
Preferences in Case-Based

Reasoning

Amira Abdel-Aziz

Fachbereich Mathematik und Informatik

Philipps-Universität Marburg

Dissertation

zur Erlangung eines

Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

Marburg/Lahn, 2016

mailto:amira.abdelaziz@hotmail.com
http://www.uni-marburg.de/fb12/kebi
http://www.uni-marburg.de

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg

Hochschulkennziffer (1180) als Dissertation am 30. September 2016 angenommen.

1. Gutachter Prof. Dr. Eyke Hüllermeier, Universität Paderborn

2. Gutachter Prof. Dr. Mirjam Minor, Universität Frankfurt

Tag der Einreichung: 28. Juni 2016.

Tag der mündlichen Prüfung: 7. Oktober 2016.

ii

Abstract

Case-based reasoning (CBR) is a well-established problem solving paradigm

that has been used in a wide range of real-world applications. Despite

its great practical success, work on the theoretical foundations of CBR is

still under way, and a coherent and universally applicable methodological

framework is yet missing. The absence of such a framework inspired the

motivation for the work developed in this thesis. Drawing on recent research

on preference handling in Artificial Intelligence and related fields, the goal of

this work is to develop a well theoretically-founded framework on the basis

of formal concepts and methods for knowledge representation and reasoning

with preferences.

A preference-based approach to CBR appears to be appealing for several

reasons, notably because case-based experiences naturally lend themselves

to representations in terms of preference relations, even when not dealing

with preference information in an explicit way. Moreover, the flexibility

and expressiveness of a preference-based formalism well accommodate the

uncertain and approximate nature of case-based problem solving.

Preference-based CBR is conceived as a case-based reasoning methodology

in which problem solving experience is mainly represented in the form of

contextualized preferences, namely preferences for candidate solutions in the

context of a target problem to be solved. The work in this thesis is based

on the idea of the formalization of a preference-based CBR framework, by

embedding a method to predict a most plausible candidate solution given

a set of preferences on other solutions, deemed relevant for the problem

at hand. In this framework, case-based problem solving is formalized as a

search process, in which a solution space is traversed through the application

of adaptation operators, and the choice of these operators is guided by case-

based preferences.

For further optimization of the developed framework, we include methods

that learn how to combine given local similarity measures into a global one,

for ensuring optimal performance of the case-based reasoning system. The

learning method for the solution space is based on the Bayesian approach

for distance metric learning, and the learning of the similarity measures in

the problem space has been reduced to binary classification by a classifica-

tion method (in our learning we use the perceptron algorithm). To complete

the framework and maintain its efficiency, methods for dynamic case base

maintenance specifically suited for our preference-based CBR (Pref-CBR)

framework are also embedded. The main goal of these maintenance meth-

ods is to increase efficiency of case-based problem solving, by reducing the

size of the case base, while maintaining performance of the system. We

implemented some experiments which show the efficacy of our Pref-CBR

problem-solving framework. We also show several applications which high-

light in isolation the affect of our methods for learning similarity measures

on the performance of the search, as well as the affect of our maintenance

strategies on the efficiency of the search.

Zusammenfassung

Das Paradigma des fallbasierten Schließens (engl.: Case-Based Reasoning,

CBR) hat sich in zahlreichen Anwendungen als Werkzeug zur Lösung neuer

Probleme mithilfe bereits gelöster Probleme bewährt. Trotz dieses Erfolgs

mangelt es dem CBR noch wie vor an theoretischen Grundlagen sowie einem

allgemeinen methodischen Unterbau. Dies bildet den Ausgangspunkt für

die vorliegende Arbeit. Das Hauptanliegen ist die Entwicklung eines the-

oretisch fundierten Konzeptes, in dem die formale Wissensrepräsentation

durch Präferenzrelationen erfolgt. Präferenzen und paarweise Vergleiche

bieten einen sehr natürlichen Zugang zur Modellierung und Durchführung

von Problemlöseprozessen, und ihre Nutzung ist daher von großem Interesse

für die künstlichen Intelligenz und angrenzende Bereiche.

Die Einbeziehung von Präferenzen in das fallbasierte Schließen ist aus ver-

schiedenen Gründen vorteilhaft. Insbesondere können Problemlösungsprozesse

durch sukzessive Anwendung von qualitativen Alternativentscheidungen mod-

elliert werden. Auf diese Weise wird Erfahrungswissen über zurückliegende

Entscheidungen in ähnlichen Situationen berücksichtigt. Dieser intuitive

Ansatz spiegelt den Annäherungscharakter von Problemlösungsprozessen

gut wider und ermöglicht entlang von Entscheidungspfaden auch einen flex-

iblen Umgang mit unsicheren Informationen.

Präferenzbasiertes fallbasiertes Schließen nutzt eine Falldatenbank, in der

Problemlösungserfahrung in Form von kontextbezogenen Präferenzen abgelegt

wird. Neue Probleme werden durch Wiederverwendung von Präferenzp-

faden ähnlicher bereits gelöster Probleme gelöst. In dieser Arbeit wird der

formale Rahmen für eine solche Vorgehensweise entwickelt. Problemlösung

erfolgt als Suche im Lösungsraum, wobei Lösungen durch die Anwendung

von Operatoren angepasst und verbessert werden, deren Auswahl durch ein

Maximum-Likelihood-Modell mit den fallbasierten Präferenzen erfolgt.

Zur weiteren Verbesserung des vorgestellten Problemlösungsverfahrens wer-

den Techniken zur Anpassung von Ähnlichkeitsmaßen entwickelt. Ähn-

lichkeitsmaße beziehen sich einerseits auf den Vergleich von Problemen un-

tereinander und andererseits von Lösungen. Die Anpassung erfolgt durch

Lernen einer für den Problemlösungsvorgang optimalen Gewichtung derjeni-

gen Aspekte, deren Unterschiede für Vergleiche herangezogen werden. Für

den Raum der Probleme ergibt sich die Gewichtung als Ergebnis eines mit

dem Perzeptronalgorithmus gelösten Klassifikationsproblemes von Proble-

men, deren Ähnlichkeiten mit Lösungspräferenzen kompatibel sein sollen.

Die Wichtung des Lösungsraumes ergibt sich dagegen aus einem Wahrschein-

lichkeitsmodell durch Anwendung des Satzes von Bayes. Abschließend wer-

den verschiedene Techniken zur kontinuierlichen Wartung der Falldatenbank

vorgestellt, die durch Ausdünnung von Fällen und Präferenzen bei gleich-

bleibender Problemlösungsqualität auf eine Steigerung der Effizienz zielen.

vi

I would like to dedicate this doctoral dissertation to my father. He always

believed in me and continuously encouraged and motivated me, without

his kind advice and support I would not have been able to continue this

process. He is and always will be my great role model. The same goes

with my dear mother who always helped me and gave me advice and

taught me how to be strong and responsible since I was a child. My

mother has always been a source of strength, power and the light which

always directed me through dark tunnels.

I would also like to dedicate this to my dear husband, who made many

sacrifices throughout the past years to let me finish my work. I thank you

deeply from my heart and I appreciate everything you have done for me.

I dedicate this dissertation also to my lovely children, who helped me so

much at many times and always cared so much for me. No words can

express my gratitude and love for you.

I dedicate this work also to my dear brother, who has always been there

for me and will always be a part of my heart.

Acknowledgements

I would like to express my appreciation and special thanks to my advisor

Prof. Dr. Eyke Hüllermeier, you have been a tremendous mentor for me. I

would like to thank you for encouraging me to continue on with my research,

and for allowing me to grow as a scientist. Your ideas and advice to me have

been priceless and I am honored to have had the chance to work with you.

I would also like to thank my committe members, Prof. Dr. Mirjam Minor,

and Prof. Dr. Bernd Freisleben for giving me the time to read my work

and be there for me. I would also like to thank my department members

for always offering help and support at times when I needed them.

I would also like to sincerely thank the Yousef Jameel program for giving me

the chance to produce this work. They have been supporting me throughout

the past four years and I thank them greatly for their trust in me and for

the opportunity they have provided to me to pursue and finish my PhD

research. I appreciate very much your help and support and I hope that I

have been up to your expectations.

I dearly thank my husband and my beautiful children for all the sacrifices

they have made on my behalf, I am truly lucky to have such a wonderful

family and nothing that I can say would express how much I love them. I

would like to express special appreciation to my husband for supporting me

and encouraging me to continue at difficult times. His encouraging words

and confidence in me kept me going. I cannot thank enough my kids, who

have also helped me and encouraged me. They were responsible enough to

take care of many things to help me focus on my work.

A special thanks to my family, words cannot even express how grateful I

am to my father, my mother and my brother for being there for me, and

I am blessed to have such a wonderful family. Thank you so much for all

your kind support and encouragement at all times. I would also like to

greatly thank my mother and father, who are role models for me. Thinking

about what they achieved in life, even through hardships, always gave me

the strength to continue and reach my goals in life.

I would also like to thank all of my friends for helping me in many ways,

and motivating me to strive towards my goals. My appreciation and many

thanks go to Dr. Marc Strickert, with whom I have worked closely and

learned so much from. He was always there whenever I needed help and he

has been a great source of support and encouragement throughout my PhD

research trip. Last but not least, I would like to specifically thank Miriam

Gross for her help and support from the first day I came here to Germany

and even before that, throughout all my arrangements for coming here. No

words can really express how grateful I am to all what she has done for me.

iv

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Preference-based case-based reasoning 4

1.2 Similarity measures . 5

1.3 Case base maintenance . 6

2 Case-Based Reasoning 9

2.1 Problem-solving CBR . 10

2.2 Conversational CBR . 15

2.2.1 CCBR systems . 15

2.2.2 Recommender systems . 17

2.3 Relationships of CBR to other approaches 18

2.4 Practical applications in CBR . 22

2.5 Conclusion . 23

3 Preference-Based Case-Based Reasoning 25

3.1 Conventional CBR vs preference-based CBR 27

3.2 Preference-based knowledge representation 29

3.3 Formal setting and notation . 32

3.4 CBR as preference-guided search . 34

3.5 Case-based inference . 38

3.5.1 Case-based inference as probability estimation 38

3.5.2 A discrete choice model . 39

v

CONTENTS

3.5.3 Maximum likelihood estimation 40

3.6 Conclusion . 41

4 Learning Similarity Measures in Pref-CBR 43

4.1 Learning similarity measures in the solution space 44

4.1.1 Related work . 45

4.1.2 Pref-CBR formal framework for learning similarity measures . . 48

4.1.3 Distance learning of the solutions in Pref-CBR 50

4.1.4 Synthetic data illustration . 53

4.2 Learning similarity measures in the problem space 55

4.2.1 Related work . 55

4.2.2 Distance learning of the problems in Pref-CBR 56

4.3 Conclusion . 61

5 Case Base Maintenance in Pref-CBR 63

5.1 Related work . 64

5.2 Case base maintenance for Pref-CBR . 66

5.2.1 Noise and redundancy in Pref-CBR 67

5.2.2 Integration of case base maintenance into Pref-CBR framework . 68

5.3 Maintenance strategies . 70

5.3.1 Intra-case redundancy . 70

5.3.2 Intra-case noise . 71

5.3.3 Inter-case redundancy . 71

5.3.4 Inter-case noise . 73

5.4 Conclusion . 75

6 Related Methodologies 77

6.1 Heuristic search . 78

6.1.1 Best-first search algorithms . 79

6.1.2 Iterative improvement algorithms 81

6.1.3 Nature-inspired optimization algorithms 83

6.1.4 Black box search . 86

6.2 Machine learning . 88

6.2.1 Machine learning output space search 88

vi

CONTENTS

6.2.2 Machine learning with human in the loop 90

6.2.3 Reactive search and intelligent optimization 93

6.2.4 Selection of features . 95

6.3 Conclusion . 96

7 Experiments 99

7.1 Pref-CBR search performance . 99

7.1.1 Drug discovery . 100

7.1.2 Set completion . 102

7.2 Learning of similarity measures . 104

7.2.1 Wine recommendation – solution space learning 104

7.2.2 Red wine recommendation – comparison of similarity measures

of problems and solutions . 106

7.3 Case base maintenance in Pref-CBR . 107

7.3.1 Setting . 109

7.3.2 Inter-case maintenance methods 109

7.3.3 Intra-case maintenance methods 110

7.4 Image improvement application . 113

8 Conclusions and Outlook 123

References 127

vii

CONTENTS

viii

List of Figures

1.1 Case-based reasoning cycle . 3

2.1 An example of problem-solving in CBR 12

2.2 Case-based reasoning flow chart . 13

2.3 Relations of CBR to other areas . 19

3.1 An Example of preference-based knowledge representation of experience 31

3.2 An example of problem-solving in Pref-CBR 33

3.3 A Discrete Choice Model for preferences on solutions 40

4.1 Probability distributions for the parameter α1 after N = 50, N = 200

and N = 500 examples, with β = 5 (left) and β = 10 (right). 54

4.2 Boxplots for the mean value estimate of α1. Left: Different values of the

precision parameter β. Right: Different levels of noise in the estimate y•. 55

4.3 SoftDoubleMaxMinOver perceptron algorithm 59

5.1 Intra-case redundancy strategy . 71

5.2 Intra-case noise strategy . 72

5.3 Inter-case redundancy strategy . 73

5.4 Inter-case noise strategy . 75

6.1 Pref-CBR framework and related methodologies 78

6.2 Greedy best-first search . 80

7.1 Average performance of Pref-CBR and random search on the drug dis-

covery problem in the first 150 problem solving episodes. 101

ix

LIST OF FIGURES

7.2 Average performance of Pref-CBR and random search on the set com-

pletion problem in the first 100 problem solving episodes. 103

7.3 Evolution of the average rank error in sequential problem solving (each

query gives rise to one problem solving episode) for L = 3, 5 and 10 queries.105

7.4 Comparison of performance between no metric learning, problem metric

learning, solution metric learning, problem&solution metric learning. . . 107

7.5 Pref-CBR search with and without inter-case maintenance methods of

TSP (10cities) data and case base size. 111

7.6 Pref-CBR search with and without inter-case maintenance methods of

TSP (20cities) data and case base size. 111

7.7 Pref-CBR search with and without intra-case maintenance methods of

TSP (10cities) data and number of preferences in case base. 112

7.8 Pref-CBR search with and without intra-case maintenance methods of

TSP (20cities) data and number of preferences in case base. 113

7.9 Performance showing different curves of average percentage difference

between images. 117

7.10 Case base size . 118

7.11 Comparison between original, query, and final image after applying so-

lution (set of filters) at different intervals of case base size. 118

7.12 Comparison between original, query, and final image after applying so-

lution (set of filters) at different intervals of case base size. 119

7.13 Comparison between original, query, and final image after applying so-

lution (set of filters) at different intervals of case base size. 119

7.14 Progress of image improvement. 120

7.15 Progress of image improvement. 120

7.16 Progress of image improvement. 121

7.17 Progress of image improvement. 121

7.18 Progress of image improvement. 122

x

List of Tables

3.1 Notations . 28

xi

LIST OF TABLES

xii

1

Introduction

Case-based reasoning (CBR) is a problem solving paradigm built upon a rule of thumb

suggesting that similar problems tend to have similar solutions [1]. More specifically,

the idea of CBR is to exploit experience from similar problems in the past and to adapt

successful solutions to the current problem. Thus, the core of every case-based problem

solver is the case base, which is a collection of memorized chunks of experience, called

cases.

The field of CBR arose originally from the research in cognitive psychology, where

CBR research was highly regarded as a plausible high-level model for cognitive pro-

cessing [2]. The idea of CBR is intuitively appealing because it is similar to human

problem-solving behavior, where people draw on past experience when trying to solve

new problems. This approach then does not require in-depth knowledge in a specific

domain for solving the arising problems, and this is a main advantage of using CBR

for effective results when there is only shallow knowledge of the domain. Case-based

reasoning basically means using old experiences to understand and solve new problems,

by reasoning from a previous situation resembling the current one [3].

An advantage of solving problems using CBR is described by [4]: “Neural network

systems cannot provide explanations of their decisions and rule-based systems must

explain their decisions by reference to their rules, which the user may not fully under-

stand or accept. On the other hand, the results of CBR systems are based on actual

prior cases that can be presented to the user to provide compelling support for the

systems conclusions.” Case-based reasoning builds on the idea that human expertise is

not composed of formal structures like rules, but of experience: a human expert reasons

1

1. INTRODUCTION

by relating a new problem to previous ones. An advantage of CBR over rule-based sys-

tems is that experience in CBR consists of examples of problems in a specific domain

with their associated solutions that are readily available and can be easily acquired, on

the other hand it is difficult to capture that knowledge in a set of rules [5]. A more

detailed comparison between CBR and other methodologies will be given in the next

chapter.

The following figure, Figure 1.1 from [6], illustrates the basic process of case-based

reasoning and learning. The CBR cycle proposed by [7] consists of four sequential

steps:

• Retrieve: one or more cases are selected from the case base, which have highest

similarity to a query based on an underlying similarity measure.

• Reuse: the information and knowledge from the solutions of the retrieved cases,

are used to solve the new problem.

• Revise: the selected solution is verified, corrected or improved.

• Retain: the new experience is incorporated into the existing case base for future

problem-solving.

Being rooted in cognitive psychology [8], CBR is now considered as a proper sub-

field of Artificial Intelligence (AI). As a specific approach to knowledge engineering and

knowledge-based systems design, it is closely related to machine learning, information

retrieval, databases, semantic web, and knowledge management. Research in CBR has

put much emphasis on combining methods from these areas to tackle specific problem

tasks, such as diagnosis, planning, product recommendation, and experience manage-

ment [9]. Moreover, much effort has been invested in implementing case-based systems

for certain application domains, such as medicine [10] and the health sciences [11].

From a methodological point of view, CBR research has made significant and original

contributions to similarity modeling, similarity-based retrieval, and adaptation.

Case-based reasoning has proved to be a successful problem-solving paradigm over

the past years. Despite its great practical success, work on the theoretical founda-

tions of CBR is still under way. In addition, a coherent and universally applicable

methodological framework for case-based reasoning was yet missing. We also believe

2

Figure 1.1: Case-based reasoning cycle

that although CBR systems exist and are used in many practical applications, there are

some applications which might require solutions of a more flexible nature rather than a

strict solution which is provided by standard CBR. These kind of applications exist in

field areas which may have a very complex solution space as for example optimization

problems. For those problems, specifying one optimal solution is almost impossible and

in this case preference-relations of solutions (one solution preferred over another) would

be a good remedy for the complex nature of solution representation in that field area.

The aforementioned preference relations could be preferences of a user for example in

qualitatively choosing one solution over another, such as choosing a preferred design

or a preferred image or a preferred recipe of a meal over another. These preferences

could be recommendations given by an expert in a specific domain, such as a doctor

giving a preference for one treatment over another, or an architect giving a preference

of some design fitting certain specifications more than another design, or a pharmacist

recommending one drug over another for a person having some symptoms depending on

his/her age and health status. In general, the preferences are qualitative choices based

on some basis for comparison, where quantitative values, such as specifying for example

3

1. INTRODUCTION

how good an image is or a tastiness of a meal, are difficult or impossible to specify. The

lack of a methodological framework in CBR which is based on theoretical foundations,

and the absence of a case-based reasoning framework incorporating a preference-based

approach, inspired the strong motivation for our work.

A preference-based approach to case-based reasoning (CBR) has recently been ad-

vocated in [12]. The goal of preference-based CBR, or Pref-CBR for short, is to develop

a coherent and universally applicable methodological framework for CBR on the ba-

sis of formal concepts and methods for knowledge representation and reasoning with

preferences. Building on general ideas and concepts for preference handling in artificial

intelligence (AI), which have already been applied successfully in other fields [13, 14, 15],

the goal of this work is to establish a theoretically sound framework for the use of pref-

erences in solving problems, using case-based reasoning methodology. The work in this

thesis consists of the development of the above mentioned framework, the Pref-CBR

problem-solving framework. To optimize this framework further, we consider the im-

portance of the concept of similarity in CBR and we introduce methods for learning

similarity measures. To ensure efficiency and maintenance of the whole CBR system,

we also support our framework by developing case base maintenance strategies which

specifically fit our Pref-CBR framework.

1.1 Preference-based case-based reasoning

As introduced in [12], a preference-based approach to CBR appears to be appealing for

several reasons, notably because the case-based experiences lend themselves to repre-

sentations in terms of preference relations quite naturally. In addition, the flexibility

and expressiveness of a preference-based formalism well accommodate the uncertain

and approximate nature of case-based problem solving. In this sense, the advantages

of a preference-based problem solving paradigm in comparison to the classical (one op-

timal solution) one, which have already been observed for AI in general, seem to apply

to CBR in particular. These advantages are nicely explained in [16]: “Early work in

AI focused on the notion of a goal—an explicit target that must be achieved—and this

paradigm is still dominant in AI problem solving. But as application domains become

more complex and realistic, it is apparent that the dichotomic notion of a goal, while

adequate for certain puzzles, is too crude in general. The problem is that in many

4

1.2 Similarity measures

contemporary application domains [...] the user has little knowledge about the set of

possible solutions or feasible items, and what she typically seeks is the best that’s out

there. But since the user does not know what is the best achievable plan or the best

available document or product, she typically cannot characterize it or its properties

specifically. As a result, she will end up either asking for an unachievable goal, get-

ting no solution in response, or asking for too little, obtaining a solution that can be

substantially improved.”

A first step taken toward preference-based CBR was made in [12], by addressing

the important part of case-based inference, which is responsible for predicting a “con-

textualized” preference relation on the solution space. More specifically, the latter

consists of inferring preferences for candidate solutions in the context of a new prob-

lem, given knowledge about such preferences in similar situations. The search-based

problem-solving framework developed in this thesis embeds this inference procedure.

More specifically, case-based problem solving is formalized as a search process, in which

a solution space is traversed through the application of adaptation operators, and the

choice of these operators is guided by case-based preferences.

1.2 Similarity measures

The main idea in CBR is solving new cases by reusing the knowledge from previously

solved cases, which are stored in a case base. To this end, it is important to choose the

useful cases for the current problem-solving episode, from all the cases in the case base.

The CBR system chooses these useful cases based on some similarity measures, which

are difficult for the users to express and yet are based on some heuristics (rule-of-thumb

or argument) of the knowledge incorporated in a specific application domain.

It is clear that learning the similarity measures improves the choice of the useful

cases to use for solving a new problem, leading to finding a better solution for the

current problem, thus improving the overall performance of a CBR system. Since the

concept of similarity lies at the heart of CBR, the success of a CBR system strongly

relies on the specification of a suitable similarity measure [17]. As domain knowledge

provided by human experts is mostly not sufficient to manually provide an optimal

measure, machine learning algorithms could be used to learn these similarity measures

efficiently.

5

1. INTRODUCTION

In standard CBR, it is common to define similarity measures on the problems. In

Pref-CBR, since the preference relations are on solutions, it is hence important to also

define a similarity measure on the solutions and not only on the problems. As a con-

sequence, the performance and effectiveness of Pref-CBR is strongly influenced by the

distance measure (smaller distance means higher similarity) between the solutions: the

better this measure captures the true differences between solutions, the more effective

Pref-CBR will be. Thus, the idea is to make use of the experience collected in a problem

solving episode, not only to extend the case base through memorization of preferences,

but also to adapt the distance measure between the solutions. For completeness, we

also integrate a distance learning module to learn the distance measure between the

problems.

1.3 Case base maintenance

As the case base contains all the solved problems along with their corresponding solu-

tions, a case base can quickly expand in size and eventually its efficiency is hampered.

In Pref-CBR, a case is not only stored in the case base along with one corresponding

solution, but rather with a case along with its corresponding preferences over solutions.

It is clear that simply storing each encountered problem along with a set of associated

preferences is not advisable, especially since a case base of that type may quickly be-

come too large and hamper efficient case retrieval; besides, many of the preferences

collected in a problem solving episode will be redundant to some extent. In CBR,

this problem of redundancy has been addressed by methods for case base maintenance

[18, 19]. Such methods seek to maintain the problem solving competence of a case base

thanks to case base editing strategies, including the removal of misleading (noisy) or

redundant cases. Case base maintenance (CBM) proved essential to guarantee the effi-

ciency and performance of CBR systems. According to the aforesaid about a case base

growing rapidly in Pref-CBR, CBM might be even more critical for preference-based

than for conventional CBR.

Due to the above mentioned reasons for the importance of maintaining a case base,

we address the problem of case base maintenance in Pref-CBR and develop a method

for applying it specifically in our framework. We develop some CBM strategies that can

be integrated into our Pref-CBR framework to increase the efficiency of the case base

6

1.3 Case base maintenance

and yet maintain its performance. Despite being inspired by existing CBM techniques

for conventional CBR, our strategy is specifically tailored to our framework and ex-

ploits properties of the underlying preference-based representation of problem solving

experience.

The thesis is organized as follows, the second chapter introduces the methodology of

CBR. The third chapter describes the developed preference-based CBR framework. In

the fourth chapter, learning similarity measures is explained, and the case base main-

tenance method which is specifically designed for the Pref-CBR framework is discussed

in Chapter 5. In Chapter 6 methodologies related to Pref-CBR are reviewed; these

include different search strategies, as well as machine learning approaches. Chapter

7 describes the case studies, which illustrate the performance of the Pref-CBR frame-

work and show the effect of learning similarity measures and applying the maintenance

methods. Chapter 8 includes the summary, conclusion and suggested future work.

7

1. INTRODUCTION

8

2

Case-Based Reasoning

Case-based reasoning in general is the process of solving new problems based on pre-

viously solved problems. Humans are using case-based reasoning most of the time in

their every day life. Doctors use case-based reasoning when they get a patient suffering

from certain symptoms, and immediately think of previous patients having the same or

similar symptoms, they use that previous experience to come up with an appropriate

treatment for the new patient. This treatment could be taken exactly as it was given to

a previous patient or the doctor might see a need for changing it a bit, or adapting it to

the new patient. An auto mechanic who fixes a car engine by recalling a previous car

that exhibited similar symptoms is using case-based reasoning. The same reasoning is

used by a lawyer faced with a new case, an electrician repairing some power outages, a

cook having some ingredients to cook a meal. All these people use case-based reasoning;

they think of a similar case in the past and from the knowledge of this past experience

they solve the current case.

CBR is a problem solving paradigm which is characterized by two major distinc-

tions from other AI approaches; it is able to utilize specific knowledge from previous

experience of concrete cases and it is considered as an incremental and sustained (con-

tinuous) learning approach [7]. Thus, a new problem is solved by adapting the solution

of a similar case, rather than solving the case from scratch. Reuse of prior solutions

helps increase problem solving efficiency by building on prior reasoning, rather than

repeating prior effort [20]. Accordingly, a CBR system requires efficient techniques for

retrieving cases (which are maximally similar to the problem), organizing and main-

taining the case base, and adapting the stored cases to the problem at hand [21].

9

2. CASE-BASED REASONING

In this chapter, we will explain the problem-solving process of CBR and how CBR

systems are used. We will discuss the relationships of CBR to other approaches. To

better understand CBR, we will mention some practical applications which use CBR

and will show why CBR systems are gaining interest and showing success.

2.1 Problem-solving CBR

CBR is considered as a psychological theory of human cognition and addresses issues in

memory, learning, planning and problem solving [22]. In its simplest form, when a CBR

system is faced with a new problem having a specific problem description, the system

searches for other problems with similar problem descriptions. The solutions of those

problems are used as the starting point for generating a solution for the new problem.

Following the CBR notion of: similar problems have similar solutions, a solution for

the new problem is found and maybe adapted if necessary [20]. The process of getting

a new problem, finding similar problems and taking their solutions to adapt and find

a final solution to that new problem, is called a problem solving episode.

It is important first to imagine what a case base looks like, what is the structure

of the collected cases in the case base and how is the content of the cases organized

in the case base? For ensuring effective retrieval and reuse of the cases from a case

base, the description of the contents of the cases should be structured in such a way as

to provide proper indexing of cases [7]. A case base can have a simple flat structure,

where problems are represented by feature vectors and solutions are also represented by

feature vectors or classes. As described by the authors in [7], a case base can also have

a hierarchical structure, in which cases sharing similar properties are grouped together

and the case memory looks like a network structure of categories, semantic relations,

cases, and index pointers. A case base can also be structured as a dynamic memory

model, proposed by [23], where similar cases are grouped together in clusters which are

characterized by specific indexes. Properly structuring the case memory provides the

ground basis on which the retrieval task will later efficiently operate on. The retrieval

task will start with a problem description, a matching and selection of similar cases,

based on the way the cases are organized and structured in the case base and finally

providing best found matches [7].

10

2.1 Problem-solving CBR

CBR systems mostly exploit the nearest neighbor algorithm (NN) in their retrieval

phase for finding similar cases to a new problem [24], where the nearest relation is com-

puted using a similarity metric on the problem space. Given a description of a problem,

a retrieval algorithm, using the indices in the case memory, should retrieve the most

similar cases to the current problem or situation [25]. Commonly, CBR systems use

mostly Hamming distance for finding nearest neighbors for an attribute-value repre-

sentation of a problem, while for n-dimensional real vectors, Euclidean or Manhattan

distance are often used [26, 27]. For other complex problems such as problems con-

taining heavily inter-connected events (scheduling or time-tabling), the structured case

representations require other similarity measures that incorporate deeper knowledge

about how much modification of a case is required to fit a new problem [28]. An ex-

ample of structured case representations are graphs, trees and semantic networks. The

authors in [28] state that similarity based on feature-value representation is not suffi-

cient in finding similarity between structured cases because the feature-value represen-

tation alone in this case is not enough to find the correspondence between the features

in cases and characteristics of the solutions; similarity measures accordingly should

consider geometric relationships, hierarchically-structured and model-based similari-

ties. Some similarity assessment methods for structured cases include network-based

retrieval methods, graph editing operations and sub-graph matching [6].

After retrieval of similar cases to a problem by using some similarity measures,

there might be the need for adaptation of a similar case to find a solution to fit the

new problem.

Shown in Figure 2.1 is an example of a problem-solving episode for problem x: first

the nearest neighbors of problem x are retrieved using the NN algorithm, then a solu-

tion is adapted from their corresponding solutions to fit problem x and final solution y

is obtained. All problems and their corresponding solutions are stored in the case base

for future retrieval when needed. There are several adaptation methods which include:

transformation adaptation (structure of solution is changed), substitution adaptation

(some parts of solutions are replaced) and generative adaptaion (solution is recomputed

and derived to fit new problem) [6]. In addition, the authors in [29] propose compo-

sitional adaptation, which in the case of existence of several similar cases to a new

case, their corresponding solutions would be combined in some efficient way to obtain

a final solution. As will be described in the next chapter, our Pref-CBR framework

11

2. CASE-BASED REASONING

y

x1 y3
x2

x3
x

y2

y1

x4
y4

y5

Problems Solutions

x1  y1
x2  y2
x3  y3
x4  y4
x5  y5
x --> y

Case Basex5

Figure 2.1: An example of problem-solving in CBR

incorporates in a way this idea of combining the solutions of some similar cases to yield

a final solution.

Figure 2.2 from [22] illustrates the CBR cycle as a flowchart, where boxes represent

processes and ovals represent knowledge structures:

Let us assume that we have as a new problem some given resources and measure-

ments of a house, and the solution should be a suitable design which optimally makes

use of the given resources and the area of the house.

• Assign Indexes: features of a new problem are assigned as indexes characterizing

that problem. For example specifications of number of rooms of a house and area

as well as resources, and the problem is to find a suitable design.

• Retrieve: depending on the structure of the cases, some suitable similarity mea-

sures are used. Indexes are used to retrieve a past similar case containing a prior

solution, in our example we would retrieve a previous design.

• Modify : some adaptation method is applied on the retrieved solution to fit the

new problem. Old solution is modified to fit the new situation, resulting in a

12

2.1 Problem-solving CBR

Figure 2.2: Case-based reasoning flow chart

13

2. CASE-BASED REASONING

proposed solution. The design is modified to fit requirements of the features of

the problem.

• Test : solution is tried out to see whether it succeeds or fails. Does the design

include all required resources and user requirements as well as using the specified

area optimally? Check the prototype design.

• Assign and Store: if solution is successful then assign indexes and store a working

solution in the case memory. Store the successful design in the case base.

• Explain, Repair and Test : if solution fails then explain the failure, repair the

working solution and test again. Failed plan is repaired and revised solution is

tested. In our example we can state for example that for a specific area of a

house, it is not recommended to have more than 4 rooms because of electricity

and power supply resources.

Supporting the above processes are the following knowledge structures also ex-

plained by [22]:

• Indexing Rules: identify predictive features in the input.

• Case Memory : database of experience.

• Similarity Metrics: are used to decide which case is more like the current situa-

tion.

• Modification Rules: knowledge about what factors could be changed and how to

change them.

• Repair Rules: rules for what kind of changes are permissible.

By design, CBR systems do not need deep general knowledge and can be used with

just some initial knowledge and further knowledge could be manually added or learned

over time [30]. Problem-solving CBR involves situation assessment, case retrieval and

similarity assessment/retrieval. In addition to these tasks, the similarities and differ-

ences between new and previously solved cases are used to determine how the solution

of the previously solved cases can be adapted to fit the new situation [20]. As we

learned up to this point, problem-solving systems will store and adapt prior solutions.

14

2.2 Conversational CBR

The notion of a quality of a solution to a certain problem has been introduced by [31],

where quality represents some kind of utility or a degree of correctness. In the latter,

the authors propose a formal model of transformational adaptation which defines a

quality function that assigns a quality value to each problem-solution-pair; solutions

with a higher quality are preferred over solutions with a lower quality value. An alter-

native approach mentioned in [20] is to store and reuse traces of how those solutions

were derived, instead of storing only the actual solutions. In our developed Pref-CBR

framework, which will be explained in detail in the next chapter, we implement the

aforementioned ideas; we generate preferences over solutions and we do not only store

solutions, but we store the traces of how those solutions were derived.

2.2 Conversational CBR

Conversational CBR (CCBR) is a form of interactive case-based reasoning systems, it

is a means of providing more effective support for interactive problem solving. CCBR is

used in applications where the user does not necessarily have much domain knowledge,

thus helping the user to reach a goal or find a solution for a problem, or help a user to

make a decision. In this section we briefly describe how CCBR systems work and some

applications which use these systems. We also show the resemblance of CCBR to our

Pref-CBR framework.

2.2.1 CCBR systems

Most commercial CBR systems use an interactive questioning process, for example to

assist maintenance personnel with fault diagnosis tasks or in e-commerce to help a user

to buy certain products or in medical decision making [32, 33, 34, 35]. CCBR systems

require a user to initially input a brief free-text description of his/her problem and

accordingly the system then constructs a problem specification by interactive problem

assessment [33]. As [33] describe the CCBR systems, they show the advantage to

progressively rank and display the top matching cases’ solutions, not requiring the

user to have a prior knowledge about these relevant cases. It can be stated that CCBR

systems can be characterized as interactive systems that, via a mixed-initiative dialogue,

guide users through a question-answering sequence in a case retrieval context [32].

15

2. CASE-BASED REASONING

A popular use for CCBR systems is for product recommendation. In this context,

the query represents the preferences of the user according to the attributes of the

available products [36]. Accordingly, at each stage of the recommendation dialogue,

the system selects the most useful attribute (feature) and asks the user for a preferred

value of this attribute and the product which is most similar to the query is retrieved

and showed to the user. As mentioned by [36], the dialogue terminates based on a set

termination criterion, or until no further attributes remain. The termination of the

problem solving is unsuccessful when the system cannot find a good match or when

there are no further relevant questions to ask [33].

CCBR systems can also be used in customer support domains by playing the role

of customer support agents. They have been successfully used to improve knowledge

management in corporate activities by aiding in problem solving, and they have also

been used in designing the user-interface of e-commerce websites [34]. Another success-

ful application where CCBR systems have been used is in medical classification and

diagnosis, interactive fault diagnosis and helpdesk support [35]. It is worth mentioning

that in contrast to traditional CBR approaches, it is not assumed that the problem to

be solved has an available description. A problem description is instead elicited by the

system, aiming to minimize the number of questions that the user is asked before a

solution is reached [35].

An important issue addressed in CCBR is the attribute selection strategies that aim

to minimize the length of the interactive dialogue with the user. Features are selected

by maximizing information gain and avoiding redundant questions in conversation with

the user. For example from the reply of the user to certain queries, some features of

the problem are refined according to the user’s replies to better find similar cases

fitting his/her needs. This in turn increases conversational efficiency, thus reducing

the length of the dialogue [34]. Some potential benefits of minimizing the number of

questions being presented to the user include avoiding frustration of users and reducing

network traffic in e-commerce applications [36]. The criteria for termination of problem-

solving dialogues is a very challenging issue for balancing the trade-offs between solution

accuracy, and problem-solving efficiency [35, 36].

It can then be plausible to say that the conversational CBR systems are closely

related to our Pref-CBR framework, in the sense that there is some form of feedback

given during the search process, and based on this feedback the chosen solution for the

16

2.2 Conversational CBR

query is found. In our framework, this feedback is given by what we call an oracle,

where this oracle does not necessarily represent a user but can also represent a program,

an expert or a complex database and is described in more detail in the next chapter.

In CCBR the problem can initially be defined by the user and it is more restricted

to operate in certain environments and specific applications, but in our framework the

interference of a user is only a part of the framework (generating preferences) which

improves the initial solution to obtain the best possible solution based on the user’s

preferences. In addition, in our framework the query does not necessarily represent

the user’s preferences, but the user’s preferences are rather generated within the search

to adapt the solution chosen based on solutions of similar cases to the query. Our

framework is more generic and can be used in many applications in different fields, it

is not only restricted for applications including user interaction. For some applications

having structured problem/solution spaces, as for example providing the best graph or

an optimal tour, our framework can be used while CCBR systems would not be suitable

for such applications.

2.2.2 Recommender systems

Recommender systems have become popular over the past years and are applied in a

variety of applications. The most popular and well known applications are probably

movies, music, news, books, research articles, social tags, search queries and products in

general. However, there are also recommender systems for experts, jokes, restaurants

as well as financial services. It should be noted that recommender systems are not

part of CBR systems, but case-based recommenders are special recommender systems.

The success of case-based recommenders depends on two important domain properties:

the items need to be described by well-defined features, and users must have some

understanding of these features and how they are related to their requirements [37].

The details of a target problem are elicited from the user, often with questions selected

or ranked in order of usefulness by the system [35].

Many recommender systems seek feedback from the user as part of the recommen-

dation process, and based on this feedback these systems perform information filtering

and user profiling using machine learning techniques and adaptive user interfaces, to

help users find the information they are seeking [38]. A key feature which separates

recommender systems from more conventional information retrieval technologies such

17

2. CASE-BASED REASONING

as search engines, is their conversational character. The conversational recommender

systems guide users through a product space for example, and by eliciting user feed-

back, alternatively making product suggestions, which prioritize products that best

satisfy the user’s preferences [39].

The recommender systems incorporate four different feedback strategies from the

user, which have been explained by [38]. Value elicitation (providing a specific value for

a specific feature), tweaking (a directional preference for a particular feature), ratings-

based (rate-recommended cases according to their suitability) and preference-based

(selecting one of current set of recommendations that is closest to their requirements).

The last form of feedback (preference-based), is the lowest cost form of feedback

as it only requires a user to express a simple positive or negative preference for one of

the recommended cases. This resembles closely our preference-based strategy which is

incorporated in our Pref-CBR problem solving framework. The recommender systems

which use the preference-based feedback have the closest resemblance to our framework,

where the qualitative preferences play the major role in the search process for a suitable

solution for a problem. Recommender systems though require well-defined features for

queries, which the user understands to be able to relate them to his or her requirements,

which is not the case in our Pref-CBR framework. The preferences of the user are used

to optimize a solution for a query, where user only gives preferences of two suggested

solutions, not necessarily having to understand or know the features of the problem.

Our Pref-CBR framework can be used for searching for a suitable solution and not just

merely for analyazing to find a suitable solution.

2.3 Relationships of CBR to other approaches

The following approaches are in some way connected to CBR and accordingly play

some role within CBR. The relationships of CBR to other approaches is illustrated in

the following diagram in Figure 2.3 by [40]:

• Database Management Systems: the connection between database management

systems and CBR systems is that both contain data elements of interest to be

retrieved if needed [40]. In contrast to database queries which extract only items

which match exactly certain retrieval criteria mentioned in the query, CBR queries

rank items retrieved using similarity. Unlike CBR systems which give solutions

18

2.3 Relationships of CBR to other approaches

Case-based
Reasoning

Databases

Knowledge-
based

Systems

Management
of

Uncertainty

Cognitive
Science

Pattern
Recognition

Machine
Learning

Information
Retrieval

Figure 2.3: Relations of CBR to other areas

that could be adapted to a specific query, databases do not consider reuse or

adaptation and certainly do not have the notion of a problem and solution that

exists in CBR. In general, the relationship between CBR and database manage-

ment systems can be described as follows: a case base can obviously be seen as

a kind of database which needs an organization scheme, indexing of cases for

retrieval, and storage of cases for later reuse.

• Information Retrieval Systems: information retrieval systems are similar to CBR

systems in the sense that both try to retrieve best possible answers to queries. In-

formation retrieval systems translate the needs of information of a user to a query,

which is compared to descriptions of information found in accessible documents

[41]. The difference between information retrieval systems and CBR systems is

that the former retrieve only documents and can then be more closely related to

textual CBR, where both refer to written text [40]. It can then be concluded that

information retrieval systems represent a form of CBR systems which specifically

handles cases including text.

• Knowledge-Based Systems: the difference between knowledge-based systems and

CBR systems is that the former focus on retrieval of implicitly stored knowledge

19

2. CASE-BASED REASONING

using a logical inference process (an inference engine represented mostly by if-

then rules), while the latter retrieve explicitly stored knowledge [40]. Building

knowledge-based systems requires expert knowledge while no expert knowledge is

needed when building CBR systems. As a consequence, former systems give valid

answers but updating the knowledge base is problematic, while the latter systems

give approximate answers but are easier to maintain and are more systematic.

We can also imagine that a case base is basically a knowledge base; it contains

stored cases containing knowledge (problems, solutions and adaptation knowledge

which is the experience used for solving new cases). CBR can be considered

as a tool which technically supports knowledge-based systems, by organizing,

restructuring and memorizing the knowledge to be managed [42]. As highlighted

by [43], we can view CBR as a means of providing methodological support to

a knowledge management system’s activities for a complete knowledge sharing

experience within a learning environment.

• Machine Learning : as [40] simply states, machine learning systems and CBR sys-

tems both operate on presented examples that we call experiences. A common

aim for both systems is to reduce knowledge acquisition, unlike knowledge-based

systems. Similar to rule-induction algorithms of machine learning, CBR starts

with a set of cases or training examples to form generalizations of these examples

by identifying the commonalities between a retrieved case and the target problem.

In CBR, generalizations are made based on the given target problem (lazy learn-

ing), while in other models such as rule-induction algorithms generalizations are

drawn from training examples before the target problem is known (eager learn-

ing) [44]. It can be noted that in machine learning, CBR can be seen as a specific

type of learning, mainly instance-based learning. Instance-based (lazy learning)

methods in machine learning include case-based reasoning methods that use more

complex, symbolic representations for instances [45]. We can also consider that

within CBR, some machine learning methods could be used for different purposes

such as in the search process and for learning similarity measures.

• Cognitive Science: cognitive science is the interdisciplinary scientific study of the

mind and its processes and includes research on intelligence and behavior, es-

pecially focusing on how information is represented, processed, and transformed

20

2.3 Relationships of CBR to other approaches

[46]. Some of the basic roots of CBR are located in cognitive science and have

a relation to cognitive psychology; solving complex problems similar to the way

humans understand and memorize experiences with the integration of computa-

tional techniques [40].

• Analogical Reasoning : as [20] pointed out: “CBR can be viewed as fundamentally

analogical; the CBR process emphasizes the performance of analogical reasoning

and the feedback of evaluation, in order for a case-based reasoner to learn its

lessons while adding a new experiential episode of success or failure to its memory.

Analogical reasoning has many overlaps with CBR and both have in common the

way in which they make use of past experiences”. The difference between analogy

and CBR is stated by [40], analogy operates on a more strategic level than CBR,

where the former is based on comparing abstract structures of two entities, while

the latter relies on the concept of similarity by focusing on the attributes shared

by the two entities. Analogy aims at learning and generalizing by examining at

least four entities, while it can be sufficient in CBR to solve a new problem from

one similar case.

• Management of Uncertainty : uncertainty in CBR can occur due to information

which maybe missing, or when two different descriptions are describing the same

problem causing uncertainty of which description to be used, or when there is

uncertainty of having the correct solution [47]. The need for suitable methods to

model and reason under uncertainty has led to an increased interest in formalizing

parts of the CBR methodology, by combining CBR with methods of uncertain

and approximate reasoning and soft computing [48]. It is important to manage

uncertainty in CBR as it is used in many applications for decision making. An

example of using CBR for decision making is in enterprises, since it is considered

as a suitable decision-making paradigm because it resembles closely the way man-

agers make decisions [49]. A helpful description of decision making, uncertainty

and CBR is given by [50]: “the idea of case-based decision making has recently

emerged as a new paradigm for decision making under uncertainty. It combines

principles from decision theory and case-based reasoning”.

21

2. CASE-BASED REASONING

2.4 Practical applications in CBR

CBR systems have been used for many tasks in classification, interpretation, scheduling,

planning, design, diagnosis and explanation [20]. An approach for using CBR in story

plot generation has been proposed by [51], where a CBR process is used to generate

plots from a user query specifying an initial setting for the story by using an ontology

to measure the semantic distance between words and structures in a text. CBR has

been used for aiding designers to recall a relevant design and reuse it to help generate a

solution to a new design [52]. The authors in [53] propose to use case-based reasoning

to assist architects. As stated by [53], people generally find it easy to use analogs in

reasoning but find it difficult to remember the right ones, thus CBR systems can be

well used as human-aid systems to help people do better analogical reasoning.

CBR can also be used in interactive aiding of decision making, which is beneficial

especially for novices who lack a sufficiently complete collection of prior experiences [54].

Such an example of a decision support system can be found in help-desk systems (first

level support) in companies, where they can be used by customers who have problems

with products or services from that company [55]. More recently, CBR techniques

have also been applied in the design and construction of simulation-based learning

systems and educational games; the iterative cycle of applying knowledge, interpreting

feedback, explaining results and revising memory provides a model for active promotion

of learning [56].

A case-based approach to knowledge navigation has been proposed by [57]. In

their work, the authors propose three agents: browsing systems (Find-Me Systems),

preference-based task organizers (BUTLERS) and internet news group agents (COR-

RESPONDENTS). All three types of systems help users navigate through information

spaces, and either find or construct responses to fit the needs of those users. CARE-

PARTNER is another knowledge support system on the world wide web which inte-

grates CBR; it is a complex medical application running on the internet for physicians

to follow up post-transplant patient care. The system integrates rule-based reasoning,

information retrieval and case-based reasoning, where CBR is used for refining and

completing the knowledge of the system by learning from experience and improving

results over time [58].

22

2.5 Conclusion

For illustrating how a CBR system works, let us take the CHEF system (builds

new recipes on the basis of requests of a user from previously stored recipes) as a

running example [59]. Recalling Figure 2.2 from [22] which illustrates the CBR cycle

as a flowchart, the following procedure describes an example from the cooking domain

illustrating how the CHEF system works:

• Assign Indexes: generate a beef and broccoli recipe.

• Retrieve: retrieve a stored beef and green beans recipe.

• Modify : apply modification rule to substitute green beans with broccoli and edit

cooking time.

• Test : plan is executed in simulator and adapted recipe goals are checked against

expectations.

• Assign and Store: broccoli is soggy!

• Explain, Repair, Test : beef releases water and broccoli steams. Add broccoli

later on in the dish. Test for crispness of broccoli.

2.5 Conclusion

As we have seen, CBR systems can be used in different domains and have shown

success in many practical applications. The analogy-based method which is used in

CBR, recalling instances from a case base which are similar to a new given case, has

been the reason for the support of these systems to humans. The reason for this is

that they model the human behavior with the computational capability to support

humans in knowledge extraction, diagnosis, problem solving and decision making. In

this chapter we introduced key principles of CBR, its basic problem-solving process,

its relationships to other approaches and some practical applications of CBR systems.

In the next chapter we will highlight the difference between preference-based CBR and

standard CBR and we will describe in detail our Pref-CBR framework.

23

2. CASE-BASED REASONING

24

3

Preference-Based Case-Based

Reasoning

The common knowledge representation in a case base, that we are generally familiar

with, is a case and its solution. A major distinction of our Pref-CBR framework from

the standard CBR systems is our knowledge representation in the case base, which is

a case and its set of preferences over solutions. Our framework incorporates a search

mechanism which operates on solving new problems using solutions of previously solved

similar problems, where the solutions in our case are preferences over solutions rather

than single solutions. This preference-based approach for problem-solving can be logical

to use in certain domains, where preferences need to be included during the search

process or when there is no one distinct solution for a problem. Some examples of such

domains are the medical domain (two therapies could be used for curing a patient but

one is preferred over another for that specific patient), cooking domain (two meals could

be offered by using specific ingredients but one is preferred over another depending on

user’s preferences), traveling domain (two trips could be offered satisfying requirements

of user but one is preferred over another depending on user’s choice of priorities whether

it be price or luxury, etc.).

There are also other domains which incorporate a more complex structure, where

our Pref-CBR problem-solving framework has an important advantage over standard

CBR as well as over other standard machine learning methods. The structure of the

problem/solution spaces can be simple, where problems and solutions are represented

by feature vectors and the spaces are continuous where similarity between problems or

25

3. PREFERENCE-BASED CASE-BASED REASONING

between solutions can be distinct and highly expressive. For these simple spaces, stan-

dard CBR as well as many machine learning methods could be efficiently used. There

are problem/solution spaces though which are more complex, such as having geomet-

ric representation or discrete spaces such as procedures, item sets or permutations in

which similarity between problems or solutions are more difficult to assess and distin-

guish. For those complex spaces our Pref-CBR framework can show an advantage over

standard CBR or other machine learning methods, since the comparisons for nearest

neighbor search and pairwise preferences rely on distance measures which allows for

spaces to have very unique structures. Our Pref-CBR framework can efficiently handle

such complex spaces, only requiring the definition of a similarity measure in the space

to implement the search. To be able to implement a good performance of the search it

is essential to define distance values that are expressive enough to properly distinguish

between different problem instances and to also properly distinguish between different

solutions. Contrary to other methods, which are typically operating on feature repre-

sentations, our framework is generic and can operate in different domains, even ones

having complex structures. In Chapter 7 we describe two applications, one including

item sets and the other including the traveling salesman problem, where we show how

our framework operates within complex solution spaces provided that a there is a good

definition of expressing similarities (distances) between solutions.

The preferences over solutions are generated by what we call an oracle. An oracle

in our framework represents an expert of some kind: a doctor, a pharmacist, a cook, a

designer, a program or a large and complex database. The idea of the oracle is that it

gives a minimum amount, yet very knowledgeable and useful information, for finding an

optimal solution to a given problem, by generating preferences over solutions. Needless

to say, queries to the oracle are expensive and accordingly we try to keep this to be

minimal. The queries to the oracle, in addition to our inference method for problem

solving, lead us to find an optimal solution for our problem at hand.

The flexibility and expressiveness of a preference-based formalism well accomodate

the uncertain and approximate nature of case-based reasoning, making a preference-

based approach to CBR seem very appealing [12]. The preference-based approach

for solving problems has been used successfully by several applications. Preference-

based navigation can be used for online information access, for electronic catalogs and

in general for e-commerce applications [60]. E-commerce recommender systems help

26

3.1 Conventional CBR vs preference-based CBR

consumers to locate products within a complex product space by using a technique

of adaptive selection which employs preference-based feedback [61]. Conversational

recommender systems often elicit feedback from the user during the recommendation

process and this feedback is used to elaborate the query of the user and thus guide

the next recommendation cycle [62]. A preference-based approach in CBR can also be

used in decision-aiding, where a decision maker should be involved to express his/her

preference to finally reach a decision [63].

Due to the attractiveness of using a preference-based approach in some domains

for problem-solving, as well as accomodating the uncertain nature of CBR, we got

the motivation to create a generic Pref-CBR problem-solving framework which can be

used in many simple or even complex domains efficiently. In this chapter, the difference

between conventional CBR and preference-based CBR is highlighted and the Pref-CBR

problem-solving framework is thoroughly explained and its benefits will be shown. The

main idea of Pref-CBR will be discussed, the case-based inference will be explained as

well as a description of how this inference is then embedded in a more general search-

based problem solving framework.

3.1 Conventional CBR vs preference-based CBR

Experience in CBR is most commonly (though not exclusively) represented in the form

of problem/solution tuples (x,y) ∈ X×Y, where x is an element from a problem space

X, and y an element from a solution space Y. Despite its generality and expressiveness,

this representation exhibits some limitations, both from a knowledge acquisition and

reuse point of view.

Preference-based CBR replaces experiences of the form “solution y (optimally)

solves problem x” by weaker information of the form “y is better (more preferred) than

z as a solution for x”, that is, by a preference between two solutions contextualized

by a problem x. More specifically, the basic “chunk of information” we consider is

symbolized in the form y �x z and suggests that, for the problem x, the solution y is

supposedly at least as good as z.

This type of knowledge representation overcomes several problems of more common

approaches to CBR. In particular, the representation of experience is less demanding:

As soon as two candidate solutions y and z have been tried as solutions for a problem

27

3. PREFERENCE-BASED CASE-BASED REASONING

Table 3.1: Notations

notation meaning

X, x problem space, problem

Y, y solution space, solution

CB case base (storing problems with preferences on solutions)

SX , ∆X similarity/distance measure on X
SY , ∆Y similarity/distance measure on Y
N(y) neighborhood of a solution y

y �x z y is better (more preferred) than z as a solution for x

P(Y) class of preference structures on Y
P(x) set of (pairwise) preferences associated with a problem

CBI case-based inference using ML estimation (see equation (3.5))

x, these two alternatives can be compared and, correspondingly, a strict preference in

favor of one of them (or an indifference) can be expressed. To this end, it is neither

required that one of these solutions is optimal, nor that their suitability is quantified

in terms of a numerical utility.

Conventional CBR systems, as stated in [54], have been mainly designed as auto-

mated problem solvers for producing a solution to a given problem by adapting the

solution to a similarly solved problem. Such systems may have limited success in real-

world applications for the following reasons:

• Existence of correct solutions: It assumes the existence of a “correct” solution

for each problem, and implicitly even its uniqueness. This assumption is often

not tenable. In the cooking domain, for example, there is definitely not a single

“correct” recipe for a vegetarian pasta meal. Instead, there will be many possible

alternatives, maybe more or less preferred by the user.

• Verification of optimality : Even if the existence of a single correct solution for each

problem could be assured, it will generally be impossible to verify the optimality

of the solution that has been produced by a CBR system. However, storing and

later on reusing a suboptimal solution y as if it were optimal for a problem x

can be misleading. This problem is less critical, though does not dissolve, if only

“acceptable” instead of optimal solutions are required.

28

3.2 Preference-based knowledge representation

• Loss of information: Storing only a single solution y for a problem x, even if

it can be guaranteed to be optimal, may come along with a potential loss of

information. In fact, during a problem solving episode, one typically tries or

at least compares several candidate solutions, and even if these solutions are

suboptimal, preferences between them may provide useful information.

• Limited guidance: From a reuse point of view, a retrieved case (x,y) only suggests

a single solution, namely y, for a query problem x0. Thus, it does not imply a

possible course of action in the case where the suggestion fails: If y is not a good

point of departure, for example since it cannot be adapted to solve x0, there is

no concrete recommendation on how to continue.

Due to these limitations, there has been a search for new paradigms for the utility

of CBR systems for decision support [54]. Making further steps in avoiding such limi-

tations, we take a first step toward developing a preference-based CBR framework. In

our search-based problem solving framework we embed a case-based inference compo-

nent, which is responsible for predicting a “contextualized” preference relation on the

solution space [12]. More specifically, it consists of inferring preferences for candidate

solutions in the context of a new problem, given knowledge about such preferences in

similar situations. In our Pref-CBR framework, case-based problem solving is formal-

ized as a search process, in which a solution space is traversed through the application

of adaptation operators, and the choice of these operators is guided by case-based

preferences.

In the following sections, there is a step by step description of the preference-based

CBR framework.

3.2 Preference-based knowledge representation

In standard CBR, the experiences are stored in the form “solution y (optimally) solves

problem x”. In preference-based CBR these experiences are replaced by information

of the form “y is better (more preferred) than z as a solution for x”. Accordingly,

the structure of the experiences we work with is symbolized in the form y �x z and

suggests that, for the problem x, the solution y is supposedly at least as good as z.

29

3. PREFERENCE-BASED CASE-BASED REASONING

To this end, it is by no means required that one of these solutions is optimal. It

is worth mentioning, however, that knowledge about the optimality of a solution y∗, if

available, can be handled, too, as it simply means that y∗ � y for all y 6= y∗. In this

sense, the conventional CBR setting can be considered as a special case of Pref-CBR.

The above idea of a preference-based approach to knowledge representation in CBR

also suggests a natural extension of the case retrieval and inference steps, that is, the

recommendation of solutions for a new query problem: Instead of just proposing a single

solution, it would be desirable to predict a ranking of several (or even all) candidate

solutions, ordered by their (estimated) degree of preference:

y1 �x y2 �x y3 �x . . . �x yn (3.1)

Obviously, the last problem mentioned above, namely the lack of guidance in the case

of a failure, can thus be overcome.

As mentioned above, our Pref-CBR framework can handle working also in complex

spaces. One such domain is the field of bioinformatics, in which structural databases

storing information about geometrical and physicochemical properties of proteins are

becoming increasingly important. Such databases can contain thousands of protein

structures, where structural information is especially important for applications in com-

putational chemistry and pharmacy, such as drug design. A functionality commonly

offered by a structural database is similarity retrieval: Given a novel protein struc-

ture with unknown function, one is interested in finding similar proteins stored in the

database. Somewhat simplified, a protein binding site or binding pocket can be thought

of as a cavity on the surface of a protein in which important physicochemical reactions

and interactions with other biomolecules are taking place, such as the binding of a small

molecule (ligand) or the formation of a complex with another protein. Needless to say,

binding sites are important targets for drug development. For that reason we will show

this application as an example describing preference-based knowledge representation in

Figure 3.1, where we can further understand the idea of preferences over solutions:

• Which solution is better? Showing two docking poses to a domain expert (chemist,

pharmacist), she might be able to easily decide which of the molecules fits better.

In this case, molecule B fits the protein more than molecule A, and that is why

B is more preferred as a solution.

30

3.2 Preference-based knowledge representation

Given a protein as a

„problem“, molecule B is

preferred as a „solution“ to

molecule A.

Figure 3.1: An Example of preference-based knowledge representation of experience

• How good is each solution? Chemist or pharmacist will find it difficult to assign

a numerical score to an individual molecule.

• What is the optimal solution? The notion of optimality is not well defined, the

space of molecules is huge and only partly known.

As we can see, this example shows how the use of preference-based CBR fits in

this scenario where standard CBR cannot be used: an expert can give a preference of

one solution over another, it is extremely difficult to give a quantitative answer and

since the solution space is very complex, it is almost impossible to specify one optimal

solution.

In order to realize an approach of that kind, a number of important questions need

to be addressed, including the following: How to represent, organize and maintain case-

based experiences, given in the form of preferences referring to a specific context, in an

efficient way? How to select and access the experiences which are most relevant in a

new problem solving situation? How to combine these experiences and exploit them to

infer a solution or, more generally, a preference order on a set of candidate solutions, for

the problem at hand? The answers to these questions will become clear as we progress

with the explanation of the development of the Pref-CBR framework in the proceeding

sections.

31

3. PREFERENCE-BASED CASE-BASED REASONING

3.3 Formal setting and notation

In the following, we assume the problem space X to be equipped with a similarity

measure SX : X × X → R+ or, equivalently, with a (reciprocal) distance measure

∆X : X×X→ R+. Thus, for any pair of problems x,x′ ∈ X, their similarity is denoted

by SX(x,x′) and their distance by ∆X(x,x′). Likewise, we assume the solution space

Y to be equipped with a similarity measure SY or, equivalently, with a (reciprocal)

distance measure ∆Y . While the assumption of a similarity measure on problems is

common in CBR, the existence of such a measure on the solution space is often not

required. However, the latter is neither less natural than the former nor more difficult

to define. In general, ∆Y (y,y′) can be thought of as a kind of adaptation cost, i.e., the

(minimum) cost that needs to be invested to transform the solution y into y′.

In Pref-CBR, problems x ∈ X are not associated with single solutions but rather

with preferences over solutions, that is, with elements from a class of preference struc-

tures P(Y) over the solution space Y. Here, we make the assumption that P(Y) is given

by the class of all weak order relations � on Y, and we denote the relation associated

with a problem x by �x; recall that, from a weak order �, a strict preference � and

an indifference ∼ are derived as follows: y � y′ iff y � y′ and y′ 6� y, and y ∼ y′ iff

y � y′ and y′ � y.

More precisely, we assume that �x has a specific form, which is defined by an “ideal”

solution y∗ ∈ Y and the distance measure ∆Y : The closer a solution y to y∗ = y∗(x),

the more it is preferred; thus, y �x y′ iff ∆Y (y,y∗) ≤ ∆Y (y′,y∗). Please note that,

when starting from an order relation �x, then the existence of an “ideal” solution is in

principle no additional assumption (since a weak order has a maximal element, at least

if the underlying space is topologically closed). Instead, the additional assumption we

make is that the order relations �x and �x′ associated with different problems x and

x′ have a common structure, which is determined by the distance measure ∆Y . In

conjunction with the regularity assumption that is commonly made in CBR, namely

that similar problems tend to have similar (ideal) solutions, this property legitimates

a preference-based version of this assumption: Similar problems are likely to induce

similar preferences over solutions.

Figure 3.2 illustrates the idea of preference-based CBR problem solving procedure

and how a set of preferences on solutions are generated by the oracle. To solve a

32

3.3 Formal setting and notation

Problem Space Solution Space

Oracle

Assumption: because

is the ideal solution for

Case Base

Figure 3.2: An example of problem-solving in Pref-CBR

case x0, similar problems are retrieved, in this example these are x1, x2, and x4.

The preferences of those nearest neighbors are used to find an initial solution for x0,

the details of this process will be explained in the proceeding sections. Having this

computed initial solution is the starting point for our oracle to come into action. The

oracle starts to generate preferences based on the idea of a solution being preferred

over another solution depending on how close it is to the ideal solution, in this example

being y∗. In our example, y4 �x0 y1 because ∆Y (y4,y
∗) ≤ ∆Y (y1,y

∗). Up to this

point, the idea now is to understand the concept of preferences on solutions and the

basis on which the preferences are created by our oracle. After each query to the oracle,

a new candidate solution is provided and at the end of the cycle of queries to the oracle

a final solution is obtained and the search process ends. The problem x0 is stored in

the case base along with its solution which consists of a set of preferences generated by

the oracle, as shown in Figure 3.2.

As seen from the example of problem-solving in Pref-CBR, after a case is solved it is

stored in the case base along with its solution which is a set of preferences over solutions

as well as a final solution. In standard CBR, after a case is solved it is stored in the

case base along with its final solution only which is a single solution. It is important

to consider that this is a major distinction between our Pref-CBR problem-solving

33

3. PREFERENCE-BASED CASE-BASED REASONING

framework and standard CBR problem-solving.

3.4 CBR as preference-guided search

Case-based reasoning and (heuristic) search can be connected in various ways. One idea

is to exploit CBR in order to enhance heuristic search, which essentially comes down

to using case-based experience to guide the search behavior [64, 65, 66]. The other way

around, the CBR process itself can be formalized as a search process, namely a traversal

of the space of potential solutions [31]. This idea is quite appealing: On the one side,

it is close to practical, human-like problem solving, which is indeed often realized as a

kind of trial-and-error process, in which a candidate solution is successively modified

and improved until a satisfactory solution is found. On the other side, this idea is also

amenable to a proper formalization and automation, since searching is what computers

are really good at; besides, heuristic search is one of the best developed subfields of AI.

Needless to say, both directions (enhancing search through CBR and formalizing

CBR as search) are not mutually exclusive and can be combined with each other. In

our approach, this is accomplished by implementing case-based problem solving as a

search process that is guided by preference information collected in previous problem

solving episodes. The type of application we have in mind is characterized by two

important properties:

• The evaluation of candidate solutions is expensive. Therefore, only relatively

few candidates can be considered in a problem solving episode before a selec-

tion is made. Typical examples include cases where an evaluation requires time-

consuming simulation studies or human intervention. In the cooking domain,

for example, the evaluation of a recipe may require its preparation and tasting.

Needless to say, this can only be done for a limited number of variations.

• The quality of candidate solutions is difficult to quantify. Therefore, instead of

asking for numerical utility degrees, we make a much weaker assumption: Feed-

back is only provided in the form of pairwise comparisons, informing about which

of two candidate solutions is preferred (for example, which of two meals tastes

better). Formally, we assume the existence of an oracle (for example, a user or a

computer program) as explained above in the introduction of the chapter. The

34

3.4 CBR as preference-guided search

aforementioned oracle, when given a problem x0 and two solutions y and z as

input, returns a preference y � z or z � y (or perhaps also an indifference y ∼ z)

as output.

We assume the solution space Y to be equipped with a topology that is defined

through a neighborhood structure: For each y ∈ Y, we denote by N(y) ⊆ Y the neigh-

borhood of this candidate solution. The neighborhood is thought of as those solutions

that can be produced through a single modification of y, i.e., by applying one of the

available adaptation operators to y (for example, adding or removing a single ingredi-

ent in a recipe). Since these operators are application-dependent, we are not going to

specify them further here.

Our case base CB stores problems xi together with a set of preferences P(xi) that

have been observed for these problems. Thus, each P(xi) is a set of preferences of the

form y �xi z. As will be explained further below, these preferences are collected while

searching for a good solution to xi.

We conceive preference-based CBR as an iterative process in which problems are

solved one by one; our current implementation of this process is described in pseudo-

code in Algorithm 1. In each problem solving episode, a good solution for a new query

problem is sought, and new experiences in the form of preferences are collected. In

what follows, we give a high-level description of a single problem solving episode (lines

5–23 of the algorithm):

• Given a new query problem x0, the K nearest neighbors1 x1, . . . ,xK of this

problem (i.e., those with smallest distance in the sense of ∆X) are retrieved from

the case base CB, together with their preference information P(x1), . . . ,P(xK).

• This information is collected in a single set of preferences P, which is considered

representative for the problem x0 and used to guide the search process (line 8).

• The search for a solution starts with a initial candidate y∗ ∈ Y chosen at random

(line 9) and iterates L times. Restricting the number of iterations of the queries

to the oracle by an upper bound L reflects our assumption that an evaluation of

a candidate solution is costly.

1As long as the case base contains less than K cases, all these cases are taken.

35

3. PREFERENCE-BASED CASE-BASED REASONING

• In each iteration, a new candidate yquery is determined and given as a query to

the oracle (line 15), i.e., the oracle is asked to compare yquery with the current

best solution y∗ (line 16). The preference reported by the oracle is memorized by

adding it to the preference set P0 = P(x0) associated with x0 (line 17), as well

as to the set P of preferences used for guiding the search process. Moreover, the

better solution is retained as the current best candidate (line 18).

• When the search stops, the current best solution y∗ is returned, and the case

(x0,P0) is added to the case base.

The preference-based guidance of the search process is realized in lines 9 and 14–15.

Here, the case-based inference method, see 3.3, (referred to as CBI in the pseudo-code)

described in Section 3.5, is used to find the most promising candidate among the neigh-

borhood of the current solution y∗ (excluding those solutions that have already been

tried). By providing information about which of these candidates will most likely con-

stitute a good solution for x0, it (hopefully) points the search into the most promising

direction. Please note that in line 15, case-based inference is not applied to the whole

set of preferences P collected so far, but only to a subset of the J preferences Pnn that

are closest (and hence most relevant) to the current search state y∗; here, the distance

between a preference y � z and a solution y∗ is defined as

∆ (y∗,y � z) = min {∆Y (y∗,y) ,∆Y (y∗, z)} , (3.2)

i.e., the preference is considered relevant if either y is close to y∗ or z is close to y∗.

This is done in order to allow for controlling the locality of the search: The smaller J ,

the less preferences are used, i.e., the more local the determination of the direction of

the search process1 becomes (by definition, CBI returns a random element from Ynn

if Pnn = ∅, i.e., if J = 0). Note that, if J = 1, then only the preference that has been

added in the last step is looked at (since this preference involves y∗, and therefore its

distance according to (3.2) is 0). Thus, search will move ahead in the same direction if

the last modification has led to an improvement, and otherwise reverse its direction. In

general, a larger J increases the bias of the search process and makes it more “inert”.

This is advantageous if the preferences coming from the neighbors of x0 are indeed

1The term “direction” is used figuratively here; if Y is not a metric space, there is not necessarily

a direction in a strictly mathematical sense.

36

3.4 CBR as preference-guided search

Algorithm 1 Pref-CBR Search(K, L, J)

Require: K = number of nearest neighbors collected in the case base

L = total number of queries to the oracle

J = number of preferences used to guide the search process

1: X0 ← list of problems to be solved B a subset of X

2: Q← [·] B empty list of performance degrees

3: CB← ∅ B initialize empty case base

4: while X0 not empty do

5: x0 ← pop first element from X0 B new problem to be solved

6: {x1, . . . ,xK} ← nearest neighbors of x0 in CB (according to ∆X)

7: {P(x1), . . . ,P(xK)} ← preferences associated with nearest neighbors

8: P← P(x1) ∪ P(x2) ∪ . . . ∪ P(xk) B combine neighbor preferences

9: y∗ ← CBI(P,Y) B select an initial candidate solution

10: Yvis ← {y∗} B candidates already visited

11: P0 ← ∅ B initialize new preferences

12: for i = 1 to L do

13: Pnn = {y(j) � z(j)}Jj=1 ← J preferences in P ∪ P0 closest to y∗

14: Ynn ← neighborhood N(y∗) of y∗ in Y \ Yvis

15: yquery ← CBI(Pnn,Ynn) B find next candidate

16: [y � z]← Oracle(x0,y
query,y∗) B check if new candidate is better

17: P0 ← P0 ∪ {y � z} B memorize preference

18: y∗ ← y B adopt the current best solution

19: Yvis ← Yvis ∪ {yquery}
20: end for

21: q ← performance of solution y∗ for problem x0

22: Q← [Q, q] B store the performance

23: CB← CB ∪ {(x0,P0)} B memorize new experience

24: end while

25: return list Q of performance degrees

37

3. PREFERENCE-BASED CASE-BASED REASONING

representative and, therefore, are pointing in the right direction. Otherwise, of course,

too much reliance on these preferences may prevent one from searching in other regions

of the solution space that might be more appropriate for x0.

Let us mention that a stochastic component can be added to our search procedure

in a quite natural way, this can be done at a later stage, as an extension to the work

finished in this thesis. To this end, the case-based inference procedure CBI simply

returns one of the candidate solutions y ∈ Ycand with a probability that is proportional

to the corresponding likelihood degrees of these solutions (instead of deterministically

choosing the solution with the highest likelihood). In the proceeding section, a detailed

description of the functionality of the case-based inference method is provided.

3.5 Case-based inference

The key idea of Pref-CBR is to exploit experience in the form of previously observed

preferences, deemed relevant for the problem at hand, in order to support the cur-

rent problem solving episode; like in standard CBR, the relevance of a preference will

typically be decided on the basis of problem similarity, i.e., those preferences will be

deemed relevant that pertain to similar problems. An important question that needs to

be answered in this connection is the following: Given a set of observed preferences on

solutions, considered representative for a problem x0, what is the underlying preference

structure �x0 or, equivalently, what is the most likely “ideal” solution y∗ for x0?

3.5.1 Case-based inference as probability estimation

We approach this problem from a statistical perspective, considering the true preference

model �x0∈ P(Y) associated with the query x0 as a random variable Z with distribu-

tion P(· |x0), where P(· |x0) is a distribution Pθ(·) parametrized by θ = θ(x0) ∈ Θ.

The problem is then to estimate this distribution or, equivalently, the parameter θ on

the basis of the information available. This information consists of a set D of preferences

of the form y � z between solutions.

The basic assumption underlying nearest neighbor estimation is that the condi-

tional probability distribution of the output given the input is (approximately) locally

constant, that is, P(· |x0) ≈ P(· |x) for x close to x0. Thus, if the above preferences

are coming from problems x similar to x0 (namely from the nearest neighbors of x0 in

38

3.5 Case-based inference

the case base), then this assumption justifies considering D as a representative sample

of Pθ(·) and, hence, estimating θ via maximum likelihood (ML) by

θML = arg max
θ∈Θ

Pθ(D) . (3.3)

An important prerequisite for putting this approach into practice is a suitable data

generating process, i.e., a process generating preferences in a stochastic way.

3.5.2 A discrete choice model

Our data generating process is based on the idea of a discrete choice model as used

in choice and decision theory [67]. Recall that the (absolute) preference for a solution

y ∈ Y supposedly depends on its distance ∆Y (y,y∗) ≥ 0 to an “ideal” solution y∗,

where ∆(y,y∗) can be seen as a “degree of suboptimality” of y. As explained in [12],

more specific assumptions on an underlying (latent) utility function on solutions justify

the logit model of discrete choice:

P(y � z) =
(

1 + exp
(
− β(∆Y (z,y∗)−∆Y (y,y∗))

))−1
(3.4)

Thus, the probability of observing the (revealed) preference y � z depends on the

degree of suboptimality of y and z, namely their respective distances to the ideal

solution, ∆Y (y,y∗) and ∆Y (z,y∗): The larger the difference ∆Y (z,y∗) −∆Y (y,y∗),

i.e., the less optimal z in comparison to y, the larger the probability to observe y � z;

if ∆Y (z,y∗) = ∆Y (y,y∗), then P(y � z) = 1/2. The coefficient β can be seen as

a measure of reliability of the preference feedback. For large β, the probability (3.4)

converges toward 0 if ∆Y (z,y∗) < ∆Y (y,y∗) and toward 1 if ∆Y (z,y∗) > ∆Y (y,y∗);

this corresponds to a deterministic (error-free) information source. The other extreme

case, namely β = 0, models a completely unreliable source reporting preferences at

random.

The graphical illustration of the probabilistic model in Figure 3.3, shows how the

probability (3.4) to observe y � y′ converges toward 0 if ∆Y (y′,y∗) < ∆Y (y,y∗) and

toward 1 if ∆Y (y′,y∗) > ∆Y (y,y∗), given precise information (high value of β). On

the contrary, given less reliable observations of the preferences (β = 0), preferences are

reported at random and the value of the probability approximately equals 0.5.

39

3. PREFERENCE-BASED CASE-BASED REASONING

1

precise observations, low
level of noise

imprecise observations, high
level of noise

Figure 3.3: A Discrete Choice Model for preferences on solutions

3.5.3 Maximum likelihood estimation

The probabilistic model outlined above is specified by two parameters: the ideal solution

y∗ and the (true) precision parameter β∗ ∈ R+. Depending on the context in which

these parameters are sought, the ideal solution might be unrestricted (i.e., any element

of Y is an eligible candidate), or it might be restricted to a certain subset Y0 ⊆ Y of

candidates.

Now, to estimate the parameter vector θ∗ = (y∗, β∗) ∈ Y0 × R∗ from a given set

D = {y(i) � z(i)}Ni=1 of observed preferences, we refer to the maximum likelihood (ML)

estimation principle. Assuming independence of the preferences, the log-likelihood of

θ = (y, β) is given by

`(θ) = `(y, β) = −
N∑
i=1

log
(

1 + exp
(
− β(∆(z(i),y)−∆(y(i),y))

))
. (3.5)

The maximum likelihood estimation (MLE) θML = (yML, βML) of θ∗ is given by the

maximizer of (3.5):

θML =
(
yML, βML

)
= arg max

y∈Y0, β∈R+

`(y, β)

It is important to note that in our search procedure, we form a neighborhood around

an initial solution y, this neighborhood can be in whichever form we choose depending

on the structure of the solution space. If we have a continuous solution space, we can

40

3.6 Conclusion

form for example a circular neighborhood or form a gaussian distribution neighborhood

around the initial solution. If the solution space is discrete then we form a neighborhood

around the initial solution which consists of candidates differing by one discrete step

from the initial solution (for an item set it would be item sets which have one item added

or one item removed, for a permutation it would be switching orders of the permutation,

etc.). Using (3.5) and our set of observed preferences D = {y(i) � z(i)}Ni=1, we compute

the likelihoods of the neighborhood candidates in the subset Y0 ⊆ Y and thus find the

solution y∗ with the maximum likelihood. The maximum likelihood solution is then our

candidate solution and we form a suitable neighborhood around it and start to ask the

oracle again. At the end of the cycle of querying the oracle, the last obtained preferred

solution is considered our best obtained solution for the problem at hand. This solution

is then stored in the case base as our optimal solution for the problem. The preferences

generated during the cycle of querying the oracle during the problem-solving episode

are also stored in the case base along with the problem for later reuse when a new

problem is solved. For simplicity we fix β and therefore we can then easily determine

our y∗.

3.6 Conclusion

In this chapter, we have presented a general framework for CBR in which experience

is represented in the form of contextualized preferences, and these preferences are used

to direct an adaptive problem solving process that is formalized as a search procedure.

This kind of preference-based CBR is an interesting alternative to conventional CBR

whenever solution quality is a matter of degree and feedback is only provided in an

indirect or qualitative way. The effectiveness of our generic framework is illustrated in

several concrete case studies, presented in Chapter 7.

The Pref-CBR framework will be generalized and extended in two directions in the

next two chapters. First, as already mentioned, the similarity (distance) measure in

the solution space has an important influence on the preference relations �x associated

with problems x ∈ X and essentially determines the structure of these relations (cf.

Section 3.3). Therefore, we show that a proper specification of this measure enhances

the effectiveness of our preference-guided search procedure. Accordingly, it would be

desirable to allow for a data-driven adaptation of this measure, that is, to enable

41

3. PREFERENCE-BASED CASE-BASED REASONING

the CBR system to adapt this measure whenever it does not seem to be optimal. We

propose a method for learning similarity measures in the solution space from qualitative

feedback, which appears to be ideally suited for this purpose. For further optimizing

the performance of our Pref-CBR framework, we also propose another method for

learning similarity measures in the problem space by learning from examples. The

aforementioned methods are described in detail in the next chapter.

As the number of preferences collected over the course of time may become rather

large, we also develop effective methods for case base maintenance, which specifically

suit the Pref-CBR framework. We propose some case base maintenance strategies which

allow us to increase the efficiency of the case base while maintaining its performance.

We propose two directions of case base maintenance strategies, inter-case maintenance

and intra-case maintenance. The former maintenance methods handle whole cases,

while the latter methods handle preferences (parts of cases). In Chapter 5, we will

describe some case base maintenance strategies which specifically suit our framework

and enhance its efficiency.

After describing in detail how our Pref-CBR framework operates, we will learn

how the integrated components of learning similarity measures as well as the case base

maintenance strategies are embedded in the framework. We will also show how they

affect the performance and efficiency of the whole system. We will also look at other

methods and see how they are similar or different from our framework. In Chapter 6,

we discuss some methodologies which are related to our Pref-CBR framework. These

methodologies include different search methods and some machine learning approaches.

We compare the different approaches with our Pref-CBR framework, discuss the sim-

ilarities and the differences and convey the position in which our approach is situated

amongst the other approaches which are related to ours.

42

4

Learning Similarity Measures in

Pref-CBR

In our Pref-CBR framework, case-based problem solving is formalized as a preference-

guided search process in the space of candidate solutions, which is equipped with a

similarity (or, equivalently, a distance) measure. A well-defined similarity measure is

crucial for the optimal performance of a case-based reasoning system. In preference-

based CBR, the preferences induced during the search procedure can be used to learn

the similarity measures and thus lead to improved search performance.

Like many other CBR approaches, Pref-CBR proceeds from a formal framework

consisting of a problem space X and a solution space Y. Yet, somewhat less common,

it assumes a similarity (or distance) measure to be defined not only on X but also

on Y. Moreover, it assumes a strong connection between the notions of preference

and similarity. More specifically, for each problem x ∈ X, it assumes the existence

of a theoretically ideal solution y∗ ∈ Y (even if this solution might be fictitious and

cannot be materialized), and the less another solution y differs from y∗ in the sense of

a distance measure ∆Y , the more this solution is preferred.

As a consequence, the performance and effectiveness of Pref-CBR is strongly in-

fluenced by the distance measure ∆Y : The better this measure captures the true dif-

ferences between solutions, the more effective Pref-CBR will be. In this chapter, we

therefore extend our framework through the integration of a distance learning module.

Thus, the idea is to make use of the experience collected in a problem solving episode,

not only to extend the case base through memorization of preferences, but also to adapt

43

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

the distance measure ∆Y . Since the efficacy of Pref-CBR is influenced by the adequacy

of this measure, we propose a learning method for adapting solution similarity on the

basis of experience gathered by the CBR system over the course of time. More specifi-

cally, our solution similarity learning method makes use of an underlying probabilistic

model and realizes adaptation as Bayesian inference.

The importance of distance metric learning in optimizing the performance of many

learning and data mining algorithms has been mentioned in the work of [68]. An

important challenge we had to consider in formalizing our learning method, is the

incorporation of prior information of paired comparisons [69] through our search pro-

cedure. Existing approaches for learning distance metrics from pairwise comparisons

suffer from either being unreliable when the number of training examples is small [68],

or these methods often use ad-hoc algorithms with little or no formal basis [69]. Due

to these factors, the Bayesian approach is our method for learning similarity measures

in the solution space. Our aim is to implement a formal and accurate learning method,

which actively uses prior as well as current preference information to yield a posterior

distribution that increases the probability of choosing an optimal solution for a current

problem at hand.

To further optimize the performance of our Pref-CBR framework, we pursue learn-

ing similarity measures also in the problem space. We use the well-known perceptron

algorithm to combine given local similarity measures and learn how to combine them

into a global measure. This method elicits global similarity measures on the basis of

feedback in the form of positive and negative examples to be used for learning. We learn

the similarity measures from qualitative feedback: given a reference case and two cases

to compare with, we see which of these two cases is more similar to the reference case.

The general idea of this approach basically reduces the problem of distance learning to

a binary classification problem.

4.1 Learning similarity measures in the solution space

The learning and adaptation of similarity or distance measures has been studied inten-

sively in the literature, not only in CBR but also in related fields like machine learning.

Yet, our approach has a number of properties that distinguish it from most others:

similarity is learned in the solution space, not only in the problem space; training

44

4.1 Learning similarity measures in the solution space

information is purely qualitative and based on paired comparisons. Learning is done

within the framework of Bayesian inference, making use of a probabilistic model. In this

section, we will explain in further detail our proposed method for learning similarity

measures in the solution space.

4.1.1 Related work

In this subsection, we will mention previous work on emphasizing the importance of

learning similarity metrics on the performance of a system, introducing the Bayesian

approach for learning in different applications. Some work is also mentioned about using

preferences for learning of similarity measures as well as how interest was initiated for

learning similarity measures in the solution space and not exclusively in the problem

space. In our framework, we use our generated preferences in the Bayesian approach

for learning the similarity metrics in the solution space and we also show the efficacy of

learning on the search performance. Thus we find it important to discuss some previous

work on all these different aspects.

Considering the importance of the concept of similarity in CBR, much work has been

done in learning how to improve a CBR system’s performance by focusing more deeply

on this similarity concept and learning its metrics. In practice, similarity measures

are used to compute the similarity between queries and cases and thus their basic task

is namely the retrieval of useful cases [70]. As the evaluated similarity values reflect

the utility or the appropriateness of solutions of the known cases, they offer important

information to be utilized in the next step of the choice for a solution for the problem

in query [71]. In other words, since CBR systems retrieve cases using a similarity

function, there is a degradation in the precision of this similarity function when there

are irrelevant features or if the data is noisy and unreliable [72]. It is then useful to

identify as much of the irrelevant information as possible by local feature selection or

weighting methods. It follows then to say that if a correct classification occurs then the

weights of the matching features are incremented, while those of mismatching features

are decremented of the new query, by a fixed amount [73]; in our framework we can

say if a correct choice of a solution is made (one that complies with the choice of the

oracle) then the weights of the matching local features are incremented while those of

mismatching local features are decremented.

45

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

Appropriate metrics are also essential for the performance of distance-based meth-

ods such as nearest neighbor estimation, which are used for classification, regression,

and related problems. Metric learning has therefore been studied quite intensively in

machine learning and pattern recognition. While Mahalanobis distance metric learning

has received specific attention in this regard, more involved problems such as nonlin-

ear metric learning, local metric learning, semi-supervised metric learning, and metric

learning for structured data have been tackled more recently. We refer to [74] for a

comprehensive and up-to-date survey of the metric learning literature.

The idea of the formulation of a Bayesian approach for learning from paired com-

parisons has been previously introduced in [75]. The Bayesian method has also been

used for example in optimizing pairing methods, to be used in the design of tournament

schedules for players of games and sports [69]. Similar to the work discussed on pref-

erence elicitation, the authors in [76] propose using a Bayesian model for the querying

process to learn control policies through trajectory preference queries to an expert.

A common criterion between this previously mentioned work and ours, is the goal of

finding an optimal target policy (in our case an optimal solution) from the expert with

as few queries as possible. A Bayesian approach to distance metric learning has also

been proposed in [77]. Here, the authors estimate a posterior distribution for the dis-

tance metric from labeled pairwise constraints, namely equivalence constraints (pairs

of similar objects) and inequivalence constraints (pairs of dissimilar objects). Worth

mentioning is also the Bayesian approach to preference elicitation by [78]. Although it

is concerned with utility instead of distance learning, the authors proceed from training

information in the form of paired comparisons, and assume preferences to be generated

by the Bradley-Terry model. Their model is still a bit simpler than our model (4.2)

and permits the derivation of closed-form Bayesian updates (using a suitable family of

conjugate priors).

Using preferences for learning similarity metrics has been discussed in [79]; the

dissimilarities between preferences are measured using Kemeny distance, allowing for

quantifying disagreements according to where they occur in preferences. It is worthy

to note that the preferences which are measured in the latter work are in the form of

triplets, as well as being strict. Learning similarity measures on preference structures

has also been pursued in various setups. In [80], the authors try to predict a user’s pref-

erences from other users’ preferences by defining some distance measure on preference

46

4.1 Learning similarity measures in the solution space

orders. In their work, after getting some preferences from the new user, the defined

distance measures are applied to retrieve the closest matching preference structure to

the current user regardless of the order of questions.

Similar to the idea of rescaling or re-weighting the input space relative to the ob-

served user’s preferences on plans in the work of [81], in our work we aim to rescale

or re-weight the output space relative to the observed preferences of the users as we

progress with our search process. This should lead to an improved search performance

as the case base grows and accordingly lead to reaching an optimal solution faster. In

our Pref-CBR framework, we use contextual partial pairwise preferences to learn our

similarity measures from qualitative feedback. Continuing on the work of [17], we got

the motivation to use a method that learns how to combine given local similarity mea-

sures into a global one within our Pref-CBR framework; given qualitative feedback in

the form of similarity comparisons, we try to learn the underlying similarity (distance)

measure by developing a machine learning approach for similarity assessment in the

solution space.

Similarity learning in CBR has almost exclusively focused on learning similarity

in the problem space. This is also true for the work of Stahl [70, 82, 83, 84], which

nevertheless share a number of commonalities with our approach. In particular, he also

considers the learning of weights in a linear combination of local similarity functions

[82, 85], albeit based on different types of training information and using other learning

techniques. Although defining adequate similarity measures is one of the most crucial

tasks when developing CBR applications, it is a difficult task and, unfortunately, it has

been supported by a limited number of machine learning techniques [82]. In addition to

choosing and maintaining an appropriate set of feature weights in a case base, it should

also be considered that accordingly, the relative importance of the cases is changing

with time [86]. Therefore, we also have the aim to use a learning method that is able to

cope with the continuous evolution of a case base and accordingly, adjust the feature

weights as the case base grows.

As we have mentioned before, our framework has the advantage over other methods

of working with more complex structures of problem/solution spaces. As an example,

let us assume we have our solutions composed of features, but of different concepts

such as time, cost and location. The time could consist of two features (initial and

final), our cost of two features (running cost and profit) and our location consisting of

47

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

three features (coordinates). We can say that we have in general for this example three

independent concepts, which we can choose to be our similarity measures between the

different solutions. Let us now assume that we defined three features for measuring

similarity (or distance) between solutions, each of these three features would be the

absolute value of differences of one group. Using the Bayesian learning method now

allows for learning from the generated preferences how to balance between these three

independent concepts, as well as recognizing which concept is more important and

adjusting the weights of each of these concepts according to its significance deduced

from the oracle. After reading the rest of this section, it will become more clear how

the Bayesian learning method is implemented and how it supports our model which

can handle simple as well as complex spaces.

4.1.2 Pref-CBR formal framework for learning similarity measures

Recalling from the previous chapter, we assume the problem space X to be equipped

with a similarity measure SX : X×X→ R+ or, equivalently, with a (reciprocal) distance

measure ∆X : X× X→ R+. Thus, for any pair of problems x,x′ ∈ X, their similarity

is denoted by SX(x,x′) and their distance by ∆X(x,x′). Likewise, we assume the

solution space Y to be equipped with a similarity measure SY or, equivalently, with a

(reciprocal) distance measure ∆Y .

In general, ∆Y (y,y′) can be thought of as a kind of adaptation cost, i.e., the

(minimum) cost that needs to be invested to transform the solution y into y′. As will

become clear later on, our framework suggests a natural connection between distance

and similarity, which involves a parameter β ≥ 0 and is of the following form:

SY (y,y′) = exp
(
− β ·∆Y (y,y′)

)
∈ (0, 1] (4.1)

Recall also that the (absolute) preference for a solution y ∈ Y supposedly depends

on its distance ∆Y (y,y∗) ≥ 0 to an ideal solution y∗, where ∆Y (y,y∗) can be seen as

a “degree of suboptimality” of y.

More specific assumptions on an underlying (latent) utility function on solutions

justify the logit model of discrete choice, explained in detail in Chapter 3:

P(y � z) = P(y � z |y∗) =
SY (y,y∗)

SY (y,y∗) + SY (z,y∗)
, (4.2)

48

4.1 Learning similarity measures in the solution space

Algorithm 2 Pref-CBR Search(K, J)

Require: K = number of nearest neighbors collected in the case base

J = number of preferences used to guide the search process

1: X0 ← list of problems to be solved B a subset of X

2: Q← [·] B empty list of performance degrees

3: CB← ∅ B initialize empty case base

4: while X0 not empty do

5: x0 ← pop first element from X0 B new problem to be solved

6: {x1, . . . ,xK} ← nearest neighbors of x0 in CB (according to ∆X)

7: {P(x1), . . . ,P(xK)} ← preferences associated with nearest neighbors

8: P← P(x1) ∪ P(x2) ∪ . . . ∪ P(xk) B combine neighbor preferences

9: y• ← CBI(P,Y) B select an initial candidate solution

10: Yvis ← {y•} B candidates already visited

11: P0 ← ∅ B initialize new preferences

12: repeat

13: Pnn = {y(j) � z(j)}Jj=1 ← J preferences in P ∪ P0 closest to y•

14: Ynn ← neighborhood N(y•) of y• in Y \ Yvis

15: yquery ← CBI(Pnn,Ynn) B find next candidate

16: [y � z]← Oracle(x0,y
query,y•) B check if new candidate is better

17: P0 ← P0 ∪ {y � z} B memorize preference

18: y• ← y B adopt the current best solution

19: Yvis ← Yvis ∪ {yquery}
20: until convergence

21: q ← performance of solution y• for problem x0

22: Q← [Q, q] B store the performance

23: CB← CB ∪ {(x0,P0)} B memorize new experience

24: Adapt distance measure ∆Y

25: end while

26: return list Q of performance degrees

49

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

where SY (y,y∗), which is defined as

SY (y,y∗) = exp
(
− β ·∆Y (y,y∗)

)
according to (4.1), can be seen as the degree to which y resembles the ideal solution

y∗; likewise, SY (z,y∗) is the degree to which z is close to ideal. Thus, the probability

of observing the (revealed) preference y � z depends on the degree of optimality of y

and z, namely their respective closeness to the ideal solution: The less optimal z in

comparison to y, the larger the probability to observe y � z; if ∆Y (z,y∗) = ∆Y (y,y∗),

then P(y � z) = 1/2.

4.1.3 Distance learning of the solutions in Pref-CBR

This section is devoted to the main extension of our Pref-CBR framework, namely the

distance adaptation component in line 24 of Algorithm 2. In our framework, we as-

sume preference information to be produced according to the probabilistic model (4.2).

Therefore, it is natural to approach the distance learning problem from a probabilistic

point of view. Correspondingly, we shall propose a Bayesian method to tackle this

problem.

4.1.3.1 A local-global representation of distance

We begin with a simplifying assumption on the structure of the distance measure ∆Y ,

namely that it adheres to the local-global principle [87] and takes the form

∆Y (y,y∗) =

k∑
i=1

αi ·∆i(y,y
∗) , (4.3)

where ∆1, . . . ,∆k are local distances pertaining to different properties of solutions, and

α = (α1, . . . , αk) is a partition of unity (i.e., the coefficients αi are non-negative and

sum up to 1). We assume the ∆i to be known, whereas the αi, which are modeling the

importance of the local distances, are supposed to be unknown. Learning the distance

measure (4.3) is thus equivalent to learning these parameters.

50

4.1 Learning similarity measures in the solution space

4.1.3.2 Bayesian distance learning

Adopting the above representation of the distance measure ∆Y , our choice model (4.2)

is now given by

P(y � z) =
SY (y,y∗)

SY (y,y∗) + SY (z,y∗)
(4.4)

with

SY (y,y∗) = exp

(
−

k∑
i=1

γi ·∆i(y,y
∗)

)
(4.5)

and γi = β · αi ≥ 0. Thus, learning γ = (γ1, . . . , γk) means learning β and α simulta-

neously. In fact, these parameters can be recovered from γ as follows:

β = γ1 + γ2 + . . .+ γk

αi = γi/β

For simplicity, suppose that γ = (γ1, . . . , γk) only assumes to take values from a finite

(or at least countable) set Γ ⊂ Rk+; this allows us to work with probability distributions

instead of density functions. For example, Γ could be a suitable discretization of a

continuous domain, such as a grid on a hypercube.

Since the true γ (used by the oracle) is assumed to be unknown, we model our belief

about the parameters γi in (4.5) in the form of a probability distribution

P : Γ→ [0, 1] ,

i.e., for each vector γ ∈ Γ, P(γ) denotes the prior probability of that vector. Unless

specific (prior) knowledge is available, this probability can be initialized by the uniform

distribution over Γ.

Now, suppose a preference p = [y � z |y∗] to be revealed by the oracle, recalling

that y∗ is unknown and that each preference given by the oracle hints at it. Since the

oracle is supposed to generate preferences according to (4.4), this observation provides

a hint at the true value of γ. More specifically, it can be used for performing a Bayesian

inference step to update our belief about γ:

P(γ | p) =
P(p |γ)P(γ)

P(p)
, (4.6)

where P(p |γ) is given by (4.4). Concretely, this means realizing the following update

for each γ ∈ Γ:

P(γ) ← 1

C
·P(γ) ·P(p |γ) ,

51

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

where P(p |γ) = P(y � z) is given by (4.4) and C is a normalizing constant assuring

that the (posterior) probability degrees sum up to 1. To the best of our knowledge,

there is no parametrized family of distributions that is conjugate with (4.4), so that

the posterior (4.6) needs to be computed numerically.

4.1.3.3 Integration with Pref-CBR search

As mentioned before, the adaptation of ∆Y as outlined above is integrated in our Pref-

CBR search procedure in line 24 of Algorithm 2. Thus, the idea is to update the belief

about γ (and hence about ∆Y , which is uniquely determined by this parameter) after

each problem solving episode, making use of the newly observed preferences. Here is a

summary of the main steps:

• Suppose our current belief about γ to be specified in the form of a probability P

on Γ; in the beginning, this could be the uniform distribution, for example.

• In a single problem solving episode (lines 5–23 of Algorithm 2), Pref-CBR Search

is used to solve a new problem x0. This requires a concrete distance ∆Y , and

therefore a concrete parameter vector γ, which is used to “mimic” the (ground-

truth) similarity measure of the oracle. To this end, we can reasonably choose

the expectation according to our current distribution, which is considered as our

current “best guess” of the true vector:1

γ̂ =
1

|Γ|
∑
γ∈Γ

γ ·P(γ) (4.7)

Using the distance measure (4.3) and choice model (4.4) parameterized by γ̂ or,

more specifically, the induced parameters

β̂ = γ̂1 + . . .+ γ̂k , (4.8)

α̂i = γ̂i/β̂ , (4.9)

the Pref-CBR search procedure is performed as usual.

• Upon termination of a problem solving episode (line 20 of Algorithm 2), Pref-

CBR Search yields a solution y•, which is not necessarily the truly ideal solution

1An alternative would be to choose the mode of the distribution instead of the mean.

52

4.1 Learning similarity measures in the solution space

y∗ but at least an approximation thereof. Moreover, Pref-CBR Search returns a

set of preferences P0 that have been collected during the search process. These

preferences can now be used for updating our belief about γ.1 To this end, the

adaptation (4.6) is carried out for each of the preferences in P0. More specifically,

for each preference y � z observed in the last episode, a learning step is carried

out with [y � z |y•].

It is important to note that contextualizing an observed preference y � z by y•

instead of y∗ makes our distance learning method approximate and may possibly affect

its efficacy. In fact, since preferences of the form p̂ = [y � z |y•] can be seen as “noisy”

versions of the true preferences p = [y � z |y∗], our method is actually learning from

noisy data. We shall return to this issue in the experimental subsection further below.

4.1.4 Synthetic data illustration

To illustrate our Bayesian approach to distance learning, independently of its use within

the Pref-CBR framework, we conducted some very simple experiments for the case

Y = [0, 1]2, ∆1(y,y′) = |y1 − y′1|, ∆2(y,y′) = |y2 − y′2|, and α = (α1, α2). For

simplicity, we also assumed β to be known and only learned α.

To this end, we generated triplets (y, z,y∗) ⊂ Y uniformly at random and derived

exemplary preferences [y � z |y∗] or [z � y |y∗] according to our probabilistic model

(4.2). Starting with a uniform prior on the simplex {(α1, α2) |α1, α2 ≥ 0, α1 +α2 = 1},
N updates (4.6) were realized based on N random preferences of that kind.

Figure 4.1 shows typical examples of the marginal distributions for α1 after N = 50,

N = 200 and N = 500 examples. As expected, the distributions are fluctuating

around the true value of α1 (here taken as 0.3) and become more and more peaked

with increasing N . Moreover, comparing the distributions on the left and the right

panel, it can be seen that learning becomes easier for larger values of β: for β = 5, the

distributions are less peaked than for β = 10. Since β reflects the reliability of the oracle,

this is again in agreement with our expectation. The same effect can also be observed

in Figure 4.2 (left), which shows the boxplots for the mean value estimator (4.9); 100

of such estimators were derived from distributions for N = 100 and different values of

1In principle, this set of preferences can be enriched further, assuming that each solution adopted

in a later stage of the search process is preferred to each earlier solution.

53

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

value of α
1

p
ro

b
a

b
ili

ty

0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

value of α
1

p
ro

b
a

b
ili

ty

Figure 4.1: Probability distributions for the parameter α1 after N = 50, N = 200 and

N = 500 examples, with β = 5 (left) and β = 10 (right).

β. Again, the larger β, the more precise the estimate of α1 (and correspondingly of

α2).

As explained above, our Pref-CBR framework only produces an estimate y• of the

ideal solution y∗. Therefore, our distance learning method is based on preferences

[y � z |y•] that can be seen as “noisy” versions of the true preferences [y � z |y∗].
To simulate this property, we generated triplets (y, z,y∗) ⊂ Y as above and set y• =

y∗ + (ε1, ε2)>, where ε1 and ε2 are normally distributed random variables with mean 0

and standard deviation σ. The observed preference (either y � z or z � y) was then

generated with our model (4.2) using the true y∗, while distance learning was done

using this model with the estimate y•.

The effect of learning from noisy examples can be seen in Figure 4.2 (right), where

we again show boxplots for the mean value estimator (4.9) based on 100 repetitions of

the learning procedure with N = 100. As can be seen, the noise level σ does not seem

to have a strong influence on the variance of the estimation. What is notable, however,

is an apparent bias of the estimate: The larger σ, the more the estimates of α1 are

moving away from the true value 0.3 toward 0.5. Although this result cannot easily be

generalized beyond the specific setting of our experiment, a tendency toward uniform

weights of the α-coefficients (i.e., α1 = α2 = 0.5 in our case) is plausible: The more

y• deviates from y∗, the more noisy the examples will be for our distance learner—in

the limit, they will become purely random, and on average, all local distances ∆i will

seemingly have the same influence then.

54

4.2 Learning similarity measures in the problem space

5 10 20

0.1

0.2

0.3

0.4

0.5

β = 5 β = 10 β = 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3

σ = 0.5 σ = 0.25 σ = 0

Figure 4.2: Boxplots for the mean value estimate of α1. Left: Different values of the

precision parameter β. Right: Different levels of noise in the estimate y•.

4.2 Learning similarity measures in the problem space

To further improve search performance of our Pref-CBR framework, we extend the

learning of similarity measures also for the problem space. Our inference method which

we use in our framework, allowed us to have a sound theoretical basis on which we used

the Bayesian method for learning similarity measures in the solution space; in the prob-

lem space we do not have this theoretical basis. Therefore, we propose another learning

method for our problem space, which learns how to combine given local similarity mea-

sures into a global one, and breaks down the learning problem into a binary classification

problem. We choose to use the perceptron algorithm for the learning, where positive

and negative examples for the perceptron learning are created in a way to fit and in-

tegrate with our framework. It is to be noted that we use a “noise-tolerant”, robust

version of the perceptron in our framework, the SoftDoubleMaxMinOver perceptron

[88].

4.2.1 Related work

The learning of similarity measures of the problems has been tackled by previous work,

some of which we will briefly recall. Learning weights in a linear combination of lo-

cal similarity functions has been considered in the work of [82]. Stahl and Gabel in

[85] also address learning local similarity measures by proposing evolutionary optimiza-

tion techniques for adaptation. Feature weighing and selection methods using k-NN

classification have also been addressed by other authors [89, 90, 91]. Earlier work on

55

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

comparing feature weighting methods has been also discussed by [92]. Feature weighing

methods in machine learning have also been proposed by the research of [93, 94].

The work which resembles most our proposed method, is the one discussed by [17].

The authors use machine learning methods to elicit global similarity measures on the

basis of feedback in the form of examples (preferences). In the former work and in ours,

we use qualitative feedback to create the examples for learning: given a reference case

and two cases to compare with, we use qualitative information about which of these

two cases is more similar to the reference case. Essentially, this is what Stahl in [70]

refers to as relative case utility feedback.

4.2.2 Distance learning of the problems in Pref-CBR

Following our assumption, the problem space X is equipped with a similarity measure

SX : X×X→ R+, to be linked to a (reciprocal) distance measure ∆X : X×X→ R+.

Thus, for any pair of problems x,x′ ∈ X, their similarity is denoted by SX(x,x′) and

their distance by ∆X(x,x′). We will propose the perceptron algorithm for learning by

examples.

4.2.2.1 A local-global representation of distance

We assume the existence of d local distance measures

∆X : X× X→ R+ (i = 1 . . . d). (4.10)

For each pair of cases x,x′ ∈ X, ∆X(x,x′) ∈ R+ is a measure of the distance between

these cases with respect to a certain aspect.

According to the local–global principle, the (global) distance between two cases can

be obtained as an aggregation of the local distance measures (4.10):

∆X(x,x′) = AGO
(

∆X1(x,x′),∆X2(x,x′) . . .∆Xd(x,x
′)
)
, (4.11)

where AGO is a suitable aggregation operator. As a special case, consider a represen-

tation of cases in terms of d-dimensional feature vectors

x = (x1, x2 . . . xd) ∈ X1 × X2 × . . .× Xd, (4.12)

56

4.2 Learning similarity measures in the problem space

where Xi is the domain of the i-th attribute Xi. X is then given by the Cartesian

product of these domains, X1 ×X2 × . . .×Xd, and the local distances are of the form

∆Xi : Xi × Xi → R+, (4.13)

i.e., ∆Xi(xi, x
′
i) assigns a distance to each pair of attributes (xi, x

′
i) ∈ Xi×Xi; obviously,

(4.13) is a special case of (4.10).

4.2.2.2 Perceptron distance learning

In our work, we use a simple aggregation operator which is a linear combination:

∆X(x,x′) =

d∑
i=1

wi ·∆Xi(x,x
′). (4.14)

For model interpretation we require non-negative weights

w = (w1 . . . wd) ≥ 0 (4.15)

in order to guarantee the monotonicity of the distance measure (4.11). That is, if a

local distance increases, the global distance cannot decrease.

In addition to the simplicity of the linear model (4.14), its interpretation of a weight

wi corresponds directly to the importance of a local measure, where
∑d

i=1wi = 1. In

principle, it thus also allows one to incorporate additional background knowledge in a

convenient way, e.g., that attribute xi is at least as important as attribute xj (wi ≥ wj).
Finally, the linear model is attractive from a machine learning point of view, as it is

considered to be easily determined by learning algorithms.

For optimal performance of any CBR system, there exists the need for efficiently

choosing nearest neighbors. The learned weights directly have an influence on the

choice of cases during the k nearest neighbors’ retrieval, thus leading to an improved

performance. Accordingly, the training information to be given as input to our learner

is of the following form: case x0 is more similar to x1 than to x2. Given a set of

training data for the learner, in the form of: case x0 is more similar to case x1 than

to case x2, we start to define our learning problem. The basic learning problem is to

find a distance function (4.14), which is as much as possible in agreement with these

constraints and also satisfies the monotonicity property (4.15). We reduce the above

learning problem to a binary classification problem.

57

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

Due to the assumption of a linear distance model, it is then plausible to state: The

inequality ∆X(x0,x1) < ∆(x0,x2) required by a constraint (x0,x1,x2) is equivalent

to

〈w, t〉 =
d∑
i=1

wi · ti > 0,

where ti
df
= ∆Xi(x0,x2) − ∆Xi(x0,x1). From a classification point of view, t =

T (x0,x1,x2) = (t1 . . . td) is hence a positive example and −t a negative one. That is,

a similarity constraint (x0,x1,x2) can be transformed into two examples (t,+1) and

(−t,−1) for binary classification learning.

Moreover, the vector t = (t1 . . . td) defines the distance function (4.14). It is note-

worthy to say that the well-known perceptron algorithm is an error-driven on-line al-

gorithm that adapts the weight vector w in an incremental way. To guarantee mono-

tonicity, we simply modify this algorithm as follows: Each time an adaptation of w

produces a negative component wi < 0, this component is set to 0. In this way, the

original adaptation is replaced by a “thresholded” adaptation.

In its basic form, the perceptron algorithm provably converges after a finite number

of iterations, provided the data is linearly separable. As we mentioned, the specific

perceptron we use in our framework, from [88], provides maximum margin classifier

and converges without a bias and thus yields more reliable weights. A pseudo-code

of the DoubleMaxMinOver perceptron algorithm that we used is shown in Figure 4.3,

where wTxi is the weight vector transposed times the i-th instance vector of x. The

result of this product is a simple number; if it is negative, the instance is at the left side

of the decision boundary (described by weight vector w), and if the product is positive

then it is on the right side of the boundary. Accordingly, if the weight is properly chosen,

all positive instance categories are on the positive side and all negative categories are

on the negative side. The algorithm shown in Figure 4.3 adjusts the classification

boundary w in such a way as to maximize the margin to both class instances even if

data is not linearly separable by such a classification boundary, and it converges after

a finite number of iterations.

4.2.2.3 Integration with Pref-CBR search

The adaptation of ∆X as outlined above, is integrated in our Pref-CBR search procedure

directly following line 24 of Algorithm 2. The adaptation of w (and hence about ∆X ,

58

4.2 Learning similarity measures in the problem space

Figure 4.3: SoftDoubleMaxMinOver perceptron algorithm

which is uniquely determined by this parameter) occurs after each problem solving

episode. Here is a summary of the main steps:

• In the beginning we set equal weights w = (1
d , ...,

1
d), for a d-dimensional feature

vector of a problem x.

• In a single problem solving episode (lines 5–23 of Algorithm 2), Pref-CBR Search

is used to solve a new problem x0. This requires a concrete distance ∆X , and

therefore a concrete parameter vector w, which is used for k NN retrieval. This

parameter vector is an estimate of the learning, given previously solved problems.

The current problem is the reference, and it is compared with two previously

solved problems for obtaining similarity information for the perceptron learner.

• Following the CBR assumption and our Pref-CBR framework, we check our solved

problems in the case base with our current case, to form our examples for the

perceptron learner. Using the distance measure (4.14) and the inequality

〈w, t〉 =
d∑
i=1

wi · ti > 0,

where ti
df
= ∆Xi(x0,x2) − ∆Xi(x0,x1). Thus in addition to x1 and x2, we

can form our perceptron training examples from the rest of the solved cases

accordingly.

59

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

• The class of the collected training examples is assigned by the following procedure:

Referring to the likelihood function in Chapter 3, we compare the probability of

the preferences P1 with the probability of the preferences P2 under associated

(ML) parameters (y•0, β).

If distances of problems

∆X(x0,x1) < ∆X(x0,x2) (4.16)

which means if the case x1 is closer (more similar) to the case x0 than the case

x2, and these distances are in accordance with the likelihood of their preferred

solutions

`(y•0, β |P1) > `(y•0, β |P2) (4.17)

where P1 is the set of preferences over solutions of x1 and P2 the set of preferences

over solutions of x2 and y0 is the best found solution of P0, then

ti
df
= ∆Xi(x0,x2)−∆Xi(x0,x1) (4.18)

is a positive example, else ti is a negative example. To further explain the gen-

eration of examples let us note that for one case to be closer to the current case

than a third case should indicate that the solution of the closer case, thus its

preferences over solutions, should also be closer to the preference over solutions

of the current case than the third case. In other words, if we check for how likely

we obtain the final solution y0 for case x0 from the generated preferences of the

closer case x1, we should be getting a higher likelihood than from the generated

preferences of the farther away case x2. If that is the case then we can consider

that 4.18 is a positive example. If we get a higher likelihood for solution y0 from

the generated preferences of the case x2, then we consider 4.18 to be a negative

example.

• Upon termination of line 23 of Algorithm 2, and after collecting the formed exam-

ples for the perceptron learner and running the perceptron, we adapt the distance

measure ∆X . The Pref-CBR search procedure is performed as usual for the new

problem, using the updated parameter vector w for k NN retrieval.

60

4.3 Conclusion

4.3 Conclusion

In this chapter we proposed two methods for learning similarity measures: the Bayesian

approach for the solution space metrics’ learning and the perceptron algorithm for the

problem space metrics’ learning. We described in detail how each approach is imple-

mented and integrated within our Pref-CBR problem-solving framework. These learn-

ing measures improve the performance of the problem solving process and illustrations

showing the efficacy of the explained methods are shown in Chapter 7.

61

4. LEARNING SIMILARITY MEASURES IN PREF-CBR

62

5

Case Base Maintenance in

Pref-CBR

In preference-based CBR (Pref-CBR), as we have stated in Chapter 3, problem solving

experience is represented in the form of contextualized preferences, namely, preferences

between candidate solutions in the context of a target problem to be solved. In each

step, the current best solution y is compared with another, slightly modified/adapted

solution z, and the better one is retained. Since a single comparison is assumed to

be costly, the number of adaptation steps is limited. Nevertheless, each step gives

rise to a piece of information y �x z. Therefore, a single case eventually consists of

a problem x together with a set of (pairwise) preferences over solutions (instead of

merely a single solution, like in conventional CBR). Since a potentially large number

of such preferences can be collected during the course of each problem solving episode,

case base maintenance clearly becomes an issue in Pref-CBR.

It is clear that simply storing each encountered problem along with a set of associ-

ated preferences is not advisable, especially since a case base of that type may quickly

become too large and hamper efficient case retrieval; besides, many of the preferences

collected in a problem solving episode will be redundant to some extent. In CBR, this

problem has been addressed by methods for case base maintenance [19]. Such methods

seek to maintain the problem solving competence of a case base by applying some case

base editing strategies, including the removal of misleading (noisy) or redundant cases.

Case base maintenance (CBM) proved essential to guarantee the efficiency and perfor-

mance of CBR systems. According to the aforesaid about preferences being collected

63

5. CASE BASE MAINTENANCE IN PREF-CBR

in the case base over time, it might be even more critical for preference-based than for

conventional CBR to apply case base maintenance.

In this chapter, we therefore address the problem of case base maintenance and ex-

tend our Pref-CBR framework by another component, namely, a method for dynamic

case base maintenance. This method consists of four strategies, two of the strategies

come under whole case deletion, and the other two under partial case deletion from the

case base. The main goal of these strategies is to increase efficiency of case-based prob-

lem solving, by reducing the size of the case base, while maintaining its performance.

Despite being inspired by existing CBM techniques for conventional CBR, our strate-

gies are specifically tailored to our framework and exploit properties of the underlying

preference-based representation of problem solving experience.

5.1 Related work

The growing demand for case-base maintenance of CBR systems has led to intensive

research on examining different aspects concentrating on maintaining the case base,

while retaining its competence [95, 96]. This is also our goal for the strategies we

propose in this chapter. There are several approaches to case base maintenance: fo-

cusing on choosing noisy or redundant cases based on their utility degree, competence

contributions, their effect on overall performance or on their influence of providing

adaptation for new problems to be solved. The work mentioned below provides briefly

some information about the different methods.

Several CBR methods implement strategies that focus on choosing which noisy

or redundant cases to delete from the case base. The simplest strategy is random

deletion, which is initiated once a given limit of the size of the case base is exceeded

[97]; obviously, this method guarantees a bound on the size but no preservation of the

competence of the case base. A more principled approach is utility deletion, where the

utility of a case is measured by its performance benefits (e.g., given by Minton’s utility

metric) [98]; cases with negative utility are removed. There are other methods such as

footprint deletion and footprint utility deletion, which specify the cases to be deleted

based on their competence contributions [96]. The cases are categorized into pivotal,

spanning, support and auxiliary; pivotal cases have highest effect on competence, while

auxiliary cases have lowest effect [99]. Modifying the idea of coverage (the set of target

64

5.1 Related work

problems a case can solve) and reachability (the set of cases that can provide a solution

for a target problem) of a case as introduced in [96]. Cases are identified by their

coverage and reachability values based on rough set theory for categorizing data in

[100], and accordingly relevance of each case is extracted.

Other maintenance methods focus more on an increase in efficiency, in terms of

memory storage size and computation time of solving problems [101]. This increase

in efficiency could in return cause some degradation in performance. One well-known

method is based on the condensed nearest neighbor (CNN) rule by [102], where a subset

of the case base is selected, which should perform almost as well as the original case

base in classifying new cases. CNN was then extended by selective nearest neighbor

(SNN); any case in the original case base must be closer to a case in the formed subset

belonging to the same class, than to any case in the original case base belonging to a

different class [103]. Reduced edited nearest neighbor (RENN) method further extends

CNN by removing noisy cases, which have a different class than the majority of their

nearest neighbors; it is computationally more expensive than CNN [104] though. Also

described in [104], the blame based noise reduction (BBNR) method deletes cases that

cause other cases to be misclassified. A case base can also be reduced as explained by

[105], where a subset of the case base is formed in which selection of cases is based on

some “justifications”. These justifications are being output from using a (lazy) machine

learning method; this selection procedure resembles the competence selection of cases

in [97], but in the former the selection of cases is based on the justifications rather than

the competence.

Additionally, other maintenance methods called adaptation-guided case base main-

tenance methods, base the selection of cases to be retained in the case base on both their

value in solving problems and on their value in generating new adaptation rules; these

adaptation rules contribute to the knowledge for later problem solving [19]. Complexity-

informed maintenance is another method presented in [106]; it provides redundancy

reduction and offers a compromise between a smaller case base and greater accuracy.

Case complexity enables varying levels of aggressiveness in redundancy and error re-

duction maintenance algorithms, thus compromising between amount of reduction and

correspondingly level of performance. The higher the aggressiveness, the more reduc-

tion in case base size and correspondingly the lower the performance level.

65

5. CASE BASE MAINTENANCE IN PREF-CBR

The previously listed methods are used to either increase the efficiency of the case-

based reasoning system while maintaining its competence, or having a trade-off between

an increase in the level of efficiency and a decrease in the level of performance. The case

base is maintained when a certain size limit is reached, or by setting periodic time slots

for the maintenance to be performed. As pointed out by [107], to tackle performance

problems of a CBR system, the goal would be to update the existing case base while

maintaining problem solving competence. This is also the goal of our maintenance

strategies, which are specifically designed for the Pref-CBR problem solving framework.

5.2 Case base maintenance for Pref-CBR

Most methods for case base maintenance make use of two important criteria for case

addition or removal, namely, noise and redundancy. A “noisy” case is a case that

differs significantly from its (nearby) neighbors and, therefore, violates the regularity

assumption underlying CBR. Retrieving such a case and using it to solve a new problem

should obviously be avoided, whence it should better not be stored in the case base. A

redundant case, on the other side, is very similar to its neighbors and, therefore, does

hardly provide additional information, at least if enough other cases have already been

stored. Such cases can often be removed to reduce the size of the case base without

compromising performance.

In Pref-CBR, a case does not only contain a single solution, like in conventional

CBR, but rather a set of preferences. Thus, instead of either retaining or removing a

complete case, there is in principle the possibility to retain or remove a part of a case,

simply by retaining or removing a part of the pairwise preferences. In fact, as will be

seen later on, both noise and redundancy can occur on the level of a single case as well

as on the level of the case base.

First of all, however, one should clarify what noise and redundancy may actually

refer to in the context of Pref-CBR. In fact, it is important to note that a piece of

information is not noisy or redundant per se. First, it can only be noisy or redundant

when being considered jointly with other information. Moreover, what also needs to be

taken into consideration is the way in which the information will be (re-)used: What

is the influence of the information on future problem solving episodes?

66

5.2 Case base maintenance for Pref-CBR

5.2.1 Noise and redundancy in Pref-CBR

To answer this question, recall the key idea and basic inference principle of Pref-CBR:

An observed preference y � z provides a kind of “directional hint” in the solution space

Y. It suggests moving toward those solutions y∗ for which the probability

P(y � z |y∗) =
1

1 + exp
(
− β

(
∆Y (z,y∗)−∆Y (y,y∗)

)) (5.1)

is large, hence making y∗ likely as a solution for the problem at hand, and away

from those solutions for which the probability of observing this preference is small.

Likewise, a whole set of preferences P suggest moving toward those solutions for which

the combined likelihood

`(θ) = `(θ |D) =
N∏
i=1

P
(
y(i) � z(i) | θ

)
(5.2)

is large, and away from those solutions for which this likelihood is small. Roughly

speaking, the likelihood function combines the individual hints into a single one.

Now, we propose the following distinction between noise and redundancy on the

level of a single case and the level of the case base.

• Intra-case redundancy: Pairwise comparisons collected during a problem solv-

ing episode can obviously be redundant to some extent, in particular because the

same solutions will be shared among many of these comparisons. Moreover, as we

just explained, each comparison y � z provides a directional hint in the solution

space. Therefore, two preferences can also be redundant in the sense of suggesting

similar directions.

• Intra-case noise: According to (5.1), preference feedback is correct only with

a certain probability. Thus, even if unlikely, one may thoroughly observe y � z
although P(y � z |y∗) < P(z � y |y∗). According to what we just said, a

preference of that kind will guide the search in the wrong direction and, therefore,

could be considered as “noise”.

• Inter-case redundancy: Instead of looking at a single preference, we now look

at the whole set of preferences P = P(x) that have been collected for a problem x,

because this is the information to be reused later on. Again, as explained above,

67

5. CASE BASE MAINTENANCE IN PREF-CBR

these preferences provide a “directional hint” in the solution space. Therefore,

just like in the case of individual preferences, two sets of preferences P and P′

can be redundant in the sense of suggesting similar directions in the solution

space. Note that this type of redundancy is likely to occur for two problems

having similar ideal solutions y∗. Yet, even in that case the preferences are not

necessarily redundant, because they might have been collected in different parts

of the solution space.

• Inter-case noise: Just as a case may appear redundant in the context of other

cases, it can be noisy in the sense that its preferences are inconsistent with those of

the others. Here, inconsistency means that the preferences suggest very different

directions in the solution space.

5.2.2 Integration of case base maintenance into Pref-CBR framework

In this section, we highlight where case base maintenance is integrated in our Pref-CBR

framework, and show where it takes place during the problem-solving process.

• Pref-CBR search is performed as usual to solve a new problem x0 (lines 5–22 of

Algorithm 3).

• The search yields a solution y• which is now stored and ready for usage in any of

the proposed maintenance methods.

• In line 23 of Algorithm 3, the maintenance procedure is performed. The different

types of maintenance strategies (inter-case redundancy, inter-case noise, intra-case

redundancy and intra-case noise) test whether the case x0 is, or parts thereof are,

considered to be redundant or noisy. Based on this result, the decision is taken

of whether to store the solved case x0 along with its set of preferences collected

during the search procedure preferences P0, or whether to delete the solved case

if it is proven to be redundant or noisy. If the “intra-case” maintenance strategies

are performed, it could be the case that only part of the case is deleted and not

the whole case. This will be explained further in the following subsections.

68

5.2 Case base maintenance for Pref-CBR

Algorithm 3 Pref-CBR Search(K, J)

Require: K = number of nearest neighbors collected in the case base

J = number of preferences used to guide the search process

1: X0 ← list of problems to be solved B a subset of X

2: Q← [·] B empty list of performance degrees

3: CB← ∅ B initialize empty case base

4: while X0 not empty do

5: x0 ← pop first element from X0 B new problem to be solved

6: {x1, . . . ,xK} ← nearest neighbors of x0 in CB (according to ∆X)

7: {P(x1), . . . ,P(xK)} ← preferences associated with nearest neighbors

8: P← P(x1) ∪ P(x2) ∪ . . . ∪ P(xk) B combine neighbor preferences

9: y• ← CBI(P,Y) B select an initial candidate solution

10: Yvis ← {y•} B candidates already visited

11: P0 ← ∅ B initialize new preferences

12: repeat

13: Pnn = {y(j) � z(j)}Jj=1 ← J preferences in P ∪ P0 closest to y•

14: Ynn ← neighborhood N(y•) of y• in Y \ Yvis

15: yquery ← CBI(Pnn,Ynn) B find next candidate

16: [y � z]← Oracle(x0,y
query,y•) B check if new candidate is better

17: P0 ← P0 ∪ {y � z} B memorize preference

18: y• ← y B adopt the current best solution

19: Yvis ← Yvis ∪ {yquery}
20: until convergence

21: q ← performance of solution y• for problem x0

22: Q← [Q, q] B store the performance

23: Apply case base maintenance methodology B inter-case redundancy/noise, intra-case

redundancy/noise

24: if B case is redundant or noisy then

25: CB← CB \ {(x0,P0)} B remove new experience (or a part of it) from the case base

26: else

27: CB← CB ∪ {(x0,P0)} B memorize new experience

28: end if

29: end while

30: return list Q of performance degrees

69

5. CASE BASE MAINTENANCE IN PREF-CBR

5.3 Maintenance strategies

Our general maintenance strategy is incremental and essentially consists of deciding,

for each new case (x0,P0) produced, whether or not that case should be stored—and

perhaps which parts thereof. To this end, each of the aforementioned types of noise

and redundancy have to be handled in a proper way.

As already explained, the similarity or discrepancy between preferences or sets of

preferences depends on the similarity or dissimilarity of the directional hints they pro-

vide. But how to quantify the latter? The direction suggested to the search process

is a local property that depends on the current search state in Y—as such, it is dif-

ficult to quantify in a single value. Reasoning on a more global level, the arguably

most appropriate way to compare two sets of preferences P1 and P2 is to compare the

respective globally optimal solutions yML
1 and yML

2 , i.e, the likelihood estimates (5.2)

with Y0 = Y. Such a comparison could easily be done using ∆Y . However, finding the

global likelihood maximizer might be very costly—this is why our search procedure is

local. Besides, when comparing single preferences as a special case, the likelihood is

often unbounded. In the following, we therefore propose approximate strategies that

circumvent these difficulties and that are computationally more efficient.

5.3.1 Intra-case redundancy

Consider a case (x,P), and let y• denote the solution that the problem solving process

ended up with—again, recall that y• will in general differ from y∗(x), either because

the latter was not reached or because it may not even exist. Now, consider a single

preference y � z in P. How redundant is that preference? To answer this question, we

should compare the likelihood function (5.2) with and without the preference, i.e., the

functions `(· |P) and `(· |P′) with P′ = P\{y � z}. Of course, comparing the functions

globally is very difficult. Moreover, as explained above, we may not be able to compare

their respective global maximizers either. What we could do, for example, is checking

whether or not the locally restricted optimum in the neighborhood of y• would change,

i.e., whether the local optimum for P is the same as the optimum for P′. If not, then

y � z has an important influence and should certainly not be removed.

Figure 5.1 illustrates how the intra-case redundancy strategy is applied after a

problem has been solved. To perform the check of removing case x0, we remove each

70

5.3 Maintenance strategies

1

Problem Space

Solutions of

local optimum for

compare

where

set of preferences of case

Figure 5.1: Intra-case redundancy strategy

pairwise preference in P. If local optimum for P is the same as local optimum for P′

then the pairwise preference could be considered as redundant and can be removed.

5.3.2 Intra-case noise

As explained earlier, we consider a preference y � z as noise if P(y � z |y∗) < 1/2.

This property cannot be checked, however, because y∗ is not known. Yet, using y•

as a proxy, we could at least check if P(y � z |y•) < 1/2. Figure 5.2 shows how to

test which preferences are considered as noisy preferences, and accordingly delete them

from the set of preferences P of the currently solved case. Check for each preference

and see whether P(y � z |y•) < 1/2, if this is the case then that pairwise preference

could be considered as noise and can be removed.

5.3.3 Inter-case redundancy

Consider two cases (x0,P0) and (x1,P1) with solutions y•0 and y•1, respectively. How

redundant are these cases or, more specifically, how redundant is the new case (x0,P0)

with respect to the previous case (x1,P1)? Again, for the reasons explained above, a

comparison of the likelihood functions `(· |P0) and `(· |P1) or their maximizers may

not be feasible. Instead, we again refer to the actually found solutions y•0 and y•1 as

surrogates of these maximizers. More specifically, we compare the probability (5.2) of

the preferences P0 under the associated (ML) parameters (y•0, β) with the probability

71

5. CASE BASE MAINTENANCE IN PREF-CBR

11

Problem Space

Solutions of

local optimum for

check for each preference

whether

Figure 5.2: Intra-case noise strategy

under (y•1, β), i.e., when replacing y•1 by y•0. If

`(y•1, β |P0)

`(y•0, β |P0)
≥ t (5.3)

for a threshold t > 0, this indicates that the preferences P0 are not only hinting at y•0

but also at y•1 (just like P1), which in turn can be interpreted as a sign of redundancy.

Moreover, since not only the preferences but also the solutions themselves are reused,

we additionally require

∆Y (y•0,y
•
1) ≤ v (5.4)

for a second threshold v ≥ 0. If both conditions are met, (x0,P0) is considered redun-

dant with respect to (x1,P1). Our inter-case redundancy maintenance method can be

described in detail as follows:

• Given a new problem x0 ∈ X to be solved, Pref-CBR is used to find a solution

y•0 ∈ Y. In addition to the solution itself, Pref-CBR returns a set of preferences

P0 (see Algorithm 3 for a detailed description of the problem solving process on

the level of pseudo-code).

• To decide whether the new case should be stored, the K nearest neighbors of x0

are retrieved from the current case base: (x1,P1), . . . , (xK ,PK).

• The two criteria (5.3) and (5.4) are checked for (x0,P0) and each of the cases

(xi,Pi), i = 1, . . . ,K.

72

5.3 Maintenance strategies

Problem Space Solution Space

is the found solution
for

Is redundant??

How close are

16

and

and

Figure 5.3: Inter-case redundancy strategy

• If the criteria are fulfilled for at least one of the K cases, (x0,P0) is considered

as redundant and not stored; otherwise, it is added to the case base CB.

Note that this strategy has three parameters, namely, the number of neighbors K

and the thresholds t and v in (5.3–5.4).

The inter-case redundancy maintenance procedure is illustrated in Figure 5.3; if as

previously mentioned, both conditions are met then the case x0 is a redundant case

and can be safely removed from the case base without loss of useful information.

5.3.4 Inter-case noise

We just gave two conditions which, in conjunction, suggest the similarity (and hence

the potential redundancy) of two cases. It is natural, then, to consider the cases as

dissimilar if the opposite of at least one of the conditions holds, i.e., if either the ratio

in (5.3) is smaller than some (small) threshold or the distance in (5.4) is larger than

some threshold. If a new case (x0,P0) is dissimilar in this sense to all of its neighbors,

we may consider it as being exceptional or at least non-representative. If for example it

is similar to all of its neighbors except for one neighbor, it might be that the older case

already stored in the case base is a noisy case. Depending on the value of the ratios in

5.3 or in 5.4, either (x0,P0) or (x1,P1) is removed from the case base. To decide which

case should be removed from the case base, we check which case is more dissimilar

to its neighbors. If we find that our current case x0 is similar to all its neighbors

except for the case x1 then we check the value of `(y•0, β |PN) and `(y•1, β |PN), where

73

5. CASE BASE MAINTENANCE IN PREF-CBR

PN are the preferences of the neighbors of x0 and x1. If `(y•0, β |PN) ≥ `(y•1, β |PN),

then we remove the case (x1,P1) from the case base since it is considered to be more

dissimilar to its neighbors than (x0,P0). If the opposite holds true, then we delete the

case (x0,P0).

A description of the inter-case noise maintenance method is as follows:

• Given a new problem x0 ∈ X to be solved, Pref-CBR is used to find a solution

y•0 ∈ Y. In addition to the solution itself, Pref-CBR returns a set of preferences

P0.

• To decide whether the new case should be stored, the K nearest neighbors of x0

are retrieved from the current case base: (x1,P1), . . . , (xK ,PK).

• The two criteria (5.3) and (5.4) are checked, but with the signs before the thresh-

olds being reversed as well as the thresholds having different values, for (x0,P0)

and each of the cases (xi,Pi), i = 1, . . . ,K.

• If the criteria are fulfilled for all of the K cases, (x0,P0) is considered as noisy

and should not be stored; otherwise, it is added to the case base CB. If the

criteria fail to be fulfilled for all except one of the nearest neighbors, to make sure

which case is more noisy, the current case x0 or the older stored case from the K

cases, we can perform a simple check. `(y•0, β |PN) ≥ `(y•1, β |PN) for example

indicates that the case x1 is more dissimilar to the K cases and is thus removed.

The preceding description of the inter-case noise maintenance strategy is shown in

Figure 5.4. If the conditions are satisfied for all nearest neighbors, it means that a

case is noisy, in other words it is different from its nearest neighbors. If the conditions

are satisfied but fail for one case of the nearest neighbors, it means that either the

noisy case is the currently solved one, or actually the noisy can be its nearest neighbor,

which is already stored in the case base. For that reason, the likelihood of each of

the two cases, x0 and x1 is compared, given all preferences of their nearest neighbors,

as explained above. The case with the lowest likelihood given the preferences of the

nearest neighbors, is considered to be the noisy case and can be removed.

74

5.4 Conclusion

1

Problem Space Solution Space

is the found solution
for

Is noisy??

Figure 5.4: Inter-case noise strategy

5.4 Conclusion

This chapter extends our framework of preference-based CBR by methods for dynamic

case base maintenance. The main goal of these methods is to increase efficiency of case-

based problem solving while maintaining performance. The effectiveness of our four

maintenance approaches will be illustrated in a case study with the traveling salesman

problem, shown in detail in Chapter 7.

The implementation of our maintenance method consists of the strategies discussed

in Section 5.3. These include a strategy for handling what we mentioned as inter-case

redundancy, inter-case noise, intra-case redundancy as well as intra-case noise. The

first two strategies handle whole cases, while the latter two strategies handle parts of

cases (pairwise preferences within a case).

75

5. CASE BASE MAINTENANCE IN PREF-CBR

76

6

Related Methodologies

In the previous chapters, we introduced and discussed in detail our Pref-CBR frame-

work and also showed in each successive chapter how components were added to the

framework for increasing its performance and efficiency. Learned similarity measures

described in Chapter 4, led to increased performance of the search, and the different

case base maintenance strategies listed in Chapter 5, increased the efficiency of the

CBR system while maintaining its performance.

In this chapter we discuss and show several methodologies which are in some way

related to our Pref-CBR problem-solving framework. In the following sections we de-

scribe each methodology, explain it and relate it to our work. The following method-

ologies consist of different search methods (stochastic population-based search, black

box search and heuristic search), as well as machine learning approaches (output space

search in machine learning, machine learning with human in the loop and reactive

search using intelligent optimization). We describe how these different methodologies

and approaches relate to our framework, and we highlight the similarities and differ-

ences between these approaches and our Pref-CBR problem-solving framework.

Having learned how the Pref-CBR problem-solving framework operates, as well as

looking more deeply into its embedded components from the previous chapters, we can

now imagine what our framework mainly consists of. The basic components of the

framework are: case-based reasoning, preference-based knowledge representation, the

search and machine learning methods. In Chapter 2 we took a close look at CBR and

in Chapter 3, we described the preference-based knowledge representation and we also

discussed the related previous work. In this chapter we will discuss the different search

77

6. RELATED METHODOLOGIES

CBR

Machine
LearningSearch

Preference-based
Knowledge

Representation

Pref-CBR Problem Solving Framework

Figure 6.1: Pref-CBR framework and related methodologies

strategies which relate to our framework, and we will also look at how machine learning

approaches work and how these also relate to our framework as well. In Figure 6.1, a

simple illustration shows the basic components of the Pref-CBR framework.

6.1 Heuristic search

Heuristic search is a method designed for solving problems which cannot be easily solved

to get an exact solution. As we use heuristic search in our Pref-CBR framework, it is

plausible to look at some heuristic search methods. Many applications in engineering

and industrial design, many business activities, and even frequent activities such as

internet routing or holiday planning, all require optimization in some way [108]. The

aims of optimization can differ between minimizing energy consumption and costs, or

maximizing profit, output, performance or efficiency. As the author in [108] states, as

real world applications have limited resources, money and time, it is essential to find

solutions to optimally use these valuable resources under constraints, by using various

suitable efficient search algorithms.

Heuristic search can thus be used to find an approximate solution to such complex

problems, when classic search methods would take a very long time. Consequently, this

is achieved by trading optimality, completeness, accuracy, or precision for speed. In

a way, it can be considered a shortcut; heuristic search can be used when finding an

optimal solution is very complex and can take a very long time. The objective of a

78

6.1 Heuristic search

heuristic is then to produce a close-to-optimal solution in a short time, which would be

satisfactory for the problem at hand.

Although heuristic methods do not guarantee an optimal solution for a given prob-

lem, they can produce an acceptable solution within a reasonable amount of time [109].

Heuristic-based algorithms include some well known search methods such as: hill climb-

ing, greedy search, A* algorithm, tabu search, simulated annealing, genetic algorithms

and particle swarm optimization. In artificial intelligence, as well as in operations re-

search and many other fields, the need for solving difficult combinatorial problems has

led to the use of heuristic search methods [110].

The complex optimization problems, including a vast number of possibilities for find-

ing a solution, occur in many fields such as knowledge-based systems, design robotics,

scheduling and pattern recognition. As stated in [110], for the formerly mentioned

problems, an attempt to generate all relevant alternatives by computer would be hope-

less. Since we use heuristic search in our framework, it is reasonable to discuss some

heuristic search methods and relate them to our Pref-CBR framework.

6.1.1 Best-first search algorithms

Best-first search is a general heuristic search algorithm, which always expands next a

node of lowest cost [111]. The choice of which node to expand next is provided by an

evaluation function that returns a value describing the desirability of expanding the

node. The nodes are ordered so that the one with the best evaluation (according to an

evaluation function) is expanded first [112]. As the authors in [112] state, the former

search strategy aims at finding low-cost solutions and in order to focus the search, the

aforementioned measure must include some estimate of the cost (distance or time) of

the path (a sequence of edges which connect a sequence of vertices) from a state (a

unique configuration of information) to the closest goal state (solution). Let us now

look at the following search strategies, which incorporate best-first search.

6.1.1.1 Greedy search

A best-first search that minimizes a function h, estimating the cost of the cheapest path

from the state at node n to a goal state, to select the next node to expand, is called

greedy search [112]. Greedy best-first search expands the node which appears to be

closest to the goal. Figure 6.2 illustrates how greedy search works, by having several

79

6. RELATED METHODOLOGIES

g

c

b

a

d

start state

goal state

f(n) = straightline distance

Figure 6.2: Greedy best-first search

nodes, the algorithm chooses always the shortest path to the next node. Each time a

node is chosen, the algorithm chooses the next node to reach by choosing the shortest

path to the next node. The assumption is that by choosing the shortest path each

time, the immediate best choice is made without knowledge of which path from the

beginning is the shortest, and usually this is a good strategy. Greedy algorithms tend

to find solutions quickly; the solutions might not be optimal (this would take a more

careful analysis of long-term options) but they often perform well [112]. The search

can be considered incomplete because it can get stuck in loops, as shown in Figure 6.2.

6.1.1.2 A* algorithm

Greedy search aims at minimizing the estimated cost to a certain goal, but does not

consider minimizing the cost of the path taken so far to reach that goal during the

search. A* search combines both goals, minimizing estimated cost to the goal h(n)

and minimizing the cost of the path from the start node to node n (g(n)). It can

then be said that A* algorithm minimizes the total path cost f(n) = h(n) + g(n) to

efficiently compute optimal solutions [113]. If h(n) is consistent, A* search is considered

to be complete and optimally efficient on locally finite graphs. Unfortunately, for most

problems the number of nodes within the search space is exponential in the length of

80

6.1 Heuristic search

the solution, thus A* can run out of space since it keeps all generated nodes in memory

[112]. Since at least the entire open list during a problem-solving episode must be saved,

A* algorithm is severely space-limited in practice as the best-first search algorithms are

in general [113].

As we have seen, best-first search algorithms can find efficiently optimal solutions

quickly, in practice they have the problem of using a huge amount of memory due to

the many trials that are being performed before reaching a solution. In our Pref-CBR

framework this problem does not take place since we assume that our trials are costly

and there is only a limited number of trials during our problem-solving episodes.

6.1.2 Iterative improvement algorithms

Iterative improvement algorithms often provide the most practical approach in solving

problems which have the property that, the state description contains all the informa-

tion needed for a solution. The general idea is to start with a complete configuration,

set of values of parameters, and by using iterative improvement algorithms, modifica-

tions are made to improve the quality of the configuration [112]. As [112], the search

starts with a random configuration and repeatedly considers various moves where some

are accepted and some rejected depending on the evaluation function of the state at

that point, trying to find optimal solutions. The algorithm basically constructs all

neighbors (or a given number of neighbors in case of iterated local search) and selects

the best one; one moves from one solution to a better one in an intelligent way [114].

6.1.2.1 Hill-climbing search

The hill-climbing search algorithm is simply a loop that continuously moves in the

direction of the increasing value, when there is more than one best successor to choose

from, the algorithm selects among them at random [112]. Hill-climbing search is a

form of local search, which first starts with a random guess of a solution and tries to

optimize an objective function by selecting any local change that improves the current

value of that objective function [115]. The search terminates once no local move could

further improve the objective function and upon termination the search would have

reached a local but not necessarily a global optimum for the objective function [115].

Hill-climbing search has a long history in the area of continuous optimization; in the

continuous search spaces, the gradient of the objective function (gradient descent) is

81

6. RELATED METHODOLOGIES

used to take local steps in the direction of the greatest possible improvement [112, 115].

As stated by [112], a well-known drawback of the former search method is that it can

get stuck at a local maxima and the algorithm will halt even though the solution may

be far from satisfactory. This problem can be avoided by the next method which we

will describe, the tabu search.

6.1.2.2 Tabu search

Tabu search exploits data structures of the search history to decide on the next moves,

by looking at a tabu list which stores attributes of the previous few moves [109]. The

tabu list is of limited length and is updated after each local move [115]. The major

distinction of tabu search to the other search methods is that it uses a short-term

memory (set for release of the tabu status which restricts certain areas from being

searched) and a long-term memory (which stores frequency of searching in each area).

Instead of terminating when reaching a point of local optimality, tabu search operates

its embedded heuristic to continue by forbidding moves with certain attributes making

them tabu and choosing moves which heuristic assigns to a highest evaluation [109, 110].

As explained by [116], tabu search is an extension of classical local search methods, and

the first two basic elements of tabu search heuristic are the definition of its search space

and its neighborhood structure. The most commonly used tabus involve recording the

last few transformations performed on the current solution and prohibiting reverse

transformations; this is to avoid getting stuck at a local optima [116]. As stated by

[115], a tabu list provides a powerful way of forcing a local search method to explore a

larger part of the search space.

As we can see from the description of how the iterative improvement algorithms

operate, we can see how our Pref-CBR framework search process is similar in the way we

improve an initial solution that we start out with, for a given problem. We start out with

an initial solution and we keep improving it until we end up with an optimal solution, it

can of course be an optimal local solution and not a global one, as the formerly described

methods. There are some major differences though between our search procedure and

the former methods. One major distinction of our search process is that the initial

solution we start out with is not randomly chosen, our initial solution which we further

improve is actually obtained based on the stored preferences of the previously solved

nearest neighbor cases and not a random choice. The second major distinction, which in

82

6.1 Heuristic search

fact is a significant advantage, is that we take advantage of repetitive problem solving

and we use stored knowledge in our case base (previous solutions) to get our initial

solution which we improve and needless to say this initial solution improves over time

as we have more cases stored in the case base. This leads to overall improvement

of the performance. All previously mentioned approaches use only the last episode

information and not previously stored experience. We store experience and start the

search, unlike all other approaches mentioned, which basically start searching from

scratch. Another difference is that we are guided in our search by the knowledge gained

from the pairwise comparisons rather than using an evaluation function; we move on

in the search by qualitative feedback information from the pairwise comparisons rather

than absolute values of an evaluation function h(n) assessing the cost at each state

n. Evaluation functions might be noisy, when each function evaluation is subject to

random noise due to certain experimental settings including simulation or approximate

solutions of a numerical problem [117]. An advantage of our Pref-CBR framework is

that although we might have some noisy preferences, this problem is overcome by the

maximum likelihood approach we use in our inference step for choosing a solution.

6.1.3 Nature-inspired optimization algorithms

The previous search methods described above eventually seek to solve optimization

problems, but population-based algorithms help the search not to get stuck at a local

optima, making them attractive to use for providing good solutions to a wide range of

complex optimization problems. Natural optimization often involves variation methods

(genetic mutations or slight parameter shifts), parallel optimization scenarios (agents

exploiting local solutions), adaptive strategies (if environment changes over time, opti-

mization adapts), partial exploitation of the solution space and providing different but

equally optimal solutions. It is important to note that in our Pref-CBR framework, op-

timization plays a major role since we continuously try to optimize our solution based

on the preferences given by the oracle. We will describe the three most well known

nature-inspired optimization approaches in this section (genetic algorithms, simulated

annealing and particle swarm optimization). We will look at the similarities and dif-

ferences between the latter approaches and our Pref-CBR framework.

83

6. RELATED METHODOLOGIES

6.1.3.1 Genetic algorithms

Simply stated, genetic algorithms are probabilistic search procedures designed to work

on large spaces which involve states that can be represented by strings [118]. These

algorithms are propagating the best new offspring from the parent population, thereby

proceeding in an evolutionary fashion which encourages the survival of the fittest [110].

Starting from an initial population, a set of parents are chosen according to a fitness

function, to breed a new generation of candidate solutions. According to [109], each

parent contains a set of chromosomes which are the desirable features, and the offspring

are reproduced from two parents by mixing parts of chromosomes of each parent in a

crossover fashion. This transmits good features of parents into the next generation.

Accordingly, the efficiency of a genetic algorithm depends highly on the choice of the

fitness function, the representation of the desirable characteristics in the chromosomes

and the appropriate use of the crossover mechanism and mutation (for preserving and

introducing diversity to avoid local minima).

6.1.3.2 Simulated annealing

As the name of the algorithm indicates, it is derived from the intent to pattern its

approach after the physical process of annealing [110]. Annealing is the process of

reducing the temperature of a material to its minimum state of energy, which is called

thermal equilibrium. Described by [119], simulated annealing explores a function’s

entire surface and tries to optimize the function while moving through the space in

both uphill and downhill directions. It is a hill-climbing algorithm, which can accept

during the search an inferior solution in the neighborhood, to escape local maxima,

according to a probability function [109]. Simulated annealing tries to inject just the

right amount of randomness to escape local maxima early in the search process without

getting off course later in the search, when a solution is nearby. At the beginning of

the search, many widely distributed positions of the given function are probed around

the currently found maximum value and this allows for sometimes choosing an inferior

solution to escape a local maxima, based on an acceptance probability. Following the

idea of the annealing process where the temperature of annealing is gradually reduced,

the probability in the aforementioned function is set to be high at the beginning of the

optimization process and is gradually reduced to zero. Following a function called the

84

6.1 Heuristic search

cooling schedule, the rate of the drop of the acceptance probability is controlled and

as the temperature cools to a predefined threshold, a solution is reached. A theoretic

property of simulated annealing is that, if the temperature is annealed sufficiently

slowly, there can be a guarantee to find an optimal solution. The efficiency of the

algorithm as well as the quality of the solution depend on the choice of the cooling

schedule.

6.1.3.3 Particle swarm optimization

The particle swarm is also a population-based stochastic algorithm used for optimiza-

tion, where all population members survive from the beginning of a trial until the end.

The particle swarm does not use selection but rather the interactions of all members

result in iterative improvement of the quality of problem solutions over time [120]. The

initial ideas on particle swarms of Kennedy (a social psychologist) and Eberhart (an

electrical engineer) exploited analogues of social interaction, they involved analogues of

bird flocks searching for corn; these turned later into a powerful optimization method,

which is called particle swarm optimization [121]. As the authors in [121] explain: “the

particles are placed in the search space of some problem or function, and each evaluates

the objective function at its current location. Each particle determines its next move

based on its current and best-fitness locations with those of one or more members of the

swarm, until eventually the swarm as a whole like a flock of birds collectively foraging

for food, is likely to move close to an optimum of the fitness function”. It requires only

primitive mathematical operators, and is computationally inexpensive in terms of both

speed and memory requirements [120]. Particle swarm optimization uses the concept

of fitness, as do all evolutionary computation paradigms, and its adjustment for the

best fit is similar to the crossover operation utilized by genetic algorithms [120].

The important thing to notice about all these nature-inspired optimization algo-

rithms, is that the goal is to optimize a solution for a given problem, based on a

“fitness function”. In our Pref-CBR framework we also optimize a solution for a given

problem, and we move in the solution space relying on qualitative feedback based on the

generated preferences. A property we share with the above mentioned nature-inspired

algorithms is that we cannot guarantee to find the global optimum. An advantage of

our framework is the existence of the pairwise assessment by an expert, which does not

85

6. RELATED METHODOLOGIES

exist in nature-inspired algorithms. We also have the advantage of simultaneous prob-

lem solving episodes (gaining knowledge from previous cases), as opposed to parallel

optimization of above methods. An advantage of the above methods though is that

the solution modification operator adapts over time, as in simulated annealing, while

in our framework this does not take place (most parameters are fixed) except with the

triggering of the learning of similarity measures module.

6.1.4 Black box search

Black box search basically as its name implies, is based on some automatic approaches

which can optimize the performance of a given learning algorithm to operate or solve a

task required at hand [122]. The key property of black box optimization is that a good

optimal solution is predicted, but with no explanation of why this output was given.

The problem-solving agent has only information about the goal test and the heuristic

function which are used as black boxes to achieve the goal; the agent cannot look in-

side to select actions which would be useful in achieving that goal [112]. This search

method is worth mentioning, as it resembles our Pref-CBR search process, and it is

called Bayesian optimization. Instead of using standard search methods, Bayesian op-

timization can efficiently trade off exploration and exploitation of the parameter space

and quickly guides the user to the configuration that best optimizes some overall evalu-

ation criterion like accuracy or likelihood by automatic tuning of the parameters [122].

Bayesian optimization techniques have been successfully applied to planning, robotics,

sensor placement, advertising, recommendation, intelligent user interfaces and auto-

matic algorithm configuration [123]. Such tuning of parameters can be considered as

the optimization of an unknown black-box function for expensive function evaluations,

as they involve running the primary machine learning algorithm to completion. As the

authors suggest in [122]: “in a setting where function evaluations are expensive, it is

desirable to spend computational time making better choices about where to seek the

best parameters. Bayesian optimization provides an elegant approach and has been

shown to outperform other state of the art global optimization algorithms on a number

of challenging optimization benchmark functions”. Automatic black-box optimization

methods greatly reduce time-consuming design processes which require human interven-

tion and providing of human expertise, therefore Bayesian optimization is particularly

86

6.1 Heuristic search

suited for robotic applications, where it is crucial to find a good set of parameters in a

small number of experiments [124].

As we have learned about this Bayesian optimization (black box search), we can

now mention the difference between it and our Pref-CBR search. In black box search,

the tuning of the parameters is done automatically, we do not know what the best pa-

rameters are but they are automatically adjusted to create a desired target function. A

typical example of representing a black box search are neural networks, there are many

parameters involved to create a target function which are adapted but without inter-

pretation of the emerging configuration of these networks. In our Pref-CBR framework

we have known parameters (most of them being fixed) such as a radius of a neighbor-

hood, the number of neighbors, locality of the neighborhood, etc. The learning in our

framework does not take place in the algorithm parameters, but rather in the stored

examples. During the search, our oracle might be giving the preferences based on the

importance of some parameters more than others, but we do not know this information

and the search is adjusted according to the oracle’s preferences by optimizing the likeli-

hood of a solution given those preferences. That is why we use the Bayesian method in

particular for our learning of similarity measures for the solutions, described in detail

in Chapter 4. The second commonality between our approach and the Bayesian opti-

mization, is the assumption that expert knowledge is expensive to obtain, thus there

is a limited number of queries to the oracle. In both approaches, the former and the

latter, there is the advantage of using past experience in finding a solution to a new

problem. One difference between the two approaches though is that in the Bayesian

optimization the automatic parameter tuning is done based on quantitative feedback,

while in our approach we only have qualitative feedback from the preferences.

As we use heuristic search in our Pref-CBR framework, we believed it is important

to discuss some heuristic search methods and compare them to our search strategy.

Forming the neighborhood around the solution for adaptation of the solution and im-

proving it, is the local search embedded in our framework. The maximum likelihood

is then used to find the best solution from the neighborhood, given the preferences

of the nearest neighboring problems. Having improved the solution, a neighborhood is

formed again and the same search procedure is repeated. Further details of the problem

solving process are explained in Chapter 3. We have listed in the previous section some

search methods and we highlighted the similarities and differences between them and

87

6. RELATED METHODOLOGIES

our Pref-CBR search. We have also shown the advantages of our Pref-CBR framework

over other commonly used search methods. In the next section we take a look at the

concept of machine learning and how it is used for learning, since learning is also a

part of our Pref-CBR framework. We also use machine learning in our inference proce-

dure (maximum likelihood estimation) as well as in our learning of similarity measures’

component (Bayesian inference and the perceptron algorithm).

6.2 Machine learning

The machine learning algorithms are able to perform important tasks by generalizing

and learning from examples; they are widely used in computer science and other fields

[125]. As explained by [125]: “machine learning systems automatically learn programs

from data, making it very useful to apply in web search, span filters, recommender

systems, ad placement, credit scoring, fraud detection, stock trading, drug design and

many other applications”. In this section, we will mention generally what machine

learning is used for as well as some approaches in machine learning which in some way

resemble our Pref-CBR framework.

There are several learning methods used in machine learning which are: supervised

learning (input data is called training data and has a known label or result such as

spam/not-spam), unsupervised learning (input data is not labeled and does not have

a known result), and semi-supervised learning (input data is a mixture of labeled and

unlabeled examples). Every learner must embody some knowledge or assumptions

beyond the data it is given, in order to generalize beyond it. As described by authors

in [125]: “machine learning is not magic; it cannot get something from nothing, but it

can get more from less”. The most mature and widely used machine learning type is

classification, where a classifier inputs a vector of discrete or continuous feature values

and outputs a single discrete value, a class. Another type of learning is the structured

prediction, which is discussed further in the next subsection.

6.2.1 Machine learning output space search

Structured prediction or structured (output) learning is a proper subclass of supervised

machine learning. This structured output learning includes techniques which involve

predicting structured objects, instead of prediction of scalar discrete or real values.

88

6.2 Machine learning

The task of inferring a function from labeled training data in machine learning is called

supervised learning, where the training data consists of a set of training examples.

In this subsection we will mention specifically how output space search for structured

prediction is performed, as well as show the relation between our Pref-CBR framework

and the structured prediction via output space search.

One of the key challenges in machine learning, is learning the general functional

dependencies between arbitrary input and output spaces [126]. Structured data is data

which consists of several parts containing information that relates these parts of data

together (text, audio, folds of a protein or images). Structured output prediction is

predicting a structured output from input data, in contrast to predicting just a number

from classification or regression. To search the space of complete structured outputs,

the following procedure takes place: given an input and guided by a learned cost

function, the least cost output is thus uncovered during the search (e.g., best-first or

greedy search), and returned at the end of the search [127]. Some examples of tasks

where the inputs and outputs are structured objects are: information extraction, scene

understanding, part-of-speech tagging and image scene labeling [128]. As stated by

[127], in most search-based approaches to structured prediction, the true loss function

of the structured prediction problem is used to guide the search. Some applications

where structured output prediction is applied are natural language processing (output:

sentences), bioinformatics (output: bipartite graphs), speech processing (output: audio

signal), and robotics (output: sequence of actions).

The following works describe some approaches to structured output prediction using

different methods. In the work of [126], they address the issue of designing classifica-

tion algorithms which can deal with complex outputs, such as trees, sequences, graphs

or sets. They consider problems which involve multiple dependent output variables,

structured output spaces and classification problems containing class attributes. Con-

trary to the idea of learning a cost function to score the structured outputs by [127],

the authors in [126] address dealing with more complex output spaces by extracting

combined features over inputs and outputs. For a large class of structured models, the

work of the latter proposes a support vector machine algorithm which allows the learn-

ing (in polynomial time) of mappings that involve complex structures. The authors in

[126], show that a key advantage of their algorithm, is the flexibility to include different

loss functions which optimize directly the desired performance criterion. Similar also

89

6. RELATED METHODOLOGIES

to the latter work is the method for structured output tracking by [129]; they use a

kernelized structured output support vector machine that is learned online to provide

adaptive tracking. This tracking method is widely used in computer vision for tracking

arbitrary objects, some wide-ranging applications include human-computer interaction,

surveillance, augmented reality, scene understanding and action recognition.

Recalling our Pref-CBR framework, where the output (solutions) are predicted from

the input (problems), and using a cost function for scoring the solutions (our oracle

which gives the preferences and scoring of the solutions given by our inference method),

the relation to the machine learning output space search can be seen. In both cases

also, it is a time-bounded search, where the least cost output is returned at the end

of this search process. In both cases, the solution space may be structured, but in our

Pref-CBR framework we have the advantage of dealing with such structured outputs

by just defining a good similarity measure and we also have the advantage of previously

stored knowledge that can be used for new cases to be solved. Structured prediction

has the advantage though of generating de novo solutions, for example generating a

new drug design, where in CBR this design may be difficult to generate when there is

a limited set of previously stored examples.

6.2.2 Machine learning with human in the loop

One of the biggest issues with machine learning is that it is often very easy to get

an algorithm to 80 percent accuracy but nearly impossible to get an algorithm to 99

percent accuracy. The “human in the loop” computing solves this issue by using the

human judgment, to be fed back into the algorithm to make it smarter. In this section,

we will describe how the “human in the loop” affects the performance of a machine

learning algorithm, as well as mention some applications where this aforementioned

computing method has been used. We will also relate this computing method to our

Pref-CBR framework.

6.2.2.1 Human in the loop

There are several ways of including a human in the loop in machine learning algorithms.

One way is to use a human as a means for information extraction, where users are

allowed to specify the nature of the information structures they desire. As explained

by [130], the strengths of humans and machines can be combined in the following way:

90

6.2 Machine learning

the human is proficient at judging an information structure as desirable or undesirable,

while the machine is proficient at quickly and efficiently locating similar examples

from large quantities of data. Another way of using a human in the loop is to apply

programming by feedback, which involves a sequence of interactions between the active

computer and the user, in which the user provides preference judgments on pairs of

solutions supplied by the active computer [131]. Another approach includes having a

human user going one step further and not only provide feedback about past actions,

but also provide future directed rewards to guide subsequent actions [132]. Users can

be included in an interactive machine learning model for classification, which allows

users to train, classify/view and correct the classifications [133, 134].

Another view of including a human in the loop is suggested by [135]. They propose

to change the limitations of present day technology, by engaging machines implicitly

and indirectly in a world of humans; computers would be put in the human interaction

loop, rather than the other way around. Multiple audio-video sensors can be attached in

what is called Computers in the Human Interaction Loop rooms, to “observe” humans

and can then be analyzed. As explained by [135], the analysis of all audio-video signals

in the environment (speech, faces, signs, bodies, gestures, objects, attitudes, events

and situations) provide answers, which allow computers to engage and interact with

humans in a human-like manner.

6.2.2.2 Applications of human in the loop in machine learning

Many safety-critical systems are interactive, they interact with a human being, and the

human operator’s role is central to the correct working of the system [136]. Examples

of such interactive systems (human-in-the-loop control systems) include fly-by-wire

aircraft control systems (interacting with a pilot), automobiles with driver assistance

systems (interacting with a driver), and medical devices (interacting with a doctor,

nurse, or patient). Another type of interactive systems is presented by [132], which

integrates machine learning and human-robot interaction. In the latter system, the

reinforcement learning algorithm benefits from the human-robot interaction and learns

how humans teach the robots. Accordingly the learning algorithm modifies the action

selection mechanism, and there is a significant improvement in the learning performance

of the agent when the robot is tested later in a second study. Learning from humans

is also applied in assistance systems (e.g. email categorizing, conference planning),

91

6. RELATED METHODOLOGIES

where humans are in the loop for both the learning and evaluation steps [137]. These

assistance systems consist of multiple machine learning components, natural language

processing and optimization techniques.

A human in the loop approach has been also used for image characterization for

medical images. In this image characterization approach, an expert radiologist in each

anatomic region, selects images for the database and provides differential diagnosis and

includes treatment information. This information can be useful to a less experienced

practitioner, enabling him/her to use the stored expertise, and provide the role of an

expert consultant if confronted with a similar image [138]. [134] apply the human in

the loop in visual recognition of images, by asking users some questions and accordingly

classify correctly the object in the image. In the work of the latter authors, they show

that this interactive, hybrid human-computer method for object classification, drives

up recognition accuracy to levels that are not only acceptable, but can be considered

good enough for practical applications. Machine learning in interactive settings is

also proposed by [133], where machine learning and computer vision techniques are

applied for image classification. The goal is to have a human user upon receiving an

image, to do some manual classification, thus training a classifier. The user can then

later refine the classifier by adding more manual classification, if the classifier is still

not satisfactory. The proposed method by [133] replaces the analysis of many feature

combinations by the machine learning algorithm, especially if there are many features,

by an interactive machine-learning model that allows users to train, classify/view and

correct the classifications.

It is clear that having a human in the loop can aid the learning in machine learning

algorithms. The benefits of having a human in the loop has been stated; whether

the feedback is given by the user in an interactive manner, continuously updating the

learning process, or whether the feedback of the user is during testing of the algorithm

for improving the learning. In our Pref-CBR framework, our oracle, is the human in the

loop component of our algorithm. Although this oracle does not necessarily represent a

human, it represents an expert of some form. It can alternatively be a human or some

expert program, which in turn also represents expertise knowledge. We can conclude

that the human in the loop can be a special case in our Pref-CBR framework, where our

framework is more generic and can operate also without necessarily having a human

in the loop. Our image correction application, described in detail in the proceeding

92

6.2 Machine learning

chapter shows a nice example of a human in the loop integrated in our Pref-CBR search

process.

6.2.3 Reactive search and intelligent optimization

A major part of machine learning is the learning, thus it is plausible to state the

question of: what is learning and how does it come about? “Learning takes place when

the problem at hand is not well known at the beginning, and its structure becomes

more and more clear when more experience with the problem is available. Human

problem solving is strongly connected to learning, and in addition to learning, search by

trial-and-error, generation, tests and repeated modifications of solutions by small local

changes are also part of human life. What is critical for humans is also critical for many

human-developed problem solving strategies. It is not surprising that many methods for

solving problems in artificial intelligence, operations research, and related areas follow

the search strategy of adding one solution at a time from a tree of possibilities, or by

searching from a formed trajectory of candidate solutions on a landscape defined by the

corresponding solution value” [139]. In reactive search the history of the search and

the knowledge accumulated while moving in the configuration space is used for self-

adaptation in an autonomic manner; the algorithm maintains the internal flexibility

required to address different situations during the search, but what is automated is

actually the adaptation, and it is executed while the algorithm runs to solve a single

instance while reflecting on its past experience [140].

6.2.3.1 Parameter tuning in heuristics

Most local search-based heuristics, such as tabu search and simulated annealing, al-

though very efficient and useful in many practical applications, they are extremely

sensitive to their own internal parameters [141]. The optimal parameter value can dif-

fer according to the problem instance being solved and the data used, therefore, the

same algorithm might require some precise fine tuning in order to be applied to a new

problem. As clearly explained by [139], parameter tuning is a crucial issue both in the

scientific development and in the use of heuristics in practical applications. In some

cases the detailed tuning is executed by a researcher or by a final user. As a result, the

reproducibility of the heuristics results is difficult, as is comparing different parameters

93

6. RELATED METHODOLOGIES

of algorithms. As the authors in [139] suggest, there are some machine learning meth-

ods which can be profitably used in order to automate the tuning process and make

it an essential and fully documented part of the algorithm. Reactive search optimiza-

tion leads to dynamic adjustment of search parameters, thus leading to faster overall

optimization time as well as an enhanced reproducibility of performance results [142].

Before an algorithm is presented to the scientific community, the algorithm designer

faces a long and hard development phase, a possible exploratory phase of preliminary

tests followed by an exhaustive documentation of the tuning process [139]. As the name

suggests, reactive hints at a ready response (a reaction), to events during the search

through an internal feedback loop for online self-tuning and dynamic adaptation [139].

6.2.3.2 Reacting on the neighborhood

A basic problem-solving strategy consists of first starting with an initial solution (ran-

domly or intelligently chosen), and then repeatedly improving this initial solution by

small steps, refer to Subsection (6.1.2). At each repetition the current configuration is

slightly modified, the function to be optimized is tested, the change is kept if the new

solution is better, otherwise another change is tried and tested. As stated by [139],

the idea is that if one starts at a good solution, solutions of similar quality can, on the

average, be found more in its neighborhood than by sampling a completely unrelated

random point. To avoid the search to fall into local optima, diversification methods

are required such as including a tabu list in tabu search, having a random acceptance

criteria in simulated annealing, perturbation operator in iterated local search or having

multiple neighborhoods in variable neighborhood search [143]. Some problems exist, for

which no known algorithms are available which can ensure optimality in a reasonable

amount of time, this led to the motivation of the development of alternative methods

to obtain an acceptable solution from a practical point of view (a good solution in a

reasonable amount of time); one of these methods is the local search [144]. It is then

important as suggested by [139] to decide on a set of local moves to be applied (neigh-

borhood) as well as deciding on a way to pick one of the neighbors to be the next point

during the search procedure.

Looking back at the reactive search and intelligent optimization, the relation to our

Pref-CBR framework can be clearly shown. In our Pref-CBR framework, the history

of the search, which is the knowledge stored in the case base, is used for automating

94

6.2 Machine learning

the adaptation during the search and leads to finding a solution by reflecting on the

past experience stored. This is also the idea of the reactive search and intelligent

optimization, with one major difference which is that in reactive search this is done for

a single instance; the algorithm adapts automatically during the search and reflects on

its past experience while running on a single instance. In our framework we reflect on

past experience of stored cases in the case base, so our search is incremental. Similar to

reactive search optimization leading to dynamic adjustment of search parameters, the

feedback from the oracle in our Pref-CBR framework leads to dynamic adjustment of the

search parameters during each problem-solving episode. By each given preference from

the oracle, a neighborhood adjustment takes place by forming a neighborhood around

the preferred solution. Throughout this feedback loop, a dynamic self-adaptation of the

neighborhood takes place and the adaptation process of a solution leads to finding an

optimal solution at the end of the search procedure. In reactive search and intelligent

optimization, the designer for the algorithm must proactively insert modules which

enable the algorithm to perform the automatic adaptation which requires the designer

to have knowledge of the field of the application, while in our Pref-CBR framework

what is most important is to define suitable similarity measures between problems and

solutions without the necessity to be knowledgeable about the field of the application.

6.2.4 Selection of features

Another part of machine learning worth mentioning is the feature selection, which has

been a productive field of research and development in data mining, machine learning

and statistical pattern recognition, and is widely applied to many fields such as, image

retrieval, genomic analysis and text categorization [18]. As in all scientific challenges,

the development of models with predicting power has to start from appropriate mea-

surements, statistics and input features. It is very important before starting to learn

a parametric or nonparametric model from the examples, to consider that the input

features have sufficient information to predict the outputs [139]. The removal of irrel-

evant and redundant information often improves the performance of machine learning

algorithms. There are two common approaches for evaluation of features: a wrapper

which uses the intended learning algorithm itself to evaluate the usefulness of features,

or a filter which evaluates features according to heuristics based on the general char-

acteristics of the data [145]. The feature selection can also be done using the graph

95

6. RELATED METHODOLOGIES

clustering approach which is based on theoretic graphs; the most relevant features are

selected from the cluster for the relevant corresponding target class (in case of classifi-

cation) [18]. In any case, whichever method is used for selection of features, the goal is

to find the set of input features which lead to optimal output results.

As for the selection of features, in our case our similarity learning algorithms can

be used to evaluate the usefulness of input features. This is basically achieved from

our learning from examples algorithm for learning features of the problems; important

features are emphasized and given more weight over features which do not significantly

contribute to the choice for an optimal solution. This emphasis on the important

features is learned by the qualitative feedback, which in turn depends on the solutions

of the cases as described in detail in Chapter 4. This learning includes indirectly

the connection between the problem and solution spaces, which leads to assigning

importance of features in the problem space which lead to optimal output results.

6.3 Conclusion

In this chapter, we have listed some methodologies which relate to our Pref-CBR frame-

work and to our work. These methodologies have been explained and some practical

applications have been mentioned, for describing how these methodologies are used and

applied practically. We also showed how these different methodologies are related to

our Pref-CBR framework, similarities and differences between our framework and the

discussed approaches. In spite of the existence of many related methodologies, there

was still a good reason to develop Pref-CBR because it basically provides a means for

integrating experience for solving problems without strict formalization of that expe-

rience. In other words, qualitative expert feedback is used to guide the search rather

than quantitative feedback which is used by most approaches. The expert feedback

embedded in our Pref-CBR framework provides a means for solving tasks for assisting

people; it is not only used for classification or regression, but rather for problem-solving

when there is a need for modifying a given solution to fit the requirements of the case to

be solved. Other methods could be more useful though in applications where the need

for precise quantitative values for solutions are seeked, such as in the field of astron-

omy or construction. In the next chapter we will describe and show some experiments

which were implemented during our framework development. For each added part to

96

6.3 Conclusion

our framework, one or more experiments will be shown and described in detail, showing

the effectiveness of our different components added within our framework.

97

6. RELATED METHODOLOGIES

98

7

Experiments

In this chapter, a set of experiments will be listed in detail, showing the efficacy of the

Pref-CBR framework. The first set of experiments will illustrate how the framework

operates and will show how the preference-based search performs over a set of given

problems. The second section will include an illustration of the effectiveness of the two

approaches for learning similarity measures in the problem and solution spaces, learn-

ing by examples (using perceptron algorithm) in the problem space and the Bayesian

learning approach in the solution space. The third section will include a set of illustra-

tions showing the effect of the four different maintenance strategies for preference-based

CBR, which were discussed in detail in Chapter 5. The set of experiments of the added

components (learning of similarity measures and maintenance strategies) in Section 7.2

and Section 7.3 respectively, are tested in isolation to see their effect in the Pref-CBR

framework. The last section will include an application for image correction which in-

cludes all the added components to the framework, showing how generic our Pref-CBR

framework is, by applying it also in the image processing area. As a summary, the

following illustrations are all in different fields, have different scenarios showing how

our Pref-CBR framework is indeed a generic framework holding the capability of being

used in different domains.

7.1 Pref-CBR search performance

The following experiments show the search performance of the Pref-CBR framework

versus random search as a baseline for comparison. The first one is an application from

99

7. EXPERIMENTS

the medical domain while the second one is an application in the food domain.

7.1.1 Drug discovery

The function of a protein in a living organism can be modulated by ligand molecules

that specifically bind to the protein surface and thereby block or enhance its biochemical

activity. This is how a drug becomes effective: By docking to a protein and changing

its activity, it (hopefully) interrupts a cascade of reactions that might be responsible

for a disease.

The identification and selection of ligands targeting a specific protein is of high

interest for de-novo drug development, and is nowadays supported by computational

tools and molecular modeling techniques. Molecular docking is an in silico technique

to screen large molecule databases for potential ligands. Using the spatial (three-

dimensional) structure and physicochemical properties of proteins, it tries to identify

novel ligands by estimating the binding affinity between small molecules and proteins.

However, since docking results are not very reliable, they need to be controlled by

human experts. This is typically done through visual inspection, i.e., by looking at the

docking poses predicted by the software tool and judging whether or not a molecule

is indeed a promising candidate. Needless to say, this kind of human intervention is

costly. Besides, a human will normally not be able to score a docking pose in terms of a

numerical (affinity) degree, whereas a comparison of two such poses can be accomplished

without much difficulties. Therefore, the search for a ligand that well interacts with a

target protein is a nice example of the kind of problem we have in mind.

We conducted experiments with a data set consisting of 588 proteins, which consti-

tute the problem space X, and 38 molecules, which correspond to the solution space Y;

this data set is an extension of the data used in [146]. For each protein/molecule pair,

the data contains an affinity score (pairwise binding energy) computed by a docking

tool. We make use of these scores in order to mimic a human expert, i.e., to real-

ize our oracle: Given a protein and two candidate molecules, the oracle can provide

a preference by looking at the corresponding affinity scores. As a similarity SX on

problems (proteins), we used the measure that is computed by the CavBase database;

this measure compares proteins in terms of the spatial and physicochemical properties

of their respective binding sites [147]. For the solutions (ligands), a similarity SY was

determined based on molecular fingerprints derived from the SMILES code using a

100

7.1 Pref-CBR search performance

0 50 100 150
1

1.5

2

2.5

3

3.5

4

4.5

5

problem solving episode

a
v
e

ra
g

e
 p

o
s
it
io

n
random search

preference−based CBR

Figure 7.1: Average performance of Pref-CBR and random search on the drug discovery

problem in the first 150 problem solving episodes.

molecular operating environment. These fingerprints were used to create a graph rep-

resentation of the molecules, for which the Tanimoto similarity was determined [148].

Both similarities SX and SY were normalized to the unit interval, and corresponding

distances ∆X and ∆Y were defined as 1− SX and 1− SY , respectively.

We applied Algorithm 1, described in detail in Chapter 3, with X0 as a random

order of the complete problem space X. Since the solution space is quite small, we used

a global neighborhood structure, i.e., we defined the neighborhood of a solution y as

N(y) = Y\{y}. As a performance q of a proposed solution y∗ for a problem x0 (line 21),

we computed the position of this solution in the complete list of |Y| = 38 ligands ranked

by affinity to x0 (i.e., 1 would be the optimal performance). To stabilize the results

and make trends more visible, the corresponding sequence of |X| = 588 performance

degrees produced by a single run of Algorithm 1 was averaged over 1000 such runs.

As a baseline to compare with, we used a search strategy in which the preference-

guided selection of the next candidate solution in line 15 of Algorithm 1 is replaced

by a random selection (i.e., an element from Ynn is selected uniformly at random).

Although this is a very simple strategy, it is suitable to isolate the effect of guiding the

search behavior on the basis of preference information. Figure 7.1 shows the results for

101

7. EXPERIMENTS

parameters K = 3, L = 5, J = 15 in Algorithm 1 (other settings led to qualitatively

similar results). As can be seen, our preference-based CBR approach shows a clear

trend toward improvement from episode to episode, thanks to the accumulation and

exploitation of problem solving experience. As expected, such an improvement is not

visible for the random variant of the search algorithm.

7.1.2 Set completion

In a second experiment, we considered a set completion problem that is similar to

the problem solved by the Bayesian set algorithm proposed in [149]. Given a (small)

subset of items as a seed, the task is to extend this seed by successively adding (or

potentially also removing) items, so as to end up with a “good” set of items. As

a concrete example, imagine that items are ingredients, and itemsets correspond to

(simplified) representations of cooking recipes. Then, the problem is to extend a seed

like {noodles, chicken}, suggesting that a user wants a meal including noodles and

chicken, to a complete and tasty recipe.

More formally, both the problem space and the solution space are now given by

X = Y = 2I, where I = {ι1, . . . , ιN} is a finite set of items; thus, both problems and

solutions are itemsets. We define the distance measures ∆X and ∆Y in terms of the

size of the symmetric difference ∆, i.e.,

∆X(x,x′) = |x∆x′| = |x \ x′|+ |x′ \ x| .

Let Y∗ ⊂ Y be a set of reference solutions (e.g., recipes of tasty meals). For a y ∈ Y,

define the distance to Y∗ as

d(y) = min
y∗∈Y∗

|y∆y∗| .

Moreover, for a problem x ∈ X, we define a preference relation on Y as follows: y � z
if either c(y |x) < c(z |x) or c(y |x) = c(z |x) and |y| < |z|, where

c(y |x) =

{
d(y) if y ⊇ x
∞ otherwise

Thus, the worst solutions are those that do not fully contain the original seed. Among

the proper extensions of the seed, those being closer to the reference solutions Y∗

are preferred; if two solutions are equally close, the one with less items (i.e., the less

102

7.1 Pref-CBR search performance

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

problem solving episode

a
v
e

ra
g

e
 c

o
s
t

random search

preference−based CBR

Figure 7.2: Average performance of Pref-CBR and random search on the set completion

problem in the first 100 problem solving episodes.

expensive one) is preferred to the larger one. For a candidate solution y, we define the

neighborhood as the set of those itemsets that can be produced by adding or removing

a single item:

Ynn =
{
y′ |∆Y (y,y′) = 1

}
.

Finally, for a given problem x0, we define the performance of a found solution y∗ in

terms of c(y∗ |x0).

We applied this setting to a database of pizzas extracted from the website all-

recipes.com, each one characterized by a number of toppings (typically between 6

and 10). Seeds (problems) were produced at random by picking a pizza and removing

all except three toppings. The task is then to complete this seed by adding toppings,

so as to produce a tasty pizza (preferably one of those in the database, which plays the

role of the reference set Y∗). Again, we compared Algorithm 1 with the random search

variant as a baseline. The results for parameters K = 5, L = 10, J = 50, shown in

Figure 7.2, which are qualitatively similar to those of the previous study.

103

7. EXPERIMENTS

7.2 Learning of similarity measures

Having seen how Pref-CBR performs compared to random search, we can now see in

isolation the effect of the component of learning the similarity measures on the perfor-

mance. In the first subsection, we will present an illustration which shows the effect of

learning similarity measures in the solution space, and we will see how the number of

queries to the oracle makes a difference in the performance. The following illustration

in the proceeding subsection compares the effectiveness of the learning method for the

problems (perceptron) and the learning method for the solutions (Bayesian approach)

and both combined, on the performance of the search. These are compared with the

performance without any learning.

7.2.1 Wine recommendation – solution space learning

In this case study, we applied Pref-CBR to the problem of wine recommendation. The

scenario is as follows: A wine merchant tries to find his best offer for a customer, i.e.,

that wine in his cellar the customer likes the most. For an average customer, it will

be much easier to (qualitatively) compare two wines instead of rating an individual

wine—this nicely fits the assumption of our framework. Thus, the merchant can offer

different candidate wines to the customer (who plays the role of our oracle), which are

always compared to the current favorite. For obvious reason, however, the number of

such comparisons needs to be limited.

To simulate this scenario, we made use of the red wine data set from the UCI

machine learning repository [150]. This data describes 4898 wines in terms of different

chemical properties; here, we only used three of them, namely sulphates (y1), pH

(y2), and total sulfur dioxide (y3), which were found to have the strongest influence on

preference [151]. We randomly extracted 500 wines to constitute the wines in the cellar,

while 1500 other randomly extracted wines were used as queries. Thus, a query is a

wine that is thought of as the ideal solution for a customer (in this example, problem

space and solution space therefore have the same structure).

We defined the distance measures in terms of:

∆Y (y,y∗) =
k∑
i=1

αi ·∆i(y,y
∗) , (7.1)

104

7.2 Learning of similarity measures

0 500 1000 1500

10
20

50
10

0

Pref−CBR for Wine Selection (L=3)

query

av
er

ag
e

ra
nk

 e
rr

or
 (

lo
g

sc
al

e) Pref−CBR with learning
Pref−CBR without learning
Pref−CBR Random

0 500 1000 1500
10

20
50

10
0

Pref−CBR for Wine Selection (L=5)

query

0 500 1000 1500

10
20

50
10

0

Pref−CBR for Wine Selection (L=10)

query

Figure 7.3: Evolution of the average rank error in sequential problem solving (each query

gives rise to one problem solving episode) for L = 3, 5 and 10 queries.

with the local distances given as ∆i(y,y
∗) = |yi − y∗i |, i = 1, 2, 3. Moreover,

assuming that the different chemical properties have a different influence on taste, we

defined the ground truth distances ∆X = ∆Y by setting α1 = 0.1, α2 = 0.6, α3 = 0.3.

However, we assume this ground truth measure, which is the target of our similarity

learning method, to be unknown. Instead, the measure used in the solution space as an

initial measure subject to adaptation (and in the problem space without adaptation)

is the default measure with uniform weights α1 = α2 = α3 = 1/3.

We used Algorithm 2, described in detail in Chapter 4, for sequential problem

solving, starting with an empty case base. Then, we applied the algorithm to the 1500

query cases one by one and monitored its performance. To measure the quality q of

a proposed solution y• for a problem x0 (line 22), we computed the position of this

solution in the complete list of |Y| = 500 wines in the store ranked by (ground truth)

similarity to the query x0 = y∗ (i.e., 1 would be the optimal performance). To stabilize

the results and make trends more visible, the corresponding sequence of performance

degrees produced by a single run of Pref-CBR Search was averaged over 100 such runs.

We compared two versions of Pref-CBR Search, namely with and without (solution)

similarity adaptation. Moreover, as a baseline we also used a search strategy in which

the preference-guided selection of the next candidate solution in line 15 of Algorithm 2

is replaced by a random selection (i.e., an element from Ynn is selected uniformly

at random). Although this is a very simple strategy, as we mentioned before in the

experiments in the previous section, it is suitable to isolate the effect of guiding the

105

7. EXPERIMENTS

search behavior on the basis of preference information.

We applied our Algorithm 2 with K = 5, L ∈ {3, 5, 10}, J = 25; since the solu-

tion space is quite small, we used a global neighborhood structure, i.e., we defined the

neighborhood of a solution y as N(y) = Y\{y}. As can be seen from the results in Fig-

ure 7.3, our preference-based CBR approach shows a clear trend toward improvement

from episode to episode, as opposed to the random variant of the search algorithm.

More importantly, however, similarity adaptation is clearly beneficial: Making use

of the preference information gathered in the first episodes, Pref-CBR Search succeeds

in learning the ground truth similarity measure, which in turn leads to better search

performance and solution quality. The variant without similarity adaptation finds rea-

sonably good solutions, too, because even the suboptimal (default) measure is guiding

the search in a right direction—yet, with similarity adaptation enabled, the search be-

comes more effective, and the smaller the number of queries (L), the more pronounced

the relative improvement.

7.2.2 Red wine recommendation – comparison of similarity measures

of problems and solutions

This illustration uses the same data which was used in the above subsection, but using

only the red wine data which consists of 1599 instances. We applied the Algorithm 2 to

the 400 randomly extracted query cases one by one and monitored its performance. We

take 50 wines to constitute the wines in the cellar, while the remaining 350 were used as

queries. The measure used in the problem space and solution space as an initial measure

subject to adaptation is the default measure with uniform weights α1 = α2 = α3 = 1/3.

We used Algorithm 2 for sequential problem solving, starting with an empty case

base. Then, we applied the algorithm to the 350 query cases one by one and monitored

its performance. To measure the quality q of a proposed solution y• for a problem x0

(line 22), we computed the position of this solution in the complete list of |Y| = 50

wines in the store ranked by (ground truth) similarity to the query x0 = y∗ (i.e., 1

would be the optimal performance). To stabilize the results and make trends more

visible, the corresponding sequence of performance degrees produced by a single run of

Pref-CBR Search was averaged over 200 such runs.

We compared four versions of Pref-CBR Search, namely without similarity adap-

tation, with problem similarity adaptation only, with solution similarity adaptation

106

7.3 Case base maintenance in Pref-CBR

50 100 150 200 250 300 350

3
4

5
6

7

Pref−CBR for Wine Selection

query

av
er

ag
e

ra
nk

 e
rr

or
 (

lo
g

sc
al

e)
Pref−CBR no learning
Pref−CBR problem learning
Pref−CBR solution learning
Pref−CBR problem&solution learning

Figure 7.4: Comparison of performance between no metric learning, problem metric

learning, solution metric learning, problem&solution metric learning.

only and with both problem and solution similarity adaptation. We applied our Al-

gorithm 2 with K = 5, L = 5, J = 25; since the solution space is quite small, we

used a global neighborhood structure, i.e., we defined the neighborhood of a solution

y as N(y) = Y \ {y}. As can be seen from the results in Figure 7.4, our preference-

based CBR approach shows a clear trend toward improvement from episode to episode.

We can observe that applying similarity learning in the problem space shows that the

search becomes more effective, similarity adaptation in the solution space shows more

search improvement and clearly with both problem and solution similarity adaptation

the search shows the highest performance.

7.3 Case base maintenance in Pref-CBR

In this section four sets of experiments will be described, two sets of experiments

illustrating the inter-case maintenance methods and two sets illustrating the intra-case

maintenance methods. Recalling from Chapter 5, in which detailed descriptions of the

aforementioned methods are shown, the inter-case maintenance methods refer to whole

deletion of cases while the intra-case maintenance methods refer to parts of cases being

deleted. Both methods contain redundancy and noise deletion strategies.

107

7. EXPERIMENTS

We conducted an experimental study with the traveling salesman problem (TSP),

i.e., with TSP instances as problems and tours as candidate solutions. Needless to say,

our ambition is not to develop new state-of-the-art solvers for this NP-hard optimization

problem—obviously, our completely generic problem solving framework cannot compete

with specialized TSP solvers. Nevertheless, combinatorial optimization problems such

as TSP provide an interesting test bed for Pref-CBR:

• In practice, such problems often need to be solved repeatedly (imagine, for ex-

ample, a conveyance planning a tour every day), suggesting a reuse of previous

solutions [64]; interestingly, the TSP problem has already been tackled by means

of CBR by other authors [152, 153].

• The solution space Y is non-trivial but typically equipped with a natural struc-

ture, on which reasonable distance measures ∆Y can be defined.

• One of the key assumptions of Pref-CBR, namely, that the optimality of a solu-

tion cannot be guaranteed, is often fulfilled—this is due to the hardness of such

problems, calling for heuristic approximations.

• Nevertheless, a comparison between two candidate solutions is often possible.

In TSP, for example, a preference between two tours can easily be created by

computing and comparing their lengths.1

Another assumption of Pref-CBR, namely that a comparison is costly (and hence the

number of adaptations and queries to the oracle limited), is admittedly not fulfilled

in the case of TSP. Yet, one can easily imagine practically relevant generalizations of

the problem for which this assumption applies. For example, suppose we replace a

precise evaluation criterion such as length of a tour by a more “soft” criterion such as

comfort or convenience. Then, to compare two candidates, it may indeed be necessary

to practically try both of them (e.g., to walk a hiking tour), which might be time-

consuming and involve input of a human expert (playing the role of the “oracle” then).

In such cases, comparing two candidates qualitatively may also be simpler than rating

them individually.

1Actually, we could even create more than a qualitative preference, because the numerical values

of the solutions (lengths of the tours) are known as well. This is indeed additional information we are

not exploiting in this application

108

7.3 Case base maintenance in Pref-CBR

7.3.1 Setting

The components of our Pref-CBR setting are specified as follows:

• The problem space X for the first experiment is the set of all subsets x ⊂ X of

size |x| = 10. The problem space X for the second experiment is the set of all

subsets x ⊂ X of size |x| = 20, where X ⊂ R2 is a randomly created reference set

of 25 points on the plane for the first experiment and 50 points on the plane for

the second experiment; each point can be thought of as the location of a city.

• The distance ∆X(x,x′) between two problems is defined in terms of the sum

of pairwise squared distances between cities of two instances, subsequent to an

optimal assignment of the points that is obtained by solving the linear assignment

problem [154] with Euclidean distance as a cost measure.

• Solutions are represented as permutations specifying the order of cities/points

in a tour. Thus, Y is the set of all permutations of {1, . . . , 10} for 10 cities

or of {1, . . . , 20} for 20 cities. This space is equipped with a local neighborhood

structure by connecting each solution y with 200 “perturbations” of this solution,

each of which is obtained by randomly switching the position of a small number

(2, 4 or 6) of points.

• To define the distance ∆Y (y,y′) between two solutions, each solution is first

mapped to a feature vector with the coordinates of the cities in the specified

order of the permutation. Then, the corresponding feature vectors are compared

in terms of their Euclidean distance.

• The parameters of Pref-CBR were set as follows: number of nearest neighbors

K = 15, number of adaptation steps L = 10 for instances of 10 cities and L = 20

for instances of 20 cities.

7.3.2 Inter-case maintenance methods

In our inter-case maintenance experimental study, we compared the Pref-CBR search

without case base maintenance, with inter-case redundancy and inter-case noise main-

tenance methods, for instances of 10 cities and 20 cities. As additional baselines, we

included a random case deletion (RCD) policy, which removes each newly observed case

109

7. EXPERIMENTS

with a fixed probability (RCD) of 1/3. We generated a sequence of 300 instances of

the TSP problem (using the “tspmeta” library in R), giving rise to the same number

of problem solving episodes. Each time a solution has been produced, we measure

performance by computing the ratio between the corresponding tour length and the

optimal tour length found by the “cheapest insertion” TSP solver. Since the sequence

of performance values thus produced is rather noisy, we average over a larger number

of repetitions of this experiment to produce smoother curves.

These curves are shown in Figure 7.5 for TSP instances of 10 cities, both for Pref-

CBR without maintenance and Pref-CBR with maintenance (inter-case redundancy and

inter-case noise) with values of the parameter v = 4 for the redundancy maintenance,

and v = 7 for the noise maintenance (while the threshold t was fixed to 1). Moreover,

the evolution of the size of the case base is also shown in the plot on the right. As can

be seen, the desired effect is indeed achieved: The size of the case base is reduced while

performance is maintained (in contrast to the random deletion policy). Moreover,

by increasing the value of v, the stronger the tendency to delete cases. Thus, this

parameter can be used to control the size of the case base. The curves in Figure 7.6

for TSP instances of 20 cities, have parameter v = 8.5 for redundancy maintenance

and v = 15.5 for noise maintenance, and also t = 1. The evolution of the case base

size is illustrated in the plot on the right. Since case base maintenance starts after

a pre-specified number of solved problems, the parameter v could be approximated.

After performing some experiments, we can conclude for this example that v could be

valued according to the average distance between solutions of solved problems. For

redundancy, v ' 3
4 d̄s, where d̄s is the average distance between solutions. For noise,

v ' 3
2 d̄s.

7.3.3 Intra-case maintenance methods

In our intra-case maintenance experimental study, we compared Pref-CBR search with-

out case base maintenance with intra-case redundancy and intra-case noise maintenance

methods, for instances of 10 cities and 20 cities, with same data used in the previous

section. As additional baselines, we included a random preferences deletion policy

(RPD), which removes individual preferences (RPD) with the a fixed probability of

1/3.

110

7.3 Case base maintenance in Pref-CBR

50 100 150 200 250 300

1.
05

1.
10

1.
15

1.
20

Pref−CBR for TSP

query

se
ar

ch
 im

pr
ov

em
en

t

Pref−CBR NoMaintenance
Pref−CBR InterCR
Pref−CBR InterCN
Pref−CBR RD

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Pref−CBR for TSP

query

ca
se

 b
as

e
si

ze

Pref−CBR NoMaintenance
Pref−CBR InterCR
Pref−CBR InterCN
Pref−CBR RD

Figure 7.5: Pref-CBR search with and without inter-case maintenance methods of TSP

(10cities) data and case base size.

50 100 150 200 250 300

1.
30

1.
35

1.
40

1.
45

1.
50

1.
55

1.
60

Pref−CBR for TSP

query

se
ar

ch
 im

pr
ov

em
en

t

Pref−CBR NoMaintenance
Pref−CBR InterCR
Pref−CBR InterCN
Pref−CBR RD

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Pref−CBR for TSP

query

ca
se

 b
as

e
si

ze

Pref−CBR NoMaintenance
Pref−CBR InterCR
Pref−CBR InterCN
Pref−CBR RD

Figure 7.6: Pref-CBR search with and without inter-case maintenance methods of TSP

(20cities) data and case base size.

111

7. EXPERIMENTS

50 100 150 200 250 300

1.
05

1.
10

1.
15

1.
20

Pref−CBR for TSP

query

se
ar

ch
 im

pr
ov

em
en

t

Pref−CBR NoMaintenance
Pref−CBR IntraCR
Pref−CBR IntraCN
Pref−CBR RPD

0 50 100 150 200 250 300

0
50

0
10

00
15

00
20

00
25

00
30

00

Pref−CBR for TSP

query

nu
m

be
r

of
 p

re
fe

re
nc

es

Pref−CBR NoMaintenance
Pref−CBR IntraCR
Pref−CBR IntraCN
Pref−CBR RPD

Figure 7.7: Pref-CBR search with and without intra-case maintenance methods of TSP

(10cities) data and number of preferences in case base.

These curves are shown in Figure 7.7 for TSP instances of 10 cities, both for Pref-

CBR without maintenance and Pref-CBR with maintenance (intra-case redundancy and

intra-case noise). Moreover, the plot on the right shows the evolution of the size of the

case base (in terms of the number of preferences). The original number of preferences

should be equal to the number of cases times the number of queries to oracle, which

is 3000 for instances of 10 cities and 6000 for instances of 20 cities. As can be seen,

the size of the case base is significantly reduced, while performance is maintained (in

contrast to the random preferences deletion policy). We can also observe that the size

is reduced almost to half the case base size using the intra-case redundancy and noise

maintenance methods, while deleting much less preferences randomly affects the quality

of performance.

The curves in Figure 7.8 for TSP instances of 20 cities, illustrate the search perfor-

mance and the evolution of the number of preferences in the case base is shown in the

right plot.

We can conclude from the conducted experiments, that the inter-case redundancy

methods maintain the performance and increase the efficiency of the case base. We

can observe from the results of the experiments also, that our intra-case maintenance

methods (redundancy and noise) actually improve the performance as well as increase

the efficiency of the case base. We can therefore take advantage of our Pref-CBR

112

7.4 Image improvement application

50 100 150 200 250 300

1.
2

1.
3

1.
4

1.
5

1.
6

Pref−CBR for TSP

query

se
ar

ch
 im

pr
ov

em
en

t

Pref−CBR NoMaintenance
Pref−CBR IntraCR
Pref−CBR IntraCN
Pref−CBR RPD

0 50 100 150 200 250 300

0
10

00
20

00
30

00
40

00
50

00
60

00

Pref−CBR for TSP

query
nu

m
be

r
of

 p
re

fe
re

nc
es

Pref−CBR NoMaintenance
Pref−CBR IntraCR
Pref−CBR IntraCN
Pref−CBR RPD

Figure 7.8: Pref-CBR search with and without intra-case maintenance methods of TSP

(20cities) data and number of preferences in case base.

strategy of storing the preferences over solutions and instead of deleting whole cases,

we can delete some preferences which are redundant or noisy, leaving more information

in the case base to be used for the search. We cannot concretely generalize this result,

but for the TSP data, this can clearly be observed.

7.4 Image improvement application

The experiment in this section is a very interesting application in the image processing

domain. The illustration presented shows how nicely the Pref-CBR framework operates,

even in such a complex field as image processing. We conducted an experiment with

a data set consisting of 300 images (96x96 pixels), which constitute the problem space

X, and a directed set of filters, which correspond to the solution space Y; this data

set has been collected from an image recognition benchmark data set [155]. The data

set contains images from different categories: airplanes, automobiles, birds, cats, deer,

dogs, horses, ships and trucks. The problems are a set of distorted images and the

solutions are directed sets (sequences) of filters. A sequence of filters, should when

applied to the distorted image, yield an improved image (hopefully as close as possible

to the original undistorted image). The values of the parameters of the aforementioned

directed set of filters which improve the images, are developed during the Pref-CBR

search process.

113

7. EXPERIMENTS

The images have been distorted by four different types of filters: brightness, blur

or sharpen, gamma, and contrast. The filters’ parameters varies between -1 and 1

(zero being neutral setting, meaning that a specific filter is not applied). A Gaussian

distribution was applied randomly on each of the parameters for each image. Thus,

parametrized filters were applied on the original images to get the distorted (query)

images as our problems. These filter parameters are stored for later evaluation. It is

to be noted that the Gaussian distribution for random filters which were applied for

distorting the images, was clipped between the values of y ∈ [−1, 1]4, for the necessity

of distorting an image while still maintaining some of its characteristics intact for being

able to improve it. If the picture is completely distorted and none of its characteristics

remain, it would be impossible to improve the image.

It is noteworthy to mention the dependencies between the different filters, which

in turn were applied for distorting the images to create our problems, and would be

applied as solutions for correcting or improving the distorted images later on in the

search. The blur or sharpen filter and the three others are independent of each other.

On the contrary, there is a dependency between the contrast, gamma and brightness

filters. The contrast filter is connected to the arithmetic ’×’ (multiplication) operator,

gamma correction to the ’∧’ (power) operator and brightness to the ’+’ (addition)

operator; these arithmetic operators being applied on the pixel values. We can then

acknowledge that for a certain order of an application of filters for distorting the images,

it would make sense to apply the filters in the reverse order for correcting these images.

Although this may seem to be a simple task, it is surely otherwise. Generally, for an

image X, applying the filters of gamma, contrast and brightness, we would have such

an equation: U = (X(c+1))(d + 1) + e where neutral parameter settings would be a

vector of zeros. To recover image X again, the filters would be applied in the reverse

order such as: U = ((X + e)(d+ 1))(c+1)

The order of the operation makes a difference and the challenge here is that image

X is not only a single numeric value, but rather an image containing 96x96x3 RGB

values, that is the addition, multiplication and power operators, are applied to each

component. In other words, using these operators on the parameters affect the whole

set of 96x96x3 RGB values. The Pref-CBR constituents are listed as follows:

• The problems consist of distorted images in feature representation. The 8 feature

114

7.4 Image improvement application

groups for each image are: entropy, correlation, contrast, mean, homogeneity,

variance, dissimilarity, and color. Each of the aforementioned groups, except for

the color group, was calculated by the R package glcm (grey-level co-occurrence

matrices) [156], and contains 10 components with values for the 5 percent, 15

percent, etc. to 95 percent quantiles. The “color” features’ group is a calculation

of 3x3 local patches of the correlation between the red, green, and blue color

channels of an image. The range of values within each feature group was adjusted

between 0 and 1 across all images, where X = [0, 1]80. The SX on problems is

calculated by the Euclidean distance between the extracted feature vectors of the

images (80 features).

• The solution space consists of filter parameter settings, as indicated above. The

goal is to find a directed set of filters with values to improve the quality of the

query image, according to the oracle where Y = [−1, 1]4. SY between the solutions

is measured in terms of the Euclidean distance between the parameters of the

filters (4 parameters).

• The oracle represents the human in the loop, it generates a preference of the

“better-looking” image. Currently for the practicality of the application, the

preference is given based on a locality improved distance between a query image

having the current filter settings applied (current solution), and the original im-

age from the database. This “locality improved distance” between two images

is measured by dividing each 96x96 image to local 3x3 chunks, and measuring

the distance between each of these chunks of two images. We use this distance

measure instead of measuring distance between whole images, to resemble more

closely the retina of a human eye. It could be similar to the visual perception of a

human in the loop, comparing two images and choosing the one which is visually

more appealing (the one which is more similar to the original image). Our choice

to use this specific distance measure for the oracle, is its consideration to the

“neighbor information” of pixels.

• The quality evaluation is measured by the percent images difference between the

improved distorted query image, and the original image [157]. This measure is

commonly used for image comparisons.

115

7. EXPERIMENTS

In our experiment, we defined the neighborhood N of a solution y as a spherical struc-

ture (a three-dimensional neighborhood with a fixed radius) around the solution (center

of the sphere). We applied Algorithm 1 with K = 15, L = 12 and J = 180.

The performance plot is shown in Figure 7.9, where we can observe the comparison

of performances of the Pref-CBR search, the random search, the Pref-CBR search with

learning similarity metrics of problem and solution spaces, and Pref-CBR with learning

and intra-case redundancy maintenance. It is clearly seen that the Pref-CBR search

shows a clear trend of improvement compared to the random search. We can also

see the effect of learning the similarity measures in the plot, where performance is

greatly further improved. Finally we can see the curve for the performance with both

components of learning the similarity metrics as well as applying one of our maintenance

strategies. We can distincly notice that the quality of the performance is maintained, in

addition we were able to reduce the case base to approximately half of its size, thanks

to our intra-case redundancy maintenance strategy. In Figure 7.10, we can see how the

case base size is reduced throughout the search procedure.

The effect of learning can be nicely and concretely seen in Figure 7.11, Figure 7.12

and Figure 7.13. These figures include images for different stages during the learning

(after 50 stored cases, 100, etc to 300). We can observe that as the search progresses,

and more cases are stored in the case base, the solutions keep improving.

Figure 7.14, Figure 7.15, Figure 7.16, Figure 7.17 and Figure 7.18 show some ex-

amples of the progress of the correction of the images throughout the loop of queries to

the oracle. We can see how the images develop from the distorted image, until reaching

a solution at the end of the “queries to the oracle” loop. However, the random filters

applied might exceed the color range, leading to loss of information (such as white or

black patches) and these could not be completely recovered in detail.

It can be seen that the image correction application nicely shows the benefit of

our Pref-CBR framework. The additional benefit of similarity metrics learning and

the benefit of CBM, leading to increased efficiency, are also clearly observed. This

application nicely illustrates practically the efficacy of the whole methodology of our

Pref-CBR framework.

In this chapter it was clearly shown how the Pref-CBR problem-solving framework

performs within different application domains. We have also shown how each added

element in the framework, such as the learning of similarity measures components and

116

7.4 Image improvement application

50 100 150 200 250 300

13
14

15
16

17

Pref−CBR for Image Correction

query

pe
rc

en
ta

ge
 d

iff
er

en
ce

 b
et

w
ee

n
im

ag
es

Pref−CBR withoutLearning
Pref−CBR randomSearch
Pref−CBR withLearning
Pref−CBR withLearning&Maintenance

Figure 7.9: Performance showing different curves of average percentage difference between

images.

117

7. EXPERIMENTS

0 50 100 150 200 250 300

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Pref−CBR for Image Correction

query

nu
m

be
r

of
 p

re
fe

re
nc

es

Pref−CBR withMaintenance
Pref−CBR noMaintenance

Figure 7.10: Case base size

Original image

Query image

Solution image

30025020015010050

Figure 7.11: Comparison between original, query, and final image after applying solution

(set of filters) at different intervals of case base size.

118

7.4 Image improvement application

Original image

Query image

Solution image

30025020015010050

Figure 7.12: Comparison between original, query, and final image after applying solution

(set of filters) at different intervals of case base size.

Original image

Query image

Solution image

30025020015010050

Figure 7.13: Comparison between original, query, and final image after applying solution

(set of filters) at different intervals of case base size.

119

7. EXPERIMENTS

original query solution

Figure 7.14: Progress of image improvement.

original query solution

Figure 7.15: Progress of image improvement.

120

7.4 Image improvement application

original query solution

Figure 7.16: Progress of image improvement.

original query solution

Figure 7.17: Progress of image improvement.

121

7. EXPERIMENTS

original query solution

Figure 7.18: Progress of image improvement.

the different case base maintenance components, have also added to the optimization

and efficiency of the framework. We have implemented different case studies within the

medical domain, food domain, combinatorial optimization domain and the image pro-

cessing domain. We have shown how our Pref-CBR framework is flexible and generic

for usage in different setups and showed also how it can be used in environments where

conventional CBR could not be used. The Pref-CBR problem-solving framework is

based on sound theoretical methodologies, where the inference procedure uses mathe-

matical and statistical methods from the machine learning field. The flexibility and the

genericness of our framework, as well as its formulation on sound theoretical methods,

in our opinion, makes it attractive and reliable to be used in different setups where

conventional CBR could not be used.

122

8

Conclusions and Outlook

In the work in this thesis, we have presented a general framework for CBR in which ex-

perience is represented in the form of contextualized preferences. These preferences are

used to direct an adaptive problem solving process that is formalized as a search proce-

dure. This kind of preference-based CBR is an interesting alternative to conventional

CBR whenever solution quality is a matter of degree, and feedback is only provided

in an indirect or qualitative way. We have highlighted the differences between conven-

tional CBR and preference-based CBR, and we pointed out when Pref-CBR would be

advantageous to use in real world applications.

We have described the preference-based knowledge representation; mainly that ex-

periences of the form “solution y (optimally) solves problem x” are replaced by weaker

information of the form “y is better (more preferred) than z as a solution for x”,

that is, by a preference between two solutions contextualized by a problem x. We

have explained in detail the formal setting of the framework, the case-based inference

as a probability estimation, as well as how our CBR preference-guided search is per-

formed. We presented some illustrations in the first section of Chapter 7, which show

the effectiveness of our generic framework.

For further optimization of our framework, we added two extensions to it. One

extension is the adaptation of our distance measures in the solution and problem spaces,

and the second extension is having effective methods for case base maintenance for

ensuring efficiency of the case base.

In Chapter 4, we proposed two methods for learning similarity measures: the

Bayesian approach for learning metrics of the solution space, and the perceptron learn-

123

8. CONCLUSIONS AND OUTLOOK

ing algorithm for learning metrics of the problem space. We explained in detail how

the learning methods are integrated in our framework, as well as how the informa-

tion gained by each problem-solving episode is used for the continuous updating of the

learned metrics. The learning of the similarity measures leads to an increased perfor-

mance throughout the search process, and this is clearly illustrated in the application

illustrated in the second section of Chapter 7.

As we further gained knowledge of how the Pref-CBR framework operates, we came

to the realization of the demanding necessity of maintaining the case base. The more

the case base grows, the number of preferences may become extremely large, thus

hindering the efficiency of the CBR system. The need for case base maintenance became

very clear to us, and accordingly we developed four CBM strategies which specifically

suit our Pref-CBR framework. We explained how the likelihood function can give us

hints on defining stored preferences which are noisy or redundant. We developed two

main groups of CBM strategies which consist of either deleting whole cases (inter-case

maintenance) or partial case deletion (intra-case maintenance). The latter deletion

method is concerned with deletion of only some preferences, rather than whole cases.

The effectiveness of these approaches was illustrated in a case study of the traveling

salesman problem, described in detail in the third section of Chapter 7.

Finally, we discussed some methodologies which are related to our Pref-CBR frame-

work, and we highlighted these relations. To summarize our work and integrate the

extensions of our framework, and to show the benefit of each added component, we

chose to implement the “Image Improvement Application”. This application shows

how Pref-CBR works even in such a complex field as image processing. In addition we

also included in the application the idea of having a human in the loop.

For future work, there are some issues which could be further investigated. We have

done some work on adaptive neighborhoods, which have been briefly mentioned in the

traveling salesman problem case study, where we created neighborhoods of switching

two, four or six cities depending on the performance. We have also applied the idea of

adaptive neighborhoods in some other work, where neighborhoods would be changing

(size or radius) according to the quality of the performance, thus continuously improving

the performance during the search procedure. For example, number of elements in the

neighborhood would be adaptive (increase or decrease relative to the performance), or

the radius of the neighborhood formed around an initial solution would also be adaptive,

124

depending on the application. This is an interesting addition to the framework which

could be further investigated.

Another aspect which could also be tested is the idea of forming intelligent neigh-

borhoods around the initial solution. Some machine learning methods could be used

for intelligently forming a good neighborhood (focusing the search direction based on

search history), instead of a random one (searching isotropically in all directions). In

addition, the idea of using preferences for guiding the search process as we do in our

framework, could be extended from heuristic search to more sophisticated search meth-

ods. Currently our maximum likelihood approach probes isotropically around a current

solution to perform greedy hill-climbing search in the solution space. We could for ex-

ample not limit the search to one greedy pick, but to several candidates using beam

search. We could also try using local simulated annealing; stay with a certain proba-

bility at the current solution for generating better options from there, even if another

one from the neighborhood might seem better.

One more thing which would be interesting to continue to work on, is the possibility

of using another approach for learning similarity measures in the solution space which

would overcome the limitation of its usage with a few number of attributes. In our

framework, we use the Bayesian method which is elegant and complements our frame-

work, where we create discretizations of the continuous domain and we compute the

posterior numerically. The way the posterior is computed puts a limit to the number

of features in the solution space, if there are many features the computation gets to be

very expensive. The reason for numerically computing the posterior is that there does

not seem to be a conjugate family for our current model. It would be interesting to test

another learning approach to overcome this limitation, maybe by using for example

point estimation, where we can adapt the metric used in the maximum likelihood to

maximize the likelihood by directly using the feedback of the oracle.

125

8. CONCLUSIONS AND OUTLOOK

126

References

[1] Ralph Bergmann, Klaus-Dieter Althoff, Mirjam Minor, Meike Re-

ichle, and Kerstin Bach. Case-Based Reasoning – Introduction and

Recent Developments. KI - Künstliche Intelligenz, German Journal on

Artificial Intelligence - Organ des Fachbereiches ”Künstliche Intelligenz” der

Gesellschaft für Informatik e.V. (KI), 23(1):5–11, 1 2009. 1

[2] Simon Shiu and Sankar K. Pal. Foundations of Soft Case-Based Reasoning.

John Wiley & Sons, 2004. 1

[3] Janet L Kolodner. An Introduction to Case-Baseased Reasoning. Ar-

tificial Intelligence Review, 6(1):3–34, 1992. 1

[4] Padraig Cunningham, Donal Doyle, and John Loughrey. An Eval-

uation of the Usefulness of Case-Based Explanation. In Proceedings of

the Fifth International Conference on Case-Based Reasoning, pages 122–130.

Springer, 2003. 1

[5] Robert H Tenback. A Comparison of Similarity Measures for Case-

Based Reasoning. Utrech University, 1994. 2

[6] Ramon Lopez De Mantaras, David McSherry, Derek Bridge, David

Leake, Barry Smyth, Susan Craw, Boi Faltings, Mary Lou Maher,

MICHAEL T COX, Kenneth Forbus, et al. Retrieval, Reuse, Revi-

sion and Retention in Case-Based Reasoning. The Knowledge Engineering

Review, 20(03):215–240, 2005. 2, 11

127

http://dx.doi.org/10.1007/BF00155578

REFERENCES

[7] Agnar Aamodt and Enric Plaza. Case-based Reasoning; Foundational

Issues, Methodological Variations, and System Approaches. AI Com-

munications, 7(1):39–59, 1994. 2, 9, 10

[8] Roger C Schank and Robert P Abelson. Scripts, Plans, Goals and Under-

standing: an Inquiry into Human Knowledge Structures. L. Erlbaum, Hillsdale,

NJ, 1977. 2

[9] Ralph Bergmann. Experience Management: Foundations, Development

Methodology, and Internet-based Applications. Springer-Verlag, Berlin, Heidel-

berg, 2002. 2

[10] Alec Holt, Isabelle Bichindaritz, Rainer Schmidt, and Petra

Perner. Medical Applications in Case-Based Reasoning. The Knowl-

edge Engineering Review, 20(03):289–292, 2005. 2

[11] Isabelle Bichindaritz. Case-Based Reasoning in the Health Sciences:

Why It Matters for the Health Sciences and for CBR. In Klaus-Dieter

Althoff, Ralph Bergmann, Mirjam Minor, and Alexandre Hanft, ed-

itors, Advances in Case-Based Reasoning, 5239 of Lecture Notes in Computer

Science, pages 1–17. Springer Berlin Heidelberg, 2008. 2

[12] Eyke Hüllermeier and Patrice Schlegel. Preference-Based CBR:

First Steps toward a Methodological Framework. In Ashwin Ram and

Nirmalie Wiratunga, editors, Case-Based Reasoning Research and Develop-

ment, 6880 of Lecture Notes in Computer Science, pages 77–91. Springer Berlin

Heidelberg, 2011. 4, 5, 26, 29, 39

[13] Jon Doyle. Prospects for Preferences. Computational Intelligence,

20(2):111–136, 2004. 4

[14] Judy Goldsmith and Ulrich Junker. Preference Handling for Artificial

Intelligence. AI Magazine, 29(4):9–12, 2008. 4

[15] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri

Prade. Preferences in AI: An Overview. Artificial Intelligence,

175(78):1037 – 1052, 2011. Representing, Processing, and Learning Preferences:

Theoretical and Practical Challenges. 4

128

http://dx.doi.org/10.1007/978-3-540-85502-6_1
http://dx.doi.org/10.1007/978-3-540-85502-6_1
http://dx.doi.org/10.1007/978-3-642-23291-6_8
http://dx.doi.org/10.1007/978-3-642-23291-6_8
http://dx.doi.org/10.1111/j.0824-7935.2004.00233.x
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2180
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2180
http://www.sciencedirect.com/science/article/pii/S000437021100049X

REFERENCES

[16] Ronen Brafman and Carmel Domshlak. Preference Handling-An In-

troductory Tutorial. AI Magazine, 30(1):58, 2009. 4

[17] Weiwei Cheng and Eyke Hüllermeier. Learning Similarity Functions

from Qualitative Feedback. In Advances in Case-Based Reasoning, pages

120–134. Springer, 2008. 5, 47, 56

[18] Harshali D Gangurde. Article: Feature Selection using Clustering Ap-

proach for Big Data. IJCA Proceedings on Innovations and Trends in Com-

puter and Communication Engineering, ITCCE(4):1–3, December 2014. Full

text available. 6, 95, 96

[19] Vahid Jalali and David Leake. Adaptation-Guided Case Base Mainte-

nance. In Proc. AAAI, National Conference on Artificial Intelligence, 2014. 6,

63, 65

[20] David B Leake. CBR in Context: The Present and Future. Case-Based

Reasoning, Experiences, Lessons & Future Directions, pages 1–30, 1996. 9, 10,

14, 15, 21, 22

[21] Eyke Hüllermeier. Case-Based Approximate Reasoning, 44. Springer Science

& Business Media, 2007. 9

[22] Stephen Slade. Case-based Reasoning: A Research Paradigm. AI Mag-

azine, 12(1):42, 1991. 10, 12, 14, 23

[23] Roger C Schank. Dynamic memory: A Theory of Reminding and Learning in

Computers and People. Cambridge University Press, 1983. 10

[24] Enrico Blanzieri and Francesco Ricci. Probability Based Metrics for

Nearest Neighbor Classification and Case-Based Reasoning. In Case-

Based Reasoning Research and Development, pages 14–28. Springer, 1999. 11

[25] Ian Watson. An Introduction to Case-Based Reasoning. In Progress in

Case-Based Reasoning, pages 1–16. Springer, 1995. 11

[26] Gavin Finnie and Zhaohao Sun. Similarity and Metrics in Case-Based

Reasoning. International Journal of Intelligent Systems, 17(3):273–287, 2002.

11

129

https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8360
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8360

REFERENCES

[27] T Warren Liao, Zhiming Zhang, and Claude R Mount. Similarity Mea-

sures for Retrieval in Case-Based Reasoning Systems. Applied Artificial

Intelligence, 12(4):267–288, 1998. 11

[28] Edmund K. Burke, Bart MacCarthy, Sanja Petrovic, and Rong Qu.

Structured Cases in Case-Based Reasoning: Re-Using and Adapting

Cases for Time-Tabling Problems. Knowledge-Based Systems, 13(2):159–

165, 2000. 11

[29] Niloofar Arshadi and Kambiz Badie. A Compositional Approach to

Solution Adaptation in Case-Based Reasoning and its Application to

Tutoring Library. In Proceedings of 8th German Workshop on Case-Based

Reasoning. Lammerbuckel, 2000. 11

[30] Thomas R Roth-Berghofer. Explanations and Case-Based Reasoning:

Foundational Issues. In Advances in Case-Based Reasoning, pages 389–403.

Springer, 2004. 14

[31] Ralph Bergmann and Wolfgang Wilke. Towards a New Formal Model

of Transformational Adaptation in Case-Based Reasoning. In ECAI,

pages 53–57, 1998. 15, 34

[32] David W Aha and Héctor Muñoz-Avila. Introduction: Interactive

Case-Based Reasoning. Applied Intelligence, 14(1):7–8, 2001. 15

[33] David W Aha, Leonard A Breslow, and Héctor Muñoz-Avila. Con-

versational Case-Based Reasoning. Applied Intelligence, 14(1):9–32, 2001.

15, 16

[34] Hideo Shimazu. ExpertClerk: A Conversational Case-Based Reason-

ing Tool for Developing Salesclerk Agents in E-Commerce Webshops.

Artificial Intelligence Review, 18(3-4):223–244, 2002. 15, 16

[35] David McSherry. Conversational Case-Based Reasoning in Medical

Decision Making. Artificial Intelligence in Medicine, 52(2):59 – 66, 2011. Ar-

tificial Intelligence in Medicine {AIME} 2009. 15, 16, 17

130

http://www.sciencedirect.com/science/article/pii/S0933365711000480
http://www.sciencedirect.com/science/article/pii/S0933365711000480

REFERENCES

[36] David Mcsherry. Increasing Dialogue Efficiency in Case-Based Rea-

soning Without Loss of Solution Quality. In Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence, pages 121–126. Morgan

Kaufmann, 2003. 16

[37] Barry Smyth and Lorraine McGinty. The Power of Suggestion. In

Proceedings of the 18th International Joint Conference on Artificial Intelligence,

IJCAI’03, pages 127–132, San Francisco, CA, USA, 2003. Morgan Kaufmann

Publishers Inc. 17

[38] Lorraine Mc Ginty and Barry Smyth. Comparison-Based Recommen-

dation. In Lecture Notes in Computer Science, page 2002, 2002. 17, 18

[39] Maria Salam, James Reilly, Lorraine McGinty, and Barry Smyth.

Knowledge Discovery from User Preferences in Conversational Rec-

ommendation. In AlpioMrio Jorge, Lus Torgo, Pavel Brazdil, Rui

Camacho, and Joo Gama, editors, Knowledge Discovery in Databases: PKDD

2005, 3721 of Lecture Notes in Computer Science, pages 228–239. Springer Berlin

Heidelberg, 2005. 18

[40] Michael M Richter and Rosina O Weber. Case-Based Reasoning. A

Textbook, page 546, 2013. 18, 19, 20, 21

[41] Norbert Gronau and Frank Laskowski. Using Case-Based Reasoning

to Improve Information Retrieval in Knowledge Management Systems.

In Advances in Web Intelligence, pages 94–102. Springer, 2003. 19

[42] Selma Limam, HA Reijers, and Farhi Marir. Case-Based Reasoning as

a Technique for Knowledge Management in Business Process Redesign.

Electronic Journal on Knowledge Management, 1(2):89, 2003. 20

[43] Ian Watson. Knowledge Management and Case-Based Reasoning: A

Perfect Match?. In FLAIRS Conference, pages 118–122, 2001. 20

[44] Atılım Güneş Baydin, Ramon López de Mántaras, Simeon Simoff, and

Carles Sierra. CBR with Commonsense Reasoning and Structure

Mapping: An Application to Mediation. In Case-Based Reasoning Research

and Development, pages 378–392. Springer, 2011. 20

131

http://dl.acm.org/citation.cfm?id=1630659.1630677
http://dx.doi.org/10.1007/11564126_25
http://dx.doi.org/10.1007/11564126_25

REFERENCES

[45] Maja Pantic and Leon Rothkrantz. Case-Based Reasoning for User-

Profiled Recognition of Emotions from Face Images. In Multimedia and

Expo, 2004. ICME’04. 2004 IEEE International Conference on Multimedia and

Expo, 1, pages 391–394. IEEE, 2004. 20

[46] George A Miller. The Cognitive Revolution: A Historical Perspective.

Trends in Cognitive Sciences, 7(3):141–144, 2003. 21

[47] Michael M Richter and Stefan Wess. Similarity, Uncertainty and Case-

Based Reasoning in PATDEX. Springer, 1991. 21

[48] Uncertainty. http://www.wi2.uni-trier.de/eccbr08/index.php-task=

workshops.htm. Accessed: 2016-03-24. 21

[49] Jerzy Surma. Case-Based Approach for Supporting Strategy Decision

Making. Expert Systems, 32(4):546–554, 2015. 21

[50] Eyke Hüllermeier. Computational Intelligence: Theory and Applications In-

ternational Conference, 6th Fuzzy Days Dortmund, Germany, May 25–28 1999

Proceedings, chapter A Possibilistic Formalization of Case-Based Reasoning and

Decision Making, pages 411–420. Springer Berlin Heidelberg, Berlin, Heidelberg,

1999. 21

[51] Belén D́ıaz-Agudo, Pablo Gervás, and Federico Peinado. A Case-

Based Reasoning Approach to Story Plot Generation. In Advances in

Case-Based Reasoning, pages 142–156. Springer, 2004. 22

[52] Mary Lou Maher, Muthaukumar Balachandran, and Dong Mei

Zhang. Case-Based Reasoning in Design. Psychology Press, 1995. 22

[53] Janet L Kolodner. Improving Human Decision Making through Case-

Based Decision Aiding. AI Magazine, 12(2):52, 1991. 22

[54] S Dutta, B Wierenga, and A Dalebout. Case-Based Reasoning Sys-

tems: from Automation to Decision-Aiding and Stimulation. Knowledge

and Data Engineering, IEEE Transactions on Knowledge and Data Engineering,

9(6):911–922, Nov 1997. 22, 28, 29

132

http://www.wi2.uni-trier.de/eccbr08/index.php-task=workshops.htm
http://www.wi2.uni-trier.de/eccbr08/index.php-task=workshops.htm
http://dx.doi.org/10.1111/exsy.12003
http://dx.doi.org/10.1111/exsy.12003
http://dx.doi.org/10.1007/3-540-48774-3_47
http://dx.doi.org/10.1007/3-540-48774-3_47
http://dx.doi.org/10.1007/3-540-48774-3_47

REFERENCES

[55] Thomas R Roth-Berghofer. Knowledge Maintenance of Case-Based Reason-

ing Systems: the SIAM Methodology, 262. IOS Press, 2003. 22

[56] Janet L Kolodner, Michael T Cox, and Pedro A González-Calero.

Case-Based Reasoning-Inspired Approaches to Education. The Knowl-

edge Engineering Review, 20(03):299–303, 2005. 22

[57] Kristian J Hammond, Robin D Burke, and Steven L Lytinen. A Case-

Based Approach to Knowledge Navigation. In IJCAI, pages 2071–2072,

1995. 22

[58] Isabelle Bichindaritz, Emin Kansu, and Keith M Sullivan. Case-Based

Reasoning in Care-Partner: Gathering Evidence for Evidence-Based

Medical Practice. In Advances in Case-Based Reasoning, pages 334–345.

Springer, 1998. 22

[59] Kristian J Hammond. Explaining and Repairing Plans that Fail. Artifi-

cial Intelligence, 45(1):173–228, 1990. 23

[60] Robin Burke. The Wasabi Personal Shopper: A Case-Based Recom-

mender System. In AAAI/IAAI, pages 844–849, 1999. 26

[61] Lorraine Mcginty and Barry Smyth. Adaptive Selection: An Analysis

of Critiquing and Preference-Based Feedback in Conversational Rec-

ommender Systems. International Journal of Electronic Commerce, 11(2):35–

57, 2006. 27

[62] Lorraine Mc Ginty and Barry Smyth. Comparison-Based Recommen-

dation. In Advances in Case-Based Reasoning, pages 575–589. Springer, 2002.

27

[63] Hui Li, Hojjat Adeli, Jie Sun, and Jian-Guang Han. Hybridizing Prin-

ciples of TOPSIS with Case-Based Reasoning for Business Failure Pre-

diction. Computers & Operations Research, 38(2):409–419, 2011. 27

[64] David R Kraay and Patrick T Harker. Case-Based Reasoning for

Repetitive Combinatorial Optimization Problems, Part I: Framework.

Journal of Heuristics, 2(1):55–85, 1996. 34, 108

133

http://dx.doi.org/10.1007/BF00226293
http://dx.doi.org/10.1007/BF00226293

REFERENCES

[65] Stephan Grolimund and Jean-Gabriel Ganascia. Driving Tabu Search

with Case-Based Reasoning. European Journal of Operational Research,

103(2):326 – 338, 1997. 34

[66] Eyke Hüllermeier. Focusing Search by Using Problem Solving Expe-

rience. In ECAI 2000, Proceedings of the 14th European Conference on Artificial

Intelligence, Berlin, Germany, August 20-25, 2000, pages 50–54, 2000. 34

[67] Steven Robertson. An Introduction to Decision Theory. The Bulletin

of Symbolic Logic, 16(3):pp. 413–415, 2010. 39

[68] Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart Russell.

Distance Metric Learning with Application to Clustering with Side-

Information. Advances in Neural Information Processing Systems, pages 521–

528, 2003. 44

[69] Mark E Glickman and Shane T Jensen. Adaptive Paired Comparison

Design. Journal of Statistical Planning and Inference, 127:2005, 2005. 44, 46

[70] Armin Stahl. Learning Similarity Measures: A Formal View Based on

a Generalized CBR Model. In Hctor Muoz-vila and Francesco Ricci,

editors, Case-Based Reasoning Research and Development, 3620 of Lecture Notes

in Computer Science, pages 507–521. Springer Berlin Heidelberg, 2005. 45, 47,

56

[71] Ning Xiong and Peter Funk. Combined Feature Selection and Simi-

larity Modelling in Case-Based Reasoning Using Hierarchical Memetic

Algorithm. In 2010 IEEE Congress on Evolutionary Computation (CEC), pages

1–6. IEEE, 2010. 45

[72] Maria Salamó and Elisabet Golobardes. Analysing Rough Sets

Weighting Methods for Case-Based Reasoning Systems. Inteligencia Ar-

tificial, Revista Iberoamericana de Inteligencia Artificial, 6(15):0, 2002. 45

[73] Wolfgang Wilke and Ralph Bergmann. Considering Decision Cost

During Learning of Feature Weights. In Advances in Case-Based Reasoning,

pages 460–472. Springer, 1996. 45

134

http://www.sciencedirect.com/science/article/pii/S0377221797001239
http://www.sciencedirect.com/science/article/pii/S0377221797001239
http://www.jstor.org/stable/20749627
http://dx.doi.org/10.1007/11536406_39
http://dx.doi.org/10.1007/11536406_39

REFERENCES

[74] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A Survey

on Metric Learning for Feature Vectors and Structured Data. CoRR,

abs/1306.6709, 2013. 46

[75] Roger R Davidson and Daniel L Solomon. A Bayesian Approach to

Paired Comparison Experimentation. Biometrika, 60(3):pp. 477–487, 1973.

46

[76] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian Ap-

proach for Policy Learning from Trajectory Preference Queries. In

P. Bartlett, F.c.n. Pereira, C.j.c. Burges, L. Bottou, and K.q. Wein-

berger, editors, Advances in Neural Information Processing Systems 25, pages

1142–1150. NIPS, 2012. 46

[77] Liu Yang, Rong Jin, and Rahul Sukthankar. Bayesian Active Distance

Metric Learning. CoRR, abs/1206.5283, 2012. 46

[78] Shengbo Guo and Scott Sanner. Real-Time Multiattribute Bayesian

Preference Elicitation with Pairwise Comparison Queries. In Interna-

tional Conference on Artificial Intelligence and Statistics, pages 289–296, 2010.

46

[79] Can Burak. Weighted Distances Between Preferences. Technical report,

Maastricht University, Maastricht Research School of Economics of Technology

and Organization (METEOR), 2012. 46

[80] Vu Ha and Peter Haddawy. Toward Case-Based Preference Elicita-

tion: Similarity Measures on Preference Structures. In Proceedings of the

Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 193–201.

Morgan Kaufmann Publishers Inc., 1998. 46

[81] Nan Li, William Cushing, Subbarao Kambhampati, and Sung Wook

Yoon. Learning User Plan Preferences Obfuscated by Feasibility Con-

straints. In ICAPS, 2009. 47

[82] Armin Stahl. Learning Feature Weights From Case Order Feedback. In

Proceedings of the 4th International Conference on Case-based Reasoning, pages

502–516. Springer, 2001. 47, 55

135

http://arxiv.org/abs/1306.6709
http://arxiv.org/abs/1306.6709
http://www.jstor.org/stable/2334996
http://www.jstor.org/stable/2334996
http://books.nips.cc/papers/files/nips25/NIPS2012_0541.pdf
http://books.nips.cc/papers/files/nips25/NIPS2012_0541.pdf
http://arxiv.org/abs/1206.5283
http://arxiv.org/abs/1206.5283

REFERENCES

[83] Armin Stahl and Sascha Schmitt. Optimizing Retrieval in CBR by In-

troducing Solution Similarity. In Proceedings of the International Conference

on Artificial Intelligence (IC-AI’02). CSREA Press, 2002. 47

[84] Armin Stahl. Optimizing Similarity Assessment in Case-Based Rea-

soning. In 21st National Conference on Artificial Intelligence (AAAI-06). AAAI

Press, 2006. 47

[85] Armin Stahl and Thomas Gabel. Using Evolution Programs to Learn

Local Similarity Measures. In KevinD. Ashley and DerekG. Bridge,

editors, Case-Based Reasoning Research and Development, 2689 of Lecture Notes

in Computer Science, pages 537–551. Springer Berlin Heidelberg, 2003. 47, 55

[86] Zhong Zhang and Qiang Yang. Dynamic Refinement of Feature

Weights Using Quantitative Introspective Learning. In IJCAI, pages 228–

233, 1999. 47

[87] Hans-Dieter Burkhard and Michael M Richter. On the Notion of

Similarity in Case-Based Reasoning and Fuzzy Theory. In Soft Computing

in Case-Based Reasoning, pages 29–45. Springer, 2001. 50

[88] Thomas Martinetz, Kai Labusch, and Daniel Schneegaß. Softdou-

blemaxminover: perceptron-like training of support vector machines.

Neural Networks, IEEE Transactions on, 20(7):1061–1072, 2009. 55, 58

[89] Andrea Bonzano, Pdraig Cunningham, and Barry Smyth. Using In-

trospective Learning to Improve Retrieval in CBR: A Case Study in

Air Traffic Control. In DavidB. Leake and Enric Plaza, editors, Case-

Based Reasoning Research and Development, 1266 of Lecture Notes in Computer

Science, pages 291–302. Springer Berlin Heidelberg, 1997. 55

[90] Igor Kononenko. Estimating Attributes: Analysis and Extensions of

RELIEF. In Springer Verlag, pages 171–182. Springer Verlag, 1994. 55

[91] Francesco Ricci and Paolo Avesani. Learning a Local Similarity Met-

ric for Case-Based Reasoning. In International Conference on Case-Based

Reasoning (ICCBR-95), pages 301–312. Springer-Verlag, 1995. 55

136

http://dx.doi.org/10.1007/3-540-45006-8_41
http://dx.doi.org/10.1007/3-540-45006-8_41
http://dx.doi.org/10.1007/3-540-63233-6_500
http://dx.doi.org/10.1007/3-540-63233-6_500
http://dx.doi.org/10.1007/3-540-63233-6_500

REFERENCES

[92] Dietrich Wettschereck and David W Aha. Weighting Features. In

Manuela Veloso and Agnar Aamodt, editors, Case-Based Reasoning Re-

search and Development, 1010 of Lecture Notes in Computer Science, pages

347–358. Springer Berlin Heidelberg, 1995. 56

[93] Yingquan Wu, Krasimir G Ianakiev, and Venu Govindaraju. Improve-

ments in K-Nearest Neighbor Classification. In Sameer Singh, Nabeel

Murshed, and Walter Kropatsch, editors, Advances in Pattern Recogni-

tion ICAPR 2001, 2013 of Lecture Notes in Computer Science, pages 224–231.

Springer Berlin Heidelberg, 2001. 56

[94] Godfried Toussaint. Geometric Proximity Graphs for Improving

Nearest Neighbor Methods in Instance-Based Learning and Data Min-

ing. International Journal of Computational Geometry & Applications,

15(02):101–150, 2005. 56

[95] Thomas Roth-Berghofer and Ioannis Iglezakis. Six Steps in Case-

Based Reasoning: Towards a Maintenance Methodology for Case-

Based Reasoning Systems. In Professionelles Wissensmanagement: Er-

fahrungen und Visionen (includes the Proceedings of the 9th German Workshop

on Case-Based Reasoning GWCBR), pages 198–208. Shaker-Verlag, 2001. 64

[96] Barry Smyth and Mark T. Keane. Remembering to Forget: A

Competence-Preserving Case Deletion Policy for Case-Based Reason-

ing Systems. In Proceedings of the 14th International Joint Conference on

Artificial Intelligence - Volume 1, IJCAI’95, pages 377–382, San Francisco, CA,

USA, 1995. Morgan Kaufmann Publishers Inc. 64, 65

[97] Jim Zhu and Qiang Yang. Remembering to Add: Competence-

Preserving Case-Addition Policies for Case-Base Maintenance. In Pro-

ceedings IJCAI–99, 16th International Joint Conference on Artificial Intelligence,

pages 234–239, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

64, 65

[98] Barry Smyth. Case-Base Maintenance. In Angel Pasqual del Pobil,

Jos Mira, and Moonis Ali, editors, Tasks and Methods in Applied Artificial

137

http://dx.doi.org/10.1007/3-540-60598-3_31
http://dx.doi.org/10.1007/3-540-44732-6_23
http://dx.doi.org/10.1007/3-540-44732-6_23
http://www.worldscientific.com/doi/abs/10.1142/S0218195905001622
http://www.worldscientific.com/doi/abs/10.1142/S0218195905001622
http://www.worldscientific.com/doi/abs/10.1142/S0218195905001622
http://dl.acm.org/citation.cfm?id=1625855.1625905
http://dl.acm.org/citation.cfm?id=1625855.1625905
http://dl.acm.org/citation.cfm?id=1625855.1625905
http://dl.acm.org/citation.cfm?id=1624218.1624253
http://dl.acm.org/citation.cfm?id=1624218.1624253
http://dx.doi.org/10.1007/3-540-64574-8_436

REFERENCES

Intelligence, 1416 of Lecture Notes in Computer Science, pages 507–516. Springer

Berlin Heidelberg, 1998. 64

[99] A. Lawanna and J. Daengdej. Hybrid Technique and Competence-

Preserving Case Deletion Methods for Case Maintenance in Case-

Based Reasoning. International Journal of Engineering Science and Technology,

2010. 64

[100] Maria Salamo , Elisabet Golobardes, Enginyeria Arquitectura, and

La Salle. Hybrid Deletion Policies for Case Base Maintenance. In

Proceedings of FLAIRS-2003, pages 150–154, 2003. 65

[101] Geoffrey W. Gates. The Reduced Nearest Neighbor Rule. IEEE Trans-

actions on Information Theory, 18(3):431–433, 1972. 65

[102] P Hart. The Condensed Nearest Neighbor Rule. IEEE Transactions on

Information Theory, 14(3):515–516, May 1968. 65

[103] Maria Salamo and Elisabet Golobardes. Rough Sets Reduction Tech-

niques for Case-Based Reasoning. In David W. Aha and Ian Watson, ed-

itors, Case-Based Reasoning Research and Development, pages 467–482. Springer

Berlin Heidelberg, 2001. 65

[104] Lisa Cummins and Derek Bridge. On Dataset Complexity for Case

Base Maintenance. In Proc. ICCBR–2011, 19th International Conference on

Case-Based Reasoning, pages 47–61, London, UK, 2011. Springer-Verlag. 65

[105] Santiago Ontanon and Enric Plaza. Justification-Based Selection of

Training Examples for Case Base Reduction. In F. Esposito F., Gian-

notti and D. Pedresh, editors, Proceedings ECML–2004, European Conference

on Machine Learning, number 3201(15) in Lecture Notes in Artificial Intelligence,

pages 310–321. Springer-Verlag, 2004. 65

[106] Susan Craw, Stewart Massie, and Nirmalie Wiratunga. Informed

Case Base Maintenance: A Complexity Profiling Approach. In Proceed-

ings AAAI–2007, Twenty-Second National Conference on Artificial Intelligence,

July 22-26, 2007, Vancouver, British Columbia, Canada, pages 1618–1621, 2007.

65

138

http://dx.doi.org/10.1109/TIT.1972.1054809
http://dx.doi.org/10.1007/3-540-44593-5_33
http://dx.doi.org/10.1007/3-540-44593-5_33
http://dx.doi.org/10.1007/978-3-642-23291-6_6
http://dx.doi.org/10.1007/978-3-642-23291-6_6
http://www.aaai.org/Library/AAAI/2007/aaai07-258.php
http://www.aaai.org/Library/AAAI/2007/aaai07-258.php

REFERENCES

[107] Eduardo Lupiani, Jose M Juarez, and Jose Palma. Evaluating Case

Base Maintenance Algorithms. Knowledge-Based Systems, 67:180 – 194,

2014. 66

[108] Xin-She Yang. Nature-Inspired Optimization Algorithms. Elsevier, 2014. 78

[109] Theerayod Wiangtong, Peter YK Cheung, and Wayne Luk. Com-

paring Three Heuristic Search Methods for Functional Partitioning in

Hardware–Software Codesign. Design Automation for Embedded Systems,

6(4):425–449, 2002. 79, 82, 84

[110] Fred Glover and Harvey J Greenberg. New Approaches for Heuristic

Search: A Bilateral Linkage with Artificial Intelligence. European Journal

of Operational Research, 39(2):119 – 130, 1989. 79, 82, 84

[111] Richard E Korf. Linear-Space Best-First Search. Artificial Intelligence,

62(1):41–78, 1993. 79

[112] Stuart Russell and Peter Norvig. A Modern Approach. Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995. 79, 80, 81, 82, 86

[113] A star algorithm. http://intelligence.worldofcomputing.net/

ai-search/a-star-algorithm.html. Accessed: 2016-03-30. 80, 81

[114] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated

Local Search. Springer, 2003. 81

[115] Bart Selman and Carla P Gomes. Hill-Climbing Search. Encyclopedia

of Cognitive Science, 2006. 81, 82

[116] Michel Gendreau and Jean-Yves Potvin. Tabu Search. In EdmundK.

Burke and Graham Kendall, editors, Search Methodologies, pages 165–186.

Springer US, 2005. 82

[117] Edward J Anderson and Michael C Ferris. A Direct Search Algorithm

for Optimization with Noisy Function Evaluations. SIAM Journal on

Optimization, 11(3):837–857, 2001. 83

139

http://www.sciencedirect.com/science/article/pii/S0950705114001981
http://www.sciencedirect.com/science/article/pii/S0950705114001981
http://www.sciencedirect.com/science/article/pii/0377221789901859
http://www.sciencedirect.com/science/article/pii/0377221789901859
http://intelligence.worldofcomputing.net/ai-search/a-star-algorithm.html
http://intelligence.worldofcomputing.net/ai-search/a-star-algorithm.html
http://dx.doi.org/10.1007/0-387-28356-0_6

REFERENCES

[118] David E Goldberg and John H Holland. Genetic Algorithms and Ma-

chine Learning. Machine Learning, 3(2):95–99, 1988. 84

[119] William L Goffe, Gary D Ferrier, and John Rogers. Global Opti-

mization of Statistical Functions with Simulated Annealing. Journal of

Econometrics, 60(1):65–99, 1994. 84

[120] James Kennedy. Particle Swarm Optimization. In Encyclopedia of Machine

Learning, pages 760–766. Springer, 2011. 85

[121] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle Swarm

Optimization. Swarm Intelligence, 1(1):33–57, 2007. 85

[122] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical

Bayesian Optimization of Machine Learning Algorithms. In Advances

in Neural Information Processing Systems, pages 2951–2959, 2012. 86

[123] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and

Nando De Freitas. Bayesian Optimization in High Dimensions via

Random Embeddings. In IJCAI. Citeseer, 2013. 86

[124] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter

Deisenroth. Bayesian Optimization for Learning Gaits Under Uncer-

tainty. Annals of Mathematics and Artificial Intelligence, pages 1–19, 2015. 87

[125] Pedro Domingos. A Few Useful Things to Know About Machine Learn-

ing. Commun. ACM, 55(10):78–87, October 2012. 88

[126] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and

Yasemin Altun. Large Margin Methods for Structured and Interde-

pendent Output Variables. J. Mach. Learn. Res., 6:1453–1484, December

2005. 89

[127] Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Structured

Prediction via Output Space Search. Journal of Machine Learning Research,

15:1317–1350, 2014. 89

140

http://doi.acm.org/10.1145/2347736.2347755
http://doi.acm.org/10.1145/2347736.2347755
http://dl.acm.org/citation.cfm?id=1046920.1088722
http://dl.acm.org/citation.cfm?id=1046920.1088722
http://jmlr.org/papers/v15/doppa14a.html
http://jmlr.org/papers/v15/doppa14a.html

REFERENCES

[128] J Rao Doppa, A Fern, and P Tadepalli. Output Space Search for

Structured Prediction. ArXiv e-prints, June 2012. 89

[129] S Hare, A Saffari, and P H S Torr. Struck: Structured Output Track-

ing with Kernels. In Computer Vision (ICCV), 2011 IEEE International Con-

ference on, pages 263–270, Nov 2011. 90

[130] David Pierce, , David Pierce, and Claire Cardie. User-Oriented Ma-

chine Learning Strategies for Information Extraction: Putting the Hu-

man Back in the Loop. In In the loop, In Working, 2001. 90

[131] Riad Akrour, Marc Schoenauer, Michèle Sebag, and Jean-

Christophe Souplet. Programming by Feedback. In International Confer-

ence on Machine Learning, number 32 in JMLR Proceedings, pages 1503–1511,

Pékin, China, June 2014. JMLR.org. 91

[132] Andrea L Thomaz and Cynthia Breazeal. Reinforcement Learning

with Human Teachers: Evidence of Feedback and Guidance with Im-

plications for Learning Performance. In Proceedings of the 21st National

Conference on Artificial Intelligence - Volume 1, AAAI’06, pages 1000–1005.

AAAI Press, 2006. 91

[133] Jerry Alan Fails and Dan R. Olsen, Jr. Interactive Machine Learning.

In Proceedings of the 8th International Conference on Intelligent User Interfaces,

IUI ’03, pages 39–45, New York, NY, USA, 2003. ACM. 91, 92

[134] Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Pe-

ter Welinder, Pietro Perona, and Serge Belongie. Visual Recogni-

tion with Humans in the Loop. In Kostas Daniilidis, Petros Maragos,

and Nikos Paragios, editors, Computer Vision ECCV 2010, 6314 of Lecture

Notes in Computer Science, pages 438–451. Springer Berlin Heidelberg, 2010. 91,

92

[135] A Waibel, R Stiefelhagen, R Carlson, J Casas, J Kleindienst,

L Lamel, O Lanz, D Mostefa, M Omologo, F Pianesi, L Polymenakos,

G Potamianos, J Soldatos, G Sutschet, and J Terken. Computers in

the Human Interaction Loop, page 1071–1116. Springer, Boston, MA, 2010. 91

141

https://hal.inria.fr/hal-00980839
http://dl.acm.org/citation.cfm?id=1597538.1597696
http://dl.acm.org/citation.cfm?id=1597538.1597696
http://dl.acm.org/citation.cfm?id=1597538.1597696
http://doi.acm.org/10.1145/604045.604056
http://dx.doi.org/10.1007/978-3-642-15561-1_32
http://dx.doi.org/10.1007/978-3-642-15561-1_32

REFERENCES

[136] Wenchao Li, Dorsa Sadigh, S Shankar Sastry, and SanjitA Seshia.

Synthesis for Human-in-the-Loop Control Systems. In Erika brahm

and Klaus Havelund, editors, Tools and Algorithms for the Construction and

Analysis of Systems, 8413 of Lecture Notes in Computer Science, pages 470–484.

Springer Berlin Heidelberg, 2014. 91

[137] Aaron Steinfeld, S Rachael Bennett, Kyle Cunningham, Matt

Lahut, Pablo-Alejandro Quinones, Django Wexler, Dan Siewiorek,

Jordan Hayes, Paul Cohen, Julie Fitzgerald, et al. Evaluation of

an Integrated Multi-Task Machine Learning System with Humans in

the Loop. In Proceedings of the 2007 Workshop on Performance Metrics for

Intelligent Systems, pages 168–174. ACM, 2007. 92

[138] C Brodley, A Kak, C Shyu, J Dy, L Broderick, and A M Aisen.

Content-Based Retrieval from Medical Image Database: A Synergy

of Human Interaction, Machine Learning, and Computer Vision. In

Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages

760–767, 1999. 92

[139] Roberto Battiti, Mauro Brunato, and Franco Mascia. Reactive Search

and Intelligent Optimization, 45 of Operations Research/Computer Science In-

terfaces. Springer Verlag, 2008. 93, 94, 95

[140] Roberto Battiti. Reactive Search: Toward Self-Tuning Heuristics.

Modern Heuristic Search Methods, pages 61–83, 1996. 93

[141] Roberto Battiti and Giampietro Tecchiolli. The Reactive Tabu

Search. ORSA Journal on Computing, 6(2):126–140, 1994. 93

[142] Roberto Battiti and Mauro Brunato. The LION way. Machine Learning

plus Intelligent Optimization. LIONlab, University of Trento, Italy, 2014. 94

[143] Zhipeng L and Jin-Kao Hao. A Critical Element-Guided Perturbation

Strategy for Iterated Local Search. In Carlos Cotta and Peter Cowl-

ing, editors, Evolutionary Computation in Combinatorial Optimization, 5482

of Lecture Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg,

2009. 94

142

http://dx.doi.org/10.1007/978-3-642-54862-8_40
http://dx.doi.org/10.1007/978-3-642-01009-5_1
http://dx.doi.org/10.1007/978-3-642-01009-5_1

REFERENCES

[144] Everardo Gutirrez and CarlosA. Brizuela. ILS-Perturbation Based

on Local Optima Structure for the QAP Problem. In Alexander Gel-

bukh and CarlosAlberto Reyes-Garcia, editors, MICAI 2006: Advances

in Artificial Intelligence, 4293 of Lecture Notes in Computer Science, pages

404–414. Springer Berlin Heidelberg, 2006. 94

[145] Mark A Hall and Lloyd A Smith. Feature Selection for Machine Learn-

ing: Comparing a Correlation-Based Filter Approach to the Wrapper.

In Proceedings of the Twelfth International Florida Artificial Intelligence Research

Society Conference, pages 235–239. AAAI Press, 1999. 95

[146] Mazen W Karaman, Sanna Herrgard, Daniel K Treiber, Paul Gal-

lant, Corey E Atteridge, Brian T Campbell, Katrina W Chan,

Pietro Ciceri, Mindy I Davis, Philip T Edeen, et al. A Quantitative

Analysis of Kinase Inhibitor Selectivity. Nature Biotechnology, 26(1):127–

132, 2008. 100

[147] Stefan Schmitt, Daniel Kuhn, and Gerhard Klebe. A New Method

to Detect Related Function Among Proteins Independent of Sequence

and Fold Homology. Journal of Molecular Biology, 323(2):387–406, 2002. 100

[148] Michiel Stock. Learning Pairwise Relations in Bioinformatics: Three Case

Studies. PhD thesis, Masters Thesis, University of Ghent, 2012. 101

[149] Zoubin Ghahramani and Katherine A Heller. Bayesian Sets. In NIPS,

2, pages 22–23, 2005. 102

[150] Arthur Asuncion and David Newman. UCI Machine Learning Repos-

itory, 2007. 104

[151] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos,

and José Reis. Modeling Wine Preferences by Data Mining from

Physicochemical Properties. Decision Support Systems, 47(4):547–553, 2009.

104

[152] Pádraig Cunningham, Barry Smyth, and Neil Hurley. On the Use of

CBR in Optimisation Problems such as the TSP. Springer Berlin Heidelberg,

1995. 108

143

http://dx.doi.org/10.1007/11925231_38
http://dx.doi.org/10.1007/11925231_38
http://dl.acm.org/citation.cfm?id=646812.707499
http://dl.acm.org/citation.cfm?id=646812.707499

REFERENCES

[153] Hossein Erfani. Integrating Case-Based Reasoning, Knowledge-Based

Approach and TSP Algorithm for Minimum Tour Finding. Journal

of Operational Research and Its Applications (Journal of Applied Mathematics),

2006. 108

[154] Mustafa Akgül. The Linear Assignment Problem. Springer, 1992. 109

[155] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of

Features from Tiny Images, 2009. 113

[156] Alex Zvoleff. Package glcm. 2015. 115

[157] Percentage difference between images. https://rosettacode.org/wiki/

Percentage_difference_between_images. Accessed: 2016-03-23. 115

144

https://rosettacode.org/wiki/Percentage_difference_between_images
https://rosettacode.org/wiki/Percentage_difference_between_images

REFERENCES

Publications

• Abdel-Aziz, A., Cheng, W., Strickert, M., Hüllermeier, E. (2013). Preference-

based CBR: A Search-Based Problem Solving Framework. In 21st International

Conference in Case-Based Reasoning , ICCBR 2013, Saratoga Springs, NY, USA,

pp. 1-14, July 8-11, 2013.

• Abdel-Aziz, A., Strickert, M., Fober, T., Hüllermeier, E. Protein Structure Re-

trieval Using Preference-Based CBR. ICCBR 2013 - Workshop, Saratoga Springs,

NY, USA, 2013.

• Abdel-Aziz, A., Strickert, M., Hüllermeier, E. (2014). Learning Solution Simi-

larity in Preference-Based CBR. In 22nd International Conference in Case-Based

Reasoning , ICCBR 2014, Cork, Ireland, pp. 17-31, September 29, 2014 - October

1, 2014.

• Abdel-Aziz, A., Hüllermeier, E. (2015). Case Base Maintenance in Preference-

Based CBR. In 23rd International Conference in Case-Based Reasoning, ICCBR

2015, Frankfurt am Main, Germany, pp. 1-14, September 28-30, 2015.

145

Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have

been identified as such. This document has not previously been presented

in identical or similar form to any other German or foreign examination

board.

The thesis work was conducted from July 2012 to June 2016 under the

supervision of Prof. Eyke Hüllermeier at the University of Marburg.

Marburg,

	List of Figures
	List of Tables
	1 Introduction
	1.1 Preference-based case-based reasoning
	1.2 Similarity measures
	1.3 Case base maintenance

	2 Case-Based Reasoning
	2.1 Problem-solving CBR
	2.2 Conversational CBR
	2.2.1 CCBR systems
	2.2.2 Recommender systems

	2.3 Relationships of CBR to other approaches
	2.4 Practical applications in CBR
	2.5 Conclusion

	3 Preference-Based Case-Based Reasoning
	3.1 Conventional CBR vs preference-based CBR
	3.2 Preference-based knowledge representation
	3.3 Formal setting and notation
	3.4 CBR as preference-guided search
	3.5 Case-based inference
	3.5.1 Case-based inference as probability estimation
	3.5.2 A discrete choice model
	3.5.3 Maximum likelihood estimation

	3.6 Conclusion

	4 Learning Similarity Measures in Pref-CBR
	4.1 Learning similarity measures in the solution space
	4.1.1 Related work
	4.1.2 Pref-CBR formal framework for learning similarity measures
	4.1.3 Distance learning of the solutions in Pref-CBR
	4.1.4 Synthetic data illustration

	4.2 Learning similarity measures in the problem space
	4.2.1 Related work
	4.2.2 Distance learning of the problems in Pref-CBR

	4.3 Conclusion

	5 Case Base Maintenance in Pref-CBR
	5.1 Related work
	5.2 Case base maintenance for Pref-CBR
	5.2.1 Noise and redundancy in Pref-CBR
	5.2.2 Integration of case base maintenance into Pref-CBR framework

	5.3 Maintenance strategies
	5.3.1 Intra-case redundancy
	5.3.2 Intra-case noise
	5.3.3 Inter-case redundancy
	5.3.4 Inter-case noise

	5.4 Conclusion

	6 Related Methodologies
	6.1 Heuristic search
	6.1.1 Best-first search algorithms
	6.1.2 Iterative improvement algorithms
	6.1.3 Nature-inspired optimization algorithms
	6.1.4 Black box search

	6.2 Machine learning
	6.2.1 Machine learning output space search
	6.2.2 Machine learning with human in the loop
	6.2.3 Reactive search and intelligent optimization
	6.2.4 Selection of features

	6.3 Conclusion

	7 Experiments
	7.1 Pref-CBR search performance
	7.1.1 Drug discovery
	7.1.2 Set completion

	7.2 Learning of similarity measures
	7.2.1 Wine recommendation – solution space learning
	7.2.2 Red wine recommendation – comparison of similarity measures of problems and solutions

	7.3 Case base maintenance in Pref-CBR
	7.3.1 Setting
	7.3.2 Inter-case maintenance methods
	7.3.3 Intra-case maintenance methods

	7.4 Image improvement application

	8 Conclusions and Outlook
	References

