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Abstract 

The nucleotide-based second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-

GMP) is involved in regulating a plethora of processes in bacteria that are typically 

associated with lifestyle changes. Myxococcus xanthus undergoes major lifestyle 

changes in response to nutrient availability with the formation of spreading colonies in 

the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. 

Here, we investigated the function of c-di-GMP in M. xanthus. We show that this 

bacterium synthesizes c-di-GMP. Manipulation of the cellular c-di-GMP level by 

expression of either an active, heterologous diguanylate cyclase or an active, 

heterologous phosphodiesterase in vegetative cells caused defects in type IV pili 

(T4P)-dependent motility whereas gliding motility was unaffected. An increased level of 

c-di-GMP caused reduced transcription of the pilA gene that encodes the major pilin of 

T4P, reduced assembly of T4P and altered cell agglutination whereas a decreased 

level of c-di-GMP caused altered cell agglutination. The systematic inactivation of the 

24 genes in M. xanthus encoding proteins containing GGDEF, EAL or HD-GYP 

domains, which are associated with c-di-GMP synthesis, degradation or binding, 

identified three genes encoding proteins important for T4P-dependent motility. These 

three proteins named DmxA, TmoK and SgmT all contain a GGDEF domain. Purified 

DmxA had diguanylate cyclase activity whereas the TmoK and SgmT (both hybrid 

histidine protein kinases) did not have diguanylate cyclase activity.  

During starvation, the c-di-GMP level in M. xanthus increases significantly. 

Manipulation of this level revealed that a low c-di-GMP level negatively affects the 

developmental program while an increased level does not interfere with development. 

Moreover, among the 24 genes encoding proteins containing GGDEF, EAL or HD-GYP 

domains, we identified two which are specifically involved in development: pmxA and 

dmxB. pmxA codes for an enzymatically active phosphodiesterase with an HD-GYP 

domain. dmxB codes for a developmentally induced, enzymatically active diguanylate 

cyclase. DmxB is essential for the increased c-di-GMP level and regulates 

exopolysaccharide accumulation during starvation. Our results show that c-di-GMP 

acts as an important signaling molecule during M. xanthus development, and suggest 

a model in which a minimal threshold level of c-di-GMP is essential for the successful 

progression and completion of the developmental program. 

Additionally, candidates for c-di-GMP effectors in M. xanthus were identified 

using a capture compound mass spectrometry approach. Some of the candidates were 

confirmed to bind c-di-GMP in vitro and deletion mutants for genes encoding those 

proteins were characterized in terms of T4P-dependent motility and development. 
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Zusammenfassung 

Der nukleotid-basierte, sekundäre Botenstoff bis-(3‘-5‘)-cyclic GMP (c-di-GMP) ist 

an einer Vielzahl von regulatorischen Prozessen im Zusammenhang mit 

Veränderungen des Lebenszyklusses in Bakterien beteiligt. Myxococcus xanthus 

reagiert entsprechend der Nährstoffverfügbarkeit in seiner Umgebung. Bei 

ausreichenden Nährstoffen bildet M. xanthus sich ausbreitende Kolonien. Unter 

nahrungslimitierenden Bedingungen hingegen werden mit Sporen gefüllte Fruchtkörper 

geformt. In dieser Arbeit wurde die Funktion von c-di-GMP in M. xanthus untersucht. M. 

xanthus kann c-di-GMP produzieren. Die Manipulation der zellulären c-di-GMP 

Konzentration durch Expression einer heterologen, aktiven Diguanylatzyklase oder 

Phosphodiesterase in lebenden Zellen führte zu einem Defekt der „type-IV-pili“ (T4P) 

abhängigen Beweglichkeit. Die Gleitbewegung von M. xanthus hingegen blieb dadurch 

unberührt. Eine erhöhte Konzentration von c-di-GMP reduzierte die Transkription des 

pilA Genes, welches für das wichtigste Pilin des T4P codiert, reduzierte das 

Vorkommen von T4P generell und veränderte die Zellagglutination. Ein niedriges 

Niveau von c-di-GMP führte lediglich zu veränderter Zellagglutination.  

Die systematische Inaktivierung von 24 Genen in M. xanthus, welche für Proteine 

mit GGDEF, EAL oder HD-GYP Domänen kodieren, die im Zusammenhang mit der 

Synthetisierung, dem Abbau oder dem Binden von c-di-GMP stehen, identifizierte drei 

Gene, die wichtig für die T4P abhängige Bewegung sind. Die dazugehörigen Proteine 

DmxA, TmoK und SgmT enthalten alle eine GGDEF Domäne. DmxA besitzt 

Diguanylatzyklaseaktivität, TmoK und SgmT (beide Hybrid Histidinkinasen) zeigen 

keine Diguanylatzyklaseaktivität in vitro.  

Die Konzentration von c-di-GMP steigt während nahrungslimitierenden 

Bedingungen signifikant an. Artifiziell herbeigeführtes niedriges c-di-GMP Niveau 

beeinflusst das Entwicklungsprogramm, hohes jedoch nicht. Zudem konnten wir aus 

den 24 Genen, die für Proteine mit GGDEF, EAL und HD-GYP Domänen kodieren, 

zwei Gene identifizieren, welche spezifisch im Entwicklungsprogramm von M. xanthus 

involviert sind: pmxA und dmxB. pmxA kodiert für eine enzymatisch aktive 

Phosphodiesterase mit einer HD-GYP-Domäne. dmxB kodiert für eine im 

Entwicklungsprogramm induzierte, enzymatisch aktive Diguanylatzyklase. DmxB ist 

essentiell um ein erhöhtes c-di-GMP Niveau in den Zellen aufrechtzuerhalten und 

reguliert außerdem Exopolysaccharide während des Nährstoffmangels.  

Unsere Resultate zeigen, dass c-di-GMP ein wichtiges Signalmolekül im 

Entwicklungsprogramm von M. xanthus ist und weist auf ein Model hin, in dem ein 
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minimaler Schwellenwert an c-di-GMP Konzentration erreicht sein muss, um ein 

erfolgreiches Fortschreiten des Entwicklungsprogrammes zu gewährleisten.  

Zusätzlich konnten wir c-di-GMP spezifische Effektormoleküle mit Hilfe von 

Massenspektrometrie identifizieren und teilweise charakterisieren.  Für einige dieser 

Kandidaten konnte bestätigt werden, dass sie in vitro c-di-GMP binden und die 

Deletionsmutanten der korrespodierenden Gene wurden hinsichtlich ihrer Fähigkeit des 

T4P abhängigen Beweglichkeit und ihres Entwicklungsprogrammes charakterisiert. 
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Abbreviations 

ATP/ADP   adenosin tri-/diphosphate  
bp    base pairs  
cAMP   3’,5′-cyclic monophosphate 
CCMS   capture compound mass spectrometry 
cdG-CC  c-di-GMP specific capture compound 
c-di-AMP   cyclic di-3′,5′-adenosine monophosphate 
c-di-GMP  bis-(3'-5')-cyclic dimeric guanosine monophosphate 
cDNA   single-stranded complementary DNA 
cGMP    guanosine 3‘,5‘-monophosphate 
CR   congo red 
C-terminus   carboxyl-terminus  
CTT    casitone Tris medium  
DGC    diguanylate cyclase 
DMSO   dimethyl sulfoxide 
DNA    deoxyribonucleic acid 
DRaCALA  differential radial capillary action of ligand assay 
DTT   dithiothreitol 
ECM    extracellular matrix  
EM    electron microscopy  
EPS    exopolysaccharides  
GTP/GDP/GMP  guanosine tri-/di-/monophosphate  
h    hours  
HPK   histidine protein kinase 
HTH   helix-turn-helix 
IM    inner membrane  
IPTG    isopropyl β-D-1-thiogalaktopyranoside  
kDa   kilodalton 
LPS    lipopolysaccharides  
min    minutes  
MOPS   3-(N-morpholino) propanesulfonic acid 
OD   optical density 
OM   outer membrane 
PDE    phosphodiesterase 
pGpG   5'- phosphoguanylyl- (3' −> 5')- guanosine 
(p)ppGpp   guanosine 3'-diphosphate 5'-triphosphate  
RNA    ribonucleic acid 
RR   response regulator 
s    seconds  
SD   standard deviation 
SDS-PAGE   sodium dodecyl sulfate polyacrilamide gel electrophoresis  
T4P    type IV pili  
TCSS   two-component systems 
TEMED  N,N,N',N'-Tetramethylethylenediamine 
TLC   thin layer chromatography  
WT    wild type 
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1. Introduction 

1.1. Nucleotide based second messengers 

In order to survive, all organisms need to sense and respond to changes in the 

surrounding environment. In the past years, significant effort has been dedicated to 

understand the mechanisms that bacteria use to adapt to their environments. One of 

the strategies that microorganisms use is based on so-called second messenger 

systems in which the sensing of an environmental signal, i.e. the first messenger, 

results in the production of a small cytoplasmic molecule, i.e. the second messenger, 

which regulates cellular processes involved in adaptation.  

The list of second messengers used by bacteria include guanosine 3‘,5‘-

monophosphate (cGMP), cyclic di-3′,5′-adenosine monophosphate (c-di-AMP), 

adenosine 3’,5′-cyclic monophosphate (cAMP), guanosine-3',5'-bis-pyrophosphate 

((p)ppGpp) as well as cyclic di-3’,5’-guanosine monophosphate (c-di-GMP), which is 

the focus of this study (Figure 1) (Gomelsky, 2011). The two most studied second 

messengers are cAMP and (p)ppGpp.  

 

 

 

cAMP is a universal second messenger that functions in both prokaryotic and 

eukaryotic cells. It is synthesized from ATP by adenylate cyclases and degraded into 

AMP by phosphodiesterases. cAMP is produced by bacterial cells in response to 

carbon starvation and allosterically activates its receptor, the transcription factor called 

catabolite activator protein (CAP), in order to transcriptionally regulate different 

catabolic operons for the use of alternative carbon sources or, in the absence of other 

substrates, switches the central carbon metabolism to slow growth (Harman, 2001, Lee 

et al., 2012b). The number of adenylate cyclase per genome varies between bacterial 

species. Mycobacterium tuberculosis genome contains 17 genes encoding for proteins 

Figure 1. Chemical structures 
of known nucleotide based 
second messenger signaling 
molecules used by bacteria  

Figure was reproduced from 
Shanahan & Strobel, 2012. 
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with adenylate cyclase domains. In contrast, Pseudomonas aeruginosa and 

Myxococcus xanthus have two adenylate cyclases (He & Bauer, 2014, Kimura et al., 

2002, Kimura et al., 2005). Escherichia coli, Corynebacterium glutamicum and 

Streptomyces coelicolor only have one adenylate cyclase (Agarwal et al., 2009). 

(p)ppGpp is produced only by bacteria and chloroplasts. It accumulates upon 

starvation with the initiation of the stringent response, and is produced from GTP or 

GDP by the ribosome-associated protein RelA in response to uncharged tRNA 

molecules in the acceptor site of ribosomes. (p)ppGpp is hydrolysed to GTP/GDP and 

pyrophosphate by SpoT. It was suggested that (p)ppGpp causes a redirection of 

transcription, so that genes important for starvation survival are activated at the cost of 

genes required for growth and proliferation (Magnusson et al., 2005). All bacteria 

contain RelA-SpoT homologues (Tozawa & Nomura, 2011). E. coli and M. xanthus 

possess both of those enzymes, while in Streptococcus equisimilis, C. glutamicum, 

Bacillus subtilis and others, there seems to be only one RelA/SpoT homologue, which 

encodes both synthetic and degradative functions (Sun et al., 2001, Harris et al., 1998). 

 

1.2. c-di-GMP in bacteria 

c-di-GMP is a ubiquitous nucleotide-based second messenger and a global 

regulator of a variety of processes that are typically associated with lifestyle changes in 

response to environmental cues in bacteria. An overall function of c-di-GMP signaling 

is to regulate the transition between motile and sessile bacterial lifestyles. Generally, 

elevated c-di-GMP levels are associated with inhibition of motility, increased adhesion 

and biofilm formation while low levels of c-di-GMP are associated with motile, free-

living cells (Hengge, 2009, Krasteva et al., 2012, Jenal & Malone, 2006, Boyd & 

O'Toole, 2012, Römling et al., 2013). c-di-GMP was first identified in the 1980s as an 

allosteric activator of cellulose synthase, used by Gluconacetobacter xylinus to produce 

an extracellular cellulose matrix (Ross et al., 1987). 

It is now well known that c-di-GMP is produced by enzymes called diguanylate 

cyclases (DGCs) that contain GGDEF domains, and it is degraded by c-di-GMP-

specific phosphodiesterases (PDEs) that contain EAL or HD-GYP domains (Figure 2). 

EAL domain phosphodiesterases degrade the second messenger to its linear form, 

pGpG (Ross et al., 1986) while HD-GYP domain phosphodiesterases fully hydrolyse c-

di-GMP to GMP (Ryan et al., 2006). Recently, two studies described the 

oligoribonuclease Orn as the primary enzyme responsible for pGpG degradation in P. 

aeruginosa (Cohen et al., 2015, Orr et al., 2015). High level of pGpG reduces c-di-GMP 



INTRODUCTION  14 

degradation in cell lysates and inhibits the activity of EAL type PDEs (Cohen et al., 

2015). This result supports the already existing idea that pGpG can function as 

a signalling molecule itself. 

 

 

Figure 2. c-di-GMP structure and metabolism 

c-di-GMP is a nucleotide-based second messenger. Its level in the cells is antagonistically controlled by 
diguanylate cyclases (DGC) that carry GGDEF domains and phosphodiesterases (PDE) that carry EAL or 
HD-GYP domains. Figure was modified from Hengge, 2009. 
 

 

In recent years, genome sequencing allowed to reveal many proteins involved in 

c-di-GMP signaling in the genomes of diverse bacterial species. The number of 

GGDEF and EAL/HD-GYP domain proteins is highly variable and differs from organism 

to organism (Jenal & Malone, 2006). For example, E. coli encodes 29 of them (Weber 

et al., 2006), Clostridium difficile encodes 37 (Bordeleau et al., 2011) and 

P. aeruginosa PA01 encodes 38 (Kulasakara et al., 2006). Some proteins contain both 

GGDEF and EAL domains, but in many of them just one is enzymatically active, with 

the other domain having a regulatory function (Cotter & Stibitz, 2007, Tamayo et al., 

2007).  

Such an abundance of c-di-GMP-metabolizing enzymes, combined with the fact 

that many of them also contain different sensory and regulatory domains, suggests that 

the c-di-GMP signaling network in the cell is precisely regulated in response to 

environmental conditions. 

 

1.2.1. c-di-GMP metabolism 

Diguanylate cyclases 

c-di-GMP is produced from two molecules of GTP by diguanylate cyclases 

(DGCs), enzymes that contain a GGD(E)EF (Gly-Gly-Asp(Glu)-Glu-Phe) motif in the 
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active site (A-site) and substitutions that alter this motif usually abolish the diguanylate 

cyclase activity (Ferreira et al., 2008). The two glycine residues of the GGDEF motif 

are involved in GTP binding. The third amino acid (aspartate/glutamate) is required for 

catalysis and metal ion coordination, while the fourth residue (glutamate) is involved in 

metal ion coordination (Chan et al., 2004). The fifth residue, phenylalanine, is highly 

conserved and also essential for catalysis, but its exact role remains unknown. 

Structural studies of the full-length PleD response regulator from Caulobacter 

crescentus in complex with c-di-GMP allowed proposing a catalytic mechanism for the 

condensation of two GTP molecules into c-di-GMP (Figure 3AB). Structurally, the DGC 

enzyme is a homodimer and consists of two monomers that are in close physical 

contact to form the active site at the interface between the two monomers, and create 

the catallycally active DGC enzyme (Römling et al., 2013, Hengge, 2009) (Figure 3AB). 

The diguanylate cyclase catalyzes the formation of phosphodiester bonds between two 

GTP molecules with the presence of two Mg2+ or two Mn2+ leading to the production of 

c-di-GMP (Römling et al., 2013).  

Most GGDEF domains also contain an allosteric inhibitory site (I-site), defined by 

an RxxD motif (where x indicates any amino acid) and typically located five amino 

acids N-terminal of the GGDEF motif. The I-site allows product inhibition and by this 

limits the concentration of c-di-GMP (Christen et al., 2006).  

 

A.       B. 

                        

 

Figure 3. Crystal structure of PleD form C. crescentus  

(A) DGC dimer. The monomer consists of three domains. Domain D1 (residues 2–140) is shown in red. 
Domain D2 (residues 141–285) is shown in yellow. The catalytic DGC domain (residues 286–454) is 
shown in green. The GGEEF motif is located on the β-hairpin (blue) and constitutes part of the active site 
(A-site) to which a c-di-GMP molecule is bound. Two c-di-GMP molecules are found at the D2/DGC 
interface (I-site). 
(B) Close-up view of the active site. Conserved residues important for protein activity and stability are 
indicated. The GGEEF motif in the active site is marked in red.  
Figure was modified from Chan et al., 2004. 
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PleD is activated upon phosphorylation of the N-terminal receiver domain (Chan 

et al., 2004) (Figure 4). Phosphorylation is an important and widespread mechanism of 

GGDEF domain activation. For example Rrp1 from Borrelia burgdorferi consists of 

REC-GGDEF domains and is not functional in vitro without the REC domain being 

phosphorylated (Ryjenkov et al., 2005). 

 

 

Figure 4. Model of PleD regulation  

Activation and product-inhibition of DGC PleD. Phosphorylation of REC1-REC2 triggers PleD to dimerise 
and activates DGC activity. Binding of dimeric c-di-GMP at the I-site abolishes DGC activity. The catalytic 
DGC domain is indicated in green, REC1 and REC2 domains are indicated in orange, GTP and c-di-GMP 
are indicated in yellow, phosphoryl group is indicated in red. Figure was modified from Chan et al., 2004. 
 
 

Phosphodiesterases 

 
The phosphodiester bond in c-di-GMP is hydrolyzed by specific 

phosphodiesterases (PDEs). c-di-GMP-specific PDE activity is associated with EAL 

and HD-GYP domains. The first step of the reaction (hydrolysis of c-di-GMP into 

pGpG) is performed by EAL type phopshodiesterases, while the second step is 

performed by different enzymes with affinity for pGpG (Römling et al., 2013). The HD-

GYP domain PDEs catalyse the complete hydrolysis of c-di-GMP to 2 GMP (Tamayo et 

al., 2007, Hengge, 2009). PDE reaction depends on the presence of Mg2+ or Mn2+ ions, 

and is inhibited by Ca2+ ions (Christen et al., 2005). 
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1.2.2. Regulation of diguanylate cyclase and phophodiesterase activity 

The activities of DGCs and PDEs are regulated on different levels. In E. coli, the 

majority of the genes encoding GGDEF/EAL domain proteins are transcriptionally 

regulated under the control of the general stress sigma factor σS (Sommerfeldt et al., 

2009). However, the most common mechanism for regulation of enzymatic activity of 

DGCs and PDEs seems to be posttranslational control. Some of these proteins contain 

just GGDEF or EAL domains, but most are present in combination with other domains 

such as PAS, GAF, HAMP, receiver (REC), and helix-turn-helix (HTH) (Tamayo et al., 

2007). Those domains have been described to participate in phosphorylation and DNA 

binding, sense small molecules, light, redox potential, voltage, oxygen, nutrients, 

osmolarity and other signals.  

Among those processes, phosphorylation is a common mechanism regulating 

protein activity.  The signaling proteins composed of GGDEF and/or EAL or HD-GYP 

domains with the REC domain belong to the group of response regulators (RR) of two-

component signal transduction systems (TCSS). Domains involved in c-di-GMP 

metabolism are found in around 5.4% of all bacterial response regulators (Römling et 

al., 2013). This makes them an important component of the two-component signal 

transduction machinery.  

Proteins of two-component systems have important functions in sensing signals 

in bacteria, in the generation of responses, in adaptation and differentiation (Beier and 

Gross, 2006). They regulate many bacterial processes such as virulence, motility, 

secondary metabolite production and cell division (Stock et al., 2000). The number of 

two-component system proteins differs greatly between different bacteria (Stock et al., 

2000). Response regulators are either single-domain proteins consisting only of the 

receiver domain with the conserved aspartate residue, or multi-domain proteins 

containing a receiver domain and an output domain (Stock et al., 2000).  

 Typically, TCS consists of a histidine protein kinase (HPK) and a response 

regulator (RR) that are usually encoded in the same operon. HPKs sense a signal and 

autophosphorylate on the conserved histidine residue using ATP. Then, the phosphoryl 

group is transferred to the conserved aspartate residue in the receiver domain of the 

response regulator, resulting in activation of the response regulator and the generation 

of a response (Figure 5).  
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The presence of multiple GGDEF/EAL/HD-GYP domain enzymes encoded in the 

genomes of many bacterial species and the complex regulation of their activity raises 

a problem of specificity. That is why it is generally believed that c-di-GMP signaling 

may involve local, rather than global, pools of c-di-GMP, which would overcome the 

problem of unwanted cross-talk among individual signaling systems. These local pools 

are thought to be a result of the temporal and spatial separation of the c-di-GMP 

metabolizing enzymes as well as their receptors. Temporal separation would be 

accomplished by activation of gene expression and protein function only under certain 

conditions. Local separation would mean that c-di-GMP control modules would operate 

in physically separated cellular compartments (Römling et al., 2013, Hengge, 2009). 

 

1.2.3. c-di-GMP specific receptors 

While c-di-GMP metabolizing proteins are easy to identify due to the 

characteristic conserved domains, identifying the c-di-GMP specific effectors is much 

more challenging. It is now known that cyclic di-GMP has a variety of cellular receptors. 

They include degenerate GGDEF, HD-GYP and EAL domain proteins that do not have 

catalytic activity (Duerig et al., 2009, Petters et al., 2012, Qi et al., 2011, Newell et al., 

2009, Hengge, 2009, Navarro et al., 2009, Boyd & O'Toole, 2012), transcription factors 

of the TetR, CRP/FNR, NtrC, FixJ/LuxR/CsgD and BldD families (Li & He, 2012, Chin 

et al., 2010, Fazli et al., 2011, Hickman & Harwood, 2008, Srivastava et al., 2011, 

Krasteva et al., 2010, Tschowri et al., 2014), stand-alone PilZ domains as well as PilZ 

domains that are part of multidomain proteins (Amikam & Galperin, 2006, Ryjenkov et 

al., 2006, Christen et al., 2007, Pratt et al., 2007, Ramelot et al., 2007, Merighi et al., 

2007, Wilksch et al., 2011, Tschowri et al., 2014), riboswitches (Sudarsan et al., 2008) 

as well as proteins which do not belong to any of these groups like the PgaCD complex 

Figure 5. Typical organization of the two 
component systems (TCSS) in bacteria  

The typical TCSS is comprised of a single sensor 
kinase and a single response regulator. Signal 
sensing by the input domain causes activation of the 
autokinase domain, which results in phosphorylation 
of a specific histidine residue in the phosphotransfer 
subdomain of the kinase. The phosphoryl group is 
then transferred to a conserved aspartate residue in 
the receiver domain of the cognate response regulator 
protein. Phosphorylation results in modulation of the 
function of the linked output domain. Figure was 
modified from Bretl et al., 2011. 
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involved in poly-β-1,6-N-acetylglucosamine synthesis in E. coli (Steiner et al., 2013). 

Based on this, c-di-GMP can serve as a regulatory molecule at the transcriptional, 

post-transcriptional and post-translational level affecting many different processes in 

the cell (Ryan et al., 2012b, Sondermann et al., 2012). 

 

Proteins with a PilZ domain 

PilZ domain represents the best studied type of c-di-GMP specific receptors. PilZ 

domain-containing proteins were reported to function either as single domains or to be 

linked to other regulatory domains (Römling et al., 2013). The most highly conserved 

residues include the motif RxxxR in the N-terminus of the protein, and a second motif, 

D/NxSxxG, which participate in di-nucleotide binding (Shin et al., 2011) (Figure 6). The 

two described mechanisms of regulation by PilZ domain include direct protein-protein 

interactions and DNA binding (Ryan et al., 2012b).  

    

 

Proteins with degenerated GGDEF, EAL or HD-GYP domains 

Some proteins with GGDEF, EAL or HD-GYP domains carry degenerated motifs, 

meaning that they have lost catalytic activity but maintain the ability to bind c-di-GMP 

and function as effectors. Several examples of such receptors were described in 

P. aeruginosa. In the case of PelD, c-di-GMP binds to the conserved I-site of the 

GGDEF domain (Lee et al., 2007), in the case of LapD, c-di-GMP binds to the EAL 

domain (Newell et al., 2009). According to the Römling et al., no enzymatically inactive 

HD-GYP domains have been identified so far to act as c-di-GMP receptors molecules 

although they are expected to exist (Römling et al., 2013). 

	

	

	

Figure 6. Structure of PilZ domain 
protein PA4608 with bound c-di-
GMP  

Cyclic di-GMP (in stick representation) 
binds as an intercalated, symmetric 
dimer to one side of the β-barrel. N-
terminus containing the RxxxR motif 
wraps around the ligand. Secondary 
structure elements are color-coded 
from N-terminus (blue) to C-terminus 
(red). Figure was reproduced from 
Habazettl et al., 2011. 
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Transcription factors	

In a number of bacterial species like P. aeruginosa (FleQ, BrlR), Vibrio cholerae 

(VpsT), Xanthomonas campestris (Clp), Klebsiella pneumonia (MrkH), Streptomyces 

venezuelae (BldD), Mycobacterium smegmatis (LtmA), Burkholderia cenocepacia 

(Bcam1349) and others – c-di-GMP has been shown to modulate the activity of 

transcription factor (Römling et al., 2013). 

 

Riboswitches 

The group of Breaker discovered that two classes of riboswitches (class I and II) 

can bind c-di-GMP (Sudarsan et al., 2008). Binding of c-di-GMP to these riboswitches 

was shown to exert a regulatory role towards the target mRNA, affecting transcription 

termination or translation (Hengge, 2010). 

 

1.2.4. Processes regulated by c-di-GMP 

The most general function of c-di-GMP is being a key regulator in the transition 

process from a motile and planktonic to a sessile lifestyle of bacteria. This is 

accomplished by regulation a plethora of cellular processes including biofilm formation, 

motility, differentiation, virulence, cell cycle and others. Due to its main function, c-di-

GMP is best studied in terms of its effect on motility and biofilm formation. 

Regulation of motility 

There are numerous ways by which cyclic c-di-GMP influences motility. Its 

targets include flagellar motility, T4P motility as well as gliding motility (Römling et al., 

2013). 

c-di-GMP inhibits flagellar motility in a variety of ways, either at the level of gene 

expression, flagellar assembly or function. In E. coli and Salmonella enterica c-di-GMP 

binds to the receptor protein YcgR, which in turn interacts with the FliG and FliM 

subunits of the flagellum switch complex FliGMN and interferes with flagellar motor 

function (Paul et al., 2010, Boehm et al., 2010). The same is true also for B. subtilis, 

where the homolog of YcgR, YpfA, was found to interfere with flagellar rotation through 

its interaction with the flagellar motor protein MotA (Chen et al., 2012).  

c-di-GMP was found to be also involved in transcriptional regulation of flagellar 

genes via VpsT in V. cholerae (Krasteva et al., 2010).  
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c-di-GMP signaling also controls T4P biogenesis and twitching motility in P. 

aeruginosa. T4P biogenesis requires the GGDEF-EAL domain protein FimX localized 

at one cell pole (Huang et al., 2003). FimX binds c-di-GMP via its degenerate EAL 

domain (Navarro et al., 2009). Studies of the FimX homolog in X. campestris allowed 

proposing molecular mechanisms by which FimX affects type IV pilus biogenesis and 

twitching motility. Upon binding of c-di-GMP, FimX interacts with a degenerated PilZ 

domain protein. PilZ domain protein subsequently interacts with an ATPase PilB, to 

control T4P pilus polymerization (Guzzo et al., 2009) (Figure 7). Additionally, in 

X. campestris the complex of RpfG (HD-GYP domain response regulator) and GGDEF 

domain proteins (XC_0420 and XC_0249) recruits a specific PilZ domain protein that 

interacts with the pilus motor proteins PilU and PiIT controlling motility (Ryan et al., 

2012a, Ryan et al., 2010). 

                           

Figure 7. c-di-GMP dependent regulation of T4P motility in Xanthomonas 

PilZ domain protein XC_3221 mediates interactions between the c-di-GMP binding protein FimX and the 
pilus polymerization ATPase PilB. RpfG in a complex with the diguanylate cyclases XC_0249 and 
XC_0420 recruits the XC_2249 adaptor and interacts with the PilT/PilU ATPases required for pilus 
retraction. Figure was modified from Römling et al., 2013. 

 

 

Regulation of gliding motility by c-di-GMP has been discovered in 

Bdellovibrio bacteriovorus, where one of three active DGCs, DgcA, is important for 

gliding. This type of motility is required for the B. bacteriovorus to exit the exhausted 

prey debris and to move off to regions where new prey can be found (Hobley et al., 

2012).  
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Regulation of biofilm formation 

c-di-GMP regulates many extracellular matrix components contributing to biofilm 

formation, like diverse exopolysaccharides, adhesive pili, adhesins, as well as 

extracellular DNA. Biofilm formation can be controlled by c-di-GMP on the level of 

transcription, posttranscription and posttranslation. 

Synthesis of cellulose in G. xylinus, E. coli and S. typhimurium is regulated by c-

di-GMP. Bacterial cellulose is produced and translocated across the inner membrane 

by a  cellulose synthase BcsA. c-di-GMP directly activates cellulose biosynthesis in 

these bacteria by binding to the PilZ domain of BcsA (Figure 8) (Ross et al., 1987, 

Morgan et al., 2014, Whitney et al., 2012). 

 

 

 

Activation of biosynthesis of Pel and Psl polysaccharides by c-di-GMP has been 

studied mostly in P. aeruginosa. Pel and Psl production is increased in the presence of 

high levels of c-di-GMP, for example upon constitutive activation of the REC-GGDEF 

diguanylate cyclase WspR (Hickman et al., 2005). The NtrC-like transcriptional 

regulator FleQ is a c-di-GMP receptor that, upon binding c-di-GMP, promotes pel and 

psl transcription (Hickman & Harwood, 2008). Biosynthesis of Pel is also regulated by 

c-di-GMP at the posttranslational level by an I-site c-di-GMP receptor encoded in the 

pel operon, PelD, possibly through activation of the associated glycosyl transferases 

(Lee et al., 2007, Whitney et al., 2012). 

 

1.3. Myxococcus xanthus as a model organism 

In this study, we focused on the c-di-GMP signaling pathways in the soil 

bacterium Myxococcus xanthus. M. xanthus is a Gram-negative, rod-shaped 

deltaproteobacterium. If present on a solid surface at a high cell density, M. xanthus 

Figure 8. Schematic representation 
of the E. coli cellulose biosynthesis 
systems  

The E. coli cellulose synthase protein 
BcsA is colored green. GT-2 indicates 
the family of glycosyl transferases. The 
chains of hexagons containing G 
represent 1,4-linked β-d-glucose 
(cellulose). Figure was modified from 
Whitney et al., 2012. 
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cells can self-organize into three morphologically distinct patterns: spreading colonies, 

ripples or fruiting bodies (Konovalova et al., 2010) (Figure 9). Due to its complex 

lifecycle, M. xanthus serves as a model for investigating motility, cell polarity, social 

behaviour and starvation induced development. 

 

 

        

 

Figure 9. Three cellular patterns formed by M. xanthus cells 

Scale bars=1 mm. Figure was reproduced from Konovalova et al., 2010. 

 

 

1.3.1. Developmental program 

M. xanthus undergoes major lifestyle changes in response to nutrient availability 

(Konovalova et al., 2010). If nutrients become limited, cells initiate a developmental 

program that results in the formation of multicellular fruiting bodies inside which the 

rod-shaped motile cells differentiate to spherical spores. Spores germinate in the 

presence of nutrients.  

Fruiting body formation proceeds in distinct morphological stages that are 

separated in time and space. After 4-6 h of starvation, cells change motility behaviour 

and start to aggregate to form translucent mounds (Jelsbak & Søgaard-Andersen, 

1999, Jelsbak & Søgaard-Andersen, 2002). By 24 h the aggregation process is 

complete and cells that have accumulated inside fruiting bodies differentiate to spores 

with spore maturation complete by 72 h. Only 1 to 3% of cells differentiate into spores 

while up to 30% of cells remain outside of the fruiting bodies as so called peripheral 

rods (O'Connor & Zusman, 1991b, O'Connor & Zusman, 1991a). The remaining cells 

undergo cell lysis (Wireman & Dworkin, 1977) (Figure 10). 
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M. xanthus multicellular development is mediated by series of signaling events. 

The first response of starving cells is the stringent response, in which the cell produce 

the second messenger (p)ppGpp in response to elevated levels of uncharged tRNAs. 

The stringent response in M. xanthus, as in other bacteria, is based on the RelA 

(p)ppGpp synthase. The intracellular level of (p)ppGpp is important for the expression 

of many genes involved in development (Singer & Kaiser, 1995, Harris et al., 1998). 

After starvation is sensed and early development genes are upregulated, the cells start 

to form fruiting bodies.  

Fruiting body development depends extensively on intercellular signaling 

between M. xanthus cells. Five intercellular signals (A-, B-, C-, D-, and E-signals) have 

been suggested to be involved in development of M. xanthus. However, only two of 

them, the A- and C-signals, have been characterized in details.  

The A-signal becomes important for development after 2 h. A-signal is mostly 

composed of six amino acids (Trp, Pro, Phe, Tyr, Leu, and Ile) and peptides. The A-

signaling system functions to ensure that a sufficiently large population of starved cells 

is present to make a fruiting body (Shimkets, 1999, Konovalova et al., 2010). C-signal 

becomes important after 6 h of starvation, acts in a threshold dependent manner and 

functions to ensure the correct temporal order of rippling, aggregation and sporulation 

(Konovalova et al., 2010). The intercellular C-signal is a 17 kDa protein (p17), which 

is generated by proteolytic cleavage of the full-length 25 kDa CsgA protein (p25) 

(Lobedanz & Sogaard-Andersen, 2003).  

Sporulation of M. xanthus cells can also be chemically induced by compounds 

such as glycerol, DMSO or ampicillin in vegetatively growing cultures (O'Connor & 

Zusman, 1997). These artificially induced spores have a thinner spore coat and lack 

Figure 10. Schematic 
representation of the M. 
xanthus life cycle 

Various stages are 
described in the main text. 
Figure was reproduced from 
Zusman et al., 2007. 
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some proteins that are found in starvation induced spores (Kottel et al., 1975, Mccleary 

et al., 1991) but as starvation induced spores they will germinate once plated on a rich 

media. 

 

1.3.2. Two motility systems 

The social lifestyle of M. xanthus depends on the ability of cells to display active 

movement. When nutrients are available, cells grow, divide and form colonies in which 

cells at the edge spread outwards in a coordinated fashion using two motility systems: 

T4P dependent motility (also called S or social) and gliding motility (also called A or 

adventurous). These two forms of motility are genetically independent. Gliding motility 

is largely dispensable for fruiting body formation (Hodgkin & Kaiser, 1979) while lack of 

T4P dependent motility causes a delay or even blocks fruiting body formation (Wu et 

al., 1998, Hodgkin & Kaiser, 1979). 

 

Gliding motility 

A-motility (gliding) is favoured on hard and dry surfaces and enables the 

movement of single cells. There are different models proposed for this motility system. 

One model, called the slime gun model, implies that A-motility depends on 

polyelectrolyte gel (slime) actively secreted at the lagging cell pole (Wolgemuth et al., 

2002). In an alternative model, gliding motility is based on motility complexes that are 

distributed along the cell length (Luciano et al., 2011, Sun et al., 2011, Nan et al., 2010, 

Mignot et al., 2007, Nan et al., 2011, Jakobczak et al., 2015). 

 

 

T4P-dependent motility 

T4P-dependent motility, favoured on wet and soft surfaces, occurs when cells 

move in groups. It is comparable to twitching motility of Pseudomonas species and 

depends on T4P (Kaiser, 1979, Wu & Kaiser, 1995). T4P are highly dynamic structures 

undergoing cycles of extension, attachment to the substratum and retraction. 

Retractions generate a force that pulls bacterial cell forward (Merz et al., 2000). In 

M. xanthus 5-10 T4P can be found exclusively at the leading cell pole (Sun et al., 2000, 

Kaiser, 1979).  

The M. xanthus pil locus is composed of 17 genes, 14 of them share similarity 

with their Pseudomonas orthologs and are designated with the same names (Wall & 

Kaiser, 1999) (Figure 11). PilA is the major pilin assembled into filaments. PilB and PilT 
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share homology and have ATPase activity. PilB drives the assembly of PilA subunits 

into T4P and is referred to as the extension motor. PilT is the retraction motor and 

cause the depolymerisation of the pilus during retraction (Jakovljevic et al., 2008). 

Other core members crucial for T4P biogenesis are PilCDMNOPQ, Tgl and TsaP 

(Figure 11). Mutation of any gene described above leads to loss or, in case of pilT, 

significant impairment of T4P-motility (Bulyha et al., 2009, Friedrich et al., 2014, 

Siewering et al., 2014).  

 

 

 

 

 

 

 

 

 

Moreover, additional genes were described, that encode components of the 

regulatory systems for T4P. Both P. aeruginosa and M. xanthus possess the PilR-PilS 

TCS that is involved in the regulation of the pilA gene expression. Similarly 

to P. aeruginosa, pilA transcription in M. xanthus depends on the response regulator 

PilR and is most likely driven by a σ54 promoter. The histidine kinase PilS is a negative 

regulator of pilA expression (Hobbs et al., 1993, Wu & Kaiser, 1997, Ishimoto & Lory, 

1992). 

 

1.3.3. M. xanthus extracellular matrix 

The M. xanthus extracellular matrix (ECM) is composed of 55% carbohydrate and 

45% protein (Behmlander & Dworkin, 1994a). The ECM proteins are tightly associated 

with the exopolysaccharide (EPS), requiring detergent and boiling to remove them 

Figure 11. Genetic map of pil locus in 
M. xanthus and model of the T4P 
machinery 

All the pil genes are clustered at the same 
locus. The genes were named after their 
orthologs in P. aeruginosa. OM, IM stands 
for outer membrane and inner membrane, 
respectively. Genes and proteins are not 
drawn to scale. The color code for the 
proteins is the same as the one used for 
the genes in the genetic map. Figure was 
modified from Friedrich et al., 2014. 
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(Behmlander & Dworkin, 1994b). The function of most of the ECM proteins remains 

unclear. One of them, FibA, is a zinc metalloprotease and the most abundant protein 

associated with the ECM (Curtis et al., 2007). FibA is important for developmental 

progression (Bonner et al., 2006). EPS is comprised of the monosaccharides mannose, 

galactosamine, galactose, glucosamine, N-acetylated-amine sugars, glucose, 

rhamnose and xylose but its macromolecular structure is unknown (Lu et al., 2005).  

In M. xanthus T4P-dependent motility is cell-cell contact-dependent because 

EPS stimulates T4P retraction (Li et al., 2003). Lack of EPS blocks fruiting body 

formation and sporulation (Shimkets, 1986b, Shimkets, 1986a, Yang et al., 2000, 

Chang & Dworkin, 1994). Many mutants with altered EPS accumulation have been 

identified and often these mutants not only have defects in T4P-dependent motility but 

also in development (Yang et al., 2000, Caberoy et al., 2003, Berleman et al., 2011, 

Overgaard et al., 2006, Lancero et al., 2004, Petters et al., 2012, Weimer et al., 1998, 

Dana & Shimkets, 1993, Lancero et al., 2005, Lu et al., 2005, Moak et al., 2015). 

Most mutations causing a defect in EPS accumulation are in the genes encoding 

regulatory proteins. It was shown that the production of EPS in M. xanthus is regulated 

by different genetic loci, such as the dif operon (Yang et al., 2000); pilA, the gene 

encoding the pilus structural protein (Black et al., 2006) and stkA and sglK, encoding 

DnaK homologues (Yang et al., 1998a). Transposon mutagenesis studies revealed two 

genetic regions that are required for M. xanthus EPS accumulation: eps and eas 

regions that carry genes coding for proteins required for the assembly and export of the 

EPS polymer (Lu et al., 2005). M. xanthus genome encodes 70 different 

glycosyltransferases and 47 glycosyl hydrolases, as described in the Carbohydrate 

Active Enzymes (CAzy) database (Lombard et al., 2014) .  

The Dif chemosensory system is essential for EPS synthesis, however, the 

regulatory mechanism remains unknown. The Dif system consists of five proteins: MCP 

(DifA), CheW adaptor protein (DifC), and CheA histidine protein kinase (DifE), CheY 

response regulator (DifD) and CheC phosphatase (DifG) (Yang et al., 1998b) (Figure 

12). DifA, DifC and DifE build the core of the system and stimulate EPS synthesis 

(Yang et al., 1998b). In contrast, DifD and DifG negatively regulate EPS accumulation 

(Yang et al., 1998b, Black & Yang, 2004). It has been proposed that the DifE kinase 

stimulates EPS accumulation by phosphorylation of a yet to be identified response 

regulator (Black & Yang, 2004) while DifD and DifG function synergistically to divert 

phosphates away from DifE-P (Black et al., 2010) (Figure 12).  
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Based on the fact that mutants lacking T4P accumulate reduced amounts of 

EPS, that a ∆pilT mutant, which is hyperpiliated, accumulates increased amounts of 

EPS, and that dif mutations are epistatic to mutations affecting T4P function, it has 

been suggested that T4P serve as a sensor for the Dif pathway (Black et al., 2006). 

Studies by Li and colleagues reported, that the components of EPS such as N-

acetylglucosamine trigger pilus retraction and that T4P are likely to directly bind EPS 

components (Li et al., 2003).  

 

1.3.4. Lipopolysaccharide O-antigen 
 

Another component essential for T4P-dependent motility in M. xanthus is the 

lipopolysaccharide (LPS) O-antigen. LPS consist of a lipid moiety called lipid A, a core 

of approximately 10 monosaccharides, and an O-antigen consisting of repetitive 

subunits of monosaccharide (Caroff & Karibian, 2003) (Figure 13). LPS is attached to 

the cells via the lipid A embedded in the outer membrane, while EPS can be bound to 

the cell surface or released into the environment (free EPS) (Whitfield & Valvano, 

1993). The M. xanthus LPS O-antigen is generally similar to that in other Gram-

negative bacteria. The M. xanthus LPS consists of glucose, mannose, rhamnose, 

arabinose, xylose, galactosamine, 2-keto-3-deoxyoctulosonic acid, 3-O-methylpentose 

and 6-O-methylgalactosamine (Yang et al., 2007). When O-antigen production in M. 

xanthus is interrupted, several distinct colony behaviours are affected. Mutants show 

defects in fruiting body formation and T4P-dependent motility although they still 

produce T4P and EPS (Bowden & Kaplan, 1998).  

 

Figure 12. M. xanthus Dif system

Schematic diagram of the Dif 
signalling pathway. Indicated 
homology of M. xanthus dif locus 
with bacterial chemotaxis proteins. 
Details are described in the text. 
Figure was reproduced from He & 
Bauer, 2014. 
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Figure 13.  Structure of LPS in Gram-negative bacteria  

Hexagon and oblongs represent units of various sugars. Figure was modified from Mahenthiralingam et 
al., 2005. 

 

 

1.3.5. c-di-GMP signaling in M. xanthus 

Prior to this study, there was not much known about c-di-GMP signaling 

pathways in M. xanthus. The only information come from studies on TCS proteins. 272 

genes encoding proteins of TCS were identified in M. xanthus (Shi et al., 2008). They 

have essential functions in regulation of motility and fruiting body formation. They are 

unusually organized: only 29% display the standard paired gene organization, 55% are 

orphan and 16% are in complex gene clusters. The most frequently occurring output 

domains of response regulators are involved in DNA binding and, importantly for this 

study, in c-di-GMP metabolism (Shi et al., 2008). 

 The first GGDEF domain protein studied in M. xanthus was a response regulator 

ActA, part of the act operon. ActA possesses degenerated A-site but intact I-site and 

was suggested to regulate production of the C-signal, a cell surface-associated protein 

required for aggregation of cells into fruiting bodies and sporulation but the connection 

with c-di-GMP was not studied (Gronewold & Kaiser, 2001).  

The first hint that c-di-GMP may be important in the M. xanthus lifecycle came 

from studying the hybrid histidine protein kinase SgmT. SgmT is a partner kinase of the 

orphan DNA binding response regulator DigR (Petters et al., 2012). Together those two 

proteins are essential for regulating the composition of the extracellular matrix.  

SgmT consists of N-terminal GAF domain, kinase and receiver domains, and 

a C-terminal GGDEF domain. SgmT activity is regulated by ligand binding to the GAF 

domain resulting in SgmT activation (Petters et al., 2012). A DigR binding site was 

identified in the promoter of the fibA gene, which encodes an abundant extracellular 

matrix metalloprotease. Based on microarray experiment the authors suggested that 
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SgmT/DigR regulates the expression of genes for secreted proteins and enzymes 

involved in secondary metabolite synthesis (Petters et al., 2012).  

The A-site in GGDEF domain of SgmT is degenerated (GGGVF motif) but the I-

site is intact and binds c-di-GMP in vitro (Figure 14A). c-di-GMP binding to SgmT 

mediates spatial localization of this cytoplasmic histidine kinase, without any obvious 

change in functionality (Petters et al., 2012) (Figure 14B).  

 

A. 

 

B. 

            

 

Figure 14. Model of SgmT/DigR action in regulating extracellular matrix composition 

(A) Domain structure of DmxB protein. Domain annotation was performed using the SMART web tool, 
domains are not drawn to scale. 
(B) SgmT localizes in the c-di-GMP-bound form in clusters in non-polar regions of the cell, presumably 
together with a yet unknown c-di-GMP diguanylate cyclase (DgcX). After the sensing of an unknown signal 
SgmT phosphorylates DigR which activates or represses the transcription of various genes. In the 
absence of DgcX or when the cellular c-di-GMP concentration is low, SgmT in the c-di-GMP-unbound form 
can freely diffuse in the cell. Whether and under what circumstances the cellular localization of SgmT is 
essential, is so far unknown.  
Figure was reproduced from Petters, 2012. 
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1.4. Scope of the study 

M. xanthus is a model organism to study social behaviour, cell-cell 

communication and development in bacteria. c-di-GMP is a second messenger that 

antagonistically control cellular motility and biofilm formation in many bacteria. Although 

many studies have revealed a general role of c-di-GMP in bacterial physiology, its 

metabolism and function in M. xanthus has never been described so far. Based on 

previous data, we hypothesized M. xanthus cells produce c-di-GMP and that c-di-GMP 

may be important for the cellular functions in this bacterium.  

In this study, we investigated the role of c-di-GMP in M. xanthus. We manipulated 

the c-di-GMP level in the cells by heterologous overproduction of DGC and PDE 

enzymes during vegetative growth as well as during starvation and determined the 

effect of high as well as of low c-di-GMP levels on motility and development. 

Additionally, we bioinformatically predicted proteins encoded in M. xanthus genome 

putatively involved in c-di-GMP metabolism and we used molecular biology and 

biochemical methods to investigate their function. Finally, we aimed to experimentally 

identify and characterize c-di-GMP specific effectors in M. xanthus.  
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2. Results 

2.1. M. xanthus accumulates constant level of c-di-GMP during 
vegetative growth and increasing level during starvation  

To determine if M. xanthus cells synthesize c-di-GMP and at which level, we 

quantified c-di-GMP in wild type (WT) DK1622 cells during vegetative growth and 

during starvation, by using a liquid chromatography coupled tandem mass 

spectrometry method (Spangler et al., 2010). For vegetative growth, cells in 

exponential growth phase and in stationary phase were used. For starvation, 

exponentially growing cells were removed from rich medium, transferred to MC7 

buffer and starved in suspension for 48 h. For both experiments, three independent 

cultures were grown in parallel and then analyzed. Next, nucleotides were extracted 

and c-di-GMP level was quantified at indicated time-points. This experiment was 

performed by Dr. Tobias Petters. 

c-di-GMP was detected at the same level throughout the exponential growth 

phase and in stationary phase cells (Figure 15A). As shown in Figure 15A, 

exponentially growing cells had a level of c-di-GMP of 4.4 ± 1.7 pmol/mg protein and 

stationary phase cells a level of 4.2 ± 0.7 pmol/mg protein. These data suggest that 

the level of c-di-GMP is not growth phase regulated in M. xanthus. In contrast, in 

E. coli the level of c-di-GMP increases at the entry into stationary phase and then 

decreases again during stationary phase (Spangler et al., 2010). 

A.       B.

 

Figure 15. c-di-GMP accumulates in vegetative M. xanthus cells and during starvation 

(A) c-di-GMP levels during vegetative growth of DK1622 WT cells in rich medium in suspension 
culture. Levels of c-di-GMP are shown as mean ± standard deviation (SD) calculated from three 
biological replicates. Circles represent growth measured as OD550.  
(B) c-di-GMP levels during starvation in MC7 buffer in suspension of DK1622 WT cells. Levels of c-di-
GMP are shown as mean ± standard deviation (SD) calculated from three biological replicates. 
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During starvation c-di-GMP was detected at all time-points and the level did 

not change significantly from 0 h (6.3 ± 2.36 pmol/mg protein) to 9 h (7.6 ± 0.23 

pmol/mg protein) of starvation but then increased approximately 4-fold to 45.3 ± 

19.0 pmol/mg protein at 48 h (Figure 15B). It should be noted that M. xanthus cells 

neither form fruiting bodies nor sporulate when starved in suspension. However, this 

method was used because c-di-GMP levels in cells starved on a surface are highly 

variable even between technical replicates. Since the level of c-di-GMP does not 

increase significantly in stationary phase cells (Figure 15A), these data suggests 

that the increase in the c-di-GMP level in starving cells is a specific response to 

starvation. 

 

2.2. c-di-GMP level is important for T4P-dependent motility 

To determine if c-di-GMP level is important for growth or motility in M. xanthus, 

we manipulated the cellular level of c-di-GMP in vegetative cells by overproduction 

of a heterologous DGC or a heterologous PDE in WT cells as previously described 

for other bacteria (Thormann et al., 2006, Duerig et al., 2009, Tischler & Camilli, 

2004, Levi et al., 2011). As a DGC we used DgcAWT of C. crescentus (Christen et 

al., 2006)) and as a PDE we used PA5295WT of P. aeruginosa (Kulasakara et al., 

2006). In parallel, we also expressed their active site variants in WT cells: DgcAD164A 

(active site in WT protein: G162GDEF), PA5295E328A (active site in WT protein: 

E328AL). All four proteins were C-terminally fused to the StrepII-tag to enable their 

detection by immunoblotting. This experiment was performed by Dr. Tobias Petters. 

We observed that in exponentially growing cells, DgcAD164A accumulated at 

a significantly higher level than DgcAWT whereas PA5295WT and PA5295E328A 

accumulated at similar levels (Figure 16A). The c-di-GMP level in exponential 

DgcAWT expressing cells was ~7-fold higher than in WT cells (60.4 ± 29.1 pmol/mg 

protein and 8.7 ± 2.1 pmol/mg protein, respectively; p < 0.001 Student’s T-test) and 

the c-di-GMP level in PA5295WT expressing cells was ~2-fold lower than in WT cells 

(4.9 ± 1.6 pmol/mg protein and 8.7 ± 2.1 pmol/mg protein, respectively; p < 0.05 

Student’s T-test) (Figure 16B). Importantly, the c-di-GMP level in DgcAD164A or 

PA5295E328A expressing cells (8.5 ± 2.4 and 7.7 ± 0.3 pmol/mg protein, respectively) 

was not significantly different from that in WT cells (p > 0.2 Student’s T-test). Cells 

expressing DgcA, DgcAD164A, PA5295 or PA5295E328A had the same growth rate as 

WT in suspension culture (data not shown). 
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A.      B. 

                  

 

Figure 16. c-di-GMP level in M. xanthus vegetative cells can be manipulated  

(A) Immunoblot detection of StrepII-tagged DgcA and PA5295 and their active site variants. Total 
protein was isolated from exponentially growing cells expressing the indicated proteins. Total protein 
from the same number of cells was loaded per lane and blots probed with streptactin. DgcAWT and 
PA5295WT have a calculated molecular mass of 26.8 kDa and 63.6 kDa, respectively. 
(B) c-di-GMP level in exponentially growing cells expressing the indicated proteins. The levels of c-di-
GMP are shown as mean ± SD from six (WT as well as DgcAWT and PA5295WT expressing cells) or 
three (DgcAD164A and PA5295E328A expressing cells) biological replicates. * p < 0.05 in a Students’ T-
test, ** p < 0.001 in a Students’ T-test. 

 

On 1.5% agar, which favours gliding motility, WT strain displayed single cells 

and slime trails characteristic of gliding motility at the edge of the colony, whereas 

the gliding deficient control strain DK1217 did not (Figure 17). All four strains 

expressing DgcA or PA5295 variants displayed single cells and slime trails at the 

colony edges as WT and had the same increase in colony diameter on 1.5% agar as 

WT, suggesting that level of c-di-GMP is not important for gliding motility. This 

experiment was performed by Dr. Tobias Petters. 

 

 

Figure 17. c-di-GMP level is not important for gliding motility 

Gliding motility was analyzed on 1.5% agar. DK1217 is deficient in gliding motility and was used as 
negative control. Scale bar 50 µm. 
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On 0.5% agar, which favours T4P-dependent motility, WT strain formed the 

long flares characteristic of T4P-dependent motility whereas the control strain 

DK1300, which is deficient in T4P-dependent motility, did not (Figure 18). The 

strains expressing DgcAWT or PA5295WT had reduced T4P-dependent motility as 

quantified by the increase in colony diameter and the length of the flares at the 

colony edges, whereas the two strains containing the active site variants had WT 

T4P-dependent motility. This experiment was performed by Dr. Tobias Petters. We 

conclude that increased as well as a decreased level of c-di-GMP interferes with 

T4P-dependent motility. 

 

 
 

Figure 18. c-di-GMP level is important for T4P-dependent motility  

T4P-dependent motility was analyzed on 0.5% agar. DK1300 is deficient in T4P-dependent motility and 
was used as negative control. T4P-dependent motility was quantified by the increase in colony 
diameter; numbers indicate the increase in colony diameter in mm ± SD from three biological replicates 
after 24 h; * p < 0.05 in a Students’ T-test. Scale bars 1 mm (upper row) and 500 µm (lower row). 
 

 

2.3. c-di-GMP regulates T4P formation and pilA transcription 

T4P-dependent motility in M. xanthus depends on T4P formation. We used 

transmission electron microscopy to determine whether the reduced T4P-dependent 

motility in strains expressing DgcAWT and PA5295WT was due to the lack or reduced 

functionality of assembled T4P. WT cells assembled a mean of 2.1 T4P per cell in 

a unipolar pattern whereas the ∆pilA control strain, which lacks the pilin subunit of 

T4P, did not assemble T4P (Figure 19). PA5295WT expressing cells assembled T4P 

at WT levels (mean of 1.7 T4P per cell) in a unipolar pattern whereas DgcAWT 

expressing cells were strongly reduced in assembled T4P with less than one T4P 

per cell (mean of 0.1 T4P per cell) (Figure 19).  
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Figure 19. c-di-GMP level is important for T4P formation  

Transmission electron microscopy of exponentially growing cells expressing the indicated proteins. 
Cells were transferred to a grid, stained with 2% (w/v) uranyl acetate and visualized by transmission 
electron microscopy. Scale bars, 100nm. The box plots show the number of T4P per cell for at least 20 
cells. Boxes indicate the 25th and 75th percentile, the green line the mean, whiskers the 10th and 90th 
percentile, and dots outliers. 
 

 

To corroborate these observations, the total amount of cellular PilA as well as 

PilA assembled into T4P were quantified. For this purpose, T4P were sheared-off 

form the cell surface and analysed using immunoblot. In total cell extracts, the 

amount of PilA in WT, PA5295WT, DgcAD164A and PA5295E328A expressing cells was 

similar, whereas DgcAWT expressing cells accumulated PilA at a significantly 

reduced level (Figure 20A). As expected, PilA was not detected in the ∆pilA mutant. 

In the sheared T4P fraction, WT, PA5295WT, DgcAD164A or PA5295E328A expressing 

cells contained the same amount of PilA whereas PilA was not detectable in the 

sheared T4P fraction from ∆pilA and DgcAWT expressing cells (Figure 20A). This 

confirmed the data obtained from electron microscopy experiment and allowed us to 

conclude that DgcAWT expressing cells accumulate PilA and assemble T4P at 

a significantly reduced level.  

To further understand the mechanism underlying the reduced accumulation of 

PilA in DgcAWT expressing cells, we used qRT-PCR to determine the level of pilA 

transcription in WT, DgcAWT and in PA5295WT expressing cells. As shown in Figure 

20B, the level of pilA mRNA in DgcAWT expressing cells was approximately 2.5-fold 

lower than in WT and slightly reduced in PA5295WT expressing cells suggesting that 

increased c-di-GMP levels inhibit pilA transcription. 
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A.           B. 

       

 

Figure 20. c-di-GMP level is important for T4P formation and pilA transcription  

(A) Immunoblot detection of PilA in total cell extract and in sheared T4P. In the upper and lower blots, 
total protein was isolated from the indicated strains grown on 1% CTT/1.5% agar plates. In the middle 
blot, T4P were sheared off from the cells and concentrated by MgCl2 precipitation. In all three blots, 
protein from the same number of cells was loaded per lane. The upper and middle blots were probed 
with anti-PilA antibodies. The lower blot was probed against PilC, which is important for T4P assembly 
and was used as a loading control. PilA and PilC have a calculated molecular mass of 23.4 kDa and 
45.2 kDa respectively. 
(B) qRT-PCR analysis of pilA expression. RNA was isolated from in the indicated strains grown on 1% 
CTT/1.5% agar plates. pilA transcript level is shown as mean ± SD from two biological replicates each 
of them with three technical replicates, relative to WT. * p < 0.05 in a Students’ T-test, ** p < 0.001 in 
a Students’ T-test. 
 
 
 

 

Nevertheless, DgcAWT expressing cells were still partially motile what could be 

due to c-di-GMP affecting T4P retraction process. In order to test this hypothesis, 

we expressed DgcAWT and DgcAD164A in a ∆pilT background strain. PilT is the 

ATPase responsible for T4P retraction. The ∆pilT mutant has a strong motility defect 

and is hyperpiliated (Black et al., 2006, Wu et al., 1997), (Figure 21A,B). DgcAWT 

expressed in the ∆pilT strain caused stronger motility defect and less PilA than the 

background ∆pilT strain in both total cell extract and sheared-off fraction. 

Nevertheless, ∆pilT expressing DgcAWT strain still assembled T4P on the cell 

surface (Figure 21B). Thus, high level of c-di-GMP does not affect T4P retraction, 

but pilA gene transcription. 
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A. 

 
B. 

 

 

2.4. c-di-GMP regulates cell-cell interactions 

T4P-dependent motility in M. xanthus also depends on EPS 

(exopolysaccharide) accumulation. Therefore, we determined the EPS accumulation 

in the strains expressing DgcA or PA5295 variants by using a colorimetric assay. 

Cells were grown in rich medium in liquid culture or on solid medium (0.5% agar) 

and trypan blue binding was determined. Trypan blue is a dye capable of binding to 

EPS produced by M. xanthus cells (Dana & Shimkets, 1993). Under both conditions, 

no significant differences in EPS accumulation were observed for these four strains 

compared to WT (Figure 22A). In contrast, the negative control strain with 

a mutation in the difE gene, which encodes a component of the Dif chemosensory 

system that is important for EPS accumulation (Yang et al., 2000), was strongly 

reduced in EPS accumulation under both conditions.  

Because assembled T4P have been suggested to function upstream of the Dif 

chemosensory system to stimulate EPS accumulation (Black et al., 2006), we also 

determined EPS accumulation in the ∆pilA mutant. As expected, this mutant also 

displayed strongly reduced EPS accumulation under both conditions (Figure 22A). It 

is then surprising and important to notice that although in both ∆pilA and DgcAWT 

mutants T4P are undetectable, those strains dramatically differ in terms of EPS 

accumulation (Figure 22A), which suggest that simply lack of T4P is not the only 

defect in DgcAWT expressing cells. It is possible that high level of c-di-GMP 

stimulates EPS accumulation but this effect is nivelated by the lack of a T4P in 

DgcAWT expressing cells resulting in WT-like EPS accumulation. 

Figure 21. c-di-GMP level does 
not affect PilT activity and T4P 
retractions  

(A) T4P-dependent motility was 
analyzed on 0.5% agar after 24 h. 
Scale bars 500 µm. 
(B) Immunoblot detection of PilA 
in total cell extract and in sheared 
T4P. Experiment was performed 
as described in Figure 20A. 
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A.            B. 

             

Figure 22. c-di-GMP level does not regulate EPS accumulation but is important for cell-cell 
interactions 

(A) Quantification of EPS accumulation. Exponentially growing WT, difE or WT cells expressing the 
indicated proteins were assayed for EPS accumulation using a colorimetric assay. The percentage of 
trypan blue bound by a strain is indicated relative to trypan blue bound be WT (100%). Levels of trypan 
blue binding are shown as mean ± SD from three biological replicates. * p < 0.05 in a Students’ T-test. 
For the plate-based assay, aliquots of 20 µl cell suspensions at 7 × 109 cells/ml were spotted on 0.5% 
agar supplemented with 0.5% CTT and 20 µg/ml trypan blue and incubated at 32 °C for 24 h. 
(B) Cell agglutination assay. Agglutination was monitored by measuring the decrease in absorbance at 
550 nm for a suspension of cells in agglutination buffer. The relative absorbance was calculated by 
dividing the absorbance measured at each time point by the initial absorbance for each strain. The 
graphs show data from one representative experiment. 
 

 
 

M. xanthus cells agglutinate in the presence of the divalent cations Mg2+ and 

Ca2+ (Shimkets, 1986a). Agglutination depends on T4P (Shimkets, 1986a, Wu & 

Kaiser, 1997) and EPS (Arnold & Shimkets, 1988). In order to further examine the 

cell surface properties of the strains with altered levels of c-di-GMP, we determined 

their agglutination properties. As previously reported, WT cells started to agglutinate 

shortly after addition of Mg2+ and Ca2+, but difE and ∆pilA mutants did not (Figure 

22B). The DgcWT-expressing strain as well as the PA5295WT-expressing strain 

showed delayed agglutination compared to WT. In agreement with the observation 

that the DgcWT-expressing strain is reduced in PilA and thus in T4P assembly, this 

strain had a more severe defect than the PA5295WT-expressing strain. Importantly, 

the DgcAD164A and PA5295E328A expressing strains agglutinated similarly to WT 

(Figure 22B).  

 Together, these data suggest that c-di-GMP has a role in T4P-dependent 

motility in M. xanthus. On the one hand, the defect in T4P-dependent motility in the 

DgcAWT expressing strain is caused by reduced pilA expression resulting in reduced 

PilA accumulation and reduced T4P assembly. On the other hand, our data suggest 

that the defect in T4P-dependent motility in the PA5295WT expressing strain is likely 

not due to a difference in the level of assembled T4P or in the level of EPS 
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accumulation. Because cell-cell cohesion is reduced among cells of the PA5295WT 

expressing strain, we suggest that reduced c-di-GMP level results in changes in cell 

surface properties that are neither reflected in the level of assembled T4P nor in the 

level of EPS accumulation. Moreover, we suggest that these changes in cell surface 

properties negatively affect T4P-dependent motility. 

 

2.5. c-di-GMP level is important for fruiting body formation and 
sporulation 

To determine if c-di-GMP level is important for development, we used the 

strains that express the heterologous DGC, PDE and their active site variants in WT 

cells, since we previously showed that expression of DgcAWT and PA5295WT causes 

a significant increase and decrease respectively in the c-di-GMP level during 

vegetative growth (whereas the two active site variants do not affect the c-di-GMP 

level). During starvation, c-di-GMP level was significantly increased up to 36h in 

cells expressing DgcAWT and significantly decreased in cells expressing PA5295WT 

compared to WT cells (Figure 23A). This experiment was performed by Dr. Tobias 

Petters. 

 

 

To assess the importance of the c-di-GMP level during fruiting body formation 

and sporulation, strains expressing DgcA or PA5295 variants were exposed to 

starvation under two different conditions (TPM starvation agar and MC7 buffer 

submerged cultures) (Figure 24B). Under both conditions, WT cells aggregated to 

form nascent fruiting bodies after 24 h and had formed darkened spore-filled fruiting 

bodies after 120 h. Strains expressing DgcAWT, DgcAD164A or PA5295E328A behaved 

similarly to WT. In contrast, PA5295WT expressing cells displayed delayed fruiting 

body formation on TPM-agar and did not form fruiting bodies in submerged culture 

even after 120 h. Moreover, sporulation in this strain was strongly reduced. We 

Figure 23. c-di-GMP level in M. xanthus
can be antagonistically manipulated 
during starvation  

Level of c-di-GMP in cells expressing the 
indicated proteins during starvation in 
suspension for the indicated periods of time. 
Level of c-di-GMP is shown as mean ± SD 
from three biological replicates. At indicated 
time points, the c-di-GMP levels in cells 
expressing DgcAWT or PA5295WT are 
significantly different from the level in WT 
cells. (*) indicates p < 0.05 in a Students’ T-
test. 
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conclude that decreased level of c-di-GMP interfere with fruiting body formation and 

reduces sporulation whereas increased level of c-di-GMP does not affect these two 

processes. This experiment was performed by Dr. Tobias Petters. 

 

   

Figure 24. c-di-GMP level is important for fruiting body formation and sporulation 

Fruiting body formation was assayed under two different conditions as indicated. Numbers after 120 h 
of starvation in submerged culture indicate heat- and sonication resistant spores formed relative to WT. 
fruA is deficient in fruiting body formation and strongly reduced in sporulation and was used as 
a negative control. Scale bars: TPM agar 500 µm; submerged culture 100 µm. 
 

 

To investigate if sporulation per se is affected in strains with altered c-di-GMP 

level, we tested glycerol-induced sporulation of those strains. It is known that after 

adding 0.5 M glycerol to an exponentially growing culture WT cells differentiate into 

spores (Müller et al., 2010). By using this assay, we could not observe any 

difference when comparing WT cells and strains expressing DgcA and PA5295 

variants. All the strains formed heat and sonication resistant spores (Figure 25). This 

result allowed us to hypothesize that c-di-GMP is essential for proper aggregation 

during initial stages of starvation induced development, and not for the sporulation 

process during the later stages of development. This experiment was performed by 

Dr. Tobias Petters. 
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Figure 25. c-di-GMP level is not important for glycerol induced sporulation 

Cell morphology 4 h after adding 0.5 M glycerol. Numbers represent the % of heat- and sonication-
resistant spores relatively to the initial number of cells. 

 
 

 

2.6. M. xanthus genome encodes proteins containing GGDEF, EAL and 
HD-GYP domains 

Petters et al. identified in M. xanthus genome 24 genes encoding proteins 

containing either a GGDEF, EAL or HD-GYP domain (Petters et al., 2012). 17 

proteins contain a GGDEF domain, two proteins an EAL domain, and five proteins 

an HD-GYP domain (Figure 26). Proteins that contain a GGDEF as well as an EAL 

domain have been identified in many bacteria; however, among the 24 proteins 

identified in M. xanthus, none contain more than a single GGDEF, EAL or HD-GYP 

domain. With the exception of the two proteins containing an EAL domain, all 24 

proteins contain additional domains that are typically involved in signal sensing and 

signal transduction in bacteria (Figure 26). Only two of the 24 proteins are predicted 

to be membrane proteins (MXAN3705 and MXAN2061) suggesting that most of 

these proteins are not directly sensing extracellular signals. 

Based on the conservation of amino acid residues important for catalytic 

activity, 11 of the 17 GGDEF domain-containing proteins are predicted to have DGC 

activity (Figure 26). Among the remaining six DGCs predicted to be catalytically 

inactive, four contain residues for c-di-GMP binding and may function as c-di-GMP 

receptors. The two EAL domain proteins and four of the HD-GYP domain proteins 

contain all the residues important for catalytic activity while the remaining protein 

(MXAN2807) lacks several of these conserved residues (Figure 26). This analysis 

was performed by Dr. Tobias Petters. 
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Figure 26. Domain organization of M. xanthus proteins containing a GGDEF, EAL or HD-GYP 
domain  

Locus tags and protein names are listed on the left. Domain composition is shown on the left. See the 
legend at the bottom of the figure for the annotation of domains. Domains are not drawn to scale. 
Domain annotation was performed using the SMART web tool (Letunic et al., 2015). For GGDEF 
domains, the GGDEF domain of PleD from C. crescentus is used as a reference for residues important 
for catalytic activity and allosteric inhibition with their function listed (Wassmann et al., 2007, Vorobiev 
et al., 2012), for EAL domains, the EAL domain of YkuI from B. subtilis is used as a reference for 
important residues and with their function indicated (Minasov et al., 2009, Rao et al., 2008), and for 
HD-GYP domains, the HD-GYP domain of PmGH from Persephonella marina EX-H is used as 
a reference for important residues and with their function indicated (Bellini et al., 2014, Lovering et al., 
2011). For M. xanthus proteins, the corresponding amino acid residues are indicated in black if 
conserved or replaced by a conservative substitution and in pink for non-conserved residues. 
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The 24 M. xanthus proteins containing a GGDEF, EAL or HD-GYP domain are 

highly conserved in closely related fruiting Myxobacteria (M. fulvus, M. stipitatus, 

Corallococcus coralloides and Stigmatella aurantiaca). However, they are neither 

highly conserved in four isolates of the non-fruiting myxobacterium 

Anaeromyxobacter dehalogenans nor in the more distantly related fruiting 

Myxobacteria Sorangium cellulosum and Haliangium ochraceum (Figure 27). This 

analysis was performed by Dr. Kristin Wuichet. 

 

 

 

2.7. Identification of GGDEF, EAL and HD-GYP domain proteins 
important for T4P-dependent motility and development 

To test whether any of the 24 proteins containing a GGDEF, EAL or HD-GYP 

domain have a function in motility or fruiting body formation, we systematically 

generated in-frame deletion mutations in 23 of the 24 genes. For one of the genes 

(MXAN3705), we were not able to generate a deletion mutant and, therefore an 

insertion mutant was generated (Figure 28). 

Figure 27. Conservation of M. xanthus
proteins with a GGDEF and EAL/HD-
GYP domain in Myxobacteria 

The genomic distribution of M. xanthus 
proteins containing a GGDEF, EAL or 
HD-GYP domain in other Myxobacteria in 
sequenced myxobacterial genomes. The 
phylogenetic tree was generated from 
16S rRNA sequences. Abbreviations in 
phylogenetic tree: Mx, M. xanthus 
DK1622; Mf, M. fulvus HW-1; Ms, M. 
stipitatus DSM 14675, Cc, Corallococcus 
coralloides DSM 2259; Sa, Stigmatella 
aurantiaca DW 3/4-1; Af, 
Anaeromyxobacter sp Fw109-5; Ak, 
Anaeromyxobacter sp K; Ad1, 
A.dehalogenans 2CP-1; Adc, 
A.dehalogenans 2CP-C; Sc, Sorangium 
cellulosum So ce 56; Ho, Haliangium 
ochraceum DSM 14365. 
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Figure 28. Mutagenesis of M. xanthus c-di-GMP related genes 

Gliding and T4P-dependent motility were assessed as described in Figure 17 and Figure 18. Scale 
bars: T4P-dependent motility 500 µm, gliding motility 50 µm. Development was assessed as described 
in Figure 24. Numbers after 120 h of starvation in submerged culture indicate heat- and sonication 
resistant spores formed relative to WT (100%). Scale bars: TPM agar 500 µm, submerged culture 100 
µm.  
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Mutation of 21 of the 24 genes did not affect growth, gliding motility or T4P-

dependent motility (Figure 28). We did not identify any mutant with a defect in 

gliding motility, which supports our hypothesis that this type of motility is not 

regulated by c-di-GMP.  

Interestingly, we identified three mutants with defects in T4P-dependent 

motility. As previously reported, lack of the cytoplasmic hybrid histidine protein 

kinase SgmT, which contains a C-terminal GGDEF domain that binds c-di-GMP but 

is catalytically inactive, causes strong defects in T4P-dependent motility (Petters et 

al., 2012). MXAN3705, which we have named dmxA (diguanylate cyclase from M. 

xanthus A), encodes a predicted integral membrane protein with a C-terminal 

GGDEF domain that is predicted to be catalytically active and to bind c-di-GMP 

(Figure 27). Mutation of dmxA caused a reduction in T4P-dependent motility with the 

formation of shorter flares than in WT (Figure 28). MXAN4445, which we have 

named TmoK (T4P-motility kinase) encodes a predicted cytoplasmic hybrid histidine 

protein kinase with a C-terminal GGDEF domain, which lacks residues important for 

catalytic activity and c-di-GMP binding. ∆tmoK mutation caused a subtle defect in 

T4P-dependent motility with the formation of flares of similar length as in WT but not 

so well defined and separated (Figure 28).  

To investigate the function of those 24 proteins in fruiting body formation and 

sporulation, we tested the strains with single in-frame deletions or an insertion 

mutation in the case of dmxA for development under two different conditions: TPM 

agar and submerged culture in MC7 buffer. Single mutations in 20 of the 24 genes 

did not affect fruiting body formation or sporulation (Figure 28). These 20 genes 

included actA, which has been suggested to be important for development 

(Gronewold & Kaiser, 2001) and dmxA. To generate the in-frame deletion mutant of 

actA, we reannotated actA taking into account the GC content in the third position of 

codons, which is high in M. xanthus open reading frames due to the high GC 

content of the genome, and by comparisons to orthologous genes (Heering, 2013). 

From these analyses, we suggest that the originally proposed start codon of actA is 

incorrect and instead the start codon maps 123 bp downstream. With this re-

annotation, the original ∆actA mutation extends into the promoter region of the act 

operon. actA is the first gene of this operon and located upstream of the actB gene, 

which codes for a NtrC-like transcriptional regulator that is important for 

development (Giglio et al., 2011, Gronewold & Kaiser, 2001). Because the original 

∆actA mutant phenocopies a ∆actB mutant (Gronewold & Kaiser, 2001), we 

speculate that the developmental defects observed for the original ∆actA mutant are 

caused by a polar effect on actB (Heering, 2013). We conclude that neither DmxA 
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nor ActA are required for development. As previously reported, lack of SgmT caused 

defects in fruiting body formation and sporulation and the ∆sgmT mutant did not 

form fruiting bodies and did not sporulate under any of the conditions tested (Petters 

et al., 2012). Lack of TmoK caused delayed aggregation and reduced sporulation in 

submerged culture while aggregation was normal on TPM agar (Figure 28). 

Mutations in two genes caused developmental defects without affecting 

growth or motility in vegetative cells. Those genes encode for the proteins: 

MXAN3735, henceforth DmxB (diguanylate cyclase from M. xanthus B) and 

MXAN2061, henceforth PmxA (phosphodiesterase from M. xanthus A) (Figure 28). 

Importantly, we were able to complement both motility and developmental 

defects in all of the mutants by ectopic expression of the relevant WT gene from its 

native promoter on a plasmid integrated at the Mx8 attB site (Figure 29A,B and 

(Petters et al., 2012)). We concluded that among the 24 genes analyzed, one codes 

for proteins that is important only for T4P-dependent motility (DmxA), two code for 

proteins that are important for both T4P-dependent motility and development 

(SgmT, TmoK), and two code for proteins that are important only for development 

(DmxB, PmxA). 

A.           B. 

                                

Figure 29. Defects in c-di-GMP related gene mutants can be complemented 

(A) Complementation of mutants affected in T4P-motility. Gliding and T4P-motility were assessed as 
described in Figure 17 and Figure 18. Scale bars: T4P-dependent motility 500 µm, gliding 50 µm. 
(B) Complementation of mutants affected in development. Development was assayed as described in 
Figure 24. Numbers after 120 h of starvation in submerged culture indicate heat- and sonication 
resistant spores formed relative to WT. Scale bars, TPM agar 500 µm, submerged culture 100 µm. 
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2.8. DmxA has enzymatic activity and binds c-di-GMP in vitro 

In order to determine if the proteins regulating T4P-motility are actively 

involved in c-di-GMP metabolism, we tested SgmT, DmxA and TmoK for enzymatic 

activity. For this purpose, we overexpressed His6-tagged full-length or truncated 

variants of these proteins (Figure 30) in E. coli and purified them as soluble proteins. 

As positive and negative controls for enzyme activity, we purified full-length His6-

tagged DgcAWT and SgmT, which we previously predicted not to have DGC activity 

(Petters et al., 2012).  

DgcAWT as well as DmxA223-722 produced c-di-GMP when incubated with [α-
32P]-GTP as detected after separation of nucleotides by thin layer chromatography 

(Figure 30). TmoK654-1109 and SgmT did not detectably produce c-di-GMP (Figure 

30). DGCs function as dimers with two juxtaposed GGDEF domains forming the 

active site (Chan et al., 2004). In PleD of C. crescentus dimer formation is mediated 

by the two receiver domains that are located N-terminal to the GGDEF domain (Paul 

et al., 2007). For that reason, the truncated TmoK variant analyzed in vitro also 

contained the two receiver domains N-terminal to the GGDEF domain. Although it 

cannot be ruled out that TmoK654-1109 may not form a dimer under the conditions of 

the DGC assay, the observation that the GGDEF domain lack several residues 

important for DGC activity (Figure 26) taken together with the in vitro data suggest 

that TmoK does not have DGC activity. 

 

Figure 30. In vitro assay for DGC activity 

DGC in vitro assay of DmxA and TmoK variants. The indicated DmxA and TmoK variants were 
incubated with [α-32P]-GTP for the indicated periods of time followed by separation of nucleotides by 
thin layer chromatography. Full-length DgcAWT and SgmT were used as positive and negative controls, 
respectively. Domain architectures are shown as SMART images as in Figure 26 with the red bars 
indicating the part of each protein used in the assay. GTP and c-di-GMP are indicated. The 
intermediate product indicated was described as a product formed during the DGC-dependent 
synthesis of c-di-GMP (Bharati et al., 2012). 
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To test whether DmxA or TmoK bind c-di-GMP we used a DraCALA 

(Differential Radial Capillary Action of Ligand Assay) with [α-32P]-labeled c-di-GMP 

generated in an enzymatic reaction by mixing purified DgcA from C. crescentus with 

[α-32P]-labeled GTP as described (Sultan et al., 2011) and using SgmT as a positive 

control for c-di-GMP binding (Petters et al., 2012). DRaCALA allows detection of 

specific interactions between ligands and their cognate binding proteins. When 

a mixture of protein and radiolabeled ligand is spotted onto a nitrocellulose 

membrane, protein and bound ligand are immobilized at the site of contact while 

free ligand is mobilized by capillary action with the liquid phase (Roelofs et al., 

2011).  

Purified SgmT incubated with with radiolabeled c-di-GMP and spotted on 

nitrocellulose membrane showed an intense signal in the middle of the spotting area 

suggesting binding of radiolabeled c-di-GMP (Figure 31). This is in agreement with 

results published by (Petters et al., 2012). The same was true for DmxA223-722 (Figure 

31). For both proteins binding could be competed by non-labeled c-di-GMP 

indicating specific interaction. In contrast, purified TmoK654-1109 showed only 

background signal, suggesting that this protein does not bind c-di-GMP in vitro 

(Figure 31). These results are in agreement with the predictions from sequence 

analyses (Figure 26). 

 

 

 

Figure 31. In vitro assays for c-di-GMP binding 

DRaCALA assay to detect specific c-di-GMP binding by purified proteins. Full-length SgmT or the 
DmxA and TmoK variants described in Figure 30 were incubated with [α-32P]-labeled c-di-GMP with or 
without unlabelled c-di-GMP as a competitor. 
 
 

2.9. Lack of SgmT and DmxA causes an increase in the c-di-GMP level 
in vegetative M. xanthus cells 

To test if lack of DmxA, TmoK and SgmT involves changes in c-di-GMP level, 

the c-di-GMP level was determined in dmxA, ∆tmoK and ∆sgmT mutants. 

Unexpectedly, dmxA and ∆sgmT mutants had slightly (approximately 1.5 fold) but 



RESULTS  51 

significantly higher c-di-GMP levels than WT in exponentially growing cells whereas 

∆tmoK mutant had c-di-GMP level similar to that of WT (Figure 32). 

 

 

 

To understand the mechanism underlying the reduced T4P-dependent motility 

in the dmxA mutant and the subtle defect in T4P-dependent motility in the ∆tmoK 

mutant, T4P formation and EPS accumulation were quantified in these two mutants. 

The dmxA mutant assembled T4P similarly to WT (Figure 33A) and accumulated 

~4-fold more EPS than WT in suspension cultures as well as on solid medium 

(Figure 34A). The ∆tmoK mutant also assembled T4P similarly to WT (Figure 33A) 

and accumulated ~3-fold more EPS than WT in suspension cultures as well as on 

solid medium (Figure 34A). As previously reported, the ∆sgmT mutant assembled 

slightly more T4P than WT and also accumulated ~3-fold more EPS than WT in 

suspension cultures as well as on solid medium (Figure 33A, Figure 34A; (Petters et 

al., 2012). In support of these data, we observed that all three mutants assembled 

the same total level of PilA as WT; however, the ∆sgmT mutant had slightly more 

PilA in the sheared T4P fraction (Figure 33B).  

 

Figure 32. Lack of SgmT and DmxA 
causes an increase in the c-di-GMP level 
in vegetative cells 

c-di-GMP level in exponentially growing 
cells of the indicated mutants. Levels of c-di-
GMP are shown as mean ± SD from three 
biological replicates. * p < 0.05 in 
a Students’ T-test, ** p < 0.001 in 
a Students’ T-test. 
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Figure 33. DmxA, TmoK and SgmT are not required for T4P formation and PilA accumulation 

(A) T4P formation by exponentially growing cells of the indicated mutants. The experiment was 
performed as described for Figure 19. Note that data for WT and ∆pilA mutant are the same as in 
Figure 19. 
(B) Immunoblot detection of PilA in total cell extract and in sheared T4P. The experiment was 
performed as described for Figure 20A.  

 
 
 

Moreover, all three mutants exhibited differences in agglutination. ∆sgmT 

mutant displayed delayed agglutination and dmxA and the ∆tmoK mutants displayed 

slightly faster agglutination when compared to WT (Figure 34B). 

 

          

Figure 34. DmxA, TmoK and SgmT are involved in cell-cell interactions and EPS accumulation 

(A) Quantification of EPS accumulation. Strains were analyzed as described for Figure 22A. The 
percentage of trypan blue bound by a strain is indicated relative to WT (100%). Levels of trypan blue 
bound are shown as mean ± SD from three biological replicates. * p < 0.001 in a Students’ T-test. 
(B) Cell agglutination assay. The experiment was performed as described for Figure 22B 

 

B. 

A. 

B. A. 
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2.10. Analysis of DmxB in M. xanthus 

2.10.1.  DmxB is a predicted diguanylate cyclase important for 
development 

DmxB is a predicted cytoplasmic protein with an N-terminal receiver domain, 

which contains a conserved phosphorylatable Asp residue (D60), and a C-terminal 

GGDEF domain with an A-site that contains the conserved residues important for 

catalytic activity (G219GDEF) and an I-site with residues important for c-di-GMP 

binding (R210ESD) (Figure 35A). A mutant lacking DmxB had an early developmental 

defect, neither aggregated on TPM agar nor in submerged culture, and did not 

sporulate (Figure 35B, Figure 28). 

 

 

 

 

 

 
Figure 35. DmxB is a predicted diguanylate cyclase important for development 

(A) Domain structure of DmxB protein. Domain annotation was performed using the SMART web tool, 
domains are not drawn to scale. Coloured are residues targeted by site-directed mutagenesis in the 
later experiments. Green - conserved aspartate in the Rec domain; red - conserved aspartate in the 
GGDEF domain essential for DGC activity; blue - conserved arginine in I-site of GGDEF domain 
essential for c-di-GMP binding and feedback inhibition. 
(B) Time course experiment following the phenotype of WT and ∆dmxB mutant on TPM agar and in 
MC7 submerged culture during the first 24h of development. Development was assayed as described 
in Figure 24. Scale bars, TPM agar 500 µm, submerged culture 100 µm. 
 
 
 

To differentiate between DmxB being important for development and/or 

sporulation, we tested glycerol-induced sporulation in ∆dmxB mutant. We did not 

observe any difference between WT and ∆dmxB mutant, and we concluded that 

DmxB in important for aggregation process during development but not for 

sporulation per se (Figure 36).  

A. 

B. 
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2.10.2. DmxB has enzymatic activity and binds c-di-GMP in vitro 

To test enzymatic activity of DmxB in vitro, we overexpressed His6-tagged full-

length variant of DmxB in E. coli and purified it as a soluble protein. 

DmxBWT, similarly to the positive control DgcAWT, produced c-di-GMP in a time 

dependent manner, when incubated with [α-32P]-GTP, as detected after separation 

of nucleotides by TLC (Figure 37A). In contrast, the A-site variant DmxBD221A did not 

produce c-di-GMP. As previously mentioned, DmxB possesses an intact I-site motif 

and is predicted to bind c-di-GMP. To test this hypothesis we used DRaCALA assay 

with [α-32P]-labeled c-di-GMP. In agreement with the predictions from sequence 

analyses, DmxB specifically bound [α-32P]-c-di-GMP whereas the I-site mutant 

DmxBR210A did not (Figure 37B). 

 A.      B. 

 

Figure 37. Enzymatic activity and c-di-GMP binding 

(A) DGC in vitro assay of DmxB variants. The indicated DmxB variants were incubated with [α-32P]-
GTP for the indicated periods of time followed by separation of nucleotides by thin layer 
chromatography. Full-length DgcAWT was used as a positive control. GTP and c-di-GMP are indicated. 
(B) DRaCALA assay to detect specific c-di-GMP binding by purified proteins. Full-length DmxB variants 
were incubated with [α-32P]-labeled c-di-GMP with or without unlabelled c-di-GMP and GTP as 
competitors added. 
 
 
 
 
 
 

            

     

Figure 36. DmxB is not required to form glycerol 
induced spores 

Cell morphology 4 h after adding 0.5 M glycerol. 
Numbers represent the amount of heat- and 
sonication-resistant spores relatively to intial number 
of cells. 
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2.10.3. Lack of DmxB causes change in c-di-GMP level during starvation 

To determine the effect of DmxB on c-di-GMP levels in vivo, we determined c-

di-GMP level in the ∆dmxB mutant strain. In the ∆dmxB mutant, c-di-GMP level in 

vegetative cells (time-point 0 h) was similar to that in WT and it essentially remained 

constant throughout the entire time course of starvation without showing the 

approximately 4-fold increase observed in WT (Figure 38). In the ∆dmxB/dmxBWT 

complementation strain, but not in the ∆dmxB/dmxBD221A strain containing A-site 

variant of DmxB, c-di-GMP level during starvation was restored to WT levels (Figure 

38). Importantly, the ∆dmxB/dmxBD221A strain phenocopied the ∆dmxB mutant, did 

not aggregate and was strongly reduced in sporulation (Figure 40A). In the two 

complementation strains, the DmxB variants accumulated at the same level, which 

was lower than in WT (Figure 40B). This data strongly suggests that DmxB is 

responsible for the 4-fold increase in the c-di-GMP level in WT during starvation, 

which is essential for the proper development. 

 

Figure 38. c-di-GMP level in WT starving cells and indicated mutants 

Level of c-di-GMP in WT cells, ∆dmxB and complementation strains is shown as mean ± SD from three 
biological replicates.  
 

 

 

2.10.4. DmxB specifically accumulates during development 

In order to answer the question why ∆dmxB mutant only shows defect during 

development, we determined the expression pattern of dmxB by using qRT-PCR. 

dmxB transcription increased more than 100-fold during the first 24 h of 

development in comparison to vegetative cells (Figure 39A). 
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A             B. 

            
 

Figure 39. dmxB transcription and protein accumulation 

(A) qRT-PCR analysis of dmxB expression. RNA was isolated from WT cells developing in submerged 
cultures by using a hot-phenol extraction. dmxB transcript level is shown as mean from two biological 
replicates, each of them in three technical replicates, relative to WT at time point 0h, in a log2 scale. 
(B) Immunoblot detection of DmxB in total cell extracts of WT and ∆dmxB strain. Total cell lysates from 
cells harvested from starvation agar plates at indicated time points of development were separated by 
SDS-PAGE and probed with anti-DmxB antibodies. Protein from the same number of cells was loaded 
per lane.  
 
 
 

Consistently, immunoblot analysis performed in a timecourse experiment during 

development revealed that DmxB was undetectable in vegetative cells and 

accumulated in a pattern similar to the dmxB transcript during the first 24 h of 

development (Figure 39B). We conclude that DmxB accumulation is induced in 

response to starvation and regulated at the level of transcription of dmxB. 

 

2.10.5. DGC activity of DmxB is regulated by phosphorylation and feedback 
inhibition 

To further understand how DmxB is regulated, we ectopically expressed 

mutant dmxB alleles in the ∆dmxB mutant, including dmxBD60N, which encodes 

a DmxB variant in which the phosphorylatable Asp in the receiver domain has been 

substituted with the non-phosphorylatable Asn, dmxBD60E, which encodes a DmxB 

variant predicted to mimic the phosphorylated state of the receiver domain, and 

dmxBR210A, which encodes a DmxB variant with a substitution of the conserved Arg 

in the I-site, and which is unable to bind c-di-GMP in vitro (Figure 37B). All three 

variants accumulated at lower levels that native DmxB expressed in WT, but similar 

to the levels of DmxBWT expressed in ∆dmxB (Figure 40B). DmxBD60N and 

DmxBR210A complemented the developmental defects in the ∆dmxB mutant while 

DmxBD60E did not (Figure 40A). 
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A. 

    

B. 

 

 

Figure 40. Complementation with different alleles of dmxB 

(A) Developmental assay of indicated ∆dmxB complementation strains. Development was assayed as 
described in Figure 24. Numbers after 120 h of starvation in submerged culture indicate heat- and 
sonication resistant spores formed relative to WT (100%). Scale bars: TPM agar 500 µm, submerged 
culture 100 µm. 
(B) Detection of DmxB in total cell extracts of WT, ∆dmxB and different complementation strains by 
immunoblot. Total cell lysates from cells harvested from starvation agar plates at different time points 
of development were separated by SDS-PAGE and probed with anti-DmxB antibodies. Protein from the 
same number of cells was loaded per lane. 

 

In vitro, all three DmxB variants were able to produce c-di-GMP and displayed 

DGC activity similar to DmxBWT (Figure 41).  
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Figure 41. In vitro assay for enzymatic activity of the indicated variants of DmxB 

DGC in vitro assay of DmxB variants. Experiment was performed as described in Figure 30.  GTP and 
c-di-GMP are indicated. 
 
 
 

In vivo, the strain expressing DmxBD60N accumulated c-di-GMP similarly to WT 

whereas the strain expressing DmxBD60E did not display the starvation induced 

increase in the c-di-GMP level observed in WT (Figure 42). Finally, the strain 

expressing DmxBR210A had a c-di-GMP level that was approximately 10-fold higher 

than WT (Figure 42) consistent with the idea that this DmxB variant is no longer 

subject to feedback inhibition by c-di-GMP in vivo. In contrast, in vitro DmxBR210A had 

the same DGC activity as the WT protein (Figure 41) suggesting that under these 

conditions the [c-di-GMP] in vitro was not sufficiently high to result in feedback 

inhibition.  

 

 

Figure 42. c-di-GMP level in starving cells of the indicated complementation strains 

Levels of c-di-GMP in complementation strains of ∆dmxB. Note that graphs for ∆dmxB/dmxBWT and 

∆dmxB/dmxBD221A are the same as in Figure 38 and are shown again for comparison. Levels of c-di-
GMP are shown as mean ± SD from three biological replicates. Note the different scale in 
∆dmxB/dmxBR210A. 
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To additionally confirm the results from in vitro activity assay, we performed an 

in vivo activity assay in E. coli. It is a phenotypic assay that correlates c-di-GMP 

level with cellulose production in E. coli stained by Congo Red (CR) and can be 

used as an indicator for DGC activity (Zogaj et al., 2001). E. coli transformed with 

a vector control (pMALc2x) or the inactive DmxBD221A remained uncoloured when 

plated on CR-containing plates. In contrast, expression of DmxBWT, DmxBR210A, 

DmxBD60N or DmxBD60E resulted in a red colony phenotype (Figure 43). This was in 

agreement with the in vitro DGC activity of these variants. Therefore, DmxBD60E is 

active in vitro and in vivo in E. coli but not in vivo in M. xanthus, suggesting that in 

M. xanthus DmxBD60E is kept in an inactive state. 

     

 

 
Figure 43. DGC activity assay of different DmxB variants in vivo in E. coli, based on Congo Red 
binding 

E. coli cells transformed with indicated expression plasmids were grown on LB plates supplemented 
with 50 µg/ml Congo Red at 30° C overnight. Red colour of the colonies indicates DGC activity of the 
indicated protein variant. 

 

These data, together with the observation that WT/DgcAWT strain (which 

accumulates c-di-GMP at a significantly higher level than WT) develops normally, 

whereas the WT/PA5295WT strain (that accumulates significantly less c-di-GMP) 

does not develop, strongly suggest that a minimal threshold level of c-di-GMP is 

essential for development and demonstrate that a c-di-GMP level even 10-fold 

higher than WT level does not interfere with development. Moreover, our data 

suggest that DmxBWT is subject to two levels of post-translational control: feedback 

inhibition by c-di-GMP and phosphorylation-dependent regulation by a mechanism 

in which phosphorylation of the receiver domain results in inhibition of DGC activity. 
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2.10.6. The ∆dmxB mutant can be partially complemented by heterologous 
DGC 

Our data suggest that DmxB is the diguanylate cyclase responsible for the 

increase in the c-di-GMP level during development and that this increase is 

essential for development. To test whether the function of DmxB is to contribute to 

a global pool of c-di-GMP, allowing it to reach a minimal threshold level, we 

expressed the heterologous DGC (DgcAWT) or its active site variant DgcAD164A in the 

∆dmxB mutant. Interestingly, fruiting body formation and sporulation were partially 

restored in the ∆dmxB mutant by DgcAWT but not by DgcAD164A (Figure 44A) and in 

the DgcAWT containing strain the level of c-di-GMP was similar to that in WT during 

starvation (Figure 44B). These results corroborate that the major function of DmxB 

is to contribute to the global pool of c-di-GMP in developing M. xanthus cells. 

A.  

 

B. 

                 

Figure 44. ∆dmxB mutant is complemented by expression of a heterologous DGC 

(A) Developmental assay of indicated ∆dmxB complementation strains. Development was assessed as 
described in Figure 24. Numbers after 120 h of starvation in submerged culture indicate heat- and 
sonication resistant spores formed relative to WT (100%). Scale bars: TPM agar 500 µm, submerged 
culture 100 µm. 
(B) Levels of c-di-GMP in indicated ∆dmxB complementation strains. Levels of c-di-GMP are shown as 
mean ± SD from three biological replicates. Note that the data for WT and ∆dmxB mutant are the same 
as those in Figure 42 and in Figure 38. 
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2.10.7. ∆dmxB developmental defects are due to reduced EPS 
accumulation 

We previously showed that in vegetative cells an increase in the c-di-GMP 

level interfere with T4P function by either causing a reduction in pilA transcription, 

and therefore T4P formation, or a change in cell-cell interactions and EPS 

accumulation. To deduce the mechanism underlying the developmental defects of 

the ∆dmxB mutant, we tested it for PilA accumulation and T4P formation by 

quantifying the total amount of cellular PilA as well as PilA assembled into T4P 

during development. In WT cells as well as in the ∆dmxB mutant the total level of 

PilA increased from 0 to 24 h of development as previously reported for WT (Wu & 

Kaiser, 1997). Similarly, the level of PilA incorporated into T4P increased 

significantly in both strains, and even more in the ∆dmxB mutant than in the WT 

(Figure 45A). As expected, PilA was not detected in the ∆pilA mutant and also not in 

the sheared T4P fraction of the pilC mutant (Figure 45A). 

 

A.           B.                                                 

           
 
Figure 45. Phenotypic characterization of ∆dmxB mutant  

(A) Detection of PilA in total cell extract and in sheared T4P fraction of the cells developing in MC7 
submerged cultures by immunoblot. The experiment was performed as described for Figure 20A.  
(B) EPS accumulation. Aliquots of 20 µl cell suspensions at 7 × 109 cells/ml were spotted on 0.5% agar 
supplemented with 0.5% CTT and 20 µg/ml trypan blue or TPM agar supplemented with 20 µg/ml 
trypan blue and incubated at 32 °C for 24 h. 
 
 
 

EPS accumulation was determined by using a colorimetric assay. For this 

purpose, cells were inoculated on solid medium containing trypan blue either in the 

presence of nutrients or in the absence of nutrients. In the presence of nutrients, no 

differences in trypan blue binding were observed between WT, fruA which is 
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strongly affected in development and the ∆dmxB mutant complemented with 

dmxBWT, dmxBD221A, dgcAWT or dgcAD164A whereas the negative control difE did not 

bind trypan blue (Figure 45B). In the absence of nutrients, WT, fruA, 

∆dmxB/dmxBWT and ∆dmxB/dgcAWT strains all had the same high level of EPS as 

indicated by their dark blue colour, while ∆dmxB, ∆dmxB/dmxBD221A and 

∆dmxB/dgcAD164A strains, similarly to the difE negative control, bound trypan blue at 

a much reduced level (Figure 45B). We conclude that DmxB-dependent increase in 

the c-di-GMP level during development is responsible for EPS accumulation during 

development.  

 

2.10.8.  Developmental defects caused by the lack of DmxB are rescued by 
extracellular complementation 

It was demonstrated already many years ago, that certain developmental 

mutants that are unable to form fruiting bodies can be rescued by co-developing 

with wild type cells (Hagen et al., 1978). The phenotype of the ∆dmxB mutant is 

similar to that of the difE mutant, which is strongly reduced in EPS accumulation and 

unable to aggregate and sporulate (Yang et al., 2000). Because the developmental 

defects of a difE mutant can be rescued by extracellular complementation by WT or 

by addition of purified EPS (Yang et al., 2000, Shimkets, 1986b), we reasoned that 

the ∆dmxB mutant would also be rescued if the main defect in this mutant is the 

reduced EPS accumulation during development.  

To this end, cells of a tetracycline resistant ∆dmxB mutant (∆dmxB/dmxBD221A) 

were mixed with tetracycline sensitive WT cells in a 1:1 ratio and co-developed in 

submerged culture (Figure 46A). Subsequently, spores formed by the two strains 

were counted. In this experiment, 53% of the germinating spores derived from the 

∆dmxB/dmxBD221A strain (Figure 46B). Importantly, and in agreement with the EPS 

accumulation profile, the ∆dmxB mutant was not rescued by co-development with 

the difE mutant, suggesting that the mechanism underlying the ∆dmxB 

developmental defects is indeed the reduced EPS accumulation during starvation. 

As a control, we successfully complemented difE mutant by co-development with 

WT cells as previously reported in the literature (Yang et al., 2000, Shimkets, 

1986b). 

Inspired by the finding that in Dictyostelium discoideum development could be 

restored by adding c-di-GMP to a DGC mutant (Chen & Schaap, 2012) we decided 

to test if exogenous c-di-GMP restores development of the ∆dmxB mutant. Fruiting 

body formation was not restored upon addition of c-di-GMP to the ∆dmxB mutant in 
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submerged culture. We used 1mM c-di-GMP as reported for D. discoideum (Chen & 

Schaap, 2012) and added it at 0 h or at 24 h of development (data not shown). 

 

A. 

 

B. 

 
 

 

 

 

2.10.9. Transcription of the genes from eps locus is affected in the ∆dmxB 
mutant 

The eps locus encode proteins involved in EPS synthesis and transport and at 

least 10 of the genes in this locus are essential for fruiting body formation and 

sporulation (Lu et al., 2005). To determine if DmxB is important for the expression of 

the eps genes, we determined the expression profile of nine of the eps genes in WT 

and in ∆dmxB mutant during development by using qRT-PCR. These nine genes 

encode for proteins with different functions in EPS synthesis and transport (Figure 

47A). Eight of them have been shown to be essential for development, only epsB 

mutant does not show developmental defect (Lu et al., 2005). For seven of the nine 

genes we did not observe significant differences in their expression profile in the two 

strains; however, two genes (epsA and epsB) were transcribed at significantly lower 

level in the ∆dmxB mutant than in the WT strain at the late time points of 

development (Figure 47B). epsA encodes a predicted glycosyl transferase and epsB 

encodes a predicted glycosyl hydrolase (Lu et al., 2005). 

Figure 46. Extracellular complementation 
assay of the ∆dmxB mutant 

(A) Example of extracellular complementation 
assay. ∆dmxB/dmxBD221A mutant was mixed 
with WT in a ratio 1:1 and developed in 
submerged culture. Cells after 120 h of 
starvation were harvested, incubated for 2 h 
at 55 °C, sonicated to disperse fruiting bodies 
and dilutions were plated on 1% CTT agar 
plates supplemented with relevant antibiotics. 
(B) Summary of the results of extracellular 
complementation assay for ∆dmxB/dmxB 
D221A and other strains. 
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A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROTEIN PUTATIVE FUNCTION 

MXAN7451 (EpsA) UDP-N-acetyl-mannosamine transferase 

MXAN7450 (EpsB) Endo-1,4-β-glucanase precursor 

MXAN7449 (EpsC)  Serine acetyltransferase 

MXAN7448 (EpsD) Glycosyltransferase, family 2 

MXAN7445 (EpsE) Glycosyltransferase, family 1 

MXAN7444 (EpsF) Response regulator/sensory box histidine kinase 

MXAN7442 (EpsG) Mg2+ transporter 

MXAN7441 (EpsH) Glycosyltransferase, family 1 

MXAN7440 (EpsI) Nla24, σ54-dependent DNA-binding response regulator 

MXAN7439 (EpsJ) Sensory box histidine kinase 

MXAN7438 (EpsK) Membrane fusion protein 

MXAN7437 (EpsL) CzcA family heavy metal efflux protein 

MXAN7436 (EpsM Outer membrane efflux protein 

MXAN7435 (EpsN) Hydrolase alpha/beta fold family 

MXAN7433 (EpsO) von Willebrand factor type a domain protein 

MXAN7431 (EpsP) Transposase 

MXAN7426 (EpsQ) Hypothetical protein 

MXAN7425 (EpsR) Hypothetical protein 

MXAN7424 (EpsS) Hypothetical protein 

MXAN7423 (EpsT) Hypothetical protein 

MXAN7422 (EpsU) Glycosyltransferase, family 2 

MXAN7421 (EpsV) Chain length determinant family protein 

MXAN7420 (EpsW) Signal transduction histidine kinase 

MXAN7418 (EpsX) Hypothetical protein 

MXAN7417/6 (EpsY) Polysaccharide biosynthesis/export protein 

MXAN7415 (EpsZ) Glycosyltransferase domain protein 
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B.  

 

 

 

 

Figure 47. qRT-PCR analysis of the eps genes transcription in WT (closed circles) and ∆dmxB 
strain (opened squares) during development 

(A) Organization of the eps locus and the predicted functions of the proteins encoded in this locus. 
Genes marked in red were tested for expression level in WT and ∆dmxB mutant during development. 
(B) Result of the qRT-PCR experiment. WT (closed circles) and ∆dmxB strain (opened squares) RNA 
was isolated from cells developing in MC7 submerged cultures by using a hot-phenol extraction. 
Transcripts levels are shown as mean ± SD from two biological replicates, each of them with three 
technical replicates, relative to WT at time point 0h, in a log2 scale. Analyzed genes are indicated in 
panel A, in red. 
 
 
 

2.10.10. DmxB accumulation is altered in developmental mutants 

To identify regulators involved in dmxB expression, we determined DmxB 

accumulation in a set of mutants that are arrested in development at different time 

points. DmxB accumulation was almost undetectable after 24 h of development in 

a ∆lonD mutant (also referred to as ∆bsgA), which is arrested at the onset of 

development (Kroos & Kaiser, 1987, Gill et al., 1993), in a asgA mutant, which is 

arrested at 1-2 h of development (Kuspa et al., 1986), and in a difE mutant, which is 
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arrested early in the aggregation phase (Yang et al., 1998b) (Figure 48A) whereas 

in ∆csgA mutant, which is arrested in development after 4-6 h (Kroos & Kaiser, 

1987, Ellehauge et al., 1998, Ogawa et al., 1996) reduced levels of DmxB were 

detected after 24 h of development. In fruA mutant, which is arrested later in 

development, DmxB accumulated on WT level. Among these mutants, ∆lonD, asgA 

and ∆csgA mutants are deficient in synthesis of intercellular signals required for 

development, suggesting that intercellular signaling is required for the stability or for 

the expression of dmxB.  

This conclusion was further confirmed by determination of EPS accumulation 

in the ∆lonD, asgA, ∆csgA, and fruA mutants. As shown in Figure 48B, EPS 

accumulation in these four mutants correlates with the level of DmxB accumulation 

in these mutants (Figure 48A).  

A. 

	

B. 
 

 
 
 

Figure 48. DmxB accumulation and EPS accumulation are altered in developmental mutants  

(A) Detection of DmxB in total cell extract of different mutants with developmental phenotypes by 
immunoblot. Total cell lysates from cells harvested from starvation agar plates after 24h of 
development were separated by SDS-PAGE and probed with anti-DmxB antibodies. Protein from the 
same number of cells was loaded per lane. 
(B) EPS accumulation in mutants affected in development. Aliquots of 20 µl cell suspensions at 7 × 109 
cells/ml were spotted on 0.5% agar supplemented with 0.5% CTT and 20 µg/ml trypan blue or TPM 
agar supplemented with 20 µg/ml trypan blue and incubated at 32 °C for 24 h. 
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For difE mutant, we confirmed the immunoblot results by measuring c-di-GMP 

level. Consistently, difE mutant was found to be strongly reduced in c-di-GMP 

accumulation during starvation (Figure 49). 

 

 

Figure 49. c-di-GMP level is reduced in difE mutant  

Levels of c-di-GMP in the indicated strains. Levels of c-di-GMP are shown as mean ± SD from three 
biological replicates. Note that the data for WT and ∆dmxB mutant are the same as those in Figure 38, 
Figure 42 and Figure 44 and are shown here for comparison. 
 
 
 
 
 

2.10.11. MXAN3734 is not involved in development 

In order to identify the potential interacting partners of DmxB we investigated 

the genetic neighbourhood of the dmxB gene. In close proximity to dmxB, in the 

same operon, we identified a gene coding for a response regulator, MXAN3734. The 

MXAN3734 protein is predicted to have a transmembrane domain and a receiver 

domain (Figure 50). Following the hypothesis that MXAN3734 could be an 

interacting partner of DmxB, we created an in frame deletion of MXAN3734 and 

examined the strain for development. We did not observe any developmental 

defects in ∆MXAN3734 mutant (Figure 50). We did not focus on the other 

neighbouring genes as they are in different transcriptional units. 
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A. 

 

 

 
B. 

 
 
Figure 50. MXAN3734 in not involved in development 

(A) Genetic neighbourhood of dmxB (MXAN3735). On the left, the arrows representing genes indicate 
the direction of transcription and are drawn to scale. Numbers on the bottom indicate distances 
between genes in bp. On the right, domain annotation was performed using the SMART web tool; 
domains are not drawn to scale. TMH – transmembrane helix. 
(B) Phenotype of ∆MXAN3734 mutant during development. Development was assessed as described 
in Figure 24. Numbers after 120 h of starvation in submerged culture indicate heat- and sonication 
resistant spores formed relative to WT (100%). Scale bars, TPM agar 500 µm, submerged culture 100 
µm. 

 

 

2.11. Analysis of PmxA in M. xanthus 

2.11.1.  PmxA is a predicted phosphodiesterase important for development 

PmxA (MXAN2061) is a predicted integral membrane PDE of the HD-GYP 

type and contains a Cache domain, a HAMP domain and a C-terminal HD-GYP 

domain with all the residues for catalytic activity (H424D-G485YP) (Figure 51A, Figure 

26). The proposed function of the extracellular Cache domain is binding different 

small molecules and converting this signal into diverse responses depending on the 
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intracellular effector domains (Anantharaman & Aravind, 2000). Cache and HAMP 

domains are often found in bacterial sensor and chemotaxis proteins. The ∆pmxA 

mutant aggregated to form slightly irregular fruiting bodies on TPM agar and did not 

aggregate in submerged culture (Figure 51B) and only sporulated at 15% of the WT 

level (Figure 51B). 

 
A. 

 

B. 

 

Figure 51. PmxA is a predicted phosphodiesterase important for development 

(A) Domain structure of PmxA protein. Domain annotation was performed using the SMART web tool, 
domains are not drawn to scale. TMH – transmembrane helix; SP – signal peptide. 
(B) Phenotype of WT, ∆pmxA mutant and complementation strains on TPM agar and in MC7 
submerged culture. Development was performed as described previously in Figure 24. Scale bars, 
TPM agar 500 µm, submerged culture 100 µm. 
 
 
 

We also tested ∆pmxA strain for glycerol-induced sporulation and we could 

not observe any difference when compared to WT (Figure 52). We conclude that, 

like all the previously tested mutants, ∆pmxA strain is able to sporulate but is 

impaired in aggregation during fruiting body formation.  
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2.11.2.  PmxA has enzyme activity in vitro 

To test in vitro for enzymatic activity of PmxA, we overexpressed His6-tagged 

truncated variants of PmxA in E. coli and purified them as soluble proteins. In order 

to obtain soluble proteins, we used PmxA384-568 variants which correspond to the 

isolated HD-GYP domain. It was previously described that isolated HD-GYP 

domains, in contrast to GGDEF domains, still possess enzymatic activity (Ryan et 

al., 2006). To test PmxA384-568 for PDE activity, [α-32P]-labeled c-di-GMP was 

generated in an enzymatic reaction by purified DgcAWT as described (Roelofs et al., 

2011). PmxA384-568 displayed PDE activity and degraded [α-32P]-labeled c-di-GMP to 

linear pGpG, whereas the active site variant PmxAH424A, D425A did not (Figure 53). 

Thus, PmxA is an active enzyme in vitro. 

     

 

2.11.3. Lack of PmxA does not change the c-di-GMP level during starvation 

To determine if lack of PmxA caused changes in c-di-GMP levels in vivo, we 

determined the c-di-GMP level in the ∆pmxA mutant. In the ∆pmxA mutant, the c-di-

GMP level in vegetative cells was similar to that in WT (Figure 54). Surprisingly, 

Figure 53. In vitro c-di-GMP degradation by 
PmxA 

The indicated PmxA variant was incubated with 
[α-32P]-labeled c-di-GMP for the indicated 
periods of time followed by separation of 
nucleotides by thin layer chromatography. pGpG 
and c-di-GMP are indicated. The calculated 
retention factors (Rf) of c-di-GMP ~0.18 and 
pGpG ~ 0.29 are in agreement with previous 
reports (Christen, 2007). 

Figure 52. PmxA is not important for glycerol 
induced sporulation 

Cell morphology 4 h after adding 0.5 M glycerol. 
Numbers represent the amount of heat- and 
sonication-resistant spores relatively to intial 
number of cells. 
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during starvation, the level was slightly lower at 12 h and 24 h than in WT but 

reached WT level at 36 h and 48 h (Figure 54).  

 

           

 

Figure 54. c-di-GMP level in starving cells of the indicated strains  

Levels of c-di-GMP in WT and ∆pmxA strains. Levels of c-di-GMP are shown as mean ± SD from three 
biological replicates. Note that the data for WT is the same as in Figure 38, Figure 42 and Figure 44 
and is shown here for comparison. 
 

 

 

2.12. c-di-GMP receptors in M. xanthus. 

2.12.1.  Development of an assay based on capture compound 

The c-di-GMP Capture Compound (cdG-CC) is a powerful tool to identify 

novel c-di-GMP effectors (Nesper et al., 2012). The compound is based on 

a chemical scaffold harbouring specificity, reactivity and sorting determinants 

(Figure 55) (Nesper et al., 2012). 

 

 

 

Figure 55. Chemical structure of cdG-CC

Upon UV irradiation, the photo-reactivity 
group forms a highly reactive nitrene that 
interacts with proteins bound by c-di-GMP, 
forming a covalent crosslink. The sorting 
function of biotin allows for the efficient 
isolation of the captured proteins by binding 
of the compound to streptavidin coated 
magnetic beads. Figure was reproduced 
from (Nesper et al., 2012). 
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cdG-CC can enrich c-di-GMP binding proteins directly from whole cell extracts 

in a highly specific manner and is suited for a global isolation procedure of c-di-GMP 

binding proteins (Nesper et al., 2012). It was successfully used to identify c-di-GMP 

effectors in P. aeruginosa, S. enterica (Nesper et al., 2012), B. bacteriovorus 

(Rotem et al., 2015) and S. venezuelae (Tschowri et al., 2014) Taking advantage of 

this technique, we decided to identify c-di-GMP effectors in M. xanthus. Therefore, 

we performed the capture experiments combined with the analysis of isolated 

proteins by LC–MS/MS.  

For these experiments, we used soluble fractions of cell lysate from M. 

xanthus cells growing exponentially or starved for 24h in suspension. In parallel, we 

prepared two negative controls: a competition control and a binding control (Nesper 

et al., 2012). In the first control, c-di-GMP was added as a competitor to all protein 

extracts to a final concentration of 1 mM and incubated before cdG-CC was added. 

This allowed us to exclude proteins, which are binding unspecifically to the capture 

compound. In second control experiment no cdG-CC was added to the reaction. 

This allowed us to exclude the proteins which are binding unspecifically to the 

magnetic beads. 

 

2.12.2.  Candidates 

As a result from this experiment, we obtained a list of candidates for c-di-GMP 

specific effectors. We decided to initially consider only the proteins which were not 

unspecifically binding to the magnetic beads and were significantly enriched in 

comparison to the competition control. In this way, we were able to specifically pull-

down four GGDEF domain proteins (MXAN1525, MXAN5199, MXAN4029 and 

MXAN4463). These four proteins posses all the conserved residues in the I-site 

required for c-di-GMP binding. This was an indication, that the cdG-CC can be used 

to detect c-di-GMP effectors in M. xanthus cell lysates.  

We also detected several proteins that do not possess GGDEF, EAL or HD-

GYP domains and those proteins became our priority candidates for receptors 

(Table 1). With the exception of MrpC, we did not find any protein that would appear 

only in the sample where the lysate from starving cells was used (Table 1).  
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Table 1. c-di-GMP effector candidates in M. xanthus based on a capture compound pull-down 
experiment 

Candidate protein Description Detected in 

MXAN1525 GGDEF domain protein with I-site veg./starv. 

MXAN5199 GGDEF domain protein with I-site veg./starv. 

MXAN4029 GGDEF domain protein with I-site veg. 

MXAN4463 GGDEF domain protein with I-site veg. 

MXAN5707 PilZ domain protein veg./starv. 

MXAN0415 PilT paralog veg./starv. 

MXAN5787 (PilT) Pilus retraction ATPase veg./starv. 

MXAN3993 (LonD) ATP-dependent Lon protease veg. 

MXAN5125 (MrpC) Transcriptional regulator starv. 

MXAN7043 Oxidoreductase veg./starv. 

MXAN6605 PilZ-DnaK domain protein veg. 

MXAN4361 Small hypothetical protein veg./starv. 

MXAN4362 Small hypothetical protein veg./starv. 

 

2.12.3. Candidates verification 

As a first test for the c-di-GMP receptor candidates, we decided to verify their 

binding using a DRaCALA assay. In order to do so, we overexpresed (or purified) 

soluble proteins and used them for the binding assay. As a control, we used the 

soluble fractions of cell lysate from: Rosetta 2 (DE3) cells (negative control) and 

Rosetta 2 (DE3) cells overexpressing the GGDEF domain of DmxB (positive 

control). As expected, extract from Rosetta 2 (DE3) cells did not bind c-di-GMP 

while extract from the cells overexpressing the GGDEF domain of DmxB did show 

binding of c-di-GMP (Figure 56). 

  

Figure 56. Controls for DRaCALA experiment 

SDS-PAGE gel of soluble fraction from the lysate of 
E. coli Rosetta 2 (DE3) cells and Rosetta 2 (DE3) 
cells overexpressing the GGDEF domain of DmxB. 
Molecular size marker is indicated. For each gel the 
corresponding result of DraCALA assay is presented 
below. It should be noted that there is always 
a background binding coming from endogenous 
E. coli proteins. 
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Having those controls established, we decided to test the candidates. For the 

proteins where we could clearly see overexpression on the SDS-PAGE gels 

(MXAN5707, MXAN0415, PilT, LonD, MrpC) we used the soluble fraction of the cell 

lysate. From this list we were able to confirm c-di-GMP binding by two of the 

candidates: MXAN5707 and MXAN0415 (Figure 57). We considered a result as 

positive (+) when the signal in the centre of the spot was visibly stronger than for the 

negative control (Figure 57). 

 

 

 

Figure 57. Candidates verification (cell lysate) 

SDS-PAGE gels of the soluble fractions from the lysate of E. coli Rosetta2 (DE3) cells overexpressing 
the indicated proteins. Molecular size marker is indicated. For each gel the corresponding result of 
DraCALA assay is presented below. (+) indicates result considered as positive (binding); (-) indicates 
result considered as negative (no binding).  
 
 
 

For some of the candidates (MXAN7043, MXAN4361 and MXAN4362) 

overexpression was not clearly visible on the SDS-PAGE gel. To be sure that the 

protein amount was high enough to perform the experiment, we decided to first 

purify those proteins and then test for binding. The result of protein purification as 

well as DRaCALA assay is shown in Figure 58. We were able to successfully detect 

binding for MXAN4362 and MXAN4362.  

Despite several attempts, we were not able so far to successfully overexpress 

or purify MXAN6605 protein (data not shown). 
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Additionally, we used DRaCALA to test c-di-GMP binding of Nla24 (EpsI). This 

protein was not detected in the pull down but was promising candidate to be c-di-

GMP effector based on our previous results (c-di-GMP in M. xanthus regulates EPS 

accumulation). Nla24/EpsI is encoded by a gene located within the eps locus, it is 

essential for both gliding and T4P-dependent motility systems as well as for EPS 

accumulation (Lu et al., 2005, Lancero et al., 2004), and it shares domain structure 

and 39% amino acid identity with FleQ, a c-di-GMP receptor from P. aeruginosa. 

Despite those similarities, Nla24/EpsI was not able to bind c-di-GMP under the 

conditions tested (Figure 59). 

Figure 58. Candidates verification 
(purified prioteins) 

SDS-PAGE gels with the purified 
indicated proteins. Molecular size 
marker is indicated. For each gel 
the corresponding result of 
DraCALA assay is presented below.  
(+) indicates result considered as 
positive (binding).  
(-) indicates result considered as 
negative (no binding). 
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2.12.4.  Characterization of MXAN0415 

MXAN0415 is a paralog of the pilus retraction ATP-ase PilT (Clausen et al., 

2009). Interestingly, during analysis of T4P-motility in M. xanthus, Clausen et al. 

observed PilT-independent retractions at a low frequency, suggesting the existence 

of an additional PilT-independent T4P retraction motor(s) (Clausen et al., 2009).  

Genome analyses of M. xanthus revealed the presence of four PilT paralogs 

(MXAN0415, MXAN1995, MXAN6705 and MXAN6706). Those proteins share 

sequence identities from 37% to 49% and similarities between 43% and 70% with 

PilT protein encoded in the pil gene cluster (MXAN5787). MXAN0415 shares 43% 

identity and 65% similarity with PilT (Figure 60). Like PilT, it posses all the 

conserved residues required for ATP binding and hydrolysis (Figure 60). 

Interestingly, in the sequence of MXAN0415 we found several motifs described 

previously to be involved in c-di-GMP binding: RxxD (Christen et al., 2006) and 

RxxxR (Shin et al., 2011). Some of them are not conserved within PilT paralog and 

can be found only in MXAN0415 (Figure 60).  

 

 

 

 

 

Figure 59. Candidate verification 
(cell lysate) 

SDS-PAGE gels with the soluble 
fractions from the lysate of E. coli 
Rosetta2 (DE3) cells overexpressing 
indicated protein. Molecular size 
marker is indicated. 
The corresponding result of DraCALA 
assay is presented below.  
(+) indicates result considered as 
positive (binding).  
(-) indicates result considered as 
negative (no binding).
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Figure 60. Alignment of amino-acid sequence of full-length PilT paralogs  

The conserved Walker a and B motif, Asp and His boxes are indicated in red. Putative c-di-GMP 
binding motifs in MXAN0415 are indicated in green. White-on-black residues are 100% conserved. 
 
 

 

In order to determine the function of MXAN0415 we created an in-frame 

deletion mutant for MXAN0415 gene. The deletion mutant had the same growth rate 

as the WT strain and did not show any defect in terms of motility, fruiting body 

formation and sporulation (Figure 61). As the double mutant ∆MXAN0415 ∆pilT did 

not show any additional defect to those observed for ∆pilT (Figure 61), the function 

of MXAN0415 remains unknown. 
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Figure 61. Motility and development assays of ∆MXAN0415, ∆pilT and ∆MXAN0415∆pilT strains 

T4P-dependent motility was performed as described in Figure 18. Scale bar: 500 µm. Development 
was performed as described in Figure 24. Scale bar: TPM agar 500 µm, submerged culture 100 µm. 

 

2.12.5.  Characterization of MXAN5707 

MXAN5707 is a protein with only PilZ domain identified. Bioinformatic analysis 

of M. xanthus genome predicted the existence of 22 PilZ domain containing 

proteins, 15 of them with all the residues described to be required for c-di-GMP 

binding (Table 2). Most of them, like in MXAN5707, function as single domain 

proteins. Such proteins were reported to be involved mostly in protein-protein 

interactions (see introduction). In the others, PilZ domain is linked to other regulatory 

domains. One of them (MXAN1467, Pkn1) has been studied in detail and it has 

been shown to be a serine-threonine kinase involved in development (Muñoz -

Dorado et al., 1991). Nevertheless, the PilZ domain of Pkn1 is degenerated in terms 

of residues important for c-di-GMP binding (Table 2). This analysis was performed 

by Dr. Tobias Petters. 
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Table 2. M. xanthus proteins possessing PilZ domain. Two conserved motifs: RxxxR and 
D/NxSxxG important for c-di-GMP binding are listed  
 

Gene RxxxR motif D/NxSxxG motif Domain structure 

MXAN0063  RRNGR  DLSEGG  PilZ  

MXAN0614  -  ELSRGG  Pkn-PilZ  

MXAN0833  RRFPR  DASLGG  PilZ  

MXAN0961  RRGRR  NISNGG  PilZ  

MXAN1087  RQHPR  NLSHEG  PilZ-REC  

MXAN1467 (pkn1) RLAPA  GLSRGG  Pkn-PilZ  

MXAN2528  RQNGR  NISKGG  PilZ  

MXAN2649  RHFPR  NVSVSG  PilZ  

MXAN3585  RKNKR  DISQEG  PilZ  

MXAN3721  RKSTR  NLSEGG  PilZ  

MXAN3778  -  NVSRGG  PilZ-DnaK  

MXAN3788  PRAPR  NLSKGG  PilZ  

MXAN4328  RSHLR  NISARG  PilZ  

MXAN4567  RADER  NISAGG  PilZ  

MXAN5615  RRFPR  DISRGG  PilZ  

MXAN5655  RFHPR  DVSMAG  PilZ  

MXAN5707  RDSPR  DLSLGG  PilZ  

MXAN5804  -  NVARGG  PilZ-DnaK  

MXAN6013  RSDDR  NLSSGG  DnaJ-PilZ  

MXAN6605  RTTDR  NLSPGG  PilZ-DnaK  

MXAN6957  RVEAR  ALSPGG  PilZ  

MXAN7024  RAAER  DAGPGA  REC-REC-PilZ  

 

 

Sequence alignment of MXAN5707 and Alg44, c-di-GMP binding protein from 

P. aeruginosa harbouring a PilZ domain (Merighi et al., 2007) indicates that 

MXAN5707 possesses both conserved motifs required for c-di-GMP binding, in 

agreement with the binding detected in vitro (Figure 62). 

 

Figure 62. Alignment of amino-acid sequence of PilZ domain from MXAN5707 (M. xanthus) and 
Alg44 (P. aeruginosa)  

Conserved residues required for c-di-GMP binding are indicated. White-on-black residues are 100% 
conserved. 
 

 

In order to determine the function of MXAN5707 we created an in-frame 

deletion mutant for MXAN5707 gene. This deletion mutant had the same growth rate 

as the WT strain and did not show any defect in terms of motility, fruiting body 

formation and sporulation (Figure 63). 
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2.12.6.  Characterization of MXAN4361 and MXAN4362 

MXAN4361 and MXAN4362 were found in the c-di-GMP capture compound 

experiment. Genes encoding for those proteins are located next to each other in the 

genome and the proteins are paralogs. They share 77% of sequence identity and 

87% of similarity (Figure 64).  

 
 
Figure 64. Alignment of amino-acid sequence of full-length MXAN4361 and MXAN4362  

White-on-black residues are 100% conserved. 
 
 

Those proteins are conserved and encoded next to each other in the genomes 

of closely related fruiting Myxobacteria (M. xanthus, M. fulvus, M. stipitatus, 

C. coralloides, S. aurantiaca) but they do not have close orthologs within other 

organisms. Both proteins belong to the ribbon-helix-helix (RHH) Pfam protein family 

(Punta et al., 2012). Those proteins usually function as transcriptional regulators 

(Schreiter & Drennan, 2007). There is an interesting RHH family member from 

Pseudomonas (AmrZ – previously AlgZ). AmrZ has been implicated in the 

transcriptional regulation that involves c-di-GMP dependent phenotypes such an 

alginate synthesis, polysaccharide Psl production, twitching motility and pili 

biogenesis, flagella mediated motility (Martinez-Granero et al., 2014) although it was 

never shown to bind c-di-GMP directly.  

Our attempts to create single or double in frame deletion mutants were so far 

unsuccessful.

Figure 63. Motility and developmental 
assay of ∆MXAN5707 strain 

T4P-dependent motility was performed as 
described in Figure 18. Scale bar: 500 
µm. Development was performed as 
described in Figure 24. Scale bars: TPM 
agar 500 µm, submerged culture 100 µm. 
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3. Discussion 

3.1. c-di-GMP in regulation of T4P-motility in M. xanthus 

Here, we show that the second messenger c-di-GMP is a regulator of T4P-

dependent motility in M. xanthus. c-di-GMP accumulates in growing M. xanthus cells 

and its level stays stationary during all the growth phases. Our conclusion is based on 

following lines of evidence. First, expression of a heterologous DGC (DgcA) or 

a heterologous PDE (PA52959) but not the corresponding variants with substitutions in 

the active sites allowed the manipulation of the c-di-GMP level in growing cells. In 

these cells, an increase as well as a decrease in the c-di-GMP level caused defects in 

T4P-dependent motility without affecting the gliding motility. Because enzymatically 

inactive variants of DgcA and PA5295 did not interfere with T4P-dependent motility, 

these effects are caused by changes in the c-di-GMP level. Second, in an approach in 

which all 24 genes potentially encoding active DGCs or PDEs in M. xanthus were 

systematically inactivated, it was observed that lack of the active DGC DmxA caused 

a defect in T4P-dependent motility. 

T4P-dependent motility in M. xanthus depends on T4P and EPS. A ~7-fold 

increase in the c-di-GMP level in otherwise WT cells caused by expression of the 

heterologous DgcAWT resulted in a significant reduction in transcription of the pilA gene 

(which codes for the major pilin), in PilA accumulation and in assembled T4P. It has 

previously been shown that there is a correlation between cell-cell cohesion and T4P-

dependent motility in M. xanthus and that this cohesion requires T4P and EPS (Arnold 

& Shimkets, 1988, Shimkets, 1986b, Shimkets, 1986a). Consistent with the significantly 

reduced formation of T4P in DgcAWT expressing cells, they displayed delayed 

agglutination. Elevated c-di-GMP levels are often associated with increased EPS 

synthesis (Römling et al., 2013, Hengge, 2009, Jenal & Malone, 2006, Krasteva et al., 

2012, Boyd & O'Toole, 2012). However, the DgcAWT expressing cells did not exhibit 

differences in EPS accumulation in comparison to the WT. In M. xanthus, assembled 

T4P have been suggested to function upstream of the Dif chemosensory system to 

stimulate EPS accumulation (Black et al., 2006) whereas lack of EPS does not affect 

T4P assembly (Yang et al., 2000).  

Taken together, these observations suggest, that the primary defect caused by 

a highly increased c-di-GMP level in otherwise WT cells during growth is reduced pilA 

transcription leading to reduced PilA accumulation and as a result reduced T4P 

formation. Increased c-di-GMP level may stimulate EPS accumulation in M. xanthus 

but possibly this effect is confounded by the lack of assembled T4P in DgcAWT 

expressing cells. Previously, pilA expression has been shown to depend on the 
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transcriptional regulator PilR, which is an NtrC-like transcription regulator (Wu & Kaiser, 

1997). How c-di-GMP regulates pilA transcription remains to be shown; however, it is 

interesting to note that NtrC-like transcriptional regulators have been identified as c-di-

GMP effectors (Srivastava et al., 2011, Hickman & Harwood, 2008). 

A ~2-fold reduction during growth in the c-di-GMP level by expression of the 

heterologous PA5295WT in otherwise WT cells did not cause significant differences in 

PilA accumulation, T4P assembly or EPS accumulation. Nevertheless, these cells had 

reduced T4P-dependent motility. Interestingly, the cells displayed delayed 

agglutination. This suggests that a reduced c-di-GMP level results in changes in cell 

surface properties that are neither reflected in the level of assembled T4P nor in the 

level of EPS accumulation. We speculate that these changes in cell surface properties 

cause the defect in T4P-dependent motility. 

Manipulation of the c-di-GMP level in otherwise WT cells proved, that the c-di-

GMP level is important for T4P-dependent motility. By systematically inactivating the 24 

genes encoding GGDEF, EAL or HD-GYP domain containing proteins, we identified 

three such proteins involved in T4P-dependent motility.  

TmoK is a hybrid histidine protein kinase with a catalytically inactive C-terminal 

GGDEF domain that based on sequence analysis and experimental data using the 

DRaCALA assay does not bind c-di-GMP. Lack of TmoK caused a subtle defect in 

T4P-dependent motility but did not affect the level of c-di-GMP and T4P while EPS 

accumulation was increased and cells agglutinated faster than WT. Because the c-di-

GMP level was unchanged in the ∆tmoK mutant, the effects of lack of TmoK on EPS, 

T4P and agglutination are likely independent of c-di-GMP and connected with its 

kinase activity.  

SgmT is a hybrid histidine protein kinase with a catalytically inactive C-terminal 

GGDEF domain that binds c-di-GMP (Petters et al., 2012) and DmxA contains 

a catalytically active GGDEF domain that also binds c-di-GMP. Unexpectedly, lack of 

either SgmT or DmxA caused a slight but significant ~1.5-fold increase in the c-di-GMP 

levels. Lack of SgmT or DmxA also caused a 3-4-fold increase in EPS accumulation, 

had no or only a small effect on T4P assembly, and also altered cell-cell cohesion as 

measured in the agglutination assay. Thus, the increased c-di-GMP levels in otherwise 

WT cells caused by expression of DgcAWT and in cells lacking SgmT or DmxA correlate 

with reduced T4P-dependent motility. Clearly, however, the underlying mechanisms 

leading to this defect are different, i.e. in the DgcAWT expressing cells our data suggest 

that this defect is caused by lack of T4P and in dmxA and ∆sgmT cells this defect is 

caused by increased EPS accumulation.  
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EPS biosynthesis depends on proteins encoded by the eps locus (Lu et al., 

2005); however, little is known about the function of the corresponding proteins. Also 

little is known about the function of the several regulators of EPS synthesis that have 

been identified, including the Dif chemosensory system, T4P, NtrC-like transcription 

regulators, the MasK tyrosine protein kinase, the FrzS response regulator and DnaK 

homologs (Yang et al., 2000, Caberoy et al., 2003, Berleman et al., 2011, Thomasson 

et al., 2002, Lancero et al., 2004, Overgaard et al., 2006, Petters et al., 2012, Weimer 

et al., 1998, Dana & Shimkets, 1993, Lu et al., 2005, Lancero et al., 2005) (Figure 65).  

 

      

 

Nla19 belongs to NtrC-like transcriptional regulators which have been shown to 

be c-di-GMP effectors (Krasteva et al., 2010, Srivastava et al., 2011, Hickman & 

Harwood, 2008). Thus, it remains a possibility that c-di-GMP may directly regulate the 

activity of one or more of the regulators previously identified as important for correct 

EPS accumulation.  

It is an open question how c-di-GMP produced by different DGCs can elicit 

different responses. In one model for c-di-GMP-dependent regulation, distinct signaling 

systems with dedicated functions regulate c-di-GMP levels in highly localized and 

insulated pools rather than contributing to a shared cellular pool of c-di-GMP (Hengge, 

2009). Based on the observation that the mechanism(s) underlying the defects in T4P-

dependent motility in the dmxA and ∆sgmT mutants are different from those in DgcAWT 

expressing cells, we suggest that DmxA and SgmT are embedded in signaling systems 

that contribute to local c-di-GMP pools. Because SgmT does not have DGC activity 

Figure 65. Complex regulation of ECM 
accumulation in Myxococcus xanthus  

The dashed arrows indicate hyphotetical 
interactions. Red arrows or inhibitions 
indicate positive or negative effects on 
certain proteins on exopolysaccharide 
accumulation. Figure was modified from 
Konovalova et al., 2010. 
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and DmxA does, the higher c-di-GMP levels in the mutants lacking one or the other of 

these two proteins is not simply caused by the lack of either protein but likely involve 

indirect effect(s) on other DGCs or PDEs. We previously showed that SgmT is 

sequestered in one or more clusters localized along the cell length in a manner that 

depends on c-di-GMP binding by the GGDEF domain and suggested that catalytically 

active DGC(s) are present in these clusters and would function to sequester SgmT 

(Petters et al., 2012). Thus, in the case of the ∆sgmT mutant, it is possible that lack of 

SgmT may cause an increase in the activity of this hypothetical DGC(s). In several 

other bacteria low c-di-GMP levels are associated with reduced EPS accumulation and 

high levels with increased EPS accumulation (Römling et al., 2013) as reported here 

for the dmxA and ∆sgmT mutants. Also, c-di-GMP-dependent inhibition of motility is 

commonly observed. A well-understood example involves the PilZ domain protein 

YcgR in E. coli and S. enterica, which upon c-di-GMP binding interacts with the flagella 

basal body to interfere with flagella rotation (Boehm et al., 2010). The M. xanthus 

genome encodes at least 15 PilZ domain proteins but their function is unknown. c-di-

GMP has also been reported to regulate gliding motility in B. bacteriovorus (Hobley et 

al., 2012). Finally, c-di-GMP has been implicated in regulation of T4P-dependent 

motility in P. aeruginosa and X. campestris by binding to the catalytically inactive EAL 

domain of the FimX protein that stimulates T4P assembly (Kazmierczak et al., 2006, 

Navarro et al., 2009, Guzzo et al., 2013, Guzzo et al., 2009). In X. campestris FimX 

interacts with a PilZ domain protein that in turn interacts with the PilB ATPase that is 

required for T4P assembly (Guzzo et al., 2013, Guzzo et al., 2009). The M. xanthus 

genome does not encode a FimX homolog. We have reported here that high levels of 

c-di-GMP inhibit pilA transcription, thus, introducing a novel mechanism for how c-di-

GMP may regulate T4P-dependent motility.  

 

3.2. c-di-GMP role during development in M. xanthus 

In this study, we have shown for the first time that the second messenger c-di-

GMP is a regulator of starvation-induced development in M. xanthus. In response to 

starvation, c-di-GMP level increased in a time dependent manner ~4-fold in WT cells. 

In otherwise WT cells, further increase of c-di-GMP level by expression of DgcAWT 

neither interfered with aggregation of cells to form fruiting bodies nor with sporulation, 

whereas reducing the c-di-GMP level by expression of PA5295WT caused defects in 

aggregation as well as in sporulation. These data document that c-di-GMP level is 

important for aggregation into fruiting bodies and sporulation and suggest a mechanism 

in which a threshold level of c-di-GMP is essential for these two processes to occur. 
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We identified two catalytically active proteins that are specifically required for 

aggregation into fruiting bodies and sporulation: DmxB and PmxA. DmxB has DGC 

activity and binds c-di-GMP via its I-site and PmxA has PDE activity. 

Inactivation of PmxA did not have an effect on c-di-GMP level during starvation, 

nevertheless it is an active phosphodiesterase in vitro and mutation in the conserved 

HD-GYP domain abolished protein function in vivo. This suggests that this protein does 

not contribute to the global cellular pool of c-di-GMP but rather acts locally and its 

precise function remains to be identified. Along these lines, the HD-GYP domain 

protein RpfG from X. campestris was found to interact directly with several GGDEF 

domain proteins. This interaction was independent on phosphodiesterase activity of 

RpfG and diguanylate cyclase activity of GGDEF domain proteins. These results 

suggest that c-di-GMP signalling occurs in “microcompartments” - multiprotein 

complexes that contain a specific DGC and/or PDE as well as specific effector and 

target components, which associate by specific protein–protein or protein–DNA 

interactions (Ryan et al., 2010, Hengge, 2009, Ryan et al., 2012a). 

In case of DmxB, our data demonstrate that this protein is a developmentally 

induced DGC responsible for increasing c-di-GMP level upon nutrient limitation. DmxB 

and c-di-GMP stimulate transcription of a subset of eps genes that encode enzymes 

involved in EPS metabolism, and by increasing EPS accumulation allows cells to 

aggregate to form fruiting bodies.  

c-di-GMP has been shown to be important in response to the level of nutrients. E. 

coli cells swim exploring the environment and the average swimming speed decreases 

when cells enter stationary phase. Swimming is powered by the rotary flagellar motor. 

It has been shown that during exponential growth PDE activity is favoured, keeping the 

c-di-GMP level low. In contrast during starvation, the level of c-di-GMP increases 

activating the receptor protein YcgR, which in turn binds directly to the motor and slows 

it down (Boehm et al., 2010) (Figure 66). M. smegmatis possesses two genes encoding 

GGDEF–EAL (MSDGC-1) and GGDEF (MSDGC-2) domain proteins but only MSDGC-

1 was shown to be active in vitro. MSDGC-1 is a bifunctional protein and its 

inactivation, resulting in c-di-GMP-null strain, affects long-term survival under nutrient 

starvation. The authors suggested that increased c-di-GMP level is required in the M. 

smegmatis stationary phase under nutrient-depleted conditions (Bharati et al., 2012). 

These examples show that increasing the level of c-di-GMP may be a widespread 

response to stress and nutrients limitation, although the mechanism of this regulation 

differs between species.  
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Most bacterial genomes encode DGCs and PDEs, but the numbers vary 

dramatically (Römling et al., 2013). The presence of large numbers of enzymes that 

synthesize or degrade c-di-GMP raises the question how these enzymes are regulated 

to obtain specific output responses. It has been suggested that specificity in c-di-GMP 

signaling could be obtained by temporal and/or spatial sequestration of these proteins 

or by effectors having different binding affinities (Hengge, 2009). Temporal 

sequestration would ensure that specific proteins are only available under certain 

conditions, eliminating unwanted cross-talk between signaling modules; spatial 

sequestration sequester partner proteins to distinct subcellular locations where they 

would contribute to making and breaking local pools of c-di-GMP that would only be 

available to the relevant partner proteins. We observed that DmxB can, at least 

partially, be functionally replaced by a heterologous DGC. Because it is unlikely that 

this DGC would be able to replace protein-protein interactions involving DmxB, these 

data suggest that DmxB may contribute to a global cellular pool of c-di-GMP. 

Consistently, preliminary data have provided no evidence that DmxB localizes to 

a particular subcellular location. However, simply increasing the level of c-di-GMP in 

vegetative cells is not sufficient to initiate fruiting body formation. Starvation signals are 

still required, suggesting that those signals might regulate accumulation or the activity 

of a specific effector. 

In total, our data are consistent with a model in which a threshold of c-di-GMP is 

essential for the proper progression of the developmental program in M. xanthus. In 

WT cells, this threshold level of c-di-GMP is generated by DmxB. c-di-GMP in excess 

does not interfere with development and once the threshold level has been reached, 

cells can form fruiting bodies; however, lack of c-di-GMP blocks the developmental 

program. Interestingly, a DmxB variant with a mutated I-site accumulating ~10-fold 

Figure 66. Model for c-di-GMP-
mediated regulation of swimming 
velocity in E. coli 

E. coli can fine-tune its swimming 
speed with the help of a molecular 
brake (YcgR) that, upon binding of 
cyclic di-GMP, interacts with the 
motor protein to interfere with flagellar 
motor function. Activation of this 
network is connected to nutrient 
depletion and might represent an 
adaptation to starvation. Figure was 
modified from Boehm et al., 2010. 
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more c-di-GMP than the WT strain developed normally, suggesting that an allosteric 

feedback inhibition of DGC activity by DmxB is not essential. We speculate that this 

feedback minimizes “wasteful” c-di-GMP synthesis during starvation. 

Among the 17 GGDEF domain proteins in M. xanthus, 11 are predicted to have 

DGC activity. We could show that DmxA has DGC activity and is involved in regulating 

EPS accumulation in vegetative cells. Lack of DmxA causes a slight but significant 

increase in the level of c-di-GMP and a 4-fold increase in EPS accumulation and in that 

way also a defect in T4P-dependent motility. Our finding that DmxB is exclusively 

synthesized in developing cells provide evidence that M. xanthus deploys functionally 

distinct DGCs at different stages of its life cycle. Similarly, it was recently demonstrated 

that B. bacterivorus uses different DGCs at different stages of its predatory life cycle 

(Hobley et al., 2012). 

There are only a few examples documenting the role of c-di-GMP in cell cycle 

control and multicellular development. In C. crescentus, phosphotransfer signaling 

integrates with c-di-GMP signaling to regulate cell cycle progression and cell 

differentiation (Aldridge et al., 2003, Paul et al., 2004, Curtis & Brun, 2010, Abel et al., 

2011). High c-di-GMP level is important for the transition from a swarmer cell to 

a stalked cell, whereas low c-di-GMP levels seem to be required for the correct 

development of swarmer cells. Altogether, a body of evidence suggests that c-di-GMP 

is asymmetrically distributed between the dividing swarmer cell and stalked cell 

(Aldridge et al., 2003, Paul et al., 2004, Christen et al., 2010).  

In S. venezuelae, c-di-GMP also regulates development, specifically the 

formation of aerial hyphae. However, in this organism, a high level of c-di-GMP inhibits 

development by binding to the master regulator BldD, which inhibits expression of 

sporulation genes, while a decrease level of c-di-GMP stimulates development 

(Tschowri et al., 2014) (Figure 67). Since low level of c-di-GMP in M. xanthus inhibits 

progression of development, this observation suggests that c-di-GMP has opposite 

effects on development in S. venezuelae and M. xanthus.  
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Figure 67. Schematic model of c-di-GMP-activated DNA Binding by BldD and its influence on 
S. venezuelae development 

CTD - C-terminal domain of BldD 
DBD – DNA binding domain of BldD 
The DBDs interact only weakly in vivo (indicated by the double-headed arrow). Increased c-di-GMP levels 
lead to CTD dimerization, resulting in a significant increase in the local concentration of the DBDs, allowing 
them to dimerize in the presence of cognate DNA to effect high affinity DNA binding. This leads to 
repression of the BldD regulon and blocks multicellular differentiation. Figure was reproduced from 
Tschowri et al., 2014. 
 
 
 

In Dictyostelium discoideum (the only eukaryote where c-di-GMP has been 

identified) the DGC DgcA produces c-di-GMP and is responsible for stalk cell 

differentiation during fruiting body formation. Lack of DgcA blocks the transition from 

slug migration to fruiting body formation, as well as the expression of stalk specific 

genes. Intriguingly, development and stalk formation is restored by adding c-di-GMP to 

a dgcA mutant (Chen & Schaap, 2012). In this context, it should be noted that we have 

found no evidence that addition of c-di-GMP to a ∆dmxB mutant restores development. 

Our data suggest that c-di-GMP regulates eps gene transcription during 

development in M. xanthus. c-di-GMP is known from the literature to affect transcription 

of genes involved in accumulation of ECM components. The c-di-GMP receptor FleQ in 

P. aeruginosa controls expression of not only the flagellar regulon but also the 

polysaccharide pel and psl biosynthesis genes (Hickman & Harwood, 2008). In 

V. cholerae the transcriptional regulators VpsR and VpsT, both of which bind c-di-GMP, 

activate vps (Vibrio polysaccharide) gene expression (Shikuma et al., 2012). In E. coli, 

a set of c-di-GMP metabolizing proteins regulates expression of the CsgD response 

regulator, which is a key transcription factor controlling expression of the csgBAC 

operon, encoding the structural subunits of curli fimbriae and expression of adrA, 
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a putative regulatory gene required for cellulose synthesis (Sommerfeldt et al., 2009, 

Chirwa & Herrington, 2003). In this context it has to be mentioned that EPS 

composition and metabolism in M. xanthus are not well studied so the precise functions 

of epsA and epsB genes need to be further investigated. eps gene cluster described in 

this study is not the only cluster in M. xanthus genome encoding for proteins involved in 

EPS accumulation. Thus, it is highly probable that c-di-GMP regulates also other eps 

genes.  

Interestingly, it was previously reported that aggregating cells accumulate more 

EPS than non-aggregating cells (Lee et al., 2012a) raising the possibility that DmxB 

may not accumulate in all starving cells or, alternatively, not be active in all starving 

cells. Future experiments will be aimed for addressing these questions. Several 

proteins have been described to accumulate differentially in the aggregating and non-

aggregating cells during development of M. xanthus. The zinc metalloprotease FibA is 

specific for the aggregated cell fraction (Lee et al., 2012a) while protein S (a spore coat 

protein) is produced in both non-aggregated and aggregated fractions of the population 

but by 48 h is upregulated at least 2-fold in the aggregated fraction (O'Connor & 

Zusman, 1991b). Also developmental regulator proteins FruA and MrpC display distinct 

accumulation patterns in the aggregating and non-aggregating fractions (Lee et al., 

2012a). 

Interestingly, we did not observe that phosphorylation of the receiver domain is 

required for DmxB function. It was reported that DGCs can be activated by dimerization 

mediated by phosporylation of the receiver domain. The best-studied examples of this 

type of regulation are PleD from C. crescentus and WspR from P. aeruginosa (Paul et 

al., 2007, Hickman et al., 2005). However, while the DmxB variant which mimics the 

phosphorylated state is active in vitro and in vivo in E. coli, it is not active in vivo in M. 

xanthus. We speculate, that phosphorylation results in DmxB interacting with other 

proteins in M. xanthus cells and this interaction inhibits DmxB activity. Nevertheless, 

this hypothesis needs to be further tested by identification of proteins potentially 

interacting with DmxB. As a starting point, we tested, if the response regulator 

MXAN3734 encoded next to dmxB is involved in development, but this was not the 

case. Additionally, it would be also interesting to identify the partner kinase that 

phosphorylates DmxB receiver domain. 

We found that DmxB accumulation was significantly affected in all the strains 

tested that had an early developmental defects (difE, ∆lonD, asgA), and normal in 

a mutant affected at the later stage of development (fruA). We conclude that in M. 

xanthus c-di-GMP signaling is connected with intercellular signaling pathways required 

for fruiting body formation and sporulation. 
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3.3. c-di-GMP effectors in M. xanthus 

An important question remains open and concerns c-di-GMP effectors in 

M. xanthus. In contrast to c-di-GMP metabolizing proteins, their identification is very 

challenging due to the high diversity and limited tools for their identification. As part of 

this work, we aimed to initially identify and characterize c-di-GMP receptors using a c-

di-GMP capture compound approach.  

Capture Compound Mass Spectrometry (CCMS) is a powerful tool to identify new 

effectors nevertheless there are several limitations of this technique. The important 

parameter is the required high protein concentration thus, the cell pellet resuspension 

should be performed in a low volume of lysis buffer. This is difficult to perform in case 

of M. xanthus cells that possess high amounts of EPS and are difficult to resuspend at 

the high density. Additionally, during starvation many cells lyse significantly decreasing 

the protein content and the sample quality. The critical factors are also a clean keratin-

free environment, proper negative controls and biological replicates.  

As this was the first trial to apply the CCMS technology in M. xanthus, the list of 

candidates obtained was likely not complete and included false positives as well as 

negatives. Nevertheless, the experiment allowed us to identify several candidates that, 

based on in vitro DRaCALA binding assay are real c-di-GMP binding proteins: 

MXAN5707, MXAN0415, MXAN4361 and MXAN4362. 

We observed that most of the c-di-GMP metabolizing proteins in M. xanthus do 

not show distinct phenotypes upon inactivation. This could be due to high redundancy 

in c-di-GMP network where proteins with the same functions can compensate for the 

absence of each other. It is also possible that similar redundancy exists in case of c-di-

GMP specific effectors as the deletion of MXAN5707 or MXAN0415 did not have any 

effect on growth, cellular motility or fruiting body formation. This hypothesis is 

additionally supported by bioinformatic analysis suggesting that MXAN5707 is one of 

22 PilZ domain proteins encoded in the M. xanthus genome while MXAN0415 is one of 

five PilT paralogs. Also MXAN4361 and MXAN4362 are paralogs and we suspect that 

in order to determine their function we would need to inactivate both of them at the 

same time. We were so far unsuccessful in creating the in-frame deletions mutant for 

those genes and we suspect that the deletion construct affects the promoter region of 

the essential genes in the neighbourhood MXAN4360 (tilS – described as essential in 

B. subtilis (Fabret et al., 2011)) and MXAN4359 (ftsH – described as essential in M. 

xanthus (Konovalova et al., 2012)). 

Additionally, we investigated by using DRaCALA the c-di-GMP binding of sigma-

54 dependent DNA-binding response regulator Nla24 which is located within eps gene 
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cluster (epsI). Nla24 was shown to be important for both motility systems and EPS 

accumulation and to regulate the expression of epsY and A-motility genes aglU and 

cglB (Lancero et al., 2004). Although Nla24 shares domain structure and 39% amino 

acids identity with FleQ (a c-di-GMP receptor from P. aeruginosa), we were not able to 

detect binding under the conditions tested. Also, a PilZ domain in M. xanthus can not 

be recognized within proteins of eps locus or within the known proteins involved in EPS 

metabolism. Future effort will be crucial to identify more of the c-di-GMP effectors in 

M. xanthus during both vegetative growth and development and to investigate their 

function in motility, fruiting body formation and possibly other cellular processes. 

 

3.4. Future perspectives 

The data presented here provide evidence that c-di-GMP is involved in the 

regulation of T4P-dependent motility as well as development in M. xanthus. While 

identification of the five proteins (among 24 predicted to be involved in c-di-GMP 

metabolism) important for both of those processes gives a basic insight into their c-di-

GMP dependent regulation in M. xanthus, it also raises questions about the function of 

the remaining 19 proteins. Most of these proteins are conserved in related fruiting 

Myxobacteria suggesting strong selective pressure to maintain these genes. Yet, no 

phenotypic differences were evident between WT and any of the 19 mutants 

suggesting that these 19 proteins are not active under the conditions tested or have 

partially redundant functions. To be able to determine their role we would like to 

systematically delete all of them creating a c-di-GMP-null strain. This would allow us to 

answer the question which proteins are involved in maintaining the basic c-di-GMP 

pools during vegetative growth. 

As we were not able so far to assign a role for PmxA during development, we 

could like to study this protein in more details. It would be especially interesting to 

investigate if PmxA accumulation and gene transcription is also developmentally 

regulated. As we suggest that this protein contributes to maintain some local c-di-GMP 

pool, we would aim as well to investigate its cellular localization.  

Also, the screening performed so far did not allow us to identify the specific 

receptor responsible for c-di-GMP influence on vegetative growth and pilA transcription 

as well as on development and transcriptional regulation of eps cluster. We believe that 

improved capture compound based pull-down in combination with method based on 

functionalized 2′-aminohexylcarbamoyl-c-di-GMP (2′-AHC-c-di-GMP) covalently 

coupled to sepharose beads (Duvel et al., 2012), could help us to identify more 

candidates for c-di-GMP specific effectors in M. xanthus. 
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4. Materials and Methods 

4.1. Chemicals and equipment 

All the reagents, enzymes, antibiotics and kits used in this work are listed 

together with their supplier in the Table 3. All the devices, their application and 

manufacturer as well as software used for data analysis are listed in Table 4.  

 

Table 3. Reagents, enzymes, antibiotics and kits 

Reagents Supplier 

Chemicals 
Roth (Karlsruhe),  
Merck (Darmstadt), 
Sigma-Aldrich (Taufkirchen) 

Media components, agar 

Roth (Karlsruhe),  
Merck (Darmstadt),  
Difco (Heidelberg),  
Invitrogen (Darmstadt) 

2-log DNA Ladder New England Biolabs (NEB) (Frankfurt a. M.) 

Oligonucleotides 
Eurofins MWG Operon (Ebersberg), 
Invitrogen (Karlsruhe) 

Rabbit antisera Eurogentec (Seraing, Belgium) 

Goat anti-rabbit IgG, goat anti-rabbit IgG DyLight 549 Pierce/Thermo Scientific (Dreieich) 

Luminata Western HRP Substrate Merck Millipore (Darmstadt) 

PageRuler Plus Prestained Protein Ladder Thermo Scientific (Dreieich) 

2-log DNA Ladder New England Biolabs (NEB) (Frankfurt a. M.) 

Enzymes 

Antarctic Phosphatase New England Biolabs (Frankfurt a. M.) 

Phusion High-Fidelity DNA Polymerase Thermo Scientific (Dreieich) 

T4 DNA Ligase Fermentas (St. Leon-Rot) 

5 PRIME MasterMix 5 PRIME GmbH (Hamburg) 

restriction enzymes 
Fermentas (St. Leon-Rot),  
New England Biolabs (Frankfurt a. M.) 

SYBR Green PCR Master Mix  Applied Biosystems (Darmstadt)  

Calf intestine alkaline phosphatase Fermentas (St. Leon-Rot) 
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Antibiotics 

kanamycin sulfate,  
chloramphenicol,  
ampicillin sodiumsulfate,  
gentamycin sulfate,  
oxytetracycline dehydrate,  
tetracycline hydrochloride 

Roth (Karlsruhe) 

Kits 

DNA purification (chromosomal DNA) Epicentre Biotechnologies (Wisconsin,USA) 

DNA purification (plasmid DNA),  
PCR purification,  
Gel purification 

Zymo Research (Freiburg),  
Qiagen (Hilden), 
Macherey-Nagel (Düren) 

cDNA Archive kit Applied Biosystems (Darmstadt) 

RNA purification RNeasy kit (Qiagen) 

c-di-GMP caproKit Caprotec Bioanalytics GmbH (Berlin) 

 

 

Table 4. Equipment 

Application  Device  Manufacturer  

Cell disruption  
Branson Sonifier 250, 
French pressure cell press  

G. Heinemann (Schwäbisch Gmünd)  
SLM instruments (Urbana, IL) 

Centrifugation  

RC 5B plus,  
Ultra Pro 80,  
Multifuge 1 S-R,  
Biofuge fresco,  
Biofuge pico,  
Avanti J-26 XP,  
Optima L-90K,  
Centrifuge 5424 R  

Sorvall/Thermo Scientific (Dreieich),  
Heraeus/Thermo Scientific (Dreieich),  
Beckman Coulter (Krefeld), 
Eppendorf (Hamburg)  

PCR  
Mastercycler personal,  
Mastercycler epgradient  

Eppendorf (Hamburg)  

Thermomixer  Thermomixer compact  Eppendorf (Hamburg)  

DNA illumination  
and documentation  

E-BOX VX2 imaging system  PeqLab (Eberhardzell)  

DNA illumination  UVT_20 LE  Herolab (Wiesloch)  

Electroporation  GenePulser Xcell  Bio-Rad (München)  

Protein electrophoresis  Mini-PROTEAN® 3 cell  Bio-Rad (München)  

Western blotting  
TransBlot®TurboTM 

Transfer System  
Bio-Rad (München)  

Chemiluminescence 
detection  

Luminescent image  
analyzer LAS-4000  

Fujifilm (Düsseldorf)  

Microscopes  
MZ75 Stereomicroscope 
DM IRE2 Inverted microscope 
EM 301 Electron microscope 

Leica Microsystems (Wetzlar),  
Philips (Eindhoven, The Netherlands)  
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Application  Device  Manufacturer  

Determination of optical 
densities or nucleic acids 
absorption  

Ultrospec 2100 pro  
Spectrophotometer  
Nanodrop ND-1000 UV-Vis  
spectrophotometer  

Amersham Biosciences (München)  
Nanodrop (Wilmington)  

Identification of proteins  
4800 plus MALDI TOF/TOF  
Analyzer  

Applied Biosystems (Darmstadt)  

UV crosslinking CaproBox  Caprotec Bioanalytics GmbH (Berlin) 

Checking sequences, 
sequence alignments  

Vector NTI advance  
software, suite 11  

Invitrogen (Darmstadt)  

 

 

4.2. Media 

E. coli cells were cultivated in Luria-Bertani (LB) liquid media or on LB agar 

plates with 1.5% agar concentration. M. xanthus cells were cultivated in CTT media or 

on CTT agar plates with 1.5% agar concentration. Motility assays of M. xanthus cells 

were performed on A- or S-motility plates. Media composition is described in Table 5. 

 

Table 5. Growth media for E. coli and M. xanthus 

Media  Composition  

E. coli  

LB medium  
1% (w/v) tryptone,  
0.5% (w/v) yeast extract,  
1% (w/v) NaCl  

LB agar plates  
LB medium,  
1.5% (w/v) agar  

M. xanthus  

CTT  

1% (w/v) Bacto casitone,  
10 mM Tris-HCl pH 8.0,  
1 mM potassium phosphate buffer pH 7.6,  
8 mM MgSO4  

CTT agar plates  
CTT medium,  
1.5% agar  

CTT soft agar  
CTT medium,  
0.5% agar  

Motility assays 

A-motility plates 
(Hodgkin & Kaiser, 1977) 

0.5% CTT,  
1.5% agar  

S-motility plates  
(Hodgkin & Kaiser, 1977) 

0.5% CTT,  
0.5% agar  
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Developmental assays 

TPM-agar  
(Kuner & Kaiser, 1982) 

10 mM Tris-HCl, pH 7.6,  
1 mM KH2PO4, pH 7.6,  
8 mM MgSO4,  
1.5% agar  

CF-agar  
(Shimkets & Kaiser, 1982) 

10 mM Tris- HCl, pH 8.0,  
1 mM KH2PO4, pH 7.6,  
8 mM MgSO4,  
0.02% (NH4)2SO4,  
0.1% NaPyruvate,  
0.2% NaCitrate,  
1.5% agar  

MC7 buffer 
10 mM MOPS, pH 7.0,  
1 mM CaCl2 

 

 

Table 6. Media for recombinant protein expression in E. coli 

Media  
Composition  

ZY  
10 g tryptone,  
5 g yeast extract,  
925 ml H2O 

NPS buffer (20x)  

0.5 M (NH4)2SO4,  
1 M KH2PO4,  
1 M Na2HPO4,  
H2O to 1 liter,  
pH 6.75 

5052 solution (50x) 

250 g glycerol,  
25 g glucose,  
100 g lactose,  
H2O to 1 liter 

ZYP-5052  
autoinduction medium  

929 ml ZY,  
1 ml 1 M MgSO4,  
50 ml NPS buffer (20x),  
20 ml 5052 solution (50x) 

2 x TY medium  

16 g tryptone,  
10 g yeast extract,  
5 g NaCl ml H2O 
H2O to 1 liter 

 

The appropriate antibiotics were added to cultures when needed. For the protein 

induction IPTG was added and for the selection galactose were added (Table 7). 
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Table 7. Additives used for E. coli and M. xanthus 

Additive  Final concentration  Dissolved in  

E. coli  

Ampicillin sodium sulfate  100 μg/ml  H2O  

Chloramphenicol  30 μg/ml  99.99% ethanol  

Kanamycin sulfate  50 μg/ml  H2O  

Tetracyclin  15 μg/ml  99.99% ethanol  

IPTG  0.1 mM - 0.5 mM H2O  

M. xanthus  

Kanamycin sulfate  50 μg/ml  H2O  

Oxytetracycline  10 μg/ml  0.1M HCl 

Galactose  2.5%  H2O  

 

4.3. Microbiological methods  

4.3.1. E. coli strains 

Table 8. E. coli strains used in this study 

Strain  Relevant characteristics  Source or reference  

Mach1 
∆recA1398 endA1 tonA Φ80∆lacM15  
∆lacX74 hsdR(rK- mK+)  

Invitrogen  
(Darmstadt)  

Rosetta 2 (DE3) 
F-ompT hsdSB(rB-mB-) gal dcm(DE3)  
pRARE2(CmR)  

Novagen/Merck  
(Darmstadt)  

 

4.3.2. M. xanthus strains  

For strains containing plasmids integrated at the Mx8 attB site, the gene 

expressed including the promoter driving the expression is indicated in brackets. 

 

Table 9. M. xanthus strains used in this study 

Strain Relevant characteristics Source or reference 

DK1622 Wild-type (Kaiser, 1979) 

DK1300 pilC (Hodgkin & Kaiser, 1979) 

SA3502 ∆sgmT (Petters et al., 2012) 

DK11063 fruA::Tn5 lacΩ7540; kanR (Søgaard-Andersen et al., 1996) 

SA4600 ∆csgA Somasri Dam Pal 

DK5057 asgA (Kuspa & Kaiser, 1989) 

DK4398 asgB (Kuspa & Kaiser, 1989) 

SA6273 ∆lonD Magdalena Polatynska 
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Strain Relevant characteristics Source or reference 

SW501  difE::kanR (Yang et al., 1998b) 

DK10410 ∆pilA (Wu & Kaiser, 1996) 

DK10409  ∆pilT (Jakovljevic et al., 2008) 

SA3535 attB::pTP110; (PpilA-PA5295 WT-strepII) Tobias Petters 

SA3537 attB::pTP112; (PpilA-PA5295 E328A-strepII) Tobias Petters 

SA3543 attB::pTP114; (PpilA-dgcA WT-strepII) Tobias Petters 

SA3559 attB::pTP131; (PpilA-dgcA D164A-strepII) Tobias Petters 

SA3524 ∆MXAN2424  Tobias Petters 

SA3525 ∆MXAN2530  Tobias Petters 

SA3544 ∆MXAN4232  Tobias Petters 

SA3546 ∆pmxA  Tobias Petters 

SA3554 ∆tmoK  Tobias Petters 

SA3533 ∆MXAN5791  Tobias Petters 

SA3545 ∆MXAN5199 Tobias Petters 

SA3548 ∆MXAN4675 Tobias Petters 

SA3555 ∆MXAN1525 Tobias Petters 

SA3556 ∆MXAN2643 Tobias Petters 

SA3557 ∆MXAN4029 Tobias Petters 

SA3558 ∆MXAN2807  Tobias Petters 

SA3561 dmxA::pTP133  Tobias Petters 

SA3569 ∆MXAN4257  Tobias Petters 

SA3599 ∆actA  (Heering, 2013) 

SA5524 ∆MXAN2997  Tobias Petters 

SA5600 ∆MXAN4463  This study 

SA5605 ∆dmxB  This study 

SA5606 ∆MXAN7362  This study 

SA5607 ∆MXAN5366  This study 

SA5525 ∆MXAN5340  Tobias Petters 

SA5526 ∆MXAN5053  Tobias Petters 

SA5527 ∆MXAN6098  Tobias Petters 

SA5619 ∆dmxB; attB::pDJS27 (Pnat-dmxBWT) This study 

SA5620 ∆dmxB; attB::pDJS37 (Pnat-dmxBD221A) This study 

SA5621 ∆dmxB; attB::pDJS33 (Pnat-dmxBD60N) This study 

SA5642 ∆dmxB; attB::pDJS66 (Pnat-dmxBD60E) This study 

SA5622 ∆dmxB; attB::pDJS38 (Pnat-dmxBR210A) This study 

SA5636 ∆dmxB; attB::pTP114 (dgcAWT-strepII) This study 

SA5637 ∆dmxB; attB::pTP131 (dgcAD164A-strepII) This study 

SA5629 ∆pmxA; attB::pDJS56 (Pnat-pmxAWT) This study 
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Strain Relevant characteristics Source or reference 

SA5631 ∆pmxA; attB::pDJS62 (Pnat-pmxAH424A, D425A) This study 

SA5630 ∆tmoK; attB::pDJS57 (Pnat-tmoKWT) This study 

SA5634 ∆MXAN5707 This study 

SA5635 ∆MXAN0415 This study 

SA5640 ∆pilT; attB::pTP114 (dgcAWT-strepII) This study 

SA5641 ∆pilT; attB:: pTP131 (dgcAD164A-strepII) This study 

SA5646 ∆pilT ∆MXAN0415 This study 
 

 

4.3.3. Cultivation and storage of E. coli and M. xanthus  

E. coli strains were grown in liquid LB media with 230 rpm horizontal shaking or 

on agar plates at 37 °C. Appropriate antibiotics were added when necessary. The 

optical densities of cultures were determined photometrically at 600 nm. Glycerol 

stocks were made with overnight culture by adding the glycerol to the final 

concentration of 10%, freezing in liquid nitrogen and stored at -80 °C.  

M. xanthus cells were grown on CTT agar plates at 32 °C in dark with appropriate 

antibiotics when necessary. For the liquid cultures, cells were harvested from the plate, 

resuspended in volume of 1 ml of CTT and then transferred to the bigger volume of 

media. Liquid cultures were incubated with horizontal shaking 220 rpm at 32 °C. The 

optical densities of M. xanthus cultures were determined photometrically at 550 nm. 

The glycerol stocks were made with the M. xanthus culture growing exponentially by 

adding the glycerol to 4%. The mixtures were fast frozen in liquid nitrogen and stored at 

-80 °C.  

 

4.3.4. Motility assays for M. xanthus  

For motility assays, M. xanthus cells from exponentially growing cultures were 

harvested by centrifugation at 4700 rpm for 10 min and resuspended in 1% CTT to 

a calculated density of 7 × 109 cells/ml. 5 µl aliquots of the suspensions were spotted 

on 0.5% for S-motility and 1.5% agar for A-motility supplemented with 0.5% CTT and 

incubated in dark at 32 °C. After 24 h, colony morphology and colony edges were 

observed using a Leica MZ8 stereomicroscope or a Leica IMB/E inverted microscope 

and visualized using Leica DFC280 and DFC350FX CCD cameras, respectively. T4P-

dependent motility was quantified by the increase in colony diameter in three technical 

replicates. 
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4.3.5. Cell agglutination assay  

Cell agglutination was measured as described (Shimkets, 1986a) in agglutination 

buffer (10 mM MOPS, pH 7.0, 1mM MgCl2, 1mM CaCl2). Briefly, exponentially growing 

cells in 1% CTT were harvested and resuspended in agglutination buffer to 

a calculated density of 1 × 109 cells/ml and kept at room temperature in the darkness 

between OD readings. OD550 was monitored every 20 min. for 180 min. The relative 

absorbance was calculated by dividing the absorbance measured at each time point by 

the initial absorbance for each strain. Experiments were done in three biological 

replicates. 

 

4.3.6. T4P-shearing assay 

T4P were sheared from cells that had been grown on 1% CTT/1.5% agar plates 

at 32 °C, purified and analyzed by immunoblot with anti-PilA antibodies as described 

(Wu & Kaiser, 1997). Briefly, 30 mg of cells from fresh CTT plates were harvested and 

carefully resuspended in 1 ml of Tris-HCl pH 7.6. The suspension was then vortexed 2x 

10 min. with maximal speed to shear-off T4P from the cell surface. Whole cells and cell 

debris were pelleted by centrifugation 2x 13 000 rpm, 20 min, 4 °C and aliquot was 

used for immunoblot as a whole-cell sample. T4P from the supernatant has been 

precipitated with 100 mM MgCl2 overnight, at 4 °C, and then harvested by 

centrifugation 13 000 rpm, 20 min, 4 °C. Sheared-off samples were analyzed via 

immunoblot with α-PilA antibodies. Whole-cell sample was analyzed with α-PilA 

antibodies and additionally with α-PilC antibodies, as a loading control. 

 

4.3.7. Trypan blue dye-binding assays  

To determine the ability of M. xanthus cells to bind Trypan blue dye, both liquid 

as well as plate assays were carried out. For plate-based assays, cells were grown in 

CTT medium to a density of 7 × 108 cells/ml, harvested and resuspended in 1% CTT or 

MC7 buffer to a calculated density of 7 × 109 cells/ml. 20 µl aliquots of the cell 

suspensions were placed on 0.5% agar supplemented with 0.5% CTT and 20 µg/ml 

trypan blue or on 1.5% TPM agar supplemented 20 µg/ml trypan blue. Plates were 

incubated at 32 °C for 24 h.  

To quantify binding of trypan blue, a liquid binding assay was adapted from 

(Black & Yang, 2004) except that 5 × 108 cells from exponentially growing cultures 

were harvested, washed, and resuspended in 900 µl 10 mM MOPS pH 7.5, 1 mM 
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CaCl2 buffer. The cell suspensions were then mixed with 100 μl of Trypan blue stock 

solution (150 μg/ml). Control sample containing Trypan blue in MOPS buffer only was 

included. All samples were mixed and incubated in the dark at room temperature for 30 

min. Cell suspensions were then pelleted at 13 000 rpm for 5 min, and the 

absorbances of supernatants were measured at 585 nm. Percentage of Trypan blue 

bound by each sample was calculated by dividing the absorbance of each sample by 

the absorbance of the control. Triplicate assays were performed for all samples. 

 

4.3.8. DGC activity assay in vivo in E. coli based on Congo Red binding  

E. coli Rosetta 2(DE3) cells transformed with respective expression plasmids 

were grown on LB plates supplemented with 50 µg/ml Congo Red (CR). Plates were 

incubated at 30 °C overnight. 

 

4.3.9. Development assay and spore assay of M. xanthus  

M. xanthus development was examined on the following three different 

conditions: TPM agar plates, CF agar plates and submerged culture in MC7 buffer. The 

strains were cultivated in parallel to OD550 ~ 0.5-0.9. The cells were then harvested and 

resuspended in MC7 buffer to a calculated density of 5 x 109 cells/ml. 20 μl aliquots 

were spotted on TPM and CF agar. For development in submerged culture, 50 μl of 

concentrated cells were diluted in 350 μl MC7 and placed in a 15 mm well in 

a microtiter dish. Aggregation was followed using a Leica MZ8 stereomicroscope and 

a Leica IMB/E inverted microscope and visualized using a Leica DFC280 CCD camera.  

Spore numbers were determined as the number of heat and sonication resistant 

spores formed after 120 h of starvation by harvesting cells from one of the 15 mm well 

in a microtiter dish. Cells were incubated for 2 h at 55 °C and sonicated 2x, 30%, 

output 3 to disperse fruiting bodies. Spores were counted in a counting chamber 

(Depth 0.02 mm, Hawksley) and presented relatively to WT. To determine the number 

of germinating spores, spore solutions were diluted and plated on CTT 1.5% agar 

plates covered with CTT softagar. 
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4.3.10. 	Glycerol-induced sporulation assay 

Assay was performed as described (Müller et al., 2010) with a slightly modified 

protocol. Briefly, cells were cultivated in CTT media and induced at an OD550 of 0.3 with 

glycerol to a final concentration of 0.5 M. After 4 h, cell morphology was observed by 

placing cells on a thin TPM agar-pad on a glass slide, immediately covered with 

a coverslip and imaged. To determine efficiency of glycerol-induced sporulation, cells 

were harvested after 4 h incubation, pelleted at 4700 rpm, resuspended in sterile water, 

incubated at 55 °C for 2 h, and then sonicated two times 15 pulses, output 3, 30% duty 

with a Branson sonifier and microtip. Surviving spores from 5 μl of the treated samples 

counted in a counting chamber (Depth 0.02 mm, Hawksley).  

 

4.4. Molecular biology methods  

4.4.1. Oligonucleotides and plasmids  

All oligonucleotides used in this study for cloning and sequencing are listed in 

Table 10 and Table 11. Oligonucleotides used for qRT-PCR are listed in Table 12. 

Underlined sequences display restriction sites used for cloning. Sequences in blue 

show added sequences required for cloning. Nucleotides marked as bold were 

substituted during site-directed mutagenesis. Sequences in green and red indicate 

sequences which are complimentary to fuse PCR products. Other part of the 

sequences represents sequences complementary to the respective genes. All plasmids 

used in this study are listed in Table 13.  

 

Table 10. Oligonucleotides used in this study 

Name Sequence (5’-3’) Purpose 

3735_A ATCGGGTACCATGAAGCCGTACGAGCCCAC 

In frame deletion  
of MXAN3735 
(dmxB) 

3735_B AGGCGAATTCTCGGAGGTCCGGCCGCG 

3735 _C ACCTCCGAGAATTCGCCTCCGGCGCAG 

3735_D ATCGTCTAGAAAGCGATCGCCACTTCCCTG 

3735 _E GCAACTACATGGCCAAGGCC 

3735 _F ATCAGCACCTGGCACAGGTC 

3735 _G AGGTTCCTTCCCAGCGGAGA 

3735 _H TGCTTCCAACGCCGTCTGGT 

3735 Pnat400 forw ATCGAAGCTTTGACGACCCGTCGCGCGGCCACC  Complementation  
of ∆dmxB  3735 Pnat rev ATCGTCTAGATCAGTGCCGCTGCGCCGGAG 
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Name Sequence (5’-3’) Purpose 

3735 OE forw ATCGCATATGATGGAACGGCGCGGCCGGACC  Overexpression  
of full lenght DmxB 
protein 3735 no stop OE rev ATCGAAGCTTGTGCCGCTGCGCCGGAGGCG 

3735 OE GGDEF Fw  ATCGCATATGATGCGCCAGAGCGAGCAGCAGCGC Overexpression of 
DmxBGGDEF 

3735 D60N F CTCATCCTCCTGAACAGGTTCCTTCCC 

dmxB site directed  
mutagenesis 

3735 D60N R GGGAAGGAACCTGTTCAGGAGGATGAG 

3735 D221A F CGCTTCGGTGGAGCCGAGTTCGTCGCG 

3735 D221A R CGCGACGAACTCGGCTCCACCGAAGCG 

3735 R210A F AAGCACGAGCTGGCGGAGTCGGACTTC 

3735 R210A R GAAGTCCGACTCCGCCAGCTCGTGCTT 

3735 D60E F CTCATCCTCCTGGAGAGGTTCCTTCCC 

3735 D60E R GGGAAGGAACCTCTCCAGGAGGATGAG 

3735 forw ATCGTCTAGAATGGAACGGCGCGGCCGGACC Amplification of 
full lenght dmxB 3735 rev ATCGAAGCTTTCAGTGCCGCTGCGCCGGAGG 

 

3734_A ATCGGGTACCTCGCCAACTTCCGTGCGCTG 

In frame deletion 
of MXAN3734 

3734_B new CGCGGCCAGACCCGTCGCCAGTCTGTT 

3734_C new GCGACGGGTCTGGCCGCGGACCGCTAC 

3734_D new ATCGTCTAGAGGCAGCCAGCACGTCCCGCT 

3734 _E CGTCATCTTCCTGACGGGCG 

3734 _F CACGCTGGTGCGGTGGATCA 

3734 _G TTCGTTGGTGGTACGCGCCC 

3734 _H TCGCCCTGACGAAGGCCTCC 

 

2061 Pnat300 forv ATCGAAGCTTTGAACCGGGACGGGCACCTGGGC  Complementation  
of ∆pmxA  2061 Pnat rev ATCGTCTAGATCAGGAGGCGAGCTTCACGGGC 

2061 AA-GYP F GGCGGCATCCTCGCGGCGATCGGGAAGATT  pmxA site directed  
mutagenesis 2061 AA-GYP R AATCTTCCCGATCGCCGCGAGGATGCCGCC 

2061 HD-GYP F ATCGCATATGATGAAGGACGCGTACACCCGTGGC  Overexpression  
of full lenght 
PmxAHD- GYP  2061 no stop OE rev ATCGAAGCTTGGAGGCGAGCTTCACGGGCAG 

 

4445 Pnat200 forv ATCGAAGCTTTGAGCGCTCCCTCACTCGTCTGC  Complementation  
of ∆tmoK 4445 Pnat rev ATCGTCTAGATCATCCGGCCACGGAGCGTA 

4445 OE RRG Fw ATCGCATATGATGGAGCTGCGCCGGGGAGACGAC  Overexpression  
of TmoK REC-REC-

GGDEF 4445 no stop OE Rv ATCGAAGCTTTCCGGCCACGGAGCGTACCAC 

 

dgcA forw ATCGCATATGATGAAAATCTCAGGCGCCCGG  Overexpression  
of full lenght DgcA dgcA no stop rv ATCGAAGCTTAGCGCTCCTGCGCTTGCGCAG 
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Name Sequence (5’-3’) Purpose 

5707_A ATCGGGTACCCAGGCACGAGGTGCCCCGAGA 

In frame deletion 
of MXAN5707 

5707_B GCTCTGCACGCTCATGCTCGCGCCACC 

5707_C AGCATGAGCGTGCAGAGCGGCACGGCC 

5707_D ATCGTCTAGAAGTCAGGAGCAAATCCACGGC 

5707_E GAACTTCGGACGCGCACTCTA 

5707_F AGAGCGTCTGACAAGCGTGGA 

5707_G GACTCGATGAGCGACAAGGCC 

5707_H GGCCTGGAGCACCTCGCCCTT 

5707 F ATCGCATATGATGACTGGCGGTGGCGCGAG Overexpression of 
full length 
MXAN5707 5707 -stop R ATCGAAGCTTCGAGCGGGCCGTGCCGCTCT 

 
 

0415_A ATCGGGTACCAATCACGAGTACTACCACGGG 

In frame deletion 
of MXAN0415 

0415_B GCGCTGGAAGTGGATGTCCGATGCACC 

0415_C GACATCCACTTCCAGCGCGCGCTCGAG 

0415_D ATCGTCTAGATCGCGCTCCACCAGCCGAGC 

0415_E AGCCGGACGTGGTGGCGGTGA 

0415_F CCCATCACGGACTCCACCAGC 

0415_G GGATGAAATCCCAACCAT 

0415_H TGGCGTTGGAAATCATGG 

0415 F ATCGCATATGATGTTGCTGACGAGGGTCACTCCCC Overexpression of 
full lenght 
MXAN0415 0415 -stop R ATCGGCGGCCGCCTCGAACTCGAGCGCGCGCTG 

 

7440 F ATCGCATATGATGAGCACTCCCAGAAAGCGC Overexpression of 
full lenght 
MXAN7440  7440 -stop R ATCGAAGCTTCTCGTCCAGGTCCAGCTTGCG 

7043 F ATCGCATATGATGGGAATGGAATATCGGCAG Overexpression of 
full lenght 
MXAN7043 7043 -stop R ATCGAAGCTTGTCCACCTTCGTCGGGAATGG 

4362 F ATCGCATATGATGGCTACGACGGACCATCGT Overexpression of 
full lenght 
MXAN4362 4362 -stop R ATCGAAGCTTCTTGGGCTCTTCGGAGGGCGC 

4361 Fw ATCGCATATGATGGCAGGCACCGACAAGCGC Overexpression of 
full lenght 
MXAN4361 4361 -stop Rev ATCGAAGCTTCTCCTCCCGAGGGTCCTGGCG 

attB right  GGAATGATCGGACCAGCTGAA  
Primers used to 
verify integration at 
Mx8 phage  
attachment site  

attB left  CGGCACACTGAGGCCACATA  

attP right  GCTTTCGCGACATGGAGGA  

attP left  GGGAAGCTCTGGGTACGAA  
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Table 11. Sequencing oligonucleotides 

Name  Sequence (5’-3’)  

M13 uni (-43) AGGGTTTTCCCAGTCACGACGTT 

M13 rev (-49) GAGCGGATAACAATTTCACACAGG 

malE GGTCGTCAGACTGTCGATGAAGCC 

petup ATGCGTCCGGCGTAGA 

T7 TAATACGACTCACTATAGGG 

T7 term CTAGTTATTGCTCAGCGGT 

MXAN3735 rev TCTCCGCTGGGAAGGAAC 

MXAN2061 fw TACACGGTGCTGCCCGAG 

MXAN2061 rev CTCGGGCAGCACCGTGTA 

MXAN4445 fw TGCTGGTGAAGCCCGTGCT 

MXAN4445 rev AGCACGGGCTTCACCAGCA 

MXAN4445 fw 2 GCGTCATCACCCGCGTGGC 

MXAN4445 rev 2 CCACCAGCACGCGGCCGTG 

 

 

Table 12. Oligonucleotides used for qRT-PCR 

Name  Sequence (5’-3’)  Gene 

3735 qPCR forw GGTCCCTTCTGCTCATCATC 
dmxB (MXAN3735) 

3735 qPCR rev AGGAACCTGTCCAGGAGGA 

7415 qPCR forw GCAAGCCCTTCTACATGCTGA 
epsZ (MXAN7415) 

7415 qPCR rev CGTGCTTCATCTTGAAGACGG 

7441 qPCR forw CACCAGGAAAGCAAGCAGT 
epsH (MXAN7441) 

7441 qPCR rev ACAGCTCGGCAATCAGAAG 

7440 qPCR forw GTGGACTTCCTCTGCGAATC 
epsI (MXAN7440) 

7440 qPCR rev GATGACCAGGTCGAAGGACT 

7422 qPCR forw CTTCGAGTTCAGCCAGCAG 
epsU (MXAN7422) 

7422 qPCR rev CTTCGAACCCTCGACACC 

7421 qPCR forw CAGCAGAACTTCCTCGACAT 
epsV (MXAN7421) 

7421 qPCR rev CCCTTCTTCTCCTCCTCCTT 

7438 qPCR forw GGTAAGGGTGACGATGCC 
epsK (MXAN7438) 

7438 qPCR rev ACGTACACCACCGAGTCCTT 

7433 qPCR forw GTGAGGGCAACTACGCCTAT 
epsO (MXAN7433) 

7433 qPCR rev ATCTGGAGCTTCACGTCCTT 

7451 qPCR forw CATCGACCAGCTCACCTTC 
epsA (MXAN7451) 

7451 qPCR rev GGAACTGCACGTTGTCCTC 

7450 qPCR forw CGCATCTCCATTGGTGAGTA 
epsB (MXAN7450) 

7450 qPCR rev GCCAGAAGTAGGCGGAGTAG 
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Table 13. Plasmids used in this study 

Plasmids Description Reference 

pBJ114 kanR, galK (Julien et al., 2000) 

pSWU30 tetR (Wu & Kaiser, 1997) 

pSW105 PpilA, kanR (Jakovljevic et al., 2008) 

pET24b(+) kanR, expression vector Novagen 

pMALc2x ampR, expression vector New England Biolabs 

pDJS27 pSWU30; Pnat-dmxBWT; tetR This study 

pDJS37 pSWU30; Pnat-dmxBD221A; tetR This study 

pDJS33 pSWU30; Pnat-dmxBD60N; tetR This study 

pDJS66 pSWU30; Pnat-dmxBD60E; tetR This study 

pDJS38 pSWU30; Pnat-dmxBR210A; tetR This study 

pDJS56 pSWU30; Pnat-pmxA; tetR This study 

pDJS62 pSWU30; Pnat-pmxAH424A, D425A; tetR This study 

pDJS57 pSWU30; Pnat-tmoK; tetR This study 

pDJS31 pET24b(+); dgcAWT; kanR This study 

pDJS30 pET24b(+); dmxBWT; kanR This study 

pDJS39 pET24b(+); dmxBD221A; kanR This study 

pDJS42 pET24b(+); dmxBR210A; kanR This study 

pDJS45 pET24b(+); dmxBD60N; kanR This study 

pDJS68 pET24b(+); dmxBD60E; kanR This study 

pDJS71 pET24b(+); pmxA384-568; kanR This study 

pDJS75 pET24b(+); pmxA384-568 H424A, D425A ; kanR This study 

pDJS29 pMALc2x; dmxB; ampR This study 

pDJS49 pMALc2x; dmxBD221A; ampR This study 

pDJS74 pMALc2x; dmxBR210A; ampR This study 

pDJS50 pMALc2x; dmxBD60N; ampR This study 

pDJS51 pMALc2x; dmxBD60E; ampR This study 

pTP114 pSW105, dgcAWT-strepII, kanR Tobias Petters 

pTP131 pSW105, dgcAD164A-strepII, kanR Tobias Petters 

pDJS54 pET24b(+); dmxBGGDEF; kanR This study 

pDJS77 pET24b(+); MXAN0415; kanR This study 

pDJS78 pET24b(+); MXAN5707; kanR This study 

pDJS79 pET24b(+); nla24; kanR This study 

pDJS81 pET24b(+); MXAN7043; kanR This study 

pDJS83 pET24b(+); MXAN4362; kanR This study 

pDJS86 pET24b(+); MXAN4361; kanR This study 

pSM31 pET28a(+); lonD; kanR Magdalena Polatynska 

pPH158 pET28a(+); mrpC; kanR Bhardwaj (PhD thesis, 2013) 



MATERIALS AND METHODS  106 

Plasmids Description Reference 

pXS141 pET24b(+); fruA; kanR Shi (PhD thesis, 2008) 

pDJS01 pBJ114; in-frame deletion of dmxB This study 

pDJS82 pBJ114; in-frame deletion of MXAN5707 This study 

pDJS84 pBJ114; in-frame deletion of MXAN0415 This study 

pDJS40 pBJ114; in-frame deletion of MXAN3734 This study 

 

 

4.4.2. Plasmid construction  

Genomic DNA of M. xanthus DK1622 was used to amplify DNA fragments. 

Plasmid constructs were transformed to E. coli Mach1 cells. To verify the correct 

sequence the purified plasmid DNA was sent for sequencing to the Eurofins MWG 

Operon (Ebersberg) company. Sequences were analyzed using program 

ContigExpress of the VectorNTI advance suite 11 software (Invitrogen).  

The plasmids pDJS01, pDJS82 and pDJS84 were generated for the 

construction of the dmxB, MXAN5707, MXAN0415 in-frame deletion mutants, 

respectively, as described in 4.4.3. The upstream and downstream regions of dmxB, 

MXAN5707 and MXAN0415, were amplified using primer pairs “3735A/3735B and 

3735C/3735D”, “5707A/5707B and 5707C/5707D”, “0415A/0415B and 0415C/0415D”. 

The AB and CD DNA fragments were fused by overlap PCR reaction. Resulting AD 

fragment was digested with KpnI/XbaI or EcoRI/XbaI and ligated to pBJ114. 

Plasmids pDJS27, pDJS37, pDJS33, pDJS66 and pDJS38 are the derivatives 

of pSWU30 and were used to complement ∆dmxB mutant with different versions of 

dmxB under the native promoter. To amplify dmxB with 400 bp of the native promoter, 

from the genomic DNA, primers “3735 Pnat400 forw” and “3735 Pnat rev” were used. 

To introduce the point mutations in dmxB the following primers were used: dmxBD221A 

(“3735 D221A F and R”), dmxBD60N (“3735 D60N F and R”), dmxBD60E (“3735 D60E F 

and R”), dmxBR210A (“3735 R210A F and R”). The products were cloned at the 

HindIII/XbaI sites of pSWU30. 

Plasmids pDJS56 and pDJS62 are the derivatives of pSWU30 and were used to 

complement ∆pmxA mutant with WT version of pmxA and pmxAH424A, D425A under the 

native promoter. To amplify pmxA with 300 bp of the native promoter primers “2061 

Pnat300 forw” and “2061 Pnat rev” were used. To introduce the point mutations in 

pmxB the “2061 AA-GYP F and R” primers were used. The products were cloned at the 

HindIII/XbaI sites of pSWU30. 
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Plasmid pDJS57 is the derivative of pSWU30 and was used to complement 

∆tmoK mutant with WT version of tmoK under the native promoter. To amplify tmoK 

with 200 bp of the native promoter primers “4445 Pnat200 forw” and “4445 inner rev” 

as well as “4445 inner forw” and “4445 Pnat rev” were used. The product was cloned at 

the HindIII/XbaI sites of pSWU30. 

Plasmid pDJS31 is the derivative of pET24b(+) and was used for the 

overexpression of DgcA from C. crescentus with C-terminal His6 tag. DgcA was 

amplified with the primers “dgcA forw” and “dgcA no stop rev” and cloned at the 

NdeI/HindIII sites of pET24b(+). 

Plasmids pDJS30, pDJS39, pDJS42, pDJS45 and pDJS68 are the derivatives 

of pET24b(+) and were used for the overexpression of the different versions of full-

length DmxB protein (DmxBWT, DmxBD221A, DmxBD60N, DmxBD60E and DmxBR210A) with 

C-terminal His6 tag. DmxB was amplified from the plasmids pDJS27, pDJS37, 

pDJS33, pDJS66 and pDJS38 with the primers “3735 OE forw” and “3735 no stop rev” 

and cloned at the NdeI/HindIII sites of pET24b(+). 

Plasmid pDJS54 is the derivative of pET24b(+) and was used for the 

overexpression of GGDEF domain from DmxB with C-terminal His6 tag. GGDEF 

domain from DmxB was amplified with the primers “3735 OE GGDEF Fw” and “3735 

no stop rev” and cloned at the NdeI/HindIII sites of pET24b(+). 

Plasmids pDJS71 and pDJS75 are the derivatives of pET24b(+) and were used 

for the overexpression of WT HD-GYP domain of the PmxA protein as well as PmxA 

HD-GYP H424A, D425A with C-terminal His6 tag. PmxA was amplified from the plasmids 

pDJS56 and pDJS62 with the primers “2061 HD-GYP F” and “2061 no stop OE rev” 

and cloned at the NdeI/HindIII sites of pET24b(+). 

Plasmids pDJS29, pDJS49, pDJS74, pDJS50 and pDJS51 are the derivatives 

of pMAL-c2x and were used for the overexpression of the different versions of full-

length DmxB protein (DmxBWT, DmxBD221A, DmxBD60N, DmxBD60E and DmxBR210A) with 

N-terminal MalE tag. DmxB was amplified from the plasmids pDJS27, pDJS37, 

pDJS33, pDJS66 and pDJS38 with the primers “3735 forw” and “3735 rev” and cloned 

at the XbaI/HindIII sites of pMAL-c2x. 

Plasmids pDJS77, pDJS78, pDJS79, pDJS81, pDJS83 and pDJS86 are the 

derivatives of pET24b(+) and were used for the overexpression of MXAN0415, 

MXAN5707, MXAN7440, MXAN7043, MXAN4362 and MXAN4361, respectively, with 

C-terminal His6 tag. MXAN0415, MXAN5707, MXAN7440, MXAN7043, MXAN4362 

and MXAN4361 were amplified form the genomic DNA with the primers “0415 forw” 

and “0415 -stop rev”, “5707 forw” and “5707 -stop rev”, “0415 forw” and “0415 -stop 

rev”, “7440 forw” and “7440 -stop rev”, “7043 forw” and “7043 -stop rev”, “4362 forw” 
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and “4362 -stop rev”, “4361 forw” and “4361 -stop rev” and cloned at the NdeI/HindIII or 

NdeI/NotI sites of pET24b(+). 

 

4.4.3. Construction of in-frame deletion mutants 

In-frame deletion mutants were constructed by two-step homologous 

recombination as described (Shi et al., 2008) (Figure 68). Briefly, the upstream and 

downstream flanking regions of gene of interest (approximately 600bp) were amplified 

using AB and CD primer pairs. AB and CD fragments contain overlapping ends and 

served as a template to generate the in-frame deletion fragment AD. AD fragment was 

then cloned into pBJ114 vector. The correct pBJ114_AD construct was transformed 

into M. xanthus. The plasmid integration was checked by PCR reaction using E (binds 

upstream of a primer) and F (binds downstream of D primer), E and M13forward (binds 

to pBJ114), F and M13reverse (binds to pBJ114) primer pairs. One clone resulted from 

an each up- and downstream plasmid integration was used for the second step of 

homologous recombination.  

        

 

To isolate the in-frame deletion mutants the cells were grown in CTT liquid media 

to reach the exponentially phase. 10μl of cells were mixed with 2 ml of soft agar and 

Figure 68. Strategy for in-frame 
deletion mutants construction  

First homologous recombination leads 
to up- or downstream plasmid 
integration in the genomic region of 
interest. Second homologous 
recombination enables loop out of 
vector (reconstitution) or vector with the 
region of interest (in-frame deletion). 
Details are described in the main text. 
The figure is reproduced from Shi et al., 
2008.  
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plated on CTT agar plates containing 2.5% galactose. Galactose resistant and 

kanamycin sensitive clones were checked by PCR reaction using E and F, G (binds 

downstream of B primer) and H (binds upstream of C primer) primer pairs. The EF 

fragment was longer for the WT then for the deletion mutant, while GH fragment was 

amplified only in the WT.  

 

4.4.4. DNA isolation from E. coli and M. xanthus  

Plasmid DNA from E. coli was isolated using the QIAprep Spin Miniprep Kit 

(Qiagen) or the NucleoSpin Plasmid QuickPure kit (Macherey-Nagel) in accordance to 

the instructions provided by the manufacturer. Genomic DNA from M. xanthus was 

isolated using MasterPure DNA preparation Kit (Epicentre) according to the instructions 

provided by the manufacturer. Concentration and purity of DNA was determined with 

the Nanodrop ND-1000 spectrophotometer. Crude genomic DNA for colony PCR was 

prepared by resuspending cell pellet in 50 μl of ddH2O, boiling for 5 min and 

centrifuging the sample for one minute at 13 000 rpm. 1.5 μl from the resulting 

supernatant were used per PCR reaction.  

 

4.4.5. Polymerase Chain Reaction (PCR)  

For the amplification of specific DNA fragments, the Phusion High-Fidelity DNA 

Polymerase was used in a total reaction volume of 50 μl. The colony PCR was 

performed in a total volume of 20 μl using 5 PRIME MasterMix. The composition of the 

PCR reaction mix is described in Table 14. 

 

Table 14. PCR reaction mix 

Component Volume Final concentration 

PCR for cloning  

Template DNA  1 μl  ~ 50 ng  

10 μM primer (each)  1 μl  0.5 μM  

10 mM dNTPs  1 μl  0.2 mM 

5 x Phusion GC buffer  10 μl  1x  

5 x enhancer  10 μl  1x  

Phusion DNA polymerase  0.5 μl  1 unit/50 μl reaction 

ddH2O  to 50 μl  
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Colony PCR  

Crude genomic DNA  1.5 μl  ~ 100 ng  

10 μM primer (each)  1 μl  0.5 μM  

5 PRIME MasterMix  8 μl   

DMSO  2 μl  10% (v/v)  

ddH2O  to 20 μl   

 

 

The PCR programs used in this study are represented in Table 15. PCR 

conditions were modified depending on the primer annealing temperature and 

expected product size. 

 

Table 15. PCR programs 

Step Temperature Time 

Standard/check PCR  

initial denaturation  98 °C  3 min  

denaturation  98 °C  30 sec  

35x  primer annealing  
5 °C below predicted  
melting temperature  

30 sec  

elongation  72 °C  1 min/kb  

final elongation  72 °C  3 min   

hold  4 °C  ∞   

 

Touch down PCR 

initial denaturation  94 °C  3 min   

denaturation  94 °C  30 sec  

10x  primer annealing  65 °C  30 sec  

elongation  72 °C  1 min/kb 

denaturation  94 °C  30 sec  

10x  primer annealing  60 °C  30 sec  

elongation  72 °C  1 min/kb 

denaturation  94 °C  30 sec  

10x  primer annealing  55 °C  30 sec  

elongation  72 °C  1 min/kb 

final elongation  72 °C  3 min   

hold  4 °C  ∞   
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4.4.6. RNA preparation from M. xanthus  

Total RNA was isolated from cell pellets using the hot-phenol method (Overgaard 

et al., 2006). Briefly, M. xanthus cells were harvested to a tube containing 1/10 volume 

of ice-cold stop solution (5% saturated acid phenol (pH <6.0) in 96% ethanol) and spin 

down (4700 rpm, 10 min, 4 °C). The pellet was resuspended in 600 μl ice cold solution 

1 (0.3 M sucrose, 0.01 M NaAc, pH 4.5) and transferred into tubes containing 2.5 ml 

hot (65 °C) solution 2 (2% SDS, 0.01 M NaAc, pH 4.5). The RNA purification was 

conducted twice with equal volume hot phenol (saturated acid phenol (pH <6.0) at 

65 °C) extraction, once with acid phenol:chloroform (saturated acid phenol, pH 4.5 : 

chloroform, 5:1) extraction and once with equal volume of chloroform: isoamyl alcohol 

(24:1) extraction. RNA was precipitated with 1/10 volume of 3 M NaAc pH 4.5 and 2 

volume of 96% ethanol for 20 min or over night at -20 °C. The RNA pellet was spin 

down in microcentrifuge for 5 min. with full speed at 4 °C and washed twice with equal 

volume of ice cold 75% ethanol. The pellet was dried briefly at room temperature and 

resuspended in 50 μl RNase-free H2O. The RNA was stored at -80 °C.  

 

4.4.7. RNA clean up, cDNA synthesis and qRT-PCR  

The purified total RNA was treated with 20 U RNase-free DNase I (Ambion) for 

3h at 37 °C. RNA was purified using the RNeasy Mini Kit (QIAGEN) according to the 

manufacturer protocol. The absence of DNA was verified by PCR reaction. The RNA 

integrity was analyzed by 1% agarose gel electrophoresis. RNA was considered intact, 

if sharp and clear bands for 23S and 16S rRNA were observed on the gel. 1.0 μg of 

DNA-free intact total RNA was used as the template to synthesize cDNA with the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) following the 

recommended protocol.  

The qRT-PCR reactions were carried out in a total volume of 25 μl containing 2.5 

μl Sybr green PCR Master Mix (Applied Biosystems), 1 μl of each primer (10 μM), 1 μl 

cDNA (diluted 10x) and 11 μl H2O. AB 7300 Real time PCR detection system was used 

for qRT-PCR reactions with standard conditions. Experiments were done in two 

biological replicates, each of them in technical triplicates. Relative gene expression 

levels were calculated using the comparative Ct method. 
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4.4.8. Agarose gel electrophoresis  

Nucleic acid fragments were separated by size and visualized on 1% agarose 

gels with 0.01% (v/v) ethidium bromide in TBE buffer (Invitrogen) at 120 V. DNA 

samples were mixed with 5 x DNA loading buffer (Bioline). As a DNA marker the 2-log 

DNA ladder (NEB) was used. Agarose gels were imaged using the E-BOX VX2 

imaging system from PeqLab.  

 

4.4.9. DNA restriction and ligation  

Restriction of DNA fragments (0.5-2 μg) was performed with restriction 

endonucleases at 37 °C for 2 h. Restricted DNA was purified using the DNA Clean & 

Concentrator kit (Zymo Research) according to manufacturer protocol.  

Ligation reactions were performed with T4 DNA ligase (NEB) with ~50 ng of 

vector DNA and 3- to 5-fold molar excess of insert DNA. Reaction was performed at 

room temperature for 1h. Ligation mixtures were used for transformation into E. coli 

Mach1. 

 

4.4.10. Preparation and transformation of chemical E. coli cells  

To prepare electrocompetent E. coli cells, the overnight culture was used to 

inoculate 50 ml of LB media. The cells were grown at 37 °C to an OD600 of 0.5 - 0.7. 

The cells were harvested by centrifugation at 4700 rpm for 20 min at 4 °C and the cell 

pellet was resuspended in 25 ml of ice-cold sterile 50 mM CaCl2 solution. The cells 

were pelleted again at the same conditions and resuspended in 2 ml 50 mM CaCl2 + 

16% glycerol solution. The final cell suspension was aliquoted à 50 μl, frozen in liquid 

nitrogen and stored at -80 °C.  

One aliquot was used per transformation. Cells were thawed on ice and 10 μl of 

ligation mixture was added to the cells and mixed carefully. After incubation on ice for 

30 min, cells were heat-shocked in water bath at 42 °C for 1 min 20 sec. After 5 min 

incubation on ice, 1 ml LB-medium was added and cells were incubated for 60 min 

shaking at 37 °C. Then, cells were pelleted for 30 sec, the supernatant was discarded 

and cells were resuspended in 50 μl LB medium and plated on LB plates with 

appropriate antibiotics. Plates were incubated at 37 °C over night. Grown colonies were 

transferred to the fresh agar plates and checked for the presence of the plasmid 

containing the insert by restriction digestion.  
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4.4.11. Preparation and transformation of electrocompetent M. xanthus cells  

For transformation of M. xanthus cells, 2 ml of an overnight culture OD550 0.6-0.9 

were harvested at 13 000 rpm for 1 min and the pellet was washed twice in 1 ml sterile 

ddH2O and resuspended in 40 μl H2O. The cell suspension was immediately used for 

electroporation.  

0.1 μg DNA for plasmids integrating at the Mx8 site and 1 μg of DNA for plasmids 

integrating at the endogenous site was added to 40 μl cells and the mixture was 

transferred into an electroporation cuvette (Bio-Rad, Munchen) and pulsed with 0.65 

kV, 25 μF and 400 Ω. 1 ml of CTT media was added and mixed with cells, the cell 

suspension was transferred to a 25 ml Erlenmyer flask containing 1 ml of CTT media 

and incubated with shaking at 230 rpm at 32 °C for 6 h. Then, 1 ml (for plasmids 

integrating at the endogenous site) and 100 μl (for plasmids integrating at the Mx8 site) 

of the culture were mixed with 2 ml of soft agar and plated on CTT agar plates 

supplemented with appropriate antibiotics. The plates were incubated for 5-10 days at 

32 °C in the dark. Grown colonies were transferred to fresh agar plates. Plasmid 

integration was verified by colony PCR. 

 

4.5. Biochemical methods  

4.5.1. Purification of proteins  

To purify the proteins, the appropriate plasmids were introduced into E. coli 

Rosseta 2 (DE3)/pLysS strain (Novagen). The cultures were grown in 0.5l or 1l LB or 

2xTY medium containing appropriate antibiotics at 37 °C to an OD600 of 0.5-0.7. The 

protein expression was induced by addition of IPTG to a final concentration of 0.3 mM 

and cells were grown overnight at 18 °C. Alternatively, the autoinduction medium was 

used (Table 6). 

The cells were harvested by centrifugation at 10 000 x rpm for 10 min at 4 °C and 

resuspended in 25 ml lysis buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1 mM DTT, 10 

mM imidazole, 10% glycerol) with added protease inhibitors (Complete Protease 

Inhibitor Cocktail Tablets from Roche). Cells were lysed using a French pressure cell 

and centrifuged at 20 000 rpm for 1h at 4 °C to collect cell debris. The supernatant 

containing soluble proteins was used for the protein purification. His6-tagged proteins 

were purified using Ni2+-NTA-agarose columns (Qiagen) as recommended by the 

manufacturers. The supernatant was mixed with appropriate amounts of the beads and 

was loaded on a Pierce centrifuge column. After collecting the flow through, the column 
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was washed twice with 20 ml lysis buffer with 20 mM imidazole. Bound protein was 

eluted with imidazol gradient from 50 mM to 500 mM.  

For antibody production 1mg of purified DmxB was to Eurogentec (Seraing, 

Belgium). 

 

4.5.2. SDS polyacrylamide gel electrophoresis (SDS-PAGE)  

To separate proteins under denaturing conditions SDS-PAGE with 12% or 15% 

polyacrylamide gels was performed. To denature proteins, the protein samples were 

mixed with loading buffer (10% (v/v) glycerol, 60 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 

100 mM DTT, 3 mM EDTA, 0.005% (w/v) bromophenol blue) and heated for 10 min. at 

98 °C before loading on the gel. Gel electrophoresis was performed in Bio-Rad 

electrophoresis chambers (Bio-Rad, München) at 120-150 V in 1x Tris/Glycine SDS 

(TGS) running buffer (Bio-Rad). Size of proteins was determined by comparison to the 

protein marker, the PageRuler Prestained Protein Ladder (Fermentas). Proteins were 

visualized by staining with Instant Blue protein staining solution (Expedeon). 

 

4.5.3. Determination of protein concentration by Bradford  

To determine protein concentrations the Bradford reagent (Bio-Rad) was used in 

1:5 dilution. The protein standard curve was generated using bovine serum albumin 

(BSA). The reaction samples were prepared in duplicates 1 ml reaction volume. After 

10 min incubation at room temperature in the dark, the absorbance was measured at 

595 nm with the Ultrospec 2100 pro spectrophotometer (Amersham Biosciences, 

München). Protein concentrations were determined based on the linear slope of the 

standard curve. 

 

4.5.4. Immunoblot analysis  

Protein solutions or proteins from cell extracts were separated in the gel by SDS-

PAGE and transferred to a nitrocellulose membrane using „TransBlot® TurboTM 

Transfer System“ from Bio-Rad at 1.3 A, 25 V for 7 min with transfer buffer (300 mM 

Tris and 300 mM Glycin, and 0.05% SDS, pH 9.0). After transfer the membrane was 

blocked in 5% non-fat milk powder (w/v) in 1 x TTBS buffer (0.05% (v/v) Tween 20, 20 

mM Tris-HCl, 137 mM NaCl pH 7.0) for 1 h or over night at 4 °C. After washing with 1 x 

TTBS buffer, the primary antibody (rabbit) was added in proper dilutions (Table 16) in 1 
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x TTBS supplemented with 2% non-fat milk powder over night at 4 °C. Next, 

membranes were washed again with 1 x TTBS buffer and incubated with secondary 

anti-rabbit immunoglobulin G peroxidase conjugate (Sigma) in a dilution of 1:15 000 for 

1h at 4 °C. After washing with 1 x TTBS buffer the blot was developed with the 

Luminata Western HRP Substrate (Merck Millipore) and visualized with the 

luminescent image analyzer LAS-4000 (Fujifilm). 

 

Table 16. Dilutions of primary antibodies used for immunoblot anaylsis 

antibody  α-DmxB  α-PilA  α-PilC Strep-Tactin-HRP 

dilution  1:1000  1:5000 1:5000 1:10 000 

 

 

4.5.5. Preparation of [α-32P]-labeled c-di-GMP 

[α-32P]-labeled c-di-GMP was prepared in house by incubating 10 µM His6-

tagged DgcAWT (final concentration) with 1 mM GTP/[α-32P]-GTP (0.1 μCi/μl) 

(Hartmann Analytic) in reaction buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM 

MgCl2) in total volume of 200 µl, overnight at 30 °C. The reaction mixture was then 

incubated with 5 units of calf intestine alkaline phosphatase (Fermentas) for 1 h at 22 

°C to hydrolyze unreacted GTP. The reaction was stopped by incubation for 10 min at 

95 °C in order to precipitate the proteins. The reaction was centrifuged (10 min, 15 

000× g, 20 °C) and the supernatant containing [α-32P]-c-di-GMP was used directly for 

the assays or stored at 4 °C. 

 

4.5.6. In vitro DGC and PDE assays 

 DGC and PDE activities were determined using [α-32P]-GTP and [α-32P]-c-di-

GMP respectively. Briefly, assays were performed with 10 μM of purified proteins (final 

concentration) in a final volume of 40 μl. Reaction mixtures were pre-incubated for 5 

min at 30 °C in reaction buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM MgCl2). 

DGC reactions were initiated by adding 1 mM GTP/[α-32P]-GTP (0.1 μCi/μl) and 

incubated at 30 °C for the indicated periods of time. PDE reactions were initiated by 

adding 32P-labeled c-di-GMP. Reactions were stopped by addition of one volume 0.5 M 

EDTA. Reaction products were analyzed by polyethyleneimine-cellulose TLC 

chromatography as described (Christen et al., 2005). Briefly, 2 μl aliquots were spotted 

on TLC plates (Millipore), dried, and developed in 2:3 (v/v) 4 M (NH4)2SO4/1.5 M 
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KH2PO4 (pH 3.65). Plates were dried prior to exposing a phosphor-imaging screen 

(Molecular Dynamics). Data were collected and analyzed using a STORM 840 scanner 

(Amersham Biosciences) and Image Quant 5.2 software.  

 

4.5.7. In vitro c-di-GMP binding assay  

c-di-GMP binding was determined using a DRaCALA assay (Differential Radial 

Capillary Action of Ligand Assay) with 32P-labeled c-di-GMP. Briefly, 32P-labeled c-di-

GMP was prepared as described above, mixed with 20 µM protein and incubated for 

10 min. at room temperature in binding buffer (10 mM Tris, pH 8.0, 100 mM NaCl, 5 

mM MgCl2). 10 µl of this reaction mixture was transferred to a nitrocellulose filter (GE 

Healthcare), allowed to dry and imaged as described above. For competition 

experiments, 0.4 mM unlabelled c-di-GMP (Biolog) or GTP (Sigma) was added to the 

protein and incubated for 10 min before addition of 32P-labeled c-di-GMP. 

 

4.5.8. Capture compound mass spectrometry (CCMS) 

M. xanthus cells were grown to exponential phase or alternatively starved in the 

MC7 shaking suspension for 24h and pelleted by centrifugation for 20 minutes at 4700 

rpm. The pellet was resuspended in lysis buffer (6.7 mM MES, 6.7 mM HEPES, 200 

mM NaCl, 6.7 mM KAc, pH 7.5) and protease inhibitor (complete mini, EDTA-free, 

Roche) was added. Cells were lysed by passing it 3 x through a French pressure cell. 

After centrifugation at 40 000 rpm for 1 h the supernatant was used for CCMS 

experiments of soluble proteins.  

The capture experiments were essentially carried out as described (Nesper et al., 

2012) and performed in 200 µl 12-tube PCR strips. Briefly, 50 µl of the soluble protein 

fractions were mixed with 20 µl 5 x capture buffer (100 mM HEPES, 250 mM KAc, 50 

mM MgAc, 50% glycerol, pH 7.5) and with the 10 µl of c-di-GMP capture compound 

(cdG-CC, Caprotec Bioanalytics GmbH, Berlin). The volume was adjusted to 100 µl 

with H2O and incubated for 2 h at 4 °C in the dark on a rotary wheel. The reaction was 

then UV irradiated for 4 minutes using a caproBox (Caprotec Bioanalytics GmbH, 

Berlin). 50 µl magnetic streptavidin beads (Dynabeads MyOne Streptavidin C1, 

Invitrogen) and 25 µl 5 x wash buffer (250 mM Tris pH 7.5, 5 M NaCl, 0.1% n-octyl-β-

D-glucopyranoside) were added and the mixture was incubated for 1 h at 4 °C on 

a rotary wheel. The beads were then collected with a magnet (caproMag, Caprotec 

Bioanalytics GmbH, Berlin) and washed 6 x with 200 µl 1 x wash buffer. Beads were 
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analyzed by LC-MS/MS (analysis was performed by Jörg Kahnt). In first control 

experiment run in parallel, c-di-GMP as a competitor was added to protein extracts up 

to a final concentration of 1 mM and incubated for 30 minutes at 4 °C on a rotary wheel 

before the cdG-CC was added. In second control experiment no cdG-CC was added to 

the reaction. 

 

4.5.9. c-di-GMP quantification  

c-di-GMP quantification was performed in Medizinische Hochschule Hannover 

(Hannover) by Prof. Dr. Volkhard Kaever and Annette Garbe. To quantify the c-di-GMP 

levels in M. xanthus cells, the cells were grown overnight in CTT medium and 

harvested in exponential phase or then diluted in MC7 starvation buffer. At the 

indicated time points after dilution, cells were harvested at 4 °C, 2500× g for 20 min. 

Cells were lysed in extraction buffer (HPLC grade acetonitrile/methanol/water (2/2/1, 

v/v/v)), supernatants were pooled and evaporated to dryness in a vacuum centrifuge. 

Pellets were dissolved in HPLC grade water and analysed by LC-MS/MS. Experiments 

were done in three biological replicates in which at least three independent cultures 

were grown in parallel. For all samples, protein concentrations were determined in 

parallel using a Bradford assay (Bio-Rad). 

 

4.6. Transmission electron microscopy  

Transmission electron microscopy was performed in Georg-August-Universität 

(Göttingen) with help of Dr. Michael Hoppert. Briefly, M. xanthus overnight cultures 

were diluted 1:10 with 1% liquid CTT medium and grown on horizontal shaker at 32 °C 

in the dark for 1-3 h. After 1-3 h incubation, 50 μl of M. xanthus culture was placed on 

parafilm. A copper grid (PLANO) was dipped into the drop for 2 min., allowing cells to 

adsorb to the surface. Excess of liquid was soaked off, the film was placed briefly on 

a drop of distilled water, excess liquid was soaked off again, and the film was 

transferred on a drop of 2% uranyl acetate (wt/vol) for 2 seconds and blotted dry. 

Transmission electron microscopy was performed on a Philips EM 301 electron 

microscope at calibrated magnifications.  
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4.7. Bioinformatic analyses  

Gene and protein sequences of M. xanthus were obtained from TIGR database 

(http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi) and KEGG database 

(http://www.genome.jp/kegg/). Functional domains were identified using SMART 

database (http://smart.embl-heidelberg.de/). Alignment and analysis of selected 

sequences was performed using Vector NTI (Invitrogen). 
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