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2. Summary	

Arterial	 hypertension	 causes	 hypertensive	 heart	 disease.	 Constant	 mechanical	 stress	

and	activation	of	neurohormonal	systems	cause	structural	and	functional	changes	in	the	

myocardium	 termed	 “remodelling”.	 Remodelling	 is	 beneficial	 in	 the	 beginning	 of	 the	

disease	development;	 however,	with	 time	 it	 becomes	detrimental	 and	 impairs	 cardiac	

function.	Remodelling	of	the	myocardium	occurs	in	hypertension,	atrial	fibrillation	and	

heart	 failure.	 These	 cardiac	 diseases	 are	 tightly	 linked	 by	 the	 mechanisms	 of	

pathological	remodelling	and	induce	development	and	maintenance	of	one	another.	

Ventricular	 remodelling	 has	 been	 studied	 intensively	 in	 hypertensive	 heart	 disease,	

however,	atrial	remodelling	has	been	studied	much	less	and	is	only	poorly	understood.	

Physiology	of	cardiac	myocytes	relies	on	balanced	intracellular	Na+	homeostasis.	Na+	is	

involved	in	many	cellular	processes,	such	as	action	potential	initiation,	Ca2+	homeostasis,	

intracellular	pH,	metabolism	and	contractility.		

In	 the	 first	 part	 of	 the	 thesis	 I	 investigated	 ionic	 (Na+	 homeostasis)	 and	 functional	

(contractility)	 atrial	 remodelling	 in	 an	 animal	 model	 of	 hypertensive	 heart	 disease	 –	

spontaneously	hypertensive	 rats	 (SHR).	 In	 early	hypertension,	 SHR	exhibited	 elevated	

blood	 pressure	 and	 isolated	 left	 ventricular	 hypertrophy.	 The	 atria	 were	 not	

hypertrophied.	 Contractility	 of	 atrial	 myocytes	 and	 intracellular	 Na+	 concentration	

([Na+]i)	were	both	unaltered.	Expression	of	most	Na+-handling	proteins	was	unaffected	

in	the	atria	of	SHR.	

In	 advanced	 hypertension,	 SHR	 exhibited	 further	 progression	 of	 left	 ventricular	

hypertrophy	and	signs	of	heart	failure.	Left	atria	were	hypertrophied.	The	contractility	

of	 atrial	 myocytes	 was	 reduced.	 [Na+]i	 was	 significantly	 decreased	 together	 with	

increased	 expression	 of	 the	 α	 1	 subunit	 of	 Na+/K+-ATPase.	 Expression	 of	 Na+/H+-

exchanger	was	increased,	suggesting	activation	of	pro-hypertrophic	pathways.		

Comparison	of	SHR	with	and	without	signs	of	heart	 failure	(i.e.	 increased	lung	weight)	

revealed	 development	 of	 right	 ventricular	 hypertrophy	 and	 progression	 of	 bi-atrial	

hypertrophy	 in	 SHR	 with	 heart	 failure.	 Moreover,	 the	 impairment	 of	 atrial	 myocyte	

contractility	 progressed.	 However,	 [Na+]i	 and	 the	 expression	 of	 major	 Na+-handling	

proteins	were	not	changed	during	the	transition	to	heart	failure.	 In	addition	to	studies	

on	 atrial	 myocytes,	 we	 performed	 measurements	 of	 [Na+]i	 and	 contractility	 of	
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ventricular	 myocytes	 from	 old	 SHR.	 In	 contrast	 to	 our	 findings	 in	 the	 atria,	 no	

impairment	 of	 contractility	 or	 changes	 in	 [Na+]i	 were	 observed	 in	 the	 ventricular	

myocytes,	indicating	atria-specific	remodelling.	

Taken	together,	the	presented	results	indicate	that	in	early	hypertension	no	significant	

signs	 of	 atrial	 remodelling	 in	 terms	 of	 contractility	 and	 Na+	 homeostasis	were	 found.	

However,	 in	 advanced	 hypertensive	 heart	 disease	 there	 was	 atria-specific	 functional	

atrial	 remodelling,	 which	 might	 contribute	 to	 the	 transition	 from	 compensated	 left	

ventricular	hypertrophy	to	heart	failure.		

	

Atrial	 ionic	remodelling	is	an	important	factor	in	the	development	and	maintenance	of	

atrial	 fibrillation.	 The	 role	 of	 intracellular	 Na+	 homeostasis	 in	 these	 processes	 is	 not	

understood.	 In	 the	second	part	of	 the	 thesis,	 I	 investigated	expression	of	Na+-handling	

proteins	 in	 right	 atrial	 tissue	of	 patients	 suffering	 from	paroxysmal	 and	 chronic	 atrial	

fibrillation	 compared	 to	 patients	 with	 sinus	 rhythm.	 The	 results	 indicated	 that	 the	

expression	 of	 Na+-handling	 proteins,	 including	Na+	 channels,	 Na+/H+	 exchanger,	 alpha	

subunits	 of	Na+/K+-ATPase,	 phospholemman,	was	 not	 altered	 in	 either	 paroxysmal	 or	

chronic	 atrial	 fibrillation.	 The	 expression	 of	 β	 1	 subunit	 of	 Na+/K+-ATPase	 was	

significantly	reduced	in	chronic	atrial	fibrillation.	However,	the	functional	consequences	

of	this	change	require	further	investigation.	

	

Endothelin-1	 plays	 an	 important	 role	 in	 the	 regulation	 of	 blood	 pressure	 and	 cardiac	

physiology.	 Enhancement	 of	 endothelin-1	 system	 activity	 contributes	 to	 cardiac	

maladaptive	remodelling,	including	disturbances	in	Ca2+	and	Na+	homeostasis	in	cardiac	

myocytes.	 At	 the	 age	 of	 7	 months,	 SHR	 exhibit	 enhanced	 endothelin-1	 signalling	 and	

altered	Ca2+	handling.	Therefore,	in	the	third	part	of	the	thesis	we	investigated	the	effect	

of	 endothelin-1	 receptor	 blockage	 on	 blood	 pressure	 and	 expression	 and	

phosphorylation	 of	 Ca2+-handling	 proteins,	 as	 well	 as	 the	 expression	 of	 proteins	

involved	in	endothelin-1	signalling	in	the	atria	of	SHR.	

The	 results	 revealed	 that	 the	 blockage	 of	 endothelin	 receptors	 by	 8	weeks	 treatment	

with	macitentan	(novel	dual	endothelin	A	and	endothelin	B	receptor	antagonist)	did	not	

lower	 blood	pressure	 in	 SHR.	 Expression	 and	phosphorylation	 of	major	 Ca2+-handling	

proteins	and	endothelin-1	signalling	proteins	were	both	unaffected.	Thus,	the	blockage	

of	 endothelin	 receptors	did	not	 cause	 any	major	 changes	 in	 atrial	 Ca2+	 remodelling	 in	

SHR.
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Zusammenfassung	

Arterielle	 Hypertonie	 induziert	 die	 Entwicklung	 von	 hypertensiver	 Herzerkrankung.		

Die	 Aktivierung	 von	 neurohormonalen	 Systemen	 und	 ständiger,	 mechanischer	 Stress	

führen	 zu	 Änderungen	 in	 der	 Struktur	 und	 Funktion	 des	 Herzmuskels.	 Diese	

Umbauprozesse	werden	als	 „Remodelling“	bezeichnet.	Das	Remodelling	 ist	 am	Anfang	

adaptiv,	aber	später	werden	diese	Veränderungen	pathologisch	und	beeinträchtigen	die	

Herzfunktion.	 Umbauprozesse	 treten	 bei	 hypertensiver	 Herzerkrankung,	

Vorhofflimmern	 und	 Herzinsuffizienz	 auf.	 Diese	 Krankheiten	 teilen	 sich	 eine	

gemeinsame	 Pathogenese	 und	 begünstigen	 die	 gegenseitige	 Entwicklung	 und	

Aufrechterhaltung.	

Während	 das	 ventrikuläre	 Remodelling	 bei	 hypertensiver	 Herzerkrankung	

vergleichsweise	gut	verstanden	ist,	bleiben	die	Mechanismen	des	atrialen	Remodellings	

weitgehend	unbekannt.			

Natrium-Ionen	(Na+)	sind	an	vielen	zellulären	Prozessen	im	Myokard	beteiligt,	wie	zum	

Beispiel	 der	 Bildung	 des	 Aktionspotenzials,	 der	 Regulation	 der	 intrazellulären	 Ca2+	

Konzentration,	 dem	 pH,	 dem	 Zellmetabolismus	 und	 der	 Kontraktilität.	 Die	 Regulation	

der	 intrazellulären	 Na+-Konzentration	 ([Na+]i)	 ist	 für	 die	 normale	 Herzfunktion	 von	

großer	Bedeutung.		

In	dem	ersten	Teil	der	Arbeit	wurden	die	 ionalen	Aspekte	 (Na+	-Homöostase)	und	die	

funktionellen	 Aspekte	 (Kontraktilität)	 des	 atrialen	 Remodellings	 im	 Tiermodell	 der	

hypertensiven	 Herzerkrankung	 bei	 „spontan-hypertensiven	 Ratten“	 (SHR)	 untersucht.	

Als	Kontrolltiere	wurden	normotensive	Wistar	Kyoto	Ratten	(WKY)	gewählt.	Im	frühen	

Stadium	 der	 Hypertonie	 wiesen	 die	 SHR	 erhöhte	 Blutdruckwerte	 und	 isolierte	

linksventrikuläre	 Hypertrophie	 auf.	 Die	 Vorhöfe	 waren	 nicht	 vergrößert.	 Die	

Kontraktilität	 der	 Vorhofmyozyten,	 [Na+]i	 und	 die	 Expression	 von	 Na+-regulierenden	

Proteinen	waren	unverändert.		

Im	 späten	 Stadium	 der	 hypertensiven	 Herzerkrankung	 zeigten	 die	 SHR	

linksventrikuläre	 Hypertrophie	 und	 Zeichen	 von	 Herzinsuffizienz.	 Die	 linken	 Vorhöfe	

der	SHR	waren	vergrößert	und	die	Kontraktilität	der	Vorhofmyozyten	war	vermindert.	

[Na+]i	war	signifikant	verringert	in	Kombination	mit	der	erhöhten	Expression	der			
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α	 1-Untereinheit	 der	 Na+/K+-Pumpe.	 Die	 Expression	 des	 Na+/H+-Austauschers	 im	

Vorhofmyokard	der	SHR	war	ebenfalls	erhöht.	

Beim	Vergleich	 von	 SHR	mit	 Herzinsuffizienz	 (mit	 erhöhtem	 Lungengewicht)	mit	 den	

SHR	 ohne	 Herzinsuffizienz	 wurden	 die	 rechtventrikuläre	 Hypertrophie	 und	 die	

Progression	 der	 Vorhofhypertrophie	 in	 den	 Ratten	 mit	 Herzinsuffizienz	 detektiert.	

Darüber	hinaus	wurde	auch	eine	Verminderung	der	Kontraktilität	der	Vorhofmyozyten	

festgestellt.	 [Na+]i	 und	 die	 Expression	 der	 wichtigsten	 Na+-regulierenden	 Proteinen	

blieben	während	des	Übergangs	zur	Herzinsuffizienz		unverändert.	

Zusätzlich	 zu	 den	 Untersuchungen	 am	 Vorhofmyokard	 wurden	 auch	 Messungen	 der	

[Na+]i	 und	 Kontraktilität	 in	 Ventrikelmyozyten	 durchgeführt.	 Im	 Gegensatz	 zu	 den	

Vorhöfen	waren	[Na+]i	und	Kontraktilität	der	Ventrikelmyozyten	unverändert.	Das	zeigt,	

dass	das	untersuchte	Remodelling	Vorhof-spezifisch	ist.	

Zusammen	 genommen	 zeigen	 die	 präsentierten	 Ergebnisse	 das	 Fehlen	 eines	 atrialen	

Remodellings	(im	Bezug	auf	die	Kontraktilität	und	Na+-Homöostase)	im	frühen	Stadium	

der	 Hypertonie.	 Im	 späteren	 Stadium	 der	 Hypertonie	 sind	 die	 funktionellen	

Umbauprozesse	 vorhofspezifisch	 und	 könnten	 den	 Übergang	 von	 der	 kompensierten	

linksventrikulären	Hypertrophie	in	die	Herzinsuffizienz	begünstigen.	

	

Remodelling	 der	 Ionen-Homöostase	 im	 Vorhof	 ist	 ein	 wichtiger	 Faktor	 für	 die	

Entwicklung	und	Aufrechterhaltung	des	Vorhofflimmerns.	Die	Rolle	der	intrazellulären	

Na+-Homöostase	dafür	 ist	noch	nicht	 klar.	 Im	zweiten	Teil	 der	Dissertation	wurde	die	

Expression	 von	Na+-regulierenden	 Proteinen	 im	 rechten	 Vorhofgewebe	 von	 Patienten	

mit	paroxysmalem	und	chronischem	Vorhofflimmern,	im	Vergleich	zu	den	Patienten	mit	

Sinus-Rhythmus,	untersucht.	Die	Befunde	weisen	auf	die	unveränderte	Expression	der	

meisten	Na+-regulierenden	Proteine	hin,	 einschließlich	der	 spannungsabhängigen	Na+-

Kanäle,	 des	 Na+/H+-Austauschers,	 verschiedener	 Isoformen	 der	 α-Untereinheit	 der	

Na+/K+-Pumpe	und	Phospholemman.	Die	Expression	der	β	 1-Untereinheit	der	Na+/K+-	

Pumpe	 bei	 Patienten	 mit	 chronischem	 Vorhofflimmern	 war	 signifikant	 erniedrigt,	

obwohl	die	funktionelle	Bedeutung	dieser	Änderung	noch	unklar	bleibt.	

	

Endothelin-1	 spielt	 eine	 große	 Rolle	 für	 die	 Regulation	 des	 Blutdrucks	 und	 in	 der	

Herzphysiologie.	 Die	 erhöhte	 Aktivität	 des	 Endothelin-1-Systems	 trägt	 zu	 der	

Entwicklung	des	pathologischen	Remodellings,	einschließlich	der	Störung	der	Ca2+-	und	

Na+-Homöostase	 in	den	Herzmuskelzellen,	bei.	 In	7	Monate	alten	SHR	 ist	die	Aktivität	
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des	Endothelin-1-Systems	erhöht,	gemeinsam	mit	einer	veränderten	Ca2+-Homöostase.	

Daher	 wurde	 im	 dritten	 Teil	 der	 Dissertation	 der	 Effekt	 der	 Endothelin-1-Rezeptor-	

Blockade	auf	den	Blutdruck,	die	Expression	von	Ca2+-regulierenden	Proteinen	und	den	

beteiligten	 Komponenten	 der	 Endothelin-1-Signaltransduktionskaskade	 im	 linken	

Vorhof	der	SHR	untersucht.		

Der	 Blutdruck	 wurde	 durch	 die	 Blockade	 der	 Endothelin-Rezeptoren	 durch	 eine	

Behandlung	 mit	 Macitentan,	 einem	 neuen	 Endothelin	 A-	 and	 Endothelin	 B-	

Rezeptorantagonisten,	für	die	Dauer	von	8	Wochen	nicht	erniedrigt.	Die	Expression	und	

Phosphorylierung	 der	 meisten	 Ca2+-regulierenden	 Proteine	 blieben	 unverändert.	 Die	

Expression	 von	 Proteinen	 des	 Endothelin-1-Signalwegs	 war	 ebenso	 unverändert.	

Zusammenfassend	 zeigt	 der	 dritte	 Teil	 der	 Arbeit,	 dass	 die	 Blockade	 von	 Endothelin-	

Rezeptoren	 keinen	 wesentlichen	 Einfluss	 auf	 das	 Ca2+-abhängige	 Remodelling	 des	

Vorhofs	der	SHR	hat.	
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3. Introduction	

3.1. Arterial	hypertension,	heart	failure	and	atrial	fibrillation		

3.1.1. Hypertensive	heart	disease	

Hypertensive	 heart	 disease	 is	 the	most	 common	 cause	 of	 cardiac	 disease	 worldwide.	

According	 to	 European	 Society	 of	 Cardiology	 and	 European	 Society	 of	 Hypertension	

(ESC/ESH)	 guidelines,	 there	 are	 two	 types	 of	 hypertension:	 primary	 and	 secondary.	

Hypertension	 is	defined	as	values	exceeding	140	mmHg	 for	systolic	and	90	mmHg	 for	

diastolic	blood	pressure	(Mancia	et	al.	2014).	

Primary	or	essential	hypertension	-	the	cause	of	elevated	blood	pressure	is	unclear.	

Secondary	hypertension	 -	 the	 increased	blood	pressure	 is	 a	 consequence	of	 another	

disease	(pheochromocytoma,	Cushing	disease,	renal	diseases).	Secondary	hypertension	

is	 characterized	 by	 rapid	 progression	 and	 high	 blood	 pressure	 values.	 In	most	 of	 the	

cases,	 it	 can	 be	 treated	 by	 therapeutic	 correction	 of	 the	 primary	 disease	 or	 surgical	

intervention.		

Essential	hypertension	accounts	 for	about	90%	of	all	 cases.	Usually,	mild	or	moderate	

elevation	of	blood	pressure	is	observed	and	no	reason	for	elevated	blood	pressure	can	

be	identified	(Greene	&	Harris	2008).	Since	primary	hypertension	is	the	most	common	

type	of	hypertension,	the	term	“hypertension”	will	be	used	further	in	this	thesis	for	the	

essential	type	of	the	disease.	

Prolonged	 elevation	 in	 blood	 pressure	 may	 induce	 several	 pathological	 changes	 in	

myocardial	 structure,	 coronary	vessels	and	 the	cardiac	conduction	system,	collectively	

termed	“hypertensive	heart	disease”.	These	pathological	changes	cause	 left	ventricular	

hypertrophy,	 coronary	 artery	 disease,	 cardiac	 arrhythmias,	 and	 heart	 failure	

(McLenachan	et	al.	1987),	(Levy	et	al.	1996),	(Diamond	&	Phillips	2005).	Hypertension	

can	change	cardiac	structure	and	function	directly	via	increased	afterload	and	indirectly	

via	 activation	 of	 several	 neurohormonal	mechanisms,	 such	 as	 activation	 of	 the	 renin-

angiotensin-aldosterone	and	the	sympathetic	nervous	system	(Weber	et	al.	1991).	
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3.1.2. Left	ventricular	hypertrophy	

Elevated	afterload	together	with	activation	of	the	renin-angiotensin-aldosterone	and	the	

sympathtetic	 nervous	 system	 stimulates	 myocyte	 growth,	 fibroblast	 activation	 and	

collagen	 formation	 (Weber	 et	 al.	 1991).	 These	 changes	 result	 in	 left	 ventricular	

structural	 remodelling	 with	 disproportionate	 elevation	 in	 fibrous	 tissue	 in	 the	

myocardium.	 This,	 in	 turn,	 leads	 to	 reduction	 of	 left	 ventricular	 compliance	 and,	

eventually,	 diastolic	 dysfunction.	 Coronary	 arteries	 are	 also	 structurally	 changed	 and,	

together	with	increased	interstitial	fibrosis	and	myocardial	mass,	vascular	coronary	flow	

decreases,	 predisposing	 to	 ischemic	 episodes.	Moreover,	 in	 hypertrophic	myocardium	

fibrosis	disturbs	normal	electrical	conduction	(Kahan	1998),	(Kahan	&	Bergfeldt	2005).	

Thus,	 left	 ventricular	 hypertrophy	 caused	 by	 hypertension	 is	 a	 risk	 factor	 for	 the	

development	of	myocardial	infarction,	heart	failure	and	arrhythmias	(Kahan	&	Bergfeldt	

2005).	

3.1.3. Heart	failure		

The	term	“heart	failure”	describes	not	a	single	disease	but	rather	a	syndrome	with	many	

possible	aetiologies,	and	it	can	be	defined	as	a	failure	of	the	heart	to	sufficiently	perfuse	

the	 body	 with	 blood	 (Greene	 &	 Harris	 2008).	 Hypertension	 is	 one	 of	 the	 major	 risk	

factors	 for	 left	 ventricular	 dysfunction	 and	 hypertrophy.	 Left	 ventricular	 hypertrophy	

can	be	beneficial	in	the	beginning	since	it	increases	or	maintains	cardiac	output.	When	

the	 disease	 is	 progressing,	 remodelling	 becomes	 detrimental	 and	 left	 ventricular	

structure	 and	 function	 change,	 e.g.	 chambers	 of	 the	 heart	 dilate	 (Drazner	 2011).	

Functionally,	 further	 development	 of	 fibrosis	 causes	 impairment	 of	 contractility	 and,	

thus,	pumping	of	the	heart	becomes	less	efficient.	This	results	in	global	hypoperfusion.	

In	 addition,	 the	 amount	 of	 blood	 remaining	 in	 the	 ventricle	 is	 increased,	 so	 that	 left	

ventricular	end	diastolic	pressure	rises,	causing	elevation	of	pressure	in	the	left	atrium.	

As	a	result,	the	pressure	in	the	lung	capillaries	also	increases,	eventually	leading	to	lung	

oedema	and	dyspnoea	as	the	clinical	manifestation.	

Left	 ventricular	 failure	 can	 also	 lead	 to	 right	 ventricular	 dysfunction.	 This	 type	 of	

dysfunction	 is	 characterized	 by	 increased	 pressure	 in	 the	 right	 ventricle	 and	 right	

atrium,	 which	 causes	 a	 rise	 in	 systemic	 venous	 pressure.	 Consequently,	 pressure	 is	

elevated	 in	 the	 liver,	gastrointestinal	 tract,	 and	 low	extremities,	 causing	hepatomegaly	

and	peripheral	oedema	(Kemp	&	Conte	2012).		
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Clinically,	heart	failure	is	classified	as	compensated	and	decompensated	heart	failure.	

Symptoms	of	compensated	heart	failure	are	stable,	and	the	signs	of	fluid	retention	and	

lung	oedema	are	absent	(Millane	et	al.	2000).	Decompensated	heart	 failure,	as	defined	

by	 Felker	 et	 al.,	 is	 a	 deterioration	 and	 progression	 of	 the	 compensated	 form	 and	 is	

characterized	by	the	appearance	of	new	or	worsening	of	already	existing	symptoms	of	

dyspnoe,	fatigue	and	oedema	(Felker	et	al.	2003).	

Left	ventricular	dysfunction	can	be	divided	 into	 two	categories:	systolic	and	diastolic	

dysfunction.	 Systolic	 dysfunction	 occurs	 when	 ventricular	 contraction	 and	 ejection	

fraction	are	 reduced.	This	 type	occurs	 in	70%	of	patients	with	heart	 failure.	 	Diastolic	

dysfunction	is	present	in	30%	of	heart	failure	patients	and	is	characterized	by	impaired	

ventricular	relaxation	and	filling	during	diastole	(Kemp	&	Conte	2012).	
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3.1.4. Atrial	fibrillation	

Atrial	fibrillation	is	the	most	common	pathological	arrhythmia.	The	prevalence	of	atrial	

fibrillation	 is	 about	 1-2%	 of	 the	 general	 population	 (Andrade	 et	 al.	 2014).	 The	

prevalence	 increases	with	 advancing	 age	 and	 is	 associated	with	 the	presence	of	 other	

cardiovascular	diseases,	such	as	hypertension	and	heart	failure.	The	electrocardiogram	

of	 fibrillating	 atria	 shows	 undulations	 of	 the	 baseline	 and	 the	 absence	 of	 P-waves	

(Figure	1B),	which	normally	represent	regular	atrial	depolarization.	Ventricular	rates	in	

atrial	fibrillation	are	slower	than	in	the	atria	due	to	filtering	of	electrical	conduction	by	

the	atrioventricular	node.	The	QRS	complexes,	which	 show	ventricular	depolarization,	

are	narrow	and	irregular	(Katz	2010),	(Wakili	et	al.	2011).	

Figure	1	shows	an	ECG	recording	of	normal	sinus	rhythm	and	atrial	fibrillation.		

	

	

Figure	 1.	 Electrocardiographic	 recording	 of	 sinus	 rhythm	 and	 the	 onset	 of	 an	

atrial	fibrillation	episode.		

Figure	is	taken	from	(Wakili	et	al.	2011)	
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Due	 to	 impaired	 atrial	 contractility,	 blood	 in	 the	 atria	 (in	 particular	 in	 the	 left	 atrial	

appendage)	stagnates	and	coagulates,	causing	the	major	life-threatening	complication	of	

atrial	fibrillation:	stroke	(Schotten	et	al.	2011).	

Clinically,	 atrial	 fibrillation	 is	 classified	 into	 paroxysmal,	 when	 the	 episodes	 of	 atrial	

fibrillation	 are	 short	 and	 selfterminating	 (Heijman	 et	 al.	 2014),	 persistent,	 when	 the	

arrhythmic	 episode	 lasts	 seven	 days	 or	 more,	 and	 permanent	 (chronic),	 when	 the	

normal	 sinus	 rhythm	 can	 not	 be	 regained.	 Another	 form	 of	 atrial	 fibrillation	 is	 called	

“lone”.	This	type	of	arrhythmia	is	present	in	young	patients	without	clinical	evidence	of	

hypertension	 or	 cardiopulmonary	 disease	 and	 with	 low	 risk	 of	 cardioembolic	

complications	(Camm	et	al.	2012).	The	paroxysmal	form	can	remain	or	progress	further	

to	permanent	atrial	fibrillation.	Similarly,	permanent	atrial	fibrillation	is	not	necessarily	

a	 result	 of	 the	progression	of	paroxysmal	 atrial	 fibrillation;	 it	 can	develop	with	 a	 first	

arrhythmic	episode	(Schotten	et	al.	2011).		

Many	 cardiovascular	 diseases	 are	 associated	 with	 atrial	 fibrillation,	 such	 as	

hypertension,	valvular	heart	disease	(rheumatic	heart	disease),	heart	failure,	congenital	

heart	 diseases	 and	 coronary	 artery	 disease.	 Among	 others,	 hypertension	 and	 heart	

failure	are	very	common	predictors	of	atrial	fibrillation	(Schotten	et	al.	2011).	

Hypertension	is	responsible	for	14%	of	all	atrial	fibrillation	cases	and,	at	the	same	time,	

found	 in	 60-80%	 of	 atrial	 fibrillation	 patients	 (Andrade	 et	 al.	 2014),	 (Schotten	 et	 al.	

2011).	 Furthermore,	 hypertension	 is	 an	 independent	 predictor	 of	 the	 disease	 and	

contributes	 to	 disease	 progression	 (Schotten	 et	 al.	 2011).	 As	 discussed	 above,	

hypertension	 induces	 left	 ventricular	 remodelling.	 Similar	 remodelling	 processes	 are	

also	observed	at	the	atrial	level.		

3.1.4.1. Atrial	remodelling	and	arrythmogenic	mechanisms	for	atrial	

fibrillation		

The	phenomenon	of	atrial	remodelling	has	been	extensively	studied	in	atrial	fibrillation.	

Atrial	remodelling	is	a	time-dependent	adaptive	regulation	of	atrial	cardiac	myocytes	to	

maintain	homeostasis	and	function.	The	strength	and	duration	of	exposure	to	the	stress	

factors	influence	the	type	and	extent	of	remodelling.	Tachycardia	with	high	rates	of	cell	

depolarization	 (for	 example,	 atrial	 fibrillation)	 and	 volume/pressure	 overload	 (mitral	

valve	 disease,	 hypertension	 and	 heart	 failure)	 belong	 to	 the	 most	 prominent	 stress	

factors	 for	 atrial	myocytes.	 Atria	 respond	 to	 these	 factors	 by	 adaptive	 or	maladaptive	

structural	 and	 functional	 changes.	 These	 changes	 include:	 myocyte	 growth	 and	
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hypertrophy,	 necrosis	 and	 apoptosis,	 alterations	 in	 the	 composition	 of	 extracellular	

matrix,	alterations	in	the	expression	and	function	of	ion	channels,	as	well	as	in	secretion	

of	atrial	hormones	(Casaclang-Verzosa	et	al.	2008).	

Structural	remodelling	

Atrial	 dilation	 is	 the	 typical	 sign	of	 structural	 remodelling.	Upon	normal	 physiological	

conditions,	 atria	 are	expandable	 chambers	with	 relatively	 low	pressures	 inside.	 In	 the	

presence	 of	 pressure	 overload	 or	 injury,	 atria	 become	 more	 rigid	 and	 stiff.	 Myocyte	

hypertrophy	 and	 elevated	 interstitial	 fibrosis	 are	 found	 at	 the	 ultrastructural	 level	

(Casaclang-Verzosa	 et	 al.	 2008).	 It	 is	 important	 to	 mention	 that	 fibrosis	 impairs	 the	

normal	coupling	between	myocytes	and,	 thus,	electrical	 conduction	 (Burstein	&	Nattel	

2008).	 In	 addition,	 signs	 of	 necrosis	 and	 changes	 in	 the	 mitochondrial	 structure	 are	

present	 in	 the	 atrial	 myocytes.	 All	 structural	 changes,	 in	 turn,	 contribute	 to	 the	

development	of	electrical	remodelling	(Casaclang-Verzosa	et	al.	2008).	

Electrical	remodelling		

A	hallmark	of	atrial	electrical	remodelling	is	the	shortening	of	action	potential	duration.	

Several	studies	revealed	that	changes	in	the	expression	and/or	activity	of	ion	channels	

are	causing	this	phenomenon.	The	density	of	L-type	Ca2+	current	(which	is	responsible	

for	the	plateau	phase	of	the	action	potential)	and/or	expression	of	L-type	Ca2+	channel	

are	reduced,	as	shown	 in	many	animal	models	of	 rapid	atrial	pacing	and	human	atrial	

fibrillation	(Schotten	et	al.	2011).	Potassium	repolarizing	currents,	especially	 transient	

outward	current	(Ito),	are	also	markedly	decreased	in	atrial	fibrillation,	whereas	inward	

rectifier	 potassium	 current	 (IK1)	 and	 the	 acetylcholine-activated	 potassium	 current		

(IK,ACh)	 are	 increased	 in	 atrial	 fibrillation.	These	 changes	 contribute	 to	 the	decrease	 in	

refractoriness	 of	 the	 atrial	 myocardium	 and,	 thus,	 to	 perpetuation	 of	 the	 arrhythmia	

(Bosch	 et	 al.	 1999),	 (Schotten	 et	 al.	 2011).	 Another	 important	 factor	 in	 electrical	

remodelling	 is	disturbed	Ca2+	homeostasis	and,	 thus,	 impaired	electrical	excitation	and	

contractile	function	(Casaclang-Verzosa	et	al.	2008)	(Ca2+	homeostasis	will	be	discussed	

in	 more	 detail	 below).	 Loss	 of	 atrial	 contractile	 function	 has	 the	 important	 clinical	

consequence	of	increasing	the	risk	of	thromboembolism	(Schotten	et	al.	2011).	

3.1.4.2. Mechanisms	of	atrial	fibrillation	initiation	

For	atrial	fibrillation	to	occur	and	be	maintained,	ectopic	electrical	activity	(trigger)	and	

an	obstacle	for	the	conduction	of	an	electrical	impulse	(substrate)	should	be	present	in	
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atrial	 myocardium.	 Focal	 ectopic/triggered	 activity	 is	 caused	 by	 early	 or	 delayed	

afterdepolarizations	 (Heijman	et	al.	2014).	Early	afterdepolarizations	occur	before	 the	

completion	 of	 repolarization	 of	 an	 action	 potential	 (Zeng	 &	 Rudy	 1995)	 and	 are	

promoted	 by	 prolonged	 repolarization	 (Heijman	 et	 al.	 2014)	 and	 Ca2+	 handling	

abnormalities:	 changes	 in	 L-type	 Ca2+	 channel	 activation	 and	 de-activation	 or	

spontaneous	Ca2+	 release	 from	sarcoplasmic	 reticulum	 (Schotten	et	 al.	 2011).	Delayed	

afterdepolarizations	 occur	 after	 complete	 repolarization	 of	 the	 action	 potential	 and	

mostly	result	from	the	spontaneous	release	of	Ca2+	from	sarcoplasmic	reticulum	during	

diastole	(January	&	Fozzard	1988),	(Dobrev	&	Nattel	2010).	

There	 are	 two	 types	 of	 re-entry	mechanisms:	 leading	 circle	 and	 spiral	wave.	 	 Leading	

circle	 re-entry	 occurs	 when	 refractoriness	 of	 the	 atrial	 myocardium	 is	 short,	 or	

conduction	is	slow,	so	that	continuous	conduction	in	the	re-entry	zone	can	be	initiated.	

Re-entry	 terminates	 if	 the	 refractoriness	 of	 the	 tissue	 is	 prolonged	 or	 conduction	

accelerates.	 In	 case	 of	 the	 spiral	 wave,	 a	 rapidly	 circulating	 rotor	 with	 a	 wavefront	

rotating	 around	 the	 core	 maintains	 re-entry.	 Reduction	 of	 the	 excitability	 or	

prolongation	of	refractoriness	can	terminate	the	spiral	wave	re-entry	(Dobrev	&	Nattel	

2010).		

As	 discussed	 before,	 changes	 in	 atrial	 electrophysiology	 cause	 the	 shortening	 of	

refractoriness,	 which	 stimulates	 an	 initiation	 or	 maintenance	 of	 ectopic	 electrical	

activity.	 Structural	 remodelling	 (fibrosis	 and	 dilation	 of	 the	 atria)	 also	 creates	 a	

prolongation	of	electrical	conduction	and/or	creates	an	anatomic	obstacle	 in	 the	atrial	

tissue,	which	favours	initiation	of	the	re-entry	(Wakili	et	al.	2011).	Thus,	atrial	structural	

(mainly	fibrosis)	and	electrical	remodelling	both	create	an	arrhythmogenic	substrate.	

Figure	 2	 illustrates	 the	 key	 mechanisms	 and	 role	 of	 atrial	 remodelling	 for	 atrial	

fibrillation	initiation.		
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Figure	2.	Role	of	atrial	remodelling	in	the	initiation	of	atrial	fibrillation	

Figure	is	reproduced	from	(Dobrev	&	Nattel	2010)	

Atrial	 fibrillation	 is	 maintanined	 by	 either	 re-entry	 or	 rapid	 and	 sustained	 ectopic	 activity.	

Development	 of	 re-entry	 depends	 on	 the	 presence	 of	 a	 vulnerable	 substrate	 and	 a	 trigger	

(ectopic	 beat),	 acting	 on	 this	 substrate.	 Atrial	 remodelling	 creates	 a	 substrate	 for	 re-entrant	

atrial	 fibrillation	 by	 changing	 ion	 channel	 function	 and/or	 inducing	 fibrosis.	 Ca2+	 handling	

changes	 cause	 early	 (EADs)	 or	 delayed	 (DADs)	 afterdepolarizations,	 resulting	 in	 ectopic	

activity.		

	

3.1.4.3. Interconnection	between	heart	failure	and	atrial	fibrillation		

There	is	strong	evidence	for	interconnection	between	heart	failure	and	atrial	fibrillation.	

Clinical	 data	 indicate	 that	 among	 heart	 failure	 patients	 the	 prevalence	 of	 atrial	

fibrillation	is	in	the	range	of	13-41%,	depending	on	the	age	and	severity	of	heart	failure	

(Wang	 et	 al.	 2003),	 (Carson	 et	 al.	 1993).	 On	 the	 other	 hand,	 among	 atrial	 fibrillation	

patients	 the	prevalence	of	heart	 failure	 ranges	 from	30-65%	(Patel	 et	 al.	2011).	Atrial	

fibrillation	and	heart	 failure	have	 common	risk	 factors:	 ageing,	hypertension,	diabetes	

mellitus,	valvular	and	coronary	artery	disease.	Atrial	fibrillation	and	heart	failure	often	

coexist,	 and	 this	 coexistence	 is	worsening	 the	 prognosis	 (Ferreira	&	 Santos	 2015).	 Of	

note,	 echocardiographic	 characteristics	of	heart	 failure	 such	as	 left	 atrial	 enlargement,	

increased	 left	 ventricular	wall	 thickness	 and	 reduced	 left	 ventricular	 ejection	 fraction	

were	 found	 to	 predispose	 to	 atrial	 fibrillation	 development.	 This	 interconnection	

between	 heart	 failure	 and	 atrial	 fibrillation	 is	 termed	 “heart	 failure	 begets	 atrial	

fibrillation/atrial	fibrillation	begets	heart	failure”	(Maisel	&	Stevenson	2003).	
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Heart	 failure	 and	 atrial	 fibrillation	 share	 a	 common	 pathophysiological	 background:	

hemodynamic	 and	 cellular	 changes,	 and	 neurohormonal	 dysbalance	 (Maisel	 &	

Stevenson	2003),	(Ferreira	&	Santos	2015).	

Hemodynamic	background	

Left	 ventricular	 filling	 pressure	 is	 increased	 in	 heart	 failure	 and	 can	 be	 caused	 by	

systolic	 or	 diastolic	 dysfunction.	 This	 increase	 in	 pressure	 affects	 the	 left	 atrium	 by	

mechanical	 stress	 and	 activates	 several	 cellular	 and	 molecular	 mechanisms.	 In	 the	

presence	 of	 atrial	 fibrillation,	 resting	 heart	 rate	 is	 increased	 and	 subsequently	 left	

ventricular	 filling	 is	 decreased.	 In	 addition,	 loss	 of	 atrial	 contraction	 compromises	

diastolic	 function	 (Ferreira	&	 Santos	 2015).	 Due	 to	 irregular	 ventricular	 contractions,	

cardiac	output	decreases,	 left	atrial	pressure	raises,	causing	an	 increase	 in	pressure	 in	

the	lung	capillaries	and	symptoms	of	dyspnoe	(Maisel	&	Stevenson	2003).	

Neurohormonal	dysbalance		

Activation	 of	 the	 renin-angiotensin-aldosterone	 system	 (RAAS)	 and	 the	 sympathetic	

nervous	 system	 are	 both	 present	 in	 heart	 failure.	 Moreover,	 atrial	 stretch	 itself	 also	

causes	activation	of	RAAS.	This	 leads	 to	 the	activation	of	hypertrophic	and	profibrotic	

signalling	 pathways	 and,	 thus,	 remodelling	 and	 development	 of	 an	 arrythmogenic	

substrate.	The	high	adrenergic	activity	also	causes	changes	in	atrial	electrophysiology	by	

increasing	 early	 and	 delayed	 afterdepolarizations	 and,	 thus,	 arrhythmias	 (Ferreira	 &	

Santos	2015).		

Figure	 3	 schematically	 presents	 the	 interconnection	 between	 heart	 failure	 and	 atrial	

fibrillation.	
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Figure	3.	Interconnection	between	heart	failure	and	atrial	fibrillation		

modified	from	(Maisel	&	Stevenson	2003)	and	(Ferreira	&	Santos	2015)	

	

AF	stands	 for	atrial	 fibrillation;	HF,	heart	 failure;	RAAS,	 renin-angiotensin-aldosterone	system;	

LV,	left	ventricle;	LA,	left	atrium.	

	

Thus,	heart	failure	and	atrial	fibrillation	often	coexist	and	induce	development	of	one	

another.			

	

3.1.5. Conclusions	and	role	of	hypertension	for	the	maintenance	and	

development	of	heart	failure	and	atrial	fibrillation	

As	discussed	above,	hypertension	causes	left	ventricular	hypertrophy.	 	Left	ventricular	

hypertrophy	 is	an	 important	predictor	 for	atrial	 fibrillation	 (Healey	&	Connolly	2003).	

Independent	 from	 that,	 left	 atrial	 enlargement	 (which	 is	 also	 an	 important	prognostic	

factor	for	atrial	fibrillation)	can	develop	early	in	hypertension,	even	before	any	signs	of	

ventricular	hypertrophy.	Additionally,	hypertension	often	causes	heart	 failure.	Of	note,	

not	only	atrial	enlargement	but	also	atrial	functional	remodelling	is	an	independent	risk	

factor	for	heart	failure	development	and	death.	However,	despite	intensive	research,	the	

data	on	functional	atrial	remodelling	in	heart	failure	are	still	sparse	(Shah	&	Lam	2014).	
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It	 is	 worth	 noting,	 that	 left	 ventricular	 hypertrophy	 and	 left	 atrial	 enlargement	 are	

independent	 risk	 factors	 for	 stroke	 (Benjamin	 et	 al.	 1995).	 Thus,	 hypertension,	 heart	

failure	and	atrial	fibrillation	are	tightly	linked	(Figure	4).	However,	not	all	mechanisms	

connecting	these	pathological	conditions	are	fully	understood.	

	

	

Figure	4.	Association	and	potential	connections	between	hypertension,	heart	

failure	and	atrial	fibrillation	
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3.2. Neurohormonal	systems	involved	in	the	regulation	of	

blood	pressure	and	atrial	remodelling	

3.2.1. Renin-angiotensin-aldosterone	system	(RAAS)	

RAAS	 is	 one	 of	 the	 fundamental	 systems,	 which	 regulates	 blood	 pressure,	 plasma	

volume,	 electrolyte	 balance	 and	 sympathetic	 nervous	 system	 activity.	 The	 RAAS	

hormonal	cascade	starts	with	the	secretion	of	renin	from	the	juxtaglomerular	apparatus	

in	the	kidneys.	In	the	plasma	renin	converts	angiotensinogen	produced	by	the	liver	into	

angiotensin	I.	Angiotensin	I	is	further	converted	by	the	angiotensin-converting	enzyme	

(ACE)	 into	 the	 active	 octapeptide	 angiotensin	 II.	 Angiotensin	 II	 exhibits	 several	

important	 effects	 on	 the	 cardiovascular	 system.	 Firstly,	 it	 is	 a	 potent	 vasoconstrictor,	

secondly,	 it	activates	sympathetic	neuronal	noradrenaline	release,	thirdly,	 it	stimulates	

aldosterone	secretion	from	adrenal	cortex.	Aldosterone,	in	turn,	stimulates	reabsorbtion	

of	Na+	in	the	collecting	duct	and	water	retention.	Thus,	as	a	result	of	RAAS	activation,	the	

circulating	plasma	volume	and	blood	pressure	increase	(Tsukamoto	&	Kitakaze	2013).	

Hyperactivation	 of	 RAAS	 with	 increased	 angiotensin	 II	 production	 is	 one	 of	 the	

hallmarks	of	hypertensive	heart	disease	and	heart	failure	(Drazner	2011).	

Angiotensin	II	exhibits	not	only	systemic	effects	but	can	also	be	produced	locally	and	is	

able	 to	 stimulate	 pathological	 cardiac	 tissue	 remodelling.	 In	 the	 heart,	 angiotensin	 II	

binds	 to	 the	 angiotensin	 type	 1	 receptor	 (AT1)	 and	 mediates	 proliferative,	

prohypertrophic	and	pro-inflammatory	effects	 (Tsukamoto	&	Kitakaze	2013).	The	AT1	

receptor	belongs	to	the	family	of	Gq-protein-coupled	receptors.	When	agonist	binds	to	

the	receptor,	phospholipase	Cβ	(PLCβ)	is	activated	and	hydrolyzes	phosphatidylinositol	

4,5-bisphosphate	(PIP2)	into	inositol	1,4,5-trisphosphate	(IP3)	and	diacylglycerol	(DAG).	

DAG	stimulates	protein	kinase	C	(PKC).	This	kinase	phosphorylates	important	targets	in	

the	 myocytes,	 including	 Ca2+	 handling	 proteins.	 IP3	 activates	 Ca2+	 release	 from	 the	

sarcoplasmic	reticulum	(SR)	and	Ca2+	 transport	 into	 the	nucleus,	where	Ca2+	 is	able	 to	

activate	 the	 prohypertrophic	 gene	 program	 (Heineke	 &	 Molkentin	 2006).	 Increased	

activity	 of	 RAAS	 exerts	 arrhythmogenic	 effects	 and	 may	 trigger	 atrial	 fibrillation	

together	with	maladaptive	atrial	remodelling	(Korantzopoulos	et	al.	2003),	(Schotten	et	

al.	2011).	
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3.2.2. Sympathetic	nervous	system	

Activation	of	the	sympathetic	nervous	system	increases	blood	pressure	and	has	among	

other	important	effects,	positive	inotropic	effects	on	the	myocardium.	Epinephrine	and	

norepinephrine	are	two	catecholaminergic	mediators	of	the	sympathetic	system,	which	

bind	to	β	and	α	adrenergic	receptors	in	the	myocardium	and	blood	vessels.	

Human	heart	expresses	β	1/	β	2	adrenergic	receptors	in	a	70	to	30%	ratio.	(Bylund	et	al.	

1994),	(Triposkiadis	et	al.	2009).	The	β	1	adrenergic	receptor	 is	Gs-coupled	and,	when	

an	agonist	binds	to	this	receptor,	adenylate	cyclases	become	active,	inducing	an	increase	

in	 cAMP	 production	 and	 activation	 of	 protein	 kinase	 A	 (PKA).	 PKA	 mediates	

phosphorylation	of	Ca2+-handling	proteins,	which	results	in	the	positive	inotropic	effect.		

α	 1	 receptors	 are	 Gq-coupled,	 and	 their	 stimulation	 activates	 the	 PLCβ/DAG/IP3	

signalling	 cascade,	 causing	 PKC	 activation,	 IP3-dependent	 Ca2+	 release	 and	 positive	

inotropy.	

Stimulation	 of	 vascular	 α	 1	 adrenergic	 receptors	 induces	 vasoconstriction,	 and	

activation	 of	 central	 α	 2	 adrenergic	 receptors	 results	 in	 a	 decrease	 in	 sympathetic	

outflow	and	blood	pressure	(Triposkiadis	et	al.	2009).	

A	marked	 increase	 in	 sympathetic	 activity	 is	present	 in	many	cardiovascular	diseases,	

such	 as	 hypertension	 and	 heart	 failure	 (Seravalle	 et	 al.	 2014).	 The	 increased	

sympathetic	activity	is	associated	with	atrial	fibrillation	in	humans	and	in	animal	models	

of	the	disease	(Chen	et	al.	2014),	(Korantzopoulos	et	al.	2003).	

3.2.3. Endothelin-1	system		

Endothelin-1	 belongs	 to	 the	 family	 of	 cyclic	 21	 amino	 acid	 peptides	 and	 was	 first	

isolated	 from	 porcine	 aortic	 endothelial	 cells	 (Yanagisawa	 et	 al.	 1988).	 Endothelin-1	

binds	 to	 either	Endothelin	A	 (ETAR)	or	Endothelin	B	 (ETBR)	 receptors	 (Drawnel	 et	 al.	

2013).	In	the	atria,	more	endothelin	binding	sites	are	present	than	in	the	ventricles	and	

the	 ETAR	 accounts	 for	 more	 than	 80%	 of	 all	 endothelin	 binding	 sites	 in	 the	 heart	

(Horinouchi	 et	 al.	 2013).	 Both	 receptors	 are	 G-protein	 coupled.	 The	 ETAR	 exhibits	 a	

higher	affinity	to	endothelin-1	than	the	ETBR.	ETARs	are	coupled	to	the	Gq	subtype	and	

stimulation	of	 this	 receptor	 activates	 the	PLC/DAG/IP3	 cascade	 (Drawnel	 et	 al.	 2013).	

This,	 in	 the	 first	 place,	 results	 in	 the	 positive	 inotropic	 effect,	 however,	 increased	 IP3	

production	stimulates	 spontaneous	Ca2+release	 from	the	sarcoplasmic	 reticulum,	what	

can	trigger	arrhythmias.	Moreover,	stimulation	of	IP3	receptors	in	the	nuclear	envelope	



	 	 Introduction	
	

	 23	

alters	nuclear	Ca2+	homeostasis	and	activates	the	transcription	of	prohypertrophic	genes	

(Kockskämper,	 Zima,	 et	 al.	 2008).	Many	 studies	 have	 demonstrated	 that	 endothelin-1	

can	 cause	 maladaptive	 cardiomyocyte	 remodelling	 and	 hypertrophy.	 Moreover,	

elevation	in	plasma	endothelin-1	was	found	in	heart	failure,	ageing,	ischemia	and	atrial	

fibrillation.	 Thus,	 hyperactivity	 of	 the	 endothelin-1	 system	 can	 contribute	 to	 both	

aetiology	and	pathology	of	these	diseases	(Drawnel	et	al.	2013),	(Mayyas	et	al.	2010).		
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3.3. Regulation	of	intracellular	Ca2+	concentration	in	cardiac	

myocytes	

3.3.1. Excitation-contraction	coupling	

Ca2+	 is	an	 important	second	messenger	 in	all	cell	 types.	Alterations	of	 the	cellular	Ca2+	

concentration	 regulate	many	 cellular	 processes:	 cell	 growth	 and	 cell	 death,	 release	 of	

hormones	 and	 neuromediators,	 energy	 production	 and	 many	 others	 (Bootman	 et	 al.	

2006),	(Berridge	et	al.	2003).	

In	the	heart,	Ca2+	is	a	crucial	ion	for	cardiac	myocyte	contraction	and	relaxation	(Bers	et	

al.	 2006).	 Excitation-contraction	 coupling	 (ECC)	 is	 the	 process	 of	 coupling	

depolarization	of	the	plasma	membrane	with	the	contraction	of	the	cell,	and	Ca2+	is	the	

key	mediator	in	this	process.		

During	 the	depolarization	of	 cardiac	myocytes,	Ca2+	 enters	 the	cell	via	 sarcolemmal	L-

type	 Ca2+	 channels	 creating	 an	 inward	 Ca2+	 current	 (ICa),	 which	 mediates	 the	 action	

potential	 plateau.	 The	 entering	 Ca2+	 triggers	 Ca2+	 release	 from	 the	 sarcoplasmic	

reticulum	(SR)	through	ryanodine	receptors	(RyRs).	This	process	is	called	Ca2+-induced	

Ca2+	release	(CICR).	The	increase	in	the	free	Ca2+	concentration	allows	it	to	bind	to	the	

myofilament	protein	troponin	C	(Bers	2002).	The	conformational	change	of	the	troponin	

complex	 changes	 the	 position	 of	 tropomyosin,	 which	 allows	 actin	 to	 interact	 with	

myosin,	and	so	the	contraction	occurs	(Katz	2010).	To	achieve	relaxation,	Ca2+	must	be	

taken	up	into	the	sarcoplasmic	reticulum	by	the	sarcoplasmic	Ca2+-ATPase	(SERCA),	or	

transported	 out	 of	 the	 cell	 by	 the	 sarcolemmal	 Na+/Ca2+	 exchanger	 (NCX)	 or	 the	

sarcolemmal	 Ca2+-ATPase	 and	 into	 the	 mitochondria	 by	 mitochondrial	 Ca2+	 uniport	

(Bers	2002).	 In	 the	 SR	 lumen,	Ca2+	 is	 bound	 to	 calsequestrin	 (CSQ),	which	buffers	 the	

high	Ca2+	concentration	in	the	SR	(Bootman	et	al.	2011).	Figure	5	schematically	presents	

excitation-contraction	coupling	in	ventricular	myocytes	(from	(Bers	2002)).	
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Figure	5.	Excitation-contraction	coupling	in	ventricular	myocyte	

	reproduced	from	(Bers	2002)	

	

During	the	AP	Ca2+	enters	the	cells	via	L-type	Ca2+	channels	(ICa),	triggering	the	Ca2+	release	from	

the	 SR	 via	RyR	 (red	 arrows).	 Ca2+	 binds	 to	 the	myofilaments,	 allowing	 the	 contraction	 of	 the	

myocyte.	Ca2+	is	then	transported	out	of	the	cytosol	by	four	extrusion	paths	(green	arrows):	1)	

to	 SR	 via	 SERCA,	 out	 of	 the	 cell	 by	 2)	 SERCA	 and	 3)	 NCX	 and	 4)	 into	 the	 mitochondria	 via	

mitochondrial	 Ca2+	 uniporter.	 Inset	 illustrates	 the	 time	 course	 of	 AP,	 Ca2+	 transient	 and	

contraction,	measured	in	rabbit	ventricular	myocytes.	

AP,	 action	 potential;	 SR,	 sarcoplasmic	 reticulum;	 RyR,	 ryanodine	 receptor;	 NCX,	 Na+/Ca2+	

exchanger;	SERCA,	sarcoplasmic	Ca2+-ATPase;	PLB,	phospholamban	

	

	

3.3.2. Ca2+	handling	in	atrial	myocytes	

There	are,	however,	some	differences	in	excitation-contraction	coupling	between	atrial	

and	 ventricular	 myocytes.	 Ventricular	 myocytes	 express	 sarcolemmal	 invaginations,	

called	T-tubules,	which	go	perpendicular	deep	inside	the	myocyte.	L-type	Ca2+	channels	

are	 located	on	 the	T-tubular	plasma	membrane	 in	 close	proximity	 to	RyRs,	which	 are	
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located	in	the	membrane	of	sarcoplasmic	reticulum.	Thus,	when	the	plasma	membrane	

depolarizes,	 CICR	 is	 activated	 simultaneously	 throughout	 the	 ventricular	 myocyte,	

making	 the	 Ca2+	 increase	 homogenous	 and	 contraction	 of	 ventricular	 myocardium	

coordinated	 (Smyrnias	 et	 al.	 2010),	 (Blatter	 et	 al.	 2003).	 In	 contrast	 to	 ventricular	

myocytes,	atrial	myocytes	do	not	express	T-tubules	(Blatter	et	al.	2003),	(Bootman	et	al.	

2006).	Hence,	an	important	functional	difference	exists	regarding	localization	of	L-type	

Ca2+channels	and	RyRs	in	atrial	myocytes.	L-type	Ca2+	channels	are	present	only	at	the	

plasma	membrane	of	 atrial	myocyte.	Thus,	during	electrical	 excitation,	 only	 junctional	

RyRs	(located	 in	close	proximity	 to	 the	plasma	membrane)	get	activated	by	Ca2+	entry	

via	 L-type	 Ca2+	 channels,	 and	 then	 the	 Ca2+	 wave	 distributes	 further	 inside	 the	 atrial	

myocyte	via	non-junctional	RyRs	 (Kockskämper	et	 al.	 2001).	As	a	 consequence	of	 this	

functional	 difference,	 propagation	 of	 the	 Ca2+	 signal	 is	 more	 heterogeneous	 in	 atrial	

myocytes	(Blatter	et	al.	2003),	(Bootman	et	al.	2011).		

	

3.4. Intracellular	Na+	regulation	and	its	role	in	cardiac	

myocytes	

Intracellular	Na+	 is	crucial	 for	the	physiology	of	cardiac	myocytes.	There	 is	a	 large	Na+	

gradient	 across	 the	membrane:	 extracellular	 Na+	 concentration	 is	 about	 140	mM	 and	

intracellular	concentration	([Na+]i)	 is	normally	 from	4	to	14	mM	(Bers	&	Despa	2009).	

However,	[Na+]i	varies	in	a	species-dependent	manner:	it	is	kept	relatively	low	in	most	

mammals,	whereas	in	rat	and	mouse	[Na+]i	is	higher.	The	reason	for	that	can	be	species-

related	 differences	 in	 excitation-contraction	 coupling	 (Pieske	 &	 Houser	 2003).	 In	

excitable	cells,	 the	energy	stored	 in	 the	sodium	concentration	gradient	 is	 the	basis	 for	

action	 potential	 upstroke	 and	 propagation	 and	 energetically	 unfavourable	

transmembrane	transport	of	glucose,	amino	acids	and	neurotransmitters	(Bers	&	Despa	

2009).	

It	was	shown	in	many	studies	that	Na+	 is	a	major	determinant	of	the	 intracellular	Ca2+	

concentration	and,	thus,	excitation-contraction	coupling	and	contractility.	Moreover,	Na+	

is	involved	in	the	transport	of	H+	and,	correspondingly,	regulates	pH	in	cardiac	myocytes	

(Aronsen	et	al.	2013).	Another	important	role	of	Na+	is	the	modulation	of	mitochondrial	

Ca2+	and	thus	cardiac	metabolism	(Coppini	et	al.	2013).	
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3.4.1. Na+	and	excitation	contraction	coupling	

[Na+]i	 is	 the	 balance	 between	 Na+	 influx	 and	 Na+	 efflux,	 generated	 by	 a	 number	 of	

channels	and	transporters.	The	influx	of	Na+	occurs	via	voltage-dependent	Na+	channels,	

Na+/Ca2+	exchanger	(NCX)	and	Na+/H+	exchanger	(NHE).	The	efflux	of	Na+	 is	primarily	

regulated	 by	 Na+/K+-ATPase	 (NKA)	 and	 /or	 by	 NCX	 acting	 in	 “reverse	 mode”,	 when	

pumping	Na+	out	of	the	cell	and	bringing	Ca2+	ions	into	the	cell	(Coppini	et	al.	2013).	

The	upstroke	of	the	action	potential	(AP)	is	triggered	by	opening	of	voltage-dependent	

Na+	channels.	Within	a	few	milliseconds,	the	channels	inactivate.	That	process	brings	in	

a	small	amount	of	Na+:	around	6-15	µmol/L.	During	the	AP,	L-type	Ca2+	channels	open	

and	activate	Ca2+-induced	Ca2+	release	from	the	SR.	This	excess	of	Ca2+	 is	then	brought	

back	 into	 the	 SR	by	 SERCA	and	 is	 taken	out	by	NCX.	Ca2+	 extrusion	 via	NCX	brings	 in	

around	 32	 µmol/L	 of	 Na+.	 Under	 physiological	 conditions,	 NHE	 exchanger	 extrudes	

protons	 at	 a	 slower	 rate	 and	 carries	 2	µmol/l	 of	 Na+	 into	 the	 cell.	 The	 excess	 of	 Na+	

influx,	resulting	from	each	heart	beat	(40-45	µmol/L)	beat	is	pumped	out	of	the	cell	via	

NKA	(Bers	&	Despa	2009).	

Figure	 6	 illustrates	 Na+	 fluxes	 in	 a	 cardiac	 myocyte	 during	 excitation-contraction	

coupling.		
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Figure	 6.	 Na+	 involvement	 in	 excitation-contraction	 coupling	 in	 ventricular	

myocyte		

reproduced	from	(Bers	&	Despa	2009)	

During	 electrical	 excitation	 of	 the	 heart,	 Na+	 enters	 the	 myocyte	 through	 voltage-gated	 Na+	

channels,	 triggering	 the	AP.	NCX	 extrudes	 the	 resulting	 increase	 in	 Ca2+	 after	 the	 contraction	

and	 brings	 Na+	 into	 the	 myocyte.	 NHE	 extrudes	 protons	 and	 brings	 in	 Na+.	 NKA	 pumps	 the	

resulting	excess	of	Na+	out	of	the	cell.	Na+	 influx	is	shown	by	red	and	Na+	efflux	by	dark-green	

arrows.	

Inset	 shows	Na+	 fluxes	 through	 voltage-gated	Na+	 channels,	NCX	 and	NKA	during	 an	AP.	 The	

action	potential	and	the	corresponding	Ca2+	are	also	shown.	

AP,	 action	 potential;	NCX,	Na+/Ca2+	 exchanger;	NHE,	Na+/H+	 exchanger,	NKA,	Na+/K+-ATPase;	

PLM,	phospholemman.	

	

3.4.2. Na+	current,	action	potential	formation,	late	Na+	current	

Fast	upstroke	of	the	action	potential	is	generated	by	voltage-gated	Na+	channels,	which	

inactivate	 rapidly	 and	 bring	 in	 a	 small	 amount	 of	 Na+	 during	 each	 activation.	 The	

voltage-gated	 Na+	 channel	 is	 composed	 of	 a	 pore-forming	α	 subunit	 with	 one	 or	 two	

auxiliary	β	subunits	(Kaufmann	et	al.	2013).	The	most	highly	expressed	isoform	of	Na+	

channel	 is	 Nav1.5	 (encoded	 by	 the	 SCN5	 gene)	 (Coppini	 et	 al.	 2013).	 	 Some	 other	
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neuronal	 isoforms,	 however,	 have	 also	 been	 identified	 in	 the	 human	 atrium.	 The	

contribution	of	such	channels	to	the	total	sodium	current	 is	substantial	(around	27%),	

and	their	function	is	necessary	for	maximal	contractility	(Kaufmann	et	al.	2013).	

As	 mentioned	 before,	 most	 of	 the	 Na+	 channels	 inactivate	 rapidly.	 However,	 another	

component	 of	 Na+	 current,	 the	 so-called	 late	 Na+	 current,	 was	 also	 identified.	 This	

current	follows	the	peak	Na+	current	and,	under	normal	physiological	conditions,	is	very	

small	 and	 does	 not	 affect	 action	 potential	 duration	 or	 total	 Na+	 influx	 (Coppini	 et	 al.	

2013).	The	mechanisms	for	late	Na+	current	initiation	are	not	yet	completely	understood	

(Chen-Izu	et	al.	2015).	In	some	cardiac	diseases	or	due	to	mutations	in	the	SCN5	gene,	

late	Na+	current	 is	elevated	and	brings	a	significant	amount	of	Na+	 into	the	cell,	due	to	

the	longer	duration	of	this	current	in	comparison	to	peak	Na+	current.	This	results	in	a	

prolongation	of	action	potential	duration	and	disturbances	in	Ca2+	homeostasis	(Coppini	

et	al.	2013).		

3.4.3. Na+	and	Ca2+	regulation	

Na+	and	Ca2+	homeostasis	are	tightly	 linked	via	NCX,	which	exchanges	3	Na+	 for	1	Ca2+	

and	 is	 the	primary	Ca2+	 extrusion	path	 (Despa	&	Bers	2013).	The	NCX1	 isoform	 is	 the	

only	isoform	expressed	in	the	heart	(Despa	&	Bers	2013).	It	has	a	large	cytoplasmic	loop	

with	two	Ca2+-binding	sites.	When	intracellular	Ca2+	 rises,	Ca2+	binds	to	these	domains	

and	 activates	 NCX.	 The	 exact	 mechanism	 of	 how	 [Na+]i	 modulates	 NCX	 function	 is	

unclear	(Shattock	et	al.	2015).	

The	rate	and	transport	mode	of	 the	exchanger	depends	on	the	 intra-	and	extracellular	

concentrations	of	both	Na+	 and	Ca2+	 and	on	 the	membrane	potential.	Most	of	 the	Ca2+	

extrusion	occurs	at	negative	resting	potentials,	and	the	electrochemical	gradient	favours	

the	so-called	“forward”	mode	of	the	NCX:	Ca2+	efflux	and	Na+	inflow	(Coppini	et	al.	2013).	

NCX	can	also	 function	 in	a	 “reverse”	mode	 (Ca2+	 influx	and	Na+	 efflux)	 (Baartscheer	&	

van	 Borren	 2008).	 This	 mode	 is	 favoured	 by	 increased	 [Na+]i	 and	 membrane	

depolarization.	 When	 intracellular	 Na+	 rises,	 NCX	 switches	 to	 a	 “reverse	 mode”	 and	

correspondingly	brings	an	excess	of	Ca2+	into	the	myocyte	and	simultaneously	increases	

SR	 Ca2+	 content.	 Eventually,	 Ca2+	 transients	 become	 bigger	 and	 contractile	 force	

increases	 (Despa	 &	 Bers	 2013).	 However,	 increased	 SR	 Ca2+	 load	 may	 also	 trigger	

spontaneous	Ca2+	release	and	thus	arrhythmias	(Wakili	et	al.	2011).	
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3.4.4. Na+	and	pH	regulation		

Na+	modulates	proton	transport	 in	cardiac	myocytes	via	Na+/H+	exchanger	(NHE).	The	

major	 function	 of	 NHE	 is	 pH	maintenance	 in	 cardiac	 myocytes.	 NHE1	 is	 the	 primary	

isoform	expressed	in	cardiac	myocytes.	NHE	functions	as	a	proton	extruder	in	1	Na+	to	1	

H+	 stoichiometry.	 NHE	 activity	 is	 allosterically	 regulated	 by	 protons	 and	 by	

phosphorylation	of	its	intracellular	C-terminus	by	kinases	and	interaction	with	a	variety	

of	regulatory	proteins.	NHE1	is	also	involved	in	cell	volume	regulation,	cell	growth	and	

differentiation	(Lee,	B.L.	et	al.	2012).	Mechanical	stretch	and	a	wide	range	of	hormones	

(ET-1,	AT-II,	catecholamines)	and	oxidative	stress	also	stimulate	NHE	(Vaughan-Jones	et	

al.	2009).	

Under	 ischemic	 conditions,	 pH	 is	 reduced,	 the	 activity	 of	 NHE	 increases	 and	 it	 is	

extruding	protons	from	the	cytosol	to	normalize	pH	(Coppini	et	al.	2013).	This	process	

leads	 to	a	 subsequent	 increase	 in	 intracellular	Na+	 concentration	and,	as	a	 result,	NCX	

extrudes	Na+	from	the	cell	and	brings	in	excessive	Ca2+.	At	the	same	time,	under	ischemic	

conditions,	there	is	an	energy	starvation	present	and,	thus,	ATP	is	depleted,	so	that	the	

NKA	 function	 decreases,	 contributing	 to	 an	 additional	 rise	 in	 [Na+]i.	 Ca2+	 overload	

triggers	arrhythmias	and	is	able	to	activate	hypertrophic	pathways	and	cell	death.	This	

phenomenon	 is	 called	 ischemia-induced	 injury	 (Avkiran	 2003),	 (Lee,	 B.L.	 et	 al.	 2012).	

Moreover,	 NHE	 activation	 is	 involved	 in	 the	 development	 of	 cardiac	 hypertrophy	 and	

heart	 failure	 via	 activation	 of	 prohypertrophic	 pathways	 (Wakabayashi	 et	 al.	 2013),	

(Hisamitsu	et	al.	2012).	

3.4.5. Na+/K+-ATPase	(NKA)	

The	NKA	 is	 the	major	Na+	 extrusion	mechanism	 in	cardiac	myocytes.	 It	utilizes	energy	

derived	from	ATP	hydrolysis	and	extrudes	3	Na+	 in	exchange	 for	2	K+.	The	major	NKA	

function	is	the	maintenance	of	electrochemical	Na+	and	K+	gradients,	which	is	crucial	for	

transport	 and	 electrogenic	 processes	 (Shattock	 et	 al.	 2015).	 The	 NKA	 is	 composed	 of	

three	 subunits:	 the	 catalytic	 α	 subunit,	 the	 auxiliary	 β	 subunit	 and	 the	 regulatory	 γ	

subunit	 (phospholemman).	The	α	 subunit	 contains	Na+,	K+,	 ATP	and	 cardiac	 glycoside	

binding	 sites.	 The	β	 subunit	 is	 responsible	 for	 trafficking	 and	 insertion	of	 the	 enzyme	

into	the	plasma	membrane	(Despa	&	Bers	2013).	In	the	heart	α	1,	α	2	and	α	3	isoforms	

are	expressed	and	the	β	1	isoform.	α	1	is	quantitatively	the	dominant	isoform	(Shattock	

et	al.	2015).		
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NKA	 activity	 is	 regulated	 by	 phospholemman	 (PLM).	 Unphosphorylated	 PLM	 inhibits	

NKA	activity,	and,	when	phosphorylated	by	PKA	and	PKC,	 it	dissociates	 from	NKA	and	

relieves	 the	 inhibition.	During	 intensive	adrenergic	 stimulation	 [Na+]i	 increases	due	 to	

enhanced	extrusion	of	Ca2+	 and	 subsequent	Na+	 influx	via	NCX.	Elevated	 [Na+]i	 (which	

can	be	deleterious	as	described	above)	is	attenuated	by	stimulation	of	NKA.	Thus,	PLM	

regulation	 of	 NKA	 is	 a	 physiological	 protective	 mechanism	 preventing	 Na+	 and	 Ca2+	

overload	and,	thus,	arrhythmias	(Despa	&	Bers	2013).	

3.4.6. Na+	and	regulation	of	cardiac	metabolism	

At	 high	 workload,	 adrenergic	 stimulation	 increases	 cytoplasmic	 Ca2+	 transients	 and	

mitochondrial	 Ca2+	 uptake	 via	 the	 Ca2+	 uniporter	 (Despa	 &	 Bers	 2013).	 High	

mitochondrial	 Ca2+	 concentrations	 regulate	 several	 dehydrogenases	 involved	 in	 the	

tricarboxylic	 acid	 cycle,	 stimulate	 NADH	 and	 NADPH	 regeneration	 and,	 thus,	 ATP	

production.	 Na+	 controls	 mitochondrial	 Ca2+	 concentration	 via	 the	 mitochondrial	

Na+/Ca2+	 exchanger,	 which	 extrudes	 mitochondrial	 Ca2+	 and	 brings	 Na+	 into	 the	

mitochondrion.	 This	 exchanger	 functions	 with	 a	 similar	 stoichiometry	 as	 the	

sarcolemmal	NCX:	 	 it	exchanges	3	Na+	 for	1	Ca2+.	 Its	activity	 is	very	sensitive	 to	 [Na+]i.	

When	[Na+]i	 is	elevated,	mitochondrial	NCX	decreases	mitochondrial	Ca2+concentration	

and,	subsequently,	ATP	production	(Kohlhaas	et	al.	2010).		



	 	 Introduction	
	

	 32	

3.4.7. Intracellular	Na+	homeostasis	in	cardiac	disease	

Numerous	studies	report	increased	[Na+]i	in	ventricular	cardiomyocytes	in	hypertrophy,	

heart	 failure	 and	 ischemia	 (Pogwizd	 2003),	 (Despa	 &	 Bers	 2013),	 (Pieske	 &	 Houser	

2003),	(Clancy	et	al.	2015).	

Elevated	[Na+]i	occurs	under	the	following	conditions:	increased	rates	of	depolarization,	

mechanical	 stretch,	 hormonal	 and	 neuroendocrine	 activation	 (Angiotensin	 II,	

Endothelin-1)	 (Pieske	 &	 Houser	 2003)	 (Aiello	 et	 al.	 2005).	 For	 example,	 in	 ischemia-

reperfusion	 injury,	 NHE	 activity	 is	 increased,	 and	 Na+	 efflux	 is	 blunted,	 due	 to	 the	

blockage	of	NKA	function,	increasing	the	[Na+]i.	

In	hypertrophy	and	heart	failure,	there	are	several	mechanisms	responsible	for	elevated	

[Na+]i:	 increased	 late	Na+	 current,	 “reverse”	mode	of	NCX	 function	 (Ca2+	 extrusion	and	

Na+	 influx)	 and/or	 reduction	 in	 NKA	 function	 and/or	 expression.	 However,	 there	 is	

certain	 controversy	 regarding	 the	 expression	and	 function	of	NKA	 in	different	 species	

and	 disease	 models	 (Despa	 &	 Bers	 2013).	 Elevated	 [Na+]i	 in	 hypertrophy	 and	 heart	

failure	increases	Ca2+	influx	via	NCX	what	stimulates	spontaneous	Ca2+	release	from	the	

SR	 and	 generation	 of	 delayed	 afterdepolarizations	 (Pogwizd	 2003).	 However,	 the	

detailed	 mechanisms	 of	 increased	 [Na+]i	 in	 ventricular	 myocytes	 are	 still	 under	

investigation.			

3.4.8. Intracellular	Na+	homeostasis	in	atrial	fibrillation	and	remodelling	

Current	knowledge	about	Na+	homeostasis	in	atrial	myocytes	is	very	limited.	However,	

some	 aspects	 of	 it	 were	 studied	 in	 the	 context	 of	 atrial	 fibrillation.	 In	 human	 atrial	

fibrillation,	 there	 is	 evidence	 for	 increased	NCX	expression	and	 current,	 together	with	

unchanged	NKA	function	(Schotten	et	al.	2010),	(Voigt	et	al.	2012).	Another	study	found	

a	decrease	in	peak	Na+	current	together	with	an	increase	in	the	late	Na+	current	(Sossalla	

et	al.	2010).	Moreover,	authors	of	this	study	also	found	that	the	expression	of	different	

Na+	channel	isoforms	was	shifted	towards	the	increase	in	neuronal	isoform	expression	

and	a	decrease	 in	 the	cardiac	 specific	Nav	1.5	 type	expression	 (Sossalla	et	al.	2010).	A	

recent	study	has	also	shown	that	there	is	an	interconnection	between	increased	late	Na+	

current	and	SR	Ca2+	leak,	providing	an	important	link	between	Na+	and	Ca2+	homeostasis	

in	atrial	fibrillation	(Fischer	et	al.	2015).	
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Interestingly,	 another	 study	 found	decreased	 [Na+]i	 in	 an	 animal	model	 of	 rapid	 atrial	

pacing	together	with	reduced	NKA	function	and	unchanged	NKA	expression	(Greiser	et	

al.	2014).	To	 conclude,	 the	data	on	 intracellular	Na+	 homeostasis	 in	atrial	 remodelling	

and	atrial	fibrillation	are	very	scarce	and	contradictory.		
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3.5. Spontaneously	hypertensive	rats	(SHR)	as	a	model	for	

hypertensive	heart	disease	

Spontaneously	hypertensive	rats	(SHR)	represent	a	well-established	model	for	essential	

hypertension	and	hypertensive	heart	disease.	

The	 SHR	 strain	 was	 generated	 by	 Okamoto	 and	 Aoki	 in	 1963	 in	 Kyoto,	 Japan,	 by	

breeding	a	hypertensive	male	Wistar	rat	with	a	female	Wistar	rat	with	slightly	elevated	

blood	 pressure	 (Okamoto	 &	 Aoki	 1963).	 Starting	 from	 1968,	 this	 strain	 was	 further	

developed	in	the	USA.		SHR	are	normotensive	for	the	first	6-8	weeks	of	life;	afterwards,	

they	develop	hypertension.	The	Wistar	Kyoto	rats	(WKY)	were	established	in	1971	as	a	

normotensive	control	group	as	an	inbreed	of	the	Wistar	Kyoto	colony	by	brother	x	sister	

mating	(Doggrell	&	Brown	1998).		

Hypertension	 in	 SHR	 and	 humans	 has	 some	 common	 aspects,	 making	 these	 rats	 a	

suitable	model	for	studying	of	hypertension-related	diseases.	These	aspects	include:	

Progression	 of	 hypertension	 follows	 that	 in	 human:	 first	 comes	 the	 pre-hypertensive	

period,	 followed	by	sustaining	of	elevated	blood	pressure.	These	phases	are	lasting	for	

months,	 mimicking	 long	 lasting	 development	 of	 hypertension	 in	 human	 (Doggrell	 &	

Brown	1998).	

Hypertension	 in	 SHR	 leads	 to	 the	 compensated	 left	 ventricular	 hypertrophy	 and	 then	

progresses	from	stable	hypertrophy	to	heart	failure	(Chan	et	al.	2011).	

More	rapid	and	severe	development	in	male	rats	in	comparison	to	female	SHR	(Chan	et	

al.	2011).	

Specific	genes	responsible	for	the	development	of	hypertension	have	not	been	identified	

in	SHR.	The	same	is	true	for	human	primary	hypertension	(Doggrell	&	Brown	1998).	

The	exact	reasons	for	elevated	blood	pressure	in	SHR	remain	unclear.	However,	 it	was	

demonstrated	that	transplantation	of	kidneys	from	SHR	to	normotensive	rats	increased	

the	blood	pressure	 in	them	and	SHR	receiving	kidneys	 from	normotensive	donors	had	

reduced	blood	pressure	(Bianchi	et	al.	1974).	Another	study	has	also	revealed	impaired	

kidney	function	in	SHR	even	in	the	prehypertensive	stage	(Vanecková	2002).	Moreover,	

there	 is	 evidence	 that	 SHR	 exhibit	 increased	 activity	 of	 RAAS	 and	 the	 stress	 axis	

(Kodavanti	et	al.	2000),	(Shanks	&	Herring	2013).	Some	investigations	revealed	several	

changes	 in	 genes	 responsible	 for	 hypertension	 development	 in	 these	 rats	 (Doggrell	&	
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Brown	1998).	However,	 the	 link	between	 these	observed	changes	and	hypertension	 is	

still	unclear.		

3.5.1. Pathophysiological	changes	induced	by	hypertension	in	SHR		

SHR	 are	 extensively	 used	 for	 studies	 of	 hypertension-induced	 changes	 in	 cardiac	

function,	 since	 SHR	 mimic	 many	 aspects	 of	 hypertensive	 heart	 disease	 in	 humans	

(Trippodo	&	 Frohlich	 1981).	 As	 described	 above,	 hypertension	 causes	 left	 ventricular	

hypertrophy	 in	 humans.	 SHR	 also	 develop	 left	 ventricular	 hypertrophy	 (Doggrell	 &	

Brown	1998)	and	heart	failure	(Houser	et	al.	2012).	A	comprehensive	study	by	Chan	et	

al.	characterized	cardiovascular	parameters	of	SHR	during	the	whole	lifespan,	including	

also	age-induced	changes.		Since	the	rats	used	for	this	thesis	were	all	male,	the	following	

findings	of	this	study,	listed	below,	are	restricted	to	male	SHR.	

Survival	rate	and	life	expectancy	are	lower	in	SHR	than	in	WKY.	

• Elevated	blood	pressure	causes	left	ventricular	hypertrophy	and	fibrosis.		

• SHR	 develop	 signs	 of	 heart	 failure	 at	 around	 15-18	 months	 of	 age,	 including	

systolic	and	diastolic	dysfunction,	and	left	ventricular	dilatation.	

• Action	potential	duration	is	prolonged	in	SHR,	making	them	more	susceptible	to	

arrhythmias	(Chan	et	al.	2011).	

Figure	7	presents	 onsets	 of	 different	 cardiovascular	 changes	 in	 SHR	during	 the	whole	

lifespan.	

	

Figure	7.	The	onsets	of	cardiovascular	changes	during	the	lifespan	of	SHR	

	

As	 in	humans,	 the	 exact	mechanisms	of	progression	 from	stable	hypertrophy	 to	heart	

failure	 in	 these	rats	are	not	completely	understood.	SHR	are	a	suitable	model	 to	study	

the	transition	from	compensated	left	ventricular	hypertrophy	to	heart	failure,	since	this	

progression	is,	as	in	humans,	associated	with	aging	(Bing	et	al.	2002).	

In	 the	 context	 of	 atrial	 remodelling	 and	 arrhythmias	 SHR	 were	 also	 found	 to	 be	 a	

suitable	model.	The	electrocardiographic	study	by	Dunn	et	al.	revealed	bi-peak	notching	
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of	a	P-wave	in	the	SHR,	indicating	atrial	enlargement	(Dunn	et	al.	1978).	Another	study	

found	 increased	 incidence	 and	 duration	 of	 atrial	 arrhythmias	 in	 SHR	 together	 with	

fibrotic	 and	 electrophysiological	 changes	 (Choisy	 et	 al.	 2007).	 Moreover,	 as	

demonstrated	 by	 Scridon	 et	 al.,	 SHR	 are	 also	 prone	 to	 unprovoked	 atrial	

tachyarrhythmias	 (Scridon	 et	 al.	 2012).	 A	 more	 recent	 study	 by	 Lau	 et	 al.	 observed	

increased	 interstitial	 fibrosis	 and	 bi-atrial	 enlargement	 together	 with	 heterogeneous	

conduction	 in	 the	 atria,	 which	 resulted	 in	 increased	 arrhythmia	 inducibility.	 In	 other	

words,	some	signs	of	structural	and	electrical	remodelling	are	present	in	the	atria	of	SHR	

(Lau	et	al.	2013).	

However,	data	on	hypertension-induced	functional	changes	in	the	atria	are	still	lacking.	

Exact	mechanisms	underlying	atrial	remodelling	in	SHR	are	not	completely	understood,	

and	 atrial	 remodelling	 during	 the	 transition	 from	 compensated	 left	 ventricular	

hypertrophy	to	heart	failure	is	unknown.		
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3.6. Aims	of	the	study	

Arterial	 hypertension	 is	 associated	 with	 high	 morbidity	 and	 mortality	 worldwide.	 It	

develops	 gradually	 and	 causes	 many	 cardiovascular	 diseases,	 e.g.	 left	 ventricular	

hypertrophy,	 heart	 failure	 and	 atrial	 fibrillation.	 These	diseases	 are	 tightly	 linked	 and	

contribute	to	the	development	of	one	another.	Remodelling	is	an	adaptive	regulation	of	

cardiac	 myocytes	 to	 stress	 factors,	 such	 as	 elevated	 blood	 pressure,	 and	 includes	

structural	 and	 functional	 changes	 of	 the	myocytes.	While	 ventricular	 remodelling	 has	

been	intensively	studied,	much	less	is	known	about	atrial	remodelling	in	hypertension,	

left	ventricular	hypertrophy	and	heart	failure.		

Intracellular	 Na+	 homeostasis	 is	 essential	 for	 the	 physiology	 of	 cardiac	 myocytes:	 it	

regulates	 Ca2+	 homeostasis,	 intracellular	 pH,	 cardiac	 metabolism	 and	 contractility.	

However,	the	available	data	on	Na+	homeostasis	in	the	atria	are	scarce.		

	

We	hypothesized	that	long-standing	hypertension	may	cause	atrial	remodelling	in	terms	

of	 impaired	 contractility	 and	 Na+	 homeostasis.	 Thus,	 the	 first	 and	 major	 part	 of	 this	

study	 was	 to	 characterize	 atrial	 remodelling	 in	 hypertensive	 heart	 disease	 with	

particular	 focus	 on	 contractility	 and	 Na+	 homeostasis.	 To	 this	 end,	 we	 used	

spontaneously	 hypertensive	 rats	 (SHR),	 a	 well-established	 animal	 model	 for	 human	

essential	 hypertension.	 Wistar	 Kyoto	 rats	 (WKY)	 were	 chosen	 as	 a	 normotensive	

control.	Hypertensive	heart	disease	develops	gradually	in	these	rats.	Therefore,	we	have	

chosen	3	time	points	to	investigate	hypertension-induced	changes	in	the	atria	of	SHR:		

• 3	months	old,	shortly	after	the	development	of	hypertension,		

• 7	 months	 old,	 when	 sustained	 hypertension	 has	 caused	 compensated	 left	

ventricular	hypertrophy		

• 15-23	 months	 of	 age,	 when	 there	 is	 a	 transition	 from	 compensated	 left	

ventricular	hypertrophy	to	heart	failure.		

The	atrial	remodelling	in	SHR	was	studied	in	terms	of:	

• Cardiovascular	changes	(blood	pressure,	heart	rate,	cardiac	hypertrophy)	

• Contractility	of	atrial	myocytes	

• Intracellular	Na+	concentration	in	atrial	myocytes	

• Expression	of	Na+-handling	proteins	in	the	atria	of	SHR.		
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Hypertension	 is	 one	 of	 the	 major	 predictors	 for	 atrial	 fibrillation.	 Atrial	 fibrillation	

causes	 atrial	 remodelling	 and,	 vice	 versa,	 atrial	 remodelling	 contributes	 to	 the	

development	of	atial	fibrillation.	Various	aspects	of	atrial	remodelling	in	this	arrhythmia	

have	 been	 intensively	 investigated,	 however,	 the	 role	 of	 Na+	 homeostasis	 is	 not	 yet	

completely	 understood.	 Therefore,	 the	 second	 aim	 of	 this	 thesis	 was	 to	 analyze	 the	

expression	 of	 Na+	 handling	 proteins	 in	 atrial	 tissue	 from	 patients	 suffering	 from	

paroxysmal	and	chronic	atrial	fibrillation.	

	

Endothelin-1	 is	 a	 vasoactive	 peptide	 involved	 in	 the	 regulation	 of	 blood	 pressure.	

Overactivation	 of	 the	 endothelin-1	 system	 causes	 atrial	 remodelling,	 including	

alterations	 in	Ca2+	handling	and	development	of	pro-arrhythmogenic	events.	Thus,	 the	

third	aim	of	 the	 study	was	 to	 test	 the	effect	of	 endothelin	 receptor	blockade	on	blood	

pressure,	 expression	 of	 Ca2+-handling	 proteins	 and	 proteins	 involved	 in	 Endothelin-1	

signalling	in	the	atria	of	SHR.	
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4. Materials	and	methods	

4.1. Animals	

All	 animal	 experiments	 were	 approved	 by	 local	 authorities	 (Regierungspräsidium	

Gießen,	experimental	project	V	54	-	19	c	20	15	(1)	MR	20/29	Nr.	A	21/2010	and	AK-9-

2014-Kockskämper,	approved	by	animal	welfare	officer,	University	of	Marburg).	Animal	

experiments	conducted	in	Magdeburg	were	approved	by	the	council	on	local	animal	care	

committee	(Halle,	Saxony	Anhalt,	approval:	42502-2-1259	UniMD).	Male	SHR	and	WKY	

rats	were	obtained	 from	 Janvier-labs	 (Saint	Berthevin,	France)	or	Charles	River	 (Köln,	

Germany).	Rats	were	kept	in	the	local	animal	housing	facilities	with	standard	chow	and	

water	ad	libitum	in	12	hours	light/dark	conditions.	Animal	handling	procedures	were	in	

accordance	with	the	German	Animal	Welfare	Act	(Tierschutzgesetz).	

4.2. Non-invasive	blood	pressure	and	heart	rate	measurements	

in	rats	

Blood	 pressure	 and	 heart	 rate	 measurements	 were	 performed	 on	 conscious	 rats	 by	

using	 the	 CODA™	 system	 (Kent	 Scientific	 Corporation,	 Torrington,	 Connecticut,	 USA).	

The	experimental	setup	is	shown	in	Figure	8.	

The	non-invasive	blood	pressure	method	uses	a	tail-cuff	(4)	placed	on	the	tail	to	occlude	

the	blood	flow.	Upon	deflation,	a	volume	pressure	recording	(VPR)	cuff	(5)	is	used	as	a	

sensor	 for	blood	pressure	measurements.	This	 sensor	 is	placed	distal	 to	 the	occlusion	

tail-cuff.	The	occlusion	tail-cuff	is	inflated	to	impede	the	blood	flow	to	the	tail.	Then	the	

occlusion	 cuff	 is	 slowly	 deflated	 and	 the	 VPR	 cuff	 measures	 the	 physiological	

characteristics	of	the	returning	blood	flow.	As	the	blood	returns	to	the	tail,	when	the	tail-

cuff	is	deflated,	the	VPR	sensor	cuff	measures	the	tail	swelling	as	a	result	of	the	arterial	

pulsations	from	the	blood	flow.	Systolic	blood	pressure	is	automatically	measured	at	the	

time	 point	 when	 a	 tail	 begins	 to	 swell.	 Diastolic	 blood	 pressure	 is	 automatically	

calculated	when	the	increasing	rate	of	swelling	is	fading	away	in	the	tail	(Malkoff	2005).	

The	following	average	cardiovascular	characteristics	are	considered	to	be	normal	for	the	
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rat:	 systolic/diastolic	 blood	 pressure	 (mean	 values):	 ≈120/80	 mmHg,	 heart	 rate:	

≈350/450	beats	per	minute	(bpm)	(Sharp	&	Villano	2012).	

In	this	study	the	rats	were	put	inside	the	rodent	holder	(2)	on	the	warming	platform	(3).	

This	platform	was	previously	heated	to	34°C	in	order	to	reduce	the	animal’s	stress	and	

increase	the	blood	flow	in	the	tail.	After	the	rat	had	recovered	from	stress,	the	occlusion	

cuff	was	placed	on	the	base	of	the	tail	and	the	VPR	cuff	was	placed	distal	to	the	occlusion	

cuff.	The	measurements	were	performed	after	the	rat	had	acclimated	to	the	holder	and	

the	 cuffs.	 The	 systolic	 and	diastolic	 blood	pressure	 values	were	 taken	 for	 the	 analysis	

only	 when	 the	 heart	 rate	 did	 not	 exceed	 450	 bpm,	 which	 indicated	 that	 the	 rat	 was	

under	stress.	

Figure	8	shows	the	CODA	system.	

	

	

Figure	8.	CODA	system	for	measurements	of	blood	pressure	and	heart	rate.	

1-Coda	controller,	2-rat	holder,	3-warming	platform,	4-occlusion	cuff,	5-VPR	cuff,	6-computer.	

VPR,	volume-pressure	recording		
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4.3. Isolation	of	rat	atrial	myocytes	

4.3.1. Chemicals	and	reagents	

All	 standard	 chemicals	 were	 purchased	 from	 Roth	 (Karsruhe,	 Germany)	 or	 Sigma-

Aldrich	(München,	Germany),	if	not	mentioned	otherwise.	All	solutions	and	buffers	were	

prepared	 using	 demineralised,	 ultrapure	 water	 (ddH2O),	 prepared	 with	 the	 Milli-Q	

Reference	A+	system	(Merck	Millipore,	Darmstadt,	Germany).	

4.3.2. Solutions	for	atrial	myocyte	isolation	

The	 basic	 Tyrode’s	 solution	 (without	 Ca2+)	 was	 prepared	 one	 day	 prior	 to	 the	 cell	

isolation	procedure	(Table	1).	All	the	other	solutions	were	made	from	Tyrode’s	solution	

at	the	day	of	cell	isolation.	These	solutions	are	listed	below.	

	

Table	1.	Basic	Tyrode’s	solution	(without	Ca2+)	1l,	pH	7.4	

Substance	 Concentration	

NaCl	 130	mM	

KCl	 5.4	mM	

MgCl2	 0.5	mM	

NaH2PO4	x	2H2O	 0.33	mM	

Glucose	x	H2O	 22	mM	

HEPES	 25	mM	

1	M	NaOH	 q.s.	for	pH	adjustment	

	

Table	2.	Cardioplegic	solution	

Basic	Tyrode’s	solution	 147	ml	 Final	concentration	

1	M	KCl	 3	ml	 20	mM	

	

Table	3.	Cannulation	solution	

Basic	Tyrode’s	solution	 250	ml	 Final	concentration	

1	M	CaCl2	 37.5	µl		 150	µM	

1

-
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Heparin-Na+	5000	U/ml	 100	µl	 2	U/ml	

	

Table	4.	Ca2+	-	free	solution	

Basic	Tyrode’s	solution	 50	ml	 Final	concentration	

100	mM	EGTA-Na+	solution	 200	µl	 20	mM	

Heparin-Na+	5000	U/ml	 20	µl	 2	U/ml	

BDM	 50	mg	 10	mM	

	

Table	5.	Enzyme	solution	

Basic	Tyrode’s	solution	 50	ml	 Final	concentration	

Collagenase	 (Worthington,	 Collagenase	

type	2)	255	U/mg	

40	mg	 204	U/ml	

Protease	XIV	 2.5	mg	 0.05	mg/ml	

BDM	 50	mg	 10	mM	

1	M	CaCl2	 10	µl	 0.2	mM	

	

Table	6.	Stop	solution	(0.5	mM	Ca2+)	

Basic	Tyrode’s	solution	 15	ml	 Final	concentration	

1	M	CaCl2	 7.5	µl	 0.5	mM	

BDM	 15	mg	 10	mM	

BSA	 30	mg	 2	mg/ml	

	

Table	7.	1	mM	Ca2+	solution	

Basic	Tyrode’s	solution	 15	ml	 Final	concentration	

BSA	 30	mg	 2	mg/ml	

1	M	CaCl2	 15	µl	 1	mM	

	

Table	8.	1.5	mM	Ca2+	solution	

Basic	Tyrode’s	solution	 100	ml	 Final	concentration	

1	M	CaCl2	 150	µl	 1.5	mM	
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Table	9.	2	mM	Ca2+	solution		

1.5	mM	Ca2+	solution	 10	ml	 Final	concentration	

1	M	CaCl2	 5	µl	 2	mM	

	

4.3.3. Isolation	procedure	

The	 rats	 were	 anesthetized	 with	 isoflurane,	 weighed	 and	 decapitated.	 Heparin-Na+	

solution	(1000	U/kg)	was	injected	in	the	apex	of	the	heart	to	prevent	thrombi	formation.	

The	heart	was	quickly	removed	and	transferred	into	a	beaker	with	the	oxygenated	ice-

cold	cardioplegic	solution.	Then,	the	heart	was	cannulated	via	the	ascending	aorta	and	

perfused	with	cannulation	solution.	When	the	chambers	of	the	heart	began	to	contract,	

and	blood	was	washed	out	 from	the	coronary	arteries,	 the	cannula	with	the	heart	was	

mounted	 on	 the	 Langendorff	 apparatus	 (Figure	 9)	 (FMI	 Föhr	 Medical	 instruments,	

Seeheim-Jugenheim,	 Germany),	 previously	 heated	 to	 37°C.	 Perfusion	 with	 the	

oxygenated	 Ca2+-free	 solution	 was	 immediately	 started.	 When	 the	 heart	 stopped	

contracting,	 which	 indicates	 that	 calcium	 ions	 are	 washed	 out,	 the	 perfusion	 was	

switched	 to	 the	 enzyme	 solution.	 When	 the	 atria	 started	 to	 look	 flaccid	 and	 pale,	

digestion	was	stopped,	and	atria	were	separated	from	the	heart	and	placed	into	0.5	ml	of	

the	enzyme	solution	(0.2	mM	Ca2+)	without	collagenase	and	protease.	Beakers	with	left	

and	 right	 atria	were	 placed	 on	 a	 rocking	 platform	 to	 allow	 cell	 dissociation	 from	 the	

tissue.	
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Figure	9.	Langendorff	system	for	isolation	of	cardiac	myocytes.	

1-Circulating	waterbath,	2-peristaltic	pump,	3-perfusate	reservoir,	4-thermal	chamber,	5-heart.	

	

In	 order	 to	 restore	 physiological	 Ca2+	 concentration,	 we	 used	 several	 solutions	 with	

increasing	Ca2+concentration	(Tables	6-9).	Ca2+	concentration	was	 increased	gradually.	

This	 allows	 the	 cells	 to	 return	 to	 normal	 intracellular	 Ca2+	 concentration	 without	

becoming	Ca2+	overloaded	and	depolarized,	which	may	cause	cell	damage	(Louch	et	al.	

2011).	 Solutions	 with	 increasing	 Ca2+	 concentration	 were	 added	 gradually	 every	 2	

minutes	according	to	the	scheme	in	Table	10.	

	

Table	10.	Scheme	of	atrial	myocytes	adaptation	to	physiological	Ca2+	

concentration	

Stop	solution	(0.5	mM	Ca2+)	 5	x	0.1	ml	

4	x	0.1	ml	1	mM	Ca2+	solution	

3	x	0.2	ml	

1.5	mM	Ca2+	solution	 5	x	0.2	ml	

4	x	0.1	ml	Final	solution	for	adaptation	of	atrial	myocytes	

	(2	mM	Ca2+)	 3	x	0.2	ml	

1 
2 

3 

4 

5 
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After	 the	 adaptation	 procedure,	 the	 remaining	 atrial	 tissue	 was	 dispersed	 with	 fine	

forceps	 and	 left	 for	 10	minutes	without	 rocking.	 Then,	 2	ml	 of	 the	 supernatant	were	

aspirated	and	the	remaining	tissue	removed.	The	solution	on	the	bottom	of	the	beaker	

contained	isolated	atrial	myocytes.	

4.3.4. Plating	of	isolated	atrial	myocytes	

Glass	 coverslips	 were	 covered	 with	 50	 µg/ml	 laminin	 (Sigma-Aldrich,	 München,	

Germany)	dissolved	 in	 the	Tyrode’s	 solution	 for	 at	 least	 1	 hour	 at	 room	 temperature.	

The	 leftover	 of	 laminin	 was	 aspirated	 by	 pipette	 and	 coverslips	 were	 left	 to	 dry.	

Afterwards,	 the	 solution	 with	 atrial	 myocytes	 was	 seeded	 on	 the	 coverslips,	 and	 the	

myocytes	were	left	to	attach	to	the	bottom	of	the	coverslips	for	about	20	minutes	before	

conducting	of	recordings.	

4.4. Measurements	of	intracellular	Na+	concentration	and	

contractility	of	atrial	myocytes	

For	 the	 intracellular	 Na+	 measurements,	 we	 used	 the	 fluorescent	 dye	 SBFI	 (Sodium-

binding	 benzofuran	 isophthalate).	 This	 dye	 is	 a	 crown	 ether	 linked	 via	 its	 nitrogen	

atoms	 to	 the	 fluorophore	 groups.	 In	 this	 molecule	 fluorophores	 are	 the	 benzofurans	

bound	 to	 the	 isophthalate	 groups	 (Minta	 &	 Tsien	 1989).	 Since	 the	 SBFI	 molecule	 is	

negatively	 charged,	 it	 cannot	 enter	 the	 cell	 (Figure	 11	 A).	 Because	 of	 that,	 the	 SBFI	

molecule	 is	 modified	 to	 the	 acetoxymethyl	 ester	 (SBFI-AM),	 so	 that	 the	 non-charged	

molecule	of	 the	dye	can	enter	 the	cell	 (Figure	11	B).	Unspecific	 intracellular	esterases	

release	the	polyanionic	form	of	the	indicator,	which	is	trapped	inside	the	cell	(Johnson	&	

Spence	 2010).	 When	 Na+	 binds	 to	 SBFI	 the	 indicator’s	 fluorescence	 increases,	 its	

excitation	 peak	 narrows	 and	 the	 emission	 maximum	 shifts	 to	 shorter	 wavelengths	

(Figure	 11	 C)	 (Johnson	 &	 Spence	 2010).	 The	 SBFI	 molecule	 is	 excited	 at	 two	

wavelengths:	340	and	380	nm	and	emits	fluorescence	at	≈500-600	nm	with	a	maximum	

at	550	nm.	

The	fluorescence	spectrum	of	SBFI	is	shifted	in	vivo.	In	rat	ventricular	myocytes	it	was	

shown	by	Donoso	et	al.	that	an	increase	in	[Na+]i	decreased	fluorescence	intensity	at	380	

nm	and	had	no	effect	at	340	nm	(Donoso,	et	al.	1992).	The	ratio	340	nm/380	nm	is	used	

as	a	measure	of	[Na+]i.		

	

F
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Figure	11.	SBFI	molecule	and	the	fluorescent	spectrum	of	SBFI	

A:	 SBFI	molecule,	B:	 SBFI-AM	molecule,	C:	 Fluorescence	 excitation	 (detected	 at	 505	 nm)	 and	

emission	(excited	at	340	nm)	spectra	of	SBFI	in	pH	7.9	buffer	containing	135	mM	(A)	or	zero	(B)	

Na+	

(Figures	are	taken	from:	www.teflabs.com,	www.lifetechnologies.com,	(Johnson	&	Spence	2010),	

respectively).	

	

	

	

A 

B C 
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The	 advantage	 of	 using	 ratiometric	 fluorescence	 indicators,	 such	 as	 SBFI,	 is	 the	

elimination	 of	 data	 distortions	 caused	 by	 photobleaching	 (destruction	 of	 the	 excited	

fluorophore	due	to	a	photosensitized	generation	of	reactive	oxygen	species),	leakage	of	

the	 indicator	 out	 of	 the	 cell,	 movement	 artifacts	 or	 its	 nonuniform	 distribution	 and	

illumination	instability.		

The	dissociation	 constant	 (Kd)	 of	 an	 indicator	depends	on	 several	 factors,	 such	as	pH,	

temperature,	 ionic	 strength,	 concentrations	of	 other	 ions	 and	dye-protein	 interactions	

(Johnson	&	Spence	2010).	Due	to	these	factors,	the	Kd	determined	in	aqueous	solutions	

differs	from	the	values	obtained	in	living	cells.	The	Kd	of	SBFI	is	11.3	mM	in	the	presence	

of	 K+	 in	 a	 solution	 with	 a	 combined	 Na+	 and	 K+	 concentration	 of	 135	 mM,	 which	

approximates	physiological	ionic	strength.	In	several	studies	different	Kd	(Na+)	values	in	

living	cells	were	detected	in	the	range	of	≈20-30	mM	(Diarra	et	al.	2001),	(David	et	al.	

1997),	(Ito	et	al.	1997),	(Donoso	et	al.1992).	

SBFI	 is	 approximately	 18-fold	 more	 selective	 for	 Na+	 than	 for	 K+	 (Johnson	 &	 Spence	

2010).	 Since	 the	 intracellular	 K+	 concentration	 is	 about	 150	mM	 and	 is	 not	 changing	

under	physiological	conditions,	so	the	 intracellular	Na+	measurements	are	not	affected	

by	 K+	 concentration.	 Another	 important	 factor	 is	 the	 intracellular	 pH.	 Diarra	 et	 al.	

showed	 that	 acidification	 results	 in	 an	 apparent	 decrease	 and	 alkalinization	 in	 an	

apparent	 increase	 in	 [Na+]i	 values	 	 However	 the	 Kd	 of	 SBFI	 for	 Na+	 was	 relatively	

insensitive	to	changes	in	pH	in	the	range	of	6.8–7.8	(Diarra	et	al.	2001).	

Due	to	the	big	differences	in	Kd	values	obtained	in	various	cell	types	and	because	of	high	

compartmentalization	of	the	dye,	an	in	situ	calibration	of	the	fluorescent	signal	must	be	

performed	(Donoso	et	al.	1992).	Several	studies	(	Harootunian	et	al.	1989),	(Donoso	et	

al.	1992),	(Levi	et	al.	1994)	have	revealed	that	the	following	conditions	must	be	fulfilled	

in	order	to	perform	the	calibration	of	the	SBFI	signal:	 

1)	Intracellular	and	extracellular	Na+	must	be	equilibrated.	

2)	Calibration	solutions	with	different	Na+	concentrations	should	be	divalent-free.	This	

allows	Na+	ions	to	enter	through	Ca2+	channels.		

3)	 The	 pore-forming	 antibiotic	 gramicidin	 D	 should	 be	 present	 in	 the	 calibration	

solutions	to	permeabilize	the	membrane	for	Na+.	

4)	 Na+	 efflux	 via	 the	Na+/K+-ATPase	 should	 be	 inhibited	 by	 the	 presence	 of	 a	 cardiac	

glycoside.	
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4.4.1. Loading	the	atrial	myocytes	with	SBFI-AM	

First,	the	1	mM	stock	solution	of	SBFI-AM	was	prepared.	Pluronic	F-127	was	dissolved	in	

DMSO	(at	37°C)	to	get	a	20%	concentration.	Then,	50	µg	of	SBFI-AM	were	dissolved	in	

44	µl	of	that	solution.	Pluronic	acid	is	a	nonionic,	surfactant	polyol,	which	was	shown	to	

facilitate	 the	 solubilization	 of	water-insoluble	 dyes	 in	 physiological	media	 (Johnson	&	

Spence	2010).	On	the	day	of	measurements,	6	µl	of	1	mM	SBFI-AM	stock	solution	were	

dissolved	in	600	µl	of	recording	solution	(Table	11)	to	get	a	final	SBFI	concentration	of	

10	µM.		

Atrial	myocytes	were	incubated	with	95	µl	of	10	µM	SBFI-AM	solution	in	20%	Pluronic	

in	DMSO	for	90	minutes	at	room	temperature	in	the	dark.	Afterwards,	an	equal	amount	

of	 recording	 solution	 was	 added,	 and	 cells	 were	 allowed	 to	 de-esterify	 at	 least	 20	

minutes.	

	

Table	11.	Recording	solution,	pH	7.4	

Substance Concentration 

NaCl	 140	mM	

KCl	 4	mM	

MgCl2	 1	mM	

CaCl2	 1	mM	

HEPES	 10	mM	

Glucose		 10	mM	

1	M	Tris	base	 q.s.	for	pH	adjustment	

	

4.4.2. Intracellular	SBFI	calibration	and	intracellular	Na+	measurements	

In	this	study,	 the	three-point	calibration	of	SBFI	was	used	(Despa	2002).	At	the	end	of	

each	 experiment,	 cells	 were	 superfused	 with	 calibration	 solutions	 with	 various	 Na+	

concentrations:	0,	10	and	20	mM.	They	were	prepared	by	mixing	of	two	solutions:	A	and	

B	in	different	proportions	(Tables	12	and	13).	
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Table	12.	Solution	A	for	SBFI	calibration	(145	mM	Na+),	pH	7.2	

Substance	 Concentration	

NaCl	 30	mM	

Sodium	gluconate	 115	mM	

HEPES	 10	mM	

EGTA	 2	mM	

Glucose		 10	mM	

1	M	Tris	base	 q.s.	for	pH	adjustment	

	

Table	13.	Solution	B	for	SBFI	calibration	(145	mM	K+),	pH	7.2	

Substance	 Concentration	

KCl	 30	mM	

Potassium	gluconate	 115	mM	

HEPES	 10	mM	

EGTA	 2	mM	

Glucose		 10	mM	

1	M	Tris	base	 q.s.	for	pH	adjustment	

	

To	 equilibrate	 the	 extracellular	 and	 intracellular	 [Na+],	 10	 µM	 of	 gramicidin	 D	 were	

added,	and	the	Na+/K+-	ATPase	was	blocked	with	100	µM	of	ouabain.	A	stock	solution	of	

10	 mM	 gramicidin	 D	 was	 prepared	 in	 DMSO.	 Since	 the	 calibration	 solutions	 are	

aggressive	 due	 to	 the	 absence	 of	 Ca2+,	 the	 permeabilization	 of	 the	 membrane	 with	

gramicidin,	the	presence	of	DMSO	and	ouabain,	some	cells	were	dying	at	the	beginning	

of	the	calibration.	To	avoid	this,	we	applied	solution	B	(which	has	no	Na+	and	Ca2+)	with	

10	µM	DMSO	(the	final	concentration	of	gramicidin	solved	in	DMSO).	Cells,	which	did	not	

die	during	the	perfusion	with	this	solution,	were	subjected	to	calibration.		
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4.4.3. Ion	Optix	setup	and	atrial	myocyte	Na+	and	contractility	

measurements	

Intracellular	Na+	concentration	and	contractility	measurements	were	conducted	on	the	

Ion	Optix	setup	(Ion	Optix	Limited,	Dublin,	Ireland).	

	

4.4.3.1. The	Ion	Optix	setup	

The	Ion	Optix	setup	allows	simultaneous	measurements	of	sarcomere	shortening	(as	a	

measure	of	contractile	function	of	cardiac	myocytes)	and	fluorescence	signals.	Figure	12	

shows	the	setup.	

	

Figure	12	Setup	for	[Na+] 	and	contractility	measurements	

1-Inverted	epifluorescence	microscope,	2-Perfusion	system	(Flow	control	system),	3-Myo-Cam-S	

camera,	3-1-Myo-Cam-S	power	supply,	4-MyoPacer	Cell	Stimulator,	5-Hyper	Switch	Light	Source	

(contains	 Xenon	 Arc	 lamp),	 5-1	 Power	 supply,	 6-Fluorescence	 System	 Interface,	 7-Mini	 pump	

variable	flow,	8-Chamber.	

	

	

1 

2 
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The	 Ion	Optix	 setup	was	built	 around	an	 inverted	epifluorescence	microscope	 (Figure	

12,	1).	A	coverslip	with	atrial	myocytes	was	placed	into	a	chamber	(Figure	12,	8)	on	the	

stage	 of	 the	 microscope.	 The	 chamber	 is	 shown	 in	 Figure	 13.	 This	 chamber	 was	

equipped	 with	 two	 platinum	 stimulation	 wires	 (Figure	 13,	 1)	 connected	 to	 the	 cell	

Stimulator	(Figure	12,	4).	The	optimal	level	of	the	solution	in	the	chamber	and	exchange	

of	the	solution	was	reached	via	a	balance	between	inflow	and	outflow	(Figure	13,	2	and	

3)	controlled	by	the	flow	control	system	(Figure	12,	2)	and	the	mini	pump	variable	flow	

(Figure	12,	7),	respectively.	

	

	

Figure	13.	Chamber		system	

1-Platinum	stimulation	wires,	2-inflow,	3-outflow.	

	

4.4.3.2. Recording	protocols	and	analysis	of	the	data	

Cell	were	chosen	for	recordings	on	the	basis	of	the	following	criteria:		

• Rod-shaped		

• Regular	and	stable	contractions	during	electrical	stimulation	

• Defined	and	regular	striations.	

4.4.3.3. Contractility	measurements	

Atrial	myocytes	were	 field	 stimulated	at	1	Hz	 in	 the	 recording	 solution	 (Table	11)	 for	

about	1	minute.	Average	sarcomere	length	shortening	was	measured	in	a	user-defined	

region	of	interest	(Figure	14).	

1 

2 3
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Figure	 14.	 Video	 image	 of	 an	 atrial	 myocyte	 with	 region	 of	 interest	 for	

measurement	of	sarcomere	shortening.	

The	user-defined	region	of	interest	is	enclosed	in	the	pink	rectangular.	

	

4.4.3.4. Intracellular	Na+	measurements	

Intracellular	Na+	was	recorded	by	the	inverted	epifluorescent	microscope,	connected	to	

the	Ion	Optix	Setup	(Ion	Optix	Limited,	Dublin,	Ireland).	SBFI	was	excited	alternately	(2	

Hz)	at	340	and	380	nm	and	fluorescence	emission	was	collected	at	wavelength	>515	nm.	

The	 cells	 loaded	with	 SBFI	 were	 stimulated	 at	 1	 Hz	 for	 about	 5	minutes	 to	 record	 a	

fluorescence	 signal	 under	 steady-state	 stimulation.	 Afterwards,	 the	 stimulation	 was	

switched	 off	 for	 another	 5	minutes	 until	 a	 new	 steady-state	 under	 resting	 conditions	

was	reached.	After	a	brief	perfusion	(3	minutes)	with	solution	B	(0	Na+,	0	Ca2+	with	10	

µM	 DMSO),	 in	 situ	 calibration	 in	 each	 cell	 was	 performed	 by	 applying	 solutions	

containing	 0,	 10	 and	 20	 mM	 Na+	 in	 the	 presence	 of	 100	 µM	 ouabain	 and	 10	 µM	

gramicidin.	

4.4.3.5. Data	analysis	

Acquisition	 and	 data	 analysis	were	 done	with	 Ion	Wizard	 (Ion	 Optix	 Limited,	 Dublin,	

Ireland)	software	and	Microsoft	Excel	(Microsoft,	Redmond,	USA).	

For	the	analysis	of	sarcomere	shortening	the	following	parameters	were	determined:		

• Diastolic	sarcomere	length	(µm)	shows	the	length	of	the	sarcomere	at	diastole.	

• Fractional	 shortening	 (%)	 indicates	 the	 percent	 change	 of	 sarcomere	 length	

during	a	twitch.	

Kinetic	parameters	of	sarcomere	shortening:	

• Time	to	peak	90%	(s)	(characterizes	the	time	for	the	sarcomere	to	reach	90%	of	

maximum	contraction).	

• Time	to	baseline	50%	(s)	(represents	the	time	for	the	sarcomere	to	reach	50%	of	

the	diastolic	sarcomere	length).	
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• Time	to	baseline	90%	(s)	(shows	the	time	for	the	sarcomere	to	reach	90%	of	the	

diastolic	sarcomere	length).	

Figure	15	depicts	a	representative	contractility	transient	and	characteristics	used	for	the	

analysis	of	contractility.	

	

	

Figure	15.	Analysis	of	twitch	
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4.5. Analysis	of	protein	expression	

4.5.1. Tissue	collection	

Rats	 were	 anesthetized	 with	 isoflurane	 and	 sacrificed	 by	 decapitation.	 Hearts	 were	

quickly	removed	and	collected	in	the	ice-cold	cardioplegic	solution.	Hearts	were	cut	into	

the	 four	 chambers,	weighed,	 and,	 afterwards,	 tissue	was	 immediately	 frozen	 in	 liquid	

nitrogen.	Dr.	Florentina-Cornelia	Pluteanu	collected	rat	tissue	for	western	blot	analysis.	

Human	 atrial	 tissue	 was	 provided	 by	 Prof.Dr.	 Ursula	 Ravens	 (Dresden	 University	 of	

Technology).	Experimental	protocols	were	approved	by	the	ethic	committee	of	Dresden	

University	 of	 Technology	 (EK790799).	 Each	 patient	 gave	 written	 informed	 consent.	

Right	 atrial	 appendages	were	 collected	during	 open-heart	 surgery	 for	 either	 coronary	

artery	 bypass	 grafting	 and/or	 valve	 replacement.	 All	 tissue	 samples	were	 collected	 in	

Dresden	and	then	sent	to	our	laboratory.	

4.5.2. Homogenization	

All	homogenization	steps	were	performed	on	ice.	Frozen	atrial	tissue	was	placed	into	the	

Micro	tissue	grinder	(Wheaton	UK	Limited,	Rochdale,	United	Kingdom)	and	100	µl	of	the	

ice-cold	 homogenization	buffer	 (Table	 14)	were	 added.	 Then	 the	 tissue	was	manually	

homogenized	with	pestle	until	 the	solution	became	slightly	 red.	100	µl	of	 this	 fraction	

was	 centrifuged	 for	 3	 minutes	 at	 3000	 revolutions	 per	 minute	 (rpm)	 and	 then	

transferred	into	an	Eppendorf	tube.	Another	50	µl	of	the	lysis	buffer	were	added	to	the	

rest	 of	 the	 tissue	 and	 homogenized	 till	 the	 tissue	 became	 flaccid	 and	 pale.	 The	 same	

centrifugation	step	(3	minutes	at	3000	rpm)	was	repeated,	and	50	µl	of	the	supernatant	

were	 transferred	 into	 the	 Eppendorf	 tube	 with	 100	 µl	 of	 the	 first	 homogenization	

fraction.	Afterwards,	150	µl	of	homogenate	was	centrifuged	for	3	minutes	at	13000	rpm	

and	supernatant	was	transferred	 into	another	Eppendorf	 tube,	rapidly	 frozen	 in	 liquid	

nitrogen	and	stored	at	-80°C.		
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Table	14.	Homogenization	(lysis)	buffer	

Component	 Concentration	

NP-40	(Igepal)	 1%	

Glycerol	 10%	

NaCl	 137	mM	

Tris	HCL	(pH	7.4)	 20	mM	

Beta-glycerol	phosphate	 50	mM	

EDTA	(pH	8)	 10	mM	

EGTA	(pH	7)	 1	mM		

Sodium	pyrophosphate	 1	mM	

NaF	 20	mM	

PMSF	 1	mM	

Na3VO4	 1	mM	

Aprotinin	 4	µg/ml	

Leupeptin	 4	µg/ml	

PepstatinA	 4	µg/ml	

	

4.5.3. 	Quantification	of	protein	amount	

To	determine	the	protein	concentration	 in	atrial	 tissue	homogenates	 the	bicinchoninic	

acid	 assay	 (BCA)	 was	 performed.	 This	 assay	 relies	 on	 two	 steps:	 first	 Cu2+	 ions	 are	

reduced	to	Cu+	by	peptide	bonds	in	proteins	at	alkaline	pH;	during	the	second	step	two	

BCA	 molecules	 bind	 to	 the	 cuprous	 ion,	 resulting	 in	 a	 chelating	 complex	 of	 intense	

purple	color.	This	complex	 is	water-soluble	and	exhibits	a	strong	 linear	absorbance	at	

562	nm	with	increasing	protein	concentrations	(Walker	1994).	

First	atrial	homogenates	were	50	 times	diluted	 in	 lysis	buffer.	The	Pierce	BCA	Protein	

assay	 kit	 (Thermo	 Fisher	 Scientific,	 Schwerte,	 Germany)	 was	 used	 for	 the	

spectrophotometric	 determination	 of	 protein	 concentration.	 According	 to	 the	

manufacturer's	instructions,	working	reagent	(contained	BCA)	was	prepared	by	mixing	

50	parts	 of	 reagent	A	with	1	part	 of	 reagent	B.	 Then	200	µl	 of	working	 reagent	were	

mixed	with	5	µl	of	1:50	diluted	homogenate	and	20	µl	of	dH2O.	Afterwards,	this	mixture	

was	 incubated	 at	 37°C	 for	 30	 minutes.	 Absorbance	 was	 measured	 at	 562	 nm	 by	 a	
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spectrophotometer	 (GENESYS™	 10S	 UV-Vis,	 Thermo	 Fisher	 Scientific,	 Schwerte,	

Germany).	 In	 order	 to	 calculate	 the	 protein	 amount	 in	 each	 sample	 a	 standard	 curve	

containing	 0-1	 mg/ml	 standard	 bovine	 serum	 albumin	 (Thermo	 Fisher	 Scientific,	

Schwerte,	Germany)	was	used.	

	

4.5.4. Western	blot	analysis	

Sodium	 dodecyl	 sulfate	 (SDS)	 electrophoresis	 is	 an	 analytical	 method	 used	 for	

separation	 of	 proteins	 according	 to	 their	 molecular	 weight	 in	 the	 electrical	 field.	 For	

analysis	 of	 major	 Na+-	 and	 Ca2+-handling	 proteins	 Glycine-SDS-PAGE	 electrophoresis	

was	 used.	 In	 order	 to	 improve	 separation	 of	 small	 proteins,	 such	 as	 PLB	 and	 PLM,	

Tricine-SDS-PAGE	was	performed.	This	electrophoretic	system	is	preferentially	used	for	

the	resolution	of	proteins	smaller	than	30	kDa	(Schägger	2006).	

4.5.4.1. Gel	preparation	

8%-Glycine-SDS-PAGE	gel	and	tricine-SDS-PAGE	gels	were	prepared	using	the	Bio-Rad	

gel	casting	system	(Bio-Rad,	München,	Germany).	They	were	composed	of	a	4%	stacking	

gel	(Table	16)	and,	subsequently,	an	8%,	14%	or	16%	running	gel	(Tables	15,20).	4-20%	

gradient	gels	were	from	Bio-Rad	(Bio-Rad,	München,	Germany).	

	

Table	15.	Composition	of	8%	running	gel	for	SDS-PAGE	(10	ml)	

	 8	%	

ddH2O	 4.7	ml	

PAA/BIS	30%	 2.7	ml	

1.5	M	Tris	8.8	 2.5	ml	

20%	SDS	 0.05	ml	

TEMED	 5	µl	

10%	APS	 50	µl	
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Table	16.	Composition	of	4%	stacking	gel	for	SDS-PAGE	(5	ml)	

	 4%	

ddH2O	 3.08	ml	

PAA/BIS	30%	 0.67	ml	

1.5	M	Tris	6.8	 1.25	ml	

20%	SDS	 250	µl	

TEMED	 10	µl	

10%	APS	 25	µl	

	

Table	17.	10%	Ammoniumpersulphate	(APS)	

Ammoniumpersulfat	 0.1	g	

ddH2O	 1	ml	

	

Table	18.	1.5	M	Tris-HCL,	pH	8.8	

Tris	Base	 27.23	g	

ddH2O	 150	ml	

5	M	HCl	 q.s.	for	pH	adjustment	

	

Table	19.	0.5	M	Tris-HCL,	pH	6.8	

Tris	Base	 6	g	

ddH2O	 100	ml	

5	M	HCl	 q.s.	for	pH	adjustment	

	

Table	20.	Composition	of	16%	and	14%	Tris-tricine	running	gel	(12	ml)	

	 16%	Tris-tricine	gel		 14%	Tris-tricine	gel		

ddH2O	 1.5	ml	 1.75	ml	

PAA/BIS	30%	 6.4	ml	 4.2	ml	

3M	Tris-HCL/SDS	(3x)	 4	ml	 6	ml	

TEMED	 10	µl	 10	µl	

10%	APS	 50	µl	 100	µl	
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Table	21.	3	M	Tris	HCl/SDS	(3x),	pH	8.45	

Tris	Base	 182	g	

ddH2O	 300	ml	

5	M	HCl	 q.s.	for	pH	adjustment	

ddH2O	 Add	to	500	ml	

SDS	 1.5	g	
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4.5.4.2. Sample	preparation	

4x	 Lämmli	 buffer	 (Table	 22)	 containing	 5%	 β-mercaptoethanol	 (the	 corresponding	

amount	 of	 β-mercaptoethanol	 was	 added	 on	 the	 day	 of	 experiment),	 lysis	 buffer	 and	

atrial	 homogenate	 corresponding	 to	 20	 or	 35	 µg	 of	 total	 protein	were	mixed	 prior	 to	

loading	 on	 the	 gel.	 To	 identify	 the	 molecular	 weight	 of	 investigated	 proteins	 5	 µl	 of	

PageRuler™	 Plus	 Prestained	 Protein	 Ladder	 (Thermo	 Fisher	 Scientific,	 Schwerte,	

Germany)	or	Precision	Plus	Protein	Prestained	Standard	Dual	Color	(Bio-Rad,	München,	

Germany)	were	loaded	next	to	the	samples.	

	

Table	22.	Lämmli	buffer	4x,	pH	6.8	

EGTA	 16	mM	

SDS	 4%	

Tris	HCL	(pH	6.8)	 40	mM	

Dithiothreitol	(DTT)	 16	mM	

Glycerol	 47%	

Br-Ph	Blue	 0.05%	

	

4.5.4.3. Gel	electrophoresis	

Mini	 Trans-Blot	 Electrophoretic	 Transfer	 Cell	 (Bio-Rad,	München	Germany)	was	 filled	

with	 the	 corresponding	 buffers	 (Tables	 23,24,25),	 and	 gel	 electrophoresis	 was	

performed	 first	 at	 90	 V	 for	 1	 hour	 and	 then	 at	 120	 or	 70	 V	 for	 Glycine-SDS-PAGE	 or	

Tricine-SDS-PAGE,	respectively,	until	optimal	separation	was	reached.		

	

Table	23.	Running	buffer	for	Glycine-SDS-PAGE	

TRIS	base	 	25	mM	

Glycine	 192	mM	

SDS	 0.1%	
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Table	24.	Cathode	buffer	for	Tricine-SDS-PAGE,	pH	8.25	

Tris	Base	 100	mM	

Tricine	 100	mM	

SDS	20%	 0.1%	

	

Table	25.	Anode	buffer	for	Tricine-SDS-PAGE,	pH	8.9	

Tris	Base	 200	mM	

5	M	HCl	 q.s.	for	pH	adjustment	

	

4.5.4.4. Blotting	

Separated	proteins	were	transferred	from	the	gel	onto	a	nitrocellulose	membrane.	First,	

the	membrane	was	 incubated	 in	 ddH2O	 for	 5	minutes	 and	 then	 in	 the	 transfer	 buffer	

containing	20%	methanol	 (Table	26).	At	 the	 same	 time,	 gel,	 filter	papers	and	 sponges	

were	also	incubated	in	the	transfer	buffer	for	15	minutes.	After	assembling	the	“blotting	

sandwich,”	 blotting	was	 performed	 in	 a	Mini	 Trans-Blot	 Electrophoretic	 Transfer	 Cell	

(Bio-Rad,	München,	 Germany)	 for	 2	 hours	 at	 150	mA	per	 gel	 (for	 blotting	 of	 proteins	

with	molecular	weight	>	250	kDa)	and	then	at	30	mA	per	gel	overnight	at	4°C.	

	

Table	26.	10x	Transfer	buffer	1l	

Tris	base	 39.4	g	 0.33	M	

Glycine	 144	g	 1.92	M	

ddH2O	 Ad	to	1l	

	

4.5.4.5. Blocking	and	immunostaining	

The	 next	 day,	 the	 membrane	 was	 stained	 with	 Ponceau	 S	 to	 check	 the	 protein	

abundance	 on	 the	membrane,	 then	washed	 3	 times	 for	 10	minutes	with	 TBST	 buffer	

(Table	27)	and	afterwards	blocked	with	5%	milk	blocking	buffer	(prepared	by	diluting	

the	corresponding	amount	of	skimmed	milk	powder	in	TBST	buffer)	for	1	hour	at	room	
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temperature	 (RT).	After	 that,	 the	membrane	was	washed	3	 times	 for	10	minutes	with	

TBST.	Next,	 the	primary	antibodies,	diluted	 in	0.5%	milk	blocking	buffer,	were	put	on	

the	membrane	and	 incubated	either	 for	2	hours	at	RT	or	overnight	 at	4°C	 (Table	28).	

After	the	incubation	with	primary	antibody,	the	membrane	was	washed	3	times	for	10	

minutes	with	TBST	buffer	and	then	HRP-conjugated	secondary	antibody,	diluted	in	0.5%	

milk	blocking	buffer	(Table	29)	were	added	to	the	membrane	and	incubated	for	1	hour	

at	RT.	Afterwards,	the	membrane	was	washed	3	times	for	10	minutes	with	TBST	buffer.	

Thereafter,	 the	 membrane	 was	 covered	 with	 a	 chemiluminescent	 substrate	 solution	

HRP-Juice	(PJK, Kleinblittersdorf,	Germany)	and	after	2	minutes	 the	chemiluminescent	

signal	 was	 detected	 by	 the	 Chemidoc-XRS	 Imaging	 System	 (Bio-Rad,	 München,	

Germany).	For	 the	detection	of	pCaMKII,	a	more	sensitive	chemiluminescent	substrate	

solution:	 SuperSignal	 West	 Femto	 Maximum	 Sensitivity	 Substrate	 (Thermo	 Fischer	

Scientific,	Schwerte,	Germany)	was	used.	GAPDH	or	actin	served	as	loading	controls.		

Quantification	of	the	signal	was	done	with	ImageJ	(NIH,	Bethesda,	Maryland,	USA).		

	

Table	27.	20x	TBS	buffer	pH	7.5	

NaCl	 198.2g	 1.7	M	

Tris	Base	 24.2g	 0.1	M	

5	M	HCl		 q.s.	for	pH	adjustment	

ddH2O	 Ad	to	1l	

In	order	to	prepare	TBST	buffer	Tween	20	was	added	to	1	l	1xTBS	buffer	after	the	pH	

adjustment	to	get	final	0.1%	concentration
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Table	28.	Investigated	proteins	and	primary	antibodies	

Protein	

(molecular	

weight,	kDa)	

Primary	

antibodies	

Company	and		

catalogue	number	
Species	 Dilution		 Gel	

pan	Na+	
channel	
250	

Anti-Pan	Nav		
Alomone	labs,	ASC-
003	
	

rabbit	 1:500	
4-20%	
gradien
t	gel		

NCX	
120	

Sodium/Calciu
m	Exchanger	1	
Antibody	(6H2)	

Thermo	Scientific,	
MA1-4672	

mouse	 1:1000	
4-20%	
gradien
t	gel		

NHE	
100	

Mouse	Anti	–	
Na+/H+	
Exchanger	
isoform	NHE	1	
monoclonal	
antibody	

Chemicon	
International,	
MAB3140	

mouse	 1:1000	
4-20%	
gradien
t	gel		

α	1	subunit	of	
NKA	
100	

Anti-α	1	
Sodium	
Potassium	
ATPase	
antibody	

Abcam,	ab2872	 mouse	 1:1000	
4-20%	
gradien
t	gel		

α	2	subunit	of	
NKA	
100	

Rabbit	anti-
sodium	pump	α	
2	polyclonal	
antibody	

Chemicon	
International,	
AB9094	

rabbit	 1:500	
4-20%	
gradien
t	gel		

α	3	subunit	of	
NKA	
100	

Anti-α	3	
Sodium	
Potassium	
ATPase	
antibody	

Abcam,	ab2826	 mouse	 1:1000	
4-20%	
gradien
t	gel		

β	1	subunit	of	
NKA	
35	

Anti-β	1	
Sodium	
Potassium	
ATPase	
antibody	

Abcam,	ab8344	 mouse	 1:5000	
4-20%	
gradien
t	gel		

PLM	
10	

Anti	FXYD1	
antibody	

Abcam,	ab76597	 rabbit	 1:1000	

16%	
tris-
tricine	
gel	

GAPDH	
34	

Anti-
Glyceraldehyde
-3-Phosphate	
Dehydrogenase	
antibody	
(Clone:	6C5)	

Calbiochem,	CB1001	
	

mouse	 1:50	000	 	
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Actin	
44	

Mouse	Anti-
Actin,	
Monoclonal	
(Clone:	C4)		

MP	LLC.	
#69100Biomedicals,	

mouse	 1:50	000	 	

RyR	
565	

Ryanodine	
receptor	
antibody	(C3-
33)	

Thermo	Scientific,	
MA3-916	

rabbit	 1:5000	
4-20%	
gradien
t	gel	

RyR	
pSer2808	

Ryanodine	
receptor	2	
(RYR2)	
(pSer2808)	
pAb		

Badrilla,	A010-30	 rabbit	 1:5000	
4-20%	
gradien
t	gel	

RyR	
pSer2814	

Ryanodine	
Receptor	2	
(RYR2)	
(pSer2814)	
pAb	

Badrilla,	A010-31	 rabbit	 1:5000	
4-20%	
gradien
t	gel	

PLB	
25	

Phospholamba
n	A1	Antibody	

Badrilla,	A010-14	 mouse	 1:5000	

14%	
tris-
tricine	
gel	

PLB	pS16	

Phospholamba
n	Phospho	
Serin1-16	Anti-
Serum	

Badrilla,	A010-12	 rabbit	 1:5000	

14%	
tris-
tricine	
gel	

PLB	pT17	

Phospholamba
n	Phospho	
Threonine-17	
Anti-Serum	

Badrilla,	A010-13	 rabbit	 1:5000	

14%	
tris-
tricine	
gel	

PLB	pS10	

Phospholamba
n	Phospho	
Serine-10	
Affinity	
Purified	
Antibody	

Badrilla,	A010-10AP	 rabbit	 1:1000	

14%	
tris-
tricine	
gel	

CSQ	
55	

Anti-
Calsequestrin	
Polyclonal	
Antibody	

Thermo	
Scientific,PA1-913	

rabbit	 1:2500	
4-20%	
gradien
t	gel	

SERCA	
100	

Anti-SERCA2a	
Antibody	

Badrilla,	A010-20	 rabbit	 1:5000	
4-20%	
gradien
t	gel	

LTCC	
250	

Anti	Cav	1.2a	
(cardiac	type	
α1c)	

Alomone	Labs	 rabbit	 1:200	

8%	
glycine	
SDS-
PAGE	
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ETAR	
70	

Anti-
Endothelin	
Receptor	A	

Alomone	Labs,	AER-
001	

rabbit	 1:500	

8%	
glycine	
SDS-
PAGE	

PLC	β1	
150	

PLCβ1	(G-12):	
sc-205	

Santa	Cruz	
Biotechnology,	sc-
205	

rabbit	 1:1000	
4-20%	
gradien
t	gel	

PLC	β3	
150	

PLC	β3	(C-20):	
sc-403	

Santa	Cruz	
Biotechnology,	sc-
403	

rabbit	 1:1000	
4-20%	
gradien
t	gel	

CaMKII	
50	

CaMKIIδ		 Badrilla,	A010-55AP	 rabbit	 1:5000	
4-20%	
gradien
t	gel	

pCaMKII	
pT286	

Anti-CaMKII	
(phospho	
T286)		

Abcam,	ab32678	 rabbit	 1:1000	
4-20%	
gradien
t	gel	

IP3R2	
313	

Anti-ITPR2		 Abcam,	ab77838	 rabbit	 1:1000	
4-20%	
gradien
t	gel	

α1	
adrenorecept
or	
57	

Anti-α	1	
adrenergic	
receptor	
antibody	

Abcam,	ab166925	 goat	 1:750	
4-20%	
gradien
t	gel	

	

Table	29.	Secondary	antibodies	

Secondary	antibodies	
Company	and	a	

catalogue	number	
Dilution		

Immunopure	 Goat	 Anti-Mouse	 IgG,	
(H+L),	Peroxidase	Conjugated	

Thermo	 Scientific,	
31430	

1:5000	

Immunopure	 Goat	 Anti-Rabbit	 IgG,	
(H+L),	Peroxidase	Conjugated	

Thermo	 Scientific,	
31460	

1:5000	

Donkey	 Anti-Goat	 IgG	 H&L	 (HRP)	
preadsorbed	

Abcam,	97120	 1:10	000	

	

4.5.4.6. Stripping	

Some	 membranes	 were	 incubated	 for	 7	 minutes	 with	 stripping	 buffer	 (Table	 30)	 to	

remove	 bound	 primary	 and	 secondary	 antibodies	 and	 then	 washed	 twice	 with	 TBST	

buffer	 and	 afterwards	 reblocked	 in	 blocking	 buffer	 and	 reprobed	 with	 different	

antibodies.



	 	 Materials	and	methods	
	

	 65	

	

Table	30.	Stripping	buffer,	pH	2.2.	

Glycine	 200	mM	

SDS	 1%	

Tween	20	 0.1%	

5	M	HCl	 q.s.	for	pH	adjustment	
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4.6. Statistical	analysis	

Statistical	analysis	was	performed	using	GraphPad	Prism		(GraphPad	Software,	Inc.,	San	

Diego,	USA).	All	 data	 are	presented	 as	mean	±	 the	 standard	 error	 of	 the	mean	 (SEM).	

Statistical	 comparison	 between	 two	 groups	 was	 performed	 by	 using	 Student’s	 t-test.	

When	multiple	groups	were	compared,	analysis	of	variance	ANOVA,	Dunnett’s	multiple	

comparison	 test	 or	 Bonferroni’s	 post	 hoc	 test	 was	 done.	 Levels	 of	 significance	 are	

indicated	by	asterisks	(*	p<0.05;	**p<0.01)	and/or	by	a	hash	sign	(#p<0.05;	##	p<0.01).	
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5. 	Results	

5.1. Characterization	of	atrial	remodelling	in	early	

hypertension		

The	onset	of	hypertension	in	SHR	occurs	starting	with	6	weeks	of	age	and	hypertension	

is	present	during	 the	remaining	 lifespan	of	 these	rats.	The	animals	used	 for	 this	study	

were	in	the	age	of	12-14	weeks	and	in	the	age	of	6-8	months,	further	referred	to	3	and	7	

months	old	rats,	respectively.	We	performed	blood	pressure	measurements,	estimation	

of	 cardiac	 hypertrophy	 and	 contractile	 function	 of	 atrial	 myocytes,	 measurements	 of	

intracellular	 sodium	 concentration	 ([Na+]i)	 and	 western	 blot	 analysis	 of	 major	 Na+-

regulating	proteins	in	the	atria	of	WKY	and	SHR.	

5.1.1. Blood	pressure	and	heart	rate	measurements,	gravimetric	

assessment	of	hypertrophy		

Dr.	 Florentina-Cornelia	 Pluteanu	 performed	 gravimetric	 assessment	 of	 hypertrophy.	

Hearts	had	been	removed	from	the	chest,	cut	into	the	four	chambers	and	then	weighed.		

Lung	weight	(LW)	served	as	an	indicator	of	fluid	retention	in	the	lungs	and,	thus,	a	sign	

of	heart	failure.	All	gravimetric	parameters	were	normalized	to	tibia	length	(TL).	

At	 the	age	of	3	months,	 SHR	exhibited	 significant	 increases	 in	diastolic,	 systolic,	mean	

arterial	 pressure	 and	 heart	 rate	 (Figure	 16A).	 Gravimetric	 assessment	 revealed	 no	

changes	in	lung	weight	but	significant	elevation	of	left	ventricular	weight,	indicating	an	

early	 onset	 of	 left	 ventricular	 hypertrophy.	 However,	 no	 significant	 changes	 were	

observed	in	right	ventricular	weight.	Interestingly,	the	weight	of	both	left	and	right	atria	

was	significantly	reduced	in	SHR	(Figure	16B).	

As	illustrated	in	Figure	16A,	at	the	age	of	7	months,	SHR	showed	similar	blood	pressure	

and	 heart	 rate	 values.	 We	 observed	 a	 significant	 progression	 of	 left	 ventricular	

hypertrophy	 but	 no	 changes	 in	 right	 ventricular	 weight	 (Figure	 16Ba	 and	 b,	

respectively).	Left	and	right	atrial	hypotrophy	was	still	present	in	the	7	months	old	SHR	

(Figure	16Bc	and	d,	respectively).	However,	there	was	a	significant	increase	in	left	atrial	

weight	 of	 SHR	 rats	 during	 aging	 (Figure	 16Bc).	 Lung	 weight	 was	 not	 changed	 in	 7	

months	old	SHR	(Figure	16Be).	
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Figure	16.	Cardiovascular	characteristics	of	3	and	7	months	old	rats		

A:	 Blood	 pressure	 parameters:	 a-diastolic	 blood	 pressure,	b-	 systolic	 blood	 pressure	 c-mean	

blood	pressure	d-heart	rate.	B:	Gravimetric	parameters	normalized	 to	 tibia	 length	(TL):	a-left	

ventricular	weight	(LVW),	b-right	ventricular	weight	(RVW),	c-left	atrial	weight	(LAW),	d-right	

atrial	 weight	 (RAW),	 e-lung	 weight	 (LW).	 N=	 number	 of	 rats	 per	 group	 for	 blood	 pressure	

measurements	and	gravimetric	assessment,	respectively:	3	months	old	animals:	WKY	N=24,	7;	

SHR	N=24,	7;	7	months	old	animals:	WKY	N=30;	14-15	rats	per	group,	SHR	N=29;	14-15	rats	per	

group.	*p<0.05,	**p<0.01	WKY	vs.	SHR,	Student’s	unpaired	t-test,	##p<0.01	3	months	old	vs.	7	

months	old,	two-way	ANOVA	followed	by	Bonferroni	post-test.	

	

	

	

	

5.1.2. Measurements	of	contractility		

Since	atrial	 contractility	 is	an	 important	determinant	of	 cardiac	output	and	 the	 loss	of	

atrial	 contractility	 is	 one	 of	 the	 most	 frequently	 observed	 phenomena	 in	 atrial	

fibrillation,	 our	 next	 step	 was	 to	 characterize	 the	 contractile	 properties	 of	 atrial	

myocytes	from	SHR	and	WKY.	

At	the	age	of	3	months	atrial	myocytes	from	SHR	did	not	show	any	major	changes	in	Ca2+	

handling	 (Pluteanu	 et	 al.	 2015)	 and	 no	 changes	 in	 [Na+]i,	 as	 will	 be	 shown	 below.	

Because	 of	 this,	 we	 assumed	 that	 at	 3	 months	 of	 age	 no	 changes	 in	 contractility	 are	

D
ia

s
to

lic
 B

P
 (

m
m

H
g
)

0

50

100

150

3 M 7 M

**
**

H
e
a
rt

 r
a
te

 (
b
p
m

)

0

100

200

300

400

500

3 M 7 M

** **

L
A

W
 /
 T

L
 (

m
g
/m

m
)

0.0

0.2

0.4

0.6

0.8

1.0

3 M 7 M

**

**

##

S
y
s
to

lic
 B

P
 (

m
m

H
g
)

0

50

100

150

200

3 M 7 M

** **

L
V

W
 /
 T

L
 (

m
g
/m

m
)

0

10

20

30

40

3 M 7 M

**

**

##

R
A

W
 /
 T

L
 (

m
g
/m

m
)

0.0

0.5

1.0

1.5

3 M 7 M

*
**

m
e
a
n
 B

P
 (

m
m

H
g
)

0

50

100

150

200

3 M 7 M

**
**

R
V

W
 /
 T

L
 (

m
g
/m

m
)

0

2

4

6

8

3 M 7 M

A

B

ba

a

c d

b c d e WKY

SHR

WKY

SHR

0

20

40

60

L
W

 /
 T

L
 (

m
g
/m

m
)

3 M 7 M



	 	 Results	
	

	 69	

expected	and	began	measurements	at	7	months	of	age	when	first	subcellular	alterations	

in	Ca2+	handling	were	observed	(Pluteanu	et	al.	2015).	

Figure	 17	 demonstrates	 representative	 contractility	 traces	 (A)	 and	 analysis	 of	

contractile	parameters	(B)	from	7	months	old	WKY	and	SHR.	Diastolic	sarcomere	length	

was	almost	equal	between	WKY	and	SHR	(Figure	17Ba).	Fractional	shortening	was	also	

similar:	12.0±1.0%	in	WKY	vs	11.0±1.4%	in	SHR	(Figure	17Bb).	 	Kinetic	parameters	of	

sarcomere	 shortening	 were	 not	 different	 between	 WKY	 and	 SHR	 (Figure	 17Bc).	

Parameters	characterizing	relaxation	were	also	similar	between	WKY	and	SHR,	as	 can	

be	 estimated	 from	Figure	17Bd	and	 e.	 Thus,	 there	were	no	 changes	 in	 contractility	 in	

atrial	myocytes	from	SHR	compared	to	WKY	at	7	months	of	age.	

	

	

Figure	17.	Contractility	of	atrial	myocytes	in	7	months	old	rats	

A:	Representative	sarcomere	length	(SL)	shortening	traces	in	WKY	and	SHR	atrial	myocytes.	B:	

Analyzed	contractile	parameters:	a-diastolic	sarcomere	length,	b-fractional	shortening,	c-time	to	

peak	 90%,	 d-relaxation	 time	 50%,	 e-relaxation	 time	 90%.	 (n/N=number	 of	 cells/number	 of	

animals:	36/5	for	WKY	and	25/7	for	SHR).	Data	were	analyzed	by	Student’s	unpaired	t-test.	

	

	

	

We	also	compared	contractile	parameters	of	 left	and	right	atrial	myocytes	in	WKY	and	

SHR.	 Figure	 18	 illustrates	 this	 comparison.	 Left	 and	 right	 atrial	 myocytes	 from	WKY	

exhibited	 very	 similar	 diastolic	 sarcomere	 length	 (Figure	 18Aa)	 and	 fractional	

shortening	values	(Figure	18Ab).	Kinetic	parameters	were	almost	identical	between	left	
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and	right	atrial	myocytes	(Figure	18Ac-e).	When	left	and	right	atrial	myocytes	from	SHR	

were	compared,	we	also	did	not	observe	any	significant	changes	in	diastolic	sarcomere	

shortening	 (Figure	18Ba),	 fractional	 shortening	 (Figure	18Bb)	or	 kinetic	properties	 of	

contraction	(Figure	18Bc-e).	To	conclude,	 left	and	right	atrial	myocytes	from	WKY	and	

SHR	at	7	months	of	age	exhibited	similar	contractility.	

	

	

Figure	18.	 Comparison	of	 left	 and	 right	 atrial	myocyte	 contractility	 in	 7	months	

old	rats	

A:	Analyzed	contractile	parameters	of	WKY	left	(LA)	and	right	(RA)	atrial	myocytes:	a-diastolic	

sarcomere	 length,	b-fractional	 shortening,	 c-time	 to	 peak	 90%,	d-time	 to	 baseline	 (relaxation	

time)	50%,	e-time	to	baseline	(relaxation	time)	90%.	B:	(a-e)	Same	contractility	parameters	for	

the	SHR	left	(LA)	and	right	(RA)	atrial	myocytes	(n/N=number	of	cells/number	of	animals:	WKY	

rats:	16/5	and	16/4	for	left	and	right	atrial	myocytes,	respectively.	SHR:	10/3	and	17/3	for	left	

and	right	atrial	myocytes,	respectively.	Data	were	analyzed	by	Student’s	unpaired	t-test.	

	

	

5.1.3. Intracellular	Na+	measurements	

In	order	to	characterize	Na+	homeostasis,	we	performed	intracellular	Na+	measurements	

in	atrial	myocytes	from	SHR	and	WKY	by	using	the	fluorescent	dye	SBFI-AM.		

Figure	 19Aa	 illustrates	 the	 experimental	 protocol	 for	 [Na+]i	 measurements.	 An	 atrial	

myocyte	 was	 stimulated	 at	 1	 Hz	 until	 the	 fluorescent	 signal	 reached	 steady-state.	
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Afterwards,	the	stimulation	was	switched	off,	and	the	fluorescent	signal	was	recorded	at	

the	 resting	 state	 until	 it	 also	 reached	 steady-state.	 After	 a	 short	 perfusion	 with	

0Na+/0Ca2+	solution,	the	three-point	in	situ	calibration	was	performed	(Figure	19A).	The	

calibration	curve,	derived	in	this	cell	(Figure	19Aba),	was	used	to	calculate	[Na+]i	at	1	Hz	

stimulation	 and	 at	 the	 resting	 state.	 The	 average	 [Na+]i	 is	 presented	 in	 Figure	 19B.	

Stimulation-dependent	 change	 in	 [Na+]i	 was	 calculated	 as	 the	 difference	 in	 [Na+]i	

between	1	Hz	stimulation	and	resting	conditions	(Figure	19C).	

In	 agreement	 with	 previous	 observations	 from	 ventricular	 myocytes	 (Bers	 &	 Despa	

2009),	[Na+]i	was	higher	at	1	Hz	in	comparison	to	the	resting	state.		The	average	[Na+]i,	at	

1	Hz	stimulation,	as	shown	in	Figure	19B,	was	not	different	between	WKY	or	SHR	at	3	

months	(10.7±1.8	mM	in	WKY	vs.	9.8±1.1	mM	in	SHR)	or	7	months	of	age	(11.8±.1.2	mM	

in	WKY	vs.	9.5±1.0	mM	in	SHR).	At	the	resting	conditions,	[Na+]i	was	also	not	changed	in	

SHR	compared	to	WKY	at	3	months	(7.7±1.8	mM	in	WKY	vs.	7.5±1.3	mM	in	SHR)	or	7	

months	 of	 age	 (9.6±0.9	 mM	 in	 WKY	 vs.	 8.5±1.3	 mM	 in	 SHR).	 Stimulation-dependent	

change	 in	 [Na+]i	was	 not	 significantly	 different	 between	 WKY	 and	 SHR	 neither	 at	 3	

months	nor	at	7	months	of	age	(Figure	19C).		
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Figure	19.	[Na+] i	in	3	and	7	months	old	animals	

A:	Experimental	protocol	for	Na+-measurements	in	an	atrial	myocyte.	A	cell	was	stimulated	at	1	

Hz	for	5	minutes.	Stimulation	was	switched	off	until	the	SBFI	ratio	reached	steady	state.	Na+-	and	

Ca2+-free	 (0Na+/0Ca2+)	 solution	 was	 applied	 for	 3	 minutes,	 before	 exposure	 to	 calibration	

solutions	 containing	 gramicidin	 and	 ouabain.	 b-SBFI-ratio	 as	 a	 function	 of	 [Na+]i.	 Line	 was	

obtained	by	linear	regression	analysis,	r2	>	0.99.	B:	Average	[Na+]i	in	atrial	myocytes	under	1	Hz	

stimulation	and	resting	conditions.	C:	Stimulation-dependent	change	in	[Na+]i	was	calculated	as	

the	difference:	[Na+]i	at	1	Hz	minus	resting	[Na+]i.	All	data	presented	as	mean±SEM;	3	months	old	

animals	 n/N:	 WKY	 7/5,	 SHR	 7/4;	 7	 months	 old	 rats	 n/N:	 WKY	 15/7,	 SHR	 11/7.	 Data	 were	

analyzed	by	Student’s	unpaired	t-test.	

	

	

We	also	compared	[Na+]i	in	left	and	right	atrial	myocytes	in	7	months	old	WKY	and	SHR.	

Data	are	given	in	Figure	20.	There	were	no	significant	difference	in	[Na+]i	between	left	
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and	right	atrial	myocytes	neither	in	WKY	nor	in	SHR.		Due	to	the	limited	number	of	left	

atrial	myocytes	measured	 in	3	months	old	SHR,	we	could	not	perform	the	comparison	

between	left	and	right	myocytes	for	this	age.	

In	 conclusion,	 atrial	myocyte	 [Na+]i	was	 not	 different	 between	WKY	 and	 SHR	 in	 early	

hypertension.	

	

Figure	20.	Comparison	of	[Na+] i	between	left	and	right	atrial	myocytes	in	7	

months	old	animals		

A:	Average	[Na+]i	in	left	(LA)	and	right	(RA)	atrial	myocytes	from	WKY	under	1	Hz	stimulation	

(1Hz)	and	resting	conditions	(rest).	B:	Average	[Na+]i	in	left	(LA)	and	right	(RA)	atrial	myocytes	

from	 SHR	 under	 1	 Hz	 stimulation	 (1Hz)	 and	 resting	 conditions	 (rest).	 n/N=number	 of	

cells/number	 of	 animals:	WKY:	 12/6	 and	4/2	 for	 left	 and	 right	 atrial	myocytes,	 respectively;	

SHR:	 4/4	 and	 9/6	 for	 left	 and	 right	 atrial	 myocytes,	 respectively.	 Data	 were	 analyzed	 by	

Student’s	unpaired	t-test.	

	

	

	

5.1.4. Expression	of	Na+	regulating	proteins	in	left	and	right	atria	from	SHR	

and	WKY	rats	

Next,	 we	 performed	western	 blot	 analysis	 of	 major	 Na+-handling	 proteins	 in	 left	 and	

right	atria	 from	WKY	and	SHR.	 Intracellular	Na+	homeostasis	 is	balanced	by	Na+	 influx	

and	 Na+	 efflux	 processes.	 As	 mentioned	 earlier,	 voltage-dependent	 Na+	 channels,	

Na+/Ca2+	 exchanger	 (NCX)	 and	 Na+/H+	 exchanger	 (NHE)	 belong	 to	 the	 Na+	 import	

proteins.	Na+	efflux	occurs	by	Na+/K+-ATPase	(NKA),	consisting	of	α	and	β	subunits.	α	1,	
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α	2	and	α	3	are	α	isoforms	expressed	in	the	heart.	β	1	is	the	only	β	cardiac	isoform.	NKA	

function	is	regulated	by	phospholemman	(PLM).		

Figure	21	shows	original	western	blots	of	Na+	 influx	proteins	 in	the	 left	(A)	and	in	the	

right	(B)	atrium	of	3	months	old	rats	and	averaged	data	on	protein	expression	(a	for	the	

left	 and	 b	 for	 the	 right	 atrium).	 Expression	 of	 Na+	 import	 transporters	 was	 not	

significantly	changed	in	the	left	atrium	of	SHR,	compared	to	WKY	(Figure	21a).	However,	

in	the	right	atrium	expression	of	Na+	channels	and	NCX	was	significantly	increased	in	the	

SHR,	as	evident	from	Figure	21b.		

	

	

Figure	21.	Expression	of	Na+	influx	proteins	in	left	and	right	atrium	from	3	months	

old	rats	

A,	B:	Original	western	blots	of	pan	Na+	 channel,	NCX	and	NHE	proteins	 in	 left	 (A)	 and	 right	 (B)	

atrium	 from	WKY	and	SHR;	a,b	 –	averaged	data	of	Na+-influx	proteins	expression	 in	 left	 (a)	and	

right	(b)	atrium,	normalized	to	GAPDH	or	actin.	N=6-7	in	each	group.	*p<	0.05	Student’s	unpaired	

t-test.		
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Western	 blot	 analysis	 of	NKA	 subunits	 and	 PLM	 is	 presented	 in	 Figure	 22.	 In	 the	 left	

atrium	(Figure	22A)	no	significant	changes	in	the	expression	of	different	α	subunits	and	

the	β	 1	 subunit	 of	NKA	were	 found.	 PLM	expression	was	 also	 unchanged.	 In	 order	 to	

estimate	NKA	function,	we	also	calculated	the	ratio	of	α	1	to	PLM	expression	(α	1/PLM).	

This	ratio	was	unaffected	in	the	left	atrium	of	the	SHR.		

Expression	of	 the	α	 1	 and	β	 1	 subunit	 in	 the	 right	 atrium	(Figure	22Bb)	 tended	 to	be	

lower	in	SHR	(p=0.06	and	p=0.08,	respectively),	however,	expression	of	other	α	subunits	

was	unchanged.	PLM	expression	and	the	α	1/PLM	ratio	were	unaltered.		

Overall,	no	significant	changes	in	NKA	and	PLM	expression	in	both	atria	were	observed,	

suggesting	unaffected	atrial	Na+	export	in	3	months	old	SHR.	
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Figure	22.	Expression	of	Na+	efflux	proteins	in	left	and	right	atrium	from	3	months	

old	rats	

A,	B:	Original	western	blots	of	Na+/K+-ATPase	subunits	and	phospholemman	in	the	left	(A)	and	

right	(B)	atrium	from	WKY	and	SHR	rats.	Note	that	GAPDH	is	identical	for	α	1,	α	2,	and	β	1,	since	

they	were	stained	on	the	same	membrane.	a,b	–	averaged	data	of	Na+	efflux	protein	expression	

in	the	left	(a)	and	right	(b)	atrium,	normalized	to	GAPDH.	N=7	in	each	group.	Data	were	analyzed	

by	Student’s	unpaired	t-test.	
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import	 proteins	 (Figure	 23	 Bb).	 To	 conclude,	 at	 the	 age	 of	 7	months,	 Na+	 influx	 was	

unaltered	in	SHR.	

	

	

Figure	23.	Expression	of	Na+	influx	proteins	in	left	and	right	atrium	from	7	months	

old	rats	

A,B:	Original	western	blots	of	Na+	 influx	proteins	 in	 left	 (A)	and	right	 (B)	atria	 from	WKY	and	

SHR.	a,b:	averaged	data	of	proteins	expression	in	the	left	(a)	and	right	(b)	atrium,	normalized	to	

GAPDH	or	actin.	N=7-9	in	each	group.	Data	were	analyzed	by	Student’s	unpaired	t-test.		

	

	

	

Analysis	of	NKA	expression	revealed	a	significant	decrease	in	the	expression	of	the	α	1	
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right	 atrium	 of	 SHR	 compared	 to	 WKY.	 In	 addition	 to	 that,	 α	 1/PLM	 ratio	 was	 not	

different	between	the	strains.		

	

Figure	24.	Expression	of	Na+	efflux	proteins	in	left	and	right	atrium	from	7	months	

old	rats	

A,	B:	Original	western	blots	of	Na+	efflux	proteins	in	the	left	(A)	and	right	(B)	atrium	from	WKY	

and	SHR	rats.	Note	that	GAPDH	is	identical	for	α	1,	α	2	and	β	1,	since	they	were	stained	on	the	

same	membrane.	a,b:	averaged	data	on	Na+	influx	protein	expression	in	the	left	(a)	and	right	(b)	

atrium,	normalized	to	GAPDH.	N=7-9	in	each	group	*p<	0.05,	Student’s	unpaired	t-test.	
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in	 the	 left	 atrium.	 In	 the	 right	 atrium,	 a	 significant	 increase	 in	 the	 expression	 of	 Na+	

channels	and	NCX	was	found.	

At	the	age	of	7	months,	SHR	exhibited	a	further	increase	in	left	ventricular	hypertrophy.	

Left	 and	 right	 atrial	 hypotrophy	was	 still	 present.	 Contractility	 of	 atrial	myocytes	 and	

[Na+]i	 were	 unaltered.	 Expression	 of	 Na+-handling	 proteins	 was	 largely	 unchanged,	

except	for	a	significant	reduction	in	α	1	expression	in	the	left	atrium.	

Thus,	 at	 the	 early	 hypertension	 stage,	 contractility	 and	 [Na+]i	 remained	 unaltered	 in	

atrial	myocytes	from	SHR,	despite	occasional	changes	in	the	expression	of	Na+-handling	

proteins.		
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5.2. Characterization	of	atrial	remodelling	in	advanced	

hypertension	

The	majority	 of	 SHR	 rats,	 as	mentioned	 earlier,	 develop	 signs	 of	 heart	 failure	 starting	

with	15-18	months	of	age	(Chan	et	al.	2011).	However,	little	is	known	about	the	factors	

causing	 the	 transition	 to	 heart	 failure,	 as	 well	 as	 about	 atrial	 remodelling	 processes	

accompanying	this	transition,	especially	in	terms	of	contractility	and	Na+	handling.	Thus,	

the	next	step	in	this	project	was	to	characterize	cardiovascular	parameters,	contractility,	

[Na+]i,	and	expression	of	key	Na+-handling	proteins	in	atria	of	old	SHR	and	WKY.	

5.2.1. Blood	pressure	and	heart	rate	measurements;	gravimetric	

assessment	of	hypertrophy		

For	 this	 part	 of	 the	 study,	 we	 used	 15-23	 months	 old	 animals.	 Blood	 pressure	

measurements	 revealed	 elevated	 systolic,	 diastolic,	 mean	 arterial	 pressure	 and	 heart	

rate	values	in	SHR	compared	to	WKY	(Figure	25Aa-d).		

Dr.	 Florentina-Cornelia	Pluteanu	performed	gravimetric	 assessment	of	hypertrophy	 in	

our	 laboratory.	SHR	exhibited	 left	and	right	ventricular	hypertrophy	(Figure	25Ba	and	

b)	together	with	left	atrial	hypertrophy	(Figure	25Bc).	Right	atrial	weight,	however,	was	

not	 different	 between	 SHR	 and	 WKY	 (Figure	 25Bd).	 Lung	 weight	 in	 old	 SHR	 was	

significantly	 increased	 (Figure	 25Be),	 indicating	 lung	 congestion	 and,	 thus,	

manifestation	of	heart	failure.		
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Figure	25.	Cardiovascular	characteristics	of	15-23	months	old	WKY	and	SHR	

A:	 Blood	 pressure	 parameters:	 a-diastolic	 blood	 pressure,	 b-systolic	 blood	 pressure,	 c-mean	

blood	 pressure,	 d-heart	 rate.	 N=number	 of	 animals:	 WKY:	 N=38,	 SHR:	 N=37	 B:	 Gravimetric	

parameters	normalized	to	tibia	length	(TL):	a-left	ventricular	weight	(LVW),	b-right	ventricular	

weight	(RVW),	c-left	atrial	weight	(LAW),	d-right	atrial	weight	(RAW),	e-lung	weight	(LW).	WKY:	

N=17,	SHR:	N=18.	**p<0.01,	Student’s	unpaired	t-test	

	

	

It	 should	 be	 noted,	 that	 many	 SHR	 developed	 difficulties	 breathing,	 weight	 loss	 and	

decreased	activity.	However,	not	 all	 of	 the	SHR	developed	 these	 signs	of	heart	 failure.	

Therefore,	SHR	were	subdivided	 into	 two	groups	based	on	the	presence	or	absence	of	

elevated	lung	weight.	First,	we	calculated	the	mean	value	of	lung	weight,	normalized	to	

tibia	 length	 (LW/TL),	 in	WKY.	 The	 resulting	 value	was	 50	mg/mm.	 SHR	with	 LW/TL	

lower	than	this	threshold	were	defined	as	the	non-failing	group	(SHR-NF),	whereas	SHR	

with	LW/TL	equal	 to	or	higher	 than	this	value	were	defined	as	SHR	with	heart	 failure	

(SHR-HF).	When	 non-failing	 SHR	were	 compared	with	 failing	 animals,	 we	 observed	 a	

small	increase	in	diastolic	blood	pressure	(Figure	26Aa)	but	no	changes	in	systolic	and	

mean	 blood	 pressure	 and	 heart	 rate	 (Figure	 26Ab-d).	 Gravimetric	 assessment	 of	

hypertrophy	revealed	a	significant	 increase	 in	 lung	weight,	 right	ventricular,	 right	and	

left	atrial	mass	in	failing	SHR,	as	shown	in	Figure	26Bb-e.	
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Figure	26.	Cardiovascular	characteristics	of	SHR-NF	and	SHR-HF	

A:	 Blood	 pressure	 parameters:	 a-diastolic	 blood	 pressure,	 b-systolic	 blood	 pressure,	 c-mean	

blood	pressure,	d-heart	rate.	N=number	of	animals:	SHR-NF:	N=16,	SHR-HF:	N=21.	

B:	Gravimetric	parameters	normalized	 to	 tibia	 length	(TL):	a-left	ventricular	weight	 (LVW),	b-

right	ventricular	weight	(RVW),	c-left	atrial	weight	(LAW),	d-right	atrial	weight	(RAW),	e-lung	

weight	(LW).	SHR-NF:	N=6,	SHR-HF	N=12.	*p<0.05,	**p<0.01,	Student’s	unpaired	t-test.		

	

	

Taken	together,	these	data	indicate	that	old	SHR	developed	the	whole	heart	hypertrophy	

and	some	of	them	signs	of	heart	failure	between	15	and	23	months	of	age.	Furthermore,	

right	and	left	atrial	hypertrophy,	as	well	as	right	ventricular	hypertrophy	accompanied	

transition	from	compensated	left	ventricular	hypertrophy	to	heart	failure.	

5.2.2. Contractility	measurements	

The	next	aim	was	to	characterize	contractility	of	atrial	myocytes	from	WKY,	non-failing	

SHR	(SHR-NF)	and	failing	rats	(SHR-HF).	Data	are	given	in	Figure	27.	

Original	 contractility	 traces	 of	 atrial	 myocytes	 from	 WKY,	 SHR-NF	 and	 SHR-HF,	 are	

presented	in	Figure	27A.	Figure	27B	compares	contractile	properties	of	WKY	and	SHR.	

Diastolic	 sarcomere	 length	 was	 almost	 equal	 in	 WKY	 and	 SHR	 (Figure	 27Ba).	 SHR	

exhibited	a	significant	decrease	in	fractional	shortening:	8.9±0.5%	in	WKY	vs.	5.8±0.5%	
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in	 SHR,	 as	 can	 be	 seen	 from	 Figure	 27Bb.	 Kinetic	 parameters	 of	 contraction	 were	

unchanged	in	atrial	myocytes	from	SHR	(Figure	27Bc-e).		

Figure	27C	illustrates	comparison	of	contractile	parameters	between	SHR-NF	and	SHR-

HF.	During	the	transition	from	compensated	left	ventricular	hypertrophy	to	heart	failure	

diastolic	 sarcomere	 length	 remained	 unchanged	 (Figure	 27Ca).	 Interestingly,	 we	

observed	 a	 significant	 reduction	 of	 fractional	 shortening:	 7.4±1%	 in	 SHR-NF	 and	

5.1±0.6%	 in	 SHR-HF,	 as	 shown	 in	 Figure	 27Cb.	 None	 of	 the	 kinetic	 parameters	 were	

significantly	different	between	SHR-NF	and	SHR-HF	(Figure	27Cc-e).		

	

Figure	27	Sarcomere	length	(SL)	shortening	in	atrial	myocytes	from	WKY,	SHR-NF	

and	SHR-HF	

A:	 Original	 SL	 shortening	 traces	 of	 electrically	 stimulated	 atrial	myocytes	 from	WKY,	 SHR-NF	

and	 SHR-HF.	 B	 (a-e):	 Average	 values	 of	 SL	 parameters	 in	 atrial	 myocytes	 from	 WKY	

(n/N=101/16)	and	SHR	(n/N=50/16);	a-diastolic	SL,	b-fractional	shortening	(FS),	c-time	to	peak	

(90%),	d-time	 to	 50%	 of	 relaxation,	 e-time	 to	 90%	 of	 relaxation.	C	 (a-e):	 Comparison	 of	 the	

same	SL	shortening	parameters	between	SHR-NF	(n/N=16/5)	and	SHR-HF	(n/N=34/11).		

*	p<0.05,	Student’s	unpaired	t-test.	
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Thus,	 atrial	 myocytes	 from	 SHR	 displayed	 a	 significant	 reduction	 in	 contractility	

compared	to	WKY.	During	the	transition	from	compensated	left	ventricular	hypertrophy	

to	heart	failure	there	was	a	further	reduction	in	the	contractile	function.	

We	also	 compared	 contractile	properties	of	 left	 and	 right	 atrial	myocytes	 in	WKY	and	

SHR	 to	 take	 into	 consideration	 possible	 differences	 between	 left	 and	 right	 atrial	

myocytes.	 Data	 are	 presented	 in	 Figure	 28.	 Left	 and	 right	 atrial	myocytes	 from	WKY	

revealed	 very	 similar	 values	 for	 all	 of	 the	 contractile	 parameters	 analyzed,	 as	 evident	

from	 Figure	 28Aa-e.	 When	 we	 performed	 comparison	 between	 left	 and	 right	 atrial	

myocytes	 in	 SHR,	 similar	 diastolic	 sarcomere	 length	 and	 fractional	 shortening	 were	

observed	 (Figure	 28Ba	 and	 b,	 respectively).	 Interestingly,	 we	 found	 a	 significant	

reduction	 in	 time	 to	peak	90%	(Figure	28Bc)	and	relaxation	 time	50%	(Figure	28Bd),	

suggesting	 faster	kinetic	of	 contraction	and	 relaxation	 in	 right	atrial	myocytes	 in	SHR.	

Relaxation	time	90%	was,	however,	not	significantly	different	(Figure	28Be).		



	 	 Results	
	

	 85	

	

	

Figure	 28.	 Comparison	 of	 left	 and	 right	 atrial	 myocyte	 contractility	 in	 15-23	

months	old	WKY	and	SHR		

A:	Analyzed	contractility	parameters	of	WKY	left	(LA)	and	right	(RA)	atrial	myocytes:	a-diastolic	

sarcomere	 length,	b-fractional	 shortening,	 c-time	 to	 peak	 90%,	d-time	 to	 baseline	 (relaxation	

time)	50%,	e-time	to	baseline	(relaxation	time)	90%.	B:	(a-e)	same	contractility	parameters	for	

SHR	 left	 (LA)	 and	 right	 (RA)	 atrial	 myocytes.	 n/N=number	 of	 cells/number	 of	 animals:	WKY	

rats:	48/11	and	52/13	for	left	and	right	atrial	myocytes,	respectively.	SHR:	22/8	and	28/11	for	

left	and	right	atrial	myocytes,	respectively.	*	p<0.05,	Student’s	unpaired	t-test	

	

	

Figure	 29	 presents	 comparison	 of	 contractility	 between	 left	 and	 right	 atrial	myocytes	

from	SHR-NF	(A)	and	SHR-HF	(B).	Left	and	right	atrial	myocytes	from	SHR-NF	exhibited	

similar	 diastolic	 sarcomere	 length	 (Figure	 29Aa).	 Fractional	 shortening	 was	 also	 not	

significantly	 different	 between	 left	 and	 right	 atrial	 myocytes	 (Figure	 29	 Ab).	 Kinetic	

parameters	 of	 left	 and	 right	 atrial	 myocytes	 were	 not	 markedly	 different	 (Figure	 29	

Ace).	

Diastolic	sarcomere	length	of	left	and	right	atrial	myocytes	from	failing	SHR	was	almost	

equal,	 as	 can	 be	 estimated	 from	 Figure	 29Ba.	 Fractional	 shortening	 and	 kinetic	

parameters	 of	 contraction	were	 also	 not	 significantly	 different	 between	 left	 and	 right	

atrial	myocytes	(Figure	29Bb-e).		
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Figure	29.	Comparison	of	left	and	right	atrial	myocyte	contractility	in	SHR-NF	and	

SHR-HF	

A:	Analyzed	contractility	parameters	for	left	(LA)	and	right	(RA)	atrial	myocytes	from	SHR-NF:	

a-diastolic	 sarcomere	 length,	b-fractional	 shortening,	 c-time	 to	 peak	 90%,	d-time	 to	 baseline	

(relaxation	 time)	 50%,	 e-time	 to	 baseline	 (relaxation	 time)	 90%.	 B:	 (a-e)	 same	 contractility	

parameters	for	left	(LA)	and	right	(RA)	atrial	myocytes	from	SHR-HF	(HF).	n/N=number	of	cells	

from	 left	 (LA)	or	 right	 (RA)	 atrium/number	of	 animals:	 SHR-NF:	7/3	 (LA)	 and	10/3	 (RA);	 for	

SHR-heart	failure:	15/5	(LA)	and	18/6	(RA).	Data	were	analyzed	by	Student’s	unpaired	t-test	

	

	

Thus,	 there	were	no	 significant	 differences	 in	 the	 contractile	 parameters	 between	 left	

and	right	atrial	myocytes	in	WKY	or	SHR.		

We	were	also	 interested	 in	 the	contractility	of	ventricular	myocytes.	Data	are	given	 in	

Figure	30.	Representative	 contractility	 traces	of	ventricular	myocytes	 from	WKY,	non-

failing	and	failing	SHR	are	presented	in	panel	A.	Comparison	between	WKY	and	SHR	is	

illustrated	in	panel	B.	Diastolic	sarcomere	length	and	fractional	shortening	of	ventricular	

myocytes	were	very	similar	between	old	WKY	(11.6±0.5%)	and	SHR	(12.2±0.4%),	as	can	

be	seen	in	Figure	30Ba	and	b.	Kinetics	of	contraction	were	also	unaffected	in	ventricular	

myocytes	from	SHR,	as	can	be	seen	from	Figure	30B(c-e).		
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Figure	 30C	 illustrates	 comparison	 of	 the	 contractile	 parameters	 between	 ventricular	

myocytes	from	non-failing	and	failing	SHR.	During	the	transition	from	compensated	left	

ventricular	 hypertrophy	 to	 heart	 failure	 ventricular	 myocytes	 from	 non-failing	 and	

failing	 SHR	 exhibited	 similar	 diastolic	 sarcomere	 length	 (Figure	 30Ca).	 Fractional	

shortening	was	also	unaffected:	12.4±0.1%	in	SHR-NF	vs.	12.1±0.5%	in	SHR-HF,	as	can	

be	 estimated	 from	 Figure	 30Cb.	 Time	 to	 peak	 90%	 was	 not	 significantly	 different	

between	SHR-NF	and	SHR-HF	(Figure	30Cc).	However,	ventricular	myocytes	from	failing	

SHR	exhibited	slight	but	significant	prolongation	of	the	relaxation	time	50%	(0.32±0.01	

s	in	SHR-NF	vs.	0.37±0.01	s	in	SHR-HF)	and	90%	(0.39±0.02	s	in	SHR-NF	vs.	0.43±0.01	s	

in	SHR-HF),	as	evident	from	Figure	30Cd	and	e,	respectively.		
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Figure	30.	Sarcomere	length	(SL)	shortening	in	ventricular	myocytes	from	WKY,	

SHR-NF	and	SHR-HF	

A:		Original	SL	shortening	traces	of	electrically	stimulated	ventricular	myocytes	from	WKY,	SHR-

NF	 and	 SHR-HF	 B:	 Average	 values	 of	 SL	 parameters	 in	 ventricular	 myocytes	 from	 WKY	

(n/N=71/12)	and	SHR	(n/N=87/15);	 from	left	 to	right:	diastolic	SL,	 fractional	shortening	(FS),	

time-to-peak	 (90%)	 shortening,	 and	 time	 to	 50%	 and	 90%,	 respectively,	 of	 relaxation.	 C:	

Comparison	of	 the	 same	SL	 shortening	parameters	between	SHR-NF	 (n/N=20/4)	 and	 SHR-HF	

(n/N=63/11).	*	p<0.05,	Student’s	unpaired	t-test.	

	

	

	

To	 conclude,	 atrial	 myocytes	 from	 old	 SHR	 exhibited	 significant	 reduction	 in	

contractility	when	compared	to	WKY	and	further	impairment	in	the	contractile	function	

during	 the	 transition	 to	 heart	 failure.	 In	 contrast	 to	 these	 observations,	 contractile	

function	 of	 ventricular	 myocytes	 from	 SHR	 was	 not	 affected.	 Moreover,	 during	 the	

transition	from	compensated	left	ventricular	hypertrophy	to	heart	failure	the	fractional	
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shortening	of	ventricular	myocytes	remained	unchanged,	 indicating	 that	atria	undergo	

specific	remodelling	of	the	contractile	function.	

	

5.2.3. Intracellular	Na+	measurements	

Measurements	 of	 [Na+]i	 in	 atrial	 myocytes	 from	 old	 WKY	 and	 SHR	 are	 presented	 in	

Figure	 31.	 Figure	 31A	 shows	 a	 recording	 from	 an	 SHR-HF	 left	 atrial	 myocyte	 and	

calibration	of	 the	 fluorescent	signal	(a).	Panel	b	presents	the	calibration	curve	derived	

from	the	recording	in	panel	a.	Figure	31B,	left	panel,	compares	[Na+]i	between	old	WKY	

and	SHR	at	1	Hz	stimulation	and	at	 the	resting	conditions	(Figure	31C,	 left	panel).	We	

observed	 a	 significant	 reduction	 in	 [Na+]i	 in	 atrial	 myocytes	 from	 SHR	 at	 1	 Hz	

stimulation	(13.5±1.2	mM	in	WKY	vs.	10.7±0.7	mM	in	SHR)	and	at	the	resting	conditions	

(10.0±0.7	mM	in	WKY	vs.	8.0±0.6	mM	in	SHR).	

During	the	transition	from	compensated	left	ventricular	hypertrophy	to	heart	failure,	no	

further	 changes	 in	 [Na+]i	 were	 found	 (Figure	 31B	 and	 C,	 right	 panels).	 Stimulation-

dependent	 change	 in	 [Na+]i	 was	 not	 significantly	 different	 between	 WKY	 and	 SHR	

(Figure	31D,	left	panel),	as	well	as	between	non-failing	and	failing	animals	(Figure	31D,	

right	panel).	
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Figure	31.	[Na+] i	in	atrial	myocyes	from	WKY,	SHR-NF	and	SHR-HF	

Recording	(Aa)	and	calibration	of	SBFI	 fluorescence	 in	an	SHR-HF	 left	atrial	myocyte.	Cell	was	

stimulated	at	1	Hz.	 Stimulation	was	 switched	off	 and	Na+-	 and	Ca2+-free	 (0Na+/0Ca2+)	 solution	

was	applied,	before	exposure	 to	calibration	solutions	containing	gramicidin	and	ouabain.	 (Ab)	

SBFI	 calibration	 curve	 derived	 from	 recording	 in	 (Aa).	 Average	 values	 of	 [Na+]i	 at	 1	 Hz	

stimulation	(B)	and	under	resting	conditions	(C).	D:	delta	[Na+]i	([Na+]i	at	1Hz	−	resting	[Na+]i).	

For	comparison	between	WKY	and	SHR:	n/N=29/15,	n/N=31/17,	respectively	(presented	in	left	

panels).	For	comparison	between	SHR-NF:	n/N=12/6	and	SHR-HF:	n/N=19/11	(shown	in	right	

panels).	*p<0.05,	Student’s	unpaired	t-test.	

	

	

[Na+]i	did	not	differ	between	left	and	right	atrial	myocytes	neither	in	WKY	nor	in	SHR,	as	

shown	 in	 Figure	 32A	 and	B,	 respectively.	 Comparison	 of	 [Na+]i	 between	 left	 and	 right	

atrial	myocytes	from	non-failing	SHR	revealed	no	significant	changes	(Figure	32C).	Left	

and	 right	 atrial	 myocytes	 from	 failing	 SHR	 also	 exhibited	 similar	 [Na+]i,	 as	 shown	 in	

Figure	32D.	
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Figure	32.	 Comparison	of	 intracellular	Na+	 concentration	between	 left	 and	 right	

atrial	myocytes	in	WKY,	SHR-NF	and	SHR-HF	rats	

A:	Average	[Na+]i	in	left	(LA)	and	right	(RA)	atrial	myocytes	in	WKY	rats	under	1	Hz	stimulation	

(1Hz)	and	resting	conditions	(rest).	B:	Average	[Na+]i	in	left	(LA)	and	right	(RA)	atrial	myocytes	

in	SHR	rats	under	1	Hz	stimulation	(1Hz)	and	resting	conditions	(rest).	C:	Average	[Na+]i	in	left	

(LA)	 and	 right	 (RA)	 atrial	myocytes	 in	 SHR-NF	 rats	 under	1	Hz	 stimulation	 (1Hz)	 and	 resting	

conditions	 (rest).	D:	 Average	 [Na+]i	 in	 left	 (LA)	 and	 right	 (RA)	 atrial	myocytes	 in	 SHR-HF	 rats	

under	 1	Hz	 stimulation	 (1Hz)	 and	 resting	 conditions	 (rest).	 	 n/N=number	 of	 cells/number	 of	

animals:	WKY	rats:	22/12	and	7/5	for	left	and	right	atrial	myocytes,	respectively.	SHR	rats:	13/6	

and	18/12	for	left	and	right	atrial	myocytes,	respectively.	SHR-NF:	7/3	and	5/3	for	left	and	right	

atrial	 myocytes,	 respectively.	 SHR-HF:	 6/3	 and	 13/9	 for	 left	 and	 right	 atrial	 myocytes,	

respectively.	Data	were	analyzed	by	Student’s	unpaired	t-test.	

	

	

Thus,	SHR	atrial	myocytes	exhibited	a	significant	decrease	in	[Na+]i	compared	to	WKY.		

Previous	studies	indicate	elevated	[Na+]i	in	ventricular	myocytes	in	human	heart	failure	

and	 various	 animal	 models	 of	 heart	 failure	 (Despa	 &	 Bers	 2013).	 Thus,	 we	 also	

performed	measurements	of	[Na+]i	 in	ventricular	myocytes	from	old	SHR	and	WKY.	As	

can	be	seen	from	Figure	33A	and	B,	left	panels,	no	significant	changes	in	[Na+]i	neither	at	

1	 Hz	 stimulation	 nor	 under	 resting	 conditions	 were	 observed	 between	 the	 two	 rat	

strains.	In	addition	to	that,	comparison	of	ventricular	myocytes	from	SHR-NF	and	SHR-

HF	 also	 did	 not	 reveal	 any	 changes	 in	 [Na+]i	 (Figure	 33A	 and	 B,	 right	 panels).	

Stimulation-dependent	change	in	[Na+]i	was	similar	between	WKY	and	SHR	ventricular	

myocytes	(Figure	33C,	left	panel).	However,	we	observed	a	significant	reduction	in	delta	

[Na+]i	when	ventricular	myocytes	from	SHR-NF	were	compared	to	SHR-HF	(Figure	33C,	

right	panel).	
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Figure	33.	[Na+]i	in	ventricular	myocyes	from	WKY,	SHR-NF	and	SHR-HF	

Average	values	of	[Na+]i	at	1	Hz	stimulation	(A)	and	under	resting	conditions	(B).	C:	delta	[Na+]i	

([Na+]i	at	1Hz	−	resting	[Na+]i).	For	comparison	between	WKY	(n/N=9/8)	and	SHR	(n/N=27/15)	

(left	 panels)	 and	 comparison	 between	 SHR-NF	 (n/N=10/6)	 and	 SHR-HF	 (n/N=17/9)	 (right	

panels),	data	were	analyzed	by	Student’s	unpaired	t-test,	*p<0.05.	

	

Thus,	 the	 Na+	 remodelling	 processes	 in	 the	 atrial	 myocytes	 from	 old	 SHR	 were	 not	

reflected	in	ventricular	myocytes	from	the	same	animals,	suggesting	atria-specific	ionic	

remodelling	in	hypertensive	heart	disease.	

5.2.4. Expression	of	Na+-handling	proteins		

To	 find	 the	 possible	 explanation	 for	 the	 decrease	 in	 [Na+]i	 in	 the	 atria,	we	 performed	

western	blot	analysis	of	key	Na+-handling	proteins.		

In	the	left	atria	expression	of	Na+	channels	and	NCX	was	not	different	between	WKY	and	

SHR,	whereas	NHE	expression	was	significantly	 increased	 in	SHR	(Figure	34a).	During	

the	transition	from	non-failing	stage	to	heart	failure	no	further	changes	in	expression	of	

Na+-influx	proteins	in	the	left	atrium	were	observed	(Figure	34b).		
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Figure	34.	Na+	influx	protein	expression	in	left	atrium	from	WKY,	SHR-NF	and	

SHR-HF	

A,B:	Original	immunoblots	of	pan	Na+-channel,	NCX	and	NHE	in	left	atria	from	WKY,	SHR-NF	and	

SHR-HF.	 (A-a)	 Average	 values	 of	 protein	 expression	 in	 WKY	 (N=17)	 and	 SHR	 (N=14).	 (B-b)	

Same	 values	 for	 SHR-NF	 and	 SHR-HF	 (N=7	 for	 each	 group).	 Expression	 was	 normalized	 to	

GAPDH.	Note	that	GAPDH	is	identical	for	pan	Na+	channel,	NCX	and	NHE,	since	they	were	stained	

on	the	same	membrane.	*	p<0.05,	Student’s	unpaired	t-test.	

	

	

In	the	right	atrium,	Na+	channels	expression	was	not	different	between	WKY	and	SHR.	

NCX	and	NHE	expression	was	significantly	higher	in	SHR	(Figure	35a).	Similarly	to	the	

left	 atrium,	 during	 the	 transition	 to	 heart	 failure	 no	 changes	 in	 the	 expression	 of	Na+	

import	proteins	were	present.	

WKY HF

pan Na+ 

channel

NCX

NHE

GAPDH

250 kDa

100 kDa

100 kDa

35 kDa

WKY NF

250 kDa

100 kDa

100 kDa

35 kDa

Left atrium

A

R
e
la

ti
v
e
 t
o
 C

T
L

(n
o
rm

a
li
z
e
d
 t
o
 G

A
P

D
H

)

0.0

0.5

1.0

1.5

2.0

pan Na+

channel

NCX NHE

*

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
v
e
 t
o
 C

T
L

(n
o
rm

a
li
z
e
d
 t
o
 G

A
P

D
H

)

pan Na+

channel

NCX NHE

WKY
SHR

SHR-NF
SHR-HF

a b

pan Na+ 
channel

NCX

NHE

GAPDH

B



	 	 Results	
	

	 94	

	

Figure	35.	Na+	influx	protein	expression	in	right	atrium	from	WKY,	SHR-NF	and	

SHR-HF	

A,	B:	Original	immunoblots	of	Na+	influx	proteins	in	right	atria	from	WKY,	SHR-NF	and	SHR-HF.	

(a)	Average	values	of	protein	expression	 in	WKY	(N=15)	and	SHR	(N=12-13).	 (b)	Same	values	

for	SHR-NF	(N=6)	and	SHR-HF	(N=6-7).	Expression	was	normalized	to	GAPDH.	Note	that	GAPDH	

is	identical	for	pan	Na+	channel,	NCX	and	NHE,	since	they	were	stained	on	the	same	membrane.	

*	p<0.05,	Student’s	unpaired	t-test	

	

	

Thus,	we	observed	a	significant	increase	in	the	expression	of	some	Na+	influx	proteins	in	

SHR	when	compared	to	WKY.	

Western	 blot	 analysis	 of	 different	 NKA	 subunits	 revealed	 an	 increase	 in	α	 1	 subunit	

expression	in	the	left	atrium,	as	indicated	in	Figure	36a.	Expression	of	the	α	2	and	α	3	

isoforms	was	not	different	between	WKY	and	SHR.	Expression	of	the	β	1	subunit	of	NKA	

and	PLM	were	similar.	The	α	1/PLM	ratio	was	markedly	 increased	 in	SHR,	 suggesting	

higher	NKA	activity	in	SHR	left	atrium,	compared	to	WKY.	
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During	 the	 transition	 from	 compensated	 left	 ventricular	 hypertrophy	 to	 heart	 failure	

(Figure	 36b)	 no	 changes	 in	 the	 expression	 of	 the	 α	 1	 subunit	 was	 found,	 though,	

surprisingly,	α	 2	 subunit	 expression	was	 significantly	 reduced	 in	 failing	 SHR.	α	 3,	β	 1	

subunit	and	PLM	expression	were	not	significantly	changed.	

	

	

Figure	36.	Na+	efflux	protein	expression	in	left	atrium	from	WKY,	SHR-NF	and	SHR-

heart	failure	

A,B:	 Original	 western	 blots	 of	 different	 Na+/K+-ATPase	 subunits	 and	 phospholemman	 in	 left	

atria	from	WKY,	SHR-NF	and	SHR-HF.	(a)	Average	values	of	protein	expression	in	WKY	(N=16)	

and	SHR	(N=14).	(b)	Same	values	for	SHR-NF	and	SHR-HF.	N=7	in	each	group.	GAPDH	served	as	

a	loading	control.	Note	that	GAPDH	is	identical	for	α	1,	α	2	and	β	1,	since	they	were	stained	on	

the	same	membrane	*	p<0.05,	Student’s	unpaired	t-test	
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In	 the	 right	 atrium,	 similar	 changes	 in	 the	expression	of	NKA	subunits	were	observed	

(Figure	 37a).	 Expression	 of	α	 1	 and	α	 2	 subunits	was	 significantly	 increased	 in	 SHR.	

Expression	of	the	α	3	 isoform	and	the	β	1	subunit	was	unaltered.	PLM	expression	was	

slightly	 but	 significantly	 lower,	whereas	 the	α	 1/PLM	 ratio	was	 remarkably	 higher	 in	

SHR,	indicating	a	possible	increase	in	NKA	function	in	atrium	from	old	SHR.	

α	 1	 subunit	 expression	was	 not	 altered	 during	 the	 progression	 of	 the	 disease	 (Figure	

37b),	 however,	 α	 2	 expression	 was	 markedly	 increased	 in	 failing	 SHR.	 No	 further	

changes	 in	 the	 expression	 of	 NKA	 subunits	 or	 PLM	were	 found	 during	 the	 transition	

from	compensated	left	ventricular	hypertrophy	to	heart	failure.	
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Figure	37.	Na+	efflux	protein	expression	in	right	atrium	from	WKY,	SHR-NF	and	

SHR-HF	

A,B:	 Original	western	 blots	 of	 different	Na+/K+-ATPase	 subunits	 and	 phospholemman	 in	 right	

atria	 from	WKY,	 SHR-NF	 and	 SHR-HF.	 (a)	Average	 data	 of	 protein	 expression	 in	WKY	 (N=15)	

and	 SHR	 (N=13).	 (b)	 Same	 values	 for	 SHR-NF	 (N=6)	 and	 SHR-HF	 (N=7).	 GAPDH	 served	 as	 a	

loading	control.	Note	that	GAPDH	is	identical	for	α	1,	α	2	and	β	1,	since	they	were	stained	on	the	

same	membrane.	*	p<0.05,	Student’s	unpaired	t-test.	

	

	

Taken	together,	western	blot	data	 indicate	an	increase	in	the	expression	and,	possibly,	

function	of	NKA	and,	thus,	increased	Na+	efflux.	In	addition,	there	might	be	a	change	in	

the	 expression	 of	 different	 α	 subunits	 in	 atria	 of	 SHR	 during	 the	 transition	 from	

compensated	left	ventricular	hypertrophy	to	heart	failure.	
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To	conclude,	the	following	changes	in	the	atria	of	SHR	at	the	late	stage	of	hypertensive	

heart	disease	were	found:	

• Left	atrial	hypertrophy	

• Decline	in	the	contractile	function	of	atrial	myocytes	

• Decrease	in	[Na+]i	in	atrial	myocytes	

• Increase	in	the	expression	of	NKA.	

• Increase	in	the	expression	of	NHE.	

Transition	from	compensated	left	ventricular	hypertrophy	to	heart	failure	in	the	atria	of	

old	SHR	was	associated	with:	

• Further	increase	in	atrial	hypertrophy	

• Further	reduction	of	the	contractile	function	of	atrial	myocytes	

• Unchanged	[Na+]i	in	atrial	myocytes	

• Transition	in	the	expression	of	different	α	subunits	of	NKA.		
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5.3. Expression	of	Na+-handling	proteins	in	human	atrial	

fibrillation	

Atrial	 fibrillation	is	the	most	common	arrhythmia	in	clinical	practice	and	hypertension	

represents	 the	most	 prevalent	 risk	 factor	 for	 atrial	 fibrillation	 (Andrade	 et	 al.	 2014).	

Body	 of	 evidence	 indicates	 that	 atrial	 remodelling	 causes	 the	 development	 of	 this	

arrhythmic	 disorder	 and	 vice	 versa:	 atrial	 fibrillation	 induces	 atrial	 remodelling	 (“AF	

begets	 AF”)	 (Schotten	 et	 al.	 2011).	 Data	 on	 Na+	 homeostasis	 and	 its	 role	 in	 atrial	

remodelling	are	limited.	Thus,	our	next	aim	was	to	investigate	the	expression	of	major	

Na+-handling	 proteins	 in	 right	 atria	 from	 patients	 with	 sinus	 rhythm	 (SR),	 patients	

suffering	 from	paroxysmal	 (pAF)	and	chronic	atrial	 fibrillation	(cAF).	This	project	was	

done	in	collaboration	with	Prof.	Dr.	med.	Dr.	h.c.	Ursula	Ravens,	Technical	University	of	

Dresden,	who	provided	the	right	atrial	tissue	samples.	

5.3.1. Patient	characteristics	

Patient	groups	characteristics	are	given	in	Table	31.	For	each	group:	sinus	rhythm	(SR),	

paroxysmal	atrial	fibrillation	(pAF)	and	chronic	atrial	fibrillation	(cAF),	6	samples	were	

provided.	All	patients	were	male	with	an	average	age	of	≈70	years.	The	 indication	 for	

cardiac	surgery	for	most	of	the	SR	patients	was	coronary	artery	disease,	whereas	in	case	

of	 AF	 patients	 the	 distribution	 between	 coronary	 artery	 disease	 and	 valvular	 heart	

disease	was	almost	equal.		

Almost	 all	 of	 the	 patients	 were	 hypertensive.	 Symptoms	 of	 heart	 failure	 (NYHA	 III	

classification	 of	 heart	 failure,	 marked	 limitation	 of	 physical	 activity	 (Swedberg	 et	 al.	

2005)	were	present	in	4	patients	of	the	SR	group,	in	none	of	the	pAF	patients	and	in	5	

patients	 with	 cAF.	 Hyperlipidemia	 was	 also	 present	 in	 each	 group:	 in	 2	 of	 the	 SR	

patients,	 in	4	of	 the	pAF	patients	 and	 in	3	of	 the	 cAF	patients.	One	patient	 in	 the	pAF	

group	and	one	in	the	cAF	group	were	suffering	from	diabetes.	

The	majority	 of	 the	 patients	 received	 β-blockers	 and	 ACE	 inhibitors	 or	 AT1	 blockers.	

Fifty	 percent	 of	 pAF	 patients	 and	 one	 of	 the	 cAF	 patients	 also	 received	 Ca2+	 channel	

blockers.	 In	 each	 group	 medication	 also	 included	 diuretics	 and	 statins.	 Two	 patients	

with	cAF	received	digitalis.	
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Table	31.	Patient	characteristics	

	 SR	(6)	 pAF	(6)	 cAF	(6)	

Gender	 male	 male	 male	

Age,	years	(mean±SEM)	 70.2±2.5	 70.0±2.4	 72.3±2	
	

BMI	(mean±SEM)	 25.9±3	 27.9±0.9	 25.3±1	

Bypass	grafting,	n	 5	 3	 2	

Valve	replacement	 1	 1	 2	

Bypass	 grafting	 and	 valve	

replacement	
0	 2	 1	

Surgical	

procedure	

Valve	replacement	and	ASD	 0	 0	 1	

Hypertension,	n	 4	 5	 6	

Diabetes,	n	 0	 1	 1	

Hyperlipidemia,	n	 2	 4	 3	

Pre-existing	

conditions	

NYHA	III	 4	 0	 5	

Digitalis,	n	 0	 0	 2	

ACE	inhibitor,	n	 2	 2	 3	

AT1	blocker,	n	 0	 2	 2	

β-blocker,	n	 3	 5	 5	

Ca2+	channel	blocker,	n	 0	 3	 1	

Diuretic,	n	 1	 3	 2	

Nitrate,	n	 0	 2	 0	

Pre-

medication	

Statin,	n	 2	 4	 2	

	

BMI	 indicates	 body	 mass	 index;	 ASD,	 atrial	 septal	 defect;	 NYHA	 III,	 New	 York	 heart	

association	class	III;	ACE,	angiotensin-converting	enzyme;	AT,	angiotensin	receptor	
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5.3.2. Western	blot	analysis	of	Na+-handling	proteins	

First,	 we	 performed	 western	 blot	 analysis	 of	 Na+	 influx	 proteins.	 Figure	 38	 presents	

expression	of	Na+	channels,	NCX	and	NHE.	Expression	of	Na+	channels	was	almost	equal	

in	pAF	or	cAF,	as	can	be	estimated	from	Figure	38Ba.	Expression	of	NCX,	as	can	be	seen	

from	Figure	38Bb,	was	not	changed	in	pAF,	whereas,	in	line	with	the	previous	study	(El-

Armouche	et	al.	2006),	we	observed	an	increase	in	cAF.	However,	this	increase	did	not	

reach	statistical	significance	(p=0.4).	NHE	expression	was	unchanged	in	pAF	or	cAF,	as	

evident	from	Figure	38Bc.		
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Figure	 38.	 Na+	 influx	 protein	 expression	 in	 right	 atrium	 in	 sinus	 rhythm	 (SR),	

paroxysmal	atrial	fibrillation	(pAF)	and	chronic	atrial	fibrillation	patients	(cAF)	

A:	 Original	 western	 blots	 of	 Na+	 influx	 proteins:	 various	 isoforms	 of	 Na+	 channels	 (pan	 Na+	

channel),	Na+/Ca2+	 exchanger	 (NCX)	and	Na+/H+	 exchanger	 (NHE)	B:	Averaged	data	of	protein	

expression,	 normalized	 to	 GAPDH:	 (a)-pan	 Na+	 channel,	 (b)-NCX,	 (c)-	 NHE,	 normalized	 to	

GAPDH.	Data	were	analyzed	by	one	way	ANOVA	followed	by	Bonferroni’s	multiple	comparison	

test.	

	

	

Thus,	 we	 did	 not	 observe	 major	 changes	 in	 the	 expression	 of	 Na+	 influx	 proteins	 in	

paroxysmal	or	chronic	atrial	fibrillation.	

Next,	we	analyzed	expression	of	different	NKA	subunits	and	PLM,	 in	order	to	estimate	

Na+	efflux.	Data	are	given	in	Figure	39.	α	1	subunit	expression	was	similar	between	SR	

and	 pAF	 or	 cAF,	 as	 can	 be	 seen	 from	 Figure	 39Ba	 and	 b.	 Interestingly,	 we	 found	 a	

marked	but	statistically	insignificant	increase	in	the	expression	of	the	α	3	subunit	in	pAF	
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(Figure	 39Bc),	 whereas	 in	 cAF	 expression	 of	 this	 subunit	 was	 only	 slightly	 higher	 in	

comparison	to	SR.		

We	 observed	 a	 25%	 reduction	 in	 β	 1	 subunit	 expression	 in	 pAF.	 In	 cAF,	β	 1	 subunit	

expression	was	even	more	 reduced:	up	 to	50%,	as	 can	be	seen	 from	Figure	39Bd.	β	1	

subunit	is	responsible	for	the	correct	folding	of	NKA	complexes	and	trafficking	of	these	

complexes	to	the	plasma	membrane	(Hasler	et	al.	1998).	Thus,	the	significant	reduction	

in	 the	β	 1	 subunit	 expression	might	 suggest	disturbed	 transport	of	newly	 synthesized	

NKA	to	the	plasma	membrane	in	atrial	fibrillation.	

Expression	of	PLM	was	not	changed	neither	 in	pAF	nor	 in	cAF	patients	 (Figure	39Be).	

We	 also	 calculated	 the	α	 1/PLM	 expression	 ratio	 to	 estimate	 the	 function	 of	NKA.	 As	

indicated	in	Figure	39Bf,	this	ratio	was	not	different	in	pAF	or	cAF	patients.	
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Figure	 39.	 Na+	 efflux	 protein	 expression	 in	 right	 atrium	 in	 sinus	 rhythm	 (SR),	

paroxysmal	atrial	fibrillation	(pAF)	and	chronic	atrial	fibrillation	patients	(cAF)	

A:	 Original	 western	 blots	 of	 different	 Na+/K+-ATPase	 subunits	 and	 phospholemman.	 B:	

Averaged	data	of	protein	expression,	normalized	to	GAPDH:	(a)-	α	1	subunit,	 (b)	α	2	subunit,	

(c)	α	 3	 subunit,	 (d)	β	 1	 subunit,	 (e)	phospholemman	 (PLM),	 (f)-α	 1	 to	PLM	expression	 ratio.	

Data	were	analyzed	by	one	way	ANOVA	followed	by	Bonferroni’s,	multiple	comparison	test,	#	

p<0.05	cAF	vs.	SR.		
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To	 conclude,	 expression	 of	 different	 catalytic	α	 subunits	was	 not	 affected	 in	 pAF	 and	

cAF,	however,	we	observed	a	noticeable	 reduction	 in	 the	 expression	of	β	 1	 subunit	 in	

cAF,	which	might	suggest	an	impaired	NKA	function	in	atrial	fibrillation.		
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5.4. Effect	of	macitentan	on	blood	pressure,	heart	rate,	Ca2+-	

handling	and	endothelin-1	signalling	proteins	in	left	atria	

of	SHR	

Endothelin-1	 exhibits	 many	 pathological	 effects	 on	 the	 myocardium,	 including	

myocardial	 growth	 and	 fibrosis	 (Kerkelä	 et	 al.	 2011).	 Activation	 of	 the	 endothelin-1	

system	also	causes	 fibrotic	changes	 in	other	organs	and	tissues	(Iglarz	&	Clozel	2010).	

Moreover,	 endothelin-1	 may	 induce	 Ca2+-dependent	 proarrythmogenic	 events	 in	

myocardium	 (Kockskämper,	 Zima,	 et	 al.	 2008).	 Inhibition	of	 endothelin	 receptors	was	

shown	 to	 be	 beneficial	 for	 treatment	 of	 various	 cardiovascular	 diseases	 (Duru	 et	 al.	

2001).	 Previous	 studies	 from	 our	 laboratory	 and	 our	 collaboration	 partners	 revealed	

elevated	 expression	 of	 endothelin-1,	 increased	 endothelin-1	 signalling	 and	 Ca2+-

dependent	proarrythmogenic	events	in	the	atria	of	6-8	months	old	SHR.	Thus,	the	third	

aim	of	the	thesis	was	to	investigate	the	effect	of	endothelin	receptor	blockade	on	blood	

pressure,	 heart	 rate,	 expression	 and	 phosphorylation	 of	 key	 Ca2+-regulating	 proteins	

and	endothelin-1	signalling	in	the	left	atrium	of	the	SHR.	Macitentan,	a	dual	endothelin	A	

and	 endothelin	 B	 receptor	 blocker	 with	 high	 tissue	 targeting	 properties	 (Iglarz	 et	 al.	

2008),	was	used	for	this	purpose.	

Doxazosin	 is	 a	 selective	 alpha-1	 adrenergic	 receptor	 antagonist.	 A	 previous	 study	

revealed	 a	 significant	 reduction	 in	 systolic	 blood	 pressure	 in	 SHR	 after	 4	 weeks	 of	

treatment	 with	 doxazosin	 (Hamada	 et	 al.	 2012).	 As	 was	 shown	 in	 previous	 studies,	

doxazosin	did	not	exert	any	major	effects	on	cardiac	remodelling	(Varagic	et	al.	2001),	

(Asai	 et	 al.	 2005).	 Since	 the	 aim	 of	 this	 study	 was	 to	 test	 the	 effect	 of	 macitentan	

treatment	 on	 atrial	 remodelling,	 doxazosin	 was	 chosen	 as	 a	 control	 drug	 in	 order	 to	

lower	blood	pressure	independent	of	endothelin	receptors.	

This	 project	 was	 done	 in	 collaboration	 with	 Prof.	 Dr.	 Andrease	 Goette	 and	 Dr.	 Alicja	

Bukowska,	Working	Group	of	Molecular	Electrophysiology,	Medical	Faculty,	University	

of	Magdeburg.	

SHR	rats	at	the	age	of	7-9	months	were	subdivided	into	three	groups:	control	group	(23	

rats),	macitentan-treated	group	(18	rats),	doxazosin-treated	group	(18	rats).	Rats	were	

getting	macitentan	 or	 doxazosin	 (30	mg/kg/day)	with	 chow.	The	drug	 treatment	was	

performed	for	8	weeks.	Within	the	7-th	or	8-th	week	of	treatment	rats	were	subjected	to	

blood	 pressure	 and	 heart	 rate	 measurements.	 Afterwards,	 Dr.	 Alicja	 Bukowska	
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performed	gravimetric	assessment	of	hypertrophy	and	collected	atrial	tissue	for	further	

biochemical	analysis.	

5.4.1. Blood	pressure	and	heart	rate	measurements	in	SHR	treated	with	

macitentan	or	doxazosin		

As	can	be	seen	from	Figure	40A,	diastolic	blood	pressure	was	increased	by	macitentan-

treatment,	 whereas	 doxazosin	 did	 not	 influence	 it.	 Macitentan	 administration	 did	 not	

affect	 systolic	 blood	 pressure,	 as	 can	 be	 estimated	 from	 Figure	 40B,	 while	 doxazosin	

significantly	reduced	systolic	blood	pressure	in	SHR.	Interestingly,	macitentan	treatment	

significantly	 increased	mean	 blood	 pressure	 in	 SHR,	whereas	 doxazosin	 did	 not	 show	

any	significant	effect,	as	can	be	estimated	from	Figure	40C.	

Heart	 rate	was	 not	 affected	 by	 doxazosin	 or	macitentan	 treatment,	 as	 can	 be	 seen	 in	

Figure	40D.	

	

	

Figure	40.	Effect	of	macitentan	treatment	on	blood	pressure	and	heart	rate	in	SHR	

A:	 diastolic	 blood	 pressure,	 B:	 systolic	 blood	 pressure,	 C:	mean	 blood	 pressure,	 D:	 heart	 rate.	

N=number	 of	 rats:	 control	 group	 (CTL):	 N=23,	 doxazosin-treated	 group	 (DOX):	 N=18,	

macitentan-treated	 group	 (MAC):	 N=18.	 Data	 were	 analyzed	 by	 one-way	 ANOVA	 followed	 by	

Dunnett’s	test,	*p<0.05	MAC	vs.	CTL,	#p<0.05	DOX	vs.	CTL.	
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5.4.2. Effects	of	macitentan	or	doxazosin	treatment	on	the	expression	and	

phosphorylation	of	Ca2+-handling	proteins	in	left	atrium	of	SHR	

The	next	step	in	this	project	was	to	characterize	the	expression	and	phosphorylation	of	

major	 Ca2+-regulating	 proteins	 and	proteins	 involved	 in	 endothelin-1	 signalling	 in	 left	

atria	of	SHR.	

First,	 we	 analyzed	 the	 expression	 of	 the	 α1C	 subunit	 of	 L-type	 Ca2+channels,	 the	

ryanodine	receptor	(RyR)	and	the	Na+/Ca2+	exchanger	(NCX).	RyR	is	phosphorylated	by	

protein	 kinase	 A	 (PKA)	 at	 serine	 2808	 and	 by	 Ca2+/Calmodulin-dependent	 kinase	 II	

(CaMKII)	 at	 serine	 2814.	 The	 phosphorylation	 of	 RyR	 results	 in	 an	 increase	 in	 Ca2+	

release	out	of	the	sarcoplasmic	reticulum	(Huke	&	Bers	2008).	

Figure	 41	 presents	 original	 western	 blots	 (A)	 and	 averaged	 data	 (B)	 of	 protein	

expression	 in	 left	 atrium	of	 SHR.	 Expression	 of	α1C	was	 unchanged	by	macitentan	 or	

doxazosin	 treatment	 (Figure	 41Ba).	 NCX	 expression	 was	 also	 unaffected	 by	 drug	

treatment,	 as	 can	 be	 seen	 in	 Figure	 2Bb.	 RyR	 expression	 (Figure	 41Bc)	 and	

phosphorylation	of	RyR	at	serine	2808	by	PKA	(Figure	41Bd)	was	unaffected	by	either	

drug	treatments,	as	shown	in	Figure	2Bd.	Interestingly,	we	observed	an	approximately	

50%	 increase	 in	 the	phosphorylation	of	RyR	by	CaMKII	 at	 serine	2814	 in	macitentan-

treated	 SHR.	 Doxazosin	 treatment	 revealed	 a	 similar	 effect	 on	 the	 phosphorylation	 at	

serine	2814	(Figure	41Be).	However,	these	changes	were	not	statistically	significant.			

Overall,	neither	macitentan	nor	doxazosin	affected	the	expression	of	the	α	1C	subunit	of	

L-type	 Ca2+channels	 and	 NCX.	 Phosphorylation	 and	 expression	 of	 RyR	 was	 also	

unaffected	 by	 both	 drugs,	 although	 with	 a	 tendency	 towards	 an	 increase	 in	

phosphorylation	by	CaMKII.	
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Figure	41.	Effects	of	macitentan	or	doxazosin	administration	on	expression	of	α 	

1C	subunit	of	L-type	Ca2+	channels,	Na+/Ca2+	exchanger	and	ryanodine	receptor	in	

left	atrium	of	SHR.	

A:	Original	western	blots	of	α	1C	subunit	of	L-type	Ca2+	channel,	NCX,	ryanodine	receptor	and	

its	phosphorylation	 at	 serine	2808	and	 serine	2814	 in	 left	 atrium	of	 SHR.	B:	Average	data	of	

protein	 expression,	 normalized	 to	 GAPDH.	 Phosphorylation	 of	 RyR	 was	 normalized	 to	 the	

expression	of	total	protein.	a-α1C	subunit	of	L-type	Ca2+	channel	b-Na+/Ca2+	exchanger	(NCX),	

c-ryanodine	 receptor	 (RyR),	 d-phosphorylation	 of	 RyR	 at	 serine	 2808	 (pS2808),	 e-	

phosphorylation	of	RyR	at	serine	2814	(pS2814).	Note	that	GAPDH	for	NCX	and	RyR	is	identical,	

since	 these	 proteins	 were	 stained	 on	 the	 same	 membrane.	 CTL	 =	 control	 group,	 MAC	 =	
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macitentan-	 treated	 group,	 DOX	 =	 doxazosin-treated	 group.	 N=6-9	 samples	 per	 group.	 Data	

were	analyzed	by	one-way	ANOVA	followed	by	Dunnett’s	test.	

	

Next,	 we	 investigated	 the	 expression	 of	 sarcoplasmic	 (SR)	 Ca2+-handling	 proteins:	

sarcoplasmic	 Ca2+-ATPase	 (SERCA),	 its	 regulatory	 protein	 phospholamban	 (PLB)	 and	

calsequestrin	(CSQ).	Phospholamban	is	phosphorylated	by	PKA	at	serine	16,	by	CaMKII	

at	 threonine	 17	 and	 by	 protein	 kinase	 C	 (PKC)	 at	 serine	 10.	 Phosphorylation	 of	

phospholamban	results	in	its	dissociation	from	SERCA	and	an	increase	in	Ca2+	reuptake	

into	the	SR	(Kranias	&	Hajjar	2012). 

SERCA	expression,	as	can	be	estimated	from	Figure	42Ba,	was	unaffected	by	either	drug	

treatment.	 Expression	 of	 PLB	 did	 not	 change	 under	 macitentan,	 whereas	 it	 was	

significantly	 reduced	 in	 doxazosin-treated	 rats	 (Figure	 42Bb).	 For	 the	 estimation	 of	

SERCA	 activity	we	 calculated	 the	 ratio	 SERCA/PLB.	 This	 ratio	was	 almost	 unchanged,	

suggesting	unaltered	SERCA	activity	(Figure	42Bc).	Expression	of	CSQ	was	unaltered	by	

both	 drugs	 (Figure	 42Bd).	 Phosphorylation	 of	 PLB	 at	 serine	 16	 was	 unchanged	 in	

macitentan-treated	 animals	 and	 there	 was	 a	 tendency	 towards	 an	 increase	 in	 its	

phosphorylation	 in	 doxazosin-treated	 rats	 (Figure	 42Be).	 Phosphorylation	 of	 PLB	 by	

CaMKII	 at	 threonine	 17	 was	 not	 changed	 by	 either	 treatment	 (Figure	 42Bf).	

Phosphorylation	of	PLB	by	PKC	at	serine	10	was	also	unaffected	by	either	macitentan	or	

doxazosin	 administration,	 as	 can	 be	 seen	 from	 Figure	 42Bg.	 Thus,	 we	 observed	 a	

significant	 reduction	 in	 PLB	 expression	 by	 doxazosin	 treatment,	 however,	 no	 further	

changes	in	the	expression	or	phosphorylation	of	SR	Ca2+-handling	proteins	was	found	by	

either	macitentan	or	doxazosin	treatment.	

In	summary,	the	expression	and	phosphorylation	of	major	Ca2+-handling	proteins	was	

overall	unaffected	by	macitentan	treatment.
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Figure	42.	Effects	of	macitentan	or	doxazosin	treatment	on	the	expression	and	

phosphorylation	of	SR	Ca2+-handling	proteins.	

A:	Original	western	blots	of	SR	Ca2+-ATPase	(SERCA),	phospholamban	(PLB),	its	phosphorylated	

forms	 and	 calsequestrin	 (CSQ)	 in	 left	 atrium	of	 SHR.	B:	 Averaged	data	 of	 protein	 expression,	

normalized	 to	 GAPDH	 or	 actin.	 Phosphorylation	 of	 PLB	was	 normalized	 to	 the	 expression	 of	

total	protein.	a-	SR	Ca2+-ATPase	(SERCA),	b-phospholamban	(PLB),	c-	ratio	of	SERCA	expression	

to	PLB	expression,	d-calsequestrin	(CSQ),	e-phosphorylation	of	PLB	by	PKA	at	serine	16	(pS16),	

f-phosphorylation	of	PLB	by	CaMKII	at	threonine	17	(pT17),	g-phosphorylation	of	PLB	by	PKC	

at	serine	10	(pS10).	CTL	=	control	group,	MAC	=	macitentan-treated	group,	DOX	=	doxazosin-

treated	group.	N=6-9	samples	per	group.	Data	were	analyzed	by	one-way	ANOVA	followed	by	

Dunnett’s	test,	#p<0.05	DOX	vs.	CTL.	
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5.4.3. Effects	of	macitentan	or	doxazosin	treatment	on	the	expression	of	

proteins	involved	in	endothelin-1	signalling	

Next,	 we	 investigated	 the	 expression	 of	 major	 proteins	 involved	 in	 endothelin-1	

signalling.	 Endothelin-1	 binds	 to	 the	 endothelin	 A	 receptor	 (ETAR),	 abundantly	

expressed	 in	 the	 atrial	 myocardium	 (Thibault	 et	 al.	 1994).	 The	 ETAR	 belongs	 to	 the	

family	 of	 Gq-coupled	 receptors.	 Activation	 of	 the	 ETAR	 causes	 activation	 of	

phospholipase	C	β	(PLC	β).	This	enzyme	catalyzes	the	hydrolysis	of	phosphatidylinositol	

bisphosphate	 (PIP2),	 producing	 inositol	 trisphosphate	 (IP3).	 IP3	 binds	 to	 the	 inositol	

trisphosphate	 receptor	 (IP3R)	 in	 the	 sarcoplasmic	 reticulum,	 producing	 Ca2+	 release	

from	the	SR	(Drawnel	et	al.	2013),	(Kockskämper,	Zima,	et	al.	2008).	

Thus,	we	 investigated	 the	 expression	 of	 the	 ETAR,	 different	 isoforms	 of	 PLCβ	 and	 the	

IP3R.	 In	 addition	 to	 that	 we	 checked	 for	 the	 expression	 of	 the	 alpha	 1	 adrenergic	

receptor	 (α1AR).	 Since	 endothelin-1	 signalling	 alters	 Ca2+	 handling,	 we	 investigated	

expression	of	CaMKII	and	its	phosphorylation	status.	

Macitentan	 treatment	 increased	 the	 expression	 of	 the	 ETAR	 receptor,	 however,	 this	

increase	 did	 not	 reach	 statistical	 significance	 (Figure	 43Ba,	 p=0.14).	 Doxazosin	

application	did	not	affect	ETAR	expression	(Figure	43Ba).		

Doxazosin	 treatment	 significantly	 reduced	 expression	 of	 the	 α1AR	 in	 SHR,	 while	

macitentan	administration	exhibited	a	slight	but	insignificant	reduction	it	its	expression,	

as	indicated	in	Figure	43Bb.		

There	are	two	major	isoforms	of	phospholipase	Cβ	expressed	in	the	myocardium:	PLCβ	

1	 and	 PLCβ	 3	 (Filtz	 et	 al.	 2009).	 As	 can	 be	 estimated	 from	 Figure	 43Bc	 and	 d,	 the	

expression	of	these	enzymes	was	not	affected	by	macitentan	or	doxazosin	treatment.		

Next,	 we	 investigated	 expression	 of	 the	 IP3R	 receptor.	 Macitentan	 or	 doxazosin	

treatment	did	not	induce	any	significant	changes	in	the	expression	of	the	IP3R	receptor,	

as	can	be	estimated	from	Figure	43Be.	
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Figure	 43.	 Effects	 of	 macitentan	 or	 doxazosin	 treatment	 on	 the	 expression	 of	

proteins	involved	in	endothelin-1	signalling.	

A:	Original	western	blots	of	(a):	endothelin-A	receptor	(ETAR),	α1	adrenergic	receptor	(α1AR),	

phospholipase	Cβ1	(PLC	β1),	phospholipase	Cβ3	(PLC	β3).	Note	that	GAPDH	is	 identical	for	α1	

AR	 and	 PLC	β	 3	 (panel	 A),	 as	 it	 was	 from	 the	 same	 blot.	 (b):	 inositol	 trisphosphate	 receptor	

(IP3R),	Ca2+/Calmodulin-dependent	kinase	 IIδ	 (CaMKIIδ),	 its	phosphorylated	 form	at	 threonine	

286	(pT286).	 )	Note	that	GAPDH	is	 identical	 for	PLC	β1	and	IP3R	(panel	B),	as	 it	was	 from	the	

same	blot.	B	 (a-g):	 Averaged	data	 of	 protein	 expression,	 normalized	 to	GAPDH.	Expression	of	

phosphorylated	CaMKII	was	normalized	to	the	expression	of	total	protein.	CTL	=	control	group,	

MAC	 =	 macitentan-treated	 group,	 DOX	 =	 doxazosin-treated	 group.	 N=7-9	 samples	 per	 group.	

Data	were	 analyzed	 by	 one-way	ANOVA	 followed	 by	Dunnett’s	 test.	 *p<0.05	MAC	 vs.	 CTL,	 ##	

p<0.05	DOX	vs.	CTL.	
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There	 are	 different	 isoforms	 of	 CaMKII	 expressed	 in	 the	 body.	 CaMKIIδ	 is	 the	 major	

cardiac	isoform	(Anderson	et	al.	2011).	We	observed	a	marked	and	significant	decrease	

in	 the	 expression	 of	 CaMKIIδ	 by	 macitentan	 treatment.	 The	 reduction	 of	 CaMKIIδ	

expression	under	doxazosin	treatment	was	even	more	pronounced,	as	can	be	estimated	

from	Figure	43Bf.		

The	 activity	 of	 CaMKIIδ	 is	 regulated	 by	 its	 autophosphorylation	 at	 threonine	 286.		

Macitentan	treatment	did	not	alter	phosphorylation	of	this	enzyme,	whereas	doxazosin	

treatment	 induced	 an	 increase	 in	 the	 phosphorylation,	 which	 was,	 however,	 not	

significant	 (Figure	 43Bg).	 Thus,	 despite	 the	 changes	 in	 total	 CaMKIIδ	 expression,	 its	

phosphorylation	status	was	not	significantly	changed.		

To	conclude,	macitentan	treatment	significantly	reduced	expression	of	CaMKIIδ,	though	

we	have	not	observed	any	changes	in	two	of	its	phosphorylation	targets	(RyR	and	PLB).	

The	endothelin-1	signalling	pathway	(ETAR-PLCβ-IP3R)	was	not	affected	by	macitentan	

treatment.	

Taken	together,	the	presented	results	indicate	that	macitentan	treatment	overall	did	not	

induce	 any	 major	 changes	 in	 expression	 of	 Ca2+-handling	 or	 endothelin-1	 signalling	

proteins	in	atria	of	SHR.	
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6. Discussion	

The	aim	of	the	first	part	of	this	thesis	was	to	find	out,	if	SHR,	as	a	model	of	hypertensive	

heart	disease,	exhibit	signs	of	atrial	 ionic	(in	terms	of	Na+	handling)	and	functional	(in	

terms	 of	 contractility)	 remodelling	 in	 either	 early	 hypertension	 (3	 and	 7	months	 old	

rats)	or	in	advanced	hypertensive	heart	disease	(in	15-23	months	old	rats),	when	heart	

failure	develops.	

In	 early	 hypertension	 no	 marked	 changes	 in	 Na+	 homeostasis	 and	 contractility	 were	

present,	 whereas	 in	 advanced	 hypertensive	 heart	 disease	 Na+	 homeostasis	 and	

contractility	of	atrial	myocytes	were	impaired,	indicating	development	of	atrial	ionic	and	

functional	 remodelling,	 associated	 with	 progression	 of	 advanced	 hypertensive	 heart	

disease.	

6.1. 	Cardiovascular	changes,	unaffected	contractility	and	

unchanged	[Na+] i	in	early	hypertension		

6.1.1. Cardiovascular	changes	in	early	hypertension	

The	collected	data	on	blood	pressure	and	gravimetric	parameters	confirmed	early	onset	

of	hypertension.	Hypertension	caused	left	ventricular	hypertrophy	already	in	3	months	

old	SHR	and	 later	on,	 in	7	months	old	SHR,	 left	ventricular	hypertrophy	became	more	

prominent,	 in	 line	with	previous	observations	 (Pfeffer	et	al.	1979),	 (Chan	et	al.	2011).	

The	right	ventricular	weight	was	unaffected	in	SHR,	in	accordance	with	a	previous	study	

(Chan	et	al.	2011),	indicating	isolated	left	ventricular	hypertrophy	in	early	hypertension.	

In	 early	 hypertension	 no	 signs	 of	 atrial	 enlargement	were	 observed.	 On	 the	 contrary,	

SHR	exhibited	bi-atrial	 hypotrophy	but	unchanged	atrial	myocyte	 size	 (Pluteanu	et	 al.	

2015).	However,	the	reason	for	atrial	hypotrophy	remains	unknown.	

At	the	tissue	level,	3	months	old	SHR	exhibited	higher	mRNA	expression	of	pro-fibrotic	

markers	 (collagen	1a	and	13,	CTGF)	 in	 the	 left	 atrium,	 as	was	 shown	by	our	previous	

study	(Pluteanu	et	al.	2015).	At	 the	age	of	7	months,	expression	of	 these	markers	was	

even	more	prominent,	moreover,	the	histological	assessment	revealed	increased	degree	

of	 fibrosis	 in	 left	atria	of	SHR,	 indicating	an	early	onset	of	 fibrotic	changes.	A	previous	
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study	 by	 Choisy	 et	 al.	 also	 revealed	 increased	 fibrosis	 in	 the	 left	 atrium	 at	 around	 3	

months	 of	 age	 and	 these	 changes	 were	 even	 more	 prominent	 at	 11	 months	 of	 age	

(Choisy	 et	 al.	 2007).	 As	 discussed	 previously,	 fibrosis	 impairs	 atrial	 contractility	

(Casaclang-Verzosa	et	al.	2008).	A	study	of	Dodd	et	al.,	for	instance,	revealed	a	decrease	

in	atrial	filling	of	left	ventricle	in	vivo	in	SHR	at	the	age	of	15	weeks,	indicating	a	possible	

impairment	 of	 atrial	 pumping	 function	 (Dodd	 et	 al.	 2012).	 Another	 study	 found	 an	

increased	left	atrial	pressure	in	4-5	months	old	SHR	(Noresson	et	al.	1979).	The	increase	

in	pressure	might	cause	the	mechanical	stress	on	the	atrial	walls,	 inducing	the	 fibrotic	

changes	(Díez	2007),	(Casaclang-Verzosa	et	al.	2008).	

Taken	 together,	 in	 early	 hypertension	 SHR	 developed	 progressive	 left	 ventricular	

hypertrophy	but	no	signs	of	atrial	hypertrophy.	However,	atrial	 fibrosis	was	markedly	

present	in	SHR,	implying	the	presence	of	a	pro-arrhythmogenic	substrate	in	the	atria	of	

SHR	in	early	hypertensive	heart	disease.	

6.1.2. Unaffected	contractility	of	atrial	myocytes	in	early	hypertension	

Despite	 some	 signs	 of	 atrial	 structural	 remodelling,	 our	 findings	 did	 not	 reveal	 any	

changes	 in	 contractility	 of	 atrial	 myocytes	 in	 7	 months	 old	 SHR.	 Diastolic	 sarcomere	

length,	fractional	shortening	(≈12%	in	WKY	vs.	≈11%	in	SHR)	and	kinetic	parameters	of	

contraction	were	similar	between	WKY	and	SHR.	In	addition	to	that,	no	changes	in	the	

contractility	between	left	and	right	atrial	myocytes	were	found.	

Contractility	 of	 isolated	 cardiac	myocytes	 could	 be	 affected	 by	 several	 factors,	 among	

them:	 Ca2+	 and	 Na+	 handling,	 cytoplasmic	 pH	 and	 phosphorylation	 status	 of	

myofilaments	(Bers	2002),	(Bers	&	Despa	2009),	(Orchard	&	Kentish	1990),	(Bountra	&	

Vaughan-Jones	1989),	(Solaro	&	Rarick	1998)	

Our	previous	study	(Pluteanu	et	al.	2015)	revealed	that	global	Ca2+	transients	(which	are	

mostly	 responsible	 for	 the	 myocyte	 contraction)	 were	 unaffected	 in	 atrial	 myocytes	

from	7	months	old	SHR,	which	is	in	line	with	our	observation	of	unchanged	contractility.		

Changes	 in	 intracellular	pH	could	also	affect	contractility	of	cardiac	myocytes:	acidosis	

decreases	 the	 contractile	 force	 of	 the	myocardium,	whereas	 alkalosis	 has	 an	 opposite	

effect	 (Orchard	 &	 Kentish	 1990),	 (Bountra	 &	 Vaughan-Jones	 1989).	 NHE	 maintains	

intracellular	pH	in	cardiac	myocytes.	It	was	shown	that	expression	or	function	of	NHE	is	

increased	in	hypertension,	hypertrophy,	heart	failure,	and	ischemia	(Avkiran	&	Haworth	

1999),	 (Wakabayashi	 et	 al.	 2013).	 Thus,	 the	 expression	 of	 NHE	 might	 serve	 as	 an	

indirect	estimation	of	pH	status	 in	the	cytosol.	We	found	that	NHE	expression	was	not	
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changed	 in	 the	 atria	 of	 SHR	 in	 early	 hypertension,	 suggesting	 that	 pH	 status	 in	 the	

cytosol	 of	 atrial	 myocytes	 was	 not	 affected,	 supporting	 our	 observation	 of	 unaltered	

contractility	of	atrial	myocytes.	 	However,	we	did	not	perform	direct	measurements	of	

intracellular	pH.	

The	phosphorylation	status	of	myofilament	proteins	(in	particular	troponin	I	or	myosin-

binding	protein	C)	 is	 crucial	 for	 the	 contractility	of	 cardiac	myocytes	 (Solaro	&	Rarick	

1998),	 (Layland	 et	 al.	 2005).	 In	 human	 heart	 failure	 and	 in	 atrial	 fibrillation,	 the	

phosphorylation	of	those	proteins	(via	changes	in	kinases	or	phosphotases	activities)	is	

changed,	 what	 impairs	 the	 contractile	 properties	 of	 the	 atrial	 myocytes	 (Bodor	 et	 al.	

1997),	(van	der	Velden	et	al.	2003),	(El-Armouche	et	al.	2006).	However,	due	to	the	fact	

that	 contractility	 of	 atrial	 myocytes	 was	 unchanged,	 it	 appears	 unlikely	 that	

phosphorylation	of	myofilament	proteins	was	altered	in	early	hypertension.	

Taken	together,	in	early	hypertension	intrinsic	contractile	properties	of	atrial	myocytes	

were	not	affected	in	SHR.	

6.1.3. Unchanged	[Na+] i	in	atrial	myocytes	in	early	hypertension	

There	is	a	limited	number	of	studies	conducted	on	SHR	to	determine	Na+	handling	in	the	

hearts	 of	 these	 rats.	 To	 the	 best	 of	 our	 knowledge,	 this	 study	 presents	 the	 first	

measurements	of	 [Na+]i	 on	 isolated	atrial	myocytes	 from	SHR.	 [Na+]i	was	measured	by	

epifluorescence	 microscopy	 using	 the	 fluorescent	 dye	 SBFI.	 This	 method	 provides	

information	only	about	bulk	cytosolic	Na+	concentration,	but	does	not	give	information	

about	changes	in	local	[Na+]i.	

Our	results	indicate	unchanged	[Na+]i	in	atrial	myocytes	from	SHR	in	early	hypertension	

(at	both	3	and	7	months	of	age).	At	3	months	of	age,	[Na+]i	was	around	10	mM	in	WKY	

and	SHR	at	1	Hz	stimulation,	and	around	7	mM	at	resting	conditions.	Later	on,	at	the	age	

of	7	months,	[Na+]i	was	also	not	significantly	different	between	two	strains	neither	at	1	

Hz	stimulation	(≈12	mM	in	WKY	vs.	≈10	mM	in	SHR),	nor	at	the	resting	stage	(10	mM	in	

WKY	vs.	9	mM	in	SHR).	The	comparison	of	[Na+]i	in	left	vs.	right	atrial	myocytes	did	not	

reveal	any	differences	neither	in	WKY	nor	in	SHR.	

A	study	of	Jelicks	and	Gupta	revealed	that	in	isolated	Langendorff	perfused	hearts	of	15-

19	weeks	old	SHR,	[Na+]i	measured	by	nuclear	magnetic	resonance	technique	was	higher	

than	 in	WKY	 (Jelicks	 &	 Gupta	 1994).	 However,	 a	 later	 study	 of	 Fowler	 et	 al.	 (Fowler	

2005)	found	that	[Na+]i	in	isolated	ventricular	myocytes	from	SHR	at	the	age	of	5	months	
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was	unchanged.	Thus,	 in	early	hypertension	SHR	did	not	exhibit	any	major	changes	 in	

global	[Na+]i.	in	ventricular	myocytes.	

As	was	discussed	previously,	 intracellular	Na+	and	Ca2+concentration	are	tightly	 linked	

together	 in	 cardiac	 myocytes	 via	 NCX.	 The	 previous	 study	 of	 our	 group	 observed	 a	

decreased	NCX	function	 in	 left	atrial	myocytes	 from	7	months	old	SHR	(Pluteanu	et	al.	

2015).	This	reduction	of	NCX	function,	however,	did	not	affect	the	global	[Na+]i.	Previous	

research	 revealed	 that	 in	 the	 ventricular	 myocytes	 there	 might	 be	 a	 [Na+]i	 gradient	

(Wendt	Gallitelli	et	al.	1993),	(Pieske	&	Houser	2003),	(Despa	et	al.	2004).	This	gradient	

is	generated	by	different	 subsarcolemmal	 co-localization	and	 local	 activity	of	NCX	and	

NKA	 in	 ventricular	myocytes	 (Despa	 et	 al.	 2004),	 (Pavlovic	 et	 al.	 2013).	However,	 the	

data	on	co-localization	of	Na+	transporters	in	atrial	myocytes,	as	far	as	we	know,	are	not	

yet	 available.	 Thus,	 even	 if	 the	 global	 [Na+]i	 is	 unchanged,	 some	 changes	 in	 the	

subsarcolemmal	Na+	 flux	could	be	present	in	atrial	myocytes,	eventually	affecting	local	

Ca2+	handling.	This	speculation,	however,	should	be	verified	by	future	research.	

In	conclusion,	there	were	no	significant	changes	in	global	[Na+]i	in	atrial	myocytes	from	

SHR	in	early	hypertension.	

	

6.1.4. Subtle	changes	in	Na+-handling	protein	expression	in	early	

hypertension	

Avaliable	data	on	 the	expression	of	Na+-handling	proteins	 in	 the	atria	are	very	scarce.	

Western	blot	analysis	in	our	study	did	not	reveal	any	major	changes	in	the	expression	of	

Na+-regulating	proteins,	 though	some	alterations	 in	 their	expression	were	observed	 in	

early	hypertension.	

At	the	age	of	3	months,	expression	of	the	Na+	 influx	proteins	was	unaffected	in	the	left	

atrium,	 however,	we	 observed	 a	 significant	 increase	 in	 the	 expressionof	NCX	 and	Na+	

channels	in	the	right	atrium	of	SHR.	This	would	suggest	higher	[Na+]i,	due	to	an	increase	

in	Na+	influx.	However,	[Na+]i	in	atrial	myocytes	from	3	months	old	SHR	was	not	higher	

compared	to	WKY.	A	study	of	Jäger	et	al.	found	a	significant	increase	in	NCX	expression	

at	the	mRNA	level	in	right	atrium	of	hypertensive	patients	(Jäger	et	al.	2001).	However,	

this	 study	 did	 not	 provide	 information	 about	 [Na+]i	 or	 protein	 expression.	 Thus,	 the	

increase	in	Na+	channel	and	NCX	expression	in	right	atrium	in	3	months	old	SHR	did	not	

affect	the	overall	Na+	influx	in	the	atrial	myocytes	in	early	hypertension.	
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Expression	of	Na+	efflux	proteins	was	unchanged	in	SHR	at	the	age	of	3	months.	Later	in	

7	 months	 old	 SHR,	 expression	 of	 Na+-influx	 proteins	 was	 unaffected.	 However,	 we	

observed	a	significant	reduction	in	the	expression	of	the	α	1	subunit	of	NKA	in	the	left	

atrium	 of	 SHR	 at	 7	 months	 of	 age.	 .As	 mentioned	 earlier,	 α	 1	 is	 the	 major	 catalytic	

isoform	 of	 NKA,	 responsible	 for	 most	 of	 the	 Na+	 extrusion	 (Shattock	 et	 al.	 2015).	

However,	 we	 did	 not	 observe	 any	 changes	 in	 [Na+]i,	 particularly,	 not	 in	 left	 atrial	

myocytes	from	7	months	old	SHR.	We	estimated	NKA	function	by	analyzing	expression	

of	 its	 regulating	 protein	 PLM	 and	 calculating	 the	α	 1/PLM	 ratio.	 No	 changes	 in	 PLM	

expression	 or	 this	 ratio	 were	 observed,	 suggesting	 unchanged	 NKA	 function.	 PLM	 is	

phosphorylated	by	PKA	at	serine	68	and	by	PKC	at	serine	63.	This,	in	turn,	increases	the	

pumping	 activity	 (Fuller	 et	 al.	 2012).	 Therefore,	 a	 further	 study	 to	 evaluate	 the	

phosphorylation	 status	 of	 PLM	 and,	 thus,	 the	 activity	 of	 NKA,	 in	 the	 atria	 of	 SHR	 is	

needed.	Another,	and	more	direct	approach	for	estimation	of	the	NKA	function	would	be	

the	measurements	of	the	NKA	current	by	the	patch	clamp	method.	

Previous	studies	(Lee,	S.W.	et	al.	1983),	(Vrbjar	et	al.	2002)	revealed	a	reduction	in	NKA	

function	 in	 ventricular	 myocytes	 from	 SHR	 at	 5	 and	 9	 months	 of	 age,	 respectively.	

However,	the	protein	level	of	the	pump	was	not	altered.		Interestingly,	another	study	of	

Jäger	 et	 al.	 revealed	 unchanged	 α	 1	 mRNA	 level	 in	 the	 right	 atrium	 of	 hypertensive	

patients,	whereas	α	2	and	α	3	isoforms	were	significantly	increased	(Jäger	et	al.	2001).	

Previous	 research	 indicates	 that	 in	 different	models	 of	 hypertension	 and	hypertrophy	

(Muller-Ehmsen	 et	 al.	 2001),	 (Fedorova	 et	 al.	 2004),	 	 there	 might	 be	 a	 shift	 in	 the	

expression	 of	 different	 α	 subunit	 isoforms	 of	 the	 NKA.	 Thus,	 another	 possible	

explanation	for	the	decrease	in	α	1	subunit	expression	in	the	left	atrium	of	SHR	might	be	

a	compensatory	transition	in	the	expression	of	α	isoforms	towards	increase	in	α	2	and	α	

3	expression.	In	other	words,	other	isoforms	of	NKA	might	take	over	the	function	of	the	

α	1	subunit	and,	thus,	maintain	[Na+]i.	

It	should	be	noted,	however,	that	the	western	blot	method	used	in	this	study	has	some	

limitations.	 Firstly,	 data	 on	 protein	 expression	 provide	 information	 about	 protein	

abundance	 only	 and	 does	 not	 give	 insight	 into	 a	 function	 of	 the	 protein.	 Secondly,	

determination	of	protein	expression	in	our	study	was	done	in	atrial	homogenates,	which	

might	 contain	 non-myocytes	 (fibroblasts	 and	 cardiac	 endothelial	 cells).	 Non-myocytes	

also	express	Na+-handling	proteins,	e.g.	voltage-dependent	Na+	 channels	 (Kaye	&	Kelly	

1999),	NCX	(Kaye	&	Kelly	1999),	NHE	(Hattori	et	al.	2001)	and	NKA	(Zahler	et	al.	1996).	
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Thus,	the	possibility	exists	that	the	observed	increase	in	the	expression	of	Na+	channels	

and	NCX	could	reflect	changes	in	non-myocytes.	

To	conclude,	despite	reduced	α	1	subunit	expression	and	structural	remodelling	of	the	

atria,	Na+	homeostasis	and	contractility	of	atrial	myocytes	were	not	markedly	changed	

in	the	atria	of	SHR	in	early	hypertension.	
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6.2. Progression	of	cardiovascular	impairment,	reduced	atrial	

myocyte	contractile	function	and	decreased	[Na+] i	in	

advanced	hypertensive	heart	disease	

	

Our	 findings	 indicate	 that	 in	 advanced	 hypertensive	 heart	 disease	 SHR	 exhibited	

decreased	contractile	function	of	atrial	myocytes,	reduction	in	[Na+]i	as	well	as	changes	

in	the	expression	of	Na+-handling	proteins	in	the	atria.		

6.2.1. Cardiovascular	changes	

We	found	that	old	SHR	exhibited	further	progression	of	left	ventricular	hypertrophy	and	

manifestation	of	right	ventricular	hypertrophy.	We	also	observed	increased	lung	weight	

and	difficulties	breathing,	fluid	retention	in	the	thorax	and	a	decrease	in	the	body	weight	

in	 many	 old	 SHR,	 indicating	 signs	 of	 heart	 failure.	 However,	 we	 did	 not	 perform	

functional	measurements	of	cardiac	function	in	vivo	(e.g.	by	echocardiography).	Instead,	

we	divided	 SHR	 into	non-failing	 and	 failing	based	on	 the	 absence	 or	 presence	 of	 lung	

edema,	 respectively.	 A	 number	 of	 previous	 studies	 confirmed	 a	 significant	 increase	 in	

lung	weight	in	ageing	SHR,	which	correlated	with	the	onset	of	heart	failure	(Conrad	et	al.	

1991),	(Kapur	et	al.	2010).	These	studies	also	revealed	that,	starting	with	15-18	months	

of	age,	old	SHR	exhibited	systolic	and	diastolic	dysfunction	and	structural	changes,	e.g.	

ventricular	fibrosis.	The	study	of	Chan	et	al.	found	that	fibrosis	in	the	left	ventricular	free	

wall	was	 followed	by	dilation	of	 the	 left	ventricle	 in	18	months	old	SHR.	Moreover,	as	

was	 shown	 in	 the	 same	 study	many	 of	 the	 old	 SHR	 developed	 ascities	 together	 with	

increased	liver	weight,	indicating	the	manifestation	of	right-sided	heart	failure	(Chan	et	

al.	2011).	In	should	be	noted,	that	the	onset	of	the	above	mentioned	signs	of	decreased	

cardiac	 performance	 developed	 gradually	 in	 SHR	 starting	 with	 15	 months	 of	 age,	

indicating	that	compensated	left	ventricular	hypertrophy	deteriorates	into	heart	failure	

in	old	SHR.	

We	observed	bi-atrial	hypertrophy	together	with	increased	expression	of	hypertrophic	

and	 fibrotic	markers	 in	 the	 left	 atrium	of	 SHR	 (Goette	A.,	Bukowska	A.,	Kocksämper	 J,	

Pluteanu	 F.,	 Nikonova	 Y.,	 unpublished	 data).	 These	 observations	 are	 in	 line	 with	 the	
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studies	by	Lau	et	al	and	Dunn	et	al.,	in	which	bi-atrial	hypertrophy	was	confirmed	in	15	

and	 16	 months	 old	 SHR,	 respectively,	 by	 echocardiography.	 The	 study	 of	 Lau	 et	 al.	

confirmed	the	bi-atrial	hypertrophy	on	the	cellular	level	by	increased	left	and	right	atrial	

myocyte	size.	In	addition,	interstitial	fibrosis	was	present	in	both	atria	of	SHR	(Lau	et	al.	

2013),	 (Dunn	 et	 al.	 1978).	 Moreover,	 SHR	 demonstrated	 high	 susceptibility	 to	 the	

development	 of	 atrial	 arrhythmias,	 indicating	 that	 ageing	 SHR	 develop	 structural	

(fibrosis)	and	functional	(alterations	in	the	electrophysiological	properties	of	the	atria)	

arrhythmogenic	substrates	(Choisy	et	al.	2007),	(Lau	et	al.	2013).		

To	 conclude,	 in	 advanced	 hypertensive	 heart	 disease	 SHR	 exhibited	 transition	 from	

compensated	 left	 ventricular	 hypertrophy	 to	 heart	 failure	 and	 this	 transition	 was	

accompanied	by	structural	atrial	remodelling.		

	

6.2.2. Reduction	in	contractile	function	of	atrial	but	not	ventricular	

myocytes	in	advanced	hypertensive	heart	disease	

We	 observed	 a	 significant	 reduction	 in	 contractility	 of	 atrial	 myocytes	 from	 old	 SHR.	

During	 the	 transition	 from	 compensated	 left	 ventricular	 hypertrophy	 to	 heart	 failure	

atrial	 contractile	 function	 was	 even	 more	 impaired.	 These	 observations	 could	 be	

explained	 by	 unpublished	 findings	 from	 our	 lab	 (work	 by	 Dr.	 Florentina	 Pluteanu),	

which	 indicate	 that	 atrial	 myocytes	 from	 old	 SHR	 exhibited	 impaired	 Ca2+	 handling.	

Starting	with	8	months	of	age	many	SHR	develop	thrombi	in	left	atrium,	which	indicate	

impairment	 of	 atrial	 contractile	 function	 in	 vivo	 (Brooks	 et	 al.	 2010),	 (Scridon	 et	 al.	

2013).	 Loss	 of	 atrial	 pumping	 function	 is	 also	 found	 in	 animal	 models	 of	 atrial	

fibrillation,	 human	 atrial	 fibrillation	 and	 heart	 failure	 (Schotten	 et	 al.	 2011),	

(Wijesurendra	&	Casadei	2015),	(Anter	et	al.	2009).	

Thus,	decrease	in	the	contractile	function	of	single	atrial	myocytes	might	cause	the	loss	

of	atrial	pumping	 function,	which	contributes	 to	 the	decrease	 in	ventricular	 filling	and	

cardiac	output	and,	thus,	development	of	heart	failure.	

Despite	 the	 fact	 that	 in	 advanced	 hypertensive	 heart	 disease	 SHR	 develop	 left	

ventricular	 fibrosis	 and	 systolic	 dysfunction,	 the	 fractional	 shortening	 of	 isolated	

ventricular	myocytes	from	old	SHR	was	unchanged.	Moreover,	during	the	transition	to	

heart	 failure,	 no	 impairment	 in	 the	 contractile	 function	 of	 ventricular	 myocytes	 was	

found.	The	study	of	Ward	et	al.	 found	that	the	peak	of	Ca2+	 transients	measured	in	 left	

ventricular	trabeculae	from	failing	SHR	was	even	higher	than	in	WKY.	The	authors	also	
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suggested	that	in	this	animal	model	the	decrease	in	contractile	function	of	the	ventricle	

was	 rather	 due	 to	 fibrosis	 than	 to	 impaired	 Ca2+	 cycling	 (Ward	 et	 al.	 2003).	We	 also	

found	 a	 slight	 but	 significant	 decrease	 in	 the	 relaxation	 kinetics	 during	 the	 transition	

from	compensated	left	ventricular	hypertrophy	to	heart	failure.	This	could	be	explained	

by	 prolongation	 of	 Ca2+	 transients	 in	 ventricular	 myocytes	 in	 old	 SHR	 during	 the	

transition	to	heart	failure,	which	would	ultimately	prolong	the	relaxation.		

Taken	 together,	 the	 impairment	 of	 atrial	 myocyte	 contractility	 in	 SHR	 was	 not	

accompanied	 by	 depressed	 contractility	 of	 ventricular	myocytes,	 indicating	 that	 atrial	

myocytes	 undergo	 atria-specific	 functional	 remodelling.	Mechanisms	 underlying	 these	

alterations	 require	 further	 investigation.	 Impaired	 atrial	 myocyte	 contractility	

contributes	to	atrial	contractile	dysfunction,	which	causes	reduced	left	ventricular	filling	

and	cardiac	output,	contributing	to	the	development	of	heart	failure.	

6.2.3. Decrease	in	[Na+] i	in	atrial	but	not	ventricular	myocytes	from	SHR	in	

advanced	hypertensive	heart	disease	

Another	important	and	striking	finding	of	this	work	was	a	significant	reduction	of	[Na+]i	

in	atrial	myocytes	from	old	SHR.	This	decrease	could	be	explained	by	an	increase	in	NKA	

expression,	and,	thus,	an	increase	in	Na+	export.	

Previous	 studies	of	Greiser	et	al.	 (by	measuring	 free	 [Na+]i	 using	SBFI)	and	Akar	et	al.		

(by	measuring	 total	 [Na+]i	using	electron	probe	microanalysis)	 also	described	 reduced	

[Na+]i	in	the	atria	of	animal	models	of	atrial	fibrillation	(induced	by	rapid	atrial	pacing)	

(Greiser	et	al.	2014)	(Akar	et	al.	2003).	However,	these	studies	explained	the	decrease	in	

[Na+]i	 by	 reduced	NCX	 function	 and,	 consequently,	 decreased	Na+	 influx.	 The	 study	 of	

Greiser	et	al.	revealed	that	NKA	expression	was	not	changed.	Moreover,	the	authors	also	

found	 a	 decrease	 in	 the	 phosphorylation	 of	 PLM,	 which	 suggests	 a	 reduction	 of	 NKA	

function.	However,	it	should	be	noted	that	the	model	of	rapid	atrial	pacing	could	induce	

other	changes	in	atrial	structure	and	function	than	those	in	long-standing	hypertension	

in	SHR.	Our	own	observations,	on	the	contrary,	revealed	no	changes	in	NCX	expression	

and	 that	 the	 fractional	 contribution	 of	NCX	 to	 Ca2+	 removal	was	 rather	 higher	 in	 SHR	

(unpublished	data,	work	by	Dr.	 Florentina	Pluteanu).	Decrease	 in	 [Na+]i	may	 alter	 the	

trans-sarcolemmal	[Na+]i	gradient	and,	thus,	stimulate	Ca2+	export	via	NCX.	As	a	result	of	

it,	the	amplitude	of	Ca2+	transients	declines,	leading	to	impaired	contractility.		
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However,	in	order	to	estimate	the	contribution	of	each	Na+	transporter	to	the	Na+	influx	

or	 efflux	 processes	 in	 the	 atria	 of	 SHR	 another	 study	would	 be	 required.	 It	 should	 be	

noted,	that	during	the	transition	from	compensated	left	ventricular	hypertrophy	to	heart	

failure	no	further	changes	in	[Na+]i	were	found,	suggesting	that	changes	in	atrial	myocyte	

[Na+]i	do	not	play	any	major	role	for	this	transition.	

Many	previous	studies	described	elevated	[Na+]i	in	ventricular	myocytes	in	human	heart	

failure	and	animal	models	of	cardiac	disease	(Pogwizd	2003),	(Pieske	&	Houser	2003),	

(Despa	 &	 Bers	 2013),	 (Clancy	 et	 al.	 2015).	 As	mentioned	 previously,	 increased	 [Na+]i	

alters	NCX	function	by	favouring	Ca2+	influx	and	Na+	efflux.	Elevated	Ca2+,	in	turn,	could	

produce	 arrhythmias	 and	 activate	 other	 pathological	 remodelling	 processes	 in	 the	

myocardium.	However,	 our	 findings	did	not	 reveal	 any	 significant	 changes	 in	 [Na+]i	 in	

ventricular	myocytes	from	old	SHR.	In	addition	to	that,	during	the	progression	to	heart	

failure	no	changes	in	[Na+]i	in	ventricular	myocytes	were	found.	However,	we	found	that	

the	 stimulation-dependent	 change	 in	 [Na+]i	 was	 significantly	 lower	 in	 ventricular	

myocytes	from	failing	SHR.	This	observation	requires	further	investigation.		

A	 previous	 study	 also	 reported	 unaltered	 [Na+]i	 in	 ventricular	 myocytes	 from	 SHR,	

however,	 in	 5	 months	 old	 SHR	 (Fowler	 et	 al.	 2007).	 Of	 note,	 the	 values	 for	 [Na+]i	

reported	 in	that	study	(≈10	mM)	are	 in	the	same	range	as	the	values	measured	 in	our	

study	(≈13	mM).	

Thus,	 it	may	 be	 speculated	 that	 [Na+]i	 in	 ventricular	myocytes	 from	old	 SHR	 is	 not	 of	

particular	importance	for	alterations	in	Ca2+	handling	and	contractility	observed	in	this	

model	 by	 previous	 studies	 (Brooksby	 et	 al.	 1993),	 (Fowler	 et	 al.	 2007),	 (Kapur	 et	 al.	

2010).	

Taken	 together,	 our	 data	 indicate	 that	 atrial	 myocytes	 undergo	 specific	 Na+	 handling	

remodelling	 in	old	SHR,	which	 is	not	observed	 in	ventricular	myocytes	 from	 the	same	

animals.	 Decreased	 [Na+]i	 in	 atrial	 myocytes	 may	 contribute	 to	 a	 reduction	 in	 the	

amplitude	of	Ca2+	transients	and,	thus,	contractility.	

6.2.4. Up-regulation	of	Na+	influx	protein	expression	in	the	atria	in	

advanced	hypertensive	heart	disease	

Despite	the	observed	decrease	in	atrial	myocyte	[Na+]i,	the	expression	of	some	Na+	influx	

proteins	was	increased	in	the	atria	of	old	SHR.	NCX	expression	was	higher	 in	the	right	

atrium	of	SHR	and	expression	of	NHE	was	enhanced	in	both	atria.		
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NCX	couples	Ca2+	and	Na+	handling	in	the	myocardium.	Increased	expression	of	NCX	in	

the	 atria	was	 found	 in	human	atrial	 fibrillation	 (El-Armouche	et	 al.	 2006),	 (Neef	 et	 al.	

2010)	(Voigt	et	al.	2012).	One	study	also	revealed	increased	NCX	function	in	ventricular	

myocytes	 from	 failing	 SHR	 (Rodriguez	 et	 al.	 2014).	 The	 increased	 Ca2+	 leak	 from	 the	

sarcoplasmic	 reticulum,	 observed	 in	 atrial	 fibrillation	 together	 with	 enhanced	 NCX	

function	 (or	 expression)	 might	 increase	 the	 NCX	 current,	 causing	 delayed	

afterdepolarizations	 and,	 thus,	 arrhythmias.	 Thus,	 increased	 NCX	 expression	 might	

contribute	 to	 the	 development	 of	 pro-arrhythmic	 events	 in	 the	 atrial	 myocardium	 of	

SHR.	It	should	be	noted	that	NCX	expression	in	left	and	right	atria	was	not	changed	in	7	

months	old	SHR.	Thus,	the	observed	increase	in	NCX	expression	might	contribute	to	the	

electrical	remodelling	of	the	atria	in	advanced	hypertensive	heart	disease.	

Another	 important	 observation	 in	 this	 study	 was	 a	 significant	 increase	 in	 NHE	

expression	 in	both	 atria	 of	 SHR.	The	major	 role	of	 this	 transporter	 is	 the	 extrusion	of	

protons	and,	thus,	maintenance	of	the	physiological	pHi.	Many	studies	have	shown,	that	

NHE	function	and/or	expression	are	increased	in	ventricular	myocytes	during	ischemic	

injury,	hypertrophy	and	heart	failure	(Karmazyn	et	al.	1999),	(Cingolani	&	Ennis	2007),	

(Baartscheer	 2003).	 In	 SHR,	 the	 NHE	 function	 was	 significantly	 increased	 in	 the	

papillary	 muscles	 and	 in	 the	 whole	 heart	 (Ennis	 et	 al.	 1998),	 (Schussheim	 &	 Radda	

1995).	However,	 the	data	 regarding	NHE	expression	and	 function	 in	 the	 atria	 are	 still	

sparse.	

Several	 mechanisms	 might	 be	 responsible	 for	 the	 increased	 expression	 and/or	

activation	of	NHE	(Karmazyn	et	al.	1999):	ischemia,	elevated	levels	of	angiotensin	II	and	

endothelin-1	 and	mechanical	 stress	 of	 the	 atrial	 tissue.	 Jayachandran	 et	 al.	 described	

both	 increased	 NHE	 activation	 and	 expression	 in	 a	 dog	 model	 of	 atrial	 fibrillation	

(Jayachandran,	 J.V.	 et	 al.	 2000).	 The	 authors	 of	 that	 study	 also	 proposed	 that	 in	 the	

fibrillating	atria	there	might	be	a	decrease	in	the	coronary	flow	and,	as	a	consequence,	

ischemic	changes	with	the	subsequent	activation	of	NHE	(Jayachandran,	V.	et	al.	1998),	

(Jayachandran,	J.V.	et	al.	2000).	A	more	recent	study	of	van	Bragt	et	al.	showed	that	in	a	

pig	model	of	atrial	fibrillation	increased	oxygen	demand	with	insufficient	oxygen	supply	

are	present,	suggesting	ischemic	conditions	in	the	atrium	during	atrial	 fibrillation	(van	

Bragt	 et	 al.	 2014).	 As	 discussed	 previously,	 old	 SHR	 are	 prone	 to	 atrial	 arrhythmias,	

thus,	 ischemic	 conditions	 might	 be	 present	 in	 the	 atria	 of	 the	 SHR.	 As	 a	 result,	 NHE	

overexpression	might	be	an	adaptive	mechanism	for	the	pHi	maintenance	within	atrial	

myocytes	 during	 ischemic	 conditions	 and	 atrial	 tachyarrhythmias.	 However,	 another	
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study	for	the	estimation	of	NHE	function	and	pH	balance	in	the	atria	of	these	rats	would	

be	needed	to	clarify	this	issue.	

Previous	 research	 revealed	 that	activation	of	NHE	by	angiotensin	 II,	 endothelin	1,	α	 1	

adrenergic	receptor	agonists,	and	stretching	contribute	to	the	pathological	remodelling	

of	the	myocardium	(reviewed	in	(Wakabayashi	et	al.	2013)).	Two	studies	of	Jessup	et	al.	

found	an	elevated	level	of	angiotensin	II	in	the	ventricle	of	young	SHR	and,	overall,	the	

RAAS	was	shown	to	be	dysregulated	(Jessup,	Trask,	et	al.	2008),	(Jessup,	Brosnihan,	et	

al.	 2008).	 In	 addition	 to	 that,	 atrial	 tissue	 of	 7	 months	 old	 SHR	 was	 found	 to	 be	

constantly	exposed	to	the	elevated	level	of	 local	angiotensin	II	(Bukowska	et	al.	2013),	

indicating	 that	 NHE	 might	 be	 also	 involved	 in	 angiotensin	 II-mediated	 pathological	

remodelling	 in	 the	 atria	 of	 SHR.	 In	 addition,	 severe	 diastolic	 dysfunction	 of	 old	 SHR	

(Slama	et	al.	2004)	might	cause	an	increase	in	left	atrial	pressure	and	mechanical	stress	

of	 the	 atrial	 tissue,	 which	 ultimately	might	 result	 in	 the	 stimulation	 of	 NHE	 function.	

However,	the	study	of	Kockskämper	et	al.	revealed	that	in	the	human	atrial	myocardium	

the	 stretch-induced	 increase	 in	 [Na+]i	 was	 not	 the	 result	 of	 NHE	 activation	

(Kockskämper,	Lewinski,	 et	 al.	 2008)	and	 the	mechanism	responsible	 for	 this	 effect	 is	

not	yet	elucidated.	

To	 conclude,	 overexpression	of	NHE	 in	 atria	 from	old	 SHR	observed	 in	 this	 study	 is	 a	

potential	 indicator	 for	 activation	 of	 various	 signalling	 pathways,	 which	 might	 be	

involved	in	atrial	remodelling	in	advanced	hypertensive	heart	disease.	Thus,	elucidation	

of	these	mechanisms	could	be	an	interesting	direction	for	future	research.	

6.2.5. Up-regulation	of	NKA	expression	in	the	atria	in	advanced	

hypertensive	heart	disease	

α	1	is	the	dominant	isoform	of	NKA,	regulating	the	bulk	[Na+]i	(Despa	&	Bers	2007).	Our	

findings	indicate	that	expression	of	the	α	1	subunit	of	NKA	was	significantly	increased	in	

both	atria	of	SHR.	In	addition,	expression	of	the	α	2	isoform	was	elevated	in	right	atrium	

together	with	decreased	PLM	expression,	 suggesting	 increased	NKA	activity	and,	 thus,	

enhanced	Na+	extrusion.	We	suggest	that	these	changes	are	responsible	for	the	reduced	

[Na+]i	 in	 atrial	 myocytes	 from	 old	 SHR.	 During	 the	 transition	 from	 compensated	 left	

ventricular	 hypertrophy	 to	 heart	 failure	 no	 further	 changes	 in	 the	 α	 1	 subunit	

expression	were	found,	which	is	in	line	with	unchanged	[Na+]i.	Interestingly,	expression	

of	the	α	2	subunit	was	elevated	in	the	right	and	decreased	in	the	left	atrium	during	this	
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transition.	Recent	 studies	have	shown	 that	 the	α	 2	 isoform	plays	an	 important	 role	 in	

ventricular	 myocytes.	 As	 shown	 by	 Despa	 et	 al.	 in	 rat	 ventricular	 myocytes,	 α	 2	 co-

localizes	with	NCX	 (Despa	&	Bers	2007),	 and	preferentially	 regulates	Ca2+	 removal	by	

NCX	(Correll	et	al.	2014).	Moreover,	 changes	 in	 local	Na+	 concentration	could	regulate	

NCX	activity	 and	 contractility	of	 rat	 ventricular	myocytes	without	 changes	 in	 the	bulk	

[Na+]i	 (Swift	 et	 al.	 2010).	 Thus,	 similar	 processes	 could	 occur	 in	 atrial	 myocytes.	

However,	by	now	data	on	the	co-localization	of	Na+-handling	proteins	in	atrial	myocytes	

are	not	available	and	the	role	of	the	α	2	isoform	remains	elusive.		

The	 data	 regarding	 changes	 in	 the	 expression	 and	 function	 of	 NKA	 in	 various	 animal	

models	of	atrial	 fibrillation	and	heart	 failure	differ.	 In	a	 rat	model	of	heart	 failure,	 the	

activity	and	the	expression	of	the	α	2	isoform	were	reduced	in	the	ventricles	(Swift	et	al.	

2008).	 However,	 another	 study	 of	 Schwinger	 et	 al.	 revealed	 that	 in	 failing	 human	

ventricular	 myocardium	 expression	 of	 α	 1,	 α	 3	 and	 β	 1	 subunits	 were	 significantly	

reduced,	whereas	α	 2	 subunit	 expression	 remained	unchanged	 and	 the	 activity	 of	 the	

pump	was	 significantly	 reduced	 (Schwinger	 et	 al.	 1999).	 Expression	 of	 PLM	 in	 failing	

ventricular	myocardium	was	also	significantly	reduced	together	with	an	increase	in	its	

phosphorylation,	 so	 the	NKA	pumping	 function	was	 suggested	 to	 be	 increased	 in	 that	

study,	 as	 a	 compensation	 for	 a	 decrease	 in	α	 1	 and	α	 2	 subunit	 expression	 (Bossuyt	

2005).	 Studies	 on	 the	 expression	 or	 function	 of	 NKA	 in	 the	 atria	 show	 contradictory	

findings,	 however,	 the	 majority	 of	 them	 indicate	 that	 changes	 in	 NKA	 expression	 or	

function	are	not	observed	in	human	atrial	fibrillation	(reviewed	in	the	next	section).	

Thus,	 the	 intracellular	 Na+	 homeostasis	 was	 altered	 in	 the	 atria	 of	 SHR	 towards	 the	

maintenance	 of	 lower	 [Na+]i,	 presumably	 due	 to	 an	 increase	 in	 α	 1	 expression	 and,	

possibly,	function	of	NKA.		

In	 conclusion,	 long-standing	 hypertension	 in	 SHR	 caused	 atrial	 remodelling	

characterized	 by	 bi-atrial	 hypertrophy,	 decline	 in	 the	 contractile	 function,	 decreased	

[Na+]i,	 and	 increased	 expression	 of	 NHE	 and	 NKA.	 At	 the	 same	 time	 ventricular	

remodelling	 was	 characterized	 by	 progression	 of	 hypertrophy,	 unchanged	 contractile	

function	 of	 ventricular	 myocytes	 and	 unaltered	 [Na+]i.	 Presented	 results	 suggest	 that	

atrial	remodelling	might	contribute	to	the	development	of	ventricular	remodelling	and	

heart	failure.	

Figure	 44	 schematically	 presents	 the	 major	 findings	 of	 the	 study	 on	 the	 atrial	

remodelling	in	SHR	in	advanced	hypertension.	
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Figure	44.	Atrial	remodelling	in	advanced	hypertensive	heart	disease	in	SHR	
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6.3. Unaltered	expression	of	Na+-handling	proteins	in	human	

atrial	fibrillation	

The	aim	of	the	second	part	of	the	thesis	was	to	characterize	expression	of	Na+	-handling	

proteins	 in	 the	 atria	 of	 patients	 suffering	 from	 paroxysmal	 (pAF)	 or	 chronic	 atrial	

fibrillation	 (cAF).	 Expression	 of	 Na+	 influx	 proteins	 was	 largely	 unaltered	 in	 atrial	

fibrillation,	whereas	expression	of	the	β	1	subunit	of	NKA	was	reduced	in	cAF.	

In	 our	 study	we	 analyzed	 expression	of	 all	 alpha	 subunits	 of	Na+	 channel	 by	using	 an	

antibody	 raised	 to	 detect	 all	 alpha	 isoforms	 of	 voltage-gated	 Na+	 channels.	 Our	 data	

indicate	 that	 the	 expression	 of	 all	 alpha	 subunit	 isoforms	 of	 Na+	 channels	 was	

unchanged	 in	pAF	or	 cAF.	 In	human	atrial	myocardium	six	different	 isoforms	of	alpha	

subunits	of	voltage-gated	Na+	channels	are	present:	Nav1.1-Nav1.6	with	Nav1.5	being	the	

major	cardiac	 isoform	(Kaufmann	et	al.	2013).	 In	cAF,	as	was	shown	by	Sossalla	et	al.,	

there	 is	 a	 transition	 in	 the	 expression	 of	 different	 alpha	 isoforms	 of	 Na+	 channels	

towards	neuronal	isoforms	(Nav1.1	and	Nav1.6)	and	a	reduction	in	the	expression	of	the	

major	cardiac	isoform	Nav1.5	(Sossalla	et	al.	2010).	Thus,	our	data	provide	information	

only	about	the	total	expression	of	all	alpha	isoforms	and	could	not	detect	the	changes	in	

the	expression	of	particular	isoforms.		

NCX	 expression	 was	 unaltered	 in	 pAF,	 whereas	 we	 observed	 a	 tendency	 towards	 an	

increase	in	NCX	expression	in	cAF.	Previous	studies	(El-Armouche	et	al.	2006),	(Neef	et	

al.	 2010),	 (Voigt	 et	 al.	 2012)	 found	 a	 significant	 increase	 in	 NCX	 expression	 in	 cAF.	

Moreover,	 NCX	 function	was	 increased	 in	 cAF	 (Neef	 et	 al.	 2010)	 ,	whereas	 in	 pAF	 its	

expression	and	 function	were	unaltered	 (Voigt	 et	 al.	 2012).	 Increased	NCX	expression	

and	function	(together	with	increased	Ca2+	leak	from	the	sarcoplasmic	reticulum)	has	an	

important	 impact	 on	 the	 atrial	 electrophysiology:	 it	 facilitates	 the	 development	 of	

delayed	 afterdepolarizations	 and,	 thus,	 induces	 arrhythmias	 (Voigt	 et	 al.	 2012).	 As	

discussed	previously,	NCX	expression	was	significantly	increased	in	the	right	atrium	of	

old	SHR,	when	atrial	functional	and	structural	remodelling	had	manifested.		

Expression	 of	 NHE	 was	 unaltered	 in	 either	 pAF	 or	 cAF.	 The	 data	 regarding	 NHE	

expression	in	human	AF	are	limited.	Jayachandran	et	al.	described	both	increased	NHE	

activation	and	expression	in	dog	rapid	pacing	atrial	fibrillation	(J.	V.	Jayachandran	et	al.	

2000).	 A	 more	 recent	 study	 of	 van	 Bragt	 et	 al.	 showed	 that	 in	 a	 pig	 model	 of	 atrial	
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fibrillation	oxygen	demand	with	 insufficient	 oxygen	 supply	 are	present,	 indicating	 the	

pesence	of	 ischemic	 conditions	 in	 the	atrium	during	atrial	 fibrillation	 (van	Bragt	et	 al.	

2014).	 Ischemia	would	 potentially	 lead	 to	 an	 increase	 in	 NHE	 expression	 or	 function	

(Avkiran	&	Haworth	 2003),	 (Imahashi	 et	 al.	 2007).	Moreover,	we	 observed	 increased	

NHE	expression	in	both	atria	of	old	SHR.	In	our	study	on	human	atrial	myocardium,	we	

did	not	perform	analysis	of	NHE	function	and	thus,	alterations	in	NHE	function	in	human	

AF	cannot	be	excluded.		

Expression	of	the	various	α	subunits	of	NKA	was	unaltered	in	atrial	fibrillation,	however,	

β	1	subunit	expression	was	significantly	decreased	in	cAF.	The	data	on	NKA	function	and	

expression	 in	 human	AF	 and	 animal	models	 of	 AF	 vary.	 For	 instance,	Workman	 et	 al.	

found	that	NKA	current	in	cAF	was	unchanged	(Workman	et	al.	2003).	In	a	sheep	model	

of	 AF	 unchanged	 α	 1	 expression	 and	 an	 increase	 in	 β	 1	 expression	 was	 observed	

(Maixent	et	al.	2002).	Another	study	using	a	 rabbit	model	of	 rapid	atrial	pacing	 found	

unchanged	 expression	 of	 the	 α	 1	 subunit	 together	 with	 a	 reduction	 in	 PLM	

phosphorylation	and,	 thus,	 a	decrease	 in	NKA	 function	 (Greiser	et	 al.	2014).	Thus,	 the	

data	on	NKA	expression	and	 function	 in	atrial	 fibrillation	are	variable.	 In	human	heart	

failure	 expression	 of	 the	 β	 1	 subunit	 was	 significantly	 reduced	 in	 left	 ventricle	

(Schwinger	et	al.	1999),	which	is	in	line	with	our	finding	of	decreased	β	1	expression	in	

cAF.	 The	 β	 1	 subunit	 of	 NKA	 is	 necessary	 for	 trafficking	 of	 the	 pump	 and	 proper	

insertion	of	NKA	into	the	plasma	membrane	(Geering	2001).	Thus,	its	down-regulation	

would	provide	evidence	for	impaired	NKA	function.	On	the	other	hand,	expression	of	the	

regulatory	protein	PLM	was	unchanged,	 suggesting	 that	NKA	 function	 is	not	markedly	

affected	during	atrial	 fibrillation.	However,	another	western	blot	study	should	be	done	

in	order	to	analyze	the	phosphorylation	of	PLM	in	human	atrial	fibrillation.	

Taken	 together,	 the	presented	 results	 indicate	 that	 there	 are	no	major	 changes	 in	 the	

expression	 of	 Na+-handling	 proteins	 in	 human	 atrial	 fibrillation,	 except	 for	 reduced	

expression	of	the	β	1	subunit	of	NKA.	The	functional	relevance	of	this	change	is	probably	

negligible,	since	NKA	function/current	is	not	altered	in	human	atrial	fibrillation,	as	was	

shown	by	Workman	 et	 al.	 (Workman	 et	 al.	 2003).	Whether	 [Na+]i	 is	 changed	 in	 atrial	

myocytes	in	human	atrial	fibrillation	remains	to	be	determined.	

Interestingly,	in	SHR	model	the	expression	and	the	function	of	NKA	was	also	decreased	

in	the	atria,	however,	due	to	the	reduction	in	α	1	expression.	In	line	with	our	findings	in	

SHR,	 expression	 of	 Na+	 channels	was	 also	 unchanged	 in	 atrial	 fibrillation.	 However,	 a	
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significant	 increase	 in	 NHE	 and	 NCX	 expression,	 observed	 in	 SHR,	 was	 not	 seen	 in	

human	atrial	fibrillation.	

Thus,	the	expression	pattern	of	Na+-handling	proteins	in	the	atria	of	SHR	and	in	human	

atrial	fibrillation	was	different.		
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6.4. Macitentan	treatment	did	not	markedly	affect	atrial	Ca2+	

remodelling	in	SHR	

6.4.1. Macitentan	treatment	did	not	lower	blood	pressure	in	SHR	

The	aim	of	this	project	was	to	test	the	hypothesis	that	inhibition	of	endothelin	receptors	

(ETR)	reverses	or	reduces	the	atrial	proarrhythmic	remodelling	in	SHR	in	terms	of	Ca2+	

handling	 and	 endothelin-1	 signalling	 proteins	 expression.	 We	 found	 that	 macitentan	

treatment	for	8	weeks	did	not	markedly	affect	hemodynamic	parameters,	expression	of	

Ca2+-handling	proteins	and	proteins	involved	in	the	endothelin-1	signalling	pathway	in	

the	atria	of	SHR.	

Macitentan	 significantly	 increased	 diastolic	 and	 mean	 blood	 pressure	 in	 SHR.	 This	

observation	 is	 interesting.	Macitentan	 inhibits	both	 types	of	ET	receptors	 (ETR):	ETAR	

and	ETBR	(Iglarz	et	al.	2008).	ETB	is	abundantly	expressed	in	endothelial	cells,	where	its	

activation	 causes	 increased	 production	 of	 NO	 and	 PGI2,	 which	 act	 as	 vasodilators	

(Horinouchi	 et	 al.	 2013).	 Thus,	 inhibition	 of	 ETBR	 by	 Macitentan	 theoretically	 could	

cause	 reduced	 production	 of	 vasodilators	 and,	 thus,	 an	 increase	 in	 diastolic	 blood	

pressure.		

Interestingly,	Macitentan	treatment	significantly	reduced	mean	arterial	blood	pressure	

in	 another	 rat	 model	 of	 hypertension:	 Dahl	 salt-sensitive	 rats	 (Bolli	 et	 al.	 2012).	

Macitentan	administration	for	8	weeks	caused	a	significant	reduction	in	diastolic	blood	

pressure	 in	 patients	with	 essential	 systemic	 hypertension	 (Kholdani	 et	 al.	 2014).	 The	

treatment	with	 bosentan	 (another	 dual	 endothelin	 receptor	 antagonist)	 did	 not	 affect	

the	 blood	pressure	 in	 young	 SHR	 (from	12	 to	 16	weeks	 of	 age)	 (Li	&	 Schiffrin	 1995).	

Another	study	by	Nishikibe	et	al.	also	found	that	an	ETR	antagonist	did	not	lower	blood	

pressure	 in	 18-19	weeks	 and	 40	weeks	 (10	months)	 old	 SHR	 (Nishikibe	 et	 al.	 1993).	

However,	in	patients	with	essential	hypertension	bosentan	administration	resulted	in	a	

decrease	in	diastolic	blood	pressure	(Krum	et	al.	1998).	Thus,	the	observed	increase	in	

diastolic	 blood	 pressure	 by	 macitentan	 administration	 in	 SHR	 requires	 further	

investigation.	

We	 observed	 a	 significant	 reduction	 in	 systolic	 blood	 pressure	 in	 SHR	 by	 doxazosin.	

doxazosin	 is	a	 selective	α	1	adrenergic	blocker.	 Inhibition	of	α	1	adrenergic	 receptors	

results	in	the	lowering	of	intracellular	Ca2+	concentration	in	the	vascular	smooth	muscle	
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cells	 and,	 thus,	 dilatation	 of	 the	 blood	 vessels	 and	 a	 decrease	 in	 blood	 pressure	

(O’Connell	et	al.	2014).	Many	previous	studies	confirmed	the	reduction	in	systolic	blood	

pressure	 by	 doxazosin	 in	 SHR	 (Hamada	 et	 al.	 2012),	 (Asai	 et	 al.	 2005).	 Thus,	 the	

observed	 decrease	 in	 the	 systolic	 blood	 pressure	 by	 doxazosin	 in	 SHR	 is	 in	 line	with	

previous	studies.	

In	 summary,	 treatment	 of	 SHR	 with	 doxazosin	 but	 not	 macitentan	 lowered	 blood	

pressure.		

6.4.2. Macitentan	treatment	did	not	alter	expression	of	key	Ca2+-handling	

proteins	in	left	atria	of	SHR	

Previous	 observations	 from	our	 laboratory	 revealed	 that	 7	months	 old	 SHR	 exhibited	

impaired	 Ca2+	 handling	 and	 altered	 expression	 of	 some	 Ca2+	 regulating	 proteins:	

decreased	expression	of	the	L-type	Ca2+	channel,	the	RyR	and	increased	phosphorylation	

of	 the	RyR	at	 serine	2808	 (Pluteanu	et	al.	2015).	Moreover,	 atrial	myocytes	 from	SHR	

exhibited	 an	 increased	 response	 to	 endothelin-1	with	 elevation	 of	 Ca2+	 transients	 and	

the	 development	 of	 proarrhythmic	 events.	 Some	 components	 of	 the	 endothelin-1	

signalling	 pathway	 were	 upregulated	 on	 the	 mRNA	 or	 protein	 level	 in	 left	 atria	 of	 7	

months	old	SHR	(Pluteanu	et	al.	2013).	Thus,	we	proposed	that	inhibition	of	ETR	would	

affect	 expression	 of	 some	 key	 Ca2+-handling	 proteins	 in	 the	 atria	 of	 SHR.	 We	 found,	

however,	 that	 expression	 of	 most	 Ca2+-regulating	 proteins	 was	 not	 altered	 by	

macitentan	administration.	

Expression	of	the	α	1	subunit	of	L-type	Ca2+	channels,	the	RyR	and	its	phosphorylation	

status,	and	NCX	was	not	changed.	Thus,	sarcolemmal	Ca2+	entry	and	Ca2+	 release	 from	

the	SR	were	most	probably	unaffected	by	macitentan	 treatment.	Expression	of	SERCA,	

PLB,	 its	 phosphorylation	 and	 CSQ	 expression	 were	 also	 not	 significantly	 affected	 by	

macitentan,	suggesting	unaltered	Ca2+	reuptake	into	the	SR.	Thus,	the	Ca2+	cycle	in	atrial	

myocytes	on	 the	protein	 expression	 level	was	not	 affected	by	 inhibition	of	 endothelin	

receptors	in	SHR.		

Doxazosin	treatment	also	did	not	markedly	affect	expression	of	Ca2+-handling	proteins,	

except	for	a	20%	decrease	in	PLB	expression.	The	potential	functional	relevance	of	this	

alteration	is,	however,	difficult	to	predict.	

We	did	not	observe	any	changes	in	the	activity	of	PKA	or	CaMKII,	as	indirectly	shown	by	

unchanged	phosphorylation	of	 their	 targets:	RyR	and	PLB.	 Interestingly,	 expression	of	

CaMKII	 was	 significantly	 reduced	 by	 both	 macitentan	 and	 doxazosin.	 CaMKII	 plays	 a	
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critical	role	in	endothelin-1-mediated	hypertrophic	effects	(Zhu	et	al.	2000)	and	adverse	

cardiac	remodelling	(Anderson	et	al.	2011).	Thus,	 inhibition	of	the	ETR	could	decrease	

CaMKII	 expression	 and	 prevent	 some	 aspects	 of	 cardiac	 remodelling.	 However,	 the	

autophosphorylation	 of	 CaMKII	 and	 the	 phosphorylation	 of	 two	 important	 targets	 of	

CaMKII,	 (RyR	 and	 PLB),	 was	 not	 altered,	 suggesting	 that	 the	 CaMKII	 activity	 was	

unaffected.	 It	 should	 be	 noted,	 that	 we	 did	 not	 perform	 analysis	 of	 phosphatase	

expression	 or	 activity	 and,	 thus,	 we	 can	 not	 exclude	 the	 possibility	 that	 changes	 in	

phosphatases	 function	 occurred	 in	 parallel.	 Furthermore,	 local	 regulation	 of	

phosphatases	and	kinases	was	not	addressed	in	this	study.	

In	 summary,	 macitentan	 administration	 did	 not	 induce	 any	 major	 changes	 in	 the	

expression	or	phosphorylation	of	Ca2+-handling	proteins.		

6.4.3. Expression	of	proteins	involved	in	endothelin-1	signalling	is	not	

affected	by	macitentan	treatment	

Activation	 of	 ETAR	 causes	 production	 of	 two	 important	 second	 messengers:	 IP3	 and	

diacylglycerol	 (DAG).	 We	 analyzed	 expression	 of	 some	 proteins	 involved	 in	 the	

endothelin	signalling	cascade	and	we	found	that	expression	of	ETAR,	PLCβ	and	IP3R	was	

unchanged.	 Another	 part	 of	 this	 pathway	 includes	 activation	 of	 PKC	 by	 DAG.	 PKC	

phosphorylates	 various	 proteins,	 such	 as	 NHE,	 NCX,	 L-Type	 Ca2+	 channels	 and	 PLB,	

stimulating	 a	 positive	 inotropic	 response	 and	 development	 of	 pro-arrhythmogenic	

events	 in	 the	myocardium	(Drawnel	 et	 al.	 2013),	 (Kockskämper,	Zima,	 et	 al.	 2008).	 In	

our	 study,	 we	 did	 not	 focus	 on	 the	 DAG-PKC	 cascade,	 although	 we	 analyzed	 the	

phosphorylation	 of	 PLB	 by	 PKC	 at	 serine	 10	 and	 found	 that	 it	 was	 unchanged	 by	

macitentan.	 Thus,	 it	 can	 be	 assumed	 that	 the	 activity	 of	 PKC	 was	 not	 altered	 by	

macitentan.	Similar	to	macitentan,	doxazosin	also	did	not	affect	phosphorylation	of	PLB	

by	PKC	at	serine	10.	

ETAR	and	α	1	adrenergic	receptor	belong	to	the	Gq-coupled	receptor	family.	We	found	

that	macitentan	 treatment	 slightly	 enhanced	 expression	 of	 the	 ETAR	 (by	 almost	 50%,	

although	 this	 effect	 was	 statistically	 not	 significant).	 Chronic	 treatment	 with	 GPCR	

antagonists,	as	in	case	of	macitentan,	often	results	in	up-regulation	of	the	receptors	due	

to	 increased	 protein	 synthesis	 of	 the	 receptor	 or	 receptor	 trafficking	 to	 the	 plasma	

membrane	(Hendriks-Balk	et	al.	2008).	Thus,	the	observed	increase	in	the	expression	of	

ETAR	by	macitentan	 treatment	 is	 in	 line	with	 such	 a	mechanism.	 In	 case	 of	 doxazosin	

administration,	however,	we	observed	a	decrease	in	α	1	adrenergic	receptor	expression.		
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In	 line	 with	 our	 observation,	 a	 study	 by	 Wikberg	 et	 al.	 found	 that	 α	 1	 adrenergic	

receptor	 antagonists	 can	 down-regulate	 this	 receptor	 in	 vascular	 smooth	muscle	 cells	

(Wikberg	 et	 al.	 1983).	 However,	 as	was	 shown	 by	 Zhang	 et	 al.,	 prazosin	 (another	α1	

adrenoreceptor	 antagonist)	 up-regulated	 α	 1	 adrenergic	 receptor	 expression	 in	 rat	

heart	 and	 spleen	 (Zhang	 et	 al.	 2002).	 Another	 study	 by	 Yono	 et	 al.	 found	 an	 up-

regulation	 of	 the	α	 1	 adrenergic	 receptor	 expression	 on	 the	mRNA	 level	 in	 rat	 heart	

(Yono	et	al.	2004)	.	Thus,	both	up-	and	down-regulation	of	α	1	adrenergic	receptors	have	

been	observed	following	its	inhibition.	

Taken	together,	our	findings	indicate	that	the	blockade	of	ETRs	with	macitentan	did	not	

lower	 the	 blood	 pressure	 or	 alter	 expression	 of	 key	 Ca2+-handling,	 and	 endothelin-1	

signalling	proteins	in	the	atria	of	7	months	old	SHR.	
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8. Abbreviations	

	

Abbreviation	 Full	text	

[Ca2+]	 Calcium	concentration	

[Na+]i	 Intracellular	sodium	concentration	

AF	 Atrial	fibrillation	

ANOVA	 Analysis	of	variance	

APS	 Ammoniumpersulfate	

ATP	 Adenosine	triphosphate	

BCA	 Bicinchoninic	acid		

BDM	 2,3-Butanedione	2-Monoxime	

bpm	 Beats	per	minute	

Br-Ph	Blue	 Bromophenol	blue	sodium	salt	

BSA	 Bovine	serum	albumin	

cAF	 Chronic	atrial	fibrillation	

CaMKII	 Ca2+/calmodulin-dependent	protein	kinase	II	

CICR	 Ca2+-induced	Ca2+	release	

CSQ	 Calsequestrin	

ddH2O	 Double	distilled	water	

CTGF	 Connective	tissue	growth	factor	

DMSO	 Dimethyl	sulfoxide	

DTT	 Dithiothreitol	
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e.g.	 exempli	gratia	

ECC	 Excitation-contraction	coupling	

EDTA	 Ethylenediaminetetraacetic	acid	

EGTA	 Ethylene	glycol	tetraacetic	acid	

Eppendorf	tube	 Eppendorf	(microcentrifuge)	tube	

ETAR	 Endothelin-A	receptor	

ETBR	 Endothelin-B	receptor	

ETR	 Endothelin	receptor	

GAPDH	 Glyceraldehyde	3-phosphate	dehydrogenase	

GPCR	 G-protein	coupled	receptor	

HEPES	 4-(2-hydroxyethyl)-1-piperazineethanesulfonic	

acid	

HF	 Heart	failure	

HRP	 Horseradish	peroxidase	

Hz	 The	Hertz	unit	of	frequency	

IgG	 Immunoglobulin	G	

IP3	 Inositol	1,4,5-trisphosphate	

IP3R	 Inositol	1,4,5-trisphosphate	receptor	

kDa	 Kilo	Dalton	

LTCC	 L-type	calcium	channel	

mmHg	 Millimeter	of	mercury	

NaCl	 Sodium	chloride	

NADH	 Nicotineamide	adenine	dinucletide	
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NADPH	 Nicotineamide	adenine	dinucletide	phosphate	

NCX	 Sodium-calcium	exchanger	

NF	 Non-failing	stage	

NHE	 Sodium-hydrogen	exchanger	

NKA	 Sodium-potassium	ATPase	

nM	 Nanomolar	

NP-40	 Tergitol-type	NP-40	

PAA/BIS	 Polyacrylamide/N,N'-methylene-bisacrylamide	

PAA/BIS	30%	 30%	 acrylamide/bis-acrylamide,	 29:1	 (3.3%	

crosslinker)	solution	

pAF	 Paroxysmal	atrial	fibrillation	

PIP2	 Phosphatidylinositol	4,5-bisphosphate	

PKA	 Protein	kinase	A	

PKC	 Protein	kinase	C	

PLB	 Phospholamban	

PLCβ	 Phospholipase	C	β	

PLM	 Phospholemman	

PMSF	 Phenylmethylsulfonyl	fluoride	

Ponceau	S	 Ponceau	S,	Acid	Red	112	

pPLB	S16	 Phospholamban	phosphorylated	at	serine	16	

pPLB	Th17	 Phospholamban	phosphorylated	at	threonine	17	

pPLB	S10	 Phospholamban	phosphorylated	at	serine	10	

pRyR	S	2808	 Ryanodine	 receptor	 phosphorylated	 at	 serine	

2808	
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pRyR	S	2814	 Ryanodine	 receptor	 phosphorylated	 at	 serine	

2814	

q.s.	 Quantum	satis	

RAAS	 Renin-angiotensin-aldosterone	system	

rpm	 Revolutions	per	minute	

RT	 Room	temperature	

RyR	 Ryanodine	receptor	

SBFI	 Sodium-binding	benzofuran	isophthalate	

SDS	 Sodium	dodecyl	sulfate	

SDS-PAGE	 Sodium	 dodecyl	 sulfate	 polyacrylamide	 gel	

electrophoresis	

SEM	 Standard	error	of	the	mean	

SERCA	 Sarcoplasmic	reticulum	Ca2+ATPase	

SHR	 Spontaneously	hypertensive	rats	

TBS	 Tris	buffered	solution	

TBST	buffer	 Tris-buffered	saline	and	Tween	20	buffer	

TEMED	 Tetramethylethylenediamine	

Tris	 Tris(hydroxymethyl)aminomethane	

Tween	20	 Polysorbate	20	

VPR	 Volume	Pressure	Recording	

vs.	 Versus	

WKY	 Wistar	Kyoto	rats	
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