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gereicht.

Anna Leister

Marburg, 18. Februar 2016

iv



“Die großen Sprünge schafft man nur in vielen kleinen Schritten”

Blumentopf - Keine Zeit



Acknowledgements

During my PhD study, I was supported by many people. Most importantly, I would

like to express gratitude to my supervisor. Hajo, thank you for suggesting the problem,

mentoring this thesis and bringing substantial ideas to my work. I am grateful for your

constant support and encouragement, as well as your patient openness to all of my

questions.

I thank Prof. Dr. Jürgen Franke for taking the Koreferat.

I would like to thank my fellow working group members and colleagues from the math-

department for motivating, encouraging and entertaining talks and the good working

atmosphere. Special thanks to Viktor Bengs for giving valuable comments and helpful

corrections when reading this thesis.

Thanks to the Evangelisches Studienwerk Villigst for the financial support as well as

many opportunities of academic and social exchange.

I gratefully acknowledge financial support from the DFG, grant HO 3260/3-2.

Thanks to my parents for supporting my studies and my family for providing a stable

background, which is fundamental for the completion of this challenging project.

vi



Contents

Introduction 1

1. Introductory theory on hidden Markov models 3

1.1. Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. The EM-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Nonparametric maximum likelihood estimation for hidden Markov models 13

2.1. Identification of nonparametric hidden Markov models . . . . . . . . . . . 14

2.2. Nonparametric maximum likelihood estimation for state-dependent mix-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Hidden Markov models with state-dependent mixtures . . . . . . . 17

2.2.2. Existence of the maximum likelihood estimator . . . . . . . . . . . 18

2.2.3. Consistency of the state-dependent densities . . . . . . . . . . . . . 19

2.2.4. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3. Nonparametric maximum likelihood estimation for state-dependent log-
concave densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1. Hidden Markov models with state-dependent log-concave densities 33

2.3.2. Existence and shape of the maximum likelihood estimator . . . . . 34

2.3.3. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3. Penalized estimation for hidden Markov models 46

3.1. Penalized maximum likelihood estimation . . . . . . . . . . . . . . . . . . 47

3.2. Asymptotic theory for the penalized estimator . . . . . . . . . . . . . . . 49

3.3. Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2. Real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. A hidden Markov model for panel data 64

4.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2. Cross sectional analysis using mixture models . . . . . . . . . . . . . . . . 66

4.3. Serial dependence in nonhomogeneous hidden Markov models . . . . . . . 68

4.4. Selection of covariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5. Switching Regression: Cross sectional analysis with covariables . . . . . . 77

4.6. Nonhomogeneous hidden Markov models with covariables . . . . . . . . . 81

4.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



Contents

4.8. Modifications of the EM-algorithm . . . . . . . . . . . . . . . . . . . . . . 87

4.8.1. Nonhomogeneous hidden Markov model . . . . . . . . . . . . . . . 87

4.8.2. Switching Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9. Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Discussion and outlook 97

A. Additional parameter estimates for chapter 3 99

B. Overview ISO codes 105

Bibliography 108

Zusammenfassung 116



Introduction

Hidden Markov models are a common statistical instrument for modelling time series

data. They were introduced in the 1960s by Baum and Petrie (1966) and became very

popular for a wide range of applications including speech recognition (Rabiner et al.,

1993), biology (Zucchini et al., 2008), signal processing (Cappé et al., 2005) and financial

economics (Bhar and Hamori, 2010, Rydén et al., 1996) ever since.

The idea of the model is relatively simple. Considering a bivariate process (Xt, St)t∈T ,

the first component (Xt)t∈T is assumed to represent a series of observations, while

(St)t∈T is unobserved. The sequential dependence which characterizes time series data

is then modelled by assuming (St)t∈T to be a Markov chain. It is further assumed that

the distribution which generates an observation is determined by the corresponding state

of the Markov chain. Detailed introductions can be found in Zucchini and MacDonald

(2009), Cappé et al. (2005) or Elliott et al. (1995).

In this thesis the focus is on finite state space models in discrete time. The standard

model is to consider a homogeneous Markov chain and state-dependent distributions

from a parametric family like Gaussians. In this setting, statistical estimation theory is

well developed, see Leroux (1992a) and Bickel et al. (1998) for results on consistency and

asymptotic normality of the maximum likelihood estimator and Gassiat and Rousseau

(2014) for asymptotic results in a Bayesian context. Computation of the maximum like-

lihood estimate is also very convenient in the standard model because the EM-algorithm

gives closed-form estimates for many choices of the parametric state-dependent distri-

butions.

In three chapters of this thesis, the focus is on maximum likelihood estimation in hidden

Markov models where some of the standard assumptions are relaxed. Several choices

of nonparametric densities which yield more flexibility of the state-dependent densities

are considered, penalized estimation in certain types of models in order to allow for

sparsity is discussed, and to enable time-dependent model parameters, inhomogeneous

Markov chains are investigated. These adjustments illustrate the flexibility of this class

of models and open it for a broader type of data sets. Next to some theoretical questions

concerning maximum likelihood estimation in those models, the corresponding adjust-

ments of the EM-algorithm are developed and numerical examples for particular models

are presented.
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Introduction 2

The first chapter is an introduction to hidden Markov models and the related class of

mixture models, which are relevant throughout the thesis. In addition, the general idea

of the EM-algorithm, next to its formulation in context of mixture models and hidden

Markov models are presented.

In Chapter 2, nonparametric maximum likelihood estimation for hidden Markov models

and recent developments in this context are considered. Since identifiability of nonpara-

metric hidden Markov models has been studied only recently, in Section 2.1 the most

general statements on that issue together with required assumptions are summarized.

In Sections 2.2 and 2.3, classes of state-dependent densities are specified and the cor-

responding maximum likelihood estimators are investigated. For the class of general

mixture models, existence and consistency of a nonparametric maximum likelihood esti-

mator are proven. In addition, the EM-algorithm is adapted and a simulation study to

illustrate the theoretical results is given. For state-dependent log-concave densities, ex-

istence of the maximum likelihood estimator is proven and its shape is specified. Based

on these results, numerical examples for simulated and real data are given.

Chapter 3 is about penalized estimation for hidden Markov models. Its main objective

is to investigate sparsity of certain parameters in a parametric Gaussian hidden Markov

model. In particular, conditional independence of random variables is considered by ex-

ploring zero entries in state-dependent precision matrices. Three penalty functions are

introduced. Next to the popular l1-penalty, hard thresholding and the SCAD-penalty

function introduced by Fan and Li (2001) are considered. Known results from penalized

estimation theory are transferred to the presented model, in order to prove consistency

and asymptotic normality of the penalized maximum likelihood estimator. Additionally,

a simulation study and a real data example compare the finite sample performance of

the three penalty functions.

Chapter 4 is an application of hidden Markov models to a set of panel data containing

the GDP of several countries over a certain period of time. Four models differing in

dependency structure and the inclusion of covariables, which are all based on mixture

models or hidden Markov models, are compared. In each model the parameters are

estimated, followed by a-posteriori analysis in order to examine different income groups

next to advances and decline of countries’ income over time. The inclusion of covari-

ables is an attempt to explain those developments. Since the considered models are

time-inhomogeneous, the required adjustments of the EM-algorithm are deduced.

Additional material for Chapters 3 and 4 can be found in the appendix.



1. Introductory theory on hidden Markov

models

Hidden Markov models are a comprehensive class of flexible statistical models to handle

data possessing dependence over time. The basic idea is to model serial dependence

between observations using an underlying, unobserved Markov chain. Extensive intro-

ductions to hidden Markov models can be found in Zucchini and MacDonald (2009),

Cappé et al. (2005), Bhar and Hamori (2010) and Elliott et al. (1995).

In this chapter we first introduce mixture models which are closely related to hidden

Markov models but designed to deal with independent data, before presenting hidden

Markov models in more detail to give a theoretical background for the following chapters

of this thesis.

1.1. Mixture models

Mixture models are a common statistical model for independent data which arise from a

heterogeneous population that consists of various homogeneous subpopulations. Com-

prehensive introductions on their theory and applications can be found, for example, in

Lindsay (1995), McLachlan and Peel (2004) and Frühwirth-Schnatter (2006).

A random vector X has a mixture distribution, if its probability density function admits

the form

fπ(x) =

∫
Θ
gϑ(x)π(dϑ). (1.1)

In that representation, (gϑ)ϑ∈Θ is a parametric family of densities with respect to a

σ-finite measure ν, Θ is the corresponding parameter space and π is a Borel probability

measure on Θ, called the mixing distribution.

If the mixing distribution is discrete with finite support, the model is called finite mix-

ture model and has a very illustrative presentation: For i = 1, . . . , n, (Xi, Si) is an

independent random sample of the mixture model, where Xi describes the ith observa-

tion of the sample and Si is a latent variable, indicating which subpopulation Xi belongs

3



1 Introductory theory on hidden Markov models 4

to. Since π has finite support {ϑ1, . . . , ϑm}, the mixture density (1.1) can be written as

fπ(x) =
m∑
j=1

πjgϑj
(x), (1.2)

thus there are m homogeneous subpopulations. The corresponding component weights

πj (πj ≥ 0 and
∑m

j=1 πj = 1) denote the proportion of the jth component regarding

the total population. In addition, given Si = j, we know that Xi is drawn from the

component density gϑj
. The support points of the mixing distribution are called the

component parameters for the component densities.

The aspect identifiability of mixtures covers the question of a unique characterization

of the mixture model. In our context, a mixture model is called identifiable, if for

any probability measures π, π∗, the fact
∫
Θ gϑ(x)dπ(ϑ) =

∫
Θ gϑ(x)dπ

∗(ϑ) implies that

π = π∗. This problem was discussed for example in Teicher (1960, 1961) and was

extensively studied in the context of finite mixtures, see Teicher (1963) and Yakowitz

and Spragins (1968).

In the following we will address the problem of estimating the mixing distribution or

the parameters of the mixture model, when given a random sample x1, . . . , xn from the

mixture density fπ. A classical estimator is a maximizer of the likelihood function

Ln(π) =

n∏
i=1

fπ(xi).

Using methods from convex analysis, Lindsay (1983) showed that a maximum likelihood

estimator of the mixing distribution exists and has finite support size m ≤ n. For

a detailed introduction see Lindsay (1995). We will use parts of this method when

investigating hidden Markov models with state dependent mixtures in Section 2.2.

Results on consistency of the maximum likelihood estimator can be found for example

in Kiefer and Wolfowitz (1956), Pfanzagl (1988) and Leroux (1992b).

A common algorithm for computing the maximum likelihood estimator in the context

of finite mixture models is the EM-algorithm introduced by Dempster et al. (1977)

and Redner and Walker (1984). Laird (1978) and DerSimonian (1986) gave advice on

the computation of the nonparametric maximum likelihood estimator of the mixing

distribution. We will revisit the methodology of the EM-algorithm in Section 1.3.

After estimating the parameters of a finite mixture model, a common task is to match

the observations to the estimated components of the model. This can be realized by

assigning observation xi (i = 1, . . . , n) to the component which has the highest estimated
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posterior probability,

argmax
k=1,...,m

π̂kgϑ̂k
(x)∑m

j=1 π̂jgϑ̂j
(x)

.

Detailed illustrations of clustering and classification methods in the context of mixture

models can be found in Fraley and Raftery (2002) and Ritter (2014).

1.2. Hidden Markov models

In this section we introduce the setting of hidden Markov models (HMMs) with finite

state space and in discrete time, as well as some aspects of inference in this context,

which will be revisited in the following chapters of this thesis.

A hidden Markov model is a bivariate process (Xt, St)t∈N, where (Xt)t∈N represents the

process of observations and (St)t∈N is a latent, unobserved process. We assume Xt to

take values in a subset of Euclidean space X ⊂ Rp and (St)t∈N to be a K-state first

order time-homogeneous Markov chain, i.e. for t ∈ N,

P (St = kt|S1 = k1, . . . , St−1 = kt−1) = P (St = kt|St−1 = kt−1) =: γkt−1,kt ,

kt ∈ {1, . . . ,K}. The transition probabilities are summarized in the transition proba-

bility matrix (t.p.m.) Γ = (γk,l)k,l=1,...,K . The Markov chain is thus characterized by Γ

and its initial distribution αk = P (S1 = k), k = 1, . . . ,K.

The observable process (Xt)t∈N is assumed to be independent given (St)t∈N and the

conditional distribution of Xu given (St)t∈N depends on Su only and is called state-

dependent distribution. We denote the distribution functions of the state-dependent

distributions for Xt given St = k by Fk (k = 1, . . . ,K) and assume that they have

densities f1, . . . , fK ∈ F , where F denotes a class of densities on X with respect to a

σ-finite measure ν.

If the Markov chain is stationary and thus has a stationary starting distribution δ sat-

isfying δΓ = δ, the marginal distribution function of Xt is given by a finite mixture of

the state-dependent distribution functions, where the component weights are given by

the stationary distribution. Due to this relation, hidden Markov models are also called

Markov-dependent mixtures.

An important issue when working with hidden Markov models is the question of iden-

tifiability. Leroux (1992a) showed that identifiability of parametric models is strongly

connected to results on identifiability of mixtures (see Teicher, 1963). Namely it follows

if identifiability holds for the marginal finite mixture of the hidden Markov model.

For semi- or nonparametric settings, using the dependence structure of a hidden Markov
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model allows for identifiability results in greater generality than for mixture models. Re-

sults on this aspect were developed in Allman et al. (2009), Gassiat et al. (2016) and

Gassiat and Rousseau (2016), finally Alexandrovich et al. (2016) showed that if the

transition probability matrix of the Markov chain is ergodic, has full rank, and if the

state-dependent distributions are all distinct, the parameters of a nonparametric hidden

Markov model are identified. An overview on identifiability in semi-parametric hidden

Markov models can be found in Dannemann et al. (2014).

For a given number of states K, the parameters of a hidden Markov model are commonly

estimated using the maximum likelihood method. Let λ = (α,Γ, f1, . . . , fK) ∈ Λ denote

the parameter vector, where Λ denotes the parameter space of the model. For a sample

x = (x1, . . . , xT ), the likelihood function is given by

LT (λ) =

K∑
k1=1

. . .

K∑
kT=1

αk1fk1(x1)

T∏
t=2

γkt−1,ktfkt(xt). (1.3)

Because of the nonlinearity of the likelihood function, there is no analytic solution to

calculate the maximum likelihood estimator (MLE). Thus, estimation is usually done

performing numerical optimization of the (log-)likelihood function or using the EM-

algorithm (in the HMM-context also called Baum–Welch algorithm), which will be in-

troduced in Section 1.3.

For parametric hidden Markov models, the parameter vector has the form λ = (α,Γ,

ϑ1, . . . , ϑK), where ϑk ∈ Θ (k = 1, . . . ,K) are the state-dependent parameters of the

specified parametric class of densities and Θ is the corresponding parameter space. Pop-

ular examples are Poisson– or Gaussian hidden Markov models (see e.g. Zucchini and

MacDonald, 2009).

In parametric settings, theoretical properties of the maximum likelihood estimator based

on identifiability results are well studied. Under certain regularity conditions which will

be further discussed in Chapter 3, Leroux (1992a) proved consistency of the maximum

likelihood estimator, while Bickel et al. (1998) established its asymptotic normality.

From a theoretical point of view, nonparametric maximum likelihood estimation for

hidden Markov models is not very well developed, while numerical approaches are avail-

able, see e.g. Dannemann (2012) for a nonparametric EM-algorithm. In Chapter 2,

based on the identifiability result of Alexandrovich et al. (2016), we investigate existence

and consistency of a nonparametric maximum likelihood estimator, when assuming the

state-dependent densities of the model to be general mixtures of a parametric family. In

addition, we consider state-dependent log-concave densities and prove that in this case

a maximum likelihood estimator exists and its shape can be specified.

In many applications an important issue is to detect the sequence of states ŝ1, . . . , ŝT
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of the Markov chain, which is most likely given the parameter estimates and the ob-

servations. Analogously to classification in mixture models, the most likely state of the

Markov chain at time t ∈ {1, . . . , T} can be derived by calculating the conditional distri-

bution of St given the observations. To derive the most likely sequence of states, the joint

probabilities of X1, . . . , XT and S1 = s1, . . . , ST = sT , αs1fs1(x1)
∏T

t=2 γst−1,stfst(xt)

must be maximized over all possible sequences s1, . . . , sT , st ∈ {1, . . . ,K} for t ∈
{1, . . . , T}. Viterbi (1967) introduced an algorithm to efficiently solve this problem.

We sketch his idea shortly as described in Rabiner et al. (1993):

Set

ξ1,k = δkfk(x1),

the joint probability for x1 and S1 = k and

ξt,k = max
s1,...,st−1,st=k

P (s1, . . . , st, x1, . . . , xt),

the highest probability at time t along a path, which captures the first t observations

and ends in state k. It satisfies the recursion

ξt,k = ( max
j=1,...,K

(ξt−1,jγj,k))fk(xt), k = 1, . . . ,K, t = 2, . . . , T.

The most likely sequence of states can be determined from ŝT = argmaxk=1,...,K ξT,k,

ŝt = argmaxk=1,...,K(ξt,kγk,ŝt+1), t = 1, . . . , T − 1.

Hidden Markov models can serve as statistical model in several areas of application.

Rabiner et al. (1993) described how they can be applied to characterize speech in the

context of speech recognition. Zucchini et al. (2008) provided a hidden Markov model

for time series data on animal behaviour. Bhar and Hamori (2010) introduced applica-

tions of hidden Markov models to financial economics.

A popular practice is to use hidden Markov models to model volatility states of the

financial market, see Holzmann and Schwaiger (2014), Zucchini and MacDonald (2009),

Fiecas et al. (2012). The idea is to model daily log-returns of a number of shares using

a hidden Markov model, assuming state-dependent Gaussian distributions. The states

of the Markov chain then correspond to different volatility states of the market. We will

revisit this example in Chapter 3 to illustrate our methods on penalized maximum likeli-

hood estimation for hidden Markov models. Another similar approach in this context is

the integration of a hidden Markov chain to autoregressive models for times series data

from economics, in order to allow regime switches. See for example Hamilton (1989) for

a parametric model or Franke et al. (2012) for a nonparametric approach and examples

for financial time series.
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1.3. The EM-algorithm

Since a major issue in this thesis is parameter estimation in hidden Markov models,

which we will - next to theoretical results - consider in simulation studies as well as

real data examples, we need to choose a stable tool to perform calculations. As we

focus on estimation using the maximum likelihood method, it seems natural to apply

the Expectation-Maximization (EM)-algorithm introduced by Dempster et al. (1977)

as a ”broadly applicable algorithm for computing maximum likelihood estimates from

incomplete data”. The advantage of this approach is that in a hidden Markov model,

the unobserved sequence of states can be treated as missing data. Due to the work of

Baum et al. (1970) in the context of hidden Markov models the EM-algorithm is also

known as Baum–Welch algorithm.

In this section we state the general idea of the EM-algorithm and describe the application

to mixture models as well as to hidden Markov models, comprehensive material can be

found in McLachlan and Krishnan (2007).

The idea of the EM-algorithm is to maximize the complete-data likelihood function,

based on the observed and missing data instead of maximizing the likelihood function

of the observed data. Based on initial values for the parameters, the iterating procedure

of Expectation (E)-step and Maximization (M)-step is progressed until a convergence

criterion is satisfied.

In the E-step, given the observations and the current estimate of the parameter, the

conditional expectation of the complete-data log-likelihood function is computed.

In the M-step, the conditional expectation of the complete-data log-likelihood function

given the observations is maximized with respect to the parameters.

The resulting parameter is a (possibly local) maximum of the likelihood function.

Let us sketch the algorithm for an observable random variable X with density function

f(x; θ) with parameter θ and an unobserved random variable S. The observed data

are denoted by x = (x1, . . . , xn) and the missing data are s = (s1, . . . , sn). The density

function of the random vector (X,S) is denoted by f c(x, s; θ), thus the complete-data log-

likelihood function, which assumes s to be observable is ℓcn(θ) =
∑n

i=1 log(f
c(xi, si; θ)).

Let θ̂ denote a current estimate or starting value of the parameter θ. The iterating

procedure is as follows:

E-Step: Calculate the conditional expectation Eθ̂(ℓ
c
n(θ) | x)

M-Step: Maximize the conditional expectation with respect to θ: maxθ Eθ̂(ℓ
c
n(θ) | x).
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The EM-algorithm for finite mixture models

Assume that the density of a random vector X has the form (1.2). The vector of

unknown parameters is thus θ = (π1, . . . , πm, ϑ1, . . . , ϑm). Let x = (x1, . . . , xn) denote

an observed random sample of (1.2). The log-likelihood function is then given by

ℓn(θ) =

n∑
i=1

log(

m∑
j=1

πjgϑj
(xi)).

As described in Section 1.1, the sample (s1, . . . , sn) of the parameter process is not

observed. We introduce indicator variables ui ∈ {0, 1}m, where uij = 1{si=j}, i =

1, . . . , n, j = 1, . . . ,m.

Thus, the complete-data log-likelihood function has the form

ℓcn(θ) =
m∑
j=1

n∑
i=1

uij log(πjgϑj
(xi)) =

m∑
j=1

n∑
i=1

uij log(πj) +
m∑
j=1

n∑
i=1

uij log(gϑj
(xi)). (1.4)

For calculating the conditional expectations ûij given x and the current estimate of the

parameter θ, we apply the Bayes rule to obtain

ûij = Pθ(Si = j|x) =
πjgϑj

(xi)∑m
k=1 πkgϑk

(xi)
, i = 1, . . . , n, j = 1, . . . ,m. (1.5)

In the M-step we replace the uij in (1.4) by ûij . Maximization of the conditional ex-

pectation of the complete-data log-likelihood function can be performed considering two

separate tasks. By maximizing the function with respect to π we observe

π̂j =

∑n
i=1 ûij
n

, j = 1, . . . ,m.

Maximization with respect to ϑ1, . . . , ϑm depends on the chosen family of densities

(gϑ)ϑ∈Θ. If we choose for example the univariate Gaussian distribution, where ϑj =

(µj , σj), we obtain a closed form expression for the parameter estimates:

µ̂j =

∑n
i=1 ûijxi∑n
i=1 ûij

, σ̂j =

√∑n
i=1 ûij(xi − µ̂j)2∑n

i=1 ûij
, j = 1, . . . ,m.

The EM-algorithm for hidden Markov models

Due to the dependency structure of the Markov chain, the EM-algorithm for hidden

Markov models is much more involved compared to mixture models. Since during the

implementation numerical problems occur quickly, we describe the EM-algorithm for

hidden Markov models more detailed.
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Let x = (x1, . . . , xT ) denote a sample drawn from a hidden Markov model as described

in Section 1.2. For the unobserved sequence s = (s1, . . . , sT ) let us introduce indi-

cator variables ukt = 1{st=k} (k = 1, . . . ,K, t = 1, . . . , T ) and vklt = 1{st−1=k,st=l},

k, l = 1, . . . ,K, t = 2, . . . , T .

Before assigning the EM-procedure to the setting of hidden Markov models, we introduce

forward- and backward-probabilities, which will be useful when performing the E-step.

For t = 1, . . . , T , k = 1, . . . ,K, the forward-probability atk is defined as the joint prob-

ability of the observation sequence x1, . . . , xt and st = k. Therefore,

atk =
K∑

k1=1

. . .
K∑

kt−1=1

αk1fk1(x1)(
t−1∏
s=2

γks−1,ksfks(xs))γkt−1,kfk(xt).

Let at = (at1, . . . , atK), t = 1, . . . , T . The forward-probabilities can be calculated using

the recursion

a1k = αkfk(x1), atk = (

K∑
l=1

a(t−1)lγl,k)fk(xt), (1.6)

t = 2, . . . , T , k = 1, . . . ,K.

For t = 1, . . . , T , k = 1, . . . ,K, the backward probability btk is defined as the conditional

probability of the observation sequence xt+1, . . . , xT given st = k. Thus,

btk =
K∑

kt+1=1

. . .
K∑

kT=1

γk,kt+1fkt+1(xt+1)
T∏

s=t+2

γks−1,ksfks(xs).

Let bt = (bt1, . . . , btK), t = 1, . . . , T . The backward-probabilities can be calculated using

the recursion

bTk = 1, btk =

K∑
l=1

γk,lfl(xt+1)b(t+1)l, (1.7)

t = T − 1, . . . , 1, k = 1, . . . ,K.

Note that for every t = 1, . . . , T , k = 1, . . . ,K, atkbtk = P (x, St = k) and thus atb
T
t =

LT (λ). Consequently, for k, l = 1, . . . ,K we obtain

P (St = k|x) = atkbtk
LT (λ)

, t = 1, . . . , T

and

P (St−1 = k, St = l|x) =
a(t−1)kγk,lfl(xt)btl

LT (λ)
, t = 2, . . . , T.

(1.8)

When implementing the recursions (1.6) and (1.7), numerical problems occur since for

growing t, the multiplication of forward- or backward-probabilities (each smaller than
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1) with transition probabilities (also smaller than 1) tends to zero. To overcome this

challenge it is recommended to use scaled versions of at and bt (see e.g. Rabiner et al.,

1993).

For the forward-probabilities we introduce the scaled version ât by the recursion

ã1 = a1, c1 =
1∑K

k=1 ã1k
, â1 = c1ã1

ãtk =
K∑
l=1

â(t−1)lγl,kfk(xt), ct =
1∑K

k=1 ãtk
, ât = ctãt,

(1.9)

k = 1, . . . ,K, t = 2, . . . , T .

Using the scaling factors ct (t = 1, . . . , T ), introduced in (1.9), the scaled backward-

probabilities b̂t can be calculated for t = T − 1, . . . , 1 by the recursion

b̃T = 1T, b̂T = cT b̃T

b̃tk =

K∑
l=1

γk,lfl(xt+1)b(t+1)l, b̂t = ctb̃t,

k = 1, . . . ,K. For t = 1, . . . , T let Ct :=
∏t

s=1 cs and Dt :=
∏T

s=t cs. Note that

CT = CtDt+1. By induction we can prove that for k = 1, . . . ,K,

â(t−1)k = Ct−1a(t−1)k and b̂(t+1)k = Dt+1b(t+1)k. (1.10)

Thus, CT
∑K

k=1 aTk =
∑K

k=1 âTk = cT
∑K

k=1 ãTk = 1 and since aTb
T
T = LT (λ),

1

CT
= LT (λ). (1.11)

We are now ready to describe the EM-procedure for hidden Markov models. The

complete-data log-likelihood function has the form

ℓcT (λ) = log(αs1) +
T∑
t=2

log(γst−1,st) +
T∑
t=1

log(fst(xt))

=

K∑
k=1

uk1 log(αk) +

K∑
k=1

K∑
l=1

(

T∑
t=2

vklt) log(γk,l) +

K∑
k=1

T∑
t=1

ukt log(fk(xt)).

(1.12)

In the E-step we calculate the conditional expectations ûkt and v̂klt, respectively given

x. In order to use the scaled versions of forward- and backward-probabilities, applying
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(1.8), (1.10) and (1.11) yields

ûkt = P (St = k|x) = atkbtk
LT (λ)

=

âtk
Ct

b̂tk
Dt

1
CT

=
âtk b̂tk
ct

, t = 1, . . . , T,

v̂klt = P (St−1 = k, St = l|x) =
a(t−1)kγk,lfl(xt)btl

LT (λ)
=

â(t−1)k

Ct−1
γk,lfl(xt)

b̂tl
Dt

1
CT

= â(t−1)kγk,lfl(xt)b̂tl, t = 2, . . . , T,

(1.13)

k, l = 1, . . . ,K.

Plugging in these quantities for ukt and vklt in (1.12) respectively, the M-step involves

maximization of each of the three terms of the sum individually. For the initial distri-

bution we obtain

α̂k = ûk1, k = 1, . . . ,K, (1.14)

and for the transition probabilities, maximization yields

γ̂k,l =

∑T
t=2 v̂klt∑K

m=1

∑T
t=2 v̂kmt

, k, l = 1, . . . ,K. (1.15)

The solution of the last term depends on the choice of f1, . . . , fK . In case of the multi-

variate Gaussian distribution (ϑk = (µk,Σk), k = 1, . . . ,K), there exists a closed form

for the parameter estimates:

µ̂k =

∑T
t=1 ûktxt∑T
t=1 ûkt

, Σ̂k =

∑T
t=1 ûktxtx

T
t∑T

t=1 ûkt
− µ̂kµ̂

T
k , k = 1, . . . ,K. (1.16)

The EM-algorithm can be easily adjusted to modified or non-standard hidden Markov

models. We explain the necessary adjustments for our model settings in the respective

chapters of this thesis.

Effective initialization of the EM-algorithm is an important issue in order to obtain rea-

sonable parameter estimates, even though the discussion of this aspect in the literature is

not very comprehensive. For univariate data, Zucchini and MacDonald (2009) suggested

initialization of the state-dependent parameters based on quantiles of the observations,

Rabiner et al. (1993) proposed several ways of segmentation of the observations. Es-

pecially for multivariate data, performing clustering e.g. using the k-means algorithm

might lead to reasonable initial values.



2. Nonparametric maximum likelihood

estimation for hidden Markov models

In statistical research, the issue of nonparametric density estimation has been of inter-

est for quite a while now. There are various methods for estimating a density without

specifying a parametric structure. Izenman (1991) gave an overview on relevant meth-

ods, including kernel density estimation, smoothing methods and restricted maximum

likelihood methods.

In recent years, nonparametric estimation of the state-dependent distributions of hid-

den Markov models has aroused interest in some applications (see for example Jin and

Mokhtarian, 2006, Lambert et al., 2003, Lefèvre, 2003), because inappropriate paramet-

ric assumptions may lead to biased estimators and misspecification. On the theoretical

side, the question of identifiability of nonparametric hidden Markov models had been

unexplained, before Gassiat and Rousseau (2016), Gassiat et al. (2016) and Alexan-

drovich et al. (2016) gave an answer on that issue, see Dannemann et al. (2014) for an

overview. Based on these results, some ideas for the estimation of the state-dependent

densities have been proposed. For example, Gassiat and Rousseau (2016) considered fi-

nite translation hidden Markov models and established a nonparametric estimator based

on marginal densities, using the model selection approach by Massart (2007). Vernet

(2015) proposed some Bayesian estimation procedures and gave results on posterior con-

sistency. De Castro et al. (2015) investigated a penalized least squares estimation method

and gave an oracle inequality for the nonparametric estimator of the state-dependent

distributions. Robin et al. (2014) presented an orthogonal-series density estimator for

latent-structure models and gave its formulation for hidden Markov models.

So far, there are no theoretical results known for a nonparametric maximum likelihood

estimator based on the full likelihood function of a hidden Markov model. We investigate

the problem for nonparametric hidden Markov models in two different settings for the

state-dependent distributions. This problem is of particular interest, since for maximum

likelihood estimation we have a convenient existing computational method given by the

EM-algorithm.

In Section 2.1 we summarize results on identifiability of nonparametric hidden Markov

models from the literature, which were discussed in Gassiat et al. (2016), Gassiat and

13
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Rousseau (2016) and Alexandrovich et al. (2016). They agreed on the assumption

of a full-rank transition probability matrix and differed in assumptions on the state-

dependent distributions. The most general statement was given by Alexandrovich et al.

(2016) who assumed the state-dependent distributions to be all distinct. In addition,

they provided a result on the asymptotic contrast function for maximum likelihood

estimation in nonparametric hidden Markov models, which uniquely identifies the un-

derlying parameter of the model. Based on these general results, in Section 2.2 we

focus on theoretical properties of hidden Markov models with state dependent mix-

tures, which are quite popular in applications of speech recognition (see e.g Ajmera and

Wooters, 2003, Chatzis and Varvarigou, 2007). In contrast to parametric models, where

the state-dependent distributions are chosen from standard parametric families, hidden

Markov models with state-dependent mixtures admit more flexible modelling and can

approximate unknown densities much better. Especially multimodality, skewness and

tail behaviour of the state-dependent densities can be captured by choosing a proper

mixture model. We consider the nonparametric maximum likelihood estimator in this

context and obtain its existence and shape, next to consistency of the state-dependent

mixture densities, applying an approach from Leroux (1992a).

In Section 2.3 we impose a different shape constraint on the state-dependent distribu-

tions of the model. We consider the class of log-concave densities, which contains many

popular (parametric) examples like Gaussian densities and is thus very flexible. An

overview on inference and modelling within this class of densities was given by Walther

(2009). We investigate the nonparametric maximum likelihood estimator of hidden

Markov models with state-dependent log-concave distributions and give results on its

existence and shape, next to some computational examples.

The results of Sections 2.1 and 2.2 are published in Alexandrovich et al. (2016) and the

numerical examples for Section 2.3 are part of Dannemann et al. (2014).

2.1. Identification of nonparametric hidden Markov models

In this section we introduce the technical essentials to construct a maximum likelihood

estimator for nonparametric hidden Markov models and to develop its theoretical prop-

erties. In the literature, the problem of identifiability in the context of nonparametric

hidden Markov models is addressed, for example, in Gassiat et al. (2016), Gassiat and

Rousseau (2016) and Alexandrovich et al. (2016). The results coincide in the assumption

on the Markov chain, which requires the transition probability matrix to be ergodic and

to have full rank. To illustrate this assumption, we give the following example:
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Example 2.1. For each K ≥ 1 we construct a (K + 1)-state transition probability

matrix of rank K and two sets of K + 1 distributions such that the observations in a

resulting hidden Markov model with K + 1 states have the same distribution.

Let Γ = (γj,k)j,k=1,...,K be a K-state ergodic transition probability matrix of full rank

and a, b ∈ (0, 1), satisfying a ̸= b and set c = b/(1 + b − a), which leads to c ∈ (0, 1).

Consider the following (K + 1)-state transition probability matrix

Γ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1,1 . . . γ1,K−1 cγ1,K (1− c)γ1,K
...

. . .
...

...
...

γK−1,1 . . . γK−1,K−1 cγK−1,K (1− c)γK−1,K

γK,1 . . . γK,K−1 cγK,K (1− c)γK,K

γK,1 . . . γK,K−1 cγK,K (1− c)γK,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
of rank K. Let F1, . . . , FK+1 be linearly independent distribution functions (for example

Gaussian with distinct parameters) and define a second set of distribution functions

F̃1, . . . , F̃K+1 according to

F̃1 = F1, . . . , F̃K−1 = FK−1, F̃K = aFK + (1− a)FK+1,

F̃K+1 = bFK + (1− b)FK+1.

Then cF̃K + (1 − c)F̃K+1 = cFK + (1 − c)FK+1 and from Holzmann and Schwaiger

(2015) the distribution of a hidden Markov model with (K + 1) states and transi-

tion probability matrix Γ1, stationary starting distribution and either set of the state-

dependent distributions is equal to the distribution of a stationary K-state hidden

Markov model with transition probability matrix Γ and state-dependent distributions

F1, . . . , FK−1, cFK + (1− c)FK+1.

The idea of this example is based on Holzmann and Schwaiger (2015), who indicated

that hidden Markov models nest independent finite mixtures and thus identifiability

of the hidden Markov model could fail if it were possible to reduce some states of the

Markov chain to mixture components, since identifiability of mixtures requires strong

assumptions.

Thus, we state the assumption on the Markov chain of the model as follows

A1. The transition probability matrix Γ of (St)t∈N is ergodic and has full rank.

The assumptions on the state-dependent distributions which are required to guarantee

identifiability of the model are diversely discussed in the literature. Gassiat et al. (2016)

assumed the state-dependent distributions to be linearly independent. This assumption

is not always easy to verify and might fail for important classes of distributions. When
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thinking for example about the class of log-concave densities, containing the Gaussian

distribution, convex combinations of two distinct densities might be contained in the

class of densities and thus three distinct distributions being linear dependent can easily

be constructed.

Alexandrovich et al. (2016) stated a more general assumption:

A2. The state-dependent distributions F1, . . . , FK are all distinct.

Based on the two formulated assumptions, they gave the following theorem.

Theorem 2.1. For a given number of states K, let α,Γ, F1, . . . , FK and α̃, Γ̃, F̃1, . . . , F̃K

be two sets of parameters for a hidden Markov model with K states. If the joint distri-

bution of (X1, . . . , XT ) with T = (2K + 1)(K2 − 2K + 2) + 1 is equal under both sets

of parameters and Γ and F1, . . . , FK satisfy Assumptions A1 and A2, then both sets of

parameters coincide up to label switching.

For the proof see Alexandrovich et al. (2016).

Remark 2.2. Originally, Alexandrovich et al. (2016) stated the result of Theorem 2.1

for a stationary hidden Markov model. The corresponding result requires the following

additional assumption and that the joint distribution of T = 2K + 1 observations is

equal for both parameter sets.

A3. The Markov chain (St)t∈N is stationary. Thus, it has the stationary starting dis-

tribution δ.

Denote by ℓT (λ) the log-likelihood function of x1, . . . , xT and write λ0 = (α0,Γ0, f1,0, . . . ,

fK,0) for the underlying parametervector of the nonparametric hidden Markov model.

Based on their result on identifiability, Alexandrovich et al. (2016) proved that anal-

ogously to the parametric setting stated in Leroux (1992a), the generalized Kullback–

Leibler divergence for hidden Markov models, which is defined as a limit of normalized

log-likelihood functions, uniquely identifies the parameters of the model. To obtain this

result two more assumptions are required.

A4. Eλ0 | log(fk,0(x1))| < ∞, k = 1, . . . ,K.

A5. Eλ0(log(f(x1)))
+ < ∞ for f ∈ F .

Theorem 2.3. Suppose that (Xt, St)t∈N is a K-state hidden Markov model with transi-

tion probability matrix Γ0 satisfying Assumptions A1 and A3 and that the state-dependent

distributions F1,0, . . . , FK,0 satisfy Assumption A2 and have densities f1,0, . . . , fK,0 ∈ F ,
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satisfying Assumption A4. Let α, α0 be K-state probability vectors with strictly positive

entries. Under Assumption A5, given f1, . . . , fK ∈ F we have almost surely that

T−1(ℓT (α,Γ, f1, . . . , fK)− ℓT (α0,Γ0, f1,0, . . . , fK,0))

→ −K((Γ0, f1,0, . . . , fK,0), (Γ, f1, . . . , fK)) ∈ (−∞, 0],
(2.1)

as T → ∞ and K((Γ0, f1,0, . . . , fK,0), (Γ, f1, . . . , fK)) = 0 if and only if the two sets of

parameters are equal up to label switching.

The proof is given in Alexandrovich et al. (2016).

Remark 2.4. The limit in (2.1) defines the generalized Kullback–Leibler divergence of

the hidden Markov model.

Based on the statement of this theorem, in the following sections we utilize the general-

ized Kullback–Leibler divergence as contrast function when investigating the maximum

likelihood estimator for nonparametric hidden Markov models.

2.2. Nonparametric maximum likelihood estimation for

state-dependent mixtures

In this section we consider the maximum likelihood estimator of a hidden Markov model

if the state-dependent distributions are general mixtures of a parametric family, as pre-

sented in Section 1.1. In Section 2.2.1 we introduce the model and state assumptions

to prove existence of the maximum likelihood estimator in Section 2.2.2, as well as con-

sistency of the state-dependent mixture densities in Section 2.2.3. In Section 2.2.4 we

discuss adjustments of the EM-algorithm to our setting and investigate the performance

of the maximum likelihood estimator in a simulation study. Section 2.2.5 contains the

proofs for the theoretical results given in this section.

2.2.1. Hidden Markov models with state-dependent mixtures

For the hidden Markov model introduced in Section 1.2, we choose the state-dependent

densities f1, . . . , fK to be mixture densities in the sense of (1.1). Thus, (gϑ)ϑ∈Θ is a

parametric family of densities on X with respect to ν and Θ ⊂ Rd denotes the corre-

sponding parameter space. Assume that the map (x, ϑ) ↦→ gϑ(x) is continuous on X ×Θ.

Let G denote a compact set of K-state transition probability matrices.

A6. The parameter space of the mixture model Θ is compact and Γ ∈ G.
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Now let Θ̃ denote the set of Borel probability measures on Θ. Since we assume Θ

to be compact, Θ̃ is compact in the weak topology (see e.g. Taylor, 2006, Corollary

13.9). Given a mixing distribution π ∈ Θ̃, the corresponding mixture density is given

by fπ(x) =
∫
Θ gϑ(x)dπ(ϑ). Thus, in our model the state-dependent densities are from

the class of all mixture densities F = {fπ : π ∈ Θ̃} and the parameter vector of the

hidden Markov model is given by λ = (α,Γ, π1, . . . , πK) ∈ PK ×G × Θ̃× . . .× Θ̃, where

PK contains all strictly positive probability vectors of length K.

A sample of the described hidden Markov model is denoted by x = (x1, . . . , xT ).

Using the introduced notation, we impose an additional assumption, which will be re-

quired in the following sections.

A7. For every π ∈ Θ̃ and a small enough neighbourhood Oπ of π we have

Eλ0( sup
π̃∈Oπ

(log(fπ̃(x1)))
+) < ∞.

In particular, this assumption implies Assumption A5.

2.2.2. Existence of the maximum likelihood estimator

In this section we show that for the hidden Markov model with state-dependent mixtures,

the nonparametric maximum likelihood estimator exists and that the resulting estimator

of the state-dependent mixing distributions has finite support. To prove this result, we

use methods from convex analysis. For mixture models, literature on nonparametric

estimation of the mixing distributions or mixture densities exists. Lindsay (1983) proved

that for a sample of size n, there exists a nonparametric maximum likelihood estimator

for the mixing distribution with at most n support points.

Theorem 2.5. Under Assumption A6, for the parameters of the hidden Markov model

described in Section 2.2.1 and any T ≥ 1, there exists a maximum likelihood estimate

λ̂T = (α̂T , Γ̂T , π̂1,T , . . . , π̂K,T ) for which the state-dependent mixing distributions have

the form

π̂k,T =

m∑
j=1

ajδϑj,k
, k = 1, . . . ,K,

where m ∈ {1, . . . ,KT +1}, aj > 0,
∑m

j=1 aj = 1, ϑj,k ∈ Θ (j = 1, . . . ,m) and where δϑ

denotes the point-mass at ϑ.

The proof, which is stated in Section 2.2.5, uses arguments from convex analysis similar

to the corresponding proof for existence of the maximum likelihood estimator for mixture

models in Lindsay (1983). The result that instead of n components in the mixture model
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KT + 1 components are required for the hidden Markov model is due to the fact that

the model has K distinct states and that the likelihood function is not convex. The

result of the theorem justifies applying hidden Markov models with state-dependent

finite mixtures, as for example used in Holzmann and Schwaiger (2015) and Volant

et al. (2013).

2.2.3. Consistency of the state-dependent densities

We now turn to consistency of the maximum likelihood estimator. We do not focus on

estimating the mixing distributions πk (k = 1, . . . ,K) but rather the mixture densities

fπk
, since proving their consistency does not require identification of the πk from the

mixture density fπk
. This allows a more flexible choice of the mixture model and includes

for example general mixtures of Gaussian densities in mean and variance, even though

in this case identification of the mixing distribution fails (see Teicher, 1960).

To prove our result, we review parts of the consistency proof for the parametric hidden

Markov model, given by Leroux (1992a).

Let (P ) denote convergence in probability.

Theorem 2.6. For the nonparametric hidden Markov model described in Section 2.2.1

suppose A1–A4 and A6–A7 and let λ̂T = (α̂T , Γ̂T , π̂1,T , . . . , π̂K,T ) denote a maximum

likelihood estimator.

Then after relabeling, Γ̂T → Γ0 (P ) and for any x ∈ X and k ∈ {1, . . . ,K} we have

fπ̂k,T
(x) −→ fk,0(x) (P ).

If the mixing distributions πk are identified from the mixture densities fπk
(k = 1, . . . ,K),

then dw(π̂k,T , πk,0) → 0 (P ), where dw denotes a distance that metrizes weak convergence

in Θ̃.

To prove the general result without imposing the additional assumption of identifiability

for the mixture models, the statement of the following lemma is required. We provide a

proof in Section 2.2.5.

Lemma 2.7. Let (Θ, d) be a metric space. Every bounded and uniformly continuous

function g : Θ → [0,∞) can be uniformly approximated by Lipschitz-continuous func-

tions.

Remark 2.8. Lemma 2.7 can also be formulated for bounded and uniformly continuous

functions g̃ : Θ → R , since its positive and negative parts are bounded and uniformly

continuous, too.
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The proof of Theorem 2.6, given in Section 2.2.5, follows the arguments of Leroux (1992a)

for the parametric case, which help to obtain the consistency of Γ̂T and the convergence

dw(π̂k,T , Θ̃k,0) → 0 in probability, where Θ̃k,0 = {π ∈ Θ̃ : fπ = fπk,0
}. It gets clear

from the second part of the theorem that if the mixing distributions are identified from

the mixture densities and thus for k = 1, . . . ,K, each Θ̃k,0 contains a single mixing

distribution only, consistency follows directly. This part of the proof is based on the

fact that the generalized Kullback–Leibler divergence serves as an asymptotic contrast

for maximum likelihood estimation in hidden Markov models, as seen in Theorem 2.3.

The second part of the proof consists of concluding that fπ̂k,T
(x) −→ fk,0(x) (P ) if

Θ̃k,0 (k ∈ {1, . . . ,K}) contains more than a single mixing distribution. For this purpose

we use Lemma 2.7 and approximate the function ϑ ↦→ gϑ(x) by Lipschitz-continuous

functions for fixed x ∈ X . This approach allows to estimate P (|fπ̂k,T
(x)− fk,0(x)| > ε)

by the bounded Lipschitz metric, which metrizes weak convergence on Θ̃. Thus, using

the result of the first part of the proof, consistency of the mixture densities follows.

2.2.4. Simulation

In this section we investigate the numerical properties of the maximum likelihood esti-

mates in hidden Markov models with state-dependent mixtures. Due to the nonpara-

metric setting, the EM-algorithm described in Section 1.3 needs to be modified. We first

describe the resulting algorithm before we give some numerical examples in selected sim-

ulation scenarios for the nonparametric hidden Markov model.

When formulating an EM-algorithm for our model, which is described in Section 2.2.1,

the problem of computing a nonparametric maximum likelihood estimator of the state-

dependent mixing distributions and the resulting mixtures occurs. Resulting from The-

orem 2.5, the maximum likelihood estimate of the state-dependent mixing distributions

is a finite mixture. Thus, we can follow the suggestions by Laird (1978): we start

the estimation procedure for the hidden Markov model by estimating state-dependent

1-component mixtures of the chosen parametric family of densities and then increase

the number of components in each state as long as the resulting value of the likelihood

function increases or the maximal number of components according to Theorem 2.5 is

reached. Volant et al. (2013) described an EM-algorithm for hidden Markov models with

state-dependent finite mixtures for fixed numbers of components mk, k = 1, . . . ,K. We

combine their algorithm and the described estimation procedure for the state-dependent

mixtures to obtain a maximum likelihood estimator for our model.
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The EM-algorithm for hidden Markov models with state-dependent mixtures

To take account of the mixture model structure of the state-dependent distributions,

next to the latent variable St, we introduce an additional latent variable Zt referring to

component z of the mixture in state k of the Markov chain, z = 1, . . . ,mk, k = 1, . . . ,K.

Analogously to Section 1.3 we introduce indicator variables ukt = 1{st=k} (k = 1, . . . ,K,

t = 1, . . . , T ) and vklt = 1{st−1=k,st=l}, k, l = 1, . . . ,K, t = 2, . . . , T for the unobserved

sequence s. Additionally we define wklt = 1{zt=l|st=k} for l = 1, . . . ,mk, k = 1, . . . ,K,

t = 1, . . . , T . The parameter corresponding to component l in state k is denoted by ϑk
l ,

l = 1, . . . ,mk, k = 1, . . . ,K.

As described above, we start the EM-procedure with mk = 1, k = 1, . . . ,K.

We maximize the conditional expectation of the complete-data log-likelihood function,

which has the form

ℓcT (λ) = log(αs1) +
T∑
t=2

log(γst−1,st) +

T∑
t=1

(log(πst
zt ) + log(gϑst

zt
(xt)))

=
K∑
k=1

uk1 log(αk) +
T∑
t=2

K∑
k=1

K∑
l=1

vklt log(γk,l) +
T∑
t=1

K∑
k=1

mk∑
l=1

uktwklt log(π
k
l )

+

T∑
t=1

K∑
k=1

mk∑
l=1

uktwklt log(gϑk
l
(xt)),

where the πk
l denote the component weights of the state-dependent mixtures, l =

1, . . . ,mk, k = 1, . . . ,K.

The E-step comprises the calculation of conditional expectations ûkt, v̂klt by (1.13) as

well as

ŵklt =
πk
l gϑk

l
(xt)∑mk

j=1 π
k
j gϑk

j
(xt)

, l = 1, . . . ,mk, k = 1, . . . ,K, t = 1, . . . , T,

which is analogously to (1.5).

In the M-step, we maximize the conditional expectation of the complete-data log-

likelihood function using the quantities from the E-step. For the initial distribution

and the transition probabilities, we can use (1.14) and (1.15) respectively. For the com-

ponent weights of the state-dependent mixtures we have

π̂k
l =

∑T
t=1 ûktŵklt∑T

t=1 ûkt
, l = 1, . . . ,mk, k = 1, . . . ,K.
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Estimation of ϑk
l (l = 1, . . . ,mk, k = 1, . . . ,K) depends on the choice of the parametric

family (gϑ)ϑ∈Θ. When choosing univariate Gaussian distributions, we obtain

µ̂k
l =

∑T
t=1 ûktŵkltxt∑T
t=1 ûktŵklt

, σ̂k
l =

√∑T
t=1 ûktŵklt(xt − µ̂k

l )
2∑T

t=1 ûktŵklt

, l = 1, . . . ,mk, k = 1, . . . ,K.

Afterwards, in each state k = 1, . . . ,K we increase the number of mixture components

mk and perform a grid search over a range of possible parameters ϑ ∈ Θ for additional

mixture components, which are added if the additional component yields an increase of

the likelihood function and the maximal number of components is not exceeded.

As usual, the described EM-procedure is iterated until a convergence criterion is satisfied.

−15 −10 −5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

x

f 1
(x

)

●

●

●

●
●

●

●

●

●

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

x

f 2
(x

)

●

●

●

●

●

●

●

●

●

−5 0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

x

f 3
(x

)

●

●

●

● ●

●

●

●

●

−10 0 10 20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x

M
ar

gi
na

l m
ix

tu
re

Figure 2.1.: State-dependent densities and marginal density of the hidden Markov
model Scenario 1, together with estimators for a typical sample. Solid line: true den-
sities, dashed line: nonparametric maximum likelihood estimators, dotted line: two-
component mixture maximum likelihood estimators, dot-dashed line: Gaussian maxi-

mum likelihood estimators
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Numerical results

We consider two different scenarios of three-state hidden Markov models in which the

state-dependent densities are mixtures of Gaussian densities gϑ(x), where ϑ = (µ, σ).

Let hβ(a,b)(x) =
Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−11(0,1)(x) denote the density of the Beta distribu-

tion and hβ(a,b)(x; l, s) = hβ(a,b)(
x−l
s )/s the density of the Beta distribution translated

by l and scaled by s. Here, Γ denotes the Gamma function.

In both scenarios, we choose for the transition probability matrix

Γ0 =

⎛⎜⎜⎝
0.5 0.25 0.25

0.4 0.4 0.2

0.2 0.2 0.6

⎞⎟⎟⎠
and use series of length T = 1000 from the models specified below. In the supplementary

material for Alexandrovich et al. (2016), simulation results for several choices of T are

presented and illustrate consistency of the nonparametric maximum likelihood estimator.

Scenario 1

In the first scenario, the state-dependent densities are chosen as follows

f1,0(x) = 0.33g(−10,2)(x) + 0.33g(−7.5,2)(x) + 0.34g(−4,2)(x),

f2,0 is a general mixture of univariate Gaussian densities, where µ follows the Beta

distribution hβ(2,2)(µ) and σ is uniformly distributed on the interval (1, 4),

f3,0 is a general mixture of univariate Gaussian densities, where µ follows the Beta

distribution hβ(2,11)(µ; 5, 33) and σ is uniformly distributed on (1.4, 1.6).

We apply the EM-algorithm described above to compute the nonparametric maximum

likelihood estimator, which is denoted by fπ̂k,T
. In addition, we consider two misspecified

parametric hidden Markov models. The first one with simple Gaussian distributions,

where the estimators are denoted by fπ̃k,T
and the second with two-component mixtures

of Gaussian distributions, where the estimator is denoted by fπ̄k,T
, k = 1, 2, 3.

Figure 2.1 shows the state-dependent Gaussian mixture densities fk,0 and the fits fπ̂k,T
,

fπ̃k,T
and fπ̄k,T

(k = 1, 2, 3) for a typical sample. We observe that the nonparametric

estimator captures the overall shape of the underlying density, in particular its skewness

in states 1 and 3, much better than both parametric estimators, which deviate substan-

tially from it.

To illustrate the consistency for fπ̂k,T
as stated in Theorem 2.6, we evaluate the relative

errors over 10000 simulations of selected points indicated in Figure 2.1. The results

together with those for the misspecified parametric estimators are presented in Table
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x −15.45 −13.77 −11.22 −9.05 −7.26 −5.3 −2.86 −0.21 1.56

nonpar 109.79 28.00 6.92 12.94 23.93 5.09 43.82 46.40 43.87
2-comp 117.75 28.61 6.26 12.46 25.18 4.94 45.04 48.01 49.49
Gauss 136.66 31.14 5.84 10.68 24.37 4.68 43.15 52.93 37.43

x −9.36 −6.36 −2.71 −0.68 0.5 1.67 3.71 7.36 10.36

nonpar 65.27 22.20 64.95 9.77 13.44 19.36 25.00 59.64 67.53
2-comp 69.44 22.63 68.76 10.60 13.88 19.48 25.12 61.55 67.06
Gauss 79.61 16.69 74.73 9.60 15.02 19.97 25.32 81.74 98.08

x 2.27 3.74 6 7.99 9.66 11.61 14.93 20.17 22

nonpar 1090.32 166.99 9.90 20.26 13.87 6.38 7.04 33.61 48.31
2-comp 1103.22 175.93 8.29 22.56 15.08 5.95 6.81 37.69 50.26
Gauss 1236.47 202.98 4.79 24.17 18.80 6.69 3.24 34.78 52.51

Table 2.1.: Relative errors (×100) of the three estimators compared to the true densi-
ties at selected values for x averaged over 10000 replications. ‘Gauss’ stands for Gaus-
sian state-dependent distributions, ‘2-comp’ for two-component Gaussian mixtures and

‘nonpar’ for nonparametric Gaussian mixtures.

2.1.

We observe that the relative errors for fπ̃k,T
and fπ̄k,T

are higher at most points than

those for fπ̂k,T
, in particular for states 1 and 3, which reflects the bias of those estimators

due to misspecification. The estimators for the transition probability matrices perform

rather similarly for the three methods. The averaged absolute errors over 10000 simu-

lations are reported in Table 2.2.

1
K

∑K
k=1 |γ̂j,k − γj,k,0| 1

K

∑K
k=1 |γ̄j,k − γj,k,0| 1

K

∑K
k=1 |γ̃j,k − γj,k,0|

State j = 1 3.89 3.97 3.74
State j = 2 3.44 3.44 3.12
State j = 3 2.93 3.08 2.79

Table 2.2.: Absolute errors (×100) of estimated transition probabilities averaged over
10000 simulations. Nonparametric estimator (γ̂j,k), parametric 2-component mixture

model (γ̄j,k) and parametric Gaussian model (γ̃j,k), j, k = 1, . . . ,K.

Scenario 2

In the second simulation scenario we consider a hidden Markov model in which the

state-dependent mixture densities are linearly dependent and differ not in location, as

seen in scenario 1, but rather in scale. The state-dependent densities are chosen as

follows

f1,0 is a general mixture of univariate Gaussian densities, where µ follows the Beta

distribution hβ(2,11)(µ;−3, 20), while the scale parameter σ is uniformly distributed

on the interval (0.9, 1.5),
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Figure 2.2.: State-dependent densities and marginal density of the hidden Markov
model Scenario 2, together with estimators for a typical sample. Solid line: true densi-
ties, dashed line: nonparametric maximum likelihood estimators, dotted line: Gaussian

maximum likelihood estimators

f2,0 is a general mixture of univariate Gaussian densities, where µ follows the Beta

distribution hβ(2,11)(µ;−3, 20) and the scale parameter σ is uniformly distributed

on the interval (4, 6),

f3,0(x) = 0.4f1,0(x) + 0.6f2,0(x), thus f3,0 is a linear combination of the state-

dependent densities of the first and second state.

In this scenario, we only compare the nonparametric and a parametric Gaussian maxi-

mum likelihood estimator. The estimated densities and the marginal distribution of the

hidden Markov model are plotted in Figure 2.2.

Since the density in the first state is slightly skew, we observe that the nonparametric

maximum likelihood estimator performs better than the parametric estimator. Due to

the large scale parameters, the density in the second state is nearly symmetric, thus

both estimators yield similar results. In the third state, obviously the nonparametric

estimator yields a better fit, especially in tracing the left tail and the peak of the density.
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x −4.31 −2.62 −1.25 −0.17 1.07 3.12 6.35

nonparametric 22.87 12.85 7.88 18.34 15.61 27.22 72.45
parametric 27.84 10.48 6.69 19.28 20.16 32.96 94.34

x −11.94 −6.67 −2.69 0.07 2.87 7.05 13.66

nonparametric 20.61 9.25 4.77 8.12 6.59 7.00 40.76
parametric 21.43 4.92 2.78 4.78 5.38 3.98 33.89

x −11.01 −5.06 −1.8 −0.08 1.89 5.57 12.21

nonparametric 22.97 37.08 15.74 15.93 5.40 22.23 41.73
parametric 31.77 49.92 20.36 21.09 2.20 30.80 49.30

Table 2.3.: Relative errors (×100) of the two estimators compared to the true densities
at selected values for x averaged over 10000 replications.

Table 2.3 shows the relative errors of the estimators evaluated for the points plotted in

Figure 2.2, averaged over 10000 replications. We observe that in the first state, except

for two points, the nonparametric estimator yields better results than the parametric

estimator. When estimating the nearly symmetric density of the second state, the para-

metric estimator yields somewhat better results, whereas for the density of the third

state, the advantage of the nonparametric estimator is obvious.

Again, the estimates of the transition probabilities are very similar for both estimators.

In Table 2.4 we report the absolute errors of the estimated probabilities averaged over

10000 simulations.

1
K

∑K
k=1 |γ̂j,k − γj,k,0| 1

K

∑K
k=1 |γ̃j,k − γj,k,0|

State j = 1 11.93 11.71
State j = 2 9.65 9.93
State j = 3 4.52 5.34

Table 2.4.: Absolute errors (×100) of estimated transition probabilities averaged over
10000 simulations. Nonparametric estimator (γ̂j,k) and parametric Gaussian model

(γ̃j,k), j, k = 1, . . . ,K.

2.2.5. Proofs

We first give the proof for Theorem 2.5, stating the existence of a nonparametric maxi-

mum likelihood estimator for hidden Markov models with state-dependent mixtures.

Proof of Theorem 2.5. By assumption, the parameter space Θ is compact and ϑ ↦→ gϑ(x)

is continuous for x ∈ X . Thus, by the Portmanteau Theorem, if πT → π weakly, we
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obtain
∫
Θ gϑ(x)dπT (ϑ) →

∫
Θ gϑ(x)dπ(ϑ), T → ∞. In addition, the affine map

Ψ : Θ̃× . . .× Θ̃ −→ RT × . . .× RT

(π1, . . . , πK) ↦−→ ((fπ1(xt))t=1,...,T , . . . , (fπK (xt))t=1,...,T )

is continuous.

Since Θ̃ is compact, the image Ψ(Θ̃× . . .× Θ̃) =: D ⊆ RKT is compact and convex.

First, for fixed Γ we express the likelihood function by

L̃T : D −→ R

(t1, . . . , tK)T ↦−→
K∑

k1=1

. . .
K∑

kT=1

αk1tk1,1

T∏
s=2

γks−1,kstks,s,

where tk = (tk,1, . . . , tk,T ), k = 1, . . . ,K.

Since L̃T is continuous and D is compact, when maximizing L̃T over D, there exists a

t∗ = (t∗1, . . . , t
∗
K)T ∈ D, t∗k ∈ RT , where L̃T is maximal. By the convexity of D, we can

apply Carathéodory’s theorem and t∗ can be expressed by a convex combination of at

most KT + 1 extreme points s∗j ∈ D, so that

t∗ =
KT+1∑
j=1

ajs
∗
j ,

KT+1∑
j=1

aj = 1, aj ≥ 0. (2.2)

The s∗j are images of extreme points in Θ̃ × . . . × Θ̃ under the affine map Ψ (see e.g.

Simon, 2011). In addition, points in the Cartesian product Θ̃ × . . . × Θ̃ are extreme if

and only if all coordinates are extreme in Θ̃. Since the extreme points in Θ̃ are point

masses δϑ, ϑ ∈ Θ, there exist ϑj,k ∈ Θ (j = 1, . . . ,KT + 1, k = 1, . . . ,K), such that

s∗j = Ψ(δϑj,1
, . . . , δϑj,K

).

Let m ∈ {1, . . . ,KT + 1} denote the number of extreme points needed in the convex

combination (2.2) to express t∗. Then, after relabeling

t∗ =
m∑
j=1

ajs
∗
j =

m∑
j=1

ajΨ(δϑj,1
, . . . , δϑj,K

) = Ψ(
m∑
j=1

ajδϑj,1
, . . . ,

m∑
j=1

ajδϑj,K
),

where aj > 0,
∑m

j=1 aj = 1.

Since sup(Γ,π1,...,πK) LT (λ) = supΓ supπ1,...,πK
LT (λ), the claim follows.

We now provide a proof for Lemma 2.7 using an argument of Garrido and Jaramillo

(2008).
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Proof of Lemma 2.7. Choose M > 0 such that for all ϑ ∈ Θ we have |g(ϑ)| < M . Given

ε > 0, let N ∈ N so that (N + 1)ε ≥ M .

For n = 0, . . . , N we define sets

Cn := {ϑ ∈ Θ : (n− 1)ε < g(ϑ) < (n+ 1)ε},

which cover Θ.

By construction, for |n−m| > 1 we have Cn
⋂
Cm = ∅. Since g is uniformly continuous,

we can choose a δ > 0, so that for η, ϑ ∈ Θ with d(η, ϑ) < δ we have |g(η)− g(ϑ)| < ε
2 .

Let us prove that for every ϑ ∈ Θ, there is a m ∈ {0, . . . , N} satisfying

Bδ(ϑ) = {η ∈ Θ : d(ϑ, η) < δ} ⊆ Cm. (2.3)

Observe that if ϑ is contained in a single set Cm only, we must have g(ϑ) = mε. Then

Bδ(ϑ) ⊆ Cm is obvious by the choice of δ and by definition of Cm.

If ϑ ∈ Cn
⋂
Cn+1 for some n ∈ {0, . . . , N − 1} and nε < g(ϑ) < (n + 1)ε, consider two

cases:

• If nε < g(ϑ) ≤ (n+ 1
2)ε, we take m = n, which leads to (n− 1

2)ε < g(η) < (n+1)ε

for η ∈ Bδ(ϑ) and thus Bδ(ϑ) ⊆ Cn.

• Otherwise take m = n+ 1 with analogue argumentation,

and (2.3) follows.

Now define functions

gn : Θ −→ [0, 1]

ϑ ↦−→ inf{1, d(ϑ,Θ \ Cn)},

where d(ϑ, ∅) = ∞.

The gn are Lipschitz-continuous with constant 1, since for ϑ1 ̸= ϑ2

|gn(ϑ1)− gn(ϑ2)|
d(ϑ1, ϑ2)

≤ |d(ϑ1,Θ \ Cn)− d(ϑ2,Θ \ Cn)|
d(ϑ1, ϑ2)

≤ d(ϑ1, ϑ2)

d(ϑ1, ϑ2)
= 1.

Define h(ϑ) :=
∑N

n=0 gn(ϑ). From (2.3) we have h(ϑ) ≥ δ for ϑ ∈ Θ. Since by construc-

tion each ϑ ∈ Θ can be contained in at most two sets Cn, Cn+1, observe h(ϑ) ≤ 2.

For ϑ1, ϑ2 ∈ Θ we have

|h(ϑ1)− h(ϑ2)| ≤
N∑

n=0

|gn(ϑ1)− gn(ϑ2)| ≤ (N + 1)d(ϑ1, ϑ2),
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which proves that h is a Lipschitz-continuous function with constant (N + 1).

Now set h̃(ϑ) := 1
h(ϑ)

∑N
n=0 ngn(ϑ). We show that h̃ is Lipschitz-continuous and that

sup
ϑ∈Θ

|g(ϑ)− εh̃(ϑ)| ≤ 2ε. (2.4)

Using the properties of h and gn, we obtain for ϑ1, ϑ2 ∈ Θ

|h̃(ϑ1)− h̃(ϑ2)| ≤
N∑

n=0

| 1

h(ϑ1)
ngn(ϑ1)−

1

h(ϑ2)
ngn(ϑ2)|

=

N∑
n=0

|nh(ϑ2)gn(ϑ1)− nh(ϑ1)gn(ϑ2) + ngn(ϑ1)h(ϑ1)− ngn(ϑ1)h(ϑ1)

h(ϑ1)h(ϑ2)
|

≤
N∑

n=0

ngn(ϑ1)|h(ϑ2)− h(ϑ1)|
h(ϑ1)h(ϑ2)

+

N∑
n=0

n|gn(ϑ1)− gn(ϑ2)|
h(ϑ2)

≤ (
(N + 1)3

δ2
+

(N + 1)2

δ
)d(ϑ1, ϑ2).

To prove (2.4), suppose that ϑ ∈ Cm. Then

|εh̃(ϑ)− g(ϑ)| = |εh̃(ϑ)− εm+ εm− g(ϑ)|

≤ ε|(m− 1)gm−1(ϑ) +mgm(ϑ) + (m+ 1)gm+1(ϑ)

gm+1(ϑ) + gm(ϑ) + gm−1(ϑ)
−m|+ |εm− g(ϑ)|

≤ ε| gm−1(ϑ)− gm+1(ϑ)

gm+1(ϑ) + gm(ϑ) + gm−1(ϑ)
|+ ε ≤ 2ε,

which completes the proof.

We are now ready to give a proof for the consistency result provided in Theorem 2.6.

Proof of Theorem 2.6. Set Λ = (P × G × Θ̃× . . .× Θ̃) and Λ0 = ({α0} × {Γ0} × Θ̃1,0 ×
· · · × Θ̃K,0), where for k = 1, . . . ,K

Θ̃k,0 = {π ∈ Θ̃ : fπ = fπk,0
}.

Weak convergence on Θ̃ can be metrized using the bounded Lipschitz metric (see e.g.

Van der Vaart and Wellner, 1996),

dBL(π1, π2) = sup{|
∫

fdπ1 −
∫

fdπ2|; f : Θ → [0, 1], |f(ϑ1)− f(ϑ2)| ≤ d(ϑ1, ϑ2)}.

On G we take any metric that is equivalent to the Euclidean metric and on Λ we take a

product metric denoted by d.

Define H(λ0, λ) = limT
1
T Eλ0(ℓT (λ)).



2 Nonparametric maximum likelihood estimation for hidden Markov models 30

To prove the theorem, we first show that d(λ̂T ,Λ0) → 0 (P ), T → ∞, which implies

that Γ̂0 → Γ0 (P ).

In a second step we show that from dBL(π̂k,T , Θ̃k,0) → 0 (P ) it follows that for any

x ∈ X , fπ̂k,T
(x) → fk,0(x) (P ), k = 1, . . . ,K.

For the first part of the proof, we follow the argument of Leroux (1992a). The idea is

to provide theory so that the generalized Kullback–Leibler divergence serves as asymp-

totic contrast function for maximum likelihood estimation in hidden Markov models.

Therefore, we construct a subadditive process which allows to apply Kingman’s sub-

additive ergodic theorem (Kingman, 1976) and has the same asymptotic behaviour as

the log-likelihood function. This subadditive process is thus used to prove existence of

the limit H(λ0, λ). Based on these steps, we develop asymptotic behaviour in a small

open neighbourhood of a parameter λ, to prove consistency using an approach by Wald

(1949).

For a parameter vector λ = (α,Γ, π1, . . . , πK) and s, t ∈ N0 with s < t set

Ls,t(λ|k) : = fπk
(xs+1)

K∑
k2=1

. . .
K∑

kt−s=1

γk,k2fπk2
(xs+2)

t−s∏
u=3

γku−1,kufπku
(xs+u)

and

Ms,t(λ) = max
1≤k≤K

Ls,t(λ|k).

Since LT (λ) =
∑K

k=1 αkL0,T (λ|k) ≥ M0,T (λ) ·min1≤k≤K αk and LT (λ) ≤ M0,T (λ), we

have

min
1≤k≤K

αk ≤ LT (λ)

M0,T (λ)
≤ 1 and log( min

1≤k≤K
αk) ≤ log(

LT (λ)

M0,T (λ)
) ≤ 0.

Therefore, 1
T ℓT (λ) and 1

T log(M0,T (λ)) have the same asymptotic behaviour, just like
1
T Eλ0(ℓT (λ)) and

1
T Eλ0(log(M0,T (λ))).

For s < u < t, from Leroux (1992a, Lemma 3) we obtain Ms,t(λ) ≤ Ms,u(λ)Mu,t(λ) so

that the process log(Ms,t(λ)) is subadditive. By Assumptions A1 and A3 and Lemma 1

in Leroux (1992a), the sequence (Xt)t∈N is ergodic and thus (log(Ms,t(λ))) is stationary

regarding log(Ms,t(λ)) → log(M(s+1),(t+1)(λ)).

In addition, by Assumption A7,

Eλ0(log(M0,1(λ))
+) = Eλ0(log( max

1≤k≤K
L0,1(λ|k))+) = Eλ0(log( max

1≤k≤K
fπk

(x1))
+) < ∞.

Thus, from Kingman’s subadditive ergodic theorem (see Kingman, 1976), with proba-

bility one, limT
1
T log(M0,T (λ)) = M < ∞ exists and E(M) = limT

1
T E(log(M0,T )). In
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particular, since log(M0,T ) and ℓT have the same asymptotics, M = H(λ0, λ) a.s.

Alexandrovich et al. (2016) showed that for the generalized Kullback–Leibler divergence

for nonparametric hidden Markov models we have K(λ0, λ) = H(λ0, λ0)−H(λ0, λ) ≥ 0

and K(λ0, λ) = 0 if and only if λ ∈ Λ0. Thus, limT
1
T Eλ0(log(M0,T ))

a.s.
= H(λ0, λ) <

H(λ0, λ0) for λ /∈ Λ0.

For λ /∈ Λ0, there is an ε > 0 and Tε ∈ N so that

1

Tε
Eλ0(log(M0,Tε(λ))) < H(λ0, λ0)− ε. (2.5)

M0,Tε is continuous in λ, since π ↦→ fπ(x) is continuous. By Assumption A7 we obtain

Eλ0(log(supλ′∈Oλ
M0,Tε(λ

′))+) < ∞ for Oλ a small neighbourhood of λ. Thus, there is a

small open neighbourhood where log(supλ′∈Oλ
M0,Tε(λ

′)) → log(M0,Tε(λ)). In addition,

since | log(supλ′∈Oλ
M0,Tε(λ

′))| = log(supλ′∈Oλ
M0,Tε(λ

′))++log(supλ′∈Oλ
M0,Tε(λ

′))−,

by dominated convergence

lim
Oλ→λ

1

Tε
Eλ0(log( sup

λ′∈Oλ

M0,Tε(λ
′))) =

1

Tε
Eλ0(log(M0,Tε(λ))).

We can choose a neighbourhood Oλ and use (2.5) to obtain

1

Tε
Eλ0(log( sup

λ′∈Oλ

M0,Tε(λ
′))) <

1

Tε
Eλ0(log(M0,Tε(λ))) +

1

2
ε < H(λ0, λ0)−

1

2
ε. (2.6)

Using the same argument again for log(supλ′∈Oλ
M0,t−s(λ

′)), Kingman’s subadditive

ergodic theorem yields that with probability one

H(λ0, λ;Oλ) := lim
T

1

T
Eλ0(log( sup

λ′∈Oλ

M0,T (λ
′)))

exists and limT
1
T log(supλ′∈Oλ

M0,T (λ
′)) = H(λ0, λ;Oλ).

Using Theorem 1 from Kingman (1976),

H(λ0, λ;Oλ) = inf
T

1

T
Eλ0(log( sup

λ′∈Oλ

M0,T (λ
′)))

and together with (2.6) we obtain

H(λ0, λ;Oλ) ≤
1

Tε
Eλ0(log( sup

λ′∈Oλ

M0,Tε(λ
′))) < H(λ0, λ0)−

1

2
ε.

Since LT and M0,T have the same asymptotics, we have

lim
T

1

T
log( sup

λ′∈Oλ

LT (λ
′)) = H(λ0, λ;Oλ) < H(λ0, λ0)−

1

2
ε

with probability one.
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Given δ > 0 let Λδ := {λ ∈ Λ, d(λ,Λ0) ≥ δ}. Since Λ is compact and the distance is

continuous, Λδ is compact. Therefore, we can find finitely many Oλj
, j = 1, . . . , q which

cover Λδ.

We obtain

1

T
sup
λ∈Λδ

ℓT (λ) ≤
1

T
max

j=1,...,q
sup

λ∈Oλj

ℓT (λ) −→ max
j=1,...,q

H(λ0, λj ;Oλj
) ≤ H(λ0, λ0)− ε.

Since 1
T ℓT (λ̂T ) ≥ 1

T ℓT (λ0) → H(λ0, λ0) and {λ̂T ∈ Λδ} ⊂ { 1
T supλ∈Λδ

ℓT (λ) ≥ 1
T ℓT (λ0)},

we obtain P (λ̂T ∈ Λδ) −→ 0.

For the second part of the proof, note that the function ϑ ↦→ gϑ(x) =: g(ϑ) is continuous

and by Assumption A6 the parameter space Θ is compact. Thus, the function g(ϑ) is

bounded and given an ε > 0, from Lemma 2.7 there is a Lipschitz-continuous function

h such that |g(ϑ)− h(ϑ)| < ε.

Let K1(ε) := supϑ∈Θ |h(ϑ)| and let K2(ε) denote the Lipschitz-constant of h.

Set K(ε) := max{K1(ε),K2(ε)}. Given any π ∈ Θ̃, there is a ρ ∈ Θ̃k,0 for which

dBL(π, ρ) ≤ dBL(π, Θ̃k,0) +
ε

K(ε) . From the definition of Θ̃k,0, fk,0(x) =
∫
Θ g(ϑ)dρ(ϑ).

We estimate

|fπ(x)− fk,0(x)| = |
∫
Θ
g(ϑ)dπ(ϑ)−

∫
Θ
g(ϑ)dρ(ϑ)|

≤
∫
Θ
|g(ϑ)− h(ϑ)|dπ(ϑ) + |

∫
Θ
h(ϑ)dπ(ϑ)−

∫
Θ
h(ϑ)dρ(ϑ)|+

∫
Θ
|h(ϑ)− g(ϑ)|dρ(ϑ)

≤ 2ε+K(ε)dBL(π, ρ)

≤ 3ε+K(ε)dBL(π, Θ̃k,0).

For δ := ε
K(ε) we obtain

P (|fπ̂k,T
(x)− fπk,0

(x)| > 4ε) ≤ P (dBL(π̂k,T , Θ̃k,0) > δ) −→ 0.

2.3. Nonparametric maximum likelihood estimation for

state-dependent log-concave densities

In this section we consider nonparametric maximum likelihood estimation under a

shape constraint on the state-dependent densities of the hidden Markov model. Shape-

constrained estimation is a quite popular approach in nonparametric density estimation,

since most fully nonparametric methods require smoothing parameters which can be dif-

ficult to choose.
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We consider the class of log-concave densities, which is a very flexible choice containing

many commonly used parametric densities like Gaussian densities, but also skewed ones

like gamma densities with shape parameter equal or greater than 1.

A function f on Rp, which can be written as

f(x) = exp(φ(x)) (2.7)

for some concave function φ : Rp → [−∞,∞), is log-concave. As an example we could

think of the Gaussian density, where φ(x) is a quadratic function in x.

For independent identically distributed observations, Walther (2009) reviewed results on

the theory of nonparametric maximum likelihood estimation of univariate and multivari-

ate log-concave densities. In the univariate case, results on existence and shape of the

maximum likelihood estimator can be found for example in Walther (2002), Rufibach

(2006) or Pal et al. (2007). In addition, there are some results regarding consistency

of the estimator in Pal et al. (2007), using the Hellinger distance or in Dümbgen and

Rufibach (2009), giving results on uniform consistency on compact subspaces of the in-

terior of the support.

Cule (2010), Cule et al. (2010) considered maximum likelihood estimation of multivari-

ate log-concave densities and proved that the structure of the estimator is analogous

to those of the univariate estimator. In Cule and Samworth (2010) they gave further

results on theoretical properties of the estimator. Recently, Kim and Samworth (2014)

presented results on rates of convergence in log-concave density estimation.

The advantage of the estimation problem in case of independent identically distributed

observations x1, . . . , xn is the fact that due to (2.7), the log-likelihood function has the

form
∑n

i=1 log(f(xi)) =
∑n

i=1 φ(xi), which makes the problem quite accessible. Since

the likelihood function for hidden Markov models (see (1.3)) does not allow this simpli-

fication, maximum likelihood estimation in this context requires some additional con-

siderations. In Section 2.3.1 we introduce the model and state some assumptions, which

allow to state results on the existence and shape of the univariate and multivariate max-

imum likelihood estimator in Section 2.3.2. These results justify the computation of the

estimator, which we approach in Section 2.3.3. The proofs are relegated to Section 2.3.4.

2.3.1. Hidden Markov models with state-dependent log-concave densities

We consider the hidden Markov model introduced in Section 1.2 and analogously to

(2.7) assume the state-dependent densities to be log-concave, i.e. for k = 1, . . . ,K,

fk(x) = exp(φk(x)) for concave functions φk : Rp → [−∞,∞).

We impose the stationarity assumption A3 and further state
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A8. The Markov chain (St)t∈N is irreducible and aperiodic.

By assuming irreducibility and aperiodicity, we have limt→∞ Γt = 1δ (see for example

Seneta, 2006, Theorem 4.2).

A9. For some c > 0, the transition probabilities satisfy mini,j∈{1,...,K} γi,j ≥ c.

For t ≥ 2 and Γt = (γ
(t)
j,k)j,k=1,...,K , this assumption yields γ

(t)
j,k ≥ c, j, k = 1, . . . ,K. To

see this, consider the case t = 2. We have γ
(2)
j,k =

∑K
i1=1 γj,i1γi1,k ≥ c

∑K
i1=1 γj,i1 = c,

because the rows of Γ sum to 1. Since the product of two transition probability matrices

is a transition probability matrix again, this argument proves the general case t ≥ 2.

Together with Assumption A8 and the associated remark we also observe that δk ≥ c

for k = 1, . . . ,K.

These considerations together with the following assumption are revisited in Section

2.3.4, when we bound the log-likelihood function of the model.

A10. The concave functions φk (k = 1, . . . ,K) are bounded from above, i.e. there is a

M < ∞ such that −∞ ≤ φk(x) ≤ M for x ∈ Rp.

Write φ = (φ1, . . . , φK) and let Gb denote a compact set of K-state transition probability

matrices satisfying Assumption A9. We set

Fb
lc = {φ = (φ1, . . . , φK) : φk : Rp → [−∞,∞) concave,

∫
exp(φk(x))dx = 1,

φk(x) ≤ M, k = 1, . . . ,K}.

Thus, the parameter vector of the stationary hidden Markov model with state-dependent

log-concave densities is λ = (Γ, φ) ∈ Gb ×Fb
lc.

2.3.2. Existence and shape of the maximum likelihood estimator

We state that for the hidden Markov model with state-dependent log-concave densities,

the nonparametric maximum likelihood estimator exists and specify its shape. The

univariate and multivariate problem are considered separately. In each case we start with

the introduction of some ideas from the estimation problem for independent identically

distributed observations.

Univariate case (p = 1)

Existence of the univariate nonparametric maximum likelihood estimator for a log-

concave density f(x) = exp(φ(x)) based on independent identically distributed observa-

tions x1, . . . , xn is proven in Walther (2002), Rufibach (2006) and Pal et al. (2007). They
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stated that the nonparametric maximum likelihood estimator f̂n(x) = exp(φ̂n(x)) exists

and that the concave function φ̂n is piecewise linear with changes of slope at x1, . . . , xn.

Thus, the problem of maximizing the log-likelihood function
∑n

i=1 φ(xi) over all concave

functions φ such that exp(φ(x)) is a density function can be reformulated to a finite di-

mensional optimization problem. Details are given in Section 2.3.4.

As mentioned in the introduction of Section 2.3, due to the dependency structure and

the resulting form of the likelihood function, some more considerations and assumptions

have to be made in order to give a similar result in the context of the nonparametric

hidden Markov model. Let x = (x1, . . . , xT ) denote a sample from the hidden Markov

model introduced in Section 2.3.1 for p = 1 and assume x1 ≤ · · · ≤ xT .

Theorem 2.9. Under Assumptions A3, A8, A9 and A10, for the parameters of the

univariate hidden Markov model with state-dependent log-concave densities described in

Section 2.3.1, a nonparametric maximum likelihood estimator λ̂T = (Γ̂, φ̂) exists. For

k = 1, . . . ,K, φ̂k are piecewise linear functions with knots at x1, . . . , xT and suppf̂k ⊂
[x1, xT ] for f̂k = exp(φ̂k).

The proof is given in Section 2.3.4. Before we can apply the ideas from Pal et al. (2007),

we show that under the given assumptions, the log-likelihood function can be bounded.

The remaining issue is to adjust the proof of the independent identically distributed case

to the setting of hidden Markov models.

Multivariate case (p > 1)

The multivariate nonparametric estimation problem of finding a maximum likelihood

estimator of a log-concave density based on independent identically distributed observa-

tions x1, . . . , xn (n ≥ p+1), was considered by Cule (2010), Cule and Samworth (2010)

and Cule et al. (2010). Similar to the univariate setting they proved that the problem of

maximizing the log-likelihood function over the class of all log-concave density functions

can be reduced to maximization over a finite-dimensional subclass of functions. They

showed that the maximum likelihood estimator f̂n(x) = exp(φ̂n(x)) exists, its support

is the convex hull of the x1, . . . , xn and that φ̂n is a ’tent function’.

The term ’tent function’ means a function ϕy : Rp → R for a fixed vector y =

(y1, . . . , yn) ∈ Rn, such that ϕy is the smallest concave function satisfying ϕy(xi) ≥ yi

for i = 1, . . . , n. The y1, . . . , yn can be associated with the ’tent pole heights’.

We apply this idea when dealing with the multivariate hidden Markov model with state-

dependent log-concave densities.

Consider a sample x = (x1, . . . , xT ) (T ≥ p + 1) from the hidden Markov model in-

troduced in Section 2.3.1 and assume the observations to be all distinct. Denote by
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CT = conv(x1, . . . , xT ) the convex hull of the observations and write

Ftent(x) = {ϕyk : Rp → R; yk ∈ RT , ϕyk least concave function so that ϕyk(xt) ≥ yk,t,

t = 1, . . . , T}

for the set of ’tent functions’ corresponding to the sample x.

Theorem 2.10. Under Assumptions A3, A8, A9 and A10, for the parameters of the

multivariate hidden Markov model with state-dependent log-concave densities described

in Section 2.3.1, a nonparametric maximum likelihood estimator λ̂T = (Γ̂, φ̂) exists. For

k = 1, . . . ,K, φ̂k ∈ Ftent(x) and f̂k(x̄) = exp(φ̂k(x̄)) = 0 for x̄ /∈ CT .

The proof, which is similar to those of Theorem 2.9, is given in Section 2.3.4. It requires

usage of some concepts from convex analysis (see for example Rockafellar, 1970), which

were also used by Cule (2010), Cule and Samworth (2010).

2.3.3. Numerical examples

Existence of a nonparametric maximum likelihood estimator, which was stated in the

preceding section, justifies its computation when given observations x1, . . . , xT from a

hidden Markov model. Again, the estimator can be computed using an adjusted EM-

algorithm, see Dannemann (2012) or Dannemann et al. (2014) for a version for semi- or

nonparametric hidden Markov models. Using notation of Section 1.3, when maximizing

the complete-data log-likelihood function (1.12) it suffices to adjust the last part of max-

imizing
∑K

k=1

∑T
t=1 ukt log(fk(xt)). This leads to a weighted nonparametric maximum

likelihood problem.

Based on the explicit form of the nonparametric maximum likelihood estimator of log-

concave densities explained in Section 2.3.2, precise algorithms have been deduced. For

univariate data, Dümbgen and Rufibach (2011) gave an algorithm and the correspond-

ing implementation in the R package logcondens. Analogously, for multivariate data the

algorithm was given by Cule et al. (2009) and implemented in the R package LogCon-

cDEAD. Both implementations allow to put weights on the observations, thus we can

easily use these packages for our computations in the context of hidden Markov models.

The following numerical examples are published in Dannemann et al. (2014).

Simulation

In this section, we use simulated bivariate observations from a two-state hidden Markov

model to illustrate the flexibility of the nonparametric estimation procedure.
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(a) True skew normal densities.

 0.05 

 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

 0
.3

5 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

 0.05 

 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

 0
.3

5 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(b) Parametric estimation (Gaussian densities).
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(c) Nonparametric estimation (Log-concave densities).

Figure 2.3.: Contour plots of the state-dependent densities in the simulation scenario.
Left: state 1, right: state 2.
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We choose the state-dependent densities to be skew normal (see Azzalini and Valle, 1996,

for the multivariate definition) and set the transition probability matrix to

Γ =

(
0.7 0.3

0.4 0.6

)
.

We generate 5000 bivariate observations from the model and estimate a parametric

(Gaussian) model and a nonparametric (log-concave) model using the EM-procedure.

The results show the advantage of the nonparametric estimator. The estimates for the

transition probability matrix of the Gaussian model (Γ̃) and the log-concave model (Γ̂)

are

Γ̃ =

(
0.75 0.25

0.49 0.51

)
and Γ̂ =

(
0.73 0.27

0.37 0.63

)
.

The contour plots in Figure 2.3 illustrate the assumed skewness of the state-dependent

densities. Of course, the parametric Gaussian estimate cannot capture the skewness,

while the nonparametric log-concave estimate yields a good fit.
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Figure 2.4.: Estimated state-dependent densities. Left: state 1 (low volatility), mid:
state 2 (intermediate volatility), right: state 3 (high volatility).
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Real data example

Now, we study a bivariate time series of financial log-returns. We use a database of 2926

log-returns from the stocks of Deutsche Bank and Munich RE on a daily basis from

January 21, 2000 to April 23, 2013 1 and compare two choices for the state-dependent

distributions of the model.

First, we fit a three-state parametric hidden Markov model with state-dependent Gaus-

sian densities. The estimated transition probability matrix and the corresponding sta-

tionary distribution are

Γ̃ =

⎛⎜⎜⎝
0.807 0.193 8× 10−5

0.392 0.575 0.033

0.056 0.477 0.467

⎞⎟⎟⎠ and δ̃ =
(
0.659 0.321 0.020

)
.

For the parameters µk and Σk (k = 1, 2, 3) of the state-dependent distributions we

estimate

µ̃1 =

(
−1.80× 10−4

1.49× 10−4

)
, Σ̃1 =

(
1.8× 10−4 0.8× 10−4

0.8× 10−4 1.0× 10−4

)
,

µ̃2 =

(
−2.4× 10−4

−2.7× 10−4

)
, Σ̃2 =

(
9.4× 10−4 5.0× 10−4

5.0× 10−4 6.7× 10−4

)
,

µ̃3 =

(
64.4× 10−4

52.9× 10−4

)
, Σ̃3 =

(
54.8× 10−4 29.0× 10−4

29.0× 10−4 39.6× 10−4

)
.

The corresponding densities are shown in Figure 2.4a. We observe that state 1 rep-

resents a state with low volatility, whereas state 3 corresponds to a state with high

volatility.

In the second model, we assume the three state-dependent densities to be log-concave

and compute the maximum likelihood estimator applying the R-package LogConcDEAD

(Cule et al., 2009) in the M-step of the EM-algorithm. The estimates of the parametric

1Data access from http://de.finance.yahoo.com (23rd April 2013)
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Figure 2.5.: Log-concave estimation - contour plots. Left: state 1 (low volatility),
mid: state 2 (intermediate volatility), right: state 3 (high volatility).
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fit serve as initial values for the estimation procedure.

The estimates for the transition probability matrix and the corresponding stationary

distribution are

Γ̂ =

⎛⎜⎜⎝
0.860 0.140 5× 10−7

0.325 0.644 0.031

0.046 0.482 0.472

⎞⎟⎟⎠ and δ̂ =
(
0.689 0.294 0.017

)
.

The estimated densities are plotted in Figure 2.4b and in Figure 2.5 we give the corre-

sponding contour plots. The nonparametric fit, especially in state 3 is somewhat skewed,

apart from that the estimates are quite similar to those of the parametric model.

Lastly, for both estimated models we perform a state-decoding using the Viterbi-algo-

rithm, which is explained in Section 1.2. A plot of the time series and the resulting

global decoding is given in Figure 2.6. We observe that the decoding based on the
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Figure 2.6.: From top to bottom: Series of log-returns of the two stocks. Global
decoding using the Viterbi-algorithm based on parameter estimates from the parametric

fit and the nonparametric log-concave fit.
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nonparametric model has slightly less transitions than those based on the parametric

fit.

2.3.4. Proofs

Before we give the proofs of Theorem 2.9 and Theorem 2.10, we justify the assump-

tions that need to be imposed in order to have the log-likelihood function of the hidden

Markov model bounded. In addition, we draw a comparison to the nonparametric esti-

mation problem with independent identically distributed observations.

As explained in Section 2.3.2, given an independent identically distributed sample x1, . . . ,

xn from a univariate log-concave density f(x) = exp(φ(x)), the nonparameteric esti-

mation problem of maximizing the log-likelihood function
∑n

i=1 φ(xi) over all concave

functions φ such that exp(φ(x)) is a density function can be transferred to a finite dimen-

sional maximization problem. More precisely, writing yi = φ(xi), we maximize
∑n

i=1 yi

over the set of (y1, . . . , yn) ∈ Rn for which

yi − yi−1

xi − xi−1
≥ yi+1 − yi

xi+1 − xi
, (2.8)

subject to
n−1∑
i=1

xi+1 − xi
yi+1 − yi

(exp(yi+1)− exp(yi)) = 1, (2.9)

details will get more clear in the following proofs. Here, (2.8) guarantees the concavity

and (2.9) makes sure that the resulting estimate of the density integrates to 1. From

(2.9) it also gets clear, why in this setting it is not necessary to bound the concave

function φ from above: if for a i ∈ {1, . . . , n} we had φ(xi) → ∞, by a similar argument

as used in Rufibach (2006), due to (2.9) in case that yi − yi−1 > 0 we had

1 ≥ xi − xi−1

yi − yi−1
(exp(yi)− exp(yi−1)) = (xi − xi−1) exp(yi)

1− exp(yi−1 − yi)

yi − yi−1

≥ (xi − xi−1) exp(yi)

1 + yi − yi−1
,

since for x > 0, 1−exp(−x)
x ≥ 1

1+x . Thus, yi−1 ≤ 1 + yi − (xi − xi−1) exp(yi) → −∞.

Analogously, if yi − yi−1 < 0, using (2.8) we had

1 ≥ xi+1 − xi
yi+1 − yi

(exp(yi+1)− exp(yi)) ≥
(xi+1 − xi) exp(yi)

1 + yi − yi+1
,

which leads to yi+1 ≤ 1 + yi − (xi+1 − xi) exp(yi) → −∞. In other words, if there were

a xi with φ(xi) → ∞, in order to satisfy (2.9) would be required that φ(xi−1) → −∞
or φ(xi+1) → −∞ faster than φ(xi) → ∞, which gives an important point in proving
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existence of a maximum likelihood estimator.

Now, turning to the hidden Markov model, we explain why in our setting this argument

does not apply and thus we need to assume A10 in order to bound the log-likelihood

function of the model. Using Assumption A9 and the fact that γj,k ≤ 1 for j, k =

1, . . . ,K, we can bound the log-likelihood function of the hidden Markov model as

follows:

T∑
t=1

log(
K∑
k=1

exp(φk(xt))) = log(
T∏
t=1

(
K∑
k=1

exp(φk(xt)))

= log(
K∑

k1=1

. . .
K∑

kT=1

T∏
t=1

exp(φkt(xt)))

≥ℓT (λ) = log(
K∑

k1=1

. . .
K∑

kT=1

δk1

T∏
t=2

γkt−1,kt

T∏
s=1

exp(φks(xs)))

≥ log(cT
K∑

k1=1

. . .

K∑
kT=1

T∏
t=1

exp(φkt(xt))) = log(cT ) +

T∑
t=1

log(

K∑
k=1

exp(φk(xt))).

(2.10)

Assuming restriction (2.9) for each of the K state-dependent densities, which we will

prove below, does not help in proving existence as it did in the independent identically

distributed setting: If φk(xt) → ∞ for some k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}, the
result from above, giving that φk(xt−1) → −∞ or φk(xt+1) → −∞ faster than φk(xt) →
∞, does not help in bounding

∑T
t=1 log(

∑K
k=1 exp(φk(xt))), since possibly for a l ∈

{1, . . . ,K} \ {k}, φl(xt−1) → ∞ (or φl(xt−1) → ∞) faster than φk(xt−1) → −∞ (or

φk(xt+1) → −∞). Thus, by A10 we assume −∞ ≤ φk(x) ≤ M (k = 1, . . . ,K), where the

value −∞ is permitted since we consider exp(φk(x)), which tends to 0 for φk(x) → −∞.

Keeping these remarks in mind, we now prove existence of the nonparametric univariate

maximum likelihood estimator, using ideas from Pal et al. (2007).

Proof of Theorem 2.9. Since supλ LT (λ) = supΓ supφ LT ((Γ, φ)), let us fix Γ and focus

on supφ LT ((Γ, φ)) for the moment.

We optimize φ over Fb
lc, thus φk1[x1,xT ] is concave for k = 1, . . . ,K. If for a k ∈

{1, . . . ,K} and some x /∈ [x1, xT ] we have exp(φk(x)) > 0, then, since exp(φk) is a

continuous function,

1 =

∫ ∞

−∞
exp(φk(x))dx >

∫ xT

x1

exp(φk(x))dx =: dk.
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For k = 1, . . . ,K, let ϕk(x) =

⎧⎨⎩φk(x)− log(dk), x ∈ [x1, xT ]

−∞, x /∈ [x1, xT ]
, which is a concave

function satisfying
∫ xT

x1
exp(ϕk(x))dx = 1. Then,

ℓT ((Γ, φ)) = log(

K∑
k1=1

· · ·
K∑

kT=1

δk1

T∏
t=2

γkt−1,kt

T∏
s=1

exp(φks(xs)))

= log(

K∑
k1=1

· · ·
K∑

kT=1

δk1

T∏
t=2

γkt−1,kt

T∏
s=1

dks exp(ϕks(xs)))

< log(

K∑
k1=1

· · ·
K∑

kT=1

δk1

T∏
t=2

γkt−1,kt

T∏
s=1

exp(ϕks(xs))) = ℓT ((Γ, ϕ)).

(2.11)

Hence, for the maximizer φ̂ of ℓT , supp(exp(φ̂k)) ⊆ [x1, xT ], k = 1, . . . ,K.

By a similar argument, for each component φk of φ ∈ F b
lc, there is a piecewise linear

concave function ϕk with knots in x1, . . . , xT , satisfying φk(xt) = ϕk(xt), k = 1, . . . ,K,

t = 1, . . . , T . Since φk is concave, φk(x) ≥ ϕk(x) for x ∈ [x1, xT ]. Thus,

1 =

∫ ∞

−∞
exp(φk(x))dx ≥

∫ xT

x1

exp(φk(x))dx ≥
∫ xT

x1

exp(ϕk(x))dx =: dk

and there is a ϕ̃ ∈ Fb
lc, which is given by ϕ̃k(x) =

⎧⎨⎩ϕk(x)− log(dk), x ∈ [x1, xT ]

−∞, x /∈ [x1, xT ]

(k = 1, . . . ,K), such that by the same argument as used above, ℓT (φ) ≤ ℓT (ϕ̃). This

proves that the maximizer φ̂ of ℓT consists of K piecewise linear concave functions.

Now write yk,t := φk(xt) for piecewise linear concave functions φk, t = 1, . . . , T, k =

1, . . . ,K. Since for x ∈ [xt, xt+1], φ
′(x) =

yk,t+1−yk,t
xt+1−xt

, we have

∫ xt+1

xt

exp(φk(x))dx =
xt+1 − xt

yk,t+1 − yk,t

∫ xt+1

xt

exp(φk(x))
yk,t+1 − yk,t
xt+1 − xt

dx

=
xt+1 − xt

yk,t+1 − yk,t

∫ yk,t+1

yk,t

exp(x)dx

=
xt+1 − xt

yk,t+1 − yk,t
(exp(yk,t+1)− exp(yk,t)).

Thus, the condition
∫
exp(φk(x))dx = 1 can be rewritten as

T−1∑
t=1

xt+1 − xt
yk,t+1 − yk,t

(exp(yk,t+1)− exp(yk,t)) = 1. (2.12)
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Instead of maximizing ℓT over φ ∈ F b
lc we can maximize ℓT over yk,t ∈ [−∞,M ] with

respect to (2.12) and
yk,t − yk,t−1

xt − xt−1
≥

yk,t+1 − yk,t
xt+1 − xt

,

k = 1, . . . ,K. Since the function
∑K

k1=1 · · ·
∑K

kT=1 δk1
∏T

t=2 γkt−1,kt

∏T
s=1 exp(yks,s) is

continuous on the compact set [−∞,M ]T × · · · × [−∞,M ]T , the maximum likelihood

estimator exists.

The proof of Theorem 2.10 follows very similar arguments. In order to take account of

the dimension p > 1 some concepts from convex analysis are required. These can be

found in Rockafellar (1970) and were also used in Cule (2010), Cule et al. (2010) when

proving existence of the nonparametric maximum likelihood estimator in the indepen-

dent identically distributed setting.

As introduced above, CT denotes the convex hull of the x1, . . . , xT . Write ri(CT ) for

the relative interior of CT and rb(CT ) for the relative boundary of CT . The closure of a

function f is denoted by cl(f).

Recall that for any set A in Rp the closure cl(A) is given by cl(A) =
⋂
{A+ εB | ε > 0},

where B = {x | ∥x∥ ≤ 1} is the Euclidean unit ball in Rp. Then, the relative interior of a

convex set A in Rp is defined as ri(A) = {x ∈ aff(A) | ∃ε > 0, (x+εB)∩(aff(A)) ⊂ A},
where aff(A) denotes the affine hull of A. The relative boundary of A is then given by

(cl(A)) \ (ri(A)) (see Rockafellar, 1970, pp. 43).

The closure cl(f) of a concave function f is the pointwise infimum of all affine functions

g such that g ≥ f (see Rockafellar, 1970, p. 307).

Proof of Theorem 2.10. First, fix Γ and maximize ℓT ((Γ, φ)) over φ ∈ Fb
lc.

Since the functions φk are concave, φk1CT are concave functions for k = 1, . . . ,K. If for

a k ∈ {1, . . . ,K} and some x /∈ CT we have exp(φk(x)) > 0, due to continuity

1 =

∫
Rp

exp(φk(x))dx >

∫
CT

exp(φk(x))dx =: dk.

Thus, setting φ̃k =

⎧⎨⎩φk − log(dk), x ∈ CT

−∞, x /∈ CT
(k = 1, . . . ,K) yields ℓT ((Γ, φ)) < ℓT ((Γ, φ̃)),

see (2.11). Therefore, the maximizer φ̂ of ℓT satisfies supp(exp(φ̂k)) ⊆ CT , k = 1, . . . ,K.

By Rockafellar (1970, p. 37), for any yk ∈ RT there exists a function ϕyk : Rp → R,
which is the least concave function satisfying ϕyk(xt) ≥ yk,t, t = 1, . . . , T .

To prove that for k = 1, . . . ,K, φ̂k ∈ Ftent(x), assume that φ̂k(xt) = yk,t (t = 1, . . . , T )

and φ̂k ̸= ϕyk .
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Since φ̂k is concave, φ̂k(x̄) ≥ ϕyk(x̄) for x̄ ∈ Rp and hence there exists a x0 ∈ CT for

which φ̂k(x0) > ϕyk(x0).

Assume x0 ∈ ri(CT ): Since φ̂k and ϕyk are continuous in x0,

1 =

∫
Rd

exp(φ̂k(x))dx ≥
∫
CT

exp(φ̂k(x))dx >

∫
CT

exp(ϕyk(x))dx =: dk

Setting ϕ̃yk =

⎧⎨⎩ϕyk − log(dk), x ∈ CT

−∞, x /∈ CT
, which is a concave function and where the

function exp(ϕ̃yk(x)) is a density, by the same argument as above, ℓT (φ̂) ≤ ℓT (ϕ̃y), which

is a contradiction since φ̂ maximizes the log-likelihood function. Therefore, x0 /∈ ri(CT )
and the only remaining possibility is x0 ∈ rb(CT ). Since ϕyk is upper semi-continuous

(see Rockafellar, 1970, Corollary 17.2.1), by Rockafellar (1970, Corollary 7.3.4) we have

ϕyk = cl(ϕyk) = cl(φ̂k) ≥ φ̂k, which together with the fact φ̂k(x) ≥ ϕyk(x) for x ∈ CT
yields φ̂k = ϕyk .

These considerations prove that maximizing ℓT (λ) over Gb × Fb
lc can be reformulated

to maximization of ℓT (λ) over yk,t ∈ [−∞,M ], such that the resulting ϕyk ∈ Ftent(x),

k = 1, . . . ,K, t = 1, . . . , T .

Due to the continuity of the function
∑K

k1=1 · · ·
∑K

kT=1 δk1
∏T

t=2 γkt−1,kt

∏T
s=1 exp(yks,s)

on the compact set [−∞,M ]T × . . . × [−∞,M ]T , the maximum likelihood estimator

exists.



3. Penalized estimation for hidden Markov

models

In recent years, due to the growing availability of high-dimensional data in areas like

bioinformatics, climatology, finance or information technology, the introduction of re-

strictions and sparsity assumptions to statistical models have become quite popular,

see for example Bühlmann and van de Geer (2011) for a comprehensive introduction.

Tibshirani (1996) introduced the least absolute shrinkage and selection operator (Lasso)

in the context of least squares estimation for linear models, which became a common

method for variable selection and prediction. Fan and Li (2001) considered alternative

penalty functions and its properties in the context of likelihood-based regression models.

Penalized estimation methods are also used in the context of sparse covariance matrices

and their inverse (called precision matrices), see for example Cai et al. (2011) and Huang

et al. (2006). These matrices are relevant for applications in areas like risk management,

fMRI, portfolio management and algorithms for web searches. Yuan and Lin (2007) ap-

plied penalized likelihood methods for estimating precision matrices in Gaussian graphi-

cal models with focus on zero entries indicating conditional independence. They applied

two penalties based on the Lasso approach and develop asymptotic properties of their

estimators using asymptotic theory for penalized regression estimators from Knight and

Fu (2000). Ruan et al. (2011) adopted this idea and applied a Lasso-type penalty to

precision matrices of Gaussian mixture models. They gave an EM-algorithm for pa-

rameter estimation and numerical results including real data examples for model-based

clustering and mixture discriminant analysis. Lotsi and Wit (2013) proved that impos-

ing a Lasso-type penalty on the likelihood function of a Gaussian mixture model does

not alter consistency results in the context of mixture models.

In this chapter we introduce the penalty functions used in Fan and Li (2001) to para-

metric hidden Markov models with state-dependent multivariate Gaussian distributions,

in order to estimate sparse state-dependent precision matrices. In Section 3.2 we show

that the asymptotic results from Fan and Li (2001) hold true for maximum likelihood

estimation in hidden Markov models, while in Section 3.3 we compare three penalty

functions for the estimation of sparse precision matrices concerning several criteria and

apply our methods to multivariate financial time series. Using the estimated precision

46
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matrices we try to detect conditional independence of financial positions in different

volatility states of the market, which are represented by the states of the hidden Markov

model.

3.1. Penalized maximum likelihood estimation

We consider parametric hidden Markov models as introduced in Section 1.2. The un-

derlying Markov chain of the model is assumed to be stationary with stationary dis-

tribution δ = (δ1, . . . , δK). We assume the observed process to take values in Rp and

focus on Gaussian hidden Markov models, i.e. Fk = N (µk,Σk), where µ ∈ Rp and

Σk ∈ Rp×p positive semidefinite, k = 1, . . . ,K. Thus, the parameter vector of the

model λ = (Γ, µ1,Σ1, . . . , µK ,ΣK) is of dimension G := K2 − K + 1.5Kp + 0.5Kp2,

since there are K(K − 1) transition probabilities and (p + p(p+1)
2 )K parameters of the

state-dependent Gaussian distributions. We write fk for the density of the Gaussian

distribution in state k with respect to a σ-finite measure ν, k = 1, . . . ,K. The true

underlying parameter of our model is denoted by λ0 = (Γ0, µ1,0,Σ1,0, . . . , µK,0,ΣK,0)

and fk,0 indicates that the parameters for fk are µk,0 and Σk,0 (or Ωk,0), k = 1, . . . ,K.

We denote the state-dependent precision matrices by Ωk = Σ−1
k , Ωk = (ω

(k)
ij )i,j=1,...,p,

k = 1, . . . ,K. Since our focus is on sparse precision matrices, we introduce more nota-

tion. For k = 1, . . . ,K let

Ω
(1)
k,0 = {ω(k)

ij,0 ̸= 0, i, j = 1, . . . , p} and Ω
(2)
k,0 = {ω(k)

ij,0 = 0, i, j = 1, . . . , p}

denote the sets of nonzero and zero entries of the precision matrices respectively and

write

I
(1)
k,0 = {(i, j) : i, j = 1, . . . , p, i ̸= j, ω

(k)
ij,0 ̸= 0}

and

I
(2)
k,0 = {(i, j) : i, j = 1, . . . , p, i ̸= j, ω

(k)
ij,0 = 0}

for the corresponding index sets. Set λ0 = (λ10, λ20), where

λ10 := (λ1,0, . . . , λH,0) = (Γ0, µ1,0, . . . , µK,0,Ω
(1)
1,0, . . . ,Ω

(1)
K,0)
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contains the transition probabilities, the state-dependent expected values and the non-

zero entries of the precision matrices and

λ20 := (λH+1,0, . . . , λG,0) = (Ω
(2)
1,0, . . . ,Ω

(2)
K,0)

contains the zero entries of the precision matrices.

The objective of this chapter is the estimation of λ using the maximum likelihood

method. In order to take into account the sparse structure of the precision matrices, we

impose a penalty to the likelihood function (1.3) of the model:

LT (λ)− Tρ(λ; cT ),

where ρ : Λ → R is a penalty function depending on a tuning parameter cT > 0. Since

in our model it is not necessary to penalize the entire parameter vector λ, we restrict

penalization to the state-dependent precision matrices and write

QT (λ) = LT (λ)− T
K∑
k=1

∑
i ̸=j

ρ(|ω(k)
ij |; cT )

for the penalized likelihood function.

Popular choices for the penalty functions on a parameter θ are the l1-penalty

ρ(θ; cT ) = cT ∥θ∥l1

or hard thresholding

ρ(|θ|; cT ) = c2T − (|θ| − cT )
21{|θ|<cT }, (3.1)

where for a matrix A = (aij)i,j=1,...,p, ∥A∥l1 =
∑

i ̸=j |aij | and for a vector a ∈ Rp,

∥a∥l1 =
∑p

j=1 |aij |. Fan and Li (2001) introduced the so called smoothly clipped absolute
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Figure 3.1.: Penalty functions for cT = 0.5 and c∗ = 3.7: Left: l1, mid: hard thresh-
olding, right: SCAD. Solid line: l1-penalty, dashed line: hard thresholding, dotted line:

quadratic spline.
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deviation penalty (SCAD),

ρ(θ; cT ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cT |θ| |θ| ≤ cT

−(
|θ|2−2c∗cT |θ|+c2T

2(c∗−1) ) cT < |θ| ≤ c∗cT
(c∗+1)c2T

2 |θ| > c∗cT

,

for an additional tuning parameter c∗ > 2, which is a combination of the l1-penalty and

hard thresholding. In a neighbourhood |θ| < cT , l1-penalization is performed, while for

|θ| > c∗cT the SCAD-penalty uses hard thresholding. For values in between a quadratic

spline with knots cT and c∗cT determines the SCAD-penalty function. For θ > 0 the

first derivative is

ρ′(θ; cT ) = cT (1{θ≤cT } +
max{c∗cT − θ, 0}

(c∗ − 1)cT
1{θ>cT }). (3.2)

Figure 3.1 illustrates the relationship of the three penalty functions.

3.2. Asymptotic theory for the penalized estimator

Fan and Li (2001) developed asymptotic theory for penalized maximum likelihood esti-

mators in generalized linear models. They established convergence rates of the penalized

maximum likelihood estimator, discussed consistency depending on the chosen penalty

function and proved asymptotic normality and an oracle property for consistent estima-

tors. We transfer their theory to our model using the consistency result from Leroux

(1992a) and the results on asymptotic normality from Bickel et al. (1998) for unpenalized

maximum likelihood estimation in parametric hidden Markov models. For this purpose,

we impose the following assumptions.

A11. The Markov chain (St)t∈N is irreducible and aperiodic.

A12. The map λ ↦→ γk,l is continuous on Λ and in some neighbourhood ∥λ − λ0∥ < ε,

the maps λ ↦→ γk,l and λ ↦→ δk have two continuous derivatives for all k, l = 1, . . . ,K.

A13. For all k = 1, . . . ,K and x ∈ Rp the map λ ↦→ fk(x) is continuous on the

parameter space Λ and has two continuous derivatives in the same neighbourhood as

used in Assumption A12.

A14. We have Eλ0(| log(fk,0(x1))|) < ∞ (k = 1, . . . ,K) and there exists an ε > 0 such

that for λ ∈ RG we have

1. Eλ0(sup∥λ−λ0∥<ε | ∂
∂λi

log(fk(x1))|2) < ∞ for i = 1, . . . , G and k = 1, . . . ,K,

2. Eλ0(sup∥λ−λ0∥<ε | ∂2

∂λi∂λj
log(fk(x1))|) < ∞ for i, j = 1, . . . , G, k = 1, . . . ,K and
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3. for j = 1, 2, il = 1, . . . , G and l = 1, . . . , j,
∫
sup∥λ−λ0∥<ε | ∂j

∂λi1
···∂λij

fk(y)|ν(dy) <
∞ for k = 1, . . . ,K.

A15. For some ε > 0 and all λ ∈ Λ we have Eλ0(sup∥λ−λ0∥<ε(log(fk(x1))
+)) < ∞,

k = 1, . . . ,K.

A16. There is an ε > 0 such that for k = 1, . . . ,K,

Pk,0( sup
∥λ−λ0∥<ε

max
i,j=1,...,K

fi,0(x1)

fj(x1)
= ∞) < 1.

A17. The parameter space Λ is compact and λ0 is an interior point of Λ.

A18. The family of mixtures of at most K elements of {f(x;ϑ) : ϑ ∈ Θ} is identifiable.

The consistency proof of Leroux (1992a), which is based on the method of Wald (1949)

uses Assumptions A11, A15, A18, as well as the first parts of Assumptions A12 and

A13 concerning continuity, the compactness assumption from A17 and the first part of

A14: Eλ0(| log(fk,0(x1))|) < ∞ for k = 1, . . . ,K. Note that consistency of the unpe-

nalized maximum likelihood estimator in Gaussian hidden Markov models requires the

parameter space to be compactified and in particular the variances need to be bounded

away from zero to prevent unboundedness of the likelihood function, see Alexandrovich

(2014) for details.

The proof of asymptotic normality in Bickel et al. (1998) is based on a Taylor expansion

of the first derivative of LT (λ) at λ0 and requires the consistency of the maximum like-

lihood estimator next to Assumptions A11, A12, A13, A14 1.–3., A16 and the interior

point assumption of A17.

We state our first theorem, which follows Fan and Li (2001, Theorem 1).

Theorem 3.1. Assume that in the hidden Markov model described above Assumptions

A11–A18 hold and that the second derivative of the penalty function satisfies

max{|ρ′′(|λj |; cT )| : λj ∈ λ10} → 0.

Then there exists a local maximizer λ̂T of the penalized likelihood function QT (λ) such

that

∥λ̂T − λ0∥ = OP (T
− 1

2 + aT ),

where aT = max{ρ′(|λj |; cT ) : λj ∈ λ10}.

When choosing SCAD-penalty function or hard thresholding, from (3.1) and (3.2) we

observe that if cT → 0, there exists a root-T -consistent penalized maximum likelihood

estimator, since aT → 0 in Theorem 3.1. For the l1- penalty function aT = cT , thus the
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penalized maximum likelihood estimator is root-T -consistent, if cT = OP (T
− 1

2 ).

For the next theorem, let

A := diag(ρ′′(|λ1,0|; cT ), . . . , ρ′′(|λH,0|; cT )),

b := (ρ′(|λ1,0|; cT )sgn(λ1,0), . . . , ρ
′(|λH,0|; cT )sgn(λH,0))

T

and denote by I(λ0) the Fisher information matrix and by I∗(λ10) = I∗((λ10, 0)) the

Fisher information matrix when λ20 = 0 is known. The following theorem, which follows

Fan and Li (2001, Lemma 1, Theorem 2), states that under certain conditions on the

penalty function, the root-T -consistent estimator has oracle properties and is asymptotic

normal.

Theorem 3.2. Assume that in the hidden Markov model described above Assumptions

A11–A18 hold and that lim infT→∞ lim infθ→0+
ρ′(θ;cT )

cT
> 0. If cT → 0 and

√
TcT → ∞

as T → ∞, the
√
T -consistent local maximizer λ̂T = (λ̂T,1, λ̂T,2)

T in Theorem 3.1 has

the following properties

1. λ̂T,2 = 0 (sparsity)

2.
√
T (I∗(λ10) + A)(λ̂T,1 − λ10 + (I∗(λ10) + A)−1b) → N (0, I∗(λ10)) in distribution

(asymptotic normality)

with probability tending to 1.

In combination with the results from Theorem 3.1 we observe that given
√
TcT → ∞, the

penalized maximum likelihood estimator using hard thresholding or the SCAD-penalty

works as well as the maximum likelihood estimates when estimating λ10 and λ20 = 0

is known. In addition, the estimator is asymptotically normal. Since the penalized

maximum likelihood estimator using l1-penalization is
√
T -consistent if cT = OP (T

− 1
2 ),

there is a contradiction to the assumption
√
TcT → ∞, thus in this case the results from

Theorem 3.2 do not apply.

3.3. Numerical illustrations

In this section we investigate finite sample performance of the penalized maximum like-

lihood estimator described in Section 3.1. In the context of l1-penalization, penalized

estimation of Gaussian hidden Markov models was considered by Städler and Mukherjee

(2013). Their approach combined the estimation of sparse precision matrices and the

model selection problem of choosing the number of states K. They proposed an EM-

algorithm for the model and provided a simulation study next to a real data example
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from genome biology.

We investigate penalized maximum likelihood estimation in the described model, com-

paring the performance of the three penalty functions introduced above. For estimation,

we implement the EM-algorithm described in Section 1.3 with modified M-step. Instead

of the closed-form estimation of the covariance matrices according to (1.16), we perform

numerical optimization of the corresponding part of the conditional expectation of the

penalized complete-data log-likelihood function.

An additional problem is the selection of the tuning parameters. We stick to the lit-

erature and use a penalized version of the Bayesian Information Criterion (BIC), (see

Fan and Li, 2001, Ruan et al., 2011, Städler and Mukherjee, 2013, Yuan and Lin, 2007).

Bühlmann and van de Geer (2011) proposed the BIC criterion for selection of the tun-

ing parameters as alternative to cross-validation, but they mentioned that it ”has no

theoretical justification for variable selection with the Lasso”1.

Since we gain better results allowing for state-dependent tuning parameters, we choose

the vector cT = (cT,1, . . . , cT,K) giving the minimal penalized BIC

BIC(cT ) =− 2LT (λ̂T ) + Tρ(λ̂T ; cT ) + log(T )
K∑
k=1

(p+
∑
i<j

1{|ω̂(k)
ij |/(max |ω̂(k)

ij |)>0.0001})

+ log(T )K(K − 1).

As proposed by Fan and Li (2001) we choose c∗ = 3.7 for the second tuning parameter

of the SCAD-penalty.

3.3.1. Simulations

We start our numerical investigation using simulated data of hidden Markov models from

several dimensions as described in Section 3.1, in order to compare the performance of the

proposed penalty functions. For all models we fix K = 2 and the transition probability

matrix is set to Γ =

(
0.8 0.2

0.4 0.6

)
. The state-dependent expected values are chosen as

µ1,0 = (0, . . . , 0)T ∈ Rp and µ2,0 = (0.5, . . . , 0.5)T ∈ Rp for the respective dimension p

and we simulate data sets consisting of T = 3371 observations.

For each p we run the simulation 500 times and report the averaged spectral norm,

Frobenius norm and Kullback–Leibler divergence of the precision matrices over all states

according to

1

K

K∑
k=1

∥Ω̂k − Ωk,0∥S ,
1

K

K∑
k=1

∥Ω̂k − Ωk,0∥F

1Bühlmann and van de Geer (2011, p.17)
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and

1

K

K∑
k=1

tr(Σk,0Ω̂k)− log(det(Σk,0Ω̂k))− p

respectively. In addition we transfer the concept of the l0-’norm’ for vectors (∥x∥0 =∑p
i=1 1{xi ̸=0} for x ∈ Rp) to matrices,

1

K

K∑
k=1

∥Ω̂k∥0,

where we denote by ∥A∥0 =
∑

i,j 1{aij ̸=0} for A = (aij). Furthermore, we report the

average number of correct and incorrect estimated zero entries.

1. Dimension p = 2. The precision matrices of the model are fixed as

Ω1,0 =

(
600 0

0 750

)
, Ω2,0 =

(
1000 0

0 850

)
.

The state-dependent tuning parameters of the penalty functions vary in the ranges

reported in Table 3.1. The estimation results averaged over 500 simulations to-

l1 SCAD hard

cT,1 0 – 0.00002 0 – 0.35 0 – 0.9

cT,2 0 – 0.0001 0 – 0.2 0 – 0.9

Table 3.1.: Ranges for tuning parameters of the penalty functions for p = 2

gether with the standard errors are reported in Table 3.2. Regarding most of the

criteria l1-penalization yields the best results, only when considering the spectral

norm, SCAD-penalization is slightly better. Compared to the first two penalty

functions, hard thresholding yields poor results. Together with the observed stan-

dard errors we observe that the differences between the estimates are small. To

gain further insights we increase the considered dimension.

l1 SCAD hard

Frobenius norm 38.74 (15.91) 42.28 (17.41) 45.69 (16.48)

Spectral norm 212.68 (22.26) 210.45 (24.36) 215.96 (23.85)

Kullback–Leibler divergence 0.00148 (0.001) 0.00174 (0.001) 0.002 (0.001)

l0 (target: 2) 2.09 (0.29) 2.23 (0.51) 2.69 (0.59)

Zeroes correct (target: 4) 3.81 (0.58) 3.54 (1.01) 2.62 (1.18)

Zeroes incorrect 0 (0) 0 (0) 0 (0)

Table 3.2.: Averaged estimation results and standard errors of 500 simulations, p = 2.
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2. Dimension p = 4. The precision matrices of the model are

Ω1,0 =

⎛⎜⎜⎜⎜⎜⎝
650 0 −10 0

0 850 100 0

−10 100 700 120

0 0 120 800

⎞⎟⎟⎟⎟⎟⎠ , Ω2,0 =

⎛⎜⎜⎜⎜⎜⎝
950 20 0 0

20 750 0 50

0 0 1000 −20

0 50 −20 800

⎞⎟⎟⎟⎟⎟⎠ ,

thus ∥Ω1,0∥0 = ∥Ω2,0∥0 = 10 and there is a total number of 12 zeroes to be

estimated. The selected ranges of tuning parameters are reported in Table 3.3.

Again, the averaged results reported in Table 3.4 show that, regarding most

l1 SCAD hard

cT,1 0 – 0.000015 0 – 0.29 0 – 0.8

cT,2 0 – 0.00006 0 – 0.2 0 – 0.7

Table 3.3.: Ranges for tuning parameters of the penalty functions for p = 4

criteria, l1-penalization seems to be the best choice. Taking a closer look and

considering the standard errors we observe that when comparing l1- and SCAD-

penalization, the results are very close. Concerning the l0-’norm’, the result from

SCAD-penalization gets closer to the correct number of 10 than l1-penalization

or hard thresholding. Observing the number of correct and incorrect estimated

zeroes yields that l1-penalization gets very close to the true number of 12 correct

zeros, but on the contrary estimates a lot of incorrect zero entries as well. Hard

thresholding yields the least number of incorrect estimated zeroes, but this is

caused by the fact that it overall does not detect many zeroes. SCAD-penalization

seems to be a compromise, on the one hand it does not estimate all correct zero

entries but on the other hand, not many entries are mistakenly shrunken to zero.

l1 SCAD hard

Frobenius norm 88.05 (13.72) 89.59 (23.31) 89.98 (21.41)

Spectral norm 211.72 (19.55) 225.23 (24.53) 225.51 (22.65)

Kullback–Leibler divergence 0.0065 (0.002) 0.0066 (0.003) 0.0065 (0.003)

l0 (target: 10) 6.74 (0.85) 12.58 (1.18) 13.608 (1.05)

Zeroes correct (target: 12) 11.22 (1.19) 4.96 (2.37) 3.35 (2.01)

Zeroes incorrect 7.3 (1.09) 1.88 (1.51) 1.43 (1.36)

Table 3.4.: Averaged estimation results and standard errors 500 simulations, p = 4.
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3. Dimension p = 8. The precision matrices of the model are set to

Ω1,0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

650 0 −10 0 15 0 0 75

0 800 100 0 0 50 −15 0

−10 100 750 120 0 0 0 15

0 0 120 820 −5 −20 5 −10

15 0 0 −5 700 0 −5 0

0 50 0 −20 0 600 0 −25

0 −15 0 5 −5 0 650 40

75 0 15 −10 0 −25 40 700

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω2,0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

950 20 0 0 10 −25 0 100

20 750 0 50 0 0 10 −50

0 0 1000 −20 0 10 0 0

0 50 −20 800 −5 0 0 0

10 0 0 −5 900 −15 −150 5

−25 0 10 0 −15 850 0 10

0 10 0 0 −150 0 950 0

100 −50 0 0 5 10 0 1050

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which leads to ∥Ω1,0∥0 = 38 and ∥Ω2,0∥0 = 36, so that a total number of 54

zeroes is to be estimated. The tuning parameters are selected from the values

reported in Table 3.5. The averaged results provided in Table 3.6 show that for

growing dimension p, SCAD-penalization improves compared to l1-penalization

and hard thresholding. While hard thresholding seems not to be a good choice

for detecting zero entries, l1-penalization mistakenly shrinks many entries to zero.

SCAD-penalization performs quite good, the estimate gets close to the number of

correct zero entries and does not yield too many incorrect zeroes, while it leads to

reasonable values concerning the norm-criteria.

One conclusion from the simulation study is that despite its theoretical properties proven

in Section 3.2, the finite sample performance of the maximum likelihood estimator pe-

nalized by hard thresholding is not competitive to l1- and SCAD-penalization and does

not lead to the desired sparsity. While in small dimensions l1-penalization yields good

results, which are slightly better than using SCAD-penalization, we observe that for

growing dimension SCAD-penalization turns out to be more advantageous.

l1 SCAD hard

cT,1 0 – 0.00003 0 – 0.5 0 – 0.7

cT,2 0 – 0.00002 0 – 0.8 0 – 0.5

Table 3.5.: Ranges for tuning parameters of the penalty functions for p = 8.
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l1 SCAD hard

Frobenius norm 182.97 (23.28) 83.94 (0.86) 163.34 (35.72)

Spectral norm 249.53 (18.47) 242.4 (0.61) 277.58 (24.95)

Kullback–Leibler divergence 0.0256 (0.006) 0.0054 (9.7e−5) 0.0207 (0.008)

l0 (target: 37) 16.15 (2.25) 36.77 (0.51) 59.27 (1.99)

Zeroes correct (target: 54) 53.13 (1.42) 47.41 (1.14) 5.94 (3.77)

Zeroes incorrect 42.57 (3.83) 7.04 (1.13) 3.53 (2.18)

Table 3.6.: Averaged estimation results and standard errors of 500 simulations, p = 8.

However, one should be aware of the advantages and disadvantages of both approaches:

While l1-penalization has a very strong shrinkage-effect which partly leads to high error

rates, SCAD-penalization might miss some zero entries when estimating the parameters.

3.3.2. Real data example

Now we apply the proposed method to financial data2. We use share prices of German

stocks on a daily basis from 14th January 2001 to 23rd April 2013, which yields a data

set of T = 3371 log-returns. Since in our simulation study hard thresholding did not

prove beneficial compared to the other penalty functions, we only report results for l1-

and SCAD-penalization.

The main objective is the investigation of conditional independence in different volatil-

ity states of the market, which are represented by the states of the Markov chain. The

advantage of Gaussian hidden Markov models is the information on conditional inde-

pendence provided by the precision matrices, which is a popular concept in the context

of graphical models (see for example Lauritzen (1996) for detailed information). A zero

entry ω
(k)
ij = 0 indicates that in state k the random variables i and j are conditional

independent given all remaining variables of the model (k = 1, . . . ,K, i, j = 1, . . . , p).

We choose the number of states of the Markov chain using the BIC criterion, which is

for both penalty functions minimal for K = 3. Thus, we fit a hidden Markov model

with three states, where state 1 represents the state with smallest volatility, while state

3 represents the state with highest volatility.

Below we provide results for several portfolios of different dimensions, consisting of shares

from different industry sectors. Surprisingly the precision matrices are not very sparse,

thus we cannot make a clear point on conditional independence among the shares.

At first, we consider a portfolio consisting of four shares from the financial sector, namely

Commerzbank, Deutsche Bank, Baader Bank and Deutsche Balaton. Estimation yields

2Available from http://de.finance.yahoo.com/, data access 23rd April 2013

http://de.finance.yahoo.com/
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only one zero entry in the highest volatility state, corresponding to conditional indepen-

dence of Baader Bank and Deutsche Balaton given the observations of Commerzbank

and Deutsche Bank. This result is given by the unpenalized estimator as well as when

using l1- or SCAD-penalization, thus in this example penalization does not yield addi-

tional insights.

Next we construct a four-dimensional portfolio consisting of shares from Merck, Bayer,

Curasan and Evotec from the biotechnology sector. Unpenalized estimation (Ω̂k) yields

no zero entries in the precision matrices, while l1- and SCAD-penalization (Ω̂l1
k and Ω̂S

k

respectively) suggest several zero entries in the highest volatility state. As previously

observed in the simulation study, l1-penalization yields more zero entries than SCAD-

penalization:

Ω̂3 =

⎛⎜⎜⎜⎜⎜⎝
346 −46 −20 −10

−46 101 −4 −1

−20 −4 21 −1

−10 −1 −1 36

⎞⎟⎟⎟⎟⎟⎠ , Ω̂l1
3 =

⎛⎜⎜⎜⎜⎜⎝
292 0 −12 0

0 80 −6 0

−12 −6 17 0

0 0 0 33

⎞⎟⎟⎟⎟⎟⎠ ,

Ω̂S
3 =

⎛⎜⎜⎜⎜⎜⎝
368 −54 −27 −4

−54 107 0 0

−27 0 23 0

−4 0 0 39

⎞⎟⎟⎟⎟⎟⎠ .

Table 3.7.: Estimated precision matrices state 3, p = 4 biotechnology portfolio: Un-
penalized estimator, l1-penalization, SCAD-penalization

Both penalized estimates suggest conditional independence of Evotec and Bayer and

Evotec and Curasan given the respective remaining portfolios. In addition, l1-

penalization yields conditional independence of Merck and Bayer as well as Merck and

Evotec given the respective remaining portfolios, while SCAD-penalization yields a zero

entry concerning the shares from Bayer and Curasan. Compared to the unpenalized

estimator, the SCAD-penalized estimator seems more plausible than the l1-penalized

estimator, since it shrinks those entries to zero, which posses the smallest absolute val-

ues in the unpenalized estimate.

The remaining estimates are given in Appendix A. Concerning expected values and tran-

sition probabilities, the three procedures, especially the two penalized estimators, yield

very similar results.

Now, we extend the portfolio in two different ways. First, we add two shares of a related

industry sector to see if the observed results remain. Second, we merge the two portfolios

from dimension four to study conditional independence of shares from different industry

sectors.
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Adding the shares of BASF and K+S to the biotechnology portfolio, unpenalized esti-

mation yields a zero entry which was not detected before and corresponds to the shares

from Bayer and Evotec in the highest volatility state. Penalization by l1 yields one zero

entry in the lowest volatility state, which suggests conditional independence of Curasan

and BASF given the remaining shares. The other estimated zeroes concern the highest

volatility state:

Ω̂3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

455 −39 −22 −15 −41 −80

−39 140 −1 0 −44 2

−22 −1 29 −1 −7 −2

−15 0 −1 49 −5 11

−41 −44 −7 −5 120 −65

−80 2 −2 11 −65 313

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂l1
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

416 −28 −26 −16 −37 −42

−28 130 −7 1 −43 0

−26 −7 25 −1 −4 0

−16 1 −1 45 −2 8

−37 −43 −4 −2 112 −60

−42 0 0 8 −60 288

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂S
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

455 −29 −36 −17 −32 −82

−29 132 0 0 −48 0

−36 0 25 −2 −6 −3

−17 0 −2 45 −3 11

−32 −48 −6 −3 118 −69

−82 0 −3 11 −69 316

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Table 3.8.: Estimated precision matrices state 3, p = 6 biotechnology portfolio: Un-
penalized estimator, l1-penalization, SCAD-penalization

We observe that when performing l1-penalization, the zero entries from the four-

dimensional portfolio all vanish and the zero entry detected in the unpenalized esti-

mation does not occur. Instead, conditional independence of Bayer and K+S as well

as Curasan and K+S given the respective remaining portfolios is estimated. SCAD-

penalization reestimates two of the three zero entries from the four-dimensional portfo-

lio, corresponding to Bayer and Curasan and Bayer and Evotec, in addition there is one

zero entry concerning Bayer and K+S.

These observations show that SCAD-penalized estimation might yield more reliable re-

sults, since the results from dimension four and six mainly coincide and are in line with

the unpenalized estimator, while using l1-penalization yields two very different results.

The remaining parameter estimates are given in Appendix A.

Finally, we consider a portfolio of dimension p = 8, consisting of the shares from the
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two four-dimensional portfolios from above, namely Merck, Bayer, Curasan, Evotec,

Commerzbank, Deutsche Bank, Baader Bank and Deutsche Balaton. Performing un-

penalized estimation, there is only one zero entry in the highest volatility state, which

states conditional independence of Bayer and Curasan given the remaining shares. The

l1-penalized estimator suggests conditional independence in each of the three states but

the zero entries are not constantly estimated at the same positions. In the first volatil-

ity state we observe conditional independence of Merck and Commerzbank, Merck and

Deutsche Balaton as well as Deutsche Bank and Deutsche Balaton given the respec-

tive remaining portfolio. In the second volatility state, the only zero entry suggests

conditional independence of Bayer and Baader Bank given the remaining shares. The

remaining zero entries are estimated in the highest volatility state:

Ω̂3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

542 −63 −28 −12 −25 −55 13 95

−63 172 0 −1 34 −68 −14 −25

−28 0 35 −1 2 −6 −8 −5

−12 −1 −1 55 −3 5 −5 −18

−25 34 2 −3 206 −195 −17 6

−55 −68 −6 5 −195 312 −13 −125

13 −14 −8 −5 −17 −13 88 −36

95 −25 −5 −18 6 −125 −36 1537

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂l1
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

443 −24 −20 −4 −17 −34 0 0

−24 141 −2 0 0 −33 −9 0

−20 −2 31 −1 0 −4 −6 0

−4 0 −1 50 −1 0 0 0

−17 0 0 −1 154 −131 −13 0

−34 −33 −4 0 −131 211 −14 −49

0 −9 −6 0 −13 −14 75 0

0 0 0 0 0 −49 0 1424

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂S
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

551 −63 −38 −12 −30 −59 11 96

−63 169 0 0 35 −65 −12 −33

−38 0 32 0 0 −5 −9 −14

−12 0 0 54 −3 3 −6 −15

−30 35 0 −3 200 −190 −18 21

−59 −65 −5 3 −190 307 −15 −137

11 −12 −9 −6 −18 −15 91 −36

96 −33 −14 −15 21 −137 −36 1556

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Table 3.9.: Estimated precision matrices state 3, p = 8: Unpenalized estimator, l1-
penalization, SCAD-penalization

Considering l1-penalization the zero entry from the unpenalized estimator is not iden-

tified. The conditional independence structure from the four-dimensional portfolio of

the biotechnology sector is destroyed, only the zero entry concerning Bayer and Evotec

remains. The conditional independence of Deutsche Balaton and Baader Bank remains
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as suggested by the four-dimensional financial portfolio. In addition, Commerzbank and

Deutsche Balaton are conditional independent given the remaining shares. Moreover

there are 9 zero entries which correspond to conditional independence when considering

two shares of different industry sectors. SCAD-penalization yields different results. In

contrast to l1-penalization there are no zero entries in the first and second volatility

state. In the third volatility state, the zero entries we estimated in the four-dimensional

biotechnology portfolio remain, while those of the financial sector get lost. Between the

two industry sectors, there is conditional independence of Commerzbank and Curasan

given the remaining shares. Note that the zero entry of the unpenalized estimate is

detected here as well.

The remaining estimates are shown in Appendix A.

In summary, the simulation study and real data example yield very similar results. In

almost every example l1-penalization estimates more zeroes than SCAD-penalization.

Furthermore, SCAD-penalization yields more stable results when extending or merging

the portfolio, while l1-penalized estimated zero-positions change much more. Altogether,

the real data example shows that in times of high volatility, conditional independence

is much more likely than in low volatility states, but all in all the estimated precision

matrices are not very sparse, so that the effect one might expect, for example, in the

context of portfolio allocation is probably very limited.

3.4. Proofs

We give a proof of Theorem 3.1, which follows the arguments of Fan and Li (2001,

Theorem 1).

Proof of Theorem 3.1. Let a∗T := T− 1
2 + aT . We prove that for ε > 0 and a constant c

P ( sup
∥u∥=c

QT (λ0 + a∗Tu) < QT (λ0)) ≥ 1− ε. (3.3)

Write ∆T := QT (λ0 + a∗Tu) − QT (λ0). Keeping in mind that ρ(0; cT ) = 0, by Taylor

expansion of QT (λ0 + a∗Tu) at λ0 we have

∆T =LT (λ0 + a∗Tu)− T

K∑
k=1

∑
i ̸=j

ρ(|ω(k)
ij,0 + a∗Tui|; cT )− LT (λ0) + T

K∑
k=1

∑
i ̸=j

ρ(|ω(k)
ij,0|; cT )

=LT (λ0 + a∗Tu)− T

K∑
k=1

∑
(i,j)∈I(1)k,0

(ρ(|ω(k)
ij,0 + a∗Tui|; cT )− ρ(|ω(k)

ij,0|; cT ))− LT (λ0)

− T

K∑
k=1

∑
(i,j)∈I(2)k,0

(ρ(|ω(k)
ij,0 + a∗Tui|; cT )− ρ(|ω(k)

ij,0|; cT ))
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≤LT (λ0 + a∗Tu)− T
K∑
k=1

∑
(i,j)∈I(1)k,0

(ρ(|ω(k)
ij,0 + a∗Tui|; cT )− ρ(|ω(k)

ij,0|; cT ))− LT (λ0)

=LT (λ0) + a∗TL′
T (λ0)

Tu+
1

2
(a∗T )

2uTL′′
T (λ0)u+ (a∗T )

2uTuoP (1)− LT (λ0)

− T
K∑
k=1

∑
(i,j)∈I(1)k,0

(ρ(|ω(k)
ij,0|; cT ) + a∗Tρ

′(|ω(k)
ij,0|; cT )sgn(ω

(k)
ij,0)ui + (a∗T )

2ρ′′(|ω(k)
ij,0|; cT )u

2
i

+ (a∗T )
2u2i oP (1)− ρ(|ω(k)

ij,0|; cT ))

=a∗TL′
T (λ0)

Tu+
1

2
(a∗T )

2uTL′′
T (λ0)u+ (a∗T )

2uTuoP (1)− T
K∑
k=1

∑
(i,j)∈I(1)k,0

((a∗T )
2u2i oP (1)

+ a∗Tρ
′(|ω(k)

ij,0|; cT )sgn(ω
(k)
ij,0)ui + (a∗T )

2ρ′′(|ω(k)
ij,0|; cT )u

2
i ).

Bickel et al. (1998) proved that L′
T (λ0) = OP (T

1
2 ) and T−1L′′

T (λ) = OP (1). Thus, for

the first summand we have a∗TL′
T (λ0)

Tu = OP (T
1
2aT ) and for the second summand

1
2(a

∗
T )

2uTL′′
T (λ0)u = OP ((a

∗
T )

2T ). For the last summand,

K∑
k=1

(Ta∗T
∑

(i,j)∈I(1)k,0

ρ′(|ω(k)
ij,0|; cT )sgn(ω

(k)
ij,0)ui + T (a∗T )

2
∑

(i,j)∈I(1)k,0

ρ′′(|ω(k)
ij,0|; cT )u

2
i

+ T (a∗T )
2
∑

(i,j)∈I(1)k,0

u2i oP (1))

≤
K∑
k=1

(Ta∗TaT
∑

(i,j)∈I(1)k,0

sgn(ω
(k)
ij,0)ui + T (a∗T )

2max{ρ′′(|ω(k)
ij,0|; cT ) : ω

(k)
ij,0 ̸= 0}

∑
(i,j)∈I(1)k,0

u2i

+ T (a∗T )
2∥u∥2oP (1))

≤
K∑
k=1

(Ta∗TaT ∥u∥
√
H + T (a∗T )

2max{ρ′′(|ω(k)
ij,0|; cT ) : ω

(k)
ij,0 ̸= 0}∥u∥2 + T (a∗T )

2∥u∥2oP (1)).

By assumption, max{ρ′′(|ω(k)
ij,0|; cT ) : ω

(k)
ij,0 ̸= 0} → 0, thus ∆T = OP (a

∗
TT ) and for a

sufficient large constant c, (3.3) follows and there exists a local maximizer λ̂T of QT (λ)

such that ∥λ̂T − λ0∥ = OP (a
∗
T ).

The following proof of Theorem 3.2 is based on the proofs of Fan and Li (2001, Lemma

1, Theorem 2)

Proof of Theorem 3.2. 1. Sparsity: We prove that for some c > 0

QT ((λ̂T,1, 0)
T) = max

∥λ̂T,2∥≤cT− 1
2

QT ((λ̂T,1, λ̂T,2)
T) (3.4)
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with probability tending to 1.

Let εT := cT− 1
2 . We prove that for j = H + 1, . . . , G,

∂QT (λ)

∂λj

⎧⎨⎩< 0, 0 < λj < εT

> 0, −εT < λj < 0
,

which implies that the penalized likelihood function is maximized at λ̂T,2 = 0.

Taylor expansion for the first derivative of the likelihood function at λ0 yields

∂QT (λ)

∂λj
=
∂LT (λ)

∂λj
− Tρ′(|λj |; cT )sgn(λj)

=
∂LT (λ0)

∂λj
+
(
∂2LT (λ0)
∂λj∂λ1

, . . . , ∂
2LT (λ0)
∂λj∂λG

)⎛⎜⎜⎝
λ1 − λ1,0

...

λG − λG,0

⎞⎟⎟⎠

+ oP (1)1
T

⎛⎜⎜⎝
λ1 − λ1,0

...

λG − λG,0

⎞⎟⎟⎠− Tρ′(|λj |; cT )sgn(λj)

≤TcT (
1

cT

1

T

∂LT (λ0)

∂λj
+

1

cT

1

T

G∑
l=1

∂2LT (λ0)

∂λj∂λl
(λl − λl,0)

− 1

cT
ρ′(|λj |; cT )sgn(λj) +

1

cT

1

T
oP (1)∥λ− λ0∥

√
G).

Following Bickel et al. (1998), 1
T

∂LT (λ0)
∂λj

= OP (T
− 1

2 ) and 1
T

∂2LT (λ0)
∂λj∂λl

= OP (1). By

assumption, TcT → ∞, ∥λ− λ0∥ = OP (T
− 1

2 ) and c−1
T ρ′(θ; cT ) > 0, thus

∂QT (λ)

∂λj
= TcT (OP (c

−1
T T− 1

2 )− c−1
T ρ′(|λj |; cT )sgn(λj)),

which shows that the sign of the derivative is determined by the sign of λj , leading

to (3.4).

2. Asymptotic normality: Denote by λ̂T a
√
T -consistent estimator from Theorem

3.1, which is a local maximizer of QT ((λ1, 0)
T) satisfying ∂QT (λ)

∂λj
|λ=(λ̂T,1,0)T

= 0,

j = 1, . . . ,H. Taylor expansion of the first derivative at λ0 yields

0 =
∂QT (λ)

∂λj
|λ=(λ̂T,1,0)T

=
LT (λ)

∂λj
|λ=(λ̂T,1,0)T

−Tρ′(|λ̂T,j |; cT )sgn(λ̂T,j)

=
LT (λ0)

∂λj
+

H∑
l=1

(
∂2LT (λ0)

∂λj∂λl
+ oP (1))(λ̂T,l − λl,0)− Tρ′(|λj,0|; cT )sgn(λj,0)

− T (ρ′′(|λj,0|; cT ) + oP (1))(λ̂T,j − λj,0),
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in matrix notation⎛⎜⎜⎝
0
...

0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∂LT (λ0)

∂λ1

...
∂LT (λ0)
∂λH

⎞⎟⎟⎠+

⎛⎜⎜⎝
∂2LT (λ0)
∂λ1∂λ1

. . . ∂2LT (λ0)
∂λ1∂λH

...
. . .

...
∂2LT (λ0)
∂λH∂λ1

. . . ∂2LT (λ0)
∂λH∂λH

⎞⎟⎟⎠ (λ̂T,1 − λ10)

+ oP (1)1
T(λ̂T,1 − λ10)− Tb− TA(λ̂T,1 − λ10),

thus,

b+ (− 1

T

⎛⎜⎜⎝
∂2LT (λ0)
∂λ1∂λ1

. . . ∂2LT (λ0)
∂λ1∂λH

...
. . .

...
∂2LT (λ0)
∂λH∂λ1

. . . ∂2LT (λ0)
∂λH∂λH

⎞⎟⎟⎠+A)(λ̂T,1 − λ10) + oP (1)1
T(λ̂T,1 − λ10)

=
1

T

⎛⎜⎜⎝
∂LT (λ0)

∂λ1

...
∂LT (λ0)
∂λH

⎞⎟⎟⎠ .

Since by Bickel et al. (1998) T− 1
2L′

T (λ0) → N (0, I∗(λ10)) weakly, we have

√
T (b− 1

T
(

⎛⎜⎜⎝
∂2LT (λ0)
∂λ1∂λ1

. . . ∂2LT (λ0)
∂λ1∂λH

...
. . .

...
∂2LT (λ0)
∂λH∂λ1

. . . ∂2LT (λ0)
∂λH∂λH

⎞⎟⎟⎠+A)(λ̂T,1 − λ10)) → N (0, I∗(λ10))

weakly, which completes the proof.



4. A hidden Markov model for panel data:

Modelling income distributions and

classification

In this chapter we consider an application of hidden Markov models to GDP data for

modelling monetary welfare distributions in the context of economic growth. This inves-

tigation is part of a DFG-project ”Structure, trends and determinants of monetary and

non-monetary welfare distributions” with the objective to provide statistical methods

and models to analyze welfare distributions. We generalize the hidden Markov model

introduced in Chapter 1 in order to allow for a longitudinal structure and the inclusion

of covariables.

The panel data under consideration describe the GDP of countries of the world over

a time horizon from 1970 to 2010. We analyze the data in four models in order to

investigate different dependency structures and the influence of covariables on the wel-

fare distribution. Objectives of the study are the construction of models to explain the

income distribution at a fixed year, classification of the countries to income groups, and

the investigation of determinants of a welfare distribution and their influence on the

development of countries.

After introducing the data and the general setting of the models in Section 4.1, we start

with a cross sectional model without covariables. The idea is to fit a finite mixture

model for each year independently, to properly model subpopulations in the income dis-

tribution. This approach has been used for example by Paapaa and van Dijk (1998),

who used a two-component mixture of a truncated normal distribution and a Weilbull

distribution to model the income distribution or by Pittau et al. (2010), Vollmer et al.

(2013), modelling the log-income using three-component Gaussian mixture models. In

order to allow for dependence over time while marginally retaining the structure of a

mixture model, we extend the analysis by introducing a nonhomogeneous hidden Markov

model for panel data. Both models allow convenient methods to perform a-posteriori as-

signment of the countries to income groups and classification results show advancement

and decline of some countries concerning the income group. An attempt to explain this

behaviour is given in Sections 4.5 and 4.6, where we expand our models by the use of

covariables. For mixture models, this approach is given by switching regression models,

64
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see for example Quandt and Ramsey (1978), DeSarbo and Cron (1988) or Bloom et al.

(2003) for an example in a similar context of economic growth. While usually covariables

are introduced to explain the component-dependent parameters of the distributions, we

find it reasonable to use covariables for the mixing probabilities. For more details see

Section 4.4, where we illustrate the selection of covariables in our model. In a final

step we give an idea how to transfer this approach to the transition probabilities in the

nonhomogeneous hidden Markov model. It turns out that the inclusion of covariables

to the model with dependence structure over time is difficult for the available data.

4.1. Data

In our models we consider random variables Xt,i being the log-GDP (base 10) of country

i ∈ {1, . . . , I} at time t ∈ {1, . . . , T}. Thus, we deal with panel data, giving the income

of all countries at time t in row t, while column i provides the time series of log-GDP

for country i. For a fixed t ∈ {1, . . . , T} we assume the income of all countries to be

independent to each other, having marginal distribution ft(x).

The GDP data are given in Penn World Table 7.1 (Heston et al., 2012). We choose the

PPP converted GDP per capita (chain series) at 2005 constant prices (variable rgdpch

in the data set mentioned) and consider T = 41 years from 1970 to 2010. For our

analysis, similarly as Vollmer et al. (2013), we exclude small oil-exporting countries

(Bahrain, Brunei, Equatorial Guinea, Gabon, Kuwait, Qatar, Suriname, Trinidad and

Tobago), since their GDP is heavily affected by the oil-price. In addition, we remove

those countries for which between 1970 and 2010 GDP data are missing. The resulting

data set contains GDP data for I = 152 countries over time, see Appendix B for a list
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Figure 4.1.: GDP data for 1970: Kernel density estimator (solid line) and estimated
mixture density (dashed line).
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of the countries and the corresponding codes based on the ISO standard.

When considering models with covariables, additional data sets are required. The choice

of covariables is discussed in more detail in Section 4.4. The corresponding data sources

are Penn World Table 7.1 (Heston et al., 2012) for the variable investment share of

GDP, the Barro–Lee data set (Barro and Lee, 2013) for the variable average years of

schooling, a data base for world development indicators provided by the World Bank1

for the variables life expectancy and fertility rate, as well as a data set on geography

data2 for the variable latitude. When combining the data sets we obtain a collection of

107 countries for which all variables are available.

4.2. Cross sectional analysis using mixture models

In this section we formulate our first model for the welfare distribution. We perform

cross-sectional analysis, assuming the log-income of each country to be independent

over time. Thus, in order to properly fit K subpopulations in the income distribution,

we model finite Gaussian mixture models for each year t independently. The marginal

distribution is then given by

ft(x) =

K∑
k=1

π
(t)
k g(x;ϑ

(t)
k ),

1http://data.worldbank.org/data-catalog/world-development-indicators (04.06.2015)
2http://www.pdx.edu/econ/country-geography-data (04.06.2015)
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Figure 4.2.: Parameter estimates mixture model - left: means, right: standard devi-
ations. Solid line: income group 1, dashed line: income group 2, dotted line: income

group 3.

http://data.worldbank.org/data-catalog/world-development-indicators
http://www.pdx.edu/econ/country-geography-data


4 A hidden Markov model for panel data 67

where the mixing probabilities π
(t)
k ≥ 0 sum up to one for each t and ϑ

(t)
k = (µ

(t)
k , σ

(t)
k )

(k = 1, . . . ,K, t = 1, . . . , T ) are the component-dependent parameters of the Gaussian

distributions, which are denoted by g(·;ϑ(t)
k ).

Our first issue is the estimation of the parameters (π
(t)
1 , . . . , π

(t)
K , ϑ

(t)
1 , . . . , ϑ

(t)
K ) (t =

1, . . . , T ), thus 2KT + (K − 1)T parameters are considered. We apply the maximum

likelihood approach, where the likelihood function of the model is

L(mix)
T =

I∏
i=1

T∏
t=1

(
K∑
k=1

π
(t)
k g(xt,i;ϑ

(t)
k )).

We perform maximization using the R-package mclust (Fraley and Raftery, 2002, Fraley

et al., 2012). In each year, the estimation procedure selects a three-component mix-

ture model, where the components correspond to three income groups of countries with

low/mid/high income. Showing a kernel density estimate for the GDP data in the year

1970 together with the estimated mixture density, Figure 4.1 indicates that this model

is a plausible choice. Figure 4.2 shows an overview over the estimated parameters for

the Gaussian distributions over the 41 years. We observe that the means of the income

groups are relatively stable, except for the 1990s, when especially the means of income

group 1 and 2 rise at first and then drop sharply. The estimated standard deviations are

quite volatile. Based on the parameter estimates we perform a-posteriori classification,

estimating the most likely sequence of income groups for each country in the mixture

model by

argmax
k∈{1,...,K}

π̂
(t)
k g(xt,i; ϑ̂

(t)
k )∑K

l=1 π̂
(t)
l g(xt,i; ϑ̂

(t)
l )

, t = 1, . . . , T.
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Figure 4.3.: Mixture model: shares of income groups. Solid line: income group 1,
dashed line: income group 2, dotted line: income group 3.
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Classification results are presented in Section 4.9, where we report the income group for

each country together with potential switches of income group and the associated year.

Figure 4.3 reports the shares of income groups. We observe that income group 2 is the

largest group over time except for the years 1990–1998, when income group 1 dominates.

From Figure 4.2 we observe that this fact might be due to the rising mean of group 1

during this period together with its rising standard deviation.

We observe that due to the assumed independence over time, many switches of the

income group occur when performing a-posteriori classification: 76 of the 152 countries

perform at least one switch of income groups, while the remaining 76 countries stay

in the same income group over the T years. The consequences from our observations

in Figures 4.2 and 4.3 are visible in Table 4.2 (Section 4.9) too: many countries (e.g.

Albania (ALB), Bolivia (BOL), Djibouti (DJI), Namibia (NAM), Paraguay (PRY))

switch from income group 2 to group 1 in the late 1980s/ early 1990s and return to

group 2 around 1998. The overall impression is that the assumption of independence

over time leads to many redundant switches of income groups, see for example Angola

(AGO) where in the 1980s switches occur almost every year. This aspect is further

discussed when using hidden Markov models in the following section.

4.3. Serial dependence in nonhomogeneous hidden Markov

models

Now we drop the independence assumption and fit a nonhomogeneous parametric hidden

Markov model to allow for serial dependence of a countries’ income over time, while

keeping the structure of a mixture model for fixed time t. Since we allow the parameters
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Figure 4.4.: Parameter estimates HMM - left: means, right: standard deviations.
Solid line: income group 1, dashed line: income group 2, dotted line: income group 3.
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of the model to change over time, we adjust the notation introduced in Section 1.2.

Let Γ(t) = (γ
(t)
k,l)k,l=1,...,K denote the transition probability matrix of the Markov chain

at time t ≥ 2 and α = (α1, . . . , αK) its initial distribution. We assume the state-

dependent distributions to be Gaussian with parameters ϑ
(t)
k = (µ

(t)
k , σ

(t)
k ), k = 1, . . . ,K,

t = 1, . . . , T . Thus, there are K − 1 + (T − 1)K(K − 1) + 2TK parameters, which we

estimate maximizing the penalized log-likelihood function

ℓ
(HMM)
T =

I∑
i=1

log(
K∑

k1=1

. . .
K∑

kT=1

αk

T∏
t=2

γ
(t)
kt−1,kt

T∏
t=1

g(xt,i;ϑ
(t)
kt
)) +

c

K

T∑
t=2

K∑
j=1

K∑
k=1

log(γ
(t)
j,k).

We introduce the penalty term with tuning parameter c ≥ 0, since in the hidden Markov

model switches of the income groups are rarely observed but should still be enabled in

the estimated model. It penalizes small values for the transition probabilities to prevent

the estimation of diagonal transition probability matrices.

We use the EM-algorithm for parameter estimation. The algorithm described in Section

1.3 needs to be modified to be suitable for panel data, the nonhomogeneous structure of

the model and the penalty term. Maruotti (2011) gave an EM-algorithm for longitudinal

hidden Markov models. For our model, further modifications are required due to the

nonhomogeneity and the introduced penalty term on the transition probabilities. Details

are given in Section 4.8.1. The resulting parameter estimates are shown in Figure 4.4.

We observe that the income means are of the same order as in the mixture model but

growing more steady. The estimated standard deviations are less volatile compared to

the results from the mixture model. The standard deviation of income group 1 rises

over the 41 years, with very high slope in the early 1990s, while for income group 2 the

estimates are more or less at a constant level from 1970 to the late 1990s and then begin
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Figure 4.5.: Hidden Markov model: Shares of income groups. Solid line: income
group 1, dashed line: income group 2, dotted line: income group 3.
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to increase. The estimated standard deviations for income group 3 show a downward

tendency.

Classification is performed for each country independently using the Viterbi algorithm

described in Section 1.2. Based on these estimates we report the shares of income groups

of each year in Figure 4.5. Again, we observe that income group 2 is the largest group,

except for a time horizon between the late 1980s until the late 1990s, when income group

1 dominates, as already observed in the mixture model. From Table 4.2 we see that in

the hidden Markov model only 24 countries switch income group over the 41 years,

while the remaining 128 countries are constantly assigned to the same income group. In

particular, the assignments are more stable since Angola (AGO) and Iraq (IRQ) are the

only countries that switch income group more than once. Around the year 1990 there are

four countries switching from group 2 to group 1 (Djibouti (DJI), Iraq (IRQ), Mongolia

(MNG) and Nicaragua (NIC)), as mentioned Iraq is the only country that switches back

to group 2 in 1997. Further, China (CHN), Sri Lanka (LKA) and the Maldives (MDV)

ascend from group 1 to group 2 around 1998.

From the estimated transition probabilities we observe that apart from a peak at the

beginning of the time horizon, the probability to ascend from income group 1 to group 2

rises starting in 1985 until 2000, while the probability to ascend from group 2 to group

3 reaches its peak in the late 1980s and then declines and stays close to zero from 1995

on. On the other hand we observe that the probability of a decline from group 2 to

group 1 drops in the early 1990s, while the probability to switch from group 3 to group

2 is quite volatile over the 41 years.

Switching model: Hidden Markov model versus fixed state model

Since estimation results from the hidden Markov model show that only a minority of

countries switch income groups, we modify the model in order to take account of the

countries remaining in one state: We allow each country to either be in a hidden Markov

model or to stay in one fixed income group. For this purpose, we introduce an additional

variable πi ∈ {0, 1}, which switches between the hidden Markov model and the fixed state

model, depending on country i ∈ {1, . . . , I}. For parameter estimation we maximize the

penalized log-likelihood function of the model

ℓ
(SHMM)
T =

I∑
i=1

log(πi(

K∑
k1=1

. . .

K∑
kT=1

αk1

T∏
t=2

γ
(t)
kt−1,kt

T∏
t=1

g(xt,i;ϑ
(t)
kt
))

+ (1− πi) max
k=1,...,K

T∏
t=1

g(xt,i;ϑ
(t)
k )) +

c

KI

I∑
i=1

T∑
t=2

K∑
j=1

K∑
k=1

πi log(γ
(t)
j,k),

using an EM-algorithm where the πi are treated as additional latent variable, which is

assumed to be independent of St,i. Details on the algorithm are given in Section 4.8.1.
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Figure 4.6.: Parameter estimates switching HMM - left: means, right: standard de-
viations.

The estimated parameters are shown in Figure 4.6. We observe that in contrast to the

previously estimated hidden Markov model, the means are more volatile. Especially

the mean of income group 1 shows similar behaviour as the estimate in the mixture

model, where in the late 1990s the mean of income group 1 drops and at the same

time the estimated standard deviation of group 1 reaches its peak. A-posteriori analysis

shows that only seven countries (namely Hong Kong (HKG), Iran (IRN), Republic of

Korea (KOR), Lebanon (LBN), Macao (MAC), Maldives (MDV) and Taiwan (TWN))

are assigned to the hidden Markov model part of the model, while the remaining 145

countries stay in a fixed income group over time. Due to this fact, there is hardly any
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Figure 4.7.: Switching hidden Markov model: Shares of income groups. Solid line:
income group 1, dashed line: income group 2, dotted line: income group 3.
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dynamic and the shares of income groups plotted in Figure 4.7 rarely change over the

41 years. In particular, in contrast to the mixture model and the hidden Markov model,

income group 2 is the largest group over the complete time horizon.

Since this model does not seem to capture the dynamics of the data, we omit to report

the results in Table 4.2.

Split model: Separated hidden Markov models for advancement and decline

Obviously, the model described above is not able to capture all relevant switches of

income groups we observed in the mixture model and the hidden Markov model. Thus,

we split the model into three parts: One hidden Markov model part for countries which

experience an advancement, where the transition probability matrices are assumed to

be upper triangular matrices, one hidden Markov model part for declining countries,

where the transition probability matrices are assumed to be lower triangular matrices

and one part for countries remaining in one income group over the time horizon. We

denote by Γ(t,m) = (γ
(t,m)
k,l )k,l=1,...,K , m = 1, 2 the transition probability matrices at time

t ≥ 2 for the first and second part of the model, respectively. Similar to the model

described above, we introduce an additional variable πim ∈ {0, 1} (m ∈ {1, 2, 3}), where∑3
m=1 πim = 1, which selects the model for each country i = 1, . . . , I. The penalized

log-likelihood function of the model is

ℓ
(HMMud)
T =

I∑
i=1

log(πi1(

K∑
k1=1

. . .

K∑
kT=1

αk1

T∏
t=2

γ
(t,1)
kt−1,kt

T∏
t=1

g(xt,i;ϑ
(t)
kt
))

+ πi2(

K∑
k1=1

. . .

K∑
kT=1

αk1

T∏
t=2

γ
(t,2)
kt−1,kt

T∏
t=1

g(xt,i;ϑ
(t)
kt
))

+ πi3 max
k=1,...,K

T∏
t=1

g(xt,i;ϑ
(t)
k ))

+
c√

K2 +K − 2I

T∑
t=2

K∑
j=1

(
K∑
k=j

πi1 log(γ
(t,1)
j,k ) +

j∑
k=1

πi2 log(γ
(t,2)
j,k )),

where for k > l γ
(t,1)
k,l = 0 and for k < l γ

(t,2)
k,l = 0.

The modifications for the EM-algorithm are described in Section 4.8.1. The estimated

parameters shown in Figure 4.8 are very similar to those from the previous model. A-

posteriori analysis yields the following classification:

• 129 countries are assigned to a fix income group,

• 12 countries are assigned to the advancement hidden Markov model, these are

China (CHN), Cyprus (CYP), Egypt (EGY), Hong Kong (HKG), Indonesia (IDN),
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Figure 4.8.: Parameter estimates in the split hidden Markov model - left: means,
right: standard deviations.

Republic of Korea (KOR), Macao (MAC), Maldives (MDV), Malta (MLT), Oman

(OMN), Portugal (PRT), Taiwan (TWN),

• 11 countries are assigned to the declining hidden Markov model, namely An-

gola (AGO), Djibouti (DJI), Iran (IRN), Iraq (IRQ), Lebanon (LBN), Mongolia

(MNG), Nicaragua (NIC), Philippines (PHL), Palau (PLW), Papua New Guinea

(PNG) and Venezuela (VEN),

see Section 4.9 for details.

The resulting shares of income groups shown in Figure 4.9 confirm the observations from

the mixture model and the hidden Markov model: Group 2 is the largest income group

except for the years 1989–1998, since during this period there are a couple of countries

switching from income group 2 to income group 1 (DJI, IRQ, MNG, NIC) and at the

same time some countries ascend from group 2 to group 3 (CYP, KOR, MLT, PRT,

TWN), thus during this period income group 1 is the dominating income group. This

effect is compensated in the late 1990s, when some countries ascend from group 1 to

group 2 (CHN, EGY, IDN, MDV).

The estimated transition probabilities show that the probability γ1,2 starts to rise in the

early 1980s and reaches its peak in the late 1990s, while the probability γ2,3 stays at a

relatively low level over time with a higher period in the early 1990s. The transition

probability γ2,1 is close to zero over the 41 years with a higher phase around 1990, while

the probability γ3,2 sharply rises after 1995.

Taken as a whole, we observe that nonhomogeneous hidden Markov models are suitable

to analyze the GDP of countries over a time horizon of several years, to perform clas-

sification to income groups, and to examine switches of countries between these income
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Figure 4.9.: Split model: Shares of income groups. Solid line: income group 1, dashed
line: income group 2, dotted line: income group 3.

groups. Due to the assumed serial dependence, hidden Markov models yield much more

stable estimates and classification results compared with the mixture model from Sec-

tion 4.2.

The first extension of the model, which allows each country to either run in a hidden

Markov model or in a fix income group seems not to be able to capture all the aspects we

observed in the mixture model and in the hidden Markov model. Splitting the hidden

Markov part of the extended model into an advancement and a declining part yields the

desired results. A drawback of this model is that countries can now either ascend or

decline, thus multiple switches of one country like Angola or Iraq perform in the general

hidden Markov model are impossible. In addition, one should be aware of the fact that

the parameter estimates of the hidden Markov parts of the split model are based on a

few observations only, since most of the countries are assigned to the fix-state part of

the model.

4.4. Selection of covariables

In the following sections we extend our analysis by the use of covariables, which might be

helpful in explaining the group membership of countries and their switching behaviour.

In this section we try to get an idea of a reasonable choice of covariables. To gain

intuition of their possible impacts in our models, we investigate the three income groups

separated from each other, before we combine the results to comprehensive models in

the following sections.

The data sources of the chosen covariables are given in Section 4.1. Including covariables

to the models reduces the number of countries in our analysis to I = 107, due to
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Figure 4.10.: Mean regression GDP: p-values. Left: Intercept (solid line), years of
schooling (dashed line), life expectancy (dotted line). Right: Investment share of GDP
(solid line), latitude (dashed line), fertility rate (dotted line). Dash-dotted: 5% and

10% level.

availability issues. In Table 4.2 those countries which are not considered in the following

models are indicated by ’-’.

To improve comparability of the results we standardize all covariables to mean 0 and

standard deviation 1.

Mean regression in the income groups

The first step when including covariables to the models is the choice of explanatory

variables. To get an idea of a reasonable model, we study the influence of the variables

investment share of GDP, average years of schooling, life expectancy, latitude and fertility

rate on the response variable GDP of all countries. In addition, we add an intercept to

our model.
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Figure 4.11.: Mean regression component 1: p-values. Left: Intercept (solid line),
investment share of GDP (dashed line), years of schooling (dotted line). Right: Life
expectancy (solid line), latitude (dashed line), fertility (dotted line). Dashed-dotted

lines: 5% and 10% level.
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The p-values of the estimated linear model are shown in Figure 4.10. They indicate that

the variables years of schooling, life expectancy and latitude might affect the GDP of a

country. To gain more insight, we use the classification of the mixture model to divide

the countries into three income groups and perform linear regression in each group, using

the covariables from above.

Once the countries are divided into income groups, none of the variables seems to be

significant for explaining the GDP in mean. As an example, Figure 4.11 shows the p-

values of the model in income group 1, the other income groups yield similar results.

Thus, it is probably more reasonable to perform regression on the mixing probabilities.

Regression for the mixing probabilities

Now we use the a-posteriori mixing probabilities for each country i = 1, . . . , I, from the

estimated mixture model in Section 4.2,

π̂
(t)
k,i =

π̂
(t)
k g(x

(t)
t,i ; ϑ̂

(t)
k )∑K

k=1 π̂
(t)
k g(x

(t)
t,i ; ϑ̂

(t)
k )

and perform a linear regression for each component k = 1, . . . ,K. The response vari-

able is the (probit-)transformed a-posteriori probability Φ−1(π̂
(t)
k,i), where Φ denotes the

distribution function of a Gaussian distribution and the covariables are chosen as in the

model above. The corresponding p-values for component 2 are shown in Figure 4.12.

Since income groups 1 and 3 yield similar results, we observe that next to the inter-

cept, the variables years of schooling, latitude and life expectancy might influence the

probability of a country to be in a certain income group. Thus, we reduce the model

and again perform linear regressions of the transformed a-posteriori probabilities on the
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Figure 4.12.: Regression for mixing probabilities: p-values component 2. Left: In-
tercept (solid line), investmentshare of GDP (dashed line), years of schooling (dotted
line). Right: Life expectancy (solid line), latitude (dashed line), fertility rate (dotted

line). Dashed-dotted lines: 5% and 10% level.
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Figure 4.13.: Reduced model: p-values of regression for mixing probabilities. Left:
income group 1, mid: income group 2, right: income group 3. Covariables intercept
(solid line), years of schooling (dashed line), life expectancy (dotted line), latitude

(dash-dotted line). Longdash: 5% and 10% level.

variables intercept, years of schooling, latitude and life expectancy.

The p-values of the reduced models are shown in Figure 4.13. We observe that the vari-

able life expectancy is highly significant in the three income groups with p-value close

to zero. In the first income group beginning in 1990 the p-value of the variable latitude

rises over the 10% significance level, while the remaining covariables are significant at

the 5% level over time (except of the intercept in a period between 1990 and 1992). In

the second income group the p-value of the intercept is quite high from 1970–1992 and

while close to zero in the beginning of the observed time horizon, from 1990 the p-value

of the variable years of schooling rises and stays over the 10% level after 1999. In the

third income group all variables have p-values close to zero over the 41 years, except of

the variable latitude with p-value close to zero from 1970 until 1993, rising above the

10% significance level between 1997 and 2000 and after 2007.

The estimated coefficients of the reduced models show that the chosen covariables years

of schooling, life expectancy and latitude seem to have positive effects on the GDP of

a country. We observe that in income group 1 the signs of the estimated coefficients

are almost always negative. Thus, increasing years of schooling, life expectancy and

latitude lowers the probability of a country to be in income group 1. In income group 2

the variables years of schooling and latitude still have negative signs, while the variable

life expectancy has positive influence on the probability of a country to be part of income

group 2. In income group 3 the effects of all three covariables have positive signs.

4.5. Switching Regression: Cross sectional analysis with

covariables

The mixture model from Section 4.2 is now combined with the covariables selected in

Section 4.4 in order to formulate a switching regression model for the welfare distribution

of the countries. Let L denote the number of considered covariables (including the
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intercept) and write χ
(t)
i = (χ

(t)
1,i, . . . , χ

(t)
L,i)

T for the data of country i ∈ {1, . . . , I} at

time t ∈ {1, . . . , T}.
For each year we formulate a K-component Gaussian mixture model

f(xt,i) =

K∑
k=1

π
(t)
k,ig(xt,i;ϑ

(t)
k ),

with mixing probabilities modelled by categorial logit regression: Let r denote the ref-

erence income group of the model and M = {1, . . . ,K} \ {r}. In this model, we choose

r = 2, thus the results are to be interpreted relative to income group 2. Then, for k ∈ M ,

π
(t)
k,i =

exp(χ
(t)T
i β

(t)
k )

1 +
∑

l∈M exp(χ
(t)
l β

(t)
l )

, π
(t)
r,i = 1−

∑
l∈M

π
(t)
l,i , (i = 1, . . . , I, t = 1, . . . , T ),

(4.1)

thus β
(t)
k = (β

(t)
k,1, . . . , β

(t)
k,L) (k ∈ M) denote the parameter vectors of the regression part

of the model.

For estimation of the (K−1)TL+2KT parameters β
(t)
k (k ∈ M) and ϑ

(t)
k (k = 1, . . . ,K,

t = 1, . . . , T ), we maximize the likelihood function of the model, given by

LSR
T =

T∏
t=1

I∏
i=1

[
∑
k∈M

exp(χ
(t)T
i β

(t)
k )

1 +
∑

l∈M exp(χ
(t)T
i β

(t)
l )

g(xt,i;ϑ
(t)
k )

+ (1−
∑
l∈M

exp(χ
(t)T
i β

(t)
l )

1 +
∑

m∈M exp(χ
(t)T
i β

(t)
m )

)g(xt,i;ϑ
(t)
r )].
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Figure 4.14.: Parameter estimates switching regression - left: means, right: standard
deviations. Income group 1 (solid line), income group 2 (dashed line), income group 3

(dotted line).
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Maximization is performed using an EM-algorithm where the group membership is the

latent variable and due to the independence assumption, each year can be modelled

separately. Details on the computation are given in Section 4.8.2.

The estimated parameters of the component-dependent distributions are shown in Figure

4.14. We observe that the estimated means are less volatile than in the mixture model,

but of the same magnitude. In addition, the rising mean in the 1990s followed by a

decline after 1996 combined with a high standard deviation reminds of the results in

the mixture model and the modified hidden Markov models presented in the previous

sections.
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Figure 4.15.: Switching Regression: Estimated parameters in multinomial regression.
Income group 1 (solid line), income group 3 (dashed line).
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The estimated parameters of the multinomial regression are shown in Figure 4.15. Since

income group 2 is the reference category of our model, the estimates can be interpreted

relative to this income group. The estimates for variable years of schooling in income

group 1 are negative, thus the odds for income group 1 relative to income group 2

decrease with increasing years of schooling, while the odds for income group 3 relative

to income group 2 increase, due to the positive sign of the estimated parameters. The

same effect holds for the variable life expectancy. For the variable latitude we observe

that for income group 1 the sign of the parameter estimate changes from negative to

positive in 1990. Thus, from 1970 to 1990, increasing latitude decreases the odds for

income group 1 relative to income group 2, while after 1990, the odds increase. The

parameter for income group 3 is positive from 1970–2010.

Based on the estimation results we perform maximum-aposteriori analysis and report

the results in Section 4.9. We observe that compared to the results from the mixture

model, the number of switches of income group decreased dramatically. One reason

is the number of countries for which we observe data, which decreased from 152 in

models without covariables to I = 107 when using covariables. In the mixture model

we observed switches of income groups for 76 countries, 24 of these can not be modelled

in the switching regression model due to missing data. 35 countries which switched

income group at least once in the mixture model are assigned to a fix income group

over the 41 years in the switching regression model. This effect might be a result of

the parameter estimates which are much more stable, as mentioned above. In addition

to the decreasing number of countries which switch income group, the number of back-

and-forth-switches as observed very often in the mixture model decreased, but the effect

still occurs (see for example China (CHN), Iraq (IRQ), Morocco (MAR), Nicaragua
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Figure 4.16.: Switching Regression: shares of income groups. Income group 1 (solid
line), income group 2 (dashed line), income group 3 (dotted line).



4 A hidden Markov model for panel data 81

(NIC), Portugal (PRT) and Vietnam (VNM)). Even though switching income group

during the 41 years, 8 countries end up in the same group in 2010 as they started

in 1970 and thus do not experience an advancement in the end. These are Republic

of Congo (COG), Iraq (IRQ), Sri Lanka (LKA), Morocco (MAR), Mongolia (MNG),

Nicaragua (NIC), Papua new guinea (PNG) and Swaziland (SWZ). It bears mentioning

that the 9 countries which experience a switch of income group in the switching regression

model all ascent. Namely these are Botswana (BWA), China (CHN), Cyprus (CYP),

Egypt (EGY), Indonesia (IDN), Republic of Korea (KOR), Portugal (PRT), Thailand

(THA) and Vietnam (VNM). Five of these countries were also modelled as one of the

24 ascending countries in the hidden Markov model (CHN, CYP, EGY, IDN and KOR).

The hidden Markov model which modelled ascending and declining countries separately

also covered the advancement of PRT in addition to these five countries.

The shares of income group are shown in Figure 4.16. We observe that income group

2 is the largest income group all over the time, except for 1998, when income group 1

and income group 2 have the same share. The share of income group 1 decreases from

1970 until 1989 and then fluctuates around 1/3. Over the 41 years, the share of income

group 3 slightly rises from 21.5% to 25.3%.

4.6. Nonhomogeneous hidden Markov models with covariables

While in the previous section we used covariables to model the mixing probabilities and

thus focused on the membership of countries to certain income groups, we now aim

at investigating the influence of the chosen covariables on the switching behaviour of

countries between income groups. Thus, we include covariables to the hidden Markov

model from Section 4.3 for modelling the transition probabilities. Since splitting the

hidden Markov model did not lead to significant advantages in Section 4.3, we now stick

to the nonhomogeneous hidden Markov model for all countries.

Zucchini and MacDonald (2009) proposed an approach to include covariables in the

transition probabilities of a two-state hidden Markov model using a logit model. Since

we fit a three-state model, we need to extend this idea. In our context, transitions

skipping one income group (i.e. 1 → 3 and 3 → 1) do not occur, thus we simplify our

transition probability matrices to

Γ(t) =

⎛⎜⎜⎝
γ
(t)
1,1 γ

(t)
1,2 0

γ
(t)
2,1 γ

(t)
2,2 γ

(t)
2,3

0 γ
(t)
3,2 γ

(t)
3,3

⎞⎟⎟⎠ , t = 2, . . . , T.

The parameters of the first and the third row can then be modelled using binary regres-

sion. Analogously to Section 4.5, let L denote the number of considered covariables and

write χ
(t)
i = (χ

(t)
1,i, . . . , χ

(t)
L,i)

T for the data of country i ∈ {1, . . . , I} at time t ∈ {1, . . . , T}.
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Set

γ
(t)
1,2,i =

exp(χ
(t)T
i β

(t)
(12))

1 + exp(χ
(t)T
i β

(t)
(12))

, γ
(t)
1,1,i = 1− γ

(t)
1,2,i,

γ
(t)
3,2,i =

exp(χ
(t)T
i β

(t)
(32))

1 + exp(χ
(t)T
i β

(t)
(32))

, γ
(t)
3,3,i = 1− γ

(t)
3,2,i,

(4.2)

t = 2, . . . , T , i = 1, . . . , I. For the parameters of the second row, we use a multinomial

regression, where the reference transition is to remain in state 2 (i.e. γ
(t)
2,2). Thus,

γ
(t)
2,1,i =

exp(χ
(t)T
i β

(t)
(21))

1 + exp(χ
(t)T
i β

(t)
(21)) + exp(χ

(t)T
i β

(t)
(23))

,

γ
(t)
2,3,i =

exp(χ
(t)T
i β

(t)
(23))

1 + exp(χ
(t)T
i β

(t)
(21)) + exp(χ

(t)T
i β

(t)
(23))

(4.3)

and γ
(t)
2,2,i = 1− γ

(t)
2,1,i − γ

(t)
2,3,i for i = 1, . . . , I and t = 2, . . . , T .

In addition, we perform multinomial regression for the initial distribution, where income

group 2 is the reference group:

α1 =
exp(χ

(1)T
i β

(1)
1 )

1 + exp(χ
(1)T
i β

(1)
1 ) + exp(χ

(1)T
i β

(1)
3 )

, α3 =
exp(χ

(1)T
i β

(1)
3 )

1 + exp(χ
(1)T
i β

(1)
1 ) + exp(χ

(1)T
i β

(1)
3 )

,

(4.4)

α2 = 1− α1 − α3.

In Section 4.3 we observed that transitions do not occur in each year from 1970 to 2010.

Therefore, to reduce the complexity of the optimization problem, we define a set of

years T ⊂ {2, . . . , T}, where we estimate the transition probability matrices according

to (4.2) and (4.3), whereas for the remaining years, we do not perform regression but

rather estimate a transition probability matrix for all countries: γ
(t)
j,k,i := γ

(t)
j,k, j, k =

1, . . . ,K, i = 1, . . . , I, t /∈ T . Thus, parameter estimation comprises estimation of

β1, β3, β
(t)
(12), β

(t)
(32), β

(t)
(21), β

(t)
(23) (t ∈ T ), Γ(t) (t /∈ T ) and ϑ

(t)
k (k = 1, . . . ,K, t = 1, . . . , T ),

which yields 2L+4L(#T )+ (T −1− (#T ))K(K−1)+2KT parameters. We maximize

the penalized log-likelihood function

ℓHMMreg
T =

I∑
i=1

log(

K∑
k1=1

. . .

K∑
kT=1

αk1

T∏
t=2

γ
(t)
kt−1,kt,i

T∏
t=1

g(xt,i;ϑ
(t)
kt
))

+
c

KI

I∑
i=1

T∑
t=2

K∑
j=1

K∑
k=1

log(γ
(t)
j,k,i).

Again, we modify the EM-algorithm to estimate the parameters of the model. Plugging
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in the quantities (4.2), (4.3) and (4.4) into the complete-data log-likelihood function of

the hidden Markov model, the regression parameters are estimated using numerical op-

timization of the respective part of the function. The parameters of the state-dependent

Gaussian distributions as well as the transition probabilities for years not in T are esti-

mated using closed formulas, see (4.5) in Section 4.8.

In this model, due to the large number of parameters, estimation is a complex problem.

The number of parameters and the flexibility to fit a countryspecific transition proba-

bility matrix using covariables leads to significant differences compared to the hidden

Markov model without covariables. The estimated parameters are unstable and do not

yield very plausible a-posteriori results. Obviously, our dataset does not posses enough

data to yield reasonable results for this complex model.

The estimated state-dependent parameters for the Gaussian distributions are given in

Figure 4.17. The estimated means are similar those of the previous models. In 1999,

the mean of income group 1 rises sharply and returns to the previous level in 2000. This

observation together with the high standard deviation of income group 1 during this

period leads to many switches of income group around the year 2000. Many countries

switch from income group 2 to income group 1 in the late 1990s and switch back to

income group 2 shortly afterwards (see for example Albania (ALB), Bulgaria (BGR),

Belize (BLZ), Costa Rica (CRI), Cuba (CUB), Iran (IRN), Jamaica (JAM), Jordan

(JOR), Mexico (MEX), Malaysia (MYS), Panama (PAN), Sri Lanka (LKA) in Table

4.2). In contrast to previous models, in Figure 4.18 we observe that from 1970 to 2001

income group 1 is the largest income group. The phenomenon described above is also

visible, since in the late 1990s the share of income group 1 rises sharply, while the share
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Figure 4.17.: Parameter estimates hidden Markov model with covariables - left:
means, right: standard deviations. Income group 1 (solid line), income group 2 (dashed

line), income group 3 (dotted line).
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of income group 2 drops and in 2001 both groups equalize. In 1999, there are even more

countries assigned to income group 3 than to income group 2.

In total, 26 countries switch income group at least once during the time from 1970 to

2010, with 16 countries switching income group during that time, but returning to the

same income group as they started in 1970. 10 countries of those 16 switch up and down

due to the estimated mean of income group 1 in 1999.

Taken as a whole, much more countries switch income group more than once, compared

to the hidden Markov model from Section 4.3. This might be due to the fact that the

regression approach allows for individual transition probabilities for all countries.

In total, 8 countries experience advancement to a higher income group, namely China

(CHN), Egypt (EGY), Hungary (HUN), Korea (KOR), Sri Lanka (LKA), Portugal

(PRT), Swaziland (SWZ) and Thailand (THA). Nicaragua (NIC) is the only country

which ends up in a lower income group than it started in 1970 (decline from group 2 in

1987 to group 1 in 1988). These effects were also observed in several previous models.

The estimated coefficients for the multinomial regression of the initial distribution show

that the variable years of schooling increases the odds of group 3 relative to group 2,

while the odds of group 1 relative to group 2 decrease. The same effect holds for the

variable life expectancy. For the variable latitude both coefficients are positive, while

the odds of income group 3 relative to group 2 grow faster than the odds for group 1

relative to group 2.

For the estimated coefficients of the regression models concerning the transition proba-

bilities for selected years, we observe that not every regression yields reasonable results

for our model. Since some coefficients vary strongly over time, a meaningful interpreta-

tion is hardly possible.
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Figure 4.18.: Hidden Markov model with covariables: shares of income groups. In-
come group 1 (solid line), income group 2 (dashed line), income group 3 (dotted line).
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Concerning transition probability γ
(t)
1,2 estimated coefficients for the variable life ex-

pectancy has a positive sign for all considered years, thus the odds for an advancement

from group 1 to group 2 relative to remaining in group 1 tend to increase when life ex-

pectancy improves. For almost every year, regression coefficients of the variables years

of schooling and latitude are positive too, which leads to the same interpretation. But

somehow there are selected years when the regression coefficients are negative, which is

possibly due to numerical problems during the optimization process.

The coefficients of the binary logit regression concerning transition probability γ
(t)
3,2 are

barely interpretable in a reasonable way, since signs are switching permanently. Espe-

cially for the variable years of schooling, there is a switch of sign almost every year.

Anyhow, switches from income group 3 to income group 2 are very rarely observed,

only HUN, IRN, POL and VEN are affected, and for all of these countries it is only a

temporal effect since they switch back to group 3 later on.

Similar problems occur when considering the estimated coefficients for the multinomial

regression concerning transition starting from income group 2, when transition 2 → 2

serves as reference. Regarding variable years of schooling, we observe that the odds for a

transition from group 2 to group 3 relative to remaining in group 2 increase with growing

number of years of schooling, since the estimated parameter possesses positive sign. The

coefficients for the transition from group 2 to group 1 are not so clearly interpretable,

since starting with a positive sign in the 1970s, in the 1980s, 1990s and 2000s the esti-

mated coefficients have negative sign, while switching to positive again in between. The

same holds for variable life expectancy and transition 2 → 1: the coefficients are hardly

informative due to the permanently changing sign, while the odds of transition 2 → 3

relative to 2 → 2 decrease with increasing life expectancy (except for year 2000, where

the estimated coefficient is positive, possibly due to numerical issues). While the coef-

ficients for variable latitude concerning the odds of transition 2 → 3 relative to 2 → 2

are positive in the beginning and ending of the observed period of time (1975–1984 and

1998–2005), they switch sign in between and thus do not give a clear interpretation.

The odds of transition 2 → 1 relative to 2 → 2 increase with increasing latitude.

In this section, we provided an approach to include covariables into the nonhomoge-

neous hidden Markov model and experienced that parameter estimation in the resulting

model is rather complex and not always easy to interpret. For the concrete example of

modelling income distributions one might need to include different or more covariables,

possibly depending on the income group from which transitions start, to gain more in-

sight. In addition, to handle the complex optimization problem, a larger database is

required.
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4.7. Conclusion

We introduced four different approaches to model monetary welfare distributions in the

context of economic growth. When considering a mixture model, we experienced that

the underlying independence structure lead to quite volatile parameter estimates and

many redundant switches of countries between the three income groups. The hidden

Markov models in Section 4.3 revealed more stable parameter estimates over time and

reduced the number of switches between income groups. It turned out that the depen-

dence over time is crucial to gain reasonable a-posteriori results regarding the assignment

of the countries to income groups. Ideas to extend the model for a better handling of

the given data did not achieve significant effort.

In order to explain the results we observed from classification in mixture models and

hidden Markov models, we included covariables to both approaches. In the literature

Bloom et al. (2003) focused on geographical, cultural and climatic factors, while Owen

et al. (2009) investigated the influence of institutional variables. We considered several

variables and observed that information on education, life expectancy and geography

of the countries seems to be more influential on the income than the investment share

of GDP or the fertility rate. The resulting switching regression model improved the

results from the mixture model: the parameter estimates were much more stable and

the number of redundant switches between income groups reduced. In addition, the es-

timated regression coefficients yielded reasonable results when explaining the countries’

membership to the income groups. The inclusion of covariables to the hidden Markov

model appeared to be much more complex. Combining the extensions of the model

which consider dependence over time and covariables is a difficult approach, since the

result is a model with a huge number of parameters. Our data set did not contain

enough observations to handle this complexity, which made reasonable interpretation of

the results nearly impossible.

Altogether, when considering Tables 4.1 and 4.2 classification results of all models were

very similar. Advantages of the models with underlying Markov dependence structure

were the stable classification results, avoiding many group changes, while the indepen-

dence structure of mixture models and switching regression facilitated many transitions

between income groups.

All models coincided in the result that in all three income groups the mean income grew

from 1970 to 2010. However, some countries benefited more or less than the remain-

ing countries of the respective groups and thus switched to a higher or lower income

group. For some countries all considered models agreed on certain switches of income

groups. An advancement from group 1 to group 2 was the result for China (late 1990s

or around the year 2000), Egypt (during the 1990s), Indonesia (during the 1980/90s,

except for the HMM with covariables) and Bhutan (around 2000, due to missing data
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only in models without covariables). The opposite movement from group 2 to group 1

was experienced by Nicaragua (during the 1980/90s except for the Switching Regression

model) and Djibouti (end 1980s, due to missing data only in models without covari-

ables). In addition, a couple of countries advanced from group 2 to group 3. These

were Cyprus (between 1985 and 1991), Republic of Korea (during the 1990s) and the

following countries, which were only considered in models without covariables: Malta

(end of 1980s/during the 1990s), Oman (before 1990) and Taiwan (during the 1980/90s).

Moreover, in the models without covariables, Palau switched from income group 3 to

group 2 in the 1990s.

4.8. Modifications of the EM-algorithm

In this section we provide details on the modifications of the general EM-algorithm

described in Chapter 1, to take into account the structures of the models from Sections

4.3–4.6.

4.8.1. Nonhomogeneous hidden Markov model

The EM-algorithm for the nonhomogeneous hidden Markov model introduced in Section

4.3 needs to take into account the longitudinal data structure, the nonhomogeneity of

the model and the introduced penalization of the transition probabilities.

At first, analogously to (1.6) and (1.7) we calculate forward and backward probabilities

atk,i, btk,i (t = 1, . . . , T , k = 1, . . . ,K) for each country i = 1, . . . , I, taking into account

the time-dependent parameters of the model. Based on these quantities, the E-step

can be performed for each country according to (1.13), yielding conditional expectations

ûkt,i (t = 1, . . . , T ), v̂klt,i (t = 2, . . . , T ), i = 1, . . . , I, k, l = 1, . . . ,K. In the M-step,

partial differentiating of the conditional expectation of the complete-data log-likelihood

function yields

α̂k =
1

I

I∑
i=1

ûk1,i, γ̂
(t)
k,l =

∑I
i=1 v̂jkt,i +

c
K∑I

i=1(
∑K

j=1 v̂kjt,i +
c
K )

, t = 2, . . . , T

µ̂
(t)
k =

∑I
i=1 ûkt,ixt,i∑I
i=1 ûkt,i

, σ̂
(t)
k =

√∑I
i=1 ûkt,ix

2
t,i∑I

i=1 ûkt,i
− µ̂2

k, t = 1, . . . , T,

(4.5)

k, l = 1, . . . ,K.

Switching model: Hidden Markov model versus fixed state model

We introduce modifications of the algorithm, when each country can either run in a hid-

den Markov model or stay in one fixed state. The introduced variables πi are treated as
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additional latent variable, which is assumed to be independent of St,i. The introduction

of indicator variables wi = 1{πi=1}, i = 1, . . . , I, yields a complete-data log-likelihood

function of the form

ℓ
(SHMM)c
T =

I∑
i=1

K∑
k=1

wiuk1,i log(αk) +

I∑
i=1

K∑
k=1

K∑
l=1

T∑
t=2

wivklt,i log(γ
(t)
k,l)

+
c

KI

I∑
i=1

K∑
k=1

K∑
l=1

T∑
t=2

wi log(γ
(t)
k,l) +

I∑
i=1

T∑
t=1

K∑
k=1

wiukt,i log(g(xt,i;ϑ
(t)
k ))

+
I∑

i=1

(1− wi) log( max
k=1,...,K

T∏
t=1

g(xt,i;ϑ
(t)
k )).

In the E-step, next to the calculation of the conditional expectations ûkt,i and v̂klt,i as

before, we calculate ŵi = P (πi = 1 | x). Plugging in these quantities, the M-step can be

split into three maximization problems. Partial differentiating yields for k, l = 1, . . . ,K

α̂k =

∑I
i=1 ŵiûk1,i∑I

i=1 ŵi

, γ̂
(t)
k,l =

∑I
i=1 ŵi(v̂klt,i +

c
KI )∑K

j=1

∑I
i=1 ŵi(v̂kjt,i +

c
KI )

, t = 2, . . . , T.

Since the maximum function is not differentiable, we perform numerical maximization

of the remaining part of the conditional expectation of the complete-data log-likelihood

function

I∑
i=1

(ŵi

T∑
t=1

K∑
k=1

ûkt,i log(g(xt,i;ϑ
(t)
k ))) + (1− ŵi) log( max

k=1,...,K

T∏
t=1

g(xt,i;ϑ
(t)
k ))),

in order to obtain µ̂
(t)
k , σ̂

(t)
k , k = 1, . . . ,K, t = 1, . . . , T .

Split model: Separated hidden Markov models for advancement and decline

For the model consisting of three parts as described in Section 4.3, we perform the

following modification of the EM-algorithm.

For the model-selection variable πim, we introduce indicator variables

u
(1)
kt,i = 1{st,i=k|πi1=1}, u

(2)
kt,i = 1{st,i=k|πi2=1} (t = 1, . . . , T ),

v
(1)
klt,i = 1{st−1,i=k,st,i=l|πi1=1}, v

(2)
klt,i = 1{st−1,i=k,st,i=l|πi2=1} (t = 2, . . . , T )

(k, l = 1, . . . ,K), for the latent variable regarding the income group of country i and

wim = 1{πim=1} for the latent variable regarding the part of the model, m = 1, 2, 3,
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i = 1, . . . , I. This leads to the complete-data log-likelihood function

ℓ
(HMMud)c
T =

I∑
i=1

K∑
k=1

(wi1u
(1)
k1,i + wi2u

(2)
k1,i) log(αk) +

I∑
i=1

K∑
k=1

K∑
l=k

T∑
t=2

wi1v
(1)
klt,i log(γ

(t,1)
k,l )

+
I∑

i=1

K∑
k=1

k∑
l=1

T∑
t=2

wi2v
(2)
klt,i log(γ

(t,2)
k,l )

+
c√

K2 +K − 2I

I∑
i=1

T∑
t=2

K∑
k=1

(
K∑
l=k

wi1 log(γ
(t,1)
k,l ) +

k∑
l=1

wi2 log(γ
(t,2)
k,l ))

+
I∑

i=1

K∑
k=1

T∑
t=1

((wi1u
(1)
kt,i + wi2u

(2)
kt,i) log(g(xt,i;ϑ

(t)
k )))

+

I∑
i=1

wi3 log( max
k=1,...,K

T∏
t=1

g(xt,i;ϑ
(t)
k ))).

The E-step works analogously to the algorithms introduced before and in the M-step,

for the initial distribution and the transition probabilities we have

α̂k =

∑I
i=1(ŵi1û

(1)
k1,i + ŵi2û

(2)
k1,i)∑I

i=1

∑K
l=1(ŵi1û

(1)
l1,i + ŵi2û

(2)
l1,i)

, k = 1, . . . ,K,

γ̂
(t,1)
j,k =

∑I
i=1 ŵi1(v̂

(1)
jkt,i +

c√
K2+K−2I

)∑K
l=j

∑I
i=1 ŵi1(v̂

(1)
jlt,i +

c√
K2+K−2I

)
, k = j, . . . ,K,

γ̂
(t,2)
j,k =

∑I
i=1 ŵi2(v̂

(2)
jkt,i +

c√
K2+K−2I

)∑j
l=1

∑I
i=1 ŵi2(v̂

(2)
jlt,i +

c√
K2+K−2I

)
, k = 1, . . . , j,

while for k = 1, . . . ,K, t = 1, . . . , T the parameters ϑ̂
(t)
k are calculated using numerical

optimization of

I∑
i=1

K∑
k=1

T∑
t=1

((ŵi1û
(1)
kt,i + ŵi2û

(2)
kt,i) log(g(xt,i;ϑ

(t)
k ))) +

I∑
i=1

(ŵi3 log( max
k=1,...,K

T∏
t=1

g(xt,i;ϑ
(t)
k ))).

4.8.2. Switching Regression

For the switching regression model formulated in Section 4.5 we introduce indicator

variables u
(t)
k,i = 1{country i belongs to income group k at time t}, which yields the complete-data

log-likelihood function

ℓSR,c
T =

I∑
i=1

K∑
k=1

u
(t)
k,i log(π

(t)
k,i) +

I∑
i=1

K∑
k=1

u
(t)
k,i log(g(xt,i;ϑ

(t)
k )), t = 1, . . . , T.
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In the E-step we use the current parameter estimates to calculate

û
(t)
k,i =

π
(t)
k,ig(xt,i;ϑ

(t)
k )∑K

l=1 π
(t)
l,i g(xt,i;ϑ

(t)
l )

, k = 1, . . . ,K, i = 1, . . . , I and t = 1, . . . , T.

In the M-step, the optimal parameters for the income group-dependent parameters of

the Gaussian distributions are

µ̂
(t)
k =

∑I
i=1 û

(t)
k,ixt,i∑I

i=1 û
(t)
k,i

and σ̂
(t)2
k =

∑I
i=1 û

(t)
k,i(xt,i − µ̂

(t)
k )2∑I

i=1 û
(t)
k,i

,

while the regression parameters are estimated using numerical optimization of the first

part of conditional expectation of the complete-data log-likelihood function with (4.1)

plugged in.

4.9. Classification results

The following tables illustrate the classification results and potential switches of income

groups together with the corresponding years of the considered models. At first, in Table

4.1 we report countries, which do not switch income group in all considered models to-

gether with the corresponding income groups. Table 4.2 provides the results on switches

of income groups for the remaining countries. The ’-’ indicates those countries for which

some data for the models with covariables were missing.

Income group 1 AFG, BDI, BEN, BFA, BGD, CAF, COM, ETH, GIN, GMB,

GNB, KEN, KHM, LAO, LBR, LSO, MDG, MLI, MOZ, MWI,

NER, NPL, RWA, SEN, SLE, SOM, TCD, TGO, TZA, UGA,

ZAR, ZWE

Income group 2 BRA, CHL, COL, DMA, DOM, GRD, GTM, KNA, LCA, MHL,

MUS, ROM, TON, TUR, URY, VUT, ZAF

Income group 3 AUS, AUT, BEL, BHS, BMU, BRB, CAN, CHE, DEU, DNK

ESP, FIN, FRA, GBR, ISL, ITA, JPN, NLD, NZL, SWE, USA

Table 4.1.: Classification results of the different models for panel data: Countries
which do not switch income group.
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AGO ALB ARG ATG BGR

Mixture 80-81: 2→1 90-91: 2→1 73-74: 2→3 95-96: 2→3 2

82-83: 1→2 96-97: 1→2 75-76: 3→2 96-97: 3→2

85-86: 2→1

87-88: 1→2

89-90: 2→1

97-98: 1→2

99-00: 2→1

04-05: 1→2

HMM 77-78: 2→1 2 2 2 2

04-05: 1→2

Split HMM 79-80: 2→1 2 2 2 2

S. Regression - 2 2 - 2

HMM Regr. - 97-98: 2→1 2 - 97-98: 2→1

98-99: 1→2 99-00: 1→2

99-00: 2→1

00-01: 1→2

BLZ BOL BTN BWA CHN

Mixture 2 90-91: 2→1 97-98: 1→2 71-72: 1→2 97-98: 1→2

96-97: 1→2 99-00: 2→1

00-01: 1→2

HMM 2 2 00-01: 1→2 2 99-00: 1→2

Split HMM 2 2 1 2 97-98: 1→2

S. Regression 2 2 - 72-73: 1→2 85-86: 1→2

90-91: 2→1

92-93: 1→2

94-95: 2→1

96-97: 1→2

HMM Regr. 98-99: 2→1 2 - 2 99-00: 1→2

99-00: 1→2

CIV CMR COG CPV CRI

Mixture 75-76: 1→2 72-73: 1→2 72-73: 1→2 97-98: 1→2 2

76-77: 2→1 73-74: 2→1 73-74: 2→1 99-00: 2→1

78-79: 1→2 75-76: 1→2 75-76: 1→2 01-02: 1→2

79-80: 2→1 89-90: 2→1 76-77: 2→1 02-03: 2→1

97-98: 1→2 97-98: 1→2 78-79: 1→2 05-06: 1→2

99-00: 2→1 99-00: 2→1 90-91: 2→1

97-98: 1→2

99-00: 2→1

HMM 1 1 1 1 2

Split HMM 1 1 1 1 2
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S. Regression 1 1 81-82: 1→2 - 2

86-87: 2→1

HMM Regr. 1 1 1 - 99-00: 2→1

00-01: 1→2

CUB CYP DJI DZA ECU

Mixture 2 90-91: 2→3 89-90: 2→1 94-95: 2→1 95-96: 2→1

96-97: 3→2 97-98: 1→2 96-97: 1→2 96-97: 1→2

00-01: 2→3 99-00: 2→1

02-03: 3→2

HMM 2 86-87: 2→3 88-89: 2→1 2 2

Split HMM 2 90-91: 2→3 88-89: 2→1 2 2

S. Regression 2 80-81: 2→3 - 2 2

HMM Regr. 98-99: 2→1 84-85: 2→3 - 2 2

99-00: 1→2

EGY FJI FSM GHA GRC

Mixture 82-83: 1→2 91-92: 2→1 90-91: 2→1 72-73: 1→2 97-98: 3→2

90-91: 2→1 96-97: 1→2 96-97: 1→2 73-74: 2→1 99-00: 2→3

96-97: 1→2 98-99: 1→2

99-00: 2→1

HMM 88-89: 1→2 2 2 1 3

Split HMM 96-97: 1→2 2 2 1 3

S. Regression 83-84: 1→2 - - 1 3

HMM Regr. 94-95: 1→2 - - 1 3

GUY HKG HND HTI HUN

Mixture 89-90: 2→1 73-74: 2→3 90-91: 2→1 78-79: 1→2 73-74: 2→3

96-97: 1→2 75-76: 3→2 96-97: 1→2 80-81: 2→1 75-76: 3→2

76-77: 2→3 81-82: 2→3

78-79: 3→2 82-83: 3→2

79-80: 2→3

HMM 2 3 2 1 90-91: 3→2

Split HMM 2 76-77: 2→3 2 1 2

S. Regression 2 - 2 1 2

HMM Regr. 85-86: 2→1 - 2 1 74-75: 2→3

01-02: 1→2 90-91: 3→2

96-97: 2→3

IDN IND IRL IRN IRQ

Mixture 87-88: 1→2 97-98: 1→2 71-72: 2→3 73-74: 2→3 90-91: 2→1

90-91: 2→1 99-00: 2→1 72-73: 3→2 75-76: 3→2 96-97: 1→2

96-97: 1→2 08-09: 1→2 73-74: 2→3 76-77: 2→3 02-03: 2→1

75-76: 3→2 77-78: 3→2 03-04: 1→2

76-77: 2→3
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HMM 92-93: 1→2 1 3 78-79: 3→2 90-91: 2→1

Split HMM 96-97: 1→2 1 3 76-77: 3→2 90-91: 2→1

S. Regression 87-88: 1→2 1 3 2 90-91: 2→1

92-93: 1→2

94-95: 2→1

96-97: 1→2

HMM Regr. 1 1 3 71-72: 2→3 89-90: 2→1

79-80: 3→2 96-97: 1→2

98-99: 2→1

00-01: 1→2

ISR JAM JOR KIR KOR

Mixture 97-98: 3→2 73-74: 2→3 90-91: 2→1 73-74: 2→3 91-92: 2→3

99-00: 2→3 75-76: 3→2 96-97: 1→2 75-76: 3→2 97-98: 3→2

91-92: 2→1 99-00: 2→3

96-97: 1→2

HMM 3 75-76: 3→2 2 2 89-90: 2→3

Split HMM 3 2 2 2 90-91: 2→3

S. Regression 3 2 2 - 93-94: 2→3

97-98: 3→2

98-99: 2→3

HMM Regr. 3 98-99: 2→1 98-99: 2→1 - 89-90: 2→3

99-00: 1→2 99-00: 1→2

LBN LKA LUX MAC MAR

Mixture 72-73: 3→2 96-97: 1→2 97-98: 3→2 73-74: 2→3 75-76: 1→2

73-74: 2→3 99-00: 2→3 75-76: 3→2 80-81: 2→1

75-76: 3→2 76-77: 2→3 81-82: 1→2

78-79: 3→2 90-91: 2→1

79-80: 2→3 97-98: 1→2

98-99: 3→2 99-00: 2→1

99-00: 2→3 05-06: 1→2

HMM 75-76: 3→2 99-00: 1→2 3 3 1

Split HMM 74-75: 3→2 1 3 73-74: 2→3 1

S. Regression - 76-77: 2→1 3 - 87-88: 1→2

77-78: 1→2 91-92: 2→1

92-93: 1→2

94-95: 2→1

96-97: 1→2

99-00: 2→1

HMM Regr. - 97-98: 1→2 3 - 1

98-99: 2→1

99-00: 1→2
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MDV MEX MLT MNG MRT

Mixture 88-89: 1→2 73-74: 2→3 90-91: 2→3 71-72: 1→2 75-76: 1→2

89-90: 2→1 75-76: 3→2 97-98: 3→2 73-74: 2→1 76-77: 2→1

96-97: 1→2 99-00: 2→3 75-76: 1→2 78-79: 1→2

05-06: 3→2 90-91: 2→1 79-80: 2→1

06-07: 2→3 97-98: 1→2 97-98: 1→2

99-00: 2→1 99-00: 2→1

00-01: 1→2

HMM 97-98: 1→2 2 86-87: 2→3 90-91: 2→1 1

Split HMM 96-97: 1→2 2 90-91: 2→3 90-91: 2→1 1

S. Regression - 2 - 91-92: 2→1 1

03-04: 1→2

HMM Regr. - 98-99: 2→1 - 88-89: 1→2 1

99-00: 1→2 90-91: 2→1

MYS NAM NGA NIC NOR

Mixture 2 91-92: 2→1 71-72: 1→2 89-90: 2→1 97-98: 3→2

96-97: 1→2 73-74: 2→1 97-98: 1→2 98-99: 2→3

75-76: 1→2 99-00: 2→1

77-78: 2→1

78-79: 1→2

79-80: 2→1

HMM 2 2 1 88-89: 2→1 3

Split HMM 2 2 1 88-89: 2→1 3

S. Regression 2 2 - 91-92: 2→1 3

92-93: 1→2

94-95: 2→1

96-97: 1→2

HMM Regr. 98-99: 2→1 2 - 87-88: 2→1 3

99-00: 1→2

OMN PAK PAN PER PHL

Mixture 74-75: 2→3 97-98: 1→2 2 94-95: 2→1 71-72: 1→2

75-76: 3→2 99-00: 2→1 96-97: 1→2 73-74: 2→1

81-82: 2→3 74-75: 1→2

82-83: 3→2 90-91: 2→1

83-84: 2→3 96-97: 1→2

86-87: 3→2 99-00: 2→1

90-91: 2→3 01-02: 1→2

97-98: 3→2 02-03: 2→1

00-01: 2→3 05-06: 1→2

02-03: 3→2 07-08: 2→1

07-08: 2→3 09-10: 1→2

HMM 74-75: 2→3 1 2 2 83-84: 2→1
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Split HMM 80-81: 2→3 1 2 2 84-85: 2→1

S. Regression - 1 2 2 2

HMM Regr. - 1 98-99: 2→1 2 1

99-00: 1→2

PLW PNG POL PRI PRT

Mixture 72-73: 3→2 80-81: 2→1 74-75: 2→3 73-74: 2→3 73-74: 2→3

73-74: 2→3 82-83: 1→2 75-76: 3→2 75-76: 3→2 75-76: 3→2

75-76: 3→2 83-84: 2→1 76-77: 2→3 81-82: 2→3

76-77: 2→3 88-89: 1→2 78-79: 3→2 82-83: 3→2

78-79: 3→2 89-90: 2→1 80-81: 2→3 90-91: 2→3

81-82: 2→3 97-98: 1→2 82-83: 3→2 97-98: 3→2

82-83: 3→2 99-00: 2→1 84-85: 2→3 99-00: 2→3

89-90: 2→3 05-06: 3→2

92-93: 3→2

94-95: 2→3

96-97: 3→2

HMM 98-99: 3→2 77-78: 2→1 2 3 3

Split HMM 97-98: 3→2 79-80: 2→1 2 3 89-90: 2→3

S. Regression - 96-97: 1→2 2 - 99-00: 2→3

99-00: 2→1 02-03: 3→2

03-04: 2→3

06-07: 3→2

09-10: 2→3

HMM Regr. - 1 75-76: 2→3 - 73-74: 2→3

80-81: 3→2

88-89: 2→3

90-91: 3→2

97-98: 2→3

01-02: 3→2

PRY SDN SGP SLB SLV

Mixture 91-92: 2→1 98-99: 1→2 73-74: 2→3 78-79: 1→2 95-96: 2→1

96-97: 1→2 99-00: 2→1 75-76: 3→2 80-81: 2→1 96-97: 1→2

76-77: 2→3 97-98: 1→2

78-79: 3→2 99-00: 2→1

79-80: 2→3

HMM 2 1 3 1 2

Split HMM 2 1 3 1 2

S. Regression 2 1 - - 2

HMM Regr. 2 1 - - 2
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STP SWZ SYC SYR THA

Mixture 75-76: 1→2 71-72: 1→2 73-74: 2→3 71-72: 1→2 71-72: 1→2

80-81: 2→1 91-92: 2→1 75-76: 3→2 90-91: 2→1 73-74: 2→1

96-97: 1→2 76-77: 2→3 96-97: 1→2 75-76: 1→2

HMM 1 2 3 2 2

Split HMM 1 2 3 2 2

S. Regression - 73-74: 1→2 - 2 71-72: 1→2

95-96: 2→1

96-97: 1→2

99-00: 2→1

HMM Regr. - 73-74: 1→2 - 2 80-81: 1→2

TUN TWN VCT VEN VNM

Mixture 94-95: 2→1 90-91: 2→3 74-75: 2→1 73-74: 2→3 97-98: 1→2

96-97: 1→2 97-98: 3→2 75-76: 1→2 75-76: 3→2 99-00: 2→1

99-00: 2→3 94-95: 2→1 76-77: 2→3

96-97: 1→2 77-78: 3→2

HMM 2 86-87: 2→3 2 79-80: 3→2 1

Split HMM 2 90-91: 2→3 2 2 1

S. Regression 2 - - 2 86-87: 1→2

89-90: 2→1

92-93: 1→2

94-95: 2→1

96-97: 1→2

HMM Regr. 2 - - 73-74: 2→3 1

79-80: 3→2

WSM ZMB

Mixture 94-95: 2→1 71-72: 1→2

96-97: 1→2 73-74: 2→1

HMM 2 1

Split HMM 2 1

S. Regression - 1

HMM Regr. - 1

Table 4.2.: Classification results of the different models for panel data: Countries
which switch income group.



Discussion and outlook

In this work, several modifications of standard hidden Markov models were considered

and theoretical and computational results for maximum likelihood estimation in the

presented settings were given. The suggested models illustrated the flexibility of hid-

den Markov models and their adaptability to various settings for many classes of data.

The theoretical results were mainly based on maximum likelihood theory for parametric

models, given by Leroux (1992a), which were extended and adjusted when necessary.

The proposed nonparametric classes for the state-dependent densities gave theoretical

justification for the computation of maximum likelihood estimators in more general set-

tings than proposed in the literature so far. Thus, existing nonparametric estimation

theory for hidden Markov models using Bayesian methods (Vernet, 2015), least squares

estimation (De Castro et al., 2015) or orthogonal-series density estimation (Robin et al.,

2014) was extended by theoretical results in a maximum likelihood context. While

for state-dependent mixtures, a consistency result was given, for log-concave densi-

ties this question remained unanswered. Another open issue is the consideration of

rates of convergence for the estimator. De Castro et al. (2015) used an approach by

Massart (2007) to develop rates for their penalized least squares estimator in nonpara-

metric hidden Markov models, whereas up to now there seem to be no results for the

nonparametric maximum likelihood estimator. A first approach on that issue could

be to examine a blockwise log-likelihood function first, which means to build blocks

yi = (xiN+1, . . . , xiN+N ) (i = 0, . . . , T − 1) of length N ∈ N with joint distribution

h(yi) =
∑K

k0=1 · · ·
∑K

kN−1=1 δk0
∏N−1

j=1 γkj−1,kj

∏N−1
j=0 fkj (xiN+j) and then consider the

log-likelihood function
∑T−1

i=0 log(h(yi)). When trying to process a maximal inequality

using arguments from Massart (2007), one task would be to consider an appropriate

Bernstein-type inequality for this setting.

Since for hidden Markov models mostly parametric settings are considered, the results

on nonparametric models can further be used when comparing both approaches. One

could think of testing the goodness of fit by using likelihood ratio tests. First consider-

ations on that issue were investigated in a simulation scenario in Alexandrovich et al.

(2016).
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The chapter on penalized estimation proposed one approach how to regard structural as-

sumptions on the parameters of hidden Markov models. Results on l1-penalized estima-

tion in Gaussian mixture models (Ruan et al., 2011, Yuan and Lin, 2007) and Gaussian

hidden Markov models (Städler and Mukherjee, 2013) were extended by the introduction

of different penalty functions to Gaussian hidden Markov models and a theoretical and

computational comparison of l1-penalization, hard thresholding and SCAD-penalization

as proposed by Fan and Li (2001). While the focus was on sparsity of state-dependent

precision matrices, another interesting consideration would be assumptions on zero en-

tries of the transition probability matrix in scenarios where certain transitions are im-

possible or specific structures should be taken into account. An additional interesting

aspect is the theoretical justification for using BIC or AIC as selection criterion of the

tuning parameters.

The last chapter of this thesis covered computational aspects when dealing with hidden

Markov models. It was shown that several assumptions on the model structure can

be implemented by adjusting the EM-algorithm. Many of these adjustments even lead

to only small modifications of the closed-form solutions, which made computation very

convenient.

In the certain example of GDP panel data, the advantage of hidden Markov models over

mixture models (used for example by Paapaa and van Dijk (1998), Pittau et al. (2010)

and Vollmer et al. (2013)) concerning stability of the estimates over time was observed.

When considering covariables, it was shown that their inclusion to mixture models is

quite simple, while for hidden Markov models it entailed some computational problems.

In the given context, in contrast to Bloom et al. (2003) who performed regression on

the location parameters of the mixture model, explaining the mixing probabilities of the

model using covariables yielded some good insights when investigating economic growth.

For the explanation of advancement and decline of countries’ income groups in the panel

hidden Markov model, the considerations were not sufficiently comprehensive. It would

be very interesting to investigate this question in a more detailed study.



A. Additional parameter estimates for

chapter 3

We provide additional parameter estimates for sparse Gaussian hidden Markov models

from section 3.3.

1. Biotechnology sector p = 4. Portfolio: Merck, Bayer, Curasan, Evotec. Unpenal-

ized estimation:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎝
7454 −2390 −160 −425

−2390 6683 −108 −1119

−160 −108 1346 −68

−425 −1119 −68 3011

⎞⎟⎟⎟⎟⎟⎠ , Ω̂2 =

⎛⎜⎜⎜⎜⎜⎝
1224 −315 −29 −50

−315 1360 −79 −126

−29 −79 423 −23

−50 −126 −23 328

⎞⎟⎟⎟⎟⎟⎠
µ̂1 =

(
0.00085 0.00118 −0.00061 −0.00240

)T
,

µ̂2 =
(
−0.00017 −0.00132 −0.00284 −0.00043

)T
,

µ̂3 =
(
−0.00155 −0.00054 0.02188 0.01430

)T
,

Γ̂ =

⎛⎜⎜⎝
0.78 0.22 0.00

0.41 0.57 0.02

0.29 0.53 0.18

⎞⎟⎟⎠ .

l1-penalized estimation:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎝
7243 −2312 −147 −417

−2312 6492 −116 −1077

−147 −116 1322 −61

−417 −1077 −61 2889

⎞⎟⎟⎟⎟⎟⎠ , Ω̂2 =

⎛⎜⎜⎜⎜⎜⎝
1157 −265 −22 −45

−265 1268 −69 −111

−22 −69 403 −21

−45 −111 −21 309

⎞⎟⎟⎟⎟⎟⎠ ,

µ̂1 =
(
0.00087 0.00123 −0.00056 −0.00253

)T
,

µ̂2 =
(
−0.00028 −0.00155 −0.00299 0.00002

)T
,

µ̂3 =
(
−0.00110 0.00093 0.02796 0.01519

)T
,

Γ̂ =

⎛⎜⎜⎝
0.80 0.20 0.00

0.38 0.60 0.02

0.49 0.36 0.15

⎞⎟⎟⎠ .
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SCAD-penalization:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎝
7519 −2408 −172 −428

−2408 6732 −109 −1087

−172 −109 1355 −73

−428 −1087 −73 2980

⎞⎟⎟⎟⎟⎟⎠ , Ω̂2 =

⎛⎜⎜⎜⎜⎜⎝
1226 −313 −26 −54

−313 1366 −80 −128

−26 −80 425 −24

−54 −128 −24 332

⎞⎟⎟⎟⎟⎟⎠ ,

µ̂1 =
(
0.00087 0.00125 −0.00054 −0.00253

)T
,

µ̂2 =
(
−0.00021 −0.00144 −0.00295 −0.00018

)T
,

µ̂3 =
(
−0.00137 −0.00046 0.02376 0.01504

)T
,

Γ̂ =

⎛⎜⎜⎝
0.80 0.20 0.00

0.38 0.60 0.02

0.44 0.40 0.16

⎞⎟⎟⎠ .

2. Biotechnology sector p = 6. Portfolio: Merck, Bayer, Curasan, Evotec, BASF,

K+S. Unpenalized estimation:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6916 −1468 −65 −297 −944 −461

−1468 10596 −140 −559 −6359 −886

−65 −140 1208 −82 50 −39

−297 −559 −82 2645 −490 −338

−944 −6359 50 −490 12140 −1932

−461 −886 −39 −338 −1932 5611

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1273 −180 −16 −37 −209 −69

−180 2326 −52 −83 −1618 −84

−16 −52 437 −18 −26 −40

−37 −83 −18 329 −90 −41

−209 −1618 −26 −90 3429 −557

−69 −84 −40 −41 −557 1259

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

µ̂1 =
(
0.00107 0.00116 −0.00063 −0.00215 0.00140 0.00134

)T
,

µ̂2 =
(
−0.00071 −0.00167 −0.00334 −0.00070 −0.00244 −0.00048

)T
,

µ̂3 =
(
−0.00033 0.00232 0.02273 0.01071 0.02053 0.00097

)T
,

Γ̂ =

⎛⎜⎜⎝
0.81 0.19 0.00

0.42 0.56 0.02

0.15 0.66 0.19

⎞⎟⎟⎠ .
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l1-penalized estimation:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6667 −1374 −41 −269 −869 −417

−1374 10053 −115 −521 −5925 −852

−41 −115 1204 −72 0 −26

−269 −521 −72 2526 −464 −314

−869 −5925 0 −464 11567 −1813

−417 −852 −26 −314 −1813 5442

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1244 −172 −16 −36 −208 −69

−172 2250 −51 −81 −1575 −79

−16 −51 424 −18 −22 −40

−36 −81 −18 320 −84 −40

−208 −1575 −22 −84 3310 −549

−69 −79 −40 −40 −549 1223

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

µ̂1 =
(
0.00110 0.00119 −0.00058 −0.00222 0.00145 0.00139

)T
,

µ̂2 =
(
−0.00086 −0.00185 −0.00348 −0.00054 −0.00266 −0.00072

)T
,

µ̂3 =
(
0.00024 0.00331 0.02419 0.01133 0.02244 0.00248

)T
,

Γ̂ =

⎛⎜⎜⎝
0.83 0.17 0.00

0.40 0.58 0.02

0.16 0.65 0.19

⎞⎟⎟⎠ .

SCAD-penalization:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6844 −1452 −65 −295 −940 −455

−1452 10547 −138 −552 −6354 −885

−65 −138 1204 −80 55 −45

−295 −552 −80 2610 −484 −329

−940 −6354 55 −484 12120 −1934

−455 −885 −45 −329 −1934 5561

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1266 −176 −12 −35 −211 −67

−176 2294 −54 −80 −1596 −82

−12 −54 432 −19 −26 −38

−35 −80 −19 326 −86 −42

−211 −1596 −26 −86 3370 −549

−67 −82 −38 −42 −549 1246

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

µ̂1 =
(
0.00108 0.00120 −0.00055 −0.00224 0.00145 0.00140

)T
,

µ̂2 =
(
−0.00078 −0.00177 −0.00346 −0.00051 −0.00260 −0.00071

)T
,
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µ̂3 =
(
0.00020 0.00308 0.02376 0.01098 0.02234 0.00248

)T
,

Γ̂ =

⎛⎜⎜⎝
0.83 0.17 0.00

0.39 0.59 0.02

0.16 0.65 0.19

⎞⎟⎟⎠ .

3. Merged portfolio p = 8. Portfolio: Merck, Bayer, Curasan, Evotec, Commerzbank,

Deutsche Bank, Baader Bank, Deutsche Balaton. Unpenalized estimation:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6952 −1518 −116 −225 22 −1075 −282 19

−1518 7903 −158 −545 −528 −2365 −277 −433

−116 −158 1110 −22 −82 113 −1 −16

−225 −545 −22 2787 −188 −644 −204 52

22 −528 −82 −188 5940 −4458 −182 −78

−1075 −2365 113 −644 −4458 9852 −219 3

−282 −277 −1 −204 −182 −219 2131 −56

19 −433 −16 52 −78 3 −56 3555

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1372 −176 −9 −33 −79 −190 −32 −18

−176 1997 −40 −69 −146 −734 −2 −10

−9 −40 498 −20 −18 −50 −8 −46

−33 −69 −20 378 −36 −91 −68 −13

−79 −146 −18 −36 1507 −1076 −40 −10

−190 −734 −50 −91 −1076 2373 −88 −30

−32 −2 −8 −68 −40 −88 512 −33

−18 −10 −46 −13 −10 −30 −33 811

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

µ̂1 = (0.00108 0.00126 − 0.00006 − 0.00198 − 0.00042 0.00015 − 0.00004

0.00037)T,

µ̂2 = (−0.00019 − 0.00140 − 0.00383 − 0.00096 − 0.00332 − 0.00176

− 0.00311 − 0.00078)T,

µ̂3 = (−0.00512 − 0.00047 0.01826 0.00853 0.00930 0.00909 0.00465 0.00123)T,

Γ̂ =

⎛⎜⎜⎝
0.79 0.21 0.00

0.38 0.58 0.03

0.05 0.72 0.23

⎞⎟⎟⎠ .
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l1-penalization:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6798 −1482 −108 −206 0 −1035 −271 0

−1482 7800 −158 −528 −538 −2329 −270 −409

−108 −158 1108 −21 −76 97 −1 −16

−206 −528 −21 2701 −179 −638 −203 40

0 −538 −76 −179 5832 −4359 −179 −63

−1035 −2329 97 −638 −4359 9661 −220 0

−271 −270 −1 −203 −179 −220 2091 −53

0 −409 −16 40 −63 0 −53 3484

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1330 −160 −6 −32 −74 −180 −24 −7

−160 1854 −33 −65 −120 −671 0 −9

−6 −33 483 −20 −18 −46 −8 −42

−32 −65 −20 363 −35 −83 −69 −15

−74 −120 −18 −35 1407 −1008 −42 −9

−180 −671 −46 −83 −1008 2209 −77 −26

−24 0 −8 −69 −42 −77 493 −34

−7 −9 −42 −15 −9 −26 −34 798

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

µ̂1 = (0.00109 0.00125 − 0.00007 − 0.00198 − 0.00045 0.00013 − 0.00006

0.00039)T,

µ̂2 = (−0.00024 − 0.00147 − 0.00389 − 0.00088 − 0.00337 − 0.00181

− 0.00310 − 0.00085)T,

µ̂3 = (−0.00565 0.00005 0.02061 0.00889 0.01102 0.01070 0.00486 0.00166)T,

Γ̂ =

⎛⎜⎜⎝
0.79 0.21 0.00

0.39 0.58 0.03

0.05 0.71 0.24

⎞⎟⎟⎠ .

SCAD-penalization:

Ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6925 −1512 −117 −221 22 −1074 −280 17

−1512 7886 −155 −543 −532 −2361 −275 −430

−117 −155 1110 −21 −82 111 −1 −17

−221 −543 −21 2771 −187 −644 −204 51

22 −532 −82 −187 5914 −4436 −181 −76

−1074 −2361 111 −644 −4436 9812 −219 3

−280 −275 −1 −204 −181 −219 2123 −56

17 −430 −17 51 −76 3 −56 3540

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1363 −175 −10 −33 −78 −188 −31 −17

−175 1967 −39 −68 −138 −724 −2 −10

−10 −39 496 −21 −18 −49 −6 −46

−33 −68 −21 374 −35 −89 −70 −14

−78 −138 −18 −35 1491 −1072 −40 −10

−188 −724 −49 −89 −1072 2348 −84 −28

−31 −2 −6 −70 −40 −84 509 −34

−17 −10 −46 −14 −10 −28 −34 809

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

µ̂1 = (0.00108 0.00126 − 0.00006 − 0.00198 − 0.00042 0.00015 − 0.00004

0.00037)T,

µ̂2 = (−0.00018 − 0.00140 − 0.00384 − 0.00091 − 0.00332 − 0.00178

− 0.00309 − 0.00077)T,

µ̂3 = (−0.00532 − 0.00040 0.01861 0.00810 0.00943 0.00938 0.00440 0.00110)T,

Γ̂ =

⎛⎜⎜⎝
0.79 0.21 0.00

0.38 0.59 0.03

0.05 0.72 0.23

⎞⎟⎟⎠ .



B. Overview ISO codes

We give a list of the countries which were considered in the models of Chapter 4. By

(*) we indicate countries, for which due to missing data only models without covariables

were considered.

Code Country Code Country

AFG Afghanistan KNA(*) St. Kitts & Nevis

AGO(*) Angola KOR Korea, Republic of

ALB Albania LAO Laos

ARG Argentina LBN(*) Lebanon

ATG(*) Antigua and Barbuda LBR Liberia

AUS Australia LCA(*) St. Lucia

AUT Austria LKA Sri Lanka

BDI Burundi LSO Lesotho

BEL Belgium LUX Luxembourg

BEN Benin MAC(*) Macao

BFA(*) Burkina Faso MAR Morocco

BGD Bangladesh MDG(*) Madagascar

BGR Bulgaria MDV(*) Maldives

BHS(*) Bahamas MEX Mexico

BLZ Belize MHL(*) Marshall Islands

BMU(*) Bermuda MLI Mali

BOL Bolivia MLT(*) Malta

BRA Brazil MNG Mongolia

BRB(*) Barbados MOZ Mozambique

BTN(*) Bhutan MRT Mauritania

BWA Botswana MUS(*) Mauritius

CAF Central African Republic MWI Malawi

CAN Canada MYS Malaysia

CHE Switzerland NAM Namibia

CHL Chile NER Niger

CHN China NGA(*) Nigeria

CIV Cote d‘Ivoire NIC Nicaragua

CMR Cameroon NLD Netherlands
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COG Congo, Republic of NOR Norway

COL Colombia NPL Nepal

COM(*) Comoros NZL New Zealand

CPV(*) Cape Verde OMN(*) Oman

CRI Costa Rica PAK Pakistan

CUB Cuba PAN Panama

CYP Cyprus PER Peru

DEU Germany PHL Philippines

DJI(*) Djibouti PLW(*) Palau

DMA(*) Dominica PNG Papua New Guinea

DNK Denmark POL Poland

DOM Dominican Republic PRI(*) Puerto Rico

DZA Algeria PRT Portugal

ECU Ecuador PRY Paraguay

EGY Egypt ROM(*) Republic of Moldova

ESP Spain RWA Rwanda

ETH(*) Ethiopia SDN Sudan

FIN Finland SEN Senegal

FJI(*) Fiji SGP(*) Singapore

FRA France SLB(*) Solomon Islands

FSM(*) Micronesia, Fed. Sts. SLE Sierra Leone

GBR United Kingdom SLV El Salvador

GHA Ghana SOM(*) Somalia

GIN(*) Guinea STP(*) Sao Tome and Principe

GMB Gambia, The SWE Sweden

GNB(*) Guinea-Bissau SWZ Swaziland

GRC Greece SYC(*) Seychelles

GRD(*) Grenada SYR Syria

GTM Guatemala TCD(*) Chad

GUY Guyana TGO Togo

HKG(*) Hong Kong THA Thailand

HND Honduras TON(*) Tonga

HTI Haiti TUN Tunisia

HUN Hungary TUR Turkey

IDN Indonesia TWN(*) Taiwan

IND India TZA Tanzania

IRL Ireland UGA Uganda

IRN Iran URY Uruguay

IRQ Iraq USA United States
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ISL Iceland VCT(*) St.Vincent & Grenadines

ISR Israel VEN Venezuela

ITA Italy VNM Vietnam

JAM Jamaica VUT(*) Vanuatu

JOR Jordan WSM(*) Samoa

JPN Japan ZAF South Africa

KEN Kenya ZAR(*) Congo, Dem. Rep.

KHM Cambodia ZMB Zambia

KIR(*) Kiribati ZWE Zimbabwe

Table B.1.: Countries: ISO codes.
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F. Lefèvre. Non-parametric probability estimation for HMM-based automatic speech

recognition. Computer Speech & Language, 17(23):113 – 136, 2003.

B. G. Leroux. Maximum-likelihood estimation for hidden Markov models. Stochastic

Processes and their Applications, 40(1):127 – 143, 1992a.

B. G. Leroux. Consistent estimation of a mixing distribution. The Annals of Statistics,

20(3):1350–1360, 09 1992b.

B. Lindsay. Mixture Models - Theory, Geometry, and Applications. IMS, 1995.

B. G. Lindsay. The geometry of mixture likelihoods: A general theory. The Annals of

Statistics, 11(1):86–94, 03 1983.

A. Lotsi and E. Wit. High dimensional sparse Gaussian graphical mixture model. ArXiv

e-prints, Aug. 2013.

A. Maruotti. Mixed hidden Markov models for longitudinal data: An overview. Inter-

national Statistical Review, 79(3):427–454, 2011.

P. Massart. Concentration Inequalities and Model Selection - Ecole D’Et de Probabilits

de Saint-Flour XXXIII - 2003. Springer, Berlin, Heidelberg, 2007. aufl. edition, 2007.

G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley &

Sons, New York, 2007.

G. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, New York,

2004.

A. L. Owen, J. Videras, and L. Davis. Do all countries follow the same growth process?

Journal of Economic Growth, 14(4):265–286, 2009.

R. Paapaa and H. K. van Dijk. Distribution and mobility of wealth of nations. European

Economic Review, 42(7):1269 – 1293, 1998.



Bibliography 113

J. K. Pal, M. Woodroofe, and M. Meyer. Estimating a Polya frequency function2, volume

Volume 54 of Lecture Notes–Monograph Series, pages 239–249. Institute of Mathe-

matical Statistics, Beachwood, Ohio, USA, 2007.

J. Pfanzagl. Consistency of maximum likelihood estimators for certain nonparametric

families, in particular: mixtures. Journal of Statistical Planning and Inference, 19(2):

137 – 158, 1988.

M. G. Pittau, R. Zelli, and P. A. Johnson. Mixture models, convergence clubs, and

polarization. Review of Income and Wealth, 56(1):102–122, 2010.

R. E. Quandt and J. B. Ramsey. Estimating mixtures of normal distributions and

switching regressions. Journal of the American Statistical Association, 73(364):pp.

730–738, 1978.

L. Rabiner, B. H. Juang, and B.-H. Juang. Fundamentals of Speech Recognition. PTR

Prentice Hall, Englewod Cliffs, New Jersey, new. edition, 1993.

R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM

algorithm. SIAM review, 26(2):195–239, 1984.

G. Ritter. Robust Cluster Analysis and Variable Selection. CRC Press, Boca Raton,

Fla, 2014.

J.-M. Robin, S. Bonhomme, and K. Jochmans. Estimating Multivariate Latent-Structure

Models. working paper or preprint, Dec. 2014.

R. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey,

reprint edition, 1970.

L. Ruan, M. Yuan, and H. Zou. Regularized parameter estimation in high-dimensional

Gaussian mixture models. Neural Comput., 23(6):1605–1622, June 2011.

K. Rufibach. Log-concave Density Estimation and Bump Hunting for i.i.d. Observa-

tions. Phd thesis, University of Bern, Switzerland and Georg-August University of

Göttingen, Germany, 2006.
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Zusammenfassung

In dieser Arbeit befassen wir uns mit Hidden Markov Modellen, einer beliebten Klasse

stochastischer Modelle, die sich gut für die Behandlung von Daten aus Zeitreihen

eignen. Wir betrachten einen bivariaten Prozess (Xt, St)t∈T , wobei die erste Kompo-

nente (Xt)t∈T die Beobachtungen des Prozesses darstellen und (St)t∈T unbeobachtet

ist. Die Abhängigkeitsstruktur des Prozesses wird durch die Annahme modelliert, dass

der unbeobachtete Prozess eine Markovkette ist. Die Verteilung der Zufallsvariablen Xt

wird durch den Zustand, den die Markovkette zu dem Zeitpunkt annimmt, bestimmt.

Detaillierte Einführungen der Modellklasse sind beispielsweise in Zucchini and MacDon-

ald (2009), Cappé et al. (2005) oder Elliott et al. (1995) nachzulesen. In dieser Arbeit

beschränken wir uns auf die Betrachtung von Markovketten mit endlichem Zustands-

raum in diskreter Zeit und konzentrieren uns auf die Schätzung der Parameter in diesen

Modellen.

Anwendungen der Hidden Markov Modelle finden sich gehäuft im Kontext der

Spracherkennung (Rabiner et al., 1993), in der biologischen Verhaltensforschung (Zuc-

chini et al., 2008), der Signalverarbeitung (Cappé et al., 2005) und in der Ökonomie und

Finanzwissenschaft (Bhar and Hamori, 2010, Rydén et al., 1996).

Das bereits gut erforschte Standardmodell umfasst die Betrachtung einer homo-

genen Markovkette und parametrischer zustandsbedingter Verteilungen (vorwiegend

Gaußverteilungen). In diesem Kontext ist die Theorie über Maximum Likelihood

Schätzung schon weit erforscht. Leroux (1992a) lieferte ein Konsistenzresultat, während

Bickel et al. (1998) asymptotische Normalität des Schätzers bewiesen. Ein Vorteil der

Maximum Likelihood Schätzung ist, dass durch den EM-Algorithmus ein sehr flexibles

Verfahren für die Berechnung des Schätzers zur Verfügung steht. Für viele parametrische

Verteilungsklassen liefert dieses sogar geschlossene Formeln für die Parameterschätzung.

In dieser Arbeit wollen wir von einigen dieser Standardannahmen abrücken und in den

formulierten Modellen Eigenschaften des Maximum Likelihood Schätzers untersuchen.

Diese Betrachtungen verdeutlichen die Flexibilität der Modellklasse und öffnen diese für

eine breitere Menge an Datensätzen.

In Kapitel 2 behandeln wir nichtparametrische Maximum Likelihood Schätzung in Hid-

den Markov Modellen, die in der Vergangenheit bereits in einigen Anwendungen (z.B.

Jin and Mokhtarian, 2006, Lambert et al., 2003, Lefèvre, 2003) diskutiert wurde, bislang
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aber theoretisch wenig untersucht ist. Grund dafür ist, dass die Frage der Identifizier-

barkeit in nichtparametrischen Hidden Markov Modellen erst kürzlich geklärt wurde

(siehe Alexandrovich et al., 2016, Gassiat and Rousseau, 2016, Gassiat et al., 2016).

Basierend auf diesen Resultaten betrachten wir zwei nichtparametrische Dichteklassen

für die zustandsbedingten Verteilungen des Hidden Markov Modells und deren Maxi-

mum Likelihood Schätzung. Zunächst untersuchen wir die Klasse der allgemeinen Misch-

ungsmodelle, die sehr flexible Dichten, insbesondere in Bezug auf Multimodalität oder

Schiefe, zulassen. In diesem Kontext beweisen wir die Existenz und Konsistenz eines

Maximum Likelihood Schätzers, liefern nötige Anpassungen des EM-Algorithmus für

dessen Berechnung und führen diese in einigen Simulationsszenarien durch. Insbeson-

dere vergleichen wir dabei den nichtparametrischen Ansatz mit dem parametrischen

Standardmodell. Danach untersuchen wir die Klasse der logkonkaven Dichten und be-

weisen die Existenz eines Maximum Likelihood Schätzers, sowie dessen konkrete Gestalt.

Zusätzlich liefern wir numerische Beispiele in Simulationen und anhand eines realen

Datensatzes.

In Kapitel 3 behandeln wir penalisierte Schätzungen, insbesondere in Gaußschen Hidden

Markov Modellen. Dabei fokussieren wir uns auf Penalisierung der zustandsbedingten

Precision Matrizen (Inversen der Kovarianzmatrizen), um bedingte Unabhängigkeit der

Zufallsvariablen zu untersuchen. Wir vergleichen die populäre Lassopenalisierung mit

dem Hardthresholding Verfahren und der von Fan and Li (2001) eingeführten SCAD-

Penalisierung. Zunächst übertragen wir die theoretischen Resultate für den Maximum

Likelihood Schätzer aus Fan and Li (2001) auf Hidden Markov Modelle und untersuchen

die Eigenschaften des penalisierten Schätzers dann in einer Simulation, sowie anhand

eines Datensatzes multivariater Finanzzeitreihen.

Im letzten Kapitel nutzen wir unterschiedliche Modelle, um ein Anwendungsbeispiel aus

der Wohlfahrtsökonomik zu behandeln. Für einen Paneldatensatz, der die BIP Daten

vieler Länder der Welt von 1970–2010 beinhaltet, konstruieren wir Modelle mit un-

terschiedlichen Abhängigkeitsstrukturen und der Möglichkeit zur Berücksichtigung von

Kovariablen, um die Einkommen der Länder und deren Entwicklung zu untersuchen.

Wir beginnen mit der Anpassung von endlichen Mischungsmodellen für jedes Jahr, um

die Subpopulationen geeignet modellieren zu können. Um die zeitliche Abhängigkeit

besser erfassen zu können, gehen wir dann zu inhomogenen Hidden Markov Modellen

über, die wir im Verlauf versuchen besser an die Daten anzupassen. Für beide Modell-

klassen können handliche Verfahren für eine a-posteriori Klassifikation der Länder in drei

Einkommensgruppen angewendet werden. Die Resultate zeigen, dass einige Länder über

den Zeitverlauf die Einkommensgruppe durch Auf- oder Abstieg wechseln. Dieses Ver-

halten versuchen wir durch die Aufnahme von Kovariablen in die Modelle zu erklären.

Im Kontext der Mischungsmodelle nutzen wir Switching Regressionsmodelle, um die
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Mischungsgewichte durch Kovariablen zu modellieren. Danach integrieren wir die Ko-

variablen in die Übergangswahrscheinlichkeiten der Hidden Markov Modelle, umWechsel

zwischen den Einkommensgruppen zu erklären. Dabei entstehen allerdings sehr kom-

plexe Modelle mit vielen Parametern, die die Schätzung stark verkomplizieren und für

den gegebenen Datensatz keine zufriedenstellenden Ergebnisse liefern.

Für alle behandelten Modelle stellen wir die nötigen Anpassungen des EM-Algorithmus

dar.
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