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Abstract

The interaction of single molecules with surfaces as well as the interaction between
surfaces, i.e., interfaces, are often of great interest and thus a vast field of applied
sciences arises therefrom. Most ultra high vacuum based surface science techniques
are only able to deliver information about an already formed interface. The desire
for knowledge of the energetics describing the processes during the formation of such
a contact layer motivates the usage of nanojoule adsorption calorimetry.

This work presents the construction of the experimental setup necessary to study
the coverage dependent heat of adsorption. The setup is optimized for investigations
involving the adsorption of metal atoms on organic thin films and of large organic
molecules on surfaces of single crystalline metals. The software developed for
this work and used for data treatment is also covered by this thesis. In this
respect, the user interface as well as the program code processing the data are both
well discussed. The characterization of the components involved in calorimetric
experiments is presented in detail later in this work. Finally, selected experiments
involving the adsorption of magnesium, zinc, copper, and calcium on the pristine and
cleaned detector surface as well as on 3,4,9,10-perylene-tetracarboxylic dianhydride,
tetraphenylporphyrin, α-sexithiophene, and poly(3-hexylthiophene) are exemplarily
discussed.

This paper is completed by design drawings of the constructed elements for this
work, the source code of the data treatment program developed for this work,
an overview of the investigated systems, and the parameters used to operate the
scientific equipment.

Considering all individual aspects presented in this dissertation conjoined, the
scientific framework necessary to study coverage dependent heats of adsorption
precisely is established.
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Kurzzusammenfassung

Da sowohl die Wechselwirkung von einzelnen Molekülen mit Oberflächen als auch die
Wechselwirkung zwischen Oberflächen, also Grenzschichten, oft von großem Interesse
sind, eröffnet sich daraus ein weites Feld von angewandten Wissenschaften. Die
meisten Methoden zur Untersuchung von Oberflächen unter Ultrahochvakuumbedin-
gungen können lediglich Informationen über bereits gebildete Grenzschichten liefern.
Das Streben nach Erkenntnissen über die Energetik, welche den Bildungsprozess
einer solchen Kontaktfläche beschreibt, motiviert die Verwendung der Nanojoule-
Adsorptions-Kalorimetrie als Methode.

Die vorliegende Arbeit stellt die Konstruktion des experimentellen Aufbaus vor,
der notwendig ist, um bedeckungsabhängige Adsorptionswärmen zu bestimmen.
Diese Anlage ist für die Erforschung von Systemen optimiert, bei denen Metalla-
tome auf organischen Dünnschichten, beziehungsweise große organische Moleküle
auf Einkristalloberflächen adsorbiert werden. Die für die Datenauswertung dieser
Arbeit entwickelten Computerprogramme werden erläutert. Im Zuge dessen er-
folgt auch eine ausführliche Erörterung sowohl der Benutzeroberfläche als auch
des eigentlichen Programms. Im Folgenden wird die Charakterisierung aller in ein
Kalorimetrie-Experiment involvierten Komponenten eingehend dargelegt. Zum Ab-
schluss sind einige ausgewählte Experimente exemplarisch diskutiert. Diese Beispiele
umfassen die Adsorption von Magnesium, Zink, Kupfer und Calcium auf der ur-
sprünglichen und gesäuberten Detektoroberfläche, sowie auf Dünnschichten aus
3,4,9,10-Perylentetracarbonsäuredianhydrid, Tetraphenylporphyrin, α-Sexithiophen
und Poly(3-Hexylthiophen).

Vervollständigt wird diese Abhandlung sowohl durch technische Zeichnungen der
für diese Arbeit konstruierten Bauteile, den für diese Arbeit entwickelten Quelltext
des Auswertungsprogramms, als auch durch eine Übersicht über die untersuchten
Systeme und die Betriebsparameter für die Laborausrüstung.

Aus der zusammenfassenden Betrachtung der einzelnen in dieser Dissertation
präsentierten Aspekte, lässt sich feststellen, dass alle aus wissenschaftlicher Sicht
notwendigen Rahmenbedingungen geschaffen wurden, um bedeckungsabhängige
Adsorptionswärmen präzise bestimmen zu können.
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1 Introduction

The interaction of single molecules with surfaces as well as the interaction between
surfaces, i.e., interfaces, is often of great interest in various ways. Besides the straight
academic approach to quantify and to aim for a gain in knowledge, a vast field of
applied sciences is arising from surfaces and interfaces.

In heterogeneous catalysis, the catalyst and the reactants reside in different phases
where the latter ones are either liquid or gaseous and in most cases the catalyst
forms a solid phase [1]. In these cases, one or both reactants adsorb on the solid
catalyst and form reactive surface species. In order to improve catalysts in a directed
way it is necessary to get knowledge of the active sites, e.g., adatoms, steps, kinks,
etc. and of how strong the reactants are bound to these sites.

Myriads of publications cover the characterization of surfaces with and without
adsorbed molecules utilizing a tremendous amount of different surface science tech-
niques. However, most of these techniques are not providing direct insight into the
involved energetics. Even though adsorption calorimetry is a rather exotic method,
it is the only one capable of measuring adsorption enthalpies directly. It has been ap-
plied to study gas and metal adsorption on various polycrystalline substrates [2–8]1, on
single crystals [12–48], supported nano particles [49–52], and on polymer surfaces [53–61].

Interfaces also play a tremendous role in electronics, e.g., p/n-junctions in diodes
and transistors. These interfaces determine the electrical behavior of the device.
Semiconducting polymers established a new branch of organic electronic devices.
Organic field effect transistors (“OFET”) and organic solar cells (“OPV”) are of
industrial interest. Mostly known, and already sold as consumer products, are
organic light emitting diodes (“OLED”) in cellular phones, televisions, computer
displays, etc. [62–65]. All these systems include contacts between the semiconducting
organic phase(s) and electrodes consisting of either of indium-tin-oxide (“ITO”)
or metallic layers. Some properties of the devices can be tuned by choice of the
electrode materials [66] due to material dependent work functions, reactivities, etc.
This situation illustrates the desire to investigate regular interfaces (metal atoms on
organic substrates) as well as inter-organic (organic molecules on polymer substrates)
or inverted (molecules on organic substrates) systems.
1 Also see references in [9–11].
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While such interfaces are already well studied by spectroscopic and imaging
techniques, e.g., photoelectron spectroscopy [67–79] (UPS/XPS), near edge X-ray ab-
sorption fine structure [67,80,81] (NEXAFS), high resolution electron energy loss spec-
troscopy [67,82–84] (HREELS), secondary ion mass spectrometry [67] (SIMS), transmis-
sion electron microscopy [67] (TEM), atomic force microscopy [67] (AFM), Raman
spectroscopy [85], etc., the energetics of the interface and its formation have only been
studied for a few systems [53–61] so far.

Motivated by the demand on investigation on further interface systems comprising
a metal and an organic component and inspired by the work [86,87] of C. T. Campbell,
it was decided to build a new calorimeter. The here presented calorimeter is devoted
to investigations involving adsorption of metal atoms on organic thin films and
adsorption of vaporable organic molecules on metallic surfaces. Hence, it provides a
way to study the commutative properties of the complementary formation of the
junction. Metal atoms deposited on polymers are known to diffuse into the organic
layer [57,60,69,71] forming a diffuse interphase. In contrast, metals atoms in a crystal
are not very likely to segregate into organic adsorbate layers [88] and hence form an
abrupt interface.

This work includes the construction of the experimental setup2, the software
used for data evaluation3, a broad spectrum of experiments characterizing the
experimental setup4, and a selection of results from conducted experiments5. Hence,
the scope of this work is limited to the projects involving the construction of the
nanojoule adsorption calorimeter and excludes the work on other projects [88–91].

This introduction covers the general aspects concerning nanojoule adsorption
calorimetry. Due to the multifarious aspects of the characterizing experiments,
individual background information is given with each topic in Chapters 5 and 6
together with suggested improvements and further possible verifications.

A synopsis at the end of each chapter, each corresponding to the main aspects of
this work, provides a local summary of the achieved goals, results, and suggestions.

2 See Chapter 2 and Appendix B.
3 See Chapters 3 and 4 as well as Appendix C.
4 See Chapter 5 and Appendix A.
5 See Chapter 6 and Appendix D.
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1.1 Enthalpy of Adsorption

1.1 Enthalpy of Adsorption

Considering typical thermodynamical quantities involved in the interaction of gases
with solid surfaces, the most important are the heat capacity of the adsorbed
phase, the entropy of adsorption [92–95], and, most relevant to this work, the heat
of adsorption Qads. The latter is often, and also in this work, used synonymously
with the idiom enthalpy of adsorption ΔadsH. To be precise, they describe the same
process, but from different points of view and thus have the same absolute value.
The absolute sign is given by the fact that adsorption processes are exothermic and,
according to the usual convention, the enthalpy is negative in this case.

In general, the heat of adsorption is given by the difference [9] between an initial,
i.e., before adsorption, and final, i.e., after adsorption, state of a system comprising
adsorbent, i.e., a surface, and an adsorptive, e.g., a vapor. A considerable number
of effects contribute to the heat. Examples [9] include the energy of the surface bond,
change of the degrees of freedom of the adsorptive, interaction between the adsorbed
molecules, surface relaxation or rearrangement, and perturbation of the electronic
structure of the adsorbate including dissociation. The latter two may be used to
distinguish between physisorption and chemisorption, which is altering electronic
structures. Since the degree of electronic interaction and thus the bond strength
might be affected by the exact geometry of the adsorption position, e.g., on-top,
bridging, and hollow site adsorption [96,97], composite results are possible even for
simple gases, e.g., CO and NO, on optimal defined surfaces, e.g., Pt(111). The exact
contribution of each binding position to the total released heat usually is a function
of the coverage of the adsorptive on the surface.

Since many aspects contribute to the heat of adsorption, it is a versatile tool
to study a wide variety of surface processes. As a drawback, a straight interpreta-
tion solely from this single quantity is rarely possible and combination with other
techniques is often desirable [9].

Heats of adsorption are obtainable in essentially three ways, which are described
in the following with an emphasis on adsorption calorimetry.

1.1.1 Deduction from Desorption Kinetics

A very well established method, introduced by I. Langmuir [98], to determine
desorption energies is thermal desorption spectroscopy (TDS), which is also known as
temperature programmed desorption (TPD). Under certain assumptions the desired
energy of adsorption Eads can be deduced from the corresponding quantity of the
reverse process, the desorption activation energy Edes. This implies that adsorption

3



1 Introduction

and desorption share the same reaction pathway. Another requirement on this model
demands a negligible activation barrier for the adsorption process.

The generic approach to determine the desorption activation energy involves the
Polanyi-Wigner equation

r(θ, T ) = −
dθ(T )

dt

= −
dθ(T )

dT

dT

dt

=
νn(θ)

β
⋅ (θ(T ))

n
⋅ exp(−Edes

RT
) (1.1)

using a measurable quantity, e.g., partial or total pressure6, which can be related7

to the corresponding desorption rate r. The desorption rate is equivalent to the
decrease in coverage θ, i.e., the number of adsorbed molecules, by time t and to the
Arrhenius term comprising a frequency factor νn, the coverage, desorption order n,
and temperature T . Correlation between temperature and time is established by a
constant heating rate β.

In general, the desorption order and the frequency factor are unknown and
the latter often depends on the coverage. This unsatisfactory situation led to
several different approaches [100–102] to reduce the influence of these variables. Worth
mentioning are the Redhead Analysis [99], the Leading Edge Analysis [103], and the
Complete Analysis [104].

All methods involving desorption kinetics rely on truly reversible adsorption
processes in the temperature range where desorption occurs. Thus, these techniques
reach the end of their scope for systems comprising dissociation, cluster formation,
subsurface diffusion, or reaction with the substrate or co-adsorbates. Detailed
derivations are given elsewhere [105,106].

It should be noted that the quantities obtained from the different measurement
methods are not directly comparable [12]. Depending on the method and on the
components of the investigated system, interaction between the individual adsorbed
molecules or pressure-volume work has to be accounted for.

6 Depending on the investigated system and experimental setup.
7 Proportional to the pressure in case of high pumping speed and proportional to the derivative

of pressure in case of vanishing pumping speed [99].
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1.1 Enthalpy of Adsorption

1.1.2 Derivation from Adsorption-Desorption Equilibria

The temperature T dependence of the equilibrium pressure p to establish a constant
coverage θ on a surface is related to the isosteric heat of adsorption qst via the
Clausius-Clapeyron-equation

qst = −R(
d ln(p)

d1/T
)

θ

. (1.2)

This relation assumes a true equilibrium state of the investigated system with no
alteration of the adsorptive and substrate during the adsorption process. Hence,
its application to systems comprising chemisorbed species should be regarded with
suspicion [107–109]. Detailed derivations are given elsewhere [105,106].

1.1.3 Direct Measurement by Adsorption Calorimetry

Adsorption calorimetry overcomes the requirement of the adsorption process’ re-
versibility which is limiting the other two mentioned indirect methods. Many
interesting adsorbate systems comprise large organic molecules, as adsorbent or
adsorptive, which rather decompose than desorb upon increase of temperature or are
unable to establish an adsorption/desorption equilibrium. In contrast, a direct heat
measurement, as in adsorption calorimetry, is also applicable in these cases and is
even able to probe metastable states, cluster growth, co-adsorption and displacement
processes, reactions in the adlayer, and irreversible decomposition upon adsorption [9].
As an extra benefit, compared to the indirect methods, this method does not rely on
a temperature dependence. This enables the independent investigation of adsorption
processes at different temperatures. Hence, the adjustable temperature parameter
might be used to target specific adsorbed species in case of reaction of the adsorptive
with the surface [32] or to study kinetics.

A historical overview of the development of adsorption calorimetry in surface
science is covered by several reviews. The substrates discussed there include

• metal wires [9,10,110] pioneered by J. K. Roberts using thermistors,
• metal ribbons [9,110] pioneered by P. Kisliuk using thermistors,
• evaporated metallic thin films [9,10,110] pioneered by O. Beeck using

thermistors,
• single crystal discs [9,10] pioneered by R. J. Masel using thermistors,
• polycrystalline samples [9,10,110] pioneered by S. Černý using pyroelectric

crystals,
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• single crystal films [9–11,110,111] pioneered by D. A. King using infrared
emission,

• organic thin films [110,111] pioneered by C. T. Campbell using pyroelectric
polymers, and

• supported clusters [110,112] pioneered by S. Schauermann using pyroelectric
polymers.

Different approaches including

• micromechanics [9,10,110] pioneered by R. R. Schlittler,
• interferometry on thin crystals [111] pioneered by C. Punckt,
• solvent based electrochemistry [110] pioneered by R. Schuster using

pyroelectric polymers, and
• a scanning technique [113] pioneered by K. Edinger using electron beam

fabricated thermal probes

are also reported. Especially the work of Campbell’s group led to great progress
in the recent past [111] and motivated the investigation of metalation reactions of
organic thin film applied on pyroelectric detectors in this work.

Other calorimeters based on pyroelectric detectors and their improvements are
described elsewhere [55,86,87,114–122].

6



1.2 Theoretical Background

1.2 Theoretical Background

The following considerations regarding the involved thermodynamics are necessary to
understand the values obtained from a calorimetric experiment [110]. The calorimeter
used in this work comprises a pulsed molecular8 beam impinging on a prepared
surface. Ultra high vacuum conditions are necessary to prevent contamination of
the sample and to provide sufficiently long mean free paths to avoid interaction
of the dosed material with the residual gas. Each of the generated pulses striking
the sample generates heat causing an increase of the sample’s temperature which
is measured. Simultaneously, the fraction of molecules adsorbing on the sample,
subsequently called sticking probability, is recorded. This, together with knowledge
of the absolute number of molecules in a pulse, allows the determination of the
adsorbed amount of substance.

Since the conditions in a vacuum system can be considered to be isochore, the
measured, calorimetric heat qcal is equivalent to the change in internal energy of the
sample ΔUsam. The sample experiences two components contained in ΔUsam. One
arises from molecules adsorbed on the sample ΔU↓ and the other from molecules
reflected from the sample after energy exchange ΔU↓↑. Hence, the adsorbed heat
can be written as

qcal =ΔUsam =ΔU↓ +ΔU↓↑ . (1.3)

Each of the two changes of inner energy can be evaluated further, starting with the
fraction of adsorbed molecules which comprises three terms. The major component
is the actual adsorption energy ΔUads. This is the change of the internal energy for
the system formed by the gas phase and the surface under the assumption that the
gas phase exhibits the same temperature as the sample Tsam. The second one covers
the difference [123] between a flux and a volume of a pulse from the beam leaving the
source, i.e., evaporator, at a temperature Tevap and amounts to 1/2RTevap. The third
correction deals with the change in inner energy caused by the temperature of the
gas pulse from evaporator temperature to sample temperature. Altogether, ΔU↓ can
be expressed by

ΔU↓ =Δ
⎛
⎜
⎝
−Uads + nads

⎛
⎜
⎝

1
2R ⋅ Tevap −

Tsam

∫
Tevap

cg
v dT
⎞
⎟
⎠

⎞
⎟
⎠

(1.4)

with the amount, given in moles, of adsorbed substance nads and the molar isochore
heat capacity of the gas phase cg

v.

8 Gas phase atoms are considered as molecules in this work.
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The last, i.e., integral, term in Equation (1.4) models the correction regarding
the temperature change of the gas phase. An analogue correction needs to be taken
into account correlated to the fraction of dosed molecules recoiled from the sample.
Under the assumption that all reflected molecules leave the surface with sample
temperature, i.e., that complete thermalization occurs, ΔU↓↑ can be expressed as

ΔU↓↑ =Δ
⎛
⎜
⎝
−nrefl

Tsam

∫
Tevap

cv +
1
2R dT

⎞
⎟
⎠

(1.5)

with nrefl denoting the amount of substance of reflected molecules. Again, the
additional term 1/2R takes into account that a flux of molecules carries more inner
energy than a corresponding stationary volume of gas [123].

The adsorption enthalpy, ΔadsH, at sample temperature Tsam consists of the
adsorption energy ΔUads and the volume work which would result – under isobaric
conditions – from the compression of the gas phase into the solid adsorbed phase.
Due to the low pressures involved, the gas phase is assumed to exhibit ideal behavior.
Furthermore, the volume of the solid phase is considered to be negligible compared
to the volume of the gas phase. Hence, the enthalpy is given by

ΔadsH =Δ (Uads − nads ⋅R ⋅ Tsam) (1.6)

and allows for comparison with tabulated thermodynamic standard quantities, such
as the heat of sublimation, after referencing to standard temperature.

By combination of Equations (1.4), (1.5), and (1.6) and division by the amount
of substance adsorbed on the sample one obtains the relation for the molar heat of
adsorption

−ΔadsH =
1

nads
(Qcal −Kads −Krefl) (1.7)

which is, as mentioned above, the negative of the molar adsorption enthalpy −ΔadsH

and thus always positive. The temperature dependent corrections

Kads = nads
⎛
⎜
⎝

Tevap

∫
Tsam

cg
v dT +

1
2R ⋅ Tevap −R ⋅ Tsam

⎞
⎟
⎠

(1.8)

and

Krefl = nrefl

Tevap

∫
Tsam

cg
v +

1
2R dT (1.9)
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1.2 Theoretical Background

are gathered by components related to adsorbed (Kads) and reflected (Krefl) molecules.
The discussion above implied small, i.e., infinitesimal, coverage changes rendering
−ΔadsH the differential heat of adsorption. This work gets along exclusively with
differential heats. A discussion about integral heats, useful for comparison with
many computational methods, can be found elsewhere [32,110,124].

Considering the nature of the investigated systems in this work, the previously
usage of “heat of adsorption” needs to be extended from formation of an adsorbate
to reaction of adsorptive with adsorbent. The latter shares the regular heat of
adsorption and a possible heat of reaction. The major difference lies in the situation
of final states. While the previous adsorbate formation implies a defined final state,
e.g., one carbon monoxide molecule binding with its carbon atom to one platinum
atom embedded in a (111) surface in a linear geometry, the final state is intrinsically
much less precise in case of heats of reaction, e.g., reaction of calcium atoms with
a polythiophene film. However, it is still necessary that the formed system relaxes
sufficiently fast enough, i.e., ideally within the sample time of one acquired data
point, into the final state or a sufficiently long-lived intermediate, i.e., metastable,
state.

Due to the vague nature of the product structure, complementary surface charac-
terizing methods become more important and higher requirements on computational
models are necessary in order to obtain a complete picture of the involved processes.

The sample’s surface is usually covered by a polycrystalline film of the dosed
metal in this work towards the end of an experiment. This establishes the rather
well defined situation in which the metal vapor resublimates on its bulk material.
Here, the obtained adsorption enthalpy equals the sublimation enthalpy at sample
temperature and provides a sensitive internal reference.

9
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1.3 Involved Principles

This experimental setup collects the benefits from several other calorimeters built
by the groups of D. A. King [115,116], S. Černý [117,118], C. T. Campbell [86,87,119]

[121,125], S. Schauermann [122], and R. Schäfer [126]. Subsequently, only the com-
mon instruments, differences, and improvements are pointed out, since a discussion of
the individual calorimeter types can be found elsewhere [9–11,105,106,110–112]. Technical
details about the setup built and used in this work are given in Chapter 2.

1.3.1 Beam Source

The present calorimeter is optimized for studies concerning metal adsorption on
organic thin films. A vertical arrangement of the evaporator is used in order to handle
liquid metals and high filling levels. The system is designed to accept a commercial
electron beam evaporator [87,120] as well as a self made Knudsen cell evaporator [86,119].
This construction feature distinguishes the presented work from most [87] other
calorimeters, which typically comprise horizontal beam arrangements [86,115–119,126,127].
In case of dosed gases or high vapor pressure liquids, e.g., cyclohexane, a horizontal
alignment is preferable, since it has no distinct drawback and benefits from reduced
spatial constraints.

The presented setup is capable of evaporating metals with high and medium
vapor pressures as well as larger organic molecules. Special interest arises from the
possibility of investigating inverted systems, i.e., adsorption of typical substrate
molecules on predeposited layers of reactive metals, or the formation of layered
system comprising two different organic substances.

1.3.2 Infrared Radiation

Operation of the evaporators cause emission of infrared radiation9, due to the elevated
temperatures. This radiation is absorbed by the sample and thus contributes to the
recorded calorimetry signal. In order to separate the contributions two methods
are reported. The first involves a rotating mass filter, letting only atoms pass
and blocking photons [120]. The standard method uses an infrared transparent
material to block the particles completely, while a known or measured fraction of
the radiation [86,87] is transmitted.

9 Although visible light can contribute to the thermal radiation at high crucible temperatures,
this work uses the term infrared radiation.
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1.3 Involved Principles

This setup uses the approach involving a transparent window. Further background
on the influence of infrared radiation is presented in Section 5.8.1

1.3.3 Pyroelectric Detector

The system uses a detector based on a pyroelectric polymer brought in contact
with the backside [86,87,119,121,122,125,126] of thin sheet samples, e.g., thin single crys-
tals, or organic thin films produced on polycrystalline thin carrier materials, e.g.,
oxidized aluminum foil. Another approach implemented in this setup and employed
in this work uses molecular or polymer organic thin films fabricated directly on
pyroelectric detector materials. Common materials are lithium tantalate [115–118] and
β-polyvinylidene fluoride [53,56–61]. The latter one is used in this work mainly due to
its lower cost and higher mechanical resilience.

The pyroelectric effect describes the reaction of a permanently electrically polarized
material to temperature changes. A permanent, macroscopic polarization implies
several requirements on the material. In the first place, the unit cell of the underlying
crystal structure must be able to exhibit a dipole moment. This excludes all
centrosymmetric crystal classes. Second, the polarization in the unit cell needs to
occur spontaneously, which is the case in the polar crystal classes [128]. Finally, a long
range ordering of the individual dipoles is mandatory to achieve a macroscopic effect.
Due to microscopic effects, e.g., atomic vibrations in the unit cell, and macroscopic
effects, e.g., phase changes, the polarization is a function of temperature. The
dependency of the macroscopic polarization P⃗ on the temperature T defines the
temperature dependent pyroelectric coefficient p, which can be expressed10 as

pT =
dP⃗

dT
∣
T

. (1.10)

Since the observed temperature changes within one experiment are very small, the
pyroelectric coefficient can be assumed to be locally constant. However, pronounced
changes are possible in case of experiments carried out at different temperatures11.

A detailed discussion of the pyroelectric effect in general [128–130], its applications for
detector polymers [114,131], and specific properties of β-polyvinylidene fluoride [132,133]

can be found elsewhere.
Permanent polarization is defined as the vector field that expresses the density of

10 Since the direction of the polarization remains unchanged, the coefficient is commonly reported
as a scalar.

11 An increase by a factor of 2.5 has been found in this work by cooling β-polyvinylidene fluoride
from ambient temperature to 80 K.
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permanent dipole moments in a dielectric material. A dipole moment is given by the
product of the displacement vector of two complementary charges and their absolute
value. Implying a direction of the polarization perpendicular to the metalized
surfaces of the detector, collection of these quantities identifies the polarization as
charge per electrode area [128].

Heat, either due to adsorption of molecules or absorption of electromagnetic
radiation, deposited on the sample leads to an increased temperature of the sample
and, due to the thermal contact, also of the detector. The value of the temperature
change ΔT is related to the deposited heat Qh and the absolute heat capacity Ch of
the sample/detector assembly by

ΔT =
Qh

Ch
. (1.11)

Equation (1.11) readily illustrates the necessity of small heat capacities for the
sample and the detector as the temperature difference is the measured quantity
and the deposited heat is fixed. As the used materials cannot be altered and the
lateral extensions are irrelevant, i.e., the heat is equally distributed over the whole
active area, a sensitivity gain can only be achieved by a reduction of the sample
thickness. However, a certain mechanical stability, and thus minimum thickness of
both components, is required to establish the thermal contact between the detector
and the sample. Deposition of thin films directly onto the detector polymer avoids
the heat capacity of the sample sheet and thus leads to an increased temperature
change upon an identical heat input. This is one aspect motivating the use of
deposited thin films in this work.

With the assumption of a homogeneous polarization throughout the detector [114],
a change of the average temperature in the detector induces a charge Qel on the
electrodes with area A of the detector by

δQel

A
= δP = pT ⋅ δT . (1.12)

Since the geometry of the detector is constant, the generated charge is proportional
to the temperature change δT .

The electrodes and the dielectric detector material, with the dielectric constant ε,
form a parallel plate capacitor with electrical capacity Cel = εA/d. Separation of the
charge Qel on the plates at a distance d leads to a voltage Uel given by

Uel =
Qel

Cel
= d ⋅

Qel

ε ⋅A
(1.13)
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1.3 Involved Principles

which is proportional to the electric charge. Combination of Equations (1.11), (1.12),
and (1.13) results in

Uel = d ⋅
Qel

ε ⋅A
= d ⋅ pT ⋅ δT =

d ⋅ pT

Ch
⋅Qh (1.14)

and proves proportionality of the measurable voltage output U of the detector to
the heat deposited in the detector Qh.

The temperature changes are tiny. This leads to minimal voltage responses of
the detector which are difficult to measure and require extreme input impedance
amplifiers. As can be seen from this discussion, i.e., by the usage of changes, this
detector cannot be operated in continuous mode and hence requires a pulsed input.

At this point, it should be mentioned that the pyroelectric effect is always as-
sociated with the piezoelectric effect [128] but not vice versa. The latter effect is
describing the electrical response of a material to mechanical stress. A detailed
discussion on the piezoelectric effect, even for the here used detector material, is
given elsewhere [130,134]. Summarizing, the piezoelectric effect causes an electric signal
upon mechanical stress which cannot be separated from the desired pyroelectric
signal. Hence, great care must be taken to avoid mechanical stress in the sensor.
While vibrations can be damped by the experimental setup, mechanical strain due
to processes on the detector surface itself can not be avoided. Thus, an additional
signal component is expected in case of pressing, bending, or stretching [135] of the
detector.

1.3.4 Detector Calibration

The influences of all constants, geometries, and material properties involved in the
setup are bypassed by the usage of calibration measurements.

The defined wavelength of a laser as light source facilitates a precise power measure-
ment and thus an energy determination. Typically, red lasers, either helium-neon-gas
laser [86,87,116,121,122,125] (632.8 nm) or lasing semiconductors [117,118] (670 nm), are re-
ported in literature for this purpose. Since the reflectivity of many metals [136–138] is
very high at these wavelengths (> 0.9), the relative errors of the corresponding ab-
sorption become rather large12. In order to circumvent this challenge, this work uses
a semiconductor based laser with purple light (405 nm). Generally, the reflectivity
at this wavelength is smaller for a wide range of materials. This renders a higher
accuracy of the detector calibration possible.
12 An absolute error of 0.01 at a reflectivity of 0.95 becomes a relative error of 20 % in the

corresponding absorption.
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1.3.5 Pulsing

All systems rely on a pulsed heat input and thus on a pulsed molecular beam. Various
methods have been utilized to interrupt the molecular flow including rotating discs
operated from air side [86,119] and vacuum side [87], air side operated slides [115,116,118],
vacuum side operated blades [127] (also used in this work), and even piezoelectric
plunger valves [126]. The mechanism used for pulsing the adsorptive is also employed
to generate a defined heat input. Identical spatial and temporal properties are
obtained by guiding laser light along the molecular beam path. The use of a stepper
motor driven chopper blade enables this setup to control the pulse repetition rate
and pulse duration independently.

1.3.6 Deposition Rate Measurement

The total amount of substance leaving the beam, which would impinge on the sample,
is measured with commercial quartz crystal micro balance [86,87,119], since stagnation
gauges [115,116,122,126] are not applicable for condensing matter. The provided layer
thickness on the oscillator crystal is derived from the resonance frequency by the
viscoelastic extension [139,140] to the Sauerbrey theory of loaded crystal oscillators [141]

dF =
ϱQ

ϱF
⋅
NQ

f
⋅

ZF

πZQ
⋅ arctan(ZQ

ZF
⋅ tan(πf0 − f

f0
)) (1.15)

using the densities of quartz ϱQ and the film ϱF, the frequency constant of quartz
NQ, corresponding to the orientation of the cut of the crystal, and the nominal
center frequency f0 of the unloaded oscillator circuit. In case of identical acoustic
impedances of the film ZF and of quartz ZQ, Equation (1.15) is reduced to the period
measurement equation

dF =
ϱQ

ϱF
⋅
NQ

f
⋅
f0 − f

f0
=

ϱQ

ϱF
⋅NQ ⋅ (τ − τ0) , (1.16)

which is typically used in case of an unknown acoustic impedance13, providing a
linear relation of the film thickness and the change of oscillation periods τ0 − τ . In
these cases, a good agreement [139] is still given, if the frequency shift amounts to
less than 15 %, which corresponds to 900 kHz for the used AT -cut 6 MHz crystals in
this work. The associated crystal frequency of 5.1 MHz is coincidentally used by the
controlling unit to detect the end of life load of the crystal [142]. Equations (1.15)

13 Alternatively, the acoustic impedance of the film is set to the same value as for quartz, resulting
in the same equation.
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and (1.16) imply a decrease of the resonance frequency, if material is deposited onto
the sensor crystal.

The reported high accuracies [139,140,143] apply to studies involving a homogeneous
deposition on the whole “front” surface of the oscillator crystal or, at least, a
covered area, which fully overlaps the back-electrode [141]. As the experimental setup
involves a beam diameter smaller than this critical dimension, its influence is not
negligible [143,144]. Since this limitation is only present in rare cases14, there is not
much literature present covering this issue [141,143–145].

Summarizing, the area of deposition concentric to the back electrode influences
the sensitivity of the instrument and a correction from an empirically sigmoid fit of
the data given in Reference [141] needs to be applied. Additionally, an off-center
deposition causes additional sensitivity losses [141,144,145] and should be avoided.

1.3.7 Sticking Measurement

Knowledge of the actual deposited amount of substance is vital to compute two
properties together with the known dosage per pulse. On the one hand, the amount
of adsorbed and reflected molecules is necessary to calculate the heat of adsorption,
as discussed in Section 1.2. On the other hand, the adsorbed fraction of the dosed
molecules is essential for calculating the coverage of the dosed species on the sample
for every pulse.

A well established method to determine coverage dependent sticking probabilities
is described [146] by D. A. King and H. G. Wells. It uses a sensor without direct
view to the sample and the beam source. The sticking factor is derived from the
different pressure readings obtained with and without sample in the beam path.
This method utilizes the integrating and inert properties of the vacuum chamber to
eliminate a possible angular dependency of the scattered species.

Since this established method is not applicable for metal vapors as they are
effectively pumped away by the walls of the vacuum system. Hence, a modified
approach [86] was introduced by C. T. Campbell and is adopted for other calorime-
ters [87,119,122] including the one presented in this work. A mass spectrometer is placed
at 35° from the surface normal which is collinear with the incident beam.

The use of this specific geometry is motivated since it is known that the angular
distribution of molecules desorbing from a surface can vary widely from desorbate
to desorbate and for different substrates [147]. However, these distributions can be
approximated by summation over (fractional) powers of cosines [123], typically with

14 In general, the experimental conditions can be adjusted to provide full-area deposition.
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one or two dominant summands [147]. Variation of the detection angle allows for a
minimization of the influence of the usually unknown exponents and results in this
so-called magic angle [147]. The desorption characteristics depend on the properties of
the surface, which is altered during this kind of experiment. The adsorption on the
sample changes the surface composition from pure substrate to, at sufficiently high
coverages, entirely adsorbate. It should be mentioned in this context, that neither of
the relevant surfaces, the organic thin film constituting the sample nor the hot plate
for the reference measurement, are atomically flat. In the ideal picture, elastically
scattered species [123] would be reflected back into the molecular beam. Thus, they
are unable to reach the mass spectrometer and hence cannot be detected. Surfaces
with a finite roughness exhibit surfaces with a ranged random orientation. This
leads to a superposition of many geometries and could even lead to a contribution of
elastically scattered molecules to the signal. As the discussed processes might lead
to an unpredictable variation of sensitivity, a reduced dependency on the desorption
characteristics is highly desirable.
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2 Experimental Setup

The major goal of this work is to design, realize, and test all the components of an
ultra high vacuum apparatus for measuring heats of adsorption on single crystals
and on organic thin films. Additionally, Igor Pro procedure packages for data
treatment and status monitoring had to be developed.

The tasks and handling of the individual components are described in this chapter.
Parts and assemblies in the figures are labeled with capital letters in Gothic print1.
Subordinated components, such as parts within an already labeled parent assembly,
are addressed with lower case characters as index. If applicable, the index uses the
same letter as in the figure describing the more detailed view.

The setup presented in Figure 2.1 places emphasis on the adsorption of metals
with relatively high vapor pressures on organic thin films.

The focus can be adjusted to study the adsorption of organic molecules on single
crystals by minor changes. Details therefore are given in the descriptions of the
relevant features of this machine.

In contradiction to the initial design [106], only a minimum configuration was
realized with one beam/calorimeter section and no surface characterizing devices in
this work. New constructed components, i.e., all the presented devices in this work,
had to align with the previously constructed parts [105,106], i.e., the main chamber
and the supporting frame, and the existing equipment, i.e., a mass spectrometer,
pumps, etc.

The system comprises the main chamber, the molecular beam, and the load lock.
The main chamber is used for the calorimetry related measurements and sample
preparation, especially sample cleaning. The molecular beam provides the adsorbent
and the load lock serves for introduction and storage of samples as well as for sample
preparation by physical vapor deposition (PVD). In future, the system might be
extended by a manipulator stage in the main chamber to improve the possibilities
for sample preparation. Desirable are also surface characterizing techniques, e.g.,
Auger electron spectroscopy (AES), photoemission spectroscopy (PES/XPS), low
energy electron diffraction (LEED), low energy ion scattering spectroscopy (LEIS),

1 Due to the strong resemblance of some letters to another, E, J, O, Q, S, and V are omitted in
the labeling sequence.
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Figure 2.1: Assembly of the NAC System — The design of the assembled Nano-
joule Adsorption Calorimeter system is illustrated as a computer generated
image. The individual features are labeled in Figures 2.64 and 2.65. Details are
discussed below.

etc., and imaging techniques such as atomic force microscopy (AFM).
Sources of supply and mounting instructions are usually given in the captions

of the exploded views. Manufacturing and modifications on purchased parts has
mainly been performed by the in-house mechanical workshops of the universities in
Erlangen and Marburg. Some more complex parts, e.g., the molecular beam housing
shown in Figure 2.30, have been produced by the central mechanical workshop of
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the university in Erlangen.
The standard material for machined parts is stainless steel 1.4301 which is com-

monly used in ultra high vacuum systems. Cooling lines and pieces that are supposed
to be chemically cleaned, e.g., orifices with magnesium residues being cleaned in
diluted nitric acid, are usually made from the more corrosion resistant stainless
steel types 1.4541 or 1.4571. Components requiring high thermal conductivity are
made from copper or aluminum. If mechanical strength is required at the same time,
copper beryllium bronze is used. Electrically isolating parts are usually made from
Macor®, i.e., a machinable glass ceramic. Heating wires and their hookups are made
from tantalum, which is preferred over the commonly used tungsten since it is easier
to spot-weld and does not become brittle upon heating.

Power lines are usually made from loud speaker twin cables2 and 4 mm-banana-
plugs. Data connections are mainly established via RS-232 standard cables. Data
acquisition is carried out by a dedicated measurement card3 controlled by a Lab-
VIEW-application4. Two analogue channels record the analogue output from the
controller of the mass spectrometer and the amplified detector signal. The connection
between the devices is established by coaxial cables and thus referenced to ground.
In order to increase the signal quality of the calorimetry channel this link should be
altered to a differential design.

Standard screws to tighten CF connections are omitted in the figures to improve
clarity. Top, left, etc. refers to a laboratory coordinate system whereas north,
east, etc. refers to directions in the figures. Coverages are given in monolayers
(ML) and/or meters. Deposition rates are stated in deposited meters per second or
monolayers per second (ML/s) and are proportional to the corresponding fluxes since
the relevant deposition regions have constant area.

Here, one monolayer is defined as a closed packed layer of atoms in a specified
plane. The typically used plane is the closest packed plane for the most stable phase
at room temperature, i.e., the (111) plane for metals with cubic and the (0001)
plane for metals with hexagonal crystal structure, e.g., copper and magnesium,
respectively. Both structures with their primitive spatial and corresponding planar
unit cells are shown in the description of the used materials in Figures 6.1 and 6.2.

Unfortunately, all devices are attached to the NAC machine and were not available
for taking pictures.

2 ‘607012’ 2 × 2.50 mm2 from Conrad Electronic SE.
3 ‘PCI-6221 (37pin)’ from National Instruments Germany GmbH.
4 Programmed by H. Zhou.
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2.1 Sample Holder

Two versions of sample holders can be used in the current setup. The first one
was originally intended to be used with thin single crystals analogue to other
calorimeters [121]. It consists of a solid copper body holding the single crystal, which
is spot-welded between two thin tantalum sheets, as shown in Figure 2.2. Its usage
can be extended to, e.g., organic, thin films created by physical vapor deposition on
polycrystalline metal sheets. In this case all parts of the sample holder are made
from aluminum. The thickness of the sample material should not exceed 100 µm and
the samples should have a minimum diameter of 10 mm. Single crystals with these
dimensions are commercially available5. The use of transparent substrates is not
possible since they are incompatible with the calibration process, see Section 3.5.4.

A
⊴
⊴⊴✍

B
B

C

Figure 2.2: Assembly of the Sample Holder for Crystals — A single crystal (A)
or other thin sheet material is spot-welded between two tantaluma sheets (B)
and fastened on the copper sample holder (C).

a ‘ASTM B708’ 0.2 mm from STS Metalle GmbH.

Separation of the detector ribbon from the sheet material samples allows the use of
standard preparation techniques, especially annealing and thermal cleaning. Due to
the loss of polarization of the involved detector materials at approximately 400 K for
β-polyvinylidene fluoride [148] and at approximately 930 K for lithium tantalate [149],
a permanent bonding of the sample to the detector is often not desirable.

As a substrate for thin films, prepared by physical vapor deposition, discs with
12 mm diameter punched from 30 µm laboratory aluminum foil6 seem to be promising.
They are readily available, cheap, and rather smooth. Additionally, they are as pure
as other standard materials (min. 99 %), passivated by a thin but closed layer of
aluminum oxide, and rigid enough not to wrinkle. If desired, it is possible to clean the

5 MaTecK GmbH.
6 ‘2596.1’ from Carl Roth GmbH + Co. KG.
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2.1 Sample Holder

aluminum disks by sputtering7 to remove a small carbon containing contamination,
see Figure 5.4.

The second version is built up from an aluminum body and contact pieces isolated
by Macor® and Kapton® parts. Poled and metalized β-polyvinylidene fluoride
punched as 12 mm disks from sheet material are clamped between an aluminum
cover and the inner contact piece as depicted in Figure 2.3. Since the detector
polymer is poled, it exhibits a positive and a negative side. Hence, mounting it
upside down results in a signal with constant opposite polarity. Since the data
treatment process is independent of the absolute polarity, see Chapter 3, this polarity
change does not affect the experiment.
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⊴⊴✍
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Figure 2.3: Assembly of the Sample Holder for Thin Films — The β-polyvinyli-
dene fluoridea detector disc (A) is held on the body (B) by a thin aluminum
disc (C) from the front. It is contacted by an aluminum piece from the backside
(D), isolated by pieces of Macor®b (F) and Kapton®c (G). This stack is held in
place by another aluminum piece (H).

a ‘28um/w 400CU/150NI’ from Measurement Specialties.
b ‘158-3102’ from RS Components GmbH.
c ‘500HN’ 125 µm from Katco Ltd. – Lohmann Technologies UK Ltd.

Sputtering, as described for the above mentioned thin sheet samples, is also
possible for this kind of sample in order to enhance the thin film quality. Removing
the outer perimeter of the detector discs by chemical etching8 – as recommended
for single crystal samples [121] – to prevent electrical short circuits between the two
metal layers is not necessary.

Since the detector is included in the sample assembly, it is as transferable as a
regular sample. Hence, it is possible to protect the pyroelectric material from the
thermal load, and thus from degradation, during bake-out routines by relocation in
the load lock. It might be worth to consider a transferable detector head for thin

7 Ekin = 3 keV, p = 1 ⋅ 10−4 Pa, t = 10 min.
8 Etched for 10 min. in 0.2 mol/L nitric acid at ambient temperature; rinsed with deionized water.
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sheet samples as well, see Figure 2.6, in order to avoid accidental degradation during
the conditioning of the vacuum system. It would also reduce the downtime of the
experiment in case of failure of the detector ribbon.

The body pieces of both sample holders, and among them the sheet sample or the
front side of the thin film sample, are on ground potential while being transferred or
during calorimetric measurements. A floating acceptance for samples – on which
sputter currents etc. could be measured – was planned on a manipulator stage but not
realized yet. The conical inner face, in combination with the corresponding detector
head, provides a self aligning approach mechanism. This property is necessary to
establish a reproducible detector/crystal contact which is indispensable for a precise
measurement.

Design drawings with dimensions and materials for both types of sample holders
can be found in Appendix B.2.1.
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2.2 Detector Stage

2.2 Detector Stage

The detector assembly is mounted on a custom made 150CF flange, which is equipped
with four 16CF and five 40CF flanges, see Figure 2.4. The thermal reservoir, see
Figure 2.5, is mounted on the vacuum side of the base flange. Threaded steel rods
hold the fixed copper piece with the fluid connectors and provide thermal insulation.
Two additional pieces made from copper allow adjustment of the sample position in
three spatial directions. The assembly is designed to be operated between a lower9

limit of 80 K and an upper10 limit of 370 K. Desired temperatures between these
limits can be established by an external thermostat.

Copper braids attached to the thermal reservoir also provide temperature alignment
for the detector head, see Figures 2.6 and 2.7, as well as the sample heater, see
Figure 2.8. The use of copper for all pieces near the sample provides a uniform
temperature which can be monitored by two thermocouples, one on the sample
reception and one on the detector head. The massive copper construction provides
a passive way to stabilize the temperature of the calorimeter.

Another benefit from the possibility of the temperature adjustment results in an
increased maximal bake-out temperature of the system equipped with the detector
for thin sheet samples. An upper limit is given by the degradation temperature
of the used pyroelectric material, e.g., 370 K in case of β-polyvinylidene fluoride.
Cooling of the reservoir to 350 K in combination with a cap, which is inserted in
sample position protecting the otherwise exposed ribbon, should render typical
system conditioning temperatures of 450 K for the remaining parts possible.

In order to minimize piezoelectric noise from the detector a wobble free contact
between the sample acceptance, the sample, and the detector head is essential. This
is ensured by a spring suspended mount for the detector head, see Figure 2.9. Three
guided springs separate the part attached to the linear shift from the mounting stage
for the detector head to allow for small angular movement. The large wire diameter
of the springs results in a high spring stiffness enabling the transmission of large
forces onto the sample and its acceptance. This improves mechanical stability as
well as thermal conduction in this arrangement. It also enhances the reproducibility
of the positioning of the detector head to the sample.

Each of the two sample holder variants has a designated detector head. The
assembly used with single crystals or thin sheet material is shown in Figure 2.6.
The design is analogue to the design presented in [121]. Etched ribbons11 made

9 Cooled with liquid nitrogen.
10 Heated with water or silicone oil.
11 Dimensions are given in Appendix B.2.3.
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Figure 2.4: Assembly of the Detector Stage — The fixtures (Aa, Ab,) of the
thermal reservoir (A, Figure 2.5) is welded to the vacuum side of the base flange
(B) and connected with custom copper gaskets (Ai) to fluid feedthroughs on a
40CF flange(C) for an external heating/cooling system (not shown). The sample
holder (D, Figures 2.2 or 2.3) is inserted into the sled on the reservoir (G).
The detector mount (F, Figure 2.9) with its actuatora and detector head (Fh,
Figures 2.6 and 2.7) are fixed on the central 40CF flange. A 40CF window (H)
is mounted opposite to the thermostat feedthrough (C). The other 40CF flanges
are sealed by blind flanges. A BNCb (I) and a twin Type K thermocouple
feedthroughc (K) are mounted close to the thermostat feedthrough (C). The
remaining 16CF flanges carry the heater assembly (L, Figure 2.8) with its
actuatord (I) and its power feedthroughe (N).

a ‘BLM-275-4’ from MDC Vacuum Products, LLC.
b ‘A0237-2-CF’ from MPF Products, Inc. via tectra GmbH.
c ‘A0407-2-CF’ from MPF Products, Inc. via tectra GmbH.
d ‘BRLM-133’ from MDC Vacuum Products, LLC.
e Similar to ‘A0261-3-CF’ from MPF Products, Inc.

from oriented, poled, and metalized β-polyvinylidene fluoride are stacked together
with Kapton® and copper pieces as shown in Figure 2.6. Additional Kapton® bits
are added at the sides to isolate the inner contacts from the grounded body pieces.
Upon assembly, it is important to pay attention to the correct polarity of the ribbons,
i.e., which side is facing the crystal, and proper flush alignment of the arcs. This
stack is inserted in the main body part and tightened with a screw matching the
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Figure 2.5: Assembly of the Thermal Reservoir — A custom made base flange (not
shown, see Figure 2.4) with welded fixtures (A, B) holds the thermal reservoir
(copper) with four threaded rods (C, D) on laterally adjustable shackles (F).
The reservoir consists of a base part (G) equipped with VCR®a connections (H)
used with custom made copper gaskets (I) and an adjustable sled (K) carrying
the moveable sample reception (L). The steady part also carries copper braids
(M, only connector blocks shown) used to temperate the calorimeter head (not
shown, see Figures 2.6 and 2.7). Joints with a desired high thermal conductivity
are equipped with copper screws.

a ‘6LV-4-HVCR-1-6TB7’ from HPS Handels GmbH.

ribbons with the sample. For maximal signal intensity the contact area should be
maximized. This can be achieved by a small deformation of the ribbons as shown in
Figure 2.10.

The head piece for thin films acts only as a contact, as shown in Figure 2.7. The
spring loaded inner pin presses on the inner conductor piece of the thin film sample
holder. Due to the adaptive behavior of this connection, it is also able to compensate
thermal expansions and maintain a stable connection even upon temperature changes.
These inner pieces are isolated from the grounded body by Macor® parts.

This variant eliminates the thermal resistance between the thin substrate material
and the detector material leading to an increased sensitivity. A further increase
is devoted to the reduction of total heat capacity, since the thin sheet material is
absent. The overall simpler design and the expected higher sensitivity led to the
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Figure 2.6: Assembly of the Detector for Crystal Samples — Two etched β-poly-
vinylidene fluoridea ribbons (A, silver) are stacked together with Kapton®b

isolation pieces (B, yellow) to a temporary tripolar setup. The outer coating
remains on ground whereas the other surfaces are in contact with two pickup
electrodes (C) connected to a coaxial cablec. Electrical contact to the air side
amplifier (not shown) is established by a BNC-feedthroughd (not shown). The
detector stack is completed by two copper plates (D) and held together by two
copper half shells (F, G) inserted into the housing part (H). A copper cap (I)
added to the mounting assembly (Figure 2.9) provides electrical shielding as well
as an increased heat capacity. Optional copper braids (K, only connector blocks
shown) provide thermal contact to the thermal reservoir. Isolation material on
the sides of the stack is not shown for clarity.

a ‘FV301890/1’ from Goodfellow GmbH – discontinued.
b ‘500HN’ 125µm from Katco Ltd. – Lohmann Technologies UK Ltd.
c ‘KAPWC1X025’ from LewVac Components Ltd.
d ‘A0237-2-CF’ from MPF Products, Inc. via tectra GmbH.

decision to install this detector head version for the presented work.
Both built detector heads are equipped with mounting options for copper braids

allowing temperature alignment with the reservoir. Electrical shielding is provided
by a copper cap on the backside of both assemblies. Their massive design also
provides additional heat capacity which helps to maintain the temperature while
the head is disconnected from the sample, e.g., for sputtering.

The detector stage is also equipped with a sample heater as depicted in Figure
2.8. The filament is approaching the sample, which is mounted in a sheet material
holder, from the backside without touching it. The copper housing can be cooled
using copper braids attached to the thermal reservoir. It is designated to remove
adsorbates like carbon monoxide on single crystal samples by short but intense
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Figure 2.7: Assembly of the Detector for Polymer Samples — A copper pin (A)
is isolated from the grounded housing (B, C) by three Macor®a pieces (D to
G). A spring (H) presses the pin on the back contact of the sample holder (not
shown) establishing a stable contact. The temperature of this setup is aligned
to the temperature of the reservoir by attached copper braids (I, only connector
blocks shown). A copper cap (K) added to the mounting assembly (Figure 2.9)
provides electrical shielding as well as an increased heat capacity.

a ‘158-3102’ from RS Components GmbH.

Figure 2.8: Assembled Heater for Crystal Samples — Assembled heater for crystal
samples as designed by O. Lytken with a linear/rotational motion feedthrougha

and a light bulbb filament for sample heating.

a ‘BRLM-133’ from MDC Vacuum Products, LLC.
b ‘Osram HLX 64655 EHJ 24V 250W’ from HANS RAUM GmbH.
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Figure 2.9: Assembly of the Spring Suspended Detector Mount — To ensure
planar, wobble-free contact of the sample holder (not shown, see Figures 2.2 and
2.3) and the detector head (not shown, see Figures 2.6 and 2.7), the mounting
plate (A) is suspended by three guided springs (B) countered by a plate (C)
sliding over the connection rod (D). This allows for compensating small angular
misalignment in combination with transmission of large forces induced by the
pressing plate (F) sliding along the guidance pieces (G). This assembly is
completed by a linear shifta (not shown) connecting the spring stage to the base
flange (not shown, see Figure 2.4).

a ‘BLM-275-4’ from MDC Vacuum Products, LLC.

heating also known as “flashing”. The goal is to keep the sample holder as cool as
possible while heating the crystal above the desorption temperature of the adsorbate.
This heater setup is designed for radiative heating. It can be extended to electron
bombardment heating if a floating filament power supply is used.

The amplifier, used to convert the charge on the detector polymer into the acquired
voltage, is plugged directly onto the BNC feedthrough on the flange. This minimizes
unwanted electrical capacity in the detector circuit. An additional capacity would
cause a decrease of the signal along with an increase in the time constant of the
amplifier requiring a smaller pulse repetition rate and thus a longer experiment time.
The direct mounting also reduces the risk of triboelectric noise in the system. In
order to avoid thermal drift, the amplifier should be separated by Styrofoam™, or
a similar material, from the feedthrough used to stabilize the temperature of the
thermal reservoir.

Design drawings with dimensions and materials for the detector stage can be
found in Appendix B.2.3.
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a)

b)

c)

Figure 2.10: Sample/Ribbon Contact Cases — A detailed view of the possible
sample/ribbon contacts is given for thin sheet specimen. The sample is sand-
wiched between its mounting sheets (gray) on the sample holder (orange). The
position of the outer head piece (yellow) to the sample is fixed. The alignment
of the ribbon can be adjusted by moving the inner detector stack (copper) of
the detector head (Figure 2.6). a) Insufficient pressing – the contact area is
too small. b) Good alignment – the ribbon adapts to the sample. c) Excessive
pressing – the ribbon curls back.
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2.3 Molecular Beam

The molecular beam, as shown in Figure 2.11, comprises the main evaporator as
an adsorbate source, a beam chopper to pulse the source, an optics stage to reflect
the calibration laser onto the sample, an inline valve to separate the compartments,
and two pumping stages. This source was designed to be capable of evaporating
molecular substances, e.g., perylenetetracarboxylic dianhydride (PTCDA), and
metals, e.g., calcium, with suitable vapor pressures. Although metals usually
evaporate as atoms and only metals have been used as adsorbates in this work, this
paper refers to the source as molecular beam. Since organic molecules decompose at
elevated temperatures their reachable vapor pressure is limited. In order to provide
a sufficiently high flux the beam housing has a very compact design to minimize the
distance between the sample and the evaporator. In this context, the constraints
of the already manufactured main chamber as well as the requirement of separable
compartments have to be taken into account.

As an alternative evaporation source the beam housing is able to accept an electron
beam evaporator12 for substances with lower vapor pressures, e.g., copper. The
benefit of accessing these materials is payed by a much shorter run-time per crucible
filling. Due to the required high fluxes, severe deposition of the material in the
evaporator is inevitable. This led to a failure of the filament after a few experiments
by means of copper deposition on the running filament. The use of this source has
been successfully tested but comprehensive service is often necessary.

2.3.1 Main Evaporator

The base flange of the Knudsen-cell type main evaporator exhibits several special
features, as shown in Figure 2.12.

To provide an individual mount of the evaporator and its heat shield, see Figure
2.13, it contains clearances for the mounting screws of the heat shield. It provides an
off center 16CF port for mounting thermocouple feedthroughs. A reception for the
crucible is located on the 40CF side. Its hexagonal shape allows easy tightening of
the crucible mount with standard wrenches. Apart two welded power feedthroughs,
this piece is machined from the solid. Two nuts, each together with an aluminum
ring, form compression fittings grasping the crucible.

Several versions of crucibles are possible, depending on the requirements of the
evaporant, e.g., reactivity, wetting behavior, evaporation temperatures, etc. In order

12 ‘EFM-4’ from FOCUS GmbH via Omicron NanoTechnology GmbH.
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Figure 2.11: Assembly of the Molecular Beam — Detailed mounting instructions,
recommended to assemble the molecular beam, are given in Figures 2.31, 2.32
and 2.33.

to stabilize the temperature of the crucible, one main and one backup thermocouple
are attached to the crucible. If necessary, e.g., if spitting of the evaporant occurs,
see Section 5.6, the evaporant can be topped with a plug made from stainless steel
wool or quartz glass fiber.

Upon evaporation of material, a layer of residues, i.e., carbon or oxides, builds
up on top of the evaporant and might exhibit a different infrared emission than the
initial material. Since the top material is facing the sample, changes in its emission
behavior have a direct influence on the measurement and should be avoided. The
plug on top of the evaporant provides a changeless surface and minimizes changes in
the infrared emission characteristics of the evaporator.
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Figure 2.12: Assembly of the Main Evaporator’s Base Flange — Two ceramic
isolated electrical feedthroughs (A) are welded into a custom made 40CF flange
(B) with a hexagonal extension. The crucible (not shown, see Figure 2.13) is
held by two compression fitting connections. Nuts (C, D) mold the ferrules (F),
which are made from pure aluminum wirea, against the crucible and keep it
safe in place. The copper barrel G connectors join the feedthroughs with the
tantalum posts (Figure 2.14) of the heater for the crucible.

a ∅1 mm from Drahtwerk ELISENTAL W. Erdmann GmbH & Co.

If insulating materials, such as fused silica (quartz glass), are used, the thermo-
couples are not grounded and might exhibit dangerous voltages from the heating
wire. In this case, special protection for the user and the laboratory equipment has
to be installed. In early versions of the steel crucibles, the thermocouples were glued
and not spot-welded. The used glue turned out to become slightly conductive at
elevated temperatures (850 K), causing an additional potential on the thermocouples
(≈ 20 V) with enough current to cause malfunctions of the temperature read out. A
worsening of this behavior is expected with non-conductive (quartz) crucibles with
glued13 thermocouples and heating wire in combination with an unavailable ground
potential.

This work uses a steel crucible with two spot-welded Type K thermocouples.

13 ‘Ceramabond 835’ from KAGER Industrieprodukte GmbH.
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Figure 2.13: Assembly of the Main Evaporator — The crucible made from stain-
less steel or quartz (A) is inserted into the base flange (B) and tightened with
the compression fittings (Bb, Bd, Bc). A thermocouple feedthrough Type Ka

(C) with a 5 inch 16CF extension tube (D) is also mounted on the base flange.
After establishing the power and thermocouple connections the water cooled
shield (F) is carefully slid over the crucible. The cap (G), used to retain most
of the evaporated material, completes the evaporator. The 40CF tube (H)
substitutes a setup intended to be used with air sensitive evaporants (Figure
2.63). A standard 40CF/63CF adapter (I) completes the assembly.

a ‘A0423-1-CF’ from MPF Products, Inc. via tectra GmbH.

The heating wire is isolated from the crucible by a layer of suitable ceramic glue14.
An 0.5 mm thick layer is applied on the crucible. After drying of the glue, the
tantalum heating wire is folded into a U-shape and wound around the crucible, as
shown in Figure 2.14. It must not touch the metallic center of the crucibles and the
thermocouples. Polytetrafluoroethylene tape15 for plumbing is used to temporarily
retain the wire on the crucible. The fixed wire is covered with the same glue as
before and after drying the tape is removed. The open areas are treated the same
way. After curing16, the crucible can be inserted in the base flange and the electrical
connections can be established.

14 ‘Ceramabond 671’ from KAGER Industrieprodukte GmbH.
15 ‘Gewindedichtband 12 mm x 0.1 mm’ from OBI GmbH & Co. Deutschland KG.
16 At ambient temperature for 24 hours.
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A

B B

Figure 2.14: Schematic of the Heating Wire — Tantalum wirea (A) with a length
of approximately 8 m is folded in a U-shape and wound around the isolated
crucible in form of a double helix starting at its top. The open ends are wound
around two tantalum postsb (B) and spot-welded at several positions. The
pitch should be around 4 mm and the distance between two strands 2 mm. The
wire should be wound slightly denser at the top. This image uses an increased
pitch to emphasize on the double helix structure.

a ∅0.5 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
b ∅2.0 mm from Haines & Maassen Metallhandelsgesellschaft mbH.

The crucible with the base flange is inserted in a cooling shield made from solid
copper to reduce degassing, thermal load on the housing, and emission of infrared
radiation into the middle stage of the molecular beam. A cap on top of the shield
retains most of the evaporated material. This is desirable since the collected material
cannot reach the sample for geometric reasons and would otherwise soil the inside of
the molecular beam housing. As a benefit, it provides an option to recover expensive
material. The design can be extended to a variant in which refilling of the crucible
and cleaning of the cap can be performed in an inert gas environment, see Section
2.8. In addition, the cap serves as an orifice for differential pumping.

Typically, the crucible is driven by four power supplies17 hooked up in series and
synchronized by a PID regulation software18. This setup provides currents up to
10 A and voltages up to 80 V. Communication with the host computer equipped
with a USB-RS485 converter19 is established with the built-in RS-485 interfaces of
the power supplies. Temperature feedback for the regulation software is provided by
an eight channel USB converter20. This allows for a constant temperature of the
evaporator within the measurement accuracy of ±0.1 K. The evaporator has been
successfully tested for temperatures between 300 K and 960 K. In this temperature

17 ‘PeakTech 1890’ from ConeleK Electronic.
18 LabVIEW application by H. Zhou.
19 ‘USB-Nano-485’ from NienTech.
20 ‘TC-08’ from Pico Technology Limited via Conrad Electronic SE.
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range, suitable deposition rates between 0.1 ML/s and 1 ML/s could be achieved for
magnesium, calcium, and lead21.

Upon first heating, the glue degases severely. Subsequent heating only shows
significant degassing for a new maximum temperature. In order to minimize re-
adsorption of water on the crucible, it should be refilled while it is still warm
(≈ 370 K), taking appropriate safety measures.

Design drawings with dimensions and materials for the main evaporator can be
found in Appendix B.1.1.

2.3.2 Optics Stage

The diode based laser22, which is used for detector calibration, is equipped with a
fiber docking station23. The emitted light is guided in the optical fiber to an exit
collimator which can be adjusted towards the molecular beam, see Section 2.5.3. It
enters the vacuum system through a small window and is defocused by a lens to the
same extent as the molecular beam spreads. The focal point should have the same
distance to the sample as the top of the evaporator, taking the reflection by the
mirror, see Figure 2.16, into account. The lens holder, as shown in Figure 2.15, acts
as an adjustment screw in the housing of the molecular beam. In order to maximize
the transmission at small wavelengths, quartz is used for all parts the laser passes
through.

A mirror, which is mounted on a guided wobble stick, as shown in Figures 2.16
and 2.17, is used to reflect the defocused laser upwards through the chopper stage,
see Section 2.3.3 and the nozzle in the main chamber, see Section 2.3.5, onto the
sample, see Section 2.1. Adjustment of the reflection angle is done by bending the
sheet metal of the mirror holder. It should be mentioned, that a medium alignment
is sufficient here. The final position of the laser spot is adjusted outside the vacuum
chamber by the fiber positioner, see Section 2.5.3.

This stage also carries a replaceable orifice protecting the inline valve in the
molecular beam from unwanted deposition. Since the opening of the orifice gets
closed up during operation of the evaporator, regular cleaning is necessary.

21 One monolayer (ML) corresponds to a hexagonal closed packed layer of the adsorbed material’s
atoms.

22 ‘iBeam-405-S-3V5’ from TOPTICA Photonics AG.
23 ‘FiberDock’ from TOPTICA Photonics AG
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Figure 2.15: Assembly of the Lens Holder — A quartz lensa (A) is inserted into
the holding tube (B). The lens is held by a small threaded retainer ring (C).
The tube itself is screwed into the beam housing (D, partially shown) allowing
to adjust the position of the focal point. The 16CF flange opening is sealed by
a quartz 16CF windowb (F).

a ‘G340164000’ f:-50 from Qioptiq Photonics GmbH & Co. KG.
b ‘VPZL-133Q’ from Kurt J. Lesker Company.
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Figure 2.16: Mirror/Orifice Assembly Vacuum Side — A modified wobble sticka

(A) is equipped with a clamped mounting base (B). This piece carries a holder
(C) for an exchangeable orifice (D) held by a small latch (F) with a distance
piece (G) as well as a pod (H) made from sheet metal for a mirrorb (I).

a ‘WS-275’ from MDC Vacuum Products, LLC.
b ‘G340057000’ from Qioptiq Photonics GmbH & Co. KG.
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Figure 2.17: Mirror/Orifice Assembly Air Side — The modified wobble stick with
its attachments from Figure 2.16 (A) carries a base plate (B) holding a track
(C). The screws (not shown) to tighten the 40CF connection are accessible
without removing the track. It is equipped with a guidance piece (D) holding
the extension rod (F) of the wobble stick. The track has three distinct resting
positions: laser, molecular beam and valve operation. The wobble stick is held
by a clamp (G) which can be easily fixed in these positions with a knurled screw
(H). A knob (I) at the end of the extension rod provides user friendly handling.

The air side of the assembly limits the flexibility of the wobble stick to an in/out
motion. The moveable part can be locked by a knurled screw in three well defined
positions used in the different measurements24:

• The position closest to the chamber places the mirror in the path of the
molecular beam. The mounting sheet metal blocks the evaporated substance
and most of the infrared radiation emitted from the evaporator. The mirror
can reflect the laser towards the sample. This position is used for the laser
involved measurements, i.e., the clean sample, the coated sample, and the
detector calibration. It is also the recommended position during temperature
stabilization of the main evaporator since it prevents unnecessary deposition
on devices further up in the beam.

24 Detailed instructions are presented in Section 6.3.
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Figure 2.18: Assembled Mirror/Orifice Stage — A photograph of the preliminary
assembly of the mirror/orifice stage as described in Figure 2.17 is shown. The
actuation part has been altered afterwards.

• The middle position aligns the orifice above the exit of the evaporator, clearing
the path between the evaporator and the sample. This position is used for all
measurements not using the laser.

• The third, out-most position retracts the vacuum side assembly enough to let
the inline valve pass by. This position should be verified before the valve is
operated since maloperation will cause severe damage.

The assembled device is shown in Figure 2.18. Design drawings with dimensions
and materials for the optics stage can be found in Appendix B.1.3.
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2.3.3 Beam Chopper

The detector material only responds to temperature changes and thus cannot measure
continuous input. Hence, the molecular beam from the main evaporator as well
as the laser beam need to be converted into pulses. This task is performed by the
chopper stage shown in Figure 2.19. Its main part is a ultra high vacuum compatible
stepper motor operated by a programmable controller.
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Figure 2.19: Assembly of the Chopper — A standard multi pin feedthrougha (A)
with the matching air-side connector (B) is fastened to a modified zero length
63CF/40CF adapter (C). The stepper motorb (D) driven by a programmable
controllerc (not shown) is mounted together with two end switches (F, Figure
2.20) onto a copper strap (G) attached to the adapter flange (C). The shutter
blade (H, Figure 2.21) is clamped on the axle of the motor (D). A wide bore
copper gasket (I) is necessary to mount this assembly.

a ‘MLF18F’ from Arun Microelectronics Ltd. via tectra GmbH.
b ‘C14.1’ from Arun Microelectronics Ltd. via tectra GmbH – discontinued.
c ‘SMD2’ from Arun Microelectronics Ltd. via tectra GmbH.

The measurement software25 converts the pulse parameters to a program for the
controller. The software only triggers the start of the stored program. Thus, the
timing is done by a dedicated system and synchronized every measurement cycle.
The setup also includes end-of-travel switches, see Figure 2.20, and a fork-like metal

25 LabVIEW application programmed by H. Zhou.
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sheet, see Figure 2.21, blocking the beam in the two outer positions and allowing
the beam to pass in the center position, as shown in Figure 2.22. A counterweight
on the chopper blade is used to reduce vibrations arising from an unbalance. The
remaining vibrations from torque of inertia cannot be observed in the detector signal.
This design enables usage of a long chopper blade in order to realize fast switching
of the beam.

A

B C

Figure 2.20: Assembly of the End Switches — The hookup wire (not shown) is
fixed with the small screw to the actual contact (A). This steel part is insulated
by alumina splint bushesa (B, C) and attached to the motor holder (not shown,
see Figure 2.19) by the larger screw. The switch is triggered if the grounded
shutter blade (not shown, see Figure 2.21) contacts switch plate and pulls the
sensing output of the stepper motor controller (not shown) to low potential.

a ‘BGB-M3’ from tectra GmbH.

In order to allow clearance for the built-in valve, the chopper blade can be moved
into a niche in the housing. Operation of the valve is permitted only if the chopper
blade is in this parking position. Otherwise severe damage might occur!

This three stage operation offers the advantage of free choice of the open and
close durations at a constant switching speed. The two impenetrable positions are
indispensable since a homogenous deposition of the adsorbate is required. Settings
for a two stage movement (“there and back again” [150]) would lead to a coverage
gradient on the sample since one end of the sample is exposed twice the switching
time longer than the other end. This gradient26 would also depend on the exposure
time per pulse rendering a precise measurement impossible. As a drawback the three
stage setup generates two subsets of pulses: pulses with clockwise moving chopper
and pulses with counter-clockwise moving chopper. Since they appear always in
pairs, and thus are strictly alternating, one measurement cycle is called a pulse pair
and due to the continuous numbering in a measurement these two subsets are called

26 Up to 15 %.
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A

B

C

Figure 2.21: Assembly of the Chopper Blade — The chopper blade consists of a
bent steel sheet (A) screwed (welded in an older version) to the hub (B). A
copper counterweight (C) is also mounted to the hub (B) to shift the center
of mass on the motor’s axle and thus minimize vibrations. The assembly is
clamped by the slitted hub (B) onto the axle of the stepper motor (not shown,
Figure 2.19).

odd and even. Since data also includes the delay around the pulse, a set of data
corresponding to a pulse from the beam source is labeled a frame.

If the setup is arranged symmetrically about the center of the beam, odd and
even frames should be identical since the detector has area integrating properties
and cannot distinguish between the rotational directions of the stepper motor. This
assumption holds well for the laser and the molecules from the beam source which are
not reflected by the walls of the beam housing. This situation is in compliance with
the assumption that ray optics apply. The infrared radiation from the evaporator is
reflected many times on the walls and thus forms a diffuse background radiation field.
Changing the position of the chopper blade influences the intensity distribution in
the field and thus the output of the infrared radiation onto the sample. This leads
to a different infrared radiation input into the sample in the two closed positions
and hereby breaking the symmetry assumption.

Due to these asymmetry issues, the chopper position and delays should be aligned
to the mass spectrometer signal and neither to the laser pulse position nor to the
radiation signal. A mismatch of the delays obtained by a laser based measurement
and a zero sticking measurement indicate poor adjustment of the laser fiber output.

Design drawings with dimensions and materials for the chopper stage can be found
in Appendix B.1.4.
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a)

b)

c)

Figure 2.22: Positions of the Chopper Blade — a) The molecular beam is blocked
with the chopper blade in default position. b) The chopper blade clears the path
of the beam. c) The molecular beam is blocked with the chopper blade in the
second position. A measurement cycle consists of the sequence a→b→c→b→a.
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Figure 2.23: Assembled Chopper — A photograph of the assembled chopper is
shown as described in Figure 2.19. The end switches have been added later.
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2.3.4 Inline Valve

In order to separate the main chamber from the compartment of the molecular beam,
a valve, see Figure 2.24, is built into the housing of the molecular beam. Since the
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Figure 2.24: Assembly of the Molecular Beam Valve — The bonnet of the valve
comprises a moveable seat (A) for different gaskets, an edge welded bellowa

(B) and a base flange (C). This figure shows the currently used option with a
Viton® gasket (D) on an adapter plug (F). A conical end stop guides the bellow
on the base flange (C) and prevents it from excessive compression. The linear
actuator (A) is driven by a threaded rod (G) latched into its air side in order
to transfer pushing and pulling forces. This shaft (A) is guided by a parallel
key (H) to prevent torque on the bellow. The spindle (G) is turned by a hand
wheel (I) equipped with a handle (K) and the corresponding spacer pieces (L,
M). Defined torque can be applied by a nut (N) mounted to the hand wheel
(I). The thread in the holder (P), which is mounted on the bonnet flange (C),
converts the rotation to linear motion. The seat of the valve is implemented in
the housing (not shown, see Figure 2.29) of the molecular beam.

a Custom made from Huntington Mechanical Laboratories Inc.:
∅in = 3/4 in, ∅out = 1.5 in, stroke = 3 in.

part of the beam outside the main chamber should be as compact as possible, the
use of a standard component has been out of question. The seat of the valve is
machined out of the solid in the beam housing. The long stroke bonnet, as shown
in Figure 2.24, allows the valve to fully clear the beam path and the instruments
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attached to the beam housing. The Viton®-gasket allows for independent bake-out
of the molecular beam after refilling the evaporator. After contact of the rubber
gasket with the seat of the valve, which is easily perceptible by an increase of the
torque necessary to operate the valve, a quarter turn seals the connection. If desired,
the position can be locked with a counter nut.

Figure 2.25 shows the assembled valve. Design drawings with dimensions and
materials for the valve stage can be found in Appendix B.1.2.

Figure 2.25: Assembled Valve — A photograph of the preliminary assembly of
the valve as described in Figure 2.24 is shown. The mount of the flat gasket
has been altered later.
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2.3.5 Parts in the Main Chamber

If the molecular beam is equipped with the electron beam evaporator, the emitted
atomic beam includes ions due to interaction of the evaporated material and the
accelerated electrons. Since ions would cause discharge energy in addition to the
investigated reaction energies, their presence is undesirable. A convenient way to
remove these slow ions is to apply an electric field perpendicular to the direction
of the beam. This is realized by the deflector plates shown in Figure 2.26 which
act as a parallel plate capacitor charged by an external power source. If ions are
present in the beam, they will cause a current through the capacitor. Although the
measurement of tiny pulsed currents is difficult, the ion current could be used to
monitor the flux of the evaporator.

Figure 2.27 shows the deflector plates mounted on the beam housing, see Section
2.3.6.

The nozzle of the molecular beam, see Figure 2.28, extends into the main chamber
to prevent unwanted deposition. It also serves as a support for the ancillaries stage,
see Section 2.4. Its exchangeable center piece provides options for additional devices
in the molecular beam, such as a mirror based infrared pass-filter. Its top piece
defines the diameter of the laser and molecular beams and acts as an orifice for
differential pumping.

Design drawings with dimensions and materials for the nozzle stage can be found
in Appendix B.1.5.
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A

B
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D × 2

Figure 2.26: Assembly of the Deflector Plates — Two plates (A, B) form a parallel
plate capacitor perpendicular to the molecular beam. Ions formed during the
evaporation process experience a lateral force and are thus removed from the
beam. In order to apply the necessary voltage, one of the plates (B) is isolated
by alumina splint bushesa (C, D). The assembly is mounted on the beam
housing (not shown, see Figure 2.29) with vented screws.

a ‘BGB-M3’ from tectra GmbH.

Figure 2.27: Assembled Deflector Plates — The assembly from Figure 2.26 after
intense evaporation of Magnesium without stainless steel wool in the crucible.
Worth mentioning are the particles on the plates and the shadows cast by them.
After application of the wool no larger grains could be observed. The base
mount of the nozzle is also visible.
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Figure 2.28: Assembly of the Nozzle — The nozzle (A) is mounted on an extension
tube (B) which can be replaced by other instruments, e.g., a mirror arrangement
to separate molecules and radiation from the evaporator. The extender is
attached to a base piece (C) held by six vented screws on the beam housing
(not shown, see Figure 2.29). The nozzle carries four ball bearingsa (D) to guide
the movement of the ancillaries stage (not shown, see Figure 2.39).

a ‘682-offen’ from Kugellager Express GmbH.
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2.3.6 Beam Housing

Due to several requirements on the molecular beam, its housing, see Figure 2.29,
masters several technical challenges. On the one hand, it should be as compact as
possible in order to preserve as much flux as possible, on the other hand, it has to
contain differential pumping, the optics for the laser, ion removal, and the beam
chopper.

Its lower part accepts the evaporator, see Figure 2.3.1, and forms a first pumping

A

B

C

D

Da

Figure 2.29: Assembly of the Beam Housing — Several pieces are welded into
the block shaped main part (A) of the molecular beam. The laser port (B) is
located left, the valve port (C) sticks out to the front and the tube part (D) of
the beam is attached from below. The tapped 40CF flange (Da) is modified to
fit a ⊘50 mm tube. Otherwise, standard components are used.
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stage. It provides a tapped 40CF port with a ∅50 mm tube for a nude ion gauge27.
The lower section is welded to the main part of the beam housing machined from
the solid. The main part incorporates the seat for the inline valve, see Section 2.3.4,
together with a CF port for the other half of the valve. The reception for the lens
holder, see Section 2.3.2, is welded into the main piece as well. Mounting options
for the deflector plates and the nozzle are machined inside the CF feature on top of
the cuboid main piece and are protruding into the main chamber. The 16CF port
used to wire the deflector plates also connects to the volume above the valve. The
block is completed by ports for a window, the optics stage, see Section 2.3.2, and
pumping. Design drawings with dimensions and materials for the beam housing can
be found in Appendix B.1.6.

Figure 2.30 shows the welded main part of the beam housing.

27 This temporary cost effective solution (due to a shared controller) should be replaced by a
more suitable cold cathode gauge.
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Figure 2.30: Welded Beam Housing — A photograph of the welded beam housing
as described in Figure 2.29 is shown here. This version uses the first revision of
the laser port.
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2.3.7 Assembled Beam

Figures 2.31, 2.32, and 2.33 show the positions of the previously discussed individual
devices attached to the beam housing, see Section 2.3.6. The molecular beam is
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Figure 2.31: Assembly of the Molecular Beam (Top View) — North of the main
part (A, Figure 2.29) a knee (B) is mounted in order to substitute a 80 L/s turbo
molecular pumpa by a 300 L/s turbo molecular pumpb, see Figure 2.33 for details.
East of the block shaped part (A) a window (C) is mounted directly onto it.
The built-in valve (D, Figure 2.24) is attached to the CF-nipple. A 16CF blind
flange (F) and the lens holder (G, Figure 2.15) together with its 16CF window
(Gf) are mounted from the south east, see Figure 2.32 for details. The south
faced flange carries the beam chopper (H, Figure 2.19). The other nipple in this
direction accepts a Bayard-Alpert gauge headc (I), see Figure 2.33 for details.
The mirror/orifice assembly (K, Figure 2.17) is tightened onto the west opening
of the block (A). The small recess northwest in the main part (A) holds the
feedthrough (L) for the deflector plates (not shown). The nipple in the same
direction holds a 80 L/s turbo molecular pumpd (M).

a ‘HiPace® 80’ from Pfeiffer Vacuum GmbH.
b ‘TMU260’ from Pfeiffer Vacuum GmbH.
c ‘AIG17G’ from Arun Microelectronics Ltd. via tectra GmbH.
d ‘TPU071P’ from Pfeiffer Vacuum GmbH.

equipped with two turbo molecular pumps, several windows, and a Bayard-Alpert
gauge head. It further carries the optics stage, see Section 2.3.2, the chopper stage,
see Section 2.3.3, and the parts reaching into the main chamber, i.e., the deflector
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Figure 2.32: Assembly of the Molecular Beam (Front View) — The northern part
of the block (A, Figure 2.29) carries the deflector plates (N, Figure 2.26) as
well as the nozzle (P, Figure 2.28) and is attached to the main chamber (not
shown). Located on the east, there are the laser port (G) with its window (Gf),
the 40CF window (C), the 16CF blind flange (F), and the built-in valve (D)
mentioned in Figure 2.31. The south 63CF flange of the beam housing (A)
accepts the main evaporator (R, Figure 2.13). On the west side, there are the
feedthrough (L) for the deflector plates (N), the mirror/orifice assembly (K,
Figure 2.17) and a 80 L/s turbo molecular pumpa (M) shown.

a ‘TPU071P’ from Pfeiffer Vacuum GmbH.

plates and the nozzle, see Section 2.3.5. The molecular beam is completed by the
built-in valve, see Section 2.3.4, and the main evaporator.
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Figure 2.33: Assembly of the Molecular Beam (Left View) — The northern part
of the block (A, Figure 2.29) carries the deflector plates (N, Figure 2.26) as
well as the nozzle (P, Figure 2.28) and is attached to the main chamber (not
shown). The beam chopper assembly (H, Figure 2.19) and the laser port (G,
Figure 2.15) with its window (Gf) are mounted onto the CF ports at the east
side of the main part (A). The Bayard-Alpert gaugea (I) is mounted on the
flanged tube facing east as well. The south 63CF flange of the beam housing
(A) accepts the main evaporator (R, Figure 2.13). The west port holds the knee
(B) referenced in Figure 2.31. A turbo molecular pumpb (T) is mounted to it
via a standard 63CF/40CF adapter flange (U). Furthermore, the feedthrough
(L) for the deflector plates (N) and a 80 L/s turbo molecular pumpc (M) are
mounted on this side.

a ‘AIG17G’ from Arun Microelectronics Ltd. via tectra GmbH.
b ‘TMU260’ from Pfeiffer Vacuum GmbH.
c ‘TPU071P’ from Pfeiffer Vacuum GmbH.

54



2.4 Ancillaries Stage

2.4 Ancillaries Stage

In addition to the actual caloric measurement, several ancillary, i.e., calibration,
measurements have to be performed. The here presented stage, see Figure 2.34,
provides utilities to measure a zero sticking reference with a heated plate, the
deposition rate of the molecular beam with a quartz crystal microbalance (QCM),
and the infrared radiation from the evaporator through a window. In addition,
the stage provides a mirror to reflect the laser beam out of the chamber and can
be retracted to a position in which it does not interfere with the calorimetric
measurement.
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Figure 2.34: Assembly of the Ancillaries Flange — The ancillaries setup (A), see
Figure 2.39 for details, is attached to the cooling lines of a cluster flangea

(B). VCR® connections are sealed by custom copper gaskets (Ai). A BNC
feedthroughb (C) provides a high frequency connection to the quartz crystal
microbalance. The hot plate is powered by a combination feedthroughc (D).
A linear shiftd (F) mounted on the base flange (G), carries the cluster flange
(B) and allows the individual sections of the ancillaries setup (A) to be moved
into their operating positions in front of the sample (not shown). The vacant
openings are currently sealed by 16CF blind flanges.

a ‘CLFW40-16/5’ from VAb Vakuum-Anlagenbau GmbH.
b ‘A0237-2-CF’ from MPF Products, Inc. via tectra GmbH.
c ‘A0443-1-CF’ from MPF Products, Inc. via tectra GmbH.
d ‘LSM38-150-H-ES’ from Kurt J. Lesker Company.
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The solid copper body carrying these minor devices also comprises a cooling line
and an option to upgrade it with a heating element. Cooling is possible by using
compressed dry air, water, or liquid nitrogen. The first two options are used to
stabilize the temperature of the assembly during operation of the hot plate. This is
necessary to avoid a thermal frequency drift of the QCM’s oscillator crystal. The
latter option is useful if substances are to be deposited on the QCM crystal that do
not exhibit unity sticking at ambient temperature, e.g., magnesium.

The heating option should provide the possibility to desorb substances from
the infrared transparent window and the QCM crystal in this stage. The target
temperature of 550 K is not high enough to desorb metal layers, see Table 5.7, but
sufficient to desorb large organic molecules like tetraphenyl porphyrin, see Table 5.3.

Design drawings with dimensions and materials for the ancillaries stage and its
components can be found in Appendix B.2.6.

2.4.1 Hot Plate

In order to obtain a reference for the sticking measurement, a hot surface is used.
It is heated to a higher temperature than the main evaporator to ensure complete
desorption of the dosed molecules from the beam source. Up to this point two
surfaces have been used. One comprises tantalum sheet material with a thickness of
0.2 mm modified with two constrictions for increased resistivity, as shown in Figure
2.35. As a variant, a straight tantalum stripe with a thickness of 0.1 mm has been
used. The second version uses a sapphire plate28 wrapped in 0.1 mm tantalum foil,
leaving the polished surface exposed. Both types were tested for temperatures up to
1600 K. Since a Type K thermocouple is used, the operation temperature should
not exceed the mentioned value to avoid degrading or melting of the sensor. In both
versions, resistive heating through the tantalum sheet is employed. The current is
provided by a manually controlled external high current power supply29. Due to the
high currents used for heating, the electrical connections and cables30 require special
attention.

Since the hot plate is not at the same position as the sample, the obtained
value might be affected by the different geometries towards the mass spectrometer.
Another issue is the different velocity of molecules being reflected from the hot plate
which might lead to a different sensitivity of the mass spectrometer. Section 5.8.4
gives further information about these obstacles.

28 ‘66 40T350’ from KORTH KRISTALLE GMBH.
29 ‘Voltcraft HPS-11560’ from Conrad Electronic SE.
30 ‘606071’ 2 × 6.00 mm2 from Conrad Electronic SE.
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Figure 2.35: Assembly of the Hot Plate — Three screws and two threaded plates
(A, B) clamp three isolation pieces (C, D, F) machined from Macor®a onto
the main part (not shown). The isolation holds two tantalum electrodesb (G)
with a spot-welded tantalum sheetc (H) in this version. Four barrel connectors
(I, only two shown) and copper wired (not shown) isolated with glass fiber
sleevese (not shown) establish the electrical connection to a power/thermocouple
feedthroughf (not shown). A thermocoupleg is spot-welded to the hot plate
(H) and connected to two terminals (not shown, see Figure 2.39). Kapton®

isolated thermocouple wireh (not shown) is used to reach the feedthrough from
the terminals.

a ‘158-3180’ from RS Components GmbH.
b 99.9% ∅2 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
c 99.9% 0.2 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
d 4 mm2.
e ‘PIF2409 NA005’ from Alpha Wire via Premier Farnell plc.
f ‘A0443-1-CF’ from MPF Products, Inc. via tectra GmbH.
g ‘THD’ ∅0.13 mm from Therma Thermofühler GmbH.
h ‘KFD-30-KK-IEC’ from Therma Thermofühler GmbH.

2.4.2 Quartz Crystal Microbalance

The deposition rate of the molecular beam is measured by a quartz crystal microbal-
ance arrangement included in the joint copper piece, as shown in Figure 2.36. Due
to the geometry of the experiment the diameter of the molecular beam is smaller
than the back electrode. This leads to a situation in which the balance is used
outside it’s specifications where the whole front of the oscillator crystal is coated.
As a consequence, it is necessary to correct the influence of this partial loading.

It is highly recommended to verify that all dosed molecules stick to the oscillator
crystal. This can be done by monitoring the intensity of a characteristic mass to
charge ratio with the mass spectrometer, e.g., m/z = 40 for calcium31. The deposition
rate measurement should be started when the baseline with closed shutter matches
the intensity while dosing on the crystal. Further information about the quartz

31 Usually the units are implicitly omitted; the correct formula would be {m/z} = 40.
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Figure 2.36: Assembly of the QCM Section — The oscillator crystal (A) is sand-
wiched by a copper beryllium spring (B) and a copper beryllium lid (C) fastened
from the other side of the main part (not shown). The spring is mounted on a
contact (D) and isolated by a Macor®a piece (F) from the main part. A coaxial
cableb (not shown) connects the spring with a BNC-feedthroughc (not shown).
A copper plate (G) closes the mounting opening on the main part.

a ‘158-3180’ from RS Components GmbH.
b ‘KAPWC1X025’ from LewVac Components Ltd.
c ‘A0237-2-CF’ from MPF Products, Inc. via tectra GmbH.

crystal microbalance measurement is given in Section 5.8.2.

2.4.3 Mirror

A mirror is included in the copper main piece with a small retainer, as shown in
Figure 2.37.

A

B

C

Figure 2.37: Assembly of the Mirror Section — A steel plate (A) presses on a
steel adapter (B) to hold the mirrora (C) in the designated pouch of the main
part (not shown).

a ‘G340333400’ ∅10 mm x 2 mm with silver coating ‘RAGV’ from Qioptiq Photonics GmbH &
Co. KG.

This provides a possibility to reflect the laser back out of the chamber. This is
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necessary since standard detectors for the measurement of the laser intensity are
not available for a vacuum environment. The measured laser power outside of the
chamber has to be corrected by the reflectivity of the mirror and the transmission
of the window on the chamber. Comparison between theoretical and experimental
values are given in Section 5.8.3.

While the NAC machine is operated, high attention should be payed to avoid
contamination of the mirror!

2.4.4 Infrared Transparent Window

During a calorimetric measurement, the sample is exposed to the wanted molecules
and the unwanted infrared radiation, both originating from the main evaporator.
Either leads to an increase in temperature of the β-polyvinylidene fluoride detector
polymer. Hence, the measured signal comprises the heats released by adsorption
(molecules) and absorption (radiation). An infrared transmissive window, shown
with its holder in Figure 2.38, blocks all molecules and renders a quantification of
the radiation component possible.

A

B

Figure 2.38: Assembly of the Infrared Transparent Window Section — A barium
fluoride windowa (A) is pressed with a springy steel rim (B) onto the main part
(not shown).

a ‘25 40 007’ ∅25 mm x 5 mm from KORTH KRISTALLE GMBH.

An alternate approach would involve a velocity selector blocking photons and
letting atoms pass [120]. Due to the delicate setup, this option was not chosen at this
time.

If the amount of radiation in the far infrared, where the used barium fluoride
becomes opaque, is no longer negligible, it is possible to replace the window with a
mirror setup in the nozzle part of the molecular beam, see Section 2.3.5. Since the
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employed materials did not exhibit the aforementioned behavior, this setup was not
tested.

During an experiment, molecules are deposited on this window and its transparency
will change along its run-time. This leads to the requirement of a transparency
measurement for each experiment which is carried out with the laser, resulting in
a transparency valid for the wavelength of the laser. This method relies on the
assumption that the window and the deposition on the window have a constant
absorption over a very broad spectral range. A closer inspection of these properties
is presented in Section 5.8.1. In this setup, the obtained value is used as an initial
value for the data treatment described in Section 3 and as an indicator whether the
deposited layer becomes too thick and is affecting the transmitted radiation by an
intolerable extent. In order to extend the necessary service interval, a rather large
window is mounted where several spots can be used.

2.4.5 Assembled Ancillaries

The positions of the devices on the copper main piece are displayed in Figure 2.39
and the assembled ancillaries stage is shown in Figure 2.40. Table 2.1 provides the
set positions on the linear shift for the individual measurements.

Table 2.1: Positions for Ancillary Measurements — Recommended positions for
operation of the individual ancillary devices.

Device Positiona

Minimum Exact Maximum
Open 62 70
Hot Plate 100
Window 138 148
Mirror 159.5
QCM 178.5

a In terms of the scale on the ruler attached to the linear shift.
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Figure 2.39: Assembly of the Ancillary Instruments — All the instruments – the
hot plate (A, Figure 2.35) with its thermocouple terminals (B), the infrared
radiation transparent window (C, Figure 2.38), the mirror (D, Figure 2.37,
and the quartz crystal microbalance (F, Figure 2.36) – are mounted on the
main part (G). It is held by the cooling tubes (not shown) connected by two
VCR®-connections (H, I) equipped with custom copper gaskets (K). The cluster
is supported on the nozzle (not shown, see Figure 2.28) in the main chamber
(not shown) by an aluminum sled (L) clamped (M, N) to the cooling lines.
Further stability is added by two spacers (P).
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a)

b)

Figure 2.40: Assembled Ancillaries Stage — Photographs of the assembled ancil-
laries stage as described in Figure 2.39 show the of sample facing (a) and beam
facing (b) side. The lid covering the quartz crystal microbalance is removed.
This version carries a sapphire platea one sided wrapped into a tantalum foilb
with a Type K thermocouplec as an alternative hot plate option.

a ‘66 40T350’ 10 mm x 10 mm x 2 mm from KORTH KRISTALLE GMBH.
b 99.9% 0.1 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
c ‘THD’ ∅0.13 mm from Therma Thermofühler GmbH.
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2.5 Main Chamber Additions

Several minor assemblies attached directly to the main chamber or to the frame the
chamber is resting on are collected in this section.

2.5.1 Mass Spectrometer

The mass spectrometer32 is mounted on a CF nipple equipped with two BNC
feedthroughs and four wire meshes, as shown in Figure 2.42. External electrical
potentials can be applied on two of these meshes in order to prevent electrons emitted
from the mass spectrometer reaching the sample and ions from the sample stage
reaching the mass spectrometer. Electrons might cause an alteration of the sample
in case of organic thin film [58]. Ions from the sample stage might contribute to the
intensity of the mass spectrometer signal in an unknown way and are thus unwanted.

Electrons accelerated in the ion source of the mass spectrometer can escape from
it with a kinetic energy matching the set ionization energy, i.e., typically 70 eV.
Electrons traveling towards the sample feel the gradient between the grounded first
grid and the second grid at maximal negative potential. If their kinetic energy
is smaller than the barrier, they are repelled and cannot reach the sample. The
same argument holds for ions from the sample stage with a kinetic energy of about
kB ⋅1000 K ≈ 0.1 eV. Figure 2.41 illustrates the used potential. Initially, all grids are

32 ‘HAL IV’ from Hiden Analytical.
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Figure 2.41: Electrical Potential Between Mass Spectrometer and Sample — The
first and last grid are on ground potential providing electrical shielding. The
inner grids are set to, e.g., 225 V. The mesh closer to the mass spectrometer is
at negative potential to repel stray electrons, the other one at positive potential
to repel positive ions resulting in a pass filter for neutral species.
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Figure 2.42: Assembly of the Mass Spectrometer Mount — The mass spectrome-
tera is mounted on an extension nipple (A) equipped with a filter for charged
particles. Nickel meshb is spot-welded between two stainless steel frames (B).
Four of these sandwiches are, insulated from each other by alumina ringsc (C, D)
and from the mounting screw by alumina tubesd (F), assembled on top of three
distance rods (G). The latter are screwed into the base flange (Aa), comprising
two welded BNC feedthroughse (Ab), of the extension tube (A). The grid-side
is mounted on the main chamber (not shown) and the mass spectrometer is
attached to the vacant 63CF flange.

a ‘HAL IV’ from Hiden Analytical.
b Similar to ‘NI008711’ from Goodfellow GmbH.
c Similar to ‘C 799 5.0 x 3.0’ from Morgan Advanced Materials Haldenwanger GmbH via

Buntenkötter Technische Keramik GmbH.
d Similar to ‘C 799 3.0 x 2.0’ from Morgan Advanced Materials Haldenwanger GmbH via

Buntenkötter Technische Keramik GmbH.
e ‘A0058-2-W’ from MPF Products, Inc. via tectra GmbH.
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2.5 Main Chamber Additions

floating. The first and last grid are typically connected to ground potential to avoid
unwanted electrical fields in the main chamber while the inner grids are energized.
Only neutral species or charged particles with a kinetic energy of more than 225 eV
can pass this electrostatic filter.

The used voltages are provided by an in-house made battery-box containing 90
batteries33 in a serial arrangement. The ground reference is set in the middle of this
setup and taps are wired to BNC sockets every five batteries providing −225 V to
+225 V DC in steps of 45 V.

Design drawings with dimensions and materials for the mass spectrometer stage
can be found in Appendices Appendix B.2.7 and B.4.5.

2.5.2 Optical Meters

The laser beam exiting the fiber-out is collimated and the laser diode is able to
deliver high powers. Hence, the laser system is potentially hazardous. In addition to
the common laser safety precautions, the laser should generally be operated at low
powers. Due to the short wavelength of 405 nm, light on the operators’ skin should
be avoided [151].

Four instruments need a CF port facing the sample. The main chamber provides
only three such ports while two of them are occupied by the molecular beam and the
mass spectrometer. The remaining port is closed by a CF window and equipped with
a quick coupling adapter, as shown in Figure 2.43, for a pyrometer and a photometer.
If neither is mounted, the port provides visual access to inspect the sample.

Since adjustment is done in each of the adapter pieces for the two optical meters
and the mounting of these pieces is reproducible, they can be exchanged without
any further adjustment.

Upon cleaning thin sheet samples by flash desorption utilizing the sample heater,
see Figure 2.8, it is necessary to monitor the sample temperature in order to prevent
damage to the sample, e.g., melting. Since no thermocouples can be attached directly
to the samples, an optical method to measure the sample temperature is suggested
for this setup. A pyrometer can mounted on an adapter piece, see Figure 2.44,
fitting into the quick coupling from Figure 2.43. It can be slid in from one side and
locked in place by two knurled screws. Alignment of the pyrometer could be done
by adjusting the force on the rubber spacers.

One aspect of measuring temperatures through windows, e.g., on a vacuum
chamber, should be mentioned in this context. Most pyrometers are so-called

33 ‘6LR61’ – “9 V Block” from ALDI Einkauf GmbH & Co. OHG.
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Figure 2.43: Assembly of the Seat for Optical Meters — The base (A) is mounted
together with a 40CF window (B) on the main chamber (not shown). Two half
shells (C) hold the mounts (not shown) for the pyrometer (Figure 2.44) and the
photometer (Figure 2.45). The pyrometer is fixed with two knurled screws (D)
whereas controlled lateral movement is possible for the photometer attached
from the backside of the assembly.

brightness pyrometers measuring the emitted infrared radiation in a certain range,
typically 2.0 µm to 2.8 µm [152]. Together with the emissivity of the surface as input
parameter, a surface temperature is calculated. Unfortunately, the common window
materials, i.e., Kodial and quartz glass, show strong absorption in this range [153].
As a result the calculated temperature is smaller than the real temperature. If this
kind of pyrometer is used, it is essential to calibrate it against a thermocouple with
the used window. The situation can be improved upon usage of sapphire windows
exhibiting a lower and less changing absorption but calibration is still necessary.
Furthermore, the measured temperature is calculated from the average infrared
intensity emitted from the area seen by the pyrometer. This will result in additional
inaccuracies for this setup, since the samples are small compared to the view area
and cannot be heated uniformly due to the mechanically necessary holder.

As an alternative, ratio pyrometers can be used which operate at two different
wavelengths and calculate the temperature from the ratio of the corresponding
intensities. If the window acts as a gray filter, i.e., the absorption is the same at
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Figure 2.44: Assembly of the Pyrometer Mount — The base ring (A) in the south
west slides into the seat from Figure 2.43 and is held by the there mentioned
screws. The middle ring (B), mounted on distance pieces (C) to the base part
(A), carries the mounting ring (D) for the pyrometer (not shown) and provides
two angular degrees of freedom using four rubber spacers (F, black), in order to
aim precisely at the sample (not shown). This setup is optimized for a brightness
pyrometera which was already available in Erlangen. Since the measurement is
performed through a glass window and the emissivity of the sample is unknown,
the use of a ratio pyrometerb would be recommended.

a ‘IMPAC IP 140’ from LumaSense Technologies Inc.
b E.g., ‘ISR 6 Advance’ from LumaSense Technologies Inc.

both wavelengths like in sapphire, it will provide an accurate temperature.
A vital parameter for a calorimetry experiment is the power of the laser on the

sample. As this value cannot be measured in the vacuum chamber, the laser is
reflected out of the chamber, see Section 2.4.3, and measured through a window.
With knowledge of the reflectivity of the mirror and the transmission of the window,
the input power on the sample can be calculated by an outside measurement. The
detector of the photometer is mounted in an adapter piece, see Figure 2.45, fitting
into the quick coupling from Figure 2.43. It is locked in place by one screw and can
be reproducibly inserted and removed.

The position of the detector on the adapter can be adjusted by two independent
jackscrews.
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Figure 2.45: Assembly of the Photometer Mount — The socle plate (A, south)
is mounted to the base plate (not shown) from Figure 2.43 by two small steel
blocks (B, C). A spring loaded long screw (D), trapped by a plate (F), through
one of the blocks allows defined lateral movement in one dimension of the
remaining setup in this seat. Four spacers (G) and a secondary base plate (H)
carry another moving component (I). This piece moves, guided by two rods
(K) which are held by two bars (L) mounted to secondary base plate (H), on a
threaded rod (M) perpendicular to the first degree of freedom. It also holds the
detectora (not shown), with two knurled nuts (N) on threaded rods (P) and a
steel plate (R).

a ‘918D-SL-OD1’ (not shown), operated by a ‘842-PE’ powermeter from Newport Spectra-Physics
GmbH.

Design drawings with dimensions and materials for the optical meters stage can
be found in Appendix B.1.3.
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2.5.3 Fiber Positioner

The laser used for detector calibration is spread and reflected onto the sample in
the molecular beam, see Section 2.3.2. In order to align the center of the defocused
laser beam, the output of the laser fiber can be adjusted in four degrees of freedom.
The used device is shown in Figures 2.46 and 2.47.

A drawback of this design is the dependency of vertical position and tilt angle. On
the one hand, the adjustment could be simplified with two independent adjustment
options. On the other hand, alignment is not necessary very often and usually can be
done within half an hour by an experienced user. Hence, a redesign was considered
to be unnecessary.

In order to adjust the mounted laser output, the laser power should first be limited
to 1 µW and checked with the powermeter. The pan angle should be set to zero
and the laser should be centered on the window. The screws for vertical positioning
should be inserted to the same extend. The optics stage, see Section 2.3.2, and the
ancillaries stage, see Section 2.4, are each set to their mirror position. The inside
of the molecular beam should be dark. If it is lit up blue, the laser is hitting the
housing of the beam. The screws for vertical adjustment should be altered until the
laser is only hitting the mirror in the molecular beam. With removed detector in
the optical meters assembly, see Section 2.5.2, the laser should be visible on a white
piece of paper after it is reflected out of the chamber. Since it is attenuated by a
factor of approximately 25, it is less dangerous now.

Fine adjustment is done by maximizing the reading of the power meter with the
detector mounted in its adapter. All four adjustment screws may be used. Typically,
the tilt and vertical position require most tuning. The adjustment of the individual
degrees of freedom can be summarized as follows.

Horizontal position: This position along the chamber can be adjusted by the guided
sled running on the spindle.

Pan angle: The horizontal angle can be aligned by panning the moveable frame
(blue in the figures).

Vertical position: This position can be adjusted by identical rotation of the two
screws on the sled.

Tilt angle: The vertical angle can be aligned by a small rotation of one of the two
screws on the sled.

Design drawings with dimensions and materials for the fiber positioner can be found
in Appendix B.2.9.
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Figure 2.46: Fixed Part of the Fiber Positioner — The fixture is clamped to the
frame (A, green) by four half shells (B, C). Two of them (C) carry a plate (D)
to protect the optical fiber (not shown) and four distance pieces (F). A base
plate (G) holds a frame (H, blue – also see Figure 2.47) which is able to pan. It
is held in place by a nut (I), a bar (K), and three spacers (L, M).
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Figure 2.47: Moveable Part of the Fiber Positioner — The frame (H, blue) from
Figure 2.46 comprises a sled (A) guided by two rods (B) providing lateral
movement along the long axis of the main chamber (not shown). It is actuated
by a spindle (C). Panning is possible with the short spring loaded knurled screw
(D) trapped by a plate (F). Four steering rods (G) are attached to the sled
(A) together with four springs (I) and their retainers (K). Vertical adjustment
as well as tilting is provided by interaction of the four springs (I) and two
knurled screws (L) pressing on the balancing bars (M) on the holder (N) for
the fiber-outa (P, black) connected to the optical fiberb (R, green/yellow).

a ‘FiberOut’ from TOPTICA Photonics AG.
b ‘#OK-000634’ from TOPTICA Photonics AG.
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2.5.4 Miscellaneous Additions

The tool shown in Figure 2.48 is designed to lift the chamber off its steel/rubber
vibration dampers. The chamber’s height can be set by the turning of the nut with
an extra long 19 mm wrench. Upon lifting or lowering the chamber, the nuts should
be rotated in an alternating pattern to avoid a skew position of the chamber.

If the machine needs to be moved from one laboratory to another, e.g., from
Erlangen to Marburg, the main chamber can be fixed on the frame by four clamps as
shown in Figure 2.49 to form a stable shipping unit. Upon the necessity to transport
the machine with a pallet truck along the long axis, e.g., through a narrow door,
the frame can be equipped with three trusses, as shown in Figure 2.50.

Cooling water for various purposes, e.g., cooling turbo molecular pumps, evap-
orators, etc., is provided by a commercial distribution center. It is mounted on
the frame by the clamp setup shown in Figure 2.51. The flow can be adjusted by
partially opening the attached ball valves. Due to the many taps, all devices can be
operated on their own cooling line. This simplifies work on the cooling system but
requires a higher inlet pressure. Valves for low conductance loops, e.g., the main
evaporator, should be fully opened and the other loops, e.g., turbo molecular pumps,
should be regulated.

The setup shown in Figure 2.52 provides a possibility to safely attach “Minicans”
to the frame of the machine. The clamp is permanently mounted. The can itself is
held by a hose clamp.

Design drawings with dimensions and materials for the miscellaneous additions
can be found in Appendix B.2.7.
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Figure 2.48: Assembly to Lift the Main Chamber — The main chamber (not
shown) can be lifted on a screw welded to a half shell (A) for bake-out with
the large nut (B). A counter shell (C) secures this part, while a screw into this
part from top prevents unwanted lateral movement of the chamber. A piece
of rubbera (D, black disc) provides vibrational isolation from the brackets (A,
C) clamping on the frame (F, green). During measurements the nut (B) is not
touching the truss (G, blue) of the main chamber. Instead, it is resting on
metal rubber railsb (H, black block). Four sets of this assembly are needed for
the setup.

a ‘Waschmaschinenunterlage’ from HORNBACH-Baumarkt-AG.
b ‘Gummi-Metall-Schiene 50 mm x 50 mm, Metallauflage 5 mm, 70°Shore’ from Erwin Telle

GmbH.

73



2 Experimental Setup

A

B C × 2

D

F

Figure 2.49: Upper Assembly for Moving the NAC Machine — In order to estab-
lish a secure mount between the main chamber (not shown) and the frame (A,
green), the truss (B, blue) of the chamber can be fastened by two brackets (C)
on the massive spacer piece (D). Four of these assemblies are clamped to each
corner of the frame with a counter plate (F).

A
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C

Figure 2.50: Lower Assembly for Moving the NAC Machine — If a pallet truck
is used to move the machine along its long axis, the frame (A, green) can be
equipped with trusses (B) clamped by counter plates (C). Up to three sets of
the assembly can be used for transportation.
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Figure 2.51: Assembly of the Water Distribution Mount — Cooling water distri-
bution centersa (A, blue) are clamped with a shaped bar (B) to a two sided
bracket (C) which itself is attached to a support strut of the frame (D, green)
by another clamp (F).

a ‘120910HPSP’ from HPS Handels GmbH.

A

BC

D

F

Figure 2.52: Assembly to Hold Minicans — Minicansa (A, blue) can be added to
the setup by a pair of fasteners (B, C) clamped to the frame (D, green). The
can itself is held by a large hose clampb (F).

a ‘HiQ® MINICAN’ from Linde Aktiengesellschaft.
b ‘ABA 3223 77 95’ from Theo Förch GmbH & Co.KG.
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2.6 Load Lock

The load lock depicted in Figure 2.53 provides in vacuum storage for up to ten
samples and a simple facility to create (organic) thin films on the samples by physical
vapor deposition as well as degassing of spin coated samples. Since the load lock
is rather large, it exerts a large torque on the main chamber and on its mounting
flange. Thus it is necessary to support the assembly as shown in Figure 2.54.

This task is done by two tools. On the one hand, the transfer rod is supported by
two struts, as shown in Figure 2.55. In addition, the included turnbuckles provide,
in combination with the port aligner, adjustment of the sample transfer.

On the other hand, the turbo molecular pump of the load lock is resting on an
adjustable console mounted on the frame, as shown in Figure 2.56. The pump is
suspended by rubber pieces for vibrational isolation.

Design drawings with dimensions and materials for the load lock can be found in
Appendix B.3.

Thin layers of, e.g., organic, material can be deposited on the samples by phys-
ical vapor deposition with an evaporator, shown in Figure 2.57, in the load lock.
It provides coarse thickness control by an included quartz crystal microbalance.
The quartz crucible has been successfully tested for temperatures up to 570 K in
combination with metalized and poled β-polyvinylidene fluoride as substrate. At
even higher crucible temperatures, the detector polymer might get heated by the
infrared radiation to a point where it looses its polarization and thus its suitability
as detector.

Since the sensor crystal lacks a cooling option, thermal frequency shifts are
inevitable in this setup. Two possible methods can circumvent this drawback. On
the one hand, the sample can be moved in – and later taken out off – the coating
position after a stable deposition rate reading has been established. Due to the
geometry of the available components, deposition occurs on the transfer rod in this
case. On the other hand, the sample can be placed in deposition position before
the heating is turned on. A correct final thickness reading is given in this case
by the time the sensor reading is stabilized after switching off the heating power.
This method avoids unwanted deposition but suffers from a variable – but well
reproducible – deposition rate. In other words, it exhibits an intrinsic deposition
rate profile.

Design drawings with dimensions and materials for the evaporator in the load lock
can be found in Appendix B.4.4. The shutter port is used for a BNC feedthrough
and the copper shroud is replaced by a holder for a QCM crystal.
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Figure 2.53: Assembly of the Load Lock — The northern port of the housing of
the load lock (A, Figure 2.54), accepts the sample storage (B, Figure 2.58)
mounted on a linear shifta (C) on a tapped adapter flangeb (Af). A similar
adapter flange (Ag) is equipped with a Bayard-Alpert gauge headc (D). A
magnetically coupled transfer rodd equipped with a sample reception (F, Figure
2.60) is mounted to the port aligner (Al) and positioned by its support (G,
Figure 2.55). An evaporator (H, Figure 2.57) is attached to the extension tube
(Ar). The turbo molecular pumpe (I) is located at the southern end of the
assembly resting on its support console (K, Figure 2.56). The whole setup is
connected to the main chamber (not shown) via the remaining CF adapter
nipple (Ac) on the west. Both supporting assemblies (G, K) are mounted to the
frame (L, green).

a ‘LD40-200’ with stepper motor actuation from VAb Vakuum-Anlagenbau GmbH.
b ‘RF450X275MT’ from Kurt J. Lesker Company.
c ‘AIG17G’ from Arun Microelectronics Ltd. via tectra GmbH.
d ‘VF-1695-24’ from Huntington Mechanical Laboratories Inc. via tectra GmbH.
e ‘TPU330’ from Pfeiffer Vacuum GmbH.
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Figure 2.54: Assembly of the Load Lock Housing — The central position of the
load lock is occupied by a modified six-way 40CF/63CF crossa (A). The load
lock is attached to the main chamber (not shown) with its west port by a gate
valveb (B) and an adapter nipple (C). The north facing flange carries a large
asymmetric tee (D) and two adapter flanges (F, G). Another adapter flangec

(H) and a custom off-center nipple (I) on the south flange connect to the turbo
molecular pumpd (not shown) from Figure 2.56. It is equipped with a heavy
duty protective grid (K). A magnetically coupled transfer rode (not shown) is
mounted on a port aligner (L) and a tee piecef (M) fitted with the evaporator
(not shown) from Figure 2.57 on a distance tube (N). 40CF windowsg seal the
front and back ports of the center cross. All 40CF gaskets on the horizontal
path need an inner diameter of 40 mm.

a Modified ‘RK 63/40CF’ from VAb Vakuum-Anlagenbau GmbH.
b ‘315370A’ from VAT Vacuumvalves AG.
c ‘RF600X450M’ from Kurt J. Lesker Company.
d ‘TPU330’ from Pfeiffer Balzers - now Pfeiffer Vacuum GmbH.
e ‘VF-1695-24’ from Huntington Mechanical Laboratories Inc. via tectra GmbH.
f ‘TCF40’ from VAb Vakuum-Anlagenbau GmbH.
g ‘VPZL-275’ from Kurt J. Lesker Company.
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Figure 2.55: Assembly to Support Transfer Rods — The assembly is fastened on
the frame (A, green) by two different half shells (B, C). The upper part of the
first one (B) exhibits the middle section of a three knuckle mortise hinge. The
other half of the hinge (D) provides a mounting option for the movable parts.
The threadless part of a screwa (F) serves as pin completing the joint. A similar
hinge comprising a stationary (G) and a movable (H) as well as a center pina

(I) is attached to a clamp ring (K) holding the transfer rod (not shown). The
position of the transfer rod can be adjusted by inverted turnbuckles. A right
handed and a left handed thread are machined into each of the distance tubes
(L). Matching threaded rods, either all right handed (M) or with a partial left
handed thread (N) are mounted in the hinges. The distance between them can
be adjusted by rotation of the distance part (L).

a ‘DIN EN ISO 4762 M8x40’.
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Figure 2.56: Assembly to Support the Load Lock — Two proximally adjustable
struts (A) are mounted on half shells (B, C) clamped on the frame (D, green).
To support higher off-axis loads stiffeners (F) are added on one clamp type
(C). The resting plate (G) for the turbo molecular pumpa (H, partially shown,
blue) with its two spacer plates (I) is hanging on four screws (K) which are
vibrationally isolated from the frame (D) by rubberb pieces (L, black) and load
distributing plates (M).

a ‘TPU330’ from Pfeiffer Balzers - now Pfeiffer Vacuum GmbH.
b ‘Waschmaschinenunterlage’ from HORNBACH-Baumarkt-AG.
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Figure 2.57: Assembly of the Load Lock Evaporator — One of the sources (A) of
the three fold evaporatora is modified by a quartz crystal microbalance option
instead of a shutter and cooled orifice. The quartz crystalb (B, gold) is held by
sheet metal (C) and connected to a BNC feedthroughc (D) by a coaxial cabled

(not shown). Tungsten wiree (F) holds a homemade quartz crucible (G). Due to
frequent refilling this evaporator is mounted with a rubber gasketf (H, black).

a Designed by O. Lytken.
b Excised from ‘6.000MHZ HC49 30/50/40/18PF/ATF’ from Euroquartz Ltd via Conrad

Electronic SE.
c ‘A0237-2-CF’ from MPF Products, Inc. via tectra GmbH.
d ‘KAPWC1X025’ from LewVac Components Ltd.
e ∅0.5 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
f ‘402DFL040-S2’ from Pfeiffer Vacuum GmbH.
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2.7 Sample Handling

The setup holds up to ten samples available in the storage device in the load lock,
as shown in Figure 2.58. The upper groove of a sample holder is inserted in one of
the ridges of the storage assembly.
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Figure 2.58: Assembly of the Sample Storage System — Ten samples (A, one
shown) can be inserted into nine stacked holding pieces (B, C, only two shown
each) and an initial, shorter holder (D). The top (F) and the, by a spacer
(G) separated, bottom piece (H) have Type K thermocouplesa attached. The
latter are wired to two Type K thermocouple feedthroughsb (Ia, Ib) welded into
the base flange (I, length of cooling lines reduced for clarity). The end piece
(F) near the mounting flange (I) has an attached heater (K) which is counter
cooled. Since this assembly is removed quite often, it is sealed by a reusable
40CF rubber gasketc (L, black) which is also used to align the sample holders
to the transfer system.

a ‘KFD-30-KK-IEC’ from Therma Thermofühler GmbH.
b ‘A0636-1-W’ from MPF Products, Inc. via tectra GmbH
c ‘402DFL040-S2’ from Pfeiffer Vacuum GmbH.

In order to remove a sample from the storage, the sample reception from Figure
2.59 is slid onto the lower groove in the sample holder shown in Figures 2.2 and 2.3.
The storage is lowered by 1 mm to release the upper ridge of the sample holder and
lock the middle ridge into the sample reception, see Figure 2.62 b. After returning
the sample storage to its top position, the sample can be transferred into the main
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A
B

Figure 2.59: Assembly of the Load Lock Sample Transfer System — A magneti-
cally coupled transfer roda (A, partially shown) carries the sample reception
(B). The sample is held in place by a small jut, see Figure 2.62.

a ‘VF-1695-24’ from Huntington Mechanical Laboratories Inc. via tectra GmbH.

chamber or placed above the evaporator shown in Figure 2.57 in order to deposit a
thin film on it.

A similar mechanism is used to hand over the sample holder into the sample
reception , shown in Figure 2.60, in the main chamber. As shown in Figure 2.61,
the reception is slid over the upper groove until the pin secures the sample holder.
Lifting the part attached to the main chamber by 1 mm releases the sample holder
from the other transfer unit.
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Figure 2.60: Assembly of the Main Chamber Sample Transfer — A magnetically
coupled transfer roda (not shown) mounted on an xy-stage (not shown) carries
the sample bracket (A). The sample (not shown) is secured in its reception
by a small spring loaded copper pin (B). The sample carrier (A) also offers
the option to mount a mirrorb (C) in the main chamber. It is secured in its
positioner (D) by a small retainer ring. The position can be fixed by a small
counter nut (G).

a ‘VF-1695-18’ from Huntington Mechanical Laboratories Inc. via tectra GmbH.
b ‘G340704000’ from Qioptiq Photonics GmbH & Co. KG.
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Figure 2.61: Sample Handover — The load lock’s sample carrier (A) holds the
sample (B) in its pouch while the main chamber’s sample carrier (C) is clicked
onto the sample holder (B, copper).

The sample in the transfer unit can be transferred into measurement position by
lowering the holder into the designated pouch of the thermal reservoir, see Figure
2.5. After establishing the connection to the detector head, the transfer part can be
retracted to release the sample.

Transfer to the storage system is performed by the same steps in reverse order.
The individual retaining mechanism and positions are shown in Section 2.62.

Since the sample is grounded in the main chamber’s transfer system it is possible
to sputter it. Unfortunately, it is impossible with this setup to measure the ion
current onto the sample. A manipulator for sample preparation in the main chamber
with an electrically floating sample acceptance is planned but not realized at this
time.

a) b) c)

Figure 2.62: Sample Retaining Mechanisms — a) and b) Load lock: The sample
holder (copper) is inserted into a notch in the load lock’s sample carrier (gray)
and held by small juts. c) Main chamber: The sample holder (copper) is slid
into the grooves of the carrier (gray) and secured by a spring loaded copper pin.
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2.8 Glove Box

An available glove box has been modified as shown in Figure 2.63. It provides an
inert gas environment for handling evaporants that are sensitive to water or oxygen.
Besides storage and purification of evaporants, refilling the main evaporator and
recovery of material from the main evaporator’s cap are the main purposes of this
setup.

The main evaporator mounted on a linear shift and equipped with a gate valve
can be attached to the bottom flange of the glove box, as shown in Figure 2.63. The
interjacent dead volume can be evacuated and flushed with inert gas. After clearing
both gate valves, the top part of the evaporator can be moved into the accessible
volume of the glove box.

A refilled evaporator can be attached back to the vented beam with the closed
valve. In order to maintain the protection of the sensitive evaporant, the volume of
the beam above the valve attached to the evaporator assembly, see Figure 2.13, is
pumped to roughing vacuum before an opening of the gate valve. This step needs to
be executed carefully since an abrupt opening of the valve might lead to an ejection
of material from the crucible. After complete opening of the valve and insertion of
the evaporator, the turbo molecular pumps can be started.

This setup extends the scope of investigate-able materials into the very interesting
region of delicate, i.e., more reactive materials. Examples would include organic
materials sensitive to air like pentacene or the reactive alkaline metals. Among these
susceptible materials are several source materials used in organic electronics [154].

Design drawings with dimensions and materials for the glove box additions can
be found in Appendix B.4.1.
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Figure 2.63: Assembly of the Glove Box Connection — A modified 63CF flange
(A) is welded to the floor (B, partially shown) of the glove box. The sealing of
the glove box is preserved by a 63CF gate valvea (C) mounted on a short 63CF
coupler (D). The valve is also fixed to the frame of the glove box by two half
shells (F, G). A 63CF/40CF reducing nipple (H) provides connection to a gate
valveb (I) and to the nitrogen/vacuum system (not shown) of the glove box.
The main evaporator (K, Figure 2.13) is attached to a linear shiftc (L) via a
short coupling 40CF adapterd (M).

a ‘10836-CE01’ from VAT Vacuumvalves AG.
b ‘01032-CE01’ from VAT Vacuumvalves AG.
c ‘LSM38-350-H-ES’ from Kurt J. Lesker Company.
d ‘MCF275-ClsCplr-C2-1400’ from Kimball Physics Inc.
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2.9 Assembled System

Figures 2.64 and 2.65 illustrate the attachment positions of the individual devices on
the main chamber. The load lock provides introduction of new samples, in vacuum
sample storage, simple sample preparation, and sample transfer. Equipment for
assisting measurements is provided by the ancillaries stage and the mass spectrometer.
The molecular beam source delivers the pulsed adsorptive and the detector stage
performs the main measurement. A sputter gun offers sample cleaning and a
ionization gauge offers pressure measurement. The vacuum is maintained by a
titanium sublimation pump and a turbo molecular pump. CF blind flanges and CF
windows to provide visual feedback upon sample manipulation finalize the setup.

Since the transmitted light through the windows is detectable in the calorime-
try signal, all unused windows should be covered with aluminum foil during the
measurements.

Figure 2.66 gives an impression of the fully assembled NAC system when it
was moved to Marburg. Several changes have been applied to improve safety,
experimental scope, and convenience.

Roughing vacuum is provided by three rotary vane pumps34 for the three indepen-
dent sections of the system. The largest pump is connected to the main chamber
since it has to handle the elevated gas load during sputtering. Each vacuum line is
equipped with a pneumatic valve closing in case of a power failure. An line power
distribution center provides a common ground potential for the equipment and also
prevents unattended start up of the system after a power loss.

34 ‘DUO 3 M’, ‘DUO 2.5’ from Pfeiffer Vacuum GmbH, ‘RV5’ from Edwards Germany GmbH.
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Figure 2.64: Assembly of the NAC system (Front View) — The main chamber
(A) rests on rubber spacersa (B) on the frame (C) which is vibrationally isolated
from the floor (not shown) by its feeta (D). The detector unit (F, Figure 2.4)
is mounted from the north side to the main chamber (A). A turbo molecular
pumpb (G) on an adapter (H) holing a heavy duty protection grid (I) and the
molecular beam source (K, Figure 2.11) are attached from the south. The mass
spectrometerc (L, Figure 2.42), a sputter gund (M), and a Bayard-Alpert gauge
heade (N) are mounted on the west side. The east facing side of the chamber
(A) is equipped with the load lock (P, Figure 2.53) and the ancillaries stage
(R, Figure 2.34). Several blind flanges and CF windows complete the setup.

a ‘Gummi-Metall-Schiene 50 mm x 50 mm, Metallauflage 5 mm, 70°Shore’ from Erwin Telle
GmbH.

b ‘TMU262’ from Pfeiffer Vacuum GmbH.
c ‘HAL IV’ from Hiden Analytical.
d ‘IQE11/35’ from SPECS Surface Nano Analysis GmbH.
e ‘AIG17G’ operated by an ‘NGC2’ from Arun Microelectronics Ltd. via tectra GmbH.
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Figure 2.65: Assembly of the NAC system (Top View) — The ancillaries stage
(R, Figure 2.34) combined with a 40CF windowa (T) on the port directly below
the stage, and the load lock (P, Figure 2.53) are mounted from the north onto
the main chamber (A) on the frame (C) placed on the feet (D). A magnetically
coupled transfer rodb equipped with the main chamber sample carrier (U, Figure
2.60) is mounted on an xy-adjustment table (W). Sample cleaning is provided
by a sputter gunc (M). An ion gauged N and the mass spectrometere (L, Figure
2.42) are located on the south side. Getter pumping is provided by a TSP (X)
mounted on the west side.

a ‘VPZL-275’ from Kurt J. Lesker Company.
b ‘VF-1695-18’ from Huntington Mechanical Laboratories Inc. via tectra GmbH.
c ‘IQE11/35’ from SPECS Surface Nano Analysis GmbH.
d ‘AIG17G’ operated by an ‘NGC2’ from Arun Microelectronics Ltd. via tectra GmbH.
e ‘HAL IV’ from Hiden Analytical.
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Figure 2.66: The Nanojoule Adsorption Calorimeter — A photograph of the Nano-
joule Adsorption Calorimeter as presented in Figure 2.1 is shown here. The
electronics for operation of the system are accommodated in the red rack in the
left background. The glove box can be discerned by its main load lock in the
right background.
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2.10 Synopsis of the Experimental Setup

All parts designed for the calorimetry experiments have been manufactured by the
mechanical workshops in Erlangen and Marburg. Subsequently, the vacuum system
has been assembled and tested. The performance of the individual components is
evaluated in Chapter 5.

Two compatible kinds of sample holders allow the investigation of adsorption on
thin films and single crystals. The temperature of the sample reception is adjustable
allowing for temperature dependent measurement series.

The molecular beam compartment is able to accept different evaporators and to
create a pulsed molecular beam. It is also capable of guiding a laser beam to the
sample. The included valve provides refilling of the evaporators without venting of
the main chamber. The standard evaporator provides constant and high deposition
rates with long runtimes.

The ancillaries stage combines several devices utilized to perform several reference
measurements. The hot plate provides a reference for the mass spectrometer channel,
the quartz crystal microbalance is able to measure the deposition rate from the
beam source, the mirror renders an air-side measurement of the laser power possible,
and the infrared transparent window separates molecules and radiation from the
evaporator.

Several instruments, e.g., a mass spectrometer and a sputter gun, are attached to
the main chamber with special adapters. Air based instruments, e.g., power meters,
use adjustable mounts to be aligned to the sample.

The load lock is capable of storing different kinds of samples in high vacuum and
transfer them to preparation and measurement positions. Additionally, it is possible
to deposit organic thin films in this separate compartment.

Preparations for the handling of air sensitive materials in a glove box have been
taken.

In summary, one of the central aspects of this work has been successfully completed
and was extensively used to obtain the results presented in Chapters 5 and 6.
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Together with a typical data treatment routine several specific properties of the
Igor Pro Nanojoule Adsorption Calorimetry program package are presented here.
Along the program description the effects of individual actions are investigated. The
utilized functions are illustrated in Chapter 4 whereas the source code can be found
in Appendix C.1.

The presented program follows the philosophy of using averaged data sets as
references instead of individual values. This approach was originally motivated from
the fact that the rising part of a pulse is not strictly linear, e.g., in Figure 3.3. The
symmetry breaking into distinct odd and even frames in the radiation measurement
made this strategy necessary on the one hand. On the other hand, it lead to the
possibility to separate radiation and reaction heat directly from the measurement
reducing the influence of the transmission measurement as a source of error.

The experiment used as example suffered from some beat in the raw signal, see
Figure 3.7, of unknown or origin leading to an increased scatter in the results. Nev-
ertheless, it was chosen since it provides insight into the compensation mechanisms.

Coverages are given in monolayers (ML) and/or meters. Deposition rates are
stated in deposited meters per second or monolayers per second (ML/s) and are
proportional to the corresponding fluxes since the relevant deposition regions have
constant area.

Here, one monolayer is defined as a closed packed layer of the deposited atoms in
a specified plane. The typically used plane is the closest packed plane for the most
stable phase at room temperature, i.e., the (111) plane for metals with cubic and the
(0001) plane for metals with hexagonal crystal structure, e.g., copper and magnesium,
respectively. Both structures with their primitive spatial and corresponding planar
unit cells are shown in the description of the used materials in Figures 6.1 and 6.2.
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3.1 User Interface

This section explains the individual features of the user interface. The most used
functions use buttons in the main panel, see Section 3.1.2, or are accessible via
hot keys. The hot keys and the less common functions are organized in the menu
structure, see Section 3.1.1.

3.1.1 Menu

This section explains the functions accessible through the menu system of the data
evaluation software.

Initialize creates the data structure used by the software package and initiates
the display of the control panel. Loaded data will be overwritten.

Show Control Panel displays the main window. The assigned default hot key is
Ctrl+1. For detailed information see Section 3.1.2.

94



3.1 User Interface

Data Manipulation contains methods of manipulating the raw data.

Remove Detector Baseline provides a manual way to remove a selectable
baseline from the detector data set.

Only loaded data sets are provided. The selection of functions used to
remove a base line can be extended in the program code, see Section
4.2.10.

Invert Polarity allows to multiply a selectable detector signal by −1.

The data treatment is independent of the polarity of the sample as long
as it is consistent in the individual measurements. This option is indented
to produce publishable graphics rather than for data treatment.
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Correct for Gain is a feature to use old data files recorded with a second
amplifier.

The data stored in Detector is divided by the number given for Gain
in the selected experiment. It is obsolete for newer data files recorded
without the second amplifier. The data set needs to be processed again
manually.

Unload Measurement prompts the user to select a loaded experiment and
resets the corresponding objects. The calorimetry data, i.e., the heat and
sticking measurements, are removed together.

Remove Experiment Structure deletes the entire NAC data folder after con-
firmation by the user. Due to the internal dependencies, a manual removal
of the whole data folder, e.g., by the Data Browser, is not possible.

Display Statistics presents the result of the statistical analysis of the already
analyzed data in form of box plots, see Section 3.6.
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Auto Flag automatically marks outlier frames in All or the selected data set, see
Section 3.7.

Marked frames will be subsequently ignored by the data processing procedures.
Individual as well as all measurements can be treated with this operation. It
is also included in the Lazy Process routine in case the Auto Flag option is
enabled.

Copy Flag List conveniently synchronizes the excluded frames in the heat and
sticking probability measurements and vice versa.
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Fitted Trends provides a method to reduce fitting artifacts by overriding fit para-
meters in an additional iteration of the data treatment, see Section 3.9.

The original data is displayed and the user is prompted to select a function
describing the trend or to load an average from an experiment file.

Subsequently, further parameters are inquired if applicable.
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3.1 User Interface

Update Experiment Version adjusts the data structure of old experiment files to
the newest software version if possible. Notes about the patching process are
printed in the Command Window. The assigned default hot key is Ctrl+5.

Concatenate Calorimetry Files combines two calorimetry files including the
check relevant parameters. This feature is not necessary for standard ex-
periments. Since it is still alpha state it might give unexpected results or
errors.

Trim Calorimetry Files extracts a subset from a calorimetry file including the
check relevant parameters. This feature is not necessary for standard ex-
periments. Since it is still alpha state it might give unexpected results or
errors.

Settings provides adjustment of the general behavior of the program.

Auto Flagging set to enabled alters the Lazy Process routine. With this
option it automatically masks outlier frames and performs an additional
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process cycle before the heat and sticking probability measurements are
processed. It is enabled by default.

Load Supporting Files switches from loading the default experiment data
files to the supplementary files usually used for characterization and
testing if this option is enabled. It is disabled by default.

Store Filter Residue Waves keeps the residue from the Fourier filtering in
the load function if enabled. This option provides a way to inspect the
details of the baseline removed by the filtering. Since it is not necessary
for data treatment and consumes a rather large amount of memory it is
disabled by default.

Automatically Recalculate Averaged Experiments
defines if newly added experiments are automatically included in the
calculation of the averaged sticking probability, coverage and enthalpy.
Since the calculation becomes slow for many large data sets it is disabled
by default.

Show Data Points in Box Plots defines whether individual data points are
displayed in the statistics windows or not.

Average Experiments comprises the controls of the subsystem utilized to average
individual experiments with the same parameters.
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3.1 User Interface

Load Results loads the relevant data from a calorimetry experiment file. The
assigned default hot key is Ctrl+2.

Average Loaded Experiments averages the data in the loaded calorimetry
experiments.

Remove Loaded Experiment deletes the data from a previously loaded calori-
metry experiment.

Display Averaged Results creates the graphs related to the averaged data.

Display NAC-Status extends the Status Package and provides a tailored display
of the status of the NAC machine.

3.1.2 Main Panel

The data evaluation main panel is divided into three sections, as shown in Figure
3.1.

The upper part displays the machine and experiment parameters which also might
be calculated from the evaluated data. The middle section contains the control
buttons to process or display the data as well as information specific to the individual
experiments. The lower set comprises options and constrains used in the evaluation
process. Since the labeling used in Figure 3.1 is self-explaining, e.g., the Show button
shows the file header, a detailed description is omitted here.

The quantities related to the variables are explained in Section 4.2.2 together with
their standard values if applicable.

3.1.3 Interactive Windows

Some graphs accept user input by placing cursors or by pressing buttons. Buttons
are used to navigate through the data set and set a flag to ex- or include frames
from the data treatment.
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As an example, the Range button also allows to set the marker for all frames with
a specified sub pattern in a given range while the Clear button resets all marked
frames. The Kill button sets a frame to zero in case a severely disturbed frame
leads to a malfunction of the automatic range adjustment.

Cursor pairs are generally used to define ranges used to calculated averages. Sin-
gle cursors are utilized to indicate or select the currently displayed frame of a
measurement.

The individual actions are presented, together with the corresponding data treat-
ment, later in this chapter.

103



3 Data Evaluation

3.2 Loading Data

Calorimetry related data is imported into Igor Pro via the Load buttons on
the main panel. The software package determines the kind of measurement from
the pressed button and suggests the appropriate files by specific filters for the
standard file open dialogue. Since the heat and sticking measurements are recorded
simultaneously they are also loaded together.

If the data has been saved with the standardized file extensions, see Section 4.1,
all data of one experiment can be loaded with the “Lazy Load” button. A dialogue
is displayed to select which measurement files should be loaded. Additionally, the
Load button lights up red in case two or more files qualify to be loaded for the same
measurement and the corresponding file is slightly highlighted.

During the import process the files are checked for integrity and whether the
experimental parameters are compatible. Upon the first loaded file these parameters
are assigned to the experiment file, see Section 4.2.2. In case the record corresponding
to the stepper motor status can be found in the auxiliary file, the frame pairs with
an unsuccessful motor program, i.e., a return value differing from “Y”, are marked
as unqualified for data treatment. This includes the pairs used to document the
base line at the beginning and at the end of the measurement.

Thickness measurements are displayed automatically after loading. Calorimetric
measurement files are loaded, filtered, and resampled according to the set parameters.

The file headers of the loaded files can be displayed with the Show button for
inspections of the measurement details and the stored technical notes.
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3.3 Data Filtering

The filtering process during the load routine of the calorimetric measurement files
comprises four components. Three of those can be disabled by setting the corre-
sponding frequency to zero in the Machine parameters section.

A filter needs to fulfill two requirements. On the one hand, the wanted signal
component should not be perturbed and, on the other hand, the unwanted signal
component needs to be removed as well as possible.

Three of the four parameters used for filtering are rarely about to be changed
and are only displayed on the main panel. They can only be changed by a variable
assignment or via the data browser. The frequency for the Extra Notch Filter
can be changed on the panel. Setting its value to zero disables the filter.

3.3.1 High Pass Filter

This feature was implemented to remove the ring-on artifact of the signal amplifier
on the calorimetry channel as shown by the black trace in Figure 3.2. The radiation
reference measurement was chosen as a probe for the performance of the filtering
routine since it implies a periodicity twice of the laser reference measurement, i.e.,
two frames and one frame, respectively. Hence, it contains relevant contribution at
lower frequencies than the laser measurements.

Figure 3.2 illustrates the effects of different filter transition frequencies on the
whole filtered data. A too low setting (blue), i.e., 0.02 Hz, results in artifacts due to
an incomplete removal of the base line. An intermediate setting of 0.1 Hz flattens
the signal while it preserves the signal shape. At too high settings (red), i.e., 0.5 Hz,
the signal shape and amplitude are altered to an extend which is intolerable.

Figure 3.3 illustrates the effects of different filter transition frequencies on the
averaged data for a radiation reference measurement. At low settings (blue and
green), i.e., below 0.2 Hz, almost no change in the shape is caused while at higher
settings (red), i.e., 0.5 Hz, the signal shape is seriously affected.

Since the base line artifact shown in Figure 3.2 is rather a damped oscillation and
not a decay, i.e., it exhibits a zero crossing, it does not originate solely from the
load resistor in the amplifier and the capacity of the measurement setup, see Section
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Figure 3.2: Filtered Radiation Reference Measurement — A radiation reference
measurement is displayed together with the results for several filter settings.
The unfiltered data (black) exhibits an unwanted slow oscillation. The filtered
data set corresponding to a transition frequency of 0.02 Hz (blue) suffers from
incomplete removal of the baseline, the data set corresponding to 0.1 Hz (green)
matches the ring on at the beginning and shows no contribution of the pulses. An
increase of the filter frequency to 0.5 Hz (red) leads to a pronounced contribution
of the pulses and thus to a severe distortion of the signal. Data is vertically
offset for better comparison.

5.5.3. The voltage U(t) of damped oscillation at the time t is given by

U(t) = Uofs +Uamp ⋅ exp( t

τ
) ⋅ cos( t

σ
− ϕ) (3.1)

with a constant offset Uofs voltage, an amplitude Uamp, a time constant for the decay
τ , a periodicity of the oscillation σ, and a phase ϕ.

This pattern is more pronounced in the relaxation regime of a deconvolution
reference measurement, as shown in Figure 3.4. The experimentally measured time

107



3 Data Evaluation

-0.2

-0.1

0.0

0.1

0.2

F
il

te
re

d
 A

v
e

ra
g

e
 D

e
te

ct
o

r 
S

ig
n

a
l 

(V
)

2.01.51.00.50.0
Time in Average Even Frame (s)

2.01.51.00.50.0
Time in Average Odd Frame (s)

High Pass Frequency:

Unfiltered 0.1 Hz

0.2 Hz 0.5 Hz

Figure 3.3: Average Frames of a Filtered Radiation Reference Measurement —
The average of twelve frame pairs of a radiation reference measurement is
displayed for several filter settings. The unfiltered (black) and filtered waves
with a transition frequency of 0.1 Hz (green) and of 0.2 Hz (blue) are almost
identical. An increase in the filter frequency to 0.5 Hz (red) leads to a severe
distortion of the signal.

constant for the decay τ in this case is 5.9 s corresponding to a frequency of 0.17 Hz.
The periodicity amounts to 69 s. These results suggest a pass frequency of 0.175 Hz
for the high pass filter. A comparison to the theoretical time constant is made in
Section 5.5.3.

Effects of a variety of filtering settings and more examples of removed base lines
are given in Appendix E.2. The data in the mass spectrometer channel is not
processed by the high pass filter.

3.3.2 Line Notch Filter

This filter with a fixed band width of 1 Hz is used to remove noise picked up from
the power lines, e.g., due to ground loops. Since the measurement equipment was
extensively optimized, the signal quality is hardly affected by this frequency anymore.
Nevertheless, this feature is kept in case of technical difficulties with the laboratory
equipment. The effect of the filter is similar to the illustration given in Figure 3.5.
Both channels are affected by this filter.
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Figure 3.4: Time Constant of the Measurement Setup — An excerpt of the aver-
age of pulses from a deconvolution reference measurement is approximated by
the function of a damped oscillation.

3.3.3 Extra Notch Filter

It was discovered that some measurements were affected by noise of an unclear origin
with a frequency around 94 Hz of small band width. It is most likely not the second
harmonic of the line frequency since it is not located at exactly 100 Hz. In contrast
the third harmonic at precisely 150 Hz can be observed in the data.

The effect of the filter is illustrated in Figure 3.5. Both channels are affected by
this filter.

3.3.4 Nyquist Cut Off Filter

This frequency defines the highest processable frequency in the data. Contributions
of higher frequencies in oversampled data are discarded in the filtering process.
The data points are deleted from the Fourier transformed data set and not set to
zero. On the one hand, this leads to a desired intrinsic resampling of the data
to twice the Nyquist frequency aliased by the ProcessRate. On the other hand,
it implies an amplitude change which is corrected analytically after the inverse
Fourier transformation [155]. In case of oversampled raw data this approach prevents
unnecessary excessive memory consumption.
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Figure 3.5: Effect of the Additional Notch Filter — An excerpt of a single frame
of a radiation measurement shown with (green) and without (red) applied
filtering illustrates the effect of the additional notch filter. Lines between data
points added for enhanced clarity.

3.3.5 Effects on the Calorimetry Data

As shown before, the signal shape and amplitude are preserved in case of reference
measurements. In case of the heat measurement it is essential that the filtering
process has no unwanted influence on the result of the experiment.

The results of a calorimetry experiment treated with and without filtering are
compared in Figure 3.6. The artifacts due to ring on effect at the beginning of
the data, i.e., the large amplitude oscillation due to the changing base line, are
completely removed. The major center part of the experiment benefits from the
filtering since the scatter is reduced and the general trend of the data is preserved.
The final pulses suffer from the filtering procedure. Since they usually carry the
same information as the few tens pulses before, they can be neglected without severe
consequences and are marked as excluded from processing in the load routine by
default. In order to improve the quality of the fit waves and minimize filtering
artifacts on these references the first and last pair containing a pulse are also excluded
from the data processing.

Some measurements suffer from a beat in the signal of still unknown origin. A
nearby explanation would be that it is caused by the filtering process. However,
this can be ruled out since the beat is also visible during data acquisition and in
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Figure 3.6: Effect of the Filtering on the Data — The results of a calorimetry
experiment treated with (blue) and without (red) filtering are opposed. The
artifacts due to ring on effect at the beginning of the data are completely
removed. The major center part of the experiment benefits from the filtering
since only the scatter is reduced. The irrelevant final pulses suffer from the
filtering procedure.

the unfiltered raw data, as shown in Figure 3.7. Furthermore, some measurements
on the same sample show this behavior and some do not. A probable source might
be mechanical vibrations of the setup. The turbo molecular pumps utilized in the
setup could cause such a pattern by one pump keeping its rotational speed while
another pump oscillates around its set motor frequency. Additional explanations
would include noise from the ventilation system or a movement of the building due
to external forces, e.g., wind. Due to the unfortunate location in the spectrum and
its large bandwidth it cannot be removed by Fourier filtering.

The filtering process improves the quality of the data and only causes negligible
side effects.
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Figure 3.7: Filtering and Beat in Signal — Raw (blue) and filtered (red) data of
a transmission measurement contain a contribution of a signal with a frequency
oscillating between 1 Hz and 10 Hz with a relevant amplitude. Since this
symptom is present in both data sets it is not an artifact arising from the filter
process.
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3.4 Quartz Crystal Microbalance Measurements

The measurements carried out by the quartz crystal microbalances are automatically
displayed when loaded and can be recreated or brought to the front by the Display
buttons on the main panel, see Figure 3.1. The displayed thickness (red dots) is the
one read by the controller and thus not corrected by the tooling factors.

Two cursors provide a way to select the range used for the actual deposition if
necessary. A linear approximation of the thickness change is indicated between the
cursors (blue line). The regions before the left and after the right cursor are used
to calculate base lines (black lines). If desired, they can be used to correct the
deposited thickness or the deposition rate in case the sensor experienced drifting.

3.4.1 Sample Coating

In order to be able to verify the deposition conditions during the substrate coating
process the thickness deposited on the sensor crystal in the load lock, see Figure
2.57, is recorded and evaluated by the software.

With standard settings the thickness is calculated from the difference in thickness
at the cursor positions. It is also possible to calculate the layer thickness from the
deposition rate, corrected by the base lines if applicable, and the deposition time.
The calculated layer thickness in the graph title contains all selected corrections.

The obtained substrate thickness is stored and used later as experiment descriptor.
It is also imported by the experiment averaging sub system.
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3 Data Evaluation

In case of a constant deposition rate becoming necessary to obtain a specific
substrate structure the recorded data can be linearized piecewise. The window used
can be chosen by Dep. Rate Fitting Window given in data points.

The resulting deposition rate is returned in m/s and is thus independent of the
spacing of the data points. The displayed average and error ranges are calculated
from the data between the cursors.

Typical parameters used for deposition of several substances are given in Appendix
A. The layer thicknesses ranged from a few nanometers to about one micrometer.
The substrate molecules have usually been deposited on a sputtered detector disc,
see Section 5.2.

3.4.2 Calorimetry Deposition Rate Measurement

One of the main parameters used in the calculation of the heat of adsorption is the
amount of atoms dosed on the sample. This quantity is derived from the pulse length
and the continuous deposition rate measured with the quartz crystal microbalance
in the ancillaries stage, see Section 2.4.2.
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3.4 Quartz Crystal Microbalance Measurements

With standard settings the deposition rate is calculated from the slope of the
thickness change with respect to time between the cursor positions. If desired, it can
be corrected by the averaged base lines. The displayed rates are already corrected
by the tooling factors, see Sections 5.3 and 5.8.2.

Unreasonable data points, e.g., due to small frequency jumps, need to be re-
moved manually by replacing their respective values by NaN. Various parameters are
automatically calculated from the Calorimetry Deposition Rate J given in m/s.

The calorimetry deposition rate JML in ML/s is calculated from the deposition rate
J given in m/s by

JML =
J ⋅ ϱ ⋅ 103 ⋅NA

M ⋅ 10−3 ⋅ σ
(3.2)

using the density ϱ, the molar mass M , and the monolayer density σ provided in
the file header of the data file. This quantity as well as the dose per pulse DML in
monolayers

DML = JML ⋅ t (3.3)

for a pulse with the duration t are only used as illustrative aliases.
The molar dose per pulse, which is the relevant property for the calculation of the

heat of adsorption, is calculated by

Dcal =
J ⋅ t ⋅ ϱ ⋅ 103 ⋅A

M ⋅ 10−3 (3.4)
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3 Data Evaluation

= 106 ⋅
J ⋅ t ⋅ ϱ ⋅ (1

2d)
2
⋅ π

M
(3.5)

with the area A = (1
2d)

2
π of the beam calculated from its diameter d.

Typical values for a deposition rate used in a calorimetric experiment range from
0.05 ML/s to 1 ML/s. The LabVIEW control program1 provides a rough estimate of
the deposition rate during its measurements used to adjust the deposition rate for
the experiment.

1 Programmed by H. Zhou.
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3.5 Measured References

3.5 Measured References

The processing procedure of the loaded reference measurements is mostly identical.
The common part is discussed using a laser reference measurement as example, since
all radiation, e.g., laser or infrared, based measurements give a similar signal shape.

The entire data set can be visualized with the Display button.

The frames with standing motor, i.e., the first and last frame pair used to document
the base line, are marked as unqualified by the loading routine, see Section 3.2.

Frames suffering from distortion, e.g., a measurement artifact arising from a
slammed door, can be identified and masked in the windows displayed by pressing
the Flag button on the main panel.
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3 Data Evaluation

The displayed frame is colored in blue for frames with even parity, colored in green
for frames with odd parity, and colored in gray for frames omitted from further
processing.

In case the corresponding average has been calculated, it is added to the individual
frame as a black trace as a reference for the eye.

In addition to the linear representation of the data the frames are also displayed
piled on top of another.
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3.5 Measured References

The current frame can be selected by the navigation objects in the window for an
individual frame or by cursors in the windows for the whole data set. The selected
frame is highlighted red and by a cursor in the stacked view.

Since the first and last frame pair with started motor can suffer slightly from
filtering artifacts they are also masked by default. Manually excluded frames or
frames masked by the Auto Flag feature are displayed black in the full experiment
and set invisible in the view of piled frames.

The number of total amount of frames and frames used to calculate the fitting
waves is indicated on the main panel.
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3 Data Evaluation

After the removal of outlier frames the data evaluation is continued by usage of
the Process button. Depending on the previously treated measurements different
actions are carried out according to the type of measurement. Details are given in
the corresponding sections later in this chapter and in Section 4.2.4.

In any case the averages of the qualified frames are calculated for both parities
and displayed.

The Laser Power and the calculated respectively default or a custom Reflecti-
vity are used to calculate the normalized fit waves if applicable.

The fit waves, exemplarily shown in Figure 3.8, are created in the :Experiment:
data folder and are not displayed. In order to enable a temporal shifting of the pulses
the fit waves comprise the second half of the normalized average with complementary
parity, the actual fit wave in the center, and the first half of the normalized average
with complementary parity in that order.

3.5.1 Deconvolution

The normalized fit wave is generated. It differs from the other measurements in
several aspects. The position of the switch-on is derived from the data and the start
time is set to zero. The duration is set to about threes time the length of a regular
frame and aligned symmetrically to zero, as shown in Figure 3.9. In addition, a
noise free fit wave is generated, see Section 4.2.5, which reduces the noise in the
deconvoluted data sets significantly.
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Figure 3.8: Constitution of Fit Waves — The fit waves comprise the second half
of the normalized average with complementary parity (green), the actual fit
wave in the center (blue), and the first half of the normalized average with
complementary parity in that order. This provides a logical continuation capable
of handling temporal offsets.

3.5.2 Clean Sample

The normalized reference wave is generated and in case the measurement of a coated
sample has been processed its reflectivity Rcoat is calculated, see Section 3.5.3.

3.5.3 Coated Sample

The normalized reference wave is generated and, in case the measurement of a clean
sample has been processed, the reflectivity of the coated sample is calculated from
the amplitude ratio r of the normalized averaged peaks, and the reflectivity of the
clean sample Rclean by means of

Rcoat = 1 − r ⋅ (1 −Rclean) . (3.6)

The basic assumption is that the sensitivity of the detector remains unaltered and
the changed signal intensity is entirely caused by the different reflectivities, see
Section 5.4.2.

If the laser reference measurement has been processed the temperature induced
sensitivity change is determined, see Section 3.5.4.
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3 Data Evaluation

Figure 3.9: Constitution of Fit Waves for Deconvolution — The fit waves contain
1.4 nominal frame lengths for calorimetric experiments before and after the
chopper opens. This represents the system response to a Heaviside function.

3.5.4 Laser Reference

In a first step the pulse length is detected from the laser reference measurement.
Linear approximations before yb = ab + bb ⋅ t and after ya = aa + ba ⋅ t the nominal
positions of the pulse are calculated excluding the close vicinity of the nominal peak
start position, as shown in Figure 3.10. The position of the start ts and end te is
defined as the times both corresponding lines intersect

yb,{s,e} = ya,{s,e}

ab,{s,e} + bb,{s,e} ⋅ t{s,e} = aa,{s,e} + ba,{s,e} ⋅ t{s,e}

t{s,e} =
aa,{s,e} − ab,{s,e}

bb,{s,e} − ba,{s,e}
(3.7)

and their difference yields the pulse length δt = te − ts.

Subsequently, the normalized fit wave is generated. If the coated sample measure-
ment has been processed the temperature induced sensitivity change is determined
which can be used for the reconstruction of the energy input if the deconvolution
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Figure 3.10: Pulse Length Determination — The detector signal (red dots) from
a laser reference measurement is linearized (blue solid lines) before and after the
start and the end of the nominal peak position. The close vicinity is excluded
to avoid artifacts from a shifted pulse. The pulse length is calculated from the
start and end points (dotted black lines) obtained from the intersections of the
extrapolated line pairs (blue dashed lines).

reference was measured at a different temperature than the measurement to be
processed.

The sensitivity is identical to the ratio of the normalized averaged peaks and very
close to unity for experiments carried out at ambient temperature. The sensitivity
rises for experiments conducted at approximately 100 K up to around 2.5 and is
expected to drop in case of elevated temperatures below unity, which is the value
for isothermal measurements. This emphasizes the necessity for a well defined and
stable temperature of the detector polymer for all measurements. This is especially
critical for measurements after the coating process, since the sample experiences
heating from the evaporator. In case the transmission measurement is processed the
transmission of the window is calculated, see Section 3.5.5.
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3 Data Evaluation

3.5.5 Transmission of Infrared Transparent Window

The normalized reference wave is generated and the transmission is calculated. The
numerical value of the transmission of the infrared transparent window is identical
to the ratio of the normalized averaged peaks of the transmission and the laser
reference measurements. Its reciprocal value is provided as initial value to the fitting
routine for the heat measurement.

Ð→

Since the related measurements are conducted with the laser the obtained value is
valid only for the wavelength of the laser. The infrared radiation is not monochromatic
and is not containing the wavelength used to obtain the transmission. Hence, this
measurement only provides an approximation of the infrared transmission, see
Section 5.8.1. Nevertheless, it is able to give an estimate of the defilement of the
window.

3.5.6 Radiation Contribution

The fit wave used for the radiation component is not normalized, instead the inverse
transmission coefficient is used as an initial value for the data processing.

The different shapes of the laser based signals and the radiation signal enable a
decomposition of the heat signal into these two components. The relevant part for
this procedure is not the peak but the evolution of the signal after the pulse, as
shown in Figure 3.11.

Reference measurements performed using an empty crucible to calculate the
contribution of the thermal radiation, see Section 5.8.1, substitute this data set. The
calculated amplitude is set as a parameter for the treatment of the heat measurement,
see Section 3.8.1.

124



3.5 Measured References

-0.2

-0.1

0.0

0.1

0.2

V

2.01.51.00.50.0
Time in Average Even Frame (s)

2.01.51.00.50.0
Time in Average Odd Frame (s)

Average Laser Signal

Average Radiation Signal

Figure 3.11: Comparison of Laser Based and Radiation Signal — The discrepancy
in signal shape of the laser based (purple) and radiation (orange) signal provides
a deconvolution of the heat signal. While the rise during the pulse is similar for
both kinds, the subsequent decay of the radiation signal differs in a characteristic
way.

3.5.7 Zero Sticking

The fit wave for the sticking measurement is generated and normalized by the
provided coefficient.

The signal from the mass spectrometer usually contains a high level of noise and
an unstable baseline. Thus, a simple integration of the signal to obtain a total
intensity is not advised. As a consequence of the unexpected shape of the mass
spectrometer signal, i.e., non-rectangular, see Section 5.8.4, it is questionable if an
integrative analysis is still providing a proportional result.
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3 Data Evaluation

3.6 Statistics

A simple statistical analysis on the loaded reference measurements can be conducted
for all measurements or a selected one. The amplitudes of the qualified frames are
obtained in relation to the averaged data of the measurement, see Section 4.2.8.

The result is displayed in two ways. One plots the calculated amplitudes against
the pulse number and is suitable to detect an unwanted long term change of the
corresponding data.

Unfortunately, this representation tends to fool the eye about the scatter of the
data. A better way to visualize this dispersion is a box plot.

The main components for each measurement comprise the median (green line)
and the upper and lower quartile (blue lines). Assuming a monotonically increasing
order of the regarded amplitudes, the median is defined as the value of the data
point at half the counting span of the data set. The upper and lower quartile are
defined in an analogue way at 1/4 and 3/4 of the span count, respectively. These
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3.6 Statistics

quantities are robust regarding pronounced outliers in contrast to other common
statistical values, e.g., the average of a data set.

Attributes for a “good” data set consist of a median close to the average, i.e.,
unity since relative amplitudes are regarded, and a small distance of the quartiles
to the median. Furthermore, outlier data points (solid circles) should be absent.
The limits for outliers (black lines) are explained in Section 3.7. The whiskers (gray
lines) are defined as the data points with the largest difference to the median within
the limits for outliers. The actual data points (open circles) are added to the graph
to provide a visual tool to identify clustering of data points and can be suppressed
if not desired, see Section 3.1.1.

This representation is not relying of an underlying statistical distribution and is
not affected by bin sizes influencing the appearances of histograms. Since it is very
robust to the data structure and quite compact, it is ideal to compare the quality of
the individual reference measurements.
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3 Data Evaluation

3.7 Automatic Outlier Removal

Selected frames can be excluded automatically from the creation of the applicable
fit functions for a given measurement, if desired.

A data point is classified as outlier if its amplitude A exceeds the lower wlow or
upper wup whisker limit

A ≤ wlow ∨ A ≥ wup . (3.8)

These limits are defined as the corresponding quartile, i.e., qlow or qup, expanded by
one and a half times the distance between these quartiles

wlow = qlow + 1.5 ⋅ ∣qup − qlow∣ A > µ (3.9)
wup = qup + 1.5 ⋅ ∣qup − qlow∣ A > µ . (3.10)

To motivate this criterion the probability of a falsely rejected data point should
be discussed. A standard normal distribution of the data points, see Section 5.10,
with the distribution function Φ

Φ(z) = 1
√

2π

z

∫
−∞

exp(−x2

2 ) dx (3.11)

and its inverse Φ−1 is assumed. The probability p to find a data point in the interval
[µ − zσ; µ + zσ] around the center µ and a standard deviation σ of the data set is
given by

p =
1
√

2π

z

∫
−z

exp(−x2

2 ) dx

= 2 ⋅ 1
√

2π

z

∫
0

exp(−x2

2 ) dx

= 2 ⋅ 1
√

2π

z

∫
−∞

exp(−x2

2 ) dx − 2 ⋅ 1
√

2π

0

∫
−∞

exp(−x2

2 ) dx

= 2Φ(z) − 2Φ(0)
= 2Φ(z) − 1 (3.12)

utilizing the symmetry and normalization of Φ. Rearrangement yields

z(p) = Φ−1 (
p + 1

2 ) p ∈ [0; 1] (3.13)
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3.7 Automatic Outlier Removal

providing a method to obtain the interval’s limits for a given probability from
tabulated values for Φ−1. With the assumption that the lower and upper quartile
are symmetrical to the median located at µ = 1 and cover 50 % of the data set,
i.e., p = 0.5, calculation results in a statistical significance of 0.67449σ. Thus the
inter quartile distance computes to 2 ⋅ 0.67449σ = 1.34898σ and the outlier limit
to 0.67449σ + 1.5 ⋅ 1.3490σ ≈ 2.36σ. This can be converted back to a probability
of p = 0.993 that a data point is located inside the limits. This corresponds to a
probability of 0.7 % for a falsely rejected data point, i.e., one in 143 frames.

It should be reminded that this is an exemplary calculation with the assumption
of a standard normal distribution. The criterion of the box is of similar strength,
independent of the nature of the distribution.

A high number of outlier frames likely indicates a faulty measurement setup.
According to the statistical consideration, two outlier frames are to be expected for
the measured amount of three hundred frames in the presented example and six
frames are found, as shown in Figure 3.12. It should be reminded that the presented
example is imperfect and that it was chosen in order to demonstrate the effects of
the correction mechanisms.

After removal of outliers the averages, fit waves, and statistics need to be recalcu-
lated. Since the limits for outliers change upon exclusion of frames, it is possible that
new frames are ranked as outliers, as shown in Figure 3.13. The program package
allows automatic removal of outlier frames only in the first iteration. It is advised to
inspect the second generation outlier frames manually by the selection procedure, see
Section 3.5. However, persisting outlier frames are typically not present in successful
measurements and their presence indicates a disturbed experiment.
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3 Data Evaluation

3.8 Calorimetry Measurement

In a first step, the parity dependent averages of the qualified frames are calculated.
There is no automatic outlier detection for these measurements since changes in
intensity are expected. However, frames resulting in a fit error during the evaluation
are removed from the results.

3.8.1 Heat Measurement

The data points in a frame Hn(t) of a heat measurement are fitted with a function
comprising an offset A0 and a linear combination of the normalized laser reference
LP (t) shifted by t0,L with an amplitude AL and the average response to radiation
RP (t) shifted by t0,R with an amplitude AR

Hn(t) = A0 +AL (n) ⋅LP (t − t0,L ) +AR(n) ⋅RP (t − t0,R) (3.14)

separating the radiative part from the reaction heat as illustrated in Figure 3.14.
The parity P is determined by the frame number n. The initial coefficients are
adjustable by the user in the lower part of the control panel. Typical values are
preset in the program with exception of the radiation coefficient which is unity by
default and replaced by the inverse of the calculated transmission of the window,
see Section 3.5.5.

It also provides options to hold a coefficient at the given value or to force the use of
a trend for the radiative contribution, i.e., a “smoothing” replacement function, see
Section 3.9. If the value is held at the value of the inverse transmission coefficient, the
procedure acts like a constant, parity sensitive removal of the radiative contribution
to the signal.
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Figure 3.14: Fit Contributions Heat Measurement — Two consecutive data sets
(blue and green dots) are fitted (black) with a linear combination of a laser
like (purple) and radiation like (orange) component. For enhanced clarity the
constituents are vertically offset.

Alternatively to the hold option, the shift parameters can be constrained to be
identical, i.e., both contributions are shifted by the same amount. If both shifts
are linked and one parameter is hold, the other one is set to the value of the first
one. In case both hold options are enabled, this feature has no effect. Upon unequal
initial values describing the shifts and enabled linking, the both shift parameters are
set to their average value.

133



3 Data Evaluation

The results for every frame are displayed.

The resulting amplitudes related to the laser-like component directly contain
the energy deposited on the sample due to the normalization process. In contrast,
the amplitude of the radiative contribution is purely relative and might be used to
detect a coverage dependent absorption change for infrared radiation of the sample.
Upon application of a radiation measurement performed using an empty crucible
and omitting the window, see Section 5.8.1, the coefficient corresponding to the
radiation contribution needs to be constrained to the correction factor automatically
derived from the sample and source temperatures during the reference and heat
measurements, see Section 5.8.1.

Typically, the shift parameters are pinned to zero and are intended to catch a
glitch of the position of the chopper motor.

3.8.2 Sticking Measurement

The data points in a frame S (t) of a sticking measurement are fitted with a function
comprising an offset A0 and the normalized zero sticking, i.e., desorption, reference
D shifted by t0,D with an amplitude AD

Sn(t) = A0 +AD(n) ⋅DP (t − t0,D) (3.15)

quantifying the fraction of molecules not sticking, i.e., recoiled molecules or molecules
desorbing from a weakly bound precursor state after a certain residence time, see
Figure 5.8.4. The parity P is determined by the frame number n.

Due to the noisy and unstable base line of the mass spectrometer, as shown in
Sections 3.5.7 and 3.6, a fitting mechanism is utilized rather than an integration
based method.
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3.8 Calorimetry Measurement

The initial fit coefficients are adjustable by the user in the lower part of the control
panel. Typical values are preset in the program

with no further derived values. It also provides options to hold a coefficient at the
given value or to force the use of a trend, i.e., a “smoothing” replacement function,
see Section 3.9, for the desorption in the dependent calculations in order to reduce
scatter.

The results of the desorption measurement should be located in the interval [0; 1]
where the boundaries are equivalent to no molecule leaving the surface and all
molecules leaving the surface, respectively. If a running average exceeds this range
significantly, it is an indicator for an incorrect measurement or correction factor.

In case the deposition rate for the calorimetry experiment is determined, the
coverage θ(n) for a certain pulse number n on the sample is computed. The
calculation uses the dose per pulse DML in monolayers and the sticking probabilities
AS (n) as a function of the pulse number n

AS (n) = 1 −AD(n) (3.16)

135



3 Data Evaluation

computed from the corresponding desorption amplitudes AD(n). The result

θ(n) =
n

∑
i=0

DML ⋅AS (i) (3.17)

is used to map the heat of adsorption and sticking coefficients to a coverage, see
Section 3.8.3. For enhanced clarity the coverage axis is doubled and provides this
property in monolayers and meters.

3.8.3 Enthalpy Calculation

Upon treatment of either the heat or sticking measurement, the calculation of
molar enthalpies is executed in case all relevant information is provided. The
thermodynamical corrections, see Section 1.1, are automatically calculated from the
sample’s and source’s temperatures and the heat capacity of the dosed substance.

The uncorrected heat of adsorption AH of each individual pulse n is calculated from
the fitting coefficient AL for a laser like input, the fitting coefficient AD for the
desorption, and the molar dose per pulse Dmol by

ΔAH (n) =
AL (n)

(1 −AD(n)) ⋅Dmol
. (3.18)

This preliminary enthalpy is rectified by the mentioned corrections. Finally, combina-
tion of Equations Equation (3.17) and Equation (3.18) yields the heat of adsorption
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3.8 Calorimetry Measurement

as a function of coverage ΔadsH(θ). However, both values are internally still indexed
by the frame number and appear as (θ, H)-pairs in this context. A conversion
to a true dependence of the heat on the coverage is performed by the experiment
averaging features, see Section 3.11.

This main result of the experiment is displayed together with the average value
between two user adjustable cursors and the heat of re-sublimation as a reference.
For enhanced clarity the coverage axis is doubled and provides this property in
monolayers and meters.

The mentioned average is also documented in the main panel

together with the standard deviation and the calculated reference enthalpy.
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3.9 Fitted Trends

It is unlikely that the contribution of the infrared radiation to the measured signal
changes rapidly in a random direction. A slow smooth change is expectable in case
of an organic substrate layer overgrown by a dense metal film which involves a
change of the absorption coefficient relevant for the radiative power input. The same
argument holds for the desorption/sticking measurement. Long term changes are to
be expected since the pristine surface might exhibit a different sticking coefficient
than the built up reacted inter-layer and subsequent metallic cover layer.

Hence, the jitter in these results originates from noise in the data and, therefrom,
influences the fitting routine. Two approaches are feasible to increase the quality of
the calculated data. One way is to repeat the experiment with identical conditions
and to average the results. This option is presented in Section 3.11. The other
way uses the assumption that the changes can be approximated by a function or
by partial averages, i.e., data smoothing. The data set resulting from this feature
called from the menu is denoted here as fitted trend.

The original data is displayed and the user is prompted to select an approximation
method, see Section 3.1.1.

The exact function and parameters depend on the actual data but typically the
radiation component is well approximated with polynomials, e.g., of order six or a
sigmoid function, while the desorption usually follows a sigmoid, Gauss, or Lorentz
function. Since there is no reliable theory about the behavior, the user’s experience
is challenged to find a function and parameters that match the measured data.

After selection of the method and parameters the trend is calculated and displayed
with the original data and the user input.
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3.9 Fitted Trends

The process can be repeated as often as desired. Especially for low amplitude
sticking measurements it can be tedious to find a satisfying set of properties. It
should be mentioned that frames removed from the data treatment are displayed
black in the graph and are ignored in the actual fitting routine. Nevertheless, the fit
results in this area are displayed as well, since they may be used in case the frames
are included again.

The use of the trends in the fitting procedure is enabled automatically in case
that a trend was created.

It is possible to create an individual trend, e.g., as results from a user defined func-
tion, by overwriting values in root:NAC:Heat:fit_Radiation and root:NAC:Heat:
fit_Desorption. These data sets should be initialized by an iteration of the regular
trend creation process.

Reprocessing of the heat and sticking measurements apply the created trends to
the data evaluation and provide an improved result, as shown in Figure 3.15. The
main requirements of such a procedure are fulfilled. On the one hand, the local
amplitude and evolution of the data is unchanged while, on the other hand, the
scatter is reduced.
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Figure 3.15: Effect of Fitted Trends: Noise — The same data set evaluated
without (red dots) and with (blue dots) trends used as fit coefficients in the
evaluation. The amplitude and shape of the data remain unchanged while
the scatter is reduced. The calculated re-sublimation enthalpy is added as a
reference for the expected results for deposition on multilayers. The coverage
axis is duplicated to provide measures in monolayers and meters.

This feature also eliminates artifacts in the fitting routine manifesting as overesti-
mation of the radiative contribution for strictly even frames and underestimating
the contribution for strictly odd frames.

This behavior is only observed at changing enthalpy, i.e., changes in the amplitude
of the signal, as shown in Figure 3.16.

The initial values in the fit routine are reset to the same values for all frames.
Hence, it is unlikely that this artifact is caused by a fault in the fitting routine
and thus probably induced by the amplifier readjusting its baseline during the
measurement.

It should be mentioned that the given options are not necessarily physically
meaningful. Depending on the growth behavior of the adsorbed species a linear or
sigmoid change in the reflectivity can be expected in simple cases, e.g., in case of
Frank-van der Merwe respectively Volmer-Weber growth. However, in more complex
cases, e.g., cluster growth in combination with surface reaction, the use of the entirely
empirical shape matching approach is indicated.
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Figure 3.16: Effect of Fitted Trends: Balancing — The same data set evaluated
without (red dots) and with (blue dots) trends used as fit coefficients in the
evaluation. The twinning of the amplitudes is removed while the general data
structure is preserved. The calculated re-sublimation enthalpy is added as a
reference for the expected results for deposition on multilayers.

Additionally, it is possible to replace the local radiation or sticking contribution
with an average contribution obtained from several experiments, see Section 3.11.
This option requires a set of trustworthy experiments used to calculate a valid
average. Hence, data sets exhibiting uncommon trends need to be excluded in the
averaging procedure.
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3 Data Evaluation

If the radiation contribution is approximated, it is possible to scale the loaded
average to match a selectable range of the local data. This step is usually neces-
sary, since the absolute contribution depends on the transmission of the infrared
transparent window, see Section 2.4.4.
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3.10 Deconvolution of Measurements

3.10 Deconvolution of Measurements

Several cases might require a deeper analysis of the measured data. A profane
situation is to discover reasons for an unexpected peak shape, i.e., fault diagnostics.
More elaborate questions could address reactions which are of medium speed, i.e.,
exhibit kinetic time constants comparable to the temporal resolution of the setup,
e.g., approximately between 0.01 s and 0.1 s. It might even be possible to obtain
activation barriers for these reactions if the observed time constants are determined
as a function of temperature.

The response of the detector/amplifier to a scaled Heaviside input is obtained in
the deconvolution reference measurement, i.e., it contains the response to a “sudden”
turning-on of a constant input power. The program uses this information together
with a small window from the data of the frame to extrapolate the signal later in
the frame. The prediction is removed from the set, the window is shifted by one
step to a later time, and the prediction is carried out again. This cycle is repeated
until the end of the frame is reached, see Section 4.2.4. Integration yields the power
input as a function of time.

The deconvolution routine can be carried out in two different ways. One performs
the analysis only on the averaged frames of a measurement and is initiated by the
corresponding Avg button.

The other possibility also includes a detailed treatment of the data set started
with the All button.
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3 Data Evaluation

If the individual frames of a data set are about to be performed, it is possible to
create parity preserving averages of subsets in the data set according to the Average
Frames setting. In case of a heat measurement to be processed, it is possible to
remove the radiative contribution, if favored. In this case two possibilities can be
selected. The first one removes a constant radiation given in the initial fit parameter
section. The other one derives the removed amount from the result of the fitting
procedure.

In case of excellent signal quality, it is possible to perform the deconvolution with
the measured data. Nevertheless, it is advised to perform this action with the noise
free fit function derived from the measured data since it improves the quality of the
deconvoluted data significantly, as shown in Figure 3.17.

If the quality of the deconvolution reference is insufficient, an attempt to perform
the procedure with the real data is futile, while the variant with the fitted system
response still might lead to good results.

Due to the fact that the deconvolution measurement is time consuming, it was
usually carried out only at room temperature. Since the sensitivity of the detector
changes with temperature, see Section 5.9.4, it is at least necessary to apply a linear
correction. The strength of this effect is derived from the after coating reference and
laser reference measurements, see Section 3.5.4. This feature is enabled by default
and is sufficient for qualitative and semi-quantitative experiments.

For high accuracy data deconvolution of measurements recorded with the sample
at non-ambient temperature the deconvolution measurement should be performed
at the same temperature as the calorimetric measurement. In that specific case the
sensitivity correction needs to be turned off.

After the deconvolution of the measurement is accomplished the color coded input
power is displayed as function of time and frame. A cursor in the image provides a
way to select a frame pair in the measurement whose power is plotted as a function
of time. Metaphorically speaking a cut parallel to the time axis perpendicular to
the paper plane is made and the color is converted back to an intensity.
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3.10 Deconvolution of Measurements

It should be mentioned that this procedure actually requires an absolute input
signal to return absolute values. However, the used amplifier incorporates an
automatic offset compensation which is removing exactly this information. Hence,
only relative quantities are accessible here. This also leads to a constant background
in the deconvolution result of opposite polarity compared to the pulse.
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Figure 3.17: Influence of Noise in the Deconvolution Reference — The same
averages frames of a laser reference measurement were deconvoluted with the
measured fit wave (red) and with the adapted noise free fit wave (blue). The
process was carried out for both parities separately. Both frames, with the
boundary at 2 s, suffer from an increased noise. The algorithm is close to
its converging limit in case of the first frame recognizable by the increasing
amplitude of the noise.
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3.11 Averaging Experiments

This part is somehow different from the other parts of the program package. It is
designed to operate independently from the aforementioned functions. The user
interaction is entirely handled by the menu, see Section 3.1.1.

Upon initialization, carried out automatically upon the first function call, the user
is prompted for an identifier for the set of experiments.

Since this is a string variable, the quotes are essential. The next steps imply
loading of the related experiments.

At the beginning of the averaging process an integrity check of the data and a
compatibility check of the loaded experiments are performed. Details on the settings
and processing can be found in Section 4.2.9. Afterwards, the sticking and enthalpy
results of the individual experiments are displayed, providing an option to identify
and remove experiments with improper results.
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3.11 Averaging Experiments

The averaged sticking probabilities and averaged enthalpies are presented in one
graph. Abrupt changes in the traces typically originate from a diverging experiment
with a smaller coverage range, i.e., a non matching result is suddenly not contributing
any more.

Error ranges are not included since the individual errors of the imported experi-
ments can be adjusted by the user by choice of cursor positions, see Section 3.8.3.
Auxiliary parameters on the averaged experiments are also visualized as well as the
radiation contribution.

In case the automatic processing is enabled, the data is averaged and displayed
after each load action. Due to the non-linear relationship of the frame number and
the coverage, an analytical determination of the error margins is not possible.
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3.12 Lazy Operations

Experienced users can benefit from the routines labeled Lazy. Since all related
features are based on the standard routines, the data is processed the same way.

One feature is the automated loading algorithm. In case the file extensions are
used properly, the procedure determines which file contains which measurement and
loads all files at once.

The processing routine initially processes all deposition rate and reference mea-
surements. If the automatic outliers removal is enabled, the deconvolution of the
averaged data is omitted.

In a second step, the corresponding statistics are calculated and the automatic
outlier removal is performed for all reference measurements, if desired, see Section
3.7. In this case the reference measurements are processed again, including the
statistical analysis to adapt the calculated data to the changed situation concerning
the excluded frames. In case of loading a deconvolution reference, the energy input
into the calorimetry detector is reconstructed for the averaged frames and displayed,
see Section 3.10.

In all cases the statistics are displayed, see Section 3.6, and the heat and sticking
measurements are processed, see Section 3.8. If desired, all measurements can be
processed by the Everything deconvolution routine, see Section 3.10.

Depending on the size of the data sets, the specific settings, and the computer’s
performance this operation might take several hours.
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3.13 Comparison to Previous Approach

As mentioned above, the presented data evaluation procedure follows a different
philosophy than other groups [32]. As a matter of course, both approaches need to
be compared. Since identical data is treated with both methods, the experimental
conditions are irrelevant here2. This chapter has presented the novel method in
detail. In the following, the previous method is briefly described.

The former approach utilizes only the initial slope of the signal after the pulse
has started. Normalization by means of laser power, pulse length, and sample
absorption yields a sensitivity value correlating the signal amplitude to the deposited
heat. Furthermore, a constant thermal radiation contribution is assumed [56]. This
constitute of the signal is measured through the infrared transparent window, see
Section 2.4.4, corrected by the window’s transmission, quantified via the sensitivity
value, and subtracted from the calorimetry result as a number. It should be pointed
out that the transmission measurement is performed at non-infrared, i.e., visible,
wavelengths3. Thus the measured transmission is potentially differing from the true
infrared transmission, see Section 5.8.1, and an incorrect amount of thermal heat
might be assumed for the correction. Furthermore, the absorption properties of
the sample for thermal radiation must remain constant during deposition of the
adsorbate. Regarding the different properties of metals and organic compounds, the
assumption of an unchanged infrared absorption is questionable.

The sticking probability is obtained from the integrated mass spectrometer signals
considering constant offsets [56]. This approach requires a low noise signal from the
instrument.

As it has been shown in Section 3.5.7 and will be shown in Section 5.7 in detail, the
signal from the mass spectrometer is far from noise free in this setup. This observation
is echoed in the results from an exemplary sticking measurement, illustrated in
Figure 3.18.

The novel approach yields a significantly reduced scatter compared to the tra-
ditional one. Furthermore, the general shape is reproduced while the differing
amplitude can be attributed to the unusual peak shape, see Section 5.7. Hence, the
novel data evaluation method should be preferred for analyzing the mass spectrometer
data.

Figure 3.19 opposes the results of an exemplary calorimetry experiment processed
with the former as well as the novel data evaluation approach. The scatter is

2 The sticking data is taken from ‘Exp0052’ in Figure D.19 and the heat data is taken from
‘Exp0026LT’ in Figure D.30.

3 At 405 nm in this work and at 633 nm elsewhere [56].
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Figure 3.18: Comparison of the Novel and Previous Data Evaluation Approach:
Sticking — The results of a sticking measurement for the adsorption of
calcium on 300 nm tetraphenyl porphyrin at ambient temperature are given as
a function of coverage utilizing the previous (red dots) and novel (green) data
evaluation approach. The scatter is significantly reduced utilizing the novel
approach.

similar with slight advantages towards the traditional method. This might arise
from a combination of effects. The discussed experiment was measured at cryogenic
temperatures. The coolant, i.e., liquid nitrogen, causes mechanical vibrations in the
detector unit which are picked up by the sensor. As the relevant data range is much
smaller4 in case of the previous approach, it is less affected by this noise and thus
produces less scatter. An improvement of the cooling method, such as blowing cold
gas through the thermal reservoir (see Section 2.2) instead of sucking liquid nitrogen
into it, could reduce the scatter in the resulting data.

In addition, the absolute heats of adsorption obtained by the previous and novel
approaches differ in the entire studied range. Comparison of the heats of adsorption
at high metal coverages with the negative heat of sublimation yields excellent
agreement in case of the novel approach, see Section 6.5.3. This outcome practically
disqualifies the traditional evaluation method.

Close inspection of the results from the novel and the previous method reveals

4 By a factor of 20.
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Figure 3.19: Comparison of the Novel and Previous Data Evaluation Approach: Cal-
culated Heat — The results of a calorimetric measurement for the adsorption
of calcium on 20 nm PTCDAa at cryogenic temperature are given as a function
of coverage utilizing the previous (red dots) and novel (green) data evaluation
approach. The reference enthalpy is matched only in case of the novel approach.

a Perylenetetracarboxylic dianhydride.

that their difference is not only a constant offset but includes some internal structure
at calcium coverages between 4 ML and 8 ML. In this range, the data corresponding
to the traditional approach exhibits a minimum while the results from the novel
approach lack this feature. Such minima can be explained by the Kelvin-effect [156]

and are reported for adsorption of metals on organic substrates [55,60,61] as well as on
inorganic substrates [16–22,27,33,34,42]. However, this effect takes place at lower metal
coverages and is less pronounced in case of organic substrates.

Another possible explanation of the observed minimum might arise from a changing
reflectivity, and thus absorption, of the specimen for infrared radiation. Since the
layer thicknesses of the substrate and the adsorbed metal (a few ten nanometers) are
small compared to the wavelengths of infrared radiation (one to ten micrometers), a
systematic prediction utilizing bulk material properties is not possible. However, a
change in color of the sample’s area exposed to the metal vapor is often visible with
the bare eye. This motivates the assumption of a changing infrared absorption.

Figure 3.20 opposes the relative radiation contribution obtained by the novel
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Figure 3.20: Comparison of the Novel and Previous Data Evaluation Approach: Ra-
diation Contribution — The resulting radiation contribution of a calorimetric
measurement for the adsorption of calcium on 20 nm PTCDAa at cryogenic
temperature is given as a function of coverage utilizing the previous (gray dashed
line) and novel (orange dots) data evaluation approach and a sigmoidal fit of the
latter (blue solid line). The novel method results in a lower amount of radiation
and is able to detect a change in radiation absorption between 4 ML and 8 ML.

a Perylenetetracarboxylic dianhydride.

evaluation approach to the theoretical value derived from the transmission mea-
surement and used in the previous method. The latter overestimates the radiation
contribution in the entire studied range. Using a sigmoidal approximation of the
relative radiation contribution obtained by the novel approach, a transition between
two surfaces with different infrared reflectivity is directly visible.

Since a smaller radiation contribution implies a larger reaction heat, it is evident
that the abovementioned minimum is less pronounced in case of the novel data evalu-
ation approach. Since the novel data evaluation approach only uses the transmission
of the window as a starting value5 and not as an input parameter, it depends on
one – even non constant, and thus error prone – input parameter less.

A tuning of the transmission of the window in order to match the enthalpy of
adsorption to the heat of sublimation is possible but requires the sacrifice of the
internal standard. Furthermore, this rescue effort requires a stable and perturbation
free enthalpy of adsorption for a larger range of higher coverages. Several examples

5 A possible documentation of the soiling of the window is also possible.
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in this work show that this is not necessarily the case, see Sections 6.8 and 6.9. In
addition, the change in reflectivity cannot be compensated this way. This would
require a different setup involving an online reflectivity monitoring [87] which is not
possible with the present experimental setup.

Altogether, the novel data evaluation approach exceeds the capabilities of the
previous method and is able to achieve correct results.

Examples of the individual steps using the previous data evaluation approach can
be found in Appendix E.1.
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3.14 Status Display

If logging information of the machine is loaded, a standardized display is possible
with the Display NAC-Status feature using default labels.

This feature is useful for troubleshooting or to obtain evaporator runtimes from
comparison with a user supplied threshold value for a given channel.

Since the runtime determination is also applicable to other experimental setups,
it is not located in the NAC menu but in the Status menu.

It is also helpful for documentation of bake-out processes of the system.

Details to the status package are given in Section 4.4.
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3.15 Synopsis of the Data Evaluation

The usage of the data treatment program based on Igor Pro is explained in this
chapter along with the evaluation of an exemplary experiment.

Interaction with the menu, the contents and actions of the main panel, and of
several user interactive windows has been explained. The load operation and the
effects of different filters upon data import have been discussed. Data from the quartz
crystal microbalances for sample coating and deposition rate measurements is mostly
automatically processed. The processing of the various reference measurements and
the derivation of related parameters is explained in detail.

A part of the program package dedicated to statistical analysis also provides an
automatic removal of outliers. The fundamental criterion to identify those unreliable
data points is motivated.

Treatment of the calorimetric data, comprising heat and sticking measurements,
as a function of the reference experiments is illustrated. Further improvement of the
scatter in the result is possible by the use of fitted trends.

The reconstruction of the power input into the detector is provided by the
deconvolution part of the program package.

Averaging of compatible experiments, together with display of the most important
parameters, is included in order to improve the quality of the final results.

Comparison with the previous data evaluation approach used in other groups
reveals that the here presented novel approach is superior, since it requires one input
parameter less and is able to detect changing infrared absorption of the sample
without a dedicated measurement.

Finally, the package is rounded-up by explanation of convenience functions con-
cerning automated data treatment and display of status information related to the
experimental setup.
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This chapter describes the used file formats and presents a global view on the
developed Igor Pro packages. The entire program codes can be found in Appendix
C. The packages require Igor Pro Version 6.3 and are ready1 for Igor Pro
Version 7. It is recommended to disable the “Debug On Error” feature [155] since
some conditions cause, despite properly handling, a run time error and since it
increases computation speed.

The definition measurements refers to a single data acquisition run, e.g., a laser
reference measurement. The term experiment corresponds to a complete set of
measurements necessary to compute the coverage dependent heat of adsorption. A
set of data points related to a single dose from the beam is called a frame. Here,
one monolayer is defined as a closed packed layer of the dosed atoms in a specified
plane. The typically used plane is the closest packed plane for the most stable phase
at room temperature, i.e., the (111) plane for metals with cubic and the (0001)
plane for metals with hexagonal crystal structure, e.g., copper and magnesium,
respectively. Both structures with their primitive spatial and corresponding planar
unit cells are shown in the description of the used materials in Figures 6.1 and 6.2.

This chapter focuses on the explanatory part of the program packages. Examples
of the displayed windows and further illustration is given in Chapter 3. Special
characters are printed in small capitals and keywords in typewriter font. In
the PDF version of this document function names are bidirectionally linked to
the actual program code. One way links to descriptions of lower level functions are
printed without serifs.

Mandatory parameters are given in parentheses after the function name and
optional parameters are enclosed in additional square brackets.

1 Although it is successfully tested with version 7.00B02, the performance is reduced.
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4.1 File Formats

In general there are four types of data files used in a calorimetry project. All types
are text based with ANSI encoding and are readily readable for humans. Columns
are separated by tab-characters and ended by a cr lf sequence. The calorimetry
and the deposition measurement files contain a file header with general information
about the measurement and a column designator including units. The status logging
files only contain the latter. In addition to the calorimetry files, auxiliary files are
created. These files contain status information relevant for calorimetry measurements
with a lower temporal resolution. The measured data is usually single precision
floating point. To cover this accuracy the usual amount of seven digits per value is
written to the file. None of the data file types contains a specific end-of-file sequence.

For a convenient processing the files for one experiment should start with a fixed
string, e.g., ‘Exp0042’, followed by an incremental part like ‘aa’, and end with a
measurement specific file extension. Except the latter, this is automatically carried
out by the LabVIEW programs which are operating the NAC machine and collecting
the raw data.

4.1.1 Deposition Files

This file type stores information on the thickness measurements, as parts of the
calorimetry experiment. The two main purposes are the deposition rate measurement
for calorimetry in the main chamber and the determination of the deposited thickness
for sample preparation in the load lock.

.flx This file type contains a deposition rate measurement.

.tck This file type contains a thickness measurement.

.qcm This file type contains a quartz crystal microbalance measurement (QCM)
which is not directly related to a calorimetry experiment.

The file header consists of time stamps for Start and End of the data acquisition.
It is followed by a designator for the used Substance. For further processing the
full name or chemical symbol for elements should be used, e.g., Calcium or Ca. This
is especially recommended in the case of deposition rate measurements since this
string is used to automatically calculate heat capacities. For organic substances
abbreviations are usually used, e.g., ‘2HTPP’ for ‘5,10,15,20-Tetraphenyl-21H,23H -
porphyrin’. The substance identifier is followed by the Miller index for the exposed
lattice plane in parentheses. It also contains information of the assumed surface
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structure. ‘Ca(100)’ designates a square pattern of Calcium atoms whereas ‘Ca(111)’
corresponds to a hexagonal arrangement. The Molar Mass is given in g/mol. The
ML Atom Density denotes the number of surface atoms per square meter in the
structure given by the Miller index. ML Thickness gives the distance in nm between
two equivalent lattice planes corresponding to specified growth direction. This value
is not used in the calorimetry program but is recalculated from monolayer density,
molar mass, and density.

The next section in the header lists several settings of the QCM-controller. The
Density, given in g/cm3 and Z Value, i.e., the acoustic impedance, given in 105 g

s⋅cm2 .
The Tooling factor of the controller is ignored in the program and must be set to
unity. The file header is completed by the Number of Data Points recorded in the
file for integrity checking and a Notes section for free text remarks.

In the newest file version, units are also included in the designators in square
brackets, e.g., ‘Molar Mass [g/mol]:’.

The data section starts with the column label including units. The first column
must be labeled Time. This keyword ends the notes section and starts the data
section. Since the acquisition is software timed, the data points are not necessarily
equally spaced. Hence, it is mandatory to record a time stamp. The Rate is
too small to be used in the calorimetry setup but is recorded for compatibility to
other applications. The column Thickness contains the thickness as read from
the controller including its error correction mechanisms. Corrected errors, e.g.,
adhered particles on the probe crystal, can be identified by abrupt changes in the
Crystal Frequency. The temperature of the in the calorimetry software selected
thermocouple is stored in the Temp-column. The Pressure will contain the reading
of the pressure gauge in the molecular beam or in the load lock. Since these are not
installed at the time of this thesis it usually reads the pressure in the main chamber.

The Igor Pro software uses the Time and Thickness columns to calculate the
deposition rate for the calorimetry experiment. To be able to distinguish between
an unstable deposition rate – which is proportional to the corresponding flux – and
a not complete adsorption on the probe crystal in deposition rate measurements,
the analogue output of the mass spectrometer (QMS) is also recorded.
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4.1.2 Calorimetry Files

This file type stores the signal from the calorimetry probe and the analogue output
of the mass spectrometer. All calorimetry files have an identical inner structure. For
simplified usage several file extensions are used.

.dcv This file type contains a laser measurement with deconvolution parameters.

.cln This file type contains a laser measurement on a clean sample.

.usd This file type contains a laser measurement on a clean sample whose backside
has been used before.

.cot This file type contains laser measurement on a coated sample.

.ref This file type contains a laser reference measurement.

.win This file type contains a laser measurement with the infrared transparent
window in front of the sample.

.rad This file type contains a radiation measurement with the infrared transparent
window in front of the sample.

.cal This file type contains a calorimetry measurement.

.stk This file type contains a mass spectrometer based measurement, which is not
directly related to a calorimetry experiment.

.las This file type contains a laser measurement, which is not directly related to a
calorimetry experiment.

The file header consists of time stamps for Start and End of the data acquisition.
It is followed by the number of acquired pulse pairs used for integrity checking. It
differs from the value set in the LabVIEW program by +2. This is due to the
fact that the LabVIEW program is using a net pulse counter and the Igor Pro
software is using an absolute counter. The latter includes the baseline pulse pair at
the beginning and at the end of the measurement.

The following section contains the set parameters of the experiment. The Sample
Rate is used to calculate the spacing of the data points. The Chopper Period
contains the time for a full chopper cycle, i.e., a pulse pair. Hence, the duration
of a single frame is half the chopper period and the amount of frames is twice the
number of pulse pairs. The dosing time per frame is set by the Pulse Length and
the temporal position in the frame is given by Chopper Delay. The paragraph
is completed by status information of the stepper motor controller actuating the
chopper and the program used in the controller.

The Calorimetry Gain and QMS Gain settings are currently ignored and should
be set to unity. The Laser Power reads the measured power of the laser after
being reflected out of the main chamber. In the newest file version, the additional
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entry Laser Set Level contains the power set to the laser diode and Reflectivity
provides an interface to import the reflectivity used as the one of a clean sample.

The file header is completed by a user Notes section.
In past versions the units were given in parentheses and time values in ‘ms’. The

latest file version uses square brackets and SI units without prefix.
The data section contains the column headers, in the newest version with units.

The column header is only used for detection of the end of the notes section and
the begin of the data part. The column header as well as the data must be in the
format Calorimetry tab MassSpec... to ensure correct processing. The notes
section must not contain such a text fragment. The Igor Pro software loads the
first two columns expecting the calorimetry data in the first one and the data from
the mass spectrometer in the second one.

4.1.3 Auxiliary Files

For each calorimetry measurement file an auxiliary file is created. Each file contains
experiment related data with a temporal resolution of a pulse pair.

.aux This file type contains additional information to calorimetry files.

The file header is identical with the file header of the measurement file. The
column header must start with Time to end the notes section. The auxiliary files
should contain the Sample and Source temperature as well as the Motor_FB, i.e.,
motor feed back. The temperatures are used to calculate correction terms. The
motor response ‘Y’ is used to detect valid frames in the measurement. It also contains
‘MnS’, i.e., motor not started, at the beginning and end of a measurement, or an
error code from the stepper motor controller.

Besides the first column there is no specific order or maximal amount of columns.
The names in the header should comply with the Igor Pro naming syntax2.
Duplicate identifiers should be avoided.

The import function uses the units given in square brackets. One special case is
the unit TXT denoting a text column. Other special cases are millibar (mBar) and torr
(Torr) which are converted to Pascals (Pa). Degrees Centigrade C and Fahrenheit F
are converted to Kelvin (K). These temperature units must lack the degree character,
i.e., ‘°’, since it is not compliant with the used standard. Additional legal unit
symbols for temperatures are degC and degF, respectively.

2 31 characters, no blanks, no numeral as first character, ‘_’ is always allowed.
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4.1.4 Logging Files

The StatusLogging package uses this type to track the long term status of the NAC
machine. This feature may also be used for other instruments. Typical applications
for this feature are pressure and temperature logging during bake-out of the system
or tracking of malfunctions.

.log This file type contains additional information on the machine status.

Every day a new file is created and stored in the file name. Three formats for the
date are valid, i.e., DDMMYY, YYYYMMDD and YYYY-MM-DD. DD denotes the day in two
digit notation, e.g., ‘04’. MM and YY denote month and year in the same way3. YYYY
contains the year in four digit representation.

This file type contains no file header. The column header is identical to the one
in auxiliary files. Units are also treated like in auxiliary files.

3 YY uses the year 2000 as offset.
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4.2 NAC Program Package

The basic ideas used in the data treatment process are presented in this chapter.
The entire program codes can be found in Appendix C.1. In order to increase the
calculation speed for some operations the option for a dynamic base data folder was
discarded in the development process of this package.

For syntax and general programming techniques in Igor Pro the software
manual [155] should be consulted. All public names start with the prefix NAC_ to
avoid interference with other loaded extensions to Igor Pro. Private, i.e., Static
functions are only accessible by this software package and are thus lacking a prefix.
This readily illustrates the scope of a given function. Since almost all features of the
software package are accessible either from the control panel or the menu bar it is
neither recommended nor necessary to call functions from the Command Window.

All data related to an individual calorimetric experiment is stored in the data folder
root:NAC. In order to maintain clear arrangement the data is subdivided into common
folders containing machine parameters, e.g., the BeamDiameter, program settings,
e.g., window sizes, experiment parameters, e.g., the NominalPulseLength, and data
for the enthalpy calculation, e.g., thermodynamical corrections. Additionally, a
folder for each measurement holds the specific data, e.g., the Detector signal. These
folders contain subfolders for the statistical analysis of the experiment and for
auxiliary data recorded along the measurement.

Data related to a family of experiments, e.g., calcium adsorbed on a thin layer of
perylenetetracarboxylic dianhydride (PTCDA) at ambient temperature, is located
in root:NAC_Average. The settings are stored in a separate subfolder from the
experimental data. The data related to a specific experiment is placed in a subfolder
given the name of the underlying Igor Pro experiment file.

Errors are usually cleared upon new user actions. Some functions, only called by
top level functions, still lack a detailed integrity check and since errors are usually
already caught by the overlying functions their implementation is still pending.
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4.2.1 Definitions

Compiler settings, version requirements, pointers to physical data folders, and error
messages are defined.

Compiler Settings
The package requires an Igor Pro version of 6.2 or higher and uses global access
method, i.e., all variables, strings, and waves have to be accessed explicitly. It also
provides the definition for the menu operating the package.

Constants
Several constant expressions are used in the program package. The string constant
NAC_DataPathStr points to a default folder containing the calorimetry data and is
used when the package is initialized. Since Igor Pro uses the backslash character
as an escape character the path should be given in Macintosh notation with only
colons as separators. The current revision of the software is stored in NAC_Version.

The constants for the error codes are labeled with plain text and are self explaining.
They are partitioned into a group of serious errors that need user interaction and
well handled errors which might also occur during normal processing of the data. By
default only the first group of errors is reported by the Error Handling Package
but this behavior can be changed for debugging in the settings in that package, see
Section 4.3.

Menu
The menu bar provides less often used features of the package and some control
options.

Initialize creates the data structure used by the software package. If an experi-
ment is already loaded it will be overwritten in case no user windows have
been created.

Show Control Panel displays the main window providing access to the most fre-
quently used features and parameters. The assigned default hot key is Ctrl+1
and might be changed here.

Data Manipulation contains methods to manipulate the raw data.

Remove Detector Baseline provides a manual way to remove a selectable
baseline from the detector data set in case the filtering algorithm in the
load function fails.
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Invert Polarity allows to multiply a selectable detector signal by −1. The
data treatment is independent of the polarity of the sample as long as it
is consistent in the individual measurements. This option is indented to
produce publishable graphics rather than for data treatment.

Correct for Gain is a feature to use old data files recorded with a second
amplifier instead of utilizing4 the range setting of the measurement setup.
It is obsolete for newer data files.

Unload Measurement removes a loaded measurement from the experiment.

Display Statistics shows the result of the statistical analysis of the already
analyzed data in form of box plots.

Auto Flag automatically marks outlier frames in all or the selected data set. Marked
frames will be subsequently ignored by the data processing procedures. In-
dividual as well as all measurements can be treated with this operation. It
is also included in the Lazy Process routine for all meas, if the Auto Flag
option is enabled.

Reset Flag List resets the flag list to the same state as after loading in all or the
selected data set.

Copy Flag List conveniently synchronizes the excluded frames in the heat and
sticking probability measurements and vice versa.

Fitted Trends provides a method to reduce fitting artifacts by overriding fit para-
meters in the next iteration.

Update Experiment Version adjusts the data structure of old experiment files to
the newest software version. Experiment files with a version older than 3.7
cannot be updated.

Concatenate Calorimetry Files combines two calorimetry files including the
check relevant parameters.

Trim Calorimetry Files extracts a subset from a calorimetry file including the
check relevant parameters.

Settings provides adjustment of the general behavior of the program.

Auto Flagging set to enabled alters the behavior of the Lazy Process rou-
tine. With this option it automatically masks outlier frames and performs
an additional process cycle before the heat and sticking probability mea-
surements are processed. It is enabled by default.

4 See LabVIEW control program by H. Zhou.
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Load Supporting Files switches from loading the default experiment data
files to the supplementary files usually used for characterization and
testing if this option is enabled. It is disabled by default.

Store Filter Residue Waves keeps the residue from the Fourier filtering in
the load function if enabled. This option provides a way to inspect the
details of the baseline removed by the filtering. Since it is not necessary
for data treatment and consumes a rather large amount of memory it is
disabled by default.

Automatically Recalculate Averaged Experiments
defines if newly added experiments are automatically included in the
calculation of the averaged sticking probability, coverage and enthalpy.
Since the calculation becomes slow for many large data sets it is disabled
by default.

Show Data Points in Box Plots defines if regular data points are displayed
in the statistical box plot.

Average Experiments comprises the controls of the subsystem utilized to average
individual experiments with the same parameters.

Load Results loads the relevant data from a calorimetry experiment file. The
assigned default hot key is Ctrl+2 and might be changed here.

Average Loaded Experiments averages the data in the loaded calorimetry
experiments.

Remove Loaded Experiment deletes the data from a previously loaded calori-
metry experiment.

Display Averaged Results creates the graphs related to the averaged data.

Display NAC-Status extends the Status Package and provides a tailored display
of the status of the NAC machine.

4.2.2 Initialization

This part contains the initialization routines for the package. Old data is deleted, the
data structure is created, the machine specific parameters are set to their standard
values, and the control panel is displayed.
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NAC_Initialize()
This function (re-)initializes the NAC program package. It sets the default location
of the stored data and initializes the Error packages.

If the software was already initialized the standard windows are closed and the
dependencies are lifted in order to be able to delete the data folder containing all
data corresponding to the calorimetry application. If this fails an error is reported.

Subsequently, the data structure, dependencies, and the control panels5 are created.

Variables()
This function initializes all variables and waves used in the program arranged by
the parent data folder. Relevant standard values are given in parentheses and are
used without the given unit.

:GUI: This data folder contains all variables concerning the graphical user interface.

WWidth(400), WHeight(300), MarginTop(45)
are dimensions used to display data windows.

ReEntryFlagWin(0), ReEntryCursor(0), ReEntryPosProc(0)
prevent a reentry of WinHook functions.

ProgressValue is used to indicate the progress for batch fitting procedures.
PositiveRange, NegativeRange is used to synchronize signal axis ranges for

calorimetry graphs.
PositiveRangeSticking, NegativeRangeSticking

is used to synchronize signal axis ranges for mass spectrometer graphs.
RangeDeconvolution is used to synchronize power axis ranges for deconvolu-

tion graphs.
LoadSupportFiles(0) defines if standard experiment files of supplementary

files are suggested.
StoreFilteredWaves(0) defines if residual waves from filtering are stored in

the experiment.
ShowBoxPlotData(1) defines if regular data points are shown in box plots.
PositiveName(“”), NegativeName(“”)

holds the name of the calorimetry measurement which is defining the
range settings.

5 Additional panels are intended to be used in future versions capable of handling data acquisition
and machine control.
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PositiveNameSticking(“”), NegativeNameSticking(“”)
holds the name of the sticking probability measurement which is defining
the range settings.

NameRangeDeconvolution holds the name of the deconvoluted measurement
which is defining the range settings.

StatsLabelPos provides positions for the labels in the statistics plot.
StatsLabels provides labels for the labels in the statistics plot.

:Machine: This data folder contains all variables concerning the parameters related
to the experimental setup. Important standard values are given with the
property.

LaserPowerCorrectionList stores the possible values used to correct the
laser power measured outside the chamber to obtain the laser power on
the sample, see Section 5.8.3. It provides a convenient way to adjust this
parameter to older experiments. Entries must be separated by semicolons.

ReflectivityCleanList stores reflectivities of frequently used clean samples,
see Section 5.1. In case of a labeled entry the numeric value has to be
followed by a blank and the describing text, e.g., “0.444 Ni/PVDF;”.
Each entry must be followed by a semicolon.

LaserPowerCorrection() provides the value used in the program to correct
the laser power measured. The standard value is the first entry of
LaserPowerCorrectionList.

ReflectivityClean() contains an average value of the reflectivity of a pristine
sample measured outside the vacuum chamber, see Section 5.1. It is passed
on to uninitialized reflectivities. The standard value is the first entry of
ReflectivityCleanList.

BeamDiameter(0.0045 m) contains the diameter of the beam defining orifice,
see Section B.1.5.

QCMDiameter(0.006 m) provides the diameter of the back electrode of the used
QCM oscillator crystal.

QCMToolingCalorimetry(1.09042)
provides the value used to correct the deposition rate measured with the
quartz crystal microbalance in the ancillaries stage to obtain the artifact
free value, see Section 5.8.2.

QCMToolingCoating(0.604) provides the value used to estimate the thickness
of the substrate layer prepared in the load lock, see Section 5.4.4.
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QMSToolingCalorimetry(0.959158)
provides the value used to correct the intensity of the reference mass
spectrometer signal measured with the hot plate in the ancillaries stage,
see Section 5.8.4.

RateFittingWindow(60 pnts) defines the interval in data points used to cal-
culate the temporal evolution of the deposition rate in a deposition mea-
surement. Smaller numbers give higher temporal resolution on expense
of higher noise.

DeconvolutionWindow(0.012 s) defines the time window the deconvolution
routine is allowed to see to predict the posterior signal shape. Smaller
numbers give higher temporal resolution at expense of higher noise.

PulseLengthDetectionWindow(0.1 s)
provides a parameter used in pulse length detection, see Section 3.5.4.

HighpassFrequency(0.175 Hz) defines the low pass cut off frequency for data
filtering used to remove the transient oscillation at the beginning of the
data, see Section 3.3.

LineNotchFrequency(50 Hz) defines the center frequency of a 1 Hz wide notch
filter used to remove picked up power line noise.

SecondNotchFrequency(0 Hz) defines the center frequency of a 2 Hz wide
additional notch filter used to remove setup specific noise.

NyquistFrequency(500 Hz) defines the low pass cut off frequency for data
filtering and is used to down sample data acquired with a higher rate.

ProcessRate defines the spacing of the data points of the calorimetry data
independent from the sample rate during acquisition and is twice the
NyquistFrequency.

TrimTrendRange(5) defines the number of frames at the beginning and at
the end of a data set which are ignored during the creation of a trend,
see Section 3.9.

:Enthalpies: This data folder contains and accepts the metadata, e.g., fit waves
and results, of the calorimetry experiment.

MultiLayerPosLow(NaN ), MultiLayerPosHigh(NaN )
store the cursor positions used for the interval to calculate the average
adsorption enthalpy.

MultiLayerEnthalpy stores the calculated average adsorption enthalpy in
joules per mole considering the interval set by the cursors.
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MultiLayerEnthalpyError stores the calculated standard deviation of the
adsorption enthalpy in joules per mole considering the interval set by the
cursors.

SubtractAdsorbed(NaN ), SubtractDesorbed(NaN )
store the automatically computed thermodynamical corrections in joules
per mole.

MultiLayerReference stores the calculated sublimation enthalpy at the sam-
ple temperature as internal reference value in joules per mole.

ThicknessRange is used to create the secondary axis in meters for the prop-
erties plotted versus a coverage in addition to the axis in monolayers.

StickingLimit(1) provides a guide to the eye for an upper limit of the
sticking probability.

Coverage contains the coverage in monolayers determined from the calorimetry
deposition rate and sticking probability measurements as a function of
pulse number.

Enthalpy contains the final result of a calorimetry experiment as a function
of pulse number.

Sticking contains the sticking probability as a function of pulse number.
Thickness contains the coverage converted to meters.

:Experiment: This data folder contains the global parameters of an individual
calorimetry experiment.

ProjectVersion(NAC_Version) stores the version information of the software
package upon initialization.

ExperimentName contains an identifier of the experiment.
SampleRate stores the sample rate in hertz used to acquire the data.
DataPointsPerFrame stores number of data points in a frame of the acquired

data.
OpenCloseSteps stores the number of steps used by the stepper motor of the

chopper.
ChopperPeriod, ChopperDelay, NominalPulseLength

contain parameters in seconds used to define the pulse shape to generate
the pulses.

PulseLength represents the determined experimental pulse length in seconds,
see Section 3.5.4.
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LengthDetectFailed indicates that the automatic algorithm to detect the
experimental pulse length has failed and the nominal pulse length is used
instead.

TemperatureSample(NaN ), TemperatureSource(NaN )
contain the average temperatures of the sample and of the source from a
heat measurement.

AutoFlag, AutoFlagged indicate if outlier frames are and have been auto-
matically detected.

UseFittedRadiation(0), UseFittedDesorption(0)
determine if the trends approximating the evolution of the fit coefficient
are used, see Section 3.9.

MirrorContamination(1) provides a temporary, multiplicative correction
factor in case of a contamination of the mirror in the ancillaries stage.

SwitchDeadTime(0 s) is implemented to mask the range in a frame disturbed
if a resettable amplifier is implemented in the setup. This parameter is
intended for future use only.

UseEmptyCrucibleReference(0) defines whether a reference obtained from
an empty evaporator crucible is to be used to calculate the radiation
contribution, see Section 5.8.1.

EmptyCrucibleTemperature(NaN ) stores the crucible temperature of the ra-
diation reference obtained from an empty evaporator.

:CalorimetryMeasurements : Each of these data folders contains the variables
related to calorimetric measurements, see Section 4.1.2. It also contains a data
folder for auxiliary data. Measurement specific variables are described later.

Header(“Not Loaded”) contains the file header of a loaded data file line by
line.

FileName(“Not Loaded”) contains the file name of a loaded data file.
Loaded(0) indicates if a data file is loaded for this type of measurement.
DisplayRaw, DisplayFit store data used to display individual frames of raw

and processed data.
FlagList stores information if frames are marked for exclusion in further data

processing.
NumberOfFrames, EffectiveFrames

store the total amount of recorded frames and the amount of frames
qualifying for data treatment.

CurrentFrame(0) provides the number of the currently displayed frame.
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BrowseDeconvolutionIndex(0) provides the number of the currently dis-
played deconvoluted frame.

:Statistics: This data folder contains the statistical analysis of a data set
corresponding to a reference measurement, see Section 3.6.
Amplitude contains the amplitude of a frame with respect to the average

of the measurement.
Position contains a position index for box plots.
Medians(NaN ) contain the median of the amplitudes.
Quartiles(NaN ) contain the upper and lower quartiles of the amplitudes.
Whiskers(NaN ) contain the value of the smallest respectively largest

amplitude within the whisker limits.
WhiskerLimits(NaN ) contains the whisker limits.
AutoFlagged(0) indicates if automatic frame selection has been per-

formed.
StdDev(NaN ) contains the standard deviation of the amplitudes.
ChiSq reports a relative measure for the quality of the fit to the corre-

sponding frame. Negative values encode the, actually positive, error
code arising from a fit error.

Outlier contains the amplitudes of a frame in case it exceeds the whisker
limits and NaN otherwise.

:RateMeasurements : Each of these data folders contain the variables related to
thickness measurements, see Section 4.1.1. It also contains a data folder for
auxiliary data.

Header(“Not Loaded”) contains the file header of a loaded data file line by
line.

FileName(“Not Loaded”) contains the file name of a loaded data file.
Loaded(0) indicates if a data file is loaded for this type of measurement.
Substance(“”) contains the identifier of the deposited substance including a

designator for the assumed growth direction.
SubstanceName(“”) contains the plain text name of the deposited substance.
FittedRateAvg, FittedRateErrorPos, FittedRateErrorNeg

contain the averaged deposition rate and the corresponding error bands
in meters per second.

BaselineTo, BaselineFrom define the range for deposition.
UseBaseline switches base line correction on or off.
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DepositionRate(0) provides the measured deposition rate including base
line correction if applicable in meters per second.

BaselineBefore(0), ApparentRate(0), BaselineAfter(0)
store the results of the linear regressions of the three sections in the
thickness measurements in meters per second.

TotalThickness(0), ThicknessMonoLayers(0)
contain the complete thickness including corrections if applicable in meters
and monolayers.

Duration(0) provides the duration of a deposition in seconds.
Density provides the density of the deposited substance in grams per cubic

centimeter.
MolarMass provides the molar mass of the deposited substance in grams per

mole.
MonolayerDensity provides the monolayer density of the deposited substance

in atoms per square meter.
FittedFrom(NaN ), FittedTo(NaN ) define the range applying to the statis-

tical analysis on the processed deposition rate.
FittedAvg(NaN ), FittedSDev(NaN ) contain the average and standard de-

viation of the processed deposition rate.

:Deconvolution: This section describes variables unique to the deconvolution
measurement in addition to the above mentioned variables and waves. Since
frame and pulse parameters are different in this measurement additional
variables are stored in this folder.

Reflectivity contains the reflectivity of the sample during the deconvolution
measurement.

LaserPower contains the laser power used in the deconvolution measurement.
SampleRate stores the sample rate in hertz used to acquire the data.
DataPointsPerFrame stores number of data points in a frame of the acquired

data.
OpenCloseSteps stores the number of steps used by the stepper motor of the

chopper.
ChopperPeriod, ChopperDelay, NominalPulseLength

contain parameters in seconds used to define the pulse shape to generate
the pulses.

PulseLength is synchronized with the nominal pulse length.
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AverageFrames(1) determines the amount of frames of the same parity to be
averaged during a deconvolution of the whole data set. This option is
intended to improve the noise level or to safe time in case of a preliminary
data treatment.

RemoveFixedRadiation, RemoveFittedRadiation
define the handling of the radiation component if a heat measurement is
deconvoluted, see Section 3.10.

UseFittedFitWave(1) defines whether a noise free function fitted to measured
data or the actual data should be used for deconvolution.

Sensitivity(1) contains a value for the relative sensitivity change upon a
temperature change of the detector.

UseSensitivity(1) defines if the calculated sensitivity value is used. It
should be switched to zero if the deconvolution measurement is performed
at the same detector temperature as during the heat measurement, see
Section 5.9.4.

SwitchDeadTime(0 s) is implemented to mask the perturbed range of a frame
in case a resettable amplifier is implemented in the setup. This parameter
is intended for future use only.

:BeforeCoating: This section describes variables unique to the before deposition
measurement.

Reflectivity contains the reflectivity of the pristine sample.
LaserPower contains the laser power used in the measurement.

:AfterCoating: This section describes variables unique to the after deposition
measurement.

Reflectivity(NaN ) contains the calculated reflectivity of the coated sample.
LaserPower contains the laser power used in the measurement.

:LaserReference: This section describes variables unique to the laser reference
measurement.

Reflectivity contains the reflectivity of the sample.
LaserPower contains the laser power used in the measurement.

:Transmission: This section describes variables unique to the transmission refer-
ence measurement.

Reflectivity contains the reflectivity of the sample.
LaserPower contains the laser power used in the measurement.
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:Heat: This section describes variables and waves unique to the heat measurement.

InitOffset(0), InitAdsorption(1e-6), InitRadiation(1)
provide initial coefficients for the fitting procedure for the offset, adsorp-
tion, i.e., laser like, and radiation contribution.

InitAdsorptionShift(0), InitRadiationShift(0)
provide initial coefficients for shifts in the pulse position for the adsorption,
i.e., laser like, and radiation contribution.

HoldOffset(0), HoldAdsorption(0), HoldRadiation(0)
define if the initial coefficients should be held at their given values, e.g.,
if a constant radiation contribution is assumed.

HoldAdsorptionShift(1), HoldRadiationShift(1)
define if the pulse position for the adsorption, i.e., laser like, and radiation
contribution is allowed to change or held at the given value.

LinkShifts(1) defines whether the shifts of the radiation and heat contribu-
tions to the fit result experience identical shifts or are independent.

Offset contains the contribution of the offset to the corresponding frame
obtained by fitting.

Adsorption contains the contribution of the adsorption to the corresponding
frame obtained by fitting in joules.

Radiation contains the amount of the radiation to the corresponding frame
obtained by fitting relative to the averaged radiation measurement.

ShiftAds, ShiftRad report the time shifts of the pulse components to the
corresponding frame and are obtained by fitting.

ChiSq reports a relative measure for the quality of the fit to the corresponding
frame. Negative values encode the, actually positive, error code arising
from a fit error.

fit_Radiation contains a fitted evolution of the radiation component which
might be used to reduce scatter, see Section 3.9.

orig_Radiation contains a copy of the original radiation contribution in case
trends are used in the fitting routine.

:Sticking: This section describes variables and waves unique to the sticking
probability measurement.

InitOffset(0), InitDesorption(0.5)
provide initial coefficients for the fitting procedure for the offset and
sticking contribution.
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InitShift(0) provides an initial coefficient for the shifts in the pulse position
for the sticking contribution.

HoldOffset(0), HoldDesorption(0), HoldShift(1)
define if the initial coefficients should be held at their given values.

Offset contains the contribution of the offset to the corresponding frame
obtained by fitting.

Desorption contains the amplitude of the mass spectrometer signal which is
proportional to the not-adsorbed, i.e., desorbed, molecules.

Shift reports the time shift of the pulse components to the corresponding
frame and are obtained by fitting.

ChiSq reports a relative measure for the quality of the fit to the corresponding
frame. Negative values encode the, actually positive, error code arising
from a fit error.

fit_Desorption contains a fitted evolution of the desorption component
which might be used to reduce scatter, see Section 3.9.

orig_Desorption contains a copy of the original desorption contribution in
case trends are used in the fitting routine.

StickingLimit(1) provides a guide to the eye for an upper limit of the
sticking probability.

:RateCoating: This section describes variables unique to the coating measurement.

UseTotalRange(1) defines, whether the beginning and end thickness in a
data set should be used to calculate the deposited thickness, or the range
between the set cursors.

:RateCalorimetry: This section describes variables unique to the calorimetry
deposition rate measurement.

DosePerPulse(0), MoleDosePerPulse(0)
provide the amount of the dosed substance in monolayers per pulse and
moles6 per pulse, respectively.

RateMonoLayer(0) provide the deposition rate of the dosed substance in
monolayers per second.

Finally, the scaling of the waves is set and the calculation of the auxiliary Debye
integral is initiated.

6 The unit, not the members of the Talpidae family.
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Dependencies()
Several values are automatically calculated using the Igor Pro feature of dependent
objects [155] which are updated whenever an object in the dependency relation is
modified.

:Machine:ProcessRate is a machine parameter defined as twice the Nyquist cutoff
frequency.

:BeforeDeposition:Reflectivity contains the machine parameter for the reflec-
tivity of a clean sample.

:Deconvolution:Reflectivity contains the machine parameter for the reflectivity
of a clean sample.

:Deconvolution:PulseLength is linked to the nominal pulse length of the decon-
volution measurement.

:RateCalorimetry:DepositionRate contains the deposition rate of a calorimetry
experiment in meters per second and is corrected by the baselines if applicable.

:RateCalorimetry:RateMonoLayer contains the deposition rate of a calorimetry
experiment in monolayers per signal and is calculated from the deposition
rate in meters per second, the density of the substance, molar mass of the
substance, and the insinuated monolayer density used for illustration.

:RateCalorimetry:DosePerPulse contains the dose in monolayers per pulse cal-
culated from the deposition rate in monolayer per second and the pulse length
used for illustration.

:RateCalorimetry:MoleDosePerPulse contains the dose in moles per pulse cal-
culated from the deposition rate in meters per second, the pulse length, the
density of the substance, molar mass of the substance, and the diameter of
the beam. This is one relevant quantity for the enthalpy calculation.

:RateCoating:Duration represents the duration of coating the sample in seconds
defined by the positions of the corresponding cursors.

:RateCoating:DepositionRate contains the deposition rate of a coating procedure
in meters per second and is corrected by the baselines, if applicable.

:RateCoating:TotalThickness contains the thickness of the deposited substrate
according to the set calculation method and is corrected for geometrical aspects.
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:Enthalpies:SubtractAdsorbed represents the thermodynamical correction for
adsorbed molecules.

:Enthalpies:SubtractDesorbed represents the thermodynamical correction for
repelled molecules.

:Enthalpies:MultiLayerEnthalpy contains the average enthalpy in the range
given by cursors, usually set at high coverages.

:Enthalpies:MultiLayerReferenceError
contains the standard deviation of the multilayer enthalpy value in the range
given by cursors.

:Enthalpies:MultiLayerReference contains the theoretical enthalpy value the
dosed substance deposited on itself and can be used as an internal standard to
the experiment.

:Enthalpies:Thickness contains the conversion of the coverage in monolayers into
meters.

:Calorimetry Measurement :EffectiveFrames contain the amount of qualified
frames for each calorimetric measurement and is calculated from the marking
FlagList.

CreateDebyeIntegral()
An auxiliary wave used in the calculation for heat capacities from Debye temperatures
is prepared in this function to speed up calculations in other parts of the software.
This method is used in case of absent tabulated heat capacities and the employed
relation corresponds to the third Debye function.

KillDependencies()
Since Igor Pro does not allow to kill waves which are a part of a dependency these
dependencies need to be lifted. This task is executed in this function.

4.2.3 Graphical User Interface

This section gathers all functions related to the user interface including input, output,
and graphing. Most functions carrying the string “Display” in their name check
if the window corresponding to the measurement already exists. In that case the
function brings the window to the front, update axes, and gets terminated. The
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descriptions in these sections assume that the applying window has not been created
yet.

NAC_RemoveNAC()
In case the package is initialized, the user is prompted whether the data inside the
NAC data folder should be deleted. Upon confirmation, the related windows are
closed, the dependencies are revoked, and the data folder is removed.

NAC_Unload()
After determination of the loaded measurement files, a user prompt is displayed to
select the measurement about to be removed. Subsequently, the data structure of
the chosen measurement is reset.

NAC_CorrectGain()
After determination of the loaded measurement files a user prompt to select the
measurement and to enter the used gain is displayed. Upon validation the Detector
data of the selected measurement is divided by the provided gain.

NAC_MenuAutoFlag()
This string function returns the text displayed as the Auto Flag menu item. It adds
a preceding format character, if the package is not initialized to disable the menu
item, or if the function is activated to signalize whether the auto flagging feature is
enabled.

NAC_MenuLoadSupport()
This string function returns the text displayed as the Load Supporting Files menu
item. It adds a preceding format character, if the package is not initialized to disable
the menu item, or if the function is activated to signalize whether default files or
supporting files are displayed in the file open dialogue.

NAC_MenuStoreFiltered()
This string function returns the text displayed as the Store Filter Residue Waves
menu item. It adds a preceding format character, if the package is not initialized
to disable the menu item, or if the function is activated to signalize whether the
residual waves from filtering are calculated and stored.
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NAC_MenuAutoUpdateAverages()
This string function returns the text displayed as the Automatically Recalculate
Averaged Experiments menu item. It adds a preceding format character, if the
package is not initialized to disable the menu item, or if the function is activated
to indicate whether added experimental results are processed automatically by the
averaging subsystem.

NAC_MenuShowBoxPlotData()
This string function returns the text displayed as the Show Data Points in Box
Plots menu item. It adds a preceding format character, if the package is not
initialized to disable the menu item, or if the function is activated to indicate
whether regular data points are displayed in the statistical box plot.

SetDeconvolutionGraphRanges(Name, Type)
In order to be able to visually compare the results of the deconvolution the power axis,
i.e., ordinate, is synchronized to the same range in all deconvolution windows, i.e.,
with a name ending by Deconv, BrowseDeconv, and AvgDeconv, by this function.

After checking, if the function is applicable to the measurement given by Name, the
relevant trace determined by Type is assigned. From this data temporary rounded
boundaries are calculated symmetric to zero. If the measurement was defining before
or the new ranges are larger than the old limits, the ranges are updated. Finally,
the ordinates or color scales are set to the new ranges in all corresponding windows.

SetGraphRanges(Name, ProcessWave)
In order to be able to visually compare the intensity of the measured data, the
signal axis, i.e., ordinate, is synchronized to the same range in all windows related
to measured data, i.e., with a name ending by Full, Flag, Frames, and Avg, by this
function. Windows for calorimetry data and mass spectrometer data are treated in
two individual subsets.

After checking, if the function is applicable to the measurement given by Name,
the relevant trace determined by ProcessWave or by default the Detector signal is
assigned. From this data temporary rounded boundaries are calculated for positive
and negative values. If the measurement was defining or if the absolute value of
a new range is larger than the absolute value of the corresponding old limit, the
ranges are updated. Finally, the ordinates are set to the new ranges in all applicable
windows.
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DisplayTrend(Name, ShowTrend)
As a possible way of reducing the scatter in the ultimately calculated heat of
adsorption data the contributions of the sticking probability measurement and the
portion of infrared radiation in the heat signal can each be substituted by a trend
line, see Section 3.9. This function displays the original data and, if requested by
ShowTrend, the corresponding substitute.

During a check, if the function is applicable to the measurement given by Name,
the waves for original and approximated data are assigned. The two data sets are
displayed, the traces are colored and the axes labeled. The trace for the trend is
shown according to ShowTrend in both cases.

DisplayFittedRate(Name)
This function displays the piecewise fitted thickness change of data from the quartz
crystal microbalance for visual inspection of the evolution of the deposition rate.

First, it is checked whether the function is applicable to the measurement given by
Name. The fitted deposition rate and an indicator for an average are displayed and
colored. The average is calculated between two cursors added at the same positions
used to mark the end and beginning of the base line sections in a calorimetry
deposition rate measurement. Finally, the text box with detailed information and
the traces for the average with error intervals are created and an action function
responding to changes of the cursors’ positions is installed.

DisplayVsCoverage(Name)
The intention of this function is to display the sticking probability or the measured
heat against the coverage of the adsorbed material. Additionally, it provides two
cursors defining a range used to calculate an average heat in the latter case.

Initially, it is checked whether the function is applicable to the measurement given
by Name. The result related to the kind of data is displayed together with a trace
for unity, i.e., total, sticking or for the averaged heat. Subsequently, the traces are
colored and the ordinate is labeled. In case of the measured sticking a text box with
details is displayed. In case of the measured heat, an action function responding
to changes in cursors’ positions is installed. This function creates and updates a
text box with details. Further on, the cursors defining the range to average the
heat are added. Finally, the coverage ranges are synchronized, an additional axis
displaying the thickness in meters rather than monolayers is added, and the abscissas
are labeled.
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SetRangesCoverage(Name)
This function provides a mechanism to adjust the axis ranges for the results of
the sticking probability and heat calculation displayed versus the coverage of the
adsorbed material.

If the window corresponding to the data set specified by Name exists, the ranges
of the ordinates are calculated and set.

DisplayVsPulse(Name)
The intention of this function is to display the sticking probability or the components
of the measured heat, i.e., the radiation and adsorption related part, as a function
of the running number of the acquired frame which is proportional to the dose.

During a test, if the measurement given by Name is applicable, the individual
axis labels and derived measurements, i.e., Adsorption and Radiation respectively
Desorption, are assigned. If no data was processed, the function quits. Subsequently,
the results are displayed, colored, information text is added, and the axes are labeled.
In case of the Desorption intensity an indication for the theoretical maximum, i.e.,
one, is added and the ordinate is adjusted to the range of the data.

DisplayNonFlagged(Name)
This function displays all acquired frames of a measurement specified by Name on
top of each other to identify and select disturbed frames.

After checking, if the measurement is applicable and loaded, experimental parame-
ters are assigned and the window is created. Subsequently, all measured frames are
added, colored according to their parity, and hidden if removed from data processing.
An action function responding to the also added cursor is installed providing a
convenient way to select disturbed frames by visual inspection. A text box with
information rounds up this feature.

CheckButtons(Name, WName)
After a test, if the window given by WName is valid, the navigation buttons are
enabled or disabled according to the position of the currently displayed frame in the
data set specified by Name. The appearance of the button, used to mark frames as
excluded from processing, is also controlled by this function.
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DisplayFlagWindow(Name)
This function displays the currently selected frame for a measurement specified
by Name together with the average frame correlated with the measurement or the
result of the fitting routine. This provides a method to identify deviations of the
calculation to the measurement and to decide whether the specific frame is used for
a (re-)calculation.

At the beginning, the function tests whether the data related to the measurement
given by Name is loaded. Fixed display waves for raw and fitted respectively averaged
data are displayed together with buttons to navigate though the data set. The data
corresponding to the currently displayed frame are assigned to these display waves
when the windows get updated.

UpdateFlagWin(Name)
The window, related to the frame selection procedure for a measurement specified
by Name, is updated by this function including reassignment of data, coloring, and
updating of informational text boxes.

This function prevents infinite loops due to invoking itself, if it has already been
called, by a forced exit. The raw data corresponding to the current frame of the
measurement and the corresponding averages, if already calculated, are assigned
to their display waves for the reference measurements. In case of the sticking and
heat measurements the result of the corresponding fit is displayed instead of the
average, if it has been calculated. In case data is not available, the display wave
is transparent. Subsequently, the navigation buttons are updated. Coloring of the
traces also extends to the displays of the full data, i.e., stacked and linear, if they
are already displayed.

KillWins(Name)
All windows related to the measurement given by Name are closed.

DisplayAverage(Name)
The averages for both parities of the qualified frames of a measurement stated
by Name are displayed by this function in case the averages have previously been
calculated. The traces are colored, the axes are labeled, and an information text
box is added.
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DisplayDeconvolutedAverage(Name)
The deconvolutions of the averages for both parities of the qualified frames of a
measurement stated by Name are displayed by this function if they have previously
been calculated. The traces are colored, the axes are labeled and their ranges
adjusted, and an information text box is added.

DisplayDeconvolution(Name)
The deconvolution of a measurement stated by Name is displayed by this function as
a color coded image if the deconvolution was performed before. The image is color
coded. A color map is added and labeled together with the other axes. All ranges
are adjusted and an information text box is added. A cursor controlling an action
function is installed in order to select an individual deconvolution which is displayed
in a separate window.

DisplayDeconvolutedFrame(Name)
The deconvolution of a frame pair or the average pair of several frames in a mea-
surement stated by Name is displayed by this function in case the deconvolution has
previously been calculated. Two display traces are colored, the axes are labeled,
their ranges adjusted, and an information text box is added. The actual data is
assigned to the display waves by an action function.

DisplayMeasurement(Name)
All frames of a measurement given by Name are displayed in a linear way. A cursor
provides a way to select an individual frame for closer inspection. Frames excluded
from further data processing are color coded.

If the data is loaded, a window is created and all individual frames are appended
to it with an x-offset calculated from the running frame number. The axes are
labeled, their ranges set, and an information text box is added. An installed action
function allows the cursor to select the CurrentFrame.

DisplayRateFile(Name)
The thickness as a function of exposure time recorded during a deposition rate
measurement is displayed, in case it was loaded, together with three traces for linear
regressions. Two of those represent the base line before and after the exposure.
The slope of the third, i.e., middle, one corresponds to the apparent rate during
the deposition. The traces are colored, the axes are labeled, and two cursors are
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added separating the deposition region from the base lines. Changes of the cursors’
positions trigger an installed action function calculating the linear regressions. A
text box with details completes the window.

DoRateTextBoxes(Name)
If applicable, this feature updates the text boxes displayed together with a deposition
rate measurement specified by Name containing detailed information.

UpdateFittedRate(Name)
If applicable, this feature recalculates the statistics of the piecewise fitted deposition
rate measurement specified by Name and updates the values for the average, the
error intervals, and the text box containing detailed information.

DoHeatTextBox()
If applicable, this feature updates the text box displayed together with the results
of a heat measurement containing detailed information.

DoDeconvolutionTextBox(Name)
If applicable, this feature updates the text box displayed together with the re-
sults of the deconvolution of a measurement specified by Name containing detailed
information.

NAC_ShowControlPanel()
This function brings the control panel to the front if the package is loaded or
otherwise starts the initialization process.

NAC_Panels()
This feature gathers all functions initializing control panels. Since currently there
is only the panel used for data treatment, this operation is preparatory for later
package versions capable of controlling the experimental setup or of data acquisition.

NAC_DataPanel()
This function builds the data treatment control panel comprising the most frequent
parameters and operations. Details of the usage are given in Chapter 3. The
corresponding action functions derive the name of the measurement from the name
given to the control.
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The first segment contains commands creating controls to display the most im-
portant variables and parameters of the whole calorimetric experiment. Variables
can be altered directly in this panel, parameters are only displayed and have to be
modified via the data browser, the command line, or, for a permanent change, in the
program code.

The second segment consists of commands creating the horizontal headings denot-
ing the single measurements in an experiment arranged by columns. It also contains
the vertically arranged captions labeling the elements in a row. The command but-
tons in this section apply to all experiments and spare the user gratuitous repetition
of actions, e.g., upon load of an experiment clicking the Load button and selecting
one file from one listed file for all eleven measurements.

The third segment comprises the creation of data manipulation controls for each
measurement. It is compressed by a loop structure covering all measurement types.

The same pattern is used in the fourth segment to generate the labels and display
controls for variables and parameters, which are different in every measurement.

The fifth segment finally adds a progress bar, measurement specific control options,
and variable displays to the panel.

4.2.4 Data Processing

This section covers all function related to the actual data processing, i.e., the
calculation of the desired properties, and forms the core of this package.

NAC_AutoFlagAll()
This feature calls the AutoFlag feature for all loaded experiments, updates the related
windows, and sets a flag that it has been run.

Coverage2Thickness()
This tool converts a coverage θML given in monolayers to a thickness d in meters
according to the physical properties, i.e., density ϱ in g/cm3, molar mass M in g/mol,
and monolayer density σML in 1/m2⋅ML of the deposited material as

d =
θML ⋅M ⋅ σML

ϱ ⋅NA
. (4.1)

186



4.2 NAC Program Package

ProcessProc(Name[, NoDecon])
This is the core function of the whole package. Depending on the type of measurement
it invokes several lower level functions treating the data and provides a convenient
way to process the data specified by Name. It also ensures that no steps are omitted
and all steps are processed in the correct order. For intermediate calculation the
deconvolution step can be skipped by setting of NoDecon.

Although the program code follows the lineup of the necessary actions, the
description is sorted by measurement types to increase clarity.

In a first common step, it is tested whether the measurement is applicable and if
the correlated fit waves have been generated. In case of calorimetric measurements,
the average of the qualified frames is calculated.

Deconvolution measurements also create normalized fit waves.
Before Deposition measurements also create normalized fit waves and the calcula-

tion of the reflectivity of the coated sample is attempted.
Coating thickness measurements are converted to the differential deposition rate,

displayed, and the information window is updated.
After Deposition measurements also create normalized fit waves and attempt the

calculations of the reflectivity of the coated sample as well as of the temperature
induced sensitivity change.

Laser Reference measurements also obtain the actual pulse length, create nor-
malized fit waves, and attempt the calculation of the temperature induced
sensitivity change.

Transmission Reference measurements also calculate the transmission of the in-
frared transparent window.

Radiation Reference measurements also create normalized fit waves.
Deposition Rate Reference measurements are converted to the differential deposi-

tion rate, displayed, and the information window is updated. The calorimetry
deposition rate is recalculated automatically upon changes of the cursors’
positions.

Zero Sticking Reference measurements also create normalized fit waves.
Heat Measurements also perform the evaluation process of the data, calculate the

actual enthalpies, and display the result against the frame number. In addition,
the results are also displayed as a function of coverage and the information is
updated in case the coverage has been calculated.
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Sticking Measurements also perform the evaluation process of the data including
a recalculation of the coverage and display the result against the frame number.
In addition, the results are also displayed as a function of coverage and the
information is updated in case the coverage has been calculated.

For the calorimetric measurements7 the input is reconstructed for the averaged frames,
if desired. Finally, the averaged frames are displayed, the axis ranges are updated,
and the frame selection windows are synchronized.

DeconvoluteFrame(Data, Index, Result, Parity)
This function performs the reconstruction of a single data set in Data specified by
Index with a given Parity which is stored in Result.

The data is fitted by the appropriate fit function in a small window at the start.
Based on the obtained local amplitude the impact on the whole data set is calculated
and subtracted from the data. The position of the window is moved by one Step
and the procedure is repeated until the end of the data set is reached. The received
differential power input is integrated and stored in the wave accepting the result.

DeconvolutionProcAverage(Name)
This function reconstructs the power input into the detector from the temporal
evolution of the detector signal for the averaged frames of a measurement specified
by Name. In order to remove boundary artifacts, the processed data is extended in a
similar way used in the normalization of the fit waves.

In case the measurement is applicable, the average waves are generated, if necessary.
In case the averages of a heat measurement are deconvoluted, the radiation is
subtracted, if desired. According to the program setting the data is corrected by the
temperature dependent detector sensitivity. Subsequently, the actual deconvolution
is carried out. Finally, the resulting waves are trimmed, scaled, and the axis ranges
related to deconvoluted measurements are updated.

DeconvolutionProc(Name)
This function reconstructs the power input into the detector from the temporal
evolution of the detector signal for the individual frames or averaged subsets of a
measurement specified by Name. In order to remove boundary artifacts, the processed
data is extended in a similar way to the normalization of the fit waves.

7 Mass spectrometer measurements are not supported yet.
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At the beginning, it is checked if measurement is applicable and the necessary
waves are present. In case a heat measurement is deconvoluted, the radiation is
subtracted, if desired. According to the program settings, the data is corrected by the
temperature dependent detector sensitivity. During the preparation routine, which
averages the subsets, if applicable, the radiative part is removed in the specified way
if desired. Subsequently, the actual deconvolution is carried out for all entries of the
prepared data. Finally, the resulting waves are trimmed, scaled, and the axis ranges
related to deconvoluted measurements are updated.

CalcQCMRate(Name)
This function provides a tool to review the evolution of the rate during a deposition
measurement given by Name. The thickness data is split in fractions given by
RateFitWindow, the slope is calculated, and the scaling is adjusted.

NAC_CorrAdsorbed(Material, Sample, Source)
This function returns the thermodynamical correction for the adsorbed fraction of a
given Material as a function of the Sample and Source temperatures, see Section
1.2.

NAC_CorrDesorbed(Material, Sample, Source)
This function returns the thermodynamical correction for the thermalized desorbing
fraction of a given Material as a function of the Sample and Source temperatures,
see Section 1.2.

CvGas(Material, Temperature)
This function returns the specific heat capacity at constant volume of a given gas
phase Material at the specified Temperature T. The calculation uses the Shomate
equation for heat capacities c with published [157] or adapted coefficients. As all used
adsorptives are mono-atomic, the value corresponding to an ideal gas of cv = 3/2 R at
constant molar volume v is used. Since the reported coefficients are reported for cp

at constant pressure p, the result is corrected by the gas constant R

cv = cp −R (4.2)

assuming ideal behavior of the gas phase.
An extension of this function towards calculation of the heat capacity cv by

other methods, e.g., via the partition function z, using measured or calculated
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spectroscopic data of the corresponding molecule, is possible with low efforts. In
this case the relationship is given by

cv = (
∂u

∂T
)

V

=
∂

∂T
(R ⋅ T 2 ∂ ln z

∂T
)

V

=
R
T 2 (

∂2 ln z

∂ (1/T)
2)

V

(4.3)

with u denoting the molar inner energy and V a constant volume. Details about
statistical thermodynamics and the individual contributions to the partition functions
can be found in textbooks [158,159] addressing physical chemistry.

CpCondensed(Material, Temperature[, Phase])
This function returns the specific heat capacity at constant pressure of a given
condensed phase Material at the specified Temperature. A Phase, e.g., beta
for calcium, can be optionally be specified in case it differs from the standard
phase, e.g., alpha for calcium. The calculation uses either the Shomate equation for
heat capacities with published [157] or adapted coefficients. In case coefficients for
the temperature of interest are not available, the heat capacity can be calculated
according to Debye theory [160]. The specific isochore heat capacity cv at a temperature
T is given by

cv = 9R(T

Θ)
3 Θ/T

∫
0

x4 ⋅ ex

(ex − 1)2
dx , (4.4)

utilizing the material specific [54] Debye temperature Θ together with the assumption
that cp ≈ cv. Correction towards the expansion of the volume V of the material with
the volumetric thermal expansion coefficient α and bulk modulus K according to

Cp = CV + V ⋅ T ⋅ α2 ⋅K (4.5)

have not applied in this version yet, since the differences are small and due to a lack
of reliable temperature dependent tabulated values. The Debye model exhibits its
highest accuracy at low temperatures. This is beneficial, since parameters used in
the Shomate approximation are usually not reported for “low” temperatures, i.e.,
smaller than 273 K.

At the current state results from Debye theory are linearly scaled to match the
data from the Shomate approximation manually.
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NAC_RefEnthalpy(Material, Temperature)
This function returns the heat of sublimation ΔsubH for a given Material at a given
Temperature T . It is calculated from the tabulated sublimation enthalpy Δ⊖subH at
standard temperature T⊖, the temperature dependent solid phase heat capacity at
constant pressure cs

p(T ), and the gas phase heat capacity cg
v(T ) at constant volume

according to

ΔsubH =Δ⊖subH +

T

∫

T⊖

cs
p(ϑ) dϑ −

T

∫

T⊖

R + cg
v(ϑ) dϑ . (4.6)

CalcHeat()
This function performs the calculation of the deposited enthalpy from the adsorption
contribution of the heat measurement, the sticking probability measurement, the
molar dose per pulse, and the thermodynamical corrections, see Section 1.2. It also
adjusts the ranges for graphs plotted versus coverage.

CalcCoverage()
This function calculates the coverage as a function of pulse number from dose per
pulse and the sticking probability. According to the settings either the measured
data or the calculated trend is used. It also adjusts the ranges for graphs plotted
versus coverage.

FitHeat()
After initialization of all related objects, according to the parameters in the experi-
mental settings, all frames are fitted with the fit function of the matching parity,
i.e., for even or odd frames. The resulting fit parameters are stored in the correlated
waves, see Section 4.2.2. Troublesome frames, i.e., cases of a not converging fit, are
automatically masked as not qualified and the error is stored in ChiSq with negative
sign. Finally, the coverage as a function of frame number is calculated.

FitDesorption()
After initialization of all related objects, according to the parameters in the experi-
mental settings, all frames are fitted with the fit function of the matching parity,
i.e., for even or odd frames. The resulting fit parameters are stored in the correlated
waves, see Section 4.2.2. Troublesome frames, i.e., cases of a not converging fit, are
automatically masked as not qualified.
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Averaging(Name)
This function calculates the average of the qualified frames in the measurement
given by Name sorted by parity.

NormalizeFitWave(Name)
This function constitutes the waves used in the fitting processes.

If the measurement type, defined by Name, is applicable and the corresponding
averages are calculated, the fit waves are created for both parities. In order to
provide a time shift of the fit waves against the data to be processed, the fit waves
have twice the length of a frame. The center of the fit wave is occupied by the
average of the corresponding parity and the surrounding areas are continued with
the opposite parity, see Section 3.5.

In case of the Reflectivity and Sensitivity fit waves, the data is normalized
to the laser power.

In case of the LaserReference fit waves, the data is normalized to the laser power,
its correction factor, a possible mirror contamination, the absorption, and the pulse
length.

In case of the Sticking probability fit waves, the data is corrected by multiplication
with the mass spectrometer correction factor.

In case of the Radiation fit waves, the data remains unchanged.
In case of the Deconvolution fit waves, the data is normalized to the laser power,

its correction factor, a possible mirror contamination, the absorption, and the pulse
length. Additionally, the position of the switching point is shifted to the nominal
peak position.

Except for the Deconvolution fit waves, an offset calculated from the part before
the pulse is subtracted.

GetRatio(Type)
This function returns the ratio of the detector response of two reference measurements
defined by Type.

In case all necessary objects are initialized, the average frames of the experiments
are normalized to the input laser power. The data set corresponding to the first
measurement Ξ is assigned to the fit function and is adapted to the second data set
by Ω

ΩP = A0 +AΩ ⋅ΞP . (4.7)
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While the vertical offset A0 is discarded, the amplitude AΩ yields the relative intensity
corresponding to the parity P . The average of the obtained amplitudes is returned.

GetPulseLength()
This function attempts to determine the true pulse length from the laser reference
measurement, see Section 3.5.4. In case this is not possible, the nominal pulse length
is used instead.

The start and end positions of the pulse are determined for both parities by
calculation of the intersections of linear approximations of the detector signal before
and after the nominal positions.

GetRadiationContribution(Name)
This function checks whether the measurement given by Name is applicable and if the
temperatures for the sample and the source are loaded for the radiation reference as
well as the heat measurement data sets. If the sample temperatures in both data
sets, and thus the corresponding detector sensitivities, are similar, the correction
factor is returned according to Equation (5.31).

FitQCMRate(Name)
This function calculates the baselines and the apparent deposition rate of a thickness
measurement given by Name according to the adjustable cursor positions corrected
by the corresponding correction factor. The heat and sticking probability calculations
are repeated and the information in the heat measurement window is updated.

CalcQCMTooling(Name)
This function returns the correction factor used for a measurement type given by
Name. In addition, it can report correction factors derived from other sources [141,161]

adjusted to the experimental setup, also specified by Name.

NAC_CreateTrend(Name)
This function creates the trends of the radiation and sticking probability measure-
ments which can be used to reduce scatter in an individual experiment, see Section
3.9.

If the measurement, defined by Name, is applicable, the appropriate waves are
assigned and if the measurement has been successfully processed before, the original
result is displayed. Subsequently, the user is prompted to select a method to calculate
the trend and, if applicable, for parameters specific to the used method.
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After calculation of the trend, its corresponding trace is made visible in the graph
and the experiment is adjusted to use the trend instead of the measured data.

4.2.5 Fitting Functions

Most functions use the extended syntax where a coefficient wave wc, a result wave
wy, and a dependence wave wx are provided for the fit function as parameters. It has
the advantage that all data points in the result wave are calculated at once and that
the function is not called for every data point. This results in a significant decrease
of computation time. In order to increase this effect, all contributing waves in the
fit functions are hard linked instead of dynamically assigned on the cheap expense
of a larger number of functions.

Usually, the coefficient wave contains a vertical offset wc[0], an amplitude wc[1],
and an optional temporal offset wc[2]. It is used to calculate a wave of fitted data
wy from a normalized reference wave Ξ according to

wy = wc[0] + wc[1] ⋅Ξ(x) (4.8)
wy = wc[0] + wc[1] ⋅Ξ(x − wc[2]) (4.9)

as a function of time x inside a frame. The deconvolution function only use an
amplitude coefficient wc[0]

wy = wc[0] ⋅Ξ(x) . (4.10)

CpShomate(w,T)
This function is used to approximate the numerical coefficients A to E stored in
the coefficients wave w of the Shoemate-equation [157] which is used to describe
the temperature dependency T provided in Kelvin of the specific heat capacity at
constant pressure cp given in J

mol⋅K .

cp = w[0] + w[1] ⋅ t + w[2] ⋅ t2 + w[3] ⋅ t3 +
w[4]
t2 (4.11)

with t = T /1000 as an alias. It can also be used to calculate the heat capacity at a
given temperature if the coefficients are known.
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HShomate(w,T)
This function is used to approximate the numerical coefficients A to H stored in
the coefficients wave w of the Shoemate-equation [157] from tabulated data. The
dependency on temperature T of the enthalpy of formation ΔfH is described by

ΔfH = (w[0] ⋅ t +
w[1]

2 ⋅ t2 +
w[2]

3 ⋅ t3 +
w[3]

4 ⋅ t4 −
w[4]

t
+ w[5] − w[6]) ⋅ 1000 (4.12)

with t = T /1000 as an alias. If used for fitting either G or H has to be constrained to
zero. Yet, these coefficients are kept for compatibility in case this function is used to
compute enthalpies of formation. The calculation of reference enthalpies from known
coefficients uses the same coefficients to calculate heat capacities.

DeconvolutionFunction(w,t)
This function is used to generate an artificial noise-free fit function I (t) for the
deconvolution process which is based on measured data. It comprises a constant
initial value A0 before the detector is exposed at the time t0 and an exponential
part, related to the charging of the intrinsic capacitor of the detector setup, with a
maximal amplitude AI and a time constant τ as follows

I (t) =
⎧⎪⎪
⎨
⎪⎪⎩

A0 t ≤ t0

A0 +AI ⋅ (1 − e−(t−t0)⋅τ) t > t0
(4.13)

using the internal time scaling t of the wave.

DampedOscillation(wc,wy,wx)
This function was used to remove a base line corresponding to a damped oscillation
from the detector signal in order to minimize the influence of the initial transient as
follows

f(x) = wc[0] + wc[1] ⋅ exp (−wc[2] ⋅ t) ⋅ cos (wc[3] ⋅ t − wc[4]) (4.14)

with an offset wc[0], an amplitude wc[1], a decay constant wc[2], an oscillation
frequency wc[3], and a phase wc[4] as a function of time t. It was replaced by
Fourier filtering, which exhibits better performance.

DeconvolutionFuncEven(wc,wy,wx)
This function returns the normalized fit wave for deconvolution with even parity
according to Equation (4.10).
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DeconvolutionFuncOdd(wc,wy,wx)
This function returns the normalized fit wave for deconvolution with odd parity
according to Equation (4.10).

DeconvolutionFuncEvenFitted(wc,wy,wx)
This function returns the artificial, noise-free, normalized fit wave for deconvolution
with even parity according to Equation (4.10).

DeconvolutionFuncOddFitted(wc,wy,wx)
This function returns the artificial, noise-free, normalized fit wave for deconvolution
with odd parity according to Equation (4.10).

CalorimetryEven(wc,wy,wx)
This function returns the fitted wave wy for a heat measurement with even parity. It
comprises an offset wc[0] and a linear combination of the normalized laser reference
LE shifted by wc[2] with an amplitude wc[1] and the average response to radiation
RE shifted by wc[4] with an amplitude wc[3] according to

wy = wc[0] + wc[1] ⋅LE (x − wc[2]) + wc[3] ⋅RE (x − wc[4]) (4.15)

as a function of time x inside a frame.

CalorimetryOdd(wc,wy,wx)
This function returns the fitted wave wy for a heat measurement with odd parity. It
comprises an offset wc[0] and a linear combination of the normalized laser reference
LO shifted by wc[2] with an amplitude wc[1] and the average response to radiation
RO shifted by wc[4] with an amplitude wc[3] according to

wy = wc[0] + wc[1] ⋅LO (x − wc[2]) + wc[3] ⋅RO (x − wc[4]) (4.16)

as a function of time x inside a frame.

RatioEven(wc,wy,wx)
This is fit function using the data provided in the FitRatio wave with even parity
according to Equation (4.8).
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RatioOdd(wc,wy,wx)
This is fit function using the data provided in the FitRatio wave with odd parity
according to Equation (4.8).

LaserReferenceEven(wc,wy,wx)
This is a standard fit function using the normalized laser reference with even parity
according to Equation (4.9).

LaserReferenceOdd(wc,wy,wx)
This is a standard fit function using the normalized laser reference with odd parity
according to Equation (4.9).

StickingEven(wc,wy,wx)
This is a standard fit function using the sticking probability reference with even
parity according to Equation (4.9).

StickingOdd(wc,wy,wx)
This is a standard fit function using the sticking probability reference with odd
parity according to Equation (4.9).

StatLaserReferenceEven(wc,wy,wx)
This is a standard fit function using the average laser reference with even parity
according to Equation (4.8).

StatLaserReferenceOdd(wc,wy,wx)
This is a standard fit function using the average laser reference with odd parity
according to Equation (4.8).

StatTransmissionEven(wc,wy,wx)
This is a standard fit function using the average transmission reference with even
parity according to Equation (4.8).

StatTransmissionOdd(wc,wy,wx)
This is a standard fit function using the average transmission reference with odd
parity according to Equation (4.8).
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StatBeforeCoatingEven(wc,wy,wx)
This is a standard fit function using the average before coating reference with even
parity according to Equation (4.8).

StatBeforeCoatingOdd(wc,wy,wx)
This is a standard fit function using the average before coating reference with odd
parity according to Equation (4.8).

StatAfterCoatingEven(wc,wy,wx)
This is a standard fit function using the average after coating reference with even
parity according to Equation (4.8).

StatAfterCoatingOdd(wc,wy,wx)
This is a standard fit function using the average after coating reference with odd
parity according to Equation (4.8).

StatDeconvolutionEven(wc,wy,wx)
This is a standard fit function using the average deconvolution reference with even
parity according to Equation (4.8).

StatDeconvolutionOdd(wc,wy,wx)
This is a standard fit function using the average deconvolution reference with odd
parity according to Equation (4.8).

StatRadiationEven(wc,wy,wx)
This is a standard fit function using the radiation reference with even parity according
to Equation (4.8).

StatRadiationOdd(wc,wy,wx)
This is a standard fit function using the radiation reference with odd parity according
to Equation (4.8).

StatZeroStickingEven(wc,wy,wx)
This is a standard fit function using the sticking probability reference with even
parity according to Equation (4.8).
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StatZeroStickingOdd(wc,wy,wx)
This is a standard fit function using the sticking probability reference with odd
parity according to Equation (4.8).

4.2.6 File Input/Output

This section comprises the functions used to import data for a measured calorimetry
experiment.

LoadCalFile(Name, FileNameOpen)
This function imports the data related to the calorimetric measurements and sets
the corresponding variables for the data treatment.

Depending on the type of measurement, defined by Name, and the global setting,
whether supporting files are to be loaded, the standard files types are assigned. In
case the data file specified by FileName exists, it is opened or a file open dialogue is
displayed. Subsequently, the header of the opened file is parsed for parameters which
are temporarily stored. Values of outdated keywords are converted during this process
to maintain compatibility to older data files. In case the experimental parameters
of the data file are consistent with the settings of the Igor Pro experiment file,
which are set by the first loaded data file, the actual data is loaded and tested for
integrity. In case the reflectivity of an individual sample is stored in the data file,
its value is assigned to the corresponding measurement.

If the Load Supporting File option is enabled, only a warning message is gener-
ated and the load procedure is continued. Upon a positive evaluation the temporarily
stored data is transferred to the related experiment variables and waves.

Subsequently, related objects for the loaded measurement are adjusted to the new
data set and reinitialized, if needed. This includes the closing of all windows and
discarding of fit waves in relation with this measurement type.

In a second step, the permanently, i.e., not used for data file manipulation, loaded
data is filtered, see Section 3.3, according to the set parameters, if desired.

Thereupon, the additions data with a temporal resolution of a frame pair is loaded
in case a matching auxiliary file is found.

If the loaded data corresponds to a heat measurement, the average temperatures
of the Sample and Source, i.e., the main evaporator, are calculated in case the data
set contains the relevant data streams. If information about the motor state can
be found in the data set, all frames are marked as excluded, in case the motor was
not responding a positive feed back. For reference measurements, the first and last
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qualified pair are also marked, since they are likely to be affected by the measurement
setup and the filtering process.

LoadRateFile(Name, FileName)
This file imports the data related to the deposition measurements and sets the
corresponding variables for the data treatment.

Depending on the type of measurement, defined by Name, and the global setting,
whether supporting files are to be loaded, the standard files types are assigned. In
case the data file specified by FileName exists, it is opened or a file open dialogue is
displayed. Subsequently, the header of the opened file is parsed for parameters which
are temporarily stored. The actual load of the data is performed by the routine
designed to load auxiliary files.

If the loaded data contains the relevant waves, the data structure is rearranged and
the stored parameters are transferred to the related experiment variables. Further on,
the suggestions for the positions of the transition from base line data to deposition
data and vice versa are calculated. Finally, the file folder is set as a new default
location to open measurement files and the loaded data is displayed.

LoadAuxFile(Name, FileName, [Delta])
This function loads a data file specified by FileName containing auxiliary information,
see Section 4.1.3, related to a calorimetric measurement given by Name. Since the
function is also utilized to load deposition thickness measurements, it accepts a
switch to adjust the unit and spacing Delta of the data.

If an absolute complete file name including a path is provided this file is opened.
Otherwise, the file name for auxiliary data is derived from the measurement file
name and opened. The file is skipped to the end of the file header which is ignored8.
Subsequently, the information of the file header is parsed and wave names are
assigned. The extracted units are stored for a following processing. After the actual
load operations the units and data are converted to standard SI units if applicable,
e.g., torr to pascal. Finally, the data is loaded and the wave scales are set.

LoadTrend(Name, FileName)
This function prompts the user to select an experiment file containing averaged
calorimetry data, see Section 3.11. It loads the average specified by Name and
stores the name of the experiment in FileName accessible for the calling function.

8 The functions used to load calorimetry or thickness measurement files interpret the identical
corresponding file headers.
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Subsequently, the trend wave is filled with the loaded data considering the conversions
of monolayers to frames of the specific experiment.

Since the coverage is depending on the sticking probabilities and the radiation
is loaded as a function thereof, it is recommended to load the averaged radiation
contribution after the averaged sticking coefficients.

NAC_ConCat()
This function loads two data files, concatenates them, adjusts the parameters in the
file header, and stores the data in a new file. This function is rarely used and still
alpha state. Hence, error management and routines to check the data integrity are
not fully implemented.

First, a temporary data structure to hold data of two measurement files, together
with the general experimental settings, is created. Upon a successful load of the first
file, the user can select a second file which is also loaded. In a next step, the file
header for the new files is created from the two original headers along adjustment of
the experimental parameters and is saved together with the combined calorimetric
data.

Subsequently, the related auxiliary files are loaded. The already created header is
again saved together with the combined auxiliary data.

NAC_Trim()
This function loads a data file, extracts a subset, adjusts the parameters in the file
header, and stores the data in a new file. This function is rarely used and still alpha
state. Hence, error management and routines to check the data integrity are not
fully implemented.

First, a temporary data structure to hold data of a measurement file, together
with the general experimental settings, is created. Upon a successful load, the
file header for the new files is created from the original header along adjustment
of the experimental parameters and is saved together with the selected subset of
calorimetric data.

Subsequently, the related auxiliary file is loaded. The already created header is
again saved together with the corresponding subset of auxiliary data.
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4.2.7 Controls Handling

This section gathers the function reacting to user action such as moving a cursor
or pressing a button. The first kind receives a data structure from the Igor Pro
main instance, see the manual [155] for details, and, by convention, the cursor labeled
A is kept left of cursor B. The other functions used as button controls are passed the
name of the calling control. Buttons are disabled at the beginning of the function
to prevent a call of the functions while they are running, errors are cleared, and, if
applicable, the corresponding measurement is derived from the control’s name. At
the end of the code the buttons are enabled again.

NAC_LaserPowerCorrectionPopUp(ctrlName, popNum, popStr)
This function synchronizes the displayed Laser Power Correction string with the
corresponding variable.

NAC_ReflectivityCleanPopUp(ctrlName, popNum, popStr)
This function synchronizes the displayed Reflectivity Clean Sample string with
the corresponding variable.

NAC_WinHookDeconvolution(Data)
This function reacts to the EventCode associated with a moved cursor. Since it also
sets cursor positions, it is capable of calling itself in an infinite loop and must be
terminated in case the event was caused by itself. The type of the measurement is
derived from the associated window name and, after a check if the type is applicable,
the number of the selected frame is deduced from the y-position of the cursor. In
case the window for the deconvolution of the individual frames corresponding to the
measurement is not available, it is displayed and the display waves are filled with the
data belonging to the selection. Finally, the text box with detailed information is
updated.

NAC_WinHookRate(Data)
This function reacts to the EventCode associated with a moved cursor. Since it also
sets cursor positions, it is capable of calling itself in an infinite loop and must be
terminated in case the event was caused by itself. The kind of the measurement
is derived from the associated window name and, after a check if the kind is
applicable, the thickness change by time is linearized and the result is displayed in the
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corresponding text boxes. Due to the dependency relations the derived quantities
are updated automatically.

NAC_WinHookFittedRate(Data)
This function reacts to the EventCode associated with a moved cursor. Since it also
sets cursor positions, it is capable of calling itself in an infinite loop and must be
terminated in case the event was caused by itself. The kind of the measurement is
derived from the associated window name and, after a check if the kind is applicable,
ranges to calculate an average deposition rate are set and the corresponding objects
are updated.

NAC_WinHookCal(Data)
This function reacts to the EventCode associated with a moved cursor. Since it also
sets cursor positions, it is capable of calling itself in an infinite loop and must be
terminated in case the event was caused by itself. The kind of the measurement is
derived from the associated window name and, after a check if the kind is applicable,
the Type of corresponding window is determined.

In case of a window showing the whole data set, i.e., Type=0, the pulse number set
to CurrentFrame is derived from the name of the selected trace, the cursor is placed
in the middle of that trace, and the windows corresponding to the measurement are
updated.

In case of a window showing the qualified frames, i.e., Type=1, the pulse number
set to CurrentFrame is derived from the name of the selected trace and the windows
corresponding to the measurement are updated.

In case of the window showing the finally calculated enthalpy, i.e., Type=2, the
positions of the cursors are checked and assigned to the limits for the calculation
of the MultiLayerEnthalply, which is carried out automatically. Finally, the text
box containing detailed information is updated.

NAC_ToggleAutoFlagging()
This is the action function of the Auto Flag menu item and inverts the corresponding
variable.

NAC_ToggleLoadSupport()
This is the action function of the Load Supporting Files menu item and inverts
the corresponding variable.
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NAC_ToggleStoreFiltered()
This is the action function of the Store Filter Residue Waves menu item and
inverts the corresponding variable.

NAC_ToggleAutoUpdateAverages()
This is the action function of the Automatically Recalculate Averaged
Experiments menu item and inverts the corresponding variable.

NAC_ToggleShowBoxPlotData()
This is the action function of the Show Data Points in Box Plots menu item and
inverts the corresponding variable. In case the statistics window containing the box
plots is already displayed, its appearance is adjusted to the set value.

NAC_ResetFlagList(ExpName)
This function resets the state of the FlagList to a similar state as after loading
the measurement file. If applicable, the window showing the full data and frame
selection windows are recreated, respectively updated.

NAC_LoadLazyButton(CtrlName)
This function inquires a file folder by a FileOpen dialogue displaying all files associated
with calorimetry measurements. It scans the selected folder for applicable files by
file extensions. Subsequently, the found files per measurement are sorted in lists and
an option not to load a file is added. A user dialogue gathers information which
or if files should be loaded. The associated button is dyed red in case of several
matching files. Thereupon, the selected files are loaded by the standard routines for
calorimetry and thickness files. Finally, the selected folder is set as a default location
to load other measurement files.

NAC_StatisticsLazyButton(CtrlName)
This function initiates the calculation of the statistics for all reference measurements
and displays the results.

NAC_ProcessLazyButton(CtrlName)
The deconvolution, before deposition, after deposition, laser, transmission, radiation,
and zero sticking probability reference measurements are processed with the standard
routine. If the Auto Flag feature is disabled, the deconvolution of the average frames
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is included. Otherwise, the calculation is inhibited, the statistics are calculated,
the outliers are marked for all measurements, and the mentioned measurements are
processed again. In any case, the statistics are calculated (again) for all measurements
and displayed. Subsequently, the sticking probability and heat measurements are
processed.

NAC_DeconvoluteFullButton(CtrlName)
Since this function triggers a sequence with long computation time, a warning
message is displayed and upon confirmation the deconvolution of all measurements is
started by the Everything button. After one measurement is finished, the power
map and the window for individual frames are displayed.

NAC_KillFrameProc(CtrlName)
In case of a severely disturbed current frame, e.g., with an intense spike messing up
the automatic axis range synchronization, it can be set to constant zero and marked
to be ignored by this function by the Kill button. Finally, the windows correlated
to the measurement are updated and the axis ranges are recalculated.

NAC_FlagProc(CtrlName)
This function displays the whole data set and the window for included frames, toggles
the status if the frame is used, updates the coloring for the currently displayed pulse
as well as the related windows by pressing the Flag/Unflag button.

NAC_ClearProc(CtrlName)
This function sets all frames of a measurement to be included and updates the
coloring as well as the related windows by pressing the Clear button.

NAC_RangeProc(CtrlName)
This function sets all frames in a range for a given pattern to be in- or excluded
from the data treatment by pressing the Range button. The information is acquired
by a user input dialogue. If the provided data, is valid the windows for the whole
data set and for included frames are displayed, the masking information is applied to
the measurement, the statuses of the control buttons, and the windows related to
the measurement are updated.
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NAC_NavProc(CtrlName)
This function is called by the six navigation buttons and thus a double function
call is prevented by a variable. According to the pressed button, encoded in its
name, the CurrentFrame variable of the corresponding measurement is modified
and the related windows are updated. The ‘|<’ button jumps to the first frame of
the measurement, the ‘<<’ button jumps two frames back, the ‘<’ button jumps one
frame back, the ‘>’ button jumps one frame ahead, the ‘>>’ button jumps two frames
ahead, and the ‘>|’ button jumps to the end of the measurement.

NAC_CurrentFrameProc(CtrlName)
This function, called by the numerical input to select a frame, sets the CurrentFrame
variable to the provided value and updates all related windows.

NAC_UseEmptyCrucibleProc(CtrlName)
This function defines whether a radiation reference from an empty crucible, see
Section 5.8.1, is used in the evaluation of the heat measurement or not and invokes
the calculation of the corresponding coefficient.

NAC_UseBaselineProc(CtrlName)
This function updates the information text box for thickness measurements according
to whether the deposition rate is corrected by the base lines or not.

NAC_UseTotalRangeProc(CtrlName)
This function updates the information text box for a coating thickness measurement
according to whether the thickness between the cursors is used or from the beginning
of the measurement to its end.

NAC_DCRproc(CtrlName)
This feature synchronizes the check boxes as to whether the radiative part should
be excluded from a deconvolution of a heat measurement as from the fitting, as a
fixed amount, or not at all.

NAC_ReCalcHeat(CtrlName)
This function initiates a recalculation of the final enthalpy upon changes of the
thermodynamic corrections.
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NAC_HeaderButton(CtrlName)
If a measurement is loaded, this function displays the header of the corresponding
measurement file as a table by pressing a Show button.

NAC_LoadButton(CtrlName)
Depending on the type of measurement, this function initiates the loading procedure
of a calorimetry or thickness measurement file by pressing a Load button.

NAC_DisplayFullButton(CtrlName)
Depending on the type of measurement, this function displays the whole data set of
a calorimetry measurement or of a thickness measurement by pressing a Display
button.

NAC_DisplayFlagButton(CtrlName)
This function displays the windows for the whole data set, the current frame, and the
qualified frames for data treatment and adjusts the axes ranges by pressing a Flag
button.

NAC_ProcessButton(CtrlName)
This function initiates the data processing for the correlated measurement by pressing
a measurement related Process button.

NAC_StatisticsButton(CtrlName)
This function initiates the calculation and the display of the statistics for the correlated
measurement by pressing a measurement related Statistics button.

NAC_DeconvoluteAverageButton(CtrlName)
This function deconvolutes and displays the result for the correlated measurement by
pressing an Avg button.

NAC_DeconvoluteAllButton(CtrlName)
This function deconvolutes all included frames related to a measurement by pressing
an All button. Subsequently, the power map and the window for individual frames
are displayed.
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NAC_ResultButton(CtrlName)
The outcomes of the calculation for the individual measurements are displayed by
pressing a Present button. Depending on the measurement different actions are
executed.

In cases of thickness measurements the fitted deposition rate window is displayed.
In case of the deconvolution measurement the averaged frames are displayed.
In cases of a before deposition, an after deposition, a laser, a transmission, a

radiation, or a zero sticking probability reference measurement the windows for
averaged frames, the deconvolution of the average frames, the power map, and for the
deconvoluted individual frames are displayed.

In cases of the sticking probability or heat measurements, the same windows as
for the above mentioned reference measurements are displayed. In addition, the
obtained results are displayed as a function of frame number and coverage. Finally,
the trend used to reduce scatter in the processing is displayed.

NAC_CopyFlagList(From, To)
This function invoked by the Copy Flag List submenu entries synchronizes the
flag lists of the heat and sticking probability measurements in the desired direction.

4.2.8 Statistics Functions

This section contains functions and tools related to the statistical analysis of the
reference measurements.

NAC_GetAllStatistics()
This function invokes the statistical analysis of all applicable measurements.

NAC_GetStatistics(Name)
This function evaluates the relative amplitudes in a calorimetric reference measure-
ment and calculates statistical values.

If the experiment is applicable, loaded, the average of the qualified frames has
been calculated, and not all frames are excluded, the relative amplitudes of the
individual frames with respect to the average are calculated. Not qualified, e.g.,
already masked or in case of an unsuccessful fit, frames are assigned with NaN.
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NAC_DisplayStatistics(ExpNames)
This function displays the results of the statistical analysis of processed measurements
as box plots.

The function examines the measurements given by ExpNames, with the alias All
for all applicable measurements, for results of the statistical analysis. In case that
measurements have already been processed the existing display window is closed
and recreated, since the layout of the window depends on the obtained number of
measurements.

The amplitudes of the enumerated experiments are displayed versus a constant
display index, vernacular “on top of each other”, the median, quartiles, whiskers,
and the whisker limits are added to the graph and colored. In case the display of
regular data points is unwanted, the corresponding traces are hidden. The axes are
labeled and adjusted. Finally, a legend is added.

NAC_AutoFlag(Name)
If the measurement type provided by Name is applicable, the statistical analysis on
this measurement has been performed, and this is the first run of this procedure
for the specified measurement, all frames corresponding to amplitudes outside the
whisker limit, see Section 3.7 are marked as not qualified, and the amplitude is set to
NaN . These reference levels are defined as the corresponding quartile plus or minus
the one and a half fold distance between the lower and upper quartile.

Quantile(Input, Level)
This function removes invalid entries, i.e., Inf and NaN from the Input wave, and
sorts the remaining values in ascending order. If the quantile provided in Level
is negative, the smallest value in the data is returned and if it exceeds unity, the
maximal value is returned. For a regular level the average value of the two data
points closest to the relative position in the sorted data set corresponding to level is
returned.

Particular values for level are 0.5 which calculates the median and 0.25 or 0.75
corresponding to the lower respectively upper quartile.

GetWhisker(Input, Threshold)
This function extracts the value farthest away from the center of the data set
provided by Input within the boundary of Threshold.
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4.2.9 Experiment Averaging Functions

This section contains the sub package used to average several treated calorimetry
experiments with similar experimental parameters, see Section 3.11. It is independent
of the other functionalities of the main package, but can be activated at the same
time.

Results_Initialize()
This feature uses its own data folder structure located in root:NAC_Average initial-
ized by this function if necessary.

:Experiments: This data folder contains results of added experiments organized
by another level of data folders.

:Experiment Name : These data folders contain the actual data related to added
experiments and are created upon loading an experiment.

DosePerPulse contains the dose from a single pulse in monolayers.
SubstrateThickness contains the thickness of the predeposited substrate in

meters.
DepositionRate contains the deposition rate during the calorimetric mea-

surement in meters per second.
Enthalpy contains the calculated adsorption enthalpy in joules per mole as a

function of pulse number.
Sticking contains the original sticking probability as a function of pulse

number.
Radiation contains the original radiation contribution as a function of pulse

number.
Coverage contains the coverage in monolayers as a function of pulse number.
MultiLayerReference contains the calculated sublimation enthalpy at the

sample temperature as internal reference value in joules per mole.
MultiLayerEnthalpy stores the measured multilayer enthalpy.
MultiLayerEnthalpyError stores the standard deviation of the multilayer

enthalpy.

AveragedEnthalpy contains the result of the averaging procedure for the enthalpies
with a resolution given by BinSize.

AveragedSticking contains the result of the averaging procedure for the sticking
probability measurement with a resolution given by BinSize. This develop-
ment can be imported to individual experiments as a trend via the Fitted
Trends→Loaded Average function.
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AveragedRadiation contains the result of the averaging procedure for the obtained
radiation contribution with a resolution given by BinSize. This develop-
ment can be imported to individual experiments as a trend via the Fitted
Trends→Loaded Average function.

DepositionRates contains the individual deposition rates of the loaded experiments.
Thicknesses contains the individual substrate thicknesses of the loaded experi-

ments.
MultiLayerEnthalpies contains the individual multilayer enthalpies of the loaded

experiments.
MultiLayerEnthalpyErrors contains the standard deviation of the multilayer en-

thalpies of the loaded experiments.
Experiments contains the name tag of the individual experiments derived from the

file name of the loaded experiment.
StickingLimit(1) provides a guide to the eye for an upper limit for the sticking

probability.
EnthalpyLimit stores the average sublimation enthalpy at the sample temperature

as a guide to the eye in joules per mole and its coverage range is synchronized
with the MultiLayerReference wave.

RadiationLimit(1) provides a guide to the eye for a lower limit of the radiation
contribution.

ReferenceEnthalpy provides the calculated multilayer reference enthalpy.
System contains a string describing the global experiment, e.g., Calcium on PTCDA9.
Settings This data folder contains the parameters used for the averaging features.

BinSize(0.05) defines the resolution used in the averaging process.
WWidth(400), WHeight(300), MarginTop(45) are dimensions used to dis-

play graphs of averaged measurements.
Processed(0) indicates if the data has been processed since the last added

or removed experiment.
AutoRecalculate(1) sets if an automatic calculation of the averages should

be performed upon adding or removal of an experiment.
AutoDisplay(1) defines if displays for the results are automatically recreated

after calculation of the averages. This option must be altered manually.

Finally, the user is prompted for a descriptor of the global experiment.

9 Perylenetetracarboxylic dianhydride.
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NAC_Results_Load()
If needed, this function initializes the sub package prior to prompt the user for an
experiment file to load data from and to store it in a temporary data folder. The
imported data is then copied to the final data folder. The enthalpy of adsorption and
coverages are taken from the Enthalpies data folder. The sticking and radiation
coefficients are imported from the original results in order to prevent an unintentional
recursive calculation. If desired, a calculation of the averages is initiated.

NAC_Results_Average()
This function calculates the average of the loaded experiments considering a fixed
increment in coverage. Since the coverage a frame is attributed to depends on the
history of the coverage itself10, a simple relation between coverages and frames is
not in existence and thus would require a sophisticated algorithm.

If needed, this function initializes the sub package and enumerates the loaded
experiments. Subsequently, the integrity of all loaded data sets is verified, the
highest occurring coverage is determined, and the compatibility of the experiments
is checked by comparing the reference enthalpies.

Auxiliary waves are created in accordance with the so far obtained parameters.
Marked frames in the original experiment located at the beginning or at the end
are removed from the data. The information if frames had been marked can be
deduced from two properties. Either if the sticking probability is exactly one and
the enthalpy is exactly zero, or the enthalpy contains a non-finite number.

The sticking, radiation, and enthalpy values as functions of the coverage are
interpolated and summarized while the number of contributing experiments is
tracked. Subsequently, the average is calculated and the data is down-sampled to
the desired resolution.

This simple method ignores the fact that the coverage is dependent on the sticking
probabilities which are a function of coverage themselves. A linear connection
between the frame number and the coverage is not existent and depends on the
average of the individual experiments. A sophisticated, formally correct, algorithm
was programmed but suffered from numerical instabilities resulting in a squeezed
coverage axis and is deferred therefore.

If desired the results are automatically displayed.
Since the multilayer enthalpy and its error depend on the placement of cursors by

the user, they are somewhat arbitrary. An automatic calculation of the uncertainties

10 The sticking probability as a function of coverage contains itself in the calculation of the
coverage which derives from sticking probability and dose.
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is therefore not implemented yet. Nevertheless, the individual values are gathered
for manual treatment.

NAC_Results_Remove()
This function removes an experiment from the loaded experiments.

If necessary, this function initializes the sub package, enumerates the loaded
experiments, and prompts the user for an experiment to be removed. After removal
of traces related to the selected experiment in the result windows, the data folder
corresponding to the experiment is deleted.

NAC_Results_Display()
This function presents the results of the experiment averaging procedure.

If necessary, this function initializes the sub package, enumerates the loaded
experiments, and verifies if the calculated averages are up to date. Subsequently,
the integrity of all loaded data sets is verified and the highest occurring coverage is
determined.

The windows for the individual sticking probability, the radiation contribution,
and enthalpy data are closed and recreated. The corresponding traces of all loaded
experiments are added to the graphs together with the related reference and average
traces and are color coded. The graphs are finalized with by a dynamical legend.

Furthermore, the graph displaying the averaged enthalpies and averaged sticking
probability is recreated, and the references and averages are added and color coded.

Finally, a graph displaying the calorimetry deposition rate and the substrate
thickness for every experiment is created and labeled.

4.2.10 Miscellaneous

This section gathers functions and tools which are not directly related to the other
sections in this program package.

GetPrefix(str)
This function is used to extract the prefix of an SI unit, e.g., 10−3 for millisecond
(ms) from a given string str. Since there are exceptions11 and it only affects old
data files – new files use SI base units – the function uses an easy to extend, but
sloppy comparison algorithm.

11 There is no “mkg”.
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SauerbreyThickness(F0, F, Z, D)
Calculates the thickness of a deposited layer on an oscillator crystal according to the
“z-matching” method from the base frequency F0, the measured frequency F, the
acoustic impedance Z of the deposited material, and the density D of the deposited
material according to Equation (1.15).

HSL2RGB(Hue, Sat, Lum, Ch)
This function converts a color defined by Hue, saturation Sat, and luminescence Lum
to the corresponding value in the red, green, or blue channel Ch.

This function might get relocated to a tools collection in later versions.

GetSubstanceName(Substance)
This string function returns a plain text substance name for registered identifiers,
e.g., ‘Magnesium’ for ‘Mg(0001)’, without the orientation statement. Not registered
ones are returned with the orientation statement removed, e.g., ‘Po(100)’ yields
‘Po’.

NAC_UpdateVersion()
This function changes the data structure of old experiments to be compatible with
the most recent code version. This work describes the latest version of the package.

NAC_Invert()
This function provides a convenient way to change the polarity of a loaded Detector
signal for a measurement, a set of related measurements, or the whole experiment
as requested from the user.

NAC_RemoveBaseline()
This function provides a selectable method to remove a baseline from the whole data
set for a selectable measurement in case the included filter algorithm fails.

ZeroOffset(GraphName, [StartX, EndX])
This preliminary command line tool provides a shortcut to set an individual vertical
offset to all traces in the graph specified by GraphName in a way that the average
between StartX and EndX is zero. If GraphName is an empty string, the function
uses the top graph. The parameters StartX and EndX are optional. Their default
values are negative infinity and positive infinity, respectively.

This function might get relocated to a tools collection in later versions.
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4.2.11 Extensions to the Status Package

NAC_DisplayStatus()
This function displays all channels recorded for the calorimetry machine with plain
text labels for all loaded data sets and modifies the graphs according to the content.

4.2.12 Version History

A brief version history which describes the changes of the program code.

4.2.13 Known Issues

• Deconvolution of sticking measurements is not implemented yet.
• Recalculation of the average fitted deposition rate with a changed fitting

window results in wrong displayed information.
• Checks if measurement types are applicable are not completely implemented

for low level functions.
• Material constants are read from file. Maybe they should be stored in the

program or a local data base.
• Dependent waves are not updated upon inversion of the detector data. Manual

reprocessing is necessary.
• The averaging routine uses the individual coverages instead of a globally

recalculated coverage.
• Integrity check for auxiliary files is not fully implemented.
• The usage of radiation references using and empty evaporator has not been

tested in an actual experiment yet.
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4.3 Error Handling Package

This package provides a simple error management system. Error codes are converted
to plain text messages, collected in a list, and displayed in a dedicated window.
The window is shown only in case of errors and minimized otherwise. The package
distinguishes between critical errors, well-handled errors, and common exceptions.
The level of displayed and concealed errors can be adjusted.

4.3.1 Definitions

Compiler settings, version requirements, pointers to physical data folders, and error
messages are defined in this part.

Compiler Settings
The package requires an Igor Pro version of 6.2 or higher and uses global access
method, i.e., all variables, strings, and waves have to be accessed explicitly.

Data Paths
The data structure of the error handling packages is located in the folder provided
by ErrorDataFolder.

Standard Error Codes
The package provides several standard errors, e.g., a UserAbort, and an indication
for a successful function call, i.e., NoError.

Constants
The amount of reported errors is defined by the constant Error_TalkLevel:

0, 1 Disables error messages.
2, 3 Displays only serious errors.
4, 5 Displays serious and well-handled errors.
8, 9 Displays even exceptions and is recommended only for debugging.

If the least significant bit is set, i.e., odd values are given, extended information,
e.g., function names, is included in the message.
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4.3.2 Initialization

This part contains the initialization routine of the package.

Error_Init()
This function initializes the Error program package. It sets up the data structure
for the package, creates the message window, and initializes the error list.

4.3.3 Error Handling

This part contains the main functions of the package.

Error_Clear()
This function resets the error list to the entry “No Error” and hides the message
window.

Error_Add(Msg)
This function either overwrites the “No Error” entry with the error message provided
by Msg or adds another line to the list.

Error_Message(ErrorCode, FunctionName, ProcedureName,
Argument)
This function initializes the package, if necessary, and checks whether the ErrorCode
is potentially a valid number. Otherwise it replaces the error message with a
corresponding information. If desired, it extends the name of the calling routine
(ProcedureName) by the name of the called function (FunctionName) and a user
provided Argument.

Subsequently, it decodes the numerical constants of the errors into plain text, adds
the result to the error list and returns the error code in order to give the calling
program the possibility to react to the error in a proper way.

New error messages must be added manually as constants in the host program as
well as in the decoding structure.
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4.3.4 Graphical User Interface

This part contains the functions related to user interaction.

Error_Panel()
This function creates the window displaying the error messages. The error list is
updated automatically.

4.3.5 Version History

A brief version history which describes the changes of the program code.

4.3.6 Known Issues

• Addition of dynamic user errors is not supported yet.
• This package is still beta state.
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4.4 Status Report Package

This software package provides a convenient method to load and display different
recorded properties related to the experimental setup. It also comprises a few tools to
extract useful information. Typical applications are the determination of evaporator
runtimes as well as temperature and pressure history of bake-outs.

Errors are usually cleared upon new user actions.

4.4.1 Definitions

Compiler settings, version requirements, pointers to physical data folders, and error
messages are defined in this part.

Compiler Settings
The package requires an Igor Pro version of 6.2 or higher and uses global access
method, i.e., all variables, strings, and waves have to be accessed explicitly.

Data Paths
The data structure of the status report packages is located in the folder provided by
Status_DataFolderStr.

Constants
The standard location for status logging files is given by Status_DataPathStr and
the version information is provided in Status_Version.

Error Codes
The constants for the error codes are labeled with plain text and are self explaining.

Menu
The menu bar provides often used features of the package.

Import Machine Status initiates the import of a machine status file.
Display all Data for a Channel initiates the display of prompted channel.
Get Runtime for Top Window initiates the calculation and display of the time, the

channel in the top window resides above a prompted threshold value. Multiple
added data sets are not recognized and are all included in the calculation.
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4.4.2 Menu

This section covers the routines used to import status logging files. For the data
format see Section 4.1.4.

Status_Import()
This function initializes the data folder in case it is not yet created, prompts a file
open dialogue, and initiates the loading routine for every selected file.

Status_Load(FileName)
This function handles the actual data import for recorded machine information.

It initializes the data folder in case it is not yet created, opens the file given by
FileName, and generates a standardized name from the date for the child data folder
about to contain the dynamic data structure from the logging file. In case the child
data folder already exists, it is prompted whether the data should be over written.

Subsequently, the information of the file header is analyzed and wave names
assigned. The extracted units are stored for a following processing. After the actual
load operations, the units and data are converted to standard SI units, if applicable,
e.g., torr to pascal. Finally, the data is loaded and the wave scales are set.

4.4.3 User Interface

Status_GetRuntimeMenu()
This function prompts the user for a threshold level, above which the properties
displayed in the top windows are considered “on”, and initiates the actual calculation
of the runtime.

Status_AddRuntimeText(Runtime, Threshold, [WindowName])
This function converts a Runtime from seconds to a more convenient unit, if appli-
cable, and adds a text box with the runtime, the used Threshold level to the top
window or a window specified by WindowName.

Status_DisplayChannel([Channel, ChannelName])
If no Channel is provided, this function gathers the available loaded channels and
prompts the user to select one. In case no ChannelName is provided to label the
window, the user is prompted to provide a name. Align defines whether the left
(default) or right y-axis should be used for the trace. Finally, the function starts the
actual display routine.
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Status_Display(DateStr, ChannelStr, [Right, New,
WindowName])
If necessary, this function generates a default date string from the provided DateStr,
checks if the data in ChannelStr is available, and displays the trace. The left axis
is used unless otherwise specified by Right. A separate window is only generated in
case the parameter New is set or no graph window exists in the Igor Pro experiment
file. Data is appended to the top window unless otherwise stated by WindowName.

Finally, the data is displayed, colored, and the axes are labeled.

Status_DisplayAll(ChannelStr, [WindowName, Right])
This function examines all status data folders if data matching the channel given in
ChannelStr is loaded. If at least one data set is found, the optional parameters are
initialized and a sub function is invoked to display the data.

4.4.4 Tools

This section collects the tools related to the status package.

Status_GetRuntime(Threshold, [WindowName, ChannelName])
This function enumerates the traces in the top or specified by WindowName graph
window and therein the traces matching ChannelName, if given. It further determines
the intervals where the value of the channel exceeds the given Threshold and returns
the summed up time in seconds.

Status_ListChannelNames()
This string function examines all child data folders in the status parent data folder
for named channels, avoids duplicates, and returns all available channel names.

4.4.5 Version History

A brief version history which describes the changes of the program code.

4.4.6 Known Issues

• This package is still beta state.
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4.5 Synopsis of the Software Packages

File formats produced by the experiment controlling computer in the laboratory
for the different measurement types have been reviewed and requirements of the
importing programs have been pointed out.

The individual components of the data evaluation package and the two auxiliary
packages, covering machine status and error handling, have been discussed. This
included descriptions of the employed data structure comprising data folders, waves,
and numerical as well as string variables. A brief description of the purpose of every
function is given. More complex functions are described with a higher level of detail.

Individual data folders provide a clearly structured arrangement of these three
packages. This concept is consequently applied within the program packages.

Functions of the calorimetry package are divided into groups according to their us-
age, e.g., user interface or fitting functions. Calculations relevant to the experimental
results are presented as formulae along the description of the functions.

The error handling package is still beta state and is not able to use dynamically
generated errors. However, since the source code can be altered, individual error
codes and messages from additional packages can be easily inserted.

Status reports keep track of a dynamic range of indicators, such as pressures,
temperatures, etc., rendering a post mortem analysis possible in case of a failure.
The most frequently used functions are provided on the menu bar.

The here described program packages have extensively been used to compute the
results presented in Chapters 5 and 6.
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To ensure correct results in the main, calorimetric, experiments it is obligatory
to characterize each contributing measurement. A detailed examination of the
behavior of each component provides benchmark results for comparison to normal
experiments. It also procures guide values and suitable range settings to operate the
machine or to expect as results from the experimental setup. Furthermore, these
additional experiments allow to determine weak points in the design. They also
serve as guidelines for troubleshooting in case the equipment is not performing as
anticipated.

This chapter also includes theoretical considerations only applicable to the specific
characterizing experiments. Focus lies on properties affecting the calorimetric
experiments and determination of possible improvements.

Coverages are given in monolayers (ML) and/or meters. Deposition rates are
stated in deposited meters per second or monolayers per second (ML/s) and are
proportional to the corresponding fluxes since the relevant deposition regions have
constant area.

Here, one monolayer is defined as a closed packed layer of the deposited atoms in
a specified plane. The typically used plane is the closest packed plane for the most
stable phase at room temperature, i.e., the (111) plane for metals with cubic and the
(0001) plane for metals with hexagonal crystal structure, e.g., copper and magnesium,
respectively. Both structures with their primitive spatial and corresponding planar
unit cells are shown in the description of the used materials in Figures 6.1 and 6.2.

Error bars and error ranges correspond to the standard deviations or propagated
standard deviations where applicable. The pulse length, where appropriate, has
been set to 200 ms, unless otherwise stated.
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5.1 External Reflectivity Measurement

The absorption α of a pristine sample, i.e., mounted on a sample holder with no
further treatment, such as sputtering, is the fundamental reference quantity of the
whole calorimetry experiment. Light of a wavelength λ impinging on a surface
can experience three different processes. The total intensity is partitioned into a
transmitted τ , reflected ρ, and absorbed α fraction according to

1 = α(λ) + ρ(λ) + τ(λ) . (5.1)

Since it is difficult to measure the adsorption directly, the corresponding reflectivity
and transmission are measured and the absorption is calculated. In case of the used
metalized detector material1 the transmissive contribution can be neglected, since
the transmission [162,163] through the in sum 100 nm thick metal layers is smaller than
0.1 % at the used wavelength of 405 nm. Hence, Equation (5.1) is reduced to

α(λ) = 1 − ρ(λ) (5.2)

and used in this way in the data treatment software, see Section 3.5.
As only the integral reflectivity is relevant to the calculation of the absorption,

the angular dependency of the reflection arising from, e.g., the specular and diffuse
reflection is irrelevant. This motivates for the usage of an integrating sphere. The
collimated incident laser beam is reflected by the sample or a standard. The reflected
light, specular and diffuse, is reflected inside the sphere several times before it is able
to reach the attached detector. Direct light from the sample towards the detector is
blocked by an included baffle, as depicted in Figure 5.1.

If the transmission τ can be neglected, the measured powers for the sample Psam

and the reference Pref are given by

Psam = ρsam ⋅ P0 and Pref = ρref ⋅ P0 (5.3)

at a constant input power P0 as a function of the reflectivities of the sample ρsam

and the reference ρref. Combination and rearrangement yield

ρsam =
Psam

Pref
⋅ ρref∣

P0

(5.4)

as an expression for the reflectivity of the sample.

1 ‘28um/w 400CU/150NI’ from Measurement Specialties.
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5.1 External Reflectivity Measurement

Figure 5.1: Geometry for the External Reflectivity Measurement — The laser
(purple) enters the integrating spherea from the west port and strikes the sample
in its holder (yellow) mounted on the east port at eight degrees. The reflected
light comprises a specular (narrow lobe) and a diffuse (wide lobe) part. Direct
light from the sample to the detector (black) on the north port is blocked by
an internal baffle in the northeast section in the sphere. The sample can be
replaced with a reference made from a piece of polytetrafluoroethylene equipped
with a sample retaining plate simulating the sample holder.

a ‘819C-SL-3.3-CAL’ equipped with a ‘918D-UV-OD3’ detector operated with an ‘842-PE’
energy meter from Newport Spectra-Physics GmbH.

48 metalized β-polyvinylidene fluoride discs alternating with the polytetraflu-
oroethylene reference were measured on three occasions in the setup, described
by Figure 5.1, using the 405 nm laser from the calorimetry setup. The samples
have undergone an annealing procedure for various combinations of temperatures
and durations of up to 100 °C for up to 72 h. A temperature of 125 °C leads to
macroscopic changes of the samples. Hence, these specimens are excluded from
further considerations. Due to the fact that the samples were not entirely flat, the
reading from the powermeter was maximized by rotation of the sample in the sample
reception.

With a reflectivity of the compact polytetrafluoroethylene sample [164] of ρref = 0.948
the reflectivity of the samples computed to ρsam = 0.444 ± 0.019, as shown in Figure
5.2. This value is significantly lower than the theoretical value [165] of ρNi = 0.49062.

This difference might arise from a “contaminated” surface or different losses related
to the ports in the integrating sphere for the sample and the reference. Nevertheless,
the measurement appears reproducible although the samples experienced a different
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Figure 5.2: Reflectivity Measurement — The reflectivities of 48 samples (dia-
monds) with different thermal treating are averaged (black solid line) and
opposed to the theoretical value (blue dashed line). The latter is significantly
higher since it is located outside the error range (gray dashed lines). The last
six samples visually suffered from the thermal treatment and are excluded from
the average.

thermal treatment.
The β-polyvinylidene fluoride film is metalized with 40 nm of copper and 15 nm

of nickel on both sides resulting in a theoretical combined transmission [162,163] of
3.8 ⋅ 10−4. Since this value is smaller than the scatter of the data, it is considered to
be negligible.

Although a separate measurement of the specular and the diffuse component of
the reflected light is basically possible, it has not been performed. Optical inspection
of the reflected light revealed reflection characteristics dominated by the diffuse part.
This motivated the use of a diffuse reflecting reference like polytetrafluoroethylene. A
specular reflecting reference like a gold foil might be more stable but the experiment
might suffer from different losses of light out of the ports.

In order to improve the reliability of the measurements, this measurement should
be repeated with a diffuse reference with a reflectivity around 0.5 to be closer to
the measured value and to avoid influences from a calibration point far away from
the measured value. In addition a second reference should be measured serving as a
control test.

Since the detector discs are not perfectly flat, the direction of the diffuse lobe, see
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Figure 5.1, is not well defined. The opening for the laser input should be narrowed
by a Spectralon™ plug with a small hole. The best solution would be a fiber coupled
port attached to the integrating sphere. These arrangements will minimize the
fraction of light reflected out of the port after hitting the sample, and thus increase
the accuracy of this measurement.

If a possible transmission of the metalized film is observed, the reflectivity of the
sample connector piece in the sample holder has to be taken into account. It reflects
transmitted light back to the backside of the sample, where it is partially absorbed
and partially reflected back onto the connector piece and so on. Since the aluminum
contact piece is highly reflective [136] at the used wavelength, i.e., ρAl = 0.923, most of
the light is absorbed by the metal coating of the detector disc. This effect keeps the
error rather small, since the transmitted light is not completely lost but absorbed in
a second attempt.

Cleaning the samples by ion bombardment and a subsequent comparison of the
detector response to laser pulses of three tested samples suggest an increase of
the reflectivity by approximately 5 % upon this cleaning procedure. This supports
the assumption of a contamination layer on the nickel surface reducing the ex situ
measured reflectivity. If desired, this effect might be studied in a systematic way
employing better references.
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5.2 Sputtering

Early deposition experiments with magnesium on oscillator crystals of the quartz
crystal microbalance (QCM) and metalized β-polyvinylidene fluoride foils exhibited
unexpected behavior. The sticking coefficient, i.e., the probability that a dosed atom
will stay on the surface, was almost zero for a pristine sample and increased slowly
with dosage. Metals usually adsorb very well at room temperature on various metallic
surfaces [18,24], moderate to high on oxides [20,22,27], and exhibit a varying behavior on
polymers ranging from barely to very well [55–58,61]. Concerning the passivation of
nickel by nickel oxide [166], this low sticking probability could be reasonable for the
β-polyvinylidene fluoride detector foils, but due to the absence of such an oxide layer
on gold, it should not occur in this case.

As a consequence of intended but not installed surface characterizing techniques,
an unconventional attempt to characterize the contamination layer has been executed.
Removal of material on the QCM crystal results in an increase in resonance frequency,
as discussed in Section 1.3.6. At constant operation conditions, sputtering effectuates
a constant sputter rate, i.e., ablation of material per time. The absolute rate depends
on ion energy, ion current density on the sample, which is correlated to the pressure
of the gas used, and the properties of the material which is removed – especially the
mass in relation to the sputtering species and binding forces to the layer. A similar
mass provides good momentum transfer and small binding energies result in high
cleavage probabilities [167]. Both aspects lead to high sputter rates. Hence, a change
in the sputter rate indicates a change in the material’s properties and thus a change
of the removed material.

A commercial QCM crystal has been treated the same way as the β-polyvinylidene
fluoride detector discs, i.e., washed with 2-propanol2, mounted in a sample holder,
introduced in the load lock, and kept in vacuum for degassing for 24 h, before being
transferred into the main chamber. The crystal has been sputtered with argon ions
of a kinetic energy of 3 keV at an argon background pressure of 1 ⋅ 10−4 Pa. Every
60 s the crystal has been moved out of the sputter position to the detector stage in
order to establish an electrical connection and to measure the resonance frequency
with a standard QCM controller3.

The effect of sputtering on the change of the oscillator frequency δf = f − f0 from
its initial frequency f0 is shown in Figure 5.3. As expected, the resonance frequency
f increases since δf is always non-negative. The frequency increase between the

2 ‘7343.1’ HPLC grade from Carl Roth GmbH + Co. KG.
3 ‘IL150’ from Intellemetrics Global Limited via tectra GmbH.
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Figure 5.3: Sputtering of a QCM Crystal — The change in oscillating frequency
(diamonds) is plotted versus accumulated sputtera time at constant conditions.
There is a distinct change in the sputter efficiency around 8 min indicated by
smaller differences in frequency. Here, the soft contamination layer is removed
and the clean gold coating of the QCM crystal is exposed. Linear regressions
(lines) emphasize the different increments.

a Ekin = 3 keV, Iem = 10 mA, p = 1 ⋅ 10−4 Pa.

measurements is approximately constant at the beginning followed by an abrupt
change after a total sputter time of 480 s. The blue lines correspond to an averaged
sputter rate before and after 480 s.

The clearly visible change of the averaged sputter rates in Figure 5.3 indicate a
distinct change of the removed material. Since the rate decreases, the material is
harder to remove at the end of the experiment which is well in agreement that the
gold surface is reached.

An aluminum sample4 prepared in a similar way shows species containing carbon
and oxygen as contamination in an X-ray photoelectron spectrum, see Figure 5.4.
While the carbon component is obvious, the oxygen component is derived from the
fact that the increase of the O 1s signal after sputtering does not correspond to the
reduced damping of the Al 1s peak and cannot arise solely from the oxide passivation
layer [166] on the aluminum foil.

This leads to the conclusion that the contamination consists of non-volatile
polyglycols, which are a typical contamination in 2-propanol, or other oxygen

4 ‘2596.1’ from Carl Roth GmbH + Co. KG.
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Figure 5.4: Photoemission Spectra of Aluminum Foils — According to the desig-
nated peaks, a minor carbon contamination can be seen in the pristine aluminum
foil cleaned with 2-propanol. Short sputteringa removes most of this surface
impurity while the oxide layer stays intact. Data is vertically offset for better
comparison.

a Ekin = 1 keV, Iem = 10 mA, p = 5 ⋅ 10−5 Pa, t = 10 min.

containing polymers from the cleaning solvent. Fragments of hydrocarbons have
a similar mass as argon atoms5 and feature smaller bond energies [167] than gold
atoms embedded in a surface. This agrees with the more efficient sputtering of the
contamination. Since multilayers of water desorb below 230 K from gold films [168]

water cannot be the main component of the soiling.
Ion etching, i.e., sputtering with reactive gases like oxygen or fluorine, of the

samples is not supported with the current setup, since the sputter gun is intended
to be operated with noble gases only.

Implying a density of ϱ = 1 for the contamination6 one can, according to Equation
(1.15), calculate its Sauerbrey-thickness. The observed frequency change of 324 Hz
corresponds in this case to a thickness of approximately 60 nm.

A coarse calculation7 of the thickness of the contamination layer from damping
of the Al 1s peak intensity yields 3 nm. Identical calculation using the O 1s peaks

5 mAr = 40 u, mAu = 197 u, m(CH2)3 = 42 u.
6 Poly(propylene glycol) [169] as example for a polyglycol.
7 Using the peak maximum to background difference and the inelastic mean free path of electrons

in polyethylene [170] as a function of kinetic energy.
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Figure 5.5: Magnesium Deposition on QCM Crystals — On a sputtereda QCM
crystalb the deposition rate (green) is constant and the mass spectrometer is
not detecting magnesium (m/z = 24 – blue) typical for the adsorption of a
metal on a metal. In contrast, the pristine crystal rejects most of the dosed
magnesium resulting in a reduced initial reading while the mass spectrometer
signal (black) exhibits a pronounced maximum. The evaporated amount of
magnesium corresponds to a final layer thickness of 1.1 µm (sic) in both cases
assuming complete adsorption.

a Ekin = 1 keV, Iem = 10 mA, p = 5 ⋅ 10−5 Pa, t = 10 min.
b ‘SN66BG’ from Intellemetrics Global Limited via tectra GmbH.

results in a thickness of 10 nm. Again, this points out the presence of oxygen in
the contamination layer. The contradiction to the quartz crystal microbalance
measurement indicates a non-uniform cover layer assuming a similar purity of the
used solvent. As this layer has been removed for most of the experiments more
detailed discussion is not productive.

The effect of the sputtering on the sticking behavior is demonstrated in Figure 5.5.
Magnesium was continuously dosed on a pristine QCM-crystals followed up by a
sputtered crystal at ambient temperature. Except for the sputtering8 both crystals
were treated the same way as mentioned above.

The sputtered crystal shows a constant deposition rate and a constant low intensity
in the mass spectrometer signal for magnesium. In contrast, the pristine crystal
exhibits a pronounced induction period until the deposition rate reaches a plateau.

8 Argon: 10−4 Pa, Ion Energy 3 keV, 10 minutes.

231



5 Characterizing Experiments

As the observed deposition rate increases, the intensity of the mass spectrometer
signal for magnesium decreases in a correlated way. Since the flux is almost zero
at the beginning, nearly all magnesium atoms are rebound from the contamination
layer on the crystal.

These results led to the additional step of a sputtering for ten minutes in the
standard sample preparation procedure mentioned in Section 6.3 for effectively
removing the contamination layer.
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5.3 Partially Loaded Quartz Crystal
Microbalance

As mentioned in Section 1.3.6, the accuracy of the reading of a QCM relies on
the size of the deposition area. In the ideal case the covered area should be larger
than the size of the smaller electrode which is usually the back electrode. Since the
diameter of the molecular beam is smaller than the diameter of the back electrode
of the used crystals, one has to correct for this geometric factor.

The deposited mass mdep is given by its density ϱ and volume V

mdep = ϱV = ϱ ⋅ π ⋅ r2 ⋅ d (5.5)

where the volume is calculated from the thickness d indicated by the QCM controller
and the effective deposition diameter of 2r, which is in this case the beam diameter.
Since the source has a finite area, the deposition is not entirely homogeneous like for
a plane source. Some material near the perimeter is spread outside of the nominal
beam area. Since exactly the amount of material missing inside the nominal area
is deposited outside, the total amount is unchanged and this calculation can be
performed with the nominal diameter.

As a consequence of the inhomogeneous deposition, the diameter entering the
theoretical correction needs to be examined more closely. The profile of the deposited
layer is reminiscent of a bellmouthed disc. The innermost part contains a layer
of constant thickness with a smaller diameter than the nominal beam diameter
surrounded by a transition region with an approximately sigmoidal thickness profile.
As discussed in Section 1.3.6, the resonance frequency is determined by the resonator
feedback loop with the highest quality factor. Since it is obvious that a homogeneous
disc will create a “better” shear mode resonator than the surrounding toroid, the
oscillation frequency is determined by the central area with uniform coating and the
resonance frequencies from the penumbra region are not exited. This leads to the
conclusion that the inner diameter is relevant for the calculation of the correction
factor.

A source of error in this experiment is reaction of the deposited material with
the residual gas in the vacuum chamber which typically comprises hydrogen, water,
and carbon monoxide. Although the pressure of the main chamber is in the 10−8 Pa
range during operation of the molecular beam, the pressure on the sample might be
higher if the beam source is degassing. Together with the long deposition periods of
approximately a day contamination is possible.
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The dominant contamination is most likely the formation of oxides in case of
the investigated reactive metals, e.g., magnesium. Hydroxides may be formed as
intermediates but are likely to dehydrogenate to the corresponding oxide [171] or
further oxidize the deposited metal.

In case of a partially oxidized sample with the deposited mass mdep the total mass
m of the metal, regardless of its chemical state, is given by

m = p ⋅mdep + (1 − p) ⋅ ω ⋅mdep (5.6)

with the mass fraction ω of a metal in its oxide MeaOb, and a mixing coefficient
describing the purity p ∈ [0, 1]. Together with the mass fraction ω, which is defined
by the ratio of the molar masses of the metal MMe and of its oxide MOx

ω =
a ⋅MMe

MOx
(5.7)

weighted with the indices, i.e., a and b, of the chemical empirical formula Equation
(5.6) can thus be rewritten as

m = p ⋅mdep +
a ⋅MMe

MOx
⋅ (1 − p)mdep

=mdep (p +
a ⋅MMe

MOx
⋅ (1 − p)) . (5.8)

Since ω lies in the open interval ]0, 1[, a contamination of the deposited material
will result in a metal content smaller than indicated by the QCM controller and
thus in

m

mdep
= p +

a ⋅MMe

MOx
⋅ (1 − p) < 1 . (5.9)

Further complications might arise from a temperature dependent frequency constant
Nf of the crystal. This dependence arises from the correlation of the frequency
constant to the density ϱ and Young’s modulus E of oscillator material by

Nf =
1
2

√
E

ϱ
. (5.10)

The density and the elastic module are both temperature dependent. However, this
influence seems to be small as quartz crystal microbalances are used at cryogenic
temperatures without this specific correction in similar experimental setups [23]

providing correct values [23,32,37,38,41,45,47].
In order to verify the theoretical correction [141] factors regarding the partial
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Table 5.1: Thick Layer Deposition Parameters — The parameters used for the
deposition of thick layers on QCM crystals are listed here. Unless otherwise
stated the temperature of the QCM crystal has been set 307 K. Sputtering has
been executed with 10−4 Pa argon with an ion energy of 3 keV for 10 minutes.

Substance Experiment Crucible Sputtered
Temperature

Magnesium Aa 800 K no
Magnesium B 800 K yes
Magnesium C 800 K yes
Magnesium D 820 K yes
Zinc E 670 K yes
Zinc Fb 670 K yes

a Uneven deposition.
b QCM cooled to 95 K.

loading, macroscopic amounts were deposited on commercial oscillator crystals
and the deposited portion was externally quantified by the service division of the
analytical chemistry department. Since the used methods, e.g., ICP-AES or ICP-
AAS, are element specific, an oxidation or contamination of the specimens after
extraction from the vacuum system is uncritical as long as the contamination is free
of the probed element.

This experiment is also capable of detecting the usage of a wrong crystal type,
i.e., a BT cut instead of a AT cut crystal, which are both commonly available. The
frequency constant of the oscillator crystals with BT cut is one and a half times
larger than for AT cut crystals [141]. Hence, confusion of these two crystal types
would result in a systematic error of the same magnitude.

Several QCM crystals9 have been mounted in the polymer sample holder and
placed in sample position. Thick layers of magnesium have been deposited on one
pristine and two sputtered oscillator crystals from the molecular beam source. The
same experiment has been performed with thick layers of zinc on two sputtered
crystals of which one has been cooled with liquid nitrogen, as listed in Table 5.1.

Table 5.2 summarizes the deposited masses calculated from thickness and found
masses together with their experimental ratios. Furthermore, the average ratio is
opposed to the expected ratios according to the model presented in Section 1.3.6.
Four of the six experiments give similar results with an average of 110 % which
is in agreement with the predicted value of 109 % assuming an electrode diameter

9 ‘SN66BG’ from Intellemetrics Global Limited via tectra GmbH.
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Table 5.2: Thick Layer Deposition Results — From thickness calculated masses
are opposed to masses found by quantitative chemical analysis. The averaged
ratios are compared to theoretical values according to the model presented in
Section 1.3.6.

Substance Experiment Measured
Thickness

Mass mfound

mdepDeposited Found
Magnesium Aa 1.000 µm 27.62 µg 27.64 µg 99.9 %
Magnesium B 1.500 µm 41.46 µg 45.29 µg 109 %
Magnesium C 1.500 µm 41.46 µg 45.01 µg 109 %
Magnesium D 1.000 µm 27.64 µg 30.35 µg 110 %
Zinc Ea 2.103 µm 238.8 µg 223 µg 93.4 %
Zinc Fb 1.897 µm 215.4 µg 240 µg 111 %

Experimental Average: 110 %
Expectation [141]: 109 %

a Excluded from average.
b Thickness corrected by −0.103 µm caused by changing temperature.

of 6 mm and a diameter of the oscillating area – with homogeneous thickness – of
4.37 mm for a QCM crystal placed in the sample position. The latter diameter is
obtained from the geometry of the experimental setup.

A possible explanation of the slight excess could arise from a deposition which
was not concentric with the electrodes since a lateral offset leads to an additional,
yet small sensitivity loss of the oscillator crystal [141,145]. The excess also indicates
that no major contamination of the deposited material occurred since this would
lead to a reduced ratio.

While “Experiment A” suffered from visible inhomogeneous deposition and was
not considered to give a reliable result, the deviation of “Experiment E” is surprising.
The obtained ratio would correspond, according to Equation (5.9), to a contamination
of the deposited zinc with approximately 1/3 zinc oxide which seems unreasonable
considering the good agreement of the other experiments.

A dependency of the measured thickness of the oscillator’s temperature seems
unlikely, since the experiment carried out at low temperature, i.e., “Experiment F”,
agrees well with theory and literature [119,172]. Typically the calorimetry deposition
rate is determined with the oscillator crystal held at ambient temperature. Hence,
this effect is irrelevant in this case. If the nature of the adsorptive requires cryogenic
cooling of the quartz crystal, an influence of the temperature on the measured rate
should be excluded explicitly.
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Due to the good agreement of theory and experiment, the remaining source of
error involving confusion of AT cut and BT cut oscillator crystals, can be excluded.

As mentioned in Section 1.3.6, the acoustic impedance plays only a minor role
for lightly loaded crystals. A light loading of the crystals is considered to reveal a
reduced frequency shift of up to 15 %. The crystals used throughout this work never
exceeded a relative shift of more than 3 % and hence can be considered as sparsely
loaded. This virtually excludes errors arising from a mismatch of the acoustic
impedances.

The calculation of the mass on the QCM crystal from the deposited thickness
corrected with the partial loading model in [141] matches the mass found by analytical
chemistry and excludes major contamination. This result confirms the use of a
quartz crystal microbalance to quantify the deposition rate and thus the flux of the
molecular beam in the sample position.

A possibility to avoid the correction necessary due to the partial loading would
involve the usage of custom made oscillator crystals with a back electrode smaller
than the beam spot. However, it is unknown whether the present electronics are
compatible and will give accurate readings.
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5.4 Sample Preparation in the Load Lock

Although the main purpose of the load lock is sample storage and the transfer
of samples into the vacuum system, it is also used for sample preparation. An
evaporator provides deposition of organic thin films and an attached quartz crystal
microbalance renders a rough estimate of the film thickness possible.

5.4.1 Evaporator

Various substances can be deposited by the evaporator installed on the load lock
onto the samples. Table 5.3 lists the operation parameters for a deposition rate
of approximately 10 nm/min. This rate easily allows to deposit thin and thick layers
on reasonable time scales. The settings used in the QCM controller are given in
appendix A.

Table 5.3: Load Lock Evaporator Parameters — Operation parameters for the
quartz crystal microbalance equipped evaporator in the load lock are listed for
the investigated substances using twelve turns of tungsten wirea as heating fila-
ment. While the currents are accurate, temperatures given rely on the position
of the filament and the heat conductance of the thermocouple/glue/crucible
interface.

Substance Temperature Current
PTCDAbc 540 K 2.7 A
Phthalocyanined 550 K 2.8 A
Sexithiopheneef 410 K 2.2 A
Tetraphenyl porphyring 550 K 2.8 A

a ∅0.5 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
b Perylenetetracarboxylic dianhydride.
c ‘P11255’ from Sigma-Aldrich Co. LLC.
d ‘253103’ from Sigma-Aldrich Co. LLC.
e ‘594687’ from Sigma-Aldrich Co. LLC.
f Evaporates yellow 4T impurity at 1.8 A corresponding to 370 K first.
g ‘PO890001’ from Porphyrin Systems GbR.
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5.4.2 Effects of Coating

In case of the investigation of metals adsorbed on deposited thin films on the used
β-polyvinylidene fluoride detector disc, see Section 2.2, the heat capacity of the
sensor and thus its sensitivity is changed. According to the structure of the detector
film the total heat capacity Cp,det of the detector is given by the involved layers ζ as

Cp,det = ∑
ζ∈Layers

cp,ζ ⋅ ϱζ ⋅ Vζ . (5.11)

with their specific heat capacities at constant pressure cp,ζ , densities ϱζ , and volumes
Vζ . The structure of the stacked layers is given in Table 5.4 together with their
thicknesses and heat capacities. Since the relevant area A of the detector remains
constant, the volume can be calculated from the layer thickness d according to

Vζ = A ⋅ dζ (5.12)

and Equation (5.11) can be rewritten as

Cp,det

A
= ∑

ζ∈Layers
cp,ζ ⋅ ϱζ ⋅ dζ . (5.13)

The detector voltage response Uel is proportional to the temperature change δT
in the detector polymer. The temperature change depends on the heat capacity Cp

of the active area and the deposited heat Qh as

Uel ∝ δT ∝
Qh

Cp

. (5.14)

The relative detector response R as a function of deposition thickness d is thus given
by

R(d) =
Uel(d)

Uel (pristine) =
Cp,pristine

Cp(d)
(5.15)

assuming identical heat input characteristics. Exemplary values for the relative
response are given in Table 5.5 using the sample structure given in Table 5.4.

The relative response is close to one and even for the “thick” layer, i.e., 1 µm,
it changes only by approximately 2 %. Since a determination of the changed heat
capacity is laborious and the estimated influence is small, its effect is not considered
further in this work.
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Table 5.4: Sample/Detector Structure — The table compares the structural com-
position of the pristine and the coated samples together with physical properties.
The thickness d of the deposited substrate is variable.

Substance Heat
Capacitya

Densityb Thickness
Pristine Coated

PTCDAcd 1 J/g⋅K 1.69 g/cm3 — d
Contaminatione 1 J/g⋅K 0.9 g/cm3 60 nm —
Nickel 0.444 J/g⋅K 8.9 g/cm3 15 nm 15 nm
Copper 0.385 J/g⋅K 8.96 g/cm3 40 nm 40 nm
PVDFf 1.5 J/g⋅K 1.76 g/cm3 28 µm 28 µm
Copper 0.385 J/g⋅K 8.96 g/cm3 40 nm 40 nm
Nickel 0.444 J/g⋅K 8.9 g/cm3 15 nm 15 nm
Contamination 1 J/g⋅K 1 g/cm3 60 nm 60 nm

a See References [173–175].
b See References [176–178].
c Perylenetetracarboxylic dianhydride.
d Example. Other substances used to create the molecular thin films have similar properties,

see Appendix A.
e See Section 5.2.
f β-Polyvinylidene fluoride.

Table 5.5: Relative Response of a Coated Detector — Exemplary values for the
relative response obtained from Equation (5.15) with the structural information
from Table 5.4. The minor increase for the thinnest layer results from the
removal of the contamination layer.

Thickness Relative Response
10 nm 1.0006
50 nm 0.9997
0.1 µm 0.9986
0.5 µm 0.9896

1 µm 0.9786
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5.4.3 Thermal Degrading During Deposition

As poled β-polyvinylidene fluoride loses its pyroelectricity [148], also see Section 5.9.3,
upon exposition to elevated temperatures, a possible source of error arises from the
thermal load on the detector polymer during deposition of organic thin films with
the evaporator in the load lock.

If the temperature during deposition of the detector polymer stays below its
critical temperature, no change in the detector output at constant pulse length and
laser power is expected to occur, i.e., the sensitivity of the detector is unchanged.

Several frame pairs, using laser light pulsed on a pristine detector disc mounted
in a polymer sample holder, see Section 2.1, have been recorded. Subsequently, the
subject has been exposed to the thermal radiation of an empty crucible operated
at a typical evaporation temperature of 520 K for about 15 minutes simulating the
usual sample preparation routine, see Section 6.3, but without any deposition on the
detector. Finally, the detector response has been measured with identical parameters
again.

Figure 5.6 give no indication of a change in the sensitivity after the thermal
treatment. A detailed examination following the procedure for a transmission mea-
surement, see Section 3.5.5, reveals a change of less than 0.5 % in the signal intensity.
This result excludes an influence of the coating procedure on the performance of the
detector.

However, the coating does affect the reflectivity and thus the response of the detec-
tor. It is recommended to repeat this experiment if higher evaporator temperatures
are used.
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Figure 5.6: Detector Polymer Degradation upon Coating — The averages of the
detector response to eleven pulse pairs on laser pulses before (black) and after
a simulated depositiona (red) in the load lock are opposed to each other. The
absent difference in the amplitude at constant laser power indicates no degrading
during coating of the detector discs.

a Empty crucible, ≈ 15 min, 520 K.

5.4.4 Tooling of the Quartz Crystal Microbalance in the
Load Lock

In order to produce organic thin films on the sputtered detector polymer, see Section
6.3, a simple evaporator is installed in the load lock, see Section 2.6. It is equipped
with a simple quartz crystal microbalance to estimate the thickness of the deposited
film. A precise measurement is considered not to be necessary as long as the
deposited layer acts as bulk material.

As shown in Figure 5.7, the QCM crystal is far away from the sample. The crystal
must not block the evaporant emitted towards the sample and also must not touch
the housing which results in a geometry which is not advantageous. The positions
suggest a non-homogeneous deposition on the sample. This leads to the situation
where the calculation of the deposition rates in the positions of the oscillator crystal
and the sample is futile since the response of the quartz crystal microbalance is not
predictable in a way that honors the efforts compared to the needs of this setup.

Nevertheless, an entirely empirical approach is still reasonable, since it provides
at least an estimate for the film thickness. The tooling factor t, i.e., the quotient of
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Figure 5.7: Schematic of the Load Lock Evaporator — The position of the crucible
(bottom of the tube), the oscillator crystal (middle of the tube), and the sample
(center of the tee-piece) in the load lock illustrates the need for an empirical
approach to determine the thickness of the deposited layer on the sample.

the calculated deposition thicknesses on the crystal in the sample holder dsam and
on the evaporator devap,

tLL =
dsam

devap
(5.16)

provides a linear approximation if the deposition is carried out on a real sample
since it rearranges to

dsam = tLL ⋅ devap . (5.17)

A commercial QCM crystal has been mounted in a polymer sample holder while
a more cost efficient and readily mounted resonator crystal used in electronics,
see Section 2.6, is attached to the evaporator. The evaporator was filled with
perylenetetracarboxylic dianhydride (PTCDA) from former experiments and thus
well degassed. The crystal on the evaporator has been monitored during the periods
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Table 5.6: Tooling Factor of the Evaporator Quartz Crystal Microbalance in the Load
Lock — Deposited thickness changes calculated from measured resonance
frequencies of a QCM crystal in a sample holder δdsam and mounted on the
evaporator δdsam are presented together with their ratios. The ratios’ average
represents the tooling factor tLL used to calculate the thickness of a deposited
layer on a β-polyvinylidene fluoride detector disc from the indicated thickness
of the quartz crystal microbalance on the evaporator.

Thickness Change on QCM for δdsam

δdevapSample Evaporator
38.9 nm 20.9 nm 0.535
99.5 nm 56.9 nm 0.572
100 nm 67.6 nm 0.673
97.9 nm 55.9 nm 0.571
96.2 nm 57.6 nm 0.598
103 nm 6.12 nm 0.597

Average: 0.60 ± 0.04

of simultaneous deposition. The frequency of the QCM crystal in the sample holder
has been read the same way as in Section 5.3 before, after, and several times
during deposition. The deposited thicknesses are calculated according to Equation
(1.15) with a density of ϱ = 3.37 ⋅ 103 kg⋅m−3 and the acoustic impedance of quartz
Zq = 8.8 ⋅ 106 kg⋅m−2⋅s−1 as a substitute for the unavailable value for PTCDA. Since
the deposited layers only cause a small frequency shift, i.e., less than 0.1 % of the
usable range, the influence of the acoustic impedance can be neglected, as discussed
in Section 1.3.6.

The relationship of the measured thicknesses on the two crystals is quantified in
Table 5.6. The tooling factor evaluates to tLL = 0.60 ± 0.04 providing a sufficient
estimate of the deposited thickness of the thin film.
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5.5 Additional Instrumentation

This section gathers the characterization of the devices and instruments outside the
vacuum system.

5.5.1 Digital Acquisition Card

Due to the fact that the most energies in this setup are calculated by power times
duration it is advised to verify the time base of the measurement setup.

The 1 kHz output of an oscilloscope10 has been acquired with the standard mea-
surement setup and positive flanks within one second were counted in the data.

Surprisingly, the expected amount of 1000 positive flanks was exceeded and found
to be 1039. A cross check with a pulse counter in the electronic workshop resulted
in 1040 events per second. Hence, the time base of the calorimetry measurement
setup is correct and the time base of the oscilloscope should be adjusted.

The accuracy of the read voltage has been coarsely checked against a multimeter
in all measurement ranges and no deviation could be found.

5.5.2 Laser Stability

All laser based measurements rely on the measured laser power and thus on its
accuracy and the stability of the laser power output on a timescale of a calibration
measurement.

The laser power was measured with two calibrated detectors, one was used direct11,
the other one12 is attached to an integrating sphere13 on the same power meter14

giving exactly the same reading. A third uncalibrated power meter15 lend form
another group showed a deviation of less than 1 %.

This results proves the accuracy of the reading of the power meter.
A typical calibration measurement, see Section 6.3, takes about five minutes which

is the minimum requirement on the stability of the laser power.
The laser power was measured with the detector16 used for the calorimetric

measurements and the data was recorded every second with the power meter17, for

10 ‘HM 205’ from HAMEG Instruments GmbH.
11 ‘918D-SL-OD1’ from Newport Spectra-Physics GmbH.
12 ‘918D-UV-OD3’ from Newport Spectra-Physics GmbH.
13 ‘819C-SL-3.3-CAL’ from Newport Spectra-Physics GmbH.
14 ‘842-PE’ from Newport Spectra-Physics GmbH.
15 ‘Orion TH’ from Ophir Optronics Solutions Ltd.
16 ‘918D-SL-OD1’ from Newport Spectra-Physics GmbH.
17 ‘842-PE’ from Newport Spectra-Physics GmbH.

245



5 Characterizing Experiments

850

800

750

700

La
se

r P
o

w
e

r o
u

t o
f F

ib
e

r (µ
W

)

302520151050

min

28

27

26

25

24

23

22

La
se

r 
P

o
w

e
r 

th
ro

u
g

h
 C

h
a

m
b

e
r 

(µ
W

)

Run 1 Laser Power through Chamber

Run 2 Laser Power through Chamber

Run 3 Laser Power out of Fiber

Average

Error

Figure 5.8: Stability of the Laser Diode — The power output of the laser diodea

measured with a calibrated power meterb 30 minutes after startup (red, left axis),
after three hours (green, left axis) through the chamber, as shown in Figure
5.29, and after four hours directly out of the fiber into the power detector (blue,
right axis). While the stability is comparable to the stated [151] 0.5 % the first
experiment has a much higher deviation. Additionally, the laser power dropped
by approximately 15 % within the first three hours. Since the fluctuations of
the latter two experiments are similar, the transit of the laser beam through the
chamber is not causing the scatter. The vertical axes cover the same relative
range.

a ‘iBeam405’ from TOPTICA Photonics AG.
b ‘918D-SL-OD1’ operated on ‘842-PE’ both from Newport Spectra-Physics GmbH.

half an hour with the data stored in the meter and read out after the experiments.
Two experiments used the configuration for the laser power measurement during
a calorimetry experiment, see Figure 5.29, and the third one measured the output
directly out of the fiber.

As illustrated in Figure 5.8 the intensity dropped during the first three hours in
several steps with stable regions and appeared to be stable after this time. After
this stabilization period, the laser reaches a stability level 0.6 % comparable to the
value stated in the manual [151] of 0.5 % over 30 minutes. This fulfills the requirement
on the laser setup.

According to the manual, a stabilization period should not occur. Since this
experiment indicates a looming problem with the laser diode and thus should be
repeated regularly.
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5.5.3 Amplifier

The amplifier is based on a monolithic ultra low input bias current instrumentation
amplifier18 set to a gain of 100 and an input impedance of 5 GΩ. In the newest
version under development, it is electrically isolated by a precision wide bandwidth
isolation amplifier19 also serving as power supply for the instrumentation amplifier.
In addition, it is configured to provide a selectable additional gain. The output is
equipped with an active low pass filter set to 50 kHz. An automated offset correction
forces the baseline to zero in less than 100 s.

The active material in the detector, see Section 1.3.3, changes its degree of
polarization upon temperature changes and influences a compensating charge on
the attached electrodes. The electrodes and the connecting wires form a capacitor
with a total capacity of Ctot = Cdet +Cwire which is charged instantaneous upon heat
input to the detector. This arrangement is discharged slowly by the load resistor
RL of the input amplifier. The time constant τ of the formed RC-circuit is given by
τ = RL ⋅Ctot and the voltage progression U(t) is described by

U(t) = U(0) ⋅ exp(− t

τ
) (5.18)

with the initial voltage U(0) at the start of the discharge. It should be pointed
out that Equation (5.18) is free of zero crossings and cannot describe the baseline
discussed in Section 3.3.1.

Calculation with the experimental load resistance of RL = 5 GΩ and the total
capacity of Ctot = 0.9 nF, in which Cdet = 0.6 nF and Cwire = 0.3 nF are gathered,
yields a time constant of τ = 4.5 s.

The detector response has been measured at five different laser input powers. 50
frame pairs have been averaged in each measurement. The result is shown in Figure
5.9 illustrating the fast charging of the intrinsic capacitors during the pulse, i.e., the
positive linear parts in the figure, and the subsequent exponential decay. Evaluation
of the latter regions results in a time constant of 0.44 s independent of the laser
power and parity.

This value is in strong contrast to the theoretical value of 4.5 s. However, it
agrees with the set time constant of 0.5 s of the secondary amplifier utilized at that
time. This implies a change of the signal shape by the second amplifier. Since the
calorimetric measurement and the reference measurements are affected in the same
way, the perturbation should not affect the results. This assumption is supported by

18 ‘INA 116’.
19 ‘AD210’.
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Figure 5.9: Voltage Response from the Detector — At each of five different laser
powers 50 frame pairs were measured and averaged. While the slope of the
positive flank is depending on the laser power and seems not to be limited,
the subsequent exponential decay exhibits as a common time constant and is
thus independent of the laser power. The data has been acquired utilizing a
secondary amplifier.

the result of the linearity test, presented in Section 5.9.1.
After a reconfiguration of the measurement setup, it was possible to resign the

second amplifier and acquire the raw signal without significant changes in the signal
shape and quality.

It is advised to continue the development of the primary amplifier in order to
obtain an optimal integration into the measurement equipment. This step should
include a prevention of the oscillating baseline caused by the internal automatic offset
correction mechanism. A possible approach could include a manually adjustable
offset compensation.
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5.6 Molecular Beam

The molecular beam is designed to deliver a high intensity, long term stable flux
from a high volume Knudsen-cell in order to ensure a constant deposition rate. The
source needs to be refillable while the vacuum in the main chamber is preserved.
Furthermore, it has to provide a feature to convert the continuous flux into pulses
of a user settable length. It also should contain an option to remove ions from the
flux in case the utilized source is emitting ionized species.

5.6.1 Main Evaporator

Due to the construction-conditioned impossibility to measure the molecular flux
during the reference and calorimetric measurements, the data evaluation relies on a
constant flux from the source. Since the flux depends on the vapor pressure and
thus it is correlated to the temperature of the crucible, a major requirement on the
source is a well stabilized temperature.

The latter goal is achieved by use of a LabVIEW-based PID regulation of the
power supplies with an accuracy of ±0.1 K given by the accuracy of the temperature
acquisition setup, as demonstrated in Figure 5.10. The graph also shows the excellent
stability of the deposition rate with respect to time exhibiting a standard deviation
of less than 2 % within 27 hours. This is well sufficient for a calorimetric experiment
running for about three hours.

Theory predicts a dependency of the flux on the filling level in the crucible and
a detailed calculation of the evaporation characteristics of the evaporator can be
found in [179]. In early experiments this behavior was foreshadowed but not fully
verified. A major issue at this time was hauling of millimeter sized particles out off
the evaporator onto the QCM oscillator crystal, as shown in Figure 5.11. Although
the correction mechanisms of the QCM controller could handle a few particles on
the crystal, operation time was reduced to about 60 minutes. This performance
is already unacceptable by itself and also would render a meaningful calorimetric
experiment impossible.

At this point a plug made from coarse stainless steel wool, as shown in Figure 5.12,
has been installed in the crucible on top of the evaporant to avoid this misbehavior.
The main purpose is to prevent emission of particles out of the crucible. Since it
it obvious that this additional packing will reduce the conductance of the crucible
above the evaporant, the flux is expected to be lessened. For all used materials it is
possible to compensate the drop in deposition rate by a small increase of the crucible
temperature.
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Figure 5.10: Deposition Rate and Temperature Stability — The thickness change
during deposition of magnesium on a QCM crystal is converted to a deposition
rate (green dots, left axis) by linear regression over 150 s intervals and exhibits
an excellent stability, i.e., less than 2 % standard deviation from the average
(dashed line), over a period of more than one day. The temperature of the
crucible (solid line, right axis) is stabilized by a PID softwarea and shows only
fluctuations in the range of the temperature measurement uncertainty (±0.1 K).
The average deposition rate (black line, left axis) corresponds to 0.06 ML/s.

a Programmed by H. Zhou.

Furthermore, the plug acts as a throttling device maintaining a slightly higher
pressure in the enclosed part of the crucible. This is supposed to lessen the depen-
dency of the flux on the filling level of the crucible which is a highly desirable effect.
Due to the frequent failures of the oscillator crystals without the stuffing, it was not
possible to quantify this effect precisely.

A theoretical consideration of this situation is difficult and not productive since
the influence of the steel wool is not well defined and can be compensated by an
adjustment of the temperature of the crucible. Furthermore, the deposition rate is
measured for every experiment and not calculated from the geometry and material
properties.

In order to reduce maintenance, i.e., refilling, of the source, it comprises a large
crucible with a total volume of 13.8 cm3 of which about 10 cm3 can be filled with the
evaporant. Table 5.7 lists some estimates for filling masses and runtimes. The given
values only represent rough approximations since the masses fitting in the crucible
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a) b) c)

Figure 5.11: Photographs of “Spitted” Evaporant — Magnesium particles were
“spitted” out of the evaporator and onto QCM crystals, causing them to fail.
The visible golden area has a diameter of 8 mm. a) shows the deposition area
and particles. b) only exhibits particles. c) demonstrates flawless deposition.
In experiment c) the stainless steel wool has been applied and the QCM crystal
is mounted upside down.

Figure 5.12: A photograph of the Steel Wool Plug — Steel woola with a diameter
of 10 mm and a length of 20 mm is inserted in the crucible to prevent “spitting”
of the evaporant and as a throttling device.

a ‘Topfreiniger 18/10’ from ALDI Einkauf GmbH & Co. OHG.

depend on grain size, shape, and packing behavior of the material. The runtime
depends on the filled amount and the operation temperature which is expected to be
varied along different experiments. Despite all these uncertainties, one can expect
refilling of the evaporator about once per month which is in agreement with the
latest usage of the beam source.

This evaporator version is used for magnesium, calcium, zinc, and lead in the form
of flakes or pellets. For organic molecules the use of already present quartz crucibles
in combination with a plug made from quartz fibers is recommended. A short
evaluation concerning the usage of an electron beam evaporator20 in the molecular
beam, as mentioned in Section 2.3, is presented in Section 6.6.3 together with the
discussion on experiments involving the deposition of copper.

20 ‘EFM-4’ from FOCUS GmbH via Omicron NanoTechnology GmbH.
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Table 5.7: Main Evaporator Fill Amounts — Masses of evaporants filling the
main evaporator to the desired two thirds. Runtimes apply for a deposition rate
of approximately 0.2 ML/s and are estimated over several operation conditions.

Substance Filling Runtime
Magnesiuma 4.0 g ≈ 50 h
Calciumb 1.5 g ≈ 80 h
Zincc 15 g ≈ 80 h
Leadde 20 g > 20 h f

Coppergh 1.5 g ≈ 3 h

a ‘254118’ from Sigma-Aldrich Co. LLC.
b ‘327387’ from Sigma-Aldrich Co. LLC.
c ‘8780’ from Merck KGaA – discontinued.
d ‘p.a.’ from inorganic chemistry department.
e Without steel wool.
f Evaporator broken.
g ‘490DFL016-G-S5’ from Pfeiffer Vacuum GmbH.
h With a ‘C Mo M’ crucible in an ‘EFM-4’ electron beam evaporator from FOCUS GmbH via

Omicron NanoTechnology GmbH.

5.6.2 Inline Valve

For routine maintenance of the molecular beam, e.g., refilling of the main evaporator,
it needs to be vented frequently. In order to preserve the vacuum in the main
chamber, a valve is included, as mentioned in Section 2.3.4. Figure 5.13 visualizes
the pressures in the main chamber measured with an ion gauge and the pressure
in the fore-vacuum line measured with a Pirani gauge during a service vent of the
molecular beam. The spike in the main chamber’s pressure at 2:00 p.m. indicates
the closing of the valve and the steep rise of the fore-line the actual venting. The
pressure in the main chamber is maintained at 10 nPa during the five hour service
meeting the requirements of an ultra high vacuum system. The spike in the fore-line
pressure at 8:30 p.m. indicates degassing of the main evaporator while the slow rise
of the pressure in the main chamber after 9:00 p.m. is attributed to degassing of the
beam parts in the main chamber due to the bake-out after the venting procedure.
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Figure 5.13: Performance of the Inline Valve — The pressure in the main chamber
(red line) and the pressure of fore-vacuum line (blue line) of the molecular beam
are shown for a service vent of the molecular beam. While the beam is at ambient
pressure, the pressure in the main chamber is not affected. The subsequent
increase arises from a bake-out of the beam.

5.6.3 Chopper

Considering a pulsed molecular beam there are three issues important to the mecha-
nism converting the continuous output of the crucible into a periodic pattern.

The first aspect is the periodicity itself, i.e., the position of the pulse in a frame.
The controller of the chopper motor receives a start command from the controlling
computer and starts the internal programed routine containing a certain delay. An
additional delay arises from the fact that the chopper does not open on the first
step. If these delays are constant, it is possible to calculate a compensation and
adjust the program to start the pulse at the desired time.

Second, the duration of a pulse is of major interest since it determines the amount
of molecules in a pulse. While the exact length can be measured from the calibration
measurements and also can be adjusted like the start delay, it would be fatal if the
pulse length varies.

Third, the time from the closed to the open state and vice versa should be as
small as possible to obtain the desired rectangular pulse shape.

Naturally, the chopper should be fully transmissive in the open state and completely
blocking in the closed state.
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Figure 5.14: Performance of the Chopper: Photo Diode — 96 laser pulses mea-
sured with an external photo diodea on an transimpedance amplifier for a power
proportional output are displayed together. The pulse position and pulse length
are constant for odd (green) and even (blue) pulses. The different position of
the two subsets has been adjusted after this measurement. The fast switching
is also clearly visible.

a ‘PIN-10D’ from UDT Sensors, Inc. now OSI Optoelectronics.

Figure 5.14 demonstrates the reproducibility of the absolute position of the pulse
in the frame. The position of the odd pules is already adjusted to 200 ms. The
position of the even pulses was adjusted after this measurement. The pulse length
for both subsets is 97 ms measured at half intensity and was also adjusted to the
desired 100 ms. The chopper opens and closes the beam within 3 ms. The shape
matches the one obtained with the mass spectrometer in case of the line-of-sight
measurement, see Figure 5.19 in Section 5.7.3.

In order to avoid systematic errors, this measurement should be repeated to ensure
the accuracy of the chopper controller settings. As a misalignment of the laser
path leads to a virtual shift in the peak position, it is advised to check the chopper
position against a continuous mass spectrometer signal – see Sections 5.8.4, 6.3, and
Appendix A – modulated by the chopper position. A baseline reference is given
in case of a blocked molecular beam, i.e., if the mirror/orifice stage is in reflection
position, see Section 2.3.2. Full transmission is granted, if this stage is set to orifice
position and the chopper is moved to the valve position. In normal operation, the
chopper close positions should exhibit a mass spectrometer signal identical to the
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Figure 5.15: Performance of the Chopper: Deconvoluted, Diffuse Radiation —
The power input of 44 averaged infrared radiation pulses measured through the
barium fluoride window obtained by deconvolution is shown for even (green)
and odd (blue) pulses. The direct radiation reaches the sample from 200 ms to
400 ms and causes a distinct peak. The base lines before and after the peaks
are switched indicating a different power input during the off states.

baseline value. Analogue, the open position needs to show the same value as the full
transmission reference.

Differing amplitudes indicate a misalignment of the chopper. In a second step, it
should be verified that the pulse positions of laser pulses coincide with the positions
of the mass spectrometer signal. These adjustments utilize the fact that the spread
of molecules and laser light can be treated by geometrical optics. Implying correct
adjustment, the chopper blade is blocking the beam or not.

In contrast to this behavior, the infrared radiation forms a diffuse background
superimposing the direct infrared radiation from the evaporator. Figure 5.15 illus-
trates the power input on the detector by a deconvoluted radiation measurement,
see Section 3.10. The direct radiation input between 200 ms and 400 ms causes a
pronounced signal which is, in accordance to expectations, essentially rectangular.
The base line level before and after the pulse changes in a way that the level before
an even pulse becomes the level after an odd pulse and vice versa.

As shown in Figure 5.16, measurements with the laser have a common baseline.
Since the setup is not changed, the difference arises solely from the chopper position.
This leads to the conclusion that the diffuse radiative field is influenced in two
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Figure 5.16: Performance of the Chopper: Deconvoluted, Direct Radiation — The
power input of 46 averaged laser radiation pulses obtained by deconvolution is
shown for even (green) and odd (blue) pulses. The laser radiation reaches the
sample from 200 ms to 400 ms and causes a distinct peak. The base lines before
and after the peaks are on the same level.

different ways for the two closed states. Furthermore, it implies a different yet
respective “constant” input for the detector and thus an unequal peak shape for even
and odd radiation pulses, as shown in Figure 5.23. Since the radiation participates
in the calorimetry measurement, the peak shape of the calorimetry signal is also
affected.

On first glance, this might appear as a vast drawback since it renders the data
treatment more complicated. On second sight, it turned out to be beneficial since
it allows to quantify the amount of radiation in a single calorimetric pulse from
the peak shape even in case of changing infrared absorption of the sample, e.g., an
organic layer covered by a metal. Details on this procedure are given in Section 3.8.

Since the chopper has a default and a temporary close position, the thermal load
of the evaporator is larger on the default position. This leads to a small temperature
difference between the two legs of the chopper blade in case the used material
is thin and exhibits a small thermal conductivity. Since the detector “sees” the
chopper in the closed states it is also sensitive to the alternating radiation input
from the two chopper legs. No influence is expected for calorimetric measurements
at ambient temperature and has also not been observed. Experiments carried out at
cryogenic sample temperature however might be sensitive to this effect manifesting
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in a changing peak shape of a radiation measurement.
At the beginning the temperature gradient is established since one leg is heated

by the evaporator and the other one is not. During the measurement the duty
cycle for both legs is identical resulting in an identical heat input which leads to
an adjustment of the temperatures. This implies an equal heat input in the closed
states from the chopper21 and thus to a changed peak shape.

If this effect is observed, the chopper blade should be replaced by a copy made
from aluminum in order to improve its thermal conductivity. This should lead to a
more uniform temperature distribution prior to the start of the experiment.

5.6.4 Deflector Plates

The performance of the deflector plates has been tested with the standard main
evaporator and the electron beam evaporator, as mentioned in Section 2.3.

The ratio α of ionized atoms to neutrals can be approximated by the Saha-
Langmuir equation [180]

α =
g+
g0

exp(e (Φ − Vion)

kB ⋅ T
) . (5.19)

The degeneracy of states for the ions is given by g+ and for atoms by g0. The energy
required to remove an electron from a neutral atom, i.e., the ionization potential, is
denoted by Vion and Φ represents the electrostatic potential22 of the solid evaporant
or the crucible, depending on which one is higher.

Table 5.8 lists the contribution of ions in the molecular beam and illustrates the
absence of thermal ions for Magnesium and Zinc and a small contribution for calcium.
However, if an electron beam evaporator is used the molecular beam may contain
a larger contribution of ions due to electron collision ionization. In cases of the
presence of ions their removal is possible with the deflector plates, see Section 2.3.5.
The current resulting from the elimination of the ions can be chosen to monitor the
amount of ions in a pulse. Together with the assumption of a constant generation
rate it could be utilized to stabilize the flux of the source or to perform a relative in
situ flux measurement. The current for the example with calcium from Table 5.8
computes to 0.7 pA which can still be measured with conventional methods.

Secondary, a dependency of the calorimetry signal on the plate voltage should
have been investigated for the systems using copper as evaporant. Unfortunately,
the used measurement device23 was broken and no reliable data could be acquired.

21 But not from the radiative background field.
22 Multiplication by an elementary charge yields the work function.
23 ‘6517’ from Keithley Instruments Inc.
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Table 5.8: Contribution of Ions to the Molecular Beam — The ionization proba-
bility according to Equation (5.19) is given for three substances and a stainless
steel crucible with an approximate work functiona of 5 eV. Degeneracy is 2 for
the ion and 1 for the ground state. The number of ions per pulse corresponds
to a deposition rate of 0.1 ML/s and a pulse length of 200 ms.

Substance Source 1st Ionization Ion Ions per Ion
Temperature Potential [182] Fraction α Pulse Current

Magnesium 820 K 7.6 eV 2⋅10−16 4⋅10−4 3 ⋅ 10−22 A
Calcium 860 K 6.1 eV 7⋅10−7 9⋅10 5 7 ⋅ 10−13 A
Zinc 760 K 9.4 eV 1⋅10−29 4⋅10−17 3 ⋅ 10−35 A

a The work functions [181] of the main alloy components iron, cobalt, and nickel are all close to
5 eV.

Since no ion contribution is expected for a thermal source, this is no drawback for
the presented work.

This measurement should be repeated if an electron beam evaporator is used,
since it is known for this kind of source to emit ions24.

5.6.5 Evaporator Radiation in Reference Measurements

As Section 5.6.3 indicated and Section 5.8.1 will demonstrate, the infrared radiation
from the evaporator causes a difference in the shape of the detector response in
the radiation measurement. This rises the question if it also influences the laser
reference measurements. Since the infrared radiation induces an asymmetry between
odd and even pulses the laser based measurements could also carry this signature.

During radiation measurements the optics stage, see Section 2.3.2, the orifice is
aligned with the axis of the molecular beam to let molecules pass while the holder
of the mirror is blocking the direct path for radiation and molecules. The laser is
reflected towards the sample interrupted by the chopper to form pulses. The crucible
temperature has been varied between 500 K and 830 K and the measured 46 pulse
pairs for each temperature have been averaged.

Figure 5.17 displays the acquired averages scaled to same intensity and offset.
All traces exhibit the same shape leading to the conclusion that the laser based
measurements are not influenced by the radiation from the main evaporator. Due to
fluctuations in the laser power a quantitative analysis has not been possible.

24 The ‘EFM-3i’ from FOCUS GmbH comes with an ion suppression feature.
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Figure 5.17: Crucible Radiation in Laser Measurement — A laser reference mea-
surement, see Section 3.5.4, has been performed for several crucible temperatures.
After normalization with respect to the absolute amplitudes, no influence of
the infrared radiation on the averaged laser based data is detectable.
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5.7 Mass Spectrometer

The molecular flux from the beam source is diffusely reflected by the hot plate and
a fraction of the initial flux reaches the mass spectrometer. In order to estimate the
necessary sensitivity the partial pressure of the evaporated species at the entrance
of the mass spectrometer should be considered. Consequently, the influence of the
settings of the mass spectrometer around the obtained estimate are investigated.

Additionally, effects of the chopper on the pulse shape are discussed. The influence
of the hot plate on the mass spectrometer signal is discussed in detail in Section
5.8.4.

5.7.1 Intensity Estimation

Starting with the molar dose per pulse Dmol and the pulse length t the deposition
rate on the hot plate J in Atoms/s is given by

J =
Dmol ⋅NA

t
. (5.20)

These molecules pass the half sphere around the hot plate with the radius r equivalent
to the distance to the mass spectrometer with a surface area A of

A = 1
2 ⋅ 4π ⋅ r2 (5.21)

leading to the impingement rate j assuming a cosine distribution for the emission
from the hot plate

j =
J

A
cos(ϑ) = J

2π ⋅ r2 cos(ϑ) (5.22)

with the angle ϑ to its surface normal. This includes the approximation of a small
opening of the mass spectrometer compared to the size of the half sphere leading to
a constant cos(ϑ). The impingement rate is also defined by

j =
p

√
2π ⋅m ⋅ kB ⋅ T

(5.23)

by the pressure p, the mass m of the molecule at the temperature T . Combination
of Equations (5.20), (5.22) and (5.23) yields after rearrangement

p =
Dmol ⋅ cos(ϑ)

2π ⋅ r2 ⋅ t
⋅
√

2π ⋅mkB ⋅ T (5.24)

as an expression for the expected pressure during a pulse in the mass spectrometer.
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With the geometry of the experimental setup of r = 73 mm, ϑ = 40°, and typical
values for parameters for deposition of magnesium of t = 0.2 s, Dmol = 1.5 ⋅ 10−11 mol

pulse ,
and a temperature of the magnesium atoms equal to the hot plate temperature of
T = 850 K, the pressure computes to p = 6 ⋅ 10−8 Pa = 6 ⋅ 10−10 mBar.

In order to treat the electron multiplier in the mass spectrometer gently and to
maintain some reserve, it was operated at the beginning at medium voltages, i.e.,
between 1000 V and 1500 V, compensated by a higher sensitivity level, i.e., the
“Range: 10−12 mBar” instead of the “Range: 10−10 mBar” setting, suggested by the
calculation. In addition, the mass spectrometer suffered from some sensitivity loss
due to its usage before it was attached to this machine. It should be mentioned
that the mass spectrometer software gives a pressure read out but, since it is not
calibrated and can be influenced by the multiplier voltage, its absolute value has
no significance. Hence, this work internally uses volts for the mass spectrometer’s
intensity and the data treatment software uses relative intensities, where possible.

5.7.2 Mass Spectrometer Settings

For early experiments the multiplier voltage was increased to a level where the
0 − 10 V analogue output of the mass spectrometer reached about 8 V to make use
of the full measurement range of the data acquisition card. A detailed examination
of the data revealed some “specialties”. The noise level during the on-state of the
pulse was slightly lower than during the off-state and the peak shape seemed to
change with intensity. Due to the rather poor noise level of the mass spectrometer’s
signal in general, these subtle features remained hidden, until the replacement of
the tantalum version of the hot plate by the sapphire version and the subsequent
necessary recharacterization of this device.

Zinc has been dosed on the hot plate held at 900 K using a deposition rate of
0.1 ML/s. The signal of the mass spectrometer has been recorded altering the range
setting of the mass spectrometer and the sample rate of the signal. The voltage of
the secondary electron multiplier has been adjusted to the range setting.

The difference in the signal is illustrated in Figure 5.18 recorded at an increased
sample rate of 10 kHz instead of the typical 1 kHz. While the envelopes and the
reduced, i.e., a piecewise average of ten data points, from the data set corresponding
to the “Range: 10−12 mBar” setting match the peak shape of the data set correspond-
ing to the “Range: 10−11 mBar” setting, the raw data differs significantly. The major
component in this case is a high amplitude 1 kHz-sine while the actual measurement
related information is modulated onto this signal as an offset. As demonstrated the
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Figure 5.18: Influence of the Mass Spectrometer’s Range Setting — Two pulse
pairs of dosed zinc (m/z = 64) at unchanged experimental settings are recorded
with 10 kHz with two range settings and adjusted electron multiplier settings
of the mass spectrometer. The envelopes of the data set corresponding to the
“Range: 10−12 mBar” setting (red) and its average over ten data points (black)
match the data set measured with the “Range: 10−11 mBar” setting (blue). The
former contains a vast contribution of a 1 kHz sine dominating the data and
resulting in clipping of the signal at 10 V already for medium average intensities.

signal quality can be enhanced by oversampling, compare the red and black traces in
Figure 5.18. However, this method fails if the envelope reaches the voltage limit of
the analogue output or input circuit and gets limited by internal protection devices.
In this case the averaged value is still in a safe appearing range but the linearity of
the signal to the physical input is nullified and renders the measurement useless.

Since the measurement software included an unmonitored down sampling of the
data this issue was not easy to discover. As consequences of this finding the display of
the envelopes has been added and the measurement parameters are altered towards
the “Range: 10−11 mBar” setting. At this setting the contribution of the 1 kHz
component is small enough not to interfere with the sampling. If additional Nyquist-
Shannon sampling noise is detectable, the measurement software can be configured
to use over sampling in order to avoid this effect. Typical electron multiplier voltages
extend from 1500 V to 1900 V.
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5.7.3 Mass Spectrometer Peak Shape vs. Pulse Length

The chopper in the molecular beam opens and closes the beam path periodically
allowing molecules to pass or not. Due to the finite switching times a trapezoidal
signal profile is expected. A variation of the pulse length is expected to change only
the width of the profile independent of operation settings and material.

Magnesium with a deposition rate of 0.3 ML/s has been dosed directly into the ion
source of the mass spectrometer relocated to the position of the detector port and
the intensity of the impinging magnesium has been recorded for 23 pulse pairs. In
this case the mass spectrometer was set to “Range: 10−8 mBar”. The pulse length
has been varied between 100 ms and 300 ms in steps of 50 ms.

The operation voltage of the secondary electron multiplier in the mass spectrometer
had been set to a level of maximal amplitude without clipping of the signal due to
the 1 kHz component, mentioned in Section 5.7. The used mass spectrometer has
a temporal resolution of about τ0 = 5 ms during software [183] acquisition and about
1 ms for the analogue output.

As shown in Figure 5.19, the recorded peaks exhibit a trapezoidal shape with
minor steps in the peak edges arising from the discrete movement of the chopper
motor, similar to the measurement using laser and the photo diode, see Figure 5.14.
A small variation of the total intensity is attributed to instabilities of the molecular
flux, since, at the time of the measurements, several improvements had not been
implemented yet.

The result matches the expectation and the observed temporal resolution exceeds
the one stated in the manual.

In a similar experiment, calcium with a deposition rate of 0.3 ML/s has been dosed
onto the hot plate held at 1180 K and the intensity of the desorbed calcium has
been recorded for 23 pulse pairs. In this case the mass spectrometer was set to
“Range: 10−11 mBar”. The pulse length has been varied between 100 ms and 305 ms
in steps of approximately 50 ms.

Again, the operation voltage of the secondary electron multiplier in the mass
spectrometer has been set to a level of maximal amplitude without clipping of the
signal, due to the 1 kHz component mentioned in Section 5.7.

The intensity of the obtained signal is not constant during the transmissive phase
of the chopper, as illustrated in Figure 5.20. It exhibits an exponential increase
early in the pulse and an exponential tail after the pulse. The initial phase of the
signal exhibits a similar shape for all investigated pulse lengths. The subsequent
evolution depends on the duration of the pulse. At long exposure times, the maximal
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Figure 5.19: Influence of the Pulse Length on the Mass Spectrometer Signal: Direct
Dosing — The averages of 23 frames recorded with five different pulse lengths
of magnesium (m/z = 24) dosed directly into the mass spectrometer are opposed
to each other. The trapezoidal peak shape is modulated with minor steps
corresponding to the single motor steps. The differences in amplitude are
attributed to instabilities of the molecular flux. A constant base line has been
removed.

amplitude seems to approach a plateau.
The dependence of the signal shape on the pulse length is unexpected, especially

considering the previous experiment. Two alterations of the experimental conditions
come into consideration. On the one hand, the usage of the hot plate could influence
the signal shape, e.g., due to transient adsorption. On the other hand, it might be
an artifact due to the change of the range setting in the mass spectrometer. This
modification of the experimental conditions is inevitable as the direct flux into the
mass spectrometer is significantly higher than the flux created by the diffuse reflection
of the beam. Although the first possibility seems more likely, the changed signal
shape is an artifact arising from the changed range setting. A detailed discussion
about this effect is given in Section 5.8.4.

As a consequence of the altered signal shape, it is questionable whether the
measurement results are proportional to the dosed amount of molecules which itself
is proportional to the pulse length at constant deposition rate.

The data sets from the previous experiment have been corrected for the deposition
rate of the molecular beam and individual constant offsets have been removed.
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Figure 5.20: Influence of the Pulse Length on the Mass Spectrometer Signal: Indirect
Dosing — The averages of 23 frames recorded with five different pulse lengths
of calcium (m/z = 40) dosed on the hot sapphire plate are opposed to each
other. The final output voltage is not reached for the short pulse lengths and a
settling of the output is not completed at 300 ms. The difference in amplitude
for the longer pulse length is attributed as an artifact arising from the increased
base pressure. Individual constant base lines are removed.

The proportionality of pulse length and integrated mass spectrometer signal is
demonstrated in Figure 5.21. As a finding of this measurement, it is concluded that
the change in signal shape is not affecting the proportionality required for mass
spectrometer measurements.

An investigation about the proportionality of the mass spectrometer signal to the
molecular deposition rate is presented in Section 5.7.3.
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Figure 5.21: Integrated Mass Spectrometer Signal vs. Pulse Length — The miss-
ing intercept of the fit (line) for the offset corrected peak areas (diamonds) from
Figure 5.20 indicates a proportional increase with the pulse length.

Linearity Regarding Deposition Rate

The determination of the sticking factor is relying on a response from the mass
spectrometer which is proportional to the amount of the dosed species repelled
from the sample. Since the geometry is fixed and the mass spectrometer is placed
line-of-sight to the sample, the pressure at its location is certainly proportional to
the fraction of the dosed molecules leaving the sample. Since mass spectrometers
are widely used to measure partial pressures, it is assumed that the output is
proportional to the pressure and thus the requirement is fulfilled. The commonly
applied corrections regarding varying ionization probabilities of chemical species are
irrelevant, since the temporal trend of one species is regarded in this setup.

The average intensity of the mass spectrometer from various zero sticking mea-
surements with 25 frame pairs each of calcium as a function of the corresponding
deposition rate is displayed in Figure 5.22. All presented measurements used a SEM
Voltage of 1800 V. The data sets are analyzed similar to a sticking measurement
with the set corresponding to the highest deposition rate chosen as reference.

A linear regression (solid blue line) of the obtained relative intensities does not
include the origin. The forced proportional fit, i.e., with a vanishing intercept,
(dashed green line) is not representing the response of the mass spectrometer well.
Although the temperature of the hot plate (color code) varied between 1150 K and
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Figure 5.22: Mass Spectrometer Linearity Regarding Deposition Rate — The
relativea mass spectrometer responseb for calcium (m/z = 40 – diamonds) is
plotted versus the measured and corrected deposition rate from the molecular
beam source. In case of an assumed proportionality (dashed green line) the
model seems to underestimate the relative intensity at higher deposition rates.
A less restrictive linear approximation (solid blue line) is added for comparison.
Since this is a meta analysis the temperature of the hot plate (color coded)
varied but no distinct influence is observable. The error corresponding to the
deposition rate is smaller than the data points.

a To the maximal observed intensity.
b SEM at 1800 V.

1190 K, no significant influence can be observed. The rather unflattering range of
examined deposition rates is owed to the fact that no dedicated measurement could
be performed so far.

Since the presented data suggests a hint towards a non-proportionality of the mass
spectrometer, a dedicated experiment should be conducted25. The temperature of
the hot plate should be stabilized and the deposition rate varied over a wider range
to obtain a more meaningful statement.

25 A posterior experiment performed by H. Zhou confirmed the here observed indication of a
non-proportional response of the mass spectrometer.

267



5 Characterizing Experiments

5.8 Ancillaries Stage

Several ancillary, i.e., referencing, measurements are necessary to calculate the heat
of adsorption from the calorimetric measurement. The performance of the individual
components is evaluated and compared to expected achievements. According to the
general design concept to preserve the sample in the measurement position during
the ancillary measurements, it might be necessary to correct for geometrical aspects
in some of the measurements.

5.8.1 Infrared Transparent Window

Knudsen-type effusion cells, here, the main evaporator as described in Section 2.3.1,
are operated at elevated temperatures and thus are emitting electromagnetic radia-
tion. For an ideal emitting source this is black body radiation. The spectral radiance
B at a certain wavelength λ of this radiation only depends on the temperature T of
the body. Normalized to emitting surface area and solid angle, Planck’s law includes
the radiance normal to the surface in

B (λ, T ) dλ =
2h ⋅ c2

λ5
1

exp( h ⋅ c
λ ⋅ kB ⋅ T

) − 1
dλ (5.25)

as a function of wavelength. Accounting for the wavelength dependent emissivity
ϵ(λ) of the emitting material one yields

B (λ, T, ϵ) dλ = ϵ(λ)
2h ⋅ c2

λ5
1

exp( h ⋅ c
λ ⋅ kB ⋅ T

) − 1
dλ . (5.26)

Application of the gray body approximation, i.e., a wavelength independent emissivity
with 0 < ϵ < 1, and integration of the modified Planck equation, see Equation (5.26),
by wavelength26 leads to the Stefan-Boltzmann-law describing the emitted power of
a convex body

P = k′ ⋅A ⋅ ϵ
2π5 ⋅ k4

B

15c2 ⋅ h3 ⋅ T
4

= k′ ⋅A ⋅ ϵ ⋅ σ ⋅ T 4 (5.27)

26 Integration by emitting area, solid angle, and emission angle is also performed but, due to the
fixed geometry, this ends up as a constant in the formula.

268



5.8 Ancillaries Stage

0.15

0.10

0.05

0.00

-0.05

-0.10

D
e

te
ct

o
r 

S
ig

n
a

l 
(V

)

2.01.51.00.50.0
Time in Average Even Frame (s)

2.01.51.00.50.0
Time in Average Odd Frame (s)

Main Evaporator Temperature

960 K

840 K

600 K

360K

Figure 5.23: Temperature Dependence of Radiation — Averaged detector signals
of pure radiation emitted from the main evaporator are shown for several
operation temperatures of the crucible. The asymmetry of even (left) and
odd (right) frames is clearly visible as well as the vanishing intensity for small
temperatures.

with k′ covering all geometric components specific to the fixed experimental setup,
except the emitting area A. Natural constants are gathered in the Stefan-Boltzmann
constant σ.

In order to characterize the transmission of the window in front of the sample,
see Section 2.4.4, infrared radiation has been pulsed on pristine nickel coated β-
polyvinylidene fluoride detector polymer held at 307 K. As source of radiation an
empty crucible with a stainless steel wool plug, see Section 2.3.1 has been employed
at temperatures between 360 K and 960 K. Since the sample is facing the plug’s
surface in both cases, a differing emissivity of the evaporant compared to the crucible
can be neglected.

Every set for a window/temperature combination consists of 100 single pulses with
the first and last pair omitted. This standard procedure for reference measurements
reduces baseline artifacts. The remaining frames, with removed outliers, see Section
3.5, are averaged and processed. Examples for the averaged data is shown in Figure
5.23 for different temperatures of the crucible.

The data treatment follows the routine for the transmission measurement in a
calorimetric experiment, see Section 3.5.5, with the unperturbed radiation as laser
reference and the filtered radiation as transmission measurement. Thus, the obtained
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Figure 5.24: Transmission of the Barium Fluoride Window — The measured
transmission (diamonds) of the barium fluoride window as a function of the
molecular beam source is opposed to the theoretical values in a broad tem-
perature range for an opaque nickel (green line) and a black body (blue line)
surface. Relevant for this work are temperatures above 600 K. The experiment
matches the theory well at these temperatures. The huge error bars at low
temperature arise from vanishing signal intensity. For comparison to the laser
based measurement the transmission of the window at 405 nm (dotted purple
line) is added.

transmission is the ratio of the averaged signal intensity with the window in the
beam path to the averaged intensity without the window. Figure 5.24 displays the
results of the measurement for a wide temperature range.

Measured Window Transmission

Three effects need to be considered to obtain an estimate for the theoretical trans-
mission of the barium fluoride window for a certain evaporator temperature. On the
one hand, the radiation from the crucible has a temperature dependent emission
spectrum. Second, the transmission τBaF2(λ) of barium fluoride is a function of the
wavelength, as shown in Figure 5.25, which results in a wavelength specific attenua-
tion. Finally, the absorption αNi(λ) of the nickel surface which is also wavelength
dependent needs to be included.

In the experimental case the total transmission T is given as the ratio of the
unfiltered I0 and filtered Iwin signal intensities absorbed by the detector. The signal
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Figure 5.25: Wavelength Dependent Parameters — The tabulated coefficients
for transmission of barium fluoride [184] (blue line, left axis) and absorption of
nickel [165] (green line, left axis) as a function of wavelength are opposed to
calculated black body spectra (black to red lines, right axis). The majority of
the emitted radiation lies in the highly transmissive spectral region of barium
fluoride. The absorption coefficient for the nickel surface is rather small for
the wavelengths of the emitted radiation. Together this suggests only a minor
dependency of the measured radiation contribution on the source’s temperature
in case of elevated temperatures.

intensities are proportional to the power irradiated onto the sample assuming a
constant pulse length. Utilizing the radiance B as in Planck’s law, see Equation
(5.25), in combination with a gray-body approximation, i.e., a constant emissivity
ϵcr < 1, for the crucible the transmission can be written as

T =
Iwin

I0
=
∫ Bwin (λ, T ) dλ

∫ B0 (λ, T ) dλ

=

∫ αNi(λ)τBaF2(λ)ϵcr
2hc2

λ5
1

e
hc

λkBT − 1
dλ

∫ αNi(λ)ϵcr
2h ⋅ c2

λ5
1

exp( h ⋅ c
λ ⋅ kB ⋅ T

) − 1
dλ
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=

∫ αNi(λ)τBaF2(λ)
1
λ5

1

exp( hc
λkBT

) − 1
dλ

∫ αNi(λ)
1
λ5

1

exp( h ⋅ c
λ ⋅ kB ⋅ T

) − 1
dλ

. (5.28)

Numerical integration is necessary at this point since the weight functions for
transmission [184] τBaF2(λ) and for absorption [165] αNi(λ) = 1−ρNi(λ) are not given in
an analytical form. Figure 5.24 superimposes the spectrum of the emitted radiation
with the used weight functions. The nickel layer is assumed to be opaque in this
calculation.

The obtained total transmission of the window matches the theoretical values for
elevated temperatures on the nickel surface (green line in Figure 5.25). The blue
line represents a black coating, i.e., α(λ) ≡ 1, of the detector. This approximation is
appropriate for thick layers of organic dyes deposited on the detector.

At the lower end of the measured temperature range almost no signal from infrared
radiation is observable, as demonstrated in Figure 5.24, leading to the huge error
bars in this range. Despite the error bars still covering the calculated values, it
seems that the transmission drops faster than expected. A possible explanation for
this discrepancy is the increasing transmission through the nickel coating at high
wavelengths [163] which is not included in the model. In order to cover this effect, the
copper interlayer, the absorption of β-polyvinylidene fluoride, the similar layered
back side, and wavelength dependent interference phenomena would have to be
considered, highly exceeding the scope of this work.

Comparison with the transmission for the light of the laser diode used in the
setup, see Section 2.3.2, reveals a similar transmission only for elevated evaporator
temperatures. Since the standard data processing routine does not rely on the
exact value of the transmission, it is only necessary for treatment with fixed used
transmission, see Section 3.8. It should be mentioned that this consideration is
done for a clean window and the invertible soiling due to the measurement process
complicates the situation.

Total Measured Intensity

In addition to the total transmission, the dependency of the total infrared radiation
intensity on the evaporator temperature is investigated.

The net power P on the detector comprises the power adsorbed by the detector
from the crucible Pcr and the power emitted from the detector Pdet into the crucible.
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Both quantities have to be multiplied by a view factor F to cover geometrical aspects,
and an exchange factor E to handle emissivities.

P = Pcr − Pdet

= σEFT 4
cr − σEFT 4

det . (5.29)

Considering the signal intensity I for a detector at the temperature Tdet for a given
crucible temperature Tcr compared to the intensity Iref at a reference temperature
Tref for the crucible as well at temperature Tdet, one obtains

I

Iref
∝

P

Pref
=

Pcr − Pdet

Pref − Pdet
=

=
σEF ⋅ T 4

cr − σEF ⋅ T 4
det

σEF ⋅ T 4
ref − σEF ⋅ T 4

det

=
T 4

cr − T 4
det

T 4
ref − T 4

det
. (5.30)

using the proportionality of the detector signal to the input power as well as the
constancy of the geometry and emissivities. Rearranging and collection of constants
into k yields

I = Iref ⋅
T 4

cr − T 4
det

T 4
ref − T 4

det
= k ⋅ (T 4

cr − T 4
det) (5.31)

as the correlation between crucible temperature and relative detector signal.
Figure 5.26 shows the excellent agreement of the measurements with the values

calculated from theory. This result could provide a novel methodology to threat
the radiative contribution in the calorimetry signal. It should be mentioned here,
that the sensitivity of the detector depends on its temperature, see Section 5.9.4.
Hence, the temperatures of the detector during the reference measurement and the
calorimetry measurement need to match each other.

The current procedure uses a measurement of the radiation for the filled evaporator
through a window removing the molecules and attenuating the infrared signal by
an uncertain amount. The attenuation can be estimated with the transmission
measurement, see Section 3.5.5, but it relies on a gray, i.e., wavelength independent,
absorption of the window and the adsorbate on the window. For the metallic
adsorbates used in this work this assumption is valid but most likely it will not hold
for organic molecules, e.g., PTCDA which is red.

The altered procedure would use the calculated intensity at the evaporation
temperature in the experiment in combination with a radiation measurement of an
empty crucible at elevated temperatures. This has the advantages of a filter free setup
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Figure 5.26: Temperature Dependent Relative Infrared Emission — The mea-
sured relative intensity (diamonds) as a function of the temperature of the
molecular beam source and the corresponding calculated intensity (line) accord-
ing to Equation (5.31) with Tref = 960 K and Tdet = 307 K match superbly in a
broad temperature range.

and an enhanced signal quality. The elimination of the filter provides unperturbed
infrared radiation which is highly desirable for low evaporation temperatures since
emission takes place in the far infrared where most materials become opaque. Since
there is no contamination of the filter, it is possible to increase the signal quality
by averaging additional pulses. Another possibility to increase signal quality is to
perform the radiation measurement at slightly higher temperature and to scale it
down according to Equation (5.31). This increases the detector output signal and
thus reduces reading noise from the data acquisition equipment. The error of the
spectral change due to Wien’s displacement, i.e., the wavelength dependency of the
mission maximum from the temperature of the emitter, might be smaller than the
effects from a (soiled) filter.

A scaling of the radiation signal is only possible if the shape of the signal is
preserved upon changes of the crucible temperature. Figure 5.27 shows two examples
of the measured signal for radiation from the crucible at 480 K and 960 K located
at the ends of the considered temperature range. The signal intensity for 960 K is
about twenty times higher than for 480 K. The curve for the lower temperature
exhibits a much higher noise level and small artifacts at 1.5 s and 3.5 s of unknown
origin. Besides the artifacts and the perturbation therefrom, the shape of the signal
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Figure 5.27: Infrared Radiation Compared for two Temperatures — The shape
of the averaged detector signal at 480 K is opposed to the signal at 960 K. The
latter is scaled to match the amplitude of the first signal. The signal shape is
well preserved and the calculated value matches the scaling coefficient within
its limit of error.

remains unaltered.
This method to handle the radiative component might be useful if large organic

molecules are to be evaporated. Since the material of the crucible might need to
be changed to quartz in these cases, this experiment needs to be repeated with the
modified setup.

5.8.2 Quartz Crystal Microbalance

As discussed in Sections 1.3.6 and 5.3, the sensitivity of the quartz crystal microbal-
ance is a function of the area of constant film thickness. Since the quartz crystal
microbalance is about 10 mm in front of the sample, the molecular beam is less
spread than on the sample plane. This circumstance influences the sensitivity of
the quartz crystal microbalance and thus the measured thickness changes. Hence, it
needs to be elaborated in order to provide a quantitative correction factor.

From the geometry of the experimental setup the relevant diameters for the
sensitivity correction calculate to dsam = 4.37 mm for the quartz crystal microbalance
in the sample position and danc = 4.46 mm for the quartz crystal microbalance utilized
in the ancillary deposition rate measurement. Since the flux itself is unchanged, a
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Figure 5.28: Ratio of Deposition Rate in Sample and Ancillary Position — The
deposition rate ratios (diamonds) of a QCM sensor placed in sample position,
see Section 2.2, and the one in the ancillary stage, see Section 2.4.2, were
measured twice for magnesium and once for zinc. Despite the feasible error
ranges (black dashed lines), all averages (black solid lines) exhibit a pronounced
deviation from the theoretical value (blue dashed line) for all experiments.

difference in thickness change per time, i.e., rate, can be attributed to the altered
sensitivity. The ratio of the deposition rates should match the ratio of the correction
factors ksam and kanc.

The ratio of the derived correction factors [141] predict a ratio of ksam/kanc = 1.011.
Three measurement series, two with magnesium and one with zinc as deposited
materials, are summarized and opposed to the theoretical value in Figure 5.28.

Although the measurements within a series seem to be reproducible, they differ
between the measurement sets and significantly from the theoretical value. Since
the sample position was adjusted between the sets, it is appropriate to attribute
the varying ratio to a sensitivity change related to a changing lateral offset [145].
Visual inspection of the deposited layer on the crystals confirmed that the beam
was not hitting the center of the sensor. It is advised to repeat this experiment with
improved alignment.
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Figure 5.29: Schematic of the Laser Path — The laser beam (purple) leaves the
nozzle on top of the beam (south, see Section 2.3.5) is reflected by the mirror in
the ancillaries stage (north, see Section 2.4.3) and leaves the chamber through
a window (blue) before it reaches the detector of the powermeter (black). The
laser light experiences losses due to the reflection on the mirror and attenuation
due to the passage through the window. The distances are not to scale and the
spread of the laser beam is omitted for clarity.

5.8.3 Mirror

Since the power on the sample Psam of the laser cannot be measured in the vacuum
chamber, it is reflected out of the chamber as described in Section 2.4.3 and illustrated
in Figure 5.29. The laser loses intensity due to the reflection ρ on the mirror in the
rail and is further attenuated by the transmission τ of the window.

The power on the sample can thus be calculated from the power at the detector
position Pdet by

Psam =
1

ρ ⋅ τ
⋅ Pdet (5.32)

leading to a correction factor klaser defined either as the inverse of the product of
transmission and reflection or the ratio of laser power in sample position to the
power in detector position

klaser =
Psam

Pdet
k′laser =

1
ρ ⋅ τ

. (5.33)

The laser power inside the chamber is measured with the detector flange, see Figure
2.4, removed from the main chamber and the power detector manually held in sample
position, and read from the power meter in both cases. Without contamination of
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Figure 5.30: Laser Power Correction Factor — The laser power correction factor
(diamonds) measured on three different occasions is compared to the theoretical
value (blue dashed line). The first set of measurements in March agrees well
with theory. A large increase indicates severe contamination before the second
set measured in July and another contamination ahead of the measurement in
December. The correction factor klaser increased from 1.16 to 1.39. The nominal
output power of the laser is given together with the measurement date.

the mirror and the window the two constants should be identical.
At the wavelength of the laser [151] of 405 nm the transmission of the used Kodial

glass window [153] is tabulated as τ = 0.925 and the reflectivity of the mirror [185] by
ρ = 0.953. This leads to a theoretical correction factor of k′laser = 1.13.

The measurements conducted in March with a nominal laser power of 3 mW,
corresponding to 45 µW at the sample position, yield an average correction factor
klaser = 1.16. This is well in agreement with the theoretical value of k′laser = 1.13, as
shown in Figure 5.30. The data set acquired in December differs from the theoretical
value due to a mirror contamination with magnesium. The power correction factor
has been measured with three nominal laser powers of 1 mW, 2 mW, and 3 mW,
resulting in a power at the sample position of approximately 15 µW, 30 µW, and
45 µW, respectively, and computes to klaser = 1.39.

This illustrates well the importance to avoid deposition on the mirror and great
care should be exercised! It also demonstrated the necessity for a periodic inspection
of the power correction factor in case of unnoticed soiling of the mirror.
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5.8.4 Hot Plate

The hot plate serves as a reference for the maximal mass spectrometer intensity. It
is heated to a temperature well above the temperature of the main evaporator in
order to prevent adsorption of dosed material on itself. Since every dosed molecule
is desorbing again after hitting the plate, its use as reference is obvious. Due to the
experimental limitation that this reference cannot be measured in the same position
as the sample, as for the quartz crystal microbalance in Section 5.8.2, the reference
needs to be corrected to geometrical aspects. Another correction might arise from
the fact that the sample and the hot plate have an immense temperature difference
resulting in a different sensitivity of the mass spectrometer.

Spatial Correction

Analogue to Section 5.8.2 the sensitivity of the mass spectrometer’s signal is a
function of the distance to the sample and the angle the sample appears at. Since
the hot plate is about 8 mm in front of the sample the angle and the distance to the
entrance of the mass spectrometer is changed. Due to the construction limitations
of the setup, it is impossible to measure the desorption characteristics of the hot
plate as a function of emission angle. In addition, the inner setup of the ionization
volume in the mass spectrometer is unknown. Its dimensions are likely at a similar
range as the considered ones, rendering a detailed simulation of the correction factor
impossible.

Since the measurement is carried out in only two positions, it is possible to measure
a factor collecting corrections from the angular change and the distance change.

For geometrical reasons the differential flux d2Φ through a surface element dA2

tilted by an angle β to the emission direction of a surface element dA1 at an angle
α to the normal of dA1 with a center distance of d is given by

d2Φ = Φ0
dA1 cos α ⋅ dA2 cos β

d2 (5.34)

in an analogue way to the photometric law. Considering the limited knowledge of
the quantities related to the mass spectrometer, i.e., dA2, the integral over dA2 is
approximated by A2 = Aqms representing the opening into the mass spectrometer.
Since the maximal β amounts to 3.7° its cosine can be approximated by 1. This
leads to

Φ = Φ0
A1 cos α ⋅Aqms

d2 (5.35)

describing the flux in the mass spectrometer as a function of distance and orientation.
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Since a well adjusted mass spectrometer has a proportional response I to the flux
one can rewrite Equation (5.35) as

I = I0
A1 cos α ⋅Aqms

d2 . (5.36)

Upon the assumption that the spread of the molecular beam is partially compensated
by an increased desorption area and the exact characteristics are not known, the
integration by dA1 can also be approximated by A1 = Asam ≈ Aplate which is identical
to the nominal beam cross section. Regarding the ratio between the intensities of
the desorbing molecules from the hot plate Iplate and sample Isam one obtains

Isam

Iplate
=

I0
Asam cos(αsam)⋅Aqms

d2
sam

I0
Aplate cos(αplate)⋅Aqms

d2
plate

=
cos (αsam)d2

plate

d2
sam cos (αplate)

(5.37)

with αplate and αsam corresponding to the angle the spectrometer appears at from
the hot plate and the sample position, respectively.

Several attempts to measure the correction factor have been made. The biggest
challenge is to find matching conditions for the plate in sample position. While
the hot plate is equipped with a thermocouple, integrated heating, and insulation
to provide a constant and homogeneous temperature, the substitute in the sample
position is lacking all these features.

For one part of the experiments a tantalum sheet27 and for the other part a
sapphire plate28 were subsequently mounted in a sample holder for single crystals,
see Figure 2.2. The assembly has been placed in the sample position and the
sandwiched part has been heated with a filament from its back side, see Figure 2.8.
The hot plate in the ancillaries stage, see Figure 2.35, has been operated as usual.

The nominal values obtained from the construction are dsam = 77.7 mm, dplate =

72.9 mm, αsam = 37.2°, and αplate = 40.1° computing to a theoretical intensity ratio
of Isam/Iplate = 0.917 for a plain tantalum sheet. For a 1 mm thick sapphire piece
the nominal values obtained from the construction change to dplate = 70.7 mm, and
αplate = 40.7° resulting in a ratio of Isam/Iplate = 0.867. This tiny change of the hot
plate’s position causes already a change of 6 % in the theoretical correction factor
emphasizing on the necessity of a reliable experimental value together with a very

27 99.9 % 0.2 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
28 ‘66 40T350’ from KORTH KRISTALLE GMBH.
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precise mounting.
Several attempts were made to match operation conditions, as shown in Figure 5.31.

One example is matching the parameters for the desorption of previously deposited
material films for both devices and increasing the heating power by approximately
20 % to 110 W. Another way to obtain similar conditions involved optical matching29

of the color of the glowing tantalum sheets resulting in 150 W for the filament and
1000 K for the hot plate. Furthermore, the calibration has been carried out for
sapphire sheets at approximately 300 K since the evaporated magnesium showed a
low sticking probability on this target even at this “low” temperature. The final
attempt comprised a match of the maximal intensity leading to a filament power of
25 W and a plate temperature of 1000 K. The necessary low power of the filament
could be attributed to staining of the sapphire plate with evaporated tungsten during
the 150 W experiment leading to a much higher absorption of the radiation emitted
from the filament and thus more efficient heating.

Since the initial experiments for the cold sapphire sheets, i.e., Isam/Iplate = 0.940 ±
0.026 and the settings for maximized individual intensity, i.e., Isam/Iplate = 0.960 ±
0.015, are compatible, one might assume this is a reasonable value, although it is in
contradiction to the theoretical value of Isam/Iplate = 0.867.

Additionally, it has been discovered after these experiments that the output of
the mass spectrometer has been acting in an unexpected partial-linear mode, see
Section 5.7, that most likely affected this calibration.

29 Carried out with a digital single lens reflex camera (‘EOS 1000D’ from Canon Deutschland
GmbH) utilizing fixed settings.
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Figure 5.31: Sticking Reference Correction Factor — The determined correction
factors (diamonds) together with their average (black lines) and uncertainties
(gray dashed lines) for several operation parameters are compared to the theo-
retical value (blue dashed line). The axis labels give the heating power of the
filament, the temperature of the hot plate, the pulse length, and the material of
the hot plate. Although the experiment is well reproducible for one setting, the
obtained results differ significantly from each other and from the theoretical
value for different experimental conditions.

Temperature Influences

Since the crucible, the hot plate, and certainly the sample exhibit different tempera-
tures T , the velocity of the molecules from the crucible differs from the velocities
after desorption from the sample or hot plate, due to thermalization. The changed
average velocity v(T ), i.e., the root mean square, results in different residence times t

in the ionization volume of the mass spectrometer. This region can be approximated
with a cylinder of the effective length l. Hence, the residence time can be expressed
according to

t(T ) =
l

v(T )
=

l
√

3RT
M

(5.38)
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with the molar mass M of the molecule. This leads to a temperature dependency of
the relative intensity as given by

t(T )

t (Tref)
=

l
√

3RT
M

l
√

3RTref
M

=

√
Tref

T
, (5.39)

if the residence time in the mass spectrometer is the intensity limiting factor.
The hot tantalum plate has been positioned in front of the sample and heated with

27 A to approximately 1020 K. After stabilization of the temperature the current
was reduced in steps of 1 A and 15 pulse pairs of dosed magnesium were recorded at
each setting.

The data set corresponding to 26 A is used as reference and the measurements are
evaluated analogue to a sticking measurement, see Section 3.8, with an altered mass
spectrometer signal correction factor of unity as well as an additional calculation of
an average and the standard deviation.

Figure 5.32 displays the obtained results and illustrates a range for the operation
temperature of the hot plate within the plateau region. The increase in intensity
predicted by Equation (5.39) can only be guessed at the highest temperatures. In the
temperature range between 850 K and 950 K the intensity of the mass spectrometer
is independent of the temperature of the hot plate and thus is suitable to be used in
the zero sticking reference measurement. A possible explanation for the unpredicted
behavior lies in the assumption of an ionization probability of less than unity in the
mass spectrometer. If all incoming molecules are ionized, their residence time in the
ionization zone becomes irrelevant.

Similar experiments have been conducted for other evaporants and the resulting
temperature ranges, together with the corresponding heating currents therefor, are
summarized in Table 5.9. Surprisingly, copper did not desorb from the heated
sapphire sheet at all but it desorbed willingly from the cold barium fluoride window.
This effect probably arises from the contamination of the solvent used for cleaning,
see Section 5.2.

This experiment should be carried out for every new substance.
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Figure 5.32: Relative Mass Spectrometer Intensity vs. Hot Plate Temperature —
The intensity of the mass spectrometer signal is measured for 15 pulse pairs of
magnesium on the hot tantalum plate and the average (diamonds) is displayed
as a function of the temperature of the hot plate. The theoretical behavior in
case the residence time of the molecules in the ionization zone limits the signal
intensity is superimposed (blue line) together with the plateau range of constant
intensity (black line) usable for the zero sticking reference measurement.

Table 5.9: Operation Parameters of the Hot Plate — Operation temperature
ranges for the materials used in this work are presented for the plateau region
suitable for zero sticking measurements. The given currents are guidelines for
the sapphire platea wrapped in tantalum foilb.

Substance Hot Plate Temperature Heating Current
Magnesium 850 K to 950 K ≈ 20 A to ≈ 24 A
Calcium 1100 K to 1200 K ≈ 33 A to ≈ 35 A
Copper No QMS intensity
Zinc 700 K to 800 K ≈ 14 A to ≈ 19 A
Maximumc 1640 K 52 A

a ‘66 40T350’ from KORTH KRISTALLE GMBH.
b 99.9 % 0.1 mm from Haines & Maassen Metallhandelsgesellschaft mbH.
c For use with a Type K thermocouple.
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Mass Spectrometer Peak Shape vs. Hot Plate Temperature

Molecules dosed on the hot plate desorb again at sufficient temperature. This
situation resembles the experiments used to deduce enthalpies of adsorption from
desorption kinetics, see Section 1.1.1. The desorption rate rdes can be expressed as a
rate law of nth order:

rdes = −
dΘ(t)

dt
= knΘn(t) (5.40)

with the coverage Θ(t) at the time t. A common ansatz for the rate constant is the
use of the Arrhenius equation

kn = νn exp(−
∆EPW

des
RT

) (5.41)

with a frequency factor νn, the temperature T , and the activation energy of desorption
EPW

des . Combination of Equation (5.40) and (5.41) results in the Polanyi-Wigner
equation, here in a different notation,

rdes = −
dΘ(t)

dt
= νn exp(−

∆EPW
des

RT
) ⋅ (Θ(t))n . (5.42)

Since all experiments were using metal atoms, first order characteristics, i.e., n = 1,
can be assumed. Separation of variables yields

dΘ
Θ = −ν exp(−

∆EPW
des

RT
) dt (5.43)

and integration leads to

ln (Θ(t)) = −ν exp(−
∆EPW

des
RT

) ⋅ t (5.44)

which can be rewritten as

Θ(t) = exp(−ν exp(−
∆EPW

des
RT

) ⋅ t) (5.45)

and inserted in Equation (5.42)

rdes = ν exp(−
∆EPW

des
RT

) exp(−ν exp(−
∆EPW

des
RT

) ⋅ t) (5.46)

to describe the desorption rate as a function of time. Inspection of Equation (5.46),
illustrated in Figure 5.33, reveals an exponential decrease of the desorption rate with
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Figure 5.33: Temperature Dependency of Transient Adsorption — The normal-
ized desorption rate calculated for magnesium atoms on a hot plate made
from sapphire at four different temperatures exhibits an extreme temperature
dependency. The condition for the transient adsorption lifetime calculation at
the 1/e = 36.8 % level (dashed) is added as a guide to the eye. A visual estimation
of the an upper limit for the residence time is also possible. The desorption
activation energy and frequency prefactor for the calculation are taken from
[186].

time and a super-exponential temperature dependency.
At the time where the ratio of the current desorption rate r and its initial value

r0 at t0 = 0 equals 1/e it represents the residence time τ , i.e., lifetime, of a metal
atom on the surface. Together with Equation (5.46) one obtains

rτ

r0
=

ν exp (−∆EPW
des

RT ) exp (−ν exp (−∆EPW
des

RT ) ⋅ τ)

ν exp (−∆EPW
des

RT ) exp (−ν exp (−∆EPW
des

RT ) ⋅ t0)

ln(
1
e r0

r0
) = ln

⎛
⎜
⎝

exp (−ν exp (−∆EPW
des

RT ) ⋅ τ)

exp (−ν exp (−∆EPW
des

RT ) ⋅ 0)

⎞
⎟
⎠

1 = ν exp(−
∆EPW

des
RT

) ⋅ τ (5.47)

and thus

τ =

exp(
∆EPW

des
RT

)

ν
(5.48)
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for the residence time of an atom on the surface of the hot plate. In this setup an
equilibrium coverage is established by continuous dosage of magnesium atoms and
the pure desorption region is started by blocking the molecular beam source. Due
to the principle of microscopical reversibility of adsorption and desorption in this
situation the complementary transition results in an analogue behavior.

If the residence time is small compared to the lower limit of the temporal resolution
of the measurement equipment τ0, i.e., τ ≪ τ0, transient adsorption is obviously not
observable.

Magnesium has been dosed onto a hot tantalum plate from the crucible, both
held at 830 K, and the intensity of the desorbed magnesium has been recorded
for 15 pulse pairs of 150 ms length. This measurement has been repeated for the
settings “Range: 10−12 mBar”, “Range: 10−11 mBar”, and “Range: 10−10 mBar”. In
a second step the mass spectrometer was relocated to the position of the detector
port in order to be able to dose magnesium directly into the ion source of the mass
spectrometer. In this case the mass spectrometer has been set to “Range: 10−8 mBar”.
The operation voltage of the secondary electron multiplier in the mass spectrometer
has been set to a level of maximal amplitude without clipping of the signal due to
the 1 kHz component, mentioned in Section 5.7. The used mass spectrometer has
a temporal resolution of about τ0 = 5 ms during software [183] acquisition and about
1 ms for the analogue output.

The data set corresponding to the direct dosing (blue in Figure 5.34) resembles
the rectangular pulse shape from the experiment with the photo diode, see Section
5.6.3. The data sets from the two measurements at high sensitivities (green and
red) exhibit a pronounced exponential component which might indicate a transient
adsorption. In contrast the data set corresponding to the low sensitivity setting
(cyan) shows a similar shape as the pulses dosed directly. Since this signal severely
suffers from the overlain 1 kHz component, the multiplier voltage can not be set to
a high level. This results in a very noisy and weak signal which is unfortunately not
utilizable for the calorimetry measurements.

According to Equation (5.48) the lifetime, i.e., the inverse of the time constant
of the exponential contribution to the peak shape, should exhibit a pronounced
dependency on the temperature of the hot plate, as shown in Figure 5.35.

Magnesium has been dosed onto a hot stainless steel (1.4301) plate at various
temperatures. In order to obtain an adsorption/desorption equilibrium on the hot
plate the pulse length has been increased to 500 ms and 50 pulse pairs have been
recorded for each temperature. The time window between 710 ms and 900 ms is
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Figure 5.34: Mass Spectrometer Peak Shape at Different Range Settings — Ap-
proximately 15 pulse pairs of magnesium (m/z = 24) are dosed onto the hot
plate held at 830 K (red, cyan, green) and recorded with the mass spectrometer
at different settings, and subsequently averaged. For comparison the magnesium
pulses are directly dosed into the mass spectrometer (blue). While the blue and
cyan traces resemble the rectangular pulse shape from the experiment with the
photo diode, see Section 5.6.3, the red and green traces exhibit a pronounced
exponential contribution. Although this shape might be caused by transient
adsorption, the experiment represented by the cyan curve reveals it as an artifact
by the mass spectrometer.

fitted to an exponential function

y(x) = y0 +A exp(−x − x0

τ
) (5.49)

with the offset y0, amplitude A, an x-shift of x0 and the lifetime τ . Detailed analysis
of the rising and falling peak flanks resulted as expected in identical time constants
for both cases.

The obtained lifetimes are displayed together with calculated values in Figure
5.36 utilizing a frequency factor of ν = 1.5 ⋅ 1015 1/s and, due to missing experimental
values, multiples of the enthalpy of sublimation (values are given in the graph)
as approximation of the desorption activation energy. The first one is chosen in
analogy to the value corresponding to desorption of magnesium from amorphous
aluminum oxide [186]. The latter approximation is motivated by values reported for
the desorption of lead from molybdenum [92]. The estimated lifetimes exceed the
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Figure 5.35: Example of Transient Adsorption: Lead on Molybdenum — “Ob-
served lead QMS signal (at m/z = 208) as a function of time for 100 ms pulses
at 1/2 Hz onto a Mo(100) surface at various temperatures. The data points
are averages of 25 measurements. The red line are fits to the data assuming
desorption from two distinct and independent states.” [92].

temporal resolution of the experimental setup of 1 ms at low temperature, as shown
in Figure 5.36 and thus should be observable.

Figure 5.37 shows the dependency of the response of the mass spectrometer on
the temperature of the hot plate together with a reference for direct dosage into
the mass spectrometer with a pulse length of 200 ms. Due to the huge intensity
difference of the molecular and the scattered molecular beam the sensitivity range
of the mass spectrometer has been adjusted to “10−8 mBar” in the first case, and
“10−11 mBar” in the latter. The mass spectrometer was placed line-of-sight to the
opening of the crucible in the case of the direct dosage and as described above for
the other measurements.
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Figure 5.36: Calculated Transient Lifetimes — The transient adsorption lifetime
is calculated as a function of substrate temperature for three different assumed
enthalpies. This desorption activation enthalpy for magnesium from stainless
steel is approximated with the single (solid blue line), 1.25-fold (dotted blue
line), 1.5-fold (alternately dashed blue line), and 1.75-fold (equally dashed
blue line) enthalpy of sublimation while the frequency factor is assumed as
ν = 1.5 ⋅ 1015 1/s, similar to the case on an amorphous film of alumina [186]. An
observation would only possible for lifetimes longer than 1 ms (dotted gray line)
due to experimental limitations. Experimental obtained lifetimes (diamonds)
show no temperature dependency.

The signal shapes of the direct instrument response and the scattered atomic
beam in Figures 5.37 and 5.35 match at least for one intermediate temperature
and hence suggest a transient adsorption of the magnesium atoms on the hot plate.
Closer inspection reveals that the temperature dependency is barely visible in the
experiments performed in this work. Although the literature example uses different
materials, this comparison is reasonable since the signal shape of the experiment
matches the trace labeled “1190 K”, presented in Figure 5.35, indicating a similar
time constant at intermediate temperatures in both cases.

In contrast to theory and literature [92], no temperature dependency can be observed.
Additional data obtained for a wider range of plate temperatures, ranging from
300 K up to 900 K, yields the same observation. This data set suffered from artifacts
during data acquisition, such as clipping and high noise levels, and should not be
considered on its own. However, the expected pronounced dependency of the signal
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Figure 5.37: Peak Shape of the Mass Spectrometer Signal — The normalized
mass spectrometer signal for magnesium (m/z = 24) of 50 averaged pulses as a
function of time is displayed for recoiled atoms from a hot stainless steel (1.4301)
plate held at several temperatures (Range: “10−11 mBar”, red and green lines)
and direct dosage (Range: “10−8 mBar”, blue line) into the mass spectrometer.
The signal shapes of the measurements utilizing the hot plate are similar at
different temperatures but differ from the signal obtained by direct dosage. The
data set with wider temperature range (green lines) suffered from artifacts, e.g.,
clipping, during data acquisition.

shape on the temperature of the hot plate is clearly absent.
The marginal changes of the pulse shape exclude transient adsorption as the

cause of the exponential part in the mass spectrometer signal. The trustworthy
data set also provides a lower limit of approximately 40 ms for the lifetime from
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which on direct observation of transient adsorption is possible. Utilizing a not yet
implemented deconvolution procedure analogue to the procedure for data from the
β-polyvinylidene fluoride detector, see Section 3.10, this limit might possibly be
lowered by an order of magnitude.

A possible explanation for the change of the signal shape upon changes in the
range settings of the mass spectrometer might be the connection of an additional
RC -circuit in the electronics of the mass spectrometer since the (dis)charging curve
of a capacitor is also represented by Equation (5.49). Furthermore, an upper
limit of the desorption activation energy of 185 kJ/mol might be concluded from the
experiment since the observed life time corresponding to the lowest temperature in
the experiment should be affected otherwise.

The absence of transient adsorption is remarkable. Since the vapor pressure of
magnesium at 300 K is negligible30, no desorption from the plate should be observable.
However, the signal intensity is only reduced by half in case of the measurement using
a plate temperature of 300 K compared to the measurement performed at a plate
temperature of 900 K. According to the tabulated values at these temperatures [187],
the ratio of the vapor pressures of magnesium, and thus of the corresponding signal
intensities, should exceed ten orders of magnitude.

A possible explanation for the observed persisting signal intensity at low plate
temperatures as well as for the absence of a temperature dependency of the signal
shape as well as the signal intensity on the plate temperature might originate from
elastic scattering of the impinging magnesium atoms, see Section 1.3.7. The elastic
scattering is independent of temperature, since the velocity of the particle remains
unchanged. One might argue, that elastic scattering should only occur perpendicular
to the surface as a consequence of momentum conservation. However, the relevant
surface is microscopically rough and not, as in previous studies [123,147], atomically flat
and scattering on tilted microscopic surface elements might contribute a significant
amount to the observed signal intensity.

Verification of this proposed mechanism would require a reinvestigation of this
experiment with a variation of the polar angle of the plate. In addition, well defined
single crystal surfaces should be investigated as references. Unfortunately, these
measurements are not possible since no suitable sample manipulation for this kind
of experiment is included in the setup used in this work.

30 Below the tabulated minimum of < 10−11 Torr [187].
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5.9 Pyroelectric Detector

The heart of the measurement equipment are the β-polyvinylidene fluoride based
detectors for either thin film samples or single crystal samples, see Section 2.2. Hence,
thorough knowledge of their behavior under different circumstances is mandatory.
The most important items are the verification of the linearity with respect to the
power input, the influence of the operation temperature, and the effects of aging
during system bake-outs.

This work only covers the characterization of the detector for thin film samples.
It is advised to repeat the evaluation experiments for the thin sheet detector prior
to its routine usage.

5.9.1 Linearity Regarding Input Power

The fundamental assumption on the used detector is a response I proportional to
the input power P at constant pulse length t

I = k ⋅ P ∣t (5.50)

with a constant k collecting all experimental and material parameters.
The laser power has varied between 0.4 µW and 41.4 µW while all other experimen-

tal parameters remained unchanged. 50 laser pulses fired onto one pristine sample
have been recorded at each laser power while the first and last pair are omitted for
the further treatment. The relative amplitudes and the scatter thereof are calculated
along the transmission measurement with virtual laser powers of 1 W.

The proportionality of the detector response is well illustrated in Figure 5.38.
The constant slope in combination with a negligible intercept confirms the most
important requirement on the detector.
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Figure 5.38: Detector Linearity Towards Input Power — The relative detector
response (diamonds) is displayed against the measured input power of the laser
reflected out of the chamber. The reference is calculated according to the
standard procedure in Section 3.5.4. Each data point represents the average
of 46 individual pulses. The outlier at 2 µW most likely arises from a compro-
mised measurement. The linear regression (blue line) exhibits only a marginal
intercept.

5.9.2 Linearity Regarding Active Area

The general assumption of a homogeneous usage of the detector surface within the
area accessible by the molecular beam motivates the investigation of a contrary
example.

Depending on the nature of the detector two results are possible. It could be
sensitive to the differential maximum input power, i.e., power input per unit area,
or proportional to the integrated input power.

An example of an analogous system would be a photo diode. The voltage output
of the unloaded diode is independent of the illuminated area. This would result in
an abrupt intensity drop when no power reaches the detector

I(z − z0) =

⎧⎪⎪
⎨
⎪⎪⎩

I0 z ≤ z0

0 z > z0
(5.51)

resulting in an on/off behavior of the detector. In contrast the current output of a
loaded photo diode is proportional to the illuminated area. This leads to an intensity
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Figure 5.39: Illustration for Sample Occlusion — Illustration of the occluded part
(black) of the potentially active area (purple) of the detector disk. The masked
area is stepwise increased from small z-position values of the linear motion,
corresponding to the negative end of the x-range, to a completed eclipse of the
active area.

drop proportional to the eclipsed area which itself depends on the experimental
setup.

As discussed in Section 1.3.3, the detector signal originates from a change in
polarization upon a local temperature variation. Since polarization is defined as
charge per area, a temperature change causes a charge on the surfaces of the detector
leading to the signal.

Along the experiment the ancillary stage has been moved in between the nozzle
and the sample in steps of 1 mm for each measurement. This caused an adjustable
occlusion of the sample as illustrated in Figure 5.39.

The active area Aeff as a function of the z-movement of the ancillaries body piece
is thus given by

Aeff =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

A0 z ≤ z0 −
1
2d

A(z) z0 −
1
2d < z < z0 +

1
2d

0 z ≥ z0 +
1
2d

(5.52)

with the total area A0 =
d2

4 π, the center position of the beam z0 corresponding to
x = 0 and y = 0 and the diameter d of the beam. The active area A(z) in the
transition region is given by

A(z) = 2 ⋅
z0+d/2

∫
z−z0

√

(
d

2)
2
− ξ2 dξ z ∈ [z0 −

d
2 , z0 +

d
2] (5.53)

representing the area between y = 0 and the perimeter of the positive half circle
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while the factor 2 arises from symmetry. Integration [188] yields

A(z) = 2 ⋅
⎡
⎢
⎢
⎢
⎢
⎣

1
2
⎛

⎝
ξ

√

(
d

2)
2
− ξ2 + (

d

2)
2
arcsin(2ξ

d
)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

ξ=z0+ d
2

ξ=z−z0

z ∈ [z0 −
d
2 , z0 +

d
2]

(5.54)
which evaluates to

A(z) =
π ⋅ d2

8 − (z − z0)

√
d2

4 − (z − z0)
2
−

d2

4 arcsin(2 (z − z0)

d
)

z ∈ [z0 −
d
2 , z0 +

d
2] . (5.55)

Assuming a proportional relationship for the intensity I to the maximal intensity I0

corresponding to the full area A0 one obtains

I = I0 ⋅
Aeff

A0
(5.56)

and for the relative signal intensity

I

I0
=

Aeff

A0
(5.57)

which alters Equation (5.52) to

I

I0
=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 z ≤ z0 −
1
2d

Aeff

A0
z0 −

1
2d < z < z0 +

1
2d

0 z ≥ z0 +
1
2d

. (5.58)

The laser has been pulsed on the sample and 50 pulses have been recorded for each
measurement with a different z-position. The relative signal intensity is calculated
along the procedure for a transmission measurement. As usual the first and last
pulse pair are omitted from the data processing. Since the chopper suffered from
timing faults individual pulse pairs with a wrong pulse delay are also excluded from
this experiment.

Figure 5.40 opposes the measured data with the two presented models. The on/off
state model, described in Equation (5.51), clearly does not match the measured
data. On the other hand, the model predicting a proportional dependency from the
irradiated area agrees very well with the measurement. Since there are only few
data points in the transition region, the diameter of the beam is fixed to the nominal
value of d = 4.5 mm. This result illustrates the integrating behavior of the detector.
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Figure 5.40: Detector Linearity Towards Active Area — The relative detector
response (diamonds) measured as a function of the z-position of the ancillaries
stage casting a shadow on the detector is compared to the two discussed models.
The model implying a proportional relationship of the intensity to the irradiated
area (blue line) is in excellent agreementa with the measurement whereas the
model considering a sharp transition (black line) clearly fails.

a A fixed beam diameter of 4.5 mm as parameter is used.

If this measurement is carried out with higher z-resolution, it might be able to
detect a clogging of the nozzle from deposited material without venting of the main
chamber.

5.9.3 External Heat Treatment of β-Polyvinylidene Fluoride

Since the detector polymer for thin sheet sample, see Figure 2.3, remains in the
main chamber it needs to withstand the thermal load during a bake-out of the main
chamber. Hence, the knowledge of the degree of degradation of the detector upon
thermal load is desirable. Protection of the detector is expected to be possible by
limiting the bake-out temperature or by an adjustable counter cooling of the thermal
reservoir, see Figure 2.5. Certainly the chamber should be heated as high as possible,
depending on the installed components, to reduce the duration of this process.

The pyroelectric effect of β-polyvinylidene fluoride originates from oriented crys-
tallites embedded in the amorphous phase. Quenching of this property at elevated
temperatures is known [189] and may arise from reorientation, phase change, or,
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Figure 5.41: Annealing Effect on the Detector — The detector response of 96
pulses to 200 ms laser pulses has been acquired and averaged. The average
normalized by the laser power is displayed for several temperature treatments.
While temperatures up to 100 °C have no effect on the intensity, heating to
125 °C results in a loss by 50 % even after a short time. Heating to 150 °C (not
shown) leads to a complete sensitivity loss after a short time.

ultimately, melting of the crystallites.
Along with the thermal also the temporal aspect for the specific used detector

foils has been investigated. Annealing of several samples in air at temperatures of
50 °C, 100 °C, 125 °C and 150 °C for 12 h, 24 h, 48 h, and 72 h was executed before
the usual introduction procedure in sample holders for polymer samples, see Figure
2.3.

For each parameter set 50 pulse pairs were recorded with the sample at ambient
temperature, i.e., 307 K, and evaluated analogue to a transmission measurement.
The obtained average has been normalized to the laser power input.

The sensitivity, i.e., the amplitude of the normalize average, remains unchanged
for temperatures up to 100 °C and is independent of the annealing time, as shown
in Figure 5.41. A further increase of the temperature to 125 °C results in a rapid
sensitivity loss around 50 % which is not progressing with increased annealing time.
This indicates the presence of at least two processes resulting in a sensitivity loss. A
further investigation is beyond the scope of this work. A complete intensity loss is
observed for the samples annealed at 150 °C for just 12 h.

The samples heated to the two highest temperatures exhibit macroscopic changes
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a) b)

Figure 5.42: Thermal Treatment of Detector Polymer — Detector disksa for thin
film samples before (left) and after (right) a heat treatment at 125 °C for 12 h
in air. Besides the darker surface a change in shape is observable indicating a
reversal of the stretching used in the poling process. Photographs by H. Zhou.

a ‘28um/w 400CU/150NI’ from Measurement Specialties.

in shape and an altered surface finish from glossy to dull, as shown in Figure 5.42.
This indicates a reversal of the stretching used in the poling process to align the
crystallites in the matrix. Since this step in the processing is necessary to generate
the poling, its turning back could explain the loss in permanent polarization and
thus in sensitivity.

If the detector’s temperature is maintained below 100 °C, bake-out is possible.
The common bake-out temperature of 150 °C is already too high. Individual cooling
of the detector in the detector stage, see Section 2.4, might provide a way to protect
the sensor while the rest of the chamber is at higher temperature.

The transferable sample holders for thin films, see Figure 2.3, are not affected by
this limitation since they can be stored in the load lock during a thermal degassing
of the main chamber.

5.9.4 Temperature Influence on Detector Sensitivity

The measurement can be performed at various sample temperatures, as mentioned
in Section 2.2. This motivates an investigation of the dependency of the detector’s
sensitivity with respect to its temperature during measurements. A naive approach
would comprise no sensitivity change. However, the true nature is more complex
and the sensitivity changes with operation temperature [148].

This experiment and data evaluation has been carried out in an analogue way to
the experiment in Section 5.9.3 with the sample not being at ambient temperature
but cooled with liquid nitrogen to about 90 K.

Figure 5.43 clearly shows an influence of the detector’s temperature on its sensi-
tivity. This lead to the necessity to perform the calibration measurements at the
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Figure 5.43: Temperature Dependency of the Detector Sensitivity — The detector
response of 96 pulses to 200 ms laser pulses is acquired and averaged. The
average normalized by the laser power is displayed for ambient and liquid
nitrogen temperature of the same sensor during measurement. The lowered
temperature results in a more than twofold increase of the detector response.

same temperature as the actual calorimetric measurement.
The change in signal shape arises from the used amplifiers. On the one hand, it

could be an artifact from the time constant of the secondary amplifier, which was
used at that time and removed later. On the other hand, it could originate from
the offset compensation of the main amplifier. The latter option is less likely since
this behavior is not observed in the linearity test conducted without the secondary
amplifier, see Section 5.5.3. Temperature dependent material properties of the
detector can be excluded since this artifact did not occur during the subsequent
experiments conducted at low temperatures.

This insight led to an altered measurement routine for thin film systems, see
Sections 3.5.3 and 3.5.4. Although the Igor Pro program package, see Section
4.2, uses a correction derived from the sensitivities of the measurement of the
coated sample and the laser reference measurement, it is recommended for precision
data evaluation to record a deconvolution measurement at the temperature of the
calorimetric measurement.

It is advisable to repeat this experiment for various temperatures between 90 K
and 370 K in order to obtain a feel for signal levels at non-ambient temperatures.
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5.9.5 Detailed Detector Composition

Alteration of the thin film detector discs, see Section 2.2, is possible in two ways. On
the one hand, the thickness of the active β-polyvinylidene fluoride (PVDF) layer can
be chosen different. This results in a different heat capacity and thus in a changed
sensitivity. On the other hand, the conductive coating material on the polymer
can be replaced. In general this leads to a changed reflectivity. Both effects are
compensated by the laser reference measurement, see Section 3.5.4. This leads to
the conclusion that the detailed composition of the detector unit is expected to be
irrelevant for the obtained result, at least within certain boundaries, e.g., a vanishing
sensitivity due to excessive heat capacity.

Two complete calorimetry experiments with similar parameters but altered detector
composition have been conducted and the results are presented in Figure 5.44. The
standard nickel/copper coated detector with a polymer thickness of 28 µm yields
similar results as the aluminum coated 9 µm thick pendant. Deviations in the
absolute values can be attributed to uncertainties in the reflectivity of aluminum.

While the spectral reflectivity of pure aluminum, e.g., 0.92 at 405 nm, is docu-
mented well [136] less information is available for oxidized aluminum surfaces. An
integral reflectivity of aluminum foil between 0.88 for the shiny side and 0.80 for
the dull side is reported [190]. Since the reflectivity is almost constant in the visible
spectral range the same assumption is made for the surface covered by its natural
oxide and a value of 0.89 is used. Although the absolute change in reflectivity is small,
i.e., 0.92 vs. 0.89, the corresponding absorption coefficients differ by 38 %, i.e., 0.08
vs. 0.11. This illustrates the difficulties encountered with highly reflecting surfaces
during the reference measurements where small changes in the input parameters can
cause significant changes in the result.

Although the properties of the investigated detectors are rather different, the
results are similar enough to exclude a pronounced dependency on the employed kind.
This exclusion also demonstrates that the twin-layer metal coating, i.e., copper and
nickel, of the standard detector material is of no drawback compared to the single
metal layer coated, i.e., aluminum, material. Almost identical heats of adsorption
are obtained at coverages below 10 ML for the different detectors. The facts, that
the calibration chain31 involves different reflectivities and that the obtained heats are
identical, attest the validity of the involved reflectivities, the measurement concept,
and the corresponding parts of the data treatment procedure.

Closer examination of both experiments reveal an unexpected evolution of the
31 Response of pristine detector, sputtering, coating, response of coated detector, and the actual

calibration.
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Figure 5.44: Influences of the Detector Structure — Two experiments with almost
similar conditions, e.g., deposition rate, substrate thickness, temperature, but
different detector composition, are opposed. Both experiments exhibit the same
unexpected behavior at high coverages. Instead of converging to the reference
enthalpy (dashed line) the “measured heat” levels out at unreasonable high
values. The slightly lower absolute value for the experiment with the aluminum
coated 9 µm thick detectora (blue dots) compared to the copper/nickle coated
28 µm detectorb (red dots) can be attributed to uncertainties of the assumed
reflectivity of the aluminum layer.

a ‘FV301890/1’ from Goodfellow GmbH – discontinued.
b ‘28um/w 400CU/150NI’ from Measurement Specialties.

amplitudes. Instead of converging to reference enthalpy the “measured heat” levels
out at unreasonable high values in both cases. A possible explanation for this artifact
is discussed in Section 6.8.

Usage of lithium tantalate (LT), as an alternative detector material [115–118] would
provide a higher operation temperature limit of the detector and a higher flexural
stiffness [131]. Since the downstream amplifier is voltage sensitive, the relative detector
sensitivity with respect to the detector material, i.e., relative voltage increase across
the capacitor formed by the detectors, is important to achieve high signal amplitudes.
The output voltage U is given by the electrical capacity of the detector Cel and the
generated electrical charge Qel as

U =
Qel

Cel
. (5.59)
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Table 5.10: Properties of Pyroelectric Materials — A selection of material prop-
erties [131] with typical values at 20 °C relevant to this work.

Property Unit Lithium Tantalate PVDFa

Pyroelectric Coefficient p C
m2K 1.8 ⋅ 10−4 0.3 ⋅ 10−4

Relative Permittivity εr 54 10
Heat Capacity per Volume s J

m3K 3.3 ⋅ 106 2.4 ⋅ 106

Critical Temperature Tc K 890 390

a β-Polyvinylidene fluoride

As discussed in Section 1.3.3, the induced charge is given by

Qel = p ⋅A ⋅ δT (5.60)

with the active area A and the pyroelectric coefficient p of the detector. The
temperature change δT itself is obtained from the heat input Qh and the specific
heat capacity per volume of the used materials s

δT =
Qh

s ⋅ V
(5.61)

and the active volume V of the detector. The electrical capacity Cel is derived from
the area A and the distance d between the electrodes

C =
A

d ⋅ ε0 ⋅ εr

(5.62)

using the electric constant of vacuum, ε0, and the relative permittivity of the used
materials εr. Altogether, one obtains

U =
p ⋅Qh ⋅ d

ε0 ⋅ εr ⋅ s ⋅ V
(5.63)

for one material and thus

Srel =
UPVDF

ULT
=

pPVDF ⋅ εLT ⋅ sLT

pLT ⋅ εPVDF ⋅ sPVDF
(5.64)

as the relative sensitivity Srel regarding voltage output to heat input at constant
detector geometry.

Calculation utilizing the involved physical properties for β-polyvinylidene fluoride
and lithium tantalate, see Table 5.10, reveals a theoretical relative sensitivity of
1.25 in favor of β-polyvinylidene fluoride. Considering the processability of both
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materials one finds a lower thickness limit of 100 µm for lithium tantalate single
crystals whereas the polymers used in this work feature thicknesses of approximately
10 µm and approximately 30 µm. As a result, the usage of lithium tantalate crystals
mounted in the sample holders for thin films, see Section 2.1, would result in a
reduction of the signal amplitude by approximately 90 %.

5.9.6 Thermal Insulation of the Detector Stage

An important property for low temperature experiments is the thermal insulation of
the detector stage, see Section 2.2. Since heat exchange by convection is impossible
in the vacuum environment, the cooled detector stage can be warmed by heat
conductance through the mounting rods or by radiation. One source for the latter
is the body of the main chamber and another source is the energized filament of
the ion gauge. Since the base temperature of the detector stage is about 307 K at
an ion gauge emission current of 5 mA, at 301 K at an emission current of 0.5 mA,
while the room temperature amounts to 297 K the gauge’s filament should cause a
significant heat input to the cooled thermal reservoir.

The influence is characterized by a passive heat up of the detector stage, i.e.,
cooling with liquid nitrogen has been stopped and the machine has been left on
its own. Cooling of the detector stage has been achieved within 75 min by sucking
liquid nitrogen out of a storage Dewar flask and through the thermal reservoir with
membrane pumps32 33 equipped with an upstream thermal protection stage. The
temperature has been recorded with the status logging software34 and analyzed with
the status logging package, see Section 4.4.

The final temperature of 89 K is not affected by the ion gauge at its low emission
level. At high emission the limit is slightly lifted to 93 K. Figure 5.45 also illustrates
a similar heating rate in all three cases since the traces do not exhibit pronounced
differences. This leads to the conclusion that the radiative heating from the filament
is negligible compared to other heat sources.

A further reduction of the heating rate might be achieved by a replacement of
the mounting rod of the thermal reservoir, see Figure 2.5, by threaded tubes. This
would result in a reduction in cross section and hence in total thermal conductivity.
In case this modification is not providing the desired result, it might be necessary to
install a cryo-shield around the detector stage.

32 ‘MZ 2C’ from VACUUBRAND GMBH + CO KG.
33 ‘DIVAC 2.4’ from Leybold AG - now Oerlikon Leybold Vacuum GmbH.
34 Programmed by H. Zhou.

304



5.9 Pyroelectric Detector

300

250

200

150

100

T
e

m
p

e
ra

tu
re

 R
e

se
rv

o
ir

 (
K

)

76543210

Time since Cooling Stop (h)

Ion Gauge on 5.0 mA Emission

Ion Gauge on 0.5 mA Emission 

Ion Gauge off

Figure 5.45: Thawing of the Thermal Reservoir — The temperature profile at
the sample position of the thermal reservoir upon a passive heat up after low
temperature experiments is presented for different ion gauge settings. Although
the lower temperature limit is raised for high emission (red), the thaw rate is
similar to the low emission setting (blue) and the switched off (black) ion gauge.
Measured by H. Zhou.

5.9.7 Deconvolution Test

While the heat of adsorption is deposited instantly on the detector’s surface, analogue
to the heat from the laser pulse, reactions of the adsorbed atoms with the substrate
might be slower. If the time constants of these reactions are in the range of milli-
seconds or longer, they will lead to an alteration of the peak shape and the “normal”
data treatment routine from Section 3.8 is no longer appropriate. Instead, the power
input as a function of time has to be considered as explained in Section 3.10.

Two properties, timing and amplitude, are relevant for this procedure and need to
match a direct measurement.

In order to characterize this data evaluation routine, the amplified response of
a metalized β-polyvinylidene fluoride detector disc mounted in a sample holder for
thin films, see Figure 2.3, has been acquired35 together with the voltage output from
a photo diode36 in air. The pulses have been generated by a remote controlled37

red laser pointer38 and distributed by a beam splitter made from a microscope

35 ‘NI USB-6008’ from National Instruments Germany GmbH.
36 ‘BPW 34’ from Conrad Electronic SE.
37 Power switch bypassed by a ‘BC557’ transistor.
38 ‘776265’ emitting at 654 nm from Conrad Electronic SE.
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coverslip to the detector and the photo diode for synchronous data. The control of
the laser pointer and data acquisition were carried out with a temporary setup39

controlled by an Igor Pro procedure. The reference data set used for deconvolution
has been measured with the standard purple laser on a similar pristine sample in
the vacuum chamber with the standard parameters, see Section 6.3, and processed
by the standard procedure for a deconvolution measurement, see Section 3.5.1.

The power of the laser pointer after transition through the beam splitter has
been measured before and after the experiment in continuous wave mode with an
integrating sphere40 equipped with a calibrated detector41. A measurement in pulsed
mode has not been possible as the response time of the powermeter42 is too slow.

The in air measured sample data has been averaged manually, individual frames
shifted in time from the average have been removed manually and the remaining
frames have been averaged again for the detector signal and the diode voltage. The
averaged detector signal has been processed analogue to a normal deconvolution,
see Section 3.10.

Figure 5.46 illustrates the excellent agreement of the pulse lengths in the original
and deconvoluted detector signal, and the diode response. The average power
experienced by the detector disc amounts to 13.8 µW. The reflectivity of the disc has
been measured as described in Section 5.1 at a wavelength of 654 nm and amounts
to ρ = 0.70. This value is in good agreement with one value reported in literature [191]

but differs from another reported value [192] of 0.65.
Since the deconvolution returns the absorbed power Pabs, the input power Pin can

be calculated from the reflectivity ρ(λ) by

Pin =
Pabs

1 − ρ(λ)
(5.65)

and results in 46.0 µW, assuming the measured reflectivity is correct. Comparison
with the measured power of the laser power of 46.3 µW reveals excellent agreement
for this experiment. This compliance is striking since the measurement conditions
are very different.

As this experiment successfully demonstrated the accuracy of the deconvolution
and, since it uses ex situ and in situ measurement of the laser powers, it also confirms
the reliability of the laser power measurement during calorimetric experiments.

In order to be able to obtain insight into reactions happening after adsorption

39 ‘NI USB-6008’ from National Instruments Germany GmbH.
40 ‘819C-SL-3.3-CAL’ from Newport Spectra-Physics GmbH.
41 ‘918D-UV-OD3’ from Newport Spectra-Physics GmbH.
42 ‘842-PE’ from Newport Spectra-Physics GmbH.

306



5.9 Pyroelectric Detector

1.5

1.0

0.5

0.0

S
ig

n
a

l 
(V

)

43210

Time (s)

25

20

15

10

5

0

-5

P
o

w
e

r (µ
W

)

Photo Diode Signal

Detector Signal (x5)

Deconvoluted 

Detector Power

Figure 5.46: Round Robin Power Input Test — A data set obtained with the
standard calorimetry setup was used to deconvolute (green) the average of 43
pulses from a hijackeda red laser pointerb. The data acquisition and the control
of the laser were carried out with a temporary setupc controlled by an Igor
Pro procedure. Parallel to the signal of the metalized β-polyvinylidene fluoride
detector (red) the laser is recorded with a photo dioded (blue) in voltage mode.
The pulse length is well reproduced by the deconvolution. The decreasing power
input clearly visible in the power is also present in the non-linear output of the
photo diode. The discontinuity in the detector response originates from the
measure equipment and causes the correlated dips in the deconvolution.

a Power switch bypassed by a ‘BC557’ transistor.
b ‘776265’ emitting at 654 nm from Conrad Electronic SE.
c ‘NI USB-6008’ from National Instruments Germany GmbH.
d ‘BPW 34’ from Conrad Electronic SE.

of a molecule on a thin film’s surface, this experiment should be repeated with
better measurement equipment. Its focus should lie on a precise temporal control
of the laser power and its measurement. While control of a laser pointer and data
acquisition is already possible with the existing setup, the simultaneous power
measurement needs to be improved. A possibility would be the use of a photo diode
in combination with a transimpedance amplifier calibrated with continuous wave
light against the available photometer43. This setup would provide an output of the
photo diode proportional to the input power.

43 ‘918D-UV-OD3’ attached to ‘819C-SL-3.3-CAL’ or ‘918D-SL-OD1’ operated by ‘842-PE’ all
from Newport Spectra-Physics GmbH.
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5.10 Statistical Considerations

The calibration of the detector relies on the reproducibility and stability of the laser
based measurements. The calibration comprises several repetitions to measure the
same property, i.e., the response of the detector is measured to an energy input.
Since the detector is linear, see Section 5.9.1, the input can be segregated. This
situation suggests a normal, “Gaussian”, distribution of the obtained values.

During a reliability check of the stepper motor driving the beam chopper, see
Section 2.3.3, the power of the laser during the measurement has been simultaneously
recorded outside the vacuum system using a beam splitter made from a microscope
coverslip. Since only one power meter was available, the absolute value of the
recorded value has no significance. The relative values of the laser power and the
detector response correlate, as shown in Figure 5.47.

The obtained N = 360 amplitudes have been normalized by the corresponding
laser power and converted into a histogram. The number of bins has been chosen
according to common practice [193] to ⌊1 + log2(N)⌋ = 9. The histogram agrees well
with a normal distribution, as shown in Figure 5.48, and supports the assumption
made in Section 3.7.
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Figure 5.47: Relative Laser Reference Amplitudes — The relative amplitudes of
an extended laser reference measurement (dots, left axis) are shown. The laser
power (line, right axis) is acquired simultaneously using a simple beam splitter
before entering the chamber. As expected the detector’s amplitudes follow the
input power. The vertical axes span the same relative ranges.
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Figure 5.48: Histogram of Relative Laser Reference Amplitudes — A histogram
containing the N = 360 pulses of the normalized amplitudes (red) from Figure
5.47 with a common bin size is superimposed with a fitted normal distribution
(blue) with good agreement.

It should be emphasized that this sample is actually too small to proof this
relationship since contaminated distributions can result in a very similar histogram.
Additionally, a, legitimate, variation of the bin size can result in visually different
histograms representing the same data.

The detector response is a function of the applied laser power, see Section 5.9.1.
This rises the question whether the laser power has an influence on the parameters
of the statistical distribution of the measured amplitudes. Since the utilized laser
diode contains a power stabilizing mechanism [151], no variation in the scatter of the
amplitudes is expected.

Using the same detector disc, at each of five different nominal laser powers
between 1 mW and 5 mW 100 frames have been recorded. The obtained data has
been identically conditioned into box plots, see Section 3.6. The results are shown
in Figure 5.49 suggesting a slightly lower stability only for the lowest power setting.
Since the original focus of this measurement is a different topic, the higher scatter
might also originate from external experimental conditions. The inter quartile range,
i.e., the range containing 50 % of the data points, of 0.5 % is well in agreement with
the “cw-stability” stated in the manual [151].

Subsequent to the short term time stability of the laser based measurements the
demand to investigate the long term behavior is stimulated.
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Figure 5.49: Scatter of the Laser Reference Amplitudes by Laser Power — The
box plots, see Section 3.6, for five laser reference measurements with 100 frames
each on the same sample with different laser power settings are shown. Except
for the lowest setting with slightly higher scatter the laser power seems to have
no influence. Outliers resulted from external interference.

Again, no significant influence is expected due to the power stabilizing mecha-
nism [151].

Figure 5.50 gathers box plots of several laser reference measurements over a
period of about two years treated identically to obtain box plots. A significant
degradation of the signal quality, i.e., the inter quartile distance, can be observed
between July 2013 and January 2014 which continued to worsen until February 2014
approaching a level of approximately 3 %. Paradoxically, this period was dedicated
to an optimization of the mass spectrometer with few usage of the laser.

Although the uncertainty seems to be stable enough to conduct further test
measurements, a replacement of the laser diode should be considered prior to high
precision measurements.
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5 Characterizing Experiments

5.11 Synopsis of the Characterization
Experiments

All individual measurements contributing to the actual calorimetric experiment have
been characterized to ensure their reliability.

The reflectivity of the samples measured in an air based dedicated setup revealed
a significantly lower value than reported in literature. This might originate from
different specimen conditions or from a systematic error in the measurement setup
and suggestions to improve the setup have been noted.

Sputter cleaning of samples was discovered to be essential to ensure a uniform
deposition of substrate layers as well as during calorimetric experiments.

Influences of the partial loading, as a consequence of experimental requirements,
were studied and the results counter-checked by a complementary method. The
found values agreed with the experimental results corrected according to theory. A
major contribution due to contamination was excluded.

The evaporator in the load lock was characterized by several means. One addressed
the recommended evaporation temperatures of several organic substrate substances.
Furthermore, an influence of the thermal load on the detector polymer during the
deposition process was excluded for the presented materials. Finally, a conversion
factor of the thickness read by the quartz crystal microbalance and the thickness of
the organic layer on the sample was determined.

The specifications of the measurement card were successfully verified. The stability
of the laser diode is lower than stated and a replacement or online monitoring of the
laser power should be considered. The utilized amplifier is capable of measuring the
pyroelectric signal. The automatic offset compensation affects the measurement and
should be removed in an advanced version.

An extensive characterization of the pulsed molecular beam source was conducted.
Evaporator temperatures, runtimes, and fill amounts have been obtained for several
evaporants. The deposition rate was classified as stable and after installation of
a choke, which also prevents macroscopic particles from being hauled out of the
evaporator, as very stable. The intrinsic inline valve sustains ultra high vacuum
conditions in the main chamber while the molecular beam source is vented. The
chopper generates reproducible well defined pulses with adjustable temporal position.
Ions from the resistively heated standard source are unlikely. However, the creation
of ions is possible in case the electron beam evaporator is used. Measurement of the
ion current was not possible and should be repeated. Laser based measurements are
not influenced by the radiation from the evaporator as the carrier for the mirror in
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5.11 Synopsis of the Characterization Experiments

the beam blocks infrared radiation effectively.
Several traps of the mass spectrometer have been identified and circumvented.

Along this process, operation parameters for the mass spectrometer have been
obtained and compared to theory.

All devices incorporated in the ancillaries stage were thoroughly characterized.
The infrared transparent window exhibits a comparable transmission factor for

the used laser and the radiation from the evaporator only in case of high evaporation
temperatures. The signal shape corresponding to radiation measurements is indepen-
dent of the evaporator temperature. Together with the excellent agreement of the
theoretical and the measured total intensity it renders a processing of the calorimetric
data utilizing an optimized, independent radiation measurement possible. This is
especially interesting in cases where usage of the window is not appropriate.

An attempt to measure the correlation of quartz crystal microbalances in sample
position and in the ancillaries stage failed due to alignment problems and should
be repeated. However, a major difference is not expected, since the theoretical
correction can be applied successfully.

Degradation of the mirror located in the ancillaries stage and/or of the window
used to couple the laser out of the vacuum system is observed and should be
periodically verified.

The properties of the hot plate have been investigated with great efforts. The
theoretical spatial correction differs from the observation. Yet, the theoretical value
is very sensitive to positions which are not precisely obtainable. Instead of the
improvised measurement setup used here, the experiment should be repeated with
dedicated devices. An influence of the hot plate’s temperature on the signal intensity
could merely be guessed. As this experiment was only carried out for magnesium,
it should be repeated for other adsorbates. The exponential decay of the mass
spectrometer signal falsely indicated transient adsorption. A detailed theoretical
investigation examines in which cases real transient adsorption can be observed. A
meta analysis about the correlation of the peak intensity to the measured deposition
rate indicated a non-proportional dependency. This result should be verified with a
dedicated experiment.

Electrical responses of the pyroelectric detectors are proportional to the input
power of the impinging laser and to the illuminated area. Annealing of the detector
polymer to 370 K for three days resulted in no degradation of the sensitivity while
exposure to 400 K lead to a rapid sensitivity loss. The dependency of the detector’s
sensitivity on the operation temperature has been demonstrated as well as the
irrelevance of the detector thickness and plating material.
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5 Characterizing Experiments

Considerable influence of the operation parameters of the ion gauge on the lower
temperature of the sample has been discovered. However, the thawing time is not
affected. Better thermal insulation is recommended.

A round robin test comparing the reconstructed power input with the directly
measured input in air resulted in compatible values proving the correctness of the
deconvolution algorithm. Additional significance arises from the facts that this
experiment was carried out partially in vacuum and partially in air using different
wavelength.

Finally, a glance upon the statistical contribution of the gathered data has been
taken and the criterion to identify and automatically exclude faulty frames has been
motivated.

Despite some hassle concerning the mass spectrometer whose response becomes ir-
relevant at high metal coverages, the characterization measurements predict accurate
calorimetric results which involve several reference measurements.
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6 Investigated Systems

The aim of this work is to build the experimental setup described in detail in Chapter
2, to develop the software for data treatment explained in Chapter 4, and to perform
reference measurements. This chapter covers the latter topic and presents a tiny
selection of conducted experiments. A compressed overview of experiments without
obvious errors is given in Appendix D. As discussed in Section 2.2, the detector
version for evaporated thin film on the metalized detector material was chosen due
to the expected higher sensitivity.

The adsorption of metal atoms on different substrates is studied as a function of
coverage by means of released energy and sticking probability.

Coverages are given in monolayers (ML) and/or meters. Deposition rates are
stated in deposited meters per second or monolayers per second (ML/s) and are
proportional to the corresponding fluxes since the relevant deposition regions have
constant area.

Here, one monolayer is defined as a closed packed layer of the deposited atoms in
a specified plane. The typically used plane is the closest packed plane for the most
stable phase at room temperature, i.e., the (111) plane for metals with cubic and the
(0001) plane for metals with hexagonal crystal structure, e.g., copper and magnesium,
respectively. Both structures with their primitive spatial and corresponding planar
unit cells are shown in the description of the used materials in Figures 6.1 and 6.2.

Detector discs made from 28 µm thick β-polyvinylidene fluoride metalized with
40 nm of copper topped by 15 nm of nickel have initially been cleaned by argon
ion bombardment unless otherwise stated. For experiments involving an organic
thin film substrate the substrate layers have been prepared on the cleaned discs by
physical vapor deposition. The corresponding materials have been evaporated from
quartz crucibles in the load lock, see Section 2.6, and the deposited thickness has
been monitored simultaneously with a quartz crystal micro balance.

The individual parameters employed for calculations and operation of devices are
listed in Appendix A and, unless otherwise stated, the sample has been at ambient
temperature, i.e., 310 K.

In general a multiple stage process can be assumed for adsorption measurements.
The initial phase is dominated by the interaction of the dosed species with the
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6 Investigated Systems

pristine substrate, e.g., reaction with binding sites on the sample’s surface or
diffusion into the bulk material. Depending on the growth mode of the adsorbed
material, transition phases, e.g., diffusion on the surface and cluster growth are
possible but not mandatory as also layer-by-layer growth is possible. During the
final stage, after a sufficiently high coverage has been built up, the adsorbed species
acts like bulk material.

As discussed in Section 1.2, the released heat in this case is identical to the negative
heat of sublimation. As metals are deposited in this work the conducted experiments
benefit from internal reference values. These enthalpies are well documented [174]

at standard temperature and can be precisely calculated at any given temperature.
This turns the multilayer enthalpy into an ideal indicator for a successful experiment.
It should be pointed out that this situation only applies to elements and simple
inorganic compounds for which the heat capacities as a function of temperature,
needed for the calculation, are well known. Potentially interesting organic molecules,
e.g., the chemicals used to form the thin films, exhibit a contrary record. While
standard sublimation enthalpies can be found in literature or can be measured
with moderate effort, there is a nearly total absence of temperature-dependent heat
capacities and they need to be approximated by calculation, e.g., using partition
functions from statistical thermodynamics in combination with spectroscopic data.

The interest to deposit molecular substances rises from the possibility to study
inverted systems in which the large organic molecules are deposited on the metallic
substrate or layered systems formed by different organic substances, as mentioned
in Section 1.3.

The presented experiments illustrate exemplarily which results and conclusions
can be drawn from the obtained data. In advance to analysis and interpretation
of the data sets, several runs using identical conditions should be averaged. This
step is advised in order to improve the significance of the individual data points
and to verify the reproducibility of the experiment. Since the focus of this work lies
on the realization of the scientific framework for the experiment, the corresponding
measurements could not be conducted during the assigned time in the laboratory.
As a consequence, only individual cases of selected experiments are discussed in this
chapter.

A complete overview of the investigated systems, presenting the full coverage
ranges in the experiments, is given in Appendix D.
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6.1 Choice of Materials

6.1 Choice of Materials

Materials used in this work, adsorptives (dosed matter) and adsorbents (substrates),
are chosen primary by their hazard potentials, handling properties, availability, and
price. Their scientific relevance, together with availability of results documented
in literature, was only a secondary criterion as the focus of this work lies on the
realization of the experimental environment and basic proof of concept measurements.
Additionally, the scope of materials was intended to be limited to the adsorption of
metals on reactive molecular substrates. Sublimating substances, i.e., materials solid
at evaporation temperature, are preferred due to the absence of the solid/liquid phase
transition and their better evaporation characteristics, e.g., higher vapor pressure
stability due to the larger surface of a granular solid compared to a meniscus of a
liquid in a crucible.

Candidates as adsorptives are given in Table 6.1. Criteria are temperatures for
which certain vapor pressures are reached. As the system is degassed by heating,
the vapor pressure during this bake-out procedure should not exceed 10−6 Pa, i.e.,
approximately 10−8 Torr, which is equivalent to the statement that the temperature
needed to reach this vapor pressure must be larger than 400 K. On the other hand,
a reasonable vapor pressure needs to be established to form the atomic beam with
high intensity within the operation range of the evaporator. The levels in this case
were chosen to a temperature of less than 1100 K to provide a pressure of 10 Pa, i.e.,
approximately 10−1 Torr.

Avoiding troublesome, i.e., radioactive, toxic, etc., materials, good adsorptives are
strontium, lithium, calcium, magnesium, and zinc, of which the latter three were
used in this work.

The choice of the organic substrates is somehow arbitrary. Previous work including
the preparation of molecular organic thin films made from perylenetetracarboxylic
dianhydride (PTCDA), tetraphenyl porphyrin, and phthalocyanine advise the use of
these chemicals. The use of sexithiophene is motivated by preliminary work on one
of its polymer derivatives, i.e., poly(3-hexylthiophene). All compounds have been
used as substrates.

In addition, the self-evident case without an organic layer, i.e., the bare metalized
detector material, is studied with and without cleaning by argon ion bombardment.

In this work materials were used as purchased. Vendors, purities, and evapo-
ration parameters are listed in Appendix A. In this work, it is assumed that the
thermodynamically most stable phases at ambient temperature are formed in the de-
position process. Thus, all related properties, e.g., monolayer densities, refer to these
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Table 6.1: Properties of Selected Solid Elements — Solid elements are listed
exhibiting a vapor pressure smaller than 10−8 Torr at 400 K and at least 10−1 Torr
at 1100 K rendering them suitable for evaporation with the evaporator presented
in Section 2.3.1. Commented elements should not be used.

Substance Melting Temperature needed Comments [166]

Point [187] for a vapor pressure [187] of
10−8 Torr 10−1 Torr

Antimony 903 K 552 K 885 K Dimers and tetramers
Barium 983 K 545 K 984 K Toxic
Bismuth 544 K 602 K 1050 K Dimers and tetramers
Calcium 1123 K 555 K 962 K
Europium 1099 K 556 K 981 K Rare
Lithium 453 K 508 K 900 K
Lead 600 K 615 K 1105 K Toxic, liquid
Magnesium 923 K 458 K 782 K
Radium 973 K 520 K 920 K Radioactive
Strontium 1043 K 515 K 900 K
Technetium 723 K 428 K 706 K Radioactive, rare
Thallium 557 K 556 K 979 K Toxic
Ytterbium 1097 K 520 K 920 K Rare
Zinc 693 K 396 K 681 K

phases. Especially for the organic substances, it is advised to implement additional
purification steps prior to the physical vapor deposition or other coating processes.
Nevertheless, the available purities of typically more than 95 % are sufficient for the
presented exemplary measurements.

6.1.1 Magnesium

The use of magnesium is beneficial due to several aspects. It exhibits a rather
high vapor pressure compared to other metals [187] providing sufficient flux resulting
in useful deposition rates for calorimetric experiments. Its passivating thin oxide
layer [166] permits storage and handling in air, and spares the use of inert gas or
sealing liquid techniques reducing the experimental complexity. Despite its rather
tame behavior in form of flakes, magnesium willingly undergoes various reactions if
the oxide layer is removed [166]. The affinity of magnesium to oxygen is remarkable
and inspired the usage of PTCDA as one of the substrates. Finally, magnesium is
commercially available, non-toxic, and economically efficient [194].

The hexagonal structure of metallic magnesium is visualized in Figure 6.1 while
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6.1 Choice of Materials

Figure 6.1: Crystal Structure of the Magnesium Type — The hexagonal structure
(thin lines) of the magnesium type with its two sub-lattices (black and blue
spheres) is shown together with the primitive unit cell (thick lines), the (0001)
plane (light red) and the planar unit cell (red) within the (0001) plane used to
derive the monolayer density. Magnesium and zinc crystallize in this structure.

the corresponding cell dimensions are listed in Appendix A.1.

6.1.2 Calcium

Calcium is non-toxic [195] and exhibits a, compared to most other metals, slightly1

lower vapor pressure [187] than magnesium at a given temperature. However, the
vapor pressure is still high enough to create a sufficient flux with the standard
equipment. Although it must be stored in an inert gas atmosphere, it can be handled
in air for short periods without self ignition [166]. Oxidation of the surface during
handling in air was ignored since the purchased material already showed a dull
surface finish. In contrast, sublimation grade calcium sealed in argon filled glass
ampules2 exhibits a silver-like finish. Since calcium is slightly more reactive than
magnesium [166], a reaction with PTCDA seems also likely. Further on, the adsorption
of calcium on various polymer substrates has already been studied by nanojoule
adsorption calorimetry before. The organic films involve various reactive groups, like
thiophene [57,58,71,196], ester [56,60,70], vinylene [54,61,196], imide [53], and cyano [59] moieties.
Additionally, studies on oxide surfaces are also reported [27,29] investigating the
adsorption energetics of calcium. The reactivity of calcium [57,58,71,75,196] towards
sulfur in the thiophene backbone in poly(3-hexylthiophene) inspired the usage of

1 On a logarithmic scale. Compared to magnesium, the vapor pressure [187] at 900 K of calcium
is only a factor of 102 lower while the vapor pressure of gold is a factor of 1011 lower.

2 ‘441872’ from Sigma-Aldrich Co. LLC.
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sexithiophene, a molecular solid, in this work.
Metallic calcium crystallizes in the cubic face centered copper type, visualized in

Figure 6.2. The corresponding cell dimensions are listed in Appendix A.2.

6.1.3 Copper

The main motivation to use copper as adsorptive was to test the applicability of the
electron beam evaporator as an alternative source in the molecular beam, see Section
2.3. Besides the medium vapor pressure [187], the low price, and high availability, the
possibility to evaporate it from crucibles and convenient handling properties such as
being nontoxic and air stable [197], render it as the material of choice for this test.
The presence of preliminary work on metalation reactions including copper [88,198–200]

and calorimetric measurements of copper adsorption on single crystals [14,17,21,22] as
well as polymer substrates [53] support this decision even more.

The use of silver should also be possible with this setup. Although calorimetric
data is available for the adsorption of silver on various substrates [18,21,33,34,42], this
substance was not tested since it is slightly more expensive than copper.

The cubic face centered structure of metallic copper is visualized in Figure 6.2
while the corresponding cell dimensions are listed in Appendix A.3.

Figure 6.2: Crystal Structure of the Copper Type — The cubic face centered unit
cell (thick lines) of the copper type is shown together with the (111) plane
(light red) and the planar unit cell (red) within the (111) plane used to derive
the monolayer density. Copper, calcium, and lead crystallize in this structure.
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6.1.4 Zinc

The primary intention to use zinc as adsorptive was to test the applicability of the
standard evaporator with an evaporant liquid at operation temperature. Besides
the medium vapor pressure [187], the low price, and high availability, its convenient
handling properties such as being nontoxic and air stable [201], render it the material
of choice for this test. So far, no calorimetric measurements including the adsorption
of zinc are published and also investigations utilizing other ultra high vacuum based
methods are rare [202]. This might be related to the rather high vapor pressure of zinc
at comparable low temperatures resulting in distribution of this metal in the whole
vacuum system and a possible contamination of attached instruments. Since most of
the evaporated material is deposited in the cleanable molecular beam compartment,
usage of zinc is still possible3.

Metallic zinc crystallizes in the hexagonal magnesium type, visualized in Figure
6.1. The corresponding cell dimensions are listed in Appendix A.4.

6.1.5 Lead

Lead as a heavy and rather nonreactive [166] but yet harmful material [203] was con-
sidered as a fitting material to calibrate the quartz crystals microbalance [86,87,119]

due to its low reactivity and high density. As consequence therefrom, impurities
in the deposited material only have a minor stake in the calibration measurement,
see Section 5.3. In addition, calorimetric data is available for the adsorption on
single crystals [15,19,20,24,34,55]. Unfortunately, the deposited lead reproducibly caused
irreversible failure of the utilized oscillator crystals. Consequentially, the experiments
involving lead have been aborted.

6.1.6 Unaltered Detector Material

The unaltered detector surface requires least handling and was thus chosen as one
of the first investigated substrates. It is expected that adsorbed metals would
at some point entirely cover a condoned contamination layer. In this case the
contamination layer becomes “invisible” to the used technique. Hence, a correct
heat of adsorption for multilayers is expected even for this poorly defined system.
As a drawback, the heats of adsorption, before multilayers are built up, elude

3 Venting and chemical cleaning with diluted sulfuric acid followed by intensive rinsing with
deionized water is recommended prior to any heating of the main chamber or the molecular
beam.
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interpretation. Furthermore, the reflectivity of this sample is known best, since
samples are characterized in this state, see Section 5.1.

6.1.7 Sputter Cleaned Detector Material

Detectors cleaned by sputtering exhibit better defined surfaces. According to the
data sheet the top layer consists of nickel which has been oxidized by storage in air.
Since the sputtering time is adjusted to remove only the “soft” contamination layer,
see Section 5.2, one can assume that the oxide layer is still present. The cleaning
process slightly changes the reflectivity, but this alteration is taken into account by
the software package, see Sections 3.5.2 and 3.5.3. Furthermore, no information is
available about the influence of the sputtering process, e.g., ion implantation, on
the pyroelectrical properties of the detector polymer.

6.1.8 3,4,9,10-Perylene-Tetracarboxylic Dianhydride

PTCDA, i.e., 3,4,9,10-perylene-tetracarboxylic dianhydride, shown in Figure 6.3,
is commercially available in large quantities due to its use as colorant, where it is
known as “Pigment Red 224”, and thus has an affordable price. PTCDA is non-toxic
and tolerates ambient atmosphere [204]. Its thermal stability renders preparation of
smooth thin films [85] possible using physical vapor deposition [68,69,77]. Due to its
outstanding dyeing capability, a rudimentary visual inspection of the film quality is
possible, even for films with a thickness of a few nanometers.

O O

O

OO

O

Figure 6.3: Chemical Structure of 3,4,9,10-Perylene-Tetracarboxylic Dianhydride
— A perylene core has two anhydride groups attached which react with
oxygenophilic metals. The formation of metal oxides or carboxylates are dis-
cussed as reaction products.

Its anhydride groups are known to react with a wide range of oxide forming
metals [68,69,77,85]. The known reactivity towards magnesium suggests also a strong
interaction with the next heavier homologue, i.e., calcium, also included in this
work. Further interest arises from the usage of PTCDA as a low cost organic
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semiconductor [154,205,206]. The electronic properties of such devices depend on the
metal organic interface and are thus tunable by the deposited material and deposition
conditions [207]. This rises interest for studies of these systems from an applied point
of view.

6.1.9 Poly(3-Hexylthiophene)

Parallel to the terminal experiments including molecular substrates, attempts
were made to start experiments involving spin-coated polymer substrates. Poly(3-
hexylthiophene), shown in Figure 6.4, was chosen since this system has already
been investigated by adsorption calorimetry [57,58,71,196] and could serve as a reference
system. Sample preparation was attempted in a similar way as described in [57]
using an improvised spin coater. Besides, the polymer4 was dissolved in chloroform
as it was purchased. The spin coating process did not reproduce the described
results. The solution dried in a shorter period than the stated initial spinning time.
Several coating attempts resulted in samples with visible non-uniform coating, i.e.,
blotches and dewetted areas.
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Figure 6.4: Chemical Structure of 2,5′-poly(3-Hexylthiophene) — This polythio-
phene is built from 2,5-concatenated thiophene monomers substituted in 3
position by a linear hexyl-chain. Reaction commences with the sulfur in the
thiophene moieties presumably under formation of metal sulfides and cross-
linking the carbon fragments.

Consequently, the sample preparation process needs to be improved. This would
involve better substrate cleaning, e.g., oxygen plasma etching, prior to the coating
process. Furthermore, a dedicated spin coating setup would be beneficial. It should
provide an inert gas atmosphere, which can be saturated with the used solvent
during the distribution phase of the coating process. Unfortunately, this setup could
not be realized within the given time.

Due to the poor surface condition and unreasonable results from sticking measure-
ments, no experiments conducted on these samples are presented here. The gigantic
4 ‘594687’ from Sigma-Aldrich Co. LLC.
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signal effect, see Section 6.8, has not been observed on these samples so far.

6.1.10 Sexithiophene

Sexithiophene, shown in Figure 6.5, is a molecular oligothiophene and thus closely
related to the backbone of other polythiophenes, e.g., poly(3-hexylthiophene), with
differences only in the number of repeat units and substituents. The reactivity of
the monomer unit in the chain is expected to be comparable for both cases. The
interaction of the reactive groups, i.e., the sulfur atoms, with low work function
metals, such as lithium, aluminum, sodium, and calcium, has been widely studied
by calorimetry [57,58,71,196] and other methods [72–76].

S S S
SSS

Figure 6.5: Chemical Structure of α-Sexithiophene — This oligothiophene is built
from six 2,5-concatenated thiophene monomers. It occurs as a part of the back-
bone in poly(3-hexylthiophene) used in other publications. Reaction commences
with the sulfur in the thiophene moieties presumably under formation of metal
sulfides and cross-linking of the carbon fragments.

Further interest arises from the usage of sexithiophenes as organic semiconduc-
tors [208–212]. The electronic properties of such devices depend on the metal organic
interface and are thus tunable by the deposited material and deposition conditions.
These possible modifications raise interest for studies of these systems from an
applied point of view [213–219].
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6.1.11 Tetraphenyl Porphyrin

Tetraphenyl porphyrin, i.e., 5,10,15,20-tetraphenyl-21H,23H -porphin – shown in
Figure 6.6, is not toxic and air stable [220]. In addition, experience has been gained
to deposit thin films in previous work [221,222] and metalation reactions with cop-
per [198–200] and zinc [202] are known for tetraphenyl porphyrin. Furthermore, the
metalation with copper is also known for the chemically related phthalocyanine [88]

exhibiting the same reactive site in the center of the molecule. However, calorimetric
data investigating the adsorption of metals on porphyrin-like molecules is not known
so far.

N

N
H

N

N
H

Figure 6.6: Chemical Structure of 5,10,15,20-Tetraphenyl-21H,23H -Porphin —
The structure of the used four-fold phenyl substituted porphin is reacting
in the center under oxidation of the metal atom about to be incorporated. This
leads to formation of molecular hydrogen and the metalloporphyrin in which
the metal is coordinated by the central four nitrogen atoms.
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6.2 Reaction Thicknesses

As mentioned before, a major goal of this work is the investigation of developing
interfaces. Besides the energetic point of view, it would be highly interesting to
determine the thickness of the reaction zone between the unperturbed substrate and
the adsorbate layer formed during the final stages of the measurement. However,
in order to draw conclusions on the reaction thickness, nanojoule adsorption calori-
metry requires additional information about the pristine surface structure. At the
current state, the setup is not equipped with instruments to characterize surface
morphologies.

Alternatively, the formed interphase could be studied after the calorimetry ex-
periment by a complementary technique, e.g., by X-ray photoemission spectroscopy
utilizing angle variation or excitation energy alteration. Again, the current state of
the setup does not contain instruments to perform these measurements.

Unfortunately, it has not been possible to perform all of these corresponding
measurements yet.

In order to obtain at least a coarse approximation, one can consider the density
of reaction centers in cubic reference volumes. The amount of reaction centers is
given by the number of individual molecular reaction moieties n and the number of
molecules per unit cell Z. The latter and the total volume V of the unit cell are
listed as unit cell parameters, see Appendix A. This approximation allows to define
a substitute area density of reaction centers σ̃ and an ersatz layer thickness d̃, as it
has been reported analogously for polymer substrates [56].

Using the geometrical properties of cubes, the thickness is given by

d̃ =
3

√
V

n ⋅Z
(6.1)

and the area density is given by

σ̃ =
⎛

⎝

3

√
n ⋅Z

V

⎞

⎠

2

. (6.2)

The volume V is given by the base vectors a⃗, b⃗, and c⃗ or the lengths a, b, and d and
the tilt angles α, β, and γ of the unit cell5 by

5 The unit cell can always be expressed as a parallelepiped [188] and a certain basis therein.
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V = a⃗ ⋅ (b⃗ × c⃗)

= a ⋅ b ⋅ c ⋅
√

1 + 2 ⋅ cos(α) ⋅ cos(β) ⋅ cos(γ) − cos2(α) − cos2(β) − cos2(γ) . (6.3)

Table 6.2 lists the virtual values calculated by Equations 6.1 and 6.2 for the substrates
used in this work.

Comparison of the substitute area density of the substrate σ̃Substr with the mono-
layer densities of the adsorbed species σAds by

ρ0 =
σAds

σ̃Substr
(6.4)

yields the reaction equivalent ρ0 describing the amount of adsorbate in monolayers to
react with one ersatz layer of the substrate. Table 6.3 lists all possible combinations
of adsorbates and substrates used in this work.

It should be pointed out again that this is an averaging and coarse approximation
and will only provide an estimate. Due to its compensating nature, it will fail in
case of highly ordered substrates, e.g., molecules entirely lying flat on a substrate
or entirely standing up straight. However, unordered and mixed phases should be
approximated rather well since averaging is also needed in these cases to define a
layer thickness.
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Table 6.2: Ersatz Thicknesses and Area Densities — Virtual values used to ap-
proximate layer thicknesses and area densities for the used substrates are listed
as calculated from Equations 6.1 and 6.2. Parameters for the unit cells are
taken from literature and summarized in Appendix A.

Substance Reaction Virtual Virtual
Centers n Area Density σ̃ Thickness d̃

PTCDAa [178,223] 2 3 ⋅ 1018 1/m2 0.6 nm
Phthalocyanine [224] 1 1 ⋅ 1018 1/m2 0.4 nm
Sexithiophene [225] 6 5 ⋅ 1018 1/m2 0.4 nm
Tetraphenyl porphyrin [226] 1 1 ⋅ 1018 1/m2 0.8 nm

a Perylenetetracarboxylic dianhydride

Table 6.3: Reaction Equivalents — Amounts of adsorbate given in monolayers
necessary to react one ersatz layer of the substrate.

Substrate Adsorbate
Magnesium Calcium Copper Zinc

PTCDAa 0.3 ML 0.4 ML 0.2 ML 0.2 ML
Phthalocyanine 0.1 ML 0.2 ML 0.08 ML 0.09 ML
Sexithiophene 0.5 ML 0.7 ML 0.3 ML 0.3 ML
Tetraphenyl porphyrin 0.1 ML 0.2 ML 0.06 ML 0.07 ML

a Perylenetetracarboxylic dianhydride
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6.3 Measurement Procedure

The sample-detector entities are assembled in air, see Section 2.2, and transferred
into the load lock, see Section 2.6. After a degassing period of 36 h the samples can
usually be introduced into the main chamber without increasing the base pressure
of typically 8 ⋅ 10−9 Pa above 2 ⋅ 10−8 Pa. A typical experiment sequence is shown in
Figure 6.7 and subsequently explained.

Due to the experimental situation, the reflectivity of the pristine sample needs to
be measured outside the vacuum system in an analogue way as described in Section
5.1 or assumed to be constant.

As an initial reference, a measurement is performed on the unaltered sample, i.e.,
the before coating measurement. The mirror in the molecular beam is moved to
the position where it reflects the laser up towards the sample, see Section 2.3.2,
to match the geometry of the molecular beam. The laser impinges on the sample
and the response of the detector to the pulsed laser beam is recorded, see Sections
1.1.3 and 3.5.2. Subsequently, the power of the laser is measured, see Section 2.5.2.
This step is necessary for all laser based measurements. It is recommended to read
the laser power after the experiment since the moving of the ancillaries stage, see
Section 2.4, causes a perturbation of the detector base line.

Typical parameters used for the measurements are listed in Table 6.4. Detailed
information about the measurement procedure and the usage of the involved programs
will be given in [227].

Since the reflectivity of the sample is known best at this time in the experimental
sequence, it is recommended to conduct the deconvolution reference measurement
at this point, see Section 3.5.1. If high accuracy in combination with a subsequent
calorimetric measurement at non-ambient temperature is desired, the temperature
of the sample should be adjusted and this step should be executed at the target
temperature. In case of a supportive data deconvolution the program package
provides an option to use a detector sensitivity correction, see Section 3.10.

Due to the external preparation steps, a minor contamination on the metal layer
is present, see Section 5.2. Hence, the detector surface is cleaned by sputtering6 in
the next step. This procedure is also applied to the systems containing a subsequent
deposition process of an organic molecule on the now cleaned detector surface. The
intermediate cleaning step appeared to be necessary since some specimens coated
with an organic thin film exhibited inhomogeneities visible to the bare eye.

Information, e.g., supply and purity, about the used chemicals are given in

6 Argon: 10−4 Pa, Ion Energy 3 keV, 10 minutes.
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Figure 6.7: Work Flow of a Calorimetric Experiment — The sequence of typical
experiments with user interactions (red), measurements (green), and typical
decisions (blue) illustrates the standard (solid lines) and alternative (dashed
lines) routes.
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Table 6.4: Data Acquisition Parameters — Recommended data acquisition set-
tings and experimental parameters are listed for different measurement types
together with their dependencies.

Parameter Regular Deconvolution
Measurement

Pulse Delay 200 ms 3 s a

Pulse Length 200 ms b 3 s c

Chopper Periodd 4 s e 120 s f

Laser Powerg ≈ 20 µW ≈ 20 µW
Sample Rate 1 kHz 1 kHz
Range Calorimetry ±1 V ±5 V
Range Mass Spectrometer ±10 V ±10 V
Recorded Pulse Pairs 25 10

a Minimal one and a half times the chopper period of a regular measurement.
b Recommended range 100 ms to 300 ms.
c Minimal one and a half times the chopper period of a regular measurement.
d Time for a complete chopper cycle with two frames.
e Depends on the time for the signal to return to zero.
f Depends on the time for the signal to provide a flat baseline.
g Adjusted by Laser Power Level and measured after reflection out of the main chamber.

Appendix A together with the corresponding parameters for the instrumentation.
Due to the absence of additional instrumentation the characterization of the prepared
thin films by means of surface morphology, chemical composition, growth mode of
the adsorbed species, etc. has not been possible.

The response of the detector to the laser, now with the prepared sample, is mea-
sured again, i.e., the after coating measurement, to calculate the newly established
reflectivity, see Section 3.5.3. This measurement has to be executed at the same
temperature as the before coating measurement.

For all following measurements the temperature of the sample needs to be stabilized
at the target temperature of the experiment.

The laser reference measurement provides the response of the detector to the
laser input at the target temperature. At ambient temperature this experiment is
identical to the after coating measurement. It is advised not to omit the apparently
redundant after coating measurement since the temperature dependent sensitivity is
calculated from these two data sets. A value differing from unity indicates a tempe-
rature difference in these two measurements and thus an incomplete temperature
adjustment.

A similar measurement is performed with the infrared transparent window placed
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in front of the sample. This transmission measurement is used to generate an initial
value for the correction of the amount of thermal radiation from the evaporator, see
Section 3.5.5. The effect of the different spectral ranges of the light used to measure
the transmission and the actual attenuated radiation is discussed in Section 5.8.1.

To measure the reference for the radiation the evaporator is powered up from its
stand-by7 to the evaporation temperature. The mirror in the beam is retracted and
orifice is placed in operation position, see Section 2.5.2. After stabilization of the
flux the infrared transparent window is moved to the same position as in the last
mentioned measurement and the detector response to the radiative input can be
acquired.

In order to minimize temperature fluctuations in the vacuum system the calorimet-
ric measurement with the ancillaries stage moved most outward should be conducted
at this point. The number of frame pairs being recorded depends on the deposition
rate, pulse length, and sticking probability. Typical numbers range from 200 to
more than 2000 frame pairs resulting in – depending on the employed deposition
rate – around 1 to 100 dosed monolayer equivalents, corresponding for up to a few
ten nanometers.

Next, the deposition rate of the material emitted from the evaporator is measured
with the quartz crystal microbalance in the ancillaries stage, see Section 2.4.2. Due
to the limited resolution of the corresponding controller, the thickness added during
this measurement on the oscillator crystal should exceed 5 nm. Recording of the
base lines before, in one chopper close position, and after, in the other chopper close
position, the deposition measurement allows to identify and to compensate thermal
drift. Another benefit arises from the possibility to detect a misadjustment of the
chopper position manifesting in different slopes of the base lines. The deposition
area is given by the experimental setup as 1.96 ⋅ 10−6 m2.

Subsequently, the zero sticking measurement is conducted. This position in the
sequence reduces contamination due to a possible degassing of the hot plate and
its surrounding as well as the influence of thermal drifts on the sample and the
quartz crystal micro balance. The settings of the mass spectrometer need to be
identical to the settings in the calorimetry experiment. The parameters for the mass
spectrometer should have been obtained in an auxiliary experiment in advance to
the actual calorimetry experiment with a similar deposition rate. The SEM voltage
should be tuned to a value resulting in a clipping free output and an amplitude of
approximately 5 V. Finally, the data was analyzed according to Chapter 3, typically
employing fitted trends (polynomials of order 5 or 7) for the radiation contribution.

7 Typically 2/3 of the operation temperature.
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6.4 Adsorption of Magnesium

This section covers a selection of experiments in which magnesium has been adsorbed
on various surfaces utilizing the calorimeter presented in Chapter 2 according to the
procedure given in Section 6.3.

Experiments including magnesium formed the first investigated set due to the
high vapor pressure and convenient handling of magnesium, see Section 6.1. As a
drawback one might argue that adsorption of magnesium has not been studied by
nanojoule adsorption calorimetry before and is less suitable as a proof of concept
measurement. However, the magnesium/PTCDA interface has been studied before
by other techniques, such as X-ray photoemission [68,69] and Raman [85] spectroscopy.
These examples provide an illustration of results that could be expected.

6.4.1 Experiment: Adsorption of Magnesium

Magnesium evaporated from the molecular beam source has been converted into
pulses and adsorbed on several substrates. Here, one monolayer is defined as
1.12 ⋅ 1019 Atoms/m2, corresponding to the basal plane of the hexagonal unit cell.
Investigations using chromium and chromium oxide [228] as substrates8 support the
assumption that magnesium is growing along the [0001] direction, at least in the
multilayer regime. The deposition rate has been adjusted to about 0.1 ML/s and the
pulse length varied along the experiments between 0.15 s and 0.20 s resulting in doses
of about 5 ⋅ 1012 magnesium atoms per pulse which is equivalent to 8 picomole per
pulse. The experiments have been conducted as described in Section 6.3 with the
parameters mentioned there.

6.4.2 Results: Adsorption of Magnesium

Sticking Probabilities

Figure 6.8 presents the obtained coverage dependent sticking probabilities of magne-
sium on three different surfaces.

Magnesium on a raw, i.e., as after introduction into the vacuum system, sample
(pine) exhibits an initial sticking coefficient around 0.6 decreasing to 0.3 at 1.5 ML.
With increasing coverage the sticking probability increases again to about 0.9 at
30 ML without an indication of saturation upon further deposition.

8 The calculated monolayer density in this work is incorrect.
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Figure 6.8: Adsorption of Magnesium: Sticking Probability — The sticking coef-
ficients (dots) of magnesium adsorbed on different surfaces are plotted together
with the unity sticking reference (dashed line) as a function of coverage. Each
trace represents a single experiment. The pristine, i.e., unaltered, detector
surface (pine) exhibits a minimum of the sticking coefficient at low coverages
which needs a large increase to recover and even at 30 ML unity sticking is
not reached. The sticking coefficient of the freshly sputtered sample (green)
is almost unity right from the start. A detector coated with 10 nm PTCDA
(gold) shows a sharp minimum of the sticking probability at low coverages which
slowly increases to the value of the sputtered sample.

In contrast to the unaltered specimen, a sample freshly cleaned by sputtering
(green) exhibits almost unity sticking, i.e., 0.98, from the first pulse on with a minor
reduction to 0.95 between 2 ML and 4 ML.

The thin film of PTCDA (gold) prepared in the load lock, see Section 2.6, with a
nominal thickness of 10 nm shows an initial sticking coefficient of about 0.9 which
rapidly decreases to 0.4 at 0.9 ML. It slowly increases upon further dosage and
reaches a similar magnitude as the sputter cleaned nickel surface.
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Heats of Adsorption

Figures 6.9 and 6.10 compare the results of heat measurements for adsorption of
magnesium on three different surfaces as a function of magnesium coverage.

The pristine, i.e., unaltered, detector surface (pine) exhibits a heat of adsorption
for the initial pulses of 385 kJ/mol for up to one monolayer. Subsequently, the released
heat drops to approximately 105 kJ/mol for a coverage of 3 ML and rises again to
115 kJ/mol for higher coverages. The sputtered sample (green) shows the same initial
value for the heat of adsorption but lacks the initial plateau region of the pristine
sample. It undergoes a minimum at 3 ML reaching 75 kJ/mol and recovers around
6 ML at 90 kJ/mol. The specimen coated with PTCDA (gold) reveals a similar heat
of adsorption of 380 kJ/mol for the first pulses as for the other two samples. It further
contains a plateau region with a released heat of 270 kJ/mol between 0.6 ML and
1.2 ML and decreases monotonically to 110 kJ/mol at magnesium coverages of 6 ML
and higher.
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Figure 6.9: Adsorption of Magnesium: Heats of Adsorption — The derived heats
of adsorption (dots) of magnesium dosed on different surfaces are plotted
together with the calculated heat of sublimation reference (dashed line) as a
function of coverage. Each trace represents a single experiment. The pristine,
i.e., unaltered, detector surface (pine), the freshly sputtered sample (green),
and a detector coated with a thin layer of PTCDA (gold) exhibit the same
global behavior. After a high initial released heat of adsorption it drops to a
level below the sublimation enthalpy and remains at this level. Details for low
coverages are given in Figure 6.10.

335



6 Investigated Systems

1.0

0.8

0.6

0.4

0.2

0.0

H
e

a
t 

o
f 

A
d

so
rp

ti
o

n
 (

M
J/

m
o

l)

1086420

Magnesium Coverage (ML)

Layer Thickness

Pristine Nickel Coating

Sputtered Nickel Coating

10 nm PTCDA

Heat of Sublimation

Sample Temperature: 310 K

Figure 6.10: Adsorption of Magnesium: Heats of Adsorption at Low Coverages —
The derived heats of adsorption (dots) of magnesium dosed on different surfaces
are plotted together with the calculated heat of sublimation reference (dashed
line) as a function of coverage. Each trace represents a single experiment. The
heat of adsorption on the pristine detector surface (pine) exhibits an initial
plateau. The result corresponding to the freshly sputtered sample (green)
steadily decreases, reaches a minimum, and slightly rises again. The detector
coated with 10 nm PTCDA (gold) exhibits a pronounced intermediate plateau.

6.4.3 Discussion: Adsorption of Magnesium

Results from the sticking measurements agree well with the observations made
during characterization of the oscillator crystals for deposition rate measurements,
see Section 5.2. The surface freshly cleaned by sputtering exhibits a very high sticking
coefficient throughout the studied range. This behavior is generally expected if
metals are dosed on metallic substrates [15,17,18,24], especially on themselves.

Adsorption of magnesium on the unaltered detector results in a broad minimum
of the sticking probability at low coverages. The constant released heat suggests
a reaction of the first adsorbed monolayer of magnesium with the contamination
layer, since a reaction with the nickel oxide layer results in a decreasing released
heat. While the obtained heat is already reduced to a similar value as observed for
multilayers, the sticking coefficient is still low. This suggests a modification of the
surface during increasing adsorption of magnesium. A compound is formed from
the dosed magnesium and the surface contamination which exhibits a low sticking
probability and does not interact with magnesium. The absence of the minimum
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in the heat of adsorption indicates a presence of larger clusters at a magnesium
coverage of approximately 4 ML which already act like bulk material. These clues
support a Volmer-Weber like growth mechanism in this case. At large coverages
the heat of adsorption levels off below the heat of sublimation which is again the
expected reference value. The result of a constant released heat beyond a magnesium
coverage of 5 ML in combination with a variable sticking probability shows that the
correction by the sticking coefficient is generally working.

The initially high heat of adsorption indicates a reaction or at least a very strong
interaction with the cleaned detector surface. Its detailed nature cannot be specified
further due to the lack of surface characterizing methods available in this setup.
Possible reactions include the oxidation of water adsorbed after sputtering, reaction
with defect sites created by the sputtering process, or a reduction of residual nickel
oxide overlayer by the adsorbed magnesium. The latter type of reaction was reported
for adsorption of magnesium on oxidized chromium [228] while reaction with water is
unlikely due to the low pressure in the system. Upon further dosage, the released
heat is reduced and stabilizes at a coverage of 3 ML. The inflection point of the heat
is located at approximately 1.2 ML, suggesting that roughly the first dosed monolayer
of magnesium is reacting. A subsequent minimum in the calculated heat might
originate from two possibilities. On the one hand, it might profanely arise from an
artifact caused by the automatic base line offset removal in the employed amplifier,
see Section 5.5.3, which is not entirely removed by the filtering process, see Section
3.3. Another model reported for other adsorbates [15] implies a Stranski-Krastanov
growth mode, i.e., islands on an interlayer, which are higher in energy than the bulk
material and thus release a reduced amount of heat. Larger scale errors induced
by an incorrect zero sticking reference can be excluded in this experiment since its
absolute finite amplitude becomes irrelevant as the corresponding coefficients are
very close to zero. At higher coverages the obtained heat of adsorption does not
match the heat of sublimation, which is the expected reference value, but remains
reproducibly below this limit.

Upon adsorption of magnesium on a thin PTCDA layer, a strong decrease of
the sticking probability suggests a pronounced change in the properties of the
surface. Studies suggest a very strong interaction between PTCDA and the adsorbed
magnesium [68,69] including the cleavage of the C–O bonds in the anhydride groups
resulting in the formation of magnesium oxide [85]. This model is supported by
the corresponding heats of adsorption which are very high at this coverage. The
subsequent rapid diminishment of the observed heat and the fast increase in sticking
probability argue in favor of a thin layer in which the dosed magnesium reacts with
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the PTCDA and builds up a diffusion barrier. Using the inflection point located at a
magnesium coverage of 1.4 ML in combination with the estimation from Section 6.2,
one can conclude that about four layers of PTCDA react with the dosed metal. This
is in agreement, within the scope of applied approximations, to results reporting a
reaction thickness of approximately three layers determined by X-ray photoemission
spectroscopy [69].

This formed interface layer lessens the diffusion of dosed magnesium atoms to
lower PTCDA layers and thus leads to growth of islands on the surface. Comparison
with the sticking behavior of the cleaned sample reveals similar coefficients. It
excludes a layer-by-layer growth on the reacted layer since the sticking probability
should reach unity after the next monolayer of magnesium is adsorbed. Hence, a
model in which magnesium clusters grow on a magnesium oxide layer covering the
PTCDA substrate is applicable. This is also in accordance with X-ray photoemission
spectroscopy investigations reported elsewhere [69].

Due to the fact that the internal reference for the heat of adsorption is not
matched for multilayers, the reported energies for the adsorption of magnesium on
all mentioned substrates are questionable and thus not discussed on an absolute
scale.
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6.5 Adsorption of Calcium

This section presents a selection of experiments in which calcium has been adsorbed
on various surfaces utilizing the calorimeter presented in Chapter 2 according to the
procedure given in Section 6.3.

Experiments comprising calcium are motivated by the moderate handling efforts,
the high vapor pressure, and preliminary work. The results for adsorption of calcium
on various polymer substrates, i.e., oxygen [56,60,70] and sulfur [57,58,71] containing simi-
lar moieties, inspired the use of PTCDA and sexithiophene as molecular substrates.
The choice of tetraphenyl porphyrin as an additional substrate is based on the expe-
rience obtained from investigations by photo electron spectroscopy on metalation
reactions with various metals forming double charged cations [200,221,222,229]. However,
no literature could be found addressing the metal/organic interface for PTCDA,
sexithiophene, and tetraphenyl porphyrin exposed to calcium vapor. Due to the
similar reactive groups in the corresponding substrates, e.g., the thiophene units in
sexithiophene and poly(3-hexylthiophene), comparable results can be expected.

6.5.1 Experiment: Adsorption of Calcium

Calcium evaporated from the molecular beam source has been converted into pulses
and adsorbed on several substrates. One monolayer is defined as 7.40 ⋅ 1018 Atoms/m2

in this case, assuming growth in the [111] direction which is in agreement with other
work [56–61]. The deposition rate has been adjusted to 0.3 ML/s for the measurement
using the sputtered detector and to about 0.08 ML/s for all other measurements. An
identical pulse length of 0.20 s results in doses of about 9 ⋅ 1012 calcium atoms per
pulse which is equivalent to 15 picomole per pulse for the measurement on the
sputtered detector and 2 ⋅ 1012 calcium atoms per pulse which is equivalent to 4
picomole per pulse for the other experiments. The experiments have been conducted
as described in Section 6.3 with the parameters mentioned there.
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6.5.2 Results: Adsorption of Calcium

Sticking Probabilities

Figure 6.11 presents the obtained coverage dependent sticking probabilities of calcium
on two different surfaces.

A sample freshly cleaned by sputtering (green) exhibits unity sticking from the
first pulse on for calcium in the entire studied range. A contrary result is obtained in
case calcium is adsorbed on a 310 nm thick layer of free base tetraphenyl porphyrin
(purple). Here, the initial sticking coefficient of 0.9 is slightly lower and decreases
to 0.75 at a calcium coverage 0.7 ML. It slowly increases upon further dosage and
reaches unity at 6 ML and above.

Figure 6.12 shows the obtained coverage dependent sticking probabilities of calcium
on vapor deposited PTCDA surfaces with thicknesses of 20 nm and about 660 nm.
The specimen with the thinner layer (gold) exhibits unity sticking from the first pulse
on for calcium adsorption in the entire studied range. The experiments involving the
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Figure 6.11: Adsorption of Calcium: Sticking Probabilities (Clean Detector, Tetra-
phenyl Porphyrin) — The sticking coefficients (dots) of calcium adsorbed on
different surfaces are plotted together with the unity sticking reference (dashed
line) as a function of coverage. Each trace represents a single experiment. The
sticking coefficient of the freshly sputtered sample (green) is almost unity right
from the start. A different behavior is shown upon adsorption on a thick layer
of tetraphenyl porphyrin (2HTPP – purple). The initial sticking coefficient
undergoes a minimum and finally reaches a constant high value similar to the
other specimen, see Figures 6.12 and 6.14.
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Figure 6.12: Adsorption of Calcium: Sticking Probabilities (PTCDA) — The
sticking coefficients (dots) of calcium adsorbed on PTCDA surfaces with two
different layer thicknesses are plotted together with the unity sticking reference
(dashed line) as a function of coverage. Each trace represents a single experiment.
The sticking coefficient of the detector coated with a thin layer of PTCDA
(gold) is almost unity right from the start. Two different detectors each coated
with a thick layer of PTCDA (reda, blackb) show wide weak minima regarding
the sticking probability between 2 ML and 6 ML returning to their initial value.

a Detector Material: ‘28um/w 400CU/150NI’ from Measurement Specialties.
b Detector Material: ‘FV301890/1’ from Goodfellow GmbH – discontinued; not sputtered.

thicker layers each exhibit an initial sticking coefficient of 0.95 and undergo a broad
shallow minimum between 1 ML and 9 ML dropping to 0.91 on the nickel coated
(red) and to 0.89 for the aluminum coated unsputtered specimen (black). For higher
coverages the sticking probability levels out at 0.98.

Figure 6.13 shows the obtained coverage dependent sticking probabilities of calcium
on vapor deposited PTCDA surfaces with thicknesses of 20 nm (orange) and 620 nm
(red) held at 80 K by liquid nitrogen cooling. Both specimens exhibit unity sticking
probability in the entire studied range.

Figure 6.14 illustrates the obtained coverage dependent sticking probabilities of
calcium on vapor deposited sexithiophene surfaces with thicknesses of 30 nm (cyan),
100 nm (azure), and 310 nm (blue). The specimen with the thin layer exhibits
an initial sticking probability of 0.61, the one with the medium layer thickness a
probability of 0.83, and the one with the thick layer a probability of 0.90. The
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Figure 6.13: Low Temperature Adsorption of Calcium: Sticking Probabilities
(PTCDA) — The sticking coefficients (dots) of calcium adsorbed at cryo-
genic temperatures on PTCDA surfaces with two different layer thicknesses are
plotted together with the unity sticking reference (dashed line) as a function of
coverage. Each trace represents a single experiment. The sticking coefficients of
the detectors coated with a thin layer of PTCDA (orange) and with a thick layer
of PTCDA (red) are both unity in the investigated range of calcium coverage.

sticking coefficient increases rapidly and reaches 0.95 at 3 ML. For higher calcium
coverages it levels out at 0.98, which is identical to the final value obtained for the
deposition of calcium on PTCDA, see Figure 6.12.

Figure 6.15 shows the obtained coverage dependent sticking probabilities of calcium
on vapor deposited sexithiophene surfaces with thicknesses of 160 nm (azure) and
670 nm (blue) held at 80 K by liquid nitrogen cooling. Both specimens exhibit a
high sticking probability of 0.95 for the initial pulses and level out at unity within
2.5 ML for the remaining studied range.
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Figure 6.14: Adsorption of Calcium: Sticking Probabilities (Sexithiophene) —
The sticking coefficients (dots) of calcium adsorbed on sexithiophene surfaces
with different layer thicknesses are plotted together with the unity sticking
reference (dashed line) as a function of coverage. Each trace represents a single
experiment. The sticking probability on thin (cyan), medium (azure), and thick
(blue) sexithiophene layers is moderate for the initial pulses and levels off within
2 ML slightly below unity independent of the layer thickness.
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Figure 6.15: Low Temperature Adsorption of Calcium: Sticking Probabilities (Sexi-
thiophene) — The sticking coefficients (dots) of calcium adsorbed at cryo-
genic temperatures on sexithiophene surfaces with different layer thicknesses
are plotted together with the unity sticking reference (dashed line) as a function
of coverage. Each trace represents a single experiment. The sticking probability
on medium (azure) and thick (blue) sexithiophene layers is high even for the
initial pulses and reaches unity within 2 ML independent of the layer thickness.
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Heats of Adsorption

Figures 6.16 and 6.17 compare the results of heat measurements for adsorption of
calcium on two different surfaces as a function of calcium coverage.

The detector surface cleaned by sputtering (green) exhibits a heat of adsorption for
the initial pulses of 500 kJ/mol decreasing to a narrow plateau of 180 kJ/mol at a calcium
coverage of 1.1 ML and reaches a minimum of 65 kJ/mol at 2.7 ML. Subsequently, the
released heat increases again to approximately 85 kJ/mol for a coverage of 5 ML and
further to 100 kJ/mol for coverages larger than 15 ML.

The specimen coated with 310 nm tetraphenyl porphyrin (purple) exhibits an
initial heat of adsorption of 475 kJ/mol decreasing to a plateau value of 180 kJ/mol

between 1 ML and 3 ML. Subsequently, the obtained value undergoes a shallow
minimum around 4.5 ML dropping to 155 kJ/mol. At higher calcium coverages a
pronounced maximum at 20 ML reaching 2 MJ/mol (sic) is noticed. This gigantic
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Figure 6.16: Adsorption of Calcium: Heats of Adsorption (Clean Detector, Tetra-
phenyl Porphyrin) — The derived heats of adsorption (dots) of calcium dosed
on different surfaces are plotted together with the calculated heat of sublimation
reference (dashed line) as a function of coverage. Each trace represents a single
experiment. The freshly sputtered samplea (green) and a detector coated with
tetraphenyl porphyrin (2HTPP – purple) exhibit a high initial released heat of
adsorption. It drops rapidly in case of the sputtered specimen and slowly in
case of the coated specimen to levels stabilizing below the sublimation enthalpy.
Details for low coverages are given in Figure 6.17.

a Measured at a calcium deposition rate of 0.3 ML/s.
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Figure 6.17: Adsorption of Calcium: Low Coverage Heats of Adsorption (Clean
Detector, Tetraphenyl Porphyrin) — The derived heats of adsorption (dots)
of calcium dosed on different surfaces are plotted together with the calculated
heat of sublimation reference (dashed line) as a function of coverage. Each
trace represents a single experiment. The heat of adsorption of calcium on the
sputtered detector surfacea (green) exhibits a rapid drop during the initial pulses
followed by a narrow plateau and a shallow minimum. The result corresponding
to the sample coated tetraphenyl porphyrin (2HTPP – purple) exhibits a plateau
at the sublimation enthalpy and subsequently exhibits a pronounced increase.

a Measured at a calcium deposition rate of 0.3 ML/s.

increase independent of the detector material was also directly observable during
the data acquisition and in the raw data.
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6.5 Adsorption of Calcium

Figures 6.18 and 6.19 illustrate the results of heat measurements for adsorption
of calcium on two PTCDA layers of different thickness as a function of calcium
coverage.

The detector coated with 20 nm of PTCDA (gold) exhibits a heat of adsorption
for the initial pulses of 380 kJ/mol decreasing with two kinks at calcium coverages of
1 ML and 3 ML to 345 kJ/mol and 290 kJ/mol, respectively. Subsequently, the released
heat undergoes a very broad and shallow minimum at 120 kJ/mol between 8 ML and
18 ML to level out again at 140 kJ/mol for higher calcium coverage.

The specimens coated with more than 650 nm of PTCDA on the two detector
materials, see Section 5.9.5, exhibit a similar trend of the released heat as the sample
with the thin coating. The initially released heat amounts to 500 kJ/mol in case of the
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Figure 6.18: Adsorption of Calcium: Heats of Adsorption (PTCDA) — The de-
rived heats of adsorption (dots) of calcium adsorbed on PTCDA surfaces with
two different layer thicknesses and two detector materials are plotted together
with the calculated heat of sublimation reference (dashed line) as a function
of coverage. Each trace represents a single experiment. The detectors coated
with a thin layer (gold) and coated with a thick layer of PTCDA (reda, blackb)
exhibit the similar behavior for small coverages. At high coverages the results
differ dramatically as the value obtained for the thick layer samples increases
immensely while remaining constant for the thin layer specimen. Details for
low coverages are given in Figure 6.19.

a Detector Material: ‘28um/w 400CU/150NI’ from Measurement Specialties.
b Detector Material: ‘FV301890/1’ from Goodfellow GmbH – discontinued; not sputtered.
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Figure 6.19: Adsorption of Calcium: Low Coverage Heats of Adsorption
(PTCDA) — The derived heats of adsorption (dots) of calcium adsorbed on
PTCDA surfaces with two different layer thicknesses and two detector materials
are plotted together with the calculated heat of sublimation reference (dashed
line) as a function of coverage. Each trace represents a single experiment.
The heats of adsorption of calcium on the thin (gold) and thick (reda, blackb)
PTCDA layers are similar. The heat decreases continuously with two kinks at
the same calcium coverage.

a Detector Material: ‘28um/w 400CU/150NI’ from Measurement Specialties.
b Detector Material: ‘FV301890/1’ from Goodfellow GmbH – discontinued; not sputtered.

regular detector material9 (red) and 460 kJ/mol for the alternate detector material10

(black). The first kink at a coverage of 1 ML exhibits similar adsorption enthalpies
of approximately 395 kJ/mol in both cases. They share a second kink at a calcium
coverage of 4 ML corresponding to a released heat of 280 kJ/mol. Subsequently, both
obtained values undergo a minimum between 8 ML and 11 ML reaching 150 kJ/mol. At
higher coverages the obtained results increase tremendously above 1 MJ/mol (sic) and
continue to increase up to 2.5 MJ/mol (sic) at calcium coverages around 40 ML (not
shown). This reproducible gigantic increase independent of the detector material,
see Section D.6, is also directly observable during the data acquisition and in the
raw data.

9 Nickel/copper coated 28 µm β-polyvinylidene fluoride: ‘28um/w 400CU/150NI’ from Measure-
ment Specialties.

10 Aluminum coated 9 µm β-polyvinylidene fluoride: ‘FV301890/1’ from Goodfellow GmbH –
discontinued.
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Figure 6.20: Low Temperature Adsorption of Calcium: Heats of Adsorption
(PTCDA) — The derived heats of adsorption (dots) of calcium adsorbed at
cryogenic temperatures on PTCDA surfaces with two different layer thicknesses
are plotted together with the calculated heat of sublimation reference (dashed
line) as a function of coverage. Each trace represents a single experiment. The
detectors coated with a thin layer (orange) and coated with a thick layer of
PTCDA (red) exhibit similar behavior. At medium coverages the obtained
values, in contrast to the experiment at ambient temperature, see Figure 6.5.2,
increase immensely for both specimens. Details for low coverages are given in
Figure 6.21.

Figures 6.20 and 6.21 are illustrating the results of heat measurements for adsorp-
tion of calcium on two PTCDA layers of different thicknesses held at 80 K by liquid
nitrogen cooling as a function of calcium coverage.

The detector coated with 20 nm of PTCDA (orange) exhibits a heat of adsorption
for the initial pulses of 490 kJ/mol which is similar to the results obtained at room
temperature. It decreases to a constant value of 175 kJ/mol for calcium coverage of
3 ML and more in the studied range.

The specimen coated with 620 nm PTCDA (red) shows an initial heat of adsorption
of 510 kJ/mol, similar to the sample with a thin coating and the experiments carried
out at ambient temperature, decreasing to 165 kJ/mol for calcium coverages between
1.2 ML and 3.5 ML. The obtained result increases to more than 1.5 MJ/mol (sic) for
the specimen with thick coating at 9 ML and does not return below this value for
the entire studied range. These reproducible huge increases, see Section D.7, are
also directly observable during the data acquisition and in the raw data.
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Figure 6.21: Low Temperature Adsorption of Calcium: Low Coverage Heats of
Adsorption (PTCDA) — The derived heats of adsorption (dots) of calcium
adsorbed on PTCDA surfaces with two different layer thicknesses are plotted
together with the calculated heat of sublimation reference (dashed line) as a
function of coverage. Each trace represents a single experiment. The heat
of adsorption of calcium on the thin (orange) and thick (red) PTCDA layers
increase during the initial pulses, reside at a plateau, and undergo minima at
different calcium coverages before diverging at high coverages.
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6.5 Adsorption of Calcium

Figures 6.22 and 6.23 present the results of heat measurements for adsorption
of Calcium on sexithiophene layers of different thickness as a function of calcium
coverage.

The detector coated with 30 nm of sexithiophene (cyan) exhibits a heat of adsorp-
tion for the initial pulses of 500 kJ/mol rapidly decreasing within 1 ML to a plateau
value of 310 kJ/mol which is identical to the initial released heat of the specimen
with coatings of medium (100 nm – azure) and high (310 nm – blue) thickness. The
obtained heat in case of the specimen with thin coating decreased sluggishly to
290 kJ/mol between calcium coverages of 16 ML and 30 ML. The other two samples
experience a reduced released heat from 4 ML on reaching a minimum of 178 kJ/mol

at 10 ML. Upon further dosage, the obtained value increases as in the case of
deposition on PTCDA, see Figure 6.5.2. It seems to saturate at a calcium coverage
of 40 ML (not shown) in both cases with derived heats of 440 kJ/mol for the detector
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Figure 6.22: Adsorption of Calcium: Heats of Adsorption (Sexithiophene) — The
derived heats of adsorption (dots) of calcium adsorbed on three sexithiophene
surfaces with different layer thicknesses are plotted together with the calculated
heat of sublimation reference (dashed line) as a function of coverage. Each
trace represents a single experiment. The sample with a thin coating (cyan)
exhibits an initially high heat of adsorption rapidly decreasing to an almost
constant value, which is decreasing slightly for high calcium coverages (> 10 ML).
The released heats corresponding to the specimen with coatings of medium
(azure) and high (blue) thickness undergo a minimum and exhibit a medium
respectively strong increase of the obtained heat at high calcium coverages.
Details for low coverages are given in Figure 6.23.
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Figure 6.23: Adsorption of Calcium: Low Coverage Heats of Adsorption (Sexithio-
phene) — The derived heats of adsorption (dots) of calcium adsorbed on
three sexithiophene surfaces with different layer thicknesses are plotted together
with the calculated heat of sublimation reference (dashed line) as a function of
coverage. Each trace represents a single experiment. The sample with a thin
coating (cyan) exhibits an initially high heat of adsorption, rapidly decreasing
to a constant value. The released heats corresponding to the specimen with
coatings of medium (azure) and high (blue) thickness show similar released
heats as the plateau value of the thin sample and decrease to the reference
value.

with the coating of medium coating thickness and to 1.3 MJ/mol (sic) for the large
coating thickness. This reproducible huge increase, see Section D.8, is also directly
observable during the data acquisition and in the raw data.

Figures 6.24 and 6.25 present the results of heat measurements for adsorption
of calcium on sexithiophene layers of different thicknesses held at 80 K by liquid
nitrogen cooling as a function of calcium coverage.

The detector disc coated with a medium thick layer of 160 nm sexithiophene
(azure) exhibits a constant heat of adsorption of 180 kJ/mol for calcium coverages of
up to 2 ML. Upon further deposition, the released heat decreases to a minimum
of 150 kJ/mol at 5 ML. Subsequently, the obtained value levels out at 340 kJ/mol for
coverages of more than 30 ML.

The sample carrying the thick layer of 300 nm sexithiophene (blue) experiences a
higher released heat of 290 kJ/mol for calcium coverages of up to 1.5 ML. As in the
previous case, the released heat undergoes a minimum at 4 ML reaching 210 kJ/mol.

352



6.5 Adsorption of Calcium

2.5

2.0

1.5

1.0

0.5

0.0

H
e

a
t 

o
f 

A
d

so
rp

ti
o

n
 (

M
J/

m
o

l)

302520151050

Calcium Coverage (ML)

Layer Thickness

160 nm Sexithiophene

300 nm Sexithiophene

Heat of Sublimation

Sample Temperature: 80 K

Figure 6.24: Low Temperature Adsorption of Calcium: Heats of Adsorption (Sexi-
thiophene) — The derived heats of adsorption (dots) of calcium adsorbed
at cryogenic temperatures on two sexithiophene surfaces with different layer
thicknesses are plotted together with the calculated heat of sublimation ref-
erence (dashed line) as a function of coverage. Each trace represents a single
experiment. Both samples exhibit an initially high heat of adsorption. The
obtained heat of the sample with medium film thickness (azure) decreases to a
constant value, even for high calcium coverages. The released heat correspond-
ing to the specimen with a large coating thickness (blue) undergoes a minimum
and exhibits a strong increase of the obtained heat at high calcium coverages.
Details for low coverages are given in Figure 6.25.

Subsequently, it increases to 1 MJ/mol (sic) at 30 ML with a kink located at 12 ML
and 0.8 MJ/mol (sic). This reproducible huge increase, see Section D.9, is also directly
observable during the data acquisition and in the raw data.
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Figure 6.25: Low Temperature Adsorption of Calcium: Low Coverage Heats of
Adsorption (Sexithiophene) — The derived heats of adsorption (dots) of
calcium adsorbed on three sexithiophene surfaces with different layer thicknesses
are plotted together with the calculated heat of sublimation reference (dashed
line) as a function of coverage. Each trace represents a single experiment. The
sample with a medium thickness (azure) coating exhibits an initially high heat
of adsorption decreasing to a constant value. The released heats corresponding
to the specimen with a coating of high thickness (blue) show a rapid decrease
followed by a plateau region and an enormous increase of the obtained heat.
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6.5 Adsorption of Calcium

6.5.3 Discussion: Adsorption of Calcium

Considering the mass spectrometer data one has to keep in mind that the usage of
calcium has a perfidious drawback. Its most abundant isotope (40Ca) is isobaric to
argon’s most abundant isotope (40Ar) and hence not distinguishable by the given
instrumentation. The concentration of argon in air is high enough to affect the mass
spectrometer measurement even in case of a small leakage. The software is able
to ignore a constant low argon background but fails in case the partial pressure of
argon is modulated by the chopper. Close inspection of the data presented here gave
no indication of this effect.

Calcium exhibits a high to very high sticking probability on all investigated
systems. This agrees well with results of adsorption of calcium on MgO(100) [27] but
it is in contrast to adsorption on polymer surfaces [56–61]. Hence, larger scale errors
induced by an incorrect zero sticking reference can be excluded as the absolute finite
amplitudes become irrelevant since the corresponding coefficients in the measurement
are very close to zero.

Adsorption of Calcium on Cleaned Detector

All dosed calcium atoms stick to the surface in the entire studied range which agrees
well with the general expectation.

The released heat upon dosage of calcium on the sputter cleaned sample shows a
similar trend as in the case of dosed magnesium on the same surface. The initially
high heat of adsorption indicates a reaction or at least very strong interaction of
calcium with the surface. Again, its exact nature cannot be specified further due to
the lack of surface characterizing methods available in this setup. Possible reactions
include the oxidation of water adsorbed after the sputtering process, reaction with
defect sites created by the sputtering process, or a reduction of residual nickel oxide
overlayer by the adsorbed calcium. The latter type of reaction was reported for
magnesium adsorbed on chromium oxide on chrome [228]. The higher reactivity of
calcium compared to magnesium enables the occurrence of a similar reaction while
reaction with water is unlikely due to the low pressure in the system.

Upon further dosage, the released heat is reduced and stabilizes at a coverage of
4 ML. A shoulder in the obtained heat is located at approximately 1 ML, suggesting
that the first dosed monolayer of calcium is reacting. A subsequent minimum
at a calcium coverage of 2 ML in the calculated heat might originate from two
possibilities. On the one hand, it might profanely arise from an artifact caused
by the automatic base line offset removal in the employed amplifier, see Section
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5.5.3, which is not entirely removed by the filtering process, see Section 3.3. On
the other hand, another model reported for adsorption of lead on molybdenum [15]

implies a Stranski-Krastanov growth mode, i.e., islands on an interlayer, which
are higher in energy than the bulk material and thus release a reduced amount
of heat. At higher coverages the obtained heat of adsorption does not match the
heat of sublimation, which is the expected reference value, but remains reproducibly
below this limit. Hence, a discussion of absolute values is not reasonable. This
result resembles experiments investigating the adsorption of magnesium on the same
material and discourages a discussion of absolute values.

Adsorption of Calcium on Tetraphenyl Porphyrin

The sticking probability of the tetraphenyl porphyrin coated surface exhibits an
adsorption behavior which is slightly differing from the other systems. After a
small coverage range of high initial sticking probability, the probability undergoes
a minimum, similar to the experiments involving magnesium, and subsequently
increases to unity. The initially decreasing sticking factor might be attributed to
a water contamination of the deposited organic layer. Reaction of calcium with
water forms the corresponding oxide – and the hydroxide as an intermediate species
– which might exhibit a lower sticking probability. However, the amount of reacting
calcium implies unreasonable high amounts of water present in the top layer of the
sample. Without complementary investigations, an assignment of this observation
remains speculative.

The initially released high heat of adsorption might be related to a reaction in
which calcium metalates the porphyrin core or at least to a very strong alternative
interaction. This first reaction type is known for various metals [230]. As the elevated
released heat shows an inflection point at 0.8 ML, corresponding to the amount
of reacted metal, exceeding the necessary amount for the first layer according to
Section 6.2 of 0.2 ML, calcium atoms adsorbed on the surface are likely to diffuse
deeper into the bulk material and to react there with the porphyrin. Since the
released energy drops rather slowly and due to the stoichiometric excess, one can
conclude that no effective barrier for diffusion is established. Similar behavior was
found upon adsorption of calcium on polymer substrates and verified by X-ray
photoemission spectroscopy [57,58,71]. The here presented result remains speculative
until further investigations probing the chemical state of the calcium or the nitrogen
in the porphyrin and the reaction depth, e.g., by X-ray photoemission spectroscopy,
have been conducted. Comparison with Table 6.3 suggests a reaction depth of
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approximately 4 layers.
For calcium coverages between 2 ML and 3 ML the obtained heat of adsorption

matches the heat of sublimation11, which is the expected reference value. The
consecutive tremendous increase of the calculated “released heat” to chemically
unreasonably high values is discussed in detail in Section 6.8.

Adsorption of Calcium on PTCDA

Calcium sticks very well on the prepared PTCDA substrates, independent of film
thickness. Only the thick layer of PTCDA deposited on the pristine aluminum
coated sample exhibits a slightly reduced sticking probability. This might originate
from the omitted sputter process, agreeing with the visual observation of flaws in
the vapor deposited films on other samples, see Section 5.2.

The released heats upon dosage of calcium on the samples coated with PTCDA
show similar values at calcium coverages below 10 ML, independent of the substrate
layer thickness. The initially elevated heat of adsorption indicates a reaction or at
least very strong interaction of the calcium with the substrate. Again, its exact
nature cannot be specified further due to the lack of surface characterizing methods
available in this setup. Analogue to the adsorption of magnesium a reaction of
calcium with the anhydride groups of PTCDA is proposed. The higher reactivity
of calcium compared to magnesium [166] supports the possibility of such a reaction.
Adsorption of calcium on poly(methyl-methacrylate), a polymer containing methyl
ester groups – which are chemically similar but usually less reactive – leads to
the formation of calcium carboxylates [56,60,70] under cleavage of the methyl group
from the ester, demonstrating the reactivity of calcium towards the oxygen in
ester groups. An exact stating of the reaction products is not possible with the
given instrumentation. Possible outcomes would include calcium oxide clusters, the
formation of carboxylates, or both.

Upon further dosage, the released heat is reduced and stabilizes at a coverage of
8 ML. A shoulder in the obtained heat is located at approximately 4 ML, suggesting
a change in the reaction pathway. A formation of a diffusion barrier, which is
present in the case of adsorbed magnesium, seems not likely since the released heat
dropped much faster than in that case. In the present cases, reaction zones exhibit
an estimated thickness of 10 layers according to Table 6.3 which is approximately a
third of the thin substrate layer thickness. At higher coverages the obtained heat of
adsorption does not match the heat of sublimation, which is the expected reference

11 This result verifies that this setup is in principle able to fulfill its purpose and that the goal of
this work is reached.
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value, but remains reproducibly below this limit for the sample coated with a thin
layer of PTCDA. This result resembles experiments investigating the adsorption of
calcium on a cleaned detector surface and the experiments involving magnesium.

Surprisingly, the obtained heat rises beyond a calcium coverage of 10 ML to
chemically unreasonable high values in the megajoule per mole (sic) regime which is
reproducible in case of, amongst others, thick PTCDA substrate layers. However,
this exorbitant increase is visible during data acquisition and in the raw data. Manual
data evaluation assuming a constant radiation contribution retrieves even higher
values. These two facts exclude the possibility that this effect is caused by the
presented data treatment, see Chapters 3 and 4. Since the measurements have
been carried out on two different detector materials (28 µm β-polyvinylidene fluoride
with copper and nickel coating versus 9 µm β-polyvinylidene fluoride with aluminum
coating) the reason for this behavior is not based on the detector material either.
This tremendous increase is observable for two specimens with thick coating of which
one was treated by argon ion bombardment and the other one was not. Hence,
cleaning of the samples by sputtering also has no influence. However, additional
experiments12 suggest a dependency on film thickness. The origin of this effect is still
unclear and also not reported in literature either. A detailed investigation dedicated
to this behavior is given in Section 6.8.

Low Temperature Adsorption of Calcium on PTCDA

Reduction of the substrate temperature leads to an additional increase of the already
very high sticking probability in accordance with experiments on similar, yet polymer,
substrates [59–61]. The probability turns out to be unity in the entire studied range.

Comparison with the data obtained at room temperature reveals similar initial
heats of adsorption for both samples indicating an analogue reaction. However, the
amplitude of the released heat decreases much faster in case of the cooled samples.
This effect can be explained by a lower probability for a calcium atom to diffuse
into the PTCDA layer, leading to reaction with the anhydride groups and thus a
higher probability to form metallic clusters, analogue to the reported adsorption of
calcium on poly(methyl-methacrylate) [60]. Hence, the formation of calcium clusters
is favored compared to the adsorption at ambient sample temperature. The results
imply a smaller thickness of the reaction zone between the metallic cover layer and
the unperturbed PTCDA substrate.

The inflection point of the released heat in the initial stage for the sample with

12 Not shown here, see Appendix D.
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the thick PTCDA coating at a calcium coverage of 0.5 ML suggests that this dosed
amount is also reacting with the substrate. The corresponding point in case of the
thinly coated sample is located at a calcium coverage of 1.2 ML. According to the
considerations in Section 6.2 theses correspond to one reacted layer in case of the
sample with thin coating and to three layers in case of the sample with thick coating.

The larger reacting amount in case of the thinly coated sample might arise from
a different surface morphology, especially the surface roughness leading to a larger
surface area. A possible explanation for this difference might originate from the
different deposition times during sample preparation. Due to the larger thickness in
combination with similar fluxes, the coating takes longer. As a consequence, the
temperature of the sample – heated by radiation of the evaporator – is likely to be
higher at the end of the process for the thickly coated sample than in the case of
the test subject with thin coating. Hence, this increased temperature can lead to
an additional intrinsic tempering step of the film which is reducing surface defects
and roughness. A direct investigation of the morphology was not possible at the
experimental setup’s stage of construction.

The initially released heat is similar to the heat measured at ambient temperature.
This finding is in contrast to investigations on adsorption of calcium on poly(methyl-
methacrylate) [60], reporting a strong decrease in the obtained heat upon reduction
of the sample temperature. This fact might arise from a higher reactivity of the
anhydride groups in PTCDA compared to ester groups of the polymer towards the
dosed calcium atoms. Subsequently, the released hat drops to the bulk heat of
sublimation13 validating the obtained values by matching the internal reference14.

The released heat in case of the sample with thin coating of 176 kJ/mol matches
the heat of sublimation of calcium of 178 kJ/mol with a deviation of less than 1 %.
Furthermore, the obtained heat remains constant upon further dosage of calcium.
This experiment depicts an ideal result. The absence of secondary effects, see
Sections 6.8 and 6.9, at elevated coverage most likely arises on the one hand from
increased mechanical strength of the detector due to cooling and on the other hand
from a successful choice of the substrate layer’s thickness.

Subsequently, the gigantic signal increase sets off at a calcium coverage of 4 ML
in case of the sample carrying the thick PTCDA substrate similar to the samples
with thick coating investigated at ambient temperature. A detailed investigation
dedicated to this behavior is given in Section 6.8.

13 At least, the reference is reached intermediately in case of the sample with thick coating.
14 These results verify that this setup is in principle able to fulfill its purpose and that the goal

of this work is reached.
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Adsorption of Calcium on α-Sexithiophene

Calcium sticks well on the prepared sexithiophene films independent of film thickness.
The higher sticking probability compared [57,58] to a related polymer, i.e., poly(3-
hexylthiophene), probably arises from the absence of the hexyl side chains in this
work. The surface in the cited work has a higher preference to expose the unreactive,
nonpolar, aliphatic side chains to the vacuum than the polar thiophene units [57].
This mechanism could be driven by sterical interaction or by minimization of the
surface energy known for, e.g., ionic liquids [231,232] and polymers [233]. As explained
above, a situation in which the reactive center is covered by inert groups would
lead to a decrease of the sticking probability. The difference in the low coverage
regime between the small layer thickness and the larger layer thicknesses probably
originates from an incomplete removal of the surface contamination, see Section 5.2,
which might still influence the thin organic film. Since the shape of the obtained
trace is similar for the thicker layers and deviates from the result corresponding
to the thin layer, the minor difference is attributed to a compromised reference
measurement. For higher coverages this error has no influence on the calculated
heats as the belonging coefficient is zero.

Again, a competition of the adsorbed calcium between reaction and cluster
formation is plausible while desorption is unlikely. As the sticking probability
approaches unity at around 10 ML one can conclude that the surface is entirely
covered in calcium at this point.

The released heat upon dosage of calcium on the samples coated with sexithiophene
shows similar values at calcium coverages between 1 ML and 4 ML independent of
the substrate layer thickness. The raised value regarding the thin layer sample
could be explained by a reaction of the calcium with defects, a higher number of
accessible reaction centers due to higher roughness, or coadsorbed water. Since the
defects should also be present in the film with larger thickness, this explanation
is less favorable. The initially high heat of adsorption indicates a reaction or at
least very strong interaction of the calcium with the substrate. Again, its exact
nature cannot be specified further due to the lack of surface characterizing methods
available in this setup. Although this system has recently been studied by hard
X-ray photoemission spectroscopy, results about the chemical states and the reaction
depths therefrom were not available at the time this thesis has been written and
likely will be presented in [227].

Analogue to the adsorption of calcium on poly(3-hexylthiophene) [57,58], a reaction
with the thiophene units under sulfur abstraction from the thiophene and formation
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of calcium sulfide clusters is proposed. Due to the great chemical similarity of the
substrates, it is assumed that a similar side reaction, i.e., cross-linking – or in this
case polymerization, occurs. From the inflection point of the released heat in case of
the samples with medium and thick coatings which is located at a calcium coverage
of 6 ML and the considerations from Section 6.2 the thickness of the reaction zone
can be estimated to approximately 8 layers corresponding to 3.4 nm. The estimated
thickness of the reaction zone is in accordance with results reported for adsorption
of calcium on poly(3-hexylthiophene) [57]. As in the case of adsorption of calcium
on PTCDA at low temperature, the amount of reacting metal is larger for the thin
substrate layer. Again, this effect can be attributed to the absence of the intrinsic
tempering step during substrate deposition resulting in a larger surface roughness.

The lowered released heats at a coverage between 9 ML and 11 ML for the thicker
layers match the observation of the sticking measurements that the dosed atoms
form bulk-like, metallic calcium on the surface. The released heat, averaged from
these two experiments, of 179 kJ/mol matches the heat of sublimation of calcium of
178 kJ/mol with a deviation of less than 0.5 % in this case15. Although the obtained
heat diverges again upon further dosage, see Section 6.8, the experimental result is
considered to be correct as the internal reference in both cases is hit independently.

The heat measured during the plateau region at calcium coverages between 1 ML
and 3 ML of 285 kJ/mol is significantly lower than the value of 405 kJ/mol reported [57]

for the polymer system. This discrepancy can be explained by considering the size of
the formed calcium sulfide clusters. The smaller the clusters the higher the surface
energy and thus less energy is released upon formation of a small particle than
of a large particle. This is known as Kelvin effect [156] and leads to the conclusion
that the clusters in sexithiophene have a smaller size than the clusters formed in
the poly(3-hexylthiophene) matrix. It implies either a higher nucleation rate in
sexithiophene or a smaller mobility of the initially formed calcium sulfide monomers.
Comparison with computational results [57] suggests two to three monomers in the
formed calcium sulfide particles in the organic matrix.

Low Temperature Adsorption of Calcium on Sexithiophene

By analogy with the experiments including PTCDA as substrate calcium sticks
even better to the prepared sexithiophene films at low temperature, independent
of film thickness. All impinging calcium atoms stay on the sample after a coverage
of 2.5 ML is reached. This behavior indicates a faster formation of the metallic

15 These results verify that this setup is in principle able to fulfill its purpose and that the goal
of this work is reached.
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overlayer compared to the experiments at ambient temperature where a dense film
grows at coverages larger than 10 ML.

The initially reduced released heat indicates the growth of small clusters due to
the Kelvin effect [156] in accordance with adsorption of copper and lead on MgO(111)
reported elsewhere [17,22]. The subsequent plateau region indicates an ongoing reaction
of the dosed calcium with the substrate. In contrast to the experiments performed
at ambient temperature and in agreement with the conclusions from the sticking
measurement, the reacting amount of calcium is smaller at low temperature. This
can be seen from the reduction of the released heat at a smaller calcium coverage.
The position of corresponding inflection point at a coverage of approximately 3 ML
suggests, in combination with the deduction in Section 6.2, a reaction thickness of 4
layers in the low temperature case.

Subsequently, the gigantic signal increase sets off at a calcium coverage of 5 ML
similar to the experiments at low temperature utilizing PTCDA as substrate, though
with lower amplitude here. The metallic over layer is built up faster since less
diffusion and reaction are happening on the cooled sample. Hence, an earlier onset
of the gigantic signal increase seems to be correlated with the metallic over layer.
As the final amplitude for the cold sample is reduced, compared to the specimens
investigated at ambient temperature, an influence of temperature dependent material
properties, e.g., stiffness, of one of the sample components, i.e., detector polymer,
organic thin film, and metallic cover layer, is plausible. A detailed investigation
dedicated to this behavior is given in Section 6.8.

Since the obtained heat of adsorption does not match the heat of sublimation,
which is the expected reference value, at least during a range of constant values, a
discussion of absolute values is not reasonable.
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6.6 Adsorption of Copper

This section covers a selection of experiments in which copper has been adsorbed
on various surfaces utilizing the calorimeter presented in Chapter 2 evaluating the
option for the electron beam evaporator according to the procedure given in Section
6.3.

Copper was chosen as an example for metals exhibiting a medium vapor pressure,
see Section 6.1, being liquid at operation temperature. Reactions of copper with
molecules exhibiting a porphin-like inner structure, e.g., tetraphenyl porphyrin or
phthalocyanine, have previously been investigated [88,198,199]. Studies utilizing adsorp-
tion calorimetry have been performed before [14,16,17,21,22,53] and provide estimates
about the behavior.

6.6.1 Experiment: Adsorption of Copper

Copper evaporated from a medium size molybdenum crucible16 in an electron beam
evaporator17 mounted on the molecular beam housing is converted into pulses and
adsorbed on several substrates. One monolayer is defined as 1.77 ⋅1019 Atoms/m2 in this
case. The deposition rate related to the adsorption on PTCDA has been adjusted
to 0.05 ML/s while the deposition rate related to the adsorption on phthalocyanine
amounted to 0.1 ML/s. Pulse lengths of 0.20 s respectively 0.10 s result in doses of
about 3 ⋅ 1012 copper atoms per pulse which is equivalent to 5 picomole per pulse
in both cases. The experiments have been conducted as described in Section 6.3
with the parameters mentioned there and in Appendix A. Since the evaporator lacks
a sensor for the temperature of the crucible, it is taken from the manual of the
evaporator [234] as 1500 K.

6.6.2 Results: Adsorption of Copper

Due to vanishing signal intensity from the hot plate and tremendous scatter in
the mass spectrometer data, even involving a considerable amount of dark counts,
the sticking probability was assumed to be unity for measurements involving the
adsorption of copper. Significant signal intensity for the mass spectrometer channel
during the radiation measurements using the barium fluoride window further supports
this assumption since it proofs that the spectrometer is in principle able to measure
a signal corresponding to desorbing copper.

16 ‘C Mo M’ from FOCUS GmbH via Omicron NanoTechnology GmbH.
17 ‘EFM-4’ from FOCUS GmbH via Omicron NanoTechnology GmbH.
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Figure 6.26: Adsorption of Copper: Heats of Adsorption — The derived heats of
adsorption (dots) of copper dosed on thin surface layers of different materials
are plotted together with the calculated heat of sublimation reference (dashed
line) as a function of coverage. Each trace represents a single experiment. The
obtained heat of adsorption of pristine detector (pine) and the sample coated
with phthalocyanine (lilac) exhibits an initial increase. The phthalocyanine
coated sample exhibits a plateau. Both specimens indicate a subsequent increase
of the released heat. A constant unity sticking probability is assumed.

Figure 6.26 illustrates the results of heat measurements for adsorption of copper
on two surfaces. One is given by an untreated, i.e., pristine nickel coated, detector
disc and the other one carries a thin vapor deposited film of phthalocyanine (12 nm).

The pristine specimen (pine) shows an initial heat of adsorption of 400 kJ/mol at the
beginning which increases to 510 kJ/mol at a copper coverage of 2 ML. The detector
coated with 12 nm of phthalocyanine (lilac) exhibits a heat of adsorption for the
initial pulses of 420 kJ/mol increasing to 600 kJ/mol within 2 ML where it remains stable
for up to 6 ML. Subsequently, the obtained heat for both samples increases with
coverage without saturation in the studied range.
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6.6.3 Discussion: Adsorption of Copper

The coverage independent high sticking probability of copper on the here used
organic substrate is consistent with values reported for adsorption studies on a
polymer substrate [53] and on single crystal substrates [16,22].

The initially low heat of adsorption together with the leveling off at about 1 ML
indicate diffusion of the weakly bound copper atoms on the surface and growth of
islands and clusters on the substrate [16,53,235]. As the internal reference value is not
matched, a discussion of absolute values is not constructive. Data of adsorption on
thicker substrate layers has not been obtained so far. However, the absence of a
reaction with free base phthalocyanine, which would be indicated by a high obtained
heat, is surprising. Reaction of thick layers of phthalocyanine on a Cu(111) surface,
i.e., a very similar but presumably less reactive system, is known [88], at least for
elevated temperatures. The temperature effect could be compensated by the more
reactive nature of an individual atom compared to one embedded in a crystal and
thus a reaction could be expected.

Generally, the usage of the electron beam evaporator is possible which was the
main goal of this measurement. Due to the necessary high fluxes, the filament18

inside the evaporator is glazed with copper after two to three crucible fillings and
needs to be replaced. The copper deposition on the filament reached a diameter of
up to 1 mm close to the mounting posts while the center of the filament remained
clean, as shown in Figure 6.27.

Considering that the filament is mounted on cooled ceramic feedthroughs, its
ends are significantly colder than its middle which is typically operated around
2200 K to achieve high thermionic emission currents [236]. Since the vapor pressure
of copper [187] exceeds 1 Torr at this temperature, it should not condensate on the
hot filament. However, condensation is possible on the colder end sections of the
filament. This additional material leads to an increase in conductivity and thus
to a locally reduced heating power and finally a reduced filament temperature
close to the electrical connections. This progressive mechanism is able to explain
the thickness gradient on the filament shown in Figure 6.27. It also explains the
observation that the filament current had to be increased monotonically during the
experiments to maintain a stable deposition rate. The observed amount of copper
implies a continuous deposition since it exhibits a thickness which is comparable
to the thickness of the copper layer on the cooling shroud, where deposition during
operation is standard. Hence, it cannot result from single occasions, such as post

18 ‘W 145300’ Thoriated tungsten wire W99Th1, Dia 0.125 mm from Goodfellow GmbH.
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Figure 6.27: Copper Glazed Filament — The filamenta on its mounting posts
after evaporation of approximately 4 g of copper from a molybdenum crucibleb

in the electron beam evaporatorc. Although the filament is incomplete in this
picture, it is clearly visible that the thickness of the copper deposit decreases
from the mounting posts to the center of the filament, which is the hottest zone
during operation.

a ‘W 145300’ Thoriated tungsten wire W99Th1, Dia 0.125 mm from Goodfellow GmbH.
b ‘C Mo M’ from FOCUS GmbH via Omicron NanoTechnology GmbH.
c ‘EFM-4’ from FOCUS GmbH via Omicron NanoTechnology GmbH.

deposition after the filament has been switched off.
A possible avoidance of this undesired deposition would involve operation condi-

tions outside the specifications of the manual [234] and is hence not advised. However,
there might arise cases in which non-standard operation is required. In such a
situation, the filament needs to be aligned to the side of the crucible and not, as
recommended by the manual [234], only approached by the top of the crucible. Such
an arrangement might be realized by extension of the mounting posts or the rod
carrying the crucible. Usage of this geometry will increase the risk of high voltage
arcing, short circuits to the housing of the high voltage, and mechanical destruction
of the filament [234]. Furthermore, the integrated flux monitor is likely to fail. It
relies on ions originating from collisions of accelerated electrons with the evaporated
species. Due to the changed electron trajectories, these ions might no longer be
created. Hence, this measurement unit is lacking its input variable and cannot serve
its purpose.
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6.7 Adsorption of Zinc

This section covers a selection of experiments in which zinc has been adsorbed on
various surfaces, utilizing the calorimeter presented in Chapter 2. Zinc was chosen
as an example for metals with a high vapor pressure, see Section 6.1, being liquid at
operation temperature.

6.7.1 Experiment: Adsorption of Zinc

Zinc, evaporated from the molecular beam source, is converted into pulses and
adsorbed on several substrates. One monolayer is defined as 1.6 ⋅ 1019 Atoms/m2 in
this case. The deposition rate has been varied between 0.1 ML/s and 0.2 ML/s. A
pulse length of 0.20 s results in doses between 6 ⋅ 1012 and 12 ⋅ 1012 zinc atoms per
pulse which is equivalent to 15 picomole per pulse for the measurement on the
sputtered detector and 2 ⋅ 1012 zinc atoms per pulse for the other experiments which
is equivalent to 10 picomole per pulse and 30 picomole per pulse, respectively. The
experiments have been conducted as described in Section 6.3 with the parameters
mentioned there.

6.7.2 Results: Adsorption of Zinc

Sticking Probabilities

Figure 6.28 presents the obtained coverage dependent sticking probabilities of zinc
on two surfaces, one of them investigated at two temperatures. The latter are
coated with thin vapor deposited PTCDA films with thicknesses of 12 nm (ambient
temperature) and 23 nm (190 K). The third sample has only been cleaned by argon
ion bombardment and investigated at ambient temperature.

The cleaned sample (green) exhibits for zinc coverages of up to 1 ML a rather low
sticking probability of 0.4 which is slowly increasing to 0.9 at 20 ML. Upon further
zinc deposition the probability continues to rise and levels off beyond a coverage of
80 ML at 0.98.

The experiment on a sample cooled to 190 K (orange) shows an initial sticking
coefficient of 0.2 rising to 0.85 at 5 ML and reaching unity at about 10 ML without
a plateau.

A contrary result is obtained in case zinc is adsorbed on PTCDA at ambient
temperature (gold). The initial sticking coefficient is moderate in the entire studied
range. Due to a malfunction of the mass spectrometer, likely an unnoticed change of
the secondary electron multiplier voltage, the corresponding reference is multiplied
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Figure 6.28: Adsorption of Zinc: Sticking Probabilities — The sticking coefficients
(dots) of zinc adsorbed on different surfaces and temperatures are plotted
together with the unity sticking reference (dashed line) as a function of coverage.
Each trace represents a single experiment. The sticking coefficient on the sample
cleaned by sputtering (green) is initially low and slowly approaches unity. A
similar trend with stronger increase is observed for the cooled surfaces coated
with PTCDA (orange). A different behavior is shown upon adsorption on
PTCDA (gold) at ambient temperature. The sticking coefficient remains at
moderate values over the investigated range. The zero sticking reference is
modified by multiplication with a factor of 3.6 to compensate for a malfunction
of the mass spectrometera.

a Adjusted to matching background noise level in the signal to avoid pure negative sticking
probabilities.

by 3.6. This factor is obtained by matching the noise levels, i.e., mass spectrometer
intensity far away from the actual region of interest. Due to this fact the absolute
values, also for the heat of adsorption in this case, are rendered meaningless while
statements about relative intensities are still possible. This correction is necessary
since the uncorrected sticking probabilities would be negative otherwise.
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6.7 Adsorption of Zinc

Heats of Adsorption

Figures 6.29 and 6.30 illustrate the results of heat measurements for adsorption of
zinc on two surfaces, one of them investigated at two temperatures.

The sample only cleaned by argon ion bombardment has been investigated at
ambient temperature and exhibits an obtained heat of adsorption of 80 kJ/mol de-
creasing to −55 kJ/mol (sic) at 0.8 ML. Subsequently, the calculated heat rises to
approximately 30 kJ/mol at 5 ML.

The specimen coated with a thin vapor deposited film of PTCDA (12 nm) studied
at ambient temperature (gold) remains constant at 10 kJ/mol with a hint of a slightly
larger value for the first dosed pulses. A similar sample coated with 23 nm PTCDA
held at 190 K (orange) exhibits a released heat of adsorption of 350 kJ/mol and levels
out at a value of 131 kJ/mol for a zinc coverage of 5 ML with a very broad and shallow
minimum at higher coverages.
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Figure 6.29: Adsorption of Zinc: Heats of Adsorption — The derived heats of
adsorption (dots) of zinc dosed on different surfaces and temperatures are
plotted together with the unity sticking reference (dashed line) as a function
of coverage. Each trace represents a single experiment. The obtained heat of
adsorption of the sample cleaned by sputtering (green) and the PTCDA coated
samples at ambient (gold) and lowered (orange) temperature exhibit rather
constant values for higher coverages. Details for low coverages are given in
Figure 6.25.
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Figure 6.30: Adsorption of Zinc: Low Coverage Heats of Adsorption — The
derived heats of adsorption (dots) of zinc dosed on different surfaces and
temperatures are plotted together with the unity sticking reference (dashed line)
as a function of coverage. Each trace represents a single experiment. The sample
cleaned by sputtering (green) exhibits moderate obtained heat of adsorption
decreasing into a minimum at one monolayer. Thereafter, it is rising again to an
intermediate constant value. The released heats corresponding to the specimens
with a coating of PTCDA show a minimal higher released heat during the first
pulses compared to the constant rest of the investigated range at ambient (gold)
and lowered (orange) temperature.

6.7.3 Discussion: Adsorption of Zinc

The increasing sticking probability of zinc on the sputtered as well as on the cooled
sample coated with PTCDA indicates the formation of metallic cover layers in both
cases. On the one hand, the fast increase to unity in case of the cooled sample
suggests the quick, yet not initial, formation of a closed zinc layer. The slow increase
in case of the, most likely, insufficiently sputter cleaned specimen on the other hand
supposes the growth of larger clusters on the sample.

On the sputtered sample, the initially high and later dropping heat of adsorption
agrees with the growth of clusters on a soiled surface as deduced from the sticking
probability measurement. The residue on the nickel surface reacts with the dosed
zinc while in parallel large clusters start to grow, eventually covering the whole
surface. The constant heat at zinc coverages between 5 ML and 18 ML fits this
interpretation. Excessive additional dosage of zinc, to a total coverage of 120 ML,
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not shown, surprisingly causes a decrease of the calculated heat to −125 kJ/mol (sic)
with no indication of saturation.

Inspection of the measured signal initially exhibits a distortion of the signal leading
to a change in its polarity. Details on this reproducible effect, see Appendix D.10,
are given in Section 6.9.

It should be pointed out that a negative heat of adsorption is physically ques-
tionable since this would imply a more stable gas phase than adsorbate phase.
Hence, adsorption should not occur. However, this signal inversion has already been
observed during the data acquisition and is present in the raw data. This excludes
faulty data treatment as origin of this effect.

The heat of adsorption, obtained in case of the cooled, PTCDA coated sample,
exhibits an initial maximum. Its extend suggests the reaction of 1 ML of adsorbed
zinc with the PTCDA substrate. By analogy to the experiments involving magnesium
and calcium, a reaction of the dosed zinc atoms with the anhydride groups in PTCDA
or with water condensed on the sample seems possible. The first option is more
likely due to the low pressure in the vacuum system and the large amount of reacting
zinc which corresponds, according to Section 6.2, to five layers in the substrate.

The consecutively released heat, which matches the heat of sublimation of zinc19

at coverages between 5 ML and 12 ML, supports the model involving the growth of
a dense overlayer. Since no further information about this system is available, the
exact nature of the reaction and growth mode remain speculative.

A new behavior is observed for the sample coated with a thin layer of PTCDA at
ambient temperature. The constant medium sticking probability is problematic. On
the one hand, the result obtained on the sputtered specimen demonstrates that zinc
adsorbs on itself with a final sticking coefficient of unity. As the calculated sticking
probability is finite, a fraction of the dosed zinc stays on the surface. Consequently,
the PTCDA coated sample is converted to a similar state as the cleaned sample.
Hence, the sticking probabilities are required to converge. On the other hand,
the experimental result shows a constant probability. This is only allowed in the
pathological case of absolutely no adsorption on the surface, i.e., a constant null
probability, which would leave the specimen unaltered. However, this situation
would imply a severely wrong correction factor for the mass spectrometer intensity
or an undiscovered operation fault.

The almost constant not released heat, i.e., with a value close to zero, is odd as
well. One might argue that no material is deposited and hence no heat is released.

19 This result verifies that this setup is in principle able to fulfill its purpose and that the goal of
this work is reached.
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However, if this assumption is forced into the model the heat remains constantly zero
due to the thermodynamic corrections, see Section 1.2, as the recorded signal purely
contains the radiative component. An optical inspection of the sample revealed a
spot on the sample with the diameter of the final orifice. This excludes the possible
fault of performing the measurement with the infrared transparent window blocking
the beam path for matter.
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6.8 Gigantic Signal Effect

As mentioned several times in the sections above, the huge increase in the detector
signal can be directly observed. Figure 6.31 exemplarily shows this effect for an
experiment investigating the adsorption of calcium on sexithiophene. The other
discussed systems show an analogue behavior in case an increase is observed. The
expected radiative contribution to the signal is about 0.1 VPP, corresponding to
approximately half of the initial amplitude. Later in the experiment the measured
peak to peak voltage of close to 0.4 VPP nominally triples the heat contribution.

A closer inspection reveals that the signal shape is not well reconstructed at
higher calcium coverages by the fit using a constant radiation contribution. However,
lifting of this constraint allows the fitting routine to match the measured data, as
shown in Figure 6.32. Since the coefficients obtained for the radiation component
are rising as the experiment proceeds, as shown in Figure 6.33, the increase of the
laser-like component is partially compensated. This leads to a reduced resulting heat
compared to the use of constant radiation coefficient and rules out a misbehavior of
the fitting routine leading to the gigantic signal increase.

One might argue that the temperature control of the evaporator stabilizes the
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Figure 6.31: Adsorption of Calcium on Sexithiophene: Full Detector Data — The
measured calorimetry signal of the experiment, presented in Figure 6.22, corre-
sponding to the thick (310 nm) sexithiophene coating exhibits a readily visible
enormous increase in amplitude.
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Figure 6.32: Adsorption of Calcium on Sexithiophene: Fitted Detector Data —
Selected frames (dots) from Figure 6.31 at different calcium coverages are
displayed together with the fitting results for variable (blue lines) and fixed
(black lines) radiation contribution to the heat signal. The peak shape is not
matched in the latter case at high calcium coverages.

temperature of the thermocouple and not necessarily maintains a stable temperature
of the evaporant. Alternatively, a temperature read wrong due to temperature drifts
of connections in the thermocouple line would also result in a changed evaporant
temperature. A rising temperature of the evaporant would explain increases of the
flux, and hence of the dose, as well as of the radiation input into the detector. Both
scenarios would imply an alteration of the heating power applied to the crucible.

Inspection of Figure 6.34 clearly demonstrates a constant evaporator temperature
together with a constant heating power excluding compensation effects.

Deposition rate measurements before and after the deposition during the calori-
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Figure 6.33: Adsorption of Calcium on Sexithiophene: Radiation Contribution —
The contribution of the radiative component to the detector signal (orange dots)
increases as the experiment proceeds. The corresponding fitted trend (blue)
used in the data treatment routine is superimposed as well as the constant value
derived from the transmission measurement (gray dashed line).
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are illustrated (green sticks).
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metric measurement exhibit very similar rates of 32.6 pm/s and 32.0 pm/s, respectively.
Their enclosing positions around the calorimetric measurement in the experimental
sequence provide reliable readings. Together, this excludes that the discussed effect
originates from increased doses.

Comparison of Figures 6.9, 6.16, 6.18, 6.22, and 6.24 suggests a correlation of
the occurrence and the intensity of the gigantic signal effect with the thickness of
the organic substrate layer. Especially Figure 6.22 suggests a dependence of the
effect on the thickness of the previously deposited layer. Interpretation of Figures
6.18, 6.20, and 6.24 suggests that the intensity of the gigantic signal effect might be
related to the stiffness of the sample.

The thin detector sheet is obviously less stiff than the thicker ones resulting in
a stronger effect, as shown in Figure 6.18. As the flexural modulus, i.e., stiffness,
increases with decreasing temperature [133], the intensity of the effect should be lower
at cryogenic temperatures. The experiments carried out on thick layers of PTCDA
(red traces in Figures 6.18 and 6.20) demonstrate this behavior. It should be stated
that the experiments involving sexithiophene are not comparable due to different
layer thicknesses.

Regarding Figures 6.20 and 6.24 one can conclude that the strength of the gigantic
signal effect differs for different materials constituting substrate layers of similar
thickness.

Samples coated only on one side or coated on both sides with similar thicknesses
were employed to verify an influence of the asymmetry of the detector stack in case
only one side is coated. Both kinds of samples exhibit the gigantic signal effect, which
leads to the conclusion that a coating of the back side is not able to compensate the
effects of the top coating.

Combination of these results suggests an origin of the gigantic signal effect not to
be directly related to thermodynamics. Since the deposition of material is necessary
and the surface composition seems to determine these effects, one might assume
a mechanical cause. Changing mechanical stress in the detector polymer causes a
signal as well as temperature changes due to the piezoelectric effect, see Section
1.3.3. This assumption raises the question concerning the origin of the mechanical
input. A possible explanation could be the merging of clusters on the surface
leading to a lateral compression of the detector polymer. Alternatively, insertion
of dosed atoms might lead to a lateral tension in the polymer due to insertion of
atoms between islands. Which turns out to be the dominating process depends on
the properties of the involved substrate and dosed species as well as the resulting
adsorbate system. As the processes result in signals of different polarity [135], they
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might be distinguished. The first case exhibits the same polarity as for thermal
radiation and the latter shows a reversed sign. As the data treatment algorithm is
independent of absolute polarity20, see Chapter 3, and the discussed effect causes an
increase of signal amplitude, one can conclude that the gigantic signal effect might
arise from a mechanical lateral compression of the detector. In addition, a reversal
of the sensor’s polarity, i.e., by upside down mounting of the detector polymer, is
not affecting the observed signal in this theory.

20 The absolute polarity can be altered by mounting the detector disc upside down in its holder.
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6.9 Inverted Signal Effect

Upon adsorption of zinc on a detector cleaned by sputtering, for experimental
parameters see Section 6.7, a severe shape distortion of the recorded detector signal
has been observed, ultimately resulting in a change of the signal’s polarity. Figure
6.35 illustrates the transition from the positive to the negative intensity.

The radiation measurement with the clean sample, i.e., with a zinc coverage
of 0 ML, identifies the detector to be mounted with positive polarity, see Sections
1.3.3 and 2.2. The initial, i.e., at low zinc coverage of 0.2 ML, frames exhibit the
typical shape composed of the radiative and the laser-like signal contribution. Upon
increasing zinc coverage, between 0.6 ML and 33 ML, the measured heat seems to be
released with a time delay. However, further evolution classifies this observation as
an artifact arising from a “negative intensity” contribution, partially compensating
the original signal at zinc coverages between 45 ML and 84 ML. This contribution
dominates the recorded signal at extreme zinc coverages of more than 100 ML. The
fitting routine is not able to adapt its result for the measured data at the intermediate
coverages, suggesting an additional contribution to the recorded signal. Nevertheless,
the peak shape is represented well again at extreme coverages.

Figure 6.36 illustrates the reconstructed power input, see Section 3.10, to the
calorimetry detector as a function of time for the laser reference and the radiation
measurement of the aforementioned experiment. In accordance with expectation, the
power is delivered to the detector during the applied pulses, i.e., while the chopper
is in the open state, for the all reference measurements at this time. Exemplarily
the laser reference and radiation reference measurements are shown. The relative
obtained input powers of 2 µW for the radiation measurement and 12 µW for the laser
reference measurement are in agreement with, i.e., are proportional to, the measured
peak-to-peak voltages of 0.02 V and 0.12 V, respectively. This basic, manual, data
treatment, involving a linear approximation of the detector signal, in this simple
case justifies the applicability of the sophisticated reconstruction mechanism for
signal shapes which cannot be treated using the simple method.

Reconstruction of the power input of the adsorption of zinc on the sputter cleaned
detector exhibits an unexpected behavior illustrated in Figure 6.37. Initially, i.e., for
zinc coverages smaller than 0.5 ML, the deposited power correlates with the opening
of the shutter. As described in detail above, a deformation of the signal occurs upon
dosage of zinc. The compensating nature of this additional effect is clearly visible in
Figure 6.37 as white bands during the pulses. It is striking that the white band is
limited to the region of the pulses while the red band, indicating positive intensity,
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Figure 6.35: Adsorption of Zinc on Sputtered Detector: Coverage Dependent Signal
Shape — The response of the detector to single pulses (position between
gray lines) of radiation (green) and the molecular beam (red) is displayed for
different zinc coverages together with the fitting result. Continuous deposition
without calorimetric measurement provided the coverage increase from 123 ML
to 520 ML. The evolving deformation of the signal persists until the next day.
The second radiation measurement is not affected by the signal inversion.

extends beyond the pulse. This is in strong contrast to the other measurements in
this experiment.

The change of the background polarity can be attributed to a combination of
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Figure 6.36: Adsorption of Zinc on Sputtered Detector: Reconstructed Power Input
for Laser and Radiation Reference — The color coded (red positive, blue
negative, white zero) reconstructed power input as a function of temporal
position in the frame pair and of the running number of the frame in the
measurement is shown together with the nominal pulse position (gray lines).
The power input is positive and exclusively located at the nominal pulse positions
for both measurements. The negative background input is an artifact due to
the offset correction in the used amplifier.

the changed polarity of the peak and the automatic offset correction in the used
amplifier.

Leaving the sample at rest for eleven hours improves the quality of the fit for a
calorimetric measurement even further, as depicted in Figure 6.35, to an extend
mocking an inversion of the detector’s polarity. This observation might indicate
a relaxation of the deposited zinc layer, e.g., a recrystallization, on the substrate.
This effect would require mobility of the topmost zinc atoms at ambient tempera-
ture. Altogether, this is in accordance with the results obtained from the sticking
measurements on this sample, as the formation of clusters requires mobile surface
atoms.

Comparison with the radiation signal from the evaporator and the laser input,
which are positive, disproves a theory including an alteration of the detector. These
additional measurements on the same sample, shown in the reconstructed form
in Figure 6.38, revealed that the signal is inverted only if zinc is deposited on
the sample. The comparable amplitude of the radiation measurement implies an
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Figure 6.37: Adsorption of Zinc on Sputtered Detector: Reconstructed Power Input
for Calorimetric Measurement — The color coded (red positive, blue negative,
white zero) reconstructed power input as a function of temporal position in
the frame pair and of zinc coverage is shown together with the nominal pulse
position (gray lines). The power input exhibits a pronounced contribution
outside the nominal pulse positions and the temporal distribution of the power
input is continuously modified. Due to the offset correction in the used amplifier,
the negative to positive shifting background input is considered to be an artifact.

unchanged sensitivity of the detector for thermal radiation.
These results clearly exclude the possibility of a modification, i.e., a reversal in

polarization, of the sensor.
Combination of these results suggests an origin of the inverted signal effect not

to be directly related to thermodynamics. Since the deposition of material is
necessary and the surface’s nature seems to determine this effect, one might assume
a mechanical cause. Changing mechanical stress in the detector polymer causes a
signal as well as temperature changes due to the piezoelectric effect, see Section
1.3.3. This assumption raises the question concerning the origin of the mechanical
input. Analogue to the gigantic signal effect, see Section 6.8, a possible explanation
could be the merging of clusters on the surface leading to a lateral compression of
the detector polymer. Alternatively, insertion of dosed atoms might lead to a lateral
tension in the polymer due to insertion of atoms between islands. Which turns out
to be the dominating process depends on the properties of the involved substrate and
dosed species as well as the resulting adsorbate system. As the processes result in
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Figure 6.38: Adsorption of Zinc on Sputtered Detector: Reconstructed Power at
High Coverages for Various Measurements — The color coded (red positive,
blue negative, white zero) reconstructed power input as a function of temporal
position in the frame pair and of the running number of the frame in the
measurement is shown together with the nominal pulse position (gray lines).
The laser and radiation based measurements recorded at a zinc coverage of
520 ML are almost identical to the measurements obtained from the clean
sample, see Figure 6.36. The calorimetric measurement performed at the same
coverage in between the other two measurements exhibits a power input during
the nominal pulse but with inverted polarity. The negative respectively positive
background inputs are artifacts due to the offset correction in the used amplifier.

signals of different polarity [135], they might be distinguished. The first case exhibits
the same polarity as for thermal radiation and the latter shows a reversed sign. As
the data treatment algorithm is independent of absolute polarity21, see Chapter 3,
and the discussed effect causes a decrease of signal amplitude and finally a reversal
of the polarity, one can conclude that the inverted signal effect might be attributed
to mechanical lateral extension of the detector.

21 The absolute polarity can be altered by mounting the detector disc upside down in its holder.
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6.10 Synopsis of the Results from the Investigated Systems

6.10 Synopsis of the Results from the
Investigated Systems

The choice of materials is explained and motivated using preliminary work. This
covers similar systems using adsorption calorimetry or identical systems using
complementary techniques. Chemical reactivity as well as toxicity, availability,
economical aspects, and scientific relevance are weight against each other. A broad
range of interesting combinations resulted therefrom and has been investigated.
Subsequently, a method to approximate the reaction thicknesses from crystallographic
data is presented. A short introduction to the experimental sequence provides a
coarse insight for the handling of the experimental setup, presented in Chapter
2. It also lists the experimental parameters used in the, subsequently presented,
investigation of various systems.

The sticking probabilities and adsorption energetics have been studied for most
combinations of the chosen adsorbates and substrates. Most experiments suffered
from a mismatch of the multilayer enthalpy at elevated coverages to the sublimation
enthalpy, which is serving as an internal reference. Nevertheless, several results,
especially the one obtained from the adsorption of calcium on a thin coating of
sexithiophene at low temperature, see Figure 6.24, reveal that the presented setup is
able to perform the experiments it is designed for. This statement is supported by
the fact that several intermediate plateau values, i.e., after an occurring reaction
and before the gigantic signal effect sets in, match the sublimation enthalpy. These
individual concurrences and the results at constant conditions, see Figure D.36,
indicate that an excellent reproducibility of the experiments seems generally possible.
Due to the secondary perturbations arising from the gigantic and inverted signal
effects, this aspect has not been studied in detail yet.

The conclusions for individual systems can be found in Section 6.4.3 concerning
the adsorption of magnesium, in Section 6.5.3 concerning the adsorption of calcium,
in Section 6.6.3 concerning the adsorption of copper, and in Section 6.7.3 concerning
the adsorption of zinc. Most of the investigated systems show the expected behavior.
Magnesium and calcium initially react with the substrate and subsequently form a
metallic overlayer. Zinc is less reactive but still indicates a reaction while copper is
inert. Both substances form a metallic overlayer as well.

Several attempts have been made to adjust the tooling factors, mentioned in
Chapter 5, in a way that the multilayer enthalpy matched the heat of sublimation.
This strategy was supposed to identify the weak link in the calibration chain. The
resulting coefficients are on the one hand not consistent and on the other hand
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frequently physically absurd, e.g., reflectivities outside the meaningful range of null
to unity, or implied unreasonable large errors not compatible with the obtained data.
A discussion of clearly unreasonable quantities is futile and hence not presented
here.

The nature of the mismatch together with the results from the calibration mea-
surements, presented in Chapter 5, led to the discovery of the inverted signal and
gigantic signal effects. The origin of these effects has not been ascertained yet.
Both effects are only observed in case metal vapor is adsorbing on the sample. The
inverted signal occurs in case of samples cleaned by sputtering, i.e., on the bare
metallic surface. In contrast, the gigantic signal appears on samples modified by a
rather thick film of organic molecules. Furthermore, the strength of the effect seems
to be correlated with the substrate layer thickness. The observed amplitudes are
in contradiction to physical principles in case of negative amplitudes. In case of
extreme positive amplitudes the resulting “detected heat” exceeds the enthalpies
of the most exothermic chemical reactions known by far. In addition, this effect
takes place at coverages where a reaction with the substrate should not be possible
anymore. A reaction with the residual gas in the vacuum system is also unlikely
since it should be present during the whole experiment.

Furthermore, the obtained coverage dependent heat should not be a function
of substrate thickness as long as a certain minimum thickness is present. The
larger reacting quantities, in case of thin substrate layers compared to the thick ones,
demonstrate the need for well defined experimental starting points. As a consequence,
more attention should be paid to sample preparation and characterization prior to the
calorimetric measurement, which has not been possible at the time the experiments
have been conducted.

Altogether, these hints suggest an origin of both effects not directly related to
thermodynamics. Since the deposition of material is necessary and the surface
composition seems to determine these effects, one might assume a mechanical cause.
Changing mechanical stress, e.g., by compression or tension, in the detector polymer
causes a signal – similar to the one arising from temperature changes – due to
the piezoelectric effect, see Section 1.3.3. This assumption, which would explain
the gigantic signal effect as well as the inverted signal effect, raises the question
concerning the origin of the mechanical input.

Momentum transfer of the deposited atoms to the detector and a resulting
deformation can be excluded without any further calculation since this effect would
be constant and not developing, as observed. Mechanical strain in the deposited
layer could derive from coalescence of clusters in the metallic top layer in case
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the voids between the clusters are not filled from the bottom up with a perfect
lattice match. As no direct measurements addressing this assumption have been
performed, this explanation remains speculative. However, it is supported by the
observation that thick layers of deposited material in old vacuum systems tend
to peel off after extensive deposition. The same effect was observed on heavily
loaded oscillator crystals [237]. Instead of typical failure due to exceedance of the
recommended frequency range some crystals stopped working as the deposited layer
partially exfoliated from the sensor.

Macroscopic evidence of these forces was also observed upon purging of the cap
on the main evaporator, see Section 2.3.1, after experiments involving the deposition
of zinc were completed. The deposit could be easily removed from the cap as the
diameter of the zinc part was significantly smaller than the inner diameter of its
mold, i.e., the cap. Unfortunately, this specimen was discarded without further
documentation.

This behavior has not been reported in literature yet although the spin-coated
polymer substrates exhibit similar thicknesses [55–60] as the molecular thin films
investigated in this work. However, the reported coverages of the dosed metal stay
below 10 ML, whereas the here observed effects take place at higher coverages.

A possible solution to circumvent the presumed mechanical influence on the
detector signal would be based on the use of the detector head designed for single
crystals, see Section 2.2, in combination with a cheap, defined dummy for the single
crystal. Here, the joint between the dummy and the detector ribbons decouples
mechanical stress but still provides thermal contact.

Discs punched-out from 30 µm thick aluminum foil22 exhibit a sufficient stabil-
ity and chemical inertness due to the passivating oxide layer. Thinner foils are
commercially available but their usage is discouraged. The reason for the use of
thicker foils is mechanical stability. This will surely sacrifice some sensitivity but
will hopefully provide substrate layer thickness independent multilayer enthalpies
and thus eliminate the gigantic and inverted signal effects. In addition, the thick
aluminum foils are an economical sample substitute for the even thicker – and
expensive – single crystal samples and provide safe practice for their handling. The
reflectivity of aluminum is rather high but well documented [136]. These properties,
together with the vanishing price per sample, render this option an ideal candidate
for single use samples, such as spin-coated polymers or thick molecular films.

Another approach could be based on older work by King [13], Černý [117,118], Stuck-
less [86,238], and Campbell [119]. In all groups the employed detector has been based

22 ‘2596.1’ from Carl Roth GmbH + Co. KG.
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on, at least for some time, a pyroelectric single crystal, i.e., lithium tantalate, rather
than β-polyvinylidene fluoride used in more recent work [55,86,87,93,114,121] including
this one. The expectation is that this stiffer detector material would withstand the
mechanical stress and only respond to the heat input. However, these thin single
crystalline substrates are expensive and brittle. The first drawback excludes the use
as disposable specimen and the latter renders a cleaning of the detector challenging.
Furthermore, a reduced sensitivity compared to the polymer detector material is
expected.

One possible origin of the minima observed after an initially high heat of adsorption,
especially visible in Figure 6.7.2, has been identified as the offset compensation of
the employed amplifier. Since a new amplifier is already being built, this assumption
could soon be verified or excluded.

The experiments studying the adsorption of calcium on sexithiophene exhibit
a similar shape of the sticking probability but with different intensities. This
might indicate an issue with the experimental settings of the zero sticking reference
measurement. As discussed in Sections 5.7 and 5.8.4, the mass spectrometer exhibits
the highest inaccuracy and longs for improvement considering the pulse-to-pulse
signal stability and signal shape.

Finally, it should be mentioned that the quality of the experimental results
increased along several minor improvements of the experimental setup. However,
not all experiments could be repeated on a reasonable time scale as the focus was
set rather on the development of the experimental framework than on a detailed
investigation of a single metal/substrate combination. Nevertheless, a reinvestigation
of the here presented systems with the finally fully operational setup might be fruitful
and is thus recommended.

386
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By now, abrupt interfaces and diffuse interphases between metals and organic
semiconductors have become relevant in the production of organic electronics in
consumer products, like organic light emitting diodes (OLED) in cellular phones.
However, the description of these contacts focuses on engineering usage. Hence,
a complete fundamental and scientific understanding of these electrical joints has
not been achieved yet. This situation motivates the usage of nanojoule adsorption
calorimetry as a method of studying the energetics of their formation under ultrahigh
vacuum conditions. Complementary techniques, such as photoemission spectroscopy,
can be used to obtain structural information on the interface or chemical states of
the formed reaction products and hence might be used to enhance the results from
the calorimetric experiments.

The presented aim of this work includes the construction of the experimental setup,
the development of the software used for data evaluation, a full characterization
of the experimental setup, and a selection of results from conducted experiments.
Each of these individual aspects in the presented dissertation is summarized in a
dedicated synopsis at the end of each chapter, see Sections 2.10, 3.15, 4.5, 5.11, and
6.10. Their essential aspects are summarized below.

The amply illustrated experimental setup is dedicated to the investigation of metal
adsorption on organic thin films, prepared by physical vapor deposition or by ex
situ preparation techniques. The concept of the setup also provides the option to
study inverse systems, i.e., the adsorption of large organic molecules on thin metal
substrates, including single crystals. The individual components of the setup, their
usage, and their interaction are discussed in detail.

Two kinds of sample holders provide usage of thin sheet and thin single crystal
substrates as well as an adjustable sample temperature. The molecular beam is
suitable to accept different kinds of effusive molecular sources. It has been successfully
tested concerning operation with a specifically constructed large volume Knudsen
cell, providing outstanding long run times at high material throughput, as well as a
commercial electron beam evaporator. An integrated valve allows for service routines
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on the molecular beam without venting of the main chamber. Additional optical
devices guide the laser beam, which is necessary for sensor calibration, to the sample
position. Both, the molecular and the laser beam are switched on and off by a
mechanical chopper providing almost freely adjustable repetition rate and duty cycle.
This process facilitates the pulsed operation required by the measurement principle.
Ancillary devices allow for measurement of reference data sets, e.g., the fraction of
thermal radiation emitted by the evaporator, which are essential for the evaluation
of the recorded calorimetry data. A load lock serves as a facility to transfer samples
into the vacuum system as well as for sample storage and to prepare organic thin
film substrates.

Possible improvements to be realized on a long term are also suggested, which are
primarily related to the handling of air sensitive substances. The design drawings of
the individual parts constructed for the experimental setup in the framework of this
thesis are documented in the appendix.

The graphical user interface of the treatment procedure for measured data is
introduced with great detail along a sample experiment. Numerous options to
condition the data, e.g., by digital filtering, are presented and their effects are
discussed. The treatment of the individual measurements involved in a calorimetric
experiment is demonstrated and possible ways of improving the quality of the results
are illustrated. In this context, an excursus is made considering the statistical nature
of the measurements and the automatic outlier detection algorithm involved in these
experiments. Furthermore, the averaging merge of several experimental results into
a global result describing the coverage dependent interaction of an adsorptive with
an adsorbent is explained. Additionally, the actions of the facilitating operations for
experienced, i.e., lazy, users are explicated. Finally, calorimetry specific extensions
to other software packages are discussed.

The data file formats and the programming background of the data evaluation
software are documented. Together with the internal data structuring of the Igor
Pro experiment files, the purpose of each individual data object is described. Sub-
sequently, a brief description of each function used in the program packages is given.
Physical and mathematical concepts, which are neither covered by the introduction
nor the chapter corresponding to the characterization of the experimental setup but
are necessary for the data evaluation, are presented together with the explanation
of the functions. Furthermore, a description of two supporting software packages
concerning error management and logging of the machine status, which can also be
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used for other projects, complete this documentation.
The source code of all three software packages is listed in the appendix and was

used to compute most of the presented results in this work. In the majority of cases,
data from the characterization measurements have been analyzed with the main
program package in a first step. Subsequently, they have been manually processed
further according to the particular objective.

Every device involved in the individual measurements in a calorimetric experiment
has been intensively characterized. In order to ensure maximal reliability of the
obtained results, this process exceeded the standard requirements on a calorimetric
experiment by far. If necessary, specific theoretical background to the individual
characterizations is given together with the corresponding description of the experi-
ment. The results of each investigation are discussed individually. Additionally,
suggestions for improvements, routine checkup experiments, or further experiments
are made, if applicable. The characterization of the experimental setup provided
valuable findings influencing the sample preparation and measurement routines.

The average reflectivity at the wavelength of the employed laser of the pristine
detector material has been determined using a dedicated air-based setup and turned
out to be smaller than reported in literature. Cleaning of the sensor material by
means of ion bombardment proved to be essential for the preparation of homogeneous
molecular thin films on the detector by physical vapor deposition. The deviation of
indicated and actual thickness, originating from partial loading of the quartz crystal
microbalance’s sensor, has been quantified. A contamination arising from the residual
gas in the chamber could be excluded since the determined amount obtained by
analytical wet chemistry matches the discussed model for the correction factor. The
characterization of the coating facility in the load lock comprises the determination
of operating temperatures for the crucible, an influence of the thermal load from the
crucible on the sensor material, and a quantification of the conversion factor from the
reading of the quartz crystal microbalance and the actual thickness of the organic
film on the sample substrate. Except for the diode based laser, the specifications of
the individual electronic components have been successfully verified. The automatic
offset compensation implemented in the amplifier for the pyroelectric signal turned
out to be troublesome since it induces artifacts in the measured data. Intensive
characterization of the pulsed molecular beam involved determination of the run
times of the source for various evaporants, the maximal filling amounts, temperatures
of operation, and the temporal stability of the provided flux. After installation
of a throttling device, the deposition rate is almost constant on a time scale of
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hours. Furthermore, the throttle provides a constant emissivity for electromagnetic
radiation and prevents macroscopic particles from being hauled out of the crucible.
The chopper generates reproducible, time adjustable events with the targeted slew
rate. Laser based measurements are not influenced by the infrared radiation emitted
from the crucible since the mount for the mirror in the molecular beam effectively
blocks its pathway. The settings of the mass spectrometer have been adjusted to the
experimental requirements considering the technical peculiarities of the instrument.
Intensive testing has also been performed for the devices involved in the ancillary
measurements. The molecule-blocking window exhibits a transmission of the infrared
radiation emitted by the evaporator and the laser radiation solely in case of high
crucible temperatures. The signal shape resulting from thermal radiation differs
significantly from the shape which is obtained using laser radiation. However, it is
independent from the temperature of the crucible. The presented theory describing
the intensity of the thermal radiation is excellently confirmed and might be used to
calculate the contribution of the radiation to the measured signal. This approach
might eliminate one of the reference measurements. The correction factors for the
mirror setup, used to measure the laser power, and the quartz crystal microbalance,
used to obtain the deposition rate, are in agreement with their respective theories.
The behavior of the hot plate, used for full reflection of the incoming molecules,
requires additional investigations. As expected, a proportionality of the pyroelectric
signal to the laser power and to the illuminated area are found. Likewise, the thermal
load capacity and the temperature dependent sensitivity of the detector matched
their specifications. A round robin test with diverse experimental conditions along
the measurement sequence clearly demonstrated that the reconstruction of the power
input into the detector can be performed successfully.

In total, the comprehensive characterization of the individual measurement devices
give reasons to expect accurate results from the calorimetric experiments.

Finally, several investigated systems covering the adsorption of metal atoms
on various surfaces are presented in this thesis. The choice of materials forming
an interface is based on the respective toxicity, availability, pricing, and scientific
relevance and resulted in a broad range of interesting combinations. In this context,
an approximation of the thickness of the reaction zone, i.e., the interphase, from
calorimetric data is motivated and presented for the possible material combinations.
Furthermore, the experimental sequence is illustrated on the basis of a flow diagram
while the used experimental parameters or, respectively, their recommended ranges
are stated. Specific conclusions on the results obtained from individual combinations
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of substrates and adsorbed metals would exceed the scope of this summary and are
given in corresponding sections in this paper.

Although the characterization of the individual components promised accurate
results, most of the experiments did not hit the internal standard. The latter is
provided by the fact that the enthalpy of adsorption is identical to the enthalpy
of resublimation at high coverages of the metal. It is striking to note that the
experiments are quite well reproducible and that some of the results from material
combinations exhibit a plateau region in which the measured enthalpy matches the
standard and deviates at higher coverages. These reproducible regions of constant
enthalpy and the experiment covering the adsorption of calcium on a thin layer of
sexithiophene at low temperature clearly demonstrate that the observed mismatch
does neither originate from systematic errors in the experimental setup nor from the
data treatment procedure but from an unknown secondary effect. This hypothesis is
further supported by the presence of an unexpected dependency of that secondary
effect at high metal coverages on the thickness of the substrate layer. A mechanical
deformation of the sensor and a therefrom resulting piezoelectric signal are suspected
to cause this effect. However, a verification thereof was not possible in the given
laboratory time. Mechanical strain in the forming metallic film is suspected as a
possible origin of the deformation. In order to verify or falsify this hypothesis, a
process changeover towards investigation of thin sheet samples is recommended since
they are mechanically decoupled from the sensor. Discs cut from aluminum foil,
coated with the organic component, might serve as a substitute for the expensive
single crystals. This proceeding provides the opportunity to practice the handling
with the sensitive single crystals.

Most of the investigated systems exhibit the expected behavior at low to medium
metal coverages. Initially, magnesium and calcium react with the functional groups
of the substrate molecules and grow into a closed top layer at elevated coverages.
Zinc reveals a reduced yet still present reactivity while copper shows no reaction
along the examined cases. Organic thin films, prepared by physical vapor deposition,
exhibit the expected reactivity towards the deposited metal atoms. The anhydride
groups of perylene tetracarboxylic anhydride show the largest reaction enthalpies.
Complexation by the pyrrole units of the porphyrin release slightly less energy and
the reaction of the sulfur atoms in the thiophene units with the deposited metal is
least exothermic.

In summary, these experiments led to several specific deductions. Most important
for this work, the experiments proved that the constructed experimental setup is
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capable of measuring correct heats of sublimation at moderate coverages. Since these
values serve as internal reference values, the heats of reaction at lower coverages are
expected to be correct. Collaterally, unexpected effects depending on the vertical
sample constitution were discovered and possible origins and practices to avoid them
were discussed but could not be investigated further in the given amount of time. In
addition to the selection of presented experiments, treated data sets from further
experiments are documented in the appendix as supporting information.

In the near future, the recommended experiments should be conducted and the
dependent alterations should be executed. Subsequently, the setup is ready to be
used on a regular basis for calorimetric experiments, i.e., it is fulfilling its purpose.
Interesting scenarios comprise alkaline and alkaline earth metals in combination
with large organic molecules used in organic electronics, e.g., oligothiophenes, ph-
thalocyanines, porphyrines, fullerenes, and many more, including their (polymer)
derivatives as well as their blends.

The usage of high purity materials and their handling in an inert atmosphere is
desirable as an intermediate extension of the experimental setup. On the same time
scale the planned manipulator for preparation of single crystal samples should be
realized. Another productive addition to the vacuum system would be a vacuum
suitcase, which enables the transfer of specimens to other experimental stations
without air contact.

In the long run, upgrades of the experimental setup with complementary techniques
are highly recommended. Eligible options would include spectroscopic methods and
imaging techniques. Examples for the former are photoemission spectroscopy or
Auger spectroscopy to probe chemical states and to detect contamination as well as
low energy ion scattering to investigate the growth mode of the adsorbed species.
Atomic force microscopy or scanning tunneling microscopy to document surface
morphologies before and after deposition processes are among the latter. Under
certain circumstances spectroscopic methods are even able to provide knowledge
about reaction depths, which are typically obtained by destructive methods, and
are thus able to complement the calorimetric measurements.

Nanojoule adsorption calorimetry provides valuable insight into the energetics
during adsorption, i.e., during the formation of interfaces and interphases. This thesis
describes the fundamental theory and documents the successful implementation
of the comprehensive assignment of tasks, e.g., the experimental setup and the
software for data treatment as well as the intensive characterization of all mentioned
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components. Exemplary scientific discussions of selected trustworthy experiments
complete this publication and demonstrate the successful interaction of all modules
involved in the framework of this scientific project.
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8 Zusammenfassung und Ausblick

Abrupte Grenzflächen und diffuse Grenzschichten (Interphasen) zwischen Metallen
und organischen Halbleitern haben mittlerweile eine gewisse Relevanz in der Pro-
duktion von organischer Elektronik in Endanwenderprodukten, wie zum Beispiel
organische Leuchtdioden (OLED) in Mobiltelefonen, gefunden. Die Beschreibung
dieser Kontakte fokussiert sich jedoch auf die praktische Anwendung, so dass das
grundlegende und wissenschaftliche Verständnis dieser elektrischen Verbindungs-
stellen noch nicht vollständig ist. Diese Situation motiviert die Verwendung der
Nanojoule-Adsorptions-Kalorimetrie als Methode, um die Energetik sich bildender
Grenzschichten unter Ultrahochvakuumbedingungen zu untersuchen. Komplementäre
Verfahren, wie zum Beispiel Photoemissionsspektroskopie, können genutzt werden,
um strukturelle Informationen über die Grenzschicht und chemische Zustände der Re-
aktionsprodukte zu ermitteln, welche die Ergebnisse der Kalorimetrie zu präzisieren
vermögen.

Das präsentierte Ziel dieser Arbeit beinhaltet die Konstruktion des experimentellen
Aufbaus, die Entwicklung eines Computerprogramms zur Datenauswertung, eine
vollständige Charakterisierung der realisierten Komponenten und eine Auswahl an
Ergebnissen von durchgeführten Experimenten. Jeder dieser einzelnen Aspekte in der
vorliegenden Dissertation ist detailliert am Ende des jeweiligen Kapitels in englischer
Sprache zusammengefasst.

Der ausgiebig illustrierte experimentelle Aufbau ist für Untersuchungen optimiert,
in denen Metallatome auf organischen Dünnschichten abgeschieden werden. Diese
Schichten können durch Gasphasenabscheidung in oder anderweitig außerhalb der
Anlage präpariert werden. Das Konzept beinhaltet auch die Möglichkeit, invertierte
Systeme, d.h. die Adsorption von großen organischen Molekülen auf metallischen
(Einkristall-) Oberflächen, zu untersuchen. Die einzelnen Komponenten des Aufbaus,
ihre Handhabung und ihr Zusammenspiel sind detailliert beschrieben.

Die Probenhalterungen ermöglichen die Verwendung von Dünnschicht- und Ein-
kristallsubstraten bei einstellbarer Probentemperatur. Der Molekularstrahl ist für
den Einsatz von verschiedenartigen Effusivquellen geeignet. Er ist sowohl für eine ei-

395



Zusammenfassung und Ausblick

gens konstruierte Knudsenzelle mit großem Füllvolumen, und dadurch extrem langer
Laufzeit bei hohem Materialdurchsatz, als auch für einen kommerziellen Elektro-
nenstrahlverdampfer erfolgreich getestet worden. Ein integriertes Ventil ermöglicht
die üblichen Servicearbeiten am Molekularstrahl ohne die Hauptkammer belüften
zu müssen. Zusätzlich führen optische Elemente den zur Kalibrierung notwendi-
gen Laserstrahl an die Probenposition. Molekular- und Laserstrahl werden durch
einen mechanischen Pulsformer mit nahezu frei einstellbarer Repetitionsrate und
Tastverhältnis an- und ausgeschaltet und ermöglichen so den für das Messverfahren
notwendigen Pulsbetrieb. Hilfsbausteine ermöglichen die Messung von Referenz-
daten, wie beispielsweise den Anteil der thermischen Strahlung des Verdampfers,
die für die Auswertung der Kalorimetriedaten nötig sind. Eine Schleuse bietet die
Möglichkeit, Proben in das Vakuumsystem zu transferieren, zu lagern und organische
Dünnschichten zu präparieren.

Mögliche, längerfristig zu realisierende Verbesserungen sind ebenfalls vorgeschlagen.
Dies betrifft im Wesentlichen die Handhabung von luftempfindlichen Chemikalien.
Die im Rahmen dieser Arbeit entstandenen Konstruktionszeichnungen der einzelnen
Bauteile dieser Anlage sind im Anhang aufgeführt.

Die Benutzeroberfläche des Computerprogramms zur Datenauswertung wird an-
hand einer exemplarischen Auswertung eines Datensatzes detailliert vorgestellt.
Zahlreiche Möglichkeiten um die Daten vor der eigentlichen Auswertung zu optimie-
ren, wie zum Beispiel durch digitales Filtern, sind vorgestellt und ihre Auswirkungen
werden besprochen. Die Behandlung der einzelnen Messungen eines Kalorimetrie-
Experiments ist beschrieben und Möglichkeiten werden erläutert, um die Qualität der
Ergebnisse zu verbessern. In diesem Zusammenhang beleuchtet ein Exkurs die sta-
tistische Streuung der einzelnen Datenpunkte und die automatische Erkennung von
Ausreißern. Weiterhin wird das mittelnde Zusammenfügen von Einzelexperimenten
zu einem Hauptergebnis, das die bedeckungsabhängige Wechselwirkung eines Adsorp-
tivs mit einem Adsorbens beschreibt, erklärt. Zusätzlich sind die arbeitsökonomischen
Funktionen für erfahrene Nutzer und nützliche, für Kalorimetrie-Experimente spezi-
fische, Erweiterungen für andere Programmpakete erläutert.

Die Dateiformate und der programmiertechnische Hintergrund des Datenaus-
wertungsprogramms sind, zusammen mit der internen Datenstruktur inklusive des
jeweiligen Verwendungszwecks der einzelnen Datenobjekte der Igor Pro Experi-
ment Datei, beschrieben. Eine knappe Erläuterung aller im Programm verwendeten
Funktionen ist anschließend gegeben. Für die Datenauswertung notwendige mathema-
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tische und physikalische Konzepte werden hier ebenfalls vorgestellt, soweit sie nicht
in der Einleitung oder im Kapitel über die Charakterisierung der Anlage angesiedelt
sind. Weiterhin wird durch die Beschreibung von zwei weiteren, unterstützenden
Programmpaketen, welche sich auch anderweitig einsetzen lassen, die Dokumentation
abgerundet. Ersteres ist für die Behandlung von Fehlermeldungen in Programmen
konzipiert, und zweiteres bietet Funktionen, um den protokollierten Maschinenstatus
auszuwerten.

Der Quelltext für alle drei Programmpakete ist im Anhang aufgeführt und wurde
für den größten Teil der Datenauswertung in dieser Arbeit verwendet. Die meisten
Daten aus Charakterisierungsmessungen wurden ebenfalls zunächst mit diesem
Programmpaket ausgewertet und dann, entsprechend der Fragestellung, weiter
manuell aufbereitet.

Jede für die einzelnen Messungen eines Kalorimetrie-Experiments nötige Vor-
richtung wurde intensiv charakterisiert. Um eine größtmögliche Verlässlichkeit der
erhaltenen Ergebnisse zu garantieren, geht diese Charakterisierung weit über die in
einem Kalorimetrie-Experiment nötigen Anforderungen hinaus. Falls ein weiterge-
hender theoretischer Hintergrund für die einzelnen Aspekte der Auswertungen nötig
sein sollte, ist dieser zusammen mit der jeweiligen Beschreibung des Experiments
ausgeführt. Die Ergebnisse der einzelnen Untersuchungen werden jeweils für sich
diskutiert. Zusätzlich sind gegebenenfalls Vorschläge für weitere Verbesserungen,
Prüfroutinen und weiterführende Experimente beschrieben. Die ausgiebige Charak-
terisierung der Apparatur ermöglichte wertvolle Erkenntnisse, die die Standards in
den Abläufen der Probenpräparation und der Messungen beeinflusst und verbessert
haben.

Die mittlere Reflektivität des unbehandelten Sensormaterials an Luft wurde mit-
tels eines separaten Aufbaus für die verwendete Laserwellenlänge bestimmt und
resultierte kleiner als der entsprechende Literaturwert. Eine Reinigung des Sensor-
materials durch Ionenbeschuss erwies sich als essentiell, um homogene molekulare
Dünnschichten auf dem Sensor aus der Gasphase abscheiden zu können. Die Ab-
weichung von gemessener und tatsächlicher Schichtdicke, die durch eine teilweise
Beladung des Sensors der Quarzmikrowaage entsteht, wurde quantifiziert. Der nass-
chemische Befund entspricht dem Korrekturfaktor aus dem diskutierten Modell, was
eine signifikante Kontamination durch das Restgas in der Kammer ausschließt. Die
Charakterisierung der Beschichtungseinrichtung in der Schleusenkammer umfasste
die Bestimmung von Betriebstemperaturen des Tiegels, den Ausschluss ebendieser
auf das Detektormaterial und die Quantifizierung eines Umrechnungsfaktors von

397



Zusammenfassung und Ausblick

der gemessenen zur tatsächlichen Schichtdicke auf der Probe. Die Spezifikationen
der einzelnen elektronischen Baugruppen wurden, mit Ausnahme der Stabilität
des Diodenlasers, erfolgreich überprüft. Die automatische Nullpunktkompensation
des Verstärkers für das pyroelektrische Signal erwies sich wegen Artefakten in den
Messwerten als problematisch. Die intensive Charakterisierung des gepulsten Mole-
kularstrahls umfasst die Laufzeiten der Quelle für verschiedene zu verdampfende
Materialien unter Berücksichtigung der ebenfalls bestimmten maximalen Füllmengen
und den Betriebstemperaturen, sowie der zeitlichen Stabilität des Flusses. Nach
Einbau einer Drossel bleibt die Abscheiderate über Stunden nahezu konstant. Wei-
terhin ermöglicht die Drossel einen konstanten Emissionsgrad für elektromagnetische
Strahlung und verhindert, dass makroskopische Partikel den Tiegel verlassen kön-
nen. Der Pulsformer erzeugt reproduzierbare, zeitlich einstellbare Ereignisse mit
der angestrebten Flankensteilheit. Die Spiegelhalterung blockiert den Weg der In-
frarotstrahlung des Tiegels und bewirkt, dass laserbasierte Teilexperimente nicht
durch sie gestört werden. Die Einstellungen des Massenspektrometers wurden unter
Beachtung der technischen Eigenheiten des Gerätes an die experimentellen Anfor-
derungen angepasst. Die Hilfsexperimente für referenzierende Messwerte wurden
ebenfalls ausgiebig getestet. Das molekülblockierende Fenster zeigt für die emittierte
Strahlung lediglich bei hohen Tiegeltemperaturen eine ähnliche Transmission wie
für die Laserstrahlung. Die von der thermischen Strahlung herrührende Signalform
unterscheidet sich erheblich von der Form, die bei Verwendung von Laserstrahlung
erhalten wird, ist aber unabhängig von der Temperatur des Tiegels. Die präsen-
tierte Theorie bezüglich der Strahlungsintensität wird hervorragend bestätigt und
könnte eine Berechnung des Strahlungsanteils am Messsignal unter Einsparung einer
Referenzmessung ermöglichen. Die Korrekturparameter für die verwendete Spiegel-
anordnung, welche für die Leistungsmessung des Lasers verwendet wird, und die
Quarzmikrowaage, welche die Abscheiderate ermittelt, ergaben sich in Übereinstim-
mung mit den entsprechenden Theorien. Das Verhalten der heißen Platte, die eine
vollständige Reflexion der ankommenden Moleküle bewirkt, bedarf jedoch weiterer
Untersuchungen. Wie erwartet, ist das pyroelektrische Messsignal proportional zur
Laserleistung und zur beleuchteten Fläche. Auch die thermische Belastbarkeit und
temperaturabhängige Sensitivität des Detektors deckten sich mit den Spezifikatio-
nen. Ein Ringversuch mit unterschiedlichen Experimentalbedingungen entlang der
Messkette zeigte deutlich, dass die Rekonstruktion des Leistungseintrags in den
Detektor erfolgreich bewerkstelligt werden kann.

Insgesamt sind durch die erfolgreiche Charakterisierung der einzelnen Messeinrich-
tungen genaue Ergebnisse in den Kalorimetrie-Experimenten zu erwarten.

398



Zusammenfassung und Ausblick

Abschließend befasst sich diese Arbeit mit der Adsorption von Metallatomen auf
diversen Oberflächen. Die Materialauswahl der untersuchten Grenzflächen berück-
sichtigte die jeweilige Giftigkeit, die Verfügbarkeit, den Preis und die wissenschaftli-
che Relevanz und ergab ein weites Sortiment an interessanten Kombinationen. In
diesem Zusammenhang wird eine Abschätzung für die Dicke der Reaktionszone,
also der Zwischenphase, aus den Kalorimetriedaten für die möglichen Zusammen-
stellungen motiviert und präsentiert. Weiterhin wird der Ablauf eines typischen
Kalorimetrie-Experiments anhand eines Flussdiagramms illustriert und die übli-
cherweise verwendeten Parameter, beziehungsweise deren empfohlenen Bereiche,
werden genannt. Die individuellen Folgerungen aus den Ergebnissen, die aus den
verschiedenen Kombinationen aus Substrat und adsorbiertem Metall hervorgingen,
würden den Rahmen dieser Zusammenfassung sprengen und sind daher nur in den
entsprechenden Abschnitten in englischer Sprache ausgeführt.

Obwohl die Charakterisierung der einzelnen Komponenten auf akkurate Ergeb-
nisse hoffen ließ, wurde in den meisten Experimenten der interne Standard nicht
getroffen. Dieser ist dadurch gegeben, dass die Adsorptionsenthalpie bei hohen Be-
deckungsgraden des Metalls dessen Resublimationsenthalpie entspricht. Auffallend
ist hierbei jedoch, dass diese Experimente gut reproduzierbar waren, und einige
Materialkombinationen eine Plateauregion beinhalten, in der der Standard getroffen
wird, und die Abweichung erst später – das heißt, bei höheren Bedeckungsgraden –
auftritt. Diese reproduzierbaren Regionen konstanter Enthalpie und insbesondere das
Experiment zur Adsorption von Calcium auf einer dünnen Schicht aus Sexithiophen
bei tiefer Temperatur zeigen, dass es sich nicht um einen systematischen Fehler
im experimentellen Aufbau oder der Datenauswertung handelt, sondern um einen
nicht berücksichtigten sekundären Effekt. Zusätzlich unterstützt die unerwartete
Abhängigkeit des Verhaltens der Adsorptionsenthalpie bei hohen Metallbedeckungen
von der Substratschichtdicke diese Hypothese. Eine mechanische Deformation des
Sensors und ein daraus resultierendes piezoelektrisches Signal werden als Ursache
für diese Effekte vermutet, konnten im Rahmen der Labortätigkeit aber nicht mehr
verifiziert werden. Als Ursache für die Deformation werden mechanische Spannungen
im sich bildenden Metallfilm vermutet. Um diese Hypothese zu überprüfen oder zu
widerlegen, wird ein Umrüsten der Anlage zur Untersuchung von Einkristallproben
empfohlen, da diese mechanisch vom Sensor entkoppelt sind. Als Ersatz für die teuren
Einkristalle könnten Scheiben aus Aluminiumfolie dienen, auf die die organische
Komponente aufgetragen wird. Dies bietet zudem die Möglichkeit, Erfahrungswerte
für den Umgang mit den empfindlichen Einkristallen zu sammeln.
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Für geringe bis mittlere Metallbedeckungen zeigen die meisten Systeme das erwar-
tete Verhalten. Magnesium und Calcium reagieren zunächst mit den funktionellen
Gruppen der Substratmoleküle und bilden bei höheren Bedeckungen eine geschlos-
sene Deckschicht. Zink zeigt eine geringere, jedoch noch messbare Reaktivität,
während sich Kupfer in den untersuchten Fällen inert verhält. Die mittels physi-
kalischer Gasphasenabscheidung erzeugten organischen Filme zeigen die erwartete
Reaktivität gegenüber den abgeschiedenen Metallatomen. Die Anhydridgruppen des
Perylenderivats liefern die größten Reaktionsenthalpien. Die Komplexierung durch
die Pyrroleinheiten des Porphyrins setzt etwas weniger Energie frei, und die Reaktion
des Schwefels in den Thiophengruppen mit dem Metall ist am wenigsten exotherm.

Zusammenfassend lässt sich feststellen, dass diese Experimente zu einigen besonde-
ren Schlussfolgerungen führten. Von herausragender Bedeutung für diese Arbeit ist
die Tatsache, dass sich mit dem vorgestellten Aufbau korrekte Adsorptionsenthalpien
bei moderaten Bedeckungen messen lassen. Da diese erhaltenen Werte als interner
Standard dienen, ist davon auszugehen, dass auch die bestimmten Reaktionswärmen
bei kleineren Bedeckungen korrekt sind. Begleitend zu diesen Ergebnissen wurden
unerwartete, von der vertikalen Zusammensetzung der Probe abhängige, Effekte
entdeckt und mögliche Ursachen, sowie Ansätze um diese unerwünschten Effekte
zu vermeiden, diskutiert, konnten jedoch im gegebenen Zeitrahmen nicht weiter
untersucht werden. Zusätzlich zu den im Hauptteil diskutierten Experimenten finden
sich weitere ausgewertete Datensätze im Anhang.

In naher Zukunft sollten die empfohlenen Experimente durchgeführt und die
davon abhängigen Änderungen ausgeführt werden. Anschließend kann der experi-
mentelle Aufbau seiner Bestimmung nach für die routinemäßige Durchführung von
Kalorimetrie-Experimenten genutzt werden. Interessante Fragestellungen beinhalten
die Adsorption von Alkalimetallen und Erdalkalimetallen auf großen organischen
Molekülen, die unter anderem als organische Halbleiter eingesetzt werden. Als Bei-
spiele für solche Materialien seien Oligothiophene, Phthalocyanine, Porphyrine und
Fullerene, sowie deren (polymere) Derivate, als auch deren Mischungen genannt.

Die Verwendung von hochreinen Substanzen und deren Handhabung mittels In-
ertgastechniken ist als mittelfristige Erweiterung des Experiments wünschenswert.
Auf der gleichen Zeitskala sollte ein Manipulator realisiert werden, der zur Präpara-
tion von Einkristallen optimiert ist. Eine zusätzliche ergiebige Erweiterung könnte
aus einem Vakuumkoffer bestehen, mit dem sich Proben zwischen verschiedenen
Vakuumanlagen überführen lassen, ohne dass die Probe in Kontakt mit Luft kommt.
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Langfristig ist der Ausbau des experimentellen Aufbaus mit komplementären
Techniken sehr zu empfehlen. Wünschenswerte Optionen wären spektroskopische
Techniken und bildgebende Verfahren. Beispiele für erstere sind Photoemissions-
spektroskopie oder Augerelektronenspektroskopie um Oxidationszustände unter-
scheiden und um Kontaminationen erkennen zu können, beziehungsweise nieder-
energetische Ionenstreuung um die Schichtwachstumsarten zuzuordnen zu können.
Zu letzteren zählen beispielsweise Rasterkraftmikroskopie oder Rastertunnelmikros-
kopie, die zur Dokumentation von Oberflächenmorphologien vor und nach den
Beschichtungsprozessen verwendet werden können. Unter gewissen Umständen kön-
nen Spektroskopiemethoden sogar zur Erstellung von Tiefenprofilen genutzt werden,
welche typischerweise durch destruktive Verfahren gewonnen werden, und ergänzen
daher hervorragend die kalorimetrischen Messungen.

Die Nanojoule-Adsorptions-Kalorimetrie bietet wertvolle Einsichten in die Energe-
tik einer sich durch Adsorption und Reaktion bildenden scharfen oder graduellen
Grenzschicht. Die vorliegende Dissertation beschreibt die zu Grunde liegende Theorie
und dokumentiert die erfolgreiche Umsetzung der umfangreichen Aufgabenstellung,
wie zum Beispiel den experimentellen Aufbau und das Programm zur Datenaus-
wertung, sowie die intensive Charakterisierung aller genannten Komponenten. Eine
beispielhafte wissenschaftliche Diskussion für eine Auswahl an vertrauenswürdigen
Experimenten rundet diese Veröffentlichung ab und zeigt das erfolgreiche Zusam-
menspiel aller beteiligten Module im Rahmen dieses wissenschaftlichen Projekts.
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A Operating Parameters

This chapter collects the used parameters for the laboratory equipment such as
setting for the mass spectrometer (QMS), the quartz crystal microbalance (QCM)
controller, evaporation temperatures, and so on. References for heat capacities and
standard enthalpies are given in the program code, see Appendix C.1.

CAS provides the Chemical Abstracts Service registry number of the substance.
Specification provides order number, purity, and vendor.
Modification gives further information about the used crystal structure or phase.
Designator consists of a short name of the substance, e.g., the element’s symbol,

and the plane designator for the exposed surface according to Miller notation,
e.g., (0001).

Unit cell lists a, b, c, α, β, γ representing the parameters of the unit cell and Z the
number of molecules in it.

Layer thickness shows the thickness calculation for a monomolecular layer from
cell parameters in the bulk phase.

Layer density presents the calculation for the number of molecules in the designated
plane per area.

Density indicates the density set for the QCM controller.
Acoustic impedance expresses the acoustic impedance used by the QCM controller.
Mass to charge ratio denotes the setting for the mass filter in the mass spectro-

meter for the sticking measurements.
Emission current states the set emission current for the ion source of the QMS.
Ionization energy quotes the utilized ionization energy employed in the ion source

of the QMS.
Evaporation recommends crucible, evaporator, and parameters.
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A.1 Magnesium

CAS: 7439-95-4
Specification: ‘254118’ 99.98 % from Sigma-Aldrich Co. LLC.
Modification: HCP
Designator: Mg(0001)
Unit cell [239]: a = 320.94 pm, b = 320.94 pm, c = 521.08 pm

α = 90○, β = 90○, γ = 120○, Z = 2
Layer thickness: d = c/2 = 260.54 pm
Layer density: 1/A = (a2 sin (γ))−1

= 1.1210 ⋅ 1019 1/m2

Density [142]: 1.74 g/cm3

Acoustic impedance [142]: 11.4 ⋅ 105 g/cm2s

Mass to charge ratio: m/z = 24, Abundance ≈ 79 %
Emission current: 1000 µA
Ionization energy: 30 eV
Evaporation: Stainless steel crucible in main evaporator at 800 K

A.2 Calcium

CAS: 7440-70-2
Specification: ‘327387’ 99 % from Sigma-Aldrich Co. LLC.
Modification: CCP (fcc)
Designator: Ca(111)
Unit cell [239]: a = 558.84 pm, b = 558.84 pm, c = 558.84 pm

α = 90○, β = 90○, γ = 90○, Z = 4
Layer thickness: d =

√
3/3a = 322.65 pm

Layer density: 1/A = (1/2a2 sin (2/3π))−1
= 7.3948 ⋅ 1018 1/m2

Density [142]: 1.55 g/cm3

Acoustic impedance [142]: 3.30 ⋅ 105 g/cm2s

Mass to charge ratio: m/z = 40, Abundance ≈ 97 %
Emission current: 1000 µA
Ionization energy: 50 eV
Evaporation: Stainless steel crucible in main evaporator at 850 K



A.3 Copper

CAS: 7440-50-8
Specification: ‘490DFL016-G-S5’ OFHC(99.99 %) from Pfeiffer Vacuum GmbH
Modification: CCP (fcc)
Designator: Cu(111)
Unit cell: a = 361.49 pm, b = 361.49 pm, c = 361.49 pm

α = 90○, β = 90○, γ = 90○, Z = 4
Layer thickness: d =

√
3/3a = 208.71 pm

Layer density: 1/A = (1/2a2 sin (2/3π))−1
= 1.7673 ⋅ 1019 1/m2

Density [142]: 8.93 g/cm3

Acoustic impedance [142]: 20.20 ⋅ 105 g/cm2s

Mass to charge ratio: m/z = 63, Abundance ≈ 69 %
Emission current: 1000 µA
Ionization energy: 70 eV
Evaporation: Molybdenum crucible (medium size) in electron beam evaporator

(800 V, 30 mA, ≈ 1500 K [234])

A.4 Zinc

CAS: 7440-66-6
Specification: ‘8780’ p.a. from Merck KGaA discontinued
Modification: HCP
Designator: Zn(0001)
Unit cell: a = 266.49 pm, b = 266.49 pm, c = 494.68 pm

α = 90○, β = 90○, γ = 120○, Z = 2
Layer thickness: d = c/2 = 247.34 pm
Layer density: 1/A = (a2 sin (γ))−1

= 1.6260 ⋅ 1019 1/m2

Density [142]: 7.04 g/cm3

Acoustic impedance [142]: 17.17 ⋅ 105 g/cm2s

Mass to charge ratio: m/z = 64, Abundance ≈ 49 %
Emission current: 1000 µA
Ionization energy: 50 eV
Evaporation: Stainless steel crucible in main evaporator at 760 K



A.5 Perylenetetracarboxylic Dianhydride

CAS: 128-69-8
Specification: ‘P11255’ 97 % from Sigma-Aldrich Co. LLC.
Modification [178]: α-phase
Designator: PTCDA
Unit cell [178,223]: a = 374 pm, b = 1196 pm, c = 1734 pm

α = 90○, β = 98.8○, γ = 90○, Z = 2
Density: 1.69 g/cm3 (calculated from [178])
Acoustic impedance [142]: 8.8 ⋅ 105 g/cm2s (Quartz)
Evaporation: Quartz crucible in load lock evaporator at 540 K

A.6 Phthalocyanine

CAS: 574-93-6
Specification: ‘253103’ 98 % from Sigma-Aldrich Co. LLC.
Modification [224]: α-phase
Designator: 2HPc
Unit cell [224]: a = 1985 pm, b = 472 pm, c = 1480 pm

α = 90○, β = 122○, γ = 90○, Z = 2
Density: 1.45 g/cm3 (calculated from [224])
Acoustic impedance [142]: 8.8 ⋅ 105 g/cm2s (Quartz)
Evaporation: Quartz crucible in load lock evaporator at 550 K



A.7 Sexithiophene

CAS: 88493-55-4
Specification: ‘594687’ from Sigma-Aldrich Co. LLC.
Designator: 6T
Unit cell [225]: a = 4470.8 pm, b = 785.1 pm, c = 602.9 pm

α = 90○, β = 90.76○, γ = 90○, Z = 4
Density [225]: 1.55 g/cm3

Acoustic impedance [142]: 8.8 ⋅ 105 g/cm2s (Quartz)
Evaporation: Quartz crucible in load lock evaporator at 410 K

A.8 5,10,15,20-Tetraphenyl-Porphyrin

CAS: 917-23-7
Specification: ‘PO890001’ 98 % from Porphyrin Systems GbR
Designator: 2HTPP
Unit cell [226]: a = 1200 pm, b = 1900 pm, c = 1470 pm

α = 90○, β = 91○, γ = 90○, Z = 4
Density: 1.22 g/cm3 (calculated from [226])
Acoustic impedance [142]: 8.8 ⋅ 105 g/cm2s (Quartz)
Evaporation: Quartz crucible in load lock evaporator at 550 K



B Design Drawings

This appendix contains all the technical drawings used to build the setup. Unless
otherwise stated, images are scaled by 71 % to fit a page, chamfers are 1X45°, threads
are cut to maximum depth, and one piece each is to be manufactured. Dimensions
are given in millimeters and decimal degrees. Tubes are designated by ∅outer × dwall

and parts are made from 1.4301 if not stated otherwise. This stainless steel can be
replaced by 1.4541 or 1.4547 but not vice versa.

B.1 Molecular Beam

Details about the molecular beam are discussed in Section 2.3. The following pages
contain the technical drawings of the parts related to the molecular beam:

Main Evaporator High volume effusive source for the adsorbate in a NAC experi-
ment (Appendix B.1.1).

Internal Valve Home built device to separate the molecular beam from the main
chamber (Appendix B.1.2).

Optics Stage Parts to defocus the laser beam and reflect it onto the sample
(Appendix B.1.3).

Beam Chopper Device used to pulse the adsorbate flux
(Appendix B.1.4).

Nozzle in Main Chamber Beam defining orifice of the molecular flux mounted on
the beam housing (Appendix B.1.5).

Beam Housing Structural components of the molecular beam
(Appendix B.1.6).
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B.1.1 Main Evaporator
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B.1.2 Internal Valve
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B.2 Main Chamber

Details about the extensions to the main chamber are discussed in Sections 2.1, 2.2,
and 2.9. The following pages contain the technical drawings of the parts related to
the main chamber:

Sample Holder Mount options for thin film as well as sheet material samples
(Appendix B.2.1).

Sample Carrier Parts to carry the sample holders during transfer in the chambers
(Appendix B.2.2).

Detector The main instrument in an NAC experiment
(Appendix B.2.3).

Sample Heater Option to heat sheet material samples in the detector setup
(Appendix B.2.4).

QMS Mount Part to mount the mass spectrometer to the main chamber
(Appendix B.2.5).

Ancillaries Stage Assembly of the instruments for the ancillary measurements
(Appendix B.2.6).

Main Chamber Additions Several minor devices related to the main chamber
(Appendix B.2.7).

Optical Meters Mounting options for a pyrometer and a photometer
(Appendix B.2.8).

Fiber Positioner Tool to align the output of the laser guiding fiber to the optics of
the molecular beam (Appendix B.2.2).
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B Design Drawings

B.3 Load Lock

Details about the extensions to the load lock chamber are discussed in Section 2.6.
The following pages contain the technical drawings of the parts used in the load lock
assembly:

Mount for Load Lock Assembly to support on the turbo molecular pump support-
ing the load lock (Appendix B.3.1).

Load Lock Housing Structural parts of the load lock
(Appendix B.3.2).

Sample Storage Assembly to store samples
(Appendix B.3.3).

Transfer Rod Support Utility to support transfer rods
(Appendix B.3.4).
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B.3.1 Mount for Load Lock
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B.3.2 Load Lock Housing
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B Design Drawings

B.3.3 Sample Storage

(
1
:
2
)

Design by O. Lytken.
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B.3.4 Transfer Rod Support
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B.4 Miscellaneous

This section contains technical drawing not directly related to the NAC machine.

Glove Box Contains the modifications of a glove box intended to use for refilling
the main evaporator with air-sensitive substances (Appendix B.4.1).

Evaporator for Synchrotron Applications A separable evaporator for up to three
substances in standard or low effusion crucibles (Appendix B.4.2).

Mounting Stand A tool to hold CF components in place during repairs
(Appendix B.4.3).

Threefold Evaporator Originally designed for three large volume crucibles on indi-
vidual flanges in the NAC main chamber, now partially used in the load lock
(Appendix B.4.4).

Battery Box The component layer and circuit board for a ripple free high DC
voltage supply powered by batteries (Appendix B.4.5).
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B.4.1 Glove Box
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B.4.2 Evaporator for Synchrotron Applications
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B.4.3 Mounting Stand
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B.4.4 Threefold Evaporator

(
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Design by O. Lytken.
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B.4 Miscellaneous

B.4.5 Battery Box
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C Program Codes

This appendix covers the entire Igor Pro program codes written for the data
treatment for the calorimetry instrument. Comments to the individual functions
can be found in Chapter 4.

As the results1, presented in Chapter 6, are not fully understood in detail yet, the
complete program code is included in order to provide a possibility to track down
conceptual errors.

In addition to the printed version, the program files also contain the LATEX-Code
used for formatting the listings in comments. Regular comments in the program
follow the ‘//’ sequence. Enhanced structuring comments follow a ‘//(@ ... @)’
scheme and are ignored by Igor Pro as well. Most of the functions, i.e., all
functions with the keyword Static, are only accessible by the package itself. Other
functions can be called from the command line. Nevertheless, this is rarely necessary
and should be avoided.

1 Especially the gigantic signal effect and the inverted signal effect.
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C.1 NAC Package
Details about the NAC software package are discussed in Section 4.2. Subsequently,
the source code of this package is listed.

1 // NAC_3 -14. ipf //

C.1.1 Definitions
//

Compiler Settings
# pragma rtGlobals =3 // Use modern global access method .
# pragma Version =3.15

6 # pragma IgorVersion =6.2
//

Constants
StrConstant NAC_DataPathStr ="Z: Marburg :Data: Calorimetry : Measurements :"
// StrConstant NAC_DataPathStr ="C:"
StrConstant NAC_Version ="3.15"

11 // Serious Error Codes }
Constant NAC_UnknownVersion =42015
Constant NAC_DataFolderError =42014
Constant NAC_IncompatibleExperiment =42013
Constant NAC_CorruptExperiment =42012

16 Constant NAC_NoDataLoaded =42011
Constant NAC_NotImplementedYet =42010
Constant NAC_LaserPowerMissing =42009
Constant NAC_PulseLengthDetectionFailed =42008
Constant NAC_UnknownFitFunction =42007

21 Constant NAC_AuxFileLoadFailed =42006
Constant NAC_AuxFileNotFound =42005
Constant NAC_NotApplicable =42003
Constant NAC_DataMismatch =42002
Constant NAC_UnknownMeasurement =42001

26 // Well Handled Error Codes
Constant NAC_ReEntry =42101
Constant NAC_NoSuchWindow =42102
Constant NAC_AvgAlreadyInitialized =42103
Constant NAC_WindowAlreadyExists =42105

31 Constant NAC_NothingToProcess =42106
Constant NAC_FitWavesMissing =42107
Constant NAC_AverageWavesMissing =42110
Constant NAC_WrongCursor =42111
Constant NAC_StickingMissing =42112

36 Constant NAC_AdsorptionMissing =42113
Constant NAC_DoseMissing =42113
Constant NAC_ParameterOutsideRange =42114
Constant NAC_NotInitialized =42115
// Other Constants

41 Constant NAC_RatioTypeReflectivity =1
Constant NAC_RatioTypeTransmission =2
Constant NAC_RatioTypeSensitivity =3
Constant R_Gas =8.3144621 // J / mol K
Constant N_Avo =6.02214085774 e23 // 1 / mol

46 //

Menu
Menu "NAC", dynamic

" Initialize ", /Q, NAC_Initialize ()
"Show Control Panel /1" , /Q, Error_Clear (); NAC_ShowControlPanel ()
"-"

51 SubMenu "Data Manipulation "
" Remove Detector Baseline ", /Q, Error_Clear (); NAC_RemoveBaseLine ()
" Invert Polarity ", /Q, Error_Clear (); NAC_Invert ()
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" Correct for Gain", /Q, Error_Clear (); NAC_CorrectGain ()
" Unload Measurement ", /Q, Error_Clear (); NAC_Unload ()

56 " Remove Experiment Structure ", /Q, Error_Clear (); NAC_RemoveNAC ()
End
" Display Statistics ", /Q, Error_Clear (); NAC_DisplayStatistics (" All ")
SubMenu "Auto Flag"

"All", /Q, Error_Clear (); NAC_AutoFlagAll (); NAC_GetAllStatistics (); ⤦
Ç NAC_DisplayStatistics (" All ")

61 " Deconvolution ", /Q, Error_Clear (); NAC_AutoFlag (" Deconvolution "); ⤦
Ç NAC_GetStatistics (" Deconvolution "); NAC_DisplayStatistics (" Deconvolution ")
" Before Deposition ", /Q, Error_Clear (); NAC_AutoFlag (" BeforeCoating "); ⤦
Ç NAC_GetStatistics (" BeforeCoating "); NAC_DisplayStatistics (" BeforeCoating ")
" After Deposition ", /Q, Error_Clear (); NAC_AutoFlag (" AfterCoating "); ⤦
Ç NAC_GetStatistics (" AfterCoating "); NAC_DisplayStatistics (" AfterCoating ")
" Laser Reference ", /Q, Error_Clear (); NAC_AutoFlag (" LaserReference "); ⤦
Ç NAC_GetStatistics (" LaserReference "); NAC_DisplayStatistics (" LaserReference⤦
Ç ")
" Transmission ", /Q, Error_Clear (); NAC_AutoFlag (" Transmission "); ⤦
Ç NAC_GetStatistics (" Transmission "); NAC_DisplayStatistics (" Transmission ")

66 " Radiation ", /Q, Error_Clear (); NAC_AutoFlag (" Radiation "); NAC_GetStatistics⤦
Ç (" Radiation "); NAC_DisplayStatistics (" Radiation ")
"Zero Sticking ", /Q, Error_Clear (); NAC_AutoFlag (" ZeroSticking "); ⤦
Ç NAC_GetStatistics (" ZeroSticking "); NAC_DisplayStatistics (" ZeroSticking ")

End
SubMenu " Reset Flag List"

"All", /Q, Error_Clear (); NAC_ResetFlagList (" All ")
71 " Deconvolution ", /Q, Error_Clear (); NAC_ResetFlagList (" Deconvolution ")

" Before Deposition ", /Q, Error_Clear (); NAC_ResetFlagList (" BeforeCoating ")
" After Deposition ", /Q, Error_Clear (); NAC_ResetFlagList (" AfterCoating ")
" Laser Reference ", /Q, Error_Clear (); NAC_ResetFlagList (" LaserReference ")
" Transmission ", /Q, Error_Clear (); NAC_ResetFlagList (" Transmission ")

76 " Radiation ", /Q, Error_Clear (); NAC_ResetFlagList (" Radiation ")
"Zero Sticking ", /Q, Error_Clear (); NAC_ResetFlagList (" ZeroSticking ")
"Heat", /Q, Error_Clear (); NAC_ResetFlagList (" Heat ")
" Sticking ", /Q, Error_Clear (); NAC_ResetFlagList (" Sticking ")

End
81 SubMenu "Copy Flag List"

"Heat -> Sticking ", /Q, Error_Clear (); NAC_CopyFlagList (" Heat", " Sticking ")
" Sticking -> Heat", /Q, Error_Clear (); NAC_CopyFlagList (" Sticking ", "Heat ")

End
SubMenu " Fitted Trends "

86 "Fit Radiation ", /Q, Error_Clear (); NAC_CreateTrend (" Radiation ")
"Fit Desorption ", /Q, Error_Clear (); NAC_CreateTrend (" Desorption ")

End
"-"
" Update Experiment Version /5" , /Q, NAC_UpdateVersion ()

91 " Concatenate Calorimetry Files ", /Q, Error_Clear (); NAC_Concat ()
"Trim Calorimetry Files ", /Q, Error_Clear (); NAC_Trim ()
"-"
SubMenu " Settings "

NAC_MenuAutoFlag () , /Q, NAC_ToggleAutoFlagging ()
96 NAC_MenuLoadSupport () , /Q, NAC_ToggleLoadSupport ()

NAC_MenuStoreFiltered () , /Q, NAC_ToggleStoreFiltered ()
NAC_MenuAutoUpdateAverages () , /Q, NAC_ToggleAutoUpdateAverages ()
NAC_MenuShowBoxPlotData () , /Q, NAC_ToggleShowBoxPlotData ()

End
101 "-"

SubMenu " Average Experiments "
"Load Results /2" , /Q, Error_Clear (); NAC_Results_Load ()
" Average Loaded Experiments " , /Q, Error_Clear (); NAC_Results_Average ()
" Remove Loaded Experiment ", /Q, Error_Clear (); NAC_Results_Remove ()

106 " Display Averaged Results ", /Q, Error_Clear (); NAC_Results_Display ()
End
"-"
" Display NAC - Status ", /Q , Error_Clear (); NAC_DisplayStatus ()

End
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111 //

C.1.2 Initialization
//

Function NAC_Initialize
Function NAC_Initialize ()

NewPath /O /Q CalDataPath NAC_DataPathStr
Error_Init ()

116 Error_Clear ()
If ( DataFolderExists (" root:NAC "))

Error_Message ( KillWins (" NAC ") , ", KillWins ", " NAC_Initialize ", "NAC ")
Error_Message ( KillDependencies () , " KillDependencies ", " NAC_Initialize ", "NAC⤦
Ç ")
KillDataFolder /Z root:NAC

121 If ( V_Flag )
Return Error_Message ( NAC_DataFolderError , " InProc ", " NAC_Initialize ", "NAC⤦

Ç ")
EndIf

EndIf
Error_Message ( Variables () , " Variables ", " NAC_Initialize ", "NAC ")

126 Error_Message ( Dependencies () , " Dependencies ", " NAC_Initialize ", "NAC ")
Error_Message ( NAC_Panels () , " Panels ", " NAC_Initialize ", "NAC ")
ExperimentModified 0
Return NoError

End
131 //

Function Variables
Static Function Variables ()
String RateMeasurements =" RateCalorimetry ; RateCoating ;"
String CalorimetryMeasurements =" LaserReference ; Transmission ; BeforeCoating ;⤦

Ç AfterCoating ; Deconvolution ; Radiation ;Heat; Sticking ; ZeroSticking ;"
Variable i

136 DFRef OldDF = GetDataFolderDFR ()
NewDatafolder /S root:NAC
// User interface
NewDatafolder /S root:NAC:GUI
Variable /G WWidth =400 , WHeight =275 , MarginTop =45

141 Variable /G ReEntryFlagWin =0, ReEntryCursor =0, ReEntryPosProc =0
Variable /G ProgressValue
Variable /G PositiveRange , NegativeRange
Variable /G PositiveRangeSticking , NegativeRangeSticking
Variable /G RangeDeconvolution

146 Variable /G LoadSupportFiles =0
Variable /G StoreFilteredWaves =0
Variable /G ShowBoxPlotData =1
String /G PositiveName ="" , NegativeName =""
String /G PositiveNameSticking ="" , NegativeNameSticking =""

151 String /G NameRangeDeconvolution =""
Make /N=0 StatsLabelPos
Make /N=0 /T StatsLabels
// Machine specific parameters
NewDatafolder /S root:NAC: Machine

156 String /G LaserPowerCorrectionList ="1.28;1.38682;1.31814;1.15762;" // Laser ⤦
Ç Power Correction Factors // Add new one in the begining // Exp. 2013 -12 -22

String /G ReflectivityCleanList ="0.444 Ni/PVDF ;0.436 Ni/PVDF old ;0.89 Al/PVDF ;"⤦
Ç // Reflectivities of Clean Samples // Number must come first ! // ⤦
Ç External Measurement R( HD -PTFE) =0.948 R(LD -PTFE)=R( Spetralon ) =0.978 !!

Variable /G LaserPowerCorrection = Str2Num ( StringFromList (0, ⤦
Ç LaserPowerCorrectionList , ";"))

Variable /G ReflectivityClean = Str2Num ( StringFromList (0, ReflectivityCleanList , ⤦
Ç ";"))

Variable /G BeamDiameter =0.0045 // Construction Nozzle
161 Variable /G QCMDiameter =0.006 // Data sheet

Variable /G QCMToolingCalorimetry =1.09042 // Sauerbrey sensitivity
Variable /G QCMToolingCoating =0.604 // Exp. 2013 -06 -19 EXCEL
Variable /G QMSToolingCalorimetry =0.959158 // Exp. 2013 -12 -20 Tooling QMS
Variable /G RateFittingWindow =60 // Data Points
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166 Variable /G DeconvolutionWindow =0.012 // Empirical ; Lower : Noisy -- Higher : ⤦
Ç Artefacts ...

Variable /G PulseLengthDetectionWindow =0.1
Variable /G HighpassFrequency =0.175
Variable /G LineNotchFrequency =50
Variable /G SecondNotchFrequency =0

171 Variable /G NyquistFrequency =500 , ProcessRate
Variable /G TrimTrendRange =5 // Neglect TrimTrendRange data points at start ⤦
Ç and end for trends

NewDatafolder /S root:NAC: Enthalpies
Variable /G MultiLayerPosLow =NaN , MultiLayerPosHigh =NaN
Variable /G MultiLayerEnthalpy , MultiLayerEnthalpyError

176 Variable /G SubtractAdsorbed =NaN , SubtractDesorbed =NaN
Make /N=2 MultiLayerReference =0, ThicknessRange =NaN , StickingLimit =1
Make /N=0 Coverage , Enthalpy , Sticking , Thickness
Setscale /P x, 0, 1, " Frame ", Coverage , Enthalpy , Sticking
Setscale /P d, 0, 0, "ML", Coverage

181 Setscale /P d, 0, 0, "J/mol", Enthalpy , MultiLayerReference
Setscale /P d, 0, 0, "", Sticking
SetScale /P x 0, 1, "m", ThicknessRange
NewDatafolder /S root:NAC: Experiment // Common settings in an experiment
String /G ProjectVersion = NAC_Version

186 String /G ExperimentName
Variable /G SampleRate =0
Variable /G DataPointsPerFrame =0
Variable /G OpenCloseSteps =0
Variable /G ChopperPeriod =0, ChopperDelay =0, NominalPulseLength =0

191 Variable /G PulseLength =0
Variable /G LengthDetectFailed
Variable /G TemperatureSample =NaN , TemperatureSource =NaN
Variable /G AutoFlag =1, AutoFlagged =0
Variable /G UseFittedRadiation =0, UseFittedDesorption =0

196 Variable /G MirrorContamination =1//0.84898 // Usually ==1 // EXP0020 Mirror⤦
Ç Contamination

Variable /G SwitchDeadTime =0
Variable /G UseEmptyCrucibleReference =0
Variable /G EmptyCrucibleTemperature =NaN
For (i=0;i< ItemsInList ( CalorimetryMeasurements );i+=1)

201 NewDatafolder /S $"root:NAC :"+ StringFromList (i, CalorimetryMeasurements )
NewDatafolder $"root:NAC :"+ StringFromList (i, CalorimetryMeasurements )+":⤦
Ç Auxiliaries "
If (! StringMatch ( StringFromList (i, CalorimetryMeasurements ) ," Sticking "))

Make /T /N=1 Header ={" Not Loaded "}
EndIf

206 String /G FileName =" Not Loaded "
Variable /G Loaded =0
Make /N=0 DisplayRaw , DisplayFit
Make /N=0 /B /U FlagList
Variable /G NumberOfFrames , EffectiveFrames

211 Variable /G CurrentFrame =0
Variable /G BrowseDeconvolutionIndex =0
Wave FlagList
StrSwitch ( StringFromList (i, CalorimetryMeasurements ))

Case "Heat ":
216 Case " Sticking ":

Break
Default :

NewDatafolder /S $"root:NAC :"+ StringFromList (i, CalorimetryMeasurements )⤦
Ç +": Statistics "

Make /N=0 Amplitude , Position , ChiSq , Outlier
221 Make /N=1 Medians =NaN

Make /N=2 Quartiles =NaN , Whiskers =NaN , WhiskerLimits =NaN
Wave Amplitude , Outlier
SetScale /P x, 0, 1, " Frame ", Amplitude , FlagList , ChiSq , Outlier
SetScale /P d, 0, 2, " Relative Amplitude ", Amplitude

226 Variable /G AutoFlagged =0, StdDev =NaN
EndSwitch

EndFor
For (i=0;i< ItemsInList ( RateMeasurements );i+=1)
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NewDatafolder /S $"root:NAC :"+ StringFromList (i, RateMeasurements )
231 NewDatafolder $"root:NAC :"+ StringFromList (i, RateMeasurements )+": Auxiliaries "

Make /T /N=1 Header ={" Not Loaded "}
String /G FileName =" Not Loaded "
Variable /G Loaded =0
String /G Substance ="" , SubstanceName =""

236 Make /N=2 FittedRateAvg , FittedRateErrorPos , FittedRateErrorNeg
Variable /G BaselineTo , BaselineFrom
Variable /G UseBaseline
Variable /G DepositionRate =0
Variable /G BaselineBefore =0, ApparentRate =0, BaselineAfter =0

241 Variable /G TotalThickness =0, ThicknessMonoLayers =0, Duration =0
Variable /G Density , MolarMass , MonolayerDensity
Variable /G FittedFrom =NaN , FittedTo =NaN
Variable /G FittedAvg =NaN , FittedSDev =NaN

EndFor
246 NVar ReflectivityClean =root:NAC: Machine : ReflectivityClean

SetDatafolder root:NAC: Deconvolution
Variable /G Reflectivity = ReflectivityClean
Variable /G LaserPower
Variable /G SampleRate =0

251 Variable /G DataPointsPerFrame =0
Variable /G OpenCloseSteps =0
Variable /G ChopperPeriod =0, ChopperDelay =0, NominalPulseLength =0
Variable /G PulseLength =0
Variable /G AverageFrames =1

256 Variable /G RemoveFixedRadiation , RemoveFittedRadiation , UseFittedFitWave =1
Variable /G SwitchDeadTime =0
Variable /G Sensitivity =1, UseSensitivity =1
SetDatafolder root:NAC: BeforeCoating
Variable /G Reflectivity = ReflectivityClean

261 Variable /G LaserPower
SetDatafolder root:NAC: AfterCoating
Variable /G Reflectivity =NaN
Variable /G LaserPower
SetDatafolder root:NAC: LaserReference

266 Variable /G Reflectivity = ReflectivityClean
Variable /G LaserPower
SetDatafolder root:NAC: Transmission
Variable /G Transmission
Variable /G LaserPower

271 SetDatafolder root:NAC: Radiation
SetDatafolder root:NAC: ZeroSticking
SetDatafolder root:NAC:Heat
Variable /G InitOffset =0, InitAdsorption =1e-6, InitRadiation =1
Variable /G InitAdsorptionShift =0, InitRadiationShift =0

276 Variable /G HoldOffset =0, HoldAdsorption =0, HoldRadiation =0
Variable /G HoldAdsorptionShift =1, HoldRadiationShift =1, LinkShifts =1
Make /N=0 Offset , Adsorption , Radiation , ShiftAds , ShiftRad , ChiSq , ⤦
Ç fit_Radiation , orig_Radiation

SetScale /I x, 0, 1, " Frame ", Offset , Adsorption , Radiation , ShiftAds , ShiftRad⤦
Ç , ChiSq , fit_Radiation , orig_Radiation

SetDatafolder root:NAC: Sticking
281 Variable /G InitOffset =0, InitDesorption =0.5

Variable /G InitShift =0
Variable /G HoldOffset =0, HoldDesorption =0, HoldShift =1
Make /N=0 Offset , Desorption , Shift , ChiSq , fit_Desorption , orig_Desorption
SetScale /I x, 0, 1, " Frame ", Offset , Desorption , Shift , ChiSq , fit_Desorption ,⤦
Ç orig_Desorption

286 Make /N=2 StickingLimit =1
SetDatafolder root:NAC: RateCoating :
Variable /G UseTotalRange =1
SetDatafolder root:NAC: RateCalorimetry :
Variable /G DosePerPulse =0, MoleDosePerPulse =0

291 Variable /G RateMonoLayer =0
SetDatafolder root:NAC:
SetScale d 0, 0, "s", :Heat:ShiftAds , :Heat:ShiftRad , : Sticking : Shift
SetScale d 0, 0, "J", :Heat: Adsorption
SetDataFolder OldDF
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296 CreateDebyeIntegral ()
Return NoError

End
//

Function Dependencies
Static Function Dependencies ()

301 Variable i
String Measurements =" LaserReference ; Transmission ; BeforeCoating ; AfterCoating ;⤦

Ç Radiation ;Heat; Sticking ; ZeroSticking ; Deconvolution ;"
SetFormula root:NAC: Machine : ProcessRate "2* NyquistFrequency " // Hz
SetFormula root:NAC: Experiment : EmptyCrucibleTemperature "Mean(root:NAC:⤦
Ç Radiation : Auxiliaries : Source )"

SetFormula root:NAC: BeforeCoating : Reflectivity "root:NAC: Machine :⤦
Ç ReflectivityClean " // d.l.

306 SetFormula root:NAC: LaserReference : Reflectivity "root:NAC: Machine :⤦
Ç ReflectivityClean " // d.l.

SetFormula root:NAC: Deconvolution : Reflectivity "root:NAC: Machine :⤦
Ç ReflectivityClean " // d.l.

SetFormula root:NAC: Deconvolution : PulseLength "root:NAC: Deconvolution :⤦
Ç NominalPulseLength "

SetFormula root:NAC: RateCalorimetry : DepositionRate "root:NAC: RateCalorimetry :⤦
Ç UseBaseline ? (root:NAC: RateCalorimetry : ApparentRate - (root:NAC:⤦
Ç RateCalorimetry : BaselineBefore +root:NAC: RateCalorimetry : BaselineAfter )/2) :⤦
Ç (root:NAC: RateCalorimetry : ApparentRate )" // m/s

SetFormula root:NAC: RateCalorimetry : RateMonoLayer "root:NAC: RateCalorimetry :⤦
Ç DepositionRate * (root:NAC: RateCalorimetry : Density *1 e3) / (root:NAC:⤦
Ç RateCalorimetry : MolarMass *1e -3) / (root:NAC: RateCalorimetry :⤦
Ç MonolayerDensity ) * N_Avo " // ML/s

311 SetFormula root:NAC: RateCalorimetry : DosePerPulse "root:NAC: RateCalorimetry :⤦
Ç RateMonoLayer * root:NAC: Experiment : PulseLength " // ML/ Pulse

SetFormula root:NAC: RateCalorimetry : MoleDosePerPulse "root:NAC: RateCalorimetry :⤦
Ç DepositionRate * root:NAC: Experiment : PulseLength * (root:NAC:⤦
Ç RateCalorimetry : Density *1 e3) / (root:NAC: RateCalorimetry : MolarMass *1e -3) * ⤦
Ç (root:NAC: Machine : BeamDiameter /2) ^2* pi" // m/s*s/ Pulse *kg/m^3/( kg/mol)*m⤦
Ç ^2= mol/ Pulse <-- relevant quantity

SetFormula root:NAC: RateCoating : Duration "root:NAC: RateCoating : Timeline [root:⤦
Ç NAC: RateCoating : BaselineFrom ] - root:NAC: RateCoating : Timeline [root:NAC:⤦
Ç RateCoating : BaselineTo ]" // s

SetFormula root:NAC: RateCoating : DepositionRate "root:NAC: RateCoating :⤦
Ç UseBaseline ? root:NAC: RateCoating : ApparentRate - (root:NAC: RateCoating :⤦
Ç BaselineBefore +root:NAC: RateCoating : BaselineAfter )/2 : root:NAC: RateCoating⤦
Ç : ApparentRate " // m/s

SetFormula root:NAC: RateCoating : TotalThickness "root:NAC: RateCoating :⤦
Ç UseTotalRange ? (( root:NAC: RateCoating : Thickness [root:NAC: RateCoating :⤦
Ç BaselineFrom ] - root:NAC: RateCoating : Thickness [root:NAC: RateCoating :⤦
Ç BaselineTo ]) * root:NAC: Machine : QCMToolingCoating ) : (root:NAC: RateCoating :⤦
Ç DepositionRate *root:NAC: RateCoating : Duration )" // m

316 SetFormula root:NAC: Enthalpies : SubtractAdsorbed " NAC_CorrAdsorbed (root:NAC:⤦
Ç RateCalorimetry :Substance ,root:NAC: Experiment : TemperatureSample ,root:NAC:⤦
Ç Experiment : TemperatureSource )" // J/mol

SetFormula root:NAC: Enthalpies : SubtractDesorbed " NAC_CorrDesorbed (root:NAC:⤦
Ç RateCalorimetry :Substance ,root:NAC: Experiment : TemperatureSample ,root:NAC:⤦
Ç Experiment : TemperatureSource )" // J/mol

SetFormula root:NAC: Enthalpies : MultiLayerEnthalpy "Mean(root:NAC: Enthalpies :⤦
Ç Enthalpy , root:NAC: Enthalpies : MultilayerPosLow , root:NAC: Enthalpies :⤦
Ç MultilayerPosHigh )" // J/mol

SetFormula root:NAC: Enthalpies : MultiLayerEnthalpyError "Sqrt( Variance (root:NAC:⤦
Ç Enthalpies :Enthalpy , root:NAC: Enthalpies : MultilayerPosLow , root:NAC:⤦
Ç Enthalpies : MultilayerPosHigh ))" // J/mol

SetFormula root:NAC: Enthalpies : MultiLayerReference " NAC_RefEnthalpy (root:NAC:⤦
Ç RateCalorimetry :Substance ,root:NAC: Experiment : TemperatureSample )" // J/mol

321 SetFormula root:NAC: Enthalpies : Thickness "root:NAC: Enthalpies : Coverage / (root:⤦
Ç NAC: RateCalorimetry : Density *1 e3)* (root:NAC: RateCalorimetry : MolarMass *1e -3)⤦
Ç * (root:NAC: RateCalorimetry : MonolayerDensity )/ N_Avo " // m

For (i=0;i< ItemsInList ( Measurements ,";") ;i+=1)
SetFormula $"root:NAC :"+ StringFromList (i, Measurements ,";") +": EffectiveFrames "⤦
Ç "root:NAC :"+ StringFromList (i, Measurements ,";") +": NumberOfFrames -Sum(root:⤦
Ç NAC :"+ StringFromList (i, Measurements ,";") +": FlagList )" // Frames
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EndFor
Return NoError

326 End
//

Function CreateDebyeIntegral
Static Function CreateDebyeIntegral ()

Make /D /N =5000 root:NAC: Enthalpies : Debye_Integral
Make /FREE /D /N =5000 Temp

331 Wave Debye_Integral =root:NAC: Enthalpies : Debye_Integral
SetScale /I x, 1e-6, 20, "", Temp , Debye_Integral // Theta /T
MultiThread Temp=x^4* Exp(x)/( Exp(x) -1)^2
MultiThread Debye_Integral =Area(Temp ,0,x)
KillWaves Temp

336 End
//

Function KillDependencies
Static Function KillDependencies () // Necessary only for dependencies including ⤦

Ç wave references
Variable i
String Measurements =" LaserReference ; Transmission ; ReflecBefore ; BeforeCoating ;⤦

Ç ReflecAfter ; AfterCoating ; Radiation ;Heat; Sticking ; ZeroSticking ; Deconvolution⤦
Ç ;"

341 If ( DataFolderExists (" root:NAC "))
SetFormula root:NAC: Experiment : EmptyCrucibleTemperature ""
SetFormula root:NAC: Sticking : FlagList ""
SetFormula root:NAC: Enthalpies : MultiLayerEnthalpy ""
SetFormula root:NAC: Enthalpies : MultiLayerReference ""

346 SetFormula root:NAC: Enthalpies : Thickness ""
SetFormula root:NAC: Enthalpies : MultiLayerEnthalpy ""
If ( DataFolderExists (" root:NAC: RateCoat "))

SetFormula root:NAC: RateCoat : TotalThickness ""
SetFormula root:NAC: RateCoat : Duration ""

351 ElseIf ( DataFolderExists (" root:NAC: RateCoating "))
SetFormula root:NAC: RateCoating : TotalThickness ""
SetFormula root:NAC: RateCoating : Duration ""

EndIf
If ( Exists (" root:NAC: Enthalpies : MultiLayerEnthalpyError "))

356 SetFormula root:NAC: Enthalpies : MultiLayerEnthalpyError ""
EndIf
For (i=0;i< ItemsInList ( Measurements ,";") ;i+=1)

If ( DatafolderExists (" root:NAC :"+ StringFromList (i, Measurements ,";") ))
SetFormula $"root:NAC :"+ StringFromList (i, Measurements ,";") +":⤦

Ç EffectiveFrames " ""
361 EndIf

EndFor
EndIf
Return NoError

End
366 //

C.1.3 Graphical User Interface
//

Function NAC_RemoveNAC
Function NAC_RemoveNAC ()

If ( DataFolderExists (" root:NAC "))
DoAlert 1, " Delete the NAC data folder and discard all included data ?"

371 If ( V_Flag !=1)
Error_Message (UserAbort , " InProc ", " NAC_RemoveNAC ", "")
Return NaN

EndIf
Error_Message ( KillWins (" NAC ") , " KillWins ", " NAC_RemoveNAC ", "")

376 Error_Message ( KillDependencies () , " KillDependencies ", " NAC_RemoveNAC ", "")
KillDataFolder /Z root:NAC
If ( V_Flag )

Error_Message ( NAC_DataFolderError , " InProc ", " NAC_RemoveNAC ", "")
Return NaN
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381 EndIf
Else

Error_Message ( NAC_NotInitialized , " InProc ", " NAC_RemoveNAC ", "")
EndIf
Return NoError

386 End
//

Function NAC_Unload
Function NAC_Unload ()

String NameList =" Deconvolution ; BeforeCoating ; RateCoating ; AfterCoating ;⤦
Ç LaserReference ; Transmission ; Radiation ; RateCalorimetry ; ZeroSticking ;Heat;⤦
Ç Sticking "

String Name =""
391 Variable i, j

If (! DataFolderExists (" root:NAC "))
Return NaN

EndIF
For (i=0;i< ItemsInList ( NameList );i+=1)

396 NVar Loaded =$"root:NAC :"+ StringFromList (i, NameList , ";") +": Loaded "
If ( Loaded )

Name += StringFromList (i, NameList , ";") +";"
EndIf

EndFor
401 NameList =" Cancel ;"+ Name

Name =""
Prompt Name , " Measurement : ", popup , NameList
DoPrompt /HELP ="" " Remove Measurement ", Name
If (! V_Flag && ! StringMatch (Name ," Cancel "))

406 DFRef OldDF = GetDataFolderDFR ()
SetDataFolder $"root:NAC :"+ Name
StrSwitch (Name)

Case "Heat ":
Case " Sticking ":

411 NameList =" Heat; Sticking ;"
KillWins (" NAC_Desorption ")
KillWins (" NAC_Adsorption ")
KillWins (" NAC_Radiation_VsFrame ")
Break

416 Case " BeforeCoating ":
Case " AfterCoating ":

NVar Reflec =root:NAC: AfterCoating : Reflectivity
Reflec =NaN
NameList =Name +";"

421 Break
Case " LaserReference ":
Case " Transmission ":

KillWins (" NAC_Heat ")
KillWins (" NAC_Adsorption ")

426 NameList =Name +";"
NVar Trans =root:NAC: Transmission : Transmission
Trans =NaN
Break

Case " ZeroSticking ":
431 KillWins (" NAC_Sticking ")

KillWins (" NAC_Desorption ")
NameList =Name +";"
Break

Default :
436 NameList =Name +";"

Break
EndSwitch
For (j=0; j< ItemsInList ( NameList ); j+=1)

Name= StringFromList (j, NameList )
441 KillWins (" NAC_ "+ Name)

SetDataFolder $"root:NAC :"+ Name +": Auxiliaries "
KillWaves /A
SetDataFolder $"root:NAC :"+ Name
NVar Loaded
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446 SVar FileName
Make /O /T /N=1 Header ={" Not Loaded "}
FileName =" Not Loaded "
Loaded =0
StrSwitch (Name)

451 Case " RateCalorimetry ":
SetFormula root:NAC: RateCalorimetry : DepositionRate ""
SetFormula root:NAC: RateCalorimetry : RateMonoLayer ""
SetFormula root:NAC: RateCalorimetry : DosePerPulse ""
SetFormula root:NAC: RateCalorimetry : MoleDosePerPulse ""

456 Break
Case " RateCoating ":

SetFormula root:NAC: RateCoating : Duration ""
SetFormula root:NAC: RateCoating : DepositionRate ""
SetFormula root:NAC: RateCoating : TotalThickness ""

461 Break
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":
Case " Transmission ":

466 Case " Deconvolution ":
NVar LaserPower
LaserPower =0
Break

Default :
471 Break

EndSwitch
StrSwitch (Name)

Case " RateCoating ":
Case " RateCalorimetry ":

476 SVar Substance , SubstanceName
Substance =""
SubstanceName =""
NVar DepositionRate , BaselineBefore , ApparentRate , BaselineAfter , ⤦

Ç TotalThickness , ThicknessMonoLayers , Duration , Density , MolarMass , ⤦
Ç MonolayerDensity

NVar FittedFrom , FittedTo , FittedAvg , FittedSDev
481 BaselineBefore =0

ApparentRate =0
BaselineAfter =0
TotalThickness =0
ThicknessMonoLayers =0

486 Duration =0
Density =NaN
MolarMass =NaN
MonolayerDensity =0
FittedFrom =NaN

491 FittedTo =NaN
FittedAvg =NaN
FittedSDev =NaN
DepositionRate =0
Wave Thickness , Timeline , Thickness_FitHigh , Thickness_FitMid , ⤦

Ç Thickness_FitLow , Timeline_FitHigh , Timeline_FitMid , Timeline_FitLow
496 KillWaves Thickness , Timeline , Thickness_FitHigh , Thickness_FitMid , ⤦

Ç Thickness_FitLow , Timeline_FitHigh , Timeline_FitMid , Timeline_FitLow
Break

Default :
Wave DisplayFit , DisplayRaw , FlagList , Detector
ReDimension /N=0 DisplayFit , DisplayRaw , FlagList

501 KillWaves /Z Detector
NVar NumberOfFrames , CurrentFrame , BrowseDeconvolutionIndex
NumberOfFrames =0
CurrentFrame =0
BrowseDeconvolutionIndex =0

506 Break
EndSwitch
StrSwitch (Name)

Case " RateCoating ":
Break
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511 Case " RateCalorimetry ":
NVar DosePerPulse , MoleDosePerPulse , RateMonoLayer
DosePerPulse =0
MoleDosePerPulse =0
RateMonoLayer =0

516 Break
Case "Heat ":
Case " Sticking ":

Break
Default :

521 NVar AutoFlagged =$"root:NAC :"+ Name +": Statistics : AutoFlagged ", ⤦
Ç AutoFlaggedExp =root:NAC: Experiment : AutoFlagged

Wave StatAmp =$"root:NAC :"+ Name +": Statistics : Amplitude ", StatWhi =$"root:⤦
Ç NAC :"+ Name +": Statistics : Whiskers ", StatWhiLim =$"root:NAC :"+ Name +":⤦
Ç Statistics : WhiskerLimits "

Wave StatQuart =$"root:NAC :"+ Name +": Statistics : Quartiles ", StatPos =$"⤦
Ç root:NAC :"+ Name +": Statistics : Position ", StatMed =$"root:NAC :"+ Name +":⤦
Ç Statistics : Medians "

Wave StatChiSq =$"root:NAC :"+ Name +": Statistics : ChiSq ", StatOutlier =$"⤦
Ç root:NAC :"+ Name +": Statistics : Outlier "

AutoFlagged =0
526 AutoFlaggedExp =0

ReDimension /N=0 StatAmp , StatPos , StatChiSq , StatOutlier
StatMed =NaN
StatQuart =NaN
StatWhi =NaN

531 StatWhiLim =NaN
Break

EndSwitch
StrSwitch (Name)

Case "Heat ":
536 Wave Radiation , Adsorption , Offset , ShiftAds , ShiftRad , ChiSq , ⤦

Ç fit_Radiation
Wave Enthalpy =root:NAC: Enthalpies : Enthalpy
ReDimension /N=0 Radiation , Adsorption , Enthalpy , Offset , ShiftAds , ⤦

Ç ShiftRad , fit_Radiation
ReDimension /N=( NumberOfFrames ) ChiSq
NVar UseFR =root:NAC: Experiment : UseFittedRadiation

541 ChiSq =0
UseFR =0
CheckBox FittedRad Disable =2, Win= NAC_Control
Break

Case " Sticking ":
546 Wave Desorption , Offset , Shift , ChiSq , fit_Desorption

Wave Sticking =root:NAC: Enthalpies : Sticking
Wave Coverage =root:NAC: Enthalpies :Coverage , Thickness =root:NAC:⤦

Ç Enthalpies : Thickness
NVar UseFD =root:NAC: Experiment : UseFittedDesorption
ReDimension /N=(0) Desorption , Offset , Shift , Sticking , Coverage , ChiSq⤦

Ç , fit_Desorption , Thickness
551 ReDimension /N=( NumberOfFrames ) ChiSq

ChiSq =0
UseFD =0
CheckBox FittedDes Disable =2, Win= NAC_Control
Break

556 Case " LaserReference ":
NVar Failed =root:NAC: Experiment : LengthDetectFailed
Failed =0
Break

Default :
561 Break

EndSwitch
StrSwitch (Name)

Case " BeforeCoating ":
KillWaves /Z root:NAC: Experiment : FitReflectivityOdd , root:NAC:⤦

Ç Experiment : FitReflectivityEven
566 Break

Case " LaserReference ":
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KillWaves /Z root:NAC: Experiment : FitLaserReferenceOdd , root:NAC:⤦
Ç Experiment : FitLaserReferenceEven

Break
Case " Radiation ":

571 KillWaves /Z root:NAC: Experiment : FitRadiationOdd , root:NAC: Experiment :⤦
Ç FitRadiationEven

Break
Case " ZeroSticking ":

KillWaves /Z root:NAC: Experiment : FitStickingOdd , root:NAC: Experiment :⤦
Ç FitStickingEven

Break
576 Case " Deconvolution ":

KillWaves /Z root:NAC: Experiment : DeconvolutionOdd , root:NAC: Experiment :⤦
Ç FitDeconvolutionEven

Break
Default :

Break
581 EndSwitch

If ( StringMatch (Name , "Heat "))
NVar TemperatureSource =root:NAC: Experiment : TemperatureSource , ⤦

Ç TemperatureSample =root:NAC: Experiment : TemperatureSample
TemperatureSource =NaN
TemperatureSample =NaN

586 EndIf
StrSwitch (Name)

Case " RateCalorimetry ":
SetFormula root:NAC: RateCalorimetry : DepositionRate "root:NAC:⤦

Ç RateCalorimetry : UseBaseline ? (root:NAC: RateCalorimetry : ApparentRate - (⤦
Ç root:NAC: RateCalorimetry : BaselineBefore +root:NAC: RateCalorimetry :⤦
Ç BaselineAfter )/2) : (root:NAC: RateCalorimetry : ApparentRate )" // m/s

SetFormula root:NAC: RateCalorimetry : RateMonoLayer "root:NAC:⤦
Ç RateCalorimetry : DepositionRate * (root:NAC: RateCalorimetry : Density *1 e3) / (⤦
Ç root:NAC: RateCalorimetry : MolarMass *1e -3) / (root:NAC: RateCalorimetry :⤦
Ç MonolayerDensity ) * N_Avo " // ML/s

591 SetFormula root:NAC: RateCalorimetry : DosePerPulse "root:NAC:⤦
Ç RateCalorimetry : RateMonoLayer * root:NAC: Experiment : PulseLength " // ML/⤦
Ç Pulse

SetFormula root:NAC: RateCalorimetry : MoleDosePerPulse "root:NAC:⤦
Ç RateCalorimetry : DepositionRate * root:NAC: Experiment : PulseLength * (root:⤦
Ç NAC: RateCalorimetry : Density *1 e3) / (root:NAC: RateCalorimetry : MolarMass *1e⤦
Ç -3) * (root:NAC: Machine : BeamDiameter /2) ^2* pi" // m/s*s/ Pulse *kg/m^3/( kg/⤦
Ç mol)*m^2= mol/ Pulse <-- relevant quantity

Case " RateCoating ":
SetFormula root:NAC: RateCoating : Duration "root:NAC: RateCoating : Timeline⤦

Ç [root:NAC: RateCoating : BaselineFrom ] - root:NAC: RateCoating : Timeline [root:⤦
Ç NAC: RateCoating : BaselineTo ]" // s

SetFormula root:NAC: RateCoating : DepositionRate "root:NAC: RateCoating :⤦
Ç UseBaseline ? root:NAC: RateCoating : ApparentRate - (root:NAC: RateCoating :⤦
Ç BaselineBefore +root:NAC: RateCoating : BaselineAfter )/2 : root:NAC: RateCoating⤦
Ç : ApparentRate " // m/s

596 SetFormula root:NAC: RateCoating : TotalThickness "root:NAC: RateCoating :⤦
Ç UseTotalRange ? (( root:NAC: RateCoating : Thickness [root:NAC: RateCoating :⤦
Ç BaselineFrom ] - root:NAC: RateCoating : Thickness [root:NAC: RateCoating :⤦
Ç BaselineTo ]) * root:NAC: Machine : QCMToolingCoating ) : (root:NAC: RateCoating :⤦
Ç DepositionRate *root:NAC: RateCoating : Duration )" // m

Default :
Break

EndSwitch
EndFor

601 SetDataFolder OldDF
EndIf
Return NoError

End
//

Function NAC_CorrectGain
606 Function NAC_CorrectGain ()

String NameList =" Deconvolution ; Before Coating ; After Coating ; Laser Reference ;⤦
Ç Transmission ; Radiation ;Zero Sticking ;Heat; Sticking "
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String Name =""
Variable i, Gain =1
If (! DataFolderExists (" root:NAC "))

611 Return NaN
EndIF
For (i=0;i< ItemsInList ( NameList );i+=1)

NVar Loaded =$"root:NAC :"+ ReplaceString (" ", StringFromList (i, NameList , ";") ,⤦
Ç "" )+": Loaded "
If ( Loaded )

616 Name += StringFromList (i, NameList , ";") +";"
EndIf

EndFor
NameList =" Cancel ;"+ Name
Name =""

621 Prompt Name , " Measurement : ", popup , NameList
Prompt Gain , "Gain Correction : "
DoPrompt /HELP ="" " Enter Gain for Measurement ", Name , Gain
If (! V_Flag && (Gain !=0) && ! StringMatch (Name ," Cancel "))

Wave Detector =$"root:NAC :"+ ReplaceString (" ", Name +": Detector ", "")
626 Detector /= Gain

Print "root:NAC :"+ Name +": Detector devided by " + Num2Str (Gain)+" Data ⤦
Ç needs to be processed again ."
Note Detector , " Values devided by " + Num2Str (Gain)

EndIf
End

631 //

Function NAC_MenuAutoFlag
Function /S NAC_MenuAutoFlag ()

If ( Exists (" root:NAC: Experiment : AutoFlag ") !=2)
Return "( Auto Flagging "

EndIf
636 NVar AutoFlag =root:NAC: Experiment : AutoFlag

If ( AutoFlag )
Return "! Auto Flagging "

Else
Return "Auto Flagging "

641 EndIf
End
//

Function NAC_MenuLoadSupport
Function /S NAC_MenuLoadSupport ()

If ( Exists (" root:NAC:GUI: LoadSupportFiles ") !=2)
646 Return "( Load Supporting Files "

EndIf
NVar LoadSupport =root:NAC:GUI: LoadSupportFiles
If ( LoadSupport )

Return "! Load Supporting Files "
651 Else

Return "Load Supporting Files "
EndIf

End
//

Function NAC_MenuStoreFiltered
656 Function /S NAC_MenuStoreFiltered ()

If ( Exists (" root:NAC:GUI: StoreFilteredWaves ") !=2)
Return "( Store Filter Residue Waves "

EndIf
NVar LoadSupport =root:NAC:GUI: StoreFilteredWaves

661 If ( LoadSupport )
Return "! Store Filter Residue Waves "

Else
Return " Store Filter Residue Waves "

EndIf
666 End
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//

Function NAC_MenuAutoUpdateAverages
Function /S NAC_MenuAutoUpdateAverages ()

If ( Exists (" root: NAC_Average : Settings : AutoRecalculate ") !=2)
Return "( Automatically Recalculate Averaged Experiments "

671 EndIf
NVar AutoRecalculate =root: NAC_Average : Settings : AutoRecalculate
If ( AutoRecalculate )

Return "! Automatically Recalculate Averaged Experiments "
Else

676 Return " Automatically Recalculate Averaged Experiments "
EndIf

End
//

Function NAC_MenuShowBoxPlotData
Function /S NAC_MenuShowBoxPlotData ()

681 If ( Exists (" root:NAC:GUI: ShowBoxPlotData ") !=2)
Return "( Show Data Points in Box Plots "

EndIf
NVar ShowBoxPlotData =root:NAC:GUI: ShowBoxPlotData
If ( ShowBoxPlotData )

686 Return "! Show Data Points in Box Plots "
Else

Return "Show Data Points in Box Plots "
EndIf

End
691 //

Function SetDeconvolutionGraphRanges
Static Function SetDeconvolutionGraphRanges (Name , Type)
String Name , Type
Variable Tmp , TmpRange
String WindowList , WName

696 String WinSubList =" _Deconv ; _BrowseDeconv ; _AvgDeconv ;"
Variable V1 , V2

StrSwitch (Name)
Case " Deconvolution ":
Case " RateCalorimetry ":

701 Case " RateCoating ":
Return NAC_NotApplicable
Break

Case " Sticking ":
Case " ZeroSticking ":

706 Return NAC_NotImplementedYet
Break

Default :
WindowList =" BeforeCoating ; AfterCoating ; LaserReference ; Transmission ;⤦

Ç Radiation ;Heat ;"
NVar Range =root:NAC:GUI: RangeDeconvolution

711 SVar DefRange =root:NAC:GUI: NameRangeDeconvolution
Break

EndSwitch
NVar Loaded =$"root:NAC :"+ Name +": Loaded "
If (! Loaded )

716 Return NAC_NoDataLoaded
EndIf
StrSwitch (Type)

Case " AverageEven ":
Wave DispWave =$"root:NAC: Deconvolution :"+ Name +" AvgEven "

721 Break
Case " AverageOdd ":

Wave DispWave =$"root:NAC: Deconvolution :"+ Name +" AvgOdd "
Break

Case " Deconvolution ":
726 Wave DispWave =$"root:NAC :"+ Name +": Deconvolution "

Break
Default :
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Return NAC_NotApplicable
Break

731 EndSwitch
Tmp=Max(Abs( WaveMin ( DispWave )), Abs( WaveMax ( DispWave )))
TmpRange =(( Tmp >0) ? Ceil(Tmp /10^ Floor (Log(Abs(Tmp)))) : Floor (Tmp /10^ Floor (Log(⤦
Ç Abs(Tmp)))) )*10^ Floor (Log(Abs(Tmp)))

If (( TmpRange > Range ) || StringMatch (Name , DefRange ))
Range = TmpRange

736 DefRange =Name
EndIf
For (V1 =0;V1 < ItemsInList ( WindowList );V1 +=1)

For (V2 =0;V2 < ItemsInList ( WinSubList );V2 +=1)
WName =" NAC_ "+ StringFromList (V1 , WindowList ,";") + StringFromList (V2 , WinSubList⤦

Ç ,";")
741 DoWindow $WName

If ( V_Flag )
If ( StringMatch ( StringFromList (V2 , WinSubList ,";") ," _Deconv "))

ModifyImage /W= $WName Deconvolution ctab= {-Range , Range , RedWhiteBlue⤦
Ç ,1}

Else
746 If ( Range ==0)

SetAxis /W= $WName left *, *
Else

SetAxis /W= $WName left -Range , Range
EndIf

751 EndIf
EndIf

EndFor
EndFor
Return NoError

756 End
//

Function SetGraphRanges
Static Function SetGraphRanges (Name[, ProcessWave ])
String Name , ProcessWave
Variable Tmp , Range

761 String WindowList , WName
String WinSubList =" _Full ; _Flag ; _Frames ;_Avg ;"
Variable V1 , V2

StrSwitch (Name)
Case " Deconvolution ":

766 Case " RateCalorimetry ":
Case " RateCoating ":

Return NAC_NotApplicable
Break

Case " Sticking ":
771 Case " ZeroSticking ":

WindowList =" Sticking ; ZeroSticking ;"
NVar Pos=root:NAC:GUI: PositiveRangeSticking , Neg=root:NAC:GUI:⤦

Ç NegativeRangeSticking
SVar DefPos =root:NAC:GUI: PositiveNameSticking , DefNeg =root:NAC:GUI:⤦

Ç NegativeNameSticking
Break

776 Default :
WindowList =" BeforeCoating ; AfterCoating ; LaserReference ; Transmission ;⤦

Ç Radiation ;Heat ;"
NVar Pos=root:NAC:GUI: PositiveRange , Neg=root:NAC:GUI: NegativeRange
SVar DefPos =root:NAC:GUI: PositiveName , DefNeg =root:NAC:GUI: NegativeName
Break

781 EndSwitch
NVar Loaded =$"root:NAC :"+ Name +": Loaded "
If (! Loaded )

Return NAC_NoDataLoaded
EndIf

786 If ( ParamIsDefault ( ProcessWave ))
Wave DispWave =$"root:NAC :"+ Name +": Detector "

Else
Wave DispWave =$"root:NAC :"+ Name +":"+ ProcessWave
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EndIf
791 Tmp= WaveMin ( DispWave )

Range =(( Tmp >0) ? Ceil(Tmp /10^ Floor (Log(Abs(Tmp)))) : Floor (Tmp /10^ Floor (Log(Abs⤦
Ç (Tmp)))) )*10^ Floor (Log(Abs(Tmp)))

If (( Range <Neg) || StringMatch (Name , DefNeg ))
Neg= Range
DefNeg =Name

796 EndIf
Tmp= WaveMax ( DispWave )
Range =(( Tmp >0) ? Ceil(Tmp /10^ Floor (Log(Abs(Tmp)))) : Floor (Tmp /10^ Floor (Log(Abs⤦
Ç (Tmp)))) )*10^ Floor (Log(Abs(Tmp)))

If (( Range >Pos) || StringMatch (Name , DefPos ))
Pos= Range

801 DefPos =Name
EndIf
For (V1 =0;V1 < ItemsInList ( WindowList );V1 +=1)

For (V2 =0;V2 < ItemsInList ( WinSubList );V2 +=1)
WName =" NAC_ "+ StringFromList (V1 , WindowList ,";") + StringFromList (V2 , WinSubList⤦

Ç ,";")
806 DoWindow $WName

If ( V_Flag )
If (Neg == Pos)

SetAxis /W= $WName left *, *
Else

811 GetAxis /W= $WName /Q left
If (( V_min != Neg) || ( V_max != Pos))

SetAxis /W= $WName left Neg , Pos
EndIf

EndIf
816 EndIf

EndFor
EndFor
Return NoError

End
821 //

Function DisplayTrend
Static Function DisplayTrend (Name , ShowTrend )
String Name
Variable ShowTrend
String WName

826 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦
Ç :GUI: MarginTop

String FolderName
StrSwitch (Name)

Case "Heat ":
Name =" Radiation "

831 Case " Radiation ":
If ( WaveExists (root:NAC:Heat: Radiation ) && WaveExists (root:NAC:Heat:⤦

Ç fit_Radiation ))
Wave Original =root:NAC:Heat: orig_Radiation
Wave Trend =root:NAC:Heat: fit_Radiation

Else
836 Return NAC_NothingToProcess

EndIf
FolderName =" Heat"
Break

Case " Sticking ":
841 Name =" Desorption "

Case " Desorption ":
If ( WaveExists (root:NAC: Sticking : Desorption ) && WaveExists (root:NAC:⤦

Ç Sticking : fit_Desorption ))
Wave Original =root:NAC: Sticking : orig_Desorption
Wave Trend =root:NAC: Sticking : fit_Desorption

846 Else
Return NAC_NothingToProcess

EndIf
FolderName =" Sticking "
Break
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851 Default :
Return NAC_NotApplicable
Break

EndSwitch
WName =" NAC_ "+ Name +" _Trend "

856 If ( NumPnts ( Trend ) == 0)
Return NAC_NothingToProcess

EndIf
DoWindow $WName
If ( V_Flag )

861 DoWindow /F $WName
If ( ShowTrend )

ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=0
Else

ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=2
866 EndIf

Return NAC_WindowAlreadyExists
EndIf
Display /N= $WName /K=1 /W=(50 , 50, 50+ WWidth , 50+ WHeight ) Original , Trend as "⤦
Ç Trends for "+ Name

ModifyGraph /W= $WName Mode($" orig_ "+ Name)=2, LSize ($" orig_ "+ Name)=2, Margin (Top⤦
Ç )=MarginTop , zColor ($" orig_ "+ Name)={$"root:NAC :"+ FolderName +": Flaglist⤦
Ç ",-1,1, YellowHot ,1}

871 ModifyGraph /W= $WName Mode($"fit_ "+ Name)=0, LSize ($"fit_ "+ Name)=2, RGB($"fit_ "+⤦
Ç Name)=(0 ,0 ,65280)

If ( ShowTrend )
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=0

Else
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=2

876 EndIf
Label /W= $WName Left " Intensity (a.u.)"
Label /W= $WName Bottom "\u"
Return NoError

End
881 //

Function DisplayFittedRate
Static Function DisplayFittedRate (Name)
String Name
String WName =" NAC_ "+ Name +" _FittedRate "
Variable AxisMax , Conv

886 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦
Ç :GUI: MarginTop

StrSwitch (Name)
Case " RateCoating ":
Case " RateCalorimetry ":

Break
891 Default :

Return NAC_NotApplicable
Break

EndSwitch
If (! WaveExists ($"root:NAC :"+ Name +": FittedRate "))

896 Error_Message ( CalcQCMRate (Name), " CalcQCMRate ", " DisplayFittedRate ", Name)
EndIf
DoWindow $WName
Wave FittedRate =$"root:NAC :"+ Name +": FittedRate "
Wave FittedRateAvg =$"root:NAC :"+ Name +": FittedRateAvg "

901 Wave FittedRateErrorPos =$"root:NAC :"+ Name +": FittedRateErrorPos ", ⤦
Ç FittedRateErrorNeg =$"root:NAC :"+ Name +": FittedRateErrorNeg "

If ( Stringmatch ( WaveUnits ( FittedRate ,0) ,"*s*"))
AxisMax =Ceil( RightX ( FittedRate )*10) / 10
Conv =1

ElseIf ( Stringmatch ( WaveUnits ( FittedRate ,0) ,"*m*"))
906 AxisMax =Ceil( RightX ( FittedRate )*30) / 30

Conv =60
ElseIf ( Stringmatch ( WaveUnits ( FittedRate ,0) ,"*h*"))

AxisMax =Ceil( RightX ( FittedRate )*2) / 2
Conv =60*60

911 ElseIf ( Stringmatch ( WaveUnits ( FittedRate ,0) ,"*d*"))
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AxisMax =Ceil( RightX ( FittedRate ) *0.5) / 0.5
Conv =60*60*24

EndIf
SetScale /I x, 0, AxisMax , WaveUnits ( FittedRate ,0) , FittedRateAvg , ⤦
Ç FittedRateErrorPos , FittedRateErrorNeg

916 FittedRateAvg =Mean( FittedRate )
If ( V_Flag )

DoWindow /F $WName
Label /W= $WName Left " Deposition Rate (\\U)"
Label /W= $WName Bottom " Runtime (\\u)"

921 SetAxis /W= $WName Bottom 0, AxisMax
SetAxis /W= $WName Left Min (0, WaveMin ( FittedRate )), Max (2* WaveMax (⤦
Ç FittedRateAvg ), 1.25* WaveMax ( FittedRate ))
Return NAC_WindowAlreadyExists

EndIf
Display /N= $WName /K=1 /W=(50 , 50, 50+ WWidth , 50+ WHeight ) FittedRate , ⤦
Ç FittedRateAvg , FittedRateErrorPos , FittedRateErrorNeg as " Fitted Deposition⤦
Ç Rate for "+ Name

926 ModifyGraph /W= $WName Mode( FittedRate )=2, LSize ( FittedRate )=2, Margin (Top)=⤦
Ç MarginTop

ModifyGraph /W= $WName Mode( FittedRateAvg )=0, LSize ( FittedRateAvg )=1.5 , LStyle (⤦
Ç FittedRateAvg )=2, rgb( FittedRateAvg ) =(21760 ,21760 ,21760)

ModifyGraph /W= $WName Mode( FittedRateErrorPos )=0, LSize ( FittedRateErrorPos )=1, ⤦
Ç LStyle ( FittedRateErrorPos )=1, rgb( FittedRateErrorPos )=(0 ,0 ,0)

ModifyGraph /W= $WName Mode( FittedRateErrorNeg )=0, LSize ( FittedRateErrorNeg )=1, ⤦
Ç LStyle ( FittedRateErrorNeg )=1, rgb( FittedRateErrorNeg )=(0 ,0 ,0)

ModifyGraph margin (left)=43 , margin ( bottom )=43 , margin ( right )=14
931 Label /W= $WName Left " Deposition Rate (\\U)"

Label /W= $WName Bottom " Runtime (\\u)"
SetAxis /W= $WName Bottom 0, AxisMax
SetAxis /W= $WName Left Min (0, WaveMin ( FittedRate )), Max (2* WaveMax ( FittedRateAvg⤦
Ç ), 1.25* WaveMax ( FittedRate ))

NVar FittedFrom =$"root:NAC :"+ Name +": FittedFrom ", FittedTo =$"root:NAC :"+ Name +":⤦
Ç FittedTo "

936 NVar BaselineTo =$"root:NAC :"+ Name +": BaselineTo ", BaselineFrom =$"root:NAC :"+ Name⤦
Ç +": BaselineFrom "

NVar RateFittingWindow =root:NAC: Machine : RateFittingWindow
If ( NumType ( BaselineTo )==0)

FittedFrom = BaselineTo /Conv+ DimDelta ( FittedRate , 0)
EndIf

941 If ( NumType ( BaselineFrom )==0)
FittedTo = BaselineFrom /Conv - DimDelta ( FittedRate , 0)

EndIf
Cursor /N=1 /W= $WName A FittedRate FittedFrom
Cursor /N=1 /W= $WName B FittedRate FittedTo

946 SVar FileName =$"root:NAC :"+ Name +": Filename "
NVar AvgWindow =root:NAC: Machine : RateFittingWindow
Error_Message ( UpdateFittedRate (Name), " UpdateFittedRate ", " DisplayFittedRate ", ⤦
Ç Name)

SetWindow $WName Hook($"NAC_ "+ Name +" Csr ")= NAC_WinHookFittedRate
Return NoError

951 End
//

Function DisplayVsCoverage
Static Function DisplayVsCoverage (Name)
String Name
String WName =" NAC_ "+ Name +" _VsCov "

956 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦
Ç :GUI: MarginTop

StrSwitch (Name)
Case "Heat ":
Case " Sticking ":

Break
961 Default :

Return NAC_NotApplicable
Break

EndSwitch
DoWindow $WName
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966 If ( V_Flag )
DoWindow /F $WName
Return NAC_WindowAlreadyExists

EndIf
Wave Coverage =root:NAC: Enthalpies :Coverage , Range =root:NAC: Enthalpies :⤦
Ç ThicknessRange

971 StrSwitch (Name)
Case " Sticking ":

Wave Sticking =root:NAC: Enthalpies : Sticking
If (( NumPnts ( Sticking )==0) || ( NumPnts (root:NAC: Enthalpies : Coverage )==0))

Return NAC_NothingToProcess
976 EndIf

NVar TemperatureSample =root:NAC: Experiment : TemperatureSample
Display /N= $WName /K=1 /W=(2* WWidth +220 , 50, 3* WWidth +220 , 50+ WHeight ) ⤦

Ç Sticking vs root:NAC: Enthalpies : Coverage as " Sticking vs Coverage "
AppendToGraph /W= $WName root:NAC: Enthalpies : StickingLimit
ModifyGraph /W= $WName Margin (Top)=MarginTop , mode( Sticking )=2, lsize (⤦

Ç Sticking )=2
981 ModifyGraph /W= $WName Mode( StickingLimit )=0, LSize ( StickingLimit )=1, LStyle⤦

Ç ( StickingLimit )=2, rgb( StickingLimit ) =(30464 ,30464 ,30464)
Label /W= $WName Left " Sticking Probability "
SVar Substance =root:NAC: RateCalorimetry :Substance , Substrate =root:NAC:⤦

Ç RateCoating : Substance
String Msg ="\ JCSticking Measurement for "+ Substance +" on "
If ( StrLen ( Substrate ))

986 Msg += Substrate
Else

Msg +="\" PVDF \""
EndIf
Msg=Msg + " @ " + Num2Str ( Round ( TemperatureSample )) +" K"

991 TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= TBSum /B=1 Msg
Break

Case "Heat ":
If (( NumPnts (root:NAC: Enthalpies : Enthalpy )==0) || ( NumPnts (root:NAC:⤦

Ç Enthalpies : Coverage )==0))
Return NAC_NothingToProcess

996 EndIf
Wave Enthalpy =root:NAC: Enthalpies : Enthalpy
NVar PosLow =root:NAC: Enthalpies : MultiLayerPosLow , PosHigh =root:NAC:⤦

Ç Enthalpies : MultiLayerPosHigh
Display /N= $WName /K=1 /W=(2* WWidth +220 , 400 , 3* WWidth +220 , 400+ WHeight ) ⤦

Ç Enthalpy vs root:NAC: Enthalpies : Coverage as "Heat of Adsorption vs Coverage⤦
Ç "

AppendToGraph /W= $WName root:NAC: Enthalpies : MultiLayerReference
1001 ModifyGraph /W= $WName Margin (Top)=MarginTop , Mode( Enthalpy )=2, LSize (⤦

Ç Enthalpy )=2
ModifyGraph /W= $WName Mode( MultiLayerReference )=0, LSize (⤦

Ç MultiLayerReference )=1, LStyle ( MultiLayerReference )=2, rgb(⤦
Ç MultiLayerReference ) =(30464 ,30464 ,30464)

Label /W= $WName Left "Heat of Adsorption (\U)"
SetWindow $WName Hook($" HeatCsr ")= NAC_WinHookCal
Cursor /N=1 /W= $WName A Enthalpy PosLow

1006 Cursor /N=1 /W= $WName B Enthalpy PosHigh
Break

Default :
Return NAC_NotApplicable
Break

1011 EndSwitch
SetScale /I x, Coverage2Thickness ( Floor ( WaveMin ( Coverage ))), Coverage2Thickness⤦
Ç (Ceil( WaveMax ( Coverage ))), "m", Range

Error_Message ( SetRangesCoverage (Name), " DisplayVsCoverage ", " SetRangesCoverage⤦
Ç ", Name)

AppendToGraph /W= $WName /B= Thickness Range
ModifyGraph /W= $WName Margin ( Bottom )=60 , LblPos ( bottom )=60 , FreePos ( Thickness )⤦
Ç =27

1016 Label /W= $WName bottom " Coverage "
Label /W= $WName Thickness " "
Return NoError

End
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//

Function SetRangesCoverage
1021 Static Function SetRangesCoverage (Name)

String Name
String WName =" NAC_ "+ Name +" _VsCov "

DoWindow $WName
If (! V_Flag )

1026 Return NAC_NoSuchWindow
EndIf
StrSwitch (Name)

Case " Sticking ":
Wave Sticking =root:NAC: Enthalpies : Sticking

1031 If (( WaveMin ( Sticking ) >=0) && ( WaveMax ( Sticking ) <=1))
SetAxis /W= $WName Left 0,1

ElseIf (( WaveMin ( Sticking ) >=0) && ( WaveMax ( Sticking ) >1))
SetAxis /W= $WName Left 0,Ceil( WaveMax ( Sticking )*10) /10

ElseIf (( WaveMin ( Sticking ) <0) && ( WaveMax ( Sticking ) <=1))
1036 SetAxis /W= $WName Left Floor ( WaveMin ( Sticking )*10) /10 ,1

Else
SetAxis /W= $WName Left Floor ( WaveMin ( Sticking )*10) /10 , Ceil( WaveMax (⤦

Ç Sticking )*10) /10
EndIf
Break

1041 Case "Heat ":
Wave Enthalpy =root:NAC: Enthalpies : Enthalpy
Wave RefEnthalpy =root:NAC: Enthalpies : MultiLayerReference
If ( WaveMin ( Enthalpy ) >=0 )

SetAxis /W= $WName Left 0, Ceil(Max( WaveMax ( Enthalpy ), RefEnthalpy [0]) /1 e5⤦
Ç )*1 e5

1046 Else
SetAxis /W= $WName Left Floor ( WaveMin ( Enthalpy )/1 e5)*1e5 , Ceil(Max( WaveMax⤦

Ç ( Enthalpy ), RefEnthalpy [0]) /1 e5)*1 e5
EndIf
Break

Default :
1051 Return NAC_NotApplicable

EndSwitch
Return NoError

End
//

Function DisplayVsPulse
1056 Static Function DisplayVsPulse (Name)

String Name
String WName , NameList , LabelList
NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦

Ç :GUI: MarginTop
Variable WOfs =0, Ret =0

1061 DFref OldDF = GetDataFolderDFR ()
StrSwitch (Name)

Case "Heat ":
Variable i
NameList =" Adsorption ; Radiation ;"

1066 LabelList =" Adsorption Enthalpy (\U); Relative Radiation Contribution ;"
Break

Case " Sticking ":
NameList =" Desorption ;"
LabelList =" Relative Desorption Intensity ;"

1071 WOfs =-1
Break

Default :
Return NAC_NotApplicable
Break

1076 EndSwitch
SetDataFolder $"root:NAC :"+ Name
SVar FileName =$"root:NAC :"+ Name +": FileName "
Variable Test =0
For (i=0;i< ItemsInList ( NameList );i+=1)
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1081 Name= StringFromList (i, NameList , ";")
WName =" NAC_ "+ Name +" _VsPulse "
DoWindow $WName
Test =0
If ( V_Flag )

1086 DoWindow /F $WName
Error_Message ( NAC_WindowAlreadyExists , " InProc ", " DisplayVsPulse ", Name)
Test =1

EndIf
If ( NumPnts ( $Name ) <=0)

1091 Error_Message ( NAC_NothingToProcess , " InProc ", " DisplayVsPulse ", Name)
Test =1

EndIf
If (! Test)

Wave DispWave = $Name
1096 Display /N= $WName /K=1 /W=((i+1+ WOfs)*( WWidth )+(i+1+ WOfs)*50+50 , 525 , (i+2+⤦

Ç WOfs)* WWidth +(i+1+ WOfs)*50+50 , 525+ WHeight ) DispWave as "Fit Results for "+⤦
Ç Name

ModifyGraph /W= $WName Margin (Top)=MarginTop , mode( $Name )=2, lsize ( $Name )=2
Label /W= $WName left StringFromList (i,LabelList ,";")
Label /W= $WName bottom "\u"
StrSwitch (Name)

1101 Case " Adsorption ":
TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\⤦

Ç JCAdsorption (\" Laser \") Contribution to the Heat Signal \r"+ FileName
Break

Case " Radiation ":
TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\⤦

Ç JCRadiation Contribution to the Heat Signal \r"+ FileName
1106 Break

Case " Desorption ":
If (( WaveMin ( DispWave ) >=0) && ( WaveMax ( DispWave ) <=1))

SetAxis /W= $WName Left 0,1
ElseIf (( WaveMin ( DispWave ) >=0) && ( WaveMax ( DispWave ) >1))

1111 SetAxis /W= $WName Left 0,Ceil( WaveMax ( DispWave )*10) /10
ElseIf (( WaveMin ( DispWave ) <0) && ( WaveMax ( DispWave ) <=1))

SetAxis /W= $WName Left Floor ( WaveMin ( DispWave )*10) /10 ,1
Else

SetAxis /W= $WName Left Floor ( WaveMin ( DispWave )*10) /10 , Ceil( WaveMax (⤦
Ç DispWave )*10) /10

1116 EndIf
AppendToGraph /W= $WName root:NAC: Sticking : StickingLimit
ModifyGraph /W= $WName Mode( StickingLimit )=0, LSize ( StickingLimit )=1, ⤦

Ç LStyle ( StickingLimit )=2, rgb( StickingLimit ) =(30464 ,30464 ,30464)
TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\⤦

Ç JCSticking Contribution to the Heat Signal \r"+ FileName
Break

1121 Default :
Break

EndSwitch
EndIf

EndFor
1126 SetDataFolder OldDF

Return NoError
End
//

Function DisplayNonFlagged
Static Function DisplayNonFlagged (Name)

1131 String Name
String WName =" NAC_ "+ Name +" _Frames "
Variable i

StrSwitch (Name)
Case " Deconvolution ":

1136 Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
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1141 Case " ZeroSticking ":
Case "Heat ":
Case " Sticking ":

Break
Case " RateCoating ":

1146 Case " RateCalorimetry ":
Return NAC_NotApplicable
Break

Default :
Return NAC_UnknownMeasurement

1151 Break
EndSwitch
NVar Loaded =$"root:NAC :"+ Name +": Loaded "
If (! Loaded )

Return NAC_NoDataLoaded
1156 EndIf

DoWindow $WName
If ( V_Flag )

DoWindow /F $WName
Return NAC_WindowAlreadyExists

1161 EndIf
NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:⤦
Ç NAC:GUI: MarginTop

NVar ProcessRate =root:NAC: Machine : ProcessRate
SVar FileName =$"root:NAC :"+ Name +": FileName "
DFref OldDF = GetDataFolderDFR ()

1166 SetDataFolder $"root:NAC :"+ Name
If ( StringMatch (Name ," Deconvolution "))

NVar ChopperPeriod =root:NAC: Deconvolution : ChopperPeriod
Else

NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod
1171 EndIf

Wave Detector , FlagList
Display /N= $WName /K=1 /W =(150+2* WWidth , 525 , 150+3* WWidth , 525+ WHeight ) as "⤦
Ç All Non - Flagged Frames for "+ Name

ModifyGraph /W= $WName Margin (Top)= MarginTop
For (i=0;i< NumPnts ( FlagList );i+=1)

1176 AppendToGraph /W= $WName Detector [][i]/ TN=$" Frame "+ Num2Str (i)
ModifyGraph /W= $WName rgb($" Frame "+ Num2Str (i))=(0 , SelectNumber (Mod(i ,2)⤦
Ç ,0 ,52224) ,SelectNumber (Mod(i ,2) ,65280 ,0)), HideTrace ($" Frame "+ Num2Str (i))=⤦
Ç FlagList [i]

EndFor
SetWindow $WName Hook($" Frame "+ Name +" Csr ")= NAC_WinHookCal
Cursor /N=1 /W=$"NAC_ "+ Name +" _Frames " A Frame0 0

1181 TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\ JCAll Non -⤦
Ç Flagged Frames for "+ Name +" Measurement \r\JC "+ FileName +": \K(0 ,0 ,65280)⤦
Ç Even Frames \K(0 ,0 ,0) \K(0 ,52224 ,0) Odd Frames "

SetDataFolder OldDF
Return NoError

End
//

Function CheckButtons
1186 Static Function CheckButtons (Name , WName )

String Name , WName
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame ", NumberOfFrames =$"root:NAC :"+⤦

Ç Name +": NumberOfFrames "
Wave FlagList =$"root:NAC :"+ Name +": FlagList "

DoWindow $WName
1191 If (! V_Flag )

Return NAC_NoSuchWindow
EndIf
If ( FlagList [ CurrentFrame ])

Button $" Flag_ "+ Name Title =" Unflag ", Win= $WName
1196 Else

Button $" Flag_ "+ Name Title =" Flag", Win= $WName
EndIf
Button $"NAV_ "+ Name +" _Fi" Disable =2*( CurrentFrame <1) , Win= $WName
Button $"NAV_ "+ Name +" _M1" Disable =2*( CurrentFrame <1) , Win= $WName
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1201 Button $"NAV_ "+ Name +" _M2" Disable =2*( CurrentFrame <2) , Win= $WName
Button $"NAV_ "+ Name +" _P2" Disable =2*( CurrentFrame > NumberOfFrames -3) , Win= $WName
Button $"NAV_ "+ Name +" _P1" Disable =2*( CurrentFrame > NumberOfFrames -2) , Win= $WName
Button $"NAV_ "+ Name +" _La" Disable =2*( CurrentFrame > NumberOfFrames -2) , Win= $WName
DoWindow /F $"NAC_ "+ Name +" _Full "

1206 Return NoError
End
//

Function DisplayFlagWindow
Static Function DisplayFlagWindow (Name)
String Name

1211 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦
Ç :GUI: MarginTop

NVar Loaded =$"root:NAC :"+ Name +": Loaded "
String WName =" NAC_ "+ Name +" _Flag "
Variable Error = NoError

NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "
1216 If (! Loaded )

Return NAC_NoDataLoaded
EndIf
DoWindow $WName
If ( V_Flag )

1221 DoWindow /F $WName
Return NAC_WindowAlreadyExists

EndIf
NVar NoP=$"root:NAC :"+ Name +": NumberOfFrames "
Display /N= $WName /K=1 /W =(100+ WWidth , 525 , 100+2* WWidth , 525+ WHeight ) $"root:⤦
Ç NAC :"+ Name +": DisplayRaw ", $"root:NAC :"+ Name +": DisplayFit " as " Flagging for ⤦
Ç "+ Name

1226 ModifyGraph /W= $WName rgb( DisplayFit )=(0 ,0 ,0) , Margin (Top)= MarginTop
ModifyGraph Mode( DisplayRaw )=2, LSize ( DisplayRaw )=1.5
Button $"NAV_ "+ Name +" _Fi" Proc= NAC_NavProc , Size ={30 ,20} , Title ="|<<", Win=⤦
Ç $WName , Pos ={10 ,5}

Button $"NAV_ "+ Name +" _M2" Proc= NAC_NavProc , Size ={30 ,20} , Title ="<<", Win=⤦
Ç $WName , Pos ={45 ,5}

Button $"NAV_ "+ Name +" _M1" Proc= NAC_NavProc , Size ={30 ,20} , Title ="<", Win=$WName⤦
Ç , Pos ={80 ,5}

1231 SetVariable $"NAV_ "+ Name Proc= NAC_CurrentFrameProc , Limits ={0 , NoP -1, 1}, Size⤦
Ç ={95 ,20} , Title =" Frame :", Value = CurrentFrame , Pos ={115 ,8}

Button $"NAV_ "+ Name +" _P1" Proc= NAC_NavProc , Size ={30 ,20} , Title =">", Win=$WName⤦
Ç , Pos ={220 ,5}

Button $"NAV_ "+ Name +" _P2" Proc= NAC_NavProc , Size ={30 ,20} , Title =">>", Win=⤦
Ç $WName , Pos ={255 ,5}

Button $"NAV_ "+ Name +" _La" Proc= NAC_NavProc , Size ={30 ,20} , Title =">>|", Win=⤦
Ç $WName , Pos ={290 ,5}

Button $" Flag_ "+ Name Proc= NAC_FlagProc , Size ={45 ,20} , Title =" Flag", Win=$WName ,⤦
Ç Pos ={325 ,5}

1236 Button $" Range_ "+ Name Proc= NAC_RangeProc , Size ={45 ,20} , Title =" Range ", Win=⤦
Ç $WName , Pos ={375 ,5}

Button $" Clear_ "+ Name Proc= NAC_ClearProc , Size ={45 ,20} , Title =" Clear ", Win=⤦
Ç $WName , Pos ={425 ,5}

Button $" Kill_ "+ Name Proc= NAC_KillFrameProc , Size ={45 ,20} , Title =" Kill !", Win=⤦
Ç $WName , Pos ={475 ,5}

TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\r\ JCFrame "+⤦
Ç Num2Str (0) +" for "+ Name +" Measurement "

Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " DisplayFlagWindow ", Name)
1241 Return NoError

End
//

Function UpdateFlagWin
Static Function UpdateFlagWin (Name)
String Name

1246 Variable i
String WName , Info
NVar ReEntry =root:NAC:GUI: ReEntryFlagWin

If ( ReEntry )
Return NAC_ReEntry
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1251 Endif
ReEntry =1
WName =" NAC_ "+ Name +" _Flag "
DoWindow $WName
If (! V_Flag )

1256 ReEntry =0
Return NAC_NoSuchWindow

EndIf
DFRef OldDF = GetDataFolderDFR ()
SetDataFolder $"root:NAC :"+ Name

1261 NVar CurrentFrame
If ( StringMatch (Name ," Deconvolution "))

NVar ChopperPeriod =root:NAC: Deconvolution : ChopperPeriod
Else

NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod
1266 EndIf

Wave DisplayRaw , DisplayFit , Detector , FlagList
DisplayRaw = Detector [p][ CurrentFrame ]
String FitName
StrSwitch (Name)

1271 Case " ZeroSticking ":
FitName =" Sticking "
Break

Case " LaserReference ":
FitName =" Laser "

1276 Break
Default :

FitName =Name
Break

EndSwitch
1281 StrSwitch (Name)

Case " ZeroSticking ":
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":

1286 Case " Transmission ":
Case " Radiation ":
Case " Deconvolution ":

If ( Exists (" Average "+ SelectString (Mod( CurrentFrame ,2) ,"Even "," Odd "))==1)
Wave Avg=$" Average "+ SelectString (Mod( CurrentFrame ,2) ,"Even "," Odd ")

1291 If ( NumPnts (Avg) >0)
DisplayFit =Avg

Else
DisplayFit =NaN

Endif
1296 EndIf

Break
Case "Heat ":

Wave ChiSq
If ( ChiSq [ CurrentFrame ] >0)

1301 Wave Radiation , Adsorption , ShiftRad , ShiftAds , Offset
Make /FREE /N=5 /D FitCoef ={ Offset [ CurrentFrame ], Adsorption [ CurrentFrame⤦

Ç ], ShiftAds [ CurrentFrame ], Radiation [ CurrentFrame ], ShiftRad [ CurrentFrame ]}
If (Mod( CurrentFrame ,2))

CalorimetryOdd (FitCoef , DisplayFit , DisplayFit )
Else

1306 CalorimetryEven (FitCoef , DisplayFit , DisplayFit )
EndIf

Else
DisplayFit =NaN

EndIf
1311 Break

Case " Sticking ":
Wave ChiSq
If ( ChiSq [ CurrentFrame ] >0)

Wave Desorption , Shift , Offset
1316 Make /FREE /N=5 /D FitCoef ={ Offset [ CurrentFrame ], Desorption [ CurrentFrame⤦

Ç ], Shift [ CurrentFrame ]}
If (Mod( CurrentFrame ,2))
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StickingOdd (FitCoef , DisplayFit , DisplayFit )
Else

StickingEven (FitCoef , DisplayFit , DisplayFit )
1321 EndIf

Else
DisplayFit =NaN

EndIf
Break

1326 Default :
ReEntry =0
Return NAC_UnknownMeasurement
Break

EndSwitch
1331 Error_Message ( CheckButtons (Name , WName ), " CheckButtons ", " UpdateFlagWin ", Name)

TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\r\ JCFrame "+⤦
Ç Num2Str ( CurrentFrame )+" for "+ Name +" Measurement "

If ( FlagList [ CurrentFrame ])
ModifyGraph /W= $WName rgb( DisplayRaw ) =(34816 ,34816 ,34816)

Else
1336 ModifyGraph /W= $WName rgb( DisplayRaw )=(0 , SelectNumber (Mod( CurrentFrame ,2)⤦

Ç ,0 ,52224) ,SelectNumber (Mod( CurrentFrame ,2) ,65280 ,0))
EndIf
SetDataFolder OldDF
DoWindow $"NAC_ "+ Name +" _Full "
If ( V_Flag )

1341 Cursor /N=1 /W=$"NAC_ "+ Name +" _Full " A $" Frame "+ Num2Str ( CurrentFrame ) ⤦
Ç ChopperPeriod /2

EndIf
String TList = TraceNameList (" NAC_ "+ Name +" _Frames ", ";" , 1)
DoWindow $"NAC_ "+ Name +" _Frames "
If ( V_Flag )

1346 Cursor /N=1 /W=$"NAC_ "+ Name +" _Frames " A $" Frame "+ Num2Str ( CurrentFrame ) ⤦
Ç ChopperPeriod /2
ModifyGraph /W=$"NAC_ "+ Name +" _Frames " rgb($" Frame "+ Num2Str ( CurrentFrame ))⤦
Ç =(65280 ,0 ,0)
For (i=0;i< ItemsInList ( TList );i+=1)

Info= TraceInfo (" NAC_ "+ Name +" _Frames ", " Frame "+ Num2Str (i), 0)
If ( Str2Num (Info[ StrSearch (Info , " hideTrace (x)=", 0) +13 , StrSearch (Info , ⤦

Ç ";" , StrSearch (Info , " hideTrace (x)=", 0)) -1]) != FlagList [i])
1351 ModifyGraph /W=$"NAC_ "+ Name +" _Frames " HideTrace ($" Frame "+ Num2Str (i))=⤦

Ç FlagList [i]
EndIf
If (! StringMatch (Info[ StrSearch (Info , "rgb(x)=", 0)+7, StrSearch (Info , ";" , ⤦

Ç StrSearch (Info , "rgb(x)=", 0)) -1], "(0 ,"+ num2str ( SelectNumber (Mod(i ,2)⤦
Ç ,0 ,52224))+" ,"+ Num2Str ( SelectNumber (Mod(i ,2) ,65280 ,0))+")" ) )

ModifyGraph /W=$"NAC_ "+ Name +" _Frames " rgb($" Frame "+ Num2Str (i))=(0 ,⤦
Ç SelectNumber (Mod(i ,2) ,0 ,52224) ,SelectNumber (Mod(i ,2) ,65280 ,0))

EndIf
1356 EndFor

ModifyGraph /W=$"NAC_ "+ Name +" _Frames " rgb($" Frame "+ Num2Str ( CurrentFrame ))⤦
Ç =(65280 ,0 ,0)

EndIf
DoWindow /F $"NAC_ "+ Name +" _Full "
DoWindow /F $"NAC_ "+ Name +" _Flag "

1361 DoWindow /F $"NAC_ "+ Name +" _Frames "
ReEntry =0
SetDataFolder OldDF
Return NoError

End
1366 //

Function KillWins
Static Function KillWins (Name)
String Name
String WindowsList = WinList (Name +"*" ,";" ," WIN :71")
Variable i

1371 For (i=0;i< ItemsInList ( WindowsList );i+=1)
KillWindow $( StringFromList (i, WindowsList ))

EndFor
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Return NoError
End

1376 //

Function DisplayAverage
Static Function DisplayAverage (Name)
String Name
NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI: WHeight
DFRef OldDF = GetDataFolderDFR ()

1381 String WName =" NAC_ "+ Name +" _Avg"
If (( Exists (" root:NAC :"+ Name +": AverageOdd ") !=1) && ( Exists (" root:NAC :"+ Name +":⤦
Ç AverageEven ") !=1))
Return NAC_AverageWavesMissing

Endif
DoWindow $WName

1386 If ( V_Flag )
DoWindow /F $WName
Return NAC_WindowAlreadyExists

EndIf
SetDataFolder $"root:NAC :"+ Name

1391 SVar FileName
Wave AverageOdd , AverageEven
String GraphTitle =" Average for "+ Name +" Measurement "
Display /N= $WName /K=1 /W=(500 , 525 , 500+ WWidth , 525+ WHeight ) AverageOdd , ⤦
Ç AverageEven as Name +" Measurement "

ModifyGraph /W= $WName rgb( AverageOdd )=(0 ,52224 ,0)
1396 ModifyGraph /W= $WName rgb( AverageEven )=(0 ,0 ,65280)

TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= Caption /A=MC /B=1 "\ JC "+⤦
Ç GraphTitle +"\r\JC "+ FileName +": \K(0 ,0 ,65280) Even Frame \K(0 ,0 ,0) \K⤦
Ç (0 ,52224 ,0) Odd Frame "

Label /W= $WName bottom "Time (\u)"
Label /W= $WName left " Detector (\U)"
SetDataFolder OldDF

1401 Return NoError
End
//

Function DisplayDeconvolutedAverage
Static Function DisplayDeconvolutedAverage (Name)
String Name

1406 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI: WHeight
DFRef OldDF = GetDataFolderDFR ()
String WName =" NAC_ "+ Name +" _AvgDeconv "

If (( Exists (" root:NAC: Deconvolution :"+ Name +" AvgOdd ") !=1) && ( Exists (" root:NAC:⤦
Ç Deconvolution :"+ Name +": AvgEven ") !=1))
Return NAC_NothingToProcess

1411 Endif
DoWindow $WName
If ( V_Flag )

DoWindow /F $WName
Error_Message ( SetDeconvolutionGraphRanges (Name , " AverageEven ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolutedAverage ", Name)

1416 Error_Message ( SetDeconvolutionGraphRanges (Name , " AverageOdd ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolutedAverage ", Name)
Return NAC_WindowAlreadyExists

EndIf
SetDataFolder root:NAC: Deconvolution
SVar FileName =$"root:NAC :"+ Name +": FileName "

1421 Wave AverageOdd = $Name +" AvgOdd ", AverageEven = $Name +" AvgEven "
Display /N= $WName /K=1 /W=(50 , 525 , 50+ WWidth , 525+ WHeight ) AverageOdd , ⤦
Ç AverageEven as Name +" Measurement "

ModifyGraph /W= $WName rgb( $Name +" AvgOdd ") =(0 ,52224 ,0)
ModifyGraph /W= $WName rgb( $Name +" AvgEven ") =(0 ,0 ,65280)
TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= Caption /A=MC /B=1 "\⤦
Ç JCDeconvoluted Average for "+ Name +" Measurement \r\JC "+ FileName +": \K⤦
Ç (0 ,0 ,65280) Even Frame \K(0 ,0 ,0) \K(0 ,52224 ,0) Odd Frame "

1426 Label /W= $WName bottom "Time (\u)"
Label /W= $WName left " Power (\U)"
SetDataFolder OldDF
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Error_Message ( SetDeconvolutionGraphRanges (Name , " AverageEven ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolutedAverage ", Name)

Error_Message ( SetDeconvolutionGraphRanges (Name , " AverageOdd ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolutedAverage ", Name)

1431 Return NoError
End
//

Function DisplayDeconvolution
Static Function DisplayDeconvolution (Name)
String Name

1436 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI: WHeight
DFRef OldDF = GetDataFolderDFR ()
String WName =" NAC_ "+ Name +" _Deconv "

If (( Exists (" root:NAC :"+ Name +": Deconvolution ") !=1))
Return NAC_FitWavesMissing

1441 Endif
DoWindow $WName
If ( V_Flag ==1)

DoWindow /F $WName
Error_Message ( SetDeconvolutionGraphRanges (Name , " Deconvolution ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolution ", Name)

1446 Return NAC_WindowAlreadyExists
EndIf
SetDataFolder $"root:NAC :"+ Name
SVar FileName
NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod

1451 Wave Deconvolution
String GraphTitle =" Deconvolution for "+ Name +" Measurement "
Variable Range , MRange
Display /N= $WName /K=1 /W=(1000 , 100 , 1000+ WWidth , 100+ WHeight ) as Name +" ⤦
Ç Measurement "

AppendImage /W= $WName Deconvolution
1456 MRange =Max(Abs( WaveMin ( Deconvolution )),Abs( WaveMax ( Deconvolution )))

Range =Ceil( MRange /10^ Floor (Log( MRange )))*10^ Floor (Log( MRange ))
ModifyImage /W= $WName Deconvolution ctab= {-Range , Range , RedWhiteBlue , 1}, ⤦
Ç Interpolate =-1

ModifyGraph /W= $WName StandOff =0, Margin (left)=50
SetAxis /W= $WName Bottom 0, ChopperPeriod

1461 TextBox /W= $WName /A=LT /C/E/F=0 /N= Caption /A=MC /B=1 "\ JC "+ GraphTitle +"\r\JC⤦
Ç "+ FileName

ColorScale /C/N= CSale /Z=1 /A=RT /E=2 /F=0 /B=1 Width =130 , Height =10 , lblLatPos⤦
Ç =80 , lblMargin =30 , Image = Deconvolution , Vert =0

Label /W= $WName bottom "Time (\u)"
SetWindow $WName hook($"NAC_ "+ Name +" Csr ")= NAC_WinHookDeconvolution
Cursor /N=1 /W= $WName /I /N=1 A Deconvolution ChopperPeriod /2, 0

1466 SetDataFolder OldDF
Error_Message ( SetDeconvolutionGraphRanges (Name , " Deconvolution ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolution ", Name)

Return NoError
End
//

Function DisplayDeconvolutedFrame
1471 Static Function DisplayDeconvolutedFrame (Name)

String Name
NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI: WHeight
DFRef OldDF = GetDataFolderDFR ()
String WName =" NAC_ "+ Name +" _BrowseDeconv "

1476 If (( Exists (" root:NAC: Deconvolution :"+ Name +" BrowseOdd ") !=1) || ( Exists (" root:⤦
Ç NAC: Deconvolution :"+ Name +" BrowseEven ") !=1))
Return NAC_NothingToProcess

Endif
DoWindow $WName
If ( V_Flag )

1481 DoWindow /F $WName
Error_Message ( SetDeconvolutionGraphRanges (Name , " Deconvolution ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayMeasurement ", Name)
Return NAC_WindowAlreadyExists
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EndIf
SetDataFolder root:NAC: Deconvolution

1486 NVar Period =root:NAC: Experiment : ChopperPeriod
SVar FileName
Wave BrowseOdd = $Name +" BrowseOdd ", BrowseEven = $Name +" BrowseEven "
Display /N= $WName /K=1 /W=(1000 , 450 , 1000+ WWidth , 450+ WHeight ) BrowseOdd , ⤦
Ç BrowseEven as Name +" Deconvoluted Frame "

ModifyGraph /W= $WName rgb( $Name +" BrowseOdd ") =(0 ,52224 ,0) , rgb( $Name +" BrowseEven⤦
Ç ") =(0 ,0 ,65280)

1491 Error_Message ( DoDeconvolutionTextBox (Name), " DoDeconTextBox ", "⤦
Ç DisplayDeconvolutedFrame ", Name)

Label /W= $WName bottom "Time (\u)"
Label /W= $WName left " Power (\U)"
SetDataFolder OldDF
Error_Message ( SetDeconvolutionGraphRanges (Name , " Deconvolution ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DisplayDeconvolutedFrame ", Name)

1496 Return NoError
End
//

Function DisplayMeasurement
Static Function DisplayMeasurement (Name)
String Name

1501 String WName =" NAC_ "+ Name +" _Full "
NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦

Ç :GUI: MarginTop
NVar Loaded =$"root:NAC :"+ Name +": Loaded "
DFRef OldDF = GetDataFolderDFR ()
Variable i

1506 If (! Loaded )
Return NAC_NoDataLoaded

EndIf
DoWindow $WName
If ( V_Flag ==1)

1511 DoWindow /F $WName
Error_Message ( SetGraphRanges (Name), ", SetGraphRanges ", " DisplayMeasurement ", ⤦
Ç Name)
Return NAC_WindowAlreadyExists

EndIf
SetDataFolder $"root:NAC :"+ Name

1516 SVar FileName
Wave Detector , FlagList
NVar NumberOfFrames , CurrentFrame
StrSwitch (Name)

Case " Deconvolution ":
1521 NVar ChopperPeriod =root:NAC: Deconvolution : ChopperPeriod

Break
Default :

NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod
Break

1526 EndSwitch
Display /N= $WName /K=1 /W=(50 , 525 , 50+ WWidth , 525+ WHeight ) as Name +" ⤦
Ç Measurement "

ModifyGraph /W= $WName Margin (Top)= MarginTop
For (i=0;i< NumberOfFrames ;i+=1)

AppendToGraph /W= $WName Detector [][i]/ TN=$" Frame "+ Num2Str (i)
1531 ModifyGraph rgb($" Frame "+ Num2Str (i)) =(65280*( FlagList [i ]==0) ,0,0), Offset ($"⤦

Ç Frame "+ Num2Str (i))={ ChopperPeriod *i ,0}
EndFor
Label /W= $WName bottom "Time (\u)"
Label /W= $WName left " Detector (\U)"
TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= Caption /A=MC /B=1 ("\ JC "+ Name +" ⤦
Ç Measurement \r\JC "+ FileName )+": \K(65280 ,0 ,0) Original \K(0 ,0 ,0) Flagged "

1536 SetWindow $WName hook($" Frame "+ Name +" Csr ")= NAC_WinHookCal
Cursor /N=1 /W= $WName A $" Frame "+ Num2Str ( CurrentFrame ) ChopperPeriod /2
SetDataFolder OldDF
Error_Message ( SetGraphRanges (Name), " SetGraphRanges ", " DisplayMeasurement ", ⤦
Ç Name)

Return NoError
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1541 End
//

Function DisplayRateFile
Static Function DisplayRateFile (Name)
String Name
String WName =" NAC_ "+ Name +" _Full "

1546 NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI:WHeight , MarginTop =root:NAC⤦
Ç :GUI: MarginTop

NVar Loaded =$"root:NAC :"+ Name +": Loaded "
DFREF OldDF = GetDataFolderDFR ()

DoWindow $WName
If ( V_Flag )

1551 DoWindow /F $WName
Return NAC_WindowAlreadyExists

EndIf
If (! Loaded )

Return NAC_NoDataLoaded
1556 EndIf

SetDataFolder $"root:NAC :"+ Name
Wave Thickness , TimeLine
NVar BaselineTo , BaselineFrom , Loaded
SVar Substance

1561 Display /N= $WName /K=1 /W=(50 , 525 , WWidth +50 , WHeight +525) Thickness vs ⤦
Ç Timeline as Name +" Measurement "

ModifyGraph /W= $WName Mode =3, Marker =19 , Margin (Top)= MarginTop
Make /O/N=2 Thickness_FitLow , Thickness_FitMid , Thickness_FitHigh
Make /O/N=2 Timeline_FitLow , Timeline_FitMid , Timeline_FitHigh
AppendToGraph /W= $WName Thickness_FitLow vs Timeline_FitLow

1566 AppendToGraph /W= $WName Thickness_FitMid vs Timeline_FitMid
AppendToGraph /W= $WName Thickness_FitHigh vs Timeline_FitHigh
ModifyGraph /W= $WName rgb( Thickness_FitLow )=(0 ,0 ,0) , lsize ( Thickness_FitLow )⤦
Ç =1.5

ModifyGraph /W= $WName rgb( Thickness_FitMid )=(0 ,0 ,65280) , lsize ( Thickness_FitMid⤦
Ç )=1.5

ModifyGraph /W= $WName rgb( Thickness_FitHigh )=(0 ,0 ,0) , lsize ( Thickness_FitHigh )⤦
Ç =1.5

1571 Label /W= $WName bottom "Time (\u)"
Label /W= $WName left "QCM Thickness (\U)"
SetWindow $WName hook($"NAC_ "+ Name +" Csr ")= NAC_WinHookRate
Cursor /N=1 /W= $WName /N=1 A Thickness BaselineTo
Cursor /N=1 /W= $WName /N=1 B Thickness BaselineFrom

1576 SetAxis /W= $WName left Floor ( WaveMin ( Thickness )*1 e9)/1e9 , Ceil( WaveMax (⤦
Ç Thickness )*1 e9)/1 e9

Error_Message ( FitQCMRate (Name), " FitQCMRate ", " DisplayRateFile ", Name)
Error_Message ( DoRateTextBoxes (Name), " DoRateTextBoxes ", " DisplayRateFile ", Name⤦
Ç )

SetDataFolder OldDF
Return NoError

1581 End
//

Function UpdateFittedRate
Static Function UpdateFittedRate (Name)
String Name
DFREF OldDF = GetDataFolderDFR ()

1586 String WName , ExpName =""
DoUpdate
WName =" NAC_ "+ Name +" _FittedRate "
DoWindow $WName
If ( V_Flag )

1591 DoWindow /F $WName
Else

Return NAC_NoSuchWindow
EndIf
SetDataFolder $"root:NAC :"+ Name

1596 StrSwitch (Name)
Case " RateCalorimetry ":

ExpName =" Calorimetry "
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Case " RateCoating ":
If (! StrLen ( ExpName ))

1601 ExpName =" Coating "
EndIf
NVar FittedFrom , FittedTo
NVar AvgWindow =root:NAC: Machine : RateFittingWindow
SVar FileName , SubstanceName

1606 Wave FittedRate , FittedRateAvg , FittedRateErrorPos , FittedRateErrorNeg
String Msg =""
WaveStats /Q /R=( FittedFrom , FittedTo ) FittedRate
Msg +="\ JCFitted "+ ExpName +" Deposition Rate for "+ FileName +" ("+⤦

Ç SubstanceName +") :\r"
Msg +="\ JCTooling : "+ Num2Str ( CalcQCMTooling (Name))+ " No base line ⤦

Ç correction \r\ JCFitting window "+ Num2Str ( AvgWindow )+" pnts\r"
1611 Msg +="\ JCRange from "+ Num2Str ( FittedFrom )+" "+ WaveUnits ( FittedRate ,0) +" to ⤦

Ç "+ Num2Str ( FittedTo )+" "+ WaveUnits ( FittedRate ,0) +"\r"
Msg +=" Average : "+ Num2Str ( V_Avg *1 e12)+" pm/s +/ -"+ Num2Str ( V_SDev / V_Avg *100)⤦

Ç +" %"
TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= RateInfo /A=MC /B=1 Msg
FittedRateAvg = V_Avg
FittedRateErrorPos = V_Avg + V_SDev

1616 FittedRateErrorNeg =V_Avg - V_SDev
Break

Default :
SetDataFolder OldDF
Return NAC_NotApplicable

1621 Break
EndSwitch
SetDataFolder OldDF
Return NoError

End
1626 //

Function DoRateTextBoxes
Static Function DoRateTextBoxes (Name)
String Name
DFREF OldDF = GetDataFolderDFR ()
String WName

1631 String Msg =""
DoUpdate
WName =" NAC_ "+ Name +" _Full "
DoWindow $WName
If ( V_Flag )

1636 DoWindow /F $WName
Else

Return NAC_NoSuchWindow
EndIf
SetDataFolder $"root:NAC :"+ Name

1641 StrSwitch (Name)
Case " RateCalorimetry ":

NVar DepositionRate , BaselineBefore , ApparentRate , BaselineAfter , ⤦
Ç UseBaseline

TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= TBSum /B=1 "\ JCDeposition ⤦
Ç Rate Measurement for Calorimetry Measurement \r\JC "+ Num2Str ( Round (⤦
Ç DepositionRate *1 e17)/1 e5)+ " pm/s"

Msg ="\ JLBaseline ( Before ): "+ Num2Str ( Round ( BaselineBefore *1 e17)/1 e5)+ " pm/⤦
Ç s\r"

1646 Msg +="\ JLApparent Deposition Rate: "+ Num2Str ( Round ( ApparentRate *1 e17)/1 e5)⤦
Ç +" pm/s\r"

Msg +="\ JLBaseline ( After ): "+ Num2Str ( Round ( BaselineAfter *1 e17)/1 e5)+" pm/s\⤦
Ç r"

Msg +="\ JLBaseline Correction : "+ SelectString ( UseBaseline , "No", "Yes ")
TextBox /W= $WName /A=LT /C/F=0 /X=5 /Y=5 /N= TBDet /B=1 Msg
Break

1651 Case " RateCoating ":
NVar TotalThickness , UseTotalRange , BaselineTo , BaselineFrom , UseBaseline , ⤦

Ç BaselineBefore , BaselineAfter , ApparentRate , DepositionRate
Wave Timeline , Thickness
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TextBox /W= $WName /A=MT /C/E/F=0/X=0 /Y=5 /N= TBSum /B=1 "\ JCThickness ⤦
Ç Measurement for Sample Coating \r\JC "+ Num2Str ( Round ( TotalThickness *1 e14)/1 e5⤦
Ç )+ " nm"

If ( UseTotalRange )
1656 Msg ="\ JLStart : "+ Num2Str ( TimeLine [ BaselineTo ])+ " s / "+ Num2Str ( Round (⤦

Ç Thickness [ BaselineTo ]*1 e14)/1 e5)+" nm\r"
Msg +="\ JLEnd : "+ Num2Str ( TimeLine [ BaselineFrom ]) +" s / "+ Num2Str ( Round (⤦

Ç Thickness [ BaselineFrom ]*1 e14)/1 e5)+" nm\r"
Msg +="\ JLDuration : "+ Num2Str ( TimeLine [ BaselineFrom ]- TimeLine [ BaselineTo ])⤦

Ç +" s\r"
Msg +="\ JLUse Total Range : "+ SelectString ( UseTotalRange , "No", "Yes ")
TextBox /W= $WName /A=LT /C /F=0 /X=5 /Y=5 /N= TBDet /B=1 Msg

1661 Else
Msg ="\ JLBaseline ( Before ): "+ Num2Str ( Round ( BaselineBefore *1 e17)/1 e5)+ " ⤦

Ç pm/s\r"
Msg +="\ JLApparent Deposition Rate: "+ Num2Str ( Round ( ApparentRate *1 e17)/1 e5⤦

Ç )+" pm/s\r"
Msg +="\ JLBaseline ( after ): "+ Num2Str ( Round ( BaselineAfter *1 e17)/1 e5)+" pm/⤦

Ç s\r"
Msg +="\ JLBaseline Correction : "+ SelectString ( UseBaseline , "No", "Yes ")⤦

Ç +"\r"
1666 Msg +="\ JLRate : "+ Num2Str ( Round ( DepositionRate *1 e17)/1 e5)+" pm/s\r"

Msg +="\ JLDuration : "+ Num2Str ( TimeLine [ BaselineFrom ]- TimeLine [ BaselineTo ])⤦
Ç +" s"

TextBox /W= $WName /A=LT /C/F=0 /X=5 /Y=5 /N= TBDet /B=1 Msg
EndIf
Break

1671 Default :
SetDataFolder OldDF
Return NAC_NotApplicable
Break

EndSwitch
1676 SetDataFolder OldDF

Return NoError
End
//

Function DoHeatTextBox
Static Function DoHeatTextBox ()

1681 DFREF OldDF = GetDataFolderDFR ()
String WName , Msg

DoUpdate
WName =" NAC_Heat_VsCov "
DoWindow $WName

1686 If ( V_Flag )
DoWindow /F $WName

Else
Return NAC_NoSuchWindow

EndIf
1691 NVar Enthalpy =root:NAC: Enthalpies : MultiLayerEnthalpy , TemperatureSample =root:⤦

Ç NAC: Experiment : TemperatureSample
NVar EnthalpyError =root:NAC: Enthalpies : MultiLayerEnthalpyError
NVar Thickness =root:NAC: RateCoating : TotalThickness
SVar Substance =root:NAC: RateCalorimetry :Substance , Substrate =root:NAC:⤦
Ç RateCoating : SubstanceName

Msg ="\ JCCalorimetry Measurement for "+ Substance +" on "
1696 If ( StrLen ( Substrate ))

Msg=Msg + Substrate +" ("
If ( Thickness >1e -6)

Msg=Msg+ Num2Str ( Round ( Thickness *1 e8) /100) +" um)"
Else

1701 Msg=Msg+ Num2Str ( Round ( Thickness *1 e9)) +" nm)"
EndIf

Else
Msg=Msg + "\" PVDF \""

EndIf
1706 Msg=Msg + " @ " + Num2Str ( Round ( TemperatureSample )) +" K"

Msg=Msg +"\r\ JCMultilayer Enthalpy : "+ Num2Str ( Round ( Enthalpy /10) /100) +" +/- "+⤦
Ç Num2Str ( Round ( EnthalpyError /10) /100) +" kJ/mol Lit .: "+ Num2Str (⤦
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Ç NAC_RefEnthalpy (Substance , TemperatureSample ) /1000) +" kJ/mol"
TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= TBSum /B=1 Msg
SetDataFolder OldDF
Return NoError

1711 End
//

Function DoDeconvolutionTextBox
Static Function DoDeconvolutionTextBox (Name)
String Name
String WName

1716 DoUpdate
WName =" NAC_ "+ Name +" _BrowseDeconv "
DoWindow $WName
If ( V_Flag )

DoWindow /F $WName
1721 Else

Return NAC_NoSuchWindow
EndIf
NVar FrameIndex =$"root:NAC :"+ Name +": BrowseDeconvolutionIndex "
SVar FileName =$"root:NAC :"+ Name +": FileName "

1726 Wave Deconvolution =$"root:NAC :"+ Name +": Deconvolution "
String Caption ="\ JCDeconvoluted Frames " + Num2Str ( FrameIndex * DimDelta (⤦
Ç Deconvolution , 1)) + " to " + Num2Str (( FrameIndex +2)* DimDelta ( Deconvolution⤦
Ç , 1) -1)

Caption +=" for "+ Name +" Measurement \r\JC" + FileName + ":"
Caption +=" \K(0 ,0 ,65280) Even Frame " + SelectString ( DimDelta ( Deconvolution , 1)⤦
Ç >1 , "", "s") + " \K(0 ,52224 ,0) Odd Frame " + SelectString ( DimDelta (⤦
Ç Deconvolution , 1) >1 , "", "s")

TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= Caption /A=MC /B=1 Caption
1731 Return NoError

End
//

Function NAC_ShowControlPanel
Function NAC_ShowControlPanel ()

If ( DataFolderExists (" root:NAC "))
1736 DoWindow NAC_Control

If ( V_Flag ==0)
Error_Message ( DataPanel () , " DataPanel ", " NAC_Panels ", "Data ")

Else
DoWindow /F NAC_Control

1741 EndIf
Else

Error_Message ( NAC_Initialize () , " NAC_Initialize ", " NAC_ShowControlPanel ", "")
EndIf
Return NoError

1746 End
//

Function NAC_Panels
Static Function NAC_Panels ()

Error_Message ( DataPanel () , " DataPanel ", " NAC_Panels ", "Data ")
Return NoError

1751 End
//

Function NAC_DataPanel
Static Function DataPanel ()

Variable yOfs , i, Left
String ExpListLoad =" Deconvolution ; BeforeCoating ; RateCoating ; AfterCoating ;⤦
Ç LaserReference ; Transmission ; Radiation ; RateCalorimetry ; ZeroSticking ;Heat;⤦
Ç Sticking ;"

1756 String Name
yOfs =10
NewPanel /N= NAC_Control /K=2 /W=(10 ,10 ,1250 ,815) as "NAC Data Evaluation ⤦
Ç Version "+ NAC_Version

ModifyPanel /W= NAC_Control fixedsize =1
SetDrawLayer UserBack
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1761 Left =170
ValDisplay SampleRate , Pos ={ Left ,yOfs +0} , BodyWidth =80 , Frame =2, Title =" Sample ⤦
Ç Rate (1/s): ", Value =#" root:NAC: Experiment : SampleRate "

ValDisplay ChopperPeriod , Pos ={ Left ,yOfs +20} , BodyWidth =80 , Frame =2, Title ="⤦
Ç Chopper Halfperiod (s): ", Value =#" root:NAC: Experiment : ChopperPeriod "

ValDisplay ChopperDelay , Pos ={ Left ,yOfs +40} , BodyWidth =80 , Frame =2, Title ="⤦
Ç Chopper Delay (s): ", Value =#" root:NAC: Experiment : ChopperDelay "

ValDisplay ChopperOpenCloseSteps , Pos ={ Left ,yOfs +60} , BodyWidth =80 , Frame =2, ⤦
Ç Title =" Chopper Steps : ", Value =#" root:NAC: Experiment : OpenCloseSteps "

1766 ValDisplay NominalPulseLength , Pos ={ Left ,yOfs +80} , BodyWidth =80 , Frame =2, Title⤦
Ç =" Nominal Pulse Length (s): ", Value =#" root:NAC: Experiment :⤦
Ç NominalPulseLength "

SetVariable PulseLength , Pos ={ Left ,yOfs +100} , BodyWidth =80 , Frame =2, Limits⤦
Ç ={0.001 , Inf , 0.001} , Title =" Pulse Length (s): ", Value =root:NAC: Experiment⤦
Ç : PulseLength

ValDisplay Transmission , Pos ={ Left ,yOfs +120} , BodyWidth =80 , Frame =2, Title ="⤦
Ç Transmission : ", Value =#" root:NAC: Transmission : Transmission "

Left +=250
ValDisplay BeamDia , Pos ={ Left ,yOfs +0} , BodyWidth =80 , Frame =2, Title =" Beam ⤦
Ç Diameter (m): ", Value =#" root:NAC: Machine : BeamDiameter "

1771 ValDisplay QCMDia , Pos ={ Left ,yOfs +20} , BodyWidth =80 , Frame =2, Title =" QCM ⤦
Ç Diameter (m): ", Value =#" root:NAC: Machine : QCMDiameter "

ValDisplay QCMToolCoat , Pos ={ Left ,yOfs +40} , BodyWidth =80 , Frame =2, Title =" QCM ⤦
Ç Tooling Coating : ", Value =#" root:NAC: Machine : QCMToolingCoating "

ValDisplay QMSToolCal , Pos ={ Left ,yOfs +60} , BodyWidth =80 , Frame =2, Title =" QMS ⤦
Ç Tooling Calorimetry : ", Value =#" root:NAC: Machine : QMSToolingCalorimetry "

// ValDisplay LaserPowCorr , Pos ={ Left ,yOfs +80} , BodyWidth =80 , Frame =2, Title ="\"⤦
Ç Laser \" Power Correction : ", Value =#" root:NAC: Machine : LaserPowerCorrection "

PopupMenu LaserPowCorr , Pos ={ Left ,yOfs +77} , BodyWidth =80 , Frame =0, Mode =1, proc⤦
Ç = NAC_LaserPowerCorrectionPopUp , Title ="\" Laser \" Power Correction : ", Value⤦
Ç =#" root:NAC: Machine : LaserPowerCorrectionList "

1776 SetVariable MirrorPowCorr , Pos ={ Left ,yOfs +100} , BodyWidth =80 , Frame =2, Title ="⤦
Ç Mirror Contamination : ", Value =root:NAC: Experiment : MirrorContamination

// SetVariable ReflectClean , Pos ={ Left ,yOfs +120} , BodyWidth =80 , Frame =2, Limits⤦
Ç ={0.001 , 0.999 , 0.005} , Title =" Reflectivity Clean Sample : ", Value =root:NAC:⤦
Ç Machine : ReflectivityClean

PopupMenu ReflectClean , Pos ={ Left ,yOfs +117} , BodyWidth =80 , Frame =0, Mode =1, ⤦
Ç proc= NAC_ReflectivityCleanPopUp , Title =" Reflectivity Clean Sample : ", Value⤦
Ç =#" root:NAC: Machine : ReflectivityCleanList "

Left +=250
ValDisplay HiPass , Pos ={ Left ,yOfs +0} , BodyWidth =80 , Frame =2, Title =" High Pass ⤦
Ç Cutoff (Hz): ", Value =#" root:NAC: Machine : HighPassFrequency "

1781 ValDisplay LineNotch , Pos ={ Left ,yOfs +20} , BodyWidth =80 , Frame =2, Title =" Mains ⤦
Ç Frequency (Hz): ", Value =#" root:NAC: Machine : LineNotchFrequency "

SetVariable SecondNotch , Pos ={ Left ,yOfs +40} , BodyWidth =80 , Frame =2, Limits ={1 , ⤦
Ç 1e4 , 1}, Title =" Extra Notch Filter (Hz): ", Value =root:NAC: Machine :⤦
Ç SecondNotchFrequency

ValDisplay Nyquist , Pos ={ Left ,yOfs +60} , BodyWidth =80 , Frame =2, Title =" Nyquist ⤦
Ç Cutoff (Hz): ", Value =#" root:NAC: Machine : NyquistFrequency "

SetVariable DeconvWin , Pos ={ Left ,yOfs +80} , BodyWidth =80 , Frame =2, Limits ={0 , 1,⤦
Ç 1e -3} , Title =" Deconvolution Window (s): ", Value =root:NAC: Machine :⤦
Ç DeconvolutionWindow

SetVariable RateFitWin , Pos ={ Left ,yOfs +100} , BodyWidth =80 , Frame =2, Limits ={0 , ⤦
Ç Inf , 1e -10} , Title =" Dep. Rate Fitting Window (pnts): ", Value =root:NAC:⤦
Ç Machine : RateFittingWindow

1786 SetVariable CoatingThickness , Pos ={ Left ,yOfs +120} , BodyWidth =80 , Frame =2, ⤦
Ç Limits ={0 , Inf , 1e -10} , Title =" Coating Thickness (m): ", Value =root:NAC:⤦
Ç RateCoating : TotalThickness

Left +=250
SetVariable DepositionRate , Pos ={ Left ,yOfs +0} , BodyWidth =80 , Frame =2, Limits⤦
Ç ={0 , Inf , 1e -12} , Title =" Calorimetry Dep. Rate (m/s): ", Value =root:NAC:⤦
Ç RateCalorimetry : DepositionRate

ValDisplay QCMToolCal , Pos ={ Left ,yOfs +20} , BodyWidth =80 , Frame =2, Title =" QCM ⤦
Ç Tooling Calorimetry : ", Value =#" root:NAC: Machine : QCMToolingCalorimetry "

SetVariable RateML , Pos ={ Left ,yOfs +40} , BodyWidth =80 , Frame =2, Limits ={0.001 , ⤦
Ç Inf , 0.001} , Title =" Calorimetry Dep. Rate (ML/s): ", Value =root:NAC:⤦
Ç RateCalorimetry : RateMonoLayer

1791 SetVariable DoseML , Pos ={ Left ,yOfs +60} , BodyWidth =80 , Frame =2, Limits ={0.001 , ⤦
Ç Inf , 0.001} , Title =" Calorimetry Dose (ML/ Pulse ): ", Value =root:NAC:⤦
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Ç RateCalorimetry : DosePerPulse
SetVariable DoseMole , Pos ={ Left ,yOfs +80} , BodyWidth =80 , Frame =2, Limits ={1e -15 ,⤦
Ç Inf , 1e -12} , Title =" Calorimetry Dose (Mole/ Pulse ): ", Value =root:NAC:⤦
Ç RateCalorimetry : MoleDosePerPulse

SetVariable MLDensity , Pos ={ Left ,yOfs +100} , BodyWidth =80 , Frame =2, Limits ={1 , ⤦
Ç Inf , 1e15}, Title =" Sample ML Density (1/m^2): ", Value =root:NAC:⤦
Ç RateCalorimetry : MonolayerDensity

Left +=250
SetVariable TemperatureSample , Pos ={ Left ,yOfs +0} , BodyWidth =80 , Frame =2, Limits⤦
Ç ={1 , 2000 , 1}, Title =" Sample Temperature (K): ", Value =root:NAC: Experiment :⤦
Ç TemperatureSample , proc= NAC_ReCalcHeat

1796 SetVariable TemperatureSource , Pos ={ Left ,yOfs +20} , BodyWidth =80 , Frame =2, ⤦
Ç Limits ={1 , 2000 , 1}, Title =" Source Temperature (K): ", Value =root:NAC:⤦
Ç Experiment : TemperatureSource , proc= NAC_ReCalcHeat

SetVariable SubAds , Pos ={ Left ,yOfs +40} , BodyWidth =80 , Frame =2, Limits ={0 , Inf , ⤦
Ç 10} , Title =" Subtract Adsorption (J/mol): ", Value =root:NAC: Enthalpies :⤦
Ç SubtractAdsorbed , proc= NAC_ReCalcHeat

SetVariable SubDes , Pos ={ Left ,yOfs +60} , BodyWidth =80 , Frame =2, Limits ={0 , Inf , ⤦
Ç 10} , Title =" Subtract Desorption (J/mol): ", Value =root:NAC: Enthalpies :⤦
Ç SubtractDesorbed , proc= NAC_ReCalcHeat

ValDisplay MultEntRef , Pos ={ Left ,yOfs +80} , BodyWidth =80 , Frame =2, Limits ={0 , ⤦
Ç Inf , 10} , Title =" Multilayer Reference (J/mol): ", Value =#" root:NAC:⤦
Ç Enthalpies : MultiLayerReference [0]"

ValDisplay MultEnth , Pos ={ Left ,yOfs +100} , BodyWidth =80 , Frame =2, Limits ={0 , Inf⤦
Ç , 10} , Title =" Multilayer Enthalpy (J/mol): ", Value =#" root:NAC: Enthalpies :⤦
Ç MultiLayerEnthalpy "

1801 ValDisplay MultEnthErr , Pos ={ Left ,yOfs +120} , BodyWidth =80 , Frame =2, Limits ={0 , ⤦
Ç Inf , 10} , Title =" Multilayer Enthalpy Error (J/mol): ", Value =#" root:NAC:⤦
Ç Enthalpies : MultiLayerEnthalpyError "

yOfs +=160
left =40
DrawLine 10,yOfs -10 ,1220 , yOfs -10
TitleBox T_Lazy size ={110 ,30} , fcolor =(0 , 0, 0) , pos ={10 , yOfs}, frame =0, fstyle⤦
Ç =1, fixedsize =1, anchor =MT , title ="\ JC \r\ JCLazy "

1806 TitleBox T_DeConv size ={85 ,30} , fcolor =(0 , 0, 0) , pos ={ left +100 , yOfs}, frame =0,⤦
Ç fstyle =1, fixedsize =1, anchor =MT , title ="\ JC \r\ JCDeconvolution "

TitleBox T_BeforeCoating size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +200 , yOfs}, ⤦
Ç frame =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JCBefore \r\ JCCoating "

TitleBox T_Coating size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +300 , yOfs}, frame⤦
Ç =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JCThickness \r\ JCCoating "

TitleBox T_AfterCoating size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +400 , yOfs}, ⤦
Ç frame =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JCAfter \r\ JCCoating "

TitleBox T_LaserReference size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +500 , yOfs}, ⤦
Ç frame =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JC \" Laser \"\r\⤦
Ç JCReference "

1811 TitleBox T_Transmission size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +600 , yOfs}, ⤦
Ç frame =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JC \r\ JCTransmission "

TitleBox T_Radiation size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +700 , yOfs}, frame⤦
Ç =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JC \r\ JCRadiation "

TitleBox T_QCMCal size ={100 ,30} , fcolor =(0 , 0, 0) , pos ={ left +800 -10 , yOfs}, ⤦
Ç frame =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JCDeposition Rate\r\⤦
Ç JCCalorimetry "

TitleBox T_ZeroSticking size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +900 , yOfs}, ⤦
Ç frame =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JCZero \r\ JCSticking "

TitleBox T_Heat size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +1000 , yOfs}, frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =MT , title ="\ JC \r\ JCHeat "

1816 TitleBox T_Sticking size ={80 ,30} , fcolor =(0 , 0, 0) , pos ={ left +1100 , yOfs}, frame⤦
Ç =0, fstyle =1, fixedsize =1, anchor =MT , title ="\ JC \r\ JCSticking "

yOfs +=40
Button LoadLazy pos ={10 , yOfs -2} , Proc= NAC_LoadLazyButton , size ={110 ,20} , title⤦
Ç =" Load"

TitleBox T_Header size ={120 , 25} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +25} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" File Header :"

TitleBox T_FileName size ={120 , 25} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +50} , frame⤦
Ç =0, fstyle =1, fixedsize =1, anchor =LT , title =" File Name :"

1821 TitleBox T_Disp size ={120 , 25} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +75} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Full Data :"

TitleBox T_Flag size ={120 , 25} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +100} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Flagging :"
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Button ProcessLazy pos ={10 , yOfs +123} , Proc= NAC_ProcessLazyButton , size⤦
Ç ={110 ,20} , title =" Process "

Button StatisticsLazy pos ={10 , yOfs +148} , Proc= NAC_StatisticsLazyButton , size⤦
Ç ={110 ,20} , title =" Statistics "

TitleBox T_Decon size ={120 , 25} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +175} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Deconvolution :"

1826 TitleBox T_Res size ={120 , 25} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +200} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Result :"

For (i=0;i< ItemsInList ( ExpListLoad );i+=1)
left =(i+1) *100+40
Name= StringFromList (i, ExpListLoad )
StrSwitch (Name)

1831 Case "Heat ":
Button $"Load "+ Name pos ={ left ,yOfs -2} , Proc= NAC_LoadButton , size⤦

Ç ={180 ,20} , title =" Load"
Button $" Header "+ Name pos ={ left ,yOfs +23} , Proc= NAC_HeaderButton , size⤦

Ç ={180 ,20} , title =" Show"
SetVariable $" FileName "+ Name bodyWidth =180 , disable =2, pos ={ left +130 , yOfs⤦

Ç +50} , title =" ", value =$"root:NAC :"+ Name +": FileName "
Break

1836 Case " Sticking ":
Break

Default :
Button $"Load "+ Name pos ={ left ,yOfs -2} , Proc= NAC_LoadButton , size ={80 ,20} ,⤦

Ç title =" Load"
Button $" Header "+ Name pos ={ left ,yOfs +23} , Proc= NAC_HeaderButton , size⤦

Ç ={80 ,20} , title =" Show"
1841 SetVariable $" FileName "+ Name bodyWidth =80 , disable =2, pos ={ left +30 , yOfs⤦

Ç +50} , title =" ", value =$"root:NAC :"+ Name +": FileName "
EndSwitch
StrSwitch (Name)

Case " RateCalorimetry ":
Case " RateCoating ":

1846 Button $" Display "+ Name pos ={ left ,yOfs +73} , Proc= NAC_DisplayRateFile , size⤦
Ç ={80 ,20} , title =" Display "

Default :
Button $" Display "+ Name pos ={ left ,yOfs +73} , Proc= NAC_DisplayFullButton , ⤦

Ç size ={80 ,20} , title =" Display "
Break

EndSwitch
1851 StrSwitch (Name)

Case " RateCalorimetry ":
Case " RateCoating ":

Button $" Process "+ Name pos ={ left ,yOfs +123} , Proc= NAC_ProcessButton , size⤦
Ç ={80 ,20} , title =" Process "

Button $" Result "+ Name pos ={ left ,yOfs +198} , Proc= NAC_ResultButton , size⤦
Ç ={80 ,20} , title =" Present "

1856 Break
Case "Heat ":

Button $"Flag "+ Name pos ={ left ,yOfs +98} , Proc= NAC_DisplayFlagButton , size⤦
Ç ={80 ,20} , title =" Flag"

Button $" Process "+ Name pos ={ left ,yOfs +123} , Proc= NAC_ProcessButton , size⤦
Ç ={80 ,20} , title =" Process "

Button $" Result "+ Name pos ={ left ,yOfs +198} , Proc= NAC_ResultButton , size⤦
Ç ={80 ,20} , title =" Present "

1861 Button $" DeConvAvg "+ Name pos ={ left ,yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteAverageButton , size ={38 ,20} , title =" Avg"

Button $" DeConvAll "+ Name pos ={ left +42 , yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteAllButton , size ={38 ,20} , title =" All"

Break
Case " Sticking ":

Button $"Flag "+ Name pos ={ left ,yOfs +98} , Proc= NAC_DisplayFlagButton , size⤦
Ç ={80 ,20} , title =" Flag"

1866 Button $" Process "+ Name pos ={ left ,yOfs +123} , Proc= NAC_ProcessButton , size⤦
Ç ={80 ,20} , title =" Process "

Button $" Result "+ Name pos ={ left ,yOfs +198} , Proc= NAC_ResultButton , size⤦
Ç ={80 ,20} , title =" Present "

Button $" DeConvAvg "+ Name pos ={ left ,yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteAverageButton , size ={38 ,20} , title =" Avg", disable =2
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Button $" DeConvAll "+ Name pos ={ left +42 , yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteAllButton , size ={38 ,20} , title =" All", disable =2

Break
1871 Default :

Button $"Flag "+ Name pos ={ left ,yOfs +98} , Proc= NAC_DisplayFlagButton , size⤦
Ç ={80 ,20} , title =" Flag"

Button $" Process "+ Name pos ={ left ,yOfs +123} , Proc= NAC_ProcessButton , size⤦
Ç ={80 ,20} , title =" Process "

Button $" Statistics "+ Name pos ={ left ,yOfs +148} , Proc= NAC_StatisticsButton ,⤦
Ç size ={80 ,20} , title =" Statistics "

StrSwitch (Name)
1876 Case " ZeroSticking ":

Break
Case " Deconvolution ":

Button $" DeConvFull "+ Name pos ={ left ,yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteFullButton , size ={80 ,20} , title =" Everything "

Break
1881 Default :

Button $" DeConvAvg "+ Name pos ={ left ,yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteAverageButton , size ={38 ,20} , title =" Avg"

Button $" DeConvAll "+ Name pos ={ left +42 , yOfs +173} , Proc=⤦
Ç NAC_DeconvoluteAllButton , size ={38 ,20} , title =" All"

EndSwitch
Button $" Result "+ Name pos ={ left ,yOfs +198} , Proc= NAC_ResultButton , size⤦

Ç ={80 ,20} , title =" Present "
1886 Break

EndSwitch
EndFor
yofs +=225
TitleBox T_Subst size ={120 ,20} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +0} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Substance :"

1891 TitleBox T_NumFrame size ={120 ,20} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +20} , frame =0,⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Total Frames :"

TitleBox T_EffFrame size ={120 ,20} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +40} , frame =0,⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Processed Frames :"

TitleBox T_LaserPow size ={120 ,20} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +60} , frame =0,⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title ="\" Laser \" Power (W):"

TitleBox T_Reflec size ={120 ,20} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +80} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Reflectivity :"

For (i=0;i< ItemsInList ( ExpListLoad );i+=1)
1896 left =(i+1) *100+40

Name= StringFromList (i, ExpListLoad )
If ( StringMatch (Name ," Rate *"))

SetVariable $" Substance "+ Name bodyWidth =80 , disable =2, pos ={ left +30 , yOfs⤦
Ç +0} , title =" ", value =$"root:NAC :"+ Name +": Substance "
Else

1901 ValDisplay $" NumFrames "+ Name , pos ={ left +30 , yOfs +20} , bodyWidth =80 , frame =2,⤦
Ç title ="" , value =#(" root:NAC :"+ Name +": NumberOfFrames ")

ValDisplay $" NonFFrames "+ Name , pos ={ left +30 , yOfs +40} , bodyWidth =80 , frame⤦
Ç =2, title ="" , value =#(" root:NAC :"+ Name +": EffectiveFrames ")
EndIf
If ((! StringMatch (Name ," Rate *") && StringMatch (Name ,"* Coating ")) || ⤦
Ç StringMatch (Name ," Laser *") || StringMatch (Name ," Transmission ") || ⤦
Ç StringMatch (Name ," Deconvolution "))

SetVariable $" LaserPow "+ Name , pos ={ left +30 , yOfs +60} , bodyWidth =80 , title =" ⤦
Ç ", Limits ={0 ,Inf ,1e -6} , Value =$(" root:NAC :"+ Name +": LaserPower ")

1906 Endif
If ( StringMatch (Name ," BeforeCoating ") || StringMatch (Name ," Laser *") || ⤦
Ç StringMatch (Name ," Deconvolution "))

SetVariable $" Reflec "+ Name , pos ={ left +30 , yOfs +80} , bodyWidth =80 , frame =2, ⤦
Ç title =" ", limits ={0 ,1 ,0.01} , value =$(" root:NAC :"+ Name +": Reflectivity ")
ElseIf ( StringMatch (Name ," AfterCoating "))

ValDisplay ReflecAfterCoating , pos ={ left +30 , yOfs +80} , bodyWidth =80 , frame⤦
Ç =2, title ="" , value =#" root:NAC: AfterCoating : Reflectivity "

1911 Endif
EndFor
yOfs +=120
DrawLine 10,yOfs -10 ,1220 , yOfs -10
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TitleBox T_Fitting size ={120 ,20} , fcolor =(0 , 0, 0) , pos ={10 , yOfs +0} , frame =0, ⤦
Ç fstyle =1, fixedsize =1, anchor =LT , title =" Fitting :"

1916 ValDisplay Progress , Pos ={40 , yOfs +20} , BodyWidth =110 , frame =2, title =" ", ⤦
Ç Disable =1, fixedsize =1, BarMisc ={0 ,0} , value =#" root:NAC:GUI: ProgressValue "

CheckBox AutoFlag , Pos ={30 , yOfs +62} , BodyWidth =110 , Frame =2, Side =1, Title ="⤦
Ç Auto Flag: ", Variable =root:NAC: Experiment : AutoFlag

left =140
TitleBox T_DeConAverage size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +4} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Average Frames "

SetVariable DeConAverage , Pos ={ Left +15 , yOfs +20} , BodyWidth =65 , Frame =2, Limits⤦
Ç ={1 ,Inf ,1} , Title =" ", Value =root:NAC: Deconvolution : AverageFrames

1921 TitleBox T_DeConRemRad size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +44} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Remove Radiation "

CheckBox RemRadFix proc= NAC_DCRproc , Pos ={ left -10 , yOfs +62} , BodyWidth =30 , Frame⤦
Ç =2, Side =1, fixedsize =1, Title =" Fixed ", Variable =root:NAC: Deconvolution :⤦
Ç RemoveFixedRadiation

CheckBox RemRadFit proc= NAC_DCRproc , Pos ={ left +35 , yOfs +62} , BodyWidth =30 , Frame⤦
Ç =2, Side =1, fixedsize =1, Title =" Fitted ", Variable =root:NAC: Deconvolution :⤦
Ç RemoveFittedRadiation

TitleBox T_DeConUseFit size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +84} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Use Fitted "

CheckBox UseFit Pos ={ left +30 , yOfs +102} , BodyWidth =80 , Frame =2, Side =1, ⤦
Ç fixedsize =1, Title =" Fit Wave: ", Variable =root:NAC: Deconvolution :⤦
Ç UseFittedFitWave

1926 CheckBox UseSens Pos ={ left +35 , yOfs +122} , BodyWidth =80 , Frame =2, Side =1, ⤦
Ç fixedsize =1, Title =" Use Sensitivity ", Variable =root:NAC: Deconvolution :⤦
Ç UseSensitivity

SetVariable DeConSens , Pos ={ Left +15 , yOfs +140} , BodyWidth =65 , Frame =2, Limits ={-⤦
Ç Inf ,Inf ,0.01} , Title =" ", Value =root:NAC: Deconvolution : Sensitivity

left +=200
CheckBox UseTotalRateCoating proc= NAC_UseTotalRangeProc , disable =0, pos ={ left⤦
Ç +30 , yOfs +0} , BodyWidth =80 , Side =1, Title =" Total Range : ", variable =root:NAC⤦
Ç : RateCoating : UseTotalRange

CheckBox UseBLRateCoating proc= NAC_UseBaselineProc , disable =0, pos ={ left +30 ,⤦
Ç yOfs +20} , BodyWidth =80 , Side =1, Title =" Baseline : ", variable =root:NAC:⤦
Ç RateCoating : UseBaseline

1931 NVAr UseTotalRange =root:NAC: RateCoating : UseTotalRange
If ( UseTotalRange )

CheckBox UseBLRateCoating Disable =2
EndIf
left +=400

1936 TitleBox T_EmpryCrucible size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +4} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Use Empty Crucible "

CheckBox UseEmpryCrucible proc= NAC_UseEmptyCrucibleProc , disable =0, pos ={ left⤦
Ç +30 , yOfs +20} , Side =1, Title =" Reference : ", variable =root:NAC: Experiment :⤦
Ç UseEmptyCrucibleReference

TitleBox T_EmpryCrucibleTempA size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs⤦
Ç +46} , frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Reference "

TitleBox T_EmpryCrucibleTempB size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs⤦
Ç +62} , frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Temperature (K):"

ValDisplay EmptyCrucibleTemperature , Pos ={ Left +30 , yOfs +80} , BodyWidth =80 , Frame⤦
Ç =2, Title =" ", Value =#" root:NAC: Experiment : EmptyCrucibleTemperature "

1941 left +=100
CheckBox UseBLRateCalorimetry proc= NAC_UseBaselineProc , disable =0, pos ={ left⤦
Ç +30 , yOfs +20} , Side =1, Title =" Baseline : ", variable =root:NAC: RateCalorimetry⤦
Ç : UseBaseline

left +=200
TitleBox T_HeatOffset size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +4} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Offset | Hold"

SetVariable HeatOffset , Pos ={ left +15 , yOfs +20} , BodyWidth =65 , Frame =2, Limits ={-⤦
Ç Inf , Inf , 0.001} , Title =" ", Value =root:NAC:Heat: InitOffset

1946 CheckBox HoldHeatOffset , Pos ={ left +65 , yOfs +22} , BodyWidth =10 , Frame =2, Title =" ⤦
Ç ", Variable =root:NAC:Heat: HoldOffset

TitleBox T_HeatAmp size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +44} , frame⤦
Ç =0, fstyle =0, fixedsize =1, anchor =LT , title =" Heat Amp | Hold"

SetVariable HeatAmp , Pos ={ left +15 , yOfs +60} , BodyWidth =65 , Frame =2, Limits ={-Inf⤦
Ç , Inf , 1e -7} , Title =" ", Value =root:NAC:Heat: InitAdsorption

CheckBox HoldHeatAmp , Pos ={ left +65 , yOfs +62} , BodyWidth =10 , Frame =2, Title =" ", ⤦
Ç Variable =root:NAC:Heat: HoldAdsorption
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TitleBox T_HeatShift size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +84} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Heat Shift | Hold"

1951 SetVariable HeatShift , Pos ={ left +15 , yOfs +100} , BodyWidth =65 , Frame =2, Limits ={-⤦
Ç Inf , Inf , 0.001} , Title =" ", Value =root:NAC:Heat: InitAdsorptionShift

CheckBox HoldHeatShift , Pos ={ left +65 , yOfs +102} , BodyWidth =10 , Frame =2, Title =" ⤦
Ç ", Variable =root:NAC:Heat: HoldAdsorptionShift

TitleBox T_RadAmp size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +124} , frame⤦
Ç =0, fstyle =0, fixedsize =1, anchor =LT , title =" Rad Amp | Hold"

SetVariable RadAmp , Pos ={ left +15 , yOfs +140} , BodyWidth =65 , Frame =2, Limits ={-Inf⤦
Ç , Inf , 0.01} , Title =" ", Value =root:NAC:Heat: InitRadiation

CheckBox HoldRadAmp , Pos ={ left +65 , yOfs +142} , BodyWidth =10 , Frame =2, Title =" ", ⤦
Ç Variable =root:NAC:Heat: HoldRadiation

1956 TitleBox T_RadShift size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +164} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Rad Shift | Hold"

SetVariable RadShift , Pos ={ left +15 , yOfs +180} , BodyWidth =65 , Frame =2, Limits ={-⤦
Ç Inf ,Inf ,0.001} , Title =" ", Value =root:NAC:Heat: InitRadiationShift

CheckBox HoldRadShift , Pos ={ left +65 , yOfs +182} , BodyWidth =10 , Frame =2, Title =" ⤦
Ç ", Variable =root:NAC:Heat: HoldRadiationShift

CheckBox FittedRad , Pos ={ left +31 , yOfs +207} , BodyWidth =10 , Frame =2, Side =1, ⤦
Ç Disable =2, Title =" Use Trend : ", Variable =root:NAC: Experiment :⤦
Ç UseFittedRadiation

CheckBox LockShifts , Pos ={ left +31 , yOfs +227} , BodyWidth =40 , Frame =2, Side =1, ⤦
Ç Disable =0, Title =" Link Heat & Radiation Shifts : ", Variable =root:NAC:Heat:⤦
Ç LinkShifts

1961 left +=100
TitleBox T_StickingOffset size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +4} ,⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Offset | Hold"

SetVariable StickingOffset , Pos ={ left +15 , yOfs +20} , BodyWidth =65 , Frame =2, ⤦
Ç Limits ={-Inf ,Inf ,0.001} , Title =" ", Value =root:NAC: Sticking : InitOffset

CheckBox HoldDesorptionOffset , Pos ={ left +65 , yOfs +22} , BodyWidth =10 , Frame =2, ⤦
Ç Title =" ", Variable =root:NAC: Sticking : HoldOffset

TitleBox T_StickingAmp size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +44} , ⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Desorption | Hold"

1966 SetVariable StickingAmp , Pos ={ left +15 , yOfs +60} , BodyWidth =65 , Frame =2, Limits⤦
Ç ={-Inf ,Inf ,0.01} , Title =" ", Value =root:NAC: Sticking : InitDesorption

CheckBox HoldDesorptionAmp , Pos ={ left +65 , yOfs +62} , BodyWidth =10 , Frame =2, Title⤦
Ç =" ", Variable =root:NAC: Sticking : HoldDesorption

TitleBox T_StickingShift size ={100 ,20} , fcolor =(0 , 0, 0) , pos ={ left +0, yOfs +84} ,⤦
Ç frame =0, fstyle =0, fixedsize =1, anchor =LT , title =" Shift | Hold"

SetVariable StickingShift , Pos ={ left +15 , yOfs +100} , BodyWidth =65 , Frame =2, ⤦
Ç Limits ={-Inf ,Inf ,0.001} , Title =" ", Value =root:NAC: Sticking : InitShift

CheckBox HoldDesorptionShift , Pos ={ left +65 , yOfs +102} , BodyWidth =10 , Frame =2, ⤦
Ç Title =" ", Variable =root:NAC: Sticking : HoldShift

1971 CheckBox FittedDes , Pos ={ left +31 , yOfs +207} , BodyWidth =10 , Frame =2, Side =1, ⤦
Ç Disable =2, Title =" Use Trend : ", Variable =root:NAC: Experiment :⤦
Ç UseFittedDesorption

yOfs +=230
Return NoError

End
//

C.1.4 Data Processing
1976 //

Function NAC_AutoFlagAll
Function NAC_AutoFlagAll ()
String ExpList =" Deconvolution ; BeforeCoating ; AfterCoating ; LaserReference ;⤦

Ç Transmission ; Radiation ; ZeroSticking ;"
String Name
Variable i

1981 NVar AutoFlagged =root:NAC: Experiment : AutoFlagged
For (i=0;i< ItemsInList ( ExpList );i+=1)

Name= StringFromList (i, ExpList , ";")
NAC_AutoFlag (Name)
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_AutoFlagAll ", Name)

1986 EndFor
AutoFlagged =1

End
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//

Function Coverage2Thickness
Static Function Coverage2Thickness ( Coverage )

1991 Variable Coverage
NVar Density =root:NAC: RateCalorimetry :Density , MolarMass =root:NAC: RateCalorimetry :⤦

Ç MolarMass , MonolayerDensity =root:NAC: RateCalorimetry : MonolayerDensity
Return Coverage / ( Density *1 e3)*( MolarMass *1e -3) *( MonolayerDensity )/ N_Avo

End
//

Function ProcessProc
1996 Static Function ProcessProc (Name[, NoDecon ])

String Name
Variable NoDecon
String WName =" NAC_ "+ Name +" _Avg"
Variable Tmp , DoDecon

2001 If ( ParamIsDefault ( NoDecon ))
NoDecon =0

EndIf
DoDecon =! NoDecon
StrSwitch (Name)

2006 Case " RateCalorimetry ":
Case " RateCoating ":

NVar Loaded =$"root:NAC :"+ Name +": Loaded "
If (! Loaded )

Return NAC_NoDataLoaded
2011 EndIf

Break
Case " Deconvolution ":
Case " BeforeCoating ":
Case " AfterCoating ":

2016 Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case "Heat ":
Case " Sticking ":

2021 Case " ZeroSticking ":
NVar Loaded =$"root:NAC :"+ Name +": Loaded "
If (! Loaded )

Return NAC_NoDataLoaded
EndIf

2026 NVar EffectiveFrames =$"root:NAC :"+ Name +": EffectiveFrames "
If ( EffectiveFrames <=0)

Return NAC_NothingToProcess
EndIf
Error_Message ( Averaging (Name), " Averaging ", " ProcessProc ", Name)

2031 Error_Message ( DisplayAverage (Name), " DisplayAverage ", " ProcessProc ", Name)
Break

Default :
Return NAC_UnknownMeasurement

EndSwitch
2036 Tmp =0

StrSwitch (Name)
Case " AfterCoating ":

If (( Exists (" root:NAC: Experiment : FitReflectivityOdd ") !=1) || ( Exists (" root:⤦
Ç NAC: Experiment : FitReflectivityEven ") !=1))

Tmp =1
2041 EndIf

Break
Case " Transmission ":

If (( Exists (" root:NAC: Experiment : FitLaserReferenceOdd ") !=1) || ( Exists ("⤦
Ç root:NAC: Experiment : FitLaserReferenceEven ") !=1))

Tmp =1
2046 EndIf

Break
Case "Heat ":

If (( Exists (" root:NAC: Experiment : FitLaserReferenceOdd ") !=1) || ( Exists ("⤦
Ç root:NAC: Experiment : FitLaserReferenceEven ") !=1))
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Tmp =1
2051 EndIf

If (( Exists (" root:NAC: Experiment : FitRadiationOdd ") !=1) || ( Exists (" root:NAC⤦
Ç : Experiment : FitRadiationEven ") !=1))

Tmp =1
EndIf
Break

2056 Case " Sticking ":
NVar HoldDesorption =root:NAC: Sticking : HoldDesorption
If (( Exists (" root:NAC: Experiment : FitStickingOdd ") !=1) || ( Exists (" root:NAC:⤦

Ç Experiment : FitStickingEven ") !=1) && ! HoldDesorption )
Tmp =1

EndIf
2061 Break

Default :
Break

EndSwitch
If (Tmp)

2066 Error_Message ( SetGraphRanges (Name), " SetGraphRanges ", " ProcessProc ", Name)
Return NAC_FitWavesMissing

EndIf
Execute /Z/Q " ModifyBrowser Collapse = GetBrowserLine (\" root:NAC \")"
StrSwitch (Name)

2071 Case " Deconvolution ":
Error_Message ( NormalizeFitWave (Name), " NormalizeFitWave ", " ProcessProc ", ⤦

Ç Name)
Break

Case " BeforeCoating ":
NVar ReflectivityClean =root:NAC: BeforeCoating : Reflectivity , ReflecCoat =root⤦

Ç :NAC: AfterCoating : Reflectivity , ReflecLaser =root:NAC: LaserReference :⤦
Ç Reflectivity

2076 Error_Message ( NormalizeFitWave (Name), " NormalizeFitWave ", " ProcessProc ", ⤦
Ç Name)

ReflecCoat =1 -( GetRatio ( NAC_RatioTypeReflectivity ))*(1 - ReflectivityClean )
If ( NumType ( ReflecCoat )==0)

ReflecLaser = ReflecCoat
Else

2081 ReflecLaser = ReflectivityClean
EndIf
Break

Case " AfterCoating ":
NVar ReflectivityClean =root:NAC: BeforeCoating : Reflectivity , ReflecCoat =root⤦

Ç :NAC: AfterCoating : Reflectivity
2086 NVar ReflecLaser =root:NAC: LaserReference : Reflectivity , Sensitivity =root:NAC⤦

Ç : Deconvolution : Sensitivity
Error_Message ( NormalizeFitWave (Name), " NormalizeFitWave ", " ProcessProc ", ⤦

Ç Name)
ReflecCoat =1- GetRatio ( NAC_RatioTypeReflectivity )*(1 - ReflectivityClean )
Sensitivity = GetRatio ( NAC_RatioTypeSensitivity )
If ( NumType ( ReflecCoat )==0)

2091 ReflecLaser = ReflecCoat
Else

ReflecLaser = ReflectivityClean
EndIf
Break

2096 Case " LaserReference ":
NVar Sensitivity =root:NAC: Deconvolution : Sensitivity
Error_Message ( GetPulseLength () , " GetPulseLength ", " ProcessProc ", Name)
Error_Message ( NormalizeFitWave (Name), " NormalizeFitWave ", " ProcessProc ", ⤦

Ç Name)
Sensitivity = GetRatio ( NAC_RatioTypeSensitivity )

2101 Break
Case " Transmission ":

NVar Transmission =root:NAC: Transmission : Transmission , Radiation =root:NAC:⤦
Ç Heat: InitRadiation

NVar Hold=root:NAC:Heat: HoldRadiation
Transmission = GetRatio ( NAC_RatioTypeTransmission )

2106 If (! Hold)
Radiation =1/ Transmission
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EndIf
Break

Case " Radiation ":
2111 Error_Message ( NormalizeFitWave (Name), " NormalizeFitWave ", " ProcessProc ", ⤦

Ç Name)
Break

Case " ZeroSticking ":
Error_Message ( Averaging (Name), " Averaging ", " ProcessProc ", Name)
Error_Message ( NormalizeFitWave (Name), " NormalizeFitWave ", " ProcessProc ", ⤦

Ç Name)
2116 Break

Case "Heat ":
If (( Exists (" root:NAC: Experiment : FitLaserReferenceOdd ") ==1) && ( Exists ("⤦

Ç root:NAC: Experiment : FitLaserReferenceEven ") ==1) && ( Exists (" root:NAC:⤦
Ç Experiment : FitRadiationOdd ") ==1) && ( Exists (" root:NAC: Experiment :⤦
Ç FitRadiationEven ") ==1))

Error_Message ( FitHeat () , " FitHeat ", " ProcessProc ", Name)
CheckBox FittedRad Disable =0, Win= NAC_Control

2121 EndIf
Break

Case " Sticking ":
If ((( Exists (" root:NAC: Experiment : FitStickingOdd ") ==1) && ( Exists (" root:NAC⤦

Ç : Experiment : FitStickingEven ") ==1)) || HoldDesorption )
Error_Message ( FitDesorption () , " FitDesorption ", " ProcessProc ", Name)

2126 CheckBox FittedDes Disable =0, Win= NAC_Control
EndIf
Break

Case " RateCalorimetry ":
Case " RateCoating ":

2131 Wave Thickness =$"root:NAC :"+ Name +": Thickness "
If ( WaveExists ( Thickness ))

NVar AvgWindow =root:NAC: Machine : RateFittingWindow
If ( NumPnts ( Thickness ) > AvgWindow )

Error_Message ( CalcQCMRate (Name), " CalcQCMRate ", " ProcessProc ", Name)
2136 Error_Message ( DisplayFittedRate (Name), " DisplayFittedRate ", "⤦

Ç ProcessProc ", Name)
EndIf

EndIf
Break

Default :
2141 Execute /Z/Q " ModifyBrowser Expand = GetBrowserLine (\" root:NAC \")"

Return NAC_UnknownMeasurement
Break

EndSwitch
StrSwitch (Name)

2146 Case " RateCalorimetry ":
Case " RateCoating ":

Break
Case " BeforeCoating ":
Case " AfterCoating ":

2151 Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case "Heat ":

If ( DoDecon )
2156 Error_Message ( DeconvolutionProcAverage (Name), " DeconvolutionProcAverage ",⤦

Ç " NAC_DeconvoluteAverageButton ", Name)
Error_Message ( DisplayDeconvolutedAverage (Name), "⤦

Ç DisplayDeconvolutedAverage ", " NAC_DeconvoluteAverageButton ", Name)
EndIf

Case " Deconvolution ":
Case " Sticking ":

2161 Case " ZeroSticking ":
Break

Default :
Execute /Z/Q " ModifyBrowser Expand = GetBrowserLine (\" root:NAC \")"
Return NAC_UnknownMeasurement

2166 Break
EndSwitch
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StrSwitch (Name)
Case " RateCalorimetry ":
Case " RateCoating ":

2171 Error_Message ( UpdateFittedRate (Name), " UpdateFittedRate ", " ProcessProc ", ⤦
Ç Name)

Break
Case " Deconvolution ":

Break
Default :

2176 Error_Message ( SetGraphRanges (Name , ProcessWave =" AverageOdd ") , "⤦
Ç SetGraphRanges ", " ProcessProc ", Name +" Odd ")

Error_Message ( SetGraphRanges (Name , ProcessWave =" AverageEven ") , "⤦
Ç SetGraphRanges ", " ProcessProc ", Name +" Even ")

Break
EndSwitch
String FlagWindows = WinList (" NAC_* _Flag " ,";" ," WIN :1")

2181 Variable i
For (i=0;i< ItemsInList ( FlagWindows );i+=1)

Error_Message ( UpdateFlagWin ( StringFromList (i, FlagWindows )), " UpdateFlagWin ", ⤦
Ç " ProcessProc ", Name)

EndFor
StrSwitch (Name)

2186 Case "Heat ":
Case " Sticking ":

NVar TemperatureSource =root:NAC: Experiment : TemperatureSource , ⤦
Ç TemperatureSample =root:NAC: Experiment : TemperatureSample

If (( NumType ( TemperatureSource )!=0) || ( NumType ( TemperatureSample )!=0))
Variable TSource = TemperatureSource , TSample = TemperatureSample

2191 Prompt TSample , " Sample Temperature (K): "
Prompt TSource , " Source Temperature (K): "
DoPrompt /HELP ="" " Parameters missing :", TSample , TSource
TemperatureSource = TSource
TemperatureSample = TSample

2196 If ( V_Flag )
Execute /Z/Q " ModifyBrowser Expand = GetBrowserLine (\" root:NAC \")"
Return UserAbort

ElseIf (( NumType ( TemperatureSource )!=0) || ( NumType ( TemperatureSample )⤦
Ç !=0))

Execute /Z/Q " ModifyBrowser Expand = GetBrowserLine (\" root:NAC \")"
2201 Return NAC_NotApplicable

EndIf
DoUpdate

EndIf
Error_Message ( CalcHeat () , " CalcHeat ", " ProcessProc ", Name)

2206 Error_Message ( DisplayVsPulse (" Heat ") , " DisplayVsPulse ", " ProcessProc ", Name⤦
Ç )

Error_Message ( DisplayVsPulse (" Sticking ") , " DisplayVsPulse ", " ProcessProc ", ⤦
Ç Name)

NVar Dose=root:NAC: RateCalorimetry : DosePerPulse
If (( Dose >0) || ( NumType (Dose)==0))

Error_Message ( DisplayVsCoverage (" Heat ") , " DisplayVsCoverage ", "⤦
Ç ProcessProc ", Name)

2211 Error_Message ( DisplayVsCoverage (" Sticking ") , " DisplayVsCoverage ", "⤦
Ç ProcessProc ", Name)

EndIf
Error_Message ( DoHeatTextBox () , " CalcHeat ", " ProcessProc ", Name)
Error_Message ( SetGraphRanges (Name), " SetGraphRanges ", " ProcessProc ", Name)
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " ProcessProc ", Name)

2216 Break
Case " RateCalorimetry ":
Case " RateCoating ":
Case " Deconvolution ":

Break
2221 Default :

Error_Message ( SetGraphRanges (Name), " SetGraphRanges ", " ProcessProc ", Name)
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " ProcessProc ", Name)
Break

EndSwitch
2226 DoUpdate
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DoWindow /F $WName
Execute /Z/Q " ModifyBrowser Expand = GetBrowserLine (\" root:NAC \")"
Return NoError

End
2231 //

Function DeconvoluteFrame
Static Function DeconvoluteFrame (Data , Index , Result , Parity )
Wave Data
Variable Index
Wave Result

2236 String Parity
NVar Delay =root:NAC: Experiment : ChopperDelay , Period =root:NAC: Experiment :⤦

Ç ChopperPeriod
NVar Win=root:NAC: Machine : DeconvolutionWindow , Fitted =root:NAC: Deconvolution :⤦

Ç UseFittedFitWave
Variable YOffset =0
Variable Step , Shift

2241 Make /N=1 /D /FREE FitCoef
Step= DimDelta (Data ,0)
Make /FREE /D /N=( DimSize (Data ,0)) Process , Diff =0, Int =0, Subtr =0
SetScale /P x, DimOffset (Data ,0) , Step , "", Process , Diff , Int
Process =Data[p][ Index ]

2246 If ( Fitted )
StrSwitch ( Parity )

Case "Odd ":
For ( Shift =0; Shift < Period +9* Win; Shift += Step)

FitCoef ={1e -6} // Offset , Amp , Shift
2251 SetScale /P x, -Shift , Step , "", Process , Subtr

FuncFit /N /Q /W=2 DeconvolutionFuncOddFitted FitCoef Process (-Win ,+ Win⤦
Ç )

DeconvolutionFuncOddFitted (FitCoef ,Subtr , Subtr )
Process -= Subtr [p]
Diff[ Shift /Step ]= FitCoef [0]

2256 EndFor
Break

Case "Even ":
For ( Shift =0; Shift < Period +9* Win; Shift += Step)

FitCoef ={1e -6} // Offset , Amp , Shift
2261 SetScale /P x, -Shift , Step , "", Process , Subtr

FuncFit /N /Q /W=2 DeconvolutionFuncEvenFitted FitCoef Process (-Win ,+⤦
Ç Win)

DeconvolutionFuncEvenFitted (FitCoef ,Subtr , Subtr )
Process -= Subtr [p]
Diff[ Shift /Step ]= FitCoef [0]

2266 EndFor
Break

EndSwitch
Else

StrSwitch ( Parity )
2271 Case "Odd ":

For ( Shift =0; Shift < Period +9* Win; Shift += Step)
FitCoef ={1e -6}
SetScale /P x, -Shift , Step , "", Process , Subtr
FuncFit /N /Q /W=2 DeconvolutionFuncOdd FitCoef Process (-Win ,+ Win)

2276 DeconvolutionFuncOdd (FitCoef ,Subtr , Subtr )
Process -= Subtr [p]
Diff[ Shift /Step ]= FitCoef [0]

EndFor
Break

2281 Case "Even ":
For ( Shift =0; Shift < Period +9* Win; Shift += Step)

FitCoef ={1e -6} // Offset , Amp , Shift
SetScale /P x, -Shift , Step , "", Process , Subtr
FuncFit /N /Q /W=2 DeconvolutionFuncEven FitCoef Process (-Win ,+ Win)

2286 DeconvolutionFuncEven (FitCoef ,Subtr , Subtr )
Process -= Subtr [p]
Diff[ Shift /Step ]= FitCoef [0]

EndFor
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Break
2291 EndSwitch

EndIf
Integrate /P Diff /D=Int
SetScale /P x, -5*Win , Step , "", Int
Result [][ Index ]= Int[p]

2296 SetScale d, 0, 0, "W", Result
Killwaves Process , Int , Diff , Subtr
Return NoError

End
//

Function DeconvolutionProcAverage
2301 Static Function DeconvolutionProcAverage (Name)

String Name
Variable Sens

If (! WaveExists (root:NAC: Experiment : FitDeconvolutionOdd ) || ! WaveExists (root:⤦
Ç NAC: Experiment : FitDeconvolutionEven ))
Return NAC_FitWavesMissing

2306 EndIf
StrSwitch (Name)

Case " RateCalorimetry ":
Case " RateCoating ":
Case " Deconvolution ":

2311 Return NAC_NotApplicable
Break

Case " Sticking ":
Case " ZeroSticking ":

Return NAC_NotImplementedYet
2316 Break

Case " BeforeCoating ":
Case " AfterCoating ":

Sens =1
Break

2321 Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case "Heat ":

NVar Sensitivity =root:NAC: Deconvolution : Sensitivity , UseSens =root:NAC:⤦
Ç Deconvolution : UseSensitivity

2326 If (( UseSens ) && ( NumType ( Sensitivity )==0))
Sens= Sensitivity

Else
Sens =1

Endif
2331 Break

Default :
Return NAC_UnknownMeasurement
Break

EndSwitch
2336 DFRef OldDF = GetDataFolderDFR ()

NVar EffectiveFrames =$"root:NAC :"+ Name +": EffectiveFrames "
NVar Average =root:NAC: Deconvolution : AverageFrames
NVar DPpP=root:NAC: Experiment : DataPointsPerFrame , Win=root:NAC: Machine :⤦
Ç DeconvolutionWindow , Rate=root:NAC: Machine : ProcessRate , CP=root:NAC:⤦
Ç Experiment : ChopperPeriod

If (!( EffectiveFrames >0))
2341 Return NAC_NothingToProcess

EndIf
If (! WaveExists ($"root:NAC :"+ Name +": AverageOdd ") || ! WaveExists ($"root:NAC :"+⤦
Ç Name +": AverageEven "))
Error_Message ( Averaging (Name), " Averaging ", " DeconvolutionProcAverage ", Name)

EndIf
2346 NVar ProgressValue =root:NAC:GUI: ProgressValue

NVar RemRadFix =root:NAC: Deconvolution : RemoveFixedRadiation , RadAmpFix =root:NAC⤦
Ç :Heat: InitRadiation

If ( RemRadFix )
If ( WaveExists (root:NAC: Experiment : FitRadiationOdd ) && WaveExists (root:NAC:⤦
Ç Experiment : FitRadiationEven ))
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Wave RadOdd =root:NAC: Experiment : FitRadiationOdd , RadEven =root:NAC:⤦
Ç Experiment : FitRadiationEven

2351 Else
Return NAC_FitWavesMissing

EndIf
EndIf
ValDisplay Progress Disable =0, Limits ={0 ,2 ,0} , win= NAC_Control

2356 ProgressValue =0
DoUpdate /W= NAC_Control
SetDataFolder $"root:NAC :"+ Name
Make /O /N=( DPpP +10* Win*Rate) $"root:NAC: Deconvolution :"+ Name +" AvgOdd "=0 , $"⤦
Ç root:NAC: Deconvolution :"+ Name +" AvgEven "=0

Make /FREE /N=( DPpP +10* Win*Rate) DeconvWave =0
2361 Wave AverageOdd =$"root:NAC :"+ Name +": AverageOdd ", AverageEven =$"root:NAC :"+ Name⤦

Ç +": AverageEven "
Wave ResultAvgOdd =$"root:NAC: Deconvolution :"+ Name +" AvgOdd ", ResultAvgEven =$"⤦
Ç root:NAC: Deconvolution :"+ Name +" AvgEven "

SetScale /P x -5*Win , 1/ Rate , "s", DeconvWave , ResultAvgOdd , ResultAvgEven
DeconvWave =( Pnt2X ( DeconvWave ,p) <0) ? AverageEven [ X2Pnt ( AverageEven ,CP+x)] : ((⤦
Ç Pnt2X ( DeconvWave ,p) >=CP) ? AverageEven [ X2Pnt ( AverageEven ,x-CP)] : ⤦
Ç AverageOdd (x))

If ( RemRadFix )
2366 DeconvWave -= RadAmpFix * RadOdd (x)

EndIf
DeconvWave /= Sens
Error_Message ( DeconvoluteFrame ( DeconvWave , 0, ResultAvgOdd , "Odd ") , "⤦
Ç DeconvoluteFrame ", " DeconvolutionProcAverage ", Name)

ProgressValue =1
2371 DoUpdate /W= NAC_Control

SetScale /P x -5*Win , 1/ Rate , "s", DeconvWave
DeconvWave =( Pnt2X ( DeconvWave ,p) <0) ? AverageOdd [ X2Pnt ( AverageOdd ,CP+x)] : ((⤦
Ç Pnt2X ( DeconvWave ,p) >=CP) ? AverageOdd [ X2Pnt ( AverageOdd ,x-CP)] : AverageEven⤦
Ç (x))

If ( RemRadFix )
DeconvWave -= RadAmpFix * RadEven (x)

2376 EndIf
DeconvWave /= Sens
Error_Message ( DeconvoluteFrame ( DeconvWave , 0, ResultAvgEven , "Even ") , "⤦
Ç DeconvoluteFrame ", " DeconvolutionProcAverage ", Name)

DeletePoints /M=0 DPpP +5* Win*Rate , 5* Win*Rate , ResultAvgEven , ResultAvgOdd
DeletePoints /M=0 0, 5* Win*Rate , ResultAvgEven , ResultAvgOdd

2381 SetScale /P x 0, 1/ Rate , "s", ResultAvgOdd , ResultAvgEven
SetScale /P d 0, 0, "W", ResultAvgOdd , ResultAvgEven
ProgressValue =2
DoUpdate /W= NAC_Control
ValDisplay Progress win= NAC_Control , Disable =1

2386 Killwaves DeconvWave
SetDataFolder OldDF
Error_Message ( SetDeconvolutionGraphRanges (Name , " AverageEven ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DeconvolutionProcAverage ", Name)

Error_Message ( SetDeconvolutionGraphRanges (Name , " AverageOdd ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DeconvolutionProcAverage ", Name)

Return NoError
2391 End

//

Function DeconvolutionProc
Static Function DeconvolutionProc (Name)
String Name
Variable Sens

2396 If (! WaveExists (root:NAC: Experiment : FitDeconvolutionOdd ) || ! WaveExists (root:⤦
Ç NAC: Experiment : FitDeconvolutionEven ))
Return NAC_FitWavesMissing

EndIf
StrSwitch (Name)

Case " RateCalorimetry ":
2401 Case " RateCoating ":

Case " Deconvolution ":
Return NAC_NotApplicable
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Break
Case " Sticking ":

2406 Case " ZeroSticking ":
// Merge with LC etc. and select DECON function
Return NAC_NotImplementedYet
Break

Case " BeforeCoating ":
2411 Case " AfterCoating ":

Sens =1
Break

Case " LaserReference ":
Case " Transmission ":

2416 Case " Radiation ":
Case "Heat ":

NVar UseSens =root:NAC: Deconvolution : UseSensitivity , Sensitivity =root:NAC:⤦
Ç Deconvolution : Sensitivity

If (( UseSens ) && ( NumType ( Sensitivity )==0))
Sens= Sensitivity

2421 Else
Sens =1

Endif
Break

Default :
2426 Return NAC_UnknownMeasurement

Break
EndSwitch
DFRef OldDF = GetDataFolderDFR ()
NVar EffectiveFrames =$"root:NAC :"+ Name +": EffectiveFrames "

2431 NVar Average =root:NAC: Deconvolution : AverageFrames
NVar DPpP=root:NAC: Experiment : DataPointsPerFrame , Win=root:NAC: Machine :⤦
Ç DeconvolutionWindow , Rate=root:NAC: Machine : ProcessRate

Variable CntOdd , CntEven , i
If (!( EffectiveFrames >0))

Return NAC_NothingToProcess
2436 EndIf

If (! WaveExists ($"root:NAC :"+ Name +": AverageOdd ") || ! WaveExists ($"root:NAC :"+⤦
Ç Name +": AverageEven "))
Error_Message ( Averaging (Name), " Averaging ", " DeconvolutionProc ", Name)

EndIf
NVar ProgressValue =root:NAC:GUI: ProgressValue

2441 NVar RemRadFix =root:NAC: Deconvolution : RemoveFixedRadiation , RemRadFit =root:NAC:⤦
Ç Deconvolution : RemoveFittedRadiation

NVar RadAmpFix =root:NAC:Heat: InitRadiation
If ( RemRadFix || RemRadFit )

If ( WaveExists (root:NAC: Experiment : FitRadiationOdd ) && WaveExists (root:NAC:⤦
Ç Experiment : FitRadiationEven ))

Wave RadOdd =root:NAC: Experiment : FitRadiationOdd , RadEven =root:NAC:⤦
Ç Experiment : FitRadiationEven

2446 Else
Return NAC_FitWavesMissing

EndIf
EndIf
SetDataFolder $"root:NAC :"+ Name

2451 Wave AverageOdd , AverageEven
Make /FREE /N=( DPpP +10* Win*Rate) AvgOdd , AvgEven
Wave FlagList , Detector
NVar Win=root:NAC: Machine : DeconvolutionWindow
Wave RadAmpFit =root:NAC:Heat: Radiation

2456 Variable AvgRadOdd , AvgRadEven
AvgOdd =0
AvgEven =0
AvgRadOdd =0
AvgRadEven =0

2461 CntOdd =0
CntEven =0
Make /O /N=( DPpP +10* Win*Rate , Ceil(Ceil( NumPnts ( FlagList )/2)/ Average )*2) ⤦
Ç DeconPrep =0

Make /O /N=( Ceil(Ceil( NumPnts ( FlagList )/2)/ Average )*2) DeconFlag =0
SetScale /P x, -5*Win , 1/ Rate , "", AvgOdd , AvgEven , DeconPrep
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2466 Variable Idx =0, j=0
For (i=0; i< NumPnts ( FlagList ) -1;)

For (j=i; j<i+ Average *2;j+=2)
If (j< NumPnts ( FlagList ) -2)

If (! FlagList [j])
2471 AvgEven += Detector [DPpP*j+p -5* Win*Rate]

If ( RemRadFit )
AvgRadEven += RadAmpFit [j]

EndIf
CntEven +=1

2476 EndIf
If (! FlagList [j+1])

AvgOdd += Detector [DPpP *(j+1)+p -5* Win*Rate]
If ( RemRadFit )

AvgRadOdd += RadAmpFit [j+1]
2481 EndIf

CntOdd +=1
EndIf

EndIf
EndFor

2486 i+=2* Average
If (CntEven >0)

AvgEven /= CntEven
If ( RemRadFix )

AvgEven -= RadAmpFix * RadEven (x)
2491 ElseIf ( RemRadFit )

AvgRadEven /= CntEven
AvgEven -= AvgRadEven * RadEven (x)

EndIf
DeconPrep [][ Idx ]= AvgEven [p]

2496 Else
DeconFlag [Idx ]=1

EndIf
If (CntOdd >0)

AvgOdd /= CntOdd
2501 If ( RemRadFix )

AvgOdd -= RadAmpFix * RadOdd (x)
ElseIf ( RemRadFit )

AvgRadOdd /= CntOdd
AvgOdd -= AvgRadOdd * RadOdd (x)

2506 EndIf
DeconPrep [][ Idx +1]= AvgOdd [p]

Else
DeconFlag [Idx +1]=1

EndIf
2511 AvgOdd =0

AvgEven =0
CntOdd =0
CntEven =0
Idx +=2

2516 EndFor
DeconPrep /= Sens
Make /O /N=( DPpP +10* Win*Rate , DimSize (DeconPrep ,1)) Deconvolution =0
SetScale /P x 0, 1/ Rate , "s", Deconvolution
SetScale /P y 0, Average , " Frame ", Deconvolution

2521 SetScale /P d 0, 0, "W", Deconvolution
NVar Fitted =root:NAC: Deconvolution : UseFittedFitWave
ValDisplay Progress Disable =0, Limits ={0 , DimSize (DeconPrep ,1) -1,0}, win=⤦
Ç NAC_Control

ProgressValue =0
DoUpdate /W= NAC_Control

2526 For (i=0;i< DimSize (DeconPrep ,1) -1;i+=2)
If (! DeconFlag [i])

DeconvoluteFrame (DeconPrep , i, Deconvolution , "Even ")
EndIf
ProgressValue =i

2531 DoUpdate /W= NAC_Control
If (! DeconFlag [i+1])

DeconvoluteFrame (DeconPrep , i+1, Deconvolution , "Odd ")

749



C Program Codes

EndIf
ProgressValue =i+1

2536 DoUpdate /W= NAC_Control
EndFor
DeletePoints /M=0 DPpP +5* Win*Rate , 5* Win*Rate , Deconvolution
DeletePoints /M=0 0, 5* Win*Rate , Deconvolution
KillWaves AvgOdd , AvgEven , DeconPrep

2541 Make /O /N=( DPpP) $"root:NAC: Deconvolution :"+ Name +" BrowseOdd "=0
Make /O /N=( DPpP) $"root:NAC: Deconvolution :"+ Name +" BrowseEven "=0
Wave BrowseOdd =$"root:NAC: Deconvolution :"+ Name +" BrowseOdd "
Wave BrowseEven =$"root:NAC: Deconvolution :"+ Name +" BrowseEven "
SetScale /P x 0, 1/ Rate , "s", BrowseOdd , BrowseEven

2546 SetScale /P d 0, 0, "W", BrowseOdd , BrowseEven
ValDisplay Progress win= NAC_Control , Disable =1
ProgressValue =0
SetDataFolder OldDF
Error_Message ( SetDeconvolutionGraphRanges (Name , " Deconvolution ") , "⤦
Ç SetDeconvolutionGraphRanges ", " DeconvolutionProc ", Name)

2551 Return NoError
End
//

Function CalcQCMRate
Static Function CalcQCMRate (Name)
String Name

2556 Variable i, Delta
If (! WaveExists ($"root:NAC :"+ Name +": Thickness "))

Return NAC_NoDataLoaded
EndIf
Wave Thickness =$"root:NAC :"+ Name +": Thickness "

2561 Wave Timeline =$"root:NAC :"+ Name +": Timeline "
NVar AvgWindow =root:NAC: Machine : RateFittingWindow
Duplicate /FREE Timeline DeltaWave
Differentiate DeltaWave
Delta =Mean( DeltaWave )

2566 Make /O /N=( Floor ( NumPnts ( Thickness )/ AvgWindow )) $"root:NAC :"+ Name +": FittedRate⤦
Ç "

Wave FittedRate =$"root:NAC :"+ Name +": FittedRate "
Make /FREE /N=( AvgWindow ) AvgWave , TimeWave
Make /FREE /D /N=2 FitCoef
For (i=0;i< Floor ( NumPnts ( Thickness )/ AvgWindow );i+=1)

2571 AvgWave = Thickness [i* AvgWindow +p]* CalcQCMTooling (Name)
TimeWave = Timeline [i* AvgWindow +p]
CurveFit /Q Line kwCWave = FitCoef AvgWave /X= TimeWave
FittedRate [i]= FitCoef [1]

EndFor
2576 String Unit ="s"

Variable Scale = AvgWindow * Delta
If ( NumPnts ( FittedRate )* Scale > 600)

Unit =" min"
Scale /=60

2581 If ( NumPnts ( FittedRate )* Scale > 120)
Unit ="h"
Scale /=60
If ( NumPnts ( FittedRate )* Scale > 48)

Unit ="d"
2586 Scale /=24

EndIf
EndIf

EndIf
SetScale /P x 0, Scale , Unit , FittedRate

2591 SetScale d 0, 0, "m/s", FittedRate
KillWaves AvgWave , FitCoef , TimeWave , DeltaWave
Return NoError

End
//

Function NAC_CorrAdsorbed
2596 Function NAC_CorrAdsorbed (Material , Sample , Source )
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String Material
Variable Sample , Source

If ( StrSearch (Material ,"(" ,0 ,2) >0)
Material = Material [0, StrSearch (Material ,"(" ,0 ,2) -1]

2601 EndIf
Make /FREE /D /N =2001 Cv
SetScale /P x, 0, 1, "K", Cv
Cv= CvGas (Material , x)
Return Area(Cv , Sample , Source ) + 1/2* R_Gas * Source - R_Gas * Sample

2606 End
//

Function NAC_CorrDesorbed
Function NAC_CorrDesorbed (Material , Sample , Source )
String Material
Variable Sample , Source

2611 If ( StrSearch (Material ,"(" ,0 ,2) >0)
Material = Material [0, StrSearch (Material ,"(" ,0 ,2) -1]

EndIf
Make /FREE /D /N =2001 C
SetScale /P x, 0, 1, "K", C

2616 C= CvGas (Material , x) +1/2* R_Gas
Return Area(C, Sample , Source )

End
//

Function CvGas
Static Function CvGas (Material , Temperature ) // J / molK

2621 String Material
Variable Temperature
Variable A, B, C, D, E, F, G, H

// NIST values given for Cp !
StrSwitch ( Material )

2626 Case "Li ":
Case " Lithium ":

If ( Temperature <1620.12)
A =5/2* R_Gas // [J/molK]

ElseIf ( Temperature <6000)
2631 A =23.33408; B = -2.772423; C =0.767421; D = -0.003595; E = -0.035246; F⤦

Ç =151.5035; G =166.1885; H =159.3004 //[241]
EndIf
Break

Case "Mg ":
Case " Magnesium ":

2636 If ( Temperature <1366.104)
A =5/2* R_Gas // [J/molK]

ElseIf ( Temperature <2200)
A =20.77306; B =0.035592; C = -0.031917; D =0.009109; E =0.000461; F =140.9071; ⤦

Ç G =173.7799; H =147.1002 //[241]
ElseIf ( Temperature <6000)

2641 A =47.60848; B = -15.40875; C =2.875965; D = -0.120806; E = -27.01764; F⤦
Ç =97.40017; G =177.2305; H =147.1002 //[241]

EndIf
Break

Case "Ca ":
Case " Calcium ":

2646 If ( Temperature <1774)
A =5/2* R_Gas // [J/molK]

ElseIf ( Temperature <6000)
A =121.5470; B = -74.95390; C =19.17230; D = -1.400821; E = -64.51340; F⤦

Ç =42.23540; G =217.4470; H =177.8000 //[241]
EndIf

2651 Break
Case "Cu ":
Case " Copper ":

If ( Temperature <2843.261)
A =5/2* R_Gas // [J/molK]

2656 ElseIf ( Temperature <6000)
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A = -80.48635; B =49.35865; C = -7.578061; D =0.404960; E =133.3382; F =519.9331;⤦
Ç G =193.5351; H =337.6003 //[241]

EndIf
Break

Case "Zn ":
2661 Case "Zinc ":

If ( Temperature <1180.173)
A =5/2* R_Gas // [J/molK]

ElseIf ( Temperature <6000)
A =18.20166; B =2.313999; C = -0.736547; D =0.079950; E =1.073557; F =126.9388; ⤦

Ç G =184.6977; H =130.4203 //[241]
2666 EndIf

Break
Default :

Return NaN
EndSwitch

2671 Variable t= Temperature /1000
Return A - R_Gas + B*t + C*t^2 + D*t^3 + E/t^2 // Correction Cv=Cp -R in A

End
//

Function CpCondensed
Static Function CpCondensed (Material , Temperature [, Phase ]) // J / molK

2676 String Material
Variable Temperature
String Phase
Variable A, B, C, D, E, F, G, H, Theta =-1, Scale =1

If ( StrSearch (Material ,"(" ,0 ,2) >0)
2681 Material = Material [0, StrSearch (Material ,"(" ,0 ,2) -1]

EndIf
If ( Temperature <=0)

Return NaN
EndIf

2686 If ( ParamIsDefault ( Phase ))
Phase =""

EndIf
// Debye temperatures with references can be found at
// http :// www. knowledgedoor .com /2/ elements_handbook / debye_temperature .html

2691 StrSwitch ( Material )
Case "Li ":
Case " Lithium ":

If ( Temperature < 298)
Theta =448 //[242]

2696 Scale =24.6232/22.3048
ElseIf ( Temperature < 453) // Graph looks odd

A =169.5520; B = -882.7110; C =1977.438; D = -1487.312; E = -1.609635; F⤦
Ç = -31.24825; G =413.6466; H=0 //[241]

Elseif ( Temperature < 700) // Liquid Region 1
A =32.46972; B = -2.635975; C = -6.327128; D =4.230359; E =0.005686; F⤦

Ç = -7.117319; G =74.29361; H =2.380002 //[241]
2701 Elseif ( Temperature < 1620) // Liquid Region 1

A =26.00896; B =5.632375; C = -4.013227; D =0.873686; E =0.34415; F = -4.19969; G⤦
Ç =66.36284; H =2.380002 //[241]

Else
Return NaN

EndIf
2706 Break

Case "Ca ":
Case " Calcium ":

If ( Temperature < 298)
Theta =230 //[242]

2711 Scale =25.9338/24.2120
ElseIf (( Temperature < 1115) && ( StringMatch (Phase , " alpha ") || StringMatch⤦

Ç (Phase , ""))) // alpha - Phase ( default )
A =19.77517; B =10.10813; C =14.50338; D = -5.529491; E =0.178031; F = -5.862997;⤦

Ç G =62.91606; H=0 //[241]
ElseIf (( Temperature < 716) && StringMatch (Phase , "beta ")) // beta - Phase ⤦

Ç Region 1
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A =11.11735; B =38.52364; C = -8.891419; D = -9.618305; E =0.391850; F⤦
Ç = -2.563503; G =47.71852; H =1.056001 //[241]

2716 ElseIf (( Temperature < 1115) && StringMatch (Phase , "beta ")) // beta - Phase ⤦
Ç Region 2

A = -40.63785; B =126.7765; C = -69.73891; D =17.93162; E =5.409494; F =24.49192;⤦
Ç G = -15.67297; H =1.056001 //[241]

ElseIf ( Temperature < 1774) // Liquid Phase -- Not trustworthy
A =35.00004; B =1.119602e -10; C = -8.292981e -11; D =1.878880e -11; E =1.912569e⤦

Ç -12; F = -2.646946; G =87.86609; H =7.788015 //[241]
Else

2721 Return NaN
EndIf
Break

Case "Cu ":
Case " Copper ":

2726 If ( Temperature < 298)
theta =310 //[242]
Scale =24.4693/23.6360

ElseIf ( Temperature < 1358)
A =17.72891; B =28.09870; C = -31.25289; D =13.97243; E =0.068611; F = -6.056591;⤦

Ç G =47.89592; H=0 //[241]
2731 // ElseIf ( Temperature <2843.2) // Liquid Pase -- not trustworthy

// A =32.84450; B = -0.000084; C =0.000032; D = -0.000004; E = -0.000028; F⤦
Ç = -1.804901; G =73.92310; H =11.85730 //[241]

ElseIf ( Temperature <2843.2) // Liquid Phase
A =49.5541644568037; B = -14.5015987758264; C =6.62989966065709; D⤦

Ç = -1.09508006359702; E =3.30874559839901 // [243]

Else
2736 Return NaN

EndIf
Break

Case "Mg ":
Case " Magnesium ":

2741 If ( Temperature < 298)
theta =330 //[242]
Scale =24.8532/23.4694

ElseIf ( Temperature < 923)
A =26.54083; B = -1.533048; C =8.062443; D =0.572170; E = -0.174221; F⤦

Ç = -8.501596; G =63.90181; H=0 //[241]
2746 ElseIf ( Temperature <1366)

A =34.30901; B = -7.471034e -10; C =6.146212e -10; D = -1.598238e -10; E = -1.152011⤦
Ç e -11; F = -5.439367; G =75.98311; H =4.790011 //[241]

Else
Return NaN

EndIf
2751 Break

Case "Zn ":
Case "Zinc ":

If ( Temperature < 298)
theta =237 //[242]

2756 Scale =25.3904/24.1676
ElseIf ( Temperature < 693)

A =25.60123; B = -4.405292; C =20.42206; D = -7.399697; E = -0.045801; F⤦
Ç = -7.755964; G =72.91373; H=0 //[241]

ElseIf ( Temperature <1180)
A =31.38004; B = -9.647635e -9; C =6.798541e -9; D = -1.574453e -9; E⤦

Ç = -3.249003 -10; F = -3.590873; G =86.68160; H =6.519007 //[241]
2761 Else

Return NaN
EndIf
Break

Default :
2766 Return NaN

Break
EndSwitch
If (Theta <0) // Use NIST data

Variable t
2771 t= Temperature /1000
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Return A + B*t + C*t^2 + D*t^3 + E/t^2 // Shomate equation probably not OK ⤦
Ç for low temperature (T < 298K)

Else
If ( Exists (" root:NAC: Enthalpies : Debye_Integral ") !=1)

Return NaN
2776 EndIf

Wave Debye_Integral =root:NAC: Enthalpies : Debye_Integral
If ( Theta / Temperature >19) // Use Debye - theory

Return 9* R_Gas *( Temperature / theta )^3* Debye_Integral (19) * Scale // SCALED ⤦
Ç to match NIST data at boundary !!
Else

2781 Return 9* R_Gas *( Temperature / theta )^3* Debye_Integral ( theta / Temperature ) * ⤦
Ç Scale // SCALED to match NIST data at boundary !!
EndIf

EndIf
End
//

Function NAC_RefEnthalpy
2786 Function NAC_RefEnthalpy (Material , T_Sample )

String Material
Variable T_Sample
Variable Hf0_Gas , T_Ref =298 , Hf0_Solid

If ( StrSearch (Material ,"(" ,0 ,2) >0)
2791 Material = Material [0, StrSearch (Material ,"(" ,0 ,2) -1]

EndIf
If (( NumType ( T_Sample )!=0) )

Return NaN
EndIf

2796 If ( Exists (" root:NAC: Enthalpies : Debye_Integral ") !=1)
Return NaN

EndIf
StrSwitch ( Material )

Case "Ca ":
2801 Case " Calcium ":

Hf0_Gas =177.8 e3 // J/mol CRC 05 _02_90
Break

Case "Cu ":
Case " Copper ":

2806 Hf0_Gas =337.4 e3 // J/mol CRC 05 _02_90
Break

Case "Li ":
Case " Lithium ":

Hf0_Gas =159.3 e3 // J/mol CRC 05 _02_90
2811 Break

Case "Li2 ":
Case " Dilithium ":

Hf0_Gas =215.9 e3 // J/mol CRC 05 _02_90
Break

2816 Case "Mg ":
Case " Magnesium ":

Hf0_Gas =147.1 e3 // J/mol CRC 05 _02_90
Break

Case "Zn ":
2821 Case "Zinc ":

Hf0_Gas =130.4 e3 // J/mol CRC 05 _02_90
Break

Default :
Return NaN

2826 EndSwitch
If (Abs(T_Sample - T_Ref ) <1)

Return Hf0_Gas
EndIf
Make /FREE /D /N=( Abs(Ceil( T_Sample )-T_Ref )+1) Cp_Solid , Cp_Gas

2831 SetScale /I x T_Ref , Ceil( T_Sample ), Cp_Solid , Cp_Gas
Cp_Solid = CpCondensed (Material ,x)
Cp_Gas = CvGas (Material ,x)+ R_Gas
Return Hf0_Gas +Area(Cp_Solid , T_Sample , T_Ref )-Area(Cp_Gas , T_Sample , T_Ref )

End
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2836 //

Function CalcHeat
Static Function CalcHeat ()
DFRef OldDF = GetDataFolderDFR ()

If ( NumPnts (root:NAC: Enthalpies : Sticking )==0)
Return NAC_StickingMissing

2841 EndIf
If ( NumPnts (root:NAC:Heat: Adsorption )==0)

Return NAC_AdsorptionMissing
EndIf
NVar Dose=root:NAC: RateCalorimetry : MoleDosePerPulse

2846 If (( Dose <=0) || ( NumType (Dose)!=0))
Return NAC_DoseMissing

EndIf
Wave Enthalpy =root:NAC: Enthalpies :Enthalpy , Adsorption =root:NAC:Heat: Adsorption⤦
Ç , Sticking =root:NAC: Enthalpies : Sticking

Wave FlagHeat =root:NAC:Heat:FlagList , FlagSticking =root:NAC: Sticking : FlagList
2851 NVar SubAbs =root:NAC: Enthalpies : SubtractAdsorbed , SubRef =root:NAC: Enthalpies :⤦

Ç SubtractDesorbed
Enthalpy =!( FlagHeat [p] || FlagSticking [p]) ? 1/( Sticking [p]* Dose) * Adsorption [⤦
Ç p] - ( Sticking [p]* Dose)* SubAbs - SubRef *Dose *(1 - Sticking [p]) : NaN

Error_Message ( SetRangesCoverage (" Heat ") , " CalcHeat ", " SetRangesCoverage ", "Heat⤦
Ç ")

Return NoError
End

2856 //

Function CalcCoverage
Static Function CalcCoverage ()
DFRef OldDF = GetDataFolderDFR ()
Variable i

If ( Exists (" root:NAC: Enthalpies : Sticking ") !=1)
2861 Return NAC_StickingMissing

EndIf
NVar PulseLength =root:NAC: Experiment : PulseLength , Dose=root:NAC: RateCalorimetry⤦
Ç : DosePerPulse , UseTrend =root:NAC: Experiment : UseFittedDesorption

If (( PulseLength <=0) || (Dose <=0) || ( NumType (Dose)!=0))
Return NAC_DoseMissing

2866 EndIf
SetDataFolder root:NAC: Sticking
If ( UseTrend )

Wave Desorption = fit_Desorption
Else

2871 Wave Desorption
EndIf
Wave Sticking =root:NAC: Enthalpies :Sticking , Coverage =root:NAC: Enthalpies :⤦
Ç Coverage , Range =root:NAC: Enthalpies : ThicknessRange

NVar NumberOfFrames
If (! NumPnts ( Sticking ))

2876 SetDataFolder OldDF
Return NAC_StickingMissing

EndIf
Sticking =1- Desorption
Coverage [0]= Dose* Sticking [0]

2881 For (i=1;i< NumberOfFrames ;i+=1)
Coverage [i]= Coverage [i -1]+ Dose *( Sticking [i]+ Sticking [i -1]) /2

EndFor
SetScale /I x, 0, Ceil( WaveMax ( Coverage )), "ML", root:NAC: Enthalpies :⤦
Ç MultiLayerReference

SetScale /I x, 0, Ceil( WaveMax ( Coverage )), "ML", root:NAC: Enthalpies :⤦
Ç StickingLimit

2886 SetScale /I x, Coverage2Thickness ( Floor ( WaveMin ( Coverage ))), ⤦
Ç Coverage2Thickness (Ceil( WaveMax ( Coverage ))), "m", Range

SetDataFolder OldDF
Error_Message ( SetRangesCoverage (" Sticking ") , " CalcCoverage ", " SetRangesCoverage⤦
Ç ", " Sticking ")

Return NoError
End
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2891 //

Function FitHeat
Static Function FitHeat ()
Variable ExPVTime , tmptime , i
Variable V_FitError , V_FitQuitReason
DFRef OldDF = GetDataFolderDFR ()

2896 // Checking
SetDataFolder root:NAC:Heat
Wave Offset , Adsorption , ShiftAds , Radiation , ShiftRad , ChiSq , FlagList , ⤦
Ç Detector , fit_Radiation

Wave Enthalpy =root:NAC: Enthalpies : Enthalpy
NVar NumberOfFrames = NumberOfFrames , DataPointsPerFrame =root:NAC: Experiment :⤦
Ç DataPointsPerFrame

2901 NVar InitOffset , InitAdsorption , InitRadiation , InitAdsorptionShift , ⤦
Ç InitRadiationShift

NVar HoldOffset , HoldAdsorption , HoldRadiation , HoldAdsorptionShift , ⤦
Ç HoldRadiationShift

NVar ProgressValue =root:NAC:GUI: ProgressValue
NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod
NVar UseFittedRad =root:NAC: Experiment : UseFittedRadiation

2906 NVar SwitchDeadTime =root:NAC: Experiment : SwitchDeadTime
NVar LinkShifts =root:NAC:Heat: LinkShifts
If ( UseFittedRad && ! NumPnts ( fit_Radiation ))

UseFittedRad =0
EndIf

2911 ReDimension /N=( NumberOfFrames ) Radiation , Adsorption , Offset , ShiftAds , ⤦
Ç ShiftRad , ChiSq , Enthalpy

Adsorption =0
ShiftAds =0
Radiation =0
ShiftRad =0

2916 Offset =0
ChiSq =0
Enthalpy =0
Variable HAS , HRS , LS
If ( InitRadiationShift > ChopperPeriod /4)

2921 InitRadiationShift =0
Error_Message ( NAC_ParameterOutsideRange , " FitHeat ", " InProc ", "⤦
Ç InitRadiationShift set to zero ")

EndIf
If ( InitAdsorptionShift > ChopperPeriod /4)

InitAdsorptionShift =0
2926 Error_Message ( NAC_ParameterOutsideRange , " FitHeat ", " InProc ", "⤦

Ç InitAdsorptionShift set to zero ")
EndIf
If ( LinkShifts )

If (! HoldAdsorptionShift && ! HoldRadiationShift )
Variable Tmp =( InitRadiationShift + InitAdsorptionShift )/2

2931 InitRadiationShift =Tmp
InitAdsorptionShift =Tmp
LS =1

EndIf
If ( HoldAdsorptionShift || HoldRadiationShift )

2936 HAS =1
HRS =1
LS =0
If ( HoldAdsorptionShift && ! HoldRadiationShift )

InitRadiationShift = InitAdsorptionShift
2941 EndIf

If (! HoldAdsorptionShift && HoldRadiationShift )
InitAdsorptionShift = InitRadiationShift

EndIf
EndIf

2946 Else
HAS= HoldAdsorptionShift
HRS= HoldRadiationShift
LS =0

EndIf
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2951 Variable CP =0.125* ChopperPeriod
String HoldCoef = Num2Str ( HoldOffset )+ Num2Str ( HoldAdsorption )+ Num2Str (HAS)+⤦
Ç Num2Str ( HoldRadiation || UseFittedRad )+ Num2Str (HRS)

Make /FREE /D /N=5 FitCoef , InitCoef ={ InitOffset , InitAdsorption , ⤦
Ç InitAdsorptionShift , InitRadiation , InitRadiationShift }

Make /FREE /D /N=(5 ,6) FitConstrM ={{0 ,0 ,0 ,0 ,0 ,0} ,{0 ,0 ,0 ,0 ,0 ,0} ,{!HAS ,-!HAS ,0,0,⤦
Ç LS ,-LS } ,{0 ,0 ,0 ,0 ,0 ,0} ,{0 ,0 ,!HRS ,-!HRS ,-LS ,LS }}

Make /FREE /D /N=6 FitConstrV ={CP ,CP ,CP ,CP , 0.0001 , 0.0001}
2956 Make /FREE /N=( DataPointsPerFrame ) CurrentPeak

Setscale /P x, 0, DimDelta (Detector , 0) , CurrentPeak
ProgressValue =0
ValDisplay Progress Disable =0, Limits ={0 , NumberOfFrames -1 ,1} , win= NAC_Control
DoUpdate /W= NAC_Control

2961 For (i=0;i< NumberOfFrames ;i+=1)
If (! FlagList [i])

CurrentPeak = Detector [p][i]
FitCoef = InitCoef
If ( UseFittedRad )

2966 FitCoef [3]= fit_Radiation [i]
EndIf
FuncFit /N=1 /W=2 /Q /H= HoldCoef $" Calorimetry "+ SelectString (Mod(i ,2) ,"Even⤦

Ç "," Odd ") , FitCoef , CurrentPeak ( SwitchDeadTime , ChopperPeriod ) /C={⤦
Ç FitConstrM , FitConstrV }

If ( V_FitError )
Offset [i]=0

2971 Adsorption [i]=0
ShiftAds [i]=0
Radiation [i]=0
ShiftRad [i]=0
ChiSq [i]=- V_FitError

2976 V_FitError =0
V_FitQuitReason =0
FlagList [i]=1

Else
Offset [i]= FitCoef [0]

2981 Adsorption [i]= FitCoef [1]
ShiftAds [i]= FitCoef [2]
Radiation [i]= FitCoef [3]
ShiftRad [i]= FitCoef [4]
ChiSq [i]= V_ChiSq

2986 EndIf
ProgressValue =i
DoUpdate /W= NAC_Control

Else
Offset [i]=0

2991 Adsorption [i]=0
ShiftAds [i]=0
Radiation [i]=0
ShiftRad [i]=0
ChiSq [i]=0

2996 EndIf
EndFor
KillWaves FitCoef , CurrentPeak , InitCoef , FitConstrV , FitConstrM
If (! UseFittedRad )

Duplicate /O Radiation root:NAC:Heat: orig_Radiation
3001 EndIf

DoWindow NAC_Heat_Full
If ( V_Flag )

For (i=0;i< NumPnts ( FlagList );i+=1)
If ( FlagList [i])

3006 ModifyGraph /W= NAC_Heat_Full rgb($" Frame "+ Num2Str (i))=(0 ,0 ,0)
EndIf

EndFor
EndIf
ValDisplay Progress win= NAC_Control , Disable =1

3011 ProgressValue =0
SetDataFolder OldDF
Return NoError

End
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//

Function FitDesorption
3016 Static Function FitDesorption ()

Variable ExPVTime , tmptime , i
Variable V_FitError , V_fitOptions =4, V_FitQuitReason
DFRef OldDF = GetDataFolderDFR ()

// Checking
3021 SetDataFolder root:NAC: Sticking

Wave Offset , Desorption , Shift , ChiSq , FlagList , Detector
Wave Coverage =root:NAC: Enthalpies :Coverage , Sticking =root:NAC: Enthalpies :⤦
Ç Sticking , Thickness =root:NAC: Enthalpies : Thickness

NVar NumberOfFrames = NumberOfFrames , DataPointsPerFrame =root:NAC: Experiment :⤦
Ç DataPointsPerFrame

NVar InitOffset , InitDesorption , InitShift
3026 NVar HoldOffset , HoldDesorption , HoldShift

NVar ProgressValue =root:NAC:GUI: ProgressValue
NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod
String HoldCoef = Num2Str ( HoldOffset )+ Num2Str ( HoldDesorption )+ Num2Str ( HoldShift )
NVar UseFittedDes =root:NAC: Experiment : UseFittedDesorption

3031 Wave Coverage =root:NAC: Enthalpies : Coverage
ReDimension /N=( NumberOfFrames ) Desorption , Offset , Shift , ChiSq , Sticking , ⤦
Ç Coverage , Thickness

SetScale /I x, 0, NumberOfFrames -1, "", root:NAC: Sticking : StickingLimit
ChiSq =0
Sticking =0

3036 If ( HoldDesorption )
Desorption = InitDesorption
Shift = InitShift
Offset = InitOffset
Error_Message ( CalcCoverage () , " CalcCoverage ", " FitDesorption ", "")

3041 SetDataFolder OldDF
Return NAC_NothingToProcess

EndIf
If ( UseFittedDes )

Wave fit_Desorption =root:NAC: Sticking : fit_Desorption
3046 Desorption = fit_Desorption

Error_Message ( CalcCoverage () , " CalcCoverage ", " FitDesorption ", "")
SetDataFolder OldDF
Return NAC_NothingToProcess

EndIf
3051 Sticking =0

Desorption =1
Coverage =0
Shift =0
Offset =0

3056 Make /FREE /D /N=3 FitCoef , InitCoef ={ InitOffset , InitDesorption , InitShift }
Make /FREE /D /N=(3 ,2) FitConstrM ={{0 ,0} ,{0 ,0} ,{! HoldShift ,-! HoldShift }}
Make /FREE /D /N=2 FitConstrV =0.125* ChopperPeriod
Make /FREE /N=( DataPointsPerFrame ) CurrentPeak
Setscale /P x, 0, DimDelta (Detector , 0) , CurrentPeak

3061 ProgressValue =0
ValDisplay Progress Disable =0, Limits ={0 , NumberOfFrames -1 ,1} , win= NAC_Control
DoUpdate /W= NAC_Control
For (i=0;i< NumberOfFrames ;i+=1)

If (! FlagList [i])
3066 CurrentPeak = Detector [p][i]

FitCoef = InitCoef
FuncFit /N=1 /W=2 /Q /H= HoldCoef $" Sticking "+ SelectString (Mod(i ,2) ,"Even ","⤦

Ç Odd ") , FitCoef , CurrentPeak /C={ FitConstrM , FitConstrV }
If ( V_FitError )

Offset [i]=0
3071 Desorption [i]=1

Shift [i]=0
ChiSq [i]=- V_FitError
V_FitError =0
V_FitQuitReason =0

3076 FlagList [i]=1
ModifyGraph /W=$" NAC_Sticking_Full " rgb($" Frame "+ Num2Str (i))=(0 ,0 ,0)
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Else
Offset [i]= FitCoef [0]
Desorption [i]= FitCoef [1]

3081 Shift [i]= FitCoef [2]
ChiSq [i]= V_ChiSq

EndIf
ProgressValue =i
DoUpdate /W= NAC_Control

3086 Else
Offset [i]=0
Desorption [i]=0
Shift [i]=0
ChiSq [i]=0

3091 EndIf
EndFor
Error_Message ( CalcCoverage () , " CalcCoverage ", " FitDesorption ", "")
KillWaves FitCoef , InitCoef , CurrentPeak , FitConstrV , FitConstrM
Duplicate /O Desorption root:NAC: Sticking : orig_Desorption

3096 ValDisplay Progress win= NAC_Control , Disable =1
ProgressValue =0
SetDataFolder OldDF
Return NoError

End
3101 //

Function Averaging
Static Function Averaging (Name)
String Name
DFRef OldDF = GetDataFolderDFR ()
NVar Loaded =$"root:NAC :"+ Name +": Loaded "

3106 If (! Loaded )
Return NAC_NoDataLoaded

EndIf
SetDataFolder $"root:NAC :"+ Name
If ( StringMatch (Name ," Deconvolution "))

3111 NVar DataPoints =root:NAC: Deconvolution : DataPointsPerFrame
Else

NVar DataPoints =root:NAC: Experiment : DataPointsPerFrame
EndIf
NVar ProcessRate =root:NAC: Machine : ProcessRate

3116 NVar NumberOfFrames
Wave Detector , FlagList
Variable i, CountOdd =0, CountEven =0
Make /O /N=( DataPoints ) AverageOdd =0, AverageEven =0
SetScale /P x, 0, 1/ ProcessRate , "s", AverageOdd , AverageEven

3121 SetScale d, -10, 10, "V", AverageOdd , AverageEven
If ( NumberOfFrames ==0)

AverageOdd =NaN
AverageEven =NaN
SetDataFolder OldDF

3126 Return NAC_NothingToProcess
EndIf
For (i=0;i< NumberOfFrames ;i+=1)

If ( FlagList [i ]==0)
If (Mod(i ,2))

3131 AverageOdd += Detector [p][i]
CountOdd +=1

Else
AverageEven += Detector [p][i]
CountEven +=1

3136 EndIf
EndIf

EndFor
AverageOdd /= CountOdd
AverageEven /= CountEven

3141 SetDataFolder OldDF
Return NoError

End
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//

Function NormalizeFitWave
Static Function NormalizeFitWave (Name)

3146 String Name
StrSwitch (Name)

Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":

3151 Case " Deconvolution ":
NVar LaserPower =$"root:NAC :"+ Name +": LaserPower "
If ( NumType ( LaserPower ) || ( LaserPower ==0))

Return NAC_LaserPowerMissing
EndIf

3156 Break
Case " ZeroSticking ":
Case " Radiation ":

Break
Case "Heat ":

3161 Case " Sticking ":
Case " Transmission ":
Case " RateCalorimetry ":
Case " RateCoating ":

Return NAC_NotApplicable
3166 Break

Default :
Return NAC_UnknownMeasurement
Break

EndSwitch
3171 If (( Exists (" root:NAC :"+ Name +": AverageOdd ") !=1) || ( Exists (" root:NAC :"+ Name +":⤦

Ç AverageEven ") !=1))
Return NAC_AverageWavesMissing

EndIf
Wave AverageOdd =$"root:NAC :"+ Name +": AverageOdd ", AverageEven =$"root:NAC :"+ Name⤦
Ç +": AverageEven "

StrSwitch (Name)
3176 Case " BeforeCoating ":

Name =" Reflectivity "
Break

Case " AfterCoating ":
Name =" Sensitivity "

3181 Break
Case " ZeroSticking ":

Name =" Sticking "
Break

Default :
3186 EndSwitch

NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod , Nyquist =root:NAC: Machine :⤦
Ç NyquistFrequency , Delay =root:NAC: Experiment : ChopperDelay

Variable SRate =2* Nyquist , DPpP =2* Nyquist * ChopperPeriod , Tmp
Make /O /N=( DPpP *2) $"root:NAC: Experiment :Fit "+ Name +" Odd", $"root:NAC:⤦
Ç Experiment :Fit "+ Name +" Even"

Wave FitOdd =$"root:NAC: Experiment :Fit "+ Name +" Odd", FitEven =$"root:NAC:⤦
Ç Experiment :Fit "+ Name +" Even"

3191 SetScale /P x, -ChopperPeriod /2, 1/ SRate , "s", FitEven , FitOdd
SetScale d, 0, 1, "V", FitEven , FitOdd
FitEven []=(p >=3/2* DPpP) ? AverageOdd [p -3/2* DPpP] : ((p >=1/2* DPpP) ? AverageEven⤦
Ç [p -1/2* DPpP] : AverageOdd [p +1/2* DPpP ])

FitOdd []=(p >=3/2* DPpP) ? AverageEven [p -3/2* DPpP] : ((p >=1/2* DPpP) ? AverageOdd [⤦
Ç p -1/2* DPpP] : AverageEven [p +1/2* DPpP ])

StrSwitch (Name)
3196 Case " Reflectivity ":

Case " Sensitivity ":
FitOdd /= LaserPower
FitEven /= LaserPower
SetScale d, 0, 0, "V/W", FitOdd , FitEven

3201 Break
Case " LaserReference ":
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NVar PulseLength =root:NAC: Experiment : PulseLength , LaserPowerCorrection =root⤦
Ç :NAC: Machine : LaserPowerCorrection , MirrorCorr =root:NAC: Experiment :⤦
Ç MirrorContamination

NVar Reflectivity =root:NAC: LaserReference : Reflectivity
FitOdd /= LaserPower * LaserPowerCorrection * MirrorCorr *(1 - Reflectivity )*⤦

Ç PulseLength // Normalize to 1 J input energy
3206 FitEven /= LaserPower * LaserPowerCorrection * MirrorCorr *(1 - Reflectivity )*⤦

Ç PulseLength
SetScale d, 0, 0, "V/J", FitOdd , FitEven
Break

Case " Sticking ":
NVar QMSTooling =root:NAC: Machine : QMSToolingCalorimetry

3211 FitOdd *= QMSTooling
FitEven *= QMSTooling
Break

Case " Radiation ":
Break

3216 Case " Deconvolution ":
If ( ChopperPeriod >0)

NVar LineNotch =root:NAC: Machine : LineNotchFrequency , MirrorCorr =root:NAC:⤦
Ç Experiment : MirrorContamination

NVar LaserPowerCorrection =root:NAC: Machine : LaserPowerCorrection , ⤦
Ç Reflectivity =root:NAC: Deconvolution : Reflectivity

NVar Delay =root:NAC: Deconvolution : ChopperDelay
3221 Duplicate /FREE AverageEven TempWaveEven

Duplicate /FREE AverageOdd TempWaveOdd
If (LineNotch >0)

Make /O /C /FREE /N=0 TempCWave
FFT /DEST= TempCWave TempWaveEven

3226 TempCWave [ X2Pnt (TempCWave , LineNotch ) ,*]=0
IFFT /Dest= TempWaveEven TempCWave
Make /O /C /FREE /N=0 TempCWave
FFT /DEST= TempCWave TempWaveOdd
TempCWave [ X2Pnt (TempCWave , LineNotch ) ,*]=0

3231 IFFT /Dest= TempWaveOdd TempCWave
Killwaves TempCWave

EndIf
TempWaveEven /= LaserPower * LaserPowerCorrection * MirrorCorr *(1 - Reflectivity )⤦

Ç // Normalize to 1W constant input power
TempWaveOdd /= LaserPower * LaserPowerCorrection * MirrorCorr *(1 - Reflectivity )

3236 Duplicate /R=( Delay -1.4* ChopperPeriod , Delay +1.4* ChopperPeriod ) /O ⤦
Ç TempWaveEven root:NAC: Experiment : FitDeconvolutionEven

Duplicate /R=( Delay -1.4* ChopperPeriod , Delay +1.4* ChopperPeriod ) /O ⤦
Ç TempWaveOdd root:NAC: Experiment : FitDeconvolutionOdd

Wave FitOdd =root:NAC: Experiment : FitDeconvolutionOdd , FitEven =root:NAC:⤦
Ç Experiment : FitDeconvolutionEven

SetScale /P x, -1.4* ChopperPeriod , DimDelta (FitOdd ,0) , WaveUnits (FitOdd⤦
Ç ,0) , FitOdd

SetScale /P x, -1.4* ChopperPeriod , DimDelta (FitEven ,0) , WaveUnits (FitEven⤦
Ç ,0) , FitEven

3241 Duplicate /O FitOdd root:NAC: Experiment : FitDeconvolutionOddFitted
Duplicate /O FitEven root:NAC: Experiment : FitDeconvolutionEvenFitted
Wave FitOddFitted =root:NAC: Experiment : FitDeconvolutionOddFitted , ⤦

Ç FitEvenFitted =root:NAC: Experiment : FitDeconvolutionEvenFitted
Make /D /FREE /N=4 FitCoef
FitCoef ={ Abs( WaveMin ( FitEven )) > Abs( WaveMax ( FitEven )) ? -1e3 : 1e3 , ⤦

Ç 0.001 ,Abs( WaveMin ( FitEven )) > Abs( WaveMax ( FitEven )) ? -1e6 : 1e6 , 0.5}
3246 FuncFit /NTHR =0 /Q /W=2 DeconvolutionFunction FitCoef FitEven (-⤦

Ç ChopperPeriod /2, ChopperPeriod /2)
Duplicate /R=( Delay -1.4* ChopperPeriod + FitCoef [1] , Delay +1.4* ChopperPeriod +⤦

Ç FitCoef [1]) /O TempWaveEven root:NAC: Experiment : FitDeconvolutionEven
FitEven -= FitCoef [0]
FitCoef [0]=0
FitCoef [1]=0

3251 FitEvenFitted = DeconvolutionFunction (FitCoef ,x)
FitCoef ={ Abs( WaveMin ( FitEven )) > Abs( WaveMax ( FitEven )) ? -1e3 : 1e3 , ⤦

Ç 0.001 ,Abs( WaveMin ( FitEven )) > Abs( WaveMax ( FitEven )) ? -1e6 : 1e6 , 0.5}
FuncFit /NTHR =0 /Q /W=2 DeconvolutionFunction FitCoef FitOdd (-⤦

Ç ChopperPeriod /2, ChopperPeriod /2)
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Duplicate /R=( Delay -1.4* ChopperPeriod + FitCoef [1] , Delay +1.4* ChopperPeriod +⤦
Ç FitCoef [1]) /O TempWaveOdd root:NAC: Experiment : FitDeconvolutionOdd

FitOdd -= FitCoef [0]
3256 FitCoef [0]=0

FitCoef [1]=0
FitOddFitted = DeconvolutionFunction (FitCoef ,x)
SetScale /P x, -1.4* ChopperPeriod , DimDelta (FitEven ,0) , WaveUnits (FitEven⤦

Ç ,0) , FitEven
SetScale /P x, -1.4* ChopperPeriod , DimDelta (FitOdd ,0) , WaveUnits (FitOdd⤦

Ç ,0) , FitOdd
3261 SetScale d, 0, 0, "V/W", FitOdd , FitEven

KillWaves TempWaveEven , TempWaveOdd
Endif
Break

Default :
3266 Return NAC_UnknownMeasurement

Break
EndSwitch
StrSwitch (Name)

Case " Deconvolution ":
3271 Break

Default :
Tmp=Mean(FitOdd ,0 ,0.9* Delay )
FitOdd -= Tmp
Tmp=Mean(FitEven ,0 ,0.9* Delay )

3276 FitEven -= Tmp
Break

EndSwitch
Return NoError

End
3281 //

Function GetRatio
Static Function GetRatio (Type)
Variable Type
Variable IntBefore , IntAfter , LaserBefore , LaserAfter , Ratio
String S_Fit , S_Before , S_After

3286 Switch (Type)
Case NAC_RatioTypeReflectivity :

S_Before =" BeforeCoating "
S_After =" AfterCoating "
Break

3291 Case NAC_RatioTypeTransmission :
S_Before =" LaserReference "
S_After =" Transmission "
Break

Case NAC_RatioTypeSensitivity :
3296 S_Before =" AfterCoating "

S_After =" LaserReference "
Break

Default :
Error_Message ( NAC_NotApplicable , " InProc ", " GetRatio ", "Type :"+ Num2Str (Type⤦

Ç ))
3301 Return NaN

EndSwitch
NVar LP_B=$"root:NAC :"+ S_Before +": LaserPower ", LP_A=$"root:NAC :"+ S_After +":⤦
Ç LaserPower "

LaserBefore =LP_B
LaserAfter =LP_A

3306 If (( Exists (" root:NAC :"+ S_Before +": AverageOdd ") !=1) || ( Exists (" root:NAC :"+⤦
Ç S_Before +": AverageEven ") !=1))
Error_Message ( NAC_AverageWavesMissing , " InProc ", " GetRatio ", "Type :"+ Num2Str (⤦
Ç Type))
Return NaN

EndIf
If (( Exists (" root:NAC :"+ S_After +": AverageOdd ") !=1) || ( Exists (" root:NAC :"+⤦
Ç S_After +": AverageEven ") !=1))

3311 Error_Message ( NAC_AverageWavesMissing , " InProc ", " GetRatio ", "Type :"+ Num2Str (⤦
Ç Type))
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Return NaN
EndIf
If (! LaserBefore || ! LaserAfter )

Error_Message ( NAC_LaserPowerMissing , " InProc ", " GetRatio ", "Type :"+ Num2Str (⤦
Ç Type))

3316 Return NaN
EndIf
If ( NumType ( LaserAfter ) || ( LaserAfter ==0))

Variable LP
Prompt LP , " Laser Power : "

3321 DoPrompt /HELP ="" " Missing Laser Power for AfterCoating ", LP
If ( V_Flag )

Error_Message ( NAC_LaserPowerMissing , " InProc ", " GetRatio ", "Type :"+ Num2Str (⤦
Ç Type))

Return NaN
Else

3326 LP_A=LP
LaserAfter =LP

EndIf
EndIf
Wave BeforeOdd =$"root:NAC :"+ S_Before +": AverageOdd ", BeforeEven =$"root:NAC :"+⤦
Ç S_Before +": AverageEven "

3331 Wave AfterOdd =$"root:NAC :"+ S_After +": AverageOdd ", AfterEven =$"root:NAC :"+⤦
Ç S_After +": AverageEven "

Duplicate /FREE AfterOdd DataOdd , TmpOdd
Duplicate /FREE AfterEven DataEven , TmpEven
Duplicate BeforeOdd , root:NAC: FitRatioOdd
Duplicate BeforeEven , root:NAC: FitRatioEven

3336 Wave FitRatioOdd =root:NAC: FitRatioOdd , FitRatioEven =root:NAC: FitRatioEven
FitRatioOdd /= LaserBefore
FitRatioEven /= LaserBefore
DataOdd /= LaserAfter
DataEven /= LaserAfter

3341 Make /FREE /D /N=2 FitCoef
NVar ChopperDelay =root:NAC: Experiment : ChopperDelay
NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod , SwitchDeadTime =root:NAC:⤦
Ç Experiment : SwitchDeadTime

Variable FitFrom , FitTo
String HoldCoef

3346 FitCoef ={0 ,1e -6}
FitFrom = SwitchDeadTime
FitTo = ChopperPeriod
FuncFit /W=2 /N=1 /Q RatioOdd , FitCoef , DataOdd (FitFrom , FitTo ) /D= TmpOdd
Ratio = FitCoef [1]

3351 FuncFit /W=2 /N=1 /Q RatioEven , FitCoef , DataEven (FitFrom , FitTo ) /D= TmpEven
Ratio =( Ratio + FitCoef [1]) /2
KillWaves FitCoef , TmpOdd , TmpEven , root:NAC: FitRatioOdd , root:NAC: FitRatioEven
Return Ratio

End
3356 //

Function GetPulseLength
Static Function GetPulseLength ()
String Name
Variable LengthOdd , LengthEven
NVar Length =root:NAC: Experiment : PulseLength , NomLength =root:NAC: Experiment :⤦

Ç NominalPulseLength
3361 NVar Delay =root:NAC: Experiment : ChopperDelay //, NomLength =root:NAC: Experiment :⤦

Ç NominalPulseLength
NVar Failed =root:NAC: Experiment : LengthDetectFailed , Win=root:NAC: Machine :⤦

Ç PulseLengthDetectionWindow
DFRef OldDF = GetDataFolderDFR ()

If (( Exists (" root:NAC: LaserReference : AverageOdd ") !=1) || ( Exists (" root:NAC:⤦
Ç LaserReference : AverageEven ") !=1))
Return NAC_FitWavesMissing

3366 EndIf
SetDataFolder root:NAC
Failed =0
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Wave AvgOdd =root:NAC: LaserReference : AverageOdd , AvgEven =root:NAC: LaserReference⤦
Ç : AverageEven

Variable InterBefore , SlopeBefore , InterPulseBeg , SlopePulseBeg , InterPulseEnd ,⤦
Ç SlopePulseEnd , InterAfter , SlopeAfter

3371 If ((Win > Delay ) || (Win > Length ))
Win =0.8* Min(Delay , Length )

EndIf
Make /FREE /D /N=2 FitCoef
CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgEven (Delay -Win , Delay -0.2* Win)

3376 InterBefore = FitCoef [0]
SlopeBefore = FitCoef [1]
CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgEven ( Delay +0.2* Win , Delay +Win)
InterPulseBeg = FitCoef [0]
SlopePulseBeg = FitCoef [1]

3381 CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgEven ( Delay +Length -Win , Delay +⤦
Ç Length -0.2* Win)

InterPulseEnd = FitCoef [0]
SlopePulseEnd = FitCoef [1]
CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgEven ( Delay + Length +0.2* Win , Delay⤦
Ç + Length +Win)

InterAfter = FitCoef [0]
3386 SlopeAfter = FitCoef [1]

LengthEven =( InterAfter - InterPulseEnd )/( SlopePulseEnd - SlopeAfter ) - ( InterBefore⤦
Ç - InterPulseBeg )/( SlopePulseBeg - SlopeBefore )

CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgOdd (Delay -Win ,Delay -0.2* Win)
InterBefore = FitCoef [0]
SlopeBefore = FitCoef [1]

3391 CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgOdd ( Delay +0.2* Win , Delay +Win)
InterPulseBeg = FitCoef [0]
SlopePulseBeg = FitCoef [1]
CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgEven ( Delay +Length -Win , Delay +⤦
Ç Length -0.2* Win)

InterPulseEnd = FitCoef [0]
3396 SlopePulseEnd = FitCoef [1]

CurveFit /N=1 /Q /W=2 line , kwCWave = FitCoef AvgOdd ( Delay + Length +0.2* Win , Delay +⤦
Ç Length +Win)

InterAfter = FitCoef [0]
SlopeAfter = FitCoef [1]
LengthOdd =( InterAfter - InterPulseEnd )/( SlopePulseEnd - SlopeAfter ) - ( InterBefore -⤦
Ç InterPulseBeg )/( SlopePulseBeg - SlopeBefore )

3401 If (( LengthEven /LengthOdd >1.05) ||( LengthEven /LengthOdd <0.95) || ((( LengthEven +⤦
Ç LengthOdd )/2)/NomLength >1.05) || ((( LengthEven + LengthOdd )/2)/NomLength⤦
Ç <0.95) )
Length = NomLength
Failed =1

Else
Length =( LengthEven + LengthOdd )/2

3406 EndIf
SetDataFolder OldDF
If ( Failed )

Return NAC_PulseLengthDetectionFailed
Else

3411 Return NoError
EndIf

End
//

Function GetRadiationContribution
Static Function GetRadiationContribution (Name)

3416 String Name
NVar SampleTemp =root:NAC: Experiment : TemperatureSample
NVar SourceTemp =root:NAC: Experiment : TemperatureSource
NVar RefSourceTemp =root:NAC: Experiment : EmptyCrucibleTemperature
Variable OnErrors =0

3421 StrSwitch (Name)
Case "Heat ":
Case " Radiation ":

Break
Default :
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3426 Return NAC_NotApplicable
EndSwitch
If (( NumType ( SampleTemp )!=0) || NumType ( SourceTemp ))

OnErrors += Error_Message ( NAC_NoDataLoaded , " InProc ", " GetRadiationContribution⤦
Ç ", "Heat ")

EndIf
3431 If (( NumType ( RefSourceTemp )!=0) || ( Exists (" root:NAC: Radiation : Auxiliaries :⤦

Ç Sample ") !=1))
OnErrors += Error_Message ( NAC_NoDataLoaded , " InProc ", " GetRadiationContribution⤦
Ç ", " Radiation ")

EndIf
If ( OnErrors )

Return NaN
3436 EndIf

Wave RefSampleTemp =root:NAC: Radiation : Auxiliaries : Sample
If (Abs( SampleTemp -Mean( RefSampleTemp ))> 5)

Error_Message ( NAC_IncompatibleExperiment , " InProc ", " GetRadiationContribution⤦
Ç ", " Sample Temperature Mismatch ")
Return NaN

3441 EndIf
Return ( SourceTemp ^4- SampleTemp ^4) /( RefSourceTemp ^4- SampleTemp ^4)

End

//

Function FitQCMRate
3446 Static Function FitQCMRate (Name) // ErrorHandling

String Name
String Type =""
DFREF OldDF = GetDataFolderDFR ()

SetDataFolder $"root:NAC :"+ Name +":"
3451 NVar BaselineTo , BaselineFrom

NVar BaselineBefore , ApparentRate , BaselineAfter , DepositionRate , UseBaseline
Wave Thickness , Timeline
Make /FREE /D /N=2 Coef
If ( BaselineTo <= 10)

3456 BaselineBefore =0
Make /O /N=0 Thickness_FitLow
Make /O /N=0 TimeLine_FitLow

Else
Duplicate /O /R=[0 , BaselineTo -5] Thickness , Thickness_FitLow

3461 Duplicate /O /R=[0 , BaselineTo -5] Timeline , Timeline_FitLow
Duplicate /FREE /R=[0 , BaselineTo -5] Thickness , TempThick
Duplicate /FREE /R=[0 , BaselineTo -5] Timeline , TempTime
CurveFit /W=2 /Q line kwCWave =Coef TempThick /X= TempTime /D= Thickness_FitLow
BaselineBefore =Coef [1]* CalcQCMTooling (Name)

3466 EndIf
If ( NumPnts ( Thickness )-BaselineFrom <=10)

BaselineAfter =0
Make /O /N=0 Thickness_FitHigh
Make /O /N=0 TimeLine_FitHigh

3471 Else
Duplicate /O /R=[ BaselineFrom +5 ,*] Thickness , Thickness_FitHigh
Duplicate /O /R=[ BaselineFrom +5 ,*] Timeline , Timeline_FitHigh
Duplicate /FREE /R=[ BaselineFrom +5 ,*] Thickness , TempThick
Duplicate /FREE /R=[ BaselineFrom +5 ,*] Timeline , TempTime

3476 CurveFit /Q /W=2 line kwCWave =Coef TempThick /X= TempTime /D= Thickness_FitHigh
BaselineAfter =Coef [1]* CalcQCMTooling (Name)

EndIf
Duplicate /O /R=[ BaselineTo +5, BaselineFrom -5] Thickness , Thickness_FitMid
Duplicate /O /R=[ BaselineTo +5, BaselineFrom -5] Timeline , Timeline_FitMid

3481 Duplicate /FREE /R=[ BaselineTo +5, BaselineFrom -5] Thickness , TempThick
Duplicate /FREE /R=[ BaselineTo +5, BaselineFrom -5] Timeline , TempTime
CurveFit /Q /W=2 line kwCWave =Coef TempThick /X= TempTime /D= Thickness_FitMid
ApparentRate =Coef [1]* CalcQCMTooling (Name)
KillWaves /Z Coef , TempThick , TempTime

3486 SetDataFolder OldDF
DoUpdate
Error_Message ( CalcHeat () , " CalcHeat ", " FitQCMRate ", Name)
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Error_Message ( CalcCoverage () , " CalcCoverage ", " FitQCMRate ", Name)
Error_Message ( DoHeatTextBox () , " DoHeatTextBox ", " FitQCMRate ", Name)

3491 Return NoError
End
//

Function CalcQCMTooling
Static Function CalcQCMTooling (Name)
String Name

3496 StrSwitch (Name)
Case " RateCalorimetry ":

NVar GeometryQCM =root:NAC: Machine : QCMToolingCalorimetry
Return GeometryQCM
Break

3501 Case " Mecea ":
NVar BeamDiameter =root:NAC: Machine : BeamDiameter , QCMDiameter =root:NAC:⤦

Ç Machine : QCMDiameter
Make /FREE /D /N=400 G
Setscale x, -QCMDiameter , QCMDiameter , "", G
G= Gauss (x ,0 ,1.0669* QCMDiameter /6) // V.M. Mecea / Sensors and Actuators A⤦

Ç 128 (2006) 270 -277
3506 Return 1/ Area(G,- BeamDiameter /2, BeamDiameter /2)

Break
Case " Sauerbrey "://" RateCalorimetry "://" Sauerbrey ":

NVar BeamDiameter =root:NAC: Machine : BeamDiameter , QCMDiameter =root:NAC:⤦
Ç Machine : QCMDiameter , GeometryQCM =root:NAC: Machine : QCMToolingCalorimetry

// Calculates the tooling due to a partially loaded QCM according to ⤦
Ç Sauerbrey , ZfP 155 , 206 -222 (1959)

3511 // Coefficients from a sigmoidal fit from Fig. 5
Return 1/( -0.022841+1.0392/(1+ exp (-( BeamDiameter / QCMDiameter -0.43809)⤦

Ç /0.12912) ))//* GeometryQCM
Break

Case " RateCoating ":
NVar GeometryQCM =root:NAC: Machine : QCMToolingCoating

3516 Return GeometryQCM
Break

Default :
Error_Message ( NAC_NotApplicable , " InProc ", " CalcQCMTooling ", Name)
Return NaN

3521 EndSwitch
End
//

NAC_CreateTrend
Function NAC_CreateTrend (Name)
String Name

3526 String FitList =" Cancel ; Averaging ; Loaded Average ;Line; Polynom ; Smooth ; Gauss ; Lorentz⤦
Ç ;Sine;Exp; Sigmoid ; Power ;"

String FitType , Mode , WName
Variable Error

If (! DataFolderExists (" root:NAC :"))
Error_Message ( NAC_NotInitialized , " InProc ", " NAC_CreateTrend ", "")

3531 Return NaN
EndIf
StrSwitch (Name)

Case " Radiation ":
Wave Source =root:NAC:Heat: orig_Radiation

3536 Wave Dest=root:NAC:Heat: fit_Radiation
Wave Flag=root:NAC:Heat: FlagList
NVar UseTrend =root:NAC: Experiment : UseFittedRadiation
Break

Case " Sticking ":
3541 Name =" Desorption "

Case " Desorption ":
Wave Source =root:NAC: Sticking : orig_Desorption
Wave Dest=root:NAC: Sticking : fit_Desorption
Wave Flag=root:NAC: Sticking : FlagList

3546 NVar UseTrend =root:NAC: Experiment : UseFittedDesorption
Break
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Case " Deconvolution ":
Case " BeforeCoating ":
Case " AfterCoating ":

3551 Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":
Case " RateCalorimetry ":

3556 Case " RateCoating ":
Error_Message ( NAC_NotApplicable , " InProc ", " NAC_CreateTrend ", Name)
Return NaN

Default :
Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_CreateTrend ", Name)

3561 Return NaN
EndSwitch
WName =" NAC_ "+ Name +" _Trend "
If ( NumPnts ( Source )==0)

Error_Message ( NAC_NothingToProcess , " InProc ", " NAC_CreateTrend ", Name)
3566 Return NaN

EndIf
Duplicate /O Source Dest
Dest =(! Flag[p]) ? Source : NaN
Error = Error_Message ( DisplayTrend (Name , 0) , " DisplayTrend ", " NAC_CreateTrend ", ⤦
Ç Name)

3571 If (( Error != NoError ) && ( Error != NAC_WindowAlreadyExists ))
Return NaN

EndIf
TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\ JCTrend for "+⤦
Ç Name +"\r\JC \K(65280 ,0 ,0) Original Data"

DoUpdate
3576 Do

Duplicate /O /FREE Source Process
Process =(! Flag[p]) ? Source : NaN
Prompt FitType , "Type", Popup , FitList
DoPrompt /HELP ="" " Create Fitted Trend for "+ Name , FitType

3581 If ( V_Flag || StringMatch (FitType ," Cancel "))
Error_Message (UserAbort , " InProc ", " NAC_CreateTrend ", Name)
UseTrend =0
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=1
Return NaN

3586 EndIf
NVar Trim=root:NAC: Machine : TrimTrendRange
StrSwitch ( FitType )

Case " Loaded Average ":
String FileName =""

3591 Error_Message ( LoadTrend (Name , FileName ), " InProc ", " NAC_CreateTrend ", Name⤦
Ç )

FitType +=" from "+ FileName
StrSwitch (Name)

Case " Radiation ":
Variable RemOfs =2, Low=Ceil (0.1* NumPnts (Flag)), High= Floor (0.9*⤦

Ç NumPnts (Flag))
3596 String NoYes =" No;Yes"

Prompt RemOfs , " Scale Contribution ", Popup , NoYes
Prompt Low , " Start Frame "
Prompt High , "End Frame "
DoPrompt /HELP ="" " Create Fitted Trend for "+ Name , RemOfs , Low , High

3601 If ( V_Flag || ( RemOfs !=2))
Error_Message (UserAbort , " InProc ", " NAC_CreateTrend ", Name)
Return NaN

EndIf
If (Low >High)

3606 Variable Tmp=Low
Low=High
High=Tmp

EndIf
Low= Limit (Low , 0, NumPnts (Flag) -1)

3611 High= Limit (High , 0, NumPnts (Flag) -1)
Duplicate /Free Source , TempWave
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TempWave /= Process
Dest *= Mean(TempWave ,Low ,High)
FitType +="\K(0 ,0 ,0)\ rScaled to Match Frames "+ Num2Str (Low)+" to "+⤦

Ç Num2Str (High)+" by "+ Num2Str (Mean(TempWave ,Low ,High))
3616 Break

Default :
Break

EndSwitch
Break

3621 Case " Averaging ":
Variable Temp=Mean(Source , Pnt2X (Source , Trim), Pnt2X (Source , NumPnts (⤦

Ç Source )-Trim -1))
Dest=Temp
StrSwitch (Name)

Case " Radiation ":
3626 NVar Value =root:NAC:Heat: InitRadiation

NVar Hold=root:NAC:Heat: HoldRadiation
Break

Case " Desorption ":
NVar Value =root:NAC: Sticking : InitDesorption

3631 NVar Hold=root:NAC: Sticking : HoldDesorption
Break

EndSwitch
Value =Temp
Hold =1

3636 Break
Case "Line ":

Make /N=2 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 Line , kwCWave = FitCoef Process [Trim , NumPnts ( Source )⤦

Ç -Trim -1]
Dest= FitCoef [0]+ FitCoef [1]*x

3641 Break
Case "Exp ":

Make /N=3 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 Exp , kwCWave = FitCoef Process [Trim , NumPnts ( Source )-⤦

Ç Trim -1]
Dest= FitCoef [0]+ FitCoef [1]* exp(- FitCoef [2]*x)

3646 Break
Case " Gauss ":

Make /N=4 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 Gauss , kwCWave = FitCoef Process [Trim , NumPnts ( Source⤦

Ç )-Trim -1]
Dest= FitCoef [0]+ FitCoef [1]* exp ( -((x- FitCoef [2])/ FitCoef [3]) ^2)

3651 Break
Case " Lorentz ":

Make /N=4 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 Lor , kwCWave = FitCoef Process [Trim , NumPnts ( Source )-⤦

Ç Trim -1]
Dest= FitCoef [0]+ FitCoef [1]/((x- FitCoef [2]) ^2+ FitCoef [3])

3656 Break
Case "Sine ":

Make /N=4 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 sin , kwCWave = FitCoef Process [Trim , NumPnts ( Source )-⤦

Ç Trim -1]
Dest= FitCoef [0]+ FitCoef [1]* sin( FitCoef [2]*x+ FitCoef [3])

3661 Break
Case " DblExp ":

Make /N=5 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 DblExp , kwCWave = FitCoef Process [Trim , NumPnts (⤦

Ç Source )-Trim -1]
Dest= FitCoef [0]+ FitCoef [1]* Exp(- FitCoef [2]*x)+ FitCoef [3]* Exp(- FitCoef [4]*⤦

Ç x)
3666 Break

Case " Sigmoid ":
Make /N=4 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 Sigmoid , kwCWave = FitCoef Process [Trim , NumPnts (⤦

Ç Source )-Trim -1]
Dest= FitCoef [0]+ FitCoef [1]/(1+ Exp (-(x- FitCoef [2])/ FitCoef [3]))

3671 Break
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Case " Power ":
Make /N=3 /FREE /D FitCoef
CurveFit /N /X /Q /W=2 Power , kwCWave = FitCoef Process [Trim , NumPnts ( Source⤦

Ç )-Trim -1]
Dest= FitCoef [0]+ FitCoef [1]*x^ FitCoef [2]

3676 Break
Case " Polynom ":

Variable Para =0
String ParaList ="3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20"
Prompt Para , " Number of Polynom Coefficients ( Order +1): ", Popup , ⤦

Ç ParaList
3681 DoPrompt /HELP ="" " Create Fitted Trend for "+ Name , Para

If ( V_Flag )
Error_Message (UserAbort , " InProc ", " NAC_CreateTrend ", Name)
UseTrend =0
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=1

3686 Return NaN
EndIf
Para +=2
Make /N=( Para) /FREE /D /O FitCoef
CurveFit /N /X=1 /Q /W=2 Poly Para , kwCWave = FitCoef Process [Trim , NumPnts (⤦

Ç Source )-Trim -1]
3691 Dest=Poly(FitCoef ,x)

FitType +="(" + " Coefficients : " + Num2Str (Para) +")"
Break

Case " Smooth ":
String ModeList =" Binominal ; BoxCar ; Median ;"

3696 Variable WinSize =25
Prompt Mode , " Smoothing Method : ", Popup , ModeList
Prompt WinSize , " Smoothing Window Size: "
DoPrompt /HELP ="" " Create Smoothed Trend for "+ Name , Mode , WinSize
WinSize =Ceil( WinSize )

3701 If (( WinSize <1) || V_Flag )
Error_Message (UserAbort , " InProc ", " NAC_CreateTrend ", Name)
UseTrend =0
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=1
Return NaN

3706 EndIf
Dest [0, Trim ]= Process [2* Trim +1-p]
Dest[ NumPnts ( Process )-Trim -1, NumPnts ( Process ) -1]= Process [ NumPnts ( Process )⤦

Ç -Trim -1 -( NumPnts ( Process )-p)]
StrSwitch (Mode)

Case " Binominal ":
3711 Smooth WinSize , Dest

Break
Case " BoxCar ":

Smooth /B WinSize , Dest
Break

3716 Case " Median ":
Smooth /M=0 WinSize , Dest
Break

Default :
Error_Message ( NAC_UnknownFitFunction , " InProc ", " NAC_CreateTrend ", ⤦

Ç Name)
3721 UseTrend =0

ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=1
Return NaN
Break

EndSwitch
3726 FitType +="(" + Mode + ", Win :" + Num2Str ( WinSize ) +")"

Break
Default :

Make /O /N=0 Dest
Error_Message ( NAC_UnknownFitFunction , " InProc ", " NAC_CreateTrend ", Name)

3731 UseTrend =0
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=1
Return NaN
Break

EndSwitch
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3736 TextBox /W= $WName /A=MT /C/E/F=0 /X=0/Y=5 /N= Caption /A=MC /B=1 "\ JCTrend for ⤦
Ç "+ Name +"\r\JC \K(65280 ,0 ,0) Original Data\K(0 ,0 ,0) \K(0 ,0 ,52224) " + ⤦
Ç FitType
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=0
Error = Error_Message ( DisplayTrend (Name , 1) , " DisplayTrend ", " NAC_CreateTrend ",⤦
Ç Name)
If (( Error != NoError ) && ( Error != NAC_WindowAlreadyExists ))

Return NaN
3741 EndIf

DoUpdate
DoAlert /T=" NAC Fitted Trends " 2, " Acceptable Match ?"

While ( V_Flag ==2)
StrSwitch (Name)

3746 Case " Radiation ":
CheckBox FittedRad Disable =2*( V_Flag !=1) , Win= NAC_Control
Break

Case " Desorption ":
CheckBox FittedDes Disable =2*( V_Flag !=1) , Win= NAC_Control

3751 Break
Default :

Break
EndSwitch
If ( V_Flag ==3)

3756 Error_Message (UserAbort , " InProc ", " NAC_CreateTrend ", Name)
UseTrend =0
ModifyGraph /W= $WName HideTrace ($"fit_ "+ Name)=1
Return NaN

EndIf
3761 StrSwitch ( FitType )

Case " Averaging ":
UseTrend =0
Break

Default :
3766 UseTrend =1

EndSwitch
Return NaN

End
//

C.1.5 Fitting Functions
3771 //

Function CpShomate
Function CpShomate (w,T) : FitFunc

Wave w
Variable T
// CurveFitDialog / These comments were created by the Curve Fitting dialog . ⤦
Ç Altering them will

3776 // CurveFitDialog / make the function less convenient to work with in the Curve ⤦
Ç Fitting dialog .

// CurveFitDialog / Equation :
// CurveFitDialog / f(t) = A + B*t + C*t^2 + D*t^3 + E/t^2
// CurveFitDialog / End of Equation
// CurveFitDialog / Independent Variables 1

3781 // CurveFitDialog / T
// CurveFitDialog / Coefficients 5
// CurveFitDialog / w[0] = A
// CurveFitDialog / w[1] = B
// CurveFitDialog / w[2] = C

3786 // CurveFitDialog / w[3] = D
// CurveFitDialog / w[4] = E
t=T /1000
Return w[0] + w[1]*t + w[2]*t^2 + w[3]*t^3 + w[4]/t^2

End
3791 //

Function HShomate
Function HShomate (w,T) : FitFunc

Wave w
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Variable T
// CurveFitDialog / These comments were created by the Curve Fitting dialog . ⤦
Ç Altering them will

3796 // CurveFitDialog / make the function less convenient to work with in the Curve ⤦
Ç Fitting dialog .

// CurveFitDialog / Equation :
// CurveFitDialog / t=T /1000
// CurveFitDialog / f(T) = (A*t + B/2*t^2 + C/3*t^3 + D/4*t^4 - E/t + F - H) * ⤦
Ç 1000

// CurveFitDialog / End of Equation
3801 // CurveFitDialog / Independent Variables 1

// CurveFitDialog / T
// CurveFitDialog / Coefficients 7
// CurveFitDialog / w[0] = A
// CurveFitDialog / w[1] = B

3806 // CurveFitDialog / w[2] = C
// CurveFitDialog / w[3] = D
// CurveFitDialog / w[4] = E
// CurveFitDialog / w[5] = F
// CurveFitDialog / w[6] = H

3811 t=T /1000
Return (w[0]*t + w [1]/2* t^2 + w [2]/3* t^3 + w [3]/4* t^4 - w[4]/t + w[5] - w[6]) *⤦
Ç 1000

End
//

Function DeconvolutionFunction
Function DeconvolutionFunction (w,t): FitFunc

3816 Wave w
Variable t
Variable A0=w[0] , t0=w[1] , A=w[2] , tau=w[3]

If (t<t0)
Return A0

3821 Else
Return A0+A*(1 - exp (-(t-t0)*tau))

EndIf
End
//

Function DampedOscillation
3826 Function DampedOscillation (w, x): Fitfunc

Wave w
Variable x

// CurveFitDialog / These comments were created by the Curve Fitting dialog . ⤦
Ç Altering them will

// CurveFitDialog / make the function less convenient to work with in the Curve ⤦
Ç Fitting dialog .

3831 // CurveFitDialog / Equation :
// CurveFitDialog / f(x) = (x0 +Amp*exp(-x/tau)*cos(x/sigma -phi)
// CurveFitDialog / End of Equation
// CurveFitDialog / Independent Variables 1
// CurveFitDialog / x

3836 // CurveFitDialog / Coefficients 5
// CurveFitDialog / w[0] = x0
// CurveFitDialog / w[1] = Amp
// CurveFitDialog / w[2] = tau
// CurveFitDialog / w[3] = sigma

3841 // CurveFitDialog / w[4] = phi
Return w[0]+w[1]* exp(-x/w[2])*cos(x/w[3] -w[4])

End
//

Function DeconvolutionFuncEven
Function DeconvolutionFuncEven (wc ,wy ,wx): Fitfunc

3846 Wave wc , wy , wx
Wave DCE=root:NAC: Experiment : FitDeconvolutionEven

MultiThread wy=wc [0]* DCE(x)
End
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//

Function DeconvolutionFuncOdd
3851 Function DeconvolutionFuncOdd (wc ,wy ,wx): Fitfunc

Wave wc , wy , wx
Wave DCO=root:NAC: Experiment : FitDeconvolutionOdd

MultiThread wy=wc [0]* DCO(x)
End

3856 //

Function DeconvolutionFuncEvenFitted
Function DeconvolutionFuncEvenFitted (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave DCE=root:NAC: Experiment : FitDeconvolutionEvenFitted

MultiThread wy=wc [0]* DCE(x)
3861 End

//

Function DeconvolutionFuncOddFitted
Function DeconvolutionFuncOddFitted (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave DCO=root:NAC: Experiment : FitDeconvolutionOddFitted

3866 MultiThread wy=wc [0]* DCO(x)
End
//

Function CalorimetryEven
Function CalorimetryEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx

3871 Wave LE=root:NAC: Experiment : FitLaserReferenceEven , RE=root:NAC: Experiment :⤦
Ç FitRadiationEven

MultiThread wy=wc [0]+ wc [1]* LE(x-wc [2])+wc [3]* RE(x-wc [4])
End
//

Function CalorimetryOdd
Function CalorimetryOdd (wc ,wy ,wx): Fitfunc

3876 Wave wc , wy , wx
Wave LO=root:NAC: Experiment : FitLaserReferenceOdd , RO=root:NAC: Experiment :⤦

Ç FitRadiationOdd
MultiThread wy=wc [0]+ wc [1]* LO(x-wc [2])+wc [3]* RO(x-wc [4])

End
//

Function RatioEven
3881 Function RatioEven (wc ,wy ,wx): Fitfunc

Wave wc , wy , wx
Wave RE=root:NAC: FitRatioEven

MultiThread wy=wc [0]+ wc [1]* RE(x)
End

3886 //

Function RatioOdd
Function RatioOdd (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave RO=root:NAC: FitRatioOdd

MultiThread wy=wc [0]+ wc [1]* RO(x)
3891 End

//

Function LaserReferenceEven
Function LaserReferenceEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave LE=root:NAC: Experiment : FitLaserReferenceEven

3896 MultiThread wy=wc [0]+ wc [1]* LE(x-wc [2])
End
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//

Function LaserReferenceOdd
Function LaserReferenceOdd (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx

3901 Wave LO=root:NAC: Experiment : FitLaserReferenceOdd
MultiThread wy=wc [0]+ wc [1]* LO(x-wc [2])

End
//

Function StickingEven
Function StickingEven (wc ,wy ,wx): Fitfunc

3906 Wave wc , wy , wx
Wave SE=root:NAC: Experiment : FitStickingEven

MultiThread wy=wc [0]+ wc [1]* SE(x-wc [2])
End
//

Function StickingOdd
3911 Function StickingOdd (wc ,wy ,wx): Fitfunc

Wave wc , wy , wx
Wave SO=root:NAC: Experiment : FitStickingOdd

MultiThread wy=wc [0]+ wc [1]* SO(x-wc [2])
End

3916 //

Function StatLaserReferenceEven
Function StatLaserReferenceEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave Avg=root:NAC: LaserReference : AverageEven

MultiThread wy=wc [0]+ wc [1]* Avg(x)
3921 End

//

Function StatLaserReferenceOdd
Function StatLaserReferenceOdd (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave Avg=root:NAC: LaserReference : AverageOdd

3926 MultiThread wy=wc [0]+ wc [1]* Avg(x)
End
//

Function StatTransmissionEven
Function StatTransmissionEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx

3931 Wave Avg=root:NAC: Transmission : AverageEven
MultiThread wy=wc [0]+ wc [1]* Avg(x)

End
//

Function StatTransmissionOdd
Function StatTransmissionOdd (wc ,wy ,wx): Fitfunc

3936 Wave wc , wy , wx
Wave Avg=root:NAC: Transmission : AverageOdd

MultiThread wy=wc [0]+ wc [1]* Avg(x)
End
//

Function StatBeforeCoatingEven
3941 Function StatBeforeCoatingEven (wc ,wy ,wx): Fitfunc

Wave wc , wy , wx
Wave Avg=root:NAC: BeforeCoating : AverageEven

MultiThread wy=wc [0]+ wc [1]* Avg(x)
End

3946 //

Function StatBeforeCoatingOdd
Function StatBeforeCoatingOdd (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
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Wave Avg=root:NAC: BeforeCoating : AverageOdd
MultiThread wy=wc [0]+ wc [1]* Avg(x)

3951 End
//

Function StatAfterCoatingEven
Function StatAfterCoatingEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave Avg=root:NAC: AfterCoating : AverageEven

3956 MultiThread wy=wc [0]+ wc [1]* Avg(x)
End
//

Function StatAfterCoatingOdd
Function StatAfterCoatingOdd (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx

3961 Wave Avg=root:NAC: AfterCoating : AverageOdd
MultiThread wy=wc [0]+ wc [1]* Avg(x)

End
//

Function StatDeconvolutionEven
Function StatDeconvolutionEven (wc ,wy ,wx): Fitfunc

3966 Wave wc , wy , wx
Wave Avg=root:NAC: Deconvolution : AverageEven

MultiThread wy=wc [0]+ wc [1]* Avg(x)
End
//

Function StatDeconvolutionOdd
3971 Function StatDeconvolutionOdd (wc ,wy ,wx): Fitfunc

Wave wc , wy , wx
Wave Avg=root:NAC: Deconvolution : AverageOdd

MultiThread wy=wc [0]+ wc [1]* Avg(x)
End

3976 //

Function StatRadiationEven
Function StatRadiationEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave Avg=root:NAC: Radiation : AverageEven

MultiThread wy=wc [0]+ wc [1]* Avg(x)
3981 End

//

Function StatRadiationOdd
Function StatRadiationOdd (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx
Wave Avg=root:NAC: Radiation : AverageOdd

3986 MultiThread wy=wc [0]+ wc [1]* Avg(x)
End
//

Function StatZeroStickingEven
Function StatZeroStickingEven (wc ,wy ,wx): Fitfunc
Wave wc , wy , wx

3991 Wave Avg=root:NAC: ZeroSticking : AverageEven
MultiThread wy=wc [0]+ wc [1]* Avg(x)

End
//

Function StatZeroStickingOdd
Function StatZeroStickingOdd (wc ,wy ,wx): Fitfunc

3996 Wave wc , wy , wx
Wave Avg=root:NAC: ZeroSticking : AverageOdd

MultiThread wy=wc [0]+ wc [1]* Avg(x)
End
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//

C.1.6 Input/Output
4001 //

LoadCalFile
Static Function LoadCalFile (Name , FileNameOpen ) // Loads a calorimeter file
String Name , FileNameOpen
Variable i=0, j=0, temp
String TempString ="" , FileHeader ="" , Extension =""

4006 String MiscFiles =" Miscellaneous Files (*. tst , *.las , *. qms):.tst ,.las ,. qms ;"
// String AllCalFiles = "All Calorimetry Files (*. ref , *.las , .tst , *.win , *.cln , ⤦

Ç *.dcv , *.usd , *.cot , *.amp , *.rad , *.cal , *.qms , *. stk):.ref ,.las ,.tst ,.win⤦
Ç ,.cln ,.dcv ,.usd ,.cot ,.cot ,.amp ,.rad ,.cal ,.qms ,. stk ;" // String too long

String AllCalFiles = "All Calorimetry Files :.ref ,.las ,.tst ,.win ,.cln ,.dcv ,.usd ,.⤦
Ç cot ,.cot ,.amp ,.rad ,.cal ,.qms ,. stk ;"

String AllFiles =" All Files (*.*) :.*;"
Variable RefNum , NumberOfLines =0

4011 DFRef OldDF = GetDataFolderDFR ()
StrSwitch (Name)

Case " LaserReference ":
TempString =" Laser Reference Files (*. ref):. ref ;"
Break

4016 Case " Transmission ":
TempString =" Window Transmission Files (*. win):. win ;"
Break

Case " BeforeCoating ":
TempString =" Clean Sample Files (*. cln , *. usd):.cln ,. usd ;"

4021 Break
Case " AfterCoating ":

TempString =" Coated Sample Files (*. cot):. cot ;"
Break

Case " Radiation ":
4026 TempString =" Radiation Files (*. rad):. rad ;"

Break
Case "Heat ":

TempString =" Heat Files (*. cal):. cal ;"
Break

4031 Case " ZeroSticking ":
TempString =" Zero Sticking Files (*. stk):. stk ;"
Break

Case " Deconvolution ":
TempString =" Deconvolution Files (*. dcv):. dcv ;"

4036 Break
Case "Trim ":
Case " Concat1 ":
Case " Concat2 ":

Break
4041 Case " RateCoating ":

Case " RateCalorimetry ":
Return NAC_NotApplicable
Break

Default :
4046 Return NAC_UnknownMeasurement

Break
EndSwitch
StrSwitch (Name)

Case "Trim ":
4051 Case " Concat1 ":

Case " Concat2 ":
FilenameOpen =""
TempString = AllCalFiles + AllFiles
Break

4056 Default :
NVar LoadSupport =root:NAC:GUI: LoadSupportFiles
If ( LoadSupport )

TempString = MiscFiles + TempString + AllCalFiles + AllFiles
Else
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4061 TempString = TempString + MiscFiles + AllCalFiles + AllFiles
EndIf
Break

EndSwitch
PathInfo CalDataPath

4066 If (! V_Flag )
NewPath /O /Q /Z CalDataPath , NAC_DataPathStr
If (! V_Flag )

NewPath /O /Q CalDataPath
If ( V_Flag )

4071 Return UserCancel
EndIf

EndIf
EndIf
SetDataFolder root:NAC

4076 Open /R /P= CalDataPath /F= TempString RefNum as FileNameOpen
If ( CmpStr ( S_FileName , "") ==0)

SetDataFolder OldDF
Return LoadAborted

EndIf
4081 TempString ="\r"

Make /T /N=1 /FREE TempHeader
TempHeader [0]= S_Filename
Do

If ( CmpStr ( TempString ,"\r") !=0)
4086 ReDimension /N=( NumPnts ( TempHeader )+1) TempHeader

TempHeader [ NumPnts ( TempHeader ) -1]= TempString
EndIf
FReadLine RefNum , TempString
NumberOfLines = NumberOfLines +1

4091 While (! StringMatch ( TempString ," Calorimetry * MassSpec *"))
ReDimension /N=( NumPnts ( TempHeader )+1) TempHeader
TempHeader [ NumPnts ( TempHeader ) -1]=" End of Header "
Close RefNum
TempHeader = ReplaceString ("(" , TempHeader , "[")

4096 TempHeader = ReplaceString (")", TempHeader , "]")
TempHeader = ReplaceString ("\r", TempHeader , "")
Variable NFrames , SRate , CPeriod , PLength , OCSteps , CDelay , LPower , SDTime , Tmp⤦
Ç , CGain , QGain , Refl=NaN

String Prop , Unit , Value , STmp
For (i=0; (i< NumPnts ( TempHeader )) && (! StringMatch ( TempHeader [i]," Notes :")); i⤦
Ç +=1)

4101 STmp= TempHeader [i]
If ( StringMatch ( TempHeader [i], "*[*") && StringMatch ( TempHeader [i], "*]*") )

Prop=STmp [0, StrSearch (STmp ,"[" ,0) -1]
Unit=STmp[ StrSearch (STmp ,"[" ,0) +1, StrSearch (STmp ,"]" ,0) -1]

Else
4106 Prop=STmp [0, StrSearch (STmp ,":" ,0) -1]

Unit =""
EndIf
Value =STmp[ StrSearch (STmp ,":" ,0) +1, inf]
Unit= ReplaceString (" ", Unit , "")

4111 For( ; StringMatch (Prop , "* "); )
Prop=Prop [0, StrLen (Prop) -2]

EndFor
For( ; StringMatch (Prop , " *"); )

Prop=Prop [1, StrLen (Prop) -1]
4116 EndFor

Value = ReplaceString (" ", Value , "")
Tmp= GetPrefix (Unit)* Str2Num ( Value )
StrSwitch (Prop)

Case " Pulses Acquired ":
4121 Case " Frames Acquired ":

NFrames =Tmp
Break

Case " Pulse Pairs Acquired ":
Case " Frame Pairs Acquired ":

4126 NFrames =Tmp *2
Break
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Case "Data Points per Second ":
Case " Sample Rate ":

SRate =Tmp
4131 Break

Case " Chopper Period ":
CPeriod =Tmp /2
Break

Case " Pulse Length ":
4136 PLength =Tmp

Break
Case "Open/ Close ":

OCSteps =Tmp
Break

4141 Case " Chopper Delay ":
CDelay =Tmp
Break

Case " Laser Power ":
If ( StringMatch (Unit , "*W*" ))

4146 LPower =Tmp
Else

LPower =Tmp /1 e6
EndIf
Break

4151 Case " Switch Dead Time ":
SDTime =Tmp +0.020
Break

Case " Reflectivity ":
Refl=Tmp

4156 Break
Case " Calorimetry Gain ":

CGain =Tmp
Break

Case "QMS Gain ":
4161 QGain =Tmp

Break
EndSwitch

EndFor
TempString =""

4166 StrSwitch (Name)
Case "Trim ":
Case " ConCat1 ":
Case " ConCat2 ":

SetDataFolder root:NAC: TempSet
4171 Break

Case " Deconvolution ":
SetDatafolder root:NAC: Deconvolution
Break

Default :
4176 SetDataFolder root:NAC: Experiment

Break
EndSwitch
NVar SampleRate , ChopperPeriod , NominalPulseLength , OpenCloseSteps , ⤦
Ç ChopperDelay , DataPoints = DataPointsPerFrame , PulseLength , SwitchDeadTime

StrSwitch (Name)
4181 Case " Deconvolution ":

Case " BeforeCoating ":
Case " LaserReference ":

NVar Reflectivity =$"root:NAC :"+ Name +": Reflectivity "
Break

4186 Default :
EndSwitch
If (( ChopperPeriod !=0) && ( ChopperPeriod != CPeriod ))

TempString +=" ChopperPeriod , "
EndIf

4191 If (( OpenCloseSteps !=0) && ( OpenCloseSteps != OCSteps ))
TempString +=" CopperSteps , "

EndIf
If (( ChopperDelay !=0) && ( ChopperDelay != CDelay ))

TempString +=" CopperDelay , "
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4196 EndIf
If (( NominalPulseLength !=0) && ( NominalPulseLength != PLength ))

TempString +=" PulseLength , "
EndIf

// If (( NominalPulseLength !=0) && ( SwitchDeadTime != SDTime ))
4201 // TempString +=" SwitchDeadTime , "

// EndIf
TempString = RemoveEnding ( TempString , ", ")
Variable Deconv = StringMatch (Name ," Deconvolution ")
If (! Deconv && StrLen ( TempString ))

4206 SetDataFolder OldDF
Error_Message ( NAC_DataMismatch , " LoadCalFile ", " InProc ", TempString )
NVar LoadSupport =root:NAC:GUI: LoadSupportFiles
If (! LoadSupport )

Return NAC_DataMismatch
4211 EndIf

EndIf
String OpenPath = S_FileName
LoadWave /O/A /B=("C=1,F=0,N= CalData ; C=1,F=0,N= QMSData ;") /J /Q /L={⤦
Ç NumberOfLines , NumberOfLines +1, NFrames * SRate *CPeriod ,0 ,2} S_FileName

Wave CalData , QMSData
4216 WaveStats /Q CalData

/// Replace with input dialogue
String Corrupt =""
If (( V_numNaNs !=0) || (! Deconv && ( nFrames * SRate * CPeriod != V_npnts )))

Corrupt +="[ CH1 ]"
4221 EndIf

WaveStats /Q QMSData
If (( V_numNaNs !=0) || (! Deconv && ( nFrames * SRate * CPeriod != V_npnts )))

If ( StrLen ( Corrupt ))
Corrupt += " & "

4226 EndIf
Corrupt +="[ CH2 ]"

EndIf
If ( StrLen ( Corrupt ))

DoAlert /T=" Corrupt Data File" 1, S_Filename +" contains corrupt channels "+⤦
Ç Corrupt +"!\r\ rContinue load ?"

4231 If (V_Flag >1)
SetDataFolder OldDF
Return LoadAborted

EndIf
EndIf

4236 SampleRate = SRate
ChopperPeriod = CPeriod
OpenCloseSteps = OCSteps
ChopperDelay = CDelay
NominalPulseLength = PLength

4241 PulseLength = PLength
SwitchDeadTime = SDTime
If ( NumType (Refl)==0)

Reflectivity =Refl
Else

4246 StrSwitch (Name)
Case " Deconvolution ":

SetFormula root:NAC: Deconvolution : Reflectivity "root:NAC: Machine :⤦
Ç ReflectivityClean " // d.l.

Break
Case " BeforeCoating ":

4251 SetFormula root:NAC: BeforeCoating : Reflectivity "root:NAC: Machine :⤦
Ç ReflectivityClean " // d.l.

Break
Case " LaserReference ":

SetFormula root:NAC: LaserReference : Reflectivity "root:NAC: Machine :⤦
Ç ReflectivityClean " // d.l.

Break
4256 EndSwitch

EndIf
String NameList
NVar PRate =root:NAC: Machine : ProcessRate
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DataPoints = PRate * CPeriod
4261 SetScale /P x, 0, 1/ SRate , "s", CalData , QMSData // Sets the x- scale to be ⤦

Ç seconds
SetScale d , -10, 10, "V", CalData , QMSData // Sets the data - scale to be ⤦
Ç Volts

StrSwitch (Name)
Case "Heat ":

NameList =" Heat; Sticking ;"
4266 KillWins (" NAC_Desorption ")

KillWins (" NAC_Adsorption ")
KillWins (" NAC_Radiation_VsFrame ")
Break

Case "Trim ":
4271 NameList =" TrimA ; TrimB ;"

Break
Case " ConCat1 ":

NameList =" ConcatA ; ConcatC ;"
Break

4276 Case " ConCat2 ":
NameList =" ConcatB ; ConcatD ;"
Break

Case " BeforeCoating ":
Case " AfterCoating ":

4281 NVar Reflec =root:NAC: AfterCoating : Reflectivity
Reflec =NaN
NameList =Name +";"
Break

Case " LaserReference ":
4286 Case " Transmission ":

KillWins (" NAC_Heat ")
KillWins (" NAC_Adsorption ")
NameList =Name +";"
NVar Trans =root:NAC: Transmission : Transmission

4291 Trans =NaN
Break

Case " ZeroSticking ":
KillWins (" NAC_Sticking ")
KillWins (" NAC_Desorption ")

4296 NameList =Name +";"
Break

Default :
NameList =Name +";"
Break

4301 EndSwitch
NewPath /O /Q CalDataPath RemoveEnding (OpenPath , S_FileName )
PathInfo CalDataPath
String Path= S_Path
SVar ExpName =root:NAC: Experiment : ExperimentName

4306 If (! Strlen ( ExpName ))
ExpName =Path[ StrSearch (Path , ":" , StrLen (Path) -2,3)+1, StrLen (Path) -2]

EndIf
For (j=0; j< ItemsInList ( NameList ); j+=1)

Name= StringFromList (j, NameList )
4311 KillWins (" NAC_ "+ Name)

SetDataFolder $"root:NAC :"+ Name
NVar NumberOfFrames , Loaded , CurrentFrame , BrowseDeconvolutionIndex
CurrentFrame =0
BrowseDeconvolutionIndex =0

4316 SVar FileName
Wave DisplayFit , DisplayRaw , FlagList
StrSwitch (Name)

Case " Sticking ":
Case " ConcatC ":

4321 Case " ConcatD ":
Case " TrimB ":

Break
Default :

Wave /T Header
4326 Break
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EndSwitch
StrSwitch (Name)

Case " ConcatC ":
Case " ConcatD ":

4331 Case " Sticking ":
Case " ZeroSticking ":
Case " TrimB ":

Duplicate /O QMSdata $"root:NAC :"+ Name +": Detector "
Break

4336 Case " TrimA ":
Case " ConcatA ":
Case " ConcatB ":
Default :

Wave /T Header
4341 Duplicate /O Caldata $"root:NAC :"+ Name +": Detector "

Wave Detector =$"root:NAC :"+ Name +": Detector "
Break

EndSwitch
StrSwitch (Name)

4346 Case " Sticking ":
Case " TrimB ":
Case " ConcatC ":
Case " ConcatD ":

Break
4351 Default :

Duplicate /O TempHeader $"root:NAC :"+ Name +": Header "
Break

EndSwitch
FileName = S_FileName

4356 StrSwitch (Name)
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":
Case " Transmission ":

4361 Case " Deconvolution ":
NVar LaserPower
LaserPower = LPower
Break

Default :
4366 Break

EndSwitch
NumberOfFrames = NFrames
StrSwitch (Name)

Case " TrimA ":
4371 Case " TrimB ":

Case " ConcatA ":
Case " ConcatB ":
Case " ConcatC ":
Case " ConcatD ":

4376 Case "Heat ":
Case " Sticking ":

Break
Default :

NVar AutoFlagged =$"root:NAC :"+ Name +": Statistics : AutoFlagged ", ⤦
Ç AutoFlaggedExp =root:NAC: Experiment : AutoFlagged

4381 Wave StatAmp =$"root:NAC :"+ Name +": Statistics : Amplitude ", StatWhi =$"root:⤦
Ç NAC :"+ Name +": Statistics : Whiskers ", StatWhiLim =$"root:NAC :"+ Name +":⤦
Ç Statistics : WhiskerLimits "

Wave StatQuart =$"root:NAC :"+ Name +": Statistics : Quartiles ", StatPos =$"root:⤦
Ç NAC :"+ Name +": Statistics : Position ", StatMed =$"root:NAC :"+ Name +": Statistics :⤦
Ç Medians "

Wave StatChiSq =$"root:NAC :"+ Name +": Statistics : ChiSq ", StatOutlier =$"root:⤦
Ç NAC :"+ Name +": Statistics : Outlier "

AutoFlagged =0
AutoFlaggedExp =0

4386 ReDimension /N=0 StatAmp , StatPos , StatChiSq , StatOutlier
StatMed =NaN
StatQuart =NaN
StatWhi =NaN
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StatWhiLim =NaN
4391 Break

EndSwitch
StrSwitch (Name)

Case "Heat ":
Wave Radiation , Adsorption , Offset , ShiftAds , ShiftRad , ChiSq , ⤦

Ç fit_Radiation
4396 Wave Enthalpy =root:NAC: Enthalpies : Enthalpy

ReDimension /N=0 Radiation , Adsorption , Enthalpy , Offset , ShiftAds , ⤦
Ç ShiftRad , fit_Radiation

ReDimension /N=( NumberOfFrames ) ChiSq
NVar UseFR =root:NAC: Experiment : UseFittedRadiation
ChiSq =0

4401 UseFR =0
CheckBox FittedRad Disable =2, Win= NAC_Control
Break

Case " Sticking ":
Wave Desorption , Offset , Shift , ChiSq , fit_Desorption

4406 Wave Sticking =root:NAC: Enthalpies : Sticking
Wave Coverage =root:NAC: Enthalpies :Coverage , Thickness =root:NAC: Enthalpies⤦

Ç : Thickness
NVar UseFD =root:NAC: Experiment : UseFittedDesorption
ReDimension /N=(0) Desorption , Offset , Shift , Sticking , Coverage , ChiSq , ⤦

Ç fit_Desorption , Thickness
ReDimension /N=( NumberOfFrames ) ChiSq

4411 ChiSq =0
UseFD =0
CheckBox FittedDes Disable =2, Win= NAC_Control
Break

Case " LaserReference ":
4416 NVar Failed =root:NAC: Experiment : LengthDetectFailed

Failed =0
Break

Default :
Break

4421 EndSwitch
StrSwitch (Name)

Case " BeforeCoating ":
KillWaves /Z root:NAC: Experiment : FitReflectivityOdd , root:NAC: Experiment :⤦

Ç FitReflectivityEven
Break

4426 Case " LaserReference ":
KillWaves /Z root:NAC: Experiment : FitLaserReferenceOdd , root:NAC:⤦

Ç Experiment : FitLaserReferenceEven
Break

Case " Radiation ":
KillWaves /Z root:NAC: Experiment : FitRadiationOdd , root:NAC: Experiment :⤦

Ç FitRadiationEven
4431 Break

Case " ZeroSticking ":
KillWaves /Z root:NAC: Experiment : FitStickingOdd , root:NAC: Experiment :⤦

Ç FitStickingEven
Break

Case " Deconvolution ":
4436 KillWaves /Z root:NAC: Experiment : DeconvolutionOdd , root:NAC: Experiment :⤦

Ç FitDeconvolutionEven
Break

Default :
Break

EndSwitch
4441 StrSwitch (Name)

Case " TrimA ":
Case " TrimB ":
Case " ConcatA ":
Case " ConcatB ":

4446 Case " ConcatC ":
Case " ConcatD ":

Break
Default :
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NVar NyquistFrequency =root:NAC: Machine : NyquistFrequency
4451 NVar LineFrequency =root:NAC: Machine : LineNotchFrequency

NVar NotchFrequency =root:NAC: Machine : SecondNotchFrequency
NVar HighPassFrequency =root:NAC: Machine : HighPassFrequency
NVar Store =root:NAC:GUI: StoreFilteredWaves
FlagList =0

4456 Loaded =1
CurrentFrame =0
ReDimension /N=( DataPoints ) DisplayFit , DisplayRaw
SetScale /P x, 0, 1/ PRate , "s", DisplayFit , DisplayRaw
Wave Detector =$"root:NAC :"+ Name +": Detector "

4461 If (( SRate !=2* NyquistFrequency ) || ( HighPassFrequency >0) || (⤦
Ç LineFrequency >2) || ( NotchFrequency >2))

FFT Detector // Double precision is not increasing quality of ⤦
Ç backtransformed data

If ( Store )
Duplicate /O Detector $"root:NAC :"+ Name +": Filtered "
Wave /C FilteredC =$"root:NAC :"+ Name +": Filtered "

4466 EndIf
Wave /C DetectorTemp =$"root:NAC :"+ Name +": Detector "
If (( LineFrequency >2) && ( LineFrequency <= NyquistFrequency -2))

DetectorTemp [ X2Pnt ( DetectorTemp , LineFrequency -0.5) ,X2Pnt (Detector ,⤦
Ç LineFrequency +0.5) ]=0

EndIf
4471 If (( NotchFrequency >2) && ( NotchFrequency <= NyquistFrequency -2))

DetectorTemp [ X2Pnt ( DetectorTemp , NotchFrequency -1) ,X2Pnt (Detector ,⤦
Ç NotchFrequency +1) ]=0

EndIf
If ( SRate !=2* NyquistFrequency )

ReDimension /C /N=( X2Pnt ( DetectorTemp , NyquistFrequency )+1) ⤦
Ç DetectorTemp

4476 EndIf
StrSwitch (Name)

Case " Deconvolution ":
Case " ZeroSticking ":
Case " Sticking ":

4481 Break
Default :

If ( HighPassFrequency >0)
DetectorTemp [1, X2Pnt ( DetectorTemp , HighPassFrequency )]=0

EndIf
4486 Break

EndSwitch
If ( Store )

FilteredC -= DetectorTemp
IFFT DetectorTemp

4491 IFFT FilteredC
Wave Filtered =$"root:NAC :"+ Name +": Filtered "

Else
IFFT DetectorTemp

EndIf
4496 If ( SRate !=2* NyquistFrequency )

Detector *=2* NyquistFrequency / SRate
If ( Store )

Filtered *=2* NyquistFrequency / SRate
EndIf

4501 EndIf
EndIf
StrSwitch (Name)

Case "Heat ":
Case " Sticking ":

4506 Break
Default :

Wave Amplitude =$"root:NAC :"+ Name +": Statistics : Amplitude ", ChiSq =$"⤦
Ç root:NAC :"+ Name +": Statistics : ChiSq ", Outlier =$"root:NAC :"+ Name +": Statistics⤦
Ç : Outlier "

ReDimension /N=0 Amplitude , ChiSq , Outlier
Break

4511 EndSwitch
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ReDimension /N=( NumberOfFrames ) FlagList
ReDimension /N=( DataPoints , NumberOfFrames ) Detector
Header = ReplaceString ("\t", Header , " ")
KillWaves /Z $"root:NAC :"+ Name +": AverageEven ", $"root:NAC :"+ Name +":⤦

Ç AverageOdd "
4516 Wave DisplayFit =$"root:NAC :"+ Name +": DisplayFit "

DisplayFit =NaN
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " LoadCalFile ", Name)
Break

EndSwitch
4521 Error_Message ( LoadAuxFile (Name , S_FileName ), " LoadAuxFile ", " LoadCalFile ", ⤦

Ç Name)
If ( StringMatch (Name , "Heat "))

If ( Exists (" root:NAC:Heat: Auxiliaries : Source ") ==1)
Wave Source =root:NAC:Heat: Auxiliaries : Source
NVar TemperatureSource =root:NAC: Experiment : TemperatureSource

4526 TemperatureSource =Mean( Source )
Else

TemperatureSource =NaN
EndIf
If ( Exists (" root:NAC:Heat: Auxiliaries : Sample ") ==1)

4531 Wave Sample =root:NAC:Heat: Auxiliaries : Sample
NVar TemperatureSample =root:NAC: Experiment : TemperatureSample
TemperatureSample =Mean( Sample )

Else
TemperatureSample =NaN

4536 EndIf
EndIf
If ( Exists (" root:NAC :"+ Name +": Auxiliaries : Motor_FB ") ==1)

Wave /T Motor =$"root:NAC :"+ Name +": Auxiliaries : Motor_FB "
Wave FlagList =$"root:NAC :"+ Name +": FlagList "

4541 If ( Deconv )
NVar DataPoints =root:NAC: Deconvolution : DataPointsPerFrame

Else
NVar DataPoints =root:NAC: Experiment : DataPointsPerFrame

EndIf
4546 FlagList =! StringMatch ( Motor [ Floor (p/2)], "Y*")

StrSwitch (Name)
Case " TrimA ":
Case " TrimB ":
Case " ConcatA ":

4551 Case " ConcatB ":
Case " ConcatC ":
Case " ConcatD ":
Case " Deconvolution ":

Break
4556 Case "Heat ":

Case " Sticking ":
For (i= NumPnts ( FlagList ) -1; ( FlagList [i ]==1) && (i >1); i -=1)
EndFor
If (i >0)

4561 FlagList [i]=1
FlagList [i -1]=1

EndIf
Break

Default :
4566 For (i=0; ( FlagList [i ]==1) && (i< NumPnts ( FlagList ) -1); i+=1) //

EndFor
If (i< NumPnts ( FlagList ) -1)

FlagList [i]=1
FlagList [i +1]=1

4571 EndIf
For (i= NumPnts ( FlagList ) -1; ( FlagList [i ]==1) && (i >1); i -=1)
EndFor
If (i >0)

FlagList [i]=1
4576 FlagList [i -1]=1

EndIf
Break
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EndSwitch
EndIf

4581 EndFor
KillWaves /Z CalData , QMSData
SetVariable PulseLength , Win= NAC_Control , Limits ={0.001 , CPeriod , 0.001}
SetDataFolder OldDF
Return NoError

4586 End
//

LoadRateFile
Static Function LoadRateFile (Name , FileName )
String Name , FileName
Variable RefNum , HeaderLines , NumberOfLines , LDensity , LMolarMass , ⤦

Ç LMonolayerDensity , i
4591 String TempString , FileHeader ="" , LSubstance , LSubstanceName

String MiscRateFiles = " Miscellaneous QCM Files (*. qcm):. qcm ;"
String AllRateFiles = "All QCM Files (*. flx *. tck *. qcm):.flx ,.tck ,. qcm ;"
String AllFiles =" All Files (*.*) :.*;"
DFRef OldDF = GetDataFolderDFR ()

4596 StrSwitch (Name)
Case " Deconvolution ":
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":

4601 Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":
Case " Sticking ":
Case "Heat ":

4606 Return NAC_NotApplicable
Break

Case " RateCalorimetry ":
TempString =" Calorimetry Deposition Rate Files (*. flx):. flx ;"
Break

4611 Case " RateCoating ":
TempString =" Coating Thickness Files (*. tck):. tck ;"
Break

Default :
Return NAC_UnknownMeasurement

4616 EndSwitch
NVar LoadSupport =root:NAC:GUI: LoadSupportFiles
If ( LoadSupport )

TempString = MiscRateFiles + TempString + AllRateFiles + AllFiles
Else

4621 TempString = TempString + MiscRateFiles + AllRateFiles + AllFiles
EndIf
PathInfo CalDataPath
If (! V_Flag )

NewPath /O /Q /Z CalDataPath , NAC_DataPathStr
4626 If (! V_Flag )

NewPath /O /Q CalDataPath
If ( V_Flag )

Return UserCancel
EndIf

4631 EndIf
EndIf
SetDataFolder $"root:NAC :"+ Name
Open /R /P= CalDataPath /F= TempString RefNum as FileName
If ( CmpStr ( S_FileName ,"") ==0)

4636 SetDataFolder OldDF
Return UserAbort

EndIf
FReadLine RefNum , TempString
Do

4641 If ( CmpStr ( TempString ,"\r") !=0)
FileHeader = FileHeader + TempString
HeaderLines = HeaderLines +1
If ( StringMatch ( TempString ," Density *"))
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sscanf TempString ," Density :\t%f", LDensity
4646 EndIf

If ( StringMatch ( TempString ," Molar Mass *"))
sscanf TempString ," Molar Mass :\t%f", LMolarMass

EndIf
If ( StringMatch ( TempString ," ML atom density *"))

4651 sscanf TempString ," ML atom density :\t%f", LMonolayerDensity
EndIf
If ( StringMatch ( TempString ," Substance *"))

LSubstance = TempString [11 , strlen ( TempString ) -2]
LSubstanceName = GetSubstanceName ( LSubstance )

4656 EndIf
EndIf
FReadLine RefNum , TempString
NumberOfLines = NumberOfLines +1

While (! StringMatch ( TempString , "* Time *"))
4661 Close RefNum

Error_Message ( LoadAuxFile (Name , S_FileName , Delta =1) , " LoadAuxFile ", "⤦
Ç LoadRateFile ", Name)

If (! WaveExists ($"root:NAC :"+ Name +": Auxiliaries : Thickness "))
SetDataFolder OldDF
Return ErrorHandled

4666 EndIf
Duplicate /O $"root:NAC :"+ Name +": Auxiliaries : Thickness ", $"root:NAC :"+ Name +":⤦
Ç Thickness "

Duplicate /O $"root:NAC :"+ Name +": Auxiliaries : Timeline ", $"root:NAC :"+ Name +":⤦
Ç Timeline "

KillWaves /Z $"root:NAC :"+ Name +": Auxiliaries : Thickness ", $"root:NAC :"+ Name +":⤦
Ç Auxiliaries : Timeline "

KillWins (" NAC_ "+ Name)
4671 String WName =" NAC_ "+ Name +" _Full "

Wave /T Header
ReDimension /N=( HeaderLines +2) Header
Header [0]= S_FileName
For (i=0; i< HeaderLines ;i=i+1)

4676 Header [i+1]= StringFromList (i, FileHeader ,"\r\n")
EndFor
Header [ HeaderLines +1]=" End of Header "
Header = ReplaceString ("\t", Header , " ")
NVar MonolayerDensity , MolarMass , Density

4681 SVar Substance , LoadName =FileName , SubstanceName
MonolayerDensity = LMonolayerDensity
MolarMass = LMolarMass
Density = LDensity
LoadName = S_FileName [ StrSearch ( S_FileName , ":" , Inf , 3)+1, Inf]

4686 Substance = LSubstance
SubstanceName = LSubstanceName
Wave Thickness
If ( StringMatch (Substance ," PTCDA *"))

If ( Density ==3.37)
4691 Density =1.69

Thickness /=1.69/3.37
Note Thickness " Wrong density has been corrected "

EndIf
EndIf

4696 Variable Ref , NP
NVar BaselineTo , BaselineFrom
Ref= Thickness [0]+2.5e -10
NP= NumPnts ( Thickness )
i=0

4701 Do
i=i+1

While ((i<NP /4) &&( Thickness [i]<Ref))
BaselineTo =i
Ref= Thickness [NP -1] -2.5e -10

4706 i=NP
Do

i=i -1
While ((i>NP *3/4) &&( Thickness [i]>Ref))
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BaselineFrom =i
4711 NVar Loaded

Loaded =1
NewPath /O /Q CalDataPath S_FileName [0, StrSearch ( S_FileName , ":" , Inf , 3)]
SetDataFolder OldDF
Error_Message ( DisplayRateFile (Name), " DisplayRateFile ", " LoadRateFile ", Name)

4716 Return NoError
End
//

LoadAuxFile
Static Function LoadAuxFile (Name , FileName , [ Delta ])
String Name , FileName

4721 Variable Delta
Variable RefNum , NumberOfLines , i
String TempString , HeaderLine , UnitList ="" , NameList ="" , ListItem , xUnit , dUnit
DFRef OldDF = GetDataFolderDFR ()

If ( ParamIsDefault ( Delta ))
4726 Delta =2

xUnit =" Frame "
Else

Delta =1
xUnit ="s"

4731 EndIf
If ( StringMatch (FileName ,"*:*") )

Open /R /P= CalDataPath RefNum as FileName
Else

FileName = FileName [0, StrSearch (FileName , "." , Inf , 3) -1]
4736 TempString = IndexedFile ( CalDataPath , -1, ". aux ")

If (! StringMatch ( TempString ,"*"+ FileName +"*") )
Return NAC_AuxFileNotFound

EndIf
Open /R /P= CalDataPath RefNum as FileName +". aux"

4741 EndIf
FReadLine RefNum , TempString
Do

FReadLine RefNum , TempString
NumberOfLines = NumberOfLines +1

4746 While (! stringmatch ( TempString , "Time *") && ! stringmatch ( TempString , "* Pair ⤦
Ç Time *"))

Close RefNum
HeaderLine = TempString
TempString =""
For (i=0;i< ItemsInList ( HeaderLine ,"\t");i+=1)

4751 ListItem = StringFromList (i, HeaderLine ,"\t")
If ( StringMatch (ListItem ," Frame pair time *") || StringMatch (ListItem ," Pulse ⤦
Ç pair time *"))

TempString +="C=1,N=’_skip_ ’; "
ElseIf ( StringMatch (ListItem ,"N/A*"))

TempString +="C=1,N=’_skip_ ’; "
4756 ElseIf ( StringMatch (ListItem ,"*[ TXT ]*"))

TempString +="C=1,F=-2,N="+ ListItem [0, StrSearch (ListItem , "[" , Inf , 3) -1]+";⤦
Ç "

NameList += ListItem [0, StrSearch (ListItem , "[" , Inf , 3) -1]+";"
UnitList +=" TXT ;"

ElseIf ( StringMatch (ListItem ," Time *"))
4761 TempString +="C=1,F=0,T=2,N= Timeline ; "

NameList +=" Timeline ;"
UnitList +="s;"

ElseIf ( StringMatch (ListItem ," Crystal Frequency *"))
TempString +="C=1,F=0,T=2,N= Frequency ; "

4766 NameList +=" Frequency ;"
UnitList +=" Hz ;"

Else
TempString +="C=1,F=0,T=2,N="+ ListItem [0, StrSearch (ListItem , "[" , Inf , 3)⤦

Ç -1]+"; "
UnitList += ListItem [ StrSearch (ListItem , "[" , 0, 2)+1, StrSearch (ListItem , ⤦

Ç "]" , Inf , 3) -1]+";"
4771 NameList += ListItem [0, StrSearch (ListItem , "[" , Inf , 3) -1]+";"
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EndIf
EndFor
SetDataFolder $"root:NAC :"+ Name +": Auxiliaries "
LoadWave /O /A /B= TempString /J /L={0 , NumberOfLines +2 ,0 ,0 ,0} /Q S_FileName

4776 If ( V_flag ==0)
SetDataFolder OldDF
Return NAC_AuxFileLoadFailed

EndIf
NameList = ReplaceString (" ", NameList , "")

4781 For (i=0;i< ItemsInList (NameList ,";") ;i+=1)
Wave Process = $StringFromList (i,NameList ,";")
StrSwitch ( StringFromList (i,UnitList ,";") )

Case "mBar ":
Process *=100

4786 dUnit =" Pa"
Break

Case "Torr ":
Process *=101325/760
dUnit =" Pa"

4791 Break
Case "nm ":

Process /=1 e9
dUnit ="m"
Break

4796 Case "C":
Case "degC ":

Process +=273.15
dUnit ="K"
Break

4801 Case "F":
Case "degF ":

Process =( Process + 459.67) *5/9
dUnit ="K"
Break

4806 Default :
dUnit = StringFromList (i,UnitList ,";")
Break

EndSwitch
SetScale d, 0, 0, dUnit , $StringFromList (i,NameList ,";")

4811 SetScale /P x, 0, Delta , xUnit , $StringFromList (i,NameList ,";")
EndFor
SetDataFolder OldDF
Return NoError

End
4816 //

Function LoadTrend
Static Function LoadTrend (Name , FileName )
String Name , & FileName
Variable RefNum , i
String ExpName , Corrupt =""

4821 StrSwitch (Name)
Case " Radiation ":

Wave Fit=root:NAC:Heat: fit_Radiation
NVar Frames =root:NAC:Heat: NumberOfFrames
Break

4826 Case " Desorption ":
Wave Fit=root:NAC: Sticking : fit_Desorption
NVar Frames =root:NAC: Sticking : NumberOfFrames
Break

Default :
4831 Return NAC_NotApplicable

Break
EndSwitch
Open /D /R /F=" Igor Experiment Files (*. pxp):. pxp ;" RefNum
If (! StrLen ( S_Filename ))

4836 Return UserAbort
EndIf
DFRef OldDF = GetDataFolderDFR
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SetDataFolder root:
LoadData /L=1 /O /Q /S=" NAC_Average :" /J=" AveragedSticking ; AveragedRadiation " /⤦
Ç T= NAC_Import S_FileName

4841 RefNum = GetRTError (1)
ExpName = PossiblyQuoteName ( S_FileName [ StrSearch ( S_FileName , ":" , Inf ,3)+1,⤦
Ç StrSearch ( S_FileName , "." , Inf ,3) -1])

FileName = S_FileName [ StrSearch ( S_FileName , ":" , Inf ,3)+1, StrSearch ( S_FileName , ⤦
Ç "." , Inf ,3) -1]

StrSwitch (Name)
Case " Radiation ":

4846 If ( Exists (" root: NAC_Import : AveragedSticking ") !=1)
Corrupt +=" AveragedSticking (W), "

EndIf
Break

Case " Desorption ":
4851 If ( Exists (" root: NAC_Import : AveragedRadiation ") !=1)

Corrupt +=" AveragedRadiation (W), "
EndIf
Break

Default :
4856 Break

EndSwitch
If ( StrLen ( Corrupt ))

Corrupt = RemoveEnding (Corrupt , ", ")
KillDataFolder NAC_Import

4861 SetDataFolder OldDF
Return NAC_CorruptExperiment

EndIf
StrSwitch (Name)

Case " Radiation ":
4866 Wave Radiation =root: NAC_Import : AveragedRadiation

Wave Fit=root:NAC:Heat: fit_Radiation , Cov=root:NAC: Enthalpies : Coverage
ReDimension /N=( Frames ) Fit
SetScale /P x,0,1, "Fame", Fit
Fit= Radiation (Cov[p])

4871 NVar UseTrend =root:NAC: Experiment : UseFittedRadiation
Break

Case " Desorption ":
NVar Dose=root:NAC: RateCalorimetry : DosePerPulse
Wave Desorption =root: NAC_Import : AveragedSticking

4876 Desorption =1- Desorption
ReDimension /N=( Frames ) Fit
SetScale /P x,0,1, "Fame", Fit
Fit =0
For (i=1;i< Frames ;i+=1)

4881 Fit[i]= Desorption ( Limit (Dose *(i-Sum(Fit , 0, i -1)), 0, RightX ( Desorption ))⤦
Ç )

EndFor
NVar UseTrend =root:NAC: Experiment : UseFittedDesorption
Break

Default :
4886 Break

EndSwitch
Fit [0]= Fit [1]
Error_Message ( DisplayTrend (Name , 1) , " DisplayTrend ", " NAC_LoadTrend ", Name)
UseTrend =1

4891 SetDataFolder OldDF
KillDataFolder NAC_Import
Return NoError

End
//

NAC_ConCat
4896 Function NAC_ConCat () //// Error handling

DFRef OldDF = GetDataFolderDFR ()
String ExpList =" ConcatA ; ConcatB ; ConcatC ; ConcatD ;"
String NewFileName , AuxWavesA , AuxWavesB , ColumnNames =""
Variable i, j, Fail =0

4901 If (! DataFolderExists (" root:NAC :"))
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NAC_Initialize ()
EndIf
For (i=0;i< ItemsInList (ExpList ,";") ;i+=1)

KillDataFolder /Z $"root:NAC :"+ StringFromList (i,ExpList ,";")
4906 NewDataFolder /S $"root:NAC :"+ StringFromList (i,ExpList ,";")

NewDatafolder $"root:NAC :"+ StringFromList (i,ExpList ,";") +": Auxiliaries "
String /G FileName =" Not Loaded "
Make /T /N=1 Header ={" Not Loaded "}
Make /N=0 DisplayFit , DisplayRaw

4911 Make /N=0 /B /U FlagList
Variable /G NumberOfFrames , EffectiveFrames , LaserPower
Variable /G Loaded =0, CurrentFrame =0, Gain =0

EndFor
NewDataFolder /S root:NAC: TempSet

4916 Variable /G SampleRate =0, OpenCloseSteps =0, ChopperPeriod =0
Variable /G NominalPulseLength =0, DataPointsPerFrame =0
Variable /G LengthDetectFailed , ChopperDelay =0, PulseLength =0, SwitchDeadTime =0
Fail= Error_Message ( LoadCalFile (" Concat1 " ,"") , " LoadCalFile ", " NAC_ConCat ", "⤦
Ç File A")

If (! Fail)
4921 SVar FileNameA =root:NAC: ConcatA : FileName

Fail= Error_Message ( LoadCalFile (" Concat2 ", FileNameA [ StrSearch (FileNameA , "." , ⤦
Ç Inf , 3)+1, Inf ]) , " LoadCalFile ", " NAC_ConCat ", "File B")

EndIf
If (! Fail)

SVar FileNameB =root:NAC: ConcatB : FileName
4926 Fail =(! Stringmatch (FileNameB ,"*"+ FileNameA [ StrSearch (FileNameA , "." , Inf , 3)⤦

Ç +1, Inf ]))*2
EndIf
If (! Fail)

Fail= StringMatch ( FileNameA , FileNameB )*3
EndIf

4931 If (Fail)
SetDataFolder OldDF
For (i=0;i< ItemsInList (ExpList ,";") ;i+=1)

KillDataFolder $"root:NAC :"+ StringFromList (i,ExpList ,";")
EndFor

4936 KillDataFolder root:NAC: TempSet
Return Fail

EndIf
For (i=0; StringMatch ( FileNameA [0,i], FileNameB [0,i]);i+=1) // find first not ⤦
Ç machting character

EndFor
4941 NewFileName = FileNameA [0, StrSearch (FileNameA , "." , Inf , 3) -1]+"_"+ FileNameB [i,⤦

Ç Inf]
SetDataFolder root:NAC
Wave DetectorA =root:NAC: ConcatA :Detector , DetectorC =root:NAC: ConcatC : Detector
Wave DetectorB =root:NAC: ConcatB :Detector , DetectorD =root:NAC: ConcatD : Detector
Wave /T HeaderA =root:NAC: ConcatA :Header , HeaderB =root:NAC: ConcatB : Header

4946 Duplicate HeaderA root:NAC: ConcatA : NewHeader
Wave /T NewHeader =root:NAC: ConcatA : NewHeader
NVar FramesA =root:NAC: ConcatA : NumberOfFrames , FramesB =root:NAC: ConcatB :⤦
Ç NumberOfFrames

NVar GainA =root:NAC: ConcatA :Gain , GainB =root:NAC: ConcatB :Gain , GainC =root:NAC:⤦
Ç ConcatC :Gain , GainD =root:NAC: ConcatD :Gain

For (i =0;(! StringMatch ( HeaderA [i]," Experiment Finished *")) && (i< NumPnts (⤦
Ç HeaderA )) ;i+=1) // Test for corrupt Header ?

4951 EndFor
If (i< NumPnts ( HeaderA ))

NewHeader [i]= ReplaceString (" Finished ", HeaderA [i], " Interrupted ")
InsertPoints i+1, 2, NewHeader

EndIf
4956 For (j =0;(! StringMatch ( HeaderB [j]," Experiment Started *")) && (j< NumPnts ( HeaderB⤦

Ç )) ;j+=1)
EndFor
If (j< NumPnts ( HeaderB ))

NewHeader [i+1]= ReplaceString (" Started ", HeaderB [j], " Continued ")
EndIf
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4961 For (j =0;(! StringMatch ( HeaderB [j]," Experiment Finished *")) && (j< NumPnts (⤦
Ç HeaderB ));j+=1)

EndFor
If (j< NumPnts ( HeaderB ))

NewHeader [i+2]= HeaderB [j]
EndIf

4966 For (i=0;( StringMatch ( NewHeader [i] ,"* Pairs Acquired *")) && (i< NumPnts (⤦
Ç NewHeader )) ;i+=1)

EndFor
If (i< NumPnts ( NewHeader ))

NewHeader [i]=" Frame Pairs Acquired : "+ Num2Str (( FramesA + FramesB ))
EndIf

4971 For (i =0;(! StringMatch ( NewHeader [i]," Calorimetry Gain *")) && (i< NumPnts (⤦
Ç NewHeader )) ;i+=1)

EndFor
If (i< NumPnts ( NewHeader ))

NewHeader [i]=" Calorimetry Gain: 1"
EndIf

4976 For (i =0;(! StringMatch ( NewHeader [i]," QMS Gain *")) && (i< NumPnts ( NewHeader )) ;i⤦
Ç +=1)

EndFor
If (i< NumPnts ( NewHeader ))

NewHeader [i]=" QMS Gain: 1"
EndIf

4981 For (i =0;(! StringMatch ( NewHeader [i]," Notes *")) && (i< NumPnts ( NewHeader )) ;i+=1)
EndFor
If (i< NumPnts ( NewHeader ))

If (( GainA !=1) || ( GainB !=1) || ( GainC !=1) || ( GainD !=1))
InsertPoints i+1, 4, NewHeader

4986 NewHeader [i +1]=" Gains changed to 1"
NewHeader [i +2]=" Old Values ("+ FileNameA +"): GainCal :"+ Num2Str ( GainA )+" ⤦

Ç GainQMS :"+ Num2Str ( GainC )
NewHeader [i +3]=" Old Values ("+ FileNameB +"): GainCal :"+ Num2Str ( GainB )+" ⤦

Ç GainQMS :"+ Num2Str ( GainD )
NewHeader [i +4]=" Original Notes from "+ FileNameA

EndIf
4991 EndIf

NewHeader [ NumPnts ( NewHeader ) -1]=" Original Notes from "+ FileNameB
For (i =0;(! StringMatch ( HeaderB [i]," Notes *")) && (i< NumPnts ( HeaderB )) ;i+=1)
EndFor

If (i< NumPnts ( HeaderB ))
4996 For (j=i+1;j< NumPnts ( HeaderB ) -1;j+=1)

InsertPoints NumPnts ( NewHeader ), 1, NewHeader
NewHeader [ NumPnts ( NewHeader ) -1]= HeaderB [j]

EndFor
EndIf

5001 DeletePoints 0, 1, NewHeader
InsertPoints NumPnts ( NewHeader ), 2, NewHeader
NewHeader [ numpnts ( NewHeader ) -2]=""
NewHeader [ numpnts ( NewHeader ) -1]=" Calorimetry "+ num2char (9) +" MassSpec "
Save /E=0 /M="\r\n" /P= CalDataPath /O /G NewHeader as NewFileName

5006 Save /A=1 /J /M="\r\n" /P= CalDataPath /G DetectorA , DetectorC as NewFileName
Save /A=2 /J /M="\r\n" /P= CalDataPath /G DetectorB , DetectorD as NewFileName
Error_Message ( LoadAuxFile (" ConcatA ", FileNameA ), " LoadAuxFile ", " NAC_ConCat ", "⤦
Ç Auxfile A") //// ErrorChecking

Error_Message ( LoadAuxFile (" ConcatB ", FileNameB ), " LoadAuxFile ", " NAC_ConCat ", "⤦
Ç Auxfile B")

SetDatafolder root:NAC: ConcatA : Auxiliaries
5011 AuxWavesA = WaveList ("*" , ";" , "")

For (i=0;i< ItemsInList ( AuxWavesA );i+=1)
ColumnNames += StringFromList (i, AuxWavesA , ";") +"["+ WaveUnits ( $StringFromList (⤦
Ç i, AuxWavesA , ";") , -1) +"]\t"

EndFor
ColumnNames = ColumnNames [0, StrLen ( ColumnNames ) -2]

5016 NewFileName = NewFileName [0, StrSearch ( NewFileName ,"." ,3) ]+" aux"
SetDatafolder root:NAC: ConcatB : Auxiliaries
AuxWavesB = WaveList ("*" , ";" , "")
Fail =0
For (i=0;i< ItemsInList ( AuxWavesB );i+=1)
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5021 Fail=Fail || ! StringMatch (AuxWavesA , "*"+ StringFromList (i, AuxWavesB , ";")⤦
Ç +"*")

EndFor
ColumnNames = ReplaceString (" Timeline ", ColumnNames , "Time ")
If (! Fail && ( ItemsInList (AuxWavesA ,";") == ItemsInList (AuxWavesB ,";") ))

NewHeader [ NumPnts ( NewHeader ) -1]= ColumnNames
5026 Save /E=0 /M="\r\n" /P= CalDataPath /O /G NewHeader as NewFileName

SetDatafolder root:NAC: ConcatA : Auxiliaries
Save /A=1 /J /M="\r\n" /P= CalDataPath /G /B AuxWavesA as NewFileName
SetDatafolder root:NAC: ConcatB : Auxiliaries
Save /A=2 /J /M="\r\n" /P= CalDataPath /G /B AuxWavesA as NewFileName

5031 Else
Print " Auxiliary waves mismatch !"

EndIf
SetDataFolder OldDF
For (i=0;i< ItemsInList (ExpList ,";") ;i+=1)

5036 KillDataFolder $"root:NAC :"+ StringFromList (i,ExpList ,";")
EndFor
KillDataFolder root:NAC: TempSet
Return NoError

End
5041 //

NAC_Trim
Function NAC_Trim () //// Error handling
DFRef OldDF = GetDataFolderDFR ()
String ExpList =" TrimA ; TrimB ;"
String NewFileName , InvertStr , ColumnNames ="" , AuxWaves

5046 Variable i
Variable TrimFrom , TrimTo

If (! DataFolderExists (" root:NAC :"))
NAC_Initialize ()

EndIf
5051 For (i=0;i< ItemsInList (ExpList ,";") ;i+=1)

KillDataFolder /Z $"root:NAC :"+ StringFromList (i,ExpList ,";")
NewDataFolder /S $"root:NAC :"+ StringFromList (i,ExpList ,";")
NewDatafolder $"root:NAC :"+ StringFromList (i,ExpList ,";") +": Auxiliaries "
String /G FileName =" Not Loaded "

5056 Make /T /N=1 Header ={" Not Loaded "}
Make /N=0 DisplayFit , DisplayRaw
Make /N=0 /B /U FlagList
Variable /G Gain =0
Variable /G NumberOfFrames , EffectiveFrames , LaserPower

5061 Variable /G Loaded =0, CurrentFrame =0
EndFor
NewDataFolder /S root:NAC: TempSet
Variable /G SampleRate =0, OpenCloseSteps =0, ChopperPeriod =0
Variable /G NominalPulseLength =0, DataPointsPerFrame =0, SwitchDeadTime =0

5066 Variable /G LengthDetectFailed , ChopperDelay =0, PulseLength =0
If ( Error_Message ( LoadCalFile (" Trim " ,"") , " LoadCalFile ", " NAC_Trim ", "") !=0)

SetDataFolder OldDF
KillDataFolder root:NAC: TrimA
KillDataFolder root:NAC: TrimB

5071 KillDataFolder root:NAC: TempSet
Return -1

EndIf
SetDataFolder root:NAC
Do

5076 TrimFrom =0
TrimTo = NumberOfFrames -1
Prompt TrimFrom , "From Frame (even):"
Prompt TrimTo , "To Frame (odd):"
DoPrompt /HELP ="" "Trim file "+ FileName , TrimFrom , TrimTo

5081 While ((( TrimFrom <0) || (TrimTo <0) || (TrimTo > NumberOfFrames -1) || (TrimFrom >⤦
Ç NumberOfFrames -1) || (Mod(TrimFrom ,2) ==1) || (Mod(TrimTo ,2) ==0)) && ( V_flag⤦
Ç ==0))

If ( V_Flag !=0)
SetDataFolder OldDF
KillDataFolder root:NAC: TrimA
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KillDataFolder root:NAC: TrimB
5086 KillDataFolder root:NAC: TempSet

Return -1
EndIf
If (TrimFrom > TrimTo )

i= TrimTo
5091 TrimTo = TrimFrom

TrimFrom =i
EndIf
Wave DetectorA =root:NAC: TrimA :Detector , DetectorB =root:NAC: TrimB : Detector
SVar FileName =root:NAC: TrimA : FileName

5096 Wave /T Header =root:NAC: TrimA : Header
NewFileName = FileName [0, StrSearch (FileName , "." , Inf , 3) -1]
If ( TrimFrom == 0)

NewFileName +=" _S"
Else

5101 NewFileName +="_"+ Num2Str ( TrimFrom /2)
EndIf
If ( TrimTo == NumberOfFrames -1)

NewFileName +=" _E"
Else

5106 NewFileName +="_"+ Num2Str (( TrimTo -1) /2)
EndIf
NVar DataPointsPerFrame =root:NAC: TempSet : DataPointsPerFrame
NVar NumberOfFrames =root:NAC: TrimA : NumberOfFrames
DeletePoints ( TrimTo +1)* DataPointsPerFrame , ( NumberOfFrames - TrimTo )*⤦
Ç DataPointsPerFrame -1, DetectorA , DetectorB

5111 DeletePoints 0, TrimFrom * DataPointsPerFrame , DetectorA , DetectorB
NewFileName += FileName [ StrSearch (FileName , "." , Inf , 3) ,Inf]
For (i=0;! StringMatch ( Header [i] ,"* Pairs Acquired *");i+=1)
EndFor
Header [i]=" Frame Pairs Acquired : "+ Num2Str (( TrimTo - TrimFrom +1) /2)

5116 For (i=0;! StringMatch ( Header [i]," Calorimetry Gain *");i+=1)
EndFor
Header [i]=" Calorimetry Gain: 1"
For (i=0;! StringMatch ( Header [i]," QMS Gain *");i+=1)
EndFor

5121 Header [i]=" QMS Gain: 1"
NVar GainA =root:NAC: TrimA :Gain , GainB =root:NAC: TrimB :Gain
For (i=0;i< NumPnts ( Header );i+=1)

If ( StringMatch ( Header [i]," Notes *"))
InsertPoints i+1, 4, Header

5126 Header [i +1]=" Trimmed from frame pair "+ Num2Str ( TrimFrom /2) +" to frame pair ⤦
Ç "+ Num2Str (( TrimTo -1) /2)

Header [i +2]=" Gain changed to 1"
Header [i +3]=" Old Values : GainCal :"+ Num2Str ( GainA )+" GainQMS :"+ Num2Str ( GainB⤦

Ç )
Header [i +4]=" Original Notes from "+ FileName

EndIf
5131 EndFor

DeletePoints 0, 1, Header
InsertPoints NumPnts ( Header ) -1, 1, Header
Header [ NumPnts ( Header ) -2]=""
Header [ NumPnts ( Header ) -1]=" Calorimetry "+ num2char (9) +" MassSpec "

5136 Save /E=0 /M="\r\n" /P= CalDataPath /O /G Header as NewFileName
Save /A=1 /J /M="\r\n" /P= CalDataPath /G DetectorA , DetectorB as NewFileName
Error_Message ( LoadAuxFile (" TrimA ", FileName ), " LoadAuxFile ", " NAC_Trim ", "") ⤦
Ç //// Error checking

SetDatafolder root:NAC: TrimA : Auxiliaries
AuxWaves = WaveList ("*" , ";" , "")

5141 For (i=0;i< ItemsInList ( AuxWaves );i+=1)
ColumnNames += StringFromList (i, AuxWaves , ";") +"["+ WaveUnits ( $StringFromList (i⤦
Ç , AuxWaves , ";") , -1) +"]\t"
DeletePoints ( TrimTo +1) /2, ( NumberOfFrames - TrimTo )/2, $StringFromList (i, ⤦
Ç AuxWaves , ";")
DeletePoints 0, TrimFrom /2, $StringFromList (i, AuxWaves , ";")

EndFor
5146 ColumnNames = ReplaceString (" Timeline ", ColumnNames , "Time ")

ColumnNames = ColumnNames [0, StrLen ( ColumnNames ) -2]
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NewFileName = NewFileName [0, StrSearch ( NewFileName ,"." ,3) ]+" aux"
Header [ NumPnts ( Header ) -1]= ColumnNames
Save /E=0 /M="\r\n" /P= CalDataPath /O /G Header as NewFileName

5151 Save /A=1 /J /M="\r\n" /P= CalDataPath /G /B AuxWaves as NewFileName
SetDataFolder OldDF
For (i=0;i< ItemsInList (ExpList ,";") ;i+=1)

KillDataFolder $"root:NAC :"+ StringFromList (i,ExpList ,";")
EndFor

5156 KillDataFolder root:NAC: TempSet
End
//

C.1.7 Controls Handling
//

NAC_LaserPowerCorrectionPopUp
Function NAC_LaserPowerCorrectionPopUp (ctrlName , popNum , popStr ) : ⤦

Ç PopupMenuControl
5161 String ctrlName

Variable popNum
String popStr
NVar LaserPowerCorrection =root:NAC: Machine : LaserPowerCorrection
LaserPowerCorrection = Str2Num ( popStr )

5166 End
//

NAC_ReflectivityCleanPopUp
Function NAC_ReflectivityCleanPopUp (ctrlName , popNum , popStr ) : PopupMenuControl

String ctrlName
Variable popNum

5171 String popStr
NVar ReflectivityClean =root:NAC: Machine : ReflectivityClean
ReflectivityClean = Str2Num ( popStr )

End
//

Function NAC_WinHookDeconvolution
5176 Function NAC_WinHookDeconvolution (Data)

STRUCT WMWinHookStruct &Data
String Name
Variable Type

Switch (Data. EventCode )
5181 Case 7:

Break
Default :

Return NoError
Break

5186 EndSwitch
NVar ReEntry =root:NAC:GUI: ReEntryCursor
If ( ReEntry )

Error_Message ( NAC_ReEntry , " InProc ", " NAC_WinHookDeconvolution ", "")
Return NaN

5191 EndIf
ReEntry =1
DFRef OldDF = GetDataFolderDFR ()
Name=Data. WinName
Name=Name[ StrSearch (Name , "_", 0, 2)+1, StrSearch (Name , "_", Inf , 3) -1]

5196 String WName =" NAC_ "+ Name +" _BrowseDeconv "
StrSwitch (Name)

Case " ZeroSticking ":
Case " Sticking ":

Error_Message ( NAC_NotImplementedYet , " InProc ", " NAC_WinHookDeconvolution ", ⤦
Ç Name)

5201 Break
Case " Deconvolution ":
Case " RateCalorimetry ":
Case " RateCoating ":

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_WinHookDeconvolution ", Name⤦
Ç )
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5206 Break
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":
Case " Transmission ":

5211 Case " Radiation ":
Case "Heat ":

StrSwitch (Data. CursorName )
Case "A":

DoWindow $WName
5216 NVar FrameIndex =$"root:NAC :"+ Name +": BrowseDeconvolutionIndex "

Wave Deconvolution =$"root:NAC :"+ Name +": Deconvolution "
If (( FrameIndex != Data. yPointNumber ) && (Data. yPointNumber < DimSize (⤦

Ç Deconvolution ,1) -1))
If (! V_Flag )

Error_Message ( DisplayDeconvolutedFrame (Name), "⤦
Ç DisplayDeconvolutedFrame ", " NAC_WinHookDeconvolution ", Name)

5221 DoUpdate
EndIf
FrameIndex =Data. yPointNumber
Wave BrowseOdd =$"root:NAC: Deconvolution :"+ Name +" BrowseOdd "
Wave BrowseEven =$"root:NAC: Deconvolution :"+ Name +" BrowseEven "

5226 If (Mod( FrameIndex ,2))
BrowseOdd = Deconvolution [p][ FrameIndex ]
BrowseEven = Deconvolution [p][ FrameIndex +1]

Else
BrowseOdd = Deconvolution [p][ FrameIndex +1]

5231 BrowseEven = Deconvolution [p][ FrameIndex ]
EndIf
Error_Message ( DoDeconvolutionTextBox (Name), " DoDeconTextBox ", "⤦

Ç NAC_WinHookDeconvolution ", Name)
DoUpdate

EndIf
5236 Break

Default :
Break

EndSwitch
Break

5241 Default :
Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_WinHookDeconvolution ",⤦

Ç Name)
Break

EndSwitch
ReEntry =0

5246 Return NoError
End
//

Function NAC_WinHookRate
Function NAC_WinHookRate (Data)
STRUCT WMWinHookStruct &Data

5251 String Name
Switch (Data. EventCode )

Case 7:
Break

Default :
5256 Return NoError

Break
EndSwitch
NVar ReEntry =root:NAC:GUI: ReEntryCursor
If ( ReEntry )

5261 Error_Message ( NAC_ReEntry , " InProc ", " NAC_WinHookRate ", "")
Return NaN

EndIf
ReEntry =1
DFRef OldDF = GetDataFolderDFR ()

5266 Name=Data. WinName
Name=Name[ StrSearch (Name , "_", 0, 2)+1, StrSearch (Name , "_", Inf , 3) -1]
StrSwitch (Name)
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Case " BeforeCoating ":
Case " AfterCoating ":

5271 Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":
Case "Heat ":

5276 Case " Sticking ":
Case " Deconvolution ":

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_WinHookRate ", Name)
Break

Case " RateCalorimetry ":
5281 Case " RateCoating ":

SetDataFolder $"root:NAC :"+ Name
NVar BaselineTo , BaselineFrom
Wave Thickness
StrSwitch (Data. CursorName )

5286 Case "A":
If ( Pnt2x (Thickness ,Data. PointNumber )>BaselineFrom )

BaselineTo = BaselineFrom
BaselineFrom = Pnt2x (Thickness ,Data. PointNumber )

Else
5291 BaselineTo = Pnt2x (Thickness ,Data. PointNumber )

EndIf
Break

Case "B":
If ( Pnt2x (Thickness ,Data. PointNumber )<BaselineTo )

5296 BaselineFrom = BaselineTo
BaselineTo = Pnt2x (Thickness ,Data. PointNumber )

Else
BaselineFrom = Pnt2x (Thickness ,Data. PointNumber )

EndIf
5301 Break

Default :
SetDataFolder OldDF
Error_Message ( NAC_WrongCursor , " InProc ", " NAC_WinHookRate ", Name)
Return NaN

5306 Break
EndSwitch
Cursor /N=1 /W= $Data . WinName A Thickness BaselineTo
Cursor /N=1 /W= $Data . WinName B Thickness BaselineFrom
Error_Message ( FitQCMRate (Name), " FitQCMRate ", " NAC_WinHookRate ", Name)

5311 Error_Message ( DoRateTextBoxes (Name), " DoRateTextBoxes ", " NAC_WinHookRate ", ⤦
Ç Name)

SetDataFolder OldDF
Break

Default :
Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_WinHookRate ", Name)

5316 Break
EndSwitch
ReEntry =0
Return NoError

End
5321 //

Function NAC_WinHookFittedRate
Function NAC_WinHookFittedRate (Data)
STRUCT WMWinHookStruct &Data
String Name

Switch (Data. EventCode )
5326 Case 7:

Break
Default :

Return NoError
Break

5331 EndSwitch
NVar ReEntry =root:NAC:GUI: ReEntryCursor
If ( ReEntry )

Error_Message ( NAC_ReEntry , " InProc ", " NAC_WinHookRate ", "")
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Return NaN
5336 EndIf

ReEntry =1
DFRef OldDF = GetDataFolderDFR ()
Name=Data. WinName
Name=Name[ StrSearch (Name , "_", 0, 2)+1, StrSearch (Name , "_", Inf , 3) -1]

5341 StrSwitch (Name)
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":
Case " Transmission ":

5346 Case " Radiation ":
Case " ZeroSticking ":
Case "Heat ":
Case " Sticking ":
Case " Deconvolution ":

5351 Error_Message ( NAC_NotApplicable , " InProc ", " NAC_WinHookRate ", Name)
Break

Case " RateCalorimetry ":
Case " RateCoating ":

SetDataFolder $"root:NAC :"+ Name
5356 NVar FittedFrom , FittedTo

Wave FittedRate
StrSwitch (Data. CursorName )

Case "A":
If ( Pnt2x ( FittedRate ,Data. PointNumber )>FittedTo )

5361 FittedFrom = FittedTo
FittedTo = Pnt2x ( FittedRate ,Data. PointNumber )

Else
FittedFrom = Pnt2x ( FittedRate ,Data. PointNumber )

Endif
5366 Break

Case "B":
If ( Pnt2x ( FittedRate ,Data. PointNumber )<FittedFrom )

FittedTo = FittedFrom
FittedFrom = Pnt2x ( FittedRate ,Data. PointNumber )

5371 Else
FittedTo = Pnt2x ( FittedRate ,Data. PointNumber )

EndIf
Break

Default :
5376 SetDataFolder OldDF

Error_Message ( NAC_WrongCursor , " InProc ", " NAC_WinHookRate ", Name)
ReEntry =0
Return NaN
Break

5381 EndSwitch
Cursor /N=1 /W= $Data . WinName A FittedRate FittedFrom
Cursor /N=1 /W= $Data . WinName B FittedRate FittedTo
Error_Message ( UpdateFittedRate (Name), " UpdateFittedRate ", " NAC_WinHookRate⤦

Ç ", Name)
SetDataFolder OldDF

5386 Break
Default :

Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_WinHookRate ", Name)
Break

EndSwitch
5391 ReEntry =0

Return NoError
End
//

Function NAC_WinHookCal
Function NAC_WinHookCal (Data)

5396 STRUCT WMWinHookStruct &Data
String Name
Variable Type

Switch (Data. EventCode )
Case 7:
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5401 Break
Default :

Return NoError
Break

EndSwitch
5406 NVar ReEntry =root:NAC:GUI: ReEntryCursor

If ( ReEntry )
Error_Message ( NAC_ReEntry , " InProc ", " NAC_WinHookCal ", "")
Return NaN

EndIf
5411 ReEntry =1

DFRef OldDF = GetDataFolderDFR ()
Name=Data. WinName
Name=Name[ StrSearch (Name , "_", 0, 2)+1, StrSearch (Name , "_", Inf , 3) -1]
StrSwitch (Name)

5416 Case " RateCalorimetry ":
Case " RateCoating ":

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_WinHookProc ", Name)
Break

Case " BeforeCoating ":
5421 Case " AfterCoating ":

Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":

5426 Case "Heat ":
Case " Sticking ":
Case " Deconvolution ":

Break
Default :

5431 Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_WinHookCal ", Data.⤦
Ç WinName )

Break
EndSwitch
If ( StringMatch (Data.WinName ,"* Full *"))

Type =0
5436 ElseIf ( StringMatch (Data.WinName ,"* Frames *"))

Type =1
ElseIf ( StringMatch (Data.WinName ,"* Heat_VsCov *"))

Type =2
Else

5441 Error_Message ( NAC_NoSuchWindow , " InProc ", " NAC_WinHookCal ", Data. WinName )
ReEntry =0
Return NaN

EndIf
Switch (Type)

5446 Case 0:
StrSwitch (Data. CursorName )

Case "A":
If ( StringMatch (Name ," Deconvolution "))

NVar ChopperPeriod =root:NAC: Deconvolution : ChopperPeriod
5451 Else

NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod
EndIf
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "
sscanf Data.TraceName , " Frame %f", CurrentFrame

5456 Cursor /N=1 /W= $Data . WinName A $" Frame "+ Num2Str ( CurrentFrame ) ⤦
Ç ChopperPeriod /2

Break
Default :

SetDataFolder OldDF
Error_Message ( NAC_WrongCursor , " InProc ", " NAC_WinHookCal ", Name)

5461 Return NaN
Break

EndSwitch
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_WinHookCal ", Name)
Break

5466 Case 1:
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "
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sscanf Data.TraceName , " Frame %f", CurrentFrame
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_WinHookCal ", Name)
Break

5471 Case 2:
NVar PosLow =root:NAC: Enthalpies : MultiLayerPosLow , PosHigh =root:NAC:⤦

Ç Enthalpies : MultiLayerPosHigh
Variable Tmp =0
If ( NumType ( PosHigh )!=0)

PosHigh =Ceil( NumPnts (root:NAC: Enthalpies : Coverage ) *0.9)
5476 Tmp =1

EndIf
If ( NumType ( PosLow )!=0)

PosLow = Floor ( NumPnts (root:NAC: Enthalpies : Coverage ) *2/3)
Tmp =1

5481 EndIf
If (! Tmp)

StrSwitch (Data. CursorName )
Case "A":

If (Data. PointNumber <= PosHigh )
5486 PosLow =Data. PointNumber

Else
PosLow = PosHigh
PosHigh =Data. PointNumber

EndIf
5491 Break

Case "B":
If (Data. PointNumber >= PosLow )

PosHigh =Data. PointNumber
Else

5496 PosHigh = PosLow
PosLow =Data. PointNumber

EndIf
Break

Default :
5501 Break

EndSwitch
EndIf
If ( NumType ( PosHigh )!=0)

PosHigh =Ceil( NumPnts (root:NAC: Enthalpies : Coverage ) *0.9)
5506 EndIf

If ( NumType ( PosLow )!=0)
PosLow = Floor ( NumPnts (root:NAC: Enthalpies : Coverage ) *3/4)

EndIf
If ( PosLow == PosHigh )

5511 PosHigh =Ceil( NumPnts (root:NAC: Enthalpies : Coverage ) *0.9)
EndIf
If (!( PosLow <= PosHigh ))

Tmp= PosLow
PosLow = PosHigh

5516 PosHigh =Tmp
EndIf
Cursor /N=1 /W= $Data . WinName A Enthalpy PosLow
Cursor /N=1 /W= $Data . WinName B Enthalpy PosHigh
Error_Message ( DoHeatTextBox () , " DoHeatTextBox ", " NAC_WinHookCal ", Name)

5521 Break
Default :

Break
EndSwitch
SetDataFolder OldDF

5526 ReEntry =0
Return NoError

End
//

Function NAC_ToggleAutoFlagging
Function NAC_ToggleAutoFlagging ()

5531 NVar AutoFlag =root:NAC: Experiment : AutoFlag
AutoFlag =! AutoFlag

End
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//

Function NAC_ToggleLoadSupport
Function NAC_ToggleLoadSupport ()

5536 NVar LoadSupport =root:NAC:GUI: LoadSupportFiles
LoadSupport =! LoadSupport

End
//

Function NAC_ToggleStoreFiltered
Function NAC_ToggleStoreFiltered ()

5541 NVar StoreFiltered =root:NAC:GUI: StoreFilteredWaves
StoreFiltered =! StoreFiltered

End
//

Function NAC_ToggleAutoUpdateAverages
Function NAC_ToggleAutoUpdateAverages ()

5546 NVar AutoRecalculate =root: NAC_Average : Settings : AutoRecalculate
AutoRecalculate =! AutoRecalculate

End
//

Function NAC_ToggleShowBoxPlotData
Function NAC_ToggleShowBoxPlotData ()

5551 String ExpList =" Deconvolution ; BeforeCoating ; AfterCoating ; LaserReference ;⤦
Ç Transmission ; Radiation ; ZeroSticking ;"

String Name , NameList
NVar ShowBoxPlotData =root:NAC:GUI: ShowBoxPlotData
Variable i

ShowBoxPlotData =! ShowBoxPlotData
5556 DoWindow NAC_Statistics

If ( V_Flag )
Dowindow /F NAC_Statistics

Else
Return NaN

5561 EndIf
NameList =";"+ TraceNameList (" NAC_Statistics ", ";" , 1)
For (i=0; i< ItemsInList (ExpList ,";") ; i+=1)

Name= StringFromList (i, ExpList , ";")
If ( StringMatch (NameList , "*;"+ Name +";*") )

5566 ModifyGraph hideTrace ( $Name )=! ShowBoxPlotData
EndIf

EndFor
End
//

Function NAC_ResetFlagList
5571 Function NAC_ResetFlagList ( ExpName )

String ExpName
String Name
Variable i, j

If (! DataFolderExists (" root:NAC :"))
5576 Error_Message ( NAC_NotInitialized , " InProc ", " NAC_ResetFlagList ", "")

Return NaN
EndIf
If ( StringMatch (ExpName ," All "))

ExpName =" Deconvolution ; BeforeCoating ; AfterCoating ; LaserReference ; Transmission⤦
Ç ; Radiation ; ZeroSticking ;Heat; Sticking ;"

5581 NVar AutoFlagged =root:NAC: Experiment : AutoFlagged
AutoFlagged =0

Else
NVar Loaded =$"root:NAC :"+ ExpName +": Loaded "
If (! Loaded )

5586 Return NaN
EndIf
ExpName = ExpName +";"

EndIf
For (j=0;j< ItemsInList (ExpName ,";") ;j+=1)
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5591 Name= StringFromList (j, ExpName , ";")
If ( Exists (" root:NAC :"+ Name +": Auxiliaries : Motor_FB ") ==1)

Wave FlagList =$"root:NAC :"+ Name +": FlagList "
Wave /T MotorFB =$"root:NAC :"+ Name +": Auxiliaries : Motor_FB "
FlagList =! StringMatch ( MotorFB [ Floor (p/2) ],"Y")

5596 StrSwitch (Name)
Case "Heat ":
Case " Sticking ":

For (i= NumPnts ( FlagList ) -1; ( FlagList [i ]==1) && (i >1); i -=1)
EndFor

5601 If (i >0)
FlagList [i]=1
FlagList [i -1]=1

EndIf
Break

5606 Default :
NVar AutoFlagged =$"root:NAC :"+ Name +": Statistics : AutoFlagged "
AutoFlagged =0
For (i=0; ( FlagList [i ]==1) && (i< NumPnts ( FlagList ) -1); i+=1) //
EndFor

5611 If (i< NumPnts ( FlagList ) -1)
FlagList [i]=1
FlagList [i +1]=1

EndIf
For (i= NumPnts ( FlagList ) -1; ( FlagList [i ]==1) && (i >1); i -=1)

5616 EndFor
If (i >0)

FlagList [i]=1
FlagList [i -1]=1

EndIf
5621 Break

EndSwitch
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_ResetFlagList ", ⤦

Ç Name)
DoWindow $"NAC_ "+ Name +" _Full "
If ( V_Flag )

5626 KillWindow $"NAC_ "+ Name +" _Full "
Error_Message ( DisplayMeasurement (Name), " DisplayMeasurement ", "⤦

Ç NAC_ResetFlagList ", Name)
EndIf

EndIf
EndFor

5631 End
//

NAC_LoadLazyButton
Function NAC_LoadLazyButton ( CtrlName ): ButtonControl
String CtrlName
String AllExpFiles = "All Calorimetry Files (*. ref *. las *. win *. cln *. dcv *. usd ⤦

Ç *. cot *. amp *. rad *. cal *. qms *. stk *. tck *. flx):.ref ,.las ,.win ,.cln ,.dcv ,.⤦
Ç usd ,.cot ,.cot ,.amp ,.rad ,.cal ,.qms ,.stk ,.tck ,. flx ;"

5636 String ListBeforeCoating ="" , ListRateCoating ="" , ListAfterCoating ="" , ⤦
Ç ListLaserReference ="" , ListTransmission ="" , ListRadiation ="" , ⤦
Ç ListRateCalorimetry ="" , ListZeroSticking ="" , ListHeat =""

String NameBeforeCoating ="" , NameRateCoating ="" , NameAfterCoating ="" , ⤦
Ç NameLaserReference ="" , NameTransmission ="" , NameRadiation ="" , ⤦
Ç NameRateCalorimetry ="" , NameZeroSticking ="" , NameHeat =""

String ListDeconvolution ="" , NameDeconvolution =""
String Name , DirList , Item
Variable i, j

5641 DFRef OldDF = GetDatafolderDFR ()
Error_Clear ()
Button $CtrlName disable =2, win= NAC_Control
PathInfo CalDataPath
If (! V_Flag )

5646 NewPath /O /Q /Z CalDataPath , NAC_DataPathStr
If (! V_Flag )

NewPath /O /Q CalDataPath
If ( V_Flag )
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Return UserCancel
5651 EndIf

EndIf
EndIf
SetDataFolder root:NAC
Open /R/D /P= CalDataPath /F= AllExpFiles j

5656 If ( CmpStr ( S_FileName , "") ==0)
Button $CtrlName disable =0, win= NAC_Control
SetDataFolder OldDF
Error_Message (UserAbort , " InProc ", " NAC_LoadLazyButton ", "Lazy ")
Return NaN

5661 EndIf
NewPath /O /Q CalDataPath S_FileName [0, StrSearch ( S_FileName , ":" , Inf , 1) -1]
DirList = IndexedFile ( CalDataPath , -1 ,"????")
For (i=0;i< ItemsInList ( DirList );i+=1)

Item= StringFromList (i,DirList ,";")
5666 StrSwitch ( LowerStr (Item[ StrSearch (Item , "." , Inf , 1)+1, Inf ]))

Case "cln ":
Case "usd ":

ListBeforeCoating += Item +";"
Break

5671 Case "tck ":
ListRateCoating += Item +";"
Break

Case "cot ":
ListAfterCoating += Item +";"

5676 Break
Case "ref ":

ListLaserReference += Item +";"
Break

Case "dcv ":
5681 ListDeconvolution += Item +";"

Break
Case "win ":

ListTransmission += Item +";"
Break

5686 Case "rad ":
ListRadiation += Item +";"
Break

Case "flx ":
ListRateCalorimetry += Item +";"

5691 Break
Case "stk ":

ListZeroSticking += Item +";"
Break

Case "cal ":
5696 ListHeat += Item +";"

Break
Default :

Break
EndSwitch

5701 EndFor
ListBeforeCoating = SortList ( ListBeforeCoating , ";" , 4) + "Don ’t Load"
ListRateCoating = SortList ( ListRateCoating , ";" , 4) + "Don ’t Load"
ListAfterCoating = SortList ( ListAfterCoating , ";" , 4) + "Don ’t Load"
ListLaserReference = SortList ( ListLaserReference , ";" , 4) + "Don ’t Load"

5706 ListDeconvolution = SortList ( ListDeconvolution , ";" , 4) + "Don ’t Load"
ListTransmission = SortList ( ListTransmission , ";" , 4) + "Don ’t Load"
ListRadiation = SortList ( ListRadiation , ";" , 4) + "Don ’t Load"
ListRateCalorimetry = SortList ( ListRateCalorimetry , ";" , 4) + "Don ’t Load"
ListZeroSticking = SortList ( ListZeroSticking , ";" , 4) + "Don ’t Load"

5711 ListHeat = SortList (ListHeat , ";" , 4) + "Don ’t Load"
Prompt NameDeconvolution , SelectString ( ItemsInList ( ListDeconvolution ,";") >2, ⤦
Ç "", ">>> ") +" Deconvolution Reference ("+ Num2Str ( ItemsInList (⤦
Ç ListDeconvolution ,";") -1) +") "+ SelectString ( ItemsInList ( ListDeconvolution⤦
Ç ,";") >2, "", " <<<"), popup , ListDeconvolution

Prompt NameBeforeCoating , SelectString ( ItemsInList ( ListBeforeCoating ,";") >2, ⤦
Ç "", ">>> ") +" Reflectivity Clean ("+ Num2Str ( ItemsInList ( ListBeforeCoating⤦
Ç ,";") -1) +") "+ SelectString ( ItemsInList ( ListBeforeCoating ,";") >2, "", " ⤦
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Ç <<<"), popup , ListBeforeCoating
Prompt NameRateCoating , SelectString ( ItemsInList ( ListRateCoating ,";") >2, "", ⤦
Ç ">>> ") +" Coating Thickness ("+ Num2Str ( ItemsInList ( ListRateCoating ,";") -1)⤦
Ç +") "+ SelectString ( ItemsInList ( ListRateCoating ,";") >2, "", " <<<"), popup , ⤦
Ç ListRateCoating

Prompt NameAfterCoating , SelectString ( ItemsInList ( ListAfterCoating ,";") >2, "", ⤦
Ç ">>> ") +" Reflectivity Coated ("+ Num2Str ( ItemsInList ( ListAfterCoating ,";")⤦
Ç -1) +") "+ SelectString ( ItemsInList ( ListAfterCoating ,";") >2, "", " <<<"), ⤦
Ç popup , ListAfterCoating

5716 Prompt NameLaserReference , SelectString ( ItemsInList ( ListLaserReference ,";") >2, ⤦
Ç "", ">>> ") +" Laser Reference ("+ Num2Str ( ItemsInList ( ListLaserReference⤦
Ç ,";") -1) +") "+ SelectString ( ItemsInList ( ListLaserReference ,";") >2, "", " ⤦
Ç <<<"), popup , ListLaserReference

Prompt NameTransmission , SelectString ( ItemsInList ( ListTransmission ,";") >2, "", ⤦
Ç ">>> ") +" Transmission Measurement ("+ Num2Str ( ItemsInList ( ListTransmission⤦
Ç ,";") -1) +") "+ SelectString ( ItemsInList ( ListTransmission ,";") >2, "", " <<<")⤦
Ç , popup , ListTransmission

Prompt NameRadiation , SelectString ( ItemsInList ( ListRadiation ,";") >2, "", ">>> ⤦
Ç ") +" Radiation Measurement ("+ Num2Str ( ItemsInList ( ListRadiation ,";") -1) +") "+⤦
Ç SelectString ( ItemsInList ( ListRadiation ,";") >2, "", " <<<"), popup , ⤦
Ç ListRadiation

Prompt NameRateCalorimetry , SelectString ( ItemsInList ( ListRateCalorimetry ,";")⤦
Ç >2, "", ">>> ") +" Deposition Rate Calorimetry ("+ Num2Str ( ItemsInList (⤦
Ç ListRateCalorimetry ,";") -1) +") "+ SelectString ( ItemsInList (⤦
Ç ListRateCalorimetry ,";") >2, "", " <<<"), popup , ListRateCalorimetry

Prompt NameZeroSticking , SelectString ( ItemsInList ( ListZeroSticking ,";") >2, "", ⤦
Ç ">>> ") +" Zero Sticking Measurement ("+ Num2Str ( ItemsInList ( ListZeroSticking⤦
Ç ,";") -1) +") "+ SelectString ( ItemsInList ( ListZeroSticking ,";") >2, "", " <<<")⤦
Ç , popup , ListZeroSticking

5721 Prompt NameHeat , SelectString ( ItemsInList (ListHeat ,";") >2, "", ">>> ") +"⤦
Ç Calorimetry Measurement ("+ Num2Str ( ItemsInList (ListHeat ,";") -1) +") "+⤦
Ç SelectString ( ItemsInList (ListHeat ,";") >2, "", " <<<"), popup , ListHeat

If (( ItemsInList ( ListDeconvolution ,";") >2) || ( ItemsInList ( ListBeforeCoating⤦
Ç ,";") >2) || ( ItemsInList ( ListRateCoating ,";") >2) || ( ItemsInList (⤦
Ç ListAfterCoating ,";") >2) || ( ItemsInList ( ListLaserReference ,";") >2) || (⤦
Ç ItemsInList ( ListTransmission ,";") >2) || ( ItemsInList ( ListRadiation ,";") >2) ⤦
Ç || ( ItemsInList ( ListRateCalorimetry ,";") >2) || ( ItemsInList (⤦
Ç ListZeroSticking ,";") >2) || ( ItemsInList (ListHeat ,";") >2))
Button LoadLazy fcolor =(65280 ,0 ,0)
DoPrompt /HELP ="" " Ambiguous Filenames ", NameDeconvolution , NameBeforeCoating⤦
Ç , NameRateCoating , NameAfterCoating , NameLaserReference , NameTransmission , ⤦
Ç NameRadiation , NameRateCalorimetry , NameZeroSticking , NameHeat
Button LoadLazy fcolor =(0 ,0 ,0)

5726 Else
DoPrompt /HELP ="" "Load Options ", NameDeconvolution , NameBeforeCoating , ⤦
Ç NameRateCoating , NameAfterCoating , NameLaserReference , NameTransmission , ⤦
Ç NameRadiation , NameRateCalorimetry , NameZeroSticking , NameHeat

EndIf
If ( V_Flag )

SetDataFolder OldDF
5731 Button $CtrlName disable =0, win= NAC_Control

Return NaN
EndIf
If (( StrLen ( NameDeconvolution ) >0) && ! StringMatch ( NameDeconvolution ," _none_ ") ⤦
Ç && ! StringMatch ( NameDeconvolution , "Don ’t Load "))
Error_Message ( LoadCalFile (" Deconvolution ", NameDeconvolution ), " LoadCalFile ",⤦
Ç " NAC_LoadLazyButton ", " Deconvolution ")

5736 DoUpdate
EndIf
If (( StrLen ( NameBeforeCoating ) >0) && ! StringMatch ( NameBeforeCoating ," _none_ ") ⤦
Ç && ! StringMatch ( NameBeforeCoating , "Don ’t Load "))
Error_Message ( LoadCalFile (" BeforeCoating ", NameBeforeCoating ), " LoadCalFile ",⤦
Ç " NAC_LoadLazyButton ", " BeforeCoating ")
DoUpdate

5741 EndIf
If (( StrLen ( NameRateCoating ) >0) && ! StringMatch ( NameRateCoating ," _none_ ") && !⤦
Ç StringMatch ( NameRateCoating , "Don ’t Load "))
Error_Message ( LoadRateFile (" RateCoating ", NameRateCoating ), " LoadRateFile ", "⤦
Ç NAC_LoadLazyButton ", " RateCoating ")
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DoUpdate
EndIf

5746 If (( StrLen ( NameAfterCoating ) >0) && ! StringMatch ( NameAfterCoating ," _none_ ") && ⤦
Ç ! StringMatch ( NameAfterCoating , "Don ’t Load "))
Error_Message ( LoadCalFile (" AfterCoating ", NameAfterCoating ), " LoadCalFile ", "⤦
Ç NAC_LoadLazyButton ", " AfterCoating ")
DoUpdate

EndIf
If (( StrLen ( NameLaserReference ) >0) && ! StringMatch ( NameLaserReference ," _none_ ")⤦
Ç && ! StringMatch ( NameLaserReference , "Don ’t Load "))

5751 Error_Message ( LoadCalFile (" LaserReference ", NameLaserReference ), " LoadCalFile⤦
Ç ", " NAC_LoadLazyButton ", " LaserReference ")
DoUpdate

EndIf
If (( StrLen ( NameTransmission ) >0) && ! StringMatch ( NameTransmission ," _none_ ") && ⤦
Ç ! StringMatch ( NameTransmission , "Don ’t Load "))
Error_Message ( LoadCalFile (" Transmission ", NameTransmission ), " LoadCalFile ", "⤦
Ç NAC_LoadLazyButton ", " Transmission ")

5756 DoUpdate
EndIf
If (( StrLen ( NameRadiation ) >0) && ! StringMatch ( NameRadiation ," _none_ ") && !⤦
Ç StringMatch ( NameRadiation , "Don ’t Load "))
Error_Message ( LoadCalFile (" Radiation ", NameRadiation ), " LoadCalFile ", "⤦
Ç NAC_LoadLazyButton ", " Radiation ")
DoUpdate

5761 EndIf
If (( StrLen ( NameRateCalorimetry ) >0) && ! StringMatch ( NameRateCalorimetry ," _none_⤦
Ç ") && ! StringMatch ( NameRateCalorimetry , "Don ’t Load "))
Error_Message ( LoadRateFile (" RateCalorimetry ", NameRateCalorimetry ), "⤦
Ç LoadRateFile ", " NAC_LoadLazyButton ", " RateCalorimetry ")
DoUpdate

EndIf
5766 If (( StrLen ( NameZeroSticking ) >0) && ! StringMatch ( NameZeroSticking , " _none_ ") &&⤦

Ç ! StringMatch ( NameZeroSticking , "Don ’t Load "))
Error_Message ( LoadCalFile (" ZeroSticking ", NameZeroSticking ), " LoadCalFile ", "⤦
Ç NAC_LoadLazyButton ", " ZeroSticking ")
DoUpdate

EndIf
If (( StrLen ( NameHeat ) >0) && ! StringMatch (NameHeat ," _none_ ") && ! StringMatch (⤦
Ç NameHeat , "Don ’t Load "))

5771 Error_Message ( LoadCalFile (" Heat", NameHeat ), " LoadCalFile ", "⤦
Ç NAC_LoadLazyButton ", "Heat ")
DoUpdate

EndIf
SetDataFolder OldDF
PathInfo CalDataPath

5776 String Path= S_Path
SVar ExpName =root:NAC: Experiment : ExperimentName
If ( Strlen ( ExpName ))

ExpName =Path[ StrSearch (Path , ":" , StrLen (Path) -2,3)+1, StrLen (Path) -2]
EndIf

5781 Button $CtrlName disable =0, win= NAC_Control
Return NaN

End
//

NAC_StatisticsLazyButton
Function NAC_StatisticsLazyButton ( CtrlName ) : ButtonControl

5786 String CtrlName
NAC_GetAllStatistics ()
NAC_DisplayStatistics (" All ")

End
//

NAC_ProcessLazyButton
5791 Function NAC_ProcessLazyButton ( CtrlName ) : ButtonControl

String CtrlName
NVar AutoFlag =root:NAC: Experiment :AutoFlag , AutoFlagged =root:NAC: Experiment :⤦

Ç AutoFlagged
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Error_Clear ()
Button $CtrlName disable =2, win= NAC_Control

5796 DoUpdate
Error_Message ( ProcessProc (" Deconvolution ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " Deconvolution ")

Error_Message ( ProcessProc (" BeforeCoating ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " BeforeCoating ")

Error_Message ( ProcessProc (" RateCoating ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " RateCoating ")

Error_Message ( ProcessProc (" AfterCoating ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " AfterCoating ")

5801 Error_Message ( ProcessProc (" LaserReference ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " LaserReference ")

Error_Message ( ProcessProc (" Transmission ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " Transmission ")

Error_Message ( ProcessProc (" Radiation ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " Radiation ")

Error_Message ( ProcessProc (" RateCalorimetry ", NoDecon = AutoFlag ), " ProcessProc ", ⤦
Ç " NAC_ProcessLazyButton ", " RateCalorimetry ")

Error_Message ( ProcessProc (" ZeroSticking ", NoDecon = AutoFlag ), " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " ZeroSticking ")

5806 If ( AutoFlag && ! AutoFlagged )
NAC_GetAllStatistics ()
NAC_AutoFlagAll ()
Error_Message ( ProcessProc (" Deconvolution ") , " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " Deconvolution ")
Error_Message ( ProcessProc (" BeforeCoating ") , " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " BeforeCoating ")

5811 Error_Message ( ProcessProc (" AfterCoating ") , " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " AfterCoating ")
Error_Message ( ProcessProc (" LaserReference ") , " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " LaserReference ")
Error_Message ( ProcessProc (" Transmission ") , " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " Transmission ")
Error_Message ( ProcessProc (" Radiation ") , " ProcessProc ", " NAC_ProcessLazyButton⤦
Ç ", " Radiation ")
Error_Message ( ProcessProc (" ZeroSticking ") , " ProcessProc ", "⤦
Ç NAC_ProcessLazyButton ", " ZeroSticking ")

5816 EndIf
NAC_GetAllStatistics ()
NAC_DisplayStatistics (" All ")
Error_Message ( ProcessProc (" Heat ") , " ProcessProc ", " NAC_ProcessLazyButton ", "⤦
Ç Heat ")

Error_Message ( ProcessProc (" Sticking ") , " ProcessProc ", " NAC_ProcessLazyButton ", ⤦
Ç " Sticking ")

5821 Button $CtrlName disable =0, win= NAC_Control
Return NaN

End
//

NAC_DeconvoluteFullButton
Function NAC_DeconvoluteFullButton ( CtrlName ): ButtonControl

5826 String CtrlName
Error_Clear ()
Button $CtrlName disable =2, win= NAC_Control
DoUpdate
DoAlert /T=" Deconvolution ", 1, "This might take some time ...\r\r\ rContinue ?"

5831 If ( V_Flag !=1)
Error_Message (UserAbort , " InProc ", " NAC_DeconvoluteFullButton ", "")
Return NaN

EndIf
Error_Message ( DeconvolutionProc (" BeforeCoating ") , " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteFullButton ", " BeforeCoating ")

5836 Error_Message ( DisplayDeconvolution (" BeforeCoating ") , " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteFullButton ", " BeforeCoating ")

Error_Message ( DisplayDeconvolutedFrame (" BeforeCoating ") , "⤦
Ç DisplayDeconvolutedFrame ", " NAC_DeconvoluteFullButton ", " BeforeCoating ")

Error_Message ( DeconvolutionProc (" AfterCoating ") , " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteFullButton ", " AfterCoating ")
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Error_Message ( DisplayDeconvolution (" AfterCoating ") , " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteFullButton ", " AfterCoating ")

Error_Message ( DisplayDeconvolutedFrame (" AfterCoating ") , "⤦
Ç DisplayDeconvolutedFrame ", " NAC_DeconvoluteFullButton ", " AfterCoating ")

5841 Error_Message ( DeconvolutionProc (" LaserReference ") , " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteFullButton ", " LaserReference ")

Error_Message ( DisplayDeconvolution (" LaserReference ") , " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteFullButton ", " LaserReference ")

Error_Message ( DisplayDeconvolutedFrame (" LaserReference ") , "⤦
Ç DisplayDeconvolutedFrame ", " NAC_DeconvoluteFullButton ", " LaserReference ")

Error_Message ( DeconvolutionProc (" Transmission ") , " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteFullButton ", " Transmission ")

Error_Message ( DisplayDeconvolution (" Transmission ") , " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteFullButton ", " Transmission ")

5846 Error_Message ( DisplayDeconvolutedFrame (" Transmission ") , "⤦
Ç DisplayDeconvolutedFrame ", " NAC_DeconvoluteFullButton ", " Transmission ")

Error_Message ( DeconvolutionProc (" Radiation ") , " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteFullButton ", " Radiation ")

Error_Message ( DisplayDeconvolution (" Radiation ") , " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteFullButton ", " Radiation ")

Error_Message ( DisplayDeconvolutedFrame (" Radiation ") , " DisplayDeconvolutedFrame⤦
Ç ", " NAC_DeconvoluteFullButton ", " Radiation ")

Error_Message ( DeconvolutionProc (" Heat ") , " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteFullButton ", "Heat ")

5851 Error_Message ( DisplayDeconvolution (" Heat ") , " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteFullButton ", "Heat ")

Error_Message ( DisplayDeconvolutedFrame (" Heat ") , " DisplayDeconvolutedFrame ", "⤦
Ç NAC_DeconvoluteFullButton ", "Heat ")

Button $CtrlName disable =0, win= NAC_Control
Return NaN

End
5856 //

NAC_KillFrameProc
Function NAC_KillFrameProc ( CtrlName ): ButtonControl
String CtrlName
String Name= CtrlName [5, Inf]
String WName =" NAC_ "+ Name +" _Flag "

5861 Error_Clear ()
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "
Wave FlagList =$"root:NAC :"+ Name +": FlagList ", Detector =$"root:NAC :"+ Name +":⤦
Ç Detector "

FlagList [ CurrentFrame ]=1
Detector [][ CurrentFrame ]=0

5866 ModifyGraph /W=$"NAC_ "+ Name +" _Frames " hideTrace ($" Frame "+ Num2Str ( CurrentFrame ))⤦
Ç = FlagList [ CurrentFrame ]

Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_KillFrameProc ", Name)
Error_Message ( SetGraphRanges (Name), " SetGraphRanges ", " NAC_KillFrameProc ", Name⤦
Ç )

Return NaN
End

5871 //

NAC_FlagProc
Function NAC_FlagProc ( CtrlName ): ButtonControl
String CtrlName
String Name= CtrlName [5, Inf]
String WName =" NAC_ "+ Name +" _Flag "

5876 Error_Clear ()
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "
Wave FlagList =$"root:NAC :"+ Name +": FlagList "
FlagList [ CurrentFrame ]=! FlagList [ CurrentFrame ]
Error_Message ( DisplayMeasurement (Name), " DisplayMeasurement ", " NAC_FlagProc ", ⤦
Ç Name)

5881 Error_Message ( DisplayNonFlagged (Name), " DisplayNonFlagged ", " NAC_FlagProc ", ⤦
Ç Name)

ModifyGraph /W=$"NAC_ "+ Name +" _Frames " hideTrace ($" Frame "+ Num2Str ( CurrentFrame ))⤦
Ç = FlagList [ CurrentFrame ]
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ModifyGraph /W=$"NAC_ "+ Name +" _Full " rgb($" Frame "+ Num2Str ( CurrentFrame ))⤦
Ç =(65280*( FlagList [ CurrentFrame ]==0) ,0,0)

Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_FlagProc ", Name)
Return NaN

5886 End
//

NAC_ClearProc
Function NAC_ClearProc ( CtrlName ): ButtonControl
String CtrlName
String Name= CtrlName [6, Inf]

5891 String WName =" NAC_ "+ Name +" _Flag "
Wave FlagList =$"root:NAC :"+ Name +": FlagList "
Variable i
NVar NoP=$"root:NAC :"+ Name +": NumberOfFrames "

Error_Clear ()
5896 StrSwitch (Name)

Case " Desorption ":
Case " Sticking ":
Case "Heat ":

Break
5901 Default :

NVar AutoFlagged =$"root:NAC :"+ Name +": Statistics : AutoFlagged "
AutoFlagged =0
Break

EndSwitch
5906 FlagList =0

For (i=0;i<NoP;i+=1)
ModifyGraph /W=$"NAC_ "+ Name +" _Frames " hideTrace ($" Frame "+ Num2Str (i))=0
ModifyGraph /W=$"NAC_ "+ Name +" _Full " rgb($" Frame "+ Num2Str (i))=(65280 ,0 ,0)

EndFor
5911 Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_ClearProc ", Name)

Return NaN
End
//

NAC_RangeProc
Function NAC_RangeProc ( CtrlName ): ButtonControl //// ERROR if full data is not ⤦

Ç displayed yet
5916 String CtrlName

String Name= CtrlName [6, Inf]
String WName =" NAC_ "+ Name +" _Flag "
Variable From , To , Flag , i, Pattern

Error_Clear ()
5921 If ( StringMatch (Name ," Deconvolution "))

NVar DataPoints =root:NAC: Deconvolution : DataPointsPerFrame
Else

NVar DataPoints =root:NAC: Experiment : DataPointsPerFrame
EndIf

5926 NVar NoP=$"root:NAC :"+ Name +": NumberOfFrames "
Wave FlagList =$"root:NAC :"+ Name +": FlagList "
Do

From =( From <0) ? 0 : From
From =( From >= NoP) ? NoP -1 : From

5931 To =(To <0) ? 0 : To
To =(To >= NoP) ? NoP -1 : To
Prompt Flag , "Flag / Unflag :", popup , "Flag; Unflag "
Prompt Pattern , " Pattern :", popup , "All;Even;Odd"
Prompt From , "From Frame : "

5936 Prompt To , "To Frame : "
DoPrompt /HELP ="" " Range Flagging ", Flag , Pattern , From , To
If (From > To)

i=From
From=To

5941 To=i
EndIf

While ((( From <0) || (From >= NoP) || (To <0) || (To >= NoP)) && ! V_Flag )
If ( V_Flag )

Return UserAbort
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5946 EndIf
Error_Message ( DisplayMeasurement (Name), " DisplayMeasurement ", " NAC_RangeProc ", ⤦
Ç Name)

Error_Message ( DisplayNonFlagged (Name), " DisplayNonFlagged ", " NAC_RangeProc ", ⤦
Ç Name)

For (i=From;i <= To;i+=1)
FlagList [i]=(( Pattern ==1) && Mod(Flag ,2)) || (( Pattern ==2) && (mod(i ,2) ==0) ⤦
Ç && Mod(Flag ,2)) || (( Pattern ==3) && (mod(i ,2) ==1) && Mod(Flag ,2))

5951 ModifyGraph /W=$"NAC_ "+ Name +" _Frames " hideTrace ($" Frame "+ Num2Str (i))= FlagList⤦
Ç [i]
ModifyGraph /W=$"NAC_ "+ Name +" _Full " rgb($" Frame "+ Num2Str (i)) =(65280*( FlagList⤦
Ç [i ]==0) ,0,0)

EndFor
Error_Message ( CheckButtons (Name , WName ), " CheckButtons ", " NAC_RangeProc ", Name)
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_RangeProc ", Name)

5956 Return NaN
End
//

NAC_NavProc
Function NAC_NavProc ( CtrlName ): ButtonControl
String CtrlName

5961 String Name= CtrlName [4, StrLen ( CtrlName ) -4]
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "
NVar ReEntry =root:NAC:GUI: ReEntryPosProc

If ( ReEntry )
Return NAC_ReEntry

5966 EndIf
ReEntry =1
Error_Clear ()
StrSwitch ( CtrlName [ StrLen ( CtrlName ) -2,Inf ])

Case "Fi ":
5971 CurrentFrame =0

Break
Case "M2 ":

CurrentFrame -=2
Break

5976 Case "M1 ":
CurrentFrame -=1
Break

Case "P1 ":
CurrentFrame +=1

5981 Break
Case "P2 ":

CurrentFrame +=2
Break

Case "La ":
5986 NVar NumberOfFrames =$"root:NAC :"+ Name +": NumberOfFrames "

CurrentFrame = NumberOfFrames -1
Break

Default :
Break

5991 EndSwitch
Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_NavProc ", Name)
DoWindow /F $"NAC_ "+ Name +" _Frames "
ReEntry =0
Return NaN

5996 End
//

NAC_CurrentFrameProc
Function NAC_CurrentFrameProc (CtrlName ,ValNum ,ValStr , VarName ): SetVariableControl
String CtrlName
Variable ValNum

6001 String ValStr , VarName
String Name= CtrlName [4, Inf]
NVar CurrentFrame =$"root:NAC :"+ Name +": CurrentFrame "

Error_Clear ()
CurrentFrame = Floor ( ValNum )
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6006 Error_Message ( UpdateFlagWin (Name), " UpdateFlagWin ", " NAC_CurrentFrameProc ", ⤦
Ç Name)

Return NaN
End
//

NAC_UseEmptyCrucibleProc
Function NAC_UseEmptyCrucibleProc (CtrlName , Checked ): CheckBoxControl

6011 String CtrlName
Variable Checked
NVar RadHold =root:NAC:Heat: HoldRadiation
NVar Radiation =root:NAC:Heat: InitRadiation

Error_Clear ()
6016 DoUpdate

If ( Checked )
RadHold =1
Radiation = GetRadiationContribution (" Radiation ")

Else
6021 RadHold =0

EndIf
Return NaN

End
//

NAC_UseBaselineProc
6026 Function NAC_UseBaselineProc (CtrlName , Checked ): CheckBoxControl

String CtrlName
Variable Checked
String Name= CtrlName [5, Inf], Type

Error_Clear ()
6031 DoUpdate

Error_Message ( DoRateTextBoxes (Name), " DoRateTextBoxes ", " NAC_UseBaselineProc ", ⤦
Ç Name)

Return NaN
End
//

NAC_UseTotalRangeProc
6036 Function NAC_UseTotalRangeProc (CtrlName , Checked ): CheckBoxControl

String CtrlName
Variable Checked
String Name= CtrlName [8, Inf], Type

Error_Clear ()
6041 DoUpdate

Error_Message ( DoRateTextBoxes (Name), " DoRateTextBoxes ", " NAC_UseTotalRangeProc⤦
Ç ", Name)

If ( Checked )
CheckBox $" UseBL "+ Name Disable =2, Win= NAC_Control

Else
6046 CheckBox $" UseBL "+ Name Disable =0, Win= NAC_Control

EndIf
Return NaN

End
//

NAC_DCRproc
6051 Function NAC_DCRproc (CtrlName , Checked ): CheckBoxControl

String CtrlName
Variable Checked
String Name= CtrlName [6, Inf]
NVar RemFit =root:NAC: Deconvolution : RemoveFittedRadiation , RemFix =root:NAC:⤦

Ç Deconvolution : RemoveFixedRadiation
6056 Error_Clear ()

DoUpdate
StrSwitch (Name)

Case "Fit ":
If ( RemFix && Checked )

6061 RemFix =0
EndIf
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Break
Case "Fix ":

If ( RemFit && Checked )
6066 RemFit =0

EndIf
Break

Default :
Break

6071 EndSwitch
Return NaN

End
//

NAC_ReCalcHeat
Function NAC_ReCalcHeat (ctrlName ,varNum ,varStr , varName ) : SetVariableControl

6076 String ctrlName
Variable varNum // value of variable as number
String varStr // value of variable as string
String varName // name of variable
Error_Clear ()

6081 Error_Message ( CalcHeat () , " NAC_ReCalcHeat ", " CalcHeat ", "")
Return NaN

End
//

NAC_HeaderButton
Function NAC_HeaderButton ( CtrlName ): ButtonControl

6086 String CtrlName
String Name= CtrlName [6, Inf], WName =" NAC_ "+ Name +" _Header "
NVar Loaded =$"root:NAC :"+ Name +": Loaded "

Error_Clear ()
DoWindow $WName

6091 If (! Loaded )
Error_Message ( NAC_NoDataLoaded , " InProc ", " NAC_HeaderButton ", Name)
Return NaN

EndIf
If ( V_Flag )

6096 DoWindow /F $WName
Error_Message ( NAC_WindowAlreadyExists , " InProc ", " NAC_HeaderButton ", Name)
Return NaN

EndIf
Edit /N= $WName /W =(600 ,100 ,1000 ,700) /K=1 $"root:NAC :"+ Name +": Header " As "File ⤦
Ç Header : "+ Name

6101 ModifyTable Alignment =0, Autosize ={0 ,0 , -1 ,0 ,0}
Return NaN

End
//

NAC_LoadButton
Function NAC_LoadButton ( CtrlName ): ButtonControl

6106 String CtrlName
String Name
Variable Ret

Error_Clear ()
Button $CtrlName disable =2, win= NAC_Control

6111 DoUpdate /W= NAC_Control
Name= CtrlName [4, Inf]
If ( StringMatch (Name ," Rate *"))

Error_Message ( LoadRateFile (Name ,"") , " InProc ", " NAC_LoadButton ", Name)
Else

6116 Error_Message ( LoadCalFile (Name ,"") , " InProc ", " NAC_LoadButton ", Name)
EndIf
Button $CtrlName disable =0, win= NAC_Control
Return NaN

End
6121 //

NAC_DisplayFullButton
Function NAC_DisplayFullButton ( CtrlName ): ButtonControl
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String CtrlName
String Name

Error_Clear ()
6126 Button $CtrlName disable =2, win= NAC_Control

DoUpdate /W= NAC_Control
Name= CtrlName [7, Inf]
If ( StringMatch (Name ," Rate *"))

Error_Message ( DisplayRateFile (Name), " DisplayRateFile ", "⤦
Ç NAC_DisplayFullButton ", Name)

6131 Else
Error_Message ( DisplayMeasurement (Name), " DisplayMeasurement ", "⤦
Ç NAC_DisplayFullButton ", Name)

EndIf
Button $CtrlName Disable =0, Win= NAC_Control
Return NaN

6136 End
//

NAC_DisplayFlagButton
Function NAC_DisplayFlagButton ( CtrlName ): ButtonControl
String CtrlName
String Name= CtrlName [4, Inf]

6141 Variable Error
Error_Clear ()
If ( StringMatch (Name ,"* Rate *"))

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_DisplayFlagButton ", Name)
Return NaN

6146 Endif
Button $CtrlName disable =2, win= NAC_Control
DoUpdate /W= NAC_Control
Error_Message ( DisplayMeasurement (Name), " DisplayMeasurement ", "⤦
Ç NAC_DisplayFlagButton ", Name)

Error_Message ( DisplayFlagWindow (Name), " DisplayFlagWindow ", "⤦
Ç NAC_DisplayFlagButton ", Name)

6151 Error_Message ( DisplayNonFlagged (Name), " DisplayNonFlagged ", "⤦
Ç NAC_DisplayFlagButton ", Name)

If (! StringMatch (Name ," Deconvolution "))
Error_Message ( SetGraphRanges (Name), " SetGraphRanges ", " NAC_DisplayFlagButton⤦
Ç ", Name)

EndIf
Button $CtrlName disable =0, win= NAC_Control

6156 Return NaN
End
//

NAC_ProcessButton
Function NAC_ProcessButton ( CtrlName ) : ButtonControl
String CtrlName

6161 String Name= CtrlName [7, Inf]
Error_Clear ()
Button $CtrlName disable =2, win= NAC_Control
DoUpdate
Error_Message ( ProcessProc (Name , NoDecon =1) , " ProcessProc ", " NAC_ProcessButton ",⤦
Ç Name)

6166 Button $CtrlName disable =0, win= NAC_Control
End
//

NAC_StatisticsButton
Function NAC_StatisticsButton ( CtrlName ) : ButtonControl
String CtrlName

6171 String Name= CtrlName [10 , Inf]
Error_Clear ()
If ( StringMatch (Name ,"* Rate *"))

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_StatisticsButton ", Name)
Return NaN

6176 Endif
Button $CtrlName disable =2, win= NAC_Control
DoUpdate
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NAC_GetStatistics (Name)
NAC_DisplayStatistics (Name)

6181 Button $CtrlName disable =0, win= NAC_Control
End
//

NAC_DeconvoluteAverageButton
Function NAC_DeconvoluteAverageButton ( CtrlName ) : ButtonControl
String CtrlName

6186 String Name= CtrlName [9, Inf]
Error_Clear ()
If ( StringMatch (Name ,"* Rate *"))

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_DeconvoluteAverageButton ", ⤦
Ç Name)
Return NaN

6191 Endif
Button $CtrlName disable =2, win= NAC_Control
DoUpdate
Error_Message ( DeconvolutionProcAverage (Name), " DeconvolutionProcAverage ", "⤦
Ç NAC_DeconvoluteAverageButton ", Name)

Error_Message ( DisplayDeconvolutedAverage (Name), " DisplayDeconvolutedAverage ", "⤦
Ç NAC_DeconvoluteAverageButton ", Name)

6196 Button $CtrlName disable =0, win= NAC_Control
Return NaN

End
//

NAC_DeconvoluteAllButton
Function NAC_DeconvoluteAllButton ( CtrlName ): ButtonControl

6201 String CtrlName
String Name= CtrlName [9, Inf]

Error_Clear ()
If ( StringMatch (Name ,"* Rate *"))

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_DeconvoluteAverageButton ", ⤦
Ç Name)

6206 Return NaN
Endif
Button $CtrlName disable =2, win= NAC_Control
DoUpdate
Error_Message ( DeconvolutionProc (Name), " DeconvolutionProc ", "⤦
Ç NAC_DeconvoluteAllButton ", Name)

6211 Error_Message ( DisplayDeconvolution (Name), " DisplayDeconvolution ", "⤦
Ç NAC_DeconvoluteAllButton ", Name)

Error_Message ( DisplayDeconvolutedFrame (Name), " DisplayDeconvolutedFrame ", "⤦
Ç NAC_DeconvoluteAllButton ", Name)

Button $CtrlName disable =0, win= NAC_Control
Return NaN

End
6216 //

NAC_ResultButton
Function NAC_ResultButton ( CtrlName ): ButtonControl
String CtrlName
String Name= CtrlName [6, inf]
NVar Loaded =$"root:NAC :"+ Name +": Loaded "

6221 Error_Clear ()
If (! Loaded )

Error_Message ( NAC_NoDataLoaded , " InProc ", " NAC_ResultButton ", Name)
Return NaN

EndIf
6226 Button $CtrlName disable =2, win= NAC_Control

DoUpdate /W= NAC_Control
StrSwitch (Name)

Case " RateCalorimetry ":
Case " RateCoating ":

6231 Error_Message ( DisplayFittedRate (Name), " DisplayFittedRate ", "⤦
Ç NAC_ResultButton ", Name)

Break
Case " Deconvolution ":
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NVar NoP=$"root:NAC :"+ Name +": NumberOfFrames "
If (NoP >0)

6236 Error_Message ( DisplayAverage (Name), " DisplayAverage ", " NAC_ResultButton ",⤦
Ç Name)

EndIf
Break

Case " BeforeCoating ":
Case " AfterCoating ":

6241 Case " LaserReference ":
Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":

NVar NoP=$"root:NAC :"+ Name +": NumberOfFrames "
6246 If (NoP >0)

Error_Message ( DisplayAverage (Name), " DisplayAverage ", " NAC_ResultButton ",⤦
Ç Name)

Error_Message ( DisplayDeconvolutedAverage (Name), "⤦
Ç DisplayDeconvolutedAverage ", " NAC_ResultButton ", Name)

Error_Message ( DisplayDeconvolution (Name), " DisplayDeconvolution ", "⤦
Ç NAC_ResultButton ", Name)

Error_Message ( DisplayDeconvolutedFrame (Name), " DisplayDeconvolutedFrame ",⤦
Ç " NAC_ResultButton ", Name)

6251 EndIf
Break

Case "Heat ":
Case " Sticking ":

NVar NoP=$"root:NAC :"+ Name +": NumberOfFrames "
6256 If (NoP >0)

Error_Message ( DisplayAverage (Name), " DisplayAverage ", " NAC_ResultButton ",⤦
Ç Name)

Error_Message ( DisplayDeconvolutedAverage (Name), "⤦
Ç DisplayDeconvolutedAverage ", " NAC_ResultButton ", Name)

Error_Message ( DisplayDeconvolution (Name), " DisplayDeconvolution ", "⤦
Ç NAC_ResultButton ", Name)

Error_Message ( DisplayDeconvolutedFrame (Name), " DisplayDeconvolutedFrame ",⤦
Ç " NAC_ResultButton ", Name)

6261 Error_Message ( DisplayVsPulse (Name), " DisplayVsPulse ", " NAC_ResultButton ",⤦
Ç Name)

Error_Message ( DisplayVsCoverage (Name), " DisplayVsCoverage ", "⤦
Ç NAC_ResultButton ", Name)

Error_Message ( DisplayTrend (Name ,1) , " DisplayVsCoverage ", "⤦
Ç NAC_ResultButton ", Name)

EndIf
Break

6266 Default :
Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_ResultButton ", Name)
Break

EndSwitch
Button $CtrlName disable =0, win= NAC_Control

6271 Return NaN
End
//

Function NAC_CopyFlagList
Function NAC_CopyFlagList (From , To)
String From , To

6276 If (! DataFolderExists (" root:NAC :"))
Error_Message ( NAC_NotInitialized , " InProc ", " NAC_DisplayStatistics ", "")
Return NaN

EndIf
If (( NumPnts ($"root:NAC :"+ From +": FlagList ") ==0) || ( NumPnts ($"root:NAC :"+ To +":⤦
Ç FlagList ") ==0) )

6281 Error_Message ( NAC_NothingToProcess , " InProc ", " NAC_CopyFlagList ", "")
Return NaN

EndIf
Wave WFrom =$"root:NAC :"+ From +": FlagList ", WTo=$"root:NAC :"+ To +": FlagList "
WTo= WFrom

6286 Return NaN
End
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//

C.1.8 Statistics Functions
//

Function NAC_GetAllStatistics
Function NAC_GetAllStatistics ()

6291 If (! DataFolderExists (" root:NAC :"))
Error_Message ( NAC_NotInitialized , " InProc ", " NAC_GetAllStatistics ", "")
Return NaN

EndIf
NAC_GetStatistics (" Deconvolution ")

6296 NAC_GetStatistics (" BeforeCoating ")
NAC_GetStatistics (" AfterCoating ")
NAC_GetStatistics (" LaserReference ")
NAC_GetStatistics (" Transmission ")
NAC_GetStatistics (" Radiation ")

6301 NAC_GetStatistics (" ZeroSticking ")
End
//

Function NAC_GetStatistics
Function NAC_GetStatistics (Name)
String Name

6306 If (! DataFolderExists (" root:NAC :"))
Error_Message ( NAC_NotInitialized , " InProc ", " NAC_GetStatistics ", "")
Return NaN

EndIf
DFRef OldDF = GetDataFolderDFR ()

6311 StrSwitch (Name)
Case " Deconvolution ":
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":

6316 Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":

Break
Case " RateCalorimetry ":

6321 Case " RateCoating ":
Case "Heat ":
Case " Sticking ":

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_AutoFlag ", Name)
Return NaN

6326 Break
Default :

Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_AutoFlag ", Name)
Return NaN
Break

6331 EndSwitch
NVar Loaded =$"root:NAC :"+ Name +": Loaded "
If (! Loaded )

Error_Message ( NAC_NoDataLoaded , " InProc ", " NAC_GetStatistics ", Name)
Return NaN

6336 EndIf
If (( Exists (" root:NAC :"+ Name +": AverageOdd ") !=1) || ( Exists (" root:NAC :"+ Name +":⤦
Ç AverageEven ") !=1))
If (! Error_Message ( Averaging (Name), " Averaging ", " NAC_GetStatistics ", Name))

Error_Message ( NAC_AverageWavesMissing , " InProc ", " NAC_GetStatistics ", Name)
Return NaN

6341 EndIf
EndIf
NVar NumberOfFrames =$"root:NAC :"+ Name +": NumberOfFrames ", StdDev =$"root:NAC :"+⤦
Ç Name +": Statistics : StdDev "

If ( NumberOfFrames ==0)
Error_Message ( NAC_NothingToProcess , " InProc ", " NAC_GetStatistics ", Name)

6346 SetDataFolder OldDF
Return NaN

EndIf
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SetDataFolder $"root:NAC :"+ Name
Wave Detector , FlagList

6351 Wave Amplitude =$"root:NAC :"+ Name +": Statistics : Amplitude ", ChiSq =$"root:NAC :"+⤦
Ç Name +": Statistics : ChiSq ", Outlier =$"root:NAC :"+ Name +": Statistics : Outlier "

Variable InitOffs =0, InitAmp =1, InitShift =0
Variable V_FitError , V_fitOptions =4, V_FitQuitReason
Variable i
StrSwitch (Name)

6356 Case " Deconvolution ":
NVar ChopperPeriod =root:NAC: Deconvolution : ChopperPeriod , DataPointsPerFrame⤦

Ç =root:NAC: Deconvolution : DataPointsPerFrame
Break

Default :
NVar ChopperPeriod =root:NAC: Experiment : ChopperPeriod , DataPointsPerFrame =⤦

Ç root:NAC: Experiment : DataPointsPerFrame
6361 Break

EndSwitch
NVar ProgressValue =root:NAC:GUI: ProgressValue
Wave Medians =$"root:NAC :"+ Name +": Statistics : Medians ", Quartiles =$"root:NAC :"+⤦
Ç Name +": Statistics : Quartiles ", Whiskers =$"root:NAC :"+ Name +": Statistics :⤦
Ç Whiskers ", WhiskerLimits =$"root:NAC :"+ Name +": Statistics : WhiskerLimits "

Make /D /FREE /N=2 FitCoef , InitCoef ={ InitOffs , InitAmp }
6366 Make /FREE /N=( DataPointsPerFrame ) CurrentPeak

ReDimension /N=( NumberOfFrames ) Amplitude , ChiSq , Outlier
Setscale /P x, 0, DimDelta (Detector , 0) , CurrentPeak
ProgressValue =0
ValDisplay Progress Disable =0, Limits ={0 , NumberOfFrames -1 ,1} , win= NAC_Control

6371 DoUpdate /W= NAC_Control
For (i=0;i< NumberOfFrames ;i+=1)

If (! FlagList [i])
CurrentPeak = Detector [p][i]
FitCoef = InitCoef

6376 FuncFit /N=1 /W=2 /Q $(" Stat "+ Name+ SelectString (Mod(i ,2) ,"Even "," Odd ")), ⤦
Ç FitCoef , CurrentPeak

If ( V_FitError )
Amplitude [i]= NaN
FlagList [i]=1
ChiSq [i]=- V_FitError

6381 Else
Amplitude [i]= FitCoef [1]
ChiSq [i]= V_ChiSq

EndIf
ChiSq [i]= V_ChiSq

6386 ProgressValue =i
DoUpdate /W= NAC_Control

Else
Amplitude [i]= NaN
ChiSq [i]=0

6391 EndIf
EndFor
ValDisplay Progress win= NAC_Control , Disable =1
ProgressValue =0
Medians = Quantile (Amplitude ,0.5)

6396 StdDev =Sqrt( Variance ( Amplitude ))
Quartiles [0]= Quantile (Amplitude ,0.25)
Quartiles [1]= Quantile (Amplitude ,0.75)
WhiskerLimits [0]= Quartiles [0] -1.5* Abs( Quartiles [1] - Quartiles [0])
WhiskerLimits [1]= Quartiles [1]+1.5* Abs( Quartiles [1] - Quartiles [0])

6401 Whiskers [0]= GetWhisker (Amplitude , WhiskerLimits [0])
Whiskers [1]= GetWhisker (Amplitude , WhiskerLimits [1])
Outlier = ( Amplitude > WhiskerLimits [1] ) || ( Amplitude < WhiskerLimits [0] )? ⤦
Ç Amplitude : NaN

SetDataFolder OldDF
Return NoError

6406 End
//

Function NAC_DisplayStatistics
Function NAC_DisplayStatistics ( ExpNames )
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String ExpNames
String ExpList =" Deconvolution ; BeforeCoating ; AfterCoating ; LaserReference ;⤦

Ç Transmission ; Radiation ; ZeroSticking ;"
6411 String LabelsList =" Deconvolution ; Before \ rCoating ; After \ rCoating ; Detector \⤦

Ç rCalibration ; Transmission ; Radiation ; ZeroSticking ;"
String DisplayList ="" , DisplayLabels ="" , Name , WName
Variable NumExp =0
Variable i, RMax=-Inf , RMin=Inf

If (! DataFolderExists (" root:NAC :"))
6416 Error_Message ( NAC_NotInitialized , " InProc ", " NAC_DisplayStatistics ", "")

Return NaN
EndIf
NVar WWidth =root:NAC:GUI:WWidth , WHeight =root:NAC:GUI: WHeight
If ( StringMatch (ExpNames ," All "))

6421 ExpNames = ExpList
EndIf
For (i=0;i< ItemsInList (ExpList ,";") ;i+=1)

If ( StringMatch (ExpNames , "*"+ StringFromList (i, ExpList , ";") +"*") )
If ( NumPnts ($"root:NAC :"+ StringFromList (i, ExpList , ";") +": Statistics :⤦

Ç Amplitude ") >0)
6426 NumExp +=1

DisplayList += StringFromList (i, ExpList , ";") +";"
DisplayLabels += StringFromList (i, LabelsList , ";") +";"

EndIf
EndIf

6431 EndFor
If ( NumExp ==0)

Error_Message ( NAC_NothingToProcess , " InProc ", " NAC_DisplayStatistics ", "")
Return NaN

EndIf
6436 DoWIndow NAC_Statistics

If ( V_Flag )
KillWindow NAC_Statistics

EndIf
If (NumExp >4)

6441 Display /N= NAC_Statistics /K=1 /W=(50 ,50 ,180+ ItemsInList ( DisplayList ,";") *80 ,⤦
Ç 100+ WHeight ) as "NAC Statistics "

Else
Display /N= NAC_Statistics /K=1 /W=(50 ,50 ,280+ ItemsInList ( DisplayList ,";") *80 ,⤦
Ç 50+ WHeight ) as "NAC Statistics "

EndIf
Wave LabelsPos =root:NAC:GUI: StatsLabelPos

6446 Wave /T Labels =root:NAC:GUI: StatsLabels
ReDimension /N=( NumExp ) LabelsPos , Labels
For (i=0;i< ItemsInList ( DisplayList ,";") ;i+=1)

Name= StringFromList (i, DisplayList , ";")
SVar FileName =$"root:NAC :"+ Name +": FileName "

6451 Wave Amplitude =$"root:NAC :"+ Name +": Statistics : Amplitude "
NVar ShowBoxPlotData =root:NAC:GUI: ShowBoxPlotData
Duplicate /O Amplitude $"root:NAC :"+ Name +": Statistics : Position "
Wave Position =$"root:NAC :"+ Name +": Statistics : Position "
Wave Medians =$"root:NAC :"+ Name +": Statistics : Medians "

6456 Wave Quartiles =$"root:NAC :"+ Name +": Statistics : Quartiles "
Wave Whiskers =$"root:NAC :"+ Name +": Statistics : Whiskers "
Wave WhiskerLimits =$"root:NAC :"+ Name +": Statistics : WhiskerLimits "
Wave Outlier =$"root:NAC :"+ Name +": Statistics : Outlier "
Position =i

6461 LabelsPos [i]=i
Labels [i]= StringFromList (i, DisplayLabels , ";")
If ( NumType ( WaveMin ( Amplitude ))==0)

RMin=Min(RMin , WaveMin ( Amplitude ))
EndIf

6466 If ( NumType ( WaveMax ( Amplitude ))==0)
RMax=Max(RMax , WaveMax ( Amplitude ))

EndIf
AppendToGraph /W= NAC_Statistics Amplitude /TN= $Name vs Position
AppendToGraph /W= NAC_Statistics Medians /TN=$" Median "+ Name vs Position

6471 AppendToGraph /W= NAC_Statistics Quartiles /TN=$" Quartiles "+ Name vs Position
AppendToGraph /W= NAC_Statistics Whiskers /TN=$" Whiskers "+ Name vs Position
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AppendToGraph /W= NAC_Statistics WhiskerLimits /TN=$" WhiskerLimits "+ Name vs ⤦
Ç Position
AppendToGraph /W= NAC_Statistics Outlier /TN=$" Outlier "+ Name vs Position
ModifyGraph /W= NAC_Statistics Mode( $Name )=3, Mode($" Median "+ Name)=3, Mode($"⤦
Ç Quartiles "+ Name)=3, Mode($" Whiskers "+ Name)=3, Mode($" WhiskerLimits "+ Name)⤦
Ç =3, Mode($" Outlier "+ Name)=3

6476 ModifyGraph /W= NAC_Statistics Marker ( $Name )=8, Marker ($" Median "+ Name)=9, ⤦
Ç Marker ($" Quartiles "+ Name)=9, Marker ($" Whiskers "+ Name)=9, Marker ($"⤦
Ç WhiskerLimits "+ Name)=9, Marker ($" Outlier "+ Name)=19
ModifyGraph /W= NAC_Statistics MSize ( $Name )=2, MSize ($" Median "+ Name)=20 , MSize⤦
Ç ($" Quartiles "+ Name)=20 , MSize ($" Whiskers "+ Name)=20 , MSize ($" WhiskerLimits "+⤦
Ç Name)=10 , MSize ($" Outlier "+ Name)=3
ModifyGraph /W= NAC_Statistics MrkThick ($" Median "+ Name)=3, MrkThick ($"⤦
Ç Quartiles "+ Name)=2, MrkThick ($" Whiskers "+ Name)=2, MrkThick ($" WhiskerLimits⤦
Ç "+ Name)=0.5
ModifyGraph /W= NAC_Statistics RGB( $Name )=(0 ,0 ,0) , RGB($" Median "+ Name)⤦
Ç =(0 ,52224 ,0) , RGB($" Quartiles "+ Name)=(0 ,0 ,65280) , RGB($" Whiskers "+ Name)⤦
Ç =(52224 ,52224 ,52224) , RGB($" WhiskerLimits "+ Name)=(0 ,0 ,0) , RGB($" Outlier "+⤦
Ç Name)=(65280 ,0 ,0)
ModifyGraph /W= NAC_Statistics hideTrace ( $Name )=! ShowBoxPlotData

6481 WName =" NAC_ "+ Name +" _Statistics "
DoWindow $WName
If ( V_Flag !=0)

DoWindow /F $WName
Else

6486 Display /N= $WName /K=1 /W=(800 ,50+i*20 ,800+ WWidth , 50+ WHeight +i*20) as "⤦
Ç Statistics for "+ ReplaceString ("\r", StringFromList (i, DisplayLabels , ";") ,⤦
Ç " ")

AppendtoGraph /W= $WName Amplitude [0 ,*;2]/ TN= $Name +" Even", Amplitude [1 ,*;2]/⤦
Ç TN= $Name +" Odd", Outlier /TN= $Name +" Outlier "

ModifyGraph /W= $WName Mode =3, Marker =19 , MSize =3
ModifyGraph RGB( $Name +" Even ") =(0 ,0 ,65280) , RGB( $Name +" Odd ") =(0 ,52224 ,0) , ⤦

Ç RGB( $Name +" Outlier ") =(65280 ,0 ,0)
ModifyGraph /W= $WName Grid(Left)=1, GridStyle (left)=0, GridRGB (Left)⤦

Ç =(0 ,0 ,0)
6491 EndIf

NVar StdDev =$"root:NAC :"+ Name +": Statistics : StdDev "
TextBox /W= $WName /C /N= Title /A=MT /E /F=0 /X=0 /Y=5 /J /B=1 "\ JCAmplitudes⤦
Ç for "+ Name +" Measurement \r\JC "+ FileName +": \K(0 ,0 ,65280) Even \K(0 ,0 ,0) \⤦
Ç K(0 ,52224 ,0) Odd \K(0 ,0 ,0) \K(65280 ,0 ,0) Outlier \K(0 ,0 ,0) Frames Standard ⤦
Ç Deviation : "+ Num2Str ( StdDev )

EndFor
For (i=0;i< ItemsInList ( DisplayList ,";") ;i+=1)

6496 Name= StringFromList (i, DisplayList , ";")
WName =" NAC_ "+ Name +" _Statistics "
SetAxis /W= $WName Left , Floor (RMin *20) /20 , Ceil(RMax *20) /20

EndFor
Name= StringFromList (0, DisplayList , ";")

6501 If (NumExp >4)
TextBox /W= NAC_Statistics /C /N= Legend /A=MB /E /F=0 /X=0 /Y=5 /J /B=1 "\\s⤦
Ç ("+ Name +") Data \\s( Outlier "+ Name +") Outlier \\s( Median "+ Name⤦
Ç +") Median \\s( Quartiles "+ Name +") Quartiles \\s( Whiskers "+ Name⤦
Ç +") Whiskers \\s( WhiskerLimits "+ Name +") Outlier Limit "

Else
TextBox /W= NAC_Statistics /C /N= Legend /A=RC /E /F=0 /X=5 /Y=0 /J /B=1 "\\s⤦
Ç ("+ Name +") Data\r\\s( Outlier "+ Name +") Outlier \r\\s( Median "+ Name +") Median \r⤦
Ç \\s( Quartiles "+ Name +") Quartiles \r\\s( Whiskers "+ Name +") Whiskers \r\\s(⤦
Ç WhiskerLimits "+ Name +") Outlier Limit "

EndIf
6506 TextBox /W= NAC_Statistics /C /N= text0 /F=0/A=MT/X=0/Y=5/E /B=1 " Statistics : Box⤦

Ç Plots "
SetAxis /W= NAC_Statistics Bottom -0.5, ItemsInList ( DisplayList ,";") - 0.25
Label /W= NAC_Statistics bottom " "
ModifyGraph /W= NAC_Statistics Grid(Left)=1, GridStyle (left)=0, GridRGB (Left)⤦
Ç =(0 ,0 ,0)

ModifyGraph /W= NAC_Statistics UserTicks ( Bottom )={ LabelsPos , Labels }
6511 Return NaN

End
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//

Function NAC_AutoFlag
Function NAC_AutoFlag (Name)
String Name

6516 Variable i
If (! DataFolderExists (" root:NAC :"))

Error_Message ( NAC_NotInitialized , " InProc ", " NAC_DisplayStatistics ", "")
Return NaN

EndIf
6521 StrSwitch (Name)

Case " Deconvolution ":
Case " BeforeCoating ":
Case " AfterCoating ":
Case " LaserReference ":

6526 Case " Transmission ":
Case " Radiation ":
Case " ZeroSticking ":

Break
Case " RateCalorimetry ":

6531 Case " RateCoating ":
Case "Heat ":
Case " Sticking ":

Error_Message ( NAC_NotApplicable , " InProc ", " NAC_AutoFlag ", Name)
Return NaN

6536 Break
Default :

Error_Message ( NAC_UnknownMeasurement , " InProc ", " NAC_AutoFlag ", Name)
Return NaN
Break

6541 EndSwitch
NVar DataPoints =$"root:NAC :"+ Name +": EffectiveFrames ", AutoFlagged =$"root:NAC :"+⤦
Ç Name +": Statistics : AutoFlagged "

If (( DataPoints ==0) || AutoFlagged )
Error_Message ( NAC_NothingToProcess , " InProc ", " NAC_AutoFlag ", Name)
Return NaN

6546 EndIf
Wave Amplitude =$"root:NAC :"+ Name +": Statistics : Amplitude ", Whiskers =$"root:NAC⤦
Ç :"+ Name +": Statistics : Whiskers "

Wave FlagList =$"root:NAC :"+ Name +": FlagList "
For (i=0;i< NumPnts ( Amplitude );i+=1)

If (( Amplitude [i]> Whiskers [1]) || ( Amplitude [i]< Whiskers [0]))
6551 FlagList [i]=1

EndIf
EndFor
DoWindow $"NAC_ "+ Name +" _Full "
If ( V_Flag !=0)

6556 KillWindow $"NAC_ "+ Name +" _Full "
Error_Message ( DisplayMeasurement (Name), " DisplayMeasurement ", " NAC_AutoFlag ",⤦
Ç Name)

EndIf
DoWindow $"NAC_ "+ Name +" _Flag "
If ( V_Flag !=0)

6561 KillWindow $"NAC_ "+ Name +" _Flag "
Error_Message ( DisplayFlagWindow (Name), " DisplayFlagWindow ", " NAC_AutoFlag ", ⤦
Ç Name)

EndIf
DoWindow $"NAC_ "+ Name +" _Frames "
If ( V_Flag !=0)

6566 KillWindow $"NAC_ "+ Name +" _Frames "
Error_Message ( DisplayNonFlagged (Name), " DisplayNonFlagged ", " NAC_AutoFlag ", ⤦
Ç Name)

EndIf
AutoFlagged =1
Return NaN

6571 End
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//

Quantile
Function Quantile (Input , Level )
Wave Input
Variable Level

6576 Variable i
Duplicate /FREE Input Sorted
For (i= NumPnts ( Sorted ) -1;i >=0;i -=1)

If ( NumType ( Sorted [i]) !=0)
DeletePoints i, 1, Sorted

6581 EndIf
EndFor
If ( NumPnts ( Sorted ) <=0)

Return NaN
EndIf

6586 If (Level <=0)
Return WaveMin ( Sorted )

ElseIf (Level >=1)
Return WaveMax ( Sorted )

Else
6591 Sort Sorted , Sorted

Return ( Sorted [ Floor (( NumPnts ( Sorted ) -1)* Level )]+ Sorted [Ceil (( NumPnts ( Sorted )⤦
Ç -1)* Level )]) /2

EndIf
End
//

GetWhisker
6596 Function GetWhisker (Input , Threshold )

Wave Input
Variable Threshold
Variable i

Duplicate /FREE Input Sorted
6601 Sort Sorted , Sorted

For (i= NumPnts ( Sorted ) -1;i >=0;i -=1)
If ( NumType ( Sorted [i]) !=0)

DeletePoints i, 1, Sorted
EndIf

6606 EndFor
If ( NumPnts ( Sorted )==0)

Return NaN
EndIf
If (Threshold >= Quantile (Sorted , 0.5))

6611 If ( Sorted [ NumPnts ( Sorted ) -1]< Threshold )
Return Sorted [ NumPnts ( Sorted ) -1]

EndIf
For (i= NumPnts ( Sorted ) -1;i >0;i -=1)

If (( Sorted [i]>= Threshold ) && ( Sorted [i -1] < Threshold ))
6616 Return Sorted [i -1]

EndIf
EndFor

Else
If ( Sorted [0] > Threshold )

6621 Return Sorted [0]
EndIf
For (i=0;i< NumPnts ( Sorted );i+=1)

If (( Sorted [i]< Threshold ) && ( Sorted [i+1] >= Threshold ))
Return Sorted [i+1]

6626 EndIf
EndFor

EndIf
KillWaves Sorted
Return NaN

6631 End
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//

C.1.9 Experiment Averaging Functions
//

Function Results_Initialize
Function Results_Initialize ()

If ( DataFolderExists (" root: NAC_Average "))
6636 Return NAC_AvgAlreadyInitialized

EndIf
DFRef OldDF = GetDataFolderDFR ()
NewPath /O /Q CalDataPath NAC_DataPathStr
NewDataFolder /S root: NAC_Average

6641 NewDataFolder root: NAC_Average : Experiments
Make /N=0 AveragedEnthalpy , AveragedSticking , AveragedRadiation , ⤦
Ç DepositionRates , Thicknesses , MultiLayerEnthalpies , ⤦
Ç MultiLayerEnthalpyErrors

Make /N=0 /T Experiments
Make /O /N=2 StickingLimit =1, EnthalpyLimit
SetScale d, 0, 0, "J/mol", AveragedEnthalpy , EnthalpyLimit

6646 SetScale d, 0, 0, "m/s", DepositionRates
SetScale d, 0, 0, "m", Thicknesses
Variable /G ReferenceEnthalpy =NaN
SetFormula EnthalpyLimit , "root: NAC_Average : ReferenceEnthalpy "
String /G System =""

6651 NewDataFolder /S root: NAC_Average : Settings
Variable /G BinSize =0.05 // ML
Variable /G WWidth =400 , WHeight =300 , MarginTop =45
Variable /G Processed =0, AutoRecalculate =1, AutoDisplay =1
Variable /G LegendLines =8

6656 String /G ProjectVersion = NAC_Version
String Temp =""
SetDataFolder OldDF
Prompt Temp , " System Descriptor : "
DoPrompt /HELP ="" "NAC Average ", Temp

6661 System =Temp
If ( V_Flag )

Return UserAbort
EndIf
Return NoError

6666 End
//

Function NAC_Results_Load
Function NAC_Results_Load ()
Variable RefNum , i
String ExpName , Corrupt ="" , FileName

6671 If (! DataFolderExists (" root: NAC_Average "))
If ( Error_Message ( Results_Initialize () , " NAC_Results_Load "," ResultsInitialize⤦
Ç " ,""))

ExperimentModified 0
Return ErrorHandled

EndIf
6676 EndIf

Open /D /R /MULT =1 /F=" Igor Experiment Files (*. pxp):. pxp ;" RefNum
If (! StrLen ( S_Filename ))

Error_Message (UserAbort , " InProc ", " NAC_Results_Load ", "")
Return NaN

6681 EndIf
DFRef OldDF = GetDataFolderDFR
SetDataFolder root:
For (i=0;i< ItemsInList ( S_Filename , "\r");i+=1)

FileName = StringFromList (i, S_FileName ,"\r")
6686 LoadData /L=4 /O /Q /S=" NAC: Experiment :" /J=" ProjectVersion " /T= NAC_Import ⤦

Ç FileName
If ( GetRTError (1))

Error_Message ( NAC_IncompatibleExperiment , " InProc ", " NAC_Results_Load ", ⤦
Ç FileName [ StrSearch (FileName , ":" , Inf ,3)+1, Inf ])

Continue
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EndIf
6691 SVar Version =root: NAC_Import : ProjectVersion

StrSwitch ( Version )
Case "3.6 beta ":
Case "3.7 beta ":
Case "3.8 alpha ":

6696 Case "3.8 beta ":
Case "3.9 alpha ":
Case "3.9 beta ":
Case "3.10 alpha ":
Case "3.10 beta ":

6701 Case "3.10 gamma ":
Case "3.10 delta ":
Case "3.10 epsilon ":
Case "3.11":

LoadData /L=2 /O /Q /S=" NAC: FluxCalorimetry :" /J=" DosePerPulse ;Flux" /T=⤦
Ç NAC_Import FileName

6706 LoadData /L=2 /O /Q /S=" NAC: FluxCoating :" /J=" TotalThickness " /T=⤦
Ç NAC_Import FileName

ReName root: NAC_Import :Flux DepositionRate
Break

Case "3.12":
Case "3.13":

6711 Case "3.14":
LoadData /L=2 /O /Q /S=" NAC: RateCalorimetry :" /J=" DosePerPulse ;⤦

Ç DepositionRate " /T= NAC_Import FileName
LoadData /L=2 /O /Q /S=" NAC: RateCoating :" /J=" TotalThickness " /T=⤦

Ç NAC_Import FileName
Break

Default :
6716 Error_Message ( NAC_UnknownVersion , " InProc ", " NAC_Results_Load ", Version )

KillDataFolder NAC_Import
Continue

EndSwitch
LoadData /L=1 /O /Q /S=" NAC: Enthalpies :" /J=" Enthalpy ; Coverage ;⤦
Ç MultiLayerReference " /T= NAC_Import FileName

6721 LoadData /L=1 /O /Q /S=" NAC:Heat :" /J=" orig_Radiation " /T= NAC_Import FileName
LoadData /L=1 /O /Q /S=" NAC: Sticking :" /J=" orig_Desorption " /T= NAC_Import ⤦
Ç FileName
LoadData /L=2 /O /Q /S=" NAC: Enthalpies :" /J=" MultiLayerEnthalpy ;⤦
Ç MultiLayerEnthalpyError " /T= NAC_Import FileName
ExpName = PossiblyQuoteName ( FileName [ StrSearch (FileName , ":" , Inf ,3)+1,⤦
Ç StrSearch (FileName , "." , Inf ,3) -1])
If ( Exists (" root: NAC_Import : DosePerPulse ") !=2)

6726 Corrupt +=" DosePerPulse (V), "
EndIf
If ( Exists (" root: NAC_Import : TotalThickness ") !=2)

Corrupt +=" TotalThicknes (V), "
EndIf

6731 If ( Exists (" root: NAC_Import : DepositionRate ") !=2)
Corrupt +=" DepositionRate (V), "

EndIf
If ( Exists (" root: NAC_Import : MultiLayerEnthalpy ") !=2)

Corrupt +=" MultiLayerEnthalpy (V), "
6736 EndIf

If ( Exists (" root: NAC_Import : MultiLayerEnthalpyError ") !=2)
Corrupt +=" MultiLayerEnthalpyError (V), "

EndIf
If ( Exists (" root: NAC_Import : Enthalpy ") !=1)

6741 Corrupt +=" Enthalpy (W), "
EndIf
If ( Exists (" root: NAC_Import : orig_Desorption ") !=1)

Corrupt +=" orig_Desorption (W), "
EndIf

6746 If ( Exists (" root: NAC_Import : orig_Radiation ") !=1)
Corrupt +=" orig_Radiation (W), "

EndIf
If ( Exists (" root: NAC_Import : Coverage ") !=1)

Corrupt +=" Coverage (W), "
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6751 EndIf
If ( Exists (" root: NAC_Import : MultiLayerReference ") !=1)

Corrupt +=" MultiLayerReference (W), "
EndIf
If ( Exists (" root: NAC_Import : Enthalpy ") ==1 && Exists (" root: NAC_Import : Sticking⤦
Ç ") ==1)

6756 If ( NumPnts (root: NAC_Import : Enthalpy ) != NumPnts (root: NAC_Import : Sticking ) ⤦
Ç )

Corrupt +=" Data Mismatch (E/S), "
EndIf
If ( NumPnts (root: NAC_Import : Enthalpy ) == 0)

Corrupt +=" No Data (E), "
6761 Endif

If ( NumPnts (root: NAC_Import : Sticking )==0)
Corrupt +=" No Data (S), "

Endif
EndIf

6766 If ( StrLen ( Corrupt ))
Corrupt = RemoveEnding (Corrupt , ", ")
Error_Message ( NAC_CorruptExperiment , " InProc ", " NAC_Results_Load ", ExpName⤦

Ç +": "+ Corrupt )
KillDataFolder NAC_Import
SetDataFolder OldDF

6771 Return NaN
EndIf
If (! DataFolderExists (" root: NAC_Average : Experiments :"+ ExpName ))

NewDataFolder $"root: NAC_Average : Experiments :"+ Expname
Variable /G $"root: NAC_Average : Experiments :"+ ExpName +": DosePerPulse "

6776 Variable /G $"root: NAC_Average : Experiments :"+ ExpName +": SubstrateThickness "
Variable /G $"root: NAC_Average : Experiments :"+ ExpName +": DepositionRate "
Variable /G $"root: NAC_Average : Experiments :"+ ExpName +": MultiLayerEnthalpy "
Variable /G $"root: NAC_Average : Experiments :"+ ExpName +":⤦

Ç MultiLayerEnthalpyError "
EndIf

6781 NVar DoseImp =root: NAC_Import : DosePerPulse , ThicknessImp =root: NAC_Import :⤦
Ç TotalThickness , RateImp =root: NAC_Import : DepositionRate
NVar MultiLayerEnthalpyImp =root: NAC_Import : MultiLayerEnthalpy , ⤦
Ç MultiLayerEnthalpyErrorImp =root: NAC_Import : MultiLayerEnthalpyError
NVar Dose=$"root: NAC_Average : Experiments :"+ ExpName +": DosePerPulse "
NVar SubstrateThickness =$"root: NAC_Average : Experiments :"+ ExpName +":⤦
Ç SubstrateThickness "
NVar Rate=$"root: NAC_Average : Experiments :"+ ExpName +": DepositionRate "

6786 NVar MultiLayerEnthalpy =$"root: NAC_Average : Experiments :"+ ExpName +":⤦
Ç MultiLayerEnthalpy "
NVar MultiLayerEnthalpyError =$"root: NAC_Average : Experiments :"+ ExpName +":⤦
Ç MultiLayerEnthalpyError "
Duplicate /O root: NAC_Import : Enthalpy $"root: NAC_Average : Experiments :"+⤦
Ç ExpName +": Enthalpy "
Duplicate /O root: NAC_Import : orig_Desorption $"root: NAC_Average : Experiments⤦
Ç :"+ ExpName +": Sticking "
Duplicate /O root: NAC_Import : orig_Radiation $"root: NAC_Average : Experiments :"+⤦
Ç ExpName +": Radiation "

6791 Duplicate /O root: NAC_Import : Coverage $"root: NAC_Average : Experiments :"+⤦
Ç ExpName +": Coverage "
Duplicate /O root: NAC_Import : MultiLayerReference $"root: NAC_Average :⤦
Ç Experiments :"+ ExpName +": MultiLayerReference "
Wave Sticking =$"root: NAC_Average : Experiments :"+ ExpName +": Sticking "
Sticking =1- Sticking
Dose= DoseImp

6796 SubstrateThickness = ThicknessImp
Rate= RateImp
MultiLayerEnthalpy = MultiLayerEnthalpyImp
MultiLayerEnthalpyError = MultiLayerEnthalpyErrorImp
KillDataFolder NAC_Import

6801 EndFor
SetDataFolder OldDF
NVar Processed =root: NAC_Average : Settings :Processed , AutoRecalc =root: NAC_Average⤦
Ç : Settings : AutoRecalculate , AutoDisplay =root: NAC_Average : Settings :⤦
Ç AutoDisplay
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Processed =0
If ( AutoRecalc )

6806 NAC_Results_Average ()
EndIf
Return NaN

End
//

Function NAC_Results_Average
6811 Function NAC_Results_Average ()

String ExpName
Variable i, j, MaxCoverage =0
DFRef OldDF = GetDatafolderDFR ()
Variable NumExp , Cont , NP

6816 If (! DataFolderExists (" root: NAC_Average "))
Error_Message ( Results_Initialize () , " NAC_Results_Load "," ResultsInitialize ","⤦
Ç Average ")

EndIf
SetDataFolder root: NAC_Average
NVar BinSize =root: NAC_Average : Settings :BinSize , RefEnthalpy =root: NAC_Average :⤦
Ç ReferenceEnthalpy

6821 NumExp = CountObjects (" root: NAC_Average : Experiments " ,4)
If (NumExp <=0)

Error_Message ( NAC_NothingToProcess , " InProc "," NAC_Results_Average "," Average ")
SetDataFolder OldDF
Return NaN

6826 EndIf
Make /D /O /N=( NumExp ) RefEnthalpies =0, Doses
Wave /T Experiments
Wave DepositionRates , Thicknesses , MultiLayerEnthalpies , ⤦
Ç MultiLayerEnthalpyErrors

ReDimension /N=( NumExp ) Experiments , DepositionRates , Thicknesses , ⤦
Ç MultiLayerEnthalpies , MultiLayerEnthalpyErrors

6831 For (i=0; i< NumExp ;i+=1)
ExpName = PossiblyQuoteName ( GetIndexedObjName (" root: NAC_Average : Experiments :", ⤦
Ç 4,i))
Cont = ( Exists (" root: NAC_Average : Experiments :"+ ExpName +": Coverage ") ==1) && (⤦
Ç Exists (" root: NAC_Average : Experiments :"+ ExpName +": MultiLayerReference ") ==1)
Cont = Cont && ( Exists (" root: NAC_Average : Experiments :"+ ExpName +": Sticking ")⤦
Ç ==1) && ( Exists (" root: NAC_Average : Experiments :"+ ExpName +": Enthalpy ") ==1)
Cont = Cont && ( Exists (" root: NAC_Average : Experiments :"+ ExpName +": DosePerPulse⤦
Ç ") ==2)

6836 Cont = Cont && ( Exists (" root: NAC_Average : Experiments :"+ ExpName +":⤦
Ç MultiLayerEnthalpy ") ==2) && ( Exists (" root: NAC_Average : Experiments :"+⤦
Ç ExpName +": MultiLayerEnthalpyError ") ==2)
If (! Cont)

DoAlert /T=" NAC Averaging " 0, " Experiment Structure for "+ ExpName +" is ⤦
Ç corrupt !\r\r Removal is recommended ."

Error_Message ( NAC_CorruptExperiment , " InProc "," NAC_Results_Average ", ExpName⤦
Ç )

SetDataFolder OldDF
6841 Return NaN

EndIf
Wave Coverage =$"root: NAC_Average : Experiments :"+ ExpName +": Coverage ", Ref=$"⤦
Ç root: NAC_Average : Experiments :"+ ExpName +": MultiLayerReference "
NVar Dose=$"root: NAC_Average : Experiments :"+ ExpName +": DosePerPulse ", ⤦
Ç DepositionRate =$"root: NAC_Average : Experiments :"+ ExpName +": DepositionRate "
NVar Thickness =$"root: NAC_Average : Experiments :"+ ExpName +": SubstrateThickness "

6846 NVar MultiLayerEnthalpy =$"root: NAC_Average : Experiments :"+ ExpName +":⤦
Ç MultiLayerEnthalpy ", MultiLayerEnthalpyError =$"root: NAC_Average : Experiments⤦
Ç :"+ ExpName +": MultiLayerEnthalpyError "
Experiments [i]= ExpName
DepositionRates [i]= DepositionRate
Thicknesses [i]= Thickness
MultiLayerEnthalpies [i]= MultiLayerEnthalpy

6851 MultiLayerEnthalpyErrors [i]= MultiLayerEnthalpyError
RefEnthalpies [i]= Ref [0]
Doses [i]= Dose
If ( WaveMax ( Coverage )>MaxCoverage )
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MaxCoverage = WaveMax ( Coverage )
6856 EndIf

EndFor
WaveStats /Q RefEnthalpies
If (Abs( V_SDev / V_Avg ) >0.05)

If (Abs(V_Min - V_Avg )>Abs(V_Max - V_Avg ))
6861 ExpName = GetIndexedObjName (" root: NAC_Average : Experiments :", 4, V_MinLoc )

Else
ExpName = GetIndexedObjName (" root: NAC_Average : Experiments :", 4, V_MaxLoc )

EndIf
DoAlert /T=" NAC Averaging " 0, " Experiment Incompatible : "+ ExpName +"!\r\r ⤦
Ç Removal is recommended ."

6866 Error_Message ( NAC_IncompatibleExperiment , " InProc "," NAC_Results_Average ",⤦
Ç ExpName )
SetDataFolder OldDF
RefEnthalpy =NaN
Return NaN

EndIf
6871 RefEnthalpy = V_Avg

Make /FREE /D /N=( Ceil( MaxCoverage / BinSize )*10) SumPoints =0
Make /O /N=( Ceil( MaxCoverage / BinSize )*10) AveragedEnthalpy =0, AveragedSticking⤦
Ç =0, AveragedRadiation =0

SetScale /P x, 0, 0.1* BinSize , "ML", AveragedEnthalpy , AveragedSticking , ⤦
Ç AveragedRadiation , SumPoints

For (i=0; i< NumExp ;i+=1)
6876 ExpName = PossiblyQuoteName ( GetIndexedObjName (" root: NAC_Average : Experiments :", ⤦

Ç 4,i))
Wave Sticking =$"root: NAC_Average : Experiments :"+ ExpName +": Sticking "
Wave Radiation =$"root: NAC_Average : Experiments :"+ ExpName +": Radiation "
Wave Enthalpy =$"root: NAC_Average : Experiments :"+ ExpName +": Enthalpy "
Wave Coverage =$"root: NAC_Average : Experiments :"+ ExpName +": Coverage "

6881 NP= NumPnts ( Sticking ) // Remove flagegd frames at the begining
For (j=0; (j<NP) && (( Sticking [j]==1 && Enthalpy [j ]==0) || NumType ( Enthalpy [⤦
Ç j]) !=0);j+=1)
EndFor
If (j >0)

DeletePoints /M=0 0, j, Sticking , Radiation , Enthalpy , Coverage
6886 EndIf

NP= NumPnts ( Sticking ) // Remove flagegd frames at the end
For (j=NP -1; (j >0) && (( Sticking [j]==1 && Enthalpy [j ]==0) || NumType (⤦
Ç Enthalpy [j]) !=0);j -=1)
EndFor
If (j<NP -1)

6891 DeletePoints /M=0 j+1, Inf , Sticking , Radiation , Enthalpy , Coverage
EndIf
AveragedEnthalpy += (x <= WaveMax ( Coverage )) ? Interp (x, Coverage , Enthalpy ) : 0
AveragedSticking += (x <= WaveMax ( Coverage )) ? Interp (x, Coverage , Sticking ) : 0
AveragedRadiation += (x <= WaveMax ( Coverage )) ? Interp (x, Coverage , Radiation ) :⤦
Ç 0

6896 SumPoints +=(x <= WaveMax ( Coverage )) ? 1 :0
EndFor
AveragedEnthalpy /= SumPoints
AveragedSticking /= SumPoints
AveragedRadiation /= SumPoints

6901 ReSample /DOWN =10/ WINF=None AveragedEnthalpy , AveragedSticking , ⤦
Ç AveragedRadiation

SetScale /P x, 0, BinSize , "ML", AveragedEnthalpy , AveragedSticking , ⤦
Ç AveragedRadiation

SetScale d, 0, 0, "J/mol", AveragedEnthalpy
NVar Processed =root: NAC_Average : Settings :Processed , AutoDisplay =root:⤦
Ç NAC_Average : Settings : AutoDisplay

Processed =1
6906 SetDataFolder OldDF

If ( AutoDisplay )
NAC_Results_Display ()

EndIf
Return NaN

6911 End
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//

Function NAC_Results_Remove
Function NAC_Results_Remove ()

If (! DataFolderExists (" root: NAC_Average "))
Error_Message ( Results_Initialize () , " NAC_Results_Load "," ResultsInitialize⤦
Ç " ,"")

6916 EndIf
String ExpList ="" , ExpName
Variable i
Variable NumExp = CountObjects (" root: NAC_Average : Experiments " ,4)
For (i=0; i< NumExp ; i+=1)

6921 ExpList += GetIndexedObjName (" root: NAC_Average : Experiments :", 4,i)+";"
EndFor
ExpList =" Cancel ;"+ ExpList
Prompt ExpName , " Remove Experiment : ", popup , ExpList
DoPrompt /HELP ="" "NAC Average ", ExpName

6926 If ( V_Flag || StringMatch (ExpName ," Cancel "))
Return NaN

EndIf
NVar Processed =root: NAC_Average : Settings :Processed , AutoRecalc =root: NAC_Average⤦
Ç : Settings : AutoRecalculate , AutoDisplay =root: NAC_Average : Settings :⤦
Ç AutoDisplay

DoWindow NAC_ResultEnthalpy
6931 If ( V_Flag )

RemoveFromGraph /W= NAC_ResultEnthalpy $ExpName
EndIf
DoWindow NAC_ResultSticking
If ( V_Flag )

6936 RemoveFromGraph /W= NAC_ResultSticking $ExpName
EndIf
DoWindow NAC_ResultRadiation
If ( V_Flag )

RemoveFromGraph /W= NAC_ResultRadiation $ExpName
6941 EndIf

KillDataFolder $"root: NAC_Average : Experiments :"+ PossiblyQuoteName ( ExpName )
Processed =0
If ( AutoRecalc )

NAC_Results_Average ()
6946 EndIf

Return NaN
End
//

Function NAC_Results_Display
Function NAC_Results_Display ()

6951 If (! DataFolderExists (" root: NAC_Average "))
Error_Message ( Results_Initialize () , " NAC_Results_Load "," ResultsInitialize⤦
Ç " ,"")

EndIf
Variable i, j, NumExp , Cont , MaxCoverage =0
String ExpName , Color

6956 NVar WWidth =root: NAC_Average : Settings :WWidth , WHeight =root: NAC_Average : Settings⤦
Ç :WHeight , MarginTop =root: NAC_Average : Settings : MarginTop

NVar RefEnthalpy =root: NAC_Average : ReferenceEnthalpy
NVar Processed =root: NAC_Average : Settings : Processed
SVar System =root: NAC_Average : System
NumExp = CountObjects (" root: NAC_Average : Experiments " ,4)

6961 If (( NumExp <=0) || ! Processed )
Error_Message ( NAC_AverageWavesMissing , " InProc "," NAC_Results_Average ","⤦
Ç Results ")
Return NaN

EndIf
Cont =1

6966 For (i=0; i< NumExp ;i+=1)
ExpName = PossiblyQuoteName ( GetIndexedObjName (" root: NAC_Average : Experiments :", ⤦
Ç 4,i))
Cont=Cont && ( Exists (" root: NAC_Average : Experiments :"+ ExpName +": Sticking ") ==1)⤦
Ç && ( Exists (" root: NAC_Average : Experiments :"+ ExpName +": Enthalpy ") ==1) && (⤦
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Ç Exists (" root: NAC_Average : Experiments :"+ ExpName +": Coverage ") ==1)
If (! Cont)

DoAlert /T=" NAC Averaging " 0, " Experiment Structure for "+ ExpName +" is ⤦
Ç corrupt !\r\r Removal is recommended ."

6971 Error_Message ( NAC_CorruptExperiment , " InProc "," NAC_Results_Average ", ExpName⤦
Ç )

SetDataFolder OldDF
Return NaN

EndIf
Wave Coverage =$"root: NAC_Average : Experiments :"+ ExpName +": Coverage "

6976 If ( WaveMax ( Coverage )>MaxCoverage )
MaxCoverage = WaveMax ( Coverage )

EndIf
EndFor
If ( Exists (" root: NAC_Average : AveragedEnthalpy ") !=1)

6981 Error_Message ( NAC_AdsorptionMissing , " InProc "," NAC_Results_Display "," Average⤦
Ç ")
Return NaN

EndIf
If ( Exists (" root: NAC_Average : AveragedSticking ") !=1)

Error_Message ( NAC_StickingMissing , " InProc "," NAC_Results_Display "," Average ")
6986 Return NaN

EndIf
If ( Exists (" root: NAC_Average : AveragedRadiation ") !=1)

// Error_Message ( NAC_StickingMissing , " InProc "," NAC_Results_Display "," Average⤦
Ç ")

// Return NaN
6991 EndIf

Make /O /N=2 root: NAC_Average : RadiationLimit =1
Wave AveragedEnthalpy =root: NAC_Average : AveragedEnthalpy , AveragedSticking =root:⤦
Ç NAC_Average : AveragedSticking , AveragedRadiation =root: NAC_Average :⤦
Ç AveragedRadiation

Wave StickingLimit =root: NAC_Average : StickingLimit , EnthalpyLimit =root:⤦
Ç NAC_Average : EnthalpyLimit , RadiationLimit =root: NAC_Average : RadiationLimit

String WName , NameList =" NAC_ResultEnthalpy ; NAC_ResultSticking ;⤦
Ç NAC_ResultRadiation ", LabelList =" Enthalpy ; Sticking ; Radiation ;", WLabel

6996 NVar LegendLines =root: NAC_Average : Settings : LegendLines
Make /T /N=( LegendLines ) /FREE LegendTextLines =""
String LegendText =""
SetScale /I x 0, Ceil( MaxCoverage *5) /5, "ML" StickingLimit , EnthalpyLimit , ⤦
Ç RadiationLimit

For (i=0;i< ItemsInList ( NameList );i+=1)
7001 WName = StringFromList (i,NameList ,";")

WLabel = StringFromList (i,LabelList ,";")
DoWindow $WName
If ( V_Flag )

KillWindow $WName
7006 EndIf

Display /N= $WName /K=1 /W=(i* WWidth +150+ i*30 , 500 , (i+1)* WWidth +150+ i*30 , ⤦
Ç 500+ WHeight ) as " Averaged "+ WLabel
ModifyGraph /W= $WName margin (Top)= MarginTop
For (j=0; j< NumExp ; j+=1)

ExpName = GetIndexedObjName (" root: NAC_Average : Experiments :", 4,j)
7011 AppendToGraph /W= $WName $"root: NAC_Average : Experiments :"+ PossiblyQuoteName (⤦

Ç ExpName ) +":"+ WLabel /TN= $ExpName vs $"root: NAC_Average : Experiments :"+⤦
Ç PossiblyQuoteName ( ExpName )+": Coverage "

ModifyGraph /W= $WName Mode( $ExpName )=2, LSize ( $ExpName )=1.5 , RGB( $ExpName )⤦
Ç =( HSL2RGB (j *210/ NumExp +50 , 240 , 100 , 0) , HSL2RGB (j *210/ NumExp +50 , 240 , 100 ,⤦
Ç 1) , HSL2RGB (j *210/ NumExp +50 , 240 , 100 , 2))
EndFor
AppendToGraph /W= $WName $"root: NAC_Average : Averaged "+ WLabel /TN=Average , $"⤦
Ç root: NAC_Average :"+ WLabel +" Limit "/ TN= Reference
ModifyGraph LStyle ( Reference )=7, LSize ( Reference )=1.5 , RGB( Reference )⤦
Ç =(17408 ,17408 ,17408) , Mode( Average )=2, LSize ( Average )=2, RGB( Average )⤦
Ç =(0 ,0 ,0)

7016 EndFor
For (j=0; j< NumExp ; j+=1)

ExpName = PossiblyQuoteName ( GetIndexedObjName (" root: NAC_Average : Experiments :", ⤦
Ç 4,j))
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NVar Thickness =$"root: NAC_Average : Experiments :"+ ExpName +": SubstrateThickness "
// LegendTextLines [Mod(j, LegendLines ) ]+="\ s("+ ExpName +") "+ ExpName

7021 Color ="("+ Num2Str ( HSL2RGB (j *210/ NumExp +50 , 240 , 100 , 0))+", "+ Num2Str ( HSL2RGB⤦
Ç (j *210/ NumExp +50 , 240 , 100 , 1))+", "+ Num2Str ( HSL2RGB (j *210/ NumExp +50 , 240 , ⤦
Ç 100 , 2))+")"
LegendTextLines [Mod(j, LegendLines ) ]+="\\ k"+ Color +"\\K"+ Color +"\\ W519 \\K⤦
Ç (0 ,0 ,0)\t"+ ExpName +"\t"

EndFor
For (i=0;i< LegendLines ;i+=1)

If ( StrLen ( LegendTextLines [i]))
7026 LegendText += RemoveEnding ( LegendTextLines [i] ,"\t") +"\r"

EndIf
EndFor
If (NumExp <= LegendLines )

LegendText +="\\ k(0 ,0 ,0) \\K(0 ,0 ,0)\W519 \\K(0 ,0 ,0)\ tAverage \r\s( Reference )\⤦
Ç tReference "

7031 Else
LegendText +="\\ k(0 ,0 ,0) \\K(0 ,0 ,0)\W519 \\K(0 ,0 ,0)\ tAverage \t\s( Reference )\⤦
Ç tReference "

EndIf
Legend /W= NAC_ResultEnthalpy /C /N= text0 /B=1 /F=0 /A=RT /H={0 ,2 ,10} /T⤦
Ç ={28 ,100 ,128} LegendText

Legend /W= NAC_ResultSticking /C /N= text0 /B=1/F=0 /A=RB /H={0 ,2 ,10} /T⤦
Ç ={28 ,100 ,128} LegendText

7036 Legend /W= NAC_ResultRadiation /C /N= text0 /B=1/F=0 /A=RT /H={0 ,2 ,10} /T⤦
Ç ={28 ,100 ,128} LegendText

TextBox /W= NAC_ResultEnthalpy /C/N= text1 /F=0/Z=1/H={0 ,2 ,10}/A=MT/X=0/Y=5/E=2 /B⤦
Ç =1 "\\ Z14Enthalpies for "+ System

TextBox /W= NAC_ResultSticking /C/N= text1 /F=0/Z=1/H={0 ,2 ,10}/A=MT/X=0/Y=5/E=2 /B⤦
Ç =1 "\\ Z14Sticking for "+ System

TextBox /W= NAC_ResultRadiation /C/N= text1 /F=0/Z=1/H={0 ,2 ,10}/A=MT/X=0/Y=5/E=2 /⤦
Ç B=1 "\\ Z14Radiation for "+ System

SetAxis /W= NAC_ResultEnthalpy /A /N=1 /E=3 Left
7041 SetAxis /W= NAC_ResultSticking /A /N=1 /E=3 Left

SetAxis /W= NAC_ResultRadiation Left 0, 3
Label /W= NAC_ResultEnthalpy Left "Heat of Adsorption (\\U)"
Label /W= NAC_ResultSticking Left " Sticking Probability "
Label /W= NAC_ResultRadiation Left " Radiation Contribution "

7046 WName =" NAC_ResultAverages "
DoWindow $WName
If ( V_Flag )

DoWindow /F $WName
Else

7051 Display /N= $WName /K=1 /W=( WWidth +180 , 130 , 2* WWidth +180 , 130+ WHeight ) as "⤦
Ç Averages "
ModifyGraph /W= $WName margin (Top)= MarginTop
AppendToGraph /W= $WName /L root: NAC_Average : AveragedEnthalpy , root:⤦
Ç NAC_Average : EnthalpyLimit
AppendToGraph /W= $WName /R root: NAC_Average : AveragedSticking , root:⤦
Ç NAC_Average : StickingLimit
ModifyGraph /W= $WName LStyle ( EnthalpyLimit )=7, LSize ( EnthalpyLimit )=1.25 , RGB⤦
Ç ( EnthalpyLimit )=(65280 ,0 ,0)

7056 ModifyGraph /W= $WName LStyle ( StickingLimit )=7, LSize ( StickingLimit )=1.25 , RGB⤦
Ç ( StickingLimit )=(0 ,0 ,65280)
ModifyGraph /W= $WName Mode( AveragedEnthalpy )=2, LSize ( AveragedEnthalpy )=2, ⤦
Ç RGB( AveragedEnthalpy )=(65280 ,0 ,0)
ModifyGraph /W= $WName Mode( AveragedSticking )=2, LSize ( AveragedSticking )=2, ⤦
Ç RGB( AveragedSticking )=(0 ,0 ,65280)
SetAxis /W= $WName /A /N=1 /E=3 Left
SetAxis /W= $WName /A /N=1 /E=3 Right

7061 Label /W= $WName Left "\\K(52224 ,0 ,0) Heat of Adsorption (\\U)"
Label /W= $WName Right "\\K(0 ,0 ,52224) Sticking Probability "
TextBox /W= $WName /C/N= text1 /F=0/Z=1/H={0 ,2 ,10}/A=MT/X=0/Y=5/E=2 /B=1 "\\ Z14⤦
Ç "+ System

EndIf
WName =" NAC_ResultAuxilaray "

7066 DoWindow $WName
If ( V_Flag )

KillWindow $WName
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EndIf
Display /N= $WName /K=1 /W=(150 , 130 , WWidth +150 , 130+ WHeight ) as " Auxiliary ⤦
Ç Information "

7071 ModifyGraph /W= $WName margin (Top)= MarginTop
AppendToGraph /W= $WName /L root: NAC_Average : DepositionRates vs root: NAC_Average⤦
Ç : Experiments

AppendToGraph /W= $WName /R root: NAC_Average : Thicknesses vs root: NAC_Average :⤦
Ç Experiments

ModifyGraph /W= $WName Mode =3, Marker ( DepositionRates )=18 , Marker ( Thicknesses )⤦
Ç =18 , marker ( DepositionRates )=19 , MSize =3, rgb( DepositionRates )=(52224 ,0 ,0) ,⤦
Ç rgb( Thicknesses )=(0 ,0 ,52224)

SetAxis /W= $WName /A /N=1 /E=1 Left
7076 SetAxis /W= $WName /A /N=1 /E=1 Right

Label /W= $WName Left "\\K(52224 ,0 ,0) Calorimetry Deposition Rate (\\U)"
Label /W= $WName Right "\\K(0 ,0 ,52224) Substrate Thickness (\\U)"
Label /W= $WName Bottom " Experiment "
If ( NumPnts (root: NAC_Average : Experiments ) >4)

7081 ModifyGraph /W= $WName tkLblRot ( Bottom )=90
EndIf
TextBox /W= $WName /C/N= text1 /F=0/Z=1/H={0 ,2 ,10}/A=MT/X=0/Y=5/E=2 /B=1 "\\ Z14 "+⤦
Ç System

Return NoError
End

7086 //

C.1.10 Miscellaneous
//

GetPrefix
Static Function GetPrefix (Str)
String Str

If ( StrSearch (Str ," ms " ,0) >=0)
7091 Return 1e -3

EndIf
If ( StrSearch (Str ," kHz " ,0) >=0)

Return 1e3
EndIf

7096 Return 1
End
//

Function SauerbreyThickness
Function SauerbreyThickness (F0 , F, Z, D) //m
Variable F0 , F, Z, D

7101 Variable Zq =8.83 // g/cm ^2*s
Variable Dq =2.65 // g/cm ^3
Variable Nq =1.661 e6 // Hz*mm

Return Dq/D * Nq/F*Z /( Pi*Zq)*ATan(Zq/Z*Tan(Pi *((F0 -F)/F0))) /1000
End

7106 //

Function HSL2RGB
Function HSL2RGB (Hue , Sat , Lum , Ch)
// http :// en. wikipedia .org/wiki/ HSL_and_HSV
// Igor uses 240 as maximum for Hue , Sat & Lum
Variable Hue , Sat , Lum , Ch

7111 Variable H, C, X, m
Variable R, G, B

If ( NumType (Hue)!=0)
Return 0

EndIf
7116 Hue=Mod(Hue ,240)

Sat=Sat /240
Lum=Lum /240
H=Hue /40
C=(1 - Abs (2* Lum -1))*Sat

7121 X=C*(1 - Abs(Mod(H ,2) -1))
If (H <1)

R=C; G=X; B=0
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ElseIf (H <2)
R=X; G=C; B=0

7126 ElseIf (H <3)
R=0; G=C; B=X

ElseIf (H <4)
R=0; G=X; B=C

ElseIf (H <5)
7131 R=X; G=0; B=C

Else
R=C; G=0; B=X

EndIf
m=Lum -C/2

7136 Switch (Ch)
Case 0:

Return (R+m) *65535
Break

Case 1:
7141 Return (G+m) *65535

Break
Case 2:

Return (B+m) *65535
Break

7146 EndSwitch
End
//

Function GetSubstanceName
Function /S GetSubstanceName ( Substance )
String Substance

7151 If ( StringMatch (Substance , "Mg *"))
Return " Magnesium "

ElseIf ( StringMatch (Substance , "Ca *"))
Return " Calcium "

ElseIf ( StringMatch (Substance , "Cu *"))
7156 Return " Copper "

ElseIf ( StringMatch (Substance , "Li *"))
Return " Lithium "

ElseIf ( StringMatch (Substance , "Zn *"))
Return "Zinc"

7161 ElseIf ( StringMatch (Substance , " PTCDA *"))
Return " PTCDA "

ElseIf ( StringMatch (Substance , "2 HPc *"))
Return " Phtalocyanine "

ElseIf ( StringMatch (Substance , "2 HTPP *"))
7166 Return " Tetraphenyl Porphyrin "

ElseIf ( StringMatch (Substance , "6T*"))
Return " Sexithiophene "

Else
Return Substance [0, strsearch (Substance , "(" , 0) -1]

7171 EndIf
End
//

Function NAC_UpdateVersion
Function NAC_UpdateVersion ()
DFRef OldDF = GetDataFolderDFR ()

7176 String LaserMeasurements =" LaserReference ; Transmission ; ReflecBefore ; ReflecAfter ;⤦
Ç Deconvolution ;"

String FluxMeasurements =" FluxCalorimetry ; FluxCoating ;"
String OtherMeasurements =" Radiation ;Heat; Sticking ; ZeroSticking ;"
String AuxList =""
Variable i, j, Updated =0

7181 String MeasurmentsList = LaserMeasurements + OtherMeasurements
String WName , Name

If (! DataFolderExists (" root:NAC :") && ! DataFolderExists (" root: NAC_Average :"))
Error_Message ( NAC_NotInitialized , " InProc ", " NAC_UpdateVersion ", "")
Return NaN

7186 EndIf
If ( DataFolderExists (" root:NAC "))
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If ( Exists (" root:NAC: Experiment : ProjectVersion ") !=2)
Print " Unable to patch from unknown version "
Return -1

7191 EndIf
SVar Version =root:NAC: Experiment : ProjectVersion
StrSwitch ( Version )

Case "3.6 beta ":
Print " Patching from NAC 3.6 beta"

7196 SetDataFolder root:NAC:GUI
Variable /G RangeDeconvolution
String /G NameRangeDeconvolution =""
For (i=0;i< ItemsInList ( MeasurmentsList );i+=1)

SetDataFolder $"root:NAC :"+ StringFromList (i, MeasurmentsList )
7201 Variable /G BrowseDeconvolutionIndex =0

EndFor
Version ="3.7 beta"

Case "3.7 beta ":
Print " Patching from NAC 3.7 beta"

7206 For (i=0;i< ItemsInList ( MeasurmentsList );i+=1)
Name= StringFromList (i, MeasurmentsList )
SetDataFolder $"root:NAC :"+ Name
ReName NumberOfPulses , NumberOfFrames
ReName EffectivePulses , EffectiveFrames

7211 ReName CurrentPulse , CurrentFrame
SetFormula $"root:NAC :"+ StringFromList (i, MeasurmentsList ,";") +":⤦

Ç EffectiveFrames " "root:NAC :"+ StringFromList (i, MeasurmentsList ,";") +":⤦
Ç NumberOfFrames -Sum(root:NAC :"+ StringFromList (i, MeasurmentsList ,";") +":⤦
Ç FlagList )"

WName =" NAC_ "+ Name +" _AvgDeconv "
DoWindow $WName
If ( V_Flag )

7216 SVar FileName
TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= Caption /A=MC /B=1 "\⤦

Ç JCDeconvoluted Average for "+ Name +" Measurement \r\JC "+ FileName +": \K⤦
Ç (0 ,0 ,65280) Even Frame \K(0 ,0 ,0) \K(0 ,52224 ,0) Odd Frame "

EndIf
WName =" NAC_ "+ Name +" _Avg"
DoWindow $WName

7221 If ( V_Flag )
SVar FileName
TextBox /W= $WName /A=MT /C/E/F=0 /X=0 /Y=5 /N= Caption /A=MC /B=1 "\⤦

Ç JCDeconvolution for "+ Name +" Measurement \r\JC "+ FileName +": \K(0 ,0 ,65280)⤦
Ç Even Frame \K(0 ,0 ,0) \K(0 ,52224 ,0) Odd Frame "

EndIf
WName =" NAC_ "+ Name +" _Full "

7226 DoWindow $WName
If ( V_Flag )

KillWindow $WName
DisplayMeasurement (Name)

EndIf
7231 WName =" NAC_ "+ Name +" _Pulses "

DoWindow $WName
If ( V_Flag )

KillWindow $WName
DisplayNonFlagged (Name)

7236 EndIf
WName =" NAC_ "+ Name +" _Flag "
DoWindow $WName
If ( V_Flag )

KillWindow $WName
7241 DisplayFlagWindow (Name)

EndIf
WName =" NAC_ "+ Name +" _BrowseDeconv "
DoWindow $WName
If ( V_Flag )

7246 DoWindow /T $WName , Name +" Deconvoluted Frame "
DoDeconvolutionTextBox (Name)

EndIf

829



C Program Codes

SetDataFolder $"root:NAC :"+ StringFromList (i, MeasurmentsList )+":⤦
Ç Auxiliaries "

AuxList = WaveList ("*" , ";" , "")
7251 For (j=0;j< ItemsInList (AuxList , ";");j+=1)

Wave AuxWave = $StringFromList (j, AuxList , ";")
If ( StringMatch ( WaveUnits (AuxWave , 0) , " Pulse "))

SetScale /P x, DimOffset (AuxWave , 0) , DimDelta (AuxWave , 0) , " Frame⤦
Ç ", AuxWave

EndIf
7256 EndFor

SetDataFolder $"root:NAC :"+ StringFromList (i, MeasurmentsList )+":⤦
Ç Statistics "

Wave Amplitude
SetScale /P x, 0, 1, " Frame ", Amplitude

EndFor
7261 SetDataFolder root:NAC: Machine

ReName FluxAveragingWindow FluxFittingWindow
SetDataFolder root:NAC: Experiment
ReName DataPointsPerPulse , DataPointsPerFrame
SetDataFolder root:NAC: Deconvolution

7266 ReName DataPointsPerPulse , DataPointsPerFrame
WName =" NAC_Radiation_Trend "
DoWindow $WName
If ( V_Flag )

Label /W= $WName Bottom " Frame "
7271 EndIf

WName =" NAC_Desorption_Trend "
DoWindow $WName
If ( V_Flag )

Label /W= $WName Bottom " Frame "
7276 EndIf

Version ="3.8 alpha "
Case "3.8 alpha ":

Print " Patching from 3.8 NAC alpha "
PathInfo CalDataPath

7281 String Path= S_Path
String /G root:NAC: Experiment : ExperimentName =""
SVar ExpName =root:NAC: Experiment : ExperimentName
If (! StringMatch (Path , NAC_DataPathStr ))

ExpName =Path[ StrSearch (Path , ":" , StrLen (Path) -2,3)+1, StrLen (Path) -2]
7286 EndIf

SVar CoatSubstance =root:NAC: FluxCoating :Substance , CalSubstance =root:NAC:⤦
Ç FluxCalorimetry : Substance

If ( StrLen ( CoatSubstance ))
String /G root:NAC: FluxCoating : SubstanceName = GetSubstanceName (⤦

Ç CoatSubstance )
Else

7291 String /G root:NAC: FluxCoating : SubstanceName =""
EndIf
If ( StrLen ( CalSubstance ))

String /G root:NAC: FluxCalorimetry : SubstanceName = GetSubstanceName (⤦
Ç CalSubstance )

Else
7296 String /G root:NAC: FluxCoating : SubstanceName =""

EndIf
Version ="3.8 beta"

Case "3.8 beta ":
Print " Patching from NAC 3.8 beta"

7301 KillVariables root:NAC: Machine : QCMToolingCoating
ReName root:NAC: Machine : LasPowCorr , LaserPowerCorrection
ReName root:NAC: Machine : QCMToolingCal , QCMToolingCalorimetry
ReName root:NAC: Machine : QCMToolingCoat QCMToolingCoating
Rename root:NAC: Machine : QMSToolingCal QMSToolingCalorimetry

7306 SVar SubstCoat =root:NAC: FluxCoating :Substance , SubstCal =root:NAC:⤦
Ç FluxCalorimetry : Substance

String /G root:NAC: FluxCoating : SubstanceName = GetSubstanceName ( SubstCoat )
String /G root:NAC: FluxCalorimetry : SubstanceName = GetSubstanceName (⤦

Ç SubstCal )
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Error_Message ( ProcessProc (" Deconvolution ") , " ProcessProc ", "⤦
Ç NAC_UpdateVersion ", " Deconvolution ")

Print " Deconvolution needs to be performed again "
7311 Version ="3.9 alpha "

Case "3.9 alpha ":
Print " Patching from NAC 3.9 alpha "
KillDependencies ()
If ( Exists (" root:NAC: Machine : QCMToolingCoat ") ==2)

7316 KillVariables /Z root:NAC: Machine : QCMToolingCoating
ReName root:NAC: Machine : QCMToolingCoat QCMToolingCoating

EndIf
If ( Exists (" root:NAC: Machine : QCMToolingCal ") ==2)

KillVariables /Z root:NAC: Machine : QCMToolingCalorimetry
7321 Rename root:NAC: Machine : QCMToolingCal QCMToolingCalorimetry

EndIf
If ( Exists (" root:NAC: Machine : QMSToolingCal ") ==2)

KillVariables /Z root:NAC: Machine : QMSToolingCalorimetry
Rename root:NAC: Machine : QMSToolingCal QMSToolingCalorimetry

7326 EndIf
Variable /G root:NAC:GUI: LoadSupportFiles =0
Variable /G root:NAC: Deconvolution : Sensitivity =1, root:NAC: Deconvolution :⤦

Ç UseSensitivity =1
NVar QCMToolingCalorimetry =root:NAC: Machine : QCMToolingCalorimetry , ⤦

Ç QMSTooling =root:NAC: Machine : QMSToolingCalorimetry
QCMToolingCalorimetry =1.09042 // Sauerbrey sensitivity

7331 QMSTooling =0.959158
For (i=0;i< ItemsInList ( MeasurmentsList );i+=1)

Name= StringFromList (i, MeasurmentsList )
Duplicate /FREE $"root:NAC :"+ Name +": FlagList " FlagTemp
Make /O /B /U /N=( NumPnts ( FlagTemp )) $"root:NAC :"+ Name +": FlagList "

7336 Wave FlagList =$"root:NAC :"+ Name +": FlagList "
If ( NumPnts ( FlagList ))

FlagList = FlagTemp
EndIf
SetScale /P x, 0, 1, " Frame ", FlagList

7341 EndFor
KillVariables /Z root:NAC: Machine : TransmissionClean FlagTemp
Version ="3.9 beta"

Case "3.9 beta ":
Print " Patching from NAC 3.9 beta"

7346 Variable /G root:NAC:GUI: StoreFilteredWaves =0, root:NAC: Machine :⤦
Ç PulseLengthDetectionWindow =0.05

Version ="3.10 alpha "
Case "3.10 alpha ":

Print " Patching from NAC 3.10 alpha "
Version ="3.10 beta"

7351 Case "3.10 beta ":
Print " Patching from NAC 3.10 beta"
If ( DataFolderExists (" root:NAC: AverageSticking "))

KillDataFolder /Z root:NAC: AverageSticking
EndIf

7356 KillDependencies ()
If ( Exists (" root:NAC: Experiment : TempSource ") ==2)

ReName root:NAC: Experiment : TempSource TemperatureSource
EndIf
If ( Exists (" root:NAC: Experiment : TempSample ") ==2)

7361 ReName root:NAC: Experiment : TempSample TemperatureSample
EndIf
If ( Exists (" root:NAC: Deconvolution : Average ") ==2)

ReName root:NAC: Deconvolution : Average AverageFrames
EndIf

7366 If ( DataFolderExists (" root:NAC: ReflecBefore "))
ReNameDataFolder root:NAC: ReflecBefore BeforeCoating

EndIf
If ( DataFolderExists (" root:NAC: ReflecAfter "))

ReNameDataFolder root:NAC: ReflecAfter AfterCoating
7371 EndIf

If ( V_Flag )
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SetWindow NAC_FluxCalorimetry_Full hook( NAC_FluxCoatingCsr )=⤦
Ç NAC_WinHookFlux

EndIf
DoWindow NAC_FluxCoating_FittedFlux

7376 If ( V_Flag )
SetWindow NAC_FluxCoating_FittedFlux hook( NAC_FluxCalorimetryCsr )=⤦

Ç NAC_WinHookFittedFlux
EndIf
DoWindow NAC_FluxCalorimetry_FittedFlux
If ( V_Flag )

7381 SetWindow NAC_FluxCalorimetry_FittedFlux hook( NAC_FluxCalorimetryCsr )=⤦
Ç NAC_WinHookFittedFlux

EndIf
Make /N=2 /O root:NAC: FluxCal : FittedFluxErrorPos , root:NAC: FluxCoat :⤦

Ç FittedFluxErrorPos , root:NAC: FluxCal : FittedFluxErrorNeg , root:NAC: FluxCoat :⤦
Ç FittedFluxErrorNeg

Variable /G root:NAC: Machine : SecondNotchFrequency =0
LaserMeasurements =" LaserReference ; Transmission ; BeforeCoating ; AfterCoating⤦

Ç ; Deconvolution ;"
7386 MeasurmentsList = LaserMeasurements + OtherMeasurements

For (i=0;i< ItemsInList ( MeasurmentsList );i+=1)
Name= StringFromList (i, MeasurmentsList )
If (! StringMatch (Name ," Heat ") && ! StringMatch (Name ," Sticking "))

Make /O /N=0 $"root:NAC :"+ Name +": Statistics : ChiSq "
7391 SetScale /P x, 0, 1, " Frame ", $"root:NAC :"+ Name +": Statistics : ChiSq "

EndIf
EndFor
DoWindow NAC_FluxCoating_Full
If ( V_Flag )

7396 SetWindow NAC_FluxCoating_Full hook( NAC_FluxCoatingCsr )= NAC_WinHookFlux
EndIf
DoWindow NAC_FluxCalorimetry_Full
Version ="3.10 gamma "

Case "3.10 gamma ":
7401 Print " Patching from NAC 3.10 gamma "

LaserMeasurements =" LaserReference ; Transmission ; BeforeCoating ; AfterCoating⤦
Ç ; Deconvolution ;"

MeasurmentsList = LaserMeasurements + OtherMeasurements
For (i=0;i< ItemsInList ( MeasurmentsList );i+=1)

Name= StringFromList (i, MeasurmentsList )
7406 If (! StringMatch (Name ," Heat ") && ! StringMatch (Name ," Sticking "))

Make /O /N=0 $"root:NAC :"+ Name +": Statistics : Outlier "
Make /O /N=0 $"root:NAC :"+ Name +": Statistics : Medians "
SetScale /P x, 0, 1, " Frame ", $"root:NAC :"+ Name +": Statistics : Medians "
SetScale /P x, 0, 1, " Frame ", $"root:NAC :"+ Name +": Statistics : Outlier "

7411 SetScale /P d, 0, 2, " Relative Amplitude ", $"root:NAC :"+ Name +":⤦
Ç Statistics : Amplitude "

EndIf
EndFor
Variable /G root:NAC:GUI: ShowBoxPlotData =1
Variable /G root:NAC: Enthalpies : MultiLayerEnthalpyError

7416 SetFormula root:NAC: Enthalpies : MultiLayerEnthalpyError "Sqrt( Variance (⤦
Ç root:NAC: Enthalpies :Enthalpy , root:NAC: Enthalpies : MultilayerPosLow , root:⤦
Ç NAC: Enthalpies : MultilayerPosHigh ))" // J/mol

Version ="3.10 delta "
Case "3.10 delta ":

Print " Patching from NAC 3.10 delta "
If ( Exists (" root:NAC: Machine : ReflecClean ") ==2)

7421 ReName root:NAC: Machine : ReflecClean ReflectivityClean
EndIf
SetFormula root:NAC: Deconvolution : Reflectivity "root:NAC: Machine :⤦

Ç ReflectivityClean " // d.l.
ReNameDataFolder root:NAC:FluxCoat , FluxCoating
ReNameDataFolder root:NAC:FluxCal , FluxCalorimetry

7426 String /G LaserPowerCorrectionList ="1.38682;1.31814;1.15762;" // Laser ⤦
Ç Power Correction Factors // Add new one in the begining

Version ="3.10 epsilon "
Case "3.10 epsilon ":

Print " Patching from NAC 3.10 epsilon "
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If ( Exists (" root:NAC: Sticking : InitSticking ") ==2)
7431 ReName root:NAC: Sticking : InitSticking InitDesorption

EndIf
If ( Exists (" root:NAC: Sticking : HoldSticking ") ==2)

ReName root:NAC: Sticking : HoldSticking HoldDesorption
EndIf

7436 String /G root:NAC: Machine : LaserPowerCorrectionList⤦
Ç ="1.28;1.38682;1.31814;1.15762;"

String /G root:NAC: Machine : ReflectivityCleanList ="0.444 Ni/PVDF; 0.89 Al/⤦
Ç PVDF ;"

ReName root:NAC: FluxCoating : AparentFlux ApparentFlux
ReName root:NAC: FluxCalorimetry : AparentFlux ApparentFlux
Version ="3.11"

7441 Case "3.11":
Print " Patching from NAC 3.11"
ReName root:NAC: Machine : FluxFittingWindow RateFittingWindow
ReName root:NAC: FluxCalorimetry : FittedFluxErrorNeg FittedRateErrorNeg
ReName root:NAC: FluxCalorimetry : FittedFluxErrorPos FittedRateErrorPos

7446 ReName root:NAC: FluxCalorimetry : FittedFluxAvg FittedRateAvg
ReName root:NAC: FluxCalorimetry : ApparentFlux ApparentRate
ReName root:NAC: FluxCalorimetry :Flux DepositionRate
ReName root:NAC: FluxCalorimetry : FluxMonoLayer RateMonoLayer
ReNameDataFolder root:NAC: FluxCalorimetry RateCalorimetry

7451 ReName root:NAC: FluxCoating : FittedFluxErrorNeg FittedRateErrorNeg
ReName root:NAC: FluxCoating : FittedFluxErrorPos FittedRateErrorPos
ReName root:NAC: FluxCoating : FittedFluxAvg FittedRateAvg
ReName root:NAC: FluxCoating : ApparentFlux ApparentRate
ReName root:NAC: FluxCoating :Flux DepositionRate

7456 ReNameDataFolder root:NAC: FluxCoating RateCoating
Variable /G root:NAC:Heat: LinkShifts =1
SetScale d, 0, 0, "J/mol", root:NAC: Enthalpies : MultiLayerReference
SetScale /P x, 0, DimDelta (root:NAC: Enthalpies : MultiLayerReference ,0) , "⤦

Ç ML", root:NAC: Enthalpies : MultiLayerReference
SetScale /P x, 0, DimDelta (root:NAC: Enthalpies : StickingLimit ,0) , "ML", ⤦

Ç root:NAC: Enthalpies : StickingLimit
7461 Version ="3.12"

Case "3.12":
Print "No patch for NAC_Average 3.12 necessary "

Case "3.13":
Print " Patching from NAC 3.12"

7466 NVar RefClean =root:NAC: Machine : ReflectivityClean
If ( RefClean ==0.439)

RefClean =0.444
Print " Reference Reflectivity changed . Data should be processed again ."

EndIf
7471 LaserMeasurements =" LaserReference ; Transmission ; BeforeCoating ; AfterCoating⤦

Ç ; Deconvolution ;"
MeasurmentsList = LaserMeasurements + OtherMeasurements
For (i=0;i< ItemsInList ( MeasurmentsList );i+=1)

Name= StringFromList (i, MeasurmentsList )
If (! StringMatch (Name ," Heat ") && ! StringMatch (Name ," Sticking "))

7476 If ( Exists (" root:NAC :"+ Name +": Statistics : Outlier ") !=1)
Make /O /N=0 $"root:NAC :"+ Name +": Statistics : Outlier "
SetScale /P x, 0, 1, " Frame ", $"root:NAC :"+ Name +": Statistics :⤦

Ç Outlier "
EndIf
If ( Exists (" root:NAC :"+ Name +": Statistics : Medians ") !=1)

7481 Make /O /N=0 $"root:NAC :"+ Name +": Statistics : Medians "
SetScale /P x, 0, 1, " Frame ", $"root:NAC :"+ Name +": Statistics :⤦

Ç Medians "
EndIf

EndIf
EndFor

7486 Version ="3.14"
Case "3.14":

Print " Patching from NAC 3.14"
Variable /G root:NAC: Experiment : UseEmptyCrucibleReference =0
Variable /G root:NAC: Experiment : EmptyCrucibleTemperature =NaN

7491 Version ="3.15"
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Case "3.15":
// Print " Patching from NAC 3.14"
//
// Print " Patching within NAC 3.15"

7496 //
// Insert new cases before this line
Print " Version is up to date: "+ Version
Print " Patching done"
Updated =1

7501 Break
Default :

Print " Unable to patch from version "+ Version
Break

EndSwitch
7506 If ( Updated )

KillWindow NAC_Control
Dependencies ()
DataPanel ()
NAC_ReCalcHeat ("" ,nan ,"" ,"");

7511 DoHeatTextBox ()
EndIf

EndIf
If ( DataFolderExists (" root: NAC_Average "))

If ( Exists (" root: NAC_Average : Settings : ProjectVersion ") !=2)
7516 String /G root: NAC_Average : Settings : ProjectVersion ="3.11"

EndIf
SVar Version =root: NAC_Average : Settings : ProjectVersion
Variable NumExp
StrSwitch ( Version )

7521 Case "3.11":
Print " Patching from NAC_Average prior to 3.12"
If ( Exists (" root: NAC_Average : Fluxes ") ==1)

ReName root: NAC_Average : Fluxes DepositionRates
EndIf

7526 NumExp = CountObjects (" root: NAC_Average : Experiments " ,4)
If (NumExp >0)

For (i=0; i< NumExp ;i+=1)
Name= PossiblyQuoteName ( GetIndexedObjName (" root: NAC_Average :⤦

Ç Experiments :", 4,i))
ReName $"root: NAC_Average : Experiments :"+ Name +": Flux" DepositionRate

7531 EndFor
EndIf
Label /W= NAC_ResultAuxilaray Left "\\K(52224 ,0 ,0) Calorimetry Deposition ⤦

Ç Rate (\\U)"
Version ="3.12"

Case "3.12":
7536 Print "No patch for NAC_Average 3.12 necessary "

Version ="3.13"
Case "3.13":

Print " Patching from NAC_Average 3.13"
Variable /G root: NAC_Average : Settings : LegendLines =8

7541 Version ="3.14"
Case "3.14":

// Print " Patching within NAC_Average 3.12"
// Insert new cases before this line
Print " Version is up to date: "+ Version

7546 Print " Patching done"
Updated =1
Break

Default :
Print " Unable to patch from version "+ Version

7551 Break
EndSwitch
If ( Updated )

EndIf
7556 EndIf

SetDataFolder OldDF
Return NoError
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End
//

Function NAC_Invert
7561 Function NAC_Invert ()

String ExpList =" Deconvolution ; BeforeCoating ; AfterCoating ; LaserReference ;⤦
Ç Transmission ; Radiation ; ZeroSticking ;Heat; Sticking ;"

String Name , NameList =""
Variable i

If (! DataFolderExists (" root:NAC :"))
7566 Error_Message ( NAC_NotInitialized , " InProc ", " NAC_DisplayStatistics ", "")

Return NaN
EndIf
For (i=0;i< ItemsInList ( ExpList ); i+=1)

If ( Exists (" root:NAC :"+ StringFromList (i, ExpList , ";") +": Detector ") ==1)
7571 NameList += StringFromList (i, ExpList , ";") +";"

EndIf
EndFor
If ( ItemsInList ( NameList ) >1)

NameList =" Cancel ;All;All Calorimetry ;All QMS ;"+ NameList
7576 ElseIf ( ItemsInList ( NameList )==1)

NameList =" Cancel ;"+ NameList
Else

Error_Message ( NAC_NothingToProcess , " InProc ", " NAC_Invert ", "")
Return NaN

7581 EndIf
Prompt Name , " Invert Signal for", Popup , NameList
DoPrompt /HELP ="" " Signal Inversion ", Name
If ( V_Flag || StringMatch (Name ," Cancel "))

Error_Message (UserAbort , " InProc ", " NAC_Invert ", "")
7586 Return NaN

EndIf
StrSwitch (Name)

Case "All ":
Break

7591 Case "All Calorimetry ":
NameList = RemoveFromList (" ZeroSticking ; Sticking ;", NameList , ";")
Break

Case "All QMS ":
NameList = RemoveFromList (" Deconvolution ; BeforeCoating ; AfterCoating ;⤦

Ç LaserReference ; Transmission ; Radiation ;Heat ;", NameList , ";")
7596 Break

Default :
NameList =Name +";"
Break

EndSwitch
7601 NameList = RemoveFromList (" Cancel ;All;All Calorimetry ;All QMS ;", NameList , ";")

For (i=0; i< ItemsInList ( NameList ); i+=1)
Name= StringFromList (i, NameList , ";")
KillWins (" NAC_ "+ Name)
Wave Detector =$"root:NAC :"+ Name +": Detector "

7606 Detector *= -1
EndFor
Return NaN

End
//

Function NAC_RemoveBaseline
7611 Function NAC_RemoveBaseline ()

String ExpList =" BeforeCoating ; AfterCoating ; LaserReference ; Transmission ; Radiation ;⤦
Ç ZeroSticking ;Heat; Sticking ;"

String FitList =" Line;Exp; Exp_XOffset ; DblExp ; DblExp_XOffset ; Sigmoid ; Power ; Damped ⤦
Ç Oscillation ;"

String Type , Name , NameList =" Cancel ;"
Variable i

7616 If (! DataFolderExists (" root:NAC :"))
Error_Message ( NAC_NotInitialized , " InProc ", " NAC_DisplayStatistics ", "")
Return NaN

EndIf
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DFRef OldDF = GetDataFolderDFR ()
7621 For (i=0;i< ItemsInList ( ExpList );i+=1)

If ( Exists (" root:NAC :"+ StringFromList (i,ExpList ,";") +": Detector ") ==1)
NameList += StringFromList (i,ExpList ,";") +";"

EndIf
EndFor

7626 Prompt Name , " Remove Baseline from", Popup , NameList
Prompt Type , "Type", Popup , FitList
DoPrompt /HELP ="" " Remove Detector Baseline ", Name , Type
If ( V_Flag || StringMatch (Name ," Cancel "))

Error_Message (UserAbort , " InProc ", " NAC_RemoveBaseline ", "")
7631 Return NaN

EndIf
SetDataFolder $"root:NAC :"+ Name
Wave Detector
Duplicate /O Detector BaselineFit

7636 Wave BaselineFit
StrSwitch (Type)

Case "Line ":
CurveFit /Q /W=2 Line , Detector /D= BaselineFit
Break

7641 Case "Exp ":
CurveFit /Q /W=2 Exp , Detector /D= BaselineFit
Break

Case " Exp_XOffset ":
CurveFit /Q /W=2 Exp_XOffset , Detector /D= BaselineFit

7646 Break
Case " DblExp ":

CurveFit /Q /W=2 DblExp , Detector /D= BaselineFit
Break

Case " DblExp_XOffset ":
7651 CurveFit /Q /W=2 DblExp_XOffset , Detector /D= BaselineFit

Break
Case " Sigmoid ":

CurveFit /Q /W=2 Sigmoid , Detector /D= BaselineFit
Break

7656 Case " Power ":
CurveFit /Q /W=2 Power , Detector /D= BaselineFit
Break

Case " Damped Oscillation ":
Make /O /D /N=5 BaselineCoef ={0 ,1 ,0.05 ,0.01 ,0}

7661 FuncFit /Q /NTHR =0 DampedOscillation BaselineCoef Detector /D= BaselineFit
Break

Default :
BaselineFit =0
Error_Message ( NAC_UnknownFitFunction , " InProc ", " NAC_RemoveBaseline ", Name)

7666 Return NaN
Break

EndSwitch
Detector -= BaselineFit
SetDataFolder OldDF

7671 Return NaN
End
//

ZeroOffset
Function ZeroOffset (GraphName , [StartX , EndX ])
String GraphName

7676 Variable StartX , EndX
String TraceList
Variable i, Ofs

If ( Strlen ( GraphName ))
DoWindow $GraphName

7681 If ( V_Flag !=1)
Return -1 // No Such Window

EndIf
EndIf
If ( ParamIsDefault ( StartX ))

7686 StartX =-Inf
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EndIf
If ( ParamIsDefault (EndX))

EndX=Inf
EndIf

7691 TraceList = TraceNameList (GraphName , ";" , 1)
For (i=0;i< ItemsInList (TraceList ,";") ;i+=1)

Wave Process = TraceNameToWaveRef (GraphName , StringFromList (i, TraceList ,";") )
Ofs=Mean(Process ,StartX ,EndX)
ModifyGraph Offset ( $StringFromList (i, TraceList ,";") )={0,- Ofs}

7696 EndFor
Return 0 // No Error

End
//

C.1.11 Extensions to the Status Package
//

Function Status_DisplayNAC
7701 Function NAC_DisplayStatus ()

Variable Error
If (! DataFolderExists (" root: Status "))

Error_Message ( NAC_NoDataLoaded , " NAC_DisplayStatus ", " InProc ", "")
Return NaN

7706 EndIf
Error_Message ( Status_DisplayAll (" Temp_1 ", WindowName =" Baffle ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Baffle ")

Error_Message ( Status_DisplayAll (" Temp_2 ", WindowName =" Sample ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Sample ")

Error_Message ( Status_DisplayAll (" Temp_3 ", WindowName =" Reservoir ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Reservoir ")

Error_Message ( Status_DisplayAll (" Temp_4 ", WindowName =" Source ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Source ")

7711 Error_Message ( Status_DisplayAll (" Temp_5 ", WindowName =" TSP ") , " Status_DisplayAll⤦
Ç ", " NAC_DisplayAll ", "TSP ")

Error_Message ( Status_DisplayAll (" Temp_6 ", WindowName =" QCM ") , " Status_DisplayAll⤦
Ç ", " NAC_DisplayAll ", "QCM ")

Error_Message ( Status_DisplayAll (" Temp_7 ", WindowName =" LLEvap ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " LLEvap ")

Error_Message ( Status_DisplayAll (" Temp_8 ", WindowName =" Block ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Block ")

Error_Message ( Status_DisplayAll (" Temp_CJC ", WindowName =" CJCRef ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " CJCRef ")

7716 Error_Message ( Status_DisplayAll (" P_1", WindowName =" Pirani ") , " Status_DisplayAll⤦
Ç ", " NAC_DisplayAll ", "P_1 ")

Error_Message ( Status_DisplayAll (" P_2", WindowName =" Pirani ", Right =1) , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", "P_2 ")

Error_Message ( Status_DisplayAll (" P_I", WindowName =" IonGauge ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", "P_I ")

Error_Message ( Status_DisplayAll (" Evap_U ", WindowName =" EvaporatorVoltage ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Evap_U ")

Error_Message ( Status_DisplayAll (" Evap_I ", WindowName =" EvaporatorCurrent ") , "⤦
Ç Status_DisplayAll ", " NAC_DisplayAll ", " Evap_I ")

7721 ModifyGraph /W= Pirani Log(Left)=1, Log( Right )=1
SetAxis /W= Pirani Left 0.1 ,1000
SetAxis /W= Pirani Right 0.1 ,1000
ModifyGraph /W= IonGauge Log(Left)=1
SetAxis /W= IonGauge Left 1e -9 ,1e -6

7726 Return NoError
End
//

C.1.12 Version History
// Version Changes
// Version 1.x

7731 // Ole ’s Version with Odd/Even Pulses
// Version 2.x
// Completely Rewritten with Datafolders
// New Fitting Approach
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// Version 3.0
7736 // Removed Gain Measurement completely

// Changed Internal Data Structure to 2D- Waves [time ][ pulse #]
// Removed " Flagged " wave: much faster GUI experience
// Basic Error Message System
// Version 3.1

7741 // Error Message System
// Removed Gains from Program
// Function Included in ErrorMessage
// Display for Deconvoluted Averages
// FIXED : Fit Crash on no LaserPower for GetRatio / NormalizeFitWave

7746 // Version 3.2
// Use Fitted Radiation contribution
// Changed Error System
// FIXED : Wrong multilayer average range on start
// FIXED : Missing Ads / Ref correction on source temperature change

7751 // FIXED : Trend not used for Sticking
// Version 3.3
// " Energies " changed to " Enthaplies "
// Experiment averaging implemented
// Version 3.4

7756 // Error Subsystem as independent module
// Flagged pulses yield NaN as enthalpy
// Version 3.5
// Import parsing altered
// LaTeX sectioning included

7761 // Auxilaries typo fixed
// Version 3.6
// Versioninfo for project added
// Statistics for Averages added
// LaserCal renamed to LaserReference

7766 // Version 3.7
// DoWindow /C/N replaced
// New Deconvolution routine
// Deconvolution Browsing implemented
// Wrong filename in deconvoluted data fixed

7771 // Experiment version update implemented
// Persistent cursors
// Version 3.8
// Discrimination between Frames and Pulses
// FIXED "No status loaded " bug

7776 // Changes in " Process Rate"
// Statistics reset upon load implemented
// ExperimentName added
// UpdateExperiment in menu
// Check for sample rate removed

7781 // FIXED " LoadLazy " Bug
// Added " Missing Laser Power " info
// FIXED outdated assignment for .usd files
// FIXED Blank in aux files " ChannelName [Unit ]"
// FIXED Missing update for FittedRate info box

7786 // Included Substance in FittedRate info box
// Added SubstanceName for Rate , GetSubstanceName function
// Removed unused DeconvFit
// DeconvolutionFunction simplyfied
// Deconvolution fit functions modified : offset set to 0, peakstart set to 0 (⤦

Ç both from fitted waves )
7791 // Preserved Offset in Highpass filtering

// Units in parentheses
// More substances for GetSubstanceName added
// Correction for wrong PTCDA density implemented
// LasPowCorr renamed to LaserPowerCorrection

7796 // Version 3.9
// Support for supplementary experiments enhanced
// FIXED Missing average in flag window
// FIXED High pass filtering for QMS channel removed
// FIXED Missing SwitchDeadTime for Concat

7801 // Added feature to correct manually for gains in old data
// MISTAKE : Separate deconvolution measurement needed for LT data.
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// FIXED Error on DisplayStatictcs from menu
// FitCoef waves double precision
// FlagList waves changed to UByte , Unit " Frame "

7806 // Version 3.10 alpha
// FIXED : NAC_RefEnthalpy (" Zn", x) returning NaN
// FIXED : Sensitivity asssumed as 1 if NaN
// Added Deconvolution to Invert function
// Added Option to keep filter residue in load function

7811 // Line Notch filter with reduced from 2 Hz to 1 Hz
// Version 3.10 beta
// Removed " Statistics " section from Menu
// DisplayStickingAverage () removed
// FIXED : IFFT of missing residual wave

7816 // FIXED : Pluse length detection failed with shifted pulses , window increased
// FIXED : Boundaries for monolayer density
// Applicable checks extended
// Results Display label changed to " Present "
// FIXED runtime errror in Quartiles if all frames are flagged

7821 // : Experiment : Timeline removed
// ChiSqared for statistics added
// ReflecBefore renamed to BeforeCoating
// ReflecAfter renamed to AfterCoating
// 2nd Notch filter added

7826 // Worlking Version 3.10 gamma
// Outliers for BoxPlot added
// Signal Inversion more convenient
// Option to display data points in box plots added
// Function to reset the flag list implemented

7831 // Version 3.10 delta
// Update bugs fixed
// Reflectivity for deconvolution linked to clean reflectivity
// Reflectivity import from files prepared
// FIXED Index bug in Quartile

7836 // FIXED Too many frames automatically flagged for deconvolution
// Added Unload Measurement
// Renamed RateCal to RateCalorimetry
// Renamed RateCoat to RateCoating
// Selectable LaserPowerCorrection implemented

7841 // Selectable Standard Reflectivities implemented
// Version 3.10 epsilon
// FIXED Error on removal of not displayed experiments in averages
// Included Liberal Names for Experiments
// Simultaneous loadig of multiple experiments for averaging added

7846 // FIXED NAC_RefEnthalpy returning NaN for T_Sample ~ T_Ref
// Improved HeatTextBox information
// FIXED NaN ranges for statistics if all frames are flagged
// Flagged frames lowlighted in trend creation
// FIXED Crash on renamed / deleted active folder in loadig routines

7851 // Legend for Averaging movable
// Init - / Hold - Sticking renamed to -Desorption
// FIXED Crash on Enthalpy zero data points and sticking finite data points
// Fixed ChiSq not stored for statistics
// Fixed CpCondensed / CvGas mixup

7856 // Implemented Loaded Trends
// Incompatible experiments are loaded on activated Load Supporting Files with⤦

Ç a warning
// Fixed " Apparent " typo
// Version 3.11
// Minor beauty fixes

7861 // Version 3.12
// Renamed Flux to ( deposition ) RATE ( Fluxes are Unit per square meter and ⤦

Ç second )
// Load of averaged experiments Version dependent
// Renamed NAC_UnknownExperiment to NAC_UnknownMeasurement
// Implemented linking of heat and radiation shifts

7866 // Removal of main structure implemented (used for meta - experiments )
// Version 3.13
// Fixed wrong procedure for DisplayRateData - Button
// Fixed wrong coloring of full data after processing
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// Looped FittedTrends implemented
7871 // Minor fixes on Trend Controls

// Force - Killed ControlPanel is recreated automatically
// Bigger symbols for " Averaged Results " graphs
// LegendLines in averaging settings
// Minor correction of pristine reflectivity

7876 // Patch error for statistics fixed
// Version 3.14
// Data loading speed optimized
// Reflectivity assignment from files modified
// Version 3.15

7881 // Option for calculated radiation contribution added (not verified in ⤦
Ç experiment )

// Release
// Future Versions 4.x
// Implement Measurement Subsystem
// Implement Control Subsystem
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C.2 Error Handling Package
Details about the error handling package are discussed in Section 4.3. Subsequently,
the source code of this package is listed.

1 // Errors .ipf //

C.2.1 Definitions
//

Compiler Settings
# pragma rtGlobals =3 // Use modern global access method .
# pragma Version =1.0

6 # pragma IgorVersion =6.2
//

Data Paths
StrConstant ErrorDataFolder =" root: Errors "
//

Standard Errors
Constant NoError =0

11 Constant NoErrorHandler =43001
Constant ErrorHandled =43002
Constant LoadAborted =43003
Constant UserAbort =43004
Constant UserCancel =43005

16 //

Constants
Constant Error_TalkLevel =3
// No Errors (0 ,1) , Serious Errors (2 ,3) , Handled Errors (4 ,5) , Exceptions (8 ,9)
// Odd: Include procedure name etc.
//

C.2.2 Initialization
21 //

Function Error_Init
Function Error_Init ()
DFRef OldDF = GetDataFolderDFR ()

If (! DataFolderExists ( ErrorDataFolder ))
NewDataFolder /S $ErrorDataFolder

26 EndIf
Make /O /N=1 /T ErrorList =" No Error "
SetDataFolder OldDF
Error_Panel ()
DoWindow /F Error_Messages

31 End
//

C.2.3 Error Handling
//

Function Error_Clear
Function Error_Clear ()

If ( DataFolderExists ( ErrorDataFolder ))
36 Wave /T Errors = $ErrorDataFolder +": ErrorList "

Redimension /N=1 Errors
Errors [0]=" No Error "
MoveWindow /W= Error_Messages 0, 0, 0, 0
DoUpdate

41 EndIf
Return NoError
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End
//

Function Error_Add
Static Function Error_Add (Msg)

46 String Msg
Wave /T Errors = $ErrorDataFolder +": ErrorList "

If ( StringMatch ( Errors [0] ," No Error "))
Errors [0]= Msg

Else
51 ReDimension /N=( NumPnts ( Errors )+1) Errors

Errors [ NumPnts ( Errors ) -1]= Msg
EndIf
DoWindow /F Error_Messages
Return NoError

56 End
//

Function Error_Message
Function Error_Message (ErrorCode , FunctionName , ProcedureName , Argument )
Variable ErrorCode
String FunctionName , ProcedureName , Argument

61 If (! DataFolderExists ( ErrorDataFolder ))
Error_Init ()

EndIf
If ( NumType ( ErrorCode )) // NaN or INF

ErrorCode = NoErrorHandler
66 EndIf

If (Mod( Error_TalkLevel ,2)) //// How much talking ?
ProcedureName = FunctionName +"("+ Argument +")@"+ ProcedureName +": "

Else
ProcedureName =""

71 EndIf
Switch ( Error_TalkLevel )

Case 8: // Common and well handled exceptions
Case 9:

Switch ( ErrorCode )
76 Case NAC_ReEntry :

Error_Add ( ProcedureName + " Procedure ReEntry ")
Break

Case NAC_WindowAlreadyExists :
Error_Add ( ProcedureName + " Window Already Exists ")

81 Break
Case ErrorHandled :

Error_Add ( ProcedureName + " Error Already Handled ")
Break

Default :
86 Break

EndSwitch // No Break !
Case 4: // Expected and well handled errors
Case 5:

Switch ( ErrorCode )
91 Case NoError :

Case NoErrorHandler : // Serious Errors to be handled further on
Case NAC_DataFolderError :
Case NAC_NotApplicable :
Case NAC_DataMismatch :

96 Case NAC_UnknownMeasurement :
Case NAC_ReEntry :
Case NAC_WindowAlreadyExists :
Case NAC_AuxFileNotFound :
Case NAC_AuxFileLoadFailed :

101 Case NAC_PulseLengthDetectionFailed :
Case NAC_LaserPowerMissing :
Case NAC_NoDataLoaded :
Case NAC_NotImplementedYet :
Case NAC_CorruptExperiment :

106 Case NAC_DataFolderError :
Case NAC_IncompatibleExperiment :
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Case NAC_UnknownVersion :
Case Status_ChannelNotExistant :
Case Status_NoSuchWindow :

111 Break
Case NAC_NoSuchWindow :

Error_Add ( ProcedureName + "No Such Window ")
Break

Case LoadAborted :
116 Error_Add ( ProcedureName + "Load Aborted ")

Break
Case NAC_NothingToProcess :

Error_Add ( ProcedureName + " Nothing To Process ")
Break

121 Case NAC_FitWavesMissing :
Error_Add ( ProcedureName + "Fit Wave Missing ")
Break

Case UserAbort :
Error_Add ( ProcedureName + "User Abort ")

126 Break
Case NAC_AverageWavesMissing :

Error_Add ( ProcedureName + " Averaged Waves Missing ")
Break

Case NAC_WrongCursor :
131 Error_Add ( ProcedureName + " Wrong Cursor ")

Break
Case NAC_StickingMissing :

Error_Add ( ProcedureName + " Sticking Wave Missing ")
Break

136 Case NAC_AdsorptionMissing :
Error_Add ( ProcedureName + " Adsorption Wave Missing ")
Break

Case NAC_DoseMissing :
Error_Add ( ProcedureName + "Dose not Calculated ")

141 Break
Case NAC_AvgAlreadyInitialized :

Error_Add ( ProcedureName + " Average Subsystem Already Initialized ")
Break

Case NAC_ParameterOutsideRange :
146 Error_Add ( ProcedureName + " Parameter Outside Allowed Range ")

Break
Case NAC_NotInitialized :

Error_Add ( ProcedureName + "NAC Package not Initialized ")
Break

151 Default :
Error_Add ( ProcedureName + " Unknown Error #"+ Num2Str ( ErrorCode ))
Break

EndSwitch // No Break !
Case 2: // Should not happen errors

156 Case 3:
Switch ( ErrorCode )

Case NoError :
Break

Case NAC_NotApplicable :
161 Error_Add ( ProcedureName + "Not Applicable !")

Break
Case NAC_DataMismatch :

Error_Add ( ProcedureName + " DataMismatch !")
Break

166 Case NAC_UnknownMeasurement :
Error_Add ( ProcedureName + " Unknown Measurement !")
Break

Case NoErrorHandler :
Error_Add ( ProcedureName + "No Error Handler !")

171 Break
Case NAC_AuxFileNotFound :

Error_Add ( ProcedureName + " Auxillary File not Found !")
Break

Case NAC_AuxFileLoadFailed :
176 Error_Add ( ProcedureName + " Failed to Load Auxillary File !")
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Break
Case NAC_UnknownFitFunction :

Error_Add ( ProcedureName + " Unknown Fit Function !")
Break

181 Case NAC_PulseLengthDetectionFailed :
Error_Add ( ProcedureName + " Automatic Pulse Length Detection Failed !")
Break

Case NAC_LaserPowerMissing :
Error_Add ( ProcedureName + " Laser Power Missing !")

186 Break
Case NAC_NoDataLoaded :

Error_Add ( ProcedureName + "No Data Loaded !")
Break

Case NAC_NotImplementedYet :
191 Error_Add ( ProcedureName + "Not Implemented Yet !")

Break
Case NAC_CorruptExperiment :

Error_Add ( ProcedureName + " Corrupt Experiment Structure !")
Break

196 Case NAC_IncompatibleExperiment :
Error_Add ( ProcedureName + " Incompatible Experiment !")
Break

Case NAC_DataFolderError :
Error_Add ( ProcedureName + " Reinitialization failed - close all user ⤦

Ç objects and try again !")
201 Break

Case Status_ChannelNotExistant :
Error_Add ( ProcedureName + " Channel not existant !")
Break

Case Status_NoSuchWindow :
206 Error_Add ( ProcedureName + "No such window !")

Break
Case NAC_UnknownVersion :

Error_Add ( ProcedureName + " Unknown version number !")
Break

211 Default :
Break

EndSwitch // No Break !
Case 0: // No Error report
Case 1:

216 Default :
Break

EndSwitch
DoUpdate
Return ErrorCode

221 End
//

C.2.4 Graphical User Interface
//

Function Error_Panel
Function Error_Panel ()

DoWindow Error_Messages
226 If ( V_Flag )

Return NoError
EndIf
NewPanel /K=2 /W =(1300 ,70 ,1800 ,220) /N= Error_Messages as " Error Messages "
ModifyPanel fixedsize =1

231 ListBox Errors Size ={500 ,150} , Pos ={0 ,0} , listWave = $ErrorDataFolder +": ErrorList⤦
Ç "

SetActiveSubwindow _endfloat_
Return NoError

End
//

C.2.5 Version History
236 // Version Changes
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// Version 1.0
// FIXED "No popup on a single error "
// Renamed NAC_UnknownExperiment to NAC_UnknownMeasurement
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C.3 Machine Status Package
Details about the machine status package are discussed in Section 4.4. Subsequently,
the source code of this package is listed.

// Status .ipf //

2 C.3.1 Definitions
//

Compiler Settings
# pragma rtGlobals =3 // Use modern global access method .
# pragma Version =1.2
# pragma IgorVersion =6.2

7 //

Data Paths
StrConstant Status_DataFolderStr =" root: Status "
//

Constants
StrConstant Status_DataPathStr ="Z: Marburg :Data: Calorimetry : StatusLogging :"
StrConstant Status_Version ="1.2 alpha "

12 //

Error Codes
Constant Status_ChannelNotExistant =44101
Constant Status_InvalidDateFormat =44102
Constant Status_NoSuchWindow =44103
Constant Status_NothingToDisplay =44001

17 Constant Status_LoadFailed =44002
//

Menu
Menu " Status "

" Import Machine Status ", /Q, Error_Clear (); Status_Import ()
" Display all Data for a Channel ", /Q, Error_Clear (); Status_DisplayChannel ()

22 "Get Runtime for Top Window ", /Q, Error_Clear (); Status_GetRuntimeMenu ()
End
//

C.3.2 File Input/Output
//

Function Status_Import
Function Status_Import ()

27 String FileList
Variable i
DFRef OldDF = GetDataFolderDFR ()

If ( DataFolderExists ( Status_DataFolderStr ))
SetDataFolder $Status_DataFolderStr

32 Else
NewDataFolder /S $Status_DataFolderStr
NewPath /O /Q StatusDataPath Status_DataPathStr

EndIf
Open /D /MULT =1 /R /P= StatusDataPath /F=" Logging Files (*. log):. log;All Files ⤦
Ç (*.*) :.*;" /M=" Machine Status : Select Logging Files for Import " i

37 If (! StrLen ( S_FileName ))
Error_Message (UserAbort , " InProc "," Status_Import " ,"")
SetDataFolder OldDF
Return NaN

EndIf
42 For (i=0; i< ItemsInList ( S_FileName , "\r"); i+=1)
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Error_Message ( Status_Load ( StringFromList (i, S_FileName , "\r")), "⤦
Ç Status_Import ", " Status_Load ", "")

EndFor
SetDataFolder OldDF
Return NaN

47 End
//

Function Status_Load
Function Status_Load ( FileName )
String FileName
DFRef OldDF = GetDataFolderDFR ()

52 String HeaderLine ="" , TempString ="" , ListItem =""
String NameList ="" , UnitList ="" , DateString ="" , dUnit
Variable RefNum , i

If ( DataFolderExists ( Status_DataFolderStr ))
SetDataFolder $Status_DataFolderStr

57 Else
NewDataFolder /S $Status_DataFolderStr
NewPath /O /Q StatusDataPath Status_DataPathStr

EndIf
Open /R /P= StatusDataPath /F=" Logging Files (*. log):. log;All Files (*.*) :.*;" ⤦
Ç RefNum as FileName

62 If ( StrLen ( S_FileName )==0)
Close RefNum
Return LoadAborted

EndIf
String Day , Month , Year

67 DateString = S_Filename [ StrSearch ( S_FileName , ":" , Inf , 3)+1, StrSearch ( S_FileName⤦
Ç , "." , Inf , 3) -1]

Switch ( StrLen ( DateString ))
Case 6:

Day= DateString [0 ,1]
Month = DateString [2 ,3]

72 Year ="20"+ DateString [4 ,5]
Break

Case 8:
Day= DateString [6 ,7]
Month = DateString [4 ,5]

77 Year= DateString [0 ,3]
Break

Case 10:
Day= DateString [8 ,9]
Month = DateString [5 ,6]

82 Year= DateString [0 ,3]
Break

Default :
Return Status_InvalidDateFormat
Break

87 EndSwitch
DateString =Year +" -"+ Month +" -"+ Day
If ( DataFolderExists ( Status_DataFolderStr +":"+ PossiblyQuoteName ( DateString )))

DoAlert /T=" Status Import ", 1, DateString +" already imported .\r\ rOverwrite ?"
If ( V_Flag ==2)

92 Close RefNum
Return UserAbort

EndIf
EndIf
NewDataFolder /O/S $( Status_DataFolderStr +":"+ PossiblyQuoteName ( DateString ))

97 TempString =""
FReadLine RefNum , HeaderLine
Close RefNum
For (i=0;i< ItemsInList ( HeaderLine ,"\t");i+=1)

ListItem = StringFromList (i, HeaderLine ,"\t")
102 If ( StringMatch (ListItem ," NC *") || StringMatch (ListItem ,"N/C*"))

TempString +="C=1,N=’_skip_ ’; "
ElseIf ( StringMatch (ListItem ,"N/A*"))

TempString +="C=1,N=’_skip_ ’; "
ElseIf ( StringMatch (ListItem ,"*[ TXT ]*"))
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107 TempString +="C=1,F=-2,N="+ ListItem [0, StrSearch (ListItem , "[" , Inf , 3) -1]+";⤦
Ç "

NameList += ListItem [0, StrSearch (ListItem , "[" , Inf , 3) -1]+";"
UnitList +=" TXT ;"

ElseIf ( StringMatch (ListItem ," Time *"))
TempString +="C=1,F=7,T=4,N= Timeline ; "

112 NameList +=" Timeline ;"
UnitList +=" dat ;"

ElseIf ( StringMatch (ListItem ," Temp_CSC *"))
TempString +="C=1,F=0,T=2,N= Temp_CJC ; "
NameList +=" Temp_CJC ;"

117 UnitList += ListItem [ StrSearch (ListItem , "[" , 0, 2)+1, StrSearch (ListItem , ⤦
Ç "]" , Inf , 3) -1]+";"
ElseIf ( StringMatch (ListItem ,"I*"))

TempString +="C=1,F=0,T=2,N= Evap_I ; "
NameList +=" Evap_I ;"
UnitList += ListItem [ StrSearch (ListItem , "[" , 0, 2)+1, StrSearch (ListItem , ⤦

Ç "]" , Inf , 3) -1]+";"
122 ElseIf ( StringMatch (ListItem ,"U*"))

TempString +="C=1,F=0,T=2,N= Evap_U ; "
NameList +=" Evap_U ;"
UnitList += ListItem [ StrSearch (ListItem , "[" , 0, 2)+1, StrSearch (ListItem , ⤦

Ç "]" , Inf , 3) -1]+";"
Else

127 TempString +="C=1,F=0,T=2,N="+ ListItem [0, StrSearch (ListItem , "[" , Inf , 3)⤦
Ç -1]+"; "

UnitList += ListItem [ StrSearch (ListItem , "[" , 0, 2)+1, StrSearch (ListItem , ⤦
Ç "]" , Inf , 3) -1]+";"

NameList += ListItem [0, StrSearch (ListItem , "[" , Inf , 3) -1]+";"
EndIf

EndFor
132 LoadWave /O /A /B= TempString /J /L={0 ,1 ,0 ,0 ,0} /Q S_FileName

If ( V_flag ==0)
Print " Failed to load status file !"
SetDataFolder OldDF
Return Status_LoadFailed

137 EndIf
For (i=0;i< ItemsInList (NameList , ";"); i+=1)

Wave Process = $StringFromList (i,NameList ,";")
StrSwitch ( StringFromList (i,UnitList ,";") )

Case "mBar ":
142 Process *=100

dUnit =" Pa"
Break

Case "Torr ":
Process *=101325/760

147 dUnit =" Pa"
Break

Case "nm ":
Process /=1 e9
dUnit ="m"

152 Break
Case "C":
Case "degC ":

Process +=273.15
dUnit ="K"

157 Break
Case "F":
Case "degF ":

Process =( Process + 459.67) *5/9
dUnit ="K"

162 Break
Default :

dUnit = StringFromList (i,UnitList ,";")
Break

EndSwitch
167 SetScale d, 0, 0, dUnit , $StringFromList (i,NameList ,";")

SetScale /P x, 0, 1, "" , $StringFromList (i,NameList ,";")
StrSwitch ( StringFromList (i, NameList , ";"))
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Case " Timeline ":
Wave Timeline

172 Timeline += Date2Secs ( Str2Num (Year), Str2Num ( Month ), Str2Num (Day))
Break

Default :
Break

EndSwitch
177 EndFor

SetDataFolder OldDF
Return NoError

End
//

C.3.3 User Interface
182 //

Function Status_GetRuntimeMenu
Function Status_GetRuntimeMenu ()
Variable Threshold

Prompt Threshold , " Enter Threshold for On State : "
DoPrompt " Missing Value ", Threshold

187 If (! NumType ( Threshold ) && ! V_Flag )
Status_AddRuntimeText ( Status_GetRuntime ( Threshold ), Threshold )

EndIf
End
//

Function Status_AddRuntimeText
192 Function Status_AddRuntimeText (Runtime , Threshold , [ WindowName ])

Variable RunTime , Threshold
String WindowName
String Unit ="s"

If ( ParamIsDefault ( WindowName ))
197 WindowName =""

EndIf
If ( ItemsInList ( WinList ("*" , ";" , "WIN :"+ WindowName ) ,";") !=1)

Return Status_NoSuchWindow
EndIf

202 WindowName = StringFromList (0, WinList ("*" , ";" , "WIN :"+ WindowName ), ";")
If (Runtime >2*60*60*24)

Runtime /=60*60*24
Unit ="d"

ElseIf (Runtime >2*60*60)
207 Runtime /=60*60

Unit ="h"
ElseIf (Runtime >=5*60)

Runtime /=60
Unit =" min"

212 EndIf
Textbox /W= $WindowName /A=MT /E /C /F=0 /X=0 /Y=5 /N= Runtime " Runtime for "+⤦
Ç WindowName +" ( Value >=" + Num2Str ( Threshold ) + "): " + Num2Str ( Runtime ) + ⤦
Ç " " + Unit

Return NoError
End
//

Function Status_DisplayChannel
217 Function Status_DisplayChannel ([ Channel , ChannelName , Align ])

String Channel , ChannelName
Variable Align // 1 for left axis , 2 for right axis
String ChannelList , TmpS

If ( ParamIsDefault ( Align ))
222 Align =1

EndIf
If ( ParamIsDefault ( Channel ))

ChannelList = Status_ListChannelNames ()
Prompt TmpS , " Channel to display : ", popup , ChannelList

227 DoPrompt " Status Display ", TmpS
If ( V_Flag )

849



C Program Codes

Return UserCancel
EndIf
Channel =TmpS

232 EndIf
If ( ParamIsDefault ( ChannelName ))

ChannelName = Channel
Prompt TmpS , " Display Name of Channel "+ Channel +": "
Prompt Align , " Select y-Axis: ", popup , "Left; Right "

237 DoPrompt " Status Display ", TmpS , Align
If ( V_Flag || ! StrLen (TmpS))

Return UserCancel
EndIf
ChannelName =TmpS

242 EndIf
Status_DisplayAll (Channel , WindowName = ChannelName , Right =Align -1)

End
//

Function Status_Display
Function Status_Display (DateStr , ChannelStr , [Right , New , WindowName ])

247 String DateStr , ChannelStr
Variable Right , New
String WindowName
String Wins

Switch ( Strlen ( DateStr ))
252 Case 6:

DateStr ="20"+ DateStr [4 ,5]+" -"+ DateStr [2 ,3]+" -"+ DateStr [0 ,1]
Break

Case 8:
DateStr = DateStr [0 ,3]+" -"+ DateStr [4 ,5]+" -"+ DateStr [6 ,7]

257 Break
Case 10:

Break
Default :

Return Status_InvalidDateFormat
262 Break

EndSwitch
If ( Exists ( Status_DataFolderStr +":"+ PossiblyQuoteName ( DateStr ) +":"+ ChannelStr )⤦
Ç !=1)
Return Status_ChannelNotExistant

EndIf
267 Wins= WinList ("*" , ";" , "WIN :1")

If ( ParamIsDefault ( Right ))
Right =0

EndIf
If ( ParamIsDefault (New))

272 New =0
EndIf
If ( ParamIsDefault ( WindowName ))

WindowName =""
EndIf

277 String DateName = PossiblyQuoteName ( DateStr )
String TraceName = ChannelStr +"@"+ DateStr
If (New || ( ItemsInList (Wins)==0))

If ( StrLen ( WindowName ))
Display /K=1 /N= $WindowName $( Status_DataFolderStr +":"+ DateName +":"+⤦

Ç ChannelStr ) /TN= $TraceName vs $( Status_DataFolderStr +":"+ DateName +":⤦
Ç Timeline ") as WindowName

282 Else
Display /K=1 /N= $WindowName $( Status_DataFolderStr +":"+ DateName +":"+⤦

Ç ChannelStr ) /TN= $TraceName vs $( Status_DataFolderStr +":"+ DateName +":⤦
Ç Timeline ")
EndIf
Label bottom " "
Label Left WindowName +" (\U)"

287 ModifyGraph /W= $WindowName nTicks ( Bottom )=20
Else

If ( StrLen ( WindowName ))
If (! StringMatch ( TraceNameList ( WindowName , ";" , 1 ), "*"+ TraceName +"*") )
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If ( Right )
292 AppendToGraph /W= $WindowName /R $( Status_DataFolderStr +":"+ DateName⤦

Ç +":"+ ChannelStr ) /TN= $TraceName vs $( Status_DataFolderStr +":"+ DateName +":⤦
Ç Timeline ")

ModifyGraph rgb( $TraceName )=(0 ,0 ,0)
Label Right WindowName +" (\U)"

Else
AppendToGraph /W= $WindowName $( Status_DataFolderStr +":"+ DateName +":"+⤦

Ç ChannelStr ) /TN= $TraceName vs $( Status_DataFolderStr +":"+ DateName +":⤦
Ç Timeline ")

297 Label Left WindowName +" (\U)"
EndIf

EndIf
Else

If (! StringMatch ( TraceNameList ("" , ";" , 1 ), "*"+ TraceName +"*") )
302 If ( Right )

AppendToGraph /R $( Status_DataFolderStr +":"+ DateName +":"+ ChannelStr ) /⤦
Ç TN= $TraceName vs $( Status_DataFolderStr +":"+ DateName +": Timeline ")

ModifyGraph rgb( $TraceName )=(0 ,0 ,0)
Label Right WindowName +" (\U)"

Else
307 AppendToGraph $( Status_DataFolderStr +":"+ DateName +":"+ ChannelStr ) /TN=⤦

Ç $TraceName vs $( Status_DataFolderStr +":"+ DateName +": Timeline ")
Label Left WindowName +" (\U)"

EndIf
EndIf

EndIf
312 EndIf

Return NoError
End
//

Function Status_DisplayAll
Function Status_DisplayAll ( ChannelStr , [ WindowName , Right ])

317 String ChannelStr , WindowName
Variable Right
Variable i, Folders , Plot =0
String Folder

Folders = CountObjectsDFR ( $Status_DataFolderStr , 4)
322 For (i=0; i< Folders ;i+=1)

If (( Exists ( Status_DataFolderStr +":"+ PossiblyQuoteName ( GetIndexedObjNameDFR (⤦
Ç $Status_DataFolderStr , 4, i)) +":"+ ChannelStr )==1) && ( Exists (⤦
Ç Status_DataFolderStr +":"+ PossiblyQuoteName ( GetIndexedObjNameDFR (⤦
Ç $Status_DataFolderStr , 4, i))+": TimeLine ") ==1))

Plot +=1
EndIf

EndFor
327 If (! Plot)

Return Status_NothingToDisplay
EndIf
If ( ParamIsDefault ( Right ))

Right =0
332 EndIf

If ( ParamIsDefault ( WindowName ) || ! StrLen ( WindowName ))
WindowName = ChannelStr

EndIf
WindowName = ReplaceString (" ", WindowName , "_")

337 For (i=0; i< Folders ;i+=1)
DoWindow $WindowName
If (! V_Flag )

Error_Message ( Status_Display ( GetIndexedObjNameDFR ( $Status_DataFolderStr , 4,⤦
Ç i), ChannelStr , New =1, Right =Right , WindowName = WindowName ), "⤦
Ç Status_Display ", " Status_DisplayAll ", ChannelStr )
Else

342 Error_Message ( Status_Display ( GetIndexedObjNameDFR ( $Status_DataFolderStr , 4,⤦
Ç i), ChannelStr , Right =Right , WindowName = WindowName ), " Status_Display ", "⤦
Ç Status_DisplayAll ", ChannelStr )
EndIf

EndFor
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Return NoError
End

347 //

C.3.4 Tools
//

Function Status_GetRuntime
Function Status_GetRuntime (Threshold , [ WindowName , ChannelName ])
Variable Threshold
String WindowName

352 String ChannelName
Variable i, Runtime =0, Use
String TraceList , Trace , ChannelStr , DateStr

If ( ParamIsDefault ( WindowName ))
WindowName =""

357 EndIf
If ( ParamIsDefault ( ChannelName ))

ChannelName =""
EndIf
TraceList = TraceNameList ( WindowName ,";" , 5)

362 If (! StrLen ( TraceList ))
Error_Message ( Status_ChannelNotExistant , " Status_GetRuntime ", " InProc ", ⤦
Ç WindowName )
Return NaN

EndIf
For (i=0; i< ItemsInList ( TraceList );i+=1)

367 Use =0
Trace = StringFromList (i, TraceList , ";")
ChannelStr = Trace [1, StrSearch (Trace , "@", 0, 0) -1]
If ( Strlen ( ChannelName ))

If ( StringMatch ( ChannelStr , ChannelName ))
372 Use =1

EndIf
Else

Use =1
EndIf

377 If (Use)
DateStr = Trace [ StrSearch (Trace , "@", 0, 0)+1, StrLen ( Trace ) -2]
Wave Source =$( Status_DataFolderStr +":"+ PossiblyQuoteName ( DateStr ) +":"+⤦

Ç PossiblyQuoteName ( ChannelStr ))
Wave TimeLine =$( Status_DataFolderStr +":"+ PossiblyQuoteName ( DateStr )+":⤦

Ç TimeLine ")
Duplicate /O /FREE Source Process

382 Process =( Process [p]>= Threshold ) ? ( TimeLine [Min(p+1, NumPnts ( TimeLine ) -1)]-⤦
Ç TimeLine [p]) : 0

Runtime += Sum( Process )
EndIf

EndFor
Return Runtime

387 End
//

Function Status_ListChannelNames
Function /S Status_ListChannelNames ()
String ChannelList =" Timeline ;", Folder
Variable i, j, Folders , Channels

392 Folders = CountObjectsDFR ( $Status_DataFolderStr , 4)
For (i=0; i< Folders ; i+=1)

Folder = GetIndexedObjNameDFR ( $Status_DataFolderStr ,4 ,i)
If ( Exists ( Status_DataFolderStr +":"+ PossiblyQuoteName ( Folder )+": Timeline ") ==⤦
Ç 1)

Channels = CountObjectsDFR ( $Status_DataFolderStr +":"+ PossiblyQuoteName ( Folder⤦
Ç ), 1)

397 For (j=0; j< Channels ; j+=1)
If (! StringMatch ( ChannelList , "*;"+ GetIndexedObjNameDFR (⤦

Ç $Status_DataFolderStr +":"+ PossiblyQuoteName ( Folder ) ,1 ,j) +"*") )
ChannelList = AddListItem ( GetIndexedObjNameDFR ( $Status_DataFolderStr +":"+⤦

Ç PossiblyQuoteName ( Folder ) ,1 ,j), ChannelList , ";" , Inf)
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EndIf
EndFor

402 EndIf
EndFor
ChannelList = RemoveFromList (" Timeline ", ChannelList , ";")
Return ChannelList

End
407 //

C.3.5 Version History
// Version Changes
// Version 1.0
// First release
// Working Version 1.1

412 // Unit conversion implemented
// GetRuntime implemented
// Additional display options in menu added
// FIXED Blank in WindowName
// FIXED wrong format loading waves for special names
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D Overview of the Investigated Systems

This collection gathers all results obtained from experiments without diagnosed
faults, providing supplementary information to Chapter 6. In the figures presenting
heat and sticking results, black traces are assigned to averaged data and colored
traces represent individual experiments. Additionally, the thickness of the deposited
substrate layer and the flux are illustrated for each experiment.

The reference values corresponding to the sticking and the heat measurements are
indicated by dashed lines.

Jumps in the traces of averaged data sets arise from inconsistent experiments.
This surprising behavior is related to the different layer thicknesses of the substrates
and is discussed in Sections 6.8 and 6.9.

Results involving the adsorption of copper are already presented in Section 6.6.
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D Overview of the Investigated Systems

D.1 Magnesium Adsorbed on Pristine Detector
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Figure D.1: Auxiliary Data for Magnesium on Pristine Detector — The calorime-
try flux (magnesium – red circles) and the thickness of the organic substrate
layer (contamination – blue diamonds) are given categorized by experiment.
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Figure D.2: Averaged Data for Magnesium on Pristine Detector — The averaged
results for the heat of adsorption (red) and the sticking probability (blue)
obtained from adsorption of magnesium on pristine nickel coated detector
surface are given as a function of coverage.
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D.1 Magnesium Adsorbed on Pristine Detector
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Figure D.3: Sticking Data for Magnesium on Pristine Detector — The obtained
sticking probabilities of magnesium dosed on pristine nickel coated detector
surface as a function coverage is shown for each individual experiment.
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Figure D.4: Enthalpy Data for Magnesium on Pristine Detector — The obtained
heat of adsorption of magnesium dosed on pristine nickel coated detector surface
as a function coverage is presented for each individual experiment.
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D Overview of the Investigated Systems

D.2 Magnesium Adsorbed on Sputter Cleaned
Detector
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Figure D.5: Auxiliary Data for Magnesium on Sputter Cleaned Detector — The
calorimetry flux (magnesium – red circles) and the thickness of the organic
substrate layer (absent – blue diamonds) are given categorized by experiment.
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Figure D.6: Averaged Data for Magnesium on Sputter Cleaned Detector — The
averaged results for the heat of adsorption (red) and the sticking probability
(blue) obtained from adsorption of magnesium on sputter cleaned nickel coated
detector surface are given as a function of coverage.
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Figure D.7: Sticking Data for Magnesium on Sputter Cleaned Detector — The
obtained sticking probabilities of magnesium dosed on sputter cleaned nickel
coated detector surface as a function coverage is shown for each individual
experiment.
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Figure D.8: Enthalpy Data for Magnesium on Sputter Cleaned Detector — The
obtained heat of adsorption of magnesium dosed on sputter cleaned nickel
coated detector surface as a function coverage is presented for each individual
experiment.
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D.3 Magnesium Adsorbed on PTCDA
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Figure D.9: Auxiliary Data for Magnesium on PTCDA — The calorimetry flux
(magnesium – red circles) and the thickness of the organic substrate layer
(PTCDA – blue diamonds) are given categorized by experiment.
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Figure D.10: Averaged Data for Magnesium on PTCDA — The averaged results
for the heat of adsorption (red) and the sticking probability (blue) obtained
from adsorption of magnesium on PTCDA are given as a function of coverage.

860



D.3 Magnesium Adsorbed on PTCDA
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Figure D.11: Sticking Data for Magnesium on PTCDA — The obtained sticking
probabilities of magnesium dosed on PTCDA as a function coverage is shown
for each individual experiment.
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Figure D.12: Enthalpy Data for Magnesium on PTCDA — The obtained heat of
adsorption of magnesium dosed on PTCDA as a function coverage is presented
for each individual experiment.
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D Overview of the Investigated Systems

D.4 Calcium Adsorbed on Sputter Cleaned
Detector
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Figure D.13: Auxiliary Data for Calcium on Sputter Cleaned Detector — The
calorimetry flux (calcium – red circles) and the thickness of the organic substrate
layer (absent – blue diamonds) are given categorized by experiment.
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Figure D.14: Averaged Data for Calcium on Sputter Cleaned Detector — The
averaged results for the heat of adsorption (red) and the sticking probability
(blue) obtained from adsorption of calcium on sputter cleaned nickel coated
detector surface are given as a function of coverage.
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Figure D.15: Sticking Data for Calcium on Sputter Cleaned Detector — The
obtained sticking probabilities of calcium dosed on sputter cleaned nickel coated
detector surface as a function coverage is shown for each individual experiment.
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Figure D.16: Enthalpy Data for Calcium on Sputter Cleaned Detector — The
obtained heat of adsorption of calcium dosed on sputter cleaned nickel coated
detector surface as a function coverage is presented for each individual experi-
ment.
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D.5 Calcium Adsorbed on Tetraphenyl Porphyrin
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Figure D.17: Auxiliary Data for Calcium on Tetraphenyl Porphyrin — The calori-
metry flux (calcium – red circles) and the thickness of the organic substrate layer
(tetraphenyl porphyrin – blue diamonds) are given categorized by experiment.
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Figure D.18: Averaged Data for Calcium on Tetraphenyl Porphyrin — The aver-
aged results for the heat of adsorption (red) and the sticking probability (blue)
obtained from adsorption of calcium on tetraphenyl porphyrin are given as a
function of coverage.
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D.5 Calcium Adsorbed on Tetraphenyl Porphyrin
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Figure D.19: Sticking Data for Calcium on Tetraphenyl Porphyrin — The ob-
tained sticking probabilities of calcium dosed on tetraphenyl porphyrin as a
function coverage is shown for each individual experiment.
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Figure D.20: Enthalpy Data for Calcium on Tetraphenyl Porphyrin — The ob-
tained heat of adsorption of calcium dosed on tetraphenyl porphyrin as a
function coverage is presented for each individual experiment.
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D.6 Calcium Adsorbed on PTCDA
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Figure D.21: Auxiliary Data for Calcium on PTCDA — The calorimetry flux
(calcium – red circles) and the thickness of the organic substrate layer (PTCDA
– blue diamonds) are given categorized by experiment.
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Figure D.22: Averaged Data for Calcium on PTCDA — The averaged results for
the heat of adsorption (red) and the sticking probability (blue) obtained from
adsorption of calcium on PTCDA are given as a function of coverage.
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Figure D.23: Sticking Data for Calcium on PTCDA — The obtained sticking
probabilities of calcium dosed on PTCDA as a function coverage is shown for
each individual experiment.
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Figure D.24: Enthalpy Data for Calcium on PTCDA — The obtained heat of
adsorption of calcium dosed on PTCDA as a function coverage is presented for
each individual experiment. Subsets with different substrate layer thicknesses
of the displayed experiments are given in Figures D.25 and D.26.
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Figure D.25: Enthalpy Data for Calcium on PTCDA: Small Layer Thickness —
The obtained heat of adsorption of calcium dosed on sexithiophene as a function
coverage is presented for each individual experiment carried out on small
substrate layer thicknesses.
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Figure D.26: Enthalpy Data for Calcium on PTCDA: Large Layer Thickness —
The obtained heat of adsorption of calcium dosed on sexithiophene as a func-
tion coverage is presented for each individual experiment carried out on large
substrate layer thicknesses.

868
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D.7 Calcium Adsorbed on PTCDA at Low
Temperature
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Figure D.27: Low Temperature Auxiliary Data for Calcium on PTCDA — The
calorimetry flux (calcium – red circles) and the thickness of the organic substrate
layer (PTCDA – blue diamonds) are given categorized by low temperature
experiment.
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Figure D.28: Low Temperature Averaged Data for Calcium on PTCDA — The
averaged results for the heat of adsorption (red) and the sticking probability
(blue) obtained from adsorption of calcium on PTCDA at low temperature are
given as a function of coverage.
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Figure D.29: Low Temperature Sticking Data for Calcium on PTCDA — The
obtained sticking probabilities of calcium dosed on PTCDA at low temperature
as a function coverage is shown for each individual experiment.
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Figure D.30: Low Temperature Enthalpy Data for Calcium on PTCDA — The
obtained heat of adsorption of calcium dosed on PTCDA at low temperature as
a function coverage is presented for each individual experiment.
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D.8 Calcium Adsorbed on Sexithiophene

D.8 Calcium Adsorbed on Sexithiophene

150

100

50

0

C
a

lo
ri

m
e

tr
y

 D
e

p
o

si
ti

o
n

 R
a

te
 (

p
m

/s
)

E
xp

0
0

2
8

E
xp

0
0

2
9

E
xp

0
0

3
0

E
xp

0
0

3
1

E
xp

0
0

3
2

E
xp

0
0

3
3

E
xp

0
0

3
4

E
xp

0
0

3
5

E
xp

0
0

3
6

E
xp

0
0

3
7

E
xp

0
0

3
8

Experiment

1.0

0.8

0.6

0.4

0.2

0.0

S
u

b
stra

te
 T

h
ick

n
e

ss (µ
m

)
Substrate ThicknessCalorimetry Deposition Rate

Figure D.31: Auxiliary Data for Calcium on Sexithiophene — The calorimetry
flux (calcium – red circles) and the thickness of the organic substrate layer
(sexithiophene – blue diamonds) are given categorized by experiment.
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Figure D.32: Averaged Data for Calcium on Sexithiophene — The averaged re-
sults for the heat of adsorption (red) and the sticking probability (blue) obtained
from adsorption of calcium on sexithiophene are given as a function of coverage.
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Figure D.33: Sticking Data for Calcium on Sexithiophene — The obtained stick-
ing probabilities of calcium dosed on sexithiophene as a function coverage is
shown for each individual experiment.
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Figure D.34: Enthalpy Data for Calcium on Sexithiophene — The obtained heat
of adsorption of calcium dosed on sexithiophene as a function coverage is
presented for each individual experiment. Subsets with different substrate layer
thicknesses of the displayed experiments are given in Figures D.35, D.36, and
D.37.
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Figure D.35: Enthalpy Data for Calcium on Sexithiophene: Small Layer
Thickness — The obtained heat of adsorption of calcium dosed on sexithio-
phene as a function coverage is presented for each individual experiment carried
out on small substrate layer thicknesses.

1.0

0.8

0.6

0.4

0.2

0.0

H
e

a
t 

o
f 

A
d

so
rp

ti
o

n
 (

M
J/

m
o

l)

100806040200

Calcium Coverage (ML)

Exp0035

Exp0036

Exp0037

Reference

Figure D.36: Enthalpy Data for Calcium on Sexithiophene: Medium Layer
Thickness — The obtained heat of adsorption of calcium dosed on sexithio-
phene as a function coverage is presented for each individual experiment carried
out on medium substrate layer thicknesses.
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Figure D.37: Enthalpy Data for Calcium on Sexithiophene: Large Layer
Thickness — The obtained heat of adsorption of calcium dosed on sexithio-
phene as a function coverage is presented for each individual experiment carried
out on large substrate layer thicknesses. In case of “Exp0033”, the thickness of
the substrate layer is twice as big as in the other two experiments.
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Figure D.38: Low Temperature Auxiliary Data for Calcium on Sexithiophene —
The calorimetry flux (calcium – red circles) and the thickness of the organic
substrate layer (sexithiophene – blue diamonds) are given categorized by low
temperature experiment.
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Figure D.39: Low Temperature Averaged Data for Calcium on Sexithiophene —
The averaged results for the heat of adsorption (red) and the sticking probability
(blue) obtained from adsorption of calcium on sexithiophene at low temperature
are given as a function of coverage.

875



D Overview of the Investigated Systems

1.2

1.0

0.8

0.6

0.4

0.2

0.0

S
ti

ck
in

g
 P

ro
b

a
b

il
it

y

100806040200

Calcium Coverage (ML)

EXP0039LT

Exp0040LT

Exp0041LT

Exp0042LT

Reference

Figure D.40: Low Temperature Sticking Data for Calcium on Sexithiophene —
The obtained sticking probabilities of calcium dosed on sexithiophene at low
temperature as a function coverage is shown for each individual experiment.
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Figure D.41: Low Temperature Enthalpy Data for Calcium on Sexithiophene —
The obtained heat of adsorption of calcium dosed on sexithiophene at low
temperature as a function coverage is presented for each individual experiment.
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Figure D.42: Auxiliary Data for Zinc on Sputter Cleaned Detector — The calori-
metry flux (zinc – red circles) and the thickness of the organic substrate layer
(absent – blue diamonds) are given categorized by experiment.
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Figure D.43: Averaged Data for Zinc on Sputter Cleaned Detector — The aver-
aged results for the heat of adsorption (red) and the sticking probability (blue)
obtained from adsorption of zinc on pristine nickel coated detector surface are
given as a function of coverage.
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Figure D.44: Sticking Data for Zinc on Sputter Cleaned Detector — The obtained
sticking probabilities of zinc dosed on pristine nickel coated detector surface
as a function coverage is shown for each individual experiment. The sample in
“Exp0001” was stored in the load lock for one week.
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Figure D.45: Enthalpy Data for Zinc on Sputter Cleaned Detector — The ob-
tained heat of adsorption of zinc dosed on pristine nickel coated detector surface
as a function coverage is presented for each individual experiment. The sample
in “Exp0001” was stored in the load lock for one week.
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Figure D.46: Auxiliary Data for Zinc on PTCDA — The calorimetry flux (zinc
– red circles) and the thickness of the organic substrate layer (PTCDA – blue
diamonds) are given categorized by experiment.
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Figure D.47: Averaged Data for Zinc on PTCDA — The averaged results for
the heat of adsorption (red) and the sticking probability (blue) obtained from
adsorption of zinc on PTCDA are given as a function of coverage.
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Figure D.48: Sticking Data for Zinc on PTCDA — The obtained sticking prob-
abilities of zinc dosed on PTCDA as a function coverage is shown for each
individual experiment.
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Figure D.49: Enthalpy Data for Zinc on PTCDA — The obtained heat of ad-
sorption of zinc dosed on PTCDA as a function coverage is presented for each
individual experiment.
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Figure D.50: Low Temperature Auxiliary Data for Zinc on PTCDA — The ca-
lorimetry flux (zinc – red circles) and the thickness of the organic substrate
layer (PTCDA – blue diamonds) are given categorized by low temperature
experiment.
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Figure D.51: Low Temperature Averaged Data for Zinc on PTCDA — The aver-
aged results for the heat of adsorption (red) and the sticking probability (blue)
obtained from adsorption of zinc on PTCDA at low temperature are given as a
function of coverage.
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Figure D.52: Low Temperature Sticking Data for Zinc on PTCDA — The ob-
tained sticking probabilities of zinc dosed on PTCDA at low temperature as a
function coverage is shown for each individual experiment.
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Figure D.53: Low Temperature Enthalpy Data for Zinc on PTCDA — The ob-
tained heat of adsorption of zinc dosed on PTCDA at low temperature as a
function coverage is presented for each individual experiment.
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E Supplementary Information

This chapter collects additional figures. They demonstrate that the drawn conclusions
also apply for analogue measurements discussed in the main parts.

E.1 Previous Data Evaluation Approach

This collection provides intermediary results from the previously used data evaluation
approach, see Section 3.13.
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Figure E.1: Laser Reference Previous Evaluation Approach — The lower part of
the graph contains exemplary original data of a laser reference measurement,
color coded for even (blue dots) and odd (green dots) frames, the pulse position
(gray lines), and the linear approximation during the pulse (red line). The upper
part of the graph contains the obtained slopes (diamonds) with color coded
parity of the whole measurement.
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Figure E.2: Radiation Reference Previous Evaluation Approach — The lower
part of the graph contains exemplary original data of a radiation reference
measurement, color coded for even (blue dots) and odd (green dots) frames,
the pulse position (gray lines), and the linear approximation during the pulse
(red line). The upper part of the graph contains the obtained slopes (diamonds)
with color coded parity of the whole measurement.
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Figure E.3: Desorption Reference Previous Evaluation Approach — The lower
part of the graph contains exemplary original data of a sticking reference
measurement, color coded for even (blue dots) and odd (green dots) frames, the
pulse position (gray lines), the individual baselines (thick lines, color coded),
and the area between the baseline and the signal (shaded area, color coded).
The upper part of the graph contains the obtained integrated baseline corrected
area (diamonds) with color coded parity of the whole measurement.
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Figure E.4: Heat Measurement Previous Evaluation Approach — The lower part
of the graph contains exemplary original data of a calorimetry measurement,
color coded for even (small blue dots) and odd (small green dots) frames, the
pulse position (gray lines), and the linear approximation during the pulse (red
line). The upper part of the graph contains the obtained slopes (large dots)
with color coded parity of the whole measurement.
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Figure E.5: Energy Calculation Previous Evaluation Approach — The parity
dependent original heat from Figure E.4 (even – blue, odd – green) is opposed to
the result (red) after subtraction of the parity dependent radiation contribution
from Figure E.2according to the previous approach.
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E.2 Filtering

E.2 Filtering

This collection illustrates the choice of the filter frequencies by results of different
filters. In these figures black traces are guides to the eye, blue traces original data,
and green lines indicate the recommended frequency range. In addition, the results of
the filtering algorithm, as discussed in Section 3.3, are provided for all measurements
kinds.
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E.2.1 Laser Reference Measurement
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Figure E.6: Filtered Laser Reference Measurement — The obtained 25 consecu-
tive frame pairs at the start of a laser reference measurement are displayed
after filtering with a different high pass frequency. The green traces show the
range of useful frequencies. The black traces at 0.05 Hz and 0.5 Hz are a guide
to the eye while the blue trace represents the unfiltered data for comparison.
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Figure E.7: Filter Residue Laser Reference Measurement — The residues of
25 consecutive frame pairs at the start of a laser reference measurement
are displayed obtained from filtering with a different high pass frequency. The
green traces show the range of useful frequencies. The black traces at 0.05 Hz
and 0.5 Hz are a guide to the eye and the blue trace represents the unfiltered
data for comparison.
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Figure E.8: Averaged Filtered Laser Reference — The averages of 25 consecutive
frame pairs at the start of a laser reference measurement are displayed after
filtering with a different high pass frequency. The green traces show the range
of useful frequencies. The black traces at 0.05 Hz and 0.5 Hz are a guide to the
eye and the blue trace represents the unfiltered data for comparison.
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Figure E.9: Detail Filtered Radiation Reference Measurement — A laser
reference measurement is displayed together with the results for several filter
settings. The unfiltered data (black) exhibits an unwanted slow oscillation. The
filtered data set corresponding to a transition frequency of 0.02 Hz (blue) suffers
from incomplete removal of the baseline, the data set corresponding to 0.1 Hz
(green) matches the ring on in the beginning and shows no contribution of the
pulses. An increase of the filter frequency to 0.5 Hz (red) leads to a pronounced
contribution of the pulses and thus to a severe distortion of the signal.
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Figure E.10: Average Frames of Filtered Laser Reference Measurement — The
average of 12 frame pairs of a laser reference measurement is displayed for
several filter settings. The unfiltered (black) and filtered waves with a transition
frequency of 0.1 Hz (green) and of 0.2 Hz (blue) are almost identical. An increase
of the filter frequency to 0.5 Hz (red) leads to a severe distortion of the signal.
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E.2.2 Radiation Reference Measurement
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Figure E.11: Filtered Radiation Reference Measurement — The obtained 25 con-
secutive frame pairs at the start of a radiation reference measurement are
displayed after filtering with a different high pass frequency. The green traces
show the range of useful frequencies. The black traces at 0.05 Hz and 0.5 Hz
are a guide to the eye while the blue trace represents the unfiltered data for
comparison.
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Figure E.12: Filter Residue Radiation Reference Measurement — The residues of
25 consecutive frame pairs at the start of a radiation reference measurement
are displayed obtained from filtering with a different high pass frequency. The
green traces show the range of useful frequencies. The black traces at 0.05 Hz
and 0.5 Hz are a guide to the eye and the blue trace represents the unfiltered
data for comparison.
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Figure E.13: Averaged Filtered Radiation Reference Measurement — The av-
erages of 25 consecutive frame pairs at the start of a radiation reference
measurement are displayed after filtering with a different high pass frequency.
The green traces show the range of useful frequencies. The black traces at
0.05 Hz and 0.5 Hz are a guide to the eye and the blue trace represents the
unfiltered data for comparison.
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Figure E.14: Detail Filtered Radiation Reference Measurement — A radiation
reference measurement is displayed together with the results for several filter
settings. The unfiltered data (black) exhibits an unwanted slow oscillation. The
filtered data set corresponding to a transition frequency of 0.02 Hz (blue) suffers
from incomplete removal of the baseline, the data set corresponding to 0.1 Hz
(green) matches the ring on in the beginning and shows no contribution of the
pulses. An increase of the filter frequency to 0.5 Hz (red) leads to a pronounced
contribution of the pulses and thus to a severe distortion of the signal.
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Figure E.15: Average Frames of Filtered Radiation Reference Measurement —
The average of 12 frame pairs of a radiation reference measurement is dis-
played for several filter settings. The unfiltered (black) and filtered waves with
a transition frequency of 0.1 Hz (green) and of 0.2 Hz (blue) are almost identical.
An increase of the filter frequency to 0.5 Hz (red) leads to a severe distortion of
the signal.
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Figure E.16: Filtered Heat Measurement — The obtained 25 consecutive frame
pairs at the start of a heat measurement are displayed after filtering with
a different high pass frequency. The green traces show the range of useful
frequencies. The black traces at 0.05 Hz and 0.5 Hz are a guide to the eye while
the blue trace represents the unfiltered data for comparison.
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Figure E.17: Filter Residue Heat Measurement — The residues of 25 consecutive
frame pairs at the start of a heat measurement are displayed obtained from
filtering with a different high pass frequency. The green traces show the range
of useful frequencies. The black traces at 0.05 Hz and 0.5 Hz are a guide to the
eye and the blue trace represents the unfiltered data for comparison.
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Figure E.18: Averaged Filtered Heat Measurement — The averages of 25 con-
secutive frame pairs at the start of a heat measurement are displayed after
filtering with a different high pass frequency. The green traces show the range
of useful frequencies. The black traces at 0.05 Hz and 0.5 Hz are a guide to the
eye and the blue trace represents the unfiltered data for comparison.
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Figure E.19: Detail Filtered Heat Measurement — A heat measurement is dis-
played together with the results for several filter settings. The unfiltered data
(black) exhibits an unwanted slow oscillation. The filtered data set correspond-
ing to a transition frequency of 0.02 Hz (blue) suffers from incomplete removal
of the baseline, the data set corresponding to 0.1 Hz (green) matches the ring
on in the beginning and shows no contribution of the pulses. An increase of the
filter frequency to 0.5 Hz (red) leads to a pronounced contribution of the pulses
and thus to a severe distortion of the signal.
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Figure E.20: Average Frames of Filtered Heat Measurement — The average of 12
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and of 0.2 Hz (blue) are almost identical. An increase of the filter frequency to
0.5 Hz (red) leads to a severe distortion of the signal.
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