
Aus dem Institut für Physiologische Chemie 

Geschäftsführender Direktor: Prof. Dr. Gerhard Schratt Des 

Fachbereichs Medizin der Philipps-Universität Marburg 

Regulation of microRNA function in rodent 

hippocampal neurons by an alternative Ube3a 

transcript 

Kumulative Dissertation 

zur 

Erlangung des Doktorgrades 

der gesamten Naturwissenschaften 

(Dr. rer. nat.) 

dem 

Fachbereich Medizin 

der Philipps-Universität Marburg 

vorgelegt von 

Jeremy  Matthias Valluy  

aus Clamart, France 

Marburg, 2015



Angenommen vom Fachbereich Medizin der Philipps-Universität Marburg am:  

Gedruckt mit Genehmigung des Fachbereichs. 

Dekan: Prof. Dr. H. Schäfer 

Referent: Prof. Dr. G. Schratt 

1. Korreferent: Prof. Dr. B.Schütz

 6. November 2015



i 

Table of Contents  

List of Abbreviations.....................................................................................p.ii i 

Summary........................................................................................................p.v i 

Zusammenfassung......................................................................................p.vi ii 

1- Introduction.................................................................................................p.1

1.1- Post -mitotic Neuronal development............ ...............................p.1 

1.2- Ube3a in neuronal development..................................................p.2  

1.3- Ube3a transcript isoform diversity.............................................p. 3 

1.4- microRNAs (miRNAs) in neuronal development.......................p.4  

1.5- Competing endogenous RNA (ceRNA).......................................p. 5 

2- Aims of the thesis .......................................................................................p.7 

3- Summary of published work .....................................................................p.8 

3.1- Expression analysis of Ube3a variants ......................................p.8 

3.2- Expression analysis of Ube3a protein isoforms......................p.10  

3.3- Functional analysis of Ube3a transcript variants....................p.11  

4- Discussion ................................................................................................p.16

4.1- Expression of Ube3a transcript variants during neuronal 

development ..................................................................................................p.16 

4.2- Functions of Ube3a isoforms in neuronal development.........p. 19 

4.3- Mechanism of Ube3a1 function in neuronal development.....p.2 1 

4.4- Ube3a1 in disease.......................................................................p.2 3 

5- References ................................................................................................p.25

6- Reprint of Original Publication ................................................................p.30 

7- Appendix ................................................................................................p.58



ii 

7.1- Curriculum Vitae .........................................................................p.58 

7.2- List of Academic Teachers ...............................................p.60 

7.3- Acknowledgments ...............................................................p.61 

7.4- Eine ehrenwörtliche Erklärung ..................................................p.62 



iii 

List of Abbreviations 

AAV 

AG 

Arc 

AS 

ASD 

BDNF 

CA1 

cDNA 

cds 

ceRNA 

circRNA 

CREB1 

Dio1 

DIV 

DLR 

DNA 

Dr. 

dUbe3a 

e.g.

E2

E3

E6-AP

Fig.

FISH

GEF

GFAP

GFP

GFP-Ube3a-FL

GFP-Ube3a-S

Glk2

GW182

HECT

adeno-associated virus 

Arbeitsgruppe 

activity-regulated cytoskeleton-associated protein (Arg3.1) 

Angelman syndrome 

austim-spectrum disorders 

brain-derived neurotrophic factor 

cornu Ammonis 1 

complementary DNA (deoxyribonucleic acid) 

coding sequence 

competing endogenous RNA (ribonucleic acid) 

circular RNA (ribonucleic acid) 

cAMP responsive element binding protein 1 

deiodinase, iodothyronine, type I 

days in vitro 

Dual-Luciferase(r) Reporter Assay system (Promega) 

deoxyribonucleic acid 

Doctor  

drosophila Ube3a (ubiquitin protein ligase E3A) 

exampli gratia (lat., for the sake of example) 

Ubiquitin-conjugating enzymes 

Ubiquitin ligase 

E6-associated protein 

figure 

fluorescence in-situ hybridization 

Guanine nucleotide exchange factor 

glial fibrillary acidic protein 

green fluorescent protein 

GFP-Ube3a-full-length isoform 

GFP-Ube3a-short isoform 

G2-like transcription factor 

glycine-triptophan protein of 182 kDa 

homologous to the E6-AP carboxyl terminus 



iv 

HEK 

iCLIP 

IP 

KCl 

ko 

Limk1 

lncRNA 

luc 

m-/p+ 

mEPSC 

mer 

miRISC 

miRNA 

mM 

mRNA  

P 

PCR 

pLNA 

pre-miR 

pri-miR 

PTEN 

Pum2 

qPCR 

rAAV 

RACE 

RBP 

RISC 

RNA 

RNAi 

RNAse 

RNA-seq 

RNP 

RT-qPCR 

shRNA 

Human Embryonic Kidney 

individual-nucleotide resolution cross-linking and IP 

immunoprecipitation  

Potassium Chloride 

knockout gene 

LIM domain kinase 1 

long non-coding RNA 

luciferase reporter 

maternal-/paternal+ 

miniature excitatory post-synaptic current 

meros (gr., part) 

microRNA-Induced Silencing Complex 

microRNA 

milliMolar 

messenger RNA 

post natal day 

polymerase chain-reaction 

power LNA (locked nucleic acid) 

precursor microRNA 

primary microRNA 

Phosphatase and tensin homolog 

Pumilio 2 

quantitative PCR 

recombinant adeno-associated virus 

rapid amplification of C-terminal ends 

RNA binding proteins 

RNA-induced silencing complex  

ribonucleic acid 

RNA interference 

ribonuclease 

RNA sequencing 

ribonucleoproteins 

reverse transcriptase PCR 

short hairpin RNA 



v 

SI 

sup.  

Tnrc6  

Ube3a  

Ube3a1-cds 

Ube3a1-fs 

Ube3a1-utr 

Ube3a-ATS 

UCSC  

UPS  

UTR  

wt 

supplementary information 

supplementary

trinucleotide repeat containing 6a 

Ubiquitin ligase E3A 

Ube3a1-coding sequence only 

Ube3a1-frameshift mutant 

Ube3a1-3'UTR only 

Ube3a-antisense 

university of California, Santa Cruz (genome browser) 

Ubiquitin-Proteasome system 

untranslated region 

wildtype 



vi 

Summary 

The activity-dependent regulation of neuronal maturation is important for the development 

of neural circuits and cognition. Defects in this process lead to severe neurodevelopmental 

disorders associated with intellectual disability and autism (Kuczewski et al., 2010). 

UBE3A has been previously demonstrated to control important aspects of neuronal 

maturation. UBE3A loss-of-function mutations cause Angelman syndrome (AS) (Kishino et 

al., 1997), whereas increased UBE3A gene dosage has been associated with autism-

spectrum disorders (ASD) (Glessner et al., 2009). 

The UBE3A gene encodes an enzyme with ubiquitin ligase activity which is important for 

the degradation of neuronal proteins by the ubiquitin proteasome system. However,  defects 

in UBE3A enzymatic activity unlikely account for the full spectrum of AS and ASD cases, 

since rare mutations outside the coding region have been identified (Bird, 2014). 

Recently, several alternative Ube3a transcripts have been described that include variable 5' 

and 3' ends, suggesting complex post-transcriptional regulation of Ube3a expression. In 

particular, the different 3’UTRs present in Ube3a 3' variants could be used for differential 

regulation of mRNA localization and translation. However, little was known concerning 

expression, localization and regulatory functions of the alternative Ube3a transcripts.  

In this work, I discovered that the rodent Ube3a1-RNA, which contains a truncated coding 

sequence and an alternative 3'UTR, has unique functions in neuronal maturation and a gene 

regulatory function that strongly differs from those of the transcripts that code for the 

active Ube3a enzyme.  

Ube3a1-RNA is specifically increased by elevated neuronal activity and preferentially 

localizes to neuronal dendrites. Opposite to Ube3a enzyme-coding transcripts, Ubea1 is a 

negative regulator of dendrite outgrowth in rodent hippocampal neurons both in dissociated 

neuronal cultures and in vivo. In addition, Ube3a1 is necessary for dendritic spine 

maturation in cultured hippocampal neurons. Surprisingly, I found that the function of 

Ube3a1-RNA in the context of dendrite outgrowth was coding-independent and could be 

attributed to the presence of the alternative 3'UTR.  

Considering the molecular mechanisms underlying Ube3a1-RNA function, I found that the 

Ube3a1-RNA 3’UTR is a target of several microRNAs encoded by the miR-379/410 cluster, 
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including miR-134 that was previously implicated in dendritogenesis and spine maturation. 

However, Ube3a1-RNA is not regulated by miRNAs in a canonical manner, but rather 

competes with other miR-379/410 target mRNAs for binding to common miRNAs. 

Therefore, Ube3a1-RNA can be considered as a competing endogenous RNA (ceRNA) 

following a hypothesis that was previously put forward in cancer cell lines. (Salmena et al., 

2011) 

In conclusion, the results from my thesis describe a new gene regulatory mechanism 

operating in neuronal dendrites with important implications for neuronal maturation, circuit 

development and neurodevelopmental disorders.  
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Zusammenfassung 

Die aktivitätsabhängige Regulation der neuronale Reifung ist ein wichtiger Teil der 

Entwicklung von neuronalen Schaltkreisen und Kognition. Defekte in diesem Prozess 

führen zu schweren neurologischen Entwicklungsstörungen und Autismus (Kuczewski et 

al., 2010). 

Es wurde bereits gezeigt, dass UBE3A wichtige Aspekte der neuronale Entwicklung 

kontrolliert. Mutationen, die zum Verlust der Funktion von UBE3A führen, verursachen 

Angelman Syndrom (AS) (Kishino et al., 1997), während erhöhte UBE3A Gendosis mit 

Autismus (ASD) assoziiert ist (Glessner et al., 2009). 

Das UBE3A Gen kodiert ein Enzym mit Ubiquitin Ligase Aktivität, die für den Abbau 

neuronaler Proteine durch das Ubiquitin-Proteasome-System wichtig ist. Defekte der 

enzymatischen Aktivität von UBE3A sind jedoch mit geringer Wahrscheinlichkeit die 

einzige Ube3a-abhängige Ursache von AS oder ASD, da hier seltene Mutationen 

identifiziert wurden, die außerhalb der kodierenden Region liegen (Bird, 2014). 

Mehrere alternative Ube3a Transkripte wurden beschrieben, die unterschiedliche 5' und 3' 

Enden enthalten, was auf eine komplexe posttranskriptionale Regulation von Ube3a 

Genexpression hinweist. Insbesondere könnten verschiedene 3'UTRs in Ube3a 3‘-

Varianten für differenzielle Regulation der Lokalisierung und Translation genutzt werden. 

Betreffend der Expression, Lokalisierung und regulatorischen Funktion der alternativen 

Ube3a Transkripte war jedoch wenig bekannt.  

In dieser Arbeit, entdeckte ich dass die Ube3a1-RNA, welche eine verkürzte kodierende 

Sequenz und eine alternative 3'UTR enthält, einzigartige Funktionen in neuronaler Reifung 

und eine genregulatorische Funktion, die stark von der Funktion der Transkripte die das 

aktive Ube3a Enzym kodieren abweicht, hat. 

Ube3a1-RNA ist spezifisch erhöht durch verstärkte neuronale Aktivität, und lokalisiert 

bevorzugt in neuronalen Dendriten. Im Gegensatz zu Ube3a enzymkodierenden 

Transkripten, ist Ube3a1 ein negative Regulator von Dendritenwachstum in hippocampalen 

Neuronen des Nagetiers, sowohl in dissoziierten Kulturen als auch in vivo. Zusätzlich, ist 

Ube3a1 nötig für die Reifung von dendritischen Dornfortsätzen. Überraschenderweise habe 
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ich herausgefunden, dass die Funktion von Ube3a1-RNA im Zusammenhang mit 

dendritischem Wachstum unabhängig von der kodierenden Funktion ist, und der Gegenwart 

einer alternativen 3'UTR zugeschrieben werden konnte. 

Bezüglich der molekularen Mechanismen die der Ube3a1-RNA Funktion zugrunde liegen, 

habe ich herausgefunden, dass der Ube3a1 3'UTR ein Ziel mehrerer MikroRNAs des 

miR379/410 Clusters, inklusive miR-134, die bereits in Dendritenwachstum und in der 

Reifung von Dornfortsätze impliziert wurde, ist.  

Ube3a1-RNA ist jedoch nicht in kanonischer Weise von MikroRNAs reguliert, sondern 

konkurriert mit anderen miR-379/410 Ziel-RNAs für die Bindung gemeinsamer 

MikroRNAs.  

Deshalb kann man Ube3a1-RNA nach einer Hypothese, die früher für Krebszellen gelegt 

wurde, als „competing endogenous RNA“ (ceRNA) erachten. (Salmena et al., 2011) 

Letztendlich beschreiben die Ergebnisse, die ich aus meiner Doktorarbeit erhalten habe, 

einen neuen Mechanismus der Genregulation in neuronalen Dendriten mit wichtigen 

Bedeutungen für neuronale Reifung, Entwicklung von neuronalen Schaltkreisen und 

neurologische Entwicklungsstörungen. 
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1- Introduction

1.1- Post-mitotic neuronal development 

The mammalian brain, arguably the most complex of all organs, consists of two main 

cell types, glial cells and neurons. The latter are interconnected within intricate neural 

networks, which enables them to participate in information processing, perception and 

motor control. Glial cells support and maintain neuronal circuits.  

The post-mitotic development of neurons is a multistep process that takes place in a 

stereotypic sequential order. After differentiation and migration, neurons sprout neurites, 

one of which usually gives rise to the single axon, whereas the remaining neurites 

differentiate into dendrites. The axons are responsible for the output of neurons and 

project to the dendrites of a target neuron, where the majority of neuronal input takes 

place. Circuits are formed by the integration of specialized subtypes of neurons, such as 

excitatory and inhibitory neurons. Certain neurons, such as the excitatory CA1 

pyramidal neurons of the hippocampus, develop specialized protrusions on dendrites 

called dendritic spines, where most of the excitatory synapses form (Metzger, 2010).  

Dendrite development itself consists of multiple phases that are regulated by intrinsic 

mechanisms and environmental cues. In a first elongation phase, dendritic complexity 

increases due to the growth of preexisting dendrites and the formation of new branches. 

In a second pruning phase, excessive dendrites are removed whereas others are 

stabilized. Dendritic spines start to form during the dendritic growth phase, but the 

majority of spine maturation and pruning takes place after the dendritic tree has reached 

its final shape (Chen et al., 2014). The mechanisms that coordinate dendrite arborization 

and spine maturation in time and space are largely unknown. 

All steps of dendrite development are subject to regulation by environmental cues, in 

particular those related to neuronal activity. For example, growth factors released upon 

activity (e.g. BDNF) promote dendritic arborization and spine maturation (Kuczewski et 

al., 2010). In the process of pruning, activity has a role in the selection of specific 

arbors/spines, and thereby contributes to the shaping of neural circuits (Butz et al., 

2009). 
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Gene regulatory mechanisms, both at the transcriptional and post-transcriptional level, 

contribute in an important way to the control of activity-dependent dendrite 

development. While transcription affects gene expression on a neuron-wide level, post-

transcriptional mechanisms can operate on a local scale, at the level of individual 

dendrites or spines, thereby allowing a rapid spatiotemporal control in response to local 

external cues. One such local mechanism is dendritic protein synthesis, which involves 

the transport of selected mRNAs into the synapto-dendritic compartment followed by 

their translation at distant sites. While local mRNA translation has well-documented 

roles in plasticity, (Schratt, 2009) its significance in dendrite development and 

maturation is less explored.  

In vitro neuronal cultures largely recapitulate the different phases of dendrite 

development in vivo, making them a useful model to study the molecular mechanisms 

underlying activity-dependent growth, branching and pruning of dendrites (Molnár, 

2011). 

1.2- Ube3a in neuronal development 

UBE3A is a gene found on chromosome 15 q11-13 in human, on chromosome 1 in rat 

and on the proximal region of chromosome 7 in mice. The UBE3A gene encodes a 

highly conserved protein called E6-AP (for E6-Associated Protein) or Ube3a.There is 

about 99% similarity between the human and mouse Ube3a proteins (Huibregtse et al., 

1993). 

Ube3a (E6-AP) is a member of the HECT (Homologous to the E6-AP Carboxyl 

Terminus) domain E3 Ubiquitin ligase family, which transfer ubiquitin from E2 to 

target proteins and thereby mark them for degradation as part of the ubiquitin 

proteasome system (UPS). The HECT domain is a 350 residue conserved C-terminal 

region shared by all members of the family for which Ube3a/E6-AP is the founding 

member (Scheffner et al., 1993). 

Ube3a knockout mouse models have implicated Ube3a in activity-dependent brain 

development and plasticity. These animals show impaired experience-dependent 

cortical development (Sato and Stryker, 2010; Yashiro et al., 2009) and 

excitatory/inhibitory imbalance (Wallace et al., 2012). This is accompanied by 

abnormal dendritic spine morphology (Dindot et al., 2008) and defects in dendrite 
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polarization (Miao et al., 2013) in pyramidal neurons. The drosophila homolog of 

Ube3a, dUbe3a, has also been shown to regulate dendrite branching (Lu et al., 2009). 

Studies into the molecular mechanisms of Ube3a in brain development have shown that 

Ube3a/E6-AP regulates protein stability at the synapse, targeting the immediate early-

gene Arc (Greer et al., 2010), the Parkinson’s disease protein alpha-synuclein, 

(Mulherkar et al., 2009) and the RhoA GEF Ephexin 5 (Margolis et al., 2010) for 

degradation.  

Ube3a dysfunction has been linked to several neurodevelopmental disorders. Loss-of-

function mutations in the human UBE3A gene cause Angelman syndrome (AS), a 

severe neurodevelopmental disorder characterized by intellectual disability, a 

characteristic behavior profile, physiognomy, ataxia and seizures (Bird, 2014; Kishino 

et al., 1997; Matsuura et al., 1997; Fang et al., 1999). Ube3a knockout mice develop 

symptoms resembling human AS (Jana, 2012), such as motor dysfunction, inducible 

seizures and deficits in context-dependent learning. These mice therefore provide an 

animal model for the human condition. 

Duplications of the UBE3A gene are among the most frequent copy number variations 

associated with autism-spectrum disorders (ASD) (Flashner et al., 2013; Glessner et al., 

2009), early-onset neurodevelopmental disorders characterized by impaired social 

interactions and repetitive stereotypic behaviors (MIM20895; DSM5). These findings 

suggest that, in contrast to AS, exaggerated Ube3a production contributes to the 

development of ASD. Intriguingly, autism is associated with a higher risk of epilepsy, 

suggesting that fine-tuning Ube3a levels could play an important role in the homeostasis 

of neural circuits (Tuchman and Rapin, 2002). Recently, increased gene dosage of 

Ube3a has been shown to result in autism traits in a transgenic mouse model (Smith et 

al., 2011), providing experimental support for a causal link between increased Ube3a 

levels and the development of ASD. 

1.3- Ube3a transcript isoform diversity  

The mouse UBE3A gene consists of 13 exons (Fig. 1a). As a result of alternative 

splicing, two different transcript variants (Ube3a2,3) are generated that differ at their 5’ 

terminus due to alternative inclusion of exons 2/3, but contain a common 3’UTR 

(untranslated region, UTR2). In addition, the alternative usage of a proximal 

polyadenylation site generates a truncated transcript, Ube3a1, that includes an 
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alternative 3’UTR (UTR1). Consequently, Ube3a1 is missing exons 12/13, which 

encode critical amino acid residues within the catalytic centre of Ube3a. Therefore, 

translation of Ube3a1 is expected to give rise to a catalytically inactive Ube3a protein 

isoform. The UBE3A gene is paternally imprinted in neurons, meaning that only the 

copy from the maternal allele is transcribed. Repression of paternal transcription is 

achieved by a long non-coding RNA (Ube3a ATS) that is transcribed from the paternal 

allele (Runte et al., 2001) in antisense direction. In neurons, expression of paternal 

Ube3a or the Ube3a ATS is mutually exclusive (Yamasaki et al., 2003;  Landers et al., 

2005). Interestingly, unsilencing of the paternal Ube3a allele by targeting Ube3a ATS 

was recently presented as a potential novel therapeutic strategy in AS (Meng et al., 

2015). 

In human, UBE3A was reported to produce three isoforms, encoded by at least five 

alternative transcripts (Yamamoto et al., 1997). However, in contrast to rodents, these 

transcript variants are exclusively generated by alternative splicing at the 5’ terminus. A 

truncated Ube3a transcript (Ube3a-005) that terminates after the exon homologous to 

rodent Ube3a1 exon 11 has been reported in the ENSEMBL database, but not 

experimentally validated. 

In summary, a variety of Ube3a transcripts containing different 3’UTRs are expressed 

in mammalian neurons, but their specific functions are unknown.  

1.4- microRNAs (miRNAs) in neuronal development 

MicroRNAs are short (around 22 nucleotides), single-stranded non-coding RNAs with 

gene regulatory functions that are found in most organisms, including plants, metazoa 

and viruses. A typical mammalian genome contains several hundred miRNAs gene 

families, which together account for about 1% of the genome.  

The biogenesis of miRNAs is a multistep process (Krol et al., 2010): In mammals, a 

primary RNA polymerase II transcript (pri-miR) is cleaved by a multiprotein complex 

known as the microprocessor to a precursor miRNA stem-loop (pre-miRNA). The 

Ribonuclease (RNAse) III enzyme Drosha is one of the main components of the 

microprocessor. The pre-miRNA is then exported into the cytosol where it undergoes a 

second cleavage by the highly conserved RNAseIII Dicer. The resulting miRNA duplex 

is then unwound into single strands which can then be incorporated into Argonaute 
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proteins, the core components of the miRNA effector complex miRISC (miRNA-

containing RNA-induced silencing complex). 

MiRISC is guided to target mRNAs via imperfect base pairing between the miRNA and 

a partially complementary sequence which is mostly located in the 3’UTR of the target 

mRNA. After target recognition, miRISC exerts its gene regulatory function, which in 

most cases consists of a combination of translational inhibition and mRNA degradation. 

In miRISC, GW182 proteins (Tnrc6a-c) are important scaffold proteins allowing for the 

recruitment of effector proteins (e.g. deadenylation, decapping complexes) which 

regulate RNA stability and translational silencing (Yao et al., 2013, Pfaff and Meister, 

2013). Since each miRNA usually has hundreds of different target mRNAs, they are 

believed to regulate about one third of the entire transcriptome (Lewis et al., 2005). 

MiRNAs play a critical role in different steps of neuronal development, including 

neurogenesis, neuronal maturation and plasticity (Fineberg et al., 2009; Bicker et al., 

2014). In post-mitotic neurons, miRNAs are involved in axon and dendrite development 

(Schratt, 2009; Siegel et al., 2011). At the synapse, miRNAs play key roles in regulating 

the local translation of regulators of dendritic spine maturation and plasticity (Schratt, 

2009). MiRNAs are necessary for higher cognitive functions and deregulation of their 

expression and function has been linked to several neurological disorders (Saba and 

Schratt, 2010; Fiore et al., 2011). 

The neuron-enriched miR-134 has been extensively studied in the context of neuronal 

development and plasticity (Bicker et al., 2014). It was first shown to negatively 

regulate the maturation of dendritic spines in rat hippocampal neurons by targeting 

LIM -domain containing protein kinase 1 (Limk1) (Schratt et al., 2006). In addition, 

miR-134 is required for activity-dependent dendrite outgrowth (Fiore et al., 2009) and 

homeostatic synaptic scaling by inhibiting Pumilio-2 (Pum2) expression. Mir-134 also 

regulates cAMP response element-binding protein (CREB) signaling and thus plays a 

role in plasticity (Gao et al., 2010) and cell survival (Huang et al., 2015). 

Mir -134 is embedded within the large, activity-regulated miR379-410 cluster which is 

part of the imprinted Glk2/Dio1 domain (Seitz et al., 2004). The miR379/410 cluster 

consists of 39 miRNAs in mice and is involved in nervous system function and liver 

metabolism (Labialle et al., 2014). 

1.5- Competing endogenous RNA (ceRNA) 
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Although transcriptional regulation is the most important means of regulating miRNA 

expression, (Choudhry and Catto, 2011) miRNAs are also subject to elaborate 

regulation both at the level of their biogenesis and their function (Krol et al., 2010). The 

activity of mature miRNA can be regulated in several ways, including stability and 

miRISC function (Krol et al., 2010). More recently, new regulatory RNA molecules 

called competing endogenous RNAs (ceRNA) were proposed to regulate miRNA 

activity in trans. According to this hypothesis, RNAs that share miRNA binding sites 

compete for common miRNAs. Thus, changes in the levels of one ceRNA affect the 

expression of other ceRNAs in trans due to alterations in miRNA occupancy.  

The ceRNA hypothesis was first presented in 2011, (Salmena et al., 2011) and was 

subsequently experimentally supported by the finding that expression of the tumor 

suppressor PTEN can be regulated by the PTEN pseudogene via competition for 

common miRNAs (Tay et al., 2011). Since then, other cases of ceRNA regulation have 

been reported, reviewed by Tay, Rinn and Pandolfi in 2014 (Tay et al., 2014). CeRNA 

function is not limited to pseudogenes, but also applies to other classes of endogenous 

RNAs, both coding (mRNAs) and non-coding (e.g. long non-coding RNAs (lncRNAs), 

circular RNAs (circRNAs)).  

Most ceRNA interactions observed so far were found in the context of cancer research 

(Karreth and Pandolfi, 2013), where large fluctuations in gene expression are common 

(Ala et al., 2013; Yuan et al., 2015). It was suggested that the drastic changes in the 

levels of one RNA as observed in cancer cells could affect expression of other RNAs 

sharing miRNA regulation through a modulation of miRNA activity.  

In contrast, the physiological relevance of ceRNA crosstalk is still a matter of debate. In 

2014, a quantitative study of miR-122 and its targets in hepatocytes suggested that, 

under physiological conditions, none of the targets of miR-122 varied in expression 

enough to explain changes in miRNA occupancy of the remaining target pool. 

Moreover, miR-122 levels were in large excess over target RNAs, with the consequence 

that even large increases in miRNA target sites, e.g. caused by a strong up-regulation of 

one of the targets, should be buffered by miRNA complexes that are not engaged with 

their targets (Denzler et al., 2014). 

Shortly thereafter, Bosson et al. used Argonaute iCLIP to assess miRNA binding in 

living cells, and demonstrated that hierarchical binding of miRNA to high- and low-
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affinity targets was an important feature of miRNA regulation in living cells (Bosson et 

al., 2014). Using single cell reporters, they further showed that the likelihood that 

specific miRNA targets participate in ceRNA crosstalk depends on miRNA to target 

RNA ratios. In this scenario, less abundant miRNAs are strongly affected by changes in 

target RNA levels, in particular by alterations of high-affinity targets. These findings are, 

further, in agreement with recent conclusions from modeling studies (Yuan et al., 2015). 

Taken together, ceRNA regulation appears to be limited to cases in which the 

spatiotemporal concentrations of miRNAs and target RNAs, as well as the specific 

miRNA-target RNA affinities, are favorable. However, direct experimental support for 

ceRNA regulation under physiological conditions is missing in most cellular systems, 

including post-mitotic neurons.  

2- Aims of the thesis

The ubiquitin ligase Ube3a has long been implicated in the regulation of neuronal 

development and synaptic plasticity, and Ube3a mutations have been associated with 

neurodevelopmental disorders. While most studies focused on the identification of 

downstream targets mediating the effects of Ube3a, little is known about how Ube3a 

activity is regulated. The recent discovery of several Ube3a transcript variants 

containing different 3’UTRs raises the possibility that post-transcriptional mechanisms, 

such as mRNA transport, stability or translation, could play a major role in Ube3a 

regulation. 

Therefore, I focused on the following aims during my experimental thesis work: 

- to characterize the spatiotemporal expression of Ube3a 3'UTR transcript variants

during hippocampal neuron dendrite development.

- to characterize the function of Ube3a 3'UTR transcript variants during dendrite

development of hippocampal neurons.

- to identify post-transcriptional mechanisms of Ube3a regulation, with a specific focus

on the involvement of neuronal miRNAs.
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By pursuing these aims, I intended to increase our knowledge about Ube3a regulation in 

hippocampal neurons, with implications for the understanding of the mechanisms 

important in synapse development and neurodevelopmental disorders. 

3- Summary of published work

The results of my PhD thesis have been recently published in Valluy et al., 2015. If not 

otherwise stated, all experiments included in this manuscript have been performed by 

myself.  

3.1- Expression analysis of Ube3a transcript variants 

Using primers specific for the two reported rodent Ube3a 3'UTR, UTR1 and UTR2 (see 

Fig. 1A), we assessed the expression of the two Ube3a 3'UTR variants in primary rat 

hippocampal cultures by conventional reverse transcriptase polymerase chain reaction 

(RT-PCR). Thereby, we detected robust expression of both variants in mature, 18 day in 

vitro (DIV), primary hippocampal neurons. One single band at the expected size was 

detected, suggesting that the RT-PCR amplification was specific (Fig.1B). To validate 

Ube3a1 expression further, we used a forward primer located in the common coding 

sequence in combination with the Ube3a1 reverse primer. This PCR produced a single 

band at the expected size (Fig.1B; the primers used for this experiment are shown in Fig. 

1A). Quantitative real-time PCR (qPCR) performed on the same RNA yielded in both 

cases a single product. These products were confirmed as Ube3a UTR1 and UTR2, 

respectively, by sequencing. qPCR further revealed that Ube3a UTR2 (Ube3a2/3) was 

about fourfold more abundant in hippocampal neurons (DIV18) compared to Ube3a 

UTR1 (Ube3a1). Whole transcriptome shotgun sequencing (RNA-seq) of RNA further 

confirmed expression of the Ube3a1 transcript in rat hippocampal neurons 

(Supplementary Figure 1a and b; UCSC genome browser), although this method, in 

contrast to qPCR, indicated very low expression of Ube3a UTR1. The reason for the 

discrepancy between the qPCR and RNA-seq results is currently unknown.  

In neurons, the Ube3a gene is imprinted and expressed only from the maternal allele. 

Imprinting requires Ube3a-ATS, which is transcribed antisense to Ube3a and covers 

large parts of the Ube3a gene, including UTR1 and 2. Therefore, the observed PCR 

amplifications could derive, at least partially, from Ube3a-ATS. To investigate this 
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possibility, we performed strand-specific RT using Ube3a-specific primers, either in 

sense or antisense direction, to generate cDNA. Next, we evaluated the expression of 

either strand by qPCR. Significant amplification was only observed with cDNA 

transcribed with primers in sense direction, suggesting that the vast majority of Ube3a1 

originates from the sense strand (supplementary Fig.1c). 

To get insight into potential functions of Ube3a variants at different stages of neuronal 

development, we investigated the expression of the Ube3a 3'UTR variants by qPCR in a 

time-course experiment from 3-18 DIV in collaboration with Dr.S. Bicker (AG Schratt). 

We found that both Ube3a1 and Ube3a2/3 progressively increased during this period, 

suggesting that they could be involved in processes related to dendrite/spine pruning 

and maturation (supplementary Fig.2). 

Neuronal activity was previously shown (Greer et al., 2010) to increase 

Ube3a expression. To study activity-dependent regulation of the Ube3a transcript 

variants, I used qPCR to assess Ube3a expression upon neuronal stimulation (RNA 

kindly supplied by Dr. S. Khudayberdiev, AG Schratt). RNA was obtained from 

neurons treated with two different stimulation protocols (Fig.1C). First, bath-

application of the growth factor Brain-Derived Neurotrophic Factor (BDNF), 

which is synthesized and released in response to neuronal activity. Second, membrane 

depolarizing concentrations of KCl, which are used to mimic neuronal firing 

induced by action potentials.  

Whereas the expression of Ube3a2/3 remained unchanged in neurons stimulated with 

either BDNF or KCl, Ube3a1 expression was increased about twofold above control 

levels by both stimuli (Fig. 1C). Therefore, Ube3a1 is selectively induced by neural-

activity related stimuli, such as BDNF or depolarizing KCl concentrations.  

The 3’UTR plays an important role in the localization of many neuronal mRNAs 

(Andreassi and Riccio, 2009). As the Ube3a protein is found at the synapse (Greer et al., 

2010), we asked whether specific dendritic localization of Ube3a 3’UTR variants could 

be responsible for synaptic Ube3a expression (in collaboration with Dr. S. Bicker, 

AG Schratt). Preliminary data from quantitative PCR suggested that Ube3a1, but 

not Ube3a2/3 was enriched in synaptosome preparations obtained from P15 rat 

forebrains (sup. Fig. 3c and d). In addition, qPCR was performed with RNA 

obtained from compartmentalized DIV 18 hippocampal cultures. In these cultures, cell 

bodies are physically separated from processes (axons and dendrites) by a thin porous 

membrane. 
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Ube3a1 was enriched in the process compared to the cell body compartment, to a 

comparable magnitude as the known dendritically localized Arc transcript.(Lyford et al., 

1995) In comparison, Ube3a2/3 was mostly found in the cell body compartments 

(Fig.1D). The enrichment of the Ube3a1 3'UTR in dendritic processes after 

overexpression in primary hippocampal neurons was confirmed by fluorescence in situ 

hybridization (FISH) (Fig.1e), which was performed by Dr. S. Bicker.  

Taken together, we could confirm the expression of two alternative Ube3a 3’UTR 

variants in primary neurons. Moreover, we observed differential regulation of Ube3a 

3’UTR variants at the level of activity-dependent expression and subcellular localization.  

3.2- Expression analysis of Ube3a protein isoforms 

To investigate expression of different Ube3a protein isoforms, we first designed 

plasmids that allow the expression of mouse recombinant Ube3a GFP-fusion proteins 

that are derived from the different Ube3a 3’UTR variants. We overexpressed these 

fusion proteins in HEK293 cells and found by Western blotting a robust expression of a 

truncated protein (GFP-Ube3a-S) encoded by the Ube3a UTR1 containing transcript as 

well as a full -length protein (GFP-Ube3a-FL) encoded by the Ube3a UTR2 containing 

transcript (supplementary Fig.4b). In addition, using a commercial antibody raised 

against a domain common to all Ube3a protein isoforms, we found that HEK293 cells 

endogenously express Ube3a-FL, but not Ube3a-S (supplementary Fig.4b). Expression 

of transfected GFP-Ube3a fusion proteins in neurons was confirmed by fluorescence 

microscopy (dsRed co-transfection was used to visualize cell morphology; 

supplementary Fig. 4c) and by Western blotting (data not shown). We conclude that 

both Ube3a 3’UTR variants have coding potential and can be efficiently translated in 

different cellular systems.  

We went on to verify expression of the endogenous Ube3a protein isoforms in the 

rodent brain using Western blotting. Similar to our results from HEK293 cells, we were 

unable to detect expression of a truncated Ube3a-S in protein lysates generated either 

from young rat or mouse forebrain (not shown), P15 rat forebrain synaptosomes 

(supplementary Fig. 4a), or from DIV 18 cultured rat hippocampal neurons 

(supplementary Fig. 4c). In contrast, Ube3a-FL was abundantly present in all these 

lysates (e.g. supplementary figure 4a). Thus, a Ube3a-S protein corresponding to the 

Ube3a1 RNA is not detectably expressed in rat hippocampal neurons or rodent forebrain. 
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3.3- Functional analysis of Ube3a transcript variants 

Despite the absence of Ube3a-S, our qPCR analysis indicated expression of at least two 

different Ube3a 3’UTR variants in hippocampal neurons. To investigate the function of 

these variants in hippocampal dendrite development, we designed shRNAs targeting 

conserved sequences of the specific 3'UTRs of Ube3a1 and Ube3a2/3. For control 

purposes, additional shRNAs targeting either a sequence common to all Ube3a 

transcript variants (Ube3a-cds) or a control shRNA were designed. These shRNAs were 

cloned in a pSuper vector for transfection and a U6/pAM-GFP-AAV vector for the 

production of adeno-associated viruses (AAV) . To assess shRNA efficiency and 

specificity, HEK293 cells were co-transfected with GFP-Ube3a fusion proteins and the 

shRNA expression plasmids (supplemental Fig. 4d). Western blot analysis revealed that 

each of the shRNAs specifically reduced the expression of the respective recombinant 

GFP-Ube3a protein. To study the effect of Ube3a shRNAs on endogenous Ube3a-FL 

protein in rat hippocampal neurons, we infected neurons with rAAV expressing the 

different Ube3a shRNAs, which resulted in a near complete infection one week after 

virus application. Using Western blotting, we found that the Ube3a1 shRNA did not 

affect Ube3a-FL expression, whereas the latter was reduced in the presence of the 

Ube3a2/3 and Ube3a-cds shRNAs (supplementary fig.4e). Since Ube3a-S is not 

detectable by Western blotting in neurons, we validated the efficacy of the Ube3a1 

shRNA at the RNA level. Therefore, we extracted total RNA of hippocampal neurons 

infected with the AAV-Ube3a1 or control shRNA and measured the expression of the 

Ube3a 3'UTR variants by qPCR. We found that infection with the Ube3a1 shRNA virus 

significantly reduced expression of the Ube3a1 transcript (up to 60%) compared to a 

control shRNA, without affecting the expression of the other Ube3a transcripts 

(supplementary figure 4f). Altogether, these experiments demonstrate that the chosen 

shRNA sequences can specifically and efficiently knockdown the respective Ube3a 

transcript variants.  

We then used the validated shRNAs to investigate the function of individual Ube3a 

3'UTR transcript variants during the development of cultured hippocampal neurons. We 

used co-transfection of a GFP plasmid to monitor neuronal morphology by confocal 

microscopy and focused on two parameters of dendrite development, dendrite 

complexity and dendritic spine morphogenesis. The determination of dendrite 

complexity by Sholl analysis revealed that Ube3a1 knockdown between DIV11-18 led 
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to a highly significant increase in dendrite complexity of rat hippocampal pyramidal 

neurons (Fig. 2a and b). Interestingly, transfection of the Ube3a2/3 shRNA had the 

opposite effect, leading to a significant reduction in dendrite complexity. Further, 

neurons transfected with the Ube3a-cds shRNA were morphologically indistinguishable 

from control neurons (Fig.2a and b). These results suggest that Ube3a1 and Ube3a2/3 

transcripts have opposite roles in dendrite development and likely operate in 

independent pathways.  

Our results from expression and functional analysis provided first evidence that the 

Ube3a1 transcript could play a unique role in activity-dependent dendrite development 

in hippocampal neurons. We therefore decided to study the function and regulatory 

mechanism of Ube3a1 in further detail. To determine a possible function of Ube3a1 in 

activity-dependent dendrite development, we used bath application of the activity-

induced neurotrophin BDNF in DIV 4-10 hippocampal neurons (Fiore et al., 2009). We 

found that expression of GFP-Ube3a1 could abolish the dendrite growth-promoting 

effect of BDNF in these neurons (supplementary fig.5c and d). This result demonstrates 

that Ube3a1 is not only necessary to restrict dendrite outgrowth in developing neurons, 

but also sufficient to inhibit activity-induced dendrite growth.  

Having found that Ube3a1 negatively regulates activity-dependent dendrite outgrowth, 

we decided to assess a potential role of Ube3a1 in dendritic spine maturation, which is 

also subject to regulation by activity (Kuczewski et al., 2010). We transfected rat 

hippocampal neurons with either a control shRNA or the Ube3a1 shRNA together with 

GFP and performed high-resolution confocal fluorescence microscopy of the dendritic 

branches. A quantitative assessment of hundreds of spines from multiple neurons 

(Fig.2c) revealed that the average spine volume in Ube3a1 knockdown neurons was 

significantly smaller compared to control cells (Fig.2d), whereas spine density was 

unchanged (Fig.2f). To investigate whether these morphological changes translated into 

alterations in excitatory postsynaptic function, patch-clamp electrophysiological 

recordings of miniature excitatory post-synaptic currents (mEPSCs) were performed on 

different neurons transfected in the same manner as described for confocal microscopy 

(in collaboration with Dr. A. Aksoy-Aksel, AG Schratt). In agreement with the 

morphological data, average mEPSC amplitudes, but not frequencies, where 

significantly reduced in Ube3a1 knockdown neurons compared to control cells (Fig.2F-
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H). This indicates that excitatory postsynaptic function is compromised in the absence 

of Ube3a1.  

In order to ensure that the knockdown of Ube3a1 was indeed responsible for the 

increased dendrite complexity of cells transfected with the Ube3a1 shRNA, we 

performed rescue experiments. Towards this end, we co-expressed the Ube3a1 shRNA 

and an shRNA-resistant recombinant mouse GFP-Ube3a1 (which is 97% identical to the 

rat homologue). We found that expressing mouse Ube3a1 normalized dendrite 

complexity in Ube3a1 shRNA expressing cells (Fig.3C), demonstrating that loss of 

Ube3a1 is indeed responsible for excessive dendrite complexity and ruling out off-target 

effects of the Ube3a1 shRNA.  

Having shown that the Ube3a1 shRNA is specific and that no Ube3a-S protein is 

expressed, we hypothesized that Ube3a1 function in dendrite regulation could be 

coding-independent. To address this possibility, we designed several mutant Ube3a1 

constructs based on the parental shRNA resistant mouse GFP-Ube3a1. By introducing a 

frameshift at the start of the putative Ube3a1 coding sequence, we generated a construct 

(GFP-Ube3a1-fs) that could not be translated into Ube3a-S and therefore allowed us to 

test a coding-independent function of Ube3a1 RNA (Fig.3A and B, supplemental Fig. 

5a). We found that transfection of this construct could completely rescue dendrite 

complexity in Ube3a1 knockdown neurons (Fig. 3E and F). Thus, expression of the 

Ube3a1-RNA, but not Ube3a-S protein, is required for the inhibitory function of 

Ube3a1 in dendrite development. Results obtained with transfection of additional 

deletion constructs further identified the alternative Ube3a1 3’UTR as the functionally 

important sequence within Ube3a1-RNA (Fig.3A-F). To obtain more conclusive 

evidence that the Ube3a1 3’UTR, but not the Ube3a-S protein is involved in the 

regulation of dendritic complexity, we further used a construct containing the intact 

GFP-Ube3a1-cds but lacking the 3'UTR (supplementary Fig. 6). Consistent with our 

previous results, this construct was not able to rescue the Ube3a1 shRNA phenotype. 

These experiments provide multiple lines of evidence for a coding-independent function 

of the Ube3a1 RNA in neuronal dendrites.  

We further wished to elucidate the mechanism underlying the coding-independent 

function of the Ube3a1-RNA in the regulation of dendrite outgrowth, focusing on the 

functionally important 3’UTR. 3’UTRs are preferred binding sites for miRNAs, and we 
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could identify 31 potential binding sites (based on seed match pairing) for several 

members of the miR379/410 cluster within the Ube3a1 3’UTR using bioinformatics 

(Fig.5A). Specifically, one strong candidate site for the one known dendritic member of 

the miR379/410 cluster, miR-134, could be identified. Therefore, we considered the 

possibility that miRNAs, especially the miR379/410 cluster, could be involved in the 

dendrite regulatory function of Ube3a1.  

First, we determined the functionality of a selection of putative miRNA binding sites, 

including the miR-134 binding site, using luciferase reporter gene assays in rat neurons. 

Thereby, we found that overexpression of three out of four tested miR379/410 miRNAs 

specifically reduced expression of a Ube3a1-luc reporter (Fig.5B), suggesting that the 

respective sites are functional in neurons. Focusing on one of the functional miRNAs, 

miR-134, we found that the repressive effect was indeed mediated by the seed targeting 

site, since a Ube3a1-luc reporter containing a mutated miR-134 site was unaffected by 

miR-134 transfection (Fig.5C). Moreover, transfection of an antisense inhibitory miR-

134 oligonucleotide (pLNA-134) specifically increased expression of Ube3a1-luc in a 

seed targeting-site dependent manner (Fig.5D), demonstrating that endogenous miR-134 

does target the Ube3a1 3’UTR in neurons. 

If miRNAs are responsible for Ube3a1-RNA function, interfering with miRNA 

production or function in a general manner should abolish the dendrite growth 

promoting effect of Ube3a1 knockdown. To globally reduce miRNA activity, we 

performed knockdown of either the microprocessor protein Drosha (Gregory et al., 2004) 

or the miRNA effector protein Tnrc6c (GW182) (Meister et al., 2005) (Fig.4A and D). 

We found that knockdown of either of these proteins prevented excessive dendrite 

growth in the presence of the Ube3a1 shRNA (Fig.4B-C and E-F, respectively). These 

two independent experiments strongly suggest that miRNAs are involved in the function 

of Ube3a1. 

Among the 39 miRNAs within the miR379/410 cluster, miR134 represented an 

attractive candidate for mediating functions of Ube3a1, since it had been previously 

implicated in the regulation of dendritogenesis and spine morphology. However, the 

neuromorphological phenotypes observed upon miR134 and Ube3a1 inhibition (Schratt 

et al., 2006; Fig.2a) are inconsistent with repression of Ube3a1 by miR-134, as would 

be expected for a canonical mode of miRNA-target regulation. Instead, our observations 
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could be better explained by a competing endogenous RNA (ceRNA, see introduction) 

function of Ube3a1. According to the ceRNA model, Ube3a1-RNA knockdown (see 

supplementary fig.4f) would be expected to decrease expression of other miR-134 target 

mRNAs, since more miR-134 becomes available for their repression. To test this 

hypothesis we performed luciferase assays in hippocampal neurons using reporter genes 

that contain the 3'UTRs of three validated miR-134 targets, Limk1, Pum2 and Creb1 

(supplementary fig 8a). We found that knockdown of Ube3a1 significantly reduced 

expression of Limk1-luc and Creb1-luc (Fig.5E, supplementary fig. 8b.), and resulted in 

a reproducible, but non-significant reduction in Pum2-luc expression. These results 

support the idea that Ube3a1-RNA works as a ceRNA for specific miR-134 targets. 

We next used infection of rAAV-Ube3a1 shRNA to test if Ube3a1-RNA regulates the 

expression of miR-134 target proteins in neurons. We infected rat hippocampal neurons 

at DIV11 with either the rAAV -Ube3a1 shRNA or a control shRNA and prepared 

protein extracts for western blot analysis at DIV18. We found that, in agreement with 

the data from luciferase assays, Ube3a1 knockdown led to a significantly reduced 

expression of Limk1 and Pum2 protein. Expression of Creb1 protein, on the other hand, 

was not affected by Ube3a1 knockdown, suggesting that regulation of the Creb1-luc 

reporter by Ube3a1-RNA does not recapitulate regulation of the endogenous Creb1 

protein. 

The relative abundance of ceRNAs and natural target mRNAs is an important 

determinant of an effective ceRNA crosstalk (Bosson et al., 2014). We therefore 

decided to measure copy numbers of Limk1, Pum2 and Ube3a1 RNAs in hippocampal 

neurons using absolute quantification qPCR. This method uses standard curves 

generated with defined amounts of plasmid DNA, which in turn allows the 

determination of transcript copy numbers within a given amount of total RNA used for 

the experiment. Based on this method, Limk1 and Ube3a1 RNA are expressed at 

comparable levels in hippocampal neurons at both the whole-cell level and within 

neuronal  processes (which mainly consist of dendrites). In contrast, Pum2 expression 

was found to be about one order of magnitude higher (supplementary Fig.9). 

Finally, we investigated the relevance of Ube3a1 in neuronal development in mice in 

vivo (in collaboration with M. Wöhr (AG Schwarting, Psychology, Marburg) and M. 

Lackinger (AG Schratt)). We found that Ube3a1-RNA and miR-134 were induced in 



16 

mice raised in social isolation (SI) compared to normal housing conditions. Since SI is a 

stress paradigm that among other things impairs memory performance (Fig.6A and B), 

this suggested an involvement of the Ube3a1-miR134 interaction in activity-dependent 

neural processes related to cognition.   

To study the role of Ube3a1-RNA in neuromorphology in the developing mouse 

hippocampus in living animals, we injected rAAV expressing Ube3a1 or control shRNA 

into the lateral ventricles of P0 mice before preparing coronal brain slices at P21. We 

then assessed dendritic complexity of CA1 hippocampal neurons within these slices by 

confocal fluorescence microscopy. Infected neurons could be imaged due to the 

expression of GFP encoded by the rAAV construct. Similar to results obtained with in 

vitro cultured neurons (Fig. 2a), CA1 hippocampal neurons that had developed in the 

living animal displayed an increased dendritic complexity upon Ube3a1 knockdown 

compared to control neurons (Fig.6.C and D). 

Having shown that Ube3a1 regulates dendritogenesis in vivo, we wanted to test whether 

this required the presence of miRNAs expressed from the miR379/410 cluster that 

contains miR-134. For these experiments, we could use a miR379-410-/-(ko) mouse 

strain deficient for the entire miR379/410 microRNA cluster that was generated by 

Taconic Artemis and already available in the lab (Fig. 6E). Based on experiments 

performed in collaboration with M. Lackinger, these mice entirely lack miR-134 and 

other selected members of the cluster according to qPCR analysis (Fig. 6F). 

Furthermore, brain organization of these mice is  overtly normal (sup. Fig.12). Unlike in 

wildtype (wt) mice, rAAV mediated knockdown of Ube3a1 had no significant effect on 

dendrite complexity in miR379/410 ko mice. This indicates that the function of Ube3a1-

RNA in regulating dendrite complexity of mouse hippocampal neurons is dependent on 

the expression of the miR379/410 cluster. 

4- Discussion

4.1- Expression of Ube3a transcript variants  during neuronal development 

Ube3a is an important element in the cellular machinery regulating post-mitotic 

neuronal maturation (Bird, 2014). Although the existence of several transcript variants 
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encoding different Ube3a protein isoforms has been known for quite some time, 

previous studies have almost exclusively focused on Ube3a-FL and its role as E3 

ubiquitin ligase (Bird, 2014). Our interest in alternative Ube3a transcripts was driven by 

our observation that the Ube3a1 RNA (or its human counterpart UBE3A-005) contains 

a unique 3’UTR which harbors 31 potential binding sites for members of the 

miR379/410 cluster (Fig.5a). Since Ube3a1-RNA is lacking the two most distal exons, 

this further suggested that the Ube3a1 encoded truncated protein product (Ube3a-S) 

could have specific functions. 

We obtained evidence for the presence of Ube3a1-RNA in mouse and rat brain, but 

were unable to detect the respective protein product, Ube3a-S, by Western blotting. To 

our knowledge, endogenous Ube3a-S has not been reported in the literature, and our 

findings from qPCR are in agreement with a recent publication wherein Ube3a1-RNA 

levels were reported to be low compared to Ube3a2/3 (Miao et al., 2013). Nevertheless, 

it is possible that Ube3a-S is translated in specific cell types or under specific 

environmental conditions. Since Ube3a-S is lacking catalytic activity, it could perhaps 

act as a dominant-negative for the catalytically active Ube3a-FL. Our results that GFP-

Ube3a-S protein is expressed upon transfection of plasmids containing the intact 

Ube3a1 open reading frame in both neurons and non-neuronal cells demonstrate that 

Ube3a1 RNA has coding potential. One possibility why we do not detect an endogenous 

Ube3a-S is that translation of the endogenous Ube3a1 RNA is strongly inhibited by 

trans-acting factors, such as miRNAs and RBPs. This is supported by the presence of at 

least 31 (Fig.5a) miRNA seeds from the miR379/410 cluster targeting sites within the 

Ube3a1 3’UTR, some of which we could functionally validate (Fig. 5b). Further 

biochemical experiments should help to identify the full spectrum of gene regulatory 

factors that interact with the Ube3a1 3’UTR. 

Our results concerning endogenous Ube3a1 RNA expression mostly rely on the PCR 

method, which has several potential pitfalls that should be considered. First, PCR 

primers could in principle non-specifically amplify another transcript containing similar 

sequence stretches. Since we used several primer pairs covering different regions of the 

Ube3a1 3’UTR and verified all resulting PCR amplicons by sequencing, we consider 

this possibility highly unlikely. In the future, rapid amplification of 5' and 3' C-terminal 

ends (3’ and 5’ RACE) could be used to obtain more detailed information about the 

exact start and end positions of Ube3a1-RNA. In addition, Northern blotting with 
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probes directed against the unique Ube3a1 3’UTR would provide information on the 

size and abundance of Ube3a1-related transcripts. 

Second, the PCR primers used for the amplification of Ube3a1 are also complementary 

to the respective antisense transcript and could therefore amplify Ube3a transcripts in 

antisense direction, such as Ube3a-ATS. However, our results from strand-specific PCR 

experiments (Sup. Fig.1C) suggest that the vast majority of the transcripts detected with 

Ube3a1-specific primers are in sense orientation. Also, Ube3a-ATS is localized 

preferentially in the nucleus (Meng et al., 2013), and therefore unlikely accounts for 

Ube3a1 3’UTR containing transcripts detected in dendrites. Further, we believe Ube3a-

ATS was not significantly affected by the Ube3a1 knockdown, as expression of Ube3a-

ATS is reported to be inversely proportional to that of the canonical Ube3a from the 

paternal allele (Yamasaki et al., 2003). Indeed, in our Ube3a1 knockdown experiments, 

neither Ube3a2/3 transcript nor Ube3a-FL protein were increased. 

In addition to PCR, whole genome shotgun RNA sequencing (RNA-seq) was used to 

validate expression of the Ube3a1 transcript in rodent brain (Sup. fig.1). This dataset 

further supported expression of Ube3a1 3’UTR containing transcripts in sense 

orientation. Interestingly, the abundance of Ube3a1 RNA was much lower based on 

RNA-seq compared to PCR. The reason for this difference is unclear and could be due 

to a low coverage of the Ube3a1 3’UTR in RNA-seq experiments because of an 

unfavorable local nucleotide composition (Zheng et al., 2011). 

We found that Ube3a1 and Ube3a2/3 were differentially regulated by neuronal activity. 

While expression of Ube3a1 was increased by bath-applied BDNF or a depolarizing 

KCl concentration, Ube3a2/3 was unresponsive to both stimuli. Previously, in 

experiments that did not distinguish between the isoforms, Ube3a mRNA and protein 

levels were reported to increase upon KCl, but not BDNF stimulation (Greer et al., 

2010). Since Ube3a2/3 is about 4-fold more abundant than Ube3a1 in neurons (Fig.1), 

the BDNF-dependent increase in Ube3a1 might be masked by the non-responsive 

Ube3a2/3 in this study which pools together all Ube3a transcripts. However, this cannot 

explain why we failed to observe KCl-dependent upregulation of Ube3a2/3. An 

alternative explanation could be the lower KCl concentration we used (16mM compared 

55mM). 
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Furthermore, using a biochemical fractionation method, we found that Ube3a1 RNA, 

unlike Ube3a2/3, was enriched in dendrites, at a comparable level to known dendrite-

enriched transcripts such as Arc (Lyford et al., 1995). Previously, both the Ube3a 

protein, associated with the 26S proteasome (Tai et al., 2010) and Ube3a RNA (Cajigas 

et al., 2012) were found in dendrites. It is possible that the Ube3a RNA found in 

dendrites contained a large proportion of Ube3a1, as the probes used for this study did 

not differentiate between the Ube3a 3’UTR variants. In addition, dendritic localization 

of the Ube3a protein could be independent of dendritic Ube3a RNA localization, for 

example as a cargo of the 26S proteasome. Unfortunately, we were unable to validate 

dendritic localization of endogenous Ube3a1-RNA by fluorescence in situ hybridization 

experiments. One possible explanation for this negative result could be that the Ube3a1-

RNA is inaccessible for the FISH probe, e.g. due to the association with RNP 

complexes. In line with this, we observed increased dendritic FISH signal intensity for 

the transfected Ube3a1 3’UTR upon protease treatment. Further optimization of the 

FISH protocol will be required to obtain more conclusive evidence for dendritic 

localization of endogenous Ube3a1-RNA in neurons.  

4.2- Functions of Ube3a isoforms in neuronal development 

Using a 3'UTR-specific knockdown approach, we found that the two rodent Ube3a 

3’UTR variants (Ube3a1, Ube3a2/3) have different roles in neuronal development. 

Whereas the canonical Ube3a2/3, which gives rise to Ube3a-FL, is necessary for 

dendrite growth and arborization, we found that Ube3a1 is on the contrary a negative 

regulator of dendrite complexity (Fig.2A,B). Interestingly, the knockdown off all Ube3a 

isoforms with an shRNA directed against the common coding sequence had no effect on 

dendritogenesis, which strongly argues that Ube3a 3’UTR variants work in independent 

pathways. These results are in agreement with published data. First, no effect on 

dendrite outgrowth was observed in UBE3A knockout mice, which lack all Ube3a 

transcript variants (Dindot et al., 2008). Second, Ube3a2 was shown to be necessary for 

the terminal dendritic arborization of hippocampal neurons in vivo (Miao et al., 2013). 

Finally, expression of a dominant negative dUbe3a in drosophila, which would be 

equivalent to a loss-of-function of the Ube3a-FL encoding transcript (Ube3a2/3), 

decreases dendrite outgrowth in sensory neurons (Lu et al., 2009). In conclusion, Ube3a 

3’UTR variants apparently have opposing effects on dendrite growth and work in 
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parallel pathways, so that simultaneous loss of all transcripts has no net effect on 

dendrite complexity. 

In addition to its role in regulating dendrite outgrowth, we found that Ube3a1 

knockdown also reduced dendritic spine volume in cultured hippocampal neurons. 

Since neurons from Ube3a knockout mice have reduced spine size (Lu et al., 2009), this 

raises the possibility that Ube3a1 contributes to this phenotype. However, since this 

phenotype was previously attributed to the loss of the Ube3a-FL protein, the specific 

contribution of Ube3a2/3 to spine development will have to be determined in future 

experiments. Intriguingly, we found that loss of Ube3a1 affected spine size, but not 

density (Fig.2). In contrast, Ube3a was found to be necessary for Ephexin5 inhibition of 

EphrinB-dependent spine formation (Margolis et al., 2010). Since Ephexin5 degradation 

requires the proteasome-dependent pathway, spine formation could be specifically 

regulated by the Ube3a-FL encoding Ube3a2/3. Taken together, it is intriguing to 

speculate that the different Ube3a transcript variants have specific functions in spine 

formation and maturation. 

Finally, overexpression of Ube3a1 had no effect on dendritic complexity of 

hippocampal neurons under basal growth conditions (supplementary Fig. 5d), 

suggesting that Ube3a1 is not sufficient to affect normal dendrite outgrowth. Our results 

are consistent with previous studies from our laboratory that used miR-134 inhibition in 

developing neurons. While necessary for activity-driven dendritogenesis and 

homeostatic downscaling (Fiore et al., 2009), (Fiore et al., 2014), inhibition of miR-134 

activity did not affect dendrite outgrowth in cultured neurons under basal growth 

conditions.  

Interestingly, Ube3a1 selectively blocked activity-dependent dendritogenesis in young 

neurons (Fig.3D) in which network activity is still low due to the low number of 

synapses, but was ineffective in highly interconnected neurons at later developmental 

stages. As such, Ube3a1 would function as an activity-sensitive rheostat preventing 

excessive dendrite outgrowth until a sufficient level of activity is reached. We already 

obtained two lines of evidence in support of the rheostat model: First, we found that 

expression of Ube3a1 in comparison to Ube3a2/3 during neuronal development was 

delayed (Sup. Fig.2). Second, we found that Ube3a1 expression was more sensitive to 

changes in neuronal activity compared to Ube3a2/3 (Fig.1C). Ube3a1 is a negative 
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regulator of dendrite growth and a positive regulator of spine maturation, while 

Ube3a2/3 is a positive regulator of dendrite outgrowth and of synapse formation 

(Margolis et al., 2010). The net effect of the Ube3a gene on dendrite outgrowth and 

maturation would therefore first be supportive, until activity stimulates Ube3a1 

expression. Then Ube3a1 would counterbalance the Ube3a2/3 support of growth until 

activity levels are sufficiently high, and promote spine maturation. This model could 

explain how neurons switch from a dendrite growth phase to a phase of dendrite and 

spine maturation and provide insight into the activity-dependent coordination of post-

mitotic neuronal maturation. 

4.3- Mechanism of Ube3a1 function in neuronal development 

Using multiple lines of experimentation, we found that the function of Ube3a1 in 

dendrite development required miRNAs, in particular the miR379/410 cluster, in vitro 

and in vivo. Consistently, analysis of the Ube3a1 3'UTR revealed a large number of 

binding sites for the miR379/410 cluster, including a conserved strong (8-mer) site for 

miR-134. In comparison, Limk1 harbors a non-canonical, presumably weak binding site 

for miR-134 (Schratt et al., 2006). Our results suggest that a canonical regulation of 

Ube3a1 expression by miR-134 is unlikely. Indeed, the phenotypes of Ube3a1 

knockdown and miR-134 gain-of-function or inhibition are not consistent with such a 

model. Further, the lack of expression of the Ube3a-S protein in neurons in basal 

conditions makes it unlikely that it is responsible for the Ube3a1 knockdown phenotype. 

We show this explicitly in supplementary figure 6b, where a 3'UTR-lacking Ube3a1 

construct failed to rescue the Ube3a1 knockdown phenotype. Therefore, we investigated 

the possibility that the Ube3a1-miR-134 interaction might represent a ceRNA system 

that regulates other known miR-134 targets such as Limk1. 

Recent in-silico modeling approaches of microRNA-target interactions (Yuan et al., 

2015), together with quantitative assessments of miRNA-target ratios (Bosson et al., 

2014), favored a model whereby miRNAs that have a low miRNA/target ratio are the 

most likely candidates for ceRNA regulation. MiR-134, like many of the other 

miR379/410 miRNAs, is expressed at relatively low levels in neurons under basal 

conditions, making it a good candidate to participate in effective ceRNA crosstalk (S. 

Khudayberdiev, G. Schratt, unpublished). In addition, the model also makes predictions 

concerning the effect of ceRNA manipulation on targets with different miRNA affinities. 
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For instance, depletion of a high-affinity ceRNA would preferentially affect natural 

targets with low affinities, since these targets become increasingly occupied by miRNAs 

that are released from the ceRNA. Our data is mainly consistent with this prediction: 

when using both luciferase reporter assay and western blotting for the endogenous 

protein, the low-affinity miR-134 target Limk1 responded very strongly to Ube3a1 

(which contains a high-affinity miR-134 site) knockdown. In contrast, the high-affinity 

target Pum2, which is also considerably more abundant than both Limk1 and Ube3a1, 

was less affected at the protein level (Sup.fig. 9; Fig.5) and not significantly altered at 

the reporter gene level by Ube3a1 knockdown.  The results obtained for a third miR-134 

target, CREB1, were more ambiguous. At the reporter gene level, a Creb1-3’UTR 

construct was strongly downregulated by Ube3a1 knockdown, suggesting efficient 

ceRNA crosstalk between CREB1 and Ube3a1 (sup. fig. 8b). However, CREB1 protein 

levels were not affected by the loss of Ube3a1 (Fig.5G). This observations could be 

explained by two mechanisms, which are not mutually exclusive. First, the majority of 

CREB1 protein present in neurons is translated from transcripts that contain different 

3’UTRs to the one used in our study. Second, Ube3a1 regulation is restricted to the 

dendritic compartment (see below) and proteins whose translation is mostly regulated in 

neuronal cell bodies (such as CREB1) are not responsive to Ube3a1 depletion. 

In this study, luciferase assays provided evidence for a regulation of the Ube3a1 3’UTR 

by different miRNAs, and for an interplay between Ube3a1 and reporters for Limk1 and 

Creb1 (Fig.5). Yet, direct association between miRNAs and Ube3a1, which is necessary 

for ceRNA function according to the current model, was not explored. Biochemical 

purification techniques could be used to directly test a physical interaction between 

Ube3a1 and miRNAs. For example, MiTRAP (Braun et al., 2014), a recently published 

method that uses bead-associated synthetic RNA to pull down RNA binding factors 

from protein lysates, could be used in combination with small RNA sequencing to 

identify miRNAs that interact with Ube3a1 RNA in neuronal lysates.  

Alternatively, the MirTrap (Clontech) method is an improvement upon traditional pull-

down approaches and can be used to show a direct interaction between miRNAs and 

their targets. This technology uses a dominant negative RISC element called MirTrap, 

which traps the miRNA-associated RISC on target RNAs. An epitope-tag on MirTrap 

then allows stringent purification of miRNA and target RNAs and their identification by 

RNA sequencing. This could be especially useful for low abundance transcripts and/or 
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miRNAs as well as transient interactions between miRNAs and their targets. On the 

other hand, MirTrap requires efficient transfection of  miRNA mimics and the miR-

TRAP protein, which is particularly challenging in neurons. 

Our observations together with published data led us to a model whereby the Ube3a1 

ceRNA could participate in the control of local mRNA translation in dendrites 

(supplemental Fig. 13). In addition to Ube3a1 (this study), miR-134, Limk1 mRNA 

(Schratt et al., 2006) and Pum2 mRNA (Vessey et al., 2010) are present in dendrites and 

known to participate in local translational control. According to this model, 

dendritically localized Ube3a1 sequesters miR-134 and other miR379-410 members, 

thereby facilitating the translation of natural dendritic targets, such as Limk1 and Pum2. 

In the absence of Ube3a1, miR379-410 miRNAs become increasingly available for the 

repression of Limk1 and Pum2, resulting in dendrite growth and dendritic spine 

shrinkage. 

However, the precise localization of all elements within this ceRNA crosstalk is not 

known. For example, high resolution FISH could provide information on a possible co-

localization of miR-134, Ube3a1 and the other miR-134 targets in neuronal dendrites or 

within dendritic spines. To directly monitor changes in local translation of miR-134 

targets, improved reporter systems which allow to distinguish between pre-existing and 

newly-synthesized proteins, such as myristoylated GFP (Schratt et al., 2006) or 

photoconvertible dendra2 reporters could be used. Modifying Ube3a1 levels in the 

context of these local reporter systems could provide more conclusive evidence about an 

involvement of Ube3a1 in local translational control in dendrites. 

4.4- Ube3a1 in disease 

Loss of Ube3a causes AS (Kishino et al., 1997), while excessive dosage is associated 

with ASD (Smith et al., 2011). While loss-of function of the Ube3a enzymatic activity 

is sufficient to cause full -spectrum AS, several so-called atypical mutations have also 

been observed (Bird, 2014). How these mutations lead to Ube3a-related disorders is 

largely unknown (Smith et al., 2011). Taken together with some of the data obtained in 

this study, this raises the possibility that Ube3a1 may play a role in AS and/or ASD. 

Using AAV delivery of Ube3a1 shRNA into the intact developing mouse brain, we 

show that Ube3a1 function in regulating dendrite complexity is conserved in vivo 
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(Fig.6). In the future, additional parameters (spine morphology, electrophysiological 

properties) should be analyzed in the in vivo context to obtain a more comprehensive 

picture of the physiological significance of Ube3a1 in the rodent hippocampus. In 

addition, the behavioral consequences of Ube3a1 loss-of-function could be addressed 

with the study of a Ube3a1 knockout mouse line.  

Ube3a m-/p+ knockout mice are already available (Jana, 2012). By reintroducing, either 

with viruses or electroporation, specific Ube3a transcripts, one could determine their 

function by assessing behavioral or phenotypic changes in vivo or in neuronal cultures. 

Importantly, a human Ube3a1-like transcript (UBE3A-005) containing an alternative 

3’UTR was reported in the ENSEMBL genomic database. This raises the interesting 

possibility that Ube3a-mediated ceRNA regulation could occur in the human brain. A 

more detailed characterization of this transcript will be required before more definitive 

conclusions about conservation can be drawn.  

Many cases of Angelman Syndrome are caused by loss of a large genomic region 

encompassing the entire UBE3A gene (Bird, 2014). In these conditions, UBE3A-005 

expression is likely affected, suggesting that deregulated Ube3a-005 expression could 

contribute to neurological disease. So far, the catalytic function of Ube3a-FL was shown 

to be mainly responsible for the involvement of UBE3A in Angelman syndrome (Jana, 

2012) and it was reported that Angelman syndrome symptoms could be relieved by 

restoring αCamKII activity (van Woerden et al., 2007) or normal Ube3a expression in 

model mice (Meng et al., 2015). However, these findings do not rule out the possibility 

that aberrant expression of Ube3a1-like transcripts also contributes, in particular since 

only about 11% of AS patients carry UBE3A mutations (Bird, 2014). Further, about 

14 % of AS patients carry mutations outside the Ube3a coding region which do not 

necessarily result in impaired Ube3a-FL expression (Bird, 2014). 

Similarly, Ube3a1-like human transcripts could also be involved in cases of autism-

spectrum disorders that are characterized by duplications of the UBE3A locus. For 

example, dendrite complexity is reported to be decreased in some ASD patients 

(Raymond et al., 1996) or animal models (Penzes et al., 2011), consistent with the 

dendrite inhibitory activity we observed for Ube3a1 in cultured hippocampal neurons. 

We therefore believe that our study provides a starting point for the further 

characterization of the different human Ube3a transcripts, starting with the putative 
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Ube3a-005, and their potential involvement in neuronal function and disease. In this 

regard, further screens for mutations in chromosomal regions encompassing Ube3a-005 

in AS or ASD patients could provide valuable insights. 
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The experience-dependent development of neural circuits is essential 
for higher cognitive functions, and defects lead to severe neurodevel-
opmental disorders, including ASD1. The ubiquitin E3 ligase Ube3a 
is crucial to mammalian neural circuit development. Whereas loss 
of UBE3A is the leading cause for the neurodevelopmental disorder  
Angelman syndrome, UBE3A duplications are among the most 
frequent copy number variations associated with ASD2–4. Ube3a 
knockout mice, an animal model of Angelman syndrome, display 
cognitive impairments and defects in hippocampal long-term poten-
tiation2, impaired experience-dependent cortical development5,6 and 
excitatory/inhibitory imbalance7. This is accompanied by abnormal 
dendritic spine morphology8 and defects in dendrite polarization9 
in pyramidal neurons.

Ube3a promotes the degradation of synaptic proteins, including Arc 
and ephexin 5 (refs. 10,11), thereby reducing AMPA receptor inter-
nalization and stabilizing excitatory synaptic contacts. Alternative 
Ube3a transcripts containing different 5′ leader exons and 3′ UTRs are 
generated by alternative splicing and/or polyadenylation in rodents 
and human. However, little is known regarding the function and regu-
lation of these transcripts.

microRNAs are an extensive class of small noncoding RNAs that 
act as important post-transcriptional regulators of gene expression in 
neurons12. miRNAs primarily bind to the 3′ UTR of target mRNAs by 
imperfect complementary base pairing, thereby inducing translational 
silencing. Specific miRNAs that regulate several aspects of activity-
dependent neuronal development have been identified13,14. Among 

the best studied examples is miR-134, which is embedded in a large 
mammalian-specific miRNA cluster (miR379–410) encoded by the 
imprinted Meg3–Dio1 domain15. miR-134 is a negative regulator of 
dendritic spine size and is required, together with other miR379–410 
members, for activity-dependent dendritogenesis in rat hippocampal 
neurons16,17. In mice, silencing miR-134 rescues LTP and memory 
impairments caused by Sirt1 deficiency and suppresses kainate-
induced epileptic seizures18,19. miR-134 exerts its function by locally 
regulating the translation of dendritic target mRNAs, including Limk1 
and Pum2 (refs. 16,17). miR-134 itself is subject to activity-dependent 
regulation at the level of transcription and dendritic localization16,20. 
Whether miRNAs are involved in the regulation of alternative Ube3a 
transcripts is unknown.

RESULTS

Expression of alternative Ube3a transcripts in hippocampal 

neurons

In mouse, three alternative Ube3a transcripts are known (Ube3a1 
(NM_173010), Ube3a2 (NM_011668) and Ube3a3 (NM_001033962), 
generated by alternative splicing and/or polyadenylation (Fig. 1a and 
Supplementary Fig. 1a)9,21,22. Ube3a2/3 transcripts, which encode 
full-length, catalytically active Ube3a proteins (Ube3a-FL; NP_035798 
and NP_001029134), contain a common 3′ UTR but different 5′ leader 
exons as a result of alternative promoter usage and splicing. In contrast, 
in Ube3a1 an alternative polyadenylation signal is used (Fig. 1a and 
Supplementary Table 1). The resulting transcript therefore contains  
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The E3 ubiquitin ligase Ube3a is an important regulator of activity-dependent synapse development and plasticity. Ube3a 

mutations cause Angelman syndrome and have been associated with autism spectrum disorders (ASD). However, the biological 

significance of alternative Ube3a transcripts generated in mammalian neurons remains unknown. We report here that Ube3a1 

RNA, a transcript that encodes a truncated Ube3a protein lacking catalytic activity, prevents exuberant dendrite growth and 

promotes spine maturation in rat hippocampal neurons. Surprisingly, Ube3a1 RNA function was independent of its coding 

sequence but instead required a unique 3′ untranslated region and an intact microRNA pathway. Ube3a1 RNA knockdown 

increased activity of the plasticity-regulating miR-134, suggesting that Ube3a1 RNA acts as a dendritic competing endogenous 

RNA. Accordingly, the dendrite-growth-promoting effect of Ube3a1 RNA knockdown in vivo is abolished in mice lacking  

miR-134. Taken together, our results define a noncoding function of an alternative Ube3a transcript in dendritic protein 

synthesis, with potential implications for Angelman syndrome and ASD.
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a unique 3′ UTR and encodes a truncated Ube3a protein lacking cata-
lytic activity (Ube3a-S; NP_766598)23. Furthermore, a human UBE3A 
transcript (UBE3A-005; ENST00000604860) was reported in which, 
as in Ube3a1 of rodents, a unique 3′ UTR is included as a result of the 
usage of an alternative polyadenylation signal in intron 11. Little is 
known regarding the function of Ube3a1 RNA in neurons.

We were able to detect robust expression of both Ube3a1 and 
Ube3a2/3 transcripts in rat hippocampal neurons by conventional 
reverse transcriptase (RT)-PCR (Fig. 1b). Analysis of RNA sequencing 
data further confirmed expression of the rat Ube3a1 3′ UTR in neu-
rons (Supplementary Fig. 1b). An antisense transcript (Ube3a-ATS) 
overlaps the Ube3a1 3′ UTR24. However, results from strand-specific 
quantitative PCR (qPCR) demonstrated that most Ube3a1 3′ UTR–
containing transcripts were in the sense orientation (Supplementary 

Fig. 1c). qPCR further showed developmentally regulated expression  
of both Ube3a 3′ UTR variants and the dendritic Limk1 mRNA 
(Supplementary Fig. 2).

Neuronal activity was previously shown to induce transcription 
from the Ube3a locus10,25. We therefore measured expression of the 
Ube3a 3′ UTR variants after bath application to neurons of BDNF, 
a neurotrophin that is released upon elevated neuronal activity, or 
membrane-depolarizing KCl concentrations. We found that both 
BDNF and KCl significantly induced Ube3a1 RNA expression at 5–6 h  
after stimulation (Fig. 1c). In contrast, the Ube3a2/3 mRNA was 

not significantly altered by either treatment. Our results suggest that 
Ube3a1 RNA is specifically regulated by neuronal activity, suggesting 
a function in activity-dependent neuronal development.

The 3′ UTR often harbors sequence elements necessary for mRNA 
localization26. We therefore interrogated subcellular localization of  
the different Ube3a 3′ UTR variants in neurons, using a compartmen-
talized culture system20. To rule out any contribution of glial processes,  
we blocked glial cell proliferation with 5-fluoro-2′-deoxyuridine  
(Supplementary Fig. 3a). We found that Ube3a1 RNA, but not 
Ube3a2/3 mRNA, was enriched in the dendritic compartment of 
glia-depleted neuronal cultures to a similar degree as the dendritic 
Arc mRNA (Fig. 1d)17,27. Whereas the amount of Ube3a1 RNA was 
about 40% that of Ube3a2/3 mRNA in cell bodies, it was almost three 
times more abundant in neuronal processes (Supplementary Fig. 3b).  
Ube3a1 RNA was also enriched in postnatal day (P) 15 synap-
tosomes as compared to whole forebrain as assessed by RT-PCR 
(Supplementary Fig. 3c,d). Moreover, using high-resolution fluo-
rescence in situ hybridization (FISH), we observed that a Ube3a1 3′ 
UTR–containing transcript localized to dendrites when transfected 
into hippocampal neurons (Fig. 1e). The signal was specific, as no 
dendritic signal was observed when probe sets directed against the 
Ube3a2/3 3′ UTR were used. The dendritic Camk2a and the bacterial 
DapB RNA served as positive and negative control, respectively. The 
dendritic signal of Ube3a1 was enhanced when neurons were treated 
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Figure 1 Ube3a1 RNA is an activity-dependent,  

dendritic transcript in primary hippocampal neurons. 

(a) The Ube3a locus. At least three different Ube3a

transcripts, Ube3a1–Ube3a3, are generated in  

rodents. Ube3a1 contains a unique 3′ untranslated  

region (UTR), UTR1, due to the usage of an  

alternative upstream intronic poly(A) site (pA1).  

A putative truncated protein encoded by Ube3a1  

(Ube3a-S) lacks the catalytic center of the E3 ligase  

(asterisk in exon 13) and is therefore presumed to  

be inactive. Ube3a2 and Ube3a3 contain a common 

3′ UTR (UTR2) but different 5′ termini (not shown).  

Owing to the inclusion of exons 12 and 13, Ube3a2  

and Ube3a3 encode full-length, enzymatically active 

Ube3a protein (Ube3a-FL). Arrows indicate primer 

positions for b. (b) RT-PCR analysis of β-actin (Actb), 

Ube3a1 RNA and Ube3a2/3 mRNA expression  

from primary rat hippocampal neurons (DIV 18).  

One of three representative gels is shown. (c) qPCR  

analysis of Ube3a1 RNA and Ube3a2/3 mRNA  

expression from rat cortical neurons (DIV 4) treated for the indicated time with BDNF (50 ng/ml) or KCl (55 mM). Values are presented as fold 

induction ± s.d. compared to that in unstimulated cells. N = 3 independent experiments. *P = 0.047 (BDNF); *P = 0.031 (KCl) (t-test, compared to 

unstimulated cells). (d) qPCR analysis of indicated transcripts from compartmentalized hippocampal neuron cultures (DIV 19). Values are presented 

as fold enrichment ± s.d. of RNA in processes compared to RNA in cell body compartment. Expression of the dendritic Arc mRNA was set to 1. Histone 

H1 (H1f0) is a non-dendritic control RNA. N = 3 independent experiments. *P = 0.016 (Ube3a2/3); *P = 0.010 (H1f0) (t-test, compared to Ube3a1). 

(e) FISH analysis of Ube3a1 RNA–overexpressing hippocampal neuron cultures (DIV 19) using probe sets against the indicated RNAs. Neurons were

co-transfected with dsRed to identify transfected cells. MAP2 counterstain was used to visualize neuronal dendrites. Hoechst staining was used to

assess nuclear integrity. In the right panels, neurons were treated with protease before proceeding to FISH. MAP2 was not preserved in protease-treated

neurons. Representative images from a total of three independent hybridizations. Scale bar, 20 µm.
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with protease before hybridization (Fig. 1e), indicating that a fraction 
of Ube3a1 RNA could be masked by proteins. Taken together, our 
results suggest that the unique Ube3a1 3′ UTR confers localization 
to the synapto-dendritic compartment.

We next explored the expression of Ube3a protein isoforms in devel-
oping rat neurons in vitro and rat brain in vivo. Whereas Ube3a2 and 
Ube3a3 mRNAs encode two proteins of highly similar size (96 and 
94 kDa, respectively, commonly referred to as Ube3a-FL), Ube3a1 
RNA is expected to encode a truncated protein (Ube3a-S, 84 kDa). 
Using a mouse monoclonal antibody that recognizes all Ube3a iso-
forms (amino acids 501–712 in mouse), we detected a single band, 
corresponding to Ube3a-FL, by western blotting using protein extracts 
either from biochemical fractionation of P15 rat brain (Supplementary 

Fig. 4a) or primary hippocampal neurons (Supplementary Fig. 4e). In 
contrast, we could not detect a band at the expected size of Ube3a-S,  
strongly suggesting that Ube3a-S is not detectably expressed in  
neurons at the time of synapse development. This lack of expression is 
not due to an intrinsic incapacity of the Ube3a1 RNA to be translated, 
as a plasmid encoding an eGFP-Ube3a1 fusion protein gave rise to a 
protein of the expected size when transfected into human embryonic 
kidney 293 (HEK293) cells (Supplementary Fig. 4b). Moreover, eGFP-
Ube3a1 is expressed when transfected into mature primary neurons 
(Supplementary Fig. 4c). We conclude that Ube3a1 RNA, despite its 
coding potential, is not efficiently translated into Ube3a-S in neurons 
during synaptic development.

Ube3a1 RNA regulates dendrite complexity and spine 

morphogenesis

Mammalian Ube3a has been previously implicated in the regulation 
of dendrite and spine development in neurons5,8,9, but the contribu-
tion of the Ube3a 3′ UTR variants to these phenotypes is unclear. 
To address this issue, we designed short hairpin RNAs specifically 
targeting either the Ube3a1 3′ UTR, the Ube3a2/3 3′ UTR or the 
common Ube3a coding sequence. We confirmed the specificity of the 
shRNAs by knockdown of the respective recombinant Ube3a proteins 

in HEK293 cells (Supplementary Fig. 4d). In addition, recombinant 
adeno-associated virus (rAAV)-mediated expression of Ube3a2/3 and 
Ube3a coding sequence shRNAs specifically reduced endogenous 
Ube3a-FL in rat hippocampal neurons, whereas Ube3a1 shRNA, 
as expected, had no effect on Ube3a-FL (Supplementary Fig. 4e). 
We confirmed specific knockdown of the endogenous Ube3a1 tran-
script in these neurons relative to a control shRNA that was designed 
to target a sequence not present in the rat transcriptome by qPCR 
(Supplementary Fig. 4f).

We first tested the effect of knockdown of specific Ube3a 3′ UTR 
variants on dendritogenesis in mature primary rat hippocampal neu-
rons (days in vitro (DIV) 13–18). Surprisingly, knockdown of Ube3a1 
RNA, which is not detectably translated into protein, led to a signifi-
cant increase in dendritic complexity of primary hippocampal neu-
rons compared to control conditions, as assessed by Sholl analysis (see 
Online Methods) (Fig. 2a,b). In contrast, knockdown of Ube3a2/3 
mRNA significantly reduced dendritic complexity (Fig. 2a,b).  
Knockdown of all three Ube3a isoforms by the Ube3a coding 
sequence–targeting shRNA did not significantly alter dendritic com-
plexity (Fig. 2a,b), in agreement with results from Ube3a knockout 
neurons8. Together, our results demonstrate that Ube3a1 RNA is a 
negative regulator of dendritogenesis in mature hippocampal neurons. 
They further indicate that Ube3a 3′ UTR variants have distinct roles 
in the regulation of dendritogenesis and likely work in independent  
pathways, in agreement with their different regulation by neuronal 
activity and subcellular localization (Fig. 1c–e).

In addition to dendritogenesis, Ube3a has a well-documented role 
in the regulation of excitatory synapses2,6,10. Specific knockdown 
of Ube3a1 RNA led to a significant reduction in the average size,  
but not density, of dendritic spines as compared to those in control 
conditions (Fig. 2c–e). Consistent with the observed effects on spines, 
Ube3a1 RNA knockdown reduced the average amplitude, but not 
frequency, of miniature excitatory postsynaptic currents (mEPSCs) as 
determined by patch-clamp electrophysiology recordings (Fig. 2f–h). 
Taken together, our results demonstrate that Ube3a1 RNA works as  
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Figure 2 Ube3a1 RNA knockdown increases dendrite complexity 

and reduces dendritic spine volume and mEPSC amplitudes.  

(a) Representative pictures of primary hippocampal neurons (DIV 18)

transfected at DIV 13 with the indicated shRNA constructs. cds, coding 

sequence; scale bar, 50 µm. (b) Quantification of dendritic complexity  

of neurons shown in a by Sholl analysis (see Online Methods). Values  

are intersection numbers relative to a GFP-only-transfected control ± s.d. N = 3 independent experiments (ANOVA P < 0.001); **P < 0.01,  

***P < 0.001 (post hoc t-test). (c) Representative pictures of primary hippocampal neurons (DIV 18) that had been transfected with eGFP and control 

shRNA (left) or Ube3a1 shRNA (right). Bottom, insets at higher magnification illustrate reduced average spine volume in Ube3a1 shRNA–transfected 

cells. Scale bar, 50 µm. (d) Quantification of average spine volume. Values are presented relative to those in GFP-only transfected neurons. N = 3 

independent experiments. *P = 0.026. (e) Quantification of average spine density. N = 3 independent experiments. (f) Representative mEPSC traces 

from DIV 18–21 hippocampal neurons transfected with the indicated shRNAs. (g) Average mEPSC amplitudes ± s.e.m. ***P < 0.001 (Student’s t-test). 

(h) Average mEPSC frequency ± s.e.m. (n = 3 independent experiments; control shRNA: 15 neurons; Ube3a1 shRNA: 12 neurons).
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a rheostat during the development of hippocampal pyramidal  
neurons, concomitantly preventing excessive dendritic growth and 
promoting spine maturation.

Ube3a1 function is coding-independent

Since Ube3a1 knockdown robustly affected neuronal morphogenesis in 
the absence of a corresponding Ube3a-S protein, we hypothesized that 
Ube3a1 function might be independent of protein expression. To test 
this hypothesis, we designed a rescue experiment whereby we intro-
duced different shRNA-resistant Ube3a1 mutants, either protein-coding  
or non-coding, and screened for their ability to block the induction of 
dendritic complexity caused by Ube3a1 RNA knockdown (Fig. 3a).  

All Ube3a mutants were expressed to a similar degree (Fig. 3b  
and Supplementary Fig. 5a). Expression of an shRNA-resistant GFP-
Ube3a1 RNA encompassing the 5′ UTR, the coding region and the 
3′ UTR fully rescued the increased dendritic complexity caused by 
Ube3a1 RNA knockdown (Fig. 3c and Supplementary Fig. 5b). This 
result confirms that the Ube3a1 shRNA phenotype is caused by the 
lack of Ube3a1 RNA. Expression of GFP-Ube3a1 in immature hip-
pocampal neurons (DIV 4–10) that express little endogenous Ube3a1 
RNA also completely abolished increased dendritic complexity caused 
by BDNF treatment (Fig. 3d and Supplementary Fig. 5c), whereas 
GFP-Ube3a1 or GFP-Ube3a2 alone had no effect on dendritic  
complexity (Supplementary Fig. 5d). In conclusion, our results  
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Figure 3 Ube3a1 function in dendritogenesis is coding-independent. 

(a) GFP-Ube3a fusion constructs used in this study. (b) Western blot

analysis of protein expression from GFP-Ube3a fusion constructs

(a) transfected into HEK293T cells, using an anti-GFP antibody.

(c) Quantification of dendritic complexity of hippocampal neurons

(DIV 18) transfected with indicated shRNAs and expression

constructs. Values are intersection numbers relative to a GFP-only

transfected control ± s.d. N = 3 independent experiments (ANOVA

P = 0.0125); *P = 0.012 (Ube3a1 shRNA); *P = 0.038 (Ube3a1

shRNA + GFP) (post hoc t-test, compared to control shRNA).

(d) Quantification of dendritic complexity of hippocampal neurons

(DIV 10) transfected with indicated constructs on DIV 5 and

treated on DIV 7 with BDNF for 6 h. Values are intersection

numbers relative to a GFP-only transfected control ± s.d. N = 3 independent experiments (ANOVA P = 0.020); *P = 0.037 (vector); P = 0.599 (GFP-

Ube3a1); n.s., not significant (post hoc t-test). (e) Representative pictures from a total of 30 hippocampal neurons (DIV 18) per condition expressing

Ube3a1 shRNA and transfected with indicated GFP-Ube3a fusion constructs. fs, frameshift; cds, coding sequence; utr, 3′ untranslated region; scale

bar, 50 µm. (f) Quantification of dendritic complexity of neurons from e. Values are intersection numbers relative to control shRNA–transfected neurons

± s.d. N = 3 independent experiments (ANOVA P < 0.0001); **P < 0.01 (post hoc t-test).
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demonstrate that Ube3a1 is necessary and sufficient to confine dendritic  
complexity during activity-dependent neuronal development.

We went on to test the ability of shRNA-resistant Ube3a1 mutants 
that lack protein coding potential in our dendritogenesis assay. Ube3a1 
RNA containing a frameshift mutation (Ube3a1-fs) was as effective 
in rescuing the dendrite phenotype caused by Ube3a1 knockdown 
as the wild-type construct, strongly suggesting that Ube3a1 func-
tion in dendritogenesis is independent of the expression of a Ube3a 
protein (Fig. 3e,f). In further support, expression of the Ube3a1  
3′ UTR alone was sufficient to rescue the increased dendritic com-
plexity caused by Ube3a1 RNA knockdown, whereas expression of the 
Ube3a-1 coding sequence both with or without a frameshift mutation 
(Ube3a1-cds-fs or Ube3a1-cds, respectively) had no effect (Fig. 3e,f 
and Supplementary Fig. 6). Together, these results suggest a function 
of the Ube3a1 RNA in the regulation of dendritic complexity and map 
this function to the unique Ube3a1 3′ UTR.

Ube3a1 function requires an intact miRNA pathway

3′ UTRs are preferred target sequences for miRNAs, an extensive  
class of small noncoding RNAs with important functions in post- 
transcriptional gene regulation in neurons13,14. Therefore, we decided 
to test whether intact miRNA-dependent regulation might be required 
for the inhibitory function of Ube3a1 RNA in dendritogenesis.  
To perturb miRNA production in neurons globally, we performed 
knockdown of the RNase III enzyme Drosha, an essential component 
of the microprocessor complex28. We confirmed specific knockdown 
of Drosha by western blotting (Fig. 4a and Supplementary Fig. 7). 
Knockdown of Drosha completely abolished increased dendritic 
complexity caused by Ube3a1 RNA knockdown, suggesting that 
Ube3a1 function depends on miRNA expression (Fig. 4b,c). We 
further assessed Ube3a1 function in the context of knockdown of 

the mammalian GW182 homolog Tnrc6c, a core component of the 
miRNA-induced silencing complex (miRISC)29. miRNA reporter 
assays demonstrated efficient relief of miRNA-dependent, but not 
short interfering RNA–dependent, repression by the Tnrc6 shRNA 
(Fig. 4d), confirming that knockdown of Tnrc6c specifically impairs 
miRNA function. Similarly to Drosha knockdown, Ube3a1 RNA 
knockdown was ineffective in increasing dendritic complexity in the 
presence of a Tnrc6c shRNA (Fig. 4e). Tnrc6c knockdown did not 
interfere with the ability of a Ube3a2/3 mRNA–specific shRNA to 
reduce dendritic complexity, demonstrating that Tnrc6c knockdown 
does not generally perturb shRNA function (Fig. 4f). Taken together, 
two independent lines of evidence suggest that Ube3a1 function in 
neuronal development requires an intact miRNA pathway.

Ube3a1 RNA is a competing endogenous RNA for targets of 

the miR379–410 cluster

We next sought to identify the specific miRNAs involved in Ube3a1-
regulated dendritic complexity. The miR379–410 cluster is the larg-
est known miRNA cluster in the mammalian genome15 and contains 
several miRNAs involved in activity-dependent dendritogenesis16, 
making it a suitable candidate effector of Ube3a1 RNA. We there-
fore cloned the rat Ube3a1 3′ UTR from P15 brain cDNA (GenBank 
accession code KP742805) and screened it for seed matches poten-
tially targeted by miRNAs of the miR379–410 cluster. Strikingly, in 
its 1,027-nucleotide-long 3′ UTR region, rat Ube3a1 RNA harbors 
a total of 31 seed matches for 21 mature miRNA sequences derived 
from 19 miRNA genes located in the miR379–410 cluster (Fig. 5a and 
Supplementary Table 2). The miRNAs corresponding to most (29) 
of these seed matches are expressed in rat hippocampal neurons, as 
judged by small RNA sequencing (Supplementary Table 2). The corre-
sponding 3′ UTR of the mouse Ube3a1/human UBE3A-005 transcript 
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Figure 5 Ube3a1 RNA is a competing 

endogenous RNA for the miR379–410 

cluster. (a) The rat Ube3a1 3′ UTR with miR379–410  

seed matches marked. (b) Relative luciferase expression in rat  

cortical neurons (DIV 12–17) transfected with a Ube3a1-luc 

reporter and the indicated miRNA mimics. Values are relative 

to reporter expression under basal conditions ± s.d. N = 3  

independent experiments (ANOVA P = 0.0163); *P = 0.024  

(miR-134); *P = 0.027 (miR-485); **P = 0.0081 (miR-758)  

(post hoc t-test, compared to control). (c) Relative luciferase 

expression in rat cortical neurons (DIV 12–15) transfected 

with Ube3a1-luc reporters and the indicated miRNA mimics.  

134mut, mutated miR-134 binding site. Values are relative 

to reporter expression under basal conditions ± s.d. N = 3 independent  

experiments (ANOVA P < 0.0001); **P = 0.0042 (post hoc t-test). (d) Relative luciferase expression in rat cortical neurons (DIV 12–15) transfected 

with Ube3a1-luc reporters and the indicated pLNAs. Values are relative to reporter expression under basal conditions ± s.d. N = 3 independent 

experiments (ANOVA P < 0.0001); ***P < 0.001 (post hoc t-test). (e) Relative luciferase expression in rat hippocampal neurons (DIV 18) transfected 

with Limk1-luc reporters and the indicated shRNAs. Values are relative to reporter expression under basal conditions ± s.d. N = 3 independent 

experiments (ANOVA P = 0.00347); **P = 0.0047 (post hoc t-test). (f) Western blot analysis of the endogenous protein expression of the miR-134 

targets Limk1, Pum2, Creb1 in DIV-18 primary rat cortical neurons infected on DIV 11 with rAAVs expressing control shRNA or Ube3a1 shRNA.  

One out of four representative blots is shown for each target. Full-length blots are presented in Supplementary Figure 10. (g) Quantification of f. 

Values are plotted as ratio of the Ube3a1 shRNA to control shRNA signal ± s.d., each normalized to the tubulin loading control. N = 4 independent 

experiments. **P = 0.007 (Limk1), *P = 0.011 (Pum2) (one-sample t-test, compared to 1).
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contains a total of 27/22 seed matches for 19/16 miR379–410 members,  
11/9 of which also target the rat Ube3a1 3′ UTR (Supplementary 

Tables 1 and 3). Together, these data suggests that regulation of Ube3a 
3′ UTRs by miR379–410 might be conserved in mammals.

Initially, we tested whether some of the identified seed sequences 
are indeed targeted by miR379–410 miRNAs in neurons using a 
Ube3a1 luciferase reporter gene assay. Three of the four tested miRNA 
duplexes (miR-134, miR-758 and miR-485) significantly reduced rela-
tive luciferase expression of the Ube3a1-luc reporter as compared to 
that of an empty control reporter, suggesting that the corresponding 
miRNA seed sites in the Ube3a1 3′ UTR are functional (Fig. 5b). Since 
miR-134 has a well-described function in neuronal development and 
plasticity16–18, we decided to focus on miR-134-dependent regulation  
of Ube3a1 RNA in our further studies. We found that Ube3a1- 
134mut-luc, which contains a mutated miR-134 binding site, was not 
downregulated by miR-134, demonstrating that the inhibitory effect of 
miR-134 depends on the identified binding site in the Ube3a1 3′ UTR 
(Fig. 5c). Sequestration of the endogenous miR-134 by power-locked 
nucleic acid (pLNA)-modified antisense oligonucleotides (pLNA-
134) specifically elevated expression of Ube3a1-luc, but not Ube3a1-
134mut-luc, demonstrating that endogenous miR-134 in neurons
downregulates Ube3a1-luc expression via the identified binding site
(Fig. 5d). These results suggest that Ube3a1 RNA is a target of miRNAs
originating from the miR379–410 cluster, including miR-134.

Recently, protein-coding mRNAs and non-coding RNAs were shown 
to sequester miRNAs away from their natural target mRNAs, thereby 
working as competing endogenous RNAs (ceRNAs)30. Since Ube3a1 
RNA knockdown phenocopies miR-134 gain of function with regard 
to activity-dependent dendritogenesis and spine morphogenesis,  

we tested the possibility that Ube3a1 RNA could regulate the known 
miR-134 target mRNAs Limk1 (ref. 17), Pum2 (ref. 16) and Creb1 
(ref. 18) (Supplementary Fig. 8a) by a ceRNA mechanism. Consistent 
with this hypothesis, Ube3a1 RNA knockdown led to a specific reduc-
tion in luciferase expression of Limk1-luc (Fig. 5e) and Creb1-luc 
(Supplementary Fig. 8b) constructs, both of which contain a miR-134 
binding site. In contrast, Ube3a1 RNA knockdown had no effect on 
the respective constructs containing mutated miR-134 binding sites 
(Fig. 5e and Supplementary Fig. 8b). Absolute quantification qPCR 
showed that Ube3a1 transcripts were expressed at comparable levels 
to Limk1 mRNA in hippocampal neuron cell bodies and dendrites, 
whereas Pum2 mRNA expression was about six- to eightfold higher 
(Supplementary Fig. 9). Furthermore, we observed a significant 
downregulation of the endogenous miR-134 target proteins Limk1 
and Pum2 upon Ube3a1 knockdown (Fig. 5f,g and Supplementary 

Fig. 10). Surprisingly, endogenous Creb1 protein levels were unaf-
fected by Ube3a1 RNA knockdown (Fig. 5f,g and Supplementary 

Fig. 10), suggesting that the bulk of Creb1 protein is synthesized 
independently of miR-134. Taken together, these results indicate that 
Ube3a1 RNA regulates a specific group of dendritic miR-134 targets 
by fine-tuning miR-134 availability.

Ube3a1 function in vivo is abolished in miR379–410−/− mice

Finally, we decided to investigate the role of Ube3a1 RNA in the 
developing rodent brain in vivo. Ube3a deficiency in the Angelman 
syndrome mouse model leads to cognitive deficits2. We used the 
juvenile social isolation model of early-life stress, known to cause 
cognitive deficits in the novel object recognition test31, to interrogate 
a potential contribution of Ube3a 3′ UTR variants. Strikingly, juvenile 
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social isolation, resulting in poor novel object recognition as expected 
(Fig. 6a), specifically elevated Ube3a1 RNA levels (Fig. 6b) but had 
no significant effect on Ube3a2/3 (P = 0.081) or Creb1 (P = 0.754) 
mRNA expression. The increase in Ube3a1 RNA expression in the 
hippocampus of socially isolated rats was paralleled by elevated levels 
of miR-134, but not miR-132 (Fig. 6b). This suggests a specific role of 
Ube3a1-regulated miR-134 activity in cognitive functions. To deter-
mine the function of Ube3a1 RNA during neuronal morphogenesis 
in vivo, we injected rAAV expressing Ube3a1 or control shRNA into 
the neonatal mouse hippocampus and assessed dendritic complexity 
of hippocampal pyramidal neurons at P21. As in cultured rat hip-
pocampal neurons, Ube3a1 RNA knockdown significantly increased 
dendritic complexity of mouse hippocampal CA1 pyramidal neurons 
compared to that in control conditions in vivo (Fig. 6c,d).

To address whether miRNAs originating from the miR379–410 
cluster—in particular, miR-134—are required for Ube3a1-regulated 
dendrite complexity in vivo, we generated a mouse model containing a 
conditional miR379–410 allele (Fig. 6e and Supplementary Fig. 11a).  
Homozygous deletion of the miR379–410 region by crossing the 
miR379–410flox strain to a germline Cre-deleter mouse strain resulted 
in a complete loss of the expression of miR-134 (Fig. 6f) and other 
(pre-)miRNAs encoded by the miR379–410 cluster in the adult brain 
(Supplementary Fig. 11b and data not shown). miR379–410−/− mice 
were viable and displayed an apparently normal layering of the neocor-
tex and hippocampus (Supplementary Fig. 12). A detailed anatomical  
and behavioral analysis of these mice will be presented elsewhere. 
Strikingly, in contrast to knockdown in wild-type mice, Ube3a1 
RNA knockdown in P15 miR379–410−/− mice failed to induce den-
dritic complexity in hippocampal CA1 pyramidal neurons (Fig. 6g).  
This result demonstrates that expression of miRNAs, specifically those 
expressed from the miR379–410 cluster, is an important downstream 
component in Ube3a1 RNA–regulated dendrite complexity.

DISCUSSION

Here we show that an activity-regulated, alternative transcript gener-
ated from the rat Ube3a locus sequesters miRNAs from the miR379–410  
cluster, thereby regulating local translation of miR379–410 targets  
in dendrites and activity-dependent neuronal development 
(Supplementary Fig. 13). This study provides to our knowledge the 
first example of a neuronal mechanism involving a ceRNA—a protein- 
coding mRNA that controls the expression of neuronal miRNA  
targets in trans—and adds to the growing list of regulatory mecha-
nisms fine-tuning the local dendritic proteome in response to envi-
ronmental cues.

A few studies have reported the presence of Ube3a1 RNA in rodents, 
but to our knowledge a corresponding endogenous truncated Ube3a 
protein (Ube3a-S) has not been described9. In agreement, we were 
unable to detect Ube3a-S at the expected size in western blotting with 
neuronal protein lysates. However, we do not rule out the possibility 
that low levels of the catalytically inactive Ube3a-S could be function-
ally important—for example, as a dominant negative for Ube3a-FL.

In any case, both a Ube3a1 RNA containing a frameshift mutation 
and the Ube3a1 3′ UTR alone are sufficient to restore dendrite com-
plexity, strongly suggesting that at least part of the function of Ube3a1 
RNA during neuronal development is coding-independent. Our data 
are consistent with Ube3a1 RNA functioning as a ceRNA by compet-
ing with miR379–410 miRNAs—in particular, miR-134—for their 
natural target mRNAs. Noncoding ceRNAs have been identified in 
human cancer cells (PTENP1, HULC), human and mouse myoblasts 
(LINCMD1), Arabidopsis thaliana (IPS1) and herpesvirus saimiri30. 
Furthermore, mRNAs are part of ceRNA networks in human cancer32. 

Quantitative considerations with regard to cellular miRNA and target 
abundances raised concerns about the physiological significance of 
ceRNA crosstalk33. However, it was subsequently shown that some 
miRNAs—in particular, those with low miRNA/target ratios—can be 
effectively regulated by ceRNAs under physiological conditions34. For 
such miRNAs, depletion of a high-affinity ceRNA leads to increased 
repression of low-affinity targets that are otherwise not occupied 
by the miRNA. Our results are in agreement with this model: first, 
miR-134 (along with other miR379–410 members) is only modestly 
expressed in neurons, suggesting that the miRNA/target ratio for  
miR-134 is low. Second, the effect of Ube3a1 RNA knockdown on 
miR-134 target gene repression is stronger for Limk1, which con-
tains a noncanonical low-affinity target site17, than for other targets  
containing perfect seed matches (for example, Pum2, Creb1)16,18.

Our results suggest that Ube3a1 RNA could be involved in the 
spatiotemporal control of mRNA translation in dendrites. Consistent 
with this, expression of the dendritic proteins Limk1 and Pum2, but 
not of the nuclear Creb1, is affected by Ube3a1 RNA knockdown. 
Ube3a1 RNA and Limk1 mRNA are expressed in dendrites at compa-
rable levels (Supplementary Fig. 9), which might support an effective 
local ceRNA crosstalk between these RNAs. In comparison, dendritic 
levels of Pum2 mRNA are almost 1 order of magnitude higher, which, 
together with the higher affinity for miR-134, could explain why Pum2 
expression is less sensitive to alterations in Ube3a1 RNA levels.

The Ube3a1 RNA developmental profile, regulation by neuronal 
activity and the knockdown phenotype are consistent with a function of 
Ube3a1 RNA as a rheostat during neuronal maturation. In young neu-
rons, low levels of Ube3a1 RNA and a corresponding high activity of 
miR379–410 are permissive for dendrite growth while preventing pre-
mature spine maturation. Once neuronal activity increases during devel-
opment, the resulting higher Ube3a1 RNA levels buffer miR379–410  
activity, thereby allowing a switch from dendrite growth to spine 
maturation. In line with this model, we found that ectopic Ube3a1 
RNA expression blocked activity-dependent dendritogenesis in young 
neurons (Fig. 3d) while Ube3a1 knockdown in mature neurons led 
to exuberant dendrite growth and immature spines (Fig. 2b,d). The 
general loss of miRNAs caused by Drosha knockdown (Fig. 4c) or 
the specific inactivation of the miR379–410 cluster (Fig. 6d,g) does 
not significantly alter dendrite complexity, indicating that alterations 
in miRNA activity—for example, triggered by Ube3a1 RNA knock-
down or neuronal activity—might be required to elicit phenotypic 
consequences.

Finally, our findings could have important implications concerning 
the molecular basis of neurodevelopmental disorders. Duplications of 
chromosomal regions encompassing the UBE3A gene are frequently 
observed in autism4. Reduced dendrite complexity is a common 
feature of neurons from autism patients35,36 or ASD animal mod-
els37, and it will be interesting to test whether increased levels of 
Ube3a1 RNA early in development might contribute to this defect. 
Elevated Ube3a1 RNA levels might further contribute to the defective  
activity-dependent synaptic pruning that has been observed in ASD 
mouse models37 and autism patients38. A recent study reported recur-
rent CNVs associated with autism in the 7q11.23 Williams syndrome 
region, which comprises, among other genes LIMK1 (ref. 39), pointing 
to deregulation of the Ube3a1-Limk1 pathway as feature common in 
ASD. Neurons from Angelman syndrome model mice display reduced 
spine size and surface AMPA receptor expression8,10, a phenotype also 
observed with Ube3a1 RNA deficiency. However, there is a strong cor-
relation between Angelman syndrome–associated mutations and a loss 
of Ube3a E3 ligase activity, suggesting that deficiency in transcripts  
encoding Ube3a-FL (for example, Ube3a2/3) is the primary cause 
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of Angelman syndrome and that Ube3a1 RNA does not play a 
major role in this disorder23. Nevertheless, 15–20% of patients with 
Angelman syndrome do not carry classical mutations, warranting a 
more detailed inspection of intronic and UTR regions concerning 
potential mutations. In the future, experiments with induced pluripo-
tent stem cell–derived neurons from Angelman syndrome or ASD 
patients in combination with Ube3a overexpression or knockdown 
could be a promising strategy for unraveling the contributions of dif-
ferent Ube3a transcripts to phenotypic alterations observed in these  
devastating disorders.

METHODS

Methods and any associated references are available in the online 
version of the paper.

Accession codes. GenBank: rat Ube3a1 3′ UTR, KP742805. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS

We acknowledge technical assistance of U. Beck, E. Becker, R. Gondrum,  
G. Jarosch, H. Kaiser and H. Rippberger. This work was funded by grants from the 
European Research Council (Starting Grant “Neuromir”), the European Union FP7 
(“EpimiRNA”), the Deutsche Forschungsgemeinschaft (DFG) (SFB593, FOR2107: 
SCHR 1136/3-1) and the Universitätsklinikum Gießen-Marburg to G.S., 
the DFG (FOR2107) to R.S. (SCHW 559/14-1) and M.W. (WO 1732/4-1) and the 
Von Behring-Röntgen-Foundation (62-0004) to S.B.

AUTHOR CONTRIBUTIONS

J.V. performed most experiments (dendritogenesis, luciferase assays, western 
blots, rAAV injections, strand-specific qPCR) and analyzed the data. G.S. designed 
the study, supervised the project and wrote the manuscript. S.B. performed 
FISH, compartmentalized culture and synaptosome assays. A.A.-A. performed 
and analyzed patch-clamp recordings. M.L. and R.F. established and characterized 
the miR379–410 knockout colony. S.S. cloned and validated the Drosha shRNA 
construct. T.W. performed dendritogenesis assays and generated Ube3a 
constructs. R.S. and M.W. designed and supervised the rat behavioral studies. 
D.S. performed juvenile social isolation studies in rats. F.M. and C.D. analyzed 
deep sequencing data. 

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/

reprints/index.html.

1. Ebert, D.H. & Greenberg, M.E. Activity-dependent neuronal signalling and autism 

spectrum disorder. Nature 493, 327–337 (2013).

2. Jiang, Y.H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased 

cytoplasmic p53 and deficits of contextual learning and long-term potentiation. 

Neuron 21, 799–811 (1998).

3. Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase 

gene (UBE3A) in Angelman syndrome. Nat. Genet. 15, 74–77 (1997).

4. Glessner, J.T. et al. Autism genome-wide copy number variation reveals ubiquitin 

and neuronal genes. Nature 459, 569–573 (2009).

5. Sato, M. & Stryker, M.P. Genomic imprinting of experience-dependent cortical 

plasticity by the ubiquitin ligase gene Ube3a. Proc. Natl. Acad. Sci. USA 107, 

5611–5616 (2010).

6. Yashiro, K. et al. Ube3a is required for experience-dependent maturation of the 

neocortex. Nat. Neurosci. 12, 777–783 (2009).

7. Wallace, M.L., Burette, A.C., Weinberg, R.J. & Philpot, B.D. Maternal loss of Ube3a 

produces an excitatory/inhibitory imbalance through neuron type-specific synaptic 

defects. Neuron 74, 793–800 (2012).

8. Dindot, S.V., Antalffy, B.A., Bhattacharjee, M.B. & Beaudet, A.L. The Angelman 

syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal 

deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 

111–118 (2008).

9. Miao, S. et al. The Angelman syndrome protein Ube3a is required for polarized 

dendrite morphogenesis in pyramidal neurons. J. Neurosci. 33, 327–333 (2013).

10. Greer, P.L. et al. The Angelman Syndrome protein Ube3A regulates synapse 

development by ubiquitinating arc. Cell 140, 704–716 (2010).

11. Margolis, S.S. et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves 

a developmental brake on excitatory synapse formation. Cell 143, 442–455 

(2010).

12. Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-

transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 

9, 102–114 (2008).

13. Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci. 10, 842–849 

(2009).

14. McNeill, E. & Van Vactor, D. MicroRNAs shape the neuronal landscape. Neuron

75, 363–379 (2012).

15. Seitz, H. et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 

domain. Genome Res. 14, 1741–1748 (2004).

16. Fiore, R. et al. Mef2-mediated transcription of the miR379–410 cluster regulates 

activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J.

28, 697–710 (2009).

17. Schratt, G.M. et al. A brain-specific microRNA regulates dendritic spine development. 

Nature 439, 283–289 (2006).

18. Gao, J. et al. A novel pathway regulates memory and plasticity via SIRT1 and 

miR-134. Nature 466, 1105–1109 (2010).

19. Jimenez-Mateos, E.M. et al. Silencing microRNA-134 produces neuroprotective and 

prolonged seizure-suppressive effects. Nat. Med. 18, 1087–1094 (2012).

20. Bicker, S. et al. The DEAH-box helicase DHX36 mediates dendritic localization of 

the neuronal precursor-microRNA-134. Genes Dev. 27, 991–996 (2013).

21. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins 

structurally and functionally related to the E6-AP ubiquitin-protein ligase.  

Proc. Natl. Acad. Sci. USA 92, 2563–2567 (1995).

22. Yamamoto, Y., Huibregtse, J.M. & Howley, P.M. The human E6-AP gene (UBE3A) 

encodes three potential protein isoforms generated by differential splicing. Genomics 

41, 263–266 (1997).

23. Cooper, E.M., Hudson, A.W., Amos, J., Wagstaff, J. & Howley, P.M. Biochemical 

analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase 

E6-associated protein. J. Biol. Chem. 279, 41208–41217 (2004).

24. Landers, M. et al. Regulation of the large (approximately 1000 kb) imprinted murine 

Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic 

Acids Res. 32, 3480–3492 (2004).

25. Filonova, I., Trotter, J.H., Banko, J.L. & Weeber, E.J. Activity-dependent changes 

in MAPK activation in the Angelman Syndrome mouse model. Learn. Mem. 21, 

98–104 (2014).

26. Martin, K.C. & Ephrussi, A. mRNA localization: gene expression in the spatial 

dimension. Cell 136, 719–730 (2009).

27. Steward, O., Wallace, C.S., Lyford, G.L. & Worley, P.F. Synaptic activation causes 

the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites 

on dendrites. Neuron 21, 741–751 (1998).

28. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. 

Nature 432, 235–240 (2004).

29. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol.

15, 2149–2155 (2005).

30. Tay, Y., Rinn, J. & Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk 

and competition. Nature 505, 344–352 (2014).

31. Fone, K.C. & Porkess, M.V. Behavioural and neurochemical effects of post-weaning 

social isolation in rodents-relevance to developmental neuropsychiatric disorders. 

Neurosci. Biobehav. Rev. 32, 1087–1102 (2008).

32. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by 

competing endogenous mRNAs. Cell 147, 344–357 (2011).

33. Denzler, R., Agarwal, V., Stefano, J., Bartel, D.P. & Stoffel, M. Assessing the ceRNA 

Hypothesis with Quantitative Measurements of miRNA and Target Abundance. 

Mol. Cell 54, 766–776 (2014).

34. Bosson, A.D., Zamudio, J.R. & Sharp, P.A. Endogenous miRNA and target 

concentrations determine susceptibility to potential ceRNA competition. Mol. Cell

56, 347–359 (2014).

35. Mukaetova-Ladinska, E.B., Arnold, H., Jaros, E., Perry, R. & Perry, E. Depletion of 

MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal 

cortex in adult autistic individuals. Neuropathol. Appl. Neurobiol. 30, 615–623 

(2004).

36. Raymond, G.V., Bauman, M.L. & Kemper, T.L. Hippocampus in autism: a Golgi 

analysis. Acta Neuropathol. 91, 117–119 (1996).

37. Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E. & Woolfrey, K.M. Dendritic 

spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 

(2011).

38. Hutsler, J.J. & Zhang, H. Increased dendritic spine densities on cortical projection 

neurons in autism spectrum disorders. Brain Res. 1309, 83–94 (2010).

39. Sanders, S.J. et al. Multiple recurrent de novo CNVs, including duplications of the 

7q11.23 Williams syndrome region, are strongly associated with autism. Neuron

70, 863–885 (2011).

npg © 2015 Nature America, Inc. All rights reserved.

38 

http://www.nature.com/doifinder/10.1038/nn.3996
http://www.nature.com/doifinder/10.1038/nn.3996
http://www.ncbi.nlm.nih.gov/nuccore/KP742805
http://www.nature.com/doifinder/10.1038/nn.3996
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


NATURE NEUROSCIENCE doi:10.1038/nn.3996

ONLINE METHODS
Animal experiments. All animal experiments were performed in accordance 
with the animal protection law of Germany and were approved by the local 
authorities responsible for Universities of Heidelberg and Marburg. For juvenile 
social isolation, rats were weaned on P21 and subsequently housed in isolation 
for 4 weeks. Otherwise, rodents were housed under standard cage conditions 
with food and water ad libitum and maintained on a 12 h/12 h light/dark cycle. 
The miR379–410 conditional knockout allele was generated at Taconic Artemis 
(Cologne, Germany) according to the strategy presented. At P21, the mice were 
genotyped with the Kapa mouse Genotyping kit (Kapa Biosystems) and the brains 
extracted and analyzed by real-time PCR or Hoechst staining.

Novel object recognition. The novel object recognition test was conducted dur-
ing the light cycle in an open field, using methods previously described40. Briefly, 
rats (P91 ± 6) were first habituated to the open field (60 × 60 × 60 cm; no objects 
present) by placing them in the box for 20 min. Then, 24 h after the habituation 
session, the novel object recognition test was conducted, which consisted of three 
phases: acquisition trial, inter-trial interval and recognition trial. In the acquisi-
tion trial, each rat was allowed to freely explore the open field containing two 
identical sample objects for 5 min. The objects were placed in one of the back 
corners of the box, with the objects situated 15 cm away from the walls. As objects, 
either two silver iron cylinders (5 cm in diameter, 8 cm high) or two red metal 
cubes (5 × 5 × 8 cm) were used in a counterbalanced manner. After the acquisi-
tion trial, the rats were returned to their home cages for 30 min, the inter-trial 
interval. During that time, one clean familiar object and one clean novel object 
were placed in the open field, where the two identical objects had been located 
during in the acquisition trial. After the inter-trial interval, each rat was returned 
to the open field for a 5-min recognition trial, during which time it was allowed 
to freely explore the familiar object and the novel object. Object investigation was 
defined as time spent sniffing the object when the nose was oriented toward the 
object and the nose-object distance was 5 cm or less. Recognition memory was 
defined as spending significantly more time sniffing the novel object than the 
familiar object. The memory index was calculated as follows: (Exploration time 
novel object)/(Exploration time novel object + Exploration time familiar object). 
Testing was performed under white light of approximately 5 lx. For behavioral 
analyses, a digital camera was mounted 1.5 m above the floor of the box. All rats 
were handled for 3 consecutive days in a standardized manner (5 min/d).

DNA constructs. The mouse Ube3a1 and Ube3a2 cDNAs, including coding and 
UTR sequences, were retrieved from pCMV6 vectors (Origene), cloned, and 
further subcloned into peGFP-C1 vectors (Clontech). For Ube3a1-fs, a frameshift 
mutation was inserted into the Ube3a ORF using site-directed mutagenesis 
(QuickChange). The rat Ube3a1 3′ UTR was PCR amplified from P15 forebrain 
synaptosome cDNA and cloned into pGL3 (Promega) to obtain Ube3a-luc.  
Limk1-luc and Limk1-m134-luc have been described17. shRNA sequences were 
designed using the Dharmacon siRNA online design center and cloned into  
pSuper (Oligoengine) for transfections or pAM/U6-shRNA eGFP-CBA-hrGFP 
for infections.

Cell culture, transfection, stimulation and virus infection of primary neurons. 
Primary cultures of Sprague–Dawley rat (Charles River Laboratories, Sulzfeld, 
Germany) embryonic hippocampal and cortical neurons (embryonic day 18) 
were obtained and maintained as described previously17. Compartmentalized 
neuron cultures were obtained by plating dissociated hippocampal neurons onto 
1-µm-pore and 30-mm-diameter polyethylene tetraphthalate (PET) membrane 
filter inserts (Millipore) that were matrix-coated with poly-l -lysine (Sigma-
Aldrich) and laminin (BD Biosciences) on both sides41. These neurons were 
treated with 10 µM 5-fluoro-2′-deoxyuridine from DIV 3 to prevent glial cell 
proliferation. Neuronal transfections were performed with Lipofectamine 2000 
(Invitrogen). A total of 1 µg DNA per well of a 24-well plate was mixed with a 1:50 
dilution of Lipofectamine 2000 in Neurobasal medium, incubated at 20–26 °C  
for 20 min and then further diluted 1:5 in Neurobasal medium. Neurons were 
incubated with the transfection mix for 2 h. Primary neurons were infected with 
rAAV by directly applying the virus in the culture medium. For a 24-well plate, 
800,000 neurons per well were spotted with 1.5 µL 670,000 IFU/µl rAAV and 
incubated for 7 d to obtain maximal expression. For stimulation experiments, 
cells were treated with either human BDNF (Peprotech, 40 ng/mL) or KCl (Sigma, 
16 mM) for the time indicated. HEK293 cells were cultured in MEM medium 

(Invitrogen) supplied with 10% (vol/vol) FBS, 1 mM glutamine, 100 units/ml 
penicillin and 100 µg/ml streptomycin. HEK293 cells were transfected using the 
calcium phosphate method. A final CaCl2 concentration of 0.1 M was used with 
an incubation time of 6 h.

Quantitative real-time PCR. RNA was purified using Trifast (Peqlab) or the mir-
Vana miRNA Isolation Kit (Ambion) and treated with TURBO DNase (Ambion) 
to remove genomic DNA. Quantitative real-time PCR was performed with a 
StepOnePlus Real Time PCR System (Applied Biosystems) using iTaq SybrGreen 
Supermix with ROX (BIO-RAD). Primer sequences are provided below.

Preparation of infectious rAAV. Infectious rAAV was obtained as described pre-
viously42. Briefly, HEK293 cells were co-transfected 1:1:1 with pAAV-6P-SEWB43 
or AAV-6P-SEWB derivatives with helper plasmids (pDP1 and pDP2) using  
13 µg of each plasmid per 15-cm cell culture dish. After 3 d, cells were harvested 
for virus purification. Cells were resuspended in PO buffer (20 mM Tris, 150 mM  
NaCl, pH 8.0), lysed by three freeze-thaw cycles and centrifuged to remove cell 
debris. rAAV was further purified using the iodixanol density step gradient 
method44. Viral titer was assessed by infecting primary cortical neurons with dilu-
tions of the virus and estimating the viral IFU/µL using a confocal microscope. 
All viruses used were diluted so as to have approximately the same IFU/ µL.

Nucleofection of primary neurons. Primary cortical neurons of rat embryos (E18) 
were nucleofected using the 4D-Nucleofector kit (Lonza), the P3 Primary Cell 
solution and program DC-104, according to the manufacturer’s instructions.

Intraventricular injection of rAAV.  P0 C57BL/6 mice (Charles River 
Laboratories, Sulzfeld, Germany) were cryoanesthetized and injected with  
2 µl purified rAAV stock into each lateral ventricle (2 mm ventral to the lambda, 
± 0.7 mm from the midline, depth 1.8 mm) using a 10-µl Hamilton syringe. 
Individual experiments were performed on pups from the same litters, which were 
previously tattooed on the footpads to identify the groups injected with rAAVs 
carrying different pAAV-6P-SEWB derivatives. The pups were grouped randomly 
and the examiner blinded to the conditions until after analysis. Several litters 
were then pooled to form the final data groups. Following injection, the pups 
were placed on a 37 °C warming pad and returned to the mother after regaining 
normal activity and color.

Immunocytochemistry. For immunostaining, hippocampal neurons were 
fixed for 20 min at 20–26 °C in paraformaldehyde/sucrose, rinsed in PBS and 
sequentially incubated with primary antibodies and Alexa-conjugated second-
ary antibodies, both diluted in 0.02% (wt/vol) gelatin–0.5% (vol/vol) Triton 
X-100–PBS. Four washes with Neurobasal medium were followed by fixation 
for 15 min in 4% (wt/vol) paraformaldehyde/sucrose. Imaging of GFP fluores-
cence from GFP-expressing cells was done without antibody amplification. After 
fixation, coverslips were mounted on microscope slides using AquaPoly/mount 
(Polysciences Inc.).

Image analysis. All image analysis was performed with the investigator blinded 
to the experimental conditions.

Dendritic complexity. Images from primary neuron cultures were obtained 
with a confocal laser scanning microscope (Zeiss LSM5 Pascal) using a  
20× objective with a resolution of 1,024 × 1,024 pixels, corresponding to an 
image size of 450 µm × 450 µm. Dendritic complexity of pyramidal neurons was 
assessed by Sholl analysis as previously described16. Briefly, 10–15 concentric 
circles at increments of 20 µm were superimposed on the pictures, centered 
on the soma. To obtain a Sholl profile of the dendritic arbor, the number of 
intersection with each circle was counted. A total of at least ten neurons were 
analyzed in each independent experiment, and averages were calculated on  
the basis of the values from at least three independent experiments. Images  
from mouse brain slices were taken with a confocal laser scanning micro-
scope (Leica SP5) using a 40× objective at a resolution of 1,024 × 1,024 pixels,  
corresponding to an image size of 387.5 × 387.5 µm; the pinhole was set to  
1.2 Airy units and the interval to 1.19 µm.

Dendritic spines. For the analysis of dendritic spines, z-stacks (seven consecu-
tive 0.49-nm optical sections per stack) of images from dissociated primary  
hippocampal neurons were taken (Zeiss LSM5 Pascal) with a 63× objective  
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at 1,024 × 1,024 pixels, with a zoom factor of 1.7 for an image size of 144.7 µm ×  
144.7 µm. Spine volumes were subsequently analyzed with ImageJ software  
as described17. For each independent experiment, 12 neurons for condition  
were selected.

Electrophysiology. Miniature excitatory postsynaptic currents (mEPSCs) were 
recorded in whole-cell voltage-clamp mode using an EPC-10 patch-clamp ampli-
fier and PATCHMASTER software (HEKA Elektronik, Lambrecht, Germany). 
Dissociated hippocampal neurons were transfected with the indicated shRNA 
expression vectors on DIV 12–13 and mEPSCs were measured on DIV 18–21. 
Cells were recorded from three independent experiments (control shRNA: n = 15  
neurons in total; Ube3a1 shRNA: n = 12 neurons in total). For recordings, neurons 
were perfused at 20–26 °C with a bath solution containing (in mM) 140 NaCl,  
2.8 KCl, 2 CaCl2, 1 MgCl2, 10 glucose and 10 HEPES (pH 7.3 with NaOH,  
300–310 mOsm) with bicuculline (20 µM) and tetrodotoxin (1 µM). Patch pipettes 
contained (in mM) 120 potassium gluconate, 15 KCl, 5 NaCl, 10 HEPES, 2 MgCl2,  
10 EGTA, 4 Mg-ATP and 0.1 Na-GTP (pH 7.3 with KOH, 290–300 mOsm) 
and had resistances of 4–5.5 MΩ. Neurons were held at −70 mV and data were 
acquired for total of 15 min at a sampling rate of 20 kHz and filtered at 3 kHz. 
Series resistance was monitored every 5 min and cells with uncompensated series 
resistance of <21 MΩ were accepted. Offline analysis of mEPSCs was done with 
the Mini Analysis software (Synaptosoft Inc.) for 100–300 s from the last 5 min of 
current recordings (threshold: −5 pA, filter: 2 kHz), with the investigator blinded 
to the experimental conditions.

Luciferase reporter assay. Primary neurons were transfected in duplicate  
with 50 ng of pGL3-Ube3a1 or pGL4-PEST-Creb1 or 75 ng pGL4-PEST-Limk1 
firefly reporter constructs and equal amounts of empty Renilla luciferase  
reporter as a transfection control. pGL3-Ube3a1 was transfected alone or  
with 30 nM of the appropriate pLNA (Exiqon) or 10 nM miRNA mimic  
(miR-134: IDT; other miRNAs: Ambion). pGL4-PEST-Limk1 or pGL4-PEST-
Creb1 was transfected alone or with 5 ng of the relevant pSuper shRNA con-
struct. Luciferase assays were performed using the Dual-Luciferase reporter 
assay system (Promega) on the GloMax R96 Microplate Luminometer 
(Promega).

Western blotting. Western blotting was performed as described previously45. 
The following primary antibodies were used: mouse anti-Ube3a (aa501-712, 
Becton Dickinson, 1:1,000 dilution), rabbit anti-Pum2 (1:4,000 dilution, Novus 
Biologicals), rabbit anti-tubulin (1:7,500 dilution, Cell Signaling), mouse anti-
Creb1 (1:1,000 dilution, Cell Signaling), rabbit anti-GFP (1:5,000 dilution, Life 
Technologies), mouse anti-Limk1 (1:200 dilution, BD Transduction Laboratories). 
Primary antibodies were recognized by either a horseradish peroxidase (HRP)- 
conjugated goat anti-rabbit antibody (1:20,000; Calbiochem) or an HRP- 
conjugated rabbit anti-mouse antibody (1:20,000; Calbiochem). Secondary  
antibodies were detected by enhanced chemiluminescence with the ECL Plus 
Western Blotting Detection System (GE Healthcare).

High-resolution fluorescence in situ hybridization (FISH). Dissociated  
hippocampal neurons were co-transfected at DIV 14 with 200 ng pGL4-Ube3a1 
and 100 ng Discosoma sp. red fluorescent protein (DsRed) plasmid and fixed 
at DIV 19 using 4% (wt/vol) paraformaldehyde/4% (wt/vol) sucrose/PBS for  
30 min at 20–26 °C. FISH was performed using the QuantiGene (QG) ViewRNA 
kit (Affymetrix) according to the manufacturer’s protocol (with slight modifica-
tions) using probes directed against the Ube3a1 3′ UTR, Ube3a2 3′ UTR and 
Camk2a (positive control). A probe directed against the bacterial transcript 
DapB served as negative control. To preserve dendrite morphology, protease 
was either omitted (no-protease condition) or used at a dilution of 1:10,000 
for 1 min (protease condition). After completion of the FISH protocol, cells 
were washed with PBS, preblocked in gelatin detergent buffer and processed  
for MAP2 immunostaining as described above. For z-stack images, five  
consecutive optical sections were taken at 0.4-µm intervals with a resolution of 
1,024 × 1,024 pixels on a Leica SP5 confocal microscope using a 63× objective 
and a 3× digital zoom.

Synaptoneurosome preparation. Synaptosomes were prepared from P15 
Sprague-Dawley rat pups as previously described46.

RNAseq analysis of rat hippocampal neurons. Reads were mapped to rn5 using 
STAR (version 2.4.0g1)47 with the following flags:

STAR --readFilesIn FASTQ --genomeDir RN5 --outFilterType BySJout --
outFilterMultimapNmax 2 --outFilterMismatchNmax 3 --outSAMstrandField 
intronMotif --outFilterIntronMotifs RemoveNoncanonical --outSAMtype BAM 
SortedByCoordinate --sjdbGTFfile ENSEMBL.genemodels.rn5.gtf

On the basis of a high sequence duplication level, we removed the PCR  
duplicates using Picard (version 1.105) with the following flags:

java -jar MarkDuplicates.jar INPUT=IN.BAM OUTPUT=OUT.BAM 
METRICS_FILE=STATS.TXT REMOVE_DUPLICATES=true

The resulting bam files were merged to one file per species using Samtools48 
and IGV-snapshots49 were taken at the Ube3a genomic location (rn5:chr1: 
117746227–117843011).

Absolute quantification of mRNA. Standard curves were obtained from serial 
dilutions (100-fold) of plasmid DNA (stock 1 ng/µl) containing the sequence of the 
gene of interest. The following plasmids were used: pGL4-Ube3a1, pcDNA.3-Limk1,  
Pum2-YFP. A slope of the standard curve was calculated by regression  
analysis and subsequently used for the calculation of RNA molecules/ng total 
RNA equivalent.

Statistics. P-values were calculated with Student’s t-test (two-tailed, type 2) for 
one-way comparisons and with ANOVA followed by post hoc test (Student’s t-test, 
two-tailed, type 2) for multi-way comparisons.

Power analysis (G-power) was performed to calculate required sample size. 
For most experiments, effect size was sufficiently high to use n = 3. Otherwise 
(Figs. 2g,h, 5g and 6a,b,d,f,g), larger sample sizes were used. The result of the 
power analysis was specifically reported for Figure 6d,g (see figure legend).  
The experiments were not done with the experimental conditions blinded to  
the investigator, with the exception for the analysis of microscopy data and  
patch-clamp recordings.

In the animal studies, the animals were assigned to the various groups ran-
domly. In imaging studies, cell selection was performed randomly, excluding 
unhealthy cells and cells not easily identified as pyramidal neurons. Data were 
collected and processed randomly.

Data distributions were assumed to be normal, but this was not formally tested 
unless otherwise stated.

A Supplementary Methods Checklist is available.

Oligonucleotide sequences. Real-time qRT-PCR:
Gapdh fw: GCCTTCTCTTGTGACAAAGTGGA
Gapdh rev: CCGTGGGTAGAGTCATACTGGAA
Ube3a1 fw: GGACCTGGCATCACCCTACA
Ube3a1 rev: ATTCCCATTGAGGCTTTCCTATT
Ube3a2/3 fw: TTATTACTGCTTGAGGTTGAGCCTT
Ube3a2/3 rev: AAGATTACATGGTCTACAAATG
Rnu6 fw: CTCGCTTCGGCAGCACA
Rnu6 rev: AACGCTTCACGAATTTGCGT
Creb1 fw: TCAGCCGGGTACTACCATTC
Creb1 rev: TTCAGCAGGCTGTGTAGGAA
Arc fw: TGGAGCACGTACGGAGGAC
Arc rev: CTCTCGCTCCACCTGCTTG
H1f0 fw: ACGGACCACCCCAAGTATTCAG
H1f0 rev: GGCGTTCTCACCCACCTTGTA
Pre-miR-134 fw: TGTGACTGGTTGACCAGAGGG
Pre-miR-134 rev: GGTGACTAGGTGGCCCACAG
Limk1 fw: CCTCCGAGTGGTTTGTCGA
Limk1 rev: CAACACCTCCCCATGGATG
Fmr1 fw: CAAAGCGAGCCCACATGTTA
Fmr1 rev: GGCAAGCTGCCTTGAACTCT
shRNA (targeting sequence):
Control shRNA: AAACCTTGTGGTCCTTAGG
Ube3a1 shRNA: CATGCAGTCTAATGCTTTA
Ube3a2/3 shRNA: AGGGATAATTTGATGGTAA
Ube3a coding sequence shRNA: AGAAGAAACTACAGAGTAT
Drosha shRNA: CAACATAGACTACACGATT
Tnrc6c shRNA: GGTTCAAGCACAGCTTTTG
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Mutagenesis primers:
Ube3a1 shRNA-resistant fw: TTCCAATTTTCATGCAGTCTAACGCGTAA 

TTTCATGAATTAAATG
Ube3a1 shRNA-resistant rev: CATTTAATTCATGAAATTACGCGTTAGA

CTGCATGAAAATTGGAA
Genotyping primers:
A: 169–379lox-fw: GCCACTGCTTACTCTCATCTGC
B: 170–379lox-rev: CCGTATTATCCCATCAAGTAGC
C: 171–410lox-fw: CCAGATGTGCAATGGATGG
D: 173–410lox-rev: AAAGAGAGGTGACCATGCACTG

Antibodies. Mouse anti-Ube3a monoclonal antibody, BD Transduction 
Laboratories 611416

Chicken anti-GFP polyclonal antibody, Abcam 13970
Mouse anti-β-actin monoclonal antibody, clone AC-15, Sigma Aldrich 

A5441
Rabbit anti-tubulin monoclonal antibody, Cell Signaling 2125
Rabbit anti-GFP monoclonal antibody, Life Technologies G10362
Rabbit anti-Pumilio 2 polyclonal antibody, Novus Biological NB100-387
Mouse anti-CREB monoclonal antibody, Cell Signaling 9104
Mouse anti-LIMK1 monoclonal antibody, clone 42/LIMK1, aa.232–333, BD 

Transduction Laboratories 611749
Mouse anti-MAP2 monoclonal antibody, Sigma M9942
Rabbit anti-GFAP polyclonal antibody, DAKO Z033401
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Supplementary Figure 1 

Ube3a1 RNA expression analysis by RNA sequencing.  

a) Genomic view (UCSC genome browser) of the murine Ube3a locus including alternative Ube3a transcripts. The region surrounding
the Ube3a1 3’UTR is boxed. Note the presence of sequence reads in the aggregate RNA-seq exon coverage panel at the genomic
location of the Ube3a1 3’UTR. b) Representation of sequence reads at the location of the Ube3a1 3’UTR (boxed region in a) from rat
hippocampal neurons according to ribo-minus RNA sequencing. The position of Ube3a exons 9-11, intron 11 and the UTR1 is
indicated. c) Strand-specific qPCR analysis of 3’UTR1 or intron11 containing transcripts in either antisense (as) or sense orientation.

Supplementary figures

42 



Nature Neuroscience: doi:10.1038/nn.3996 

Supplementary Figure 2 

Developmental expression of Ube3a1 RNA. 

qPCR analysis of Ube3a1 RNA (a), Limk1 mRNA (b) Ube3a2/3 mRNA (c) expression from developing primary rat hippocampal 
neurons. Values are presented relative to expression at 3 DIV. N=3-5. *p<0.05, **p<0.01, ***p<0.001 (T-test).  
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Supplementary Figure 3 

Subcellular expression of Ube3a1 RNA 

a) Representative immunofluorescence analysis of cell body (upper panel) or process (lower panel) compartments from standard (left
panel) or FUDR-treated (right panel) compartmentalized hippocampal neuron cultures, stained with anti-GFAP (green), anti-MAP2 (red)

or Hoechst (blue). Scale bar = 50 m. b) qPCR analysis of Ube3a1 and Ube3a2/3 with RNA from cell bodies and processes of
compartmentalized hippocampal neuron cultures. Bar graphs represent the average ratio of Ube3a1 to Ube3a2/3 RNA levels from three
independent preparations ± SD. c) qPCR analysis of indicated RNAs in rat P15 forebrain synaptosomes. Values are presented relative
to a whole forebrain control sample. d) Conventional RT-PCR analysis of P15 whole rat forebrain (WB) and synaptosomes (SY) with
primers directed against the indicated transcripts.
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Supplementary Figure 4 

Ube3a protein expression and knockdown validation. 

a) Different fractions from a rat P15 forebrain synaptosome preparation were used for Western blotting with a monoclonal mouse anti-
Ube3a antibody (Becton Dickinson) which recognizes aa. 501-712 of mouse Ube3a. Marker lane indicates 100 kD. Sup: supernatant;
Pel: pellet; Syn: synaptosomes. b) HEK293 cells were transfected with the indicated constructs and analyzed for the expression of
GFP-Ube3a-fusion proteins by Western blotting using the anti-Ube3a antibody described in a). c) Primary rat hippocampal neurons (13-
18 DIV) were co-transfected with GFP-Ube3a-fusion constructs and dsRed and analyzed by confocal microscopy. Scale bar = 50 μm.
d) HEK293 cells were co-transfected with GFP-Ube3a-fusion and indicated shRNA constructs. Expression was assessed by Western
blotting using an anti-GFP antibody and an anti-Actin antibody as a loading control. e) Primary rat hippocampal neurons (10-18 DIV)
were infected with rAAV expressing the indicated shRNA constructs. Expression of endogenous Ube3a protein was measured by
Western blotting using an anti-Ube3a antibody that recognizes the common Ube3a N-terminus. anti-ß-actin Western served as a
loading control. f) qRT-PCR analysis of indicated RNAs from hippocampal neurons infected with rAAV-Ube3a1-shRNA or rAAV-control-
shRNA. Values were normalized to Gapdh expression and are presented as the ratio of Ube3a1 vs. control shRNA infected neurons ±
SD. N=4 (ANOVA p=0.015323; *p<0.05 (post-hoc T-test).
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Supplementary Figure 5 

Regulation of dendritogenesis by GFP-Ube3a1 and GFP-Ube3a2. 

a) qPCR analysis of GFP RNA expression in primary cortical neurons that had been nucleofected with the indicated GFP-Ube3a-fusion
constructs. Values are presented as 40-ct and are representative for multiple independent experiments. b) Representative images of
primary hippocampal neurons (DIV 13 - 18) transfected with the indicated shRNA and Ube3a1 expression constructs. c) Representative
images of primary hippocampal neurons (DIV 7 - 10) transfected with the indicated expression vectors and treated with BDNF (40

ng/ml) for 48 hours prior to fixation. Scale bar = 50 m. d) Quantification of dendrite complexity in neurons transfected with the indicated
GFP expression plasmids. Values are presented relative to GFP-only transfected neurons. n=3.
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Supplementary Figure 6 

The Ube3a1 coding sequence (cds) is not involved in dendritogenesis. 

a) anti-GFP Western blot with lysates from HEK293 cells transfected with the indicated GFP-Ube3a-fusion constructs. b) Quantification
of dendrite complexity in neurons transfected with the indicated shRNA and Ube3a1 expression constructs. Values are presented
relative to control shRNA transfected neurons. N=3. n.s.: not significant.
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Supplementary Figure 7 

Full-length blots related to Figure 4a .  

a) GFP-Drosha. b) GFP. c) beta-Actin. Boxes indicate regions of the blot presented in Fig. 4a. Additional band in a) represents
overexposed GFP signal.
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Supplementary Figure 8 

Ube3a1 ceRNA function.  

a) Schematic representation of rat 3’UTRs for known miR-134 target mRNAs. Putative binding sites predicted by TargetScan
(www.targetscan.org) for miR-134, miR-485 and miR-758 are marked by colored circles. The total number of additional miR379-410
seed matches is indicated. UTRs are not drawn to scale. b) Luciferase assay in primary hippocampal neurons co-transfected with
Creb1-luc reporters and indicated shRNAs. Values are relative to reporter expression under basal conditions. N=7 (Creb1-luc). N=4
(Creb1-m134-luc). **p<0.01 (T-test).
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Supplementary Figure 9 

Quantitative PCR of miR-134 target mRNAs in neuronal cell bodies and dendrites. 

a-c) Standard curves with indicated amounts of plasmids containing Pum2 (a), Limk1 (b) and Ube3a1 (c) sequence. The slope of a
regression curve based on measured Ct-values is indicated in each diagram. d) Calculated RNA molecules per ng total RNA isolated
from either the cell body or dendrite compartment of FUDR-treated hippocampal neurons (DIV 18) cultured on filter insets. Results from
three independent experiments ± SD are shown.
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Supplementary Figure 10 

Full-length blots related to Figure 5f . 

a) Limk1. b) Creb1. c) Pum2. d) Tubulin. Boxes indicate regions of blot presented in Fig. 5f. Membranes were cut after blotting to
simultaneously probe for proteins running at different molecular weights.
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Supplementary Figure 11 

Genotyping and validation of miR379-410–/–
 mice.  

a) Genotyping PCR of miR379/410-/-
 (KO) and wild-type (WT) mice using the indicated primer pairs. b) qPCR analysis of pre-miR-134

expression in wild-type (wt; n=7) and miR379/410-/-
 mice (ko; n=7). **p<0.01.
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Supplementary Figure 12 

Normal cortical layering in miR379-410–/–
 (ko) mice. 

Coronal brain sections (80 mm, single hemisphere) of 8-weeks old wildtype (a), miR379-410+/-
 (b) or miR379-410-/-

 (ko; c, d) mice 
stained with nuclear Hoechst dye. The positions of cortical layers I-VI are indicated in the higher magnification images (right panels). No 
differences were observed in the general organization of the cerebral cortex or hippocampus.  
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Supplementary Figure 13 

Model for the ceRNA function of Ube3a1 during dendritic development.  

During normal activity-dependent neuronal development, Ube3a1 RNA levels steadily increase, resulting in the sequestration of 
dendritic miRNAs from the miR379-410 cluster, including miR-134 and miR-485. This releases protein-coding targets of these miRNAs,
such as Limk1 and Pum2 mRNA, from translational repression, thereby leading to enhanced local synthesis of Limk1 and Pum2, which
in turn promotes spine growth and inhibits dendrite elaboration, respectively. In conditions of Ube3a1 RNA deficiency, spine growth is 
suppressed whereas the brake on dendrite elaboration is loosened. 

54



Table 1: MMU Ube3a1 3'UTR (mm10, chr.7:59288785-59289818) 

GTGTTTAATTCTTAAAAAGGAAGATTTTATTCATCAAACATGTAGATGTGTGCTTT

TGTGTCCTGTATCTGTAGGTACTGGTTACCAAACAAGTAAGCTCAAAAATAGACC

TGTATTAATATTTCCAATTTTCATGCAGTCTAATGCTTTATTTCATGAATTAAATGA

TTTAAGTCTCATATTTTCTCAACCCTTTGCCTTATTTTTGGTCATGTGTAAGATGG
CACATTATTTAGTCTTTAAGATACTTGGGAAGAACCATGTATACTAGTGATTCTGA

ACAATTCTTAGGACAGTATTACCACTAACATCGTTCTCTAGTCAAATGCCCTTATT

TCTACTTCTGTAATATGCTACTATCCAATTCTGAAAGATCTTTCCCCCCATCTTCT
AATGTGACTGATCAAAATGCAGAGTAGTCTTTTTGGCATCCACTATGATGTCATA

GGTATTTAAACAGTTATCTTTTTGTAGATCACTTGAGCTATAAGACTCAAATATGT

TAACAATAGAATGAATATTAACTGTGTCTAGTAATGATACATTATCATTGTTATATT
TATATTACAGTATTACTTTATTCATTTAAGTTTGTAGAAGATTACTCTTGCTTTGCC

CTTTTTTTTTTAATAGAAAAGCAAATATGTTATTTATTCAGCTTTTAGGTAATTAAA

TAACAAAATTCAGAGTAAAGCAAAACAAAAACCATAACATGTCATATGATATATCA

TTTCTAAGCACAATGGCAATTATTAATGAATATAAAAATTTATCATTCATATTTGCT
TCTAACACCAGTCACAAAAGTGGCAACCATTATATTGCTGCTCAGTTTTAAAGGT

AATTCATAACAGGGATAAACATGGTAATACAGAAGCCTTAATGGGAATATCCTAG

TATTATCTCTACAATATGGCAAAATAATGTTTTAGATTGATTATGATTAATGTATG
CATTTTGATTATTATCCTTTTGTTATTGGCAATAGAATTATCATGACAGTGGGGCT

GTTACAAATAAAGTTTTCATTCTTA 

miRNA SEED Sequence on DNA Start 

>mmu-miR-1197-3p.MIMAT0005858 TGTCCT 59 

>mmu-miR-544-5p.MIMAT0017282 AACAAG 88 

>mmu-miR-539-5p.MIMAT0003169 TTTCTC 183 

>mmu-miR-758-5p.MIMAT0017235 TCAACC 187 

>mmu-miR-1197-5p.MIMAT0017331 TCAACC 187 

>mmu-miR-411-5p.MIMAT0004747 TCTACT 337 

>mmu-miR-376b-5p.MIMAT0003388 TATCCA 358 

>mmu-miR-376c-5p.MIMAT0005295 TATCCA 358 

>mmu-miR-323-3p.MIMAT0000551 TAATGT 392 

>mmu-miR-376b-3p.MIMAT0001092 CTATGA 435 

>mmu-miR-154-3p.MIMAT0004537 TATGAT 436 

>mmu-miR-410-3p.MIMAT0001091 TTATAT 554 

>mmu-miR-410-3p.MIMAT0001091 TTATAT 560 

>mmu-miR-154-3p.MIMAT0004537 TATGAT 719 

>mmu-miR-134-5p.MIMAT0000146 AGTCAC 797 

>mmu-miR-758-3p.MIMAT0003889 TCACAA 799 

>mmu-miR-496a-5p.MIMAT0017244 GCAACC 810 

>mmu-miR-453-3p.MIMAT0004870 GCAACC 810 

>mmu-miR-380-5p.MIMAT0000744 CAACCA 811 

>mmu-miR-410-3p.MIMAT0001091 TTATAT 817 

>mmu-miR-369-3p.MIMAT0003186 TATTAT 898 

>mmu-miR-323-3p.MIMAT0000551 TAATGT 922 

>mmu-miR-543-3p.MIMAT0003168 AATGTT 923 

>mmu-miR-154-3p.MIMAT0004537 TATGAT 939 

>mmu-miR-323-3p.MIMAT0000551 TAATGT 945 

>mmu-miR-369-3p.MIMAT0003186 TATTAT 963 

>mmu-miR-495-3p.MIMAT0003456 TTTGTT 972 

* putative polyA sites in bold
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Table 2: RNO Ube3a1 3’UTR (rn6, chr.1, 116660510-116661593) 

GTGAGGTGTTTAATTCTTAAAAAGGAAGACTTTTCATCAAAGAAGTGCATGTGTG
CTTTTGTGTCATGTATCTGTTGGTACTGGTTACCGAACAAGTAAGCTCAAAAGTA

GGCTCGTATTAATATTACTAATTTTCATGCAGTCTAATGCTTTATTTCATGAATTA

AATGATTTATGTCTCCTATTTTCTCTTGCCTTTGGTTTATTTTTGGTAATATATAAA

TGGTAGATTATTTAGTCTTTAAGATACTTGGGAAGAACCATGTGTACTTGTGATT
CTGAACAGTTCTTGGGACAGTATTACCACTAATATTGTTCTCTAGTCAAATGCCC

TTGTTTTCTACTTCTCTGTAATATGCTACTATCCAACTCTGAAAGATCTTTTTCCC

TTGTCTTATAATCTGAATGGTCAAAATGCCCTTTTGGCATCCACTGTGATGTCAG
GGGCATTTAATCAGATATTTTTCTGGAAGATCGTTTGAGCTATAAGACTCAAGTA

TGTGGACAATAGAATGAATATTAACTATGTCTAGTAATGATAAATTACCATTATAT

TTATATCATAGTATTATTTTATTATTCATTTCAGTTTGTAGAGACTACTCTTGCTTT
GCACTTTCTAATACCAGTCACAAAGGTGTTTTCTCATGGCAGCCATTATATTGCT

GTTCATTTTTTCTTTTTTTTCTTTTTGAGTGAATAGAAGGAACATATACTTAATTTT

TTTTTGTTTTTTTTCTTGGATATTTTATGTATTTACATTTCAAATGTTATCCACTTCC

CCCACTCTCCCATACTCCATCCCACTGTTTCTATGAGGATACTTTCACTCTCACC
CATCCACTCCATCCTCAGGGACCTGGCATCACCCTACATTGGGGAAACAAGCC

GCTGCTCAGTTTGTAAGTTGATTCATAACAGGGATCAACATGGTAATAGGAAAG

CCTCAATGGGAATATCCTAGCATTATCTCTACAATATGGCAAAGTAATATTTTAGA
TTAATGTATGCGATTTGCTTATTTATTCTCTTATTATTGGCAATAGGATTATCATG

AGATTAGAGCTATTAAAAATAAAATTTT 

miRNA SEED Sequence on DNA Start Norm. Read count 

>rno-miR-382-3p.MIMAT0003202 AATGAT 166 27168 

>rno-miR-539-5p.MIMAT0003176 TTTCTC 185 1241 

>rno-miR-377-3p.MIMAT0003123 TGATTC 273 1099 

>rno-miR-1193-5p.MIMAT0017858 TTACCA 300 n.d.

>rno-miR-411-5p.MIMAT0005312 TCTACT 339 29353 

>rno-miR-376b-5p.MIMAT0003195 TATCCA 362 1504 

>rno-miR-376c-5p.MIMAT0017219 TATCCA 362 n.d.

>rno-miR-376c-3p.MIMAT0003194 CTATGT 523 1455 

>rno-miR-382-3p.MIMAT0003202 AATGAT 534 27168 

>rno-miR-1193-5p.MIMAT0017858 TTACCA 543 n.d.

>rno-miR-410-3p.MIMAT0005311 TTATAT 549 50701 

>rno-miR-410-3p.MIMAT0005311 TTATAT 555 50701 

>rno-miR-369-3p.MIMAT0003207 TATTAT 566 21740 

>rno-miR-369-3p.MIMAT0003207 TATTAT 574 21740 

>rno-miR-496-3p.MIMAT0012860 TAATAC 620 3812 

>rno-miR-134-5p.MIMAT0000840 AGTCAC 627 26284 

>rno-miR-758-3p.MIMAT0005335 TCACAA 629 2259 

>rno-miR-539-5p.MIMAT0003176 TTTCTC 641 1241 

>rno-miR-410-3p.MIMAT0005311 TTATAT 657 50701 

>rno-miR-495-3p.MIMAT0005320 TTTGTT 726 14109 

>rno-miR-411-3p.MIMAT0017304 TTACAT 756 10822 

>rno-miR-543-3p.MIMAT0003175 AATGTT 766 8416 

>rno-miR-376b-5p.MIMAT0003195 TATCCA 771 1504 

>rno-miR-376c-5p.MIMAT0017219 TATCCA 771 n.d.

>rno-miR-494-3p.MIMAT0003193 TGTTTC 807 2868 

>rno-miR-376b-3p.MIMAT0003196 CTATGA 812 22584 

>rno-miR-380-3p.MIMAT0017302 CTACAT 870 10219 

>rno-miR-377-3p.MIMAT0003123 TGATTC 908 1099 

>rno-miR-409a-3p.MIMAT0003205 CAACAT 925 3358 

>rno-miR-485-5p.MIMAT0003203 AGCCTC 942 5037 

>rno-miR-323-3p.MIMAT0000550 TAATGT 1001 41164 

* putative polyA site in bold
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Table 3: HSA Ube3a-005 3’UTR (hg38, chr.15, 25353033-25354353) 

GGTGAGGTACTTAGTTCTTCAGAGGAAGATTTGATTCACCAAAGGGGTGTGTGA

TTTTGCTTCAGACCTTTATCTCTAGGTACTAATTCCCAAATAAGCAAACTCACAAA

TTGTCATCTATATACTTAGATTTGTATTTGTAATATAATCACCATTTTTCGAGCTAA

TCTTGTGATTTATTTCATGAATGAAGTGTTGTTATATATAAGTCTCATGTAATCTC
CTGCATTTGGCGTATGGATTATCTAGTATTCCTCACTGGTTAGAGTATGCTTACT

GCTGGTTAGAAGATAATTAAAATAAGGCTACCATGTCTGCAATTTTCCTTTCTTTT

GAACTCTGCATTTGTGAACTGTTACATGGCTTCCCAGGATCAAGCACTTTTTGAG
TGAAATGGTAGTCTTTTATTTAATTCTTAAGATAATATGTCCAGATACATACTAGT

ATTTCCATTTTACACCCTAAAAAACTAAGCCCTGAATTCTCACAGAAAGATGTAG

AGGTTCCCAGTTCTATCTGCTTTTAAGCAAATGCCCTTACTACTCTACTGTCTAC
TTCTGTGTACTACATCATCCAATTCTGAAAGACATAGGCTTCCCCATCCCCTGCT

AAGACTGGTTCAAGTGGCAGCTACTGATGGATTGGTGAGAAGGCATGCAAACAC

GTACCTTCCTGGAAGTTGTCTCCAAAGGCTATTGCTCTAAGACTCAAGTATATAA

ACACTAGAATGAATATCAACTCTATCTAGCAATAAATGTTATTTTTATATTACAGT
TGACCCTTGAACAACACAGCTGTGAACTTCATGGGCCCTCTGACATGCAGATTT

TTTTTCTCAACTAAGAGCAGATTCAGTGGGACTCAGAACCTGCATATCAGAGGG

CTGACTTTCATACATGCCAGTTTCACAGGGCCAACTGCAGAACTTGAGCGTGCA
TGGATTTTGGTATACACACGTGGTCCTGGAACCAATCCCTGTCACATATACCAA

GGGATGGCTGTATGTTACTTTATATTCATTTGTTCTGTTATTTTATAAGGTTGTTC

GTCGTGGTATGTGGGAATTCACCAGTATTTCTTCTTTCTGGTGCACCGTTGGTCA
TTTCTGGCAGCAGTGGTGAATGTATTTACTCTTAGCAACCTCTGTGCTGCTACCT

GTTCTGAGTTTCAAAGGTGATTCATTAAAGGGTTGGGATAACATGGTGATAGGA

AAAACCCCCCTCATCAGTCACAAGGAGTATAACAGCAATATCTCTGTAATATGAT

TGATCATAGATATAATTTCTAGTAGGAAAAAAAGTCATATCTTG 

miRNA SEED Sequence on DNA Start 

>hsa-miR-329-3p. MI0001725 GTGTGT 47 

>hsa-miR-758-3p. MI0003757 TCACAA 104 

>hsa-miR-381-3p. MI0000789 TTGTAT 132 

>hsa-miR-656-3p. MI0003678 TAATAT 141 

>hsa-miR-410-3p. MI0002465 TTATAT 199 

>hsa-miR-411-3p. MI0003675 TTACAT 356 

>hsa-miR-379-3p. MI0000787 TTACAT 356 

>hsa-miR-656-3p. MI0003678 TAATAT 422 

>hsa-miR-411-5p. MI0003675 TCTACT 544 

>hsa-miR-411-5p. MI0003675 TCTACT 551 

>hsa-miR-654-3p. MI0003676 AGACAT 585 

>hsa-miR-1193 MI0014205 CCATCC 599 

>hsa-miR-543 MI0005565 AATGTT 754 

>hsa-miR-410-3p. MI0002465 TTATAT 764 

>hsa-miR-889-3p. MI0005540 ATATTA 766 

>hsa-miR-539-5p. MI0003514 TTTCTC 832 

>hsa-miR-544a. MI0003515 GCAGAA 920 

>hsa-miR-410-3p. MI0002465 TTATAT 1011 

>hsa-miR-495-3p. MI0003135 TTTGTT 1020 

>hsa-miR-134-5p. MI0000474 AGTCAC 1227 

>hsa-miR-758-3p. MI0003757 TCACAA 1229 

>hsa-miR-656-3p. MI0003678 TAATAT 1258 

* putative polyA sites in bold
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