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Introduction

In the late eighties Jimbo ([Jim86]) and Drinfel’d ([Dri86]) independently introduced the
quantum groups that nowadays play an important role in the theory not only of Lie
algebras but of Hopf algebras, too. It took no long time until there arose generalisa-
tions concerning certain properties. In 1987 Woronowicz introduced compact quantum
groups/compact matrix pseudogroups ([Wor87]). By using ∗-algebras he was able to con-
struct a Haar state which has a bunch of properties common with the classical Haar
measure—and he consequently called it Haar measure. E.g. Podleś ([Pod87]) used this
work for the construction of homogeneous space for SqU(2).

In 1995 Noumi and Sugitani introduced a new method for the construction of quantum
symmetric pairs ([NS95]): Instead of regarding a homogeneous space as a invariant space
of a Hopf subalgebra they suggested swapping to coideal subalgebras. The method of
construction was finding a solution for suitable reflection equations. They gave (right)
coideal subalgebras for all types of riemannian symmetric spaces except AIII. Later on
followed a publication of Dijkhuizen-Noumi ([DN98]) where they worked with a coideal
for type AIII. Letzter contributed right coideal subalgebras for this type, too ([Let97]).
The latter author presented additionally a universal approach ([Let99]) instead of case by
case solutions for the different types of riemannian symmetric pairs. Other publications
in that direction followed like [Let02], [Let03], [KL08] and [Kol08].

Kharchenko initiated a programme with the goal of classifying homogeneous right
coideal subalgebras, that are right coideal subalgebras that contain U0, the subalgebra
generatad by all group-like elements, of Uq(g) with g being a complex semisimple lie
algebra. He gave a classification for U+

q (so2n+1) ([Kha11]) and the same classification to-
gether with Sagahon for Uq(sln+1) ([KS08]). This classification of right coideal subalgeb-
ras for all types was then done Heckenberger-Kolb ([HK12]). As Heckenberger-Schneider
([HS13, Theorem 7.13]) they linked the homogeneous right coideal subalgebras to the cor-
responding Weyl group and due to this link the homogeneous right coideal subalgebras
can be described via PBW-type base elements. In a second publication ([HK11]) they
classified the right coideal subalgebras of the Borel part, whose intersection with U0 is
a Hopf algebra. Again it turned out that these right coideal subalgebras are linked to
the Weyl group—and can be constructed with PBW-type base elements and characters
of certain subalgebras. These characters produce a deformation of U+[w].

Mainly based on the last named publication this work contributes another family of
right coideal subalgebras for type An. While the works of Dijkhuizen, Letzter and Noumi
focus on symmetric spaces and ∗-structures, that is dropped since homogeneous spaces
are even then interesting if they lack this symmetric or geometric property. The approach
shall be algebraic and one condition that is motivated by the work of Müller-Schneider
([MS99]) is the request of having reductive right coideal subalgebras, since this makes
sure that the homogeneous space has quite good algebraic properties. As consequence the
here presented family is quite big in the sense that it is in big parts a Hopf algebra and is
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8 Introduction

quite similar to Uq(slr) ⊗ Uq(sln−r+1). Having the generators of the quantum enveloping
algebras in correspondence with the simple roots of the root system there is an unused
simple root: αr.

Denote with An,r ⊂ Uq(sln+1) the right coideal subalgebra. Let Λ be the weight lattice
of Uq(sln+1). We call a Uq(sln+1)-module spherical if the set of An,r-invariants is at most
one-dimensional. Theorem 3.21 and Proposition 3.22 yield:

Let λ ∈ Λ be a dominant weight and let let L(λ) be the simple, finite dimensional
Uq(sln+1)-module of highest weight λ. Then L(λ) is a semisimple An,r-module. If L(λ) is
spherical as Uq(slr) ⊗ Uq(sln−r+1)-module, then it is spherical as An,r-module.

In his work [Krä79] Krämer showed that Uq(slr) ⊗ Uq(sln−r+1) is sphercial whenever
r ̸= n−r+1. (In fact he showed that for the Lie Group SU(r)×SU(n−r) ⊂ SU(n+1)—
which is for us all the same.)

The algebra A2,2 has an attractive representation theory as Propositions 3.4 and 3.5
show—that is comparable to the representation theory of Uq(sl2). Explicitly the generat-
ors are G2 = K−1

2 (E2 + ζ ·1), G12 = K−1
1 K−1

2 (E2E1 − q−1E1E2 + ζ(q− q−1)E1), (K2
1K2)±1

and F1 with ζ being a nonzero element of the ground field k.
For every pair s ∈ N0 and κ ∈ k, κ ̸= 0 there is a unique simple A2,2-module of

dimension s + 1 such that G2 and K2
1K2 are simultaneously diagonalisable operators.

Every finite dimensional simple A2,2-module with the last named property is determined
by a pair of above and every finite dimensional module with named property decomposes
into simple modules.

In the first chapter the notation and most of the necessary facts about quantum
enveloping algebras and there Hopf dual the quantum coordinate ring are given.

The second chapter quotes at its beginning the main theorems used for the construction
of named publication [HK11]. Then, for the deformation a suitable element of the Weyl
group, namely the longest word of the subsystem Ar−1 ×An−r is chosen. The deformation
via the the character than produces an element Gβr

r
= K−1

αr
(Eαr + ζ · 1) (ζ invertible

element of the ground field) that is going to play the role of a Kαr—but it is not an
element of U0. This forces a deformation on the roots αr−1 and αr+1 giving elements
Gβr

r−1
and Gβr+1

r
. Adding a negative part this finally gives a relation

Gβr
r−1
Fαr−1 = qFαr−1Gβr

r−1
+Gβr

r
− ζK−2

αr−1K
−1
αr

and a corresponding for r + 1 instead of r − 1. The element Gβr
r−1

should be regarded as
a deformation of Eαr . Nevertheless is derives from EαrEαr−1 − q−1Eαr−1Eαr . The right
coideal subalgebra is denoted as done above by An,r. After the computation of deformation
is done some algebraic properties are derived like the existence of a PBW-type base and
a grading.

In the third chapter the representation theory is accomplished under the assumption
that Gβr

r
operates as diagonal operator—which is true for all simple Uq(sln+1)-modules

(Proposition 3.1). The reductive property is shown in general for small cases, i.e. A2,2 and
A3,2. In both cases the methods are similar to that of Uq(sl2) resp. Uq(sl2)⊗Uq(sl2). In the
general case the property of being reductive is linked the property of Uq(slr)⊗Uq(sln−r+1)
being reductive—this link is also used to show the spherical property.
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The fourth chapter is dedicated to the homogeneous space of A2,2. In this special
case invariant vectors are explicitly calculated. Letting aside the ∗-structure it is shown
that homogeneous space is isomorphic to the homogeneous space of Dijkhuizen-Noumi—
using their method with which they constructed their homogeneous space via quantum
spheres. In the last section of the chapter the case ζ = 0 is considered. In this case the
representation theory of A2,2 no longer works: neither is Gβ2

2
a diagonal operator nor is

the right coideal subalgebra reductive. With elementary method using weight diagrams
it is shown how that the space of invariants of a simple Uq(sl3)-module is still at most
one-dimensional.

The last chapters starts with type B2. Seeing analogues to type A2 generalisations
concerning the algebras A2,2 and B2 and the programme enabled by the in this work
presented method are formulated and conjectures postulated.





Chapter 1

Preliminaries

Quantum Enveloping Algebras of Semisimple Lie Algebras

The definitions and stated properties of the defined objects are, if no other citation is
given, taken from [Jan96, Chapter 4]. Let g be a complex finite dimensional semisimple
Lie-Algebra. Let Φ be the root system attached to a fixed Cartan subalgebra. Let Π be
a basis of Φ, i.e. the set of simple roots. Let W be the Weyl group of g and let l be the
length function on W . There exists a W -invariant scalar product (·, ·) on spanR(α|α ∈ Π)
such that (α, α) = 2 for short roots. Set Q = spanZ(Π), this is the root lattice.

Let k be an algberaic closed field of characteristic 0. Fix throughout this work q ∈ k,
q ̸= 0 and q not a root of unity. Set for each α ∈ Π

qα = q(α,α)/2.

The algebra U = Uq(g) is the k-algebra generated by Fα, Eα, Kα and K−1
α for α ∈ Π

subject to the relations

KαK
−1
α = K−1

α Kα = 1,(R1)
KαKβ = KβKα,(R2)

KαEβK
−1
α = q(α,β)Eα,(R3)

KαFβK
−1
α = q−(α,β)Fα,(R4)

EαFβ − FβEα = δαβ
Kα −K−1

α

qα − q−1
α

,(R5)

with δαβ the Kronecker delta; and the quantum Serre relations, with aαβ = 2(α, β)/(α, α),
for which we use Gaussian binomial coefficients that can be found briefly in e.g. [Jan96,
Chapter 0]

1−aαβ∑
k=0

(−1)k

[
1 − aαβ

k

]
α

E1−aαβ−k
α EβE

k
α = 0,(R6)

1−aαβ∑
k=0

(−1)k

[
1 − aαβ

k

]
α

F 1−aαβ−k
α FβF

k
α = 0.(R7)

Let U−, U+ and U0 be the subalgebras generated by {Fα|α ∈ Π}, {Eα|α ∈ Π} resp.
{Kα, K

−1
α |α ∈ Π}. Let λ = ∑

α∈Π mαα ∈ Q, i.e. mα ∈ Z. Since U0 is commutative

Kλ =
∏

α∈Π
Kmα

α

11



12 Chapter 1. Preliminaries

is well-defined. This definition is also compatible with the scalar product on the root
lattice, such that holds

KλEαK−λ = q(λ,α)Eα and KλFαK−λ = q−(λ,α)Fα.

There exist automorphisms on Uq(g) that satisfy the braid relations of the Weyl group.
Precisely: For each α ∈ Π exists an automorphism Tα such that for all β ∈ Π holds

TαTβTα = TβTαTβ, (m = 3)
TαTβTαTβ = TβTαTβTα, (m = 4)

TαTβTαTβTαTβ = TβTαTβTαTβTα, (m = 6)

where m is the order of sαsβ, c.f [Jan96, Section 8.14-8.16]. Let w ∈ W and sα1 · · · sαt be
a reduced expression of w. Define Tw = Tsα1 ···sαt

, this is independent of the choice of the
reduced expression. For two elements w,w′ ∈ W with l(ww′) = l(w) + l(w′) then holds
Tww′ = TwTw′ . With the help of these automorphisms it is possible to define ›quantum root
vectors‹ which lead to a PBW-type basis of Uq(g): Let w ∈ W with reduced expression
w = sα1 · · · sαt and set βi = sα1 · · · sαi−1(αi) for 1 ≤ i ≤ t. Then the

Eβi
= Tsα1 ···sαi−1

(Eαi
)

are ›quantum root vectors‹ of w. Define

U+[w] = ⟨Eβ1 , . . . , Eβt⟩.

The subalgebra U+[w] has by [CKP95] the ordered basis

{Em1
β1 · · ·Emt

βt
|m1, . . . ,mt ∈ N0}.

Similarly one defines U−[w]. There is a unique automorphism ω of U sucht that ω(Eα) =
Fα, ω(Fα) = Eα and ω(Kα) = ω(K−1

α ). This map is an involution. Let µ ∈ Q, u ∈ U of
weight µ and α ∈ Π, then holds

Tsα (ω(u)) = (−qα)−⟨µ,α∨⟩ω(Tsα (u)).

From this equation follows the more general formula: Let w ∈ W and w(µ) − µ =∑
α∈Π mαα, then holds

Tw(ω(u)) =
(∏

α∈Π
(−qα)mα

)
ω(Tw(u)). (1.1)

Note also that U−[w] = ω(U+[w]).
There exists a coproduct ∆, an antipode S and a counit ϵ on U that give a unique

Hopf algebra structure determined by

∆(Kα) = Kα ⊗Kα, ϵ(Kα) = 1, S(Kα) = K−1
α ,

∆(Eα) = Kα ⊗ Eα + Eα ⊗ 1, ϵ(Eα) = 0, S(Eα) = −K−1
α Eα,

∆(Fα) = 1 ⊗ Fα + Fα ⊗K−1
α , ϵ(Fα) = 0, S(Fα) = −FαKα



Chapter 1. Preliminaries 13

for all α ∈ Π. We are going to use the Sweedler notation, that is ∆(u) = u(1) ⊗ u(2).
Let M be a finite dimensional Uq(g)-module and let µ ∈ Λ. Then

Mµ = {m ∈ M |Kαm = q(µ,α)m for all α ∈ Π }

is called weight space of weight µ. The module M decomposes into the direct sum of its
weight spaces. Concerning modules we follow the notation of [Jan96, Chapter 5].

The representation theory of g and its quantum enveloping algebra Uq(g) is the same
in the following sense: As every dominant weight λ defines a unique simple module Lg(λ)
of g it defines a unique simple module L(λ) of Uq(g) of the same dimension (in particular,
the weight spaces of both modules do have the same dimensions and the Weyl character
formula holds) as every finite dimensional module decomposes into simple modules, i.e.
is semisimple.

With help of the antipode the dual (vector) space M∗ is turned into a U -module via

u · f(m) = f(S(u)m) for all u ∈ U , f ∈ M∗ and m ∈ M,

while the coproduct ∆ turns the tensor product of two finite dimensional modules M,N
into a U -module via

u(m⊗ n) = u(1)m⊗ u(2)n for u ∈ U , m ∈ M and n ∈ N,

with ∆(u) = u(1) ⊗ u(2). Of course, M ⊕ N and k (via ϵ) are U -modules, too. The
two following isomorphisms for M,N being finite dimensional Uq(g)-modules and λ a
dominant weight exist:

M ⊗N ≃ N ⊗M,

L(λ)∗ ≃ L(−w0λ),

where w0 is the longest element in the Weyl group of g. In particular the first isomorphism
will be of some interest later. We shall come back to it in the next section and finish this
section with two definitions.

Definition 1.1 Let H be a Hopf algebra with coproduct ∆ and let R be subalgebra. If
∆(R) ⊂ R ⊗H, then R is called right coideal subalgebra.

Definition 1.2 Let H be a Hopf algebra with counit ϵ and R ⊂ H be a right coideal
subalgebra and M be a finite dimensional, simple H-module.

1. A vector v ∈ M is R-invariant if rv = ϵ(r)v for all r ∈ R.

2. If M is semisimple as R-module and the set of R-invariant vectors in M is at most
one dimensional, then M is called spherical.

3. If every simple, finite dimensional H-module is a spherical R-module, then R is
called right coideal spherical subalgebra.
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Quantum Coordinate Ring

Let M be a finite dimensional U -module and let M∗ be its dual vector space. Let m ∈ M
and f ∈ M∗. The linear operator cf,m ∈ U∗ given by cf,m(u) = f(um) is called matrix
coefficient (of M).

Denote with Aq = Aq(g) the set of all matrix coefficients of finite dimensional U -
modules. This is a Hopf algebra, cf. [Jos95, Section 1.4] or [Swe69]. This Hopf algebra is
considered as the quantum coordinate ring or ring of regular functions, cf. [KS98, Chapter
3].

The Hopf algebra structure is given as follows: Let M and M ′ be finite dimensional
U -modules, and m1, . . . ,mr a basis of M with dual basis f1, . . . , fr. Let m ∈ M , m′ ∈
M ′, f ∈ M∗ and f ′ ∈ (M ′)∗. Then the structure extends from these equations on the
generators:

cf,m + cf ′,m′ = cf+f ′,m+m′ ,

cf,mcf ′,m′ = cf⊗f ′,m⊗m′ ,

S(cf,m) = cf,m ◦ SU ,

∆(cf,m) =
r∑

i=1
cf,mi

⊗ cfi,m.

The unital element is ϵ.
There are natural left and right actions of U on Aq. Let u ∈ U and let c ∈ Aq with

∆(c) = c(1) ⊗ c(2). The actions are given by

u · c = c(1)c(2)(u),
c · u = c(1)(u)c(2).

Using both operations, this turns Aq(g) into a (U,U)-bimodule. Then Aq(g) has the
following decomposition that is also known as Peter-Weyl decomposition.

Proposition 1.3 (Peter-Weyl decomposition) As (U,U)-bimodule the algebra Aq(g) has
the decomposition

Aq(g) =
⨁
λ∈Λ,

λ dominant

L(λ)∗ ⊗ L(λ). (1.2)

Originally this decomposition comes from Lie groups and uses the so called Haar
measure. If H is compact quantum group, then there is a Haar measure on H (to be
precise: a state, as sketched in the introduction). It has the same principal property as
in the classical case: The decomposition (1.2) is orthogonal subject to this Haar measure,
c.f. [Wor87] and for a broader survey [MD98]. In the above case it is completely algebraic
([Swe69]).

Let R be a spherical right coideal subalgebra of U and let QR be the set of dominant
weights such that L(λ) has a R-invariant vector. The set AR

q of invariants of Aq under R
decomposes as

AR
q = {c ∈ Aq | r · c = ϵ(r)c for all r ∈ R } =

⨁
λ∈QR

L(λ)∗
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due to the Peter-Weyl decomposition. The fact that R is a right coideal ensures that AR
q

is a subalgebra of Aq.
Let us have a description of Aq = Aq(sln+1) in terms of generators and relations. In the

classical case the coordinate ring A(sln+1) of sln+1 is the polynomial ring in indeterminates
Xij with 1 ≤ i, j ≤ n + 1 and the relation det(Xij)1≤i,j≤n+1 = 1. A sketch of reasons:
Every simple module is a submodule of some tensor power of the standard representation
V , the Xij are the matrix coefficients of V , so they generate A(sln+1). The determinate
comes from the fact, that ∧n(V ) is the trivial representation. That the Xij commute
comes from the fact, that the action of sln+1 on tensor products is ›symmetric‹: If M and
M ′ are finite dimensional modules, then the isomorphism between M⊗M ′ and M ′ ⊗M is
the flip, i.e. the map that sends m⊗m′ to m′⊗m. In terms of algebraic geometry the point
of view might be different. In particular, there is no need for a multiplication, an affine
algebraic variety is sufficient. The coordinate ring (or ring of regular functions, which
might be different in definition, but are the same object) is given as the polynomial ring
in certain indeterminates divided out the defining ideal of the variety, see e.g. [Har06, Ch.
1] for a discussion and proofs. Having this in mind, the Hopf algebra of matrix coefficients
of a quantum enveloping algebra can be considered as non-commutative coordinate ring.

Let A = (aij) be a n× n-matrix. The quantum determinant of A is given by

detq(A) =
∑

σ∈Sn

(−q)l(σ)aσ(1)1 · · · aσ(n)n.

In quantum case the quantum coordinate ring Aq is generated by indeterminates tij
(1 ≤ i, j ≤ n + 1) subject to relations given by the R-matrix relations of the standard
representation and the quantum determinant of (tij)1≤i,j≤n+1 that we simply denote with
detq being equals to 1, i.e. detq = 1. Before giving an explicit description let us informally
describe the reasons: As in the classical case, the standard representation V generates all
finite dimensional simple modules. One defines a quantum exterior algebra ∧k

q(V ) (c.f.
[APW91, Section 12.5]) - in the case k = n it is one dimensional, which leads to the
quantum determinant. The R-matrices for a quantum enveloping algebra play the role of
the flip, i.e. they represent the isomorphism between M ⊗M ′ and M ′ ⊗M . A description
of the R-matrices and the isomorphism can be found in [Jan96, Chapter 7]. A proof for
the description of Aq can be found in the appendix of [APW91]. The following explicit
relations are taken from [APW91].

Let 1 ≤ i, j, k, l ≤ n+ 1. Then the following relations are holding between the tij’s.

tijtkj = qtkjtij (i < k)
tijtil = qtiltij (j < l)
tijtkl = tkltij (i < k and j > l)
tijtkl = tkltij + (q − q−1)tiltkj (i < k and j < l)
detq =

∑
σ∈Sn+1

(−ql(σ)tσ(1)1 · · · tσ(n+1)n+1 = 1

There is an important property of Aq for which a proof can be found in [LS93], who
use some techniques/results that were presented in [AST91].

Theorem 1.4 The algebra Aq has no zero divisors.





Chapter 2

A Family of Right Coideal Subalgebras for An

Preparation

The construction is as follows: In a first step we define a right coideal subalgebra of the
borel part of Uq(sln+1) that will be a deformation of U+[w] for a certain element of the
Weylgroup together with a certain subalgebra of U0. Theorem 2.17 from [HK11] will
ensure that this yields a right coideal subalgebra. In a second step U−[w′] for a w′ not to
much different from w is added, this involves some explicit calculations that will be used
later anyway.

Let us recap the Theorem 2.17 (2) of [HK11] and the notation necessary for its for-
mulation. Let A be an associative, unital algebra over the field k. A map ϕ : A → k is a
character of A if ϕ is a homomorphism of algebras and ϕ(1) = 1.

Let w ∈ W be an element of the Weyl group and ϕ be a character of U+[w]. Then

suppϕ = {β ∈ Q+ | ∃u ∈ U+[w]β s.t. ϕ(u) ̸= 0}

is the support of ϕ. The set is closed under addition, this follows immediately from the
facts that ϕ is a homomorphism and that U has no zero-divisors.

The map ψ : U+ → S(U+) given by

ψ(uβ) = q−(β,β)/2uβK
−1
β for β ∈ Λ+ and uβ ∈ U+

β

is an algebra isomorphism and the image of U+[w] under ψ is S(U+)∩U+[w]U0 by [HK11,
Lemma 2.11].

Theorem 2.1 (Thm. 2.17(2) of [HK11]) Let w ∈ W , ϕ be a character of U+[w] and
L ⊂ (suppϕ)⊥ be a subgroup. Then

C(w,ϕ, L) := TL{ϕ
(
ψ−1(u(1))

)
u(2) | u ∈ ψ(U+[w])}

is a right coideal subalgebra of U≥0 such that C(w,ϕ, L) ∩ U0 is a Hopf algebra.

Moreover the theorem states, that the right coideal algebras obtained exhaust all
right coideal subalgebras with the additional property stated last in the theorem and
this exhaustion is injective. In their article, Heckenberger and Kolb determined also the
possible characters of U+[w].

Let t = l(w) and α1, . . . , αt ∈ Π such that w = sα1 · · · sαt , which is then by definition
a reduced expression. Define βi = sα1 · · · sαi−1(αi) for all 1 ≤ i ≤ t. Then holds

Φ+
w := {β ∈ Φ+ | w−1β ∈ Φ−} = {βi | 1 ≤ i ≤ t}

17



18 Chapter 2. A Family of Right Coideal Subalgebras for An

by [Hum90, Section 5.6]. In particular holds l(w) = |Φ+
w |. Let Θ ⊂ Φ+ be a subset of

pairwise orthogonal roots. Such a set is called orthogonal. Define

wΘ = (
∏

β∈Θ
sβ)w.

This element is well defined since two reflections sβ and sγ commute whenever (β, γ) = 0,
i.e. β and γ are orthogonal. Define now

Tw = {Θ ⊂ Φ+
w | Θ is orthogonal and l(wΘ) = l(w) − |Θ|}

and denote for two sets A and B the set of maps from A to B with map(A,B).

Theorem 2.2 (Thm. 3.18 of [HK11]) There is a bijection

Ψ: {(Θ, f) | Θ ∈ Tw, f ∈ map(Θ, k∗)} → Char(U+[w])

uniquely determined by

Ψ(Θ, f)(Eβ) =

⎧⎨⎩f(β) if β ∈ Θ,
0 otherwise.

They also gave an inverse map which we shall not need and omit it therefore.

Construction

Fix n ∈ N, n ≥ 2. Let α1, . . . , αn be the simple roots of An in standard order to be found
in [Bou81, Planche I], i.e. αi corresponds to the i-th node in the Dynkin diagram of type
An read from left to right. Let sαi

be the corresponding reflection. We have

sαi
(αj) =

⎧⎪⎪⎨⎪⎪⎩
−αi i = j,

αi + αj |i− j| = 1,
αj else,

sαi
(αi + αi±1) = αi±1.

Define for 1 ≤ i ≤ j ≤ n

s
(j)
i = sαi

· · · sαj

and for convenience set s(j)
i as the identity whenever i > j. For 1 ≤ i ≤ k < j ≤ n we

have then

s
(j)
i (αk) = αk+1

and for 1 ≤ i < j ≤ n

s
(j−1)
i (αj) = αi + . . .+ αj.
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Define for 1 ≤ i ≤ k ≤ n some roots βk
i :

βk
i = αi + . . .+ αk.

These are n(n+1)
2 distinct positive roots, in fact, these are all positive roots, since |Φ+| =

n(n+1)
2 ([Bou81, Planche I]).

Lemma 2.3 Let 1 ≤ i ≤ k < j ≤ n. Then holds

s
(j)
i s

(k−1)
i (αk) = s

(k)
i+1(αk+1) = βk+1

i+1 .

Proof. We shall just use the braid relations of W and the equations sαk
sαk−1(αk) = αk

and sαg(αh) = αh whenever g − h /∈ {1, 0,−1}.

s
(j)
i s

(k−1)
i (αk)
= sαi

sαi+1 · · · sαj−1sαj
sαi

· · · sαk−1(αk)

=
sαi+2 sαi+1 sαi+2 sαi+4 sαi+3 sαi+4 sαk

sαk−1 sαk        
sαi
sαi+1sαi

sαi+2sαi+1sαi+3sαi+2 · · · · · · · · · sαk−2sαk
sαk−1        

sαi+1 sαi sαi+1 sαi+3 sαi+2 sαi+3 sαk−1 sαk−2 sαk−1

sαk+1(αk)

= sαi+1sαi
sαi+2sαi+1sαi+3sαi+2sαi+4 · · · sαk

sαk−1sαk
sαk+1(αk)

= sαi+1sαi
sαi+2sαi+1sαi+3sαi+2sαi+4 · · · sαk

(αk+1)
= sαi+1sαi+2sαi+3sαi+4 · · · sαk

(αk+1)
= βk+1

i+1 .

Note that

s
(j+1)
i s

(j)
i s

(k−1)
i (αk) = sαi

s
(j+1)
i+1 s

(k)
i+1(αk+1) = sαi

s
(k+1)
i+2 (αk+2) = s

(k+1)
i+1 (αk+2).

So an iterated application of Lemma 2.3 finally gives

βk
i = s

(k−1)
i (αk) = s

(n)
1 s

(n−1)
1 · · · s(n−i+2)

1 s
(k−i)
1 (αk−i+1) (1 ≤ i ≤ k ≤ n),

which shows that s(n)
1 · · · s(1)

1 is the longest element of the Weyl group. This is a reduced
expression since the length of an element of the Weyl group equals the amount of positive
roots send to negative ones, c.f. [Hum90, Section 1.8].

Fix another integer r ∈ N with 1 ≤ r ≤ n. Denote with w(r)
a resp. w(r)

b the longest
element of the subgroup generated by sα1 , . . . , sαr−1 resp. sαr+1 , . . . , sαn where we use the
convention that w(r)

a is the identity for r = 1 and similarly for w(r)
b . Set w+ = sαrw

(r)
a w

(r)
b

and w− = w(r)
a w

(r)
b . Associated to w− we find the following roots:

βk
i = s

(r−1)
1 s

(r−2)
1 · · · s(r−i+1)

1 s
(k−i)
1 (αk−i+1) = s

(k−1)
1 (αk) (1 ≤ i ≤ k < r),

βk
i = s

(n)
r+1s

(n−1)
r+1 · · · s(n−i+r+2)

r+1 s
(k−i+r)
r+1 (αk−i+r+1) = s

(k−1)
i (αk) (r < i ≤ k ≤ n)
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and associated to w+ we find the following:

βr
r = αr,

βr
i = sαrs

(r−1)
1 s

(r−2)
1 · · · s(r−i+1)

1 s
(r−i−1)
1 (αr−i) = s

(r−1)
i (αr) (1 ≤ i < r),

βk
i = sαrs

(r−1)
1 s

(r−2)
1 · · · s(r−i+1)

1 s
(k−i)
1 (αk−i+1) = s

(k−1)
i (αk) (1 ≤ i ≤ k < r − 1),

βk
r = sαrs

(k−1)
r+1 (αk) = s(k−1)

r (αk) (r < k ≤ n),
βk

i = sαrs
(n)
r+1 · · · s(n−i+r+2)

r+1 s
(k−i+r)
r+1 (αk−i+r+1) = s

(k−1)
i (αk) (r + 1 < i ≤ k ≤ n).

Let us define for βk
i with 1 ≤ i ≤ k ≤ n

Eβk
i

= Tsαi
· · ·Tsαk−1

(Eαk
).

From the proof of Lemma 2.3 follows that Eβk
i

is the root vector for the root βk
i coming

from w− in our chosen presentation. We will chose U−[w−] as negative part for the family
of right coideal subalgebras. However, let us have a look first on U+[w−] for using it as
starting point for the deformation of U+[w+]. These elements Eβk

i
satisfy the recursion

Eβk
k

= Eαk
and Eβk+1

i
= Eβk

i
Eαk+1 − q−1Eαk+1Eβk

i
, which follows from the definition of

Tsαi
(Eαj

) on Uq(sln+1). With this recursion we compute ∆(Eβk
i
).

∆(Eβk
i
) = Kβk

i
⊗ Eβk

i
+ Eβk

i
⊗ 1 + (1 − q−2)

k−1∑
l=i

Eβl
i
Kβk

l+1
⊗ Eβk

l+1
(2.1)

The formula is certainly true for i− k = 0, so assume i− k ≥ 1, then

∆(Eβk+1
i

)
= ∆(Eβk

i
Eαk+1 − q−1Eαk+1Eβk

i
)

=
(
Kβk

i
⊗ Eβk

i
+ Eβk

i
⊗ 1 + (1 − q−2)

k−1∑
l=i

Eβl
i
Kβk

l+1
⊗ Eβk

l+1

)
·
(
Kαk+1 ⊗ Eαk+1 + Eαk+1 ⊗ 1

)
− q−1

(
Kαk+1 ⊗ Eαk+1 + Eαk+1 ⊗ 1

)
·
(
Kβk

i
⊗ Eβk

i
+ Eβk

i
⊗ 1 + (1 − q−2)

k−1∑
l=i

Eβl
i
Kβk

l+1
⊗ Eβk

l+1

)
= Kβk+1

i
⊗ Eβk+1

i
+ Eβk+1

i
⊗ 1

+
(
Eβk

i
Kαk+1 − q−1Kαk+1Eβk

i

)
⊗ Eαk+1

+ (1 − q−2)
k−1∑
l=i

(
Eβl

i
Kβk

l+1
Kαk+1 ⊗ Eβk

l+1
Eαk+1 − q−1Kαk+1Eβl

i
Kβk

l+1
⊗ Eαk+1Eβk

l+1

)
+
(
Kβk

i
Eαk+1 − q−1Eαk+1Kβk

i

)
⊗ Eβk

i

+ (1 − q−2)
k−1∑
l=i

(
Eβl

i
Kβk

l+1
Eαk+1 − q−1Eαk+1Eβl

i
Kβk

l+1

)
⊗ Eβk

l+1
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= Kβk+1
i

⊗ Eβk+1
i

+ Eβk+1
i

⊗ 1 + (1 − q−2)
k∑

l=i

Eβl
i
Kβk+1

l+1
⊗ Eβk+1

l+1
.

Clearly whenever r ≥ 2 there appear other elements than the above Eβk
i
, namely the

root vectors for Eβr
i

with 1 ≤ i < r are Tαr(Eβr−1
i

) = EαrEβr−1
i

− q−1Eβr−1
i
Eαr . Their

co-product computes as

∆
(
Tαr(Eβr−1

i
)
)

= ∆(EαrEβr−1
i

− q−1Eβr−1
i
Eαr)

=
(
Eαr ⊗ 1 +Kαr ⊗ Eαr

)
·
(
Kβr−1

i
⊗ Eβr−1

i
+ Eβr−1

i
⊗ 1 + (1 − q−2)

r−2∑
l=i

Eβl
i
Kβr−1

l+1
⊗ Eβr−1

l+1

)

− q−1
(
Kβr−1

i
⊗ Eβr−1

i
+ Eβr−1

i
⊗ 1 + (1 − q−2)

r−2∑
l=i

Eβl
i
Kβr−1

l+1
⊗ Eβr−1

l+1

)
(
Eαr ⊗ 1 +Kαr ⊗ Eαr

)
= Kβr

i
⊗
(
EαrEβr−1

i
− q−1Eβr−1

i
Eαr

)
+
(
EαrEβr−1

i
− q−1Eβr−1

i
Eαr

)
⊗ 1

+
(
EαrKβr−1

i
− q−1Kβr−1

i
Eαr

)
⊗ Eβr−1

i

+
(
KαrEβr−1

i
− q−1Eβr−1

i
Kαr

)
⊗ Eαr

+ (1 − q−2)
r−2∑
l=i

(
EαrEβl

i
Kβr−1

l+1
− q−1Eβl

i
Kβr−1

l+1
Eαr

)
⊗ Eβr−1

l+1

+ (1 − q−2)
r−2∑
l=i

(
KαrEβl

i
Kβr−1

l+1
⊗ EαrEβr−1

l+1
− q−1Eβl

i
Kβr−1

l+1
Kαr ⊗ Eβr−1

l+1
Eαr

)
= Kβr

i
⊗ Tαr(Eβr−1

i
) + Tαr(Eβr−1

i
) ⊗ 1 + (1 − q−2)EαrKβr−1

i
⊗ Eβr−1

i

+ (1 − q−2)2
r−2∑
l=i

Eβl
i
EαrKβr−1

l+1
⊗ Eβr−1

l+1

+ (1 − q−2)
r−2∑
l=i

Eβl
i
Kβk

l+1
⊗ Tαr(Eβr−1

l+1
).

The subalgebra U+[w+] has then the following PBW-type base:

{Emr
r

βr
r
E

m1
1

β1
1

· · ·Emr−1
1

βr−1
1

Tαr(Eβr−1
1

)mr
1 · · ·Tαr(Eβr−1

r−1
)mr

r−1Emr+1
r

βr+1
r

· · ·Emn
r

βn
r

· · ·Emn
n

βn
n

|mk
i ∈ N0} (2.2)

Let us now apply the deformation. Set Θ = {αr}, clearly Θ ∈ Tw and fix a ζ ∈ k,
ζ ̸= 0. By Theorem 2.2 is the restriction on U+[w+] of the map ϕ : U+ → k∗ given by

ϕ(Eαi
) =

⎧⎨⎩qζ for i = r,
0 else

a character of U+[w+]. Indeed, for βk
i ∈ Φ+

w+ we have ϕ(Eβk
i
) = 0 whenever i ̸= r or k ̸= r

while ϕ(Eβr
r
) = ϕ(Eαr) = qζ. Up from now we use the restriction of ϕ, still denoting it
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with ϕ. The support of ϕ is given by the set {nαr | n ∈ N0}. Its orthogonal complement
is spanned by

α1 + 2α2, α3, . . . , αn (r = 1),
α1, . . . , αr−2, 2αr−1 + αr, αr, αr + 2αr+1, αr+1, . . . , αn (1 < r < n),
α1, . . . , αn−2, 2αn−1 + αn (r = n).

Set L = (suppϕ)⊥. We will now give the PBW-type base of the algebra C(w+, ϕ, L).
From (2.1) and (βk

i , β
k
i ) = 2 follows

∆◦ψ(Eβk
i
) = q−1 ·1⊗Eβk

i
K−1

βk
i

+Eβk
i
K−1

βk
i

⊗K−1
βk

i
+(1−q−2)

k−1∑
l=i

q−1Eβl
i
K−1

βl
i

⊗Eβk
l+1
K−1

βk
l+1

so that we get under the contraction on the first tensor with q−1(ϕ ◦ ψ−1) for βk
i with

1 ≤ i ≤ k ≤ r − 1 and r + 1 ≤ i ≤ k ≤ n.

K−1
βk

i
Eβk

i
.

These elements do not depend on ζ. We find

∆ ◦ ψ(Tαr(Eβr−1
i

)) = q−1 · 1 ⊗ Tαr(Eβr−1
i

)K−1
βr

i
+ Tαr(Eβr−1

i
)K−1

βr−1
i

⊗K−1
βr

i

+ (1 − q−2)q−1EαrK
−1
αr

⊗ Eβr−1
i
K−1

βr
i

+ (1 − q−2)2
r−2∑
l=i

q−1Eβl
i
EαrK

−1
βl

i
⊗ Eβr−1

l+1
K−1

βr
i

+ (1 − q−2)
r−2∑
l=i

q−1Eβl
i
K−1

βl
i

⊗ Tαr(Eβr−1
l+1

)K−1
βr

i
.

Under the contraction the two sums vanisch for every i < r. Since ζ is fixed we simply
write Gβk

i
instead of G(ζ)

βk
i
. The contraction yields the elements

Gβr
i

= K−1
βr

i

(
Tαr(Eβr−1

i
) + ζ(q − q−1)Eβr−1

i

)
(1 ≤ i < r),

Gβr
r

= K−1
αr

(Eαr + ζ · 1),
Gβk

r
= K−1

βk
r

(
Eβk

r
+ ζ(q − q−1)Eβk

r+1

)
(r < k ≤ n).

Recall that the map
(
q−1(ϕ ◦ ψ−1) ⊗ id

)
∆ψ is an isomorphism of algebras [HK11,

Lemma 2.11 & 2.14]. As conclusion we have indeed a PBW-type base (or at least a
deformation of it) coming from U+[w+] of C(w+, ϕ, ∅). It suffices to to replace some
elements in equation (2.2):

{Gmr
r

βr
r
E

m1
1

β1
1

· · ·Emr−1
1

βr−1
1

G
mr

1
βr

1
· · ·Gmr

r−1
βr

r−1
Gmr+1

r

βr+1
r

· · ·Gmn
r

βn
r

· · ·Emn
n

βn
n

|mk
i ∈ N0}.

For µ ∈ L we have (µ, βr
i ) = (µ, βr−1

i ) and so KµGβr
i

= q(µ,βr
i )Gβr

i
Kµ for 1 ≤ i < r and for

r < k ≤ n holds (µ, βk
r ) = (µ, βk

r+1), so that KµGβk
r

= q(µ,βk
r )Gβk

r
Kµ. In particular we can
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extend the map
(
q−1(ϕ ◦ ψ−1) ⊗ id

)
∆ψ as an isomorphism of algebras from U+[w+] →

C(w+, ϕ, ∅) to TLU
+[w+] → C(w+, ϕ, L) by setting ψ(Kµ) = Kµ and ϕ(Kµ) = 1. We can

now transfer the restriction of the multiplication map (cf. [Jan96, Thm. 4.21])

TL ⊗ U+[w+] → TLU
+[w+], u1 ⊗ u2 ↦→ u1u2

to the algebra C(w+, ϕ, L) and it thus has the basis

{KµG
mr

r
βr

r
E

m1
1

β1
1

· · ·Emr−1
1

βr−1
1

G
mr

1
βr

1
· · ·Gmr

r−1
βr

r−1
Gmr+1

r

βr+1
r

· · ·Gmn
r

βn
r

· · ·Emn
n

βn
n

| µ ∈ L,mk
i ∈ N0}.

Now we add U−[w−], so we define

A = An,r = A(ζ)
n,r = U−[w−]C(w+, ϕ, L).

Since U−[w−] and C(w+, ϕ, L) are right coideal subalgebras, so is A a right coideal. It
remains to show that A is an algebra.

Using the results of the next section, we state:

Theorem 2.4 A is a right coideal subalgebra.

This is suggested by [HK12] since A is almost homogeneous. Let us thus check, that
U−[w−]U0U+[w+] is a homogeneous right coideal subalgebra. Using the notation of that
work we have to find elements x, u ∈ W and J ⊂ Π ∩ xΠ with u−1 ≤R x such that w− =
uwJ and w+ = uwJx where ≤R is the weak order on W and wJ the longest element in
the subgroup generated by J . Set x = sα1+...+αn , u = s

(r−1)
1 s

(n)
r+1 = sα1 · · · sαr−1sαr+1 · · · sαn

and J = {sα2 , . . . , sαn−1} \ {sαr}. Since

sα1+...+αn(αi) =

⎧⎪⎪⎨⎪⎪⎩
−(α2 + . . .+ αn) i = 1,
−(α1 + . . .+ αn−1) i = n,

αi else

follows J = Π ∩ xΠ and in l(x) = 2n − 1. Since sαn · · · sα2(α1) = α1 + . . . + αn we have
x = u−1sα1u by [Hum90, Prop 1.2] and l(u) = n− 1 so follows u−1 ≤R x. Thus the triple
(x, u, J) ∈ B(W ). By definition have we w− = uwJ . We have w−(αr) = α1 + . . .+ αn, so
we can write x = (w−)−1sα1w

−, thus having uwJx = w0w
−1
0 sα1w0 = sα1w0 = w+.

For the remainder of this section let us examine some more structural properties of A.
Define for 1 ≤ j ≤ l ≤ n the roots γl

j = βl
j. Define

Fγl
j

= Tsαj
· · ·Tsαl−1

(Fαl
).

The elements with index γl
j for 1 ≤ j ≤ l < r and r < j ≤ l ≤ n form a PBW-type basis

for U−[w−]. So we get an ordered basis for A:

{F m̃1
1

γ1
1

· · ·F m̃r−1
r−1

γr−1
r−1

F
m̃r+1

r+1
γr+1

r+1
· · ·F m̃n

n
γn

n
KµG

mr
r

βr
r
E

m1
1

β1
1

· · ·Emr−1
1

βr−1
1

G
mr

1
βr

1
· · ·Gmr

r−1
βr

r−1
Gmr+1

r

βr+1
r

· · ·Gmn
r

βn
r

· · ·Emn
n

βn
n

| µ ∈ L, m̃k
i ,m

k
i ∈ N0}.
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(2.3)

Since for all 1 ≤ i ≤ n with i ≤ r − 2 or i ≥ r + 2 the elements Kαi
, K−1

αi
, Eαi

Fαi

are in A, which generate a Uq(slr−1) and a Uq(sln−r), there is a natural embedding of
Uq(slr−1) ⊗ Uq(sln−r) ↪→ A. This means that we have to verify that Gβr

i
Fγl

j
, Gβk

r
Fγl

j
and

Eβk
i
Fγr−1

j
, Eβk

i
Fγl

r+1
are in A for the corresponding indices i, j, k, l.

As conclusion of the ordered basis in (2.3) we get a triangular decomposition sim-
ilar to that of Uq(g) in general and for their homogeneous right coideal subalgebras,
for the latter see the work of Kharchenko [Kha10]. Consequently set A− = U−[w−]
and A+ = ⟨Gβr

r−1
, Gβr+1

r
, Eα1 , . . . , Eαr−2 , Eαr+2 , . . . , Eαn⟩ as borel parts and set as torus

A0 = ⟨Gβr
r
, Kµ | µ ∈ L⟩.

Proposition 2.5 The multiplication map

A− ⊗ A0 ⊗ A+ −→ A, c1 ⊗ c2 ⊗ c3 ↦−→ c1c2c3

is an isomorphism of vector spaces.

The subalgebra A is not graded by the induced grading of Uq(sln+1), the reason is very
simpel: The elements Gβr

i
resp. Gβk

r
are not homogeneous, being a sum of weight vectors

of weight βr
i and βr−1

i resp. βk
r and βk

r−1 (well, this is not true for Gβr
r
: it decomposes into

a component of weight αr and 0.) But since the difference between βr
i and βr−1

i resp. βk
r

and βk
r−1 is αr, the inhomogeneous generators of A become homogeneous by ›ignoring‹

αr.
Concretely realised: Set P = Z

(
Π \ {αr}

)
and define on Uq(sln+1) a P -grading by

deg(Eαi
) = αi, deg(Fαi

) = −αi and deg(Kαi
) = 0 for 1 ≤ i ≤ n with i ̸= r, and

deg(Eαr) = deg(Fαr) = deg(Kαr) = 0. This grading is well-defined since all defining
relations of Uq(sln+1) are homogeneous subject to P . All generators of A are homogeneous
with respect to P , so P is a grading on A. For each µ ∈ P the space Aµ is non-trivial.

Let µ ∈ P and c ∈ Aµ and let ν ∈ L, then

Kνc = q(ν,µ)cKν ,

Gβr
r
c = q−(αr,µ)cGβr

r
.

(2.4)

The coefficients appearing do only depend on the element of A0 and µ. Since the sublattice
of Q generated by L ∪ {αr} has rang n and (·, ·) is a scalar product we have

Aµ = {c ∈ A |Kνc = q(ν,µ)cKν for µ ∈ L and Gβr
r
c = q−(αr,µ)cGβr

r
} (2.5)

and

A = ⊕µ∈PAµ.

Thus it makes sense to denote Aµ as a weight space of weight µ even though there is not
really a good action of A on itself. The lack of good actions has the reason that Gβr

r
does

not have an inverse element (neither in A nor in Uq(sln+1)) and the induced ad-action of
Gβr

r
is not diagonal. We set P+ = N0

(
Π\{αr}

)
and P− = −P+. The monoids correspond

to A+ resp. A−.
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Commutation Rules between Eβk
i

and Fγl
j

It is clear that Fγl
j

and Eβk
i

commute whenever j > k or i > l. Let us summarise some
recursion formulas for the Eβk

i
and Fγl

j
.

Lemma 2.6 Let i, k, r, j, l, s ∈ N, then the following recursions hold:

Eβk
i

= Eβk−1
i
Eαk

− q−1Eαk
Eβk−1

i
(1 ≤ i < k ≤ n), (2.6)

Eβk
i

= Eαi
Eβk

i+1
− q−1Eβk

i+1
Eαi

(1 ≤ i < k ≤ n), (2.7)
Eβk

i
= Eβs−1

i
Eβk

s
− q−1Eβk

s
Eβs−1

i
(1 ≤ i < s ≤ k ≤ n). (2.8)

Proof. Equation (2.6) is just the recursion given in the paragraph right before equation
(2.1). Equations (2.7) and (2.8) follow by induction on k− i: For k− i = 1 they are both
just (2.6) resp. (2.7). Now let k − i > 1 and note that Eαi

Eαk
= Eαk

Eαi
, then

Eβk
i

= Eβk−1
i
Eαk

− q−1Eαk
Eβk−1

i

= Eαi
Eβk−1

i+1
Eαk

− q−1Eαk
Eαi

Eβk−1
i+1

− q−1Eβk−1
i+1
Eαi

Eαk
+ q−2Eαi

Eβk−1
i+1
Eαk

= Eαi
Eβk

i+1
− q−1Eβk

i+1
Eαi

.

and (where we may assume s < k, otherwise it is just (2.6))

Eβk
i

= Eβk−1
i
Eαk

− q−1Eαk
Eβk−1

ii

= Eβs−1
i
Eβk−1

s
Eαk

−q−1Eβk−1
s
Eβs−1

i
Eαk

−q−1Eαk
Eβs−1

i
Eβk−1

s
+q−2Eαk

Eβk−1
s
Eβs−1

i

= Eβs−1
i

(
Eβk−1

s
Eαk

− q−1Eαk
Eβk−1

s

)
− q−1

(
Eβk−1

s
Eαk

− q−1Eαk
Eβk−1

s

)
Eβs−1

i

= Eβs−1
i
Eβk

s
− q−1Eβk

s
Eβs−1

i
.

Let 1 ≤ i ≤ n and µ ∈ Q+ and u ∈ U+
µ such that Fαi

u = uFαi
. Then

(
Eαi

u−q−1uEαi

)
Fαi

= Fαi

(
Eαi

u−q−1uEαi

)
+

(1 − q−(µ,αi)−1)Kαi
− (1 − q(µ,Eαi )−1)K−1

αi

q − q−1

(2.9)

This is a consequence of the defining relations of Uq(sln+1). With the help of this formula
we compute the equation of the following lemma.

Lemma 2.7 For 1 ≤ i < k ≤ n holds

Eβk
i
Fαi

= Fαi
Eβk

i
− q−1K−1

αi
Eβk

i+1
.

Proof. The Lemma follows from equation (2.7) of Lemma 2.6 and equation (2.9) with
u = Eβk

i+1
and µ = βk

i+1 = αi+1 + . . .+ αk. So (µ, αi) = −1.
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Lemma 2.8 1. Let 1 ≤ i ≤ n and k, l ≥ i, then holds

Eβk
i
Fγl

i
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fγl

i
Eβk

i
+
[
K, βk

i

]
(k = l),

Fγl
i
Eβk

i
+ qFγl

k+1
Kβk

i
(k < l),

Fγl
i
Eβk

i
− q−1K−1

βl
i
Eβk

l+1
(k > l).

2. Let 1 ≤ i < j ≤ n and let k, l ≥ j, then holds

Eβk
i
Fγl

j
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fγl

j
Eβk

i
+Kβk

j
Eβj−1

i
(k = l),

Fγl
j
Eβk

i
− (1 − q2)Fγl

k+1
Kβk

j
Eβj−1

i
(k < l),

Fγl
j
Eβk

i
(k > l).

3. Let 1 ≤ j < i ≤ n and k, l ≥ i, then holds

Eβk
i
Fγl

j
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fγl

j
Eβk

i
− Fγi−1

j
K−1

βk
i

(k = l),

Fγl
j
Eβk

i
(k < l),

Fγl
j
Eβk

i
+ (1 − q−2)Fγi−1

j
K−1

βl
i
Eβk

l+1
(k > l).

Proof. In the computations of the proof we shall apply a special case of formula (1.1). Let
1 ≤ i < j ≤ n, set v = sαj

· · · sαl−1 , µ = αl and u = Eαl
. Then v(µ) − µ = αj + . . .+ αl−1

and ∏α∈Π(−qα)mα = (−q)l−j so that we can rewrite Fγl
j
:

Fγl
j

= Tsαj
· · ·Tsαj−1

(ω(Eαj
))

= (−q)l−jω(Tsαj
· · ·Tsαl−1

(Eαj
))

= (−q)l−jω(Eβl
j
).

Since ω is an involution we obtain Eβl
j

= (−q)j−lω(Fγl
j
). For Part 1. we compute with

the definitions of Eβk
i
, Fγl

j
and Lemma 2.7. For k = l follows immediately:

Eβk
i
Fγk

i
= Tαi

· · ·Tαk−1(Eαk
Fαk

) = Fγk
i
Eβk

i
+
[
K, βk

i

]
.

For k > l:

Eβk
i
Fγl

i
= Tαi

· · ·Tαl−1

(
Eβk

l
Fαl

)
= Tαi

· · ·Tαl−1

(
Fαl

Eβk
l

)
− q−1Tαi

· · ·Tαl−1

(
K−1

αl
Eβk

l+1

)
= Fγl

i
Eβk

i
− q−1K−1

βl
i
Eβk

l+1
.

For k < l we can either compute directly deducing the corresponding formula in Lemma
2.7 or using the involution ω and the case k > l:
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Eβk
i
Fγl

i
= qi−k+l−iω

(
Fγk

i
Eβl

i

)
= qi−k+l−iω

(
Eβl

i
Fγk

i

)
+ ω

(
K−1

βk
i

)
ql−(k+1)ω

(
Eβl

k+1

)
= Fγl

i
Eβk

i
+Kβk

i
Fγl

k+1

= Fγl
i
Eβk

i
+ qFγl

k+1
Kβk

i
.

For Part 2. we use the result of Part 1. For k = l:

Eβk
i
Fγk

j
= Eβj−1

i
Eβk

j
Fγk

j
− q−1Eβk

j
Fγk

j
Eβj−1

i

= Fγk
j
Eβj−1

j
Eβk

j
− q−1Fγk

j
Eβk

j
Eβj−1

i
+ Eβj−1

i

[
K, βk

j

]
− q−1

[
K, βk

j

]
Eβj−1

i

= Fγk
j
Eβk

i
+Kβk

j
Eβj−1

i
.

For k < l:

Eβk
i
Fγl

j
= Eβj−1

i
Eβk

j
Fγl

j
− q−1Eβk

j
Fγl

j
Eβj−1

i

= Fγl
j
Eβk

i
+ qEβj−1

i
Fγl

k+1
Kβk

j
− Fγl

k+1
Kβk

j
Eβj−1

i

= Fγl
j
Eβk

i
− (1 − q2)Fγl

k+1
Kβk

j
Eβj−1

i
.

For k > l:

Eβk
i
Fγl

j
= Eβj−1

i
Eβk

j
Fγl

j
− q−1Eβk

j
Fγl

j
Eβj−1

i

= Fγl
j
Eβk

i
− q−1Eβj−1

i
K−1

βl
j
Eβk

l+1
+ q−2K−1

βl+1
j

Eβk
l+1
Eβj−1

i

= Fγl
j
Eβk

i
.

For Part 3 we are going to apply the involution ω and the proven Part 2. of the Lemma.
For k = l:

Eβk
i
Fγk

j
= qi−k+k−jω

(
Fγk

i
Eβk

j

)
= Fγk

j
Eβk

i
− qi−jω

(
Kβk

i
Eβi−1

j

)
= Fγk

j
Eβk

i
− qK−1

βk
i
Fγi−1

j

= Fγk
j
Eβk

i
− Fγi−1

j
K−1

βk
i
.

For k < l:

Eβk
i
Fγl

j
= qi−k+l−jω

(
Fγk

i
Eβl

j

)
= qi−k+l−jω

(
Eβl

j
Fγl

j

)
= Fγl

j
Eβk

i
.

For k > l:

Eβk
i
Fγl

j
= (−q)i−k+l−jω

(
Fγk

i
Eβl

j

)
= Fγl

j
Eβk

i
− (1 − q2)(−q)(l+1)−kω

(
Fγk

l+1

)
ω
(
Kβl

i

)
(−q)i−1−jω

(
Eβi−1

j

)
= Fγl

j
Eβk

i
− (1 − q2)Eβk

l+1
K−1

βl
i
Fγi−1

j

= Fγl
j
Eβk

i
+ (1 − q−2)Fγi−1

j
K−1

βl
i
Eβk

l+1
.
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As stated at the beginning of this section, we have to compute certain Gβk
i
Fγl

j
and

certain Eβk
i
Fγl

j
. For the the latter that is a direct consequence of the above Lemma. Let

us summarise the formulas for Gβk
i
Fγl

j
in the following Proposition.

Proposition 2.9 1. Assume that r ≥ 2, 1 ≤ i < r and 1 ≤ j ≤ l < r. Then holds

Gβr
r
Fγl

j
= q−δr,l+1Fγl

j
Gβr

r
,

Gβr
i
Fγr−1

j
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qFγr−1

i
Gβr

i
+Gβr

r
− ζK−2

βr−1
i

K−1
αr

(i = j),

Fγr−1
j
Gβr

i
+Gβr

r
Kβj−1

i
Eβj−1

i
(i < j),

Fγr−1
j
Gβr

i
− ζ(1 − q−2)Fγi−1

j
K−2

βr−1
i

K−1
αr

(i > j),

and for l < r − 1

Gβr
i
Fγl

j
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qFγl

i
Gβr

i
− q−1Gβr

l+1
(i = j),

Fγl
j
Gβr

i
(i < j),

Fγj
i
Gβr

i
+ q−2(q − q−1)Fγi−1

j
Gβr

l+1
(i > j).

2. Assume that r ≤ n− 1 and r < j ≤ k, l. Then holds

Gβr
r
Fγl

j
= q−δr,j−1Fγl

j
Gβr

r
,

Gβh
r
Fγl

r+1
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qFγk

r+1
Gβk

r
+Gβr

r
− ζK−1

αr
K−2

βk
r+1

(k = l),

Fγl
r+1
Gβk

r
+ (q − q−1)Fγl

k+1
Gβr

r
(k < l),

Fγl
r+1
Gβk

r
− ζ(1 − q−2)K−1

αr
K−2

βl
r+1
K−1

βk
l+1
Eβk

l+1
(k > l),

and for j > r + 1

Gβk
r
Fγl

j
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qFγk

j
Gβk

r
+Gβj−1

r
(k = l),

Fγl
j
Gβk

r
+ (1 − q−1)Fγl

k+1
Gβj−1

r
(k < l),

Fγl
j
Gβk

r
(k > l).



Chapter 3

Representations of An,r

In order to analyse the behaviour of A = An,r on a finite dimensional (simple) Uq(sln+1)-
module, in this chapter we classify all simple, finite dimensional A-modules on which Gβr

r

and Kµ, µ ∈ L act diagonally. As it turns out, these modules are, up to an additional
parameter—a non-zero scalar—in one-to-one correspondence with the finite dimensional,
simple modules of Uq(slr) ⊗Uq(sln−r+1). After the classification we show a semisimplicity
theorem for simple, finite dimensional Uq(sln+1)-modules considered as A-modules. Since
we have an embedding of Uq(slr−1)⊗Uq(sln−r) ↪→ A we know the representation theory of a
big part of A, e.g. that Kα1 , . . . , Kαr−2 , Kαr+2 . . . Kαn operate as diagonal operators. After
analysing the representations of the ›missing‹ part we show that we can ›glue‹ both parts
together via U−[w−], which has embeddings in A and Uq(slr) ⊗ Uq(sln−r+1). Throughout
this chapter we shall also often use K2

αr−1Kαr and KαrK
2
αr+1 , however, depending on r one

of them might not be well defined—let use the convention of non-existence of K2
αr−1Kαr

resp. KαrK
2
αr+1 whenever r = n resp. r = 1. We will use the equivalent convention for

Gβr
r−1

and Gβr+1
r

.
Let us start with the motivation for the demand on Gβr

r
and Kµ, µ ∈ L being diagon-

alisable operators.

Proposition 3.1 Let λ ∈ Λ be a dominant weight and L(λ) the simple Uq(sln+1)-module
of highest weight λ. Then Gβr

r
is diagonalisable on L(λ).

Proof. We introduce a relation ∼ on the set of weights of L(λ). Let µ = λ − ∑n
i=1 siαi

and µ′ = λ−∑n
i=1 s

′
iαi for suitable si, s

′
i ∈ N0. Define

µ ∼ µ′ ⇐⇒ (αr, sr−1αr + srαr + sr+1αr+1) = (αr, s
′
r−1αr + s′

rαr + s′
r+1αr+1).

Let [µ] be the equivalence class of µ with respect to ∼ and S the set of equivalence classes.
Define on the set of equivalence classes the following linear ordering:

[µ] ≺ [µ′] ⇐⇒ (αr, sr−1αr + srαr + sr+1αr+1) < (αr, s
′
r−1αr + s′

rαr + s′
r+1αr+1).

This definition is independent of the choice of representatives. Set L(λ)[µ] = ⊕ν∈[µ]L(λ)ν ,
then of course L(λ) = ⊕[µ]∈SL(λ)[µ]. Let B be a basis with respect to this decomposition.
Since Gβr

r
= K−1

αr
(Eαr + ζ · 1) follows for [µ]

Gβr
r
L(λ)[µ] ⊂ L(λ)[µ] ⊕ L(λ)[µ+αr].

We have [µ] ≺ [µ+ αr]. Let t = |S|, then we get the chain

[µ1] ≺ [µ2] ≺ · · · ≺ [µt]

29
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and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζq(αr,µ1) · id ∗ . . . . . . . . . . . . . . . . . . . . ∗
0 ζq(αr,µ2) · id ∗ . . . . . . . ∗
0 0 ζq(αr,µ3) · id ∗ . . . ∗
0 . . . . . . . . . . . 0 . . . . . . ∗
0 . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . ∗
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ζq(αr,µt) · id

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is the matrix of Gβr

r
on B with respect the ordering ≺ using notation of block matrices.

This matrix is diagonalisable since the minimal polynomial splits into linear factors, each
occurring with multiplicity 1.

Let λ ∈ Λ be a dominant weight and let µ ∈ L. It is well known that Kµ acts as
diagonal operator on L(λ). On the other hand follows from (αr, µ) = 0 that KµGβr

r
=

Gβr
r
Kµ. With the above Proposition follows that Gβr

r
and allKµ, µ ∈ L are simultaneously

diagonalisable on L(λ). This motivates the following definition:

Definition 3.2 Let M be an A-module. M is simultaneously diagonalisable if Gβr
r

and
Kµ for all µ ∈ L are diagonalisable on M and Gβr

r
has no eigenvalue equals to 0.

As one analyses first the modules for Uq(sl2) and uses the results for the general case
Uq(g) we shall do the same thing for A. So let us take a look at the case n = 2.

The Case n = 2

Of course there are two different subalgebras A
(ζ)
2,1 and A

(ζ)
2,2 depending on r. From the

automorphism that interchanges α1 and α2 in the Dynkindiagram A2 follows immediately
that A(ζ)

2,1 and A
(ζ)
2,2 are isomorphic. Let us hence set A2 = A

(ζ)
2,2 and rename some elements.

F1 = Fα1 ,

G2 = Gβ2
2

= K−1
α2 (Eα2 + ζ · 1),

G12 = Gβ2
1

= K−1
α1 K

−1
α2 (Eα2Eα1 − q−1Eα1Eα2 + ζ(q − q−1)Eα1),

K±1
12 = (K2

α1Kα2)±1.

Now A2 is generated by these elements as a subalgebra of Uq(sl3), the following equations
are a full set of relations on A2 since A2 has an ordered basis.

G2K12 = K12G2,

G2F1 = q−1F1G2,

G2G12 = qG12G2,

K12F1 = q−3F1K12,

K12G12 = q3G12K12,

G12F1 = qF1G12 +G2 − ζK−1
12 .



Chapter 3. Representations of An,r 31

For the classification we use Verma-modules for A2, using the technique for Uq(sl2) in
[Jan96, Chapter 2]. To compute the action of G12 we use

G12F
s
1 = qsF s

1G12 + 1 − q2s

1 − q2 F
s−1
1

(
q−(s−1)G2 − qs−1ζK−1

12

)
(3.1)

which follows from the above listed relations by induction.
For each pair η, κ ∈ k with η, κ ̸= 0 there is an infinite dimensional A2-module M(η, κ)

with basis m0,m1,m2, . . . such that for all i ≥ 0

G2mi = ηq−imi, (3.2)
K12mi = κq−3imi, (3.3)
F1mi = mi+1, (3.4)

G12mi =

⎧⎪⎨⎪⎩
0, if i = 0,
1 − q2i

1 − q2

(
q−(i−1)η − qi−1ζκ−1

)
mi−1, if i ≥ 1.

(3.5)

Let M be a simultaneously diagonalisable A2-module and m ∈ M satisfying G12m = 0,
G2m = ηm and K12m = κm. Then there is a unique homomorphism of A2-modules
f : M(η, κ) → M with f(m0) = m. With the help of this universal property the simple,
finite dimensional, simultaneously diagonalisable A2-module will be classified.

Proposition 3.3 The module M(η, κ) contains exactly one proper submodule if and only
if ηκ = ζq2(s−1) holds for some integer s ≥ 1, otherwise it is simple.

Proof. Let M ′ be a nonzero submodule of M(η, κ). Since M(η, κ) is the sum of its
common eigenspaces, so is M ′, i.e. M ′ is spanned by the mi contained in M ′. Choose
j ≥ 0 minimal with mj ∈ M ′. From (3.4) follows that M ′ is generated by all mi with
i ≥ j. If j is zero, then M(η, κ) = M ′. If j > 0,then follows by (3.5) G12mj = 0, thus
follows ηκ = ζq2(j−1).

For ηκ ̸= ζq2(s−1) for all s ≥ 1 the module M(η, κ) is simple. If there is a s ≥ 1
with ηκ = ζq2(s−1), then there is at most one submodule different from 0 and M(η, κ)
and G12ms = 0, so we have a unique homomorphism ϕ : M(ηq−s, κq−3s) → M(η, κ) with
ϕ(m0) = ms. The A2-module M(ηq−s, κq−3s) is simple.

Proposition 3.4 For each η ∈ k∗ and s ≥ 0 exists a simple simultaneously diagonalisable
A2-module of dimension s+ 1 and a basis m0, . . . ,ms such that

G2mi = ηq−i,

K12mi = η−1ζq2s−3imi,

F1mi =

⎧⎨⎩mi+1, if i < s,

0, if i = s,

G12mi =

⎧⎪⎨⎪⎩
0, if i = 0,
1 − q2i

1 − q2

(
q−(i−1)η − q−2s+i−1η−1

)
mi−1, if i ≥ 1.

Denote this module by L(η, s). Each simple simultaneously diagonalisable A2-module of
dimension s+ 1 is isomorphic to L(η, s) for a proper η ̸= 0.
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Proof. The existence follows from the discussion above: Choose M(η, ζη−1q2s) and divide
out its single proper submodule.

If M is a simple simultaneously diagonalisable A2-module of dimension s+ 1, denote
with η the eigenvalue of G2 such that qη is no eigenvalue of G2. Pick a nonzero m ∈ Mη

that is simultaneously diagonalised, then m is also an eigenvector of K12 (with eigenvalue
κ) and G12m = 0. The universal property implies that there is a nonzero homomorphism
ϕ : M(η, κ) → M . Since M is simple, ϕ is surjective. Since M has dimension s + 1, ϕ is
an isomorphism and we have ηκ = ζq2s, i.e. κ = η−1ζq2s.

Proposition 3.5 Each finite dimensional, simultaneously diagonalisable A2-module is
semisimple.

Proof. Let M be a finite dimensional non-simple, simultaneously diagonalisable A2-
module. We may assume that for M holds the short exact sequence

0 −→ L(η, s) ι−→ M
π−→ L(η′, s′) −→ 0.

We will show that this sequence splits. For each eigenvalue ν of G2 derives an exact
sequence

0 −→ L(η, s)ν
ι−→ Mν

π−→ L(η′, s′)ν −→ 0. (3.6)
Choose v̄ ∈ L(η′, s′), v̄ ̸= 0 such that G12v̄ = 0, i.e. v̄ ∈ L(η′, s′)η′ . Choose v ∈ Mη′

with π(v) = v̄. If G12v = 0 then v spans by the universal property a simple submodule
different from L(η, s) and thus the sequence splits.

Assume now that G12v ̸= 0. Because every eigenspace of a simple simultaneously diag-
onalisable A2-module is one-dimensional, there are just two possibilities for the dimension
of L(η, s)η′ :

1. dimL(η, s)η′ = 1. Then dimMη′ = 2 since dimL(η′, s′)η′ = 1 and the sequence
(3.6) is exact. Since v /∈ L(η, s), there is a w ∈ L(η, s)η′ such that v, w are linearly
independent. Since dimMη′q = 1, there is a scalar t ∈ k such that G12v = tG12w
and thus there is G12(v − tw) = 0 and v − tw generates a simple submodule of M
different from L(η, r).

2. dimL(η, s)η′ = 0. Then dimMη′ = 1 and there is a w ∈ dimL(η, s)η′q, w ̸= 0 such
that G12v = w. Then there is

G2w = q−sηw

= G2G12v = qG12G2v = qη′w

thus η = η′qs+1 and therefore the action of K12 on L(η, s) is determined by η−1ζq2s =
(η′)−1ζqs−1. On the other hand follows from

K12w = (η′)−1ζqs−1−3sw = (η′)−1ζq−2s−1w

= K12G12v = q3G12K12v = (η′)−1ζq3q2s′
w = (η′)−1ζq2s′+3w

and therefore q2(s+s′)+2 = 1 which yields s + s′ = −2 since q is not a root of unity,
so this is a contradiction, since both, s and s′ were chosen non-negative.



Chapter 3. Representations of An,r 33

The Case n = 3

In this section we will have a look at A(ζ)
3,2 which appears in the more general case instead

of A2 whenever r ̸= 1 and r ̸= n. Its representation theory is very likely to that of
Uq(sl2) ⊗Uq(sl2)—with an additional parameter coming from G2. The proofs are more or
less the same as in the section before. We define additionally

F3 = Fα3 ,

G23 = Gβ3
2

= K−1
α2 K

−1
α3 (Eα2Eα3 − q−1Eα3Eα2 − ζ(q − q−1)Eα3),

K±1
23 = (Kα2K

2
α3)±1

and get the following list of relations

G2K12 = K12G2, G2K23 = K23G2,

G2F1 = q−1F1G2, G2F3 = q−1F3G2,

G2G12 = qG12G2, G2G23 = qG23G2,

K12F1 = q−3F1K12, K12F3 = qF3K12,

K12G12 = q3G12K12, K12G23 = q−1G23K12,

K23F1 = qF1K23, K23F3 = q−3F3K23,

K23G12 = q−1G12K23, K23G23 = q3G23K23,

G12F1 = qF1G12 +G2 + ζK12, G12F3 = q−1F3G12,

G23F1 = q−1F1G23, G23F3 = qF3G23 +G2 − ζK23,

G12G23 = G23G12, F1F3 = F3F1.

For each η, κ1, κ2 there is an infinite dimensional A3-module M(η, κ1, κ2) with basis mij

with (i, j) ∈ N2
0 such that

G2mij = ηq−(i+j)mij, (3.7)
K12mij = κ1q

−3i+jmij, (3.8)
K23mij = κ2q

i−3jmij, (3.9)
F1mij = mi+1,j,

F3mij = mi,j+1,

G12mij =

⎧⎪⎨⎪⎩
0, if i = 0,

q−j 1 − q2i

1 − q2

(
q−(i−1)η − qi−1ζκ−1

1

)
mi−1,j, if i ≥ 1,

G23mij =

⎧⎪⎨⎪⎩
0, if j = 0,

q−i 1 − q2j

1 − q2

(
q−(j−1)η − qj−1ζκ−1

2

)
mi,j−1, if j ≥ 1.

.

This module has a universal property. Let M be a simultaneously diagonalisable
A3-module and m ∈ M such that G12m = G23m = 0, G2m = ηm, K12m = κ1m and
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K23m = κ2m, then there is a unique homomorphism of A3-modules f : M(η, κ1, κ2) → M
with f(m0,0) = m.

As it is immediately clear that each weight space of M(η, κ) has dimension one, this is
not a priori clear for M(η, κ1, κ2). A short calculation will clarify that this is indeed true.
Choose i, j, k, l ∈ N0 such that mij and mkl do have the same weight. From equations
(3.7), (3.8) and (3.9) follows the equation system

i+ j = k + l

−3i+ j = −3k + l

i− 3j = k − 3l
(3.10)

and a short computation shows that indeed i = k and j = l. In fact one does not need
the third equation, we shall abuse that in the proof of Proposition 3.8.

The following theorems are very similar to those in the section before, the main dif-
ferences appear in the proofs—we shall also rely on the theory of case n = 2.

Proposition 3.6 Let η ∈ k∗ and s, t ∈ N and set κ1 = η−1ζq2(s−1) and κ2 = η−1ζq2(t−1).
Then contains the module M = M(η, κ1, κ2) exactly one maximal submodule.

Proof. As M is the sum of its common eigenspaces, so is every submodule and thus
generated by the contained mij. For each submodule M ′ ⊂ M there is by Proposition 3.3
a pair (i, j) ∈ N2 such that G12mij = G23mij = 0. Set

T =
{

(i, j) ∈ N2} |G12mij = G23mij = 0
}
.

We will show that |T | = 1. With the assumed κ1 and κ2 it follows immediately from the
universal property that mst spans a proper submodule, so |T | ≥ 1.

Assume that |T | ≥ 2 and take (i, j), (k, l) ∈ T . We may assume without loss of
generality that i < k. If j = l then m0,j spans an A2-submodule that contains by the
universal property two submodules (generated by mi,k and mj,k) which is a contradiction
to Proposition 3.3. If j < l or j > l, then G23mi,j = G23mi,l = 0 since G12 and G23
commute. Again we have a contradiction to Proposition 3.3.

Proposition 3.7 Let η ∈ k∗ and let s, t ≥ 0 be integers. Then there exists a simultan-
eously diagonalisable A3-module of dimension (s + 1)(t + 1) and basis elements mij with
0 ≤ i ≤ s and 0 ≤ j ≤ t such that

G2mij = ηq−(i+j)mij,

K12mij = η−1ζq2s−3i+jmij,

K23mij = η−1ζq2t+i−3jmij,

F1mij =
{
mi+1,j, if i < s,

0, if i = s,

F3mij =
{
m1,j+1, if j < t,

0, if j = t,
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G12mij =

⎧⎪⎨⎪⎩
0, if i = 0,

q−j 1 − q2i

1 − q2

(
q−(i−1)η − q−2s+i−1ζκ−1

1

)
mi−1,j, if i ≥ 1,

G23mij =

⎧⎪⎨⎪⎩
0, if j = 0,

q−i 1 − q2j

1 − q2

(
q−(j−1)η − q−2t+j−1ζκ−1

2

)
mi,j−1, if j ≥ 1.

.

Denote this module by L(η, s, t). Every finite dimensional simple simultaneously diagon-
alisable A3-module is ismorphic to a L(η, r, s) for suitable η ∈ k∗ and s, t ∈ N0.

Proof. The existence follows from Proposition 3.6. Take M(η, η−1ζq2s, η−1ζq2s) and divide
out its unique maximal submodule.

If M is a finite dimensional simple simultaneously diagonalisable A3-module, then
there is an eigenvalue η of G2 on M such that qη is no eigenvalue. Pick a non-zero
element simultaneously diagonalised m of the eigenspace of the eigenvalue η. It holds
G12m = G23m = 0, so that there are integers s, t ≥ 1 such that m spans two A2-modules,
one on the first index of dimension s + 1 and the other one on the second of dimension
t + 1, so that by Proposition 3.4 follows that K12m = η−1ζq2s and K23m = η−1ζq2t.
From the universal property of M(η, η−1ζq2s, η−1ζq2t) follows then the last part of the
Proposition.

Proposition 3.8 Each finite dimensional, simultaneously diagonalisable A3-module is
semisimple.

Proof. Let M be a finite dimensional, non-simple, simultaneously diagonalisable A3-
module. Without loss of generality we may assume that for M holds the exact sequence

0 −→ L(η, s, t) ι−→ M
π−→ L(η′, s′, t′) −→ 0.

As in the case n = 2 we show that this exact sequence splits. There are natural embeddings
of A1,2 and A2,2 into A3. Choose v̄ ∈ L(η′, s′, t′) such that

G12v̄ = G23v̄ = 0

and choose a common eigenvector v ∈ M such that π(v) = v̄. Since M is a finite
dimensional simultaneously diagonalisable A1,2-module we may assume that G12v = 0 by
Proposition 3.5 and v /∈ L(η, s, t). We distinguish two cases

1. G23v = 0. Then v spans a simple A3-module different from L(η, s, t).

2. G23v ̸= 0. Let k ∈ N such that (G23)kv ̸= 0. Since G12 and G23 commute follows
with the universal property that (G23)kv spans L(η, s, t). Using again Proposition
3.5—this time for A2,2—follows

w = F k
3 (G23)kv = 0

and we can write

v = v′ + w
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with v′ /∈ L(η, s, t). Since G12w = 0, follows G12v
′ = 0. Either G23v

′ = 0—then v′

generates a simple module different from L(η, s, t)—or G23v
′ ̸= 0. In the latter case

we proceed as before which yields vectors v′′ and w′ with v′ = v′′+w′ and v′, v′′ and w
are linearly independent and all being common eigenvectors of the same eigenspace.
On the other hand is each common eigenspace of a simple finite dimensional simul-
taneously diagonalisable A3-module one-dimensional—so each common eigenspace
of M is at most two-dimensional. This is a contradiction, thus G23v

′ = 0.

The General Case

This part is again parted into two parts, that is for r = 1 or r = n (which are ›dual‹
to each other under the automorphism reverting the nodes of the Dynkin diagram) and
1 < r < n for which we shall rely on the results of the first two cases.

Set R = {1, . . . , n} \ {r} and R′ = {1, . . . , n} \ {r − 1, r, r + 1}.

Definition 3.9 Let η ∈ k∗ and λ ∈ Λ and M be a simultaneously diagonalisable A-
module. Set

Mη,λ =
{
v ∈ M |Gβr

r
v = ηq(−αr,λ)v,Kαi

v = q(αi,λ)v (i ∈ R′)

K2
αr−1Kαr = η−1ζq(2αr−1+αr,λ)v,KαrK

2
αr+1 = η−1ζq(αr+2αr+1)v

}
.

We call Mη,λ the weight space of weight λ subject to η, and v ∈ Mη,λ a weight vector
of weight λ subject to η. As convention we will omit the ›subject to‹-part whenever it is
clear subject to which η. In that case we write Mλ.

Remark 3.10 The subalgebra A0 is generated by n elements, but the above weight spaces
are parametrised by n + 1 parameters. The disadvantage is the lack of a general direct
sum decomposition into weight spaces, however, in some special cases that can be fixed by
fixing η, e.g. in the case that M is generated by a single common eigenvector v (well, this
follows by equation (2.5)). This case is already included in the expression ›subject to‹. As
we will see later every finite dimensional Uq(sln+1)-module is semisimple as A-module, so
the lack of a general decomposition into weight spaces is minor important.

The major benefit is the notation itself: We do not need a new functional—which
would not be really compatible with notation induced from Uq(sln+1)—and in the end we
will examine Uq(sln+1)-modules as A-modules.

Let Λ̃ = Λ̃n,r be the sublattice of Λ generated by ϖi, i ∈ R. Let η ∈ k, η ̸= 0 and
λ̃ ∈ Λ̃. For a tupel (η, λ̃) we define a (simultaneously diagonalisable) Verma module by

M(η, λ̃) =A/

(
AGβr

r−1
+ AGβr+1

r
+
∑
i∈R

AEαi
+ A(Gβr

r
− η) +

∑
i=R

A
(
Kαi

− q(αi,λ̃)
)
+

A
(
K2

αr−1Kαr − η−1ζq(2αr−1,λ̃)
)

+ A
(
K2

αr−1Kαr − η−1ζq(2αr+1,λ̃)
))
.
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It is generated as an A-module by the coset of 1 which shall be denoted by vη,λ̃. We have
furthermore a direct sum decomposition of A following from the ordered basis in (2.3):
A = U−[w−] ⊕ C(w+, ϕ, L). This implies that the map

U−[w−] −→ M(η, λ̃), u ↦→ uvη,λ̃ (3.11)

is bijective and an isomorphism of U−[w−]-modules. The algebra U−[w−] is a P−-graded
algebra, so the module M(η, λ̃) becomes via the map from above a graded U−[w−]-module
with respect to P−. With the formulas from equation (2.4) follows for u ∈ U−[w−]µ

Gβr
r
uvη,λ̃ = ηq(−αr,µ)uvη,λ̃,

K2
αr−1Kαruvη,λ̃ = η−1ζq(2αr−1+αr,µ+λ̃)uvη,λ̃,

KαrK
2
αr+1uvη,λ̃ = η−1ζq(αr+2αr−1,µ+λ̃)uvη,λ̃,

Kαi
uvη,λ̃ = q(αi,µ+λ̃)uvη,λ̃ (i ∈ R′).

Since U−[w−] = ⊕µ∈P −U−[w−]µ, follows the decomposition of M(η, λ̃) into weight spaces,
i.e.

M(η, λ̃) =
⨁
µ∈Λ

M(η, λ̃)µ

In particular this module is simultaneously diagonalisable.

Definition 3.11 Let λ, µ ∈ Λ. µ is P -smaller than λ if and only if λ − µ ∈ P+. The
notation is µ <P λ

This is a partial ordering on Λ. A reformulation of the statement above yields: The
subspace M(η, λ̃)µ is non-trivial if and only if µ <P λ̃. In this language becomes the
moduleM(η, λ̃) a highest weight module of weight λ̃. The parameter η is minor important,
it should be regarded as in index in k∗ indexing a family of very similar simultaneously
diagonalisable Verma-modules of A. This view is also in align with Definition 3.9.

As in the case of quantum groups, each M(η, λ̃)µ is finite dimensional. In the clas-
sification process of finite dimensional, simple, simultaneously diagonalisable A-modules
we use now the same route as for quantum enveloping algebras, like in [Jan96, p.72ff.],
with the exception that we can take a shortcut later.

The module has the usual universal property: Let M be a simultaneously diagonalis-
able A-module and v ∈ M a vector such that

Gβr
r−1
v = Gβr+1

r
v = Eαi

v = 0 (i ∈ R′),
Gβr

r
v = ηv,

K2
αr−1Kαrv = η−1ζq(2αr−1,λ̃)v,

KαrK
2
αr+1v = η−1ζq(2αr+1,λ̃)v,

Kαi
v = q(αi,λ̃)v (i ∈ R′).
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Then there is a unique A-module homomorphism f : M(η, λ̃) → M with f(vη,λ̃) = v.
Let N ⊂ M(η, λ̃) be a submodule and define for µ ∈ Λ the weight space as Nµ =

N ∩ M(η, λ̃)µ. Then N becomes the direct sum of its weight spaces. There is, as in
the classical case, a unique maximal submodule of M(η, λ̃). Define L(η, λ̃) as the factor
module of M(η, λ̃) by this unique maximal submodule.

From now on we are going to consider An,1.

Lemma 3.12 Let M be a finite dimensional, simple, simultaneously diagonalisable An,1-
module. Then there exist a v ∈ M , v ̸= 0, a η ∈ k∗ and a dominant weight λ̃ ∈ Λ̃n,1 such
that

Gβ2
1
v = Eαi

v = 0 (3 ≤ i ≤ n),
Gβ1

1
v = ηv,

Kα1K
2
α2v = η−1ζq(2α2,λ̃)v,

Kαi
v = q(αi,λ̃)v (3 ≤ i ≤ n),

and F (αi,λ̃)+1
αi

v = 0 for 2 ≤ i ≤ n.

Proof. The existence of a v ∈ M such that A+ operates as zero is clear from equation (2.5).
From the embedding of Uq(sln−1) into An,1 the actions of Kα3 , . . . , Kαn are determined,
giving a dominant weight λ̃′ ∈ Z{ϖ3, . . . , ϖn}. The embedding A2 into An,1 gives a η ∈ k∗

and a s ≥ 0 determining the action of Gβ1
1

and Kα1K
2
α2 . Set λ̃ = sϖ2 + λ̃′.

From [Jan96, Lemma 5.4 b)] and Proposition 3.4 follows the claim about the Fαi
.

Let M be a finite dimensional, simple, simultaneously diagonalisable An,1-module.
By the above Lemma 3.12 and the universal property follows that M is isomorphic to
L(η, λ̃) for a η ∈ k∗ and a dominant weight λ̃ ∈ Λ̃n,1. The next theorem completes the
classification of finite dimensional, simple, simultaneously diagonalisable An,1-modules.

Theorem 3.13 Let η ∈ k∗ and λ̃ ∈ Λ̃n,1 be a dominant weight. Then the An,1-module
L(η, λ̃) is finite dimensional.

We want to argue as in the proof of Theorem 5.10 in [Jan96], so we like to have a
module that is finite dimensional and has L(η, λ̃) as a homomorphic image. A candidate
is a module similar to that one in Proposition 5.9 in [Jan96]—that is as vector space
isomorphic to that one in Proposition 5.9.

Lemma 3.14 Let λ̃ = ∑n
i=2 siϖ ∈ Λ̃n,1 be a dominant weight and η ∈ k∗.

1. Set λ̃′ = λ̃− (s2 + 1)(α2 +ϖ1) and η′ = ηq−(s2+1). Then exists a homomorphism of
An,1-module fα2 : M(η′, λ̃′) −→ M(η, λ̃) such that fα2(vη′,λ̃′) = F s2+1

α2 vη,λ̃.

2. For all 3 ≤ i ≤ n exists an An,1-module homomorphism fαi
: M

(
η, λ̃−(si+1)αi

)
−→

M(η, λ̃) such that fαi
(vη,λ̃−(si+1)αi

) = F si+1
αi

vη,λ̃.

Proof. The proof is very similar to that one of Lemma 5.6 in [Jan96].
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1. F s2+1
α2 vη,λ̃ has weight λ̃ − (s2 + 1)α2 subject to κ. This is not in Λ̃n,1. However, we

find that

Gβ1
1
F s2+1

α2 vη,λ̃ = ηq−(s2+1)F s2+1
α2 vη,λ̃ = η′F r2+1

α2 vη,λ̃,

Kα1K
2
α2F

s2+1
α2 vη,λ̃ = η−1ζq−3(s2+1)q(2α2,λ̃)F s2+1

α2 vη,λ̃ = (η′)−1q(2α2,λ̃′)F s2+1
α2 vη,λ̃,

Kαi
F s2+1

α2 vη,λ̃ = q(αi,λ̃)F s2+1
α2 vη,λ̃ = q(αi,λ̃

′)F s2+1
α2 vη,λ̃,

so F s2+1
α2 vη,λ̃ has weight λ̃′ subject to η′. Since Eαi

Fα2 = Fα2Eαi
for each 3 ≤ i ≤ n

holds Eαi
F r2+1

α2 vη,λ̃ = 0. From equation (3.1) follows

Gβ2
1
F s2+1

α2 vη,λ̃ = 1 − q2(s2+1)

1 − q2

(
q−s2F s2

α2Gβ1vη,λ̃ − qs2F s2
α2(Kα1K

2
α2)−1vη,λ̃

)

= 1 − q2(s2+1)

1 − q2 F s2
α2

(
q−s2η − qs2ζηζ−1q−2s2

)
vη,λ̃

= 0.

With the universal property of M(η′, λ̃′) follows the claim.

2. F si+1
αi

vη,λ̃ has weight λ̃ − (si + 1)αi subject to κ. Since the weight is in Λ̃n,1 and
Gβ2

1
Fαi

= Fαi
Gβ2

1
the procedure is identical with that given by Jantzen.

Proof of Theorem 3.13. Let fα2 , . . . , fαn as in Lemma 3.14 and define

L̃(η, λ̃) = M(η, λ̃)/
( n∑

i=2
im(fαi

)
)
.

L(η, λ̃) is the homomorphic image of L̃(η, λ̃). In terms of the isomorphism from equation
(3.11) the image of fαi

is U−[w−]F si+1
αi

, and we find that there is an isomorphism of vector
spaces between L̃(η, λ̃) and U−[w−]/(∑n

i=2 U
−[w−]F si+1

αi
).

The proof of Proposition 5.9 in [Jan96] shows that the there defined Uq(sln)-module
L̃(λ̃) (λ̃ must of course be considered as a weight of Uq(sln), this is possible by the
definition of Λ̃n,1.) is isomorphic to U−[w−]/(∑n

i=2 U
−[w−]F si+1

αi
) as a vector space. But

since L̃(λ̃) is finite dimensional so is L̃(η, λ̃).

There is a natural projection from π : Λ → Λ̃n,r given by π(∑n
i=1 siϖi) = ∑n

i∈R siϖi. In
fact, this is the transition of weights from Uq(sln+1) to Uq(slr) ⊗Uq(sln−r+1) coming from
the embedding of the latter in the first on the indices i ∈ R. Let λ ∈ Λ be a weight of a
Uq(sln+1)-module, say M . Let v ∈ Mλ be weight vector of weight λ. Consider now this
module M as Uq(slr) ⊗ Uq(sln−r+1)-module via the above embedding. Then v has weight
π(λ). Let u ∈ Uq(slr) ⊗ Uq(sln−r+1) be of weight π(µ), then uv ∈ Mπ(λ+µ). This way we
consider Λ̃n,r as the usual weight lattice of the algebra Uq(slr) ⊗Uq(sln−r+1). We shall use
this identification for a transition of weight spaces from An,r-modules to ›corresponding‹
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Uq(slr)⊗Uq(sln−r+1)-modules. In the next Lemmas and Corollaries we consider again the
case r = 1.

Recall that the Uq(sln)-modules L(λ̃) and L̃(λ̃) are isomorphic (c.f. [Jan96, p. 6.26]).
The proof above shows that there is a bijective linear map between L̃(η, λ̃) and L̃(λ̃)
preserving weight spaces. This allows us to compute the dimension of L̃(η, λ̃)µ where µ
is a weight subject to κ.

Corollary 3.15 Let λ̃ ∈ Λ̃n,1 and µ ∈ Λ such that µ <P λ̃, and let η ∈ k∗. Then holds

dim L̃(η, λ̃)η,µ = dimL(λ̃)π(µ).

Proof. Let us perform the proof more explicitly than sketched above. By equation (3.11)
and equation [Jan96, 5.5 (4)] there is an isomorphism of U−[w−]-modules g : M(η, λ̃) →
M(λ̃) with g(uvη,λ̃) = uvλ̃ where u ∈ U−[w−].

Let us denote the highest weight vectors of M(η, λ̃) resp. L(λ̃) with vη,λ̃ resp.
vλ̃, too. By equation (3.11) and equation [Jan96, 5.5 (4)] there are bijective linear
maps f : U−[w−]/(∑n

i=2 F
ri+1
αi

) → L̃(η, λ̃) and g : U−[w−]/(∑n
i=2 F

ri+1
αi

) → L(λ̃) given by
f([u]) = [u]vη,λ̃ and g([u]) = [u]vλ̃ where [u] is the class of u.

By definition of µ <P λ̃ we have λ̃ − µ ∈ P+. If [u] has weight −(λ̃ − µ)1 then
f([u]) = [u]vη,λ̃ has weight µ subject to κ and g([u]) = [u]vλ̃ has weight π(µ). We have
dimM(η, λ̃)κ,µ = dimU−[w−]−(λ̃−µ) = dimM(λ̃)π(µ).

For a better understanding of L(η, λ̃) it would be nice that L(η, λ̃) and L̃(η, λ̃) are
isomorphic. This is indeed the case as the next Theorem shows. From the isomorphism
we conclude also the universal property of L̃(η, λ̃) that comes from Lemma 3.12. The uni-
versal property for the latter is as follows: Let M be a finite dimensional, simultaneously
diagonalisable An,1-module, v ∈ M a weight vector of weight λ̃ ∈ Λ̃n,1 (of course, λ̃ must
be dominant) subject to η with η ∈ k∗ such that Gβ2

1
v = Eα3v = . . . = Eαnv = 0. Then

there is a unique An,1-module homomorphism from f : L̃(η, λ̃) → M such that f(vη,λ̃) = v.

Theorem 3.16 Let η ∈ k∗ and let λ̃ ∈ Λ̃n,1 be a dominant weight. Then holds

L(η, λ̃) ≃ L̃(η, λ̃).

Proof. By the universal property L̃(η, λ̃) it suffices to proof that L̃(η, λ̃) is simple. Let us
consider Uq(sln) as a subalgebra of Uq(sln+1) such that Λ̃ is the weight lattice of Uq(sln).
Write λ̃ = ∑n

i=2 siϖi with si ∈ N0.
Consider the following infinite dimensional Uq(sln+1)-module

M = U/
( n∑

i=2
UF si+1

αi
+

n∑
i=1

UEαi
+ U(Kα1 − η−1) +

n∑
i=2

U(Kαi
− q(αi,λ̃))

)

Denote with vgen the class of the coset of 1. vgen is a weight vector of weight λ̃ subject to
η. Denote with N the subspace U−[w−]vgen. N is finite dimensional and as An,1-module

1As Uq(sln)-module. Then it is clear what shall be understood by a class of weight µ.
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isomorphic to L̃(η, λ̃) and a simple Uq(sln)-module with highest weight vector vgen. Let
µ ∈ Λ, then

Nη,µ = Nπ(µ)

and of course N = ⊕µ∈ΛNη,µ = ⊕µ∈ΛNπ(µ). Assume that N is not a simple An,1-module.
Then there is a proper An,1-submodule Ñ . It decomposes into weight spaces, so

Ñ =
⨁
µ∈Λ

(
Ñ ∩Nη,µ

)
=
⨁
µ∈Λ

(
Ñ ∩Nπ(µ)

)
.

Since Ñ is finite dimensional there exists a µ ∈ Λ with µ <P λ̃ and a v ∈ Ñ ∩ Nη,µ

such that Gβ2
1
v = Eα3v = . . . = Eαnv = 0. We claim: Then Eα2v = 0, this would be a

contradiction, since v would span a simple Uq(sln)-submodule with highest weight π(µ)
in the simple module N .

Since v ∈ N = U−[w−]vgen, there exists a u ∈ U−[w−]−(λ̃−µ) such that uvgen = v.
Recall that Gβ2

1
= K−1

α1 K
−1
α2

(
Eα1Eα2 − q−1Eα2Eα1 + (q − q−1)ζEα2

)
. So if (Eα1Eα2 −

q−1Eα2Eα1)v = 0, then must be Eα2v = 0. Since Eα1u = uEα1 we have Eα2Eα1uv =
Eα2uEα1v = 0. We have Eα2u = u′ with u′ ∈ U0U−[w−]−(λ̃−µ)+α2

, so there is a u′′ ∈
U0U−[w−]−(λ̃−µ)+α2

such that Eα1u
′ = u′′Eα1 , so follows as before that Eα1Eα2uv = 0,

hence the contradiction.

Corollary 3.17 Let λ̃ ∈ Λ̃n,1 and µ ∈ Λ such that µ <P λ̃, and let η ∈ k∗. Then holds

dimL(η, λ̃)η,µ = dimL(λ̃)π(µ).

In particular holds

dimL(η, λ̃) = dimL(λ̃).

Theorem 3.18 Let λ̃ ∈ Λ̃n,r be a dominant weight and η ∈ k∗. Then the module L(η, λ̃)
is finite dimensional.

Proof. For r = 1 and r = n this is already done by Theorem 3.16. So let 1 < r < n. We
have embeddings Ar,r ↪→ An,r and An−r,1 ↪→ An,r. From the definition of L(η, λ̃) follows
that there is a v ∈ L(η, λ̃) such that A+

r,rv = A+
n−r,1v = 0. This implies that v spans

a simple, finite dimensional, simultaneously diagonalisable Ar,r- resp.An−r,1-module, so
there are λ̃′ ∈ Λ̃r,r, λ̃′′ ∈ Λ̃n−r,1 and a single η ∈ k∗ (since Gβr

r
is in both subalgebras) such

that Ar,rv ≃ L(η, λ̃′) and An−r,1v ≃ L(η, λ̃′′). Note that the generators of both commute
with each other (some only up to a q-factor, which does no harm). This implies that v
spans a finite dimensional An,r submodule.

Corollary 3.19 Let λ̃ ∈ Λ̃n,r, λ̃ = ∑
i∈R siϖi and µ ∈ Λ such that µ <P λ̃ and let

η ∈ k∗. Set λ′ = ∑r−1
i=1 siϖi and λ′′ = ∑n

i=r+1 siϖi. Then hold

dimL(η, λ̃)η,µ = dim
(
L(λ′) ⊗ L(λ′′)

)
µ
,

dimL(η, λ̃) = dimL(λ′) · dimL(λ′′).
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We shall use this Corollary to prove the next theorem. Additionally we like to know
something more about the action of Gβr+1

r
resp. Gβr

r−1
on a finite dimensional, simple

Uq(sln+1)-module. The following Lemma implies besides Proposition 3.1.

Lemma 3.20 Let λ ∈ Λ be a dominant weight and let µ be a weight of L(λ). Let v ∈ L(λ)µ,
v ̸= 0 such that Eαr−1v = Eαr+1v = 0. Let vdiag be its diagonalisation subject to Gβr

r
. Then

Gβr
r−1
vdiag = Gβr+1

r
vdiag = 0

Proof. Set s = max(k | Ek
αr
v ̸= 0). Set a0 = 1 and for 1 ≤ k ≤ s via recursion ak =

ak−1
−1

ζ(1−q2k) . Claim:

vdiag =
s∑

i=0
akE

k
αr
v. (3.12)

Since

Gβr
r
akE

k
αr
v = akq

−(αr,µ)
(
ζq−(αr,kαr)Ek

αr
v + (1 − δk,s)q−(αr,(k+1)αr)Ek+1

αr
v
)
,

we have only to verify that

akζq
−2k + ak−1q

−2k = ζak

for 1 ≤ k ≤ s – which is indeed true. Concerning the action of Gβr+1
r

: Using the fact that
Eβr+1

r
Ek

αr
= q−kEk

αr
Eβr+1

r
follows for 0 ≤ k ≤ s

Gβr+1
r
Ek

αr
v = akq

−(αr+αr+1,µ)
(
ζq−k−1(q − q−1)Eαr+1E

k
αr

− q−2k−3Ek−1
αr

Eαr+1Eαr

)
v,

so we have to check that

akζ(q − q−1)q−k−1Eαr+1E
k
αr
v = ak−1q

−2(k−1)−3Ek−1
α1 Eαr+1Eαrv.

A short induction shows that Eαr+1E
k
αr

= qkEk
αr
Eαr+1 + q−k 1−q2k

1−q−2E
k−1
αr

Eβr+1
r

, so that the
above condition becomes

−akζ(q − q−1)q−k−1q−k−1 1 − q−2k

1 − q−2 = ak−1q
−2(k−1)−3.

The left hand side computes with the recursion formula as

−akζ(q−q−1)q−k−1q−k−1 1 − q−2k

1 − q−2 = ak−1q
−2(k−1)−3 ζ(1 − q2k)(1 − q−2)

ζ(1 − q2k)(1 − q−2) = ak−1q
−2(k−1)−3.

The calculations are invariant under the mapping sending Eαr+1 ↦→ Eαr−1 , K
±
αr+1 ↦→ K±

αr−1

and fixing each other generator. This map sends Eβr+1
r

to Eαr+1Eαr − q−1EαrEαr+1 and
Gβr+1

r
to Gβr

r−1
while Gβr

r
is invariant.

Theorem 3.21 Let λ ∈ Λ be a dominant weight and let L(λ) be the simple, finite dimen-
sional Uq(sln+1)-module of highest weight λ. Then L(λ) is a semisimple, simultaneously
diagonalisable An,r-module.
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Proof. We use the embedding of Uq(slr) ⊗ Uq(sln−r+1) into Uq(sln+1) such that Λ̃n,r is
the weight lattice of Uq(slr) ⊗ Uq(sln−r+1). There is a unique decomposition of L(λ) as
Uq(slr) ⊗ Uq(sln−r+1)-module into simple modules, say L(λ) = ⊕t

k=1Mk with Mk being
simple Uq(slr) ⊗ Uq(sln−r+1)-modules. Let vk be the highest weight vector of Mk, then
vk is a weight vector subject to Uq(sln+1)—say vk has weight µk. Let vd

k be its diagon-
alisation subject to Gβr

r
. By Lemma 3.20 follows Gβr

r−1
vd

k = Gβr+1
r
vd

k = 0. Therefore vd
k

spans a simple, finite dimensional, simultaneously diagonalisable An,r-module that is iso-
morphic to L

(
ζq−(αr,µk), π(µk)

)
. Denote this module by Md

k . From Corollary 3.17 follows
dimMd

k = dimMk and hence

L(λ) =
t⨁

k=1
Md

k ,

i.e. a decomposition of L(λ) as An,r-module into simple, simultaneously diagonalisable
An,r-modules.

Theorem 3.21 together with Krämers 1. Behauptung (1) in [Krä79] ensures that
whenever r ̸= n − r + 1 part 1 and 2 of Definition 1.2 are fulfilled: For the with multi-
plicity at most one appearing trivial representation of Uq(slr) ⊗ Uq(sln−r+1) there is one
and only one one dimensional An,r-module, though at most one trivial An,r-module. Note
that not every one dimensional An,r-module is necessary trivial. This is especially clear
by Proposition 3.4. For the case r = n − r + 1 we give an example of a non-spherical
module.

In the remainder of this chapter we want partially examine the homogeneous space of
An,r. The first question arising asks if there is a (sufficient amount of) invariant vector(s).
The answer is ›yes‹ as we shall see below. With this answer in mind we are forced to
ask what are the invariant vectors or at least, which simple Uq(sln+1)-modules possess
invariant vectors. The answer is not completely satisfying.

Let λ ∈ Λ be a dominant weight and let v ∈ L(λ) be an An,r-invariant vector. Write
v = ∑

µ≤λ vµ as a sum of weight vectors. Since ϵ(Gβr
r
) = ζ and ϵ(Ki) = 1 follows with

Proposition 3.1 that v = ∑
k≤0 vkαr with v0 ̸= 0. This means that the diagonalisation of

a Uq(slr) ⊗ Uq(sln−r+1)-invariant vector w ∈ L(λ) is A(ζ)
r,n-invariant if and only if w has

weight 0, i.e. w ∈ L(λ)0.

Proposition 3.22 Let r ̸= n − r + 1. Then An,r is a spherical right-coideal subalgebra.
Let λ ∈ Λ and set s = min(r, n−r+1). The Uq(sln+1)-module L(λ) has an An,r-invariant
vector if

λ ∈
s⨁

k=1
(ϖk +ϖn+1−k)N0.

Proof. This follows directly from Krämers Tabelle 1 in [Krä79], lines no. 2 and 4 since
S
(
U(r) ×U(n− r+ 1)

)
contains all diagonal matrices of SU(n+ 1), i.e. a full torus, and

thus the invariant vectors all have weight 0. All these vectors are SU(r) ×SU(n− r+ 1)-
invariant.
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Let r ̸= n − r + 1, then are by Tabelle 1 in [Krä79] L(ϖr) and L(ϖn−r+1) modules
with an invariant vector. For the first one it is clear that the highest weight vector
is Uq(slr) ⊗ Uq(sln−r+1)-invariant while Gβr

r
vϖr = ζq−1vϖr—though not invariant under

An,r. But since L(ϖn−r+1) is dual to L(ϖr) we find that the lowest weight vector is
Uq(slr) ⊗ Uq(sln−r+1)—but not An,r-invariant.

In the case r = n− r+ 1 the right-coideal subalgebra An,r is not spherical as Uq(slr) ⊗
Uq(sln−r+1) is not spherical; the latter his is a well known fact, c.f. [Krä79, 1. Behauptung
or Tabelle 1 ]. Any Uq(slr) ⊗Uq(sln−r+1)-invariant vector has clearly weight kϖr, k ∈ Z—
which is a weight of the Uq(sln+1)-module L(ϖ1 +ϖn) solemnly for k = 0.

In case n = 2 we are able to proof a bit more and describe the homogeneous space
in the next chapter—this is due to the well-known structure of Uq(sl3) (or, to be more
precise, of sl3).



Chapter 4

Homogeneous Space of A2

In this chapter we examine the homogeneous spaces attached to A2. We compute the
invariant vector, the homogeneous space and show that the space coincides with the ho-
mogeneous space of Noumi and Dijkhuizen in [DN98]—for which we shall use the quantum
sphere introduced by Podleś, c.f. [Pod87], [KV92], too—in the sense that they have the
same algebraic structure. Though, there are some differences: First, the space of Nuomi
and Dijkhuizen is equipped with an induced ∗-structure from Aq. Secondly, the space of
the two authors is embedded ›symmetrically‹ which is due to the fact that whenever their
kσ-invariant vector of a simple Uq(sln+1)-simple has a component of weight—say µ—,then
also of weight −µ.

Let us start with the description of the invariant vector and the elements generating
the homogeneous space of A2 in Aq first.

Homogeneous Space

Let λ = k1ϖ1 + k2ϖ2 be a dominant weight and vλ be the highest weight vector of L(λ).
Then there is

K1vλ = qk1vλ,

K2vλ = qk2vλ

and let on the other hand m1,m2 ≥ 0 be integers and consider now a weight vector
v ∈ L(λ) of weight µ− (m1α1 +m2α). Then there is

K1v = v ⇐⇒ k1 − 2m1 +m2 = 0,
K2v = ζv ⇐⇒ k2 +m1 − 2m2 = 0.

Reading the equations on the right hand side as conditions on m1 and m2 yields

m1 = 2k1 + k2

3
and

m2 = k1 + 2k2

3 .

In particular, to achieve integrity of m1 and m2, k1 and k2 have to lie in the same residue
class mod 3.

The next proposition is known by the end of the last chapter. Nevertheless we give
another proof which does work in this special case only—it does rely on dimension com-
parisons.

45
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Proposition 4.1 Let k ∈ N and λ = k(ϖ1 + ϖ2), then the trivial representation occurs
precisely once in the decomposition of the Uq(sl3)-module L(λ) as an A2-module.

Proof. It is enough to prove that the trivial representation of Uq(sl2) is a subspace of
L(λ)0 if we embed Uq(sl2) on the first index in Uq(sl3). This comes again from the proof
of Theorem 3.21. To show this it suffices to show that dimL(λ)0 > dimL(λ)α2 since
there is exactly one Uq(sl2)-invariant vector. This can also be deduced by Pieri’s formula
([FH96, Ex. 6.12]. There is a bijection (c.f. [Jan96, Lemma 5.18])

Uq(sl3)−
−µ −→ L(λ)λ−µ, u ↦−→ uvλ

for 0 ≤ µ ≤ k(α1 + α2). Hence we compare the dimensions of U−
k(α1+α2) and U−

(k−1)α1+kα2
.

By [Jan96, Section 8.24] the dimensions og these spaces are given by the Kostant par-
tition function, to be denoted with P , which gives the number of possibilities to write
a weight as linear combination of positive roots with non-negative integral coefficients.
From this definition it is clear that P(k(α1 + α2)) > P((k − 1)α1 + kα2) and accordingly
the dimensions.

We shall use weight diagrams for the proof of the next proposition. They were used by
Antoine and Speiser in [AS64] to prove the Weyl character formula for an arbitrary simple
Lie group. Drawing a weight diagram for a two dimensional root system in which one
can read of the dimensions of the weight spaces is rather easy, but for higher dimensions
more or less not possible in general (which is in terms of the presentations of the Weyl
character formula reasonable). In the case of the root system A2 we use the notation and
results of [FH96, §13.2]. Let us review the notation and facts of and about the weight
diagrams of A2.

Let k1ϖ1 + k2ϖ2 be a dominant weight. We may assume without loss of generality
that k1 ≤ k2. For each weight µ ∈ Λ define mµ to be its multiplicity in the module
L(k1ϖ1 + k2ϖ2). If mµ = 0 for a weight do nothing, for mµ = 1 draw a point in the
weight lattice at point µ, for mµ ≥ 2 draw mµ − 1 circles around the point. Of course
the highest weight vector is represented by a single point. In the case that k1 > 0 all
one-dimensional weights form a hexagon with two length of edges, having k2 + 1 points
on the longer one and k1 + 1 on the shorter one. The two dimensional weight spaces form
a hexagon or triangle in this hexagon - each edge having one point less in length.

In general: There will be k1 hexagons, denoted by H0, . . . , Hk1 and s = [(k2 −k1)/3]+1
triangles. If the corresponding point of a weight µ is on the hexagon Hi, then it has the
multiplicity mµ = i+ 1. The multiplicities on the triangles are all the same and given by
k1. Below is a diagram for the highest weight module of weight 2ϖ1 + 2ϖ5.

As one sees immediately the corner of the hexagons in the fundamental chamber differ
from the highest weight by a multiple of α1 + α2. Of course this is valid for all weight
diagrams of type A2.

An slightly bit technically but easy to proof result for Uq(sl2) is as follows: Let M be
a finite dimensional Uq(sl2)-module and let µ be a weight of M . If dimMµ = dimMµ+α,
then E(Mµ) = Mµ+α.
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2ϖ1 + 5ϖ2H0

H1

H2/T0

T1
ϖ1

ϖ2

Figure 1: Weight diagram for weight 2ϖ1 + 2ϖ5

Proposition 4.2 Let k1 ̸= k2 be non-negative integers that are congruent mod 3 and
λ = k1ϖ1 + k2ϖ2. Then there is no trivial representation in the decomposition of the
Uq(sl3)-module L(λ) as an A2-module.

Proof. With the theory of weight diagrams we have dimL(λ)0 = dimL(λ)α2 since there
are at least two triangles. We embed Uq(sl2) into Uq(sl3) on the first index, it follows that
E1v ̸= 0 for all nonzero v ∈ L(λ)0, so no v ∈ L(λ) spans a trivial A2-module.

In the next step we want to compute the invariant element in V ∗ ⊗ V where V is the
vector representation of Uq(sl3). Denote with v1 the highest weight vector of V and set
v2 = F1v1 and v3 = F2F1v1. This is the standard notation, it is used by Wen in [APW91,
Appendix] as in [DN98]. The Uq(sl3)-module V ∗ ⊗ V decomposes as

V ∗ ⊗ V ≃ V (ϖ1 +ϖ2) ⊕ V (0),

where the first one has v∗
i ⊗ vj for 1 ≤ i ̸= j ≤ 3 together with v∗

i ⊗ vi − v∗
i+1 ⊗ vi+1 for

i = 1, 2 as basis, the latter one v∗
1 ⊗ v1 + q−2v∗

2 ⊗ v2 + q−4v∗
3 ⊗ v3 as basis. Consider

v∗
1 ⊗ v1 + q−2v∗

2 ⊗ v2 − (1 + q−2)v∗
3 ⊗ v3.
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Since it is an element in L(ϖ1 +ϖ2)0 and

∆(E1)
(
v∗

1 ⊗ v1 + q−2v∗
2 ⊗ v2 − (1 + q−2)v∗

3 ⊗ v3
)

= 0

follows that it is the Uq(sl2)-invariant vector. With Lemma 3.20 and equation (3.12) we
compute that

v∗
1 ⊗ v1 + q−2v∗

2 ⊗ v2 − (1 + q−2)v∗
3 ⊗ v3 + q + q−1 + q−3

ζ(1 − q2) v∗
3 ⊗ v2 (4.1)

is the A2-invariant in L(ϖ1 +ϖ2) ⊂ V ∗ ⊗V . Substracting v∗
1 ⊗v1 +q−2v∗

2 ⊗v2 +q−4v∗
3 ⊗v3

and stretching with ζ(1−q2)
q+q−1+q−3 yields

ζ(q − q−1)v∗
3 ⊗ v3 + v∗

3 ⊗ v2.

The subset

AA2
q = { b ∈ Aq | ub = ϵ(u)b for all u ∈ A2}

is the set of left A2 invariant elements. In terms of the Peter-Weyl decomposition (1.2) it
decomposes by Propositions 4.1 and 4.2 as

AA2
q =

⨁
k≥0

L
(
k(ϖ1 +ϖ2)

)∗
. (4.2)

The following theorem gives a description of AA2
q in terms of generators.

Theorem 4.3 The subspace spanned by the elements

xij = ζ(q − q−1)t∗i3tj3 + t∗i3tj2 (1 ≤ i, j ≤ 3)

is left A2 and right Uq(sl3) invariant. The linear map

V ∗ ⊗ V −→ Aq

v∗
i ⊗ vj ↦−→ q−2(3−i)xij

is an injective right Uq(sl3) module homomorphism. The xij generate the algebra AA2
q .

Proof. The proof is similar to the proof given in [DN98, Prop. 3.11]. Therefore we show,
that the given map is injective. This is indeed true, we have ∑k xkk = ζ(q − q−1) · 1 by
[NYM93, Corollary to Proposition 1.1] which means that the trivial representation occurs
with non-zero multiplicity, and we have x31 = t∗33

(
ζ(q − q−1)t13 − t12

)
̸= 0—which is a

vector of highest weight—since Aq does not have any zero divisors.
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Construction of AA2
q via Quantum Spheres

In [DN98] Dijkhuizen and Noumi constructed their subalgebra of left kσ invariant elements
in Aq via ›deformed‹ quantum spheres. With some adjustments it is possible to construct
their subalgebra of left kσ invariants in Aq with the help of deformed quantum spheres.
The method does also work for AA2

q . In the rest of the section there is short route of
the construction given using the notation in said publication—taking here care of some
differences. They are due to the fact that we consider a left instead of right action. For
proofs see the original paper of Dijkhuizen and Noumi.

Definition 4.4 Let n ∈ N and let Aq(S̃) = Aq(S̃2n−1) be the algebra generated by zi, wi,
1 ≤ i ≤ n and c, d subject to the relations

zizj = qzjzi, (1 ≤ i < j ≤ n),
wiwj = q−1wjwi (1 ≤ i < j ≤ n),
wizj = qzjwi (1 ≤ i ̸= j ≤ n),
zjwj = wjzj + (1 − q−2)

∑
k<j

wkzk − (1 − q−2)d (1 ≤ j ≤ n),

n∑
k=1

wkzk = c+ d.

With these relations the following equations are holds for all 1 ≤ j ≤ n:

czj = zjc, cwj = wjc, cd = dc,

dzj = q2zjd, dwj = q−2wjd,

wjzj = zjwj − (1 − q−2)
j−1∑
k=1

q−2(j−k−1)zkwk + (1 − q−2)q−2(j−1)d,

n∑
k=1

q−2(n−k)zkwk = c+ q−2nd.

There is also a unique ∗-structure on the algebra Aq(S̃) such that

z∗
j = wj, c

∗ = c, d∗ = d.

We set C = C[α, β, γ, δ] and θ : C → C with

θ(α) = α, θ(β) = qβ, θ(γ) = qγ, θ(δ) = δ.

We set C[θ±1] as the subalgebra of EndC C generated by the left multiplication by
α, β γ, δ, θ, θ−1. This algebra is isomorphic to C[θ±1] ⊗ C[α, β, γ, δ] with the multiplic-
ation on the tensor product given by θP = θ(P )θ where P is a polynomial in C.

We define the maps

R1 : Aq(S̃) −→ Aq(S̃) ⊗ A(U(1)),
L1 : Aq(S̃) −→ Aq ⊗ Aq(S̃),
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R2 : Aq ⊗ C[θ±1] −→ Aq ⊗ C[θ±1] ⊗ A(U(1)),
L2 : Aq ⊗ C[θ±1] −→ Aq ⊗ Aq ⊗ C[θ±1]

by

R1(zj) = zj ⊗ z, R1(wj) = wj ⊗ z−1, R1(c) = c⊗ 1, R1(d) = d⊗ 1,

L1(zj) =
n∑

i=1
tji ⊗ zi, L1(wj) =

n∑
i=1

S(tij) ⊗ wi, L1(c) = 1 ⊗ c, L1(d) = 1 ⊗ d,

R2(θ) = θ ⊗ z−1, R2(g) = g ⊗ 1, for g generator,
L2 = ∆ ⊗ id .

These morphism turn Aq(S̃) and Aq ⊗ C[θ±1] into two-sided
(
Aq,A(U(1))

)
-comodule

algebras. In the rest of the section we choose n to be 3, since the subalgebra A2 only lives
in Uq(sl3).

Theorem 4.5 There are unique algebra homomorphisms Ψ,Φ: Aq(S̃) → Aq ⊗C[θ±1] such
that for 1 ≤ j ≤ 3 we have

Ψ(zj) = θ−1(γtj2 + δtj3),
Φ(zj) = θ−1(γtj1 + δtj3),

Ψ(wj) = αt∗j3θ,

Φ(wj) = (−βt∗j1 + αt∗j3)θ,
Ψ(c) = Φ(c) = αδ,

Φ(d) = 0,
Ψ(d) = −βγ.

The mappings Ψ,Φ are injective and two-sided
(
Aq,A(U(1))

)
-comodule homomorph-

misms. Φ is also a ∗-homomorphism.

Corollary 4.6 The isotypical decomposition of Aq(S̃) with respect to the Aq coaction is

Aq(S̃) ∼=
⨁

l,m≥0
V (lϖ1 +mϖ2) ⊗ C[c, d],

where V (lω1 +mω2) is the Aq-subcomodule of Aq(S̃) generated by the highest weight vector
wm

3 z
l
1.

We define

Aq(C̃P2) = {a ∈ Aq(S̃5) |R(a) = a⊗ 1}.

This algebra is generated by wizj, 1 ≤ i, j ≤ 3 and c, d. As already in Aq(S̃) in the above
algebra c, d are central. We can specialise c, d to elements in C with not both chosen as
zero. We denote this algebra by Aq

(
C̃P2(c, d)

)
, it has the following decomposition subject

to the left Aq-comodule structure

Aq

(
C̃P2(c, d)

)
=
⨁
l≥0

V
(
l(ϖ1 +ϖ2)

)
.



Chapter 4. Homogeneous Space of A2 51

Set Akσ

q = { b ∈ Aq | ub = ϵ(u)b for all u ∈ kσ}. This algebra is generated by the
elements

yij = qdt∗i1tj1 + q−1ct∗i3tj3 +
√
cdt∗i3tj1 +

√
cdt∗i1tj3 (1 ≤ i, j ≤ 3)

—so it is the homogeneous space in [DN98].

Theorem 4.7 Let c0 > 0 be a real number and ζ = c0
1

q−q−1 . Then there are unique
algebra homomorphisms given by

Aq(C̃P2) −→ AA2
q , wizj ↦→ xij, c ↦→ c0, d ↦→ 0,

Aq(C̃P2) −→ Akc0,0

q , wizj ↦→ yij, c ↦→ c0, d ↦→ 0.

These two mappings are Aq-module homomorphisms and induce isomorphisms from
Aq(C̃Pn−1(c0, 0)) to Akc0,0

q resp. AA2
q . The first homomorphism is a ∗-algebra homo-

morphism. In particular we have an isomorphism between AA2
q and Akc0,0

q .

Proof. We define algebra homomorphisms φ, ψ : C[α, β, γ, δ] → C by

ψ(α) = 1, ψ(β) = 0, ψ(γ) = 1, ψ(δ) = c0,

φ(α) = 0, ψ(β) = 0, ψ(γ) = 0, ψ(δ) = c0,

then the maps (id ⊗ψ) ◦ Ψ and (id ⊗φ) ◦ Φ are well-defined maps, since Ψ
(
Aq(C̃P2)

)
and

Φ
(
Aq(C̃P2)

)
are contained in Aq ⊗ C[α, β, γ, δ].

Remark 4.8 In the case r = 1, that is A
(ζ)
2,1, the corresponding homogeneous space is

isomorphic to Akd0,0
q for suitable pairs d0 > 0 and ζ ∈ k∗, namely ζ = d0

1
q−q−1 .

The Case ζ = 0

If the parameter ζ = 0, then G2 is obviously nilpotent. In particular, we lose the semisim-
plicity for at least all finite dimensional simple Uq(sl3) modules. However, we can still
show that the space of A(0)

2 -invariant elements is one-dimensional. To perform this we lift
the case ζ = 0 back to the case ζ ̸= 0.

Similarly as in the case for ζ ̸= 0 we get for the case ζ = 0 the following necessary
condition: Let µ = k1ϖ1 + k2ϖ2 be a dominant weight, then we have

K12vµ = q2k1+2k1vµ

and let m1,m2 ≥ 0 be integers and choose v ∈ L(µ) with weight µ− (m1α1 +m2α2) that
is A

(0)
2 -invariant, then we have the condition

K12v = v ⇐⇒ −3m1 + 2k1 + k2 = 0,
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which means that we have m1 = 2k1+k2
3 and no condition on m2. This requires k1 and k2

lying in same residue class mod 3 and we know, that an invariant vector v must have
weight 0 + tα2 for a suitable t.

For given ζ ∈ k we define

G
(ζ)
2 = K−1

2 (E2 + ζ · 1),
G

(ζ)
12 = K−1

1 K−1
2 (E2E1 − q−1E1E2 + (q − q−1)ζE1).

Proposition 4.9 Let k ∈ N0 and µ = k(ϖ1 + ϖ2), then the subspace of A(0)
2 -invariant

vectors in the Uq(sl3)-module L(µ) is one-dimensional.

Proof. The one-dimensional weight space L(µ)0+kα2 = L(µ)µ−kα1 is invariant under A
(0)
2 .

Let 0 ≤ t < k. Assume there is a vector w ∈ L(µ) with weight tα2 such that
G

(0)
2 w = 0 an F1w = 0. Then we have G(1)

2 w = q−2tζw, i.e. w is an eigenvector of G1
2 and

K12. Moreover, w spans an A
(1)
2 -module of dimension t + 1. Since w is an weight vector

of Uq(sl3), follows with Uq(sl2)-theory that (G(1)
12 )tw is a weight vector of weight tα1 + tα2.

Therefore we have that G(1)
2 (G(1)

12 )tw = q−tζ(G(1)
12 )tw, and it follows that G(0)

2 (G(1)
12 )tw = 0,

in particular we have E2(G(1)
12 )tw = 0. On the other hand we have (G(1)

12 )t+1w = 0 from
which follows that E1(G(1)

12 )tw = 0. This means (G(1)
12 )tw is a highest weight vector in

L(µ), which is contradiction.

Proposition 4.10 Let k1 ̸= k2 be non-negative integers that are in the same residue class
mod 3 and set µ = k1ϖ1 +k2ϖ2. Then there is no non-trivial A(0)

2 -invariant vector in the
Uq(sl3)-module L(µ).

Proof. Set m2 = 2k1+k2
3 and choose −m2 ≤ t ≤ m2. We distinguish two cases.

Assume k1 < k2 and set s = k2−k1
3 . There are two cases:

1. t ≤ s − 1: For any vector w ̸= 0 of weight tα2 we have E2w ̸= 0 and thus G2w ̸=
ϵ(G2)w = 0.

2. t ≥ s: Assume there is a w ∈ L(µ)tα2 , w ̸= 0 such that A(0)
2 w = 0. By Proposition 3.4

spans w a t+1-dimensional A(1)
2 -module. Since (E2E1−E1E2)Et

1 = qt(E2E1−E1E2)
and G

(0)
12 w = 0 follows

(G(1)
12 )tw ∈ L(µ)t(α1+α2).

In particular this is an eigenvector of G(1)
2 . But since µ is not a multiple of α1 + α2

and t(α1 +α2) is weight of Hm2−t follows t(α1 +α2) is not a corner of Hm2−t and so
E2(G(1)

12 )tw ̸= 0 which contradicts to (G(1)
12 )tw being an eigenvector of G(1)

2 .

Assume that k1 > k2 and set s = k1−k2
3 . There are again two cases:

1. t ≤ s− 1: This is identically to the first case above.
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2. t ≥ s: The weight space L(µ)tα2 is not a corner of Hm2−t, since otherwise sα1(tα2) =
t(α1 + α2) would be a corner of Hm2−t which is not true, c.f. second case above.
Thus dimL(µ)tα2 = dimL(µ)tα2−α1 and for any w ̸= 0 of weight tα2 holds F1w ̸= 0.

5ϖ1 + 2ϖ2H0

H1

H2/T0

T1
ϖ1

ϖ2

Figure 2: Weight diagram of weight 5ϖ1 + 2ϖ2

The space of invariant elements in V ∗ ⊗V is spanned by v∗
3 ⊗v2 and q4v∗

1 ⊗v1 + q2v∗
2 ⊗

v2 + v∗
3 ⊗ v3.

Theorem 4.11 The subspace spanned by the elements

xij = δij1 + t∗i3tj2 (1 ≤ i, j ≤ 3),

is left A(0)
2 and right Uq(sl3) invariant. The linear map

V ∗ ⊗ V −→ Aq

v∗
i ⊗ vj ↦−→ xij

is an injective right Uq(sl3) module homomorphism. The xij generate the algebra AA2
q .
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It is not possible to construct a map as in the previous section from Aq(S̃) to AA2
q .

The reason is very simple: There is no factorisation for the elements 1+ t∗k3tk2, 1 ≤ k ≤ 3.
However, it is clear that the algebra AA2

q is generated by t∗i3tj2, 1 ≤ i, j ≤ 3, and 1.
Clearly the first nine elements can be factorised and we can define an injective map
Ψ′ : Aq(S̃) −→ AA2

q given by

Ψ′(zj) = tj2, Ψ′(wj) = t∗j3, Ψ′(c) = Ψ′(d) = 0,

and we get an injective map from Aq(C̃Pn−1(0, 0)) to AA2
q , where the image is generated

by the t∗i3ti2. If we add a 1 to Aq(S̃) and hence to Aq(C̃Pn−1(c0, 0)) and define Ψ′(1) = 1,
then we get an isomorphism.



Chapter 5

Prospects

The Case B2

We shall examine here briefly and elementary an analogous family like in Chapter 3 and
4. The proofs will be more or less the same as in Chapter 3 concerning the representation
theory and are therefore mostly omitted.

Let α1 and α2 be the simple roots of type B2 with α1 being the long root. Set
w+ = sα2sα1 and w− = sα1 . Set β = sα2(α1) = α1 + 2α2,

E
(2)
2 = E2

2
[2] and

Eβ = Tα2(E1) = E
(2)
2 E1 − q−1E2E1E2 + q−2E1E

(2)
2 .

We have

∆(Eβ)
= Eβ ⊗ 1 +K1K

2
2 ⊗ Eβ

+ (qE2K2E1 − q−1E2E1K2 − q−1K2E1E2 + q−1E1E2K2) ⊗ E2

+ (K2
2E1 − q−1q2K2E1K2 + q−2E1K

2
2) ⊗ E

(2)
2

+ (E(2)
2 K1 − q−1E2K1E2 + q−2K1E

(2)
2 ) ⊗ E2

+ (qE2K2K1 − q−1K2K1E2) ⊗ E2E1

+ (−q−1E2K1K2 + q−1K1E2K1) ⊗ E1E2

= Eβ ⊗ 1 +K1K
2
1 ⊗ Eβ + q−1(1 − q−2)2E2

2K1 ⊗ E1

+ (q − q−1)E2K1K2 ⊗ E2E1 − q−2(q − q−1)E2K1K2 ⊗ E1E2

and with equation (5) of [Jan96, p. 8.17] follows

= Eβ ⊗ 1 +K1K
2
1 ⊗ Eβ+

+ (q − q−1)E2K1K2 ⊗ Tα2Tα1(E2) + q−1(1 − q−2)2E2
2K1 ⊗ E1,

so we compute

∆ ◦ ψ(E2) = q−1 · 1 ⊗ E2K
−1
2 + q−1E2K

−1
2 ⊗K−1

2

∆ ◦ ψ(Eβ) = q−2EβK
−1
1 K−2

2 ⊗K−2
2 + q−2 · 1 ⊗ EβK

−1
1 K−2

2

+ q−2(q − q−1)E2K
−1
2 ⊗ Tα2Tα1(E2)K−1

1 K−2
2

+ q−5(q − q−1)2E2
2K

−2
2 ⊗ E1K

−1
1 K−2

2 .

55
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Let ζ ∈ k∗ and set ϕ(E2) = qζ. We apply the contraction on the first tensor with q−1(ϕ◦ψ)
and obtain

K−1
2 (E2 + ζ · 1),

K−1
1 K−2

2 (qEβ + q(q − q−1)ζTα2Tα1(E2) + (q − q−1)2ζE1).

Denote with G2 as the first and with G12 the latter stretched by the factor q−1 q+q−1

q−q−1 .
Define B2 as the subalgebra of Uq(o5) generated by

G2,

G12,

F1,

K2
2K

2
2 , K

−2
1 K−2

2 .

The following relations are holding

G2K
2
2K

2
2 = K2

2K
2
2G2,

G2F1 = q−2F1G2,

G2G12 = q2G12G2,

K2
2K

2
2F1 = q−4F1K

2
2K

2
2 ,

K2
2K

2
2G12 = q4F1K

2
2K

2
2 ,

G12F1 = F1G12 +G2
2 − ζ2K−2

1 K−2
2 ,

where the last relation generalises for s ∈ N

G12F
s
1 = F s

1G12 + 1 − q4s

1 − q4 F
s−1
1

(
q4(s−1)G2

2 − ζ2K−2
1 K−2

2

)
.

By Theorem [HK11, p. 2.17] and [HK11, p. 3.18] is B2 a right coideal subalgebra. It
is possible to choose K1K2 and its inverse instead of K2

2K
2
2 . In terms of the spherical

property of B2 this has no effect, but the representation theory differs in general slightly.
We shall give a remark later.

For each pair η, κ ∈ k with η, κ ̸= 0 exists an infinite dimensional B2-module M(η, κ)
with a basis m0,m1,m2, . . . such that for all i ≥ 0

G2mi = ηq−2imi,

K2
2K

2
2mi = κq−4imi,

F1mi = mi+1,

G12mi =

⎧⎪⎨⎪⎩
0, if i = 0,
1 − q4i

1 − q4

(
q4(i−1)η2 − ζ2κ−1

)
mi−1, if i ≥ 1.

Proposition 5.1 The module M(η, κ) contains exactly one proper submodule if and only
if η2κ = ζ2q4(s−1) holds for an integer s ≥ 1. Otherwise it is simple.
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Proposition 5.2 For each pair η ∈ k∗ and s ∈ N0 exists a simple simultaneously diag-
onalisable B2-module of dimension s+ 1 and a basis m0, . . . ,ms such that

G2mi = ηq−2imi,

K2
2K

2
2mi = η−2ζ2q4(s−i)mi,

F1mi =

⎧⎨⎩mi+1, if i < s,

0, if s = 0,

G12mi =

⎧⎪⎨⎪⎩
0, if i = 0,
1 − q4i

1 − q4

(
q4(i−1)η2 − q4sη2

)
mi−1, if i ≥ 1.

Denote this module by L(η, s). Each simple simultaneously diagonalisable B2-module of
dimension s+ 1 is isomorphic to a L(η, s) for a suitable η.

Remark 5.3 Having an η2 in the condition of Proposition 5.1 yields in Proposition 5.2
in principle a sign. But by choosing η this is already encoded in the act of choosing.
Determining instead κ for the element K2

2K
2
2 first would give a sign.

Remark 5.4 Taking K1K2 and its inverse as generating elements of B2 gives in Propos-
ition 5.1 the condition η2κ2 = ζ2q4(s−1). Consequently we get then in Proposition 5.2 an
additional sign for the eigenvalue of K1K2 on m0. But this is the only difference.

Proposition 5.5 Each finite dimensional simultaneously diagonalisable B2-module is
semisimple.

Remark 5.6 Applying the proof of Proposition 3.5 produces in the calculations of case 2

s+ s′ = 0

instead of s+s′ = −2. This does not give a contradiction whenever s = s′ = 0. But in that
case we have necessarily F1v = 0, since M is two-dimensional, and so does v span a one-
dimensional submodule as does w. Their direct sum must have a disjoint decomposition
into two common eigenspaces.

Let L(k1ϖ1 + k2ϖ2) be a simple, finite dimensional Uq(o5)-module. Let v ∈ L be
a simultaneously diagonalised, non-zero vector such that G12v = 0. Denote with w the
component of highest weight of v with respect to Uq(o5). By the presentation of G2 and
G12 follows immediately that E1w = 0 and that w generates a simple Uq(sl2)-submodule of
the same dimension as the B2-submodule generated by v. From this follows a one-to-one
correspondence of decompositions of L(k1ϖ1 + k2ϖ2).

Requiring from v ∈ L(k1ϖ1 + k2ϖ2) to be a B2-invariant vector implies that its
component of highest weight has weight 0. As necessary condition on k1 and k2 this
produces k2 ∈ 2N0, so L(k1ϖ1 + k2ϖ) must be a spin representation. This is also a
sufficient condition. For showing

dimL(k1ϖ1 + 2k2ϖ2)0 − dimL(k1ϖ1 + 2k2ϖ2)α1 = 1
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for all k1, k2 ∈ N0, we are going to use the two recursion formula (9) computed by Fer-
nández-Núñez and García-Fuertes in [FNGF14]. For an easier computation we compute

dimL(k1ϖ1 + 2k2ϖ2)0 − dimL(k1ϖ1 + 2k2ϖ2)2ϖ2

which is the same number as above since sα2(α1) = 2ϖ2. We perform a double induction
on k1 and k2. Define yk1,k2(0, 0) resp. yk1,k2(0, 2) as in at (9) in [FNGF14] but for B2
instead. Note that yk1,k2(0, 0) = yk1,k2(0, 2).

Let k1 = 0. By equation (9) in [FNGF14] and the fact that dimL(0)0 = 1 and
dimL(0)2ϖ2 = 0 follows via induction on k2 immediately

dimL(2k2ϖ2)0 = k2 + 1,
dimL(2k2ϖ2)2ϖ2 = k2.

Let k1 ≥ 1. We distinguish two cases in which both we apply equation (9):

1. k2 = 0. Then

dimL(k1ϖ1)0 − dimL(k1ϖ1)2ϖ2

= dimL
(
(k1 − 1)ϖ1

)
0

+ yk1,0(0, 0) − dimL
(
(k1 − 1)ϖ1

)
2ϖ2

− yk1,0(0, 2)

= 1

by induction.

2. k2 ≥ 1. Then

dimL(k1ϖ1 + 2k2ϖ2)0 − dimL(k1ϖ1 + 2k2ϖ2)2ϖ2

= dimL
(
k1ϖ1 + 2(k2 − 1)ϖ2

)
0

+ dimL
(
(k1 − 1)ϖ1 + 2k2ϖ2

)
0

− dimL
(
(k1 − 1)ϖ1 + 2(k2 − 1)ϖ2

)
0

+ yk1,2k2(0, 0)

− dimL
(
k1ϖ1 + 2(k2 − 1)ϖ2

)
2ϖ2

− dimL
(
(k1 − 1)ϖ1 + 2k2ϖ2

)
2ϖ2

+ dimL
(
(k1 − 1)ϖ1 + 2(k2 − 1)ϖ2

)
2ϖ2

− yk1,2k2(0, 2)

= 1.

Theorem 5.7 The right coideal subalgebra B2 is spherical in Uq(o5).

Generalisation for Other Types

As the calculus for the quantum enveloping algebra of type B2 shows it is possible to
apply the method of deformation done in this work on other types than An. In principle
there are two possibilities: Either performing case-by-case calculus or try to find a suitable
theory for all cases.
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Krämers [Krä79, Tabelle 1] and the theory of riemannian symmetric spaces suggest
some kind of grouping at least concerning the property of being spherical (or not spher-
ical).

One part is nevertheless the treatment of small cases like A2 and B2 since the rest of
the right coideal subalgebra is a covered by the theory of quantum enveloping algebras,
c.f. ›The General Case‹ in Chapter 3. Since the theories for A2 and B2 are very similar it
is natural to ask for a unifying theory of these two cases. The treated algebra A3,2 plays a
minor role since its representations behave more less like that A2 ⊗ A2—but sharing one
element (and producing some q-factors).

Generalisation of A2 and B2

As pointed out in the above treatment of case B2 the differences to A2 are quite small.
The main difference appears with the relations between G12 and F1, where B2 produces
some squares. The q-factor appearing in A2 seems to the author minor important since
it does not change the representation theory. But, as done in this work, the square can
neglected by replacing it. A similar calculus in type G2 with α1 long and α2 short gives
indeed a third power of G2 but no power of an element of U0, explicitly one computes

G12F1 = q−3F1G12 +G3
2 − ζ3K−2

1 K−3
2

as relation.
Interchanging long and short root yields power-free relations among G12 and F1 inde-

pendently of the length of the long root. This is reasonable, since in this case the element
element leading to G12 looks like E1E2 − q−kE2E1 for suitable k ∈ N and is up to the
q-factor the same as in case A2.

A generalisation could be as follows: Let k, l,m, n ∈ Z be integers with k, l ̸= 0.
Define A as the unital algebra generated over k by the elements F,G,H1, H

±
2 subject to

the relations

H1H2 = H2H1,

H1F = qkFH1,

H1G = q−kGH1,

H2F = qlFH2,

H2G = q−lGH2,

GF = q−mFG+Hn
1 −H2.

The parameter ζ is left out since it is not important for the relations (it does only
appear as a stretching factor of H2).

Conjecture 5.8 The theory of dimensional A -modules on which H1 and H2 are di-
agonalisable and H1 has no eigenvalue equals to 0 is analogue to the theory of A2 resp.
B2.
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Another question concerning the representation theory and concerns Definition 3.2 is
whether H1 is invertible or diagonalisable on a finite dimensional A -module.

Conjecture 5.9 Each finite dimensional A -module is simultaneously diagonalisable by
H1 and H2 and H1 is an epimorphism.

Other Conjectures

The discussion around Proposition 3.22 suggests

Conjecture 5.10 Under the assumptions of Proposition 3.22 holds: The Uq(sln+1)-
module L(λ) has an An,r-invariant vector if and only if

λ ∈
s⨁

k=1
(ϖk +ϖn+1−k)N0.

In Chapter 4 was shown for the case n = 2 that the homogeneous space of Dijkhuizen-
Noumi is as algebra isomorphic to the homogeneous space of this work. In assuming the
correctness of the above conjecture it is possible the extend the calculations of the case
n = 2 to the general case.

Taking a look at the invariant A2-vector of L(ϖ1 + ϖ2) in equation (4.1) we see
immediately that it has a non-zero component of maximal weight in direction α2. We
shall understand ›maximal weight in direction of αr‹ as the weight with the property:
There is a k ∈ N such that kαr is a weight of the simple module but (k + 1)αr is not.

Conjecture 5.11 Let L be a simple Uq(sln+1)-module and let v ∈ L be an An,r-invariant
vector. Then v has non-zero component of maximal weight in direction αr.

In the proof of Proposition 4.9 we gave the invariant vector for the case n = 2 and
ζ = 0. This was the main motivation for the above conjecture since it is clear: Let
v = ∑l

k=0 vk with vk ∈ Lkαr and vl ̸= 0 be A(ζ)
n,r-invariant for a ζ ̸= 0, then vl is clearly A(0)

n,r-
invariant. In terms of Proposition 4.9 and Proposition 4.10 it is reasonable to formulate

Conjecture 5.12 Let L be a simple Uq(sln+1)-module. A vector w ∈ L is A(0)
n,r-invariant

if and only if there is an An,r-invariant v = ∑l
k=0 vk with vk ∈ Lkαr and vl = w.

These two conjectures should extend to other cases constructed via the method applied
in this work.

Programme

As pointed out in the introduction the method for proving the spherical property relies
on Krämers work. Unlike the works of Noumi-Sugitani, Dijkhuizen-Noumi or Letzter it
does not really use the ›freedom‹ of a right coideal subalgebra that was explained by
Noumi-Sugitani.
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Additionally there is another property of the right coideal subalgebras of Noumi-
Dijkhuizen and Letzter ([Let03]) that is that their invariant vector has a non-zero highest
weight component, i.e. fixing a one-dimensional weight space plus a ›tail‹. This is com-
pletely contrary to the here presented concept.

Nevertheless in point of view of Conjectures 5.11 and 5.12 it seems to be possible to
fix an arbitrary one-dimensional weight space or least one whose weight is conjugated to
the highest weight under the weyl group.
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Appendix

German Abstract / Deutsche Zusammenfassung

Ende der 1980er Jahre konstruierten unabhängig voneinander Jimbo ([Jim86]) und Drin-
fel’d ([Dri86]) Quantengruppen. Diese Quantengruppen spielen inzwischen eine wichtige
Rolle in der Lietheorie als auch in der Theorie der Hopfalgebren. Bereits kurz nach ihrer
Einführung erschienen Verallgemeinerungen, so gab Woronowicz in 1987 eine Definition
für kompakte Quantengruppen bzw. kompakte Matrixpseudogruppen ([Wor87]). Mit
Hilfe einer ∗-Struktur konnte er auf seinen kompakten Quantengruppen einen Haarzus-
tand konstruieren, welcher dem klassischen Haarmaß sehr ähnlich ist, vor allem aber
zentrale Eigenschaften des Haarmaßes besitzt. Podleś nutzte diesen Zustand um einen
homogenen Raum für SqU(2) zu konstruieren ([Pod87]).

Im Jahr 1995 präsentierten Noumi und Sugitani eine neue Methode um quantensym-
metrische Räume zu definieren ([NS95]): Anstatt einen homogenen Raum als Invari-
antenraum einer Hopfunteralgebra zu betrachten, schlugen sie einen Wechsel zu Invari-
antenräumen von Koidealunteralgebren vor. Um solche Koideale zu finden, nutzten sie
Lösungen einer Spiegelungsgleichung; sie konstruierten Koideale für alle Riemannschen
symmetrischen Paare außer vom Typ AIII. Später folgte eine Publikation von Dijkhuizen
und Noumi ([DN98]), in welcher sie auch Koideale für den Typ AIII konstruierten, ferner
erschienen von Letzter ebenfalls ein Beitrag zu Rechtskoidealunteralgebren ([Let97]). Let-
zter publizierte einen Ansatz, um alle Typen Riemannscher symmetrischer Räume ohne
Fallunterscheidung abzudecken ([Let99]). Weitere Arbeiten in diese Richtung erschienen
mit [Let02], [Let03], [KL08] und [Kol08].

Kharchenko startete ein Programm zur Klassifikation vom homogenen Rechtskoideal-
unteralgebren. Solche Rechtskoidealunteralgebren haben die Eigenschaft, dass sie das
Erzeugnis aller gruppenartigen Elemente von Uq(g) enthalten, also U0. Mit [Kha11] ab-
solvierte er die Klassifikation dieser Rechtskoidealunteralgebren für U+

q (so2n+) und zusam-
men mit Sagahon für Uq(sln+1) ([Kha08]). Das Klassifikationsprojekt wurde dann von
Heckenberger und Kolb für alle Typen abgeschlossen ([HK12]). Wie auch Heckenber-
ger und Schneider ([HS13, Theorem 7.13]) stellten sie die homogenen Rechtkoidealun-
teralgebren in Beziehung zu der Weylgruppe der sie enthaltenden universellen Einhül-
lenden. Durch die Verknüpfung können homogene Rechtskoidealunteralgebren vermittels
PBW-Elementen angegeben werden. In einer weiteren Arbeit [HK11] behandelten Heck-
enbeger und Kolb diejenigen Rechtskoidealunteralgebren des Borelteils, deren Schnitt
mit U0 eine Hopfalgebra liefert. Wieder konnten sie die Rechtskoidealunteralgebren mit
der Weylgruppe verknüpfen. Zusätzlich zur Beschreibung mit PBW-Elementen tauchten
Charaktere, die zu einer Deformation von U+[w] führen. Sie wurden ebenfalls klassifiziert.

Aufbauend auf den beiden Arbeiten solle in dieser Arbeit eine weitere Familie von
Rechtskoidealunteralgebren vom Typ An vorgestellt und behandelt werden. Während
die Arbeiten von Dijkhuizen, Letzter und Noumi ihren Schwerpunkt auf symmetrische

67



68 Appendix

Räume und ∗-Struktueren legen, sollen diese hier nicht beachtet werden - denn homogene
Räume sind auch mit keiner der beiden Eigenschaften durchaus interessant. Der hier
verfolgte Ansatz ist rein algebraisch, und motiviert durch eine Arbeit Müller und Schneider
([MS99]) sollen hier reduktive Rechtskoidealunteralgebren betrachtet werden, denn diese
verfügen über günstige algebraische Eigenschaften. Wegen dieser Anforderung sind die
Rechtskoidealunteralgebren in der vorliegenden Arbeit groß in dem Sinne, dass sie eine
große Hopfalgebra unterhalten und als zu Uq(slr) ⊗ Uq(sln−r+1) verwandt gelten dürfen.
Aus letzterem resultiert: Weil die Erzeuger einer quantisierten universellen Einhüllenden
in Verbindung mit dem Wurzelsystem stehen, gibt es eine ›ungenutzte‹ Wurzel: αr.

Wir bezeichnen mit An,r ⊂ Uq(sln+1) die Rechtskoidealunteralgebra, und sei Λ das
Gewichtsgitter von Uq(sln+1). Ein Modul Uq(sln+1)-Modul ist sphärisch, wenn die Fix-
punktmenge von An,r höchstens eindimensional ist. Theorem 3.21 und Proposition 3.22
ergeben zusammen:

Sei λ ∈ Lambda ein dominantes Gewicht und sei L(λ) der einfache Uq(sln+1)-Modul
zum Gewicht λ. Dann ist L(λ) ein halbeinfacher An,r-Modul. Ferner gilt: Ist L(λ) ein
sphärischer Uq(slr) ⊗ Uq(sln−r+)-Modul, so ist er auch ein sphärischer An,r-Modul.

Krämer zeigte in seiner Arbeit [Krä79], dass Uq(slr)⊗Uq(sln−r+1) genau dann sphärisch
ist, wenn r ̸= n− r+ 1. (Um genau zu sein: Er zeigte die entsprechende Aussagen für die
spezielle unitäre Gruppe, deren Darstellungstheorie aber identisch mit der von Uq(sln+1)
ist.)

Die Algebra A2,2 hat zudem eine gute Darstellungstheorie, wie Propositionen 3.4 und
3.5 zeigen. Sie ist vergleichbar mit der Darstellungstheorie von Uq(sl2). Ihre Erzeuger
sind G2 = K−1

2 (E2 + ζ · 1), G12 = K−1
1 K−1

2 (E2E1 − q−1E1E2 + ζ(q − q−1)E1), (K2
1K2)±1

and F1, wobei ζ ein Skalar ungleich 0 aus dem Grundkörper k ist.
Für jedes Paar s ∈ N0 und κ ∈ k, κ ̸= 0 gibt es genau einen einfachen A2,2-Modul

der Dimension s+ 1, so dass G2 und K2
1K2 simultan diagonalisierbar sind. Jeder endlich

dimensionale, einfache A2,2-Modul mit der letztgenannten Eigenschaft von G2 und K2
1K2

ist isomorph zu einem der oben aufgeführten einfachen Moduln. Ferner ist jeder endlich
dimensionale A2,2-Modul mit besagter Eigenschaft halbeinfach.

Im ersten Kapitel werden die Notation und wichtige Eigenschaften über quantisierte
universelle Einhüllende sowie deren duale Hopfalgebra, den quantisierten Koordinaten-
ring, vorgestellt.

Im zweiten Kapitel werden zu Beginn die für die Konstruktion wichtigen Sätze
aus [HK11] zitiert. Anschließend wird die Deformation durchgeführt, hierzu wird ein
geeignetes Wort – das längste Wort Unterdiagramms Ar−1 ×An−r von An – gewählt. Die
Deformation über den Charakter liefert dann das Element Gβr

r
= K−1

αr
(Eαr + ζ · 1), wobei

ζ ein invertierbarer Skalar ist, welches die Rolle des Elements Kαr übernimmt, aber nicht
in U0 liegt. Dieses ›schiefe‹ Element erfordert eine Deformation bzgl. der Wurzeln αr−1
und αr+1, welche zu Elementen Gβr

r−1
bzw Gβr+1

r
führt. Nach hinzufügen von Elemente

aus dem negativen Borelteil ergibt sich die Relation

Gβr
r−1
Fαr−1 = qFαr−1Gβr

r−1
+Gβr

r
− ζK−2

αr−1K
−1
αr
,

sowie ihr Korrespondat für r+1 statt r−1. Das Element Gβr
r−1

sollte als eine Deformation
des Elements Eαr betrachtet werden, obgleich von dem Element EαrEαr−1 − q−1Eαr−1Eαr
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herrührt. Wie bereits oben angedeutet wird die resultierende Rechtskoidealunteralgebra
mit An,r bezeichnet. Nach Ausführung der Deformation werden noch einige algebraische
Eigenschaften abgeleitet, wie etwa die Existenz einer PBW-Basis und eine Graduierung.

Im dritten Kapitel wird die Darstellungstheorie untersucht - mit der Annahme, dass
Gβr

r
diagonalisierbar ist. Dies stellt insofern keine Einschränkung dar, da Gβr

r
auf je-

dem endlich dimensionalen Uq(sln+1)-Modul diagonalisierbar ist (Proposition 3.1). Die
Halbeinfachheit wird zunächst für die Algebren A2,2 und A3,2 gezeigt. Die angewandte
Methodik ist vergleichbar zu der für Uq(sl2) bzw. Uq(sl2) ⊗ Uq(sl2). Im allgemeinen Fall
resultiert dann die Halbeinfachheit aus der von Uq(slr)⊗Uq(sln−r+1). Dies gilt ebenso wie
für den Nachweis, dass An,r sphärisch ist.

Das vierte Kapitel behandelt den homogenen Raum von A2,2. In diesem Fall kann
der invariante Vektor leicht bestimmt werden. Es wird gezeigt, dass der homogene Raum
isomorph zu demjenigen von Dijkhuizen und Noumi ist. Allerdings verfügt hiesieger über
keine ∗-Struktur. Der Nachweis erfolgt vermittels Quantensphären. Wie nämlich auch
Dijkhuizen und Noumi einen Isomorphismus zu einem quantenprojektiven Raum zeigen
konnten, ist dies mit der gleichen Methode auch für den hier präsentierten homogenen
Raum möglich. Im letzten Abschnitt des Kapitels wird für n = 2 der Fall ζ = 0 be-
trachtet: Dann verliert A2,2 sofort ihre Halbeinfachheit und Gβ2

2
wird nilpotent. Mit Hilfe

von Gewichtsdiagrammen kann dennoch gezeigt werden, dass der Raum der Invarianten
höchsten eindimensional ist.

Das letzte Kapitel beginnt mit einer Untersuchung für den Typ B2. Die Ergebn-
isse sind nicht wesentlich verschieden wie für Typ A2 und entsprechend werden einige
Verallgemeinerung der zugehörigen Algebren vorgestellt. Abschließend sind noch einige
Vermutungen hinsichtlich aufgetretener Fragen formuliert.
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