutions are discussed and form a 
guideline for particle-based intracellular imaging of ions. 
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  1.     Introduction 

 There is a large variety of ion-sensitive fl uorophores avail-

able, which change their fl uorescence intensity in the presence 

of the respective ion. [ 1–7 ]  With such fl uorophores intracellular 

ion concentrations could, in principle, be determined, which 

would be an interesting tool for cell biology. [ 8–16 ]  Ions play 

an important role in biology, for example, in signaling. This 

comprises signal propagation via action potentials in neurons, 

for example, which is governed by local switching on and off 

of Na +  and K +  currents. Another important ion related to 

cellular signaling is Ca 2+ , which plays an important role in 

muscles. Having local ion-sensitive probes would allow the 

spatio-temporal observation of such signaling dynamics. 

 Most ion-sensitive fl uorophores are based on organic 

molecules, [ 1,2,5–7 ]  but there are also intrinsically fl uores-

cent (nano-)particles with sensitivity to certain ionic spe-

cies. [ 17–20 ]  Ion-sensitive particles can be composed of a 

carrier particle functionalized with ion-sensitive organic 

fl uorophores. The particle acts as a carrier for a read-out in 

the form of (organic) ion-sensitive fl uorophores. This is pos-

sible by embedding the organic fl uorophores in the volume 

of a porous particle matrix, [ 21–23 ]  by encapsulating them in a 

porous particle shell, [ 24–26 ]  or by linking them to the particle 

surface. [ 27–29 ]  Ideally, the carrier particle would not inter-

fere with the photophysical properties of the attached fl uo-

rophore. However, in the case of metal particles, quenching 

effects of the fl uorescence of organic fl uorophores close to 

the particle surface are possible. Also in case of very high 

packing densities of the fl uorophores on the particle surface, 

self-quenching effects may occur. In some scenarios as, for 

example, for fl uorescence resonance energy transfer (FRET), 

interactions of the organic fl uorophore with the particle car-

rier is wanted in order to tune the photophysical properties 

of the attached fl uorophores, which will be described below. 

Alternatively, intrinsically ion-sensitive fl uorescent particles 

such as quantum dots (QDs) can be sensitive to ions. [ 102 ]  In 

this case, the particle has a double function, acting as sensi-

tive fl uorophore and a carrier at the same time. In the fol-

lowing sections, all of these different geometries will be 

referred to simply as particles. These particles can range from 

the nanometer to the micrometer scale. [ 30 ]  Besides acting as 

carriers, charged particles can intentionally or unintentionally 

modify the ion response, as their typically charged surface 

forms a nano-environment in the proximity of the particle 

surface that is different from the bulk. [ 27,31–34 ]  

 A particulate form of ion-sensitive fl uorescence sensor 

offers several potential advantages. Concerning the signal-

to-noise-ratio of the read-out, the emission intensity of ion-

sensitive particles can be very high (in the case of intrinsically 

fl uorescent particles such as QDs, this is due to their high 

absorption cross-section; [ 35,36 ]  in the case of organic fl uoro-

phores, it is due to the linkage of several fl uorophores per par-

ticle). [ 37–39 ]  Next, the interaction with their environment, such 

as with cells, is predominantly governed by the physico-chem-

ical properties of the particle surface. As particles sensitive to 

different ions can have the same physico-chemical properties, 

they also will have the same interaction with cells. In contrast, 

as organic fl uorophores sensitive to different ions typically 
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have very different molecular structures and thus different 

physico-chemical properties (their polarity can range from 

hydrophilic to hydrophobic, for example), they will interact 

differently with cells. The pathway of cellular uptake of fl uo-

rescent particles can therefore be quite different from plain 

organic fl uorophores. Playing with the size of the particle that 

acts as the carrier (nano- or microparticles), the location of 

the sensor inside the cells can be designed and thus informa-

tion about the ion concentrations in different cellular regions 

can be obtained. While nanoparticles are preferentially 

located in endolysosomal compartments, microparticles can 

also be found in phagolysosomal vesicles, which allows the 

design of ion-sensitive particles depending on the location of 

the ion of interest. Due to potentially different intracellular 

locations and also because of the protection by the particle, 

particulate fl uorophores may be less degraded by intracel-

lular enzymes, and also cause less toxic intracellular effects (in 

particular when their sensing part is directly located on the 

particle surface). Concerning multiplexed sensing, the possi-

bility of working with detection schemes involving temporal 

or spatial discrimination can circumvent the problem of spec-

tral overlap and, thus, different ion-sensitive fl uorophores can 

be detected in parallel. [ 40,41 ]  Naturally, besides these advan-

tages there are also problems associated with particle-based 

intracellular ion-sensing, which will be highlighted in the fol-

lowing sections based on experimental examples. While the 

given analysis holds true in a general way for small biologi-

cally relevant ions such as Na + , K + , Cl − , H + , the statements 

above are illustrated by selected experimental data. For rea-

sons of homogeneity, the experimental data are presented for 

the case of Ca 2+ -sensing, though results would be similar for 

other ions. The technical details for the experiments can be 

found in the Supporting Information.  

  2.     Upon Cellular Internalization, Particle-
Based Sensors are Typically Located Inside 
Intracellular Acidic Vesicles 

 The classical entry of particles into cells is via endocytosis. 

While endocytosis can involve a lot of different pathways, [ 42–45 ]  

it results in a localization of the particles in acidic intracellular 

vesicles (endosomes, lysosomes). [ 25,46–49 ]  In such a scenario, the 

particles would sense the ion concentrations inside these vesi-

cles, but not in the cellular cytosol. [ 8,50 ]  For many applications, 

sensing of ion concentrations in the cytosol would be favorable. 

Administration of particles by microinjection or electropora-

tion allows the placing of particles in the cytosol, though these 

techniques are clearly invasive and would have severe limita-

tions for in vivo applications. However, there is also clear evi-

dence that certain particle geometry scenarios exist in which 

particles can be delivered to the cytosol upon spontaneous 

cellular uptake. [ 51,52 ]  In the case of delivery to the cytosol, the 

particles can be either fi rst endocytosed and then released 

from the intracellular vesicles (“endosomal escape”), [ 53–55 ]  or 

they can directly traverse the cell membrane (i.e., by transient 

poration) and thus bypass endocytotic uptake. [ 56 ]  The details 

of such mechanisms are still under scientifi c discussion. For 

fast uptake into cells and delivery through the cell membrane 

to the cytosol, a common functionalization of the particle sur-

face involves specifi c peptide sequences, e.g., cell-penetrating 

peptides (CPPs), [ 57–59 ]  which usually are derived from viruses. 

The data shown in   Figure 1   demonstrate an example, in 

which polyethylene glycol (PEG)-modifi ed particles bearing 

CPPs at the termini of the PEG molecules were internalized 

in vitro by HeLa cells to a higher extent than similar parti-

cles without CPP functionalization. Quantifi cation of particle 

internalization can be done via different techniques, such as 

transmission electron microscopy (TEM), [ 60–62 ]  fl uorescence 

microscopy, [ 63–65 ]  fl ow cytometry, [ 47,50 ]  and inductively coupled 

plasma mass spectrometry (ICP-MS). [ 66,67 ]  As fl ow cytometry 

and ICP-MS do not possess direct lateral resolution at a sub-

cellular level, these techniques do not allow one to distinguish 

between internalized particles which are free in the cytosol 

from those which are localized inside intracellular vesicles. 

Even worse, these methods do not allow intracellular particles 

to be distinguished from particles just sticking to the outer 

cell membrane. However, this limitation has been overcome 

using protocols for removing particles attached to the surface 

based on iodide etching [ 68 ]  or, in the case of fl ow cytometry, 

by using the local pH around the particles as a discriminator 

between internalized (acidic pH) and extracellular (neutral 

pH) particles. [ 69 ]  In contrast, fl uorescence microscopy, when 

applied together with appropriate immunostaining methods, 

and in particular TEM, due to its high spatial resolution, can 

demonstrate particle internalization, and can in principle also 

indicate whether internalized particles are inside intracellular 

vesicles or not. [ 47,49,52 ]  However, in many cases, uptake studies 

are based on fl uorescence microscopy images without staining 

of intravesicular membranes (cf.  Figure    1  ), with the conse-

quence that, from such images, no conclusion about the intra-

cellular localization of the particles can be drawn. In fact, it is 

important to be highly critical about the possible delivery of 

particles to the cytosol. Just the presence of CPPs on the par-

ticle surface does not automatically mean their delivery to the 

cytosol. This is illustrated in the example shown in Figure  1 , 

which is based on two CPPs that both are rich in NH 2  groups. 

In these data, one can see a clear indication of enhanced cel-

lular uptake (cf. the ICP-MS data), but neither a reliable quan-

tifi cation nor the intracellular location of the particles can be 

derived. Even if the same CPPs have been demonstrated in 

the literature for one particle system resulting in delivery to 

the cytosol, without experimental verifi cation it must not be 

assumed that the same CPPs will also work for other systems 

in the same manner. Depending on the respective particle 

geometry (surface chemistry, density of CPPs, size of parti-

cles, distance of CPPs to the particle core, etc.), the effects of 

attached CPPs, as well as the physico-chemical properties of 

the particles themselves may be quite different. In the case 

of the example presented in Figure  1 , one has to take into 

account that PEG molecules are partly coiled and, in this way, 

the CPPs at the terminal ends do not always point towards the 

solution, but may be buried in the PEG shell instead. Also, 

the density of the CPPs may play a role. Thus, without experi-

mental proof concerning the characterization of the used 

particle system as well as the chosen cell system, one should 

not assume the presence of particles in the cytosol.     
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 There is no easy solution to the “endosomal escape 

dilemma”. It is most important to be aware of this poten-

tial problem. Most uptake studies, without a proper colo-

calization study, are not able to distinguish between particles 

free in the cytosol and particles embedded in intracellular 

vesicles. As mentioned above, the standard route of particle 

internalization by cells is endocytosis. [ 62 ]  Thus, unless proven 

differently, [ 51,53 ]  particles should be assumed to be in acidic 

intracellular vesicles, and thus the read-out of such ion-sensi-

tive particles would determine the ion concentrations inside 

the endosomes/lysosomes, [ 8,74 ]  and not the ion concentrations 

in the cellular cytosol. In this way, particle-based ion-sensitive 

particles are ideal for sensing inside endosomes/lysosomes, 

and one smart strategy would be to look for potential appli-

cations in this direction, e.g., sensing related to lysosomal 

storage diseases, instead of targeting the cytosol. Otherwise, 

in cases where applications defi nitely require sensing in other 

intracellular compartments, sensing methodologies need to 

be accompanied by profound localization studies providing 

information about the particle localization.  

  3.     Many Ion-Sensitive Fluorophores Have 
Massive Crosstalk with pH 

 As pointed out previously, unless special surface coatings 

and very small particles are used, internalized particles are 

typically located in acidic intracellular vesicles, i.e., in an 

environment with low pH. Unfortunately, many ion-sensitive 

fl uorophores have signifi cant crosstalk with pH, as shown in 

the examples given in  Figure    2  . Thus, without knowledge of 

the local pH value of the particle environment, the concen-

tration of the respective ions cannot be determined. Besides 

pH, many ion-sensitive fl uorophores also have crosstalk with 

other ions. For example, potassium-sensitive fl uorophores 

have crosstalk with sodium, and vice versa. [ 41 ]   

 Crosstalk with pH is a severe problem for intracellular (in 

vitro) ion sensing. On their standard internalization pathway 

from the typical slightly alkaline extracellular medium, parti-

cles are located in subsequently more and more acidic intra-

cellular vesicles. In this way, the internalization of particles 

involves massive changes in pH. [ 8,24 ]  Thus, in the case of a 

particulate ion-sensitive fl uorophore which not only responds 

to its target ion but also to pH, it is not straightforward to 

interpret changes in fl uorescence intensity, as they may 

refl ect changes in target ion concentration or in pH. This is 

demonstrated in  Figure    3  , where particles, here micrometer-

sized multilayer capsules with integrated calcium-sensitive 

fl uorophores (Calcium Green-1 linked to dextran), were 

added to cells and their fl uorescence was recorded for extra-

cellular as well as for internalized particles. For the calcium-

sensitive fl uorophore, it is not clear whether the change in 

fl uorescence emission upon cellular internalization, leading 

to localization in the lysosome, [ 49 ]  is due to changes in Ca 2+  

or in pH. Thus, with this particle-based calcium sensor, it is 

not possible in a straightforward way to determine lysosomal 

calcium concentrations.  

 Again, there is no easy solution concerning avoiding cross-

talk of ion-sensitive fl uorophores with pH. Being aware of the 

 Figure 1.    HeLa cells were incubated with polymer-coated Au nanoparticles (core diameter d c  ≈ 4.6 nm) with the red fl uorophore Cresyl violet (CV) 
integrated in their polymer shell. [ 70 ]  The surface of these nanoparticles was modifi ed with PEG of molecular weight M w  = 3000 Da. [ 71 ]  For some 
particles, the terminal end of each PEG molecule was conjugated with cell-penetrating peptides (CPPs) rich in NH 2  groups. Two different CPPs 
were used as random examples. a) Sketch of the three different particles, with PEG, PEG-CPP1, and PEG-CPP2 surfaces. b) Overlay of the bright-
fi eld and red fl uorescence images of HeLa cells after 6 h of incubation with the particles. The scale bars correspond to 20 µm. c) The amount 
of internalized particles  N  (as quantifi ed by the atomic gold content inside cells) was determined with ICP-MS after t = 0.5, 1.5, and 2.5 h of 
incubation. The decrease in  N  for PEG-CPP2 was most likely due to the death of some cells. In both cases, the presence of CPPs enhanced uptake 
of particles by cells. The presented data here do not allow for any conclusion about the intracellular location of the internalized particles. Note that 
the fl uorescence images shown in (b) are overexposed, and thus no accurate and precise quantitative data about differences in uptake between 
the different particles can be derived. This “homogeneous” distribution of fl uorescence along the cell must in particular not be mistaken as proof 
for delivery to the cytosol. The granular structure of the intracellular vesicles in which the particles are embedded can be seen in cases where 
appropriate particle concentrations and imaging parameters are used. [ 46,72,73 ] 
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problem is clearly only the fi rst step. Naturally one may think 

of developing ion-sensitive fl uorophores which do not respond 

to pH. Alternatively, in case one needs to rely on existing 

particle-based fl uorophores that are affected by crosstalk with 

pH, one can think of a multiplexed read-out of several fl uo-

rophores, as will be discussed below. Here, the advantage of 

the “particle” character comes into play: As two particle-based 

fl uorophores with the same surface chemistry/dimensions 

will have the same uptake pathway and intracellular location, 

several particle-based fl uorophores selective to different ions 

could be applied and read-out at the same time. In case two 

Ca 2+ -sensitive fl uorophores show different crosstalk to pH, a 

2D calibration curve could be obtained. By reading out the 

values of different Ca 2+ -sensitive fl uorophores in parallel, 

the Ca 2+  concentration could be determined even without 

knowledge of the local pH. In a similar way, a Ca 2+ -sensitive 

fl uorophore could be combined with a pH-sensitive fl uoro-

phore. Again, a 2D calibration curve correlating the read-out 

of both fl uorophores would allow determination of both the 

pH and the Ca 2+  concentration. In this way, however, two dif-

ferent fl uorophores need to be read-out simultaneously which, 

due to spectral overlap of fl uorescence emission, can be chal-

lenging, as will be explained in detail in the following section.  

  4.     Multiplexed Detection of Several 
Fluorophores Based on Different Fluorescence 
Lifetimes 

 For many applications it would be desirable to determine 

the intracellular concentration of several ions in parallel. 

This is the case if there is, for example, crosstalk between 

different fl uorophores, and calibration curves correlating 

the read-out of different fl uorophores are required (see 

above). Such a case is shown in   Figure 4  , where the read-

out of a Ca 2+ -sensitive fl uorophore depends on both the 

Ca 2+  concentration and also the pH. In this way, it would be 

desirable to combine the Ca 2+ -sensitive fl uorophore (which 

has crosstalk with pH) with a pH-sensitive fl uorophore. 

However, the emission spectra of many ion-sensitive fl uoro-

phores unfortunately overlap, and thus the number of fl uo-

rophores that can be spectrally resolved and independently 

detected in parallel is limited. [ 40,80,81 ]  The fl uorescence spec-

trum of the Ca 2+ -sensitive fl uorophore shown in Figure  4  is 

relatively broad, and thus it would be complicated to fi nd a 

pH-sensitive fl uorophore emitting in a very different spec-

tral range.  

 One solution to circumvent this problem is to use multi-

plexed detection techniques which are not based on spectral 

resolution. Besides distinguishing different fl uorophores from 

separate emission peaks (i.e., spectral resolution), other ways 

of discrimination are possible. If the fl uorophore-carrying par-

ticles are big enough to be optically resolved (i.e., sized above 

the optical resolution limit due to refraction), individual par-

ticles can be laterally resolved and identifi ed by respective 

barcodes (i.e., lateral resolution). [ 40,41,82–84 ]  While this is not 

possible for smaller particles, they still can be resolved by dif-

ferent fl uorescence lifetimes (i.e. temporal resolution). [ 40 ]  If 

two different fl uorophores possess different lifetimes, their 

emission can be distinguished with time-resolved fl uores-

cence spectroscopy. This also offers the advantage that no 

absolute intensity information is required, which depends 

on the number of particles inside each cell. This principle 

 Figure 2.    Different sensitive fl uorophores were added to solutions in which the concentration  c  of one ionic specie as well as pH were varied, and 
their fl uorescence intensity  I  was measured. a)  N -[2-[2-[2-[bis(carboxymethyl)amino]-5-[[2′,7′-dichloro-3′,6′-dihydroxy-3-oxospiro[isobenzofuran-
1(3H),9′-[9H]xanthene)-5-yl]carbonyl]amino]phenoxy]ethoxy]phenyl]- N -(carboxymethyl) (Calcium-Green-1) specifi c for calcium. [ 75 ]  b) 1H-Indole-
6-carboxylic acid, 2-[3-[2-[(acetyloxy)methoxy]-2-oxoethoxy]-4-[bis[2-[(acetyloxy)methoxy]-2-oxoethyl]amino]phenyl], (acetyloxy)methyl 
ester (Mag-Indo-1) specifi c for magnesium. [ 76 ]  c)  N -(Ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) specifi c for chloride. [ 77 ]  
d) 10,10′-Bis[3-carboxypropyl]-9,9′-acridiniumdinitrate (BAC) specifi c for chloride. [ 78 ]  In all cases the emission intensity I   of the fl uorophore does 
not only respond to changes in the concentration of the target ions, but also to changes in pH.
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   Figure 4.    a) The fl uorescence emission of OGB-2 depends on the Ca 2+  concentration as well as on pH (recorded at 350 nm excitation wavelength). 
b) OGB-2 had been linked closely to the surface of (Zn x Cd 1-x )S/ZnS QDs and time resolved fl uorescence (at the OGB-2 emission wavelength) was 
recorded. Decay times depend on Ca 2+  and pH. c) From the different decay times, a resulting response curve R(c(Ca 2+ )) can be derived, which is 
shown here for OGB-2 coupled to (Zn x Cd 1-x )S/ZnS and to CdSe/ZnS QDs at pH 7.2. From these curves, dissociation constants K d  can be obtained 
(for details, refer to the Supporting Information). 

   Figure 3.    Micrometer-sized particles as synthesized by layer-by-layer assembly were loaded with the Ca 2+ -sensitive fl uorophore Calcium Green-1 
linked to dextran. [ 26,79 ]  a) One has to differentiate between different local concentrations: extracellular calcium and pH, c e (Ca 2+ ) and pH e , intracellular 
calcium and pH in the cytosol, c i (Ca 2+ ) and pH i , and calcium and pH inside lysosomes, c l (Ca 2+ ) and pH l . Upon internalization the particles undergo 
several acidifi cation steps in their local environment, from the extracellular space to their fi nal localization inside lysosomes. [ 49 ]  b) Fluorescence 
emission spectra I(λ) of Calcium Green-1 loaded particles depend on calcium, but also on pH. Changes in pH infer crosstalk with the Ca 2+ -sensitive 
read-out. c) Ca 2+ -sensitive particles were added to cells and microscopy images were recorded. Fluorescence images, together with an overlay 
with bright-fi eld images, are shown. The scale bars correspond to 20 µm. After 4 h of incubation, some particles were internalized (the ones 
in the big red circle), whereas other particles were located outside cells (the one in the small red circle). However, due to crosstalk, changes in 
emission intensity between extracellular particles and particles inside the lysosome cannot be unequivocally correlated with changes in calcium 
concentration. Reduction in fl uorescence can be caused by lowering of the calcium concentration, but also by lowering in pH. Therefore, if the local 
pH is unknown, the calcium concentration cannot be determined. 
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has already been applied for ion-sensitive fl uorophores. [ 85–87 ]  

While many organic fl uorophores have similar lifetimes of a 

few nanoseconds, fl uorescent nanoparticles such as QDs can 

have much longer photoluminescence lifetimes which, by 

using doping, can reach even milliseconds. [ 88 ]  If fl uorophores 

are coupled closely to the surface of QDs, and the emission 

spectrum of the QDs overlaps with the excitation spectrum of 

the fl uorophores, FRET occurs. [ 89–92 ]  Upon FRET from the 

QD to the fl uorophores, the effective fl uorescence lifetime of 

the fl uorophores is increased towards the fl uorescence life-

time of the QDs. [ 93,94 ]  In this way, the detection of ions could 

be carried out upon linkage of ion-sensitive fl uorophores to 

the surface of QDs. The optical changes induced by ion com-

plexation produce changes in the FRET process and, conse-

quently, in the fl uorophore lifetime that can be determined in 

time-resolved fl uorescence measurements. [ 95 ]  The principle of 

time-resolved fl uorescence measurements and ion-concentra-

tion determination via fl uorescence lifetimes is illustrated in 

Figure  4 , with the example of the Ca 2+ -sensitive fl uorophore 

Oregon Green Bapta-2 (OGB-2), [ 96,97 ]  which was coupled 

to the surface of (Zn x Cd 1-x )S/ZnS and CdSe/ZnS (Lumidot 

480 bought from Sigma Aldrich) QDs. [ 98,99 ]  The fl uorescence 

spectra of OGB-2 depend on the calcium concentration but, 

as mentioned above, like many organic fl uorophores, also 

on pH. The Ca 2+ - and pH-dependence can also be seen in 

time resolved fl uorescence, also when OGB-2 is coupled to 

the surface of QDs and excited via FRET. The time resolved 

fl uorescence curves can be fi tted with a simple kinetic model, 

which provides the relevant lifetimes. [ 93 ]  While the lifetimes 

themselves depend on the calcium concentration, they can be 

combined to a resulting response curve R, which is derived 

from all fi t parameters. Assuming a linear increase of the 

FRET rate as calcium binds to OGB-2, the dissociation con-

stants of Ca 2+  binding to OGB-2 can be determined from this 

Ca 2+ -dependent response curve (cf. Figure  4 ). In this way, 

instead of quantifying Ca 2+  via intensity changes at a certain 

emission wavelength, it can be carried out via changes in fl u-

orescence lifetime. This offers the possibility for temporally 

resolved multiplexed measurements of multiple ion concen-

trations in parallel. [ 40 ]   

  5.     Discussion 

 The examples shown in this review indicate that particle-

based intracellular ion-sensing is by far not trivial and 

involves several pitfalls. From the point of view of the sensor 

itself, one should be aware of the fact that the presence of 

the particles can change the fl uorescence response, as par-

ticles impose a different nano-environment, which changes 

ion concentrations as compared to the bulk. [ 27,31,32 ]  Another 

important drawback in the development of particle-based 

ion sensors originates from the few commercially available 

ion-sensitive fl uorophores with enough specifi city. To get a 

wide range of selective ion-sensitive fl uorophores towards 

different target cations and anions of interest is a big chal-

lenge that needs to be addressed in order to advance fl uores-

cence-based intracellular ion sensing. There are also several 

important points to take into account when ion-sensitive 

particles are used for sensing ion concentration in cells: 

First, the location of the particle sensors needs to be experi-

mentally determined and, unless experimentally proven 

otherwise, they should be assumed to be inside highly acidic 

intracellular vesicles and not free in the cytosol or other 

cellular organelles. Thus, in the most straightforward way, 

applications which involve irregularities in ion concentra-

tions inside endosomes/lysosomes could be investigated, 

such as lysosomal storage diseases. Localization of the sensor 

particles in endosomes/lysosomes involves massive changes 

in the pH surrounding the particles upon their internaliza-

tion by cells. Transitions occur from the slightly alkaline/

neutral extracellular medium to the acidic environment of 

endosomes/lysosomes. Due to crosstalk of many ion-sensi-

tive fl uorophores with pH, this affects the ion-sensitive fl uo-

rescence read-out. Thus, for most intracellular ion-sensing 

experiments, knowledge of the local pH around the particle 

sensors would be needed, which could be achieved by addi-

tionally using pH-sensitive sensor particles. The effect of pH 

might also impose limits on sensors which involve enzymes 

as recognition elements, such as urease, [ 100 ]  glucose oxidase, 

or lactate oxidase to convert the analyte (urea, glucose, 

or lactate) into H + , [ 101 ]  which then is measured as a pH-

dependent fl uorescence signal. Therefore, in biological media 

such as the interior of cells, these sensors might give signal 

changes which would be problematic to interpret. Multi-

plexed sensing of several ions (or other relevant molecules) 

in parallel would offer a solution, not only to crosstalk with 

pH but also in the case of interference with other molecules. 

Thus, a reasonable strategy would involve determining the 

fl uorescence read-out of different ion-sensitive fl uorophores 

(or pH) in parallel. However, spectral overlap of different 

fl uorophores sensitive to different ions/molecules imposes a 

severe limit, and hampers detection of several fl uorophores 

in parallel. One solution is to resolve different fl uorophores 

not spectrally, but in different modes. Discrimination can, 

for example, be achieved via determination of fl uorescence 

lifetimes.  

  Supporting Information 

 Supporting Information is available from the Wiley Online Library 
or from the author.  

  Acknowledgements 

 The authors are grateful to Dr. Joana Rejman for helpful technical 
discussions. This work was supported by DFG GRK 1782 (grants to 
WJP and WH) and in part by Ministry of Education and Science of the 
Russian Federation, contracts 02.740.11.5226, 14.740.11.1363 
and Russian Foundation for Basic Research 13–04–01507 A. SA, 
BP, and CCC are grateful to the Alexander von Humboldt Founda-
tion for postdoctoral fellowships. NS is grateful to DAAD and HEC 
for a PhD fellowship.    

small 2015, 11, No. 8, 896–904



903www.small-journal.com© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.MaterialsViews.com

[1]     R. D.    Carpenter  ,   A. S.    Verkman  ,  Org Lett    2010 ,  12 ( 6 ), 
 1160 – 1163 .  

[2]     X.    Xie  ,   Y.    Qin  ,  Sens. Actuat. B    2011 ,  156 ( 1 ),  213 – 217 .  
[3]     M. J.    Ruedas-Rama  ,   A.    Orte  ,   E. A. H.    Hall  ,   J. M.    Alvarez-Pez  , 

  E. M.    Talavera  ,  Analyst    2012 ,  137 ( 6 ),  1500 – 1508 .  
[4]     N.    Wanichacheva  ,   K.    Setthakarn  ,   N.    Prapawattanapol  , 

  O.    Hanmeng  ,   V. S.    Lee  ,   K.    Grudpan  ,  J. Luminescence    2012 , 
 132 ( 1 ),  35 – 40 .  

[5]     W.    Jiang  ,   Q. Q.    Fu  ,   H. Y.    Fan  ,   W.    Wang  ,  Chem. Commun.    2008 , 
( 2 ),  259 – 261 .  

[6]     V. V.    Martin  ,   A.    Rothe  ,   Z.    Diwu  ,   K. R.    Gee  ,  Bioorg. Medicinal 
Chem. Lett.    2004 ,  14 ( 21 ),  5313 – 5316 .  

[7]     P.    Nandhikonda  ,   M. P.    Begaye  ,   M. D.    Heagy  ,  Tetrahedron 
Lett.    2009 ,  50 ( 21 ),  2459 – 2461 .  

[8]     P.    Rivera Gil  ,   M.    Nazarenus  ,   S.    Ashraf  ,   W. J.    Parak  ,  Small    2012 , 
 8 ( 6 ),  943 – 948 .  

[9]     T.    Mistri  ,   M.    Dolai  ,   D.    Chakraborty  ,   A. R.    Khuda-Bukhsh  , 
  K. K.    Das  ,   M.    Ali  ,  Org. Biomolec. Chem.    2012 ,  10 ( 12 ), 
 2380 – 2384 .  

[10]     E.    Arunkumar  ,   A.    Ajayaghosh  ,   J.    Daub  ,  J. Am. Chem. Soc.    2005 , 
 127 ( 9 ),  3156 – 3164 .  

[11]     L.    Zeng  ,   E. W.    Miller  ,   A.    Pralle  ,   E. Y.    Isacoff  ,   C. J.    Chang  ,  J. Am. 
Chem. Soc.    2006 ,  128 ( 1 ),  10 – 11 .  

[12]     L.    Xue  ,   C.    Liu  ,   H.    Jiang  ,  Chem. Commun.    2009 , ( 9 ),  1061 – 1063 .  
[13]     X. J.    Peng  ,   J. J.    Du  ,   J. L.    Fan  ,   J. Y.    Wang  ,   Y. K.    Wu  ,   J. Z.    Zhao  , 

  S. G.    Sun  ,   T.    Xu  ,  J. Am. Chem. Soc.    2007 ,  129 ( 6 ),  1500 .  
[14]     D. W.    Domaille  ,   E. L.    Que  ,   C. J.    Chang  ,  Nat. Chem. Biol.    2008 , 

 4 ( 3 ),  168 – 175 .  
[15]     X. A.    Zhang  ,   D.    Hayes  ,   S. J.    Smith  ,   S.    Friedle  ,   S. J.    Lippard  ,  J. Am. 

Chem. Soc.    2008 ,  130 ( 47 ),  15788 – 15789 .  
[16]     K.    Komatsu  ,   Y.    Urano  ,   H.    Kojima  ,   T.    Nagano  ,  J. Am. Chem. 

Soc.    2007 ,  129 ( 44 ),  13447 – 13454 .  
[17]     Y. F.    Chen  ,   Z.    Rosenzweig  ,  Analyt. Chem.    2002 ,  74 ( 19 ), 

 5132 – 5138 .  
[18]     W. J.    Jin  ,   M. T.    Fernandez-Argüelles  ,   J. M.    Costa-Fernandez  , 

  R.    Pereiro  ,   A.    Sanz-Medel  ,  Chem. Commun.    2005 ,  2005 , 
 883 – 885 .  

[19]     M. T.    Fernandez-Argüelles  ,   W. J.    Jin  ,   J. M.    Costa-Fernandez  , 
  R.    Pereiro  ,   A.    Sanz-Medel  ,  Analyt. Chim. Acta    2005 ,  549 ,  20 – 25 .  

[20]     A. S.    Susha  ,   A.    Munoz_Javier  ,   W. J.    Parak  ,   A. L.    Rogach  ,  Colloids 
Surf. A    2006 ,  281 ,  40 – 43 .  

[21]     H. A.    Clark  ,   S. L. R.    Barker  ,   M.    Brasuel  ,   M. T.    Miller  ,   E.    Monson  , 
  S.    Parus  ,   Z. Y.    Shi  ,   A.    Song  ,   B.    Thorsrud  ,   R.    Kopelman  , 
  A.    Ade  ,   W.    Meixner  ,   B.    Athey  ,   M.    Hoyer  ,   D.    Hill  ,   R.    Lightle  , 
  M. A.    Philbert  ,  Sens. Actuat. B    1998 ,  51 ( 1–3 ),  12 – 16 .  

[22]     H. A.    Clark  ,   M.    Hoyer  ,   S.    Parus  ,   M. A.    Philbert  ,   R.    Kopelman  , 
 Microchimica Acta    1999 ,  131 ( 1–2 ),  121 – 128 .  

[23]     M.    Brasuel  ,   R.    Kopelman  ,   T. J.    Miller  ,   R.    Tjalkens  ,   M. A.    Philbert  , 
 Analyt. Chem.    2001 ,  73 ( 10 ),  2221 – 2228 .  

[24]     O.    Kreft  ,   A.    Muñoz Javier  ,   G. B.    Sukhorukov  ,   W. J.    Parak  ,  Journal 
Of Materials Chemistry    2007 ,  17 ,  4471 – 4476 .  

[25]     U.    Reibetanz  ,   D.    Halozan  ,   M.    Brumen  ,   E.    Donath  ,  Biomacromol-
ecules    2007 ,  8 ,  1928 – 1933 .  

[26]     L. L.    del Mercato  ,   A. Z.    Abbasi  ,   W. J.    Parak  ,  Small    2011 ,  7 , 
 351 – 363 .  

[27]     F.    Zhang  ,   Z.    Ali  ,   F.    Amin  ,   A.    Feltz  ,   M.    Oheim  ,   W. J.    Parak  ,  Chem-
PhysChem    2010 ,  11 ,  730 – 735 .  

[28]     J.    Isaad  ,   A.    El Achari  ,  Tetrahedron    2013 ,  69 ( 24 ),  4866 – 4874 .  
[29]     M. J.    Ruedas-Rama  ,   E. A. H.    Hall  ,  Analyt. Chem.    2008 ,  80 ( 21 ), 

 8260 – 8268 .  
[30]     S.    Carregal-Romero  ,   J.-M.    Montenegro  ,   W. J.    Parak  ,   P.    Rivera_

Gil  ,  Frontiers Pharmacol.    2012 ,  3 ,  70 .  
[31]     A.    Riedinger  ,   F.    Zhang  ,   F.    Dommershausen  ,   C.    Röcker  , 

  S.    Brandholt  ,   G. U.    Nienhaus  ,   U.    Koert  ,   W. J.    Parak  ,  Small    2010 , 
 6 ( 22 ),  2590 – 2597 .  

[32]     F.    Zhang  ,   E.    Lees  ,   F.    Amin  ,   P.    Rivera_Gil  ,   F.    Yang  ,   P.    Mulvaney  , 
  W. J.    Parak  ,  Small    2011 ,  7 ,  3113 – 3127 .  

[33]     C.    Carrillo-Carrion  ,   M.    Nazarenus  ,   S.    Sánchez Paradinas  , 
  S.    Carregal-Romero  ,   M. J.    Almendral  ,   M.    Fuentes  ,   B.    Pelaz  , 
  P.    del Pino  ,   I.    Hussain  ,   M. J. D.    Clift  ,   B.    Rothen-Rutishauser  , 
  X.-J.    Liang  ,   W. J.    Parak  ,  Curr. Op. Chem. Engineer.    2014 ,  4 , 
 88 – 96 .  

[34]     C.    Pfeiffer  ,   C.    Rehbock  ,   D.    Hühn  ,   C.    Carrillo-Carrion  , 
  D. J.    d. Aberasturi    V.    Merk  ,   S.    Barcikowski  ,   W. J.    Parak  ,  J. R. Soc., 
Interface    2014 ,  11 ,  20130931 .  

[35]     C. A.    Leatherdale  ,   W.-K.    Woo  ,   F. V.    Mikulec  ,   M. G.    Bawendi  , 
 J. Phys. Chem. B    2002 ,  106 ( 31 ),  7619 – 7622 .  

[36]     S.    Pu  ,   M.    Yang  ,   C.    Hsu  ,   C.    Lai  ,   C.    Hsieh  ,   S.    Lin  ,   Y.    Cheng  , 
  P.    Chou  ,  Small    2006 ,  2 ( 11 ),  1308 – 1313 .  

[37]     A.    Huber  ,   T.    Behnke  ,   C.    Würth  ,   C.    Jaeger  ,   U.    Resch-Genger  , 
 Analyt. Chem.    2012 ,  84 ( 8 ),  3654 .  

[38]     D. G.    Mullen  ,   M.    Fang  ,   A.    Desai  ,   J. R.    Baker  ,   B. G.    Orr  ,   
M. M.    Banaszak Holl  ,  ACS Nano    2010 ,  4 ( 2 ),  657 – 670 .  

[39]     D. G.    Mullen  ,   A. M.    Desai  ,   J. N.    Waddell  ,   X. M.    Cheng  ,   C. V.    Kelly  , 
  D. Q.    McNerny  ,   I. J.    Majoros  ,   J. R.    Baker  ,   L. M.    Sander  ,   B. G.    Orr  , 
  M. M. B.    Holl  ,  Bioconjug. Chem.    2008 ,  19 ( 9 ), 
 1748 – 1752 .  

[40]     A. Z.    Abbasi  ,   F.    Amin  ,   T.    Niebling  ,   S.    Friede  ,   M.    Ochs  , 
  S.    Carregal-Romero  ,   J. M. M.    Martos  ,   P.    Rivera_Gil  , 
  W.    Heimbrodt  ,   W. J.    Parak  ,  ACS Nano    2011 ,  5 ,  21 – 25 .  

[41]     L. L.    del Mercato  ,   A. Z.    Abbasi  ,   M.    Ochs  ,   W. J.    Parak  ,  ACS 
Nano    2011 ,  5 ( 12 ),  9668 – 9674 .  

[42]     L.    Shang  ,   K.    Nienhaus  ,   G. U.    Nienhaus  ,  J. Nanobio-
technol.    2014 ,  12 ,  5 .  

[43]     S.    Xu  ,   B. Z.    Olenyuk  ,   C. T.    Okamoto  ,   S. F.    Hamm-Alvarez  ,  Adv. 
Drug Deliv. Rev.    2013 ,  65 ( 1 ),  121 – 138 .  

[44]     T. G.    Iversen  ,   T.    Skotland  ,   K.    Sandvig  ,  Nano Today    2011 ,  6 ( 2 ), 
 176 – 185 .  

[45]     G.    Sahay  ,   D. Y.    Alakhova  ,   A. V.    Kabanov  ,  J. Controlled 
Release    2010 ,  145 ( 3 ),  182 – 195 .  

[46]     W. J.    Parak  ,   R.    Boudreau  ,   M. L.    Gros  ,   D.    Gerion  ,   D.    Zanchet  , 
  C. M.    Micheel  ,   S. C.    Williams  ,   A. P.    Alivisatos  ,   C. A.    Larabell  , 
 Adv. Mater.    2002 ,  14 ( 12 ),  882 – 885 .  

[47]     C.    Schweiger  ,   R.    Hartmann  ,   F.    Zhang  ,   W. J.    Parak  ,   T.    Kissel  , 
  P.    Rivera Gil  ,  J. Nanobiotechnol.    2012 ,  10 ( 1 ),  28 .  

[48]     S.    De Koker  ,   B. G.    De Geest  ,   C.    Cuvelier  ,   L.    Ferdinande  , 
  W.    Deckers  ,   W. E.    Hennink  ,   S.    De Smedt  ,   N.    Mertens  ,  Adv. Funct. 
Mater.    2007 ,  17 ( 18 ),  3754 – 3763 .  

[49]     L.    Kastl  ,   D.    Sasse  ,   V.    Wulf  ,   R.    Hartmann  ,   J.    Mircheski  ,   C.    Ranke  , 
  S.    Carregal-Romero  ,   J. A.    Martínez-López  ,   R.    Fernández-Chacón  , 
  W. J.    Parak  ,   H.-P.    Elsaesser  ,   P.    Rivera Gil  ,  ACS Nano    2013 ,  7 ( 8 ), 
 6605 – 6618 .  

[50]     M.    Semmling  ,   O.    Kreft  ,   A.    Muñoz Javier  ,   G. B.    Sukhorukov  , 
  J.    Käs  ,   W. J.    Parak  ,  Small    2008 ,  4 ( 10 ),  1763 – 1768 .  

[51]     P.    Nativo  ,   I. A.    Prior  ,   M.    Brust  ,  ACS Nano    2008 ,  2 ( 8 ), 
 1639 – 1644 .  

[52]     C.    Brandenberger  ,   C.    Mühlfeld  ,   Z.    Ali  ,   A.-G.    Lenz  ,   O.    Schmid  , 
  W. J.    Parak  ,   P.    Gehr  ,   B.    Rothen-Rutishauser  ,  Small    2010 ,  6 , 
 1669 – 1678 .  

[53]     K.    Boeneman  ,   J. B.    Delehanty  ,   J. B.    Blanco-Canosa  ,   K.    Susumu  , 
  M. H.    Stewart  ,   E.    Oh  ,   A. L.    Huston  ,   G.    Dawson  ,   S.    Ingale  , 
  R.    Walters  ,   M.    Domowicz  ,   J. R.    Deschamps  ,   W. R.    Algar  , 
  S.    DiMaggio  ,   J.    Manono  ,   C. M.    Spillmann  ,   D.    Thompson  , 
  T. L.    Jennings  ,   P. E.    Dawson  ,   I. L.    Medintz  ,  ACS Nano    2013 , 
 7 ,  3778 – 3796 .  

[54]     J. B.    Delehanty  ,   C. E.    Bradburne  ,   K.    Boeneman  ,   K.    Susumu  , 
  D.    Farrell  ,   B. C.    Mei  ,   J. B.    Blanco-Canosa  ,   G.    Dawson  , 
  P. E.    Dawson  ,   H.    Mattoussi  ,   I. L.    Medintz  ,  Integrative 
Biology    2010 ,  2 ( 5–6 ),  265 – 277 .  

[55]     H.    Mattoussi  ,   G.    Palui  ,   H. B.    Na  ,  Adv. Drug Deliv. Rev.    2012 , 
 64 ( 2 ),  138 – 166 .  

[56]     A.    Verma  ,   O.    Uzun  ,   Y. H.    Hu  ,   Y.    Hu  ,   H. S.    Han  ,   N.    Watson  , 
  S. L.    Chen  ,   D. J.    Irvine  ,   F.    Stellacci  ,  Nat. Mater.    2008 ,  7 ( 7 ), 
 588 – 595 .  

small 2015, 11, No. 8, 896–904



904 www.small-journal.com © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

reviews
www.MaterialsViews.com

[57]     H. W.    Child  ,   P. A.    Del Pino  ,   J. M.    De La Fuente  ,   A. S.    Hursthouse  , 
  D.    Stirling  ,   M.    Mullen  ,   G. M.    McPhee  ,   C.    Nixon  ,   V.    Jayawarna  , 
  C. C.    Berry  ,  ACS Nano    2011 ,  5 ( 10 ),  7910 – 7919 .  

[58]     T.    Dejardin  ,   J.    de la Fuente  ,   P.    Del Pino  ,   E. P.    Furlani  ,   M.    Mullin  , 
  C. A.    Smith  ,   C. C.    Berry  ,  Nanomedicine    2011 ,  6 ( 10 ), 
 1719 – 1731 .  

[59]     J. M.    de la Fuente  ,   C. C.    Berry  ,  Bioconjug. Chem.    2005 ,  16 ( 5 ), 
 1176 – 1180 .  

[60]     B. D.    Chithrani  ,   A. A.    Ghazan  ,   C. W.    Chan  ,  Nano Lett.    2006 ,  6 ( 4 ), 
 662 – 668 .  

[61]     D. B.    Peckys  ,   N.    de Jonge  ,  Nano Lett.    2011 ,  11 ( 4 ),  1733 – 1738 .  
[62]     M.    Nazarenus  ,   Q.    Zhang  ,   M. G.    Soliman  ,   P.    del Pino  ,   B.    Pelaz  , 

  S.    Carregal_Romero  ,   J.    Rejman  ,   B.    Rothen-Ruthishauser  , 
  M. J. D.    Clift  ,   R.    Zellner  ,   G. U.    Nienhaus  ,   J. B.    Delehanty  , 
  I. L.    Medinez  ,   W. J.    Parak  ,  Beilstein J Nanotechnol.    2014 , 
DOI: 10.3762/bjnano.5.161.  

[63]     D.    Hühn  ,   K.    Kantner  ,   C.    Geidel  ,   S.    Brandholt  ,   I.    De Cock  , 
  S. J. H.    Soenen  ,   P.    Rivera Gil  ,   J.-M.    Montenegro  ,   K.    Braeckmans  , 
  K.    Müllen  ,   G. U.    Nienhaus  ,   M.    Klapper  ,   W. J.    Parak  ,  ACS 
Nano    2013 ,  7 ( 4 ),  3253 – 3263 .  

[64]     A.    Muñoz Javier  ,   O.    Kreft  ,   A.    Piera Alberola  ,   C.    Kirchner  ,   B.    Zebli  , 
  A. S.    Susha  ,   E.    Horn  ,   S.    Kempter  ,   A. G.    Skirtach  ,   A. L.    Rogach  , 
  J.    Rädler  ,   G. B.    Sukhorukov  ,   M.    Benoit  ,   W. J.    Parak  ,  Small    2006 , 
 2 ( 3 ),  394 – 400 .  

[65]     M.    Mahmoudi  ,   A. M.    Abdelmonem  ,   S.    Behzadi  ,   J. H.    Clement  , 
  S.    Dutz  ,   M. R.    Ejtehadi  ,   R.    Hartmann  ,   K.    Kantner  ,   U.    Linne  , 
  P.    Maffre  ,   S.    Metzler  ,   M. K.    Moghadam  ,   C.    Pfeiffer  , 
  M.    Rezaei  ,   P.    Ruiz-Lozano  ,   V.    Serpooshan  ,   M. A.    Shokrgozar  , 
  G. U.    Nienhaus  ,   W. J.    Parak  ,  ACS Nano    2013 ,  7 ( 8 ),  6555 – 6562 .  

[66]     A. M.    Alkilany  ,   P. K.    Nagaria  ,   C. R.    Hexel  ,   T. J.    Shaw  ,   C. J.    Murphy  , 
  M. D.    Wyatt  ,  Small    2009 ,  5 ( 6 ),  701 – 708 .  

[67]     P.-H.    Yang  ,   X.    Sun  ,   J.-F.    Chiu  ,   H.    Sun  ,   Q.-Y.    He  ,  Bioconjug. 
Chem.    2005 ,  16 ( 3 ),  494 – 496 .  

[68]     E.    C. Cho  ,   J. W.    Xie  ,   P. A.    Wurm  ,   Y.    Xia ,     Nano Lett.   2009 ,  9 ,  1080 .  
[69]     M.    Semmling  ,   O.    Kreft  ,   A.    M. Javier  ,   G.    B. Sukhorukov  ,   J.    Käs  , 

  W.    J. Parak  ,    Small   2008 ,  4 ( 10 )  1763.   
[70]     C.-A. J.    Lin  ,   R. A.    Sperling  ,   J. K.    Li  ,   T.-Y.    Yang  ,   P.-Y.    Li  ,   M.    Zanella  , 

  W. H.    Chang  ,   W. J.    Parak  ,  Small    2008 ,  4 ( 3 ),  334 – 341 .  
[71]     R. A.    Sperling  ,   T.    Pellegrino  ,   J. K.    Li  ,   W. H.    Chang  ,   W. J.    Parak  , 

 Adv. Funct. Mater.    2006 ,  16 ( 7 ),  943 – 948 .  
[72]     M.    Dahan  ,   T.    Laurence  ,   F.    Pinaud  ,   D. S.    Chemla  ,   A. P.    Alivisatos  , 

  M.    Sauer  ,   S.    Weiss  ,  Optics Lett.    2001 ,  26 ( 11 ),  825 – 827 .  
[73]     P.    Rivera_Gil  ,   S. D.    Koker  ,   B. G.    De_Geest  ,   W. J.    Parak  ,  Nano 

Lett.    2009 ,  9 ( 12 ),  4398 – 4402 .  
[74]     P.    Rivera_Gil  ,   C. V.    Vazquez  ,   V.    Giannini  ,   M. P.    Callao  ,   W. J.    Parak  , 

  M. A. C.    Duarte  ,   R. A.    Alvarez-Puebla  ,  Angew. Chem.    2013 ,  52 , 
 13694 – 13698 .  

[75]     M.    Eberhard  ,   P.    Erne  ,  Biochem. Biophys. Res. Commun.    1991 , 
 180 ( 1 ),  209 – 215 .  

[76]     G. A.    Rutter  ,   N. J.    Osbaldeston  ,   J. G.    McCormack  ,   R. M.    Denton  , 
 Biochem. J.    1990 ,  271 ( 3 ),  627 – 634 .  

[77]     A. S.    Verkman  ,   M. C.    Sellers  ,   A. C.    Chao  ,   T.    Leung  ,   R.    Ketcham  , 
 Analyt. Biochem.    1989 ,  178 ( 2 ),  355 – 361 .  

[78]     N. D.    Sonawane  ,   J. R.    Thiagarajah  ,   A. S.    Verkman  ,  J. Biological 
Chem.    2002 ,  277 ( 7 ),  5506 – 5513 .  

[79]     N.    Antipina Maria  ,   B.    Sukhorukov Gleb  ,  Adv. Drug Deliv. 
Rev.    2011 ,  63 ( 9 ),  716 – 729 .  

[80]     H.    Arya  ,   Z.    Kaul  ,   R.    Wadhwa  ,   K.    Taira  ,   T.    Hirano  ,   S. C.    Kaul  ,  Bio-
chem. Biophys. Res. Commun.    2005 ,  329 ( 4 ),  1173 – 1177 .  

[81]     P. K.    Chattopadhyay  ,   D. A.    Price  ,   T. F.    Harper  ,   M. R.    Betts  ,   J.    Yu  , 
  E.    Gostick  ,   S. P.    Perfetto  ,   P.    Goepfert  ,   R. A.    Koup  ,   S. C.    De Rosa  , 
  M. P.    Bruchez  ,   M.    Roederer  ,  Nat. Med.    2006 ,  12 ( 8 ), 
 972 .  

[82]     H.    Xu  ,   M. Y.    Sha  ,   E. Y.    Wong  ,   J.    Uphoff  ,   Y.    Xu  ,   J. A.    Treadway  , 
  A.    Truong  ,   E.    O’Brien  ,   S.    Asquith  ,   M.    Stubbins  ,   N. K.    Spurr  , 
  E. H.    Lai  ,   W.    Mahoney  ,  Nucleic Acids Res.    2003 ,  31 ( 8 ), 
 e42 .  

[83]     X.    Gao  ,   S.    Nie  ,  Anal. Chem.    2004 ,  76 ( 8 ),  2406 – 2410 .  
[84]     J. A.    Lee  ,   S.    Mardyani  ,   A.    Hung  ,   A.    Rhee  ,   J.    Klostranec  ,   Y.    Mu  , 

  D.    Li  ,   W. C. W.    Chan  ,  Adv. Mater.    2007 ,  19 ( 20 ),  3113 .  
[85]     U.    Lieberwirth  ,   J.    Arden-Jacob  ,   K. H.    Drexhage  ,   D. P.    Herten  , 

  R.    Müller  ,   M.    Neumann  ,   A.    Schulz  ,   S.    Siebert  ,   G.    Sagner  , 
  S.    Klingel  ,   M.    Sauer  ,   J.    Wolfrum  ,  Analyt. Chem.    1998 ,  70 , 
 4771 – 4779 .  

[86]     S. H.    Minhindukulasuriya  ,   T. K.    Morcone  ,   L. B.    McGown  ,  Electro-
phoresis    2003 ,  24 ,  20 – 25 .  

[87]     K.    Hoffmann  ,   T.    Behnke  ,   D.    Drescher  ,   J.    Kneip  ,   U.    Resch-Genger  , 
 ACS Nano    2013 ,  7 ,  6674 – 6684 .  

[88]     C.    Gan  ,   Y.    Zhang  ,   D.    Battaglia  ,   X.    Peng  ,   M.    Xiao  ,  Appl. Phys. 
Lett.    2008 ,  92 ( 2411111 ).  

[89]     T.    Förster  ,  Annalen der Physik    1948 ,  437 ( 1–2 ),  55 – 75 .  
[90]     I. L.    Medintz  ,   A. R.    Clapp  ,   H.    Mattoussi  ,   E. R.    Goldman  ,   B.    Fisher  , 

  J. M.    Mauro  ,  Nat. Mater.    2003 ,  2 ,  630 – 638 .  
[91]     R.    Freeman  ,   L.    Bahshi  ,   T.    Finder  ,   R.    Gill  ,   I.    Willner  ,  Chem. 

Commun.    2009 , ( 7 ),  764 – 766 .  
[92]     A. V.    Yakovlev  ,   F.    Zhang  ,   A.    Zulqurnain  ,   A.    Azhar-Zahoor  , 

  C.    Luccardini  ,   S.    Gaillard  ,   J. M.    Mallet  ,   P.    Tauc  ,   J. C.    Brochon  , 
  W. J.    Parak  ,   A.    Feltz  ,   M.    Oheim  ,  Langmuir    2009 ,  25 ( 5 ), 
 3232 – 3239 .  

[93]     T.    Niebling  ,   F.    Zhang  ,   Z.    Ali  ,   W. J.    Parak  ,   W.    Heimbrodt  ,  J. Appl. 
Phys.    2009 ,  106 ,  104701 .  

[94]     J. S.    Kang  ,   g.    Piszczek  ,   J. R.    Lakowicz  ,  J. Fluorescence    2002 ,  12  , 
97 – 103 .  

[95]     U.    Kaiser  ,   D. J.    d. Aberasturi  ,   R.    Malinowski  ,   F.    Amin  ,   W. J.    Parak  , 
  W.    Heimbrodt  ,  Appl. Phys. Lett.    2014 ,  104 ,  041901 .  

[96]     A. V.    Agronskaia  ,   L.    Tertoolen  ,   H. C.    Gerritsen  ,  J. Biomed. 
Optics    2004 ,  9 ,  1230 – 1237 .  

[97]     R. Y.    Tsien  ,  Biochemistry    1980 ,  19 ,  2396 – 2404 .  
[98]     W. K.    Bae  ,   M. K.    Nam  ,   K.    Char  ,   S.    Lee  ,  Chem. Mater.    2008 ,  20 , 

 5307 – 5313 .  
[99]     B. O.    Dabbousi  ,   J.    Rodriguez-Viejo  ,   F. V.    Mikulec  ,   J. R.    Heine  , 

  H.    Mattoussi  ,   R.    Ober  ,   K. F.    Jensen  ,   M. G.    Bawendi  ,  J. Phys. 
Chem. B    1997 ,  101 ( 46 ),  9463 – 9475 .  

[100]     L. I.    Kazakova  ,   L. I.    Shabarchina  ,   G. B.    Sukhorukov  ,  Phys. Chem. 
Chem. Phys.    2011 ,  13 ( 23 ),  11110 .  

[101]     O. Y.    Kochetkova  ,   L. I.    Kazakova  ,   D. A.    Moshkov  ,   M. G.    Vinokurov  , 
  L. I.    Shabarchina  ,  Russian J. Bioorg. Chem.    2013 ,  39 ( 5 ), 
 504 – 509 .  

[102]     A. S.    Susha  ,   A. M.    Javier  ,   W. J.    Parak  ,   A. L.    Rogach  ,  Colloids Surf. 
A    2006 ,  281 ,  40 .    

Received:  July 17, 2014 
Revised:  September 24, 2014
Published online:   December 15, 2014  

small 2015, 11, No. 8, 896–904



Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and
Biological Detection
Zhao Yue,† Fred Lisdat,⊥ Wolfgang J. Parak,‡ Stephen G. Hickey,§ Liping Tu,† Nadeem Sabir,‡

Dirk Dorfs,# and Nadja C. Bigall‡,#,*
†Department of Electronics, Nankai University, Tianjin 300071, P.R. China
‡Fachbereich Physik und WZMW, Philipps Universitaẗ Marburg, Marburg, Germany
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ABSTRACT: Quantum-dot-based photoelectrochemical sen-
sors are powerful alternatives for the detection of chemicals
and biochemical molecules compared to other sensor types,
which is the primary reason as to why they have become a hot
topic in nanotechnology-related analytical methods. These
sensors basically consist of QDs immobilized by a linking
molecule (linker) to an electrode, so that upon their
illumination, a photocurrent is generated which depends on
the type and concentration of the respective analyte in the
immediate environment of the electrode. The present review
provides an overview of recent developments in the fabrication
methods and sensing concepts concerning direct and indirect interactions of the analyte with quantum dot modified electrodes.
Furthermore, it describes in detail the broad range of different sensing applications of such quantum-dot-based
photoelectrochemical sensors for inorganic and organic (small and macro-) molecules that have arisen in recent years. Finally,
a number of aspects concerning current challenges on the way to achieving real-life applications of QD-based photochemical
sensing are addressed.

KEYWORDS: photoelectrochemistry, quantum dots, nanoparticles, photocurrent, sensors

1. INTRODUCTION

Quantum dot (QD)-based sensors for chemical and biological
detection are presently a technological hot topic1−8 because of
the special optical and electronic properties of the component
QDs9−15 plus the possibility to relatively easily functionalize
them with a wide variety of biological as well as for other
important applications relevant molecules.10,16−18 In principle,
there are several ways that one may take advantage of the
optical and electronic properties of QDs to design analytical
methods for the detection of chemicals and biomolecules. This
review focuses on sensors based on an electronic output, which
consist of QDs immobilized on a conductive electrode. These
systems can generate photocurrents which are sensitive to the
chemical environment of the surrounding solution (see Figure
1). Although optical transducers based on fluorescence,
fluorescence resonance energy transfer (FRET), chemilumi-
nescence resonance energy transfer (CRET), and other
mechanisms are already widespread,1−4,19−38 the area of QD-
based photoelectrochemical sensors has recently evolved into a
rather new and important branch of biosensing, as many of
their properties are advantageous when compared to the other
sensor types. For example, even though they are still model
systems, they are easy to operate, because they yield an

Special Issue: Forum on Biomedical Applications of Colloidal
Photoluminescent Quantum Dots

Received: November 27, 2012
Accepted: March 14, 2013
Published: April 3, 2013

Figure 1. Schematic representation of a QD-based photoelectrochem-
ical sensor. QDs are immobilized by a linker to an electrode, which is
placed in a solution. Upon illumination of this electrode, a
photocurrent is generated depending on the type and concentration
of the analyte in the surrounding solution.

Review

www.acsami.org

© 2013 American Chemical Society 2800 dx.doi.org/10.1021/am3028662 | ACS Appl. Mater. Interfaces 2013, 5, 2800−2814

www.acsami.org


electronic output without the necessity to purchase expensive
optical equipment. In addition to the potential applied, the
impinging light can provide a means for controlling the desired
reaction.
Furthermore, QD-based photoelectrochemical sensors have

the following advantages: (1) As QDs serve as “pumps” for the
charge carrier transfer between the conductive electrode and
the redox agent (oxidant and reductant) through tunneling
processes, one can achieve photoelectrochemical sensors with a
fast response and high sensitivity. Through further coupling
with biocatalytic reactions, this leads to the possibility to detect
certain substances that cannot be detected using common
optical property based analytical methods. (2) Only small dark-
currents are observed in QD-based systems, because the
immobilization layer, which links the nanoparticles to the
electrode in most cases, blocks the access of substances to the
electrode surface and thus, attenuates alternate electron transfer
reactions. Under illumination this situation changes signifi-
cantly and redox reactions can occur, thus the QDs play a key
role as photoactivators of the sensor. Due to the broad
absorption spectra of the QDs their photoelectrochemical
sensor systems can be excited by a common white light source.
This enables the design of simple, cheap, and portable sensor
systems. (3) QD-based photoelectrochemical sensors can easily
be extended to light-addressable sensors by the spatially
resolved illumination of a selected area of the electrode
provided that a spatially resolved immobilization of the
recognition elements can be performed. As an extension of
this strategy it should be possible to obtain spatially resolved
coding or multichannel detection.39 Compared to the tradi-
tional Si-based light addressable sensors,40 QD-based light
addressable sensors can potentially possess a higher lateral
resolution, because the photoexcited electron−hole pairs
should diffuse less within the semiconductor layer.41−43 (4)
The use of QDs opens the possibility to efficiently chemically
couple additional moieties to the QDs, e.g., biomolecules.
As may be gleamed from the above, the great potential of

QD-based photoelectrochemical sensors is clear. Because many
recent reviews have already focused on QD-based optical
sensors,3,15 in this review, we focus our attention on the
photoelectrochemical applications of QDs for chemical and
biological detection. Once the functional principle and some
advantages of these systems have been laid out, we describe
several fabrication routes developed within recent years. In the
sections that follow, the state-of-the art in the detection of
chemicals and biomolecules is described and the broad range of
molecules already detectable by QD-based photoelectrochem-
ical sensors is presented. Finally, an overview to conclude the
actual observations is given and future perspectives are
discussed.
1.1. Functional Principle. As a general rule, this type of

photoelectrochemical sensor consists of QDs immobilized onto
an electrode, which in most cases is achieved via an organic
linker layer. Subsequent to the excitation of the QDs and under
the application of an appropriate potential, electrons can tunnel
from the electrode to the valence band of the QDs, and
electrons present in the conduction band of the QDs can
tunnel to oxidant molecules (electron acceptors) in the
surrounding solution. Hence, in such a case, the cathodic
photocurrent generated monotonically increases with increas-
ing concentration of the oxidant present in solution. By
contrast, if reducing molecules (electron donors) exist in
solution, tunneling of electrons from the solution phase to the

valence band of the QDs and of electrons from the conduction
band to the electrode occurs. It can therefore be seen that both
the direction and the amplitude of the resulting photocurrent
are determined by the concentration of molecules (to be
detected) and by the bias potential applied to the electrode. A
commonly employed schematic depicting the detection
principle is shown in Figure 2. As previously mentioned,

upon illumination, electrons in the QDs are excited, which
subsequently have the possibility to either tunnel to the gold
electrode (with a transfer rate ke (2), or to solution and reduce
oxidants (transfer rate kc (4). Generated excited state holes can
be filled by electrons tunneling from the electrode to the QDs
(rate kb (3) or tunneling from reductants in solution to the
QDs (rate kv (5). Hence, several electron transfer processes
(2−5) are competing with the excitation process (0) and the
recombination process (1), altogether yielding a net photo-
current. The amplitude, shape, and direction of this photo-
current will be controlled by the kinetics of each individual step.
The rates ke and kb, which are tunneling rates between the

QDs and the electrode, strongly depend on the energy barrier
height (determined by the linker material), on the barrier
distance (determined by the thickness of the linker material), as
well as on the difference between the Fermi level of the gold
electrode and the energetic bands of the QDs.48 Hence, ke and
kb are influenced by the chemical composition and thickness of
the linker, the applied potential, the size or material
composition of the QDs and the surface modification protocol
used for creating the interface with the solution. kv is the
electron tunneling rate from the reductants in solution to the
photoinduced holes in the valence band of the QDs. kc is the
transfer rate of photoinduced electrons from the conduction
band of the QDs tunneling to the electron acceptors O in
solution. Consequently, kv and kc are influenced by the
concentration of donors and acceptors in solution and by the
surface properties of the modified QDs.
From a comparison between the theoretical models,46,49

simulations,46,47 and experimental results,41 it can clearly be
seen that the energetic position of the conduction band and the
valence band of the QDs (determined by the size and
composition of the QDs), the distance between the gold
electrode surface and the QDs (i.e., the thickness and
conductive properties of the immobilization layer), the position

Figure 2. Energy diagram of photoinduced charge carrier transfer in a
QD-based photoelectrochemical system corresponding to the models
presented within refs 44−47. kr is the rate of the relaxation pathway, ke
and kb are the electron transfer rates from the conduction band to the
electrode and from the electrode to the valence band, respectively. kc
and kv are the transfer rate from the conduction band to a molecule in
solution (O) being reduced to R, and the transfer rate from a molecule
(R) in solution being oxidized (to O) to the valence band, respectively.
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of the Femi level in the gold electrode (i.e., the bias potential),
and the concentration of the redox agent in solution will all
influence the output characteristics of the photocurrent.
Therefore, one has to take particular account of all these
parameters when designing an appropriate QD-based photo-
electrochemical sensor. When all other parameters remain
constant, the amplitude of the photocurrent will follow the
charge transfer rates as determined by the redox agent
concentration (kv or kc) at the respective bias potential.
Hence, it is reasonable that QD-based photoelectrochemical
detection of different molecules is quantifiable by measuring the
amplitude of the photocurrent.
All theoretical studies describe the same basic concept, with

the exception of the description of the role surface states in the
QDs, which are commonly referred to as “traps”.44−47,50−53

Traps are energetic states that usually appear because of the
break in symmetry at the surface of QDs and which result in
artifacts such as vacancies, defects etc., which can be located
within the band gap of the QDs.54−56 Once such states exist,
excited electrons (or holes) may occupy them (meaning they
are “trapped”) and, if many such states are present and/or
trapping events occur with a high probability, significant
depopulation of the conduction band (or the holes in the
valence band) can result. For applications in which QDs are
used as fluorescent dyes, usually efforts are undertaken to
minimize the amount of surface traps that occur because such
states result in a reduction of the photoluminescence quantum
yield. However, in the field of QD-based photoelectrochemical
sensors, the role of trap states is hotly debated and often
controversial. In recent publications, two different kinds of
models regarding the role of trap states can be found with the
frequently discussed controversial question being whether the
direction of the photocurrent follows the applied bias potential
or not. Using time-resolved photoelectrochemical measure-
ments, several research groups independently obtained similar
charge transfer models for QD-based photoelectrochemical
setups with gold and ITO electrodes.44,45,50−53,57−62 According
to their observations, for QDs of different materials and
different charge carrier trapping properties, different models are
required to be developed. For CdS QDs, it has been
demonstrated that hole traps play the main role in the
photocurrent generation. Here, the direction of the photo-
current did not follow the bias potential, even though the
amplitude and shape profiles did. In a separate study obtained
for PbS QDs, for the same bias voltage range, different
directions in the photocurrent were observed. In a further work,
published by Nakanishi et al., multilayers of QDs on gold
electrodes were characterized by Fourier transform infrared
reflection absorption spectroscopy (FT-IRRAS)63,64 where a
similar behavior was observed, namely that only positive
photocurrents resulted for both positive and negative bias
potentials at the electrode. The corresponding model, in which
charge carrier trapping plays an important role for the resulting
photocurrent, takes into account the more complex situation
where traps are present. This model is an extension of that
presented in Figure 2, which results from the combined studies
within several other research groups.2,41,65−72 In their
observations, the direction of the photocurrent was clearly
reversible and determined by the bias potential applied. Here, a
bias potential more negative than the Fermi level resulted in a
negative photocurrent, and a bias potential more positive than
the Fermi level in a positive photocurrent. Also, for
photoelectrodes with CdSe or CdSe/ZnS core/shell QDs, it

was observed that the amplitude of the photocurrent followed
the absorption spectra of the QDs, and that the direction of the
photocurrent followed the direction of the bias potential.69,73

This is highly indicative that in these cases, the photocurrents
arose from electron hole pairs undisturbed by trap states.
One possible explanation for the many and varied

observational discrepancies that one finds in the literature
may be due to the use of QD materials of different quality
especially with respect to the amount of trap states present.
Interestingly, many of the older publications report on the
importance of trap states, while more recent publications report
more on the minor role of trap states, and is a change that may
be considered to coincide with the development of improved
QD synthesis routes which produce materials with higher
photoluminescence quantum yields resulting from the presence
of fewer defect states. The quality of the QDs and the type of
surfactant molecules present at the QD surface crucially
influence the occurrence (in terms of number and energetic
level) of traps. The presence of a surface state can reduce the
transfer rate to the electrode or to the redox molecule
(depending on the type of trap state) and hence make the
photocurrent become unidirectional, whereas the amplitude of
the photocurrent will be influenced by the light intensity.
Despite the reported differences in the experimental results

concerning the role of the trap states as described above, the
possibility of photoelectrochemical detection of substances in
solution is not prevented: it does not matter whether positive
or negative potentials are applied or if the direction of the
photocurrent is reversible or not under different bias voltages,
the main observation remains, namely that the amplitude of the
photocurrent depends on the concentration of the donor/
acceptor compounds. However, there are some inherent
disadvantages when surface states play the main role in a
photoelectrochemical detection system. The first is that in the
case where one type of QD is used, the system can only be used
to either oxidize molecules or to reduce them. For example,
Katz et al.65 reported the simultaneous photoelectrochemical
detection of both the oxidized and reduced states of
cytochrome c employing only one type of QD by a simple
variation of the bias potential. If surface states had played the
main role in the charge carrier separation step, the photo-
current would not have been reversible. In that case, only the
oxidized or the reduced cytochrome c species would have been
detectable. Second, if the photocurrent is dominated by trap
states that are not size-dependent, multichannel detection or
coding parallel analysis based on the size-dependent properties
of the QDs in a photoelectrochemical sensor system cannot be
achieved. Therefore, for such kinds of applications, it is strongly
recommended to avoid the occurrence of surface states when
designing and fabricating QD-based photoelectrochemical
sensors. However, these trap related issues are solvable through
the use of well passivated state of the art QDs (e.g., core shell
or core multi-shell QDs) and are expected to further diminish
in their importance, especially when one views the rapid
progress made within the colloid chemical synthesis of QDs
over the past decades.

1.2. Advantages. As described in the previous section,
QDs act as a mediator in the electron transfer between
molecules and a conductive electrode, with the photocurrent
scaling as a function of the analyte concentration. As a
consequence, some biomolecules such as nicotinamide adenine
dinucleotide (NADH) or even proteins become detectable.1,66

Besides the above-described advantages of using light as a
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sensorial read-out tool, in some cases QD-based photo-
electrochemical sensor systems can provide higher sensitivities
and lower detection limits than metal nanoparticle or QD-
based optical sensors or even conventional electrochemical
sensors.74,75

a. Low Limit of Detection. Most of the reported sensing
schemes based on QDs work in a similar concentration range to
that of alternative systems that use optical or electrochemical
transduction principles. However, some studies have devoted
much effort to showing the potential of using photo-
electrochemical detection with respect to their very low
detection limits.
In a report published by Yildiz et al.,74 electrochemical and

photoelectrochemical detection of tyrosinase (an indicative
marker for melanoma cancer cells) activity were realized by
using Pt nanoparticles and CdS QDs as electrocatalytic labels
and photoelectrochemical reporter units, respectively. The limit
of detection (LOD) of tyrosinase was tested and compared
with other analytical techniques such as QD-based optical
sensors, ion-sensitive field-effect transistor (FET) devices and
quartz crystal microbalance (QCM). While the Pt nanoparticle
based electrochemical method was shown to be the least
sensitive method among the three electronic sensors for
analyzing tyrosinase, the photoelectrochemical detection of
tyrosinase activity was demonstrated to possess the highest
sensitivity and showed the lowest detection limit. Golub et al.75

have exploited a common aptasensor configuration for the
electrochemical and photoelectrochemical detection of cocaine.
Here the gold electrode was functionalized with one aptamer
subunit, while another aptamer subunit was linked either to a Pt
nanoparticle, a Au nanoparticle or a CdS quantum dot. In the
presence of cocaine, the close proximity of the electrode to the
respective nanoparticle was detectable either via the reduction
of H2O2 (in case of Pt nanoparticles), via the changes in
photocurrent in the presence of triethanol amine (in case of
CdS QDs) or via the changes in the reflectance spectra caused
by the changes in the surface plasmon resonances (in case of
Au nanoparticles). For the CdS-based detection of cocaine, the
photocurrent was generated by the ejection of the conduction
band electrons into the electrode, and the filling of the valence-
band holes by a charge transfer from a sacrificial electron donor
in the vicinity. The intensities of the photocurrents were
controlled by the amount of supramolecular cocaine-aptamer
complexes attached to the electrode. All three configurations

revealed a common advantage over the available aptasensors
due to a reduced background signal. Also in this investigation
the photoelectrochemical method provided the lowest LOD of
cocaine corresponding to 1 × 10−6 M compared to 1 × 10−5 M
(electrochemical detection with Pt nanoparticles). The two
articles described above display the first proof that for certain
arrangements and good-quality quantum dots, the limit of
detection can be significantly lower for QD-based photo-
electrochemical sensors than for different optical or electro-
chemical QD-based sensor systems.

b. Low Working Potential. Khalid et al.76 designed a
photoelectrochemical sensor for the indirect detection of p-
aminophenyl phosphate (pAPP) that can operate at rather low
potential (see Figure 3). The sensor was based on the
electrochemical conversion of 4-aminophenol at a QD modified
electrode under illumination. First, in an enzymatic reaction,
pAPP was degraded to 4-aminophenol. Upon illumination of
the QDs, electron hole pairs were generated, so that the
photoexcited holes from the valence band of the QDs lead to
oxidation of the 4-aminophenol, while the photoexcited
electrons were transferred to the Au electrode. An oxidation
photocurrent which was dependent on the presence of 4-
aminophenol could thus be detected. In the absence of QDs,
oxidation of 4-aminophenol by the gold electrode did not take
place if the applied bias potential was not sufficiently high.
However, with a QD interlayer, detection could already be
achieved at low working potentials. This observation supports
the general assumption that with the correct arrangement
within the QD-based photoelectrochemical sensors, the
working potential and hence the energy consumption can be
reduced significantly in certain cases. Another example in this
direction is the oxidation of NADH at potentials around 0 V vs
Ag/AgCl.35

2. FABRICATION METHODS

As previously mentioned a QD-based photoelectrochemical
sensor usually consists of an electrode (gold, TiO2, indium tin
oxide (ITO), fluorine doped tin oxide (FTO), carbon, etc.)
onto which the QDs are immobilized. Optically transparent
electrodes have the advantage that the illumination can be
applied from the back side which reduces any unwanted
photochemical or photophysical interactions with the solution.

Figure 3. (a) Detection scheme for indirect detection of p-aminophenyl phosphate by QDs immobilized on a gold electrode. The energy schemes
show that (b) in the absence of light, no current is detected, whereas (c) under illumination, charge transfer can happen, which leads to the
generation of a photocurrent. Reprinted with permission from ref 76. Copyright 2011 BioMed Central.

ACS Applied Materials & Interfaces Review

dx.doi.org/10.1021/am3028662 | ACS Appl. Mater. Interfaces 2013, 5, 2800−28142803



However, usually these types of electrodes are relatively rough,
which can be disadvantageous for certain applications.
QD-based photoelectrochemical sensors are normally

fabricated in three steps: synthesis and modification of the
QDs, immobilization of a linker molecule layer and deposition
of the QDs onto the electrode. The present review does not
address the synthesis of QDs and their surface modification.
Instead, it is specifically about the immobilization of the QDs
on the electrodes, which is a very important parameter in the
fabrication of high-end photoelectrochemical sensors, and
which will be discussed in more detail in the following
subsection.
2.1. Assembly Methods of QDs onto Electrodes. To

immobilize the QDs on a conductive electrode, chemical
assembly methods onto a variety of different insulating or
conducting materials can generally be employed. For the
connection of QDs to gold electrodes, linker molecules with
two thiol groups such as alkanedithiols,63,64 1,4-dithiane,45,66

1,4-benzene-dithiol,41,69 1,6-hexanedithiol,45 stilbenedithiol,72

etc., have been demonstrated to be advantageous because
thiol groups bind strongly to both the QDs and the gold
surface. For linking QDs to TiO2 or indium tin oxide (ITO)
electrodes, silane molecules with an additional functional group
such as (3-aminopropyl)tr imethoxys i lane or (3-
mercaptopropyl)trimethoxysilane are commonly used.53,77

Several research groups have already attempted to provide a
common model to explain the QD/self-assembled monolayer
(SAM)/electrode structure in a number of different ways and
with different analytical tools.41,44−47,49−53,57−62,64,68,78−87 The
general photoelectrochemical knowledge gained through
understanding this kind of system has broader implications
since similar structures can be found in use for applications
such as solar cells with high photon conversion efficiencies.
Hence, many solar energy research-based groups have also
intensively studied such QD/SAM/electrode systems, which
has led to an improvement in our understanding of QD-based
photoelectrochemical sensors.88−90

Because of its capacity as an in-series component the type of
linker molecule used is of utmost importance. This can be seen
for example from the works of Bakkers et al.50 and Yue et al.,41

which describe how, in absence of thiol molecules the QDs are
not tightly bound to the electrodes, and that the length of the
SAM molecules significantly affects the charge transfer rate.
The presence of too great a distance within these mostly
insulating materials strongly reduces or even prevents the
photocurrent, since the distance-dependent tunneling processes
are attenuated. Furthermore it should be mentioned that good
passivation resulting from a high-quality SAM is frequently not
achieved. For example, short chained dithiol molecules have
been observed to not form SAMs, and the binding of both thiol
functional groups to the gold electrode also needs to be
prevented.72 For these reasons, it is clear that the composition
and thickness of the linking material as well as the quality of the
SAM formed is highly important for the quality of any resulting
sensor system.91

Furthermore, densely packed layers of QDs on the electrode
will provide a better performance than if the QDs are
individually distributed. Therefore, a variety of nanoparticle
assembly techniques has been developed such as the previously
described assembly mediated by functional molecules, embed-
ding the QDs in polyelectrolyte multilayers (so-called layer-by-
layer systems), or directed assembly92 e.g. by means of block-
copolymers.93−95 To achieve optimum tuning of the layer
properties, the nanoparticle assemblies have been studied
intensely by different measurement techniques such as cyclic
voltammetry,41 scanning tunneling microscopy,79 X-ray photon
spectroscopy,63 atomic force microscopy,96 quartz crystal
microbalance,97 and surface plasmon resonance.75

Apart from monolayers of QDs on electrodes, the perform-
ance of multilayered systems has been frequently studied in
QD-based photoelectrochemical sensing systems. Generally it
has been found that multilayered deposition of QDs produce
larger and more stable photocurrent amplitudes which scale
with the number of layers.63,64,73,75,98 Chemical linkers were
employed so that layers of metal NPs or carbon nanotubes

Figure 4. Organization of oligonucleotide/DNA-cross-linked arrays of CdS nanoparticles and photoelectrochemical response of the
nanoarchitectures. Reprinted with permission from ref 73. Copyright 2001 Wiley−VCH Verlag GmbH.
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could be included between the QDs and the electrodes, which
was observed to enhance the charge carrier transfer and hence
improve the photocurrent.99,100 Golub et al.13 and Willner et
al.73,75 successfully employed duplex DNA chains as linking
material to construct mono- and multilayers of QDs. Because
the conductivity of the stacked systems in dsDNA is limited,
intercalators were added to the DNA, which lead to a
significantly improved conductivity. Alternatively, redox active
shuttle molecules or substances that interact electrostatically
with DNA can also be used. The immobilization and
enhancement process is shown in the diagram in Figure 4.
In addition to the assembly methods based on covalent

linking, electrochemical deposition techniques,22,101 physical
methods (such as spin coating),41 and electrostatic adsorption
(such as layer-by-layer assembly of positively charged
polyelectrolytes and negatively charged QDs41,47) have been
widely studied. Polyelectrolyte assisted layer-by-layer methods
were found to be an interesting approach for a number of
reasons. First, the polyelectrolyte plays the role of a linker and
at the same time provides advantageous conditions for
interparticle electron transfer. Second, a polyelectrolyte assisted
layer-by-layer method opens the possibility to further integrate
additional species. For example, metal ions can be included
which have been shown to result in a higher photocurrent
stability.47 Other approaches are to embed charged proteins,
which can be tailored to yield defined reactions with certain
analyte molecules102 or even to include different types of
functional nanoparticles.
Göbel et al.102 have made a comparative study between the

photocurrents of two different QD multilayer systems, whereby
one system was constructed by electrostatic adsorption of the
redox protein cytochrome c and the other by a positively
charged polyelectrolyte (poly(allylamine hydrochloride), PAA)
(see Figure 5). Although both photocurrents were observed to
follow the number of deposited QD layers, the Au/
(cytochrome c/QDs)n system showed only a slight enhance-
ment of the photocurrents since the cytochrome c cannot
facilitate the electron transfer between the QD layers. However,
the Au/(PAA/QDs)n system provided a proportional increase
in the photocurrent with the number of deposited layers, which
was explained by the fact that PAA ensures short distances
between the QDs and thus allows a rather undisturbed
interparticle electron transfer. This example also shows that
the choice of materials employed for the construction of the

QD multilayers by electrostatic adsorption plays a very
important role in yielding a high photocurrent output.

2.2. Improving the Charge Carrier Separation. In order
for the sensors to obtain higher photocurrents and sensitivities,
improving the separation efficiency of the photogenerated
electron and hole pairs from the QDs is crucial. In the following
paragraph, approaches to achieve this are discussed.
As explained in section 1.1, charge carrier transfer competes

with the recombination process and since the recombination
process is very fast, it is likely that photoinduced electrons and
holes cannot be efficiently separated, which limits the
photocurrent. As mentioned above, electron or hole donors
such as ascorbic acid can be introduced to the system in order
to improve the electron hole separation. In ref 71, methylene
blue is described as being able to improve the charge carrier
separation. Methylene blue is also an effective organic electron
transfer mediator used for sensors and biosensors. The
application of methylene blue not only enabled the measure-
ment of higher photocurrent values, but photocurrents at lower
QD concentrations were also observed. Of course, such
reactions interfere with a direct analyte conversion at the
QDs, but they are valuable for the detection of QD labels
bound to the surface by a biospecific recognition event.
To improve the separation efficiency and therefore the

photocurrent, composite QD assemblies and hybrid nanostruc-
tures have recently been used and studied. Metals such as gold
nanoparticles and semiconductor nanomaterials (nanoparticles,
nanowires, carbon nanotubes, TiO2, SnO2, etc.) have all been
used to increase the separation efficiency of photoinduced
electron hole pairs. Two different kinds of hybrid nanosystems
in particular have been tested: the first type are nano-
heterostructures arising from special types of synthesis,72 e.g.,
dimeric nanoobjects of which at least one domain consists of a
semiconducting material. The second type of hybrid nano-
system arises from assembly methods of separate semi-
conductor QDs together with nanoparticles from different
materials e.g. metals.100,103,104 The combination of two different
nanomaterials in a nanoheterostructure by synthetic methods
(such as the synthesis of CdS-SnO2 nanoheterodimers) can
result in an increase in the probability of charge carrier
separation in the system, and hence in improved photo-
electrochemical properties. Here, the conduction band
electrons in the CdS-particles were transferred to the
conduction band of the SnO2, resulting in a delocalization of
the electron and the hole (see diagram in Figure 6). Examples

Figure 5. Multilayer formation with (left) cytochrome c and (right) PAA both exhibiting a positive surface charge and mercaptopropionic acid-
modified CdSe/ZnS QDs exhibiting a negative surface charge. The assembly processes were followed by quartz crystal microbalance measurements
in a flow cell. The insets display the respective setup scheme. Adapted with permission from ref 102. Copyright 2012 Elsevier.
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of nanoheterostructures for the charge-carrier separation are
nanoobjects composed from CdS and Au,81 CdS and carbon
nanotubes105 or graphene,106 CdSe and C60 molecules,107 as
well as the afore-mentioned system from CdS and SnO2.

108

Similarly, metal nanoparticles, semiconductor nanomaterials
and organic molecules can be deposited on top of QDs or
between the QDs and the electrodes in order to generate
photocatalytic activity, which is attributed to the effective
separation of the excited electrons and holes which have been
formed in the semiconductor domain of the hybrid system.
Examples of such systems are: CdS QDs on TiO2 nano-
crystallites109 or CdS on TiO2 electrodes,

110 CdS QDs and Au
NPs on electrodes,100,111 CdS/ZnO hierarchical nano-
spheres,112 and QDs in combination with bipyridinium or
cyclodextrin.91,113,114 Also, CdS/carbon nanotube composites
have been used in order to increase the charge carrier
separation rate (see Figure 7).99,105,115 In the approach of

Robel et al. where CdS−carbon nanotube nanocomposite
suspensions were used, an effective electron transfer from the
excited CdS QDs to the single-walled carbon nanotubes105 was
confirmed by transient absorption spectroscopy, which
indicated an efficient electron separation efficiency. A different
approach involves chemically assisted assembly methods to
include carbon nanotubes between the QDs and the
electrode.99,115 This can be obtained for example by exploiting
thiol or amino groups. The efficiency of such a system can be

seen from the work of Sheeney-Haj-Ichia et al.99 in which high
photocurrents are reported. Here, furthermore, it was suggested
that the length of the carbon nanotubes played a major role for
the amplitude of the photocurrents, and it was presumed that
the defects in the carbon nanotubes affected the extent of
charge carrier separation. However, recent results have revealed
that CdS/graphene hybrid nanostructure can exhibit even
better charge separation properties than single-walled carbon
nanotube/QDs systems.116,117 In a previous article of Sheeney-
Haj-Ichia et al.,100 Au NPs were employed to enhance
photoinduced charge separation. In either case, whether the
Au NPs were inserted between the QDs and the electrode, or
whether the Au NPs were immobilized on top of the QD layer,
enhanced photocurrents (compared to a simple CdS-QD only
interface) were observed, which was attributed to an increase in
the charge carrier separation in the Au/CdS hybrid system.
However, the efficiency differed with respect to the position
occupied by the Au NPs within the assembly. In this study, the
insertion of Au NPs between the electrode and the QDs led to
better photoelectrochemical properties than other Au-CdS
arrangements.
From the aforementioned studies, it can be seen that carbon

nanotubes, Au NPs, TiO2 NPs, etc., can be used both in
nanoheterostructures, hybrid or combined systems to improve
the charge carrier separation and hence increase the photo-
current. The difference between these two types of setup is that
the nanoheterostructures provide better charge separation
because of the tight connection of the two material domains
within one particle, but on the other hand hybrid structures
resulting from the assembly of different individual nano-
components are much easier to achieve. It should be pointed
out that although a variety of different nanomaterials can
enhance the charge carrier separation efficiency; the location of
these nanomaterials inside the QD-based photoelectrochemical
system is crucial, especially in the case of hybrid nano-
assemblies. A change in their position will lead to a change in
the separation efficiency.

2.3. Reducing the Drift. Unstable photocurrent output
(drift) is one shortcoming of QD-based photoelectrochemical
sensors.41,110,118 There are two main causes for the drift of the
photocurrent output. The first is a poor connection between
the QDs and the electrode, whereas the second is charging and
discharging (also called photocorrosion) of the excited QDs. In
the following paragraphs, these two causes of unstable
photocurrents will be discussed in more detail.

a. Improving the Connection between the QDs and the
Electrode. Unstable photocurrents can occur when QDs are
disassembled from the electrode during the measurement,
which results for instance when the link between the QDs and
the gold electrode is not strong enough. This observation was
confirmed during scanning tunneling microscopy measure-
ments, as described by Ogawa et al.78 To prevent the
disassembly of the QDs during the photocurrent measure-
ments, different electrodes, self-assembly materials, and SAM
methods have been studied in order to improve the link
between electrode and QDs. Khalid et al.72 compared the
photocurrent stabilities from three different types of electrodes
(Au@glass, mica and SiO2) and for different SAM materials
annealed at different temperatures. In this case, Au@SiO2
provided the lowest drift, and stilbene dithiol SAMs heated at
300 K provided much better SAM results (highest order and
lowest drift, most probably due to the strongest linking of the

Figure 6. Schematic drawing of the suppression of charge carrier
recombination in a semiconductor nanoheterostructure with properly
aligned band gaps. In the excited state, electrons are transferred from
the conduction band of semiconductor 1 to the conduction band of
semiconductor 2. Because of the spatial separation of the electrons and
holes, direct recombination is suppressed. The electron is then
transferred to the electrode, and the hole (which remains in
semiconductor 1) is filled by an electron donor from the solution.108

Figure 7. Charge-transfer interaction between photoexcited CdS
nanoparticles and single-wall carbon nanotubes. Reprinted with
permission from ref 105. Copyright 2005 Wiley−VCH Verlag GmbH.
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QDs to the surface) than, for example, nonannealed stilbene
dithiol SAMs.
Electrochemical assembly of a p-aminothiophenol-capped

CdS QD monolayer on p-aminothiophenol-functionalized gold
surfaces was described by Granot et al.97 Using this method, the
QDs were covalently bound to form a densely packed
monolayer on the surface. Here, the cross-linker molecules
additionally provided an improved photoelectrochemical
performance, since the electron transport of the conduction
band electrons by the aromatic cross-linker facilitated charge
carrier separation, which lead to the generation of a higher
photocurrent.
In addition to covalent and electrostatic binding of the QDs

to the electrodes, assembly methods employing hydrogen
bonding such as through complementary barbiturate -
triaminodiazine119 or specific guanine-cytosine (G-C) and
adenine-thymine (A-T) interactions120 have also been success-
fully introduced. This type of binding exhibits a high stability in
aqueous buffer solutions. For example, the G−C and A−T
bridging units immobilized the QDs on the electrode, and
furthermore provided an efficient interface for the electron
transfer. The work on hydrogen bond mediated assembly
methods with QD layers on gold based on nucleic base pairing
has been further extended by the research group of Itamar
Willner.121−123 Tel-Vered et al.121 have shown the CdS
programmed assembly of CdS QDs by means of DNA. This
enabled control over the exact composition and orientation of
the resulting nanostructure and hence over the tunneling
distances, which lead to control over the intensities and
directions of the resulting photocurrents.
Because of the limited electronic coupling of the DNA-

bound QDs to electrodes and a rather low coverage of the
electrode surface with semiconductor nanoparticles (the
absence of a densely packed interface), the photocurrent
between the DNA-immobilized QDs and the electrode is only
moderate. Freeman et al.122 and Gill et al.123 described the
intercalation of doxorubicin or methylene blue into duplex
DNA chains that enhanced the charge transport through the
DNA bridges. Here, the resulting DNA linker structure acted as
a conductive pathway for the charge transport, which lead to
higher photocurrents and to the possibility of switching the
photocurrent direction by means of the potential applied on the
electrode (see Figure 8).

A different approach for significantly reducing the initial
current drift and increasing the signal-to-noise ratio involved
the addition of a polymer film on the top of the assembled
QDs.41 Again in this case the reduced drift was attributed to the
fact that the polymer film prevents loss of the underlying QDs
from the Au electrode. However, the changed chemical
environment (due to the presence of the polymer) can also
change the probability to populate surface states, or can reduce
particle−particle communication. A similar observation was
described by Pardo-Yissar et al.,124 namely, that the presence of
a capping on the QD layer leads to a more stable readout than
the absence of such a capping.

b. Reducing the Charging and Discharging of the QDs.
Another reason for the occurrence of drift is that the QDs can
act as capacitors. According to the model described above, the
photocurrent occurs because of charging (reduction by the
electrode) and discharging (oxidation by the electrode) of
QDs. When no electron donors or acceptors are in solution, the
QDs will be continuously oxidized or reduced by the electrode,
respectively. Because there are only a limited number of atoms
in the QDs, and since the number of photoinduced electron−
hole pairs is limited, the photocurrent changes over time.
To solve this problem, normally, we add different electron

donors and hole donors to the solution such as triethanol-
amine,73 Na2S,

86 and Na2SO3
52 at pH 12, in order to warrant

that the QDs stay in an electroneutral state and therefore
reduce the output drift. Also, ascorbic acid can be added to
overcome the charging and discharging problem of the QDs.118

In that case, the ascorbic acid acts as an efficient and nontoxic
electron donor for scavenging photogenerated holes under mild
conditions and therefore inhibits the photocorrosion of the
QDs. A different approach involves the use of redox pairs such
as Fe2+ and Fe3+, which are included in the QD layers (e.g., by
the layer-by-layer method). These ions can play the role of
electron donors and hole donors to avoid the QDs being totally
oxidized or reduced.47 It has to be mentioned here, that for
analytical applications the presence of such substances is often
not beneficial because they can interfere with the signal
generation process. However, when the presence of QDs on
the surface has to be analyzed, this effect can be advantageously
applied.
Tanne et al.125 have shown that the photocurrent is strongly

influenced by the oxygen concentration. Oxygen plays the role
of an electron acceptor. This is particularly visible under
negative polarization and is influenced by the pH of the
solution. The effect can be used for direct sensing, however,
when other processes are studied, the removal of oxygen from
the solution may be crucial for yielding a defined readout
without interference by varying oxygen levels.

3. DETECTION OF CHEMICALS
QD-based photoelectrochemical systems have been widely used
and studied in fabricating different kinds of sensors and new
solar cells.88 As the present review focuses mostly on the QD-
based photoelectrochemical applications for chemical and
biological detection, in this section, possible applications for
such electrode systems are presented and discussed. QD-based
photoelectrochemical sensors can be designed in basically two
ways, namely either for direct or indirect measurement of the
molecular concentrations.
There are two types of direct measurement setups. In the

first, QDs are immobilized on the electrode and subsequently,
appropriately modified. A potential is applied to the electrode,

Figure 8. CdS nanoparticles immobilized on a gold electrode by a
double-stranded DNA linker molecule. Depending on the redox state
of an intercalating molecule, either anodic or cathodic photocurrents
are detected. Reprinted with permission from ref 123. Copyright 2005
Wiley−VCH Verlag GmbH.
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so that electron transfer between the charge carriers of the
excited state QDs and the corresponding and specific redox
molecules can take place. The resulting photocurrent intensity
corresponds to the concentration of substances to be
detected.66,76,126 Another direct measurement method is
based on the principle that the analyte molecules can influence
the binding properties of the QD layer on the electrode, which
means that more or less QDs are immobilized on the electrode.
This is related, for example, to the detection of binding
reactions for which one partner is labeled with QDs. After the
assembly, the photocurrent will follow the concentration of the
molecules to be detected.43,75 However, in certain cases, direct
electron transfer between the QDs and molecules does not
occur. Therefore, detection is realized by indirect measure-
ments. For example, in many cases reaction byproducts can act
as electron-acceptor or donor units which activate the
photoelectrochemical operation of the QDs.124 Another
possibility resulting in an indirect measurement is the use of
photoelectrochemical signal chains. In this way, a redox agent
can act as a shuttle molecule between the QDs and the
molecules or the catalyst, and thus enable the detection.65,69

In this section, sensors for a variety of such detectable
molecules are presented employing either direct or indirect
methods. One such molecular sensor is an ultrasensitive
cysteine sensor constructed by Long et al.70 In this setup, a
Nafion film which was both chemically and photochemically
inert was employed as the matrix to confine a stable spatial
distribution of methyl viologen coated QDs by electrostatic
interaction, which enabled the specific detection of cysteine.
Methyl viologen was used to enhance the electron extraction
from the excited QDs. The Nafion/CdS coated ITO electrode
system was shown to be effective in the detection of cysteine
with a fast response and high sensitivity: the cysteine lead to the
highest response compared to all other amino acids investigated
or to the blank solution, and the intensity of the signal was
linear with respect to the cysteine concentration.
Another QD-based photoelectrochemical sensor, sensitive to

metal ions such as Cu2+, was reported by Wang et al.127 where
thioglycolic-acid-capped CdS QDs immobilized on an ITO
electrode were used in order to develop a highly sensitive and
selective photoelectrochemical sensor for Cu2+ ions. In the
presence of Cu2+ ions in a triethanolamine solution, CuxS was
presumably formed on the surface of the CdS QDs. This
material transformation coincided with the generation of a
lower energy level providing an effective pathway for the
recombination of electron hole pairs in the QDs. Because of
these electron−hole recombination centers (Cu+ or CuxS), the
electron transfer process from the QDs to the electrode was
diminished, so that a decrease in the photocurrent was
observed. Hence, the intensity decrease of the photocurrent
was proportional to the Cu2+ concentration. On the basis of the
same interaction principle, a new ITO/ZnO/CdS photo-
electrochemical sensor for Cu2+ detection that displayed an
even better performance was developed by Shen et al.112

Hierarchical nanospheres consisting of a large ZnO domain and
smaller CdS domains were attached to an ITO electrode for the
selective sensing of Cu2+ ions. Here, the light scattering of the
ZnO spheres and the heterointerface between the CdS domains
and the ZnO provided an enhanced light absorption and charge
separation, hence resulting in an improvement in the
photocurrent intensity.
Further examples of photoelectrochemical sensors for small

molecules are oxygen detection based on illuminated CdSe/

ZnS quantum dots125 or hydrogen peroxide detection. Because
CdS and CdSe/ZnS QDs do not provide a suitable interface for
hydrogen peroxide conversion, an alternative method was
introduced by Khalid et al. who employed CdS-FePt nano-
heterodimers to build H2O2 photoelectrochemical sensors
working without the need for an enzyme.72 CdS-FePt
nanoheterodimers were linked to a gold electrode via a SAM
of dithiol molecules yielding a FePt-CdS/SAM/Au structure.
The CdS domain, which was in good electrical contact with the
gold electrode, allowed for photocurrent generation. The FePt
domain acted as a catalytic site for the reduction of H2O2. The
H2O2 sensitivity of the FePt-CdS/SAM/Au electrode was
observed to be higher than in the case when FePt NPs were
coimmobilized with CdS QDs on gold (FePt/CdS/SAM/Au).
This result furthermore opened a new way for applications of
nanoheterodimers using photoelectrochemical detection.

4. BIOMOLECULAR DETECTION
4.1. Enzyme-Based Sensors. The first enzyme-based,

indirect photoelectrochemical sensor described in this review is
sensitive to acetylcholine via changes in the photocurrent which
are dependent on the amount of acetylcholine present.124 The
sensor system described by Pardo-Yissar et al. is composed of
acetylcholine esterase functionalized CdS QDs which are
covalently linked to a gold electrode. The addition of
acetylthiocholine to the system results in the acetylcholine
esterase catalyzing the hydrolysis of acetylthiocholine to
thiocholine and acetate. Thiocholine, as an electron donor,
can be oxidized by the valence-band holes from the QDs, and
the conduction-band electrons from the QDs can be transferred
to the electrode, which results in the generation of a
photocurrent, the amplitude of which is thus dependent on
the amount of acetylthiocholine present in the system (or the
presence of enzyme inhibitors).
Glucose can best be detected by photoelectrochemical QD

sensors if combined with suitable enzymes in indirect
measurements.67,125,126,128 Schubert and co-workers67 reported
the direct sensitive detection of nicotinamide adenine
dinucleotide (NADH) in the range of 20 μM to 2 mM at a
rather low bias potential by using a photoelectrode system
consisting of CdSe/ZnS QDs attached to gold. The indirect
detection of glucose by signal chains became possible, since the
glucose signal could be converted to NADH by electron
transfer via the enzyme glucose dehydrogenase, and sub-
sequently NADH was detected by an electron transfer to the
illuminated QDs resulting in a photocurrent. Similarly, indirect
detection of glucose was achieved by Tanne et al. by creating a
signal chain from glucose via glucose oxidase and molecular
oxygen via CdSe/ZnS QDs toward the electrode.125 On the
basis of the influence that the oxygen concentration has on the
photocurrent, the enzymatic activity of glucose oxidase
catalyzing the oxidation of glucose by the reduction of O2
was evaluated. During illumination, the photocurrent was
reduced as a result of the oxygen consumption. The sensing
properties of this type of electrode were strongly influenced by
the amount the enzyme on top of the QD layer, which was
found to be easily adjustable using the layer-by-layer technique.
Interestingly, a similar systembased on the oxygen sensitivity
of the CdSe/ZnS electrodecould also be developed for the
detection of sarcosin using sarcosin oxidase as biocatalyst.129

The aforementioned glucose sensors are based on signal chains
of glucose−glucose dehydrogenase-NADH-QDs or glucose−
glucose oxidase-oxygen-QDs. However, the enzyme can also be
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coupled to an electrode by means of a shuttle molecule, which
facilitates a mediated electron transfer from the biocatalyst. An
example of this kind of detection principle can be found in a
work by Zheng et al.128 In this approach, a photo-
electrochemical electrode was constructed by alternately
depositing water-soluble CdSe-CdS QDs and a mixture of
[Co(phen)3]

2+/3+ and poly(ethyleneimine) on a TiO2 elec-
trode. An enhanced photocurrent and hence sensitivity was
observed, which was attributed to the [Co(phen)3]

2+ ions,
capturing holes from the QDs and therefore suppressing
electron−hole recombination. In this setup, the electrode was
able to transfer charge carriers from the reduced enzyme, so
that the obtained photocurrent depended on the concentration
of glucose.
Zhao et al.130,131 introduced 4-chloro-1-naphthol to an ITO/

TiO2/CdS/horseradish peroxidase photoelectrochemical bio-
sensing system yielding high H2O2 sensitivity. The biocatalytic
reaction yielded an insoluble product on the surface of the
electrode, by which the photocurrent could be influenced. As a
result, a so-called biocatalytic precipitation amplified photo-
electrical detection of H2O2 was achieved. The resulting
detection limit of 5.0 × 10−10 M from this indirect technique
was much lower than that of previously reported direct
photoelectrical sensors for H2O2 using TiO2 nanotubes/
horseradish peroxidase electrodes with a detection limit of 1.8
× 10−7 M,132 but the sensor does not allow online
measurements.
4.2. Sensors Based on Direct QD−Protein Interaction.

QDs modified with a variety of different surface modifications
and immobilized on a gold electrode have been employed to
detect the small redox protein cytochrome c.65,66,69 In a first
example, CdSe/ZnS core/shell QDs were immobilized on a
gold electrode by Stoll and co-workers66 using dithiane as a
linker molecule. Upon exchanging the original layer of
hydrophobic surfactant molecules from the QD surface with
a hydrophilic one (mercaptopropionic acid or mercaptosuccinic
acid), oxidized cytochrome c could be detected under
illumination at a negative bias potential. Katz et al. employed
mercaptopyridine to modify the surface of CdS QDs, which
were introduced in a QD-based photoelectrochemical sensor
for the direct detection of cytochrome c.65 Cathodic or anodic
photocurrents were observed in the presence of oxidized or
reduced cytochrome c, respectively. These results demonstrate
control over the direction of the photocurrent generated by
CdS QDs by means of the cytochrome c added in different
oxidation states. Hence, it should be pointed out again, that the
direction of the photocurrent is a very important element when
designing biosensors, since it can provide useful information
concerning the oxidation state of the biomolecules to be
detected. Furthermore, other biomolecules could be detected

by the indirect measurement of cytochrome c (as was shown by
Katz et al.).65 For example, by activating a secondary
cytochrome c mediated biocatalytic process, lactate and NO3

−

were measured indirectly. In the presence of oxidized
cytochrome c, the oxidation of lactate by lactate dehydrogenase
was activated photoelectrocatalytically while generating an
anodic photocurrent. Upon photoexcitation of the QDs,
conduction band electrons were injected into the electrode,
and at the same time cytochrome c was oxidized by holes from
the valence band. The resulting oxidized cytochrome c
mediated the lactate dehydrogenase oxidation. Similarly, the
use of cytochrome c in its reduced form enabled the
bioelectrocatalytic reduction of NO3

− to NO2
− by nitrate

reductase, while generating a cathodic photocurrent. In a
further set of experiments by Stoll et al., QDs with different
surface modifications (mercaptopropionic acid, mercaptosuc-
cinic acid and mercaptopyridine) were compared by measuring
the photocurrent arising from the direct electron transfer of the
redox protein cytochrome c.69 For both oxidation states of
cytochrome c, the use of 4-mercaptopyridine yielded the
highest photocurrent and best electrode performance with
respect to the facilitated protein electrode interaction. There-
fore, 4-mercaptopyridine modified QDs were further inves-
tigated in a signal chain sensitive for superoxide radicals. The
generation of superoxide radicals in solution was detected
following the cytochrome c reoxidation at the illuminated
electrode. Thus, the photocurrent correlated to the superoxide
concentration in solution.
Another protein for which direct interaction with the QDs

has been reported is horseradish peroxidase. Under illumina-
tion, the enzyme oxidized by H2O2 can be reduced back by
excited state electrons from the conduction band of the QDs.
Hence, the cathodic photocurrent is sensitive to the H2O2
concentration. Yang and co-workers133 described the prepara-
tion of CdSe QDs inside mesoporous silica spheres, with
subsequent preparation of a horseradish peroxidase-QD-
mesoporous silica/electrode (see Figure 9). The CdSe/
mesoporous silica composite was shown to exhibit an efficient
charge carrier separation with recombination being minimized.
A further example for horseradish peroxidase-based hydrogen
peroxide sensing exploited TiO2 nanotubes (see ref 132).
Other sensor systems were constructed for the detection of

formaldehyde134,135 and glutamate126 with the respective
dehydrogenase. For these systems, however, more mechanistic
studies appear to be necessary in order to verify their potential
dependence and analyze the possibility of direct analyte
reactions.

4.3. Sensors for Binding Reactions. QD-based photo-
electrochemical sensors can also be modified with antibodies
for biochemical analysis of, for example, immunoglobulin. G.

Figure 9. (A) Schematic diagram of the fabrication procedure of the horseradish peroxidase−QD−mesoporous silica/electrode composite film on an
optically transparent electrode (OTE) and (B) charge transport scheme of the resulting system. Reproduced with permission from ref 133.
Copyright 2010 Springer-Verlag.
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Wang et al. have developed such a photoelectrochemical
immunosensor118 by preparing a multilayer film via layer-by-
layer assembly of a polyelectrolyte and QDs onto an ITO
electrode and by attaching goat antimouse immunoglobulin G
to the QDs. The immunoglobulin G concentration was
measured through the decrease in the photocurrent intensity,
which is due to the increase in steric hindrances upon
immunocomplex formation. A detection limit of 8.0 pg/mL
at 0 V (vs. Ag/AgCl) was achieved. A similar method was used
to detect α-fetoprotein antigen by Wang and co-workers.110

The photoelectrochemical immunosensor was developed by
alternately dipping the TiO2 modified ITO electrode into a
[Cd(NH3)4]

2+ and S2− solution repeatedly and coating with
chitosan and α-fetoprotein antibodies. Linear responses to α-
fetoprotein in the range of 50 pg/mL to 50 ng/mL as well as a
relatively low detection limit of 40 pg/mL were achieved. The
photoelectrochemical results for the detection of α-fetoprotein
showed acceptable accuracy in five human sera, such that this
methodology was found to be potentially attractive for clinical
immunoassays. Another interesting system to be described is a
photoelectrochemical thrombin sensor which includes layers of
graphene to enhance the charge separation and increase the
photocurrent. Zhang et al. developed a sensing strategy for the
highly sensitive and specific detection of thrombin based on the
use of a specific aptamer and a layer-by-layer assembly of
poly(acrylic acid) functionalized graphene combined with
positively charged CdSe QD (ITO/graphene/CdSe QDs).117

This system exhibited a detection limit of 4.5 × 10−13 M and
significantly higher photocurrents than in the absence of
graphene. This photoelectrochemical sensor exhibited stable
photocurrents even in the presence of a 10-fold excess of
foreign proteins, such as immunoglobulin G, bovine serum
albumin and lysozyme. One of the most promising applications
for biosensing is cancer diagnosis via the detection of tumor
markers. For example, tyrosinase (an indicative marker for
melanoma cancer cells) activity was successfully detected with a
QD-based photoelectrochemical setup by Yildiz et al. (as
already mentioned above).74

In the QD-based sensors described so far, the amount of
QDs mounted onto the electrode is constant during the
operation of the sensor and the detected (photo)current is
varied via the reactions induced in the presence of an analyte
which somehow affects the electron transfer from or toward the
QD (e.g., via the generation of oxidizable/reducible species).
However, the following sensor systems are different, since here
the detectable molecules will influence the immobilization
process of the QDs on the electrode and hence lead to a

variation in the amount of QDs at the electrode interface which
in turn will vary the amplitude of the detected photocurrent.
For example, as described in refs 73 and 121−123, DNA was
employed to immobilize QDs on electrodes. Mismatch of the
DNA will influence the consistency of the QD film attached to
the surface and, by measurement of the photocurrent change,
the DNA mismatch can be detected. DNA does not only
function as a bridging unit for QDs, but in addition the duplex
DNA can act as a matrix for the incorporation of an intercalator
molecule, such as methylene blue, facilitating the charge
transport through the DNA bridges. The intercalation of
molecular units was observed to be perturbed by single-base
mismatches. Hence, this kind of photocurrent-generating
system can be employed as a tool for base mismatch detection
in DNA, opening interesting and important future applications
in DNA detection.73,123 A powerful DNA mismatch concept
was adopted by Bas ̧ et al.43 Here, target ssDNA competed with
QD-ssDNA conjugates. By monitoring the decrease in the
photocurrent generated from the QD-ssDNA conjugate,
quantitative determination of the target ssDNA was enabled.
Besides the detection of certain biomolecules, first results on

the specific detection of certain cell types with QD-based
photoelectrochemical methods have already been obtained. For
example, a photoelectrochemical sensor for specific cell
detection (Ramos cells) was developed by Zhang et al.136

employing a layer-by-layer assembly of a positively charged
polyelectrolyte and negatively charged QDs on ITO. The
resulting electrodes were tested as sensors for the Ramos cells
through the recognition of DNA aptamers which were
covalently attached to the electrode. Even though the linear
performance of this setup was observed only within 1 order of
magnitude in cell concentrations (from 160 to 1600 cells/mL)
with a detection limit of 84 cells/mL, this result displays a proof
of principle for this kind of specific cell detection via QD-based
photoelectrochemical devices. A different cell type that could
be specifically detected is SMMC-7721 human hepatoma
carcinoma cells.22 The photoelectrochemical cell-sensor was
fabricated by Qian et al. via the electrodeposition of
poly(amidoamine) and QDs onto ITO and subsequent
attachment of a layer of concanavalin A (see Figure 10). The
concanavalin A specifically recognized mannosyl groups from
the cell surface with the photocurrent intensity decreasing upon
the cells binding to the photosensitive film. The cell
concentration was detectable from 5.0 × 103 to 1 × 107 cells
mL−1.
Looking at all these different mechanisms as outlined in this

section, it becomes obvious that the field of techniques available

Figure 10. Detection of human hepatoma carcinoma cells by QD-based photoelectrochemical methods. Reproduced with permission from ref 22.
Copyright 2010 Elsevier B.V.
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in the detection of biomolecules is quite broad. Apart from
many different direct measurements already conducted, a
variety of indirect measurements e.g. of reaction byproducts or
by utilizing the assistance of intercalating molecules have
already been employed as strategies to circumvent the
sometimes difficult to apply direct measurement techniques.
In total, this has already resulted in a variety of biomolecules
which can presently be detected using quantum-dot-based
photoelectrochemical sensors (see Table 1), which as a
research field is continuously being extended.

5. CONCLUSIONS

Concepts, fabrication methods, improvements, and applications
of QD-based photoelectrochemical sensors have been described
with the main focus being on biochemical detection. It can be
seen that because of the light-directed read-out and the broad
range of functionalization possibilities, QD-based photo-
electrochemical sensors have great potential and a promising
future for applications such as biosensing. The variety of
molecules presently detectable can be seen from Table 1, which
summarizes the systems described in this article. However,
since QD-based photoelectrochemical sensors are still in their
infancy, some challenges still remain among which are: (1) the
variety of sensing concepts and applications in the detection of
different molecules will have to be further expanded by
designing more specific QD/biomolecule hybrid systems or
special nanoheterostructure building blocks. (2) QD-based
photoelectrical sensors need to be further developed in order to
achieve multichannel detection sensors with an aim to finding

applications, e.g., in drug screening or medical analysis. (3) As
with developments in the fabrication of QD-based solar cells,
methodologies should be sought such that QD-based photo-
electrochemical devices that have a similar structure may be
fabricated in the same way. This will be beneficial for
commercial production and practical use. (4) So far, most
QD-based photoelectrochemical sensors are based on the most
commonly studied QD systems, which are unfortunately
predominantly based on Cd or Pb compounds, both of
which are accompanied by toxicity issues. To avoid this,
particularly in medical diagnosis, more work will have to be
done, in order to expand the already large array of materials, to
include less toxic QD materials, examples of which are
fluorescent metal nanoparticles, carbon dots, InP, or Zn-based
materials. (5) Electrode developments for analytical purposes
have to show the applicability of this new type of sensor in real
samples. This is related to signal height and stability but also to
interference-free measurements. Much progress has already
been achieved in the pursuit of these developments, and there
is presently no reason to expect that future developments will
not aid in the delivery of the advances required to compete with
or even surpass the performances of the present generation of
sensor devices.
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Table 1. Overview of the Sensor Systems Discussed in This Review for Quantum-Dot-Based Photoelectrochemical Detection of
Chemicals and Biomoleculesa

type of analyte type of QDs
detection
mechanism authors

Cu2+ thioglycolic-acid-capped CdS QDs direct Wang et al.127

ZnO nanospheres with CdS QDs direct Shen et al.112

O2 CdSe/ZnS core shell QDs direct Tanne et al.125

H2O2 CdS-FePt heterodimer indirect Khalid et al.72

CdS QDs indirect Zhao et al.130,131

CdSe QDs inside mesoporous silica spheres indirect Yang et al.133

superoxide radicals 4-mercaptopyridine-functionalized CdSe/ZnS indirect Stoll et al.69

nitrate mercaptopyridine-functionalized CdS QDs indirect Katz et al.65

cysteine methyl-viologen-coated CdS QDs direct Long et al.70

actylthiocholine (+esterase
inhibitors)

acetylcholine-esterase-functionalized CdS QDs indirect Pardo-Yissar et al.124

glucose CdSe/ZnS core shell QDs indirect Schubert et al.;67 Tanne et al.,125 Zheng et al.128

sarcosine CdSe/ZnS core shell QDs indirect Riedel et al.129

p-aminophenyl phosphate CdS QDs indirect Khalid et al.76

lactate mercaptopyridine-functionalized CdS QDs indirect Katz et al.65

cocaine aptamer-functionalized CdS QDs direct Golub et al.75

tyrosinase CdS QDs modified with tyrosine methyl ester indirect Yildiz et al.74

cytochrome c mercaptopropionic-acid-functionalized CdSe/
ZnS core shell QDs

direct Stoll et al.66

mercaptopyridine-functionalized CdS QDs direct Katz et al.65

DNA mismatch CdS QDs direct Willner et al.;73 Tel-Vered et al.;121 Freeman et al.;122 Gill
et al.;123 Bas et al.43

α-fetoprotein antigen CdS QDs indirect Wang et al.110

thrombin graphene/CdSe QDs layer by layer structure indirect Zhang et al.117

immunoglobulin G CdS QDs indirect Wang et al.118

Ramos cells CdSe QDs direct Zhang et al.136

SMMC-7721 human hepatoma
carcinoma cells

CdS/poly(amidoamine) nanocomposite direct Qian et al.22

aThe order of appearance is sorted by the type of analyte starting from ions and small molecules, via biomolecules, to cells.
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