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1 – Introduction 

Biodiversity and its function in tropical forests 

Tropical forests are among the most species rich ecosystems on earth (Bradshaw et al., 

2009; Gibson et al., 2011; Pimm & Raven, 2000; Wilson, 1992) and they have therefore 

repeatedly been in the focus of science. First, during the era of biodiversity inventories to 

answer the question of how many species may exist on earth (Stork, 1993), later, when the 

studies on the function (or redundancy) of species richness (Loreau et al., 2001) gained more 

attention. Finally, the ecosystem services linked to species richness and the threat to loose 

many of them due to the ongoing loss of species (Rey Benayas et al., 2009) became a key 

aspect of studies of (tropical) ecology. For a long time vertebrate species have attracted the 

main attention of scientists and conservation managers and were used to provide arguments to 

preserve diversity. Recently more research effort has been put into the analysis of arthropod 

communities, of their function, and of the impact of land use on their diversity and 

distribution (Barlow et al., 2007; Lawton et al., 1998).  

Numerous globally important ecosystem services are offered or at least strongly influenced 

by arthropods, e.g. biocontrol or decomposition (Feld et al., 2009; Nelson et al., 2009). So 

these organisms sustain also the proper function of tropical forest ecosystems, which cover 

7% of the land area of our planet but host two-thirds of the terrestrial diversity (Raven, 1980; 

Wilson, 1992). The fertility of tropical soils and therewith the basis for the maintenance and 

use of tropical forest ecosystems relies on the recycling of nutrients during the decomposition 

of leaf and wood litter and the stock of organic matter in the soil. The deeply weathered soils 

cannot provide nutrients from deeper layers (Vitousek & Sanford, 1986) as in most temperate 

ecosystems. Soil arthropods initiate the remobilization of nutrients fixed in the litter (Martius 

et al., 2004a; Schmidt et al., 2008; Wardle, 1999). They foster the generation of organo-

mineral structures and therewith the nutrient availability for plants (Brussaard & Juma, 1996; 

Rossi et al., 2010). As “ecosystem engineers” some arthropods can also visibly form 

ecosystems. Their presence is overall crucial for ecosystems persistence (Giller & 

O´Donovan, 2002; Milton & Kaspari, 2007): Via direct and indirect interactions in the food 

web dynamics they help to maintain the sensitive nutrition balance of tropical forest 

ecosystems (Abrams et al., 1996).  

Nowadays it is well known that a disturbance of the ecological cycles in tropical regions 

by traditional agricultural land-use increases plant biomass but on the other hand decreases 
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species richness (Juo & Manu, 1996; Rossi et al., 2010) and so breaks functional 

relationships. During the transformation of natural ecosystems to agriculturally used areas 

numerous environmental conditions, like soil humidity, temperature, litter quantity and 

quality, are considerably altered. These changes often lead to a decrease of soil fauna 

abundance and diversity and a negative impact on soil processes, driven by these organisms 

(Martius et al., 2004a, b, c; Rossi et al., 2010). In extreme cases these processes can result in a 

loss of the entire upper organic soil layer, dissolution of the plant cover till desertification, 

followed by physical erosion. A natural regeneration of such fallow land is very slow, if not 

impossible. 

In tropical regions, agriculture is traditionally based on early abandonment of the areas 

under cultivation due to the rapidly decreasing soil fertility and productivity after slash-and-

burn (Juo & Manu, 1996). This inevitably leads to the clearing of ever new forest areas and is 

the main cause of the loss of huge forest areas during the last decades. While in the 

Amazonian region a vast area of primary forest still remains, only about 7 % of the original 

extension of the Atlantic forests of Brazil (see below) are yet remaining. Practically no 

primary forest, i.e. without any anthropogenic influence, is left. At most, so called old-growth 

forests with a low degree of human impact during the last 100 years survived. Due to the lack 

of real primary forests without any anthropogenic influence, regrowing (secondary) forest 

habitats and their potential for hosting the regional biodiversity are of particular interest not 

only in the Atlantic forest region. The importance of secondary forest for the conservation of 

the tropical (arthropod) biodiversity, however, is a controversial topic (Gardner et al., 2007; 

Laurance, 2006; Wright & Muller-Landau, 2006). To what extent these secondary forests can 

sustain the biodiversity of natural forests is up to now poorly analyzed and therefore an 

important topic for biodiversity science and conservation planning. 

The SOLOBIOMA project and spider study 

The studies presented here have been conducted during the bilateral scientific project 

SOLOBIOMA1 (Höfer at al., 2007). During the two phases of this project, analogous to the 

recommendations of the OECD, an evaluation of soil functioning and biodiversity was done. 

Especially in such a highly diverse and also threatened ecosystem like the Atlantic forest, a 

better scientific knowledge of the soil biodiversity is important (Höfer et al., 2007). The main 

task of the first project phase was the description of the development of the soil faunal 

                                                           
1
 Sposored by the German Federal Ministry of Education and Research (BMBF-sig.: 01LB020201) and the 

Brazilian National Council for Scientific and Technological Development  (CNPq) (Proc. 590042/2006-8); Dr. 

Hubert Höfer, State Museum of Natural History Karlsruhe (2006-2009).  
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community in the course of forest regeneration, its bio-geo-chemical interactions, and its 

influence on soil function. To reach this goal, plots of different successional stages from 

young secondary to old-growth forests were implemented in two protection areas of the 

Brazilian Non-Governmental-Organization SPVS (“Society for wildlife research and 

environmental education”) comprising 8,600 and 6,700 ha. These plots were sampled in a 

multi-taxon approach (Kotze & Samways, 1999; Vellend et al., 2008) to evaluate the 

contribution of the different stages to the conservation of the regional biodiversity. The results 

of this phase allowed the evaluation of a soil biological classification for secondary forests, 

based on biodiversity and measures of soil functionality. During the second phase of the 

project, an in-depth evaluation of the secondary forests and their value for biodiversity 

conservation and the maintenance of ecosystem services was launched. The gathered 

knowledge on the local biodiversity structures and its ecological interactions led to the 

identification of possible indicators for the state of secondary forests systems supporting 

decisions in regional forest and land use management. In the long term this can help to 

maintain a sustainable use of natural resources and foster ecologic as well as economic 

stability. 

Part of this project was a diversity survey of the spider fauna in (regrowing) neotropical 

forest habitats to address questions of environmental management and protection: Are there 

indicatory spider species for young and old-growth forest stages? Is there a directional 

development of the spider community along forest succession? Can the conservation value of 

a system be evaluated by assessing (parts of) the spider assemblage? 

However, not only the diversity of spiders, but also their role/importance as part of the soil 

fauna was addressed during this study to gain inside into the interaction pathways in the 

investigated ecosystems. In the frame of diversity conservation and regional management 

strategies all facets have to be integrated to achieve an evaluation of the whole range of 

services which an ecosystem can offer. Due to the complex interactions of spiders with their 

biotic and abiotic environment, a combination of the results of the spider diversity survey with 

an experimental study on arthropod community ecology seemed reasonable to enable a 

profound assessment of the different forest stages. Therefore we performed an experimental 

study on bottom-up influences and the effect of artificial habitat structures on the soil faunal 

community in secondary forest of 10-15 years and an old-growth forest. The integration of the 

results of the diversity study and of the experimental study should shed light on the complex 

interactions of spiders and the ecosystem they live in. 
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Diversity and ecology of spiders – their use as indicators 

Spiders constitute about 2 % to 10 % of the abundance of the soil arthropods in neotropical 

forests (for Atlantic forests in the study region: Schmidt et al., 2008; for Amazonian forests: 

Adis et al., 1987; Adis & de Morais, 1987; Harada & Bandeira, 1994). A moderate to high 

species richness, the relatively good taxonomic knowledge (Agnarsson et al., 2013; Gasnier & 

Höfer, 2001; Höfer & Brescovit, 1994, 2001) and their large absolute and relative abundance 

within the soil arthropod community in tropical ecosystems make spiders an interesting group. 

Spiders play an important role as predators of insects in terrestrial decomposition food 

webs (Lawrence & Wise, 2000; Schmitz, 2009; Wise et al., 1999). Their exclusively 

predatory way of life determines their position in the food web. As predators, spiders are not 

only directly influenced by environmental conditions (and changes) but also indirectly via 

prey diversity and abundance (Birkhofer et al., 2013; Bultman et al., 1982; Bultman & Uetz, 

1982; Höfer et al., 1996; Uetz, 1979, 1991). This position in the food web enables spiders to 

integrate on a variety of influential factors in the lower levels (Chen & Wise, 1999). So the 

abundance and biodiversity of spiders might reflect already small changes in habitat 

characteristics via indirect effects, shown to represent an important part of food web 

interactions (Abrams et al., 1996): The generalist predatory spiders need a highly structured 

habitat to hide for capturing prey, to build webs or hunt, to reduce competition and to avoid 

intra-guild predation. As most tropical forest ecosystems are considered to be nutrient-limited 

an increase in food (nutrient) availability should lead to an increase in decomposer abundance 

and in consequence also their predators (a bottom-up effect). 

Based on the high diversity of spiders, assemblages can change in species composition, 

dominance structures or relative abundances analogous to variations in habitat variables or 

prey availability (Birkhofer et al., 2013; Ekschmitt et al., 2001; Ekschmitt et al., 2003; Giller 

& O´Donovan, 2002). Changes should mirror changes in the ecosystem (e.g. perturbations). 

Especially guild structure are hereby considered to be able to reflect these changes (Uetz et 

al., 1999) and are of great interest for comparing different succession stages and old-growth 

forests.  

A multitude of ecological and experimental research on spiders is already available 

(Alderweireldt, 1994; Bultman et al., 1982; Bultman & Uetz, 1982, 1984; Chen & Wise, 

1997, 1999; Clarke, 1968; Fagan & Hurd, 1991; Gunnarsson, 1990; Gurevitch et al., 1992; 

Halaj et al., 1998; Hatley & Macmahon, 1980; Herberstein, 1997; Höfer et al., 1996; Hunter 
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& Price, 1992; Jones, 1941; Lawrence & Wise, 2004; Pollierer et al., 2007; Rinaldi & Forti, 

2007; Robinson, 1981; Scheidler, 1990; Scheu & Schaefer, 1998; Scheu, 2002; Sunderland & 

Samu, 2000; Uetz et al., 1999; Vargas, 2000; Wise et al., 1999). The position of spiders in the 

complex net of ecological relations and their interrelations in the frame of top-down and 

bottom-up interactions is of great interest, concerning the already mentioned identification of 

indicator groups for changes in an ecosystem and its performance (Billeter et al., 2008; 

Churchill, 1997; Clausen, 1986; Lawton et al., 1998; Lindenmayer et al., 2000; Neet, 1996). 

Such an evaluation of ecosystems (and provided ecosystem services) using indicator 

organisms can reduce sampling effort considerably because they are potentially able to 

integrate over many habitat variables, some of which are fairly difficult to identify and to 

measure directly.  

Study areas 

The field studies for this thesis have been performed in the southern Mata Atlântica of the 

state of Paraná in Brazil. The Atlantic forest is a hotspot of biological diversity (Myers et al., 

2000) extending over a range of 3,500 km along the coast of Brazil. The occurrence of 

endemic species in these forests is exceptionally high (Bihn, 2008; Laurance, 2009; Myers et 

al., 2000). But also the anthropogenic pressure is very high. Three of the biggest cities of 

Brazil (São Paulo, Rio de Janeiro and Curitiba) are situated in the area of the Atlantic forest 

and the anthropogenic pressure is constantly increasing (Rodrigues et al., 2009). Therefore 

profound land management and protection strategies for the local biodiversity are urgently 

needed (Antonelli Filho & Antunes Ferreira, 2012; Höfer et al., 2011; Ferretti & Britez, 

2006).  

The studied areas are part of an ecological restoration program (Ferretti & Britez, 2006) 

and are located in the two private nature reserves (RPPN) “Reserva Natural do Rio 

Cachoeira” and “Reserva Natural Serra do Itaqui” of the SPVS. In the region the climate is 

classified as humid subtropical (Köppen´s Cfa, Strahler & Strahler, 2005) with mean 

temperatures between 16.2 °C in July and 24.5 °C in February (IPARDES, 2001). Average 

precipitation ranges between 2000 and 3000 mm year-1 (Roderjan & Kunyoshi, 1988). 

Rainfall is more or less evenly distributed throughout the year, although with some 

seasonality (low rainfall from April to August). 

The NGO SPVS strongly promotes the regeneration of degraded land in its projects and the 

acquisition of ancient farmland for this purpose (Höfer et al., 2011). Since 1991 the SPVS has 
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been working on biodiversity conservation, ultimately founding “InBioVeritas – the 

Competence Centre for the Conservation of Biodiversity in the Atlantic Forest” in 2007 

(Höfer et al., 2011) with different stakeholders, amongst others the State Museum of Natural 

History Karlsruhe (SMNK), following the cooperation during the SOLOBIOMA project. 

Outline of this dissertation  

For this thesis the diversity of spiders in different forest stages of the Mata Atlântica in 

Brazil (Chapter 2) has been sampled, described and estimated and the spatial distribution of 

spider diversity (Chapter 3) analyzed. Both with regard to the role and importance of 

secondary forests for the conservation of biodiversity. The functional relationships of 

predatory arthropods within the soil faunal community (Chapter 4) was experimentally 

studied with regard to the direct and indirect interactions of spiders and their potential 

indicatory value: 

Chapter 2: The conservation value of secondary forests in the southern Brazilian 

Mata Atlântica from a spider perspective 

To assess the conservation value of secondary forests I compared the diversity of spiders in 

differently aged secondary forests with old-growth forests. I sampled spiders using a standard 

protocol in 24 sites of three successional stages and old-growth forests in two nature reserves. 

I describe the diversity and structure of the spider assemblages using morphospecies and 

genera and analyze “richness” at the genus level, a surrogate for the species level. A total of 

4,495 adult individuals were collected from 539 samples and identified to 43 families, 192 

genera and 440 morphospecies. Generic richness and diversity show no differences between 

successional stages but guild diversity does. High alpha diversity, high turnover among sites 

and the lack of differences in richness between stages support the value of secondary forests 

for species conservation in the studied region. 

Chapter 3: Conserving landscape structure – conclusions from partitioning of spider 

diversity in southern Atlantic forests of Brazil  

In this chapter I addressed the contribution of different stages of secondary forest to total 

diversity in two reserves by analyzing the patterns with additive partitioning of beta diversity 

on the genera and morphospecies level and for different sampling methods. The study took 

place in a relatively good preserved region of the Mata Atlântica, where the matrix of the 

patchy landscape is still forest. Mean alpha diversity was 47 genera and 62 morphospecies, 
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beta diversity added up to 192 respectively 440. Beta diversity is driven by turnover, not by 

gain/losses (nestedness). All spatial levels contribute more to beta diversity than expected, 

without strong influence of the forest stage. Patterns are consistent for both identification 

levels and all methods, so that one of two main sampling protocols and identification to 

genera seem sufficient to assess diversity of spiders for conservation. In this mosaic landscape 

the protection of large areas encompassing all forest stages, without special attention to old-

growth, is the best way to conserve the high regional species richness. 

Chapter 4: No bottom-up effects of food limitation on predators in a tropical forest.  

I investigated the ecologic interactions within the arthropod community by studying the 

response of decomposers and predators to increased food resources and space in an early 

succession stage of secondary forest and an old-growth forest using an experimental 

approach. I added organic material, artificial litter of no nutritional value and a combination 

of both to the soil surface to evaluate the effects of habitat space and food on soil food webs. I 

sampled litter- and soil-dwelling arthropods with three methods to analyze effects of the 

experimental treatments on the richness and diversity of the soil faunal community. Adding 

artificial litter has no effect on the analyzed taxa, adding food has a positive effect on 

decomposers, but not on predators. The lack of a bottom-up effect on predators suggests that 

they are not predominantly regulated by the abundance of prey. 
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Abstract 

In many tropical areas of the world, pristine forests have become rare. Nevertheless, due to 

shifts in the human population the area covered by secondary forests is increasing. These 

forests may harbour a rich flora and fauna and are considered to be main refuges for species 

of primary forests. However, this issue is far from clear. To assess the conservation value of 

secondary forests in the Atlantic Forest of Brazil, we compared the diversity of spiders in 

differently aged secondary forests with old-growth forests. Within a larger project treating 

several invertebrate taxa, we sampled spiders using a standard protocol in 24 sites of three 

successional stages (5-8, 15-20, 30-50 years old) and old-growth forests (> 100 years 

untouched) in two nature reserves. We describe the diversity and structure of the assemblages 

using morphospecies and genera and analyze richness at the genus level. Generic richness and 

diversity showed no differences between successional stages, i.e. did not increase from the 

youngest to older forests, but guild diversity did. The youngest stage shows the highest 

variability in generic composition and the turnover of genera (species) is strong between the 

younger forests (5-20 years old) and forests older than 30 years. High alpha diversity, high 

turnover among sites and the lack of differences in richness between stages support the value 

of secondary forests for species conservation in the studied region. 

Introduction 

The Brazilian Atlantic forest biome (Mata Atlântica) is one of the ‘‘hottest hotspots’’ of 

biodiversity (Laurance, 2009), due to the exceptional species richness and high number of 

endemic taxa in the various forest types (Forzza et al., 2012). However, the coastal region of 

Brazil has also experienced an exceptionally high degree of forest conversion and 

deforestation (Myers et al., 2000; Ribeiro et al., 2009) for more than 500 years. In contrast to 

the more strongly deforested areas of the Atlantic coast, in the state of Paraná in southern 

Brazil large remnants of Atlantic forests still exist, forming a mosaic of patches of old-growth 

forests (sensu Clark, 1996; see also Wirth et al., 2009) and secondary forests in various stages 

of succession. These secondary forests originate mainly from abandoned buffalo pastures. 
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Recently the issue of the importance of these secondary forests for the conservation of 

biodiversity initiated a controversial discussion (see Bihn et al., 2008b). 

Conservation strategies and management in the tropics are often based on large, exotic and 

beautiful or rare, endangered vertebrate species. However, the overwhelming part of 

biodiversity consists of invertebrates. Furthermore invertebrates are involved in numerous 

important ecosystem functions (e.g. nutrient cycling or pollination). The analyses of 

invertebrate diversity for conservation are usually restricted to species numbers or lists of 

species of selected taxa. Although the number of species is not a quality measure per se, 

richness and diversity measures, which include the relative abundance of species, are valuable 

approximations to biodiversity and the conservation value of a habitat (Brose et al., 2003; 

Gaston, 1996; Gotelli & Colwell, 2001; Magurran, 2004), especially when autecological data 

are lacking, i.e. knowledge on the distribution, natural history traits and habitat preferences 

for most of the species is sparse. However, to evaluate the richness of an assemblage a 

reference is needed. Comparing species numbers of assemblages in secondary vegetation with 

the original (primary) vegetation seems to be a meaningful approach to estimate degradation, 

to recognize the loss of functional diversity (Bihn et al., 2008b, 2010) and to classify areas 

with regard to their conservation value (Dunn, 2004), although there is some evidence of 

functional redundancy (Lawton et al., 1998; Loreau et al., 2001). 

The Brazilian-German cooperative project SOLOBIOMA (Höfer et al., 2007, 2011) 

studied the biogeochemistry and - in a multi-taxon approach - the diversity of earthworms 

(Römbke et al., 2009), enchytraeids (Schmelz et al., 2009, 2011), ants (Bihn et al., 2008a,b), 

beetles (Hopp et al., 2010, 2011; Ottermanns et al., 2011) and spiders in order to evaluate the 

conservation value of secondary forests in the Mata Atlântica. The overall aim of this project 

was to check the possibility of classifying secondary forest stages by their soil fauna and 

comparing that with the “traditional” classification by age and vegetation. In the absence of 

true primary vegetation in this region, we had to rely on “old-growth” forests as a reference. 

Spiders are a species-rich taxon in the tropics. In Brazil the taxonomy is comparatively 

well studied (Brescovit et al., 2011) and meaningful faunistic inventories are available 

(Bonaldo et al., 2009; Höfer, 1990, 1997; Höfer & Brescovit, 2001; Rego et al., 2007; Silva, 

1996; Silva & Coddington, 1996; Venticinque et al., 2008). However, in these studies there is 

a strong bias towards the Amazonian region. During the last years and based on taxonomic 

advances and faunistic knowledge, several studies in the Mata Atlântica, focussing on spiders, 

approached ecological questions (effects of disturbance, fragmentation and vegetation type; 
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Benati et al., 2005; Candiani et al., 2005; Oliveira-Alves et al., 2005; Podgaiski et al., 2007). 

However studies with well-replicated designs are still rare (Bonaldo et al., 2007; Dias et al., 

2005; Lo-Man-Hung et al., 2008; Pinto-Leite et al., 2008; Ricetti & Bonaldo, 2008). To assess 

the conservation value of secondary forests, we sampled spiders on the ground and in the 

lower vegetation in three different stages of secondary and old-growth forests, appraising the 

changes in richness and composition of genera across the successional gradient. 

Material and Methods 

Study area 

The study was conducted in the coastal region of the Paraná state in south-eastern Brazil. 

Originally the region was covered by dense ombrophilous lowland and submontane forests 

(IBGE, 1992), but these ecosystems suffered massive exploitation and were largely converted 

to buffalo pastures (IPARDES, 1995). Today, the landscape is characterized by a mosaic of 

open land, secondary forests and few, but compared to the rest of the Atlantic Forest relatively 

large patches of old-growth forests. The regional climate is humid subtropical (Köppen´s Cfa, 

Strahler & Strahler, 2005) with mean temperatures between 16.2 °C in July and 24.5 °C in 

February (IPARDES, 2001). Average precipitation ranges between 2000 and 3000 mm year
-1 

(Roderjan & Kunyoshi, 1988). Rainfall is more or less evenly distributed throughout the year, 

although with some seasonality (low rainfall from April to August). 

The studied areas are part of an ecological restoration program (Ferretti & Britez, 2006). 

Sampled sites were located in two private nature reserves (RPPN) “Reserva Natural do Rio 

Cachoeira” and “Reserva Natural Serra do Itaqui” (Fig. 1). Both are owned and managed by 

the Brazilian NGO “Society for wildlife research and environmental education” (SPVS) and 

are part of the Environmental Protection Area (EPA) of Guaraqueçaba and also the Mata 

Atlântica Biosphere Reserve. Within their areas of 12,000 resp. 6,700 ha, ranging from sea 

level to elevations of 700 m a.s.l., different successional stages from pasture to forest were 

categorized a-priori by the SPVS using age and vegetational structure, based on ortho-photos 

from 1952, 1980 and 2002 and knowledge of the residents on historical use. 
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Figure 1. Location of the study region in Paraná state, Brazil and the sampling sites in the two 

Nature Reserves Rio Cachoeira (Ca) and Itaqui (It); successional stages: H – herbaceous, A – 

arboreal, M – medium, F – old-growth forest. 

 

Study design 

In both reserves (further called localities), which are located approximately 25 km apart 

(Cachoeira: 25.3142°S, 48.6958°W; Itaqui: 25.2733°S, 48.4872°W; WGS84), we sampled 

spiders along a chronosequence of four forest stages: 5-8 years old (H – herbaceous stage), 

10-15 years old (A – arboreal stage), 35-50 years old (M – medium stage) and > 100 years old 

(F – old-growth); the latter was used as a reference stage. In each stage we sampled three 

spatially separated replicate sites of 30 x 50 m² each. In total 12 sites (3 replicates x 4 stages) 

were studied in each of the two localities (Fig. 1) during several days of sampling (see below) 

in springtime (October/November) of 2005 (Cachoeira) resp. 2007 (Itaqui). The springtime 

period has been shown to lead to a high degree of sampling completeness without the 
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necessity of resampling throughout the year (Baldissera et al., 2003; Podgaiski et al., 2007; 

Rodrigues, 2005). 

Sampling methods and identification 

A structured sampling, following a widely accepted standard protocol (Coddington et al., 

1991) was applied to sample spider diversity in these forests: 

(a) Ground hand sampling (“looking down” of Coddington et al., 1991): Two 

(experienced) persons sampled during one hour at night (with headlights), exploring 

all structures below knee level – resulting in 1 sample per person, 2 samples per site. 

(b) Aerial hand sampling (“looking up” of Coddington et al., 1991): One person sampled 

for one hour at night, exploring all structures from knee height upwards to overhead 

arm’s reach, i.e. lower vegetation – resulting in 1 sample per site. 

(c) Beating: three persons striking vegetation at any reachable level (i.e. lower vegetation) 

with a stick, collecting the spiders falling on a 50 X 50 cm² tray held below, during 

one hour. Twenty beating points made one sample. Depending on the person 

sampling, a different number of samples per site (3-9) resulted. 

(d) Pitfall trapping: 10 traps per site were installed to capture active ground spiders during 

one week – resulting in usually 10 samples per site, with a few failures. Traps were 

330 ml PE cups with an opening diameter of 7.5 cm, filled with 100 ml of 4% 

formaldehyde solution and protected against rain by transparent plastic plates. 

The sampled spiders were stored in 75% ethanol. All adult spiders were determined to 

(morpho-) species or to (morpho-) genera if possible, using a conservative approach to delimit 

morphospecies and -genera. All analyses are based on adult spiders. Notwithstanding the 

progress in spider taxonomy in the Neotropics, severe shortcomings in the analyses of the 

diversity of tropical faunas remains a prime difficulty in identifying specimens to the species 

level or to sort all (adult) specimens to the level of morphospecies. This is due to the high 

number of not (adequately) described species and the lack of identification keys (Uehara-

Prado et al., 2009). We therefore used genera as a surrogate for the comparison of species 

richness and diversity, which has been shown to be a successful strategy even at local scales 

(Andersen & Hauge, 1995; Baldissera et al., 2008; Balmford et al., 1996; Bihn et al., 2008b). 

Identification was done by the first and third author with help from Brazilian experts at 

Butantan Institute (São Paulo, IBSP) and Museu de Ciências Naturais da Fundação 

Zoobotânica (Porto Alegre, MCN). Morphospecies numbers (in the appendix) were assigned 
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according to ISBN and MCN numeration to assure future comparability. Voucher material is 

deposited at the entomological department of Universidade Federal do Paraná in Curitiba 

(UFPR), at IBSP and MCN. 

Data analysis 

For all analyses we pooled the complementary captures from the different methods and 

strata. Richness and diversity of the spider assemblages per site (alpha diversity) were 

described by the (observed) numbers of genera (G), the ratio genera/individuals (G/N), the 

Shannon index (H), the Shannon evenness measure (E) and Log series  (Magurran, 2004). 

For the direct comparison of genus richness between the single sites, we used rarefaction 

(Coleman, 1982; Gotelli & Entsminger, 2004; Hurlbert, 1971; Magurran, 2004). It was 

calculated with R version 2.10.2 (R Development Core Team, 2009), using the rarefy function 

of the package VEGAN 1.17-2 (Oksanen et al., 2009). To evaluate the portion of rare genera 

at the single site, we calculated the relative abundance of singletons (portion of genera with 

one individual from the total genera number per site; Magurran, 2004). Furthermore we 

calculated the nonparametric (sample-based) estimators Chao 2 and ICE (Magurran, 2004) 

with EstimateS 8.0 (Colwell, 2005). A coverage measure for each site was calculated using 

the number of observed genera in percent of the estimated richness.  

Similarity across stages (beta diversity) was analyzed with qualitative presence/absence 

(Sørensen index) and quantitative (abundance) data for assemblage structure (NESS = 

Normalized Expected Species Shared, Grassle & Smith, 1976). In contrast to the Sørensen 

Index, NESS is a quantitative similarity measure, which accounts for the individual numbers 

of the shared species in the compared sites or assemblages (as in the Renkonen or Bray-Curtis 

qualitative index), but weights the rare species with ascending values for the sample size. 

Therefore it seems to be a good measure for tropical communities, where rare species account 

for a considerable part of the recorded species (Chazdon et al., 1998; Novotny & Basset, 

2000). We calculated the NESS with the program BIODIV 97 for Excel. 

To visualize differences in spider assemblages of the forest stages and localities, we used a 

three-dimensional ordination based on a non-metric multidimensional scaling (nMDS) 

analysis, calculated on Bray-Curtis similarities of square-root transformed abundances of 

genera using Winkyst 1.0 (100 random perturbations) and Canoco for Windows 4.53 (Ter 

Braak, 2002). The similarity matrix was tested for spatial autocorrelation using the mantel 

function of the R package ECODIST. The spatial distribution of the study sites had no effect 

on the patterns of beta diversity (P = 0.98). 
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To complete the comparison of the forest stages, we used available guild classifications for 

the Neotropical spider fauna (Dias et al., 2010; Höfer & Brescovit, 2001). We assigned the 

specimens to 16 distinct guilds. The assignment of a species to a guild is usually based on the 

family, in some cases on the genus, which was possible for almost all specimens in our 

samples. In a few cases we had to apply personal knowledge on the biology of a taxon based 

on our own observations in the field, the sampling method and information in literature 

(Álvares et al., 2004; Silva & Coddington, 1996). Only the Amaurobiidae (18 individuals) 

were not assigned to a guild due to the unclear taxonomic status and lack of ecological 

information for Neotropical species. For the comparison of guild structure in the different 

stages, data from the two localities were pooled. 

The rarefied genera numbers, the estimated richness and the alpha diversity values were 

tested for significant effects of the stage (4 levels) and the locality (2 levels) with two-way 

ANOVAs using Statistica 8.0 (StatSoft, 2007). Permutational multivariate analysis of 

variance (Permanova, Version 1.6, Anderson 2001, 2005) was used to analyze the generic 

turn-over in the spider assemblage of different forest stages and to underpin the ordination 

with a statistical analysis. We tested the main factors of the residuals and their interaction 

terms with 9999 permutations using Bray-Curtis dissimilarities between the study sites. 

Indicator analysis was done with R, version 2.10.1 (R Development Core Team, 2009) and 

the packages MASS (Venables & Ripley, 2002) and labdsv (Roberts, 2007). Because 

indicators of single stages were weak, we pooled the beating tray data of the two younger and 

the two older stages to one group each (stages H and A = young, “Y”, stages M and F = old, 

“O”) in order to achieve a distinctive separation with indicator genera of high indicator values 

for younger and older forests respectively. 

Results 

A total of 11,293 individuals were collected from 539 samples, of which only the 4,495 

(39.8%) adults were identified and sorted to 43 families, 192 genera and 440 morphospecies 

(Appendix 1). We were able to identify and name 155 species according to the available 

literature. Although the two localities were sampled during two campaigns in different years, 

similar numbers of spiders were collected: 2,116 individuals of 33 families and 157 genera in 

Cachoeira (2005) and 2,379 individuals of 37 families and 154 genera in Itaqui (2007). The 

ratios females/males (0.941, 0.948) and adults/juveniles (0.673, 0.669) were also similar. 
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Overall, Theridiidae ranked first in abundance, accounting for 27% of all adults, and also 

in species richness with 117 morphospecies in 34 genera. The theridiid genera Dipoena (19 

morphospecies), Theridion (16), Cryptachaea (13) and Thymoites (10) showed the highest 

species richness. Only the araneid genus Mangora was represented by a comparably high 

number of morphospecies (10). Zoridae ranked second with 19% of the individuals, but only 

eight morphospecies. The spider assemblages in Cachoeira and Itaqui showed a similar 

ranking (Spearman r = 0.36) of family abundance values, but Theridiidae and Linyphiidae 

were nearly twice as abundant in Itaqui as in Cachoeira. The Araneidae (58 mspp./21 gen.), 

Salticidae (55/29) and Linyphiidae (43/15) accounted together for more than 35% of all 

species and 34% of all genera collected.  

As expected, sampling in different strata (ground/vegetation) yielded strongly 

complementary sets of lineages. In the vegetation 74% of all spiders captured were web-

builders. Theridiidae and Linyphiidae alone accounted for more than 50% (Table 1), with 

more than 100 species.  

The only abundant hunting spiders in the vegetation were Salticidae (55 morphospecies) 

and Anyphaenidae (10 species). There was no dominant (10% criterion) species or genus in 

the vegetation and the 316 morphospecies (148 genera) collected showed that this stratum 

houses a large part of the total diversity. In strong contrast, half of all spiders captured on the 

ground belong to one genus of the small hunting zorids and 70% of all were hunting spiders 

(Table 2). All abundant hunting-spider families (Zoridae, Ctenidae, Lycosidae, Pisauridae) 

were represented by few genera and species and thus overall richness (216 mspp., 116 genera) 

was lower than in the vegetation. Only very few mygalomorphs (i.e. Nemesiidae, Dipluridae) 

were collected.  
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Table 1. Absolute and relative abundance and richness of the spider families captured on 

lower vegetation (by beating and looking up). N = number of individuals, G = number of 

genera, S = number of morphospecies. 

Family N % N G % G S % S 

Theridiidae 1010 37.4 29 19.6 96 30.2 

Linyphiidae 374 13.8 9 6.1 23 7.2 

Salticidae 370 13.7 29 19.6 52 16.4 

Araneidae 234 8.7 21 14.2 53 16.7 

Anyphaenidae 148 5.5 8 5.4 10 3.1 

Thomisidae 119 4.4 7 4.7 10 3.1 

Pholcidae 98 3.6 3 2.0 12 3.8 

Uloboridae 69 2.6 3 2.0 5 1.6 

Tetragnathidae 60 2.2 5 3.4 9 2.8 

Dictynidae 58 2.2 1 0.7 1 0.3 

Mimetidae 33 1.2 3 2.0 4 1.3 

Scytodidae 32 1.2 1 0.7 2 0.6 

Oonopidae 24 0.9 5 3.4 5 1.6 

Theridiosomatidae 24 0.9 5 3.4 12 3.8 

Corinnidae 10 0.4 4 2.7 7 2.2 

Oxyopidae 9 0.3 3 2.0 4 1.3 

Hahniidae 8 0.3 1 0.7 1 0.3 

Zoridae 5 0.2 1 0.7 2 0.6 

Miturgidae 4 0.2 2 1.4 2 0.6 

Lycosidae 3 0.1 1 0.7 1 0.3 

Deinopidae 2 0.1 1 0.7 1 0.3 

Hersiliidae 2 0.1 1 0.7 1 0.3 

Sparassidae 2 0.1 1 0.7 1 0.3 

Amaurobiidae 1 0.0 1 0.7 1 0.3 

Ctenidae 1 0.0 1 0.7 1 0.3 

Philodromidae 1 0.0 1 0.7 1 0.3 

Synotaxidae 1 0.0 1 0.7 1 0.3 

Sum: 27 2702  148  318  
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Table 2. Absolute and relative abundance and richness of the spider families captured on the 

ground (by pitfall traps and looking down). N = number of individuals, G = number of genera, 

S = number of morphospecies. 

Family N % N G % G S % S 

Zoridae 855 47.7 1 0.9 8 3.6 

Theridiidae 210 11.7 25 21.6 48 21.6 

Linyphiidae 126 7.0 12 10.3 29 13.1 

Ctenidae 121 6.8 2 1.7 6 2.7 

Pholcidae 69 3.9 5 4.3 13 5.9 

Lycosidae 62 3.5 5 4.3 9 4.1 

Pisauridae 54 3.0 1 0.9 2 0.9 

Araneidae 49 2.7 10 8.6 22 9.9 

Mysmenidae 40 2.2 3 2.6 4 1.8 

Hahniidae 26 1.5 1 0.9 7 3.2 

Salticidae 25 1.4 8 6.9 14 6.3 

Corinnidae 18 1.0 3 2.6 6 2.7 

Amaurobiidae 17 1.0 1 0.9 3 1.4 

Oonopidae 16 0.9 4 3.5 5 2.3 

Ochyroceratidae 14 0.8 1 0.9 3 1.4 

Theridiosomatidae 12 0.7 2 1.7 4 1.8 

Tetragnathidae 11 0.6 5 4.3 7 3.2 

Thomisidae 11 0.6 3 2.6 6 2.7 

Anyphaenidae 10 0.6 3 2.6 3 1.4 

Scytodidae 10 0.6 1 0.9 2 0.9 

Nemesiidae 8 0.5 2 1.7 2 0.9 

Titanoecidae 7 0.4 1 0.9 1 0.5 

Mimetidae 4 0.2 1 0.9 2 0.9 

Gnaphosidae 2 0.1 1 0.9 1 0.5 

Palpimanidae 2 0.1 2 1.7 2 0.9 

Prodidomidae 2 0.1 1 0.9 1 0.5 

Anapidae 1 0.1 1 0.9 1 0.5 

Caponiidae 1 0.1 1 0.9 1 0.5 

Deinopidae 1 0.1 1 0.9 1 0.5 

Dipluridae 1 0.1 1 0.9 1 0.5 

Liocranidae 1 0.1 1 0.9 1 0.5 

Miturgidae 1 0.1 1 0.9 1 0.5 

Nesticidae 1 0.1 1 0.9 1 0.5 

Symphytognathidae 1 0.1 1 0.9 1 0.5 

Synotaxidae 1 0.1 1 0.9 1 0.5 

Trechaleidae 1 0.1 1 0.9 1 0.5 

Uloboridae 1 0.1 1 0.9 1 0.5 

Zodariidae 1 0.1 1 0.9 1 0.5 

Sum: 38 1793  116  222  
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Alpha diversity 

The number of individuals ranged from 134 to 241, representing 37 to 57 genera, in 

Cachoeira and from 121 to 277, representing 33 to 60 genera, in Itaqui. Means of all generic 

richness values were very close and coefficient of variation rarely exceeded 20% (Tables 3, 

4). The same applies for the diversity indices. Typical for nonrecurring sampling of tropical 

habitats, nearly half of the morphospecies or genera were represented by only one adult 

specimen per site of a stage (singletons; Tables 3, 4, Appendix 1). Both estimators came to 

very similar values (mean of 81 genera in Cachoeira, 76 in Itaqui), corresponding to a 

coverage of over 60%. The richness of genera (total, mean rarefied, estimated) was very 

similar across the stages of forest succession (see means in Table 5).  

After correcting for the sampling effort (number of samples, individuals), no differences 

between the stages were found. None of the statistical tests (two-way ANOVAs with stage 

and locality as factors and rarefied and estimated generic richness and the two diversity 

indices as dependent variable) showed a significant effect of stage or locality. The spider 

assemblages in younger stages are obviously as rich in genera and as diverse as in the old-

growth forests. At the stage level the portion of singletons was 33% or higher, the estimated 

number of genera, based on the Chao 2 and ICE estimators, was mostly less than twice the 

number of observed genera and, consequently, coverage was higher than 66% (Table 5). At 

the morphospecies level the portion of singletons in the stages was even higher. 

 



 

 

 

Table 3. Alpha diversity of spiders in the Cachoeira sites (genera based, samples from all methods pooled). Site codes: Ca H1–3 = Cachoeira 

sites of herbaceous stage, Ca A1–3 of arboreal stage, Ca M1–3 of medium stage, Ca F1–3 of old-growth. N = number of individuals, G = 

number of genera, H = Shannon Index, E = evenness, α = Fishers’s alpha index, Ra = rarefied genera number, Sg = portion of singletons, Chao 2 

= estimated generic richness, ICE = sample-based richness estimate, Coverage = number of observed genera as a percentage of Chao 2-estimated 

richness, SD = standard deviation, CV = coefficient of variation. 

Site N G G/N H E Α Ra (SD) Sg Chao 2 (SD) ICE Coverage 

Ca H1 165 51 0.31 3.5 0.66 25.3 44.0 (2.1) 0.39 61.6 (6.2) 73.5 82.8 

Ca H2 139 40 0.29 3.1 0.57 18.8 36.4 (1.6) 0.55 69.0 (16.1) 86.8 58 

Ca H3 194 51 0.26 3.3 0.52 22.5 40.5 (2.4) 0.45 79.0 (14.8) 83.0 64.6 

Ca A1 169 37 0.22 2.6 0.36 14.6 30.7 (2.0) 0.49 53.3 (10.2) 62.1 69.4 

Ca A2 134 50 0.37 3.4 0.59 28.9 46.4 (1.6) 0.54 94.4 (22.0) 119.7 53 

Ca A3 185 52 0.28 3.4 0.58 24.0 41.5 (2.4) 0.46 100.6 (25.4) 103.7 51.7 

Ca M1 137 49 0.36 3.2 0.51 27.3 44.5 (1.7) 0.61 86.9 (18.8) 115.0 56.4 

Ca M2 155 46 0.30 3.4 0.56 22.1 39.8 (2.0) 0.52 94.1 (26.2) 93.1 48.9 

Ca M3 169 44 0.26 3.0 0.45 19.3 36.4 (2.1) 0.50 70.3 (14.5) 78.1 62.6 

Ca F1 216 54 0.25 3.3 0.50 23.1 40.6 (2.5) 0.46 95.7 (22.5) 88.4 56.4 

Ca F2 212 49 0.23 3.2 0.51 20.0 36.7 (2.5) 0.47 83.7 (18.6) 89.5 58.5 

Ca F3 241 57 0.24 3.3 0.48 23.6 39.9 (2.7) 0.46 79.6 (11.3) 92.8 71.6 

Total 2116 157       220.4 (25.2) 200.0 71.3 

Mean 176.3 49.3 0.28 3.2 0.52 22.5 39.8 0.49 80.7 90.5 61.2 

CV 19% 12% 17% 8% 15% 17% 11% 12% 18% 18% 16% 
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Table 4. Alpha diversity of spiders in the Itaqui sites (genera based, samples from all methods pooled). Site codes: It H1-3 = Itaqui sites of 

herbaceous stage, It A1-3 of arboreal stage, It M1-3 of medium stage, It F1-3 of old-growth. N = number of individuals, G = number of genera, 

H = Shannon index, E = evenness, α = Fishers’s alpha index, Ra = rarefied genera number, Sg = portion of singletons, Chao 2 = estimated 

generic richness, ICE = sample-based richness estimate, Coverage = number of observed genera as a percentage of Chao 2-estimated richness, 

SD = standard deviation, CV = coefficient of variation. 

Site N G G/N H E Α Ra (SD) Sg Chao2 (SD) ICE Coverage 

It H1 121 38 0.31 3.2 0.64 19.0 37.5 (0.7) 0.42 51.6 (8.3) 64.7 73.6 

It H2 253 54 0.21 3.2 0.45 21.0 37.1 (2.7) 0.48 97.2 (22.2) 103.3 55.6 

It H3 125 34 0.28 2.4 0.31 15.4 32.5 (1.1) 0.68 71.7 (21.4) 128.6 47.4 

It A1 150 44 0.29 3.2 0.53 21.0 38.6 (1.9) 0.52 75.7 (17.3) 90.6 58.1 

It A2 230 50 0.22 2.5 0.26 18.5 32.7 (2.6) 0.54 117.3 (37.4) 101.8 42.6 

It A3 160 42 0.26 3.1 0.54 17.8 35.4 (1.9) 0.46 61.1 (12.0) 71.1 68.7 

It M1 205 43 0.21 3.0 0.49 16.6 33.4 (2.3) 0.44 70.7 (16.1) 79.7 60.8 

It M2 277 54 0.20 3.2 0.46 20.0 37.3 (2.7) 0.37 78.2 (13.6) 77.3 69.1 

It M3 281 57 0.20 3.3 0.46 21.6 38.7 (2.8) 0.37 73.5 (8.9) 85.2 77.6 

It F1 123 33 0.27 3.1 0.69 14.8 32.4 (0.7) 0.36 47.3 (9.9) 51.3 69.8 

It F2 274 60 0.22 3.4 0.47 23.7 39.4 (2.9) 0.45 109.2 (24.7) 105.5 54.9 

It F3 180 44 0.24 3.2 0.58 18.6 37.2 (2.0) 0.36 60.4 (9.7) 67.0 72.8 

Total 2379 154       196.8 (17.3) 191.5 78.3 

Mean 198.3 46.1 0.24 3.1 0.49 19.0 36.0 0.45 76.2 85.5 62.6 

CV 32% 19% 16% 10% 25% 14% 7% 21% 29% 25% 18% 
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Table 5. Sampling effort, generic richness (observed and estimated) and diversity per stage (means and standard deviations from three replicates, 

all samples pooled). N = number of individuals, G = number of genera, α = Fishers’s alpha index, Ra = rarefied genera number, Sg = portion of 

singletons (pooled data for the three replicates), Chao 2 = estimated generic richness, ICE = sample-based richness estimate, Coverage = number 

of observed genera as a percentage of Chao 2-estimated richness. SD = standard deviation. 

Stage Samples Total N 
Mean N 

(SD) 
Total G Ra (SD) Sg α (SD) Chao 2 (SD) ICE Coverage 

Ca H 60 498 166 (28) 89 47.6 (3.4) 0.34 31.6 (2.3) 116.6 (12.5) 125.2 76.3 

Ca A 69 488 163 (26) 85 43.7 (3.4) 0.34 29.8 (2.2) 111.3 (11.9) 126.2 76.3 

Ca M 70 461 153 (16) 83 42.9 (3.3) 0.41 29.5 (2.3) 115.8 (14.3) 135.5 71.7 

Ca F 72 669 223 (16) 84 40.9 (3.2) 0.36 25.4 (1.7) 119.3 (17.0) 113.6 70.4 

It H 69 499 166 (75) 86 44.9 (3.4) 0.34 30.0 (2.2) 102.5 (8.0) 115.8 83.9 

It A 65 540 180 (44) 82 39.3 (3.3) 0.43 26.9 (2.0) 116.5 (15.2) 132.2 70.4 

It M 72 763 254 (43) 89 40.6 (3.3) 0.33 26.1 (1.7) 117.6 (13.9) 118.6 75.7 

It F 62 577 192 (76) 81 41.4 (3.2) 0.40 25.7 (1.8) 123.5 (19.7) 127.4 65.6 

Total 539 4495 187 (51) 192 49.8 (3.8) 0.23 40.7 (1.4) 248.8 (22.3) 229.3 77.2 

2
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Beta diversity 

Qualitative similarity (Sørensen index) of the different stages at each locality ranged from 

0.53 (youngest stage with older) to around 0.7 (between older stages) (Tables 6, 7), reflecting 

a turnover of genera (and species) along the successional gradient. Furthermore, within-stage 

similarities were not higher, ranging from 0.4 (stage H) to 0.7 (stage F) in Cachoeira and from 

0.3 (H) to 0.6 (M) in Itaqui. Similarities of the same stages from the two reserves were usually 

higher (Tables 8, 9) than of the different stages within the same locality (Tables 6, 7). 

Similarities between stage H and other stages were always lowest, the spider assemblage of 

the herbaceous stage differed strongly from the older stages. 

Quantitative (NESS) is generally higher than qualitative similarity (Tables 6-9), indicating 

that the dominant genera (i.e. species) were abundant in all stages. This is also obvious in the 

list of the ten most abundant genera (species) of the two localities, representing 49% resp. 

50% of all adults (Tables 10, 11). One zorid genus clearly dominated in all stages and the 

positions of many abundant genera in the list are also very similar. Abundant spider species 

reflecting the turnover between younger (H, A) and older forests (M, F) are the linyphiids of 

the genus Anodoration and several theriidid genera (Spintharus, Theridion, Thwaitesia) in 

Itaqui and the dictynid Thallumetus and the pholcids of the genus Mesabolivar in Cachoeira. 

In Itaqui the latter was also exclusively found in the two older stages, but was not among the 

ten most abundant genera (see also indicator analysis). 

Table 6. Qualitative (Sørensen index, upper right) and quantitative (NESS index, lower left, 

m = 228) similarities between the forest stages in Cachoeira reserve, based on genera data, all 

methods pooled. 

  Ca H Ca A Ca M Ca F 

Ca H  0.58 0.56 0.53 

Ca A 0.76  0.70 0.67 

Ca M 0.72 0.93  0.71 

Ca F 0.70 0.92 0.92  
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Table 7. Qualitative (Sørensen index, upper right) and quantitative (NESS index, lower left, 

m = 248) similarities between the forest stages in Itaqui reserve, based on genera data, all 

methods pooled. 

  It H It A It M It F 

It H  0.59 0.54 0.53 

It A 0.82  0.65 0.58 

It M 0.72 0.85  0.66 

It F 0.67 0.76 0.91  

 

Table 8. Qualitative similarity (Sørensen) between the forest stages in both reserves, based on 

genera data, all methods pooled. 

 It H It A It M It F 

Ca H 0.65 0.56 0.49 0.51 

Ca A 0.58 0.62 0.65 0.66 

Ca M 0.56 0.66 0.69 0.69 

Ca F 0.50 0.64 0.68 0.68 

 

Table 9. Quantitative similarity (NESS, m = 228) between the forest stages in both reserves, 

based on genera data, all methods pooled. 

 It H It A It M It F 

Ca H 0.82 0.75 0.65 0.65 

Ca A 0.76 0.85 0.91 0.85 

Ca M 0.68 0.80 0.89 0.86 

Ca F 0.57 0.80 0.91 0.92 
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Table 10. Assemblage structure (relative abundance of the ten most abundant genera) and 

total number of individuals (Ind.) in the four forest stages in Cachoeira reserve, pooled from 

all methods in all sites. 

Family Genus 

Ca H 

% 

Ca A 

% 

Ca M 

% 

Ca F 

% 

Ca total 

% 

Ca 

Ind. 

Zoridae gen. 1 15.0 16.1 22.3 29.7 20.3 429 

Salticidae Tariona 5.1 6.7 3.8 4.1 5.1 108 

Theridiidae Dipoena 5.3 3.9 5.6 5.4 5.0 105 

Linyphiidae Sphecozone 6.4 3.3 0.4 7.6 4.3 90 

Theridiidae Theridion 3.1 2.4 0.8 6.7 3.1 66 

Pholcidae Mesabolivar 0.2 1.8 1.2 9.1 2.9 61 

Araneidae Mangora 2.0 0.9 2.8 6.5 2.8 60 

Anyphaenidae Patrera 0.0 1.5 3.8 3.9 2.2 47 

Dictynidae Thallumetus 0.0 0.0 4.0 5.4 2.1 45 

Theridiidae Spintharus 0.4 1.5 1.6 5.4 2.1 45 

 

Table 11. Assemblage structure (relative abundance of the ten most abundant genera) and 

total number of individuals (Ind.) in the four forest stages in Itaqui reserve, pooled from all 

methods in all sites. 

Family Genus 

It H 

% 

It A 

% 

It M 

% 

It F 

% 

It total 

% 

It 

Ind. 

Zoridae gen. 1 7.4 30.9 18.3 15.1 18.1 431 

Theridiidae Dipoena 2.4 6.1 7.9 3.6 5.3 126 

Linyphiidae Sphecozone 5.0 2.8 6.0 5.4 4.9 117 

Theridiidae Spintharus 0.2 1.9 9.7 5.2 4.8 115 

Linyphiidae Anodoration 16.2 2.8 0.0 0.0 4.0 96 

Salticidae Tariona 0.4 1.5 4.3 4.9 3.0 71 

Theridiidae Thwaitesia 0.4 1.3 1.6 7.1 2.6 62 

Ctenidae Isoctenus 0.8 2.4 2.9 3.8 2.6 61 

Theridiidae Episinus 6.4 1.3 2.2 0.9 2.6 61 

Theridiidae Theridion 9.2 0.2 0.1 1.9 2.5 59 
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Multivariate Analysis 

The ordination (Stress = 0.12, Fig. 2) shows the stages of both localities arranged along the 

first axis. Especially the younger stages (H, A) are well separated from each other and from 

the older stages, with the exception of one herbaceous site in Cachoeira. A much higher 

variability of the youngest (H) stage is obvious. Sites of the two older stages (M, F) ordinate 

close to each other. Sites at the two localities Itaqui and Cachoeira separate along the second 

and third axis. Although the nMDS is based on Bray-Curtis distances, which are more biased 

to dominant species than the NESS measures, the ordination visualizes the same differences 

between sites than the NESS values (Tables 6, 7, 9). Several genera (mainly orb- and sheet-

weavers, some anyphaenids) characterized the youngest herbaceous stage, whereas the older 

stages grouped apart from the younger by pholcids (Mesabolivar spp.), the anyphaenid genus 

Patrera, the uloborid genus Miagrammopes and the theridiid genus Spintharus. The nMDS 

ordination was confirmed by a Permanova analysis. The four stages showed highly significant 

differences concerning their composition of spider assemblages (F = 2.34; P = 0.0007). 

 

Figure 2. Three-dimensional representation of a non-metric multidimensional scaling analysis 

(nMDS), based on Bray-Curtis distances; generic data pooled from all methods and sites in 

Cachoeira and Itaqui and square-root transformed (stress = 0.12).  
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Functional diversity 

Weavers were more abundant than hunting spiders in all stages (62/38% - 56/44%), with 

the exception of the young arboreal stage (49/51%). Most spiders (40%) belonged to the 

diurnal space-web weavers, and these were more abundant in the herbaceous stage than in the 

older ones. 21% were ground runners, most abundant in the young arboreal stage and less in 

the herbaceous. Spiders known to be diurnal dominated the collections with 44% of all 

individuals, while nocturnal spiders accounted for 20%. The portion of diurnal spiders 

decreased with the age of the stages from 53 to 41%. In older forests distinctly more orb 

weavers (e.g. near the ground), sedentary sheet-web weavers and nocturnal ground ambushers 

(i.e. ctenids) were caught than in the younger stages. Ground runners were most abundant in 

the more open young arboreal stage (due to a higher portion of lycosids). The number of 

guilds in the stages was nearly equal, but the diversity of guilds seems to increase from the 

young herbaceous to the old forest stages (Table 12). 

Indicator analysis 

Indicators of single stages were weak, so the two younger (H + A) and the two older (M + 

F) stages were pooled to show a clear separation by the genera (Table 13). Spintharus and 

Miagrammopes showed high indicator values for the older forest stages, whereas Anodoration 

and Titidius were indicatory taxa for the younger forests. The same genera fitted best to the 

nMDS ordination space, but species arrows are not shown in Figure 2 for legibility. 
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Table 12. Guild structure of the spider assemblage in the four stages, data of both localities 

and all methods pooled. Taxa assigned to guilds following Dias (2010) or Höfer and Brescovit 

(2001)
 a
. 

Guild Stages    Assigned families (genera) 

H A M F  

Diurnal aerial ambushers 32 46 34 19 Thomisidae, Philodromidae 

Diurnal aerial hunters 5 4 2 1 Miturgidae 2 (Radulphius), 

Oxyopidae 

Diurnal ground runners 1 0 0 0 Liocranidae 

Nocturnal aerial ambushers 2 2 0 1 Hersiliidae, 

Sparassidae,Trechaleidae 

Nocturnal aerial hunters 77 37 68 46 Anyphaenidae, Scytodidae, 

Corinnidae 

Aerial runners 91 101 121 110 Salticidae, Mimetidae 

Nocturnal ground ambushers 13 29 39 49 Ctenidae, Nemesiidae 

Nocturnal ground hunters 10 15 20 12 Salticidae 2 (Asaphobelis), 

Oonopidae, Palpimanidae, 

Caponiidae, Zodariidae, 

Prodidomidae 

Ground runners/Nocturnal 

ground hunters 

34 13 0 20 Lycosidae 1, Gnaphosidae 

Ground runners 111 276 251 224 Miturgidae 1 (Teminius, 

Strotarchis), Zoridae 

Diurnal ground orb weavers 
a
 3 8 5 25 Mysmenidae, 

Symphytognathidae 

Diurnal space-web weavers 487 374 460 459 Dictynidae, Linyphiidae, 

Synotaxidae, Theridiidae, 

Nesticidae 

Nocturnal ground weavers 
a
 12 2 20 12 Deinopidae, Dipluridae, 

Titanoecidae, Anapidae, 

Hahniidae 

Nocturnal space web weavers 1 2 4 7 Ochyroceratidae 

Sedentary sheet weavers 
a
 16 54 58 97 Pholcidae and Pisauridae 2 

(Architis) 

Orb weavers 103 65 138 154 Araneidae, Tetragnathidae, 

Theridiosomatidae, Uloboridae 

Shannon Index H 1.75 1.83 1.87 1.94  

Evenness E 0.64 0.68 0.69 0.72  
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Table 13. Indicator analysis of the vegetation-bound spiders (beating tray data): O = older 

stages (M & F); Y = younger stages (H & A). 

 Cluster Indicator value Probability 

Spintharus O 0.82 0.003 

Miagrammopes O 0.82 0.003 

Patrera O 0.76 0.002 

Mangora O 0.69 0.007 

Thallumetus O 0.67 0.003 

Mesabolivar O 0.63 0.041 

Faiditus O 0.50 0.013 

Chrosiothes O 0.42 0.043 

Onoculus O 0.42 0.043 

Anodoration Y 0.92 0.001 

Titidius Y 0.77 0.003 

Hetschkia Y 0.59 0.027 

 

Discussion 

According to the project’s approach, we put time and effort in the use of replicates to allow 

for a statistical analysis of biodiversity patterns of spiders in secondary forests rather than to 

attempt to inventory the entire spider assemblage. We therefore did not undertake special 

effort to sample cryptic, specialized or rare species, but rather used an accepted and widely 

used protocol to sample the spider assemblage on the ground and the lower vegetation. By 

doing so we also made our samples per site comparable within our study and to other studies 

in the Neotropics. Due to difficulties in identifying the species and to avoid a biased result by 

wrong morphospecification of the (partly undescribed) tropical species, we based our richness 

measures and estimates on genera. According to other studies genera serve as a reliable base 

for evaluating the species richness (Baldissera et al., 2008; Bihn et al., 2010). 

The temporal distant sampling of the two localities obviously had no effect on any of the 

analyzed variables (total number of individuals, genera, families; ratios female/male and 

adult/juvenile). The absence of autocorrelation in the dataset indicates that neither the 

temporal distance of the two sampling campaigns nor the spatial distance between the two 

localities had significant effects on the sampled spider assemblages. 

Shortcomings in the methods, sampling protocol and identification could have masked 

differences in richness between the stages. Most probably, old-growth forests offer more 

specific microhabitats (e.g. in bromeliads or dead wood) for specialized, cryptically living or 
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rare (less abundant, not widely distributed, not active during the whole year) species. These 

species cannot be sampled by either strongly vision-based sampling or beating the well 

accessible lower vegetation (Dias et al., 2000; Rinaldi et al., 2002). Thus, to assess and 

evaluate the diversity of complex habitats such as an old-growth forest in an unbiased way, 

more effort might be necessary using special sampling techniques for specialized species. It 

might even be questionable whether the studied old-growth sites, although not strongly altered 

by humans, were suitable as a reference instead of primary forests. They could have obscured 

differences between stages or a directed succession, being an “old-growth successional state” 

in itself. The lack of any native earthworm species in the investigated sites and the high 

dominance of the invasive species Pontoscolex corethrurus in all, even the oldest forest sites 

(Römbke et al., 2009) at least shed some light on the long history of anthropogenic influence 

in the region. 

Notwithstanding these possible constraints, our survey of spiders revealed a high richness 

at the genera and species level when compared to other studies in the realm of the Atlantic 

Forests. Some of them, however, had sampled in urban parks, plantations or small forest 

fragments (Benati et al., 2005; Candiani et al., 2005; Oliveira-Alves et al., 2005; Rinaldi & 

Ruiz, 2002). Comparably high richness values were recorded by Brescovit et al. (2004), 

Baldissera et al. (2008), Podgaiski et al. (2007) for Atlantic forests and Ricetti & Bonaldo 

(2008) for Amazonian forests. The differences in both sampled and estimated alpha-diversity 

values between sites (of all types) and also between the two sampled reserves of our study 

were low and not significant. Even the youngest successional stages in the study area house a 

considerable diversity of spiders. This is not unusual, because such habitats often show high 

structural heterogeneity, prey availability and ecotone characteristics, which increase species 

numbers (Baldissera et al., 2003; Kotze & Samways, 1999; Pétillon & Garbutt, 2008; Platen, 

2006).  

Interesting is the high turn-over of species between all sites, independent of the stage. 

Stages differ in their species composition, not in richness. Variability within the a-priori 

defined stages originates from the heterogeneity of structural and microclimatic conditions 

(openness, plant density), which in all stages is based on physical and pedological 

heterogeneity (exposition, inclination, soil type, groundwater level). The higher variability 

within the youngest stage (visible in the ordination) is probably caused by differences in the 

historical (largely unknown) land use (e. g. the use of machines, fertilizers or pesticides), 

which mainly influences early succession. During further succession, differences in biotic 
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(prey availability, structure) and abiotic (climate) habitat parameters within and between the 

stages appear to decrease. An experimental manipulation of food and structure in one arboreal 

stage and the old-growth forest suggested food limitation of the decomposer fauna, but also 

revealed no effect of food or structure or any influence of stage on the spiders (Raub et al., 

2014). Spiders are mostly generalist predators and seem to adapt easily to different food 

conditions and prey types (Uetz, 1992), as long as suitable habitat structures and climate are 

provided. Baldissera et al. (2008) also found no differences in family, generic and species 

composition of the spider assemblages of natural Araucaria forest fragments and Eucalyptus 

monocultures, when appropriate habitat structures where provided. 

Richness in our sites is comparable to other studies in Atlantic forests (see above), but 

some studies showed a different (family) composition of the assemblages (Rinaldi & Ruiz, 

2002; Rinaldi et al., 2002) and also significant differences in richness between young 

secondary and old-growth forest sites (Pinto-Leite et al., 2008; Uehara-Prado et al., 2009). We 

assume such differences to be caused by different usages of the sampled areas, for example 

the use of pesticides or heavy machinery, and by the influence of the matrix of a forest 

fragment (see above). 

Studies from tropical forest regions in Brazil (i.e. in the Amazon) revealed distinctly lower 

species richness of spiders in anthropogenic altered landscapes with forest patches in 

comparison to a continuous forest cover (Lo-Man-Hung et al., 2011). However, as shown by 

Rego et al. (2005), taxa-specific responses can also lead to opposite responses in Neotropical 

forest fragments. High spider richness in the younger secondary sites should be regarded 

carefully in the context of conservation issues and not be taken as an absolute measure of 

habitat quality. Other investigated invertebrate groups in the same area showed an increase in 

richness along the successional gradient (Bihn et al., 2008b; Hopp et al., 2010).  

The use of indicator taxa is becoming more and more important in the context of the 

growing anthropogenic pressure on highly diverse and threatened tropical ecosystems. For the 

evaluation of the conservation potential and state of secondary and old-growth tropical 

forests, precise but quick and cheap tools such as indicators are needed (Uehara-Prado et al., 

2009). However the use of indicator taxa in the evaluation of ecosystems is a controversial 

topic, especially because of the indirect effects in food webs (Abrams et al., 1996) together 

with the lack of knowledge of the interrelations between the taxa. Therefore a multi-taxon 

approach with a carefully selected set of organisms (Cabra-García et al., 2012; Kotze & 

Samways, 1999) should be used. Nonetheless, the results of our indicator analysis can be used 
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for evaluations of secondary forest areas in the southern Mata Atlântica region. The identified 

genera can serve as indicator taxa for the evaluation of priority areas for forest conservation. 

For future evaluations they should be combined with the outcomes of other arthropod studies 

(Bihn et al., 2008b; Hopp et al., 2011; Ottermanns et al., 2011) and also ecological traits 

should be included to establish a reliable multi-taxon approach for the implementation of 

conservation strategies (Kotze & Samways, 1999; Uehara-Prado et al., 2009). 

Recovery of (species) richness can be relatively fast. Dunn (2004) reported a time span of 

20-40 years for ant and bird richness recovery, which is comparable to the age of our 

medium-aged secondary forests. But the regeneration of the original forest community often 

needs much more time (Bihn et al., 2008b; Dunn, 2004). Regarding spiders, some forest 

dwelling Lycosidae still do not seem to find adequate habitat in the oldest secondary stage. 

We therefore assume that mature secondary forests can host a highly diverse spider 

community, but do not serve as surrogate habitats for all old/primary forest dwelling genera 

(species). A classification of forests by the diversity and structure of spider assemblages 

would separate young (< 20 years) from median to old forests (> 30 years), in good 

accordance with results on beetles (Hopp et al., 2010), but not on ants (Bihn et al., 2008a). 

Our study did not show a succession of the spider diversity from species-poor young 

secondary vegetation towards a species-rich old-growth fauna, but rather a turnover of spider 

genera along the successional gradient, strongest between the two young and the two older 

stages, i.e. between an age of 20-30 years. We interpret the high alpha diversity and turnover 

between sites of the same stage as an expression of a rich regional spider fauna, maintained by 

the mosaic landscape of forests of different ages and mainly stochastic processes in the 

establishment of spider assemblages in early successional stages. Our study region presents a 

highly diverse mosaic texture with large patches of old-growth forest acting as refuges for 

spiders (Rodrigues et al., 2009), never far away even from the youngest secondary stages. 

This variation in vegetation complexity and the large set of microhabitats provided is able to 

host highly diverse spider assemblages (Ricetti & Bonaldo, 2008). We assume that ideal 

preconditions for colonization and repopulation of secondary habitats have been met in the 

region. Spiders survived the deforestation and fragmentation of the coastal forests in Paraná 

due to the constant availability of retreat habitats for a later resettlement. 
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Appendix – Supporting Material Chapter 2: Morphospecies list of adult spiders 

captured in the forest stages of the two reserves Cachoeira and Itaqui (specimens 

from all methods and replicate sites pooled).        Page 94 ff 
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3 – Conserving landscape structure - conclusions from the 

partitioning of spider diversity in southern Atlantic forests of 

Brazil.B 

with Hubert Höfer, Ludger Scheuermann, Ricardo Miranda de Britez, Roland Brandl, Published in 

Studies on Neotropical Fauna and Environment, 2015 

Abstract 

In the Atlantic Forest in Brazil, where no more primary forests exist, the value of 

secondary forests for biodiversity conservation is becoming more and more important. We 

studied the spiders in a relatively well preserved region of the Mata Atlântica, where the 

matrix of the landscape is still forest. We addressed the contribution of different spatial levels 

including forest stages to total diversity and analyzed the patterns by additive partitioning of 

beta diversity on genus and morphospecies level and for different sampling methods. Beta 

diversity was strongly based on turnover, not on gain/loss. All spatial levels (sample, stage, 

area, locality) contributed more to beta diversity than expected, without stronger influence of 

stage. Patterns were consistent for both identification levels and all methods. We conclude 

that in this landscape the protection of large areas encompassing all forest stages, without 

special attention to old-growth, is the best way to conserve the regional species richness. 

Introduction 

Secondary forests are becoming ever more important for biodiversity conservation (see 

debate summarized in Bihn et al., 2008) although their specific contribution (value) – i.e. 

which part of the diversity they house – is not always known (for the region and the taxon; 

Barlow et al., 2007; Gardner et al., 2007). This is especially true for the Brazilian Mata 

Atlântica (Ribeiro et al., 2009), a region regarded as “one of the hottest biodiversity hotspots” 

(Laurance, 2009) of the world, due to the high degrees of species richness and endemism, but 

also forest loss and fragmentation. Anthropogenic impact started early here in comparison 

with Amazonia and some of the biggest cities of Brazil (São Paulo, Rio de Janeiro) are 

situated in this region. 

Matrix permeability is a key connectivity component (Fonseca et al., 2009). In the Atlantic 

Forest, small forest fragments (< 50 ha) are very important, because they constitute the largest 

fraction of the remaining forests (> 80% of all patches, but not area) and are essential for 

connectivity (Kauano et al., 2012; Ribeiro et al., 2009). Clusters of neighboring fragments    

(< 200m distance) that form large tracts of forest (> 50,000 ha) are common and form 
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important potential mosaics for conservation (Ribeiro et al., 2009).  

Our study concerned the best preserved and less fragmented biogeographic subregion of 

the Atlantic Forest, at the flanks and base of the mountain ridge (Serra do Mar) in the 

Environmental Protection Area (EPA) Guaraqueçaba (Kauano et al., 2012). This protected 

area comprises 83% of forests in different successional stages, of which 73% are Submontane 

Forest (slopes) and 27% are Lowland Forest. The remaining 17% of the EPA consist of 

pastures, grassland, anthropogenic areas, beach and water. Slopes were even less fragmented 

and better preserved than lowlands (Kauano et al., 2012). The studied sites are located in a 

landscape mosaic of differently sized forest patches resulting mainly from the regeneration of 

forest from abandoned (buffalo) pastures under a restoration and conservation program of the 

Brazilian non-governmental organization (NGO) SPVS (Society for wildlife research and 

environmental education) (Ferretti & Britez, 2006). Secondary forests of different 

successional stages are in this region embedded in a forest matrix with a still high presence of 

large forest patches (Kauano et al., 2012), compared to the rest of the Atlantic Forests 

(Ribeiro et al., 2009). All studied sites were surrounded or at least neighbored by forest, often 

with old-growth forest within a small distance.  

To study the effect of land-use change in biological communities it is necessary to 

understand how the different components of diversity are distributed in space (Cardoso et al., 

2009). For a regional conservation strategy it is most important to know which site or stage 

should have priority and if protection of old-growth (source areas) should have priority over 

restoration efforts (Rodrigues et al., 2009; Scarano 2009). Under these aspects a multi-taxon 

study was undertaken by the Brazilian-German cooperation project SOLOBIOMA from 2003 

to 2009 (Höfer et al., 2007, 2011).  

Important questions of the SOLOBIOMA project were:  

(1) Is there a directional change in species richness or species composition (turnover) 

from younger to older stages, e.g. a succession paralleling the succession during the 

restoration of forest in the region?  

(2) By how much does the number of species in the region exceed the average number of 

species per sampling? How large is the variation in species in different stages and two 

localities (reserves)? 

In this respect the relative contribution of stages (especially old-growth) and the change 

among the two reserves in the richness/diversity of the region are of special interest.  



 

48 

 

Spiders are an abundant and species rich group in forests. They contribute considerably to 

the overall diversity and represent a well-studied taxon even in the Neotropics, sharing 

broadly similar community responses to land-use change with other species-rich taxa (Barlow 

et al., 2007). As predatory arthropods and mostly generalists, they occupy an important 

position in the food web and respond to environmental changes making them potential 

bioindicators (Cardoso et al., 2004; Scott et al., 2006). Several studies have shown their 

influence on decomposition dynamics and on plant community structure by mediating 

herbivore abundance and feeding (Griffiths et al., 2008; Lawrence & Wise, 2004; Pringle & 

Fox-Dobbs, 2008; Schmitz, 2009). This is why they are often included in experimental studies 

of trophic interactions and effects on ecosystem functioning, e.g. with respect to bottom-up 

(Chen & Wise, 1999; Raub et al., 2014a; Scherber et al., 2010) as well as top-down effects 

(Lawrence & Wise, 2004). However, there seem to be differences between (species poor) 

temperate and (species rich) subtropical and tropical forests (Raub et al., 2014a; Schuldt et al., 

2011). 

We aimed to sample a considerable portion of the spider diversity present in the different 

stages of forests in the two protected areas in the region. This species richness is to be 

conserved for its function in the existing systems and also as a source for colonization of 

“new forests”, planted by the NGO SPVS or emerging by natural regrowth, both undergoing a 

succession during decades. It is difficult to differentiate between old-growth and secondary 

forest in the entire Atlantic forest region (Ribeiro et al., 2009) and also in the study region.  

For an inclusion of invertebrate taxa in future conservation management planning it also 

seemed important to check at least for exemplary or surrogate taxa whether the used 

classification of forests based on the combination of age and vegetation is of equal relevance 

for arthropods and also how much work (for sampling and identification) must be invested for 

these groups.  

We expected a directional change of richness along the age/vegetation gradient based on 

more structural diversity (vegetation) and bottom-up effects through the food web. In ants, 

genus richness (as a surrogate for species richness) increased with successional stage (Bihn et 

al., 2008); likewise the beetle species density increased (Hopp et al., 2010), but not spider 

species density (Raub et al., 2014b). For spiders however, we observed a strong turnover 

(exchange of genera/species) starting from a high alpha diversity in all forest types, with 

higher variance in the youngest stages. The a priori classified stages could be differentiated 

and for older forests as well as younger forests some indicator species were found (Raub et 
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al., 2014b). So it seems that the hitherto used classification is a valid approach for invertebrate 

diversity and conservation agencies could use these classes (stages) for planning efforts. 

However, a deeper understanding of biological mechanisms acting during natural succession 

or anthropogenic restoration would be helpful in deciding upon protection of specific sites, 

selection of sites for restoration, necessary management activities and large scale planning of 

conservation, especially with restricted resources and the ongoing pressure of forest use.  

Due to our sampling design we were able to calculate alpha (assemblage) diversity, beta 

diversity (turnover or degree of difference between assemblages) and gamma (regional) 

diversity for the lowland forest ecosystem. Recognizing the relationship between the alpha 

and beta components of diversity at multiple scales can help to understand the processes that 

control diversity over the whole range of scales (Loreau, 2001). We wanted to infer biological 

mechanisms from the patterns of species occurrences, to understand the relative contribution 

of alpha (within-community) and beta (between-community) components of diversity to the 

total regional (gamma) diversity. Objectives of the study were: 

(1) To compare the patterns resulting from additive partitioning on genus and 

morphospecies bases to reveal whether genera can serve as surrogate for species.  

(2) To compare the patterns resulting from the different methods to reveal if they are 

similar and decide on the best method and its use: 

(a) number of sites (areas) 

(b) relative contribution of methods (different strata, activity based sampling 

versus not activity based sampling). 

(3) To interpret the patterns with respect to the project questions. How is regional 

diversity distributed? Which level contributes most: area (the number of sites of the 

same stage, i.e. an increase in sampled area), stage (forests of different age and with 

different vegetation structure and diversity within an area), or the expansion of the 

study to another reserve (locality under biogeographic influence, different climatic 

conditions and mosaic structures). 

(4) To draw conclusions for priorities in conservation management and environmental 

protection planning in the region. 
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Materials and Methods 

Study area 

The study was conducted in the coastal region of the Paraná state in southeastern Brazil. 

The regional climate there is humid subtropical (Köppen´s Cfa, Strahler & Strahler, 2005), 

with mean temperatures between 16.2°C in July and 24.5°C in February (IPARDES, 2001). 

Average precipitation ranges between 2000 and 3000 mm year-1 (Roderjan & Kunyoshi, 

1988). Rainfall is more or less evenly distributed throughout the year, although with some 

seasonality (low rainfall from April to August). Originally the region was covered by dense 

ombrophilous lowland and submontane forests (Veloso et al., 2012), but these ecosystems 

were largely converted to buffalo pastures up to the 1980s. After that, the logging practically 

stopped and during recent years most of the pastures and other used areas were abandoned 

(IPARDES, 1995).  

In 1999 the Brazilian NGO SPVS started an ecological restoration program (Ferretti & 

Britez, 2006) and created the two private nature reserves (RPPNs) “Reserva Natural do Rio 

Cachoeira” and “Reserva Natural Serra do Itaqui” (Cachoeira: 25.3142°S, 48.6958°W; Itaqui: 

25.2733°S, 48.4872°W; WGS84) with areas of 8600 and 6700 ha, ranging from sea level to 

elevations of 700 m asl. They are part of the Environmental Protection Area (EPA) 

Guaraqueçaba and belong to the Mata Atlântica Biosphere Reserve thus forming part of a 

larger mosaic landscape (Figure 1). The municipal area of Guaraqueçaba (2020.093 km²) is 

sparsely populated with around four habitants per square kilometer and the local population 

mainly depends on subsistence agriculture (by slash and burn) and forestry (Antonelli Filho & 

Antunes Ferreira, 2012). These practices (mainly before 1970) configured a landscape with a 

mosaic of small open areas of less than one hectare. Due to economic constraints the 

agricultural use is constantly decreasing since the logging stopped and due to the (planting 

and protecting) activities of the SPVS and the abandonment of agricultural use, the two 

reserves themselves today represent a patchy landscape of small open areas and secondary 

vegetation in a forest matrix. 
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Figure 1. Location of the Sampling sites in the two Nature Reserves Rio Cachoeira (Ca) and 

Itaqui (It) (upper part) and vegetation types of the Reserves (lower part). Vegetation maps 

provided by the SPVS  
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The reserve areas comprise 20 different terrestrial vegetation and land use types (for 

Brazilian land use classification see Roderjan & Kunyoshi, 1988) with portions of less than 

1% up to 28% of the overall area (Figure 1) of which the different successional stages (from 

pasture to forest) were categorized a priori by the SPVS using age and vegetation structure, 

based on orthophotographs from 1952, 1980 and 2002 and knowledge of residents on 

historical use. The herbaceous stage (H) is characterized by herb-rich secondary regrowth of 

5-8 years with few small trees of one or two pioneer species (IPARDES, 1995). The arboreal 

stage (A) with a stand age of 10-15 years is characterized by a tree layer of few species with 

an initial, but low and still translucent canopy closure and the lack of a well-defined 

stratification, still with a dense herb layer near the ground (IPARDES, 1995). In contrast, the 

medium stage (M) is an advanced secondary forest of 35-50 years with a higher tree diversity 

(IPARDES, 1995; Schmidt et al., 2008), some large trees and an already nearly closed canopy 

resulting in insufficient light on the ground for a pronounced herbaceous layer. Finally, the 

old-growth stage (F) appears as a mature, species-rich forest older than 100 years, with 

several large and tall trees and without visible anthropogenic influence. Here the canopy is 

high and closed and undergrowth vegetation poor. 

Sampling design 

In these successional stages the spiders were sampled in 24 sites (30 m x 50 m) based on a 

fully orthogonal hierarchical design with three spatial levels: locality (two reserves, c.25 km 

apart), area (thee areas, nested within each locality, originally defined by road access, c.5-10 

km apart) and forest stage (the four stages H, A, M and F, nested within each area, c.0.5-3 km 

apart).  

Sampling and sample processing 

Sampling was done in springtime (October/November) of 2005 (Cachoeira) and 2007 

(Itaqui) and followed a standardized sampling protocol (Coddington et al., 1991; see Raub et 

al., 2014b) including: 

(a) Nocturnal hand sampling. Two (experienced) persons sampled for 1 h at night (with 

headlights), exploring all structures below (“looking down”) or above (“looking up”) 

knee level.  

(b) Beating. Three persons struck vegetation at any reachable level (i.e. lower vegetation) 

with a stick, collecting the spiders falling on a 50 x 50 cm tray held below, for 1 h. 

Twenty beating points made one sample.  
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(c) Pitfall trapping. 10 traps per site were installed to capture active ground spiders for 

one week. Traps were 330 ml PE cups with an opening diameter of 7.5 cm, filled with 

100 ml of 4% formaldehyde solution and protected against rain by transparent plastic 

plates. 

The sampled spiders were stored in 75% ethanol. All adult spiders were determined to 

(morpho-) genera or to (morpho-) species, further called recognizable taxonomic units (RTU) 

(see list in Raub et al., 2014b). Identification was done by the first and third author with help 

from Brazilian experts at Butantan Institute (São Paulo, Brazil, IBSP) and Museu de Ciências 

Naturais da Fundação Zoobotânica (Porto Alegre, Brazil, MCN). Voucher material was 

deposited in the collection of the entomological department of Universidade Federal do 

Paraná in Curitiba, Brazil (UFPR) and of IBSP and MCN. 

Data analysis 

We calculated species richness and abundance-based diversity measures for the entire 

sample and separately for the two localities (reserves), the three areas and the four stages: for 

each case pooled from all methods and separated by method. For direct comparison we used 

sample-based rarefaction and computed the corresponding individual-based Coleman curves 

(Gotelli & Colwell, 2001) with EstimateS 8.0 (Colwell, 2005). 

We decomposed beta diversity (βcc = Jaccard dissimilarity; Colwell & Coddington, 1994) 

into β-3 (dissimilarity due to species replacement) + βrich (dissimilarity due to richness 

differences, species gain/loss) to evaluate the relative role of these components in generating 

the beta diversity patterns. Both β-3 (see Cardoso et al., 2009; Carvalho et al., 2013) and β rich 

(Carvalho et al., 2013; Schmera & Podani, 2011) are supposed to be robust to undersampling 

(Cardoso et al., 2009). 

We also decomposed beta diversity measures (Hill numbers: genera, morphospecies, 

exponential of Shannon, inverse Simpson) additively. Additive partitioning was done with the 

R 3.0.2 (R Development Core Team, 2009) function adipart of the package vegan 1.17-2 

(Oksanen et al., 2009) using: 

a) genus and RTU level;  

b) three diversity measures: richness (all RTUs equally weighted), Shannon index (more 

weight to the more common species by the logarithm) and Simpson index (the 

dominant species are heavily weighted by squaring); 
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c) randomization on the individual basis to test the observed diversity pattern against the 

null hypothesis of random distribution of individuals;  

d) the individual sample as the lowest level; 

e) the data sets of the different sampling methods pooled (method as partitioning level) 

and also the methods separately. 

The function adipart tests the statistical significance of observed level-specific alpha and 

beta to differ from the estimates based on a random distribution of individuals among higher 

level samples through randomization procedures. 

We further calculated the multiplicative beta of the richness to quantify the effective 

number of completely distinct assemblages in comparison to the sample value of a 

partitioning level to get a measure of relative differentiation among assemblages. 

Results 

In total, 11,293 spiders with 4495 adults were sampled. Rarefaction curves for pooled data 

from all methods and stages are flattening and show only small differences between the two 

reserves (Figures 2, 3). The completeness for genera was 74% with observed genus richness 

between 81 and 89 and estimated richness (Chao 2) between 103 and 124 in the different 

stages. 

In both reserves the youngest stage showed the highest genus richness (Figures 4, 6) with 

nearly 90 genera in stage H, compared to around 70 genera in stage F (rarefied for 450 

individuals). At RTU level, the differences between stage H and F get smaller, especially in 

Itaqui, where all stages were very similar to each other in richness (Figures 5, 7). The 

youngest stage H is not the most species rich in Itaqui and confidence intervals strongly 

overlap between stages of adjacent age (Figures 4-7), illustrating the lack of significant 

differences. The curves of the different stages for each locality (Figures 4-7) are distinctly 

steeper than the curves from pooled data (Figures 2, 3). 
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Figure 2. Genus richness (sample-based rarefaction, rescaled to individuals, G(est)) for 

Cachoeira and Itaqui, data from looking up, looking down, beating tray and pitfall traps as 

well as all forest stages pooled. 
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Figure 3. Recognizable taxonomic unit (RTU) richness (sample-based rarefaction, rescaled to 

individuals, S(est)) for Cachoeira and Itaqui, data from looking up, looking down, beating tray 

and pitfall traps as well as all forest stages pooled. 
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Figure 4. Genus richness (G(est), sample-based rarefaction, rescaled to individuals) for the 

stages (H – herbaceous stage, A – arboreal stage, M – medium stage, F – old-growth forest) in 

the Cachoeira reserve (Ca), data from looking up, looking down, beating tray and pitfall traps 

pooled. 
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Figure 5. Recognizable taxonomic unit (RTU) richness (S(est), sample-based rarefaction, 

rescaled to individuals) for the stages (H – herbaceous stage, A – arboreal stage, M – medium 

stage, F – old-growth forest) in the Cachoeira reserve, data from looking up, looking down, 

beating tray and pitfall traps pooled.  
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Figure 6. Genus richness (G(est), sample-based rarefaction, rescaled to individuals) for the 

stages (H – herbaceous stage, A – arboreal stage, M – medium stage, F – old-growth forest) in 

the Itaqui reserve, data from looking up, looking down, beating tray and pitfall traps pooled. 
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Figure 7. Recognizable taxonomic units (RTU) richness (S(est), sample-based rarefaction, 

rescaled to individuals) for the stages (H – herbaceous stage, A – arboreal stage, M – medium 

stage, F – old-growth forest) in the Itaqui reserve, data from looking up, looking down, 

beating tray and pitfall traps pooled. 
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General assemblage patterns 

Mean observed alpha diversity was 49 genera in Cachoeira and 46 genera in Itaqui and 62 

RTUs per site, with no significant differences between stages in both localities. Beta diversity 

is strongly based on turnover rather than on loss or gain during succession/regeneration (Table 

1). The strongest turnover occurs between H and the other stages and there is clearly no gain 

in richness with increasing age. On RTU level the turnover is even higher, with the same 

pattern as in genera (Table 1). 

Table 1. Beta diversity components (turnover (β-3) = lower left versus gain/loss (βrich) = upper 

right) for both identification levels Genera and Recognizable Taxonomic Units (RTU) in 

Cachoeira (Ca, upper part) and Itaqui (It, lower part). 

  

Genera 

  

 RTU   

 

90 83 82 84 141 126 124 146 

Turn/rich Ca-H Ca-A Ca-M Ca-F Ca-H Ca-A Ca-M Ca-F 

Ca-H 

 

0,06 0,06 0,05  0,07 0,08 0,02 

Ca-A 0,54 

 

0,01 0,01 0,75  0,01 0,09 

Ca-M 0,58 0,52 

 

0,02 0,78 0,70  0,11 

Ca-F 0,59 0,59 0,50 

 

0,82 0,73 0,64  

     

    

 

86 83 90 80 120 128 146 129 

Turn/rich It-H It-A It-M It-F It-H It-A It-M It-F 

It-H  0,02 0,03 0,05  0,04 0,12 0,04 

It-A 0,58  0,00 0,03 0,78  0,09 0,01 

It-M 0,60 0,42  0,09 0,81 0,67  0,08 

It-F 0,61 0,48 0,38  0,81 0,64 0,63  
 H: herbaceous stage, A: arboreal stage, M: medium stage, F: old-growth forest, Turn: turnover, rich: gain/loss  

 

Additive Partitioning 

On the genera level deviations from expected values are all negative for alpha diversity and 

constantly positive for the highest beta level (locality) regarding richness and diversity (Table 

2). Area and stage also contribute more than expected by chance to genus richness and 

diversity. Method contributed less than expected to richness, but more to Shannon and 

Simpson diversity. Generally, stage does not contribute more than sample and area to the beta 

diversity. Nearly the same pattern resulted from the identification level of RTU (Table 2 and 

Figures 8-9), with stage contributing even less than expected to richness. The observed 

patterns of relative contribution of the different levels of beta diversity appear very constant in 

the analyses of the different methods (Figure 9). 
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Multiplicative Partitioning 

The average number of genera per sampling site (all methods pooled) was 47. Adding the 

four different stages at the next partition level resulted in 98.5 genera with a multiplier of 2.1. 

Further adding the three areas per locality and stage multiplied the number of genera by 1.6 

resulting in 155.5 genera per sample unit. From the addition of the two localities a multiplier 

of 1.23 was calculated (192 genera for the whole region). Thus, the multiplier is always lower 

than the number of added units per level, meaning that there are not completely different 

assemblages for every unit.  

Table 2. Deviance of observed partitions from expected values by individual-based 

randomization, for both identification levels Genera and Recognizable Taxonomic Units 

(RTU) and the different sampling methods. 

   Genera RTU 

Method Level Among Richness Shannon Simpson Richness Shannon Simpson 

All ß5 Locality + + + + + + 

 

ß4 Area + + + + + + 

 

ß3 Stage + + + - + + 

 

ß2 Method - + + - + + 

 

ß1 Sample - - + - - + 

 

ɑ 

 

- - - - - - 

         Pitfall traps ß4 Locality + + + + + + 

Active ß3 Area Ns + ns ns + ns 

Ground ß2 Stage - + + - + + 

Spiders ß1 Sample - - + - - ns 

 

ɑ 

 

- - - - - - 

         Beating ß4 Locality + + + + + + 

Vegetation ß3 Area + + + + + + 

 

ß2 Stage Ns + + - + + 

 

ß1 Sample + - - - - ns 

 

ɑ 

 

- - - - - - 

         Nocturnal 

looking ß4 Locality + + + + + + 

At ground ß3 Area Ns + + ns + + 

 

ß2 Stage Ns + + - + + 

 

ß1 Sample - + + - ns + 

  ɑ   - - - - - - 
+ = significantly larger; -  = significantly smaller; ns = not significant at the 0.05 level 
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Figure 8. Contributions (in %) to total richness (S), Shannon (H) and Simpson (D) diversity 

for five spatial scales (all sampling methods included): ß1 samples, ß2 methods, ß3 stages, ß4 

areas, ß5 localities, identification levels and total numbers of respective units are given in the 

titles.  
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Figure 9. Contributions (in %) to total richness (S), Shannon (H) and Simpson (D) diversity 

for four spatial scales sampled by beating vegetation, pitfall trapping and nocturnal sampling: 

ß1 samples, ß2 stages, ß3 areas, ß4 localities, identification levels, the sampling method and 

total numbers of respective units are given in the titles.  
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Discussion 

Richness and diversity 

In a rough comparison with inventories from forests in the Neotropical region (e.g. 

Baldissera et al., 2008; Bonaldo et al., 2007; Fonseca et al., 2009; Dias & Bonaldo, 2012) as 

well as from other climates (Hövemeyer & Stippich, 2000 for German beech forests; Schuldt 

et al., 2011 for subtropical forests in China; Pryke & Samways, 2012 for South African 

forests; Samu et al., 2014 for Hungarian forests) the richness and diversity of spiders in the 

studied region can be considered high, especially as 47 genera and at least 62 species (RTU) 

per site and 192 genera and 440 RTU for the region resulted from singular sampling. The 

observed richness meets the expectations for the Brazilian Atlantic Forest. 

Method and identification level 

A completeness of the sampling of more than 75%, at least for genera, underlines the 

usefulness of the used sampling protocol for regional inventories, due to the involved 

complementarity of methods and sampled strata. These contributed more than expected by 

chance to beta diversity (Shannon, Simpson), but not very much to richness. Our 

interpretation is that every method sampled a comparable number of taxa, all including the 

common ones, although in different relative abundances. Most important, all methods showed 

the same patterns of beta diversity and therefore, in contrast to the experiences of Tourinho et 

al. (2014) with harvestman assemblages, did not sample different spider assemblages with 

different responses to the environment, obfuscating the patterns. Patterns (partitions) of beta 

diversity were also similar at both levels of identification (genus, RTU). Genera really seem 

to be a good surrogate for patterns of species composition (see also Baldissera et al., 2008; 

Cardoso et al., 2004). In practice this allows the use of only one of the principal methods – or 

nocturnal sampling or beating vegetation and identification to the genus level to reveal 

patterns of diversity in a region. This would reduce the number of visits and samples of each 

site as well as time for sorting and identifying and consequently lower the costs of such an 

investigation (compare Azevedo et al., 2014). Nocturnal sampling is an effective method for 

experienced arachnologists, but depends on accessibility of the sites at night. Beating, on the 

other hand can be done by unexperienced collectors after a short introduction. The activity 

based pitfall traps showed similar patterns as the other methods but sampled much fewer 

genera and RTU offering therefore no additional benefit justifying the increased effort. 
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Forest succession 

The high beta diversity at all levels, caused by turnover does not point to a directed 

succession with a general gain/loss tendency from younger to older stages. Even young 

“forests” appear to offer suitable habitats for many species (from a large pool) and only few 

non-forest species disappear during succession. There is no change in richness but the 

variability of the assemblage composition changes. The variability within younger and older 

succession stages respectively originates in our opinion from the heterogeneity of 

biogeochemical, vegetational and microclimatic conditions. This assumption is supported by 

the results of Ottermanns et al., (2011), who showed a strong influence of vegetational 

(structural) and microclimatic conditions on beetles in the study region. During further forest 

succession the variance in biotic and abiotic habitat parameters within the stages seems to 

decrease (see also Raub et al., 2014b). A similar lack of influence of the age of forests and 

vegetation cover on spider diversity (but not on abundance) was observed in several studies: 

Baldissera et al. (2008) and Fonseca et al. (2009) for Araucaria forests in southern Brazil, 

Chen & Tso (2004) for four habitat types including forest on islands in Taiwan; Harris et al. 

(2003) for Eucalyptus forests in Australia. In 27 forest stands of different age and diversity in 

subtropical China Schuldt et al. (2011) observed that spider species richness decreased with 

increasing woody plant species richness and was not affected by structural variables of herb 

layer or litter. They detected some effects of forest age, but also no directed change in species 

richness along a succession from young (> 20 years) to old (> 80 years) stands. Positive 

effects of woody plant species richness were only detected on the rarefied number of spider 

guilds. Interestingly, variability in species richness and abundance increased with forest age 

and (Schuldt et al., 2012) relate this to successional changes in spider assemblages, in contrast 

to our observations. Not the number, but the diversity of guilds was observed to differ 

between the stages in our study (Raub et al., 2014b). In Chinese subtropical forests the 

horizontal plant structure of the herb layer had little impact on epigeic spiders compared to 

effects of the tree and shrub layer (Schuldt et al., 2011) and the lack of differences between 

the younger and older stages in our study, which differed most strongly in the herb layer, also 

points in this direction. 
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Spider distribution 

At one extreme, the distribution of individual species can be considered to be purely 

dispersal limited; and at the other extreme to be limited purely by traits that influence the 

conditions in which they can survive and successfully reproduce (niche limitation) – see 

Gaston et al. (2007). As pure dispersal limitation means that all species have the potential to 

occur everywhere (no niche limitation), although they cannot reach many places, perfectly 

nested species distributions are unlikely to arise. Partially nested distributions are the most 

likely scenario to arise under dispersal limitation. Similarity between assemblages will 

decrease with distance, and gain/loss will increase with distance. We can see this in our data 

by the importance of an amplified sampled area (area and locality level) in additive 

partitioning, but after all it is difficult to infer the biological causes of dispersal limitation, 

niche limitation and species-area-relationships by pattern analysis. 

Spiders have a high dispersal and colonization capacity due to their high agility and 

ballooning ability (Foelix, 2011) and therefore spider assemblages are potentially able to 

initiate rapid succession after disturbances and colonization of “new habitats” (Baldissera et 

al., 2013 from an experimental study in grassland in southern Brazil). Also their ability as 

generalist predators to feed on allochthonous prey (drifted insects) supports the high 

colonization ability. Therefore initial spider assemblage composition should largely be 

determined by the temporal order in which the species arrive and establish, irrespective of 

habitat size and vegetation and prey diversity. A continuous colonization process of forest 

patches from the regional pool of species is expected at least in a region with a forest matrix. 

The similar abundance and richness of spiders in more or less all patches (of initial succession 

stages) is interpreted as a response of the spider assemblage to non-diversity-related habitat 

structures (e.g. vegetation giving web support), which is equally provided in less diverse 

patches. 

In canopy spider assemblages in SE Asia species richness correlated with forest fragment 

age, when fragments were not too isolated. But forest isolation was the strongest factor and 

habitat connectivity was of high importance (Floren et al., 2011). These authors emphasize 

the importance of neighboring primary forest for re-colonization of naturally regenerating 

forest fragments by spiders, contesting a high dispersal ability for the habitat specialists in 

primary forests.  
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The matrix structure strongly determines the pool of species able to colonize a habitat 

patch. In contrast to the situation in many tropical regions and also other states/subregions of 

the Atlantic Forest, in our study region the matrix is still forest (Antonelli Filho & Antunes 

Ferreira, 2012), explaining the high similarities among sites and stages. Most of the regionally 

occurring species are mobile and can reach the next suitable site (Baldissera et al., 2013) and 

most of the species examined can survive in all forest stages, encountering and occupying 

their proper niches. Only few species (sampled by our sampling protocol) seem to require a 

certain condition of forest stand age (especially old-growth forest) and only a low number of 

species of open land disappear when the forest grows higher and more dense vegetation 

appears.  

The results of the additive partitioning approach support these assumptions with less 

contribution to the local diversity of the stage than expected by chance and more contribution 

of the area than expected. Rather than the stages, every sampled site independent of the stage 

contributed equally to beta diversity and an expansion of the sampled area (size) also 

contributed more than the stage as predicted by a dispersal limitation model. This highlights 

the importance of spatially replicated sampling efforts. Therefore sampling the different 

stages (stage level) did not add as much as we expected to the richness, but only to Shannon 

and Simpson diversity. The stages obviously differ stronger in the relative abundance of 

genera/species. In contrast, extending the sampling area (area and locality level) added more 

richness than expected by chance. 

Further, the small contribution of the different methods to the richness demonstrates the 

overlapping of the used methods also shown by the similarity of graphical patterns. Only the 

contribution to the Shannon and Simpson diversity was higher than expected by chance. Our 

interpretation is that the abundant taxa stay the same, but relative abundance changes due to 

the unbalanced distribution of common genera/RTU in the methods/strata. The differences in 

additive partitioning for the identification levels genus and RTU are very small. 

Additive and multiplicative partitioning 

Regarding the multiplicative partitioning, the multipliers between the different levels were 

always lower than the number of added units per level, which means that there were no 

completely different assemblages sampled in every unit (Chao et al., 2012). Whereas this was 

expected for the area level, it sheds an important light on the importance of the stage and the 

locality level. For the four stages a multiplier of 2.1 is in accordance with the results of 
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multivariate ordination and indicator species analysis (Raub et al., 2014b), indicating that only 

forests older than 30 years house a spider assemblage different to younger stages. 

Recently there has been much debate upon partitioning diversity correctly – additive or 

multiplicative, replacement or species gain/loss (Anderson et al., 2011; Chao et al., 2012; 

Carvalho et al., 2013; Gering et al., 2003; Pereyra & Moreno, 2013; Schmera & Podani, 2011; 

Ulrich et al., 2009; Veech et al., 2002). The above results can contribute to highlight the 

usefulness of the different partitioning methods during ecological studies and present possible 

interpretation pathways to answer questions in the frame of biodiversity conservation and 

management. 

Conclusion 

As for other regions (Baldissera et al., 2008; Ziesche & Roth, 2008) maintaining the 

heterogeneity of a mosaic landscape (although anthropogenic) seems to be a good 

recommendation for conservation of the regional biodiversity (at least of the largest part 

represented by invertebrates) in the southern Mata Atlântica. 

Our analyses point out the importance of a distinct mosaic pattern of different land use and 

regeneration types in protected areas for a maximized conservation of the regional 

biodiversity. Old-growth habitats usually are regarded to play an important role in 

conservation management as a pool of species for resettlement of secondary habitats. But to 

guarantee a sustainable protection of the widest range of the spider diversity the protection of 

large, contiguous areas (containing a mosaic of different succession stages) should be reached 

and, if a decision is obligate, preferred to the protection of small (mostly isolated) old-growth 

forest remnants. Although undisturbed primary forests often harbor more species than 

secondary forests, regenerating forests are not biological deserts (Barlow et al., 2007; Lo-

Man-Hung et al., 2008).  

We consider the used methods as suitable to reach a satisfying coverage/completeness of 

genus and RTU richness (about 70% of estimated richness, compare Azevedo et al., 2013) for 

biodiversity assessments in the frame of conservation management questions. Since the 

results of the different methods were very similar, we think that in terms of cost-effectiveness 

the use of part of the sampling protocol (night sampling or beating tray) is an adequate 

sampling effort for a fast inventory (compare Azevedo et al., 2013). Further, if identification 

effort is an issue, the genus level can be used as a surrogate for the RTU level without losing 

major parts of the explanatory power. 
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Abstract 

Several studies in temperate forests have demonstrated effects of litter addition on 

decomposers and predators. However, adding litter does not allow separating the effects of 

food availability and habitat space. We investigated the response of decomposers and 

predators to increased food resources and space in forests of the southern Mata Atlântica of 

Brazil. In two forest ecosystems representing an early successional stage of secondary forests 

and old-growth forest, we added nutrient-rich organic material, artificial litter of no nutritional 

value, or a combination of both to the soil surface of 120 plots to separate the effects of 

habitat space and food on soil food webs. We sampled litter- and soil-dwelling arthropods 

after three months using pitfall traps, soil sample extraction, and sticky traps just above the 

soil. Adding artificial litter had no positive effect on any of the 17 analyzed arthropod groups. 

Combining all sampled arthropods the effect was even significantly negative. Adding food 

had a positive effect on the abundance of decomposers, but not predators. We found no 

interactions between added artificial litter and added organic material. Our results suggest that 

the soil fauna in tropical forests is food limited. The lack of a bottom-up effect on predators 

suggests that they are not predominantly regulated by the abundance of epigeic prey but rather 

by competition or predation. 

Introduction 

Most of the primary production ends up as litter, making litter decomposition an important 

process in terrestrial ecosystems (Anderson & Swift, 1983; Swift et al.,1979). Furthermore, 

forest litter is a complex habitat for a bewildering diversity of organisms (Bultman & Uetz, 

1982, 1984; Lavelle et al., 2006; Uetz, 1979, 1991) with at least three principal roles for these 

organisms: first, litter with its three-dimensional structure provides living space for many 

organisms (Höfer et al., 1996; Langellotto & Denno, 2004; Spears & MacMahom, 2012; 

Uetz, 1991); second, litter generates a favorable and stable microclimate on the soil surface 

(David et al., 1991; Höfer et al., 1996); and third, litter is the substrate on which a complex 

food web is based (Rypstra, 1983; Scheu, 2002; Wise et al., 1999). Disentangling the 

importance of these three roles of litter has been one of the main aims of many experiments 
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manipulating the amount and structure of litter over almost 150 years (e.g., Chen & Wise, 

1997, 1999; Stippich, 1989; Scheu & Schaefer, 1998; Uetz, 1979, reviewed in Sayer, 2006).  

The experimental removal of litter is generally followed by a decrease in the abundance of 

litter- and soil-dwelling organisms (Sayer, 2006). Based on this often dramatic decrease of 

litter-dwelling animals during removal experiments, one might expect also a dramatic 

increase in abundance when litter is added to experimental plots (Höfer et al., 1996). 

However, the response has often been much less than anticipated (Sayer, 2006). For example, 

the abundance of the predatory spiders increased when artificial litter was added, but the 

abundance of decomposers that depend on litter as a direct or indirect (via fungi) food 

resource did not (Bultman & Uetz, 1982). Irrespective of these asymmetric responses, adding 

or removing litter does not allow the various roles of the litter for animals to be distinguished 

because both treatments change habitat availability, microclimate, as well as resources. 

Predators need a highly structured habitat to hide for capturing prey or in the case of 

spiders to build webs, to reduce competition and/or to avoid intra-guild predation (Bultman & 

Uetz, 1984; Finke & Denno, 2002; Wise & Wagner, 1992). Therefore, habitat space and 

structure should be of considerable importance for predators, particularly when food is not 

limiting (Bultman & Uetz, 1982; Duffey, 1966; Robinson, 1981; Rypstra, 1983, 1986; 

Scheidler, 1990; Stippich, 1989). Most tropical forest ecosystems are considered to be nutrient 

limited (Bazzaz & Pickett, 1980; Tiessen et al., 1994). Furthermore, in tropical climates 

decomposition is fast, leading to a rapid and effective recycling of resources (Anderson & 

Swift, 1983, Heneghan et al., 1999). Nutrient allocation by plants and the recycling of 

nutrients can result in food limitation for decomposers (Vitousek & Sanford Jr., 1986). This 

being so, an experimental increase in habitat availability should have little effect on the 

abundance of decomposers and also predators. In contrast, an increase in the food resource 

availability should lead to an increase of decomposers as well as predators, as long as these 

guilds are not controlled by higher trophic levels (Hunter & Price, 1992). Without food 

limitation the limitation of habitat should become important and increasing habitat space 

therefore lead to a further increase in the abundance of predators. In statistical terms, this 

means that one should find an interaction between these two treatments. We tested this 

hypothesis using an experimental approach where we manipulated food resource for 

decomposers by adding nutrient-rich organic material and space for litter-inhabiting soil 

animals by adding polystyrol snippets, both in secondary and old-growth forests of the 

Brazilian Atlantic Forest. 
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Materials and Methods 

Study area 

The experiment was conducted in the Rio Cachoeira Nature Reserve (-25.314, -48.696 

WGS84), located near the city of Antonina, in the coastal state of Paraná in southeastern 

Brazil (see Appendix – Supporting Materials Chapter 4: Fig. 1). This private reserve, owned 

by the Brazilian NGO “Sociedade de Pesquisa em Vida Selvagem e Educação Ambiental - 

SPVS”, covers 12,000 ha at elevations ranging from 0 to 600 m a.s.l. The regional climate is 

classified as Cfa (humid subtropical, mild with no dry season, hot summer) according to 

Köppen (Schröder, 2000; Strahler & Strahler, 2005), with mean temperatures between 16.2 

°C in July and 24.5 °C in February (IPARDES, 2001) and an average annual precipitation 

between 2,000 and 3,000 mm (Roderjan & Kunyoshi, 1988). The area of the reserve was 

originally covered by dense ombrophilous lowland and submontane forests (IBGE, 1992). 

The intense exploitation of forests has transformed the landscape to a mosaic of pastures, 

successional stages of secondary forests, and few remnants of old-growth forest, mostly at 

higher elevations. From the 24 study sites of the German-Brazilian cooperation project 

SOLOBIOMA (Höfer et al., 2007; Höfer et al., 2011), we selected three sites of the youngest 

successional stage of secondary forests with a closed canopy and three sites representing old-

growth forest on cambisol.  

Experimental set-up 

We added artificial litter of no nutritional value, nutrient-rich organic material, or a 

combination of both to 20 plots of 1.5 × 1.5 m² on each of the 6 sites (Appendix – Supporting 

Materials Chapter 4: Fig. 1) in a 5 × 4 arrangement of plots with a distance of 5 m between 

plots. To 5 randomly selected plots we added nutrient-rich organic material (treatment: Food) 

at the beginning and then every 2 weeks until the end of the experiment after 3 months. The 

organic material consisted of 110 g champignon mushrooms, 100 g potatoes, and 20 g fruit fly 

medium (Drosophila Zuchtkonzentrat, Nekton, Pforzheim, Germany) per m
2
, following

 
Chen 

& Wise (1997, 1999). The fungi and potatoes were chopped and stored at −20 °C before use. 

To 5 other randomly selected plots, we added 32 l of polystyrol snippets of no nutritional 

value (treatment: Space) at the beginning of the experiment to increase the available habitat 

space and habitat structure for arthropods. In comparison to this treatment the added food 

constituted only a minor manipulation of the available habitat space, due to its small quantity 

(volume) and low surface (structure). To 5 other randomly selected plots, we added both 
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organic material and polystyrol snippets as described above. The remaining 5 plots served as a 

control. 

Sampling of the fauna 

After the third addition of organic material (end of week 4), we sampled small flying 

insects (mainly Diptera) for 24 h using vertical sticky traps (Gelb-Sticker, Neudorff, 

Emmerthalm Germany; 98.5 cm
2
 of sticky surface) placed just above the litter layer and 

counted the number of insects on the traps.  

During the last week of the experiment (week 11), we placed one pitfall trap in the middle 

of every plot; each pitfall trap consisted of a 330 ml plastic cup with an opening diameter of 

7.5 cm, filled with 100 ml of 4% formaldehyde solution and protected against rain by a 

transparent plastic roof. At the end of the experiment (after 3 months), we took four 

cylindrical soil samples from each plot (core diameter 5 cm, height 5 cm), one from each 

corner of the plot, 10–15 cm from the edges. These four soil samples per plot were pooled 

together and extracted using a Berlese apparatus over 10 days. All extracted arthropods were 

stored in 75% ethanol.  

The arthropods were sorted according to order, except for the Formicidae (family) and 

insect larvae; the latter were grouped together for pragmatic reasons. All sorted arthropods 

were then counted (see also Appendix Supporting Materials Chapter 4: Table 1, 2). 

Statistical analysis  

We analyzed abundance data using a generalized linear mixed model and the function 

glmer within the package lme4 (Bates, 2010) in R (R Development Core Team, 2009). Sites 

and sampling methods were treated as random factors. We estimated the effects of forest 

successional stage, added organic material as well as artificial litter and all two-way 

interactions using a Poisson distribution with the standard link function (log). We accounted 

for over-dispersion as suggested in the help document of the function glmer. For the visual 

presentation of variation of the faunal composition between treatments and stages, we used 

the function rda provided by VEGAN 1.17-2 (Oksanen et al., 2009). We performed a 

constrained analysis using square root transformed abundance data as dependent variables, the 

two experimental treatments as factors including all interactions and the forest stage as 

independent environmental variables. 
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Results 

We collected more than 70,000 arthropods with pitfall traps, 9,600 arthropods via Berlese 

extraction of soil samples (see also Appendix – Supporting Materials Chapter 4: Table 1, 2), 

and nearly 3,300 insects with sticky traps. The numbers of arthropods sampled with the 

different methods (log-transformed data) showed positive but low correlations across all sites 

(rpitfall-Berlese = 0.48; rBerlese-sticky = 0.31; rpitfall-sticky = 0.48). This indicated that the three 

sampling methods provide complementary information on arthropod abundance. The soil and 

pitfall samples had roughly similar distributions of individuals across major invertebrate taxa 

(see Appendix A: Table 2; r = 0.82; with log(x+1)-transformed data). The most abundant 

group caught with these two methods was springtails (Collembola), which accounted for more 

than 84% of all individuals in pitfall and 30% in soil samples. 

The abundance of 3 of the 17 groups significantly differed between the two forest stages; 

this corresponds to 18%, which is much higher than 0.85 groups (5%) expected to differ by 

chance (Table 1). Increased nutrient-rich organic material (Food) had a positive effect on the 

abundance of flying insects caught on sticky traps, on the abundance of all soil arthropods 

grouped together, on the abundance of decomposers, and on the abundance of 5 of the 17 

groups (29% of all taxa, Table 1; see also Fig. 1, Fig. 2). When we grouped the sampled 

arthropods into the two functional groups of predators and decomposers, our analysis 

indicated that predators were significantly higher in abundance in old-growth forest plots than 

in secondary forest plots (Table 1, Fig. 2).  



 

 

 

Table 1. Effects of forest stage, increased nutrient-rich organic material, or increased habitat space using artificial litter of no nutritional value on 

the abundance of taxonomic and two main functional groups (predator and decomposer). Only groups with at least one significant result in any of 

the factors are shown. Altogether we sampled 120 plots (3 sites in each successional stage; five replicates of each treatment within sites) using three 

methods. Data were analyzed using generalized mixed models using a Poisson distribution and the canonical link function including a correction for 

over-dispersion. Sites and methods were modeled as random factors (see Supporting Materials Chapter 4: Table 3 for separate analyses of the 

different methods). We present the z-values (= estimates/standard error) of the coefficients. Significant results are indicated in grey. 

Taxon/Group Functional group Stage Food Space Food*Space Stage*Food Stage*Space 

 

 z P z P z P z P z P z P 

Acari Decomposer 1.33 0.18 4.22 <0.001 −0.50 0.62 0.48 0.63 1.20 0.23 0.82 0.41 

Coleoptera Polyphage 1.74 0.08 5.83 <0.001 −0.04 0.97 −1.08 0.28 −2.21 0.03 0.13 0.90 

Collembola Decomposer −1.09 0.28 8.85 <0.001 −1.39 0.16 −0.97 0.33 −0.90 0.37 0.74 0.46 

Formicidae Polyphage −2.42 0.02 0.55 0.58 −1.78 0.07 1.14 0.25 1.08 0.28 0.61 0.54 

Hemiptera Phytophage 0.35 0.73 3.18 0.001 −0.83 0.41 0.72 0.47 −0.88 0.38 0.73 0.47 

Insect larvae Polyphage 3.63 <0.001 6.36 <0.001 −1.11 0.27 0.06 0.95 −0.85 0.40 0.51 0.61 

Opiliones Predator −2.27 0.02 −0.33 0.74 −1.01 0.31 −0.74 0.46 1.57 0.11 2.09 0.04 

Symphyla Decomposer 1.64 0.10 1.86 0.06 1.81 0.07 −0.71 0.48 −1.33 0.18 −2.72 0.006 

Predators
1
  2.24 0.03 0.79 0.43 0.41 0.68 0.66 0.51 −0.41 0.68 −0.19 0.85 

Decomposers
2
  0.09 0.93 8.03 <0.001 −0.79 0.43 −0.82 0.41 −1.04 0.30 0.48 0.62 

All arthropods  −0.44 0.66 7.69 <0.001 −2.91 0.003 0.73 0.46 −0.49 0.62 0.33 0.75 
1
 Sum of Araneae, Opiliones, Chilopoda, Pseudoscorpiones 

2
 Sum of Acari, Collembola, Diplopoda, Isopoda, Blattodea, Symphyla 

7
8
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Figure 1. Mean number of all arthropods across samples for the three methods and two 

habitats for the treatments with/without Food (F+, F0) and with/without additional Space (S+, 

S0). Altogether we sampled 120 plots (3 sites in each successional stage; five replicates of 

each treatment within sites). We present the square root transformed means and the associated 

standard errors (note that the tick labels of the y-axes were back-transformed). 
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Figure 2. Mean number of decomposers and predators across samples for two methods and 

two habitats for the treatments with/without additional Food (F+, F0) and with/without 

additional Space (S+, S0). Altogether we sampled 120 plots (3 sites in each successional 

stage; five replicates of each treatment within sites). For the stick trap samples we were not 

able to classify species as decomposers or predators and therefore sticky traps are not shown 

(but see Fig. 1). We present the square root transformed mean and the associated standard 

error (note that the tick labels of the y-axes were back-transformed). 
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All significant coefficients had a positive sign, which indicated that abundance increased 

with the addition of nutrient-rich organic material to the plots (Table 1). Addition of organic 

material also consistently changed the composition of the fauna caught in pitfall traps and soil 

samples in both forest stages (Fig. 3). The dissimilarity of the communities following the food 

treatment is mainly based on changes in Acari and Collembola (see also Supporting Materials 

Chapter 4: Table 1). None of the groups responded to the increased habitat space provided by 

the artificial litter with increasing abundance (Fig. 2). The abundance of all arthropods was 

even negatively affected (Table 1).  

 

Figure 3. Results of redundancy analyses modeling the square root transformed abundance 

data (all arthropods) of the pitfall or soil samples using the two treatments and the forest 

stages as well as all interactions as independent variables. For each analysis the scores of the 

plots of the secondary and old-growth forests were plotted separately. Symbols: treatment 

Food - green circles; treatment Space - blue triangles; treatment Food and Space - red 

diamonds; controls – black squares. Altogether we sampled 120 plots (3 sites in each 

successional stage; five replicates of each treatment within sites). 
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Discussion 

We found only minor differences in the abundance of decomposers between secondary and 

old-growth forests (see also Schmidt et al., 2008). Only the abundance of predators was 

higher in old-growth forests. As expected, the addition of nutrient-rich organic material to the 

plots had a positive effect on the abundance of litter- and soil-dwelling decomposers. This 

effect showed little variation between the two successional stages. This is an indication that 

decomposers are food-limited in the nutrient-poor Atlantic Forests of Brazil. However, our 

results suggest no simple bottom-up effect of the increase in food resources to higher trophic 

levels. Furthermore, neither the abundance of decomposers nor that of predators increased 

with increasing litter volume and therefore habitat space. Finally, our results did not support 

our prediction of an interaction between increased food resources and increased habitat space 

for predators.  

In temperate, productive ecosystems, the positive effects of added neutral material and of 

added natural leaf litter are similar (Bultman & Uetz, 1982; Gill, 1969), which indicates that 

the habitat volume has at least some importance for litter-dwelling organisms. However, in 

our tropical sites, increasing habitat volume did not increase arthropod abundance. We used a 

biologically neutral material with no evidence of a chemically repellent effect (BASF, 1995) 

to increase habitat space without affecting food availability on the plots. Nevertheless, we 

cannot exclude the possibility that the material was not accepted as a living space by soil- and 

litter-inhabiting organisms due to its haptic character. The negative effect of the artificial litter 

on flying insects may have been caused by the chips covering the natural resources of these 

animals or by the possibly repulsive unnatural color of the chips (Greany et al., 1977). Despite 

these possibilities, our results allow us to tentatively conclude that the amount of habitat space 

in both investigated forest stages plays a minor role in determining the abundance of 

decomposers and predators of litter-dwelling animals. We therefore conclude that habitat 

space is not the limiting factor for both groups in the secondary as well as the old-growth 

forest. In our experiment, we manipulated the amount of litter but did not control its structure. 

Manipulating litter structure has mostly positive effects on the abundance of some animal 

groups (e.g., Uetz, 1979, 1991). For example, tying together branches to experimentally 

increase habitat complexity resulted in an eightfold increase in abundance of epigeic 

collembolans in a temperate forest ecosystem (Halaj et al., 2000).  

In contrast to increased habitat space, the addition of nutrient-rich organic material clearly 

increased the abundance of soil animals and changed the composition of the assemblages. The 
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most pronounced increase in abundance caused by adding nutrient-rich organic material was 

found for springtails. Since collembolans are a major component of the diet of spiders 

inhabiting litter (Chen & Wise, 1999; Lawrence & Wise, 2000; Wise et al., 1999), we 

expected to find effects of increased food resources also at higher trophic levels, as observed 

in temperate forests, where the addition of food resources often had positive effects on the 

abundance of predators (Chen & Wise, 1999; Wise et al., 1999). We even expected the 

response of predators in the nutrient-poor tropical forests to be stronger than that observed in 

productive temperate forests. Yet the increase in abundance was restricted to decomposers; 

predators showed no clear response. 

Possible arguments for why we did not observe a response of increased food resources on 

predators are that the spatial scale may have been too small and the duration of our 

experiments may have been too short to produce a response at higher trophic levels. 

Compared to decomposers, predators are generally larger and forage across larger spatial 

scales (Chen & Wise, 1997, 1999; Uetz, 1991). However, even smaller plots were used by 

Bultman & Uetz (1982, 1984) and Höfer et al. (1996), and the length of our experiment was 

similar to that of other studies which observed a response of increased food resources on 

predators (Bultman & Uetz, 1982; Chen & Wise, 1999). Second, some of the sampled 

predators may feed not only on soil animals and, third, predators may be more affected by 

competition and intra-guild predation. Finally, the food addition may have also attracted small 

reptiles, birds and mammals to either feed on the rich food or on the arthropods that were 

attracted by the food treatment. These vertebrate predators feed also on invertebrate predators 

leading to complex food web interactions which are difficult to separate in simple field 

experiments.  

The Atlantic Forests are a biodiversity hotspot (Laurance, 2009) but the region is also the 

most densely populated region of Brazil. Only small fragments of pristine forest remain, and 

therefore, as in many other regions of the world, secondary forests are becoming increasingly 

important as refuges for the conservation and survival of species of old-growth forests (Dunn, 

2004). The successional stages of forest regeneration may harbor a surprisingly rich flora and 

fauna. Nevertheless, species composition and ecological processes in secondary forests and 

old-growth forests may differ (Bihn et al., 2008a; Bihn et al., 2008b; Liebsch et al., 2008; 

Schmidt et al. 2008 for the study region; Lo-Man-Hung et al., 2008 for Amazonia). We also 

found minor differences in the faunal composition between the two studied stages, but 

revealed no differences in the response of groups to our treatments. However, it would be 
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premature to conclude from one single experiment that the processes influencing the soil and 

epigeic fauna are similar across successional stages and to rely on secondary forests for the 

conservation of forest species and associated ecological processes (see also Gießelmann et al., 

2010). 
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5 – Outlook 

Although we made considerable progress during our studies, further investigations need to 

address the following issues: 

(1) The high degree of similarity of the used methods would suggest a restriction in the 

sampling protocol of such a broad diversity approach in order to be able to use a 

highly replicated sampling in a variety of different ecosystems. The use of only 

beating as a single method should lead to satisfactory assessment of biodiversity 

structures. Further, identification to the genera level seems adequate, is more 

economic and avoids biased results due to wrong species identification or a deficient 

morphospecification. 

(2) The results of such a broadened diversity study should be included in a multi-taxon 

approach to identify “indicator communities” for different (states of) ecosystems, not 

only single indicator species. 

(3) To be able to better assess the conservation value of secondary forests it seems 

reasonable to include further regional ecosystems in an expanded diversity evaluation 

approach of the spider fauna. Regarding the highly structured mosaic landscape in the 

region it would be interesting to compare the contribution of other forest types to the 

regional spider fauna (and its protection). Especially the Atlantic coastal restinga 

forests with a strong oceanic and tidal influence and the Araucaria forests are 

promising to host distinct and rich spider faunas. The inclusion of forest of the higher 

mountain range of the region and also agriculturally used areas of different types are 

important to be included to assess the whole range of biodiversity. 

(4) For a better insight in the ecological interaction of spiders a replication and further 

experiments including more habitat types are recommended. The exclusion of 

predators (reptiles, birds, small mammals) of spiders could reveal a positive influence 

of prey abundance on the spiders, masked by predation. Such general principles 

(bottom-up versus top-down effects) should best be tested experimentally in different 

(tropical) regions with different soil nutritional conditions.  
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6 – Summary 

Tropical forests have stimulated biodiversity research in the second half of the 20
th

 

century, when the overwhelming richness of arthropod species was discovered. Soon after the 

primary scientific interest to unravel and describe the biodiversity of the tropics, the concern 

of losing most of the newly identified diversity before it can be studied, directed the attention 

to conservation studies. However, for a long time vertebrate (flagship) species or groups were 

in the focus of conservation, being used also to underline the necessity of preserving the 

whole diversity of the ecosystem. Lately and under a more systemic and functional view of 

the species in ecosystems, attention shifted towards to the study of arthropod diversity, e.g. 

invertebrate communities in canopy and soil and their ecosystem functions. We had to learn 

that the productivity of tropical soils originates and depends on the recycling of organic 

matter and the remobilization of nutrients during the decomposition, for which a functional 

web of arthropods (invertebrates) and microorganisms is responsible. A broad range of 

globally important ecosystem services is offered or at least influenced by arthropods and an 

efficient protection of the biological and functional diversity of tropical forests is only 

possible by extensive conservation management strategies incorporating arthropods. A 

detailed knowledge of the diversity and ecological and functional interdependencies of the 

arthropod communities are an important prerequisite to accomplish this challenge.  

To which degree secondary forests maintain the species diversity of natural forests is still 

controversially discussed and therefore an important topic for biodiversity science and 

conservation. Worldwide and also in the Atlantic Forest region of Brazil (Mata Atlântica) 

primary forests disappear and the few and often small remnants of old-growth forests suffer 

from strong and ongoing anthropogenic pressure. On the other hand international concern for 

environmental problems has led to an increasing quantity (number and size) of naturally 

regenerating or planted secondary forests and therefore these are becoming more and more 

relevant for conservation. 

The objective of my thesis was to assess the diversity and the ecology of spider 

assemblages in secondary forests of the southern Mata Atlântica, with impact for 

environmental conservation and the protection of the regional biodiversity. My approach to 

address these questions was carried out in the frame of a multi-taxon approach of the bilateral 

cooperation project SOLOBIOMA. The aim of this project was the evaluation of the value of 

different secondary forest stages for the conservation of the local and regional biodiversity 
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and implications for soil function. Therefore my work addresses the diversity of spiders by 

describing and analyzing a large sampling carried out in different succesional stages of forest, 

as well as investigating the ecology of the predatory spider assemblage in an experimental 

approach of the interactions of spiders with habitat structures and nutritional resources in the 

soil food web. 

To assess the conservation value of secondary forests and their contribution to maintain the 

regional diversity I compared the spider assemblages of secondary forests of different age 

(stage) and old-growth forests (chapter 2 & 3). We sampled spiders using a standard protocol 

in 24 sites of three successional stages and old-growth forests in two nature reserves in the 

state of Paraná in Brazil. The sampled region represents a relatively good preserved region of 

the Mata Atlântica, where the matrix of a patchy landscape is still forest. 

Generic richness and diversity showed no differences between successional stages but 

guild diversity did. A high alpha diversity and a high turnover among sites as well as the lack 

of differences in richness between the stages support the value of secondary forests for 

species conservation in the studied region. Beta diversity turned out to be strongly based on 

turnover, not on gain/loss during succession. The spatial levels contributed more to beta 

diversity than expected, without the expected strong influence of the forest stage. Patterns 

were consistent for both identification levels and every method, leading to the conclusion that 

one of two parts of the sampling protocol and identification to genera are sufficient to assess 

the diversity of spiders under conservation interest. 

During the experimental approach (chapter 4) I discovered that adding artificial litter had 

no effect on the studied taxa, adding food had a positive effect on decomposers independent 

from the forest stage, but not on predators. These results suggest that the soil fauna in tropical 

forests in general is food limited and the lack of a bottom-up effect on predators suggest that 

these organisms are not predominantly regulated by the abundance of prey but rather by 

competition or predation. However, it would be premature to conclude from one single 

experiment that the processes influencing the soil and epigeic fauna are generally similar 

across different successional stages, we can see evidence for distinct functional similarity. 

These results highlight the value of secondary forests for the conservation of forest species 

and associated ecological processes. 

I conclude from the results of the biodiversity study and the experiment that maintaining 

the heterogeneity of a mosaic landscape seems to be a good recommendation for conservation 
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of the regional invertebrate biodiversity and its ecosystem function in the southern Mata 

Atlântica. Our analyses from a spider perspective point out to the importance of a pattern of 

different land use and regeneration types as well as old-growth forest in protected areas to 

maximize conservation success. To guarantee a protection of the widest range of spider 

diversity on the long term the protection of large, contiguous areas of forest should be reached 

and, if a decision is obligate, preferred to the protection of small (mostly isolated) old-growth 

forest remnants. 

7 – Zusammenfassung 

Die Entdeckung der überwältigenden Artenvielfalt tropischer Wälder begründete im späten 

zwanzigsten Jahrhundert die Biodiversitätsforschung oder gab dieser zumindest einen 

enormen Schub. Nach dem ersten wissenschaftlichen Interesse an der umfassenden 

Beschreibung der tropischen Artenvielfalt, kamen sehr schnell Bedenken auf, ein Großteil 

dieser Biodiversität könnte verloren gehen, bevor er überhaupt erforscht werden konnte und 

der Forschungsschwerpunkt verschob sich in Richtung Natur- und Umweltschutz. Dabei 

waren lange Zeit Wirbeltiere im Fokus der wissenschaftlichen Aufmerksamkeit und wurden 

dazu benutzt die Notwendigkeit des Schutzes der gesamten Diversität tropischer Ökosysteme 

hervorzuheben. In den letzten Jahren wurde der Arthropodendiversität und ihrer 

ökosystemaren Funktion durch eine stärker systemisch und funktionell geprägte Betrachtung 

von Ökosystemen mehr Aufmerksamkeit zuteil. Ökosystemare Forschung hat gezeigt, dass 

die Produktivität tropischer Wälder auf nährstoffarmen Böden stark vom Recycling von 

organischem Material und der Wiederverfügbarmachung darin gebundener Nährstoffe 

abhängt. An diesem Prozess ist ein hochkomplexes funktionales Netz von Arthropoden  und 

Mikroorganismen maßgeblich beteiligt. Ein breites Spektrum an global bedeutenden 

Ökosystemfunktionen wird damit von Arthropoden (Insekten, Spinnentieren) bereitgestellt 

oder zumindest maßgeblich beeinflusst und ein effizienter Schutz der biologischen und 

funktionellen Vielfalt tropischer Wälder ist nur durch (Umweltschutz-)Konzepte möglich, die 

Arthropoden mit einschließen. Dafür ist ein detailliertes Wissen über die Strukturen und 

Mechanismen der Biologie der Arten und die funktionellen Zusammenhänge in 

Arthropodengemeinschaften von großer Bedeutung.  

Inwieweit Sekundarwälder zum Erhalt der Artenvielfalt von (Primär)Wäldern beitragen 

können, ist zur Zeit noch weitgehend unklar und deshalb ein wichtiger Schwerpunkt der 

Biodiversitätsforschung und des Naturschutzes. Auf der ganzen Welt, auch in der Region der 
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Atlantischen Wälder Brasiliens (Mata Atlântica), verschwinden mehr und mehr Primärwälder 

und die kleinen Reste alter, wenig vom Menschen beeinflusster Wälder unterliegen starkem 

anthropogenem Druck. Auf der anderen Seite hat aber das wachsende Bewusstsein für 

Umweltprobleme zu einer steigenden Zahl und einer größeren Fläche sich regenerierender 

oder angepflanzter Sekundärwälder geführt, die eine immer größere Rolle beim Naturschutz 

spielen.  

Ziel meiner Dissertationsarbeit war die Erfassung der Artenvielfalt und Ökologie der 

Spinnengemeinschaften in Sekundärwäldern der Mata Atlântica um daraus Rückschlüsse für 

den Umweltschutz und den Schutz der regionalen Biodiversität zu ziehen. Mein 

Untersuchungsansatz gliederte sich in zwei Teile: Erstens eine umfangreiche Erfassung der 

Artenvielfalt der Spinnen (Diversitätsteil) und zweitens eine Untersuchung der ökologischen 

Zusammenhänge im Rahmen eines Feldexperiments (Experimentalteil).  

Zur Erfassung des Beitrags der Sekundärwälder zum Erhalt der regionalen Diversität 

verglich ich die Spinnengemeinschaften unterschiedlich alter Waldsukzessionsstufen und 

eines alten, naturnahen Walds (Kapitel 2 & 3). Wir sammelten Spinnen mit Hilfe eines 

standardisierten Probenahme-Protokolls in 24 Untersuchungsflächen in zwei 

Naturschutzgebieten im brasilianischen Bundesstaat Paraná. Die untersuchten Wälder der  

Region sind relativ gut erhalten und die Matrix der kleinräumig strukturierten Landschaft ist 

noch Wald. 

Arten- bzw. Gattungsreichtum und die Diversität der Waldstadien unterschieden sich nicht, 

wohl aber die Gildendiversität. Die hohe Alpha-Diversität und ein hoher Arten-Turnover 

zwischen allen Untersuchungsflächen betonen den hohen Wert der Sekundärwälder für den 

Schutz der Diversität in der untersuchten Region. Die Beta-Diversität basiert wesentlich auf 

dem turnover, nicht auf einem Zugewinn oder Verlust von Taxa. Die räumlichen Ebenen 

trugen mehr zur Betadiversität bei als erwartet und der zu erwartende, starke Beitrag der 

verschiedenen Waldstadien konnte nicht nachgewiesen werden. Diese Verteilungsmuster 

waren auf Gattungs- und Artniveau und auch über alle Methoden gleich. Daher kann bereits 

ein Teil des umfangreichen Probenahmeprotokolls sowie eine Identifikation auf 

Gattungsniveau für Fragestellungen im Rahmen von Umweltschutz-Untersuchungen 

ausreichend sein. 

Im Feldexperiment zeigte sich, dass die künstliche Erweiterung des Lebensraums nicht den 

erwarteten Einfluss auf die untersuchten Taxa hatte. Die Zugabe von Nahrung hatte einen 
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positiven Effekt auf die Zersetzer, nicht aber auf deren Prädatoren. Diese Ergebnisse legen 

nahe, dass die Bodenfauna dieser tropischen Wälder durch eine eingeschränkte 

Nahrungsverfügbarkeit beeinflusst ist, jedoch zeigt der fehlende „bottom-up“-Effekt, dass die 

Räuber nicht in erster Linie durch die Abundanz ihrer Beute limitiert sind, sondern eher durch 

Wettbewerb oder ihrerseits durch Prädatoren.  

Auch wurden keine Unterschiede zwischen den Sukzessionsstadien sichtbar. Diese 

Ergebnisse betonen den Wert der Sekundärwaldhabitate für den Schutz von Waldarten und 

den mit ihnen assoziierten ökologischen Prozessen. 

Auf Basis der Ergebnisse der Biodiversitätaufnahmen und des Experimets komme ich zu 

dem Schluss, dass der Erhalt der Heterogenität des Landschaftsmosaiks ein guter Ansatz für 

den Erhalt der regionalen Biodiversität der Invertebratengemeinschaft in der südlichen Mata 

Atlântica zu sein scheint. Unsere Analysen belegen (aus Sicht der Spinnen) die große 

Bedeutung einer ausgeprägten kleinräumigen Mosaikstruktur verschiedener (Wald-) 

Regenerationsstadien sowie Landnutzungssystemen und naturnaher Wälder in Schutzgebieten 

für einen maximalen Schutz der Biodiversität. Um langfristig die Bewahrung eines möglichst 

breiten Spektrums der Spinnendiversität zu garantieren, sollte daher der Schutz möglichst 

großer, zusammenhängender Waldgebiete angestrebt werden und dieser ist, falls eine 

Entscheidung getroffen werden muss, dem Schutz kleiner (meist isoliert gelegener) 

Restflächen naturnaher, alter Wälder vorzuziehen. 

  



 

 

 

8 – Appendix 

Supporting Materials Chapter 2 

Appendix Chapter 2 – Table 1. List of morphospecies of adult spiders recorded in the forest stages (H – herbaceous, A – arboreal, M – medium, F 

– old-growth forest) of the two nature reserves Cachoeira (Ca) and Itaqui (It) (specimens from all methods and replicate sites pooled). 

  Locality and Stage 

Taxon Ca-H Ca-A Ca-M Ca-F It-H It-A It-M It-F 

Amaurobiidae 

             Amaurobiidae sp. 1 0 0 0 1 0 0 0 6 

     Amaurobiidae sp. 2 0 0 0 0 0 1 0 0 

     Amaurobiidae sp. 3 0 0 0 1 0 0 0 0 

     Amaurobiidae sp. 4 0 0 3 2 0 0 3 1 

Anapidae 

             Anapidae sp. 0 0 0 0 0 0 1 0 

Anyphaenidae 

             Amaurobioidinae sp. 1 1 0 0 0 0 0 0 0 

     Aysha sp. 1 11 2 0 1 7 1 1 1 

     Aysha sp. 2 1 0 0 0 0 0 0 0 

     Aysha sp. 4 0 0 0 1 0 0 0 0 

     Buckupiella imperatriz Brescovit, 1997 4 1 0 0 4 0 0 0 

     gen. 1 sp. 1 16 0 0 0 0 0 0 0 

     Patrera cita (Keyserling, 1891) 0 10 19 18 0 2 15 9 

     Temnida sp. 1 0 0 0 0 1 0 0 0 

     Wulfila sp. 1 0 0 0 0 0 1 0 0 

     Wulfilopsis sp. 1 2 1 1 3 8 2 10 4 

Araneidae 

             Araneidae sp. 8  0 1 0 0 0 0 0 0 

     Acacesia tenella (L. Koch,1871) 1 0 0 0 7 0 0 0 
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     Acacesia yacuiensis Glueck, 1994 0 0 0 0 0 2 1 0 

     Alpaida biasii Levi, 1988 0 0 0 0 3 0 0 0 

     Alpaida canoa Levi, 1988 0 0 2 0 0 0 1 0 

     Alpaida rubellula (Keyserling, 1892) 0 0 0 1 0 0 0 0 

     Alpaida septemmammata (O. P.-Cambridge, 1889) 0 0 0 0 0 0 0 1 

     Alpaida sp. 3 0 0 0 1 0 0 0 0 

     Alpaida sp. 5 2 0 0 0 0 0 0 0 

     Alpaida tijuca Levi, 1988 1 0 1 0 0 1 3 0 

     Alpaida truncata (Keyserling, 1865) 0 0 1 0 0 0 0 0 

     Araneus iguacu Levi, 1991 0 1 0 2 0 2 3 3 

     Araneus tijuca Levi, 1991 0 0 2 1 2 1 1 0 

     Araneus unanimus (Keyserling, 1879) 0 0 0 1 0 0 0 0 

     Araneus uniformis (Keyserling, 1879) 0 0 0 0 1 0 0 0 

     Bertrana rufostriata Simon, 1893 1 0 0 0 7 0 0 0 

     Bertrana sp. 1 0 0 0 0 2 0 0 0 

     Cyclosa fililineata Hingston, 1932 1 0 4 8 1 2 1 2 

     Cyclosa morretes Levi, 1999 0 0 0 3 0 0 0 2 

     Enacrosoma anomalum (Taczanowski, 1873) 0 0 0 0 0 1 0 0 

     Eustala sp. 1 1 0 0 1 0 0 0 0 

     Eustala sp. 2 1 0 0 0 1 0 0 0 

     Eustala sp. 3 0 0 0 0 3 0 0 0 

     Eustala sp. 4 0 0 0 0 2 0 0 0 

     Eustala sp. 6 1 0 0 0 1 0 0 0 

     Eustala sp. 8 0 0 0 0 3 0 0 0 

     Hypognatha sp. 1  0 0 1 0 0 0 0 0 

     Kaira echinus (Simon, 1897) 0 1 0 0 0 0 0 0 

     Kapogea sellata (Simon, 1895) 0 0 1 0 1 0 0 0 

     Mangora blumenau Levi, 2007 4 0 2 14 0 4 6 2 

     Mangora bocaina Levi, 2007 0 1 0 0 1 4 1 0 

     Mangora botelho Levi, 2007 0 0 1 0 0 0 0 0 

     Mangora caparu Levi, 2007 1 0 1 3 0 0 3 1 

     Mangora chacobo Levi, 2007 0 0 0 0 0 1 0 0 

9
5
 



 

 

 

     Mangora manicore Levi, 2007 4 3 3 3 1 0 1 5 

     Mangora melanocephala (Taczanowski, 1874) 1 0 0 0 2 0 0 0 

     Mangora missa Levi, 2007 0 1 0 0 0 0 1 1 

     Mangora sp. 1  0 1 7 10 0 2 2 0 

     Mangora sp. 2  0 0 0 0 0 0 1 2 

     Metazygia manu Levi, 1995 0 0 0 0 1 0 1 0 

     Micrathena crassispina (C. L. Koch, 1836) 0 0 0 0 0 0 0 1 

     Micrathena excavata (C. L. Koch, 1836) 0 0 1 1 0 1 0 1 

     Micrathena sanctispiritus Brignoli, 1983 0 0 0 1 0 0 0 0 

     Micrathena triangularis (C. L. Koch, 1836) 1 2 0 0 0 0 1 0 

     Micrepeira albomaculata Schenkel, 1953 0 0 0 1 0 0 0 0 

     Parawixia audax (Blackwall, 1863) 3 0 0 0 2 0 1 2 

     Parawixia kochi (Taczanowski, 1873) 0 0 0 0 1 0 0 0 

     Parawixia monticola (Keyserling, 1892) 0 0 0 0 0 0 3 1 

     Scoloderus cordatus (Taczanowski, 1879) 0 0 1 0 2 0 0 4 

     Scoloderus gibber (O. P.-Cambridge, 1898) 1 1 0 0 0 0 0 0 

     Testudinaria gravatai Levi, 2005 0 0 0 1 0 2 0 0 

     Verrucosa sp. 1 0 1 1 2 0 1 1 3 

     Wagneriana eupalaestra (Mello-Leitão, 1943) 0 0 2 1 0 0 0 0 

     Wagneriana heteracantha (Mello-Leitão, 1943) 0 0 2 0 0 0 0 0 

     Wagneriana iguape Levi, 1991 0 1 1 1 0 1 2 1 

     Wagneriana janeiro Levi, 1991 0 1 1 6 0 1 3 1 

     Wagneriana taim Levi, 1991 3 0 0 0 2 0 0 1 

     Wixia sp. 1 0 1 0 0 0 0 0 0 

Caponiidae 

             Caponiidae sp.  0 0 0 0 0 0 1 0 

Corinnidae 

             Castianeira sp. 1 0 0 0 0 1 0 0 0 

     Castianeira sp. 2 0 1 0 0 0 0 0 0 

     Corinna sp. 1  0 1 0 1 0 0 1 0 

     Corinna sp. 2  1 1 0 0 0 0 0 0 

     Corinna sp. 3  0 1 0 0 0 0 0 0 
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     Corinna sp. 4  0 0 0 0 0 0 1 0 

     Corinna sp.  5  1 0 0 0 2 0 1 0 

     Corinna sp. 6  0 0 0 0 0 1 0 0 

     Corinna sp. 7 0 0 0 0 0 0 1 0 

     Ianduba varia (Keyserling, 1891) 3 2 0 1 1 0 0 0 

     Myrmecium sp. 1 0 0 1 0 0 0 0 1 

     Trachelas sp. 1 0 1 0 1 0 0 1 0 

     Trachelas sp. 2 0 0 0 0 0 0 1 0 

Ctenidae 

             Ctenus medius Keyserling, 1891 1 3 4 4 0 1 3 2 

     Ctenus ornatus (Keyserling, 1877) 1 0 0 0 0 0 0 0 

     Ctenus sp. 1  0 0 0 1 0 0 0 0 

     Isoctenus janeirus (Walckenaer, 1837) 0 0 0 1 0 0 4 0 

     Isoctenus ordinario Polotow & Brescovit, 2009 0 0 0 1 0 2 4 1 

     Isoctenus strandi Mello-Leitão, 1936 7 11 4 16 4 11 15 21 

Deinopidae 

             Deinopis sp. 1 0 0 1 2 0 0 0 0 

Dictynidae 

             Thallumetus sp. 1 0 0 20 25 0 0 6 7 

Dipluridae 

             Trechona rufa Vellard, 1924 0 0 0 0 0 0 1 0 

Gnaphosidae 

             Gnaphosidae sp. 0 0 0 0 2 0 0 0 

Hahniidae 

             Hahniidae sp. 1 0 0 5 10 0 0 0 0 

     Hahniidae sp. 2 0 0 0 0 0 0 1 0 

     Hahniidae sp. 3 0 0 1 0 0 0 0 0 

     Hahniidae sp. 4 0 0 2 0 0 0 0 0 

     Hahniidae sp. 5 1 0 1 0 0 0 0 0 

     Hahniidae sp. 6 0 0 0 0 0 0 1 0 

     Hahniidae sp. 7 0 0 0 0 4 0 8 0 
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Hersiliidae 

             Ypypuera crucifera (Vellard, 1924) 0 2 0 0 0 0 0 0 

Linyphiidae 

             Linyphiidae indet. 1 0 0 0 0 1 0 0 0 

     Linyphiidae indet. 2 0 0 0 0 3 0 0 0 

     Linyphiidae sp. 1 0 3 0 0 0 21 1 0 

     Linyphiidae sp. 2 2 0 0 0 0 1 0 0 

     Linyphiidae sp. 3 0 0 2 0 0 5 7 2 

     Anodoration claviferum Millidge, 1991 22 5 0 0 0 0 0 0 

     Anodoration sp. 1 2 0 0 0 81 15 0 0 

     Asemostera tacuapi Rodrigues, 2007 0 0 1 0 3 0 0 1 

     Dubiaranea sp. 0 0 1 0 0 0 0 0 

     Dubiaranea sp. 1 2 0 0 0 0 0 0 0 

     Dubiaranea sp. 2 0 0 0 0 0 1 0 0 

     Exechopsis conspicua Millidge, 1991 0 0 0 0 0 0 0 2 

     Exechopsis sp. 1 6 2 0 0 16 5 0 

     Exechopsis sp. 1 0 1 0 0 0 0 1 2 

     Exechopsis sp. 2 1 0 0 0 0 0 0 0 

     Exocora sp. 0 0 0 2 0 3 0 0 

     Exocora sp. 1 0 0 2 0 0 0 0 1 

     Labicymbium sp. 3 0 0 0 0 0 0 0 

     Labicymbium sp. 1 0 3 0 0 0 1 0 0 

     Lepthyphantes sp. 0 0 1 0 0 0 0 0 

     Lepthyphantes sp. 2 1 0 0 0 0 0 0 0 

     Linyphiinae indet. 1 0 0 0 1 0 0 0 0 

     Linyphiinae indet. 2 2 0 0 0 0 0 0 0 

     Meioneta sp. 0 0 0 0 0 0 0 1 

     Meioneta sp. 1 0 2 0 0 1 1 8 8 

     Meioneta sp. 2 0 0 0 0 0 0 8 0 

     Meioneta sp. 3 0 0 0 0 3 0 0 0 

     Meioneta sp. B 0 3 0 0 0 0 0 0 

     Moyosi prativaga (Keyserling, 1886) 0 1 0 0 0 0 0 0 
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     Moyosi sp. 0 1 0 0 0 0 0 0 

     Moyosi sp. 1 1 0 0 0 0 1 0 0 

     Psilocymbium sp. 5 0 0 0 0 0 0 0 

     Psilocymbium sp. 1 6 0 1 0 0 0 0 0 

     Psilocymbium sp. 2 1 0 0 0 0 0 0 0 

     Scolecura sp. 1 0 0 0 0 0 0 0 

     Sphecozone diversicolor (Keyserling, 1886) 17 0 0 0 19 0 0 0 

     Sphecozone labiata (Keyserling, 1886) 0 3 0 0 0 0 0 5 

     Sphecozone personata (Simon, 1894) 10 13 2 1 0 5 7 7 

     Sphecozone sp. 1 0 0 0 0 0 0 0 

     Sphecozone sp. 1 3 5 0 0 6 0 0 0 

     Sphecozone tumidosa (Keyserling, 1886) 0 1 0 0 0 2 0 0 

     Sphecozone venialis (Keyserling, 1886) 0 0 0 34 0 8 39 19 

     Vesicapalpus simplex Millidge, 1991 0 0 0 0 0 0 1 0 

Liocranidae 

             Gen. 1 sp. 1 1 0 0 0 0 0 0 0 

Lycosidae 

             Agalenocosa sp. 1 7 0 0 0 0 0 0 0 

     Hogna sp. 1 0 2 0 0 2 0 0 0 

     Hogna sp. 2 4 2 0 0 0 0 0 0 

     Hogna sternalis (Bertkau, 1880) 0 5 0 0 3 0 0 0 

     Lobizon sp. 1 0 0 0 9 0 0 0 3 

     Lobizon sp. 2 0 4 0 3 11 0 0 0 

     Lycosa erythrognatha Lucas, 1836 0 0 0 0 1 0 0 0 

     Lycosa inornata Blackwall, 1862 3 0 0 0 1 0 0 0 

     Lycosinae sp. 1 0 0 0 5 0 0 0 0 

Mimetidae 

             Ero sp. 1 2 2 8 7 2 2 3 5 

     Ero sp. 2 2 0 0 0 0 1 0 0 

     Gelanor sp. 1 0 0 0 1 0 0 0 1 

     Mimetinae sp. 1 0 0 1 0 0 0 0 0 
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Miturgidae 

             Radulphius sp. 1 1 1 0 0 0 0 0 1 

     Strotarchus sp. 1 0 1 0 0 0 0 0 0 

     Teminius insularis (Lucas, 1857) 0 0 0 0 1 0 0 0 

Mysmenidae 

             Mysmenidae sp. 1 0 0 0 1 0 0 0 0 

     Itapua sp. 1 2 1 0 0 0 0 0 

     Itapua sp. 1 0 0 1 0 0 0 0 0 

     Microdipoena sp. 1 0 0 0 0 2 6 2 24 

Nemesiidae 

             Acanthogonatus sp. 1 0 0 1 1 0 1 2 0 

     Pycnothele sp. 1 0 0 2 1 0 0 0 0 

Nesticidae 

             Eidmanella sp. 0 0 0 1 0 0 0 0 

Ochyroceratidae 

             Ochyrocera sp. 1 0 0 0 0 1 1 3 1 

     Ochyrocera sp. 2 0 0 0 3 0 0 1 3 

     Ochyrocera sp. 3 0 0 0 0 0 1 0 0 

Oonopidae 

             Gamasomorpha sp. 0 0 1 0 0 0 0 0 

     gen. 2 sp. 1 0 0 0 0 0 1 0 0 

     Neoxyphinus sp. 1 0 0 0 3 0 1 0 0 

     Oonops sp. 1 2 2 1 1 3 3 3 1 

     Oonops sp. 2 0 0 0 0 0 4 2 0 

     Orchestina sp. 1 0 0 0 0 0 0 4 0 

     Predatoroonops sp. 1 0 1 0 3 0 0 2 1 

     Triaeris stenaspis Simon, 1891 0 0 0 0 1 0 0 0 

Oxyopidae 

             Hamataliwa sp. 1  0 2 1 0 0 0 0 0 

     Hamataliwa sp. 2  0 1 0 0 2 0 1 0 

     Oxyopes salticus Hentz, 1845 1 0 0 0 0 0 0 0 
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     Peucetia flava Keyserling, 1877 0 0 0 0 1 0 0 0 

Palpimanidae 

             Palpimanidae sp.  0 0 1 0 0 0 0 0 

     Notiothops birabeni (Zapfe, 1961) 0 0 0 0 0 0 0 1 

Philodromidae 

             Cleocnemis sp. 1 0 0 0 0 0 1 0 0 

Pholcidae 

             Pholcidae sp. 1 11 5 3 3 0 0 0 0 

     Mesabolivar aff. brasiliensis (Moenkhaus, 1898) 0 0 0 1 0 0 0 0 

     Mesabolivar aff. cyaneotaeniatus (Keyserling, 1891) 0 0 0 3 0 0 0 0 

     Mesabolivar aff. guapiara Huber, 2000 0 0 0 1 0 4 1 6 

     Mesabolivar brasiliensis (Moenkhaus, 1898) 0 1 3 11 0 0 0 0 

     Mesabolivar cyaneotaeniatus (Keyserling, 1891) 0 0 0 2 0 0 0 0 

     Mesabolivar luteus (Keyserling, 1891) 0 9 1 24 0 4 7 4 

     Mesabolivar rudilapsi Machado, Brescovit & Francisco, 2007 1 0 2 0 0 6 1 2 

     Mesabolivar sp. 1 0 0 0 0 1 0 3 0 

     Mesabolivar sp. 2 0 2 0 0 0 3 0 2 

     Metagonia aff. bonaldoi Huber, 2000 0 1 0 1 0 0 0 0 

     Metagonia furcata Huber, 2000 0 0 1 1 0 1 0 0 

     Metagonia sp. 1 0 3 2 5 0 5 4 0 

     Metagonia sp. 2 0 0 0 0 0 1 0 0 

     Ninetines sp. 1 0 0 0 0 0 0 0 2 

     Ninetines sp. 2 0 1 1 0 0 0 1 1 

     Tupigea nadleri Huber, 2000 0 2 0 1 0 0 6 0 

     Tupigea sp. 1 0 1 3 0 0 0 0 0 

Pisauridae 

             Architis brasiliensis (Mello-Leitão, 1940) 2 2 18 20 0 3 1 7 

     Architis capricorna Carico, 1981 1 0 0 0 0 0 0 0 

Prodidomidae 

             gen. sp. 0 0 0 0 0 0 2 0 

Salticidae 

             Salticidae sp. 26 1 0 0 0 0 0 0 0 
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     Salticidae sp. 38 0 0 0 0 1 0 0 0 

     Salticidae sp. 45 0 0 0 0 0 1 0 0 

     Salticidae sp. 46 0 0 0 0 0 1 0 0 

     Salticidae sp. 54 0 0 0 0 0 0 3 0 

     Salticidae sp. 0 0 0 0 0 0 2 0 

     Amphidraus sp. 1 0 1 1 0 0 0 0 0 

     Amycinae sp.1 0 0 2 0 0 0 1 1 

     Amycinae sp.2 0 1 0 0 0 1 0 0 

     Arnoliseus graciosa Braul & Lise, 2002 0 4 1 4 0 0 2 3 

     Asaphobelis physonychus Simon, 1902 3 2 2 1 1 1 0 1 

     Atelurius sp. 1 1 0 0 0 0 0 1 0 

     Chira spinosa Mello-Leitão, 1945 1 0 0 0 1 0 0 0 

     Chira thysbe Simon, 1902 2 0 0 0 0 0 0 0 

     Coryphasia sp. 1 0 0 0 1 0 0 0 0 

     Coryphasia sp. 2 0 2 3 0 0 1 1 0 

     Cotinusa sp. 1 2 1 2 0 0 0 0 1 

     Cotinusa sp. 2 0 0 0 0 0 1 1 0 

     Cylistella sp. 1 0 0 1 1 0 3 2 0 

     Cyllodania sp. 1 0 0 0 0 1 0 0 0 

     Dendryphantinae sp.1 1 0 0 0 0 0 0 0 

     Dendryphantinae sp.2 0 0 0 0 1 0 0 0 

     Euophryinae sp. 2 0 0 0 2 0 0 1 0 

     Euophryinae sp. 3 2 0 0 0 0 0 0 0 

     Euophryinae sp. 4 0 0 0 2 0 0 0 0 

     Euophryinae sp. 5 1 0 0 0 0 0 0 0 

     Euophryinae sp. 6 0 3 0 0 1 1 0 0 

     Euophryinae sp. 7 0 0 1 0 0 1 1 2 

     Euophryinae sp. 8 1 0 0 0 1 0 0 0 

     Euophryinae sp. 9 1 0 0 1 0 0 0 0 

     Euophryinae sp. 10 0 0 1 0 0 0 1 2 

     Euophryinae sp. 11 0 0 0 0 0 0 0 1 

     Euophryinae sp. 12 0 0 0 0 0 0 1 0 
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     Euophryinae sp. 13 0 0 0 0 0 1 0 0 

     Euophryinae sp. 14 0 0 0 0 0 1 0 0 

     gen. n. sp. 1 0 0 1 0 0 0 0 0 

     Hyetussinae sp. 1 0 0 1 3 0 0 0 2 

     Ilargus sp. 1 0 0 0 0 1 0 0 0 

     Itata sp. 1 0 0 0 1 0 0 0 0 

     Lyssomanes sp. 1 0 0 0 0 0 0 0 1 

     Lyssomanes sp. 2 0 0 0 0 0 0 1 0 

     Maeota dichrura Simon, 1901 0 1 0 0 5 1 0 1 

     Noegus sp. 1 8 9 11 7 5 4 7 10 

     Ramboia sp. 1 3 0 0 0 2 0 4 0 

     Romitia sp. 1 2 0 0 0 1 1 0 0 

     Semnolius sp. 1 0 1 0 0 1 0 0 1 

     Semora napaea Peckham & Peckham, 1892 0 0 0 0 4 0 0 0 

     Synemosyna lauretta Peckham & Peckham, 1892 1 0 0 0 3 0 0 0 

     Synemosyninae sp. 1 0 0 0 1 0 2 3 0 

     Tanybelus aeneiceps Simon, 1902 0 0 0 0 0 0 0 1 

     Tariona sp. 1 18 38 19 19 1 7 33 28 

     Tariona sp. 3 0 3 0 0 0 0 0 0 

     Tariona sp. 4 5 4 0 0 0 0 0 0 

     Tariona sp. 5 2 0 0 0 0 0 0 0 

     Tariona sp. 6 0 0 0 0 1 1 0 0 

     Vinnius uncatus Simon, 1902 3 0 0 0 0 0 0 0 

Scytodidae 

             Scytodes antonina Rheims & Brescovit, 2009 6 2 9 0 7 6 3 3 

     Scytodes globula Nicolet, 1849 0 0 0 1 0 0 0 0 

     Scytodes sp. 1 0 0 2 1 0 1 1 0 

Sparassidae 

             Olios sp. 1 1 0 0 1 0 0 0 0 

Symphytognathidae 

             Anapistula sp. 1 0 0 1 0 0 0 0 0 

Synotaxidae 
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     Synotaxus sp. 1 0 0 0 0 0 1 0 1 

Tetragnathidae 

             Azilia histrio Simon, 1895 1 0 0 0 0 0 0 1 

     Chrysometa boraceia Levi, 1986 0 0 0 0 2 0 2 0 

     Chrysometa ludibunda (Keyserling, 1893) 0 2 1 2 1 1 13 2 

     Chrysometa sp. 0 0 0 1 0 0 3 0 

     Cyrtognatha sp. 1 9 3 1 0 4 0 2 0 

     Glenognatha sp. 1 1 0 0 0 0 0 0 0 

     Leucauge sp. 0 0 0 0 0 1 0 1 

     Leucauge sp. 1 0 1 1 0 0 2 0 5 

     Leucauge sp. 2 0 0 1 0 0 0 5 0 

     Tetragnatha sp. 0 2 0 0 0 0 0 0 

Theridiidae 

             Theridiidae sp. 1 0 0 0 0 0 0 0 1 

     Achaearanea sp. 1 0 0 0 0 0 1 0 0 

     Achaearanea sp. 18 0 0 0 1 0 0 0 0 

     Achaearanea tingo Levi, 1963 0 1 1 0 0 1 0 0 

     Ameridion unanimum (Keyserling, 1891) 0 0 0 0 4 0 0 0 

     Anelosimus ethicus (Keyserling, 1884) 0 0 0 0 1 0 0 0 

     Anelosimus nigrescens (Keyserling, 1884) 1 0 0 0 0 0 0 0 

     Argyrodes elevatus Taczanowski, 1873 0 0 0 1 0 0 0 0 

     Argyrodes sp. 1 0 0 0 0 0 1 0 1 

     Ariamnes attenuatus (O. P.-Cambridge, 1881) 0 0 2 1 0 0 1 2 

     Ariamnes longissimus Keyserling, 1891 1 1 0 0 1 1 0 0 

     Ariamnes sp. 2 0 0 0 0 0 0 1 0 

     Chrosiothes niteroi Levi, 1964 0 0 0 3 13 4 7 9 

     Chrosiothes perfidus Marques & Buckup, 1997 0 1 1 3 2 3 0 5 

     Chrosiothes sp. 1 0 0 0 2 0 0 0 0 

     Chrysso gounellei Levi, 1962 1 13 0 0 0 1 0 0 

     Chrysso nigrosterna Keyserling, 1891 0 0 0 0 0 3 3 0 

     Chrysso rubrovittata (Keyserling, 1884) 0 0 0 0 1 0 0 0 

     Chrysso sp. 3 1 2 0 1 0 0 0 6 
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     Chrysso sp. 32 0 0 0 0 0 0 0 1 

     Coleosoma sp. 1 0 0 0 0 2 0 0 0 

     Cryptachaea altiventer (Keyserling, 1884) 2 1 0 0 1 0 0 0 

     Cryptachaea digitus (Buckup & Marques, 2006) 0 0 0 0 0 0 0 3 

     Cryptachaea cinnabarina (Levi, 1963) 0 0 0 0 0 0 1 2 

     Cryptachaea hirta (Taczanowski, 1873) 0 0 0 0 8 0 0 0 

     Cryptachaea isana (Levi, 1963) 3 0 0 0 0 0 0 0 

     Cryptachaea jequirituba (Levi, 1963) 0 0 0 0 0 2 0 0 

     Cryptachaea migrans (Keyserling, 1884) 0 0 0 3 0 0 0 0 

     Cryptachaea passiva (Keyserling, 1891) 2 2 3 6 2 5 2 7 

     Cryptachaea rioensis (Levi, 1963) 0 0 0 0 0 0 1 0 

     Cryptachaea sicki (Levi, 1963) 0 0 0 0 0 0 0 1 

     Cryptachaea sp. 1  0 0 0 0 0 0 1 0 

     Cryptachaea taim (Buckup & Marques, 2006) 1 0 1 1 0 2 4 3 

     Cryptachaea triguttata (Keyserling, 1891) 0 4 3 2 1 3 3 0 

     Dipoena atlantica Chickering, 1943 0 0 0 0 1 1 0 1 

     Dipoena bryantae Chickering, 1943 0 0 0 0 0 1 0 0 

     Dipoena cordiformis Keyserling, 1886 0 0 1 0 0 0 0 0 

     Dipoena duodecimpunctata Chickering, 1943 0 0 0 1 0 0 0 0 

     Dipoena ira Levi, 1963 4 0 0 1 1 0 1 1 

     Dipoena keyserlingi Levi, 1963 1 0 0 0 0 0 2 0 

     Dipoena pumicata (Keyserling, 1886) 1 4 3 2 3 0 1 1 

     Dipoena pusilla (Keyserling, 1886) 0 0 4 5 0 2 0 1 

     Dipoena santacatarinae Levi, 1963 5 1 4 0 0 0 0 0 

     Dipoena sp. 1 0 0 0 0 0 1 2 

     Dipoena sp. 2 8 10 11 3 1 20 42 4 

     Dipoena sp. 3 0 0 0 0 0 0 1 0 

     Dipoena sp. 6 0 0 0 0 0 3 0 0 

     Dipoena sp. 8 1 0 0 0 3 0 0 0 

     Dipoena sp. 12 5 9 5 12 3 4 11 9 

     Dipoena sp. 21 0 1 0 0 0 0 0 0 

     Dipoena sp. 22 0 0 0 0 0 0 1 1 
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     Dipoena sp. 58 0 0 0 0 0 2 0 0 

     Dipoena variabilis (Keyserling, 1886) 0 1 0 1 0 0 0 1 

     Emertonella taczanowskii (Keyserling, 1886) 0 0 0 1 1 1 0 0 

     Episinus sp. 0 0 0 0 0 1 0 0 

     Episinus sp. 1 3 2 6 4 9 6 17 5 

     Episinus sp. 2 0 0 0 0 21 0 0 0 

     Episinus teresopolis Levi, 1964 1 0 0 0 2 0 0 0 

     Euryopis sp. 1 0 0 0 0 0 0 0 

     Euryopis sp. 1 2 0 0 0 2 1 0 0 

     Exalbidion sp. 1 6 1 0 3 1 1 0 0 

     Exalbidion sp. 2 0 1 0 0 0 0 0 0 

     Faiditus acuminatus (Keyserling, 1891) 0 0 0 0 0 2 0 0 

     Faiditus sp. 1 0 0 1 1 0 0 0 0 

     Faiditus sp. 2 0 1 0 1 0 0 1 1 

     Faiditus sp. 3 0 0 0 3 0 0 1 0 

     gen. 2 sp. 2 0 0 0 0 0 0 1 0 

     Guaraniella mahnerti Baert, 1984 0 0 0 0 4 15 31 5 

     Guaraniella sp. 0 0 0 0 0 0 1 0 

     Guaraniella sp. 1 3 0 0 5 0 0 0 0 

     Hadrotarsinae sp. 1 0 0 0 0 0 0 1 0 

     Hadrotarsinae sp. 2 0 0 0 0 3 0 0 0 

     Hadrotarsinae sp. 3 0 0 0 3 0 0 0 0 

     Helvibis sp. 1 2 3 0 0 0 0 1 0 

     Hetschkia gracilis Keyserling, 1886 14 5 2 0 4 0 1 0 

     Janula bicorniger (Simon, 1894) 0 1 13 6 0 2 21 32 

     Neopisinus cognatus (O. P.-Cambridge, 1893) 0 1 0 0 0 0 0 0 

     Phycosoma altum (Keyserling, 1886) 4 6 2 0 13 2 0 0 

     Rhomphaea sp. 1 1 0 1 1 0 0 0 0 

     Rhomphaea sp. 2 0 0 1 0 0 0 0 1 

     Spintharus gracilis Keyserling, 1886 2 10 8 25 1 10 74 30 

     Stemmops sp. 2 1 0 0 0 0 0 0 0 

     Styposis selis Levi, 1964 0 0 0 0 1 1 0 1 
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     Tekellina crica Marques & Buckup, 1993 1 0 0 0 0 0 2 0 

     Tekellina sp. 3  0 0 0 1 0 0 0 0 

     Tekellina sp. 4 0 0 0 0 0 0 0 1 

     Theridion biezankoi Levi, 1963 1 0 0 0 0 0 1 0 

     Theridion minutissimum Keyserling, 1884 0 1 0 0 0 0 0 0 

     Theridion opolon Levi, 1963 0 0 1 0 0 0 0 0 

     Theridion plaumanni Levi, 1963 11 2 0 0 43 0 0 1 

     Theridion quadripartitum Keyserling, 1891 0 0 1 3 0 0 0 0 

     Theridion sp. 1 1 0 0 0 1 0 0 0 

     Theridion sp. 2 0 0 0 1 0 0 0 0 

     Theridion sp. 11 0 0 0 0 0 1 0 0 

     Theridion sp. 28 0 0 0 0 0 0 0 1 

     Theridion sp. 32 1 12 1 23 0 0 0 8 

     Theridion sp. 36 0 0 0 1 0 0 0 0 

     Theridion sp. 40 0 1 0 0 0 0 0 0 

     Theridion sp. 47 0 0 1 1 0 0 0 0 

     Theridion sp. 63 0 0 0 1 0 0 0 0 

     Theridion sp. 68 0 0 0 1 1 0 0 0 

     Theridion teresae Levi, 1963 1 0 0 0 1 0 0 1 

     Theridula gonygaster (Simon, 1873) 0 0 0 0 1 0 0 0 

     Thwaitesia affinis O. P.-Cambridge, 1882 7 9 7 1 2 7 12 41 

     Thwaitesia sp. 1  0 0 1 1 0 0 0 0 

     Thymoites anicus Levi, 1964 8 2 0 0 4 0 0 0 

     Thymoites melloleitaoni (Bristowe, 1938) 0 0 0 1 0 15 1 1 

     Thymoites sp. 1 0 0 0 0 1 0 0 

     Thymoites sp. ? 0 0 0 0 0 2 0 0 

     Thymoites sp. 1 4 1 2 4 1 0 1 0 

     Thymoites sp. 2 5 0 1 3 0 0 0 0 

     Thymoites sp. 4 1 0 0 0 0 0 1 2 

     Thymoites sp. 5 0 0 1 0 0 0 0 0 

     Thymoites sp. 7 0 0 2 3 0 7 1 0 

     Thymoites sp. 12 1 0 0 0 0 0 0 0 
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     Wamba crispulus (Simon, 1895) 4 1 0 0 0 0 0 0 

     Wirada sp. 1 0 0 0 0 0 0 1 0 

Theridiosomatidae 

             gen. indet. 1 0 1 0 0 1 0 0 0 

     gen. indet. 3 1 0 1 5 0 0 0 0 

     gen. indet. 4 0 0 0 1 0 0 0 1 

     gen. sp. 1 0 0 1 0 0 0 0 1 

     Chthonos sp. 1 0 0 0 0 0 0 0 

     Chthonos sp.1  0 0 0 0 0 1 3 0 

     Chthonos sp.2  0 0 0 0 0 0 1 0 

     Naatlo sp. 0 0 2 0 0 2 0 1 

     Naatlo sp. 1 0 0 0 0 0 0 1 0 

     Plato sp. 1 0 0 0 0 0 0 0 1 

     Theridiosoma sp. 1 5 0 0 1 0 0 0 0 

     Theridiosoma sp. 3 0 0 0 2 0 0 0 0 

     Theridiosoma sp. 4 0 0 0 1 0 0 0 1 

Thomisidae   

             Acentroscelus sp. 1  0 2 1 0 0 0 1 1 

     Aphantochilus taurifrons (O. P.-Cambridge, 1881) 0 0 1 1 0 1 0 0 

     Deltoclita sp. 1 1 0 1 1 2 1 2 0 

     Epicadinus sp. 1 0 1 0 2 0 0 2 1 

     Misumenops sp. 1 1 0 0 0 0 0 0 0 

     Onocolus sp. 1 0 0 7 1 0 0 0 1 

     Titidius sp. 1 8 10 1 0 2 5 0 0 

     Tmarus sp. 1 3 12 4 3 9 3 9 5 

     Tmarus sp. 2 4 7 2 0 2 2 2 1 

     Tmarus sp. 3 0 0 1 1 0 0 0 0 

     Tmarus sp. 4 0 0 0 1 0 0 0 0 

     Tmarus sp. 5 0 1 0 0 0 0 0 0 

Titanoecidae 

             Goeldia sp. 1 0 0 0 0 7 0 0 0 

Trechaleidae 
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     Neoctenus comosus Simon, 1897 0 0 0 0 1 0 0 0 

Uloboridae 

             Conifaber sp. 1 0 1 0 0 0 0 0 0 

     Miagrammopes sp. 1 0 1 8 6 0 2 2 3 

     Miagrammopes sp. 2 4 0 8 8 0 3 9 9 

     Uloborus sp. 0 0 0 0 0 0 0 1 

     Uloborus sp. 1 0 0 0 1 0 0 1 3 

Zodariidae 

             Zodariidae sp. 0 0 0 0 0 0 1 0 

Zoridae 

             gen. 1 sp. 14 8 0 0 0 0 0 0 0 

     gen.  1 sp. A 30 74 88 103 21 110 107 64 

     gen. 1 sp. B 0 2 1 0 0 5 1 1 

     gen. 1 sp. C 20 28 2 21 16 50 31 20 

     gen. 1 sp. D 14 0 20 12 0 0 0 0 

     gen. 1 sp. E 1 0 0 0 0 0 0 0 

     gen. 1 sp. F 0 1 0 0 0 0 0 0 

     gen. 1 sp. G 0 3 0 1 0 2 1 2 

* Nomenclature (order) of the morphospecies originates from the system of the experts/hosting institutions: IBSP - Instituto Butantan, São Paulo; 

FZB: Fundação Zoobotânica, Porto Alegre. 
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Supporting Materials Chapter 3 

Appendix Chapter 3 – Table 1. Location of the study sites of the SOLOBIOMA project – 

decimal coordinates (WGS 84) 

   site number site code latitude Longitude 

1 Ca-H-1 -25,25375 -48,67635 

2 Ca-H-2 -25,30634 -48,68340 

3 Ca-H-3 -25,31717 -48,67106 

4 Ca-A-1 -25,25620 -48,67055 

5 Ca-A-2 -25,29103 -48,65582 

6 Ca-A-3 -25,30374 -48,65969 

7 Ca-M-1 -25,25314 -48,67277 

8 Ca-M-2 -25,30072 -48,67142 

9 Ca-M-3 -25,32819 -48,67675 

10 Ca-F-1 -25,24398 -48,66944 

11 Ca-F-2 -25,30215 -48,65403 

12 Ca-F-3 -25,32434 -48,65530 

13 It-H-1 -25,31375 -48,45289 

14 It-H-2 -25,24667 -48,52417 

15 It-H-3 -25,23790 -48,49781 

16 It-A-1 -25,31886 -48,46256 

17 It-A-2 -25,25086 -48,52092 

18 It-A-3 -25,26217 -48,48744 

19 It-M-1 -25,30883 -48,45064 

20 It-M-2 -25,24592 -48,50539 

21 It-M-3 -25,24753 -48,49206 

22 It-F-1 -25,30883 -48,46511 

23 It-F-2 -25,25908 -48,50886 

24 It-F-3 -25,27325 -48,48714 
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Supporting Materials Chapter 4 

 
 

Appendix Chapter 4 – Figure 1. Maps showing the location of the study area as well as the 

location of the sites with secondary (S) and old-growth forests (O). 

 



 

 

 

Appendix Chapter 4 – Table 1. Sum of (per method) sampled individuals of groups across sites with secondary or old-growth forests for 

which a significant effect for at least one of the treatments was found (chapter 4, table 1). A full data set is available on request. 

soil samples Treatment Acari Coleoptera Collembola Formicidae Hemiptera Insect larvae Opiliones Symphyla Predators Decomposers all arthropods 

secondary 

forest 
Control 196 20 228 348 10 16 1 10 13 452 861 

 
Food 394 34 791 462 18 41 0 31 7 1234 1803 

 
Food/Space 318 33 542 381 36 26 1 35 18 925 1421 

 
Space 391 21 152 242 21 9 1 34 15 611 946 

old-growth 

forest 
Control 330 36 114 301 21 37 0 25 35 491 921 

 
Food 427 43 577 372 19 75 0 24 36 1050 1616 

 
Food/Space 468 50 384 282 50 55 2 13 53 895 1389 

 
Space 249 31 117 143 18 27 0 13 42 417 682 

  sum 2773 268 2905 2531 193 286 5 185 219 6075 9639 

             pitfall traps Treatment Acari Coleoptera Collembola Formicidae Hemiptera Insect larvae Opiliones Symphyla Predators Decomposers all arthropods 

    secondary 

forest 
Control 113 145 4839 257 48 40 7 0 78 4987 5592 

 
Food 488 399 12913 326 120 238 7 0 101 13467 14731 

 
Food/Space 352 287 9777 286 74 332 1 0 107 10216 11365 

 
Space 123 142 4879 432 25 26 3 0 81 5059 5798 

old-growth 

forest 
Control 167 167 5062 146 39 71 1 0 86 5249 5797 

 
Food 729 330 9237 287 75 507 4 0 92 10041 11369 

 
Food/Space 1261 232 8187 342 60 448 4 0 90 9472 10673 

 
Space 182 186 5195 180 37 98 4 0 83 5386 5988 

 

sum 3415 1888 60089 2256 478 1760 31 0 718 63877 71313 
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Appendix Chapter 4 – Table 1. (continued) 

    sticky traps Treatment all arthropods 

secondary 

forest 
Control 396 

 
Food 578 

 
Food/Space 509 

 
Space 216 

old-growth 

forest 
Control 314 

 
Food 612 

 
Food/Space 414 

 
Space 201 

  sum 3240 
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Appendix Chapter 4 – Table 2. Mean number of individuals across all sampled plots for the 

pitfall trap and soil samples. The groups are sorted from lowest to highest abundance in the 

pitfall trap samples. Abundances (individuals per sample) measured by the two methods are 

strongly correlated (r = 0.82; with log(x+1)-transformed data).  

Taxon/Group                             Pitfall traps                          Soil sample extraction 

 Sum Individuals sample
−1

 Sum Individuals sample
−1 

 

Symphyla 0 0 185 1.54 

Isoptera 3 0.025 57 0.475 

Pseudoscorpiones 4 0.033 68 0.567 

Blattodea 25 0.208 3 0.025 

Dermaptera 29 0.242 10 0.083 

Chilopoda 30 0.25 75 0.625 

Opiliones 31 0.258 5 0.042 

Diplopoda 41 0.342 150 1.25 

Orthoptera 304 2.53 0 0 

Isopoda 307 2.56 59 0.491 

Hemiptera 478 3.98 193 1.61 

Araneae 653 5.44 71 0.592 

Insect larvae 1760 14.7 286 2.38 

Coleoptera 1888 15.7 268 2.23 

Formicidae 2256 18.8 2531 21.1 

Acari 3415 28.5 2773 23.1 

Collembola 60089 501 2905 24.2 

 



 

    

 

Appendix Chapter 4 – Table 3. Effects of forest stage, increased nutrient-rich organic material, or increased habitat space using artificial litter of 

no nutritional value on the abundance of all arthropods and two guilds. Altogether we sampled 120 plots (3 sites in each successional stage; five 

replicates of each treatment within sites) using three methods. Data were analyzed using generalized mixed models using a Poisson distribution and 

the canonical link function including a correction for over-dispersion. Sites were modeled as random factors. In contrast to Table 1 in the main text, 

the sampling methods were analyzed individually. We present the z-values (= estimates/standard error) of the coefficients. Significant results 

indicated in grey.  

Method Group Stage Food Space Food*Space Stage*Food Stage*Space 

  Z P z P z P z P z P z P 

Pitfall All arthropods 0.62 0.54 6.13 <0.001 -0.26 0.80 -0.83 0.41 -1.71 0.09 -0.13 0.90 

 Decomposers 0.76 0.45 5.89 <0.001 -0.47 0.64 -0.67 0.50 -1.87 0.06 -0.08 0.93 

 Predators 0.56 0.57 1.45 0.15 0.22 0.83 0.05 0.96 -0.75 0.46 -0.32 0.75 

Berlese All arthropods -0.24 0.81 3.05 0.002 -0.95 0.34 -0.06 0.95 -0.05 0.96 0.02 0.98 

 Decomposers 0.03 0.97 4.96 <0.001 0.26 0.80 -1.26 0.21 -0.25 0.81 -0.51 0.61 

 Predators 2.43 0.02 -1.22 0.22 0.28 0.78 1.29 0.20 1.09 0.27 0.10 0.92 

Sticky traps All arthropods -1.60 0.11 3.28 0.001 -4.47 <0.001 2.65 0.008 1.63 0.10 0.66 0.51 

 

1
1
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