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Summary 

Peridinin-containing dinoflagellates are important members of single-celled eukaryotic algae, which 

arose from an engulfment of an ancient red alga by a so far undefined host cell, a process called 

secondary endosymbiosis. Their plastids feature a unique membrane architecture and are 

surrounded by only three membranes.  As the reduction of the endosymbiont’s genome and gene 

transfer from the plastid to the nucleus, the whole plastid genome was reorganized into minicircles 

coding for genes normally coded on the plastid genome. In order to isolate individual minicircles 

from one representative peridinin-containing dinoflagellate Amphidinium carterae CCAM0512 a 

novel transposon-based approach was carried out within this thesis. 89 minicircles were therefore 

isolated from A. carterae, 18 (20.2 %) are gene-containing minicircles, 71 (79.8 %) are empty 

minicircles. The 18 gene-containing minicircles are divided into three groups of minicircles, six single-

gene minicircles, one two-genes minicircle and one three-genes minicircle. The 71 empty minicircles 

are divided into six groups. The characteristics of these minicircles and unique features were 

analyzed in this thesis. In contrast to previously reported organellar RNA editing in peridinin-

containing dinoflagellates, no RNA editing was observed on transcripts of minicircles of A. carterae 

based on the analysis of coding genes. Additionally, the transcription of open reading frames was 

shown in so-called empty minicircles. Finally, based on the comparison with minicircles and rDNA 

sequences of three other A. carterae strains, it was speculated that minicircles undergo a rapid 

evolutionary diversification.  

The mechanisms of protein (e.g. vacuolar proteins) transport and sorting have been well-studied in 

plants, yeast and animals. However, little is known in the diatom P. tricornutum. In order to 

investigate the protein transport and sorting in P. tricornutum, essential marker proteins have to be 

established. In this work, the identification of marker proteins in the endomembrane system was 

based on a combination of in silico search for homologous proteins of P. tricornutum to proteins 

with known localizations in plants and subsequent in vivo localization studies in P. tricornutum. 

Several markers for different subcellular compartments were identified including the plasma 

membrane, two vacuolar-like structures, cER, hER, the nuclear envelope and the second outermost 

membrane of the complex plastid (PPM). Furthermore, the three parts of the Golgi apparatus and 

the cytosol could also be marked. These useful subcellular marker proteins are a very important 

prerequisite for studying the mechanisms of protein transport and sorting in P. tricornutum.  
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Zusammenfassung 

Peridinin-haltige Dinoflagellaten sind wichtige Vertreter einzelliger eukaryoter Algen, welche durch 

die Aufnahme einer anzestralen Rotalge durch eine bislang unbekannte Wirtszelle entstanden sind, 

ein als sekundäre Endosymbiose bezeichneter Prozess. Sie besitzen Plastiden mit einer einzigartigen 

Membranarchitektur und sind nur von drei Membranen umgeben. Durch die Reduktion des 

Endosymbionten-Genoms und den Transfer von plastidären Genen in den Zellkern des Wirtes ist das 

plastidäre Genom in Form von sogenannten „minicirclen“ organisiert, auf welchen Gene kodiert sind, 

die normalerweise im Plastidengenom kodiert sind. Im Rahmen dieser Arbeit wurden individuelle 

„minicircle“ aus dem repräsentativen peridinin-haltigen Dinoflagellaten Amphidinium carterae 

CCAM0512 mittels einer neuartigen Transposon-basierten Methode isoliert. Insgesamt konnten 

dadurch 89 „minicircle“ isoliert werden, davon kodierten 18 (20.2 %) genetische Informationen 

wohingegen 71 (79.8 %) sogenannte „leere minicircle“ waren. Diese 18 kodierenden 

„minicircle“ ließen sich in drei Gruppen unterteilen. Sechs „minicircle“ kodierten ein einzelnes Gen, 

ein „minicircle“ welcher zwei Gene kodiert sowie ein „minicircle“ welcher drei Gene kodiert. Die 71  

„leeren minicircle“ ließen sich in sechs Gruppen einteilen, deren Charakteristika und Eigenschaften 

im Rahmen dieser Arbeit analysiert wurden. Analysen der kodierenden „minicircle“ zeigten, dass auf 

Transkriptebene keine RNA Edierung in A. carterae beobachtet werden konnte, im Gegensatz zu 

„minicirclen“ anderer peridinin-haltiger Dinoflagellaten, bei denen RNA Edierung nachgewiesen 

wurde. Im Falle von „leeren minicirclen“ konnte die Transkription von offenen Leserahmen gezeigt 

werden. Basierend auf einem Vergleich von „minicirclen“ und rDNA Sequenzen von drei weiteren A. 

carterae Stämmen, wurde spekuliert, dass „minicircle“ einer rapiden evolutionären Diversifikation 

ausgesetzt sind.  

Mechanismen zum Transport von Proteinen und deren Sortierung (z.B. von vakuolären Proteinen) 

sind in Pflanzen-, Hefe- und tierischen Zellen gut untersucht, jedoch in der Diatomee P. tricornutum 

größtenteils unbekannt. Um den Transport und die Sortierung von Proteinen in P. tricornutum 

untersuchen zu können, müssen initial essentielle Markerproteine etabliert werden. Anhand von in 

silico Analysen konnten solche Markerproteine, welche homolog zu pflanzlichen Proteinen mit 

bekannter Lokalisation sind, in P. tricornutum identifiziert und auf ihre subzelluläre Lokalisation hin 

untersucht werden. Mehrere Markerproteine für verschiedene subzelluläre Kompartimente, 

einschließlich der Plasmamembran, zwei vakuolen-ähnlicher Strukturen, des cERs, des hERs, der 

Kernhülle, der zweitäußersten Membran der komplexen Plastide, der verschiedenen Teile des Golgi-

Apparats und des Cytosols, wurden identifiziert. Diese nützlichen Markerproteine stellen eine 

wichtige Voraussetzung für Studien am Mechanismus von Protein Transport und Sortierung in 

P. tricornutum dar. 
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Abbreviations 

aa Amino acid Da Dalton 

BLAST Basic Local Alignment Search Tool GnTI N-acetylglucosaminyltransferase I 

bps basepairs PCR Polymerase chain reaction 

BTS bipartite Targeting Sequence FucT α1,3-fucosyltransferase 

CCV Clathrin-coated vesicle DV Dense vesicle 

cDNA complementary DNA ATPase1-3 vacuolar type H+-ATPase 1-3 

cER chloroplast ER mRFP monomeric red fluorescent protein 

COPI/II Coat protein I/II psVSD Protein structure-dependent VSD 

EE early endosome VSD Vacuolar sorting determinant 

EGT Endosymbiotic gene transfer HGT Horizontal gene transfer 

EM endomembrane PM Plasma membrane 

ER endoplasmic reticulum LV Lytic vacuole 

hER host ER PPM The second outermost membrane of the 

complex plastid 

EST expressed sequence tag Vps26/29 vacuolar protein sorting 26/29 

LE late endosome ssVSD Sequence-specific VSD 

MC minicircle MVB Multi vesicular body 

PPM periplastidal membrane Tip1-5 tonoplast intrinsic protein 1-5 

Pt P. tricornutum eGFP enhanced green fluorescent protein 

PVC prevacuolar compartment ctVSD C-terminal VSD 

rpm rotations per minute CLSM Confocal laser scanning microscope 

RT room temperature SA-GFP Self-assembly GFP 

SP signal peptide XylT β1,2-xylosyltransferase 

TGN trans Golgi network PSV Protein storage vacuole 
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1 Introduction 

1.1 The evolution of complex plastids 

1.1.1 The primary endosymbiosis   

One of the important steps in the origin of life was the evolution of oxygenous photosynthesis by 

ancestral cyanobacteria. The oxygenous photosynthesis in eukaryotes occurs on a photosynthetic 

organelle called plastid which arose via a process known as primary endosymbiosis (Marin, Nowack 

et al. 2005). 

Primary endosymbiosis describes the process in which an ancestral free-living photosynthetic 

cyanobacterium was engulfed by a heterotrophic eukaryotic cell. During the co-evolution of the host 

cell and the endosymbiont the endosymbiont became an organelle called primary plastid (Deusch, 

Landan et al. 2008, Ochoa de Alda, Esteban et al. 2014). Primary plastids are surrounded by two 

membranes. The outer membrane acquired prokaryotic and eukaryotic characteristics during its 

evolution (Maier, Douglas et al. 2000, Stoebe and Maier 2002). This primary endosymbiosis gave rise 

to the three major groups glaucophytes, rhodophytes (red algae), and the chlorophytes (green algae 

and land plants) (Fig.1-1) (Cavalier-Smith 1998, Stoebe and Maier 2002, Adl, Simpson et al. 2005, 

Reyes-Prieto, Moustafa et al. 2008). Phylogenetic and gene cluster analysis suggests that these 

primary plastids are of monophyletic origin (Cavalier-Smith 2000, Martin, Rujan et al. 2002, Reyes-

Prieto, Hackett et al. 2006, Rockwell, Lagarias et al. 2014). Recently, there is new evidence 

suggesting that photosynthetic chromotophores in the cercozoan amoeba Paulinella chromatophora 

derived from a different cyanobacterium (Bodył, Mackiewicz et al. 2010). This suggests that those 

chromotophores originated from an independent endosymbiosis (Bodył, Mackiewicz et al. 2010, 

Bodyl, Mackiewicz et al. 2012, Nowack and Grossman 2012). 

During their evolution plastid genomes were greatly reduced. Based on comparison with the 

genome of free-living cyanobacteria (≥1.6 Mb in size) primary plastids have only about 100 - 200 kbp 

(Martin and Herrmann 1998, Stegemann, Hartmann et al. 2003, Reyes-Prieto, Moustafa et al. 2008). 

Through a natural and omnipresent process called endosymbiotic gene transfer (EGT) many genes of 

the symbiont’s genome were transferred into the host nucleus (Martin and Herrmann 1998, 

Stegemann, Hartmann et al. 2003, Reyes-Prieto, Hackett et al. 2006, Reyes-Prieto, Moustafa et al. 

2008). Martin et al. found that about 18% of the protein-coding genes in the nucleus originated from 

a cyanobacterium (Martin, Rujan et al. 2002). This is a hint that genes were transferred from the 

plastid to the host nucleus. Due to the EGT important host nuclear–encoded proteins have to be 

retargeted back to the plastids to assist important machineries and metabolic functions. For 
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example more than four hundred nuclear-encoded proteins were transferred back to the plastid in 

the glaucophytes Cyanophora paradoxa (Facchinelli, Pribil et al. 2013).  

1.1.2 The secondary endosymbiosis 

Primary plastids subsequently spread by secondary endosymbiosis (Deusch, Landan et al. 2008, 

Gould, Waller et al. 2008, Lane and Archibald 2008). Secondary or complex plastids arose by the 

uptake of a photosynthetic eukaryotic cell that evolved by primary endosymbiosis into a second 

eukaryotic cell (Cavalier-Smith 1998, Cavalier-Smith 2002). 

Both green and red algae have been involved in secondary endosymbiotic events (Keeling 2009, 

Keeling 2013). The plastid evolution of the secondary emdosymbiosis is strongly debated. The 

Cabozoa hypothesis explains that secondary plastids of green algal origin trace back to a single 

common endosymbiosis (Cavalier-Smith 1999). However, this hypothesis was contradicted by other 

studies analyzing the phylogeny of plastid-encoded proteins. They suggested that these green 

plastids were acquired twice independently (Cavalier-Smith 2002, Yang, Elamawi et al. 2005, Green 

2011). All red algal derived taxa contain chlorophyII c and are usually referred to as 

“chromalveolates”. Haptophytes, heterokonts, apicomplexans, cryptophytes and dinoflagellates are 

the major lineages in the chromalveolate group (Fig. 1-1). It has been proposed that one single 

secondary endosymbiosis with a red alga gave rise to the common ancestor of all chromaveolates 

(Cavalier-Smith 1999, Green 2011). This proposal is known as the chromalveolate hypothesis. Two 

chromalveolate genes (fructose bisphosphate aldolase (FBA) and glycerol-3-phosphate 

dehydrogenase (GAPDH)) have their unique evolutionary history, which supported the monophyletic 

origin of chromalveolates (Fast, Kissinger et al. 2001, Harper and Keeling 2003, Patron, Rogers et al. 

2004). The single origin proposal is also supported by the plastid pigmentation in photosynthetic 

members, plastid gene and genome relationships, large multigene phylogenies of a concatenated 

16-protein data set, an analysis using a 143-protein data set and the unity of SELMA-dependent 

protein import (Rodriguez-Ezpeleta, Brinkmann et al. 2005, Hackett, Yoon et al. 2007, Teich, Zauner 

et al. 2007, Burki, Inagaki et al. 2009, Hampl, Hug et al. 2009, Zimorski, Ku et al. 2014, Gould, Maier 

et al. 2015). But the chromalveolate hypothesis remains very controversial. Some studies based on 

genome-analysis are not consistent with this suggested monophyletic origin of the chromalveolates 

(Lane and Archibald 2008, Dagan and Martin 2009, Moustafa, Beszteri et al. 2009, Dorrell and Smith 

2011). There are different datas indicate that the host cells are not monophyletic. Such as it was 

shown that heterokonts are more closely related to alveolates than to haptophytes and 

cryptophytes on trees, gene replacement in the plastid genomes of the defined monophyletic 

groups, one-third of the proteins in the biosynthetic pathway of carotenoids in chromists are closely 
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related to green algal homologs via phylogenetic analyses (Frommolt, Werner et al. 2008). The origin 

of red complex plastids is still debating. Recently, Petersen et al. suggested the rhodophycean origin 

for the complex plastid Chromera velia, which departs from a single origin of the red complex plastid 

(Petersen, Ludewig et al. 2014).  

In comparison to primary plastids, secondary complex plastids are surrounded by additional 

membranes (Maier, Douglas et al. 2000, Gould, Waller et al. 2008). In the case of organisms with a 

green algal endosymbiont, the plastids can be surrounded by three (euglenophytes) or four 

membranes (chlorarachniophytes). Important members with a red algal endosymbiont are 

haptophytes, heterokonts, cryptophytes and apicomplexa, all of them with secondary plastids 

surrounded by four membranes (Stork, Lau et al. 2013). Melkonian suggested that the outermost 

membrane is an autophagosomal membrane (Melkonian 1996). The outermost membrane of 

complex plastids is also thought to be homologous to a phagocytotic membrane of the host 

(Cavalier-Smith 2000, Bolte, Bullmann et al. 2009). After fusion with the endoplasmic reticulum (ER), 

the phagocytotic membrane became the chloroplast ER membrane (cER) in heterokonts, 

haptophytes and cryptophytes (Lemgruber, Kudryashev et al. 2013). The second outermost 

membrane of complex plastids, also called periplastidal membrane (PPM), is thought to be 

homologous to the cytoplasmic membrane of the endosymbiont (Cavalier-Smith and Chao 2003). It 

was also suggested that the host ER membrane was involved to form the two outermost membranes 

(Zimorski, Ku et al. 2014, Gould, Maier et al. 2015). The two innermost membranes of complex 

plastids appear to originate from the inner and outer envelope of primary plastids (Schleiff and 

Becker 2011, Stork, Lau et al. 2013). However, a different situation is found in peridinin-containing 

dinoflagellates the complex plastids of red algal origin are surrounded by only three membranes 

(Cavalier-Smith 2000). The evolution of dinoflagellates is described in detail in the next paragraph. In 

chromalveolate lineages cryptophytes are the only member demonstrated to have retained the 

nucleomorph (the former nucleus of the engulfed red alga) between the outer and inner chloroplast 

membrane pair (Archibald 2007). 
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Fig. 1-1: Model of the evolution of complex plastids of green and red algal origin. 

During primary endosymbiosis an ancestral free-living photosynthetic cyanobacterium was engulfed by a eukaryotic cell 

and established as an endosymbiont in the three lineages glaucophyta, rhodophyta and chlorophyta. Engulfment of a 

green or red alga by another unicellular eukaryote and subsequent reduction of the symbiont to an organelle led to the 

development of so-called secondary or complex plastids. Two independent secondary endosymbiotic events involving 

algae of the chlorophyta and different eukaryotic hosts resulted in the chlorarachniophytes (1) and euglenophytes (2). The 

red algal derived taxa collectively are usually referred to as “chromalveolates”. Haptophytes, heterokonts, apicomplexans, 

cryptophytes and dinoflagellates are the major lineages in the chromalveolate group, but this is strongly discussed. It is 

unknown if red secondary plastids are mono- or polyphyletic. (Modified after Zimorski (Zimorski, Ku et al. 2014)). 

Dinoflagellates are an extremely diverse group of photosynthetic species and non-photosynthetic 

species. Peridinin-containing dinoflagellates are distinguished from the other species in 

dinoflagellates by the pigment peridinin and three-membrane surrounded plastids (Dodge and Lee 

2000). During the evolution one of the ancestral four membranes must have been lost in 

dinoflagellates (Zhang, Green et al. 1999, Barbrook and Howe 2000, Zhang, Green et al. 2000, Stoebe 

and Maier 2002). Gould et al. suggested the plastids have probably lost the second outermost of 

four membranes (Gould, Maier et al. 2015). It was shown that the membranes of the peridinin-

containing plastid are not connected to the host ER and the outermost membrane does not have 

ribosomes (Gould, Maier et al. 2015).  
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The evolutionary origin of peridinin-containing plastids in dinoflagellates is also highly debated 

because of the reduced number of plastid membranes. Previous studies suggested that the 

peridinin-containing plastids arose from secondary endosymbiosis (Mcfadden 2001, Grosche, 

Hempel et al. 2014, Gruber, Rocap et al. 2015). However, several hypothesizes indicate that the 

plastids of dinoflagellates evolved via a more complicated tertiary endosymbiosis, where a 

secondary plastid-containing alga was engulfed and reduced to an organelle (Hackett, Yoon et al. 

2004, Keeling 2010, Gabrielsen, Minge et al. 2011, Burki, Imanian et al. 2014). Dinoflagellates have 

been shown to contain heterkontophyte-, cryptophyte- and haptophyte-derived tertiary plastids in 

the so-called “Dinotoms”, Dinophysis and Kareniaceae groups, respectively (Burki, Imanian et al. 

2014).  

1.1.3 Plastid genome and gene transfer 

More than 25 years ago the first complete sequence of a plastid genome was reported in the 

liverwort Marchantia polymorpha (Ohyama, Fukuzawa et al. 1986). There are more and more plastid 

genomes available now, including those of land plants and algae. The plastid genomes of algae and 

land plants usually are single circular DNA molecules with a size of 100 - 200 kbp and contain 

approximately 100 - 250 genes (Barbrook and Howe 2000, Nisbet, Hiller et al. 2008). Encoded on 

these genomes are many components of the photosynthesis, chloroplast replication and protein 

synthesis machinery (Hiller 2001). 

In contrast to the common genome organization found in most eukaryotic groups harboring plastids, 

peridinin-containing dinoflagellates have a unique degenerated and rearranged plastid genome 

(Zhang, Green et al. 1999, Barbrook and Howe 2000, Laatsch, Zauner et al. 2004, Takishita, Ishida et 

al. 2004). After the disintegration and reconfiguration of their plastid genome, the genes are located 

to plasmid-like molecules of a size of about 0.4 - 10kbp instead of a conventional plastid 

chromosome genome. These molecules are called minicircles (Zhang, Green et al. 1999, Barbrook 

and Howe 2000, Howe, Nisbet et al. 2008). Each minicircle contains one to three genes as well as a 

non-coding region. Most encoded proteins are related to photosynthesis. Additionally many ‘empty’ 

minicircles have been identified. Although they contain a number of open reading frames of 

different lengths no significant homology could be detected, thus leaving their purpose unknown 

(Hiller 2001, Nisbet, Koumandou et al. 2004). Based on the alignment of the non-coding regions of 

all known minicircles within species a highly conserved region called core region was found. The core 

region is thought to be responsible for the initiation of replication, the maintenance of the copy 

number and/or the transcription of minicircles (Zhang, Green et al. 1999, Barbrook and Howe 2000, 

Hiller 2001, Zhang, Cavalier-Smith et al. 2002, Barbrook, Dorrell et al. 2012). Additionally to the core 
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and coding region minicircles contain a non-coding region. It has been shown that the non-coding 

regions possess a tripartite conserved sequence that could be folded in silico into secondary 

structures (Howe, Nisbet et al. 2008). Only about 15 genes have been found on dinoflagellate 

minicircles (varying on species) until now (Zhang, Green et al. 1999, Barbrook and Howe 2000, Hiller 

2001, Nisbet, Koumandou et al. 2004, Howe, Nisbet et al. 2008). Compared to the size of other 

plastid genomes the plastid genome of dinoflagellates is undoubtedly the smallest (Green 2004, 

Green 2011). This shrunken plastid genome might result from the missing of numerous genes. Some 

authors suggested that these missing genes were either deleted or transferred to the host genomes 

during the process of plastid acquisition (Bachvaroff, Concepcion et al. 2004, Green 2004, Hackett, 

Yoon et al. 2004, Bachvaroff, Sanchez-Puerta et al. 2006). 

As already mentioned during the previous endosymbiosis as well as the following (secondary or even 

tertiary) endosymbiosis there was a massive transfer of endosymbiotic genes to the host nucleus 

known as EGT.  

However, the reduced plastid genome is insufficient to meet the wide variety of plastid functions 

such as photosynthesis, lipid and protein biosynthesis. Because of this, the proteins had to be 

somehow targeted to the plastids. It was shown that nucleus-encoded proteins required for plastidal 

functions were transported back to the plastids with the aid of targeting signals and a protein-import 

machinery (Martin and Herrmann 1998, Weber, Linka et al. 2006).  

1.3 Endomembrane system  

1.3.1 The endomembrane system  

In eukaryotic cells the endomembrane system is made up of several functionally different organellar 

membranes, including the nuclear envelope, ER, Golgi apparatus, lysosomes or vacuoles, different 

vesicles (more detail in 1.3.2.2) and the plasma membrane (PM) (Fig.1-2). These organelles are 

located in the cytoplasm and interconnected by vesicular transport (Schellmann and Pimpl 2009). 

This membrane system divide the cell into functional and structural compartments (Galili 2001, 

Gautreau, Oguievetskaia et al. 2014) . It is necessary for proteins to be transported to the right 

destinations.  

The endomembrane compartments fulfill specific functions in the transport of proteins. The 

endoplasmic reticulum (ER) has a central role in producing, processing and transporting proteins. 

The Golgi apparatus is another important organelle. The Golgi consists of three networks, cis-Golgi 

network mainly receive proteins from ER, medial-Golgi transport proteins from cis-Golgi to trans 

Golgi, while the trans-Golgi or trans Golgi network (TGN) send proteins to next organelles. During 
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the transport of proteins from the ER to the Golgi apparatus, proteins are modified, sorted and 

finally transported to destinations such as the vacuole, the extracellular space (so called anterograde 

transport) or recycled back to the Golgi apparatus (so called retrograde transport) (Bolte, Brown et 

al. 2004). Endosomes are single membrane-surrounded compartments and represent a major and 

important sorting compartment in the endomembrane system. Endosomes can be classified into 

early endosomes, late endosomes and recycling endosomes depending on their main functions 

(Reyes, Buono et al. 2011). But in most cases it is difficult to distinguish these endosomes (Otegui 

and Spitzer 2008). The trans-Golgi network (TGN) is believed to serve as an early endosome (Mallard, 

Tang et al. 2002, Dettmer, Hong-Hermesdorf et al. 2006, Viotti, Bubeck et al. 2010). The main 

function of TGN/early endosomes is to mediate vacuolar protein transport, receive internalized 

proteins from the plasma membrane or retransport endocytosed proteins back to the plasma 

membrane and recycle protein sorting receptors (here also called recycling endosomes) (Mallard, 

Tang et al. 2002, Otegui and Spitzer 2008). Subsequently, early and recycling endosomes are 

believed to mature into late endosomes or multi vesicular bodies (MVBs), also called prevacuolar 

compartments (PVCs) (Reyes, Buono et al. 2011). Late endosomes have two important functions, 

recycling of protein sorting receptors back to the TGN and transporting of newly synthesized 

proteins from the Golgi apparatus to vacuoles (Piper and Katzmann 2007, Otegui and Spitzer 2008). 

It is obvious that the endosomal network is a key compartment that mediates the concentration of 

proteins in the Golgi apparatus, vacuoles and plasma membrane (Tse, Mo et al. 2004, Otegui and 

Spitzer 2008). 

The most visible compartment surrounded by only one membrane is the vacuole (Maruyama, Mun 

et al. 2006, Zouhar and Rojo 2009). Vacuoles are involved in maintaining of internal hydrostatic 

pressure and storage of water, ions, nutrients and secondary metabolites. Similar to animal 

lysosomes, they also act in intracellular digestion of various waste products and toxic substances 

(Matsuoka 1993, Otegui and Spitzer 2008, Pereira, Pereira et al. 2013, Ebine, Inoue et al. 2014). In 

plant cells, at least two different types of vacuoles can be found, the central lytic vacuole (LV) for 

protein degradation and the protein storage vacuole (PSV) (Swanson, Bethke et al. 1998, Frigerio, 

Jolliffe et al. 2001, Frigerio, Hinz et al. 2008). 

1.3.2 Vacuolar protein transport within endomembrane system 

Proteins that are secreted to the extracellular space or retained in the endosomal membrane system 

are commonly called secretory proteins (Vitale and Hinz 2005). Most secretory proteins contain an 

ER signal peptide or a hydrophobic transmembrane domain for insertion into the ER membrane 

(Johnson and van Waes 1999, Xiang, Etxeberria et al. 2013). When the signal peptide is cleaved off 
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from the proteins and then other specific targeting signals are used for transporting proteins to the 

destinations (Jürgens 2004, Xiang, Etxeberria et al. 2013, Xiang and Van den Ende 2013). Therefore, 

the targeting signals and correct transport routes are important for the targeting of the vacuolar 

protein to the final destination. 

1.3.2.1 Vacuolar sorting determinants 

Protein sorting to the precise destinations depends on many targeting information from the protein. 

The identification of vacuolar sorting signals/vacuolar sorting determinants (VSS/VSDs) is necessary 

for better understanding of protein targeting to the vacuoles at the post-Golgi level. Three distinct 

sorting determinants are known in plant cells. Sequence-specific VSDs (ssVSDs), C-terminal VSDs 

(ctVSDs) and protein structure-dependent VSDs (psVSDs) have been reported (Hwang 2008, 

Hegedus, Coutu et al. 2015). Without these important signals vacuolar proteins will be targeted to 

the wrong subcellular compartments or degraded.  

Many studies have shown that sequence-specific VSDs are usually located at the N-terminus of the 

proteins and mainly sort them to the lytic vacuoles, such as barley aleurain (Koide, Matsuoka et al. 

1999, Sanmartin, Ordonez et al. 2007). In some cases sequence-specific VSDs are also recognized by 

vacuolar sorting receptors and guide proteins to the PSVs, such as seed storage protein 2S albumin 

and toxin ricin (Frigerio, Jolliffe et al. 2001, Jolliffe, Brown et al. 2004). 

C-terminal VSDs are always located at the C-terminal part of the protein. They generally lead 

proteins target to the protein storage vacuoles (Nishizawa, Maruyama et al. 2003, Vitale and Hinz 

2005, Maruyama, Mun et al. 2006). Finally psVSDs are based on the tertiary (physical) structure of 

proteins and usually transport proteins to the protein storage vacuole (Neuhaus and Rogers 1998, 

Jolliffe, Brown et al. 2004, Jolliffe, Craddock et al. 2005, Neuhaus 2007, Zouhar and Rojo 2009). 

Recently some studies have shown that some proteins contain two different VSDs at the same time. 

For example, the existence of a sequence-specific VSD and a ctVSD at the C-terminal region of α' 

subunit of soybean β-conglycinin directs the protein to the PSVs (Nishizawa, Maruyama et al. 2003). 

The protein cardosin A with a characteristic ctVSD and an untraditional vacuolar sorting domain (PSI) 

was transported to the vacuole. Plant specific domain (PSI) is an additional protein domain of about 

100 amino acids present in the protein precusors and is normally deleted after maturation (Simoes 

and Faro 2004). It was also demonstrated that any one of these two signals alone is sufficient to sort 

proteins to the vacuole (Pereira, Pereira et al. 2013).  

However, Pompa et al shown that the vacuolar phaseolin is secreted to the apoplast without the C-

terminal tetrapeptide AFVY. When a cysteine residue was added to the phaseolin for forming 

interchain disulfide bond, the phaseolin polypeptides connected by engineered disulfide bonds are 
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transported to vacuoles again (Pompa, De Marchis et al. 2010).  Nishizawa et al. proposed that the 

proportion between the size of the protein and the copy number of vacuolar sorting determinants is 

also very important for the sorting efficiency (Nishizawa, Maruyama et al. 2003). Based on these 

data in protein sorting to the vacuole, it is clear that the three well-known types of VSDs identified 

so far is not thoroughly sufficient to explain all the vacuolar targeting mechanisms.  

1.3.2.2 Vacuolar protein transport via vesicles 

Vacuolar protein transport is mediated by different intermediate vesicles. Previous studies have 

shown that most of newly synthesized proteins are transported from ER to the Golgi apparatus via a 

coat protein II (COPII)-vesicle-dependent manner (Ritzenthaler, Nebenführ et al. 2002, Takeuchi, 

Ueda et al. 2002, daSilva, Snapp et al. 2004, Yang, Elamawi et al. 2005). Different types of ER export 

motifs have already been identified for exiting the ER (e.g. a di-basic motif RKR in tobacco) (Barlowe 

2003, Hanton, Renna et al. 2005, Lee and Miller 2007, Lee and Miller 2007, Schoberer, Vavra et al. 

2009). ER export motifs are recognized by the known cargo-binding site on Sec24 component of 

COPII complex, and then the protein will be captured into COPII vesicles and transported to the next 

organelle (Miller, Beilharz et al. 2003, Mossessova, Bickford et al. 2003, Lee and Miller 2007). COPI 

was identified in mediating retrograde traffic from the cis-Golgi to the ER. Proteins with ER retention 

signals are mistargeted to the Golgi. These proteins can be retransported back to the ER in COPI 

vesicles (Pimpl, Taylor et al. 2006). It was also shown that COPI adjusts the vesicular traffic pathway 

within the Golgi apparatus (Movafeghi, Happel et al. 1999, Contreras, Ortiz-Zapater et al. 2000, 

Pimpl, Movafeghi et al. 2000, Pimpl, Hanton et al. 2003). 

In plants different routes were used for the vacuolar protein transport after the ER (Fig. 1-2). One of 

the possibilities involves the passage through the Golgi apparatus. Previous studies have shown that 

transport of some important lytic vacuolar proteins from the Golgi apparatus to the lytic vacuoles 

(LVs) is mediated by clathrin-coated vesicles (CCVs) with a diameter of 50 to 70 nm (Hohl, Robinson 

et al. 1996, Robinson, Hinz et al. 1998, De Marchis, Bellucci et al. 2013). Specific vacuolar targeting 

signals are recognized by protein sorting receptors in the membrane of the TGN (Rouillé, Rohn et al. 

2000). Subsequently the protein sorting receptors are recognized by adaptor proteins (Xiang, 

Etxeberria et al. 2013, Xiang and Van den Ende 2013). The ligand-receptor complexes are recruited 

into the clathrin-coated vesicles (Ahmed, Rojo et al. 2000, Kalthoff, Groos et al. 2002, Happel, 

Höning et al. 2004, Song, Lee et al. 2006). CCVs containing proteins bud from the trans Golgi network, 

then deliver their cargoes to LVs after fusion with multi vesicular bodies (Fig. 1-2 marked by black 

arrow) (Robinson and Bonifacino 2001, Tse, Mo et al. 2004, Van Damme, Gadeyne et al. 2011). 

Clathrin-coated vesicles are one major style of vesicles in plant. Clathrin-coated vesicles can also bud 
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from the plasma membrane for the uptake of nutrients, the delivery and regulation of signaling 

components as well as the recycling of proteins (Maldonado-Mendoza and Nessler 1996, Holstein 

2002, McMahon and Boucrot 2011, Reynolds, August et al. 2014). 

Transport of lytic vacuolar proteins to the LV can also take an alternative pathway from the ER 

bypassing the Golgi, as shown in Fig. 1-2 (marked by purple arrow). This process is mediated by 

intermediate compartments, called ER bodies (Matsushima R 2003, Hara-Nishimura, Matsushima et 

al. 2004). When the vacuolar sorting motifs are recognized by protein sorting receptors, ligand-

receptor complexes are recruited into the ER bodies. The ER bodies (diameter of less than 1000 nm) 

are oil, protein or rubber containing ER-derived membrane structures (Herman and Schmidt 2004, 

Herman 2008, Xiang, Etxeberria et al. 2013). Therefore, the lytic vacuole sorting pathway could be 

defined as ER → Golgi → CCV → multi vesicular body → LV and ER → ER body → LV pathways. 

 

 

Fig. 1-2: A working model for protein sorting to vacuoles. 

Many different sorting routes are known for proteins transport to vacuoles. During the transport of lytic vacuolar proteins, 

proteins are directly targeted from the ER to their destination in ER bodies bypassing the Golgi apparatus (marked by 

purple arrow). Proteins are transported from the Golgi apparatus to the lytic vacuole (LV) via prevacuolar compartments or 

multivesicular bodies (MVBs). This pathway is mediated in clathrin-coated vesicles (CCVs) (indicated by black arrow). 

During the transport of storage proteins, proteins are sorted to protein storage vacuole (PSV) by a receptor-mediated way 

(brown heart) in clathrin-coated vesicles (red arrow). Some proteins are transported to PSV by a receptor-mediated 

pathway (brown star) via dense vesicles (DVs) (blue arrow). The multi vesicular body (MVB) might be an alternative 

intermediate compartment during the protein transport from CCVs and DVs to PSV (yellow arrows). Some proteins bypass 

the Golgi apparatus using precursor-accumulating (PAC) vesicles (green arrow). These vesicles also receive proteins from 

the Golgi apparatus. PM: plasma membrane. (Modified after Vitale and Hinz 2005)  
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However, the targeting of proteins from the ER to the protein storage vacuoles is different and more 

complicate. It is majorly mediated by dense vesicles (DVs). Different from the lytic protein transport 

the interaction of ligands and receptors is calcium-dependent in storage vacuolar protein transport 

(Shimada, Fuji et al. 2003). DVs are small vesicles with a diameter of 150 - 200 nm. Vacuolar proteins 

are recruited into the mature DVs released from the TGN. Mature DVs are not involved in a protein 

coat (Hohl, Robinson et al. 1996). Finally the DVs deliver their cargoes to the PSVs (marked by blue 

arrow) (Vitale and Hinz 2005). All available evidences indicate that some seed storage proteins, such 

as most 2S ablumins and the toxin ricin, would also be delivered to protein storage vacuoles via 

clathrin-coated vesicles (marked by red arrow) (Vitale 2001, Jolliffe, Brown et al. 2004, Vitale and 

Hinz 2005). MVBs or PVCs are the alternative intermediate target of CCVs and DVs during the 

transport route from the Golgi apparatus to PSVs (marked by yellow arrow) (Robinson, Hinz et al. 

1998, Jiang, Phillips et al. 2000, Tse, Mo et al. 2004) (Fig. 1-2). 

Studies have also shown that vacuole residing proteins are sorted directly from the ER to the PSVs 

using precursor-accumulating (PAC) vesicles and are therefore transported in a Golgi-independent 

way (Hara‐Hishimura, Takeuchi et al. 1993, Vitale 2001, Michaeli, Avin-Wittenberg et al. 2014). 

There is an alternative route. Some vacuolar proteins could be transported from the Golgi apparatus 

to the PAC vesicles and then target to the PSV (marked by green arrow) (Watanabe, Shimada et al. 

2004). Therefore, the protein storage vacuole sorting pathway could be mainly defined as ER → 

Golgi → DV/CCV → (multi vesicular body) → PSV and ER → PAC → PSV pathways. 

Receptor-mediated sorting pathways for secretory proteins in eukaryotic cells depend on 

mechanisms to recycle the receptors after the dissociating of receptor-ligand complexes (Niemes, 

Langhans et al. 2010). The recycling of receptors are mediated by different complexes such as 

retromer. The retromer is a coat complex that locates on the cytosolic face of the TGN/early 

endosome (Vergés, Sebastián et al. 2007, Schellmann and Pimpl 2009, Seaman, Harbour et al. 2009). 

In yeast, plants and mammals the retromer complex contains two subcomplexes, a large 

subcomplex formed by three cargo selective adaptor subunits (Vps26, Vps29 and Vps35) and a small 

subcomplex formed by membrane deforming sorting nexin proteins (SNXs) (Seaman 2004, 

Bonifacino and Hurley 2008, Cullen and Korswagen 2012). Most newly synthesized proteins are 

transported via a protein sorting receptors-dependent parthway. The protein sorting receptors have 

been well-characterized in some organisms such as the seed storage protein receptors in A. thaliana, 

vacuolar protein sorting 10 (Vps10) in yeast S. cerevisiae and mannose 6-phosphate receptors (MPR) 

in mammals (Horazdovsky, Davies et al. 1997, Nothwehr, Bruinsma et al. 1999, Arighi, Hartnell et al. 

2004, Carlton, Bujny et al. 2004, Seaman 2004, Niemes, Langhans et al. 2010, McGough and Cullen 

2011, Robinson, Pimpl et al. 2012). In order to maintain the forward transport of proteins the 
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efficient retrograde transport of the protein sorting receptor is a critical important step. This 

recycling of receptors is mediated by some complexes such as the retromer. Moreover, the retromer 

is also responsible for many other physiological and developmental processes such as mediating the 

transport of internalized toxin and auxin efflux carriers (more diverse functions of retromer see 

Bonifacino and Hurley 2008).  

1.3.3 The biosynthesis of N-Glycoproteins on endomembrane system 

Glycosylation is a very important translational modification for proteins. There are different 

glycosylations such as N-glycosylation, O-glycosylation and phosphor-glycosylation. N-glycosylation 

is a major co- and post-translational modification of proteins in eukaryotic cells. It has been 

discussed that N-glycosylation plays a crucial role in the folding, assembly, structural formation and 

stability of several important proteins (Rayon, Lerouge et al. 1998, Baïet, Burel et al. 2011, Mathieu-

Rivet, Kiefer-Meyer et al. 2014). Moreover previous studies have shown that the glycosylation plays 

a role in the sorting of proteins to the vacuoles, especially in the Golgi-independent secretory 

pathway (Rayon, Lerouge et al. 1998, Paris, Saint-Jean et al. 2010, Pereira, Pereira et al. 2013, 

Pereira, Pereira et al. 2014). 

It has been discussed that the majority of secretory proteins are N-glycosylated in the endoplasmic 

reticulum (ER) and the Golgi apparatus (Fig. 1-3) (Strasser 2014). The process of N-glycosylation can 

be mainly divided into three stages: during the initial phase of the process a precursor 

oligosaccharide is synthesized in the ER and transferred en bloc to the protein by a 

oligosaccharyltransferase, which is part of a translocation complex (Baiet, Burel et al. 2011, Kajiura, 

Okamoto et al. 2012, Bosch, Castilho et al. 2013, Mathieu-Rivet, Kiefer-Meyer et al. 2014), the 

resulting N-glycoproteins are transported to the Golgi apparatus and further catalysed and modified 

by a large number of highly conserved membrane-bound enzymes, such as glycosyltransferases and 

glycosylhydrolases, such as N-acetylglucosaminyltransferase I (GnTI),  β1, 2-xylosyltransferase (β1, 2-

XylT), α1, 3-fucosyltransferase (α1, 3-FucT), α1, 4-fucosyltransferase (α1, 4-FucT) and so on (Kornfeld 

and Kornfeld 1985, Strasser, Mucha et al. 2000, Wilson 2002, Bondili, Castilho et al. 2006, Strasser, 

Bondili et al. 2007, Strasser 2014), finally the mature glycoproteins are either secreted or targeted 

into the plasma membrane.  
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Fig. 1-3: N-glycosylation pathway during the synthesis of glycoproteins in plants. 

The synthesis, en bloc transfer and initial modification of precursor oligosaccharide occur in the ER under the catalytic 

action of Glu I/II/III enzymes.  Subsequently, the processing and modification of the oligosaccharide chain is performed in 

the cis- medial- and trans-Glogi apparatus. At last, the mature glycoproteins are either targeted into the plasma membrane 

or secreted. Glu I: glucosidase I, Glu II: glucosidase II, Glu III: glucosidase III, Man: mannosidase, GnTI: N-

acrtylglucosaminyltransferase I, GnTII: N-acrtylglucosaminyltransferase II, β1, 2-XylT: β1, 2-xylosyltransferase, α1, 3-FucT: 

α1, 3-fucosyltransferase, α1, 4-FucT: α1, 4-fucosyltransferase, β1, 3-GalT: β1, 3-galactosidase. (Modified after Hyun-Soon K. 

Jae-Heung J. et al 2014) 

1.3.4 Tonoplast intrinsic proteins (Tips) 

Some membrane proteins do not have a direct effect on the protein sorting and transport, but they 

are important for the cellular metabolism. Aquaporins are channel proteins belong to the the major 

intrinsic proteins (MIPs) superfamily. Aquaporin pore can selectively mediate the transport of water, 

gases and small neutral solutes such as urea, glycerol as well as silicic acid (Maurel 1997, Loque, 

Ludewig et al. 2005, Lienard, Durambur et al. 2008, Uehlein and Kaldenhoff 2008, Wudick, Luu et al. 

2014). In most plant species aquaporins can be subdivided into four groups, the plasma membrane 

intrinsic proteins (PIPs), nodulin 26-like intrinsic proteins (NIPs) localized in the plasma membrane 

and ER, the tonoplast intrinsic proteins (TIPs) and small basic intrinsic proteins (SIPs) localized in the 
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ER (Johansson, Karlsson et al. 2000, Baiges, Schaffner et al. 2002, Quigley, Rosenberg et al. 2002, 

Pandey, Sharma et al. 2013).  

Aquaporins have been well-studied on the structure and function in plants, yeast and animals 

(Kaldenhoff, Ribas-Carbo et al. 2008, Maurel and Plassard 2011, Li, Santoni et al. 2014). Aquaporin 

proteins contain six conserved transmembrane-spanning α-helices linked by three extra- and two 

hydrophobic intracellular loops (Kaldenhoff and Fischer 2006, Fischer and Kaldenhoff 2008, 

Chaumont and Tyerman 2014). The N-terminus and C-terminus of aquaporin proteins are located at 

the cytosolic side of the membrane (Johansson, Karlsson et al. 2000, Uehlein and Kaldenhoff 2008). 

It has been shown that the first three transmembrane domains and the rest three transmembrane 

domains form an inversely repeat (Kaldenhoff, Ribas-Carbo et al. 2008, Chevalier and Chaumont 

2014). Previous studies have already shown that the loops play a critical role in the forming of 

transmembrane channels and its stability (Werner, Uehlein et al. 2001, Kaldenhoff, Bertl et al. 2007, 

Kaldenhoff, Ribas-Carbo et al. 2008). Two conserved asparagine-proline-alanine (NPA) motifs were 

located in the different loop regions. The NPA motif and adjacent residues were thought to be 

critically important for water transport activity (Chaumont, Barrieu et al. 2001, Park, Scheffler et al. 

2010).  

1.3.5 Vacuolar-type H+-ATPases (V-ATPase) 

The ATPase is an important multi-subunit transmembrane complex (Clarke, Köhler et al. 2002, 

Dettmer, Hong-Hermesdorf et al. 2006). There are different classes of ATPases (F-ATPases, V-

ATPases, E-ATPases, P-ATPases and A-ATPases), which can be distinguished by their function, 

structure and the transport of ions (McKersie and Bruce 2009, Xi and Wu 2011, Islam, Patwary et al. 

2014). It has been shown that V-ATPases are mainly accumulated at vacuoles, ER, Golgi apparatus, 

plasma membrane and endosomes (Sze, Schumacher et al. 2002, Krebs, Beyhl et al. 2010)(Fig. 1-4). 

V-ATPase complexes contain a cytosolic subcomplex V1 (subunits A-H) and hydrophobic subcomplex 

V0 (subunits a, c, c’, c’’, d and e) (Dettmer, Hong-Hermesdorf et al. 2006, Seidel, Schnitzer et al. 2008, 

Ma, Qian et al. 2012). The major function of this complex is to pump protons from the cytoplasm 

into the lumen of organelles or to the outside of the cell. The V-ATPase catalyzes the hydrolysis of 

ATP into ADP and a free phosphate ion (Ma, Qian et al. 2012). During the catalytic process a lot of 

energy is released which is used for the cell metabolism including endosomal transports (Dettmer, 

Liu et al. 2010, Zhou, Bu et al. 2015). In Puccinellia tenuiflora decreasing of the V-ATPase activity 

obstructs endosomal trafficking (Zhou, Bu et al. 2015). It was also shown that the inhibition of VHA 

interrupt the transport from TGN to the vacuole as inhibitor concanamycin prevent the TGN 

formation and release fron the Golgi apparatus (Scheuring, Viotti et al. 2011). 
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Fig. 1-4: Subcellular localization of vacuolar type H+-ATPase (VHA) in plant. 

It was shown that vacuolar-type H+-ATPases (VHAs) are mainly distributed to the ER, Golgi apparatus, vesicles, vacuoles 

and plasma membrane. The major role of VHAs is to pump H+ into the lumen of organelles or out of the cell and provide 

energy for cell metabolites. Abbreviations: AHA, A. thaliana plasma membrane H+-pumping ATPase; AVP1, vacuolar H+-

pumping ppase; CAX1, Ca2+/ H+ antiporter. (Modified from Sze, Schumacher et al. 2002)  
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2. Aim 

Peridinin-containing dinoflagellates are unicellular alveolates which evolved via secondary 

endosymbiosis event. The reduction of the endosymbiont genome in addition to gene transfer from 

the plastid to the nucleus resulted in a unique endosymbiont genome organization in peridinin-

containing dinoflagellates. Genes normally found on plastid genomes have been organized into so-

called minicircles. Previous studies have already reported several minicircle sequences from 

different dinoflagellates (Barbrook and Howe 2000, Hiller 2001, Zhang, Cavalier-Smith et al. 2002, 

Moore 2003, Laatsch, Zauner et al. 2004, Nisbet, Koumandou et al. 2004, Barbrook, Santucci et al. 

2006, Howe, Nisbet et al. 2008). However, it remains limit on the isolation of the single minicircle 

molecule. The aim of this work was to isolate individual minicircle molecules via novel transposon-

based approach from the dinoflagellate A. carterae CCAM0512. Based on these individual minicircle 

molecules the characteristics and evolutionary relationship of minicircles were analysed. In order to 

investigate the localization of minicircles individual minicircle molecules were manipulated for 

retransfection of A. carterae CCAM0512.  

Proteins are usually synthesized on the rough endoplasmic reticulum (rER), and are then sorted to 

different destinations (e.g. vacuole) through the endomembrane system by the secretory pathway. 

The protein transport and sorting mechanisms (such as the sorting routes, targeting signals and 

vacuolar protein sorting receptors) have already been well-studied in plant cells, yeast and animals 

(Geuze 1995, Bonifacino and Traub 2003, Pereira, Pereira et al. 2013, Xiang, Etxeberria et al. 2013, 

Pereira, Pereira et al. 2014, Zhang, Hicks et al. 2014). Little is known about the protein transport and 

sorting through the endosomal compartments in diatom P. tricornutum. The aim of this work was to 

gain insight into the sorting mechanisms of protein with targeting signals. Defining appropriate 

marker proteins for subcellular organelles are essential for studying the mechanisms. However, the 

known marker proteins in P. tricornutum are less enough. To extend the dataset of marker proteins 

homologous proteins to known localization proteins in plants were identified in P. tricornutum. To 

investigate the subcellular localization of candidate marker proteins eGFP- or mRFP-fusion proteins 

were studied in vivo localization by confocal laser-scanning microscopy.  
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3 Results 

3.1 Genetic compartmentalization in the complex plastid of Amphidinium carterae  

Peridinin-containing dinoflagellates are unicellular alveolates that evolved via secondary 

endosymbiosis (Mcfadden 2001, Shalchian-Tabrizi, Skånseng et al. 2006). The reduction of the 

endosymbiontic genome in addition to gene transfer from the plastid to the nucleus led to a unique 

endosymbiont genome organization in peridinin-containing dinoflagellates (Zhang, Green et al. 1999, 

Barbrook and Howe 2000, Howe, Barbrook et al. 2003). In these organisms genes normally found on 

the conventional plastid genome have been organized into so-called minicircles (Barbrook and Howe 

2000, Hiller 2001, Zhang, Cavalier-Smith et al. 2002, Howe, Nisbet et al. 2008). In order to retrieve 

their full-length DNA sequence a novel transposon-based approach was used to isolate individual 

minicircle molecules from the peridinin-containing dinoflagellate A. carterae CCAM0512.   

3.1.1 The enrichment and isolation of minicircles  

It was already shown by Laatsch et al. that a high quantity of minicircles could be enriched and 

isolated by the alkaline lysis (Laatsch, Zauner et al. 2004). Here in order to enrich and isolate 

minicircles from A. carterae CCAM0512, additionally to the alkaline lysis different suppliers for 

alkaline lysis based kits were tried (see material and method 5.2.4.11). It was found that a significant 

quantity of minicircles could only be enriched and isolated via the alkaline lysis but not alkaline lysis 

based kits. Koumandou and Howe have already shown  that the copy number of different minicircles 

per cell is low during the exponential growth stage, but the number is increasing during the later 

growth phase (Koumandou and Howe 2007). It was found that the significant minicircles could only 

be visible on an agarose gel via the enrichment and isolation from the old cultures about four to five 

weeks but not younger cultures.  

The isolation of minicircles was shown on Fig. 3-1. A strong signal was detectable at a size of about 

2000 bps (lane 1 and lane 2), this resulted from the isolated minicircles. The gel of red box area was 

retrieved and used for the isolation of individual minicircles by a transposon-insertion based 

approach (see material and method 5.2.4.12). An additional signal was marked by red stars, 

representing the gDNA was detectable in all lanes (Fig. 3-1). 
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Fig. 3-1: The isolated minicircles of A. carterae CCAM0512.  

M: 100 bps DNA ladder H3 RTU marker. Lane 1 and 2: Isolated minicircles. Lane 1 and 2 contain a signal in the range of 

about 2000 bps. These are the isolated minicircles. The gDNA of A. carterae CCAM0512 was marked by red stars. The gel of 

red box area was retrieved and used for the isolation of individual minicircles via a transposon-insertion based approach. 

3.1.2 Analysis of individual minicircles 

By using a transposon-insertion based approach and several times electroporations (see materials 

and methods 5.2.4.12) it was found that twenty two colonies grew on lysogeny broth (LB) agar plate 

1 containing kanamycin antibiotic (Table 3-1) and hundreds of thousands of colonies grew on plate 2 

and 3. Subsequently, about 150 colonies were picked out and cultured in liquid LB medium 

containing kanamycin antibiotic for plasmid preparation (see materials and methods 5.2.4.1). Based 

on the digestions by enzymes and analysis on the agarose gel 107 potential positive minicircles were 

sequenced via transposon sequencing forward and reverse primers (see supplements 7.3). The 107 

potential positive minicircles are named Juan 1 to Juan 107, shortly J1 - J107. Finally, it was found 

that 18 out of 89 plasmids (20.2%) are gene-containing minicircles. 71 out of 89 plasmids (79.8%) are 

empty minicircles. The number of empty minicircles is about four times the number of gene-

containing minicircles. While the remainder 18 plasmids are false positive colonies. The more detail 

will be shown on the next texts. 

Table 3-1: Statistic analysis of isolated individual minicircles. 

(Plate 1, 2 and 3 are three different transposon insertions and electroporations.) 

Plate Colonies on 
plate 

Sequencing 
number 

name False positive 
minicircles 

Gene 
containing 
minicircles 

Empty 
minicircles 

1 22 10 J1-J6, J21-J22, 
J70, J71 

2 2 6 

2 Hundreds of 27 J7-J17, 
J23-J33, 
J34-J37, J72 

4 8 15 

3 Hundreds of 70 J18-J20, 
J38-J69, 
J72-J107 

12 8 50 

Total 
number 

 107  18 18(20.2%) 71(79.8%) 
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3.1.2.1 The overview of all individual minicircles 

Within this 18 gene-containing minicircles, it was found that 12 out of 18 minicircles belong to 

different minicircle molecules. The 12 minicircles include three different psbA-containing minicircle 

molecules, two different petB/atpA-containing minicircle molecules, two different 23S rRNA-

containing minicircle molecules and one psaB-, psbC-, psbD/E/I-, petD- and atpB-containing 

minicircle molecule (Table. 3-2). 11 different genes were identified on these individual minicircles of 

2333 bps (J2) – 2664 bps (J33) length from A. carterae CCAM0512 (Table. 3-2). The average length of 

all these gene-containing minicircles is 2474 bps. All genes identified represent the core components 

of the chloroplast genome of all other photosynthetic organisms, as the encoded subunits of the 

complexes (photosystem I and photosystem II, the ATP synthase and the cytb6/f complex) are 

involved in the light reactions of photosynthesis as well as 23S rRNA (Table. 3-2). As reported from 

minicircles of other species (Hiller 2001, Nisbet, Koumandou et al. 2004), two minicircles containing 

more than one gene were isolated, namely J29 (including psbD, psbE and psbI genes) and J37 

(including petB and atpA genes). It was also found that these genes on the same minicircle are 

separated by only about 100 bps to 600 bps nucleotide sequences. However, in conventional plastid 

genome these genes are located much far from each other (Ohyama, Fukuzawa et al. 1986, 

Shinozaki, Ohme et al. 1986). In contrast to minicircles from other species (Barbrook and Howe 2000, 

Hiller 2001, Zhang, Cavalier-Smith et al. 2002), all genes encoded on minicircles in A. carterae 

CCAM0512 have the same start codon (ATG), while TAG, TGA or TAA are used as stop codon in 

minicircle genes (Table 3-2).  

Table 3-2: Properties of minicircles containing chloroplast genes in A.carterae CCAM0512. 

 (Minicircles’ number: the number of isolated minicircles; Individual minicircles’ number: the number of different minicircle 

molecules; PS I: Photosystem I; PS II: Photosystem II; bps: base pairs) 

Circle’ 
name 

  Minicircles’  
number 

Individual 
minicircles’ 
number 

Coding 
gene 

Minicircle 
length  
(bps) 

Gene 
length 
(bps) 

Start  
codon 

Stop  
codon 

Product 

J12   1 1 psaB 2469 1875 ATG TGA CP47 PS I 

J2   5 3 psbA 2333 1023 ATG TAG D1 PS II 

J11   5 1 psbC 2343 1251 ATG TAA CP43 PS II 

J29   1 1 psbD/E/I 2354 1068/243
/108 

ATG TAA D2/Cytochrome 
b599 alpha/ PS II 

J37   2 2 petB/atpA 2596 660/1041 ATG/ 
ATG 

TAA/ 
TGA 

Cytochrome b6/ 
alpha-subunit 
ATP synthase 

J30   1 1 petD 2481 567 ATG TAA Subunit IV ATP 
synthase 

J28   1 1 atpB 2555 1662 ATG TAG Beta-subunit ATP 
synthase 

J33   2 2 23S rRNA 2664 _ _ _ 23S rRNA 

Total 
number 

  18 12       
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In addition to minicircles with coding genes, 71 empty minicircles have been isolated (Table 3-3). Of 

the total 71 empty minicircles, 26 (36.6%) belong to different minicircle molecules. The 26 different 

molecules were divided into six groups (Table 3-3). For example, the group of J8 empty minicircle 

contains three different minicircle molecules in 17 minicircles. These empty minicircles include 

different numbers of open reading frames (ORFs) for which no homology could be detected. 

Minicircle J9 has nine ORFs>150 bps compared with only two ORFs>150 bps on minicircle J36. Their 

lengths are different ranging from minicircle J22 (1449 bps) to minicircle J24 (2493 bps) and 

sequences are not conserved. The average length of these empty minicircles is 1986 bps. These ORFs 

without known function may be unique to dinoflagellates. It might also be possible that they have 

specific functions for minicircles.  

 

Table 3-3: Properties of empty minicircles in A.carterae CCAM0512. 

 (Minicircles’ number: the number of the isolated minicircles; Individual minicircles’ number: the number of different 

minicircle molecules; ORF: open reading frame; bps: base pairs) 

Name/Type Minicircles’  
number 

Individual minicircles’ 
number 

Minicircle length (bps) ORF>150 bps Largest ORF(bps) 

J8 17 3 1853 4 249 

J9 21 7 1892 9 243 

J13 9 6 2209 3 492 

J22 1 1 1449 3 195 

J24 19 6 2493 6 264 

J36 4 3 2020 2 198 

Total number 71 26  27  

 

As shown in Table 3-3, these empty minicircles contain several open reading frames with larger than 

150 bps without known homology. The lengths of the largest open reading frames in these empty 

minicircles are different from 195 bps to 492 bps. In order to detect the relationship between the 

ORFs > 150 bps of gene-containing minicircles and empty minicircles the comparison was conducted. 

It was found that empty minicircle J9 and atpB-containing minicircle have a completely identical 

open reading frame and a partially identical open reading frame (Table 3-4). At the same time, it was 

shown that empty minicircles J13, J22 and J36 have an identical open reading frame, empty 

minicircles J22 and J24 have an identical open reading frame.  
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Table 3-4: Identical open reading frames in A. carterae CCAM0512. 

(J28 is atpB containing minicircle, the rest of minicircles including J9, J13, J22, J24 and J36 are empty minicircles. Identical 

open reading frames: the minicircles contain the identical open reading frames or partially identical open reading frame. 

The potential products of the open reading frames are without any known homology. Only the open reading frames > 150 

bps were analyzed here. )  

Minicircles  Identical open reading frames 

J9,J28 MIYFYLVQCNIRDFETQRGFPPPPCRSTLEDPRVPSSNSSQYARTPEKIHR. 

J9,J28 ….........LSLIHISTIIDEFSRVFSHIGSNSSSVPGDPLESTCRGGGESHVVSQNL. 

J13,J22,J36 MSPQRSIAPFQVICLSAPLPSIEGLSLSFHQLSLHSFVYSLVEILTSRHI. 

J22,J24 MSHDIITTTPNPLSFIGGGLIKVKSLWPMRGAIHQLQYLVHSPSYRRSSEH. 

 

For the purpose of distinguishing the difference on the nucleotide sequences of gene-containing 

minicircles and empty minicircles the GC contents of these minicircles were compared (Fig. 3-2). It 

was shown that the GC contents of the overall minicircles generally appear to be lower than the GC 

contents of the coding regions, but higher than the GC content of the non-coding regions except the 

same GC content in petB-containing minicircle. A special case is that in psbE and psbI genes-

containing minicircle the overall minicircle presents to be more GC-rich than the coding regions and 

the non-coding region, the non-coding region shows higher GC content than the coding regions. 

Except the GC content of psbA-containing minicircle is 45%, which is the same as or lower than the 

GC content of the overall empty minicircles, all the other gene-containing minicircles present to be 

more GC-rich than the empty minicircles. It was also presented that the GC contents of the overall 

minicircles, the coding regions and the non-coding regions are lower than the AT content.   
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Fig. 3-2: GC content for minicircles of A. carterae CCAM0512. 

The figure shows that the GC content of the overall minicircles, the coding regions and the non-coding regions in genes-

containing minicircles and empty minicircles. It was shown that the overall GC contents of the minicircles are generally 

lower than the GC content of the coding regions, but higher than the GC content of the non-coding regions except the 

same GC content in petD gene minicircle. However, the overall psbE and psbI-containing minicircles appear to be more GC-

rich than the coding regions and the non-coding regions. Except the psbA-containing minicircle all the other gene-

containing minicircles present to be more GC-rich than the empty minicircles. The more detailed description see text. GC 

content is calculated on the website http://emboss.bioinformatics.nl/.   

3.1.2.2 The core regions of minicircles in A. carterae CCAM0512 

 

Fig. 3-3: Alignment of the core regions of fourteen minicircles of A. carterae CCAM0512.  

It was shown that all fourteen minicircles have a highly conserved sequence about 60 bps called core region, and a 12 bps 

conserved sequence called core out region. Only the conserved regions were shown in this figure. Consensus regions of all 

fourteen minicircles of A. carterae CCAM0512 were aligned by using ClustalX 2.1.  

In order to compare the non-coding regions of all minicircles the sequences of consensus minicircles 

were aligned. It was shown that there is a highly conserved core sequence of 60 bps, called core 

region.  At the same time, there is a 12 bps conserved sequence called core out region (Fig. 3-3). 

http://emboss.bioinformatics.nl/
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Based on the comparison of the sequences between the core region and the core out region it was 

found that the nucluotides of minicircle J8, J11, J12, J28, J29, J30, J33 and J37 are the same, but 

different from that of the remainder six minicircles. To predict the function of the core region 

different algorithms were used to predict a putative promoter sequence, whereby the sequence 

“CACCAGCTTCAAAAAATGCCGGTCAATCCATAGGAGTGAGAAAATCACAG/TGATGAGA” was predicted 

to have a putative function for initial transcription, which has to be confirmed in the future.   

3.1.2.3 Transcription and RNA editing analyses of individual minicircles 

RNA-editing can be commonly observed in land plants, although the frequency varies in different 

lineages. In the algae, the RNA editing remains undetectable until now, aside from the editing that 

occurred in the dinoflagellates Ceratium horridum and Heterocapsa triquetra (Zauner, Greilinger et 

al. 2004, Dang and Green 2009). In order to study the RNA editing on minicircles of A. carterae 

CCAM0512 mRNA derived sequences were compared with genomic sequences of the psbA gene. It 

was shown that no RNA editing was observed in the psbA gene. The observed RNA products support 

the previous study that the transcription of coding genes on minicircles (Barbrook and Howe 2000, 

Barbrook, Symington et al. 2001, Zhang, Cavalier-Smith et al. 2002, Nisbet, Hiller et al. 2008).  

 

 

Fig. 3-4. Transcription of ORFs of three empty minicircles. 

It was indicated that the three ORFs were transcribed in A. carterae CCAM0512. The figure showed the results of RT-PCR 

by using the primers designed to amplify the regions of three largest ORFs of different empty minicircles (J9, J13 and J24). 

Lane 1, lane 3 and lane 5: control PCR without reverse transcriptase added. Lane 2, lane 4 and lane 6: The transcriptional 

products of ORFs on empty minicicle J9, J13 and J24. The lengths are 243 bps, 492 bps and 264 bps, respectively. M: DNA 

markers.  

It was already shown that transcription occurs over a large part of the empty minicircle including the 

core region (Nisbet, Hiller et al. 2008). Here, the reverse transcriptase-PCR (RT-PCR) was carried out 

in order to analyse the transcription on the largest ORFs of empty minicircles (J9, J13 and J24, see 



Results 

29 

 

table 3-2). Products were observed for all three ORFs (Fig. 3-4) and comfirmed by sequencing, which 

indicated that these ORFs of empty minicircles might be transcribed.  

3.1.3 Evolution analyses of four A. carterae strains’ minicircles 

Until now, minicircles have been identified in four different Amphidinium carterae strains, including 

A. carterae CCAM0512 presented here and A. carterae CS-21, A. carterae CCAP1102/6 and A. 

carterae CCMP1314. The protein-coding genes identified on minicircles of the different A. carterae 

strains are listed in table 3-5 (Barbrook and Howe 2000, Hiller 2001, Zhang, Cavalier-Smith et al. 

2002, Barbrook, Santucci et al. 2006). All these genes are important for the function of plastid. 

However, the reported genes on minicircles remain very limited. To compare the minicircles’ 

relationship of these four A. carterae strains phylogenetic analysis were performed for the coding 

sequences and non-coding sequences in this chapter.  

 

Table 3-5: Reported minicircular sequences in four A.carterae strains. 

 (LSU: large subunit; SSU: small subunit; rRNA: ribosome RNA) 

strains 
atpA atpB petB petD psaA psaB psbA psbB psbC psbD psbE psbI 

LSU-
rRNA 

SSU-
rRNA 

A. carterae  
CCAM0512 

✓a ✓ ✓a ✓ 
 

✓ ✓ ✓ ✓ ✓b ✓b ✓b ✓ 
 

A. carterae  
CCAP1102/6 

✓a ✓ ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✓b ✓b ✓b ✓ ✓ 

A. carterae  
CS21 

✓a ✓ ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✓b ✓b ✓b ✓ ✓ 

A. carterae  
CCMP1314       

✓ 
     

✓ 
 

Genes located on the same minicircles are indicated by superscript lettering a and b. Minicircles in A. carterae CCAP 1102/6, 

A. carterae CS21 and A. carterae CCMP1314 see references (Barbrook and Howe 2000, Barbrook, Symington et al. 2001, 

Hiller 2001, Zhang, Cavalier-Smith et al. 2002, Nisbet, Koumandou et al. 2004, Barbrook, Santucci et al. 2006). PsbB 

mincircle was isolated by Groche C. (Grosche 2012).  

3.1.3.1 Overall genome characteristics and open reading frames 

Based on the comparison of the GC content of the psbA gene-containing minicircles, it was shown 

that the GC contents of the coding regions are the same in these four A. carterae strains and higher 

than the GC content of the overall minicircles, the non-coding regions and core regions (Fig. 3-5a). It 

generally appears to be more GC-rich in A. carterae CCMP1314 than the other A. carterae strains. 

The GC contents of the overall minicircles in A. carterae CCAP1102/6 and A. carterae CCMP1314 are 

higher than that of A. carterae CCAM0512 and A. carterae CS21. The GC content of A. carterae CS21 
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non-coding regions is 43%, which is lower than that in the other three species. In the core regions, 

the GC content increases progressively from A. carterae CCAM0512, A. carterae CCAP1102/6, A. 

carterae CS21 to A. carterae CCMP1314 (Fig. 3-5a). For the 23S rRNA containing minicircles the GC 

contents of the overall minicircles are the same, as shown in Fig. 3-5b. 

 

 

Fig. 3-5: GC content of psbA and 23S rRNA-containing minicircles in four A. carterae strains. 

The figure shows that the GC contents of the overall minicircles, the coding regions, the non-coding regions and the core 

regions in four A. carterae strains. a: GC content for psbA-containing minicircles. It was shown that the GC contents of the 

coding regions are nearly the same and are higher than the GC contents of the overall minicircles, the non-coding regions 

and the core regions. The more detailed description see text. b: GC content for 23S rRNA containing minicircles. It was 

shown that the GC contents of the overall minicircles are the same on these four A. carterae strains. GC content is 

calculated on the website http://emboss.bioinformatics.nl/. 

Like shown in table 3-4, several identical open reading frames (the lengths > 150 bps) of the gene-

containing minicircles and empty minicircles were found in A. carterae CCAM0512, they do not have 

known homology. The open reading frames (the lengths > 150 bps) were also compared in four A. 

carterae strains. It was shown that 7 out of 27 pairs of open reading frames have a high query cover, 

low e-value and high identity (Table 3-6). Among these three pairs of open reading frames have a 

100% query cover, very low e-value and considerable high identity (83%, 98% and 96%) (marked by 

red). 

 

 

 

 

 

 

http://emboss.bioinformatics.nl/
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Table 3-6: The open reading frames of empty minicircles in A. carterae strains. 

(The name is consist of the empty minicircle name and open reading frame number in A. carterae CCAM0512---accession 

number and open reading frame number in A. carterae CCAP1102/6 and CS21 strains. Accession numbers of sequences in 

A. carterae CCAP1102/6: [AJ582641] [AF401630]. Accession numbers of sequences in A. carterae CS21: [AJ307015] 

[DQ507216] [AJ318067]. The sequences of the open reading frames see supplements 7.1. The comparison was performed 

on the website http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome ) 

Name Max score total score query cover e-value identity 

J8 ORF2---AJ307015 ORF1 67.4 90.9 70% 5e-16 100% 

J8 ORF3---AJ582641 ORF1 38.5 38.5 29% 3e-06 100% 

J13 ORF2---DQ507216 ORF1 251 251 100% 2e-80 83% 

J22 ORF1---AF401630 ORF1 103 103 100% 5e-29 98% 

J24 ORF2---AF401630 ORF2 65.5 65.5 61% 2e-15 91% 

J24 ORF2---AJ318067 ORF1 56.6 56.6 56% 2e-12 88% 

J24 ORF6---AJ318067 ORF2 112 112 100% 7e-32 96% 

 

3.1.3.2 Phylogenetic analysis of psbA genes for 15 minicircles of dinoflagellates 

 

 

Fig. 3-6. Phylogenetic tree analysis based on amino acid sequences encoded by psbA gene from 15 

minicircles of dinoflagellates. 

It was shown that the four A. carterae strains form a tightly clade with a strong statistical support (bootstrap support 

values: 99%, marked by red box). It was indicated that the coding regions of psbA gene for the four A. carterae strains are 

almost identical. All the other species was found to form an independent clade from the clade consisting of A. carterae and 

A. massartii. The phylogenetic tree was built by maximum likelihood analysis using Mega 6.0. The tree with the highest log 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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likelihood (-1923.2228) is shown. The tree is drawn to scale, with branch lengths measured in the number of substitutions 

per site. The analysis involved 15 amino acid sequences. All positions containing gaps and missing data were eliminated. 

There were a total of 336 positions in the final dataset. The bootstrap consensus tree inferred from 1000 replicates. Scale 

bar represents 0.02 expected substitutions per site in the aligned regions.  

Phylogenetic analysis of PsbA encoded on minicircles from different peridinin-containing 

dinoflagellate species showed that A. carterae CCAM0512 forms an independent and tight clade 

with the other three different A. carterae strains, thus indicating that the four strains are closely 

related to each other with strong statistical support (bootstrap support values: 99%) (Fig. 3-6). The 

psbA coding sequences of these four A. carterae strains are almost identical. At the same time, these 

results could be confirmed by the phylogenetic analysis for amino acid sequences of other proteins 

encoded on minicircles (data not shown). As shown in Fig. 3-6, Heterocapsa and Symbiodinium 

species form an independent clade, respectively separated from the clade containing A. carterae. 

3.1.3.3 Alignment analysis of core regions from four A. carterae strains  

 

 

Fig. 3-7. Alignment of the core region of different A. carterae strains’ minicircles. 

It was shown that the core regions are highly diverse and unrelated between these four strains. The core regions of four A. 

carterae strains (A. carterae CCMP1314, A. carterae CCAP1102/6, A. carterae CCAM0512 and A. carterae CS21) were 

compared by using ClustalX 2.1.  

It was already shown that the psbA coding sequences encoded on minicircles of four A. carterae 

strains are highly identical and these four strains form a tightly sister-relationship in a clade. 

Therefore, it is essential to compare the core regions of these four strains. Surprisingly, the core 

regions of strain CCAM0512 and strain CS-21 are highly diverse in comparison to each other and to 

the core regions of the strains CCMP1314 and CCAP1102/6 (Fig. 3-7).  

The coding sequences and core regions of the four A. carterae strains have already been compared. 

Finally the remainder non-coding regions of psbA minicircles were also compared for the four A. 

carterae strains (Fig. 3-8). For psbA there is a 13 bps conserved sequence downstream the stop 

codon, upstream the start codon there are four longer conserved regions. However, the sequences 

are highly variable in the rest of the non-coding regions. It was shown that the core regions are 

located in a more variable region. To predict the function of the conserved sequence upstream the 
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start codon of psbA different algorithms were used to predict a putative promoter sequence, 

whereby a conserved sequence of 50 bps might have a function for the initial transcription, which 

has to be confirmed in the future.   

 

 

Fig. 3-8. Alignment of the non-coding regions of four different A. carterae strains’ minicircles. 

“TAG” is the stop codon of the psbA gene, while “ATG” is the start codon. The core regions of four A. carterae strains’ 

minicircles were truncated and marked by red triangles. It was shown that the core regions are located in a more variable 

region. Upstream the start codon and downstream the stop codon of psbA gene (marked by the red boxes) of the non-

coding sequences are conserved. The putative promoter region was marked by blue box. The non-coding regions without 

core regions of four A. carterae strains’ psbA minicircles were compared by using ClustalX 2.1. 
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According to these analyses, the sequences of the A.carterae strain CCAP1102/6 and the A.carterae 

strain CCMP1314 are almost 99% identical therefore it was speculated that they are probably the 

same strains.  

3.1.3.4 Phylogenetic analysis of partial LSU/SSU rDNA 

With the purpose of comparing the evolutionary relationship of these four A. carterae strains further 

phylogenetic analyses based upon two nuclear genes (partial LSU rDNA and SSU rDNA) were carried 

out. The A. carterae strains formed clades that were unambiguously separated from some other 

Amphidinium species (Fig. 3-9 and 3-10). The tree obtained for LSU rDNA sequences showed that all 

A. carterae species formed a tightly sister relationship within the same clade (Fig. 3-9). This clade 

was divided into three subclades, containing the strain A. carterae CCMP1748 and another two 

larger clades (clade 1 and clade 2). Additionally, it was shown that the strains of A. carterae CS-21 

and A. carterae CCAM0512 are in the same clade, forming a tight neighbor relationship with strong 

statistical support (bootstrap support values: 100%) (Fig. 3-9). The phylogenetic position of A. 

carterae species based upon its SSU rDNA sequences was shown in Fig. 3-10. All the A. carterae 

species were grouped in the same clade. The species A. carterae CCMP1314, A. carterae CCAP1102 

and A. carterae CCAM0512 were found to form a sister relationship, which was confirmed by the 

high bootstrap support values. 
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Fig. 3-9. Phylogenetic tree analysis based on LSU rDNA sequences covering domains D1-D6. 

It was shown that all the A. carterae species form an independent clade (marked by red arrow at the node). This A. 

carterae clade was divided into three subclades, clade 1, clade2 and A. carterae CCMP1748. A. carterae CS-21 and A. 

carterae CCAM0512 were contained in the clade1 and form the closest relationship (marked by the red box). The 

corresponding GenBank accession numbers of sequences are after the each taxa. The phylogenetic tree was made using 

Maximum Likelihood method based on the large subunit rDNA sequences covering domain 1 to domain 6. The tree with 

the highest log likelihood (-5458.4502) is shown. Bootstrap values (>50%) are given at each node. Evolutionary analyses 

were conducted in MEGA6 (Tamura, Stecher et al. 2013).  
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Fig. 3-10. Phylogenetic tree analysis based on SSU rDNA sequences. 

All the A. carterae species form an independent clade together with A. operculatum CCMP1342, A. cf. rhynchocephalum 

UTEX and A. massartii CCCM 439 (marked by red arrow at the node). A. carterae CCAM0512, A. carterae CCMP1314 as well 

as A. carterae CCAP1102 form a nearest phylogenetic neighbours (marked by the red box). The corresponding GenBank 

accession numbers of sequences are after the each taxa. The phylogenetic tree was carried out as described in Fig. 3-9. 
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3.2 The endomembrane system (ES) in Phaeodactylum tricornutum 

The localization of proteins on a subcellular level is a very important technique for cell biology 

research. In recent years, the most common used method for protein localization is to fuse the 

proteins of interest to a reporter, whereby examples include the enhanced green fluorescent protein 

(eGFP) and monomeric red fluorescent protein (mRFP) and express these fusion proteins in the cells. 

The already known marker proteins in diatoms are not enough for studying the mechanisms of 

vacuolar protein sorting and transport, therefore establishing further subcellular-specific marker 

proteins in endomembrane system is the aim of this work.  

In this project, to study subcellular-specific localization of interest proteins eGFP- and mRFP-fusion 

proteins were generated and the confocal laser scanning microscope was used to identify the 

subcellular localization of proteins in vivo in P. tricornutum.  

3.2.1 Identification of marker proteins 

Marker proteins with known localization are not enough for the investigation of the mechanisms of 

vacuolar protein sorting and transport in P. tricornutum. In order to identify more marker proteins 

proteins with a known localization in plants were collected from the literature. All homologous 

genes were extracted from the P. tricornutum genome database. 

In order to correct the gene models retrieved from the database, the predicted gene model 

sequences have been compared with expressed sequence tags (EST). Simultaneously, the start 

codons upstream the predicted proteins were screened on the genome browser. If it was necessary, 

the gene models were corrected. If there was no EST available, the corresponding cDNAs were 

amplified and sequenced. In addition, for each protein the presence of targeting signals and 

transmembrane domains (TMDs) were predicted with different servers (see material and methods 

chapter). Subsequently, putative marker proteins were selected in order to analyze their in vivo-

localization. An overview of all proteins can be found in the following chapters. 

3.2.2 Tonoplast intrinsic proteins (Tips) 

The first identified proteins are tonoplast intrinsic proteins (Tips). Tips are one of the aquaporins 

family groups. Aquaporins are channel proteins belong to the major intrinsic proteins (MIPs) 

superfamily. The tonoplast intrinsic proteins form transmembrane channels that selectively mediate 

the transport of water, gases and small neutral solutes such as glycerol and urea (Gattolin, Sorieul et 

al. 2009). This protein family was found in a variety of plants, animals and bacteria and have a high 
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sequence similarity to each other (Johnson and Chrispeels 1992, Jauh, Phillips et al. 1999, Liu, 

Ludewig et al. 2003, Moriyasu, Hattori et al. 2003, Zardoya 2005). Tips were widely used as markers 

for lytic vacuole and protein storage vacuole in higher plants (Frigerio, Hinz et al. 2008, Gattolin, 

Sorieul et al. 2009). The localization and function of several Tip isoforms (including three gamma-Tip 

(Tip1), three delta-Tip (Tip2), the seed specific alpha- and beta-Tip (Tip3:1 and Tip3:2), one epsilon-

Tip (Tip4:1) and one zeta-Tip (Tip5:1)) have already been well-studied or predicted in plant species, 

but it remains unknown about the localization of Tip proteins in diatoms.  

Finally, five Tip proteins (Tip1-5) homologous to Tip proteins of A. thaliana were identified and 

selected for in vivo-localization studies in P. tricornutum (Table 3-7). All these Tip proteins have six 

putative transmembrane domains (called TMD1-TMD6). Based on the observation on the amino acid 

sequence of the five Tip proteins it was shown that each Tip protein has one (in case of Tip3 and 

Tip4) or two (in case of Tip1, Tip2 and Tip5) conserved Asn-Pro-Ala (NPA) motifs between two TMDs 

to form extra-cytosolic loop helices. The prediction of targeting signals showed that only Tip4 has a 

signal peptide. All the other Tips also comprise the specific domain structure, but they are lack of a 

predictable signal peptide. 

 

Table 3-7: Predicted subcellular localized Tonoplast intrinsic proteins in P. tricornutum.  

(Pt: P. tricornutum, P: plastid (envelope), PPM: periplastidal membrane, EM: endosomal membrane, SP: signal peptide; 

TMD: transmembrane domain; loc: localization) 

protein family name BLAST hits/specific function Pt ID SP TMD Predicted-
loc 

eGFP-loc 

Tonoplast 
intrinsic 
protein (TIP) 

Tip1 aquaporin 31553  - 6 EM Plasma 
membrane 

Tip2 glycerol uptake facilitator - - 6 EM Vacuole 

Tip3 glycerol uptake facilitator 20755  - 6 EM cER/nuclear 
envelope 

Tip4 glycerol uptake facilitator 19409  + 6 P/PPM PPM 

Tip5 aquaporin 43157 - 6 PPM cER/nuclear 
envelope 

 

3.2.2.1 In vivo-localization of Tip1 

In order to study the subcellular localization of Tip1, eGFP was attached to the C-terminus of the 

protein and were expressed in P. tricornutum. The fluorescence pattern of the Tip1-eGFP fusion 

protein surrounded the cell. Therefore it was speculated that Tip1 localized to the cytoplasmic 

membrane (Fig. 3-11a). However, besides the plasma membrane, one or several dots inside the cells 

could be observed in some clones (Fig. 3-11b). This intracellular fluorescence might stem from 

endocytosed compartments. To test this, co-staining with FM4-64 was carried out. This dye is used 
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visualize the plasma membrane and endomembrane system-dependent internalization processes. 

The co-localization of Tip1-eGFP with FM4-64 indicates that the internal Tip1-eGFP fluorescence 

belongs to the endosomal system (Fig. 3-11c). Based upon the prediction, Tip1 protein is a 

membrane protein. In order to confirm this carbonate extraction was performed. As shown in Fig. 3-

11d, the Tip1-eGFP fusion protein was inserted into the membrane, although a weak signal could be 

detected in the fraction of soluble proteins.  

 

 

Fig. 3-11: In vivo localization of Tip1-eGFP.  

a: The Tip1-eGFP fusion protein showed a plasma membrane fluorescence; b: An additional dot-like fluorescence could be 

observed in some clones. c: The intracellular dots of Tip1-eGFP overlapped with FM4-64. d: Carbonate extraction of Tip1-

eGFP. Although a weak signal could be observed in the fraction of soluble, it was shown that Tip1 is membrane protein as 

the signal was very strong in fraction of integral membrane. The thylakoid membrane protein PsbD (25 kDa) and the 

stromal protein RbcL (55 kDa) were used as makers for the fraction of soluble and integral membrane proteins. The 

expected molecular weight of Tip1-eGFP protein is 60 kDa. For a detailed description see text. TL (gray): transmitted light; 

PAF (red): plastid autofluorescence; eGFP (green): enhanced green fluorescent protein; FM4-64 (yellow): a dye used to 

visualize the plasma membrane and endomembrane system-dependent internalization processes, stained for 25min; 

overlay: the overlay of PAF, GFP and FM4-64.  

3.2.2.2 In vivo-localization of Tip2 

In plant cells the vacuole is the largest subcellular compartment. Until now no vacuolar proteins 

have been reported in diatoms. In order to visualize this single membrane surrounded structure, 

Tip2 was selected for in vivo localization studies in P. tricornutum. 
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After in vivo localization the Tip2-eGFP fusion protein was targeted to the vacuolar-like structure (Fig. 

3-12a). By carbonate extraction, it was shown that Tip2-eGFP is an integral membrane protein (Fig.3-

12b).  

 

Fig. 3-12: In vivo localization of Tip2-eGFP.  

a: Tip2-eGFP fusion protein was expressed. The fusion protein was targeted to a vacuolar-like structure. b: Carbonate 

extraction of the Tip2-eGFP fusion protein. It was shown that Tip2 is a membrane protein. The thylakoid membrane 

protein PsbD (25 kDa) and the stromal protein RbcL (55 kDa) were used as makers for the fraction of soluble and integral 

membrane proteins. The expected molecular weight of Tip2-eGFP is 55 kDa. For a detailed description see text. TL: 

transmitted light; PAF (red): plastid autofluorescence; eGFP (green): enhanced green fluorescent protein.  

3.2.2.3 In vivo-localization of Tip3 and Tip5 

Co-evolution of the host cell and the endosymbiont gave rise to the establishment of the secondary 

or complex platids. The secondary or complex plastids are surrounded by four membranes (the 

outermost membrane, cER; the second outermost membrane, PPM; the outer and inner envelope 

membranes). The membranes of the host ER, the nuclear envelope and the outermost plastidal 

membrane (cER membrane) are connected to each other. To better study the ER function, it is 

necessary to have additional marker proteins. Here, two homologous tonoplast intrinsic proteins 

Tip3 and Tip5 were selected for localization studies in P. tricornutum. 

As shown in Fig.3-13a and b, the fluorescence of Tip3-eGFP and Tip5-eGFP could be detected in the 

cER-membrane and the nuclear envelope. However, in most cases fluorescence could also be 

observed in additional structures, which needs to be confirmed in the future. By the carbonate 

extraction the signal was mainly observed in the fraction of integral membrane (Fig. 3-13c and d). It 

indicated that Tip3 and Tip5 were targeted to the membrane, which is consistent with the prediction 

in silico.  

To verify the localization of Tip3-eGFP immunogold labelling and electron microscopy was 

performed. As shown in Fig. 3-13e, the immunogold particles predominantly label the outermost 

membrane of the complex plastid (cER membrane) and the nuclear envelope. At the same time, 

several additional immunogold particles could be detected (marked by red arrow), which might hint 

that Tip3-eGFP was also located in the host ER.  



Results 

41 

 

 

Fig. 3-13: In vivo localization of Tip3- and Tip5-eGFP. 

a-b: Tip3- and Tip5-eGFP fusion proteins were expressed under the control of a nitrate inducible promoter. The 

fluorescence of Tip3-eGFP and Tip5-eGFP fusion proteins were targeted to the cER membrane and nuclear envelope. In 

most cases additional fluorescence extended from the cER membrane and nuclear envelope was also observed. c and d: 

Carbonate extraction of Tip3- and Tip5- eGFP. It indicated that Tip3 and Tip5 are integral membrane proteins. The 

thylakoid membrane protein PsbD (25 kDa) and the stromal protein RbcL (55 kDa) were used as makers for the fraction of 

soluble and integral membrane proteins. The expected molecular weight of Tip3/ Tip5-eGFP proteins are 56 kDa and 60 

kDa, respectively. e: Immunoelectron microscopic analyses on ultra-thin cuts of P. tricornutum, indicating that Tip3 was 

significantly targeted into the outermost membrane of the complex plastid (cER membrane) (marked by black arrows). 

Immunogold labeling was partially accumulated in the nuclear envelope and might be on the host ER (marked by red 

arrows). For a detailed description see text. TL: transmitted light; PAF (red): plastid autofluorescence; eGFP (green): 

enhanced green fluorescent protein.  

In order to verify the subcellular localization of the Tip5-eGFP, co-localization was performed 

between Tip5-eGFP and DAPI. Partial fluorescence of Tip5 surrounded the DAPI staining, which 

further confirmed the fluorescence of Tip5 was targeted to the nuclear envelope (Fig. 3-14a). Co-

expression of Tip5-eGFP and Tip3-mRFP was carried out and verified the co-localization of these 
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proteins (Fig. 3-14b). However, a strong dot-like fluorescence could be detected on the mRFP 

channel in some cases (data not shown), which might result from the overexpression of the mRFP 

fusion protein. One of the important components of the host ERAD machinery hDer1 has already 

been identified to enrich in the cER membrane, nuclear envelope and the host ER (Hempel, 

Bullmann et al. 2009). The co-expression of hDer1-eGFP and Tip3-mRFP indicated that these 

proteins have the same subcellular localization, but the fluorescence was distributed differently (Fig. 

3-14c). To combine all the results Tip3 and Tip5 might localize in the membrane of cER, nuclear 

envelope and the host ER.  

 

 

Fig. 3-14: In vivo co-staining and co-expression analyses of Tip3 and Tip5 proteins. 

a: Co-localization of Tip5-eGFP with DAPI showed that partial fluorescence of the Tip5-eGFP was targeted to the nuclear 

envelope. b: Co-expression of Tip3-mRFP and Tip5-eGFP showed that these two proteins colocalize in the cER membrane 

and nuclear envelope. An additional fluorescence extended from the cER membrane and nuclear envelope was also 

observed. c: Co-expression of hDer1-eGFP and Tip3-mRFP showed that these two proteins are targeted to the same 

compartments (cER membrane, nuclear envelope and host ER), but the fluorescence was distributed differently. TL: 

transmitted light; PAF (red): plastid autofluorescence; eGFP (green): enhanced green fluorescent protein; DAPI (blue): 4′,6-

Diamidin-2-phenylindol; mRFP (Magenta): monomeric red fluorescent protein; overlay: the overlay of PAF, eGFP and mRFP.  

3.2.2.4 In vivo-localization of Tip4 

Likewise, the subcellular localization of Tip4 was analyzed in P. tricornutum. It was known that the 

complex plastid is surrounded by four membranes. The periplastidal membrane (PPM) is the second 

outermost membrane of the complex plastid which is located between the periplastidal 
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compartment (PPC) and the chloroplast ER (cER) space. Previous study showed that N-terminal 

bipartite targeting sequences (BTS) are specific signals for importing proteins into the complex 

plastid (PPC or PPM) (Gruber, Vugrinec et al. 2007). Interestingly, Tip4 is the only Tip which 

possesses a potential signal peptide.  

Subcellular localization studies of Tip4-eGFP showed that the fluorescence pattern results in a 

classical “blob-like” structure known to represent a PPC/PPM localization, as shown in Fig. 3-15a. To 

further confirm this localization, the self-assembly GFP assay was performed. It was shown that the 

C-terminus of Tip4 was located in the PPC, as fluorescence signals could be observed upon co-

expression of Tip4-S11 with a GFPS1-10 fused to a PPC marker but not fused to an ER marker (Fig. 3-

15b). Compared with the subcellular localization of sDer1-2 (Gruber, Vugrinec et al. 2007, Hempel, 

Bullmann et al. 2009) Tip4 does not have an aromatic amino acid at the +1 position of the predicted 

transit peptide for plastid import. The PPM localization of Tip4 was concluded.  

 

 

Fig. 3-15: In vivo localization of Tip4-eGFP. 

a: Subcellular localization of Tip4-eGFP indicated that it was targeted a characteristic PPM/PPC-like compartments. b: The 

self-assembly GFP assay was used to confirm the localization of Tip4. GFP-11 was fused to the C-terminus of full-length of 

Tip4 and co-expressed together with Hsp70BTS-S1-10 (a PPC marker) and PDI-S1-10 (an ER marker), respectively. Only after 

co-expressed of Tip4-S11 with the PPC marker (lower pannel) but not after co-expression with the ER marker (upper 

pannel) a GFP signal was detectable. Self-assembly GFP assay results showed that the C-terminus of Tip4 is located on the 

PPC. TL: transmitted light; PAF (red): plastid autofluorescence; eGFP (green): enhanced green fluorescent protein. 
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3.2.3 In vivo localization of Golgi proteins 

The Golgi apparatus consists of three main networks (the cis-Golgi network, the medial Golgi and the 

trans-Golgi network). In order to identify marker proteins for the slightly different Golgi networks, a 

large-scale search for proteins homologous to known Golgi localization proteins was conducted in 

the genome of P. tricornutum. Finally three proteins homologous to known enzymes involved in the 

N-Glycosylation pathway were selected for in vivo-localization in P. tricornutum (Table. 3-8).  

 

Table 3-8: Predicted subcellular localized Golgi marker proteins in P. tricornutum.  

(Pt: P. tricornutum; SP: signal peptidase; TMD: transmembrane domain; loc: localization). The identifications and cloning of 

GnT1 and FucT was conducted by Clément Ovide. 

name BLAST hits/specific function Pt ID SP TMD Predicted-
loc 

eGFP-loc 

N-
acetylglucosaminyltran
sferase I (GnT1) 

catalyse N-glycoproteins transported 
from ER to Golgi 

54844 - 1 Cis-Golgi Cis-Golgi 

α-mannosidase I (α-
Man I) 

enzyme involved in N-glycan 
biosynthesis; Transfers an alpha-D-
mannosyl residue from dolichyl-
phosphate D-mannose into membrane 
lipid-linked oligosaccharide 

44425 + 6 Cis-Golgi unknown 

β1,2-xylosyltransferase 
(XylT) 

glycosyltransferase involved in N-
glycan biosynthetic pathway 

45496 + 1 Medial-
Golgi 

Medial-
Golgi 

α1,3-fucosyltransferase 
(FucT) 

glycosyltransferase involved in N-
glycan biosynthetic pathway 

54599 + 1 Trans-
Golgi/TGN 

Trans-
Golgi/TG
N 

α1,3-
Mannosyltransferase 
(α1,3-Man) 

enzyme involved in N-glycan 
biosynthesis; Transfers an alpha-D-
mannosyl residue from dolichyl-
phosphate D-mannose into membrane 
lipid-linked oligosaccharide 

22554 + - Medial-
Golgi 

unknown 

 

The first one GnT1 is known to be localized in the cis-Golgi (Kajiura, Okamoto et al. 2012). The 

second protein XylT is a type II membrane proteins that belongs to the glycosyltransferase family 61 

and has been confirmed to localize on medial cisternae of the Golgi apparatus (Pagny, Bouissonnie 

et al. 2003, Kajiura, Okamoto et al. 2012). The third one FucT is involved in the transfer of alfa-1,3-

linked fucose residues to N-glycans and is expected to be targeted to the TGN (Fitchette‐Lainé, 

Gomord et al. 1994, Breton, Mucha et al. 2001). By expressing all three as eGFP fusion proteins a 

dot-like structure or a long strip fluorescence pattern was observed (Fig. 3-16a/b/c). By carbonate 

extraction it could be shown that XylT is an integral membrane protein, as shown in Fig. 3-16d. 

To confirm whether the localizations of these three Golgi marker proteins are slightly different, co-

expression of XylT-mRFP/ GnT1-eGFP and XylT-mRFP/ FucT-eGFP was performed. It was shown that 
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the eGFP and mRFP fluorescence partially overlapped for both co-expressions (Fig. 3-16e/f). All 

these results showed that these three proteins were targeted into different cisternae of the Golgi 

apparatus.  

 

Fig. 3-16: In vivo localization of proteins located in the Golgi apparatus. 

a-c: The GnT1-, XylT- and FucT-eGFP fusion proteins showed a similar dot-like or long strip-like fluorescence pattern. d: 

Carbonate extraction of XylT-eGFP. The thylakoid membrane protein PsbD (25 kDa) and the stromal protein RbcL (55 kDa) 

were used as makers for the fraction of soluble and integral membrane proteins. The expected molecular weight of XylT-

eGFP proteins is 83 kDa. e and f: Co-expression of XylT-mRFP/ GnT1-eGFP and XylT-mRFP/ FucT-eGFP showed eGFP and 

mRFP fluorescence partially overlapped. g and h: The overlay of XylT-mRFP/ GnT1-eGFP and XylT-mRFP/ FucT-eGFP was 

enlarged, respectively. TL: transmitted light; PAF (red): plastid autofluorescence; eGFP (green): enhanced green fluorescent 

protein; mRFP (Magenta): monomeric red fluorescent protein; overlay: overlay of PAF, eGFP and mRFP. 

3.2.4 In vivo localization of retromer complex  

The structure and function of the retromer complex have already been well identified in yeast, 

animals and some plants, while the retromer complex in diatoms is still not much known. In 

Arabidopsis thaliana, the retromer complex comprises a small subcomplex (three sorting nexins) and 



Results 

46 

 

a larger subcomplex (Vps26, Vps29 and Vps35). In order to localize the putative retromer subunits in 

P. tricornutum, several proteins homologous to retromer subunits in A. thaliana were analyzed in P. 

tricornutum (Table 3-9).   

Table 3-9: Predicted subcellular localization of retromer complex proteins in P. tricornutum.  

(Pt: P. tricornutum; SP: signal peptidase; TMD: transmembrane domain; loc: localization) 

Retromer subunits BLAST hits/specific function Pt ID SP TMD Predicted-
loc 

eGFP-loc 

 Vacuolar protein sorting- 
associated protein 26 
(Vps26) 

 

Inform multi-protein complexes, 
Intracellular protein transport 

41962 - - TGN/EE Golgi/EE 

Vacuolar protein sorting- 
associated protein 29 (Vps29) 
 

Inform multi-protein complexes , 
Intracellular trafficking, secretion 
and vesicular transport 

17936 - - TGN/EE Golgi/EE 

Vacuolar protein sorting- 
associated protein 35 (Vps35) 
 

Inform multi-protein complexes that 
facilitate retrograde transport of 
lytic vacuolar-targeting receptors 
back to the trans-Golgi network 

43830 + - TGN/EE Golgi/EE 

Sorting nexin dimer (SNX1) Membrane coat complex retromer, 
subunit VPS5/SNX1, sorting nexins, 
and related PX domain-containing 
proteins 

3137 - - TGN/EE unknown 

 

Homologs of the potential subunits Vps26 and Vps29 were selected for in vivo localization. The 

fluorescence patterns of these eGFP fusion proteins were similar and showed a dot or small 

diamond-like structure (Fig. 3-17a and b). In order to make sure that they are colocalization as 

predicted, the co-expression of Vps26-eGFP and Vps29-mRFP was performed. It was shown that 

these the fluorescence pattern overlapped completely (Fig. 3-17c and d). Taking together, it was 

speculated that two potential homologs (Vps26 and Vps29) of proteins in A. thaliana might also 

locate in one complex in P. tricornutum.   
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Fig. 3-17: In vivo localization of retromer complex proteins. 

a-b: The Vps26- and Vps29-eGFP fusion proteins were expressed in P. tricornutum. It was shown that the fluorescence 

patterns are similar, a dot or a small diamond-like structure. c: The co-expression of these two potential retromer complex 

subunits showed that the fluorescence pattern overlapped. d: The overlay of Vps26-eGFP/ Vps29-mRFP was enlarged. TL: 

transmitted light; PAF (red): plastid autofluorescence; eGFP (green): enhanced green fluorescent protein; mRFP (Magenta): 

monomeric red fluorescent protein; overlay: the overlay of PAF, eGFP and mRFP. 

In order to distinguish the Golgi marker proteins and retromer co-expression of one retromer 

subunit (Vps29) and the medial Golgi marker protein XylT was carried out. Only partial overlapped 

fluorescence was observed (Fig. 3-18a and enlarged picture b). However, the co-expression of the 

Vps29 together with the trans-Golgi marker protein FucT showed that their fluorescence overlapped 

completely (Fig. 3-18c and d). These co-localizations further indicated that the XylT and FucT was 

located on different cisternaes of the Golgi apparatus and the retromer subunit was targeted to the 

trans-Golgi network.  

 

 

Fig. 3-18: Co-expression of retromer complex proteins with Golgi markers. 

a: Co-expression of the medial Golgi marker XylT and the retromer subunit Vps29 showed that their fluorescence 

overlapped partially. b: The overlapped fluorescence of XylT-mRFP with Vps29-eGFP was enlarged. c: Co-expression of the 

trans-Golgi network marker FucT and the retromer subunit Vps29 showed the fluorescence overlapped completely. d: The 

overlapped fluorescence of FucT-eGFP with Vps29-mRFP was enlarged. TL: transmitted light; PAF (red): plastid 

autofluorescence; eGFP (green): enhanced green fluorescent protein; mRFP (Magenta): monomeric red fluorescent protein; 

overlay: the overlay of PAF, eGFP and mRFP. 

3.2.5 In vivo localization of vacuolar H+-ATPase proteins 

Previous studies have already shown that two different vacuoles exist in plant cells, namely the 

central lytic vacuole and the protein storage vacuole (Marty 1999, Jin, Kim et al. 2001, Park, Kim et al. 

2004). In order to mark these different types of vacuoles, more putative vacuolar candidates were 
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analyzed in vivo localization. It has already shown that vacuolar H+-ATPases (VHAs) are localized to 

vacuoles and other endosomal membranes, including the ER, Golgi apparatus and vesicles as well as 

the plasma membrane (Sze, Schumacher et al. 2002). Therefore proteins homologous to VHAs of A. 

thaliana were analyzed in silico in P. tricornutum (Table 3-10).  

 

Table 3-10: Predicted subcellular localization of V-ATPase proteins in P. tricornutum.  

(Pt: P. tricornutum; SP: signal peptidase; TMD: trans-membrane domain; PM: plasma membrane; loc: localization) 

name BLAST hits/specific function Pt ID SP 
(TargetP 
RC) 

TMD Predicted-loc eGFP-loc 

ATPase1 Vacuolar H+-transporting two-sector 
ATPase, C subunit 

21882 + 4 PM/Vacuole Lytic 
vacuole? 

ATPase2 Vacuolar ATP synthase subunit G2; 
hydrolase activity, acting on acid 
anhydrides, catalyzing 
transmembrane movement of 
substances; proton transport 

44050 - - ATPase 
complex/ 
soluble 

Soluble 
protein 

 

After in silico analyses, PtATPase1 with four potential TMDs and PtATPase2 without TMD were 

selected for in vivo-localization analyses. The fluorescence pattern of PtATPase1-eGFP showed a dot-

like structure (Fig. 3-19a). In some clones several dot-like fluorescence could also be observed (Fig. 

3-19b). By carbonate extraction it was shown that ATPase1 is an integral membrane protein (Fig. 3-

19d). It was suggested that ATPase1 might be localized on the small vesicles or vacuoles in P. 

tricornutum. The second protein homologous to vacuolar H+-ATPase in A. thaliana is called ATPase2 

in P. tricornutum. Based on the prediction the N-terminus of ATPase2 amino acid sequence does not 

contain a hydrophobic signal peptide. When expressing the eGFP fusion construct it showed a 

cytoplasmic localization, the fluorescence was distributed in the cell (Fig. 3-19c). By carbonate 

extraction it was confirmed that ATPase2-eGFP is a soluble protein (Fig. 3-19e).  
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Fig. 3-19: In vivo localization of V-ATPase proteins. 

a/b: ATPase1-eGFP was expressed under the control of a nitrate inducible promoter. Slightly different fluorescence pattern 

were observed, either one (a) or several (b) dot-like structures. ATPase2-eGFP showed a cytoplasmic localization. The 

fluorescence was distributed in the cell. d/e: Carbonate extractions of ATPase1-eGFP and ATPase2-eGFP proteins, 

respectively. The thylakoid membrane protein PsbD (25 kDa) and the stromal protein RbcL (55 kDa) were used as makers 

for the fraction of soluble and integral membrane proteins. The expected molecular weight of ATPase1-eGFP and ATPase2-

eGFP are 45 kDa and 41 kDa, respectively. For a detailed description see text. TL: transmitted light; PAF (red): plastid 

autofluorescence; eGFP (green): enhanced green fluorescent protein. 
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4 Discussion 

4.1 Genetic compartmentalization of peridinin-containing dinoflagellates 

Peridinin-containing dinoflagellates are important members of phytoplankton and, as stated in the 

introduction, arose from secondary endosymbiosis of a red alga by a so far undefined host cell 

(Mcfadden 2001). In contrast to other groups, their complex plastid is surrounded by only three 

membranes (Dodge and Lee 2000). Apart from that peridinin-containing dinoflagellates stand out by 

additional unusual features with regard to their genome organization (Zhang, Cavalier-Smith et al. 

2002). Besides their extraordinary large nuclear genome which is organized in permanently 

condensed, para-crystalline chromosomes (Bodansky, Mintz et al. 1979, Gautier, Michel-Salamin et 

al. 1986, Bouligand and Norris 2001, Chow, Yan et al. 2010) they possess so called minicircles. Within 

this thesis a new method transposon-insertion based approach for minicircle isolation from one 

representative of the peridinin-containing dinoflagellates was used and finally isolated individual 

minicircles were characterized. 

4.1.1 Minicircles of the peridinin-containing dinoflagellate Amphidinium carterae CCAM0512 

Since the discovery of minicircles of peridinin-containing dinoflagellats in 1999 (Zhang, Green et al. 

1999) several minicircles of diverse peridinin-containing dinoflagellates were isolated and described 

such as in A. operculatum, A. carterae CS21, A. carterae CCAP1102/6, Ceratium horridum, Adenoides 

eludens, Heterocapsa species as well as Symbiodinium species (Zhang, Green et al. 1999, Barbrook 

and Howe 2000, Barbrook, Symington et al. 2001, Hiller 2001, Zhang, Cavalier-Smith et al. 2002, 

Moore 2003, Laatsch, Zauner et al. 2004, Nisbet, Koumandou et al. 2004, Nelson and Green 2005, 

Barbrook, Santucci et al. 2006). Coding for genes normally found in conventional plastid genomes 

were located on these small plasmid-like minicircles. Previous studies have already shown that the 

minicircle contains one to three coding genes (coding region), the remainder of the minicircle was 

called non-coding region (Barbrook and Howe 2000). It was also shown that several minicircles 

without coding region do not have potential known function (also called empty minicircles) (Hiller 

2001). Within this thesis a transposon-based method was used to isolate minicircles. So far, 

transposons were predominantly used in bacteria, plants and animals for mutagenesis or some 

other molecular biology studies (Kim, Vanguri et al. 1998, Balciunas and Ekker 2005, Carlson, 

Frandsen et al. 2005, Schnable, Ware et al. 2009, Hackett, Largaespada et al. 2010). The transposon-

based approach is in so far different, that it is not based on known sequences and thereby has the 

capacity to isolate minicircles with deviant or unknown sequence. The structural nature of plasmid-
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like minicircles provides the basis for transposon insertion and subsequent usage of bacterial 

proliferation.  

Within this thesis, by using the transposon-insertion based approach hundreds of thousands of 

potential positive colonies grew on plastes. Based on the plasmid preparation and sequencing it was 

found that 89 out of 107 (83.2%) sequencing samples are positive minicircles, 18 out of 89 (20.2%) 

minicircles are gene-containing minicircles, 71 out of 89 (79.8%) minicircles are empty minicircles 

(Table 3-1). The number of empty minicircles is about four times the number of gene-containing 

minicircles. A possible explanation for this could be that the empty minicircles are present at higher 

copy number than the gene-containing minicircles in A. carterae CCAM0512 cells. But this can not 

rule out the possibility that the different division ratio of the E. coli cells harboring positive 

minicircles in liquid LB medium without antibiotic (see materials and methods 5.2.4.12). 83.2% 

sequencing sameples are positive minicircles, it was indicated that the transposon-insertion based 

approach is a considerable efficient method. The isolated individual minicircles could work as a 

vector and modified by different reporter gene (e.g. eGFP gene) for further research. 

In the following points the implications deduced from the analysis of these different minicircles are 

discussed. 

4.1.1.1 Minicircles with coding genes 

Of the isolated minicircles 18 out of 89 minicircles are gene-containing minicircles. Within these 18 

minicircles it was found that 12 minicircles belong to different minicircle molecules. The 12 

minicircles include three different psbA-containing minicircle molecules, two different petB/atpA-

containing minicircle molecules, two different 23S rRNA-containing minicircle molecules and one 

psaB-, psbC-, psbD/E/I-, petD- and atpB-containing minicircle molecule (Table 3-2). These different 

minicircle molecules exhibit open reading frames of considerable length which encode for known 

proteins PsbA, PsaB, PsbC, PsbD,  PsbE, PsbI, PetB, PetD, AtpA and 23S rRNA(Table 3-2). The lengths 

of these individual minicircle molecules (2333 bps – 2664 bps) are similar to the sizes of minicircles 

reported before such as A. carterae CS21 (2327 bps – 2713 bps), A. operculatum (2311 bps – 2713 

bps) and H. triquetra (2151 bps – 3121 bps) (Zhang, Green et al. 1999, Zhang, Cavalier-Smith et al. 

2002, Barbrook, Santucci et al. 2006). Compared to the minicircles in these species the length of 

minicircles in Ceratium horridum are much larger 5200 bps - 6700 bps (Laatsch, Zauner et al. 2004). 

The average length of eight different groups of gene-containing minicircles is 2474 bps. The variable 

lengths of minicircle might result from the different evolutions and rearrangements of minicircles in 

dinoflagellates. Most of the isolated minicircles are single-gene minicircles while the petB/atpA and 

psbD/E/I gene pairs are encoded on one single minicircle of 2596 bps and 2354 bps, respectively. 
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This is in line with the already reported two- or three- genes minicircles in other species (Barbrook, 

Santucci et al. 2006). Previous studies showed that the petB/atpA genes, psbD/E/I genes on a single 

minicircle are not normally adjacent to each other in reported conventional plastid genomes in other 

plants and algae (Ohta, Matsuzaki et al. 2003, Puerta, Bachvaroff et al. 2005). The observed synteny 

suggests that multiple genes on a single minicircle were generated by tandem rearrangement of two 

or three single-gene minicircles, rather than by fragmentation of a multi-gene molecule (Howe, 

Nisbet et al. 2008). 

From the point of the gene transcription, the same as the transcriptions of genes that have been 

studied previously (Zhang, Green et al. 1999, Barbrook and Howe 2000, Barbrook, Symington et al. 

2001, Takishita, Ishida et al. 2004), it was shown here that the psbA gene might be also transcribed 

in A. carterae CCAM0512. As for multiple genes minicircles previous studies suggested that these 

genes (petB/atpA and psbD/E/I genes) on a single minicircle are transcribed separately as the sizes of 

transcripts observed were the same as the single genes (Howe, Nisbet et al. 2008, Nisbet, Hiller et al. 

2008), latter a polycistronic transcript was suggested which is produced first and subsequently 

cleaved rapidly into two or three separate transcripts (Dang and Green 2010, Barbrook, Dorrell et al. 

2012). It was demonstrated that the the minicircles were transcribed via a rolling circle model in the 

dinoflagellates Hetercapsa triquetra and A. carterae CCAP1102/6 (Dang and Green 2010, Barbrook, 

Dorrell et al. 2012). It was shown that the transcripts contain several ORFs which were not known 

previously to be expressed (Barbrook, Dorrell et al. 2012). Simultaneously, Dang and Green showed 

that the transcripts are even larger than the minicircle itself (Dang and Green 2010).  

There is no doubt that the plastid genomes of dinoflagellates are the smallest compared to other 

conventional plastid genomes. Previous studies suggested that this shrunken plastid genome might 

stem from the transfer of the normally plastid-located genes to the host genome and dramatically 

reducing and deleting of the chloroplast genome during the course of plastid acquisition (Bachvaroff, 

Concepcion et al. 2004, Green 2004, Hackett, Yoon et al. 2004, Tanikawa, Akimoto et al. 2004, 

Patron, Waller et al. 2005). Compared with all about 15 reported protein-coding genes on minicircles 

psaA, psbB and small subunit ribosomal ribonucleic acid (SSU-rRNA) minicircles are still missing in 

this work. Compared with 50 – 200 genes in other typical plastid genomes not only the tRNA but 

genes encoding ribosomal proteins and several small proteins for photosynthesis and the ATPases 

are still absence on known minicircles. A possible explanation for this could be that these genes have 

already transferred into the nucleus. It’s also possible that these genes are not as abundant as the 

other genes in A. carterae cells, thus it is hard to be isolated here. In initial studies putative f-Met 

tRNA gene was identified in A. carterae CS21 and A. carterae CCAP1102/6 and putative proline and 

tryptophan tRNA genes were found in Heterocapsa species (Barbrook, Santucci et al. 2006). 
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Whereas tRNA gene was not found so far in A. carterae CCAM0512. It was shown that 15 retained 

genes on minicircles encode subunits of the main complexes that involve in the light reactions of 

photosynthesis such as photosystem I (PSI), PSII, the ATP synthase and the cytb6/f complex, as well 

as rRNAs proteins (23S rRNA and 16S rRNA) and tRNA (Hiller 2001, Koumandou and Howe 2007, 

Howe, Nisbet et al. 2008). All genes encoded on minicircles in A. carterae CCAM0512 use the 

conventional genetic code with the same start codon (ATG) and three different stop codons (TAG, 

TGA or TAA). In A. operculatum the psaA and psbB genes on minicircles do not have standard start 

codon in the expected positions, while utilize GTA as an initiation codon (Barbrook and Howe 2000). 

In terms of Heterocapsa triquetra ATA, TTG and ATG were used for the initial coding (Zhang, Green 

et al. 1999). GTG becomes a potential start codon in petB gene containing minicircle in A. carterae 

CS-21 (Hiller 2001). The variety of genetic codons might provide an important hint for evolutionary 

relationship of minicircles.  

RNA editing is a post-transcriptional process that can insert, delete and substitute nucleotides in 

mRNA prior to translation to proteins. RNA editing can be widely observed on transcripts from 

nuclear or organellar genomes (including mitochondrial and plastid) in different species (Miyata and 

Sugita 2004, Wang and Morse 2006, Grosche, Funk et al. 2012, Takenaka, Zehrmann et al. 2013, 

Mungpakdee, Shinzato et al. 2014). However, RNA editing is very rare to be observed in plastid-

encoded RNAs in algae. Only three editing events were found so far in the minicircle-encoded plastid 

genes in Ceratium horridum, Lingulodinium polyedrum and Heterocapsa triquetra (Zauner, Greilinger 

et al. 2004, Wang and Morse 2006, Dang and Green 2009). In contrast to previously reported 

organellar RNA editing in peridinin-containing dinoflagellates, RNA editing was not observed on 

transcriptions of minicircles of A. carterae CCAM0512 based on the analysis of nine coding 

minicircles genes (eight genes were analysed by Grosche C.(Grosche 2012)).    

Previous studies have already shown that the minicircles of dinoflagellates contain a highly 

conserved core region (Zhang, Green et al. 1999, Barbrook, Symington et al. 2001, Zhang, Cavalier-

Smith et al. 2002). The core regions are species-specific and are unstable in length (Koumandou, 

Nisbet et al. 2004). The highly diverse core regions of the four A. carterae strains indicated that the 

core regions are only identical within the strain but considerable variation between different strains 

(Fig. 3-3/7). The function of the core region remains uncertain. Based on the prediction the core 

region has a putative promoter sequence in A. carterae CCAM0512 (Fig. 3-3). Previous studies 

suggested that the initiation of replication usually possess multiple direct and inverted repeats in 

plastids (Sears, Stoike et al. 1996, Kunnimalaiyaan, Shi et al. 1997). It was speculated that the core 

region is responsible for the maintenance of the copy number, the initiation of replication and/or 

the transcription of minicircles (Zhang, Green et al. 1999, Barbrook and Howe 2000, Barbrook, 
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Symington et al. 2001, Hiller 2001, Zhang, Cavalier-Smith et al. 2002). It was also inferred to have a 

function on the membrane attachment (Howe, Nisbet et al. 2008). As mentioned above, no obvious 

direct or inverted repeat was observed in A. carterae CCAM0512. Therefore it is hard to speculate 

the function of the core region. 

4.1.1.2 Empty minicircles 

In addition to the minicircles with obvious coding region, seventy-one empty minicircles were also 

isolated (Table 3-3). Of the total 71 empty minicircles, 26 (36.6%) belong to the different empty 

minicircle molecules. The 26 different empty minicircles were divided into six distinct groups 

according to the conserved sequence. For example, the group of J8 empty minicircle contains three 

different minicircle molecules in 17 minicircles. These empty minicircles have recognizable core 

regions and include short open reading frames but potential products are without any known 

homology. The average length of empty minicircle is 1986 bps, which is much smaller than gene-

containing minicircles (2474 bps). A direct reason is that the empty minicircles do not contain the 

coding genes. The big difference of the lengths could also give a valuable hint for the regular 

rearrangement of these minicircles during the evolution. Previous analysis showed that the 

transcription of empty minicircles occurred in A. carterae CCAP1102/6 and A. carterae CS21 and this 

transcription cover the large part of the minicircle including the core region (Nisbet, Hiller et al. 

2008). As the transcriptions of three largest open reading frames in empty minicircles were observed 

in A. carterae CCAM0512 (Fig. 3-4), the open reading frames of empty minicircles could be 

transcribed and might be functional. Based on the comparison of the open reading frames (> 150 

bps) it was found that empty minicircle J9 and atpB-containing minicircle have a completely identical 

open reading frame and a partially identical open reading frame (Table 3-4). This could be explained 

by that the empty minicircles were generated by the rearrangement between the gene-containing 

minicircles. At the same time, it was shown that empty minicircles J13, J22 and J36 have an identical 

open reading frame, empty minicircles J22 and J24 have an identical open reading frame. A possible 

explanation for these identical open reading frames could be that the minicircles were generated by 

tandem rearrangement of several different fragments during the evolutionary process, and these 

fragments might be abundant in the cells. It could be speculated that these identical open reading 

frames could be translated to functional proteins, but these proteins remain unknown so far. 

A summary of GC content is shown in Fig. 3-5. Except the GC content of psbA-containing minicircle is 

45%, which is the same as or lower than the GC content of the overall empty minicircles, all the 

other gene-containing minicircles present to be more GC-rich than the empty minicircles. This 

discrepancy might be important for the stability and expression of the coding regions.  
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These empty minicircles may be unique to dinoflagellates. There remains many questions about the 

empty minicircles: ‘how did they evolve? Where do they come from?’ and ‘What is the function of 

the ORFs on empty minicircles? Do they translate?’ Nisbet et al. explained that the small empty 

minicircles might generate from a homologous recombination and internal deletion event between 

the minicircles with coding region (Nisbet, Koumandou et al. 2004). It was also speculated that 

empty minicircles may come from ‘parasitic’ DNA elements (Howe, Nisbet et al. 2008). As the empty 

minicircles do not have any identifiable coding characteristics, the functional analysis of these empty 

minicircles remains hard.  

4.1.2 The evolutional relationship of minicircles  

So far, fourteen gene-containing minicircles were isolated from four A. carterae strains (Tab. 3-5), A. 

carterae CCAM0512 (in this work), A. carterae CS21 (Hiller 2001, Barbrook, Santucci et al. 2006), A. 

carterae CCAP1102/6 (Barbrook and Howe 2000, Nisbet, Koumandou et al. 2004) as well as A. 

carterae CCMP1314 (Zhang, Cavalier-Smith et al. 2002).  

Our present results revealed that the core regions are highly identical in A. carterae CCAM0512 (Fig. 

3-3), but the core regions of four A. carterae strains are apparently unrelated and cannot be 

mutually aligned (Fig. 3-7). An alignment of the non-coding regions of the four psbA minicircles 

showed that upstream and downstream the psbA gene are conserved. The conserved regions might 

be useful for the stability of the gene expression (Fig. 3-8). Together with this, a conserved sequence 

of 50 bps upstream of the psbA gene and downstream of the core regions might have a function on 

the transcription initial based on the prediction. It was shown that the core regions of these four A. 

carterae strains are located in the variable region. On the contrary, the coding regions (e.g. psbA 

minicircles) of these four A. carterae strains showed a considerable high identity (more than 97%) 

based on the molecular phylogenetic analysis (Fig. 3-6). From the phylogenetic analyses of LSU rDNA 

and SSU rDNA sequences, these four A. carterae strains were found to be a sister relationship in a 

clade containing A. carterae with high statistical support (Fig. 3-9 and Fig. 3-10). 

Heretofore, several empty minicircles were identified including 10 empty minicircles in A. carterae 

CS21 and 5 empty minicircles in A. carterae CCAP1102/6 (Barbrook, Santucci et al. 2006). Within this 

thesis, six distinct groups of empty minicircles were identified in 26 different empty minicircle 

molecules in A. carterae CCAM0512. Among all small open reading frames 27 open reading frames 

(the length > 150 bps) were compared with that in A. carterae CS21 and A. carterae CCAP1102/6 

(Table 3-6). It was found that 7 out of 27 pairs of open reading frames have a high query cover, low 

e-value and high identity. Among these three pairs of open reading frames have a 100% query cover, 

very low e-value and considerable high identity (83%, 98% and 96%). It was speculated that these 
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open reading frames might have a specific function in dinoflagellates, but it has to be comfirmed in 

the future. The presence of conserved open reading frames among these different A. carterae 

strains suggested that these open reading frames are evolutionary conserved and are related to 

each other. 

Taken all these analyses together, it was shown that nuclear encoded LSU and SSU and minicircle 

encoded psbA are highly identical in these four A. carterae strains, while the core regions are 

completely different. A hypothesis was put forward to suggest that the core regions of minicircles 

evolved at a very fast speed. As the core regions are highly diverse within the different strains, this 

could be used to efficiently distinguish different strains in dinoflagellates such as the toxic and non-

toxic strains. 
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4.2 “The endomembrane system (ES) in Phaeodactylum tricornutum” 

As already mentioned the endomembrane system is made up of the different organellar membranes 

including the nuclear envelope, ER, Golgi apparatus, lysosomes or vacuoles, vesicles, endosomes and 

the plasma membrane. In eukaryotic cells, proteins are encoded in the nuclear genome and 

synthesized in the cytoplasm, some of them must be transported to the different subcellular 

compartments such as the plasma membrane, lysosomes/ vacuoles or the extracellular. Only if the 

proteins are targeted to their appropriate final destinations, they can perform required function. 

However, the mechanisms for trafficking of proteins during the endomembrane system in vivo in the 

diatom P. tricornutum remain poorly understood. The known marker proteins in P. tricornutum are 

not enough. Consequently, the aim of this project was to identify different marker proteins localized 

in the different subcellular compartments and therefore provide an essential condition for further 

detailed researches about the protein trafficking on endomembrane system.  

4.2.1 Identification of tonoplast intrinsic proteins (Tips) 

Water and other small molecules across the membrane is largely controlled by membrane channels 

called tonoplast intrinsic proteins (Tips) (Höfte, Hubbard et al. 1992). Tips together with another four 

groups the plasma membrane intrinc proteins (PIPs), nodulin 26-like intrinsic proteins (NIPs) and 

small basic intrinsic proteins (SIPs) belong to the aquaporins family. The aquaporins are channel 

proteins belong to the major intrinsic protein family (MIPs) (Johanson and Gustavsson 2002). 

Subcellular localization of several Tip isoforms (including three gamma-Tip (Tip1), three delta-Tip 

(Tip2), the seed specific alpha- and beta-Tip (Tip3:1 and Tip3:2), one epsilon-Tip (Tip4:1) and one 

zeta-Tip (Tip5:1)) have already been identified or predicted in vivo in A. thaliana (Höfte, Hubbard et 

al. 1992, Johanson, Karlsson et al. 2001). Previous study has already shown that these channel 

proteins are distributed to specific developmental stages and tissue types in plant cells (Rivera-

Serrano, Rodriguez-Welsh et al. 2012). It was identified that Tip1:1 (gamma-Tip) and Tip2:1 (delta-

Tip) proteins are targeted to the tonoplast of the central vacuole in transgenic A. thaliana mature 

roots, root tips and leaves (Hunter, Craddock et al. 2007). While in embryos of seeds Tip1:1 and 
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Tip2:1 are transported to the protein storage vacuoles (Karlsson, Johansson et al. 2000, Saito, Ueda 

et al. 2002, Gillespie, Rogers et al. 2005, Hunter, Craddock et al. 2007, Schüssler, Alexandersson et al. 

2008, Gattolin, Sorieul et al. 2009). Subcellular localization of eGFP-fused Tip protein indicated that 

AtTip4:1 and AtTip1:2 were localized mainly on the tonoplast membrane and other uncharacteristic 

endomembranes (Liu, Ludewig et al. 2003).  

Within this thesis an initial localisation for five Tip proteins homologous to Tips of A. thaliana is 

present first in P. tricornutum. The use of eGFP and mRFP fusions to these Tips cDNA sequences 

allowed us to investigate the subcellular localization in vivo. It was shown that Tip1-eGFP was 

obviously targeted to the plasma membrane in P. tricornutum, and additional dot-like fluorescence 

was also observed in some clones as shown in Fig. 3-11. However, the fluorescence pattern of the 

Tip1-eGFP was not completely consistent with the fluorescence of plasma membrane protein-PDZ2, 

which was solely and equally distributed to the plasma membrane (Stork 2013). In order to explain 

the localization of these dot-like structures co-expression of Tip1-eGFP with FM4-64 was performed. 

FM4-64 is specific used for staining the plasma membrane and to follow endomembrane system-

dependent internalization processes (Rigal, Doyle et al. 2015). The overlapping of these dots with 

dots stained by the dye FM4-64 indicated that the dot-like structures belong to the endomembrane 

system. Based on these results, Tip1-eGFP fusion was speculated to localize on the plasma 

membrane and endosomal vesicles. This is important and the first time to show the recycling of 

plasma membrane proteins in diatoms. It is still unknow whether the endocytosis happens in 

diatoms or not. The identification of the recycling plasma membrane in diatoms is very useful for the 

endocytosis research. The subcellular localization of Tip2 showed that Tip2-full length-eGFP fusion 

protein was typically targeted to the vacuolar-like membrane, as shown in Fig. 3-12. As the model of 

Tip2 is not completely supported by expressed sequence tags (ESTs), the Tip2 gene was amplified 

from cDNA. The alignment of Tip2 nucleotide sequences see supplements 7.3. Tip2 is the first 

identified vacuolar-like marker protein in diatoms in P. tricornutum. Thus, it is very important for 

investigating the mechanisms of vacuolar protein transport. At the same time, according to the 

predictions the N-terminus of Tip2 protein sequence is lack of signal peptide, and Tip2 contains six 

conserved transmembrane domains, three extra loops and two-hydrophobic intracellular loops. 

Therefore, it will be very meaningful and interesting to mutate several potential targeting signal for 

studing the secretory pathway of Tip2, such as the mutations of the N-terminal amino acid, C-

terminal amino acid and the amino aicd on the their loops.   

Endosymbiotic events gave rise to the formation of different groups of organisms with the so-called 

complex or secondary plastids. The complex or secondary plastid is surrounded by four membrane 

structures in P. tricornutum. The outermost membrane of the complex plastid called chloroplast ER 
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(cER membrane) membrane, it is continuous with the outer membrane of the nuclear envelope and 

was thought to connect with the host ER (Gibbs 1979, Cavalier-Smith and Chao 2003). Subcellular 

localization of eGFP-fused Tip3 and Tip5 indicated that they localized on the outermost membrane 

of the complex plastid, nuclear envelope and host ER (Fig. 3-13). It was observed that the immuno 

gold particles are predominantly present in the outermost membrane of the plastid (cER membrane) 

and partially present in the nuclear envelope and host ER by applying the electron microscopy. 

Based on the absence of N-terminal targeting signal sequence (BTS) in both Tip proteins, it was 

further indicated that Tip3 and Tip5 locate on the cER membrane. In comparison with an important 

component of the host ERAD machinery (cER membrane, nuclear envelope and host ER marker-

hDer1) (Hempel, Bullmann et al. 2009), it was observed that to some extent the fluorescence 

pattern of three proteins are similar. Co-expression of Tip3-mRFP with hDer1-eGFP showed the 

overlapping of the fluorescence but the distribution of the fluorescence is different. Taken all these 

results together, Tip3- and Tip5-eGFP fusions were transported to the outermost membrane of the 

complex plastid (cER membrane), nuclear envelope and host ER in P. tricornutum (Fig. 3-13/14). All 

these makers are important for investigating protein transport across these ER membranes. These 

abundant ER membrane markers provide a valuable insight for distinguishing different structures of 

ER membranes and better investigating the function of these ER structures. 

Subcellular localization of eGFP-fused Tip4 indicated that Tip4 was inserted into the second 

outermost membrane (PPM). Several facts support this speculation. Firstly, the fluorescence pattern 

is typical PPM localization, which is similar to the fluorescence distribution of the identified PPM 

marker PtE3P (Hempel, Felsner et al. 2010). Secondly, Tip4-eGFP is a membrane protein by the 

carbonate extraction, as shown in Fig. 3-15. Thirdly, the self-assembly GFP assay indicated that the 

C-terminus of Tip4 is localized to the PPC. Last but not the least, Tip4 is the only one identified 

aquaporin protein of these five Tip homologous proteins with a predicted signal peptide and an N-

terminal extension, which could lead the protein transport into the PPC or the PPM. Previous study 

showed that only at the +1 position of the potential signal peptidase cleavage site is an aromatic 

amino acid, the plastid protein is allowed to import (Gruber, Vugrinec et al. 2007). However, at the 

+1 position of the Tip4 potential signal peptidase cleavage site is not an aromatic amino acid. Taken 

all these evidences together, Tip4 should be targeted to the PPM of the complex plastid.  
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Fig. 4-1: Schematic overview of identified marker proteins in diatom P. tricornutum. 

Proteins which have been identified within this thesis were shown in this figure. The markers of different subcellular 

compartments include five Tips, Tip1 (plasma membrane (PM) and endosomal compartments), Tip2 (vacuolar-like 

structure), Tip3 and Tip5 (nuclear envelope, cER and host ER (hER) membranes) and Tip4 (second outermost membrane of 

the complex plastid, PPM), two subunits of the putative retromer Vps26 and Vps29 (trans Golgi network), three Golgi 

apparatus markers GnTI (cis Golgi network), XylT (medial Golgi network) and FucT (trans Golgi network), and two V-

ATPases ATPase1 (probably in a second type of vacuole) and ATPase2 (cytosol). Nu: nucleus, Mit: Mitochondria.  

All in all, the subcellular localizations of five Tips (Tip1-5) were addressed in P. tricornutum (Fig. 4-1). 

Contrary to the Tips in higher plants five Tips was not only targeted to the tonoplast in P. 

tricornutum. Tip1 is targeted to the plasma membrane and endosomal vesicles, Tip2 is located on 

the vacuolar-like structure, Tip3 and Tip5 are enriched on the cER membrane, nuclear envelope and 

host ER, Tip4 is a PPM protein. These results indicated that the subcellular localizations of the 

protein candidates are not always matched with the predictions, the localizations could be 

completely different in different organisms. A possible explanation for this could be that not all 

these five Tips are really homologous to tonoplast intrinsic proteins in higher plants, such as Tip1 

might be homologous to one of the plasma membrane intrinsic proteins (PIPs) or the nodulin 26-like 

intrinsic proteins (NIPs) which localized in the plasma membrane and ER in higher plants, Tip3 and 

Tip5 might be homologous to the small basic intrinsic proteins which localized in the ER in higher 

plants (Johansson, Karlsson et al. 2000, Quigley, Rosenberg et al. 2002, Pandey, Sharma et al. 2013). 

Another possible explanation for this could be that the expression of these Tips relies on the specific 

developmental stages and tissue types in higher plants (Rivera-Serrano, Rodriguez-Welsh et al. 2012). 

The proteins expressed in different conditions might effect their localizations. Thus, it can not be 

ruled out the reason from the different organisms. About four hundred aquaporins were identified 
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in recent study in ten different plants containing monocots and dicots (Regon, Panda et al. 2014). 

Among them, Citrus sinensis (57), Fagaria vesca (42), Sorghum bicolor (40) and Zea mays (43) have 

higher aquaporin genes than the others. 38 aquaporin genes and 11 Tips were identified in A. 

thaliana (Regon, Panda et al. 2014). Regarding to the diatom P. tricornutum, 42 major intrinsic 

proteins were found in the database. So far, only one Tip protein (Tip2) homologous to Tip of A. 

thaliana is a tonoplast intrinsic protein in P. tricornutum. 

Previous studies have already shown that the localizations and amount of Tips in higher plants could 

be changed by stressed conditions such as the salt exposure and dark adaptation (Boursiac, Chen et 

al. 2005, Uenishi, Nakabayashi et al. 2014). Thus, the identified five Tips in P. tricornutum could also 

be used to study the expression and localization in different environmental stress conditions. 

Compared with most aquaporins in higher plants, it was shown that these five Tips also have either 

one or two NPA motifs in their sequences and six transmembrane domains (Table 3-7). To some 

extent, this suggested that all the Tips are closely related and conserved during the process of 

evolution. The mutation of these NPA motifs will be a method to detect its function. The function of 

these five Tips remains unknown in P. tricornutum. It is still unknown whether they could form an 

aquaporin pore to selectively mediate the transport of water, gases and small neutral solutes. 

Therefore, the identification of the localizations of these candidate proteins will be very important 

for the studying of these proteins’ function. 

4.2.2 Identification of Golgi-marker proteins 

In most eukaryotes, the Golgi apparatus is divided into the cis-Golgi apparatus, the medial Golgi 

apparatus and the trans-Golgi apparatus. As already mentioned in the introduction the N-

glycosylation pathway mainly occurs in the ER and the Golgi apparatus (Rayon, Lerouge et al. 1998, 

Mathieu-Rivet, Kiefer-Meyer et al. 2014). This process is catalyzed and modified by a large number 

of important and highly conserved membrane-bound glycosylhydrolases and glycosyltransferases 

such as GnT1, XylT and FucT. The N-glycosylation pathway is mainly-studied in yeast and higher 

eukaryotes, but the data regarding the glycosyltransferases localization in this pathway remain 

unknown in diatoms. Three proteins homologous to AtGnT1, AtXylT and AtFucT were fused to eGFP 

and expressed in vivo P. tricornutum. It was shown that the sequence of PtXylT shares 24% identity 

with the AtXylT (Baïet, Burel et al. 2011). As expected these three eGFP fusion proteins showed 

similar dot-like or long strip-like fluorescence pattern (Fig. 3-16). This could be explained by the Golgi 

localization of the three candidate proteins via the known localization in plant. In A. thaliana GnT1 is 

known to be localized in the cis-Golgi apparatus (Kajiura, Okamoto et al. 2012). AtXylT was targeted 

to the medial cisternae of Golgi (Pagny, Bouissonnie et al. 2003, Kajiura, Okamoto et al. 2012). FucT 
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is localized to the trans-Golgi or TGN in A. thaliana (Fitchette‐Lainé, Gomord et al. 1994). The N-

glycosylation in mammalian is different. The GnT1 is substituted by an alfa-1, 3-fucose. The XylT and 

FucT transferases locate on the trans-Golgi apparatus (Kim, Jeon et al. 2014). 

In some cases banana-like fluorescence pattern of XylT-eGFP was observed, as shown in Fig. 3-16b. 

The fluorescence pattern matches with the shape of the Golgi apparatus. Based on the co-

expressions of XylT-mRFP with GnT1-eGFP and XylT-mRFP with FucT-eGFP, it was observed that the 

fluorescence overlapped only partially. Taken together, it was indicated that the localizations of 

these three Golgi marker proteins are slightly different. Previous study indicated that AtXylT acts at 

multiple stages of the plant N-glycosylation pathway, especially in the medial-Golgi (Kajiura, 

Okamoto et al. 2012). This could be a reason to explain why the XylT could partially overlap with the 

cis-Golgi marker GnT1 and the trans-Golgi marker FucT in P. tricornutum. Therefore, it was 

speculated that GnT1 might be localized on the cis Golgi apparatus, XylT is majorly targeted to the 

medial Golgi apparatus, while FucT is more possible enriched in the trans Golgi apparatus (Fig. 4-1). 

However, it is still unknown whether these three potential Golgi markers could also work in the 

course of N-glycosylation in P. tricornutum or not. In any case, the identification of the three Golgi 

marker proteins is important for the studying on their function and the pathway of N-glycosylation 

in P. tricornutm. N-glycosylation is an important and ubiquitous modification in the synthesis of new 

proteins in eukaryotes. This modification occurs in the course of protein secretion. It is crucial for the 

right folding, structural formation and assembly of the secreted proteins and the precisely targeting 

of glycoproteins to outside the cell or the membranes. Thus, the mutation of the glycosylation sites 

will be a new insight to investigate the protein transport in diatoms. As β1, 2-xylosylated N-glycans 

might have a function on inducing immune-reponses as pollen allergens which indicates that β1, 2-

xylosylated N-glycans are equivalently interest in the algal-produced biopharmaceuticals.  

4.2.3 Identification of retromer complex proteins 

In addition to the already described coat proteins the retromer complex is mainly responsible for the 

retrograde transport of protein sorting receptors (Seaman 2005, Bonifacino and Hurley 2008, 

Schellmann and Pimpl 2009, Reyes, Buono et al. 2011). The retromer complex contains two 

subcomplexes, a large subcomplex is formed by three core subunits (Vps26, Vps29 and Vps35) for 

cargo recognition and a small subcomplex is formed by membrane deforming sorting nexin proteins 

(SNXs) in yeast, plants and mammal cells (Bonifacino and Hurley 2008, Otegui and Spitzer 2008, 

Cullen and Korswagen 2012). The structure of retromer has been well-studied in yeast, plants and 

mammal cells, but the localization of the core subunits and sorting nexins of retromer is still debated.  
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Within this thesis the subcellular localization of two homologous proteins to large retromer subunits 

of A. thaliana Vps26 and Vps29 were investigated in vivo in P. tricornutum. As expected the 

fluorescence patterns of the Vps26- and Vps29-eGFP fusion protein are similar, a dot or small 

diamond-like structure (Fig. 3-17). The co-localization of the Vps26-eGFP and Vps29-mRFP indicated 

that these two homologous proteins located in the same structure and might also belong to the 

retromer complex in P. tricornutum.  In the present investigation, where the co-localization of the 

Vps29-mRFP with the TGN marker FucT but only partially overlap of the Vps29-mRFP with the medial 

Golgi marker XylT was observed. In agreement with recent studies in Arabidopsis and tobacco roots 

(Niemes, Langhans et al. 2010, Stierhof, Viotti et al. 2013) Vps26 and Vps29 subunits are localized to 

the TGN in P. tricornutum (Fig. 4-1). This provides an important prerequisite for the investigation of 

the function of retromer complex and the relationship between the retromer and three Golgi maker 

proteins. The receptor-dependent protein transport between different intracellular compartments is 

essential for many physiological activity in plant. The continuous recycling of receptors via retromer 

evade the degradation and can be used for the next rounds of protein transport. Previous studies 

have already idendified that trans Golgi network is the starting point for receptor-ligand interaction 

and package the receptor-ligand complexes into the clathrin-coated vesicles, subsequently, the 

cargo will be delivered into the next comparments such as the prevacuolar compartments/ late 

endosomal compartments (Tse, Mo et al. 2004, Detter, Hong-Hermesdorf et al. 2006, Robinson, 

Jiang et al. 2008). To some extent, it is contradicts to the current localization of the retromer.  

The localization of retromer in higher plant cells is debated. The localization of retromer subunits 

seems not to be restricted to the TGN. Previous studies showed that the retromer in mammals 

localized to the tubular extensions of early and recycling endosomes (Carlton, Bujny et al. 2004, 

Bonifacino and Hurley 2008). Published data showed that the sorting nexins and the components of 

the large retromer subunit proteins were localized to the pre-vacuolar compartment (PVC) in A. 

thaliana and tobacco roots (Geldner, Anders et al. 2003, Tse, Mo et al. 2004, Oliviusson, Heinzerling 

et al. 2006, Jaillais, Santambrogio et al. 2007, Kleine-Vehn, Leitner et al. 2008, Yamazaki, Shimada et 

al. 2008). It was also suggested that the SNX2b and SNX1 are localized to the TGN, PVC and an 

endosomal compartment in plant (Phan, Kim et al. 2008, Robinson, Jiang et al. 2008). However, the 

colocalization of SNX2a with TGN markers but not with Golgi or PVC marker indicated that the 

sorting nexins are exclusively localized to the TGN rather than the pre-vacuolar compartment in 

Arabidopsis and tobacco roots (Niemes, Langhans et al. 2010). Previous studies showed that the 

retromer complex consists of sorting nexins subcomplex and the large Vps26/29/35 core subunits, 

but later it was suggested that the two subcomplexes may not always bind together and might have 

different functions in A. thaliana (Harbour, Breusegem et al. 2010, Pourcher, Santambrogio et al. 

2010). This makes the localization of retromer subunits even more difficult.  
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4.2.4 Identification of vacuolar type H+-ATPases 

In order to identify more vacuolar marker protein, the vacuolar type H+-ATPases (VHAs) were 

analyzed in silico. This membrane-bound multisubunit complex contain at least 26 genes encoding 

subunits (Sze, Schumacher et al. 2002). VHAs are essential for mediating the pH of intracellular 

compartments. Simultaneously, VHAs are important for protein transport, plant growth, 

development and adaptation to the changing environmental conditions and maintaining metabolite 

and ion balance in plant cells (Sze, Schumacher et al. 2002, Kluge, Lahr et al. 2003). Inhibition of the 

vacuolar type H+-ATPase effect the secretion and results in the mistargeting of vacuolar proteins in 

plant (Matsuoka, Higuchi et al. 1997). 

The fluorescence pattern of PtATPase1-eGFP fusion protein showed one or in some clones three 

dot-like structures in P. tricornutum (Fig. 3-19a/b). Based on the hypothesis VHA-c is targeted to the 

ER, TGN and the vacuole-specific subsector in A. thaliana (Seidel, Schnitzer et al. 2008). PtATPase1 

homologous to hydrophobic subunit C of A. thaliana is a membrane protein. Thus, it was speculated 

that these dot-like fluorescence might be localized on the small vesicles or small vacuoles. 

Another protein homologous to VHA-G2 subunit of A. thaliana is PtATPase2. PtATPase2-eGFP fusion 

protein showed a cytosolic fluorescence (Fig. 3-19c). The best match protein in A. thaliana is 

vacuolar ATPase protein 10 (TAIR: AT3g01390.2). It belongs to the subunit G of vacuolar type ATPase 

cytosolic V1 sector. The identified cytosolic PtATPase2 is in agreement with the published data from 

A. thaliana (Aviezer-Hagai, Nelson et al. 2000, Endler, Meyer et al. 2006). As already shown in the 

introduction the vacuolar type H+-ATPase contains at least 26 gene encoding subunits, therefore, the 

localization of the two subunits is only the starting point in P. tricornutum. The identification of the 

subcellular localizations of these VHA subunits might be very useful for further studies on the 

localization of the other VHA subunits and for researches on the function of VHAs in the diatom P. 

tricornutum. 
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5 Materials and Methods 

5.1 Materials 

5.1.1 Instruments 

PCR-Thermo-Cycler:  

Mastercycler gradient    Eppendorf, Hamburg 
Mastercycler personal Eppendorf, Hamburg 
 

Centrifuges: 

Centrifuge 5415 D Eppendorf, Hamburg 
Centrifuge 5417 R    Eppendorf, Hamburg 
Centrifuge 5810 R Eppendorf, Hamburg 
Mikro 22 R    Hettich Zentrifugen, Tuttlingen 
MiniSpin® Plus Eppendorf, Hamburg 
PicoFuge®   Stratagene, La Jolla, USA 
L755 Ultracentrifuge Beckman Coulter 
 

Biolistic transfection:  

FrenchPress MiniZelle FA-003 G. Heinemann ULT 
Biolistic PDS-1000/He Particle Delivery 
System 

Biorad, Munich 

Rupture Discs 1350 psi   Biorad, Munich 
Macrocarrier Biorad, Munich 
M 10 (Ø 0.7 μm) Tungsten-Particles   Biorad, Munich 
Frenchpress SLM-AMINCO 4-3399 SLM-AMINCO Instruments 
 

Confocal Laser Scanning Microscope:  

CLSM Leica TCS SP2   Leica, Wetzlar 
 

Incubation: 

Incubator    Heraeus Instruments, Hanau  
Climate Chamber MLR-350 SANYO Ewald Gmbh 
Thermocycler 60        Biomed, Oberschleißheim  
Thermomixer comfort    Eppendorf, Hamburg 
Thermomixer compact    Eppendorf, Hamburg 
 

 

 



Materials and Methods 

66 

 

Other instruments: 

Nanodrop ND-1000 photometer peqlab 
ABI Prism 377 Applied Biosystems 
 

5.1.2 Membranes and filters  

Nitrocellulose membrane Macherey-Nagel 
Whatman 3MM Schleicher & Schuell, Dassel 
FP 30/ 0.2 CA-S - 0.2 μm sterile filter Schleicher& Schuell 
Fuji-Medical-X-ray-Film, 30 x 40 cm Fuji Film 
X-ray film developer and replenisher Kodak 
 

5.1.3 Antibodies 

Primary antibodies Dilution Manufacturer 
α GFP    1:3000 Biomol 
α Rubisco   1:5000 Agrisera 
α psbD(D2 protein of PSII) 1:5000 Agrisera 
α psbO   1:1000   Agrisera 
   
Secondary antibodies Dilution Manufacturer 
αgoat (HRP coupled) 1:10000 Sigma-Aldrich, Munich  
αrabbit (HRP coupled)  1:10000 Sigma-Aldrich, Munich  
 

5.1.4 Chemicals 

Unless otherwise noted, all chemicals used in this work were obtained from Roth GmbH, Sigma 

Aldrich or Merck and stored and used according to the manufacturer’s instructions. 

5.1.5 Enzymes 

DNAseI    Thermo Scientific/Fermentas, St. Leon-Rot 
Phusion High Fidelity DNA-Polymerase (5 
U/µl) 

Thermo Scientific/Fermentas, St. Leon-Rot 

Restriction endonucleases (10 U/µl) Invitrogen, Karlsruhe 
RNase A (70 U/μl)   Thermo Scientific/Fermentas, St. Leon-Rot 
T4-DNA-Ligase (1 U/μl) Thermo Scientific/Fermentas, St. Leon-Rot 
Taq-DNA-Polymerase Biotools, Madrid 
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5.1.6 Software and bioinformatic applications 

Sequencher 5.1 GeneCodes 
LCS Lite 2.5      Leica 
ClustalW and ClustalX Alignment 
Mega4.0 and Mega6.0 Phylogenetic analyses 
ImageJ Tony Collins, McMaster Biophotonics Facility 
 

The following websites were commonly used: 

SOSUI   http://harrier.nagahama-i-
bio.ac.jp/sosui/sosui_submit.html 

TMHMM Server v.2.0 http://www.cbs.dtu.dk/services/TMHMM-2.0/ 
ΔG prediction server v1.0 http://dgpred.cbr.su.se/index.php?p=fullscan 
TOPCONS http://topcons.cbr.su.se/ 
SignalP 4.1 Server http://www.cbs.dtu.dk/services/SignalP/ 
TargetP 1.1 Server    http://www.cbs.dtu.dk/services/TargetP/ 
ChloroP Server   http://www.cbs.dtu.dk/services/ChloroP/ 
Psortb   http://www.psort.org/psortb/ 
Phaeodactylum digital gene 
expression   

http://www.diatomics.biologie.ens.fr/EST/est.htm 

P. tricornutum data base v2.0 http://genome.jgi-psf.org/pages/blast.jsf?db=Phatr2 
Tm calculator http://www.thermoscientificbio.com/webtools/tmc/ 
Pubmed   http://www.ncbi.nlm.nih.gov/entrez 
ClustlW2 http://www.ebi.ac.uk/Tools/clustalw2/index.html 
Clustal Omega        http://www.ebi.ac.uk/Tools/msa/clustalo/ 
TransportDB    http://www.membranetransport.org/ 
Arabidopsis thaliana http://www.arabidopsis.org 
 

5.1.7 DNA and protein markers 

For agarose gel electrophoresis, the GeneRulerTM 1 kb Plus DNA Ladder or Lambda 

DNA/EcoRI+HindIII Marker from Thermo Scientific/MBI Fermentas were used as DNA length marker. 

As for SDS-PAGE marker, the PageRulerTM Prestained Protein Ladder from Thermo 

Scientific/Fermentas was used.  

5.1.8 Oligonucleotide primers 

All oligonucleotide primers used in this work were supplied from Sigma. All oligonucleotide primers 

used for amplifying genes, colony PCR and sequencing in this work were listed in supplemental data 

7.3. The working concentration of primers was 5 pmol/µl. 

 

http://dgpred.cbr.su.se/index.php?p=fullscan
http://www.ncbi.nlm.nih.gov/entrez
http://www.arabidopsis.org/
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5.1.9 Vectors 

pJet1.2/blunt cloning vector Ampr,PT7, eco47IR MBI-Fermentas 
pPha-T1 (provided from Peter Kroth, 
University Konstanz, Germany) 

Ampr, Zeor,PfcpA +TfcpA    Zaslavskaia et 
al.2000 

pPha-NR   Ampr, Zeor, PNR+ TNR Acc. JN180663 
pMOD™-3 <R6Kγori/MCS> Ampr, R6Kγori Cat.No.MOD1503 
pPha-Dual 2xNR Ampr, Zeor, PNR+TNR(both MCS I 

and II) 
Acc. JN180664 
 

 

5.1.10 organisms 

Escherichia coli TOP10 (F-, mcrA, Δ(mrrhsdRMS-mcrBC), φ80lacZΔM15, ΔlacX74, nupG, recA1, 

araD139, Δ(ara-leu)7697, galE15, galK16, rpsL(StrR), endA1, λ) from Invitrogen.  

Phaeodactylum tricornutum, Strain CCAP 1055/1 

Amphidinium carterae strain CCAM0512 

TransforMaxTMEC100DTM Pir-116 Electroncompetent E.coli 

F– mcrA Δ(mrr-hsdRMS-mcrBC) ϕ80dlacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU 

galK λ– rpsL nupG pir-116(DHFR). Maintains plasmids at ~250 copies per cell. 

TransforMax EC100D pir+  

F– mcrA Δ(mrr-hsdRMS-mcrBC) ϕ80dlacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU 

galK λ– rpsL nupG pir+(DHFR). Maintains plasmids at ~15 copies per cell. 

5.2 Methods 

5.2.1 Culture of E.coli TOP10 

E.coli TOP10 cells were obtained from Invitrogen, Karlsruhe. For long-termstorage, E.coli TOP10 cells 

were stored at -800C in a LB/glycerin (1:1) mixture. Short-termcultivation was carried out overnight 

at 37°C and constant shaking (200 rpm) insterile LB liquid medium or on 1.5% LB-agar plates with the 

appropriate antibiotic (50 µg/ml ampicillin or 25 µg/ml kanamycin).  

LB-medium: (pH=7.0)  
1% (w/v)     Bacto-Tryptone 
0.5% (w/v)   Yeast extract 
1% (w/v)     NaCl 
50 µg/ml     ampicillin or 25ug/ml kanamycin 
Add 1.5% (w/v) agar for LB solid medium.  



Materials and Methods 

69 

 

5.2.2 Culture of Phaeodactylum tricornutum CCAP 1055/1 

P. tricornutum cells were cultured under 24 h light condition (8000-11000 1x) at 22°C, constantly 

shaken at 225 rpm in f/2- liquid medium or on f/2 agar plates. The cultures were inoculated each 

two to three weeks for strain maintenance. For the selection of transformed clones, a concentration 

of 75 μg/mL zeozinTM (InvivoGen) was added to the medium. For strain maintenance cultures were 

transferred to new f/2 agar plates every four weeks.  

f/2 medium (pH 7.0)  
Tropic marine sea salt  16.6 g  
Tris (2 M, pH 8.0)  1 mL  
NaH2PO4 · H2O (0.1 M)  360 μL  
NaNO3 (1 M)/ NH4Cl  890 μL/ 1 mL  
f/2 vitamin solution  1 mL  
Trace elements  1 mL  
                                                                             ad 1 L dH2O  

 

 

 

 

 

 

 

5.2.3 Culture of Amphidinium carterae CCAM0512 

Amphidinium carterae (Hulburt) (strain CCAM0512) comes from the algae collection department of 

Marburg University and were cultured in f/2-medium at 12 h/ 12 h light/ dark photoperiod, 20 °C. 

For putative minicircles isolation, the cells were cultured to the middle of stationary phase. 

f/2 medium (pH 7.0)  

Tropic marine sea salt  30 g  

Tris (1 M, pH 8.0)  5 ml 

NaH2PO4 · H2O (0,1 M)  360 μl 

NaNO3 (1 M)  900 μl  

f/2 vitamin solution  1 mL  

Trace elements  1 mL  

                                                                            ad 1 L dH2O  

 

f/2 trace elements f/2 vitamin solution 

FeCl3  11.65 mM  Biotin  2 μM  

Na2EDTA  11.71 mM  Cyanocobalamine  0.37 μM  

CuSO4  39 μM  Thiamine-HCl  297 μM  

ZnSO4             77 μM   

CoCl2               42 μM   

MnCl2  910 μM   

Na2MoO4 26 μM   
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5.2.4 Nucleic acid analytics 

5.2.4.1 Plasmid isolation from E.coli 

Plasmid isolation from E.coli was carried out by alkaline extraction according to (Bimboim and Doly 

1979). Previous to plasmid preparation, liquid cultures were inoculated from colonies grown on LB 

agar plates and incubated overnight at 37°C. The next day, 1.5ml of the liquid culture was used and 

centrifuged full speed for 1min. After discarding the supernatant by tilt or tap, the pellet was 

resuspended in 200 μl of P1 buffer. 200 μl of buffer P2 were added and mixed with the suspension 

by inverting the Eppendorf cup 5-10 times. Following an incubation for 5 min at RT, 200 µl of P3 and 

20 µl chloroform were added and mixed with the lysate. After an incubation of 5 min on ice the 

lysate was centrifuged for 5 min (4°C/ 20,000 g). The resulting supernatant was then transferred to a 

new Eppendorf cup and 400 µl of isopropyl alcohol was added and mixed with the supernatant. 

Following a centrifugation (20 min/ 4°C/ 20,000 g) the supernatant was discarded and the pellet 

washed with 70 % ethanol (5 min/ 4°C/ 20,000 g). The supernatant was again removed and the dried 

pellet was finally dissolved in 40 µl ddH2O.  

Buffer P1 Buffer P2 
Tris/HCl (pH 8.0)  50 mM  NaOH  200 mM  
EDTA  10 mM  SDS  1 % (w/v)  
RNase A  100 μg/mL    
 
Buffer P3 

   

KAc (pH 5.5)  3 M    
 

5.2.4.2 DNA and RNA isolation from P. tricornutum 

The isolation of genomic DNA from P. tricornutum was carried out via the CTAB-method described 

(Doyle and Doyle 1990). P. tricornutum cells were collected from 150 mL liquid culture by 

centrifugation (3000 g/ 5 min/ RT). The supernatant was discarded and pellet was resuspended in 

1600 μL of 2x CTAB containing buffer B. Cell lysis, then the suspensions was transferred into two 

new Eppendorf cups (EP) and incubated at 70 °C for 30 min, after that cell debris was centrifuged 

(20000 g/ 5 min/ RT). The upper phase was moved to a new EP and mixed with one volume of PCI 

(DNA isolation, saturated with EDTA) gently, then centrifuged at 20000 g/ 10 min/ RT. Subsequently, 

the upper phase was moved to a new EP again, mixed with 1/10 volume of NaAc (pH 4.5) and 2/3 

volume of isopropyl alcohol gently and centrifuged (20000 g/ 20 min/ 4 °C). After that, the 

supernatant was removed and the pellets was washed with 500 μL of 70 % ethanol and centrifuged 

(20000 g/ 20 min/ 4 °C). At last, the supernatant was discarded, while the pellets were dried in a 



Materials and Methods 

71 

 

desiccator. After drying, the pellet was dissolved in 15 μL of ddH2O, after which the DNA solutions 

were transferred into one EP. 

RNA isolation was carried out by collecting 150 ml liquid culture (centrifuge at 10000 g/ 30 s/ 4 °C) 

from exponential P. tricornutum cells. After discarding the supernatant, the pellet was resuspended 

in six ml NAES in six Eppendorf cups, each cup including 1 ml. At the same time, 100 beads and 1ml 

water-saturated PCI was added into each cup. After vortex them 3x20 s, centrifuged for 10 min at 

20000 g RT. Upper aqueous phase was moved into a new EP, 1 volume of water saturated PCI was 

added into the aqueous phase, mixed gently and centrifuged 15 min, 20000 g RT again. The upper 

aqueous phase was transferred to a new EP again and added 1 volume of chloroform, centrifuged 15 

min, 20000 g RT. Subsequently, the aqueous supernatant was transferred to a new EP and added 0.7 

volume of isopropanol to precipitate RNA, incubated the sample overnight at -20°C. At the next day, 

centrifuged it full speed for 30 min and used 500 μL 70% EtOH to wash RNA. At last, the pellets were 

dried in a desiccator and dissolved it in 15 μl of DEPC H2O. 

Buffer B NAES 
Tris/HCl (pH 8.0)  0.1 M  NaAc (pH 5,1) 50 mM  
Na2EDTA  0.02 M  EDTA 10 mM 
NaCl  1.4 M  SDS 1 % (w/v) 
2-Mercaptoethanol  0.2 % (v/v)    
 

5.2.4.3 cDNA synthesis via reverse transcription (RT) 

Before cDNA synthesis, RNA isolation sample including potential genomic DNA had to be treated by 

DNaseI in order to remove genomic DNA. Each 500 ng of RNA, 1 µl DNAseI (1 U/µl) and 2 µl 10x 

reaction buffer were mixed in 20 µl total, and was incubated at RT for 20 min. After DNA removal, 

RNA sample was checked on the agarose gel (selection). The cDNA synthesis was followed directly 

with the SuperScriptTM II RT according to the manufacturer’s instructions. 1.3 µl random hexamer 

primer and 1.7 µl DEPC H2O were added to the samples, and incubated at 70°C for 5 min. Then the 

samples were kept on ice and 2 µl 10mM dNTPs and 4 µl reverse transcriptase buffer were added. 

Following an incubation for 5 min at 25°C 1 µl reverse transciptase was added. After incubation for 

60 min at 42°C the reaction was eventually stopped by incubating the samples at 70°C for 10 min.  

5.2.4.4 Polymerase chain reaction (PCR) 

The Phusion High Fidelity PCR Kit was used to amplify the DNA sequences from P. tricornutum gDNA 

or cDNA. The concentration of the used primers (see supplementary material 7.3) was 5 pmol/µl and 



Materials and Methods 

72 

 

the annealing temperature depended on the melting temperature of the primers. The reaction mix 

consisted of the following components: 

Phusion-HF-Buffer (4mM MgCl2) 5 μl 

MgCl2 (50 mM) 2 μl 

dNTPs (10 mM) 1 μl 

Forward-Primer (5 pmol/µL) 1 μl 

Reverse-Primer (5 pmol/µL) 1 μl 

gDNA/cDNA solution (250 ng) 0.2 μl/2µl 

Phusion High Fidelity DNA-Polymerase (5 
U/µL) 

0.25 μl 

 ad 25 µl ddH2O 

 

Step Duration Temperature 

1.Denaturation 1 min 98°C 

2.Denaturation 20 s 98°C 

3.Annealing 30 s Tm-3°C 

4.Elongation Depends on sequence length 72°C 

5.Final Elongation 4 min 72°C 

6.Cool down 20 s 20°C 

Step 2-4 were repeated 29 times (gDNA) or 40 times (cDNA). 

 

Colony PCR was performed with Taq DNA Polymerase (Biotools) according to the manufacturer’s 

instructions. A P. tricornutum colony, grown on selective medium after transfection, was 

resuspended in 20 µl of ddH2O and boiled for 10 min at 95°C. After centrifugation (2000 g/ 10 min/ 

RT), the supernatant was used for colony PCR reaction. The reaction mix consisted of the following 

components:  

10xstandard Buffer with MgCl2 (Biotools) 2.5 µl 

MgCl2 (50 mM) 1.25 µl 

dNTPs (10 mM) 0.5 µl 

For-Primer (5 pmol/µL) 0.5 µl 

Rev-Primer (5 pmol/µL) 0.5 µl 

Boiled colony suspension supernatant 5 µl 

Taq- DNA-Polymerase (Biotools) 0.25 µl 

 ad 25 ul ddH2O 

 

5.2.4.5 Agarose gel electrophoresis 

For separation of DNA or RNA on an agarose gel, 10 µl sample and 2 µl loading buffer mix was 

loaded onto a 1% to 2% agarose gel which was based on 1xTBE buffer. Roti®-GelStain (Roth) was 
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used to stain nucleic acid. For the elution of DNA fragments, the JetSorb DNA-Ectraction-Kit or PCR 

purify kit was used according to manufacturer’s instructions. 

DNA loading buffer (pH 7.0) 10xTBE 
Urea 4 M Tris/HCl (pH 8.8) 1 M 
EDTA 0.05 M Boric acid 0.83 M 
Sucrose 50% (w/v) EDTA 0.01 M 
Xylene cyanol 0.1 (w/v)   
Bromphenol blue 0.1 (w/v)   

5.2.4.6 Sequencing 

The sequencing of DNA was performed by the method described in Sanger, Nicklen et al. (Sanger, 

Nicklen et al. 1977). The sequence reaction mixture was consisted of the following components: 

Sequencing primer 1 µl 
ABI mix 2 µl 
Plasmid solution 4 µl 
ddH2O 3 µl 
 

The following PCR reaction:  

Step Duration Temperature 

1.Denaturation 3 min 95°C 

2.Denaturation 30 s 95°C 

3.Annealing 30 s 50-55°C 

4.Elongation 90 s 60°C 

5.Final Elongation 4 min 60°C 

6.Cool down 20 s 20°C 

Step 2-4 were repeated 30 times. 

 

After the PCR program, the reaction mix was moved to a new 1.5 ml EP and mixed with 64 µl 100% 

ethanol and 26 µl ddH2O. The mix was saved in the dark for 30 min. After that, the mix was 

centrifuged for 30 min at 2000 g, 4°C. The pellet was washed by 70% EtOH once, then was dried and 

dissolved in 3 µl for amide loading dye. The ABI PRISM 377 DNA Sequencher was used to separate 

the sequencing reaction. The nucleotides sequences were analyzed on Sequencher 5.1.) 

5.2.4.7 Restriction and ligation 

To prepare DNA fragment for ligation, normally, the mix is made up of the following components: 

vector 0.3 µl 

DNA 1 µl 

restriction enzyme 1 0.25 µl 
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restriction enzyme 2 0.25 µl 

10x SDB buffer 1 µl 

 ad 10 µl ddH2O 

The restriction mix was incubated 30 min to 1h at 37°C. Then each sample was added 2ul loading 

dye and loaded on agarose gel electrophoresis.  

The eluted PCR products were ligated into pJet1.2/blunt cloning vector with the ClonJetTM PCT 

Cloning Kit from Thermo Scientific/Fermentas. The ligation of DNA fragments into the expression 

vector pPha-NR, the ratio of insert and vector was 3:1 and added 0.5-1 µl T4 ligase from Thermo 

Scientific, and 1 µl 10xligase buffer in 10 µl volume. The ligation mix was incubated at RT for 30 min. 

5.2.4.8 Transformation of E.coli 

Before the transformation of E.coli, chemically RbCl-competent cells were prepared and stored at -

80°C. For the transformation of E.coli TOP10, 50 µl of RbCl-competent E. coli suspension were added 

to the ligation mix and incubated on ice for 20-30 min. Then, the cells were heat shocked at 42°C for 

45 s. After a short recovering time on ice the cells were plated on 1.5 % agar-LB plates containing 50 

µg/ml ampicillin. The plate was incubated at 37°C overnight.  

E. coli TOP10 cells were cultured overnight in 100 ml LB medium with streptomycin (50 µg/ml), a 1 L 

culture with antibiotic was inoculated at 37°C, the starting OD600 is 0.1, at the same time, Sterile 

MgCl2 and MgSO4 were added into the culture, a final concentration of them is 10 mM each. When 

the cells concentration increased to OD600 of about 0.6, then centrifuged and used 33 ml RF1 to 

resuspend it, incubated 30min on ice. After the second centrifugation, the pellet was resuspended in 

50 ml RF2 and incubated 30 min on ice again. At last, aliquots of 100 µl were prepared in 4°C room 

and frozen in liquid nitrogen and stored them at -80°C. 

RF1 RF2 

RbCl2 100 mM MOPS 10 mM 

MnCl2x 4H2O 50 mM RbCl2 10 mM 

KAc 30 mM CaCl2x2H2O 75 mM 

CaCl2x2H2O 10 mM Glycerin 15% (w/v) 

Glycerin 15% (w/v) Adjust pH to 5.8 with NaOH 

Adjust pH to 5.8 with acetic acid   

 

5.2.4.10 Transfection of P. tricornutum 

Before transfection, the wild type P. tricornutum cells were cultured on f/2 agar plate (without 

zeozin) for overnight. The concentration of cells on each plate is 108 cells in 100 μl f/2 liquid medium. 

Normally, three plates’ wide type cells were prepared for one construct. The next day, the biolistic 
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transfection was carried out as described by Apt, Grossman et al. and Zaslavskaia, Lippmeier et al. 

(Apt, Grossman et al. 1996, Zaslavskaia, Lippmeier et al. 2000). At the beginning, 50 µl M10 for each 

construct, 5 µg plasmid (5000/plasmid concentration), 50 µl 2.5 M CaCl2 and 20 µl 0.1 M SP enzyme 

was mixed using vortex for 1min. Then incubated 10 min at room temperature. After centrifugation 

(full speed/ 5 min), the supernatant was threw away and then 250 µl 100% ETOH HPLC-Quality was 

used to wash the pellet once. At last, 50 µl 100% ETOH HPLC-Quality was used to re-suspend the 

pellet for transfection.  

The transfection was carried out by using Biolistic PDS-1000/He Particle Delivery System. Before 

transfection, a cleaning work was conducted with 100% ethanol (HPLC grade). After the cleaning, the 

transfection was started. Firstly, 15 µl of the DNA bound microcarrier suspension was added on a 

microcarrier membrane, then the components of the particle gun was assembled according to 

manufacturer’s instructions. Secondly, when the vacuum increased to 25 psi, turn on the pressure 

until to 1350 psi, then release immediately. Lastly, the transfected plates were sealed by Parafilm 

and cultured at 22°C under the continuous light overnight. The next day, 1 ml f/2 medium was used 

to wash each transfected plate to three f/2 ammonium agar plates including selective zeocin. The 

plates were cultured under the continuous light at 22°C until colonies were visible.  

5.2.4.11 Minicircles enrichment and isolation from A. carterae CCAM0512 

A. carterae CCAM0512 was harvested from four to five weeks cultures by centrifugation (3000 g, 3 

min). Alkaline extraction according to Bimboim and Doly for bacterial plasmid preparation was used 

to enrich minicircles (Bimboim and Doly 1979). Additionally, different alkaline lysis based kits were 

also used to enrich the minicircles. The following kits were used: 

 Company 

PeqGOLD Plasmid Miniprep KitI Peq Lab  

PureYieldTM Plasimid Miniprep System, 50 preps Promega 

UltraClean 6 minute Mini Plasmid Prep Kit MoBio 

High Yield Plasmid Mini Kit SLG 

 

5.2.4.12 Transposon-insertion based approach 

A transposon-insertion based approach was used to isolate individual minicircles from A. carterae 

CCAM0512 in high copy number. The natural structure of plasmid-like minicircles provides a good 

basis for transposon insertion and subsequent usage of bacterial proliferation. Firstly, a kanamycin 

antibiotic resistance gene was inserted into the multi-cloning site of an EZ-Tn5 (Epicentre) 

transposon in EZ-Tn5 pMOD-3 vector (EZ-Tn5TM pMODTM <R6Kγori/MCS> Transposon Construction 
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Vectors, EPICENTRE Company). EZ-Tn5 (Epicentre) transposon contains two mosaic ends (5’-

AGATGTGTATAAGAGACAG-3’), a multiple cloning site and R6Kγori of replication. R6Kγori-dependent 

replication needs the pir gene product produced by TransforMax EC100D pir+ E.coli cells. Secondly, 

the EZ-Tn5 (epicentre) transposon including the kanamycin antibiotic resistance gene was amplified 

by transposon primers (see supplement 7.3). Subsequently, the transposon was inserted into the 

target minicircles in vitro by using the reaction mixture (37°C, 2 hours) which is made up of the 

following components: 

Minicircles  6.5 µl/ 0.2 µg 

Transposon  2 µl 

EZ-Tn5 10xReaction buffer 1 µl 

EZ-Tn5 Transposase 1 U/ µl 0.5 µl 

 ad 10 µl ddH2O 

 

The 10xreaction buffer and transposase were provided by the EZ-Tn5TM Custom Transposome 

Construction Kits. They were used according to the manufacturer’s instructions. 

After transposon insertion reaction, as the EZ-Tn5 10xreaction buffer contains Mg2+, the reaction 

mixture was not stopped by EZ-Tn5 10xstop solution as manufactors’ protocol. The reaction mixture 

was purified by the next steps. Firstly, Phenol: Chloroform: Isoamyl Alcohol (25:24:1, v/v) was used 

to purify the minicircles, then chloroform was used for the second step purification of transposon 

inserted minicircles, and subsequently 2.5 volume 100% Ethanol and 0.1 volume NaAc, pH 4.8 was 

used to the precipitation of transposon inserted minicircles. At last, electroporation procedures for 

bacterial transformation (TransforMaxTM EC100DTM pir+ electrocompetent E.coli, 2.5 kV, fast charge 

rate, 2 mm cuvette) was used. Each transformation mixture was cultured in 300 ml LB liquid medium 

without antibiotic for 1 hour, and subsequently plated the culture on the plate. The plasmids 

(potential individual minicircles) were isolated via standard plasmid preparation (Alkaline lysis). The 

transposon insertion is schematically visualized in figure 5-1.  
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Fig. 5-1: Schematic depiction of transposon-insertion based isolation of minicircles.  

It was shown that the minicircle provides a vector standard for the transposon insertion. The red region is the core region 

of minicircles. The arrow region is the coding region of minicircles. The remainder of minicircles is called the non-coding 

region. The transposon (marked by blue) contains an origin of replication and a kanamycin antibiotic resistence gene. The 

transposon was inserted into the minicircles randomly in the reaction mix, so it was also possible inserted into the core 

region, coding region and non-coding region.  

5.2.4.13 DNA extraction, amplification, and sequencing of LSU rDNA domain D1-D6 and SSU rDNA 

for A.carterae 

Genomic DNA was isolated from 100 ml of exponentially growing A. carterae cells according to the 

CTAB method described in Doyle and Doyle (Doyle and Doyle 1990). Extracted DNA was used as a 

template, the Phusion High Fidelity PCR Kit was used to amplify approximately 1400 bp of the LSU 

rDNA gene covering the variable domains D1-D6, using the primers (LSU-for: 

ACCCGCTGAATTTAAGCATA; LSU-rev: CCACCATGCCCTCCTACTCA); and approximately 1700 bp of the 

SSU rDNA gene, using the primers(SSU-for:GTCTCAAAGATTAAGCCATGCATGTC;SSU-

rev:CTTCTCCTTCCTCTAAGTGATAAGGTTC). Primers concentration is 5 pmol/µl and the applied 

annealing temperature was calculated with the Tm calculator. Sequencing was done by Macrogen 

Europe Company.  

5.2.4.14 Sequence alignment and phylogenetic analyses 

Sequences were aligned by clustalx2.0 and Mega 6.0 software as described in Tamura (Tamura, 

Stecher et al. 2013). As outgroup species, the dinoflagellates Gonyaulax membranacea, 

Gymnodinium dorsalisulcum, Heterocapsa arctica, Alexandrium fundyense were used. The data 

matrix of LSU comprised 1183 aligned positions totally, which has excluded the hypervariable D2 

domain region; for SSU data matrix, 1687 aligned positions were included. At the alignment, the 

phylogenetic trees were constructed with maximum likelihood algorithm on the software of 

Mega6.0. The optimal parameters were as follows: bootstrap replications: 1000; substitution model: 
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general time reversible model; ML heuristic method: nearest-neighbor-interchange (NNI); Branch 

swap filter: very strong. All species included in the molecular analyses with their corresponding 

GenBank accession numbers are shown at the behind of the name on the phylogenetic trees.  

5.2.5 Protein analytics 

5.2.5.1 Protein isolation from P. tricornutum 

To isolate protein from P. tricornutum, two different methods were used. One is the alkaline lysis, 

which can screen the expression of protein from small amount of culture samples. The other one is 

using French press to extract protein for a subsequent fractionating.  

Alkaline lysis: P. tricornutum cells were collected from 5-10 ml liquid medium by centrifugation at 

1500 g/ 10 min/ 4°C. After discarding the supernatant, the pellet was resuspended in 1 ml ddH2O. 

150 µl of lysis buffer was added to the pellet, vortexed and incubated on ice for 10 min for cell 

lysis.French press passage: P. tricornutum cells were harvested by centrifugation at 1500 g/ 10 min/ 

4°C. From now on, every step was done on ice. After discarding the supernatant, the pellet was 

resuspended in 2985 µl SolA buffer and 15 µl PIC was added into the suspension in a ratio of 1:200 in 

order to inactivate proteases. Then the cells were disrupted through the pressure cell under a 

constant pressure of 1000 psi. After the French press, centrifugation (1500 g/ 10 min/ 4°C) was 

carried out to pellet the intact cells, while supernatant was used for the next experiments.  

Lysis buffer Protease inhibitor cocktail (PIC) 

NaOH 1.85 M Antipain 200 µg/mL 

2-Mercaptoethanol* 7.5 % (v/v) Aprotinin 200 µg/mL 

*2-Mercaptoethanol was added directly before 
an alkaline lysis was carried out. 

Chymostatin 200 µg/mL 

Elastatinal 200 µg/mL 

  Leupeptin 200 µg/mL 

  Pepstatin 200 µg/mL 

  Trypsin-Inhibitor 200 µg/mL 

  Na2EDTA 200 µg/mL 

  in 280 mM Hepes/KOH buffer (pH 7.9) 

 

5.2.5.2 Protein extraction fractionation via carbonate extraction 

Carbonate extraction was used to separate different kind of proteins, soluble, membrane associated 

and integral membrane proteins from the whole protein extraction. The supernatant from the 

French press was used to do carbonate extraction. Firstly, supernatant was centrifuged (120,000 g/ 

45 min/ 4°C) in order to pelletize the associated and integral membrane proteins, then the soluble 

proteins (2 ml) in supernatant was transferred into two new Eppendorf cups and stored on ice. To 
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separate associated membrane proteins, the pellet was resuspended in carbonate buffer containing 

PIC (1:200), incubated on ice for 30min and mixed gently by plastic head dropper. Subsequently, in 

supernatant the associated membrane proteins was separated from integral membrane proteins by 

centrifugation at 120000 g/ 45 min/ 4°C. Again, the associated membrane proteins in supernatant 

was transferred into two new Eppendorf cups and stored on ice. While the integral membrane 

proteins in pellet were resuspended in 2388 µl SolA buffer containing 12 µl PIC (1:200) and 

transferred into another two new Eppendorf cups for the precipitation of proteins in next step.  

Solubilization buffer A (SolA) (pH 7.5) Carbonate buffer (pH 11.5) 

Imidazole 50 mM NaHCO3 100 mM 

NaCl 50 mM EDTA 1 mM 

6-aminohexanoic 
acid 

2 mM   

EDTA 1 mM   

Sucrose 8.5 %   

 

5.2.5.3 TCA protein precipitation  

To precipitate proteins the TCA precipitation method was used. TCA was added to the samples to a 

final concentration of 12.5%. After an incubation for 30 min on ice the samples were centrifuged 

(20,000 x g/ 10 min/ 4°C). To remove residual TCA, the pellet was washed at least three times with 

80% (v/v) acetone. After the last washing step the pellet was dried and dissolved in an appropriate 

volume of urea loading buffer by incubated at 55°C for 10 min, then centrifuged for 30 s full speed 

and save them in -20°C for next step analysis. 

Urea loading buffer (pH 6.8) 

Urea 8 M 

Tris/Hcl 200 mM 

EDTA 0.1 mM 

SDS 5% (w/v) 

Bromphenol blue 0.03% (w/v) 

2-Mercaptoethanol*   1% (v/v) 

*2-Mercaptoethanol was added to samples before using directly 

 

5.2.5.4 Determination of protein concentration via Amido black 

To determinate the concentration of proteins, Amido black method was used as described in Popov 

(Popov, Schmitt et al. 1974). 3 µl protein samples were filled with 97 µl ddH2O to an end 100 µl. 

Then the proteins were added 400 µl amido black staining solution. After mixing, the samples were 

centrifuged at 20000 g/ 15 min/ 4°C. The protein pellet was washed by 500 µl washing solution and 
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centrifuged again. At last, the pellet was dried in dessicator and dissolved in 1 ml 200 mM NaOH. 

After transferring sample to a cuvette, its absorption was measured at 615 nm wavelength by a 

photometer. Before measuring, a blanking measurement was carried out by using 1 ml 200 mM 

NaOH. Based on a standard curve, the calculation of the protein concentration was performed. 

Amido black staining solution Amido black washing solution 

Acetic acid 10 % (v/v) Methanol 90 % (v/v) 

Methanol 90 % (v/v) Acetic acid 10 % (v/v) 

a pinch of amido black   

 

5.2.5.5 SDS-polyacrylamide gel electrophoresis (PAGE) 

SDS-PAGE was used to separate proteins based on a discontinuous buffer system described by 

Laemmli (Laemmli 1970). 

Before loading onto the gel, the protein samples with urea loading dye were boiled up at 55°C for 10 

min, the protein marker was PageRulerTM Prestained Protein Ladder (MBI Fermentas). The gel was 

run at 140 V and 20 mA current in the stacking gel, 30 mA in the resolving gel,  

4xStacking gel buffer 4xResolving gel buffer 

Tris/HCl (pH 6.8) 500 mM Tris/HCl (pH 8.8) 1.5 M 

SDS 0.4% (w/v) SDS 0.4% (w/v) 

 
10XSDS running buffer 

  

Tris 250 mM   

Glycine 2 M   

SDS 1% (w/v)   

 

The SDS-PAGE gels consisted of the following components: 

 Resolving gel (12.5 %)*   Resolving gel (12.5 %)*   

Acrylamide 30 % (v/v) 4.1 mL 0.9 mL 

dH2O 3.2 mL 2.8 mL 

4x Resolving gel buffer   2.5 mL - 

4x Stacking gel buffer - 1.25 mL 

TEMED 20 µl 15 µl 

APS 10 % (v/v) 150 µl 85 µl 

*for separation of proteins with a molecular weight between 25-100 
kDa. 

 

5.2.5.6 Western blot analysis 

Specific proteins separated by SDS-PAGE and was detected by Western blot. Firstly, the SDS-gel and 

nitrocellulose was incubated on the transfer buffer for about 5 min. Whatman filter papers were 
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also incubated on the transfer buffer for about 1 min. Secondly, the semi-dry transfer system was 

built up precisely from the direction of the anode to the cathode: three Whatman filter papers, the 

blotting membrane (nitrocellulose the SDS-gel and then three Whatman filter papers. Protein 

transfer was carried out at 50 V and an electric current of 1 mA/cm2 for 75 min. 

After blotting, the membrane was transferred into a blocking bottle and incubated with blocking 

solution for 1 h at RT to block unspecific binding sites. The membrane was incubated in the blocking 

solution including the first antibody in an appropriate dilution over night at 4°C on a rotator. The 

next day, the first antibody solution was removed and the membrane was washed thrice with TBS-T 

buffer for 10 min. After the washing steps the membrane was incubated with the secondary 

antibody for 1 h at RT. The membrane was washed once again thrice with TBS-T buffer and 

eventually one time with TBS buffer. 

The detection of the antibody-bound proteins was performed by the chemiluminescence, which 

produced from the reaction catalyzed by the horseradish peroxidase when incubated with H2O2 and 

the luminol containing ECL solution. Before the immunodetection, 30 % H2O2 was added to the ECL 

solution at a ratio of 1:1000, which then was mixed and poured out on the top of membrane, 

incubated for about 5 min. After incubation, the ECL solution was removed, the chemiluminescence 

was detected by placing a photographic film on the membrane immediately. 

Transfer buffer Blocking solution 

Tris/HCl (pH 8.4) 25 mM Milk powder or 
BSA 
In TBS-T buffer 

5 % (w/v) 

Glycine 192 mM  

Methanol 20 % (v/v)   

    

TBS TBS-T 

Tris/HCl (pH 7.5) 100 mM Tris/HCl (pH 7.5) 100 mM 

NaCl 150 mM NaCl 150 mM 

  Tween 20 0.1 % (v/v) 

    

ECL solution   

Luminol 250 mM* 400 µl   

Coumaric acid 90 
mM* 

178 µL   

Tris/HCl 1 M (pH 8.5) 4 mL   

 ad 20 mL dH2O  *in DMSO 

 

5.2.5.7 Self-assembling GFP 

The self-assembling GFP method was used to detect the topology of TIP4 protein in P. tricornutum. 

In this approach GFP was split into two parts: long fragment GFPs1-10 and short fragment GFPs11. 



Materials and Methods 

82 

 

For topology analyses of TIP4, GFPs11 was fused to the C-terminus of the protein, whereas the long 

fragment GFPs1-10 was fused to the C-terminus of specific markers for the ER lumen (PDI protein) 

and the PPC marker (Hsp70BTS), respectively. Only when both parts are targeted to the same 

cellular compartment can assemble to produce green fluorescence. 

After transfection, the colonies were checked by colony PCR via amplification of the first cloning site 

(SpeI/SacII) with an NR promoter primer and an internal primer from the compartment marker 

genes. 

5.2.5.8 Construction of eGFP fusion proteins 

All the C-terminus of predicted protein were fused to eGFP or mRFP and cloned into pPha-NR vector 

(GenBank accession no. JN180663) or pPha-dual-NR vectors, transfected into the diatom P. 

tricornutum and expressed via the nitrate reductase promoter. The sequences of genes containing 

introns or predicted gene model was not confirmed by EST data were amplified from cDNA, the rest 

of genes were amplified from gDNA. For further information about the protein sequences and 

primer sequences used for transfection and PCR, respectively, see the supplemental material. 

Biolistic transfection was used as described by Sommer (Sommer, Gould et al. 2007).  

5.2.5.9 Confocal laser scanning microscopy 

All P. tricornutum transfectants were analyzed with a confocal laser scanning microscope. Leica TCS 

SP2 using a HCX PL APO 40× /1.25 to 0.75 oil CS objective after fixing with 4% paraformaldehyde–

0.0075% glutaraldehyde in 1× phosphate buffered saline buffer. The fluorescence of enhanced green 

fluorescent protein (eGFP) and plastid autofluorescence was excited with an argon laser at 488 nm 

and detected with two photomultiplier tubes at a bandwidths of 500 to 520 nm and 625 to 720 nm 

for eGFP and plastid autofluorescence, respectively. The fluorescence of mRFP was excited with a 

HeNe 1.2 mW laser at 543 nm and detected with a photomultiplier tubes at a bandwidths of 580 to 

600 nm for mRFP. 

5.2.5.10 Electron microscopy 

For transmission electron microscopic analyses P. tricornutum cells were harvested (5 min, 2000 g), 

high pressure frozen (Wohlwend HPF Compact 02) and freeze-substituted (Leica AFS2) with a 

medium on acetone basis containing 0.25% osmium tetroxide, 0.2% uranyl acetate and 5% water. 

Samples were then embedded in Epon 812 resin (Fluka) and cut to 50 nm ultrathin sections. Details 

of the procedure are described in Peschke et al. For immunolabeling on ultrathin sections a primary 
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antibody against GFP (Rockland) (dilution 1:500 and 1:1000) and a secondary antibody coupled to 

ultrasmall gold particles (Aurion) (dilution 1:100) were used, followed by silver enhancement. The 

procedure of immunolabeling and silver enhancement are described in Rachel and Danscher, 

respectively (Danscher 1981, Rachel, Meyer et al. 2010). After silver enhancement sections were 

post-stained with 2% uranyl acetate and 0.5% lead citrate. Samples were analysed using a JEOL 2100 

electron microscope. 
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7 Supplements 

7.1 Open reading frames with no known homology  

Table S1: All open reading frames mentioned in this study.  

Only the open reading frames >= 150 bps were listed in this table. J8-, J9-, J13-, J22-, J24-, J36- ORFs are the open reading 

frames of empty minicircles in A. carterae CCAM0512. J28 ORFs are the open reading frames of atpB gene containing 

minicircle in A. carterae CCAM0512. The rests are the open reading frames of empty minicircles in A. carterae CCAP 1102/6 

and A. carterae CS21, they are named by the accession numbers plus the ORF number in the table.  

name Open reading frames 

J8 ORF1 MGDPNIDSMAFNHREGLRYQKCCLRVTKNSGLHHLIGSKEDDHIALQLRSQLSN. 

J8 ORF2 MHELVVANTTSPLTTFDRGGFALKQAYSIRGPDPAGVEEHTTRIELLKRTIVLISNYSMIANYA. 

J8 ORF3 MAVRQIQLPSGTALIGKGRGCNTAQVITFVRRHTTTNIATLNRWRCPCRAQEGRKTWPFYQ. 

J8 ORF4 MTRHHYTELVKSKRQHRCTPPNKQGNYSFSIPTKLEGVRGSTFRPLHSYLPQRRGRDRSLILAYPQNEARTIN
LEPNHRVLN. 

J9 ORF1 MPRHLPSVGASFLQARLDRSLDSRCTMVSLNDVTSNGLRVLAYFPLNDSTMAGNNVSWSIST. 

J9 ORF2 MLSLFVVIIRCHAIKEDRTMLALMPFGLRVYTVVRRLPCPVSSDKGGYERLSCSNNSNLVPALRTNF. 

J9 ORF3 MSNLLAISVVSVTISRPLGPNWILSLIHISTIIDEFSRVFSHIGSNSSSVPGDPLESTCRGGGESHVVSQNL. 

J9 ORF4 MIYFYLVQCNIRDFETQRGFPPPPCRSTLEDPRVPSSNSSQYARTPEKIHR. 

J9 ORF5 MVEMCIRDRIQLGPRGRDIVTDTTLIARRLLIHYRQQLSLHRRGNYVGLQTSDCRRHRPHLSMC. 

J9 ORF6 MYLPSSTVLYLGAFHLICLSISVVSTFIFVPSSTFLFDPSELSGESPDLCANYHLIPFTSSSSSFSRSHHSHSYGLTG
IF. 

J9 ORF7 MIVSRSTKNLCVKRVRGWSCCCRIVFHNLPCQKTQGKVDVLQQCRHEDQMALEPTSFYPL. 

J9 ORF8 MQTGIEDVYHFLMKVNTCYSVIEITNGLHSIGQEYSWLVLRYQDRYPGVQHTQ. 

J9 ORF9 MATSLITCHQTREDIIDPIRTKRTRYRHRHDTDSEEVAHSLSPTTLIASSR. 

J13 ORF1 MEYVEWLSSNATGMACWLVWRCRSRVMMPCLQGCYPSHVVAYQSRTINSCE. 

J13 ORF2 MLLRSYLAKHSLRRYVNSLGLPISYTEPGTVLVSSSSFLLRKPKYGLVRLASLNPTLALNVVQVNALNHAALLS
NSLVRSIEDGCNPTIVFQSVMGTLKRSNRVLGVKLELRALVLAPFARHRVWNYGYGKTNKAVARIKDVGKA
SLVTYMGLISVSTAISSG. 

J13 ORF3 MSPQRSIAPFQVICLSAPLPSIEGLSLSFHQLSLHSFVYSLVEILTSRHI. 

J22 ORF1 MSHDIITTTPNPLSFIGGGLIKVKSLWPMRGAIHQLQYLVHSPSYRRSSEH. 

J22 ORF2 MSPQRSIAPFQVICLSAPLPSIEGLSLSFHQLSLHSFVYSLVEILTSRHI. 

J22 ORF3 MVLKNIPDCTNKVTDRHSIVPAYQDEYLDPSTKHEPRVPFLTSGVNLTRYKDATSVLWQLARCD. 

J24 ORF1 MLIVLTCVPFREVYATYLFQFLYGSHYSLLHGNSVPLVYVISITSVALTEDCLSINI. 

J24 ORF2 MNDITNFIRVLNSYSTFSLEAFVPCVELPDPRLNSTNRSFSRHSVFVLVCDFLTPMD. 

J24 ORF3 MDNMMSCLVGASAYPHWQLSQSGSPLCVKTTRFLLIPRTVYLNWWYYGTVGL. 

J24 ORF4 MSHDIITTTPNPLSFIGGGLIKVKSLWPMRGAIHQLQYLVHSPSYRRSSEH. 

J24 ORF5 MNDILGNLKLTDNRFHKDTSFKKCRSIHRSEKITDENEDRMTGERTISRVKTWIWQFYTRHKGLQRERRIRI
QDSNKVSYVVHTDRV. 

J24 ORF6 MSSDGETELHHVWEDVYDTLHPVVTIQDVPAVAVIHLWQALCNVIRCKAGLGINP. 

J36 ORF1 MSPQRSIAPFQVICLSAPLPSIEGLSLSFHQLSLHSFVYSLVEILTSRHI. 

J36 ORF2 MGRDTHLGKRVQWNAYPSPCWCNQVCIFRTVQLYESSYSVNCDQRYWSSVSSFPSPYGTVGVVRR. 

J28 ORF1 MIYFYLVQCNIRDFETQRGFPPPPCRSTLEDPRVPSSNSSQYARTPEKIHR. 

J28 ORF2 MRDGSVLASECEAFVWDLFYMESFVSMLHSVFKGIAPTPNKEALDLISLELEYCASNELSLALASSGLFIKSYA
NALIAEVQQIAYGGILRAVALAGTDGLDLVSTYGHLTYQPLVVPVGRVCQGRILNCVGAPMDAYDDIVISAA
YSSVESPASVVLNALWYGGTASSSPSKLTTPLAHYDQSFANAAPIHKLSLIHISTIIDEFSRVFSHIGSNSSSVPG
DPLESTCRGGGESHVVSQNL. 

AJ307015 
ORF1 

MHELVVANTTSPLTTFDRGGFALKQAYSIRGLLSQRDQRGAYHSH. 

AJ582641 
ORF1 

MAVRQIQLPSGTALIGKGL. 
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DQ507216 
ORF1 

MLLRSYLAKHSLRRYVNSLGLPISFLPGTVLVSSSSFLLRKPKYGLVRLPLSTRLFHPMSVQVNALNHAALLSNS
LVRSIEGGCNPTIVFQSVMGTLKRSNRVLGVKLELRALVLAPFARHRVWNYGYGKTNKAVARIKDVGKASLV
TYMGLISVSTAISSG. 

AF401630 
ORF1 

MSHDIITTTPIPLSFIGGGLIKVKSLWPMRGAIHQLQYLVHSPSYRRSSEH. 

AF401630 
ORF2 

MNDITNFIRVLNSYFTFLLEAFKPCVELPDPRLNSI. 

AJ318067 
ORF1 

MNDITNFIRVLNSYSTFLLEASEPCVELLDPRS. 

AJ318067 
ORF2 

MSSDSETELHHVWEDVYDTLHPLVTIQDVPAVAVIHLWQALCNVIRCKAGLGINPSISTRPSWALQGSL. 

 

7.2 Identified marker proteins in P. tricornutum 

Table S2: Proteins localized as eGFP/ mRFP fusions in this study.  

Protein ID from http://genome.jgi-psf.org/Phatr2/Phatr2.home.html. “-” means unknown. Abbreviations: eGFP, enhanced 

green fluorescent protein; mRFP, monomeric red fluorescent protein; Tip1-5, Tonoplast intrinsic protein 1-5; GnTI, N-

acetylglucosaminyltransferase I; XylT, β1,2-xylosyltransferase; FucT, α1,3-fucosyltransferase; Vps26, Vacuolar protein 

sorting 26; Vps29, Vacuolar protein sorting 29; ATPase1-2, Vacuolar type H+-ATPase 1-2.  

Pt-Protein ID eGFP/ mRFP fusion protein Potential compartment 

31553 Tip1-eGFP cytoplasmic membrane, endocytic vesicles 

- Tip2-eGFP Vacuolar-like membrane 

20755 Tip3-eGFP/ mRFP ER membrane (cER, nuclear envelope, host ER) 

19409 Tip4-eGFP periplastidal membrane 

43157 Tip5-eGFP ER membrane (cER, nuclear envelope, host ER) 

54844 GnT1-eGFP cis Golgi 

45496 XylT-eGFP/ mRFP medial Golgi 

54599 FucT-eGFP Trans golgi network 

41962 Vps26-eGFP Trans golgi network 

17936 Vps29-eGFP/ mRFP Trans golgi network 

21882 ATPase1-eGFP lytic vacuole? A second type of vacuole 

44050 ATPase2-eGFP cytosol 
 

7.3 The Tip2 eGFP fusion protein 

The gene model of Tip2 is not supported completely by ESTs, so the gene was amplified from cDNA. 

The gene model and all ESTs were aligned by ClustalX2.1 (Fig. S1). Together with this the protein 

sequence of Tip2 is different from the genome database (Protein ID: 1370), the sequence was shown 

[1]. 

http://genome.jgi-psf.org/Phatr2/Phatr2.home.html
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Fig. S1: The alignment of Tip2 nucleotide sequences in P. tricornutum.  

It was shown that the 5’ terminus of Tip2 gene model is not completely supported by ESTs. Tip2 gene was amplified from 

cDNA.  Only the part is not completely supported by ESTs was shown in this figure. The protein sequence of Tip2_FL_eGFP 

was shown [1].  

 

[1] Tip2-eGFP fusion protein sequence used for in vivo localization studies in P. tricornutum. 

>Tip2-eGFP 

MVDSKSIKDPESQGYGSIQGASSHYASTEHTVEEADAEEGPFPVDLKSMLIAEVFGTCTFVQIGCAANAVALYTHN

STTMTIDWQVGVVWALAMTVAVFLSAALSGAHLNPAVSFSFALARPADFRFRKLIPYWAAQLGGALLAGIINLFLF

HQAISHYEKKMAIVPGAAGSIQSAAAFGCYWSLNSKYISNGVHAFFIEAFGTGVLVFCIFAATHIKNPLPGVAVPPII

GAMYGILVVTLGPMTGGSFNPVRDMGPRIVSVIGHWGPTALTNFLPYLLGPMIGGPIGAFLADKVLML:eGFP. 

7.4 Sequences of all used oligonucleotides 

Cutting sites of restriction enzymes are marked in red.  

Protein name Primer name sequence 

XylT Golgi pro-MunI-for CAATTGATGGCGTTTTTGCCGAATCG 

Golgi pro-BglII-rev AGATCTGAATAAGGTACTCTTAATTGTCC 

Vps26 Vps26-MunI-for CAATTGATGAACGTTGGATCTTTACTTGG 

Vps26-BglII-rev AGATCTCCCCAAGTCTTTCCGCCATAAG 

Vps29 Vps29-EcoRI-for GAATTCATGGCCAATTTTGGGGAGCTTG 

Vps29-BglII-rev AGATCTTGTCAAGAGCGAAGCCATAAGG 

v-ATPases1 v-ATPases1-for GAATTCATGAGTGTCGAAATGGAAACTTGC 

v-ATPases1-rev GGATCCGTTGTTCCCCTCGCACACGAA 

v-ATPases2 v-ATPases2-EcoRI-for GAATTCATGGCGGAATCAGGTACCGGC 

v-ATPases2-BamHI-rev GGATCCGACCGTCCCGGCCATCTTTTGCG 
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TIP1 TIP1-for1-Xba1 TCTAGAATGGCTTCCATTATCAACAT 

TIP1-rev1-BamHI GGATCCGGCCTGAGGCGCGGCGTTTTCC 

TIP2 EcoRI-TIP2-for GAATTCATGGTAGATTCAAAGTCAATCA 

XbaI-TIP2-rev  TCTAGATAGCATTAGCACTTTGTCGGCC 

TIP3 EcoRI-TIP3-for2 GAATTCATGGTTGAGTACGGTGAGTTCGC 

TIP3/Xba1-rev TCTAGACGCCATGAGCAGGCGGTCCGC 

TIP4 Aqua2_3_BglII_neu AGATCTGGCGCCACCGTACAAAAC 

Aqua2_5_EcoRI GAATTCATGGGGCGCCGTTGGTTG 

TIP5 TIP5-for1-Xba1 TCTAGAATGGTCAAGGACTACGTCGAAGC 

TIP5-rev1-BamHI GGATCCGTTAGTCTTCTTGGCAGTGGTC 

GnT1 GnT1-for-MunI CAATTGATGCGGTTGTGGAAACG 

GnT1-rev-BamHI GGATCCTCTTTTCGGTGACGGAA 

FucT FucT-for-SacI GAGCTCATGTCACTTCGCAAG 

FucT-rev-BglII AGATCTCGGATCGAACTTCCA 

SA-GFP colony 
PCR 

P.t.MGDG1_Bam_r GGATCCGGCACTCCCGAGATCAGTG 

PDI_rv_BglII AGATCTCAATTCGCCTTCATCAAAAAGATCC 

pJet seq pJet-uni CTCTCAAGATTTTCAGGCTGTAT 

pJet-rev GCACAAGTGTTAAAGCAGTT 

pPha-Dual seq pPha_5'vorNdeI GCTTAACTATGCGGCATCAG 

pPhaDual_seq_MCS_EcoHind_for GGACATATTGTCGTTAGAACGCGG 

pPhaDual_seq_MCS_EcoHind_rev GTCTTATCCAGGTCCAAACAGATTG 

pPhaDual_seq_MCS_SpeSac_rv CTAACGCAGCTTAGACATAAAC 

pPha-NR seq pPha-NR-for GGTCGGGTTTCGGATCCTTCC 

pPha-NR-rev GATGAACATAAAACGACGATGAG 

eGFP eGFP-for-BamHI GGATCCATGGTGAGCAAGGGCGAG 

eGFP-rev-HindIII AAGCTTTTACCTGTACAGCTCGTCCATG 

eGFP-for-XbaI TCTAGAATGGTGAGCAAGGGCGAG 

eGFP-rev-5’ CGTCTCCCATGGCTCTGATTTCCCGATTTGG 

Sa-GFP Sa-GFP-1-10-fw-EcoRI GAATTCATGGGTGGCACTAGTAGC 

Sa-GFP-1-10-rv-BamHI GGATCCGGTACCCTTTTCGTTGGG 

Sa-GFP-11-fw-SpeI ACTAGTCGTACTGGGCGAAAGC 

Sa-GFP-11-rv-XbaI TCTAGAGGATCCGCCACCAGACC 

Minicircles Transposon forward PCR ATTCAGGCTGCGCAACTGT 

Transposon reverse PCR GTCAGTGAGCGAGGAAGCGGAAG 

J25-rev2-primer GCTGCCAATGAGGGTACGCGGA 

J25-for2-primer TCCGCGTACCCTCATTGGCAGC 

J30i2 CAAGATCAATAAATTAGTAATGGTG 

J14i2 GTTGTTTCCTTATTTGAGGGGCAG 

J33i2 CGCAACCAGATATTAGCCTATACG 

petD_for AC CCCTTTTGGATTAATGGTTG 

petD_for2 AC TCAGGACATATTGGTCTTCC 

petD_rev AC AAGTAGCATTACACGAATGG 

atpB rev out AC TGTAGAATAGGTCCCAGACG 

atpB for out AC TGATGGTATCCTTACAGGTC 

atpB for2 AC AACCTTCGGTCTATGACTCC 

Minicircles core out AC_for2 ACTCCGGGTCAATCGTTTCC 

petB_for2_AC TAGGCCAGAAGTATACCAGG 

petB_rev2_AC ATAATGCCTCGGGAGAATAG 

petB_for out_AC TTTCCTAATGATTCGTAAGC 

AC_T5_for ATACCCTTCGTTATCCTTCG 

AC_T6_for TTGCTGCGTTCGTATCTTGC 

AC_T10_for TTTAACACCTTTCGCCCTCG 

AC_T3_for AAACACTCGTGCCCCATCAG 

AC_T8_for AAGAGGATTAGGGGTTGTGG 

AC_T16_for TTACGCGATACAGCTCATCC 
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AC_T14_for ATCGTGGATGAGCTGTATCG 

core out AC_rev TGGAAACGATTGTCGGTGAG 

AC_T13_for  TGTGATGAGGTCTGTAGTGG 

AC_T13_rev  TGTGATGAGGTCTGTAGTGG 

TP sequencing-for CGTACTATCAACAGGTTGAACTGCC 

TP sequencing-rev GAGCCAATATGCGAGAACACCCGAG 

AC_T12_for  ACTCGATGACCTCAACCTTG 

AC_T12_rev  TGATGAGGTGCCTGACAAGC 

AC_T17_for  ACCTGATTGCACCAACAAGG 

AC_T17_rev  ATGGGATTGTATCAGGGGAC 

J12-sequencing primer for1 GTTCCCAGATAAGGGAATTAGGGTTC 

J12-sequencing primer rev1 CTCATCGAAGACAGCGGTAGACG 

psaB-rev-AC TTGAAGGAGAGATCCATACC 

J2-sequencing primer for1 GCAGAGACTGCTGGTTCTGAGTCCCT 

J2-sequencing primer rev1 CCCTTGTATTACTGTTTATGTAAGC 

J28i3 primer AACCTTCGGTCTATGACTCC 

J32i primer for  ATAATGCCTCGGGAGAATAG 

J32i primer rev TAGGCCAGAAGTATACCAGG 
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