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Summary 

Microorganisms involved in the nitrogen (N)-cycle in soils are the major drivers of N-

transformation changes and the main source of the potent greenhouse gas nitrous oxide (N2O) 

from soil, which has a global warming potential of 298 times that of carbon dioxide (CO2). 

Accordingly, it is of great interest to explore shifts in the rates, balances and reactions of the 

N-cycle impacted by climate changes, in order to offer more accurate predictions. 

Particularly, since increases in CO2 concentrations or changes in the pH of agricultural fields 

due to anthropogenic influences often lead to changes in the N-transformation rates, along 

with an increase of N2O emissions. However, the N-cycle and its corresponding pathways are 

very complex and the response to different environmental changes is difficult to predict. 

Many of the interactions between microorganisms and their contribution to N-transformation 

rates as well as N2O emission are not well understood, controversially discussed and plenty of 

important interactions remain puzzling. Therefore, the main objective of this thesis was to 

shed light on the interaction of the overall and active microbial communities involved in the 

N-cycle in response to pH shifts or elevated atmospheric CO2 concentrations in soils, two 

variables known to influence N2O fluxes from soils. 

In the first part we studied the influence of an acidic pH on a denitrifier community 

from an initial neutral pH. We followed the abundance and composition of an overall and 

active denitrifier community extracted from soil (pH = 7.1) when exposed to pH 5.4 and 

drifting back to pH 6.6. When exposed to pH 5.4, the denitrifier community was able to 

actively grow, but only reduced N2O to N2 after a near neutral pH was reestablished by the 

alkalizing metabolic activity of an acid-tolerant part of the community. The genotypes 

proliferating under these conditions differed from those dominant at neutral pH. Denitrifiers 

of the nirS-type appeared to be severely suppressed by low pH whereas nirK-type and nosZ-

containing denitrifiers showed strongly reduced transcriptional activity and growth, even after 



 
Summary 

2 

restoration of neutral pH. Our study suggests that low pH episodes alter transcriptionally 

active populations which shape denitrifier communities and determine their gas kinetics. 

The second part of this thesis analyses the effect of elevated CO2 (eCO2) on the N-

cycle to reveal the underlying microbial mechanisms and process inside the N-cycle causing 

the enhanced emission of N2O. To gain a better understanding of the impact of eCO2 on soil 

microbial communities, we applied a molecular approach targeting several microbial groups 

involved in soil N-cycling (N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, 

and dissimilatory nitrate reducers to ammonia) at the Gießen Free Air Carbon dioxide 

Enrichment (GiFACE) site. Remarkably, soil parameters, overall microbial community 

abundance and composition in the top soil under eCO2 differed only slightly from soil under 

ambient CO2. We concluded that +20% eCO2 had little to no effect on the overall microbial 

community involved in N-cycling. Based on these findings, in a third part we conducted a 

comprehensive study monitoring N-transformation rates, nutrient fluxes, and gaseous 

emission, while analyzing the dynamics in microbial communities involved in N-cycling 

under eCO2 accompanied with simultaneous addition of N-fertilizer. We could show that 

long-term fumigation with eCO2 influences the response of the soil microbial communities to 

N inputs via fertilization. Compared to aCO2 distinct parts of the community were 

transcriptionally activated. Here, nirS-type denitrifiers showed the greatest positive feedback 

to eCO2, which correlated with increasing N2O emissions. This stimulation may be an effect 

of higher labile C input in the rhizosphere by increased photosynthesis. However, the input of 

N by fertilization rather seems to exert short term effects on the expression of functional 

marker genes with consequences for N-transformations which do not translate into the 

development of distinct communities under eCO2 in the long-term. In conclusion this thesis 

provides evidence that already small changes in abundance and composition of the microbial 

community involved in N-cycling are sufficient to strongly influence emission of N2O from 

soil under changing environmental parameters such as pH and elevated CO2.
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Zusammenfassung 

Die hauptsächliche Quelle des Treibhausgases Distickstoffmonoxid (N2O) sind in 

Böden vorkommende Mikroorganismen, die an der Umsetzung von Stickstoffverbindungen 

und damit am Stickstoffkreislauf beteiligt sind. N2O hat im Vergleich zu CO2 ein 298-fach 

erhöhtes Treibhauspotential. Aus diesem Grund ist die Erforschung der durch die 

Klimaerwärmung veränderten Reaktionsraten und –gleichgewichte des Stickstoffkreislaufs 

essentiell um akkuratere Vorhersagen bestimmen zu können. Insbesondere der 

anthropologisch begründete Anstieg des CO2-Gehalts in der Atmosphäre, sowie pH 

Veränderungen durch landwirtschaftlich genutzte Flächen, beeinflussen die 

Stickstoffumsetzung in Böden und resultieren in erhöhten N2O Emissionen. Die Komplexität 

des Stickstoffkreislaufs erlaubt jedoch nur ungenaue Prognosen darüber, wie sich einzelne 

Umwelteinflüsse auf ihn niederschlagen. So sind beispielsweise die Interaktionen und 

Beiträge einzelner Mikroorganismen zu Stickstoffumsatz und N2O Emission kaum bekannt 

oder werden kontrovers diskutiert. Aus diesen Gründen ist das hauptsächliche Ziel dieser 

Arbeit die Reaktion der gesamten und transkriptionell aktiven Mikroorganismengemeinschaft, 

die am Stickstoffkreislauf beteiligt ist, auf pH Veränderungen und höhere CO2 Partialdrücke 

zu untersuchen. 

Im ersten Teil dieser Arbeit wurde der Einfluss einer Ansäurung auf eine 

denitrifizierende Gemeinschaft untersucht. Dabei wurde sowohl die Abundanz als auch die 

Zusammensetzung der gesamten und aktiven denitrifizierenden Gemeinschaft eines neutralen 

Bodens (pH = 7,1) während einer Veränderung des pH zu 5,4, gefolgt von einer graduellen 

Verschiebung zu pH 6,6, analysiert. Auch bei pH 5,4 war ein Wachstum der 

denitrifizierenden Gemeinschaft zu verzeichnen, allerdings wurde N2O erst vollständig zu N2 

reduziert, nachdem ein nahezu neutraler pH, erreicht wurde. Diese pH Verschiebung lässt sich 

vermutlich auf alkalisierende metabolische Prozesse einer säuretoleranten Population 
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zurückführen. Die unter diesen Bedingungen identifizierten wachsenden Genotypen 

unterschieden sich von denen in neutralen pH Bereichen gefundenen. Dabei waren 

Denitrifizierer des nirS-Typs stärker von niedrigen pH Werten beeinträchtigt, als die des nirK- 

und nosZ-Typs, die zumindest niedrige Wachstums- und Transkriptionsraten zeigten, auch 

nachdem der pH wieder einen fast neutralen Wert eingenommen hatte. Die vorliegende Studie 

impliziert, dass niedrige pH Werte die transkriptionell aktive Population nachhaltig verändert, 

wodurch sich die gesamte Gemeinschaftsstruktur und deren Gaskinetiken ändert. 

Der zweite Teil dieser Thesis beschäftigt sich mit dem Einfluss eines erhöhten CO2 

Partialdrucks (eCO2) auf den Stickstoffkreislauf und die übergeordneten mikrobiologischen 

Mechanismen und Prozesse, die in einer erhöhten N2O Emission resultieren. Um diesen 

Einfluss besser zu verstehen, wurde verschiedene mikrooganismische Gruppen des 

Stickstoffkreislaufs (Stickstofffixierer, Denitrifizierer, archeale und bakterielle 

Ammoniumoxidierer und dissimilatorische Nitratreduzierer) der Gießen Free Air Carbon 

dioxide Enrichment (GiFACE) Anlage gezielt untersucht. Erstaunlicherweise unterschieden 

sich die Bodenparameter, sowie die Abundanz und Zusammensetzung der gesamten 

Mikroorganismengemeinschaft der mit CO2 begasten Böden kaum von denen ohne spezielle 

Begasung. Daraus ist zu schließen, dass +20% eCO2 keinen oder nur einen geringen Effekt 

auf die am Stickstoffkreislauf beteiligten Mikroorganismen hat. Basierend auf diesen 

Ergebnissen wurde im dritten Teil dieser Arbeit eine umfassende Studie der 

Stickstoffumsätze, Nährstoffkreisläufe sowie Gasemissionen kombiniert mit der Analyse der 

Dynamik innerhalb der Mikroorganismengemeinschaft unter eCO2 Bedingungen und während 

der Zugabe von Stickstoffdüngern durchgeführt. Wir konnten zeigen, dass die langfristige 

Begasung mit eCO2, die Reaktion der mikrobiellen Gemeinschaften während des Eintrags von 

N durch Düngung beeinflusst. Im Vergleich zu aCO2 wurden verschiedene Teile der 

Gemeinschaft transkriptionell angeregt. Dabei zeigten nirS-Typ Denitrifizierer die größte 

positive Resonanz zu eCO2, die mit der zunehmenden N2O-Emission korreliert. Diese 
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Beeinflussung könnte auf einen erhöhten Eintrag von Kohlenstoffverbindungen durch die 

Rhizosphäre, ermöglicht durch eine erhöhte Photosyntheseleistung der Pflanzenbiomasse bei 

eCO2, beruhen. Allerdings scheint der Eintrag von N durch Düngung nur kurzfristige 

Auswirkungen auf die Expression von funktionellen Marker-Genen auszuüben. Dies führt zu 

Veränderung in der N-Transformation, welche sich langfristig allerdings nicht in der 

Entwicklung von verschiedenen Gemeinschaften unter eCO2 wiederspiegeln. 

Zusammenfassend zeigt diese Arbeit, dass bereits kleine Änderungen in der Abundanz und 

Zusammensetzung der mikrobiellen Gemeinschaft aus dem Stickstoffkreislauf ausreichen, um 

einen starken Einfluss auf die Emission von N2O aus Böden unter wechselnden 

Umgebungsparameter wie pH-Wert und erhöhtem CO2 auszuüben. 
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Chapter I 

1. Introduction 

1.1. Nitrogen cycle and N transformation in soil 

Nitrogen (N) is the most abundant element in our atmosphere with 78%. N is of great 

importance as a component of e.g. DNA and amino acids for animals, humans, plants and 

microbes. The total amount of N on earth is ~ 1015 t, the main amount of N (~ 94%) is bound 

in the lithosphere followed by the N in the atmosphere (~ 6%) (Sweeney et al., 1978). N-

transformations constitute one of the most complex cycles on earth reflected in the highly 

intricate biogeochemical cycle, where N occurs in valence states from -3 (ammonia (NH4
+)) 

to +5 (nitrate (NO3
-)) and where many of the transformations are carried out by a few 

organisms under standard conditions (STP). Gaseous losses are also associated with the N 

cycle such as nitrous oxide (N2O) which is of environmental concern, being a long-lived trace 

gas in the atmosphere, with a global warming potential of 298 times that of carbon dioxide 

(CO2) on a 100 year basis and a half-life time of 120 years (IPCC, 2013). Atmospheric N2O 

concentrations increased since the industrial revolution by about 20% (Fig. 1.1). Emissions 

from natural and agricultural soils emission contribute approximately 56-70 % to the global 

N2O budget due to the conversion of fertilizer and manure N (Syakila and Kroeze, 2011). 
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Figure 1.1. Increase in greenhouse gas (GHG) concentrations in the atmosphere over the last 2,000 
years. Concentration units are parts per million (ppm) or parts per billion (ppb), indicating the number 
of molecules of the greenhouse gas per million or billion molecules of air. (USGCRP, 2009). 

 

N transformations in soil (Fig. 1.2) are complex and carried out by diverse organisms. 

For instance fixation of nitrogen gas (N2) to ammonium (NH4
+) is carried out by specialist N-

fixing microorganisms (Burns and Hardy, 1975). Ammonium is produced by the 

mineralisation of organic substrates and by dissimilatory nitrate reduction (DNRA) (Tiedje, 

1988). Ammonium together with nitrite (NO2
-) can produce molecular nitrogen via anaerobic 

ammonium oxidation (ANAMMOX) (Strous et al., 1997) which mainly occurs in aquatic 

systems or can be oxidized to NO3
- in a two-step process via specialized nitrifiers via a two 

step process: NH4
+  NO2

- and NO2
-  NO3

- (Hart et al., 1994). Nitrate can be reduced 

anaerobically via dissimilatory nitrate reduction (denitrification) to N2 (Knowles, 1982). A 

range of microorganisms (bacteria, archaea or fungi) are responsible for the N transformations 

(Fig. 1.2). Additionally, some microorganisms can catalyze different processes in the N cycle. 

For instance, functional marker genes for denitrification were found in ammonia oxidizers and 
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vice versa (Bartossek et al., 2010; Cantera and Stein, 2007; Casciotti and Ward, 2005; 

Garbeva et al., 2007; Shaw et al., 2006). Functional marker genes are frequently used to 

analyze the composition and abundance of the microorganisms involved in the N cycle, since 

16S rRNA genes as an universal marker gene is not inevitably related to the physiology of 

target organisms (Calvo and Garcia-Gil 2004; Kowalchuk and Stephen, 2001). Therefore, 

functional markers like the genes encoding key enzymes that are involved in a specific 

metabolic pathway have been used in microbial ecology studies (Rotthauwe et al., 1997). 

 

Figure 1.2. Pathways in the biological nitrogen cycle. In circle are listed the enzymes which catalyze 
each pathway along with the specific functional marker gene, respectively. Orange = exclusively 
performed by bacteria; Blue = performed by bacteria and archaea; DNRA = dissimilatory nitrate 
reduction; ANAMMOX = anaerobic ammonium oxidation. 

  



   Chapter I 
   Introduction 

9 

1.2. Pathways in the nitrogen cycle and their functional marker genes 

Denitrification 

Denitrification (Fig. 1.3) is the stepwise reduction of nitrate (NO3
-) via nitrite (NO2

-), 

nitric oxide (NO) and nitrous oxide (N2O) to molecular nitrogen (N2). Together with 

ANAMMOX, denitrification is the main pathway for the reduction of N compounds to N2.  

 

Figure 1.3. Reduction steps from nitrate to nitrogen during denitrification. Between the steps, 
catalyzing enzymes together with their functional marker genes are indicated. Dashed lines indicate an 
emission of nitrogen gas into the atmosphere. Red = most frequently used marker genes. 

 

From an ecological and economical point of view denitrification has positive and 

negative consequences. A major issue is the production of N2O as an intermediate product. As 

stated before, N2O is a powerful greenhouse gas, which is also involved in the destruction of 

the ozone layer. On the other hand, as a greenhouse gas, it reflects the infrared light back to 

the earth surface, contributing to global warming (Crutzen, 1970; Dickinson and Cicerone, 

1986; Ravishankara et al., 2009). Denitrification, together with nitrification among a range of 

other processes, is the major sources of N2O from soils (Conrad, 1996; Butterbach-Bahl et al., 

2013). Denitrification converts reactive N to gaseous products including N2O and N2 and 

therefore reduces the availability of NO3
- for plant N uptake. (Ambus and Zechmeister-

Boltenstern, 2006; De Klein and Logtestijn, 1994; Mogge et al., 1999). This stimulates 

increasing application of N-fertilizers on farm fields, to avoid a loss of yield. Apart from 

fertilizer also dairy cattle and the cultivation of legumes increases the amount of mineral N 

and can therefore have an effect on gaseous emissions (Tilman et al., 2002). Thus, the use of 
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fertilizer over the last 150 years is a major reason for the increase of the N2O concentration 

(Fig. 1.1) in the atmosphere from 275 ppbv (pre-industrialization) to 319 ppbv (after-

industrialization) (IPCC, 2013). It is estimated that the N2O concentration will continue to 

increase by about 0.3% per year (Fig. 1.4; WMO, 2014). However, on the other hand, 

denitrification together with nitrification plays a significant role in the elimination of N 

compounds from waste water treatment, to counteract the eutrophication of waters that serve 

as receiving water bodies and also reduces leaching of NO3
- from soil (Grady et al., 2011). 

 

Figure 1.4. Globally averaged N2O mole fraction (a) and its growth rate (b) from 1984 to 
2013. Differences in successive annual means are shown as shaded columns in (b). (WMO, 
2014) 

 

Denitrification itself is a microbial respiratory key process, in which electron transport 

phosphorylation is coupled to a stepwise reduction of nitrogen oxides (Tiedje, 1994). It is a 

facultative anaerobic using mainly organic compounds as electron acceptors (Zumft, 1997). 

The first step of denitrification is the reduction of NO3
- to NO2

-, which can be catalyzed by 
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one of two types of molybdenum-containing enzymes, a membrane-bound (narGH) 

(Bonnefoy-Orth et al., 1981) and a periplasmatic nitrate reductase (napAB) (Siddiqui et al., 

1993).  

The enzymes which catalyze the next reduction step from NO2
- to NO, are the key 

enzymes of denitrification, because the bound N is transformed into a volatile form and 

cannot be assimilated by microorganisms anymore (Henry et al., 2004). Two periplasmatic 

nitrite reductases with different prosthetic groups are known, a cytochrome cd1-reductase 

encoded by nirS and a cooper containing reductase encoded by nirK. Both enzymes catalyze 

the same reaction, but have a different evolutional origin (Heylen et al., 2006). Recently, in 

contrast to previous studies (Tiedje, 1994), it was shown that approximately 80% of nitrite 

reductases, possess a nirK gene (Graf et al., 2014). Additionally, 10 bacterial strains were 

found with a copy of both nirK and nirS (Graf et al., 2014), which contradicts the previous 

assumption that the two nitrite-reductases are mutually exclusive (Zumft, 1997). Nevertheless, 

the functionality of both gene products in these strains could not be demonstrated so far. Most 

strains possess one copy of either nirK or nirS, but genome analyses revealed strains with 

more than one copy of nirK or nirS (Etchebehere and Tiedje, 2005; Graf et al., 2014) and  

being expressed under different conditions (Etchebehere and Tiedje, 2005). 

In the third step of denitrification, the reduction of NO to N2O is catalyzed by NO-

reductase. A high affinity of the reductases for NO ensures a most efficient conversion to 

N2O. Three types of NO-reductases with different electron donors are known yet. 

Cytochrome c or pseudoazurin is the electron donor for cNor, a quinol reservoir for qNor and 

menaquinones for qCuANor. Two different types of norB encode cNor and qNor. While cNor 

additionally requires norC, which encodes the second subunit of the NOR protein, NorC is 

lacking in the qNor enzyme (Cramm et al., 1999; Hendriks et al., 2000). The third NO-
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reductase qCuANor was to date only isolated from Bacillus azotoformans (Suharti et al., 

2001) but the gene is still unknown.  

N2O-reductase catalyzes the last step of denitrification from N2O to N2. This step is 

the only known biological process which can reduce N2O to N2. The gene nosZ encodes this 

soluble, copper-containing periplasmic protein (Zumft et al., 1990; Henry et al., 2006). By 

now nosZ is known as the only enzyme to catalyze the reduction. It was postulate for a long 

time that there exist only one family of N2O reducers, but recently a new clade of nosZ 

containing denitrifiers were observed (Jones et al., 2013). 

Denitrifiers are facultative anaerobic microorganisms capable of either 

stoichiometrically reducing NO3
- or NO2

- to N2O or N2 in the absence of oxygen (O2) (Tiedje, 

1994). Some microorganisms are catalyzing the whole reduction, while others are able to 

perform only single steps of denitrification. Especially NO3
-- and N2O-reduction are the most 

independent ones and can be run as autonomous processes by microorganisms (Zumft, 1997), 

e.g. nitrate reduction by Thioalkalivibrio nitratireducens (Sorokin et al., 2003b) and N2O-

reduction by Wolinella succinogenes (Simon et al., 2004) or Halomonas chromatireducens 

sp. (Shapovalova et al., 2009). Other microorganisms lack the first (NO3
--reduction) or the 

last step of denitrification (N2O-reduction), e.g. Thioalkalivibrio denitrificans (Sorokin et al., 

2003a) and Agrobacterium tumefaciens (Baek and Shapleigh, 2005). Two special cases are 

Rhizobium sullae HCNT1 and strains of Mesorhizobium spp., which possess only a nitrate 

reductase and additionally a functional NirK. However, due to the production of cytotoxic 

NOs these organisms are not able to grow under denitrifying growing conditions (Falk et al., 

2010; Monza et al., 2006; Toffanin et al., 1996).  

Denitrifiers are an important group of microbes in soil, with an amount of up to 10% 

of the total microbial community in terrestrial ecosystem (Henry et al., 2004; Henry et al., 

2006; Tiedje, 1988; Brenzinger et al., in preparation). Denitrifiers can be found in nearly all 
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phylogenetically main groups except the Enterobacteriaceae and obligate anaerobic species. 

They were detected in over 50 genera and more than 130 species (Philippot et al., 2007). The 

denitrifiers belong mainly to the phylum of Proteobacteria, but can be also found in 

Firmicutes, Actinomycetes, Bacteroidetes, Aquificaceae and also in Archaea (Völkl, 1993). 

For decades, it has been assumed that only prokaryotes were capable of denitrification, but 

reductases for the reduction of NO3
-, NO2

- and NO were also detected in the mitochondria of 

fungi (Takaya, 2002). More recent studies also showed the existence of Eukarya 

(Foraminifera and Gromiida) with the ability to denitrify (Piña-Ochoa et al., 2010; Risgaard-

Petersen et al., 2006). The widespread ability for denitrification is probably due to horizontal 

gene transfer, convergent evolution of various structural types or lineage sorting of gene 

duplication (Heylen et al., 2006; Heylen et al., 2007; Jones et al., 2008). Denitrifiers can be 

found in many different habitats such as soil, activated sludge and marine-/freshwater-

sediments. Recently, the ability of denitrification was even found in tank reservoirs of 

bromeliads (Suleiman et al., in preparation) and in leaf axils of oil palm trees (Suleiman et al., 

in preparation). 

 

Nitrogen fixation 

Nitrogen fixation (Fig. 1.5) is the process in which atmospheric nitrogen (N2) is 

converted into ammonium (NH4
+) (Burns and Hardy, 1975). The process of N-fixation is very 

important, since nitrogen (N2) is relatively inert and cannot be taken up by plants. To make N 

available again three different ways of fixation are known so far, through geochemical 

processes, i.e. lightning (Gruber and Galloway, 2008), industrially through the Haber-Bosch 

process and biologically by N-fixing bacteria via the enzyme nitrogenase (Lineweaver et al., 

1934; Burk et al., 1934). The contribution of microbes to N-fixation is ~ 200-300 Mtons of 

fixed N per year, including marine and terrestrial systems (Galloway et al., 1995). 
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Figure 1.5. N-fixation with the enzyme and the functional marker genes. Dashed lines indicate an 
emission of this component into the atmosphere. Red = most frequently used marker gene. 

 

Three different types of nitrogenases were observed so far, a molybdenum-dependent 

nitrogenase (encoded by a nifHDK), a vanadium dependent nitrogenase (encoded by vnf) and 

an iron-only nitrogenase (encoded by anf). There are only few microorganisms harboring the 

last two types of nitrogenases and they were only detected in a strain together with the nif 

operon. Under shortage of molybdenum, the alternative forms are used (Pau, 1989; Pau et al., 

1991). The common nitrogenase which is encoded by nifHDK consists of two components, a 

MoFe protein (commonly: dinitrogenase or component I) and the electron transfer Fe protein 

(commonly: dinitrogenase reductase or component II) (Winter and Burris, 1976; Hageman 

and Burris, 1978; Dean et al., 1993 nifH encodes component II and is commonly used as a 

functional marker gene to detect N-fixing bacteria in the environment (Kirshtein et al., 1991; 

Widmer et al., 2000; Poly et al., 2001a; 2001b). 

The whole process of N-fixation is highly endothermic (Bayliss, 1956) and usually it 

is an anaerobic process, because the nitrogenase is very oxygen sensitive (Goldberg et al., 

1987). Cells developed several different mechanisms to protect the nitrogenase from oxygen, 

e.g. cells are surrounded with a thick mucilaginous layer that inhibited oxygen diffusion or a 

high respiration rate lower the free oxygen (Poole and Hill, 1997; Ureta and Nordlung, 2002). 

Cyanobacteria and Burkholderia are the only bacteria that can tolerate oxygen while they fix 

N2 (Stal and Krumbein, 1985; Estrada-De Los Santos et al., 2001). 
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N-fixers are also known as diazotrophs, which are widespread along several bacterial 

taxonomic groups and can also be found in Archaea (Murray and Zinder 1984; Belay et al., 

1984; Leigh, 2000). N-fixers can occur free living (e.g. Azotobacter, Bacillus, Clostridium, 

Rhodopseudomonas, Klebsiella and Methanosarcina) or as symbionts (e.g. Anabaena, 

Frankia, Rhizobium and Bradyrhizobium), which requires a close relationship with a host to 

carry out N-fixation (Postgate, 1998).  

 

Dissimilatory nitrate reduction to ammonium (DNRA) 

DNRA is the direct reduction from NO3
- or NO2

- to NH4
+, in contrast to the required 

combined reduction by denitrification and N-fixation (Fig. 1.6). DNRA is in direct 

competition to denitrification as it also requires NO3
- as an electron acceptor. It was shown 

that under conditions with high availability of labile carbon and/ or low NO3
--concentration 

DNRA has an advantage over denitrification, because NO3
- is used much more effectively, 

consuming eight moles of electrons per one mole of NO3
- compared to five moles of electrons 

during denitrification (Bonin, 1996; Fazzolari et al., 1998; Nijburg et al., 1997; Tiedje, 1982; 

Yin et al., 2002). Recent studies postulate that a C/NO3
- ratio of > 12 favors DNRA (e.g. 

Rütting et al., 2011). Even though the calculated free energy in the process of denitrification 

is higher than from DNRA (-2669 kJ mol−1 glucose for denitrification over -1796 kJ mol−1 

glucose for DNRA; Gottschalk, 1986), studies with pure cultures showed that the real free 

energy yield from DNRA is actually higher than from denitrification (Strohm et al., 2007). 

DNRA resulted in a two-fold higher cell mass production per mole NO3
- compared to 

denitrification (Strohm et al., 2007). To date, the importance of denitrification relative to 

DNRA and vice versa is not well understood, especially under field conditions. It is presumed 

that some of the NO3
- reduction, which was attributed to denitrification, actually results from 

DNRA. DNRA has been shown to occur predominantly in anaerobic sludge and sediments 
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(Ambus et al., 1992; Bonin, 1996; Nijburg et al., 1997; Tiedje et al., 1982). Nowadays, 

studies showed that DNRA also plays a more important role in terrestrial ecosystems (Silver 

et al., 2001; Müller et al., 2004; 2007; Rütting et al., 2011). 

 

Figure 1.6. DNRA with catalyzing enzymes and the associated functional marker genes. Red = most 
frequently used marker gene. 

 

In addition to the conversion from NO3
-/NO2

- to NH4
+, N2O is produced as a 

byproduct, mainly to avoid intoxication by NO2
-. A 15NO3

- labeling experiment proved 

evidence that several microorganisms were capable of simultaneously producing N2O and 

NH4
+ via dissimilatory pathways, but NH4

+ accounted typically for a majority of total product 

with > 90 % (Bleakley and Tiedje, 1982; Smith and Zimmerman, 1981). Nevertheless, the 

production of N2O by DNRA ranges around 1% of NO3
-/NO2

- (Cole, 1988). However, 15NO3
- 

labeling studies alone cannot resolve the real contribution from DNRA to the overall N2O 

emission from the environment, since DNRA as well as denitrification use the same initial 

electron acceptor (NO3
-). For this purpose, it is necessary to use additional molecular 

techniques together with analytical approaches to investigate the activity of the 

microorganisms that are involved in N2O emission from soil (Rütting et al., 2011). 

A pentaheme cytochrome c nitrite reductase (NrfA) is the key enzyme catalyzing the 

reduction of NO3
- or NO2

- to NH4
+ (Einsle et al., 1999). The functional marker gene nrfA can 

be found in diverse groups of bacteria including Proteobacteria, Planctomycetes, Bacteroides, 

and Firmicutes (Mohan et al., 2004). nrfA is commonly used as functional marker gene to 

detect microbes with the capability to perform DNRA (Smith et al., 2007; Song et al., 2014; 

Welsh et al., 2014). However, some bacteria are even capable of DNRA without possessing 
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nrfA, they process a putative reverse hydroxylamine:ubiquinone reductase module pathway 

(Hanson et al., 2013), for which so far no functional marker gene was found. 

 

Anaerobic ammonium oxidation (ANAMMOX) 

ANAMMOX is the anaerobic microbial process to convert NH4
+ together with NO2

- to 

N2 (Fig. 1.7). Since it requires both oxidized and reduced inorganic N-compounds and anoxic 

conditions, it occurs at oxic/anoxic interfaces (Kuypers et al., 2003). ANAMMOX was first 

described in a laboratory-scale denitrification reactor (Mulder et al., 1995). Afterwards, 

ANAMMOX was mainly discovered and analyzed in aquatic environments (Kuypers et al., 

2003; Stevens and Ulloa, 2008). In marine sediments, ANAMMOX can account for up to 

79% of the total N2 production (Engström et al., 2005). It is estimated to be insignificant in 

soils, since other processes which use the same substrates contribute to N2 production as well 

(Long et al., 2013). Even though there are several recent studies that focus on ANAMMOX in 

different soil related environments (paddy soil: Zhu et al., 2011; Wang et al., 2012; peat soil: 

Hu et al., 2010; reductisol, agricultural soils: Humbert et al., 2010), the importance of 

ANAMMOX in soil N-cycling is not fully understood so far. 

 

Figure 1.7. The anaerobic ammonium oxidation (ANAMMOX) pathway and the associated enzymes 
together with their functional marker genes. Dashed lines indicate an emission of this component into 
the atmosphere. Grey = gene were only found in one organism so far. Red = most frequently used 
marker gene 
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The reaction of ANAMMOX takes place inside the anammoxosome: an 

intracytoplasmic compartment formed by a single ladderane lipid-containing membrane (Van 

Niftrik et al., 2004). Three enzymes are important for the conversion from NH4
+ + NO2

- to 

N2 in the anammoxosome: nitrite reductase (nirS [Strous et al., 2006] or nirK [Hira et al., 

2012]), hydrazine synthase (hzs) and hydrazine oxidoreductase (hzo). NO2
- is reduced by 

nitrite reductase to NO and with NH4
+ further metabolized by hzs to hydrazine (N2H4). 

Afterward N2H4 is oxidized by hzo to N2. The gene hzsA encoding a part of the hydrazine 

synthase is used as a functional marker gene for ANAMMOX, because the whole cluster is 

unique to ANAMMOX bacteria (Harhangi et al., 2012; Russ et al., 2013). The ANAMMOX 

reaction is only performed by autotrophic bacteria of the phylum Planctomycetes (Fuerst and 

Sagulenko, 2011) within the order Brocadiales (Jetten et al., 2010). 

 

Nitrification 

Nitrification is the oxidation from NH4
+ to NO3

- with the intermediate product NO2
- 

(Fig. 1.8). Nitrification includes two steps, ammonium oxidation and nitrite oxidation. 

Hydroxylamine (NH2OH), NO and N2O are produced as byproducts. As mentioned before, 

nitrification together with denitrification, contributes up to 70% of global N2O emission from 

soils (Conrad, 1996, Butterbach-Bahl et al., 2013).  
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Figure 1.8. The nitrification pathway with intermediates and side products. The enzymes of the main 
process with their functional marker genes are stated between each step. Dashed lines indicate an 
emission of this component into the atmosphere. Red = most frequently used marker gene. 

 

Ammonium oxidation is catalyzed by two different enzymes; NH4
+ is oxidized to 

NH2OH by the membrane-bound ammonium monooxygenase (AMO encoded by the 

amoABC operon (Sayavedra-Soto et al., 1998; Hommes et al., 1998). The amo operon occurs 

in multiple, nearly identical copies in all ammonia oxidizer strains that have been examined to 

date (Norton et al. 1996; 2002). The second step, the oxidation from NH2OH to NO2
- is 

catalyzed by the periplasm-associated enzyme hydroxylamine oxidoreductase (HAO). 

Bacteria as well as Archaea were found to be capable of ammonia oxidation, they are termed 

AOA (ammonia oxidizing archaea) and AOB (ammonia oxidizing bacteria). Both possess an 

AMO, but Archaea are lacking the HAO (Stahl and Torre, 2012). It is still unclear how AOA 

convert NH2OH to NO2
-. A possible scenario is that nitroxyl (HNO) is the intermediate 

product from AOA instead of hydroxylamine (Walker et al., 2010). Additionally, in genome 

analyses of two AOAs two plastocyanin-like proteins were found which are shared between 

all AOAs. These redox-active copper proteins may participate in electron transfer from the 

unknown product of ammonia oxidation (e.g., hydroxylamine or nitroxyl) to a membrane-

bound electron transfer chain (Stahl and Torre, 2012). By chemical decomposition, NH2OH 
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can also be reduced to NO and N2O (Frame and Casciotti, 2010; Hooper and Terry, 1979; 

Wrage et al., 2005). However, formation of NO2
- is always the main pathway, while 

concentrations of NO and N2O produced are several orders of magnitude lower (103–106) than 

those of NO2
- (Arp and Stein, 2003). Several studies have observed a difference in the 

behavior of AOA and AOB to environmental factors, such as pH (Nicol et al., 2008), salinity 

(Mosier and Francis, 2008) and heavy metal concentrations (Li et al., 2009; Mertens et al., 

2009), suggesting that these two groups might occupy distinct ecological niches (Kelly et al., 

2011). 

The second step of nitrification from NO2
- to NO3

-, nitrite oxidation is catalyzed by the 

membrane-bound nitrite oxidoreductase (NXR). NXR contains multiple subunits (NxrABC), 

iron-sulfur centers and a molybdenum cofactor (Kirstein and Bock, 1993; Meincke et al., 

1992; Sundermeyer-Klinger et al., 1984). Till now only nitrite oxidizing Bacteria (NOB) were 

found to possess the nxr cluster. 

NO2
- can also be reduced by autotrophic nitrifier denitrification (ND) to N2O via NO. 

Thereby, the N2O is mainly produced by AOB, because some AOA are capable to produce 

NO, but not N2O. For N2O production, homologues of enzymes as in denitrification are used 

(NirK and NorB) (Kowalchuk and Stephen, 2001; Cantera and Stein, 2007). Even though it is 

possible that N2O is further reduced to N2 (Poth, 1996), the main product is NO3
-. 

The most common functional marker gene to detect ammonia oxidizers in soils is 

amoA (Rotthauwe et al., 1997; Junier et al., 2010; Hernandez et al., 2014; Li et al., 2015). It 

is mainly used, because AOB and AOA possess both an exploit homologous amoA and can be 

compared to each other, even though different sets of primers are used. Furthermore, 

ammonia oxidation is the first and rate-limiting step of nitrification in soils.  
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1.3. Parameters that can influence nitrogen transformations in soils and the 

microorganisms involved 

Many physical and chemical parameters (e.g. pH, oxygen availability, N-compounds 

accumulation, temperature, etc.) in the environment can influence the transformation of N, by 

interaction with the microbial communities involved in the N cycle and their functioning (Fig. 

1.9). Conditions that favor one pathway are often counterproductive to other processes in the 

N-cycle. 

 

Figure 1.9. Hypothetical connection between the environment, the microbial community and their 
influence on the nitrogen processes (modified from Balser et al., 2006 and Braker, 2012). 

 

Oxygen availability and N-compounds in the soil 

The major factor which controls the different processes in the N-cycle is the 

availability of oxygen. While nitrification requires oxygen, denitrification, DNRA and 

ANAMMOX need an anoxic habitat. Only N-fixation can occur under both oxic and anoxic 
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conditions (Goldberg et al., 1987; Stal and Krumbein, 1985). In soils one of the major 

regulators of oxygen partial pressure is the water content. Hence, nitrification is the main 

source of N2O fluxes from well-aerated soils (water-filled pore space, WFPS < 60%), while 

N2O production in wet soils (WFPS 60–90%) is predominantly derived from anaerobic 

denitrification (Bateman and Baggs, 2005; Mathieu et al., 2006; Skiba et al., 1997). 

Nevertheless, also well aerated soils can have a tight linkage between denitrification and 

nitrification, in the form of ‘hot spots’ which provide anoxic zones in soil aggregates for 

denitrification (Parkin, 1987; Kremen et al., 2005). The presence of NO2
- and low oxygen 

partial pressure are the predominant exogenous signals that induce the activation of the 

denitrification system (van Spanning et al., 2007). However, considerable variability exists 

among microbial strains in their response to these signals and thus in N2O production 

(Bergaust et al., 2008; Ferguson, 1994; Ka et al., 1997; Miyahara et al., 2010; Saleh-Lakha et 

al., 2008; Zumft, 1997). Oxygen partial pressure is also a significant factor in differencing 

between archaeal and bacterial ammonia oxidation, because AOA often have a higher affinity 

for oxygen than AOB (Chen et al., 2008; Jung et al., 2011; Pitcher et al., 2011). However, 

different ecotypes appear even within the AOA which are better adapted to suboxic conditions 

(Gleeson et al., 2010; Molina et al., 2010). 

Soil physical parameters such as texture and clay content can affect N turnover in soils 

in several ways. Sandy soils have a lower water holding capacity than fine-textured soils and 

tend to have higher soil organic carbon concentrations (Sutton et al., 2011). The most 

important soil chemical parameters which influence the rates of N-cycling are soil organic 

carbon (SOC), carbon:nitrogen (C:N) ratio and total NO3
-/NH4

+-concentrations (Sutton et al., 

2011). Especially, increasing SOC leads to higher N2O emission rates from soils (Li et al., 

2005; Keeney and Sahrawat, 1986). A reason for N leaching and gaseous N losses on the 

ecosystem scale was identified in soil C:N ratios (Gundersen et al., 1998; Klemedtsson et al., 

2005). Additionally, as mentioned before a high C:N ratio, with a low NO3
--concentration 
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favors DNRA over denitrification (Tiedje, 1982; 1988). The C:N ratios has also an impact on 

the AOA community, which are promoted by lower C:N ratios (Bates et al., 2010). In 

contrast, a high relative availability of NO3
- is likely to stimulate denitrification, while a high 

amount of NH4
+ favors nitrification. The increase in NH4

+-concentration in a soil through 

fertilization does not only lead to an increase of nitrification activity, but also of 

denitrification activity (Avrahami et al., 2002). The overall AOB community was relatively 

unaffected by increasing NH4
+-concentration, only the transcriptionally active community 

was influenced (Avrahami et al., 2003). Only if a high amount of NH4
+ (200 µg NH4

+-N g–1 

soil) is added AOB abundance seem to increase, in contrast abundance AOA rise already after 

the addition of a 10-fold lower NH4
+ concentration (Prosser and Nicol, 2012).  

In general, fertilization stimulates denitrification and nitrification and leads to an 

increase of N2O-emission from soils. Here, denitrification benefits more from organic 

fertilizer (e.g. compost, manure) than from mineral forms (e.g. extracted from minerals or 

produced industrially) (Dambreville et al., 2006; Ellis et al., 1998; Enwall et al., 2005; 

Wolsing and Priemé, 2004). Fertilizer also influenced denitrifier and nitrifier community 

structure and abundance (Hallin et al., 2009; Avrahami et al., 2003). In the root-rhizosphere 

complex (part of the soil which is influenced by plants) the addition of a high amount of 

NH4
+/NO3

- fertilizer lead to an increase of AOB abundance compared to AOA (Kastl et al., 

2015). Furthermore, addition of tons of fertilizer and the long-term agricultural land use 

resulted in significant shifts of AOB community. The application of nitrification inhibitors in 

agricultural soils is one of the most promising approaches for increasing N-utilization 

efficiency and reducing N2O emission to environment (Yi et al., 2014). The diversity and 

abundance of N2-fixing bacteria tended to increase with periods of organic agricultural 

management. For instance, in a comparative study on different field types, the highest 

abundance of nifH was observed in the bulk soil and rhizosphere after five years of organic 
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management. Additionally, C:N ratio was the most important factor influencing the 

community composition and abundance of N2-fixing bacteria (Shu et al., 2012). 

Even though, a change in soil parameters has an impact on the microbial community 

involved in N-cycling, in most cases these effects occur mainly through accessory effects, 

such as pH changes following fertilization (Enwall et al., 2005). 

 

pH 

pH is often mentioned as one of the most important factor in the N cycle, especially 

with regard to denitrification. Acidic pH leads to an accumulation of N2O by denitrification 

processes (Liu et al., 2010; 2014; Simek and Cooper, 2002). This is believed to occur mainly 

through a post-translational inhibition of N2O reductase (Bergaust et al., 2010). Additionally, 

also the energy gains increased by -20 [kJ/mol N] in denitrification under a decrease of pH 

from 7 to 4 (Wrage et al., 2001). Acidic pH also has negative effects on the expression of the 

denitrifier genes. A less diverse denitrification gene pool was observed in acidic soil 

compared to neutral soils (Čuhel et al., 2010; Fierer and Jackson, 2006; Braker et al., 2012). It 

was also shown, that transcriptional activation under acidic pH was reduced in an incubation 

of a denitrifier community extracted from a soil with an initially neutral pH (Brenzinger et al., 

2015). Especially nirS-type denitrifiers seemed to be impaired by acidic pH (Čuhel et al., 

2010). Nitrification was also directly influenced by acidic pH, AOA were favored over the 

growth of AOB (Nicol et al., 2008; Robinson et al., 2014; Yao et al., 2011). However, the 

opposite occurred in soils with a high N-amount, such as in grazed grassland soils under urine 

patches, where AOB being primarily responsible for NH4
+ oxidation (Di et al., 2009; 2010). 

For AOA, a detailed phylogenetic analysis showed the coherence between composition of 

AOA in soil and the respective pH value (Gubry-Rangin et al., 2011; Oton et al., 2015). 
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Thereby, several lineages of AOA seem to be adapted to specific pH ranges (Gubry-Rangin et 

al., 2011). Also, N2O production from autotrophic nitrification can be increased by acidic pH 

(Martikainen and de Boer 1993). Several studies to explore the effect of pH on DNRA yielded 

partly contradictory results. Higher DNRA was associated with alkaline conditions (Nommik, 

1956; Stevens et al., 1998; Fazzolari-Correa and Germon, 1991; Gamble et al., 1977). In 

contrast other studies showed that DNRA increased at lower pH (< 4) in poorly drained soils, 

which was related to soluble C content (Waring and Gilliam, 1983). Therefore, contrasting 

findings of pH effects on DNRA may partly be related to soil C availability and, hence, be of 

indirect nature (Rütting et al., 2011). A reason for acidification of soil could be N2-fixation by 

legumes. Short term proton excretion into the rhizosphere can lower soil pH, with significant 

variation in the acidification potential of different legume species (McLay et al., 1997). 

 

Temperature and soil moisture 

Anthropogenic induced climate changes have also an impact on N2O emissions. It was 

shown that biochemical processes which result in N2O emissions are strongly influenced by 

water content and temperature rise. For example, as soils get warmed, microbial 

decomposition increase (Bond-Lamberty and Thomson, 2010), which further leads to higher 

N2O emission rates. Therefore, temperature and moisture are major influences on temporal 

and spatial scales, but temperature stimulating effect on the microbial N cycling is greater if 

soil moisture concentration is not a limiting factor (Sutton et al., 2011). It was previously 

reported that temperature together with soil moisture concentration is another important factor 

influencing nitrification (Allen et al., 2005; Avrahami et al., 2003; Liu et al., 2015; Tourna et 

al., 2008; Yuan et al., 2005). It was also shown that nitrification can occur at very low 

temperatures (Jones and Morita 1985; Jones et al., 1988) as well as high temperatures 

(Lebedeva et al., 2005). Two thermophilic AOA were cultivated recently (Hatzenpichler et 
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al., 2008; De la Torre et al., 2008). Furthermore, temperature was the most important factor in 

controlling growth and diversity of AOA and AOB in aquarium biofilters. However, the role 

of AOA in this system is still unclear (Urakawa et al., 2008; Wu et al., 2013). The source of 

NO3
- depends also on the temperature, at low temperature (15°C) NO3

- results from 

heterotrophic nitrification, while autotrophic nitrification is the source at higher temperatures 

(25/30°C) (Liu et al., 2015). However, the optimal temperature range for nitrification is 

narrow between 15 to 25°C (Dalias et al., 2002; Grundmann et al., 1995). Nitrification as well 

as the Nr mineralization increase with rising temperatures up to ~ 30°C (Shaw and Harte, 

2001).  

The optimum temperature for denitrification lies between 25°C and 35°C (Kesik et al., 

2006; Saad and Conrad, 1993a; Saad and Conrad, 1993b). Temperature plays also an 

important role with regard to denitrification rates, the ratio between the end products N2O/N2 

and denitrification activity, especially at moderate temperature locations (Malhi et al., 1990; 

Paul and Clark, 1989; Saad and Conrad, 1993a; Maag and Vinther, 1996). With increasing 

temperature denitrification activity also increases (Nömmik, 1956; Gödde and Conrad, 1999; 

Braker et al., 2010). Increasing temperatures led to higher NO-production from denitrification 

as well as from nitrification from clay and silt loam soil (Gödde and Conrad, 1999), higher 

nitrate reductase activity and N2O-production in a forest soil (Szukics et al., 2010) and a 

generally higher activity of a denitrifier community in an agricultural soil (Braker et al., 

2010). Additionally, Braker et al. (2010) showed that the composition of nirK-/nirS-type 

denitrifier communities changed and that the abundance of nitrate reducers increase with 

higher temperatures. For both, nitrification and denitrification increased temperatures resulted 

in higher N2O emission, due to the increase of absolute nitrification rate, denitrification rate 

and their N2O/NO3
- ratios (Benoit et al., 2015). Whereas below 20°C, N2O was essentially 

produced by denitrification rather than by nitrification, the ratio of N2O emitted per unit of 

nitrate reduced or produced steadily increases with temperature (Benoit et al., 2015). The 
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downside of higher temperature is the increase of N losses by higher N2O emissions; this 

effect can be buffered by the stimulation of DNRA at higher temperatures, which led to a 

fresh increase of NH4
+ into the system (Rubol et al., 2013). For instance, in a North Sea 

estuary DNRA and denitrification occurred at all temperatures, but DNRA was favored at the 

extremes of the temperatures applied (< 14 and > 17°C) while temperatures in between (14 to 

17°C) favored denitrification (Kelly-Gerreyn et al., 2001). The influence of temperature on 

DNRA was also observed for coastal sediments, where a large seasonal variation of DNRA 

was attributed to a temperature increase in summer, which increases sediment oxygen 

consumption, thus creating more reduced conditions in the sediment (Ferrón et al., 2009; 

Gardner and McCarthy, 2009; Smyth et al., 2013). Previous results showed that the relative 

importance of DNRA rates is higher in temperate climates (Rütting et al., 2011). Under 

tropical temperatures DNRA rates increased more than 10 fold relative to denitrification, due 

to the higher affinity for NO3
- (Dong et al., 2011).  

Temperature is also for N2 fixation one of the most important control factors (Hartwig, 

1998). Under both, low (e.g., in arctic and alpine regions) and high temperatures N2-fixation 

and nodulation are increasingly handicapped (e.g., due to nodulation failure) and N2-fixation 

can be more affected than plant growth (Hartwig, 1998). 

 

Vegetation and roots exudates 

N is a very important nutrient for plants. Thus, there is a competition for N between 

plants and microbes involved in soil N cycling. Especially denitrifiers and nitrifiers compete 

with plants for the main N-compounds NH4
+ and NO3. Amino acids or other monomers play 

only a role in extremely N-poor and cold ecosystems where N-mineralization from soil 

organic matter is limited (Schimel and Chapin, 1996). As a consequence, microorganisms 
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have a higher affinity for NO3
- and NH4

+ at low concentrations of mineral N compared to 

plants (Kuzyakov and Xu, 2013). Studies showed that after addition of 15N, the N uptake by 

microorganisms was higher than uptake by plants, not just because of higher substrate 

affinities, but also due to their larger surface area to volume ratios as well as faster growth 

rates compared to plants (Hodge, 2004; Schimel and Bennett, 2004). In longer trial periods, 

the plant uptake of 15N supplements increased, based on the gradual release of microbial 15N 

into the soil (Harrison et al., 2007). Nevertheless, addition of ammonium nitrate fertilizer of 

up to 100 kg ha-1 resulted in a depletion of NH4
+ and NO3

- in the root-rhizosphere layer, only 

the addition of higher amounts of fertilizer increased NH4
+ and NO3

- concentration in the 

RRC (Kastl et al., 2015). Plant N-uptake relies on a transport system in the plasma membrane 

of root cells and mechanisms that regulate the activity of N transport systems and root growth 

according to plant growth requirements. External factors, such as soil NH4
+/NO3

−, organic N 

compounds, soil pH, light, temperature as well as internal factors such as C and N metabolites 

have an influence on the plants and regulate their N uptake (Jackson et al., 2008). 

However, plants have also a positive feedback on the microbial communities 

associated with the roots or rhizosphere. With the excretion of low and high molecular 

compounds (primarily by exudation of C-compounds) as root exudates and rhizodeposition 

(Brzostek et al., 2013; Whipps and Lynch, 1990), the activity of microbial communities and 

the activity of the soil N-cycle can be stimulated (Bird et al., 2011; Cheng, 2009). Additional 

studies showed that it is probably the labile C input into the soils that increases the N cycling 

and the activation of microbial biomass (Holz et al., 2014). Further, Holz et al. (2014) 

observed that NH4
+ over NO3

- is the preferred N source for roots and microorganisms. Plants 

positively influenced DNRA rates and impaired autotrophic nitrification by the release of 

nitrification inhibitors and by influencing ammonium availability. Through the release of 

oxygen and labile organic carbon from the rhizosphere, also nitrate reducers were stimulated 

in their diversity and abundance (Kofoed et al., 2012). 
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It is still not clear if the plant species or the presence of a plant has a greater impact on 

the N-cycle and the microbial community involved in N-cycling. In shortgrass steppe Vinton 

and Burke (1995) stated that the presence of a plant had a greater impact on the N-cycle than 

the plant species differences. This result was supported by other studies which showed 

presence or absence of a plant is more important than plant species for nutrient, especially N 

availability (Charley and West, 1975; Clarholm, 1985; Groos et al., 1995; Jackson and 

Caldwell, 1993a; 1993b; Robertson et al., 1988). Nevertheless, also plant species can have an 

impact on the N cycle, as it has been demonstrated by a 16-week laboratory incubation of 

soils with different plant species. There, it was shown that different plant species can 

significantly influence soil C and N cycling rates, but even after 15 yr the magnitude of the 

effect was still very small (Chen and Stark, 2000).  

Higher C input from plants into the soil led to an increase of abundance, activity and 

growth of microbes in the rhizosphere (Blagodatskaya et al., 2009; 2011; Kapoor and 

Mukerji, 2006; Oger et al., 2004; Saharan and Nehra, 2011), which consequently consume the 

remaining available nutrients through microbial uptake and immobilization (Zak et al., 2000). 

In addition, not solely the amount but also the composition of the C substrate can have an 

effect on microbial community composition (Nielsen et al., 2011). Not only the C input 

originating from root exudates, but also degraded plant litter influence in the N cycle. A high 

C:N ratio in plant litter increases microbial N-immobilization, which then increases NH4
+ and 

NO3
- availability for plants (Booth et al., 2005). Additionally, the oxygen flux through the 

taro sterm and root system into flooded sediment can be an important driver for nitrification 

and coupled denitrification (Penton et al., 2013). Higher nosZ/amoA abundance and a 

domination of nirS-type nitrite reducers in sediments were observed in treatments with 

vegetation compared to ones without (Penton et al., 2013). Not only the plant itself plays a 

major role, but also mycorrhizas that are associated with plants have a great impact on the 

microbial community. Arbuscular mycorrhizal fungi (AMF) form a symbiotic association 
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with the majority of plants. Their presence leads to a negative correlation with nirK and a 

positive correlation with nosZ, which leads to a decrease in N2O emissions (Bender et al., 

2014). The same study pointed out that disruption of the AMF symbiosis through 

intensification of agricultural practices may contribute to increased N2O emissions. Other 

studies observed changes in the denitrification activity in the presence of plants (Bremer et 

al., 2007; 2009; Cavigelli and Robertson, 2000; Dandie et al., 2007). Bremer et al. (2009) 

reported that the combination of sampling time and plants as well as presence of plants had an 

effect on the composition of the nirK-type denitrifier community and denitrification enzyme 

activity. For example, the presence of specific plant species had an influence on the structure 

of a nitrate reducing community (Patra et al., 2006). The higher carbon availability in the 

rhizosphere is another important factor stimulating denitrification and emissions of the 

greenhouse gas N2O (Henry et al., 2008). For example, plant roots were reported to increase 

denitrification rates in the rhizosphere up to 22-fold in comparison to unplanted soil (Philippot 

et al., 2009). Legumes or the decomposed parts seem to have a particularly stimulating effect 

on the denitrification activity (Kilian and Werner, 1996; Scaglia et al., 1985; Aulakh et al., 

1991), presumably due to the symbiosis with rhizobia, in which many are capable of 

denitrification. The impacts of plants on the two dissimilatory NO3
- reducing pathways 

(DNRA and denitrification) are not well characterized. Both pathways were strongly 

dependent on the presence of plants in wetland soils (Matheson et al., 2002). In unplanted 

wetland soil, DNRA was the primary mechanism of NO3
- removal, accounting for almost half 

of the added 15N-NO3
-, whereas in planted wetland soils denitrification was the principal 

mechanism of NO3
- removal and DNRA were insignificant (Matheson et al., 2002). Contrary 

to these results, Nijburg et al. (1997) reported that DNRA was dominant in planted pots 

compared to unplanted ones. 

Stimulation of the activity and abundance of AOB in the rhizosphere of O2 releasing 

plants suggests that nitrification is common in places where N is not limited (Bodelier et al., 
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1996; Briones et al., 2002; Engelaar et al., 1995). However, nitrification can either be 

stimulated or inhibited depending on the composition of the root exudates (Hawkes et al., 

2006; Subbarao et al., 2009). Exotic grasses can increase the nitrification rates in soil, which 

seem to be an important ability for invasive plants (Lee et al., 2012). The higher rates are 

thereby related to an increase in abundance and changes in the composition of AOB. On the 

other hand the invasive species Andropogon gayanus, which prefers NH4
+ over NO3

- as a N 

source, inhibits nitrification but stimulates ammonification (Rossiter-Rachor et al., 2009). 

Some studies reported that invasive plants could also modify denitrification and N2-fixation 

(Wardle et al., 1994; Dassonville et al., 2011). Together, these studies show that plants can 

cause altered microbial N-transformations, but additionally can also benefit from them, which 

is of importance for ecosystem functioning and plant community structure. Also nitrification, 

like denitrification, was influenced by planted or unplanted treatments. Breidenbach et al. 

(2015) observed a higher abundance of some taxa involved in nitrification in unplanted soil 

compared with soil planted with rice after fertilization with NH4
+. A possible explanation is 

the lack of competitors on NH4
+ in the unplanted pot. Rhizodepostion and root exudates can 

also have a negative feedback on microbial communities, as observed for archaeal/ bacterial 

amoA and nosZ. These groups were significantly less abundant in rhizosphere soil compared 

with bulk soil, because under N limitation, the growth of rhizosphere nitrifiers and denitrifiers 

depended on their competition with rice roots for N (San-An et al., 2014). 

 

Bacterial and archaeal communities involved in the N-cycle 

The microorganisms that are involved in the N-cycle constitute a diverse community. 

In addition to the previously mentioned parameters microorganisms are crucial for the rates 

and activity in the N-cycle, because all products in the N-cycle are directly produced by 

microorganisms. But all of these influences are also affecting each other. Thus, changes in 
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activity in the N-cycle can in some cases be attributed to a concatenation of variables that 

influence each other. In the end, to decide which boundary determines the function is difficult, 

if not impossible. Presumably, each parameter has an equally decisive role. It is also assumed 

that the relationship between denitrifiers and their functioning may be ecosystem specific 

(Rich and Myrold, 2004). Wallenstein et al. (2006) stated that the activity of the 

denitrification enzymes may depend either on environmental factors and/ or denitrifier 

community composition. Significant correlations between potential denitrification rates and 

microbial community patterns in wetlands also underlined role of denitrifier composition for 

ecosystem functioning (Peralta et al., 2010; Song et al., 2011; Rich et al., 2003). However, a 

general correlation between denitrifier community structure and denitrification rates in soils 

does not exist (Boyle et al., 2006; Enwall et al., 2005; Hallin et al., 2009; Rich and Myrold, 

2004, Song et al., 2012). Previous studies have shown that pH-dependent responses in 

denitrification product ratios in soils were related to the size and composition of the 

underlying denitrifier communities (Dörsch et al., 2012; Čuhel et al., 2010). In contrast, other 

studies found no significant relationship between microbial communities and microbial 

processes including denitrification (Boyle et al., 2006; Ma et al., 2008). However, there is a 

substantial agreement that as denitrification potential and rates changes with time and site, the 

dynamics of denitrifying communities must have an impact on these denitrification processes 

(McGill et al., 2010; Philippot and Hallin, 2005). In some cases only parts of the denitrifier 

community showed a direct effect for the rates of denitrification, e.g. an influence of nirS-type 

but not nirK-type denitrifiers (Enwall et al., 2010) or the opposite (Bremer et al., 2009; 

Braker et al., 2012; Dörsch et al., 2012). Cavigelli and Robertson (2000) suggested that 

different physiological characteristics between denitrifier communities, including enzyme 

kinetics and enzyme sensitivity to environmental parameters, could lead to different 

denitrification rates or N2O production rates. This assumption is based on a study of two 

geomorphologically similar soils, which had different denitrification rates and end product 
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ratios, even though the parameters that regulate the denitrification activity were optimal. In a 

following study, Cavigelli and Robertson (2001) analyzed the communities of these two soils 

and found differences in the composition of the denitrifier communities. Additionally, isolates 

from these two soils also showed physiological differences in their denitrification rates. 

However, more isolates are needed to get a better understanding about the relationship 

between denitrification rates/ end product ratios and denitrifier diversity, because even 

strongly related species often showed different denitrification activities (Falk et al., 2010; 

Fesefeldt et al., 1998; Hashimoto et al., 2009). It is even more important to identify single 

isolates from the environment, under the assumption that already one specialized species can 

change the function of the surrounding (Salles, et al., 2009). With these isolates, the role of 

single species in the N-cycle will likely be clarified by a combination of cultivation-based 

approaches and molecular ecological techniques (Hayatsu et al., 2008). The composition of 

denitrifier communities in an acidic peat land soil provide a source and sink for N2O (Palmer 

and Horn, 2012), although an acidic pH lead to a higher N2O emission (Bakken et al., 2012; 

Bergaust et al., 2010). These acidic peatland soils represent reservoirs of diverse acidic 

tolerant denitrifiers (Palmer et al., 2012; Palmer and Horn, 2012). 

Since community composition alone could not explain change in denitrification, it was 

assumed that instead the abundance of denitrifiers was more important for the function of a 

microbial community (Hallin et al., 2009). But this hypothesis is also controversial. While 

several studies observed a positive correlation between abundance and function (Hallin et al., 

2009; Morales et al., 2010; Szukics et al., 2010; Throbäck et al., 2007), others found no 

correlation (Dandie et al., 2008; Miller et al., 2008; 2009; Morales et al., 2010). Alternatively 

the ratio of N2O producers (nirS + nirK) and N2O reducers (nosZ) might be more suited to 

explain higher or lower N2O emission (Billings and Tiemann, 2014; Čuhel et al., 2010; 

Morales et al., 2010; Philippot et al., 2011; Müller et al., 2014). However, again the 
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correlation seemed to be dependent on habitat and environmental conditions (Deslippe et al., 

2014; Morales et al., 2010; Philippot et al., 2011). 

However, only few studies focusing on the other important microbial groups involved 

in the N-cycle. For instance, an increase in the diversity of amoA is associated with a N2O 

emission event (Smith et al., 2010). Also the abundance of nitrifiers plays a role in 

nitrification and the emission of N2O by nitrification (Hallin et al., 2009). Sometimes AOA 

abundance exerts a key influence on nitrification (Yao et al., 2011) while in other studies the 

AOB are more important (Di et al., 2009, 2010; Shen et al., 2008; Wertz et al., 2012; 2013). 

Most studies confirm the observed results for denitrifiers that no general trend for the 

influence either from the structure or the abundance of the microbial communities exists. As 

stated before it is more of a mutual influence of all of this factors that lead to changes in the N 

turnover in soils. 

 

All above mentioned parameters are responsible for the different N-turnover rates in 

different habitats (Fig. 1.9), but it is strongly habitat/environment dependent in which 

direction the process rates are altered. Future studies focusing on the combination of the 

microbial and the ecology data will allow to shed light into the unknown regulatory 

parameters of the N-cycle.   
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1.4. Free-Air Carbon dioxide Enrichment (FACE) 

Free-Air Carbon dioxide Enrichment (FACE) is a field method in which the 

concentration of CO2 for a specified site can be altered to a certain value. This allows 

studying the influence of higher CO2 concentrations on various environments under near 

natural conditions. Since atmospheric CO2 concentrations increased dramatically from 280 

ppm to 400 ppm after the industrial revolution (Fig. 1.1) and increased even faster than 

previously calculated, it is important to understand the consequences for the environment 

(IPCC, 2013). Moreover, atmospheric CO2 concentrations continue to rise by about 1% per 

year due to anthropogenic emissions and are expected to double in this coming century 

(IPCC, 2013). As CO2 is an important greenhouse gas, an increase in CO2 concentration in the 

atmosphere has a direct impact on the global warming at earth (IPCC, 2013). FACE facilities 

usually consist of at least one FACE ring fumigated with elevated atmospheric CO2 (eCO2) 

and an ambient control ring (aCO2). These rings consist of pipes and vents positioned in a 

circle, with a diameter of 1-30 m surrounding the experimental sites. Through these pipes, 

vents and measurement equipment air with elevated CO2 concentration flows inside of the 

rings and the CO2 concentration can be adjusted according to wind speed. FACE rings are 

preferable to study the impact of increasing CO2, because they have almost no influence on 

other environmental conditions (e.g. rain, wind, snow or sun light) compared to, e.g., Open 

Top-Chambers technique, which provide the CO2 in plastic containers over the experimental 

site. In 2006 more than 32 FACE facilities existed worldwide (Nösberger et al., 2006). One of 

the world-wide longest operating FACE facility is located in Gießen (GiFACE), which also 

provides the longest continuous trace gas emission (CO2, CH4, N2O) data set (since 1998, and 

still ongoing). 
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Previously collected results on the effect of eCO2 on the nitrogen cycle and the 

underlying microbial communities in soils 

The increase in atmospheric CO2-concentration can have a great impact on the N-

transformation rates in soil. An increased availability of C via eCO2 concentrations leads to an 

increased transfer of organic C from plants to the soil via rhizodeposition, thereby affecting 

N-transformation rates as well as microbial community dynamics (Denef et al., 2007). As 

stated before (see 1.3.), the interaction between C- and N-cycle is predominantly effected by 

interactions between plant and soil which determine whether ecosystems function as a carbon 

source or as a sink (Reich et al., 2006). Thereby, a higher demand for N under eCO2 will 

increase the competition for available N between microbes and plants. It is likely that this 

correlation then affects plant and microbial community structures, N transformations and 

production of the important greenhouse gases CO2, CH4 and N2O (Barnard et al., 2005; 

Freeman et al., 2004; Van Groeningen et al., 2011). Plant N-uptake may decrease the 

availability of N for microbes (Schimel and Bennett, 2004), which can then lead to a 

progressive N-limitation and to reduced ecosystem productivity in the long-term (Luo et al., 

2004). The GiFACE facility observed a stimulation of the plant biomass production by ~ 10% 

from +20% eCO2 along with a shift in the plant community structure (Kammann et al., 2005). 

Larger plant biomass also requires more N to support growth. This leads to change in the 

gross N-transformation rates, as shown by a 15N tracing experiment (Müller et al., 2009). 

There, DNRA rates for instance, increased by 141%, caused by a change in the C/NO3
- ratio, 

while the rate of heterotrophic nitrification (ONrec) decreased to almost zero. Furthermore, the 

total amount of nitrate was significantly lower under eCO2 whereas the concentration of NH4
+ 

increased by 17% (Müller et al., 2009; Rütting et al., 2010). The eCO2 induced shift of 

available N towards NH4
+ via increased DNRA is suggested to be an indicator of anoxic soil 

conditions and a typical feature of N-limited ecosystems to retain mineral N (Tiedje, 1988). 

One of the most dramatic observations was that an elevation of +20% CO2 resulted in a more 
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than two-fold increase in N2O emissions from a grassland site (Kammann et al., 2008). It was 

hypothesized that a higher N2O:N2 ratio during denitrification or enhanced fungal activities 

might be responsible for enhanced N2O emissions (Denef et al., 2007; Regan et al., 2011). It 

was assumed that the changes in gross N-transformations and gaseous N emission rates 

mainly depended on the dynamics and the activity of the underlying microbial communities. 

These changes were thought to be a result of an indirect effect of the higher CO2 

concentration via the excretion of root exudates, since CO2 concentrations in soils are 

naturally high (Gobat et al., 2004). The higher production of N2O was predominantly 

originated from NO3
- turnover rates (Müller et al., 2004), which led to the assumption that 

either denitrification or DNRA are likely to be responsible for this. However, this hypothesis 

could not be proven to date. 

Several studies investigated the influence of eCO2 on microorganisms, but the results 

are partially controversial, because the response of microbial communities depends on the 

plant-soil system and hence are most likely ecosystem dependent. As soil microorganisms are 

often C-limited, a plant mediated increase in C-supply under eCO2 would be expected to 

result in growth of the microbial community and in increased microbial biomass. 

Additionally, this would promote the growth of microorganisms with faster carbon source 

utilization rates over slow growing ones (Tarnawski and Aragno, 2006). Even if no growth 

effect would be detectable at least the activity of the microorganisms should be affected. 

Several studies confirmed this hypothesis by reporting increased microbial growth and 

community dynamics under eCO2 (Chung et al., 2007; Denef et al., 2007; Dijkstra et al., 

2005; Drigo et al., 2008; 2009; He et al., 2010; Kassem et al., 2008). However, others did not 

find pronounced effects of eCO2 on microbial abundance in soil (Haase et al., 2008; Marhan 

et al., 2011; Nelson et al., 2010) or even reported negative effects (Hodge et al., 1998; 

Lesaulnier et al., 2008). Metagenomic studies (GeoChip) showed that only the abundance of 

genes involved in the degradation of labile carbon compounds, the N2-fixation marker gene 
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(nifH) and one of the two nitrite reduction genes (nirS) were influenced by eCO2 of +50% (He 

et al., 2010; 2014; Xu et al., 2013). With respect to the composition of the microbial 

community involved in soil N-cycling the same inconsistent picture emerges. Nitrate reducers 

seem to be unaffected by eCO2 (Deiglmayr et al., 2004), although cultivation studies showed 

that dissimilating Pseudomonas were overrepresented in the rhizosphere of a grassland under 

eCO2 (Fromin et al., 2005; Roussel-Delif et al., 2005). Even when a community shift 

occurred for at least a part of the microorganisms involved in N-cycling (ammonium 

oxidizers) it was additionally related to other factors, such as precipitation and temperature 

but not exclusively caused by eCO2 (Horz et al., 2004). Regan et al. (2011) found a similar 

trend, that soil parameters had stronger effects on a community than a continuous elevation of 

CO2.  
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1.5. Aims of the dissertation 

Increasing CO2 concentrations or changes in the pH on agriculture fields due to 

anthropogenic influences often lead to changes in the N-transformation rates, along with an 

increase in N2O emissions. Nevertheless, it is poorly understood so far how the underlying 

microbial communities are affected. Therefore, the main objective of this study was to shed 

light on the response of the overall and active microbial communities to pH shifts or to 

elevated CO2 concentrations in soils. A short overview about the aims and the resulting major 

issues of each single project are given below: 

 

Chapter II: pH-driven shifts in overall and transcriptionally active denitrifiers control 

gaseous product stoichiometry in growth experiments with extracted bacteria from soil 

Understanding the influence of pH on denitrifier communities and their functioning is 

important, as acidic pH leads to higher N2O/N2 product ratios. Further, the composition and 

size of denitrifier communities in soil are affected by acidic pH. The underlying molecular 

mechanisms of direct pH control on N2O emissions are not fully understood, but post-

transcriptional impairment of nitrous oxide reductase (N2OR) by pH < 6.1 has been 

suggested. Do communities harbor species, which can process denitrification and N2O 

reduction over a wide pH range? Do these communities consist of members with similar 

phenotype that are adapted to different pH ranges? Is the ability of a soil denitrifier 

community to reduce N2O to N2 entirely controlled by pH-impairment of N2OR? 

 

Chapter III: Effect of eCO2 on microbial communities involved in N cycling in soils 

Elevated CO2 concentrations led to an increase of N2O emission from soil, but the 

source of this increase and the role of the microbial communities are not well understood. 
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Although GiFACE produced the longest continuous trace gas emission data set, detailed 

molecular analyzes of the microbes that are involved in N-cycling in soils under elevated CO2 

are still missing. Do eCO2 or other soil parameters (soil moisture concentration, pH value, 

etc.) have an impact on the overall microbial community? Does knowledge on the 

composition and/ or abundance help to resolve the linkage between eCO2 and increased N2O 

emission rates? 

 

Chapter IV: Response to fertilization of transcriptionally active microbial communities 

involved in N-cycling in soils under eCO2 

The detailed analyses in Chapter III of the overall microbial community which is 

involved in N-transformation revealed almost no correlation with eCO2. Since, the majority of 

FACE facilities are lacking a comprehensive study, monitoring gas and nutrient fluxes at the 

same time as the dynamics in the active microbial community, an experiment was constructed 

to analyse the transcriptionally active microorganisms under eCO2 and an additional 

application of a 15N labeled NH4NO3 fertilizer to follow the pathways of N2O formation. Does 

eCO2 alter the active communities in soils compared to aCO2 at least in part of the 

community? Which influence does fertilization with nitrogen exert in the microbial 

community? From which pathway the addition N2O emission under eCO2 originated? 
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2. pH-driven shifts in denitrifier community 

2.1. Abstract 

Soil pH is a strong regulator for activity as well as for size and composition of 

denitrifier communities. Low pH not only lowers overall denitrification rates but also 

influences denitrification kinetics and gaseous product stoichiometry. N2O reductase is 

particularly sensitive to low pH which seems to impair its activity post-transcriptionally, 

leading to higher net N2O production. Little is known about how complex soil denitrifier 

communities respond to pH change and whether their ability to maintain denitrification over a 

wider pH range relies on phenotypic redundancy. In the present study, we followed the 

abundance and composition of an overall and transcriptionally active denitrifier community 

extracted from a farmed organic soil in Sweden (pHH2O = 7.1) when exposed to pH 5.4 and 

drifting back to pH 6.6. The soil was previously shown to retain much of its functioning (low 

N2O/N2 ratios) over a wide pH range, suggesting a high functional versatility of the 

underlying community. We found that denitrifier community composition, abundance and 

transcription changed throughout incubation concomitant with pH change in the medium, 

allowing for complete reduction of nitrate to N2 with little accumulation of intermediates. 

When exposed to pH 5.4, the denitrifier community was able to grow but reduced N2O to N2 

only when near-neutral pH was reestablished by the alkalizing metabolic activity of an acid-

tolerant part of the community. The genotypes proliferating under these conditions differed 

from those dominant in the control experiment run at neutral pH. Denitrifiers of the nirS-type 

appeared to be severely suppressed by low pH and nirK-type and nosZ-containing denitrifiers 

showed strongly reduced transcriptional activity and growth, even after restoration of neutral 

pH. Our study suggests that low pH episodes alter transcriptionally active populations which 

shape denitrifier communities and determine their gas kinetics.  
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2.2. Introduction 

Soil N2O emissions from denitrification depend on environmental conditions that 

control the rates of denitrification and the N2O/N2 product ratio. Important soil and chemical 

factors are oxygen availability (as affected by soil moisture and respiration), temperature, 

nitrate availability and pH (Nömmik, 1956; Firestone, 1982; Wijler and Delwiche, 1954). 

Among these factors, soil pH is one of the most crucial ones, because it does not only affect 

overall denitrification rates, but more importantly seems to directly control the N2O/(N2O+N2) 

ratio of denitrification, and hence N2O emission rates from soils (Šimek and Cooper, 2002; 

Liu et al., 2010; Bakken et al., 2012). Denitrification rates increase with higher pH, whereas 

N2O/(N2O+N2) ratios decrease (Wijler and Delwiche, 1954; Nömmik, 1956; Dörsch et al., 

2012). Direct inhibition of N2O reduction by low pH was demonstrated in laboratory 

experiments with Paracoccus denitrificans (Bergaust et al., 2010) and with soils from a long-

term liming experiment in Norway (Liu et al., 2010) and may explain the negative correlation 

between soil pH and N2O emission found in certain field studies (e.g. Weslien et al., 2009; 

Van den Heuvel et al., 2011). 

It is well known that pH also affects the composition and size of denitrifier 

communities in soil. Acidic soils harbor smaller and less diverse 16S rRNA and 

denitrification gene pools than neutral soils (Čuhel et al., 2010; Fierer and Jackson, 2006; 

Braker et al., 2012). Acidity seems to be particularly detrimental to nirS-type denitrifiers, 

resulting in a strong decrease of nirS/16S rRNA gene ratios (Čuhel et al., 2010). Whether pH-

induced changes in taxonomic denitrifier community composition translate into functional 

differences is unclear. Several studies have linked potential denitrification rates or kinetics to 

size and composition of denitrifier communities in soils differing in pH (Braker et al., 2012; 

Bru et al., 2010; Cavigelli and Robertson, 2001; Dandie et al., 2011), suggesting that pH 

controls soil denitrification and its product stoichiometry via taxonomic differences. In some 
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cases, the relative abundance of marker genes for N2O reducers (nosZ) versus N2O producers 

(nirS, nirK, norB) explained the (N2O)/(N2O+N2) product ratio (Philippot et al., 2011; 

Morales et al., 2010; Billings and Tiemann, 2014), but this correlation seems to depend on 

habitat and environmental conditions (Morales et al., 2010; Philippot et al., 2011; Deslippe et 

al., 2014). In a recent study, Jones et al. (2014) proposed that soil pH controls the abundance 

of nitrite reductase genes as well as the abundance of the newly discovered nosZ Type II 

clade in soils with relevance to the soil’s ability to reduce N2O.  

The direct effect of low pH on the transcription of denitrification genes has been 

studied in pure culture (Bergaust et al., 2010), soils (Liu et al., 2010) and cells extracted from 

soil (Liu et al., 2014). In general, low pH resulted in low numbers of transcripts encoding 

nitrite reductases (nirS and nirK) and N2O reductase (nosZ) (Bergaust et al., 2010; Liu et al., 

2010), but the nosZ/nirK transcript ratio did not change. Interestingly, transcription of nirS 

seemed to be more suppressed by acidity than of nirK (Liu et al., 2010), but it is unclear how 

this affects N2O emissions. The underlying molecular mechanisms for direct pH control on 

N2O emissions are not fully resolved, but post-transcriptional impairment of nitrous oxide 

reductase (N2OR) by pH < 6.1 has been suggested (Liu et al., 2014). 

Together, this raises three basic questions: i) is the ability of a soil denitrifier 

community to reduce N2O to N2 entirely controlled by pH-impairment of N2OR? ii) do 

communities harbor organisms which can thrive over a wider pH range without losing N2O 

reductase activity? or iii) are communities functionally redundant in that they contain distinct 

members with similar phenotypes adapted to different pH? In the present study, we 

approached these questions in a model community obtained by extracting microbial cells from 

a soil with neutral pH. The extracted cells were incubated in pH adjusted batch experiments 

and we followed the dynamics of denitrifying communities through the analysis of functional 

genes nirK, nirS and nosZ and their gene expression while monitoring gas kinetics at high 
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resolution. The community was extracted from a farmed organic soil in Sweden (SWE, native 

pH 7.1) which had been previously found to retain much of its functioning (low N2O/N2 

ratios) in pH manipulation experiments (pH 5.4/7.1) (Dörsch et al., 2012). This finding was 

attributed to a species-rich denitrifier community, and hence to high functional diversity 

(Braker et al., 2012). Here, we revisited the pH manipulation experiment of Dörsch et al. 

(2012) and followed functional gene abundance and diversity of the overall denitrifier (ODC) 

and the transcriptionally active denitrifying community (TADC) throughout anoxic growth, 

covering a transient pH range from 5.4 to 7.1. We hypothesized that the inherent alkalization 

ensuing anoxic growth of denitrifiers induces a succession of taxonomically distinct but, in 

terms of pH adaptation, functionally redundant denitrifier populations, thus supporting complete 

denitrification to N2 over a wide pH range. Since gene expression does not necessarily result 

in functional enzymes at low pH (e.g. Bergaust et al., 2010), we compared shifts in transcripts 

to those in DNA over time, hypothesizing that only taxa expressing functional enzymes would 

propagate in the growing culture. In this way we assessed whether sustained function (here: 

complete denitrification to N2) would be linked to structural changes in the underlying 

community. 

 

 

2.3. Materials and Methods 

2.3.1. Soil sample 

The soil was originally sampled from a Terric Histosol (FAO) in Sweden and has been 

used in several studies exploring functional characteristics of denitrification (Klemedtsson et 

al., 2009; Holtan-Hartwig et al., 2000; 2002; Dörsch and Bakken, 2004; Dörsch et al., 2012) 

and underlying denitrifier communities (Braker et al., 2012). The neutral pH of the organic 
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soil is due to inclusion of lacustrine limestone from a former lake bottom. Detailed soil 

characteristics are given in Dörsch et al. (2012). By the time of the present study, the soil had 

been stored moist at 4oC for 15 years. 

 

2.3.2. Cell extraction and incubation conditions 

Cell extraction was performed as described previously (Dörsch et al., 2012) with the 

following modification: Instead of two portions of 50 g soils, four portions were used to 

recover a higher total cell number. Pellets with extracted cells were resuspended in a total 

volume of 75 mL filter-sterilized bi-distilled water and stirred aerobically for 0.5-1 h to 

inactivate any existing denitrification enzyme prior to inoculation into a He-washed hypoxic 

mineral medium (0.7 µM O2; see below). 

The mineral media contained (L-1): 200 mg KH2PO4, 20 mg CaCl2, 40 mg MgSO4, 3.8 

 mg Fe-NaEDTA, 0.056 mg LiCl, 0.111 mg CuSO4, 0.056 mg SnCl2, 0.778 mg MnCl2, 0.111 

 mg NiSO4, 0.111 mg Co(NO3)2, 0.111 mg TiO2, 0.056 mg KI, 0.056 mg KBr, 0.1 mg 

NaMoO4. The medium was buffered with 25 mM HEPES (N-2-hydroxyethylpiperazine-N’-2-

ethane-sulfonic acid) and was supplemented with 3 mM of the electron acceptor KNO3 and 3 

mM Na-glutamate as carbon and nitrogen source. The medium had an initial pH of 5.1. Two 

aliquots of sterile autoclaved medium were adjusted to pH 5.4 and pH 7.1, respectively by 

adding 1 N NaOH to the medium. Two sets (15 each) of 120 mL-flasks were filled with 43 ml 

of medium of either pH 5.4 or pH 7.1, resulting in 30 sample flasks in total. Additional flasks 

were used as blanks without adding cells extracted from the soil. The serum flasks were crimp 

sealed with butyl septa and made near-anoxic (~ 0.7 µM O2) by six cycles of evacuation and 

He-filling using an automated manifold while stirring the suspension with magnetic stirrers at 

500 rpm (Molstad et al., 2007). 
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2.3.3. Incubation, gas analyses and sampling 

Denitrification activity was measured directly after inoculation with the cells by 

denitrification product accumulation. Thirty serum flasks, three blanks, three calibration 

standards and two flasks for NO2
- measurements were placed on a submersible magnetic 

stirring board (Variomag HP 15; H+P Labortechnik GmbH, Oberschleissheim, Germany) in a 

15°C water bath. The water bath is an integrated part of an automated incubation system for 

the quantification of O2 consumption and CO2, NO, N2O and N2 production in denitrifying 

cultures similar to that described by Molstad et al. (2007). After temperature equilibration, 

excess He was released by piercing the bottles with a syringe without plunger filled with 2 ml 

bi-destilled water to avoid entry of air. The bottles were inoculated with 2 mL of cell 

suspension, yielding approximate cell numbers of 2 × 109 cells per flask (4 × 107 mL- 1). The 

headspace concentrations of O2, CO2, NO, N2O and N2 were monitored every 5 h as described 

by Molstad et al. (2007) and Dörsch et al. (2012). 

The incubation experiments were terminated after 210 h when NO3
--N added to flasks 

was recovered as N2-N. After 0, 12, 26, 48, 70, 96 and 206 h, two to three sample flasks of 

each pH treatment were sacrificed. Cell densities were determined by spectrophotometry 

(OD600) and NO2
- concentrations were measured by a spectrometer according to the 

international standard ISO 6777-1984 (E). The remaining suspension was centrifuged at 4°C 

and 8.400 × g and the cell pellet was immediately frozen in liquid nitrogen and stored at -

80°C until further use. At each time point the pH in the supernatant was determined. 

 

2.3.4. Extraction of nucleic acids 

DNA and RNA were extracted from the frozen cell pellets (-80°C) collected at each 

sampling point. For this, one or two frozen cell pellets were resuspended in 400 µL sterile 
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water (Sigma-Aldrich, Taufkirchen, Germany). Nucleic acids were extracted using a modified 

SDS-based protocol (Pratscher et al., 2011; Bürgmann et al., 2003). In brief, the cells were 

disrupted in a FastPrep beat-beating system and nucleic acids were recovered from the 

supernatant using a phenol/chloroform/isoamyl alcohol extraction. Subsequently the nucleic 

acids were precipitated with polyethylene glycol (PEG) 6000 solution and redissolved in 100 

µL of sterile (0.1 µm filtered) nuclease-free (DNase-, RNase-free) and protease-free bi-

distilled (Sigma-Aldrich). An aliquot of 20 µL was stored at - 20°C for further DNA-based 

molecular analyses. The remaining 80 µL were treated with RNase-free DNase (Qiagen, 

Hilden, Germany) for removal of DNA. RNA was purified using the RNeasy Mini Kit 

(Qiagen), precipitated with 96% EtOH and resuspended in 15 µL nuclease-free water (Sigma-

Aldrich) to increase the RNA concentration and stored at -80°C. The integrity of the RNA 

was checked on a 1.5% w/v agarose gel (Biozym Scientific GmbH, Hessisch Oldendorf, 

Germany) and the concentration was determined by a NanoDrop1000 instrument (Thermo 

Fisher Scientific, Dreieich, Germany). The RNA was reverse transcribed with random 

hexamer primers (Roche, Mannheim, Germany) and M-MLV reverse transcriptase (Promega, 

Mannheim, Germany). 

 

2.3.5. Analysis of the composition of nirK, nirS and nosZ genes and transcripts 

The composition of the denitrifier community was determined by terminal restriction 

fragment length polymorphism (T-RFLP). The nitrite reductase genes nirK and nirS as well as 

the nitrous oxide reductase gene nosZ were amplified from cDNA and DNA using the primer 

pairs nirK1F-nirK5R (~ 516 bp), nirS1F-nirS6R (~ 890 bp), and Nos661F-Nos1773R (~ 1131 

bp) and conditions described previously (Braker et al., 1998; 2000; Scala and Kerkhof, 1998). 

Details on primers and procedures are given in Table S2.1. These primers were chosen to 

allow for comparison of the results obtained in this study to previous ones (Braker et al., 
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2012), although different primers to target these genes have been published more recently 

(e.g. Green et al., 2010; Verbaendert et al., 2014). The forward nirS and nosZ primer and the 

reverse nirK primer were 5’-6-carboxyfluorescein labeled. The quantity and quality of the 

PCR product were analyzed by electrophoresis on a 1.5% w/v agarose gel after staining the 

gel with 3 × GelRed Nucleic Acid Stain (Biotium, Hayward, CA, USA). PCR products of the 

expected size were recovered from the gel using the DNA Wizard® SV Gel-and-PCR-Clean-

up system (Promega). The PCR products of nirK, nirS and nosZ were digested using the 

restriction enzymes FastDigest HaeIII, FastDigest MspI and FastDigest HinP1I (Thermo 

Fisher Scientific), respectively, following the manufacturer’s specifications. The purified 

fluorescently labeled restriction fragments were separated on an ABI PRISM 3100 Genetic 

Analyzer sequencer (Applera Deutschland GmbH, Darmstadt, Germany) and the lengths of 

fluorescently labeled terminal restriction fragments (T-RFs) were determined by comparison 

with the internal standard using GeneMapper software (Applied Biosystems). Peaks with 

fluorescence of > 1% of the total fluorescence of a sample and > 30 bp length were analyzed 

by aligning fragments to the internal DNA fragment length standard (X-Rhodamine 

MapMarker® 30-1000 bp; BioVentures, Murfreesboro, TN). Reproducibility of patterns was 

confirmed for repeated terminal restriction fragment length polymorphism (T-RFLP) analysis 

using the same DNA extracts. A difference of less than 2 base pairs in estimated length 

between different profiles was the basis for considering fragments identical. Peak heights 

from different samples were normalized to identical total fluorescence units by an iterative 

normalization procedure (Dunbar et al., 2001). 

 

2.3.6. Quantitative analysis of nirK, nirS, and nosZ genes and transcripts 

The abundance of nirK, nirS, and nosZ genes and transcripts in the sample flasks was 

determined by qPCR using primers qnirK876-qnirK1040, qCd3af-qR3cd, and nosZ2F-
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nosZ2R (Henry et al., 2004; 2006; Kandeler et al., 2006). Details on primers and procedures 

are given in Table S2.1. The reaction mixture contained 12.5 µL SyberGreen Jump-Start 

ReadyMix, 0.5 µM of each primer, 3-4.0 mM MgCl2, 1.0 µL template cDNA or DNA and 

200 ng BSA mL-1 was added. All qPCR assays were performed in an iCycler (Applied 

Biosystem, Carlsbad CA, USA). Standard curves were obtained using serial 10-fold dilutions 

of a known amount of plasmid DNA containing the respective fragment of the nirK-, nirS- 

and nosZ-gene. Negative controls were always run with water instead of cDNA or DNA. PCR 

efficiencies for all assays were between 80-97% with r2 values between 0.971 and 0.995. 

 

2.3.7. Statistical analyses 

All statistical analyses and graphics were done using R version 3.0.1 (R Development 

Core Team, 2013). Significant differences of nirK, nirS, nosZ, bacterial 16S rRNA gene and 

transcript abundance as well as the calculated ratios were assessed using ANOVA (P value < 

0.05). All quantitative data were log-transformed prior to analysis to satisfy the assumptions 

of homoscedasticity and normally distributed residuals. The community composition changes 

in the overall and transcriptionally active denitrifier community by T-RFLP were analyzed 

using non-metric multidimensional scaling (NMDS) and overall differences were tested by 

ANOSIM (P < 0.05). Additionally, differences in the composition of transcriptionally active 

and overall denitrifier communities at a given time point were tested by ANOSIM (P < 0.05). 

An ANOSIM R value near +1 means that there is dissimilarity between the groups, while an 

R value near 0 indicates no significant dissimilarity between the groups (Clark, 1993). Non-

metric multidimensional scaling (NMDS) analyses were performed with the Bray-Curtis 

similarity index (including presence and relative abundance of T-RF) which iteratively tries to 

plot the rank order of similarity of communities in a way that community point distances are 

exactly expressed on a two-dimensional sheet. The reliability of the test was calculated by a 
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stress-value. Stress > 0.05 provides an excellent representation in reduced dimensions, > 0.1 

very good, > 0.2 good, and stress > 0.3 provides a poor representation. All community 

composition data were Hellinger-transformed before analysis, in order to reach normal 

distribution. ANOSIM, ANOVA and non-metric multidimensional scaling (NMDS) were 

done using package vegan version 2.0-5 (Oksanen et al., 2012). 

 

 

2.4. Results and Discussion 

2.4.1. Denitrification kinetics and shifts in abundance and composition of TADC and 

ODC at native pH 7.1 

At native pH 7.1, residual O2 after He-washing was depleted and all NO3
- was 

stoichiometrically converted to N2 within 96 h of incubation (Fig. 2.1A, B). Net accumulation 

of gaseous denitrification intermediates was low (< 0.2% of initially present NO3
--N). 

Transcriptional activation of functional genes (Fig. 2.2A) and proliferation of denitrifiers 

containing nirK and nosZ (Fig. 2.3A, C) started instantly after the cells were transferred to the 

hypoxic medium. A maximum of relative transcription and community size was reached after 

96 hours (Fig. 2.3A, C), ~ 40 h after the start of exponential product accumulation (CO2, N2) 

(Fig. 2.1A, B). The maximum relative transcriptional activity (cDNA/DNA ratio) was low 

with 0.077 for nirK (Fig. 2.3A) and 0.002 nosZ (Fig. 2.3C), but efficiently translated into 

denitrifier growth (Fig. 2.3A, C). The strongest growth occurred for nosZ-containing 

denitrifiers (16,500-fold) while denitrifiers of the nirK-type grew 400-fold (Table S2.2). In 

contrast, growth of nirS-type denitrifiers showed a lag-phase of 49 h (Fig. 2.2A, Table S2.2) 

after which they were transcriptionally activated (cDNA/DNA ratio of 0.11, Table S2.3) and 

increased in abundance, albeit only 50-fold (Fig. 2.3B). Ratios (nosZ/[nirK + nirS]) of > 50 

after 96 h indicated a tendency of enhanced growth of nosZ-type denitrifiers compared to 
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nitrite reducers (Fig. 2.4, Table S2.4) which may explain the efficient conversion of N2O to 

N2 (Philippot et al., 2011). However, PCR-based analyses of genes and transcripts may be 

biased. The primers used do for instance neither target nirK genotypes from Rhodanobacter 

species (Green et al., 2010) nor thermophilic Gram-positive denitrifiers (Verbaendert et al., 

2014). The recently postulated nosZ clade II (Jones et al., 2013; Sanford et al., 2012) was also 

not analyzed in this study. Hence, nosZ/(nirK+nirS) ratios and their response to pH must be 

taken with caution.  

Community composition data indicated selective transcriptional activity, followed by 

growth of only a few organisms (Fig. S2.1A, S2.2A, S2.3A). Terminal restriction fragments 

(T-RFs) of 229 bp (representing nirK most closely related to nirK of Alcaligenes 

xylosoxidans) and of 37 bp length (38 bp in silico representing nosZ most closely related to 

nosZ of Pseudomonas denitrificans, Ps. stutzeri and Ps. aeruginosa), (Table S2.5) which were 

of little abundance in or absent from the inocula, respectively, dominated the transcriptionally 

active nirK- and nosZ-containing denitrifier communities (Fig. S2.1A, S2.3A). For nirS, a 

genotype most closely related to nirS of Ps. migulae (105-bp T-RF) was transcriptionally 

activated and proliferated that was not even detectable in the initial community (Fig. S2.2A). 

Still, the composition of the transcriptionally active (TADC) and overall denitrifier 

communities (ODC) converged throughout the first 96 h of incubation as indicated by multi-

dimensional scaling of T-RFs (Fig. 2.5A-C; ANOSIM26-49 h: P < 0.05; R between 0.423-

0.873; ANOSIM70-96 h: P > 0.05; R between 0.142-0.375). The shifts in denitrifier community 

composition and the decrease in denitrifier diversity (Shannon index, Fig. S2.1A-3A) did not 

result in impairment of function, i.e. gaseous intermediates were efficiently taken up and 

reduced to N2 (Fig. 2.1A, B). This suggests that it was not the microbial diversity per se that 

mediated the community’s functioning, but the specific metabolic capacities of the 

dominating denitrifying taxa. Transcription of denitrification genes decreased after all 

nitrogen oxides were depleted (Fig. 2.2A) and the number of transcripts relative to gene 
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copies became very low (Fig. 2.3A-C). Hence, the increase in diversity and shift in cDNA 

composition observed for nirK and nosZ-containing denitrifiers at 206 h was presumably the 

result of transcript degradation following starvation (Fig. S2.1A, S2.3A). 

 

Figure 2.1. Accumulation of O2, CO2, NO, N2O, N2, NO2
- and changes in pH value in suspensions of 

cells extracted from a soil from Sweden at initially pH 7.1 (left panels) and at initially pH 5.4 (right 
panels) during incubation (0-206 h). (A) O2, CO2 concentration and pH value at pH 7.1; (B) NO2

-, NO, 
N2O and N2 concentration at pH 7.1; (C) O2, CO2 concentration and pH value at pH 5.4; (D) NO2

-, NO, 
N2O and N2 concentration at pH 5.4. 
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Figure 2.2. Transcript abundance of functional marker genes for denitrification (nirK, nirS, and nosZ) 
quantified by qPCR. (A) Transcript copy numbers of the incubation at pH 7.1; (B) Transcript copy 
numbers of the incubation at pH 5.4. (Mean ± SD, n=3). 
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Figure 2.3. Abundance of functional marker genes for denitrification (nirK, nirS, and nosZ) quantified 
by qPCR and ratio of cDNA/DNA copy numbers. Left axis, total gene abundance and right axis, ratio 
of cDNA/DNA copy numbers. Bars indicate the total gene copy numbers and the line the cDNA/DNA 
ratio. An asterisk indicates significant differences in gene abundance, x indicates significant 
differences in the ratio of cDNA/DNA copy numbers between incubation at pH 5.4 and pH 7.1 at a 
given time point (ANOVA: P < 0.05). (A) nirK; (B) nirS; (C) nosZ. (Mean ± SD, n=3). 
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Figure 2.4. Ratio of nosZ/(nirK+nirS) gene and transcript copy numbers . An asterisk indicates 
significant differences in ratios between incubation at pH 5.4 and pH 7.1 at a given time point 
(ANOVA: P < 0.05). (Mean ± SD, n=3). 
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Figure 2.5. NMDS plots of denitrifier communities based on cDNA- and DNA-derived T-RFLP 
analysis of nirK, nirS and nosZ from three pooled samples. Data points represent averaged results of 
three replicate T-RFLP analyses. Community similarity was calculated by using the statistical program 
R and the Bray–Curtis similarity measurement, which includes presence and relative abundance of T-
RF. Clusters and arrows were inserted manually to highlight clustering and community development. 
Significant differences in the composition of denitrifier communities at given time points were 
determined by ANOSIM (P < 0.05). (A) nirK; (B) nirS; (C) nosZ. 
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2.4.2. Denitrification kinetics and shifts in abundance and composition of TADC and 

ODC when exposed to low pH  

2.4.2.1.Response of denitrification to incubation at acid pH 

Exposing the extracted cells to pH 5.4 showed that most of the functionality in 

denitrification (low accumulation of denitrification intermediates) was retained (Fig. 2.1D). 

This was reported earlier for the denitrifying community of this soil (Dörsch et al. 2012). 

However, denitrification kinetics were clearly influenced by the initially low pH. Respiration 

activity (measured as CO2 accumulation) at pH 5.4 was lower as compared to pH 7.1 

(Fig. 2.1C) and NO and N2O accumulation started approximately 15 h later (Fig. 2.1D). Net 

production of NO and N2O was 4- and 9-fold higher, respectively, than at neutral pH and due 

to slower denitrification kinetics, the reduction of intermediates occurred sequentially. This is 

in line with previous studies, finding clear pH effects on the accumulation of intermediates in 

denitrification (Bergaust et al., 2010; Liu et al., 2010; 2014). For instance, transient 

accumulation of N2O by Paracoccus denitrificans growing at pH 6.0 was 1,500-fold higher 

than at neutral pH (Bergaust et al., 2010). Liu et al. (2010) found that the production of N2 

declined to zero with decreasing pH when comparing soils from a long-term liming 

experiment with in situ pH ranging from pH 4.0 to 8.0. Cells extracted from one of the neutral 

soils and incubated at pH levels between 7.6 and 5.7 for up to 120 h showed a peculiar pH 

threshold of 6.1, below which no functional N2O- reductase was produced (Liu et al., 2014). 

In our study, nitrate was stoichiometrically converted to N2 with less than 1% net N2O-N 

accumulation when incubated at initially pH 5.4 (Fig. 2.1D). However, complete N 

conversion coincided with a pH shift in the medium (from 5.4 to 6.6) which occurred between 

150 and 206 hours of incubation (Fig. 2.1C, D). This shift was most likely driven by the 

strongly increasing denitrification activity during this period. Denitrification is an alkalizing 

reductive process, consuming 6 moles H+ per mol NO3
- reduced to N2. CO2 production was 
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clearly coupled to total N-gas production and came to a halt when all N-oxides were reduced 

to N2 (Fig. 2.1C). This suggests that respiratory processes other than denitrification were 

absent and that the pH-threshold for N2O reduction in the medium was overcome by growing 

denitrifiers which consumed [H+] (Fig. 2.1C). This suggestion is further supported by the 

dominance (> 90%) of phylotypes closely related to known denitrifiers at the end of the 

incubation (Table S2.6). These findings, together with the transient accumulation of NO at pH 

5.4, led us to the conclusion that acid tolerant denitrifiers present in the native community 

must have been metabolically active at pH 5.4, illustrating the high functional versatility of 

this community with respect to pH. 

 

2.4.2.2.Response of nirK and nosZ-containing denitrifier communities to incubation at low pH 

We studied how the denitrifier community responded to incubation at initially low pH 

in terms of growth and transcriptional activation of the functional denitrification genes nirK, 

nirS and nosZ. Unfortunately, although functional data were collected for the period when the 

pH shift occurred, due to limitations in the number of samples that could be processed, no 

community data are available for the period of rapid pH shift. In general, incubation at low 

pH retarded the transcriptional activation of the functional marker genes (compare Fig. 2.2A 

and B, Table S2.2). As long as the pH remained stable at about 5.4 (until 96 h), copy numbers 

of nirK and nosZ cDNA increased in a range similar to the initial phase of the incubation at 

pH 7.1 (until 49 h). Moreover, transcriptional activation of nirK and nosZ at pH 5.4 translated 

into growth of the communities albeit to a lesser extent than at neutral pH (Fig. 2.3A, C). 

During the pH shift to 6.6 (96–206 h), presumably concomitant with the exponential 

accumulation of the N2, transcript abundances increased reaching their highest densities at the 

end of the incubation (Fig. 2.2B). However, the increase in denitrifier density was only 11-

fold at most and hence less than at pH 7.1 (Table S2.2). Hence, although the relative 
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transcriptional activity (ratio of cDNA/DNA copies) of nirK and nosZ exceeded levels at pH 

7.1, transcription seemed not to translate into growth as efficiently 

 

2.4.3. Development of transcriptionally active and overall nirK-type denitrifier 

communities when exposed to low pH 

Contrary to the incubation at pH 7.1, the composition of the growing ODC in the 

initially acid incubation changed only marginally and thus differed significantly between the 

two pH treatments at the end of the experiment. While the development of the ODC at the 

native pH of the soil (7.1) reflected the composition of the TADC within the first 96 hours 

(see above), this was not the case with initially acidic pH (Fig.2.5A, S2.1B). Here, TADC 

patterns clustered separate (ANOSIM: P < 0.05; R between 0.742-0.841) from those of the 

ODC throughout the experiment due to the continuous predominance of the terminal 

restriction fragment (T-RF) of 229 bp length in the TADC which was of constantly low 

relative abundance in the ODC (Fig. S2.1B). Thus, we conclude that transcriptional activation 

of the respective genotypes did not translate into denitrification activity and specific growth of 

these denitrifiers, suggesting regulation at the post-translational level. Such effects were 

previously suggested for nosZ gene expression in P. denitrificans by Bergaust et al. (2010) 

and confirmed by Liu et al. (2010; 2014) for soils and extracted cells. Bergaust et al. (2010) 

hypothesized that low pH (6.0) impairs the assembly of N2O-reductase in P. denitrificans, 

leading to a dysfunctional enzyme and hence accumulation of N2O. 
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2.4.4. Development of the transcriptionally active and overall nosZ-type denitrifier 

communities when exposed to low pH 

Incubation at initially pH 5.4 altered the nosZ-TADC as well as the nosZ-ODC but 

they remained significantly different (Fig. 2.5C; ANOSIM: P < 0.05; R between 0.712-0.831). 

During the first phase of the incubation (up to 70 h) at low pH, growth was small. However, 

N2O-reducers present at very low abundance in the native community seemed to be 

functional. T-RFLP analysis revealed that after a lag phase of 26 and 70 h, T-RFs of 37 bp 

and 40 bp, respectively, that were present at undetectable levels in the ODC, became 

transcriptionally activated and increased in relative abundance (Fig. S2.3B). After 96 hours of 

incubation, the initial community started to be outcompeted by transcriptionally active nosZ-

containing organisms. While N2O-reducers (40 bp T-RF) were transcriptionally active in the 

low pH incubation only and started proliferating in the ODC towards the end of the 

incubation, the T-RF of 37 bp was detected at both pH levels and even dominated the 

community at neutral pH. Existence of acid-tolerant denitrifiers containing nosZ was 

previously demonstrated for a nutrient poor acidic fen by Palmer et al. (2010) and a riparian 

ecosystem (Van den Heuvel et al., 2011). Similar to pH 7.1, we observed a tendency of 

enhanced growth of nosZ-containing denitrifiers compared to nitrite reducers as reflected by a 

nosZ/(nirK+nirS) ratio > 25 after 206 h (Table S2.4) when N2O was effectively reduced. 

 

2.4.5. Transcriptional activity and development of transcriptionally active and overall 

nirS-type denitrifier communities when exposed to low pH 

Transcription of nirS was not significantly inhibited by low pH and cDNA copy 

numbers increased slowly until 96 h (Fig. 2.2B). The response in transcription of the 

community to incubation resembled that during the first 49 h at neutral pH (Fig. 2.2A). When 

the pH started to shift back to near neutral (pH 6.6) and vigorous proliferation occurred (as 
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judged from N gas kinetics), transcription of nirS was further enhanced but the high absolute 

and relative transcription levels observed for nirK and nosZ were never reached (Fig. 2.2B, 

2.3B). This contrasts a recently published study with cells extracted from soil (Liu et al., 

2014). Liu et al. (2014) observed constantly lower nirK and slightly increasing nirS and nosZ 

transcript numbers during incubation at pH 5.7 and 6.1, as compared to pH 7.6 where 

transcripts of all three denitrification genes increased equally. However, in that study, starting 

conditions were different; the community had a native pH of 6.1 and was preincubated under 

oxic conditions for several hours. Our findings also contrast other results of Liu et al. (2014), 

who found stable, pH-independent cDNA/DNA ratios for nirS and nosZ, whereas for nirK the 

ratio declined due to efficient growth of the nirK-type denitrifier community but constant 

level of transcription at higher pH. We observed persistently reduced relative nirS 

transcription at low pH compared to pH 7.1 and the growth of nirS-type denitrifiers was 

severely inhibited by low pH during the first 96 h of incubation (Fig. 2.3). A previous pure 

culture study found that already at slightly acidic pH of 6.8, the nirS-type denitrifier P. 

denitrificans was unable to build up a functional denitrification pathway (Baumann et al., 

1997). Although the nitrite reductase gene was properly induced, the enzyme could not be 

detected at sufficient amounts in the culture indicating that either translation was inhibited, or 

once synthesized, nitrite reductase was inactivated, possibly by high concentrations of nitrous 

acid (HNO2). In our study, incubation at low pH did not increase NO2
- until 96 h (Fig. 2.1D), 

and accumulation of NO was moderate within the nano-molar range (1 µmol NO in the bottle 

~ 730 nM in liquid). Moreover, Baumann et al. (1997) demonstrated that a functional nitrite 

reductase assembled at pH 7.5 was still active if the culture was shifted to acidic pH. The cells 

exhibited a reduced overall denitrification activity, but neither nitrite nor any other 

denitrification intermediate accumulated which is in agreement with our findings (Fig. 2.1D). 

Despite the low levels of transcription, the nirS TADC shifted but only after 96 h of 

incubation and surprisingly, the ODC changed at the same time, although DNA copy numbers 
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did not increase which cannot be explained. Only with the pH upshift between 96 and 206 h, a 

slight growth (one order of magnitude) occurred but the community developed distinctly from 

the TADC (Fig. 2.5B; ANOSIM: P < 0.05; R between 0.671-0.912). Since the initial 

abundance of nirK- and nirS-type denitrifiers in the soil and hence in the inocula was equal, 

our results indicate a greater robustness of nirK-type versus nirS-type denitrifier communities 

to acidity. 

 

2.4.6. Concluding discussion 

In this study of a model community, we linked transcriptional activation of 

denitrification genes (nirK, nirS, and nosZ) and growth of the communities to conversion of 

nitrogen oxides to N2. We found a pronounced succession of TADC and ODC in batch 

incubations even at neutral pH, suggesting a strong selective pressure on the extracted 

community. Exposure to low pH (5.4) resulted in i) sequential and slightly enhanced transient 

accumulation of denitrification intermediates (NO, N2O), ii) lower and/ or retarded 

transcriptional activation of denitrification genes, together with selective activation of 

genotypes represented by certain T-RFs and iii) impaired translation into functional enzymes, 

with consequences for growth of denitrifier communities. However, since only < 1% of added 

N accumulated as N2O and NO at low pH, and growth of nitrite- (nirK-type) and N2O-

reducers was observed, we conclude that acid-tolerant denitrifier species maintained the 

functionality of the community as a whole although full conversion of nitrate to N2 required 

extended incubation periods. Experiments altering soil pH in situ or in laboratory experiments 

have repeatedly confirmed that denitrification rates and denitrifying enzyme activity are lower 

in acidic than in neutral or slightly alkaline soils (Simek and Cooper, 2002). 

Overall, our results show that different mechanisms may determine the response to 

low pH of a soil denitrifier community adapted to neutral pH:  
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i) Activity and proliferation of nirK- and nosZ- but not of nirS-containing denitrifiers 

seemed to drive reduction of nitrogen oxides which in turn increased pH. Albeit not at the 

transcriptional level, growth of nirS-type denitrifiers was severely inhibited at low pH and 

occurred only during or after pH upshift. Acid pH has been repeatedly shown to impair nitrite 

and particularly N2O reduction in certain denitrifiers (e.g. P. denitrificans) (Baumann et al., 

1997; Bergaust et al., 2010), in soils (Liu et al., 2014) and in cells extracted from soils (Liu et 

al., 2010), presumably by impairing the assembly of denitrification enzymes post-

transcriptionally (Bergaust et al., 2010, Baumann et al., 1997). Here, we could show that 

expression of nirK in some denitrifiers may be affected as well. 

ii) These effects, however, might be compensated by acid-tolerant or acidophilic 

denitrifier species able to grow and actively denitrify at low pH. Denitrifiers of the nirK-type 

present in the native community of the soil seemed to tolerate a broad range of pH levels as 

the composition of the growing community remained unaltered during the incubation at low 

pH.  

iii) Low pH prompted growth of nosZ-containing denitrifiers of minor abundance in 

the native community that were acid-tolerant or even acidophilic. At low pH these nosZ-

containing denitrifiers seem capable of functionally substituting N2O-reducers that were more 

prevalent in the native community. This agrees well with the functional redundancy 

hypothesis that distinct species perform similar roles in communities and ecosystems at 

different environmental conditions, and may therefore be substitutable with little impact on 

ecosystem processes (Rosenfeld, 2002). 

Previous studies have shown that pH-dependent responses in denitrification product 

ratios in soils were related to the size and composition of the underlying denitrifier 

communities (Čuhel et al., 2010; Braker et al., 2012). Large variations have been found in the 

specific activity of e.g. nitrite reductases (50-fold) even between strains of the same species 

(Ka et al., 1997). The higher susceptibility of nirS-type denitrifiers to environmental stressors 
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(e.g. low pH, low C-content) has been repeatedly reported in other studies (Bárta et al., 2009; 

Čuhel et al., 2010; He et al., 2010). The abundance of nirS was also most strongly affected 

when the pH of a grassland was lowered experimentally for about one year resulting in a high 

nosZ/nirS ratio while the nosZ/nirK ratio remained unaffected (Čuhel et al., 2010). Hence, 

long-term exposure to low pH in the natural environment will shape soil microbial 

communities and predetermine a dominance of either nirK or nirS (Chen et al., 2015). This 

strongly suggests that taxonomic composition matters for the capability of a soil denitrifier 

community to effectively denitrify. On the other hand, bulk soil pH is unlikely to be 

homogeneous in structured soils, probably providing a range of pH habitats distributed 

throughout the soil matrix. Thus, the occurrence of e.g. N2O reduction in acidic soils can be 

explained by denitrification activity in neutral microsites as proposed by Liu et al. (2014) or 

by acid-tolerant denitrifiers being present in neutral soils. Consequently, soil denitrifier 

communities might be comprised of taxa differing in pH sensitivity, which jointly emulate the 

kinetic response of a soil to pH change. 
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2.7. Supplementary Material 

Table S2.1. Primer sets and PCR conditions used to amplify nirK, nirS and nosZ for T-RFLP analysis and cloning (top) and qPCR (bootom). 

Gene Primer sets Forward primer/Reverse primer 
Amplicon 
length (bp) 

PCR conditions References 

nirK nirK1F/ 
nirK5R-FAM 

GG(A/C)ATGGT(G/T)CC(C/G)TGGCA/ 
GCCTCGATCAG(A/G)TT(A/G)TGG 

514 95 C/5min, 10 cycles of (95C/30sec, 56C/40sec (-
0.5°C every cycle), 72C/40sec), 25 cycles (95C/30sec, 
54C/40sec, 72C/40sec), 72C/7min. 

Braker et al., 1998 

nirS nirS1F-FAM/ 
nirS6R 

CCTA(C/T)TGGCCGCC(A/G)CA(A/G)T/ 
CGTTGAACTT(A/G)CCGGT 

890 95 C/5min, 10 cycles of (95C/30sec, 56C/40sec (-
0.5°C every cycle), 72C/40sec), 25 cycles (95C/30sec, 
54C/40sec, 72C/40sec) 72C/7min. 

Braker et al., 1998 

nosZ nosZ661F-FAM/ 
nosZ1773R 

CGGCTGGGGGCTGACCAA/ 
ATRTCGATCARCTGBTCGTT 

1100 95 C 5min, 10 cycles of (95C/30sec, 59C/90sec (-
0.5°C every cycle), 72C/2min), 25 cycles (95C/30sec, 
56C/40sec, 72C/2min) 72C/10min. 

Scala and Kerkhof, 1998 

nirK 
qnirK876/ 
qnirK1040 

AT(C/T)GGCGG(A/C/G)A(C/T)GGCGA/ 
GCCTCGATCAG(A/G)TT(A/G)TGGTT 

165 

95 C/15min, 6 cycles of (95C/15sec, 63C/30sec (-1°C 
every cycle), 72C/30sec, 80°C/15sec), 40 cycles 
(95C/15sec, 58C/30sec, 72C/30sec, 80°C/15sec), 60 to 
95°C (+0.2°C/sec) for denaturation curve. 

Henry et al., 2004 

nirS 
qCd3af/ 
qR3cd 

AACG(C/T)(G/C)AAGGA(A/G)AC(G/C)GG/ 
GA(G/C)TTCGG(A/G)TG(G/C)GTCTT(G/C)A(C/
T)GAA 

425 

95 C/15min, 6 cycles of (95C/15sec, 63C/30sec (-1°C 
every cycle), 72C/30sec, 80°C/15sec), 40 cycles 
(95C/15sec, 58C/30sec, 72C/30sec, 80°C/15sec), 60 to 
95°C (+0.2°C/sec) for denaturation curve. 

Kandeler et al., 2006 

nosZ 
nosZ2F/ 
nosZ2R 

CGC(A/G)ACGGCAA(G/C)AAGGT(G/C)(A/C)(G
/C)(G/C)GT/ 
CA(G/T)(A/G)TGCA(G/T)(G/C)GC(A/G)TGGCA
GAA 

267 

95 C/15min, 6 cycles of (95C/15sec, 65C/30sec (-1°C 
every cycle), 72C/30sec, 80°C/15sec), 40 cycles 
(95C/15sec, 60C/15sec, 72C/30sec, 80°C/15sec), 60 to 
95°C (+0.2°C/sec) for denaturation curve. 

Henry et al., 2006 
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Table S2.2. Abundance of functional marker genes for denitrification and of the respective reverse transcribed mRNA (cDNA). Analysis of variance (ANOVA) 
was performed to test for differences in copy numbers at different sampling times during the incubation at given pH.  

Time 
[h] 

nirK 
DNA  
pH 7.1 

nirK  
cDNA  
pH 7.1 

nirS 
DNA 
pH 7.1 

nirS  
cDNA  
pH 7.1 

nosZ 
DNA  
pH 7.1 

nosZ  
cDNA  
pH 7.1 

nirK 
DNA  
pH 5.4 

nirK 
cDNA  
pH 5.4 

nirS  
DNA  
pH 5.4 

nirS 
cDNA  
pH 5.4 

nosZ 
DNA  
pH 5.4 

nosZ 
cDNA  
pH 5.4 

0 2.3E+04A 
± 4.6E+04 

1.4E+01A 
± 3.5E+00 

3.6E+04A 
± 5.4E+03 

5.0E+00AD 
± 8.0E+00 

2.2E+04A 
± 1.3E+04 

8.4E+00A 
± 3.1E+00 

3.0E+04A 
± 1.2E+04 

5.2E+00A 
± 2.4E+00 

1.8E+04A 
± 9.7E+03 

7.6E+00A 
± 8.0E+00 

4.3E+04A 
± 3.9E+04 

8.7E+00A 
± 2.2E+00 

12 1.7E+05A 
± 6.0E+04 

9.1E+02BCD 
± 1.1E+02 

2.0E+04A 
± 9.0E+03 

5.0E+00AD 
± 1.8E+00 

1.2E+05B 
± 1.0E+04 

6.30E+01AB 
± 1.5E+01 

1.6E+05A 
± 7.7E+04 

3.4E+02A 
± 1.1E+02 

2.4E+04A 
± 2.1E+04 

3.8E+00A 
± 1.8E+00 

9.3E+04A 
± 6.5E+04 

2.8E+01AB 
± 1.0E+01 

26 1.3E+05A 
± 4.7E+04 

4.6E+02C 
± 1.1E+02 

1.6E+04A 
± 3.0E+03 

9.8E+00A 
± 9.1E+00 

4.1E+05BC

± 2.2E+05 
1.2E+02AB 
± 1.1E+01 

7.9E+04A 
± 1.0E+04 

2.6E+02A 
± 1.0E+02 

1.0E+04A 
± 1.7E+03 

1.4E+01A 
± 3.4E+01 

1.5E+05A 
± 2.5E+04 

2.1E+01A 
± 8.0E+00 

49 2.2E+05B 
± 7.3E+04 

2.0E+03D 
± 1.4E+02 

2.9E+04A 
± 1.0E+04 

2.6E+01A 
± 3.0E+00 

2.8E+06C 
± 1.0E+06 

3.1E+02B 
± 2.8E+01 

1.6E+05A 
± 3.2E+04 

2.7E+02A 
± 1.0E+02 

1.9E+04A 
± 7.6E+03 

3.7E+01A 
± 2.1E+01 

1.6E+05A 
± 4.0E+04 

4.0E+01A 
± 2.1E+01 

70 1.5E+06B 
±6.1E+05 

6.0E+04E 
± 1.4E+02 

7.2E+04A 
± 1.2E+04 

9.3E+02BD 
± 1.5E+00 

2.1E+07D 
± 8.9E+06 

1.7E+04C 
± 2.9E+03 

2.5E+05A 
± 1.0E+05 

4.6E+02A 
± 1.4E+02 

2.2E+04A 
± 5.9E+03 

5.0E+00A 
± 1.5E+00 

2.4E+05B 
± 1.1E+05 

4.5E+01AB 
± 1.0E+01 

96 4.1E+06B 
± 1.3E+06 

2.6E+05F 
± 1.7E+02 

1.7E+06B 
± 5.6E+05 

1.4E+05C 
± 6.6E+01 

3.0E+08E 
± 1.8E+08 

6.8E+05D 
± 1.0E+05 

3.1E+05B 
± 8.4E+04 

7.1E+02B 
± 1.2E+02 

2.6E+04A 
± 1.3E+03 

1.6E+02B 
± 8.8E+01 

1.9E+06B 
± 3.0E+05 

4.6E+02B 
± 1.4E+02 

206 8.8E+06B 
± 1.0E+06 

1.7E+03BD 
± 4.2E+04 

1.2E+06B 
± 7.0E+05 

1.9E+02D 
± 9.1E+01 

3.3E+08E 
± 2.5E+08 

1.2E+03C 
± 1.4E+02 

6.6E+05B 
± 1.2E+05 

1.6E+05B 
± 4.2E+04 

1.9E+05A 
± 1.1E+05 

8.8E+02B 
± 9.2E+01 

2.1E+07C 
± 1.0E+07 

1.4E+05C 
± 7.0E+04 

ABCDEF Identical letters behind numbers indicate non-significant differences in copy numbers (P < 0.05). 
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Table S2.3. Ratios of reverse transcribed mRNA (cDNA) to DNA copies. Analysis of variance 
(ANOVA) was performed to test for differences in copy numbers at different sampling times during 
the incubation at given pH. 

Time 
[h] 

Ratio nirK 
cDNA/DNA 
pH 7.1 

Ratio nirS 
cDNA/DNA 
pH 7.1 

Ratio nosZ 
cDNA/DNA 
pH 7.1 

Ratio nirK 
cDNA/DNA 
pH 5.4 

Ratio nirS 
cDNA/DNA 
pH 5.4 

Ratio nosZ 
cDNA/DNA 
pH 5.4 

0 0.0003A 
± 0.00020 

0.0001A 
± 0.00005 

0.0004A 
± 0.00013  

0.0002A 
± 0.00005 

0.0004A 
± 0.00033 

0.0002A 
± 0.00010 

12 0.0053BC 
± 0.00295 

0.0003A 
± 0.00023 

0.0005AB 
± 0.00051 

0.0021B 
± 0.00104 

0.0002A 
± 0.00020 

0.0002A 
± 0.00732 

26 0.0046B 
± 0.00245 

0.0008AB 
± 0.00024 

0.0003A 
± 0.00006 

0.0033B 
± 0.00210 

0.0014A 
± 0.00079 

0.0001A 
± 0.00003 

49 0.0090C 
± 0.00165 

0.0009AB 
± 0.00052 

0.0001A 
± 0.00012 

0.0017B 
± 0.001053 

0.0020AB 
± 0.00137 

0.0002A 
± 0.00011 

70 0.0403C 
± 0.03819 

0.0150BC 
± 0.0041 

0.0008B 
± 0.00106 

0.0019B 
± 0.00130 

0.0022A 
± 0.0004359 

0.0002A 
± 0.00021 

96 0.0770CD 
± 0.04991 

0.1109C 
± 0.07318 

0.0023B 
± 0.00118 

0.0026B 
± 0.00115 

0.0062AB 
± 0.00355 

0.0002A 
± 0.00009 

206 0.0002A 
± 0.00016 

0.0002A 
± 0.00017 

0.0001A 
± 0.00005 

0.2483C 
± 0.12707 

0.0045A
 

± 0.03787 
0.0518B 
± 0.00334 

ABCDEF Identical letters behind numbers indicate non-significant differences in copy numbers (P < 0.05). 

 

Table S2.4. Ratios of DNA copies and copies of reverse transcribed mRNA (cDNA) of 
nosZ/nirK+nirS. Analysis of variance (ANOVA) was performed to test for differences in copy 
numbers at different sampling times during the incubation at given pH. 

Time 
[h] 

Ratio  
nosZ/(nirK+nirS)  
DNA pH 7.1 

Ratio  
nosZ/(nirK+nirS) 
cDNA pH 7.1 

Ratio  
nosZ/(nirK+nirS) 
DNA pH 5.4 

Ratio  
nosZ/(nirK+nirS)  
cDNA pH 5.4 

0 0.374A 
± 0.2351 

0.469AB 
± 0.16563 

1.147A 
± 0.5823 

0.680A 
± 0.3271 

12 0.632AB 
± 0.3080 

0.069B 
± 0.0568 

0.683A 
± 0.1913 

0.080A 
± 0.3728 

26 3.524BC 
± 2.0967 

0.258AB 
± 0.0808 

1.910AB 
± 0.9579 

0.079A 
± 0.053865 

49 11.007CD 
± 6.0650 

0.153AB 
± 0.0152 

0.911A 
± 0.0721 

0.126A 
± 0.0360 

70 13.630CDE 
± 3.4480 

0.280AB 
± 0.6764 

0.883AB 
± 0.7085 

0.094A 
± 0.0611 

96 52.220E 
± 11.7591 

1.367C 
± 0.4061 

5.860BC 
± 1.4262 

0.519A 
± 0.2910 

206 32.971DE 
± 4.4718 

0.615AC 
± 0.6176 

24.573C 
± 10.7139 

0.883A 
± 0.5300 

ABCDEF Identical letters behind numbers indicate non-significant differences in copy numbers (P < 0.05). 
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Table S2.5. Assignment of cloned nirK, nirS, and nosZ gene and cDNA amplicons to terminal 
restriction fragments. Amplicons of nirK, nirS, (Braker et al., 1998), and nosZ (Scala and Kerkhof, 
1998) from cDNA and DNA after 206 h of incubation were cloned into the pGEM-T vector and used 
to transform Escherichia coli JM109 competent cells (Promega, Mannheim, Germany). After blue-
white selection inserts were sequenced (LGC Genomics, Berlin, Germany) and the nearest neighbor 
was determined by reconstructing phylogenetic gene trees using the ARB software package (Ludwig 
et al., 2004). 

Gene T-RF  
length (bp) 

pH 5.4  pH 7.1 Organisms with most similar gene 
sequence and respective restriction site cDNA  DNA   cDNA DNA 

nirK 65 - + + + Alcaligenes faecalis 
106 + + - - Pseudomonas entomophila 
153 - + - - Mesorhizobium sp. 

- + - + Pseudomonas sp. G-179 
- + - - Rhodobacter sp. 
- + - - Rhodobacter sphaeroides 

188 + + + + Mesorhizobium sp. 
229 + + + + Alcaligenes xylosoxidans 

nirS 95 + + + + Herbaspirillum sp.
99 - + + - Pseudomonas fluorescens  

- + + + Pseudomonas migulea 
105 + + + + Ps. migulea
141 + + - + Ps. migulea 

nosZ 38 - + - + Brachymonas denitrificans  
+ + + + Pseudomonas stutzeri,  

Pseudomonas aeruginosa 
40 - + + - B. denitrificans  

- + + - Ps. stutzeri, Ps. aeruginosa 
148 - + + - Ps. fluorescens 

+ - - - Ps. stutzeri, Ps. aeruginosa 
bp, base pairs  
+, sequence with restriction site corresponding to terminal restriction fragment (T-RF)  
-, T-RF not detected  

 

Table S2.6. Relative abundance of cloned bacterial 16S rRNA cDNA and DNA sequences after 206 h 
of incubation. Amplicons of 16S rRNA (primers Eub8-27F-Eub1392-1407R; Amann et al., 1995) 
from cDNA and DNA were cloned into the pGEM-T vector and used to transform Escherichia coli 
JM109 competent cells (Promega). After blue-white selection inserts were sequenced (LGC 
Genomics) and the nearest neighbor was determined by reconstructing phylogenetic gene trees using 
the ARB software package (Ludwig et al., 2004). 
Gene pH 5.4  pH 7.1 Organisms with most similar gene 

sequence and respective restriction site cDNA  DNA   cDNA DNA 
Bacterial 
16S rRNA 
gene 

- 55%  - 17% Pseudomonas frederiksbergensis,  
Pseudomonas syringae 

12% 29%  4% 21% Ps. fluorescens, Pseudomonas meridiana 
12% -  - - Pseudomonas veronii, Ps. fluorescens 
10% 4%  - - Pseudomonas tolaasii, Ps. fluorescens 

- -  - 13% Aquaspirillium arcticum 
62% 4%  96% 4% Herminiimonas glaciei, Herbaspirillum sp. 

- -  - 21% Paenibacillus wynni, P. borealis 
- -  - 8% Sphingobacterium sp. 

4% -  -  A. xylosoxidans 
- 8%  - 16% others 
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Figure S2.1. T-RFLP profiles (nirK) during incubation at (A) pH 7.1 and (B) pH 5.4. Left part of a 
panel, TADC; right part, ODC. Colors of the bars indicate relative abundance of T-RFs. Shannon 
diversity index is shown above each T-RFLP profile. T-RFs with minimum 1% relative abundance in 
at least one sample are plotted. (n=3). Numbers in the figure legend indicate lengths of the T-RFs in 
base pairs.  
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Figure S2.2. T-RFLP profiles (nirS) during incubation at (A) pH 7.1 and (B) pH 5.4. Left part of a 
panel, TADC; right part, ODC. Colors of the bars indicate relative abundance of the T-RFs. Shannon 
diversity index is shown above each T-RFLP profile. T-RFs with minimum 1% relative abundance in 
at least one sample are plotted. (n=3). Numbers in the figure legend indicate lengths of the T-RFs in 
base pairs.  
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Figure S2.3. T-RFLP profiles (nosZ) during incubation at (A) pH 7.1 and (B) pH 5.4. Left part of a 
panel, TADC; right part, ODC. Colors of the bars indicate relative abundance of the T-RFs Shannon 
diversity index is shown above each T-RFLP profile. T-RFs with minimum 1% relative abundance in 
at least one sample are plotted. (n=3). Numbers in the figure legend indicate lengths of the T-RFs in 
base pairs.  
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3 Influence of eCO2 on microbial communities 

3.1.  Abstract 

Continuously rising atmospheric CO2 concentrations may lead to an increased transfer 

of organic C from plants to the soil through rhizodeposition and may affect the interaction 

between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2) 

concentrations (20% compared to current atmospheric concentrations) at the Giessen Free-Air 

Carbon Dioxide Enrichment (FACE) sites, resulted in a more than two fold increase of long-

term N2O emissions under eCO2 compared to ambient CO2 (aCO2). However, the underlying 

mechanisms are not fully resolved yet. It is particularly unknown how the microbial 

communities which are responsible for N-transformations in the soil and hence for gaseous N 

emissions and their activity are affected by eCO2. To get a better understanding of the impact 

of eCO2 on soil microbial communities, we applied a molecular approach targeting several 

microbial groups involved in soil N-cycling (N-fixers, denitrifiers, archaeal and bacterial 

ammonia oxidizers, and dissimilatory nitrate reducers to ammonia). Remarkably soil 

parameters, overall microbial community abundance and composition in the top soil under 

eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial 

community abundance and composition were detected, they were not linked to CO2 level but 

rather determined by differences in soil parameters determined by the location of the FACE 

rings in the experimental field. We concluded that +20% eCO2 had little to no effect on the 

overall microbial community involved in N-cycling in the soil but that spatial heterogeneity 

over extended periods had shaped microbial communities at a particular site in the field. 

Hence, microbial community composition and abundance alone cannot explain the functional 

differences leading to higher N2O emissions under eCO2 and future studies should consider 

the active members of the soil microbial community.  
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3.2.  Introduction 

Due to anthropogenic emissions, atmospheric CO2 concentrations are rising by about 

1% per year and are expected to double in this century (IPCC 2013) causing well known-

climatic effects. Observations from the world-wide longest lasting CO2 enrichment study, the 

Giessen Free Air Carbon Dioxide Enrichment (GiFACE since 1998, ongoing), showed that 

elevated atmospheric CO2 (eCO2) concentrations also exerts several impacts on soil 

communities. For instance, plant biomass was stimulated by approximately 10% and caused a 

plant community shift towards a dominance of grass species (Kammann et al. 2005; 

unpublished results). This may lead to an increased transfer of organic C from plants to the 

soil through rhizodeposition and affect soil microbial communities with implications for the 

interaction between C- and N-cycling (Denef et al., 2007, Freeman et al., 2004). A meta-

analysis of greenhouse gas emission data demonstrated that increased CO2 generally 

stimulated emissions of another potent greenhouse gas, N2O, from terrestrial ecosystems (van 

Groeningen et al., 2011). At GiFACE for instance, long-term N2O emissions under eCO2 

increased more than two fold compared to ambient CO2 (aCO2), but the underlying 

mechanisms are not fully resolved yet (Kammann et al., 2008). In two 15N tracing laboratory 

experiments with soils from FACE sites in Giessen and New Zealand gross N-transformations 

under eCO2 shifted towards a higher importance of heterotrophic processes (Müller et al. 

2009, Rütting et al. 2010). In addition, turnover of NH4
+ (heterotrophic nitrification) and the 

rates of dissimilatory reduction of NO3
- to NH4

+ (DNRA) increased, while turnover of NO3
- 

was reduced. At GiFACE, NH4
+ concentrations under eCO2 were on average 17% higher 

while NO3
- concentrations were significantly lower (Müller et al. 2009). 

Changes in gross N-transformations and gaseous N emissions are dependent on the 

dynamics and activity of microbial communities. Under eCO2, microbial communities in the 

plant rhizosphere are affected by altered C substrate inputs (root turnover and exudation) 
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rather than by a direct CO2 effect, because CO2 concentrations in the soil atmosphere are 

naturally high (Gobat et al., 2004). As soil microorganisms are often C-limited, a plant 

mediated increase in C-supply at eCO2 would be expected to result in growth of the microbial 

community and hence in increased microbial biomass production. Several studies confirmed 

this expectation (Chung et al., 2007; Dijkstra et al., 2005; He et al., 2010; Kassem et al., 

2008) while others observed decreased microbial abundances (Hodge et al., 1998; Lesaulnier 

et al., 2008). Moreover, the composition of the overall soil microbial communities under 

eCO2 differed profoundly from communities under aCO2 (Denef et al., 2007; Drigo et al., 

2008; 2009; He et al. 2010). This suggests concomitant alterations of potential functional 

activity and hence of ecosystem functioning (He et al., 2010). However, other studies found 

no effect of eCO2 (Haase et al., 2008; Marhan et al., 2011; Nelson et al., 2010). Hence, 

reports on eCO2 effects on the overall microbial community in soils are at least in part 

controversial and responses of rhizosphere microbial communities may depend on the plant-

soil system and are probably ecosystem dependent (Kowalchuk et al., 2002; Miethling et al., 

2000, Okubo et al., 2015). 

In soils, N2O is mainly produced by denitrifiers and nitrifiers (Conrad, 1996; 

Butterbach-Bahl et al., 2013) and alterations in the functioning of denitrifiers and ammonia 

oxidizers in soils exposed to eCO2 were clearly discernable (e.g. Barnard et al., 2005; 2006). 

However, little information is available to date how these functional shifts may be related to 

shifts in the underlying microbial communities and the understanding of potential feedback 

effects resulting in higher N2O emissions is still limited. Again, reports on the effects of eCO2 

on the abundance and composition of microbial communities involved in N-cycling in soils 

are controversial. Lesaulnier et al. (2008) found a significant decrease of nitrate reducers and 

crenarchaeal ammonia oxidizers with eCO2, but in that and other studies other genes involved 

in denitrification, ammonia oxidation and DNRA remained unaffected (Deiglmayr et al., 

2004; Haase et al., 2008; Marhan et al., 2011; Pujol Pereira et al., 2011). On the other hand, 
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field exposure of a grassland ecosystem to eCO2 for ten years significantly increased the 

abundance of N-fixers and nirS-type denitrifiers (He et al. 2010). Interestingly, in two out of 

three replicate FACE rings studied at GiFACE the ratio of N2O reducers to nitrite reducers 

was lower under eCO2 (Regan et al., 2011) and may thus explain higher N2O fluxes from the 

soil (Philippot et al., 2011). Two earlier cultivation based studies showed an enhanced 

abundance of nitrate dissimilating Pseudomonas in the rhizosphere of grasses at eCO2 

(Fromin et al., 2005; Roussel-Delif et al., 2005). In a California grassland, the structure and 

abundance of the ammonia oxidizing bacterial community was altered by eCO2, strongly 

interacting with the factor precipitation (Horz et al., 2004). Horz et al. (2004) also showed that 

multifactorial global changes (eCO2, temperature, precipitation, N-deposition) feeds back into 

the enrichment of a specific clade of ammonia oxidizers with higher potential for nitrification.  

Morales et al. (2015) demonstrated that functional diversity of e.g. denitrifier 

communities was among the variables sufficient to predict the amount and type of N-gas 

emitted from soils. Thus, we hypothesized that understanding the functional potential of 

microbial communities involved in N-cycling at Giessen FACE can help explain shifts in N-

transformations, particularly the increased N2O emissions in response to eCO2. To explore the 

functional diversity of microbial communities involved in N-cycling at GiFACE, we applied a 

molecular approach to study the abundance and composition based on functional marker 

genes for denitrification (nirK/nirS, nosZ), ammonia oxidation (bacterial and archaeal amoA), 

nitrogen fixation (nifH), dissimilatory nitrate reduction to ammonia (DNRA, nrfA) as well as 

archaeal and bacterial communities. 
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3.3.  Materials and Methods 

3.3.1 Site description and sampling 

Soil samples were taken from the GiFACE experiment site (50°32’N and 8°43.3’E; 

172 m a.s.l.) near Giessen, Germany. Within the GiFACE experiment CO2 fumigation on an 

old grassland site (> 100 years) was started in May 1998 to study the response of a semi-

natural grassland to long-term, moderate atmospheric CO2 enrichment. The whole facility 

consists of six plots, each with 8 m internal diameter. Two plots build one set each with an 

ambient (aCO2) and an elevated (eCO2) CO2 plot. The aCO2 plots receive currently 400 ppm 

CO2 and hence atmospheric CO2 concentration of about 480 ppm, i.e. the eCO2 plots are 

fumigated with CO2 20% above ambient air. The three sets differ in soil moisture 

concentration and exhibit a moisture gradient, which is generated by the gradual terrain slope 

in the direction of the rivulet Lückebach as well as varying depths of the subsoil clay layer. In 

the following, the sets along the soil moisture gradient are referred to as blocks and are 

designated as A1 and E1, aCO2 and eCO2, respectively (DRY)), A3 and E3, aCO2 and eCO2, 

respectively (MED) and A2 and E2, aCO2 and eCO2, respectively (WET). The soil in the 

FACE-rings was classified as a Fluvic Gleysol and has a sandy clay loam texture on top of a 

clay layer. The soil was characterized by a mean C and N content of 4.5% and 0.45%, 

respectively, a pH of ~ 6.2, and a mean annual temperature of 9.4°C. Mean annual 

precipitation was 575 mm during the observation period from 1996 to 2003 (Jäger et al., 

2003). Vegetation is dominated by 12 grass species, 2 legumes, and 15 non-leguminous herbs, 

and is characterized as an Arrhenatheretum elatioris Br. Bl. Filipendula ulmaria 

subcommunity. The grassland has not been ploughed for at least 100 years. It has been 

managed for several decades as a hay meadow with two cuts per year, and fertilized in mid-

April with granular mineral calcium-ammonium-nitrate fertilizer at the rate of 40 kg N ha-1 yr-

1 since 1996; before 1996, it was fertilized at 50–100 kg N ha-1 yr-1 (Kammann et al., 2008). 
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In July 2012 three replicate soil core samples were taken for each of the 6 plots in the 

depth of 0-7.5 cm and were stored at - 20°C till further analyses. The samples (18) were taken 

at random locations inside the rings in east, south and west direction. 

 

3.3.2. Measurement of soil parameters 

N2O flux, soil moisture content and precipitation at the field site was measured as 

described by Kammann et al. (2008) and Regan et al. (2011). All parameters were 

continuously recorded since the start of the FACE facility in 1997. Part of the dataset (1997-

2006, 2008) used in this study was published previously (Kammann et al., 2008; Regan et al., 

2011), data for 2007 and 2009 were additionally included for this study. The complete dataset 

was searched for dates and events, when the N2O flux reached more than 100 µg (m2×h)-1 in 

at least one ring. Flux data as well as soil moisture content and precipitation for all rings were 

then outlined for these dates. 

From each soil core sample pH value, water content, nitrate (NO3
-)-/ nitrite (NO2

-)-/ 

ammonia (NH4
+)-concentration and total carbon (C), hydrogen (H) and nitrogen (N) content 

in the soil was determined. Soil pH was measured by shaking a soil sample (10 g) in 25 mL 

CaCl2 solution (0.01 M CaCl2 × 2H2O; Merck, Germany) for 20 min. After settling for one 

hour in the dark at room temperature and resuspension pH was measured with an InLab® 

semi-micro electrode (Mettler-Toledo GmbH, Giessen, Germany). Water content (%) was 

determined after drying 1 g of homogenized soil for 3 days at 65°C in a drying oven 

(Memmert GmbH & Co. KG, Schwabach, Germany). Afterwards, dried samples were grinded 

after addition of liquid nitrogen and aliquots were analyzed at the Chemical Department of the 

Phillips-University Marburg (Germany) with a CHN-elemental analyzer to determine the total 

C/H/N percentage concentration of the soil.  
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Concentrations of NO3
- and NO2

- were analyzed by ion chromatography. (IC; Skyam 

GmbH Eresing, Germany; 70°C oven temperature) equipped with a LCA A14 column 

(Skyam GmbH, Eresing, Germany) using a 50 µL injection volume and Na2CO3 as eluent 

(flow of 1.5 mL min-1). For this purpose 1 g of soil sample were resuspended in 1 mL of 

Nuclease-free H2O and subsequently sterile-filtered with a disposable Filter Unit (0.2 µm; 

Whatman, MAGV, Germany). The concentration of NH4
+ in the soil samples was measured 

fluorometrically in triplicates by microscale analysis (Murase et al., 2006). 

 

3.3.3. Nucleic acid extraction 

DNA was extracted from 0.35 g soil using the NucleoSpin® Soil Kit (Machery-Nagel 

GmbH & Co. KG, Düren, Germany) following the manufacturer’s protocol. Afterwards, the 

amount and purity of extracted DNA was determined with a NanDrop1000 

Spectrophotometer (Thermo Scientific, Langenselbold, Germany). The concentration of DNA 

ranged from 100-120 ng/µL and A260/280 ratios between 1.6-1.9 indicated a high purity of the 

extracted DNA with minimum contamination of humic acids. 

 

3.3.4. Quantification of functional marker and 16S rRNA genes 

Copy numbers of genes encoding the denitrification enzymes nitrite reductase 

(nirK/nirS) and nitrous oxide reductase (nosZ), dinitrogenase (nifH), archaeal and bacterial 

ammonia monooxygenase (AamoA/BamoA), nitrite reductase of the dissimilatory reduction of 

nitrate to ammonia (nrfA) and archaeal and bacterial 16S rRNA were quantified by qPCR as 

described in Table S3.1. A typical reaction mixture contained 12.5 µL of SybrGreen Jump-

Start ReadyMix (Sigma-Aldrich, Taufkirchen, Germany), 0.5 µM of each primer, 3-4.0 mM 

MgCl2, 2 µL of soil DNA except for amplification of nosZ, for which 3 µL of DNA were 
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used. For the amplification of functional marker genes involved in nitrogen cycling 200 ng 

BSA mL-1 were added. All assays were performed in an iCycler (Applied Biosystems, 

Darmstadt, Germany). Standard curves were obtained using serial 10-fold dilutions of a 

known amount of plasmid DNA (108 to 101 gene copies) containing the respective gene 

fragment. Negative controls were always run with water instead of template DNA. PCR 

efficiencies for all assays were between 80-97 % with r2 values between 0.971 and 0.996. 

 

3.3.5. Analysis of the composition of functional marker and 16S rRNA genes 

The composition of PCR amplified gene fragments of nirK/nirS, nosZ, 

AamoA/BamoA, nifH, nrfA as well as archaeal and bacterial 16S rRNA genes (T-RFLP only) 

was explored by terminal restriction length polymorphism (T-RFLP) and barcode labeled 454 

pyrosequencing analyses. Details on primers and conditions are given in Table S3.2. Quantity 

and quality of the PCR amplicons were analyzed by gel electrophoresis (1.5% w/v agarose) 

and staining the gel with 3 × GelRed Nucleic Acid Stain (Biotium, Köln, Deutschland). PCR 

products of the expected size were excised from the gel and purified using the DNA Wizard® 

SV Gel-and-PCR-Clean-up system (Promega, Mannheim, Germany).  

For T-RFLP, forward or reverse primers were 5’-6-carboxyfluorescein labeled and 

amplicons were hydrolyzed by the restriction enzymes (FastDigest, Fermentas, St. Leon-Rot, 

Germany) HaeIII (nirK/nirS), HhaI (nosZ, nifH, nrfA and AamoA/BamoA) and MspI and 

Taq1, (archaeal and bacterial 16SrRNA, respectively). Afterwards, reaction products were 

purified using the SigmaSpin™ Sequencing Reaction Clean-up Columns (Sigma-Aldrich) 

according to the manufacturer’s instructions. Fluorescently labeled restriction fragments were 

separated on an ABI PRISM 3100 Genetic Analyzer sequencer (Applera Deutschland GmbH, 

Darmstadt, Germany) and the lengths of fluorescently labeled terminal restriction fragments 
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(T-RFs) were determined by comparison with the internal standard using GeneMapper 

software (Applied Biosystems). Peaks with fluorescence of > 1% of the total fluorescence of a 

sample and > 30 bp length were analyzed by aligning fragments to the internal DNA fragment 

length standard (X-Rhodamine MapMarker® 30-1000 bp; BioVentures, Murfreesboro, TN). 

Reproducibility of patterns was confirmed for repeated terminal restriction fragment length 

polymorphism (T-RFLP) analysis using the same DNA extracts of selected samples. A 

difference of less than 2 base pairs in estimated length between different profiles was the basis 

for considering fragments identical. Peak heights from different samples were normalized to 

identical total fluorescence units by an iterative normalization procedure (Dunbar et al., 

2001). 

For pyrosequencing, DNA extracts from the three replicate samples of each ring were 

pooled and PCR amplified using the primers used for T-RFLP but with barcode labels (6 bp) 

designed to differentiate between FACE rings (E1: ACACAC; E2: ATGTAT; E3: AGCAGC; 

A1: ATCATC; A2: AGACTA; A3: AGTCAT) and with small variation at the annealing 

temperature due to barcode tagging (Table S3.2). DNA concentration was determined from by 

a Qubit® 2.0 Fluorometer using the Quant-iT TM dsDNA BR Assay Kit (Invitrogen 

Darmstadt, Germany). Amplicons (200 ng each) of each gene from six FACE rings were 

pooled and libraries were built and subjected to barcode labeled 454 pyrosequencing (GATC, 

Köln, Germany). 

 

3.3.6. Sequence analysis  

Sequence processing and analysis was done in Qiime 1.3 (qiime.org). Pyrosequencing 

and PCR errors of the reads were corrected using the AmpliconNoise pipeline (Quince et al., 

2011). Sequences of functional marker genes (nirK/nirS, nosZ, AamoA/BamoA, nifH and 
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nrfA) were clustered as described previously (Caporaso et al., 2010; Palmer and Horn, 2012) 

using threshold similarities of 92%, because this reflects the threshold value beyond which the 

number of OTUs stays stable (Palmer and Horn, 2012; Palmer et al., 2012). Archaeal 16S 

rRNA gene sequences were clustered at 95% threshold similarities. Representative sequences 

were determined for each OTU. For statistical comparison of gene diversity in the plots, 

alpha-diversity measures were calculated in Qiime from rarified OTU tables as described 

elsewhere (Palmer and Horn, 2012; Hughes et al., 2005). Rarified OTU tables were generated 

by randomly subsampling original OTU tables 100 times. A sampling depth of 400 sequences 

was chosen for AamoA, BamoA, nifH, nirK, nirS, nosZ, and nrfA to allow comparison of 

diversity between the different functional marker genes, as the number of sequences obtained 

exceeded 400 for all genes and soils. Rarified OTU tables of 16S rRNA gene sequences were 

generated at a sampling depth of 150 sequences, due to a lower number of sequences. 

 

3.3.7. Statistical analyses of collected data 

All statistical analyses were done using R version 3.0.1 (R Development Core Team, 

2013). Significant differences in copy numbers of archaeal/bacterial 16S rRNA genes, 

AamoA, BamoA, nirK, nirS, nosZ, nifH and nrfA were assessed using ANOVA (P value < 

0.05). All quantitative data were log-transformed prior to analysis to satisfy the assumptions 

of homoscedasticity and normally distributed residuals.  

The effect of soil parameters on T-RFLP and on OTU based 454 pyrosequencing 

community profiles was explored by canonical correspondence analysis (CCA). Statistical 

significance of the CCA was assessed using permutation test (1000 iterations). The clustering 

of the OTUs from the barcode labeled 454 pyrosequencing was analyzed by a hierarchical 
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cluster analysis and Ward’s minimum variance method. All community composition data 

were log-transformed before analysis, in order to reach normal distribution. 

 

 

3.4.  Results 

3.4.1. N2O flux and soil moisture content over a period of 12 years 

The complete data set of N2O flux measurements since the start of the GiFACE 

facility in 1998 revealed only 169 days on which N2O flux events in at least one ring exceeded 

100 µg (m2×h)-1 (Fig. 3.1). The highest frequency of these events occurred in the first three 

years after the start of the experiment. Mostly but not generally, a rain event which increased 

soil moisture content preceded higher N2O fluxes (Fig. S3.1 and S3.2). Soil fumigated with 

eCO2 generally produced more N2O than at aCO2. 

 

3.4.2. Soil characteristics 

Soil characteristics showed only minor differences and differed only between ring 

pairs but not between eCO2 and aCO2 (Tables 3.1, S3.3). The soil was slightly acidic with pH 

levels ranging from 5.45-6.1. Differences existed mostly between soil of the first ring pair and 

the two other ring pairs. In ring pair E1/A1 pH was lower (5.55) than in the two other ring 

pairs (E2/A2, 6.03; E3/A3, 5.96). NO3
-concentration and C- as well as H-content were lower 

in E2/A2 and E3/A3, respectively than in E1/A1. N-content was lower at E1/A1, while NH4
+-

concentration was higher than at the two other ring pairs. Water-content was similar in all 

rings. 
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Figure 3.1. N2O flux measurements for events in which the N2O fluxes reached more than 100 µg 
(m2×h)-1 in at least one ring between the years 1997–2009: (A) Mean N2O fluxes at elevated (E) and 
ambient (A) CO2. Triangles mark occasions where N2O fluxes from eCO2 (E) rings were significantly 
greater than from aCO2 (A) rings (black triangles) or the other way around (white triangles) at P > 0.05 
tested by ANOVA. (B)–(D) N2O fluxes in the three ring pairs (B, E1/A1; C, A3/E3; D, E2/A2). 
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Table 3.1. Soil parameters at GiFACE for ring pairs E1/A1, E2/A2 and E3/A3.  

Ring 

Soil characteristics 

pH 
NO3

- 
[µM/g dw] 

NH4
+ 

[µM/g dw]
H2O [%] C [%] H [%] N [%] 

C:N 
ratio 

E1+A1 
5.55a 

± 0.23 
2.58a 

± 0.81 
0.33a

± 0.111 
22.50a

± 3.56 
4.03a

± 0.61 
0.89a

± 0.11 
0.35a 

± 0.04 
11.29a 

± 0.40 

E2+A2 
6.03b 

± 0.13 
6.36b 

± 3.30 
0.19b

± 0.079 
21.33a

± 1.86 
4.53ab

± 0.71 
1.04ab

± 0.11 
0.45b 

± 0.05 
10.09b 

± 0.18 

E3+A3 
5.96ab 

± 0.24 
5.33ab 

± 1.95 
0.16b

± 0.069 
23.50a

± 4.28 
5.09b

± 0.82 
1.18b

± 0.10 
0.49b 

± 0.08 
10.32b 

± 0.51 
ab 

Identical letters indicate no significance differences (P > 0.05). Mean ±SD (n=6). 

 

3.4.3. Abundance of microbial groups involved in soil nitrogen cycling 

Total bacterial 16S rRNA gene copy numbers were in the order of 1×109 gdw-1, while 

archaeal copy numbers ranged between 5×107 – 1×108 gdw-1 for all rings (Fig. 3.2). 

Abundance of bacteria and archaea did not differ between rings or ring pairs (Tables 3.2, 

S3.4). Absolute copy numbers of the functional marker genes nirK, nosZ, nifH and AamoA 

and numbers relative to total 16S rRNA gene copies (Bacteria + Archaea) were similarly high 

in all rings and did also not differ between ring pairs (Table S3.6). Genes nirS and BamoA 

were 5-10-fold and 100-fold less abundant than the other functional marker genes, 

respectively (Fig. 3.2). Relative copy numbers of nirS were higher in ring pair E2/A2 than in 

the other two ring pairs while relative numbers of BamoA were higher in ring pair E3/A3 than 

in E1/A1. Comparison of AamoA and 16S rRNA gene copy numbers indicated that a large 

fraction of Archaea harbored a copy of the amoA gene (ratios close to one, data not shown). 

The ratio of denitrification genes nosZ/nirS was generally higher than the ratio of nosZ/nirK 

which was constantly low in all rings (Fig. S3.3). 
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Figure 3.2. Abundance of denitrifiers, dissimilatory ammonia reducers, nitrogen fixers, ammonia 
oxidizers and total bacteria and archaea based on quantitative PCR of the functional marker genes 
nrfA, nosZ, nirS, nirK, nifH, AamoA, BamoA) as well as 16S rRNA genes, respectively. Bars indicate 
the total gene copy numbers. (Mean ± SD, n=3). 
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Table 3.2. Abundance of functional marker genes (AamoA, BamoA nirK, nirS, nosZ, nrfA, 
and nifH) relative to total 16S rRNA gene abundance (archaeal + bacterial) at GiFACE for 
ring pairs E1/A1, E2/A2 and E3/A3. 

Ring 

Ratio copy number of functional marker gene/total 16S rRNA genes  

Denitrification Nitrification DNRA N-fixation 

nirK nirS nosZ 
Archaeal

amoA  
Bacterial

amoA  
nrfA nifH 

E1+A1  0.058a 

± 0.012 
0.003a 

± 0.001 
0.035a

± 0.01
0.028a

± 0.015 
0.0002a

± 0.0002
0.024a

± 0.004
0.052a 

± 0.006 

E2+A2  0.057a 

± 0.014 
0.010b

± 0.002 
0.028a

± 0.011
0.054a

± 0.018 
0.0007ab

± 0.0004
0.042a

±0.026
0.055a 

±0.011 

E3+A3  0.052a 

± 0.017 
0.006a 

± 0.002 
0.022a

± 0.006
0.048a

± 0.021 
0.0010b

± 0.0005
0.034a

± 0.013
0.044a 

± 0.016 
ab Identical letters indicate no significant differences (P > 0.05). Mean ±SD (n=6). 

 

3.4.4. Influence of soil characteristics on the composition of microbial communities 

involved in soil nitrogen cycling 

We used Canonical Correspondence Analysis (CCA) based on T-RFLP and 

pyrosequencing data to explore whether differences in community composition were related 

to CO2 levels or other soil parameters. CCA based on T-RFLP data clustered N-fixer 

communities (nifH) from single ring pairs according to the ring pair (Fig. 3.3). Communities 

of denitrifiers (nirK/nirS, nosZ), archaeal ammonia oxidizers (AamoA) and archaea in general 

(16S rRNA genes) were more distinct between ring pair E1/A1 and the other two ring pairs. 

No separation of communities from different ring pairs occurred for dissimilatory nitrate 

reducers (nrfA), for bacterial ammonia oxidizers (BamoA) as well as for bacteria in general 

(16S rRNA genes). CCA identified pH (16.4-29.6% of the variance; Table S3.5) and NH4
+-

concentration (12.9-30.7% of the variance; Table S3.5) as the most important soil parameters 

to shape the soil microbial communities because both exerted a significant impact on 

microbial community composition independent of the gene considered. Except for nosZ-

containing denitrifiers and dissimilatory nitrate reducers, NO3
--concentration (5.2-20.3% of 

the variance; Table S3.5) also determined the composition of the microbial communities. 
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Generally, lower pH and lower NO3
- as well as higher NH4

+ clearly separated communities of 

E1/A1 from those of the two other ring pairs (Table 3.1, Fig. 3.3). On the other hand, the level 

of CO2, whether elevated or ambient influenced only the composition of dissimilatory nitrate 

reducer communities in all three rings while the other communities were unaffected (Table 

S3.5). Exploring whether CO2 exerted an influence on community composition in single ring 

pairs showed that community composition of archaea in rings E1 and A1, of nirS-type 

denitrifiers and bacteria in the rings E2 and A2, and of dissimilatory nitrate reducers in ring 

E3 and A3 were influenced by the level of CO2 (Table S3.6). 
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Figure 3.3. Canonical correspondence analysis (CCA) biplot based on T-RFLP community analyses of  nirK (A), nirS (B), nosZ (C), AamoA (D), BamoA (E), 
nifH (F), nrfA (G), bacterial 16S rRNA genes (H) and archaeal 16S rRNA genes (I). Arrows indicate the direction and relative importance (arrow lengths) of soil 
parameters associated with the clustering of the communities. For each gene the most important environmental variables were displayed and highlighted in the 
graphic by an asterisk if significant in the model (ANOVA: P value < 0.05). Square, circle and triangle symbols represent ring pairs E1/A1, E3/A3 and E2/A2, 
respectively. Closed symbols represent fumigation with eCO2 and open symbols the control ring at aCO2. (n=3) 
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Since T-RFLP analysis does not necessarily separate different genotypes of functional 

marker genes, pyrosequencing analysis was performed additionally to provide in depth 

information on the composition of the communities. CCA analysis based on OTUs revealed 

that communities of nitrite reducers (nirK/nirS), N2O reducers (nosZ), N-fixers (nifH) and 

dissimilatory nitrate reducers to NH4
+ (nrfA) clustered primarily according to ring pairs (Fig. 

3.4). The archaeal and the archaeal ammonia oxidizer communities of ring pair E1/A1 were 

separated from the communities of the other two ring pairs (E2/A2, E3/A3). Communities of 

bacterial ammonia oxidizers did not cluster according to ring pairs. pH level and NH4
+-

concentration were the only soil parameters identified to have a significant impact on the 

composition of some microbial guilds. Archaeal ammonia oxidizers as well as the overall 

archaeal communities of the FACE rings were influenced by pH and NH4
+-concentration, 

nirK-type nitrite reducers were solely influenced by pH, N-fixers and nosZ-containing 

denitrifiers by NH4
+-concentration (Table S3.7). Communities of nirS-type denitrifiers and 

dissimilatory nitrate reducers were not influenced by any of the soil parameters determined. 

NO3
--concentration and CO2-level had no significant influence on the clustering of the 

microbial communities between ring pairs. However, communities of e.g. nitrite reducers 

exposed to eCO2 were separated from those exposed to aCO2 but whether the CO2 level 

exerted a significant influence on the communities of single rings could not be tested due to 

the lack of replicates.  
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Figure 3.4. Canonical correspondence analysis (CCA) biplot based on OTUs from 454 barcode 
labeled pyrosequencing of nirK (A), nirS (B), nosZ (C), nifH (D), AamoA (E), BamoA (F), nrfA (G) 
and archaeal 16S rRNA gene (H). Arrows indicate the direction and relative importance (arrow 
lengths) of soil parameters associated with the clustering of the several communities. For each gene 
most important environmental variables were displayed and highlighted in the graphic by an asterisk, 
if significant in the model (ANOVA: P value < 0.05). Square, circle and triangle symbols, represent 
ring pairs E1/A1, E3/A3 and E2/A2, respectively. Closed symbols represent fumigation with eCO2 and 
open symbols the control ring at aCO2. Circular shape was added manually to highlight the ring pairs.
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3.4.5. Composition of microbial communities involved in soil nitrogen cycling 

Applying a threshold similarity of 92 % (95% for archaeal 16S rRNA genes) to 

sequences obtained from pyrosequencing, coverage of the libraries was in the range of 77.2-

100% (Table S3.9). For amoA (archaeal and bacterial) and for archaeal 16S rRNA genes the 

number of operational taxonomic units (OTUs) was low with only 3-7 OTUs observed and 3-

8 OTUs estimated. Hence diversity (Shannon Diversity index HAamoA=0.90-1.59; 

HBamoA=0.64-1.37; H16S rRNA archaea=1.15-1.48) was also low. Evenness of the archaeal 

ammonia oxidizer community ranged from 0.47-0.64 and from 0.56-0.68 for the overall 

archaea communities since in all FACE rings they were dominated by only two amoA (OTU 

1, 51.5-71.1 %; OTU 2, 26.6-35.4%) as well as two 16SrRNA (OTU 1, 63.8-66.1%; OTU 2, 

20.7-29.4%) genotypes (Table S3.8). These genotypes were closely related to amoA and the 

16S rRNA gene from Candidatus Nitrosphaera gargensis and Cand. Nitrosphaera 

vienennensis, respectively. Evenness (E=0.25-0.50) was even lower for bacterial ammonia 

oxidizers which were dominated by BamoA genotypes (OTU 1, 75.4-84.2%; OTU 2, 14.2-

22.5%) closely related to amoA of Nitrospira spp..  

OTU numbers ranged at least one order of magnitude higher for marker genes for N-

fixation, denitrification and DNRA (Table S3.9). The communities were more diverse 

(HnifH=4.53-5.25; HnirK=4.11; HnirS=2.80-3.75; HnosZ=2.90-4.64; HnrfA=1.72-6.53) but also 

more even (EnifH=0.76-0.82; EnirK=0.62-0.71; EnirS=0.51-0.65; EnosZ=0.53-0.76; EnrfA=0.41-

0.87). The lowest evenness levels of E=0.41 and 0.47 referred to DNRA communities of rings 

E3 and A3.  

Generally, OTUs were most closely related to genes originating from as yet uncultured 

species but sequence identities of > 71% to genes from cultivated species known to be 

involved in N-cycling confirmed that these genes were indeed derived from organisms of the 

respective target group. OTUs representing species of Bradyrhizobium were most abundant 
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among N-fixers and nitrite reducers, while an OTU representing Rhodopseudomonas palustris 

dominated the nosZ-containing denitrifier communities. Communities of organisms capable of 

DNRA in ring pairs E1/A1 and E2/A2 were not dominated by single OTUs and sequences 

were most closely related to nrfA from Bacteroides spp., Anaromyxobacter spp., Sorangium 

spp. and Geobacter spp.  

 

 

3.5.  Discussion 

The mechanisms for higher N2O fluxes and other altered N transformation rates under 

elevated CO2 (Kammann et al., 2008) at the GiFACE facility are still not fully resolved, 

particularly the response of the soil microbial communities to eCO2. Therefore, the main goal 

of this work was to analyze the influence of eCO2 on the abundance and composition of 

microbial communities involved in N-cycling. Remarkably, soil parameters of the FACE 

rings under eCO2 did not differ significantly from those in rings under aCO2 while soil 

parameters differed between FACE ring pairs. Hence, the location of the ring pairs at the 

GiFACE facility determined the prevalent soil parameters. Although in our study soil water 

content was similar in the upper soil layer in all rings, previous observations showed that the 

water level in the deeper soil layers differed between the ring pairs and was highest in ring 

pair E2/A2, intermediate in ring pair E3/A3 and lower in ring pair E1/A1 (Lenhart, 2008). 

Likewise microbial abundance and community composition was very similar in a given ring 

pair. Wherever differences were detectable in community composition, they were related to 

differences in soil parameters determined by the location of the ring pairs while exposure to 

elevated CO2 for 18 years exerted almost no influence on the composition of the microbial 

communities in the soil.  
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Soil properties are known as the predominant factor driving the distribution of 

microorganisms and shaping communities (e.g. Zhou et al., 2008). Spatial heterogeneity at 

scales similar to the experimental site at GiFACE was previously found to determine spatial 

variation in e.g. soil denitrifier (Enwall et al., 2010) and ammonia oxidizer communities 

(Wessén et al., 2011).  

The impact of over 100 yr being under permanent grassland had presumably a more 

profound effect on the development of microbial communities than 18 years of moderate 

exposure to eCO2. We assume that the cultivation before fumigation with eCO2 led to the 

development of a microbial diversity adapted to prevailing soil conditions but which seems 

resilient to higher CO2 levels. Additionally, the increase from CO2 concentration from ~ 300 

ppm to 400 ppm in the last 100 yr is larger than the additional 20% increase under eCO2. In 

all rings a large fraction of sequences belonged to only a few OTUs which hence may 

represent the well-adapted key players of N-cycling in the soil. They occurred in almost 

identical relative abundance under eCO2 and aCO2 and differed only between the ring pairs. 

The stability of the microbial communities towards fumigation with elevated CO2 is in 

agreement with previous studies on different FACE facilities (Haase et al., 2008; Marhan et 

al., 2011; Nelson et al., 2010; Regan et al., 2011). Regan et al. (2011) also found stronger 

influence of the location of the FACE ring pairs in Giessen or the soil depth on the abundance 

of amoA, nirK, nirS and nosZ than of eCO2. Likewise, Marhan et al. (2011) observed a similar 

trend and that temporal variation and soil depth had a greater effect on the abundance of 

nitrate reducers and bacteria than eCO2. Haase et al. (2008) attributed the lack of a response 

of microbial community abundance to unaltered C-flux from the whole root system into soil at 

eCO2. At GiFACE, the additional C uptake also did not result in increased soil C 

sequestration. Instead, a loss of soil C, in together with the breakup of large macroaggregates, 

was detected and caused enhanced ecosystem respiration under eCO2 (Lenhart, 2008). 

Influence of higher labile C input by the plant-root system may occur only directly at the root-
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soil interface and would then be rapidly consumed by microorganisms attached or located 

around the root. It was also reported that fungal biomass was more strongly influenced by 

elevated CO2 than bacterial biomass (Drigo et al., 2007; Jones et al., 1998), but other studies 

found a negligible effect on fungal communities by eCO2 (Guenet et al., 2012; Lee et al., 

2015). In our study, dissimilatory nitrate reducer communities were composed differently 

between eCO2 and aCO2 and varied with CO2 level between rings as shown by CCA of T-

RFLP fingerprinting data. This agrees well with the finding by Müller et al. (2009) that 

DNRA rates were increased by ~ 150% under eCO2. Higher DNRA rates were supported 

under high labile C concentrations and low N (Nijburg et al., 1997; Tiedje, 1982). However, 

when using the higher resolution technique (454 pyrosequencing) differences in nrfA 

composition between eCO2 and aCO2 were again superimposed by variances between the ring 

pairs. 

Differences between microbial communities in soils exposed to elevated and ambient 

CO2 were also found by other studies (Deng et al., 2013; He et al., 2010; Xiong et al., 2015; 

Xu et al., 2013). Yet a comparison of results from different FACE facilities is ambiguous as 

the CO2 concentration applied (to an overall concentration of +50%) varied which may have 

resulted in a higher C-input into the soil by plants. Moreover, other study sites were N-rich 

(e.g. BioCON experiment site: Reich et al., 2001) in contrast to GiFACE site, which is 

strongly N-limited. How much C is provided by the plants differs between 20-50% of total 

CO2 uptake, depending on the plant population (Kuzyakov and Domanski, 2000) and only a 

small fraction can be used by the microorganisms for biomass production (van Veen et al., 

1991). Changes in community composition and abundance were also observed in rice root 

samples, but again a much higher elevation of CO2 was applied (Okubo et al., 2015). Thus, it 

remains unclear whether an elevation of CO2 by +20% per plot suffices for increased C-inputs 

into the rhizosphere. Events of large N2O fluxes were rare during 16 years of fumigation with 

eCO2. Only during the first two years after establishing the GiFACE facility a series of events 
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with N2O fluxes of more than 100 ng occurred in at least one ring and these events were 

related to a high N-status of the soil after fertilization and plant growth in spring.  

 

 

3.6.  Conclusion 

Our results lead to the conclusion that +20% eCO2 has little to no effect on the 

abundance and composition of microbial communities involved in N-cycling in soil. The main 

soil N2O-fluxes from the FACE rings in Giessen occurred concomitant with N fertilization 

and plant growth. Hence, future studies should investigate in more detail how elevated CO2 in 

conjunction with massive N inputs during fertilization impact microbial communities in the 

soil and whether this leads to a short-term activation of microbial groups involved in N-

cycling and hence higher production of N2O.  
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3.9. Supplementary Material 

Table S3.1.  Primers and PCR conditions for amplifying functional marker genes nirK, nirS, nosZ, nifH, amoA Archaea, amoA Bacteria, nrfA, 
archaeal and bacterial 16S rRNA gene for qPCR. 

Gene Primer sets Forward primer Reverse primer PCR conditions 
PCR product 
length (bp) 

References 

nifH 
PolF/ 
PolR 

TGCGA(C/T)CC(G/C)A
ARGC(C/G/T)GACTC 

AT(G/C)GCCATCAT(C/T)
TC(A/G)CCGGA 

95 C/15min, 6 cycles of (95C/15sec, 60C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 55C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

360 Poly et al., 2001 

nirK 
qnirK876/ 
qnirK1040 

AT(C/T)GGCGG(A/C/G)
A(C/T)GGCGA 

GCCTCGATCAG(A/G)TT 
(A/G)TGGTT 

95 C/15min, 6 cycles of (95C/15sec, 63C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 58C/30sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

165 Henry et al., 2004 

nirS 
qCd3af/ 
qR3cd 

AACG(C/T)(G/C)AAGG
A(A/G)AC(G/C)GG 

GA(G/C)TTCGG(A/G)TG 
(G/C)GTCTT(G/C)A(C/T)G
AA 

95 C/15min, 6 cycles of (95C/15sec, 63C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 58C/30sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

425 Kandeler et al., 2006 

nosZ 
nosZ2F/ 
nosZ2R 

CGC(A/G)ACGGCAA 
(G/C)AAGGT(G/C) 
(A/C)(G/C)(G/C)GT 

CA(G/T)(A/G)TGCA(G/T) 
(G/C)GC(A/G)TGGCAGA
A 

95 C/15min, 6 cycles of (95C/15sec, 65C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 60C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

267 Henry et al., 2006 

nrfA 
nrfA2aw/ 
nrfAR1 

CA(A/G)TG(C/T)CA 
(C/T)GT(C/G/T)GA 
(A/G)TA 

T(A/T)(A/C/G/T)GGCAT 
(A/G)TG(A/G)CA(A/G)TC 

95 C/15min, 6 cycles of (95C/15sec, 58C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 53C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

269 
Welsh et al., 2014; 
Mohan et al., 2004 

Archaeal amoA 
Arch-amoAF/ 
Arch-amoAR 

(G/C)TAATGGTCTGGC
TTAGACG 

GCGGCCATCCATCTGTA
TGT 

95 C/15min, 6 cycles of (95C/15sec, 58C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 53C/20sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

635 Francis et al., 2005 

Bacterial amoA 
amoA-1F/ 
amoA2R 

GGGGTTTCTACTGGT
GGT 

CCCCTC(G/T)G(G/C)AAA
GCCTTCTTC 

95 C/15min, 6 cycles of (95C/15sec, 65C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 60C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

491 Rotthauwe et al., 1997 

Archaeal  
16S rRNA gene  

Ar364f/ 
Ar934br 

CGGGG(C/T)GCA(G/C)
CAGGCGCGAA 

GTGCTCCCCCGCCAATT
CCT 

95 C/15min, 6 cycles of (95C/15sec, 56C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 52C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

570 
Burggraf et al., 1997;  
Großkopf et al., 1998 

Bacterial  
16S rRNA gene 

Ba519f/ 
Ba907r 

CAGC(A/C)GCCGCGG
TAA(A/C/G/T)(A/T)C 

CCGTCAATTC(A/C)TTT 
(A/G)AGTT 

95 C/15min, 6 cycles of (95C/15sec, 54C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 49C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

388 Lane, 1991 
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Table S3.2. Primers and PCR conditions for amplifying functional marker genes nirK, nirS, nosZ, nifH, amoA Archaea, amoA Bacteria, nrfA, 
archaeal and bacterial 16S rRNA gene for T-RFLP and 454 pyrosequencing (without FAM label). For 454 pyrosequencing the annealing 
temperature was increased by +2°C. 

Gene Primer sets Forward primer Reverse primer PCR conditions 
PCR product 
length (bp) 

References 

nifH 
PolF-FAM/ 
PolR 

TGCGA(C/T)CC(G/C)
AARGC(C/G/T)GAC
TC 

AT(G/C)GCCATCAT 
(C/T)TC(A/G)CCGGA 

95 C 5min, 10 cycles of (95C/30sec, 60C/40sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 55C/40sec, 72C/2min) 72C/10min. 360 Poly et al., 2001 

nirK 
nirK1F/ 
nirK5R-FAM 

GG(A/C)ATGGT 
(G/T)CC(C/G)TGGC
A 

GCCTCGATCAG(A/G)
TT(A/G)TGG 

95 C/5min, 10 cycles of (95C/30sec, 56C/40sec (-0.5°C every cycle), 
72C/40sec), 25 cycles (95C/30sec, 54C/40sec, 72C/40sec), 72C/7min. 

514 Braker et al., 1998 

nirS 
cd3aF-FAM/ 
R3cd 

GT(C/G)AACGT 
(C/G)AAGGA(A/G)A
C(C/G)GG 

GA(C/G)TTCGG(A/G)
TG(C/G)GTCTTG 

95 C/5min, 10 cycles of (95C/30sec, 56C/40sec (-0.5°C every cycle), 
72C/40sec), 25 cycles (95C/30sec, 54C/40sec, 72C/40sec) 72C/7min. 

425 Throbäck et al., 2004 

nosZ 
NosF-FAM/ 
NosR 

CG(C/T)TGTTC(A/C)
TCGACAGCCAG 

CATGTGCAG 
(A/C/G/T)GC(A/G)TG
GCAGAA 

95 C 5min, 10 cycles of (95C/30sec, 59C/90sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 56C/40sec, 72C/2min) 72C/10min. 

700 Klooset al., 2001 

nrfA 
nrfA2aw-FAM/ 
nrfAR1 

CA(A/G)TG(C/T)CA 
(C/T)GT(C/G/T)GA 
(A/G)TA 

T(A/T)(A/C/G/T)GGC
AT(A/G)TG(A/G)CA 
(A/G)TC 

95 C 5min, 10 cycles of (95C/30sec, 57C/40sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 53C/30sec, 72C/2min) 72C/10min. 269 

Welsh et al., 2014; 
Mohan et al., 2004 

Archaeal amoA 
Arch-amoAF-FAM/ 
Arch-amoAR 

(G/C)TAATGGTCTG
GCTTAGACG 

GCGGCCATCCATCT
GTATGT 

95 C 5min, 10 cycles of (95C/30sec, 57C/90sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 53C/50sec, 72C/2min) 72C/10min. 

635 Francis et al., 2005 

Bacterial amoA  
amoA-1F-FAM/ 
amoA2R 

GGGGTTTCTACTG
GTGGT 

CCCCTC(G/T)G(G/C)
AAAGCCTTCTTC 

95 C 5min, 10 cycles of (95C/30sec, 65C/40sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 60C/40sec, 72C/2min) 72C/10min. 

491 Rotthauwe et al., 1997 

Archaeal  
16S rRNA gene  

Ar109f/ 
Ar912r-FAM 

AC(G/T)GCTCAGTA
ACACGT 

GTGCTCCCCCGCCA
ATTCCT 

95 C 5min, 10 cycles of (95C/30sec, 58C/60sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 53C/60sec, 72C/2min) 72C/10min. 803 

Großkopf et al., 1998; 
Lueders and Friedrich, 
2000 

Bacterial  
16S rRNA gene 

Ba27f-FAM/ 
Ba907r 

GAGTTTG((A/C)TCC
TGGCTCAG 

CCGTCAATTC(A/C)T
TT(A/G)AGTT 

95 C 5min, 10 cycles of (95C/30sec, 49C/60sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 44C/30sec, 72C/2min) 72C/10min. 

898 
Weisburg et al., 1991; 
Lane, 1991 
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Table S3.3. Soil parameters of each FACE ring at GiFACE. 

Ring 

Soil characteristics 

pH 
NO3

- 
[µM/g dw] 

NH4
+ 

[µM/g dw]
H2O 
[%] 

C       
[%] 

H       
[%] 

N       
[%] 

C:N 
ratio 

E1 5.45a 3.02ab 0.37a 25.00a 4.50a 0.98ab 0.39ab 11.43a 
± 0.10 ± 0.32 ± 0.076 ± 2.00 ± 0.24 ± 0.02 ± 0.02 ± 0.10 

A1 5.66ab 2.14a 0.30ab 20.00a 3.56a 0.80b 0.32b 11.14a 
± 0.30 ± 0.99 ± 0.144 ± 3.00 ± 0.45 ± 0.09 ± 0.04 ± 0.57 

E2 6.04b 8.02b 0.23ab 20.00a 4.50a 1.05ab 0.44ab 10.14b 
± 0.12 ± 3.75 ± 0.081 ± 1.73 ± 0.75 ± 0.09 ± 0.07 ± 0.09 

A2 6.02b 4.71ab 0.16ab 22.67a 4.56a 1.03ab 0.45ab 10.04b 
± 0.16 ± 2.23 ± 0.002 ± 0.58 ± 0.83 ± 0.15 ± 0.07 ± 0.25 

E3 5.81ab 3.77ab 0.12b 23.33a 4.83a 1.17a 0.48ab 10.10b 
± 0.27 ± 0.53 ± 0.027 ± 3.06 ± 1.04 ± 0.13 ± 0.09 ± 0.19 

A3 6.11b 6.88ab 0.20ab 23.67a 5.35a 1.18a 0.51a 10.52ab

± 0.09 ± 1.40 ± 0.079 ± 6.03 ± 0.63 ± 0.09 ± 0.08 ± 0.69 

ab 
Identical letters indicate no significance differences (P > 0.05). Mean±SD (n=3). 
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Table S3.4. Abundance of functional marker genes relative to total bacterial and archaeal 
copy numbers in soil of single FACE rings at GiFACE. 

Ring 

Ratio copy number of functional marker gene/total 16S rRNA genes 

Denitrification  Nitrification  DNRA  N-fixation 

nirK nirS nosZ 
 Archaeal 

amoA 
Bacterial 

amoA 
 

nrfA 
 

nifH 

E1 0.059a 
± 0.014 

0.004a 
± 0.001 

0.032a 
± 0.002

0.029a 
± 0.111 

0.0002a 
± 0.0001

0.023a 
± 0.006

 0.054a 
± 0.008 

A1 0.078a 
± 0.010 

0.003a 
± 0.000 

0.039a 
± 0.016

0.028a 
± 0.067 

0.0003a 
± 0.0003

0.024a 
± 0.002

 0.050a 
±0.004 

E2 0.071a 
± 0.018 

0.009bc 
± 0.003 

0.034a 
± 0.012

0.047a 
± 0.114 

0.0009ab 
± 0.0005

0.055a 
±0.015

 0.047a 
±0.015 

A2 0.058a 
± 0.007 

0.012c 
± 0.003 

0.021a 
± 0.002

0.062a 
± 0.332 

0.0005ab 
± 0.0001

0.028a 
± 0.031

 0.062a 
± 0.005 

E3 0.047a 
± 0.022 

0.005ab 
± 0.003 

0.018a 
± 0.002

0.039a 
± 0.112 

0.0006ab 
± 0.0004

0.031a 
± 0.019

 0.043a 
± 0.027 

A3 0.057a 
±0.011 

0.006ab 
± 0.001 

0.027a 
± 0.005

0.056a 
± 0.085 

0.0013b 
± 0.0004

0.037a 
± 0.006

 0.046a 
± 0.006 

ab 
Identical letters indicate no significance differences (P > 0.05). Mean±SD (n=3). 
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Table S3.5. Canonical correspondence analysis to  determine the variance explained 
(percentage of total variation) in T-RFLP data based on the marker genes of the nitrogen cycle 
(nifH, nirK, nirS, nosZ, amoA of Archaea and Bacteria and nrfA) as well as of the  archaeal 
and bacterial community by environmental variables for based on T-RFLP. 

Community Variable % Variance explained P-value 

nifH 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

17.3 
14.5 
20.6 
4.6 

0.010* 
0.023* 
0.010* 
0.632 

nirK 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

23.0 
11.5 
14.0 
6.8 

0.005* 
0.031* 
0.015* 
0.231 

nirS 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

21.2 
13.0 
20.1 
6.1 

0.005* 
0.030* 
0.015* 
0.354 

nosZ 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

20.3 
9.5 
12.9 
6.3 

0.010* 
0.093 
0.046* 
0.372 

nrfA 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

16.4 
5.2 
14.5 
12.7 

0.010* 
0.539 
0.017* 
0.020* 

Archaeal amoA 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

24.5 
11.9 
22.5 
3.9 

0.005* 
0.056 
0.005* 
0.816 

Bacterial amoA 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

26.7 
16.8 
18.3 
5.9 

0.005* 
0.018* 
0.007* 
0.424 

Bacterial  
16S rRNA gene 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2

19.4 
12.5 
13.5 
6.4 

0.005* 
0.017* 
0.010* 
0.343 

Archaeal  
16S rRNA gene 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated or ambient CO2 

29.7 
20.3 
30.7 
10.2 

0.005* 
0.017* 
0.005* 
0.145 

*: significant. Significance was tested by ANOVA (P value < 0.05).  
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Table S3.6. Influence of elevated atmospheric CO2 analyzed by CCA for the marker genes of 
the nitrogen cycle (nifH, nirK, nirS, nosZ, nrfA amoA of Archaea and Bacteria ) as well as of 
archaeal and bacterial 16S rRNA gene community based on T-RFLP. The samples are divided 
by the organization in the FACE facility. 

Marker gene 
FACE ring pair 

E1/A1 E3/A3 E2/A2 
nirK 0.700 0.197 0.401 
nirS 0.201 0.082 0.033* 
nosZ 0.193 0.401 0.100 
nifH 0.087 0.600 0.100 
nrfA 0.151 0.010* 0.125 
Archaeal amoA 0.600 0.401 0.801 
Bacterial amoA 0.418 0.056 0.084 
Bacterial 16S rRNA gene 0.533 0.100 0.001* 
Archaeal 16S rRNA gene 0.043* 0.053 0.415 
*: significant. Significance was tested by ANOVA (P value < 0.05).  
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Table S3.7. Proportion of variance explained (percentage of total variation) by environmental 
variables determined by CCA for the marker genes of the nitrogen cycle (nifH, nirK, nirS, 
nosZ, amoA of Archaea and Bacteria and nrfA) as well as of archaeal and bacterial 16S rRNA 
gene community based on pyrosequencing. 

Community Variable % Variance explained P-value 

nifH 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

37.1 
30.3 
47.0 
6.1 

0.104 
0.165 

0.026* 
0.900 

nirK 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

40.7 
30.1 
14.0 
15.9 

0.043* 
0.154 
0.600 
0.231 

nirS 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

23.7 
19.9 
26.8 
6.4 

0.278 
0.347 
0.239 
1.000 

nosZ 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

40.4 
26.2 
51.6 
11.7 

0.083 
0.226 

0.015* 
0.600 

nrfA 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

20.7 
14.5 
40.9 
6.6 

0.360 
0.513 
0.075 
0.800 

Archaeal amoA 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

73.5 
35.3 
78.4 
7.8 

0.022* 
0.203 

0.007* 
0.800 

Bacterial amoA 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

13.9 
34.8 
10.5 
25.0 

0.550 
0.217 
0.635 
0.300 

Archaeal  
16S rRNA gene 

pH value 
NO3

- concentration 
NH4

+ concentration 
Elevated/ ambient CO2 

57.8 
23.7 
59.8 
18.4 

0.022* 
0.316 

0.017* 
0.500 

*: significant. Significance was tested by ANOVA (P value < 0.05)
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Table S3.8. Amino acid identities of in silico translated OTU representatives of nitrogen cycle associated genes retrieved from FACE facility to 
closely related sequences. 

Gene 
OTU 
(No.) 

Relative abundance of 
OTUs per ring pair  

(1/2/3 in %) 
Closest relative (accession No.) 

Identity 
(%) 

Closest cultured relative (accession No.) 
Identity 

(%) 

nifH 17 15.6/18.8/15.2 Uncult. bact. (KF847701) 92 Bradyrhizobium denitrificans LMG 8443 (AP012279) 88 
8 9.3/16.0/22.8 Uncult. bact. (HQ335832) 94 Azospirillum brasilense AWC8 (GQ161227) 86 
28 11.7/5.2/3.3 Uncult. bact. (KF847733) 99 Halorhodospira halophila DSM 244 (EF199951) 87 
7 1.6/6.1/9.8 Uncult. bact. (JX268406) 99 Azospirillum brasilense AWB4 (GQ161231) 89 
1 8.1/2.5/1.8 Uncult. bact. (KC667514) 99 Mesorhizobium huakuii (KF800056) 85 
3 7.8/2.4/1.7 Azospirillum brasilense Gr58 (FR745919) 90 Azospirillum brasilense Gr58 (FR745919) 90 
18 3.8/4.4/3.9 Uncult. bact. (JX865930) 90 Desulfovibrio magneticus RS-1 (AP010904) 84 
12 5.7/4.5/1.5 Uncult. soil bact. (DQ776436) 99 Gluconacetobacter diazotrophicus (AF030414) 90 
2 1.3/0.8/2.6 Uncult. bact. (AY601063) 93 Methylobact. sp. 4-46 (CP000943) 89 
6 1.0/1.9/3.6 Uncult. bact. (AY601063) 97 Azospirillum brasilense Sp245 (HE577327) 91 

nirK 8 23.7/23.1/23.9 Uncult. bact. (DQ783977) 99 Bradyrhizobium japonicum USDA 6 (AP012206) 85 
27 19.1/19.0/16.7 Uncult. bact. (DQ783979) 99 Bradyrhizobium sp. ORS278 (CU234118) 85 
19 5.3/13.1/8.2 Uncult. bact. (DQ304355) 100 Azospirillum lipoferum A5 (HQ288913) 94 
3 10.2/3.7/7.5 Uncult. bact. (DQ784024) 100 Bradyrhizobium japonicum SEMIA 5079 (CP007569) 81 
2 7.3/3.7/5.2 Uncult. bact. (DQ783839) 100 Mesorhizobium ciceri WSM1271 (CP002448) 85 
34 1.8/1.2/6.1 Uncult. bact. (DQ783865) 100 Rhodopseudomonas palustris TIE-1 (CP001096) 86 
4 2.2/3.3/1.9 Uncult. bact. (DQ783332) 99 Bradyrhizobium japonicum SEMIA 5079 (CP007569) 89 
25 2.0/2.2/2.5 Uncult. bact. (EF645006) 100 Bradyrhizobium sp. GSM-471 (FN600571) 83 
66 1.1/2.3/2.8 Uncult. bact. (AY249359) 99 Sinorhizobium fredii HH103 (HE616890) 82 
79 0.5/3.5/2.1 Uncult. bact. (DQ783944)  96 Rhodopseudomonas palustris TIE-1 (CP001096) 84 

nirS 2 53.8/32.6/42.3 Uncult. bact. (KC468992) 99 Bradyrhizobium oligotrophicum S58 (AP012603) 87 
6 14.1/13.9/11.3 Uncult. bact. (KC010976) 98 Thiobacillus denitrificans ATCC 25259 (CP000116) 80 
9 4.7/10.1/12.7 Uncult. bact. (AY583422) 95 Rubrivivax gelatinosus IL144 (AP012320) 79 
12 1.6/11.0/9.8 Uncult. bact. (HE818699) 88 Azoarcus aromaticum EbN1 (CR555306) 79 
3 0.7/3.3/1.9 Uncult. bact. (HE995561) 100 Bradyrhizobium oligotrophicum S58 (AP012603) 85 
4 3.0/0.7/0.7 Uncult. bact. (JN179277) 95 Rhodanobacter sp. D206a (AB480490) 92 
25 0.5/1.7/1.7 Uncult. bact. (KC010985) 94 Thiobacillus denitrificans ATCC 25259 (CP000116) 76 
80 0.3/2.5/0.8 Uncult. bact. (JN179307) 92 Pseudomonas stutzeri ATCC 17588 (CP002881) 76 
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22 0.2/1.4/2.1 Uncult. bact. (GU393213) 94 Rubrivivax gelatinosus IL144 (AP012320) 80 
28 0.3/1.2/1.9 Uncult. bact. (EU650311)  94 Azospirillum sp. TSO28-1 (AB545704) 83 

nosZ 1 58.5/38.1/42.6 Uncult. bact. (FN859706) 99 Rhodopseudomonas palustris HaA2 (CP000250) 91 
7 17.1/12.4/14.3 Uncult. bact. (FM993387) 99 Bradyrhizobium sp. GSM-467 (FN600633) 96 
8 2.2/5.6/4.8 Uncult. bact. (FN859751) 99 Bradyrhizobium japonicum USDA 110 (BA000040) 88 
2 0.9/3.4/5.3 Uncult. bact. (AY325632) 90 Bradyrhizobium japonicum USDA 110 (BA000040) 82 
5 2.8/3.4/2.2 Uncult. bact. (FN295856) 99 Bradyrhizobiaceae bact. D195a (AB480505) 96 
22 1.1/3.2/3.4 Uncult. bact. (FN859742) 99 Rhodopseudomonas palustris HaA2 (CP000250) 85 
23 0.4/3.8/2.7 Uncult. bact. (JQ038940) 93 Oligotropha carboxidovorans OM5 (CP002825) 83 
12 4.0/1.5/1.4 Uncult. bact. (FN295926) 94 Azospirillum sp. TSH10 (AB542250) 91 
3 1.2/2.4/2.3 Uncult. bact. (FN859774) 99 Oligotropha carboxidovorans OM5 (CP002825) 87 
28 0.4/3.8/2.7 Uncult. bact. (FN859905) 99 Bradyrhizobium japonicum USDA 110 (BA000040) 87 

nrfA 22 2.4/14.7/54.0 Bacteroides fragilis 638R (FQ312004) 73 Bacteroides fragilis 638R (FQ312004) 73 
19 0.5/1.4/28.0 Uncult. bact. (JX293771) 75 Anaeromyxobacter dehalogenans 2CP-1 (CP001359) 74 
30 9.4/12.3/0.9 Uncult. bact. (JX293735) 77 Anaeromyxobacter dehalogenans 2CP-1 (CP001359) 73 
23 12.2/2.8/0.4 Uncult. bact. (JX293808) 88 Sorangium cellulosum So ce 56 (AM746676) 80 
41 0.5/7.3/0.7 Uncult. bact. (JX293737) 88 Anaeromyxobacter dehalogenans 2CP-1 (CP001359) 77 
48 2.5/5.2/0.8 Geobacter sp. M18 (CP002479) 71 Geobacter sp. M18 (CP002479) 71 
7 4.6/1.4/0.3 Uncult. bact. (JX293797) 88 Anaeromyxobacter sp. Fw109-5 (CP000769) 79 
6 4.8/0.6/0.7 Uncult. bact. (JX293771) 80 Anaeromyxobacter sp. Fw109-5 (CP000769) 72 
16 0.8/4.2/0.5 Uncult. bact. (JX293798) 89 Sorangium cellulosum So ce 56 (AM746676) 80 
277 0.5/2.3/0.3 Uncult. bact. (JX293810) 89 Anaeromyxobacter dehalogenans 2CP-1 (CP001359) 79 

Archaeal  
amoA 

2 51.5/71.7/68.4 Uncult. arch. (JQ750224) 100 Cand. Nitrososphaera gargensis Ga9.2 (CP002408) 80 
3 35.4/26.6/30.0 Uncult. bact. (KJ645270) 100 Cand. Nitrososphaera gargensis Ga9.2 (CP002408) 81 
1 11.1/0.0/0.1 Uncult. Thaumarchaeote (KC962900) 100 Cand. Nitrososphaera gargensis Ga9.2 (CP002408) 91 
6 0.2/1.5/1.4 Uncult. Crenarchaeote (JF748278) 100 Cand. Nitrososphaera evergladensis SR1 (CP007174) 80 
7 0.8/0.0/0.1 Uncult. arch. (JQ750204) 99 Cand. Nitrososphaera evergladensis SR1 (CP007174) 79 
4 0.9/0.0/0.0 Uncult. arch. (KF709843) 100 Cand. Nitrososphaera gargensis Ga9.2 (CP002408) 81 

Bacterial  2 75.4/84.2/76.7 Uncult. bact. (KC010733) 100 Nitrosospira sp. Wyke8 (EF175099) 99 
amoA 1 16.4/14.2/22.5 Uncult. ammonia-oxidizing bact. 

(HQ638973) 
100 Nitrosospira sp. Nsp12 (AY123823) 97 

 15 5.1/0.4/0.3 Uncult. ammonia-oxidizing bact. 
(KC454074) 

99 Nitrosospira sp. Nsp65 (AY123839) 93 

 6 2.0/0.6/0.2 Uncult. ammonia-oxidizing bact. 100 Nitrosospira sp. CT2F (AY189143) 99 



Chapter III 
Influence of eCO2 on microbial communities 

143 

(JF936483) 
 27 0.5/0.1/0.0 Uncult. bact. (KC010732)  100 Nitrosolobus multiformis (AF042171) 100 

Archaeal  1 64.3/66.1/63.8 Uncult. thaumarchaeote (KF276537) 99 Nitrososphaera viennensis EN76 (CP007536) 94 
16S rRNA 2 29.4/20.7/25.2 Uncult. thaumarchaeote KF275841) 99 Nitrososphaera viennensis EN76 (CP007536) 96 
gene 6 5.7/10.9/9.9 Uncult. arch. (EF023033) 99 Cand. Nitrososphaera evergladensis SR1 (CP007174) 96 
 3 0.4/0.8/0.0 Uncult. arch. (KM273713) 97 Cand. Nitrososphaera evergladensis SR1 (CP007174) 100 
 56 0.2/0.2/0.3 Uncult. soil archaeon (HM224540) 99 Cand. Methanomethylophilus alvus Mx1201 

(CP004049) 
83 

   



Chapter III 
Influence of eCO2 on microbial communities 

144 

Table S3.9. Analysis of in silico-translated amino-acid sequences of representatives of 
nitrogen cycle associated genes derived from GiFACE 

Gene 
marker 

Threshold 
similarity (%) 

FACE 
ring 

No. of 
sequences 

Good’s 
coverage (%)a 

No. of OTUs 
observed 

No. of OTUs 
estimatedb 

Hc Ed 

nifH 92 E1 521 93.9 66 106 4.84 0.80 
  A1 576 89.6 80 208 5.05 0.80 
  E2 756 92.5 83 164 5.07 0.80 
  A2 733 91.8 85 179 5.25 0.82 
  E3 431 92.8 61 122 4.53 0.76 
  A3 778 93.2 67 153 4.55 0.75
         
nirK 92 E1 881 94.3 108 178 4.82 0.71 
  A1 1196 94.8 99 180 4.11 0.62 
  E2 1275 95.5 98 176 4.21 0.63 
  A2 904 94.5 93 178 4.39 0.67
  E3 2075 95.8 103 215 4.61 0.69 
  A3 2370 96.3 108 210 4.31 0.64 
         
nirS 92 E1 607 96.7 46 80 2.96 0.54 
  A1 1373 97.6 45 84 2.80 0.51 
  E2 2004 97.5 50 117 3.65 0.65 
  A2 1324 97.3 53 108 3.75 0.65 
  E3 1909 98.4 43 92 2.81 0.52 
  A3 2384 98.2 52 106 3.60 0.63 
         
nosZ 92 E1 432 92.4 57 107 3.40 0.58 
  A1 840 95.4 44 100 2.90 0.53 
  E2 1247 95.3 70 137 4.64 0.76 
  A2 1073 95.1 62 128 4.27 0.72
  E3 1196 95.6 57 121 3.96 0.68 
  A3 1510 95.3 74 151 4.50 0.72 
         
nrfA 92 E1 1147 77.2 182 559 6.53 0.87 
  A1 4999 86.1 177 596 6.35 0.85 
  E2 5015 88.5 154 570 5.85 0.80 
  A2 4778 87.3 154 590 5.78 0.80 
  E3 6928 98.8 19 60 1.72 0.41 
  A3 6583 95.0 60 233 2.80 0.47 
     
Archaeal  92 E1 586 99.7 7 8 1.59 0.58 
amoA  A1 2269 100.0 5 5 1.31 0.58 
  E2 2137 100.0 4 4 0.85 0.47 
  A2 565 100.0 3 3 1.02 0.64 
  E3 2966 99.9 4 4 0.90 0.52 
  A3 3547 100.0 4 4 1.08 0.54 
         
Bacterial  92 E1 1119 99.9 4 4 0.79 0.42 
amoA  A1 1099 100.0 7 7 1.37 0.50 
  E2 2170 100.0 5 6 0.93 0.43 
  A2 2839 100.0 4 5 0.75 0.38 
  E3 1044 99.9 5 6 0.80 0.35 
  A3 815 99.6 6 8 0.64 0.25 
         
Archaeal  95 E1 827 99.8 3 3 1.15 0.68 
16S rRNA  A1 2241 99.9 4 5 1.22 0.61 
gene  E2 201 99.0 5 6 1.41 0.59 
  A2 191 99.5 5 5 1.27 0.56 
  E3 249 99.6 4 4 1.15 0.63 
  A3 320 100.0 5 5 1.48 0.67 
a Percent libaray coverage (Good’s coverage): C = (1-ns/nt) × 100, where ns is the number of OTUs that occur only once and 
nt is the total number of sequences. 
b Chao 1 richness. 
c Shannon diversity index. 
d Species evenness   
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Figure S3.1. Soil moisture concentration for events in which the N2O fluxes reached more than 100 
µg (m2×h)-1 in at least one ring between the years 1997–2009: (A) Mean soil moisture concentrations 
at elevated (E) and ambient (A) CO2. (B)–(D) in the three ring pairs (B, E1/A1; C, E3/A3; D, E2/A2) 
between 1997 to 2009.   



Chapter III 
Influence of eCO2 on microbial communities 

146 

 

Figure S3.2. Precipitation at GiFACE for events in which the N2O fluxes reached more than 100 µg 
(m2×h)-1 in at least one ring from 1997–2009. 

 

 

Figure S3.3. Ratios in copy numbers of denitrification genes nirS/nirK, nosZ/nirS and nosZ/nirK in 
single FACE rings. (mean ± SD, n=3). 
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Figure S3.4. OTU based analyses of barcode labeled 454 pyrosequencing data of amoA Archaea (A), 
amoA Bacteria (B) and 16S rRNA gene of Archaea (C) retrieved from FACE facility soil samples as 
hierarchical cluster analysis by using the statistical program R and Ward’s minimum variance method 
(upper part) and as relative abundance bar diagram (bottom part). OTUs are calculated with 8% 
threshold distances from rarified data sets. All OTUs that were displayed in the relative abundance 
graphic had at least a relative abundance of 1% in average, all other OTUs were gathered together and 
listed as < 1% in the graphic. Please note that the same color coding for different structural genes does 
not indicate whether or not such genes were derived from the same organisms. 

 

 

Figure S3.5. OTU based analyses of barcode labeled 454 pyrosequencing data of nirK (A), nirS (B) 
and nosZ (C) retrieved from FACE facility soil samples as hierarchical cluster analysis by using the 
statistical program R and Ward’s minimum variance method (upper part) and as relative abundance 
bar diagram (bottom part). OTUs are calculated with 8% threshold distances from rarified data sets. 
All OTUs that were displayed in the relative abundance graphic had at least a relative abundance of 
1% in average, all other OTUs were gathered together and listed as < 1% in the graphic. Please note 
that the same color coding for different structural genes does not indicate whether or not such genes 
were derived from the same organisms.   
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Figure S3.6. OTU based analyses of barcode labeled 454 pyrosequencing data of nrfA (A) and nirS 
(B) retrieved from FACE facility soil samples as hierarchical cluster analysis by using the statistical 
program R and Ward’s minimum variance method (upper part) and as relative abundance bar diagram 
(bottom part). OTUs are calculated with 8% threshold distances from rarified data sets. All OTUs that 
were displayed in the relative abundance graphic had at least a relative abundance of 1% in average, 
all other OTUs were gathered together and listed as < 1% in the graphic. Please note that the same 
color coding for different structural genes does not indicate whether or not such genes were derived 
from the same organisms. 
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4. Microbial response to eCO2 and N-fertilization 

4.1. Abstract 

Under elevated of atmospheric CO2 (eCO2) mixing ratios, N2O emission increased 

more than two folds compared to ambient CO2 (aCO2). Highest N2O fluxes occurred in spring 

during the plant growth period when N-fertilizer was applied. However, the underlying 

mechanisms are not fully resolved yet. Thus, identification and quantification of various 

interactions among soil C- and N-pools, plants and soil microbial communities is the 

prerequisite to understand the response of ecosystems to eCO2. We performed a 

comprehensive study which aimed at linking N-transformation rates, nutrient fluxes, gaseous 

emission (CO2, CH4 and N2O) to the transcriptional response of microbial communities 

involved in N-cycling. The study was conducted at the Free Air Carbon Enrichment site in 

Giessen (GiFACE) under field conditions. Higher N2O fluxes under eCO2 after fertilization 

were attributed to denitrification and correlated with the transcriptional activation of nirS, a 

functional marker gene for denitrification. This stimulation may be triggered by higher 

availability of labile C in the rhizosphere under eCO2 due to increased plant biomass and 

photosynthesis. Hence, this minor part of the microbial communities involved in N-

transformation seems to be sufficient to sustainably influencing the N2O emission. 
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4.2. Introduction 

Due to anthropogenic influences, atmospheric carbon dioxide (CO2) concentration has 

increased dramatically from 280 to 400 ppmv since the industrial revolution. It will continue 

to rise by about 1% per year and is calculated to double in the coming century (IPCC, 2013) 

causing well-known climatic effects (IPCC, 2013). Direct effects of elevated concentrations 

of atmospheric CO2 (eCO2) on soil microbial communities can be excluded since CO2 

concentrations in soil atmosphere are naturally high (Gobat et al., 2004; He et al., 2012). 

However, since approximately 40% of photosynthetically fixed C by plants were estimated to 

be transferred to soil via rhizodeposition (Bais et al., 2006; Jones et al., 2009; van Veen et al., 

1991). Altered soil carbon pools and higher C:N ratios in the soil (Nie et al., 2015) are in turn 

known to affect microbial community dynamics (Denef et al., 2007; He et al., 2012). 

eCO2 has significant impacts on N-transformation rates in soil (Kammann et al., 2008; 

Müller et al., 2009). Observations from Giessen Free Air Carbon Dioxide Enrichment 

(GiFACE) facility (since 1998, ongoing) with the worldwide longest continuous trace gas 

emission (CO2, methane (CH4), nitrous oxide (N2O) data set, showed that eCO2 (approx. 20% 

above ambient) influenced both C- and N-cycling in the soil leading to a more than two-fold 

increase of N2O emissions under eCO2 (Kammann et al., 2008). In soils, denitrifiers and 

ammonia oxidizers are the main producers of N2O (Conrad, 1996, Butterbach-Bahl et al., 

2013) and enhanced N2O emissions may be due to an altered N2O:N2 ratio during 

denitrification (Regan et al., 2011) or due to differences in gross N-transformation rates 

between eCO2 and an ambient atmospheric CO2 (aCO2) control (Müller et al., 2004; 2009; 

Rütting et al., 2010). Moreover, a 15N-tracing model based on the dataset from GiFACE 

revealed that dissimilatory nitrate reduction to ammonium (DNRA) rates increased by 141% 

along with a decrease to almost zero of the rate of heterotrophic nitrification (ONrec) (Müller et 

al., 2009). Ammonium concentrations were 17% higher and the amount of nitrate was 
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significantly lower under eCO2 as compared to aCO2 (Müller et al., 2009). Since N-

transformations reflect the activity of the underlying microbial communities, we hypothesized 

that eCO2 altered the abundance and composition of microbial communities involved in N-

cycling in soils and thus ecosystem functioning. However, previous studies exploring their 

potential functional activity are not consistent and eCO2 affected the abundance and/ or 

community composition of ammonia oxidizers, denitrifiers, dissimilatory nitrate reducers 

(DNRA), and N-fixers only in some instances (He et al., 2010; 2012; 2014; Xu et al., 2013; 

Lesaulnier et al., 2008; Regan et al., 2011; Horz et al., 2004).  

Previous results from GiFACE showed that in two out of three replicate FACE rings 

the ratio of N2O reducers to nitrite reducers was lower under eCO2 (Regan et al., 2011) and 

the composition of the dissimilatory nitrate reducer (DNRA) community was altered under 

eCO2 (Brenzinger et al., in preparation) which may have implications on N2O emissions 

(Philippot et al., 2011) and N-transformations (Müller et al., 2009), respectively. However, 

soil microbial communities involved in N-cycling at GiFACE were mainly shaped by 

differences in soil physical and chemical factors rather than by eCO2 (Brenzinger et al., in 

preparation) which cannot explain the elevated N2O fluxes and altered N-transformations 

under eCO2. Since the highest N2O fluxes at GiFACE occurred mainly in spring during the 

plant growth period when the soil was fertilized (Kammann et al., 2008) we hypothesized that 

prompted by a close linkage between C- and N-cycling short-term responses of an overall 

stable microbial community accounted for the pronounced temporary alterations in N-cycling 

under eCO2. We used a comprehensive approach to study N-transformation rates, nutrient and 

gas fluxes (CO2, CH4 and N2O) including the dynamics of the transcriptionally active 

microbial community involved in N-cycling. We assumed that studying transcriptional 

activation of functional marker genes provides a link to the activity of the enzymes encoded 

helping to elucidate the response of microbial communities to eCO2. Shedding light on the 
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various interactions among soil C- and N-cycling, among plants and soil microbial 

communities will be crucial to understand the response of ecosystems to eCO2.  

 

 

4.3. Materials & Methods 

4.3.1. Site description and sampling 

Soil samples were collected at the GiFACE experimental site (50°32’N and 8°43.3’E; 

172 m a.s.l.) near Giessen, Germany. CO2 fumigation at GiFACE started on a grassland site in 

May 1998 (> 100 years) to study the response of a semi-natural grassland to long-term, 

moderate atmospheric CO2 enrichment. The whole facility consists of six plots, each with 8 m 

internal diameter. Two plots build one set each with an ambient (aCO2) and an elevated 

(eCO2) CO2 plot. The aCO2 plots receive 400 ppm CO2 and the eCO2 plots are fumigated with 

CO2 20% above ambient air to 480 ppm. The three sets differ in soil moisture concentration 

and exhibit a moisture gradient, which is generated by the gradual terrain slope in the 

direction of the rivulet Lückebach as well as varying depths of the subsoil clay layer. In the 

following, the sets along the soil moisture gradient are referred to as blocks and are 

designated as A1 and E1, aCO2 and eCO2, respectively (DRY), A3 and E3, aCO2 and eCO2, 

respectively (MED) and A2 and E2, aCO2 and eCO2, respectively (WET). For at least 100 

years, the grassland has not been ploughed. Since several decades, it was managed as a hay 

meadow with two cuts per year, and fertilized in mid-April with granular mineral calcium-

ammonium-nitrate fertilizer at the rate of 40 kg N ha-1 yr-1. Before 1996, fertilizer was applied 

at a rate of 50–100 kg N ha-1 yr-1 (Kammann et al., 2008). A more detailed description of the 

FACE facility can be found in several publications (Jäger et al., 2003; Kammann et al., 2008; 

Regan et al., 2011). 
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In March 2013 in each of the six ring plots two subplots for 15N labelling (60×90 cm) 

and one overlapping subplot for 13C labelling were installed for a pulse labelling experiment 

(see also Moser et al., in preparation). Each 60×90 cm big subplot contained an area to be 

able to take 10 times plant and soil samples, a metal frame (38×38 cm) inserted about 8 cm 

into the ground for static chamber (40×40×20 cm) gas flux measurements. Within the 70×70 

cm subplot remained an area where no 15N labelled fertilizer but pure NH4NO3 was applied 

later on, which was used to take samples to analyse the microbial community and activity 

during the labelling experiment. 

Gas samples (CO2, CH4 and N2O) as well as soil samples (0-7.5 cm depth and 4 cm 

diameter) were taken directly before the 13CO2 pulse labelling started. At 7 am on 7th of May 

2013 transparent fumigation chambers (70×70×40 cm) were put over one of the subplots per 

ring and fumigated for 6 hours with 13C-labeled CO2 in air. The CO2 concentration was set to 

390 ppm for A rings and 470 ppm for E rings (CK Special Gases Ltd, Leicester, UK). 

Directly after the 6 hours of fumigation, emptying the gas cylinders the 15N labelling started 

which equalled the annual fertilization of 40 kg N ha-2 yr-1. During application it was taken 

care that the labelled fertilizer solution was only applied between 0-10 cm aboveground, so 

that no 15N could sprinkle to plant leaves at more than 10 cm above the soil surface. The first 

subplot, which was in parts 13C labelled, was then labelled with NH4
15NO3 and the second 

with 15NH4NO3 solution. When the application of 15N fertilizer was finished in all rings, one 

sample of soil and plants per subplot was taken. After plant sampling a soil auger with 8 cm 

diameter and 7.5 cm deep were taken within the 10×10 cm square using a soil auger including 

soil sampling rings (Eijkelkamp Agrisearch Equipment, Giesbeek, Netherlands). The soil core 

was divided in the field into a 2.5 cm top soil disk and a 5 cm deep core that was transferred 

to the lab within the metal ring used with the corer. 
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For molecular analyses, rhizosphere samples were taken from each FACE ring from 

the 10×60 cm area to which pure non-labeled NH4NO3 solution was added. Sampling was 

repeated at eight time points, starting with the sample taken before start of fumigation with 

13CO2 (-11 h), then one sample was taken directly after the end of fumigation (0 h) before 

fertilizer was applied at dawn. Afterwards, samples were taken after 3, 6, 11, 23 and 46 h after 

the end of fumigation with labeled CO2. Samples were homogenized, separated in portions of 

0.35 g in 2 mL vials, directly deep-frozen in liquid N2 at the nearby Justus-Liebig University 

Giessen and stored at -80°C to ensure RNA stability. For further microbial community 

abundance and composition analyses the three eCO2 and aCO2 FACE rings were used as 

biological replicates and all data is shown as average of these three samples. 

A more detailed description of the experiment and the different sampling and 

measurements can be found in Moser et al. (in preparation). 

 

4.3.2. Nucleic acid extraction 

DNA and RNA were extracted soil using a modified SDS-based protocol 

(Breidenbach et al., 2015; Brenzinger et al., 2015; Bürgmann et al., 2003; Pratscher et al., 

2011). In brief, the cells were disrupted in a FastPrep®-24 Instrument (MP Biomedicals 

Germany GmbH, Eschwege, Germany) beat-beating system and nucleic acids were recovered 

from the supernatant using a phenol/chloroform/isoamyl (Sigma-Aldrich, Taufkirchen, 

Germany) alcohol extraction. Subsequently the nucleic acids were precipitated with 

polyethylene glycol (PEG) 6000 solution and redissolved in 100 µL of nuclease-free water 

(Thermo Fisher Scientific, Dreieich, Germany). An aliquot of 20 µL was stored at -20°C for 

further DNA-based molecular analyses. The remaining 80 µL were treated with RNase-free 

DNase (Qiagen, Hilden, Germany) to remove DNA. RNA was purified using the RNeasy 



Chapter IV 
Microbial response to eCO2 and N-fertilization 

156 

Mini Kit (Qiagen), precipitated with 96% EtOH and resuspended in 15 µL nuclease-free 

water to increase the RNA concentration and stored at -80°C. The integrity of the RNA was 

controlled via a 1.5% w/v agarose gel (Biozym Scientific GmbH, Hessisch Oldendorf, 

Germany) and RNA concentration was determined with NanoDrop1000 (Thermo Fisher 

Scientific). High quality RNA was reverse transcribed into cDNA using random hexamer 

primers (Roche, Mannheim, Germany) and M-MLV reverse transcriptase (Promega, 

Mannheim, Germany). For each sample RNA purity was verified by using a control reaction 

without reverse transcriptase. Finally, cDNAs and negative controls were stored at -20°C for 

further analyses. 

 

4.3.3. Quantification of functional marker and 16S rRNA genes 

Copy numbers of genes and transcripts encoding nitrite reductase (nirK/nirS), nitrous 

oxide reductase (nosZ), dinitrogenase (nifH), archaeal and bacterial ammonia monooxygenase 

(AamoA/BamoA), nitrite reductase of the dissimilatory reduction of nitrate to ammonia (nrfA) 

and archaeal and bacterial 16S rRNA were quantified by qPCR using primer pairs and 

temperature profiles shown in Table S4.1. A typical reaction mixture contained 12.5 µL of 

SybrGreen Jump-Start ReadyMix (Sigma-Aldrich), 0.5 µM of each primer, 3-4.0 mM MgCl2, 

2 µL of soil DNA or RNA except for amplification of nosZ, for which 3 µL of DNA/RNA 

was used. For the amplification of functional marker genes involved in nitrogen cycling 200 

ng BSA mL-1 were added to the reaction. All assays were performed in an iCycler (Applied 

Biosystems, Darmstadt, Germany). Standard curves were obtained using serial 10-fold 

dilutions of a known amount of plasmid DNA (108 to 101 gene copies) containing the 

respective gene fragment. Negative controls contained water instead of template DNA or 

RNA. PCR efficiencies for all assays were between 80-97 % with r2 values between 0.981 and 

0.998. In order to compare copy numbers across samples, numbers were calculated relative to 
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g dry weight of soil. To determine dry weight of soil, small amounts of soil (1-5 g) were dried 

at 65°C for 3 days. 

 

4.3.4. Analysis of community composition based on functional marker and 16S rRNA 

genes 

Community composition based on PCR amplified gene fragments of nirK/nirS, nosZ, 

AamoA/BamoA, nifH, nrfA and on archaeal and bacterial 16S rRNA genes was analyzed by 

terminal restriction length polymorphism (T-RFLP). Details on primers and conditions are 

given in Table S4.2. Quantity and quality of the PCR amplicons were analyzed by gel 

electrophoresis (1.5% w/v agarose) stained with 3 × GelRed Nucleic Acid Stain (Biotium, 

Köln, Germany). PCR products of the correct size were excised from the gel and purified 

using the DNA Wizard® SV Gel-and-PCR-Clean-up system (Promega, Mannheim, Germany) 

following the manufacturer´s instructions. Forward or reverse primers were 5’-6-

carboxyfluorescein labeled (Table S4.2) and amplicons were fragmented using specific 

restriction enzymes (FastDigest, Fermentas, St. Leon-Rot, Germany) HaeIII (nirK/nirS), HhaI 

(nosZ, nifH, nrfA and AamoA/BamoA) and MspI and Taq1, (archaeal and bacterial 16SrRNA, 

respectively). Afterwards, reaction products were purified using the SigmaSpin™ Sequencing 

Reaction Clean-up Columns (Sigma-Aldrich) according to the manufacturer’s instructions. 

Fluorescently labeled restriction fragments were separated on an ABI PRISM 3100 Genetic 

Analyzer sequencer (Applera Deutschland GmbH, Darmstadt, Germany) and the length of 

fluorescently labeled terminal restriction fragments (T-RFs) was determined by comparison 

with the internal standard (X-Rhodamine MapMarker® 30-1000 bp; BioVentures, 

Murfreesboro, TN) using GeneMapper software (Applied Biosystems). Peaks with 

fluorescence of > 1% of the total fluorescence of a sample and > 30 bp length were analyzed 

by aligning fragments to the internal DNA fragment length. A difference of less than two base 
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pairs in estimated length between different profiles was the basis for considering fragments 

identical. Peak heights from different samples were normalized to identical total fluorescence 

units by an iterative normalization procedure (Dunbar et al., 2001). 

 

4.3.5. Statistical analyses of collected data 

All statistical analyses and graphics were done using R version 3.0.1 (R Development 

Core Team, 2013). Significant differences of nirK, nirS, nosZ, nifH, nrfA and AamoA/BamoA 

and 16S rRNA gene and transcript abundance as well as the calculated ratios were assessed 

using ANOVA (P < 0.05). Differences/similarities in the composition of the transcriptionally 

active communities were analyzed using non-metric multidimensional scaling (NMDS). Non-

metric multidimensional scaling (NMDS) analyses were performed with the Bray-Curtis 

similarity index (including presence and relative abundance of T-RF) which iteratively tries to 

plot the rank order of similarity of communities in a way that community point distances are 

exactly expressed on a two-dimensional sheet. The reliability of the test was calculated by a 

stress-value. Stress > 0.05 provides an excellent representation in reduced dimensions, > 0.1 

very good, > 0.2 good, and stress > 0.3 provides a poor representation. All community 

composition data were Hellinger-transformed before analysis, in order to reach normal 

distribution. Differences in the composition of transcriptionally active and overall denitrifier 

communities at a given time point were tested by ANOSIM (P < 0.05). ANOSIM generates a 

value of R which is scaled to lie between -1 and +1, a value of zero representing the null 

hypothesis (no difference among a set of samples). In ANOSIM, comparison of pair-wise R 

values, measuring how separate groups are, on a scale of 0 (indistinguishable) to 1 (all 

similarities within groups are less than any similarity between groups) gives an interpretable 

number for the difference between groups. We interpreted R-values > 0.75 as well separated; 

R > 0.5 as overlapping, but clearly different and R < 0.25 as barely separable at all (Clarke, 
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2006). ANOVA, NMDS and ANOSIM) were done using package vegan version 2.0-5 

(Oksanen et al., 2012). All data were log-transformed prior to analysis to satisfy the 

assumptions of homoscedasticity and normally distributed residuals.  

 

 

4.4.  Results 

4.4.1. N2O fluxes from soil under eCO2 and aCO2 

N2O fluxes were low in the range of 1.2-1.3 µg N2O m-³*h-1 24 h before the start of 

the experiment and increased up to 400-fold reaching a peak 22 h after addition of the 

fertilizer (Fig 4.1). Afterwards within 70 h after fertilization, N2O fluxes decreased to the low 

rates measured prior to fertilizer application. During the first 64 h after addition of fertilizer 

fluxes were different between eCO2 and aCO2 (Fig 4.1). While the highest flux for soil under 

aCO2 reached only 97 µg N2O m-³*h-1, soils under eCO2 reached N2O fluxes from ~ 144 µg 

N2O m-³*h-1 equal to an increase of approximately 48%. In addition, fluxes from soil under 

eCO2 continued being higher compared to aCO2 in the year after the start of this experiment 

(Gorenflo et al., in preparation). A detailed overview on N2O, CO2 and CH4 flux data, data 

from the 15N tracing model and an overall model of this experiment can be found in Gorenflo 

et al. (in preparation) and Moser et al. (in preparation). 
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Figure 4.1. Average N2O fluxes from soil of three of FACE rings each under eCO2 and aCO2 during 
the first 100 hours after addition of the NH4NO3 fertilizer (arrow indicates addition of fertilizer) and 24 
h before the start of the experiment. (Mean ± SD, n=3). 

 

4.4.2. Abundance of the overall and transcriptionally active microbial communities 

involved in nitrogen cycling 

The size of the microbial communities remained rather stable during the experiment 

and if differences occurred such as for bacterial ammonia oxidizers (BamoA), dissimilatory 

nitrate reducers (nrfA) and N-fixers (nifH), they did not follow a clear trend (Fig. S4.1, Table 

S4.3). Community size was also similar between soils under eCO2 and the control under 

aCO2. Only the ratio of nosZ/(nirK+nirS) genes was higher under aCO2 after 6 h of fertilizer 

application indicating a higher abundance of N2O reducers relative to nitrite reducers (Fig. 

4.2).  



Chapter IV 
Microbial response to eCO2 and N-fertilization 

161 

 

Figure 4.2. Ratios nosZ/(nirK+nirS) of DNA copy numbers (A) and ratios nosZ/(nirK+nirS) of cDNA 
(B). Asterisks indicate significant differences between eCO2 and aCO2 (ANOVA: P value < 0.05). 
Grey bars = eCO2 plots; white bars = aCO2 plots (Mean ± SD, n=3). 

 

Transcriptional activation of all genes was in part affected by fertilization (nirS, nosZ 

and AamoA) with higher abundances towards the end of the experiment but again showing no 

clear trends if differences occurred (Table S4.4). Transcription of bacterial amoA was even 

below the detection limit. eCO2 also had no effect except on the abundance of nirS (Fig. S4.2) 

which was significantly higher in soil under eCO2 compared to aCO2 at all sampling times, 

except for 23 h after fertilizer application. Copy numbers of nirK and nosZ cDNA were higher 

under eCO2 but only before N-fertilizer were applied. Interestingly, the ratio of transcripts of 

nosZ/(nirK+nirS) was significantly higher at aCO2 between 0 h-23 h hence suggesting a 

higher potential for N2O reduction relative to nitrite reduction (Fig. 4.2). Relative 

transcriptional activation expressed as the ratio of cDNA/gene copy numbers confirmed these 
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results (Fig. 4.3). The level of relative transcriptional activity of nifH was almost one order of 

magnitude higher compared to the other genes. Despite high variability, cDNA copy numbers 

followed a trend of increased relative transcriptional activity beginning 6 h after fertilization. 

Relative transcriptional activity of nirK was initially higher under eCO2 compared to aCO2 

and decreased upon fertilizer application. In contrast, relative transcriptional activity of nirS 

peaked 6 h after fertilization and was higher under eCO2 between 3-23 h after fertilizer 

application. 

 

Figure 4.3. Ratios of cDNA/DNA copy numbers of functional marker genes involved in N-cycling. 
Bars indicate the total gene copy numbers. Asterisks indicate significant differences between eCO2 
and aCO2 (ANOVA: P value < 0.05). (A) nirK; (B) nirS; (C) nosZ; (D) nrfA; (E) nifH; (F) archaeal 
amoA. Grey bars = eCO2 plots; white bars = aCO2 plots. (Mean ± SD, n=3).   
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4.4.3. Impact of eCO2 and N-input on microbial community composition involved in N-

cycling 

Transcriptionally active microbial communities in soil from eCO2 rings and the 

control rings at aCO2 clustered separately except for nosZ-containing denitrifiers and N-fixers 

where no clear separation of the communities according to CO2 level occurred (ANOSIM: P < 

0.05) (Fig. 4.4). Except for dissimilatory nitrate reducers and archaea, transcriptionally active 

communities in the soil under both CO2 levels clustered closely together before N-fertilization 

(-11 h) and then diverged. In most cases (exception nosZ-containing denitrifiers) the 

transcriptionally active community under eCO2 showed a greater compositional variation over 

time than the community under aCO2 but there was no linear trend of succession. Generally, 

the differences in community composition were small and depended mainly on changes in the 

relative abundance of dominant T-RFs or the presence/absence of less dominant fragments 

(Fig. S4.3). 
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Figure 4.4. NMDS plots of microbial communities involved in N-cycling based on cDNA-derived T-
RFLP analysis at different sampling times. Data points represent averaged results of three replicate T-
RFLP analyses. Significant differences in the composition of transcriptionally active denitrifier 
communities at given time points were determined by ANOSIM (P < 0.05) and indicated in the graph 
with R- and P-values. (A) nirK; (B) nirS; (C) nosZ;(D) nrfA; (E) nifH; (F) archaeal amoA; (G) 
bacterial 16S rRNA; (H) archaeal 16S rRNA.   
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4.5.  Discussion 

The experiment was conducted at the Giessen FACE facility which allows studying 

the effects of eCO2 on soil microbial communities under field conditions. Previous studies at 

GiFACE showed that eCO2 and the concomitantly increased C-fluxes into the soil altered N-

transformations and caused feedback effects resulting in enhanced N2O fluxes (Kammann et 

al., 2008; Müller et al., 2009). N2O fluxes from soil under eCO2 were primarily increased 

during the plant growth period when the soil was fertilized in spring (Kammann et al., 2008). 

Therefore, we conducted a fertilization experiment applying 15N-labeled NH4NO3-fertilizer at 

the start of the growing season in May 2013 and aimed to link the functional response of the 

soil under eCO2 (e.g. N2O production, NO3
--and NH4

+-turnover) to the response of the soil 

microbial communities involved in these N-transformations. The size of the microbial 

communities involved in N-cycling (denitrification, DNRA, ammonia oxidation and N-

fixation) and of the bacterial and archaeal communities was not affected by CO2 and only in 

part by fertilization (Fig. S4.2, Table S4.4). Stability in community size was expected as the 

duration of the experiment (100 h) and rapid consumption by microorganisms and plants of 

the N-fertilizer applied (Moser et al., in preparation) presumably did not promote substantial 

growth of the soil microbial communities. However, after 6 hours of fertilizer application the 

nosZ/(nirK+nirS) ratio was higher in soil under aCO2 than under eCO2 indicating that shifts in 

the abundance of N2O reducers relative to nitrite reducers occurred (Fig. 4.2A). The 

nosZ(nirK+nirS) ratio is a good predictor for the potential of some soils to effectively reduce 

N2O (Morales et al., 2010; Philippot et al., 2011) but we assumed that addressing those parts 

of the microbial communities that responded to fertilization by activating gene expression 

would provide a more direct link to ecosystem functioning. Therefore, we studied transcripts 

(cDNA) of functional marker genes involved in N-cycling and observed that the level of 

atmospheric CO2 influenced the ratio of transcriptionally active N2O reducers relative to N2O 

producers (Fig. 4.3B) as well as the structure of the transcriptionally active soil microbial 
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communities (Fig. 4.4). Generally, addition of N-fertilizer had little effect on the abundance of 

transcripts of functional marker genes involved in N-cycling but the relative transcriptional 

activity (ratio of cDNA/DNA copy numbers) of denitrifiers was affected (Fig. 4.3). This 

agrees well with the results of the 15N-tracing model calculated based on the results of the 

present experiment (Gorenflo et al., in preparation; Moser et al., in preparation). The model 

revealed that N2O emissions as well as increased N2O fluxes at eCO2 originated primarily 

from denitrification processes in the soil. Application of fertilizer to soil eCO2 on one hand 

stimulated the relative transcriptional activity of nirS compared to aCO2 while on the other 

hand lowering relative transcriptional activity of nirK and nosZ to levels observed for aCO2. 

This was also reflected by lower numbers of transcriptionally active N2O reducers relative to 

N2O producers in soil under eCO2 and may hence explain the higher increase of N2O emission 

after the addition of N-fertilizer (Gorenflo et al., in preparation; Kammann et al., 2008; 

Müller et al., 2009;). Ratios of nosZ/(nirK+nirS) explained N2O fluxes in some studies 

(Billings and Tiemann, 2014; Čuhel et al., 2010; Morales et al., 2010; Philippot et al., 2011) 

but were dependent on habitat and environmental conditions (Morales et al., 2010; Philippot 

et al., 2011; Deslippe et al., 2014). Slightly increased nosZ/(nirK+nirS) ratios at aCO2 

occurred already before fertilizer was applied (0 h) which may be due to photosynthetic 

activity upon sampling. While the sample collected 11 h before N-fertilization was taken at 

dawn limiting photosynthesis to almost zero, the sample taken shortly before N-fertilization (0 

h) was collected under direct sunlight. Thus, transcription of nirS may have been stimulated 

through increased carbon input into the soil via increased plant photosynthesis and CO2 

uptake at daylight (Gorenflo et al., in preparation) and was then further enhanced by N-inputs 

and peaked 6 h after the fertilizer was applied.  

Why eCO2 stimulates transcription of nirS but not of nirK and nosZ is not resolved yet 

but responses to eCO2 in nirS-type denitrifier abundance were reported previously while nirK-

and nosZ-containing denitrifiers remained unaffected (He et al., 2010; 2012; Xu et al., 2013). 
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We speculate that due to increased N-availability along with rising labile C at the root-soil 

interface from eCO2, lead to a lower competitor situation between nirK- and nirS-type 

denitrifiers. Another hypothesis would be that the higher plant and root biomass lead possibly 

to more neutral/alkaline pH zones in the rhizosphere. This has been demonstrated in biofilms 

and by nondenitrifying colonies in agar (Li and Bishop, 2003; Mazoch and Kucera, 2002). In 

soils this phenomenon was not studied yet. However, during active uptake of NO3
- by plants 

and microbes an alkalinization (1 to 2 pH units) of soil close to roots has been demonstrated 

(Nye, 1981). Maybe, also bacteria which can consume oxygen are stimulated by increasing 

labile C input and thus lead to more anoxic zones in the soil. The presence of NO2
- and low 

oxygen partial pressure are the predominant exogenous signals that induce the activation of 

the denitrification system (van Spanning et al., 2007). Unfortunately, oxygen uptake was not 

measured during our experiment. Nevertheless, it is conceivable that a higher plant biomass 

and eCO2 correlates with an increased oxygen uptake rate. Both scenarios would provide 

habitats/niches for the less abundant nirS-type denitrifiers to be metabolically active. 

Recent studies of different FACE facilities world-wide observed effects on almost all 

functional marker genes involved in N-transformations (He et al., 2014; Lee et al., 2015; 

Okubo et al., 2015; Xiong et al., 2015). It is hypothesized that eCO2 indirectly affects 

microbial communities through increased root growth and changes in the quality and quantity 

of root exudates (Denef et al., 2007; Freeman et al., 2009; Rogers et al., 1998). Such plant 

effects were shown previously to shape the genetic makeup of microbial communities in 

experimental grassland sites (Bais et al., 2006; Baudoin et al., 2003; Bremer et al., 2009; 

Bürgmann et al., 2005) and were linked to functional differences in potential N2O emissions 

(Bremer et al., 2009). Our data showed that fertilization of the soil at distinct atmospheric 

CO2 levels activated transcription of parts of the denitrifier, DNRA, ammonia oxidizer and N-

fixer communities distinct from those at aCO2. However, only the transcription of nirS, nosZ 

and archaeal amoA was enhanced but not of the other genes studied which is surprising. 
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Transcriptional activation of archaeal amoA was enhanced through fertilization but not 

influenced by CO2 levels but the communities developed differently at distinct CO2 levels 

suggesting that eCO2 had an effect. Pratscher et al. (2011) demonstrated that ammonia-

oxidizing archaea in soil contributed significantly to ammonia oxidation and CO2 assimilation 

suggesting that nitrification may increase in soils under eCO2. On the other hand, a mixo- or 

heterotrophic lifestyle was also suggested for archaeal ammonia oxidizers (Nicole and 

Schleper, 2006). Hence, they may be also able to respond to plant-mediated indirect CO2 

effects rather than to eCO2 as CO2 concentrations in the soil atmosphere are naturally high 

(Gobat et al., 2004). Another surprising finding was that transcriptional activation of nrfA 

(composition of transcripts) responded differently to distinct CO2 levels though not by 

increased transcript abundance. However, the increase in DNRA rates by 141% in soil under 

eCO2 compared to aCO2 (Müller et al., 2009) suggests high levels of gene expression which 

could not be confirmed. Similarly we found no enhanced transcription of nifH upon 

fertilization despite differences in the composition in the transcriptionally active communities. 

A preceding study demonstrated that communities involved in N-cycling in the soil at 

GiFACE were mainly shaped by the prevalent soil parameters and only marginally by the 

level of CO2 (Brenzinger et al., in preparation). Here we could show that long-term 

fumigation with eCO2 influences the response of the soil microbial communities to N inputs 

via fertilization and compared to aCO2 distinct parts of the soil community were 

transcriptionally activated. However, the input of N by fertilization seems to exert short term 

effects on the expression of functional marker genes with consequences for N-transformations 

but which does not translate into the development of distinct communities under eCO2 in the 

long-term. 
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4.8.  Supplementary Material 

Table S4.1. Primer pairs and PCR conditions used for amplification of the functional marker genes nirK, nirS, nosZ, nifH, archaeal and bacterial 
amoA, nrfA, archaeal and bacterial 16S rRNA by qPCR. 

Gene Primer sets Forward primer Reverse primer PCR conditions 
PCR product 
length (bp) 

References 

nifH 
PolF/ 
PolR 

TGCGA(C/T)CC(G/C)A
ARGC(C/G/T)GACTC 

AT(G/C)GCCATCAT(C/T)
TC(A/G)CCGGA 

95 C/15min, 6 cycles of (95C/15sec, 60C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 55C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

360 Poly et al., 2001 

nirK 
qnirK876/ 
qnirK1040 

AT(C/T)GGCGG(A/C/G)
A(C/T)GGCGA 

GCCTCGATCAG(A/G)TT 
(A/G)TGGTT 

95 C/15min, 6 cycles of (95C/15sec, 63C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 58C/30sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

165 Henry et al., 2004 

nirS 
qCd3af/ 
qR3cd 

AACG(C/T)(G/C)AAGG
A(A/G)AC(G/C)GG 

GA(G/C)TTCGG(A/G)TG 
(G/C)GTCTT(G/C)A(C/T)G
AA 

95 C/15min, 6 cycles of (95C/15sec, 63C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 58C/30sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

425 Kandeler et al., 2006 

nosZ 
nosZ2F/ 
nosZ2R 

CGC(A/G)ACGGCAA 
(G/C)AAGGT(G/C) 
(A/C)(G/C)(G/C)GT 

CA(G/T)(A/G)TGCA(G/T) 
(G/C)GC(A/G)TGGCAGA
A 

95 C/15min, 6 cycles of (95C/15sec, 65C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 60C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

267 Henry et al., 2006 

nrfA 
nrfA2aw/ 
nrfAR1 

CA(A/G)TG(C/T)CA 
(C/T)GT(C/G/T)GA 
(A/G)TA 

T(A/T)(A/C/G/T)GGCAT 
(A/G)TG(A/G)CA(A/G)TC 

95 C/15min, 6 cycles of (95C/15sec, 58C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 53C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

269 
Welsh et al., 2014; 
Mohan et al., 2004 

Archaeal amoA 
Arch-amoAF/ 
Arch-amoAR 

(G/C)TAATGGTCTGGC
TTAGACG 

GCGGCCATCCATCTGTA
TGT 

95 C/15min, 6 cycles of (95C/15sec, 58C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 53C/20sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

635 Francis et al., 2005 

Bacterial amoA 
amoA-1F/ 
amoA2R 

GGGGTTTCTACTGGT
GGT 

CCCCTC(G/T)G(G/C)AAA
GCCTTCTTC 

95 C/15min, 6 cycles of (95C/15sec, 65C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 60C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

491 Rotthauwe et al., 1997 

Archaeal  
16S rRNA gene  

Ar364f/ 
Ar934br 

CGGGG(C/T)GCA(G/C)
CAGGCGCGAA 

GTGCTCCCCCGCCAATT
CCT 

95 C/15min, 6 cycles of (95C/15sec, 56C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 52C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

570 
Burggraf et al., 1997;  
Großkopf et al., 1998 

Bacterial  
16S rRNA gene 

Ba519f/ 
Ba907r 

CAGC(A/C)GCCGCGG
TAA(A/C/G/T)(A/T)C 

CCGTCAATTC(A/C)TTT 
(A/G)AGTT 

95 C/15min, 6 cycles of (95C/15sec, 54C/30sec (-1°C every cycle), 
72C/30sec, 80°C/15sec), 40 cycles (95C/15sec, 49C/15sec, 72C/30sec, 
80°C/15sec), 60 to 95°C (+0.2°C/sec) for denaturation curve. 

388 Lane, 1991 
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Table S4.2. Primer pairs and PCR conditions used for amplification of the functional marker genes nirK, nirS, nosZ, nifH, amoA, archaeal and 
bacterial amoA, nrfA, archaeal and bacterial 16S rRNA gene for T-RFLP.  

Gene Primer sets Forward primer Reverse primer PCR conditions 
PCR product 
length (bp) 

References 

nifH 
PolF-FAM/ 
PolR 

TGCGA(C/T)CC(G/C)
AARGC(C/G/T)GAC
TC 

AT(G/C)GCCATCAT 
(C/T)TC(A/G)CCGGA 

95 C 5min, 10 cycles of (95C/30sec, 60C/40sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 55C/40sec, 72C/2min) 72C/10min. 360 Poly et al., 2001 

nirK 
nirK1F/ 
nirK5R-FAM 

GG(A/C)ATGGT 
(G/T)CC(C/G)TGGC
A 

GCCTCGATCAG(A/G)
TT(A/G)TGG 

95 C/5min, 10 cycles of (95C/30sec, 56C/40sec (-0.5°C every cycle), 
72C/40sec), 25 cycles (95C/30sec, 54C/40sec, 72C/40sec), 72C/7min. 

514 Braker et al., 1998 

nirS 
cd3aF-FAM/ 
R3cd 

GT(C/G)AACGT 
(C/G)AAGGA(A/G)A
C(C/G)GG 

GA(C/G)TTCGG(A/G)
TG(C/G)GTCTTG 

95 C/5min, 10 cycles of (95C/30sec, 56C/40sec (-0.5°C every cycle), 
72C/40sec), 25 cycles (95C/30sec, 54C/40sec, 72C/40sec) 72C/7min. 

425 Throbäck et al., 2004 

nosZ 
NosF-FAM/ 
NosR 

CG(C/T)TGTTC(A/C)
TCGACAGCCAG 

CATGTGCAG 
(A/C/G/T)GC(A/G)TG
GCAGAA 

95 C 5min, 10 cycles of (95C/30sec, 59C/90sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 56C/40sec, 72C/2min) 72C/10min. 

700 Kloos et al., 2001 

nrfA 
nrfA2aw-FAM/ 
nrfAR1 

CA(A/G)TG(C/T)CA 
(C/T)GT(C/G/T)GA 
(A/G)TA 

T(A/T)(A/C/G/T)GGC
AT(A/G)TG(A/G)CA 
(A/G)TC 

95 C 5min, 10 cycles of (95C/30sec, 57C/40sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 53C/30sec, 72C/2min) 72C/10min. 269 

Welsh et al., 2014; 
Mohan et al., 2004 

Archaeal amoA 
Arch-amoAF-FAM/ 
Arch-amoAR 

(G/C)TAATGGTCTG
GCTTAGACG 

GCGGCCATCCATCT
GTATGT 

95 C 5min, 10 cycles of (95C/30sec, 57C/90sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 53C/50sec, 72C/2min) 72C/10min. 

635 Francis et al., 2005 

Bacterial amoA  
amoA-1F-FAM/ 
amoA2R 

GGGGTTTCTACTG
GTGGT 

CCCCTC(G/T)G(G/C)
AAAGCCTTCTTC 

95 C 5min, 10 cycles of (95C/30sec, 65C/40sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 60C/40sec, 72C/2min) 72C/10min. 

491 Rotthauwe et al., 1997 

Archaeal  
16S rRNA gene  

Ar109f/ 
Ar912r-FAM 

AC(G/T)GCTCAGTA
ACACGT 

GTGCTCCCCCGCCA
ATTCCT 

95 C 5min, 10 cycles of (95C/30sec, 58C/60sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 53C/60sec, 72C/2min) 72C/10min. 803 

Großkopf et al., 1998; 
Lueders and Friedrich, 
2000 

Bacterial  
16S rRNA gene 

Ba27f-FAM/ 
Ba907r 

GAGTTTG((A/C)TCC
TGGCTCAG 

CCGTCAATTC(A/C)T
TT(A/G)AGTT 

95 C 5min, 10 cycles of (95C/30sec, 49C/60sec (-0.5°C every cycle), 
72C/2min), 25 cycles (95C/30sec, 44C/30sec, 72C/2min) 72C/10min. 

898 
Weisburg et al., 1991; 
Lane, 1991 

 

   



Chapter IV 
Microbial response to eCO2 and N-fertilization 

177 

Table S4.3. Abundance of functional marker genes for denitrification for aCO2 and eCO2, respectively. Analysis of variance (ANOVA) was 
performed to test for differences in copy numbers at different sampling times. 

Time 
[h] 

Denitrification  Nitrification  DNRA  N-fixation 

nirK  nirS  nosZ  AamoA  BamoA  nrfA  nifH 

eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2 

-11 4.95E+08A 4.76E+08A  2.02E+08A 2.20E+08A  1.76E+08A 3.58E+08A  1.58E+09A 8.14E+08A  3.84E+06A 4.93E+06A  3.93E+09A 3.38E+09A  5.13E+08AC 5.47E+08A 

± 2.35E+08 ± 2.39E+08  ± 1.47E+08 ± 1.53E+08  ± 6.98E+07 ± 2.73E+08  ± 6.58E+08 ± 1.04E+09  ± 2.42E+06 ± 1.68E+06  ± 1.97E+09 ± 1.73E+09  ± 6.38E+07 ± 5.69E+07 
                    

0 3.70E+08A 4.21E+08A  1.59E+08A 1.92E+08A  1.67E+08A 2.51E+08A  9.23E+08A 7.83E+08A  3.86E+06A 4.03E+06AB  2.83E+09A 3.77E+09A  4.29E+08ABC 4.88E+08AB 

± 1.53E+08 ± 2.00E+08  ± 1.05E+08 ± 1.41E+08  ± 5.01E+07 ± 1.79E+08  ± 3.68E+08 ± 5.00E+08  ± 1.00E+06 ± 2.29E+06  ± 2.04E+09 ± 2.29E+09  ± 4.67E+07 ± 8.45E+07 
                    

3 5.37E+08A 3.79E+08A  2.20E+08A 1.93E+08A  1.91E+08A 2.78E+08A  1.24E+09A 1.06E+09A  8.81E+06A 3.18E+06B  3.24E+09AB 2.01E+09AB  5.66E+08A 3.89E+08AB 

± 2.29E+08 ± 2.37E+08  ± 1.39E+08 ± 1.53E+08  ± 5.12E+07 ± 2.29E+08  ± 5.81E+08 ± 7.36E+08  ± 6.60E+06 ± 2.05E+06  ± 2.08E+09 ± 1.66E+09  ± 8.21E+07 ± 1.91E+08 
                    

6 4.34E+08A 3.54E+08A  2.24E+08A 1.73E+08A  1.69E+08A 2.58E+08A  1.46E+09A 7.50E+08A  4.23E+06A 4.27E+06AB  3.30E+09ABC 1.80E+09AB  4.43E+08ABC 3.42E+08B 

± 2.27E+08 ± 1.59E+08  ± 1.56E+08 ± 1.38E+08  ± 8.81E+07 ± 1.24E+08  ± 6.79E+08 ± 6.66E+08  ± 1.01E+05 ± 3.59E+06  ± 3.25E+09 ± 1.05E+09  ± 1.83E+08 ± 8.74E+07 
                    

11 4.23E+08A 4.42E+08A  1.84E+08A 1.57E+08A  1.42E+08A 2.54E+08A  7.91E+08A 8.70E+08A  2.83E+06A 2.57E+06 B  9.77E+08C 1.02E+09B  3.05E+08BC 3.57E+08B 

± 1.36E+08 ± 4.36E+07  ± 1.38E+08 ± 1.60E+08  ± 7.64E+07 ± 1.47E+08  ± 4.70E+08 ± 9.25E+08  ± 5.12E+05 ± 1.01E+06  ± 4.29E+08 ± 4.49E+08  ± 3.43E+07 ± 1.09E+08 
                    

23 4.43E+08A 4.13E+08A  2.14E+08A 2.19E+08A  1.87E+08A 2.67E+08A  6.19E+08A 7.78E+08A  5.63E+06A 4.17E+06AB  1.28E+09BC 1.30E+09AB  3.31E+08BC 3.57E+08B 

± 5.33E+07 ± 3.97E+07  ± 1.65E+08 ± 1.80E+08  ± 4.57E+07 ± 1.68E+08  ± 4.94E+08 ± 4.71E+08  ± 5.31E+06 ± 2.23E+06  ± 6.74E+08 ± 5.25E+08  ± 4.54E+07 ± 4.50E+07 
                    

46 4.81E+08A 3.72E+08A  2.01E+08A 2.10E+08A  1.99E+08A 2.62E+08A  9.98E+08A 1.00E+09A  6.15E+06A 3.13E+06AB  1.16E+09BC 1.37E+09AB  3.69E+08C 3.56E+08B 

± 1.23E+08 ± 8.59E+07  ± 1.41E+08 ± 1.57E+08  ± 1.73E+07 ± 1.73E+08  ± 3.74E+08 ± 7.14E+08  ± 3.27E+06 ± 1.54E+06  ± 7.59E+08 ± 6.18E+08  ± 3.24E+07 ± 7.55E+07 

A,B 
Identical letters behind the numbers indicate no significance differences (P > 0.05). n.d. = not detectable 
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Table S4.4. Abundance of reverse transcribed mRNA (cDNA) of functional marker genes for denitrification for aCO2 and eCO2, respectively. 
Analysis of variance (ANOVA) was performed to test for differences in copy numbers at different sampling times. 

Time 
[h] 

Denitrification  Nitrification  DNRA  N-fixation 

nirK  nirS  nosZ  AamoA  BamoA  nrfA  nifH 

eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2  eCO2 aCO2 

-11 4.80E+05A 1.56E+05A  1.29E+05A 3.57E+04AB  2.65E+05A 4.75E+04A  1.00E+06AB 1.09E+06A  n.d. n.d.  6.46E+06A 3.92E+06A  1.66E+06A 2.47E+06A 

± 3.71E+05 ± 1.65E+05  ± 8.16E+04 ± 3.73E+04  ± 2.33E+05 ± 1.20E+04  ± 6.27E+05 ± 1.68E+06     ± 4.43E+06 ± 1.93E+06  ± 1.83E+06 ± 2.06E+06 
                    

0 7.92E+05A 1.36E+05A  1.30E+05A 4.09E+04AB  9.87E+04A 1.54E+05AB  8.12E+05AB 1.07E+06AB  n.d. n.d.  1.76E+06A 2.90E+06A  1.41E+06A 1.01E+06A 

± 6.30E+05 ± 8.09E+04  ± 8.53E+04 ± 2.98E+04  ± 7.53E+04 ± 6.66E+04  ± 7.41E+05 ± 1.16E+06     ± 3.50E+05 ± 1.09E+06  ± 1.27E+06 ± 1.03E+06 
                    

3 3.81E+05A 1.12E+05A  2.67E+05A 1.44E+04AB  1.28E+05A 1.98E+05B  1.85E+06AB 1.87E+06AB  n.d. n.d.  5.18E+06A 3.19E+06A  2.69E+06A 2.09E+06A 

± 3.08E+05 ± 6.89E+04  ± 1.53E+05 ± 8.47E+03  ± 5.93E+04 ± 1.39E+05  ± 1.19E+06 ± 1.44E+06     ± 4.22E+06 ± 2.86E+06  ± 2.23E+06 ± 1.83E+06 
                    

6 1.93E+05A 1.53E+05A  1.71E+05A 3.12E+04AB  1.83E+05A 3.24E+05B  1.36E+06AB 2.37E+06B  n.d. n.d.  2.35E+06A 2.45E+06A  2.03E+06A 3.70E+06A 

± 1.07E+05 ± 1.93E+05  ± 1.42E+05 ± 2.15E+04  ± 1.82E+05 ± 2.80E+05  ± 2.89E+05 ± 2.30E+06     ± 2.02E+06 ± 1.82E+06  ± 2.54E+06 ± 3.86E+06 
                    

11 1.15E+05A 1.01E+05A  1.55E+05A 1.29E+04A  8.15E+04A 1.31E+05AB  1.59E+06AB 1.77E+06AB  n.d. n.d.  1.70E+06A 3.46E+06A  4.19E+06A 4.30E+06A 

± 5.42E+04 ± 3.91E+04  ± 1.21E+05 ± 9.97E+03  ± 2.34E+04 ± 6.51E+04  ± 1.10E+06 ± 1.51E+06     ± 5.39E+05 ± 1.27E+06  ± 3.79E+06 ± 3.69E+06 
                    

23 1.30E+05A 8.20E+04A  5.74E+04A 4.15E+04AB  8.95E+04A 1.82E+05AB  5.34E+05B 2.18E+06B  n.d. n.d.  2.68E+06A 4.32E+06A  1.48E+06A 2.84E+06A 

± 1.22E+05 ± 4.79E+04  ± 3.09E+04 ± 2.24E+04  ± 5.13E+04 ± 1.20E+05  ± 4.48E+05 ± 2.32E+06     ± 1.42E+06 ± 1.95E+06  ± 1.30E+06 ± 2.93E+06 
                    

46 3.52E+05A 1.87E+05A  2.48E+05A 5.12E+04B  6.25E+05B 4.63E+05B  2.28E+06A 2.90E+06B  n.d. n.d.  3.66E+06A 2.97E+06A  3.03E+06A 3.08E+06A 

± 1.48E+05 ± 5.21E+04  ± 8.97E+04 ± 2.96E+04  ± 1.07E+05 ± 2.92E+05  ± 9.11E+05 ± 3.44E+06     ± 1.43E+06 ± 1.66E+06  ± 2.66E+06 ± 4.31E+06 

A,B 
Identical letters behind the numbers indicate no significance differences (P > 0.05). n.d. = not detectable 
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Figure S4.1. Gene copy numbers of functional marker genes involved in N-cycling. Bars indicate the 
total gene copy numbers. Asterisks indicate significant differences between eCO2 and aCO2 (ANOVA: 
P < 0.05). (A) nirK; (B) nirS; (C) nosZ; (D) nrfA; (E) archaeal amoA; (F) bacterial amoA; (G) nifH. 
Grey bars = eCO2 plots; white bars = aCO2 plots. (Mean ± SD, n=3). 

 

 



Chapter IV 
Microbial response to eCO2 and N-fertilization 

180 

 

Figure S4.2. Transcript (cDNA) copy numbers of functional marker genes involved in N-cycling. Bars 
indicate the total cDNA copy numbers. Asterisks indicate significant differences between eCO2 and 
aCO2 (ANOVA: P < 0.05). (A) nirK; (B) nirS; (C) nosZ; (D) nrfA; (E) nifH; (F) archaeal amoA. Grey 
bars = eCO2 plots; white bars = aCO2 plots. (Mean ± SD, n=3). 
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Figure S4.3. T-RFLP profiles of functional marker genes involved in N-cycling at different sampling times. Left, average of three replicate samples from eCO2, 
right, aCO2. Different colors of the bars indicate relative abundance of single T-RFs. T-RFs with minimum 1% relative abundance in at least one sample are 
plotted (n=3). Numbers in the figure legend indicate the size of the T-RFs in base pairs. (A) nirK; (B) nirS; (C) nosZ; (D) nrfA; (E) nifH; (F) archaeal amoA; (G) 
bacterial 16S rRNA; (H) archaeal 16S rRNA. 
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Figure S4.3. continued.  
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Chapter V 

5. Discussion 

The nitrogen cycle and the corresponding pathways are very complex and hard to 

predict in their response to climate changes. However, a shift in N-cycling has far reaching 

consequences regarding emissions of trace gas emissions such as N2O and also management 

consequences to adapt to changing environmental conditions. Thus, it is of great interest to 

explore shifts in the N-transformations, N-balance and reactions associated with the impact of 

climate changes, to offer more accurate predictions. Of particular interest are the microbial 

mediated transformations causing emission of gaseous N-components in particular N2O, 

which has a global warming potential of 298 times that of CO2 (IPCC, 2013). Increasing CO2 

concentrations in the atmosphere or changes in the pH of agricultural fields due to 

anthropogenic influences often leads to changes in the N-transformation rates, along with an 

increase of N2O emission (Kammann et al., 2008; Müller et al., 2009). The contribution of the 

underlying microorganisms, which are responsible for the production of N2O, is at least 

controversial discussed. Unfortunately, many of the interactions between microorganisms and 

their contribution to N-transformation rates and N2O emission are not well understood and 

plenty of important interactions remain unclear. Therefore, the main objective of this thesis 

was to shed light on the interaction of the overall and active microbial communities with pH 

shifts elevated atmospheric CO2 in soils. 

In the first study, the impact of pH on denitrification kinetics, end product ratios and 

the underlying denitrifier community was explored. pH is one of the major factors influencing 

the emission of N2O produced by denitrification in agricultural soils (Liu et al., 2010; Raut et 

al., 2012; Šimek and Cooper, 2002). In those studies, an acidification of soils led to an 

increased N2O flux. However, little is known about direct influence and changes on the 
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composition and abundance of the overall and in particular on the transcriptionally active 

microbial community. Therefore, we approached these questions by a model community 

obtained by extracting microbial cells from a soil with an initial neutral pH, which was then 

incubated at acidic pH (Chapter II). Microbial community composition and abundance was 

assessed using molecular techniques (T-RFLP and qPCR) targeting marker genes of 

denitrification (nirK, nirS and nosZ). Further, the products of the denitrification pathway 

(NO2
-, NO, N2O and N2) were monitored using an analytical approach allowing the study of 

the synergy between denitrification rates and microbial dynamics. 

The second aim of this thesis was to shed light on the impact of increasing 

atmospheric CO2 concentrations on microbial communities involved in N dynamics under 

field conditions at GiFACE. One goal was to study the abundance and composition of the 

overall microbial community under eCO2 in comparison to aCO2 (Chapter III). In a more in 

depth approach the impact of eCO2 upon simultaneous addition of N-fertilizer on the 

transcriptionally active microbial communities involved in N-transformations in soil was 

studied (Chapter IV). Increasing N2O emissions under eCO2 were reported previously 

(Arnone III et al., 1998; Gorenflo et al., in preparation; Ineson et al., 1998; Kammann et al., 

2008; Mosier et al., 2002; Van Groenigen et al., 2011) suggesting feedback effects of eCO2 

on N-cycling in general and on denitrification in particular. However detailed understanding 

of the contribution by microorganisms promoting N2O emission under eCO2 is still marginal. 

To study the response of microbial communities adapted to eCO2 to fertilization community 

composition and abundance was assessed using molecular techniques (T-RFLP, 454 

pyrosequencing, qPCR) targeting several functional marker genes for pathways involved in 

N-transformations (BamoA, AamoA, nirK, nirS, nosZ, nifH and nrfA,) as well as bacterial and 

archaeal ribosomal 16S rRNA genes and transcripts. This project to monitor soil parameters, 

N-transformation/gaseous products in conjunction with molecular approaches was realized 
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through a close cooperation with the plant ecology department at the Justus-Liebig University 

Giessen. 

 

 

5.1. N2O emission controlled by microorganisms in soil 

Soils are the most important contributors of emitted N2O to the atmosphere 

(Thompson et al., 2012). Many chemical and physiological factors exist that control the fluxes 

of N2O from soils (Table 5.1). It is known that proximal regulators of denitrification, i.e. 

temperature, soil moisture, N-status, composition and abundance of microbial communities 

influence N2O production (Bateman and Baggs, 2005; Braker et al., 2010; Benoit et al., 2015; 

Dambreville et al., 2006; Enwall et al., 2005; Gödde and Conrad, 1999; Wertz et al., 2013). 

Distal regulators like soil type, microbial functional diversity and geography were suggested 

to determine the ability of different ecosystems to emit N2O as a response to changes in 

proximal regulators (Bonnett et al., 2013; Braker et al., 2012; Cosentino et al., 2013; Dörsch 

et al., 2012; Philippot et al., 2013). Morales et al. (2015) showed that distal factors like 

latitude or soil type are best suited to predict N2O emissions from varying environments, even 

though certain conditions (e.g. high NO3
- , high soil water content) have additional impact on 

emitted N2O (Table 5.1). 
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Table 5.1. Impact of environmental parameters on N2O emission caused by denitrification, DNRA and nitrification. 
Environmental 

parameters 
Increase/ 
Decrease 

Denitrification References DNRA References Nitrification References 

C:N ratio ↑ n.e.  Tiedje, 1982 n.e.  

Addition Fertilizer ↑ Dambreville et al., 2006; n.e.  Hallin et al., 2009 

NO3
- 

↑ 
Firestone, 1982 Tiedje, 1982; 1988 n.e. 

 

↓  

CO2 ↑  
Kammann et al., 2008; 
Chapter III and IV  

Müller et al., 2009; 
Chapter III and IV n.e.  

NH4+ 
↑ Indirect effect by 

increase NO3
- from 

nitrification 

 Indirect effect by 
increase NO3

- 
from nitrification 

 Roberstson, 1982a; 
1982b ↓   

Microbial community 
composition 

Differences in 
composition /  

Rich et al., 2003; Enwall et 
al., 2005; Hallin et al., 
2009; Braker et al., 2012; 
Chapter II, III and IV 

 Chapter III /  Smith et al., 2010 

Microbial community 
abundance 

↑ /  Dandie et al., 2008; Hallin 
et al., 2009; Morales et al., 
2010; Chapter II, III and 
IV 

No interaction Chapter III 
 

Hallin et al., 2009 
↓ /   

O2 partial pressure 
↑ Bergaust et al., 2008; 2011; 

van Spanning 
et al., 2007 

Tiedje, 1982; 1988 Conrad, 1996; van 
Spanning 
et al., 2007 ↓     

pH 
↑ Čuhel et al., 2010; Bakken 

et al., 2012; Chapter II 
Stevens et al., 1998 Cheng et al., 2013 

↓ 

Soil moisture 
↑ 

Bateman and Baggs, 2005 n.e.  
Bateman and 
Baggs, 2005 ↓ 

Temperature ↑  
Braker et al., 2010; Wertz 
et al., 2013 n.e.   

Benoit et al., 2015; 
Wertz et al., 2013 

n.e.: not evaluated; ↑↓: indicates increase/decrease of environmental parameter; : increase N2O emission; : decrease N2O emission. 
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Impact of acidic pH on N2O emission by denitrification 

pH is one of the key factors influencing denitrification control in soils as it affects 

denitrification rates, denitrification end product ratios, denitrifier community composition and 

abundance (Šimek and Cooper, 2002). In agricultural soil, intensive cropping systems (Raut et 

al., 2012) and repeated addition of N-fertilizer (Cheng et al., 2015) led to decreasing soil pH. 

This acidification then resulted in an accumulation of N2O produced by denitrification 

processes (Cai et al., 2012; Liu et al., 2010; 2014; Raut et al., 2012; Šimek and Cooper, 2002; 

Zhang et al., 2015). It was speculated that pH < 6.1 induces post-translational inhibition of the 

N2O reductase and therefore controls N2O emissions (Bergaust et al., 2010; Liu et al., 2014). 

However, this is not fully explained yet. Further, acidic pH in soil also negatively effects 

diversity of the denitrification gene pool compared to neutral soils (Čuhel et al., 2010; 2011; 

Fierer and Jackson, 2006; Braker et al., 2012). Expression of denitrification genes of a 

microbial community extracted from a soil with neutral pH was impaired during the 

incubation at acidic pH (Chapter II). A sequential and slightly enhanced transient 

accumulation of denitrification intermediates (NO, N2O) occurred under acidic pH. However, 

growth of nitrite- (nirK-type) and N2O-reducers (nosZ) was observed and only < 1% of 

available N accumulated as N2O and NO at low pH. Denitrifiers of the nirK-type present in 

the native community of the soil seemed to tolerate a broad range of pH levels as the 

composition of the growing community remained was unaltered during the incubation at low 

pH (Chapter II). We concluded that acid-tolerant or acidophilic denitrifier species 

maintained their functionality and thus fully converted NO3
- to N2 under extended incubation 

periods. Recent studies showed this for nosZ-type denitrifiers in acidic peatland soils (Palmer 

and Horn, 2012). At low pH, acid tolerant nosZ-containing denitrifiers seemed to functionally 

substitute N2O-reducers that were more prevalent in the initial community. Hence, in 

communities and ecosystems at different environmental conditions distinct species perform 

similar roles and may therefore be substitutable with little impact on ecosystem processes 
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(Rosenfeld, 2002). It is noteworthy that the reduction of nitrogen oxides which led to an 

increased pH was necessary for the reduction of nitrite by nirS-type denitrifiers. Moreover, 

the occurrence of e.g. N2O reduction in acidic soils can be explained by denitrification 

activity in neutral microsites as proposed by Liu et al. (2014). Consequently, soil denitrifier 

communities might be comprised of taxa differing in pH sensitivity, which jointly emulate the 

kinetic response of soils to pH changes. 

 

Impact of anthropogenic climate change on N2O emission from soil 

N2O emissions drastically increased through addition of N-fertilizer to soils. Smith et 

al. (2012) suggested that ~ 3-5% of annually introduced N into the soils is converted to N2O. 

Furthermore, anthropogenic induced climate change may cause feedback effects of N2O 

emissions because the biochemical processes responsible for N2O emissions are influenced by 

water content and temperature. For example, as soils temperature increases, microbial 

decomposition and CO2 emissions increase (Bond-Lamberty and Thomson, 2010), which can 

further led to higher N2O emission rates (Kammann et al., 2008). Studies on FACE facilities 

world-wide showed that elevation of atmospheric CO2 led to an increase of N2O fluxes from 

soils (Arnone III et al., 1998; Ineson et al., 1998; Kammann et al., 2008; Mosier et al., 2002; 

Van Groenigen et al., 2011). Moreover, enhanced CO2 concentration led to higher plant 

biomass production (Lenhart, 2008) and resulted in enhanced consumption of CO2 via 

photosynthesis (Keidel et al., 2015). Consequently, plants transfer higher amounts of carbon 

compounds into the soil via root exudates and rhizodeposition, leading to an additional input 

of C-compounds which can be used by microorganisms for their metabolism. Furthermore, 

higher CO2 availability altered N-transformations in soil, which resulted in higher N2O 

emission under eCO2 (Kammann et al., 2008; Müller et al., 2009). However, the underlying 

mechanism is not resolved yet. Recent studies were carried out to identify the contribution of 
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microorganisms to increased N2O fluxes under eCO2. It was speculated that differences in 

either altered N2O:N2 ratios during denitrification (Regan et al., 2011) or enhanced fungal 

activities were responsible for the enhanced N2O emissions (Denef et al., 2007). In our study, 

samples collected at GiFACE in spring showed only marginal effects of eCO2 on the 

abundance and composition of microbial communities involved in N-transformations 

(Chapter III). Our results indicate that the GiFACE grassland site harbors a relatively stable 

microbial community. Main differences occurred rather between soils from different sampling 

sites within the GiFACE than between soils under eCO2 and aCO2 (Chapter III). Just 

recently, a study suggested that geographic position or distal factors are the most important 

drivers for N2O emission (Morales et al., 2015). Only the composition of nitrate-reducers to 

ammonia (nrfA) was effected by eCO2 based on T-RFLP fingerprinting analyses which may 

explain the observed 141% higher DNRA rates under eCO2 at GiFACE (Müller et al., 2009). 

N2O is also a byproduct of DNRA in the reduction from NO3
- to NH4

+ (Tiedje, 1982; 1988). 

Higher DNRA rates were not surprising, given that the GiFACE is an N-limited grassland 

site, which is also promoted by a C:N ratio of 12, when DNRA seems to be prevail (Müller et 

al., 2009) . N limitation as well as high amounts of labile C provided via enhanced 

rhizodeposition following eCO2 promotes DNRA processes (Bonin, 1996; Fazzolari et al., 

1998; Nijburg et al., 1997; Tiedje, 1982; Yin et al., 2002). However, the higher resolution of 

454 pyrosequencing revealed more specific differences between the communities of the 

sampling sites than between eCO2 and aCO2 sites. Although N2O emission rates are relatively 

low during the year, N2O emitted from soils under eCO2 is twice as high as under aCO2 at 

almost every sampling time point. Our results suggest that this is mainly due to differences in 

the community structure of DNRA performing microorganisms, because the prevailing 

conditions in eCO2 plots (N-limited and more labile C input) may favor DNRA at GiFACE 

(Chapter III). 
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A peak in N2O emission from the GiFACE soil occurred upon N-input, provided by 

fertilization, rain events or snow melting (Kammann et al., 2008; Regan et al., 2011; Chapter 

III). At our experimental site N2O emissions under eCO2 were more enhanced than under 

aCO2 directly after the application of N-fertilizer (Gorenflo et al., in preparation; Kammann et 

al., 2008; Regan et al., 2011). Changes in the composition and abundance of microbial 

communities involved in N-transformations seem responsible for increased N2O fluxes 

(Chapter IV). For example, the abundance of active nirS-type denitrifier was stimulated by 

eCO2 and simultaneous input of N (Chapter IV). Differences in the overall abundance of 

nirS-type denitrifiers were already observed in recent studies, but under a much higher eCO2 

level and on N-rich FACE site (He et al., 2010; 2012; Xu et al., 2013). Increase in the activity 

of nirS-type denitrifiers led to a change in the ratio of transcriptionally activated N2O reducers 

(nosZ) and N2O producers (nirK+nirS). Ratios were lower under eCO2 and thus the relative 

abundance of N2O producers was higher under eCO2. Even without N-addition due to 

increasing photosynthesis at day light, the ratio of transcriptionally active nosZ/(nirK+nirS) 

indicated a higher relative abundance of transcriptionally active N2O producers under eCO2. 

During night time, however, the ratio between transcriptionally active N2O reducers and NO2
- 

reducers was almost equal for soil under eCO2 and aCO2. Also the composition of the 

transcriptionally active microbial communities was significantly different between eCO2 and 

aCO2, even though most were only minor changes (ANOSIM: R values between 0.2-0.5) 

(Chapter IV). Nevertheless, this differences in composition of denitrifiers (nirK, nirS and 

nosZ) and DRNA (nrfA) performers may have a direct impact on N2O emission (e.g. Cole, 

1988; Conrad, 1996), since both pathways can produce N2O. Even though, also composition 

of archaeal ammonia oxidizers (AamoA) was significantly different, we could not detect a 

great impact of nitrification to the N2O production under eCO2 and the N2O mainly originated 

from denitrification or DNRA (Gorenflo et al., in preparation; Moser et al., in preparation). 

Additionally, previous studies suggested that archaeal ammonia oxidizers generally only 
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contribute a smaller amount to the N2O emission from soil, since they are not capable to 

perform nitrifier-denitrification under oxygen limiting conditions in contrast to bacterial 

ammonia oxidizers (Stieglmeier et al., 2014). Taking all results into account, we hypothesize 

that based on differences in the size and composition of the transcriptionally active part of the 

community higher N2O fluxes at eCO2 and aCO2 were mainly the result of differences in 

activity of nirS-type denitrifiers. These reactions are possibly caused by an increase of labile 

C into the rhizosphere by root exudates, increase of neutral/alkaline pH zones in the 

rhizosphere through higher NO3
- uptake by plants (Nye, 1981) or more anoxic zones under 

eCO2 through higher consumption of O2 by microorganisms, which benefit from higher C 

content in the rhizosphere. It is probably a combination of these three factors that in the end is 

responsible for an increase in N2O fluxes under eCO2. 

 

 

5.2 Sensitivity of nirS-type denitrifiers to changes of environmental conditions in soil 

Denitrifiers of the nirS-type repeatedly appeared to be particularly vulnerable to 

different stress factors or changes in environmental conditions and that nirK-type denitrifiers 

are more abundant than nirS ones in soil (Chen et al. 2010; Graf et al., 2014; Maeda et al. 

2010b; Yoshida et al. 2009; Zhang et al., 2015; Zhou et al. 2011) whereas nirS had an 

advantage over nirK in marine environments or sea sediments (Graf et al., 2014; Lindemann 

et al., 2015; Smith et al., 2014). Nevertheless, controversial results for soil and other 

environments between nirS and nirK competition were reported (Kleineidam et al., 2010; 

Vilar-Sanz et al., 2013). In microbial fuel cells, inoculated with wastewater treatment, nirS 

outnumbered nirK by two orders of magnitude at the cathode (Vilar-Sanz et al., 2013). Vilar-

Sanz et al. (2013) argued that a former selective enrichment of cytochrome c family mediators 
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was the reason for higher nirS abundance, since NirS is a cytochrome c dependent enzyme. 

Additionally, in two arable soils nirS-harboring denitrifiers were more abundant than nirK-

harboring, however an explanation for this occurrence was missing (Kleineidam et al., 2010). 

They hypothesize that nirK-type denitrifiers might be more related to sites with high substrate 

conditions, like the rhizosphere, while nirS-containing bacteria might be more related to 

primary colonizers of ecological niches (Sharma et al., 2005). Additionally, though no clear 

taxonomic differentiation between nirK and nirS denitrifiers exists (Sharma et al., 2005), 

there are indications that nirS- and nirK-harboring communities colonize different 

microhabitats in soil and are stimulated by different carbon sources (Philippot et al., 2007). 

All this indicates that the complexity of a soil and the underlying chemical and physical 

factors are most likely the main drivers to differentiate between the two types of nitrite 

reducers.  

In the first part of this thesis nirS-type denitrifiers were most sensitive to pH 

manipulation (Chapter II). We observed persistently reduced relative nirS transcription at 

acidic pH compared to neutral pH and inhibited growth of nirS-type denitrifiers at low pH. 

Activity and growth were restored only after pH values shifted to more neutral (Chapter II). 

Further, it was reported that a pure culture of the nirS-type P. denitrificans was unable to 

build up a functional denitrification pathway at a slightly acidic pH of < 6.8 (Baumann et al., 

1997). Although the nitrite reductase gene was properly induced, sufficient amounts of NirS-

enzyme was not detected in the culture. This indicates that either translation was inhibited, or 

once synthesized, nitrite reductase was inactivated, possibly by high concentrations of nitrous 

acid (Chapter II). The higher susceptibility of nirS-type denitrifiers to low pH has been 

repeatedly reported in other soil studies (Čuhel et al., 2010; Bárta et al., 2010). Additionally, 

samples from four acidified soils showed always higher abundance for nirK-harboring 

denitrifiers over nirS-types (Chen et al., 2010). Nevertheless, a recent study showed the 

opposite, that lower nirK-transcript numbers than nirS during incubations at an acidic pH (Liu 
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et al., 2014). However, in this study, starting conditions were different; the community had a 

native pH of 6.1 and the extracted community was preincubated under oxic conditions for 

several hours. In our study the initial abundance of nirK- and nirS-type denitrifiers in the soil 

and in the inoculum was equal whereas in the incubation of Liu et al. (2014), nirS-type 

denitrifiers were nearly 100 times more abundant than nirK-harboring bacteria. Therefore our 

provided results indicate greater robustness of nirK-type versus nirS-type denitrifier 

communities to acidity. Generally, long-term exposure to low pH in the natural environment 

will shape soil microbial community composition and predetermine a dominance of either 

nirK or nirS (Chen et al., 2014), which leads in most cases to dominance of nirK-harboring 

nitrite reducers (Bárta et al., 2010; Chen et al., 2010; Čuhel et al., 2010) (Chapter III). 

The increase of atmospheric CO2 by +20% stimulated the transcript abundance of 

nirS-type denitrifiers in comparison to aCO2 concentration (Chapter IV). Under ambient 

conditions nirS-harboring denitrifiers seem to be outcompeted by nirK-type nitrite reducers, 

since they compete for the same substrates (Chapter IV). We hypotheses that this is caused 

by plant-, root-biomass production and higher photosynthesis rates (Lenhart, 2008) which, (i) 

lead to increase of labile C into the rhizosphere by root exudates (ii) an increase of 

neutral/alkaline pH zones in the rhizosphere through higher NO3
- uptake by greater plant 

biomass (Nye, 1981) or (iii) through higher labile C content in the rhizosphere leads to 

enhanced respiratory activity causing enhanced O2 consumption and the development of 

increased anaerobicity. Conclusively, a dramatic increase of the greenhouse gas N2O is 

induced, by the differences in nirS-harboring denitrifier activity. 

Furthermore, several other soil physical and chemical factors have a higher impact on 

nirS-type denitrifiers, while nirK-harboring denitrifiers seem more robust to environmental 

variances (Chapter II, Zhang et al., 2015). For instance, at low temperatures (≤ 4°C) nirK 

communities were still detectable, whereas nirS communities could only be observed for 
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higher temperatures (Braker et al., 2010). Clark et al. (2012) observed that the abundance of 

nirS was repressed by long-term fertilization (addition of NO3
-/NH4

+), which provides fresh 

electron acceptors, while nirK-type denitrifiers undergo stimulation by the addition of NO3
-. 

The Increase of growth by nirK-type denitrifiers can be associated with increasing 

denitrification rates, while nirS showed no correlation. In conclusion our results indicate that 

nirS-type denitrifiers are on the hand more vulnerable to environmental stress factors, e.g. pH 

changes (Chapter II, III and IV) and on the other hand would benefit the most from 

increasing anthropogenic CO2 concentrations (Chapter IV).  
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5.3 Outlook 

This thesis provides evidence that changes in the abundance and composition of 

microbial communities involved in N-transformations in soil influence N2O fluxes. Acidic pH 

seems to have a high impact on N2O emission (Chapter II). However, pH and other factors 

do not strongly affect microbial communities that were shaped by constant soil chemical and 

physical parameters for extended time periods. Therefore, overall microbial communities 

involved in N-cycling seems remarkably stable to changes in environmental conditions 

(Chapter III) and only changes in transcriptional activity may explain changes in trace gas 

production (Chapter IV). Nevertheless, even if a community is relatively stable under 

environmental changes, nirS-type denitrifiers seem to be most responsive to e.g. eCO2 and 

contribute significantly to different N2O emissions between eCO2 and aCO2 in soils (Chapter 

IV). 

We suggest that low pH episodes alter transcriptionally active populations which 

shape denitrifier communities and determine their gas kinetics (Chapter II). Still, further 

analyses are necessary to gain better understanding of how posttranscriptional regulation 

determining N2O production under acidic conditions. For instance, a metaproteomic analyses 

might help to identify denitrifiers whose mRNA is not translated into proteins. However, the 

existing protein database is limited to the most abundant denitrifier enzymes and the protein 

pool in cells is dominated by ribosomes and all of their regulation factors. Additionally, direct 

purification of proteins from soil is not trivial. Therefore, experiments with extracted cells 

would minimize inhibitory effects of soil particles. Moreover, since extracted cells are most 

responsive to acidification they should be used to further study the effects of changes from 

neutral to acidic pH and back to neutral. It would also be of great interest to study if microbial 

communities which underwent a structural shift during a short-term pH manipulation have the 

potential to shift back, if the pH value were readjusted to the initial soil pH. These 
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experiments have the potential to reveal a deeper understanding of the interaction between 

acid pH, N2O emission and the underlying microbiota. Additionally, since acidification in 

agricultural soil increases through repeated addition of N-fertilizer which results in higher 

N2O emission (see 5.1.1.), it would be of interest to identify if more N2O reducers exist 

capable of performing N2O reduction even under acidic conditions. Palmer and Horn (2012) 

identified acidophilic N2O reducers in peatland soils. However, it is unclear if these 

denitrifiers are also able to reduce N2O in other habitats. Maybe through this approach new 

fertilization strategies can be established to mitigate the emission of N2O from acidified soils. 

The second and third part of this thesis provide evidence that the increase of 

anthropogenic caused CO2 concentrations in the coming two to three decades have a 

stimulation effect on the N2O emission which seem to be associated with enhanced activity of 

nirS-type denitrifiers (Chapter IV). Additionally, during periods of N-limitation, higher N2O 

emissions under eCO2 are mainly caused by differences in the community composition of 

nrfA (DNRA). This warrants a closer look, especially into feedback mechanism occurring at 

the rhizosphere and in particular at the rhizoplane. Studies combining detailed analyses on the 

nature of rhizodeposits and the response to nitrite reducers would be most promising to reveal 

processes responsible for the observed feedback effects on gaseous N emissions. There are 

indications that the additional carbon available via eCO2 is directly consumed at the root-soil 

interface, since no additional labile C was measured in the bulk soil (Lenhart, 2008), also the 

plants consumed the additional provided CO2 (Keidel et al., 2015). Furthermore, a 13CO2 

stable isotope probing (SIP) experiment under laboratory conditions could reveal a direct link 

between C- and N-cycle and monitor microorganisms that benefitting from higher CO2 

concentrations. Using SIP the 13C could be detected in the organisms that used the C-

substrates provided by the plants. So far, a 13CO2 SIP experiment could not be established for 

functional marker genes under field conditions, because of difficult weather conditions and 

the high amount of different microorganisms that compete for the labeled CO2. Overall, this 
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thesis showed that increasing anthropogenic CO2 emissions promote feedback effects on the 

emission of other GHG such as N2O that are even more potent and enhance the anthropogenic 

greenhouse effect further. To understand these feedback loops, it is important to understand in 

detail the dynamics of the microbial communities responsible for N-cycling to be able to 

avoid adverse effects on our environment due to global climate change. 
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