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NEP Nuclear Export Protein  
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3 SUMMARY 

Transmission of influenza viruses from aquatic birds to mammals is promoted by the adaptation of the 

viral proteins to the new host. This includes the PB2 subunit of the viral polymerase complex. This 

protein has been described as an important host range factor, able to modulate the virulence of influenza 

viruses. Several adaptive mutations in the PB2 subunit of various influenza-A subtypes have been 

described, such as D253N, Q591K, E627K, D701N, S714I and S714R. H9N2 influenza viruses are 

endemic in poultry in Asia and other parts of the world. Moreover these viruses have been occasionally 

transmitted to humans and are often involved in the generation of viruses causing zoonotic infections in 

humans by providing internal genes. H9N2 viruses have therefore the potential to cause a pandemic. 

This study was undertaken to analyse the role of the PB2 subunit in the adaptation of avian influenza 

virus of subtype H9N2 to mammals. 

 

In the first part of the thesis, the results demonstrated that PB2 mutations D253N, E627K, D701N, S714I 

and S714R increase the H9N2 polymerase activity in mammalian cells. Furthermore, mutations E627K, 

D701N and S714I/R also enhance viral growth in mammalian cells. Pathogenicity studies indicated that 

combination of mutations E627K-D701N-S714R increase the lethality of H9N2 virus in mice. The 

effects of the adaptive mutations have then been compared in H9N2, H1N1pdm09 and H7N7 viruses. 

The results have shown that the enhancement of the polymerase activity by the adaptive mutations is 

higher in the phylogenetically related H9N2 and H7N9 than in the non-related H7N7 and H1N1pdm09 

viruses. In addition, analysis of heterologous polymerase complexes composed of H9N2, H1N1pdm09, 

H7N7, and H7N9 subunits provides further evidence for the concept that this enhancing effect is a 

specific trait of H9N2-PB2 without significant contribution of PA and PB1. From these observations, it 

can be concluded that the PB2 subunit of the H9N2 viruses is characterised by a particularly high 

adaptability to mammalian cells. 

 

In the second part of the thesis, the mechanisms by which E627K and D701N promote adaptation to a 

mammalian host were analysed. The results demonstrated that viruses bearing the avian signature 627E 

in PB2 are sensitive to RIG-I activation. This sensitivity is mediated by the destabilisation of the 

nucleocapsid by RIG-I, exposing thereby the double-stranded RNA required for RIG-I activation. In 

contrast viruses containing mutation E627K interfere with RIG-I activation, by stabilizing the 

association of the polymerase complex to the nucleocapsid. These observations indicate that PB2 

mutation E627K modulates the inhibition of virus replication mediated by RIG-I. Furthermore, the data 

showed that mutation D701N promotes not only the nuclear import of newly synthesized PB2 protein, 

but also the nuclear import of PB2 bound to the incoming vRNPs. 
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4 ZUSAMMENFASSUNG 

Influenza-A-Viren kommen in großer Vielzahl bei Vögeln vor. Wenn Viren aus diesem Reservoir auf den 

Menschen übertragen werden und sich an den neuen Wirt anpassen, kann es zu einer Pandemie kommen. Unter 

den aviären Viren verdienen hierbei Viren vom Subtyp H9N2 besondere Aufmerksamkeit. Diese Viren zeichnen 

sich durch weltweite Verbreitung, außergewöhnliche genetische Flexibilität, die Fähigkeit zu menschlicher 

Infektion und somit durch ein erhebliches pandemisches Potential aus. Bei ihrer Vermehrung gehen die Viren 

vielfältige Wechselwirkungen mit dem Wirt ein. Der Wirtswechsel vom Vogel auf den Menschen beruht deswegen 

wesentlich auf der Adaption der Virusproteine an menschliche Gewebe und Zellen. Eine wichtige Rolle spielt 

dabei das zum viralen Polymerasekomplex gehörende PB2-Protein. In der vorliegenden Arbeit wurde die 

funktionelle Bedeutung von 6 adaptiven Mutationen im PB2-Protein von H9N2 Viren untersucht. 

 

Im ersten Teil dieser Arbeit konnte gezeigt werden, dass die Mutationen D253N, E627K, D701N, S714I und 

S714R in der PB2-Untereinheit die Polymeraseaktivität von H9N2-Viren in Säugerzellen erhöhen. Darüber hinaus 

führten die Mutationen E627K, D701N und S714I/R zu einem erhöhten Viruswachstum in Säugerzellen. 

Pathogenitätsstudien zeigten, dass die Kombination der Mutationen E627K-D701N-S714R die Letalität von 

H9N2-Viren in Mäusen erhöht. Um die Relevanz der adaptiven Mutationen, die im H9N2 Hintergrund beobachtet 

wurden, zu validieren, wurde der Einfluss dieser Mutationen in H9N2-, H7N9-, H1N1pdm09- und H7N7-Viren 

verglichen. Die Ergebnisse zeigen, dass die adaptiven Mutationen die Polymeraseaktivität in den phylogenetisch 

verwandten H9N2- und H7N9-Viren deutlich stärker erhöhten als in den nicht verwandten H7N7- und 

H1N1pdm09-Viren. Die Analyse von heterologen Polymerasekomplexen aus H9N2, H1N1pdm09, H7N7 und 

H7N9 Untereinheiten zeigte, dass die starke Aktivitätssteigerung der H9N2-Polymerase nur von den adaptiven 

PB2-Mutationen, jedoch nicht von PB1 und PA abhängt. Aus dieser Beobachtung kann geschlossen werden, dass 

sich die Polymerase der H9N2-Viren durch eine besonders hohe Anpassungsfähigkeit an Säugerzellen auszeichnet  

 

Im zweiten Teil der Arbeit wurden die Mechanismen untersucht, aufgrund derer die E627K und D701N 

Mutationen die Adaptation an Säuger fördern. Es konnte gezeigt werden, dass die Nukleokapside aviärer Viren 

mit der PB2-Signatur 627E nach der Infektion einer Säugerzelle im Zytoplasma durch die Binding von RIG-I 

destabilisiert werden, so dass es zur Exposition der ds-RNA Domänen der viralen RNA kommt. Es konnte 

weiterhin gezeigt werden, dass die freiliegende ds-RNA nun in der Lage ist, die zytoplasmatische RNA-Helikase 

RIG-I zu binden und damit deren antivirale Eigenschaften zu aktivieren. Die Stabilität der Nukleokapside bleibt 

dagegen erhalten, wenn PB2 die Signatur 627K trägt, so dass die RIG-I-abhängige Hemmung der 

Virusvermehrung nun ausbleibt. Somit konnte nachgewiesen werden, dass die adaptive Mutation E627K die 

Hemmung der Virusvermehrung durch den Pathogensensor RIG-I moduliert. Darüber hinaus zeigten die Daten, 

dass die PB2-Mutation D701N nicht nur den nukleären Import von neu synthetisierten PB2-Proteinen steigert, 

sondern auch den Kernimport von Nukleokapsiden infizierender Viren. 
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5 INTRODUCTION  

5.1 Influenza-A-viruses 

Influenza-A-viruses are important human and animal pathogens with high impact on public health and 

animal livestock. They infect the respiratory and the gastrointestinal tract of the host. The available 

evidence indicates that all of these pathogens are from a large virus pool, indigenous to wild aquatic 

birds. Zoonotic infection of humans by avian influenza viruses has already been described and may play 

a role in the development of pandemic viruses.  

5.2 Taxonomy 

Influenza viruses are characterized by a segmented single-stranded RNA genome of negative polarity. 

They belong to the family Orthomyxoviridae, composed of five different genera: influenza-A, influenza-

B and influenza-C viruses, as well as Thogotovirus, Isavirus and Quaranjavirus. The genomes of 

influenza-A and B viruses as well as Isavirus are composed of 8 segments, whereas influenza-C virus 

has 7 segments, and Thogoto and Quaranja viruses 6 segments. 

 

Influenza-A-viruses are classified in different subtypes characterized by their surface glycoproteins: 18 

different hemagglutinins (HA) and 10 neuraminidases (NA) [49, 166, 182]. Influenza-A-viruses are able 

to infect a broad spectrum of avian and mammalian species including humans, pigs, horses and seals. In 

contrast to influenza-A-viruses, influenza-B and C viruses are restricted to humans. Influenza-C 

infections are generally asymptomatic, whereas influenza-B virus causes respiratory diseases in humans, 

like influenza-A-virus. Thogotovirus and Quaranjavirus infect humans, and Isavirus infects fish. 

 

The World Health Organization (WHO) standardized the nomenclature for influenza viruses [1]. It 

indicates: genus, host species (not mentioned for human isolate), place of isolation, isolate number and 

year of isolation. The subtype of the virus is usually indicated in parentheses. Here are two examples of 

avian and human isolates, respectively: A/Quail/Shantou/2061/2000 (H9N2) and A/Anhui/01/2013 

(H7N9). 
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5.3 Morphology and structure of the genome  

Influenza virus particles are usually spherical or ovoid with a diameter of 80 to 120 nm [14]. They are 

enveloped viruses with a membrane containing the two glycoproteins: HA and NA. The HA spike is a 

trimer consisting of three individual HA monomers, while the NA spike is a tetramer. 80 % of the 

glycoproteins present at the surface of the virion are HA, whereas NA represent only 20 %. The viral 

envelope contains as well the M2 protein, which forms a tetramer with ion channel activity [74, 94, 

132]. On the inner side of the envelope is the matrix protein M1, surrounding and interacting with the 

viral genome organized into eight segments of single-stranded RNA [120] (Figure 1).  

 

Figure 1 : Morphology of an influenza virus particle. (A) Schematic representation of the virus particle structure (Subbarao 

et al 2007). (B) Electron microscopy picture of an influenza particle (image acquired by Dr. Larissa Kolesnikova, Institute of 

Virology, Marburg) 

The influenza-A-virus genome encodes for 10 major proteins: polymerase basic protein 2 (PB2), 

polymerase basic protein 1 (PB1), polymerase acidic protein (PA), nucleoprotein (NP), NA and HA, 

matrix proteins (M1 and M2) and non-structural proteins (NS1 and NS2) [168]. It has been demonstrated 

that auxiliary proteins were encoded from the segment 2 and 3 (Table 1). For example PB1-N40 is a 

truncated form corresponding to the N-terminal end of PB1, whereas PB1-F2 results from an alternative 

open reading frame (ORF) of PB1 [29]. Furthermore, the segment 3 encodes several additional proteins 

such as PA-X, PA-N55 and PA-N182. These are isoforms of PA resulting from the N-terminal truncated 

part of PA [117] or the fusion of the N-terminal region of PA and the C-terminal region of an additional 

ORF, called X-ORF [83]. For the segments 7 and 8, additional proteins have also been identified such 

as M42 and NS3. M42 is a variant of M2 translated from a second initiation codon [184] and NS3 is an 

isoform of NS1 with an internal deletion [149].  

100nm

A B
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Segment Protein 
Number of 

amino acids 
Function 

1 PB2 759 

Polymerase subunit responsible for the 

cap binding of cellular mRNA 

important for initiation of transcription. 

This protein affects host range and 

virulence 

2 

PB1 757 

Polymerase subunit with the RNA 

dependent RNA polymerase activity 

required for transcription and 

replication 

PB1-F2 90 
Protein responsible for mitochondria-

associated apoptosis 

PB1-N40 718 
Protein which maintains balanced 

expression of PB1 and PB1-F2 

3 

PA 716 

Polymerase subunit with an 

endonuclease activity responsible for 

the cap snatching of cellular mRNA 

PA-X 252 
Protein responsible for host cell shut-

off to decrease the antiviral response 

PA-N155 568 
Protein with a potential role in a 

replication step 

PA-N182 535 
Protein with a potential role in a 

replication step 
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4 HA 550 

Membrane protein responsible for the 

receptor binding and fusion of the 

endosomal and viral membrane 

5 NP 498 

Major protein of the vRNP, associated 

to the viral RNA. It is responsible for 

the translocation of the vRNP into the 

nucleus 

6 NA 454 

Membrane protein responsible for the 

release of progeny virus by removing 

the receptors present at the surface of 

the cell. 

7 

M1 252 

Matrix protein involved in the export of 

vRNP from the nucleus to the 

assembling area 

M2 97 

Protein with ion channel activity, 

responsible for the acidification of the 

inner core of the virus. Its function is 

important for genome release post entry 

M42 99 Protein with similar function as M2 

8 

NS1 230 
Protein with interferon antagonist 

activity 

NS2/NEP 121 

Protein responsible for the export of the 

vRNP in addition to M1 from the 

nucleus to the cytoplasm 

NS3 174 
Protein with potential role in host 

adaptation 

Table 1: Influenza-A-virus segments. For each segment, the encoded proteins and their functions are listed. 
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The viral RNA segments are associated with NP and one heterotrimeric polymerase complex composed 

of PB1, PB2 and PA [88]. This association of proteins and viral RNA (vRNA) forms a structure named 

viral ribonucleoprotein (vRNP), where NP plays an important role in the helical structure of the vRNP 

(Figure 2). 

 

 

Figure 2 : Structure of an influenza-A-virus ribonucleoprotein. The vRNPs are composed of a RNA of negative polarity 

associated with NP (light green). The partial complementarity of the RNA extremities leads to the formation of a  

double-stranded RNA structure with the exposure of a 5’-triphosphate(5’ppp) (dark green). The polymerase complex is 

associated to this structure (PB1, PB2 and PA) and is required for the initiation of transcription and replication. 

5.4 Ecology  

The natural reservoir of influenza-A-viruses are aquatic birds, where replication usually does not cause 

signs of disease. Transmission to new species such as humans, pigs, horses, sea mammals and land birds 

is often observed [141, 171, 182] (Figure 3), and mammalian influenza viruses are suggested to emerge 

from the avian influenza reservoir. 

 

Figure 3 : Host range of influenza-A-viruses and interspecies transmission. The arrows represent transmission routes 

between species. Wild waterfowl are the principal reservoirs for influenza-A-viruses which are occasionally transmitted to 

other host animals such as horses, pigs, and terrestrial birds. Transmissions to man can result in pandemics. (Adapted from 

Wahlgren et al 2011). 
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The reservoir of influenza-A-viruses is found in aquatic birds of the orders Anseriformes and 

Charadriiformes [115, 116]. The different combinations of HA and NA subtypes have all been identified 

in wild birds [2]. Avian influenza-A-viruses are divided into two classes: low pathogenic avian influenza 

(LPAI) viruses and highly pathogenic avian influenza (HPAI) viruses. LPAI virus replication in birds is 

confined to the respiratory and intestinal tract resulting in mild disease or asymptomatic infection. The 

dissemination of the virus among aquatic birds occur via an oral-fecal route, caused by contaminated 

water [115]. They have HAs with monobasic cleavage site (-R-) that are activated by proteases present 

in respiratory or intestinal tissues such as TMPRSS2, TMPRSS4 and HAT [18, 24]. The HA 

glycoprotein needs to be processed to acquire its functional competence that is essential for virus 

infectivity [87]. 

 

HPAI viruses belong to serotype H5 or H7. They have a polybasic hemagglutinin cleavage site (-

RXK/RR- or -RXXR-). They are supposed to arise by introduction of LPAI viruses into domestic poultry 

with subsequent mutations in HA [6]. Insertion of multiple basic amino acid residues in the HA cleavage 

site enable processing by ubiquitous cellular proteases, such as furin or PC5/6 [158], which do not cleave 

LPAI HAs. This property facilitates replication through a large spectrum of organs and is responsible of 

systemic infection, in contrast to LPAI viruses. Viruses that cause 75% or higher mortality during 

experimental infection of chickens are characterized as HPAI viruses. Those that do not fulfil these 

criteria are classified as LPAI viruses [58]. 

 

It has to be pointed out, that the virulence of an influenza virus is not only determined by the HA 

cleavage site but depends as well on other proteins such as NS1 and the polymerase complex. 

5.5 Epidemiology 

Most of the transmissions of avian viruses to mammals are transient and do not result in a new virus. 

On rare occasions, however, the virus may adapt to the new host and, thus, give rise to a new lineage. If 

such a new virus is introduced into man it may cause a pandemic. 

 

Human influenza viruses cause seasonal epidemics and less frequent pandemics. Epidemic viruses are 

derived from pandemic viruses by antigenic drift resulting from the acquisition of point mutations on 

genes encoding HA and NA. These point mutations occur due to a high error rate of the viral polymerase 

and the lack of a proof reading function [186]. The antigenic drift generates viruses closely related to 

the preceding virus, which can still be partially recognized by the immune system. However, 

accumulation of point mutations eventually leads to immune escape. 

 

The evolutionary mechanism leading to a pandemic virus is antigenic shift. It is based on reassortment 

events, which can occur during infection of a single cell by two different influenza-A subtypes and is 
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characterized by the acquisition of a different HA or HA and NA. Pigs may act as „mixing vessel” in 

this process. In fact, pigs are susceptible to both avian and human influenza viruses and may therefore 

promote reassortment. However, human infections with swine influenza virus are not observed 

frequently. This raises the hypothesis of another mixing vessel that may be an avian host. This concept 

is supported by the observation that quails, known to be susceptible to infection with avian H9N2 virus, 

contain cell receptors that allow also infection with human viruses [77, 172, 173]. 

Through the last decades, several pandemics have been observed in the human population (Figure 4). 

The most devastating pandemic occurred in 1918, named “Spanish influenza”, which caused 20 million 

to 50 million deaths worldwide. The virus was reconstituted from RNA fragments preserved in lung 

tissue which belong to victims of this pandemic [164].Whether the H1N1 virus causing the 1918 

pandemic was generated by reassortment or whether it was directly derived from a bird virus without 

reassortment is not clear [137]. 

 

Two other pandemics followed in 1957-1958 with an H2N2 isolate, first identified in China, and in 

1968-1969 with a H3N2 isolate, first detected in Hong Kong. These two pandemic strains were 

generated by reassortant viruses with three or two genes of avian origin [85]. The most recent pandemic 

occurred in 2009 with an H1N1 isolate, derived from a triple reassortment with genes of human, swine 

and avian origin [122, 154]. 

 

Figure 4 : Timeline of influenza pandemics and recent zoonotic infections in humans. The pandemics infections are 

represented in red, yellow and green, and the zoonotic infections are represented in blue and purple (Adapted from NIH 2011) 
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5.6 Transmission of avian influenza viruses to man 

Human influenza viruses spread by airborne transmission from man-to-man. The transmission of human 

influenza viruses occurs (i) by direct contact with infected individuals; (ii) by contact with contaminated 

objects and (iii) by inhalation of virus aerosols.  

 

On rare occasions, avian influenza may also infect man and cause a zoonotic infection without 

adaptation to the human host as it has been observed with H5N1, H9N2, H7N7, H7N9 or H10N8 

subtypes. Transmission of an H5N1 virus in 1997 in Hong-Kong was the result of an epizootic event, 

where the virus was transmitted from infected chickens to humans with 18 confirmed cases. Since 2003, 

sporadic H5N1 outbreaks have been observed in many Asian countries with 658 confirmed human cases 

(including 388 deaths). Domestic ducks and land-based poultry probably played a critical role in the 

generation and maintenance of the H5N1 virus [76]. In 2003, during an H7N7 poultry outbreak in the 

Netherlands, a large number of human infections have been observed with suspected human-to-human 

transmission [48]. Most of the cases showed mild symptoms. Only one case showed an acute respiratory 

distress syndrome, resulting in the death of the patient.  

 

On 31 March 2013, three cases of confirmed human infection with avian influenza A H7N9 virus were 

reported in China. Most patients initially developed an influenza-like illness that evolved to respiratory 

distress syndrome [56]. At the end of 2014, 470 cases (including at least 184 deaths) have been reported 

since the beginning of the outbreak. In December 2013, the first human case of H10N8 was also 

reported. These zoonotic outbreaks (H5N1-1997, H7N9 and H10N8) were the result of reassortment 

with H9N2-circulating viruses [26, 45, 64, 134].  

5.7 H9N2 virus 

Within the last 20 years, several H9N2 outbreaks have been documented throughout Europe, the Middle 

East and Asia. The viruses have become endemic in the last decade, and have been isolated from many 

different species of terrestrial poultry worldwide. In 1999 and 2003, zoonotic H9N2 outbreaks have 

been reported in China, with mild symptoms and no human-to-human transmission. Two distinct 

lineages of H9N2 viruses are now established in terrestrial poultry, A/Duck/Hong Kong/Y280/97 in 

chicken and A/Quail/Hong Kong/G1/97 in quail [64, 97]. The latter has already been isolated from 

humans and was involved in the generation of the highly pathogenic H5N1 virus in 1997 [64, 100]. Co-

circulation and reassortment with other strains in terrestrial poultry generated the H7N9 virus [45, 56] 

and H10N8 virus causing outbreaks in human in 2013 and 2014 [26, 134]. H9N2 viruses also expanded 

their host range as indicated by the observation that a few strains isolated from land-based birds, 

efficiently replicate in and kill mice without prior adaptation. Quails are now considered to play an 

important role in the genesis of new influenza viruses, since their tissues have receptors for both avian 
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and human influenza viruses [77, 172, 191]. Furthermore, infections of pigs with H9N2 viruses have 

been observed since 1998 [32, 33]. Infected pigs presented typical illness signs, including fever, nasal 

and ocular discharge, coughing and dyspnoea, with a high mortality rate. In addition to the cases in 1999 

and 2003, there have been more human H9N2 infections in the recent years causing respiratory disease, 

but without human-to-human transmission [23, 130]. The recurring presence of H9N2 infections in pigs 

and humans, as well as the establishment of the virus in poultry has raised concerns about the possibility 

that H9N2 viruses are capable of evolving into pandemic strains [129].  

5.8 Disease in humans  

Human influenza-A-viruses are the cause of contagious respiratory illness. The major symptoms of the 

disease are fever, cough, headaches and muscle aches. Acute symptoms and fever often persist for 7 to 

10 days, but most of infected patients recover after a week. However severe complications are observed 

among children, elderly or immunocompromised patients. These complications include hemorrhagic 

bronchitis, pneumonia (often caused by bacterial co-infection), lung failure or death. In case of mild 

infection, the upper respiratory tract and trachea are predominantly infected, in contrast to severe 

influenza infections, usually associated with pneumonia [165]. 

 

Bacterial superinfection in the lungs of influenza infected patient promotes severe disease and mortality. 

This co-pathogenesis is characterized by the disruption of physical barriers and dysregulation of immune 

response [107]. In addition, some bacteria such as S.aureus secrete proteases capable of cleaving the 

HA protein and activate the virus [163], enhancing thereby its pathogenicity.  

5.9  Prophylaxis and therapy 

Vaccination is the most efficient measure against influenza infection, even if a constant adjustment is 

required to adapt to the evolving nature of the viruses. Vaccination is especially important for people at 

higher risk of serious influenza complications. The WHO recommends vaccination for pregnant women, 

young children, elderly and individuals with chronic medical conditions. The seasonal vaccine is 

trivalent and composed of two influenza-A-viruses (H1N1 and H3N2) and one influenza-B virus. For 

2014/2015 influenza vaccines are composed of an A/California/7/2009 (H1N1) pdm09-like virus, an 

A/Texas/50/2012 (H3N2)-like virus and a B/Massachusetts/2/2012-like virus. 

 

Two major types of influenza vaccines are available. First, there are inactivated vaccines, which are 

injected intramuscularly. There are three types of inactivated vaccines: whole virus vaccines, split virus 

vaccines (detergent-disrupted virus), and subunit vaccines (purified HA and NA without other viral 

components). Secondly, there are attenuated influenza vaccines, delivered intranasally. Attenuated 

vaccines are based on temperature-sensitive virus isolates that replicate well in the nasopharynx but 

poorly in the lower respiratory tract. 
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Antiviral therapy is also an option. There are two different types of inhibitors available, which need 

ideally to be administrated within 48 h after appearance of symptoms. First, there are inhibitors against 

the M2 ion channel protein, amantadine and rimantadine [70]. These inhibitors prevent the acidification 

of the inner core of the virion and therefore the release of the vRNP from the matrix protein 1 (M1) 

[183]. These molecules are active against influenza-A-viruses, but not influenza-B-viruses. Because of 

a high rate of resistance among influenza-A-viruses, these inhibitors are no longer recommended. 

Secondly, there are neuraminidase inhibitors, zanamivir, oseltamivir [70] and peramivir [145]. These 

molecules target the catalytic site of the enzyme [86, 169]. They are effective against influenza-A and 

B viruses. Zanamivir is used as an inhaled treatment, oseltamivir as an oral treatment and peramivir is 

administrated in the form of enteric capsules. However, influenza viruses develop also resistance to 

these compounds [145]. Thus, there is a need for the development of new molecules targeting other 

proteins, such as the polymerase complex. 

5.10  Viral replication cycle 

The virus cycle is initiated via the binding of sialic acid receptor present at the cell surface by the 

glycoprotein HA (Figure 5, step 1) [153]. Receptor binding leads to endocytosis of the virus and 

exposure to low pH (Figure 5, step 2). The ion channel M2 pumps protons into the inner core of the 

virion [132] leading to a conformational change of the matrix protein M1 [21]. Furthermore, 

acidification triggers a conformational change of HA, which allows the exposure of the fusion peptide 

[183]. The latter promotes the fusion of the viral and the endosomal membrane (Figure 5, step 3), and 

consequently the release of the viral RNP into the cytoplasm (Figure 5, step 4) [41, 78, 152]. They are 

then translocated into the nucleus where transcription and replication take place (Figure 5, step 5) [104, 

125]. The primary transcription will lead to the synthesis of the early proteins, NP, PB1, PB2, PA, and 

NS1. These proteins are then imported into the nucleus (Figure 5, step 6) where NP monomers are 

bound to newly synthesized vRNA which in association with the polymerase complex will form new 

vRNP. The matrix protein M1, the nuclear export factor (NEP) and the glycoproteins HA and NA are 

synthesized at a late stage of infection. The M1 protein, which possesses a nuclear localisation signal 

(NLS), enters the nucleus and binds to the vRNPs. Because M1 does not present a nuclear export signal 

(NES), NEP is required. The protein is able to bind the NLS signal of M1 and mediates the export of 

both M1 and vRNP from the nucleus to the cytoplasm (Figure 5, step 7) [22, 175, 193]. The M1 protein 

interacts with the C-terminal domains of HA and NA forming high density patches at the cell plasma 

membrane [8, 61], where the eight segments of the influenza genome are assembled (Figure 5, step 8) 

[60]. After budding, the new virions are still attached to the cell surface through interaction of the HA 

with sialic acid residues (Figure 5, step 9). NA cleaves the remaining sialic acids, releasing 

consequently the virions from the host cell surface.  
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Figure 5 : Replication cycle of influenza-A-viruses. (Modified from Neumann et al 2009) 

5.10.1  Transcription and replication  

Initiation of the cap-dependent transcription starts with the binding of the 7-methylguanosine cap of the 

cellular pre-mRNA by PB2 (Figure 6). The endonuclease (localized in PA) cleaves this pre-mRNA 10-

14 nucleotides downstream the cap. The capped primer is directed into the PB1 active site, where the 

viral sequence transcription occurs. The elongation of the transcription is supposed to lead to the release 

of the cap from the cap binding domain and the association with host cell factors [136]. The termination 

of the transcription results in the polyadenylation of the vRNA by stuttering of the polymerase [133, 

140].  

1-Binding

2-Endocytose

4-Import of

vRNP

7- Export

8-Assembly

9-Budding

3-Fusion

5-

6-Import of

proteins



Introduction 

12 

 

Figure 6 : Schematic representation of the transcription initiation step of influenza-A-virus. (A) Binding of the pre-mRNA 

cap structure by the PB2 subunit. (B) Initiation of the transcription, PB2 rotates to enable the capped primer to enter the active 

site of PB1. (C) Elongation of the transcription. (D) Elongation of the transcript lead to the release of the cap from the cap-

binding domain. (Modified from Reich et al 2014) 

In contrast to the transcription, the replication is cap independent. The replication process of influenza 

virus is driven by the synthesis of a complementary RNA (cRNA) of positive polarity, non-capped and 

not polyadenylated [69]. This cRNA is also associated with NP monomers and the polymerase complex 

and serves as template for the synthesis of vRNA. The switch from transcription to replication remains 

unclear, but two hypotheses have been proposed. It is first hypothesized that the cRNA transcripts are 

impaired in their elongation and prematurely degraded due to the absence of newly synthesized NP [75, 

170]. The second hypothesis proposes a switch to replication via the binding of free NP to the 

polymerase complex [123].  
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5.10.2  Promoter structure 

Influenza-A-virus vRNAs contain quasi-conserved and segment-specific sequences [73], which 

constitute the promoter for viral transcription and replication. Different structures of the vRNA promoter 

have been proposed such as a panhandle [176], a corkscrew [47] or a hook [131] (Figure 7).  

 

 

Figure 7 : Schematic representations of the viral promoter structure.  

The 3’ (characterized as the template) and 5’ (characterized as the activator) extremities are partially 

complementary and form a double helix structure defined as panhandle [5, 11, 176]. However, these 

extremities are thought to bind the polymerase in a partially single-stranded conformation either as a 

corkscrew [46] or a hook [131]. A recent study has demonstrated that the influenza vRNA promoter has 

a hook structure. In fact, the 5’ hook is localized in a pocket formed by PA and PB1 supposed to play 

an important role in the polymerase function [131]. The structure of the cRNA promoter is not known, 

but available data suggest that the structure is different from the vRNA promoter. This difference is 

thought crucial regarding the encapsidation process of vRNP. 

5.11  Proteins of the nucleocapsid 

As the genome of influenza viruses is of negative polarity, the virus encodes its own polymerase. The 

latter is a heterotrimeric complex composed of PB1, PB2, PA. The polymerase complex has an RNA-

dependent RNA polymerase activity and in association with NP catalyses the transcription and 

replication of the virus [38, 79].  
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5.11.1  NP and vRNP 

In contrast to other negative RNA viruses, the transcription and replication steps of influenza viruses 

occur into the nucleus. Therefore, the incoming polymerase, associated to the nucleocapsid, is directly 

imported into the nucleus. The vRNP import is driven by NP, which binds to the adaptor protein 

importin-α, and promotes the nuclear transport [125] (Figure 8).  

 

Figure 8 : Schematic representation of the vRNP transport into the nucleus of the infected cell. vRNPs are imported via the 

classical import pathway, importin-α dependent. The binding of the importin-α to NP promotes this nuclear import. When 

presents into the nucleus, importin-α is released from the vRNPs. 

NP binds single-stranded RNA without sequence specificity and is essential for the RNA transcription 

and replication. It is required as a structural element in the RNP template, where interaction between 

two NP molecules is responsible for maintaining the double helical structures of vRNPs and cRNPs. 

This homo-oligomerisation occurs via the insertion of a NP tail loop into the cavity of an adjacent NP 

molecule [4, 31] (Figure 9).  

 

 

Figure 9 : Structure of NP. Here are represented the cytoplasmic accumulation signal (CAS) and the tail loop domain 

important for the oligomerization. NP presents two NLS domains: the bipartite NLS and the unconventional NLS (dominant 

signal). 
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5.11.2  PB1, PA and PB2 

During the primary transcription step, newly synthesized proteins of the polymerase complex have to 

be imported into the nucleus for the subsequent steps of the infection. The subunit PA and PB1 are 

imported as a heterodimer via the non-classical nuclear import pathway, importin-α independent, by 

direct interaction with RanBP5 [39] (Figure 10). 

 

Figure 10: Schematic representation of the newly synthesized proteins essential for vRNP structure. The entry of newly 

synthesized proteins is driven by two pathways: the classical and non-classical import pathway. The import of PB2 and NP is 

driven via the importin-α adaptors, as monomers. In contrast the entry of PB1 and PA is driven via the RanBP5 adaptors, as 

PB1/PA dimer. 

PB1 is the core of the polymerase trimer containing the RNA dependent RNA polymerase domain 

important for the transcription and the replication step [15, 20]. PB1 can specifically recognize the vRNP 

promoter sequence [62, 136]. Its close interaction with PA forms a pocket where the 5’ hook of the 

genome is maintained. PB1 interacts with PA and PB2 [136] (Figure 11). 

 

PA is composed of 2 major domains, the N-Terminal part containing the endonuclease domain [40] and 

the C-terminal part responsible for the interaction with PB1 [31]. The endonuclease domain binds to the 

rest of the polymerase through the C-terminal region of PB1 which also interacts with the PB2 N-

terminal region. These two domains of PA are connected via the PA-linker, which wraps around PB1. 

The enzymatic activity carried by PA enables the cleavage of the cap from pre-cellular mRNA, which 

promotes the initiation of the transcription [40] (Figure 11). 
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Figure 11 : 3D structure of the polymerase complex. Here is represented the interaction of the polymerase proteins. PB2 is 

coloured in blue, PB1 in orange and PA in green. (Adapted from Reich et al, 2014) 

In contrast to PB1/PA, PB2 is translocated to the nucleus as a monomer by the classical nuclear import 

pathway, using the importin-α/β adaptors [52, 162] (Figure 10).  

 

PB2 is composed of 4 major domains: the region involved in PB1 binding, the domain responsible for 

the cap binding, the 627 domain and finally the NLS domain. It is involved as much in the replication 

as in the transcription process. Point mutations in this subunit, such as R142A or F130A, abolish RNA 

replication, but not transcription. In contrast, mutants defective in cap-recognition transcribe poorly but 

have an efficient replication [59, 65].  

5.12  Polymerase complex: a host range determinant.  

Viruses are obligatory intracellular pathogens and require the cell machinery for an efficient infection. 

As a result, viruses adapt to their host to subvert the host factors or counteract the immune defenses. 

The polymerase complex, as well as HA and NS1, play a central role in the host adaptation. As explained 

above, the polymerase complex of influenza virus is composed of three subunits: PB1, PA and PB2.  

 

PB2 is responsible for the cap binding from cellular messenger RNA enabling viral transcription [16], 

and has been described as an important host range factor able to modulate the virulence of influenza 

viruses. Over the years, several mutations in the PB2 subunit have been identified that mediate 

adaptation of an avian virus to a mammalian host. Mutations at position 591, 627, 701 and 714 have 

been described to enhance polymerase activity as well as viral replication in mammalian cells, in 

addition to mice pathogenicity [36, 50, 159, 160, 194] (Table 2). 
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Virus Host 

Range 

Positions Reference 

591 627 701 714 

H3N2 a-c   E-K     Subbarao et al., 1993 

H5N1 a-m   E-K     Hatta et al.,2001 

H5N1 a-h   E-K     Naffakh et al., 2002 

SC35/M (H7N7) a-m     D-N S-R Gabriel et al., 2005 

H5N1 a-h   E-K D-N S-I de Jong et al., 2006 

H1N1 s-h Q-R       Mehle et al, 2009 

H5N1 a-m Q-R       Yamada et al, 2010 

H9N2 a-h     D-N   Baranovich,T et al, 2014 

H7N9 a-h   E-K     Wong CK et al., 2013 

Table 2 : Adaptive mutation characterized in PB2 subunit. Mutations in PB2 have been described in several influenza-A 

subtypes. Here are listed for each virus subtype the host range, as well as the amino acid found in each species. Host range: 

a, avian; c, canine; m, murine and h, human. 

In 1993, the first mutation in the PB2 subunit was described to enhance the polymerase activity of an 

H3N2 virus [159]. In 1997, in Hong Kong, was reported the transmission of an H5N1 HPAI virus from 

infected poultry to humans with mutation in the PB2 subunit [160]. During the past years, it became 

more and more clear that the viral polymerase complex is linked to enhanced polymerase activity and 

pathogenicity, and is therefore a major determinant of mammalian adaptation.  

 

In avian isolates the amino acid at position 627 is a glutamine, while it is a lysine in mammalian strains. 

This mutation E627K provokes an increased polymerase activity and viral replication, enhanced mice 

pathogenicity and temperature sensitivity [80, 93, 105, 159]. Furthermore, the NLS domain of PB2 

contains position 701 which is also playing an important role in the host adaptation. Indeed, the amino 

acid present at this position is responsible for the open or close conformation of the NLS domain. The 

mutation from an aspartate present in avian isolates to asparagine present in mammalian strains induces 

a conformational change in the NLS of PB2 which favours its interaction with the importin-α [52, 162]. 

 

The other proteins of the polymerase complex PB1 and PA, as well as NP also play a role in host 

adaptation. Mutation N319K in the NP protein has been described to enhance binding to the  

importin-α factor, and therefore to increase the nuclear import [52]. In contrast to PB2, there are not 

many adaptive mutations described for PB1 or PA. Mutations L472V and L598P in the PB1 subunit 
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have been shown to compensate for the lack of mutation E627K in PB2 [190] and mutation K615N in 

the PA subunit has been shown to enhance the polymerase activity in mammalian cells [50]. The role in 

pathogenicity of these two subunits might be closely related to their auxiliary proteins PB1-F2 and PA-

X [168]. 

5.13  Innate immunity 

Innate immunity is based on pathogen recognition via cellular sensors known as “Pattern-Recognition 

Receptors” (PRRs). These sensors play a central role via their abilities to recognize “Pathogen-

Associated Molecular Patterns” (PAMPs), and to promote the signaling pathways leading to the innate 

immune response. The two most characterized class of PRR are the “Toll-like” receptors and “RIG-

like” receptors including Retinoic Acid Inducible Gene I (RIG-I) and Melanoma Differentiation-

Associated protein 5 (MDA-5) [161]. These innate immunity sensors are present in the cytoplasm and 

detect cytoplasmic double-stranded RNA by size, secondary structure and nucleotide composition 

specificity. RIG-I is known as one of the major sensors of influenza viruses. RIG-I activation leads to 

the translocation of Interferon Regulatory Factor 3 (IRF-3) into the nucleus where the productions of 

type I interferon (IFN), including IFN-α and IFN-β, is induced. The recently discovered type III 

interferon, composed of IFN-λ1, IFN-λ2 and IFN-λ3, and type I IFN are essential factors preventing 

viral replication [3, 95]. 

  

The IFN production is one of the first lines of defence against viral infections. Secreted IFN-α and IFN-

β bind the IFN receptor (IFNAR) which induces, via the JAK/STAT pathway, several IFN-stimulated 

genes (ISG). The best characterized ISG are: the protein kinase RNA dependent (PKR), the 2’-5’ 

oligoadenylate synthetase (OAS), RIG-I, MDA-5 and Mx proteins [142].  

 

Recognition of double-stranded RNA by PKR provokes its phosphorylation and therefore activation. 

Activated PKR phosphorylates the eukaryotic translation initiation factor 2 alpha (eIF2α), which leads 

to the inhibition of protein synthesis of cellular and viral mRNAs [112]. PKR also activates the 

transcription factor IRF-3, promoting IFN-β expression [57]. 

5.13.1.1  RIG-I signalling pathway 

RIG-I is a member of the DExD/H box RNA helicase family and is therefore composed of a carboxy-

terminal domain (CTD), a central DExD-H box RNA helicase domain and two caspase recruitment 

domains (CARDs) [90, 92] (Figure 12).  

 

Figure 12: Schematic representation of RIG-I. (Weber and Weber 2014) 
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The ligand recognition is driven by the CTD and helicase domains, and the signal transduction is 

determined by the CARDs (Figure 13). RIG-I possess two conformations, an auto-repressed one where 

the RNA binding site is masked by the CARDs, and an active conformation where the CTD binds a 

specific ligand and exposes the RNA binding site [91]. The RIG-I active form will then oligomerize and 

be ubiquitinated by the Tripartite Motif 25 (TRIM25) [54]. RIG-I oligomers interact then with the 

adaptor protein mitochondrial antiviral-signaling protein (MAVS), which induces the TBK-1/IKK-ε 

kinases. This signaling pathway leads to the phosphorylation and nuclear translocation of IRF-3 

transcription factor. Simultaneously, the NF-κB signaling pathway is induced, where NF-κB 

translocates as well into the nucleus. These two transcription factors promote the expression of type I 

IFN and pro-inflammatory cytokines [13] (Figure 13). 

 

Figure 13: IFN signaling pathway following RIG-I activation. Presence of double-stranded RNA in the cytoplasm is sensed 

by RIG-I. The recognition of the 5’ppp lead to the conformational change of RIG-I, followed by its ubiquitination by TRIM25. 

RIG-I CARDs domains then interact with MAVS and induce the signaling pathway leading to the nuclear translocation of IRF-

3. Expression and secretion of IFN-β induce the expression of Interferon Stimulated Genes (ISG) such as PKR, OAS and Mx. 

5.14  Innate immune system counteracting proteins 

Influenza virus has developed several strategies to avoid sensing and signaling of the innate immune 

system. One of the major influenza proteins in immune counteraction is NS1 (Figure 14). It plays a 

central role in the inhibition of IFN production and IFN induced effectors [43]. The mechanism of IFN 

inhibition targeting RIG-I pathway, involves the degradation of the TRIM25 protein. TRIM proteins 

possess a common structure including an N-terminal RING domain, one or two B-box domains, a coiled-

coil domain and a variable C-terminus [111]. The RING domain contains the E3 ubiquitin ligase activity, 

which in the case of TRIM25, regulates RIG-I K63-ubquitination, therefore activation. Upon influenza 

infection, the protein NS1 is able to bind TRIM25, inducing its K48-ubquitination and thus degradation. 

In the absence of the activating ubiquitination of RIG-I, the signaling pathway is abolished [55]. 

Additionally, NS1 is able to interfere with processing, nuclear export and translation of the host mRNA. 
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For example, NS1 inhibits type I IFN induction via interaction with the cleavage and polyadenylation 

specificity factor-30 (CPSF-30), which inhibits polyadenylation of cellular mRNAs [121]. NS1 inhibits 

also the maturation of pro-inflammatory cytokines such as interleukine-18 (IL-18) and IL-1β via the 

inhibition of the capase-1 [156]. NS1 has finally been described to bind dsRNA, preventing PKR 

recognition and therefore translation arrest [102].  

 

Other proteins have demonstrated a role in innate immune response inhibition, such as NP which targets 

PKR activation (Figure 14). In the absence of infection, PKR is strongly regulated by cellular inhibitors 

such as protein P58IPK. In uninfected cells, P58IPK forms a complex with the heat shock protein 40 

(Hsp40). Upon influenza infection, NP promotes their dissociation. The release of P58IPK will provoke 

the inhibition of PKR, and thereby, the inhibition of the translation arrest [150]. Other viral proteins, 

such as the polymerase subunits PB1, PB2 and PA, are also able to impair MAVS signaling and 

consequently the IFN production [82].  

 

Figure 14: Viral inhibition of IFN production by influenza-A-virus proteins. The NS1 protein targets TRIM25 and induces 

its degradation. The absence of TRIM25 prevents RIG-I full activation and consequently IFN-β expression. NS1 binds also to 

the double-stranded RNA structure of the genome and therefore counteracts PKR recognition. Furthermore, NP targets the 

protein Hsp40 and provokes the dissociation of the P58IPK/Hsp40 complex. This cellular inhibitor interacts and inhibits PKR, 

which consequently restores the translation of cellular and viral proteins. In addition, the proteins of the polymerase complex 

interacts with MAVS and inhibits the downstream signaling pathway.  
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5.15  Objectives of the thesis 

Pandemic influenza-A-viruses are derived from avian influenza viruses from which they have acquired 

at least one gene segment. Avian influenza viruses of subtype H9N2 are circulating worldwide and are 

endemic in poultry in a large part of Asia. Furthermore, these viruses have been occasionally transmitted 

to man and have contributed genes to other avian viruses causing human infections. It is therefore of 

interest to find out if H9N2 viruses have the potential to fully adapt to man and to cause a pandemic. 

Increasing evidence has highlighted the role of the virus polymerase complex, and particularly the PB2 

subunit, as critical determinants for host adaptation and virulence. The aim of this study is to determine 

if introduction of adaptive mutations in the PB2 subunit of the avian A/Quail/Shantou/2061/2000 and 

A/Quail/Shantou/782/2000 (H9N2) viruses promotes adaptation to mammals. 

 

To answer this question, in the first part of the thesis the impact of the adaptive mutations on polymerase 

activity and viral growth will be investigated by performing minigenome assays and studies of growth 

kinetics, respectively. In order to evaluate the effect of the adaptive mutations on the virulence of H9N2 

virus, mice pathogenicity studies will be conducted. The role of the adaptive mutations will also be 

compared in H9N2, H1N1pdm09, H7N7 and H7N9 viruses and the contribution of PB1 and PA will be 

analysed by generating heterologous polymerase complexes 

 

To throw more light on the functional role of adaptive mutations E627K and D701N, their effects on 

the interaction of PB2 with host factors will be analysed in the second part of the thesis. The focus will 

be on the nuclear transport of the nucleocapsid and on PB2 interaction with the innate immune system. 
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6 MATERIALS 

6.1 Chemicals 

Acetic acid glacial, Acrylamide, Agarose, Ammonium persulphate (APS), Avicel, Bacto agar, 

Bacto tryptone, Bromophenol blue, DAPI (4’,6-diamidino-2-phenylindole), Dimethyl sulfoxide 

(DMSO), Disodium hydrogen phosphate (Na2HPO4), Ethanol, Ethidium bromide, 

Ethylenediaminetetraacetic acid (EDTA), Fluoroprep, Glutamine, Glycerol, Glycine, Isopropanol, 

Magnesium chloride (MgCl2), Magnesium sulfate (MgSO4), ß-Mercaptoethanol, Methanol, 

Paraformaldehyde (PFA), Peptone, Potassium chloride (KCl), Potassium dihydrogen phosphate 

(KH2PO4), Skimmed milk powder, Sodium chloride (NaCl), Sodium dodecylsulfate (SDS), 

N,N,N’,N’Tetramethylethylendiamine (TEMED), Trishydroxymethyl-aminomethan (TRIS), Triton X-

100, Tween20/80, Xylene cyanol, Yeast extract 

 

All the chemicals were purchased from the following companies: 

BD Biosciences (USA), Biomérieux (Lyon), Biorad (Munich), Gibco BRL (Eggenstein), Life 

technology (Darmstadt), Lonza (USA), Merk (Darmstadt), PAA (Cölbe), Roth (Karlsruhe), Saliter 

(Obergünzburg), Serva (Heidelberg), Sigma-Aldrich (Steinheim). 

6.2 Consumables 

Combi-tips Ritips        Ritter GmbH, Schwabmünchen 

Cryotubes       Corning, Niederlande 

Slides       Menzel-Glaser, Braunschweig 

Syringes       B Braun AG, Melsungen  

Eppendorf-reaction tubes     Eppendorf AG, Hamburg 

HybondTM-P  

Polyvinylidenfluorid (PVDF)-Membrane (0.45µm)   GE Healthcare, UK 

Needles (20 to 26 G)       BD GmbH, Heidelberg 

Milk powder       Topfer, Dietmannsried 

Cover slips       Menzel-Glaser, Braunschweig 

Parafilm       Structure Probe Inc., München 

PCR-Tubes       Biozym, Hess. Oldendorf 

Petri dishes       Greiner, Frickenhausen 

TipOne-Pipette tips       Starlab GmbH, Ahrensburg 

Whatman 3MM-Filter paper     Schleicher & Schuell, Dassel 

Cell culture flasks (25 and 75 cm²)    Greiner, Frickenhausen 

Cell culture plates with multiwells    Greiner, Frickenhausen 
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Cell culture tubes       Greiner, Frickenhausen 

Cell scrapers       Sarstedt, Newton, USA 

Falcon polypropylene round-bottom tubes    BD GmbH, Heidelberg 

6.3 Kit 

Plasmid DNA mini kit I      Omega, USA 

QIAfilter Plasmid Maxi kit     Qiagen, Hilden 

QiaAmp Viral RNA Minikit      Qiagen, Hilden 

QIAquick PCR purification kit     Qiagen, Hilden 

QuickChangeTM Site-directed Mutagenesis Kit   Agilent, Frankfurt am Main 

QuickChangeTM Multi-directed Mutagenesis Kit  Agilent, Frankfurt am Main 

RNeasy Mini Kit      Qiagen, Hilden 

Profection Mammalian Transfection System  

Calcium phosphate      Promega, Mannheim 

Dual-Luciferase® Reporter Assay System   Promega, Mannheim 

SuperSignal West Femto Luminol/Enhancer Solution  Thermo Scientific, St. Leon-Rot 

True Blue Peroxidase Substrate     KPL, USA 

Transcriptor One-step RT-PCR kit     Roche, Mannheim 

Z-Competent E.Coli Transformation Buffer set   Zymo Research, USA 

6.4 DNA and Protein Markers 

1 kb DNA Ladder       NEB, Schwalbach 

PageRuler Plus Prestained Protein Ladder   Thermo Scientific, St. Leon-Rot 

6.5 Enzyme 

TPCK-trypsin       Sigma-Aldrich, Steinheim 

6.6 Antibodies 

6.6.1 Primary antibodies  

Rabbit α -H9N2 (serum)     Institute of Virology, Marburg 

Mouse α-NP (monoclonal)      Abcam, Cambridge  

Rabbit α- A/chicken/Rostock/34 (H7N1) (serum)   Institute of Virology, Marburg  

Mouse α- ß-actin       Sigma Aldrich, Steinheim 

Mouse α-RIG-I (monoclonal) ALME-1     Enzo life science  
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6.6.2 Secondary antibodies  

Goat α-mouse IgG FITC coupled  Jackson Immuno Research 

Laboratories  

Rabbit α-mouse IgG, HRP coupled     Dako, Denmark  

Swine α-rabbit, HRP coupled      Dako, Denmark 

6.7 Plasmids 

pHW2000 

Eukaryotic expression vector, Institute of Virology, Marburg  

 

pHW2000-HA/-PB2/-PB1/-PA/-NA/-NP/-M-/-NS of A/Quail/Shantou/2061/2000 (H9N2) 

Eukaryotic expression vector encoding protein of the isolate A/Quail/Shantou/2061/2000. It contains 

the promoter of human RNA-polymerase-I and RNA-polymerase-II of cytomegalovirus, Institute of 

Virology, Marburg (These plasmids were kindly provided by F. Schwalm and J. Baron) 

 

pHW2000-HA/-PB2/-PB1/-PA/-NA/-NP/-M-/-NS of A/Quail/Shantou/782/2000 (H9N2) 

Eukaryotic expression vector encoding protein of the isolate A/Quail/Shantou/782/2000 It contains the 

promoter of human RNA-polymerase-I and RNA-polymerase-II of cytomegalovirus, Institute of 

Virology, Marburg (These plasmids were kindly provided by F. Schwalm and J. Baron) 

 

pHW2000-HA/-PB2/-PB1/-PA/-NA/-NP/-M-/-NS of A/Hamburg/05/2009 (H1N1)  

Eukaryotic expression vector encoding protein of the isolate A/Hamburg/05/2009. It contains the 

promoter of human RNA-polymerase-I and RNA-polymerase-II of cytomegalovirus, Institute of 

Virology, Marburg (These plasmids were kindly provided by F. Schwalm) 

 

pHW2000-HA/-PB2/-PB1/-PA/-NA/-NP/-M-/-NS of A/Seal/Massachusetts/1/1980 (H7N7)  

Eukaryotic expression vector encoding protein of the isolate A/Seal/Massachusetts/1/1980 H7N7. It 

contains the promoter of human RNA-polymerase-I and RNA-polymerase-II of cytomegalovirus, 

Institute of Virology, Marburg (These plasmids were kindly provided by G.Gabriel) 

 

pHW2000-HA/-PB2/-PB1/-PA/-NA/-NP/-M-/-NS of A/Anhui/1/2013 (H7N9)  

Eukaryotic expression vector encoding protein of the isolate A/Anhui/1/2013. It contains the promoter 

of human RNA-polymerase-I and RNA-polymerase-II of cytomegalovirus, Institute of Virology, 

Marburg (These plasmids were kindly provided by F. Schwalm) 
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pPolI-NP-Luc  

Eukaryotic expression vector encoding the Firefly luciferase gene flanked by the non-coding region of 

the NP segment of influenza A WSN 33. The reporter gene is under the control of human RNA 

polymerase I (Accession number AF053462). This plasmid was kindly provided by Dr. Thorsten Wolff. 

 

pRen (pGL4.73) 

Eukaryotic expression vector encoding the Renilla luciferase expression plasmid. The reporter gene is 

under the control of SV40 promoter. (Promega)  

6.8 Viruses 

A/Quail/Shantou/2061/2000   H9N2, avian  provided by Y. Guan, Hong-Kong 

A/Turkey/Wisconsin/1/1966   H9N2, avian  provided by I. Capua, Italy 

A/Aichi/1/1968              H3N2, human  Institute of Virology, Marburg 

A/Quail/Hong-Kong/G1/1997  H9N2, avian  Institute of Virology, Marburg 

A/Seal/Massachusetts/1/1980  H7N7, avian  Institute of Virology, Marburg 

A/Thailand/Kan-1/2004  H5N1, human  provided by M. Schwemmle, Freiburg 

A/Hamburg/05/2009    H1N1, human  Institute of Virology, Marburg 

A/Anhui/1/2013    H7N9, human  provided by J. McCauley, London 

A/Puerto-Rico/8/1934   H1N1, human   Institute of Virology, Marburg 

6.9 Eukaryotic cells 

A549  Human lung adenocarcinoma epithelial cells 

Calu-3  Human airway epithelial cells 

DF1  Chicken embryonic fibroblast cells 

HEK 293T  Human embryonic kidney cells 

HEK 293T del-RIG-I Human embryonic kidney cells, RIG-I deficient 

MDCK H/II   Canine kidney epithelial cells (Madin Darby Canine Kidney) 

 

All cell stocks are from the Institute of Virology (Marburg), except HEK 293T del-RIG-I, kindly 

provided by Veit Hornung, Bonn. 
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6.9.1 Media and additives for cell culture  

Autoclaved Avicel solution [2.5% (w/v) in dH2O]   Instituted of Virology, Marburg 

30% Bovine Serum Albumin (BSA)     PAA, Cölbe 

Dulbecco’s modified Eagle’s medium (DMEM)   Gibco BRL, Eggenstein  

Foetal Calf Serum (FCS)     Gibco BRL, Eggenstein  

L-Glutamine (200MM, 100x)     Gibco BRL, Eggenstein 

Lipofectamine2000®      Invitrogen, Karlsruhe 

Modified Eagle’s medium (2x MEM)    Gibco BRL, Eggenstein 

OptiMEM®       Gibco BRL, Eggenstein 

Penicillin/Streptomycin (5000 U/ml)    Gibco BRL, Eggenstein 

Trypsin/EDTA-solution 0.05% 1X    Gibco BRL, Eggenstein 

 

Culture Medium Composition Quantity 

Growth Medium 

1X DMEM 500 ml 

L-Glutamine 1% 

Penicillin/Streptomycin 1% 

Foetal Calf Serum 10% 

   

Serum Free Medium/ Infection 

Medium (IFN-DMEM) 

1X DMEM 500 ml 

L-Glutamine 1% 

Penicillin/Streptomycin 1% 

30%BSA 0.30% 

   

Growth Medium (Calu-3cells) 

1X DMEM F12 500 ml 

L-Glutamine 1% 

Penicillin/Streptomycin 1% 

Foetal Calf Serum 10% 

   

Overlay Medium 
2X MEM-infectious Medium 

mixed with Avicel-Solution 
1:1 

6.10  Peptide inhibitors 

PB11-15-TY6-Tat (used 10 ng/ml) Provided by Martin Schlee [189] 

Borna-X-Tat (used 10 ng/ml) Provided by Martin Schlee [189] 
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6.11  Bacteria 

Z competent XL1 blue E.coli      Institute of Virology, Marburg 

6.11.1 Media and additives for bacteria culture  

Luria Bertani (LB) Medium 

peptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

dH2O add 1 L 

LB Agar 

peptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

Bacto Agar 15 g 

dH2O add 1 L 

LB-Medium / Ampicillin LB-Medium + Ampicillin 100 µg/ml 

LB-Agar / Ampicillin LB-Agar + Ampicillin 100 µg/ml 

 

Super Optimal Broth (SOB) 

Medium (pH 6-7) 

Bacto-tryptone 20 g 

Yeast extract 5 g 

NaCl 0.6 g 

KCl 0.2 g 

1M MgCl2 10 ml 

1M MgSO4 10 ml 

dH2O ad 1 L 

6.12  Antibiotics 

Ampicillin (1 g)       Ratiopharm, Ulm  

Cycloheximide (CHX) 

(Stock: 50 mg/ml, solved in DMSO, used at 50µg/ml)  Sigma-Aldrich, Steinheim 

Leptomycine B (LMB)  

(Stock: 16 mM,  solved 7:3 methanol/ water, used 16nM) Sigma-Aldrich, Steinheim 

Anisomycin  

(Stock: 250 µg/ml, solved in DMSO, used at 250ng/ml)  Sigma-Aldrich, Steinheim 
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6.13  Buffer 

Phosphate Buffered Saline 

deficient (PBSdef) 

NaCl 8 g 

KCl 0.2 g 

Na2HPO4 1.15g 

KH2PO4 0.2g 

dH2O ad 1 L 

 

Plaque Test washing buffer 

NaCl 12 g 

Na2HPO4 x 2H2O 3.4 g 

KH2PO4 0.3 g 

Tween 20 0.10% 

dH2O ad 1 L 

   

Antibody Solution for Plaque 

Test 

BSA powder diluted in Plaque 

Test Washing Buffer 
1% 

 

4×Sample Buffer 

dH2O 3.75 ml 

0,5 M Tris-HCl, pH 6,8 2.5 ml 

Glycerol 2.5 ml 

10 % (w/V) SDS 0.5 g 

Bromophenol Blue 25 mg 

b-Mercaptoethanol 2.5 ml 

   

SDS- Running Buffer (2X) 

SDS 5 g 

TRIS 15 g 

Glycerol 72 g 

dH2O ad 1 L 

   

Transfer Buffer 

Glycerol 2.5 g 

TRIS 5.8 g 

Ethanol absolute mixed with 

methyl ethyl ketone 
200 ml 

dH2O ad 1 L 
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Western Blot Washing Buffer 
PBS ad 1 L 

Tween 80 0.10% 

   

Blocking Buffer Western Blot 

Skimmed-milk powder 7% 

PBSdef/0.1% Tween80 

ad User 

defined 

volume 

   

Antibody Solution for Western 

Blot 

Skimmed-milk powder diluted 

in Western Blot Washing Buffer 
1% or 7% 

 

Blocking Buffer 

Immunofluorescence 

BSA 2% 

Glycerol 5% 

Tween 20 0.20% 

   

Antibody Solution for 

Immunofluorescence 
FCS diluted in PBSdef  1% 

 

50X TAE-Buffer 

TRIS 242 g 

0,5M EDTA (pH 8) 100 ml 

Glacial acetic acid 51.1 ml 

dH2O ad 1 L 

   

Ethidium Bromide Incubation 

Buffer 

TAE- buffer 1X 

Ethidium Bromide 10 µg/ml 

 

6X DNA-Sample Buffer 

Glycerol 30% (w/v) 

Bromophenol Blue 0.25% (w/v) 

Xylene cyanol 0.25% (w/v) 

Solved in dH2O 
adjusted 

volume 
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6.14  Oligonucleotides 

6.14.1  Oligonucleotides for sequencing  

Name Sequence 

pHW2000 50 fo 5’-ctcactatagggagaccc-3‘ 

pHW2000 50 re 5’-gaggtatatctttcgctcc-3‘ 

H9N2 PB2 800 fo 5'-caggagagcaacagtatcag-3' 

H7N9 PB2 918 re 5'-ctgttcttctgttgggttttgtc-3' 

H7N9 PB2 1596 fo 5'-atcgtccatgatgtgggagatcaat-3' 

H7N9 PB2 800 fo 5'-ttagaagagcaacagtatcagcag-3' 

 

6.14.2  Oligonucleotides for PB2 amplification from viral RNA. 

Name Sequence 

BA-PB2 fo 5'-tattggtctcagggagcgaaagcaggtc-3' 

BA-PB2 re 5'-atatggtctcgtattagtagaaacaaggtcgttt-3' 

H9N2 1694 fo 5'-cccaagaacccaccatgctatacaat-3' 

 

6.14.3  Oligonucleotides for correction of H7N9 PB2 

Name Sequence 

correction K62R fo 5'-ccaattacggcagacaaaaggataatggagatgatcccg-3' 

correction K62R re 5'-cgggatcatctccattatccttttgtctgccgtaattgg-3' 

 

6.14.4  Oligonucleotides for mutagenesis of PB2 H9N2 

Name Sequence 

Q591K fo 5'-ccagaagcaagtacagtggatttgtgagaacgc-3' 

Q591K re 5'-gcgttctcacaaatccactgtacttgcttcttctgg-3' 

E627K fo 5'-atttgcagcagccccacctaagcagagtaggatgcaatttt-3' 

E627K re 5'-aaaattgcatcctactctgcttaggtggggctgctgcaaat-3' 

D701N 5'-tcggcaaagaaaataaaagatatggaccagc-3' 

D701N 5'-gctggtccatatcttttattttctttgccga-3' 

S714I fo 5'-gcattaagcatcaatgaactgattaatcttacgaagggggagaaag-3' 

S714I re 5'-ctttctcccccttcgtaagattaatcagttcattgatgcttaatgc-3' 

S714R fo 5'-cattaagcatcaatgaactgcggaatcttacgaagggggagaa-3' 

S714R re 5'-ttctcccccttcgtaagattccgcagttcattgatgcttaatg-3' 
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D253N fo 5'-ggggaggtaagaaataacgatgttgaccaa-3' 

D253N re 5'-cccctccattctttattgctacaactggtt-3' 

 

6.14.5  Oligonucleotides for mutagenesis of PB2 H7N9 

Name Sequence 

 K627E fo  5'-cagcagccccgccggaacagagtaggatgcag-3' 

 K627E re 5'-ctgcatcctactctgttccggcggggctgctg-3' 

 S714R fo  5'- cattgagcatcaacgaattgcggaatcttgcgaaaggagagaa -3' 

S714R re 5'- ttctctcctttcgcaagattccgcaattcgttgatgctcaatg -3' 

6.15  Other materials  

Avian erythrocytes       Hutches of the University Marburg 

Embryonated chicken eggs       Lohmann GmbH, Cuxhaven 
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7 METHODS 

7.1 Cellular Methods 

7.1.1 Cell culture 

Confluent cells are passaged every three days. Cells are cultivated in growth medium, where they are 

washed two times with PBSdef to discard dead cells and remove residual Foetal Calf Serum (FCS) 

(trypsin inhibitor). Trypsin/EDTA (1 ml in 25 cm² flask and 2 ml in 75 cm² flask) is added to detach 

cells. The trypsin-treated cells are incubated (37°C and 5% CO2) until complete detachment of the cells 

(5 to 20 min). Cells are resuspended in growth medium, seeded in a new flask/ plaque and incubated at 

37°C and 5% CO2.  

7.1.2 Cryopreservation and thawing of eukaryotic cells 

Confluent cells (in 75 cm² flask) are treated as for cell passaging. After complete detachment, cells are 

resuspended in 2 ml of cold FCS and centrifuged at 800 rpm for 5 min. Supernatant is removed and cells 

are gently resuspended in 1 ml of culture medium containing 20% FCS in addition of 1 ml of culture 

medium containing 20% DMSO. Resuspended cells are aliquoted in cryotubes and stored in an 

isopropanol isolation box at -80°C overnight. Cells aliquots are then transferred in nitrogen tank for 

conservation. 

Cells are thawed at 37°C, to allow a fast defrosting, then transferred in a 12 ml cell culture tube, where 

10 ml of PBSdef are added to remove DMSO present in the mix. Cells are centrifuged at 1500 rpm for 5 

min and the supernatant discarded. Cells are then gently resuspended in 5 ml of adequate pre-warmed 

medium and seeded in a 25 cm² flasks.  

7.1.3 Transfection of eukaryotic cells 

7.1.3.1 Lipofectamine 

Transfection is based on introduction of free DNA (here plasmid DNA) into eukaryotic cells. For this 

purpose, a cationic liposomal agent (Lipofectamine 2000®) is used. The mix of this agent with DNA 

will lead to the formation of liposome/nucleic acid complex, which will allow fusion of this complex 

and the cell membrane. The plasmid DNA will then enter the nucleus, where the transcription will occur. 
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Amount per well (6well plate) 

Solution 1 1 µg/plasmid + 250 µl optiMEM 

Solution 2 15 µl Lipofectamine + 235 µl optiMEM 

Solution one, containing the DNA for transfection and optiMEM, and solution two, containing 

lipofectamine and optiMEM, are prepared separately in cell culture tubes and incubated for 5 min at 

room temperature (RT). Solution one is added to solution two and incubated for 25 min at RT to allow 

DNA-lipofectamine complex formation. Subconfluent HEK 293T cells (80%) seeded one day pre-

transfection are gently washed with PBSdef and 1.5 ml of optiMEM is added to each well. Transfection 

mix is added to the cells and incubated at 37°C and 5% CO2. After six hours, transfection medium is 

replaced with serum-free medium and transfected cells incubated for 48 h at 37°C and 5% CO2.  

7.1.3.2 Calcium phosphate 

Another method of transfection using carrier molecules is the calcium phosphate transfection. Here we 

used "Profection Mammalian Transfection System Calcium Phosphate kit". Medium of subconfluent 

cells is replaced by fresh growth medium 3h pre-transfection and incubated at 37°C, 5% CO2. Solution 

one containing a mix of DNA and calcium chloride is added drop-by-drop in solution two containing 

HEPES-Buffered-Saline (HBS) solution with phosphate ions, while vortexing. A fine precipitate of 

positively charged calcium and negatively charged phosphate is formed with attached DNA on its 

surface. After incubation for 30 min at RT, the DNA mix is added dropwise on the cells and incubated 

at 37°C, 5% CO2. After 24 h incubation, medium is replaced by fresh growth medium and cells are 

incubated for additional 24 h at 37°C, 5% CO2 until measurement of luciferase activity. 

Amount per well (12well plate) 

Solution 1 Solution 2 

200 ng per plasmid (PB2, PB1, PA, NP) 

150 µl HBS 2X 

200 ng Firefly Luciferase plasmid + 75 ng Renilla 

Luciferase plasmid 

1.8 µl CaCl2 

adjust to 150 µl H2O 
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7.2 Bacterial Methods 

7.2.1 Bacteria  

Escherichia coli (E.coli) bacteria are cultured on agar plates containing a selective antibiotic 

(Ampicillin, final concentration 100 µg/ml). This antibiotic enables the selection of plasmids of interest. 

Colonies present on the plate are picked and cultured in 5 ml Luria Bertani Medium (LB) medium 

containing Ampicillin (final concentration 100 µg/ml). The culture is incubated overnight at 37°C on a 

shaker (200 rpm). 

7.2.2 Preparation and transformation of Z-competent cells 

For preparation of Z-competent bacteria, the "Z-CompetentTM E.coli transformation kit & buffer set" is 

used. E.coli bacteria are cultivated overnight in 5 ml LB medium 37°C, on shaker 200 rpm. The next 

day, 800 µl of the bacteria culture are added to 50 ml Super Optimal Broth (SOB) medium and incubated 

on a shaker at 30°C, 200 rpm, for 3 h. During incubation, wash buffer 1X and competent buffer 1X are 

prepared and stored on ice, according to manufacturer protocol. After 3 h incubation, bacteria culture is 

stored on ice for 10 min and pelleted at 3000 rpm, 4°C for 10 min. Supernatant is removed and cells are 

gently resuspended in 5 ml ice cold wash buffer. Bacteria are once more pelleted at 3000 rpm and 4°C 

for 10 min. Supernatant is discarded and bacteria are resuspended in 5 ml ice cold competent buffer. 

Competent bacteria are aliquoted into sterile Eppendorf tubes and stored at -80°C. This protocol 

eliminates heat-shock treatment for bacteria transformation. 

Transformation is based on introduction of free DNA (plasmid) into bacteria. Z-competent bacteria are 

thawed and 500 ng of DNA is added to the mix. After incubation on ice for 30 min, bacteria mix is 

added to 200 ml culture of LB medium containing ampicillin (final concentration of 100 µg/ml) and 

incubated overnight on a shaker at 37°C. 

7.2.3 Preparation of plasmid DNA from bacteria 

For the isolation of plasmid-DNA, the Qiagen-kit “QIAfilter plasmid maxi kit” or Omega-kit "Plasmid 

DNA mini kit" are used. The protocols provided by manufacturers are followed. Briefly, after 

centrifugation of the cultured bacteria, the pellet is resuspended in buffer containing RNAse. After 

bacteria lysis and neutralization of the lysate, the chromosomal DNA and proteins are precipitated and 

separated from the plasmid DNA. The filtrate is then poured on a column containing plasmid DNA 

linked to an anion-exchanger under low salt conditions. After washing, DNA is eluted in water for 

minipreparation with “plasmid DNA mini kit” and eluted in high salt conditions for maxipreparation 

with “QIAfilter plasmid maxi kit”. For maxipreparation, DNA is precipitated with 10.5 ml isopropanol 

and centrifuged 1 h at 6000 rpm 4°C. The pellet is then cleaned and centrifuged in 5 ml of 70% ethanol 

for 30 min 6000 rpm at 4°C. DNA is then resuspended in water and stored at -20°C.  

Concentration and purity of DNA is measured with Nanodrop device.  
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7.3 Molecular Methods 

7.3.1 Site directed mutagenesis 

PB2 mutations are generated by using the "QuickChangeTM site-directed Mutagenesis kit" or the 

"QuickChangeTM multisite-directed Mutagenesis kit" from Agilent. Mutations are introduced via use of 

designed primer added in the polymerase reaction mix. To eliminate parental DNA (not mutated) the 

reaction is then submitted to digestion with DpnI for 1 h at 37°C. The DpnI endonuclease recognizes 

methylated or hemimethylated DNA and is used to digest the parental DNA template (DNA isolated 

from almost all E.coli is methylated). The final product is transformed in provided XL-1 Blue or XL-10 

Gold bacteria and plated on LB agar containing ampicillin (100 µl/ml). 

 

Standard Reaction  Cycle Parameters 

QuickChange® II Site-directed Mutagenesis 

kit  
QuickChange® II Site-Directed Mutagenesis 

Component Volume/Quantity 
 

Step Temperature Time Cycles 

10X reaction buffer 5 µl 
 

Initial 

Denaturation 
95°C 30 s 1 

DNA template 5-50 ng 
 

Denaturation 95°C 30 s 

16 Primer fo 10 pmol 
 

Annealing 55°C 1 min 

Primer re 10 pmol 
 

Elongation 68°C 6 min* 

dNTP mix 1 µl 
 

*1 minute/kb of plasmid length 

PfuUltra HF DNA 

polymerase (2.5 U/µl) 
1 µl 

 
 

ddH2O adjust to 50 µl 
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Standard reaction  Cycle parameter 

QuickChange® II Multisite-directed 

Mutagenesis kit  
QuickChange® II Multisite-directed Mutagenesis 

Component 
Volume/Quantity 

for > 5 kb plasmid  
Step Temperature Time Cycles 

10X reaction buffer 2.5 µl 
 

Initial 

Denaturation 
95°C 1 min 1 

DNA template 100 ng  Denaturation 95°C 1 min 

30 Primer fo 10 pmol  Annealing 55°C 1 min 

Primer re 10 pmol  Elongation 65°C 12 min* 

dNTP mix 1 µl  *2 minute/kb of plasmid length 

QuickChange® II Multi 

enzyme blend 
1 µl 

 
 

ddH2O adjust to 25 µl      

 

7.3.2 DNA sequencing 

To verify the proper sequence of the isolated plasmid, sequencing based on the chain termination method 

is performed. The reaction-mixture contains 1.5 µg DNA and 30 pmol of a specific primer in a final 

volume of 15 µl resuspension buffer. The preparation is then sequenced by the Seqlab Company and 

analysis is conducted using the BioEdit Sequence Alignment Editor.  

7.3.3 Minigenome Assay (measurement of viral polymerase activity)  

This assay enables the measurement of the activity of the viral polymerase (composed of PB1, PA, PB2) 

by quantification of reporter genes.  

Subconfluent (70%) HEK 293T cells are transfected using the “Profection Mammalian Transfection 

System Calcium Phosphate kit” (as described above) with plasmid (pHW2000) encoding for the 

polymerase subunits (PB1, PB2, PA), NP and the reporter genes Firefly and Renilla luciferase. The 

Firefly luciferase gene is flanked by non-coding regions of the influenza virus NP segment under the 

control of the Pol I promoter (accession no. AF053462). When plasmid is transfected and diffuses to the 

nucleus, the transcription of the Firefly plasmid leads to the synthesis of viral RNA of negative polarity. 

This RNA is recognized by the viral polymerase (PB2/PB1/PA/NP) and mRNA is produced. 

Quantification of Firefly luciferase allows determination of the polymerase efficiency. To normalize 

this quantification, an additional plasmid encoding Renilla luciferase is transfected. The Renilla gene is 

constitutively expressed, under the control of a SV40 promoter (Figure 15 and Figure 16).  
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Figure 15: Schematic representation of expression plasmids for the minigenome assay. The plasmid encoding the Renilla 

luciferase (Ren) is under the control of the SV40 promoter and is constitutively expressed. The plasmids encoding the Firefly 

luciferase (Fire) is under the control of the Pol I promoter and leads to the synthesis of RNA of negative polarity. 

 

 

 

Figure 16: Schematic representation of the minigenome assay. Six expression plasmids encoding for the viral polymerase 

complex (PB2, PB1, PA), NP and the reporter genes Firefly (Fire) and Renilla (Ren) luciferase are transfected into HEK 293T 

cells. The transcription by Pol I of the Firefly luciferase plasmid leads to the synthesis of a RNA (-) recognized by the viral 

polymerase complex. The mRNA resulting from the viral transcription leads to the synthesis of the Firefly luciferase protein. 

Renilla luciferase is under the control of a SV40 promoter and results in the constitutive expression of the plasmid. The 

quantification of the Firefly luciferase normalized by the Renilla luciferase enables the quantification of the polymerase 

activity. Fire: Firefly luciferase, Ren: Renilla luciferase. 

7.4 Biochemical methods 

7.4.1 Conformational switch of RIG-I: Trypsin digestion 

The infected A549 cells are harvested at 1 h post infection. Cells are washed with PBSdef and centrifuged 

at 3500 g for 5 min at RT. Supernatant is discarded and cells are resuspended in 25 µl of 0.5% Triton 

100-X, followed by an incubation for 10 min at 4°C. Cells are centrifuged at 10000 g for 10 min at 4°C. 

From the supernatant, 10 µl are used for input control, and 10 µl used for the trypsin treatment. The 

Pol I 

Promotor

Pol II 

Promotor

Pol I 

Promotor

SV40 

Promotor

Fire
PB1

PB2

PA

NP

Ren

FireRen

pHW2000 pHW2000

pHW2000 pHW2000

Fire

RNA (-)
3‘ 5‘

mRNA

5‘PPP

PB1

PB2PA

NP

Ren

Fire

3‘5‘ AAAAAAAAA

mRNA
3‘5‘

AAAAAAAAARen

PB1

PB2

PA

NP

3‘5‘ AAAAAAA

3‘5‘ AAAAAAA

3‘5‘ AAAAAAA

3‘5‘ AAAAAAA



Methods 

38 

untreated samples are mixed with 3.5 µl of 4X sample buffer and boiled for 10 min at 100°C. The trypsin 

treated samples are mixed with 1.1 µl of trypsin TPCK (2 µg/µl) and incubated for 25 min at 37°C . The 

reaction is stopped by addition of 3.5 µl of 4X sample buffer, and boiled for 10 min at 100°C. Analysis 

of the samples is performed by sodium dodecylsulfate- polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western Blot using anti-RIG-I antibody (diluted 1:1000). 

7.4.2 Cell lysis and preparation of samples for SDS- polyacrylamide gel 

electrophoresis (SDS-PAGE) 

The infected cells (A549 or DF-1 cells) are harvested at different time point post infection. Cells are 

washed with PBSdef, and 50 µl of SDS sample buffer (2X, diluted in PBS) are added into the well. 

Sample buffer is swirled into the well to resuspend and lyse the cells. Mix of cell and sample buffer is 

transferred in a sterile Eppendorf vial and boiled (2 times when these are BSL-3 samples) for 10 min at 

100°C. After cooling, the samples were stored at -20°C or directly used for SDS-PAGE followed by 

Western Blot.  

7.4.3 Protein separation by SDS-PAGE 

SDS-polyacrylamide gel electrophoresis is a common method to separate proteins electrophoretically 

according to their size. The SDS sample buffer contains SDS, which disrupts secondary and tertiary 

protein structures, and detergent ß-mercaptoethanol, which reduces the covalent disulfide bonds. The 

negative charge provided by SDS enables the protein to migrate through an anode electrical field.  

Detection of the protein can be done via coloration with Coomassie blue or proteins can be transferred 

to an appropriate membrane (Western Blot) and detected by immunostaining. 

For the SDS-PAGE, 12 % separating gels and 4.4 % stacking gels were prepared. The stacking gel 

enables the concentration of the protein, whereas the separating gel enables the separation of the proteins 

according to their size. 

Composition of the gel: 

12% separating solution (sufficient for two gels) 

30% Acrylamide (Rotiphorese-Gel 30)    4 ml 

1.5 M TRIS pH 8.8      2.5 ml 

dH2O        3.3 ml 

10% SDS       100 µl 

10% APS       100 µl 

TEMED       10 µl 
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4.4% stacking solution (sufficient for two gels) 

30% Acrylamide (Rotiphorese-Gel 30)    750 µl 

0.5 M TRIS pH 6.8      1.3 ml 

dH2O        2.9 ml 

10% SDS       100 µl 

10% APS       60 µl 

TEMED       10 µl 

In the stacking gel pocket, 10 µl of each sample are added. As protein reference, 3.2 µl of a molecular 

weight marker (PageRuler Plus Prestained Protein Marker) is used. An electric field is applied (140 V, 

300 mA) for 1h to separate the proteins according to their molecular size in a 1X SDS running buffer 

(diluted in water).  

7.4.4 Western Blot: Transfer of proteins to PVDF-membranes  

After electrophoretic separation by SDS-PAGE, proteins are transferred to a polyvinylidene fluoride 

(PVDF)-membrane via electro blotting. An electric field is applied allowing migration of the negatively 

charged proteins from the gel to the anode where they adhere irreversibly on the PVDF-membrane. The 

pile of electro-blotting layers is assembled in the following order:  

Organisation of the pile: 

Cathode 

Three Whatman papers, imbued in transfer buffer 

Gel, washed in transfer buffer 

Membrane, activated in methanol and washed in transfer buffer 

Three Whatman papers, imbued in transfer buffer 

Anode 

The transfer buffer, containing ethanol, removes SDS from the protein-detergent-complexes, resulting 

in adherence of protein on the membrane.  

Transfer of proteins is performed at maximum voltage (300 V) and amperage of 40 mA per gel (0.8 

mA/cm2) for 70 min. For detection of specific proteins via immunostaining, the PVDF-membrane is 

incubated in blocking buffer (7 % skimmed milk diluted in Western Blot washing buffer) to avoid any 

unspecific signal. 
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7.4.5 Immunological detection of proteins on PVDF-membranes (Western 

Blot) 

7.4.5.1 NP detection 

After blocking of the membrane for 30 to 60 min on the plate shaker at RT, the membrane is incubated 

(in 5 ml antibody solution for Western Blot 7 %) with the primary rabbit α-H7N1 antibody (diluted 

1:6000) for 1 h at RT or overnight at 4°C while shaking. Membranes are washed three times with 

Western Blot Washing buffer (10 min each washing step) to remove the remaining antibody-solution. 

The secondary swine α-rabbit antibody, coupled with Horseradish peroxydase (HRP) and diluted 1:2000 

(in 5 ml antibody solution for Western Blot, 7 %) is then added to the membrane for 45 min on the plate 

shaker at RT. Three additional washing steps of 10 min are performed, in addition of one washing step 

with PBSdef for 5 min.  

To detect the antibody-protein-complex by enhanced chemiluminescence, a specific substrate (Super 

signal West Femto Luminol), processed by the HRP, is added to the membrane according to 

manufacturer’s protocol.  

To normalize the amount of loaded protein, quantification with ß-actin as standard protein is performed.   

7.4.5.2 Actin detection 

After detection of the NP protein, the membrane is washed to remove any residual substrate. The 

membrane is dried in order to inactivate the HRP enzyme. Subsequently, the membrane is reactivated 

in methanol and washed in Western Blot washing buffer. The membrane is then incubated with the 

primary mouse α-actin antibody (diluted 1:1000, in 1 ml antibody solution for western blot, 1%) for 1 h 

at RT or overnight at 4°C, covered with parafilm. Membrane is washed three times with Western Blot 

Washing buffer (10 min each washing step) to remove the remaining antibody-solution. The secondary 

rabbit α-mouse antibody, coupled with HRP (diluted 1:2000, in 5 ml antibody solution for Western Blot, 

7 %) is then added to the membrane for 45 min on the plate shaker at RT. Three additional washing 

steps of 10 min are performed, in addition to one washing step with PBSdef for 5 min. 

The detection of actin protein is performed as for the NP proteins (see above). 

7.5 Virological methods 

7.5.1 Preparation of BSL-3 samples 

All infections have been performed in a BSL-3 facility. Inactivation of BSL-3 samples is done following 

the current standard operating procedures of the BSL3 facility of the Institute for Virology, Philipps 

Universität, Marburg. 

Immunofluorescence samples: 
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Infected cells are washed with PBSdef and fixed with 4 % paraformaldehyde (PFA) for a minimum of 16 

h at 4°C. Cover slips are transferred into a new vessel with new PFA solution and transported out of the 

BSL-3 laboratory. 

Plaque assay: 

Infected cells are washed with PBSdef and fixed with 4 % paraformaldehyde (PFA) for a minimum of 16 

h at 4°C. PFA is removed and fresh PFA is added to each plates and transported out of the BSL-3 

laboratory. 

Samples for Western Blot 

Infected cells are lysed in presence of 1 % SDS and boiled for 10 min. Samples are then place into new 

tubes and transported out of the BSL-3 laboratory, and boiled once more at 100°C for 10 min. 

RNA isolation 

“QiampViral RNA mini-kit” is used for virus stock samples. Samples are mixed with the lysis buffer 

vortexed and incubated for 15 min at RT. One volume of ethanol is added according to the kit’s protocol. 

7.5.2 Infection of cells with influenza-A-virus 

Subconfluent cells are washed with PBSdef, and infected with a virus dilution of required multiplicity of 

infection (MOI). Cells are incubated for 45 min at 37°C, 5% CO2. After adsorption of the viruses, cells 

are washed with PBSdef, and incubated in infection medium at 37°C, 5% CO2 for the required time, until 

harvest of the supernatants or cells. 

 

𝐀𝐦𝐨𝐮𝐧𝐭 𝐨𝐟 𝐜𝐞𝐥𝐥𝐬 × 𝐌𝐎𝐈

𝐕𝐢𝐫𝐚𝐥 𝐭𝐢𝐭𝐞𝐫 [𝐏𝐅𝐔/𝐦𝐥]
= 𝐈𝐧𝐨𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐕𝐨𝐥𝐮𝐦𝐞 [𝐦𝐥] 

7.5.3 Recombinant virus (Rescue) 

For the production of recombinant viruses, a reverse genetic system based on transfection of 8 plasmids 

[72] is used. Briefly, confluent HEK 293T cells are washed with PBSdef, and transfected with 8 plasmids 

each encoding for one segment of the influenza virus (Lipofectamine protocol). The plasmids are under 

the control of a polymerase-I-promoter for synthesis of negative-sense viral RNA and under the control 

of a polymerase-II-promoter for the transcription of messenger RNA (Figure 17).  

After 6 h of incubation the transfection mix is replaced by 4 ml serum-free medium, containing 

trypsin/TPCK (1 µg/ml), and incubated for 48 h at 37°C and 5%CO2. Supernatants of HEK 293T cells 

are then collected and treated with trypsin/TPCK (10 µg/ml) for 1 h at 37°C, to ensure cleavage of 

haemagglutinin from new viral particles. Activation of the HA enables the virus to infect new cells. In 

the meantime, MDCK cells (90 % confluent seeded in 25 cm2 cell culture flasks) are washed with PBSdef 

and infected with 2 ml of trypsin-treated supernatant, followed by 2 h incubation at 37°C, 5% CO2. 
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Supernatant is then discarded, cells are washed with PBSdef and incubated in 5 ml serum-free medium 

containing trypsin/ TPCK (1 µg/ml). After 48 hours of incubation, the supernatant is harvested and 

centrifuged at 2500 rpm at 4°C for three minutes to remove cells debris. Virus-solution is aliquoted in 

cryotubes and stored at -80°C until titration.  

 

Figure 17: Schematic representation of recombinant virus generation. Eight expression plasmids (pHW2000 vector) 

encoding the eight viral segments inserted between the human Pol I promoter and the Pol II promoter are transfected into 

HEK293T cells. The transcription of these plasmids by Pol I and Pol II results in the synthesis of viral mRNAs and vRNAs. The 

synthesis of the viral polymerase complex proteins (PB1, PB2, PA, NP) initiate the virus cycle, followed by the assembly of 

vRNPs and budding of new infectious influenza-A-virus. 

 

7.5.4 Haemagglutination assay 

The haemagglutination assay is a common method for influenza viruses titration. The principle of this 

assay is based on the ability of influenza haemagglutinin to bind to N-acetylneuraminic acid of red blood 

cells and to form a lattice-structure. If the solution does not contain viral particles, the erythrocytes are 

not agglutinating and will form a spot at the bottom of the plate.  

For the haemagglutination assay, a 96-well plate with U-shaped bottom is used. 100 µl of the virus-

solution are 2-fold serially diluted in 50 µl PBSdef. Wells containing only PBSdef are used as negative 

control. In each well is added 50 µl of a 1% chicken-erythrocytes-suspension and the plate is incubated 

on ice for 30 min to inhibit the neuraminidase activity. The titre of the suspension corresponds to the 

inversed value of the dilution for the last haemagglutination well. 
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7.5.5 Plaque test 

The avicel plaque-test enables the titration of virus samples and is indicated in plaque forming units 

(PFU) per millilitre. The overlay medium only allows viral diffusion from cell to cell, one plaque 

representing one infectious particle. 

For this assay, titration is done in a 24-well plate with 90% confluent MDCK cells. A ten-fold serial 

dilution of the virus sample is done in serum-free medium. Cells are washed with PBSdef, and infected 

with 200 µl of diluted virus suspension. After 45 min of adsorption at 37°C and 5% CO2, cells are 

washed with PBSdef (to remove non-adsorbed viral particles) and 0.5 ml of overlay medium containing 

trypsin/TPCK (1 µg/ml)  are added to the cells followed by an incubation for 48 h at 37°C, 5%CO2.  

Two days post infection, overlay medium is removed and cells are washed with PBSdef. The cells are 

then fixed with PFA at 4°C for 24 h (BSL-3 conditions). PFA is discarded 24 h later and cells are washed 

with PBSdef. Permeabilisation of the cells is performed by adding 300 µl of 0.3% TritonX-100 for 30 

min at RT, on shaker. After permeabilisation, 150 µl of primary antibody (α-H9N2; diluted 1:10.000 in 

1% antibody solution for plaque test) are added to the cells, followed by an incubation of 90 min at RT, 

on shaker. Cells are washed three times with plaque test washing buffer and incubated with 150 µl of 

secondary antibody (swine α-rabbit; diluted 1:2000) coupled with HRP (Horseradish Peroxidase). After 

75 min of incubation at RT and three additional washing steps, 125 µl of True Blue Peroxidase Substrate 

are added. The reaction is stopped with H2O three washing steps and infected cells are detected as blue 

plaques. Virus titer is determined by the following formula:  

𝐏𝐥𝐚𝐪𝐮𝐞 𝐩𝐞𝐫 𝐰𝐞𝐥𝐥 ×  
𝟏

𝐝𝐢𝐥𝐮𝐭𝐢𝐨𝐧
 × 

𝟏

𝐯𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐯𝐢𝐫𝐮𝐬 𝐬𝐮𝐬𝐩𝐞𝐧𝐬𝐢𝐨𝐧 [𝐦𝐥]
= 𝐯𝐢𝐫𝐮𝐬 𝐭𝐢𝐭𝐞𝐫 [𝐩𝐟𝐮/𝐦𝐥] 

7.5.6 Isolation and Reverse Transcription of viral RNA 

For isolation of viral RNA (vRNA), the Qiagen "QIAmp viral RNA mini kit" protocol is followed. 

Briefly, the vRNA is lysed under highly denaturing conditions to inactivate RNAse and to ensure 

isolation of intact viral RNA. After several washing step, RNA is eluted in AVE buffer (provided) and 

stored at -80°C. 
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To analyse the vRNA, reverse transcription need to be performed. For Reverse-Transcription-

Polymerase-Chain-Reaction (RT-PCR), the Roche "Transcriptor One step RT-PCR kit" is used.   

Standard Reaction  Cycle Parameters for PB2 Amplification 

Transcriptor One-Step RT-PCR kit (Roche) 
 

Transcriptor One-Step RT-PCR 

Component 
Volume/ Final 

concentration  

Step Temperature Time Cycles 

5 X buffer 1 X 

 

Reverse 

transcription (RT) 
50°C 30 min 1 

Primer fo 0.4 µM 

 

Activation of the RT 

and activation of the 

polymerase 

94°C 7 min 1 

Primer re 0.4 µM  Denaturation 94°C 10 s 

35 

Transcriptor enzyme 

mix 
0.5 µl 

 
Annealing 60/63°C 30 s 

template 10 µl 
 

Elongation 68°C 
3.5 min 

/1.5 min 

H20 adjust to 25 µl  Final elongation 68°C 7 min 1 

In bold are conditions for amplification of the C-terminal part of the PB2 using primers BA-PB2 re and 

H9N2 1694 fo, for full amplification of PB2, primer BA-PB2 re and BA-PB2 fo are used. 

7.5.7 DNA separation on agarose gels 

PCR-products are analysed for length and purity by electrophoresis on agarose gels. The migration of a 

DNA fragment is determined by its length. Because of the negative polarity of the phosphate at the 5’ 

end, DNA is migrating from the cathode (-) to the anode (+) in the electrical field. DNA separation is 

performed with 0.8 % to 1 % agarose gel in 1 X TAE-Buffer, where samples are mixed with 6 X DNA 

sample buffer.  A commercial marker “1 kb DNA Ladder” (NEB) is used to determine the size of DNA 

fragment. The electrophoretic separation is done under the following conditions: 150 V, 250 mA for 40 

to 60 min. After migration, the gel is incubated in an ethidium bromide solution (10 µg/ml in 1 X TAE 

Buffer) for 10 to 20 min. ethidium bromide is an intercalating agent capable of binding double strand 

DNA. The exposition of DNA to UV light lead to the luminescence of the ethidium bromide and the 

detection of DNA fragment. Before sequence analysis of a DNA fragment, the sample is purified by 

using the “QIAquick® PCR Purification kit”. 
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7.5.8 Virus propagation  

7.5.8.1 Viral propagation in eggs 

For the propagation of influenza A-viruses, eleven-day old chicken eggs are used. Area surrounding the 

air bladder is disinfected with iodine solution. A small hole is made using a hand brace and with a sterile 

syringe and cannula (0.55 x 25mm) 200 µl virus-solution (10 to 1000 PFU) are injected. The shell is 

resealed with a drop of glue (Pona Company). After infection, eggs are incubated for two days at 37°C 

with 80 % air moisture. Before virus isolation, eggs are stored at 4°C overnight to dispatch the embryo 

and restrict blood vessels. For isolation of allantoic fluid, the egg shell and the amnion are removed. The 

allantoic fluid is harvested with a cannula into 15 ml falcon tubes under sterile conditions. After 

centrifugation of the allantoic fluid (2500 rpm, 4°C for 3 min) to pellet cell debris, a haemagglutination 

assay is performed to check the presence of active virus. If the HA-test is positive, 500 µl of the virus 

solution are aliquoted in cryotubes and stored at -80°C.  

7.5.8.2 Viral propagation in cells  

Propagation of influenza A-viruses is performed on subconfluent MDCK cells (for H9N2 viruses) or 

DF-1 cells (for H5N1 virus, to avoid mutation E627K) seeded in 75 cm² flask. Cells are washed with 

PBSdef and infected with virus solution, diluted in serum-free medium with a multiplicity of infection 

(MOI) of 0.0001. Cells are incubated 45 min at 37°C, 5% CO2 for adsorption of the virus and washed 

with PBSdef to remove non-adsorbed particles. After washing, 10 ml of infection medium containing  

1 µg/ml of trypsin/TPCK are added, and cells are incubated at 37°C, 5%CO2 for 48 h.  

After 48 h, a cytopathic effect is recognized by the change of the medium-colour. Supernatant is 

harvested and centrifuged at 2500 rpm for 3 min to pellet cell debris. Virus suspension is aliquoted into 

cryotubes (500 µl per tube) and stored at -80°C until titration.  

7.5.9 Detection of vRNP import by immunofluorescence 

Subconfluent A549 cells (70 %) seeded in 24 well plate on cover slips are pre-treated with 

cycloheximide (CHX) or anisomycine (which block the translation machinery) and leptomycine B 

(LMB) (which blocks the export machinery) diluted in infection medium. Cells are incubated for 1 h at 

37°C and 5%CO2. After 1 h incubation the cells are washed with PBSdef and infected with 200 µl virus 

mix (MOI 1). Cells are incubated for 45 min at 4°C to synchronize the infection, then washed with 

PBSdef to remove spare virus particles. Cells are incubated with 500 µl of infection medium containing 

CHX-LMB.   

The infected cells are incubated at 37°C, 5% CO2 for several time points: 1 h and 6 h post infection.  

After each time point, cells are washed three times with PBSdef. Cells are fixed with 4% PFA for 24h at 

4°C. After three steps of washing with PBSdef, cells are permeabilized with 250 µl of 0.3% Triton-X-

100 for 30 min at RT on shaker. After permeablization, cells are incubated in blocking buffer for 

immunofluorescence and stored at 4°C overnight on the plate shaker to prevent non-specific binding. 
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Cells are then incubated in 500 µl of 1 % FCS/PBS for 1 h on the plate shaker.  Each cover slip is 

incubated with 25 µl of the primary antibody (mouse α-NP diluted in 1%FCS/PBS 1:200) at RT in a 

dark humid chamber. After 1 h of incubation, slides are washed three times with PBSdef, 2 min each. 

Secondary antibody (α-mouse/FITC diluted in PBS/FCS 1:200), supplemented with DAPI (1:10.000) 

are added to the cover slips and incubated for 45 min at RT in a dark humid chamber. After three 

additional 5 min washing steps with PBSdef (in the dark to avoid excitation of the fluorochrome), the 

cover slips are washed three times with H20 and dripped on paper towel. The slides are then mounted 

on objective slides with Fluoroprep and stored at RT to dry overnight and then transferred to 4°C until 

analysis with a confocal microscope.   

 

The main principle of the confocal microscopy is based on scanning the sample with a focused laser 

beam in specific planes (confocal laser-scanning-microscope CLSM). A confocal microscope provides 

many advantages such as an increase of image resolution compared to images from a normal 

fluorescence microscope. Scanning of the object can be analysed in x/y direction as well as in z direction, 

which enables analysis of all sides of the object. 

7.6 Animal experiment 

All animal experiments have been done in collaboration with Dr. Gülsah Gabriel and Dr. Swantje Thiele 

at the Heinrich-Pette-Institut für Experimentelle Virologie in Hamburg, under BSL-3 conditions. The 

experiments have been performed according to the guidelines of the German animal protection law. All 

animal protocols are approved by the relevant German authority (Behörde für Stadtentwicklung und 

Umwelt Hamburg). 

7.6.1 Infection of animals 

BALB/C mice are sedated with a short inhalative narcosis with isoflurane. Mice are then anesthetized 

via an intra peritoneal injection of ketamine-xylazine (100 mg/kg and 10 mg/kg, respectively) diluted in 

NaCl. After 20 min, mice are infected intranasally with 50 µl of PBS-diluted virus (dose 106 PFU for 

each virus). Animals are monitored over 14 days, for weight loss and survival. In case of 25 % weight 

loss, the mice are euthanized.  

7.6.2 Organ titration 

Three days post infection, BALB/C mice are sedated with a short inhalative narcosis with isoflurane and 

euthanized by cervical dislocation. The lung and brain of three animals per group are harvested and 

weighed. The organs are then incubated with 200-300 µl of glass beads and 1ml of PBS. The 

homogenate is grinded in RETSCH mixer for 10 min, at 4°C by 20 Hz. The cell debris is discarded after 

centrifugation at 6000 g for 7 min at 4°C. The supernatant is conserved at -80°C until titration by plaque 

assay. 
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8 RESULTS 

8.1 Characterization of adaptive PB2 mutations of H9N2 virus  

Influenza-A-viruses have aquatic birds as natural reservoir. Due to a constant evolution, they can 

nevertheless be transmitted to terrestrial birds or mammals. Transmission to a new species leads to the 

adaptation to cellular receptors and intracellular host factors to enable efficient replication in the new 

host. Important mutations are located in the glycoproteins hemagglutin (HA) [71, 106, 173] or 

neuraminidase (NA) [108], the nuclear export protein (NEP) [103] and PB2, among others [53]. PB2 is 

a subunit of the polymerase complex responsible for cap binding from cellular messenger RNA enabling 

viral transcription [16]. The PB2 subunit has been described as an important host range factor that is 

also able to modulate the virulence of influenza viruses. Several mutations conferring a mammalian 

signature to the PB2 subunit have been identified. They include amino acid exchanges at position 591, 

627, 701 and 714 that have been described to enhance polymerase activity, viral replication in 

mammalian cells and mice pathogenicity [36, 50, 159, 160, 194]. This thesis focuses on the impact of 

mammalian signatures when introduced into an avian H9N2 virus. 

8.1.1 Effect of mutations Q591K and D253N on polymerase activity 

First, mutations Q591K and D253N were tested in two H9N2 isolates: A/Quail/Shantou/2061/2000 

(H9N2-2061) and A/Quail/Shantou/782/2000 (H9N2-782). These viruses have been isolated from quail 

in the province of Shantou (South of China) in 2000. Q591K and D253N mammalian signatures have 

been observed and characterized in another H9N2 isolate: A/Quail/Hong-Kong/G1/1997 (G1/97). They 

both are responsible for an enhanced polymerase activity, viral replication in mammalian cells and 

pathogenicity in mice [113]. In H5N1 virus, mutation Q591R has also been described to enhance viral 

replication in mammalian cells and pathogenicity in mice [192]. Isolate G1/97 is phylogenetically 

related to H9N2-2061 and H9N2-782 and their PB2 genes show 98% sequence identity and differ only 

by nine amino acids (Table 3).  
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Protein 

Amino 

acid 

position 

Amino acids in 

A/Quail/Shantou/2061/2000 

Amino acids in 

A/Quail/HongKong/G1/1997 

PB1 

213 P T 

423 V I 

430 K R 

455 S N 

PA 

63 L V 

101 N D 

208 K T 

618 V T 

PB2 

8 R W 

91 V E 

106 A T 

161 E D 

263 A V 

264 R G 

441 N D 

448 I T 

505 Q R 

NP 

33 I V 

41 I V 

52 H Q 

136 I M 

186 I V 

210 E D 

211 S N 

350 A T 

423 A S 

Table 3 : Amino acid differences between H9N2-2061 and H9N2-G1/97 in their polymerase and NP proteins. 

To test the effect of mutations Q591K and D253N in strains H9N2-2061 and H9N2-782 PB2 mutants 

were generated and polymerase activity was tested in minigenome assay. The activity of the mutant 

polymerases was compared to WT polymerase activity (containing avian signature 253D-591Q) that 

was used as internal standard (Figure 18).  
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As expected, introduction of mutation D253N increased the polymerase activity 8-fold for H9N2-2061 

and 12-fold for H9N2-782. Surprisingly, mutation Q591K led to a complete loss of activity in both 

H9N2-2061 and H9N2-782 isolates.  

 

Figure 18 : Polymerase activity of the reconstituted polymerase complex of strains H9N2-2061 and H9N2-782 with 

mutations D253N and Q591K in PB2 subunit. 293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, 

PB2 and NP, in addition to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized 

by Renilla luciferase enables determination of the polymerase activity with PB2 mutants. Activities of mutants were compared 

to the activity of the respective WT used as internal standard. WT represent the polymerase complex in presence of PB2 

containing the avian signature 253D-591Q.  

To check whether the mutation Q591K was detrimental for a functional polymerase, a plasmid 

containing functional mutation D253N was mutated to introduce Q591K mutation (Figure 18). This 

introduction of Q591K resulted in a loss of activity when compared to single mutant D253N. These 

results indicate that mutation D253N increases the polymerase activity as previously described [113], 

in contrast to Q591K. 

8.1.2 Effect of mutations E627K, D701N, S714I and S714R on polymerase 

activity 

8.1.2.1 Effect of adaptive mutations in A/Quail/Shantou/2061/2000 H9N2 

Mutations E627K, D701N, S714I and S714R in PB2 are well described in other subtypes such as H3N2, 

H5N1, H7N7, H1N1pdm09 [36, 50, 110, 159, 192]. Therefore the polymerase activity of H9N2-2061 

and H9N2-782 with mutations at these positions was investigated. The adaptive mutations were first 

introduced and tested in the H9N2-2061 backbone (Figure 19). The nomenclature for each mutant is 

listed in Table 4. A WT virus contains PB2 subunit with avian signature 627E-701D-714S. In contrast 

each mutant is characterized by the introduced mutation. 
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 Positions 

Name of the mutants 253 627 701 714 

WT D E D S 

E627K D K D S 

E627K D701N D K N S 

E627K S714I D K D I 

E627K S714R D K D R 

E627K D701N S714I D K N I 

E627K D701N S714R D K N R 

D701N D E N S 

D701N S714I D E N I 

D701N S714R D E N R 

S714I D E D I 

S714R D E D R 

D253N N E D S 

D253N S714I N E D I 

D253N S714R N E D R 

Table 4 : Nomenclature of viruses containing PB2 WT or mutant. WT represents a virus with the PB2 subunit containing 

the avian signature at each position of interest. Each mutant virus is characterized by the mutation introduced in PB2 

subunit. The avian signatures for position 253, 627, 701, 714 are shown in grey. 

Introduction of mutation E627K increased the polymerase activity 20-fold, mutation D701N 6-fold, 

mutation S714I 7-fold and mutation S714R 8-fold. Double mutants containing mutations E627K with 

D701N or S714I/R increased the activity 20 to 27-fold. Nevertheless, it is important to note that 

combinations of E627K with D701N or E627K with S714I did not increase the polymerase activity 

when compared to E627K alone. In contrast, combination of E627K with S714R raised the activity 27-

fold. Introduction of mutations S714I or S714R together with D701N increased polymerase activity 8-

fold and 11-fold, respectively. Furthermore, combination of mutation D253N with S714I or S714R 

induced a 12-fold and a 17-fold increase, respectively (Figure 19). Finally, triple mutants E627K-

D701N-S714I and E627K-D701N-S714R led to 27-fold and 38-fold increase respectively (Figure 19).  
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Figure 19 : Polymerase activity of the reconstituted polymerase complex of strain H9N2-2061 with mutations E627K, 

D701N, S714I/R in PB2 subunit. 293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 and NP, in 

addition to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized by Renilla 

luciferase enables determination of the polymerase activity with PB2 mutants. Activities of mutants were compared to the 

activity of the respective WT used as internal standard. WT represents the polymerase complex in presence of PB2 containing 

the avian signature 627E-701D-714S. 

To summarize, these data show that introduction of adaptive mutations into the PB2 subunit of H9N2-

2061 virus led to a significant enhancement of the polymerase activity in mammalian cells. Furthermore, 

it appears that the increase was more pronounced in combinations with mutation S714R than in 

combination with mutation S714I. 

8.1.2.2 Effect of adaptive mutations in A/Quail/Shantou/782/2000 H9N2 

Isolate H9N2-782 has the same PB2, NP and M sequences as H9N2-2061 and only a few amino acids 

changes in other viral proteins (Table 5). These two isolates are phylogenetically related, but present 

slight differences. While H9N2-782 presents a dibasic HA cleavage site sequence (RSSR), H9N2-2061 

has a tribasic sequence (RSRR). In addition, the previous data with Q591K (cf. Figure 18) pointed out 

that even if closely related, the effect of the same mutation varies within H9N2 isolates. Therefore, it 

was interesting to investigate the impact of these adaptive mutations in H9N2-782 backbone. 
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Protein 
Amino acid 

position 

Amino acids in 

A/Quail/Shantou/2061/2000 

Amino acids 

A/Quail/Shantou/782/2000 

PB1 

191 M V 

213 T P 

455 N S 

571 K R 

722 G A 

PA 

63 V L 

101 D N 

618 A V 

NS 
143 T A 

186 K E 

NA 

70 N H 

126 L P 

263 S V 

468 S P 

HA 

12 L V 

147 I T 

337 S R 

Table 5 : Amino acid differences between H9N2-2061 and H9N2-782 per proteins.  

Introduction of adaptive mutations E627K, D701N and S714I/R in PB2 of H9N2-782 increased the 

polymerase activity of reconstituted polymerase as for H9N2-2061 (Figure 20). Introduction of 

mutation E627K enhances the activity 28-fold, mutation D701N 9-fold, mutation S714I 9-fold and 

mutation S714R 11-fold. Double mutants containing mutation E627K together with D701N or S714I/R 

increased the activity 34-fold, 40-fold and 48-fold, respectively (Figure 20).Combination of mutation 

D701N with S714I/R led to a 17 and 21-fold increase, respectively. Mutation D253N raised the 

polymerase activity 15-fold, and in combination with S714I/R 21-fold and 34-fold, respectively. The 

triple mutant E627K-D701N-S714I and E627K-D701N-S714R showed the strongest increase 57 and 

65-fold, respectively (Figure 20).  
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Figure 20 : Polymerase activity of the reconstituted polymerase complex of strain H9N2-782 with mutations E627K, D701N, 

S714I/R in PB2 subunit. 293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 and NP, in addition 

to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized by Renilla luciferase 

enables determination of the polymerase activity with PB2 mutants. Activities of mutants were compared to the activity of the 

respective WT used as internal standard. WT represents the polymerase complex in presence of PB2 containing the avian 

signature 627E-701D-714S. 

These data reinforce the results obtained for H9N2-2061 and confirmed that introduction of adaptive 

mutations in PB2 of an avian H9N2 virus leads to an increase of polymerase activity in mammalian 

cells. Mutation S714R, alone or in addition to another adaptive mutation, has a higher impact on 

polymerase activity than S714I. Although the PB2 sequences of H9N2-782 and H9N2-2061 are 

identical, introduction of adaptive mutations leads to a stronger increase of activity in H9N2-782. 

8.2 Impact of adaptive mutations on virus replication 

8.2.1 Production of recombinant H9N2 viruses containing adaptive mutations 

in the PB2 subunit. 

Introduction of adaptive PB2 mutations increases the polymerase activity of reconstituted 

ribonucleoprotein (cf. Figure 19 and Figure 20). Nevertheless, further investigations needed to be 

conducted regarding efficiency of viral replication with these adaptive mutations. Previous studies have 

shown that an optimum, not a maximum, of polymerase activity is a precondition for efficient replication 

and high pathogenicity [50, 144]. To examine if the increased polymerase activity correlates with 

increased viral replication in mammalian cells, recombinant viruses with adaptive PB2 mutations were 

generated according to Hoffmann et al [72], where cells are transfected with plasmids encoding each 

viral segment. H9N2-2061 and H9N2-782 viruses with mutations E627K, E627K-D701N, E627K-

S714I, E627K-S714R, E627K-D701N-S714I, E627K-D701N-S714R, D701N-S714I, D701N-S714R, 

S714I, S714R, D253N, D253N-S714I, D253N-S714R were obtained. 
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All recombinant viruses were titrated on MDCK cells under BSL-3 conditions. In contrast to published 

data [113], viruses containing mutation D253N did not grow efficiently, resulting in low titers compared 

to other H9N2 viruses with adaptive mutations. Recombinant viruses with the H9N2-782 backbone, 

replicated less efficiently than viruses with the H9N2-2061 backbone. As explained previously, these 

two isolates present some differences as observed with their plaque size (Figure 21). Therefore, the 

following experiments were conducted with viruses generated in the H9N2-2061 backbone. 

 

Figure 21 : Plaque size of H9N2-782 and H9N2-2061. MDCK cells were infected with H9N2-782 or H9N2-2061. Detection 

of plaques was performed by immunostaining against NP.  

8.2.2 Growth kinetics of A/Quail/Shantou/2061/2000 H9N2 mutant viruses in 

human airway epithelial cells 

Influenza-A-viruses are divided in two classes regarding their HA cleavage site: viruses with a 

monobasic or multibasic cleavage site. Viruses bearing a monobasic cleavage site are cleaved by trypsin-

like protease such as TMPRSS2 and HAT [18, 19]. Viruses with multibasic cleavage sites are cleaved 

by a ubiquitously expressed protease such as furin [158]. For an efficient viral growth HA needs to be 

cleaved to obtain its correct conformation [87]. This cleavage enables the virus to fuse with the 

endosomal membrane after endocytosis [152]. H9N2-2061 virus has a multibasic cleavage sequence, 

but behaves as a virus with a monobasic one [9]. Additionally, it has been already described that HA of 

H9N2 is cleaved by TMPRSS2, HAT and matriptase proteases [10].  

To study the effect of PB2 mutation on the viral life cycle, an appropriate cell line is required. MDCK 

cells are commonly used to grow influenza viruses. However, they are not suitable for investigating 

advantages provided by adaptive mutations for viral growth. Influenza viruses infect cells of the 

respiratory tract, therefore cell lines such as human alveolar epithelial cells (A549) or human airway 

epithelial cells (Calu-3) are more suitable for this assay. As mentioned above, H9N2-2061 virus behaves 

like a virus with as monobasic HA cleavage site, and thus needs the trypsin or trypsin-like proteases for 

an efficient replication in cells. A549 cells are very sensitive to trypsin and loose adherence after trypsin 

treatment, additionally they do not express the proteases TMPRSS2, HAT or matriptase capable of 

activating H9N2 virus [10]. In contrast, Calu-3 cells express TMPRSS2, which cleaves HA and fully 

activates the virus. Thereby, all growth kinetics experiments were performed with human airway 

epithelial cells. Calu-3 cells were infected with a MOI 0.0001 and supernatants harvested at 10, 24, 48 

and 72 h post infection.  
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Infections with viruses containing only one mutation show an increase of growth on human airway 

epithelial cells (Figure 22). The effect of the adaptive mutations was more prominent during the first 

24 h. Viruses with single mutations E627K, D701N, S714I or S714R reached viral titers of  3.5.104 

PFU/ml, 1.7.105 PFU/ml, 1.1.104 PFU/ml and 3.5.103 PFU/ml, respectively, compared to WT virus 

(containing avian signature 627E-701D-714S) with 5.2.102 PFU/ml.  

 

Figure 22: Growth kinetics in human airway epithelial cells upon H9N2-2061 infection. Calu-3 cells were infected with 

H9N2-2061 viruses (MOI 0,0001) containing PB2 WT or with adaptive mutation E627K, D701N, S714I, S714R. Supernatants 

were harvested at 10, 24, 48 and 72 h post infection. WT represents viruses containing PB2 with the avian signature 627E-

701D-714S. Titration was performed in MDCK cells. Titers are shown in PFU/ml and are representative of 3 independent 

experiments. 

Double mutants E627K-D701N, E627K-S714I, E627K-S714R, D701N-S714I and D701N-S714R 

exhibited titers of 1.8.104 PFU/ml, 4.8.104 PFU/ml, 1.6.106 PFU/ml, 1.1.105 PFU/ml and 3.4.104 PFU/ml 

at 24 h, respectively (Figure 23).  

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

0 20 40 60 80

V
i
r
a

l
 
t
i
t
e

r
 
[
l
o

g
 
P

F
U

/
m

l
]

Time post infection (hours)

WT

E627K

D701N

S714I

S714R



Results 

56 

 

Figure 23: Growth kinetics on human airway epithelial cells upon H9N2-2061 infection. Calu-3 cells were infected with 

H9N2-2061 viruses (MOI 0,0001) containing PB2 WT or with adaptive mutation E627K and D701N in combination S714I and 

S714R in PB2. Supernatants were harvested at 10, 24, 48 and 72 h post infection. WT represents viruses containing PB2 with 

the avian signature 627E-701D-714S. Titration was performed in MDCK cells. Titers are shown in PFU/ml and are 

representative of 3 independent experiments. 

Finally, infection with triple mutants E627K-D701N-S714I and E627K-D701N-S714R led to viral titres 

of 7.7.104 PFU/ml and 3.9.105 PFU/ml respectively. The differences observed for viral replication 

between the different viruses were more striking at 24 h and became less pronounced at 72 h (Figure 

24).  

 

Figure 24: Growth kinetics in human airway epithelial cells upon H9N2-2061 infection. Calu-3 cells were infected with 

H9N2-2061 viruses (MOI 0,0001) containing PB2 WT or with adaptive mutation E627K-D701N-S714I and E627K-D701N-

S714R in PB2. Supernatants were harvested at 10, 24, 48 and 72 h post infection. WT represents viruses containing PB2 with 

the avian signature 627E-701D-714S. Titration was performed in MDCK cells. Titres are shown in PFU/ml and are 

representative of 3 independent experiments. 
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Similar to the polymerase assay results, the viruses containing the mammalian signature E627K-S714R 

reached the highest titre at 24 h post infection among the single and double mutants.  

In conclusion, these data indicate that introduction of adaptive mutations in H9N2-2061-PB2 increases 

the viral growth, consistent with the results of the polymerase activity. Furthermore, the triple mutant 

E627K-D701N-S714R showed the highest increase in viral growth. 

8.2.3 Comparison of H9N2 viral growth in avian and human cell lines 

Mutation E627K does not alter polymerase activity in avian cells in contrast to mammalian cells. To 

confirm the growth kinetic results and investigate the role of adaptive mutations in mammalian cells 

compared to avian cells, DF-1 cells (chicken fibroblasts) and Calu-3 cells (human airway epithelial cells) 

were infected. DF-1 cells are trypsin sensitive and do not express the proteases TMPRSS2, HAT or 

matriptase (able to cleave H9N2 HA [10]). Therefore, NP expression was monitored over 8 h infection 

(single infection cycle). This assay does not require addition of trypsin. Both cell lines were infected 

with MOI 1, and every 2 h cells were harvested and analysed for NP expression by Western Blot. Only 

single mutants E627K, D701N, S714R and triple mutant E627K-D701N-S714R were tested. NP 

expression indicated that mammalian adaptive mutations did not affect viral replication in DF-1 cells 

(Figure 25). For all viruses, including WT, NP expression was detected at 4 h post infection and 

increased over time.  

 

Figure 25 : Expression of NP in an avian cell line. DF-1 cells (chicken fibroblast) were infected with H9N2-2061 (MOI 1) 

viruses containing PB2 WT (627E-701D-714S) or with adaptive mutations E627K, D701N, S714R and E627K-D701N-S714R. 

Cells were harvested at 2, 4, 6, 8 h post infection. Protein samples were separated on a 12% SDS-gel and detected by 

immunostaining. 

In comparison, in Calu-3 cells, NP detection was delayed for WT virus at 8 h post infection (Figure 26). 

However, viruses with adaptive mutations revealed NP production starting at 6 h post infection.  
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Figure 26 : Expression of NP on human airway epithelial cells. Calu-3 cells were infected with H9N2-2061 (MOI 1) viruses 

containing PB2 WT (627E-701D-714S) or with adaptive mutations E627K, D701N, S714R and E627K-D701N-S714R. Cells 

were harvested at 2, 4, 6, 8 h post infection. Protein samples were separated on a 12% SDS-gel and detected by 

immunostaining.  

Taken together, these data confirm that introduction of adaptive mutations provides advantage for viral 

growth in mammalian cells.  

8.3 Impact of adaptive mutations on mice pathogenicity 

8.3.1 Monitoring of weight loss upon H9N2 infection 

The previous data proved that introduction of adaptive mutations increase polymerase activity and viral 

growth in mammalian cells. Several studies have shown that adaptive mutations also increased 

pathogenicity in mice, when introduced in H5N1, H7N7 and H9N2 viruses [36, 174, 187]. In H9N2 

virus, it has been described that mutation E627K in the PB2 subunit was lethal for mice. To deepen the 

understanding of the adaptive mutations, it was relevant to study if the effect observed for polymerase 

activity and viral replication was reflected by pathogenicity in mice. 

Balb/C mice were infected with WT or mutant viruses containing PB2 with E627K, D701N, S714R and 

E627K-D701N-S714R and monitored for weight loss and survival. Monitoring the weight indicated that 

infection upon WT, D701N and S714R viruses did not affect body weight compared to control mice 

(Figure 27). However, infection with E627K and E627K-D701N-S714R induced a mild to strong loss 

of weight (10% to 20 %) at day 4 post infection, followed by a partial recovery to initial weight.  
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Figure 27 : Weight loss of Balb/C mice. Six to eight weeks old Balb/C mice were infected with 106 PFU of H9N2-2061 viruses 

containing PB2 WT (627E-701D-714S) or with adaptive mutations E627K, D701N, S714R and E627K-D701N-S714R. Weight 

loss was monitored for 14 days post inoculation (d.p.i). Collaboration project with S. Thiele and G. Gabriel. 

8.3.2 Monitoring of survival rate upon H9N2 infection 

To further analyse mice pathogenicity, survival of infected mice was monitored over 14 days. Mice 

infected with WT, D701N or S714R viruses did not present any signs of illness (ruffled fur, sunken 

sides) and recovered from the infection (Figure 28). In contrast, mice infected with viruses containing 

mammalian signature E627K or E627K-D701N-S714R showed strong sign of illness and viruses with 

the triple mammalian signatures showed 40% lethality, starting at day 5 post infection and reflecting the 

weight loss.  

 

Figure 28: Survival rate upon H9N2-2061 infection. six to eight weeks old Balb/C mice were infected with 106 PFU of H9N2-

2061 viruses containing PB2 WT (627E-701D-714S) or with adaptive mutations E627K, D701N, S714R and E627K-D701N-

S714R. Survival was monitored for 14 days post inoculation (d.p.i). Collaboration project with S. Thiele and G. Gabriel. 
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8.3.3 Organ tropism upon H9N2 infection 

To observe the viral replication of the recombinant virus in mice, titrations of lung and brain was 

performed (Figure 29). Lungs of mice infected with WT and S714R viruses contained the lowest viral 

titers (2.6.103 PFU/ml and 4.4.103 PFU/ml respectively) whereas E627K and triple mutant E627K-

D701N-S714R viruses presented titers of 1.1.105 PFU/ml and 5.1.104 PFU/ml respectively. 

Surprisingly, mice infected with virus containing adaptive mutation D701N had a high viral titer (5.6.104 

PFU/ml) in the lung, when no weight loss was observed. This mutation had no effect on pathogenicity, 

but the virus still reached a titer as high as E627K-D701N-S714R virus. Infection of mice with all 

recombinant viruses did not lead to dissemination into the brain (Figure 29). 

 

Figure 29: Organ titration of infected Balb/C mice upon H9N2-2061 infection. Six to eight weeks old Balb/C mice were 

infected with 106 PFU of H9N2-2061 viruses containing PB2 WT (627E-701D-714S) or with adaptive mutations E627K, 

D701N, S714R and E627K-D701N-S714R. Organs homogenates were titrated on MDCK cells. Collaboration project with S. 

Thiele and G. Gabriel. 

Introduction of adaptive mutation in avian H9N2-PB2 increase pathogenicity in mice, with most 

pronounced effect with the triple mutant E627K-D701N-S714R. 

To conclude this part, the results have proved that introduction of mutations E627K, D701N and S714R 

in the PB2 of avian H9N2-2061 virus increase polymerase activity and viral replication in mammalian 

cells. Furthermore, viruses with adaptive mutations E627K-D701N-S714R also show an increased 

pathogenicity in mice.  

Fig 3C
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8.4 Characterization of adaptive mutations in different influenza 

subtypes 

8.4.1 Impact of adaptive mutations E627K, D701N, S714R on polymerase 

activity 

8.4.1.1 Effect of adaptive mutations in H1N1pdm09 and H7N7 polymerase complexes 

The results presented in the first part showed that introduction of adaptive mutations strongly increased 

the polymerase activity of H9N2-2061 in mammalian cells. Consequently it was essential to compare 

the effect of these mutations in other influenza strains. To address this question, the effect of adaptive 

mutations on polymerase activity of H7N9, H1N1pdm09 and H7N7 viruses was analyzed. First, 

A/Seal/Massachusetts/1/1980 (H7N7), A/Hamburg/05/2009 (H1N1pdm09) and 

A/Quail/Shantou/2061/2000 (H9N2) were compared. These three viruses are not related 

phylogenetically and are clearly different regarding their sequences (Table 6).  

H7N7 was derived from a seal isolate by serial passages in chicken embryo and presents avian signatures 

at positions 627, 701 and 714 in PB2. H1N1pdm09 is a human virus (responsible for the last pandemic 

in 2009), which presents two characteristic mutations at position 590/591 supposed to compensate for 

the lack of mutation E627K. Mutations E627K, D701N and S714R were introduced in PB2 of H7N7 

[50] and of H1N1pdm09 (F. Schwalm thesis).  
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Table 6 : Amino acid differences comparing H9N2-2061 with H1N1pdm09 and H7N7 within the different polymerase 

subunits and NP. In grey are indicated the amino acid corresponding to the avian signature and similar to H9N2-2061 

amino acid sequences. 

Protein
Amino acid

positions

Amino acids in 

H9N2-2061

Amino acids in 

H1N1pdm09

Amino acids in 

H7N7

NP 21 N D N

33 I I V

52 H Y Y

53 E D E

77 R K K

100 R V R

105 V M M

119 I V I

133 L I L

136 I I L

183 I V V

186 I I V

189 M I M

190 V A V

211 S N N

217 I V I

284 A A S

289 Y H Y

305 R K R

313 F V F

316 I M I

350 A K A

351 R K R

353 I I V

357 Q K Q

371 V V M

373 A I T

375 D D E

377 S N S

400 R K R

425 I V I

430 K S T

433 T N T

444 I V I

450 S S N

452 R K R

456 V L V

482 S S N

497 D D N

498 S S N

Protein
Amino acid

positions

Amino acids in 

H9N2-2061

Amino acids in 

H1N1pdm09

Amino acids in 

H7N7

PB2 54 K R K

65 E D E

106 A T T

125 L L M

147 M T I

161 E D D

184 T A T

190 R K K

192 E E K

194 K Q Q

195 N D D

197 N K K

225 S G I

255 V V I

271 T A T

292 V V I

299 K R R

315 M I M

318 K R R

334 K S S

340 R K R

355 K R R

381 M L L

441 N D D

453 P S P

478 V I I

508 Q R R

524 M T T

526 K R K

547 V V I

559 T I T

567 E D D

588 A T A

590 S S G

591 Q R Q

645 M L M

649 V V I

655 A V V

661 T A A

667 I V V

684 A S A

717 T A A

Protein
Amino acid

positions

Amino acids in 

H9N2-2061

Amino acids in 

H1N1pdm09

Amino acids in 

H7N7
PB1 12 V I I

13 P P L

54 R K K

56 T T K

92 M M V

102 L I I

114 V V I

166 F F L

168 K K R

172 E E D

175 D N D

179 M I M

211 K R R

213 P N N

215 K R R

216 S G S

253 H Y Y

257 A T T

298 L I L

302 V I I

317 I M M

336 V I V

339 I M I

361 S R S

364 L I L

375 N S N

386 R K R

398 E D D

423 V I I

430 K K R

435 T I T

455 S N N

486 R K R

517 I V I

581 E D E

584 R Q R

587 A V A

618 E D E

621 Q R Q

637 V I I

638 E D E

694 T N N

715 M V V

728 I V I

741 A S A

744 L M M

754 G R R

757 G K K

Protein
Amino acid

positions

Amino acids in 

H9N2-2061

Amino acids in 

H1N1pdm09

Amino acids in 

H7N7

PA 20 T A A

54 I I V

63 L V V

85 A I A

100 V V I

101 N E E

118 T I I

186 G S G

204 R K R

208 K T T

213 R K R

216 D D N

237 K E E

256 R K R

262 K R K

272 D D E

275 P L P

277 S H S

318 R K K

323 I V V

336 L M L

352 D E E

356 K R K

362 K R K

367 M K K

382 E D E

387 I V V

388 G G S

394 E D E

400 L P Q

407 I V I

409 S N S

452 H H R

474 C C S

545 V I I

547 E D D

581 M L M

602 I V V

615 R K K

618 V T T

626 K R K

651 S A A

684 E G G

688 G E E

716 R K K
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Each reconstituted polymerase was compared to mock transfection. This normalization enables the 

comparison between all tested polymerase complexes at once and shows the basic polymerase activity 

within the different mutants. The WT polymerase represents the polymerase complex with PB2 

containing the avian signature 627E-701D-714S. WT polymerase of H7N7 shows a higher activity than 

H9N2 or H1N1pdm09 WT polymerase (Figure 30). However, H7N7 and H9N2 polymerase with 

mutation E627K appeared with a similar activity, in contrast to a 4-fold decline in H1N1pdm09. Similar 

results were observed with D701N. Finally, reconstituted polymerase with mutation S714R exhibited 

the highest activity when introduced in H9N2. 

 

Figure 30 : Polymerase activity of the reconstituted H9N2, H1N1pdm09 and H7N7 polymerase complexes with mutations 

E627K, D701N, S714R in the PB2 subunit compared to mock. 293T cells were cotransfected with pHW2000 plasmids 

encoding PB1, PA, PB2 and NP, in addition to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly 

luciferase normalized by Renilla luciferase enables determination of the polymerase activity with PB2 mutants. For each 

polymerase complex, activities of mutants were compared to mock transfection used as internal standard. WT represents the 

polymerase complex in presence of PB2 containing the avian signature 627E-701D-714S. 

In addition, for each virus, the activity of the mutant polymerases was compared to their respective WT 

polymerase activity, used as internal standard. Thus, the impact of each mutation in the specific 

backbone was determined (Figure 31). Introduction of mutation E627K resulted in a 3-fold increase of 

H1N1pdm09, a 7-fold increase of H7N7, and a 20-fold increase of H9N2 polymerase activity. Mutation 

D701N induced a 2-fold increase with H1N1pdm09 and H7N7 as compared to a 5-fold increase with 

H9N2. Finally introduction of S714R induced a 2-fold increase with H1N1pdm09 and H7N7, in contrast 

to a 6-fold increase with H9N2.  
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Figure 31: Polymerase activity of the reconstituted H9N2, H1N1pdm09 and H7N7 polymerase complexes with mutations 

E627K, D701N, S714R in the PB2 subunit. 293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 

and NP, in addition to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized by 

Renilla luciferase enables determination of the polymerase activity with PB2 mutants. Activities of mutants were compared to 

the activity of the respective WT used as internal standard. WT represents the polymerase complex in presence of PB2 

containing the avian signature 627E-701D-714S.  

These results demonstrate that introduction of adaptive mutation E627K, D701N and S714R increase 

the polymerase activity in different backbones but have a higher impact on reconstituted 

ribonucleoprotein activity in H9N2 than in H1N1pdm09 or H7N7.  

8.4.1.2 Effect of adaptive mutations in H7N9 polymerase complex 

Unlike H7N7 and H1N1pdm09 viruses, H7N9 is closely related to H9N2 viruses regarding its internal 

genes, where it has been demonstrated that the polymerase genes of H7N9 virus derived from H9N2 

[45]. It was therefore of interest to compare the effects of the adaptive mutations in H9N2 related 

polymerase.  

Since H7N9 WT already contains adaptive mutation 627K in PB2, mutation K627E was introduced to 

generate an avian signature virus and analysed by minigenome assay. In addition, PB2 mutant containing 

mutation S714R was also generated (Table 7).  

 Positions 

Name of the mutants 627 701 714 

K627E E D S 

627K K D S 

627K S714R K D R 

Table 7 : Nomenclature of PB2 mutation in H7N9 virus. K627E represents a PB2 subunit containing the avian signature at 

each position of interest. Each mutant virus is characterized by the mutation present in PB2 subunit. The avian signatures 

are shown in grey. 
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When compared to revertant K627E mutation 627K led to a 15-fold increase in H7N9 polymerase 

activity and a 25-fold in combination with mutation S714R (Figure 32). The effects of the mutations 

are similar to those observed with H9N2 polymerase, where the increases are 20-fold and 27-fold, 

respectively (cf. Figure 19). 

 

Figure 32 : Polymerase activity of the reconstituted polymerase complexes of H9N2 and H7N9 viruses with mutations 

E627K and S714R in the PB2 subunit. 293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 and 

NP, in addition to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized by Renilla 

luciferase enables determination of the polymerase activity with PB2 mutants. Activities of mutants were compared to the 

activity of the respective WT or K627E avian signature used as internal standard. WT and K627E represent the polymerase 

complex in presence of PB2 containing the avian signature 627E-701D-714S.  

When polymerase activity of reconstituted polymerase was compared to mock transfection, polymerase 

activities for K627E, 627K and 627K-S714R were higher in H7N9 backbone than H9N2 (Figure 33). 
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Figure 33: Polymerase activity of the reconstituted H9N2 and H7N9 polymerase complexes with mutations E627K, D701N, 

S714R in the PB2 subunit compared to mock. 293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 

and NP, in addition to plasmids encoding Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized by 

Renilla luciferase enables determination of the polymerase activity with PB2 mutants. For each polymerase complex, activities 

of mutants were compared to mock transfection used as internal standard. WT and K627E represent the polymerase complex 

in presence of PB2 containing the avian signature 627E-701D-714S. 

To summarize, these results confirm that introduction of adaptive mutations leads to an increased 

polymerase activity in H7N9. Moreover, these mutations have the same impact on the polymerase 

activity for H7N9 (related to H9N2 polymerase) and H9N2, in contrast to H7N7 and H1N1pdm09 (non-

related to H9N2 polymerase). 

8.4.2 Impact of adaptive mutations E627K, D701N, S714R on viral 

replication 

The impact of adaptive mutations on polymerase activity is different within a backbone. Consequently, 

investigations of their impact on viral replication were conducted. Calu-3 cells were infected with H5N1, 

H9N2 and H1N1pdm09 viruses containing mutation E627K or D701N in the PB2 subunit. Viral titres 

of each virus subtype containing PB2 WT (627E-701D-714S) were used as internal standard. 

Effects on viral titres were determined by comparing WT viruses to E627K or D701N at 24 h post 

infection (Figure 34). Adaptive mutation in H5N1 led to an increase of viral replication of 2.5 log, for 

H9N2 of 4 log and of 0.5 log decrease for H1N1pdm09 when mutation E627K was introduced. 

Introduction of mutation D701N led to a 2.5-log increase with H5N1, a 4.5-log with H9N2 and 0.5-log 

with H1N1pdm09.  
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Figure 34 : Impact of adaptive mutations on virus replication in human airway epithelial cells upon H9N2, H5N1 and 

H1N1pdm09 infection. Calu-3 cells were infected with H9N2, H5N1 or H1N1pdm09 viruses (MOI 0,0001) containing avian 

signature 627E-701D-714S or adaptive mutations E627K or D701N in PB2 subunit. Results for H1N1pdm09 kinetics were 

performed by Folker Schwalm. Supernatants were harvested at 24 h post infection. Titration was performed on MDCK cells. 

Viral titers were compared to the respective WT viruses containing PB2 with the avian signature 627E-701D-714S. Results 

are representative of 3 independent experiments. 

These results confirm that the impact of adaptive mutations is more potent in H9N2, than H5N1 or 

H1N1pdm09 regarding viral growth. 

8.5 Adaptive PB2 mutations in heterologous polymerase 

complexes.  

8.5.1 Impact of adaptive mutations in H7N7 and H1N1pdm09 heterologous 

polymerase complexes 

According to the results presented above, introduction of adaptive mutations into H9N2-PB2 had the 

strongest impact on polymerase activity. It was now of interest to determine if PA and PB1 contributed 

to this effect. For this purpose, heterologous polymerase complexes of H1N1pdm09, H7N7 and H7N9 

viruses were generated in which PA, PB1 and PB2 were individually replaced by the respective H9N2 

subunit (Figure 35). Minigenome assays were performed to assess the polymerase activity of these 

reassortants as depending on the adaptive PB2 mutations. For each virus, the activity of the mutant 

polymerases was analysed and compared to the homologous polymerase complex activity that was used 

as internal standard.  
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Figure 35 : Polymerase subunit exchange between H9N2 and other influenza viruses. Here are represented the different 

heterologous polymerases composed of H9N2, H1N1pdm09, H7N7and H7N9. 

There was a strong decrease of the activity of the H1N1pdm09 polymerase, when PA was replaced by 

the H9N2 subunit (Figure 36). On the contrary, replacement of PB1 did neither significantly change the 

polymerase activity, nor did it alter the effects of the PB2 mutations. There was also no significant 

change in activity after reassortment with H9N2-PB2 WT. However, there was a distinct effect when 

H9N2-PB2 contained adaptive mutations. When compared to H1N1pdm09-PB2, introduction of H9N2-

PB2 with mutation E627K increased the activity from 4-to-14 fold, mutation D701N from 3-to-4-fold, 

and mutation S714R from 3-to-5-fold.  

 

Figure 36 : Polymerase activity of the reconstituted polymerase complexes of H1N1pdm09 with H9N2 polymerase subunit. 
293T cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 and NP, in addition to plasmids encoding 

Firefly and Renilla luciferase. Quantification of Firefly luciferase normalized by Renilla luciferase enables determination of 

the polymerase activity with PB2 mutants. Activities of reassortants were compared to the activity of the homologous 

H1N1pdm09 polymerase used as internal standard. WT represents the polymerase complex in presence of PB2 containing the 

avian signature 627E-701D-714S. ns: non-significant indicates a P value of  > 0.05 (Student’s t test).  
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These increased activities reflected the raise observed in H9N2 reconstituted polymerase when adaptive 

mutations were introduced (cf. Figure 19) 

Similar results were obtained for H7N7 (Figure 37). Introduction of PA and PB1 of H9N2 into H7N7 

polymerase led to a decrease of activity when compared to the homologous reconstituted H7N7 

polymerase. This decrease was stronger with exchange of PA than with PB1. Introduction of PB2 

subunit led, as for H1N1pdm09, to a strong increase of the polymerase activity. When compared to 

H7N7-PB2, introduction of H9N2-PB2 with mutation E627K increased the activity from 10 to 17-fold, 

mutation D701N from 3-to-9-fold, and mutation S714R from a 2-to-10-fold. Similar to H1N1pdm09, 

introduction of H9N2-PB2 led to an increased activity corresponding to the homologous H9N2 

polymerase results (cf. Figure 19). There was, however, a slight (3-fold) increase when H9N2-PB2 WT 

was combined with PA and PB1 of H7N7 (Figure 37).  

 

Figure 37: Polymerase activity of the reconstituted polymerase complexes of H7N7 with H9N2 polymerase subunit. 293T 

cells were cotransfected with pHW2000 plasmids encoding PB1, PA, PB2 and NP, in addition to plasmids encoding Firefly 

and Renilla luciferase. Quantification of Firefly luciferase normalized by Renilla luciferase enables determination of the 

polymerase activity with PB2 mutants. Activities of reassortants were compared to the activity of the homologous H7N7 

polymerase used as internal standard. WT represents the polymerase complex in presence of PB2 containing the avian 

signature 627E-701D-714S. 

Altogether, these data indicated that the subunits PA and PB1 decrease the polymerase activity when 

introduced in H1N1pdm09 or H7N7, whereas PB2 leads to a strong increase of the activity. 

8.5.2 Impact of adaptive mutations in H7N9 heterologous polymerase 

complex 

It was furthermore relevant to investigate the role of each H9N2 polymerase subunit in the context of 

the related H7N9 polymerase (Figure 38). When H7N9-PB1 and H7N9-PA were replaced by the H9N2 

subunits, there was a moderate reduction in the polymerase activity, but there was no complete loss of 

activity as observed after introduction of H9N2-PA into H1N1pdm09 and H7N7 polymerases (cf. 
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Figure 36 and Figure 37). The enhancing effect of the adaptive mutations was also clearly visible in 

H7N9/PA H9N2 and H7N9/PB1 H9N2 

Introduction of H9N2-PB2 into the H7N9 polymerase did not lead to significant differences when 

compared to the homologous H7N9 polymerase. Introduction of PB2 E627K of H9N2 led to an increase 

of 12-fold, whereas PB2 627K of H7N9 induced a 14-fold increase. Introduction of PB2 E627K-S714R 

of H9N2 led to an increase of 31-fold whereas PB2 627K-S714R of H7N9 induced a 24-fold increase 

(Figure 38).  

 

Figure 38: Polymerase activity of reconstituted polymerase complex of H7N9 with H9N2 polymerase subunit. 293T cells 

were cotransfected with pHW2000 plasmid encoding for PB1, PA, PB2 and NP, in addition to plasmids encoding minigenome 

expressing Firefly and plasmid encoding Renilla luciferase. Quantification of Firefly luciferase normalized by Renilla 

luciferase enables determination of the polymerase activity, within PB2 mutants. Each subunit of H7N9 polymerase complex 

were exchange by H9N2 corresponding subunit. Activities of reassortants were compared to the activity of the homologous 

H7N9-K627E polymerase used as internal standard. WT and K627E represent the polymerase complex in presence of PB2 

containing the avian signature 627E-701D-714S. ns: non-significant indicates a P value of  > 0.05 (Student’s t test). 

In brief, these data demonstrated that the H9N2 subunits PA and PB1 lead to a decrease of polymerase 

activity when introduced in H7N9, in contrast to H9N2-PB2 which does not alter the polymerase activity 

when compared to the homologous H7N9 reconstituted polymerase.  

In conclusion of this part, the results describe in Figure 36, Figure 37 and Figure 38 provide further 

evidence for the concept that enhancement of polymerase activity, by adaptive PB2 mutations, is most 

distinct in the H9N2 polymerase and the related H7N9 polymerase. They also demonstrate that this 

effect is a specific trait of H9N2-PB2 without significant contribution of PA and PB1. 
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8.6 Modulation of RIG-I recognition by PB2-627K 

8.6.1 Impact of adaptive mutation E627K on RIG-I activation 

The gene segments of influenza virus have partially complementary 5' - 3' end sequences, that form the 

so called "panhandle" structure. On this panhandle sits the polymerase complex, composed of PB1, PB2 

and PA [131, 136]. 

Influenza viruses have developed several strategies to escape the immune system. For instance, NS1 is 

known to counteract RIG-I activation by targeting TRIM25 late in the life cycle of the virus [55]. RIG-

I is a double-stranded RNA sensor present in the cytoplasm. It recognizes 5’ppp double-stranded RNA 

structures as described for bunyavirus and influenza virus segmented genomes [12, 147, 178, 179]. Early 

in the viral life cycle, influenza virus vRNPs are translocated to the nucleus after their release in the 

cytoplasm (cf. Figure 5, step 4). The short trafficking through the cytoplasm raises the question whether 

RIG-I recognizes also incoming influenza virus RNA, before NS1 synthesis and despite the presence of 

the polymerase on the panhandle region (collaboration project with M.Weber, AG Weber, [181]). 

A549 cells were pre-treated with cycloheximide (CHX) and leptomycin B (LMB) to ensure that only 

incoming vRNP could activate RIG-I. CHX is an inhibitor of the translation machinery (by blocking 

translational elongation) and LMB the export machinery (by inhibiting CRM1, a protein required for 

nuclear export). Infection was performed with H9N2 or H5N1 viruses, containing avian 627E or 

mammalian 627K signatures in PB2, no other mutations were present. After 1 h infection, cells were 

harvested and subjected to limited trypsin digestion. The presence of a 30kDa fragment of RIG-I 

(reflecting a partial trypsin resistance) indicates a conformational switch and thus activation of RIG-I 

[143, 180]. During infection with H9N2 or H5N1 containing the avian signature (627E), the trypsin 

resistant fragment was observed, indicating that influenza virus RNA is recognized by RIG-I (Figure 

39). Infection with viruses containing the mammalian signature (627K) in PB2 exhibited a faint or no 

30kDa fragment, reflecting that viruses with 627K polymerase were less sensitive to RIG-I recognition 

(Figure 39).  
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Figure 39: Activation of RIG-I upon H9N2 and H5N1 infection. A549 cells were pretreated with CHX-LMB, followed by 

infection with 627E or E627K viruses in H9N2 and H5N1 backbone for 1 h. Cells were harvested and treated for limited trypsin 

digestion. Protein samples were separated on 12% SDS-gel and detected by immunostaining. Presence of 30kDa fragment 

indicates RIG-I activation. 627E viruses present the avian signature 627E-701D-714S. 627K viruses present only this mutation 

and the remaining avian signature 701D-714S. (collaboration project with M.Weber, AG Weber, [181]) 

These results demonstrate that the incoming influenza virus genome activates RIG-I if PB2 has the avian 

signature (627E). 

8.6.2 Impact of RIG-I activation on viral replication upon H9N2 and H5N1 

infection 

RIG-I can directly recognize incoming vRNPs. This recognition can affect viral replication and thus 

explain the differences between the polymerase activity and viral growth of 627E and 627K polymerases 

in mammalian cells. Indeed, results showed above (cf. Figure 25) indicated that in chicken fibroblasts 

cells (DF-1), which lack RIG-I [7], levels of NP production are similar with viruses containing the avian 

signature (627E) and polymerase with the mammalian signature (627K) [105, 128]. However, a 

difference in NP production is observed in the mammalian cell lines (cf. Figure 26). HEK293 WT cells 

or RIG-I deficient HEK293 cells (del-RIG-I) were infected with H9N2 or H5N1 viruses containing PB2 

627E or E627K. Viral infection was monitored by quantification of NP protein over a period of 8 h after 

infection. Briefly, 2, 4, 6, 8 h post infection, cells were harvested and NP production analysed by 

Western Blot (Figure 40). For H9N2 and H5N1 viruses containing the mammalian signature (627K), 

NP was detected at 4 h post infection in both cell types. In contrast, for H9N2 and H5N1 viruses 

containing the avian signature (627E), NP was detected at 8 h post infection in WT cells, but at 6 h in 

del-RIG-I cells.  
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Figure 40: Expression of NP on RIG-I expressing cells or del-RIG-I cells. HEK293 control cells or RIG-I depleted cells were 

infected with 627E or E627K viruses of H9N2 and H5N1 backbone (MOI 1). Cells were harvested at 2, 4, 6 and 8 h post 

infection. Protein samples were separated on a 12% SDS-gel and detected by immunostaining. 627E viruses present the avian 

signature 627E-701D-714S. 627K viruses present only this mutation and the remaining avian signature 701D-714S 

(collaboration project with M.Weber, AG Weber, [181]) 

To sum up, these results confirm the impact of RIG-I at an early stage of infection and its role as a 

restriction factor for viruses presenting avian signature (627E) in PB2. 

In the context of multicycle replication, WT cells and del-RIG-I cells were infected with avian (627E) 

or mammalian (627K) H5N1 viruses for 24 h (Figure 41). H5N1 was selected because of its multibasic 

cleavage site, which does not require addition of proteases to enable multicycle replication. Supernatants 

were collected at 8, 10 and 24 h post infection and titrated in MDCK cells (Fig.24). Titration showed 

that at 24 h in absence of RIG-I, virus with avian signature (627E) was rescued with a higher titer 

(2.3.103 PFU/ml) than in presence of RIG-I (1.102 PFU/ml). Overall, the absence of RIG-I increased by 

one logarithm the viral titre of avian (627E) H5N1 virus. Conversely, virus with mammalian signature 

(627K) grew to similar titre on cells expressing RIG-I (8.5.106 PFU/ml) or RIG-I depleted (1.29.106 

PFU/ml). 
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Figure 41: Growth kinetics on control or RIG-I deficient cells upon H5N1 infection. HEK293 control cells or RIG-I depleted 

cells were infected with H5N1 627E or E627K viruses (MOI 0,0001). Supernatant were harvested at 8, 10 and 24 h post 

infection. Titration was performed on MDCK cells. Titres are expressed in PFU/ml and are representative of 3 independent 

experiments. 627E viruses present the avian signature 627E-701D-714S. 627K viruses present only this mutation and the 

remaining avian signature 701D-714S 

These results confirm that RIG-I affects replication of viruses containing the avian signature (627E) in 

PB2, whereas it does not influence replication of mammalian viruses (627K).  

8.6.3 Mechanism of RIG-I evasion mediated by mutation E627K 

It was of interest to investigate the mechanistic role of mutation E627K for RIG-I counteraction. It has 

been demonstrated that mutation E627K in PB2 led to an increased binding of NP in mammalian cells 

[93, 109, 135]. Therefore it was hypothesized that a weaker interaction between avian (627E) 

polymerase and NP enables the access of RIG-I to the panhandle structure, in contrast to mammalian 

(627K) polymerase.  

To test this hypothesis, the viral polymerase was disassembled from the nucleocapsid by using a peptide 

inhibitor: T6Y (Figure 42). In absence of the peptide inhibitor, the same results as for Figure 39 were 

observed. H9N2 and H5N1 viruses containing the mammalian signature (627K) did not activate RIG-I, 
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in contrast to viruses containing the avian signature (627E). In presence of the peptide inhibitor, both 

viruses were sensitive to RIG-I independently of the avian or mammalian signature.  

From this observation it can be concluded that the disassembly of the polymerase complex from the 

panhandle results in the exposure of RIG-I recognition site and thus allows activation of RIG-I.  

 

Figure 42: Activation of RIG-I upon H9N2 and H5N1 infection in presence of PB1-T6Y inhibitor. A549 cells were 

pretreated with CHX-LMB. Cells were infected with 627E or E627K viruses in H9N2 or H5N1 backbone, for 1 h under 

treatment with control inhibitor or PB1-TY6. Cells were harvested and treated for limited trypsin digestion. Protein samples 

were separated on 12% SDS-gel and detected by immunostaining. Presence of 30 kDa fragment indicate RIG-I activation. 

627E viruses present the avian signature 627E-701D-714S. 627K viruses present only this mutation and the remaining avian 

signature 701D-714S (collaboration project with M.Weber, AG Weber, [181]) 

Taken together, these data show that mutation E627K interferes with RIG-I activation by preventing 

dissociation of the polymerase from the influenza gene segments in mammalian cells.  

8.7 Transport of incoming vRNP 

Another well described adaptive mutation in the PB2 subunit is D701N. It has been described to enhance 

polymerase activity, viral replication and pathogenicity in mice [50, 157]. It has also been characterized 

to increase interaction with human, but not avian importin proteins. This increased interaction leads to 

an enhanced nuclear localisation of newly synthesized PB2 protein into the nucleus [52]. Structural data 

indicated that mutation D701N led to a conformational change within PB2, which resulted in a better 

exposure of the NLS domain and improved interaction with importins [162]. Translocation of vRNP 

from the cytoplasm to the nucleus is driven by NP protein associated to the viral RNA [35, 125, 188]. 

The question was to evaluate if, in addition to NP, mutation D701N in PB2 subunit affects incoming 

vRNP transport.  

8.7.1 Detection of vRNP traffic in infected cells 

8.7.1.1 Establishment of vRNP immunodetection 

To allow detection of vRNPs several parameters required optimization. vRNPs are composed of viral 

RNA of negative polarity, PB2, PB1, PA which compose the polymerase complex, and NP. One of these 

proteins had to be used for detecting the vRNPs. PB2, PA and PB1 are present as single monomers on 
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vRNPs, whereas NP covers the viral RNA. In addition, NP is a highly conserved protein among 

influenza viruses, which facilitates its detection. Therefore, a specific antibody against NP of 

H1N1pdm09 was tested. This antibody has been validated for immunostaining in plaque assays and is 

known to cross-react with NP of several strains. The staining of infected cells ( as observed in Figure 

43) revealed a strong signal allowing the detection of vRNP.  

 

Figure 43: Optimisation of vRNP detection. A549 cells were pretreated with CHX-LMB and infected for 1 h with H9N2 WT. 

Cells were fixed in 4% PFA for 24 h and stained against NP with primary antibody NP of H1N1pdm09 virus (secondary 

antibody FITC-coupled (green) and DAPI (blue)). 

To ensure the specific detection of NP with this antibody, 293T cells were transfected with plasmids 

encoding for the different proteins of the virus and the minigenome plasmid. Analysis of the transfected 

cells revealed specific detection in cells transfected with the plasmid encoding for NP (Figure 44). To 

generate vRNP (as for the minigenome assay), cells were transfected with plasmids encoding for PB2, 

PA, PB1, NP and minigenome plasmid (Firefly luciferase) (Figure 44). The staining shows here again 

detection of NP protein, when associated to the vRNA.  

 

Figure 44: Confirmation of NP antibody specificity. 293T cells were transfected with plasmids used for the polymerase assay: 

Firefly luciferase plasmid (flanked with NP sequence), PB1, PA, PB2 and NP (Ribonucleoprotein complex). Cells were fixed 

in 4% PFA for 30 min and stained with an antibody directed against NP of H1N1pdm09 virus (secondary antibody FITC-

coupled (green) and DAPI (blue)). 
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Finally, no staining was observed when cells were transfected with plasmids encoding for PB1, PB2, 

PA, HA, NA, M and NS segments (Figure 45). This confirms that this antibody specifically recognize 

NP and that no cross reaction can be observed with the other viral proteins.  

 

Figure 45: Confirmation of NP antibody specificity. 293T cells were transfected with plasmids encoding each protein of H9N2 

virus : PB1, PA, PB2, HA, M, NS. Cells were fixed in 4% PFA for 30 min and stained with an antibody directed against NP of 

H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). 

8.7.1.2 Confirmation of the translation and export inhibitors efficiency 

To determine the role of mutation D701N on nucleocapsid import, a procedure for detection of incoming 

vRNPs was established. For this purpose, cells were pre-treated with CHX and LMB, which impede the 

viral replication cycle at the primary transcription and retain newly synthesized mRNA into the nucleus. 

As translation is blocked, NP proteins are not synthesized, which ensures the recognition of NP only 

present on incoming vRNP. By blocking the export machinery, re-export of incoming vRNP from the 

nucleus to the cytoplasm is also prevented.  

To test the efficiency of the inhibitor for different viruses, A549 cells were infected with H9N2, H1N1 

(PR8) and H3N2 (Aichi) viruses in presence or absence of CHX-LMB (Figure 46). In the absence of 

inhibitors, the viral life cycle is not obstructed, and translation of new viral mRNA occurs. Therefore, 

newly synthesized NP is present into the nucleus, explaining the strong staining of the nucleus. In 

contrast, the presence of CHX-LMB interrupts at the primary transcription step and enables specific 

staining of incoming vRNP, represented by dot-like staining. 
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Figure 46: Confirmation of inhibitors efficiency. A549 cells were or were not pre-treated with CHX-LMB and infected with 

H9N2, H3N2 and H1N1 viruses for six hours. Cells were fixed in 4% PFA for 30 min and stained with an antibody directed 

against NP of H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). 

To validate that this dot-like staining is due to the translation arrest, another inhibitor of the translation 

machinery, anisomycin was used in combination of LMB (Figure 47). In the presence of anisomycin, 

the staining in a dot-like shape is also observed, as detected in the presence of CHX (cf. Figure 46).  

 

Figure 47: Confirmation of inhibitors efficiency. A549 cells were pre-treated with CHX-LMB or Anisomycin-LMB and 

infected with H9N2, H3N2 and H1N1 viruses for 6 h. Cells were fixed in 4% PFA for 30 min and stained with an antibody 

directed against NP of H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). 
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To validate the immunofluorescence data, infected cells were harvested 2, 4, 6, 8 h post infection and 

levels of NP production were monitored by Western Blot (Figure 48). Treatment of the cells with CHX-

LMB completely aborted the synthesis of NP protein, compared to untreated cells. This quantification 

of NP supports the immunofluorescence observations, and demonstrates the effect of the inhibitor on 

the virus life cycle. 

 

Figure 48: Confirmation of inhibitor efficiency by monitoring NP expression. A549 cells were pre-treated or not with CHX-

LMB. Cells were then infected with H9N2 WT virus. Cells were harvested 2, 4, 6, 8 h post infection. Protein samples were 

separated on a 12% SDS-gel and detected by immunostaining. H9N2 WT virus contains PB2 with avian signature 627E-701D-

714S. 

In brief, detection of NP and pre-treatment with CHX-LMB is the relevant procedure for the detection 

of incoming vRNP.  

8.7.2 Role of adaptive mutations E627K, D701N and S714R on incoming 

vRNP transport upon H9N2 infection 

Mutation 627K has been described to interact with importin-α without affecting intracellular localisation 

of the PB2 protein [139]. Furthermore, mutation D701N has also been characterized to have an enhanced 

interaction with human but not with avian importins, which led to an increased nuclear localisation of 

PB2 in mammalian cells [52]. In addition, mutation S714R has been described to play a role in increased 

polymerase activity. A model has been proposed where this mutation would cooperate with mutation 

D701N for PB2 unfolding [36]. It was then hypothesized that mutations D701N could play a role in 

vRNP import, where, consequently, the increased nuclear localisation could explain the enhanced viral 

replication in mammalian cells.  

To test this hypothesis, A549 cells were infected with recombinant virus WT (627E-701D-714S) or with 

viruses containing adaptive mutations in PB2, under CHX-LMB treatment. After 1 to 6 h of infection, 

cells were fixed for 24 h with 4% PFA, and immunodetection of NP was performed. The vRNP entry of 

H9N2 WT depicted that 6 h post infection vRNPs were present into the nucleus, but several remained 

in the cytoplasm mostly localized at the cell membrane (Figure 49).  
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Figure 49: vRNP trafficking upon H9N2 infection in human cell line. A549 cells were pre-treated with CHX-LMB and 

infected with H9N2 WT for 1 to 6 h. Cells were fixed in 4% PFA for 24 h and stained with an antibody directed against NP of 

H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). H9N2 WT virus contains PB2 with avian 

signature 627E-701D-714S. 

Cells were infected with H9N2 E627K virus (containing PB2 with E627K-701D-714S signature) 

revealed a similar phenotype of vRNP import as H9N2 WT (Figure 50). Here as well, vRNP are present 

into the nucleus but mostly in the cytoplasm at the cell membrane. 

 

Figure 50: vRNP trafficking upon H9N2 infection in human cell line. A549 cells were pre-treated with CHX-LMB infected 

with H9N2 E627K for 1 to 6 h. Cells were fixed in 4% PFA for 24 h and stained with an antibody directed against NP of 

H1N1pdm09 virus (antibody FITC-coupled (green) and DAPI (blue)). H9N2 E627K virus contains PB2 with mutation E627K 

only and the remaining avian signature 701D-714S. 



Results 

81 

Interestingly infection with H9N2 D701N virus (containing PB2 with 627E-D701N-714S signature) 

showed the presence of vRNPs almost exclusively in the nucleus (Figure 51).  

 

Figure 51: vRNP trafficking upon H9N2 infection in human cell line. A549 cells were pre-treated with CHX-LMB infected 

with H9N2 D701N for 1 to 6 h. Cells were fixed in 4% PFA for 24 h and stained with an antibody directed against NP of 

H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). H9N2 D701N virus contains PB2 with 

mutation D701N only and the remaining avian signature 627E-714S. 

Infection with H9N2 S714R virus (containing PB2 with 627E-701D-S714R signature) indicated the 

same phenotype of nuclear import as H9N2 WT and H9N2-E627K, where vRNPs remained mostly in 

the cytoplasm, close to the cell membrane (Figure 52).  

 

Figure 52: vRNP trafficking upon H9N2 infection in human cell line. A549 cells were pre-treated with CHX-LMB infected 

with H9N2 S714R for 1 to 6 h. Cells were fixed in 4% PFA for 24 h and stained with an antibody directed against NP of 

H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). H9N2 S714R virus contains PB2 with 

mutation S714R only and the remaining avian signature 627E-701D. 
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Additional infections with double and triple mutants were performed. H9N2 D701N-S714I, D701N-

S714R (with only avian signature at position 627) (Figure 53) and E627K-D701N-S714R (Figure 54) 

exhibited import into the nucleus 6 h post infection. Localization of vRNPs was increased into the 

nucleus and very few remained in the cytoplasm.  

 

Figure 53: vRNP trafficking upon H9N2 infection in human cell line. A549 cells were pre-treated with CHX-LMB infected 

with H9N2 D701N-S714I or D701N-S714R for 1 to 6 h. Cells were fixed in 4% PFA for 24 h and stained with an antibody 

directed against NP of H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). H9N2 D701N-S714I 

and H9N2 D701N-S714R viruses contain PB2 with mutations D701N-S714I/R only and the remaining avian signature 627E. 
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Figure 54 : vRNP trafficking upon H9N2 infection in human cell line. A549 cells were pre-treated with CHX-LMB infected 

with H9N2 E627K-D701N-S714R for 1 to 6 h (under CHX-LMB treatment). Cells were fixed in 4% PFA for 24 h and stained 

with an antibody directed against NP of H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). 

To sum up, these results support the concept that mutation D701N affects vRNPs nuclear localization 

and can provide the same advantage in combination with mutations E627K, S714I and S714R. Mutation 

D701N promotes not only the nuclear import of newly synthesized PB2 proteins, as described by others 

[52], but promotes also the nuclear entry of PB2 bound to the incoming nucleocaspids.  

8.7.3 Role of mutation D701N in H7N7 viruses  

To confirm the role of D701N on vRNP import in another influenza subtype, detection of nucleocapsid 

of H7N7 virus was performed. The same procedure of vRNP detection, applied after H9N2 infection, 

was conducted with H7N7 WT (containing PB2 627E-701D-714S)) and H7N7 D701N (containing PB2 

with 627E-701N-714S) (Figure 55). Infection with H7N7 WT presents a similar phenotype of import 

as H9N2 WT, where vRNP entered the nucleus, but a high amount remained in the cytoplasm. Addition 

of mutation D701N induced an increased localization of vRNP into the nucleus. Nevertheless, it has to 

be pointed out that a high amount of H7N7 vRNP remained in the cytoplasm. 
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Figure 55 : vRNP trafficking upon H9N2 and H7N7 infection in human cell line. A549 cells were pre-treated with CHX-

LMB infected with H9N2 D701N or H7N7 D701N for 1 to 6 h.. Cells were fixed in 4% PFA for 24 h and stained with an 

antibody directed against NP of H1N1pdm09 virus (secondary antibody FITC-coupled (green) and DAPI (blue)). H9N2 D701N 

and H7N7 D701N viruses contain PB2 with mutation D701N only and the remaining avian signature 627E-714S. 

In conclusion, these data illustrate that mutation D701N induces import of vRNP in both H9N2 and 

H7N7 strains.   

To summarize this part, the data demonstrate on one hand that mutation E627K is involved in RIG-I 

counteraction by preventing exposure of the genomic double-stranded RNA. On the other hand, 

mutation D701N in PB2 is directly active when associated to vRNP and enhances nuclear localisation. 

These mutations promote adaptation to mammalian host via evasion of the innate immune system and 

increase the interaction of incoming vRNPs with the nuclear import machinery.  
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9 DISCUSSION 

Some viral proteins are particularly important for host adaptation. Mutations which occur in the surface 

glycoprotein HA enable the virus to adapt to the new host receptor [71, 173]. Mutations in the PB2 gene 

enable the virus to adapt to intracellular host factors that mediate import into the nucleus where 

transcription and replication of influenza viruses occurs. Mutations in PB2 have been linked to enhanced 

polymerase activity, viral growth and pathogenicity [36, 50, 113, 155, 159, 160, 162, 194].This work 

addresses the role of adaptive mutations introduced into an avian H9N2 influenza virus. The results 

showed that mutations E627K, D701N and S714R promote adaptation of A/Quail/Shantou/2061/2000 

influenza virus to mammalian hosts. Furthermore, it is demonstrated that the H9N2-PB2 subunit plays 

an important role in increased polymerase activity during reassortment of polymerase subunits. This 

work also describes the mechanism of action of mutation E627K in PB2 and its function in innate 

immune evasion, as well as the role of mutation D701N for the import of incoming vRNP into the 

nucleus.   

9.1 Mutations E627K, D701N, S714R and D253N promote 

adaptation to mammals.  

9.1.1 Variations within two H9N2 isolates: H9N2-782 and H9N2-2061 

The introduction of the mutations E627K, D701N and S714R led to different enhancement of the 

polymerase activity with the isolates H9N2-782 and H9N2-2061. With H9N2-782, the polymerase 

activity was always higher than with H9N2-2061. These two isolates show the same amino acid 

sequence in segments 1 and 5. The differences in polymerase activity have therefore to be attributed to 

PB1 (differing by 5 amino acids) and PA (differing by 3 amino acids) subunits (cf. Table 5).  

 

Figure 56: Domains of influenza polymerase subunits PB2, PB1 and PA. In green are represented the functional domain of 

each subunit for the transcription and replication steps: PA and its endonuclease domain, PB1 and its RdRp catalytic domain 

and PB2 with its cap binding domain. Binding domains for each subunit are coloured in grey. In orange are represented the 

NLS domains of PB2, PB1 and PA. 
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The amino acid changes present at positions 63 and 101 in PA are both localised in the endonuclease 

domain (Figure 56). The amino acid change at position 618 is localized in the PB1 binding domain. 

These substitutions may affect the enzymatic activity or the import of the heterodimer PA/PB1 into the 

nucleus. The mutations present in PB1 are localized at positions 191, 213, 455, 571, 722. Position 722 

is localized in the PB2 binding region and may have an impact on the transcription or replication 

efficiency. Position 455 is localized in the RNA-dependent-RNA-polymerase (RdRp) catalytic domain, 

and positions 191 and 213 are in the NLS region (Figure 56). These few changes could be responsible 

for an altered polymerase activity in H9N2-782 and H9N2-2061. It would be of interest to exchange the 

subunits between the two isolates in order to find out if PB1 or PA are responsible for the differences in 

polymerase activity. Consequently, the results could describe critical positions involved in the 

transcription/replication efficiency of the virus. 

9.1.2 Adaptive mutations E627K, D701N, S714I, S714R and D253N increase 

the polymerase activity in contrast to mutation Q591K. 

Mutations E627K, D701N and S714R have already been described to promote adaptation of other 

viruses, such as H3N2, H7N7 and H5N1 viruses [17, 36, 50, 99, 159] to mammalian hosts. Mutation 

E627K has already been characterized to enhance polymerase activity and viral growth in mammalian 

cells, as well mice pathogenicity of H9N2 virus. This is the first time that mutations D701N and S714R 

are described to increase polymerase activity and viral replication in mammalian cells, when introduced 

into an avian influenza virus of subtype H9N2.  

Introduction of mutation S714R into PB2 subunit has a higher impact on polymerase activity than 

mutation S714I (cf. Figure 19 and Figure 20). This effect was also observed when virus growth in 

mammalian cells was analysed, where viruses containing the mutation S714R grew to higher titres 

compared to virus with the mutation S714I (cf. Figure 22, Figure 23 and Figure 24). These results are 

consistent with the data published by Czudai et al. The authors suggested that S714R would 

cooperatively work with D701N to induce a conformational change of PB2 and that an uncharged amino 

acid, such as isoleucine, will not be as efficient for an increase polymerase activity or viral growth [36].  

Mutation D253N (localized in the N-terminal part of PB2) also leads to an increase of polymerase 

activity confirming results obtained previously by Mok et al for strain H9N2 G1/97 [113]. Despite the 

increased polymerase activity in vitro, this mutation was not beneficial for viral growth. The mutation 

D253N has already been observed by Li et al. The authors investigated restriction factors that prevent 

influenza virus genes reassortment. They have demonstrated that polymerase complex subunit PB2 and 

PA of different origins were responsible for a restricted viral growth. However, after several passages 

of this virus, adaptive point mutations in PB2 (D253N) and PA (A448V) emerged, leading to an 

increased viral replication. These mutations were suggested to compensate the PA and PB2 

incompatibility [96]. Therefore it can be assumed that the presence of mutations A448V in PA, in 

addition to mutation D253N in PB2, is mandatory for an efficient viral growth. As PA of both H9N2 
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isolates do not present mutation A448V, it could explain the deficient replication of H9N2 viruses 

containing mutation D253N. 

The results have demonstrated that mutation Q591K in PB2 leads to a loss of activity in the two H9N2 

isolates in contrast to the data published by Mok et al. Mutation Q591K has been described to enhance 

the polymerase activity and viral growth in mammalian cells, as well as cytokine response in mice 

infected with H9N2 G1/97 virus [113]. Furthermore the mutation Q591R has been described in a H5N1 

isolate to enhance mice pathogenicity [192]. These two publications demonstrate that basic amino acid 

at position 591 enhances polymerase activity and mice pathogenicity. However, a recent study showed 

that a basic amino acid exchange at position 526 modulates polymerase efficiency. The presence of an 

arginine increased the polymerase activity, while the presence of a lysine led to a loss of activity [155]. 

These results provide an explanation for the abolished polymerase activity observed with mutation 

Q591K in H9N2-2061/H9N2-782. Therefore it would be interesting to investigate the impact of Q591R 

in H9N2-2061/782 and its potential to restore and enhance the polymerase activity. Sequencing of 

H9N2-2061/782 PB2 did not show additional mutations which could explain a counteracting effect. 

Mutation Q591K is localized in the C-terminal part of PB2 [162] more precisely in the 627-domain and 

therefore should not influence replication or cap snatching activity. It has been proposed by Reich et al 

that during the transcription process the viral messenger RNA passes through a basic channel between 

the cap-binding domain and the 627-domain (including position 591) [136]. This exit pathway avoids 

the endonuclease, protecting subsequently the viral mRNA from degradation. Therefore, it is 

conceivable that this mutation affects the release of viral messenger RNA. 

9.1.3 Adaptive mutations increase viral growth in mammalian cells. 

Most of the adaptive mutations conferring enhanced polymerase activity in mammals have been 

described in PB2 subunit. One of the most frequently observed mutation during mammalian adaptation 

is E627K [25] and is therefore one of the most characterized. Mutation E627K has not yet been described 

in natural H9N2 isolate. In contrast, in 2009 a human H9N2 isolate containing mutation D701N (A/Hong 

Kong/33982/2009, Genbank accession number: KF188313) has been reported. The results presented 

here confirm that introduction of adaptive mutations in PB2 of H9N2-2061 virus leads to an increase of 

viral growth in mammalian cells, corresponding to the increased polymerase activity data (cf. Figure 

19, Figure 22, Figure 23 and Figure 24). The recurring presence of H9N2 infections in humans raises 

concerns about the possibility of H9N2 viruses evolving into pandemic strains. Consequently, these 

observations underline the relevance to investigate the effects of adaptive mutations introduced into an 

avian H9N2 isolate and thereby evaluate the potential threat arising from H9N2 viruses. 

9.1.4 Adaptive mutations increase mouse pathogenicity 

Mice infections are a widely used animal model to study influenza pathogenicity in mammals. The 

virulence of H9N2 influenza viruses with the different PB2 mutations was therefore investigated in this 
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model. Viruses with mutation E627K alone or in combination with mutation D701N and S714R showed 

an increased pathogenicity in mice. Similar effects of mutation E627K on mice virulence have been 

observed in studies with different viruses, including other H9N2 isolates [99, 174, 187]. Nevertheless, 

it has to be pointed out that infection with H9N2 E627K was not lethal for the mice in contrast to the 

study of Li et al. The authors used the isolate H9N2 A/chicken/Guangdong/V/2008 (with mammalian 

signature E627K), which provoked 25% weight loss, and 100% lethality [99]. A possible explanation 

for this difference might be related to the isolates used in this study. Several viral proteins are involved 

in influenza virulence and PB2 is not the only viral determinant responsible for a severe infection. For 

example HA or NS1 also play a role in pathogenicity [148]. The polymerase assay data also suggest that 

the impact of mutations could differ between two related H9N2 isolates (cf. Figure 19 and Figure 20) 

and could therefore affect the virulence in mice.  

 

H9N2-2061 viruses with the mutations D701N or S714R showed a similar phenotype as WT. Despite 

high titres in the lung, mice infected with H9N2-D701N did not indicate signs of illness. This could be 

the result of an efficient replication in the lung without raising a strong immune response. Davidson et 

al have demonstrated that a strong IFN response upon influenza infection is responsible for an increased 

morbidity in mice [37]. Analysis of the cytokine response could thereby provide more insight for this 

phenotype. Mutation S714R alone did neither affect weight and survival nor organ titres. This leads to 

the conclusion, that mutation S714R alone does not promote adaptation to mammals and needs the 

combination with the mutation D701N. This was observed by Czudai et al, where combination of S714R 

with D701N was more effective than S714R alone regarding mice pathogenicity [36]. It has been 

demonstrated by Otte et al, that the genetic background of mice may also affect influenza virus 

pathogenicity. They demonstrated that H1N1pdm09 was less virulent in Balb/C than in C57BL/6J mice, 

whereas infection with a highly pathogenic H5N1 isolate led to higher pathogenicity in Balb/C than in 

C57BL/6J mice [127]. Therefore it would be interesting to evaluate the virulence of H9N2-D701N or 

H9N2-S714R viruses in C57BL/6J mice in comparison to Balb/C mice. It is the first time that 

recombinant H9N2 virus with the triple mutation E627K, D701N and S714R has been studied and found 

to be lethal. Interestingly, although H9N2 is known to be at the origin of H5N1 virus in 1997, 

introduction of adaptive mutation in H9N2-PB2 did not provoke viral dissemination into the brain, as 

observed by Czudai et al [36].   

 

To conclude, introduction of mutation E627K, D701N and S714R promotes adaptation of an avian 

H9N2 virus to mammals as demonstrated by the observations that it (i) enhances polymerase activity 

and viral growth in mammalian cells, and (ii) enhances mouse pathogenicity. 
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9.1.5 Adaptive mutation are more efficient in H9N2 and H7N9 virus than in 

H1N1pdm09 and H7N7 

Adaptive mutations E627K, D701N and S714R were introduced into PB2 of H1N1pdm09, H7N7, H7N9 

and H9N2 viruses. The results demonstrate that the mutations have a higher impact on polymerase 

activity, when introduced into H9N2 than into H7N7 or H1N1pdm09 PB2. Interestingly, these mutations 

had the same effect when introduced into PB2 of H7N9 virus. A possible explanation could be the avian 

origin of H9N2 and H7N9 viruses where the effect of a mammalian signature is more potent. In contrast, 

H7N7 and H1N1pdm09 are already, to some extent, adapted to a mammalian host (cf. Table 6), where 

therefore introduction of the adaptive mutations does not further enhance the polymerase activity. The 

differences within H9N2 and H7N7 or H1N1pdm09 in contrast to H7N9 could also be explained by 

phylogenetic analysis. H7N7 and H1N1pdm09 are evolutionary distant from H9N2, whereas H7N9 was 

generated from H9N2 internal genes [45].  

This more potent effect of adaptive mutations in H9N2 was also observed in the context of viral growth. 

Comparison of viral replication of H9N2, H5N1 and H1N1pdm09 in human airway epithelial cells, 

demonstrated that the mutations E627K and D701N in H9N2 had a higher impact on viral growth than 

in H5N1 and H1N1pdm09. It has to be pointed out, that only the impact of the mutation was analysed 

and that this does not reflect the viral titres post infection, where H5N1 reached the highest titer.  

9.1.6 PA and PB1 do not contribute to the enhancement effect of PB2 

mutations in H9N2 viruses 

Reassortment is an important mechanism in influenza virus evolution and played a critical role in the 

evolution of H5N1 viruses. In fact, the H5N1 influenza viruses, in 1997 in Hong Kong causing an 

outbreak in humans, contained internal genes of H9N2 virus G1/97 [30, 64]. Since H9N2 influenza 

viruses are endemic in Asia, the chances are high that reassortment events occur with high frequency. 

This concept is supported by observations that H7N9 [45, 56] and H10N8 [26, 134] viruses, recently 

isolated in China from human cases, contain also internal genes of H9N2 origin. Introduction of adaptive 

mutations in H9N2-PB2 has a higher impact on polymerase activity than in H7N7 or H1N1pdm09. It 

was therefore relevant to evaluate the role of PA and PB1 in this enhancement, by producing 

heterologous polymerases.  

 

The loss of polymerase activity when PA of avian H9N2 was introduced in H1N1pdm09 and H7N7 

could be the result of an incompatibility within the subunit (cf. Figure 30). Naffakh et al have proposed 

that differences in the endonuclease activity of PA could affect the polymerase efficiency [118]. 

Furthermore, Li et al suggested that the N-terminal part of PA is responsible for the incompatibility 

between the polymerase subunits during reassortment due to a defect of heterotrimer formation [96]. 

Introduction of H9N2-PA also led to a decreased polymerase activity in H7N9 virus which could also 

illustrate a difference of enzymatic activity. Chen et al have described that reassortment of PB2 and PA 
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of avian origin showed an improved polymerase efficiency [27]. This would therefore explain why the 

activity of reconstituted polymerase in H7N9 is not aborted in the presence of avian H9N2-PA. 

Consequently, PA of H9N2 is to some extend more compatible with PB1 and PB2 of H7N9 virus than 

with PB1 and PB2 of H7N7 and of H1N1pdm09 viruses. In addition, Naffakh et al proposed that PB1 

of avian origin cooperates more efficiently with human PB2, PA and NP [118], and therefore explain 

why PB1 of avian H9N2 does not affect the polymerase activity of H1N1pdm09 (human isolate) (cf. 

Figure 36). As explained above, H9N2 is phylogenetically related to H7N9 in contrast to H1N1pdm09 

and H7N7, and could thereby resolve the differences within the heterologous polymerase.  

Several studies have investigated the reassortment process of influenza viruses and described some 

restriction mechanisms preventing combination of segments. They have observed that not all 

combinations were possible. There are in theory 254 possibilities of reassortant viruses between two 

different influenza isolates. However, only a few have been observed in nature or experimentally 

obtained, supporting the hypothesis of a mechanism preventing random reassortment [44, 60, 68, 118, 

119].  

 

The results demonstrate that H9N2-PA and PB1 do not contribute to the polymerase enhancement 

observed after introduction of adaptive mutations, but that this increase is a special characteristic of 

H9N2-PB2. The role of H9N2-PB2 in H1N1pdm09, H7N7 and H7N9 viruses during infection of 

mammalian cells or mice still remains to be investigated. However, the results with the heterologous 

polymerase suggest that these reassortants would have an enhanced viral growth and pathogenicity. 

9.2 Mechanisms of adaptive mutations E627K and D701N 

9.2.1 Mutation E627K modulates the evasion of innate immunity 

The innate immune system is constantly challenged by pathogens, including viruses. These pathogens 

are rapidly evolving and adapting to new hosts and develop strategies to evade the recognition by the 

immune system. They also hijack the cellular machinery for their own purpose to either promote 

replication or to evade cellular sensors [52, 66, 67, 177, 178, 185].  

Influenza virus have developed several strategies to evade RIG-I sensing, one of the major sensors 

during influenza infection. Nuclear transcription and replication is one of the most efficient mechanisms 

to avoid recognition by the innate immune system. Furthermore, the protein NS1 targets TRIM25 

responsible for the ubiquitin-activation of RIG-I [55]. Proteins of the polymerase complex, PB1, PB2 

and PA were also described to act on the RIG-I pathway via interaction with MAVS and thus blocking 

the signaling pathway leading to IFN production [63, 82]. Nevertheless, NS1 is not present at early 

stages of infection, and PB2, PB1 and PA are present as a heterotrimer on the incoming vRNP. The data 

presented in the thesis highlight that despite all the subversion mechanisms developed by the virus, RIG-

I can still be activated by incoming vRNP exposed during translocation into the nucleus.  
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Activation of RIG-I is dependent on a short blunt 5’ppp double-stranded-RNA, as observed in the 

panhandle of negative strand viruses [147]. The particular structure of the influenza vRNP fulfil these 

criteria. Indeed, vRNP present a double stranded RNA structure formed by the 5’ and 3’ end of the 

genome (so called panhandle) with a 5’ppp group. However, the recently elucidated structure of the 

influenza promoter showed that nucleotide 1-10 of the 5’ end are organized in a hook structure [131]. 

This hook is confined in a pocket formed by PA and PB1 and is required for enhancement or activation 

of the polymerase functions. The results presented in this thesis, clearly show the activation of RIG-I 

following the recognition of the incoming vRNP. It can therefore be hypothesized that despite the 

interaction of the hook structure with PB1/PA, RIG-I is still able to access and bind the 5’ppp because 

of the polymerase flexibility [136]. Furthermore, it can be proposed that the binding of the polymerase 

to the promoter is dynamic and can accordingly vary between the incoming vRNP and the initiation of 

the transcription step. This primordial interaction of RIG-I and the 5’ppp would trigger the 

destabilisation of the polymerase complex and lead to the binding of RIG-I to the panhandle structure 

of the influenza genome.  

Mutation E627K in the PB2 subunit is one of the most frequently observed adaptive mutations in 

mammals. Recent studies provide new evidence for the role of E627K mutation in host adaptation in 

combination with importin-α. The latter plays a role as positive regulator for human (627K) but not 

avian (627E) polymerase activity, independently of its import function [80]. Other studies postulate that 

E627K is counteracting an unknown restriction factor in mammalian cells [109]. However, another 

study challenge this hypothesis, where the authors propose that the difference within 627E/627K 

polymerase activity is not due to a restriction factor but due to the absence or low expression of a positive 

factor in mammalian cells [114]. A particular feature of PB2 E627K is the strong interaction with NP 

compared to PB2 627E [93, 124]. This strong interaction is supposed to be responsible for an increased 

stability of the nucleocapsid. The presented results demonstrate that the unknown inhibitory factor is 

RIG-I and proved that the sensitivity of this sensor is dependent on the mammalian or avian signature 

at position 627. This reveals a new evasion mechanism developed by influenza viruses, to avoid 

recognition of incoming vRNP by RIG-I. 

A recent publication from Song et al describes a new mutation K526R, which show similar host 

adaptation characteristics as E627K. Interestingly, mutation K526R is also described to increase 

interaction between PB2 and NP [155]. These data raise therefore the question of the potential role of 

K526R in RIG-I evasion.  

The results described here point to a direct action of RIG-I which prevents transcription or replication 

of the virus, independently of the innate signaling pathway (Figure 57). The model of action is based 

on the binding of the 5’ppp end, which leads to the conformational change of RIG-I and destabilisation 

of the polymerase with 627E PB2 from the nucleocapsid. This destabilisation leads to exposure of the 

panhandle structure, which is recognized by the helicase domain of RIG-I. In contrast, the mutation 
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E627K increases the stability of the polymerase complex to the nucleocapsid, via a stronger interaction 

with NP, which restricts destabilisation and access to the panhandle structure, therefore RIG-I activation. 

 

Figure 57: Counteraction of RIG-I activation by mutation E627K. The scheme represents the RIG-I activation in presence 

of vRNP containing avian signature (627E) or mammalian signature (627K) in PB2. The recognition of the 5’ppp leads to the 

conformational change of RIG-I and destabilization of the viral polymerase (627E) from the vRNP. This destabilization gives 

access to the panhandle structure of influenza genome to RIG-I. In presence of a polymerase with mammalian signature (627K), 

the increased stability of the nucleocapsid prevents the destabilization of the polymerase and consequently RIG-I activation. 

Influenza viruses developed additional mechanisms to evade the immune system, such as strategies 

involving PB1-F2. This protein is a truncated form of PB1 composed of 90 amino acids. It has been 

shown to have different roles in the pro-apoptotic and pro-inflammatory pathway, but also in modulation 

of the innate immune response. PB1-F2 can modulate IFN response via binding to MAVS [42, 167] or 

modulate NF-κB signaling pathway via binding of the IKK-β protein [138].  

Furthermore, influenza viruses have been demonstrated to use the cellular RNA helicase UAP56 and 

URH49 to promote transcription and replication of the viral genome [185]. These helicases are also 

diverted to prevent double stranded RNA formation. It has been described that RIG-I is also present into 

the nucleus [98]. Therefore it can be assumed that influenza viruses will hijack these RNA helicases to 

avoid formation of double-stranded RNA, between vRNA and cRNA during replication step and thus 

prevent RIG-I recognition.  

RIG-I is a key determinant for the different immune response between mammalian and avian species. It 

has been demonstrated that RIG-I is absent in chicken (Galliformes) that possess however MDA-5 and 

its downstream signaling pathway, common to RIG-I [7]. The demonstrated role of RIG-I acting on 

incoming vRNP explains the differences in polymerase activity and viral growth within mammalian and 

avian cells. 
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Despite the absence of RIG-I, chicken possess a developed immune system including TLR, NLR and 

RLR. The expression of the chicken TLR (chTLR) varies within cells and tissues and has homologous 

functions as the mammalian TLRs. For example, mammalian TLR9 corresponds to chTLR21 in chicken, 

with the same function of sensing bacterial genomic DNA. In addition, chTLR15 is an avian specific 

TLR which senses specific patterns of viruses and bacteria as would, among others, mammalian TLR4 

and TLR9. Finally the chTLR17 has been proposed to have a role during influenza infection, which 

could then compensate for RIG-I absence [28]. 

The RLR pathway with MDA-5 and LGP2 is still present in chicken. MDA-5 is ubiquitously expressed 

in different chicken tissues and plays an important role in IFN production. It has been demonstrated in 

mammalian cells that MDA-5 could compensate for the absence of RIG-I [151], upon influenza 

infection, which could also be the case in chicken cells. Karpala et al have demonstrated that chicken 

MDA-5 is active and induces a signaling pathway after recognition of synthetic RNA (poly I:C) or 

vRNA. However, chicken MDA-5 was not able to protect against an influenza infection [84].  

TLRs preferentially activate the NF-κB signalling pathway, whereas RIG-I leads to the IFN-β synthesis 

[101]. The IFN pathway will lead to the activation of ISG as OAS, Mx protein, RNAse L, PKR among 

others [142]. In chicken, IFN-α can be synthesized via another pathway during influenza infection, but 

not IFN-β [101]. A study demonstrated that in IFN-β knock-out mice, the viral lung titer is considerably 

increased upon influenza infection. Despite the presence of IFN-α, the protective effect of IFN-β cannot 

be compensated [89]. Even if the chicken immune system protects against a broad spectrum of 

pathogens, the lack of RIG-I is one of the weaknesses in influenza recognition. 

Interrestingly, RIG-I is present in ducks (Anseriformes), which are the natural reservoir of influenza-A-

viruses [7]. This difference may explain why ducks are less sensitive to highly pathogenic influenza 

virus infection, in contrast to chicken. It remains unclear why only chicken have lost RIG-I during 

evolution. 

9.2.2 Mutation D701N modulates the transport of incoming vRNP 

There are several critical steps during influenza infection. Despite receptor binding, entry and uncoating, 

vRNPs need to be imported into the nucleus for completing transcription and replication. For this 

purpose the virus needs to adapt to the host import machinery. The size of the vRNP (10-20nm) cannot 

afford a passive passage through the nuclear pore [34, 126], and therefore needs the recruitment of the 

host import machinery. It has been shown that the entry of influenza vRNP was driven by the NLS signal 

of NP present in the N-terminal part and referred as unconventional NLS [35] (Figure 58).  
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Figure 58: Domains of influenza NP. A scheme of the nucleoprotein and its domains is shown. In green are represented the 

functional domains for NP function: The cytoplasmic accumulation signal (CAS) and the tail loop, enabling the 

oligomerization. In orange is represented the NLS domains: the bipartite NLS as well as unconventional NLS. 

vRNPs use the classical nuclear import pathway via importin-α/β adaptors, as NP and PB2. In contrast, 

PB1/PA use the non-classical import pathway via RanBP5, independently of importin-α [139]. 

As described above influenza viruses have developed an efficient mechanism to counteract RIG-I 

activation. This evasion occurs during the short exposition in the cytosplasm before nuclear transport, 

thanks to the mutation E627K in PB2 subunit. 

Mutation D701N in PB2 has also been shown to have an important role in adaptation [36, 50, 51]. 

D701N increases polymerase activity and viral growth, as well as pathogenicity in mice. The 

mechanistic role of D701N has been described in 2007 by Tarendeau et al, where the authors 

investigated the structure of the C-terminal domain of PB2. In this study, the authors observed that the 

PB2 structure is affected by mutation D701N. They show that the 701D residue forms a salt bridge with 

the arginine at position 753. This salt bridge leads to the closed conformation of the C-terminal part 

(containing the NLS domain) of PB2. The presence of mutation D701N provokes the disruption of the 

salt bridge and the switch to an open conformation of PB2. This conformational change exposes the 

NLS domain, which enables a better interaction with importin-α [162] (Figure 59).  

 

Figure 59: Structure of the NLS domain of PB2 subunit. Here are represented the structure of the NLS. Residue Asp701 

forms a salt bridge with Arg753 of the major NLS motif and tethers the C terminus to the core of the domain in the unbound 

state. The presence of residue Asn701 demonstrates unfolding of residues 736–759 (purple) leading to the exposure of the 

NLS domain. Figure from Tarendeau et al 2007. 
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Thus, mutation D701N plays an important role in PB2 import into the nucleus. Gabriel et al have 

demonstrated the interaction between PB2 and importins. They observed that PB2 with mutation D701N 

had an enhanced interaction with mammalian importin-α1 and -α7, leading to an increased nuclear 

localisation of the newly synthesized PB2 protein [52] (Figure 60). 

 

 

Figure 60: Import of PB2 701D or 701N into the nucleus of mammalian cells. The nuclear import of newly synthesized PB2 

protein is shown. The presence of the mutation D701N enables a better interaction with importin-α and an increased import of 

PB2 into the nucleus. 

Import analysis exhibit that mutation D701N is able to positively influence the nuclear entry of vRNP. 

Moreover, it is demonstrated that the effect of mutation D701N is not only limited to the import of newly 

synthesized PB2 protein but also promote the entry of incoming vRNP (cf. Figure 5, step 4 and 6). 

Mutation D701N is therefore directly active when PB2 is bound to the nucleocapsid. As already pointed 

out mutation S714R cooperates with D701N for the exposure of the NLS domain [36]. Nevertheless, 

the presented immunofluorescence results show that S714R does not promote an enhanced import of 

vRNP into the nucleus. Quantification of nuclear entry between viruses containing PB2 with mutation 

D701N or D701N-S714R would provide more informations on the role of mutation S714R. 

The direct impact of D701N on vRNP import should be discussed. It could be argued that, from the 

structural point of view, the interaction between PB2, NP and PB1 could affect the exposure of the NLS 

in the C-terminal part of PB2. Reich et al have recently published the structure of the complete 

polymerase, including PA, PB1 and PB2. Their results suggest that the PB2 subunit is the most mobile 

part of the polymerase complex. PB1 and PA heterodimer are well interacting, and for a functional 

polymerase, PB2 might need a conformational flexibility. The authors observed a detached and flexible 

arm of the polymerase which is most likely the C-terminal part of PB2 [136]. Therefore it is conceivable, 

that the NLS domain of PB2 is exposed and flexible enough to interact with the importins (Figure 61). 
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Figure 61 : 3D structure of the polymerase complex. Here is represented the interaction of the polymerase proteins. PB2 is 

coloured in blue and its NLS domain is represented in purple, PB1 in orange and PA in green. (Adapted from Reich et al, 2014) 

The NP protein, associated with the viral RNA, is essential for vRNP nuclear import. It was 

demonstrated that the unconventional NLS domain of NP was the dominant NLS in this process [35]. 

Therefore, the drastic effect on vRNP import of the NLS domain of PB2 has to be discussed. Wu et al 

demonstrated that blocking both NLS signals of NP (by mimetic peptide or antibodies) led to a decreased 

nuclear localisation of vRNP, but was not abolished [188]. Two hypothesis could explain this phenotype: 

(i) The NLS domains are not blocked all at once and enable a partial entry or (ii) the NLS domain of 

PB2 partially rescues the vRNP entry into the nucleus. Furthermore, O'Neil et al have observed the 

importance of NP for vRNA nuclear import in absence of the polymerase subunits, and therefore 

conceive that the polymerase complex may influence the nuclear import as well [125]. 

It would be of interest to discriminate the role of PB2 versus NP in vRNP transport. However, these two 

proteins use the same carriers for the import (importin-α/β) [81] and a recent study described that 

mutation in the unconventional NLS of NP affects vRNP formation and thus RNA synthesis [146]. The 

data presented here do not assume that PB2 will override the role of NP, but in contrast, cooperatively 

act to increase the nuclear import.  

Taken together, the results discussed in chapter 9.2 throw light on two different mechanisms by which 

adaptive mutations E627K and D701N enhance virus replication in the mammalian host. Mutation 

E627K prevents RIG-I activation mediated by incoming vRNP and thus, promotes its escape from the 

innate immune response. Mutation D701N accelerates transport of vRNP into the nucleus where 

replication and transcription take place and by clearance of vRNP from the cytoplasm it further 

contributes to RIG-I activation.  
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12 APPENDICES 

12.1  Amino Acid Abreviation 

 

Amino Acid 3-letter code 1-letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Try W 

Tyrosine Tyr Y 

Valine Val V 
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12.2 Amino acid sequence of PB2 subunit 

A/Quail/Shantou/2061/2000 and A/Quail/Shantou/782/2000 

MERIKELRDLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPALRMKWMMAMKYPITADKRIMEMIP

ERNEQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTASTVHYPKVYKTYFEKVERLKHGTFGPVH

FRNQVKIRRRVDMNPGHADLSAKEAQEVIMEVVFPNEVGARILTSESQLTITKEKREELKNCNIAPLMV

AYMLERELVRKTRFLPVAGGTSSVYIEVLHLTQGTCWEQMYTPGGEVRNDDVDQSLIIAARNIVRRAT

VSADPLASLLEMCHSTQIGGVRMVDILKQNPTEEQAVDICKAAMGLKISSSFSFGGFTFKRTKGSSVKRE

EEVLTGNLQTLKIKVHEGYEEFTMVGRRATAILRKATRRMIQLIVSGRDEQSIAEAIIVAMVFSQEDCMI

KAVRGDLNFVNRANQRLNPMHQLLRHFQKNAKVLFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGV

RVSKMGVDEYSSTERVVVSIDRFLRVRDQQGNVLLSPEEVSETQGMEKLTITYSSSMMWEINGPESVLV

NTYQWIIRNWETVKIQWSQEPTMLYNKMEFEPFQSLVPKAARSQYSGFVRTLFQQMRDVLGTFDTVQII

KLLPFAAAPPEQSRMQFSSLTVNVRGSGMRILVRGNSPAFNYNKTTKRLTILGKDAGALTEDPDEGTAG

VESAVLRGFLILGKEDKRYGPALSINELSNLTKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIR

MAIN* 

 

A/Seal/Massachusetts/1/1980 

MERIKELRDLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPALRMKWMMAMKYPITADKRIMEMIP

ERNEQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFEKVERMKHGTFGPVH

FRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKEKLQDCKIAPLMVA

YMLERELVRKTRFLPVAGGTSSVYIEVLHLTQGTCWEQMYTPGGEVRNDDIDQSLIIAARNIVRRATVS

ADPLASLLEMCHSTQIGGIRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKREEEV

LTGNLQTLKIRVHEGYEEFTMVGRRATAILRKATRRLIQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAV

RGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGIRVSK

MGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTEKLTITYSSSMMWEINGPESVLINTYQ

WIIRNWETVKIQWSQDPTMLYNKMEFEPFQSLVPKAARGQYSGFVRTLFQQMRDVLGTFDTVQIIKLLP

FAAAPPEQSRMQFSSLTVNVRGSGMRILIRGNSPVFNYNKATKRLTVLGKDAGALTEDPDEGTAGVES

AVLRGFLILGKEDKRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRMA

IN* 

 

A/Hamburg/05/2009 

MERIKELRDLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPALRMKWMMAMRYPITADKRIMDMIP

ERNEQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFEKVERLKHGTFGPVH

FRNQVKIRRRVDTNPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLAITKEKKEELQDCKIAPLMV

AYMLERELVRKTRFLPVAGGTGSVYIEVLHLTQGTCWEQMYTPGGEVRNDDVDQSLIIAARNIVRRAA

VSADPLASLLEMCHSTQIGGVRMVDILRQNPTEEQAVDICKAAIGLRISSSFSFGGFTFKRTSGSSVKKEE

EVLTGNLQTLKIRVHEGYEEFTMVGRRATAILRKATRRLIQLIVSGRDEQSIAEAIIVAMVFSQEDCMIK

AVRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGIESIDNVMGMIGILPDMTPSTEMSLRGIRV

SKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTERLTITYSSSMMWEINGPESVLVNT

YQWIIRNWEIVKIQWSQDPTMLYNKMEFEPFQSLVPKATRSRYSGFVRTLFQQMRDVLGTFDTVQIIKL

LPFAAAPPEQSRMQFSSLTVNVRGSGLRILVRGNSPVFNYNKATKRLTVLGKDAGALTEDPDEGTSGVE

SAVLRGFLILGKEDKRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRM

AIN* 
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A/Anhui/1/2013 

MERIKELRDLMSQSRTREILTKTTVDHMAIIKKYTSGRQEKNPALRMKWMMAMKYPITADKRIMEMIP

ERNEQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFEKVERLKHGTFGPVH

FRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSESQLTITKEKKKELQDCKIAPLMVA

YMLERELVRKTRFLPVAGGTSSVYIEVLHLTQGTCWEQMYTPGGEVRNDDVDQSLIIAARNIVRRATVS

ADPLASLLEMCHSTQIGGVRMVDILRQNPTEEQAVDICKAAMGLRISSSFSFGGFTFKRTSGSSVKREEE

VLTGNLQTLKIRVHEGYEEFTMVGRRATAILRKATRRLIQLIVSGKDEQSIAEAIIVAMVFSQEDCMIKA

VRGDLNFVNRANQRLNPMHQLLRHFQKDAKVLFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRV

SKMGVDEYSSTERVVVSIDRFLRVRDQRGNVLLSPEEVSETQGTEKLTITYSSSMMWEINGPESVLVNT

YQWIIRNWENVKIQWSQDPTMLYNKMEFEPFQSLVPKAARGQYSGFVRVLFQQMRDVLGTFDTVQIIK

LLPFAAAPPKQSRMQFSSLTVNVRGSGMRIVVRGNSPVFNYNKATKRLTVLGKDAGALMEDPDEGTA

GVESAVLRGFLILGKEDKRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKR

IRMAIN* 
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