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Abstract i 
 

Living systems are overwhelmingly complex and consist of many interacting parts. Already the quantitative 

characterization of a single human cell type on genetic level requires at least the measurement of 20000 gene 

expressions. It remains a big challenge for theoretical approaches to discover patterns in these signals that 

represent specific interactions in such systems. A major problem is that available standard procedures 

summarize gene expressions in a hard-to-interpret way. For example, principal components represent axes of 

maximal variance in the gene vector space and thus often correspond to a superposition of multiple different 

gene regulation effects(e.g. I.1.4). 

Here, a novel approach to analyze and interpret such complex data is developed(Chapter II). It is based on an 

extremum principle that identifies an axis in the gene vector space to which as many as possible samples are 

correlated as highly as possible(II.3). This axis is maximally specific and thus most probably corresponds to 

exactly one gene regulation effect, making it considerably easier to interpret than principle components. To 

stabilize and optimize effect discovery, axes in the sample vector space are identified simultaneously. Genes 

and samples are always handled symmetrically by the algorithm. While sufficient for effect discovery, effect  

axes can only linearly approximate regulation laws. To represent a broader class of nonlinear regulations,  

including saturation effects or activity thresholds(e.g. II.1.1.2), a bimonotonic effect model is defined(II.2.1.2).  

A corresponding regression is realized that is monotonic over projections of samples (or genes) onto 

discovered gene (or sample) axes. Resulting effect curves can approximate regulation laws precisely(II.4.1).  

This enables the dissection of exclusively the discovered effect from the signal(II.4.2). Signal parts from other 

potentially overlapping effects remain untouched. This continues iteratively. In this way, the high-dimensional 

initial signal(II.2.1.1) can be dissected into highly specific effects. 

Method validation demonstrates that superposed effects of various size, shape and signal strength can be 

dissected reliably(II.6.2). Simulated laws of regulation are reconstructed with high correlation. Detection limits, 

e.g. for signal strength or for missing values, lie above practical requirements(II.6.4). The novel approach is 

systematically compared with standard procedures such as principal component analysis. Signal dissection is 

shown to have clear advantages, especially for many overlapping effects of comparable size(II.6.3). 

An ideal test field for such approaches is cancer cells, as they may be driven by multiple overlapping gene 

regulation networks that are largely unknown. Additionally, quantification and classification of cancer cells by 

their particular set of driving gene regulations is a prerequisite towards precision medicine. To validate the 

novel method against real biological data, it is applied to gene expressions of over 1000 tumor samples from 

Diffuse Large B-Cell Lymphoma (DLBCL) patients(Chapter III). Two already known subtypes of this disease(cf. I.1.2.1) 

with significantly different survival following the same chemotherapy were originally also discovered as a 

gene expression effect. These subtypes can only be precisely determined by this effect on molecular level. Such 

previous results offer a possibility for method validation and indeed, this effect has been unsupervisedly 

rediscovered(III.3.2.2). 

Several additional biologically relevant effects have been discovered and validated across four patient 

cohorts. Multivariate analyses(III.2) identify combinations of validated effects that can predict significant 

differences in patient survival. One novel effect possesses an even higher predictive value(cf. III.2.5.1) than the 

rediscovered subtype effect and is genetically more specific(cf. III.3.3.1). A trained and validated Cox survival 

model(III.2.5) can predict significant survival differences within known DLBCL subtypes(III.2.5.6), demonstrating 

that they are genetically heterogeneous as well. Detailed biostatistical evaluations of all survival effects(III.3.3) 

may help to clarify the molecular pathogenesis of DLBCL. 

Furthermore, the applicability of signal dissection is not limited to biological data. For instance, dissecting  

spectral energy distributions of stars observed in astrophysics might be useful to discover laws of light emission. 
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Kurzzusammenfassung iii 
 

Lebende Systeme sind überwältigend komplex und bestehen aus vielen interagierenden Teilen. Bereits die 

quantitative Charakterisierung eines einzelnen menschlichen Zelltyps auf genetischer Ebene bedarf 

mindestens der Messung von 20000 Genexpressionen. Es ist nach wie vor eine große Herausforderung für 

theoretische Ansätze, Muster in diesen Signalen zu entdecken, welche spezifische Interaktionen in solchen 

Systemen repräsentieren. Ein Hauptproblem besteht darin, dass verfügbare Standardmethoden die 

Genexpressionen in einer schwierig zu interpretierenden Weise zusammenfassen. Hauptkomponenten etwa 

repräsentieren Achsen maximaler Varianz im Genvektorraum und entsprechen daher häufig einer 

Überlagerung vieler verschiedener Genregulationseffekte(e.g. I.1.4). 

In dieser Arbeit wird ein neuartiger Ansatz zur Analyse und Interpretation derartig komplexer Daten 

entwickelt(Chapter II). Er basiert auf einem Extremalprinzip, welches eine Achse im Genvektorraum identifiziert, 

zu der so viele Proben wie möglich so hoch wie möglich korreliert sind(II.3). Diese Achse ist maximal spezifisch 

und entspricht daher typischerweise genau einem Genregulationseffekt, wodurch sie deutlich einfacher zu 

interpretieren ist als Hauptkomponenten. Zur Stabilisierung und zur Optimierung der Effekterkennung 

werden analog und gleichzeitig Achsen im Probenvektorraum identifiziert. Der Algorithmus behandelt 

generell Gene und Proben symmetrisch. Obwohl sie ausreichend zur Entdeckung von Effekten sind, können 

Effektachsen Regulationsgesetze nur linear annähern. Um eine breitere Klasse nichtlinearer Regulationen wie 

Sättigungseffekte oder Aktivitätsschwellen zu repräsentieren, wird ein bimonotonisches Effektmodell 

definiert(II.2.1.2). Die entsprechende Regression ist monotonisch über die Projektionen von Proben (bzw. Genen) 

auf entdeckte Genachsen (bzw. Probenachsen). Resultierende Effektkurven können Genregulationsgesetze 

präzise approximieren(II.4.1). Das ermöglicht die ausschließliche Abtrennung des entdeckten Effekts vom 

Signal(II.4.2). Signalbestandteile anderer (möglicherweise überlappender) Effekte bleiben unangetastet. Dies 

wird iterativ fortgesetzt. Auf diese Weise kann das hochdimensionale Ausgangssignal(II.2.1.1) in hochspezifische 

Einzeleffekte zerlegt werden. 

Die Methodenvalidierung zeigt, dass superponierte Effekte von vielfältiger Größe, Form und Signalstärke 

zuverlässig zerlegt werden können(II.6.2). Simulierte Regulationsgesetze werden dabei mit hoher Korrelation 

rekonstruiert. Erkennungsgrenzen bzgl. Signalstärke oder bzgl. der Rate fehlender Messwerte(II.6.4) liegen 

oberhalb praktischer Anforderungen. Der neuartige Ansatz wird mit Standardverfahren wie der 

Hauptkomponentenanalyse systematisch verglichen. Es wird gezeigt, dass die Signalzerlegung klare Vorteile 

hat, insbesondere bei vielen überlappenden Effekten mit vergleichbarer Größe(II.6.3). 

Ein ideales Testfeld für solche Ansätze sind Krebszellen, da sie von vielen überlappenden Genregulations-

netzwerken gesteuert sein können, welche weitgehend unbekannt sind. Darüber hinaus ist die 

Quantifizierung und Klassifizierung von Krebszellen durch ihre spezifische Menge antreibender 

Genregulationen eine Voraussetzung in Richtung Präzisionsmedizin. Um die neuartige Methode gegen reale 

Daten zu validieren, wird sie auf Genexpressionen von über 1000 Tumorproben von Patienten mit diffus 

großzelligem B-Zell-Lymphom (DLBCL) angewendet. Zwei bereits bekannte Subtypen dieser Krankheit(cf. I.1.2.1) 

mit signifikant unterschiedlichem Überleben infolge derselben Chemotherapie wurden ursprünglich ebenfalls 

als Genexpressionseffekt entdeckt. Diese Subtypen können nur mit Hilfe dieses Effekts auf molekularem Level 

präzise bestimmt werden. Solche vorherigen Ergebnisse erlauben eine Methodenvalidierung, und in der Tat 

wurde dieser Effekt unüberwacht wiederentdeckt(III.3.2.2). 

Mehrere weitere biologisch relevante Ergebnisse wurden ermittelt und über vier Patientenkohorten 

validiert. Multivariate Analysen(III.2) identifizieren Kombinationen von validierten Effekten, die signifikante 

Unterschiede im Patientenüberleben vorhersagen können. Ein neuartiger Effekt besitzt sogar einen höheren 

Vorhersagewert(cf. III.2.5.1) als der wiederentdeckte Subtypeffekt und ist zudem genetisch spezifischer(cf. III.3.3.1).  
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Ein angelerntes und validiertes Cox-Überlebensmodell(III.2.5) kann signifikante Überlebensunterschiede 

innerhalb bekannter DLBCL Subtypen(III.2.5.6) vorhersagen, was zeigt, dass diese ebenfalls genetisch heterogen 

sind. Detaillierte biostatistische Auswertungen für alle Überlebenseffekte(III.3.3) können dazu beitragen, die 

molekulare Pathogenese von DLBCL zu klären. 

Darüber hinaus ist die Anwendbarkeit der Signalzerlegung nicht auf biologische Daten begrenzt. In der 

Astrophysik könnte z.B. die Zerlegung spektraler Energieverteilungen von Sternen nützlich zur Entdeckung 

von Lichtemissionsgesetzen sein. 



Contents v 
 

  

I.1 Introduction ...................................................... 3 

I.1.1 What is a complex system?................................................. 3 

I.1.2 Biological Context .................................................................... 4 
I.1.2.1 Diffuse Large B-Cell Lymphoma and cells as complex systems .......... 4 
I.1.2.2 Pathways, normal B cells in the immune system and NF-κB ............. 5 
I.1.2.3 Molecular causes of B cell malignancy .............................................. 6 
I.1.2.4 Precision medicine ........................................................................... 8 

I.1.3 Common Stages in Systems Science .............................. 8 
I.1.3.1 A cascade of abstraction levels for modeling .................................... 8 
I.1.3.2 The measurement stage, next-generation RNA sequencing and 

unexpected complexity .............................................................................. 9 
I.1.3.3 The increasing gap, an obvious but fundamental problem ............. 10 
I.1.3.4 Generic footprints of interactions and the summarization stage .... 11 
I.1.3.5 The association stage and putting it all together ............................. 13 

I.1.4 Motivation and Goals .......................................................... 14 
I.1.4.1 Helpful and misleading signal summarizations ............................... 14 
I.1.4.2 Design goals, the detection task and method preview.................... 15 
I.1.4.3 Outline ........................................................................................... 17 

I.2 Standard Analyses....................................... 18 

I.2.1 Supervised Gene Expression Analysis ...................... 18 
I.2.1.1 Differential expression analyses ..................................................... 18 
I.2.1.2 Application of specific gene signatures ........................................... 19 

I.2.2 Unsupervised Gene Expression Analysis ................ 21 
I.2.2.1 Hierarchical clustering .................................................................... 21 
I.2.2.2 Principal components analysis (PCA) .............................................. 24 

I.2.3 Copy Number Analyses ..................................................... 27 

I.2.4 Viability Curves and the IC50 ........................................ 28 

I.3 Association Methods .................................. 29 

I.3.1 Signature Analyses and Gene Set Enrichment ..... 29 
I.3.1.1 Gene set enrichment analysis ......................................................... 29 
I.3.1.2 Additional signature statistics and signature heatmaps .................. 31 

I.3.2 Gene Ontology Analyses.................................................... 32 

I.3.3 Kaplan Meier Survival and Log Rank Tests ........... 33 

  

II.1 Design Goals................................................. 37 

II.1.1 Introductory 3D Example .............................................. 37 
II.1.1.1 A simple linear effect..................................................................... 37 
II.1.1.2 Supported nonlinear biological effects and three examples .......... 38 
II.1.1.3 Merged 3D signal and an exemplary detection task ...................... 39 

II.1.2 Method Design Goals ........................................................ 40 
II.1.2.1 Effect focusing should be unsupervised......................................... 40 
II.1.2.2 Discovered effects should be specific to true effects ..................... 40 
II.1.2.3 Partial correlations should be properly resolved............................ 41 
II.1.2.4 Symmetry of genes and samples................................................... 41 
II.1.2.5 Removal of overlapping strong effects .......................................... 42 
II.1.2.6 Compatibility with gradual effects ................................................. 43 
II.1.2.7 Number of effects and user-dependency of results....................... 43 
II.1.2.8 Completeness of results ................................................................ 44 

II.1.3 Needed Capabilities beyond Detection .................. 44 
II.1.3.1 Comparability and validation of effects across sample cohorts...... 44 

II.1.3.2 Cohort-independent genomic consensus effects .......................... 45 
II.1.3.3 Patient classification in new cohorts by genomic effects ............... 45 
II.1.3.4 Specific biostatistical evaluation of discovered effects ................... 45 

II.2 Mathematical Framework .....................46 

II.2.1 Model ......................................................................................... 46 
II.2.1.1 Signal model ................................................................................. 46 
II.2.1.2 Bimonotonic effect model and effect eigensignals ........................ 47 

II.2.2 Basic Concepts...................................................................... 48 
II.2.2.1 Gene and sample vector spaces .................................................... 48 
II.2.2.2 Gene and samples axes................................................................. 48 
II.2.2.3 Effect curves ................................................................................. 49 
II.2.2.4 Effect focus ................................................................................... 49 

II.2.3 Measures of Interaction .................................................. 50 
II.2.3.1 Weighted uncentered correlations aka the cosine distance .......... 50 
II.2.3.2 Weighted projections ................................................................... 51 

II.3 Search Strategy ...........................................52 

II.3.1 Finding Effects...................................................................... 52 
II.3.1.1 Standardization against outliers .................................................... 53 
II.3.1.2 The effect focus and its initial estimation ...................................... 54 
II.3.1.3 Initial effect axes and symmetrization by twin axes ....................... 55 
II.3.1.4 Correlations and the refined effect focus ...................................... 56 
II.3.1.5 Focusing step ................................................................................ 56 
II.3.1.6 Scalar effect score ......................................................................... 57 
II.3.1.7 Search complexity, presorting and a lookahead scheme ............... 58 
II.3.1.8 Qualification of candidates............................................................ 59 

II.3.2 Effect Axes Convergence ................................................ 60 
II.3.2.1 Iterative selection of representatives ............................................ 60 
II.3.2.2 Accumulating representatives and the update step ...................... 61 
II.3.2.3 Checking for sufficient representatives and for convergence ........ 61 

II.4 Regression and Dissection.....................63 

II.4.1 Regression and Effect Curves ...................................... 63 
II.4.1.1 Effect strengths for genes and samples ......................................... 64 
II.4.1.2 The empirical eigenorder .............................................................. 64 
II.4.1.3 Bimonotonic regression ................................................................ 65 
II.4.1.4 Adaptive smoothing by 2D Fourier transforms.............................. 67 
II.4.1.5 Check for convergence.................................................................. 70 

II.4.2 Effect Dissection .................................................................. 70 
II.4.2.1 Dissection strengths, final eigensignal and remaining signal .......... 71 
II.4.2.2 Effective clustering and limits of projection based methods .......... 71 
II.4.2.3 Visualization of high-dim. eigensignals: the coordinate view ......... 73 

II.4.3 Remaining Signal and Termination ......................... 75 

II.5 Noise and Significance .............................76 

II.5.1 Significance of Observed Signal Strengths ........... 76 
II.5.1.1 Estimating the true noise level ...................................................... 76 
II.5.1.2 Significance of signal strengths ...................................................... 78 

II.5.2 Significance of Observed Correlations ................... 81 
II.5.2.1 Significance of weighted correlations ............................................ 81 
II.5.2.2 Significance of all gene and sample correlations for an effect ........ 83 

 

 



vi Contents 
 

II.6 Method Validation and Comparison . 84 

II.6.1 3D Concept Example ......................................................... 84 
II.6.1.1 Overview of all dissection steps ..................................................... 84 
II.6.1.2 Comparison with PCA ................................................................... 85 
II.6.1.3 Comparison with hierarchical clustering ........................................ 85 

II.6.2 Versatility ................................................................................ 87 
II.6.2.1 Scenario definition and 7 distinct effect patterns........................... 87 
II.6.2.2 A detection walkthrough for 1000 dimensions.............................. 88 
II.6.2.3 Comparison of detected and true simulated effects and results.... 93 
II.6.2.4 Comparison with PCA (versatility scenario with 7 effects) ............. 94 
II.6.2.5 Comparison with PCA (versatility scenario with 13 effects) ........... 96 
II.6.2.6 Comparison with hierarchical clustering ...................................... 100 

II.6.3 Superposition Depth ...................................................... 101 
II.6.3.1 Results and comparison with PCA for 1 to 20 times pattern #3 ... 101 
II.6.3.2 Results and comparison with PCA for 1 to 20 times pattern #4 ... 105 
II.6.3.3 Results and comparison with PCA for 1 to 20 times pattern #6 ... 108 

II.6.4 Detection Limits ............................................................... 110 
II.6.4.1 Weak signals ............................................................................... 110 
II.6.4.2 Many noise genes ....................................................................... 112 
II.6.4.3 Few samples ............................................................................... 118 
II.6.4.4 Missing values and their imputation............................................ 121 

 

 

III.1 Application to DLBCL ......................... 127 

III.1.1 Detection in Single Patient Cohorts .................... 127 
III.1.1.1 Available gene expressions cohorts............................................ 127 
III.1.1.2 Dissection overview for single cohorts ....................................... 128 

III.1.2 Validation of Effects across Cohorts ................... 129 
III.1.2.1 Comparison between two cohorts by corr. of effect gene axes.. 129 
III.1.2.2 Validation by independent discovery in several cohorts ............. 130 
III.1.2.3 Supervised Validation ................................................................ 131 

III.1.3 Genomic Consensus Effects ..................................... 132 
III.1.3.1 Consensus gene axes ................................................................. 132 
III.1.3.2 Consensus gene scores and their correlation ............................. 133 

III.1.4 Application of Genomic Effects.............................. 135 
III.1.4.1 Cleaned signal ............................................................................ 135 
III.1.4.2 Application of consensus gene axes and sample classification  

by eigensignal strengths ......................................................................... 135 

III.1.5 Overview of Scores ....................................................... 136 

III.2 Multivariate Survival Prediction ... 138 

III.2.1 Survival Model and Effect Selection ................... 138 
III.2.1.1 Cox Proportional Hazard Models ............................................... 138 
III.2.1.2 Available survival data and its limited information ..................... 139 
III.2.1.3 Choosing sample scores ............................................................. 140 
III.2.1.4 Correcting for survival factors that are not specific for DLBCL..... 141 
III.2.1.5 Effect selection procedure and likelihood ratio tests .................. 141 
III.2.1.6 Validation techniques ................................................................ 142 
III.2.1.7 Interpreting ambiguities ............................................................ 142 
III.2.1.8 Survival for ABC DLBCL and GCB DLBCL for comparison ............. 143 
III.2.1.9 Revisiting binary subtype classifications and associated cutoffs . 144 

III.2.2 Bivariate Model for R-CHOP.................................... 145 
III.2.2.1 Selection of validated GEP effects as predictor variables ............ 145 
III.2.2.2 Fit results, prediction performance and validation ..................... 147 
III.2.2.3	  127 is a GCB-DLBCL-only survival effect ............................ 148 
III.2.2.4 Predictions within risk partitions of   134 ............................ 149 
III.2.2.5 Predictions within ABC DLBCL and GCB DLBCL subtypes ............ 151 

III.2.3 Bivariate Model for the COO Induced Effect ...152 
III.2.3.1 Selection of validated GEP effects as predictors ......................... 152 
III.2.3.2 Fit results, prediction performance and validation ..................... 153 
III.2.3.3 Subtype-specific analysis of   105 ....................................... 154 

III.2.4 Bivariate Model for CHOP .........................................155 
III.2.4.1 Selection of validated GEP effects as predictors ......................... 155 
III.2.4.2 Fit results, prediction performance and validation ..................... 156 
III.2.4.3 Hierarchical survival analysis of   44 .................................... 157 
III.2.4.4 Subtype-specific analysis of   44 ......................................... 159 

III.2.5 Quinvariate Model for All Samples ......................160 
III.2.5.1 Selection of validated GEP effects as predictors ......................... 160 
III.2.5.2 Fit results ................................................................................... 162 
III.2.5.3 Leave-one-out cross-validation and predictor performance ...... 163 
III.2.5.4 Predictions within CHOP and R-CHOP subsets ........................... 165 
III.2.5.5 Prediction performance for FFPE and frozen cell material.......... 166 
III.2.5.6 Predictions within ABC DLBCL and GCB DLBCL ........................... 167 
III.2.5.7 Predictions within risk partitions of   134............................ 168 
III.2.5.8 Predictions within risk classes by International Prognostic Index 169 

III.3 Biostatistical Evaluation .................... 171 

III.3.1 Analyses and Statistical Tests .................................171 
III.3.1.1 Association with clinical knowledge ........................................... 171 
III.3.1.2 Association with genomic knowledge ........................................ 172 

III.3.2 Effects Identified by Sample Annotations ........173 
III.3.2.1	  2: Gender effect and annotation mistakes ........................ 173 
III.3.2.2	  129: Cell of origin induced effect (DLBCL subtypes) .......... 176 

III.3.3 Survival Effects ................................................................183 
III.3.3.1	  134: Primary survival effect in DLBCL ............................... 183 
III.3.3.2	 ∈ 127, 131: A hierarchical survival effect in GCB DLBCL ... 189 
III.3.3.3	  105: KIAA1217 (2nd predictor var., COO based model) ..... 194 
III.3.3.4	  5: A stromal effect (CHOP based model, 1st predictor var.) 195 
III.3.3.5	  44: Another stromal effect with a hierarchical survival 

dependency and revisiting a previous DLBCL survival predictor .............. 200 
III.3.3.6	  19: A T cell related effect (quinvar. model, 3rd variable) .... 204 
III.3.3.7	  75: BCL2 (quinvariate model, 4th predictor variable) ......... 208 
III.3.3.8	  3: A zinc-related effect (quinvar. model, 5th variable) ........ 210 

III.3.4 Effects without Strong Survival Impact.............215 
III.3.4.1	  20: Another perspective on DLBCL subtypes .................... 215 
III.3.4.2	  7: Presumably the main blood concentration effect ......... 218 
III.3.4.3	  4: A strong immunoglobulin effect ................................... 220 

 

Conclusion ........................................................... 223 

Research Perspectives ................................... 228 

 

Digital Content ................................................... 231 

Indexes .................................................................. 233 
Symbols ...................................................................................................... 233 
Named Equations ....................................................................................... 235 
Tables ......................................................................................................... 235 
Figures ........................................................................................................ 236 

Bibliography ....................................................... 239 

Scientific Profile ................................................ 247 

Acknowledgements ......................................... 249 

 



 1 
 

After rooting this work in complex systems science, its biological 

context of Diffuse Large B-Cell Lymphoma is introduced.  

Summarizations of detailed measurements like human gene 

expressions are essential to discover novel effects of interactions  

and to provide an interpretable basis for high-level system modeling. 

Examples of existing summarizations by generic concepts of 

interactions are presented and the need for a more compatible 

concept for gene expressions is demonstrated. 

Next, selected biostatistical methods for analyses of typical 

experiments in molecular biology are clarified, including methods 

that can associate results with existing genomic knowledge. 

Exemplary analyses performed for several published investigations  

of DLBCL or of related biological contexts are presented. 
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I.1 Introduction 
In general terms, this work is about a complex system, the cancer cell. Theoretical concepts 

from complex system theory are used to model and detect interactions in this system in order 

to address biological and medical questions. One specific goal is to help clarifying the 

molecular pathogenesis of Diffuse-Large B-Cell Lymphoma. This disease and the pathway 

language utilized to model interactions in cancer cells are introduced. In particular, the NF-

κB pathway and its role for normal and malignant B cells is briefly presented. 

Technologies like microarrays and RNA sequencing can measure more and more parts and 

details of cancer cells. Hence, methods that can summarize observed signals by interactions 

become increasingly important in bioscience and in many other fields of science as well. Signal 

summarization is located above technology-specific signal processing and below system-

specific modeling by experts. 

For biological interactions observed by gene expressions and for similar signals, a more 

compatible summarization concept is needed, as is motivated by an intuitive 3D example. In 

particular, it is demonstrated that standard principal components analyses of such signals 

deliver misleading summaries that may prevent otherwise possible insights into underlying 

pathways. A preview illustrates the detection task and an outline concludes the introduction. 

I.1.1 What is a complex system? 
A typical complex system is fluid flow: While at lower energies laminar flow can be observed, i.e. a smooth 

flow like that of a calm river without any large local differences in movement direction or speed, at higher 

energies the same fluid may show turbulence with strong and seemingly random fluctuations over many 

scales, for example at the end of a waterfall. Between the two extremes, many interesting transitions from 

laminar to chaotic flow and vice versa can be observed and are studied in the nonlinear dynamics field of 

theoretical physics. Despite this complexity, the local behavior of systems of fluid flow can be modeled by just 

two lines of math, the Navier-Stokes equations. The same equations can also be utilized to predict fluid flow, 

given its initial conditions. For laminar flows, predictions of very high accuracy are possible even over longer 

time periods. However, turbulent flows can only be predicted with acceptable accuracy for rather short 

periods and for precise knowledge of initial conditions, because they behave completely differently over time 

for only minimal deviations in initial conditions. Mathematically, this complexity can be rooted in a nonlinear 

differential operator in the Navier-Stokes equations. Nonlinearity generally indicates that the superposition 

principle no longer holds, i.e. the system can no longer be described as a sum of easier parts without 

considering their interaction. 

For a more interdisciplinary view on complex systems, the nature of complexity needs to be extracted. From 

the fluid flow example above two things can be learned: Most importantly, all the complexity of fluid flow is 

possible, although locally every fluid molecule just follows the same simple and predictable laws of motion 

described by the Navier-Stokes equations. Hence, complexity is a result of interaction and cannot be found nor 

explained on the level of single elements of the system. Additionally, small changes at one time point can lead 
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to large qualitative and unpredictable changes as the system evolves. A more complete yet concise description 

of a complex system can be found in the Encyclopedia of Complexity and Systems Science[1]: 

“Complex systems are systems that comprise many interacting parts with the ability to generate a new 

quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or 

functional structures. They are therefore adaptive as they evolve and may contain self-driving feedback loops. 

Thus, complex systems are much more than a sum of their parts. Complex systems are often characterized as 

having extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or 

even completely deterministic. 

The conclusion is that a reductionist (bottom-up) approach is often an incomplete description of a 

phenomenon. This recognition, that the collective behavior of the whole system cannot be simply inferred from 

the understanding of the behavior of the individual components, has led to many new concepts and 

sophisticated mathematical and modeling tools for application to many scientific, engineering, and societal 

issues that can be adequately described only in terms of complexity and complex systems.”[1] 

I.1.2 Biological Context 
The medical and biological context of this work is briefly introduced here, including the cancer type in focus, 

its known subtypes and their original definition. Some functions of the healthy ancestor cells from which this 

cancer derives are illuminated. In this context, simple pathways and exemplary known molecular causes for 

the disease are presented. Finally, the goal of precision medicine is explained. 

I.1.2.1 Diffuse Large B-Cell Lymphoma and cells as complex systems 

Throughout this work, Diffuse Large B-Cell Lymphoma (DLBCL) serves as the real-world complex system in 

focus for method development and application. Malignant lymphomas are cancers that develop from cells of 

the lymphatic system and then proliferate there. There are approximately 422.000 cases of lymphoma per 

year[2] (world-wide estimate from 2008), of which DLBCL is the most common type, accounting for 

approximately 30-40% of all adult lymphoma cases[3]. If untreated, DLBCL ultimately causes death, because 

the lymphatic system is an integral part of the human immune defense system. DLBCL is known to be a 

genetically heterogeneous disease with two dominant subtypes that are morphologically hard to distinguish: 

activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL. Originally, these two subtypes were 

detected with and defined via hierarchical clustering of DLBCL gene expressions in 2000[4]. They were named 

after their shared gene expression programs with samples of activated blood B-cells respectively germinal 

center B-cells from healthy donors(Figure I.1.2.1, unterhalb); this also suggests that the malignant cells derive from these 

different normal B-cells. 

In principle, the disease is curable with a chemotherapy combining several cytotoxins (small molecule 

compounds cyclophosphamide, doxorubicin, vincristine and prednisone, in short CHOP), but the 5-years 

overall survival was only 60% for GCB DLBCL and only 30% for ABC DLBCL patients[5]. It was possible to 

improve survival significantly by 10%-15% via inclusion of an immunotherapy (Rituximab-CHOP, in short 

R-CHOP)[5]. The two subtypes found on gene expression level and validated on survival level suggest that 

different interactions with the chemotherapy take place in different patients, which encourages the search for 

subtype-specific therapies for further improvement. 

Taking a systems perspective again, there are two natural levels of abstraction here: the single cancer cell 

and the human body. Both have well-defined geometric borders in form of the cell membrane respectively the 
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human skin. Neither is a closed system as 

they obviously interact with their envi-

ronment. Both levels are valid descriptions 

and the right choice depends on the 

question. In molecular biology, the primary 

focus is to investigate the molecular 

pathogenesis, i.e. how a single cancer cell 

works. In particular, why it has started to 

proliferate in an uncontrolled way compared 

to healthy cells and how it can be 

manipulated towards apoptosis (i.e. pro-

grammed cell death). Therefore, the more 

suitable choice here is to focus on the single 

cell as the system and abstract its 

environment by functional molecules that 

can interact with it, for example by binding 

to the cell’s surface receptors. 

The cell fits the above description of a 

complex system: It is comprised of many 

functional molecules like proteins and many 

more interacting parts. In case of a cancer 

cell, they collectively self-organize a pro-

cedure of rapid cellular reproduction. They 

can adapt and evolve; for example, they 

might acquire oncogenic mutations to their 

DNA that are beneficial for their 

reproduction. It is even assumed that such 

mutations, either occurring randomly or due 

to failure in DNA maintenance and repair or 

induced by exogenous toxins, are also causal 

for cancer genesis in the first place[6]. This is also a prime example where a tiny change in the cell’s DNA (i.e. 

its “initial conditions”) causes the emergence of a qualitatively completely different anti-apoptotic re-

production behavior in the long-term. Trying to understand this complex behavior from the perspective of 

single proteins or genes is futile. Their interactions must be investigated, modeled and understood. 

I.1.2.2 Pathways, normal B cells in the immune system and NF-κB 

Molecular biology uses the language of pathways to model these interactions. One particular important 

pathway is NF-κB (nuclear factor κB) that stands for a protein family found in several species. These proteins 

act as transcription factors, i.e. they can enter the cell nucleus, bind to specific DNA sequences, recruit RNA 

polymerases and thereby initiate transcription of specific target genes. Resulting messenger RNA molecules 

(mRNAs) then leave the cell nucleus and ribosomes translate them into proteins that finally change the cell’s 

function. Central to the (classical) NF-κB pathway(Figure I.1.2.2, unterhalb) is the p50-RelA heterodimer that is normally 

bound by an independent inhibitory IκB protein in the cytoplasm and thereby inactivated, as it cannot enter 

the nucleus in this form. Via various extracellular signals that can trigger cellular responses through surface 

Figure I.1.2.1) Definition of subtypes ABC DLBCL and GCB DLBCL[4] 

Original detection and definition of the activated B-cell-like (ABC) and germinal center B-
cell-like (GCB) subtypes of Diffuse Large B-Cell Lymphoma. On the left, tumor samples from 
patient and their unsupervised hierarchical clustering by gene expressions is shown. This 
results in two distinct patient groups, orange and blue. On the right, different normal B cell 
samples from healthy donors are shown with genes aligned to the left. A similarity of the 
gene expression programs in germinal center B cells with the orange patient group, and of 
the activated blood B cells with the blue patient group, suggests a different cellular origin and 
consequently different pathogenesis of the malignant GCB-like and ABC-like subtypes of 
DLBCL. Obviously, this similarity is rough, especially with respect to genes upregulated in 
ABC DLBCL samples. 
(Reprinted by permission from Macmillan Publishers Ltd: Nature[4], copyright 2000) 

http://www.nature.com/nature/journal/v403/n6769/full/403503a0.html
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receptors, enzymes (more precisely, the IKK complex with IκB kinases  and ) are activated and then phosphorylate IκB, thereby activating the p50-RelA 

transcription factor[7]. 

Besides many other roles, NF-κB plays an important role in the human 

adaptive immune system. For example, if a so far unknown antigen has 

entered the body, e.g. a microbial toxin or another foreign macromolecule. 

Almost certainly, there are already B-cells in the blood having antibodies 

(depicted by the large Y-shaped transmembrane protein) with antigen-

binding sites that geometrically and chemically match a candidate binding site 

in the antigen. 

This is because of somatic hypermutation in germinal centers of the 

lymphatic system, which gives rise to a stochastic repertoire of no less than 10  different antigen binding sites[8]. Together with another protein on the 

inside of the cell (CD79), an antibody that is located in the B cell’s membrane 

is called a B-cell-receptor (BCR). The BCR is an interface that allows B cells to 

react on their environment. Somatic hypermutation may also produce B cells 

with BCRs that are specific to natural macromolecules of the body (self-

antigens). Matching self-antigens cause a strong signaling at these cells’ BCRs 

already during their maturation. Normally, this either reactivates their 

recombinase machinery to generate another non-autoreactive specificity or 

sends them into apoptosis before they mature and enter the body’s 

immunocompetent B cell inventory (negative selection), thereby preventing 

autoimmune diseases[8]. 

Mature non-autoreactive B cells now react to foreign antigens in the blood. If a matching antigen comes 

sufficiently close, it chemically binds to one of the B cell’s antibodies/receptors on its surface. This activates 

the B cell: A chain of biochemical interactions inside the cell (signal transduction) is caused that also engages 

the NF-κB pathway. One possible functional response of this activated B cell is that it starts to proliferate and 

build a cell population that produces antibodies for this specific antigen, which are secreted into the blood. 

These free antibodies again bind to matching foreign antigens and thereby inactivate them. In this way, 

microbial toxins may be blocked from binding to receptors of healthy cells. If the antigen originated from a 

virus hull, resulting antibodies may also bind to such viruses. This makes it easy for phagocytic cells of the 

innate immune system to ingest them, thereby destroying these viruses.[9] 

I.1.2.3 Molecular causes of B cell malignancy 

While proliferation of activated B cells following transient NF-κB activation in response to pathogens is 

normal for a healthy immune system, lesions in the B cell’s DNA like deletions or amplifications may lead to 

an oncogenic activation of NF-κB. Such constitutive NF-κB activation also underlies the ABC DLBCL subtype[10]. 

In general, activated NF-κB signaling plays a pathogenic role in many types of cancer[10]. These tumor cells 

have a strong selective advantage compared to healthy cells, because the NF-κB pathway also blocks normal 

cell apoptosis[10]. They continue to produce copies of themselves that include the same oncogenic defects in 

their DNA and proliferate likewise. For patients this causes almost certain death in the long term, if untreated. 

A major goal concerning ABC DLBCL thus is to interrupt NF-κB signaling in a way that stops proliferation or 

even re-enables apoptosis. This is possible, for example, by a small molecule inhibitor for IκB kinase  

 
Figure I.1.2.2) Classical NF-κB pathway[7] 

Extracellular signals trigger an 
intracellular response through a 
transmembrane receptor protein, and 
then activate the IKK complex that 
subsequently phosphorylates IκB. This 
allows the p50-RelA complex to enter the 
nucleus, bind to κB sites in the DNA and 
trigger the transcription of downstream 
genes. 
(Reprinted by permission from Mac-
millan Publishers Ltd: Oncogene[7], 
copyright 2006) 

http://www.nature.com/onc/journal/v25/n51/full/1209954a.html
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(IKKβ)[10], because it attacks downstream of many possible NF-κB signaling pathways: It directly prevents 

phosphorylation of IκBα by IKKβ and thereby prevents the p50-RelA complex from entering the nucleus. 

However, this inhibitor is not appropriate for development of a specific treatment, as it attacks the NF-κB 

pathway in all cells. Ideally, a genetic “Achilles’ heel” could be found that specifically stops malignant ABC 

DLBCL cells. 

Experiments utilizing RNA interference (RNAi) by small hairpin RNAs (shRNAs) allow the inhibition of 

specific genes in ABC DLBCL model cell lines. For example, such experiments have shown that inhibiting 

CARD11, BCL10 or MALT1 (the CBM signaling complex) is toxic for ABC DLBCL cell lines[10]. CBM signaling is 

located upstream to the IKK complex of the NF-κB pathway(see [10].figure 1A) and thus is a more specific attack 

vector, but it is still transiently involved in and required for normal antigen response[10]. Approximately 10% 

of ABC DLBCL patients show a somatic DNA mutation that causes direct oncogenic activation of CARD11[10,11] 

and thereby NF-κB signaling, which may be one of ABC DLBCL’s pathogenic causes. For the majority of ABC 

DLBCL patients, toxicity after CBM inhibition indicates that their malignant constitutive NF-κB signaling has 

its source already upstream of the CBM complex. Even for the 10% having CARD11 mutations, there may be 

other additional upstream signaling sources. One way to find signaling sources is to directly look for genetic 

aberrations and link this information to gene expressions in the same cells; for instance, this approach allowed 

identifying SPIB as an upregulated oncogene candidate in ABC DLBCL due to chromosomal gains and 

amplifications. Indeed, SPIB is also critical for survival of ABC DLBCL cell lines, but not for GCB DLBCL cell 

lines[11]. Discovering and understanding these ABC DLBCL specific interactions is part of ongoing molecular 

investigations. 

The GCB DLBCL subtype on the other hand is not based on constitutive 

NF-κB signaling and the expression of NF-κB target genes in GCB DLBCL is 

significantly lower than in ABC DLBCL. Consequently, neither blocking CBM 

signaling nor treatment with IκB inhibitors is toxic for GCB DLBCL cell 

lines[10]. Here, looking for pathogenic aberrations revealed a loss of the 

tumor-suppressor gene PTEN[11], and immunohistochemical staining(e.g. Figure 

I.1.2.3) showed that approximately 55% of GCB DLBCL samples are PTEN 

negative, but only approximately 14% of non-GCB DLBCL samples[12]. While 

shRNAs allow the experimental inhibition of genes, it is possible to use 

cDNAs in order to overexpress specific genes in experiments. Over-

expressing PTEN in PTEN-deficient GCB DLBCL cell lines killed these cells, 

confirming PTEN’s role as tumor suppressor. Furthermore, it has been 

detected that this dependence of GCB DLBCL cells on PTEN loss is because 

of a constitutive activation of the PI3K signaling pathway[12] that is usually 

inhibited by PTEN: Overexpressing AKT, the main effector of PI3K 

signaling[13], rescued these cells despite presence of otherwise toxic PTEN 

cDNA. Additionally, using cDNAs of PTEN mutants that cannot inhibit PI3K 

signaling were not toxic. Finally, treating PTEN-deficient GCB DLBCL cell 

lines with a pharmacologic small molecule compound that is a potent 

inhibitor of PI3K kinases, significantly reduced cell viability, whereas PTEN-

positive cells were unaffected[12]. 

These are just few examples for the genetic heterogeneity of DLBCL. 

i) 

ii) 

iii) 

Figure I.1.2.3) PTEN-stained DLBCL cells[12] 

(i) PTEN-negative GCB DLBCL line HT. 
(ii) PTEN-positive ABC DLBCL line TMD8. 
(iii) A PTEN-negative DLBCL patient sample 
(with blood vessels as internal positive 
control). (Reprinted and adapted from a co-
authored paper[12].) 
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I.1.2.4 Precision medicine 

The shared goal in medicine, molecular biology, biophysics, biostatistics, bioinformatics and pharmacy in 

context of heterogeneous genetic diseases is to enable precision medicine. 

To this end, initially oncogenic drivers need to be identified. This requires genomic measurements of a 

sufficient number of cancer samples. With the Cancer Genome Atlas(see TCGA Research Network, http://cancergenome.nih.gov) 

a large and public data source already exists to this end and is steadily expanding. Next, candidate oncogenes 

and tumor suppressors need to be identified by analyzing and summarizing these huge and detailed genomic 

data. Subsequently, promising candidates need to be biologically validated. Based on validated results, the 

pathway language is utilized for modeling this atlas of oncogenic drivers; this allows a rich qualitative 

description of various kinds of discovered interactions in cells and between cells. Pathways also facilitate 

molecular reasoning on a high level and can help to generate hypotheses or to transfer knowledge from one 

cancer type to another. On pharmaceutical level, novel agents need to be developed that specifically target 

validated and biologically promising drivers in-vivo. Finally, a set of these agents that is specific to the set of 

drivers detected in an individual cancer patient could be applied as therapy; this is called precision medicine. 

This is also the next major breakthrough that is targeted for DLBCL treatment. 

The recent(January 2015) United States Government Precision Medicine Initiative also demonstrates the priority 

of this research[14]. This initiative has the aim to measure genomic data for up to one-million samples[15], an 

unprecedented amount of genomic data! 

From a certain perspective, the complexity of cancer cells may even help towards reaching this goal: The 

number of genes that can be simultaneously modified by shRNAs or cDNAs in biological validation 

experiments is limited to just a few. It is not trivial that it is actually possible to send cells into apoptosis by 

inhibiting or overexpressing just few or even just a single gene. Only by virtue of the complex interaction and 

signaling chains in tumor cells, it is possible that such Achilles’ heels indeed exist. 

 

I.1.3 Common Stages in Systems Science 
Based on examples from biosciences, similar general processing stages that are shared by many different 

fields of science are identified and presented here. In particular, the increasing need for an intermediate stage 

is demonstrated that is able to provide comprehensible summaries of more and more detailed measurements 

about parts of complex systems. 

I.1.3.1 A cascade of abstraction levels for modeling 

The added immunotherapy in form of Rituximab resulted in a DLBCL therapy with significantly more 

favorable patient outcome; this already indicates that interactions with the human immune system may play 

a likewise important role in disease progression. In the concrete case, it is understood that the antibody 

Rituximab binds to the CD20 protein on B cell surfaces, thereby marking them for ingestion and destruction 

by natural killer cells of the immune system[16]. The dynamics of this antibody-triggered cell-cell interaction 

also presents an interesting biomechanical modeling challenge: It has been observed that Rituximab causes a 

polarization of B cells by concentrating their CD20 on a single cap of the cell membrane as opposed to a 

uniform distribution on the surface. By this redistribution natural killer cells of the host are 60% more 

effective at killing the B cell[16]. This selective killing of B cells is a logical complement to the CHOP 

chemotherapy of DLBCL. 

http://cancergenome.nih.gov/
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This example implies that the cell-cell interaction level may allow researching additional potential attack 

vectors, but this also requires a higher level of abstraction for models: So far, interactions within the cancer 

cell were considered, while the coupling to the cellular environment has been modeled by molecules or 

antigens binding to the cell’s surface receptors. Now the system is no longer the single cell, but consists of cells 

itself. Again, this is a complex system, as can be easily verified: Cells interact with each other and show self-

organization, for example by building organs in the human body. Trying to understand the death of patients 

from the perspective of a single cancer cell is again futile, even if all its intra-cellular interactions were 

understood. However, changing the initial conditions slightly, for example by implanting just a single 

cancerous cell, might cause a tumor to emerge that can interact with the host organism in such a way that it 

dies, a truly significant change in system evolvement over time. 

Obviously, both levels of abstraction could be merged, but trying to model the human body by choosing genes 

as basic elements of interaction is not as useful from a modeling perspective: Models should be of a 

manageable and comprehensible complexity. Otherwise, no useful and verifiable predictions can be made. It 

is impractical to gain any novel knowledge with help of overly detailed or too simplistic models. It makes even 

more sense for many questions to refine the modeling cascade by introducing additional intermediate levels 

of abstraction, for example organs or cell organelles. 

I.1.3.2 The measurement stage, 
 next-generation RNA sequencing and unexpected complexity 

Besides the choice of a useful top abstraction level for scientific modeling, it is essential to understand which 

parts of the system can actually be observed. In molecular biology, a single standard gene expression (GEP) 

microarray can profile the activity of the human genome at approximately 50000 genomic loci simultaneously, 

including probes for mRNA sequences from all known human genes. Newer RNA sequencing technologies can 

even deliver a detailed view of the transcriptome, i.e. of the total active RNA in measured cancer cells, based 

on millions of reads and not just for a limited number of preselected mRNA sequences probed by a microarray. 

The possibilities of RNA sequencing in particular have “become increasingly important in cancer research – 

all at a data scale that was unimagined just several years ago”[17] and have already led to “a new appreciation 

for the complexity of the transcriptome, encompassing a multitude of previously unknown coding and non-

coding RNA species”[17]. 

This complexity was somewhat unexpected, because the paradigm of gene transcription into mRNA and 

subsequent direct translation into proteins by ribosomes now seems to be a too generalized view. The 

translation into proteins is modulated by an interconnected network of mRNAs as well as short and long 

noncoding RNA molecules[18] for the majority of genes. This post-transcriptional level of regulation probably 

needs to be investigated with the same effort as the protein level in order to understand its interaction chains. 

This newfound complexity of post-transcriptional regulation may even require revisiting older interpretations 

of gene expression measurements: The basic assumption of direct protein level inference from gene 

expressions should be applied with care and when making gene expression based statements about single 

genes, independent experimental validations of the protein concentrations are mandatory. For example, gene 

expressions based on RNA sequencing technologies may show only a very weak (albeit significant) correlation 

of 0.1 to 0.4 to the gene expressions of the same cells measured by microarray technology[19, cf. figure 5]. To 

complicate things, this may also be in part caused by technological problems or by the computational methods 

utilized to process the RNA sequencing reads: The estimated expression levels of these methods vary 
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widely[20], both due to technological uncertainties as well as due to the inherent biological complexity of the 

transcriptome. 

The technological and data processing problems will however eventually be solved as the technology and 

the methods mature. The sequencing of full-length cDNA molecules (instead of short sequences via shotgun 

methods) and the direct use of RNA (instead of first converting it into cDNA) are technological steps in that 

direction[21]. Another variant of RNA sequencing that promises an important filtered view is Ribosome 

profiling: Here only the ribosome:mRNA complexes in cells are measured after halting their translation, rather 

than the total RNA. This allows to specifically measure only the mRNAs that are indeed being translated into 

functional proteins[21]. Consequently, the basic assumption of protein level inference from measured mRNA 

concentrations is perfectly valid here. 

I.1.3.3 The increasing gap, an obvious but fundamental problem 

Being able to measure more and more dimensions like RNA concentrations of a complex system is clearly 

advantageous as it leads to insights into previously underestimated levels of complexity and can provide more 

possibilities of understanding them. There are some technological, data processing and estimation challenges, 

but they seem solvable. Assuming that all these challenges have been solved, the ideal result would be a signal 

comprised of reliably estimated expression levels of all genes and of activity levels for all proteins and for all 

other functional molecules that may regulate the transcriptional or translational level.  

Even then, a fundamental problem would remain: The human working memory for thought and modeling 

processes has a limited capacity for simultaneously holding and manipulating independent information. For 

example, the visual working memory can only store 3-4 independent items in the short term[22], models for 

the verbal memory show a maximum of only five or six unrelated words and even with chunking the 

immediate memory span for sentences is only approximately 15 words[23]. This implies that the human brain 

lacks the capacity to model and understand interesting interactions directly from these huge signals that 

contemporary instruments can measure. 

This obvious gap between the amount of observable information from a complex system and the human 

working memory for modeling is steadily increasing in practically all fields of science, as measurement 

technologies advance. This is multiplied by the number of measured samples, for example by the up to one-

million samples that is prospectively measured in context of the United States Government Precision Medicine 

Initiative alone(cf. I.1.2.4). Besides biosciences, especially in astrophysics many improvements had to be 

developed in the last decade, “attempting to keep up with the vastly increased volume and quality of available 

data”[24]. Here, galaxies or quasars are the complex systems and the primary source of information is their light 

emissions, more precisely their spectral energy distributions, which are measured with large telescopes and 

spectrometers. A major, huge and fast growing signal database in this field of science is provided by the Sloan 

Digital Sky Survey(SDSS, see http://www.sdss.org) with already approximately 70 terabytes of data in the total SDSS 

volume III. The current public data release DR10 contains 927,844 galaxy spectra[25], for example. Spectra for 

the majority of the visible sky have yet to be systematically measured[26, see figure 2], so this data source 

prospectively also continues to grow (even if there were no further technological advances in spectral 

coverage). 

 

http://www.sdss.org/
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I.1.3.4 Generic footprints of interactions and the summarization stage 

Because of this increasing gap, another intermediate stage of research is required. This stage is located above 

the technology-specific processing and refinement of the growing measurement data about all parts of the 

system. It is located below the system-specific higher-level modeling of their interactions by experts of the 

respective field, for example in the pathways language. The goal of this stage is to summarize the detailed 

signal about the system parts into as few as possible chunks of information that are comprehensible for 

modeling. Ideally, this summarization is unbiased, especially it should not just focus only on some portions of 

the signal, and it should be complete in the sense that all the important classes of interactions and their large-

scale effects in the signal are retained and presented to the modeler. 

To achieve this, each existing method of the summarization stage applies a generic concept of interaction, 

either via direct definitions or implicitly through algorithms. These concepts do not try to comprehend the 

interactions on a system level like in pathways for cancer cells, but rather search for the basic footprints of 

these interactions in the observed signals in order to detect them in the first place. Example concepts are: 
Concept of signal 
footprints from 

interactions 

Methods using  
these concepts 

Summarization examples 

Minimal high- 
dimensional distance  
(of various metrics) 

Hierarchical  
clustering(cf. I.2.2.1) 

Generally, all cluster algorithms summarize all measured system parts by 
relatively few clusters to support subsequent modeling. Clusters contain 
similar system parts that are distinct from other clusters. For example, the 
“ABC DLBCL > GCB DLBCL” and “GCB DLBCL >ABC DLBCL” gene signatures 
summarize gene expressions from many samples by just two flat sets. 

Orthogonal directions 
of maximal variance 

Principal  
components 

analysis(cf. I.2.2.2) 

Just a few principal components for high-dimensional data may already 
capture most of the signal’s variability. Many gene expressions may thus be 
summarized by just a few linear combinations of all genes. 

Frequency and  
periodicity over time 

Fourier trans-
formation 

The first few Fourier terms can already capture large-scale features of a 
signal. An example is image smoothing by removing noisy high-frequency 
information. 

Assuming a constant 
neighborhood over a 
predefined order axis 

Circular binary 
segmentation[27] 

Long segments of equal DNA copy number aberrations summarize millions 
of noisy reads along the genomic sequence that were measured by array 
comparative genomic hybridization (aCGH); this summary may allow 
detection and modeling of oncogenes. 

Table I.1.3.4) Example concepts of generic summarizations by interaction 
 

All examples can be viewed as a pre-modeling summarization by different effects of interactions on the 

observable signal; these summaries can then serve as a basis for higher-level system modeling. Other than 

modeling languages like pathways, these concepts are rather generic and much less specific to a certain field 

of science. Therefore, corresponding summarization methods and their underlying modeling ideas often turn 

out to be of surprisingly interdisciplinary nature, even if they were developed in the context of only a single 

field of science. The relative simple method of hierarchical clustering from computer science and its 

tremendous success in many fields of science, especially in biosciences(cf. I.2.2.1), is a good example of that. 

Another intuitive physical example is a rigid body: When applied to the positional measurements of its parts, 

principal components analysis (PCA) delivers its three principal axes of rotation, i.e. when applying a torque 

around such an axis the body begins to rotate exactly around this axis only, i.e. all its atoms that lie on this axis 

stay in space where they were before rotating. If the same torque was applied around any other non-principal 

direction this is not the case. Exceptions are perfectly spherical bodies of constant density; here all directions 

are principal (as long as the body does not already rotate). Therefore, PCA can summarize an insightful effect 

of the true interactions within a rigid body that gives rise to its rotational behavior, namely that all its atoms 
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are forced to keep a constant distance to their neighbors and that the motion of each atom is governed by 

Newton’s laws. This illustrates the differences between what can be measured (positions of atoms), how these 

measurements can be summarized (principal axes) and the true nature of interactions between system parts 

(forces keeping atomic distances to neighbors approximately constant). This summary might seem trivial, 

because a rigid body is not a complex system and it is well understood. Additionally, the positional 

measurements of its parts might still seem comprehensible even at high resolution, if visualized in 3D. 

In biology however, neither a final set of laws for cancer cells nor for DLBCL pathogenesis is known. These 

systems are far more complex, their measurements deliver signals of huge detail and these signals cannot be 

visualized intuitively in 3D, since they are not only high-resolution but also high dimensional. Modeling such 

biological systems can therefore greatly profit from signal summarization. 
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I.1.3.5 The association stage and putting it all together 

While sometimes effects from the summarization stage may be directly accessible for high-level system 

modeling, it is often helpful to associate them with existing computable knowledge first, if available. This can 

also help to prevent redundant discoveries in fields that produce a fast-growing collection of knowledge. 

In biosciences, an important computable knowledge base is the gene ontology that hierarchically associates 

genes with their already discovered molecular functions, cellular components or biological processes(cf. I.3.2). 

Additionally, large gene signature databases can help to associate experiments with related discoveries in 

scientific articles(cf. I.3.1). Bioinformatics and biostatistics methods such as overrepresentation analyses or gene 

set enrichment analyses facilitate these associations. For example, they could reveal known gene signatures 

that are significantly enriched for top regulated genes in a cell line experiment for a tested inhibitor. Simple 

supervised analyses like -tests that identify these significantly regulated top genes in the first place are also 

part of this association stage. Additionally, often system properties of different formats have been measured, 

for example gene expressions, patient gender and patient outcome following chemotherapy. It is important to 

associate these different sources of information to get a complete as possible picture of the system and to filter 

out disease-unspecific information, for example gender-specific gene expression effects. Biostatistical 

methods like Kaplan-Meier survival analyses and log-rank tests or contingency tables and -tests allow 

quantifying these associations with  values, i.e. with the probability to see a particular association or an even 

stronger one by pure chance. 

Considering everything, first, a com-

plex system in nature is observed using 

measurement technologies. Ideally, they 

deliver precise signals for all parts of the 

system. Because these signals are often 

too detailed to make directly sense of 

them, they are summarized next. If 

computable existing knowledge is avail-

able, summarized effects are associated 

with it. Finally, this yields the basis for 

modeling interactions between system 

parts in a matching modeling language. 

These models ideally provide new 

insights that lead to predictions and 

hypotheses about the analyzed system. 

Via feedback on the experimental 

design, these hypotheses can be tested. 

Once a system has been sufficiently 

understood, it may be possible to 

manipulate it towards useful goals, for 

example curing DLBCL. 
Figure I.1.3.5) Typical stages of systems research with examples, mostly from biosciences 
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I.1.4 Motivation and Goals 
First, it is illustrated why PCA may lead to hard-to-interpret signal summaries. Consequential design goals 

are presented and a 3D concept example illustrates a useful signal summary contrasting PCA results. Thereby, 

the detection task is clarified. Additionally, a real-world example for detectable high-dimensional effects of 

biological origin is provided. Finally, a brief outline concludes the introduction. 

I.1.4.1 Helpful and misleading signal summarizations 

Although all introduced concepts utilized for summarization(I.1.3.4) are rather generic and thus have 

interdisciplinary applications, it is still very important that the concept of the chosen method is compatible 

with the nature of interactions in the underlying system. Otherwise, a summarization into few effects of 

interaction might not work at all. Alternatively and worse, it might still succeed, but resulting effects are hard 

or impossible to interpret and thus not helpful or even strongly misleading when modeling the system. 

Conceptually, this can already be illustrated(cf. Figure 

I.1.4.1) with just three dimensions: For simulated ex-

pressions of three genes driven by two distinct 

pathways causing linear co-regulation(red and blue) the 

principal components(yellow) follow different 

directions (i.e. describe different laws of gene co-

regulation) and thus cannot dissect the two 

simultaneously measured effects. Even though this 

signal might be reduced from three to two 

dimensions by this PCA (as the third principle 

component explains negligible signal variance on top 

of the first two), true effects and corresponding 

groups of simulated patients are still mixed in the 

new coordinates, making the reduced two-

dimensional signal as hard to interpret as the original 

signal. This is because PCA still treats data points as if they were governed by interactions of a rigid body(cf. I.1.3.4), 

i.e. the yellow principal components still are the physically meaningful principal axes of rotation for an X-

shaped body with these points as mass elements. However, this is meaningless and misleading in the gene 

expression context. A useful summary here would instead separate both groups of patients and deliver one 

axis, i.e. one linear law of gene co-regulation, for each pathway. 

Although this seems to be an obvious insight, given this visualization and human intuition in 3D, visualization 

capabilities and human intuition for high-dimensional data are limited. Therefore and at first sight, principal 

components of high-dimensional signals like gene expressions may appear to be a perfectly valid and concise 

summary of that signal, although they actually mix many distinct true effects. Hence, the linear law described 

by a single principal component usually does not specifically describe the co-regulation mediated by a single 

pathway, making this signal summary hard or impossible to interpret biologically. This is demonstrated in 

detail when systematically applying PCA to simulated high-dimensional data for method validation and 

comparison(II.6). 

The same problem is also known in astrophysics. Here, PCA has been utilized to summarize spectral energy 

distributions measured from stars or from far galaxies. However and consistent, “The main difficulty with PCA 

 

Figure I.1.4.1) Principal components do not point into effect directions 

Points for three dimensions simulate two distinct but partly correlated (i.e. not 
perpendicular) effects for 1000 samples each (red and blue). The principal 
components returned by PCA are the three yellow perpendicular directions. 
The two longer components capture nearly all of the signal’s variance here; 
therefore, the third component that protrudes where the two longer cross in 
the center is relatively short. Further details on how the PCA works follow 
in I.2.2.2. 
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is that the interpretation of the empirically determined PC components in terms of physical properties is 

complex at best.”[24] 

Generally, methods of the summarization stage are applied to measurements in order to get ideas about 

possible laws governing interactions between parts of the underlying system. Principal components and similar 

methods essentially reformulate measured signals by spanning an alternate coordinate system. The hope is 

that some of the new coordinate axes(yellow) provide insights into interactions of the analyzed system that were 

not possible in the original units of measurement, for example by isolating a co-regulation law of a distinct 

pathway. 

This idea of a change in coordinates has also been generalized by spectral methods to spaces of functions, 

rather than finite-dimensional spaces containing measured samples. For a physical example of such a signal 

summary, fluid flow can be revisited once more: Local nonlinear interactions of this system are already 

understood, validated and summarized well in form of the Navier-Stokes equations. But resulting complex 

large-scale flow behavior is not completely understood and is not clearly described by Navier-Stokes 

equations. Hence, it makes sense to try to reformulate or re-summarize these known laws about neighboring 

fluid elements analytically in order to get ideas about how large-scale flow behavior might be generated from 

local interactions. To this end, an analytic linear expansion of a flow field for low Reynolds numbers has been 

performed[28] by a separation ansatz in a certain geometry that allowed identifying time, radial and angular 

eigenfunctions of the flow; a linear superposition can then reconstruct the complete flow field. Because 

resulting linear operators quickly gained in complexity over expansion order, benefits in understanding 

interactions based on this expansion were unfortunately limited: No obvious summarization of large-scale 

flow properties was possible in these new spectral coordinates. Finding better analytic summarization 

concepts that are more compatible with nonlinear interactions in fluid flow is a subject of ongoing research in 

nonlinear dynamics. Maybe empirical methods summarizing particle image velocimetry measurements could 

help finding them. Ideally, a simple (maybe statistical) description can be obtained, analogous to the simple 

summary of large-scale rotational behavior of complex-shaped rigid bodies by principal axes. 

In one form or another, the problem of finding useful summaries of high dimensional signals is likely to be 

known in many more fields of science. 

I.1.4.2 Design goals, the detection task and method preview 

Consequently, it is a major design goal for any novel summarization method that its summary effects are 

specific to true effects in the analyzed system. In particular, summarized effects of gene expressions should not 

mix signal parts from different pathways that may be active simultaneously in measured cells. Another design 

goal is the removal of superposed strong effects without affecting signals from overlapping weaker, but 

biologically often more important effects. This is particularly important in the presence strong lab effects 

caused by measurement technology or protocol. These and several more design goals are presented(cf. II.1.2) in 

the context of bioscience and gene expressions. In part they can be derived from problems associated with 

principal components analysis or hierarchical clustering in this context. 

Another major conceptual goal for signal dissection is the support for a broad class of non-linear effects that 

may occur in gene expression signals. For example, some genes may reach their saturation expression for 

lower average activity of the underlying pathway than other genes in the same effect. Some pathways may 

contain feedback loops that may cause some of its genes to be expressed stronger than linearly (e.g. 

quadratically) over its average activity. Yet other pathways may show unsteady switch behavior, i.e. some or 

all of its genes are expressed either at zero or immediately on a plateau of high expression. 
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A concept example with just three genes works best for 

illustrating this(Figure I.1.4.2); it is defined in detail in II.1.1. 

Briefly, besides a usual linear law of co-regulation(red), 

pathways in this example simulate a saturation effect(blue), 

a stronger than linearly regulated gene(green) and a 

threshold behavior(magenta). 

Application of PCA on this signal results in depicted 

principal components(upper panel, yellow). Again, they are not 

helpful, both due to PCA’s incompatibility with the 

underlying simulated interactions as explained 

above(I.1.4.1) and because of a fundamental conceptual 

limitation shared by all projection methods that try to 

represent the signal in new coordinates: There are four 

effects here, but only three dimensions. Whatever 

directions principal components may point to, whatever 

eigenvectors may be determined by an alternative 

spectral separation of the signal, whatever orthonormal 

rotation of the coordinate system results, after three 

projections in 3D only zero remains. Hence, at least one of 

the four distinct effects of the example cannot be properly 

described and dissected by methods based on or 

equivalent to full projections as a matter of principle. 

Thus, it is not sufficient to just represent the signal in 

another coordinate system, if the goal is discover a 

specific summary for each effect. 

The task for detection methods is to recover the laws of 

gene co-regulation for each simulated pathway empirically 

from measured points. (Of course, the color cording is not 

provided for this task.) 

A preview of four monotonic effect gene curves, one for 

each simulated effect, demonstrates that signal 

dissection(Chapter II) is able to solve this task(lower panel, yellow). 

The 3D example is useful for illustration, but the main 

goal is to dissect possibly overlapping effects in very high-

dimensional signals like 50000-dimensional gene 

expressions. Actually, the developed bimonotonic effect 

model(II.2.1.2) was inspired by ordered heatmaps of real-

world gene expression signatures that are known to be 

biologically relevant, like the cell-of-origin induced gene 

expression effect for distinguishing ABC DLBCL from GCB 

DLBCL(cf. Figure I.1.2.1 or Figure I.1.4.2.b). Only after the method was 

already operational for such high-dimensional signals, the 

above 3D example was devised for conceptual illustration 

Principal Components Analysis 

 

Signal Dissection 

 
Figure I.1.4.2.a) 3D concept example with four effects. Misleading principal 
components and precise effect curves by signal dissection (preview). 

Four simulated pathways corresponding to four distinct sample groups 
have been simulated with different governing laws of regulation for the 
same three genes. Details on the signal follow in II.1.1.  
The upper panel shows all three principal components for this signal; 
they cannot summarize this signal in an interpretable form. 
The lower panel previews all four effect gene curves detected by signal 
dissection. 

 
Figure I.1.4.2.b) Example of a roughly bimonotonic real-world effect[29] 

This heatmap is based on a supervised analysis that sorts samples of 
cohort GSE31312 based on their differential expressions between 
predefined gene signatures for ABC-like and GCB-like subtypes of 
DLBCL. (Adapted by permission from Macmillan Publishers 
Ltd: Leukemia[29], copyright 2012) 

http://www.nature.com/leu/journal/v26/n9/full/leu201283a.html
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purposes. Hence, discovered effects for high-dimensional gene expression signals that follow this effect model 

should provide an accessible signal summary for further biological modeling of interactions in cells. Other 

than in the depicted example that is based on a supervised analysis, signal dissection discovers such effects 

unsupervised and the sum of all dissected effects rebuilds the complete measured signal, except for a noise 

term. 

I.1.4.3 Outline 

In the remainder of this chapter, several other methods from the association stage(I.3) and for supervised 

analyses(I.2.1) are introduced. They are complementary to unsupervised signal dissection and summarization 

in the typical research workflow within molecular biology, as illustrated in the stages of science diagram(Figure 

I.1.3.5, oben). Exemplary analyses from selected co-authored papers are presented. As methods for unsupervised 

gene expression analysis(I.2.2), hierarchical clustering and PCA are explained.  

In Chapter II, the previewed method for signal dissection is presented in detail. After clarifying design 

goals(II.1) and its mathematical framework(II.2), its search strategy(II.3) is explained. Subsequently, bimonotonic 

regression and effect dissection are clarified(II.4). Noise and significance measures are discussed separately(II.5). 

Among other tests, a versatility test scenario that simulates high-dimensional technical and biological effects 

of various shapes(II.6.2) is utilized to systematically validate the method and to compare it with PCA(II.6). 

In Chapter III, signal dissection is applied to gene expression measurements for samples from more than 

1000 DLBCL patients(III.1). Resulting gene expression effects are validated across four independent patient 

cohorts(III.1.2). Validated effects include the rediscovered cell-of-origin effect(III.3.2.2) and several genetically novel 

effects that show significant association with patient survival. Multivariate survival analyses allow 

construction of a Cox survival predictor that reveals significant survival differences within standard DLBCL 

subtypes(III.2.5). All top survival effects are biostatistically presented and evaluated in detail(III.3.3); they may lead 

to insights into the molecular pathogenesis of DLBCL. 
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I.2 Standard Analyses 
A common challenge in many fields of biology is to identify essential differences between 

measured samples and to relate them with their genetic origin. 

Generally, two classes of analysis methods are distinguished. Supervised analyses are 

applied in contexts with some prior knowledge about measured data. They are intended to 

answer specific questions or to test a particular hypothesis. In contrast, unsupervised analyses 

follow the aim to reveal previously unknown patterns in measured signals that may help to 

gain new insights or to infer new hypotheses. 

Methods of both types are utilized recurrently in typical research workflows in molecular 

biology. Selected examples that have been analyzed for several published studies are 

presented here. 

I.2.1 Supervised Gene Expression Analysis 
In supervised cases, it is already known what samples need to be compared to identify genes of a specific 

interest. An example is the analysis of gene expressions of cancer cells after application of a drug versus 

untreated controls. Alternatively, it may be already known what genes need to be interrogated to answer a 

specific biological question about samples. Here, several examples of such supervised analyses are presented. 

I.2.1.1 Differential expression analyses 

To quantify the significance of differential expressions of genes between two known settings, various -tests 

of loggene	expression	ratios can be computed. Expression ratios are typically computed relative to the 

average expression of all samples in the current context in order to neutralize potential offset effects and to 

focus on the differences. One has to distinguish between paired scenarios and unpaired scenarios. In the 

unpaired case, for instance, samples from cancer patients versus (an arbitrary number of) samples from 

healthy controls is compared with two-sample -tests(e.g.  [79], pages 276-279). In the paired case, for example, the same 

cell line has been measured either following treatment with an inhibitor or in untreated form for several time 

points. In this case, paired -tests(e.g.  [79], pages 522-528) are utilized to focus on the differences induced by the 

inhibitor. Pairing has the advantage to ignore additional differences that might have biologically occurred or 

technically incurred between the time points. 

As an example of a typical supervised gene expression analysis, the examination of peripheral blood 

mononuclear cell samples (PMBCs) from renal cell cancer patients (RCC patients) is briefly presented. 

Genes are depicted(cf. Figure I.2.1.1) that are significantly differentially expressed between these PMBC samples 

compared to independent control samples from healthy donors. This analysis has been performed for a study 

to investigate the immunosuppression characteristics of RCC. More precisely, a previously administered 

vaccine failed to induce clinically relevant immune responses and the aim was to elucidate the molecular 

mechanisms responsible for that. The biological analysis of differentially expressed genes revealed that 

already before treatment with the vaccine several genes associated with immune functions are expressed at 

far lower levels in RCC samples compared to healthy controls[30]. Further association analyses and their 

biological interpretation confirmed this immunological impairment(e.g. Figure I.3.1.2). 
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Figure I.2.1.1) Example for a supervised gene expression analysis that determines significantly differentially expressed genes between two known settings 

Depicted are supervisedly determined top upregulated and top downregulated genes in 9 peripheral blood mononuclear cell samples (PMBCs) from renal cell cancer 
(RCC) patients prior to vaccination (left) compared to 9 healthy control samples (right). All genes with a  value  0.001 are depicted (two-sample -tests). Labelled 
genes are involved in immunological processes. (Analysis performed for and reprinted from [30].) 

 

I.2.1.2 Application of specific gene signatures 

Once experiment-specific signatures of top-upregulated or top-downregulated genes have been ob-

tained(cf. I.2.1.1), they may be used to interrogate other experiments for the same genes or to test biological 

hypothesis. 

For instance, most genes that are top-downregulated following the IKKβ inhibitor MLN120b can be 

interpreted as NF-κB target genes, as NF-κB signaling is halted by this inhibitor before the phosphorylation of 

IκB in the classical NF-κB pathway(cf. Figure I.1.2.2). If another inhibitor candidate is assumed to inhibit NF-κB target 

genes as well, it should cause downregulation of largely the same genes. To test this, the gene signature for the 

IKKβ inhibitor can be applied to experiments with this other inhibitor. 
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In the example(cf. Figure I.2.1.2), a PI3K inhibitor is tested, and indeed it significantly decreases expression of NF-

κB target genes in two cell lines for four time points. Further experiments in the same study identify a critical 

role for PI3K (and the downstream kinase PDK1) for viability of a subset of ABC DLBCL cell lines that are 

characterized by CD79B mutations[31]. 

Figure I.2.1.2) Application of an identified NF-κB signature (left) to gene expressions following treatment with a PI3K inhibitor 

Top-downregulated genes for the IKKβ inhibitor MLN120b (left) have been supervisedly identified based on gene expression profiling for four time points and for the 
ABC DLBCL cell line HLB1 (selection criteria: at least 50% downregulation for at least three time points). Identical genes are interrogated in an identical experimental 
setup for a PI3K inhibitor[31]. Both the HLB1 cell line in the center panel and the ABC DLBCL cell line TMD8 have been tested. Signature averages are significantly 
downregulated for both cell lines in all four interrogated time points (-tests versus zero regulation). (eps denotes a numeric resolution limit of a previously utilized  distribution integration function at 2.22 ⋅ 10 . Gray pixels indicate missing values due to the spot filter.) (Analyzed for [31].) 

Similar analyses have been performed for another study[32]. Analogous to the IKKβ inhibitor above, the 

MALT1 inhibitor Z-VRPR-FMK was already known to interfere with survival of ABC DLBCL cells in vitro. 

However, Z-VRPR-FMK is not adequate for clinical applications, as it needs to be administered in very high 

concentrations. To identify small molecule inhibitors with more favorable pharmacological properties, top 

downregulated genes of Z-VRPR-FMK have been determined first(cf. I.2.1.1). The resulting MALT1 specific gene 

signature has been subsequently applied to gene expressions following treatment with the phenothiazine 

derivative Mepazine. Indeed, the MALT1 signature was downregulated significantly four time points as above, 

but with weaker average folding. Chemically, this might originate from the fact that Z-VRPR-FMK inhibits 

MALT1 by covalent binding, while Mepazine binds it in a non-covalent and reversible manner[32]. 

Such targeted applications of biologically selected gene signatures in order to ask specific questions do not 

need any multiple hypothesis corrections. On the other hand, in case of likewise applications of signatures that 

were selected e.g. by gene set enrichment analyses based on large signature databases(cf. I.3.1), corrections for 

multiple hypothesis tests should be performed(cf.I.3.1.1). 
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I.2.2 Unsupervised Gene Expression Analysis 
In the more general unsupervised scenario, the goal is to discover all yet unknown sample groups (or gene 

subsets) that show consistent differences in measured signals. In context of a disease for example, gene 

expressions of samples from many patients might be explored with the aim to identify all disease-

characteristic molecular effects of gene regulation. 

Unsupervised analyses require completely different methods and are considerably harder to perform than 

supervised analyses. Mathematically, this difficulty stems from the huge number of theoretically possible 

subsets of patients and genes that might represent biological effects. This number grows like the power set 

with 2  respectively 2 , where  is the number of genes and  the number patients. Bulk methods that try to 

enumerate all possibilities and try to compute some score for each candidate subset are therefore futile for 

typical application sizes with   20000 genes and   100 to 1000 samples. Hence, every unsupervised 

method needs a kind of search strategy or model for the interactions it tries to unveil. 

A standard method for exploring gene expressions in the search of novel effects is hierarchical clustering. It 

is utilized frequently in molecular biology and medicine for unsupervised analyses. Another standard method 

in the unsupervised context is principal components analysis (PCA). As a blind source separation method it 

reaches conceptually beyond hierarchical clustering, since it does not only reorganize genes and samples but 

also re-expresses measured gene expressions in new coordinates called principle components. In the ideal 

case, a principal component represents a biologically specific effect. For example, it may be interpreted as gene 

regulations caused by a specific pathway. Though utilized relatively seldom in biosciences, PCA has a strong 

mathematical foundation and many applications, for example in astrophysics. Both standard methods are 

briefly presented here and problems of both methods are illustrated. 

I.2.2.1 Hierarchical clustering 

This method[33] originates back to the 1950s[34,35], i.e. long before the advent of microarray technology. In life 

sciences it was established more than 15 years ago to analyze correlations in gene expressions[36]. Since then 

it has become a standard method to discover gene signatures or clusters of samples. It has helped to gain many 

important insights into molecular processes for many organisms ranging from bacteria[37,38] and plants[39,40] to 

higher animals like mice[41,42], chimpanzees[43] and, of course, humans[4,44–58]. Besides the predominant gene 

expressions[4,39–48,50–52,54–62] it has been successfully applied to other measures such as DNA methylation[53], 

micro RNA expressions[42,56], DNA copy numbers[49] and protein concentrations[37]. Consequently, it has 

contributed to a broad spectrum of objectives, e.g. understanding viral or bacterial infections[43,58,59], effects of 

cigarette smoke[46,50] or environmental toxins[41], aging research[62], molecular psychiatry[56] or industrial aims 

like new bioenergy crops[40]. 

For DLBCL(I.1.2.1), hierarchical clustering has been particularly useful, as it revealed two distinct and 

previously unknown subtypes, i.e. ABC DLBCL and GCB DLBCL(cf. Figure I.1.2.1). These subtypes coincide with 

significantly different patient outcome for the same chemotherapy. Subsequently, this discovery enabled 

researching distinct pathogenic causes(I.1.2.3) for these subtypes. 

Conceptually, hierarchical clustering takes a    data matrix and first computes the distances between 

each pair of genes (matrix rows) or each pair of samples (matrix columns). The clusterings of genes and 

samples are independent of each other. Sometimes only one of the two order dimensions is clustered. 

Agglomerative hierarchical clustering initially considers all measured points as clusters of size one. Based on 

their pairwise distances and a linkage method, the nearest clusters are merged to form a larger cluster. Then 
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distances between centers of all current clusters are computed again, and again the nearest two clusters are 

merged. This continues iteratively until only a single cluster remains that contains all genes respectively all 

samples. The remaining cluster is depicted as the root of the dendrogram, i.e. the resulting binary distance 

tree(cf. Figure I.2.2.1, unterhalb). The height of the dendrogram depicts distances between connected clusters. A method 

to cut the dendrogram is required to obtain clusters for further analysis and discussion. For example, a 

manually prescribed distance threshold could be used (i.e. cutting at a constant dendrogram height). 

Important functional parameters of hierarchical clustering are the metric for computing distances between 

genes respectively samples and the sub-method of linkage that determines how distances between clusters 

are computed, if they contain more than a single gene respectively sample. One possibility is to use the distance 

of the two nearest members of two clusters; this method is called single-linkage. Complete linkage compares 

the farthest members of two clusters. Average linkage, for another example, compares the geometric centers 

of two clusters with the distance metric.  

The default distance metric is the Euclidean distance that measures the geometric distance between points 

in   (sample columns) respectively   (gene rows). Another way to measure distances is to utilize 

correlations between points. Compared to the Euclidean distance, distances based on correlations have the 

advantage of being independent of absolute expression strengths. If for example two genes show the same 

direction of regulation for all measured samples, but one gene has a much stronger folding than the other, 

their Euclidean distance would be high, but their correlation-based distance would still be low. Since co-

regulation for all samples may already indicate that both genes are controlled by the same pathway, the 

correlation-based distance is often advantageous in biosciences. Hierarchical clustering with a correlation 

based distance metric was established for gene expression analyses in 1998[36]. 

 

 

 

 

 

The following example(cf. Figure I.2.2.1; based on my own implementation) is instructive to explain the interpretation of a typical 

hierarchical clustering result and to demonstrate potential problems. The heatmap depicts gene expressions 

for samples from a CHOP-treated DLBCL cohort (data accessible at NCBI GEO database[63], accession 

GSE10846). An existing signature has been utilized to select an initial subset of all measured genes for this 

analysis. Hence, this analysis is not completely unsupervised(cf. II.1.2.1).  

While orange and green gene clusters show strong expressions, the blue gene cluster shows relatively weak 

expressions overall and only contains a few strongly expressed genes at the top. But these genes are not 

aligned in a monotonic way, i.e. they are incompatible to the depicted sample clustering and may be regulated 

by a distinct pathway. The depicted sample clustering has been mainly determined by the first two gene 

clusters. The biological specificity and coherence of the analyzed gene signature could possibly be increased 

by filtering out the blue gene cluster. This is an example of manual focusing in the gene space. If one focused 

on the orange gene cluster only, a different sample clustering would result, as upregulated samples with 

respect to orange genes are currently split over two different sample clusters. This demonstrates the element 

of arbitrariness associated with manual focusing. Hence, it is one design goal for signal dissection(Chapter II) to 

realize a completely unsupervised effect focusing(see also II.1.2.2). 
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Figure I.2.2.1.a) Example result from bi-hierarchical clustering 
 

Sample clusters at the top are color-coded by average patient outcome. While for the red cluster 35 deaths 

were observed (with 21 censored events), in the green cluster only 12 deaths were observed (with 20 

censored events). This indicates that underlying genes might be biologically relevant for DLBCL. However, 

given the visible heterogeneity, these genes may not belong to the same biological function. In particular, non-

monotonic signals (like at the top left of the sample cluster in the center) indicate the existence of at least one 

overlapping gene regulation effect that might give rise to an alternate sample clustering. As described above, 

it could be revealed by manual focusing on exclusively the orange gene cluster and by another subsequent 

hierarchical clustering analysis.  

 

 

 

 

 

However, more complex overlapping structures cannot be represented well by hierarchical clustering, even 

with manual focusing. The hierarchical clustering illustrated below(Figure I.2.2.1.b) arranges an exemplary subset of 

gene expressions from cohort GSE31312 (data accessible at NCBI GEO database[63]). While clear sample 

clusters can still be obtained, many substructures are visible that are inconsistent with the overall gene 

expression trend. Again, manual focusing would result in different sample clusterings, but likewise manual 

focusing on sample subsets would result in different gene clusters. These ambiguities are all the more present 

if not just a tiny subset, but the whole signal matrix with over 50000 measured probesets has to be analyzed 

unsupervisedly. Hence, a concept that does not just rearrange genes and samples, but that can also dissect 

overlapping effects by modifying the signal itself seems to be indicated in order to analyze such complex data 

consistently. 
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Figure I.2.2.1.b) Example result from bi-hierarchical clustering for a more complex gene expression signal 
 

 

 

I.2.2.2 Principal components analysis (PCA) 

Historically, principal components analysis was invented by Karl Pearson in 1901[64]. Today, PCA is one of 

the most successful analysis methods in many areas of science, including e.g. chemometrics[65]. For genomic 

data, PCA has been successfully utilized e.g. for dimension reduction and for visualization of complex 

data in 3D[66]. 

Conceptually, principal components analysis goes beyond hierarchical clustering, as it does not merely 

reorganize genes and samples into distance trees, but models gene expressions themselves as a superposition 

of expressions along principal components. Essentially, a principal component is a linear combination of genes 

(i.e. a direction in ) that shows maximal variance, i.e. samples have maximally varying expressions along 

these directions. For biological interpretation, it may be assumed that each such direction corresponds to a 

pathway that causes co-regulation of its genes along that direction. Additionally, the method reduces co-

variance between the principal components to zero, i.e. no two directions are allowed to explain expressions 

of the same genes in a co-regulated or correlated way. Geometrically this is perceptible by the fact that all 

principal components are perpendicular to each other. This restriction implicitly assumes that biologically 

distinct pathways cannot contribute to gene expressions in a partially correlated way, and thus may be well 

separable by minimizing their co-variance. (This assumption is shown to be problematic when trying to 
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dissect partially correlated effects(cf. II.6.1).) Often just a few principal components suffice to explain most of the 

variance in the gene expression signal; in this way PCA allows summarizing microarray measurements by 

fewer dimensions (also called dimension reduction). 

For demonstration, all three principal 

components(yellow) for a simple 3D signal are 

depicted(Figure I.2.2.2.a). Line lengths depict the 

relative signal variance explained by each 

principal component.  

If simulated points were positional measure-

ments of all mass elements in a rigid body, these 

principal components would have the physical 

characteristics of principle axes of inertia: 

Applying a torque around either of these axes 

would cause the body to begin rotating only 

about the respective axis. I.e. when rotating 

around the axis with maximal variance, all 

points on that axis (and especially the tips of the rigid body) would stay where they are. This is generally not 

the case when applying a torque around an arbitrary direction. As one principal component already explains 

the dominant part of the variance in this simulated signal, it can be utilized to summarize the signal for all 

points. If the same points were reinterpreted as expressions of three genes in 2000 patient samples, the 

direction of this dominant principal component might represent the law of co-regulation mediated by an 

underlying pathway. This law (in form of a linear combination) could subsequently be utilized for further high-

level modeling of that pathway. This would not be feasible, if the modeler would only have a table with raw 

data values for these 2000 points, again demonstrating the advantage of summarization for modeling and 

interpretation. 

Mathematically, principal components are found by diagonalizing the covariance matrix of the signal. Every 

gene can be seen as a random variable   that corresponds to the distribution of that gene’s expressions for all 

samples. (In the above example, each gene  ,   and   was measured for 2000 samples.) The covariance 

between two genes cov ,  is defined as E  E  ⋅   E, where E is the expectancy operator. E  can be empirically estimated by the mean of all sample expressions of gene  . Similarly, empirical 

covariances  , ≡ cov ,  for every pair of genes can be estimated numerically. As covariances are 

symmetric, the resulting matrix  ∈   is also symmetric (and real-valued). The principal axes theorem of 

linear algebra[67, theorem 7.6.3] states that for every such matrix an orthogonal matrix  ∈  exists such that  ≡ is a real-valued diagonal matrix. I.e.  rotates points in such a way that their covariance vanishes in the 

new coordinate system (zero off-diagonal elements in ). Columns of  are eigenvectors of  in original 

coordinates; they define the principal components (and their directions as depicted in yellow) that span the 

new coordinate system. Their eigenvalues diag finally equal the signal’s variance along these new axes. 

Diagonalization of  is the computationally difficult part of PCA, but can be readily performed by numeric 

algorithms, for example by singular value decomposition (e.g. implemented by the svd function in MATLAB®). 

Principal component analyses have already been successfully applied to gene expression signals. For 

example, gene expressions of a synchronized yeast culture have been measured at different times in the cell 

cycle relative to an unsynchronized control. It was possible to summarize this signal by just two eigenarrays[68] 

(i.e. by principal components in the samples space). Correlation of samples to these eigenarrays correctly 

 
Figure I.2.2.2.a) Simple 3D illustration of PCA 

Points for three dimensions and 2000 samples measure a single simulated effect. 
Principal components returned by PCA are depicted as three yellow perpendicular 
lines. Line lengths are proportional to the square roots of the variances, i.e. they depict 
the standard deviations along these directions. 
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reproduced the experimental cell cycle setup. Additionally, approximately 40% of the signal’s variance could 

be explained by just two eigengenes (i.e. principal components in the gene space). Correlations to these two 

eigengenes allowed estimating the role of all genes in the cell cycle[68]. In another application, differentially 

expressed genes between drug-sensitive and drug-resistant cases have been supervisedly identified. The first 

three principal components for this signal were have been demonstrated to be already sufficient to predict 

drug sensitivity of most samples correctly[45]. 

However, compared to the ubiquitous hierarchical 

clustering, PCA seems to be utilized relatively seldom 

in the context of unsupervised gene expression 

analyses. In part, this may be caused by PCA’s 

underlying concept of interaction, i.e. to maximize 

variance per direction and to zero correlation 

between directions. This concept does not always fit 

well to effects of gene interactions that are mediated 

by pathways and observed by gene expressions. The 

problem can be illustrated(Figure I.2.2.2.b) by simulating 

two subgroups of patient samples(red and blue), each 

driven by a distinct pathway that regulates the 

expressions of the same three genes. A useful 

summary here would separate these groups of 

patients and deliver one axis (i.e. one principal 

component or one linear law) per simulated linear pathway. Principal components(yellow) however do not 

reflect directions of the blue and red pathways. PCA cannot find the correct pathway directions here, in part 

because they are not perpendicular to each other. I.e. they are partly correlated to each other, which is 

incompatible to PCA’s concept of interactions. Hence, principal components cannot dissect the two patient 

groups, but instead summarize the signal by the two longer yellow directions, i.e. by new coordinates that mix 

both groups. This mixing of distinct pathways is hard to interpret, especially for real world signals that have a 

much higher number of dimensions (i.e. genes).  

In contrast, if depicted red and blue points would again interact like mass elements in a common rigid body, 

these principal components would still point in the directions of the principal axes of rotation for this X-shaped 

body, with the above-explained physical meaning. In this context, the red and blue pathway directions would 

not be as useful for summary for rotational properties, because if a torque would be applied around them, the 

X-shaped body would inevitably rotate in a way that also moves points near the red respectively blue effect 

axes, as they are not principal axes of rotation. This demonstrates that the model of interactions that underlies 

a summarization method should be compatible with the signal context for interpretability. 

 
Figure I.2.2.2.b) Principal components do not point into effect directions 

Points for three dimensions simulate two distinct but partly correlated (i.e. not 
perpendicular) effects for 1000 samples each (red and blue). Principal 
components returned by PCA are depicted as three yellow perpendicular lines. 
The two longer principal components capture nearly all of the signal’s variance 
here; therefore, the third component that protrudes where the two longer 
cross in the center is relatively short. 
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I.2.3 Copy Number Analyses 
Besides gene expression microarrays, another important source of genomic information is array 

comparative genomic hybridization (aCGH). Instead of interrogating concentrations of transcribed mRNA, 

here the relative amount of DNA is quantified. Normally, two copies of each gene are available in the human 

genome (in case of  and  chromosomes in males, the reference is one copy). Segments of DNA may exist that 

have a lower or higher number of copies. To unsupervisedly detect these segments and to summarize aCGH 

signals, a neighborhood model can be employed(cf. Table I.1.3.4); for example, circular binary segmentation can 

detect these segments(cf. [27], see also cghcbs.m of the MATLAB® Bioinformatics Toolbox). 

These analyses may reveal, for instance, that a cell line has a double-deletion of a specific DNA segment. In 

this case, genes encoded in this segment can no longer participate in the gene regulation network in affected 

cells. Such DNA defects may be one possible origin or driver of cancer genesis. An already presented 

example(cf. I.1.2.3) is the loss of PTEN in a subset of GCB DLBCL samples[12].  

Another exemplary result from aCGH analyses shows(Figure I.2.3) amplifications of segments that include  

the MCL1 locus: 

Figure I.2.3) Exemplary aCGH analyses 

Two DLBCL cell lines(panels a and b) and an ABC DLBCL case(panel c) are characterized by high-level MCL1 amplification. 
(Analyses performed for and reprinted form a co-authored paper[3].) 

Chromosomal gains or amplifications of this locus occur in approximately 26% of ABC DLBCL samples. For 

this subset, MCL1 deregulation has anti-apoptotic characteristics and contributes to therapy resistance[3]. 
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I.2.4 Viability Curves and the IC50 
Besides whole genome analyses, several other experiments are performed in molecular biology that are 

associated with other types of analyses. For instance, viability measurements over titrated concentrations of 

a drug candidate can be utilized to quantify the sensitivity of cell lines. 

The drug is typically titrated over a logarithmic range of concentrations for the same cell line several times. 

The IC50 is defined as the inhibitory concentration where the viability has decreased to 50%. Usually, none of 

the tested concentrations in the logarithmic range matches the IC50 exactly. Hence, an interpolation between 

data points is needed to determine it. 

Such an interpolation can be determined 

with a sigmoidal model 


⋅, where  

is the logarithmic concentration,  is the 

resulting logarithmic IC50 and  determines 

the steepness of the viability decrease. To 

respect that for some cell lines an offset 

viability may remain after the strong 

decrease in viability, the model can be added 

this degree of freedom by 


⋅  . 

This model has been fitted to measured 

titration curves(with the fit.m function in MATLAB®). The 

IC50 concentration is obtained by the fitted . Visually(cf. Figure I.2.4), the IC50 corresponds to 

the intersection of the interpolated titration 

curve(gray) at 50% viability(blue). 

The example demonstrates IC50 analyses 

that have been performed for DLBCL cell lines 

OCI-Ly3(upper panel) and TMD-8(lower panel). Both 

cell lines have been treated with an antibody 

drug conjugate (ADC) that targets CD79B. 

CD79B is physiologically expressed in the 

vast majority of B cells and thus represents a 

promising target for DLBCL[69]. The cytotoxic 

agent in this ADC is the microtubule-

disrupting agent monomethyl auristatin E 

(MMAE). It induced cell death in the majority 

of DLBCL model cell lines, as depicted 

exemplary for OCI-Ly3 and TMD-8. These 

ADCs are also clinically relevant[69]. 

 

Figure I.2.4) Examples of IC50 fits for an anti-CD79B ADC 

Sigmoidal fits are utilized to determine IC50s for an antibody drug conjugate (ADC) 
targeting CD79B as described in the text. The same drug is applied to two DLBCL cell lines, 
OCI-Ly3 and TMD-8. (Analyses performed for [69].) 
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I.3 Association Methods 
An important step to gain new knowledge from experiments is to associate measurement 

results with already existing knowledge(cf. I.1.3.5). 

In molecular biology, important sources of computable genomic knowledge are public gene 

signature databases. They contain sets of genes that were discovered to function alike. 

A similar source is the gene ontology. It groups genes hierarchically by known molecular 

functions, by cellular components or by known biological processes. 

In context of patient samples, typically clinical information is available in addition to 

genomic information sources. These information can be of categorical type (like gender) or of 

metric type (like blood values). They can also be of a time-ordered censored type (like patient 

survival measured by follow-up studies). Different statistical methods exist for the association 

of each type of information with gene expressions. 

Selected examples analyzed for published studies are presented in this subchapter to 

illustrate some of these association methods. The same methods are applied systematically 

for biostatistical evaluation of discovered GEP effects(cf. III.3). Results for all 135 validated GEP 

effects are digitally provided in both tabular and graphical form(cf. page 231). 

I.3.1 Signature Analyses and Gene Set Enrichment 
Usually, genomic discoveries in bioscience have been published in the form of sets of genes that have shown 

similar behavior in analyzed biological settings. For example, they may have been identified by similar 

differential expressions between cell types or by co-regulation in response to a drug, etc. These gene 

signatures have been collected in several large public databases. For a comprehensive association with all 

existing biological knowledge encoded by these gene signatures, I have imported and combined the following 

public databases: • MolSigDB[70] (9479 signatures, v4.0, downloaded in May 2014) • GeneSigDB[71] (3138 signatures, v4.0, downloaded in September 2011) • Staudt lab signature DB[72] (253 lymphoma specific signatures, downloaded in November 2012) • HGNC gene families[73] (285 signatures, downloaded in May 2014) 

The resulting combined signatures database enables a systematic association of genomic experiments with 

13155 known gene signatures from various fields of biology. 

I.3.1.1 Gene set enrichment analysis 

Several statistical analyses can be utilized to test the association of a given biological experiment to these 

signatures. The probably most relevant statistical method to this end is gene set enrichment analysis[74].  

First, genes are ranked by the experiment in focus. Typically a supervised analysis(cf. I.2.1.1) determines these 

gene ranks, for example genes are sorted by their folding from the most upregulated to the most 

downregulated gene. For a given known gene signature, ranks of genes that are contained in this signature are 

marked next. Then it is tested, if these marked genes are distributed in a significantly non-random form.  
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Higher enrichment scores are obtained if all signature genes are located either at the downregulated side or 

all at the upregulated side of the analyzed experiment. More precisely, if all genes in a signature of size  are 

identical with the set of genes that have top ranks 1 … , then the enrichment score equals 1. If they are 

identical to the set of bottom-most genes, the enrichment score equals 1. Enrichments on either side may be 

biologically interesting, while a signature is typically relatively uninteresting, if its genes are half upregulated 

and half downregulated, or if they are all weakly regulated (corresponding to middle ranks). In these cases, 

the enrichment score is lower. For completely random (i.e. uniform) distribution of ranks, the score 

approaches zero. Gene weights may be utilized, for example, to prevent weakly or insignificantly regulated 

genes from having overdue impact on the score. The enrichment score is computed as a cumulative rank 

statistic that can be visualized as an enrichment mountain(e.g. Figure I.3.1.1). From left to right, the curve increases 

for every gene in the signature(blue lines) and decreases for every other gene. Both sets of genes are normalized 

and thus both contributions add to zero. The enrichment score is defined as the extremum of this 

curve(see [74] for details). 

To test the significance of enrichment scores, permutation tests are applied. These tests are a major factor 

for the computational cost of gene set enrichment analyses. As usually many signatures are tested 

simultaneously, a false discovery rate (FDR) is additionally computed as control for multiple hypothesis 

testing. The FDR estimates the ratio of signatures with likewise or stronger statistics that might exist by pure 

chance due to testing many signatures. Signatures can be categorized biologically. Often only signatures from 

specific categories are of interest. Hence, FDRs are typically computed separately for each category (rather 

than for the full database) to respect this external knowledge. 

In the study for which the depicted example(Figure I.3.1.1) 

has been analyzed, a murine Eμ-Tcl1 model for the 

human chronic lymphocytic leukemia (CLL) has been 

utilized to compare Eμ-Tcl1 mice with Cxcr5−/− Eμ-Tcl1 

mice[75]. The spontaneous tumor development has been 

followed for both genotypes of mice. Mice without 

CXCR5 showed a substantially delayed onset of the 

disease. For analysis, first, differentially expressed 

genes between six samples from Eμ-Tcl1 mice and five 

samples from Cxcr5−/− Eμ-Tcl1 mice have been 

supervisedly determined(cf. I.2.1.1). Ranking all genes by 

their  values for their differential expressions, the 

combined signatures database(cf. I.3.1) has been screened 

by gene set enrichment analyses. The depicted 

significant enrichment has been detected for the cell 

division cycle 2 (CDC2) signature (from the GNF2 

expression compendium obtained via the MolSigDB[70]). 

Genes are significantly downregulated in Cxcr5−/− Eμ-

Tcl1 mice. Hence, this signature predicts a proliferative 

advantage in Eμ-Tcl1 tumor cells. In total, seven 

different proliferation related signatures have been 

associated with likewise significant enrichment. Together with other experiments and analyses, the study 

clarifies steps of CXCR5-dependent tumor cell lodging and resulting proliferative stimuli to leukemia B cells[75]. 

 

Figure I.3.1.1) Significant enrichment of a proliferation related signature 

The signature CDC2 (from the GNF2 expression compendium via the 
Molecular Signature DB[70]) is significantly enriched (see text for details). 
(Analyzed for and reprinted from a co-authored paper[75].) 
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A similar analysis has been performed for an investigation of anaplastic large cell lymphoma (ALCL)[76]. First, 

genes that were significantly differentially expressed in cell lines K299, FE-PD and DEL following IRF4 

knockdown by RNA interference have been supervisedly determined(cf. I.2.1.1). For the resulting gene ranks, the 

combined signature database(cf. I.3.1) has been screened and a previously described MYC gene signature has 

been identified by significant enrichment. Together with other analyses and experiments, MYC has been 

revealed as a primary target of IRF4 in this study[76]. 

I.3.1.2 Additional signature statistics and signature heatmaps 

My analysis pipeline routinely computes additional statistics and heatmaps for enriched signatures that 

depict the actual gene expressions of samples in the current experiment. For each sample, the signature 

expression is aggregated and tested for significance (via -tests relative to baseline). If these statistics are not 

significant or if average foldings are relatively weak compared to top genes in the same experiment, results 

from enrichment analyses should be interpreted with care in my experience (even if they are significant). 

For the already briefly presented study in tumor immunology about RCC(cf. I.2.1.1 and [30]), several significantly 

enriched signatures confirm an immunological impairment. For example, the immune signature “immediate 

early” (from the Staudt lab signature DB[72]) has been identified with an enrichment score of 0.961 (  0.0007 

by permutation test, FDR  0.1%). The depicted heatmap(cf. Figure I.3.1.2) shows significant downregulation of 

signature genes in the majority of RCC patient samples prior to vaccination relative to healthy control samples. 

In four RCC samples this effect is particularly strong, leading to significant sample-wise average 

expressions(bottom), despite the low number of genes in this signature. 

Figure I.3.1.2) A immediate early immune response signature identified by gene set enrichment analyses 

The immune signature “immediate early” (from the Staudt lab signature DB[72]) has been identified by significant enrichment (enrichment score 0.961 and  0.0007 by permutation test). The depicted heatmap shows significant downregulation of signature genes in the majority of RCC patient samples (left) relative to 
healthy control samples. Additional signature statistics are a FDR for the enrichment of 0.1%  and a strong average logratio over all samples of 1.67. 
(Analysis performed for and reprinted from [30].) 

These heatmap information complement significant enrichment. Together, such statistics can provide a 

reliable basis for further biological interpretation of respective signatures. 
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I.3.2 Gene Ontology Analyses 
Gene ontology (GO) terms are similar to gene signatures, but they are organized hierarchically. There are 

three hierarchy roots: biological processes, molecular functions and cellular components([77], downloaded in June 2011). 

The deeper a term is in a hierarchy, the more specific is its biological meaning. The online source QuickGO[78] 

provides an overview of the definition of every GO term. 

Overrepresentation analyses can associate gene ontology terms with experiment-specific signatures or with 

discovered genomic effects. Typically, every term is tested for overrepresentation by a hypergeometric 

test(cf. [79], pages 369-371). Improvements to the statistical analysis that incorporate the parent-child relationship of 

terms have been suggested[80]. For all gene ontology analyses for this work(presented in III.3), I use only direct term 

annotations of genes in order to focus on the biologically most specific terms.  

A disadvantage compared to gene set enrichment analyses is that overrepresentation analyses require a 

definition of “top genes” for the experiment or effect being analyzed. I.e. a cutoff has to be specified that 

introduces an element of user-dependency. In contrast, enrichment analyses work with the ranks of all genes 

and do not require any cutoff. 

GO analyses may be useful for the identification of (re)discovered effects of already known biological 

functions. For example, a relative large GEP effect in DLBCL has been unsupervisedly discovered is 

significantly associated with gene ontology terms from all three term trees(cf. III.3.3.4). In context of new effects, 

especially for smaller effects induced e.g. by RNA interference experiments, GO analyses often do not result in 

significantly overrepresented terms in my experience. 
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I.3.3 Kaplan Meier Survival and Log Rank Tests 
Kaplan-Meier survival curves(cf. [79], pages 760-767) estimate survival over time from right-censored event data. In 

case of analyzing overall patient survival, observed deaths are the events and censored events correspond to 

patients that were lost to follow-up before their death occurred. Not only observed events but also censored 

events carry important information, as censored patients lived at least until the last recorded follow-up time. 

Resulting Kaplan-Meier survival estimates respect both types of information. Survival curves e.g. for  

two different subsets of patients, can be compared and tested for significant differences by log rank  

tests(cf. [79], pages 767-773). 

For multivariate survival analysis of combinations of GEP effects, Cox survival models(cf. III.2.1.1) are employed. 

Kaplan Meier survival estimates are then utilized extensively(in III.2) to visualize survival differences(e.g. Figure 

III.2.5.3.b) that are predicted by unsupervisedly discovered gene expression effects or by multivariate 

combinations thereof. 

The same analyses can be utilized in supervised contexts to test specific biological hypothesis. For example, 

a cross-species investigation based on mouse lymphoma models[81] has identified a subgroup of GCB DLBCL 

patients defined by high BCL2 expression. This subgroup is associated with significantly more favorable 

outcome for high NF-κB expression(cf. Figure I.3.3). In contrast, constitutively active NF-κB signaling also 

characterizes the ABC DLBCL subtype(cf. I.1.2.3, [10]) that is associated with significantly adverse outcome(cf. Figure 

III.2.1.8) relative to GCB DLBCL. Hence, the NF-κB pathway plays opposing roles, depending on the cellular 

context[81]. 

 

Figure I.3.3) Kaplan-Meier survival analyses show significantly more favorable outcome for high NF-κB expressions in a GCB DLBCL subset with high BCL2 expression 

Kaplan-Meier survival analyses for samples in GSE10846.R-CHOP(cf. III.1.1.1, [5]) are depicted for eight sample subsets. First, samples have been stratified by their BCL2 
gene expression and by their previously assigned DLBCL subtypes[5]. For each of the four resulting patient subsets, patients have been grouped further by their NF-κB 
expression (as quantified by the average expression of the signature “NFkB_Up_all_OCILy3_Ly10” from the Staudt lab signature database[72]). For GCB DLBCL patients 
with high BCL2 expression, a significantly more favorable survival was identified for high NF-κB expressions (p=0.005, log rank test, 49 samples). (Analyzed for [81].) 

Interestingly, BLC2 has also been unsupervisedly (re)discovered based on signal dissection results and 

multivariate survival analysis as one of the top DLBCL survival effects(effect validation index ν=75, cf. III.2.5). Biostatistical 

analyses for this effect(cf. III.3.3.7) help to determine a subset of patients with low BCL2 expressions and high 

expressions of a T cell co-stimulation related effect(cf. III.3.3.6). This discovered subset is associated with 

significantly different survival for different expressions of a zinc related effect(cf. III.3.3.8). 
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Modern technologies can measure many parts of a system 

simultaneously. For example, human whole genome microarrays 

provide approximately 50000 gene expressions per tumor sample. 

To bridge the gap between information about all system parts 

and the high-level modeling of their interactions, there is an 

increasing need to summarize these measurements. 

In principle, a signal can be separated in many ways like a sum 

into summands, but a specific dissection is required to identify 

summands that represent distinct true effects of interactions in 

the underlying system. An ideal summary represents the complete 

high-dimensional multi-sample signal by as few as possible, yet 

easily interpretable and statistically significant effects. 

This chapter presents a novel signal dissection method that 

utilizes a correlation maximization principle and bi-monotonic 

regression to this end. Various biological effects are simulated to 

validate the method and to systematically compare it with 

principal component analysis and hierarchical clustering. 

 MIC 0.a KÜ 

 MIC 1.a KÜ 
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II.1 Design Goals 
To exemplify a basic detection task, first, a simulated 3D signal is presented. It serves 

throughout this chapter for geometric illustrations of method concepts like effect curves that 

are difficult to imagine in high-dimensional signal spaces. 

When developing a novel algorithm it is instructive to reflect existing problems that ideally 

should be solved. To this end, characteristics of gene expression signals or requirements by 

the analytical workflow in life sciences are reflected, together with present problems of 

hierarchical clustering or principal components analysis. Corresponding conceptual 

improvements that are implemented by signal dissection are briefly previewed. 

II.1.1 Introductory 3D Example 
Although the method is designed and optimized for high-dimensional signals, an example with just three 

dimensions can be more illustrative. It provides a geometrical perception of how the method works, based on 

visualizations in the familiar 3D space. Furthermore, the simulated signal mimics four basic biological 

regulation concepts. High-dimensional effects that resemble real-world gene expression signatures with many 

genes are simulated later for method validation and systematic comparison(II.6.2.1). 

II.1.1.1 A simple linear effect 

In the easiest case, genes controlled by a pathway are co-regulated in a linear 

way, i.e. samples follow a line in gene space. The red effect on the right simulates 

this using a gene axis of  red  ≡ 0.2, 0.2, 1  for   , , , i.e. gene  is the top 

gene of that pathway with gene  being five-fold weaker co-regulated and gene  

being also five-fold weaker, but regulated with opposite sign. If  denotes the 

average pathway strength or activity in samples, then sample points follow the 

effect via |red , where |red  ≡ |red  red   is its normalized gene axis. To 

construct a typical gradual effect for which extreme expressions are less probable 

than weaker regulations, simulated pathway strengths  for all depicted 1000 red 

samples(Figure II.1.1.1) follow a normal distribution ~0,1; this also explains the 

solitary outlier at the bottom. To simulate measurement noise, each sample  

point was added normally distributed expressions of standard deviation 0.1 for 

each gene. 

Real-world gene expressions are usually analyzed as logratios relative to 

control samples or relative to the average of all measured patients. Hence, zero 

indicates no pathway activity relative to this baseline, positive values represent up-

regulated genes and negative values represent downregulated genes relative to 

baseline. In general, a pathway may simultaneously modulate gene expressions 

towards upregulation for a set of genes (here ,  with   0) and towards 

downregulation for another set of genes (here only  with   0). For samples with negative pathway 

activity   0, “up” and “down”regulation change roles. Whether |red  or |red  is the positive direction of a 

 

Figure II.1.1.1) 3D example; red 
effect: a linear law of gene regulation 

All three genes are regulated 
linearly. Gene  dominates with 
five-fold higher regulation 
strength as the other two genes. 
(1000 samples were simulated as 
explained din the text.) 
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pathway is a matter of convention and cannot be decided by the method. In any case, both sets of genes are 

anti-correlated to each other by virtue of the underlying connecting regulation law. 

II.1.1.2 Supported nonlinear biological effects and three examples 

Although the assumption of linearity is a standard first attempt for modeling in physics and biosciences, 

nature is not always linear. For example, feedback loops in pathways that may lead to nonlinearities and 

maybe even oscillations over time. 

In case of gene expressions, a snapshot of average mRNA expressions in a cell ensemble is measured, i.e. no 

dynamics over time are recorded. To see nonlinearities like oscillations I such signals would likely correspond 

to an unnatural effect. For example, consider a subset of samples that shows co-regulation for a set of pathway 

genes, while one half of these genes are regulated stronger than the other half. Additionally, there are other 

samples with stronger average activity of the same pathway, but for them the initially weaker half of genes is 

now regulated stronger than the other half. For samples with even stronger pathway activity, the relative 

expression of the gene halves is flipped again and thus equals the initial set of samples with relatively low 

average pathway. Such oscillatory behavior seems biologically implausible in the gene expressions context. 

Even if such an effect was measured, it would probably be more constructive for system modeling to detect 

both halves of genes separately as two partially correlated effects. Besides, no general-purpose method that is 

able to detect and properly dissect superposed effects of all imaginable nonlinear forms can exist, because this 

task is highly ambiguous and has no unique solution. 

Still, there are non-linear biological effects in typical gene expression signals. One example are pathways 

including genes that reach their saturation expression before other genes regulated by the same pathway (i.e. 

they reach their maximum expression for lower average pathway activity). Other pathways may regulate 

some genes sub-proportionally or over-proportionally (e.g. quadratically) relative to their overall pathway 

activity. Yet others might show a switch behavior, e.g. some of their genes are either switched off or 

immediately expressed on a constant high level for some activity threshold. All these nonlinearities have one 

thing in common: They are monotonic over the average pathway activity. And they extend along a guiding 

linear gene axis, over which they are monotonic. Projections of sample points on this gene axis quantify their 

average pathway activities. Three basic examples illustrate such monotonic effects: 

 

Figure II.1.1.2) 3D example; blue, green and magenta effects: monotonic non-linear laws of gene regulation 

Blue effect) Gene  saturates over the average pathway activity proportional to the logistic function, while genes  and  follow linear laws (500 samples). 
Green effect) Gene  shows quadratic increase respectively decrease, while genes  and  follow linear laws (500 samples); top point densities are relatively low here. 
Magenta effect) A one-sided effect with an offset that simulates a pathway with a threshold activity (500 samples, but only the top 100 have nonzero signal before 
adding simulated noise). 
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Precise definitions are as follows:  • The blue saturation effect uses  blue  ≡ 0.5, 0.75, 0.2  as its dominant linear gene axis, simulates 

500 activities 	~	0,1 and uses a centered logistic function  ≡ 3 ⋅ 0.5  
 to simulate a 

saturation of gene .  • The green effect extends along  green  ≡ 0.8, 0.2, 0.5 , again simulates 500 samples with 

activities 	~	0,1 and regulates gene  quadratically via  ≡ sign ⋅ .  • Finally, the magenta effect extends linearly along gene axis  magenta  ≡ 0.4, 0.7, 0.7 , but only 

the top 20% of all 500 simulated pathway activities		~	0,1 are kept; all others are set to zero in 

order to mimic a one-sided threshold behavior. To simulate measurement uncertainties, all simulated 

sample points are added normal noise with standard deviation 0.1 for each gene. 

II.1.1.3 Merged 3D signal and an exemplary detection task 

In this example, all four simulated effects take place in different sample subsets that could represent disease 

subtypes. Initially, it is unknown, which sample belongs to which subtype. Neither is known how many effects 

are contained in the signal. Like in a real measurement setting, only the merged signal (without color-coding) 

is available as input for detection(Figure II.1.1.3). The task is to detect and dissect all four effects correctly. 

Furthermore, empirically discovered laws of gene regulation should be provided for each one in an 

interpretable form. More precisely, the method should yield an effect curve in the space spanned by genes ,  

and  for each effect, together with correlations and effect weights that assign samples to subtypes. 

 

Figure II.1.1.3) Merged 3D example with four effects 

Four simulated basic pathways correspond to four distinct sample subsets. They are regulated by different laws for the same three genes, as defined above. (Sample 
points are plotted in a perspective that has been chosen to show all effects with as few as possible overlap.) 
The task for detection methods is to recover all four simulated pathway laws empirically from the points. (The color-coding is not part of the input for detection 
methods, as illustrated on the right.) 

Although based on only three dimensions, this example is difficult to dissect from a certain conceptual 

perspective: The signal contains four effects, but its gene space has only three dimensions. Mathematically 

consequently and visually obvious, these effects are partially correlated to each other. This also implies that 

they cannot be dissected by usual projections, because after three projections in 3D only zero remains. In high-

dimensional gene expression measurements, pathways usually only regulate some shared genes, but not all 

of their genes are shared. This makes their dissection easier. Still, visually the 3D effects are clearly separated 

by their point density. In addition, their guiding linear gene axes point in clearly distinct directions, despite 

their partial correlation. This can be utilized to dissect them as is illustrated when explaining the search 

strategy(II.3). 
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II.1.2 Method Design Goals 
Several characteristics of signals in life sciences are listed in this subchapter. Associated problems from 

methodological perspective are presented. Primarily, examples based on hierarchical clustering are provided, 

as this method is the quasi-standard for unsupervised analyses in biosciences(cf. I.2.2.1). Additionally, problems 

are presented in the context of principal components analysis(I.2.2.2), as PCA is conceptually more comparable 

to signal dissection. Corresponding method design goals are clarified and method concepts reaching these 

goals are briefly previewed. 

II.1.2.1 Effect focusing should be unsupervised 

Whole genome microarrays measure many different effects, including obvious differences like gender or 

race. Hence, a single sample clustering cannot summarize all measured sample characteristics simultaneously, 

as most effects are independent and their signals may overlap. 

Per design, hierarchical clustering tries to derive just a single sample clustering based on a simultaneous 

comparison of all genes in its input signal. This usually leads to noisy and unreliable results when applied to 

the complete measurement signal. To some extent this is still the case for too loosely focused signals[e.g. 55.figure 

1]. To overcome this problem, usually the analysis is focused on a tight subset of measured genes 

only[44,47,48,51,54,57,60,61]. For example, it might be focused on the most variable genes in a given context or with 

help of a previously defined gene signature. However, these interventions make resulting clusterings 

dependent on the chosen focus and thus are an incomplete summary with respect to the complete signal. 

In brief, a direct application of the method to the full measurement signal should be possible and should not 

require any supervised restrictions of the gene or sample space, as they can make results incomplete and 

maybe even biased. 

Signal dissection can be applied to the full signal, as its search strategy(cf. II.3) realizes an automatic, unbiased 

and adaptive focusing of effects. 

II.1.2.2 Discovered effects should be specific to true effects 

Even after an initial (either supervised or unsupervised) general focusing, typically several yet unknown 

disease-specific effects remain in the focused signal. Often their underlying biological pathways still overlap 

each other independently like ordinary human features such as gender, skin color and blood groups, i.e. they 

do not stand in any hierarchical context to each other. To dissect these biological effects properly, one ideally 

needs an individual sample clustering for each independent true effect. 

Conceptually, hierarchical clustering tries to organize samples in a tree structure that is simultaneously 

based on all remaining effects in the focused signal. The resulting sample clustering then may constitute an 

automated mixture of biologically yet unidentified and potentially independent effects, which makes resulting 

dendrograms[as in 44,47,60] harder to interpret and hard to compare. One might extract sub clusters from a larger 

dendrogram to finally arrive at single effects[e.g. 47], but this is only possible if those effects were not overlapped 

and split by other effects in the first place. Furthermore, these results are dependent on yet another supervised 

focusing decision. It is legitimate and often statistically significant to just use the dominant effect, i.e. to cut the 

dendrogram at a top level and to define just few sample clusters[e.g. 61], but this is again systematically 

incomplete. In the extreme case of manual focusing, one might uses external information to focus directly on 

the context in question, for example, on genes that are differentially expressed in tumor samples that have 

different drug sensitivity[45.fig.2]. This may be useful to construct predictive models, but it is only available in 
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supervised scenarios and thus cannot reveal any previously unknown biological groups of samples or genes as 

a matter of principle.  

PCA does not try to represent overlapping effects as a hierarchical distance tree, but it assumes that effects 

correspond to directions of maximal variance. This can also lead to a mixture of multiple true effects by each 

principal component as illustrated in I.2.2.2. This is also confirmed in method validation(II.6.3) and again makes 

principal components hard or even impossible to interpret. This problem is also known in astrophysics, a field 

where PCA has been applied more frequently compared to bioscience: “The main difficulty with PCA is that 

the interpretation of the empirically determined PC components in terms of physical properties is complex at 

best.”[24]  

Rather than coping with signal summaries that mix real effects, it is usually more constructive to first 

unsupervisedly detect and identify each single effect separately and then let an expert combine them later to 

generate an interpretable compound model, for example by multivariate survival analyses(III.2) based on 

discovered gene expression effects. 

In brief, biologically independent effects should not be mixed automatically in any form as this makes results 

hard to interpret and difficult to compare. 

Signal dissection uses a general superposition model for the signal(cf. II.2.1.1) that supports effect hierarchies, 

but is not limited to them and also supports independently overlapping effects. A correlation maximization 

principle is utilized by the search strategy(II.3) to detect and robustly identify effect axes that are specific to 

distinct true effects.  

II.1.2.3 Partial correlations should be properly resolved 

Special cases of overlapping effects are partially correlated yet distinct effects, e.g. the four effects in the 3D 

concept example(Figure II.1.1.3). Methods like PCA that require orthogonality of resulting effect axes (i.e. principal 

components) cannot properly resolve such partially correlated effects(cf. II.6.1). The same is true for all methods 

that are based on (or can be equivalently formulated as) a series of projections of the signal.  

Especially in context of genetically heterogeneous diseases like DLBCL, it is important that the method is 

able to dissect overlapping and partially yet not fully correlated sets of genes. Underlying distinct biological 

pathways can then be inferred from resulting subsets of highly correlated genes. This inference is considerably 

harder, if a single and relatively large set of only moderately correlated genes is returned that corresponds to 

a mixture of these partially correlated effects. 

In brief, methods should not be restricted detecting only 100% uncorrelated effects (i.e. to orthogonal effect 

axes), because this leads to hard to interpret summaries of signals containing partially correlated yet distinct 

true effects. 

Dissection strengths(cf. II.4.2.1) are utilized to precisely dissect the signal parts that are most correlated with the 

respective discovered effect, thereby keeping distinct or only partially correlated signal parts for later 

discovery as separate effects. These separate effects are usually correlated higher to these signal parts and 

thus represent them with more specificity, which makes their interpretation easier. 

II.1.2.4 Symmetry of genes and samples 

In general, a biological effect causes expressions in an initially unknown subset of genes and in an initially 

unknown subset of samples. As outlined above(II.1.2.1, II.1.2.2), it is useful to focus on a gene subset in order to 

determine affected samples. Analogously, it increases precision to focus only on the affected samples when 
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trying to determine participating genes in the first place. Both focusing needs are interdependent and 

therefore should be handled simultaneously. 

Hierarchical clustering can either cluster samples based on their expressions of all presented genes or it can 

cluster genes based on their expressions in all presented samples. Often both resulting dendrograms are 

displayed simultaneously, but they can only be computed independently from each other, as hierarchical 

clustering can only compare objects (i.e. genes or samples) of the same type at a time (and only with a 

predetermined fixed number of features). It may be possible to first compute gene clusters based on all 

samples (ignoring that effects may only affect a subset of them) and then utilize the resulting dendrogram to 

focus within the gene space, i.e. to compute sample clusterings separately for each identified gene cluster. 

However, this iterative procedure assigns different roles to genes and samples and makes results additionally 

dependent on the sequence of those roles. 

In brief, genes and samples should be treated symmetrically and simultaneously by the method in order to 

optimally focus on an effect. 

Signal dissection realizes this symmetrization immediately after selecting an initial representative gene or 

sample(cf. II.3.1.3) for a potential effect. Henceforth, roles of genes and samples are interchangeable during 

detection to avoid any bias. Effect eigensignals are modeled(cf. II.2.1.2) and determined(cf. II.4) as two-dimensional 

functions, thereby detecting and representing correlations between genes and between samples 

simultaneously. 

II.1.2.5 Removal of overlapping strong effects 

Gene expression experiments can only measure the sum of all superposed effects, and stronger effects may 

shine out weaker but more important ones. Strong effects may be of biological origin, for example racial 

differences[57]. Often they are unintended cohort-specific lab effects of unknown cause; some of which may be 

identified retrospectively, for example differences in experimental labeling protocols[5]. 

Hierarchical clustering effectively splits the cohort by the strongest effect, for example by cell subtype(e.g. B- or 

T-cell based ALL; cf. [45.supp.fig.1]). Consequently, parts of independently overlapping weaker effects are only detectable as 

sub-clusters within each cluster of the strong effect, making true causes of the weaker effect harder to infer, as 

demonstrated in II.6.2.6. Furthermore, in such a case the effective cohort size is reduced, eventually preventing 

detection of biologically more meaningful yet smaller and weaker effects, e.g. gene expression effects with 

prognostic value[45.fig.2]. PCA on the other hand, usually can handle a single overlapping strong and linear effect 

well, as such effects define a clear direction of maximal variance due to their strength(cf. II.6.2.5). The information 

along this direction is then projected away by the first principal component, which makes initially overshined 

effects detectable by further principal components. However, detection precision breaks down in presence of 

more than one strong effect of similar size(cf. II.6.3). 

In brief, unimportant strong effects should be prevented from dominating results and they should be 

removed without affecting information from weaker yet potentially more important effects. 

Signal dissection detects the empirical eigenorder(cf. II.4.1.2) of the strong effect and utilizes bimonotonic 

regression(cf. II.4.1.3) to estimate signal parts caused by it. This enables its later dissection without losing 

information about overlapped weaker effects. Later detection iterations can thus detect these weaker effects 

based on all samples and without any artificial reduction in the sample size due to the strong effect. As large 

overlapping effects often are just uninteresting lab effects, their removal can also be seen as a type of advanced 

signal normalization that is complementary to global signal preprocessing (e.g. by quantile normalization). 
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II.1.2.6 Compatibility with gradual effects 

Most biological effects are gradual in nature, i.e. some samples are affected stronger than others, and their 

gene expressions effectively sort them in a gap-free continuous way. The same holds for genes participating 

in an effect. 

Usual gene signatures or sample clusters are represented as flat sets with hard borders that were determined 

by e.g. partitioning methods or were inferred from dendrograms of hierarchical clustering. This 

representation is a consequence from the underlying cluster concept that assumes high similarity within 

clusters and large gaps between clusters. Gradual effects cannot be represented well by this concept and cut 

points thus become unreliable and hard to reproduce. 

PCA results are more precise relative to flat gene signatures, as principal components can describe directions 

along which linear gradual effects extend. The coordinates of samples along this principal component then 

reflect gradual effect strengths, i.e. average pathway activities. However, gradual biological effects like 

saturations(cf. basic examples in II.1.1.2) that deviate from a linear axis cannot be properly described by a single principle 

component. Instead, the effect’s non-linear signal part is represented by one or several perpendicular principal 

components. Again, this makes it hard to infer the effect’s underlying biological law of gene regulation from 

PCA’s signal summary. 

In brief, flat sets and hard cuts are an unsuitable model for gradual effects and should be replaced by more 

flexible forms of effect representation that can also describe non-linear gradual effects without artificially 

splitting them. 

Signal dissection uses a generic bimonotonic effect model(cf. II.2.1.2) that supports gradual effects. In the special 

case that the effect is truly of binary nature (and thus could be represented by a traditional hard cut as well), 

this information is retained in form of a steep signal change in the regressed effect curve(cf. II.2.2.3 and II.4.1). 

II.1.2.7 Number of effects and user-dependency of results 

It is a common yet difficult question, where one effect ends and another one starts and thus how many effects 

make up a signal in total. The same question occurs when deciding if a given signal part still makes up an effect 

or is merely noise. 

Hierarchical clustering just returns a dendrogram (i.e. a distance tree) and leaves it to the user to read 

clusters from it, i.e. to define the number of effects and their borders. This can strongly influence results[82], 

making sample clusterings harder to reproduce and harder to compare. This problem is amplified in the 

context of gradual effects(II.1.2.6) or when hierarchical clustering is utilized iteratively to realize a manual effect 

focusing as explained above(II.1.2.4). 

PCA returns a full orthonormal rotation of the coordinate system underlying the signal space, i.e. it always 

returns as many principal components as there are signal dimensions. Usually there are much more 

dimensions than true effects. (In case of partial correlations in subspaces of the signal it may also be less than 

required for proper dissection of true effects(cf. II.1.2.3).) Usually principal components are sorted descending by 

the amount of signal variance explained by them. Then only those are retained that explain more than a 

selected threshold. In this case, the number of effects again is determined manually and retrospectively. 

Preferably, user parameters should all be defined before effect detection starts and should be kept to a 

minimum. In particular, the number of effects in the signal should be determined unsupervisedly and not by 

retrospective user action. 
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Signal dissection estimates the true noise level(cf. II.5.1.1). Based on this estimation, the significance of the signal 

strength in an effect’s focus can be computed(cf. II.5.1.2). Additionally, the significance of correlations between 

genes and samples in an effect is computed(cf. II.5.2). Based on prescribed significance thresholds, this can be 

utilized for effect qualification(cf. II.3.1.8). Only few parameters are defined for this effect qualification and all are 

prescribed. As soon as no more gene or sample qualifies, the method terminates, thereby determining the 

number of effects in the signal unsupervisedly. 

II.1.2.8 Completeness of results 

Ideally, an analysis method can detect all consistent interactions that were measured in a given signal and 

represent them 1:1 by interpretable effects. 

Hierarchical clustering can only return a single sample clustering for presented data. The only way to get 

towards completeness is to use it multiple times via sequential focusing as explained(II.1.2.4), with all associated 

problems outlined above. In case of principal components, they represent 100% of the measured signal in new 

coordinates per construction. But as explained above, principal components do not necessarily match true 

effects and in case of high-dimensional signals, most of them usually explain just different aspects of 

signal noise. 

Preferably, effects that explain noise (i.e. false positives) should be prevented, but simultaneously a strong 

statement about the remaining unexplained signal should be made with respect to the non-existence of further 

true effects in it (i.e. no false negatives, either).  

The signal model(cf. II.2.1.1) and the generic bimonotonic effect model(cf. II.2.1.2) can represent a broad class of 

effects and signals comprised of such effects. With respect to preventing false positives while simultaneously 

discovering true positives, again effect qualification(cf. II.3.1.8) is utilized based on the significance of an effect 

candidate’s signal strengths and correlations. Method validation demonstrates that this works reliably with a 

high rate of discovered true positives while only accepting occasional false positives(cf. II.6.2.5). 

II.1.3 Needed Capabilities beyond Detection 
Additional to solving discussed conceptual problems of previous detection methods(II.1.2), the typical 

workflow in molecular biology requires several capabilities beyond unsupervised effect discovery, for 

example their cross-cohort validation. These capabilities are out of scope for detection methods like 

hierarchical clustering or PCA, but they should be included as part of a comprehensive solution. They are 

presented and applied in Chapter III, but ideally, the detection stage is already designed with these subsequent 

requirements in mind, as briefly introduced below. 

II.1.3.1 Comparability and validation of effects across sample cohorts 

Often, gene expression signals for a single patient cohort contain cohort-specific lab effects, e.g. systematic 

properties of the utilized microarray, experimental setup or protocol. Resulting effects on the signal are 

statistical true positives, but biological false positives. Therefore, it is mandatory in life sciences to validate 

any discovered gene expression effects, however significant they may be. This is also helpful to filter out false 

positives that might have been detected due to imperfect dissections or due to underestimated noise. 

To realize this validation, a comparison method for detected effects is required. For the detection stage this 

implies that effects should already be discovered and stored in a form that is suitable for later comparison. 
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Effects discovered by signal dissection can be compared directly by weighted correlations(cf. II.2.3.1) of their 

axes. This cutoff-free comparison does not only test whether flat sets of top genes are compatible, but precisely 

quantifies the consistency of the relative order and of all regulation strengths of genes respectively samples. 

These correlations can be associated with a  value for statistical assessment(cf. II.5.2). Based on these 

comparisons, effects can be validated(cf. III.1.2) by looking for multiple unsupervised discoveries of the same 

genomic effect in independent cohorts. Alternatively, effects may be validated by supervisedly testing their 

existence in signals from other cohorts (similar to effect application for classification; cf. II.1.3.3). 

II.1.3.2 Cohort-independent genomic consensus effects 

If the same biological phenomenon has been discovered in multiple patient cohorts, then the information 

from all available sample cohorts should be used to represent this genomic effect in its most general way. To 

this end, a procedure should combine all individual discoveries to a consensus gene effect that is as cohort-

independent as possible. 

Consensus gene effects can be readily computed from multiple discoveries of the same biological effect by 

averaging their gene axes, gene correlations and gene weights returned by signal dissection(cf. III.1.3). 

II.1.3.3 Patient classification in new cohorts by genomic consensus effects 

Once consensus gene effects have been constructed, a typical application is to sort or classify new samples 

of new cohorts by them, thereby predicting their association with the discovered genomic effect. For example, 

patients could be sorted by an effect that describes the gene expression differences of particular disease 

subtypes. Resulting correlations of samples with subtypes and associated  values might be useful for 

determining the optimal therapeutic strategy for these patients in precision medicine contexts. 

All algorithmic parts of signal dissection except for the search strategy can be identically reused to compute 

consensus sample effects(cf. III.1.4), thereby quantifying and predicting effect strengths in samples from new 

cohorts. To this end, the search strategy is replaced by the respective consensus gene effect that should be 

used for sample classification. 

II.1.3.4 Specific biostatistical evaluation of discovered effects 

To help experts characterize and identify consensus effects biologically, ideally all available computable 

biological knowledge that is significantly associated with an effect should be summarized in an easily 

retrievable form. To this end, effects should retain as much as possible information. Only then, specific 

associations can be found and misleading false-positive associations can be prevented. 

For example, in case of clustering and partitioning methods, statistical association methods are limited to 

flat sets, again. This essentially restricts to categorical statistical tests. Sample clusters may be associated with 

e.g. clinical covariates and gene clusters could be analyzed in context of known gene signatures by 

overrepresentation analyses. However, more sophisticated statistical association methods like gene set 

enrichment analyses(I.3.1) require more information like a continuous quantification of the involvement of every 

single gene in a particular effect. 

All effects discovered by signal dissection and constructed consensus effects can be tested directly by gene 

set enrichment analyses. More precisely, several scores for gene ranking are available to this end(cf. III.1.3.2). 

Additionally, effects can be biostatistically associated with several other sources of computable genomic 

respectively clinical knowledge(cf. III.3). 
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II.2 Mathematical Framework 
Signal dissection is based on a superposition model for the signal and an unrestrictive 

bimonotonic effect model. After clarifying and motivating this approach, basic concepts to 

formalize the algorithm like gene and sample vector spaces and effect curves are defined. 

The concept utilized for quantification and later detection of interactions(cf. I.1.3.4) is motivated 

and corresponding functions like uncentered weighted correlations are defined. For 

illustration, an equivalent geometric interpretation is provided as well. 

II.2.1 Model 
Like principal components analyses(cf. I.2.2.2) that search for maximal variance in the signal or hierarchical 

clustering(I.2.2.1) that is based on a distance metric and a linkage method, every unsupervised method needs a 

compatible model for the specific type of interactions that it tries to unveil(cf. I.1.3.4). Ideally, this model leads to 

an unambiguous dissection of the signal into interpretable effects of interaction, while simultaneously making 

as few as possible assumptions and demanding as few as possible constraints. 

II.2.1.1 Signal model 

The complete measured signal for  genes (or features) and  samples can be represented as a matrix  ∈ , where  ≡ …,… 	 ∈  is the signal space. The lower index zero indicates the initial 

signal before the first detection and dissection iteration. 

To dissect the signal into its generating effects, I assume that the 

measured signal   is the result of a superposition of different effects  . 

Like  , all   are matrices ∈ . Together with a random matrix  of 

the same size and with normally distributed components, the signal 

model as matrix equation is a simple sum(Eqn. II.2.1.1). 

As effects   are dissected iteratively by the method,  ≡  ∑   denotes the remaining signal at the end of detection and 

dissection iteration . Hence,  is the initial signal for the following iteration and   is the initial signal for 

the first iteration. 

In molecular biology, the method is applied to log-transformed gene expression ratios. Hence, the model is 

multiplicative instead of additive for raw signal intensities. This is intended, because folding is the biologically 

relevant measure and e.g. 8-fold upregulation versus healthy controls is about as important as downregulation 

to 

, whereas the addition of a constant amount of mRNA expression by itself has no clear biological meaning 

without knowing the base concentration. For example, adding  mRNA molecules to a reservoir of already 100  mRNAs of the same sequence in the same cell usually has biologically insignificant functional 

consequences compared to adding the same  mRNA molecules to a cell that did not express this sequence at 

all so far. With help of log-transformations, absolute numerical values become the same for the same 

biological importance. For the above example, log 8  3 and log 
  3. Consequently, the method should 

search for additive effects in this log-scale, rather than searching for additive effects on signal intensity level. 

   



  

Eqn. II.2.1.1) Signal model 

The initial signal   is modeled as a sum of 
effects   plus normally distributed noise . 
This matrix equation is valid for all genes   and 
all samples . The total number of effects   is 
initially unknown, as are all  . 
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II.2.1.2 Bimonotonic effect model and effect eigensignals 

Dissecting a sum into summands is ambiguous without further information or constraints. Hence, an effect 

model is required. While effects are visually clear in the 3D example(Figure II.1.1.3), this needs to be generalized in 

a formal way to guide detection and regression of high-dimensional effects. 

Let  ≡ 1,2, … ,  be the measurement order of genes and  ≡ 1,2, … ,  be the measurement order of 

samples. These external reference orders are needed for formal reasons when resorting a signal matrix 

according to an effect. They usually do not correspond themselves to any effect of interaction. For sort vectors , , i.e. for a permutation  of   and a permutation  of , let ,  ≡ , …,…  denote the 

correspondingly resorted matrix. 

The effect model was inspired by the looks of typical 

real-world heatmaps that have been sorted by differential 

gene expression(examples: Figure II.2.1.2, Figure I.1.2.1, [83].Figure 1A, [45].Figure 2). 

The model should be able to represent nonlinear laws of 

gene regulation that are monotonic over the average 

pathway activity, as illustrated for basic 3D effects(II.1.1.2).  

For generalization and for definition, I demand that each 

effect   has an eigenorder  ,  of gene and sample 

permutations such that the resorted effect signal  ≡ ,  is bimonotonic, i.e. monotonic for both genes 

and samples. This definition is utilized later(II.4) to 

empirically regress an effect’s own contribution to the 

signal and to dissect it from any superposed foreign effects 

or noise. Hence,   is named the eigensignal of effect . 

Writing bimonotonicity out, the effect model reads: 

∀:	∃  ∈ perm	∃  ∈ perm:	
∧ ∀ ∈ 1, : ∨ ∀ ∈ 1,   1: ,   1  , ∨ ∀ ∈ 1,   1: ,   1  , 	
∧ ∀ ∈ 1, : ∨ ∀ ∈ 1,   1:   1,   , ∨ ∀ ∈ 1,   1:   1,   ,  

Eqn. II.2.1.2) Effect Model 

 permX Full permutations of a finite set , i.e. perm ≡ |:  → 	bijective 

Other than a supervised sorting of gene expressions(e.g. Figure II.2.1.2), signal dissection utilizes this bimonotonic 

effect model to unsupervisedly discover effects and to determine their co-regulated and anti-regulated genes in 

the first place. More precisely, correlations (or anti-correlations) between all genes and between all samples 

of an effect are a consequence of bimonotonicity (except for unregulated genes or samples at the effect’s zero 

transition). This is utilized for effect detection by searching for high correlations in the signal(cf. II.3). Empirical 

sample and gene eigenorders are determined for each discovered effect. These empirical eigenorders presort 

expressions approximately bimonotonic for the effect’s top genes and samples. Then the bimonotonic model 

is applied to regress the effect’s eigensignal(cf. II.4.1). Finally, the eigensignal is dissected(cf. II.4.2), which potentially 

reveals previously overlapped effects for discovery in subsequent detection iterations. 

Although bimonotonicity is a sufficient constraint to be able to regress the signal of detected effects(II.4), it is 

a rather generic effect model compared to models that involve specific functional forms or explicit parameters. 

 
Figure II.2.1.2) Example of a roughly bimonotonic real-world effect[29] 

This heatmap is based on a supervised analysis that sorts samples of 
cohort GSE31312 based on their differential expressions between 
predefined gene signatures for ABC-like and GCB-like subtypes of 
DLBCL. Originally, this subtype prediction has been developed and 
applied to an older DLBCL cohort[83], which also resulted in a roughly 
bimonotonic signature. (Adapted by permission from Macmillan 
Publishers Ltd: Leukemia[29], copyright 2012) 

http://www.nature.com/leu/journal/v26/n9/full/leu201283a.html
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This allows fitting a wide range of regulation laws, including gradual effects like saturations, sub-proportional 

(e.g. square root like) or super-proportional (e.g. quadratic) regulations as well as unsteady step functions 

(e.g. between gender groups). 

Conceptually, bimonotonicity links the signal of both genes and samples. This type of intrinsic two-

dimensionality is an advantage over methods or distance measures that compare either genes or 

samples(cf. II.1.2.4), especially for dissection tasks in the context of strong(cf. II.1.2.5) or many(cf. II.6.3) overlapping effects. 

In summary, I model the initial signal   as a superposition of effects  . Each effect has an eigenorder  ,  

in which its eigensignal   is perfectly bimonotonic. Eigensignals represent and idealize distinct laws of gene 

regulation or other interactions in the underlying system. 

II.2.2 Basic Concepts 
The mathematical framework is set up here to prepare the formalization of signal dissection. Basic 

descriptive concepts and their notation are defined and motivated. 

II.2.2.1 Gene and sample vector spaces 

The gene space   is a vector space spanned by  genes |  1 … . Every | has coordinates  … ∈   in the gene reference order   (where   is the Kronecker delta, i.e.   1, if    and zero 

otherwise). For clarity, the upper index 	 is used to indicate elements of this space or information tokens about 

all genes. For each sample, all genes have been measured and hence samples are points in this vector space 

spanned by all genes. Let |  ∑  ||  denote the th sample vector with expressions  | ≡ ,  

for gene indices  ∈ 1, … , . 
The sample space   is a vector space spanned by  samples |  1 … . Every |  has coordinates … ∈   in the sample reference order . The upper index 	 indicates elements of this space or 

information tokens about all samples. For each gene, all samples have been measured and hence genes are 

points in this vector space spanned by all samples. Let |   ∑  |  | denote the  th gene vector with 

expressions  |  ≡ ,  for sample indices  ∈ 1, … , . 
Generally, a gene vector can be expressed in terms of all contextual sample vectors via |   ∑  	||  

and vice versa via |  ∑  	| | , if they share the same underlying signal matrix. Later, additional lower 

indices may be used to clarify the underlying signal matrix or the patient cohort. 

If the signal matrix and vector components are not clear from context or for definition purposes, I use 

abbreviations like | ,  or |, . They define vectors by directly specifying their coordinates in the 

respective canonical base, i.e. formally ∀:   ,  ≡ ,   ,  and ∀:  ,  ≡,   , . 

II.2.2.2 Gene and samples axes 

Let | ∈   be an arbitrary nonzero vector. Its components  | for all genes define a specific direction 

or axis in the gene space. Every direction can be interpreted as a linear approximation of a specific gene 

regulation law. If a pathway mediating this type of interactions exists in the underlying system, affected 

samples form a point cloud around this axis. 

The search strategy(cf. II.3.1) screens and scores many candidate directions to discover such dominant linear 

directions, i.e. to discover gene axes pointing to effects(see II.1.1.2 for 3D examples). Every effect compatible with the 
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effect model has a gene axis, as monotonicity is always associated with an axis, over which the function is 

monotonic.  

Likewise, let | ∈   denote the sample axis of an effect, i.e. its dominant linear direction in sample space. 

Here,  | can quantify involvement of samples in an effect. 

II.2.2.3 Effect curves 

While a pair of a gene and a sample axis can already pinpoint an effect, they are only linear approximations 

of its law of regulation. After regression of an effect’s eigensignal  , this approximation can be improved by 

replacing axes with effect curves that are monotonic over these axes. (More precisely, if using projections on 

effect axes as scalar curve parameter, then coordinate functions of effect curves are monotonic for all 

dimensions.) 

An effect’s gene curve completely describes the empirically regressed law of gene regulation for each sample 

and its sample curve completely describes regulation differences between samples for each gene. Hence, both 

are different descriptions of the same information. Indeed, both are just re-parameterizations of the effect’s 

eigensignal. 

An effect’s gene curve is a vector-valued function over sample indices  with components   ≡, . In eigenorder   of effect , each component of  is monotonic, i.e. ∀: ∀ ∈ 1,  1:    1    ∨ ∀ ∈ 1,   1:    1   . Gene curves for 

effects in the 3D example are regressed and illustrated in II.4. 

Analogously, an effect’s sample curve is a vector-valued function over gene indices  with components   ≡ , . In eigenorder   of effect , each component of | is monotonic, i.e. ∀: ∀ ∈1,   1:    1    ∨ ∀ ∈ 1,   1:    1   . 

In brief, effect curves re-parameterize an effect’s eigensignal, run through the effect’s point clouds in gene 

respectively sample space and generalize linear approximations by gene or sample axes to more precise 

monotonic approximations. 

II.2.2.4 Effect focus 

Normally, an effect neither regulates all measured genes nor does it necessarily exist in all measured 

samples. When using scalar measures based on all genes and all samples, small effects are hard to 

detect(cf. II.1.2.1). If, for example, 20000 genes were measured for each sample, but only 10 genes are truly and 

strongly correlated, then corresponding correlations between samples are typically heavily diluted and not 

significant when using all 20000 measured expressions for their calculation. Masses of noise genes would 

dominate the computation of correlation coefficients. However, if gene weights were utilized to focus on only 

a small subset of genes that contains all 10 true positives, resulting correlation coefficients would become 

strong and significant, as noisy information from unimportant genes would be excluded. Hence, I focus on gene 

and sample subspaces in which an effect exists in order to detect it(cf. II.3.1). Additionally, discovered effect foci 

are utilized for effect dissection(II.4.2.1). They help to prevent the modification of signal parts from foreign effects, 

i.e. from effects that represent gene regulations outside of the current effect’s focus. 

Collecting weights as vectors, the effect focus consists of gene and sample weights | and | with 

components ∈ 0,1 ⊂ . Weights are initially estimated based on the standardized signal(cf. II.3.1.3) and are 

iteratively refined based on correlations(cf. Eqn. II.3.1.4.b) during search strategy. 
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II.2.3 Measures of Interaction 
To pinpoint bimonotonic effects, the search strategy needs a measure of interaction that can be computed 

from the perspective of single genes |  or single samples |. Fortunately, (nonzero) bimonotonic effect 

eigensignals have high correlations between genes and between samples as a consequence. Hence, a type of 

correlation can be utilized to quantify interactions and to search for bimonotonic effects. This measure is 

compatible to previous methods in biosciences, including the common form of hierarchical clustering for 

microarray data[36]. 

An “effect” in molecular biology typically is observed as the co-regulation of many genes in many samples. 

From co-regulated gene expressions, it might be concluded that participating genes take part in the same 

biological function of measured cells. While co-regulation is to my knowledge just a descriptive term without 

any formal definition, correlation is formally well defined and can quantify co-regulation. It goes beyond just 

demanding regulation “in the same direction” (i.e. either all upregulated or all downregulated relative to a 

reference) and also tests whether differences in regulation strength are related. Hence, correlation is a specific 

form of co-regulation and can be used to quantify the consistency of interactions that cause correlations 

between measured gene expressions in the first place. To detect biologically specific effects, I additionally 

combine correlations with the effect focus(cf. II.2.2.4). To this end, a weighted form of correlations is needed. 

II.2.3.1 Weighted uncentered correlations aka the cosine distance 

To quantify the interaction of a sample respectively a gene | with other samples respectively genes in an 

effect, I utilize weighted uncentered Pearson correlations to the effect’s representative gene respectively 

sample axis |, i.e. to its linearized law of regulation in the respective signal space(cf. II.2.2.1). 

As already explained(cf. II.2.2.4), using weights is necessary to focus on an effect and to prevent computed 

correlations from being washed out by inclusion of many non-effect dimensions. Additionally, using 

uncentered correlations respects that a logratio of zero already indicates no regulation and thus defines the 

global baseline. (In this context, “pre-centered” may be a more intuitive term than the usual “uncentered” is.) 

Pre-centering has the advantage that the score can also identify points as highly correlated if they are located 

in the same direction far off from baseline, even if these points show no correlation relative to the center of 

their common offset. The usual centered Pearson correlation would instead ignore this offset in a common 

direction and thus would drop important information. 

Let | denote gene respectively sample weights in the current effect 

focus. Then the weighted uncentered correlation of | with | in focus | can be easily defined with scalar products(Eqn. II.2.3.1).  

In the unweighted case (|  |1, i.e. ∀:    1) and if 

components of | and | have zero means, this definition is identical 

to the usual Pearson correlation coefficient; hence the name. (In this 

case, . |.   |  ∑   equals the uncentered covariance of components from | and from |, times 

the number of components. Likewise, ‖. ‖‖. ‖  ‖‖‖‖  || equals the product of the 

uncentered standard deviations of components in | and in |, times the number of components. The number 

of components cancels and uncentered equals centered for zero means, resulting in the usual Pearson 

correlation coefficient that is defined as covariance over the product of standard deviations.) 

This measure also has an illustrative geometric interpretation: The cosine in a right-angled triangle is 

defined as the quotient of its adjacent side to its hypotenuse. In the unweighted case (i.e. again |  |1),  

|| ≡ . |. ‖. ‖‖. ‖ 

Eqn. II.2.3.1) Weighted uncentered correlation 

Dots denote component-wise multiplication 
(Hadamard product). 
This measure ∈ 1,1 ⊂  is utilized by signal 
dissection for quantification of interactions between 
genes or between samples. 
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‖‖ can be seen as the length of the hypotenuse, while the length of its projection on |, i.e. | ‖‖⁄ , is the 

length of the adjacent side. Therefore, uncentered correlation is equivalent to the cosine of the angle between 

the two compared vectors: ||  cos∢|, |. Hence, || can be thought of a generalized cosine 

between two vectors in the weighted subspace cut by |. 
Like usual correlations, weighted correlations assume values ∈ 1,1. Together with the above geometric 

interpretation, 1 can be interpreted as 100% parallelism of | and |, while 1 indicates perfect anti-

parallelism. Zero designates perpendicular vectors, i.e. uncorrelated effects. Consequently, if | describes an 

effect axis, perpendicularity implies that no parts of the signal of | can be explained by the linear law of gene 

regulation encoded by |. 
Again, vectors may be specified directly by their coordinates from a signal matrix; abbreviations like , | | or , || denote correlations with |,  respectively |,  (cf. II.2.2.1). 

II.2.3.2 Weighted projections 

Let | denote a projection target, | a vector from the same space and | weights for all dimensions of this 

space. The projection target typically is a gene or a sample axis of an effect again, i.e. it linearly encodes a 

specific law of regulation. Already defined correlations(Eqn. II.2.3.1) are neither proportional to ‖‖ nor to ‖‖. 

Hence, correlations can only compare directions. Sometimes the absolute signal strength of | that is 

explained by a specific law of regulation | is of interest, i.e. the signal strength of | in direction of |. 
To this end, weighted projections of | in direction of | can be 

defined(Eqn. II.2.3.2). They are identical to weighted correlations, except for 

the factor for the weighted norm of |. (The upper index zero is used 

to avoid confusion with the usual scalar product that does not 

normalize by the norm of |.) 

 

|| ≡ . |. ‖. ‖  

Eqn. II.2.3.2) Weighted projections 

Dots denote component-wise multiplication 
(Hadamard product). This measure is similar to 
weighted correlations(cf. Eqn. II.2.3.1), but it scales with 
the signal strength of |. 
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II.3 Search Strategy 
At the beginning of each detection iteration, the signal is screened for effect candidates that 

qualify relative to significance thresholds for their signal strength and correlation.  

If an effect exists, it affects some genes and some samples. This is utilized to discover an initial 

representative that roughly points in an effect’s direction. Once an initial gene or sample has 

been identified, additional genes or samples of the same effect are searched and incorporated 

into its definition. A maximum principle guides this search towards effect axes to which as 

many as possible genes and samples are correlated as high as possible. This continues 

iteratively until the estimated effect axes have converged. 

After convergence, effect axes can be considered independent of individual features from 

single representatives and hence are representative for the effect as a whole. They linearly 

approximate its laws of gene regulation and serve as starting point for the precise regression 

of its eigensignal(II.4). 

As soon as no gene and no sample qualify any longer, the method declares that no significant 

effects remain in the signal and terminates. 

II.3.1 Finding Effects 
It is hard to directly search for bimonotonic effects: In principle, one could enumerate all possible pairs of 

gene subsets and sample subsets from the joint power set   , sort them by their average expressions 

and directly score them. However, this is not viable for typical  and , since |  |  2. Hence, a 

search strategy is required. My search strategy is based on measures for interactions(II.2.3) that can be computed 

from the perspective of a single gene or single sample and that can be summarized by an effect score(II.3.1.6). In 

brief, the more genes and samples participate in an effect and the higher correlated they are to this effect, the 

larger is this score. 

For performance reasons, a deterministic lookahead scheme based on a presorting(II.3.1.7) is utilized to 

efficiently screen genes and samples for a good initial representative, i.e. for a new effect  with locally maximal 

score. The initial representative is either a gene with index ,  

and gene expressions , ≡ ,,  or a sample with 

index ,  and gene expressions , ≡  , ,. To 

immediately symmetrize the situation(II.3.1.3), gene and sample 

axes are computed for either type of initial representative. 

Initial axes already point in the direction of the newly 

discovered effect , but usually can approximate its law of 

regulation only roughly. For example, the gene axis(yellow) based 

on the marked initial sample for the blue effect(Figure II.3.1) is only 

a good approximation for its outmost tips. 

Next, all steps leading to a discovered effect’s initial axes are 

presented in processing order, thereby explaining the 
 

Figure II.3.1) 3D concept example, first detection iteration, initial 
representative for the blue effect and its associated initial gene axis 
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algorithm’s structure. Again, components of genes and samples are always implicitly taken from the contextual 

signal matrix(cf. II.2.2.1). Here, this is   for the first detection iteration and in general it is the remaining 

signal(cf. II.2.1.1), i.e.     ∑  . For example,  ,  ,, . 

II.3.1.1 Standardization against outliers 

One conceptual goal of the method is to be robust against outliers. To this end and also as a basis for initial 

weights (as defined in the next section), the standardized signal   is computed from the remaining signal  at the beginning of every detection iteration . These standardizations are associated with the loss of one 

signal dimension (for 3D examples, the signal is embedded into a 2D surface). Hence they should not be 

utilized as surrogate for the unstandardized signal, but they can be used for scoring or weighting. 

An iterative standardization is utilized that converges uncentered variances E  0 for all genes 

respectively all samples to one, where  denotes the random variable sampled by the components of a 

particular gene or sample vector. The empirical estimation  of this variance for a sample | with components  | equals ∑  | ⁄ 	and hence is proportional to its squared Euclidean norm ‖‖  | ∑  | |  ∑  | , but is normalized such that it is independent of the number of genes . A result 

of this proportionality is that for any standardized sample |  ≡ | , , the Euclidean norm equals ‖‖  	 ⁄  √, as   1 after standardization. 

For the 3D example this implies that all standardized 

sample vectors lie on the   sphere(Figure II.3.1.1.a) in gene 

space with radius √3. Similarly, all three standardized 

gene vectors have norm √ and thus lie on S  with 

radius √2500  50 in the associated sample space. As 

uncentered variance equals one for all  

columns (and all rows) of  , it follows ∑ ∑  ,  ⁄  1 for the whole matrix. If 

the input signal matrix was centered (which is a usual 

preprocessing step for log-transformed gene 

expressions), this implies that the standard deviation 

from one pixel to another in   is 1, too. Hence, all 

possible signal strength fluctuations have been 

equalized. 

The implementation of this standardization is 

straightforward: Uncentered variances are 

empirically estimated for every gene row and every 

sample column as above, resulting in gene variances  ∈  and the sample variances  ∈ . The 

signal matrix is then divided component-wise by the 

component-wise square roots of the matrix product  ∈  . This is iterated until uncentered 

variances of all genes and all samples equal one 

within an epsilon that is determined as 1/1000 of the 

current noise level(cf. II.5.1.1). Convergence is usually 

reached within few tens of iterations.  

Figure II.3.1.1.a) Standardization results   in gene space for the 3D example via 
equalization of uncentered variances 

 

 
Figure II.3.1.1.b) Standardization results in gene space for the 3D example when 
equalizing absolute norms 
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Notably, this procedure equalizes norms in both the gene and the sample space, while dividing genes by their 

norms (or samples by theirs) only equalizes norms in either space, but not in both spaces simultaneously. 

The same iterative procedure can be utilized to equalize by other measures instead of uncentered variance, 

for example by the absolute norm ∑ | | . For the 3D example this would result in a projection onto 

diamonds(cf. Figure II.3.1.1.b) in both the gene and the sample space. However, to eliminate signal strength fluc-

tuations and for initial weights, the sphere seems to be the more natural choice for standardization. 

II.3.1.2 The effect focus and its initial estimation 

Finding a formula for an adaptive effect focus that is as general-purpose as possible has been the second-

hardest task after realizing bimonotonic regression(cf. II.4.1), because every processing step depends on the effect 

focus and they do so in an iterative way with self-feedback.  

For example, a too narrow effect focus may seem sharp and well-defined locally, but may lead to seeing only 

a fraction of the true effect when computing correlations and projections. This could iteratively grow into far 

too narrow “stripe-like” false positive effects. These stripes look like true positives in their narrow focus, but 

are essentially ordered noise. For combinatorial reasons, sort orders that arrange a small fraction of samples 

in such a way that hundreds of measured probesets seem to be co-regulated always exist in large signal 

matrices with ~50000 probesets(e.g. Figure II.6.4.2.d). On the other hand, a too broadly defined gene focus includes 

too many noise genes and thus correlations or projections of samples based on this focus are washed 

out(cf. II.1.2.1). Iteratively, this can grow into narrow false positives as well, because weights are dependent on 

correlations of previous convergence iterations for effect axes(cf. II.3.2.2). Consequently, sample weights may be 

washed out towards zero for all but those few samples, whose genes can be ordered in such a way that a non-

vanishing signal remains despite the over-broad gene focus. This is similar to defining the sample focus too 

sharp or over-optimized in the first place.  

Furthermore, effect focus formulas working perfectly in one scenario, for example in the versatility 

scenario(II.6.2), might produce artefacts in other scenarios, for example for the 3D example. Therefore, the aim 

should be to find a common and balanced formula for the effect focus that simultaneously works in all method 

validation scenarios including real world cohorts in order to advance towards a general-purpose method. 

A working though recursive formula for focusing weights has been found based on correlations with the 

effect and based on the significance of these correlations. For an initial gene or sample candidate, neither 

correlations nor their  values are available. The effect focus is therefore defined and refined in several steps 

during a detection iteration. Here, only initial weights are defined; the correlation based formula for all 

following refinements is provided in II.3.1.4. 

 Initial weights estimation 

Initially, no information other than the signal strength (in original or standardized units) is available to 

define weights. For an initial (and rough) approximation of the effect focus, I use weights based on the 

standardized signal(II.3.1.1). Compared to the signal in original units this has the advantage of being relatively 

outlier-robust. More importantly, very strong non-standardized signals often are indicative for multiple 

constructively overlapping effects. However, with an interpretable dissection in mind, genes or samples that 

are exclusively affected by a single effect are preferred as initial effect representatives. Standardized gene 

expressions are larger if the original signal of a sample is concentrated in fewer genes, and lowest, if all genes 

are expressed with approximately the same strength. This can be utilized to tighten the effect focus for 

representatives with expressions pointing to more specific effects. Still, the effect focus should neither become 
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too narrow for reasons explained above. Otherwise and in the extreme case, effect candidates would be 

dominated by only one top gene or top sample; this would be neither informative nor could it achieve a 

qualifying effect score.  

I therefore utilize the absolute standardized signal as initial weights, but cap it at 80%: 

For an initial gene ,, initial sample weights are:    ≡ min 1,  ,,.⋅  ,, 

For an initial sample ,, initial gene weights are:    ≡ min 1,  ,,.⋅   ,, 

Eqn. II.3.1.2) Initial effect focus based on the standardized signal 
 

The main goal of these initial weights is just to prevent too many noise dimensions in context of high-

dimensional spaces, as they could wash out scores, wash out the twin axis computed below and thus prevent 

effect detection.  

Practically all dimensions that could be true effect dimensions still have full weights due to the 80% cap. 

When a single dimension dominates the original signal, this dimension has maximal value in the standard 

vector; let  denote this value. The minimal possible value of a component in a standardized vector is obtained 

for the hyperdiagonal, i.e. when all dimensions equally contribute to the original signal. Via Pythagoras for  

dimensions it holds ∑    . Thus, the dimension-dependent minimal ratio of components in a 

standardized vector equals 
||
||  

√. Hence and in general, the more dimensions the standardized signal has, 

the more possibilities exist to get below the 80% cap. Hence, initial weights based on standardized signals 

prevent washed-out scores in a way that is adaptive to signal dimensionality. 

More precise weights for the effect focus are defined as soon as correlations have been computed(cf. II.3.1.4). 

II.3.1.3 Initial effect axes and symmetrization by twin axes 

One design goal is to symmetrize roles of genes and samples(cf. II.1.2.4). To symmetrize as early as possible, gene 

and sample axes need to be defined for either type of initial candidate.  

Naturally, an initial gene , defines its own sample axis | and an initial sample , defines its own 

gene axis |.  
To compute the respective twin axis in the other vector space, weighed projections(cf. II.2.3.2) of all other genes 

on |   |,  respectively of all other samples on    ,  can be computed, using respective 

initial weights(cf. Eqn. II.3.1.2): 

The twin gene axis | ∈   for an initial gene ,  is defined by  | ≡  |,  ‖ ‖ . 

The twin sample axis | ∈   for an initial sample , is defined by  | ≡ |,    . 
Eqn. II.3.1.3) Initial twin axes for symmetrization 

 

This results in a pair of initial axes |, |  for either type of initial candidate. Initial weights for 

components of the twin axis are computed by repeating twin axis computation for the standardized signal   and then capping at 80% again(cf. Eqn. II.3.1.2). Together with initial weights for the initial candidate, they 

complete the initial effect focus  , | . Initial axes and the initial focus provide a symmetric basis 

for all following computations and scores. 

Analogous projections are also utilized when updating twin axes based on refined weights(cf. Eqn. II.3.1.4.b) during 

effect axes convergence(II.3.2). 



56 Chapter II - Signal Dissection 
 

II.3.1.4 Correlations and the refined effect focus 

Initial axes |, | are already a rough linear approximation of an effect candidate. In order to score this 

effect, correlations of all genes and all samples with its initial axes are computed next. Using the initial effect 

focus as weights, uncentered correlations(cf. II.2.3.1) can be utilized to this end. All resulting correlations can be 

collected as two vectors: 

Gene correlations | ∈   are defined by  | ≡  |   , | . 
Sample correlations |  ∈   are defined by  | ≡       , |  . 

Eqn. II.3.1.4.a) Initial correlations 
 

For each correlation, a  value can be calculated(cf. II.5.2.1) to quantify its significance. Resulting | and | are 

utilized together with computed correlations to focus on the effect more precisely than it was initially possible 

based on the standardized signal(Eqn. II.3.1.2): 

Refined sample weights: Let  ≡  | ⋅ 1   |  and  ≡ min 1, 
.⋅ , then 

  ≡  , if	  .
  |  0	otherwise .  Refined gene weights: Let  ≡  | ⋅ 1   | and 

 ≡ min 1, .⋅ , then   ≡  , if	  .
 | |  |0	otherwise .  The effect focus is |, |. 

Eqn. II.3.1.4.b) Refined effect focus based on correlations 
 

In words, I replace the initial effect focus by weights that are based on absolute correlations times a factor 

that goes down to zero quadratically with the noise probability of these correlations. Final weights are defined 

relative to the maximum and all  that are  50% get full weight. Hence, the order of top genes in an effect is 

not influenced by different weights. Additionally, weights that are less than 0.67 times the quantile axis are set 

to zero exactly. Hence, any unspecific influence of (potentially very many) low weights is prevented.  

The purpose of the effect focus remains the same after this refinement: Exclude dimensions that have 

nothing to do with the effect in order to compute as effect-specific as possible scores via weighted projections 

or correlations. Except for the initial focus, the effect focus |, | is always computed as defined here. 

This includes all focus updates following effect axes updates later during axes convergence in II.3.2. 

For effect size estimation and qualification thresholds, mapping all -values above 50% to full weight is not 

optimal; instead I would like to keep the dynamic range of weights for these tasks. To this end, I additionally 

define the extended effect focus |, | by increasing the upper threshold from 50% to 100% (i.e.  ≡ ) 

and by decreasing the lower threshold from 0.67 to 0.4. 

II.3.1.5 Focusing step 

The refined effect focus | , |   is utilized next to also refine twin axes(Eqn. II.3.1.3), correlations(Eqn. II.3.1.4.a) and 

 values of correlations. Updated scores are focused more precisely on the effect and hence are more 

representative for it. 

Due to the recursive nature of the refined effect focus formula(Eqn. II.3.1.4.b), this focusing step could be iterated. 

It is iterated during axes convergence(II.3.2). However, during screening for a new effect, a single focusing step 

suffices. Besides, multiple focusing steps for every screened candidate would have a massive negative impact 

on performance, as every focusing step requires weighted correlations with all measured genes and all 

measured samples to be recomputed. 
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II.3.1.6 Scalar effect score 

To compare effect candidates and determine the best one, a scalar effect score is computed. During 

development, this score was effectively a functional degree of freedom whose formula had to be identified by 

trial and error in the context of test scenarios with synthetic data. This process was guided by two ideas: a) the 

higher correlations of genes and samples are to an effect, the more interesting is this effect and b) the more 

genes and samples are correlated to an effect, the more interesting it is. 

To estimate effect sizes in each order dimension, i.e. to estimate the number of underlying genes or samples, 

the effect focus is summated:  ≡ ∑    and  ≡ ∑    . To determine a single scalar that 

represents the effect’s size,   and   need to be combined. This should be done multiplicatively, because   is proportional to the number of the measured values underlying the effect, i.e. the number of pixels in 

the signal matrix belonging to genes and samples with high correlation to the effect. To prevent the effect size 

factor from dominating the score, a square root is utilized below to balance its contribution relative to the 

correlation factor. To boost scores for effects that have broad and robust support in both order dimensions, I 

assign 90% geometric weight to the minimum of   and   and only the remaining 10% to their maximum. 

This causes broad effects in all order dimensions to be preferred over effect candidates that are broad in one 

but narrow in the other order dimension. The rationale behind this is that it is usually easier to interpret 

narrow effects after overlapping broad effects have already been dissected from the signal, rather than vice 

versa. Hence, the final effect size factor reads min , . max , .. 

The correlation information from | and | is also summarized by a representative scalar. This is realized 

by weighted averages of absolute correlations in the effect’s focus. Abbreviating components  ≡  ,  ≡  ,  ≡    and  ≡  , these averages are:  ≡ ∑     ⁄  and  ≡∑     ⁄ . To determine a single scalar representing the effect’s average correlation, another average 

using effect sizes as weights is computed:  ≡   /  . Herein,   and   are weighted 

with the number of points supporting the correlations in | respectively |. This weighting is important 

when one order dimension has much higher resolution than the other. For instance, there are only three genes 

in the 3D example and their correlations   have been robustly determined by many samples, while sample 

correlations   are only computed over three points each and thus relatively unreliable. 

Using effect scores that are directly proportional to   did not provide enough dynamic range, i.e. there was 

not enough difference between high and merely moderate correlations. This difference is required when 

multiplying with the effect size in order to prevent that a larger effect with only moderate correlations gets a 

higher score than a bit smaller effect with high correlations. The aim is to value specificity over size; this also 

helps dissecting overlapping effects. To solve this problem, I transform correlations via  1   ⁄⁄ ; this 

emphasizes correlations near one. (This transformation was inspired by and adapted from the transformation 

of a correlation into a corresponding -statistic when determining its significance(cf. II.5.2.1).) 

The final scalar effect score is the product of the effect’s transformed average correlation and its 

summarized size as explained above. 

 ≡ 1   ⁄ min , . max , . 

Eqn. II.3.1.6) Scalar effect score (average correlation times effect size) 

   Representative scalar correlation of the effect (see above). 
  ,   Effect size in the gene respectively sample space (see above). 

The score can be computed independent of the type of the initial candidate. Whether a gene or a sample is 

the better choice as initial representative for an effect depends on the effect’s shape, i.e. how it extends to other 
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genes and other samples. In the 3D example, samples are always better representatives, as none of the three 

genes is specific to only one of the four effects. In high-dimensional signals(cf. II.6.1), often genes are better initial 

representatives. The algorithm keeps treating roles of genes and samples symmetrically and both have equal 

chances of being selected as initial effect representative in every detection iteration. 

II.3.1.7 Search complexity, presorting candidates and a lookahead scheme 

Finding the gene or sample with the globally maximal effect score has the following complexity: There are    possible initial candidates. Every gene candidate spawns a gene and a sample axis. Correlating the gene 

axis with all  samples has complexity , as every single correlation is linear in the number of values per 

sample, i.e. . Correlating the gene candidate’s sample axis with all  genes results in  as well. 

Likewise, a sample candidate spawns a gene axis and a sample axis that need to be correlated with all samples 

respectively with all genes to compute the effect score. Altogether, finding the globally maximal effect score 

has complexity    ⋅        ⋅ . While this is much faster than the naïve approach 

that tries to enumerate the joint power set(cf. II.3.1), this cubic complexity is still too slow for typical  and  in 

practice. 

To facilitate a successful and fast lookahead for a local (and ideally the global) score maximum, a presorting 

of all genes and samples is needed that ideally sorts representatives by descending effect scores. This 

presorting should be based on local scores only that can be computed fast, i.e. scores that can be computed 

with just linear complexity from perspective of a single gene or sample. Hence, presorting cannot be perfect, 

as it only utilizes local information about each gene or sample rather than their interactions in form of 

correlations. However, this sorting does not need to be precise, as it does not determine subsequent qualifica-

tion of genes or samples as effect candidates, but just the order in which promising candidates are presented. 

A speed advantage is gained together with a lookahead scheme that breaks processing early, if no better 

score has been found for a certain amount of presented candidates (in the default 200). The better the 

presorting (i.e. ideally descending in effect scores), the faster this early break is reached. Hence, the factor    in the complexity gets replaced by a number  that in the theoretical worst case is still   , but in 

practice typically  ≪    for large , . The lookahead scheme itself is straight forward: When processing 

the presorted list, every candidate gene or sample has to qualify first(cf. II.3.1.8). Then it competes with scores of 

other already qualified effect candidates within the lookahead interval. If no stronger candidate is found for 

the next 200 ranks in the presorting order, the candidate is accepted as initial representative. 

The following presorting score has proven to provide a good speedup without hampering quality. It is based 

on the maximum of two local information sources about the initial gene respectively initial sample. The first 

local score is the candidate’s uncentered standard deviation  (where  stands for the random variable 

sampled by all components of the initial candidate). Uncentered instead of usual standard deviations are 

utilized again for the same reason I chose uncentered correlations(cf. II.2.3.1), i.e. since zero indicates baseline 

expression and a consistent offset from zero should lead to a higher effect score. The second local score is the 

candidate’s maximal component in its absolute standardized signal, e.g. max  ,  for gene candidate . 
This maximal component is a purity score as explained(cf. II.3.1.2), i.e. it is larger for effects that are concentrated 

in fewer dimensions rather than spread equally over many dimensions. Purer effects prospectively have 

higher average correlation, leading to higher effect scores. For each gene and each sample, both local scores 

can be computed in linear time, as they only need the signal for the respective gene or sample. Both are 

computed for all genes and all samples at the beginning of each detection iteration (complexity ). 

Resulting scores are -transformed (i.e. centered and divided by their usual standard deviation) to make both 
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sources of local information comparable. Finally, the maximum of these two  scores for each gene and each 

sample is employed to presort all genes and all samples by their descending scores. This results in a common 

list of candidates of length   . This list is then processed by the lookahead scheme as explained above. 

II.3.1.8 Qualification of candidates 

Several qualification scores and corresponding thresholds determine, whether a gene or sample is eligible 

as initial representative of an effect. 

Effect scores only facilitate a relative ranking of initial candidate genes or samples, but they are not suitable 

for effect qualification. Qualification cutoffs need to be easy-to-configure based on easy-to-interpret properties 

of candidate effects.  values quantifying the significance of correlations or of signal strengths in the effect 

focus are natural choices for qualification. Both are approximated based on  statistics(cf. II.5). (As no noise 

distribution has been estimated before the first effect detection(cf. II.5.1.1), only correlation based significance is 

checked in iteration   1. Still, the effect’s significance with respect to its signal strength can be assessed 

retrospectively at the end of iteration   1.) 

Additionally, thresholds for the average correlation in the effect focus and for the effect size are defined for 

qualification. They can be used to exclude statistically significant, yet uninteresting effects. Default thresholds 

have been developed in context of synthetic data(cf. II.6) and with the aim to still detect even weak true positives, 

while terminating before the onset of many false positives. With real-word applications in mind, occasional 

false positives are considered less problematic compared to false negatives (i.e. non-detections), because 

cross-cohort validation of effects(cf. III.1.2) will filter these false positives out again. This additional validation step 

has to be performed anyway for real-world applications, as systematic errors in the signal like lab effects may 

be statistical true positives, but are biological false positives. (Hence, they cannot be excluded here by effect 

qualification as a matter of principle.) 

The following table summarizes all parameters utilized for qualification of effect candidates. 
Qualification 

parameter 
Default 

threshold 
Comments 

correlation  
significance   

10
   

As  values for correlations within an effect focus(II.5.2.1) decrease rapidly over effect size, a very strong 
significance threshold can be chosen. Because up to    initial candidates are tested, the threshold is further 
decreased by applying the Bonferroni correction for multiple hypothesis testing. Corresponding  values are 
defined in II.5.2. 

signal strength  
significance   

10
   

The significance of the signal strength in the effect focus(II.5.1.2) is determined relative to the estimated noise 
level(II.5.1.1). Again, the threshold is decreased by applying the Bonferroni correction of multiple hypothesis 
testing.  

minimal correlation 
 in the effect focus min  

0.4 
The average correlation in the effect focus  (cf. II.3.1.6) can be utilized to exclude significant effects that are 
uninteresting, as their signal is too rough and inconsistent for interpretation purposes (even if it is still 
significant, i.e. if it cannot be explained by noise alone). 

minimal number of genes min  participating in an effect 
0.5 ⋅ log   

The number of genes in an effect   is defined in II.3.1.6. With the intention to define defaults that are as general 
as possible, I utilize a formula that is adaptive to the signal size. The more samples  are measured, the more 
combinatorial possibilities exist to arrange them in a way such that a sample subset looks like a true effect for 
few genes. Hence, I require more genes in an effect, if there are more samples to choose from. The precise 
functional dependency has been derived from experience with the noise genes test scenario(cf. II.6.4.2) and the few 
samples test scenario(cf. II.6.4.3). 

minimal number of samples min  participating in an effect 
0.5 ⋅ log  

The number of samples in an effect   is defined in II.3.1.6. With the intention to define defaults that are as 
general as possible, I utilize a formula that is adaptive to the signal size. The more genes  were measured, the 
more combinatorial possibilities exist to arrange a subset of them in a way that looks like a true effect for a few 
samples. Hence, I require more samples in an effect, if there are more genes to choose from. For a typical real-
world   50000 this results in min  8 samples as minimum to qualify as “interesting” effect. The precise 
functional dependency has been derived from experience with the noise genes test scenario(cf. II.6.4.2) and the few 
samples test scenario(cf. II.6.4.3). 

Table II.3.1.8) Qualification thresholds for effect candidates 

Default thresholds have been defined based on experience with synthetic test scenarios(cf. II.6) and have been optimized to prevent most false positives, while keeping 
sensitivity even for small and weak effects in all but very noisy contexts(cf. II.6.4 for details). 
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The gene or sample that has qualified relative to all these thresholds and that has the best effect score of all 

other candidates in the lookahead interval(cf. II.3.1.7) is finally selected as initial representative. Its gene and 

sample axes |, | already point to the discovered effect that is regressed and dissected in this detection 

iteration. As a first step towards this dissection, effect axes are refined by convergence as described in the 

following section. 

II.3.2 Effect Axes Convergence 
To optimize axes for the discovered effect and especially to 

become independent of potentially unreliable individual 

features of the initial representative, additional represen-

tative genes and/or samples are searched for and combined 

for effect axes estimation until convergence. Resulting 

converged axes are considered the final linear approximation 

of the effect’s law of regulation. These axes usually put an 

emphasis on strong regulations by the effect, as they are often 

associated with higher correlations. Effect axes serve as basis 

for later bimonotonic regression(II.4). 

Their convergence and in particular the search for 

additional representative genes or samples must be guided. 

Samples from possibly overlapping foreign effects should not 

be selected to prevent uninterpretable mixtures of true 

effects. In case of suboptimal initial candidates that are located between two effects, convergence should guide 

away from the intermediate space and towards a single particular effect to dissect it and only it. I again utilize 

effect scores(II.3.1.6) and select those representatives that maximize it, i.e. I utilize maximization of both 

correlation and effect size as guide for convergence. 

In the example(Figure II.3.2) the converged gene axis(yellow) is nearer to all blue points compared to the gene axis 

based only on the initial representative(Figure II.3.1). Due to the nonlinear shape of the blue effect, no linear 

approximation can be a perfect match, but it can serve as starting point for regression of precise bimonotonic 

effect curves(II.4.1). If an effect’s law of regulation is actually linear like for the red effect, effect axes and effect 

curves are equal. 

II.3.2.1 Iterative selection of representatives 

Let | , | denote current effect axes based on  representatives, |, | the current effect focus and |, | current correlations. For   1, these vectors equal the initial effect axes(Eqn. II.3.1.3) respectively the 

refined effect focus(Eqn. II.3.1.4.b) respectively the initial correlations(Eqn. II.3.1.4.a). 

At the beginning of each iteration, all genes and all samples are sorted descending by their absolute 

correlations  ,  respectively ,  in a single joint list (again using component abbreviations , ≡   and , ≡  ). Points in the gene or sample space that most likely belong to the same effect are thus sorted to 

the top. Roles of genes and samples continue to be symmetric. 

For a lookahead(similar to II.3.1.7) interval, top correlated points from this list (in the default 20) are candidate-

added to the current set of effect representatives and are accumulated(detailed in II.3.2.2 unterhalb); this results in 

 
Figure II.3.2) 3D concept example, first detection iteration, genera-
lizing representatives and converged gene axis for the blue effect 
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candidates for the next effect axes | , | , the next effect focus | , |  and the next correlations | , | .  

Again, the effect score(Eqn. II.3.1.6) is computed for these updated axes. The candidate leading to the best effect 

score is selected as next representative. Often points with stronger folding are selected, as they are more likely 

to reach higher correlations to each other assuming a constant noise level and thus can lead to higher effect 

scores. However, the effect size factor in the score prevents selection of top-folded points, if they have no 

correlated partners. 

Iterations continue until axes have converged and sufficiently many representatives have been selected(as 

defined in II.3.2.3 unterhalb). Then the algorithm passes these converged axes on to effect regression and dissection(II.4). 

II.3.2.2 Accumulating representatives and the update step 

Let | ,   denote initial gene and 

sample axes(Eqn. II.3.1.3) for each so far selected 

representative gene or sample   1 …  1, including the currently selected candidate   1. (The constant effect index  is 

suppressed for readability.) Then the 

updated accumulated axes are defined as 

their weighted arithmetic averages, using 

correlations to current accumulated axes as 

weights. This is more precise than assigning 

equal weights to all representatives, 

because effect axes may wander during 

convergence and, hence, previously se-

lected representatives may become less correlated and thus less representative for the effect. Representative 

genes or samples may be either highly correlated or highly anti-correlated to the effect and to each other. To 

always accumulate them constructively, correlation signs are kept and utilized to align all representatives to 

each other in the sum(Eqn. II.3.2.2). 

Next, correlations | , |  for all genes and samples are computed for updated axes, analogous to initial 

correlations(Eqn. II.3.1.4.a), but using the current effect focus |, |  as weights.  

Finally, the effect focus is updated with the same formula that refined the initial effect focus(Eqn. II.3.1.4.b), using 

current correlations | , |  and their significance.  

Then the effect score is computed(Eqn. II.3.1.6) that also facilitates the identification of the best candidate for 

representative  from the lookahead interval(cf. II.3.2.1). 

II.3.2.3 Checking for sufficient representatives and for convergence 

Two criteria must be met before linear axes are considered sufficiently reliable and representative for 

an effect. 

The convergence criterion checks that the change by addition of the last representative is below a threshold 

parameter  ≡ 10 . The change can be quantified by one minus the correlation to the preceding axis:  ≡1   |   respectively  ≡ 1   |   . (The correlations are always positive per construction of 

accumulated axes.) The precise condition is    2⁄ ! . In words, axes are considered converged, if 

The accumulated sample axis |  ∈   for individual sample  
axes |  of all so far selected representatives is defined as: 

|  ≡ ∑   
∑  

 

 

The accumulated gene axis   ∈   for individual gene  
axes |  of all so far selected representatives is defined as: 

  ≡ ∑   
∑   

 

Eqn. II.3.2.2) Accumulated effect axes over  effect representatives 
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adding another representative gene or sample keeps them correlated with preceding axes  0.999 on average. 

As every additional representative can only change axes with a maximal weight of 1 ⁄ (cf. Eqn. II.3.2.2), this always 

converges sooner or later in practice. (For the theoretical possibility of a convergence point      that 

never occurred for any test scenario(cf. II.6), all genes and samples are selected and a warning is issued.) 

The second criterion demands a minimum amount of selected representatives. This is important, because if 

two nearly identical candidates exist in the raw signal by accident, the convergence criterion might already be 

reached for   2, but this is usually not yet representative nor robust. In the default, the minimum of fifteen 

and of 20% of the estimated effect size is required. The effect size is estimated as for the effect score(II.3.1.6). 

20% are considered sufficiently representative for any effect. Fifteen has proven to be already sufficient in all 

test cases and there is no point to add more representatives and waste computation resources, if axes have 

converged. The relative cut at 20% is also important to demand less than fifteen representatives for very small 

effects that might not even have this many members (in this case, forcing more representatives would make 

effect axes less specific and less representative). 

Once both criteria are met for a certain , effect axes |,   are considered the final linear approximation 

of the effect’s law of regulation and thus are fixed hereafter. They are passed on to bimonotonic regression, 

where they serve as axes over that precise effect curves are monotonically regressed(II.4). 
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II.4 Regression and Dissection 
Once an effect has been pinpointed by its gene and sample axes as determined by the search 

strategy, the next step is to estimate and extract its and only its contributions to the signal in 

order to dissect it. This extraction must be precise, because if the effect’s eigensignal is 

underestimated, hard-to-interpret shadows of the same effect would be detected later. If it is 

over-compensated, artifacts would be introduced, likewise leading to hard-to-interpret 

secondary effects. If it is compensated in a too fine-grained way, information about other 

overlapping effects would be lost, preventing their detection. 

The bimonotonic effect model(cf. II.2.1.2) allows for a precise regression of the effect’s 

eigensignal. Together with dissection strengths determined by correlations to the effect, the 

effect can be removed from the signal in a way that leaves signals from overlapping and even 

partially correlated foreign effects untouched. Additionally, effect curves based on the 

eigensignal can replace previous linear approximations with more precise monotonic 

approximations of the effect’s law of gene regulation. 

II.4.1 Regression and Effect Curves 
Based on discovered and representative effect axes |, (cf. II.3.2.3), the bimonotonic effect model(cf. II.2.1.2) is 

utilized to realize a corresponding regression of the effect’s 

eigensignal. This eigensignal can be re-parameterized as effect 

curves(cf. II.2.2.3) in the gene or sample space. The resulting gene 

curve for the blue effect in the concept example demonstrates a 

much more precise approximation of the effect’s nonlinear law 

of gene regulation(Figure II.4.1) compared to its previous linear 

approximation by effect axes(cf. Figure II.3.2). 

An overview of this important sub-algorithm is presented 

here, then individual steps are clarified in detail below. 

Eigensignals are regressed by one outer and one inner 

convergence loop. Every outer regression iteration  is 

structured as follows: • II.4.1.1: Compute effect strengths for genes ,  and for samples ,  • II.4.1.2: Resort the current signal  to the effect’s empirical eigenorder , , , (as determined by 

effect strengths) in order to obtain a roughly bimonotonic presorting. • II.4.1.3: Inner loop (index ) for bimonotonic regression of the empirical eigensignal , , ,. 

Results in ,    for convergence iteration     . • II.4.1.4: Adaptive smoothing  by rescaling to the effect strength space and by 2D Fourier transforms. • II.4.1.5: Convergence check. As soon as converged (index   ), the result    ,     is passed on to 

compute the final eigensignal and to dissect the effect(II.4.2). 

 

 

Figure II.4.1) 3D example, blue effect curve in gene space 
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II.4.1.1 Effect strengths for genes and samples 

Before the first bimonotonic regression (  0), effect strengths are computed by projecting all genes on the 

effect’s representative sample axis   and all samples on the effect’s representative gene axis | that were 

determined by the search strategy. The current signal context for these projections and for genes | 	 and 

samples  is still the signal matrix . (For clarity, definitions below are also written out in terms of matrix 

based vector components.) 

Initial effect gene strengths ,  ∈   are defined by weighted projections(II.2.3.2) in the sample focus  :  ,  ≡  
  ,  

   

Initial effect sample strengths ,  ∈   are defined by weighted projections(II.2.3.2) in the gene focus  : 
 ,  ≡ 

   , 
   

Eqn. II.4.1.1.a) Effect strengths by weighted projections on effect axes for   1 
 

Of note, these projections may effectively also be viewed as classifications of genes respectively samples with 

respect to an effect. Alternatively, correlations to the effect could be utilized for later classification 

purposes(cf. III.1.4). 

For regression iterations   1, effect curves(II.2.2.3) are employed instead of effect axes for higher precision. 

These curves are based on the smoothed and regressed eigensignal version , ≡ ,    from the 

previous iteration   1 (as defined and computed in the following sections; the corresponding matrix in 

reference order is again denoted without tilde, i.e. ,, , ,   ,.) 

Refined effect gene strengths ,  ∈   are defined by weighted projections(II.2.3.2) in the sample focus  :  ,  ≡  | 
  , ,, 

   

Refined effect sample strengths ,  ∈   are defined by weighted projections(II.2.3.2) in the gene focus :  ,  ≡  
   , ,, 

   

Eqn. II.4.1.1.b) Effect strengths by weighted projections on effect curves for   1 
 

 

II.4.1.2 The empirical eigenorder 

I utilize defined effect strengths(II.4.1.1) as empirical estimate for the effect eigenorder: 

The empirical gene eigenorder ,  of the effect orders genes by their effect strengths  |, , i.e. 

∀	 ∈ 1,   1: ,  ,   ,  , . 
The empirical sample eigenorder ,  of the effect orders samples by their effect strengths  |, , i.e. 

∀	 ∈ 1,   1: ,  ,   ,  , . 
Eqn. II.4.1.2) Empirical effect eigenorder based on effect strengths 

 

The correspondingly permuted signal matrix , , ,  orders genes and samples by the discovered 

effect, resulting in a roughly bimonotonic signal already. This raw eigensignal provides the basis for precise 

regression below(II.4.1.3). Notably, the final eigensignal cannot be defined with this empirical signal directly, 

because after subtracting it, the remaining signal would equal zero. Hence, all information about other possibly 

overlapping effects with different eigenorders would be lost. 
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II.4.1.3 Bimonotonic regression 

Bimonotonic regression is realized based on 1D monotonic regressions, weighted averages and a 

convergence loop of the following structure: • weighted monotonic 1D regression of each gene in the sample eigenorder ,  of the effect • weighted monotonic 1D regression of each sample in the gene eigenorder ,  of the effect • 2D Fourier smoothing of the signal (utilized for points with no or low weight in the effect focus) • compute weighted averages • check for convergence. 

To realize 1D monotonic regressions for each gene and for each every sample, an established isotonic 

regression algorithm is utilized called Generalized Pool Adjacent Violator (GPAV)[84]. The algorithm has  

(respectively ) computational complexity in the worst case, but approaches linear complexity  for 

already monotonically presorted data. Hence and in practice, it is much faster than the worst case, because 

genes and samples are already roughly presorted in the signal matrix , , , . Importantly, this 

algorithm supports weights, which is utilized to put regression emphasis on signals in the effect focus. 

Let  denote the iteration index of this inner convergence loop. Rather than using gene weights  for the 

regression of each sample (or sample weights   for the regression of each gene), every gene and every 

sample gets its own weights vector for regression as follows. Let  ∈  represent sample weights for 

each gene and let  ∈  denote gene weights for each sample. (The tilde indicates matrices in eigenorder 

rather than in reference order; see their following definition.) Both weight matrices are initialized at   0 (i.e. 

before the first regression) with the symmetric outer product of the effect focus:  

The product effect focus  ∈   (of effect ) is defined as components of the outer product ⨂  of the 

final effect focus ,  (cf. II.3.2). 

Regression weights for the initial inner iteration   0 are initialized with this product effect focus in the current 
eigenorder , , , :    ≡ , , , . 

Eqn. II.4.1.3.a) The product effect focus and initial weights for 1D regressions 
 

These product weights work like a logical AND-condition. Only gene, sample pixels associated with high gene 

weight 
 

  and high sample weight  
  also get high weights for regression and subsequent 

averaging (as detailed below). 

Let ,  denote the signal of outer iteration  and at the beginning of inner regression iteration . Before the 

first regression (  0), , is initialized as the roughly bimonotonic signal  ,
 , ,  in the empirical 

effect eigenorder. (For readability, the outer index  is suppressed for all local variables like weight matrices 

in this section.) 

Now GPAV is applied to every gene row in , , using corresponding rows in   as regression weights. This 

results in monotonically regressed genes that can be collected as matrix  ∈  . Each gene row in  is 

a step function that consists of blocks of constant regressed gene expressions, while expressions of 

neighboring blocks are all either monotonically increasing or all monotonically decreasing. Each block 

corresponds to a sample interval in the sample eigenorder ,  of the effect. GPAV also updates sample weights 

(for each gene) by averaging input weights for each block; they can be collected as rows of a matrix  . 

Likewise, regressions of sample columns in ,  are realized with GPAV, using corresponding columns of   

as regression weights. This results resulting in a matrix of monotonic columns  ∈   and updated gene 

weights for each sample  ∈ . 
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To interweave gene and sample regressions over iterations , weights are mixed. To realize a soft 

convergence, additionally an average with a history of one iteration is computed. This average respects 

 

Figure II.4.1.3) Illustration of bimonotonic regression (inner convergence loop) 

Starting from the presorted signal matrix , , ,  in effect eigenorder, first genes and samples in the effect focus are monotonically regressed (bottom left). 
Results are combined via weighted averaging to obtain , (center row, second panel). This continues until the final iteration      4 that is depicted in the right half. 
The top row illustrates differences ,  , ; color bars indicate the scaling. Provided   values are pixel standard deviations of depicted matrices in the effect 
focus. (Most of the 1000 simulated genes are not depicted, as they have zero weight in the effect focus. Hence, the effect eigensignal for them is determined solely by 
adaptive smoothing. Similarly, gray lines indicate genes and samples with zero weights because of their relatively low correlation to the effect’s sample or gene axis 
compared to existing top correlated genes respectively samples.) 
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imbalances in gene and sample counts (to prevent weights based on just a few samples to overwrite much 

more granular information from many genes, for example). The concrete definition of mixed weights reads: 

 ≡    
2       

2    

Eqn. II.4.1.3.b) Interweaved regression weights for genes and samples 
 

Typically effects do not affect all genes and all samples in the signal. Often only a fraction of all measured 

genes are correlated to an effect. Hence, the effect focus ,  typically assigns zero weights to many 

genes and maybe also several samples. For zero weights, an adaptive smoothing of , , ,  is employed 

instead of regressions to define the effect’s eigensignal. In this way, usually most genes do not need to be 

regressed at all, which increases performance considerably. To this end, the same smoothing operator  is 

applied to , as for final eigensignal polishing(cf. II.4.1.4). This support for zero weights also has the useful side 

effect to support missing values in the input signal(cf. II.6.4.4). 

Finally and using the same interweaved weights as above, the next estimate for the bimonotonic eigensignal 

is formed as weighted average: 

,     
2   ⋅      

2   ⋅   1    ⋅ , 

Eqn. II.4.1.3.c) Bimonotonic regression step 
 

The third summand gradually fills in the adaptively smoothed signal for all weights less than one. Hence, all 

pixels keep their norm, irrespective of how strongly correlated they are to the effect. 

To illustrate this regression procedure, the first and last iterations of eigensignal regression for the 

discovered pattern #3 of a versatility test(cf. II.6.2) are depicted(Figure II.4.1.3). 

For convergence estimation, the pixel standard deviation of ,  , can be utilized (weighted with the 

product effect focus  (Eqn. II.4.1.3.a)). Let      denote the iteration as soon as this standard deviation is 	̂, 

where  ≡ 10  and ̂ is the current estimated noise level(cf. II.5.1.1). Then ,    is considered bimonotonically 

regressed to sufficient precision and passed on towards signal polishing(II.4.1.4). 

 

II.4.1.4 Adaptive smoothing by 2D Fourier transforms 

Bimonotonic regression has already resulted in a signal matrix ,    that fulfills the effect model(II.2.1.2). 

Adaptive smoothing alone could not have provided this, as monotonicity is a global property and smoothing 

is a local operation. Even for very large smoothing kernels, bimonotonicity could in general only be 

approximated and furthermore such blurry smoothing would prevent a precise dissection (in the limit of ever 

larger smoothing kernel sizes, the result would simply approach a constant). However, for relatively small and 

adaptive kernel sizes as explained below, smoothing has been found to increase quality over the step-function-

like pure bimonotonic regression result ,   . As smoothing cannot change monotonicity, bimonotonicity is 

kept by this operation. Additionally and as explained in the last section, the same smoothing operation is also 

utilized for performance reasons when replacing the relatively slow regression by this smoothing for genes 

and samples with zero weight in the effect focus. 

It is counterproductive to directly smooth ,    (or , , ,  before regression), because neighboring 

genes or samples in the empirical eigenorder might have strongly different effect strengths. Smoothing such 

neighbors would result in an eigensignal that, if subtracted, undercompensated the stronger neighbor and 

overcompensated the weaker. Both would result in inaccurate approximations of the effect’s law of regulation 



68 Chapter II - Signal Dissection 
 

and trigger hard-to-interpret secondary detections of signal remnants from this effect after its inevitable 

imprecise dissection. Hence, in case of rapid signal changes a very small (and for abrupt signal changes even 

zero-width) smoothing kernel is required to obtain a sharp eigensignal for the effect.  

Furthermore, in eigenorder intervals with nearly constant effect strengths, it makes more sense to employ a 

large kernel that smooths many neighbors, because all of them contribute equally to the effect and hence 

should result in the same eigensignal for balanced dissection.  

Unfortunately, the direct computation of a smoothing operation with an adaptive kernel size is 

computationally quadratic in the number of pixels and hence not feasible for practical purposes. 

To realize this adaptive smoothing fast, ,    is first rescaled using effect strengths ,  and , (cf. II.4.1.1). 

A constant smoothing kernel in this rescaled effect strengths space then corresponds to the requirement of an 

adaptive smoothing in the original eigenorder index space. For performance reasons, the resolution of this 

rescaled space is set to  ≡ 512 rows and  ≡ 512 columns respectively. This is sufficiently precise to 

represent a bimonotonic signal for all practical purposes. (Choosing resolutions as powers of two allows an 

 

Figure II.4.1.4) Illustration of adaptive signal smoothing (realized by rescaling and 2D Fourier transformation) 

Starting from the presorted signal matrix , , ,  in eigenorder, first the signal is rescaled and downscaled by aggregation and interpolation in the space with 
equidistant effect strengths (resolution: 512x512 pixels). To avoid border artefacts from 2D Fourier transforms the signal is circularly padded with sign alignment as 
depicted. With a Gaussian kernel and the convolution theorem described in the text, the smooth result on the lower right is obtained (i.e. the convolution). After 
unpadding and rescaling back to original coordinates by interpolation, the smoothed version of the start signal is obtained. 
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optimally efficient fast Fourier transformation below.) Coordinates of this rescaled and downscaled space 

correspond to equidistant effect strengths: 

Basis vectors  of the rescaled and downscaled gene space correspond for  ∈ 1,  to equidistant  

gene effect strengths , , 1  , , 1  , ,  ⋅ 
. 

Basis vectors  of the rescaled and downscaled sample space correspond for  ∈ 1,  to equidistant 

sample effect strengths , , 1  , , 1  , ,  ⋅ 
. 

Eqn. II.4.1.4.a) Rescaled and downscaled gene and sample space for smoothing 
 

The rescaled and downscaled signal ,   ∈ 
 can be computed from ,    by averaging in the 

corresponding effect strength grid cells (that are bordered on the right by defined effect strength cuts). In case 

of empty grid cells (i.e. no gene and no sample has an effect strength in the corresponding intervals), nearest-

neighbor interpolation is employed. 

This coordinate change does not only increase the resolution at steep changes of effect strengths (i.e. where 

the eigensignal also needs to change rapidly) but also reduces resolution for intervals with relatively flat effect 

strengths (i.e. where the eigensignal should also change little). Therefore, ,    can now be smoothed in this 

rescaled space using a constant window width, while still fulfilling the requirement of adaptive widths in the 

original index space. 

Let  , ∈ 
 denote the Gaussian kernel (centered at indices 

 , 
 ) with effect strength standard 

deviations corresponding to eight pixels:  ≡ , , 1  , ,  ⋅ 
 and   ≡, , 1  , ,  ⋅ 

. Eight pixels are sufficiently many to avoid numeric artefacts. And 


 is 

small enough to avoid problems with over- and under-compensation in the original space as explained above. 

The smoothing result is the convolution ,   ∗  , . Unfortunately its naïve computation has still a 

complexity that is quadratic in the number of points. Therefore, the convolution theorem[85 §15.3.1.3] is applied: 

,   ∗  ,   ,    	.  , 

Eqn. II.4.1.4.b) Application of the convolution theorem reduces the smoothing task to 2D Fourier transforms and component-wise multiplication 
 

This reduces the smoothing task to the component-wise multiplication of two Fourier-transformed matrices 

plus one inverse Fourier transform of the result. Fast Fourier transform implementations for  and  

(provided by fft2 and ifft2 functions in MATLAB®) are employed that only have log-linear complexity.  

To avoid numeric artifacts from border effects, ,    is circularly continued for half its size with sign 

alignment. This is implemented by padding of the signal matrix and corresponding unpadding after the inverse 

transformation(see Figure II.4.1.4).  

Finally, the unpadded convolution result is scaled back to original coordinates via 2D interpolation at effect 

strengths  ,  and  , . For abbreviation, let ,   summarize this smoothing operation. 

Notably, while the result is already a good approximation of the eigensignal (and was even employed to 

estimate it in an earlier development stage of the algorithm), this approximation it is not necessarily 

bimonotonic and may contain hard to interpret parts, e.g. the visible red stripes(Figure II.4.1.4). Especially for strong 

effect strengths (where eigensignals are also strong) precision is paramount to avoid introduction of artifacts 

that might be discovered as “pseudo effects” in later iterations. Additionally, this smoothing operation is not 

weighted, i.e. it cannot respect the effect focus. Only by enforcing bimonotonicity via weighted regression in 

the effect focus(II.4.1.3) and by using dissection strengths(II.4.2.1) in order to zero the eigensignal outside of the 

effect focus, the aspired precision and interpretability of resulting effects was obtained. 
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II.4.1.5 Check for convergence 

Convergence of the outer regression loop is finally checked by correlating all pixels of ,   with the result 

from the previous iteration ,   , again using the symmetric product effect focus(Eqn. II.4.1.3.a) as weights. The 

eigensignal is considered converged as soon as this correlation is 0.99. Let     denote this iteration; then    ,    is passed on to the computation of the final eigensignal for effect dissection(II.4.2). 

Convergence is always reached, as the only change between outer iterations is the update of the empirical 

eigenorder by projections on regressed effect curves. In practice, often only the first iteration (from effect axes 

to the first effect curves) is associated with a relatively large change. After that, it usually takes only one 

additional outer iteration to reach the correlation threshold. If the effect is linear, it may even converge after 

the first outer iteration, as in this case effect curves equal effect axes. 

 

 

 

 

 

 

 

 

 

 

 

II.4.2 Effect Dissection 
After having bimonotonically regressed and smoothed the signal in the discovered effect eigenorder,    ,     

is multiplied by dissection strengths based on the effect focus to obtain the final effect eigensignal. 

The effect focus ,  obtained by the search strategy(cf. II.3.2) serves not only a purposes during 

regression but also during dissection. The first purpose was to define weights for regression(II.4.1.3) in order to 

estimate effect curves in the ideal case exclusively based on genes and samples in the effect, i.e. by those that 

are indeed significantly regulated by the discovered effect. 

The second purpose during dissection concerns partially correlated effects, i.e. effects that share dimensions 

with partially co-ordered eigenorders. (For example, green samples in the 3D example(see e.g. Figure II.4.1) may show 

strong effect strengths when projected on the red effect axis, but simultaneously have high distance from the 

red effect.) In this case, even with a perfectly regressed effect curve for the current effect, effects cannot be 

dissected cleanly, as is demonstrated in this subchapter(Figure II.4.2.2.b). Hence, the second purpose of the effect 

focus is to prevent explaining signal parts by for genes or samples that are significantly out of the current 

effect. Only then, these partially correlated effects can be detected and dissected in later iterations with effect 

curves that are specific to their original signal (rather than with hard to interpret effect curves that only fit 

remnants of their signal and effectively depend on all previously dissected effects). 
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II.4.2.1 Dissection strengths, final eigensignal and remaining signal 

Dissection strengths are essentially 

identical to the effect focus and guarantee 

that no signal is modified outside of the 

effect’s focus. Like regression weights 

before(Eqn. II.4.1.3.a), dissection strengths are 

defined as the symmetric product effect 

focus in eigenorder. 

Now the final eigensignal of effect  can be defined. 

The effect eigensignal in the discovered eigenorder is defined as the component-wise product:  ≡  .    ,     
Eqn. II.4.2.1.b) Eigensignal of the discovered effect 

 

Sorting back to reference orders   and  via ,   , ,    ≡  defines the final eigensignal  ∈   that is 

compatible with signal matrices. 

At this point, dissection is merely a matrix subtraction of the eigensignal. 

This results in the remaining signal  . It is the input for the next detection 

iteration   1 that starts with the search strategy(cf. II.3), again. 

 

 

 

 

 

II.4.2.2 Effective clustering and conceptual limits of projection based methods 

Implicitly, dissection realizes an iterative soft 

clustering of the signal. Even partially correlated 

effects can be properly dissected. 

This is also demonstrated by the 3D example(Figure 

II.4.2.2.a). The blue effect has been successfully 

explained by its discovered and regressed eigen-

signal(see its gene curve in Figure II.4.1). All signal parts that 

remain from the blue effect are scattered around 

zero with distances that approximately correspond 

to the noise level. 

In contrast, signals from all three other effects are 

still untouched. (The gene curve depicting the 

eigensignal for the green effect is already shown 

here as well. It will be dissected in the second 

iteration. All dissection steps for this 3D example 

are shown in II.6.1.) 

Dissection strengths  ∈   for effect  are defined as 
square roots of the components of 

 ⨂
 , i.e. of the outer 

product of the final effect focus 
 , 

 (cf. II.3.2). 

 ≡ ,  
 , ,    denotes dissection strengths in the final 

eigenorder. 
Eqn. II.4.2.1.a) Dissection strengths 

 

 ≡     
Eqn. II.4.2.1.c) Remaining signal after dissection 
of the discovered effect  

 

 
Figure II.4.2.2.a) 3D example, remaining signal   after dissection of the blue effect  
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Conceptually, this effective clus-

tering by dissection goes beyond PCA 

and other methods that are equivalent 

to projections or to orthogonal co-

ordinate transformations. For the 3D 

example, such methods could maxi-

mally provide three orthogonal gene 

axes, because after three projections 

only a point signal remains. However, 

there are four distinct effects in this 3D 

signal. Hence, these methods cannot 

dissect all four effects and, thus, 

original effects are hard to infer from 

resulting axes, e.g. from principal 

components(cf. II.6.1.2). 

To demonstrate these limits of 

projections and the importance of the 

effect focus in particular, the upper 

example uses only the regressed and 

smoothed    ,    for dissection(Figure 

II.4.2.2.b, upper panel). This is compared with 

the dissection based on the final eigen-

signal  .    ,     that cuts regression 

results with the effect focus(lower panel). 

Whenever partial correlations 

between effects are present in the 

signal, as in this example, then not only 

samples regulated by the current 

effect(blue) have a nonzero projection on 

the effect’s gene axis(orange) but also 

samples from foreign effects. Hence,    ,    is not zero for samples 

regulated by foreign effects. Its 

subtraction moves points from these 

foreign effects towards a perpendi-

cular plane, similar to a projection 

along the gene axis(see upper panel). 

This should be prevented in order to 

be able to detect and interpret original 

laws of gene regulation for the green, 

red and magenta effects, without any 

information loss or warping by other 

previously detected effects. 

 

 
Figure II.4.2.2.b) Dissection with and without using the effect focus as dissection strengths 

Upper panel: Naïve dissection based on the regressed effect curve. All points with nonzero 
projection on the effect axes are changes. Lower panel: Dissection in the effect focus based on the 
final eigensignal. Signals from partially correlated yet distinct effects are untouched, while the blue 
effect is removed. 
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In contrast, when using the final eigensignal   that makes use of the effect focus(cf. II.4.2.1), signal parts from all 

other effects are untouched and only blue samples are moved by this dissection(Figure II.4.2.2.b, lower panel), as intended. 

II.4.2.3 Visualization of high-dimensional eigensignals: the coordinate view 

So far, most examples were visualized within their 3D gene space. This type of direct visualization is 

unfortunately not possible for high-dimensional signals. To still visualize the raw signal and the regressed 

effect curves for high-dimensional signals, coordinates of all gene and sample vectors and of the regressed 

effect curves can be depicted as heatmaps. 

This is explained below for the second iteration of the 3D example that detects and dissects the green effect. 

The blue effect has already been dissected in the first iteration: 

Figure II.4.2.3.a) Coordinate view for high-dimensional visualization; exemplary dissection of the green effect for the 3D example 
 

This coordinate view is henceforth employed for visualization of all detections and dissections of high-

dimensional effects. Higher dimensions simply correspond to more gene rows (or sample columns) in 
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heatmaps. A detailed explanation follows that clarifies the equivalence of this coordinate view to the gene and 

sample spaces: 

i) The original gene expressions   are depicted; they include signals form all four simulated effects. 

Columns correspond to samples and rows to genes.   is already presented in the empirical eigenorder  ,  of the currently detected green effect. 

ii) The already explained parts of the signal are depicted in the empirical eigenorder for the detected green 

effect. Generally, this is the sum of all so far dissected effects. Here, it is just the final eigensignal   of 

the blue effect that was detected and dissected in the first iteration. As samples regulated by the blue 

effect have a signal near zero now, they are centered in the sample eigenorder  for the green effect. 

iii) The initial signal   for the current detection iteration is shown, again in the detected empirical 

eigenorder of the green effect. This ordered signal is already roughly bi-monotonic for top sample effect 

strengths (i.e. leftmost and rightmost columns). The green effect is partially correlated to the red effect 

with respect to the  direction. However, it is anti-correlated with respect to gene . Only those samples 

that are co-regulated (i.e. that have the same color) for genes  and  belong to the green effect. Red 

samples may still have strong effect strengths (as quantified by their projections on the green effect 

axis), i.e. red and green samples are mixed by the empirical eigenorder. 

iv) This panel shows the eigensignal, i.e. the bimonotonically regressed signal of the green effect times 

dissection strengths. Points outside of the effect focus, as determined by relatively low correlations to 

the effect(cf. II.3.2.2 and Eqn. II.3.1.4.b), are greyed out. Their signal is not modified by dissection. In particular, red 

samples are successfully filtered out, despite their partial correlation to the green gene axis. 

v) The final result of detection iteration   2 is the remaining signal   after dissection of the detected 

green effect. Top samples of the green effect at the left and right end of the heatmap are now noticeably 

zeroed. The signal still contains the red and magenta effects; they are detected and dissected in 

subsequent iterations(cf. II.6.1). (For instance, columns in the right half of this heatmap that show 

negative(blue) expression for all three genes  correspond to samples regulated by the magenta effect.) 

vi) The initial signal   for the current iteration is shown in the 3D gene space. Every sample point has 

coordinates depicted by one column in panel iii. The eigensignal of the green effect is shown in form of 

the yellow gene curve of the effect. Points along this curve correspond to columns in panel iv. 

vii) Lastly, the final dissection result in shown 3D view. Every sample point corresponds to one column 

in panel v. 
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II.4.3 Remaining Signal and Termination 
Because every eigensignal is locally comparable to a signal average, dissection modifies the signal towards 

zero on average and ultimately only a zero signal can remain. Hence, termination is always guaranteed. 

Typically, already long before that, no effects with significant correlation and signal strengths remain in the 

signal. This is recognized in the search strategy when no gene or sample qualifies any longer(cf. II.3.1.8). In this 

way, the method unsupervisedly determines the number of effects  in the signal(cf. II.2.1.1). 

For the 3D concept example, the method correctly detects that after four iterations the remaining signal does 

no longer contain any relevant effects. Hence, the number of effects in the simulated 3D signal is determined 

to be   4 and the method terminates. More precisely, no candidate qualifies any longer with respect to the 

significance threshold for the signal strength(cf. II.3.1.8). This is a relative statement and depends on the empirical 

noise estimation(cf.II.5.1). This termination by remaining signal strength is visually clear in case of the 3D example 

when comparing the original simulated signal with the remaining signal after four dissection iterations: 

 

Figure II.4.2.3.a) 3D example, remaining signal after all four dissection iterations 
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II.5 Noise and Significance 
A vital part of a statistical solution for unsupervised detection of so far unknown effects is a 

statement of how reliable its findings are. This is typically quantified by  values, i.e. 

probabilities of observing detected effects (or even stronger effects) based on noise alone. 

To obtain these probabilities, observables like correlations of genes with the effect’s gene 

axis or correlations of samples with the effect’s sample axis are tested for their significance. 

Likewise, the significance of observed signal strengths in the effect’s focus is tested relative to 

the estimated noise level. 

Based on these  values for observed signal strengths and correlations, effect candidates are 

qualified or disqualified by the search strategy(II.3.1.8). As soon as no gene or sample qualifies 

any longer, the remaining signal is considered as noise and detection stops. Hence, noise 

estimation should be as precise as possible in order to minimize false negatives (due to 

overestimated noise) as well as false positives (due to underestimated noise). 

II.5.1 Significance of Observed Signal Strengths 
To calculate  values with respect to the signal strength of effects, first the true noise level of the overall 

signal needs to be estimated. This noise estimation is related to the field of blind denoising. It is a non-trivial 

sub problem, especially for signals containing many effects. 

With the estimated noise distribution as reference, several statistical tests can be utilized to evaluate the 

observed signal in an effect’s focus for significance. These tests differ in computation speed and how robust 

they are in practice against deviations from their theoretical assumptions by the actual signal. 

II.5.1.1 Estimating the true noise level 

A naïve approach might utilize global estimates like the empirical standard deviation of measured gene 

expressions ̂ ≡ ∑ ,    , ⁄  ⁄
. However, this can strongly overestimate the true noise level, 

because   still contains all true effects, including maybe strong and broad effects with a strong influence on 

such global estimators. In the 3D example, for instance, σ  0.600, whereas the true simulated noise level 

is only 0.1. Hence, this reference would prevent the detection of weaker true effects (false negatives). On the 

other hand, using the standard deviation of the remaining signal σ as reference at the beginning of each 

iteration  would ultimately strongly underestimate the true noise level in the initial signal, as dissecting effects 

propagates the remaining signal  ever nearer towards zero. Hence, using this estimate may lead to 

detection of many false positives. 

Estimating the true noise level in a signal of unknown structure is a difficult problem that is also studied in 

the field of blind denoising. If the signal represents an image, one idea[86] is to first find patches of weak texture 

in this image and only utilize these patches as basis for noise estimation. However, this approach is based on 

the prescribed spatial order of image rows and columns. Another idea from blind denoising is to model 

projections of theoretical noise on all conceivable effect axes in a theoretical effect alphabet. These projections 

should be distributed normally and the supremum of these projections over the alphabet provides a useful cut 
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line between true effects and noise. This can then be utilized as stop criterion for denoising as demonstrated 

by the BIRD algorithm[87]. However, this approach needs a known and fixed alphabet of effects. 

In order to adapt these two ideas for the unsupervised scenario with an initially empty effect alphabet and 

initially unknown and unfixed order of genes and samples, one needs to identify “weak textures” in this 

context. Let ,  , ,  denote the final effect focus for converged effect axes(cf. II.3.2) of a detected effect . 

Gene expressions that are significantly correlated(cf. II.5.2) to this effect’s axes are not noise. They are “textured” 

in the image analogy and thus should be excluded for noise estimation. To deselect them, I demand that 

dissection strengths(cf. II.4.2.1)   for the current effect are near zero via   10  (the relation is taken 

component-wise, resulting in a Boolean mask ∈ true, false). 

This condition alone is not yet sufficient to exclusively select noise, because there might exist many other 

effects with strong signals that are perpendicular (or partially correlated) to currently discovered effect axes. 

To deselect them as well, I utilize the standard assumption of a constant global noise level (rather than noise 

that varies for each effect). This allows testing for perpendicular effects based on standard  scores for the 

radial distances of genes and samples to the respective current effect axis. A cutoff condition of less than three 

noise standard deviations ̂(defined below) has worked well in practice. From iteration   2 onwards, the 

noise standard deviations can be estimated reliably based on the noise distribution  . However, initially 

when   1, no noise distribution has been estimated yet. In this case, and again with the assumption of a 

global noise level, the standard deviation (weighted with dissection strengths ) of pixels in   around the 

regressed eigensignal   can approximate the initial noise standard deviation. 

 

Together, both conditions select only those gene expressions in  that are most probably “untextured” 

noise. These values are added to the initially empty estimated noise distribution  . Every selected value for 

gene  and sample  in the noise distribution is assigned 1  ,  as weight. The same is done for every 

detected effect, making the estimated noise distribution   larger and more reliable with every dissection. For 

memory performance,   and its weights matrix   are implemented as matrices of the same size as  . 

Pixels never selected as noise samples get weight zero. Pixels selected as noise estimates in multiple detection 

iterations are averaged in   and the maximum of their corresponding weights is retained in  . 

Now the true noise standard deviation of measured gene,	sample pixel around zero can be estimated by ̂ ≡ ∑ ,  ⋅ ,   0 , ∑ , ,  ⁄
. I utilize the uncentered standard deviation that is 

always computed relative to zero (and not relative to the empirical mean), as zero already represents the 

theoretically known mean for globally pre-centered data. 

For the blue, green, red and magenta effects in the 3D concept example, this procedure yields estimates for 

the noise level of ̂  0.100, ̂  0.108, ̂  0.103 and ̂  0.097 respectively(cf. Figure 

II.5.1.2, page 79), while the true simulated noise level is sim  0.1. 

Besides providing a reference for significance estimation, the noise distribution can also be utilized to define 

signal-adaptive error thresholds. For example,  ≡ ̂/1000 is used for bi-monotonic regression; there is 

no point in regressing the signal more precise than this. (For   1, error thresholds are estimated using ̂; a probable overestimation is uncritical for this purpose.) 
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II.5.1.2 Significance of signal strengths 

To answer whether an effect has significant signal strength, it is now possible to test the signal in the final 

effect focus against the obtained sampling   for the true noise distribution. As the signal is signed, signal 

averages are not useful for this comparison. Instead the signal power (i.e. quadratic values) or signal 

amplitudes (i.e. absolute values) can be utilized. Several tests and statistics can be employed to this end, with 

different advantages and disadvantages.  

 Permutation tests are non-deterministic and have too high computational cost 

A straight-forward approach would be a permutation test. Some distance statistic could be defined between 

signal amplitudes in the effect focus and noise amplitudes. Then the effect focus, i.e. gene weights and samples 

weights, could be randomly permuted among all available genes and samples. If the observed statistic for the 

effect focus is stronger than for sufficiently many permutations, the effect’s signal strength may be called 

significant. This approach has two problems. First, it is non-deterministic because of random permutations. 

Secondly, it is far too slow in practice, because the significance with respect to signal strength has to be tested 

for every effect candidate during the search strategy(cf. II.3.1.8). 

 Kolmogorov-Smirnov tests are deterministic, but still too slow and not sensitive enough 

As a sample of   was obtained (instead of just a scalar estimation of ), one deterministic possibility 

to obtain a  value is to employ Kolmogorov-Smirnov (KS) tests. They can directly compare distributions of 

signal amplitudes. To this end, first the cumulative distribution function (CDF) for the current absolute signal 

matrix || ≡ |, |,  is empirically estimated, using dissection strengths   as weights. Secondly, the 

weighted CDF for absolute signals of all noise samples || is empirically estimated, using   as weights. For 

a one-tailed test, whether signal amplitudes in the effect focus are higher than noise amplitudes, the KS statistic 

is simply the maximum of all point-wise differences of these two CDFs. Notably, the effect focus(Eqn. II.3.1.4.b) only 

utilizes correlations and their significance, but not signal strengths to define weights; otherwise weighting 

with   would be biased towards stronger expressions, which could lead to underestimated  values. 

Effectively, the KS test looks for larger counts (or larger weight mass) of higher expressions in the effect focus 

as can be expected by the sampled noise. Only the relative order of values is important for this test, rather than 

their absolute numeric values. Hence, this test is robust against outliers. To finally compute corresponding  

values, the asymptotic upper tail of the Kolmogorov-Smirnov distribution(D statistic in table 1 of [88]; also see kstest2.m of the 

MATLAB® Statistics Toolbox for implementation details) can be integrated.  

Though this KS test is robust and deterministic and utilizes all available information, it has a disadvantage: 

For strong yet small effects that differ only in the upper distribution tail when compared to  , it might cause 

false negatives. This insensitivity with respect to tails is a known weakness of Kolmogorov-Smirnov tests; a 

solution using inverse signal variances as weights to focus on tails has been suggested[89], but it is difficult to 

estimate the signal variance precisely. Additionally, for the search strategy weighted CDFs of the signal in 

every candidate effect focus would have to be estimated for these Kolmogorov-Smirnov tests. While this is 

practically possible, a faster alternative is presented next. 

 Weighted t-tests are fast, deterministic and have other practical properties 

A relatively simple weighted -test has been found to provide all needed properties for practice. It can be 

computed fast and deterministically. Additionally, it is robust and forgiving with respect to slight over- or 

underestimations of the true noise level. Most importantly, together with a significance threshold that can be 

chosen tightly as signal ≡ 10, these -tests can correctly sort out false positives with respect to signal strength 

in most test cases, while still qualifying simulated weak true positives(cf. II.6). This was confirmed over many 

simulations(e.g. II.6.2.5).  
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In contrast, for instance, -tests were relatively sensitive to the correct estimation of the true noise level. 

(These tests were also examined during development to compare signal powers between the effect’s signal 

and the noise distribution.) -tests caused both false positives and false negatives in several simulations. This 

corresponds to the known sensitivity of -tests against non-normality[90], while -tests are known to be robust 

against moderate deviations from normality[91,92].  

 

 

Figure II.5.1.2) Signal significance in the 3D example 

Each panel shows the empirical density over signal strengths of (gene, sample) pixels in the focus of the discovered effect. The area under each colored curve 
corresponds to the sum of the product effect focus, i.e. the sum of the detected effect’s dissection strengths ∑ ∑ ,  . Theoretical half Gaussian distributions are 
depicted with the same mass and for the respective noise standard deviation ̂ ( abbreviates ̂  in these plots). Standard deviations of   initially strongly 
overestimate the simulated noise level sim  0.1 and in the end underestimate it (̂  0.079). Approximate  values based on -tests are provided in 
panel titles in log  scale. All are very small, as the signal of all four effects is clearly stronger than the simulated noise level. Additionally, all effects are carried by 
sufficiently many samples (Inf corresponds to a numeric underflow to   0). 
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The central limit theorem[85 §16.2.5.2] states that the arithmetic mean of many independent random variates 

from the same distribution (with finite mean and variance) is distributed approximately normal. This and the 

above-mentioned robustness of -tests allow their application to only half-normally distributed values. More 

precisely, I utilize them to compare many half-normally distributed signal amplitudes in || in the effect 

focus against many half-normally distributed noise amplitudes in || (the absolute value is taken component-

wise, again). 

For computation, -tests require only empirical means, empirical standard deviations and weight sums for 

both distributions to compare. In the unweighted case, weight sums simply equal the number of points. All 

these measures can be computed fast. For ||, this even needs to be computed only once per detection 

iteration and can then be reused for all effect candidates visited by the search strategy. Let ̂| |, , ̂||,  and  ≡ ∑ ,  denote the empirical weighted mean, the empirical weighted standard 

deviation and the weights sum for ||. Identical to dissection strengths  (Eqn. II.4.2.1.a), let focus  denote the 

product effect focus of some effect candidate. Then ̂||, focus denotes the weighted mean of signal 

amplitudes in this focus, ̂||, focus is the weighted standard deviation of it and focus ≡ ∑ focus,  is its 

weights sum. As all weights are ∈0,1, each pixel can contribute at maximum 1 to this weights sum, i.e. no 

single independent measurement is allowed to count more than once. With the assumption of a constant 

global noise level, variances of both distributions can also be assumed equal. The  statistic for this comparison 

is now defined analogous to the unweighted two-sample -test for independent samples with equal variance(cf. 

[79], eqn. 8.11) by replacing sample counts with weight sums:  ≡   focus  2 
 ≡   1 ⋅ ̂||,    focus  1 ⋅ ̂||, focus   

 ≡ ̂||, focus  ̂| |,  

 1


 1
focus

 

Eqn. II.5.1.2.a)  statistic for the difference between the mean signal amplitude in the focus of an effect and the mean noise signal amplitude 
 

For signals stronger than noise, this  statistic for the effect is positive. To compute the  value for this 

statistic, the upper tail of the  distribution with  degrees of freedom is integrated(as implemented by the tcdf.m function of the 

MATLAB® Statistics Toolbox). This  value for an effect candidate or detected effect finally quantifies the significance of 

the observed signal strengths in the respective effect’s focus relative to the estimated noise level. 
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II.5.2 Significance of Observed Correlations 
Weighted correlations(cf. II.2.3.1) are utilized as base measure to detect interactions. For effect candidate 

qualification(cf. II.3.1.8) and to determine the effect focus(cf. II.3.2.2 and Eqn. II.3.1.4.b), significance estimates for these 

correlations are essential. 

II.5.2.1 Significance of weighted correlations 

 A -statistic based approximation 

In case of an unweighted Pearson correlation , a corresponding  statistic can be derived from a two-

dimensional normal distribution(see [93], section 12-8 for details). It is computed as   √ √1  ⁄ (see [93] eqn. 12-93 or [79] 

eqn. 11.20), where  is the number of degrees of freedom that equals the number of correlated points minus two. 

For interpretation,  values should quantify the probability to observe stronger correlations of the same sign 

due to chance. The corresponding one-tailed  value can be computed by integrating the  distribution with  

degrees of freedom in , ∞ (if   0) respectively in ∞,  (if   0). 

In the following, let | denote an observed gene vector from the contextual signal matrix, let |  be a sample 

effect axis to which it is correlated, let | denote sample weights of the contextual effect focus and finally let || be the weighted correlation(cf. II.2.3.1) for this gene with the effect axis. A  value for this correlation 

needs to be computed. (Obtaining  values for correlations of samples with effect gene axes is analogous.) 

By setting   ∑     2 and   || in the above formula for the  statistic, an approximation of  

values for weighted correlations can be obtained by assuming that the resulting statistic is distributed like a  

statistic with  degrees of freedom. Whether this approximation is well-defined, is tested next. 

 Comparison with null distribution based p values 

Similar to significance computation for signal strengths, random sampling techniques for the null 

distribution like permutation tests have the disadvantage to make the algorithm non-deterministic and 

relatively slow. Therefore, they cannot be utilized for practical purposes. However, they have the advantage 

to determine correct  values with ever higher precision over sample size of the null distribution, without 

needing to know its analytical form.  

To test the applicability of the above  statistic based approximation, I sampled the null distribution of 

weighted correlations and then compared  values obtained by both methods. 

One possibility to obtain a sampling of the null distribution is to randomly permute sample columns before 

computing gene correlations. Resulting weighted correlations represent correlations that could be explainable 

due to noise alone. A more direct approach is to simulate theoretically pure normal noise. (As correlations are 

scale invariant, the standard deviation of this noise signal can be chosen freely.) Then the same weighted 

correlations(cf. II.2.3.1) are computed with these simulated noise genes like before with the actually observed gene |, i.e. using the same effect axis | and the same weights |. The resulting sampling of the null distribution 

is utilized next to approximate the  value directly, as in permutation tests. More precisely, the  value for || is the ratio of stronger correlations in the null distribution (i.e. correlations that are nearer to +1 

respectively to -1, depending on the correlation sign). As correlations are signed, the minimal achievable  

value by this sampling method is 2 sampling	resolution⁄ . 
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A detection iteration of effect pattern #3 from a versatility test(II.6.2.1) has been selected for this 

comparison(Figure II.5.2.1). For all 1000 genes(upper panel) and for all 100 samples(lower panel),  values for their 

correlations to the respective effect axis in the effect focus have been computed by both methods. On the 

vertical axis,  values based on a null distribution with sampling resolution 1.000.000 are depicted. On the 

horizontal axis,  values are obtained via the approximate  statistic(see above). While  values based on the null 

distribution are truncated at 2 sampling	resolution⁄ , a nearly linear agreement above that resolution threshold 

provides confidence that the  statistic based approximation formula from unweighted correlations is still 

valid for weighted correlations. (No closed form of the precise analytical PDF for correlations using arbitrary 

weights seems to be known yet. A stochastical derivation of  values for weighted correlations could help to 

solidify this significance measure. Maybe it could be derived similar to the unweighted case(see [93], pages 188-199) 

under the null hypothesis of uncorrelated signals by introducing weights as another random variable that is 

constrained by a constant weights sum.) 

 

 
 

 
Figure II.5.2.1) Comparison of  value computation methods for weighted correlations  

For this comparison, genes and samples simulated for a versatility test(cf. II.6.2.1) are correlated with effect axes discovered for effect pattern #3. This pattern regulates 
200/1000 simulated genes and 50/100 samples.  
Non-deterministic  values based on a sampled null distribution (vertical axis, with sampling resolution 1.000.000) are compared to deterministic  values based on 
approximate  statistics as for weighted correlations. The former are truncated at 2 sampling	resolution⁄  (correlations are signed and  values are estimated 
separately for both tails; hence the factor two).  
Above this resolution threshold, both methods agree nearly linearly, which provides confidence that the  statistic formula from unweighted correlations is still 
applicable to weighted correlations. 
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II.5.2.2 Significance of all gene and sample correlations for an effect 

In the last section,  statistics and  values have been obtained for weighted correlations of each single gene  ≡  || to an effect’s sample axis | in its sample focus | . Likewise, correlations  ≡ |  and 

their significance for each single sample  are computed. For effect qualification(cf. II.3.1.8) these results need to be 

summarized in form of a scalar  value for all correlations.  

As confirmed by the sampled null distribution(cf. II.5.2.1), all corresponding   gene statistics approximately 

follow a  distribution with ∑     2 degrees of freedom and all   sample statistics follow a  distribution 

with ∑    2 degrees of freedom.  

If all observed ||  1 …  for genes or all observed | |  1 …  for samples are significantly higher 

than absolute values expected by the respective  distribution, then the effect is carried by significant 

correlations. This can be tested by two Kolmogorov-Smirnov tests in the gene respectively sample effect 

focus(cf. II.5.1.2), resulting in , for all gene correlations (that is for their || statistics) and in ,  for all 

sample correlations.  

Finally,  ≡ min, , , provides a scalar  value for all correlations with the current effect axes |, | and is tested for significance during effect qualification(cf. II.3.1.8). 
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II.6 Method Validation and Comparison 
To validate that the method is capable of dissecting signals into meaningful effects, several 

test scenarios have been designed. 

The main scenario tests the versatility of the method by simulating 13 different effects for 

randomly selected genes and patient. These effects comprise seven distinct patterns that 

imitate different real world gene expression effects of biological nature or lab effects(II.6.2). The 

second scenario tests the superposition limit of still dissectible overlapping effects for three 

different patterns(II.6.3). 

Finally, several detection limits are tested(II.6.4): the minimal signal strength relative to the 

noise level that is required for detection, the maximally tolerable ratio of missing values, the 

exclusion of false positives in the few samples limit and the exclusion of false positives in the 

many noise genes limit. 

II.6.1 3D Concept Example 
Before starting with high-dimensional effects, an overview of all results for the concept example is provided 

here. Principal components for the same signal are also provided for a comparison and to illustrate why they 

are hard to interpret in terms of original simulated effects. 

II.6.1.1 Overview of all dissection steps 

 

Figure II.6.1.1) 3D concept example, all detected gene curves, all dissection steps and the remaining signal 

Four simulated pathways corresponding to four distinct sample groups that are governed by different regulation laws for the same three genes have been 
simulated (cf. II.1.1). First the blue effect is detected, regressed and dissected. This is followed by the green, the red and the magenta effect. The remaining signal has a 
strength below the estimated noise level and hence signal dissection terminates after four iterations. (Details for all steps are explained in II.3, II.4 and II.5.) 
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II.6.1.2 Comparison with PCA 

 Principal Components Analysis Signal Dissection 

   

Figure II.6.1.2) 3D concept example, comparison of final detected gene curves and principal components 
 

Clearly, depicted principal components are not strongly correlated to any of the four simulated effect axes. 

Hence, no principal component represents a simulated law of gene co-regulation. Instead, all four effects have 

non-zero projections on all three principal components. Hence, every principal component (i.e. the new 

coordinate defined by it) represents a mixture (i.e. a linear combination) of four distinct effects. This is the 

reason, why these principal components are hard to interpret and not helpful when the goal is to discover new 

and distinct effects in an unknown signal. 

In contrast, signal dissection detects and regresses all four simulated (monotonically nonlinear) effects, i.e. 

empirically derives the original laws of gene co-regulation. Every effect is dissected iteratively(cf. Figure II.6.1.1) and 

its associated effect focus defines the samples in it, thereby effectively realizing a clustering of the signal, on 

top of explaining laws of gene regulation. 

The interpretability of a simulated effect based on detection results can be quantified by the best correlation 

of the simulated effect axis to any of the detected effect axes (respectively principal components). This can be 

used to illustrate the interpretability of method results for high-dimensional multi-effect signals, as is defined 

in II.6.2.3. 

 

 

 

 

 

II.6.1.3 Comparison with hierarchical clustering 

As it is used often for unsupervised effect discovery in biosciences(cf. I.2.2.1), results of hierarchical clustering 

for the 3D concept example are illustrated next. Hierarchical clustering can be configured with various 

distance metrics and linkage methods. First, results for the default Euclidean distance and for average linkage 

are demonstrated. In this case(cf. Figure II.6.1.3.a), most of the samples are grouped by a zero-centered large cluster, 

while tips of simulated effects are separated by several smaller clusters. 
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One conceptual problem of 

hierarchical clustering for this 

signal is its distance-based 

model for interactions: Points 

from different simulated 

effects are near to each other 

at the zero crossing, but points 

from opposite tips of the 

identical effect are geome-

trically far from each other. 

The correlation based 

distance (instead of the 

Euclidean distance) is a step 

towards solving this problem 

and results in a more balanced 

dendrogram, but it still cannot 

make out true simulated 

effects(cf. Figure II.6.1.3.b). 

Other linkage methods and 

distance metrics have been 

tested (data not shown); they 

lead to similar uninterpretable 

results for this signal. 

Another comparison with 

hierarchical clustering for 

high-dimensional data follows 

in II.6.2.6; all other com-

parisons are performed with 

PCA, as it seems to be  

the more powerful competitor 

compared to hierarchical 

clustering. 

 

 
   

Figure II.6.1.3.a) 3D concept example, results from 
hierarchical clustering (Euclidean distance metric, 
average linkage) 

 

 

 
   

Figure II.6.1.3.b) 3D concept example, results from 
hierarchical clustering (Correlation distance metric, 
average linkage) 
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II.6.2 Versatility 
The purpose of the versatility test is to challenge the method a wide variety of different effect forms that 

imitate different real world biological effects or lab effects. These effects may overlap each other. After defining 

simulated effect patterns, an exemplary run demonstrates how the method works for these high-dimensional 

signals. For method comparison, detection statistics are computed for signal dissection and for PCA. In 

addition, a brief comparison with hierarchical clustering is provided. 

II.6.2.1 Scenario definition and 7 distinct effect patterns 

A signal with   1000 genes and   100 

samples is simulated by superposition of seven 

effects and normal noise with standard deviation   0.5. 

The seven simulated effects differ in size, form 

and signal strength. For every effect, first genes 

and patients are randomly permuted. For 

predefined effect sizes (percentages), a bi-

monotonic signal has been generated at the top 

of these permutation orders, as depicted(cf. Figure 

II.6.2.1) (for other genes and samples, the simulated 

effect has zero eigensignal). 

To test the dissection of outshining broad and 

strong effects, pattern #1 mimics different 

experimental setups (e.g. the labeling protocol 

effect in GSE10846[5]). Due to its size, it is 

relatively easy to detect, but important to dissect 

without information loss. Pattern #2 simulates a 

strong binary cluster for only 10 measured 

genes; this is typical for, e.g., gender specific gene 

expressions. To test the detection of subclass-

only effects, pattern #3 simulates a broad biological effect that only exists in half of the samples. Pattern #4 

simulates a medium sized one-sided effect that is also typical for real-world biological effects. Pattern #5 

simulates a small gradual signal of medium strength. It is mainly a one-sided effect, but includes one anti-

correlated gene to test detection specificity. To test detection sensitivity with respect to noise, pattern #6 adds 

a weak effect that has a maximum absolute signal at the noise level and that gradually declines to zero. Finally, 

pattern #7 tests the sensitivity with respect to narrow effects by only affecting 5% of all simulated samples. 

The superposition of all seven effects in a common gene and patient reference order plus normal noise with 

standard deviation   0.5 serves as the input signal   for detection methods. The detection task is to recover 

simulated effect axes and depicted eigensignals for the respective random subsets of genes and samples.  

Besides this test scenario with 7 effects, and in order to increase detection and dissection difficulty, another 

larger versatility scenario is defined with 13 effects. To this end, the biologically most typical patterns #2, #3 

and #4 are simulated three times each (for different random permutations of all genes and all samples). 

 

Figure II.6.2.1) Versatility test, 7 simulated effect patterns and the superposed signal 

(a) Seven effects of depicted size and signal shape are simulated for randomly 
selected genes and samples. They are detailed in the text. Smaller effects are zoomed. 
(b) Superposed effects are depicted in a common reference order for all genes and 
samples, including simulated normal noise of standard deviation  ≡ 0.5. 
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II.6.2.2 A detection walkthrough for 1000 dimensions 

To illustrate how signal dissection works for high-dimensional signals, several detection and dissection 

iterations for the versatility test scenario with 7 effects are depicted and explained in this section. 

First, the large superposed lab effect #1 has to be dissected. Because of its dominant size (resulting in a 

dominant effect score; cf. II.3.1.6) it is always discovered first: 

 
Figure II.6.2.2.a) Versatility test with 7 effects, detection and dissection of the large overlapping lab effect (pattern #1, iteration   1) 
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Labels of top genes are depicted; each label lists all patterns that influence a particular gene. Plus and minus 

signs indicate whether they are co-regulated or anti-regulated by an effect. Clearly, genes that are correlated 

to the detected effect (“#1+”) are sorted to the top, while bottom ranks are exclusively occupied by genes that 

are anti-correlated to the effect (“#1-“). Final gene strengths ,   (center panel, green curve; cf. II.4.1.1) for this effect 

correctly reflect its linear gradual signal and sample effect strengths ,   (center panel, light orange curve) reflect the 

constant and strong signal in two different sample groups of size 2:1. Dissection of this effect results in a 

remaining signal(panel e) that is indistinguishable between those sample groups for strong effect strengths. 

Towards zero signal (and hence towards low correlation) a slight shadow remains due to decreasing 

dissection strengths(cf. II.4.2.1). This is intended, because in general this shadow could also be just ordered noise. 

And with dissection of partially correlated effects in mind, dissection should not extend into the uncorrelated 

regime(cf. II.4.2.2). 

Next, the remaining signal is screen for other simulated effects. Pattern #3 is detected at rank #2(cf. Figure II.6.2.2.b, 

page 90), because it has the next-highest effect score. (Genes and samples with very weak effect strengths are 

hidden from the plot to zoom on the effect.) The already explained and dissected signal from pattern #1 is 

presented in the eigenorder of the currently detected effect(panel b). Due to the first dissection iteration, the 

empirical signal of pattern #3(center panel) is much clearer than it was in the original signal(panel a). By virtue of low 

or zero dissection strengths(gray shading), its eigensignal(panel d) does not extend to samples that are not affected by 

this effect. Hence, in a real-world gene expression signal comprised of genetically heterogeneous samples, 

effects that are specific to only a subset of samples (e.g. to a yet unknown disease subtype) can also be detected 

and dissected. The signal of samples belonging to other subtypes does neither disturb this subtype-specific 

detection nor is it disturbed by subsequent dissection of this detected effect. This effectively allows a flexible 

detection of partly overlapping or partly hierarchical effects that may be shared by several but not necessarily 

by all samples. 

To demonstrate the specificity of the method, the small pattern #5 is depicted next(cf. Figure II.6.2.2.c, page 91). It 

simulates only one anti-regulated gene (of 1000 measured genes). This particular gene occupies the top rank 

of the detected empirical eigenorder. As the same gene was also regulated by effects #1 and #3 in this 

simulation(see its gene label), its correlation to other genes regulated by effect #5 is hardly visible in the original 

signal(panel a), but clearly revealed in the current signal(center panel). Detecting this single anti-regulated gene of 

pattern #5 is more difficult when many additional noise genes are simulated(cf. II.6.4.2). 

The pattern with the weakest simulated signal is detected last(cf. Figure II.6.2.2.d, page 92). Due to overlapping foreign 

effects, it is barely visible in the original signal(panel a), but still robustly detected(center panel). 

 

Detection and dissection iterations for patterns #2, #4 and #7 are similar. Definition plots and tables of all 

seven effects are available at  Method Validation\versatility7.single (nG=1000, nP=100)\sim 001\B=detected 

orders. 
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Figure II.6.2.2.b) Versatility test with 7 effects, detection and dissection of pattern #3 (in iteration   2) 
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Figure II.6.2.2.c) Versatility test with 7 effects, detection and dissection of pattern #5 (in iteration   6) 
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Figure II.6.2.2.d) Versatility test with 7 effects, detection and dissection of pattern #6 (in iteration   7) 
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II.6.2.3 Comparison of detected and true simulated effects and results 

To quantify detection quality and to facilitate a comparison with simulated effects, I utilize the same 

uncentered weighted correlations(cf. II.2.3.1) that were already used for effect detection. 

With a fair comparison to PCA results in mind, I correlate effect axes, i.e. the linear approximations of 

detected laws of gene regulation. They are directly comparable to principal components. Monotonically 

regressed effect curves may be more precise approximations of effects, but PCA has no analogue for a direct 

comparison. Likewise, PCA has no concept of an effect focus. Hence, the detected effect focus should not be 

used to define correlation weights as there is no analogue when testing PCA results. Instead, identical 

correlation weights should be used for both, i.e. for correlations of effect axes detected by signal dissection to 

simulated axes as well as for correlations of principal components to simulated axes. These correlations are 

defined below based on simulated and detected effect axes. As PCAs always return as many principal 

components as input dimensions (i.e. they do not determine the number of effects in the signal), only those 

principal components that show the best correlations with simulated effects are used for comparison. In case 

of signal dissection, always all detected effects are compared and displayed (even if they have only a weak 

correlation to all simulated effects). (This is a slight bonus for PCA in the presentation of comparison results.) 

Correlation weights should include all genes respectively samples that are strongly involved in the effect 

with full weight. They should exclude those with weak or zero regulation, because otherwise noise might make 

the correlation unspecific with respect to the tested effect. As the simulated gene axis |, of 

pattern  is known, it can be utilized to define full weights for all genes with  50% simulated  

signal strength  |,. Below this threshold, weights decrease linearly. (Formally, let  ,, ≡ |,  max  |,  denote relative signal strengths. Then |, ≡ ∑ min100%,  ,, 50%⁄   .) 

Let | denote the actual gene axis of the   detected effect (respectively principal component). The 

correlation should not only test the sensitivity of the redetection within the simulated focus |, . 
Correlations should also become weaker, if the detected effect axis | is strong outside of the simulated 

effect (i.e. if there are false positive genes). To this end, let |, denote analogously defined gene weights 

based on the detected gene axis |. Balanced weights |,  defined by the maxima  | ,  ≡max  |, ,  |, can finally be utilized to facilitate a both sensitive and specific correlation. (For 

example, if a gene has only 25% weight in |, because of a relatively weak simulated signal strength, but 

has a strong false positive signal in a detected effect, it will still be weighted with 100% in the comparison.) 

With these balanced weights, finally weighted correlations(cf. 

II.2.3.1) to quantify the rediscovery of simulated gene axes are 

computed. Analogously,  correlations between simulated and 

detected sample axes can be obtained. 

For the dissected simulation of the versatility test scenario 

presented in the last section, correlations between all simulated 

and all detected gene axes are depicted(cf. Figure II.6.2.3.a). These 

correlations demonstrate that each simulated effect has been 

redetected by exactly one detected effect with a correlation near 

one(red diagonal). No detected effect axis tries to explain parts of other 

effects(black off-diagonal pixels). (Results are depicted in best match order; 

the actual detection order of effects is shown by the respective 

values of  on the left of the matrix.) 

 , , , 	 , ,   
Eqn. II.6.2.3) Correlations of detected and simulated effect axes 

 ,,	, Simulated effect axes for pattern  
  , |  Detected effect axes for effect  
  , ,  ,  Balanced weights (see text above).  

 
Figure II.6.2.3.a) Versatility test with 7 effects, correlation of 
detected and simulated gene axes 
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Analogously and likewise, correlations  , | ,  compare 

simulated and detected sample axes(cf. Figure II.6.2.3.b). They are 

redetected with similar quality in this simulation. 

 

 

 

 

 

 

While correlations of effect axes are useful for 

comparison and validation, they summarize 

(re)detection quality by only one scalar per effect. To 

visualize the achievable detection quality with respect 

to the full signal caused by effects, all detected effect 

eigensignals are presented here(Figure II.6.2.3.c). They are not 

depicted in their respective detected eigenorder (where 

they are perfectly bimonotonic per construction), but in 

their true simulated eigenorder. Indeed, simulated 

gradual signals are retrieved with high similarity(cf. Figure 

II.6.2.1). Only for pattern #6 that has a true signal at or 

below the noise level, the reconstructed signal is 

relatively rough. This was expected, because this effect 

is nearly invisible in the original signal(cf. Figure II.6.2.2.d). Still, 

it was robustly detected. (The corresponding detection 

limit with respect to minimal signal strength relative to 

the noise level is analyzed in II.6.4.1.) 

Altogether, these results for the presented detection 

run(cf. II.6.2.2) already are a first validation of signal 

dissection against the versatility scenario. 

 

 

 

 

II.6.2.4 Comparison with PCA (versatility scenario with 7 effects) 

A more comprehensive validation for the small versatility scenario with 7 effects is presented in this section. 

Additionally, a first systematic comparison with PCA results is provided. 

To cover the randomness of effect simulation(cf. II.6.2.1), each scenario has been simulated 49 times (hence, 

results can be presented compactly as 7x7 block matrices). Each simulated signal has been dissected. Detected 

gene and sample axes are compared to simulated ones as explained(cf. II.6.2.3). 

 
Figure II.6.2.3.b) Versatility test with 7 effects, correlation of 
detected and simulated sample axes 

 

 
Figure II.6.2.3.c) Detected effect eigensignals in their true simulated 
eigenorder for the versatility test with 7 effects 

Eigensignals are bimonotonic per construction in their respective 
discovered empirical effect eigenorders. To visualize the compatibility of 
these empirical eigenorders with the actually simulated ones, regressed 
eigensignals are displayed here in the respective true effect eigenorders. 
(a) Empirically estimated eigenorders clearly reproduce all simulated 
large-scale signal differences of effects. However,  local gradual signals are 
not perfectly reproduced because of noise. (b) The remaining signal does 
not contain any true positive effects any more, as all 7 simulated effects 
have been detected and dissected. 
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Identical simulated signals have been passed to principal components analyses. Resulting gene axes(aka 

eigengenes in [68]; cf. I.2.2.2) and sample axes(aka eigenarrays in [68]) are likewise correlated to simulated effect axes(cf. II.6.2.3). 

For the 7-effect versatility test, results are summarized by the following block matrices. Each block 

corresponds to one simulation and shows correlations as before(cf. II.6.2.3). Blocks at the same position 

correspond to the same input signal; hence a direct visual comparison to results form PCA is possible. 

 Signal dissection, correlation of gene axes PCA, correlation of gene axes  

             
 

 Signal dissection, correlation of sample axes PCA, correlation of sample axes  

             
Figure II.6.2.4.a) Versatility test with 7 effects, 49 runs, correlations of effect axes and comparison of signal dissection with PCA 

 

While signal dissection results are precise and consistent, also PCA detects most effects reliably in this test 

scenario. 

Sometimes signal dissection finds more than 7 effects(e.g. row 6, column 7), i.e. the remaining signal is considered as 

noise later than the optimum. However, minimizing false negatives is a higher priority than minimizing false 

positives, especially with cross-cohort validation for real-world data in mind(cf. III.1.2). In case of PCA, always the 

top correlated principal components are displayed (from all  respectively  returned principal components), 

because PCA cannot determine the number of effects in the respective signal. 

Looking at details, principal components much more frequently mix two or more distinct simulated effects 

compared to signal dissection (as depicted by high correlations that are not on the diagonal). This problem 

gets more severe for more complex signals, as tested next. 
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II.6.2.5 Comparison with PCA (versatility scenario with 13 effects) 

To increase the detection and dissection difficulty, the same simulations and comparisons as presented in 

the last section are repeated for the versatility scenario with 13 effects(cf. II.6.2.1). 

While the quality of signal dissection stays approximately constant, PCA results are considerably less reliable 

for this more complex signal. In all simulations, several principal components represent mixtures (i.e. linear 

combinations) of more than one simulated effect. This is analogous to 3D examples before(see Figure II.6.1.2 and cf. Figure 

II.4.2.2.b). Supposedly, the higher rate of overlapping effects causes directions in gene space to show highest 

variance where effects overlap. Hence, principal components follow these directions instead of effect axes along 

which simulated laws of gene regulation really extend. This is the case for both gene axes(cf. Figure II.6.2.5.a, page 97) and 

for sample axes(cf. Figure II.6.2.5.b, page 98). 

To summarize and quantify these visual comparison results, two questions are tested: 

1) Does signal dissection show significantly higher correlation to the respective true simulated effect? 

2) Does signal dissection show significantly lower correlation to other effects? 

The first question effectively asks for a form of detection 

sensitivity, while the second asks for detection specificity. 

These questions can be answered with paired -tests for each 

simulated effect. Correlations to simulated axes(cf. Eqn. II.6.2.3) for 

signal dissection results and PCA results are compared (and 

paired by simulation runs, i.e. by identical input signals). For 

the first question, correlations of the best-matching effect axis 

(respectively principal component) with the respective 

simulated effect(as depicted by diagonal pixels in Figure II.6.2.5.a and Figure II.6.2.5.b) are 

compared between signal dissection and PCA over all 

simulation runs. For the second question, average correlations 

to all other simulated effects(as depicted by all non-diagonal pixels in the same 

column) are compared. Results for each simulated effect are listed 

to the right(cf. Table II.6.2.5). (For each question,  values for both 

methods add to one.) 

Due to its signal strength and size, pattern #1 defines a clear 

direction of maximal variance that coincides with its simulated 

effect axis. Hence, PCA is excellent at detecting this overlapping 

lab effect. For example, in all 49/49 simulations a principal 

component exits with a correlation  0.95 to the gene axis of 

pattern #1, while this in only the case in 37/49 simulations for 

signal dissection. However, both methods detect this strong 

effect with gene axes correlations  0.9 in all 49/49 

simulations.  

Additionally, PCA is better at detection of the weak signal 

pattern #6 (e.g. gene axes correlations are  0.8 in 38/49 runs 

for PCA, but only in 26/49 runs for signal dissection). Due to its 

weak signal relative to the noise level, neither method can 

 

Gene axes correlations 

sim. 

effect 

sim. 

pattern 

sensitivity 

(question 1) 

specificity 

(question 2) 

Sig. diss. PCA Sig. diss. PCA 

1 1 0.9963 0.0037 1.0000 7.2E-24 
2 2 1.6E-08 1.0000 2.8E-24 1.0000 
3 3 1.2E-12 1.0000 0.0029 0.9971 
4 4 3.8E-17 1.0000 9.5E-12 1.0000 
5 5 0.3803 0.6197 1.8E-17 1.0000 
6 6 0.9999 7.6E-05 7.6E-13 1.0000 
7 7 2.3E-09 1.0000 7.1E-10 1.0000 
8 2 2.4E-10 1.0000 3.2E-26 1.0000 
9 3 3.8E-12 1.0000 1.5E-05 1.0000 

10 4 1.5E-13 1.0000 1.6E-09 1.0000 
11 2 1.5E-08 1.0000 6.8E-22 1.0000 
12 3 4.7E-12 1.0000 0.0013 0.9987 
13 4 9.0E-17 1.0000 7.6E-24 1.0000 

Sample axes correlations 

sim. 

effect 

sim. 

pattern 

sensitivity 

(question 1) 

specificity 

(question 2) 

Sig. diss. PCA Sig. diss. PCA 

1 1 1.0000 1.9E-05 1.0000 1.1E-17 
2 2 3.6E-22 1.0000 1.0E-21 1.0000 
3 3 6.7E-18 1.0000 5.4E-05 0.9999 
4 4 1.7E-26 1.0000 2.8E-23 1.0000 
5 5 2.5E-15 1.0000 5.2E-16 1.0000 
6 6 0.3351 0.6649 1.8E-10 1.0000 
7 7 0.7967 0.2033 4.6E-17 1.0000 
8 2 1.3E-22 1.0000 3.4E-19 1.0000 
9 3 3.6E-15 1.0000 8.5E-07 1.0000 

10 4 3.1E-19 1.0000 1.3E-20 1.0000 
11 2 9.2E-23 1.0000 5.2E-19 1.0000 
12 3 2.5E-19 1.0000 2.6E-11 1.0000 
13 4 1.4E-27 1.0000 2.5E-18 1.0000 

 

Table II.6.2.5) Versatility test scenario with 13 effects, 49 runs, 
comparison between signal dissection and PCA results 

Based on depicted correlations between simulated and 
detected gene axes(cf. Figure II.6.2.5.a) respectively sample axes(cf. 

Figure II.6.2.5.b), signal dissection and PCA are compared. For 
detection sensitivity with respect to each simulated effect, 
correlations of the best-matching detected effect axis 
respectively of the best-matching principal component are 
compared over all 49 simulation runs (question 1). For 
detection specificity, average correlations of the same detected 
effect axis respectively principal component to all other 
simulated effects are compared (question 2). Both comparisons 
are realized by one-tailed paired -tests (paired by simulation 
runs, i.e. by identical input signal). 
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Signal dissection, correlation of gene axes 

 
PCA, correlation of gene axes 

 
Figure II.6.2.5.a) Versatility test with 13 effects, 49 runs, correlations of gene axes and comparison of signal dissection with PCA 
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Signal dissection, correlation of sample axes 

 
PCA, correlation of sample axes  

 
Figure II.6.2.5.b) Versatility test with 13 effects, 49 runs, correlations of sample axes and comparison of signal dissection with PCA 
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detect the original simulated gene axes with high precision (0/49 for correlations  0.95 for both methods). 

With respect to the narrow pattern #7, the correct 5% of samples influenced by this effect are detected by 

both methods with similar reliability (sample axes correlations  0.95 in 43/49 runs for signal dissection and 

in 42/49 runs for PCA). 

All other effects are detected significantly better by signal dissection. For example, all three simulated instances 

of the strong yet small signal pattern #2 are detected by PCA with correlations  0.8 only in 3/49, 1/49 

respectively 3/49 runs. Signal dissection detects the same effects in 45/49, 45/49 respectively 44/49 runs. 

For a correlation cutoff  0.95 still 30/49, 34/49 respectively 34/49 detections remain, while PCA detects zero 

effects of pattern #2 with this correlation. 

Additionally, PCA results for most effects are significantly less specific, as principal components are also 

correlated with several other effects instead of exclusively with their best-matching simulated effect(cf. p values on 

the right side in Table II.6.2.5). I.e. effects cannot be cleanly dissected in coordinates of these principal components(visible by 

off-diagonal correlations in Figure II.6.2.5.a and Figure II.6.2.5.b). 

 

In brief, these results thoroughly validate signal dissection against the 13-effect versatility test. PCA returns 

for identical input signals comparably unreliable and hard to interpret results. 
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II.6.2.6 Comparison with hierarchical clustering 

To compare with hierarchical clustering, it has been applied to the versatility simulation with 7 effects that 

has been presented and dissected in II.6.2.2. Based on 3D results for hierarchical clustering(cf. II.6.1.3) and its 

typical configuration for gene expression signals(cf. I.2.2.1), the correlation distance is chosen (with average 

linking). 

As expected, the distance metric is dominated by the overlapping strong lab effect (pattern #1) and resulting 

dendrograms organize genes and samples accordingly(cf. Figure II.6.2.6). Hence, pattern #1 can be considered 

detected. As discussed for method design goals(cf. II.1.2), the overlapping effect dominates the clustering and 

cannot be removed by hierarchical clustering as a matter of method concept. Hence, all other effects are split 

by this independent lab effect. 

Additionally, they split each 

other into sub clusters, if they 

overlap. This is visible in form 

of red or blue “blocks”. Genes 

belonging to the same 

simulated effect are clustered 

together in these blocks, but 

only in a fragmented form. 

In practice, it may be possible 

to manually focus on sub 

clusters in the gene dendro-

gram and then apply hierar-

chical clustering recursively in 

order to obtain a sample 

clustering for each gene sub 

cluster(cf. II.1.2.2). But this leads to 

hard-to-compare results, as the 

manual or visual determination 

of gene sub clusters is often 

difficult to reproduce. 

As hierarchical clustering has 

no concept of gene or sample 

axes, it cannot be compared 

directly and systematically with 

signal dissection as is possible 

for PCA. Therefore and because 

PCA is conceptually more 

competitive, all subsequent test 

scenarios are compared with 

PCA only. 

Figure II.6.2.6) Versatility test with 7 effects, results from hierarchical clustering (corr. distance, average linking) 
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II.6.3 Superposition Depth 
Besides a versatile detection of effects, dissection should work even if the same genes and samples are 

affected by multiple superposed effects.  

Using the same size of the signal matrix as in the versatility scenario (1000 genes, 100 samples), this is tested 

here by simulating one to 20 instances of effects of the same form (either pattern #3, pattern #4 or pattern #6 

from the versatility scenario; cf. II.6.2.1).  

For higher superposition depths, all genes or samples are regulated by multiple simulated effects eventually. 

This stresses dissection. These scenarios also stress the estimation of the true noise level(cf. II.5.1.1), because 

initially the signal standard deviation is much higher than the actual noise level. 

Results from signal dissection and from PCA are again correlated to all simulated gene and sample axes and 

are depicted as before(e.g. Figure II.6.2.5.a).  

Interestingly, PCA fails completely for these superposition scenarios, even for relatively few superposed effects. 

This can possibly be explained by PCA’s model for interactions again, namely that it searches and computes 

directions of maximal variance. Maximal variance is found where signals of effects overlap constructively. 

Hence, these directions of maximal overlapping are returned by PCA (rather than simulated effect axes). 

Additionally, no variance difference due to different effect sizes exits any longer compared to the versatility 

scenario. Given that in real-world gene expression signals effects of similar size are common, PCA’s inability 

to deal with these scenarios is this is a major disadvantage with biological interpretability of discovered gene 

expression effects in mind. 

 

II.6.3.1 Results and comparison with PCA for one to 20 times pattern #3 

Results from signal dissection and PCA for simulated signals comprised of one to 20 times pattern #3 are 

presented(cf. Figure II.6.2.1). The same noise level as for the versatility scenario is simulated (  0.5). 

While signal dissection detects precise and highly correlated effect axes for all simulated effects in all 

simulations, PCA fails to provide interpretable results in any simulation except for the single-effect 

signal(cf. Figure II.6.3.1.a and Figure II.6.3.1.b). 

For higher superposition depths, signal dissection often detects more effects than simulated. These are 

either false positives (if they are correlated to no simulated effect) or duplicates. The reason for the former is 

that the true noise level is hard to estimate for busy signals with many overlapping true positive effects. 

Besides, it is typically more useful to accept few false positives rather than accepting false negatives, because 

false positives can be sorted out in real-world scenarios via cross-cohort validation later(cf. III.1.2). PCA does not 

provide any noise estimate and always returns as many principal components as input dimensions (including 

many false positive axes). Only top correlated principal components are selected and depicted. 

The high overlapping rate causes correlations to degrade, resulting lower dissection strengths(cf. II.4.2.1). Hence, 

only effect genes with relatively low overlapping grade are dissected first. The remaining parts of the same 

effect are detected and dissected in later iterations, after overlapping and disturbing signals from other effects 

have been dissected, i.e. after the signal has been “cleaned”. This is visible as duplicate detections. These 

duplicates could be easily identified and merged via post-processing, as their detected effect axes are highly 

correlated. Hence, duplicate detections are preferable over overoptimistic dissection strengths that might 

result in larger detected effects that represent mixtures of overlapping simulated effects. 
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Signal dissection, correlation of gene axes 

 
 

PCA, correlation of gene axes 

 
Figure II.6.3.1.a) Superposition tests based on pattern #3, 1 to 20 instances, correlations of gene axes and comparison of signal dissection with PCA 
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Signal dissection, correlation of sample axes(landscape view) 

 
 

PCA, correlation of sample axes(landscape view) 

 
Figure II.6.3.1.b) Superposition tests based on pattern #3, 1 to 20 instances, correlations of sample axes and comparison of signal dissection with PCA 
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To demonstrate the grade of overlapping up to which effects are detected here, the following figure shows 

the detection of the 19th instance of pattern #3 (detected in iteration   20). Gene labels at the top and bottom 

list all effects that regulate these genes simultaneously in the original signal. Subtracting already detected 

effects(panel b) reveals the cleaned effect (as depicted in its discovered eigenorder in the center panel). 

 
Figure II.6.3.1.c) Superposition test based on pattern #3, dissection of the signal with 20 superposed effect instances,  detection iteration 20 
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II.6.3.2 Results and comparison with PCA for one to 20 times pattern #4 

In the last section, the two-sided effect pattern #3 (having both correlated and anti-correlated genes) has 

been simulated and dissected. To demonstrate that this still works for one-sided effects (that regulate all genes 

in the same direction and have no anti-correlated genes), the superposition test has been repeated with effect 

pattern #4(cf. Figure II.6.2.1). 

Correlations of detected and simulated gene axes(cf. Figure II.6.3.2.a) again show that signal dissection reliably 

discovers simulated effects in most simulations, while PCA cannot compete. Exceptions are signals with four 

or less effects as explained below. (Correlations for sample axes are similar. Corresponding plots are available 

at  Method Validation\depthTest.pat4 (nG=1000, nP=100), together with all other effect dissection plots for 

each simulation of this test scenario.) 

Superposing many effects of this one-sided pattern accumulates a global nonzero offset. I purposely keep it 

in the signal for additional difficulty and to test how the method can handle it. From five effect instances 

onwards, the first detected effect represents the combined global offset(gray rows). After dissecting it, all simulated 

effects are detected with high correlation(red pixels). Hence, signal dissection realizes a signal normalization on 

the fly by dissecting an offset effect. A depicted example(cf. Figure II.6.3.2.b) shows that top genes of this offset effect 

are the most-overlapped genes, as expected. For only three or four instances of #4 in the simulated signal 

however, there is an ambiguity. Does the emerging constructive global offset already have higher (uncentered) 

correlation or still any single simulated effect? For this ambiguity, the method is as unsuitable as PCA for three 

or four instances of the effect. Hence typical normalization steps (e.g. subtracting the median expression per 

gene) should not be omitted in general. 
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Signal dissection, correlation of gene axes 

 
PCA, correlation of gene axes 

 
Figure II.6.3.2.a) Superposition tests based on pattern #4, 1 to 20 instances, correlations of gene axes and comparison of signal dissection with PCA 
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Figure II.6.3.2.b) Superposition tests based on pattern #4, 20 instances, detection and dissection of the accumulated offset effect 
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II.6.3.3 Results and comparison with PCA for one to 20 times pattern #6 

To approach the limits of signal dissection, the superposition scenario has been repeated with pattern #6, 

i.e. with effects that have a signal at or below the simulated noise level everywhere. This signal is gradual and 

linearly decreases from top regulated genes respectively samples to zero(cf. Figure II.6.2.1). 

Here, signal dissection can no longer reliably dissect all simulated effects. Like for the other superposition 

tests before, PCA cannot compete.  

(Results are displayed for gene axes correlations only; sample axes correlations are comparable and can be 

found at  Method Validation\depthTest.pat6 (nG=1000, nP=100). All other effect dissection plots for each 

simulation of this test scenario are provided in subfolders.) 

Detection limits are investigated more systematically in the next section. 
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Signal dissection, correlation of gene axes 

 
PCA, correlation of gene axes  

 
Figure II.6.3.3) Superposition tests based on pattern #6, 1 to 20 instances, correlations of gene axes and comparison of signal dissection with PCA 
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II.6.4 Detection Limits 
To systematically test detection limits of signal dissection, several specialized test scenarios have been 

devised. Again, PCA results for each scenario are provided for comparison. 

II.6.4.1 Weak signals 

To quantify the detection limit with respect to signal strength, signals are simulated that contain a single 

effect of decreasing signal strength relative to the constant simulated noise level . Only a single effect is 

simulated per signal matrix (still of size 1000 genes and 100 samples). 

First, effects of the same shape as pattern #6 are simulated. In the versatility test, this pattern has the 

weakest signal of all effects. More precisely, its absolute signal equals 1 for its top regulated genes and 

samples and then decreases linearly to zero(cf. Figure II.6.2.1). Below, this shape is simulated 100 times with 

decreasing top signal strength, as indicated in units of the simulated noise level (horizontal axis). 

Signal dissection, correlation of gene axes  

Signal dissection, correlation of sample axes  

 
Figure II.6.4.1.a) Detection limit with respect to signal strength, effect pattern #6, signal dissection results 

 

Signal dissection detects the effect down to approximately 0.5. Below that, more often than not signal 

dissection terminates without any detected effect. 

It is possible to extend this limit by increasing the significance threshold for effect signal strengths(cf. Table II.3.1.8). 

However, this would not only result in detections of the simulated effect but also of many noise effects (i.e. 

false positives). 

Already before 0.5 , correlations of detected axes to true simulated axes break down. Hence, the detection 

limit for practice is approximately 0.75, because in practice not just a detection is required but also a high 

correlation to true effect axes for interpretability. 

Hence, the chosen significance threshold has been configured as intended, as it enables detection of true 

positives as long as effect axes may be determined with sufficient correlation, but stops short before accepting 

many false positives. 
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PCA has no concept of noise estimation and does not determine the number of effects in the signal. Instead, 

it always returns as many principal components as input dimensions. In the following comparison, always the 

principal component with maximal variance is selected and its correlation with the respective simulated effect 

axis is depicted. 

Because simulated signals only contain one true positive effect in this test scenario, axes of maximal variance 

and simulated effect axes would coincide, if there was no noise. Hence, these PCA results can be seen as the 

empirical optimum for this scenario. Indeed, correlations are higher than for signal dissection, although 

differences become negligible for higher signal strengths. 

PCA, correlation of gene axes  

PCA, correlation of sample axes  

 

Figure II.6.4.1.b) Detection limit with respect to signal strength, effect pattern #6, PCA results 
 

 

 

 

 

The same test has been repeated for effects shaped like pattern #3 in the versatility test, i.e. a two-sided 

signal that starts at a nonzero offset(cf. Figure II.6.2.1). As this effect only affects 50% of simulated samples, 

correlations to its effect axes decrease faster with the simulated signal strength as for the pattern tested above. 

Hence, also the onset of missing detections is reached earlier at approximately 0.75 . As before, PCA shows 

higher correlations and the correlation breakdown is prolonged to weaker signal strengths. Again, correlation 

differences become negligible for stronger signals. 

Signal dissection, correlation of gene axes  
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Signal dissection, correlation of sample axes  

 

PCA, correlation of gene axes  

  

PCA, correlation of sample axes  

 
Figure II.6.4.1.c) Detection limit with respect to signal strength, effect pattern #3, signal dissection and PCA results 

 

 

II.6.4.2 Many noise genes 

Besides finding true positives and preventing false positives in the limit of weak signals, the same goals need 

to be targeted in the limit of many noise genes. 

Discovering small true effects that exist only in few of all measured genes is demanding. For example, a small 

effect with a moderate signal strength for e.g. 10 genes may be robustly detectible without inviting any false 

positives in a measured signal matrix of 1000 genes. If the same effect was embedded in a signal matrix of 

20000 measured genes, it may still be detectible using constant significance thresholds, but at the cost of also 

detecting many false positives due to multiple hypothesis testing and due to more possibilities for 10 genes to 

be correlated by chance. To correct for that, significance thresholds are defined adaptively to the signal size 

using Bonferroni corrections(cf. II.3.1.8). 

To investigate this limit and to test these adaptive significance thresholds, the versatility scenario with 7 

effects (that is simulated for 1000 genes and 100 samples as before) is now embedded in a larger signal matrix. 

More precisely, noise genes are appended, i.e. genes that are affected by the same global noise level, but that 

are not regulated by any of the simulated effects. Starting with the unchanged versatility scenario, noise genes 

are added in steps of 2000 up to a signal size with 55000 simulated genes. 

Results are depicted for gene axes correlations(cf. Figure II.6.4.2.a). Sample axes correlation are comparable and are 

available in  Method Validation\versatility7.overNoiseGenes (nP=100). All detected effects by signal 



II.6 - Method Validation and Comparison 113 
 

dissection are depicted, including false positives. As PCA has no concept of noise estimation, its seven 

top correlated principal components for the respective simulation are selected and depicted for comparison. 

Signal dissection, correlation of gene axes 

 
PCA, correlation of gene axes  

 
Figure II.6.4.2.a) Versatility test with 7 effects, 1000…55000 genes, correlations of gene axes and comparison of signal dissection with PCA 
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 Comparison with PCA for each simulated pattern 

For zero added noise genes, signal dissection and PCA have already been systematically compared(cf. II.6.2.4 and 

II.6.2.5). Results are similar for relatively few added noise genes, i.e. both signal dissection and PCA discover all 

seven simulated effects with high correlation in most simulations. Differences in the context of many noise 

genes are discussed below for each simulated pattern(cf. Figure II.6.2.1). 

Pattern #1: As expected and due to its size, pattern #1 is detected reliably in all simulations with high 

correlation by both methods. 

Pattern #2: The strong but small pattern #2 is reliably detected by signal dissection. Likewise, PCA always 

returns a principal component with high correlation to this effect’s gene axis. But often this principal 

component is not specific. This can be seen by its simultaneous correlation to either pattern #3 or 

pattern #4(two red pixels in column 2).  

Pattern #3: Like pattern #2, this effect is reliably and specifically detected by signal dissection, while top-

correlated principle components often mix it with pattern #2 or pattern #4. Hence, underlying laws of gene 

regulation are hard to interpret, again. 

Pattern #4: (Like patterns #2 und #3.) 

Pattern #5: For the narrow pattern #5 the difference between the two methods is striking. While signal 

dissection discovers this effect reliably even for highest amounts of noise genes, PCA returns unreliable 

correlations from 12000 noise genes onwards and does not detect this effect at all for 26000 noise genes 

onwards. This effect is only comprised of 19 correlated and 1 anti-correlated genes. Probably this effect is too 

small to detect it without adaptive effect focusing in a sea of noise genes. 

Pattern #6: While pattern #5 was hard to detect in context of many noise genes due to its small size, pattern 

#6 is hard to detect due to its weak signal strength. For 10000 noise genes and lower, both methods still detect 

it reliably, albeit with weakening correlation. While signal dissection detects it in approximately every second 

simulation even for highest numbers of simulated noise genes, PCA fails to discover it from approximately 

22000 noise genes onwards.  

Pattern #7: From 16000 added noise genes onwards, signal dissection does not discover the narrow-shaped 

effect pattern #7 reliably. Either it is not detected at all or with low gene axis correlation to the simulated effect 

and with unspecific correlations to other effects. Likewise, PCA cannot always discover this effect and often 

discovers it with only moderate correlation(light red or gray in column 7), but tends to be more specific for this pattern 

(i.e. corresponding principle components have less correlation to other effects). 

 

 Dilution of top genes by noise genes 

Lower correlations between gene axes correspond to higher dilution of top genes by noise genes. This 

dilution can be observed especially for the weak-signal pattern #6 and for the narrow pattern #7. Increasing 

dilution by false positives generally causes increasing difficulty for effect interpretation. Unfortunately, these 

false positives top genes cannot be circumvented, as they have signal properties equal to true positives.  

Especially for pattern #7 that only regulates 5/100 simulated samples, it is relatively easy to simulate noise 

genes that are correlated by chance. These false positives with high correlation to true positives naturally 

become more frequent if more noise genes are simulated. An exemplary discovery of pattern #7(cf. Figure II.6.4.2.b) 

illustrates this problem. While top ranks at the bottom are occupied by true positives(non-black signal in panel b), all 



II.6 - Method Validation and Comparison 115 
 

other genes are actually ordered noise. All are correlated to true positive genes for the correctly focused 5/100 

samples: 

 
Figure II.6.4.2.b) Detection of the narrow pattern #7 with many false positive genes (in a versatility test with 7 effects embedded in a noise signal with 39000 genes) 
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 Specific discovery of small effects despite many present noise genes 

The most striking difference between signal 

dissection and PCA in the current scenario has been 

observed for the small pattern #5, as explained 

above. PCA is unable to detect it in the presence of 

many noise genes, probably because PCA lacks a 

concept for adaptive effect focusing. As small 

biological effects measured by large whole genome 

microarrays are typical, this is a major drawback 

of PCA. 

An exemplary discovery (cf. Figure II.6.4.2.c) of pattern #5 

demonstrates the accuracy of signal dissection and 

effect focusing in context of many noise genes: Only 

19 correlated and one anti-correlated true positive 

genes exist in this simulated signal of 55000 genes. 

This signal size is typical when measuring gene 

expressions on probeset level(cf. III.1.1.1). While again 

several false positives(black in panel b) are correlated to 

the empirically derived effect axes, all 20 true 

positives are discovered(see gene labels). Furthermore, 

they occupy top ranks in this effect without 

interruption by any false positives. Especially the 

fact that the solitary anti-correlated true positive 

gene has higher effect strength than all false 

positives was unexpected, as pattern #5 has only 

moderate signal strength and only affects 50% of all 

simulated samples. Additionally, this gene was 

overlapped by patterns #1 and #6 in the depicted 

simulation. Hence, its obvious signal correlation in 

the center panel is barely visible in the original 

signal(panel a). 

 

 

 A false positive example 

An exemplary false positive discovery(cf. Figure II.6.4.2.d) 

shows significant signal strength as well as 

significant correlations. This is expected, as it passed 

effect qualification(cf. II.3.1.8). In fact, its original signal 

in the empirically discovered eigenorder looks like a 

solid true positive effect. Typically however, such 

false positives are relatively small, either with 

respect to the number of involved genes or with 

respect to the number of involved samples.  
Figure II.6.4.2.c) Versatility test with 7 effects embedded in a noise signal with 55000 
genes, detection and dissection of the small pattern #5 
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However, “small” has 

to be understood 

relative to the size of 

the input signal. Hence, 

very large input signals 

may produce larger 

and more frequent 

false positive effects.  

This is also the 

reason, why effect size 

cutoffs used for effect 

validation have been 

defined adaptively to 

the size of the input 

signal(cf. II.3.1.8). 

Naturally, it is in-

creasingly harder for 

such strong and 

correlated signals to 

emerge from pure 

noise for many genes 

and many samples. 

Hence, they could be 

easily excluded by 

sufficiently high effect 

size qualification 

thresholds. Still, this is 

a tradeoff, as too high 

thresholds would also 

exclude small true 

positives. 

 

 

 

 

 

 

 

 

 

 

Figure II.6.4.2.d) Example of a false positive discovery (from a versatility test embedded in a noise signal with 51000 genes) 
 



118 Chapter II - Signal Dissection 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.6.4.3 Few samples 

Related to the problem of false positives due to many noise genes(cf. previous section), false positives may also 

emerge in the limit of few samples. In this limit, genes have a higher chance to be correlated to each other by 

pure chance. This is similar to false positive genes for narrow effect foci within larger signals(cf. Figure II.6.4.2.b).  

To systematically test the detection performance over the number of available samples, the versatility 

scenario(cf. Figure II.6.2.1) has been simulated for 20 to 2000 samples (and again 1000 genes). Detection results and 

the comparison to PCA results are shown below(cf. Figure II.6.4.3.a). As expected, both methods return more reliable 

and more robust results for high sample counts. Consistent with previous simulations(cf. Table II.6.2.5), the weak 

signal pattern #6 was missed by signal dissection for simulations with 766 and 1363 samples, but not so 

by PCA. 

For only 20 samples, the small or weak patterns #5, #6 and #7 are no longer detected by signal dissection. 

It is possible to detect them with lower significance thresholds for effect qualification, but this would invite 

unwanted false positives. The simulation for 52 samples demonstrates that the chosen configuration(cf. II.3.1.8) is 

already near the onset of many false positives and should not be lowered much more. PCA still computes 

principal components that are weakly correlated to patterns #5 respectively #7 for the same 20 samples 

signal. However, as PCA does neither determine the noise level nor the number of effects in the signal, depicted 

seven top principal components are not comparable in terms of false positives and detection thresholds. 

To illustrate the problem of false positive genes in detected effects for in the few samples limit, the detection 

iteration for pattern #4 is depicted(cf. Figure II.6.4.3.b, page 120). While top-correlated genes at the bottom are true 

positives, all anti-correlated genes at the top and several correlated genes in the middle are false positives(cf. gene 

labels). Results are comparable to false positive genes in the many noise genes limit(e.g. Figure II.6.4.2.c). 
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Signal dissection, correlation of gene axes 

 
 

PCA, correlation of gene axes  

 
Figure II.6.4.3.a) Versatility test with 7 effects, 20…2000 samples, correlations of gene axes and comparison of signal dissection with PCA 
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Figure II.6.4.3.b) Versatility test with 7 effects simulated for only 20 samples, detection and dissection of pattern #4 with several false positive genes 
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II.6.4.4 Missing values and their imputation 

An important consideration for practical applications is often that measurement devices do not yield reliable 

results for some probes. For example, 5% of all measured sequences on a microarray may be not be readable 

or fail in QC checks. In this case, still 95% are available per sample, but only the intersection, i.e. typically 

considerably less information is be available with robust readouts for all samples. Hence, analysis methods 

that can handle missing values are needed to make use of all non-missing information. 

PCA does not support missing values and hence is not compared with signal dissection in this context. In 

general, an external imputation method for missing values might be utilized to make signals with missing 

values compatible to PCA. However, global imputation methods (e.g. replacing missing values by zero) might 

introduce a bias to results. 

Correlations underlying signal dissection are weighted(cf. II.2.3.1) and thus natively support missing values: they 

are treated identically to non-missing values with zero weight. For example, expressions from genes outside 

of the effect focus have zero weight and are commonplace for signal dissection already. Furthermore, 

bimonotonic regression(cf. II.4.1.3) is weighted as well and thus supports missing values, too. This regression also 

effectively imputes missing values from neighboring values in the empirical effect eigenorder(cf. II.4.1.2). Hence, this 

imputation is dependent on the local effect context and thus does not introduce any bias. In this way, imputed 

values are effectively inferred from correlations in the non-missing signal. In principle, this might also be used 

to predict missing signals. 

 

To quantify detection performance over missing values, the versatility scenario(cf. Figure II.6.2.1) is simulated in its 

usual size (i.e. for 1000 genes and 100 samples), but simulated (gene, sample) pixels are deleted in steps of 

5% from 0% to 100%. Detection results show(cf. Figure II.6.4.4.a) that the strong effect pattern #1 is reliably detected 

even up to 90% missing values. For smaller effects, not enough information is left at such high rates of missing 

values and thus they cannot be detected. Unexpectedly, all effect patterns are detected for up to 35% of missing 

values. As expected, the weak signal pattern #6 is lost to missing values first (from a rate of 40% onwards). 

Effect patterns #2, #3 and #4 that imitate typical biological gene expression effects are detected for up to 80% 

of missing values, again more than expected. The narrow pattern #7 is detected for up to 75% missing values 

and the small pattern #5 up to approximately 55%. 
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Signal dissection, correlation of gene axes 

 
 

Signal dissection, correlation of sample axes 

 
Figure II.6.4.4.a) Versatility test with 7 effects, 0%…100% missing values, correlations of detected gene and sample axes with simulated ones 

 

To demonstrate the imputation of effect signals, a detection and dissection of pattern #3 in context of 80% 

missing values is presented next(Figure II.6.4.4.b). Despite only relatively few remaining information, the effect is 

reliably detected with high correlation the simulated law of gene regulation(see the block for 80% NaNs in Figure II.6.4.4.a). 

Consistently, top and bottom genes in the definition plot are all labelled by “#3+” respectively “#3-“, indicating 

that they are regulated by the simulated pattern #3. Despite the high rate of missing values, still no dilution by 
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false positive genes is visible for top correlated ranks. However, the eigensignal(panel d) does not have sharp 

borders towards the center, as would be normal for this pattern if no values were missing(cf. Figure II.6.2.2.d). 

 
Figure II.6.4.4.b) Detection of effect pattern #3 for the versatility test with 7 effects and 80% missing values 
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Comparison of all simulated effects(cf. Figure II.6.4.4.c) 

with discovered and recovered eigensignals(cf. Figure 

II.6.4.4.d) shows that imputed values can predict many 

missing value correctly. However and as expected 

due to 80% missing values and due to simulated 

measurement noise, this signal reconstruction is 

not perfect. Still, it is not as worse relative to the 

same test without missing values(cf. Figure II.6.2.3.c) as 

could have been expected for 80% missing values. 

Additionally, neither global imputation methods 

nor imputation methods using a neighborhood 

concept (based on gene and sample reference 

orders) could have predicted such consistent 

expressions with simulated effects, as these 

methods do not have any knowledge of actual 

effects or correlations in the signal. 
 

Figure II.6.4.4.c) Versatility test with 80% missing values 

Simulation of a versatility scenario with 7 effects for 1000 genes and 100 samples. 
(a) Seven effects of depicted size and signal shape are simulated for randomly se-
lected genes and samples as before (cf. II.6.2.1).  (b) Superposed effects are 
depicted in a common reference order, including simulated noise ( ≡ 0.5).  80% 
of all (gene, sample) pixels were randomly selected and their signal was deleted. 

 
Figure II.6.4.4.d) Imputed eigensignals (versatility test, 80% missing values) 

(a) 5/7 simulated effects are detected, despite 80% missing values. Originally 
simulated effect signals are imputed for missing values. The detected eigensignal 
for pattern #3 in its empirically determined eigenorder is depicted in Figure 
II.6.4.4.b, for example. 
(b) The remaining signal still contains the simulated signals (as depicted in Figure 
II.6.4.4.c above) for the small pattern #5 and for the weak-signal effect #6. 



 125 
 

Based on human whole genome profiling, gene expressions of 

more than 1000 patient samples of Diffuse Large B-Cell 

Lymphoma are dissected for four independent patient cohorts. 

Cross-cohort validation yields 135 GEP effects. Each effect can 

distinguish between patients by significantly differentially 

expressed genes. To illuminate their biological nature, all are 

systematically associated with clinical and genomic knowledge. 

The cell of origin(COO) effect that can distinguish between known DLBCL 

subtypes is rediscovered and redefined in a filtered form. A novel and 

genetically distinct effect is discovered that can predict DLBCL patient 

outcome more consistently compared to the COO effect. Multivariate 

survival analyses reveal novel hierarchical survival dependencies. 

Additionally, a combination of five GEP effects can predict strong and 

significant survival differences even within known subtypes and within 

clinical risk classes by international prognostic index. 

 MIC 0.a KÜ 

 MIC 1.a KÜ 
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III.1 Application to DLBCL 
Gene expression microarray measurements for samples from four DLBCL patient cohorts 

have been obtained via NCBI GEO[94]. Signal dissection(Chapter II) is independently applied to each 

cohort. Single cohorts may contain lab effects, for example caused by different experimental 

labelling protocols. Only effects representing molecular mechanisms in cells are of interest 

here and, therefore, effects are validated across cohorts to filter out non-biological effects. 

Gene axes of validated effects that were discovered in multiple cohorts are then combined to 

form consensus gene axes that represent detected effects in their most general and cohort-

independent form. Application of these consensus gene axes yields corresponding consensus 

sample axes that arrange patients according to an effect’s impact on them. This could also be 

utilized to classify patients in future DLBCL cohorts that were not used for effect detection. 

Backed by successful method validation(II.6), resulting 135 validated effects are expected to 

represent specific interactions in measured cells that are biologically comprehensible. 

Comprehensive biostatistical analyses have been computed for each validated effect 

(available via  DLBCL Master Table 2015, main overview.xlsx). In subsequent subchapters, 

these effects are systematically associated with patient survival(III.2) and top effects are 

biostatistically evaluated in detail(III.3). 

III.1.1 Detection in Single Patient Cohorts 
The dissection algorithm presented in Chapter II is applied to gene expression signals from four cohorts of 

DLBCL patients. Identical detection settings(e.g. qualification thresholds; cf. II.3.1.8) that were used for method validation(II.6) 

are now applied for dissection of these real world signals. 

III.1.1.1 Available gene expressions cohorts 

Gene expression microarrays for the following four cohorts and samples have been obtained via NCBI 

GEO[94]: 181 samples from GSE10846.CHOP[5], 166 from GSE4475.CHOP[95], 233 from GSE10846.R-CHOP[5] and 

498 from GSE31312.R-CHOP[29]. (With clinical analyses and validation in mind, GSE10846 has been split in 

two sub cohorts by the applied chemotherapy(cf. I.1.2.1).) 

All GEP measurements took place before start of therapy. GSE31312.R-CHOP is based on formalin-fixed, 

paraffin-embedded tissue (FFPE), while all other cohorts measure fresh frozen cell material from patients. 

Generally, gene expressions of FFPE material tend to be noisier because of mRNA degrading effects[96]. 

However, with clinical applications in mind, discovered effects should be robustly identifiable for FFPE based 

samples as well, as no freezing of patient cell material is available for routine clinical work due to cost and 

infrastructure reasons. Indeed, all relevant GEP effects discovered by this work exist and validate in this FFPE 

based cohort. One particularly important survival effect has even been discovered based on this cohort. This 

also indirectly confirms that HighPure Paraffin RNA Extraction Kits(Roche Diagnostics, Basle, Switzerland) utilized for 

measuring GSE31312 have worked reliably. 

Cohorts GSE10846 and GSE31312 were measured with GeneChip® Human Genome U133 Plus 2.0 

microarrays (Affymetrix Inc., Santa Clara, California, United States) and GSE4475 with former GeneChip® 
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Human Genome U133A microarrays. These microarrays are based on probesets that quantify mRNA 

concentration for genomic clusters. U133 Plus 2.0 arrays contain 54675 probesets for coding and non-coding 

mRNA sequences, U133A arrays contain a subset of 22283 probesets thereof. Annotations of probeset 

sequences with 21686 unique human genes are provided by the manufacturer (NetAffxTM,[97] v33). In general, 

analyzing gene expressions on the probeset level is more specific than analyzing on aggregated gene level. 

Hence, all dissections are computed for probeset level gene expressions. Sequences of single probes 

underlying a probeset are available from the manufacturer (they might help to construct specific shRNAs or 

cDNAs for further experimental investigations of probesets that have been identified by discovered effects and 

that are of biological interest). 

Except for the two sub cohorts of GSE10846, all cohorts were studied and measured by mutually 

independent teams and labs. Even sub-cohorts in GSE10846 are based on different experimental labelling 

protocols. Hence, validation of discovered effects across cohorts can be utilized to sort out lab effects and to 

exclusively keep effects of biological origin. 

III.1.1.2 Dissection overview for single cohorts 

Raw signal dissection has discovered 221 (GSE10846.CHOP), 82 (GSE4475.CHOP), 161 (GSE10846.R-CHOP) 

and 105 (GSE31312.R-CHOP) significant gene expression effects before the respective remaining signal has 

been considered noise(II.4.3). 

When compared to GSE10846.R-CHOP, lower numbers of detected effects were expected for the FFPE based 

cohort (due to the higher noise level) as well as for GSE4475.CHOP (due to the relatively small cohort size). It 

is surprising that GSE10846.CHOP yields more effects. However, several of these effects are very narrow (with 

respect to their number of top genes or top samples) and thus are probably lab effects that will be identified 

as such and sorted out by cross-cohort validation next. 

All discovered and dissected effects for raw signals are available in graphical and tabular from in cohort sub 

folders in  A=Detection. 
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III.1.2 Validation of Effects across Cohorts 
Ideally, GEP effects are independently discovered by signal dissection in all four cohorts. Only very strong 

and genetically unambiguous effects reach this quad-discovery. To find them, gene axes of all detected effects 

in all cohorts are systematically compared by correlation. Tuples of highly correlated effects from different 

cohorts are identified.  

Most true positive effects are not independently discovered in all four cohorts, probably because of alternate 

dissections. However, even an effect that has been discovered in just two cohorts can already be considered 

as strongly validated, because it was unsupervisedly rediscovered in an independent patient cohort.  

A weaker yet still sufficient form of GEP effect validation is supervised validation, i.e. an effect has been 

discovered in just one cohort, but its supervised application to initial signals from other cohorts proves its 

existence there, too. Alternatively, GEP effects discovered only in single cohorts can be considered validated if 

they are significantly associated with non-GEP covariates of the same cohort, like patient survival. 

Generally, the aim of validation is to extract and validate as many as possible discovered effects and only 

filter those out that are cohort-specific effects and thus disease-unspecific lab effects. 

III.1.2.1 Comparison between two cohorts by correlation of effect gene axes 

Let   and   denote two dissected cohorts and let  ,  denote indices of detection iterations. Let |,
  and | ,

  denote the converged gene axes of corresponding detected effects. Let |,
  and | ,

  denote the final 

gene correlations with the effect’s converged sample axis for the respective cohort. Finally, let | ,
  and | ,

  denote the effect gene weights in the final effect focus. All these vectors are results from effect axes 

convergence in II.3.2. (The index  that indicated the convergence iteration in II.3.2 is suppressed here for 

better readability.) 

As both the signal strength in effect direction and the consistency of regulations (i.e. correlations) should be 

similar for discovered effects that originate from the same biological effect, I compare the following product 

gene scores: 

| |.  ≡  	 	



 

Eqn. III.1.2.1.a) Gene scores (combining signal strength and correlation information) 
 

I.e. | ,
 |. ,

  is compared with | ,
 |.  ,

 . Notably, these gene scores indirectly contain information 

from all samples in the respective cohorts, as gene correlations are computed to effect sample axes. 

For the comparison of two discovered effects, all genes are relevant that are regulated by the potentially 

common biological effect. Additionally, both effects should extend to the same set of genes in both cohorts, if 

they represent the same biological interactions. Hence, the comparison should be computed for the outer 

effect focus |,; ,  defined as the maximum of respective gene weights. Then, the actual comparison 

score  ,; , is again computed by uncentered weighted correlations(cf. II.2.3.1): 

 , ;, ≡ | ,
 |.  ,

 | ,
 |.  ,

 ,; , 	with	|,; ,  ≡  max   ,
 ,   ,

  



 

Eqn. III.1.2.1.b) Comparison of effects from two cohorts by correlation 
 

For cross-cohort validation, all pairwise correlations are computed (for all pairs of cohorts and for all 

discovered effects in these cohorts). Additionally, corresponding  ,; ,-values for these correlations are 

computed as before(cf.II.5.2.1). 
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These computations presuppose that the same gene space is shared by all cohorts. In practice, this is always 

attainable by aggregating microarray results on gene level. Genes that were not measured by a particular 

microarray are assigned zero weights. For current cohorts(cf. III.1.1.1), the higher-resolution probeset space of the 

U133 Plus 2.0 microarray platform with   54675 dimensions has been selected. As U133A microarray 

utilized for GSE4475.CHOP contain a direct subset of these probesets, it was possible to join them by direct 

probeset ID lookup. 

III.1.2.2 Validation by independent discovery in several cohorts 

Four cohorts are available and in the ideal case the same biological effect has been discovered in all cohorts. 

This corresponds to a 4-tuple of detection ranks  ,  , ,  such that all pairwise correlations  ,; ,(III.1.2.1) are strong and significant.  

For every candidate tuple, pairwise correlations can be collected as a 4x4 matrix  ,,, ≡ ,; ,,… . Diagonals equal one (self-comparison) and thus for      cohorts, 
      

  cross-cohort 

correlations remain (the factor 

 is due to the symmetry of correlations). 

Next, the count of significant pairwise correlations is computed for each tuple. More precisely, a four-

dimensional count matrix  ∈      (where   denotes the final number of effects discovered for 

cohort  (cf. III.1.1.1)) is computed such that  , ,  ,  equals the number of pairwise absolute correlations of 

effects  ,  , ,  that are stronger than 0.5 and have a  value  0.001. The same pairwise absolute 

correlations are geometrically averaged for each tuple, resulting in  ∈ 0,1    . 

To estimate the count of additional cohorts, wherein an effect has been unsupervisedly rediscovered, 

pairwise correlation counts are scaled via             ⁄ . For      4, the maximum count is three independent 

rediscoveries and the minimum is zero (if the effect was only discovered in one cohort and no significantly 

correlated partner effect exists). 

To determine a list of validated effect tuples, all tuples are sorted descending by their  scores. The list is cut 

with the same threshold 0.5 that was applied to pairwise correlations above. In principle, an effect from one 

cohort may be significantly correlated to more than one effect in another cohort. Hence, this list may contain 

redundancies like  , ,  ,  and ,  ,  ,  (i.e. the effect was not detected in cohort three, and it 

was detected by two alternative effect axes in cohort two, while the same discovered effects are selected for 

cohorts one and four). Both tuples probably represent the same “outer” effect whose dissection into smaller 

and more coherent effects may be intrinsically ambiguous. I purposely permit such redundancies during 

validation, i.e. I permit discovered effects from one cohort to be included in more than one tuple. This enables 

finding different equally valid “views” on a true effect, i.e. views from partially correlated yet not identical 

consensus gene axes(cf. III.1.3). At this point, it cannot be decided which view is “the best”, because all are 

statistically significant and have high  scores. Later statistical associations e.g. with patient survival may 

reveal, which views are better, i.e. which are biologically more specific. Here, it is only important to keep all 

validated alternatives for further analysis. 

In total, 133 effect tuples with effects from at least two different cohorts validate in this way. The validation 

index  is used to refer to these effects henceforth. 

Another more demanding validation score can be defined based on the renormalized count of significant 

pairwise correlations times their geometric average:  ≡  .             ⁄ . The theoretical maximum for analyzed 

DLBCL cohorts (i.e. for      4) is still three. The maximal observed validation score was 8,124,9,17  2.84, 

followed by 3,4,6,6  2.64 for the gender-induced GEP effect(cf. III.3.2.1). However, most real-world biological 
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effects are not so clearly defined like the gender effect, because their foldings are weaker. Hence, their signal 

is nearer to the noise level and thus correlations are lower, too. Depending on the chosen cutoff, many effects 

thus do not validate when requiring highly correlated independent rediscoveries. For example, if one would 

require a validation score of at least 1, only 37 would be validated (of the above 133 effect tuples with 

significantly correlated effects from at least two cohorts). These 37 effects are strongly validated, as they have 

at least one independent rediscovery that is correlated with 1 (which is only theoretically achievable) or have 

multiple independent rediscoveries with correlations 0.5    1 (which is always the case in practice). These 

validation scores are also available in the  DLBCL Master Table 2015, main overview.xlsx. While this strong 

form of unsupervised validation is nice to have, it should not be required. This would exclude many discovered 

effects that can be validated in a supervised form(cf. III.1.2.3) and that are actually biologically important, as is 

evidenced by later biostatistical analyses(cf. III.3). 

III.1.2.3 Supervised Validation 

 ,  denotes the final gene axis of an effect  that was discovered when dissecting gene expressions for 

cohort  . It suffices for validation to supervisedly check the existence of the same effect in other cohorts   . 
To this end, the same procedure is utilized as for classification of samples by consensus gene effects(details follow 

in III.1.4). In brief,  ,  is accepted as final gene axis, its twin axis is computed, correlations are computed and the 

effect focus is updated. These vectors replace results from the search strategy(II.3) and are directly passed to 

regression and dissection(II.4). If this leads to a significant(cf. II.5.1.2 and II.5.2.2) effect in  (e.g. Figure III.3.3.1.b), the effect in (e.g. 

Figure III.3.3.1.a) can be considered validated in  . This is a weaker form of validation than unsupervised 

rediscovery, but effect eigensignals in   may still be strong and highly significant. 

Alternatively, effects can be supervisedly validated by associating them with non-GEP covariates. For 

example, detected effects with ranks #27 and #47 in the FFPE cohort GSE31312 were significantly associated 

with patient survival in the same cohort (#  2.1 ⋅ 10 and #  4.2 ⋅ 10, log rank tests between Kaplan-

Meier survival estimates for samples partitioned at  
 standard deviations of effect eigensignal strengths; cf. 

III.3.1.1). This is also the reason, why I performed biostatistical analyses for these two effects (indexed with   134 and   135 respectively) in addition to all 133 effect tuples validated above(cf. III.1.2.2). (Effect   134 

even turned out to have the most consistent association with survival of all effects in all cohorts(cf. III.2.5.1), while   135 showed still significant yet relatively weak survival association in other cohorts; cf.  DLBCL Master 

Table 2015, main overview.xlsx.) 
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III.1.3 Genomic Consensus Effects 
To define an effect on genomic level, i.e. independent of concrete samples underlying its original discoveries 

in possibly several different patient cohorts, consensus gene axes are computed. Likewise, consensus gene 

correlations can be computed. They serve for definition of gene scores used for genomic biostatistical analyses 

of effects. Additionally, they are the basis for effect application to potentially new cohorts and computation of 

consensus sample axes(in III.1.4). 

III.1.3.1 Consensus gene axes 

Let  be the index of an effects tuple with validated effects from 		  cohorts(cf. III.1.2.2). In the optimal case, the 

effect has been rediscovered in all cohorts (		    ). For only supervisedly validated effects, 		  equals one. 

Let  ,
   1 … 		 denote the corresponding set of gene axes for effects   in respective  

cohorts  . Likewise, let  ,
   1 … 		 denote their gene correlations (with the effect’s sample axis in the 

respective cohort). Their gene weights of the final effect focus are denoted by  ,
   1 … 		. 

To combine these genomic information over all available cohorts  , weighted arithmetic averages of the 

above vectors are computed. This results in the consensus gene axis respectively in consensus gene 

correlations for this set of effects. Pairwise cross-cohort correlations  ,; , between effects(cf. III.1.2.1) are 

respected in form of weights when computing these averages. Additionally, they are utilized to align gene axes 

as they may be anti-correlated (an unaligned summation would cancel signal strengths). As for pairwise 

correlations(cf. III.1.2.1), the gene focus for the combined effect is again defined as the maximum of respective gene 

weights. 

The consensus gene axis for a tuple …		  of effects from 		  cohorts with validation index (cf. III.1.2.2) equals 

, ≡   ,
 

		


, 
where the signs  ≡ sign , ;	 , align axes to each other and geometrically averaged  

weights  ≡ ∏  , ;	 ,		
		

 respect the correlation of gene axis  to all others(cf. III.1.2.1). 

The consensus gene correlations for the same effects tuple is defined likewise as  

,  ≡   ,
 

		


. 
Finally, consensus gene weights are defined as the maximum of the gene foci in respective cohorts: 

 , ≡ max…		   ,
  

Together, ,, ,, ,  describe a particular genomic consensus effect. 
Eqn. III.1.3.1) Consensus gene axis, consensus gene correlations and consensus gene weights for a validated effect   describe a genomic consensus effect 

 

The procedure of consensus axis computation can be viewed like a soft form of intersection for effects that 

were detected in multiple cohorts. If a gene is strongly correlated to the common effect in only one of several 

detection cohorts, it is assigned lower consensus signal strength  , and weaker consensus correlation  ,  than genes that are strongly correlated to the same effect in more cohorts. Thus, potential false 

positive genes (with respect to the common effect) are sorted down and hence true positives (from 

perspective of all participating cohorts) are sorted to the top. This definition should further increase the 

biological specificity of multiply rediscovered consensus effects. 
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In the special case of a supervisedly validated effect that was only discovered in a single cohort(cf. III.1.2.3), its 

consensus gene axis and its consensus correlations are identical to its gene axis and its gene correlations in its 

detection cohort. From a processing point of view, this makes no difference. However, relative to effects based 

on multiple discoveries, top genes are usually less robustly determined here and thus some top genes may still 

be cohort-specific. Hence, when the effect is applied to other cohorts(cf. III.1.4), some of its top genes may turn out 

to be false positives, i.e. they are no longer significantly correlated to the effect’s sample axis in this other 

cohort. Still, if the effect has already been supervisedly validated as a whole against the GEP signal of this other 

cohort(cf. III.1.2.3), only a minority of its top genes can be such false positives. 

While all cohorts measure the same genes, they measure different samples. Hence, no common consensus 

sample axis can be computed here. Notably, consensus sample axes could be computed for data scenarios 

where the same set of samples has been measured several times (preferably by independent labs or teams). 

Still, cohort-specific sample axes based on consensus gene axes can be and are computed for sample 

classification by genomic consensus effects(cf. III.1.4.2). 

III.1.3.2 Consensus gene scores and their correlation 

While consensus gene axes , encode information about folding strengths of genes in effects, consensus 

gene correlations , encode the consistency of gene regulations with the effect’s sample axes in the 

respective cohorts. It is an interesting question, whether genes with a stronger differential signal or with 

higher correlation to an effect (and thereby on average also to other top genes of this effect) are biologically 

more relevant. I assume that biologically highly correlated genes may also be important to understand the 

underlying pathway, even if they have a relatively weak differential signal. Like for effect validation 

before(cf. III.1.2.1), both sources of information may be important. I assume that the combination of both 

information sources maximizes biological specificity of gene rankings. Hence, consensus gene scores are 

defined based on the component-wise product: 

|, |. ,  ≡  , 	 ,	



 

Eqn. III.1.3.2.a) Consensus gene scores for a validated effect   (combining signal strength and correlation information) 
 

These scores are also used for genomic analyses of consensus effects, in particular for gene set enrichment 

analyses(cf. III.3.1.2 and III.1.5). 

To quantify the genetic similarity of two consensus effects   and  , their consensus gene scores are 

correlated. Again the maximum effect focus is used for comparison, analogous to cross-cohort comparison of 

discovered effects for validation(cf. III.1.2.1).  ; ≡ 		|
,|. 

, 			|,|. , 	;,  , where	
| ;,  ≡  max 

,,  ,  



 

Eqn. III.1.3.2.b) Correlation of consensus gene scores 
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Pairwise correlations  ;  of consensus gene scores for all pairs  ;  ∈ 1,135  of validated effects are 

depicted below: 

 
Figure III.1.3.2.a) Pairwise correlation ;   of consensus gene scores for all validated effects 

 

The permitted redundancies for alternate views(cf. III.1.2.2) are visible as strong(red or blue) correlations outside of 

the diagonal. These genetic similarities between some of the consensus effects are respected during 

biostatistical evaluation(III.3). Sometimes they are utilized to make statements about a group of several 

equivalent consensus effects at the same time(e.g. III.3.3.2). 

Most validated effects have uncorrelated or only partially correlated consensus gene scores, i.e. these effects 

probably represent biologically unrelated effects, e.g. independent gene regulation networks. (Depicted 

correlations are also provided in tabular form within  DLBCL Master Table 2015, main overview.xlsx.) 



III.1 - Application to DLBCL 135 
 

III.1.4 Application of Genomic Effects 
While cohorts measure the same genes, they measure different samples. Therefore, consensus gene axes of 

validated effects are applied to each cohort individually in order to compute effect strengths for their 

respective samples. Based on these effect strengths, samples can be arranged and classified by a particular 

effect. This classification can be applied to dissected cohorts in which consensus gene axes have been 

discovered and learned in the first place, as well as to new patient cohorts (for which the same gene 

expressions have been measured). Additionally, these classifications are utilized for biostatistical associations 

of effects with sample covariates (e.g. gender or survival). 

To realize this classification, large portions of signal dissection(Chapter II) can be reused. Essentially, the search 

strategy is skipped and replaced by learned consensus gene axes of the respective effect. 

III.1.4.1 Cleaned signal 

All discovered effects(cf. III.1.1.2) that were not validated(cf. III.1.2.2 and III.1.2.3) are cohort-specific effects. They are 

considered lab effects that are not of biological origin. To make gene expression signals of different cohorts 

more comparable, these cohort-specific effects should be removed. 

Let   denote the number of effects discovered by 

dissection of the initial gene expression signal  ,  of 

cohort  . Let  , ⊂ 1,   ⊂  be the index set for all 

detected effects in this cohort that did not validate(cf. 

III.1.2.2 and III.1.2.3). Then the cleaned signal for this cohort is 

obtained by subtraction of all these lab effects(cf. Eqn. III.1.4.1). 

 

III.1.4.2 Application of consensus gene axes  
 and sample classification by eigensignal strengths 

Application of a validated effect  to a cohort  computes the eigensignal of this effect in the cleaned signal  , (cf. Eqn. III.1.4.1) of this cohort. This eigensignal can be utilized for sample classification by the effect. Precise 

steps are detailed next. 

For a consensus gene effect given by its gene axis ,  and its gene correlations ,(cf. Eqn. III.1.3.1) first the 

significance of gene correlations is estimated and the gene focus  is updated in the same way as during 

detection(cf. Eqn. II.3.1.4.b). Then the twin sample axis  ,,  for cohort  is computed from the gene axis , using 

weights  (cf. Eqn. II.3.1.3), i.e. its components   ,,  equal weighted projections of samples ,|, | . 

Additionally, consensus sample correlations  ,,  for cohort  with the gene axis , are computed using 

weights  (cf. Eqn. II.3.1.4.a), i.e.   ,,   , ,| . Finally, the cohort-specific sample focus  ,  is computed 

from these correlations(cf. Eqn. II.3.1.4.b). Together, these effect axes, correlations and weights provide the same 

information in the same format as determined by the search strategy(cf. II.3) for a discovered effect during 

detection. This format identity is utilized to replace the search strategy. All other parts of signal dissection are 

identically reused for effect application. 

The resulting regressed eigensignal  , (cf. II.4.2.1) for consensus effect  in cohort  can be utilized to infer 

sample scores. They can subsequently be used for sample classification purposes or for biostatistical 

associations of effects with sample covariates. For example, the eigensignal ., (see Figure III.3.3.1.b, 

panel d) can be utilized to quantify sample involvements in this effect for subsequent survival analyses. 

 ≡   ,
∈	,

	
 , ≡  ,    

Eqn. III.1.4.1) Gene expression signal after dissecting cohort-specific effects 

  , Indices of effects detected in cohort  that did not  
  validate(cf. III.1.2.2 and III.1.2.3). 
  ,  Final eigensignal of effect  in cohort (cf. II.4.2.1). 
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To this end and more precisely, I define sample 

eigensignal strengths as column averages of these 

eigensignal matrices  , , weighted with the consensus 

gene focus  of the effect(Eqn. III.1.4.2), and using 

correlation signs to sum correlated and anti-correlated genes constructively. 

Other than sample effect strengths used for regression(cf. II.4.1.1), sample eigensignal strengths are relatively 

robust against outliers in raw sample signals and do no longer contain signal parts of partially correlated 

foreign effects (as dissection strengths are zero for them). Hence, I assume that eigensignal based sample 

scores are the purest with respect to an effect. I also utilize them for sample partitioning for clinical association 

analyses and survival analyses. (This assumption has been supported by experience with several alternate 

sample scores and with multivariate survival analyses during development: Sample orders based on sample 

eigensignal strengths resulted in the lowest  values for survival associations.) 

 

 

 

 

 

 

 

III.1.5 Overview of Scores 
To clarify gene and sample scores utilized for biostatistical analyses of consensus effects and to compare 

them with scores used for other purposes in signal dissection, the following table provides an overview of all 

gene and sample scores that are available for validated effects. 
Gene scores 

,  The cohort-independent consensus gene axis of validated effect   is a weighted average of gene axes in underlying detection cohorts(cf. Eqn. 

III.1.3.1). Components can be interpreted as the differential expression strengths of individual genes (in logratios units) between samples of 
patients that were ordered and distinguished by corresponding effects in underlying detection cohorts(cf. III.1.2.2). 

,  
Likewise, the cohort-independent consensus gene correlations of validated effect   are based on weighted averages of gene correlations in 
underlying detection cohorts(cf. Eqn. III.1.3.1). Components can be interpreted as the consistency of an individual gene’s expressions with sample 
eigenorders of the effect in underlying detection cohorts(cf. III.1.2.2). The nearer a gene’s correlation is to 1, the more likely it is that the gene is 
regulated by the underlying biological program that is represented by this effect. The nearer towards zero, the less likely it is that expressions 
of the gene can be explained by the current effect. 

|, |. , Consensus gene scores are defined as the gene-wise product of the effect’s absolute consensus gene axis with its consensus gene correlations(cf. 

Eqn. III.1.3.2.a). Hence, top genes when ranking by these scores are both strong and consistent with respect to effect  . Using both information is 
assumed to result in biologically most specific effect genes at top and bottom. Therefore, this ranking is utilized as basis for all genomic 

analyses of effects (i.e. primarily for gene set enrichment analyses and for gene ontology analyses). 

,,  During application of a consensus gene effect to a specific cohort , signal dissection computes gene effect strengths for regression iterations  
as during detection(cf. II.4.1.1). These gene effect strengths are utilized to determine the gene eigenorder for the next bimonotonic regression 
iteration and to determine the final gene eigenorder. In effect definition plots, final gene effect strengths  ,,    are depicted in the center 

panel. 

 ,  
After determining the final eigensignal  ,  for validated effect   in cohort (cf. III.1.4.2), gene eigensignal strengths in cohort  can be computed to 
quantify the cohort-specific gene involvement in the effect, using sample correlation signs and the effect’s sample focus as weights: ,  ≡∑ sign ,,.  ,  , ,  , . Other than gene effect strengths  ,,    before, gene eigensignal strengths are relatively robust against 

outliers in raw signals of single genes | , and do no longer contain signal parts of partially correlated foreign effects (as dissection strengths 
are zero for them). They would also be a justifiable candidate for genomic analyses of effects, but they are only available in a cohort-dependent 
context, requiring a method to merge scores from different cohorts. In contrast, consensus gene scores above are already based on merged 
consensus axes and correlations. 

| ,  ≡ sign,.   , , 	 



 

Eqn. III.1.4.2) Sample eigensignal strengths 
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Sample scores 

 ,,  
The consensus sample axis for validated effect   in cohort  is the twin axis of ,(cf. Eqn. II.3.1.3). It is computed as weighted projections of all 
samples in  on the consensus gene axis, i.e. its components equal  , |,| (cf. III.1.4.2). They can be interpreted as the differential expression 

of samples (in logratios units) between co- and anti-regulated genes in the effect. 

 ,, Consensus sample correlations for validated effect   in cohort , i.e. components equal  ,,   ,,|(cf. III.1.4.2).  

For interpretation, see , above. 

,,  During application of a consensus gene effect to a specific cohort , signal dissection computes sample effect strengths for regression iterations  as during detection(cf. II.4.1.1). These sample effect strengths are utilized to determine the sample eigenorder for the next bimonotonic 
regression iteration and to determine the final sample eigenorder. In effect definition plots, final sample effect strengths  ,,    are depicted in 

the center panel. 

| ,  
After determining the final eigensignal  ,  for validated effect   in cohort (cf. III.1.4.2), sample eigensignal strengths in cohort  can be computed 
to quantify the cohort-specific sample involvement in the effect, using gene correlation signs and the effect’s gene focus as weights: | ,  ≡∑ sign,.  ,  , 	 (Eqn. III.1.4.2). Other than sample effect strengths  ,,    before, sample eigensignal strengths are relatively 
robust against outliers in raw signals of single samples | , and do no longer contain signal parts of partially correlated foreign effects (as 

dissection strengths are zero for them).  
Hence, I assume that eigensignal based scores are the purest with respect to an effect and utilize them for sample partitioning for all clinical 

association analyses and survival analyses. (This assumption has been supported by experience with several alternate sample scores and 
with multivariate survival analyses during development: Sample orders based on sample eigensignal strengths resulted in the lowest  values 
for survival associations.) 

Table III.1.5) Overview of available gene and sample scores for validated effects 

Several gene and sample scores are available for validated consensus effects. For genomic analyses, only consensus gene axes and consensus gene correlations are 
needed (the same global gene space is shared by all cohorts). For ordering and classifying samples in a concrete cohort, an effect is applied to it(cf. III.1.4.2), resulting in 
cohort-dependent sample eigensignal strengths for clinical association analyses. This overview lists all available scores and explains their differences. 

Different scores are utilized for different types of effect presentation. Effect definitions in tabular form are 

available in  DLBCL Master Table 2015, gene orders.xlsx; they show all genes and provide columns for,, ,  and |,|. ,. Effect overview plots(e.g. Figure III.3.2.1) are always presented in the empirical 

eigenorder(cf. II.4.1.2), for which the respective eigensignal is regressed (i.e. they are ordered by final effect 

strengths  ,,    and ,,    respectively). Additionally, plots apply a filter to exclude strongly folded yet 

uncorrelated genes from the view. This filter demands that absolute consensus correlations  ,  are   50% of their maximum. Gene tables for biostatistical evaluations(III.3) are presented in descending order of 

the combined scores |,|. ,, as these scores are also utilized for all genomic analyses. Hence, these gene 

tables list genes at top ranks that have both strong folding and high correlation (if available for the respective 

effect). For abbreviation, let ,, ≡  ,  and ,, ≡  , ; consequently |,, | ⋅ ,,   |,|. , . 
(The gene index  may be suppressed in the context of an arbitrary gene, e.g. for gene table headers. Or it may 

be replaced by the gene name in the text for clarity.) 
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III.2 Multivariate Survival Prediction 
Gene expression effects associated with patient outcome are probably most informative 

towards understanding the molecular pathogenesis of DLBCL. To reveal these effects, 

multivariate Cox survival models are trained. All validated GEP effects are systematically 

analyzed for their individual and combined predictive performance. 

Many GEP effects can explain significant portions of patient outcome. Several genetically 

distinct effects can explain the same portions. Some effects can explain hierarchical survival 

dependencies after patients have been stratified by other effects. In principle, all of these 

effects could contain genes that are causal to the disease or its subtypes, reflecting the genetic 

heterogeneity and complexity of DLBCL. 

Results reveal that a particular unsupervisedly discovered GEP effect(index ν=134, evaluated in III.3.3.1) 

can predict patient outcome exceptionally well with   4.5 ⋅ 10 , while the unsupervisedly 

rediscovered cell-of-origin induced effect(ν=129, evaluated in III.3.2.2) follows only at rank two(Figure 

III.2.5.1.a) with   1.1 ⋅ 10 . Additionally, another GEP effect can improve predictions on top 

of effect 134 in a hierarchical manner, while the same is not possible on top of the COO 

induced effect. This might indicate that genes in 134 are a more natural choice to identify 

subtypes of DLBCL. So far, many genes that have been investigated with respect to their 

contribution to DLBCL lymphomagenesis belong to the COO induced effect. Given that the 

discovered effect 134 is not only more consistently associated with patient outcome but 

also has fewer top genes with higher correlation(cf. Figure III.3.3.1.a) relative to the larger and less 

specific COO induced effect(cf. Figure III.3.2.2.b), its top genes might be interesting for further 

experimental investigation. 

 

 

 

III.2.1 Survival Model and Effect Selection 
Before fitting concrete models and presenting predictor results, a brief recap for Cox proportional hazard 

models is provided here. 

Available data and follow-up types are listed, the choice of sample scores utilized for predictions is motivated 

and the iterative selection procedure for GEP effects that significantly explain patient outcome is clarified. 

III.2.1.1 Cox Proportional Hazard Models 

All fits in this subchapter are based on Cox proportional hazard survival models[98]. For a selected training 

set of samples, these models test the association of survival data with a selection of explanatory variables  . 

These   correspond to measured information about training samples, for example their average expression 

of validated GEP effects. Cox models(Eqn. III.2.1.1) estimate a baseline hazard function  from survival data, and 
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regress on coefficients   for selected explanatory effects  . Fitted estimates   utilize selected explanatory 

variables to predict patient risk ratios relative to baseline risk. 

 ≡  ⋅ exp  
∈

 

Eqn. III.2.1.1) Cox proportional hazard models 

 ,  Explanatory effect index and the selected set of indices. All   1 correspond to indices of selected validated GEP effects(cf. III.1.2),  
  while   0 correspond to prescribed temporary model variables like patient age(cf. III.2.1.4). 
   Explanatory variable with index  . (For example, the average gene expressions of a validated GEP effect for all samples.) 
   Coefficients. Numeric values are obtained by regression and are denoted as  . In case of standardized variables  ,  
    can be compared directly to estimate the relative impact of explanatory variables on survival. 
  Baseline hazard function. Estimated empirically by the model. High hazards are equivalent to high risk and correspond to adverse outcome. 
   Hazard rate at  ≡   at time . Substitute   by numeric values for concrete samples  to predict their hazard rate. Ratios of hazard rates  
  quantify how much more probable an event is for one sample compared to the other. 
 exp, The predicted hazard ratio relative to baseline for patient  due to its value , for effect  . 
 ∑ ,∈  The predicted loghazard	ratio for patient  based on its values , for all effects in the model. 

The aim is to find gene expression effects that allow the prediction of significantly different hazard ratios 

between patients. Generally, high hazard rates, i.e. high risks correspond to adverse patient outcome. 

Predictions are computed relative to estimated baseline hazards and are described by loghazard	ratios, 

similar to using logratios when comparing sample gene expressions to cohort average expressions. Kaplan 

Meier survival estimates for risk intervals of loghazard	ratios will be utilized to visualize survival differences 

predicted by particular trained Cox models. All fits of Cox models are computed with the coxphfit function of 

the MATLAB® Statistics toolbox. 

Conceivable nonlinear dependencies (for example, an effect might only influence outcome if expressed 

above a threshold) cannot be fitted exactly by Cox models, but are linearly approximated in the exponential. 

Symmetric dependencies (e.g. if average expression of an effect maps to baseline survival, but both 

upregulation and downregulation cause adverse outcome) cannot be fitted or revealed by such models. 

 

III.2.1.2 Available survival data and its limited information 

Survival data from patients for samples  are available in form of follow-up times   after diagnosis and 

Boolean flags   that indicate whether an event (a death or a progression) was observed (  1) or if a patient 

was lost to follow-up before it was observed (  0, right censoring). In total, 947 DLBCL samples with follow-

up events are available: 181/181 in GSE10846.CHOP[5], 76/166 in GSE4475.CHOP[95], 220/233 in GSE10846.R-

CHOP[5] and 470/498 in GSE31312.R-CHOP[29]. 

Observed deaths are used when estimating overall patient survival. These events are different from 

observed disease progressions that do not necessarily lead to deaths, but are significantly associated with 

these later events. Progression events have the statistical advantage that they usually can be observed even 

within relatively short follow-up studies, while deaths may appear as relatively uninformative censored 

events, especially if the follow-up is too short. Therefore, progression events can potentially convey more 

information about survival than the usually fewer death events for the same follow-up duration; this is 

especially useful for cohort GSE10846.R-CHOP due to its relatively short follow-up. While death events were 

recorded for all cohorts, only in R-CHOP treated cohorts progression events are available. 

It should be illuminated before fitting any survival model that except for time information and even when 

combining all four cohorts, survival data comprises just 947 bits of information. Their primary use is to 

serve as a biologically independent validation of already discovered and validated effects on GEP level. If only 

survival information was used as primary information source, for example to supervisedly find genes with 
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expressions associated with these bits(as done for signature definition in [5]), this could result in many false positive genes, 

since the information base is too low. Even if these genes are arranged and filtered via hierarchical clustering 

to find related subsets of genes(as also done in [5]), the information base is much smaller than for unsupervised 

dissection of the full GEP signal; hence, I utilize survival data only for independent validation rather than for 

direct supervised learning of interesting genes or GEP effects. 

For the same reason, survival data should not be used to exclusively select only those GEP effects that are 

most consistently associated with DLBCL patient outcome. That would exclude many also significantly 

associated GEP effects that might contain biological true positive genes that are causal to the disease. While it 

is necessary to make a selection of effects for predictor construction (and only the most consistent effects are 

selected to this end), it should be kept in mind that in principle all effect candidates with significant survival 

association might describe important and causal parts of this genetic disease. 

A third problem tied to having 947 bits of information is the problem of “overlearning”: It is relatively easy 

to inadvertently learn 947 bits “by heart” with a model based on many variables; such a predictor would 

produce perfect results for the 947 samples it was trained with, but would not generalize well or at all to new 

patients. Herein this study this is less problematic, as predictors are based only on already validated GEP 

effects that are biological true positive effects and are usually supported by many correlated genes (or 

probesets). Still, the construction procedure for predictors should and will be validated to quantify and prove 

their predictive performance. 

 

 

III.2.1.3 Choosing sample scores 

Given a validated GEP effect , several sample scores(cf. III.1.5) could be utilized for  , for example correlations 

of samples to the effect’s consensus gene axis. Alternatively, sample projections on its consensus gene axis, its 

consensus gene weights or effect strengths based on its eigensignal in the respective cohort could be utilized. 

While all are based on the validated gene order from the effect’s consensus gene axis, only eigensignal 

strengths | , (cf. Table III.1.5) are also based on bimonotonic regression in the respective cohort. This may be the 

reason why multivariate survival analyses performed during development indicated that sample orders based 

on sample eigensignal strengths resulted in the lowest  values for survival associations. I therefore consider 

them the highest-quality sample scores available and choose them for fitting all survival predictors in this 

subchapter. 

Visually and for direct interpretation, a component , ,  is simply a constructively weighted average 

expression of sample column  in the eigensignal heatmap of the respective effect application plot(e.g. Figure III.3.3.1.a, 

panel d). The selected sample score allows for later practical applications of predictors, as consensus gene 

weights |  needed for its computation have already been learned and are readily available for each validated 

GEP effect in  DLBCL Master Table 2015, gene orders.xlsx. Additionally, the effect’s eigensignal can be 

computed from learned and available consensus gene axes even for future DLBCL cohorts(cf. III.1.4). 

Each sample of every cohort should have the same weight when training survival predictor models. To this 

end and to compensate for scaling differences between cohorts, I additionally standardize eigensignal 

strengths  ≡ ,  ,   1 …   by dividing with their standard deviation in the respective cohort  . I.e. 

the final predictor variables are , ≡ , ,  ̂⁄   1 …  , where   is the number of samples in 
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cohort  . This standardization also allows resulting   of fitted Cox models to be compared directly, as they all 

multiply effect variables distributed with standard deviation one.  

Sample scores are not shifted by their cohort mean before predictor training (as in standard  

transformations), as zero already represents the theoretical global baseline (zero logratio indicate cohort-

average gene expressions). Hence, samples with zero eigensignal (i.e. baseline expression) for a particular 

effect also map to baseline survival of fitted Cox models, since their products  are zero, irrespective of 

fitted  . 

III.2.1.4 Correcting for survival factors that are not specific for DLBCL 

Patient age is known to influence patient outcome, but it is not specific for DLBCL. Thus, assignment of 

significant explanatory value to GEP effects that are accidentally related to age should be avoided. To this end, 

I temporarily prescribe centered patient age as first explanatory variable   during GEP factor selection. 

For a maximal training base, I merge all available survival events across all four patient cohorts. To this end, 

another factor should be prescribed: Two cohorts were treated by the current standard therapy of R-CHOP, 

whereas the other two were treated by the former standard of CHOP. These therapies are associated with 

different average survival. In addition, follow-up event types are different for the same pairs of cohorts. To 

prevent selection of GEP effects that are accidentally related to therapy or follow-up type, I prescribe  as 

centered binary grouping variable for R-CHOP and CHOP events, whenever samples from both groups are 

used for predictor training. 

After having selected all significant explanatory GEP effects, factors for age and therapy are removed again 

from predictor models to only keep factors that are specific for DLBCL. 

 

III.2.1.5 Effect selection procedure and likelihood ratio tests 

The procedure for selecting explanatory GEP effects is iterative. For each effect selection iteration, each of 

the 135 validated GEP effects is candidate-added to the current Cox model and it is quantified, how well it can 

explain survival on top of already explained dependencies, initially only on top of age and (if needed) therapy 

dependent outcome. 

This can be computed via likelihood ratio tests, comparing the larger age, effect} model with just the {age} 

model: Let   be the log-likelihood of the larger model and   be the log-likelihood of the smaller nested model 

(both are determined by the fitting procedure coxphfit from the MATLAB® Statistics toolbox). Then 2 ⋅

   is asymptotically   distributed with one degree of freedom as per Wilks’ theorem[99]. Hence,  values 

readily can be approximated by integrating the respective upper tail of the   distribution. 

GEP effects are filtered by their  values with respect to a tightly chosen error threshold of  ≡ 10. If 

significant effects remain, the one with the best  value is selected and added to the Cox model. 

In the next iteration, again all GEP effects are candidate-added to the now larger model. Already selected 

effects can no longer provide any significant additional explanatory value; hence no effect can be selected 

twice. Again, the most explanatory effect is added to the model. This selection procedure continues as long as 

increasing model size by a particular GEP effect can fit survival data significantly better than the preceding 

smaller Cox model. 
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III.2.1.6 Validation techniques 

To prevent and quantify the problem of overlearning, trained Cox proportional hazard models should be 

validated with other observed survival data. 

Three validation scenarios will be applied: first, a model is trained with R-CHOP-treated patients and 

validated with CHOP-treated ones. Secondly, a model is trained with CHOP-treated patients and validated with 

R-CHOP-treated ones. Besides these two classical validation schemes, thirdly a leave-one-out validation will 

be employed to estimate generalization performance of a model trained with all available samples. 

Validation of fitted Cox models is only required to test their generalization performance and to confirm that 

the predictor did not learn observed survival data “by heart”. This model validation should not be confused 

with validation of effects on GEP level (either by applying them to other cohorts or even by their independent 

unsupervised detection in multiple cohorts). It is also different from validating discovered single GEP effects 

by their significant association with patient outcome. 

 

III.2.1.7 Interpreting ambiguities 

Both the genetic heterogeneity of DLBCL and the low information base of only 947 bits cause that many GEP 

effects can explain significant portions of observed survival. Different GEP effects may appear as “the best 

ones”, given a particular set of training samples. In principle, every significant GEP effect has the potential to 

contain biological true positive genes that are causal to the disease’s pathogenesis. 

To represent the most important ambiguities, several predictors are trained and validated:  • A bivariate predictor resulting from training with only R-CHOP-treated patients will be validated in the 

CHOP treated subset(III.2.2). • For comparison, another bivariate predictor will be presented that uses the rediscovered COO induced 

effect as primary explanatory variable. It also emerges from training with R-CHOP-treated patients, but 

only if manually excluding the strongest survival effect(III.2.3). • Similarly, a different bivariate predictor results from training with CHOP-treated patients only; it will 

be validated in the R-CHOP-treated subset(III.2.4). • Using the same significance thresholds for effect selection, additionally and finally a five-effect predictor 

is obtained when training with all samples(III.2.5). 

 

The number of effects that could contain causal genes for observed differences in patient outcome following 

chemotherapy can be reduced from 135 to approximately 20(cf. Figure III.2.5.1.a). Of these 20, some are genetically 

correlated, and some explain only weak survival dependencies, probably affecting only few patients. Nine 

effects are used in the various predictor models and can explain significant portions of observed survival, 

albeit in part they explain the same portions. This cannot be further reduced because of the genetic 

heterogeneity that is intrinsic to DLBCL (several smaller patient subsets seem to show different outcome 

depending on their gene expressions in different effects).  

All GEP effects selected for predictors will be presented and biostatistically evaluated in III.3 towards finding 

out the biologically most relevant gene expression differences and to sort out indirect effects about the tumor 

microenvironment. 
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III.2.1.8 Survival for ABC DLBCL and GCB DLBCL for comparison 

For later comparison, survival differences between known subtypes ABC DLBCL and GCB DLBCL are of 

interest. The cell of origin induced GEP effect that underlies classification into ABC DLBCL and GCB DLBCL has 

been unsupervisedly rediscovered in a filtered form(cf. III.3.2.2), but here and for reference survival differences 

based on published sample classifications are depicted(Figure III.2.1.8) for each of the four analyzed patient 

cohorts(cf. III.1.1.1). 

 GSE10846.CHOP GSE4475.CHOP 

 

 GSE10846.R-CHOP GSE31312.R-CHOP 

 

Figure III.2.1.8) Survival spread for standard classifications in ABC DLBCL, unclassified and GCB DLBCL in all four analyzed patient cohorts for comparison 
 

Predictors should ideally show a survival spread at least as strong as between these known subtypes. 

Additionally, it would be interesting if predictors could reveal significant survival dependencies within ABC 

DLBCL or within GCB DLBCL. 
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Differences in the survival spread between ABC DLBCL and GCB DLBCL for the two R-CHOP treated cohorts 

demonstrate that the current classification procedure either does not generalize well or that it is not robust 

when transferring it from a cohort based on frozen cell material like GSE10846 to a FFPE based cohort like 

GSE31312. 

 

III.2.1.9 Revisiting binary subtype classifications and associated cutoffs 

The established Bayes classification for ABC DLBCL and GCB DLBCL(as defined in [83] and applied to GSE31312, cf. Figure II.2.1.2) 

implicitly assumes that every patient is either of the ABC DLBCL or of the GCB DLBCL subtype. Only patients 

that cannot be significantly assigned to either group under this assumption are called unclassified. Thus, the 

noise level in the data and the chosen error cutoff determine the size of the unclassified group. If for example 

only two thirds of all patients were truly either ABC-like or GCB-like, while another third was neither, this 

assumption would be violated and the classifier would tend to underestimate the number of unclassified 

patients with respect to the COO induced effect, i.e. it would produce false positive classifications. 

Average GEP effect strengths or loghazard	ratios are able to encode more information about samples 

compared to binary subtype classifications. In particular, they represent the gradual nature of observed 

survival dependencies(see also II.1.2.6). Given the straight-forward interpretation of hazard ratios for patients 

relative to baseline risk and with clinical precision in mind, it is tempting to replace hard-cut clinical subtypes 

by gradual GEP effect strengths in the midterm towards precision medicine, rather than forcing patients into 

a two-class model. The importance of a more accurate description than binary subtype classifications is 

confirmed by the existence of several genetically distinct GEP effects that are all significantly associated with 

DLBCL subtypes(cf. III.3.2.2), but have strongly varying predictor capabilities with respect to patient outcome. 

For this reason, hard cutoffs during effect detection are not used and all effects are defined in a cutoff-free 

way with correlations and weights for all measured genes. I only utilize cutoffs for presenting top-correlated 

genes or for visualization of predicted survival spreads via Kaplan Meier estimates. Even here, cutoffs are 

based on correlations with the effect respectively based on risk intervals for predicted loghazard	ratios. 

Consequently, all samples with predicted hazards near baseline are combined in the same Kaplan Meier curve.  

Thus, if a predictor can only predict strong survival dependencies for a few patients, most patients are in the 

baseline Kaplan-Meier curve, rather than trying to minimize the size of the effect’s “unclassified” group over 

the limit that is justifiable based on GEP regulation strengths. Additionally, these hazard-based cuts can 

visualize predictor performance more naturally than, for example, quartile Kaplan Meier plots. This is 

especially true in presence of small patient subgroups that highly express a given effect and show significantly 

different outcome relative to other patients. 
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III.2.2 Bivariate Model for R-CHOP 
Using progression events from cohorts GSE10846.R-CHOP and GSE31312.R-CHOP as training base, two GEP 

effects are iteratively identified and selected that can explain significant survival dependencies. Validation in 

both CHOP-treated cohorts is successful. As selected GEP effects are genetically highly specific and distinct 

from the larger COO induced effect, these effects could yield novel biological insights into molecular causes of 

DLBCL. 

The second explanatory variable (  127) is shown to affect only patients in the lower risk partition with 

respect to the first effect (  134), i.e. in terms of standard subtypes, GCB DLBCL patients are affected 

predominantly, while ABC DLBCL patients seem not to be affected by its underlying pathway. Because of an 

anti-aligned survival trend, effect   127 is not significant if selected as primary effect, but highly significant 

as secondary effect, i.e. a multivariate analysis was necessary to reveal it. 

III.2.2.1 Selection of validated GEP effects as predictor variables 

Centered age is prescribed as initial factor in this Cox model to prevent potential selection advantages for 

GEP effects that are related to patient age; this factor has   0.004 over all R-CHOP-treated patients. 

Next, each of the 135 validated GEP effects is candidate-added to the model as described(III.2.1) and likelihood 

ratio tests are utilized to quantify significance of their added explanatory value. With   10  as tight 

significance threshold, eight GEP effects(Figure III.2.2.1.a) qualify as primary predictor variable: 

 

Figure III.2.2.1.a) Selection of the best primary GEP effect for survival prediction based on all 690 available R-CHOP-treated patients 

Shown are all 8 GEP effects with a  value  10 for their additional explanatory value of observed patient outcome (likelihood ratio test). The matrix shows 
whether they are genetically associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). Indices of pre-consensus effects detected in the four 
source cohorts GSE10846.CHOP, GSE10846.R-CHOP, GSE4475.CHOP.nonMBL and GSE31312.R-CHOP are displayed on the left in square brackets; NaNs indicate that 
no sufficiently correlated gene axis was used for dissection of the respective cohort’s signal. 

With   3.9 ⋅ 10 , effect   134 can explain survival most consistently, followed by the COO induced effect   129 on rank #2 with   1.8 ⋅ 10 . Genetically,   134 is weakly correlated to all four following effects, 

but only has 69 top genes (unique gene IDs with  ,  0.4), while following top effects are larger (151 

genes for   129, 95 for   100 and 435 for   25, using same gene correlation cutoffs). This might indicate 

that it can capture survival-relevant genes with a higher biological specificity. 

During detection, dissection of GSE31312.R-CHOP revealed   134 in iteration #27, while no highly 

correlated gene axes were used for dissection of the other three cohorts. The reason for this cannot be an 
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ambiguous dissection of the larger COO induced effect, since it has also been rediscovered in dissection 

iteration #12 in GSE31312.R-CHOP. Probably different cell material (GSE31312 is FFPE based, while all three 

other cohorts are based on frozen cell material) makes an alternate dissection of signal parts more probably 

that remain after the COO induced effect has been dissected. Anyway,   134 has been supervisedly validated, 

i.e. it has been shown to exist on GEP level in all four cohorts irrespective of cell material by applying its 

consensus gene axis(cf. III.3.3.1). 

On rank #4 (  25), an alternate view onto the standard COO induced effect follows; its consensus gene 

scores are correlated to rank #2 with ;  0.85(cf. Eqn. III.1.3.2.b). From GEP validation perspective,   25 

would have been preferred over   129, as it was independently discovered in three cohorts rather than in 

just two cohorts. This proves that the decision was right to allow redundancies in validation(III.1.2) in order to 

let survival (or other covariates) decide which alternate high-dimensional gene axis can represent true 

biological effects best. 

After addition of   134 as explanatory variable to the Cox model, only three effects(Figure III.2.2.1.b) remain that 

can explain additional significant survival dependencies: 

 

Figure III.2.2.1.b) Selection of the best secondary GEP effect for survival prediction based on all 690 available R-CHOP-treated patients 

Three GEP effects can explain significant additional survival dependencies ( value  10 , likelihood ratio test). The matrix shows whether they are genetically 
associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 

All three qualified effects are genetically similar; the first two have a consensus gene scores correlation of ;  0.80, i.e. their top genes overlap strongly. Effect   127 can explain remaining survival slightly 

better (  5.6 ⋅ 10  opposed to   6.3 ⋅ 10) and is therefore selected here as second GEP effect for 

the predictor model. 

With only   7.4 ⋅ 10  the COO induced effect   129(III.3.2.2) follows at rank #13 here (not shown in the plot, 

as this is no longer significant with respect to   10). This indicates that   134 can explain most of the 

survival dependencies explained by   129. Vice versa, this is not the case(cf. Figure III.2.3.1). 

To find a potential third explanatory effect, again all 135 validated GEP effects are candidate-added to the 

model, but none is able to significantly explain additional survival dependencies with respect to error 

threshold   10 . 
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III.2.2.2 Fit results, prediction performance and validation 

Taken together, two validated GEP effects  ∈ 134, 127 have been selected as predictors and can explain 

survival independently and on top of age. Removing the DLBCL-unspecific age variable again and fitting a 

bivariate Cox proportional hazard model  ⋅ exp∑ ∈,  for described sample scores(III.2.1.3) results 

in listed final statistics(Table III.2.2.2) for the two 

selected GEP effects. (Final  values are not 

directly comparable to  values used during 

effect selection, since the latter were based on 

likelihood ratio tests to measure the 

additional explanatory value of an increased 

model size, rather than absolute predictive 

capability in presence of all selected predictor 

variables.) 

Kaplan-Meier survival estimates for risk intervals based on predicted loghazard	ratios are used to visualize 

a spread from 36% to 86% average survival(Figure III.2.2.2) in the R-CHOP training set. As expected, this is highly 

significant (  3.1 ⋅ 10 between the first and last risk interval, log rank test, 100+109 patients). Application 

of this bivariate predictor to the CHOP-treated validation set proves its generalization capabilities (survival 

spread from 9.7% to 65% with   5.2 ⋅ 10 between the first and last risk interval, log rank test, 31+31 

patients). Compared to standard DLBCL subtypes(Figure III.2.1.8), explanatory GEP effects   134 and   127 can 

predict wider survival spreads. 

 R-CHOP CHOP 

 
Figure III.2.2.2) Bivariate predictor  ∈ 134,127; performance in the R-CHOP training set and generalization to the CHOP validation set 

Survival predictions for 690 R-CHOP-treated patients (left, training set) and 257 CHOP-treated patients (right, validation set). Chosen split points to present the 
survival spread in five risk intervals equal multiples -1.5, -0.5, 0.5 and 1.5 of a loghazard	ratio	of	150%). 

 

GEP effect   134   127 

  -0.658 0.395 

Hazard ratios [0.52, 1.93] [0.67, 1.48] 

 values 1.4 ⋅ 10  1.2 ⋅ 10 

links to evaluation III.3.3.1 III.3.3.2 

Table III.2.2.2) Bivariate Cox model  ∈ 134,127 , final statistics for the R-CHOP training set 

  are the fitted Cox coefficients of the log(hazard	ratios) for the explanatory variables 
 ∈ 134,127 . Hazard ratio intervals equal exp  , exp . They are useful for a 
comparison of the relative impact on survival explained by different GEP effects. Cox  
values are for individual GEP effects in the final model (not directly comparable to 
likelihood ratio based  values for effect selection). 
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III.2.2.3   127 is a GCB-DLBCL-only survival effect 

If effect   127 is used alone in a univariate Cox model, it also shows a “higher expression is better” trend 

like effect   134 before, albeit relative weakly and inconsistently with  only 0.009 (for the R-CHOP training 

set). Hence, it was no candidate as primary predictor variable with respect to   10 . Interestingly, after  
134 has been added to the Cox model,   127 is able to explain much of the observed survival on top of that 

with   5.6 ⋅ 10 (likelihood ratio test) and with anti-aligned survival trend (  0 and   0). Only a 

multivariate survival analysis can reveal such dependencies. 

To elucidate this hierarchical survival dependency, I partition R-CHOP treated patients by their expression 

of   134 into negative log(hazard	ratios) (i.e. lower risk and relatively favorable outcome) and positive 

log(hazard	ratios) (i.e. higher risk and relatively adverse outcome). Then the explanatory value of adding  
127 to the model is separately quantified for each risk partition by   134. Again   127 conveys significant 

explanatory value for the lower risk partition, even with   1.0 ⋅ 10 despite the reduced sample set (this is 

better than   5.6 ⋅ 10 before for the full R-CHOP training set). On the other hand, it is not significant for the 

higher risk partition (  0.15). This indicates that   134 can partition patients cleanly into two biologically 

distinct phenotypes. 

Fitting a univariate Cox model based only on   127 to the lower risk partition of   134 results in  

  0.59 (  1.9 ⋅ 10); applying this predictor to both partitions visualizes the one-sidedness of this 

effect(Figure III.2.2.3.a). 

 R-CHOP & higher risk by     R-CHOP & lower risk by     

 
Figure III.2.2.3.a) Univariate predictor based on  127 applied to risk partitions of  134 

Survival predictions for 408 R-CHOP-treated patients in the higher risk partition of   134  and for 282 R-CHOP-treated patients in the lower risk partition of   134. 
Chosen split points to present the survival spread in three risk intervals equal  log(hazard	ratios	of	150% . 
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For a better comparability with previously defined subtypes in DLBCL, I also applied the univariate   127 

predictor separately to ABC DLBCL and GCB DLBCL subsets of all R-CHOP treated patients(Figure III.2.2.3.b). Here, 

GCB DLBCL roughly corresponds to the lower risk partition of   134. 

 R-CHOP & ABC DLBCL R-CHOP & GCB DLBCL 

 
Figure III.2.2.3.b) Univariate predictor based on 127 separately applied to GCB DLBCL and ABC DLBCL 

Survival predictions for 288 R-CHOP-treated patients classified as ABC DLBCL and for 327 R-CHOP-treated patients classified as GCB DLBCL. Again, chosen split 
points to present the survival spread in three risk intervals equal  log(hazard	ratios	of	150%.  

As expected, effect   127 can explain significantly different survival within GCB DLBCL, while it does not 

have any significant additional explanatory value for the ABC DLBCL subtype. 

 

 

 

 

 

 

 

III.2.2.4 Predictions within risk partitions of   134 

Knowing that   127 only applies to one class of patients and that it displays an opposite survival trend 

relative to the primary effect, it might further increase predictive performance when applying the bivariate 

predictor separately to these primary classes. (Otherwise expressions of   127 for patients in the higher risk 

partition of   134 might wash out their predicted log(hazard	ratios).) Partitioning by   134 does not make 

the primary predictor variable completely superfluous, because it is still able to predict some survival 

dependencies within each partition (a binary partitioning cannot capture its full explanatory value). Still, 

remaining survival dependencies on   134 are weaker after partitioning, and sample counts in the low risk 

predictor interval for the high risk partition of   134 as well as in the high risk predictor interval for the low 

risk partition of   134 are thinned out. 
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 CHOP & higher risk by     CHOP & lower risk by     

 
 R-CHOP & higher risk by     R-CHOP & lower risk by     

 
Figure III.2.2.4) Bivariate predictor  ∈ 134,127 , predictor performance within risk partitions of   134 

Survival predictions for higher and lower risk partitions of   134, separately for R-CHOP and CHOP cohorts. Chosen split points to present the survival spread in 
three risk intervals equal  log(hazard	ratios	of	150%. 

Significant survival dependencies remain within both partitions, but most show only a weak spread. In the 

lower risk partition of   134 for R-CHOP therapy however, a subset of DLBCL patients with significantly 

adverse outcome because of their expression of effect   127 exists, despite showing relatively low risk based 

on   134 alone.  

This is not clearly reflected following CHOP therapy, which is consistent with univariate survival analyses in 

GCB DLBCL for   127 in individual cohorts. They neither showed significance for the former standard CHOP 

therapy, but were significant in both R-CHOP treated cohorts(cf. III.3.3.2). 
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III.2.2.5 Predictions within ABC DLBCL and GCB DLBCL subtypes 

For a better comparability with previously defined subtypes, the bivariate predictor is also applied 

separately to ABC DLBCL and GCB DLBCL. ABC DLBCL roughly corresponds to the higher risk partition of  134 and GCB DLBCL to its lower risk partition. 

 CHOP & ABC DLBCL CHOP & GCB DLBCL 

 

 R-CHOP & ABC DLBCL R-CHOP & GCB DLBCL 

 
Figure III.2.2.5) Bivariate predictor  ∈ 134,127, performance in subtypes ABC DLBCL and GCB DLBCL 

Survival predictions for ABC DLBCL and GCB DLBCL, separately for R-CHOP and CHOP cohorts. Chosen split points to present the survival spread in three risk 
intervals again equal  log(hazard	ratios	of	150%. 

While a strong survival dependency in R-CHOP treated GCB DLBCL exists again, survival prediction tends to 

be more consistent for risk partitions of   134(cf. Figure III.2.2.4) (for example, it displays a wider survival spread 

compared to R-CHOP & GCB DLBCL and reached significance between neighboring risk intervals when 

comparing to R-CHOP & ABC DLBCL). 
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III.2.3 Bivariate Model for the COO Induced Effect 
For a comparison, the bivariate analysis(III.2.2) is repeated, this time excluding the top GEP effect   134 as 

primary explanatory factor. In this case, the rediscovered COO induced effect   129(cf. III.3.2.2) is selected. Again, 

one secondary effect qualifies and no tertiary, using progression events from GSE10846.R-CHOP and 

GSE31312.R-CHOP as training base. 

This alternative bivariate survival model can also explain significant portions of observed patient outcome. 

However, both models are based on genetically only partially correlated GEP effects. This ambiguity 

demonstrates that survival dependencies can only be used to filter out unassociated GEP effects, but several 

equally valid GEP effects remain for explanation. In principle, all these effects could contain genes and represent 

pathways that might impact outcome differences following current therapy and for the molecular 

pathogenesis of DLBCL. Survival data alone cannot exclusively pinpoint a single GEP effect that is causal for 

certain. This also implies that the COO induced effect is just one among many(also see Figure III.2.5.1.a). 

Unlike before, the best secondary survival effect for the alternate model is shown to affect both GCB DLBCL 

and ABC DLBCL. This might indicate that the primary COO induced effect is not able to separate patients into 

biologically distinct survival subtypes as clear as effect   134. 

III.2.3.1 Selection of validated GEP effects as predictors 

Again, centered age is prescribed as initial factor in the Cox model to prevent advantages for GEP effects that 

are related to patient age by accident. As   134 is excluded,   129 with   1.8 ⋅ 10 is selected as primary 

explanatory GEP effect(cf. Figure III.2.2.1.a). 

Only three effects(Figure III.2.3.1) show additional significant explanatory value and thereby qualify as secondary 

predictor variable: 

 

Figure III.2.3.1) Selection of the best secondary GEP effect for survival prediction based on all 690 available samples from R-CHOP-treated patients 

Three GEP effects can explain significant additional survival dependencies ( value  10 , likelihood ratio test). The matrix shows whether they are genetically 
associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 

The first two effects are dominated by different single genes,   105 by KIAA1217 and   96 by FCRL5. 

Consequently, their consensus gene scores are perpendicular to each other with (;)  0.03(cf. Eqn. III.1.3.2.b) 

and to the multi-gene effect   134.  
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Even after explaining survival by the COO induced effect   129, survival effect   134 can still explain 

significant additional survival dependencies with   1.2 ⋅ 10 (rank #3). This was not the case vice 

versa(cf. Figure III.2.2.1.b). This difference in predictive capabilities is even more pronounced when learning with all 

samples, rather than only with samples from R-CHOP-treated patients(cf. III.2.5.1). Effect   127, i.e. the secondary 

explanatory variable for the primary bivariate model(cf. III.2.2.2), follows at rank #5 with   4.65 ⋅ 10, i.e. just 

over the prescribed error threshold of   10 . 

Effects that are dominated by single gene effects have the advantage of being very specific and the 

disadvantage of not having the support of a broad co-regulated genetic network. Still, as validated GEP effects 

they do not represent only noise, as there are several independently measured and correlated probesets 

pointing to the same gene; furthermore both   105 and   96 were unsupervisedly discovered in two 

independent cohorts.  

Consistently applying the selection procedure, I select the most explanatory effect for the model. However, 

in terms of  values both single gene effects provide nearly equal additional explanatory value here, i.e. they 

are practically both equally valid. 

None of the 135 validated GEP effects qualifies for addition as tertiary predictor variable on top of  ∈
129, 105 for the R-CHOP-treated training set (error threshold   10). 

 

 

 

 

 

III.2.3.2 Fit results, prediction performance and validation 

Taken together, this procedure selects two 

validated GEP effects  ∈ 129, 105 that can 

explain survival independently and on top of age. 

Fitting a bivariate Cox proportional hazard model 

() ⋅ exp∑ ∈,  for described sample 

scores(III.2.1.3) results in final statistics for the two 

selected GEP effects(Table III.2.3.2). 

Comparison with final fit statistics for 

 ∈ 134, 127(Table III.2.2.2) already shows that the COO 

based predictor has larger  values and can only predict weaker survival dependencies (lower ). To 

visualize this, again Kaplan-Meier survival estimates for risk intervals based on predicted log(hazard	ratios) are 

used(Figure III.2.3.2). 

The survival spread following R-CHOP reaches from 45% to 92% (  3.1 ⋅ 10, log rank test, 84+82 

patients) and from 21% to 58% in the CHOP validation set (  0.001, log rank test, 28+33 patients). Though 

still significant, both survival spreads are more narrow compared to before and prediction is less 

homogeneous for the inner risk intervals(compare Figure III.2.2.2). However, the top R-CHOP curve has a bit higher 

average survival compared to before (92.5% instead of 89%; not significant). 

GEP effect   129   105 

  0.525 -0.321 

Hazard ratios [0.59, 1.69] [0.73, 1.38] 

 values 2.1 ⋅ 10  3.0 ⋅ 10 

links to evaluation III.3.2.2 III.3.3.3 

Table III.2.3.2) Bivariate Cox model  ∈ 129,105 , R-CHOP training set 

  denote fitted Cox coefficients of the log(hazard	ratios) for the explanatory 
variables  ∈ 129,105 . Hazard ratio intervals equal exp  , exp . They 
are useful for a comparison of the relative impact on survival explained by different 
GEP effects. Cox  values are for individual GEP effects in the final model (not directly 
comparable to likelihood ratio based  values for effect selection). 
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 R-CHOP CHOP 

 
Figure III.2.3.2) Bivariate predictor  ∈ 129, 105, performance in the R-CHOP training set and generalization to the CHOP validation set 

Survival predictions for 690 R-CHOP-treated patients (left, training set) and 257 CHOP-treated patients (right, validation set). Chosen split points to present the 
survival spread in five risk intervals equal multiples -1.5, -0.5, 0.5 and 1.5 of a loghazard ratio of 150%. 

 

III.2.3.3 Subtype-specific analysis of   105 

To investigate whether   105 only influences one risk partition of   129 in a hierarchical fashion (like 

  127 did before(III.2.2.3) with respect to   134), I trained another univariate predictor for   105 based on 

R-CHOP-treated patients from the lower risk partition of   129 (i.e. predominantly based on GCB DLBCL 

samples). This resulted in   9.7 ⋅ 10 and rank #12 for   105 only. Training with the higher risk partition 

resulted still in rank#1 for   105, but only   1.6 ⋅ 10. This is a weaker association than when training 

with the full R-CHOP set (  4.5 ⋅ 10). In contrast, significance for effect   127 increased when fitting in 

the lower risk partition with respect to   134, despite the reduction in sample size. 

Hence, no clear-cut hierarchical survival dependency as seen for risk partitions of   134(cf. III.2.2.3) does exist 

here and outcome for both ABC DLBCL and GCB DLBCL depends on the selected secondary predictor variable 

  105. With the assumption that patients from the same true biological phenotype show identical survival 

dependencies over their average gene expressions, this result is another indication besides lower  values that 

the predictor based on  ∈ 134, 127(III.2.2) is a more natural fit of survival data and for subtypes within DLBCL 

compared to predictors based on the COO classification 

Still, as   105 is a highly specific effect based exclusively on KIAA1217 and as it can reveal a significant 

survival dependency on top of the standard COO induced effect, it will also be evaluated in detail(cf. III.3.3.3). 
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III.2.4 Bivariate Model for CHOP 
So far, fitted models were trained with samples from R-CHOP treated patients. Alternatively, samples from 

patients treated with the former standard CHOP therapy can be utilized. Again two effects iteratively qualify 

as significant explanatory variables with respect to   10 . While GEP effects selected as primary 

explanatory variables before are still in the front ranks for the CHOP training set as well, genetically distinct 

effects have higher explanatory value here.  

As all GEP measurements occurred before treatment, it can be assumed that they are similar to the R-CHOP-

treated cohorts. Hence, differences in explanatory value of GEP effects are probably caused by the 

retrospective follow-up information. This indicates that Rituximab did not increase survival uniformly for all 

DLBCL patients. It also shows again that several genetically distinct GEP effects exist that all may contain genes 

that are causal for the disease or maybe important to understand its consequences, for example for the tumor 

microenvironment. 

III.2.4.1 Selection of validated GEP effects as predictors 

Again, centered age is prescribed as initial factor in the Cox model to prevent advantages for GEP effects that 

are related to patient age by accident. While previously selected primary effects   134 and   129 can also 

explain CHOP survival significantly with   1.3 ⋅ 10 respectively   7.6 ⋅ 10, a group of four genetically 

highly correlated GEP effects occupies the top ranks, with   5 in the lead (  2.2 ⋅ 10): 

 

Figure III.2.4.1.a) Selection of the best primary GEP effect for survival prediction based on all 257 available samples from CHOP-treated patients 

In total 13 GEP effects can explain significant survival dependencies on top of patient age ( value  10 , likelihood ratio test). The matrix shows whether they are 
genetically associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 

Effect   5 is interesting, because it contains many genes with strongly differential signal and is detected at 

rank one in all three cohorts with frozen cell material and at rank two in the FFPE cohort; its biostatistical 

evaluation revealed(III.3.3.5) that it is significantly related to the extracellular matrix and collagen biosynthesis. 

However, this may also indicate that it is no direct measure of expressions of DLBCL cells. 
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Only two more GEP effects qualify as secondary explanatory variable for patient outcome following CHOP 

therapy after incorporating   5 in the model: 

 
Figure III.2.4.1.b) Selection of the best secondary GEP effect for survival prediction based on all 257 available samples from CHOP-treated patients 

Two GEP effects can explain significant additional survival dependencies ( value  10 , likelihood ratio test). The matrix shows whether they are genetically 
associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 

The primary effect in the best-performing predictor model for R-CHOP (  134) is still significant for CHOP 

treated patients on top of effect   5 (on rank #2 with   7.1 ⋅ 10); this is another indirect validation of  
134. In contrast, the COO induced effect   129 cannot explain any significant additional survival 

dependencies here (  0.025 and rank #32 only). 

Effect   44(III.3.3.5) provides only slightly better explanatory value (with   2.5 ⋅ 10) compared to   134. 

Sticking to the selection procedure, it becomes the secondary explanatory variable here. 

After incorporating   44 into the model, no tertiary effect qualifies for this CHOP based predictor. 

 

 

 

 

 

III.2.4.2 Fit results, prediction performance and validation 

Taken together, two validated GEP effects  ∈
5, 44 were selected that can explain CHOP 

survival independently and on top of age. Fitting 

a bivariate Cox proportional hazard model () ⋅
exp∑ ∈,   for described sample 

scores(III.2.1.3) results in final statistics for the two 

selected GEP effects(Table III.2.4.2). 

For visualization, again Kaplan-Meier survival 

estimates for risk intervals based on predicted 

GEP effect   5   44 

  -0.723 0.475 

Hazard ratios [0.48, 2.07] [0.62, 1.61] 

 values 9.0 ⋅ 10  2.6 ⋅ 10 

links to evaluation III.3.3.4 III.3.3.5 

Table III.2.4.2) Bivariate Cox model  ∈ 5,44 , CHOP training set 

  are the fitted Cox coefficients of the log(hazard	ratios) for the explanatory 
variables  ∈ 5,44 . Hazard ratio intervals equal exp  , exp. They are 
useful for a comparison of the relative impact on survival explained by different GEP 
effects. Cox  values are for individual GEP effects in the final model (not directly 
comparable to likelihood ratio based  values for effect selection). 
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loghazard	ratios are used. They show(Figure III.2.4.2) a spread from 17% to 63% (  2.2 ⋅ 10, log rank test, 53+46 

patients) of predicted survival in the CHOP training set and from 38% to 77% in the R-CHOP validation set 

(  8.3 ⋅ 10, log rank test, 106+106 patients): 

 CHOP R-CHOP 

 
Figure III.2.4.2) Bivariate predictor  ∈ 5,44; performance in the CHOP training set and its generalization to the R-CHOP validation set 

Survival predictions for 257 CHOP-treated patients (left, training set) and 690 R-CHOP-treated patients (right, validation set). Chosen split points to present the 
survival spread in five risk intervals again equal multiples -1.5, -0.5, 0.5 and 1.5 of a log(hazard	ratio	of	150%). 

The CHOP-trained predictor clearly validates for samples from R-CHOP treated patients. The highest risk 

interval containing 106 patients is strongly separated in the R-CHOP validation cohort (  1.6 ⋅ 10 to the 

neighboring lower risk interval). However, survival of most R-CHOP treated patients cannot be resolved as 

homogeneously by the CHOP-trained predictor as by the best R-CHOP trained predictor(cf. Figure III.2.2.2). The 

survival spread in the CHOP training cohort is even slightly lower compared to the predicted spread for the 

same patients by the best-performing R-CHOP-trained predictor (for identical risk intervals). 

Taken together, the best R-CHOP trained predictor(III.2.2) works approximately as well for CHOP as the CHOP-

trained predictor, but is more powerful and resolves survival more homogeneously for the current standard 

therapy. While significant GEP effects that qualified for the CHOP predictor may also contribute insightful 

information about molecular causes of DLBCL, the R-CHOP trained model should be preferred for predictive 

purposes. In part, this could be expected, as the R-CHOP training set consists of 690 events opposed to only 

257 available events for CHOP-treated patients. 

 

III.2.4.3 Hierarchical survival analysis of   44 

Partitioning CHOP-treated patients by the selected primary predictor variable   5 (at baseline 

eigensignal), shows that effect   44 can only predict significant additional survival dependencies for the high 

risk partition of   5 (still at rank #1 with   1.24 ⋅ 10), while for the lower risk partition of   5 it only 

ranks #12th with   0.024. 
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Similar to analyzing   127 in context of   134(cf. Figure III.2.2.3.a), this hierarchical survival dependency can be 

visualized by Kaplan Meier survival estimates for risk intervals of effect   44 in risk partitions by   5. This 

also confirms the hierarchical survival dependency in the R-CHOP validation set(Figure III.2.4.3).  

Counting patients outside of the respective baseline risk interval, approximately 36/131≈27% of CHOP-

treated and 98/384≈26% of R-CHOP-treated patients in the high risk partition of   5 seem to be influenced 

by this hierarchical effect: 

 CHOP & higher risk by     CHOP & lower risk by     

 
 R-CHOP & higher risk by     R-CHOP & lower risk by     

 
Figure III.2.4.3) Univariate predictor based on   44 applied to risk partitions of  5 

For CHOP-treated patients (upper panels), survival predictions show a dependency that exclusively exists in the higher risk partition of effect 5. This is confirmed 
in the R-CHOP-treated validation set (lower panel). 
Chosen split points to present the survival spread in three risk intervals equal  log(hazard	ratios	of	150% . 
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III.2.4.4 Subtype-specific analysis of   44 

The majority of patients in the higher risk partition of   5 are classified as ABC DLBCL. Hence the same 

hierarchical survival dependency might still exist when applying the univariate predictor based on   44 to 

DLBCL subtypes separately.  

While the trend is still noticeable(Figure III.2.4.4), survival differences are washed out. Hence,   44 probably does 

not stand in a biological hierarchical relation to the COO induced effect, but only to effect   5. 

 CHOP & ABC DLBCL CHOP & GCB DLBCL 

 
 R-CHOP & ABC DLBCL R-CHOP & GCB DLBCL 

 
Figure III.2.4.4) Univariate predictor based on   44 applied to DLBCL subtypes 

The hierarchical survival dependency(cf. III.2.4.3) is still visible when splitting by subtypes, because ABC DLBCL patients are overrepresented in the higher risk partition 
of 5; however, it is washed out. Chosen split points to present the survival spread in three risk intervals again equal  loghazard	ratios	of	150% . 
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III.2.5 Quinvariate Model for All Samples 
To extract the maximum information from available data, a Cox model is trained now with all available 

samples. For the same significance threshold   10 , five genetically independent GEP effects qualify for 

selection and can explain different dependencies of observed patient outcome. The resulting quinvariate 

model for survival prediction is validated by leave-one-out validation. 

The model confirms the predictive advantage of   134 (rank #1 as primary factor,   4.5 ⋅ 10) over the 

COO induced effect (  129, rank #2 as primary factor,   1.1 ⋅ 10).  

Prediction performance based on leave-one-out validation shows a homogeneous spread from 29% to 89% 

average survival(cf. Figure III.2.5.3.b). Comparison with outcome differences predicted by standard DLBCL 

subtypes(III.2.1.8) shows an obvious and strong increase in predicted survival spreads, both for CHOP and R-

CHOP therapy. Significant survival differences are also predicted within standard subtypes(cf. Figure III.2.5.6) and 

within risk partitions of the primary survival effect   134(cf. Figure III.2.5.7). Additionally, significantly different 

survival within risk classes by international prognostic index(cf. Figure III.2.5.8) is predicted. 

Together, these results indicate that GEP effects selected as predictor variables in the quinvariate model 

probably contain novel and not yet molecularly understood mechanisms with significant impact on DLBCL 

patient outcome and that known standard DLBCL subtypes are intrinsically heterogeneous. Therefore, all 

selected GEP effects will be biostatistically evaluated in III.3.3. 

 

III.2.5.1 Selection of validated GEP effects as predictors 

To prevent selection advantages for GEP effects that are accidentally associated with DLBCL-unspecific 

factors, centered age is prescribed as first predictor variable again; it explains survival dependencies with  
5.5 ⋅ 10 over all patients. Additionally and as two cohorts were treated with the former standard CHOP 

chemotherapy, therapy is prescribed as second predictor variable (  4.1 ⋅ 10 over all patients). This also 

prevents finding GEP effects that are accidently associated with the type of follow-up event. 

For   10 , 21 GEP effects show(Figure III.2.5.1.a) significant additional explanatory value. Like for the best-

performing bivariate predictor that was only trained with R-CHOP events(III.2.2), effect   134(III.3.3.1) is again the 

most explanatory variable for observed patient outcome (  4.5 ⋅ 10). On rank #2 and with a distance, the 

well-known COO induced effect(III.3.2.2) follows (  1.1 ⋅ 10). The top effect for the CHOP-trained bivariate 

model (  5) follows at rank #3 (  2.6 ⋅ 10). Other effects already seen during factor selection for CHOP-

trained(Figure III.2.4.1.a) and R-CHOP-trained(Figure III.2.2.1.a) models follow, plus some effects that have not been 

revealed when learning with a reduced sample base. 

It should be stressed again that all these unsupervisedly detected GEP effects are hereby validated on 

survival level, i.e. in principle all of them could contain genes that are causal for the disease, not just the 

strongest ones selected for the predictor model. 
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With   134 as primary explanatory variable in the predictor, 16 GEP effects can provide significant 

explanatory value on top of that(Figure III.2.5.1.b). As before(Figure III.2.2.1.b), the COO induced effect   129 is no longer 

significant as secondary factor (  5.3 ⋅ 10 and rank #35 only), as   134 can already explain most survival 

dependencies explained by it. Vice versa, if   129 was selected as primary factor here (not plotted),   134 

would still be significant as secondary explanatory variable (with   1.4 ⋅ 10  on rank #2), again 

demonstrating that it is the more natural choice as primary DLBCL survival effect. 

 
Figure III.2.5.1.b) Selection of the secondary GEP effect for survival prediction based on all 947 available events 

Training with all samples, 16 validated GEP effects can explain significant additional survival dependencies ( value  10 , likelihood ratio test). The matrix shows 
whether they are genetically associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 

 
Figure III.2.5.1.a) Selection of the primary GEP effect for survival prediction based on all 947 available events 

In total, 21 GEP effects can explain significant survival dependencies on top of age and therapy ( value  10 , likelihood ratio test). The matrix shows whether they 
are genetically associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 
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As for the R-CHOP-based model(Figure III.2.2.1.b), the genetically correlated effects   131 and   127 occupy 

ranks #1 and #2 for the secondary explanatory variable, but this time   131 is slightly in the lead (  1.6 ⋅
10 instead of   2.0 ⋅ 10). The correlation of their consensus gene scores equals (;)  0.80(cf. Eqn. 

III.1.3.2.b), i.e.   127 and   131 are genetically similar and also share many top genes like IRF4 and BATF, as 

they are based on the same discovered effect in one of the four DLBCL cohorts. Consistently applying the 

selection procedure,   131 becomes the secondary explanatory variable for the predictor trained with all 

samples. 

Like before, two effects can explain the strongest survival trends. However, using all samples as learning set 

has the power to reveal some additional genetically independent effects with significant explanatory value, 

albeit their influence on survival is not as strong as for the first two variables. Probably they play a role only 

relatively small patient subsets. The best tertiary explanatory variable is the quad-discovered effect   19 

(with   7.5 ⋅ 10). Effect   75 follows at rank #2 (with   9.1 ⋅ 10): 

 
Figure III.2.5.1.c) Selection of the tertiary GEP effect for survival prediction based on all 947 available events 

Shown are two validated GEP effects with a p value  10 (likelihood ratio test) for their additional explanatory value of observed patient outcome. Again, the 
matrix shows whether they are genetically associated with each other (correlations of their consensus gene scores; cf. III.1.3.2). 

 

In selection iteration four,   75 is still significant and now at rank #1 (with   3.6 ⋅ 10). This indicates 

that it explains different survival dependencies compared to the last selected effect   19; otherwise, it would 

no longer be significant. The  value for   75 even decreases a bit after adding   19 to the model (this can 

happen if already selected effects can stratify samples in a way such that additional independent survival 

dependencies are revealed, as has been seen(III.2.2.1) for   127 on top of   134). 

In selection iteration five, another quad-discovered effect qualifies (  3 with   2.5 ⋅ 10). 

After selecting it, no more GEP effect can convey any additional significant explanation of observed patient 

outcome (relative to the chosen significance threshold of   10). 

 

III.2.5.2 Fit results 

Taken together, the selection procedure yields five validated GEP effects  ∈ 134, 131, 19, 75, 3 that can 

explain survival independently and on top of DLBCL-unspecific factors age and therapy. All of them will be 
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biostatistically evaluated and genetically discussed in detail(III.3.3). Fitting a Cox proportional hazard model 

 ⋅ exp∑ ∈,,,,  with all five selected effects for described sample scores(III.2.1.3) results in the 

following final statistics: 
GEP effect   134   131   19   75   3 

  -0.739 0.421 -0.287 0.232 0.257 

Hazard ratios [0.48, 2.09] [0.65, 1.52] [0.75, 1.33] [0.79, 1.26] [0.77, 1.29] 

 values 2.8 ⋅ 10 1.1 ⋅ 10  2.5 ⋅ 10 9.1 ⋅ 10 6.3 ⋅ 10 

link to evaluation  III.3.3.1 III.3.3.2 III.3.3.6 III.3.3.7 III.3.3.8 

Table III.2.5.2) Quinvariate Cox model, final statistics for the complete training set based on available samples and follow-up data for all DLBCL patients 

  are the fitted Cox coefficients of the log(hazard	ratios) for the five explanatory variables. Hazard ratio intervals equal exp , exp . They are useful for 
a comparison of the relative impact on survival explained by different GEP effects. Cox  values are for individual GEP effects in the final model (not directly 
comparable to likelihood ratio based  values for effect selection). 

Like before(Table III.2.2.2), the first two effects are associated with opposing survival trends, as sign 
sign. As consensus gene scores of effects   131 and   127 are strongly correlated ((;)  0.80), 

effect   131 stands in a similar hierarchical context(cf. III.2.2.3) to   134. Signs of   are also different for other 

variates and further hierarchical dependencies might exist (for example, effects  ∈ 19, 75, 3 might only affect 

some 2D risk partitions by both   134 and   131). One additional hierarchical dependency of   3 in 

partitions by  ∈ 19, 75 is illuminated in III.3.3.8. 

 

III.2.5.3 Leave-one-out cross-validation and predictor performance 

As the model has been trained using all available samples, no validation set remains. Therefore, leave-one-

out cross-validation is employed to test the predictive performance of the quinvariate model. 

For the five selected GEP effects, I fit   1 … 947 models of type  ⋅ exp∑ ∈,,,, , based on 

946 samples each. For example ,  are eigensignal strengths in effect   134 for all patients   2 … 947, 

except for the first one. Each fit is then used to predict the log(hazard	ratio) for the left-out sample only. I.e. for 

  1 the prediction reads ∑ ∈,,,,  , where   are the fitted coefficients without using   1 and 

  are the eigensignal strengths in all five GEP effects for the left-out patient   1. 

Taken together, this procedure results in predictions for every sample, but never uses a particular sample for 

its own prediction. Resulting distributions of   over all 947 fits are tight, which already indicates an effective 

generalization performance: 

 

Figure III.2.5.3.a) Distributions of   over all 947 leave-one-out fits 
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To test and quantify predictive performance, seven risk intervals based on predicted loghazard	ratios from 

leave-one-out validation have been visualized by Kaplan-Meier survival estimates and compared via log rank 

tests. Resulting survival curves(Figure III.2.5.3.b) show that it is possible to predict a survival spread from approxi-

mately 29% to 89% with the quinvariate model and to resolve survival homogeneously in-between. Log rank 

test  values in the legend compare all seven risk intervals to each other; top and bottom risk intervals are 

highly separate with ,  9.1 ⋅ 10 , thoroughly validating the predictive performance of the quinvariate 

GEP based predictor. 

As samples originate from four independent patient cohorts, it is also safe to assume that no systematic 

survival bias can exist that is specific only to all four analyzed DLBCL cohorts, but not to DLBCL in general. 

Hence, this leave-one-out-validated quinvariate predictor shows a generalization performance that is very 

promising for its application to future DLBCL cohorts. 

all samples 

 

Figure III.2.5.3.b) Quinvariate predictor performance for all 947 DLBCL samples based on leave-one-out validation 

Leave-one-out survival predictions for all available 947 available patients using the quinvariate model. Chosen split points to present the survival spread in seven risk 
intervals equal multiples -2.5, -1, -0.5, 0.5, 1 and 2.5 of a log(hazard	ratio	of	150%).  
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III.2.5.4 Predictions within CHOP and R-CHOP subsets 

To double-check that the predictor does not just predict survival differences because of therapy, and to show 

that it is applicable to both CHOP- and R-CHOP-treated patients as well as to both overall and progression-free 

survival, I also applied it separately to the CHOP- and R-CHOP-treated cohorts(Figure III.2.5.4). Clearly, predicted 

outcome for patients is significantly different again; top and bottom survival curves are separated with , 
1.1 ⋅ 10 for 257 CHOP-treated patients and ,  6.3 ⋅ 10  for 690 R-CHOP-treated patients, respectively. 

Comparing this result with survival dependencies predicted by standard subtypes(III.2.1.8) shows an obvious 

and strong increase in predicted survival spreads, both for CHOP and R-CHOP. (This could in part be expected, 

as subtype classification is based on just one relatively heterogeneous GEP effect(see e.g. [29].figure 3 for GSE31312), rather 

than being based on five genetically distinct correlation-based effects.) 

 CHOP R-CHOP 

 

Figure III.2.5.4) Quinvariate predictor performance for all CHOP-treated and R-CHOP-treated cohorts 

Quinvariate leave-one-out survival predictions for 257 CHOP-treated patients (left) and 690 R-CHOP-treated patients (right). Chosen split points to present the 
survival spread in five risk intervals equal multiples -1.5, -0.5, 0.5 and 1.5 of a loghazard ratio of 150%).  
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III.2.5.5 Prediction performance for FFPE and frozen cell material 

Interestingly, the survival spread between ABC DLBCL and GCB DLBCL was considerably lower for 

GSE31312 as for GSE10826 when comparing both R-CHOP treated cohorts(cf. Figure III.2.1.8).  

One difference between these cohorts is that GSE31312 is based on FFPE samples (rather than based on 

fresh frozen cell material). Hence, it is conceivable that this difference might cause that the standard 

classification into subtypes is less strongly associated with outcome in GSE31312. However, this is probably 

not the case, because survival spreads between top and bottom risk intervals that were predicted by the 

quinvariate model are very similar for both R-CHOP treated cohorts(Figure III.2.5.5). This might indicate that 

GSE10846-based gene signatures that are currently used for subtype classification(cf. Figure III.3.2.2.c) are too cohort-

specific do not generalize well, making subtype classifications difficult to reproduce for new DLBCL cohorts(also 

read III.3.2.2), irrespective of their underlying cell material. 

 GSE10846.R-CHOP GSE31312.R-CHOP 

  
Figure III.2.5.5) Quinvariate predictor performance, separately for frozen cell material and FFPE based R-CHOP cohorts 

Quinvariate leave-one-out survival predictions for 220 patients from GSE10846.R-CHOP (frozen cell material, left) and 470 patients from GSE31312.R-CHOP (FFPE, 
right). Chosen split points to present the survival spread in three risk intervals equal log(hazard ratios of 133%). 
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III.2.5.6 Predictions within ABC DLBCL and GCB DLBCL 

To demonstrate that the quinvariate predictor indeed reveals survival dependencies beyond those already 

known by standard subtype classification, I also applied it separately to ABC DLBCL samples and GCB DLBCL 

samples(Figure III.2.5.6). As expected, sample counts in risk intervals with negative loghazard	ratios) are thinned out 

for ABC DLBCL and sample counts in risk intervals with positive loghazard	ratios) are thinned out for GCB 

DLBCL, reflecting the known difference in average subtype survival. Still, significant survival dependencies 

remain on top of this, for both ABC DLBCL and GCB DLBCL and within both CHOP and R-CHOP treated cohorts: 

 CHOP & ABC DLBCL CHOP & GCB DLBCL 

 
 

 R-CHOP & ABC DLBCL R-CHOP & GCB DLBCL 

 
Figure III.2.5.6) Quinvariate model, predicted survival dependencies within standard ABC- and GCB-like DLBCL subtypes 

Quinvariate leave-one-out survival predictions shown separately for standard DLBCL subtypes and for CHOP and R-CHOP therapies.  
Chosen split points to present the survival spread in three risk intervals equal loghazard	ratios	of	150%). 
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III.2.5.7 Predictions within risk partitions of   134 

Effect   127 and hence its genetically highly correlated partner effect   131 influence survival 

hierarchically(III.2.2.3), i.e. it only affect patients in the lower risk partition of the primary effect. For this reason 

and as before(cf. III.2.2.4), predictions are additionally analyzed for each risk partition of   134 separately(Figure 

III.2.5.7) rather than for all samples simultaneously. 

The lower risk partition of   134 roughly corresponds to GCB DLBCL and its higher risk partition roughly 

corresponds to ABC DLBCL, but no samples are excluded as “unclassified” by partitioning at zero effect 

eigensignal(cf. III.2.1.3). Similar to splitting into standard subtypes(Figure III.2.5.6) and as expected by average survival, 

 CHOP & higher risk by     CHOP & lower risk by     

 

 R-CHOP & higher risk by     R-CHOP & lower risk by     

 
Figure III.2.5.7) Quinvariate model, predicted survival differences within risk partitions of   134 

Quinvariate leave-one-out survival predictions shown separately for risk partitions of 134 and for CHOP and R-CHOP therapies. Chosen split points to present the 
survival spread in three risk intervals equal log(hazard	ratios	of	150%). 
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samples in lower risk predictor intervals are thinned out in the higher risk partition of   134 and samples in 

higher risk predictor intervals are thinned out in its lower risk partition. 

As with the bivariate model(III.2.2.4, III.2.2.5), splitting into risk partitions of   134 allows for a cleaner separation 

by survival with lower  values compared to splitting into standard subtypes(Figure III.2.5.6), despite including all 

unclassified samples that usually have average outcome and wash out predicted survival spreads. For 

example, the two lower risk intervals for ABC DLBCL in R-CHOP are separated only with   0.019 only, but 

corresponding survival curves in the higher risk partition of   134 are already separated by   4.5 ⋅ 10 . 

This is consistent with other indications that partitioning by   134 seems to be the more natural choice for 

identification of DLBCL subtypes. This is especially interesting, because the GEP effect   134 is genetically 

rather distinct from the rediscovered COO induced effect   129 and it may point to genes that are potentially 

causal to the disease, but so far biologically unexplored in DLBCL context(cf. III.3.3.1). 

 

 

 

 

 

 

 

III.2.5.8 Predictions within risk classes by International Prognostic Index 

The international prognostic index[100] (IPI) summarizes macroscopic clinical data for survival prediction. In 

brief, the IPI score for a patient is the sum of following general conditions: IPI  age  60 Ann	Arbor	stage  3)  LDH	ratio  1)  #	extranodal	sites  2)  ECOG	performance	score  2. It can also 

predict a strong survival spread, but it cannot give any hints to molecular causes of the disease, nor could it 

robustly recommend therapies, once therapies that are specific for molecular subtypes exist. Still, for clinical 

relevance of predictors it is important to know, whether molecular effects can predict significant survival 

differences within IPI risk classes. Clinical data for IPI scores were available for the majority of patients in both 

R-CHOP cohorts and I applied the quinvariate predictor separately to risk classes determined by IPI 

scores(Figure III.2.5.8). 

As expected, a general trend can be observed that higher IPI risk classes show lower average survival and 

hence have more patients in high risk intervals of the molecular predictor. As not all patients have IPI 

annotations and due to splitting into four risk classes, remaining numbers are not very high. This is probably 

the major reason, why some neighboring curves do not show significant survival differences. However, 

survival trends are consistent with predicted molecular risks within all IPI risk classes and thus it may be 

anticipated that even neighboring curves will gain significance for future larger sample counts. 

Already now, significant differences in patient outcome between top and bottom risk intervals can be 

molecularly predicted within each IPI risk class. This demonstrates that macroscopic clinical observables 

underlying the IPI score can no longer serve as surrogates for molecular prediction, as soon as different 

therapies for different molecular subtypes are clinically available. 
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 R-CHOP & low clinical risk R-CHOP & low-intermediate clinical risk 

 

 R-CHOP & high-intermediate clinical risk R-CHOP & high clinical risk 

 

Figure III.2.5.8) Quinvariate model, predicted survival differences within IPI risk classes 

163 samples from GSE10846.R-CHOP and 415 samples from GSE31312.R-CHOP having all clinical data for IPI score computation were partitioned into: a) low clinical 
risk (IPI=0 or 1) , low-intermediate clinical risk (IPI=2), high-intermediate clinical risk (IPI=3) and a high clinical risk (IPI=4 or 5). The quinvariate predictor was 
applied to each sample subset. Chosen split points to present survival spreads in three risk intervals equal  loghazard	ratios	of	150%. 
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III.3 Biostatistical Evaluation 
To decode and to model cellular pathways that might explain why top genes of discovered 

effects are highly correlated to each other, a first step is to biologically examine all validated 

GEP effects that significantly differentiate patients with Diffuse Large B-Cell Lymphoma. 

This evaluation usually consists of two collaborative parts that may be iterated: genetic 

interpretation and experimental validation by experts in molecular biology as well as bio-

statistical evaluation of detected effects and of subsequent experiments based on available 

computable genomic and clinical knowledge. 

This section presents the initial iteration of the latter. These analyses might help to identify 

disease-specific effects that are promising targets for further experimental validation in 

molecular biology. 

Selected effects are evaluated in detail based on several clinical and genomic analyses; 

similar analyses are available at  D=Interpretation for all 135 detected effects (15304 

Excel® tables and 36588 editable EPS plots). Additionally, statistical overview tables 

are provided that describe and link most plots and sub tables to quickly find files of bio-

logical interest. 

III.3.1 Analyses and Statistical Tests 
Biostatistical analysis methods have already been introduced(cf. I.3). This section briefly describes their 

application to discovered and validated GEP effects. 

III.3.1.1 Association with clinical knowledge 

Basic and nominal clinical annotations like patient gender can be associated with effects via usual 

contingency tables: Samples are sorted based on their effect eigensignal strengths ,
 (Table III.1.5) and then 

partitioned by cutting at zero. The association between resulting binary partitions and categories of nominal 

clinical covariates is quantified by   tests. 

Besides this binary partitioning, effect eigensignal strengths ,
  may alternatively be cut at  


 standard 

deviations of all samples ,
  ,

  in a cohort  . This cuts samples into three groups for each effect and is 

useful to reveal significant associations that only exist e.g. for upper effect strengths. For each validated GEP 

effect , associations of all available clinical covariates are computed for both partitioning alternatives. 

Besides for nominal covariates, the same sample partitions are used to associate effects with patient 

outcome. More precisely, Kaplan-Meier survival estimates are computed for each sample partition and log 

rank tests are used to compare these estimates(I.3.3). These survival analyses are univariate (i.e. effect-centric) 

and are useful for validation of single GEP effects by independently observed survival. They cannot reveal 

survival dependencies based on two or more effects; to analyze these dependencies, multivariate survival 

analyses have been performed(III.2). 

All associations of individual GEP effects with available clinical knowledge about samples are provided in 

graphical and tabular form at  D=Interpretation\clinical\v(effect index)\(clinical cohort name). 
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III.3.1.2 Association with genomic knowledge 

To interpret effects biologically and their DLBCL-specificity in particular, existing knowledge about their top 

genes and their function should to be systematically collected. 

In the easiest case, the same set of genes has already been discovered in other fields of biology or medicine 

and is clearly DLBCL-unspecific, for example differential expressions between different blood cells. 

Usually, effects are only roughly associated with existing genomic knowledge and it is not trivial to see a 

biological connection or an underlying pathway that links all significant associations. Hence, often further 

biological experiments asking specific questions about individual genes in model cell lines are required to 

reverse-engineer underlying pathways step by step. 

Notably, even for effects that do not have any significant association with survival, these genomic analyses 

might still help to identify parts of the molecular pathogenesis of DLBCL, as observed patient outcome is based 

on either the CHOP or R-CHOP therapy. For example, effects might represent potential attack vectors that are 

not utilized by current therapies. On the other hand, they could also be DLBCL-unspecific effects like the 

gender induced effect. 

Gene set enrichment analyses and other basic signature statistics are utilized to reveal related sets of genes 

from a combined database comprised of 13584 known gene signatures that have been discovered and studied 

in a wide range of fields in human biology and were imported from various sources(cf. I.3.1). Genes are ranked by 

the same maximally biologically informative gene scores that were selected for cross-cohort validation(III.1.3.2). 

Hence, top genes in this gene order show both a strong differential signal between patients and are highly 

correlated to other top genes of the same effect. 

Gene ontology overrepresentation analyses(I.3.2) are utilized to reveal terms in cellular components, 

molecular functions and biological processes that are significantly related to top genes of respective effects. 

For each effect, overrepresentation is tested for several gene signatures of top-correlated or of top-anti-

correlated effect genes (genes are ranked as above and then cut by their relative correlation in 10% steps). 

These genomic analyses have also been computed for all 135 validated GEP effects and are available in effect 

subfolders at  D=Interpretation\genomic. 

An example of another complementary genomic association analysis is the correlation of top effect genes to 

copy number differences measured by array comparative genomic hybridization (aCGH). This analysis is not 

part of this work, but might reveal amplifications or losses on DNA level at or around genomic loci of effect top 

genes. Ideally, this could identify oncogenes respectively tumor suppressor genes that are the key regulators 

of validated GEP effects. 
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III.3.2 Effects Identified by Sample Annotations 
First, the quad-discovered gender effect is presented that also serves as independent control of the whole 

analysis pipeline. 

Next, effects are interrogated for their association with standard DLBCL subtypes. One particular 

unsupervisedly discovered effect is identified as the rediscovered cell of origin induced effect[4], because its 

sample axes show 95% agreement with public classifications into ABC DLBCL and GCB DLBCL for all samples. 

Several other genetically distinct effects are also significantly related to DLBCL subtypes and have markedly 

different predictive capabilities, demonstrating that a binary classification can only provide a very rough 

summary of survival trends over gene expressions. 

III.3.2.1   2: Gender effect and annotation mistakes 

 Effect overview 

The strongest effect in terms of differential expression between patients was observed for genes that 

significantly differentiate males and females(Table III.3.2.1). Naturally, this effect exists in all four detection cohorts. 

It is not DLBCL-specific. Detection ranks were #3(GSE10846.CHOP), #4(GSE10846.R-CHOP), #6(GSE4475.nonMBL) and #6(GSE31312.R-

CHOP). The average correlation of these detected effect across cohorts is the second-highest with 3,4,6,6) 
0.88(cf. III.1.2.2). This effect and its validation is also an independent control of detection, validation, annotation and 

interpretation pipelines for real world data. 

As expected, exemplary detections from two cohorts 

show(Figure III.3.2.1) that the effect signal has a binary 

nature. Clearly, patients are correctly predicted and 

sorted by gender(pink/blue). Naturally, the effect is carried 

by genes from  and  chromosomes, for example XIST 

and EIF1AY(cf. Table III.3.2.1.a). Only men can have an 

expression for  chromosome genes and consequently 

women have negative logratio) for these genes(blue). 

(All expression ratios are computed relative to cohort-

average gene expressions.) 

This is a prime example for a reflection of well-

known chromosomal features on gene expression 

level. Due to very strong foldings relative to the noise 

level, correlations of top genes with this effect are very 

high. Typical gene expression effects that are based on 

regulation networks rather than on chromosomal 

features typically cannot reach correlations ||  0.9 

due to noise. Typical correlations in these cases are 

only ||  0.5, but associated  values are still 

approximately 10  or less. 

Despite being directly related to the chromosomal 

level, it is interesting that only few of in total 1822 measured probesets for the two gender chromosomes are 

correlated to the gender effect. One conceivable explanation could be that other measured probesets are 

simply not expressed in measured samples, but this is not the case here. (Probesets with    0.4 have an 

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


,  

. 
,  

204409_s_at EIF1AY Yq11.223 2.19 0.94 1.2E-116 2.05 
205000_at DDX3Y Yq11.21 2.11 0.96 3.2E-138 2.02 
201909_at RPS4Y1 Yp11.31 2.03 0.94 3.6E-121 1.91 

206700_s_at KDM5D Yq11.222 1.62 0.93 5.9E-116 1.51 
232618_at TXLNG2P Yq11.222 1.43 0.87 4.1E-90 1.24 
236694_at TXLNG2P Yq11.222 1.39 0.87 3.7E-93 1.21 
228492_at USP9Y Yq11.21 1.38 0.87 6.3E-93 1.20 
204410_at EIF1AY Yq11.223 1.31 0.86 1.4E-76 1.13 
214131_at TXLNG2P Yq11.222 1.20 0.83 1.7E-65 0.99 

223646_s_at TXLNG2P Yq11.222 1.14 0.84 5.0E-79 0.96 
223645_s_at TXLNG2P Yq11.222 1.03 0.84 3.0E-79 0.86 
205001_s_at DDX3Y Yq11.21 0.93 0.88 1.9E-83 0.82 
230760_at ZFY Yp11.31 0.99 0.80 1.7E-65 0.79 
206624_at USP9Y Yq11.21 0.80 0.76 1.1E-49 0.61 
211149_at UTY Yq11.221 0.68 0.82 3.1E-62 0.55 
214983_at TTTY15 Yq11.21 0.65 0.79 5.7E-57 0.51 
244482_at  Yq11.223 0.61 0.69 2.6E-42 0.42 

243712_at XIST Xq13.2 -0.94 -0.69 3.3E-42 -0.65 
231592_at TSIX Xq13.2 -1.24 -0.86 4.9E-88 -1.07 
235446_at  Xq13.2 -1.36 -0.81 1.1E-69 -1.11 
224589_at XIST Xq13.2 -2.17 -0.95 9.7E-145 -2.05 
227671_at XIST Xq13.2 -2.34 -0.95 9.5E-145 -2.21 

221728_x_at XIST Xq13.2 -2.51 -0.92 6.7E-104 -2.31 
214218_s_at XIST Xq13.2 -2.58 -0.92 7.5E-105 -2.37 
224590_at XIST Xq13.2 -2.70 -0.97 1.0E-175 -2.61 
224588_at XIST Xq13.2 -3.10 -0.98 1.4E-198 -3.03 

Table III.3.2.1.a) Top genes in validated effect   2 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   2
  (cf. Table III.1.5); filtered 

,   0.4. 
 

,  Consensus gene correlations; filtered 
,  0.4. 

 
,   values for the correlations (cf. II.5.2.1) 



174 Chapter III - Dissecting DLBCL Gene Expressions 
 

average logintensity) over all samples of 3.89 and show a clearly differential signal(Figure III.3.2.1). For probesets 

that are correlated less, 916/1796 show a higher average logintensity); 99 of them even have average 

logintensities) of >7. This indicates that they are expressed, but not in a gender-modulated way.) 

 Potential gender annotation mistakes 

Some patients show significant (as per  value for 

correlations to the effect’s consensus gene axis) and clearly 

defined gender on gene expression level that is different from 

their annotated gender(Table III.3.2.1.b and pink/blue classification in Figure III.3.2.1). 

Annotations for these samples should be reexamined. 

(Patient IDs together with their correlations to the effect’s 

gene axis and associated  values are available in definition 

tables for consensus effect   2 in cohort subfolders of 

 C=Consensus Effects.) 

 Survival and clinical associations 

Besides gender, no other clinical covariate was consistently 

and significantly associated with this effect. (All clinical 

correlations and contingency tables are available in c) clinical 

correlations* tables in subfolders of  D=Interpretation\clini-

cal\v002.) 

Interestingly, females were borderline significantly associated with favorable outcome in one cohort 

(GSE10846.R-CHOP  0.049, log rank test for patients partitioned at zero effect eigensignal). A study[101] showed a 

similar survival bias. However, this trend could not be validated in any of the three other cohorts 

(GSE10846.CHOP  0.68, .  0.82,   0.32). All relevant and validated DLBCL survival factors 

based on gene expressions have been systematically analyzed(III.2) and the gender effect was not significant. 

Possibly, this weak association is a shadow of age related biases in this cohort, potentially caused by general 

lower life expectancy for males. 

 Genomic associations 

Surprisingly, in the combined signatures database comprising 13586 published gene signatures from 

various sources(I.3.1), only two signatures are related to this gender effect and only remotely so. The first is the 

positional gene set chryq11(cf. online interpretation card) with 204 defined and 29 measured genes, an average logratio) 

of 0.88 and a rather low enrichment score of 0.5 (GSEA  0.002 based on 514 permutations,   0.2%). The 

second signature on the other regulation side is Disteche, escaped from X inactivation(cf. online interpretation card) with 

13 defined and measured genes, an average logratio of 0.28 and an enrichment score of 0.85 (GSEA  0.002 

based on 489 permutations,   0.2%). For comparison, the average logratio of top genes of   2 is 3.89 

and 4.34 respectively, i.e. much stronger. (The complete signature analyses for the gender effect with all 

statistics is available at  D=Interpretation\genomic\v002\SA.) 

 Inference 

Given its perfect suitability as control effect, I expected more gender-specific gene expression signatures in 

public signature databases. It might be a useful addition, especially as only a specific subset of expressed 

probesets from  and  chromosomes are actually strongly correlated to this gender effect. 

Besides its use in method validation contexts, it might be utilized for quality control of gender annotations 

when publishing large studies with gene expression measurements. 

GEP effect 
strength 

# annotated  
as males 

# annotated  
as females 

GSE10846.CHOP (163/181 patients annotated) 
 0 2 72 
 0 88 1 

 value 9.8 ⋅ 10  (  test) 
GSE10846.R-CHOP (220/233 patients annotated) 

 0 2 91 
 0 126 1 

 value 4.0 ⋅ 10  (  test) 
GSE4475 (DLBCL only, 76/166 patients) 

 0 2 35 
 0 39 0 

 value 1.3 ⋅ 10  (chi² test) 
GSE31312 (470/498 patients annotated) 

 0 9 185 
 0 262 14 

 value 1.0 ⋅ 10  (  test) 

Table III.3.2.1.b) Gender effect, contingency with clinical annotations 

Patients of each cohort were partitioned at zero eigensignal 
strength(Table III.1.5) for GEP effect   2. 

http://www.broadinstitute.org/gsea/msigdb/cards/chryq11
http://www.broadinstitute.org/gsea/msigdb/cards/DISTECHE_ESCAPED_FROM_X_INACTIVATION
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Figure III.3.2.1) Detected gender effects 

Gender effects detected in GSE10846.R-CHOP (233 patients) and GSE31312 (498 patients). Both are part of the quad-discovered consensus gender effect. Sample 
effect strengths (orange curves in center panels) are clearly either positive or negative with a jump in-between, as can be expected for a naturally binary effect. 
Enlarged gender classifications show some mismatches between GEP based genders and annotations. Due to the obvious signal of the gender effect on GEP level, 
these are presumably annotation mistakes. 
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III.3.2.2   129: Cell of origin induced effect (standard DLBCL subtypes) 

 Identification of the cell of origin induced effect 

The COO induced effect distinguishes ABC DLBCL from GCB DLBCL(cf. [4] and Figure I.1.2.1). To test whether it has 

been unsupervisedly rediscovered, contingency tables have been computed for previously identified patient 

subtypes and for each of the 135 validated GEP effects. 

Many validated GEP effects can arrange patients with a significant bias to subtype. All effects are 

depicted(Figure III.3.2.2.a) that agree with  70% to previous subtype classifications when partitioning samples at 

zero effect eigensignal(III.3.1.1). In principle, all these GEP effects might help to comprehend DLBCL subtype 

biology. However, the smaller the agreement, the more likely it is that the effect represents a pathway that is 

not restricted to only one subtype. 

 

Figure III.3.2.2.a) Validated GEP effects that are top-associated with public sample classifications as ABC DLBCL or GCB DLBCL 

Validated GEP effects with  70%  agreement to public classifications as ABC DLBCL or GCB DLBCL from all four cohorts when partitioning samples by cutting at zero 
eigensignal of the respective consensus effect. Contingency tables for both resulting effect partitions and for public ABC/UC/GCB annotations are provided in text 
form; their  values are based on   tests. The matrix shows whether effects are genetically associated with each other (weighted correlations of their consensus gene 
axes; cf. III.1.2.1). 

With 95% agreement over all four cohorts (  2 ⋅ 10), GEP effect   129 is clearly at rank #1, thereby 

identifying it as the rediscovered cell of origin induced effect. It is followed by   25 (90% agreement,  10) that has a highly correlated consensus gene scores to the first effect with ;  0.85(cf. Eqn. III.1.3.2.b) and 

thus can be considered biologically similar (for one cohort, both consensus effects are even based on the 

identical discovered effect). 

At rank #3, a quad-discovered effect follows (  20, 88% agreement,   3 ⋅ 10). This effect is interesting, 

because it is based on rather different genes (;  0,36) and can only predict relatively weak survival 

differences(cf. III.3.4.1). This demonstrates that a binary classification into subtypes can only provide a relatively 

rough summary of genetic survival trends compared to gradual effect strengths, as no patient ordering within 

classes can be prescribed in this way. 

Effect   134 at rank #4 can still arrange patients into ABC DLBCL and GCB DLBCL with 84% agreement, 

but like   20 it is based on rather different genes (;  0.29). Because of its excellent survival 

prediction capability,   134 is evaluated in detail(cf. III.3.3.1). 

Effect   131 follows at rank #5. It is strongly correlated to effect   127 (;  0.80). Both are not 

genetically correlated to   129 (;  0.04 and ;  0.29), but these effect play an important 

role in multivariate survival analysis(III.2.2.3) and are, therefore, also presented in detail(in III.3.3.2). 
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 Effect overview 

Effect   129 has been unsupervisedly detected in two cohorts (at rank #11 in GSE10846.R-CHOP and at 

rank #12 in GSE31312.R-CHOP). Application of this effect sorts patients from GCB DLBCL to ABC DLBCL, as is 

depicted exemplary for the largest cohort(Figure III.3.2.2.b, page 179). Similar plots and definition tables are available for 

all four cohorts in  C=Consensus Effects\(cohort subfolder); they supervisedly validate the effect’s existence 

in each cohort. 

Other than for the gender effect(III.3.2.1), effect strengths for patients are gradual here. Patients in the center do 

not have sufficient correlation to the effect’s gene axis and hence their eigensignal is gray(II.4.2.1). Patients with 

effect strengths near zero therefore should be considered neither ABC DLBCL nor GCB DLBCL. (Previous 

subtype classifications implicitly assumed that every patient is either ABC DLBCL or GCB DLBCL by using a 

two-class Bayes predictor model[83] and hence could underestimate the ratio of “unclassified” patients with 

respect to the COO induced effect; cf. III.2.1.9.) 

The effect is two-sided, i.e. it is comprised both of correlated “ABC>GCB” and anti-correlated “GCB>ABC” 

genes. All correlated genes with strong folding between patients as per gene scores(III.1.3.2) 
  ⋅ 

  are 

listed(Table III.3.2.2.a) for cutoffs 
   0.4 and 

   0.4; the complete list is available in  DLBCL Master Table 

2015, gene orders.xlsx. 

Correlated genes in   129 (ABCGCB DLBCL) Anti-correlated genes in   129 (GCBABC DLBCL) 

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
 ,  


,  

. 
,  

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


,  

. 
,  

44790_s_at KIAA0226L 13q14.13 1.39 0.63 3.1E-27 0.88 1554413_s_at SNX29P2 16p11.2 -1.06 -0.53 3.1E-18 -0.56 
219471_at KIAA0226L 13q14.13 1.15 0.61 3.7E-25 0.70 219753_at STAG3 7q22.1 -1.02 -0.52 3.9E-17 -0.52 
224838_at FOXP1 3p13 0.92 0.69 9.4E-34 0.63 204249_s_at LMO2 11p13 -0.96 -0.54 7.8E-19 -0.52 
224837_at FOXP1 3p13 0.79 0.66 3.7E-30 0.52 236981_at C17orf99 17q25.3 -1.12 -0.45 3.6E-13 -0.51 

223287_s_at FOXP1 3p13 0.79 0.61 1.1E-24 0.48 206310_at SPINK2 4q12 -1.05 -0.45 3.6E-13 -0.48 
235444_at FOXP1 3p13 0.74 0.59 2.0E-23 0.44 242334_at NLRP4 19q13.43 -1.14 -0.41 6.5E-11 -0.47 
212827_at IGHM 14q32.33 1.05 0.40 1.8E-10 0.42 226281_at DNER 2q36.3 -1.13 -0.41 9.1E-11 -0.46 
244413_at CLECL1 12p13.31 0.80 0.47 5.6E-14 0.37 211597_s_at HOPX 4q12 -1.00 -0.45 7.6E-13 -0.45 
229844_at FOXP1 3p13 0.62 0.60 2.0E-24 0.37 223159_s_at NEK6 9q33.3 -0.74 -0.59 6.4E-23 -0.43 
229114_at GAB1 4q31.21 0.80 0.46 9.7E-14 0.37 207599_at MMP20 11q22.2 -0.99 -0.42 1.8E-11 -0.42 

1558996_at FOXP1 3p13 0.68 0.54 4.8E-19 0.37 223158_s_at NEK6 9q33.3 -0.68 -0.61 4.0E-25 -0.41 
227198_at AFF3 2q11.2 0.82 0.45 6.3E-13 0.37 227703_s_at SYTL4 Xq22.1 -0.88 -0.46 9.5E-14 -0.41 
203753_at TCF4 18q21.2 0.66 0.55 1.7E-19 0.36 202119_s_at CPNE3 8q21.3 -0.74 -0.54 7.2E-19 -0.40 

213891_s_at TCF4 18q21.2 0.66 0.53 3.3E-18 0.35 206181_at SLAMF1 1q23.3 -0.75 -0.53 1.7E-18 -0.40 
212386_at TCF4 18q21.2 0.68 0.50 2.6E-16 0.34 231049_at LMO2 11p13 -0.77 -0.51 5.1E-17 -0.40 

222762_x_at LIMD1 3p21.31 0.61 0.56 1.7E-20 0.34 213906_at MYBL1 8q13.1 -0.94 -0.42 2.7E-11 -0.39 
225331_at CCDC50 3q28 0.64 0.52 4.0E-17 0.33 229041_s_at LOC100505746 21q22.3 -0.83 -0.47 2.0E-14 -0.39 

220230_s_at CYB5R2 11p15.4 0.74 0.44 3.5E-12 0.32 204604_at CDK14 7q21.13 -0.76 -0.50 8.9E-16 -0.38 
212382_at TCF4 18q21.2 0.60 0.52 1.3E-17 0.31 231455_at LINC00487 2p25.2 -0.86 -0.44 2.7E-12 -0.38 

1553369_at FAM129C 19p13.11 0.66 0.47 2.1E-14 0.31 244467_at SHISA8 22q13.2 -0.91 -0.41 6.0E-11 -0.37 
203313_s_at TGIF1 18p11.31 0.61 0.49 1.8E-15 0.30 242794_at MAML3 4q31.1 -0.74 -0.49 1.5E-15 -0.37 
204562_at IRF4 6p25.3 0.66 0.45 5.3E-13 0.30 202118_s_at CPNE3 8q21.3 -0.68 -0.51 9.0E-17 -0.35 
212387_at TCF4 18q21.2 0.55 0.53 2.1E-18 0.29 239697_x_at C3orf67 3p14.2 -0.78 -0.44 3.7E-12 -0.34 

222146_s_at TCF4 18q21.2 0.58 0.51 1.7E-16 0.29 244367_at  11p13 -0.66 -0.50 4.1E-16 -0.33 
212385_at TCF4 18q21.2 0.61 0.48 6.9E-15 0.29 200644_at MARCKSL1 1p35.1 -0.62 -0.51 5.3E-17 -0.32 
232739_at SPIB 19q13.33 0.60 0.48 4.5E-15 0.29 218640_s_at PLEKHF2 8q22.1 -0.60 -0.53 4.8E-18 -0.32 

1557049_at BTBD19 1p34.1 0.65 0.44 1.5E-12 0.29 219874_at SLC12A8 3q21.2 -0.68 -0.46 2.8E-13 -0.31 
228837_at TCF4 18q21.2 0.55 0.50 9.3E-16 0.27 234284_at GNG8 19q13.32 -0.75 -0.41 1.0E-10 -0.31 
230983_at FAM129C 19p13.11 0.65 0.42 2.7E-11 0.27 223624_at ZFAND4 10q11.22 -0.62 -0.50 6.6E-16 -0.31 

1565034_s_at AFF3 11q23.3 0.65 0.41 1.4E-10 0.26 230509_at SNX22 15q22.31 -0.61 -0.50 3.9E-16 -0.31 
204269_at PIM2 Xp11.23 0.52 0.48 7.6E-15 0.25 218862_at ASB13 10p15.1 -0.63 -0.49 3.2E-15 -0.30 
226304_at HSPB6 19q13.12 0.59 0.42 1.7E-11 0.25 243185_at  10p14 -0.66 -0.45 5.3E-13 -0.30 
235056_at ETV6 12p13.2 0.54 0.46 3.0E-13 0.24 212314_at SEL1L3 4p15.2 -0.57 -0.52 1.0E-17 -0.30 
205222_at EHHADH 3q27.2 0.59 0.41 8.5E-11 0.24 205570_at PIP4K2A 10p12.2 -0.59 -0.50 2.5E-16 -0.30 

212345_s_at CREB3L2 7q33 0.50 0.47 1.9E-14 0.24 1553499_s_at SERPINA9 14q32.13 -0.66 -0.44 1.3E-12 -0.29 
239973_at  7p15.3 0.52 0.45 6.7E-13 0.23 211502_s_at CDK14 7q21.13 -0.62 -0.45 4.0E-13 -0.28 

208690_s_at PDLIM1 10q23.33 0.48 0.49 2.6E-15 0.23 235213_at ITPKB 1q42.12 -0.57 -0.48 7.7E-15 -0.28 
204083_s_at TPM2 9p13.3 0.53 0.44 3.3E-12 0.23 224102_at P2RY12 3q25.1 -0.64 -0.42 1.8E-11 -0.27 
218792_s_at BSPRY 9q32 0.55 0.42 3.8E-11 0.23 235353_at SEL1L3 4p15.2 -0.57 -0.47 2.9E-14 -0.27 
233483_at TBC1D27 17p11.2 0.51 0.45 7.5E-13 0.23 200965_s_at ABLIM1 10q25.3 -0.64 -0.42 3.3E-11 -0.27 
218699_at RAB7L1 1q32.1 0.50 0.46 2.1E-13 0.23 225637_at DEF8 16q24.3 -0.66 -0.41 1.2E-10 -0.27 
235051_at CCDC50 3q28 0.49 0.46 1.4E-13 0.23 212975_at DENND3 8q24.3 -0.52 -0.50 2.2E-16 -0.26 

200953_s_at CCND2 12p13.32 0.55 0.41 1.1E-10 0.23 225622_at PAG1 8q21.13 -0.56 -0.47 2.7E-14 -0.26 
203988_s_at FUT8 14q23.3 0.55 0.41 5.7E-11 0.23 222699_s_at PLEKHF2 8q22.1 -0.55 -0.48 8.2E-15 -0.26 
244845_at  3p13 0.50 0.44 3.3E-12 0.22 227684_at S1PR2 19p13.2 -0.53 -0.50 8.5E-16 -0.26 
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213262_at SACS 13q12.12 0.47 0.46 9.2E-14 0.22 225626_at PAG1 8q21.13 -0.56 -0.46 8.9E-14 -0.26 
223218_s_at NFKBIZ 3q12.3 0.53 0.41 5.3E-11 0.22 212311_at SEL1L3 4p15.2 -0.57 -0.46 2.6E-13 -0.26 
225436_at FAM108C1 15q25.1 0.49 0.45 7.5E-13 0.22 1563621_at  7p14.2 -0.51 -0.50 4.5E-16 -0.26 

201160_s_at CSDA 12p13.2 0.50 0.43 6.8E-12 0.22 221039_s_at ASAP1 8q24.21 -0.52 -0.49 3.6E-15 -0.25 
207641_at TNFRSF13B 17p11.2 0.47 0.46 9.8E-14 0.22 217991_x_at SSBP3 1p32.3 -0.49 -0.51 1.2E-16 -0.25 
226818_at MPEG1 11q12.1 0.48 0.44 1.9E-12 0.21 1554575_a_at BPNT1 1q41 -0.50 -0.49 1.7E-15 -0.25 

233955_x_at CXXC5 5q31.2 0.49 0.43 5.1E-12 0.21 224790_at ASAP1 8q24.21 -0.51 -0.48 6.6E-15 -0.24 
223422_s_at ARHGAP24 4q21.23 0.49 0.43 8.4E-12 0.21 1568817_at  21q22.3 -0.60 -0.41 1.3E-10 -0.24 
201811_x_at SH3BP5 3p25.1 0.44 0.47 7.6E-14 0.21 230278_at  1q42.3 -0.58 -0.41 6.7E-11 -0.24 
204642_at S1PR1 1p21.2 0.44 0.46 9.2E-14 0.20 204137_at GPR137B 1q42.3 -0.57 -0.42 2.8E-11 -0.24 
228693_at CCDC50 3q28 0.48 0.42 3.9E-11 0.20 241942_at PXDNL 8q11.22 -0.57 -0.41 6.0E-11 -0.23 
203761_at SLA 8q24.22 0.44 0.45 4.4E-13 0.20 235841_at  4q31.1 -0.53 -0.44 3.2E-12 -0.23 

201810_s_at SH3BP5 3p25.1 0.46 0.43 4.6E-12 0.20 235632_at  9q33.3 -0.46 -0.50 4.4E-16 -0.23 
212654_at TPM2 9p13.3 0.43 0.46 2.3E-13 0.20 206348_s_at PDK3 Xp22.11 -0.51 -0.45 5.7E-13 -0.23 
244480_at  18q21.2 0.44 0.44 1.6E-12 0.20 224796_at ASAP1 8q24.21 -0.48 -0.47 6.2E-14 -0.22 
205965_at BATF 14q24.3 0.45 0.43 5.4E-12 0.19 210829_s_at SSBP2 5q14.1 -0.54 -0.41 7.2E-11 -0.22 

218700_s_at RAB7L1 1q32.1 0.46 0.42 2.3E-11 0.19 201209_at HDAC1 1p35.1 -0.47 -0.47 3.4E-14 -0.22 
236831_at CCDC50 3q28 0.45 0.42 4.2E-11 0.19 204891_s_at LCK 1p35.1 -0.50 -0.44 1.9E-12 -0.22 
239231_at  19p13.11 0.43 0.44 3.1E-12 0.19 210461_s_at ABLIM1 10q25.3 -0.55 -0.40 1.9E-10 -0.22 

1561167_at  12p13.2 0.45 0.41 5.2E-11 0.19 225214_at LOC100129034 9q33.3 -0.43 -0.51 7.3E-17 -0.22 
207237_at KCNA3 1p13.3 0.45 0.41 1.0E-10 0.18 238353_at RASL11A 13q12.2 -0.45 -0.49 4.0E-15 -0.22 
212097_at CAV1 7q31.2 0.41 0.44 1.6E-12 0.18 229713_at PIP4K2A 10p12.2 -0.47 -0.46 8.6E-14 -0.22 
203068_at KLHL21 1p36.31 0.41 0.43 5.3E-12 0.18 208456_s_at RRAS2 11p15.2 -0.51 -0.42 1.6E-11 -0.22 

203143_s_at KIAA0040 1q25.1 0.42 0.43 7.4E-12 0.18 229040_at LOC100505746 21q22.3 -0.48 -0.45 4.6E-13 -0.21 
205861_at SPIB 19q13.33 0.41 0.44 3.3E-12 0.18 212829_at PIP4K2A 10p12.2 -0.46 -0.47 5.7E-14 -0.21 

207655_s_at BLNK 10q24.1 0.42 0.41 1.1E-10 0.17 203723_at ITPKB 1q42.12 -0.48 -0.45 9.6E-13 -0.21 
209939_x_at CFLAR 2q33.1 0.42 0.40 2.3E-10 0.17 1555626_a_at SLAMF1 1q23.3 -0.43 -0.49 1.4E-15 -0.21 
243878_at  3p13 0.41 0.40 1.5E-10 0.17 203537_at PRPSAP2 17p11.2 -0.43 -0.49 2.3E-15 -0.21 

200599_s_at HSP90B1 12q23.3 0.40 0.42 4.1E-11 0.17 228360_at LYPD6B 2q23.1 -0.52 -0.41 1.1E-10 -0.21 
       212590_at RRAS2 11p15.2 -0.48 -0.44 3.2E-12 -0.21 
       227354_at PAG1 8q21.13 -0.48 -0.43 5.5E-12 -0.21 
       205922_at VNN2 6q23.2 -0.48 -0.43 5.2E-12 -0.21 
       212646_at RFTN1 3p25.1 -0.50 -0.42 3.7E-11 -0.21 
       222942_s_at TIAM2 6q25.2 -0.46 -0.44 1.2E-12 -0.20 
       232103_at BPNT1 1q41 -0.47 -0.43 9.1E-12 -0.20 
       1569481_s_at SNX22 15q22.31 -0.45 -0.44 1.3E-12 -0.20 
       221781_s_at DNAJC10 2q32.1 -0.43 -0.46 1.6E-13 -0.20 
       236533_at ASAP1 8q24.21 -0.44 -0.44 1.7E-12 -0.20 
       203521_s_at ZNF318 6p21.1 -0.46 -0.43 1.0E-11 -0.19 
       201425_at ALDH2 12q24.12 -0.47 -0.41 7.2E-11 -0.19 
       224791_at ASAP1 8q24.21 -0.43 -0.44 1.8E-12 -0.19 
       204890_s_at LCK 1p35.1 -0.43 -0.44 2.4E-12 -0.19 
       215886_x_at USP12 13q12.13 -0.46 -0.41 8.6E-11 -0.19 
       212974_at DENND3 8q24.3 -0.40 -0.46 1.8E-13 -0.19 
       241155_at  10p12.2 -0.42 -0.44 3.6E-12 -0.18 
       242650_at  10q11.22 -0.41 -0.45 1.1E-12 -0.18 
       235242_at  2p16.1 -0.43 -0.42 1.8E-11 -0.18 
       201201_at CSTB 21q22.3 -0.40 -0.45 6.2E-13 -0.18 
       212589_at RRAS2 11p15.2 -0.40 -0.44 1.4E-12 -0.18 
       220694_at ASAP1-IT1 8q24.21 -0.40 -0.42 3.2E-11 -0.17 
       1563513_at SYTL4 Xq22.1 -0.40 -0.40 2.2E-10 -0.16 
       221496_s_at TOB2 22q13.2 -0.40 -0.40 1.8E-10 -0.16 

Table III.3.2.2.a) Top genes in validated effect   129 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays; manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   129 (cf. Table III.1.5); filtered 
,   0.4. 

 
, , 

 ,  Consensus gene correlations of   129; filtered 
,  0.4 and  values for the correlations (cf. II.5.2.1). 

 Role in survival analysis 

Consistent with known differences in average survival of ABC DLBCL and GCB DLBCL, effect   129 has 

been found to predict the second-most significant survival differences between all DLBCL patients with   1.1 ⋅
10 (Figure III.2.5.1.a) (and if restricted to R-CHOP treated patients still with   1.8 ⋅ 10(Figure III.2.2.1.a)). It has also 

been selected and analyzed as primary variable for a bivariate Cox proportional hazard survival model(III.2.3) 

that can predict strong survival differences both for R-CHOP and CHOP-treated patients(Figure III.2.3.2). 

 Clinical associations 

Besides significant association with DLBCL subtype in all four clinical cohorts, the effect is also significantly 

associated with IPI scores (both R-CHOP treated cohorts have IPI annotations and both are significantly 

associated: GSE10846.R-CHOP  6.2 ⋅ 10 and   7.8 ⋅ 10). This is not untypical for effects with strong 

predictive performance and indicates that some molecularly explainable survival differences can already be 

predicted by macroscopic clinical variables underlying the IPI score. 
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Figure III.3.2.2.b) Rediscovered cell of origin effect (  129)  

Cell of origin consensus effect (  129), example application to GSE31312 (498 patients). Enlarged public subtype classifications show subtype reproduction quality.  
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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 Genomic associations 

Gene ontology analysis did not reveal any specific and significantly overrepresented terms; some terms like 

sequence-specific DNA binding(cf. GO:0043565, [78]) are significant, but not very specific (8/62 top genes belong to 

this term comprised of 465/20370 measured genes;   8.0 ⋅ 10  via hypergeometric test). (All gene ontology 

analyses for this effect are available at  D=Interpretation\genomic\v129\GOA.) 

Signature analyses for   129 were able to confirm rediscovery of the COO induced effect, as  

several previously published DLBCL subtype signatures are significantly and strongly enriched for its top  

genes(Table III.3.2.2). 

Enrichment plots(Figure III.3.2.2.c) for the two largest top signatures ABCgtGCB_U133AB(online interpretation card) and 

GCB_gt_ABC_U133plus(online interpretation card) visualize their significance and again confirm rediscovery of the 

standard COO induced effect.  

 The rediscovery of the COO induced effect by correlations provides a filtered view on subtype-specific genes 

Gene selection criteria for these DLBCL signatures show that they are based on (a) -tests between sample 

subsets by previously predicted subtypes, (b) deselection of genes correlated with   0.2 to a proliferation 

signature and (c) in case of GCB_gt_ABC_U133plus also deselection of genes correlated with   0.2 to a lymph 

node signature.  

Using previously predicted subtypes as basis for gene signature definition can only test every gene 

individually, but does not examine correlations between genes. Given the low information base (every subtype 

annotation essentially carries only one bit of information per patient as there are only two subtypes), 

criterion (a) probably selects many genes that are biologically unspecific with respect to DLBCL subtype 

Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean 
log2( 
ratio) 

 (-test 
versus 
zero) 

Down- 
reg. ratio 

Upreg. 
ratio 

StaudtSigDB_dNov2012 ABC_gt_GCB_LC 15 15 0.946 0.0019 0.2% -0.887 5.9E-07 100.0% 0.0% 
StaudtSigDB_dNov2012 ABC_gt_GCB_PMBL_MCLBL_U133AB 53 52 0.840 0.0019 0.2% -0.700 1.3E-17 100.0% 0.0% 
StaudtSigDB_dNov2012 ABC_gt_GCB_Affy 20 20 0.871 0.0020 0.2% -0.645 2.3E-06 90.1% 9.9% 
StaudtSigDB_dNov2012 ABCgtGCB_U133AB 286 281 0.701 0.0019 0.2% -0.527 1.5E-70 98.9% 1.1% 
GeneSigDB_v4_Sept2011 Lymphoma_Poulson05_48genes 48 47 0.727 0.0019 0.2% -0.501 1.9E-10 94.2% 5.8% 

MolSigDBv4_0_dMay2014 
Reactome_purine_ribonucleoside_monop

Hosphate_biosynthesis 
11 11 0.673 0.0020 0.2% -0.090 0.0031 97.6% 2.4% 

MolSigDBv4_0_dMay2014 Spindle_organization_and_biogenesis 11 11 0.744 0.0020 0.2% -0.040 0.3830 58.5% 41.5% 
MolSigDBv4_0_dMay2014 Tsai_dnajb4_targets_up 13 13 -0.766 0.0022 0.2% 0.073 0.3299 39.5% 60.5% 
MolSigDBv4_0_dMay2014 Biocarta_tcytotoxicpathway 14 12 -0.783 0.0020 0.2% 0.059 0.2917 32.2% 67.8% 
MolSigDBv4_0_dMay2014 Biocarta_thelper_pathway 14 12 -0.764 0.0020 0.2% 0.078 0.1434 22.7% 77.3% 
MolSigDBv4_0_dMay2014 Module_293 12 11 -0.795 0.0020 0.2% 0.064 0.0548 21.5% 78.5% 
MolSigDBv4_0_dMay2014 Module_143 14 13 -0.774 0.0021 0.2% 0.107 0.0810 21.3% 78.7% 

MolSigDBv4_0_dMay2014 
Reactome_translocation_of_zap_70_to_im

munologicalsynapse 
14 11 -0.682 0.0020 0.2% 0.131 0.2075 24.4% 75.6% 

HGNCSigDB_dMay2014 Histocompatibility complex 44 21 -0.791 0.0019 0.2% 0.144 0.0039 7.1% 92.9% 
MolSigDBv4_0_dMay2014 Biocarta_blymphocytepathway 11 11 -0.771 0.0021 0.2% 0.190 0.0889 20.0% 80.0% 

MolSigDBv4_0_dMay2014 
Reactome_phosphorylation_of_cd3_and_tc

r_zeta_chains 
16 13 -0.693 0.0021 0.2% 0.227 0.0342 7.3% 92.7% 

StaudtSigDB_dNov2012 GC_B_cell_BLlow_DLBCLhigh 49 48 -0.690 0.0019 0.2% 0.521 1.1E-06 11.8% 88.2% 
GeneSigDB_v4_Sept2011 Lymphoma_Chin09_65genes 47 47 -0.734 0.0019 0.2% 0.655 1.1E-09 3.6% 96.4% 
StaudtSigDB_dNov2012 GCB_gt_ABC_U133plus 307 298 -0.752 0.0021 0.2% 0.598 1.4E-75 0.4% 99.6% 
GeneSigDB_v4_Sept2011 Lymphoma_Tome05_151genes 46 44 -0.823 0.0019 0.2% 0.816 1.5E-12 4.4% 95.6% 
StaudtSigDB_dNov2012 Germinal_center_Bcell_DLBCL 59 55 -0.792 0.0021 0.2% 0.780 2.6E-15 0.0% 100.0% 

StaudtSigDB_dNov2012 
Germinal_center_B_cell_DLBCL-

survival_predictor 
37 34 -0.867 0.0020 0.2% 0.945 2.0E-11 0.4% 99.6% 

StaudtSigDB_dNov2012 GCB_gt_ABC_LC 11 10 -0.980 0.0020 0.2% 1.395 0.0001 0.0% 100.0% 
 

Table III.3.2.2.b) Top-enriched signatures by   129 

Signatures with |enrichment	score|  0.67 and at least 10 measured members are listed for genes ranked by GEP effect   129.  
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0043565
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=12
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=311
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biology. Deselecting genes with respect to other signatures (i.e. criteria (b) and (c)) has probably been 

performed in order to filter some of these unspecific genes out again. However, correlation between remaining 

genes is still ignored and thus many genetically distinct effects are included in and mixed by resulting gene 

signatures. Such signatures were also utilized by previous subtype classifiers[83]. 

In contrast, signal dissection forms effects based on correlation maximization(cf. II.3.2), i.e. top genes in every 

effect are as highly correlated to each other as permitted by the signal. Hence, dissection into effects with 

maximal inter-gene correlations can help to dissect pathways that were only visible in overlapped and mixed 

form in previous gene signatures.  

Interestingly, most other discovered GEP effects that are significantly related to DLBCL subtypes have rather 

uncorrelated gene axes to effect   129, i.e. their top genes are rather different from each other(cf. Figure III.3.2.2.a). 

This indicates that the unsupervisedly rediscovered GEP effect   129 does not only match previous subtypes 

form four independent cohorts best, but can also be considered a genetically filtered redefinition of above ABC-

versus-GCB-DLBCL gene signatures and presumably of corresponding subtype biology. 

Still, the known genetic heterogeneity of DLBCL remains even for this filtered view in form of a rough 

signal(see Figure III.3.2.2.b); thus correlations of top genes to the effect (and thus to each other) are only moderate. 

Other discovered effects with strong survival impact(III.3.3) like   134 are smaller and possess some top genes 

of higher correlation. Assuming that higher correlations between genes indicate tighter biological relations, 

these effects could be biologically even more specific than this filtered redefinition of the COO induced effect 

in form of   129. 

 

 
Figure III.3.2.2.c) Significant enrichment of known ABC-versus-GCB DLBCL signatures by effect   129 
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 Preliminary top genes analysis 

For probesets with 
   0.4, 151 unique genes from 22 chromosomes participate in the effect, suggesting 

that it reflects a functional genomic network, rather than just reflecting local aberrations on DNA level. For 


   0.5, 19 unique genes from 12 chromosomes remain. 

Most top genes of   129 are contained in the two above-mentioned ABC-versus-GCB-DLBCL gene 

signatures. Several have already been investigated. To illuminate the filtered redefinition of the COO induced 

effect by   129, an individual review of its top-correlated genes in context of existing research is indicated. 

To start, the most specific genes for   129 are briefly presented here. 

FOXP1 is the best-correlated gene with ,  0.69; higher correlations do not exist due to the relatively 

rough signal of this effect. This gene has already been identified for DLBCL survival predictor models before[29] 

and a recent study[102] disclosed its molecular function as oncogene in lymphomas relying on NF-B activity. It 

directly represses transcription of seven pro-apoptotic genes and its aberrant expression can complement 

(constitutive) NF-B activity, which in total may contribute to lymphomagenesis[102]. 

KIAA0226L is the second-best-correlated gene with ,  0.63. No literature that directly relates 

this gene to DLBCL has been found, but a study in molecular oncology[103] observed silencing of KIAA0226L 

(aka C13orf18) through hypermethylation in cervical cancer. Its re-expression via artificial gene-specific 

transcription factors significantly inhibited cell growth and/or induced apoptosis. However, this cannot 

explain its role in DLBCL, because KIAA0226L is expressed higher in ABC DLBCL, i.e. for patients associated 

with adverse outcome. 

On the anti-correlated side, for example LMO2 with ,
  0.54 is known as a powerful prognostic 

indicator in DLBCL[104]. It is specifically upregulated in the germinal center and a study on LMO2’s 

interactome[104] revealed that it increases transcriptional activity of NFATc1. An immunohistochemical 

study[105] on LMO2 confirmed its exclusive expression in GCB DLBCL (20/20) and negativity in ABC DLBCL 

(0/15). This gene is also expressed in Hodgkin lymphoma cases (23/23) and in Burkitt’s lymphoma (9/10). 

Regarding healthy tissues, it was exclusively found in the germinal center, but not in mantle, marginal and T 

cell zones. 

 Inference 

Several genes of this rediscovered COO induced effect have already been biologically investigated with 

respect to their contribution to DLBCL lymphomagenesis. The functional interplay of identified top-correlated 

genes and the role of KIAA0226L in particular may be interesting for further investigation. However, genes in 

GEP effect   134 presented next(III.3.3.1) might be more interesting, as   134 predicts survival most 

consistently and is comprised of fewer and higher correlated top genes (for the same correlation cutoff). 
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III.3.3 Survival Effects 
Multivariate survival analysis(III.2) has revealed that several discovered GEP effects and combinations thereof 

are significantly associated with observed patient outcome. The COO induced effect(cf. III.3.2.2) has been shown to 

be only one among several(cf. Figure III.2.5.1.a). For interpretation of constructed survival predictors, relevant GEP 

effects are presented and biostatistically evaluated here. 

Some effects could be identified as unsupervisedly rediscovered versions of genomic entities that are known 

from previous DLBCL studies. Some effects are novel. Their biostatistical evaluations can provide a basis for 

their biological interpretation. 

The discussion of each effect starts with a summary of its role in survival analysis. Then its definition and an 

overview of its signal are provided, both in graphical and tabular form. Subsequently significant genomic 

associations or clinical associations are presented. If indicated, this is followed by a preliminary discussion of 

specific top correlated genes. An effect-specific outlook may infer analytically promising experimental 

investigations that might eventually lead to advances in modeling the molecular pathogenesis of DLBCL. 

 

III.3.3.1   134: Primary survival effect in DLBCL 

 Role in survival analysis 

Already during detection and before any systematic survival analyses, one GEP effect emerged by showing 

an obvious sorting of patients by outcome. A systematic comparison(Figure III.2.5.1.a) showed that this effect can 

explain survival more consistently (with   4.5 ⋅ 10) compared to the COO induced effect(cf. III.3.2.2) (  1.1 ⋅
10), despite consisting of only 69 unique correlated top genes, whereas the COO induced effect has 151 

unique top genes for an identical correlation cutoff (||  0.4). This might indicate that it is biologically more 

specific to DLBCL. Another indication for that is the existence of a hierarchical survival effect that strongly 

affects only one risk partition of   134, whereas the other partition is unaffected(III.2.2.3). Using the COO 

induced effect as primary predictor variable did not disclose such hierarchical dependencies(cf. III.2.3.1 and III.2.3.3). 

Additionally,   134 also ranks first as primary predictor variable when training only with samples from R-

CHOP treated patients(cf. III.2.2). Because of these properties, it is evaluated here in detail. 

 Effect overview 

Effect   134 was originally detected and dissected in the GEP signal of cohort GSE31312 at rank #27. It has 

been supervisedly validated on GEP level in all three other cohorts(e.g. Figure III.3.3.1.b). (See 134* files in  C=Con-

sensus Effects\(cohort subfolders).) Additionally, it validates against survival data in all four cohorts (see

 D=Interpretation\clinical\v134\(cohort subfolders)). 

Its application to the largest patient cohort illustrates(Figure III.3.3.1.a) that this effect is comprised of 

approximately 100 correlated and only few anti-correlated probesets (with relative correlation  0.5). 

Survival as indicated by censored/progression information(green/orange) shows that higher expression of 

correlated genes is associated with better patient outcome. On the upregulated side, GCB DLBCL patients are 

overrepresented, as could be expected due to higher average survival of GCB DLBCL. Comparison of subtype 

information(yellow/pink) shows that the sample order by   134 is partially correlated, but not identical to the 

COO induced sample order(cf. Figure III.3.2.2.b). More importantly, only a weak correlation between this effect’s 

consensus gene scores and the COO consensus gene scores exists (;  0.29(cf. Eqn. III.1.3.2.b)), 

demonstrating that these effects are based on different top genes. 
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Figure III.3.3.1.a) Validated effect   134, applied to GSE31312.R-CHOP 

Primary survival effect by multi-cohort survival analysis(III.2.5) applied to GSE31312.R-CHOP (498 patients). Enlarged binary classifications show 
censored/progression follow-up information (green/orange) as well as public subtypes (yellow/pink). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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Figure III.3.3.1.b) Validated effect   134, applied to GSE10846.R-CHOP 

Primary survival effect by multi-cohort survival analysis(III.2.5) applied to  GSE10846.R-CHOP (233 patients). Enlarged binary classifications show 
censored/progression follow-up information (green/orange) as well as public subtypes (yellow/pink). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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Similar effect plots and definition tables are available for all four cohorts in C=Consensus Effects\(cohort 

subfolder); they supervisedly validate the effect’s existence in each cohort. All probesets with a relative 

correlation  0.5 to the consensus sample axis are depicted; they are ordered by their differential signal 

between samples. While this signal ordering is necessary for bimonotonic regression and effect dissection, 

highly correlated genes with relatively weak differential signal may also be biologically important to 

understand underlying pathogenic pathways(III.1.3.2). For this reason, cohort-independent genomic analyses are 

based on both differential expression and correlation strength(cf. Table III.1.5). 

 Clinical associations 

As the COO induced effect before, this effect is significantly associated with IPI scores, albeit slightly less so 

(both R-CHOP treated cohorts have IPI annotations and both are significantly associated: GSE10846.R-CHOP  3.8 ⋅
10 and   0.03). Again, this is not untypical for effects with strong predictive performance and 

indicates that some molecularly explainable survival differences can already be predicted by macroscopic 

clinical variables underlying the IPI score. 

 Genomic associations 

Using the same gene scores for ranking, gene set enrichment analyses revealed only six significantly enriched 

signatures (filtering by |enrichment	score|  0.67 as before). As could be expected by rank #4 for the association 

with subtypes(cf. Figure III.3.2.2.a), again several known ABC-versus-GCB-DLBCL gene signatures are significantly 

enriched(Table III.3.3.1.a). However, one should be cautious not to overinterpret significant enrichment as it is not 

sufficient for high correlation of signature genes to an effect(cf.  III.3.4.1). 

Signatures with a positive enrichment score are more relevant for interpretation, as the effect consists 

predominantly of top correlated and only of few and relatively weakly anti-correlated genes. None of the four 

top enriched signatures does contain all top genes of   134; however, they contain genes that are only 

weakly correlated to the effect. This implies that   134 contains a subset of known subtype-specific genes 

that are highly correlated to each other, but so far scattered over various different gene signatures or 

embedded in larger and less specific signatures. To further elucidate biological implications of this, an 

individual review of top genes of   134 is indicated. 

Like for the COO induced effect(III.3.2.2), gene ontology analysis did not reveal any specific and significantly 

overrepresented terms; some terms like the nuclear envelope(cf. GO:0005635) are significant, but not specific (4/44 

top genes belong to this term, but it is comprised of 109/20370 measured genes;   8.9 ⋅ 10 via 

hypergeometric test). 

 

Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean log2( 

ratio) 

 (-test 
versus 
zero) 

Down- 
reg. ratio 

Upreg.  
ratio 

StaudtSigDB_dNov2012 GCB_gt_ABC_LC 11 10 0.849 0.0020 0.2% -1.346 0.0009 100.0% 0.0% 

StaudtSigDB_dNov2012 
Germinal_center_B_cell_DLBCL-

survival_predictor 
37 34 0.765 0.0021 0.2% -0.987 4.9E-11 98.3% 1.7% 

StaudtSigDB_dNov2012 Germinal_center_Bcell_DLBCL 59 55 0.741 0.0020 0.2% -0.905 1.4E-15 97.0% 3.0% 
GeneSigDB_v4_Sept2011 Lymphoma_Tome05_151genes 46 44 0.736 0.0019 0.2% -0.957 2.9E-13 95.6% 4.4% 
StaudtSigDB_dNov2012 ABC_gt_GCB_LC 15 15 -0.678 0.0019 0.2% 0.439 5.6E-05 0.0% 100.0% 

MolSigDBv4_0_dMay2014 
Xu_response_to_tretinoin-

and_nsc682994_dn 
15 15 -0.688 0.0020 0.2% 0.053 0.2324 38.7% 61.3% 

 

Table III.3.3.1.a) Top-enriched signatures by   134 

Signatures with |enrichment	score|  0.67 and at least 10 measured members are listed for genes ranked by GEP effect   134.  
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005635
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 Preliminary top genes analysis 

For probesets with 
  0.4, 69 unique genes from 19 chromosomes participate in the effect, suggesting 

that this effect reflects a functional genomic network, rather than just reflecting local aberrations on DNA level. 

For 
  0.5, 19 unique genes from 7 chromosomes remain. 

The most specific effect gene is FGD6 with ,FGD6  0.84 (for its top correlated probeset). Its association 

with the effect is verified by five independently measured and highly correlated probesets. FGD6 is located in 

12q22 and is a protein coding gene with validated sequence as per RefSeq[106] status(information via 

http://www.ncbi.nlm.nih.gov/gene, [107], April 2015). Literature screening did not reveal any direct association with DLBCL. A 

retrospective medical study[108] about toxic side effects of several groups of chemotherapeutic agents revealed 

that a single-nucleotide polymorphism within FGD6 (adenine instead of guanine at base pair 95490248) can 

cause severe neutropenia/leucopenia for patients of various cancers when administered with Paclitaxel and 

carboplatin agents (  2.46 ⋅ 10). This might indicate a possible functional role of FGD6 in lymphocytes and 

maybe for B cells. 

KLHL6 follows at correlation rank #2 (,
  0.75 for its top probeset); its association with this effect is 

confirmed by four independently measured probesets. It is located in 3q27.1 and is also a protein coding gene 

with validated RefSeq status. A related molecular 

immunology study[109] compared gene expressions of ex-

vivo B cells from sheep that undergo hypermutation 

during antigen-independent development with in-vitro 

B cells having the same process arrested. (Normally, 

antigen-independent hypermutation builds the primary 

antibody reservoir.) The study revealed that KLHL6 

might be involved in the germinal center B-cell 

differentiation pathway. Furthermore, KLHL6 was 

exclusively expressed in lymphoid tissues compared to 

several other human tissues. Like BCL6 (that is also 

among top genes of   134), the KLHL6 protein 

contains a domain that is known for transcriptional 

repression activity. Combining several other results like 

the relevance of receptor cross-linking in the germinal 

center differentiation program, it was hypothesized that 

KLHL6 may be involved in re-modeling actin micro-

filaments during germinal center differentiation. 

LPP follows at correlation rank #3 (,
  0.74 for 

its top probeset; supported by four other correlated 

probesets). It is a protein coding gene with reviewed 

RefSeq status and is located in 3q28. A related high 

resolution genome-wide association study[110] revealed a 

susceptibility locus in the intergenic region between 

BCL6 and LPP on 3q27 (of length ~400kB) for non-

Hodgkin lymphoma in Chinese population. This locus is 

associated with increased risk, especially in DLBCL ( 
1.14 ⋅ 10), but not in non-B cell lymphomas. 

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


,  

. 
,  

1555137_a_at FGD6 12q22 1.18 0.84 1.3E-82 0.99 
228167_at KLHL6 3q27.1 1.05 0.75 1.8E-55 0.79 
243142_at FGD6 12q22 0.94 0.83 7.6E-79 0.79 
241879_at LPP 3q28 1.03 0.72 1.2E-48 0.74 
202822_at LPP 3q28 1.00 0.74 5.4E-53 0.74 

1555275_a_at KLHL6 3q27.1 1.06 0.69 3.7E-44 0.73 
226799_at FGD6 12q22 0.89 0.82 7.8E-73 0.72 
235000_at LPP 3q28 0.92 0.72 7.2E-50 0.67 

1555136_at FGD6 12q22 0.96 0.65 6.8E-37 0.62 
224811_at LPP 3q28 0.92 0.67 5.2E-40 0.61 

1556579_s_at IGSF10 3q25.1 1.02 0.58 3.5E-28 0.59 
240866_at  3q28 0.82 0.72 2.3E-48 0.59 
219901_at FGD6 12q22 0.71 0.75 5.8E-56 0.53 

241695_s_at  3q27.1 0.72 0.73 3.7E-51 0.52 
1560397_s_at KLHL6 3q27.1 0.84 0.57 3.4E-27 0.48 
1560396_at KLHL6 3q27.1 0.92 0.50 1.8E-20 0.46 
219304_s_at PDGFD 11q22.3 0.74 0.59 2.4E-29 0.44 
239697_x_at C3orf67 3p14.2 0.84 0.52 6.2E-22 0.44 
243573_at  3q28 0.61 0.70 8.0E-46 0.43 
231455_at LINC00487 2p25.2 0.92 0.45 1.8E-16 0.42 

1569344_a_at  7p21.1 0.85 0.47 3.9E-18 0.40 
1562637_at SAMD12 8q24.12 0.69 0.55 7.3E-25 0.38 
212458_at SPRED2 2p14 0.64 0.54 7.5E-24 0.35 

1558469_at LPP 3q27.3 0.60 0.56 3.0E-26 0.34 
213906_at MYBL1 8q13.1 0.67 0.50 1.7E-20 0.33 

218331_s_at FAM208B 10p15.1 0.71 0.47 1.2E-17 0.33 
218862_at ASB13 10p15.1 0.69 0.47 5.4E-18 0.32 
240144_at DNASE1 16p13.3 0.63 0.50 6.4E-20 0.31 
238181_at  1q31.2 0.67 0.47 1.8E-17 0.31 
235521_at HOXA3 7p15.2 0.66 0.46 4.7E-17 0.30 

217966_s_at FAM129A 1q25.3 0.72 0.42 5.4E-14 0.30 
204530_s_at TOX 8q12.1 0.65 0.45 1.3E-16 0.30 
244165_at FAM208B 10p15.1 0.62 0.47 4.0E-18 0.29 
243040_at  8q24.12 0.53 0.54 7.3E-24 0.28 
244887_at  1q31.2 0.65 0.43 3.9E-15 0.28 
235800_at  10q25.3 0.63 0.44 1.3E-15 0.28 
243198_at TEX9 15q21.3 0.55 0.49 8.2E-20 0.27 
212560_at SORL1 11q24.1 0.52 0.52 1.8E-22 0.27 
225997_at MOB1B 4q13.3 0.57 0.48 1.7E-18 0.27 
227354_at PAG1 8q21.13 0.53 0.51 2.1E-21 0.27 

204680_s_at RAPGEF5 7p15.3 0.52 0.51 1.3E-21 0.27 
210712_at LDHAL6B 15q22.2 0.48 0.56 4.7E-26 0.27 

1560180_at  2p23.1 0.62 0.43 5.7E-15 0.27 
215408_at  15q22.2 0.61 0.43 6.2E-15 0.26 
231442_at ZPBP2 17q12 0.55 0.48 1.2E-18 0.26 

1556755_s_at LOC286149 8q22.1 0.54 0.47 4.5E-18 0.26 

http://www.ncbi.nlm.nih.gov/gene
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Other top probesets with ,__
  0.73, 

,_
  0.72 and ,_

  0.70 are located 

in genomic vicinity of either KLHL6 or LPP. 

Presumably they measure expressions of the same 

genes, because they are genomically located directly 

before or after them (with in part overlapping 

probeset sequence intervals). But they do not have a 

gene annotation so far. In any case, they seem to be 

biologically related, because sequences underlying 

243573_at(transcript AA648962) and 241695_s_at(transcript 

AA648986) were both defined with human tonsillar cells 

that were enriched for germinal center B cells by flow 

sorting(provided by L.M. Staudt, National Cancer Institute, 1997). 

The locus 3q27 is known for typical translocations in 

B-cell lymphoma, but these translocations alone could 

not predict significant survival differences in 

DLBCL[111]. However, as this study was only based on 

14/93 DLBCL patients having 3q27 translocations, the 

study size might be too small to reach significance on 

survival level. Anyhow, the low 15% incidence of these 

3q27 translocations cannot explain the consistent GEP 

signal of effect   134, as it exists in most samples. 

While both BCL6 (3q27.3) and LPP (3q28) are top 

genes of   134, the other top gene KLHL6 in genomic 

vicinity (3q27.1) is located approximately 4.3MB 

before them. This indicates that a functional relationship may be needed to establish the correlation to the 

reported 400kB short susceptibility locus between BCL6 and LPP. To further examine the possibility of a 

reflection of a chromosomal feature on GEP level, 147 additional probesets have been analyzed that are 

located between KLHL6 in 3q27.1 and LPP in 3q28. Expressions of these 147 probesets are not correlated to 

the effect, but absolute expression levels (measured by their average logintensities) over all samples) are 

higher for 35/147 probesets than average logintensities) for KLHL6 and LPP (see  DLBCL Master Table 

2015, gene orders.xlsx). If a chromosomal feature without any connection to or modulation by a functional 

genomic network was reflected by this GEP effect, these 35 expressed probesets between KLHL6 and LPP 

should also be correlated to this effect, but this is not the case. 

MYBL1 (8q13.1) is depicted at rank #1 in the effect plot(Figure III.3.3.1.a), but more due to its strongly differential 

expression, rather than by high correlation to other genes in the effect (,
  0.50; this is comparable to 

MYBL1’s moderate correlation to the COO induced effect, i.e. ,  0.42). No direct relation of this gene 

to DLBCL has been found in the literature. However, for diffuse pediatric low-grade gliomas (PLGG), MYBL1 is 

known as partially duplicated transcription factor based on gains of its 8q13.1 locus[112]. (These aberrations 

result in truncated MYBL1 transcripts. A correspondingly transformed cell line formed tumors in nude mice, 

whereas the same cell line having full-length MYBL1 wild type constructs could not form any tumors.) 

202821_s_at LPP 3q28 0.48 0.53 2.7E-23 0.26 
203284_s_at HS2ST1 1p22.3 0.58 0.44 7.8E-16 0.26 
215405_at  15q22.2 0.52 0.49 1.3E-19 0.25 
219703_at MNS1 15q21.3 0.52 0.49 1.6E-19 0.25 

1566165_at  2q31.1 0.54 0.47 8.7E-18 0.25 
235171_at LOC100505501 8q12.1 0.51 0.49 1.1E-19 0.25 

203769_s_at STS Xp22.31 0.51 0.48 5.3E-19 0.25 
228464_at MIR3685 12q22 0.44 0.55 1.0E-24 0.24 
229588_at DNAJC10 2q32.1 0.52 0.46 3.9E-17 0.24 
231181_at  8q23.2 0.58 0.41 1.7E-13 0.24 

1556758_at FAM208B 10p15.1 0.49 0.48 1.8E-18 0.23 
244185_at  12q22 0.47 0.48 1.1E-18 0.23 
232471_at  15q22.2 0.49 0.47 1.5E-17 0.23 

1568751_at RGS13 1q31.2 0.55 0.41 3.0E-13 0.22 
239691_at C12orf77 12p12.1 0.46 0.48 7.8E-19 0.22 
220168_at CASC1 12p12.1 0.49 0.45 5.6E-16 0.22 
239249_at  3q27.3 0.41 0.51 1.2E-21 0.21 
213156_at  3q13.31 0.49 0.42 1.9E-14 0.21 

215990_s_at BCL6 3q27.3 0.41 0.50 1.3E-20 0.21 
241492_at  5q31.3 0.45 0.45 2.0E-16 0.20 
230707_at SORL1 11q24.1 0.42 0.48 1.3E-18 0.20 
240777_at SYNE2 14q23.2 0.46 0.44 2.0E-15 0.20 

1554168_a_at SH3KBP1 Xp22.12 0.45 0.44 7.2E-16 0.20 
203140_at BCL6 3q27.3 0.42 0.47 3.4E-18 0.20 
232125_at  3q13.31 0.47 0.41 7.4E-14 0.20 
219551_at EAF2 3q13.33 0.48 0.40 5.3E-13 0.19 
214276_at KLF12 13q22.1 0.42 0.47 1.1E-17 0.19 

1566242_at  7q22.1 0.41 0.46 3.9E-17 0.19 
212640_at PTPLB 3q21.1 0.41 0.45 1.4E-16 0.18 
225626_at PAG1 8q21.13 0.46 0.40 4.8E-13 0.18 
227713_at KATNAL1 13q12.3 0.45 0.41 2.7E-13 0.18 

1554122_a_at HSD17B12 11p11.2 0.44 0.41 1.4E-13 0.18 
239516_at  1q41 0.44 0.41 2.7E-13 0.18 

209967_s_at CREM 10p11.21 0.42 0.41 7.5E-14 0.17 

224586_x_at SUB1 5p13.3 -0.44 -0.49 2.9E-19 -0.21 
1566734_at LOC283454 12q24.22 -0.54 -0.44 8.2E-16 -0.24 
212664_at TUBB4A 19p13.3 -0.68 -0.49 7.2E-20 -0.34 

Table III.3.3.1.b) Top genes in validated effect   134  

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   134 
  (cf. Table III.1.5); filtered  0.4. 
 

,  Consensus gene correlations of   134; filtered  0.4. 
 

,   values for the correlations (cf. II.5.2.1) 

http://www.ncbi.nlm.nih.gov/nucest/AA648962
http://www.ncbi.nlm.nih.gov/nucest/AA648986
http://www.ncbi.nlm.nih.gov/nucest/AA648986
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For comparison, the probesets discussed for the three top genes are correlated only with ,FGD6
  0.22, 

,
  0.27 and ,

  0.25 to the COO induced effect   129, underlining that these two GEP effects 

describe genetically distinct or at the most partially correlated biology. 

 Inference 

As KLHL6 proteins contain a domain that is known for transcriptional repression activity and might be 

involved in the germinal center B-cell differentiation pathway[109], it could potentially be a tumor suppressor 

gene whose expression is required to switch off the hypermutation program in a subset of DLBCL cells. This 

would be consistent with significantly adverse patient outcome for lower KLHL6 expression. As they are 

linked by high GEP correlation, the same biological function might be associated with FGD6 and other top-

correlated genes of   134. 

These hypotheses about potential tumor suppressor genes could possibly be investigated by overexpression 

experiments in DLBCL cell lines that show low expression of effect   134. To identify these cell lines, they 

could be screened for their protein levels of KLHL6 and FGD6. Ideally, the proliferation of cells with low or 

nonexistent levels of these proteins can be stopped by corresponding overexpression experiments. 

 

III.3.3.2  ∈ 127, 131: A hierarchical survival effect prevailing in GCB DLBCL 

 Role in survival analysis 

Effect   127 is the best secondary predictor variable with   5.6 ⋅ 10  on top of the primary effect  
134 for the bivariate model trained with all samples from R-CHOP treated patients(III.2.2.1). It predicts 

hierarchical survival dependencies(III.2.2.3) that exclusively exist in the lower risk partition of the primary 

effect(Figure III.2.2.3.a). It can also significantly predict survival differences between GCB DLBCL patients, but not 

between ABC DLBCL patients. More precisely(cf. Figure III.2.2.3.b), 89/327 R-CHOP treated GCB DLBCL patients in the 

high risk interval of   127 have an average survival of only 55.1% while 218/327 patients in the baseline 

risk interval have an average survival of 78.4% (  5.6 ⋅ 10, log rank test). From the remaining 20/327 GCB 

DLBCL patients in the low risk interval of effect   127  17/20 survived (average survival of 85%, still 

significant with   0.018 relative to the high risk interval, despite the low sample number). 

Effect   131 qualified as best secondary variable on top of effect   134 with   1.6 ⋅ 10 for the 

quinvariate predictor model trained with all samples(III.2.5.1). Here,   127 followed on rank #2 with   2.0 ⋅
10 . Due to the high correlation of their consensus gene scores (;)

  0.80(cf. Eqn. III.1.3.2.b)) both effects share 

many top probesets (for one cohort, they are even based on the identical detected effect). Additionally, their 

sample eigensignal strengths(cf. Table III.1.5) from all four cohorts are correlated with 0.90, i.e. sample arrangements 

by either GEP effect are highly similar. Hence, it suffices to evaluate   127 in detail here; results should be 

transferrable to   131. 

To provide a direct validation of GEP effect   127 on patient survival level (rather than as secondary 

variable within larger predictor models), I fitted additional univariate Cox models that are only based on effect 

  127 to each of the four GCB DLBCL sub cohorts separately. Independent and highly significant validations 

succeeded based on both R-CHOP treated GCB DLBCL sub cohorts: ..  1.0 ⋅ 10  and 

..  5.4 ⋅ 10 . However, these analyses revealed another striking difference, this time 

between R-CHOP and CHOP therapy, as for CHOP-treated GCB DLBCL samples ..  0.44 

and  ..  0.77 only. The same difference (significant in R-CHOP.GCB, but not in CHOP.GCB) 

exists for   131. 
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Figure III.3.3.2) Validated effect   127, applied to GSE31312  

Secondary survival effect by R-CHOP based survival analysis(III.2.2) applied to GSE31312.R-CHOP (498 patients); it is genetically highly correlated to effect   131 , the 
secondary survival effect for survival analyses based on all samples(III.2.5). Enlarged binary classifications show censored/progression follow-up information 
(green/orange) as well as public subtypes (yellow/pink). At the right/lower tail, more GCB DLBCL patients with deaths or progressions were observed than could be 
expected by average GCB DLBCL survival.  
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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When sorting all patients by   127, subtypes are separated(cf. Figure III.3.2.2.a) with 72% agreement (  3.2 ⋅
10) and for   131 even with 83% agreement (  8.9 ⋅ 10). This trend together with the adverse 

outcome of ABC DLBCL compared to GCB DLBCL overlaps and hides the opposite survival trend within GCB 

DLBCL. Hence,   127 cannot predict a strong survival trend when applied to all DLBCL samples. This 

demonstrates that a multivariate survival analysis was necessary to reveal these dependencies and also shows 

that significant association of an effect to subtypes cannot provide a biologically complete characterization of 

underlying genes. With the background knowledge of these two opposite survival trends, they can now even 

be noticed visually: While the subtype trend is clearly visible, more GCB DLBCL patients had a progression or 

died in the upper/right interval than could be expected by average GCB DLBCL survival(Figure III.3.3.2). 

 Effect overview 

Effect   127 was unsupervisedly detected at rank #41 in GSE10846.R-CHOP and at rank #11 in GSE31312. 

It has been supervisedly validated on GEP level in all four cohorts (see 127* files at  C=Consensus 

Effects\(cohort subfolders)). 

Top probesets of effect   127 are depicted(cf. Figure III.3.3.2) for a relative correlation  0.5. It has a two-sided 

gradual gene expression eigensignal with approximately 65 correlated and 15 anti-correlated top probesets. 

Higher expressions of correlated genes (  0) are associated with adverse outcome. Consequently, lower 

expressions of anti-correlated genes (  0) are also associated with adverse outcome. As summarized 

above, this association exists within the lower risk partition of effect   134 and within GCB DLBCL, but 

neither in the high risk partition of   134 nor in ABC DLBCL. 

 Genomic associations 

Gene ontology analysis did no not reveal any significantly overexpressed and specific terms. On gene set 

level, 4/6 top enriched signatures are related to differential expression of Burkitt’s lymphoma (BL) relative  

to DLBCL: 

GCB DLBCL patients with adverse outcome have downregulated Hummel_Burkittslymphoma_dn(online 

interpretation card, [95]) and upregulated Hummel_Burkittslymphoma_up(online interpretation card, [95]). Superficially, this 

might suggests that these GCB DLBCL patients are misclassified BL rather than DLBCL cases. However, 

molecularly similarly determined BL patients showed a much higher 5-years survival of approximately 

80%[95.figure 3] that makes this conclusion questionable. Furthermore, even LymphomaHummel06_24genes(online 

interpretation card, [95]) with enrichment score 0.95 does not contain any of the GEP effect’s top genes(as listed in Table 

III.3.3.2.b), i.e. all signature genes are correlated with    0.4. As before, enrichment results are not specific 

enough and top correlated genes of this effect need to be analyzed individually to further elucidate its 

biological meaning. 

Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean log2( 

ratio) 

 (-test 
versus 
zero) 

Down- 
reg. ratio 

Upreg.  
ratio 

GeneSigDB_v4_Sept2011 Lymphoma_Hummel06_24genes 14 14 -0.950 0.0020 0.2% 0.314 0.0018 8.7% 91.3% 
MolSigDBv4_0_dMay2014 Hummel_Burkittslymphoma_dn 15 15 -0.883 0.0021 0.2% 0.316 0.0008 8.1% 91.9% 

StaudtSigDB_dNov2012 ABC_gt_GCB_LC 15 15 -0.755 0.0019 0.2% 0.464 8.3E-06 5.4% 94.6% 

HGNCSigDB_dMay2014 
Protein tyrosine phosphatases / 

Class I Cys-based PTPs: MAP kinase 
phosphatases 

11 11 -0.685 0.0019 0.2% 0.180 0.0502 11.5% 88.5% 

MolSigDBv4_0_dMay2014 Hummel_Burkittslymphoma_up 43 43 0.725 0.0021 0.2% -0.311 9.6E-06 91.5% 8.5% 
StaudtSigDB_dNov2012 GC_B_cell_BLhigh_DLBCLlow 36 35 0.734 0.0021 0.2% -0.550 2.0E-08 98.4% 1.6% 

 

Table III.3.3.2.a) Top-enriched signatures by   127 

Signatures with |enrichment	score|  0.67 and at least 10 measured members are listed for genes ranked by GEP effect   127.  
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

http://www.broadinstitute.org/gsea/msigdb/cards/HUMMEL_BURKITTS_LYMPHOMA_DN
http://www.broadinstitute.org/gsea/msigdb/cards/HUMMEL_BURKITTS_LYMPHOMA_DN
http://www.broadinstitute.org/gsea/msigdb/cards/HUMMEL_BURKITTS_LYMPHOMA_UP
http://compbio.dfci.harvard.edu/genesigdb/signaturedetail.jsp?signatureId=16760442-SuppTable5-2
http://compbio.dfci.harvard.edu/genesigdb/signaturedetail.jsp?signatureId=16760442-SuppTable5-2
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 Preliminary top genes analysis 

For probesets with 
   0.4, 71 unique genes from 

19 chromosomes participate in the effect, suggesting 

that it reflects a functional genomic network, rather than 

just reflecting local aberrations on DNA level. For 
  

0.5, 14 unique genes from 14 chromosomes remain. 

On the co-regulated side, several probesets with high 

correlations to the effect are available. The list is led by 

BACH2 (,  0.86, 6q15). Three unannotated 

probesets that measure transcribed sequences in direct 

genomic vicinity to BACH2 (with no other measured 

probeset in-between) are also highly correlated. 

Because their annotated sequence intervals are 

overlapped by BACH2-annotated probesets, they 

potentially still measure BACH2 RNA. 

A recent study[113] performed parallel to this work has 

already tested immunohistochemical BACH2 expression 

for its prognostic value in DLBCL. (Such prognostic 

factors are important in order to optimize therapeutic 

strategies, as molecular analyses are not readily 

available in clinical practice.) Indeed, for a cohort size of 

76 DLBCL patients, the BACH2-low group (  36) 

showed an average overall survival of 91% that was 

significantly higher (  0.026) than for the BACH2-high 

group (  40) with 72% average overall survival. 

Progression free survival showed the same trend ( 0.068). However, there was no significant difference 

between GCB DLBCL and non-GCB DLBCL classes. Non-

GCB DLBCL overall survival was even higher on average 

than GCB DLBCL overall survival. This fact and the small 

study size made it impossible to recognize that BACH2 

belongs to a hierarchical survival effect. 

Interestingly, the study also summarizes inconsistent 

findings from previous studies with respect to the 

survival impact of BACH2 expression in DLBCL. These 

inconsistencies are probably caused by and may be 

explained by this hierarchical survival impact of   127. 

(Its anti-aligned survival trend relative to the over-

lapping global subtype trend for the same genes might 

cause confusing and misleading results for univariate 

analyses.) 

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


,  

. 
,  

221234_s_at BACH2 6q15 1.46 0.86 1.3E-62 1.25 
236796_at  6q15 1.40 0.86 2.5E-64 1.21 
236307_at  6q15 1.36 0.82 1.6E-53 1.12 

209995_s_at TCL1A 14q32.13 1.48 0.51 9.5E-16 0.76 
212094_at PEG10 7q21.3 1.46 0.51 3.6E-15 0.74 
39318_at TCL1A 14q32.13 1.44 0.51 3.4E-15 0.73 

224990_at C4orf34 4p14 1.14 0.57 6.6E-20 0.65 
229513_at STRBP 9q33.3 0.93 0.68 9.8E-31 0.64 

1556451_at  6q15 0.80 0.75 2.3E-40 0.61 
201691_s_at TPD52 8q21.13 1.01 0.59 1.6E-21 0.60 
227052_at  4p14 1.04 0.55 3.3E-18 0.57 

227173_s_at BACH2 6q15 0.77 0.73 2.8E-36 0.56 
235380_at  10q11.21 0.92 0.53 1.8E-16 0.48 
238919_at  13q21.32 1.13 0.41 3.5E-10 0.47 
212092_at PEG10 7q21.3 0.93 0.50 1.2E-14 0.46 
224989_at  4p14 0.94 0.49 5.7E-14 0.46 

206864_s_at HRK 12q24.22 0.95 0.47 2.8E-13 0.45 
223245_at STRBP 9q33.3 0.75 0.60 2.1E-22 0.45 

233252_s_at STRBP 9q33.3 0.73 0.58 2.0E-20 0.42 
1566734_at LOC283454 12q24.22 0.99 0.42 1.9E-10 0.42 
221908_at RNFT2 12q24.22 0.78 0.53 7.3E-17 0.41 

212503_s_at DIP2C 10p15.3 0.91 0.44 1.5E-11 0.40 
1554161_at SLC25A27 6p12.3 0.76 0.53 1.6E-16 0.40 
206896_s_at GNG7 19p13.3 0.81 0.49 3.3E-14 0.40 
201690_s_at TPD52 8q21.13 0.74 0.53 5.2E-17 0.39 
208651_x_at CD24 Yq11.222 0.90 0.43 5.9E-11 0.39 
228818_at  8q21.13 0.75 0.52 6.2E-16 0.39 
266_s_at CD24 Yq11.222 0.94 0.40 9.3E-10 0.38 

216379_x_at CD24 6q21 0.89 0.41 5.5E-10 0.36 
236414_at  8q21.13 0.61 0.57 6.1E-20 0.35 

201689_s_at TPD52 8q21.13 0.69 0.50 7.1E-15 0.35 
209771_x_at CD24 Yq11.222 0.85 0.40 1.3E-09 0.34 
227798_at SMAD1 4q31.21 0.85 0.40 1.4E-09 0.34 
209590_at BMP7 20q13.31 0.73 0.45 2.9E-12 0.33 
227407_at TAPT1 4p15.32 0.65 0.50 3.9E-15 0.33 
238712_at  3p13 0.65 0.49 2.1E-14 0.32 

203434_s_at MME 3q25.2 0.76 0.40 1.2E-09 0.31 
204165_at WASF1 6q21 0.66 0.46 1.1E-12 0.30 

223246_s_at STRBP 9q33.3 0.57 0.53 5.6E-17 0.30 
232286_at  2q11.2 0.74 0.41 7.6E-10 0.30 
222336_at C4orf34 4p14 0.63 0.48 1.8E-13 0.30 
227533_at  1q25.2 0.59 0.51 2.3E-15 0.30 
225978_at RIMKLB 12p13.31 0.70 0.42 1.1E-10 0.30 
223522_at MIR600HG 9q33.3 0.52 0.57 1.0E-19 0.30 

1552774_a_at SLC25A27 6p12.3 0.54 0.54 2.5E-17 0.29 
1566880_at  2q11.2 0.59 0.49 4.2E-14 0.29 
226164_x_at RIMKLB 12p13.31 0.58 0.49 3.4E-14 0.29 
229670_at  1q24.2 0.63 0.45 9.7E-12 0.28 
241577_at  2q11.2 0.63 0.44 1.9E-11 0.28 
239884_at CADPS 3p14.2 0.64 0.43 4.6E-11 0.28 
225999_at RIMKLB 12p13.31 0.61 0.45 7.4E-12 0.27 
225421_at PM20D2 6q15 0.55 0.49 2.9E-14 0.27 

1557814_a_at  5q14.1 0.51 0.50 4.1E-15 0.26 
236655_at TPD52 8q21.13 0.52 0.50 1.0E-14 0.26 
239862_at  8q21.13 0.52 0.48 1.2E-13 0.25 

242090_x_at  NA 0.57 0.43 6.3E-11 0.25 
229552_at LOC283454 12q24.22 0.58 0.42 1.9E-10 0.24 

208754_s_at NAP1L1 12q21.2 0.50 0.48 1.0E-13 0.24 
242681_at  1p36.22 0.56 0.43 5.9E-11 0.24 
231817_at USP53 4q26 0.57 0.42 2.8E-10 0.24 
233251_at STRBP 9q33.3 0.46 0.51 2.5E-15 0.23 
202478_at TRIB2 2p24.3 0.53 0.43 3.8E-11 0.23 

229344_x_at RIMKLB 12p13.31 0.48 0.47 3.3E-13 0.23 
215221_at  3p13 0.44 0.51 1.9E-15 0.23 
225763_at RCSD1 1q24.2 0.54 0.40 1.0E-09 0.22 
219655_at C7orf10 7p14.1 0.51 0.43 9.4E-11 0.22 
235310_at GCET2 3q13.2 0.53 0.41 6.7E-10 0.22 
218988_at SLC35E3 12q15 0.52 0.41 3.9E-10 0.21 
228991_at CDK13 7p14.1 0.44 0.48 1.2E-13 0.21 
228081_at CCNG2 4q21.1 0.46 0.45 3.5E-12 0.21 
227369_at SERBP1 1p31.3 0.51 0.41 5.7E-10 0.21 

238484_s_at SSBP2 5q14.1 0.47 0.44 2.6E-11 0.21 
241933_at QRSL1 6q21 0.45 0.44 1.0E-11 0.20 

201688_s_at TPD52 8q21.13 0.50 0.40 9.5E-10 0.20 
238483_at SSBP2 5q14.1 0.46 0.43 5.2E-11 0.20 
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The second gene in terms of correlation is STRBP 

(,  0.68, 9q33.3). Regarding STRBP, no B cell 

or lymphomagenesis related literature could be found. 

Other co-regulated probesets for TCL1A (, 
0.51, 14q32.13), PEG10 (,  0.51, 7q21.3) and 

C4orf34 (,  0.57, 4p14) show strong 

differential expressions, but not as high correlation to 

the effect. 

The anti-regulated side is led by LINC00152 

(,
  0.58, 2p11.2); this is a long intergenic 

non-protein-coding RNA. No direct link to DLBCL could 

be located, but LINC00152 was found to be 

significantly expressed in gastric cancer[114] compared 

to normal adjacent tissue (fold change  1.93,   6.9 ⋅
10). It has subsequently been suggested as 

biomarker[115] for gastric cancer, because its 

expression levels were significantly increased 

compared to mucosa from healthy controls (  0.004) 

as well as when comparing gastric juice between 

gastric cancer patients and normal controls (  0.002). 

Interestingly, another study[116] showed that LINC00152 is being significantly and strongly upregulated in 

HeLa cells in response to chemical stressors, especially by Cisplatin (fold change of 32). Hence, it was 

suggested as surrogate indicator of general or specific cell stress. 

Other anti-regulated genes include BATF (,  0.53, 14q24.3) and IRF4 (,
  0.49, 6p25.3). 

These genes are related to T cell lymphomas and inhibiting IRF4 (and MYC) caused toxicity in ALCL cell lines[76]. 

While these properties might be transferrable to ABC DLBCL cells (given their relative overexpression of IRF4 

and BATF), for the GCB DLBCL subgroup in question low expressions of these genes are associated with 

significantly adverse patient outcome. 

 Inference 

To elucidate the biological pathway underlying   127 and the cause of its hierarchical survival impact 

relative to effect   134, further biological experiments might potentially be helpful. Analytically, BACH2 

seems to be a promising oncogene candidate for the lower risk partition of   134, i.e. predominantly for GCB 

DLBCL patients. To test this hypothesis, GCB DLBCL cell lines with high BACH2 protein expression could be 

selected for BACH2 knockdown experiments. 

Additionally, it might be biologically illuminating to investigate the cause why the survival impact of   127 

is highly significant for GCB DLBCL patients following R-CHOP therapy, but not for the CHOP therapy. The 5-

years survival in the higher risk partition of   127 for R-CHOP-treated GCB DLBCL patients equals 

approximately 55%. This is comparable to GCB DLBCL 5-years survival following CHOP therapy. Hence, one 

conceivable hypothesis pending further validation might be that GCB DLBCL patients in this higher risk 

partition of   127 cannot profit from Rituximab. 

 

236199_at  10q11.21 0.43 0.46 2.5E-12 0.20 
218949_s_at QRSL1 6q21 0.48 0.40 1.0E-09 0.20 
244185_at  12q22 0.44 0.44 2.7E-11 0.19 

1557452_at  5q14.1 0.42 0.44 1.8E-11 0.19 
223624_at ZFAND4 10q11.22 0.44 0.42 2.6E-10 0.18 
230624_at SLC25A27 6p12.3 0.45 0.40 1.1E-09 0.18 
237187_at  12q24.22 0.44 0.41 8.6E-10 0.18 

214042_s_at RPL22 3q26.2 0.43 0.42 2.2E-10 0.18 
201678_s_at C3orf37 3q21.3 0.44 0.40 1.3E-09 0.18 

240176_at  2p11.2, 2q13 -0.41 -0.42 2.1E-10 -0.17 
221658_s_at IL21R 16p12.1 -0.43 -0.41 4.1E-10 -0.18 
213622_at COL9A2 1p34.2 -0.42 -0.43 3.6E-11 -0.18 
244612_at  NA -0.45 -0.41 3.6E-10 -0.19 

202644_s_at TNFAIP3 6q23.3 -0.48 -0.40 8.9E-10 -0.19 
235668_at PRDM1 6q21 -0.46 -0.43 8.0E-11 -0.20 
219424_at EBI3 19p13.3 -0.47 -0.42 1.3E-10 -0.20 
238567_at SGPP2 2q36.1 -0.53 -0.43 9.0E-11 -0.23 

216942_s_at CD58 1p13.1 -0.58 -0.44 2.4E-11 -0.25 
1562056_at  2p11.2, 2q13 -0.54 -0.51 1.4E-15 -0.28 
220990_s_at VMP1 17q23.1 -0.57 -0.50 8.1E-15 -0.28 
226560_at  2q36.1 -0.64 -0.47 3.7E-13 -0.30 

211744_s_at CD58 1p13.1 -0.71 -0.47 4.2E-13 -0.33 
205173_x_at CD58 1p13.1 -0.72 -0.46 1.1E-12 -0.33 
205965_at BATF 14q24.3 -0.63 -0.53 4.2E-17 -0.33 
204562_at IRF4 6p25.3 -0.71 -0.49 4.4E-14 -0.35 
225799_at LINC00152 2p11.2 -0.69 -0.58 1.3E-20 -0.40 

Table III.3.3.2.b) Top genes in validated effect   127  

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   127  
  (cf. Table III.1.5); filtered 

,   0.4. 
 

,  Consensus gene correlations; filtered 
,  0.4. 

 
,   values for the correlations (cf. II.5.2.1) 
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III.3.3.3   105: KIAA1217 (2nd predictor variable for the COO based model) 

 Role in survival analysis 

Effect   105 facilitates survival prediction 

on top of the standard COO induced effect with   4.5 ⋅ 10(Figure III.2.3.1). 

Like   127 relative to   134, the survival 

trend predicted by this effect is anti-aligned to 

subtype sorting by   129(Table III.2.3.2) with a 

Cox coefficient of   0.321. This can even 

be seen in its GEP definition plot(Figure III.3.3.3), as 

ABC DLBCL samples are overrepresented on 

the right side, while more progression events 

and deaths are observed on the opposite side.  

Hence, a lower KIAA1217 expression 

corresponds to higher risk and adverse 

outcome for a subset of DLBCL patients. 

 Effect overview 

Two unsupervised detections underlie this 

consensus effect (rank #71 in GSE10846-

CHOP and rank #92 in GSE31312.R-CHOP). 

They have correlated probesets from some 

additional genes, but after soft intersection by 

consensus gene axis construction(cf. III.1.3), 

KIAA1217 is the only remaining top 

correlated gene. More precisely, 7 indepen-

dently measured probesets that are 

correlated with 
   0.4 remain(cf. Table 

III.3.3.3.a), some of which are unannotated, but all 

are located in direct genomic vicinity to 

KIAA1217 in 10p12.1. 

Hence it cannot be excluded that this effect 

is a reflection of a chromosomal feature in the 

GEP signal. 

 

 Preliminary top gene analysis 

KIAA1217 is a protein-coding gene with 

validated RefSeq[106] status(cf. gene ID 56243), but no 

B cell or lymphomagenesis related literature 

could be found about this gene. 

 

 
Figure III.3.3.3) Validated effect   105, applied to GSE31312  

The secondary survival effect for the predictor based on the COO induced effect(III.2.3) is 
applied to cohort GSE31312.R-CHOP (498 patients). Enlarged binary classification stripes 
show censored/progression follow-up information (green/orange) as well as public 
subtypes (yellow/pink). 

http://www.ncbi.nlm.nih.gov/gene/56243
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 Inference 

Due to its high genomic specificity and the lack of 

strongly correlated genes from other chromosomes, 

this GEP effect may reflect e.g. a DNA level aberration; 

copy number measurements(e.g. from GSE11318, [11]) for its 

locus could clarify this. 

Due to its prognostic value on top of the COO induced 

effect and its anti-aligned survival effect, analyzing 

KIAA1217 experimentally might also be interesting. 

To this end, DLBCL cell lines could first be screened for 

low KIAA1217 protein levels relative to DLBCL 

average. Ideally, proliferation of a subset of these cell 

lines could be reduced by KIAA1217 overexpression 

experiments. 

However, this effect cannot explain any strong 

survival dependencies on top of the primary survival 

effect   134; it only ranks #37 with   0.006(cf. Figure 

III.2.5.1.b). Therefore, experiments for this gene seem to be 

of second priority from an analytical point of view. 

III.3.3.4   5: A stromal effect (CHOP based model, 1st predictor variable) 

 Role in survival analysis 

Sorting patients by the eigensignal of effect   5 

shows the most consistent survival prediction (  2.2 ⋅
10) of all discovered GEP effects for CHOP-treated 

patients(Figure III.2.4.1.a). But for R-CHOP treated patients it 

only ranks #14th (  8.4 ⋅ 10). 

 Effect overview 

The effect has been unsupervisedly quad-discovered 

effect with detection ranks #1(GSE10846.CHOP), #1(GSE10846.R-

CHOP), #1(GSE4475.nonMBL) and #2(GSE31312.R-CHOP). It is one of the 

largest discovered GEP effects in terms of number of 

correlated and differentially expressed genes. It is the 

largest effect that is associated with a significant 

survival impact. 

Higher expressions of this effect correspond to lower 

risk and more favorable outcome(cf. Table III.2.4.2). 

The effect has a one-sided eigensignal(Figure III.3.3.4.d, page 199) 

that has more than 650 probesets correlated stronger 

than 
   0.5. To unveil its biological meaning, I focus 

this evaluation on its top genes only(Table III.3.3.4.a). 

Top genes in   105 

Probeset 
Gene  

Symbol 
HG19  
locus 

,  ,  ,  
,  
. 

,  
231807_at KIAA1217 10p12.1 1.26 0.92 5.9E-68 1.16 

1554438_at KIAA1217 10p12.1 1.01 0.87 5.7E-51 0.88 
232762_at KIAA1217 10p12.1 0.79 0.86 3.7E-49 0.69 
244147_at  10p12.1 0.58 0.78 6.8E-34 0.45 
214912_at  10p12.2 0.60 0.74 1.9E-29 0.45 
242846_at  10p12.2 0.45 0.69 8.4E-24 0.31 

1562966_at KIAA1217 10p12.1 0.50 0.61 1.7E-17 0.30 
235333_at B4GALT6 18q12.1 0.51 0.37 1.1E-06 0.19 
203562_at FEZ1 11q24.2 0.59 0.31 5.8E-05 0.18 
241163_at  3q26.31 0.50 0.31 5.7E-05 0.16 
229070_at ADTRP 6p24.1 0.48 0.31 6.1E-05 0.15 

224374_s_at EMILIN2 18p11.32 0.38 0.35 5.2E-06 0.13 
225202_at RHOBTB3 5q15 0.40 0.32 3.8E-05 0.13 
232352_at ISL2 15q24.3 0.37 0.34 8.4E-06 0.13 
226099_at ELL2 5q15 0.37 0.32 3.0E-05 0.12 
225662_at ZAK 2q31.1 0.36 0.32 3.9E-05 0.12 

204083_s_at TPM2 9p13.3 0.37 0.30 1.1E-04 0.11 
206034_at SERPINB8 18q22.1 0.31 0.35 4.1E-06 0.11 
202950_at CRYZ 1p31.1 0.36 0.30 1.0E-04 0.11 
206490_at DLGAP1 18p11.31 0.34 0.30 9.8E-05 0.10 
233002_at PPP4R4 14q32.12 0.33 0.30 1.0E-04 0.10 

213060_s_at CHI3L2 1p13.3 -0.42 -0.31 7.1E-05 -0.13 

Table III.3.3.3.a) Top genes in validated effect   105 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 ,  Components of the consensus gene axis of effect   105  
  (cf. Table III.1.5); filtered ,   0.3. 
 

,  Consensus gene correlations; filtered 
,  0.3. 

 
,   values for the correlations (cf. II.5.2.1) 

Top genes in   5 

Probeset 
Gene  

Symbol 
HG19  
locus 

,  ,  ,  
,  
. 

,  
202404_s_at COL1A2 7q21.3 1.88 0.96 7.5E-125 1.81 
201852_x_at COL3A1 2q32.2 1.87 0.96 6.5E-120 1.78 

1555778_a_at POSTN 13q13.3 2.02 0.88 4.2E-84 1.78 
211161_s_at COL3A1 NA 1.80 0.95 7.0E-117 1.72 
202310_s_at COL1A1 17q21.33 1.80 0.94 7.9E-104 1.69 
202311_s_at COL1A1 17q21.33 1.85 0.91 4.3E-88 1.69 
215076_s_at COL3A1 2q32.2 1.72 0.95 4.9E-114 1.63 
210809_s_at POSTN 13q13.3 1.85 0.87 1.4E-71 1.61 
212464_s_at FN1 2q35 1.66 0.93 3.1E-96 1.53 
227140_at INHBA 7p14.1 1.72 0.87 5.9E-81 1.50 
221730_at COL5A2 2q32.2 1.58 0.93 1.2E-101 1.48 

202403_s_at COL1A2 7q21.3 1.55 0.95 9.3E-118 1.48 
221729_at COL5A2 2q32.2 1.56 0.94 1.8E-105 1.47 
212489_at COL5A1 9q34.3 1.58 0.91 2.6E-88 1.44 

211719_x_at FN1 2q35 1.54 0.93 4.1E-97 1.43 
212354_at SULF1 8q13.2 1.54 0.90 8.4E-85 1.39 

216442_x_at FN1 2q35 1.50 0.93 4.6E-99 1.39 
210495_x_at FN1 2q35 1.49 0.93 8.5E-97 1.38 
225664_at COL12A1 6q13 1.63 0.84 1.8E-69 1.37 
225681_at CTHRC1 8q22.3 1.56 0.86 2.3E-76 1.35 
209335_at DCN 12q21.33 1.53 0.87 3.8E-70 1.33 

221731_x_at VCAN 5q14.3 1.47 0.90 2.0E-83 1.33 
203083_at THBS2 6q27 1.43 0.92 7.3E-92 1.32 

201744_s_at LUM 12q21.33 1.47 0.89 4.1E-77 1.31 
211896_s_at DCN 12q21.33 1.49 0.87 2.8E-70 1.29 
212353_at SULF1 8q13.2 1.51 0.85 1.6E-64 1.29 
209596_at MXRA5 Xp22.33 1.45 0.88 1.4E-73 1.28 

204620_s_at VCAN 5q14.2 1.38 0.89 4.7E-79 1.23 
202620_s_at PLOD2 3q24 1.39 0.87 3.0E-72 1.22 
201893_x_at DCN 12q21.33 1.36 0.89 4.0E-77 1.21 
201069_at MMP2 16q12.2 1.40 0.86 3.6E-68 1.20 

215646_s_at VCAN 5q14.3 1.39 0.85 1.0E-63 1.18 
212488_at COL5A1 9q34.3 1.33 0.89 2.7E-76 1.18 

211813_x_at DCN 12q21.33 1.33 0.88 1.8E-72 1.17 
203325_s_at COL5A1 9q34.3 1.29 0.88 2.8E-75 1.14 
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 Identification by gene ontology 

For so far presented survival effects  ∈129, 134, 127, 131, 105 no highly significant gene 

ontology terms existed. For   5 however, several GO 

terms are significantly overrepresented for cellular 

components(cf. Figure III.3.3.4.a), molecular functions and 

biological processes(cf. Figure III.3.3.4.b). The top 30-40 genes 

of this effect already suffice for significance. Based on 

these results,   5 can be interpreted as a measure-

ment of extracellular matrix structural constituents(cf. 

GO:0005201) with   2.2 ⋅ 10  and of related terms for 

the extracellular matrix. 

Small GO terms might serve as starting points for a 

biologically more specific interpretation. For example, 

the molecular function of platelet-derived growth 

factor binding(cf. GO:0048407) is significant (5 of the top 34 

genes belong to this term, while the term contains only 

11 genes in total from all measured 20370 genes; this 

results in   4.4 ⋅ 10 via hypergeometric test). 

201438_at COL6A3 2q37.3 1.23 0.92 1.6E-90 1.13 
1556499_s_at COL1A1 17q21.33 1.27 0.88 7.8E-84 1.12 

224694_at ANTXR1 2p13.3 1.32 0.83 1.2E-65 1.09 
204619_s_at VCAN 5q14.2 1.22 0.86 8.3E-69 1.06 
226777_at ADAM12 10q26.2 1.30 0.80 6.9E-59 1.04 
229218_at COL1A2 7q21.3 1.18 0.86 9.7E-76 1.02 
203131_at PDGFRA 4q12 1.21 0.83 5.1E-58 1.00 

213905_x_at BGN Xq28 1.13 0.87 5.3E-71 0.99 
203477_at COL15A1 9q22.33 1.18 0.81 2.3E-53 0.95 
227399_at VGLL3 3p12.1 1.19 0.80 8.8E-59 0.95 

207173_x_at CDH11 16q21 1.12 0.83 1.1E-57 0.93 
202766_s_at FBN1 15q21.1 1.08 0.85 4.9E-64 0.92 
202237_at NNMT 11q23.2 1.09 0.84 3.9E-60 0.91 
212344_at SULF1 8q13.2 1.05 0.85 7.4E-64 0.90 

225242_s_at CCDC80 3q13.2 1.10 0.81 7.6E-61 0.89 
201261_x_at BGN Xq28 1.03 0.86 3.9E-67 0.89 
211571_s_at VCAN 5q14.2 1.06 0.83 8.0E-59 0.88 
201505_at LAMB1 7q31.1 1.08 0.81 4.9E-54 0.88 
232458_at COL3A1 2q32.2 1.07 0.81 2.2E-60 0.87 

210986_s_at TPM1 15q22.2 1.07 0.81 5.8E-53 0.86 
209955_s_at FAP 2q24.2 0.99 0.85 3.1E-65 0.85 
212667_at SPARC 5q33.1 1.01 0.82 2.2E-56 0.83 
208782_at FSTL1 3q13.33 0.94 0.86 1.4E-68 0.81 

202202_s_at LAMA4 6q21 0.95 0.84 2.3E-62 0.80 
227628_at GPX8 5q11.2 0.95 0.82 7.4E-64 0.78 
228141_at GPX8 5q11.2 0.95 0.82 2.0E-62 0.77 

200665_s_at SPARC 5q33.1 0.92 0.83 9.8E-59 0.77 
204517_at PPIC 5q23.2 0.93 0.81 1.6E-53 0.75 

202619_s_at PLOD2 3q24 0.91 0.82 6.4E-55 0.74 
210139_s_at PMP22 17p12 0.87 0.83 1.2E-58 0.73 
202351_at ITGAV 2q32.1 0.87 0.81 8.4E-55 0.71 

211651_s_at LAMB1 7q31.1 0.81 0.80 1.0E-51 0.65 

Table III.3.3.4.a) Top genes in validated effect   5 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 ,  Components of the consensus gene axis of effect   5  
  (cf. Table III.1.5); filtered ,   0.8. 
 

,  Consensus gene correlations; filtered 
,  0.8. 

 
,   values for the correlations (cf. II.5.2.1) 

Figure III.3.3.4.a) Gene ontology overrepresentation analyses of cellular components in effect   5 

All  values are based on hypergeometric tests. A  value of zero indicates an underflow, i.e.   2.2 ⋅ 10 , which is the numeric resolution limit for differences to 
one; the true  value is never exactly zero. 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005201
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048407
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Figure III.3.3.4.b) Gene ontology overrepresentation analyses of biological processes and molecular functions in effect   5 

All  values are based on hypergeometric tests. A  value of zero indicates an underflow, i.e.   2.2 ⋅ 10 , which is the numeric resolution limit for differences to 
one; the true  value is never exactly zero. 
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Another example is the biological process of leukocyte migration(cf. GO:0050900) (with COL1A1, COL1A2 and FN1, 

three of the top 7 genes belong to this term, while 107 genes from all measured 20370 genes are directly 

annotated with this term; this results in with   4.9 ⋅ 10 via hypergeometric test). (All GO results including 

associated gene IDs are available in graphical and tabular form in  D=Interpretation\genomic\v005\GOA.) 

 Signature analyses 

Many known signatures are significantly enriched for top genes of   5. Only those with enrichments 

stronger than 0.8 are listed(Table III.3.3.4.b). The full signature analyses table is available at  D=Interpretation\ge-

nomic\v005\SA. 
Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean log2( 

ratio) 
 (-test 

versus zero) 
Down- 

reg. ratio 
Upreg.  
ratio 

MolSigDBv4_0_dMay2014 Ffarmer_breast_cancer_cluster_5 19 19 0.982 0.0019 0.2% -1.697 4.2E-11 100.0% 0.0% 
MolSigDBv4_0_dMay2014 Gnf2_cdh11 25 25 0.937 0.0019 0.2% -1.562 1.2E-11 100.0% 0.0% 

StaudtSigDB_dNov2012 Normal_mesenchymal-1_Node1643 77 77 0.936 0.0021 0.2% -1.368 2.3E-34 100.0% 0.0% 

MolSigDBv4_0_dMay2014 
Anastassiou_cancer_mesenchymal_-

transition_signature 
64 64 0.921 0.002 0.2% -1.654 8.7E-29 99.7% 0.3% 

StaudtSigDB_dNov2012 Lymph_node_LymphDx 56 56 0.902 0.0021 0.2% -1.183 1.5E-19 98.2% 1.8% 
StaudtSigDB_dNov2012 Lymph_node_High_vs_low 651 645 0.871 0.002 0.2% -0.872 4.9E-188 99.5% 0.5% 

MolSigDBv4_0_dMay2014 GNF2_PTX3 36 36 0.860 0.002 0.2% -1.346 8.5E-13 100.0% 0.0% 
StaudtSigDB_dNov2012 Stromal-1_DLBCL_survival_predictor 263 248 0.855 0.0021 0.2% -0.997 6.9E-76 98.4% 1.6% 
GeneSigDB_v4_Sept2011 Lymphoma_Piccaluga07_64genes 60 59 0.839 0.002 0.2% -1.026 1.4E-18 98.3% 1.7% 
GeneSigDB_v4_Sept2011 Breast_Miller07_19genes 17 17 0.837 0.002 0.2% -1.267 7.2E-06 98.5% 1.5% 
StaudtSigDB_dNov2012 Lymph_node_U133plus 217 215 0.828 0.0022 0.2% -0.843 5.1E-60 98.8% 1.2% 
GeneSigDB_v4_Sept2011 StemCell_Menicanin09_13genes 12 12 0.813 0.002 0.2% -1.084 1.2E-03 95.2% 4.8% 
GeneSigDB_v4_Sept2011 Prostate_Chambers09_40genes 28 28 0.805 0.0019 0.2% -1.195 1.8E-08 100.0% 0.0% 
GeneSigDB_v4_Sept2011 Lymphoma_VanLoo09_11genes 11 11 -0.810 0.0019 0.2% 0.265 5.7E-03 6.3% 93.7% 

MolSigDBv4_0_dMay2014 RRNA_metabolic_process 16 16 -0.817 0.0019 0.2% 0.252 3.8E-07 0.0% 100.0% 
MolSigDBv4_0_dMay2014 Ribosome_biogenesis_and_assembly 18 18 -0.880 0.0019 0.2% 0.246 5.7E-08 0.0% 100.0% 
MolSigDBv4_0_dMay2014 RRNA_processing 15 15 -0.880 0.002 0.2% 0.265 2.1E-07 0.0% 100.0% 

 

Table III.3.3.4.b) Top-enriched signatures by   5 

Signatures with |enrichment	score|  0.8 and at least 10 measured members are listed for genes ranked by GEP effect   5.  
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

Given the size of effect   5 and the high correlation of top genes to it (and thus between each other), it is 

interesting that several significantly and highly enriched signatures are relatively small. As any definition that 

includes only some but not all highly correlated genes 

would be biased, I would have expected larger 

signatures. (Maybe these signatures were defined in a 

constraint signal context or were intersected with 

biologically motivated tertiary signatures.) 

 Role as “stromal-1” signature in a previous CHOP-

based DLBCL survival predictor 

One of the larger listed top signatures is the 

stromal-1 signature(online interpretation card, Figure III.3.3.4.c) that 

has already been identified for a previous DLBCL 

survival predictor[5] and has also been associated with 

the extracellular matrix. The previous predictor was 

trained with samples from CHOP-treated patients 

only. Hence, it is consistent that it included effect  5, as it shows the most consistent survival prediction 

for CHOP-treated patients(Figure III.2.4.1.a).  
Figure III.3.3.4.c) Significant enrichment of the stromal-1 signature[5] 

 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050900
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=264
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Figure III.3.3.4.d) Validated effect   5, applied to GSE10846.CHOP 

Primary survival effect by CHOP based multi-cohort survival analysis(III.2.4) applied to GSE10846.CHOP (181 patients). Enlarged binary classification stripes show 
censored/progression follow-up information (green/orange) as well as public subtypes (yellow/pink). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).)  
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 Top genes overview 

For probesets with 
   0.4, 783 unique genes from 24 chromosomes participate in the effect. This clearly 

indicates that it does not just reflect genomically local aberrations on DNA level, as could be expected by its 

identified biological function. Even for 
   0.5, 417 unique genes from 23 chromosomes remain. 

As the biological function of this effect has already been identified by gene ontology terms, an individual 

analysis of its top-correlated genes has not been performed. 

 Inference 

Gene ontology terms and gene signatures with significant enrichment only concern small subsets of the 

effect’s correlated top genes. Hence, they may not be able to biologically describe this large effect completely. 

Maybe a common yet unidentified biological cause exists that regulates all these genes coordinately, resulting 

in observed correlations. It might be biologically interesting to search for such a common cause. 

As previously quantified, the predictive value of this stromal effect is limited in the Rituximab era. If this 

prognostic difference between CHOP and R-CHOP therapies validates biologically, it might be interesting to 

find the cause, why Rituximab seems to predominantly help patients with lower expressions of   5. 

Already in the CHOP era, this effect seems to have measured an effect of the tumor microenvironment. 

Additionally, it did not qualify as one of the best five survival effects when training with all samples. (Survival 

dependencies explained by   5 can already be explained by the selected primary and secondary predictor 

variables  ∈ 134, 131(cf. III.2.5.1).) Hence and analytically,   5 seems to be of second priority towards 

disclosing DLBCL’s molecular pathogenesis. 

 

 

 

 

 

 

 

III.3.3.5   44: Another stromal effect with a hierarchical survival  
 dependency and revisiting a previous DLBCL survival predictor 

 Role in survival analysis 

Effect   44 facilitates a significant additional survival prediction (  2.5 ⋅ 10) on top of effect   5 for CHOP treated DLBCL patients(Figure III.2.4.1.b). Like   127 relative to   134, this survival trend is anti-

aligned(Table III.2.4.2) to the primary CHOP predictor variable   5. 

The survival dependency predicted by this effect is hierarchical. More precisely, it can predict significant 

survival differences within the higher risk partition of   5, but not within the lower risk partition of this 

stromal effect. The same hierarchical effect is still strong and significant following R-CHOP therapy(cf. Figure III.2.4.3). 

A subtype-specific analysis of   44 revealed the same but considerably weaker survival dependency(cf. Figure 

III.2.4.4), suggesting that not the COO induced effect, but effect   5 is required to biologically understand 

this hierarchy. 
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 Effect overview 

The effect has been unsupervisedly discovered in three of four cohorts with detection ranks #5(GSE10846.CHOP), 

#18(GSE10846.R-CHOP) and #32(GSE31312.R-CHOP). It has been supervisedly validated on GEP level in all four cohorts (see 

44* files in  C=Consensus Effects\(cohort subfolder)). 

Its signal is one-sided(Figure III.3.3.5) with approximately 100 top probesets (with relative correlation  0.5).  

Higher expressions of this effect correspond to higher risk (for a subset of DLBCL patients that shows higher 

risk with respect to effect   5). 

 Clinical associations 

Besides associations to survival, it is interesting that in all three cohorts with ECOG data, ECOG performance 

is significantly and consistently associated with this effect for ABC DLBCL patients, but not so for GCB DLBCL 

patients. More precisely, significantly more ABC DLBCL patients with ECOG state  1 are found in the lower 

expression and lower risk partition of   44 (GSE10846.CHOP.ABC  0.01, GSE10846.R-CHOP.ABC  0.02 and 

GSE31312.R-CHOP.ABC  0.03;   tests based on contingency tables), whereas this is not the case for GCB DLBCL 

(GSE10846.CHOP.GCB  0.73, GSE10846.R-CHOP.GCB  0.10 and GSE31312.R-CHOP.GCB  0.99). This is consistent with the 

effect’s hierarchical prediction of survival, as the majority of samples in the higher risk partition of the stromal 

effect   5 are classified as ABC DLBCL. However and again, only partitioning by   5 and not by the COO 

induced effect can reveal this hierarchical survival dependency in a clear-cut way(compare Figure III.2.4.3 with Figure III.2.4.4). 

 Genomic associations 

Gene ontology analyses showed some significantly and specifically overrepresented biological processes, 

but no molecular functions or cellular components. The two most specific GO terms are positive regulation of 

macrophage derived foam cell differentiation(cf. GO:0010744) (3/14 top genes belong to this term, while it is 

comprised of 14/20370 measured genes;   9.4 ⋅ 10  via hypergeometric test) and triglyceride catabolic 

process(cf. GO:0019433) (3/14 top genes belong to this term, while it is comprised of 19/20370 measured genes; 

  2.5 ⋅ 10 via hypergeometric test). All gene ontology analyses for this effect are available at 

 D=Interpretation\genomic\v44\GOA. 

Gene set enrichment analyses(Table III.3.3.5.a) revealed that   44 is the unsupervisedly rediscovered version of 

the stromal-2 signature(online interpretation card, [5]) from a previous CHOP-based DLBCL survival predictor; this effect 

has been associated with tumor blood vessel density[5]. 

 

Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean log2( 

ratio) 
 (-test 

versus zero) 
Down- 

reg. ratio 
Upreg.  
ratio 

StaudtSigDB_dNov2012 Stromal-2_DLBCL_survival_predictor 62 60 0.853 0.0021 0.2% -0.879 3.1E-21 100.0% 0.0% 
GeneSigDB_v4_Sept2011 Stomach_Yu04_17genes 13 11 0.687 0.0020 0.2% -0.947 0.0033 86.4% 13.6% 

MolSigDBv4_0_dMay2014 Nakayama_soft_tissue_tumors_pca2_dn 80 80 0.794 0.0020 0.2% -0.586 6.0E-15 97.8% 2.2% 
HGNCSigDB_dMay2014 Metallothioneins 19 10 0.782 0.0021 0.2% -0.368 0.0021 87.3% 12.7% 

MolSigDBv4_0_dMay2014 
Schaeffer_prostate_development_and 

cancer_box4_up 
11 11 0.679 0.0020 0.2% -0.466 0.0431 91.2% 8.8% 

GeneSigDB_v4_Sept2011 Lymphoma_Blenk08_16genes 11 11 -0.691 0.0019 0.2% 0.385 1.1E-07 0.0% 100.0% 
 

Table III.3.3.5.a) Top-enriched signatures by   44 

Signatures with |enrichment	score|  0.67, a mean logratio)  0.2 and at least 10 measured members are listed for genes ranked by GEP effect   44.  
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010744
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019433
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=265
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Figure III.3.3.5) Validated effect   44, exemplary application to GSE10846.R-CHOP 

Second survival effect by CHOP based survival analysis(III.2.4) applied to GSE10846.R-CHOP (233 patients). The survival trend (that overlaps the trend of effect   5 
with opposite sign) is hardly visible in the classification stripe showing censored/progression follow-up information (green/orange) for R-CHOP. 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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 Top genes overview 

For probesets with 
   0.4, 102 unique genes 

from 22 chromosomes participate in the effect, clearly 

indicating that it does not just reflect local aberrations 

on DNA level, as could be expected by its identified 

biological function. Even for 
   0.5, 42 unique 

genes from 17 chromosomes remain. 

As the effect has already been identified as the 

rediscovered stromal-2 signature, literature 

screening for individual top genes is not performed. 

 

 Revisiting a previous CHOP-based survival predictor 

A previous DLBCL survival predictor utilized a 

trivariate Cox model[5]. It is based on genes that were 

supervisedly selected utilizing CHOP survival data[5.SI]. 

Restricting the analysis to this gene selection, 

signature candidates were formed by hierarchical 

clustering. 

All three explanatory variables of this previous 

predictor have been unsupervisedly rediscovered by 

signal dissection: 

(a) the “Germinal center B cell DLBCL survival 

predictor” signature is enriched with score 0.867 by top genes of effect   129,  

(b) the “stromal-1” signature is enriched with 

score 0.855 by top genes of effect   5 and 

(c) the “stromal-2” signature is enriched with 

score 0.853 by top genes of this effect   44. 

Interestingly, effects  ∈ 5, 44 already suffice to 

explain CHOP patient survival(Figure III.2.4.2) to an extent 

that the standard COO induced effect   129 did not 

show any significant additional explanatory value 

(  0.26). (Effect   134 was still able to contribute 

with   1.5 ⋅ 10 on top of  ∈ 5, 44 in CHOP, but 

was not selected because of the chosen tight 

significance threshold at 10.) 

Because of only 181 available follow-up events for 

GSE10846.CHOP, the supervised gene selection 

procedure underlying this previous predictor might 

have selected many genes that are not specific to 

DLBCL(cf. III.2.1.2).  

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 

,  ,  ,  
,  
. 

,  
207175_at ADIPOQ 3q27.3 1.69 0.87 2.3E-53 1.47 
203980_at FABP4 8q21.13 1.64 0.85 3.3E-49 1.40 

209613_s_at ADH1B 4q23 1.49 0.81 1.9E-41 1.22 
209612_s_at ADH1B 4q23 1.15 0.70 6.2E-26 0.80 
228766_at CD36 7q21.11 1.14 0.67 9.6E-24 0.76 

218087_s_at SORBS1 10q24.1 0.89 0.68 1.0E-24 0.61 
235978_at FABP4 8q21.13 0.82 0.74 1.1E-30 0.61 

209555_s_at CD36 7q21.11 0.97 0.62 1.5E-19 0.60 
225207_at PDK4 7q21.3 0.88 0.66 8.8E-23 0.58 
205913_at PLIN1 15q26.1 0.71 0.76 1.2E-33 0.54 

1565162_s_at MGST1 12p12.3 1.02 0.51 1.0E-12 0.52 
201348_at GPX3 5q33.1 0.92 0.56 1.4E-15 0.51 

203548_s_at LPL 8p21.3 0.85 0.61 1.6E-18 0.51 
224918_x_at MGST1 12p12.3 0.95 0.54 4.5E-14 0.51 
203649_s_at PLA2G2A 1p36.13 0.90 0.56 9.6E-16 0.51 
214091_s_at GPX3 5q33.1 0.84 0.61 2.0E-18 0.51 
206488_s_at CD36 7q21.11 0.81 0.59 4.3E-17 0.48 
225987_at STEAP4 7q21.12 0.79 0.59 3.3E-17 0.46 
205498_at GHR 5p13.1 0.65 0.71 5.9E-28 0.46 

229476_s_at THRSP 11q14.1 0.69 0.65 1.3E-21 0.45 
231736_x_at MGST1 12p12.3 0.85 0.51 7.8E-13 0.44 
204955_at SRPX Xp11.4 0.69 0.63 2.5E-20 0.43 

203549_s_at LPL 8p21.3 0.73 0.59 4.1E-17 0.43 
222513_s_at SORBS1 10q24.1 0.63 0.66 1.3E-22 0.42 
219140_s_at RBP4 10q23.33 0.64 0.65 5.5E-22 0.42 
208383_s_at PCK1 20q13.31 0.75 0.52 5.5E-13 0.39 
204154_at CDO1 5q22.3 0.69 0.54 2.3E-14 0.37 
209763_at CHRDL1 Xq23 0.65 0.57 2.3E-16 0.37 

215049_x_at CD163 12p13.31 0.74 0.48 3.0E-11 0.36 
203571_s_at C10orf116 10q23.2 0.61 0.59 4.0E-17 0.36 
201540_at FHL1 Xq26.3 0.61 0.58 1.2E-16 0.35 
202992_at C7 5p13.1 0.70 0.49 8.7E-12 0.34 
49452_at ACACB 12q24.11 0.67 0.49 1.2E-11 0.33 

206157_at PTX3 3q25.32 0.64 0.49 1.9E-11 0.31 
43427_at ACACB 12q24.11 0.60 0.51 7.5E-13 0.31 

204719_at ABCA8 17q24.2 0.60 0.51 6.4E-13 0.31 
1552509_a_at CD300LG 17q21.31 0.45 0.67 4.0E-23 0.30 
204894_s_at AOC3 17q21.31 0.53 0.56 1.0E-15 0.30 
238066_at RBP7 1p36.22 0.54 0.55 7.9E-15 0.30 

214456_x_at SAA1 11p15.1 0.53 0.55 5.6E-15 0.29 
203645_s_at CD163 12p13.31 0.65 0.45 1.1E-09 0.29 
226304_at HSPB6 19q13.12 0.53 0.53 9.8E-14 0.28 

205382_s_at CFD 19p13.3 0.56 0.46 2.1E-10 0.26 
209699_x_at AKR1C2 10p15.1 0.45 0.57 5.0E-16 0.26 
210299_s_at FHL1 Xq26.3 0.52 0.49 1.1E-11 0.26 
207277_at CD209 19p13.2 0.48 0.50 2.1E-12 0.24 
228854_at  11q23.2 0.60 0.41 3.8E-08 0.24 
203305_at F13A1 6p25.1 0.55 0.44 2.9E-09 0.24 
201785_at RNASE1 14q11.2 0.48 0.48 2.6E-11 0.23 

216333_x_at TNXA 6p21.33 0.40 0.57 7.5E-16 0.23 
218736_s_at PALMD 1p21.2 0.43 0.53 1.5E-13 0.23 
209614_at ADH1B 4q23 0.42 0.54 3.4E-14 0.23 

202291_s_at MGP 12p12.3 0.53 0.40 4.7E-08 0.21 
219295_s_at PCOLCE2 3q23 0.48 0.44 2.3E-09 0.21 
212097_at CAV1 7q31.2 0.48 0.43 3.4E-09 0.21 

219607_s_at MS4A4A 11q12.2 0.50 0.42 1.4E-08 0.21 
222717_at SDPR 2q32.3 0.41 0.50 2.7E-12 0.21 

205559_s_at PCSK5 9q21.13 0.42 0.48 4.4E-11 0.20 
225575_at LIFR 5p13.1 0.43 0.46 3.7E-10 0.20 

205392_s_at CCL14 17q12 0.41 0.48 5.0E-11 0.19 
201010_s_at TXNIP 1q21.1 0.42 0.44 1.7E-09 0.19 
208607_s_at SAA1 11p15.1 0.44 0.41 3.4E-08 0.18 
219519_s_at SIGLEC1 20p13 0.43 0.42 1.5E-08 0.18 
228335_at CLDN11 3q26.2 0.42 0.42 9.3E-09 0.18 

208131_s_at PTGIS 20q13.13 0.42 0.41 2.0E-08 0.17 
202409_at IGF2 11p15.5 0.41 0.40 6.1E-08 0.16 

Table III.3.3.5.b) Top genes in validated effect   44 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   44  
  (cf. Table III.1.5); filtered 

,   0.4. 
 

,  Consensus gene correlations; filtered 
,  0.4. 

 
,   values for the correlations (cf. II.5.2.1) 
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More importantly, this previous model reserved all R-CHOP treated patients for validation purposes and 

therefore discovered GEP effects for survival prediction that are optimal for CHOP(as confirmed by this work in III.2.4.1), but 

unfortunately suboptimal for the Rituximab-added therapy(cf. III.2.2.1 and III.2.5.1). 

In contrast, signal dissection discovers effects unsupervisedly based on GEP information only. Hence, all 

survival associations can be regarded as independent validation of these GEP effects. More importantly, this 

allows using all available survival data via leave-one-out validation(III.2.5.3) for predictor construction. The 

unbiased predictor construction procedure(cf. III.2.5.1) consequently can identify DLBCL survival effects based on 

survival data from much more patients. Correspondingly low  values indicate that GEP survival effects 

identified in this way can explain observed survival more reliably and are relevant for both CHOP and R-CHOP 

therapies(cf. III.2.5.4). 

Furthermore, discovered GEP effects always include as many top genes as correlations between gene 

expressions exist in the signal, i.e. they are not restricted to genes preselected with limited survival 

information. Hence, also GEP effects could be discovered that are not associated with outcome following 

contemporary therapies, but that might still reveal biologically interesting molecular differences between 

DLBCL patients(e.g. III.3.4.3). 

 Inference 

Both stromal effects  ∈ 5, 44 seem to concern the microenvironment, rather than gene expressions 

originating from DLBCL tumor cells. Additionally, effect   5 is associated with a strong survival dependency 

following CHOP therapy, but no longer following current standard R-CHOP therapy. However, both effects 

together predict a hierarchical survival dependency for a subset of DLBCL that is still strong following R-CHOP 

therapy(cf. Figure III.2.4.3). It might be biologically interesting to understand this hierarchical relation between these 

stromal effects. Still, in order to investigate the molecular pathogenesis of DLBCL, other discovered survival 

effects may provide more direct information.  

 

 

 

 

III.3.3.6   19: A T cell related effect (quinvariate model, 3rd predictor variable) 

 Role in survival analysis 

Effect   19 facilitates significant (  7.4 ⋅ 10) survival prediction on top of survival already explained by 

effects  ∈ 134, 131(Figure III.2.5.1.c). Together with   75 it additionally shows a complex hierarchical 

dependency for effect   3(as described in III.3.3.8). 

 Effect overview 

Effect   19 is another unsupervisedly quad-discovered effect. Detection ranks are #47(GSE10846.CHOP), 

#29(GSE10846.R-CHOP), #29(GSE4475.nonMBL) and #57(GSE31312.R-CHOP). It has a one-sided gradual signal(e.g. Figure III.3.3.6.a) with 

approximately 75 probesets (relative correlation  0.5). 

Higher expressions correspond to lower risk(Table III.2.5.2) for a subset of patients. 

 Clinical associations 

Clinically, it is interesting that in all three cohorts with LDH data, LDH ratios are significantly and consistently 

associated with effect   19 for GCB DLBCL patients, but not so for ABC DLBCL patients.   More precisely, the 
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Figure III.3.3.6.a) Validated effect    19, applied to GSE10846.R-CHOP 

Third survival effect by multi-cohort based survival analysis(III.2.5) applied to GSE10846.R-CHOP (233 patients). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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partition with lower average expression contains significantly more GCB DLBCL patients with LDH ratio  1 

(GSE10846.CHOP.GCB  0.01, GSE10846.R-CHOP.GCB  7.7 ⋅ 10 and GSE31312.R-CHOP.GCB  0.03;   tests based on 

contingency tables). This is consistent with the overall survival trend predicted by   19, i.e. higher 

expression is associated with more favorable outcome (Table III.2.5.2). However, this association does not reliably 

exist for ABC DLBCL patients (GSE10846.CHOP.ABC  0.06, GSE10846.R-CHOP.ABC  0.67 and GSE31312.R-CHOP.ABC  0.59), 

indicating a subtype-specific survival dependency. 

 Genomic associations 

Gene ontology overrepresentation analyses reveal an overrepresentation of T cell co-stimulation(cf. GO:0031295) 

with   5.1 ⋅ 10(Figure III.3.3.6.b). This term contains genes responsible for antigen-independent signaling for T 

cell activation, i.e. an alternative to T cell receptor signaling. 

Figure III.3.3.6.b) Gene ontology overrepresentation analyses of biological processes in effect    19 

All  values are based on hypergeometric tests; cf. I.3.2. 

 

Signature analyses(Table III.3.3.6.a) confirm this association with T cells. For example, the Biocarta pathway about 

surface molecules of T helper cells(online interpretation card) is significantly enriched. 
Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean log2( 

ratio) 
 (-test 

versus zero) 
Down- 

reg. ratio 
Upreg.  
ratio 

MolSigDBv4_0_dMay2014 Biocarta_Thelper_pathway 14 12 0.886 0.0021 0.2% -1.088 0.0002 100.0% 0.0% 
StaudtSigDB_dNov2012 T_cell 15 14 0.851 0.0020 0.2% -1.215 7.9E-06 93.0% 7.0% 

MolSigDBv4_0_dMay2014 Biocarta_Tcytotoxic_pathway 14 12 0.802 0.0021 0.2% -1.157 7.6E-05 100.0% 0.0% 
MolSigDBv4_0_dMay2014 Biocarta_TCRA_pathway 13 11 0.801 0.0020 0.2% -0.906 0.0001 100.0% 0.0% 
MolSigDBv4_0_dMay2014 Watanabe_ulcerative_colitis_with-cancer_dn 14 14 0.670 0.0020 0.2% -0.728 1.8E-05 97.2% 2.8% 
MolSigDBv4_0_dMay2014 GNF2_ATM 30 30 0.689 0.0019 0.2% -0.564 2.3E-06 96.0% 4.0% 

 

Table III.3.3.6.a) Top-enriched signatures by   19 

Signatures with |enrichment	score|  0.67 and at least 10 measured members are listed for genes ranked by GEP effect   19. 
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0031295
http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_THELPER_PATHWAY
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 Top genes overview 

For probesets with 
   0.4(cf.Table III.3.3.6.b), 70 unique 

genes from 18 chromosomes participate in the effect, 

suggesting that it reflects a genomic regulation 

network and not just local aberrations on DNA level, 

as could be expected by its identified function in T cell 

regulation. Even for 
   0.5, 33 unique genes from 

12 chromosomes remain. 

A brief recherché for individual top correlated 

genes(information via http://www.ncbi.nlm.nih.gov/gene, [107], April 2015) 

confirms the association with T cells: CTLA4 can 

cause inhibitory signals to T cells[117], ICOS stands for 

“inducible T-cell co-stimulator”, CD28 belongs to one 

of the dominant co-stimulatory pathways[118] and 

TOX2 is an essential regulator of T-cell differen-

tiation[119]. 

While the top three genes are all located in 2q33.2, 

many other measured and expressed probesets from 

this locus are not correlated to the effect, making a 

DNA level aberration unlikely (see  DLBCL Master 

Table 2015, gene orders.xlsx). 

 

 Inference 

Based on gene ontology analyses and confirmed by 

other analyses, this effect is related to T cells, 

probably to antigen-independent T cell co-stimu-

lation (  5.1 ⋅ 10). 

To rule out a potential triggering aberration, copy 

number measurements(e.g. from GSE11318, [11]) for 2q33.2 

could be interrogated. 

The role of effect   19 in DLBCL is probably easier 

to conceive in context of expressions of other effects. 

For example, it plays a key role in selecting DLBCL 

patients that show a strong survival dependency on 

effect   3, as will be described in III.3.3.8. This may 

also help to interpret this effect, maybe validate its 

association with T cells and ideally unveil their role in 

DLBCL. 

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
 ,  


,  

. 
,  

236341_at CTLA4 2q33.2 1.23 0.90 3.8E-55 1.10 
234362_s_at CTLA4 2q33.2 0.90 0.86 2.1E-44 0.77 
210439_at ICOS 2q33.2 0.81 0.82 3.0E-35 0.67 
231794_at CTLA4 2q33.2 0.75 0.81 4.4E-37 0.61 

221331_x_at CTLA4 2q33.2 0.69 0.83 2.6E-37 0.58 
206545_at CD28 2q33.2 0.65 0.76 5.3E-28 0.50 
228737_at TOX2 20q13.12 0.76 0.53 1.8E-12 0.41 

229327_s_at  16q23.2 0.64 0.55 4.4E-13 0.35 
211796_s_at TRBC1 7q34 0.53 0.64 1.8E-17 0.34 
213193_x_at TRBC1 7q34 0.48 0.69 4.6E-21 0.33 
210915_x_at TRBC1 7q34 0.47 0.70 9.1E-22 0.33 
236787_at  2p11.2 0.66 0.48 3.1E-10 0.32 
213135_at TIAM1 21q22.11 0.54 0.58 4.6E-14 0.32 

209348_s_at MAF 16q23.2 0.52 0.58 4.6E-14 0.30 
206363_at MAF 16q23.2 0.48 0.61 8.1E-16 0.29 

214228_x_at TNFRSF4 1p36.33 0.45 0.64 1.2E-17 0.29 
213539_at CD3D 11q23.3 0.41 0.66 7.8E-19 0.27 
210116_at SH2D1A Xq25 0.47 0.56 7.5E-13 0.26 

214551_s_at CD7 17q25.3 0.42 0.61 1.7E-15 0.26 
211005_at LAT 16p11.2 0.40 0.65 7.8E-18 0.26 

219528_s_at BCL11B 14q32.2 0.40 0.64 8.4E-18 0.26 
214049_x_at CD7 17q25.3 0.38 0.67 3.0E-19 0.25 
204777_s_at MAL 2q11.1 0.49 0.51 2.0E-10 0.25 
230469_at RTKN2 10q21.2 0.53 0.46 1.8E-09 0.25 

220485_s_at SIRPG 20p13 0.39 0.62 2.3E-16 0.24 
205831_at CD2 1p13.1 0.38 0.64 3.0E-17 0.24 

207949_s_at ICA1 7p21.3 0.42 0.57 3.4E-13 0.24 
210547_x_at ICA1 7p21.3 0.39 0.60 3.6E-15 0.23 
203828_s_at IL32 16p13.3 0.41 0.56 8.1E-13 0.23 
224211_at FOXP3 Xp11.23 0.42 0.52 5.5E-12 0.22 
209670_at TRAC 14q11.2 0.36 0.59 1.0E-14 0.22 

209671_x_at TRAC 14q11.2 0.37 0.58 9.2E-14 0.21 
210972_x_at TRAV20 14q11.2 0.37 0.57 1.4E-13 0.21 
227361_at HS3ST3B1 17p12 0.47 0.44 1.5E-08 0.21 
213958_at CD6 11q12.2 0.30 0.68 4.6E-20 0.21 

202524_s_at SPOCK2 10q22.1 0.36 0.55 1.1E-12 0.20 
209604_s_at GATA3 10p14 0.36 0.55 2.6E-12 0.20 
219423_x_at TNFRSF25 1p36.31 0.37 0.52 2.9E-11 0.20 
211902_x_at YME1L1 14q11.2 0.35 0.56 8.9E-13 0.20 
211339_s_at ITK 5q33.3 0.44 0.44 6.2E-08 0.19 

54632_at THADA 2p21 0.41 0.47 3.7E-09 0.19 
222895_s_at BCL11B 14q32.2 0.37 0.51 2.7E-11 0.19 
229247_at FBLN7 2q13 0.38 0.49 1.6E-10 0.19 
240070_at TIGIT 3q13.31 0.40 0.46 2.7E-09 0.18 
236226_at BTLA 3q13.2 0.43 0.42 9.4E-08 0.18 

216033_s_at FYN 6q21 0.38 0.47 3.6E-09 0.18 
224832_at DUSP16 12p13.2 0.33 0.54 8.3E-13 0.18 
205456_at CD3E 11q23.3 0.31 0.55 1.7E-12 0.17 

220212_s_at THADA 2p21 0.33 0.52 7.4E-11 0.17 
214032_at ZAP70 2q11.2 0.35 0.49 1.2E-09 0.17 
210031_at CD247 1q24.2 0.36 0.47 6.5E-09 0.17 
210073_at ST8SIA1 12p12.1 0.35 0.47 3.3E-09 0.17 

202747_s_at ITM2A Xq21.1 0.35 0.47 3.1E-09 0.16 
223377_x_at CISH 3p21.2 0.36 0.45 7.9E-09 0.16 
223851_s_at TNFRSF18 1p36.33 0.31 0.52 8.3E-12 0.16 
226333_at IL6R 1q21.3 0.40 0.40 3.5E-07 0.16 

1555613_a_at ZAP70 2q11.2 0.35 0.45 4.7E-09 0.16 
211210_x_at SH2D1A Xq25 0.32 0.50 5.1E-10 0.16 
211828_s_at TNIK 3q26.2 0.35 0.45 3.2E-08 0.16 
214735_at IPCEF1 6q25.2 0.32 0.48 1.4E-09 0.15 
212062_at ATP9A 20q13.2 0.36 0.43 1.2E-07 0.15 
202746_at ITM2A Xq21.1 0.38 0.41 4.8E-07 0.15 

212473_s_at MICAL2 11p15.3 0.34 0.45 3.6E-08 0.15 
230489_at CD5 11q12.2 0.31 0.48 2.9E-10 0.15 
206118_at STAT4 2q32.2 0.30 0.49 8.7E-10 0.15 

230488_s_at DBH-AS1 9q34.2 0.36 0.40 2.8E-07 0.14 
218573_at MAGEH1 Xp11.21 0.34 0.42 2.8E-07 0.14 
203508_at TNFRSF1B 1p36.22 0.33 0.42 1.8E-07 0.14 
222317_at PDE3B 11p15.2 0.33 0.42 3.0E-07 0.14 
239288_at TNIK 3q26.31 0.31 0.40 3.6E-07 0.12 

Table III.3.3.6.b) Top genes in validated effect   19 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   19  
  (cf. Table III.1.5); filtered 

,   0.3. 
 

,  Consensus gene correlations; filtered 
,  0.4. 

 
,   values for the correlations (cf. II.5.2.1) 

http://www.ncbi.nlm.nih.gov/gene
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III.3.3.7   75: BCL2 (quinvariate model, 4th predictor variable) 

 Role in survival analysis 

Effect   75 is capable of predicting significant survival differences (  3.6 ⋅ 10) on top of already 

explained survival by effects  ∈ 134, 131, 19. Together with   19 it additionally reveals a complex 

hierarchical dependency of effect   3(as described in III.3.3.8). 

 Effect overview 

Two unsupervised detections underlie this consensus effect (with ranks #136 in GSE10846.R-CHOP and #43 

in GSE31312.R-CHOP). It has been supervisedly validated in all four cohorts(e.g. Figure III.3.3.7). Detected effects 

contain several correlated genes, but after soft intersection by consensus gene axis construction(cf. III.1.3) BCL2 

is the only remaining gene that is highly correlated to this effect. Eight top-correlated probesets(Table III.3.3.7.a) 

support this effect; all measure BCL2 or are overlapped by BCL2-annotated probesets in locus 18q21.33. 

Hence it cannot be excluded that this effect is a reflection of a chromosomal feature in the GEP signal; 

examination of DNA measurements like array comparative genomic hybridization might clarify this. 

Higher expressions of BCL2 correspond to higher risk and adverse outcome(cf. III.2.5.1) for a DLBCL subset. 

  Preliminary top gene analysis 

Direct literature screening for BCL2 revealed that it 

is an already well-known player in several 

lymphomas, for example in follicular lymphoma[120]. 

Functionally, Bcl-2 proteins are mainly located in the 

outer mitochondrial membrane and bind Bax/Bak 

proteins that can make the mitochondrial membrane 

permeable as soon as they are released, thereby 

triggering apoptosis[121]. Consistent with adverse 

outcome for higher expression of   75, over-

expressed BCL2 has an anti-apoptotic effect and can 

cause chemotherapy resistance in various human 

cancers; hence complementing chemotherapy with 

BCL2-specific agents like small molecule Bcl-2 protein 

inhibitors has been suggested for clinical trials[121]. 

With respect to DLBCL, a review in clinical oncology[122] reported poor prognosis with standard R-CHOP 

therapy for patients having a (14; 18) translocation of BCL2 together with a MYC gene rearrangement 

(“double-hit DLBCL”). The review concluded from several other studies that a) only concurrent expression of 

BCL2 and MYC is important for outcome rather than MYC expression alone and that b) the incidence for 

double-overexpression is 20%-30% in DLBCL, if measured by immunohistochemistry. Routine evaluation of 

MYC and BCL2 by immunohistochemistry was recommended for clinical management. While it was clear that 

R-CHOP should be replaced for double-hit patients, the review concluded (in 2012) that no optimal therapy is 

known and double-hit patients should be referred for clinical trials wherever possible. 

 Inference 

The unsupervisedly (re)discovered BCL2 GEP effect plays a known important role for a subset of DLBCL 

patients having a (14; 18) translocation. This might be helpful when interpreting the complex survival 

dependency of   3 in context of this effect and   19 that only exists for low BCL2 expression(cf. III.3.3.8). 

Another study has already revealed significantly more favorable outcome for GCB DLBCL patients with high 

Top genes in   75 

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


,  

. 
,  

244035_at  18q21.33 1.31 0.90 1.8E-68 1.17 
203685_at BCL2 18q21.33 1.33 0.80 5.1E-44 1.06 
232614_at  18q21.33 1.12 0.90 3.0E-69 1.01 
232210_at  18q21.33 1.06 0.87 1.3E-60 0.93 
237837_at  18q21.33 0.79 0.65 9.3E-24 0.51 

203684_s_at BCL2 18q21.33 0.61 0.73 8.9E-33 0.45 
207005_s_at BCL2 18q21.33 0.62 0.72 2.3E-31 0.44 
207004_at BCL2 18q21.33 0.39 0.45 8.6E-11 0.17 

211352_s_at NCOA3 20q13.12 0.33 0.36 3.0E-07 0.12 
1554636_at  19q13.43 0.32 0.30 2.5E-05 0.10 

206951_at HIST1H4I 6p22.2 -0.32 -0.32 8.1E-06 -0.10 
1554878_a_at ABCD3 1p21.3 -0.37 -0.31 1.0E-05 -0.12 

Table III.3.3.7.a) Top genes in validated effect   75 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   75  
  (cf. Table III.1.5); filtered 

,   0.3. 
 

,  Consensus gene correlations; filtered 
,  0.3. 

 
,   values for the correlations (cf. II.5.2.1) 
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BCL2 expression and high NF-κB expression(cf. Figure I.3.3 and [81]). It might be biologically interesting to search for a 

potential common molecular mechanism involving BCL2 that may link both observations. 

        
Figure III.3.3.7) Validated effect    75, applied to GSE10846.R-CHOP and GSE4475 

Fourth survival effect by multi-cohort based survival analysis(III.2.5) applied to GSE10846.R-CHOP (233 patients) and GSE4475 (all 166 patients, including BL patients). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation  0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples having insuf-
ficient or insignificant correlation to this effect(II.4.2.1). Missing probesets for the consensus gene axis due to an older microarray design in GSE4475 are also grayed.) 
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III.3.3.8   3: A zinc-related effect (quinvariate model, 5th predictor variable) 

 Role in survival analysis 

The final explanatory variable for the quinvariate predictor is effect   3. With   2.5 ⋅ 10(III.2.5.1), it can 

predict significant survival differences on top of already explained survival by effects  ∈ 134, 131, 19, 75. In 

the final quinvariate model(cf. Table III.2.5.2) it contributes with a Cox  value of 6.3 ⋅ 10. 

 Effect overview 

Effect   3 has been unsupervisedly quad-discovered with detection ranks #204(GSE10846.CHOP), #32(GSE10846.R-

CHOP), #24(GSE4475.nonMBL) and #42(GSE31312.R-CHOP). It has a one-sided gradual signal with few co-regulated genes that 

show a clear and homogeneous folding between patients in all cohorts(Figure III.3.3.8.b). 

Higher expression corresponds to higher risk(Table III.2.5.2) for a subset of DLBCL patients stratified by other 

predictor variables. A hierarchical survival analysis below clarifies this subset. 

 Genomic associations 

Via gene ontology overrepresentation(Figure III.3.3.6.b), it was possible to locate this effect in the perinuclear region 

of the cytoplasm(cf. GO:0005737) (  2.0 ⋅ 10, hypergeometric test) where it is involved in negative regulation 

of growth(cf. GO:0045926) (  2.2 ⋅ 10). 

Interestingly, top genes of this effect also represent the majority of genes involved in cellular response to 

cadmium ion(cf. GO:0071276) (  1.6 ⋅ 10) and in cellular response to zinc ion(cf. GO:0071294) (  2.2 ⋅ 10). This 

zinc association seems highly specific, as this GO term is comprised of only 10/20370 measured genes and 

7/8 top genes of the discovered effect belong to it. 

 
Figure III.3.3.8.a) Gene ontology overrepresentation analyses of biological processes and cellular components for effect    3 

All  values are based on hypergeometric tests; cf. I.3.2. (A  value of zero indicates an underflow, i.e.   2.2 ⋅ 10 , which is the numeric resolution limit for 
differences to one; the true  value is never exactly zero.) 

 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005737
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045926
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0071276
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0071294
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Figure III.3.3.8.b) Validated effect    3, applied to GSE10846.R-CHOP and GSE31312.R-CHOP 

The fifth and last significant survival effect by multi-cohort based survival analysis(III.2.5) is depicted for cohorts GSE10846.R-CHOP (233 patients) and GSE31312.R-
CHOP (498 patients). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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Signature analyses reveal two significantly enriched gene signatures that contain top genes of   3; both 

are strongly differentially expressed: 

Consistent with gene ontology findings, the Metallothioneins signature(online interpretation card) describes a family 

of genes that are involved in the metal metabolism of cells[123]. 

Genes in signature Lung_Magda08_21genes(online interpretation card) were upregulated in human lung cancer cell 

line A549 after treatment with zinc ionophores[124]. As zinc ionophores significantly inhibited proliferation for 

these cells, they were suggested as anti-cancer agents in this context. In contrast, DLBCL patient outcome is 

inferior for higher expression of this effect. 

 

 Preliminary top genes analysis 

The effect contains nine top-correlated genes from 

four genomic loci and two chromosomes. 

All top genes are named MT*, where MT abbreviates 

metallothionein. Thionein proteins can bind several 

metals; the complex is then called metallothionein. By 

binding physiologically important metals like zinc or 

by providing a metal storage buffer, they can play a 

role in cellular functions. A dynamic equilibrium 

between thionein acceptors and metallothionein 

donors regulates the availability of zinc[125], for 

example for protein synthesis. 

Seven top genes are from either 16q12.2 or from 

16q13. In principle, a reflection of a chromosomal 

feature in the GEP signal cannot be ruled out. However, 

given the association of these genes to the same known 

function, a genetic regulation network seems more likely to be involved in their coordinate expression. 

Interrogating copy number measurements(e.g. from GSE11318, [11]) for these loci could potentially provide more 

clarity. 

 Hierarchical survival analysis demarcates a DLBCL subset that is influenced by this effect 

As standalone univariate predictor, effect   3 only explains a weak survival trend with   0.0601 on top 

of age and therapy (likelihood ratio test; trained with all samples). However, its additional explanatory value 

increased by orders of magnitudes after incorporating effect   19 into the model (  1.2 ⋅ 10, likelihood 

ratio test) and increased further after incorporating   75. Hence, it should be biologically interpreted in 

context of these other GEP effects. 

Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean  

log2(ratio) 
 (-test 

versus zero) 
Down- 

reg. ratio 
Upreg.  
ratio 

HGNCSigDB_dMay2014 Metallothioneins 19 10 0.897 0.0019 0.2% -1.375 0.0003 100.0% 0.0% 
GeneSigDB_v4_Sept2011 Lung_Magda08_21genes 16 13 0.610 0.0020 0.2% -1.042 0.0004 97.3% 2.7% 

 

Table III.3.3.8.a) Top-enriched signatures by   3 

Signatures with |enrichment	score|  0.5, a mean |log(ratio)|  0.33 and at least 10 measured members are listed for genes ranked by GEP effect   3. 
All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 (#permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


, 	

. 
,  

206461_x_at MT1H 16q13 1.07 0.96 8.8E-98 1.03 
204745_x_at MT1G 16q13 1.00 0.94 1.4E-79 0.94 
208581_x_at MT1X 16q13 0.97 0.93 1.5E-76 0.91 
204326_x_at MT1X 16q13 0.95 0.92 1.9E-69 0.87 
212859_x_at MT1E 16q12.2 0.92 0.90 2.4E-62 0.83 
211456_x_at MT1P2 1q43 0.87 0.92 1.9E-69 0.80 
217165_x_at MT1F 16q12.2 0.85 0.88 7.0E-56 0.74 
213629_x_at MT1F 16q12.2 0.83 0.87 4.4E-54 0.73 
212185_x_at MT2A 16q12.2 0.81 0.89 3.9E-58 0.72 
217546_at MT1M 16q12.2 0.99 0.73 3.1E-29 0.72 

216336_x_at MT1E 1p35.1 0.73 0.87 8.6E-55 0.64 
210524_x_at  17q23.3 0.66 0.81 5.0E-40 0.53 
216504_s_at SLC39A8 4q24 0.37 0.31 4.9E-05 0.11 
228945_s_at SLC39A8 4q24 0.34 0.31 2.1E-05 0.11 
202437_s_at CYP1B1 2p22.2 0.30 0.30 5.5E-05 0.09 

Table III.3.3.8.b) Top genes in validated effect   3 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   3  
  (cf. Table III.1.5); filtered 

,   0.3. 
 

,  Consensus gene correlations; filtered 
,  0.3. 

 
,   values for the correlations (cf. II.5.2.1) 

http://www.genenames.org/genefamilies/MT
http://compbio.dfci.harvard.edu/genesigdb/signaturedetail.jsp?signatureId=18593933-Table1a
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 low BLC2 expression and high “T cell co-stimulation” high BLC2 expression or low “T cell co-stimulation” 

 all available samples 

   
 ABC DLBCL 

   
 GCB DLBCL 

   
Figure III.3.3.8.c) Survival dependency on effect   3 for low BCL2 expression and high “T cell co-stimulation”. 

On the left, 173 samples from all four cohorts with low BCL2 expression (negative logratios) for   75) and high “T cell co-stimulation” (positive log(ratios) for 
  19) are split into subgroups of significantly different survival by effect   3 (hazards predicted by leave-one-out validation). On the right, hazards are predicted 
with the same predictor variable   3 (and with   0.37) for samples with high BCL2 expression or low “T cell co-stimulation”. Here, no significant survival 
difference exists for identical risk intervals. (Chosen split points to present the survival spread in three risk intervals equal ±loghazard ratios of 125%).) 
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To elucidate this complex survival dependency, further manual combinations of effects and hierarchical 

survival analyses have been performed. These investigations revealed a DLBCL subset of 173/947 cases 

(18.3%) defined by low expression of BCL2 (i.e. the lower risk partition of effect   75(cf. III.3.3.7)) and by high 

expression of the “T cell co-stimulation” effect (i.e. also the lower risk partition of effect   19(cf. III.3.3.6)). 

For this subset, a simple univariate Cox predictor model based only on effect   3 can predict significant 

survival differences (  0.37,   3.2 ⋅ 10 using all 173 samples for training), whereas for remaining DLBCL 

patients (having high expression of BCL2 or low expression of “T cell co-stimulation”) effect   3 cannot 

predict any significant survival differences. 

To visualize and validate this, leave-one-out validation(cf. III.2.5.3) has been applied to this subset of 173 cases, 

Kaplan-Meier survival estimates for risk intervals have been computed and resulting survival curves have 

been compared by log rank tests(Figure III.3.3.8.c). The subset for low BLC2 expression and high “T cell co-

stimulation” is clearly split into groups of significantly different survival, including a small group of particularly 

favorable prognosis for lowest metallothionein expressions (95.5% average survival). 

This trend is also visible when additionally restricting to ABC DLBCL or to GCB DLBCL. However, remaining 

sample counts for this three-level hierarchy are too low to reach log rank significance between all neighboring 

risk intervals. Additionally, no ABC DLBCL samples with very low metallothionein expressions exist (hence, 

only two survival curves result for identical risk cutoffs). 

In contrast, for high BLC2 expression or low “T cell co-stimulation”, expressions of metallothioneins cannot 

predict any significant survival differences (and neither after restricting by subtype). 

 The role of zinc for B cells 

Consistent with observed favorable outcome for a subset of DLBCL patients for low levels of 

metallothioneins, a review on zinc related pathways in immunity[126] summarized zinc’s complex involvement 

in T and B cell activity: 

• Zinc deficiency can lead to decreased (non-malignant) lymphocyte count and function. 

• Different sensibility to zinc deprivation points to an effect on cellular development of B cells, rather than 

a functional dependency of mature B cells on zinc. 

• More precisely, zinc deficiency is assumed to increase the rate of apoptosis during elimination of 

autoreactive(cf. I.1.2.2) B cells. 

• Consistently, on organism level it has been observed that loss of lymphoid tissue during zinc deprivation 

exceeds that of other tissues. 

• Numerous additional zinc-related pathways in context of NF-κB, MAPK, PI3K, NFAT and IRAK are 

described that can cause zinc to show complex opposing functions, depending on its concentration and 

on the cellular environment, especially with respect to T cells. 

 Inference 

In summary, high metallothionein expression is associated with adverse outcome for DLBCL patients with 

low BCL2 expression(III.3.3.7) and high “T cell co-stimulation”(III.3.3.6). Low metallothionein expression in this 

subset is associated with 95.5% average survival(cf. Figure III.3.3.8.c). 

The molecular mechanisms for metallothionein overexpression are currently unclear. The gene ontology 

result for cellular response to zinc ion and published data for a lung cancer experiment using zinc 

ionophores[124] indicate that the expression of this effect may directly correlate with zinc concentrations. In 

this context, a correlation of patient zinc blood levels with average expressions of this effect could potentially 

be interesting. 
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III.3.4 Effects without Strong Survival Impact 
As patient outcome is dependent on therapy, effects may be relevant to understand causes of DLBCL, even if 

their differential expression cannot predict significant survival differences. Ideally, some of these discovered 

effects might be utilized therapeutically by novel agents in the future. Other effects without survival 

association might be DLBCL-unspecific. 

Three more effects with interesting statistical properties have been selected and are briefly evaluated here. 

Analyses for several more effects with significant associations to gene ontology terms or to gene signatures 

can be browsed via  DLBCL Master Table 2015, main overview.xlsx. Additionally, some effects with clearly 

differential signal between DLBCL patients but without any known associations can be found there. 

III.3.4.1   20: Another perspective on DLBCL subtypes 

 Role in survival analysis 

Sorting patients by effect   20 reproduces published DLBCL subtypes with 88% agreement and with  
3.4 ⋅ 10 (cf. Figure III.3.2.2.a). Kaplan-Meier survival estimates for sets of patients that result from cutting effect  
20 at its average expression (i.e. at zero eigensignal) are significantly different for both R-CHOP treated cohorts 

(with GSE10846.R-CHOP.KM  7.8 ⋅ 10 and GSE31312.R-CHOP.KM  0.05, log rank tests). This is consistent with known 

differences in average survival of ABC DLBCL and GCB DLBCL. 

However, the effect does not predict any consistent survival trend on top of age and therapy. With   0.065 

(likelihood ratio test) it only ranks 68/135(cf. Figure III.2.5.1.a) in multivariate analysis. Fitting univariate Cox survival 

models for both R-CHOP-treated cohorts results in GSE10846.R-CHOP.Cox  0.03 and GSE31312.R-CHOP.Cox  0.71. For 

comparison, the same univariate Cox survival analyses for effect   134 result in ν134,	GSE10846.R-CHOP.Cox  1.1 ⋅
10 and ν134,	GSE31312.R-CHOP.Cox  1.6 ⋅ 10. Cox models test for a consistent survival trend over the effect’s 

average expression (quantified by its eigensignal strengths(cf. Table III.1.5)), rather than comparing the average 

survival of sets of patients.  

These results indicate that compatible survival trends over average effect expression within subsets of ABC 

DLBCL or GCB DLBCL are predicted by effect   134, but not so by effect   20. Visually consistent(cf. Figure 

III.3.4.1.a), there is no overrepresentation of ABC DLBCL samples with observed progressions (or deaths) on the 

left and neither an overrepresentation of censored GCB DLBCL samples on the right. Hence, no consistent and 

strong survival trend exists over sample eigensignal strengths of   20, despite the obvious arrangement 

by subtype. 

Similar to effects   127 and   131(cf. III.3.3.2), this effect gains in predictive value after including effect  
134 in the multivariate predictor, indicating that expression of   20 is associated with two opposing survival 

trends for two overlapping subsets of DLBCL. However, it still only ranks 9th(cf. Figure III.2.5.1.b) with   2.1 ⋅ 10 . 

After including   131 or   127 in the predictor model as well, no significant additional explanatory value 

remains for   20. 



216 Chapter III - Dissecting DLBCL Gene Expressions 
 

 
Figure III.3.4.1.a) The quad-discovered effect   20 is significantly associated with DLBCL subtypes, but not with a consistent survival trend 

Effect   20	applied to GSE31312 (498 patients). Enlarged public subtype classifications (yellow/pink) show a significant arrangement from ABC DLBCL to GCB 
DLBCL. Despite that, no clear survival trend exists (green/orange). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this 
cohort(cf. Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for 
samples having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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 Effect overview 

Effect   20 has been unsupervisedly quad-discovered with detection ranks #6(GSE10846.CHOP), #27(GSE10846.R-

CHOP), #4(GSE4475.nonMBL) and #15(GSE31312.R-CHOP). The effect has a well-defined signal of moderate size(e.g. Figure III.3.4.1.a) in 

all four cohorts (approximately 70 top probesets for relative correlation  0.5). A detailed list of top genes is 

available in  DLBCL Master Table 2015, gene orders.xlsx. 

Its top genes are partially correlated to the hierarchical survival effect  ∈ 127, 131(cf. III.3.3.2) (with ; 0.57 and (;)
  0.31(cf. Eqn. III.1.3.2.b)). It is also partially correlated to the relatively large rediscovered COO 

induced effect(III.3.2.2) (with (;)
  0.36). This indicates that several of its top genes may be biologically 

relevant in contexts of these other GEP effects. However, described survival characteristics of effect   20 

indicate that the average expression of its particular composition of top genes is not as specific to true 

biological effects as these partially correlated other effects. 

 Genomic associations 

The same ABC-versus-GCB signatures that were significantly enriched for the COO induced effect  
129(Figure III.3.2.2.c) are nearly as strongly enriched for top genes of   20(Figure III.3.4.1.b): 

 
Figure III.3.4.1.b) Significant enrichment of known ABC-versus-GCB DLBCL signatures by effect   20 

 

 

 Inference 

Results for this effect demonstrate that significant association with and high agreement with binary DLBCL 

subtypes is not sufficient information to reliably infer consistent trends of patient survival over average effect 

expression. (Significantly different average survival for corresponding patient partitions may be inferred.) 

Hence, depicted signatures ABCgtGCB_U133AB(online interpretation card) and GCB_gt_ABC_U133plus(online interpretation 

card) may contain genes that are not necessarily associated with a consistent survival trend, as these genes were 

identified based on previously assigned subtype classes(cf. page  180 for details). 

http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=12
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=311
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=311
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This is confirmed by the enrichment of these signatures for both the COO induced effect   129(cf. III.3.2.2) (that 

is associated with a strong survival trend with   1.1 ⋅ 10) and likewise enrichment for the current effect 

  20, although it only has   0.065 for the same test(cf. Figure III.2.5.1.a). 

Consequently and in general, significant enrichment of the same signatures for two different effects does not 

necessarily indicate that these effects represent biologically similar functions. Hence, results from signature 

enrichment analyses should be interpreted with care. In particular, the biological specificity of enriched 

signatures should be independently verified in the respective context, if possible. 

Furthermore, to quantify whether a small gene signature is associated with a particular effect, individual 

correlations of signature genes to the effect’s sample axis might provide a biologically more specific answer. 

These correlations may complement enrichment or overrepresentation analyses on signature level. 

(However, they can only be computed in context of a concrete patient cohort and are not available for pure 

genomic association analyses.) 

 

 

 

 

 

 

 

 

III.3.4.2   7: Presumably the main blood concentration effect 

 Effect overview 

This one-sided effect(Figure III.3.4.2) consists of approximately 800 top probesets (relative correlation  0.5) and 

is one of the largest discovered effects. It has been unsupervisedly quad-discovered with detection ranks 

#2(GSE10846.CHOP), #2(GSE10846.R-CHOP), #3(GSE4475.nonMBL) and #1(GSE31312.R-CHOP).  

It is not associated with patient outcome following (R-)CHOP therapy. 

 Effect identification 

Due to the effect’s size, many gene ontology terms are overrepresented and many signatures are enriched, 

including many signatures from specific leukemia and immune contexts. All of them are of much smaller size 

and hence are not representative for the full effect. Furthermore, they describe different biology. There should 

be a common explanation for such high correlations between so many genes. 

While unsupervised quad-discovery rules lab-specific technical effects out, it may be speculated that the 

effect represents differences in frequency of another cell type from the microenvironment that has been 

inadvertently included in measured tumor samples. This could affect all four patient cohorts and could explain 

the large number of correlated genes, as simply all genes expressed in this other cell type would be ordered 

by relative frequencies of this cell type in measured samples. However, this is just a hypothesis that seems 

plausible because of the large size of this effect that I have only seen between different cell types so far. Instead 

of a single cell type, it might also be an indirect measurement of a common mixture of cell types. 
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Figure III.3.4.2) One of the largest quad-discovered GEP effects that presumably represents blood concentrations in tumor samples 

Effect   7	applied to GSE10846.R-CHOP (233 patients); 1 patient id hidden from the plot as it has insufficient or insignificant correlation to this effect(cf. II.4.2.1).  
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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Screening significant signatures with this hypothesis in mind revealed that several different blood modules 

are significantly enriched: 
Signatures GSEA Basic Statistics 

Signatures DB Signature Name 
# 

defined 
# mea-
sured 

Enrich- 
ment 
score 

 FDR 
Mean log2( 

ratio) 
 (-test 

versus zero) 
Down- 

reg. ratio 
Upreg.  
ratio 

StaudtSigDB_dNov2012 Dendritic_cell_CD16pos_blood 42 41 0.659 0.0020 0.2% -0.635 1.7E-09 91.9% 8.1% 
StaudtSigDB_dNov2012 Blood_Module-1.5_Myeloid_lineage-1 110 108 0.583 0.0020 0.2% -0.611 6.3E-25 92.3% 7.7% 
StaudtSigDB_dNov2012 Blood_Module-3.1_Interferon_inducible 94 93 0.694 0.0020 0.2% -0.526 5.4E-18 91.8% 8.2% 
StaudtSigDB_dNov2012 Blood_Module-2.1_Cytotoxic_cells 160 155 0.586 0.0021 0.2% -0.551 1.5E-25 87.1% 12.9% 
StaudtSigDB_dNov2012 Blood_Module-2.6_Myeloid_lineage-2 145 143 0.543 0.0020 0.2% -0.461 5.3E-22 87.8% 12.2% 
StaudtSigDB_dNov2012 Blood_Module-1.3_B_cells 55 53 -0.577 0.0020 0.2% 0.496 2.0E-11 8.8% 91.2% 

 

Table III.3.4.2) Blood module signatures that are significantly enriched for   7 

All GSEA  values are based on permutation tests; hence, they are lower-bounded by 1 #permutations)⁄  and true  values might be considerably lower in this case. 
1000 permutations have been computed for each signature, i.e. approximately 500 for each enrichment sign. Percentages of down- and upregulated genes in a 
signature are weighted averages of gene regulation signs (using 1   values of -tests against zero regulation as weights). 

This might indicate that this effect is just an indirect measurement of blood concentrations in tumor samples 

and that these concentration differences cause the discovered broad correlation effect. Only moderate 

enrichment of these signatures could be caused by slightly changing mixture ratios of different blood cells 

form patient to patient. 

Interestingly, Blood_Module-1.3_B_cells(cf. online interpretation card, [127]) is anti-correlated to all other enriched blood 

modules, indicating that the effect does not only measure different levels of blood concentration, but a relative 

concentration of B cells and other blood cells. 

 Inference 

Assuming that this effect indeed measures relative concentrations of B cells to other blood modules, it may 

be interesting to find out whether these concentration ratios have already been introduced by tumor sampling. 

If this can be excluded, the effect might allow indirect insights on how different forms of DLBCL influence their 

tumor microenvironment. 

 

 

 

 

III.3.4.3   4: A strong immunoglobulin effect 

 Effect overview 

Effect   4 shows a strongly differential one-sided signal(Figure III.3.4.3, p222) and was also unsupervisedly 

discovered in all four DLBCL cohorts (with detection ranks #9(GSE10846.CHOP), #9(GSE10846.R-CHOP), #12(GSE4475.nonMBL) and 

#14(GSE31312.R-CHOP)). It is not associated with patient outcome following (R-)CHOP therapy. 

 Top genes overview 

Interestingly, most of this effect’s top-correlated genes 

originate from only three loci: 2p11.2, 14q32.33 and 

22q11.22(cf. Table III.3.4.3.a). Such overrepresented and 

specific loci might indicate a reflection of chromosomal 

features. To test for potential triggering aberrations, 

copy number measurements(e.g. from GSE11318, [11]) for these 

loci could be interrogated. 

Top genes in     

Probeset 
Gene  

Symbol 
HG19  
locus 


,  

,  
,  


,  

. 
,  

215176_x_at  2p11.2 2.21 0.95 1.6E-99 2.10 
211645_x_at  2p11.2 2.18 0.96 1.4E-109 2.09 
216576_x_at IGKC 2p11.2 2.04 0.95 8.5E-98 1.93 
234764_x_at IGLC1 22q11.22 2.11 0.80 8.9E-50 1.68 
216401_x_at  2p11.2 1.66 0.94 1.9E-92 1.56 
216207_x_at IGKC 2p11.2 1.57 0.94 3.0E-93 1.48 
217157_x_at IGKC 2p11.2 1.60 0.92 2.2E-80 1.47 
217378_x_at LOC100130100 2q13 1.55 0.93 1.2E-85 1.44 
216510_x_at IGHA1 14q32.33 1.65 0.79 1.5E-42 1.30 
217148_x_at IGLC1 22q11.22 1.81 0.69 8.1E-29 1.25 
211644_x_at IGKC 2p11.2 1.73 0.72 5.2E-32 1.24 

http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=285
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However, as most top genes from all three loci are 

coding immunoglobulins, their consistent regulation 

might also be associated with a common function or 

cell type. 

 

 Genomic associations 

The gene ontology term for antigen binding(cf. 

GO:0003823) is significantly overrepresented with  
2.2 ⋅ 10  (7 of the effect’s top 17 genes belong to this 

term, while only 25 genes of all 20370 measured 

genes belong to it; hypergeometric test). 

Signature analyses revealed several significantly yet 

moderately enriched signatures, including several 

immunoglobulin gene families and Blood_Module-

1.1_Plasma_cells(cf. online interpretation card, [127]) (enrichment 

score 0.591,   0.0021, 486 permutations). 

 

 Inference 

Signature enrichment suggests that correlated 

expressions of genes in this effect might reflect 

concentrations of blood plasma cells that might 

produce and secrete soluble antibodies (immuno-

globulins). 

In this case and assuming that no bias with respect 

to plasma cell concentrations has been introduced by 

tumor sampling,   4 might measure an indirect 

effect of different forms of DLBCL on the micro-

environment. (Biases due to the way of sampling are 

unlikely here, because in all four independent cohorts 

approximately one third of patients overexpresses 

this effect relative to baseline and approximately two 

thirds have lower expression than baseline(cf. Figure 

III.3.4.3). In case of random fluctuations of plasma cell 

concentrations by tumor sampling, a baseline that is 

near the median would be more likely.) 

However, the link to plasma cells by enrichment 

requires further biological validation, because only 

approximately 25% of this signature’s genes are 

strongly differentially expressed by   4. Hence, also 

a more direct role of this effect in DLBCL cannot be 

excluded. 

214768_x_at IGKC 2p11.2 1.57 0.79 2.2E-43 1.24 
211430_s_at IGHG1 14q32.33 1.72 0.71 1.6E-31 1.23 
217480_x_at LOC100287723 (multiple) 1.35 0.91 3.1E-76 1.23 
216557_x_at IGHA1 14q32.33 1.43 0.77 2.9E-39 1.10 
217281_x_at IGH@ 14q32.33 1.40 0.77 1.2E-39 1.08 
216984_x_at IGLC1 22q11.22 1.52 0.70 4.4E-30 1.07 
211643_x_at IGKC 2p11.2 1.40 0.76 3.1E-38 1.06 
217022_s_at IGH@ 14q32.33 1.55 0.64 5.1E-24 1.00 
211650_x_at IGH@ 14q32.33 1.28 0.78 1.1E-40 0.99 
211798_x_at IGLJ3 22q11.22 1.33 0.74 4.1E-35 0.98 
214973_x_at IGHD 14q32.33 1.35 0.73 2.8E-33 0.98 
214777_at  2p11.2 1.52 0.64 5.2E-24 0.97 

216491_x_at IGHM 14q32.33 1.40 0.67 3.4E-27 0.94 
217258_x_at IGLV1-44 22q11.22 1.27 0.71 9.9E-32 0.91 
224342_x_at LOC96610 22q11.22 1.23 0.72 9.7E-36 0.88 
217227_x_at IGLV1-44 22q11.22 1.20 0.72 4.7E-33 0.87 
211637_x_at IGH@ 14q32.33 1.23 0.66 2.7E-26 0.82 
217179_x_at  22q11.22 1.24 0.66 2.5E-25 0.81 
214669_x_at IGKC 2p11.2 1.26 0.63 9.2E-23 0.79 
217235_x_at IGLL5 22q11.22 1.20 0.65 5.6E-25 0.78 
224795_x_at IGKC 15q21.3 1.31 0.59 4.5E-22 0.78 
211881_x_at IGLJ3 22q11.22 1.04 0.73 3.2E-34 0.76 
221651_x_at IGKC 2p11.2 1.30 0.58 4.5E-19 0.76 
221671_x_at IGKC 2p11.2 1.28 0.58 4.9E-19 0.74 
214836_x_at IGKC 2p11.2 1.17 0.63 3.2E-23 0.74 
211868_x_at IGH@ 14q32.33 1.05 0.68 2.1E-28 0.72 
211641_x_at IGHA1 14q32.33 0.93 0.75 2.9E-37 0.71 
215214_at IGLC1 22q11.22 1.00 0.68 1.0E-27 0.68 

209138_x_at IGLC1 22q11.22 1.28 0.52 6.4E-15 0.67 
211908_x_at IGK@ 14q32.33 0.92 0.72 4.1E-33 0.67 
234884_x_at IGLC1 22q11.22 1.01 0.65 4.7E-28 0.66 
214677_x_at IGLC1 22q11.22 1.30 0.49 2.5E-13 0.64 
211634_x_at IGHM 14q32.33 1.00 0.61 1.8E-21 0.61 
216542_x_at IGHA1 14q32.33 0.83 0.73 7.5E-34 0.61 
216560_x_at IGLC1 22q11.22 1.05 0.57 3.4E-18 0.60 
211639_x_at IGH@ 14q32.33 0.98 0.58 2.6E-19 0.57 
215121_x_at IGLC1 22q11.22 1.14 0.49 2.7E-13 0.56 
234366_x_at IGLC1 22q11.22 0.92 0.61 2.1E-23 0.56 
214916_x_at IGHA1 14q32.33 0.92 0.61 5.2E-21 0.56 
216829_at IGKC 2p11.2 0.75 0.71 4.0E-31 0.54 

215379_x_at IGLV1-44 22q11.22 1.06 0.50 1.5E-13 0.52 
216853_x_at IGLC1 22q11.22 0.89 0.56 2.1E-17 0.50 
217360_x_at IGHA1 14q32.33 0.69 0.70 3.0E-30 0.49 
215949_x_at IGHM 14q32.33 0.73 0.66 6.0E-26 0.49 
211635_x_at IGHA1 14q32.33 0.83 0.58 3.2E-19 0.49 
211640_x_at IGHG1 14q32.33 0.78 0.62 2.3E-22 0.48 
212592_at IGJ 4q13.3 1.18 0.41 3.5E-09 0.48 

215946_x_at IGLL3P 22q11.23 0.89 0.50 6.4E-14 0.45 
216412_x_at IGLC1 22q11.22 0.71 0.60 9.2E-21 0.43 
211633_x_at  14q32.33 0.70 0.59 5.5E-20 0.42 
237625_s_at  2p11.2 0.94 0.43 2.2E-11 0.41 
213502_x_at GUSBP11 22q11.23 0.84 0.48 1.7E-12 0.40 
216430_x_at IGLV1-44 22q11.22 0.62 0.61 4.9E-21 0.38 
217384_x_at IGHV3-48 14q32.33 0.56 0.66 5.7E-26 0.37 
216365_x_at IGLC1 22q11.22 0.72 0.51 3.1E-14 0.37 
234851_at IGLC1 22q11.22 0.60 0.58 2.7E-21 0.35 

234792_x_at IGHA1 14q32.33 0.57 0.58 6.7E-21 0.33 
216541_x_at IGHG1 14q32.33 0.60 0.52 4.0E-15 0.32 
235965_at  7q21.3 0.64 0.47 3.3E-13 0.30 

234707_x_at IGLV1-44 22q11.22 0.68 0.43 4.2E-11 0.29 
217236_x_at IGH@ 14q32.33 0.47 0.59 1.3E-19 0.28 
217239_x_at LOC100508797 14q32.33 0.48 0.57 3.2E-18 0.27 
211647_x_at IGHG1 14q32.33 0.48 0.56 2.9E-17 0.27 
211649_x_at IGHA1 14q32.33 0.46 0.53 2.1E-15 0.24 
216708_x_at CKAP2 22q11.22 0.49 0.47 2.6E-12 0.23 
200670_at XBP1 22q12.1 0.54 0.42 7.3E-10 0.23 
217145_at IGKC 2p11.2 0.42 0.51 4.7E-14 0.21 
216517_at IGKC 2p11.2 0.45 0.44 8.9E-11 0.20 

229721_x_at DERL3 22q11.23 0.45 0.44 1.2E-11 0.20 
201287_s_at SDC1 2p24.1 0.43 0.45 5.4E-11 0.19 

Table III.3.4.3.a) Top genes in validated effect   4 

 (probesets) from Affymetrix U133 Plus 2.0 microarrays;  
  manufacturer annotations (NetAffxTM,[97] v33) 
 

,  Components of the consensus gene axis of effect   4  
  (cf. Table III.1.5); filtered 

,   0.4. 
 

,  Consensus gene correlations; filtered 
,  0.4. 

 
,   values for the correlations (cf. II.5.2.1) 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003823
http://lymphochip.nih.gov/cgi-bin/signaturedb/signatureDB_DisplayGenes.cgi?signatureID=283
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Figure III.3.4.3) A quad-discovered immunoglobulin effect  

Effect   4 applied to GSE10846.R-CHOP (233 patients); 6 patients are hidden from the plot as they have insufficient or insignificant correlation to this effect(cf. II.4.2.1). 
(The genomic consensus effect is applied to the cleaned signal without lab effects(cf. III.1.4.2). Samples and probesets are ordered by their effect strengths in this cohort(cf. 

Table III.1.5). Additionally, probesets are filtered by demanding a relative correlation stronger than 0.5. The effect’s bimonotonic eigensignal(panel d) is grayed for samples 
having insufficient or insignificant correlation to this effect(II.4.2.1).) 
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A novel method for signal dissection into interpretable patterns has been designed, 

developed and successfully validated against synthetic and real-world data. Its search 

strategy for interactions is based on an extremum principle for correlations. Its bimonotonic 

effect model allows the regression of a broad class of nonlinear gene regulations. With its 

capability to dissect even partially correlated effects precisely, it goes conceptually beyond 

standard methods like principle components analysis and hierarchical clustering. 

All known major GEP effects for DLBCL that are significantly associated with patient 

survival have been rediscovered. Additionally, novel genetic effects with greater predictive 

power have been discovered. They can predict significant survival differences within known 

disease subtypes and within clinical risk classes by international prognostic index. 

Comprehensive biostatistical evaluations for discovered survival effects reveal hierarchical 

dependencies and pinpoint molecular heterogeneities. Effect correlations identify potential 

oncogenes or tumor suppressor genes. Together, these results may help to clarify the 

molecular pathogenesis of DLBCL. 

Signal dissection can be readily applied to other cancer entities as well. Moreover, its concept 

of interaction may have the potential to lead to more interpretable insights into signals from 

many other fields of science, for instance, into spectral energy distributions of stars. 

 Key concepts and scope of application 

Mathematically, signal dissection is applicable to any high-dimensional multi-sample signal ∈ (cf. II.2.1.1) 

consisting of  samples (e.g. tumor biopsies) of a system with  dimensions (e.g. genes). However, for resulting 

effects to be interpretable, its concept of interaction and detection must be compatible with the analyzed 

system. There are three key concepts driving signal dissection that determine its scope of application and 

distinguish it from principal components analysis (PCA). 

Correlation maximization principle: Initially, the search strategy(II.3) detects effect axes similar to principal 

components, but it utilizes a different generic concept of interactions for detection(cf. I.1.3.4). Rather than looking 

for maximal signal variance and minimal cross-effect covariance as done by PCA(cf. I.2.2.2), it maximizes the within-

effect correlation(II.3.1.6). Searching for maximal correlation instead of maximal variance optimizes specificity of 

resulting effects. Generally, for signal dissection to be applicable, it must make sense to ask for non-local 

correlations between arbitrary system dimensions and between arbitrary samples. For genes, this is the case, 

as their extrinsic order by genomic sequence does not prevent non-neighboring genes from being coordinately 

expressed by a shared pathway that is active in measured cells. Discovered effect axes then summarize laws 

of gene regulation mediated by such pathways (or by other causes) as linear combinations of genes. 

Generic bimonotonic effect model: A bimonotonic effect model(II.2.1.2) and a corresponding bimonotonic 

regression algorithm(II.4.1) is utilized to empirically estimate an particular effect’s own contributions to the 

measured signal sum of superposed effects(II.2.1.1). The resulting effect eigensignal can be parameterized as 

either the effect’s gene curve in gene space or the effect’s sample curve in sample space(II.2.2.3). Effect curves 

extend the linear concept of gene and sample axes. This also extends the method’s applicability to a broad class 

of nonlinear effects that are monotonic with respect to projections on effect axes, e.g. biological activation 
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thresholds or saturations(II.1.1.2). In contrast, usual projections along gene axes can only explain the linear 

component of an effect’s law of gene regulation. Hence, a naïve dissection by projection would split the effect 

by leaving its nonlinear parts in the signal. This would trigger later discoveries of hard-to-interpret secon-

dary effects. 

Effect focusing and precise dissection: Weighted uncentered correlations(cf. II.2.3.1) to converged gene and 

sample axes and their statistical significance(II.5.2.1) define the final focus of a discovered effect, i.e. its 

participating genes and affected samples. Utilizing this focus as dissection strengths and together with 

regressed effect curves, this allows the precise and exclusive dissection of the effect(II.4.2). Signal parts from 

other potentially overlapping effects (that may regulate the same genes in the same samples by other laws) 

are left untouched for their later separate discovery(e.g. Figure II.4.2.2.b). This makes the method even applicable in 

context of partially correlated effects, for instance to all four effects in the 3D concept example(II.6.1). In contrast, 

the dissection of such effects is not possible with PCA or with other methods that are equivalent to projections 

or to orthogonal coordinate transformations of the gene or sample space. (This is conceptually impossible for 

these methods, because after three full projections in 3D only a point signal remains, but there are four distinct 

effect axes in this signal(cf. II.6.1).) 

Signal dissection utilizes these concepts iteratively to detect, extract, quantify and summarize distinct laws 

of gene regulation by effect curves. Other than traditional techniques like hierarchical clustering that can just 

reorganize genes and samples into groups once, dissection modifies the signal itself by “peeling off” correlated 

and potentially overlapped signal parts. The sum of all detected and dissected effects reconstructs the complete 

signal, except for noise(cf. II.2.1.1). If needed, a traditional clustering can be readily derived from each effect by 

choosing a cutoff. Hence, signal dissection effectively also realizes and describes a set of alternate clusterings 

of genes and samples by shared gene regulation effects. 

 

 Solution overview 

As introduced(I.1), the practical aim is to bridge the increasing gap between overwhelmingly detailed signals 

based on modern measurement technology and expert modeling of underlying (and typically complex) 

systems. To this end, signal dissection contributes an interpretable summarization of measured signals. More 

precisely, it contributes a superposition(II.2.1.1) of specific effects of interaction that are observable by 

correlations(II.2.1.2). However, a complete solution for this aim needs some additional steps. 

For validation purposes, two or more independent sample sets have to be measured for the analyzed system; 

this is depicted by three exemplary patient cohorts in the solution scheme(unterhalb). First, the signal for each 

cohort is dissected independently. Important steps of signal dissection are illustrated again. Next, resulting 

sets of effects are validated across cohorts; this enables filtering out systematic errors like lab-specific effects. 

Hence, validated effects most probably originate from true interactions in the analyzed system. Finally and as 

optimal preparation for expert interpretation and modeling, several statistical methods are utilized to 

associate validated effects with available sources of computable knowledge. 

This solution has been applied to more than 1000 tumor samples from DLBCL patients(III.1.1.1). All gene 

expression effects that can distinguish patients of DLBCL have been unsupervisedly discovered and 

validated(III.1.2) across four independent patient cohorts. As signal dissection is complete(II.2.1.1), there are no 

significant(II.5) GEP correlation effects left in remaining signals. Several validated effects are significantly 

associated with patient outcome. Genetically novel survival effects are summarized below. To the best of my 

knowledge, this is the most comprehensive unsupervised gene expression analysis of DLBCL to date. 
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Solution scheme (exemplary for gene expressions in bioscience) 

(a) Gene expressions have been measured for independent patient cohorts. (b) Signal dissection and its exploratory search strategy detect effects. (c) Discovered 
effects are validated across independent cohorts. (d) Applying validated consensus gene effects classifies samples. (e) Genomic associations to consensus gene axes 
and clinical associations to consensus sample axes provide the basis for expert assessment and interpretation of effects. 

Measurements: Gene expressions for patient cohorts of the disease 

Discovery: Signal dissection (for each independent cohort) 

, 

Cross-cohort validation 

, , 

Consensus effects 

, 

An initial or a 
new patient 

cohort 

Consensus 
sample order 

, , , 

Signal Cleaning 

(dissect as above 
and remove all 

effects that failed 
validation; III.1.4.1) 

Filter out systematic errors 
(cohort-specific lab effects) 

Remaining signal 
 ≡    
(may still contain 
information about 

superposed effects) 

Unexplained  

signal  

Consensus gene axes (most probab-
ly of biological origin; cf. III.1.3) 

Statistical evaluation (III.3) and effect identification 

Significantly over-
represented loci 

Significant clinical 
associations 

Significantly en-
riched signatures 

Consensus sample axes Consensus gene axes 

Log rank 
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Genomic 
order 

Clinical data 
(e.g. gender) 

Hypergeo-
metric tests 

Follow up 
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Contingency 
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Stop, once no 
significant effects 

remain 

Sort by projections on 
effect axes (II.4.1.1) 

, 

Search strategy (II.3) 

Unsupervised validation (independent discovery in multiple cohorts) or 
supervised validation (apply detected gene axes to other cohorts) (III.1.2) 

Classification 

(compute eigensignals 
as above, but utilize 

discovered consensus 
gene axes instead of 
the search strategy; 

cf. III.1.4.2) 
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 Method validation and comparison 

Several synthetic data scenarios have been designed to validate signal dissection thoroughly: A versatility 

test(II.6.2) has simulated overlapping effects of various size, shape and signal strength that mimic known 

biological or technical real world effects. A superposition scenario(II.6.3) has tested the maximum dissectible 

amount of overlapping effects. Several tests have been designed to test diverse detection limits(II.6.4): the limit 

of weak signals relative to simulated noise, the limit of acceptable missing values and the limit of an acceptable 

number of noise genes for the detection of small effects.  

A systematic comparison with PCA has proven that signal dissection leads to more interpretable results, i.e. 

the method is able to rediscover more simulated effects with significantly higher correlations to true simulated 

effect axes(cf. II.6.2.5). In particular, signal dissection has clear advantages for overlapping effects of similar size, 

which are common for real world gene expression signals. Here, PCA’s interaction concept of maximal 

variance guides to genes that are expressed by the highest number of overlapping effects. Consequently, 

resulting principal components represent uninterpretable linear combinations of overlapping yet distinct 

effects, rather than to dissect the signal into true simulated effects(cf. Figure II.6.3.1.a).  

Furthermore, signal dissection can still detect effects for high ratios of missing values(e.g. Figure II.6.4.4.b). To a 

certain extent, it can even restore missing signals from correlations(cf. Figure II.6.4.4.d). (PCA does not support signals 

with missing values.) 

 

 Real-world validation and rediscovered biological effects 

Signal dissection has also been successfully validated against real-world data. For instance, the gender GEP 

effect has been unsupervisedly discovered in all four dissected DLBCL patient cohorts(III.3.2.1). This is already an 

independent control of detection, validation, annotation and interpretation pipelines. 

Due to the completeness of signal dissection(II.2.1.1), additionally all major previously discovered DLBCL GEP 

effects have been unsupervisedly rediscovered. All are known for their association with patient outcome. The 

biologically most important one is the cell-of-origin (COO) induced effect. It identifies two patient subgroups 

as molecularly distinct DLBCL subtypes(III.3.2.2, index ν=129). These subtypes are associated with significantly 

different survival and are hard to distinguish on morphological level. Hence, this molecular effect is possibly 

needed for precise therapy decisions, when subtype-specific agents become available. Secondly, a stromal 

effect has been rediscovered that is associated with the extracellular matrix(III.3.3.4, index ν=5). Thirdly, another 

stromal effect has been rediscovered that has previously been associated with the tumor blood-vessel 

density(III.3.3.5, index ν=44). 

 

 Genetically novel effects and survival prediction 

Several more genetically distinct GEP effects have been discovered that are significantly associated with 

survival(III.2.5.1). In particular, one genetically novel effect(III.3.3.1, index ν=134) can predict observed survival even more 

consistent(Figure III.2.5.1.a) than the COO induced effect. 

Via iterative selection of GEP effects that provide the highest additional explanatory value for observed 

patient outcome, a quinvariate Cox survival predictor has been constructed(III.2.5). Based on leave-one-out 

validation, predicted survival probabilities show a homogeneous predictor performance from 29% to 89% 

average survival(cf. Figure III.2.5.3.b). Comparison with survival dependencies that are predicted by known DLBCL 

subtypes(III.2.1.8) shows an obvious and strong increase in the predicted survival spread, both for the former 
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standard CHOP and the current standard R-CHOP chemotherapy(III.2.5.4). Furthermore, it can predict significant 

survival differences within known DLBCL subtypes(III.2.5.6) and within risk classes by international prognostic 

index (IPI)(III.2.5.8). This suggests that discovered GEP effects register so far unknown DLBCL biology and identify 

relevant genetic heterogeneity. Additionally, this demonstrates that macroscopic clinical observables 

underlying the IPI score presumably can no longer serve as surrogates for molecular predictors, as soon as 

different therapies for specific molecular subtypes become clinically available. The latter is a concrete goal 

towards precision medicine(I.1.2.4). 

 

 Biostatistical evaluation of major novel survival effects 

It is not yet clear which precise molecular mechanisms cause these survival differences. Towards 

understanding them, all discovered major survival effects(III.3.3) have been biostatistically evaluated. Genomic 

associations of effects with existing knowledge, clinical associations with patient covariates and in particular 

hierarchical survival dependencies between effects have been analyzed. These results and suggested 

biological validation experiments may help to advance the investigation of DLBCL’s molecular pathogenesis. 

Selected results and inferred biological hypotheses are summarized below. 

Effect   134(III.3.3.1) is the primary survival factor in DLBCL, as it can predict survival most consistently with 

  4.5 ⋅ 10. The COO induced effect(cf. III.3.2.2) follows at rank #2 with   1.1 ⋅ 10(Figure III.2.5.1.a). Top genes of 

these two effects are only weakly correlated (;)
  0.29). With only 69 unique correlated top genes, 

effect   134 is more specific than the COO induced effect with 151 unique top genes for the same correlation 

cutoff. One of the novel effect’s top genes is KLHL6. As KLHL6 proteins contain a domain that is known for 

transcriptional repression activity and might be involved in the germinal center B-cell differentiation 

pathway[109], it could potentially be a tumor suppressor gene. This would be consistent with significantly 

adverse patient outcome for lower KLHL6 expression. As they are linked by high GEP correlation, the same 

biological functions might be associated with FGD6 and other top-correlated genes of   134. These 

hypotheses about potential tumor suppressor genes could possibly be investigated by overexpression 

experiments in DLBCL cell lines that show low expression of effect   134. To identify these cell lines, they 

could be screened for their protein levels of KLHL6 and FGD6. Ideally, the proliferation of cells with low or 

nonexistent levels of these proteins can be stopped by corresponding overexpression experiments. 

Effect   127(III.3.3.2) is the best secondary predictor variable with   5.6 ⋅ 10 on top of the primary effect 

  134 when training with samples from all R-CHOP treated patients(III.2.2.1). It predicts hierarchical survival 

dependencies(III.2.2.3) that exclusively exist in the lower risk partition of the primary effect(Figure III.2.2.3.a). To 

elucidate the biological pathway underlying   127, further biological experiments might potentially be 

helpful. Analytically, BACH2 seems to be a promising oncogene candidate for the lower risk partition of  
134, i.e. predominantly for GCB DLBCL patients. To test this hypothesis, GCB DLBCL cell lines with high BACH2 

protein expression could be selected for BACH2 knockdown experiments. 

Effect   3(III.3.3.8) contributes to the final quinvariate model(cf. Table III.2.5.2) with a Cox  value of 6.3 ⋅ 10. It 

measures metallothionein expressions and predicts significant survival differences in context of two other 

effects. High metallothionein expression is associated with adverse outcome for DLBCL patients with low 

BCL2 expression(III.3.3.7) and high “T cell co-stimulation”(III.3.3.6). Low metallothionein expression in this subset is 

associated with 95.5% average survival(cf. Figure III.3.3.8.c). The molecular mechanisms for metallothionein 

overexpression are currently unclear. The gene ontology result for cellular response to zinc ion and published 

data for a lung cancer experiment using zinc ionophores[124] indicate that the expression of this effect may 
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directly correlate with zinc concentrations. In this context, a correlation of patient zinc blood levels with 

average expressions of this effect could potentially be interesting. 

Besides major survival effects(III.3.3), several additional effects with differential gene expressions have been 

discovered and validated across DLBCL patient cohorts. Some of these effects describe ordinary human gene 

expression differences like the quad-discovered gender effect(III.3.2.1) or a presumed blood concentration 

effect(III.3.4.2). Further disease-specific effects might also be among these effect, because current chemotherapies 

may have no or only a constant impact on their underlying pathways. All biostatistical analyses have been 

performed for these effects as well and are provided on disc(page 231). 

 

 

 

 

 

 

 

 

 

 Dissecting other cancer entities 

Given validated and biologically relevant results for DLBCL, a promising research perspective is the 

dissection of gene expression signals for other cancer entities. With a multitude of gene expression cohorts for 

various cancers already publicly available via the NCBI Gene Expression Omnibus([63], http://www.ncbi.nlm.nih.gov/geo) or 

via the Cancer Genome Atlas(see TCGA Research Network, http://cancergenome.nih.gov), this perspective has enormous scope. 

Furthermore, the recent(January 2015) United States Government Precision Medicine Initiative has the aim to 

measure genomic data for up to one-million samples[15], an unprecedented amount of genomic data. This is 

ideal for signal dissection and may even allow the discovery of effects that concern only tiny fractions of 

samples for a particular disease. This initiative also underlines the priority of this research field[14] and the 

potential of signal dissection in particular. 

 

 Biologically more specific genomic associations 

The conceptual problem of representing effects by flat sets(cf. II.1.2.6) has been demonstrated for DLBCL 

subtypes: Several genetically distinct GEP effects are significantly associated with ABC DLBCL and GCB DLBCL, 

but they show strikingly different predictive power with respect to patient outcome(e.g. III.3.4.1). The same 

problem does not only concern sets of samples. Information is likewise lost when representing genomic effects 

by sets of genes, as is commonly done for gene signatures today. This can result in significant enrichments of 

the same signature for genetically distinct effects with distinct biological characteristics. For instance, the 

same ABC-versus-GCB signatures are significantly enriched for validated effects   129,   134 and   20, 

although these effects have clearly different top genes and again strikingly different predictive power. In brief, 

http://www.ncbi.nlm.nih.gov/geo
http://cancergenome.nih.gov/
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flat sets for sample clusters or gene signatures do not encode enough information about biological effects to 

enable specific associations. 

In contrast, signal dissection quantifies effects with much more information as is stored by flat sets. For 

example, gene axes store regulation strengths mediated by the underlying pathway for each single gene. 

Additionally, gene correlations describe the consistency of these regulations over all samples for each single 

gene. Based on these information and the associated effect foci, a precise cross-cohort validation of effects can 

be facilitated(III.1.2.1). More precisely, this task is realized by weighted uncentered correlations(II.2.3.1) that can be 

complemented with measures of statistical significance(II.5.2). 

The same effect comparison method could also be utilized to replace gene set enrichment analyses in order 

to facilitate biologically more specific associations. An effects database similar to large public gene signature 

databases does not yet exist, but discovered DLBCL effects could provide a start. Many gene signatures are 

based on supervised analyses(I.2.1) or on hierarchical clustering(I.2.2.1) of gene expression signals that are already 

stored in public databases. Hence and in principle, such an effects database could be built semi-automatically 

by dissection of these stored gene expression signals, although this would require a tremendous amount of 

computation. 

 

 Towards standalone microarray classification for clinical applications 

To utilize results like survival predictors(III.2) for clinical applications, e.g. for therapy decisions and towards 

precision medicine, standalone microarray measurements for tissue samples from single patients should be 

robustly classifiable. The technological problem here is that absolute gene expression intensities may vary 

strongly by chip design and by lab, for example due to different measurement protocols or due to different 

sequences probed for the same genes. Not all sources for these differences are known. Typically, this problem 

is solved by measuring sufficiently large patient cohorts with exactly the same microarrays in exactly the same 

lab. Then gene expression ratios relative to average gene intensities in this cohort are analyzed to avoid 

problems originating from technology-specific gene offset intensities. For a clinical application based on only 

one standalone microarray however, this is not possible (all ratios would equal one). Hence, a way to dissect 

all technological offsets precisely from this standalone microarray is required in order to compare the 

remaining biological signal with known and validated biological effects (e.g. with the COO effect for DLBCL 

subtype classification). 

Assuming that lab effects and offset effects are systematic errors and only a finite number of them exists, it 

may be possible to achieve this by signal dissection. First, raw gene expression signals for many patient 

cohorts that were measured by various microarray designs in different labs need to be dissected. Resulting 

systematic lab effects, i.e. all effects that do not validate across biologically equal cohorts, but do validate across 

technologically equal and biologically different cohorts, are recorded in a database. Now the standalone 

microarray could be tested for similar effects by computing correlations with gene axes of recorded and 

validated technical effects. Top-correlated offset effects or other lab effects could then be dissected from its 

signal, which should result in effective logratio) that can subsequently be classified with validated biological 

effects. To quantify the confidence of such classifications,  values for weighted uncentered correlations could 

be utilized. 

Such a normalization by dissection of known technical effects may be much more precise compared to global 

normalization methods like quantile normalization. This could provide a tool for precision medicine that can 

utilize existing molecular knowledge for future therapy decisions in clinical settings, even for cost-effective 
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standalone microarray measurements. Furthermore, this lab effects database could help to identify 

technological causes of lab effects in order to improve experimental reproducibility in the first place. 

 

 Beyond bioscience 

Throughout this work, DLBCL was selected as concrete biological application for signal dissection. Therefore 

and lastly, let the following analogy illustrate the method’s general applicability and potential beyond 

biosciences, whenever intrinsic data orders by correlations are of interest. 
System Bioscience example Astrophysics example 

Samples  
or system instances 

tumor biopsies from patients 
stars or quasars (i.e. centers  

of active galaxies) 

Dimensions  
or system parts 

all known genes 
e.g. known spectral lines for all elements or 
other light-emitting entities (or simply an 
equidistantly discretized light spectrum) 

Extrinsic order that tolerates 
non-local correlations 

order of genes by genomic sequence order of spectral lines by energy 

Observable signal 
gene expressions (i.e. mRNA molecule 

concentrations in cells) 
light intensities in spectral intervals  

(spectral energy distributions) 
Signal dissection   

Discovered effect curves 
empirical laws of coordinated  
and specific gene regulation 

empirical laws of coordinated  
and specific light emission 

Classification of samples by 
their correlations to effects 

disease subtypes, i.e. groups of  
patients that may share the same  

drivers of pathogenesis 

classes of stars that maintain common 
reactions and may share a similar  

element composition 
Modeling by experts   

Underlying system 
interactions 

gene-regulating pathways 
(e.g. for the process of cell division) 

light-emitting physical reaction  
pathways (e.g. for nuclear fusion) 

General applicability of signal dissection by analogy 
 

Similar to the explorative detection of so far unknown biological processes in cells, signal dissection could 

yield so far unknown light-emitting reactions in stars. Patients belonging to the same disease subtype 

correspond to stars that maintain a common reaction. This could be utilized for star classification, for example. 

Finally, reverse engineering of biological pathways by molecular biologists corresponds to reverse 

engineering of physical reaction chains in stars by astrophysicists. 

Similar to bioscience, large and growing spectral data volumes are already publicly available, for example 

via the Sloan Digital Sky Survey(SDSS, see http://www.sdss.org). Consistent with results for synthetic test scenarios(e.g. Figure 

II.6.3.1.a), principal components in astrophysics are already known to be hard to interpret in terms of their 

physical properties(cf. I.1.4.1). Hence, application of signal dissection to light spectra of measured stars or quasars 

might be a promising research perspective as well. 

 

http://www.sdss.org/
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All dissection results for DLBCL, all 135 validated consensus GEP effects(III.1) and all performed 

biostatistical analyses for each consensus effect(see III.3 for examples) are provided on disc in both 

graphical and tabular format. Files of biological interest can be located quickly via master 

tables. Additionally, dissection results for all method validation scenarios(cf. II.6) are provided.  

 Master tables 

Master tables in the root folder provide a convenient access to all results for DLBCL by linking to them. 

The main overview table lists all 135 validated DLBCL consensus effects, links to their signal plots for each 

patient cohort, followed by links to their genomic analyses like signature analyses tables and gene ontology 

analyses folders. The next column group lists and links to survival analyses and to associations with clinical 

covariates like gender or IPI scores. These analyses are provided separately for all patients and for ABC DLBCL 

and GCB DLBCL subsets. The last column group shows related effects having similar top genes in form of their 

consensus gene axis correlations. 

The gene orders master table lists consensus gene axes and consensus gene correlations for all measured 

probesets and for each effect. Annotation columns like genomic alignments and probeset IDs allow comparing 

genomic loci of top genes and allow retrieving exact sequences that underlie correlated gene expressions. 

In the sample orders master table, patients from all four cohorts are listed together with their consensus 

sample axes and consensus sample correlations for each effect. These columns allow sorting all patients by 

 

Blu-ray disc) All dissection results and biostatistical analyses in digital form (ca. 18.2 GB, ca. 65.000 files) 
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their involvement in a given effect. Another column group in this table lists all available clinical data about 

those samples, including available follow-up information. 

(Master tables were tested to work on a Windows® 7 PC with Excel® 2013 and 8GB RAM. Weaker PCs or 

older versions of Excel® might have problems due to the large table size. In this case, the directory structure 

described below allows opening smaller result files for individual effects manually.) 

 Directors structure 

 A=Detection 

• Contains cohort subfolders for GSE10846.CHOP, GSE10846.R-CHOP, GSE4475 and GSE31312. 

• For each discovered and dissected effect, several files exist, named with the effect’s dissection rank. 

Most importantly, files named like 007, effect overview.eps show the effect’s heatmap, its regressed 

eigensignal and the remaining signal for further dissection. Files named like 007, definition.xlsx 

contain converged gene and sample axes, correlations and  values for an effect, both before and 

after dissection to control dissection efficacy. 

 B=Validation and Consensus Eigenorders 

• \A=cohorts vs cohorts: Contains gene order correlations between detected effects of all cohorts based 

on product gene scores(cf. III.1.3.2). These correlations are the basis for unsupervised cross-cohort 

validation of detected GEP effects. 

• \validatedEffects: Contains scatter plots for validated effect tuples. 

 C=Consensus Effects 

• Contains cohort subfolders for GSE10846.CHOP, GSE10846.R-CHOP, GSE4475 and GSE31312. 

• For each validated effect, similar files exist as for detection. However, this time each validated effect 

is applied to and dissected from the cohort’s initial GEP signal (except for cleaned lab effects). 

 D=Interpretation 

• \genomic 

• Contains effect subfolders named like v007. 

• \SA: These subfolders contain signature analyses, together with enrichment plots and 

heatmaps for strongly enriched signatures (genes ranked by product gene scores(cf. III.1.3.2)). 

• \GOA: Contains gene ontology overrepresentation analyses for effect top gene signatures of 

various size. Analyses are available for term trees of biological processes, molecular functions 

and cellular components. (Not available if the effect has less than five top genes.) 

• \clinical 

• Contains effect subfolders named like v007. 

• Clinical cohort subfolders like GSE10846_RCHOP.GCB.PFS 

• Kaplan-Meier survival estimates for patient subsets cut by the effect’s sample 

scores(cf. III.3.1.1). Excel files contain plots in tabular form. 

• Excel filed for clinical correlations contain contingency sub tables for each covariate. 

• \comparisons: Contains Kaplan-Meier survival estimates for standard ABC DLBCL, unclassified 

and GCB DLBCL patient subsets for comparison. 

 Method Validation 

• Contains subfolders for various synthetic data scenarios for method validation(II.6). 
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Symbols 

 Spaces and the initial signal 

 Number of measured dimensions or genes 

 Number of measured samples   Signal space, i.e. the matrix space  ≡ ,…,…|, ∈ . The complete gene expression signal 

measured for a patient cohort is one element in this signal space, for example. 

  Initial signal matrix ∈     Gene vector space over  , spanned by  gene basis vectors |  1 … . Contains measured samples | with their expressions  | for all genes   1 … . See II.2.2.1 for details. 

  Sample vector space over  , spanned by  sample basis vectors |   1 … . Contains measured genes |  with their expressions  |  for all samples   1 …  . See II.2.2.1 for details. 

  External measurement or reference order of genes; without loss of generality  ≡ 1,2, … ,  

  External measurement or reference order of samples; without loss of generality  ≡ 1,2, … ,  | ,  Abbreviation for the vector | ∈   with components ∀  1 … :  | ≡ ,  |,  Abbreviation for the vector | ∈   with components ∀  1 … :  | ≡ ,  

,  Permuted matrix for sort vectors , , i.e. ,  ≡ , …,…. Sort vectors are 

permutations of row indices   or column indices  , respectively. In particular,  ,    . 

 

 Basic operations and functions |,  Vector | and its coordinate array, e.g. for | ∈   the column array    |, ∈   

 Matrix multiplication, defined as ∑ ,, , . E.g. for a row vector  ∈   and a column vector  ∈
 the scalar ∑ ,,… ∈ . In case of a column vector  ∈   and a row vector  ∈   the 
matrix …,… ∈  . 

|,   Dual vector for | and transpose operation for its coordinate array . E.g. for | ∈   the dual vector  

is | ∈ ∗; it is computed on coordinate level via transposition and hence equals the row vector   |, ∈  . 

	.  Hadamard product (i.e. component-wise multiplication); yields a vector or matrix of the same size. 

|	 Scalar product aka dot product; for |, | ∈   defined on coordinate level as  ∈ . 

‖‖ Euclidean vector norm ‖‖ ≡ |  ∑   ⁄
 

|⨂| Tensor product aka outer product; e.g. for | ∈  , | ∈   defined as  ∈  . 

̂ Uncentered standard deviation of , i.e. E  0, where E  denotes the expectation estimator. 

 

 Central measures of interaction ||  Weighted projections of a vector | in direction of an axis | using dimension weights |. Equals the 

normalized weighted scalar product defined as . |.  ‖. ‖⁄ . See II.2.3.2 for details. 
||  Weighted uncentered correlation aka the weighted cosine distance between | and | using dimension 

weights |. Defined as  . |.  ‖ . ‖‖. ‖)⁄ . See II.2.3.1 for details. 
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 Search strategy and effect axes convergence 

,  Index of the detection iteration and of the effect detected by it. The total number of detected effects before 

termination is denoted by  . 

 Input signal for detection iteration  that ultimately yields the remaining signal   after dissecting effect  . 

(See the signal model in II.2.1.1.) 


  Standardized signal matrix with uncentered variances equaling one for all rows and columns (cf. II.3.1.1). 

 

, , , Gene index , ∈ 1,  ⊂  respectively sample index , ∈ 1,  ⊂  selected as initial representative 

for effect  by the search strategy (cf. II.3.1). |, |   Gene and sample effect axes. Based on the selected initial gene or sample and its twin axis (cf. II.3.1.3).  , |  Initial gene and sample weights based on the standardized signal (cf. II.3.1.2). 

|, |   Gene and sample correlations to the respective effect axis (cf. II.3.1.4). |, |  Gene and sample  values for correlations (cf. II.5.2.1). |, | Gene and sample weights aka the effect focus. Based on correlations and their significance (cf. II.3.1.4). 

  Scalar effect score based on correlations of genes and samples with the effect and on the effect size (II.3.1.6). 

 

,  Iteration index of effect axes convergence (cf. II.3.2); equals the number of representatives utilized so far for 

definition of the effect’s axes.  denotes the number of representatives considered sufficient (cf. II.3.2.3). |, |  Gene axis and sample axis for representative  (cf. II.3.1.3). |, |  Accumulated gene axis and accumulated sample axis for representatives 1 …  (cf. II.3.2.3). |, | , |, |, |, |, |, | Converged effect axes based on  selected representative genes or samples, 

final correlations to these axes and their significance, and the final effect focus for effect  . (The index  is 

clear from the context and suppressed for readability reasons.) 

 

 Bimonotonic regression, effect eigensignal and its dissection 

,      Index of outer regression iterations (cf. II.4.1) and the converged iteration     (cf. II.4.1.5). , , ,  Effect strengths for effect  in regression iteration . Defined as projections of all genes and samples on the 

respective final effect axis or on the regressed effect curves (cf. II.4.1.1). , , ,  Empirical effect eigenorder based on effect strengths (cf. II.4.1.2 and also see the effect model in II.2.1.2). 

, , ,  Current signal in the empirical eigenorder. 

,      Index of inner bimonotonic regression iterations (cf. II.4.1.3) (and convergence iteration     ). ,    Result of the converged iterative bimonotonic regression of the signal in empirical eigenorder (cf. II.4.1.3). 

,     Adaptive smoothing of the result from bimonotonic regression using rescaling and 2D Fourier  

transformations (cf. II.4.1.4). 

  Dissection strengths of the effect, defined based on the product effect focus (cf. II.4.2.1). 

   Eigensignal of detected effect  (cf. II.4.2.1 and also see the effect model in II.2.1.2). 

 

 Effect validation and sores for biostatistical association analyses 

      Number of independently dissected cohorts that are available for validation (cf. III.1.2.2). | |.   Gene scores based on the gene axis and gene correlations; defined as ∑  	 	 . Used as 

basis for cross-cohort comparison of effects (cf. III.1.2.1), to compare consensus gene effects (cf. III.1.3.2) and 

to associate effects with genomic knowledge (cf. Table III.1.5). 
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,; ,) Correlations between gene scores of effects   from cohort    and   from cohort   (cf. III.1.2.1). 

 , ,    For each possible effects tuple, the counts of significant pairwise correlations between effects from different 

cohorts, their average correlation to each other and a validation score (cf. III.1.2.2). 

  Validation index for all unsupervisedly (cf. III.1.2.2) and selected supervisedly (cf. III.1.2.3) validated effects. 


, , 

,, 
,   Consensus gene axes, correlations and weights for detected effects for validation index  (III.1.3.1). 

 ,
   Cleaned signal of cohort   (cf. III.1.4.1). 

 ,
   Eigensignal of consensus effect  in cohort   (cf. III.1.4.2). 

| ,
   Sample eigensignal strengths of consensus effect  in cohort   (cf. III.1.4.2). Used to associate effects with 

clinical knowledge (cf. Table III.1.5). 
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