View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by .. CORE

provided by Publikations- und Dokumentenserver der Universitatsbibliothek Marburg

Universitdt
Marburg

Philipps

A FaMILY OF RicHT COIDEAL
SUBALGEBRAS OF Uj(sl41)

Dissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

vorgelegt dem

Fachbereich Mathematik & Informatik
der Philipps-Universitat Marburg
Hochschulkennziffer 1180

von

Stefan Beck

aus Kassel

Tag der Einreichung: 19. Januar 2016
Tag der Verteidigung: 20. April 2016

Erstgutachter: Prof. Dr. I. Heckenberger - Zweitgutachter: Dr. S. Kolb

Marburg, 2016


https://core.ac.uk/display/161979119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




This publication is supported by the DFG via the Schwerpunktprogramm SPP1388/2
yDarstellungstheorie« (Priority Programme SPP1388/2 »Representation Theory«).






CONTENTS

Introduction

1 Preliminaries
Quantum Enveloping Algebras of Semisimple Lie Algebras . . . . . .. ... ..
Quantum Coordinate Ring . . . . . . . . . . ..o

2 A Family of Right Coideal Subalgebras for A,
Preparation . . . . . . ...
Construction . . . . . . . . .

Commutation Rules between Egr and Flo . . .. .. ..o o000
i J

3 Representations of 2, ,
The Case n =2 . . . . . . e
The Case n =3 . . . . . .
The General Case . . . . . . . . . . . . .

4 Homogeneous Space of 2,
Homogeneous Space . . . . . . . . . ..
Construction of Azb via Quantum Spheres . . . .. ..o L

The Case (=0 . . . . . .

5 Prospects
The Case By . . . . . . . . . e
Generalisation for Other Types . . . . . . . . . ... ... .. ... ...
Generalisation of s and B . . . . . L
Other Conjectures . . . . . . . . . . .
Programme . . . . . . ..o

References

Appendix
German Abstract / Deutsche Zusammenfassung . . . . . . .. . ... ... ...

11
11
14

17
17
18
25

29
30
33
36

45
45
49
o1

55
5}
o8
59
60
60

63

67






INTRODUCTION

In the late eighties Jimbo ([Jim86]) and Drinfel’d ([Dri86]) independently introduced the
quantum groups that nowadays play an important role in the theory not only of Lie
algebras but of Hopf algebras, too. It took no long time until there arose generalisa-
tions concerning certain properties. In 1987 Woronowicz introduced compact quantum
groups/compact matrix pseudogroups ([Wor87]). By using x-algebras he was able to con-
struct a Haar state which has a bunch of properties common with the classical Haar
measure—and he consequently called it Haar measure. E.g. Podle$ ([Pod87]) used this
work for the construction of homogeneous space for S,U(2).

In 1995 Noumi and Sugitani introduced a new method for the construction of quantum
symmetric pairs ([NS95]): Instead of regarding a homogeneous space as a invariant space
of a Hopf subalgebra they suggested swapping to coideal subalgebras. The method of
construction was finding a solution for suitable reflection equations. They gave (right)
coideal subalgebras for all types of riemannian symmetric spaces except AIIl. Later on
followed a publication of Dijkhuizen-Noumi ([DN98]) where they worked with a coideal
for type AIII. Letzter contributed right coideal subalgebras for this type, too ([Let97]).
The latter author presented additionally a universal approach ([Let99]) instead of case by
case solutions for the different types of riemannian symmetric pairs. Other publications
in that direction followed like [Let02], [Let03], [KLO8] and [Kol0§].

Kharchenko initiated a programme with the goal of classifying homogeneous right
coideal subalgebras, that are right coideal subalgebras that contain UY, the subalgebra
generatad by all group-like elements, of U,(g) with g being a complex semisimple lie
algebra. He gave a classification for U (s05,41) ([Khall]) and the same classification to-
gether with Sagahon for U,(sl,,11) ([KS08]). This classification of right coideal subalgeb-
ras for all types was then done Heckenberger-Kolb ([HK12]). As Heckenberger-Schneider
([HS13, Theorem 7.13]) they linked the homogeneous right coideal subalgebras to the cor-
responding Weyl group and due to this link the homogeneous right coideal subalgebras
can be described via PBW-type base elements. In a second publication ([HK11]) they
classified the right coideal subalgebras of the Borel part, whose intersection with UY is
a Hopf algebra. Again it turned out that these right coideal subalgebras are linked to
the Weyl group—and can be constructed with PBW-type base elements and characters
of certain subalgebras. These characters produce a deformation of U™[w].

Mainly based on the last named publication this work contributes another family of
right coideal subalgebras for type A,,. While the works of Dijkhuizen, Letzter and Noumi
focus on symmetric spaces and *-structures, that is dropped since homogeneous spaces
are even then interesting if they lack this symmetric or geometric property. The approach
shall be algebraic and one condition that is motivated by the work of Miiller-Schneider
([MS99]) is the request of having reductive right coideal subalgebras, since this makes
sure that the homogeneous space has quite good algebraic properties. As consequence the
here presented family is quite big in the sense that it is in big parts a Hopf algebra and is
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quite similar to U,(sl,) ® U,(sl,—,+1). Having the generators of the quantum enveloping
algebras in correspondence with the simple roots of the root system there is an unused
simple root: a,.

Denote with A, C Uy (sl,41) the right coideal subalgebra. Let A be the weight lattice
of Uy(sl,41). We call a U,(sl,,11)-module spherical if the set of 2, ,-invariants is at most
one-dimensional. Theorem 3.21 and Proposition 3.22 yield:

Let A € A be a dominant weight and let let L(\) be the simple, finite dimensional
Uy (8l,11)-module of highest weight X. Then L(X) is a semisimple 2, .-module. If L(\) is
spherical as Uy(sl,) ® Uy(sl,—r41)-module, then it is spherical as U, ,-module.

In his work [Krd79] Krdmer showed that U,(sl,) ® U,(sl,—,+1) is sphercial whenever
r #n—r+1. (In fact he showed that for the Lie Group SU(r) x SU(n—r) C SU(n+1)—
which is for us all the same.)

The algebra 2,5 has an attractive representation theory as Propositions 3.4 and 3.5
show—that is comparable to the representation theory of U,(sl). Explicitly the generat-
ors are Gy = Ky H(Ey + (1), Gio = K{ 'Ky H(Ey By —q ' E By +C(q— ¢ N By, (K2Ky)*!
and F; with ¢ being a nonzero element of the ground field k.

For every pair s € Ny and K € k,k # 0 there is a unique simple s o-module of
dimension s + 1 such that Gy and K?K, are simultaneously diagonalisable operators.
Every finite dimensional simple s 2-module with the last named property is determined
by a pair of above and every finite dimensional module with named property decomposes
into simple modules.

In the first chapter the notation and most of the necessary facts about quantum
enveloping algebras and there Hopf dual the quantum coordinate ring are given.

The second chapter quotes at its beginning the main theorems used for the construction
of named publication [HK11]. Then, for the deformation a suitable element of the Weyl
group, namely the longest word of the subsystem A,_; X A,,_, is chosen. The deformation
via the the character than produces an element Ggr = K '(Fa, + ¢ - 1) (¢ invertible
element of the ground field) that is going to play the role of a K, —but it is not an
element of U°. This forces a deformation on the roots a,_; and «,,; giving elements
Gpr_, and Ggr+1. Adding a negative part this finally gives a relation

Gpr Fo,, = qFa, ,Gor +Gg — (K2 K.

-1
and a corresponding for 7 + 1 instead of r — 1. The element Ggr  should be regarded as
a deformation of E, . Nevertheless is derives from E, F,, , — ¢ 'E, _,FE,,. The right
coideal subalgebra is denoted as done above by 2,, .. After the computation of deformation
is done some algebraic properties are derived like the existence of a PBW-type base and
a grading.

In the third chapter the representation theory is accomplished under the assumption
that G, operates as diagonal operator—which is true for all simple U, (sl,+1)-modules
(Proposition 3.1). The reductive property is shown in general for small cases, i.e. 2055 and
23 5. In both cases the methods are similar to that of U, (sly) resp. U,(sly) @U,(sly). In the
general case the property of being reductive is linked the property of U,(sl,) @ U,(sl,,—,+1)
being reductive—this link is also used to show the spherical property.
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The fourth chapter is dedicated to the homogeneous space of 20;5. In this special
case invariant vectors are explicitly calculated. Letting aside the x-structure it is shown
that homogeneous space is isomorphic to the homogeneous space of Dijkhuizen-Noumi—
using their method with which they constructed their homogeneous space via quantum
spheres. In the last section of the chapter the case ( = 0 is considered. In this case the
representation theory of 243 no longer works: neither is Gb’% a diagonal operator nor is
the right coideal subalgebra reductive. With elementary method using weight diagrams
it is shown how that the space of invariants of a simple U,(sl3)-module is still at most
one-dimensional.

The last chapters starts with type B,. Seeing analogues to type A, generalisations
concerning the algebras %5 and B, and the programme enabled by the in this work
presented method are formulated and conjectures postulated.






CHAPTER 1

PRELIMINARIES

Quantum Enveloping Algebras of Semisimple Lie Algebras

The definitions and stated properties of the defined objects are, if no other citation is
given, taken from [Jan96, Chapter 4]. Let g be a complex finite dimensional semisimple
Lie-Algebra. Let ® be the root system attached to a fixed Cartan subalgebra. Let II be
a basis of @, i.e. the set of simple roots. Let W be the Weyl group of g and let [ be the
length function on W. There exists a W-invariant scalar product (-, -) on spang(aja € II)
such that (a, «) = 2 for short roots. Set @) = spany(II), this is the root lattice.

Let k£ be an algberaic closed field of characteristic 0. Fix throughout this work ¢ € k,
q # 0 and ¢ not a root of unity. Set for each a € II

o = q(oga)/Q'

The algebra U = U,(g) is the k-algebra generated by F,, E., K, and K;' for a € II
subject to the relations

(R1) K.,K' = K]'K, =1,
(R2) KoKp = KgK,,

(R3) K EsK' = ¢“PE,,

(R4) K 3K,  =q PR,

K, — K1
( ) e o

e

R5) EoFp — FgEy = 0up
Qa qO¢

with 0,4 the Kronecker delta; and the quantum Serre relations, with a.s = 2(a, )/ (@, @),
for which we use Gaussian binomial coefficients that can be found briefly in e.g. [Jan96,
Chapter 0]

1—anp 1 o

(R6) > (_1)‘6[ k“aﬂl El s *ByEl =0,
k=0 «
b las 1-a

(R7) > (—1)’“[ h aﬂ] Flrwes— Kk pk = (.
k=0 «

Let U~,U" and U° be the subalgebras generated by {F,|la € I}, {E,|a € II} resp.
{K,, K;'la € IT}. Let A = Y qepmaa € Q, i.e. my, € Z. Since U is commutative

K, = HKZLQ

acll

11
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is well-defined. This definition is also compatible with the scalar product on the root
lattice, such that holds
K\E,K_ ) =¢»E, and K\F,K_y=q “F,.

There exist automorphisms on U,(g) that satisfy the braid relations of the Weyl group.
Precisely: For each o € II exists an automorphism T, such that for all g € II holds

TaTﬁTa = TBTaTﬁa (m = 3)
TQTBTQTB = TgTaTﬁTa, (m = 4)
ToTsToTsToTs = ToToT3ToT5T,, (m = 6)

where m is the order of 5,53, c.f [Jan96, Section 8.14-8.16]. Let w € W and s,, - - - 84, be
a reduced expression of w. Define T}, = Tsp, 5oy this is independent of the choice of the
reduced expression. For two elements w,w’ € W with [(ww') = I(w) + I(w’) then holds
Tww = TwT,. With the help of these automorphisms it is possible to define »quantum root
vectors< which lead to a PBW-type basis of U,(g): Let w € W with reduced expression
W= Sq, * " Sa, and set §; = Sq, -+ - Sq,_, () for 1 < i < ¢. Then the

Eﬂi = Tsalmsai,l (Eaz)

are »quantum root vectors< of w. Define
U+[w] = <E517 T E,Bt>'

The subalgebra U*[w] has by [CKP95] the ordered basis
{Em:l Egzt |m1,...,mt S No}

Similarly one defines U~ [w]. There is a unique automorphism w of U sucht that w(E,) =
F,, w(F,) = E, and w(K,) = w(K;'). This map is an involution. Let u € Q, u € U of
weight 1 and a € II, then holds

T, (w(w) = (=ga) " Vw(Ts, (u)).

From this equation follows the more general formula: Let w € W and w(p) — p =
> aerl Ma, then holds

To(w(u)) = (T (—ga)™ )(To(u). (1.1)
acll
Note also that U~ [w] = w(U™[w]).
There exists a coproduct A, an antipode S and a counit € on U that give a unique
Hopf algebra structure determined by

A(Ka) = Koc X Kom E(Koa) = 17 S(Ka) = Ka_z17
AE) =K,®FE,+E,®1, €(E,) =0, S(E,)=—-K,'E,,
AF,) =1®F,+ F,® K", e(F,) =0, S(F,) = —F,K,
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for all o € II. We are going to use the Sweedler notation, that is A(u) = u@) ® u().
Let M be a finite dimensional U,(g)-module and let y € A. Then

M,={mée&M|Kym=q"m forallacll}

is called weight space of weight . The module M decomposes into the direct sum of its
weight spaces. Concerning modules we follow the notation of [Jan96, Chapter 5].

The representation theory of g and its quantum enveloping algebra U,(g) is the same
in the following sense: As every dominant weight A defines a unique simple module L%(\)
of g it defines a unique simple module L(\) of U,(g) of the same dimension (in particular,
the weight spaces of both modules do have the same dimensions and the Weyl character
formula holds) as every finite dimensional module decomposes into simple modules, i.e.
is semisimple.

With help of the antipode the dual (vector) space M* is turned into a U-module via

u- f(m)=f(S(uym) forallue U, f€ M* and m € M,

while the coproduct A turns the tensor product of two finite dimensional modules M, N
into a U-module via

u(m @n) =upymQuegyn forue U, me M and n € N,

with A(u) = u@) ® ). Of course, M ® N and k (via €) are U-modules, too. The
two following isomorphisms for M, N being finite dimensional U,(g)-modules and A a
dominant weight exist:

M®N~N® M,
L(N)" ~ L(—wp)),
where wy is the longest element in the Weyl group of g. In particular the first isomorphism

will be of some interest later. We shall come back to it in the next section and finish this
section with two definitions.

DEFINITION 1.1 Let H be a Hopf algebra with coproduct A and let R be subalgebra. If
A(R) CR® H, then R is called right coideal subalgebra.

DEFINITION 1.2 Let H be a Hopf algebra with counit € and R C H be a right coideal
subalgebra and M be a finite dimensional, simple H-module.

1. A vector v € M is R-invariant if rv = e(r)v for all r € R.

2. If M is semisimple as R-module and the set of R-invariant vectors in M is at most
one dimensional, then M 1is called spherical.

3. If every simple, finite dimensional H-module is a spherical R-module, then R is
called right coideal spherical subalgebra.
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Quantum Coordinate Ring

Let M be a finite dimensional U-module and let M* be its dual vector space. Let m € M
and f € M*. The linear operator cg,, € U* given by csn,(u) = f(um) is called matriz
coefficient (of M ).

Denote with A, = A,(g) the set of all matrix coefficients of finite dimensional U-
modules. This is a Hopf algebra, cf. [Jos95, Section 1.4] or [Swe69]. This Hopf algebra is
considered as the quantum coordinate ring or ring of regular functions, cf. [KS98, Chapter
3.

The Hopf algebra structure is given as follows: Let M and M’ be finite dimensional
U-modules, and myq,...,m, a basis of M with dual basis fi,...,f,. Let m € M, m’' €
M, f € M* and f" € (M')*. Then the structure extends from these equations on the
generators:

Ctm T Cpram = Crpf/ mtm
CrmCf m/ = Cfaf mem',

S(Cﬂm) = Cf’m e} SU,

r

A(Cf,m) = Z Ctm; @ Cfym-

i=1
The unital element is e.

There are natural left and right actions of U on A,. Let v € U and let ¢ € A, with
A(c) = ¢y ® ¢2). The actions are given by

u- e = cayee)(u),
c-u = cay(u)ceo).

Using both operations, this turns A,(g) into a (U, U)-bimodule. Then A,(g) has the
following decomposition that is also known as Peter-Weyl decomposition.

PROPOSITION 1.3 (Peter-Weyl decomposition) As (U, U)-bimodule the algebra A,(g) has
the decomposition
Ajg)= @ LN @ L. (1.2)

AEA,
A dominant

Originally this decomposition comes from Lie groups and uses the so called Haar
measure. If H is compact quantum group, then there is a Haar measure on H (to be
precise: a state, as sketched in the introduction). It has the same principal property as
in the classical case: The decomposition (1.2) is orthogonal subject to this Haar measure,
c.f. [Wor87] and for a broader survey [MDO98]. In the above case it is completely algebraic
([Swe69]).

Let R be a spherical right coideal subalgebra of U and let Q™ be the set of dominant
weights such that L()) has a R-invariant vector. The set A of invariants of A, under R
decomposes as

At ={ceAy|r-c=e(r)cforallr e R} = P L(\)*

AeQ%
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due to the Peter-Weyl decomposition. The fact that R is a right coideal ensures that A?
is a subalgebra of A,.

Let us have a description of A, = A, (sl,11) in terms of generators and relations. In the
classical case the coordinate ring A(sl,,. 1) of s[,, 1 is the polynomial ring in indeterminates
X,;; with 1 < 4,5 < n+1 and the relation det(X;;)1<ij<n+1 = 1. A sketch of reasons:
Every simple module is a submodule of some tensor power of the standard representation
V, the X;; are the matrix coefficients of V, so they generate A(sl,;1). The determinate
comes from the fact, that A"(V) is the trivial representation. That the X;; commute
comes from the fact, that the action of sl,,; on tensor products is »symmetric<: If M and
M’ are finite dimensional modules, then the isomorphism between M ® M’ and M'® M is
the flip, i.e. the map that sends m®m’ to m’®@m. In terms of algebraic geometry the point
of view might be different. In particular, there is no need for a multiplication, an affine
algebraic variety is sufficient. The coordinate ring (or ring of regular functions, which
might be different in definition, but are the same object) is given as the polynomial ring
in certain indeterminates divided out the defining ideal of the variety, see e.g. [Har06, Ch.
1] for a discussion and proofs. Having this in mind, the Hopf algebra of matrix coefficients
of a quantum enveloping algebra can be considered as non-commutative coordinate ring.

Let A = (a;;) be a n x n-matrix. The quantum determinant of A is given by

detQ(A) = Z (_q)l(a)aa(l)l * Ao (n)n-

CTGGn

In quantum case the quantum coordinate ring A, is generated by indeterminates t;;
(1 <14,7 < n+1) subject to relations given by the R-matrix relations of the standard
representation and the quantum determinant of (¢;;)1<; j<n+1 that we simply denote with
det, being equals to 1, i.e. det, = 1. Before giving an explicit description let us informally
describe the reasons: As in the classical case, the standard representation V' generates all
finite dimensional simple modules. One defines a quantum exterior algebra /\';(V) (c.f.
[APWO1, Section 12.5]) - in the case kK = n it is one dimensional, which leads to the
quantum determinant. The R-matrices for a quantum enveloping algebra play the role of
the flip, i.e. they represent the isomorphism between M ® M’ and M’ ® M. A description
of the R-matrices and the isomorphism can be found in [Jan96, Chapter 7]. A proof for
the description of A, can be found in the appendix of [APW91]. The following explicit
relations are taken from [APWO1].

Let 1 <4,j,k,1 <n+ 1. Then the following relations are holding between the ¢;;’s.

Lijtk; = qlrjliy (i
tijti = qlati; (<1

tijter = thitiy (1t <kandj>I)
tijtu = tiati; + (g — g " taty (i <kandj<l)
dety = ) (—ql(g)ta(m “lonnrr = 1

O'EGHJrl

There is an important property of A, for which a proof can be found in [LS93], who
use some techniques/results that were presented in [AST91].

THEOREM 1.4 The algebra A, has no zero divisors.






CHAPTER 2

A FaMmiLy oF RIGHT COIDEAL SUBALGEBRAS FOR A,

Preparation

The construction is as follows: In a first step we define a right coideal subalgebra of the
borel part of U,(sl,,+1) that will be a deformation of U*[w] for a certain element of the
Weylgroup together with a certain subalgebra of UY. Theorem 2.17 from [HK11] will
ensure that this yields a right coideal subalgebra. In a second step U~ [w'] for a w’ not to
much different from w is added, this involves some explicit calculations that will be used
later anyway.

Let us recap the Theorem 2.17 (2) of [HK11] and the notation necessary for its for-
mulation. Let A be an associative, unital algebra over the field k. A map ¢p: A — k is a
character of A if ¢ is a homomorphism of algebras and ¢(1) = 1.

Let w € W be an element of the Weyl group and ¢ be a character of UT[w]. Then

supp ¢ = {f € Q4+ [ Ju € UT[wls s.t. p(u) # 0}

is the support of . The set is closed under addition, this follows immediately from the
facts that ¢ is a homomorphism and that U has no zero-divisors.
The map ¢: UT — S(UT) given by

P(ug) = q—(ﬁﬁ)/?uﬁKﬁ—l for B € AL and ug € Ug

is an algebra isomorphism and the image of U™ [w] under ¢ is S(UT)NU T [w]U°® by [HK11,
Lemma 2.11].

THEOREM 2.1 (Thm. 2.17(2) of [HK11]) Let w € W, ¢ be a character of Ut|w] and
L C (suppp)* be a subgroup. Then

Clw, ¢, L) = Te{p(v ™ (uq) )ue) |u € (U [w])}

is a right coideal subalgebra of U=® such that C(w,p, L) NU° is a Hopf algebra.

Moreover the theorem states, that the right coideal algebras obtained exhaust all
right coideal subalgebras with the additional property stated last in the theorem and
this exhaustion is injective. In their article, Heckenberger and Kolb determined also the
possible characters of U™ [w].

Let t = l(w) and ay,...,q; € Il such that w = s,, - - - S4,, which is then by definition
a reduced expression. Define f3; = s4, - -+ Sq,_, () for all 1 < i <¢. Then holds

ol ={BecdtwlBed }={B|1<i<t}

17
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by [Hum90, Section 5.6]. In particular holds [(w) = |®|. Let © C ®* be a subset of
pairwise orthogonal roots. Such a set is called orthogonal. Define

we = ([] sp)w.

Be©

This element is well defined since two reflections sz and s, commute whenever (3,v) = 0,
i.e. § and ~ are orthogonal. Define now

T" ={© C &} | O is orthogonal and l(we) = I(w) — |0}
and denote for two sets A and B the set of maps from A to B with map(A, B).
THEOREM 2.2 (Thm. 3.18 of [HK11]) There is a bijection

U: {(©,f)|0eT” femap(©,k*)} — Char(U*|w)])

uniquely determined by

fB)  ifsed,

0 otherwise.

(O, f)(Es) = {
They also gave an inverse map which we shall not need and omit it therefore.

Construction

Fixn € N, n > 2. Let ay,...,a, be the simple roots of A, in standard order to be found
in [Bou81, Planche 1], i.e. a; corresponds to the i-th node in the Dynkin diagram of type
A, read from left to right. Let s,, be the corresponding reflection. We have

—Q =7,
Sa, () = Jaita; |i—j| =1,
a; else,
So (i + Q1) = Qi1
Definefor 1 <i<j<n
(7)

:Sai...saj

(

and for convenience set sij ) as the identity whenever i > 7. For 1 <1 <k < j <n we

have then
Sz(j)(ak) = Og41
and for 1 <1< j<n

sl(j_l)(ozj) = Q4 + ...+ Oéj.



CHAPTER 2. A FAMILY OF RIGHT COIDEAL SUBALGEBRAS FOR A, 19

Define for 1 <4 < k < n some roots ﬂf:
B =+ ...+ o

These are ”("H distinct positive roots, in fact, these are all positive roots, since |®F| =
n(ntl) ([Bou81, Planche 1]).

LEMMA 2.3 Let 1 <1<k <j<n. Then holds

() ((k=1)

k
Si 8y (o) = 3§+)1(04k+1) = 5k+1

i+1 -

Proof. We shall just use the braid relations of W and the equations S, Sa, (k) = ai
and s,, (o) = ay whenever g — h ¢ {1,0, —1}.

Ej)s(k_l)(

i ak)

= Sa;Saiy1 7 Say_150 80y 7 Sy (ak)

SajyoSa;yySa;io SajpaSajygSajiy SapSayp_qSay

= Sa;Sait15a;Sai 05418013 Saip0 T T T Sap_oSaySag_1Sa41 (ak)

SajpqSa;Sagyq SajigSajyoSa;yg Sap_q18ap_oSap_q
= Sa;1150; 812801180438 aSaira T T SaSag_1Sar Sakia (ak)
= Sa;118a;SaitoSait1SairsSairaSais T Say, (ak’+1)
= Saip15ai425ai435aips 7 Say, (ak+1>

_ pk+l
= 5z‘+1 .

Note that

sV D s () = 50,55 s (1) = Sarsths Y (sa) = st (ana).

So an iterated application of Lemma 2.3 finally gives

BF = s V() = 8P s () ) (1<i <k <n),

)

which shows that 35") . ( ) is the longest element of the Weyl group. This is a reduced

expression since the length of an element of the Weyl group equals the amount of positive
roots send to negative ones, c.f. [Hum90, Section 1.8].
Fix another integer r € N with 1 < r < n. Denote with wg’”) resp. wlﬂ” the longest

element of the subgroup generated by s,,,...,Sa,_, T€SP. Sa,,,,---,Sqa, Where we use the
convention that w(’”) is the identity for » = 1 and similarly for wbr) Set wt = sarwg”)wy)
and w~ = w(’")w . Associated to w~ we find the following roots:
ﬁfc _ (7“—1) (T_Q) . (T—i+1) (k—l)(ak 1) = g )( k) (1<i<k<r),
n n—i+r+2) (k—i+r) k 1 .
B = oY O ) =N e) (i Sk <)
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and associated to w' we find the following:

Br=a,
B = sa,sy Vs s TS () = s (0r) (1<),
BF = s, s s o) = s () (1<i<h<r—1),
B = sa,sii1 () = 8D () (r<k<n),
BF = s, 5\ sV TS g i) = s () (r+1<i <k <n)

Let us define for Bf with 1 <i<k<n
Egr = Too, - Tooy, (Eay).

From the proof of Lemma 2.3 follows that Eﬁf is the root vector for the root BF coming
from w™ in our chosen presentation. We will chose U~ [w™~] as negative part for the family
of right coideal subalgebras. However, let us have a look first on U*[w™] for using it as
starting point for the deformation of U*[w™]. These elements Ejg. satisfy the recursion
Egy = Eoy and Egeor = EgeEo, |, — q_lEak+1Eva which follows from the definition of
T, (Eay) on Uy(sly41). With this recursion we compute A(Ejgr).

k—1

=t

The formula is certainly true for i — k = 0, so assume ¢ — k > 1, then

A(Ege)

= A(EﬁfEam—l - q_lEakHEﬂf)

k—1
—2
= (Ko ®@ Bgp + Bgr @ 14 (1-¢7) Y. Eg K| © gy )

=i

’ (Kak+1 ® Eoék+1 + Eak+1 ® 1)

— qil(KakH ® By + Eopyy ® 1)
k—1
(Kot @ Ege + Eyp ® 14+ (1= q %) Y Eq Ky | © gy )

=t

= Kﬁz(cﬂ X Eﬁfﬂ —+ Eﬁiﬁul ®1

+ (E’Bf Ka’““'l o q_lKak-ﬁ-lEBf) ® EOék+1
k—1

T=a) Z (Eﬂll'KﬂlkﬂKak“ ® EBZkHEa’CH —q KakﬂEﬁfKﬁlkH ® EOék+1E61k+l)
=i

+ (KﬁfEOékH - q_lEakHKgf) X Eﬁf
k—1

+(1-¢) Y (Eﬁﬁ Koty Bor =0 By By Kﬂﬁl) © Bt

=1
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+1 +1

= KBl{chl & Eﬁfﬂ + Eﬂfﬂ ®1+ (1 —-q Z EBZKBkJrl ® Eﬁk+1

Clearly whenever r > 2 there appear other elements than the above Ejgx, namely the
root vectors for Egr with 1 < i < r are Ty, (Egr1) = Eo, Egr1 — ¢ ' Egr1E,,. Their
co-product computes as

A(T,, (Eg))
= A(Bq, Egr1 — q_lEBZ_rflEar)
= (Ba, ® 1+ Ko, ® B, )

-(KT1®ET1—I—ET1®1—|— 1—q ZEBI 7‘1®Eﬁz“+11)

l+1
-1
—q (Kr1®Er1+Er 1®1+ 1—q ZEBZ {+11®EB;+11>

(Bo, ® 1+ Ko, @ E,,)
= Ky ® (Ea,Egr — q 'Eg1Ea, ) + (Ba, Byt — ¢ 'Eg1Ea, ) ® 1
+ (Ba, Kyt = ' Kyr1Ea, ) ® By
+ (Ko, Egrr = ¢ By 1 Ky, ) ® Ea,
+ (1 - q—z)f(EaTEﬁf_KBlll ¢ Byl - IEQT) ® Egroi
=i

r—2
+(1=¢) Y (Ko By K1 ® Bo, By — ¢ By Ky Ko, ® By 1 B
l=1

= Ky @ To, (Ey M) + To, (Egr—1) @1+ (1 —q~ )EQTKBZ»A ® Egr

1—q ZEBZE r11®Er1

By
r—2
+ (1 — q*Q) Z EﬁﬁKﬂﬂl & Tar(Eﬁgll)'

I=i
The subalgebra U*[w™] has then the following PBW-type base:
" my ! my myt my:
{EﬁlTEﬁ% .. E/J’I171 TOér(EBI_l) 1.. TO[T(E,B::}) r—1 ) T+1 . Eﬂn . Eﬁﬁ ’mf c NO} (22)
Let us now apply the deformation. Set © = {«,}, clearly © € T" and fix a ( € k,
¢ # 0. By Theorem 2.2 is the restriction on U™ [w™] of the map ¢: UT — k* given by

q¢ fori=r,
@(Eai) =
0 else

a character of U [w*]. Indeed, for 8 € ®. we have ¢(Eg:) = 0 whenever i # r or k # r
while p(Egr) = ¢(Ea,) = ¢¢. Up from now we use the restriction of ¢, still denoting it
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with . The support of ¢ is given by the set {na, | n € Ng}. Its orthogonal complement
is spanned by

ay + 209, a3, ..., Qp (r:l),
Ay, ..., Qp2, 20(7,_1 + Q. Oy 0 + 2ar+17ar+17 -y O (]- <r< n)a
A1,y Oyn, 20001 + Qi (r=mn).

Set L = (suppp)t. We will now give the PBW-type base of the algebra C(w™,p, L).
From (2.1) and (8F, 3¥) = 2 follows

Aotp(Bg) =q 1@ Eg Kyl + Eg Kl @ Kl +(1—q” Zq EgK ' ©Eg K

Bl

so that we get under the contraction on the first tensor with ¢=*(¢ o ¢~!) for SF with
1<i<k<r—landr+1<i<k<n.

Kyl Eg.
These elements do not depend on (. We find
Ao (To,(Ey) =q - 1@ Ta (Eg1) K5 + TQT(EB_H)KB—_},1 ® Ky

+(1-¢?)q 'E,K,'®QF HKﬁ—_}

1_q Zq lEIBZ l ®EBZ1“J:11K5:r1
+(1—q? Zq 1Eﬁz l ®Tar(Eﬂml)K§{1.

Under the contraction the two sums vanisch for every ¢ < r. Since ( is fixed we simply
write G g instead of ng_c)- The contraction yields the elements

Gor = Kz (To,(Egy-) +Clg—q )Eg) (1<i<r),
Gﬁ? K, (EOM" + C 1)

(673

Gar = K,Bﬁ (E@zg +C¢(g—q )EBTH) (r<k<n).

Recall that the map (q_l(go oy H® id) At is an isomorphism of algebras [HK11,

Lemma 2.11 & 2.14]. As conclusion we have indeed a PBW-type base (or at least a
deformation of it) coming from UT[w™] of C(w™,¢,0). It suffices to to replace some
elements in equation (2.2):

r 1 r—1 n
{G%E?~~EQJG%~ Gl @H- (G B | mb € Ny}

For pu € L we have (u, 7) = (u, B/ *) and so K,Ggr = q(“’ﬁf)ngrK“ for 1 <i < r and for
r <k <mn holds (u, BF) = (i, 8%,,), so that K,Ggr = q(“vﬁf)Gﬁq@Kw In particular we can



CHAPTER 2. A FAMILY OF RIGHT COIDEAL SUBALGEBRAS FOR A, 23

extend the map (q_l(cp o™ ® id) At as an isomorphism of algebras from U™ [w'] —
Cwt,p,0) to TLUT[wt] — C(wt, ¢, L) by setting ¢(K,) = K, and ¢(K,) = 1. We can
now transfer the restriction of the multiplication map (cf. [Jan96, Thm. 4.21})

T, QU [wh] = TLU T [w],  up @ up = uqus

to the algebra C'(w™, ¢, L) and it thus has the basis

r 1 r—1 T m"“f r+1 n n
{KuGg;*E”?mE;”Il_l Gl -G MGy -Gl - B | € Lymi € No},

1
1 o Brt

Now we add U~ [w™], so we define

A=, =A%) =U [w]C(wh, ¢, L).
Since U~ [w~] and C(w™, p, L) are right coideal subalgebras, so is 2 a right coideal. It
remains to show that 2l is an algebra.

Using the results of the next section, we state:

THEOREM 2.4 2 is a right coideal subalgebra.

This is suggested by [HK12] since 2 is almost homogeneous. Let us thus check, that
U~ [w™]UU T [w*] is a homogeneous right coideal subalgebra. Using the notation of that
work we have to find elements z,u € W and J C II N zIl with «=! <y z such that w™ =
uwy and wT = uwjyr where <p is the weak order on W and w; the longest element in
the subgroup generated by J. Set © = So, 4. 1a,, U = 5§H>s£’fl = Say """ Sar_18a,41 " Sa

and J = {Say;s -+, San 1} \ {Sa, }- Since

n

—(a + ...+ ay) =1,
Sai+..4an (az) = _(051 +...+ Oénfl) 1 =n,

o else

follows J = II N zIl and in {(z) = 2n — 1. Since Sq,, - Say (1) = @y + ... + a,, we have
r = u"ts,,u by [Hum90, Prop 1.2] and I(u) = n — 1 so follows u~! <p x. Thus the triple
(x,u,J) € B(W). By definition have we w~ = ww;. We have w™ (o) = ag + ... + ay, SO
we can write = (w™) 5o, w ™, thus having uw;z = wowy '8, wo = S, wo = w.

For the remainder of this section let us examine some more structural properties of 2.
Define for 1 < 5 <[ < n the roots ”y} = 6;. Define

Fu=T. - Toy  (Fa).

The elements with index %L for 1 <j<l<randr<j<Il<nformaPBW-type basis
for U~ [w™]. So we get an ordered basis for 2:

~r—1 ~r+1

ml m m M mT ml m"'*l m” m7’ r+1 n n
1 LIS 7‘_1 T+1 .« .. n T 1 .« .. 1 1 .« .. r_l mr DY mT .« .. mn
(e L e Bt GGl B Byl G- Gy TGt - Gl - By

| € L,mF mF e Ny}



24 CHAPTER 2. A FAMILY OF RIGHT COIDEAL SUBALGEBRAS FOR A,

(2.3)

Since for all 1 <4 < n with ¢ < r —2ori > r+ 2 the elements K,,, K ', E,, Iy,
are in A, which generate a U,(sl,_;) and a U,(sl,,_,), there is a natural embedding of
Uy(sl—1) ® Uy(sl,—r) = 2. This means that we have to verify that G F.i, GgrF.i and
By F o, EgF, J J

1, are in %A for the corresponding indices i, j, k, [.

As conclusion of the ordered basis in (2.3) we get a triangular decomposition sim-
ilar to that of U,(g) in general and for their homogeneous right coideal subalgebras,
for the latter see the work of Kharchenko [Khal(O]. Consequently set A~ = U~ [w™]
and AT = (Gpr_,Ggr1, Eoys ooy Boy_yy Bay sy Ea,) as borel parts and set as torus

A = (G, Ky | p € L).
PROPOSITION 2.5 The multiplication map

A A’ AT — A, €1 &y ® 3 —> C1CaC3
is an isomorphism of vector spaces.

The subalgebra 2 is not graded by the induced grading of U, (sl,,+1), the reason is very
simpel: The elements Ggr resp. Ggx are not homogeneous, being a sum of weight vectors
of weight 8 and 3/~ resp. 3 and B¥ | (well, this is not true for G gr: it decomposes into
a component of weight o, and 0.) But since the difference between 37 and 3/ ~! resp. g
and % | is a,, the inhomogeneous generators of 2 become homogeneous by »ignorings
Q.

Concretely realised: Set P = Z(H \ {oz,.}) and define on U,(sl,41) a P-grading by
deg(E,,) = a;, deg(F,,) = —a; and deg(K,,) = 0 for 1 < ¢ < n with ¢ # r, and
deg(E,,) = deg(F,,.) = deg(K,,) = 0. This grading is well-defined since all defining
relations of U,(sl,+1) are homogeneous subject to P. All generators of 2 are homogeneous
with respect to P, so P is a grading on 2(. For each p1 € P the space 2, is non-trivial.

Let p € P and c € 2, and let v € L, then

Kyc=q¢"MeK,,

24
Gare = q MGy, (24)

The coefficients appearing do only depend on the element of A° and . Since the sublattice
of @ generated by L U {c,} has rang n and (+,-) is a scalar product we have

A, ={ceU|K,c=q""cK, for p € L and Ggrec =g MeGpyr} (2.5)
and
22[ — @#EPQ[,UN

Thus it makes sense to denote 2, as a weight space of weight ;1 even though there is not
really a good action of %l on itself. The lack of good actions has the reason that Gg, does
not have an inverse element (neither in 2 nor in U,(sl,,41)) and the induced ad-action of
G is not diagonal. We set P = N (H\{ar}) and P~ = —P". The monoids correspond
to AT resp. A~.
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Commutation Rules between Eﬁf and Fv§

It is clear that F, / and Eﬁk commute whenever 7 > k or ¢ > [. Let us summarise some
recursion formulas for the Eﬁk and F, -

LEMMA 2.6 Let,k,r, j,l,s € N, then the following recursions hold:

Ebfzzﬂkrdﬁk%——q_lﬁth¢f4 (1<i<k<n), (2.6)
Eﬂf = EaiEﬁf«H — qilEﬁlﬁlE@i (1 <i < k < n), (27)
Eﬁzﬁhﬂgﬁ—qﬁ%g%ﬂ (1<i<s<k<n). (2.8)

Proof. Equation (2.6) is just the recursion given in the paragraph right before equation
(2.1). Equations (2.7) and (2.8) follow by induction on k —i: For k —i = 1 they are both
just (2.6) resp. (2.7). Now let k — i > 1 and note that E, E,, = E,, E,,, then
Ege = Ege1 B, — qilEakEﬂf—l
= Eo,Ege1Bo, — ' Bo,Bo Bgroy — ' Bgro1 B, B, + ¢ " Eo, Egr1 Bo,
= Eo,Eg | —q 'Egr B,
and (where we may assume s < k, otherwise it is just (2.6))
Eg. = Ege-1Bo, — ¢ Eo Egis
= Eg-1Bgp1 By —q  Egp1 Bge1 B, —q ' Eoy Ege-1 Egrs +q Eoy Egr1 Ege
= Byt (Egp1Boy, — ' Ba,Eg1) = ¢ (Egp1Eay = 4 ' Bay By ) Egees
= By By — a7 By B

Let 1 <i<nand p€ @y and u € U such that I,,u = uf,,. Then

(1 —_ qf(.u‘:o‘i)fl)Kai — (1 — q(“vE&i)fl)Kojil
q—q!

(Eaiu—q_luEaJ F,, =F,, (Eaiu—q_luEai) +
(2.9)

This is a consequence of the defining relations of U, (sl,41). With the help of this formula
we compute the equation of the following lemma.

LEMMA 2.7 For1 <i< k <n holds

i+1

Proof. The Lemma follows from equation (2.7) of Lemma 2.6 and equation (2.9) with
UZEBZI‘VH anduzﬁf+1:ai+1+~~+04k- So (i, a;) = —1. ]
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LEMMA 2.8 1. Let 1 <i<n andk,l > 1, then holds

Fy By + [K, 8] (k=1),
Eﬂlch,yl; = F%;Eﬂzgc + qFﬁ/]zHlKﬂf (k < l),
FEg —q Ky By (k>1).

2. Let1 <i<j<nandletk,l> 7, then holds

F’YéEﬁf + KBJ@E/BZ;A (k=1),
EﬁfF,le_ = F'yé.EBf —(1- q2)F'711C+1KB;'€E18571 (k <1,
FyéEBf (l{l > l)

3. Let1 <j<i<nandk,l>1, then holds

F'yé.EﬂZk — ijflKB_; (k? = l),

—~
A
o~

~—

FpBg +(1- q—z)Fv;;_lKﬂ—ﬁlEﬁfH (k>1).
Proof. In the computations of the proof we shall apply a special case of formula (1.1). Let
1<i<j<mn,setv=5q4 - 5q ,p=0o and u=E,. Then v(u) —p=a;+... +a
and [Tuen(—¢a)™ = (—¢)'™7 so that we can rewrite F.;:
F"/; = Tsa]- o TSa]-_l (W(Ea_]))
= (_Q)l_jw(Tsaj e 'Tsal_l (EOCJ‘))
= (—q) By

Since w is an involution we obtain Eg = (—¢)’'w(F.:). For Part 1. we compute with

the definitions of Fg, F.; and Lemmaj2.7. For k = [ follows immediately:

EBfF’YZk g TOZZ' o« 0. TO(]C71<EO‘kFak) = F’YfEﬂf + |:K, /sz:| .
For k > [:
EgFy=To - To., (EﬁfFal)
= Tai e Tocl_1 (FalE/Blk> — q_lTai N Tocl_1 (K(;llEﬁlk+1)
-1 -1
= Iy B =4 Ry B

For k < | we can either compute directly deducing the corresponding formula in Lemma
2.7 or using the involution w and the case k > [:
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E@F%l_ _ qzekﬂ i (F kEﬁ )
_ gy, (EfﬂF k) X w(K@gl)ql_(kH)W(Eﬁ,QH)
= FuEg + KﬂkF z
= F%;Eﬂf + qF7£+1Kﬂf.
For Part 2. we use the result of Part 1. For k = (:
Bgp Py = By By P — 47 Bge P By
= FyrEg1Bge —q ' Fye Byt Egs + Egis [K, 8] — ¢ 7' [ K B By
= FV?E@@ + KB;@E/BZJ—I
For k < I:
EgFy = By Ege P — 7 EgeFyy By
= F lEBk +qE, Fle Kﬁk —Fy KﬂfEﬁg;l
= F, Ey - )Fl KBy
For k > [:
EgFy = By EgFy — g Ege Py By
= FEg —q ' By K, a By +4q°K l+lEﬁk Egim
= F Egy.

For Part 3 we are going to apply the involution w and the proven Part 2. of the Lemma.
For k = L:

EgF = q " Iw(FyEg) = FoeEgr — ¢ w (K By )
= Py — qK g Fo
= FpBy — Fia Kl
For k < I
EgFy =q " w(FpEg) = ¢ w(Eg ) = FiEg.
For k > I:
EgF = (=) w(Fp By )
= Fy By — (1= ¢*)(=0) " w(Fy Jo(Kat) (-0 ™ 7w (By)
= FyEg — (1 ¢")Eg Ky F i
= By + (1= q ") Ky B
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As stated at the beginning of this section, we have to compute certain GgrF; and
i J
certain FEgzeFLi. For the the latter that is a direct consequence of the above Lemma. Let
i J

us summarise the formulas for G F: in the following Proposition.
i J

ProprosiTION 2.9 1. Assume thatr > 2, 1 <i<rand1<j<Il<r. Then holds

-0,
GQ;F% =q JJ“IF,YéGﬂ;,

qF G + Gy — CK 2 K] (i =17),
Gor s = { PorsGp + Gy (i < j),
EraGy = (1= q72)F7;*1K§;2—1K§T1 (i>7),
and forl <r—1
qF . Ger —q Gy | (i =7),
Gy Fy = PGy (1 <),

, -2 NN S
FuiGe+a(a—q )EGg o (0>]).

2. Assume thatr <n—1andr < j <k,l. Then holds

o
G,B,’:FV;_ =q " 1F’Y§-Gﬁl’

qFr, Gar + Ggy — CK;}K@,; (k=1),
GBfF“/ﬁJrl - F%{HG@IS +(a— q_l)F”/ilcﬂGﬁl (k <),

Fu Ggo—((1- ¢ KK KL Ege  (k>1),

ar 55-5-1 5lk+1
and for j >nr+1
qF,yJI_gGlgk + Gﬁifl (k=1),
Gy = L FsGay + (1— g OEy Gy (k<)

!
k+1

F’Yé-Gﬁf (k > l)



CHAPTER 3

REPRESENTATIONS OF A, .

In order to analyse the behaviour of A =2, on a finite dimensional (simple) U, (sl,41)-
module, in this chapter we classify all simple, finite dimensional 2-modules on which G,
and K, € L act diagonally. As it turns out, these modules are, up to an additional
parameter—a non-zero scalar—in one-to-one correspondence with the finite dimensional,
simple modules of U,(sl.) ® U,(sl,,_,41). After the classification we show a semisimplicity
theorem for simple, finite dimensional U, (sl,,+1)-modules considered as A-modules. Since
we have an embedding of U, (sl,_1)®@U,(sl,,—,) < 2 we know the representation theory of a
big part of 2, e.g. that K,,,..., K, _,, Ka, ., ... K,, operate as diagonal operators. After
analysing the representations of the »missing¢ part we show that we can »glue< both parts
together via U~ [w~], which has embeddings in 2 and U,(s(,) ® U,(sl,,—,+1). Throughout
this chapter we shall also often use K ZP Ko, and K, K, O%T+ .» however, depending on 7 one
of them might not be well defined—let use the convention of non-existence of K2 K,
resp. K, K, ir“ whenever r = n resp. r = 1. We will use the equivalent convention for
Gﬁ;_l and G/B;ﬂ.

Let us start with the motivation for the demand on G- and K, pn € L being diagon-

alisable operators.

PROPOSITION 3.1 Let A € A be a dominant weight and L(\) the simple U,(sl,,1)-module
of highest weight X\. Then Gpgr is diagonalisable on L(\).

Proof. We introduce a relation ~ on the set of weights of L(\). Let p = X — > | s,
and ' =\ — Y | sia; for suitable s;, s, € Ny. Define

/ / / /
po~ <= (ar, Sp100 + 5,0 + Spp10g1) = (o, 8,100 + S0 + S ).

Let [u] be the equivalence class of 1 with respect to ~ and S the set of equivalence classes.
Define on the set of equivalence classes the following linear ordering;:

1] < 1] = (o, Sro100 + S, + Spp10441) < (0, S1_1 04 + Shoy + S Qg).

This definition is independent of the choice of representatives. Set L(\)j = ®uvefuL(N).,
then of course L(A) = ®pesL(A)},. Let B be a basis with respect to this decomposition.
Since Ggr = K. ' (Ea, + ¢ - 1) follows for 1]

Gar LA € L(A) g @ LN puta)-
We have [u] < [+ «a,]. Let t = |S|, then we get the chain

(] = [pa] < <[]

29
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and
Cqlorm) . id K
0 Cqlorm2) - id ...
0 0 Cqlomms) .id  x
A= 0 0 %
0 0 *
0 0 Cqlomm . id

is the matrix of Gigr on B with respect the ordering < using notation of block matrices.
This matrix is diagonalisable since the minimal polynomial splits into linear factors, each
occurring with multiplicity 1. O

Let A € A be a dominant weight and let u € L. It is well known that K, acts as
diagonal operator on L(A). On the other hand follows from (o, ) = 0 that K,Ggr =
Ggr K,,. With the above Proposition follows that Ggr and allK,, 1 € L are simultaneously
diagonalisable on L(A). This motivates the following definition:

DEFINITION 3.2 Let M be an 2A-module. M is simultaneously diagonalisable if Gsr and
K, for all p € L are diagonalisable on M and Gg, has no eigenvalue equals to 0.

As one analyses first the modules for U, (sly) and uses the results for the general case
U,(g) we shall do the same thing for 2. So let us take a look at the case n = 2.

The Case n = 2

Of course there are two different subalgebras ng? and 2@ depending on r. From the

automorphism that interchanges a; and as in the Dynkindiagram A, follows immediately
that ngﬂ and ng% are isomorphic. Let us hence set 25 = ng% and rename some elements.

Fy = F,,,

Gy =G =K, (Ea, +(- 1),

G =Gpz = Kglch:gl(EazEal — ¢ "B Eay + (¢ — ¢ ") Ey,),
K = (K2, K,,)™.

o]t o

Now 2 is generated by these elements as a subalgebra of U,(sl3), the following equations
are a full set of relations on s since A, has an ordered basis.

GarKi2 = K12Go,
GoFy = ¢ ' F1Gs,
G2G12 = qG12Go,
KiFy = ¢ P Fi Ky,
K12Gio = Q3G12K127
GroFy = qF1Gra + Gy — (K7
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For the classification we use Verma-modules for 2y, using the technique for U,(sly) in
[Jan96, Chapter 2|. To compute the action of G152 we use
s __ SIS 1 - q28 s—1( —(s—1) s—1 -1
G12F7 = ¢ F1G12+1_7q2F1 q G2 —¢” (K, (3.1)
which follows from the above listed relations by induction.
For each pair 1, k € k with n, k # 0 there is an infinite dimensional 2(;-module M (7, )

with basis mq, m1, mo, ... such that for all ¢ > 0
Gam; = nq~"'m;, (3.2)
Kiom; = kg~ *'my,
Fim; = miyq, (3.
0, if1 =0,
Giam; = 1—¢* (3.5)

1— q2 <q*(i71)77 - qZ;lCHil)mi_l, if1 > 1.

Let M be a simultaneously diagonalisable 2(;-module and m € M satisfying Giom = 0,
Gom = nm and Kiom = km. Then there is a unique homomorphism of 2s-modules
f: M(n,k) - M with f(mg) = m. With the help of this universal property the simple,
finite dimensional, simultaneously diagonalisable 2(;-module will be classified.

PROPOSITION 3.3 The module M(n, k) contains exactly one proper submodule if and only
if nk = C**Y holds for some integer s > 1, otherwise it is simple.

Proof. Let M’ be a nonzero submodule of M(n, k). Since M(n, k) is the sum of its
common eigenspaces, so is M’, i.e. M’ is spanned by the m; contained in M’. Choose
j > 0 minimal with m; € M’. From (3.4) follows that M’ is generated by all m; with
i > j. If j is zero, then M(n,x) = M’'. If j > 0,then follows by (3.5) Gi1am; = 0, thus
follows nx = Cq?0—.

For nr # (¢**~Y for all s > 1 the module M(n, x) is simple. If there is a s > 1
with nx = (¢**~Y, then there is at most one submodule different from 0 and M (7, k)
and G1am, = 0, so we have a unique homomorphism ¢: M(ng~*%, kg=>*) — M(n, k) with
¢©(mo) = mg. The Ay-module M (ng=*, kqg—>*) is simple. O

PROPOSITION 3.4 For eachn € k* and s > 0 exists a simple simultaneously diagonalisable
2As-module of dimension s + 1 and a basis my, ..., ms such that

Gom; =nq ™",
Kiam; =0~ '¢q**'my,

o 3 T ifi<s,
11m; = -
0, if 1 = s,

0, ifi=0,

Giom; =1 — g% , ' o
- <q*(zfl)77 _ q—25+z—1n71>mi_1’ ifi>1.

Denote this module by L(n, s). Fach simple simultaneously diagonalisable As-module of
dimension s + 1 is isomorphic to L(n, s) for a proper n # 0.
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Proof. The existence follows from the discussion above: Choose M (n,(n~'¢**) and divide
out its single proper submodule.

If M is a simple simultaneously diagonalisable 2;-module of dimension s + 1, denote
with n the eigenvalue of G5 such that g7 is no eigenvalue of Go. Pick a nonzero m € M,
that is simultaneously diagonalised, then m is also an eigenvector of K5 (with eigenvalue
k) and Giam = 0. The universal property implies that there is a nonzero homomorphism
@: M(n,k) — M. Since M is simple, ¢ is surjective. Since M has dimension s + 1, ¢ is
an isomorphism and we have nx = (¢%*, i.e. Kk = n~'(q%. O

PROPOSITION 3.5 Fach finite dimensional, simultaneously diagonalisable As-module is
semisimple.

Proof. Let M be a finite dimensional non-simple, simultaneously diagonalisable 2ls-
module. We may assume that for M holds the short exact sequence

0— L(n,s) — M " L(n,s') — 0.
We will show that this sequence splits. For each eigenvalue v of GGy derives an exact
sequence

0 — L(n,s), — M, — L(n',s), — 0. (3.6)

Choose v € L(n/,s"), v # 0 such that G120 = 0, i.e. v € L(n/,s"),. Choose v € M,
with m(v) = v. If Ghov = 0 then v spans by the universal property a simple submodule
different from L(n, s) and thus the sequence splits.

Assume now that G'jov # 0. Because every eigenspace of a simple simultaneously diag-
onalisable 2l,-module is one-dimensional, there are just two possibilities for the dimension

of L(n,s)y:

1. dim L(n,s),, = 1. Then dim M,, = 2 since dim L(7/,s’),, = 1 and the sequence
(3.6) is exact. Since v ¢ L(n, s), there is a w € L(7, s),y such that v,w are linearly
independent. Since dim M,,, = 1, there is a scalar ¢ € k such that Giov = tGrow
and thus there is Ga2(v — tw) = 0 and v — tw generates a simple submodule of M
different from L(n,r).

2. dim L(7n, s),y = 0. Then dim M,, = 1 and there is a w € dim L(7, §),y4, w # 0 such
that Giov = w. Then there is
Gow = ¢ °nuw
= G2Grav = qG12Gov = qn'w

thus n = 7/¢*™! and therefore the action of K5 on L(n, s) is determined by n71(¢* =
(n')~'¢q*". On the other hand follows from

i = ()G = ()G
= K15G120 = ¢*G1aKyov = () ' ¢q* ™ w = () "> HPw

and therefore ¢>¢+5)%2 = 1 which yields s + s’ = —2 since ¢ is not a root of unity,
so this is a contradiction, since both, s and s’ were chosen non-negative.

]
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The Case n =3

In this section we will have a look at ng% which appears in the more general case instead
of Ay whenever r # 1 and r # n. Its representation theory is very likely to that of
Uy(slz) ® Uy(sly)—with an additional parameter coming from G. The proofs are more or

less the same as in the section before. We define additionally

F3 = Faga
Gos = Gy = K K} (P, Fa,
K§|:31 = (KOQKi?,):tl

and get the following list of relations

G K12 = K12Go,
GoFy = ¢ ' F\Gs,
G2G12 = qG12Go,
KioFy = ¢ °Fi Ky,
K15Gra = q3G12K12,
Koz Iy = qF1 Ko,
K3G1a = ¢ ' G1aKos,
GioF1 = qF1G1a + G + (Ko,
GasF1 = ¢ ' F1Ga,
G12Ga3 = GGy,

For each 7, k1, ko there is an infinite dimensional 2A3-module M (n, k1, ko) with basis m;;

with (¢, 7) € N§ such that

Gami; =nq~
Kiamy; = k1q " my;,
Kozmij = kag' ™ my,

Fimgj; = miqq 5,

FSmij = My j4+1,

0,

Gramij = 1= q*
777 7
0,

Gazmyj = 1 — g%

This module has a universal property. Let M be a simultaneously diagonalisable
2s-module and m € M such that Giom = Gogm = 0, Gom = nm, Kiom = kym and

~q¢ '"EuyEay, — (g — ¢ ) ELy),

G K3 = Ka3Go,
GaFs = ¢ ' F3Gs,
G2Gaz = qG3Go,
Kb = qF3K,
K15Ga3 = ¢~ ' Ga3K 1o,
KosFy = q ° F3 Ko,
Ky3Gas = Q3G23K23’
G12F3 = ¢ ' F3Gha,
Gasby = qF3Go3 + G — (Kag,
Fi\Fy = F3F.

if i =0,

(470D — g Crrmaay, Q> 1,

if j =0,

l=q¥, . e :
T (670D — ¢ ¢y iy, iG> 1.
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Kysm = kam, then there is a unique homomorphism of Az-modules f: M(n, k1, ke) — M
with f(moo) = m.

As it is immediately clear that each weight space of M (n, k) has dimension one, this is
not a priori clear for M (n, k1, k2). A short calculation will clarify that this is indeed true.
Choose 1,7, k,l € Ny such that m;; and my; do have the same weight. From equations
(3.7), (3.8) and (3.9) follows the equation system

itji=k+1
—3i+)=-3k+1 (3.10)
i—3j=k—23l

and a short computation shows that indeed + = k£ and 57 = [. In fact one does not need
the third equation, we shall abuse that in the proof of Proposition 3.8.

The following theorems are very similar to those in the section before, the main dif-
ferences appear in the proofs—we shall also rely on the theory of case n = 2.

PROPOSITION 3.6 Letn € k* and s,t € N and set k1 = 17 'Cq?*™Y and ky = 5~ 1¢* Y.
Then contains the module M = M (n, k1, k2) exactly one mazimal submodule.

Proof. As M is the sum of its common eigenspaces, so is every submodule and thus
generated by the contained m,;. For each submodule M’ C M there is by Proposition 3.3
a pair (,7) € N? such that Giam;; = Gazmy; = 0. Set

T = { (’L,j) c NQ} | Glgmij = ngmij =0 }

We will show that |T'| = 1. With the assumed x; and ks it follows immediately from the
universal property that mg spans a proper submodule, so |T'| > 1.

Assume that |T'| > 2 and take (i,j), (k,l) € T. We may assume without loss of
generality that ¢« < k. If j = [ then myg; spans an 2s-submodule that contains by the
universal property two submodules (generated by m;j and m; ;) which is a contradiction
to Proposition 3.3. If j < [ or j > [, then Gogm,;; = Gasm;; = 0 since G2 and Gos
commute. Again we have a contradiction to Proposition 3.3. 0

PROPOSITION 3.7 Let n € k* and let s,t > 0 be integers. Then there exists a simultan-
eously diagonalisable Az-module of dimension (s + 1)(t + 1) and basis elements m;; with
0<i<sand0<j <t such that

o —(i+j
Gomij = ng” "y,
=1, 25—3i+j

K12mij =n (q szj,
=1, 2t+i—3j

KQSmij =n (q ]mija

Miy1y, f1<s,
Flmij = o

0, if 1= s,

ml,j+17 ij < t7

F ] —
37 {o, ifj=t,
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07 ifz — O’
Grmij =4 ;1—-¢" i —2sti—1,,.— Y
]1_q2 (q (i=1)p — g2+ 1C’%11)mi71,j, ifi>1,
O? Z‘fj — O’
Gasmij = L 1-a” o P
J q" 7 (q*(Jfl)n — g2 1)7,'%J_17 ifi>1

Denote this module by L(n,s,t). Every finite dimensional simple simultaneously diagon-
alisable As-module is ismorphic to a L(n,r,s) for suitable n € k* and s,t € Ny.

Proof. The existence follows from Proposition 3.6. Take M (1,17 1(¢**,n71(¢*) and divide
out its unique maximal submodule.

If M is a finite dimensional simple simultaneously diagonalisable 23-module, then
there is an eigenvalue n of G5 on M such that ¢n is no eigenvalue. Pick a non-zero
element simultaneously diagonalised m of the eigenspace of the eigenvalue n. It holds
Gram = Gazm = 0, so that there are integers s, > 1 such that m spans two 2As-modules,
one on the first index of dimension s + 1 and the other one on the second of dimension
t + 1, so that by Proposition 3.4 follows that Kyym = n~1(¢* and Kysm = n~1(q*.
From the universal property of M(n,n71(¢*, n~1(q*) follows then the last part of the
Proposition. O

PROPOSITION 3.8 Fach finite dimensional, simultaneously diagonalisable A3-module is
semisimple.

Proof. Let M be a finite dimensional, non-simple, simultaneously diagonalisable 2A3-
module. Without loss of generality we may assume that for M holds the exact sequence

0— L(n,s,t) — M - L(n/,s,t') — 0.

Asin the case n = 2 we show that this exact sequence splits. There are natural embeddings
of ;5 and As 5 into A3. Choose v € L(n', s',t') such that

Glgﬁ = GQ;},TJ =0

and choose a common eigenvector v € M such that m(v) = v. Since M is a finite
dimensional simultaneously diagonalisable 2(; >-module we may assume that Gv = 0 by
Proposition 3.5 and v ¢ L(n, s,t). We distinguish two cases

1. Ga3v = 0. Then v spans a simple As-module different from L(n, s, t).

2. Gazv # 0. Let k € N such that (Ga3)*v # 0. Since G5 and Ga3 commute follows
with the universal property that (Ga3)*v spans L(n, s,t). Using again Proposition
3.5—this time for A o—follows

w = F§(G23)kv =0
and we can write

U:U/—l-w
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with v ¢ L(n,s,t). Since Gjow = 0, follows G12v" = 0. Either Gozv’ = 0—then o’
generates a simple module different from L(n, s,t)—or Ga3v” # 0. In the latter case
we proceed as before which yields vectors v” and w’ with v' = v” 4w’ and v/, v” and w
are linearly independent and all being common eigenvectors of the same eigenspace.
On the other hand is each common eigenspace of a simple finite dimensional simul-
taneously diagonalisable 2(3-module one-dimensional-—so each common eigenspace
of M is at most two-dimensional. This is a contradiction, thus Gazv’ = 0.

[]

The General Case

This part is again parted into two parts, that is for r = 1 or r = n (which are »dual¢
to each other under the automorphism reverting the nodes of the Dynkin diagram) and
1 < r < n for which we shall rely on the results of the first two cases.

Set R={1,....n}\{r}and R ={1,...,n}\ {r—1,r,r+1}.

DEFINITION 3.9 Let n € k* and A € A and M be a simultaneously diagonalisable 2A-
module. Set

My = {v € M |Gguv =ng" M, Kov=q“"Mv(i € R

2 -1 20— 14ar, A\ 2 -1 ar+20
K2, Ky =07 g0t K I3 =gl oo .
We call M, » the weight space of weight A subject to n, and v € M, » a weight vector
of weight \ subject to n. As convention we will omit the »subject to¢-part whenever it is
clear subject to which n. In that case we write M.

REMARK 3.10 The subalgebra 2A° is generated by n elements, but the above weight spaces
are parametrised by n + 1 parameters. The disadvantage is the lack of a general direct
sum decomposition into weight spaces, however, in some special cases that can be fized by
fixing n, e.g. in the case that M is generated by a single common eigenvector v (well, this
follows by equation (2.5)). This case is already included in the expression ssubject to¢. As
we will see later every finite dimensional Uy(sl,,4+1)-module is semisimple as A-module, so
the lack of a general decomposition into weight spaces is minor important.

The major benefit is the notation itself: We do not need a new functional—which
would not be really compatible with notation induced from U,(sl,11)—and in the end we
will examine Uy (sl,+1)-modules as A-modules.

~ Let A= 1~\n7r be the sublattice of A generated by w;,i € R. Let n € k, n # 0 and
A € A. For a tupel (9, \) we define a (simultaneously diagonalisable) Verma module by
M(n, X) =2/ (maﬂ;_l +AG e + Y UEa, + (G — 1) + > A(Ka, — ¢ V) +
i€R i=R

A(K2, Ko, —n g V) + A(K2 Ko, — n‘léq(“”m))
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It is generated as an 2A-module by the coset of 1 which shall be denoted by v, 5. We have
furthermore a direct sum decomposition of 2 following from the ordered basis in (2.3):
A=U"[w]®C(w',p,L). This implies that the map

U [w™] — M(n,\), U v, 5 (3.11)

is bijective and an isomorphism of U~ [w~]-modules. The algebra U~ [w™] is a P~-graded

algebra, so the module M (n, A) becomes via the map from above a graded U~ [w™]-module
with respect to P~. With the formulas from equation (2.4) follows for v € U~ [w™],

Gﬁiuv’ﬂ,j\ = nq(fa’l‘yu)ru/l%’h},\’

2 I | (2a,«_1+o¢r,u+:\) B
KaT_lKaruvm/\ =n (q uv, 3,

2 e | art20_1,u+N) .

Ko, K uv, 5 =1 Cq( ’ uv, 5,
- /

uv, 5 (te R).

m

I CYNTE
Kaiuvw\_q( ptX)

Since U~ [w™] = ®uep-U~[w],, follows the decomposition of M (n, \) into weight spaces,
le.

M(nv 5‘) = @ M(n>;\)u

HEA
In particular this module is simultaneously diagonalisable.

DEFINITION 3.11 Let A\, € A. p is P-smaller than X if and only if A\ — u € PT. The
notation is p <p A

This is a partial ordering on A. A reformulation of the statement above yields: The
subspace M (n, S\)N is non-trivial if and only if u <p A. In this language becomes the
module M (7, \) a highest weight module of weight A. The parameter 7 is minor important,
it should be regarded as in index in £* indexing a family of very similar simultaneously
diagonalisable Verma-modules of 2. This view is also in align with Definition 3.9.

As in the case of quantum groups, each M (1, \) . 1s finite dimensional. In the clas-
sification process of finite dimensional, simple, simultaneously diagonalisable 2-modules
we use now the same route as for quantum enveloping algebras, like in [Jan96, p.72ff.],
with the exception that we can take a shortcut later.

The module has the usual universal property: Let M be a simultaneously diagonalis-

able 2[-module and v € M a vector such that

Ggr v =Gpr+10=E4v=0 (i e R,
Ggrv = nv,

KgérflKOérfU = n_lcq(QaT_17>\)'U’
K, K> v= n_lgq(QC’%H»le\)/U’

Q41

K,v= g Ny (i € R').
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Then there is a unique A-module homomorphism f: M (n, 5\) — M with f <Un,?\) = .

Let N C M(n, 5\) be a submodule and define for ;1 € A the weight space as N, =
N N M(n, 5\)“. Then N becomes the direct sum of its weight spaces. There is, as in
the classical case, a unique maximal submodule of M (1, X). Define L(n, \) as the factor
module of M (n, \) by this unique maximal submodule.

From now on we are going to consider 21, ;.

LEMMA 3.12 Let M be a finite dimensional, simple, simultaneously diagonalisable 2, ;-
module. Then there exist a v e M, v#0, an € k* and a dominant weight \ € An 1 such
that

Gpv = Epv =0 (3 <i<n),
Ggru =,

Ko, K2 v=mn" Leg! (20,3,
Kov=q* Ny (3 <i<n),

and Fc(f“;\)“v =0 for2<i<n.

Proof. The existence of a v € M such that AT operates as zero is clear from equation (2.5).
From the embedding of U,(sl,_1) into A, ; the actions of K,,, ..., K,, are determined,
giving a dominant weight X' € Z{ws, .. wn} The embedding 21, into 2, ; givesan € k~
and a s > 0 determining the action of Gﬁll and Kale Set A = sty + V.

From [Jan96, Lemma 5.4 b)| and Proposition 3.4 follows the claim about the F,,,. O

Let M be a finite dimensional, simple, simultaneously diagonalisable 2, ;-module.
By the above Lemma 3.12 and the universal property follows that M is isomorphic to
L(n, \) for a n € k* and a dominant weight \ € ]\n,l. The next theorem completes the
classification of finite dimensional, simple, simultaneously diagonalisable 2, ;-modules.

THEOREM 3.13 Letn € k* and \ € /~\n,1 be a dominant weight. Then the 2, 1-module
L(n, \) is finite dimensional.

We want to argue as in the proof of Theorem 5.10 in [Jan96], so we like to have a
module that is finite dimensional and has L(n, \) as a homomorphic image. A candidate
is a module similar to that one in Proposition 5.9 in [Jan96]—that is as vector space
isomorphic to that one in Proposition 5.9.

LEMMA 3.14 Let \ = Yoo 8T € /~\n71 be a dominant weight and n € k*.

1. Set N =X — (so + 1) (o + 1) and nf =g >, Then exists a homomorphism of
A, 1-module fo,: M(1/, N') — M(n,\) such that fa, (v, 5) = F32 v, 5.

a2

2. Forall3 <i <n exists an 2, 1-module homomorphism f,, M(n, X—(sﬁ—l)ai) —
M(n7 )\) SUCh that fai (UU,S\—(Si—f—l)ai) = Fa$§+1vn75\'

Proof. The proof is very similar to that one of Lemma 5.6 in [Jan96].
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1. F”“vm; has weight X — (s2 + 1)ag subject to k. This is not in 1~\n71. However, we

a2
find that
so+1 I 7(82+1) so+1 o re+1 _
GaFas ™ vy5 =14 g = M EST 0y 5
2 psatl,, . —1r —3(s2+1) ,(2a2,A) psa+1,, _ _ (=1 (202,N) o+l
Ka1 KaQFaz Uﬂ,)\ - 77 Cq q FOéQ U777)\ o <77) q Fa2 ,UU’A’
so+1 R (Ozi,;\) So+1 I (ai,j\’) So+1 N
Ko, F;? Up5 =4 F3? V% =4 F3? Uy 5

SO Fjgﬂvm; has weight X subject to 1. Since E.,.F,, = F,,E,, foreach3<i<n
holds E,, F}2*'v, 5 = 0. From equation (3.1) follows

_ 42(s2+1)

G 2F52+1U i = 71 d i 7S2FSZG 1V, 5y — 82F82<K K2 )711} 3
BT a2 A 1 — q2 q az 7B 7, q (o] a1+ Y 7,2\
1 _ q2(82+1) 5 . i B oy
=g fw (a7°2n = a=Cn¢ a7 v,

=0.

With the universal property of M (7, N ) follows the claim.

2. Fytly, 5 has weight A — (s; + 1)y subject to . Since the weight is in A, ; and
Gpg2Fo, = Fo, G2 the procedure is identical with that given by Jantzen.

O
Proof of Theorem 3.13. Let fa,, ..., fa, as in Lemma 3.14 and define

n

L(n, A) = M(n, V) /(Y im(fa,)).

=2

L(n, \) is the homomorphic image of L(n, \). In terms of the isomorphism from equation
(3.11) the image of f,, is U~ [w™|F5™!, and we find that there is an isomorphism of vector
spaces between L(n, \) and U~ [w™]/(X", U~ [w™]Fztt).

The proof of Proposition 5.9 in [Jan96] shows that the there defined U,(sl,)-module
L(\) (X must of course be considered as a weight of U,(sl,), this is possible by the

definition of A,,;.) is isomorphic to U~ [w™]/(X7, U~ [w]F5*h) as a vector space. But
since L()) is finite dimensional so is L(7, A). O

There is a natural projection from 7: A — /~\n7r given by m(37 4 siwi) = Yotep Sitvi. In
fact, this is the transition of weights from U, (sl,11) to U,(sl,) ® U,(sl,—,+1) coming from
the embedding of the latter in the first on the indices ¢ € R. Let A € A be a weight of a
U,(sl,+1)-module, say M. Let v € M, be weight vector of weight A\. Consider now this
module M as U,(sl,) ® U,(sl,—,11)-module via the above embedding. Then v has weight
m(A). Let u € Uy(sl,) ® Uy(sl,—r41) be of weight 7(p), then uv € Mya4,y. This way we
consider /~\n,r as the usual weight lattice of the algebra U,(sl,) ® U,(sl,—,+1). We shall use
this identification for a transition of weight spaces from 2, ,-modules to »corresponding
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U,(sl.) @ Uy(sl,,—r41)-modules. In the next Lemmas and Corollaries we consider again the
case r = 1.

Recall that the U,(sl,)-modules L(\) and L()\) are isomorphic (c.f. [Jan96, p. 6.26]).
The proof above shows that there is a bijective linear map between L(n, \) and L())
preserving weight spaces. This allows us to compute the dimension of L(7, 5\) u Where g

is a weight subject to k.

COROLLARY 3.15 Let \ € /~\n,1 and 1 € A such that i <p X, and let n € k*. Then holds
dim L (1, A) = dim L(N) (-

Proof. Let us perform the proof more explicitly than sketched above. By equation (3.11)
and equation [Jan96, 5.5 (4)] there is an isomorphism of U~ [w~]-modules g: M(n, \) —
M(X\) with g(uv, 5) = uvs where u € U~ [w™].

Let us denote the highest weight vectors of M(n,\) resp. L(\) with v, 5 Tesp.
vy, too. By equation (3.11) and equation [Jan96, 5.5 (4)] there are bijective linear
maps f: U~ [w™] /(X5 Fiitt) — L(n, A) and g: U~ [w™]/ (X, F2itt) — L(X) given by
f([u]) = [u]v, 5 and g([u]) = [u]v; where [u] is the class of .

By definition of 4 <p A we have A — € P*. If [u] has weight —(X\ — p)' then
f([u]) = [u]v, 5 has weight p subject to x and g([u]) = [u]vg has weight 7(u). We have

dim M (0, A, = dim U~ [w™]_5_,) = dim M (X)) [

For a better understanding of L(n,\) it would be nice that L(n, A) and L(n, \) are
isomorphic. This is indeed the case as the next Theorem shows. From the isomorphism
we conclude also the universal property of Z~L(77, 5\) that comes from Lemma 3.12. The uni-
versal property for the latter is as follows: Let M be a finite dimensional, simultaneously
diagonalisable 2, ;-module, v € M a weight vector of weight \e ]\M (of course, A must
be dominant) subject to n with n € k* such that Ggpv = Eov = ... = E,,v = 0. Then

there is a unique 2, ;-module homomorphism from f: L(n, A) — M such that f(v,5) =v.
THEOREM 3.16 Let n € k* and let \ € /~\n,1 be a dominant weight. Then holds
L(n,A) = L(1n. A).

Proof. By the universal property L(n, \) it suffices to proof that L(n, ) is simple. Let us
consider U,(sl,) as a subalgebra of U,(sl,41) such that A is the weight lattice of U,(sl,,).
Write A = Yoo siwo; with s; € N,

Consider the following infinite dimensional U, (sl,41)-module

M = U/ (Z UFaSerl + Z UEai + U(Kal _ 7771> + Z U(Kal o q(al,S\)>>
=2 i=1 :

Denote with vge, the class of the coset of 1. vgen is a weight vector of weight A subject to
n. Denote with N the subspace U~ [w ™ |vgen. N is finite dimensional and as 2, ;-module

1As U,(sl,)-module. Then it is clear what shall be understood by a class of weight p.



CHAPTER 3. REPRESENTATIONS OF 2, 41

isomorphic to L(n, \) and a simple U,(sl,)-module with highest weight vector vge,. Let
1w € A, then

Nmu = Nﬂ(#)

and of course N = @ eaN;, = @MGANﬂ(H). Assume that N is not a simple 2, ;-module.
Then there is a proper 2, ;-submodule N. It decomposes into weight spaces, so

N=@(NnN,,) =D (NN Neu)-

BEA REA

Since N is finite dimensional there exists a i€ A with p <p Aandav € NN Ny
such that Gﬁfv =E,,v=...=FE,v=0. Weclaim: Then F,,v = 0, this would be a
contradiction, since v would span a simple U,(sl,,)-submodule with highest weight 7(1)
in the simple module N.

Since v € N = U~ [w™ |vgen, there exists a u € U~ [w™]_5_,) such that uvge, = v.
Recall that Gg = KiK. (EayEay = ¢ 'EayBay + (¢ — ¢ )CEa,). S0 if (Ea, Fa, —
¢ 'E,,E, )v = 0, then must be E,,v = 0. Since E,,u = uFE,, we have E,,E, uv =
EayuBqo,v = 0. We have Ey,u = o' with v/ € UU~[w™]_5_,)10,, S0 there is a u” €
UU~[w™]_(5_u)tap Such that Eyu' = u"E,,, so follows as before that E,, Ea,uv = 0,
hence the contradiction. O

COROLLARY 3.17 Let A € An,l and ju € A such that ju <p X\, and let n € k*. Then holds
dim L (1, A) . = dim L(N) (-

In particular holds

dim L(n, \) = dim L(\).

THEOREM 3.18 Let A € A, be a dominant weight and ) € k*. Then the module L(n, \)
1s finite dimensional.

Proof. For r =1 and r = n this is already done by Theorem 3.16. So let 1 <r < n. We
have embeddings A, — A, and 2A,,_,; — 2, .. From the definition of L(n, 5\) follows
that there is a v € L(n,j\) such that Q[f{rv = Ql:_mv = 0. This implies that v spans
a simple, finite dimensional, simultaneously diagonalisable 2, .- resp.2l,_,-module, so
there are \ € /NXT,T, N e An_,«,l and a single n € k* (since G, is in both subalgebras) such
that A,.,v ~ L(n, 5\’) and 2A,,_,1v =~ L(n, 5\”). Note that the generators of both commute
with each other (some only up to a ¢-factor, which does no harm). This implies that v

spans a finite dimensional 2, , submodule. O

COROLLARY 3.19 Let \ € An,r, A = YicrSiww; and 1 € A such that p <p X and let
nekr. Set N =37 s and ' =7, s;w;. Then hold

dim L(y, )y, = dim (L(X) ® L(X"))

)
I

dim L(n, A\) = dim L(X) - dim L(\").
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We shall use this Corollary to prove the next theorem. Additionally we like to know
something more about the action of Gg+1 resp. Ggr_ on a finite dimensional, simple
U,(sl,11)-module. The following Lemma implies besides Proposition 3.1.

LEMMA 3.20 Let A € A be a dominant weight and let p be a weight of L(X). Letv € L(\),,
v # 0 such that B, _ v = E, . v =_0. Let v4q, be its diagonalisation subject to Gr. Then
Gg:_lvdmg == G/B;"Jrlvdiag =0

Proof. Set s = max(k | EX v # 0). Set ag = 1 and for 1 < k < s via recursion a; =

ak_l((%}z%)‘ Claim:

Udiag = ZakEk (312)

Since

G,B;akEz,.U = apq” o) (Cq_(a“k%)Eer +(1— 51«75)C]_(a”(ﬂl)ar)Eﬁlv),
we have only to verify that

arlq " + ap—17 = Cax

for 1 <k < s — which is indeed true. Concerning the action of Ggr+1: Using the fact that
EB:+1E§T = q_kEgTEﬁ:H follows for 0 < k < s

Gy EF v = agg™ o0 (¢g g — 1) B, BE, — ¢ BN Ea,, Ea, ),

Qpr41 Apr41

so we have to check that

arl(q — g )q " Eu,,, BY v =y " VBB B, |, B v,

Qpr41

A short induction shows that E, ,,E¥ = ¢*Ef E,  +¢7* 11:3?2 Efj;lEﬁ;H, so that the
above condition becomes

AP o —2(k—1)-3

—ax(q—q)g [ogr — Gt

The left hand side computes with the recursion formula as

1—g* 2k-1)-36(1 =) (1 —q?) 2(k—1)-3
—arC(q—q g g e = apg T 55 = amag 2T
1—q C(L=g*)(1—q7?)
The calculations are invariant under the mapping sending E,, ., + EaT DKo = KL
and fixing each other generator. This map sends Egr+1 to Eq, ,, Eaq, ¢ 'E,, E,,., and
Ggr1 to Ggr_ while G s invariant. O

THEOREM 3.21 Let A € A be a dominant weight and let L(X\) be the simple, finite dimen-
sional Uy(sl,,41)-module of highest weight \. Then L(\) is a semisimple, simultaneously
diagonalisable A, ,.-module.
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Proof. We use the embedding of U,(sl,) ® U,(sl,—+1) into U,(sl,41) such that ]\n,r is
the weight lattice of U,(sl,) ® U,(sl,—r11). There is a unique decomposition of L(\) as
U,(s1,) @ Uy(sl,—,41)-module into simple modules, say L(\) = @®}_, My with M being
simple U, (sl,) ® Uy(sl,—,4+1)-modules. Let vy be the highest weight vector of M, then
vy, is a weight vector subject to U, (sl,4+1)—say vi, has weight py. Let vg be its diagon-
alisation subject to Gg;. By Lemma 3.20 follows Ggr_ vjl = wa;j = 0. Therefore v¢

spans a simple, finite dimensional, simultaneously diagonalisable 2, ,-module that is iso-
morphic to L(Cq_(a““k), W(uk)). Denote this module by M. From Corollary 3.17 follows
dim M = dim M, and hence

t
L(\) = €D M,
k=1

i.e. a decomposition of L(A) as 2, ,-module into simple, simultaneously diagonalisable
2, ,-modules. O

Theorem 3.21 together with Krédmers 1. Behauptung (1) in [Krd79] ensures that
whenever r # n —r + 1 part 1 and 2 of Definition 1.2 are fulfilled: For the with multi-
plicity at most one appearing trivial representation of Uy (sl,) ® U,(sl,—,+1) there is one
and only one one dimensional 2, ,-module, though at most one trivial 2, ,-module. Note
that not every one dimensional 2, ,-module is necessary trivial. This is especially clear
by Proposition 3.4. For the case r = n — r + 1 we give an example of a non-spherical
module.

In the remainder of this chapter we want partially examine the homogeneous space of
2, . The first question arising asks if there is a (sufficient amount of) invariant vector(s).
The answer is »yes< as we shall see below. With this answer in mind we are forced to
ask what are the invariant vectors or at least, which simple U,(sl,+1)-modules possess
invariant vectors. The answer is not completely satisfying.

Let A € A be a dominant weight and let v € L(X) be an 2, ,-invariant vector. Write
v = 3 ,<)U, as a sum of weight vectors. Since €(G;) = ¢ and €(K;) = 1 follows with
Proposition 3.1 that v = 3", Uk, With vy # 0. This means that the diagonalisation of
a Uy(sl,) ® Uy(8l,—p41)-invariant vector w € L(A) is A{)-invariant if and only if w has
weight 0, i.e. w € L(A)o.

PROPOSITION 3.22 Letr #n —r+ 1. Then U, , is a spherical right-coideal subalgebra.
Let A € A and set s = min(r,n—r+1). The Uy(sl,41)-module L(X\) has an 2, ,-invariant
vector if

AE @(wk + wnJrl,k)NO.

k=1
Proof. This follows directly from Kramers Tabelle 1 in [Krd79], lines no. 2 and 4 since

S(U(r) xU(n—r+ 1)) contains all diagonal matrices of SU(n + 1), i.e. a full torus, and

thus the invariant vectors all have weight 0. All these vectors are SU(r) x SU(n —r+1)-
invariant. []
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Let r # n —r + 1, then are by Tabelle 1 in [Kra79] L(w,) and L(w,_,+1) modules
with an invariant vector. For the first one it is clear that the highest weight vector
is Uy(sl,) ® Uy(sl,—y41)-invariant while Ggrv, = (¢ 'vg,—though not invariant under
2,,. But since L(w,_,41) is dual to L(w,) we find that the lowest weight vector is
U,(sl.) ® U,(sl,—r11)—but not A, ,-invariant.

In the case r = n —r+ 1 the right-coideal subalgebra 2, , is not spherical as U,(sl,) ®
U,(sl,,—r+1) is not spherical; the latter his is a well known fact, c.f. [Kra79, 1. Behauptung
or Tabelle 1 |. Any U,(sl,) ® U,(sl,—,+1)-invariant vector has clearly weight kw,, k € Z—
which is a weight of the U,(sl,41)-module L(w; + w,,) solemnly for k& = 0.

In case n = 2 we are able to proof a bit more and describe the homogeneous space
in the next chapter—this is due to the well-known structure of U,(sl3) (or, to be more
precise, of sl3).



CHAPTER 4

HOMOGENEOUS SPACE OF %2,

In this chapter we examine the homogeneous spaces attached to 2;. We compute the
invariant vector, the homogeneous space and show that the space coincides with the ho-
mogeneous space of Noumi and Dijkhuizen in [DN98]—for which we shall use the quantum
sphere introduced by Podles, c.f. [Pod87], [KV92], too—in the sense that they have the
same algebraic structure. Though, there are some differences: First, the space of Nuomi
and Dijkhuizen is equipped with an induced *-structure from A4,. Secondly, the space of
the two authors is embedded »symmetrically< which is due to the fact that whenever their
t7-invariant vector of a simple U, (sl,,+1)-simple has a component of weight—say u—,then
also of weight —p.

Let us start with the description of the invariant vector and the elements generating
the homogeneous space of s in A4, first.

Homogeneous Space

Let A = ki + kowoy be a dominant weight and vy be the highest weight vector of L(\).
Then there is

k
Kivy = q™'vy,

k
Kovy = q™ vy,

and let on the other hand my, ms > 0 be integers and consider now a weight vector
v € L(\) of weight p — (myay + mea). Then there is

Kw=v<=k —2m;+my =0,
KQU:CU<:;\>k32+m1—2m2:0.

Reading the equations on the right hand side as conditions on m; and mq yields

2k1 + ko
mp = 73
and
k1 4+ 2ko
m2 = T.

In particular, to achieve integrity of m; and ms, k; and ks have to lie in the same residue
class mod 3.

The next proposition is known by the end of the last chapter. Nevertheless we give
another proof which does work in this special case only—it does rely on dimension com-
parisons.

45
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PROPOSITION 4.1 Let k € N and A = k(w; + ws), then the trivial representation occurs
precisely once in the decomposition of the U,(sl3)-module L()\) as an Az-module.

Proof. 1t is enough to prove that the trivial representation of U,(sly) is a subspace of
L(\)o if we embed U,(sly) on the first index in U,(sl3). This comes again from the proof
of Theorem 3.21. To show this it suffices to show that dim L(\)y > dim L(\),, since
there is exactly one U, (sly)-invariant vector. This can also be deduced by Pieri’s formula
([FH96, Ex. 6.12]. There is a bijection (c.f. [Jan96, Lemma 5.18])

Uq(ﬁ[g):u — L(/\))\_M, U ——> UV,

for 0 < pu < k(a1 + an). Hence we compare the dimensions of Uk_(a1+a2) and U(7c—1)a1+ka2'
By [Jan96, Section 8.24] the dimensions og these spaces are given by the Kostant par-
tition function, to be denoted with P, which gives the number of possibilities to write
a weight as linear combination of positive roots with non-negative integral coefficients.
From this definition it is clear that P(k(aq + as)) > P((k — 1)ou + kaw) and accordingly
the dimensions. O

We shall use weight diagrams for the proof of the next proposition. They were used by
Antoine and Speiser in [AS64] to prove the Weyl character formula for an arbitrary simple
Lie group. Drawing a weight diagram for a two dimensional root system in which one
can read of the dimensions of the weight spaces is rather easy, but for higher dimensions
more or less not possible in general (which is in terms of the presentations of the Weyl
character formula reasonable). In the case of the root system A, we use the notation and
results of [FH96, §13.2]. Let us review the notation and facts of and about the weight
diagrams of As.

Let ki + kows be a dominant weight. We may assume without loss of generality
that k; < ky. For each weight u € A define m, to be its multiplicity in the module
L(kywy + kows). If m, = 0 for a weight do nothing, for m, = 1 draw a point in the
weight lattice at point pu, for m, > 2 draw m, — 1 circles around the point. Of course
the highest weight vector is represented by a single point. In the case that k; > 0 all
one-dimensional weights form a hexagon with two length of edges, having ks + 1 points
on the longer one and k7 + 1 on the shorter one. The two dimensional weight spaces form
a hexagon or triangle in this hexagon - each edge having one point less in length.

In general: There will be ky hexagons, denoted by Hy, ..., Hy, and s = [(ka—k1)/3]+1
triangles. If the corresponding point of a weight u is on the hexagon H;, then it has the
multiplicity m,, = i + 1. The multiplicities on the triangles are all the same and given by
k1. Below is a diagram for the highest weight module of weight 2co; + 2ws.

As one sees immediately the corner of the hexagons in the fundamental chamber differ
from the highest weight by a multiple of a; + ay. Of course this is valid for all weight
diagrams of type As,.

An slightly bit technically but easy to proof result for U,(sl;) is as follows: Let M be
a finite dimensional U, (sl;)-module and let ;1 be a weight of M. If dim M, = dim M4,
then E(M,) = M+q.
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Figure 1: Weight diagram for weight 2co; + 2wy

PROPOSITION 4.2 Let ki # ko be non-negative integers that are congruent mod 3 and
A = kywy + kowy. Then there is no trivial representation in the decomposition of the

U,(sl3)-module L(X) as an 2Ay-module.

Proof. With the theory of weight diagrams we have dim L()\)y = dim L(\),, since there
are at least two triangles. We embed U, (sly) into U,(sl3) on the first index, it follows that
Eyv # 0 for all nonzero v € L(\)g, so no v € L(\) spans a trivial 2s-module. O

In the next step we want to compute the invariant element in V* ® V' where V is the
vector representation of U,(sl3). Denote with v; the highest weight vector of V' and set
vy = Fyuy and vy = FyFyuy. This is the standard notation, it is used by Wen in [APWO1,
Appendix] as in [DN98]. The U,(sl3)-module V* ® V' decomposes as

where the first one has v; ® v; for 1 <4 # j < 3 together with vj ® v; — v}, | ® vy, for
i = 1,2 as basis, the latter one v} ® vy + ¢ ?v} ® vy + ¢ v} ® vz as basis. Consider

Vi@ v+ q 20 @y — (14 ¢ )l @ vs.
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Since it is an element in L(w; + wsy) and
A(El)(vf Qui+q i@ — (1+q¢ v ® Ug) =0

follows that it is the U, (sly)-invariant vector. With Lemma 3.20 and equation (3.12) we
compute that

. P oy ta ' +q
Vi@ +q Qv — (144 2)U3®v3+q<(ql_q;‘>]vg®v2 (4.1)
is the As-invariant in L(w; +w@9) C V*@ V. Substracting v @ vy +q¢ 205 Qg+ q*4U§ ® V3

¢(1—¢?)

and stretching with P yields

Clg—q )5 @ v+ v5 ® vy,
The subset
Agz ={be A, | ub=e(u)bfor all u € As}

is the set of left Ay invariant elements. In terms of the Peter-Weyl decomposition (1.2) it
decomposes by Propositions 4.1 and 4.2 as

A = P L(k(m + @2)) (4.2)

k>0
The following theorem gives a description of AE‘Q in terms of generators.
THEOREM 4.3 The subspace spanned by the elements
vy = (g —q igtys + gty (1<4,5 <3)
is left Ay and right Uy(sly) invariant. The linear map
VeV — A,
vf @ — q_z(?’_i)xij
is an injective right U,(sl;) module homomorphism. The x;; generate the algebra Ag?

Proof. The proof is similar to the proof given in [DN98, Prop. 3.11]. Therefore we show,
that the given map is injective. This is indeed true, we have > xpx = (¢ — ¢~ 1) - 1 by
[INYMO93, Corollary to Proposition 1.1] which means that the trivial representation occurs
with non-zero multiplicity, and we have z3; = 35 (C (q — q Ytz — tlg) # 0—which is a
vector of highest weight—since A, does not have any zero divisors. O]
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Construction of .Agl? via Quantum Spheres

In [DN98] Dijkhuizen and Noumi constructed their subalgebra of left €7 invariant elements
in A, via »deformed« quantum spheres. With some adjustments it is possible to construct
their subalgebra of left ¢ invariants in .4, with the help of deformed quantum spheres.
The method does also work for Ag‘? In the rest of the section there is short route of
the construction given using the notation in said publication—taking here care of some
differences. They are due to the fact that we consider a left instead of right action. For
proofs see the original paper of Dijkhuizen and Noumi.

DEFINITION 4.4 Let n € N and let A (S) = A,(S?1) be the algebra generated by z;,w;,
1 <1< nandc,d subject to the relations

zizj = qzjzi, (1 <i<j<n),

waw; = q ww; (1 <i<j<n),

wizj = qzw; (1 <i#j<n),

zjwj=wizi+ (1 =¢7%) Y wz — (L—q%)d (1<) <n),

k<j

Z Wi = C+ d.
k=1

With these relations the following equations are holds for all 1 < j < n:

czj = zjc, cw; = wjc, cd = dc,

dz; = ¢*z;d, dw; = q *w;d,

wiz = zw; — (L= ¢ ) Y g 9" Vg + (1 — ¢72)g 20714,
k=1

Z g 2R o, = ¢+ ¢,
k=1

There is also a unique *-structure on the algebra .Aq(g ) such that

T=wy, = d=d.

We set C = Cla, 3,7,0] and 0: C — C with

0(a) = a, 0(B) = qB, 6(v) = qv, 6(0) = 4.

We set C[0*!] as the subalgebra of EndcC generated by the left multiplication by
a,7,0,0,071. This algebra is isomorphic to C[6*!] ® C|a, 3,7, d] with the multiplic-
ation on the tensor product given by 6P = 6(P)f where P is a polynomial in C.

We define the maps

Ri: Ay(S) — A (S) ® A(U(1)),
Lli Aq(g) — Aq ® Aq(g)7
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Ry: A, @ ClOF] — A, @ C[0F' | @ AU(1)),
Ly: A, ®C[0F] — A, ® A, ® C[0*]

Rl(Zj):Zj®Z Rl(wj):wj@)z_l Ri(c)=c®1, Ri(d)=d® 1,

Ly(z;) Ztﬂ®z,, Ly (w,) ZS i) @i, Li(c) =1®¢, L(d) =1®d,

i=1 =1
Ry(0) =0 ® 271 Ry(g) = g® 1, for g generator,

These morphism turn A,(S) and A, ® C[#*'] into two-sided (Aq, AU (1)))-Comodule
algebras. In the rest of the section we choose n to be 3, since the subalgebra 2l; only lives
in Uq(ﬁlg).

THEOREM 4.5 There are unique algebra homomorphisms W, ®: Aq(g) — A,®C[0F!] such
that for 1 < j < 3 we have

(z (7t12 + &13)

i) =
D(2;) =0~ (thl + 0tj3),
(w]) = O‘t;:s
®(wy) = (- 5%1 + at]3)9
U(c) = ®(c) = ad,
d(d) = O,
U(d) =

The mappings ¥, ® are injective and two-sided (Aq,A(U(l)))—comodule homomorph-
misms. ® is also a x-homomorphism.

COROLLARY 4.6 The isotypical decomposition of .Aq(g) with respect to the A, coaction is

A (8) 2 @ V(lw +mws) @ Cle,d),

[,m>0

where V (lwy +mwy) is the A,-subcomodule of .Aq(g) generated by the highest weight vector

m .l
Wg 27 -

We define
Ay(CP?) = {a € A(5°) | R(a) =a®1}.

This algebra is generated by w;z;, 1 < i,j < 3 and ¢,d. As already in A,(S) in the above
algebra c,d are central. We can specialise ¢, d to elements in C with not both chosen as
zero. We denote this algebra by A, ((C]P)2(C, al))7 it has the following decomposition subject
to the left A,-comodule structure

A (C]P’2 c, d) EBV( w1 +w2)>.

>0
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Set AY = {be Ay | ub = e(u)b for all u € ¢}. This algebra is generated by the
elements

Yi; = qdtiti + q letiytis + Vedtiyty + Vedtits (1<, < 3)

—so it is the homogeneous space in [DN9Sg].

1
q—q~ "

THEOREM 4.7 Let ¢cg > 0 be a real number and { = cg
algebra homomorphisms given by

Then there are unique

A,(CP?) — A

q ,U)Z'Zj'—)l'ij, C'-)Co,d'—>0,

Aq(@2) — AECOYO, Wiz = Y5, C > Co, d— 0.
These two mappings are Agz-module homomorphisms and induce isomorphisms from

Aq(@"_l(co,O)) to .Affo’o Tresp. A?Q. The first homomorphism is a *-algebra homo-
morphism. In particular we have an isomorphism between .Ag? and .AZCO’O.

Proof. We define algebra homomorphisms ¢, : Cla, 8,7, 6] — C by

1, 0, 1,
(;5(04) =0, ¢(6> =0, (7) =0, ¢<5) =

then the maps (id ®) o ¥ and (id ®¢) o ® are well-defined maps, since ¥ Aq(@g)) and
@(Aq(@fﬂ)) are contained in A, ® Cla, 3,7, d]. O

~ N\

REMARK 4.8 In the case r = 1, that is ngcf, the corresponding homogeneous space is
isomorphic to Agdo’o for suitable pairs dy > 0 and ¢ € k*, namely ( = doﬁ.

The Case ( =0

If the parameter ¢ = 0, then G is obviously nilpotent. In particular, we lose the semisim-
plicity for at least all finite dimensional simple U,(sl3) modules. However, we can still

show that the space of ngo)—invariant elements is one-dimensional. To perform this we lift
the case ( = 0 back to the case ¢ # 0.

Similarly as in the case for ( # 0 we get for the case ¢ = 0 the following necessary
condition: Let u = kyw; + kows be a dominant weight, then we have

_ 2k1+2k
Kiv, =q v,

and let mq, my > 0 be integers and choose v € L(u) with weight p — (mjay + moas) that
is ngo)—invariant, then we have the condition

Kpv=v<— —3my +2]€1+k’2 :O,
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which means that we have m; = w and no condition on msy. This requires £y and ko
lying in same residue class mod 3 and we know, that an invariant vector v must have
weight 0 + tay for a suitable ¢.

For given ¢ € k we define

Gy = K3y' (B +¢ 1),
G\ = KKy W(EyEy — ¢ YEVEy + (g — ¢ )CEY).

PROPOSITION 4.9 Let k € Ny and p = k(wy + ws), then the subspace of A - invariant
vectors in the U,(sl3)-module L) is one-dimensional.

Proof. The one-dimensional weight space L(ft)o+ka, = L(t)u—ka, is invariant under A,
Let 0 < t < k. Assume there is a vector w € L(u) with weight tay such that

Géo)w =0 an Fiw = 0. Then we have Gél)w = ¢ *(w, i.e. w is an eigenvector of G3 and
Ki5. Moreover, w spans an %gl)—module of dimension ¢ + 1. Since w is an weight vector
of U,(sl3), follows with U, (sly)-theory that (G%))tw is a weight vector of weight tay + ta.
Therefore we have that GSV (G15)tw = ¢~1¢(G{H)tw, and it follows that G (G{))tw = 0,
in particular we have E(G))'w = 0. On the other hand we have (G{5)"*'w = 0 from
which follows that E;(GY)'w = 0. This means (G'¥)tw is a highest weight vector in
L(p), which is contradiction. O

PROPOSITION 4.10 Let ki # ko be non-negative integers that are in the same residue class
mod 3 and set i = kywwy + kews. Then there is no non-trivial Ql;o)-invam'ant vector in the

U,(sl3)-module L(p).

Proof. Set mqy = w and choose —mgy <t < my. We distinguish two cases.

Assume k; < ko and set s = % There are two cases:

1. t < s — 1: For any vector w # 0 of weight tay we have Fow # 0 and thus Gow #
E(GQ)UJ =0.

2. t > s: Assume thereisa w € L(t)ta,, w # 0 such that ngo)w = (0. By Proposition 3.4
spans w a t+ 1-dimensional ngl)—module. Since (Ey By — E1Ey)E = ¢'(EyEy — EL1E»)
and Ggg)w = 0 follows

(Gng) )tw € L(M)t(a1 +ag)-

In particular this is an eigenvector of Gél). But since p is not a multiple of ay +
and t(aq + ag) is weight of H,,, ; follows t(aq + a3) is not a corner of H,,, ; and so

E2(G§12))tw # 0 which contradicts to (G%))tw being an eigenvector of G5,

Assume that ki > ky and set s = 8752

. There are again two cases:

1. t < s—1: This is identically to the first case above.
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2. t > s: The weight space L({t)sa, is not a corner of H,,, ¢, since otherwise s, (tas) =
t(a1 + ag) would be a corner of H,,, ; which is not true, c.f. second case above.
Thus dim L({4)ta, = dim L(t)tay—a, and for any w # 0 of weight tas holds Fiw # 0.

]

Figure 2: Weight diagram of weight 5wy + 209

The space of invariant elements in V*®V is spanned by v ® ve and ¢*v} @ vy + ¢?vi @
Vg + U5 @ vs.

THEOREM 4.11 The subspace spanned by the elements
Tij = 0yl + ity (1 <45 <3),
is left ngo) and right U,(sl3) invariant. The linear map

VeV — A,
Vi QU Ty

is an injective right U,(sl;) module homomorphism. The x;; generate the algebra Agb.
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It is not possible to construct a map as in the previous section from .Aq(S' ) to Ag%
The reason is very simple: There is no factorisation for the elements 1 +¢;4t52, 1 < k < 3.
However, it is clear that the algebra AE‘Q is generated by ti5tje, 1 < ¢,7 < 3, and 1.
Clearly the first nine elements can be factorised and we can define an injective map
U A (S) — A2 given by

U'(z) = tje, V'(wy) =155, V(c)="¥'(d)=0,
and we get an injective map from Aq(@”—l(o, 0)) to .Agb, where the image is generated
by the titi. If we add a 1 to A,(S) and hence to A, (CP"}(co, 0)) and define ¥'(1) = 1,
then we get an isomorphism.
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PROSPECTS

The Case B,

We shall examine here briefly and elementary an analogous family like in Chapter 3 and
4. The proofs will be more or less the same as in Chapter 3 concerning the representation
theory and are therefore mostly omitted.

Let a1 and ay be the simple roots of type By with «; being the long root. Set

W = 84,80, and W™ = 84,. Set B = s4,(1) = 1 + 209,
EZ
BY =22 and
5 9] an

Es =Ty, (E)) = B By — ¢ 'EyE By + ¢ 2E\EY).
We have

A(Ep)
=E;® 1+ KiK; ® Eg
+ (¢ KBy — ¢ ' ER B Ky — ¢ Ko BBy + ¢ BV Ks) ® By
+ (K2E, — ¢ ' K>y B Ky + ¢ 2B K2) © EYY
+ (E§2)K1 — ¢ "B K By + q_2K1E§2)) ® Es
+ (qBy Ko Ky — ¢ ' Ko K1 Ey) @ ExEy
+ (¢ "By K Ky + ¢ 'K Eo Ky ) @ EL By
=FE;@1+KKi®@Es+q ' (1-q¢?*EK ®FE
+(q—q BRI Ky @ BBy — g2 (g — ¢ ') By K1 K ® EyEy

and with equation (5) of [Jan96, p. 8.17] follows

=FE;®1+ K K; ® Eg+
+(q— ¢ VK1 Ky @ Ty, Ty (B2) + ¢ (1 — ¢ %)’ E3 K, @ By,

SO we compute

Aop(By) =q ' 1@ B Ky + ¢ ' Bb Ky @ Ky

Aotp(Ep) = q *EsKi 'Ky 2 @ Ky P +¢72 - 1@ EgK K, °
¢ g — B ® Ty T, (By) KK
+ q75(q - q71)2E22K272 ® Ele1K§2.

55
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Let ¢ € k* and set p(FEy) = qC. We apply the contraction on the first tensor with ¢~ (po1))
and obtain

KQ_I(EQ + C : 1)7
K Ky 2 (qBs + q(q — ¢ CTay Toy (B) + (¢ — ¢ H*CEY).

Denote with Gy as the first and with G5 the latter stretched by the factor qil%.
Define B, as the subalgebra of U,(05) generated by

G,

Gha,

b,

K2K2 K 2K, 2

The following relations are holding

G2K2K2 K2K2G2,
Goly =q Fle,
GG = q2G12G2,
K2K2F, = ¢ *FIK2K2,
KiK3G = ¢* LK K3,
Gl = FiGy + G5 — KK, 2,

where the last relation generalises for s € N
1—
GuoF} = FiGia + 7— Fs g TVGE - KK,

By Theorem [HK11, p. 2.17] and [HK11, p. 3.18] is B, a right coideal subalgebra. It
is possible to choose KK, and its inverse instead of K2K2. In terms of the spherical
property of B, this has no effect, but the representation theory differs in general slightly.
We shall give a remark later.

For each pair n, k € k with 7, k # 0 exists an infinite dimensional By-module M (7, k)
with a basis mg, mq, mo, ... such that for all ¢ > 0

9

Gom; = ng —ms,
272 44

KS5K5m; = kg~ "'m;,

Fim; = miyq,

0, ifi—=0,
. 1 q4 (q CQ )mi—h if ¢ Z 1.

PROPOSITION 5.1 The module M(n, k) contains exactly one proper submodule if and only
if n°k = C2q*C7Y holds for an integer s > 1. Otherwise it is simple.
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PROPOSITION 5.2 For each pair n € k* and s € Ny exists a simple simultaneously diag-
onalisable Bo-module of dimension s+ 1 and a basis my, ..., ms such that

Gom; =ng *'m;,
K3Kym; =0 2C¢*m,,
Fim,; — Mit1, Zfl <,
0, if s =0,
0 ifi=0,

Giam; =1 —qg" , N
e (q4(271)772 _ Q4S772)m¢_1, ifi> 1

Denote this module by L(n,s). Each simple simultaneously diagonalisable Bo-module of
dimension s + 1 is isomorphic to a L(n,s) for a suitable n.

REMARK 5.3 Having an n? in the condition of Proposition 5.1 yields in Proposition 5.2
in principle a sign. But by choosing n this is already encoded in the act of choosing.
Determining instead r for the element KZK3 first would give a sign.

REMARK 5.4 Tuaking K1 K5 and its inverse as generating elements of By gives in Propos-
ition 5.1 the condition n’k® = (2¢**~V. Consequently we get then in Proposition 5.2 an
additional sign for the eigenvalue of K1Ks on my. But this is the only difference.

PROPOSITION 5.5 FEach finite dimensional simultaneously diagonalisable Bo-module is
semisimple.

REMARK 5.6 Applying the proof of Proposition 3.5 produces in the calculations of case 2
s+s =0

instead of s+ = —2. This does not give a contradiction whenever s = s’ = 0. But in that
case we have necessarily Fyv =0, since M s two-dimensional, and so does v span a one-
dimensional submodule as does w. Their direct sum must have a disjoint decomposition
mto two common eigenspaces.

Let L(kywy + kaws) be a simple, finite dimensional U,(05)-module. Let v € L be
a simultaneously diagonalised, non-zero vector such that Giov = 0. Denote with w the
component of highest weight of v with respect to U,(05). By the presentation of G5 and
G2 follows immediately that Eyw = 0 and that w generates a simple U, (sl;)-submodule of
the same dimension as the B,-submodule generated by v. From this follows a one-to-one
correspondence of decompositions of L(kiww; + ketwos).

Requiring from v € L(kyw; + kewoy) to be a Bo-invariant vector implies that its
component of highest weight has weight 0. As necessary condition on k; and ky this
produces ke € 2Ny, so L(kjw; + kewo) must be a spin representation. This is also a
sufficient condition. For showing

dim L(k1w1 + 21{?2@2)0 — dim L(k1w1 + 2k2@2)a1 =1
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for all ky, ko € Ny, we are going to use the two recursion formula (9) computed by Fer-
néandez-Nunez and Garcia-Fuertes in [FNGF14]. For an easier computation we compute

dim L(k:lwl + 2/{:2@2)0 — dim L(klwl + 2k2w2)2m

which is the same number as above since s,,(a1) = 2wy. We perform a double induction
on ky and ky. Define y, £,(0,0) resp. vk, £,(0,2) as in at (9) in [FNGF14] but for B,

instead. Note that yg, x,(0,0) = Yk, £, (0, 2).
Let k; = 0. By equation (9) in [FNGF14] and the fact that dim L(0)g = 1 and

dim L(0)2s, = 0 follows via induction on ks immediately

dim L(2k2@2)0 = k?g + 1,
dim L(szWQ>2w2 = ]{72.

Let k; > 1. We distinguish two cases in which both we apply equation (9):
1. k5 = 0. Then
dimL(kZﬂEl)O — dim L(klwl)2w2
= dim L((ky — 1)w1)0 + Yr10(0,0) — dim L((ky — D)wn) = i, 0(0,2)
w2
=1
by induction.
2. ]{?2 Z 1. Then
d1mL(k1w1 + 2]{?2@2)0 — dim L(k;lwl + 2]{32@2)2@2
= dim L(kymoy + 2(ky — 1)) + dim L((k — ey + 2kows),
— dim L( (k1 — D)ooy + 2(ky — 1)@2) + Yk, 28, (0,0)
- d1mL(k1w1 +2(ky — 1)), — dim L((ky — 1)y + 2kaom)
2to2 2w
((ky = Ve + 2(ky — 1)w2)2 — Ykr.21, (0, 2)

THEOREM 5.7 The right coideal subalgebra B4 is spherical in U,(05).

Generalisation for Other Types

As the calculus for the quantum enveloping algebra of type Bs shows it is possible to
apply the method of deformation done in this work on other types than A,,. In principle
there are two possibilities: Either performing case-by-case calculus or try to find a suitable
theory for all cases.
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Kramers [Kra79, Tabelle 1] and the theory of riemannian symmetric spaces suggest
some kind of grouping at least concerning the property of being spherical (or not spher-
ical).

One part is nevertheless the treatment of small cases like 25 and B, since the rest of
the right coideal subalgebra is a covered by the theory of quantum enveloping algebras,
c.f. »The General Case< in Chapter 3. Since the theories for 25 and B, are very similar it
is natural to ask for a unifying theory of these two cases. The treated algebra 23 plays a
minor role since its representations behave more less like that 2(; ® 2Ao—but sharing one
element (and producing some g-factors).

Generalisation of 2, and 8B,

As pointed out in the above treatment of case By the differences to Ay are quite small.
The main difference appears with the relations between 15 and F}, where B, produces
some squares. The g-factor appearing in Ay seems to the author minor important since
it does not change the representation theory. But, as done in this work, the square can
neglected by replacing it. A similar calculus in type Go with a; long and «ay short gives
indeed a third power of G5 but no power of an element of U°, explicitly one computes

GuFl = ¢ F\Gy + Gy — CKPK,?

as relation.

Interchanging long and short root yields power-free relations among G5 and F) inde-
pendently of the length of the long root. This is reasonable, since in this case the element
element leading to Gy looks like FE, — ¢ *FyE; for suitable & € N and is up to the
g-factor the same as in case A,.

A generalisation could be as follows: Let k,l,m,n € Z be integers with k,[ # 0.
Define 7 as the unital algebra generated over k by the elements F, G, Hy, HY subject to
the relations

H\Hy = HoHy,
H\F = ¢*FH,,
H\G =q¢*GH,,
H,F = ¢'FH,,
HoG = ¢ 'GH,,

GF = ¢ ™FG+ H" — H,.

The parameter ¢ is left out since it is not important for the relations (it does only
appear as a stretching factor of Hs).

CONJECTURE 5.8 The theory of dimensional <7 -modules on which Hy and Hy are di-

agonalisable and Hy has no eigenvalue equals to 0 is analogue to the theory of Ay resp.
B,.
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Another question concerning the representation theory and concerns Definition 3.2 is
whether H; is invertible or diagonalisable on a finite dimensional .27-module.

CONJECTURE 5.9 Fach finite dimensional </ -module is simultaneously diagonalisable by
H, and Hy and Hy is an epimorphism.

Other Conjectures

The discussion around Proposition 3.22 suggests

CONJECTURE 5.10 Under the assumptions of Proposition 3.22 holds: The Uy(sl,41)-
module L(\) has an 2, .-invariant vector if and only if

A E @(wk + wn+1_k)N0.
k=1

In Chapter 4 was shown for the case n = 2 that the homogeneous space of Dijkhuizen-
Noumi is as algebra isomorphic to the homogeneous space of this work. In assuming the
correctness of the above conjecture it is possible the extend the calculations of the case
n = 2 to the general case.

Taking a look at the invariant 20-vector of L(w; + ws) in equation (4.1) we see
immediately that it has a non-zero component of maximal weight in direction as. We
shall understand »maximal weight in direction of a,.< as the weight with the property:
There is a k € N such that ka, is a weight of the simple module but (k + 1), is not.

CONJECTURE 5.11 Let L be a simple Uy(sl,,4+1)-module and let v € L be an 2, ,-invariant
vector. Then v has non-zero component of maximal weight in direction ..

In the proof of Proposition 4.9 we gave the invariant vector for the case n = 2 and
¢ = 0. This was the main motivation for the above conjecture since it is clear: Let
v = Z%:o v with v € Lg,, and v; # 0 be ﬁgfl—invariant for a ¢ # 0, then v is clearly nggl—
invariant. In terms of Proposition 4.9 and Proposition 4.10 it is reasonable to formulate

CONJECTURE 5.12 Let L be a simple U,(sl,1)-module. A vector w € L is A -invariant

n’
if and only if there is an 2, ,-invariant v = Zﬁf:o vg with vy, € Ly, and v = w.

These two conjectures should extend to other cases constructed via the method applied
in this work.

Programme

As pointed out in the introduction the method for proving the spherical property relies
on Kramers work. Unlike the works of Noumi-Sugitani, Dijkhuizen-Noumi or Letzter it
does not really use the »freedom« of a right coideal subalgebra that was explained by
Noumi-Sugitani.
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Additionally there is another property of the right coideal subalgebras of Noumi-
Dijkhuizen and Letzter ([Let03]) that is that their invariant vector has a non-zero highest
weight component, i.e. fixing a one-dimensional weight space plus a »tail<. This is com-
pletely contrary to the here presented concept.

Nevertheless in point of view of Conjectures 5.11 and 5.12 it seems to be possible to
fix an arbitrary one-dimensional weight space or least one whose weight is conjugated to
the highest weight under the weyl group.
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APPENDIX

German Abstract / Deutsche Zusammenfassung

Ende der 1980er Jahre konstruierten unabhéngig voneinander Jimbo ([Jim86]) und Drin-
fel’d ([Dri86]) Quantengruppen. Diese Quantengruppen spielen inzwischen eine wichtige
Rolle in der Lietheorie als auch in der Theorie der Hopfalgebren. Bereits kurz nach ihrer
Einfithrung erschienen Verallgemeinerungen, so gab Woronowicz in 1987 eine Definition
fir kompakte Quantengruppen bzw. kompakte Matrixpseudogruppen ([Wor87]). Mit
Hilfe einer x-Struktur konnte er auf seinen kompakten Quantengruppen einen Haarzus-
tand konstruieren, welcher dem klassischen Haarmafl sehr dhnlich ist, vor allem aber
zentrale Eigenschaften des Haarmafles besitzt. Podles nutzte diesen Zustand um einen
homogenen Raum fiir S,U(2) zu konstruieren ([Pod87]).

Im Jahr 1995 présentierten Noumi und Sugitani eine neue Methode um quantensym-
metrische Raume zu definieren ([NS95]): Anstatt einen homogenen Raum als Invari-
antenraum einer Hopfunteralgebra zu betrachten, schlugen sie einen Wechsel zu Invari-
antenrdumen von Koidealunteralgebren vor. Um solche Koideale zu finden, nutzten sie
Losungen einer Spiegelungsgleichung; sie konstruierten Koideale fiir alle Riemannschen
symmetrischen Paare aufler vom Typ AIII. Spéter folgte eine Publikation von Dijkhuizen
und Noumi ([DN98]), in welcher sie auch Koideale fiir den Typ AIII konstruierten, ferner
erschienen von Letzter ebenfalls ein Beitrag zu Rechtskoidealunteralgebren ([Let97]). Let-
zter publizierte einen Ansatz, um alle Typen Riemannscher symmetrischer Rdume ohne
Fallunterscheidung abzudecken ([Let99]). Weitere Arbeiten in diese Richtung erschienen
mit [Let02], [Let03], [KLO8] und [Kol08].

Kharchenko startete ein Programm zur Klassifikation vom homogenen Rechtskoideal-
unteralgebren. Solche Rechtskoidealunteralgebren haben die Eigenschaft, dass sie das
Erzeugnis aller gruppenartigen Elemente von U,(g) enthalten, also U". Mit [Khall] ab-
solvierte er die Klassifikation dieser Rechtskoidealunteralgebren fiir Uf (502, ) und zusam-
men mit Sagahon fir U,(sl,,41) ([Kha08]). Das Klassifikationsprojekt wurde dann von
Heckenberger und Kolb fiir alle Typen abgeschlossen ([HK12]). Wie auch Heckenber-
ger und Schneider ([HS13, Theorem 7.13]) stellten sie die homogenen Rechtkoidealun-
teralgebren in Beziehung zu der Weylgruppe der sie enthaltenden universellen Einhiil-
lenden. Durch die Verkniipfung kénnen homogene Rechtskoidealunteralgebren vermittels
PBW-Elementen angegeben werden. In einer weiteren Arbeit [HK11] behandelten Heck-
enbeger und Kolb diejenigen Rechtskoidealunteralgebren des Borelteils, deren Schnitt
mit UY eine Hopfalgebra liefert. Wieder konnten sie die Rechtskoidealunteralgebren mit
der Weylgruppe verkniipfen. Zusatzlich zur Beschreibung mit PBW-Elementen tauchten
Charaktere, die zu einer Deformation von U™ [w] fithren. Sie wurden ebenfalls klassifiziert.

Aufbauend auf den beiden Arbeiten solle in dieser Arbeit eine weitere Familie von
Rechtskoidealunteralgebren vom Typ A, vorgestellt und behandelt werden. Wéhrend
die Arbeiten von Dijkhuizen, Letzter und Noumi ihren Schwerpunkt auf symmetrische
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Raume und *-Struktueren legen, sollen diese hier nicht beachtet werden - denn homogene
Réaume sind auch mit keiner der beiden Eigenschaften durchaus interessant. Der hier
verfolgte Ansatz ist rein algebraisch, und motiviert durch eine Arbeit Miiller und Schneider
([MS99]) sollen hier reduktive Rechtskoidealunteralgebren betrachtet werden, denn diese
verfiigen uber giinstige algebraische Eigenschaften. Wegen dieser Anforderung sind die
Rechtskoidealunteralgebren in der vorliegenden Arbeit groff in dem Sinne, dass sie eine
groBe Hopfalgebra unterhalten und als zu U, (sl,) ® U,(sl,—,11) verwandt gelten diirfen.
Aus letzterem resultiert: Weil die Erzeuger einer quantisierten universellen Einhiillenden
in Verbindung mit dem Wurzelsystem stehen, gibt es eine »ungenutzte« Wurzel: «..

Wir bezeichnen mit 2, , C U,(sl,+1) die Rechtskoidealunteralgebra, und sei A das
Gewichtsgitter von U,(sl,+1). Ein Modul U,(sl,+1)-Modul ist sphérisch, wenn die Fix-
punktmenge von 2L, , hochstens eindimensional ist. Theorem 3.21 und Proposition 3.22
ergeben zusammen:

Sei A € Lambda ein dominantes Gewicht und sei L(\) der einfache Uy (sl,41)-Modul
zum Gewicht X. Dann ist L(\) ein halbeinfacher A, ,.-Modul. Ferner gilt: Ist L()\) ein
spharischer Uy(sl,.) @ Uy(sl,—+)-Modul, so ist er auch ein sphdrischer 2, .-Modul.

Krémer zeigte in seiner Arbeit [Kra79], dass U, (sl )@U,(sl,—,+1) genau dann sphérisch
ist, wenn r # n—r+1. (Um genau zu sein: Er zeigte die entsprechende Aussagen fiir die
spezielle unitére Gruppe, deren Darstellungstheorie aber identisch mit der von U, (sl,,41)
ist.)

Die Algebra 2, 5 hat zudem eine gute Darstellungstheorie, wie Propositionen 3.4 und
3.5 zeigen. Sie ist vergleichbar mit der Darstellungstheorie von U,(sly). Ihre Erzeuger
sind Gy = K3 (BEa + (- 1), Gio = K{ 'Ky Y(EByEy — ¢ YE By + (g — ¢ Y EY), (K2Ky)™!
and F}, wobei (¢ ein Skalar ungleich 0 aus dem Grundkorper k ist.

Fiir jedes Paar s € Ny und k € k,k # 0 gibt es genau einen einfachen Ay o-Modul
der Dimension s+ 1, so dass Gy und K?K, simultan diagonalisierbar sind. Jeder endlich
dimensionale, einfache Ugo-Modul mit der letztgenannten Eigenschaft von Gy und KK,
ist isomorph zu einem der oben aufgefiihrten einfachen Moduln. Ferner ist jeder endlich
dimensionale Az 2-Modul mit besagter Eigenschaft halbeinfach.

Im ersten Kapitel werden die Notation und wichtige Eigenschaften iiber quantisierte
universelle Einhiillende sowie deren duale Hopfalgebra, den quantisierten Koordinaten-
ring, vorgestellt.

Im zweiten Kapitel werden zu Beginn die fiir die Konstruktion wichtigen Satze
aus [HK11] zitiert. Anschliefend wird die Deformation durchgefiihrt, hierzu wird ein
geeignetes Wort — das lingste Wort Unterdiagramms A, _; x A,,_, von A, — gewéhlt. Die
Deformation iiber den Charakter liefert dann das Element Ggr = K (E,, + (- 1), wobei
¢ ein invertierbarer Skalar ist, welches die Rolle des Elements K, tibernimmt, aber nicht
in UY liegt. Dieses »schiefe« Element erfordert eine Deformation bzgl. der Wurzeln «,._;
und a;41, welche zu Elementen Ggr | bzw Ggrea fithrt. Nach hinzufiigen von Elemente
aus dem negativen Borelteil ergibt sich die Relation

Gﬂ: Farﬂ = qFanlGB;,I + Gﬂ; — CK;TZAK;TI,

—1

sowie ihr Korrespondat fiir 7+1 statt r —1. Das Element G- sollte als eine Deformation
des Elements E, betrachtet werden, obgleich von dem Element E, E,, , — q_lEarflEar
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herriihrt. Wie bereits oben angedeutet wird die resultierende Rechtskoidealunteralgebra
mit 2, , bezeichnet. Nach Ausfiihrung der Deformation werden noch einige algebraische
Eigenschaften abgeleitet, wie etwa die Existenz einer PBW-Basis und eine Graduierung.

Im dritten Kapitel wird die Darstellungstheorie untersucht - mit der Annahme, dass
Ggr diagonalisierbar ist. Dies stellt insofern keine Einschrankung dar, da G- auf je-
dem endlich dimensionalen U,(sl,+1)-Modul diagonalisierbar ist (Proposition 3.1). Die
Halbeinfachheit wird zunéchst fiir die Algebren s und 3o gezeigt. Die angewandte
Methodik ist vergleichbar zu der fiir U,(sly) bzw. U,(sly) ® U,(slz). Im allgemeinen Fall
resultiert dann die Halbeinfachheit aus der von U, (sl,) ® U,(sl,,—,41). Dies gilt ebenso wie
fir den Nachweis, dass 2, sphérisch ist.

Das vierte Kapitel behandelt den homogenen Raum von 2(35. In diesem Fall kann
der invariante Vektor leicht bestimmt werden. Es wird gezeigt, dass der homogene Raum
isomorph zu demjenigen von Dijkhuizen und Noumi ist. Allerdings verfiigt hiesieger tiber
keine #-Struktur. Der Nachweis erfolgt vermittels Quantenspharen. Wie nédmlich auch
Dijkhuizen und Noumi einen Isomorphismus zu einem quantenprojektiven Raum zeigen
konnten, ist dies mit der gleichen Methode auch fiir den hier prasentierten homogenen
Raum moglich. Im letzten Abschnitt des Kapitels wird fiir n = 2 der Fall { = 0 be-
trachtet: Dann verliert 2(; 5 sofort ihre Halbeinfachheit und G 82 wird nilpotent. Mit Hilfe
von Gewichtsdiagrammen kann dennoch gezeigt werden, dass der Raum der Invarianten
hochsten eindimensional ist.

Das letzte Kapitel beginnt mit einer Untersuchung fiir den Typ Bs. Die Ergebn-
isse sind nicht wesentlich verschieden wie fiir Typ A, und entsprechend werden einige
Verallgemeinerung der zugehorigen Algebren vorgestellt. AbschlieBend sind noch einige
Vermutungen hinsichtlich aufgetretener Fragen formuliert.
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