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Zusammenfassung

Die vorliegende Arbeit behandelt die Dynamik und Struktur der Aggregation von Zellen.

Dabei spannt sie den Bogen von der Beweglichkeit auf der Ebene von Einzelzellen als Vorstufe

von Aggregation zu deren Ergebnis, der Struktur der Zellaggregate.

Im Bereich der Beweglichkeit von Mikroorganismen gibt es viele gut untersuchte Sys-

teme. Als Beispiele seien hier das Schwimmen des Bakteriums E. coliũnd das Gleiten der

Amöbe D. discoideum genannt. Allerdings gibt es nur wenige Arbeiten zur Beweglichkeit

von Säugerzellen, insbesondere zu deren Reaktion auf externe Einflüsse. Um den Mechanis-

mus dieser Zellmigration besser zu verstehen, habe ich ein generisches Modell entwickelt, das

ausschließlich auf der mechanischen Wechselwirkung zwischen Zelle und Substrat basiert.

Das Modell macht sich dabei die diskrete Natur des Bewegungszyklus von Säugerzellen zu

Nutze. Die Grundidee ist ein zufälliges Auswerfen von Armen und ein Zusammenziehen, das

von den externen Einflüssen, wie z.B. der Konzentration eines Pheromons abhängt. Dieses

Modell ist in der Lage die meisten experimentellen Beobachtungen zu reproduzieren, dabei

zeigt es insbesondere gute Ergebnisse für das Übertreten von scharfen Stufen in einer hetero-

genen Umgebung. Außerdem erklärt es das Festhalten des hinteren Zellpols an der Substrato-
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berfläche: Die Fähigkeit einem Gradienten zu folgen wird dadurch stark verbessert.

Der zweite Teil der Arbeit beschäftigt sich mit der quantitativen Analyse von Aggregaten.

Dafür präsentiere ich neue experimentelle Methoden zur Visualisierung von Zellaggregaten

und eine Zusammenstellung von Werkzeugen zu ihrer Analyse. Diese Ansätze wurden an-

hand von zwei Beispielen getestet: der Aggregation von Fibroblasten und der zuckersensitiven

Flokkulation von S. cerevisiae .

Für die zweidimensionale Aggregation der Fibroblasten war es möglich durch Videos auch

die Dynamik des Aggregationsprozesses zu untersuchen. Dabei kristallisierte sich eine Zwei-

teilung des Prozesses heraus: Zuerst gibt es eine Phase, während der die Zellen sich strecken

und die nach einiger Zeit in eine Kontraktionsphase übergeht. Außerdem zeigte sich, dass

die Struktur der Aggregate (gemessen an deren fraktaler Dimension) abhängig ist von ihrer

Größe. Dabei gibt es einen Übergang von einem linearen Anstieg der fraktalen Dimension mit

der Aggregatsgröße zu einer konstanten fraktalen Dimension.

Im Fall der Flokkulation von S. cerevisiae gibt läuft die Dynamik dieses drei dreidimen-

sionalen Prozesses zu schnell ab um sie durch Videoaufnahmen zu bestimmen. Jedoch war

es möglich durch konfokale Laser-Scan-Mikroskopie dreidimensionale Bilder der fixierten

Flocken zu produzieren und ihre Struktur zu untersuchen. Die wichtigsten Ergebnisse hier

sind die fraktale, selbstähnliche Struktur der Flocken und die starke Benachteiligung von

Nicht Produzenten gegenüber von Produzenten des für die Flokkulation nötigen Bindepro-

teins Flo5. Dadurch werden diese sogenannten “Cheater” stark benachteiligt und ihr Wachs-

tumsvorteil durch einen Nachteil bei der Positionierung in der Flocke abgemildert oder sogar

kompensiert. Dieses Ergebnis legt nahe, dass auch wenn flo5 nicht die wörtliche Definition

eines “Green Beard” Gens erfüllt, doch eine ähnliche Bevorzugung von Trägern des gleichen

Gens (bzw. von Produzenten des Bindeproteins) vorliegt.
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Abstract

This work provides new insights into the dynamics and structure of cellular aggregation. Start-

ing from cell motility which is necessary to get the cells into close proximity it presents new

tools for visualization, analysis and modeling of aggregation processes.

While a lot of work has been done in the field of microbial and amoeboid motility, there is

a lack in theoretical understanding of mammalian cell motion, especially concerning directed

migration stirred by external cues. To close this gap I developed a two-dimensional generic

model based on mechanical cell-substrate interactions. This model facilitates the discrete na-

ture of the motion cycle of mammalian cells by a randomized growth of protrusions and their

retraction depending on the strength of an external cue. This model is capable of reproducing

most experimental observations, especially the behavior at sharp changes in strength of the

external cues, and provides an explanation for the attachment of the lagging cell pole as it

increases the efficiency of gradient sensing.

Furthermore, I introduce new experimental methods to visualize and analytical toolkits to

analyze the structure of the highly irregular cell aggregates. These approaches were tested in

two example cases: the two dimensional aggregation of mouse embryonic fibroblast (MEF)
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cells and the flocculation of S. cerevisiae mediated by the sugar-dependent adhesion protein

Flo5.

While it was possible to achieve temporal information of the MEF cell aggregation, the

flocculation of S. cerevisiae is not accessible in this way.

The time-lapse microscopy series indicate a subdivision of MEF cell aggregation into a

spreading and a contraction phase. In addition, the data shows that there is a dependency of

the aggregate’s structure on its size with a sharp transition from a linear dependency to a

constant structure.

The three-dimensional imaging of immobilized flocs using a confocal laser scanning micro-

scope provided information about the structural properties of yeast flocs. The most important

findings are that the flocs are self similar fractal structures and that cheater cells, i.e. cells that

do not produce the necessary binding proteins but benefit from the altruistic behavior of pro-

ducing cells, are largely underprivileged in the process. This indicates that, even though flo5

does not qualify as a “green beard gene” by definition, the benefits of the resulting altruistic

behavior are strongly shifted in favor of the producing cells by the aggregation mechanism.
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Chapter 1

Introduction

Social behavior of organisms is a wide studied field in biology. Our everyday experience – that

is based on higher animals and humans – teaches us that social interaction and altruistic behav-

ior can be beneficial on many levels, reaching from individual to species wide benefits (Wilson

and Wilson, 2007) and is an increasingly important factor in our strongly interconnected com-

munity (Perc et al., 2013). However, it lacks insights into the sociobiology of microorganisms

that are detracted from our own senses.

A very important example of social behavior on a microscopic level is aggregation. The

formation of biofilms as reviewed by Nadell et al. (2009) for example is a phenomenon of

great medical importance, since it possibly mediates drug and other resistances. Flocculation

of S. cerevisiae on the other hand is a form of aggregation with a huge biotechnological impact

(Bauer et al., 2010).

In order to form aggregates the cells need a way to get into close proximity so that they can
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1. INTRODUCTION

bind and aggregate (Flierl et al., 1999). To achieve this cells either rely on passive transport in

a liquid medium – like S. cerevisiae does – or evolved means of active motion (Lenz (2008)

provides an overview of different types of cell motility). In higher organisms the spatial orga-

nization and interaction of cells is an important factor during embryonic development as it is

a precursor for cell differentiation (Melton, 1991; Hardikar et al., 2003; Chandra et al., 2011;

Govindasamy et al., 2011).

This work is structured as follows: Chapter 2 introduces well studied forms of cell motil-

ity. I developed a model that is capable of explaining and characterizing several details of

the motility of mammalian cells. It is introduced in section 2.3.1. Having established the

forms of cell motility that precede cellular aggregation, chapter 3 introduces a set of tools

that make it possible to quantify patterns (see section 3.1). In order to analyze the physical

mechanisms and interactions leading to aggregation, I developed an individual based model

capable of simulating the dynamics and structure of aggregation patterns (see section 3.2).

I applied the previously mentioned tools and the model to two different example cases: the

aggregation of mouse embryonic fibroblast (MEF) cells (see section 3.3) and the flocculation

of S. cerevisiae (see section 3.4). In close collaboration with out colleagues from the depart-

ment of biochemistry at the University of Hong Kong, we were able to implement automated

tools to analyze their time-lapse data on the two dimensional aggregation of MEF cells. In a

SYNMIKRO1 cooperation with working groups from physics, molecular genetics and com-

puter sciences, I developed a new method for three dimensional imaging of S. cerevisiae flocs

and the analysis of those images. We were able to implement the individual based model on

a general purpose graphics processing unit (GPGPU) system which boosts the computational

efficiency (see Leinweber et al. (2014)) and offers the possibility for realistic simulations.

Chapter 4 summarizes the work and provides an outlook on further studies and questions

arising from this work.

1LOEWE Center for Synthetic Microbiology, see http://www.synmikro.com
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1.1. Social Behavior on the Microscopic Level

1.1 Social Behavior on the Microscopic Level

As it turns out microorganisms show many variations of social behavior. Zak et al. (1994)

analyzed the functional diversity provided in microbial communities, where genetic diversity

translates to a functional diversity and in this way mediates a cooperation across the species

border. A very prominent example for microbial social behavior at a single species level is D.

discoideum. Strassmann et al. (2000) described the altruistic life cycle of this social amoeba. If

nutrition is depleted the cells start aggregation and sporulation in order to spread their spores

as far as possible from the position of the depleted nutrition.

The first theoretical concept for the evolution of social behavior on a genetic level was

developed by Hamilton (1964a,b). The basic idea of his model is that the genetic relation

between two individuals is important for the appearance of social behavior. Performing an

altruistic action to help a close relative can be beneficial on a genetic level and so ensure the

persistence of the genetic heritage.

Dawkins (1976) introduced the term green beard gene for genes that mediate altruistic so-

cial behavior. The essence of his definition is the recognition and preferential treatment of

organisms that carry the same gene. Foster et al. (2007) reviewed the fields of sociogenomics

and sociomicrobiology and showed the importance of the genetic background on the emer-

gence of social behavior. Queller et al. (2003) proved that the gene responsible to mediate the

social aggregation of D. discoideum is one of these green beard genes.

Another well studied example of green beard genes is the gene flo11 present in the bak-

ers yeast S. cerevisiae (Lo and Dranginis, 1996). This membrane associated protein encoded

by this gene binds to other Flo11 proteins and mediates flocculation of gene carriers while

prohibiting the inclusion of non-carriers (Brückner and Mösch, 2012).
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1. INTRODUCTION

1.2 Cell Motility

Motility is the ability of an organism to travel through the environment. Because it enables the

organism to react to environmental cues, such as threads or food supply, it is a very important

feature on all scales of life.

While our every day experience is guided by inertia as stated by Newton’s first law, life on

the microscopic level is dominated by viscous effects. The Reynolds number Re is a measure

for the fraction of inertial forces to viscous forces. According to Purcell (1977), the Reynolds

number for macroscopic objects is in the order of 102 to 104, so inertial forces dominate the

motion. On a cellular level on the other hand organisms experience Reynolds numbers in the

order of 10−4 to 10−5, so inertia is completely irrelevant. Since the Navier-Stokes equation

becomes independent of time in the limit of small Reynolds numbers, Purcell (1977) argued

that motion on this scales requires the organisms to propel themselves with a persistent cyclic

but non-reciprocal motion, a motion that is different when time is reversed.

If the cell’s motion is guided by external cues into a defined direction rather than a ran-

dom motion, this state of motility is called directed cell motion or cell migration (Macnab

and Koshland, 1972; Tindall et al., 2008a; Levine and Rappel, 2008). According to the ex-

tracellular cues guiding the motion, the motility can be categorized into one of three differ-

ent groups: (1) Directed motion guided by solvent chemical cues is called chemotaxis (Mac-

nab and Koshland, 1972). (2) Migration biased by substrate-bound cues influencing the cell-

substratum adhesiveness is called haptotaxis (Carter, 1965). (3) If the cell motility is guided

by mechanical cues such as substrate rigidity the directed motion is called durotaxis (Lo et al.,

2000).

In case of mammals cell motility is of great importance in tissue invasion of pathogenic

microorganisms, inflammation and immune response (Chicurel, 2002; Gray et al., 2003; Prost

et al., 2008; Parsons et al., 2010), cancer progression, invasion and metastasis (Lo et al., 2000;
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1.2. Cell Motility

Chicurel, 2002; Gerisch and Chaplain, 2008; Bordeleau and Galarneau, 2010; Parsons et al.,

2010), embryonic development (Chicurel, 2002; Gray et al., 2003; Huttenlocher and Horwitz,

2011), and other diseases (Wong et al., 2003).

1.2.1 Microorganisms

Microorganisms use a broad bandwidth of methods for active propulsion that are of the cyclic

non-reciprocal kind Purcell (1977) proposed. Most of them use flagella, pili or cilia (see sec-

tion 2.2.1) to swim through liquid media2. On solid surfaces according to Keren and Theriot

(2008) the crawling modes are used by cells to propel themselves (see section 2.2.2).

The most prominent example of bacterial propulsion is the use of rotating flagella that

take on the shape of a rotating corkscrew and in this way carry out a persistent cyclic and

non-reciprocal movement (Purcell, 1977). Section 2.2.1 reviews this mode of propulsion.

The social amoeba D. discoideum is a well studied model system for motility and migration

of eukaryotic cells (Fisher et al., 1989; Fuller et al., 2010). Small and Resch (2005) and Pollard

and Borisy (2003) reviewed the molecular principles driving the motion in D. discoideum.

After cell polarization actin polymerization and contraction causes the growth of protrusions

at the front and at the same time retraction of the back of the cell (see figure 2.5) resulting

in a cell speed of about 10 µm/min. A detailed review of the amoeboid motion can be found in

section 2.2.2.

1.2.2 Mammalian Cells

Mogilner (2009) described mammalian cell motility as a complex process integrating bio-

chemical kinetics, transport, and physical forces that makes it necessary to use combinations

of continuum mechanics and biochemical kinetics to model it.

2An overview of propulsion methods can be found e.g. in Alberts et al. (2002)
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1. INTRODUCTION

As in amoeba, the predominant mode of migration in mammalian cells is the crawling mo-

tion (Keren and Theriot, 2008). In contrast to amoeboid-like migration which is more floating,

mesenchymal migration consist of a cycle of five discrete steps. The amoeboid-like migration

is very similar to the migration of D. discoideum . The mesenchymal mode of migration of

epithelial cells, e.g. mouse embryonic fibroblasts, is influenced by a variety of chemical and

physical signals, in particular by different mechanical forces (Butcher et al., 2009) but shows

a very high efficiency in following all kinds of external gradients (Theveneau et al., 2010).

The steps of the migration cycle are carried out within about ten minutes (Mogilner, 2009;

Lauffenburger and Horwitz, 1996; Pathak and Kumar, 2011; Ridley et al., 2003; DiMilla et al.,

1991; Zaman et al., 2005; Parsons et al., 2010; Huttenlocher and Horwitz, 2011; Chicurel,

2002; Keren and Theriot, 2008). In general, crawling is propelled by the active lamellipodeum

at the leading edge that pulls the passive cell body forward (Mogilner, 2009).

In addition to chemical cues, stiffness and inhomogeneity of the substrate or the extra-

cellular matrix (ECM) directly influence the direction of motion through durotaxtis as first

proposed by Lo et al. (2000) and confirmed by Gray et al. (2003), Yeung et al. (2005), Proven-

zano et al. (2008), and Trichet et al. (2012). Besides the impact on migration itself, Holmes

and Edelstein-Keshet (2012) showed that these factors also strongly influence cell shape.

According to Pathak and Kumar (2011) the interaction of the cell and the substrate or the

ECM can be viewed as a bilinear sequential binding that exerts forces on the cell, predom-

inantly on the nano scale. Through mechanosensing mechanisms as mentioned by Butcher

et al. (2009) and Trichet et al. (2012) the cell is able to actively react to these mechanical cues.

However, cells can also actively manipulate the ECM or the substrate, e. g. in case of cancer,

where tumor cells stiffen the surrounding ECM through extracellular actin polymerization,

and build a rigid stroma around the tumor3. Bordeleau et al. (2013) observed that this step

in ECM stiffness promotes cells from the outside moving inside, but prevents cells from the

3for a review see (Butcher et al., 2009; Provenzano et al., 2008)
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1.2. Cell Motility

inside to migrate outside.

In general, mammalian cells actively react to external forces gradually by pulling or push-

ing the ECM or the substratum instead of being passive recipients of mechanical forces (Lauf-

fenburger and Horwitz, 1996; Lo et al., 2000; Butcher et al., 2009).

The great complexity of cell motility makes it an interesting field of study for both exper-

imental and theoretical scientists alike. Mogilner (2009) reviews a number of models pub-

lished on this topic. So far, these models are focused on cell shape during migration (Rubin-

stein et al., 2005), continuum descriptions for cell populations (Gerisch and Chaplain, 2008;

Häcker, 2012) or on special short-term aspects of motion like migration speed (DiMilla et al.,

1991) or effective adhesiveness (Zaman et al., 2005).

However, there are a lot of unanswered question. In chapter 2 I introduce a simple, generic

model for environment sensitive motion of fibroblast-like cells that is solely based on mechan-

ics. It covers chemotaxis, haptotaxis, and durotaxis as modes of motility.
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1. INTRODUCTION

1.3 Cell Aggregation and Differentiation in Mammals

Cellular aggregation is one way to establish spatial patterns and therefore a first step towards

cell differentiation. Pattern formation is an important feature at all scales of life and even

beyond. The smallest biologically relevant level are protein folding and the establishment of

spatial concentration patterns inside single cells like the spatio-temporal gradient of the Min-

System in E. coli as reviewed by Lutkenhaus (2007) and the MipZ-System in C. crescentus as

described by Thanbichler and Shapiro (2006) that guide the position of cell division.

In embryonic development it is very challenging to explain how a relatively small number

of genes can result in such different animals, as Melton (1991) put it. This is where studying

pattern formation (and hence cellular aggregation) helps to get a better understanding of the

formation of life.

Pattern formation on the level of cell colonies is often triggered by cell-cell interactions. Liu

et al. (2011) transformed a synthetic gene circuit into E. coli cells that connects the motility

system of E. coli to a quorum sensing module. In this way the motility of the cells is inhibited

if the cell concentration is higher than a threshold value. This coupling leads to stripe patterns

that can be tuned experimentally as predicted in models introduced by Fu et al. (2012).

These model systems are less complex than mammals, but they help to study the basic prin-

ciples under laboratory conditions. One outcome of these kind of studies is the finding that the

majority of spatial concentration patterns can be explained by models based on a two-player

system as introduced by Turing (1952). Patterns arising from this system based on diffusion

of and reactions between the two players are called Turing patterns. Wolpert (1969) pointed

out that the key component of this system is the combination of a short range activation (e.g.

achieved by a self activation) and a long range inhibition (e.g. achieved by a fast diffusing

inhibitor). Kondo and Miura (2010) mentioned the difficulty in proving a Turing mechanism

is responsible for a biological pattern. In living cells interactions are very complicated (and
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1.3. Cell Aggregation and Differentiation in Mammals

sometimes unknown). However, Turing mechanisms are able to reproduce the formation of

stripes and dots in the animal skin studied by Kondo (2002), Koch and Meinhardt (1994) re-

viewed a number of systems in which they are used to simulate and explain patterns occurring

in very complex biological structures.

This indicates that the underlying mechanisms in pattern formation can be relatively simple

and at the same time produce a very complex spatial structure. It is also a very good example

for the benefits of the interlock of experimental and theoretical methods to approach this topic.

As mentioned above, a very important type of pattern formation is aggregation. From a

theoretical perspective diffusion limited aggregation (DLA) which is mainly used to describe

crystallization processes is one of the best studied aggregation processes. Witten Jr. and Sander

(1981) developed a model, where a cluster is seeded at the origin of a lattice. A particle is

added to a random lattice site at a large distance from the origin and allowed to perform a

random walk until it visits a lattice site adjacent to an occupied site. The particle becomes part

of the cluster and a new particle is added at large distance and allowed to perform a random

walk and so forth4. Vicsek (1984) showed that it is possible to generate various kinds of regular

patterns using a slightly modified DLA model.

In biology, aggregating cells are an important example for pattern formation in mammals.

Islet like cell aggregation as described by Chandra et al. (2011), Govindasamy et al. (2011),

and Hardikar et al. (2003) is a very important example of cellular aggregation, since the re-

sulting cell clusters can be used as a substitute for the damaged insulin producing cell islets in

diabetes type one patients.

Schlessinger et al. (1978) was one of the first to use 3T3 cells (Todaro and Green, 1963) as a

model system to understand the basic principles of the aggregation of fibroblast cells which is

an important step in the formation of islet-like cell aggregates. In this work we use the similar

STO strain (Martin and Evans, 1975) to study the aggregation behavior of Fibroblast cells.

4for a detailed analysis of this model see Witten and Sander (1983)
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1. INTRODUCTION

As will be introduced in chapter 2, MEF cells perform a crawling motion. After they drew

near to each other they form bonds and contract to islet-like aggregates. As reviewed by Hynes

(1987, 1992), these bonds are mediated via cell surface proteins called integrins, that are also

of great importance in many other interactions of fibroblast cells, e.g. in cell motility (see

chapter 2) or cell-surface interaction in general. In a more recent study Toret et al. (2014)

elucidated the high genetic complexity of these integrins involved in cell-cell adhesions.

After introducing tools to quantify aggregation patterns in section 3.1 and a generic mathe-

matical model for cellular aggregation of any type in section 3.2, section 3.3 shows the experi-

mental results from time-lapse microscopy and the modeling results for MEF cell aggregation.
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1.4. S. cerevisiae : A Model Organism to Study Social Behavior

1.4 S. cerevisiae : A Model Organism to Study Social

Behavior

S. cerevisiae is a standard model organism to study eukaryotic genetics. Commonly known as

bakers yeast it has been used in technological applications for a long time (Legras et al., 2007).

While flocculation is the most relevant lifestyle with respect to biotechnological application

(Bauer et al., 2010) S. cerevisiae has two other important lifestyles besides its vegetative state.

1.4.1 Biofilms, Filaments and Flors: Different Lifestyles of S. cerevisiae

S. cerevisiae cells are capable of expressing a number of adhesive proteins that mediate dif-

ferent types of aggregation that can be characterized by the possible binding partners of the

cell: foreign (e.g. cell-substratum), self (e.g. cell-cell) and mixed adhesions (see Brückner and

Mösch (2012) for a review of the related adhesins). Besides flocculation, which is described

in the subsequent section, these adhesions can lead to a variety of different lifestyles.

A prominent example are biofilms of S. cerevisiae cells that are mediated by a mixture of

self and foreign adhesions (Reynolds and Fink, 2001) and occur at the interfaces between solid

substrates and air or solid substrates and liquid. Another lifestyle that is mediated by a mixture

of self and foreign adhesions is the filamentation of S. cerevisiae cells (Gancedo, 2001). In this

state the cells build long filaments that adhere to the surface of a solid substrate and are able

to invade this substrate.

Flor formation is different to biofilm formation and filamentous growth because it is me-

diated only by self adhesion instead of a mixture. Brückner and Mösch (2012) defined a

S. cerevisiae flor as “an air- liquid interfacial layer of floating cells that are attached to each

other and form a biofilm”. This definition is based on the works of Cruess et al. (1938); Hohl

and Cruess (1939); Freiberg and Cruess (1955); Martinez et al. (1995); Zara et al. (2005) that

represent seven decades of research on the adhesive lifestyles of S. cerevisiae.
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1. INTRODUCTION

1.4.2 Flocculation

Flocculating S. cerevisiae cells have no means of active motion and are drawn near to each

other by external flows. As reviewed by Soares (2011), Brückner and Mösch (2012) floccu-

lation is defined as the asexual, reversible and Ca2+ dependent aggregation of typically thou-

sands of vegetative cells into flocs. The biotechnological impact of S. cerevisiae strains makes

flocculation an important field of study, because it is a cheap and effective way of removing

cells from a desired product after fermentation processes. The adhesins mediating the bonds

between vegetative yeast cells belong to the family of fungal glycosylphosphatidylinositol-

linked cell-wall proteins, and are studied extensively, e.g. by Verstrepen et al. (2004); Ver-

strepen and Klis (2006); Dranginis et al. (2007); Linder and Gustafsson (2008). Dranginis

et al. (2007); Verstrepen and Klis (2006) classified the adhesins into two general groups: they

mediate either sugar-sensitive (called lectin-like) or sugar-insensitive adhesion.

Flo11 is an example for the sugar-insensitive adhesion, where the cell-surface protein is

ligand and receptor at the same time. In this way, only cells expressing the protein can adhere

to each other, mixed adhesions between expressing and non-expressing cells are not possible

(Lo and Dranginis, 1996; Brückner and Mösch, 2012).

In this work I focus on the lectin-like adhesions mediated by the Flo5-protein. These sugar-

sensitive adhesins bind to mannose-oligosaccharid chains on the cell surface and mediate

adhesions between expressing (bearer) cells as well as adhesions between bearer and non-

expressing (cheater) cells (Veelders et al., 2010). However, adhesions between bearer and

cheater cells contain less molecular bonds than bearer-bearer adhesions and are thus thought

to be less stable. The question at hand is if this difference in binding strength is enough to

result in a preferential treatment of cells that are producing the protein over non-producers.
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Chapter 2

Cell Motility

The ability to travel through the environment is an important aspect of life on all scales. It is

necessary to get towards or away from environmental cues such as food sources, local climate,

toxic components, or predators.

Our every day experience is mainly determined by effects of inertia. Newton’s first law

states, that a body will stay at rest or in uniform motion unless external forces act on it. On the

macroscopic scale, swimming objects experience a relatively low viscous drag: If they stop

their active propulsion, they will move on for some time.

However, on a microscopic level viscous effects become much more important. The ratio

Re of inertial forces to viscous forces is called Reynolds number. For macroscopic objects it

is in the order of 102 to 104, so the inertial forces dominate the motion. Microorganisms and

cells on the other hand experience Reynolds numbers in the order of 10−4 to 10−5, so inertia

is completely irrelevant as Purcell (1977) pointed out. He also showed that the Navier-Stokes
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2. CELL MOTILITY

equation in this limit requires the organisms to swim by a cyclic but non-reciprocal motion, a

motion that is different when time is reversed.

Microorganisms developed different kinds of active motions of this cyclic and non-

reciprocal kind. A good part of them use flagella, pili or cilia (see section 2.2.1) to swim

through liquid media. On solid surfaces they facilitate crawling modes to propel themselves

(see section 2.2.2).

Directed cell motion (or cell migration) is a mode of motion in which extracellular cues

regulate the decision in which direction the cell will move (Macnab and Koshland, 1972;

Tindall et al., 2008a; Levine and Rappel, 2008). The motility mode can be classified into three

groups according to the extracellular cues: (1) Directed motion guided by solvent chemical

cues is called chemotaxis (Macnab and Koshland, 1972). (2) Migration biased by substrate-

bound cues influencing the cell-substratum adhesiveness is called haptotaxis (Carter, 1965).

(3) If the cell motility is guided by mechanical cues such as substrate rigidity the directed

motion is called durotaxis (Lo et al., 2000).

In case of mammals, cell motility is of great importance in embryonic development (Chi-

curel, 2002; Gray et al., 2003; Huttenlocher and Horwitz, 2011), tissue invasion of pathogenic

microorganisms, inflammation and immune response (Chicurel, 2002; Gray et al., 2003; Prost

et al., 2008; Parsons et al., 2010), cancer progression, invasion and metastasis (Lo et al., 2000;

Chicurel, 2002; Gerisch and Chaplain, 2008; Bordeleau and Galarneau, 2010; Parsons et al.,

2010), and other diseases (Wong et al., 2003).

This chapter gives an overview of the typical modes of motion throughout the various cell

types. In the first part I will discuss the passive motion of S. cerevisiae that uses aggregation as

a way to overcome random movement. Second, I will give a short overview of active motion

of microorganisms to introduce a basis for the comparison with mammalian cell motility for

which I will introduce a novel generic mechanical model.
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2.1. Passive Motion of Yeast Cells

2.1 Passive Motion of Yeast Cells

S. cerevisiae cells have no means of self propelled motion and just float in liquid media. They

completely rely on external forces to propel them, e.g. for mixing purposes. Because the cell

shape of S. cerevisiae is an almost perfect sphere, the force driving the motion of the cells is

the Stokes friction in approximation for small Reynolds numbers Re = uRρ

η

~FStokes = 6πRη

(
~u−~v ·~u ~u

|~u|2

)
, (2.1)

where ρ is the density of the medium, R is the cell radius, η is the dynamic viscosity, ~u is

the flow field at the position~x of the cell and~v is the speed of the cell.

As mentioned above, inertia is irrelevant for the motion at the microscopic level, so the

cells are almost instantly accelerated to the velocity of the surrounding flow.

While these arguments are true for individual cells, they do not hold for larger cell clusters

such as flocs, because they are so big that inertia becomes relevant. Especially gravity and

buoyancy influence the motion of the clusters. They either settle down or float upwards, so

S. cerevisiae cells do have some kind of active motion as a collective because they can actively

tune their flocculation behavior, but this does not qualify as an active motion on a cellular level.
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2. CELL MOTILITY

2.2 Modes of Active Motion of Microorganisms

2.2.1 Bacterial Motility: The example of E. coli

The most prominent example of bacterial propulsion is the use of rotating flagella that consist

of a basal body containing a molecular motor propelling a rotation, a long filament that reaches

out in the medium and a hook connecting the two (see figure 2.1).

filament

hook

L-ring

P-ring

MS-ring

C-ring

stator

rotor

inner
membrane

peptidoglycan

outer
membrane

basal
body

Figure 2.1: Schematics of a flagellum. The rotor is propelled by the membrane potential
through a flux of protons from the periplasm into the cytoplasm. The basal body
is held in place via rings that are anchored into the layers of the prokaryotic mem-
brane. Through molecular signaling, the cell is able to change the orientation of
the rotation.1

When the flagellum rotates it takes on the shape of a rotating corkscrew helix that fulfills

the requirement of being a non-reciprocal cyclic motion (Purcell, 1977) and therefore results

in a propulsion of the cell.

The best studied microorganism with respect to flagellar motion is E. coli, a rod-shaped

1Adapted from (Alberts et al., 2002) p. 891
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2.2. Modes of Active Motion of Microorganisms

prokaryote. It is the model organism for a huge number of genetic and microbiological sys-

tems. In its motile phenotype a number of flagella grow out of its sides (see figure 2.2 A). Adler

(1966), Macnab and Koshland (1972) described the motion of E. coli as a sequence of straight

swimming interrupted by tumbling that changes the direction for the next swimming period. If

all the flagellar motors rotate counter-clockwise (CCW) the flagella merge and the bacterium

moves forward (see figure 2.2 B). If one or more of the flagellar motors change direction and

rotate clockwise (CW), the flagella leave the bulk and undergo a series of molecular config-

uration changes (see figure 2.2 C). This results in the cell stopping its forward motion and

starting to tumble until the motors change their direction again and the flagella merge again

propelling the cells in the new direction of motion (see figure 2.2 D)

A B C D

Figure 2.2: Flagella of E. coli: Principle of the swim and tumble. A E. coli has a number of
flagella located at the sides of the rod-shaped bacterium. B If all flagella rotate
in counter-clockwise direction they merge to propelling a straight swim in the
direction indicated by the arrow. C If one or more flagella change the direction
of their rotation to clockwise they will leave the bulk and undergo a series of
confirmational changes preventing them to merge with the bulk. This causes the
cell to tumble. D Because of the tumble the cell will swim in another direction
after all flagella go back to counter-clockwise rotation.2

Adler (1966, 1975), Macnab and Koshland (1972) observed, that E. coli can modulate the

timing of switching between the swimming and the tumbling motion. This enables them to

react to environmental cues and perform chemotaxis. This system is one of the most studied

2Adapted from (Alon, 2007) p. 139
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2. CELL MOTILITY

models for cellular migration – experimentally and theoretically3. The chemotaxis is guided by

a temporal sensing mechanism, which can be thought of as a memory (Macnab and Koshland,

1972; Tu et al., 2008).

When E. coli encounters an increase in the concentration of an attractant (or a decrease in

repellent) it will decrease the tumbling frequency and keep swimming longer distances. On

the other hand, if it experiences a decrease in attractant (or an increase in repellent) it increases

the tumbling frequency until it moves only the distance necessary to out-swim diffusion, as

Purcell (1977) argued.

For my simulations I model a cell of length Lc (all occurring lengths will be measured in

units of Lc) that swims a normally distributed distance l, which represents the minimum dis-

tance to out-swim diffusion, into a random direction. The cell measures the change in concen-

tration of the cue, which is in our case an attractant, and continues to move into that direction

with a probability

p(∆c) =



p0
1− ∆c

kp0

 1

( 1
p0
−1)

2 + 2
1
p0
−1

+1


,∆c≤ 0

1
1+ k

∆c+ k
1
p0
−1

,∆c > 0

(2.2)

that depends on the change of concentration and is high for larger positive changes

(∆c > 0) and low for negative changes (∆c < 0) with a base probability of p(∆c = 0) = p0

and a stiffness-parameter k (see figure 2.3). This probability is chosen in order to satisfy three

requirements: lim∆c→−∞ = 0, p(∆c = 0) = p0, and lim∆c→∞ = 1 with a tunable slope in be-

tween.

In the simulations the cell experiences a linear gradient parallel to the x-axis

3See Tindall et al. (2008a,b) for review
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Figure 2.3: Probability to continue swimming as a function of the change in concentration

Δc for varying stiffness parameters k. In this case the base probability was set to

p0 = 0.5.

c(�r) = c0 (1+ rx) , (2.3)

where c0 parameterizes the slope.

The chemotaxis factor CF is a common measure for the efficiency of chemotaxis. Like

Fuller et al. (2010), I define it as the ratio of the distance traveled in gradient direction to the

total distance traveled.

As shown in figure 2.4 the CF increases with the gradient slope c0 until it reaches a sat-

uration. While the saturation level itself is almost independent of the parameters the slope

required to reach it strongly depends on the stiffness parameter k of the probability p(Δc).
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Figure 2.4: Parameter study of the swim-and-tumble model of bacterial chemotaxis. While the

basal probability p0 has very little effect on the chemotaxis factor CF , the stiffness

parameter k is very important. The stiffer the probability of continuing the motion

is as a function of the change in concentration, the higher gets the CF . In general

steeper gradients lead to higher values for the CF until a saturation is reached.

2.2.2 Amoeboid Motility: The example of D. discoideum

The social amoeba D. discoideum is often used as a model system for motility and migra-

tion in eukaryotic cells (Fisher et al., 1989; Fuller et al., 2010). Small and Resch (2005) and

Pollard and Borisy (2003) reviewed the molecular principles of the crawling mechanism of

D. discoideum where after cell polarization actin polymerization and contraction cause the

growth of protrusions at the front and at the same time retraction of the back of the cell (see

figure 2.5). In this way the cells reach a speed of about 10 μm/min.

Fuller et al. (2010) quantified the chemotaxis properties of D. discoideum cells and ob-

served a sigmoidal dependence of the chemotaxis factor CF on the gradient stiffness, saturat-

ing at a maximum of CF ≈ 0.63.

4Adapted from (Levine and Rappel, 2013)
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Pseudopod

Actin Filaments

Nucleus

Figure 2.5: Scheme of a D. discoideum cell moving to the right. Pseudopods grow at the front
(red part) of the polarized cell. At the same time the back of the cell (green part)
contracts resulting in an overall motion. The polarization of the cell and therefore
the direction in which the pseudopods grow to is determined by the presence of
chemoattractants (represented by the gradient) that trigger a self-organization of
actin filaments at the front.4

Levine and Rappel (2013) proposed a model for initiating the cell polarization based on the

membrane bound chemoattractant receptors. The model cell has N evenly distributed receptors

S that are either on (S = 1) or off (S = 0). The probability

p
(
S j = 1

)
=

c j

c j +Kd
, (2.4)

of a receptor being “on” depends on the chemoattractant concentration c j at the position of

the receptor S j and the dissociation constant Kd . Assuming a fairly circular cell and receptors

equidistantly positioned at angles θ , the polarization angle can be calculated:

Φ = Arg

(
1
N

N

∑
j=1

eiθ jS j

)
, (2.5)

where Arg is the phase of the complex number. This results in a Gaussian shaped distribu-

tion of angles (see figure 2.6).

Buenemann et al. (2010) presented a model that is focused on the contraction part of the
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Figure 2.6: The distribution of polarization angles of the model by Levine and Rappel (2013)

for a linear concentration gradient in Φ = π
2 direction shows an approximate Gaus-

sian distribution in gradient direction (the red line shows a fit with μ = 0.500π and

σ = 0.032π). For an increasing number of receptors and steeper gradients the dis-

tribution will narrow, for a decreasing number of receptors and flatter gradients it

will broaden.

cellular motion, which they assume to be uniformly and at constant speed over a contraction

phase. They represented the adhesive area by an ellipse with N randomly distributed attach-

ment points. This rather simple model already has some experimentally testable predictions

the strongest of which is that the cell speed is largely independent of the value of the adhesive

forces between the cell and the substratum.

Hecht et al. (2011) introduced a more realistic model, that represents the membrane of the

cell in two dimensions as a set of nodes. The motion is triggered by the concentration fields of

an activator and an inhibitor that is calculated using reaction-diffusion equations. Each node

of the membrane experiences a force normal to the membrane that depends on the value of

the activator concentration at the node’s position. With this detailed model they were able to

qualitatively reproduce the amoeboid motion, especially the membrane dynamics at the cell
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2.2. Modes of Active Motion of Microorganisms

front.

The model presented by Camley et al. (2013) describes the cell’s cytoskeleton as a viscous,

compressible fluid driven by active stresses resulting from actin polymerization. The coupling

of cell shape and cell polarity results in a robust periodic migration that requires a balance

between contraction and protrusion.

In conclusion, models of amoeboid motion and migration so far are focused on details of

the motion process like polarization (Levine and Rappel, 2013) or contraction (Buenemann

et al., 2010), on special modes of migration (Camley et al., 2013) or on the shape of the cell

(Hecht et al., 2011).
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2. CELL MOTILITY

2.3 Mammalian Cell Migration

Mammalian cell motility is a complex process integrating biochemical kinetics, transport,

and physical forces. Mogilner (2009) reviewed the often used combinations of continuum

mechanics and biochemical kinetics to model this migration.

The predominant mode of migration in mammalian cells is the crawling motion (Keren

and Theriot, 2008) that can either be classified as amoeboid-like migration or mesenchymal

migration. The amoeboid-like migration is very similar to the migration of amoeba described

in the previous section. Therefore, I will focus on the mesenchymal mode of migration of

epithelial cells, e.g. mouse embryonic fibroblasts, which is influenced by a variety of chemical

and physical signals, in particular by different mechanical forces (Butcher et al., 2009) but

shows a very high efficiency in following all kinds of external gradients (Theveneau et al.,

2010).

The migration cycle consists of five discrete steps carried out within about ten minutes

(Mogilner, 2009; Lauffenburger and Horwitz, 1996; Pathak and Kumar, 2011; Ridley et al.,

2003; DiMilla et al., 1991; Zaman et al., 2005; Parsons et al., 2010; Huttenlocher and Hor-

witz, 2011; Chicurel, 2002; Keren and Theriot, 2008): (1) polarization of the cell, resulting

in a defined leading and a defined lagging pole; (2) formation of protrusions at the leading

pole and attachment of the lagging pole; (3) stabilization of these protrusions by adhesion to

the substrate or the extracellular matrix (ECM); (4) trans-location of the cell-body by myosin-

mediated contraction; (5) retraction of the rear by loosening the adhesions at the lagging pole.

Mogilner (2009) stated that the crawling is propelled by the active lamellipodeum at the lead-

ing edge that pulls the passive cell body forward.

The stiffness and inhomogeneity of the substrate or the ECM are very important factors for

cell motility because they influence the direction of motion through durotaxis as first discov-

ered by Lo et al. (2000) and confirmed by Gray et al. (2003), Yeung et al. (2005), Provenzano
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et al. (2008), and Trichet et al. (2012). Besides the impact on migration itself Holmes and

Edelstein-Keshet (2012) showed that these factors also strongly influence cell shape.

Pathak and Kumar (2011) describe the interaction of the cell and the substrate or the ECM

as a bilinear sequential binding which affects the cell predominantly on the nano scale through

mechanosensing mechanisms as mentioned by Butcher et al. (2009) and Trichet et al. (2012).

However, cells can also chemically manipulate the ECM, e. g. in case of cancer, where tu-

mor cells stiffen the surrounding ECM, and build a rigid stroma around the tumor5. Bordeleau

et al. (2013) observed that this step in ECM stiffness promotes cells from the outside moving

inside, but prevents cells from the inside to migrate outside.

In general, mammalian cells are not passive recipients of mechanical forces, but actively

react to them gradually by pulling or pushing the ECM or the substratum (Lauffenburger and

Horwitz, 1996; Lo et al., 2000; Butcher et al., 2009).

2.3.1 The “Octopus Model”

The great complexity of cell motility makes it an interesting field of study for both experi-

mental and theoretical scientists alike. Mogilner (2009) reviews a number of models trying to

describe different modules of the cell motility system or to simplify the system to some extent.

So far, the models are focused on cell shape during migration (Rubinstein et al., 2005),

continuum descriptions for cell populations (Gerisch and Chaplain, 2008; Häcker, 2012) or on

special short-term aspects of migration like migration speed (DiMilla et al., 1991) or effective

adhesiveness (Zaman et al., 2005).

However, there are a lot of unanswered questions. My approach is a simple, generic model

for environment sensitive motion of fibroblast-like cells that is solely based on mechanics. It

covers chemotaxis, haptotaxis, and durotaxis as modes of motility, to answer general ques-

tions on the kind of motion and taxis potential of the cells. My model is able to explain the

5for a review see (Butcher et al., 2009; Provenzano et al., 2008)
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high efficiencies of mesenchymal-like motion observed by Theveneau et al. (2010) indepen-

dent of cellular morphology. It also covers large-scale dynamics and describes the statistical

properties at environmental discontinuities, e.g. a step in stiffness of the substratum or a step

in concentration of a chemoattractant as observed by Bordeleau et al. (2013).

The model facilitates the discrete nature of the cell motility in a modular way, which en-

ables it to act as platform for testing different ideas on regulation, polarization, protrusion and

contraction.

Figure 2.7: Motivation and schematics of the octopus-model. A Typical cell shape as observed
in Lo et al. (2000) for a cell polarized in the direction of the arrow. The protrusions
mainly grow into forward direction, only a few in backward direction. B The po-
sition of an attachment point is defined through the length of a protrusion and
through three angles: the rotation angle of the cell θ , the angle that defines the
attachment position on the cell membrane ϕ and the angle between the central line
and the arm itself γ .

Figure 2.7 motivates the parameterization of the model. A cell as observed by Lo et al.

(2000) (shown in figure 2.7 A) is represented by an ellipse with major radius Rl and minor

radius Rs (see figure 2.7 B). All lengths will be measured in units of the major radius. The

angle θ parameterizes the rotation of the long-axis of the ellipse with respect to the x-axis

around the ellipse center C. The rotational center of the ellipse, i.e. the fixed counterpart of the
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protrusions is defined by the shift δ along the major axis.

The gradient in concentration or stiffness that the cell follows is calculated using the posi-

tion. For simplicity this gradient is set to be linear and parallel to the x-axis:

c(�r) = c0 (1+ rx) . (2.6)

For the initial polarization of the cells I assume a molecular mechanism that effects the cell

similar to the model presented in section 2.2.2 in presence of a gradient in concentration or

stiffness. For the purpose of this work, I do not explicitly model the polarization mechanism,

but I replace it by a normally distributed initial angle θ (t = 0) = θ0 around the gradient direc-

tion with the standard deviation σθ0
as a parameter. The value of this parameter can now be

calculated from a fit to the model (see figure 2.6). For a gradient of c0 = 1/Rl this fit results in

a standard deviation of σθ0
≈ 1.
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Figure 2.8: Initial chemotactic factor as obtained by a normally distributed initial angle θ0

with a standard deviation of σθ0

The chemotaxis factor for a step taken in θ0 direction as a function of the standard deviation

(CF = 〈cos(θ0)〉) is an almost linear decrease (see figure 2.8). This initial CF will be used to
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benchmark the model parameters towards an increase of efficiency.

The protrusions by which the cells pull themselves forward are represented by adhesive

arms that grow out of the ellipse at a random angle ϕ , which is distributed according to the

polarization of the cell

pside (ϕ) =
1√
2π

(
pfront

σϕfront
exp
[
−1

2

(
ϕ

σϕfront

)2
]

+ pback
σϕback

exp
[
−1

2

(
ϕ−π

σϕback

)2
])

. (2.7)

The weights pfront of the leading pole and pback = 1− pfront of the lagging pole result in a

polarization of the cell by shifting the arm distribution towards one pole.

The length of the arms is randomly chosen from a normal distribution with variable mean

µl and standard deviation σl . For simplicity, the angle γ that defines the direction in which

the arm grows in relation to the ellipse’s surface normal is drawn from a Gaussian distribution

with mean µγ = 0 and (variable) standard deviation σγ .

Arm formation occurs at a constant rate. Every arm applies a linear force on the cell that

is proportional to the concentration or rigidity of the substrate at the attachment point of the

arm. Thus, if at time t there are N arms of lengths li at angles ϕi the total force applied on the

cell is given by

~F (~rcell,θ , t) =
N

∑
i=1

~Fi =
N

∑
i=1

k (c)~li (~rcell,θ ,ϕi) , (2.8)

where k (c) = k0c(~rarm). This results in a trans-location of the cell. Furthermore, the arms

exert a total torque

M (θ , t) =
N

∑
i=1

x(ϕi,θ ,δ )Fi,y− y(ϕi,θ ,δ )Fi,x, (2.9)
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that leads to a rotation of cell. We interpret this rotation of our rigid body model as a gradual

repolarization of the cell which in reality is pliant.

To apply a gradient to our model, e.g. for a gradient parallel to the x-axis, we modify the

concentration

c(�rarm) = c0 (rarm,x +1) , (2.10)

where c0 is the increase over the major radius Rl of the ellipse. Figure 2.9 shows the statis-

tics of force and torque with and without an external gradient. It indicates a shift in the torque-

distribution ultimately resulting in an alignment with the gradient. Also the x-component of

force distribution is shifted to larger values which leads to the cell moving along the gradient.
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Figure 2.9: Statistical analysis of force and torque for a cell oriented towards θ = π
2 without a

gradient (left) and with a linear gradient in θ = 0-direction (right). A: The torque

distribution becomes asymmetrical if the system is influenced by a gradient. This

leads to an effective torque pushing the cell towards an alignment with the exter-

nal gradient. B The two-dimensional force distribution also becomes asymmetrical

and shifts in gradient direction resulting in a movement along the gradient. C and

D: The integrated force distributions in x and y direction indicate, that the shift is

only affecting the forces in gradient direction and not in the perpendicular direc-

tion.

To numerically analyze the model I let the cell grow N new arms of lengths li at angles

ϕi in every iteration. The new position and orientation of the cell is then calculated by solv-
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2. CELL MOTILITY

ing ~F (~rcell,θ , t) =~0 and M (θ , t) = 0 independently. Then, all arms are removed, the time is

increased and the iteration starts over.
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2.4. Modeling Results

2.4 Modeling Results

To classify the planar cell motion (in the x-y plane) produced by the model, I numerically

calculated the mean displacements (〈x〉, 〈y〉) and the mean squared displacements (
〈
x2〉, 〈y2〉)

as a function of time t (represented by the number of iteration steps), as an average over

500 independent runs. Figure 2.10 (left) shows the evaluation of these values in presence and

absence of a gradient6. For better comparison the plots show log
〈
x2〉 and log

〈
y2〉 instead of〈

x2〉 and
〈
y2〉.

In absence of a gradient the cells perform an isotropic random walk, indicated in figure

2.10 (left) by the equal linear increase in
〈
x2〉 and

〈
y2〉 while the mean displacement is zero.

For N = 10 the effective diffusion coefficients Dx ≈Dy = 43.77 R2
l/δ t were measured by fitting

linear functions to 〈x2〉 and 〈y2〉.

If a linear gradient of c0 = 1/Rl parallel to the x-axis is applied to the simulation, the cells

perform a biased random walk in gradient direction while the motion in perpendicular direc-

tion is suppressed by a factor of 135: Dy = 0.32 R2
l/δ t in presence of a gradient compared to

Dy = 43.77 R2
l/δt in absence of a gradient.

To quantify the efficiency in following the applied gradient I measured the chemotactic

factor of the cellular motion as introduced in section 2.2.1. In the presence of a gradient with

c0 = 1/Rl we find CF = 92.4% for N = 10.

The model is very robust to varying gradients c0. There is a strong increase in efficiency

with increasing gradient strength for smaller values of c0 but the efficiency saturates fast to its

maximum value of around CF = 95%. For small gradients the model shows slightly worse ef-

ficiencies than the initial polarization while it shows a clear increase in efficiency for gradients

above c0 = 0.02/Rl (see figure 2.11).

6a detailed parameter listing can be found in table 2.1
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2. CELL MOTILITY

Figure 2.10: Classification of the migration dynamics: The cell performs a random walk which

is biased in the presence of a gradient (left images). The motion in y-direction is

suppressed compared to the situation without gradient. If the arms are regulated

(right images) the motion in absence of a gradient stays the same, whereas the

motion in presence of a gradient is boosted, resulting in an increase in speed

while keeping a constant efficiency.

Increasing the number of arms results in a speed up of the motion and an increase in effi-

ciency. However, there is saturation in efficiency and speed for large numbers of arms. If taken

into account that 5 to 10 arms with an average length of 7 μm would roughly cover 10% to

Parameter Fig. 2.12 Fig. 2.13A Fig. 2.13B Fig. 2.15 Fig. 2.10

Iter. 500 500 500 500 81000

Runs 500 500 500 500 500

a 1 1 1 1 1

b 0.5 0.5 0.5 0.5 0.5

δ – -1 -1 -1 -1

σθ – – 0 1.047 1.047

k 1 1 1 1 1

c0 1 1 1 1 –

N 10 10 10 10 10

pFront 0.9 0.9 0.9 0.9 0.9

μl 0.5 0.5 0.5 0.5 0.5

σl 0.05 0.05 0.05 0.05 0.05

σϕFront
0.5 0.5 0.5 0.5 0.5

σϕBack
0.05 0.05 0.05 0.05 0.05

σγ 0.1 0.1 0.1 0.1 0.7

Table 2.1: Parameter sets for the Figures
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2.4. Modeling Results

Figure 2.11: Gains for increasing gradient strengths. The increase of efficiency only depends

on the gradient strength for very small gradients.

20% of the cell’s surface (each arm has about 22 μm2 surface while according to Baxter et al.

(2002), Raucher and Sheetz (1999), the cell body has about 1000 μm2 membrane area) the

model reaches a good balance between increase of membrane area and efficiency within this

range of N. This is comparable to the number of arms observed experimentally, e.g. by Lo

et al. (2000).

Lo et al. (2000) have shown that cells spread further on stiff substrates than on soft sub-

strates. To account for this effect in the model, I introduce a regulated additive elongation

λ (c) =
λmax

1+ kc
c

(2.11)

of each arm that depends on the absolute stiffness (or concentration or adhesiveness) c =

c(�rarm).

Increasing the average arm length entails an increase in efficiency that saturates for longer

arms. This rise in efficiency comes with an increase in speed along the gradient in terms of

distance traveled per iteration. If the concentration dependent regulation of arm lengths is
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2. CELL MOTILITY

used a comparable increase in efficiency can be seen but at an average arm length that is 40%

to 60% shorter compared to the unregulated system. The speed also slightly increases with

regulation – the same speed as the unregulated system is obtained at 7% shorter average arm

lengths.

Figure 2.12: Dependency on the shift δ . If we shift the rotational center from the center of

the ellipse towards the leading pole, we see a stiff drop in efficiency as indicated

by the chemotactic factor CF . Here the final efficiency is even below the initial

efficiency that results from the normally distributed θ (see FIG. 2.8). The reason

for this is the reduced lever of the leading compared to the lagging pole. This

result emphasizes the need for the cells to have a defined leading pole and an

attachment point further away from that pole.

The above results are robust with respect to variations in the standard deviations of the

distributions for ϕ and γ . For range from about 0.01π to about 0.2π for σϕ and σγ the CF

remains almost constant. For even broader distributions the efficiency decreases as a result of

insufficient polarization of the cell. Especially the high efficiencies of distributions with small

standard deviations might explain the experimental observations, that the protrusions almost

grow in normal direction out of the surface of the cells, and that the protrusions are located

around a narrow region at the leading pole (Maly and Borisy, 2001; Svitkina et al., 2003;
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2.4. Modeling Results

Mogilner and Rubinstein, 2005; Parsons et al., 2010).

Furthermore, cell motion shows an interesting dependence on position of the attachment

point of the cell to the substratum quantified by the parameter δ , see Fig. 2.7. If this point is

shifted towards the leading pole, the efficiency drops sharply to zero indicating that the cell is

not able to follow the gradient at all (see figure 2.12).

It is a quite common scheme for crawling cells to detach the adhesions in a region close to

their lagging poles (Lauffenburger and Horwitz, 1996; Ridley et al., 2003). My model gives an

explanation for this, as shows the achieved increase in taxis efficiency. In this way the cell not

only compensates for the additional energy costs and the slowing effect of an attached back

but also directly benefits from the attachment.

Butcher et al. (2009) and Bordeleau et al. (2013) describe the movement towards a step in

substrate rigidity as a typical scenario of inhomogeneous substrates encountered by the cells.

The model shows that the resulting behavior heavily depends on the direction of movement,

i.e. if the cell moves from softer to stiffer substrate or vice versa, see figure 2.13.

Cells that move from a soft to a stiffer substrate just keep moving on. However, their tra-

jectory gets bent towards the direction perpendicular to the step. I observed that the relation

between the angle of the cell before and after the step obeys a refraction law similar to that of

light. In this way we can characterize the motion by refraction indices. The ratio of refraction

indices nSoft
nStiff

decreases with increasing step height (see Table 2.2) which indicates a stronger

alignment to the direction perpendicular to the step.

On the other hand a step from a stiff substrate to a softer substrate is a barrier for the cells.

The passing probability depends on the step height. From the distribution of the maximal x-

positions – i.e. how far the cells invaded the softer side of the step – encountered by the cells

during 500 iterations (see figure 2.14) one can calculate the probability of a cell moving across

the step, which I define as transmission coefficient TC =
∫ xstep
−∞ p(x) = p

(
x < xstep

)
, where p(x)
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2. CELL MOTILITY

Figure 2.13: Transition properties at a sharp concentration/stiffness step. If cells travel from
the soft region to the stiff region we see a refractive behavior with a step size
dependent ratio of the refractive indices (see Table 2.2, s = 2, s = 5, s = 10,

s = 100). Cells moving from the stiff to the soft region will experience a barrier,
that they overcome with a step size dependent transmission coefficient. For large
step sizes no cells will be able to break the barrier whereas at small step sizes
almost all cells will cross it (see Table 2.2).

is the probability to find a cell that traveled to position x and xstep is the position of the step.

This coefficient decreases as the step size increases (see Table 2.2) showing that the barrier-

Step height nSoft
nStiff

TC

2 0.9374 1.0000
5 0.8843 0.9480
10 0.8622 0.3220

100 0.8330 0.0020

Table 2.2: Values for the ratio of the refraction indexes nSoft
nStiff

and transmission coefficient TC.
The refractive effect becomes stronger with increasing step size whereas the trans-
mission decreases.
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2.4. Modeling Results

Figure 2.14: Histogram and probability of intrusion from the right onto a stiff-soft interface.

The Histogram shows the frequency of the maximal (most right) x value reached

during the runs. For higher steps not all the cells will cross the interface. The max-

imal distance traveled in positive x-direction peaks closer to the interface with

decreasing step size. If the step size becomes to small almost all cells breach the

interface as indicated by the intrusion probability that is defined as the probability

that a cell travels further than xmax.

effect becomes much stronger for higher steps.

If we compare the results to a two dimensional swim-tumble model of bacterial chemotaxis

(see 2.2.1 for details) with a parameter set optimized for efficiency, the results of the crawling

model shows a much faster saturation of the efficiency on a higher efficiency level than the

swim-tumble model (see Fig. 2.15).
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2. CELL MOTILITY

Figure 2.15: Variation of the efficiency with the gradient strength. The cells reach their max-

imum efficiency at rather small gradients compared to a swim-tumble model of

bacterial chemotaxis (for details of that model see 2.2.1).
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2.5 Discussion and Summary

This chapter gave an overview of the different modes of motility at the microscopic level.

Especially the low Reynolds number has a huge impact on how cells and microorganisms

move, because it makes it necessary to perform non-reciprocal motion.

Cell migration is a directed movement of a cell or microorganism. Environmental cues lead

to a bias in the otherwise random motion directing the cells towards good or away from bad

environments.

The best studied system for bacterial motility is E. coli. This prokaryote uses flagella to

swim through its environment and a swim and tumble technique to find gradients (Macnab

and Koshland, 1972). With a very simple model, I showed that in this way an efficiency of

about 70% to 75% can be reached.

In eukaryotic motility D. discoideum is the model system for amoeboid like migration.

Because of its size it can use membrane based sensors to find the direction of a local gradient.

Models often simulate local membrane deformations by active internal stresses that are guided

by external cues (Buenemann et al., 2010; Hecht et al., 2011; Camley et al., 2013).

Another important mode of eukaryotic motility is the mesenchymal mode of migration

of epithelial cells. For this cyclic mode of migration I introduced a generic two dimensional

model that attempts to simulate large scale crawling dynamics while avoiding deformation

effects of a three dimensional generalization. The simulation results are in good agreement

with the experimental observations at steps in substrate rigidity observed by Bordeleau et al.

(2013), cellular morphology observed by Lo et al. (2000), and indicate that the attachment of

the lagging pole increases the effectiveness of crawling.

Furthermore, the refractive indices introduced in section 2.4 can be used to characterize

substrate rigidity including the biological impact of the material compared to a reference sub-

strate.
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2. CELL MOTILITY

So far I have neglected the mechanical effects that the cells have on the substrate. If cells at-

tach their protrusions to the substrate and contract they locally stiffen the substrate. This might

lead to an indirect attraction between two cells in proximity and thus promote aggregation.

All in all, my model produces reasonable results that fit many experimental observations

qualitatively. To further quantify the motion one could measure the chemotactic properties –

especially the averages 〈x〉, 〈x2〉, 〈y〉 and 〈y2〉 – using a Dunn-Chamber (e.g. as described by

Zicha et al. (1991)) with time-lapse microscopy. This should be possible for a large number

of cells using automation techniques (Fotos et al., 2006) and cell-tracking methods (Chen

et al., 2006). To check the results concerning steps in concentration, adhesiveness and stiffness

one could use the methods presented by Bordeleau et al. (2013) to produce flat substrates of

different stiffnesses and measure the polarization axes of the cells before and after the interface

and the transmission coefficients with automatized time lapse microscopy.
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Chapter 3

Cellular Aggregation

Pattern formation is relevant at all scales of life from protein folding over spatial gradients in-

side a single cell to the formation of complex lifeforms. Examples for the importance of spacial

concentration patterns are the roles of the Min-System in E. coli as reviewed by Lutkenhaus

(2007) and the MipZ-System in C. crescentus as described by Thanbichler and Shapiro (2006).

The majority of concentration patterns can be explained by models based on a two-player

system as introduced by Turing (1952). This system is based on diffusion of and reactions

between the two players, i.e. activations and inhibitions. Wolpert (1969) pointed out that the

key component of this system is the combination of a short range activation (e.g. achieved by

a self activation) and a long range inhibition (e.g. achieved by a fast diffusing inhibitor).

Kondo and Miura (2010) mentioned the difficulty in proving that a Turing mechanism is

responsible for a biological pattern, because of the complicated (and sometimes unknown)

interactions within living cells. However, it is a good tool to understand the basic principles
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3. CELLULAR AGGREGATION

of pattern formation in biological systems like the formation of stripes and dots in the animal

skin studied by Kondo (2002). Koch and Meinhardt (1994) reviewed a number of systems

in which Turing mechanisms are used to simulate and explain patterns occurring in complex

biological structures.

Pattern formation is very important in embryonic development because, as Melton (1991)

put it, it is challenging to explain how a relatively small number of genes and mechanisms can

result in such different animals.

On a higher level, cell-cell interactions can trigger the formation of patterns on a colonial

level. Liu et al. (2011) transformed a synthetic gene circuit into E. colicells that connects

the motility system of E. colito a quorum sensing module. In this way the cells motility is

inhibited if the cell concentration is higher. This coupling leads to stripe patterns that can be

tuned experimentally as predicted in models introduced by Fu et al. (2012).

This indicates that the underlying mechanisms in pattern formation can be relatively simple.

It is also a very good example for the benefits of the interlock of experimental and theoretical

methods to approach this topic.

Another very important type of pattern formation is aggregation. From a theoretical per-

spective, the best studied form of aggregation is the diffusion limited aggregation (DLA) which

is mainly used to describe crystallization processes. Witten Jr. and Sander (1981) developed

a model, where a cluster is seeded at the origin of a lattice. A particle is added to a random

lattice site at a large distance from the origin and allowed to perform a random walk until it

visits a lattice site adjacent to an occupied site. The particle becomes part of the cluster and a

new particle is added at large distance and allowed to perform a random walk and so forth1.

Vicsek (1984) showed that it is possible to generate various kinds of regular patterns using a

slightly modified DLA model.

In biology, aggregating cells are an important example for pattern formation through aggre-

1for a detailed analysis of this model see Witten and Sander (1983)

42



gation. In my work I will focus on two examples: the two dimensional aggregation of mouse

embryonic fibroblast (MEF) cells and the three dimensional flocculation of S. cerevisiae.

Established by Todaro and Green (1963), the so called 3T3 MEF cell line has become the

standard fibroblast cell line in laboratories. The original fibroblast cells are transferred to a

fresh medium every three days and inoculated at a cell concentration of 3 ·105 cells per petri

dish.

Schlessinger et al. (1978) was one of the first to use this model system to understand the

basic principles of the aggregation of fibroblast cells which is an important step in the forma-

tion of islet-like cell aggregates that could substitute the damaged insulin producing cell islets

in diabetes type 1 patients (see the works of Chandra et al. (2011), Govindasamy et al. (2011),

and Hardikar et al. (2003)).

As introduced in chapter 2, MEF cells show an active form of motility in the similar STO

strain developed by Martin and Evans (1975). After they drew near to each other they form

bonds and contract to islet-like aggregates. As reviewed by Hynes (1987, 1992), these bonds

are mediated via a family of cell surface proteins named integrins, which also play a role in

many other interactions of fibroblast like cell motility (see chapter 2) or cell-surface interaction

in general. In a more recent study Toret et al. (2014) elucidated the high genetic complexity

of these integrins involved in cell-cell adhesions. For the purpose of this work it is sufficient

to consider the integrin mediated interactions as a simple binding while neglecting possible

interactions on a regulatory level.

Flocculating S. cerevisiae cells on the other hand have no means of active motion and

are drawn near to each other by external flows. As reviewed by Soares (2011), Brückner

and Mösch (2012) flocculation is defined as the asexual, reversible and Ca2+ dependent

aggregation of typically thousands of vegetative cells into flocs. The biotechnological im-

pact of S. cerevisiae strains makes flocculation an important field of study, because it is a

cheap and effective way of removing cells from a desired product after fermentation pro-
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cesses. The adhesins mediating the bonds between vegetative yeast cells belong to the family

of fungal glycosylphosphatidylinositol-linked cell-wall proteins, and are studied extensively,

e.g. by Verstrepen et al. (2004); Verstrepen and Klis (2006); Dranginis et al. (2007); Lin-

der and Gustafsson (2008). Dranginis et al. (2007); Verstrepen and Klis (2006) classified the

adhesins into two general groups: they mediate either sugar-sensitive (called lectin-like) or

sugar-insensitive adhesion. As mentioned in the introduction, the focus of my work lies on

the lectin-like adhesions, that in contrast to sugar-insensitive adhesions allow for adhesions

between expressing and non-expressing cells.

I collected a set of tools from fractal and graph theory to quantify and compare aggregation

patterns and developed models to simulate the aggregation dynamics in both cases.

In cooperation with Jianjiang Hu and Wei Huang from the Department of Biochemistry of

the Hong Kong University we performed time-lapse microscopy of MEF cell aggregation and

engineered tools for automated evaluation of the images.

In cooperation with Stefan Brückner and Hans-Ulrich Mösch from the Department of Bi-

ology of the Philipps-University Marburg we developed new experimental approaches for the

three dimensional structural analysis of yeast flocs using confocal laser scanning microscopy.

This chapter summarizes the efforts towards a quantitative understanding of cellular aggre-

gation in all kinds of biological systems. It reviews existing and introduces new techniques to

generate a universal picture of the aggregation process.
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3.1 Quantification of Aggregation Patterns

Like many natural spatial patterns cellular aggregates are so highly irregular or fragmented

that concepts of classical geometry are insufficient to describe their structure. To quantify

complex structures like these Mandelbrot (1977) introduced the concepts of fractal geometry.

Bunde and Havlin (1994) collected a number of examples and application for these con-

cepts in natural sciences. In a strict mathematical sense fractals do not have a characteristical

length scale. This means if one sees a picture of a fractal where 1cm represents 10km and

another picture of the same fractal, where 1cm represents 0.01cm one can not relate either of

the pictures to the used scale. However, in most natural patterns this is only true for all scales

but for a good range of scales, because all natural things have a finite maximal size while the

smallest (biologically relevant) scale is reached with molecules. Cellular aggregates have a fi-

nite size, so for lengths larger than this size the single cell yields a characteristic length-scale.

On scales smaller than the size of a single cell the fractal properties are not applicable.

Nevertheless, characterizing cellular aggregates using the tools of fractal geometry yields

good methods to quantify and compare those patterns like the fractal dimension and the pair-

correlation function I will introduce in sections 3.1.2 and 3.1.3.

A number of other good tools to characterize cellular aggregates can be derived from the

theory of complex networks. Albert and Barabási (2002) reviewed the commonly used tech-

niques to quantify networks. From their work I adopted the clustering coefficient (section

3.1.6), the average path length (section 3.1.7), and the degree distribution (section 3.1.8) as

measures to quantify and compare the (complete) data obtained through simulations.2

2The measures cannot be directly adapted for experimental data, see section 3.1.6.
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3.1.1 Preparing Fluorescent Microscopy Data for Evaluation

Aggregation of cells and patterns of cellular aggregates are observed using different kinds of

microscopy techniques. Most of them use fluorescence to label cells or parts of cells and the

data to be analyzed consists of a series of microscopy images. The pixels of these images

typically are encoded with either 8 bit or 16 bit for each color channel, meaning that each

pixel can have 256 or 65536 shades of gray between completely dark and bright.

Figure 3.1: Preparation of microscopy data. The method is based on a histogram of pixel

brightnesses shown as the solid blue line. Assuming that most pixels can be as-

signed to the background of the image (and therefore identified as noise) a fit of a

Gaussian distribution to the data around the peak (shown as the red dashed line)

yields a good approximation for the distribution of pixels without cells. Choosing

a probability to assign a background pixel as a cell pixel (red area) one can directly

calculate the threshold value for identifying pixels belonging to a fluorescent sig-

nal (blue area).

The task is to automatically discriminate pixels that belong to cells from those that belong

to the background of the image. If the image mainly consist of background, i.e. most of the

pixels do not belong to cells, one can estimate a threshold value as shown in figure 3.1. The
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peak in the brightness histogram of the image belongs to the background. Assuming it to

be a Gaussian noise one can fit this peak with a Gaussian distribution to get an estimate for

the pixels that belong to the background. The choice of a probability pfp to falsely assign a

background pixel as a cell pixel directly leads to an estimate of the threshold by solving

pfp−
∫ xth

−∞

ds
1√

2πσ
exp

(
−1

2

[
s−µ

σ

]2
)

= 0, (3.1)

where µ and σ are obtained by the fit. Every pixel that is brighter than xth belongs to a cell

with a probability of 1− pfp.

This method works good for images with little areas of fluorescent signals. If the image is

mostly occupied by pixels belonging to a signal this method will fail to yield a good threshold.

However, the images used in this thesis all fulfill the requirements for this method.

3.1.2 Boxcount Dimension

The first important parameter used in fractal theory is the fractal dimension. This can be cal-

culated from the experimental data using a box-counting method.

The box-counting-dimension D f is given by the limit of number N (ε) of boxes belonging

to the fractal divided by the invert of the box-size ε for box-size ε → 0.

D f = lim
ε→0

log(N (ε))

log
(1

ε

) (3.2)

Bunde and Havlin (1994) introduced the box counting method as a method to measure

the fractal dimension of a computer generated or digitalized fractal picture. Practically one

draws a grid on the fractal with some lattice constant ε1 and counts the number of boxes

N (ε1) that are necessary to cover the entire fractal. Increasing the lattice constant in a series

ε1 < ε2 < ... < εn and calculating the numbers of boxes each time, one can calculate the fractal

dimension by plotting N (ε) versus 1
ε

in a double logarithmic plot because N (ε) scales as
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N (ε)∼ ε
−D f . (3.3)

The minimum and maximum lattice constants must be chosen according to the fractal. The

minimum lattice constant should be larger than the smallest unit of the quasi fractal, while

the maximum lattice constant must be sufficiently small to avoid all boxes being necessary to

cover the fractal.

3.1.3 Pair-correlation Function

The density-density autocorrelation c(~r) can be used as a tool to analyze the scaling of mass

in a fractal object. The derived pair-correlation function g(r) represents the probability to find

a particle at distance r to a reference particle.

I define the density-density autocorrelation according to ben-Avraham and Havlin (2004)

as

c(~r) =
1
Φ

∑
~ri

ρ (~ri)ρ (~r−~ri) , (3.4)

where the density ρ (~r) = 1 if~r is part of the fractal and Φ = ∑~ri ρ (~ri) is a normalization

factor. If we consider a set of N particles the density can be rewritten as ρ (~r) =∑
N
i= j δ

(
~r−~r j

)
,

where δ (~r) = 1 if~r =~0 and Φ=N. Plugging all this back into (3.4) and dividing by the overall

particle density number ρ0 =
N
V we get

c′ (~r) =
V
N2 ∑

i
∑
j 6=i

δ
(
~r−~ri j

)
(3.5)

Averaging this function over the angles and dividing by the volume of a spheric shell of

radius r and thickness ∆r yields a probability, the pair-correlation function for a three dimen-

sional fractal
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g3D (r) =
V

N24πr2∆r

〈
∑

i
∑
j 6=i

δ
(
~r−~ri j

)〉
angles

. (3.6)

For a two-dimensional fractal we have to consider areas instead of volumes and can show

analogously that in this case the pair-correlation is

g2D (r) =
A

N22πr∆r

〈
∑

i
∑
j 6=i

δ
(
~r−~ri j

)〉
angles

. (3.7)

To calculate g(r) for experimental data, i.e. digitalized images, I used the digitalized and

binarized images (see section 3.1.1), extracted the positions~ri of each pixel and ran a brute

force algorithm.

Veatch et al. (2012) introduced a much faster way of approximately calculating the pair-

correlation for two dimensional data using Fourier transformations. It uses the binary image

I (~r) which is extended with zeros in every direction for a distance of rvalid that defines the

range in which the approximation is valid. They define a window function W (~r) that is 1 if~r

is part of the original image and 0 else.

The two dimensional pair-correlation function then can be calculated using simple Fourier

transformations F and inverse transformations F−1:

g(r) =
F−1

(
|F (I (~r))|2

)
ρ2F−1

(
|F (W (~r))|2

) , (3.8)

where ρ is the original image density. This considerably reduces the computational com-

plexity from O
(
N2) to O (N logN), where N is the number of bright pixels.

The pair-correlation function yields a good measure for the size of aggregates. Because

it decays almost exponentially for fractal objects, the slope of this decay can be used as a

measure for the aggregate size by calculating the full width at half maximum (FWHM) of

g(r) numerically by fitting an exponential function to the data.
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3.1.4 Simulated Attack

Beside the fractal structure of the aggregates I am also interested in the distribution of the

different specimen inside, especially the relation between the fraction of two specimen inside

the aggregate and their fraction on the surface. This is important to analyze the advantage or

disadvantage of cheater cells inside a floc. The overall fraction of specimen ξ can be calculated

straight forward by dividing the number of cells of one specimen Nspec.1 by the number of cells

of the total number of cells Ntot. = Nspec.1 +Nspec.2:

ξaggr. =
Nspec.1

Ntot.
. (3.9)

To measure the fraction on the surface I perform a “simulated attack” on the aggregate

by putting a random walker on the edge of the experimental microscopy data. This random

walker represents a diffusing particle and will at some point hit the aggregate. Tracking the

specimen hits by the walkers yields the fraction of specimen on the surface of the aggregate

by dividing the number of hits Hspec.1 and Hspec.2 of each specimen:

ξsurface =
Hspec.1

Htot.
. (3.10)

Keeping in mind, that a raise in concentration of species one results in an equal decline of

concentration in species two, the shift ∆ξspec.1 = 2
(
ξaggr.−ξsurface

)
indicates how much more

species one is exposed to environmental effects compared to species two.

3.1.5 Aggregation Degree

The aggregation degree is simply defined as the fraction of cells in clusters. To apply this mea-

sure to microscopy data one has to discriminate between single cells and aggregates, prefer-

ably with an automated method. Because this is computationally complicated I decided to

apply this method of measuring the aggregation degree only to simulation data.
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3.1. Quantification of Aggregation Patterns

In the case of yeast flocculation I used another experimental way apart from microscopy

to measure the aggregation degree. Since flocs settle much faster than single cells, one can

measure the aggregation degree by performing settling experiments. Starting with a defined

number of cells in a solution, one starts by inducing the flocculation and vortexing. After the

flocks had time to settle one pulls a sample of the supernatant and counts the cells inside it.

This number divided by the original number of cells yields the aggregation degree

GAggr. =
Nsupern.

Ntotal
. (3.11)

3.1.6 Clustering Coefficient

The clustering coefficient C like the measures described in the following sections is based on

characterization of complex networks as reviewed by Albert and Barabási (2002). To apply

these measures to a system, one has to provide the full graph data, i.e. the nodes and the

connections which represent the cells and the bonds between cells in the studied aggregates.

Albert and Barabási (2002) defined the clustering coefficient Ci for an individual network

node i. If we consider node i to be connected with ki edges to ki neighboring nodes, the total

number of possible edges between these nodes would be ki(ki−1)
2 . The individual clustering

coefficient is then defined as the ratio of existing edges in this neighborhood Ei and the possible

edges:

Ci =
2Ei

ki (ki−1)
. (3.12)

The total clustering coefficient of the network is then defined as the average over the indi-

vidual cluster coefficients:

C = 〈Ci〉i =
1
N

N

∑
i=1

2Ei

ki (ki−1)
. (3.13)
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For a random graph, where two nodes have a probability of p of being connected, the

clustering coefficient is equal to this probability, and therefore

Crand = p =
〈ki〉i
N

. (3.14)

This value can be used as a reference value to characterize the cellular aggregates.

3.1.7 Cluster sizes and Average Path Lengths

The first step in characterizing individual cell clusters is to identify them within the simulation

data. The necessary data structure for this provides the cells and the bonds between cells.

Ideally these are represented in a graph-like or tree-like structure where cells are represented

by nodes and bonds are represented by edges.

To find clusters within these kinds of structures Tarjan (1972) proposed an algorithm3 that

applies a depth first search on the data starting at a random node storing all visited nodes

and removing them from the initial dataset. After all nodes of a cluster have been visited, the

cluster is identified. Algorithm 1 shows the algorithm in pseudo code.

Algorithm 1: Tarjan’s algorithm in pseudo code. This is the simplified version to find
clusters instead of strongly connected components.

Data: node i, pointers to nodes connected to i, node-stack
Result: filled node-stack

1 node-stack→ add node i
2 for j ∈ neighbors of i do
3 if node j /∈ node-stack then
4 call Tarjan’s algorithm for node j
5 return node-stack

If the algorithm identified all clusters in the dataset one can easily analyze the statistics of

clusters, i.e. the size distributions.
3The original algorithm describes a method to find strongly connected components within a graph. I use a

simplified version to find clusters within graphs.
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3.1. Quantification of Aggregation Patterns

Another quantity that can be used to quantify the clusters is the average path length 〈l〉. For

each cluster it is defined as the average number of nodes to pass when going from one node to

another without visiting the same node twice.

3.1.8 Degree Distribution

Albert and Barabási (2002) define the degree of a node i as the number of edges ki connecting

it to other nodes. The distribution of degrees P(k) is the relative occurrence of nodes with

exactly k connections and therefore equals the probability that a randomly selected node has

exactly k direct neighbors.

For a lot of complex networks this distribution scales for large k as a power law:

P(k)∼ k−γ . (3.15)

Networks that show this behavior are called scale free networks and their power law pa-

rameter γ can be used for comparison. Using this scaling one can also characterize networks

between random graphs that show a Poisson distributed degree and these scale free networks.
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3.2 An Individual-Based Model for Cellular Aggregation

Individual-based modeling – also called agent-based modeling – is a bottom-up modeling

technique that has its roots in social sciences and ecology. Bonabeau (2002) and Grimm et al.

(2005) defined individual-based modeling as a technique that uses a collection of autonomous

decision-making entities called agents.

The first step in individual-based modeling is to collect and compile the information on

the individuals and to formulate theories about their behavior and their interactions. After

implementing this set of individuals and rules in a computer simulation one can observe the

emergence of system-level properties. Therefore, individual-based models can be used to un-

derstand the connection between the properties of an individual and interactions and the be-

havior of a complex system.

In case of cellular aggregation the natural choice for the individual to base the models upon

are the cells themselves. The major task in building an individual-based model is to find the

properties and interactions in a quantitative way.

Thorne et al. (2007) nicely described the challenges that one encounters using this bottom-

up approach to simulate multicellular dynamics and patterns. The biggest challenge is to de-

termine the simulation parameters. Obviously the literature is the first source to acquire the

necessary parameters, but in many cases these parameters have not been measured (or pub-

lished) or they are conflicting in different publications. The two ways to approach this problem

are performing the experiments either in collaboration or, if possible, by oneself or use an es-

timate of the parameters and perform a stability analysis.

Another important challenge is the computational complexity of individual based models

that rapidly increases with the number of individuals and the number of rules used to model a

system. However, a lot of new possibilities arise because the technology grows in power very

fast.
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3.2. An Individual-Based Model for Cellular Aggregation

In this study I used the principles of molecular dynamics simulations described in section

3.2.1 as a starting point to define a set of rules for the interactions between cells.

To overcome the issues with the computational complexity in the simulation of yeast floccu-

lation, I used the highly parallel implementation of the algorithm introduced in section 3.2.3

and published by Leinweber et al. (2014) that facilitates graphic processors to perform the

necessary calculations.

3.2.1 Principles of Molecular Dynamics Simulations

Molecular dynamics simulations are a special kind of individual-based simulations, where the

core individuals are molecules or atoms, which are referred to as particles. The particles are

defined by their physical properties like position, velocity, or forces applied to them.4

The rules that define the interactions are derived from the physical interactions between

particles and translated to forces acting on the individuals.

The final step is to formulate the equations of motion for each particle and to solve them.

Newtonian mechanics seems to be the fitting tool to formulate these equations, since I interpret

the rules as forces that drive the behavior of a particle.

If all relevant forces are identified and the equations are set up in case of a three dimensional

system of N particles the task is to solve 3N coupled differential equations numerically.

To do this I used the Störmer-Verlet integration method, that discretizes time and integrates

the equations in a way that all current properties are available for evaluation in every iteration

step (see section 3.2.1.1 for details).

A computationally very expensive step is the one-to-one comparison that is necessary to

calculate distance dependent forces, e.g. for a Coulomb interaction. The complexity for these

calculations is O
(
N2). To reduce this complexity I use a linked cell method and a cutoff radius

as described by Griebel et al. (2004). The idea of this method is to cover the simulation space

4For an introduction to molecular dynamics simulations see “Molecular Modelling” by Leach (2001)
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with a grid and use the cutoff radius as the lattice constant. All cells are assigned to a lattice

site according to their position. If the interaction of cells further apart than the cutoff radius is

neglected, the number of comparisons is reduced to the number of cells at the lattice site of

the reference cell plus the number of cells in the neighboring lattice sites.

3.2.1.1 The Störmer-Verlet Integration Method

To numerically integrate Newton’s equation of motion one has to discretize time first. The

Störmer-Verlet method of discretization is an efficient and stable algorithm to achieve this

goal. In this section I will shortly describe the derivation of this algorithm by Griebel et al.

(2004) to provide the reader with a better understanding of the simulations.

Starting with Newton’s classical equation of motion

m
d2

dt2~r (t) =
~F
(
~r,

d
dt
~r, t
)

(3.16)

where r (t) is the position, m is the mass and ~F is the force acting on the particle, and using

the time discretization tn+1 = tn +δ t the second derivative is approximately

d2

dt2~r ≈
1

δ t2 (~r (tn+1)−2~r (tn)+~r (tn−1)) . (3.17)

If one discretizes the velocity~v = d
dt~r in time using the central difference

~v(tn) =
~r (tn+1)−~r (tn−1)

2δ t
(3.18)

and plugs this into the discretized form of (3.16) one can derive two equations to calculate

~r (tn+1) and~v(tn+1):

~r (tn+1) =~r (tn)+δ t~v+
~F (tn)δ t2

2m
(3.19)

~v(tn+1) =~v(tn)+

(
~F (tn)+~F (tn+1)

)
δ t

2m
. (3.20)
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3.2. An Individual-Based Model for Cellular Aggregation

These equations are solved in the sequence indicated in algorithm 2. From this sequence

one can easily see, that all necessary parameters are available for further evaluations in every

time-step.

Algorithm 2: Störmer-Verlet integration Method, adapted from (Griebel et al., 2004)
Data: Initial conditions~ri,0 and~vi,0 for each particle i, time-step size δ t and ending time tend

1 initialize vectors ~Fi,old and ~Fi

2 calculate forces ~Fi
3 while t < tend do
4 t = t +δ t for every particle i do
5 calculate new position~ri

6 set ~Fi,old = ~Fi

7 calculate forces ~Fi
8 for every particle i do
9 calculate new velocity~vi using ~Fi and ~Fi,old

10 calculate system parameters (e.g. kinetic energy, potential energy)
11 output of t,~ri,~vi, ~Fi and all system parameters

3.2.2 Model Description

As motivated above, the first step in building an individual-based model is to identify the

individuals and the rules they are obeying. I already mentioned the cells being the natural

choice for the individuals when it comes to cellular aggregation. This also comes with the

big advantage that single cells are traceable through the whole aggregation process which

allows for studying the dynamics and the internal structure of cellular aggregation and cellular

aggregates.

The rules that the cells obey during aggregation partly depend on the system. While rules

like “two cells can not be in the same place” and “bonds result in attractive forces between

cells” apply for all systems there are some rules that are specific to a special system. A good

example for these specific rules is the interaction with gravity: while it has an impact in yeast

flocculation, it is not important for the two dimensional aggregation of MEF-Cells.
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Most of the rules can be derived as forces and plugged into an equation of motion. However,

rules like “cells grow at a constant rate” have to be handled in a fitting manner.

Another important issue is the numerical division by very small values. These kind of

divisions occur quite often in forces, that point into the direction of the difference vector~ri j =

~ri−~r j of two cells. These numerical singularities can be avoided in two ways: (i) rewriting the

forces to avoid the division or (ii) add a small singularity parameter ε in the calculation of the

norm of the vector (which I did to avoid numerical problems):

∣∣~ri j
∣∣=√(~ri−~r j

)2 ≈
√(

~ri−~r j
)2

+ ε2, (3.21)

ε � 1. (3.22)

3.2.2.1 A 2D Model for MEF-Cell Aggregation

In the case of MEF-cell aggregation one deals with one cell type, which will be the individual

for the model. The properties of each cell are its position, its velocity, its bonds to other cells,

its interaction radius, and the growth rate of its interaction radius.

The first simplification I made here is that the cells do not move by themselves but rather

increase their interaction radius. This is done linearly with a growth rate ρi that characterizes

the motility of the cell i. If the interaction radii of two cells i and j overlap they form a bond

with probability pbond and exert an attractive force on each other represented by a spring:

~Fi j =−k
ri j−

(
Ri +R j

)√
r2

i j + ε2
~ri j. (3.23)

The total force exerted on a cell by bonds is calculated by summing equation (3.23) over

all bound cells j. Bonds break if the two cells move apart to far or it may break spontaneously

with a probability pbreak.
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A

~ri

Ri

Rin.,i

B

~ri

~rj

rij

~Fij

~Fji

C

rij

~Fcoll.,ij

~Fcoll.ji

Legend:

cell diameter
interaction range

bond (atractive force)

collision distance (repulsive force)

Figure 3.2: Schematic of the MEF-cell aggregation model. A The cell is characterized by its
radius Ri, its interaction radius Rin,i, its position~ri, and its velocity~vi (not shown).
B If two cells interaction radii overlap, they will form a bond (blue line) which
results in an attractive force between the two cells. The force on each cell is equal
except for their sign ~Fi j = −~Fji.C If two cells approach each other and get closer
than the sum of their individual radii they will experience a repulsive force. This
prevents two cells from occupying the same space.

The second force a cell experiences is the drag of the substratum. It should be proportional

to the area covered by the cell and decelerate it’s motion. I defined it as a friction force

~Fdrag,i =−πR2
i γ~vi, (3.24)

where γ is a friction parameter normalized to a unit area.

To prevent cells from moving through space blocked by other cells I introduced a repulsive

force that is only exerted on cells that are closer to each other than the combined cell radius

Ri j = Ri +R j

~Fcoll.,i j =


kcoll.

ri j−l0√
r2

i j+ε2
~ri j if ri j < Ri j

0 else
. (3.25)

Again the total force experienced by a cell because of collisions is the sum over all other

cells j that are in range.
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Module Equation Explanation

radius of cell i Ri ≈ 25 µm
Rishal et al.

(2012)

interaction radius
of cell i

Rin.,i Rin.,i (t = 0) = Ri

growth rate of
Rin.,i

ρi
drawn from normal

distribution

total force on cell
i caused by bonds

~Fbond,i = ∑
j∈bondsi

−k
ri j−

(
Ri +R j

)√
r2

i j + ε2
~ri j

k defines the strength
of bonds

drag of cell i ~Fdrag,i =−πR2
i γ~vi

γ defines the strength
of the drag per unit

area

total force on cell
i caused by
collisions

~Fcoll.,i =
N

∑
j=1

kcoll.
ri j− l0√
r2

i j + ε2
~ri jΘ

(
Ri j− ri j

) kcoll. is the spring
constant of a cell,
Θ is the Heaviside

function

Table 3.1: Summary of the MEF-cell aggregation model.

Table 3.1 summarizes the model components. The implementation of the model requires

additional parameters that control the integration (ending time tend of the integration, time-step

δ t), the simulation space (length in x and y direction), and the initialization of cells (distribu-

tion of cell size, growth rate, number of cells).

3.2.2.2 A 3D Model for Yeast Flocculation

In case of aggregating yeast cells there are two types of cells represented by two different kinds

of individuals: bearer cells that express the Flo5 gene and produce binding proteins and cheater

cells that do not produce binding proteins. This difference is implemented by three different
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binding types Ti j: cheater-cheater bonds (no attractive interaction) Ti j = {cheater− cheater},

bearer-bearer bonds Ti j = {bearer−bearer}, and mixed bonds Ti j = {bearer− cheater} that

characterize the attractive interaction.

The properties of each individual are essentially the same as in the MEF-cell aggregation

model except that now a cell type has to be included and the reaction radius is fixed. The

properties are position, velocity, bonds to other cells, reaction radius and cell type (bearer or

cheater).

Under laboratory conditions the cells are mixed by a vortex after the flocculation was initi-

ated. This rapid vortexing leads to turbulent flows and eddies in the liquid media causing the

cells to move almost randomly.

I implemented this random movement using two random forces given by random vectors

with a uniformly distributed direction and a normally distributed length. One random force is

directly applied to the individual cells while the other is applied a whole spatial region in order

to move larger aggregates. Another small force that depends on the distance to the z-axis was

applied to mimic an eddie resulting from mixing the cells.

If the distance
∣∣~ri j
∣∣ between two cells i and j is smaller or equal to the sum of their radii

Ri +R j, then the cells interact repulsively. The associated repulsive collision force is given by

a damping term, that accounts for inelastic effects, a shear term that incorporates a possible

scattering, and a direct elastic repulsion:

~Fcoll.,i j (t) =

[
γcoll.~v ji (t)+σcoll.

(
~v ji (t)−

~ri j (t)∣∣~ri j (t)
∣∣
(
~v ji (t) ·

~ri j (t)∣∣~ri j (t)
∣∣
))

(3.26)

− kcoll.
(
R j +Ri−

∣∣~ri j (t)
∣∣) ~ri j (t)∣∣~ri j (t)

∣∣
]

Θ
(
R j +Ri−

∣∣~ri j
∣∣) .

The spring factor kcoll., the damping γcoll. and the shear factor σcoll. are adjustable variables,

Θ is the Heaviside function and~vi j =~vi−~v j denotes the velocity difference.
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If the distance between two cells is smaller or equal to the sum of their reaction radii

Rreact,i +Rreact, j, then the cells will bind to each other with a probability depending on the

types of the two cells. Two bearer cells will have a high probability to bind while two cheater

cells can not form bonds since they do not produce the necessary protein (see Figure 3.3).

Figure 3.3: Illustration of the two different types of bonds. A shows the bonds between two
bearer cells while B shows the bonds between cheater (red) and bearer cells.
Cheaters do not produce the binding protein but they do have the anchors on their
cell surface

.

Again, the binding forces were approximated by harmonic oscillators. Thus, the bonds

carry out spring forces with spring constant ki j and free length li j. According to Hooke’s law,

the force is

~Fbond,i j (t) =−ki j
(∣∣~ri j (t)

∣∣− li j
) ~ri j (t)∣∣~ri j (t)

∣∣ (3.27)

In principle, ki j and li j may differ for each pair of cells i and j, but there are only two

important types of bonds, those between two bearers and those between a bearer and a cheater

cell. Because the spring forces of parallel springs add up and the number of bonds of a mixed

pair is approximately half the number of bonds of pair of bearer cells, we can set ki j = k for

bearer-bearer bindings and ki j =
k
2 for bearer-cheater bindings (see Figure 3.3).
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To avoid a gain of energy in the system through the formation of bonds and the exertion of

random forces I introduced a friction force

~Ffric,i (t) =−Γ~vi (t) , (3.28)

where Γ is the friction parameter. The total force acting on cell i at time t is obtained by

summing over all the forces:

~Fi (t) = ~Frand,i (t)+~Ffric,i (t)+ ∑
j∈Bi

~Fbond,i j (t)+
N

∑
j=1, j 6=i

~Fcoll,i j (t) (3.29)

where the first sum extends over all cells Bi that are bound to cell i, i.e. their distance is

smaller than the sum of the reaction radii.

Table 3.2 summarizes the model components. The implementation of the model requires

additional parameters that control the integration (e.g. ending time tend of the integration, time-

step δ t), the simulation space (length in x, y and z direction), and the initialization of cells (e.g.

distribution of cell sizes, number of cells).

3.2.2.3 Parameter Estimation

For the yeast flocculation model it is possible to estimate some parameters especially the

amplitude of the random force which is hard to measure experimentally.

In principle cells are spheres with a certain elasticity. An encounter of two cells can be

described as an inelastic collision. During the time this collision takes place there is a certain

time depended contact area Acont (t) of the two cells. Given a constant protein length lP this

yields a reaction volume V (t) = lPAcont (t).

If the molecular forming rate kmol of bonds is known, calculating the collision time tc and

the average reaction volume one can estimate the number of bonds formed during a collision.
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Module Equation Explanation

radius of cell i Ri ≈ 4 µm

reaction radius of
cell i

Rreact,i
a fixed multiple of the

cell radius Ri

binding
probabilities

pb−b and pb−c

the binding
probabilities are very

similar

unbinding
probabilities

pbreak,b−b and pbreak,b−c pbreak,b−b < pbreak,b−c

total force on cell
i caused by
collisions

~Fcol.,i = ∑
j 6=i

[
γcol~v ji (t)+σcol

(
~v ji (t)

−
~ri j (t)∣∣~ri j (t)

∣∣
(
~v ji (t) ·

~ri j (t)∣∣~ri j (t)
∣∣
))

− kcol
(
R j +Ri−

∣∣~ri j (t)
∣∣)×

×
~ri j (t)∣∣~ri j (t)

∣∣
]

Θ
(
R j +Ri−

∣∣~ri j
∣∣)

kcoll. is the spring
constant of a cell,
Θ is the Heaviside

function

bond strengths k
(
Ti j
)
=

{
k ifTi j = {bearer−bearer}
k
2 ifTi j = {bearer− cheater}

Ti j denotes the
combination of cell

types involved in the
bond

total force on cell
i caused by bonds

~Fbond,i =− ∑
j∈Bi

k
(
Ti j
)(∣∣~ri j (t)

∣∣− li j
) ~ri j (t)∣∣~ri j (t)

∣∣ Bi denotes the list of
cells bound to cell i

drag of cell i ~Ffric,i =−Γ~vi

Γ defines the rate at
which kinetic energy is

removed from the
system

Table 3.2: Summary of the yeast flocculation model.
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If the resulting binding energy is larger than the kinetic energy, the cells bind, otherwise they

will separate further away and stay unbound.

As a simplification of the system I only considered central collisions and reduced it to one

dimension. The starting point is the differential equation of a dampened harmonic oscillator

ẍ+
Γ

m
ẋ+

kcell

m
x = 0, (3.30)

where Γ is the friction parameter, kcell is the spring constant of the cell, and m is the cell

mass.

Integrating equation (3.30) from time t0 where the two cells are in contact in one single

point (x(t0) = l0) with an initial collision speed ẋ(t0) = v0 one calculates the time dependent

reaction volume

V (t) =
(

πlB
4

)(
l2
0−
(

l0−
v0

ω
exp(−γt)sin(ωt)

)2
)
, (3.31)

where γ = Γ

2m and ω =
√

kcell
m − γ2.

To calculate the average reaction volume as a function of the initial collision speed one has

to average V (t) over the collision time tc = π

ω
:

Vav =
lBv0ω

[
8
(
1+ exp

(
− γπ

ω

))
γl0 +

(
exp
(
−2γπ

ω

)
−1
)

v0

]
16γ (γ2 +ω2)

. (3.32)

With this averaged volume and the collision time one can calculate the approximate number

of bonds using a simple rate equation. This leads to a total number of

T = cu,t0 exp
(

kmolπ

ω

)
Vav (3.33)

bonds, where cu,t0 is the concentration of unbound proteins at time t0 and kmol is the rate

constant.
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If there is an energy of EB per bond then the cells will stick together if EBT is smaller or

equal the kinetic energy at time t = π

ω
. Equalizing binding energy and kinetic energy yields

the maximum collision velocity for which the cells will bind:

vmax =
8EBγl0lBcu,t0ω exp

(
(γ+k)π

ω

)
·
[
1+ exp

(
γπ

ω

)]
8γm(γ2 +ω2)exp

(
γπ

ω

)
+EBlBcu,t0ω

[
exp
(
(2γ+k)π

ω

)
− exp

(kπ

ω

)] . (3.34)

Plugging this into the Gaussian distribution with mean vm and deviation σ for the velocities

of the cells and integrating it from zero to vmax one obtains the probability of two colliding

cells sticking together:

pglue =
1
2

[
erf
(

vm

σ
√

2

)
− erf

(
vm− vmax

σ
√

2

)]
. (3.35)

Most of the used parameters are available in the literature (see table 3.3 for overview).

Smith et al. (2000) studied the mechanical properties of yeast cells. From their data a spring-

constant kcell ≈ 5.4058 N/m can be estimated in the linear regime of cell-deformation. The

typical concentration of adhesive proteins on yeast measured by Dranginis et al. (2007) is

about cu,t0 ≈ 2.5 ·104 proteins/cell.

Other parameters have been estimated by own experiments. The binding-energy of Flo5a

and Mannose is about 6 kJ/mol, leading to an energy of EB ≈ 8.33 · 10−21 J. I estimated the

length of a Flo5a-Protein lB to be about 120nm. The diameter of a typical yeast cell as used

is about l0 = 4 µm. From this the mass can be calculated as about 110% of the mass of a

water-sphere with the same diameter. This leads to a mass m = 3.686 ·10−14 kg for the cell.

This leaves the friction parameter, the reaction-constant and the mean collision-speed as

unknown parameters. To get an idea of the importance of these parameters, I analyzed the

stability of vmax and pglue to changes in these parameters.

As a starting point to estimate the friction parameter, one can use the viscosity of water and

multiply it by a typical length-scale in the system, in our case the cell diameter Γ = l0ηH2O.
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This gives 10−9 kg/s as an order of magnitude for Γ. Using this one obtains 105 1/s as an order

of magnitude for γ .

As can be seen from equation (3.34) the rate constant kmol mainly occurs in sums with

γ . Considering a fast reaction in the order of 108/Ms and given the initial concentration of

proteins we obtain kmol in the order of 102 which is much smaller than γ . So we can neglect

it, and get the approximation for the maximal collision velocity:

vmax =
8EBγl0lBcu,t0ω exp

(
γπ

ω

)
·
[
1+ exp

(
γπ

ω

)]
8γm(γ2 +ω2)exp

(
γπ

ω

)
+EBlBcu,t0ω

[
exp
(

2γπ

ω

)] . (3.36)

For the estimation of a good range for Γ and vµ I analyzed the behavior of the binding

probability pglue for those parameters. If we increase the friction constant at some point all

collisions will result in a binding of the two cells regardless of the collision speed (see figure

3.4). However, if we assume the friction caused by the collision to be less or equal 160 times

the friction of water, we get mean velocities in the range of 0.1 mm/s and 10 mm/s for which there

is a noticeable difference in the formation probabilities of bearer-bearer bonds and bearer-

cheater bonds (see figure 3.5).

From the binding energy EB and the bond length lB one can calculate the spring constant

for bonds. Starting from the protein concentration at the surface cu,t0 = 4.145 · 1021/m3 and

assuming densely packed cells (contact area is one twelfth of the whole cell surface) there is

a total of roughly 2000 bonds between each two cells. This leads to a total binding energy of

approximately Etotal ≈ 1.666 ·10−17 J.

If one assumes that the proteins are capable of stretching twice their size before breaking,

this happens at a distance of 2lB so the energy of a spring with spring constant ktotal at this

distance is ESpring = 4ktotall2
B. Equalizing this with the total binding energy leads to a spring

constant of ktotal ≈ 29 dyn/m for the cell-cell binding.
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Figure 3.4: Binding probability as a function of the friction parameter Γ and the mean collision
velocity vµ . If the friction parameter is more than approximately 160 times bigger
than ΓH2O = 4 µmηH2O, the binding probability becomes independent of the mean
collision velocity.

To convert the mean velocities into the used random forces, one can use Frand = Γvµ as

an estimate. This leads to a range for the amplitude of the random force from Frand ≈ 0.3pN

to Frand ≈ 6nN. Assuming it is enough to simulate with a time discretization of ∆t = 10 µs

per time-step one can estimate the mean amplitude of the random force to range from F ′rand =

0.0002 to F ′rand = 4 in system units using mcell and l0 for mass- and length-scale.

3.2.3 High Efficiency GPU Implementation of the Yeast Flocculation

Model

My first attempt to implement the yeast aggregation model for validation was written in

C/C++, based objects and object arrays for storing the cell data. Due to large runtimes starting

at a few thousand simulated cells, the implementation was improved using OpenMP to utilize
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Figure 3.5: Difference in pglue for bearer-bearer and bearer-cheater bonds. The peaks of

the graphs give a good indication for the choice of a mean velocity vμ ∈
[0.1 mm/s,10 mm/s], because the forming probabilities of bearer-bearer and bearer-

cheater bond should be discriminable at some point.

multi core architectures. Furthermore, I used space partitioning for reducing the computational

overhead required for finding nearby cells. However, the time to simulate a reasonable amount

of cells was enormous. This led to unwanted side effects. If the number of cells is to small,

the size of the flocks is very limited. Consider for example a simulation of 500 cells. A flock

in this simulation can never be larger than 500 cells; it is more likely that they will be sub-

stantially smaller. So to have a simulation with reasonable flock sizes one has to simulate a lot

more cells than those that fit into one floc.

To solve this problem my collaborators from the department of computational sciences

implemented the model using graphic processors. The methods I review in this section were

published in (Leinweber et al., 2014). It was implemented it OpenCL to achieve a platform
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Parameter Value Description Source/Remarks

cU,t=0 4.145 ·1021/m3 Flo5a conc. Draginis et. al. (2007)

kcell 5.4058 N/m spring-constant Smith et. al. (2000)

lB 120nm bond-length estimate

E0 8.33 ·10−21 J energy per bond equivalent of 6 kJ/mol, exp.

l0 4 µm cell-diameter typical for haploid cells

m 3.686 ·10−14 kg cell-mass 110% density of water

Γ ∈ [ΓH2O,160ΓH2O] friction-parameter pglue independent of vµ for higher values

Table 3.3: Used parameter values for the simulation.

independent program that will run on almost all available hardware.

The program flow of the simulation can be divided into four stages: 1) determine collisions

and reactions 2) apply binding forces, 3) integrate the system and 4) determine cracked bonds.

The first challenging computational problem in implementing the model is to find neighboring

cells for each individual cell. This is needed to account for the cell-cell interactions, i.e. the

reactions and collisions. The brute-force attempt to this would be to compare the position of

each cell to the position of each other cell. For N cells, this would lead N(N−1)
2 comparisons to

calculate all distances. For large n, both the required memory and the computational time are

too high to be carried out on a GPU because of hardware limitations. To solve this problem,

the simulation space has been divided into a 3-dimensional grid, as suggested by NVIDIA’s

Particle Collision Simulation5.

To keep this program flow as efficient as possible all data structures have been adapted to

fit the needs of a massively parallel algorithm. A programming challenge was the handling of

5https://developer.nvidia.com/opencl
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Figure 3.6: Speedup of the GPU implementation compared to the CPU implementation de-

pending on the number of simulated cells N. The graph shows the time it takes

to perform one iteration step. The increase in efficiency becomes larger for higher

cell numbers. However, the number of cells is limited by the amount of memory

build into the used GPU.

the grid, which was simplified to array sorting – which can easily be carried out in parallel –

by a hashing technique, that maps the position of a cell to a unique grid index.

As a special feature of the simulation program a live visualization was incorporated, that

allows for a live view of digital yeast cells flocculating. Despite slowing down the simulation

considerably, this provides never seen (live) insights into the dynamics of flocculation and

helps to adjust the parameter ranges.

The GPU implementation is much more time-efficient than the initial C/C++ prototypes.

For N = 20000 cells the GPU algorithm is over 700 times faster than the parallel CPU version

(see figure 3.6). This speedup enables me to simulate a reasonably large amount of cells to
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prevent the previously described side effects of a limited cell number. Moreover, the GPU

implementation only requires 25ms to perform an iteration in simulations with up to 1.000.000

yeast cells.
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3.3. An Experimental Approach to MEF-Cell Aggregation

3.3 An Experimental Approach to MEF-Cell Aggregation

In mammals cells have to differentiate according to their function in order to cooperate in

forming and maintaining the higher organism. As Wolpert (1969) pointed out, a challenging

problem is the differentiation according to spatial patterns at almost all stages of development.

Aggregation is one way of establishing spatial patterns such as islet-like aggregates that are

able to differentiate later on (Hardikar et al., 2003; Chandra et al., 2011; Govindasamy et al.,

2011). Therefore it is important to understand the regulatory and dynamical factors involved

in cellular aggregation.

Martin and Evans (1975) established the STO mouse embryonic fibroblast (MEF) cell lines

as the model system to study the biology of fibroblast cancer cells under laboratory conditions.

The vast amount of tools to manipulate and work with these cell lines make them an ideal

model system to study cellular aggregation. Another important aspect is the relatively slow

movement of cells in the order of 20 µm/hr (Pathak and Kumar, 2011) that makes the cells

easily traceable through time-lapse microscopy.

The goal of the presented experiments is to quantify the spatial dynamics of this type of

cellular aggregation and validate the model presented in section 3.2.

3.3.1 Experimental Setup

In order to analyze the dynamics of the cellular aggregation, the cells were tracked via au-

tomated time-lapse fluorescent microscopy. To increase the amount of data, the experiments

were carried out with automation.

3.3.1.1 Cell Lines

The STO MEF cells were provided by Hu Jianjiang from the Department of Biochemistry

of the Hong Kong University. The cell lines were stably transfected with enhanced green
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fluorescent protein (eGFP). The eGFP protein labels the cell cytoplasm for our measurements

of the cell shape, size and aggregate size and shape.

Additionally the cells were transfected with an H2B-mCherry fusion gene. This enables the

cells to produce the fluorescent mCherry protein linked to histone H2B. Histone H2B is one

of the chromatin components located in the cell nucleus. In this way, the H2B-mCherry fusion

protein labels the cell nuclei which makes them traceable separately in fluorescent microscopy.

The used culture medium for MEF cells is Dulbecco’s Modified Eagle Medium (DMEM)

high glucose6.

To evenly induce the cellular aggregation at all cell densities a conditioned medium has

been used. This medium used for the MEF cell aggregation assays is the supernatant of a

dense cell culture which has been transferred to another dish.

3.3.1.2 Time-Lapse Microscopy

In order to measure large samples of data in parallel, the people at Huang Wei’s group at the

Department of Biochemistry of the Hong Kong University developed an experimental setup

using an automated time-lapse microscopy.

They used an auto-focus based on a laser-beam to focus the microscope to the bottom of

a micro-titer plate. Since the thickness of the plates are roughly constant, the position of the

object lens can be reset from there to focus the cells. The position of the plate has been set

up using an X-Y table controlled by a computer program to sample the wells used for the

experiment. Figure 3.7 shows a typical path for a 24 well micro-titer plate. If the program

reaches the end of the path it is set to wait for a tunable time to ensure that the pictures of each

sample are taken in equal length time steps.

The original image data was captured in 16 bit tiff format and consists of a differential

interference contrast image, one fluorescent image from the mCherry channel to track the
6https://www.lifetechnologies.com/order/catalog/product/12100061?ICID=search-product
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Figure 3.7: Typical path of a programmed time-lapse microscopy session. Five samples were
taken per well. If the program reaches the end of the programmed path, it will wait
for a defined time (might be zero) to ensure that the time shift between every image
of the same sample stays constant.

cell nuclei, and one fluorescent image from the eGFP channel to track the cell positions and

shapes. The two original fluorescent images were transformed to one bit images and analyzed

using the tools introduced in section 3.1.

3.3.2 Experimental Results

Through time-lapse microscopy we were able to observe the dynamics of the cellular aggre-

gation. A typical series of these images is shown in the top row of figure 3.8.

This figure indicates, that the primary aggregation process takes place within the first six

hours of this experiment. After this primary aggregation the change in size and structure seems

to become smaller.

To further quantify the aggregation process we converted the images into a binary format

using the algorithm presented in section 3.1.1. We tuned the relative threshold (or the false-

positive probability) for each series to account for the variable densities. This was done in a

way that we achieve a linear dependency between measured initial cell density ρ (t = 0) = ρ0
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Figure 3.8: Time series of an aggregation experiment (top row) and corresponding binary im-
ages after conversion (bottom row). The experiment was done with an initial cell
concentration of 160000 cells per well (160k). We used a false-positive probabil-
ity of 0.2 to set the threshold for the binary conversion. In this time series one can
clearly see the aggregation process is pretty fast in the beginning and then slows
down at a certain aggregate size. The structures occurring in the first six hours
seem to change only very slowly.

and the experimentally set initial cell density. An example result of this conversion is shown

in the bottom row of figure 3.8. Even though we lose some image information through this

conversion the images are able to represent the real states of the aggregates concerning size

and structure of the respective original images.

We quantified and analyzed nine series with initial densities reaching from 10000 cells per

well (10k) to 160000 cells per well (160k) using the measures introduced in section 3.1.

The analysis of the measured density ρ (t) = ∑
NP
i=1 Pi
NP

, where Pi ∈ {0,1} is the pixel value of

the ith pixel and NP is the total number of pixels in the image, shows that there are two phases

of aggregation (see figure 3.9).

Right after the beginning of the experiment there is an increase in density indicating a

spreading of the cells. For the lowest initial density this phase endures over the complete
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Figure 3.9: Measured density as a function of time for experiments with different initial

cell concentrations. The curves are normalized to the measured initial density

ρ0 = ρ (t = 0). Leaving aside the 10k experiment, we can see two patterns in this

graph. The cells from the 80k and 160k experiments start their contraction phase

almost directly after starting the experiment, which might implicate that they al-

ready have been in an aggregated state before the experiment started. All other

experiments show a transition between spreading and contraction after about 20

hours, independent of their initial cell concentration. This might imply a triggered

mechanism that induces contraction a specified time after a certain threshold in the

degree of aggregation is reached.

time the cells have been observed. Except for the experiments with initial concentrations of

80000 (80k) cells per well and 160000 (160k) cells per well all experiments show a transition

from spreading to contraction after about 20 hours. The mentioned exceptions in the 80k and

160k experiments are likely caused by an aggregation taking place before the experiment was

started.

The growth dynamics in figure 3.10 of the aggregates also show a difference for the three

cases that differ in their density behavior (10k, 80k and 160k). In the experiments with 80000

and 160000 cells per well the average aggregate size – measured by the full width at half

maximum rFWHM of the pair correlation function – and the growth rate – defined as
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kg =
rFWHM (t = 40h)− rFWHM (t = 0h)

40h
, (3.37)

the linear growth over the experiment time of 40h – are far below expectations indicating

that they reach their steady state earlier. This supports the argument of a premature aggregation

before the experiment was started.

Figure 3.10: Time dependence of the aggregate size measured by pair correlation function.

In general there is an increase in size rFWHM and growth-rate kg with increas-

ing initial cell concentration. Like in figure 3.9 the experiments with 10k, 80k

and 160k show a different behavior. While the difference in the 10k experiment

can be explained by the relatively small number of aggregates (and therefore in-

creased variance), the differences in the 80k and the 160k experiment support

the argument of an aggregation taking place right before the experiment has been

started.

In the other experiments we see a clear increase in aggregate size and growth-rate with

increasing cell concentration indicating, that the aggregation is more efficient and faster for

higher cell concentrations.

The time dependency of the fractal dimension shown in figure 3.11 indicates an increase in

regularity, i.e. an approach to two dimensional objects, with time.
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Figure 3.11: Fractal dimension of the experiments as a function of time. In most experiments

the fractal dimension increases with time and increasing initial concentration un-

til a saturation is reached. Again, the three experiments 10k, 80k and 160k differ

from this observation. An increase in fractal dimension implies a more regular,

i.e. more two dimensional structure. In general the aggregates get more and more

regular with time (or with increasing aggregate size) until they reach a certain

saturation.

This also reflects the size dependence of the structure, because the size of the aggregates

simultaneously increases with time as shown in figure 3.10. Again and for the same reasons

the only exceptions from this behavior are the experiments with 10k, 80k and 160k cells per

well.

This simultaneous rise in fractal dimension and aggregate size indicates that the fractal

dimension is related to the aggregate size in some way.

This relation is shown in figure 3.12. The fractal dimension increases with aggregate size

before it reaches a saturation for rFWHM ≥ 20.33 μm = rtrans.. Interestingly, aggregates larger

than this transition size have an average fractal dimension of
〈
D f
〉≈ 1.70, which is very close

to the fractal dimension resulting from a diffusion limited aggregation in two dimensions

(Witten Jr. and Sander, 1981).
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Figure 3.12: Fractal dimension D f as a function of mean aggregate size rFWHM. The frac-

tal dimension of the aggregates linearly increases until a transition size rtrans ≈
20.33 μm. Aggregates larger than this size show an average fractal dimension

of
〈
D f
〉 ≈ 1.70. This is strikingly close to the fractal dimension Witten Jr. and

Sander (1981) predicted for the fractal dimension of a diffusion limited aggrega-

tion.

All in all, we can monitor the dynamics of the aggregation process using the measures pre-

sented in section 3.1. We can divide the aggregation into the two phases spreading – which

roughly lasts 20 hours – and contraction as indicated in figure 3.9. We notice a simultaneous

increase of fractal dimension and aggregate size over time in figures 3.10 and 3.11. This led

to study the relation between aggregate size, measured using the pair correlation function, and

fractal dimension. This relation shows a transition from a linear increase of D f with aggregate

size to a saturation at
〈
D f
〉 ≈ 1.70. The close proximity to the fractal dimension of a two di-

mensional diffusion limited aggregation indicates that a random motion is the leading process
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of this aggregation.

3.3.3 Simulation Results

The simulation results fit the experimental results qualitatively. However, since in this work

only one experimental series was analyzed, there are some quantitative differences. The sim-

ulations were performed 100 times each and fitted to the fractal dimension resulting from the

experimental time-lapse series of 20000 cells per well, 60000 cells per well, and 100000 cells

per well using a randomized L-BFGS-B algorithm (Zhu et al., 1997) from the scipy library

(Jones et al., 2001)7. Figure 3.13 shows a strong decrease in cluster growth after five to ten

hours into the simulation.

Figure 3.13: Simulated aggregate sizes as a function of time. The size strongly increases with

time in the first hours. After about five to ten hours the growth slows down and

the aggregate size reaches a saturation in most cases. Exceptions are the results

for very high cell densities, where the aggregate size starts decreasing after some

time. This is caused by the averaging over a decreasing number of clusters which

increases the standard error of the mean accordingly.

7scipy.optimize.basinhopping, http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.optimize.

basinhopping.html
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This decrease finally leads to a saturation at a size correlated to the initial cell concentration

where higher concentrations result in bigger aggregates. In contrast to the experimental results,

the decrease in growth occurs roughly at the same time for all initial concentrations. This might

be a hint, that the cells in the experiment were in different stages of the aggregation process

when the experiment was started.

For very high cell densities there is a noticeable decrease in size after some time. Figure

3.14 indicates that this drop in size correlates to a relatively low number of clusters in the

simulation.

Figure 3.14: Number of clusters as a function of time for the simulations. After a strong in-

crease the number of clusters decreases as the clusters merge to fewer, bigger

clusters.

This decreasing number of clusters is caused by merger of clusters in the simulated area.

Since no cells are allowed to get in or to leave this area, the standard error of the mean increases

with decreasing number of clusters, leading to side effects like one huge cluster surrounded

by mini clusters of two to five cells.

The fractal dimensions of the simulations show a very similar behavior as the growth of
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the clusters like it does in the experimental series. Figure 3.15 shows that after a strong ini-

tial increase the fractal dimension increases slower and slower until it eventually reaches a

saturation.

Figure 3.15: Fractal dimension of the simulated aggregates as a function of time. The fractal

dimension increases with time and increasing initial concentration until a satu-

ration is reached. If we compare the simulation results to the fractal dimension

of the experimental sequence we see a good qualitative agreement. However, the

fractal dimension seems to be too small for low cell densities.

Again we see a very nice qualitative agreement. In case of very low initial cell densities, the

simulation seems to consequently underestimate the fractal dimension. This can be caused by

the simplification to circular cells because the cell shape directly influences the spatial organi-

zation of cells. At high densities the fractal dimension fits the experimental data quantitatively,

too. However, this simulation result also hints that the cells had to be in a different stage of the

aggregation process at the beginning of the experiment.

Because of the noticeably similar course of growth and fractal dimension it makes good

scene to look for a correlation of those two like the one shown in figure 3.12. Indeed, we see

a similar correlation except that it looks a bit smoother and the saturation occurs at a higher
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fractal dimension. Figure 3.16 shows the correlation.
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Figure 3.16: Fractal dimension D f as a function of mean aggregate size 〈NCl.〉 from the simula-

tions. As in the experiments the fractal dimension increases linearly until a transi-

tion size is reached (〈NCl〉 ≈ 3.01). After this a saturation starts. If the simulation

data is fit with the same bilinear curve as the experimental data, it yields a similar

saturation value as the experimental data (D f ≈ 1.76 compared to D f ≈ 1.70 in

the experiments).

The saturation value is D f = 1.76 (compared to D f = 1.70 in the experiment) and is reached

at a cluster size of about 〈NCl.〉= 3.01 cells/cluster. This value seems to be too small if compared

to the experimental results. If we assume 3.01
1
3 ≈ 1.44 cells in each direction having a length

of about 12 μm we have an approximate transition cluster size of rtrans. ≈ 17.33 μm compared

to rtrans.≈ 20.33 μm in the experiments. However, it is not possible to calculate the cluster size

using the pair correlation function in a comparable way to the experiments, because the cells
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are represented by circles not by their real shape. This makes it difficult to estimate cluster

sizes and to compare them with experimental data.

In addition to the quantities that could be analyzed experimentally, I studied the degree of

aggregation, i.e. the fraction of cells that are bound in clusters, and the clustering coefficient,

i.e. the average number of bonds per cells divided by the total number of cells.

Figure 3.17 shows the aggregation degree which behaves very similar as does the fractal

dimension. It first increases rapidly to start saturation after about five hours into the simulation.

Figure 3.17: Aggregation degree of the simulations as a function of time. The aggregation

degree strongly increases with time until it saturates at a value corresponding to

the initial cell density. This was expected as the cells at lower cell densities have

a much lower probability to encounter other cells and aggregate as cells at high

cell densities.

The saturation value reached before the differentiation of the cells, i.e. the transformation

into non-motile cells, strongly depends on the initial cell concentration. The higher the initial

concentration, the more cells aggregate into clusters.

The cluster coefficient shown in figure 3.18 nicely increases at first and then starts a sat-

uration. For all initial cell concentrations the coefficient increases for about the same time
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to about the same value, before the lines split and reach a saturation value depending on the

initial cell concentrations.

Figure 3.18: Cluster coefficient of the simulations as a function of time. The cluster coefficient

sharply increases in the first hours of the simulation. After all initial clusters were

formed and the growth of clusters is governed by merging clusters instead of

acquiring single cells the cluster coefficient increases less rapidly. It reaches a

saturation value that is higher for increasing cell densities.

These splitting points mark the transition from a growth mode that is governed by acquiring

single cells to a growth mode that is governed by the merger of whole clusters.

3.3.4 Discussion and Summary

The new experimental approach in combination with the methods to quantify patterns led

to new insights into the dynamics and structure of MEF cell aggregation using time-lapse

microscopy. The analysis of the microscopy series showed that there are two phases of aggre-

gation. First, the cells spread, i.e. the substrate area occupied by cells increases. After about

20 hours the cells start contracting, i.e. the area covered by cells decreases.
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Using the pair-correlation function to extract a measure for the aggregate sizes, it was

possible to estimate the growth rate that depends on the initial cell concentration. For very low

cell concentrations (10000 - 40000 cells per well) the growth rate is in the order of 0.1 µm/h.

For the higher concentrations (120000-160000 cells per well) the rate increases more than

tenfold to 1.4 µm/h. This shows that, as expected, the aggregation is much faster at high cell

concentrations.

The fractal dimension is a measure for the regularity and density of the cluster. The more

regular the clusters become, the more two dimensional (i.e. area-like) the patterns will be.

After a stiff increase, the fractal dimension reaches a saturation value depending on the initial

cell concentration (figure 3.11). The reason for this is shown in figure 3.12: the spatial structure

of the aggregates (as measured by the fractal dimension) depends on their size. The bigger the

aggregates become, the higher gets the fractal dimension meaning that the structure of larger

aggregates is more regular than the structure of smaller aggregates. At a size of about 20.33 µm

the dependency shifts from linear to a constant fractal dimension of 1.7. This is very similar to

the patterns resulting from diffusion limited aggregation as reported by Witten Jr. and Sander

(1981). While not proving diffusion limited aggregation as the mechanism at play here, it

indicates that the random motion of the cells, i.e. the “diffusion”, might be an important factor

in this process.

However, the model introduced at the beginning of this section also reproduces the experi-

mental findings quite well without explicitly simulating a random motion. Fitting the behavior

of the fractal dimension to the experimental data leads to a good qualitative agreement. In the

simulations we could also identify two phases. In the first hours of the simulation the aggre-

gates grow by acquiring single cells. After some time this shifts to growth by merger of larger

aggregates.

The aggregate sizes were measured in average number of cells per aggregate. While show-

ing a very similar behavior as the aggregate sizes in the experiments it is difficult to compare
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these finding quantitatively. The simulation neglects cell shape that is very important for the

calculation of the pair-correlation function because it changes the probability where cells can

be found in a certain distance since the real cells cover a larger area compared to the circular

ones in the simulation.

Figure 3.16 shows that in the simulation the structure of the aggregates also shifts from an

increasing to a constant fractal dimension as a function of aggregate size. The transition is not

as sharp as it is in the experiments, but it reaches a similar saturation value (1.76 compared to

1.70).

In addition to the quantities that can be measured experimentally, the simulation allows

for the analysis of more quantities. The aggregation degree sharply increases with time and

saturates at a level that depends on the initial cell concentrations. In simulations with higher

initial concentrations a higher fraction of cells is found in aggregates. Indicating, that the

aggregation is not only faster but more effective in terms of cells involved. The clustering

coefficient supports the definition of the two aggregation phases in the simulation as growth by

acquisition of single cells and growth by merger of clusters. The coefficient strongly increases

in a concentration independent way at first. After some hours into the simulation it splits into

concentration dependent curves, indicating the shift between the two aggregation phases.

All in all this section showed the importance of quantitative analysis of patterns. Especially

the sharp transition in figure 3.16 was found by carefully quantifying the microscopy images.

To further quantify the two aggregation phases (spreading and contraction) one has to ana-

lyze more experiments for the initial conditions to avoid errors occurring from non isotropic

cell concentrations inside one well. For the simulations it would be interesting to incorporate

cell shape and random motion. While the latter would be quite easy to implement the first is

challenging because the cell shape is highly irregular and it changes randomly with time and

through mechanical forces that are applied to the cell.

However, the model so far enabled us to study the basic principle of cellular aggregation
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and made it possible to analyze parameters that are not accessible experimentally.
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3.4 A New Experimental Approach to Yeast Flocculation

S. cerevisiae, besides its biotechnological relevance, has been used as a model organism to

study eukaryotic molecular and cell biology for a long time. Its well known genome and the

tremendous amount of experimental tools available for this organism makes it a very good

choice as a model.

Flocculation are one of the versatile lifestyles of S. cerevisiae in liquid media as reviewed

by Brückner and Mösch (2012). In biotechnology this lifestyle is exploited as a cheap and easy

way to remove the production cells from the desired medium after the fermentation process.

Smukalla et al. (2008) presented evidence that S. cerevisiae uses flocculation as a cooper-

ative mechanism for protection from environmental harms by creating a diffusion barrier that

cuts off the inner cells from external chemical compounds. Since this behavior is limited to

cells expressing the flocculin, the Flo-gene family contains some candidates that qualify as

“green beard genes” as defined by Dawkins (1976).

The work of Smukalla et al. (2008) also showed that, in some cases, cells not expressing

the binding protein (cheater cells) were incorporated into the flocs but are enriched at the flocs

surface. This makes them the first line of defense that suffers from the harsh surroundings

without the benefits of the protective environment inside the flocs. However, the flocs they

used to measure the diffusion barrier effect and the enrichment of the cheater cells were rather

big and dense.

In this chapter I will present a new experimental approach to quantify the structure of

the flocs including the position of the cheater cells. Together with Dr. Stefan Brückner and

Prof. Dr. Hans-Ulrich Mösch I developed an experimental setup to generate three dimensional

image data that can be analyzed according to the methods shown in section 3.1 and compared

to the model presented in section 3.2.
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3.4.1 Experimental Setup

In order to analyze the three dimensional structure of the flocs, including the position of

the cheater cells, we developed an experimental setup that uses confocal laser scanning mi-

croscopy to generate three dimensional image data of them.

We constructed two lab strains, one expressing the Flo5-protein and green fluorescent pro-

tein (GFP), the other lacking the FLO5 gene and expressing red fluorescent protein (RFP).

In order to ensure a constant copy number of FLO5 throughout all cells, we decided to

integrate PGK1(P)-FLO5-FLO11(T) into the chromosome of our basic S. cerevisiae strain.

3.4.1.1 Plasmids

In order to achieve a chromosomal integration of the FLO5 gene we had to construct a plasmid

carrying the PGK1(P)-FLO5-FLO11(T) sequence plus an integrative backbone. This was done

by cutting out the PGK1(P)-FLO5-FLO11(T) sequence from BHUM1600 using the restriction

enzymes EcoRI, EcoRV, and HindIII. The resulting linear DNA strand was ligated to the

linearized version of pRS306.

To label the cells according to their cell type we used the BHUM2028 (RFP) plasmid for

cheater cells and the BHUM2029 (GFP) plasmid for bearer cells.

All used plasmids (including their references) are listed in table 3.4.

3.4.1.2 S. cerevisiae Strains

The strains used in this study are based on the FY1679-14C yeast strain introduced by Winston

et al. (1995). To construct the bearer strain we used the BHUM2195 plasmid to integrate a

working FLO5 gene into FY1679-14C and labeled it with GFP using the BHUM2029 plasmid.

For the cheater strain we used the FY1679-14C strain and transferred the BHUM2028

plasmid carrying RFP into the strain. The Resulting strains are catagolized as YHUM2146
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Plasmid Description Reference
BHUM1600 PGK1(P)-FLO5-FLO11(T), Collection AG Mösch

URA3, AmpR, CEN
BHUM2028 TDH3(P)-tagRFP-CYC1(T), Collection AG Mösch

TRP1, AmpR, CEN
BHUM2029 TDH3(P)-yEGFP-CYC1(T), Collection AG Mösch

TRP1, AmpR, CEN
BHUM2195 PGK1(P)-FLO5-FLO11(T), This work

URA3, AmpR
pRS306 URA3, AmpR Sikorski and Hieter (1989)

Table 3.4: Plasmids used for the flocculation experiments. BHUM1600 is the source for the
FLO5 gene, BHUM2028 and BHUM2029 carry the RFP and GFP labels, pRS306
is the integrative shuttle vector, and BHUM2195 is the plasmid carrying FLO5 for
integration into the chromosome of S. cerevisiae.

(bearer) and YHUM2148 (cheater) in the collection of AG Mösch (see table 3.5 for strain

descriptions and references).

Strain Description Reference
FY1679-14C S288c MATa ura3-52 trp1∆63 Winston et al. (1995)
YHUM2146 S288c MATa This work

PGK1(P)-FLO5-FLO11(T)::URA3 trp1∆63
YHUM2148 S288c MATa URA3 trp1∆63 This work

Table 3.5: Used strains of S. cerevisiae. FY1679-14C is the basis in which we integrated FLO5
and GFP to obtain the bearer strain YHUM2146. We also transferred RFP to an
unmodified version of this strain to obtain the cheater strain YHUM2148

3.4.1.3 Flocculation Essays

We used overnight cultures of bearer and cheater cells that are treated with EDTA to dissolve

the flocs and diluted the single cells to set a desired OD600 value. EDTA binds Ca2+ so that

the calcium dependent binding of flo5 is annihilated.

The single cells are diluted to different OD600 values. After adding 25mM Ca2 to counter

the effects of EDTA, the flocs are allowed to settle for one minute. An amount of 100 µl of the

supernatant is mixed with 900 µl SC-4 medium and the OD600 value is measured.
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For the mixing experiments the cell cultures were diluted to OD600 = 4. Then we mixed

different fractions of cheater and bearer cells to a total volume of 1ml including 25mM CaCl2.

After one minute of settling 100 μl of the supernatant are diluted in 900 μl medium and the

OD600 is measured.

3.4.1.4 Confocal Laser Scanning Microscopy (CLSM)

We treated overnight cultures of YHUM2146 and YHUM2148 strains with 25mM ethylenedi-

aminetetraacetic acid (EDTA) to dissolve the flocs into single cells. Then cultures were diluted

to set OD600 = 1.5.

To study the structure of bearer flocs we diluted the overnight culture of bearer cells further

to set different OD-values. To study the structure of flocs consisting of bearer and cheater cells

we mixed the two cultures in the respective bearer-cheater ratios.

After adding 300 μl low melting agarose to 300 μl of the prepared culture, we induced the

flocculation by adding 30mM CaCl2 that counters the effects of the EDTA.

We placed 100 μl of the culture-agarose mixture on a microscope slide between two spacers

consisting of three cover slips (see figure 3.19), covered it, and placed it on a cooled aluminum

block to speed up the coagulation of the agarose and protect the flocs.

Figure 3.19: Sample preparation for CLSM. on both sides three cover slips act as spacers to

prevent the flocs from being squashed. The agarose keeps them at a fixed position

so that it is possible to perform three dimensional CLSM evaluations.

Confocal laser scanning microscopy allows analyzing objects in all three spatial dimensions

(Roderfeld et al., 2003). With this method one obtains a three dimensional representation of
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the cells inside a flock via a stack of optical slices. These slices are put together virtually into

a three dimensional matrix and the spatial fluorescence distributions are analyzed using the

methods described in section 3.1.

To quantify the density dependence of the structure we varied the OD600 value of the cells

in the low melting agarose in steps of 0.15 from OD600 = 0.15 to OD600 = 0.75 and scanned

four flocs for each value.

To quantify the influence and the spatial position of cheater cells, we varied the fraction of

cheater cells in steps of 0.1 from ncheat.
ntot

= 0.1 to ncheat.
ntot

= 0.9 and again scanned four flocs for

each value.

3.4.2 Experimental Results

3.4.2.1 Flocculation Essays

The flocculation essays show that the flocculation takes place as expected. The efficiency

breaks down below a certain concentration of cells (see figure 3.20) because of the decreas-

ing probability of cell-cell encounters with decreasing cell concentration. If we increase the

amount of cheater cells, the flocculation efficiency decreases as indicated in figure 3.21.

Figure 3.22 shows the cheater concentration in the supernatant as a function of the cheater

concentration in the mixed culture. The fraction of cheater cells in the supernatant is signif-

icantly higher than the fraction of cheater cells used in the mix. This means that bearer cells

have a significant advantage over the cheater cells to get inside the flocs.

3.4.2.2 Three Dimensional Structure of Flocs

To get a first impression of the three dimensional structure of the flocs we generated a three

dimensional projection of a floc using a slice distance of ∆z = 0.08 µm and a horizontal res-
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Figure 3.20: Flocculation efficiencies for dif-
ferent OD600 for single cells.
There seems to be a minimum
concentration for flocculation to
work and a maximum efficiency
at about 80%.
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Figure 3.21: Flocculation efficiencies for dif-
ferent fractions of cheater cells
in the solution. This data clearly
shows that the presence of
cheater cells clearly lowers the
flocculation efficiency.
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Figure 3.22: The fraction of cheater cells in the supernatant after flocculation is higher than
the one used before flocculation. This clearly shows that cells expressing the Flo-
gene are accumulating inside the flocs.

olution of 0.13 µm/px. The upper images of figure 3.23 show excerpt of the resulting stack. It

nicely shows the positions of bearer cells in green and cheater cells in red.

Using the 3D projection tool of the software ImageJ8 one can easily generate a rotatable

three dimensional projection from this stack of images. The lower images of figure 3.23 show

8http://imagej.nih.gov/ij/
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the resulting projection for a rotation of 150◦.

Figure 3.23: Example series of CLSM images for a floc from a mixing experiment with 20%
bearer cells and 80% cheater cells (upper series). The slices in this series were
taken every 0.08 µm. This figure shows every 9th slice of 324 total slices. Series
like this were converted into binary three dimensional data and evaluated with the
methods described in section 3.1. The lower images show the three dimensional
projection of the series rotated around the y-axis. Using the 3D-Projection tool
from ImageJ one can easily generate rotatable three dimensional representations
of the flocs. This is very useful to get a feeling for the three dimensional structure
of the flocs.

Even though one cannot make any well-founded quantitative statements on the structure of

the flocs from these three dimensional projections it is possible to see some qualitative details.
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The most obvious of these details is the irregular structure of the flocs which makes it difficult

to define a surface. So instead of discussing the composition of the surface of a floc it is better

to look at the composition of the exposed cells.

Another important detail one can directly see from these images is that the bearer cells

would often build a flock on their own. This means that cheater cells are not found in positions

where the structural integrity of the flocs depends solely on them.

As can be expected from the flocculation assays, the cell concentration has a huge impact on

the flocculation rate. However, it also directly influences the floc size. Figure 3.24 shows that

the floc size measured through the full width at half maximum (FWHM) of the pair-correlation

function g(r)) (see section 3.1) is strongly increasing for higher concentrations.

Figure 3.24: The floc size strongly increases with increasing concentration. There is a strong

positive correlation of rxy = 0.73 between the OD600 value (as a measure for

concentration) and the FWHM of g(r) (as a measure for the floc size).

A good measure for the impact of a parameter x on another parameter y is the correlation

coefficient
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2
(3.38)

that is defined for two sample series xi and yi, where 〈〉i denotes the mean over all measure-

ments i.

In this case the OD600 value and the floc size are strongly, positively correlated with rxy =

0.73 indicating the huge impact of concentration not only on the flocculation efficiency but

also on the protective potential of each single flock.

The independence of flocsize of the pair correlation function g(r) and boxcount dimension

shown in figure 3.25A is a first hint that flocs are fractal, self similar objects. The correlation

coefficient for flocsize and boxcount dimension is rxy = 0.31 indicating that there is little to

no correlation.

This is also supported by the fact, that the set cheater concentration, which as I showed

above reduces the flocculation efficiency, is also not correlated to the boxcount dimension as

shown in figure 3.25B (rxy = 0.40).

Finally, the set cell concentration (represented by the OD600 value) and the boxcount

dimension shown in figure 3.25C are also uncorrelated with a correlation coefficient of

rxy = 0.43.

These results justify the assumption of a universal, self similar structure of the flocs. The

mean boxcount dimension is
〈
D f
〉
= 2.64. Assuming a smallest possible structure that builds

the flock, the next logical step is to ask for the size of this “unit floc”.

Because the number of cells is an integer and the cell size is roughly the same for every

cell, there is only a limited amount of flocs that can have a fractal dimension D f = 2.64. To

find those flocs, I wrote a monte-carlo algorithm, that builds flocs on a grid from a central seed

and adds single cells if D f gets closer to the desired value. If D f gets worse with addition of

a single cell this addition will be accepted wit a probability of 5% to avoid getting caught in
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Figure 3.25: A: Size of flocks vs. boxdimension. There is little to no correlation. rxy = 0.31〈
D f
〉
= 2.64, B: Boxdimension is independent of the set cheater concentration.

rxy = 0.40
〈
D f
〉
= 2.60, C: Boxdimension is independent of the set OD600. This

supports the argument of figure 3. rxy = 0.43
〈
D f
〉
= 2.70

local minima. After adding 200 cells the algorithm stops and the flocsize where the best fit

was encountered is saved and analyzed for a large number of runs.

The distribution of these best fit values as a function of flocsizes is shown in figure 3.26.

It has two clear peaks, one at n1 = 39 and one at n2 = 78 cells that persist if we apply the

condition that the difference of the fractal dimension to the mean value of the measured fractal

dimensions is smaller than twice the standard error of that mean value. From this it can be

concluded that the smallest floc having a fractal dimension of 2.64 within a 2σ certainty

interval consists of 39 cells while the peak at 78 cells can be interpreted as a floc consisting of
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Figure 3.26: Distribution of best fit values encountered by the monte-carlo algorithm. The

distribution has two noticeable peaks at n1 = 39 and n2 = 78 that persist if we

apply the condition, that the difference in fractal dimension to the mean value of

the measured flocks is less than two times the standard error of that mean. Since

78 is twice 39 it is possible to conclude that the unit floc consists of 39 single

cells. The second peak can be explained as a combination of two unit flocs.

two 39 cell unit flocs.

To further quantify theses findings, I analyzed the size of the unit flock given by the algo-

rithm as a function of the target fractal dimension (see figure 3.27).

As it turns out, there is an exponential dependency between fractal dimension and unit floc:

Nunit.

(
D f
)≈ exp

(
1.39D f

)
. (3.39)

This is consistent with the assumption that a zero-dimensional object is a single point.
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Figure 3.27: Resulting sizes of the unit flocs N for varying fractal dimensions D f . The result-

ing sizes are all located on an exponential function N = exp
(
1.39D f

)
. Though

the source of this correlation remains unknown, this indicates, that the minimal

unit floc for D f = 2.64 is indeed 39 sharp. Based on the standard error of the mean

of the measured D f of about 10%, the experimental unit flocs contain 39±14.5
cells.

3.4.2.3 Role of the Cheater Cells

The flocculation essays already showed the inhibiting effect of cheater cells in the medium.

Figure 3.28 indicates that the presence of cheater cells also decreases the flocsize. The corre-

lation coefficient is rxy =−0.55.

There are two possible ways cheater cells could influence the floc size. The first way is an

effective decrease in bearer concentration and in this way reducing the collision probability

of bearer cells and flocs or other cells. The second way one can think of is the destabilization

of flocs with an amount of built in cheaters above a certain threshold. This destabilization is

caused by the lack of binding protein in cheater cells resulting in the possibility of “blocking”
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Figure 3.28: The floc size is strongly decreases with increasing initial cheater concentration.

The FWHM of g(r) shows a decreasing trend for increasing cheater concentra-

tion with a correlation coefficient of rxy =−0.55.

bearer cells and weakening the structural integrity of the floc.

Looking at the floc size as a function of the measured cheater concentration reveals that the

first is not correlated with a correlation coefficient coefficient of rxy = −0.14. This indicates

that the cheaters inhibit flocculation mostly by reducing the effective concentration of bearer

cells.

The remaining question concerns the position of the cheater cells inside the flock. To an-

swer this question I analyzed the influence of the cheater concentration on the structure of the

floc represented by the fractal dimension.

Figure 3.29A and figure 3.29B show the fractal dimension of the green channel, i.e. the

structure of the floc if it is stripped of all cheater cells, as a function of set cheater concentration

in the initial mixture and the measured cheater concentration of the floc respectively.

These figures indicate an independence of the floc structure from the amount of cheater
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cells over a huge range of cheater concentrations. The correlations coefficients are rxy =−0.35

in case of the measured cheater concentration and rxy = −0.32 in case of the set cheater

concentration.

Figure 3.29: Influence of the cheater cells on the structure of the flocs. For this figure I used
the fractal dimension of the floc and the fractal dimension of the green channel.
In this case “green channel” denotes the structure of the bearer cells that is left if
all cheater cells are removed. A: The measured cheater concentration has almost
no influence on the bearer cell structure (rxy = −0.35) B: The structure of the
bearer cells is not influenced by the initial cheater concentration (rxy = −0.32).
This indicates that the cheater cells are not part of the integral structure of the
floc. C: The fractal dimension of a floc clearly increases with increasing cheater
concentration (rxy = 0.53). So the density and regularity of a floc increase with
increasing cheater concentration indicating that the cheater cells fill up gaps in
the bearer cell structure. D: The fractal dimension of the complete flock is always
larger than the fractal dimension of the bearer structure (the two parameters are
also uncorrelated, rxy = −0.22) supporting the argument of cheater cells filling
the gaps of the bearer structure.
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Figure 3.29C shows that on the other hand the fractal dimension of the complete floc in-

creases with increasing cheater concentration. The correlation coefficient of this increase is

rxy = 0.53. The fractal dimension of the complete floc is always larger than the fractal dimen-

sion of the green channel (see figure 3.29D) indicating that the cheater cells make the flocs

more regular and more volume-like.

To summarize the results on cheater positions so far four statements can be made: 1)

Cheaters inhibit flocculation by decreasing the effective concentration. 2) The structure of

bearer cells in a floc is neither influenced by the set cheater concentration in the medium nor

by the actual cheater concentration inside the floc. 3) The higher the fraction of cheaters inside

a floc, the denser and more volume-like the floc gets. 4) The complete floc is denser and more

volume-like than the stripped floc consisting only of bearer cells.

These four results lead to the assumption, that the cheater cells fill up the holes inside the

floc that are left by the bearer cells rather than being part of the main structure.

Another interesting fact is revealed by conducting simulated attacks on the flocs, as shown

in figure 3.30 (see section 3.1 for a description of the method).

These results show that the cheater cells are more exposed to the environment than bearer

cells. In addition to fill the remaining holes inside the floc they are enriched at the floc’s

surface supporting the idea of cheaters as a first line of defense as claimed by Smukalla et al.

(2008). The average shift of about 30% in favor of bearer cells is comparable to their findings

concerning the advantage of Flo1 bearer cells under chemical stresses (see (Smukalla et al.,

2008) figure 7).

3.4.3 Simulation Results

One of the biggest drawbacks in agent based modeling is the large amount of computing

power that is necessary to carry out the simulations. Even with the parallelization mentioned in
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Figure 3.30: The simulated attack reveals that the cheaters are indeed more exposed to the

environment. This suggests that they will suffer higher stresses and form a first

line of defense as suggested by Smukalla et al. (2008). The average shift of about

30% in favor of bearer cells is comparable to the growth penalty from which they

suffer when producing the Flo5 binding protein.

section 3.2.3 it is not possible to do a large parameter scan or a data fit on a single workstation.

This restricts this work to a proof of concept.

3.4.3.1 Flocculation Essays

Although I was not able to fit the simulation parameters to the experimental data, the floccula-

tion essays are in strikingly good agreement with the experimental data. Table 3.6 summarizes

the used parameters.

Figure 3.31 A indicates that – as in the experiments – the flocculation requires a minimal

cell density to be efficient.

If the bearer cells are diluted with cheater cells the efficiency of the flocculation decreases

rapidly after some time of stagnation as shown in figure 3.31 B.
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Parameter Value (arbitrary units) Description
N 32768 simulated cells
∆t 0.01 division of time-steps

l0,Spring 1.0 equilibrium length of bond (incl. cell radii)
kSpring 4.99787379 spring constant of double bond
Frand. 7.52538511 ·10−2 amplitude of single cell random force
Fbox 7.88825084 ·10−2 amplitude of area random force
Froat. 1.35553341 ·10−2 amplitude of rotational force
Γfric. 1.09971370 friction parameter
dcrack 1.025 distance at which the bonds will break (incl. cell radii)

preact,e−e 1.0 reaction probability for two bearer cells
preact,e−c 1.0 reaction probability for bearer and cheater cells

kcoll. 2 spring constant for collision
γcoll. 2 collision dampening
σcoll. 0.5 collision shear
dcell 1 cell diameter

Table 3.6: Parameters used for the simulations. The spatial size of the simulated world and
cheater rates were set according to the experiments. It is not possible to give the
real parameters at this point, because with the hardware at hand it was not possible
to fit the data quantitatively.

Finally figure 3.31 C shows the cheater concentration in the supernatant as a function of

the cheater concentration is significantly higher than the fraction of cheater cells used in the

mix. This behavior is the same in the experiments and in the simulations.

All in all, the simulations qualitatively and almost quantitatively reproduce the experimen-

tal findings concerning the flocculation essays without even performing a larger parameter

scan.

3.4.3.2 Three Dimensional Structure of Flocks

Using the same parameters that reproduce the flocculation essays so well do not reproduce all

structural properties of the flocs especially their size quantitatively. However, since I was not

able to perform large parameter scans and data fits, this is likely to be a matter of finding the

right combination of parameters.

Figure 3.32 shows a simulated floc for the same initial conditions that produced the floc in
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Figure 3.31: Flocculation essays: comparison of the experimental data and the simulations. A
Flocculation efficiencies for different initial cell concentration from experiment
and simulation. The simulation results nicely fit the experimental data leaving
aside a little higher efficiencies that might be due to the threshold from which
a cluster is considered a floc that settles within one minute. B Flocculation ef-
ficiencies for different fractions of cheater cells in the solution. The simulations
show almost the same decrease in efficiency with an increasing fraction of cheater
cells. C The fraction of cheater cells in the supernatant after flocculation is higher
than the one used before flocculation. This clearly shows that cells expressing the
Flo-gene are accumulating inside the flocs.

figure 3.23. It clearly shows that the cells do aggregate, but the floc seems too small and too

dense compared to the experimental floc.

This can be caused by different effects. The used combination of force parameters might
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Figure 3.32: Three dimensional view of a simulated floc at the same conditions as the floc
shown in figure 3.23. Compared to the experimental images in figure 3.23 the
floc looks much smaller (it only contains 42 cells).

result in too slow cells that are not able to aggregate enough through the simulated time. On

the other hand the simulated time might be too short or, to be more precise, the combination

of force amplitudes and simulated time does not fit the experiment. To simulate larger forces

one would have to decrease δ t resulting in more iterations per time-step and finally in longer

runtimes.

The increased density directly influences the FWHM of g(r) as a measure for the flocsize

because if the density strongly increases with the number of cells, the pair-correlation function

becomes steeper resulting in a decreasing instead of an increasing FWHM for larger flocs.

Figure 3.33 visualizes this effect.

While the flocsize measured by the number of cells inside the floc increases with increasing

initial concentration (as did the flocsize measured by the FWHM of g(r) in the experiments),

the FWHM of g(r) decreases indicating a strongly increased density of the floc. This density

is caused by a non-optimal choice of parameters especially with respect to the relation of
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Figure 3.33: Aggregate sizes for the simulated OD600 scans. The left image shows the result if

we use the number of cells in a cluster as a measure for the flocsize. It shows that

the simulation qualitatively reproduces experimental data (rxy = 0.985). The im-

age on the right shows the results for the flocsize derived from the pair-correlation

function. Compared to the experimental findings this shows the almost opposite

behavior (rxy = −0.795). This might be caused by the flocs becoming too dense

when they grow larger due to a non-optimal relation between collision and attrac-

tion force.

attractive and repulsive forces between cells. In general, the repulsive forces should be larger

than the attractive forces preventing the cells to occupy the same space. However, it seems

that with the chosen parameter set this is not fulfilled and two cells can occupy the same space

temporary, resulting in bonds between second next neighbors that do not occur in nature.

Through this “forbidden” bonds the floc will become much denser than the natural ones.

A side effect of this is that the FWHM of g(r) can not be trusted as a measure for the

flocsize. Instead I will from now on use the average number of cells as a trustworthy parameter

for the size of the flocs.

Figures 3.34 A - C show the results for the structural analysis of the simulated flocs. The

first thing that stands out are the obvious correlations between flocsize, set cheater concen-
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tration and set OD600 value and the fractal dimension that are not present in the experimental

data (see figure 3.25).

Figure 3.34: A: Size of flocks vs. boxdimension. There is a strong positive correlation (rxy =
0.896,

〈
D f
〉
= 2.06) that result from the combination of two effects. The small

size of the flocs in combination with them being much too dense leads to a de-
crease in fractal dimension. B and C: In contrast to the experimental findings
the simulation results show a rather strong correlations between set cheater frac-
tion and boxcount dimension (rxy =−0.957), and set OD600 value and boxcount
dimension (rxy = 0.949) that are caused by the correlation strong correlation be-
tween size and density of the flocs. D: If we derive the flocsize from the pair-
correlation function, the correlations weaken a great deal (rxy = 0.494) hinting
that the other correlations are indeed caused by the increased density of cells
inside a floc.

These correlations are passed on from the negative correlation between the number of cells

in a floc and the FWHM of g(r) and as such a result of the too high cell density. This is
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indicated in figure 3.34 D, where the correlation of flocsize and fractal dimension is strongly

decreasing compared to the correlation of flocsize measured by the number of cells of a floc

and the fractal dimension.

3.4.3.3 Role of the Cheater Cells

As in the case of the experimental flocs, the flocculation essays already show the inhibitory

effect of cheaters in the simulations. In addition there is an even stronger decrease in flocsize

with increasing cheater concentration in the simulation (see figure 3.35) than in the experi-

mental data (see figure 3.28). The correlation in the simulations (rxy,sim. =−0.90) is about 1.6

times stronger than in the experiments (rxy,exp. =−0.55).

Figure 3.35: The floc size is strongly decreases with increasing initial cheater concentration

in the simulations. The floc size shows a strong decreasing trend for increasing

cheater concentration with a correlation coefficient of rxy =−0.900.

Concerning the position of the cheater cells inside the flocs, the simulation data is not as

conclusive as the experimental data because of the increased density of the flocs. This strongly
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influences the fractal dimension and therefor passes on the negative correlation between cell

number and density (see figures 3.36 A-C).

Figure 3.36: Influence of the cheater cells on the structure of the simulated flocs. A-C: In
contrast to the experimental findings the simulated flocs show strong correlations
between measured and set concentration and fractal dimension of the bearer floc.
In these cases it is also possible and likely that the correlation is caused by the
small size and the more dense structure of the flocs rather than by the fractions of
cheater cells. D: The fractal dimension of the complete floc is always lower than
that of the bearer only structure as it was in the experiments, indicating that the
cheaters still fill the holes in the floc even though the floc is much too dense.

However, the fact that the fractal dimension of the complete floc is always larger than the

fractal dimension of the floc stripped of all cheater cells is a strong hint that the cheaters also

fill the holes in case of the simulations.

Finally, the simulated attack reveals that the cheaters are more exposed to the environment
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in the simulations as well. As shown in figure 3.37 the shift is 21.36% in favor of bearer cells.

Figure 3.37: The simulated attack reveals that the cheaters in the simulations are indeed more

exposed to the environment, too. The average shift is about 10% smaller than in

the experiments but it still is 21.36% in favor of the bearer cells.

All in all, the simulation results reproduce the experimental findings qualitatively with

the small drawback of producing flocs that are too small and too dense. This shows that the

increased exposition of cheater cells is a result of the mechanical properties of the bonds

between cheater and bearer cells compared to the properties of the bonds between two bearer

cells.

3.4.4 Discussion and Summary

In this section I presented a combination of a novel experimental approach and an individual

based model to analyze and understand the principles of the dynamics and structure of the

flocculation of S. cerevisiae mediated by Flo5. The four most important experimental findings
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are that the flocculation efficiency strongly depends on the cell concentration, that flocs are

indeed fractal structures (which implies a self similarity), that the basic unit of this self sim-

ilarity is a floc containing 39 cells and that cheaters inhibit flocculation only by diluting the

bearer cells while they fill up holes in the flocculation process and are strongly enriched on

the flocs surface.

Especially the role of the cheater cells during and at the end of the flocculation process

strongly supports the idea of flocculation as a protective mechanism as reviewed in Soares

(2011), Bauer et al. (2010) and Brückner and Mösch (2012). The enrichment on the surface

that was shown for the similar Flo1 system is also present in Flo5 flocculation facilitating the

cheater cells as a first line of defense as suggested by Smukalla et al. (2008). In addition this

work provides analytical tools to analyze the three dimensional structure of flocs (or other cell

aggregates) that are non-regular objects, i.e. fractal objects.

As fractal objects the flocs show some kind of self similarity on a certain range of scales as

suggested for fractals by Mandelbrot (1977). As mentioned in the first paragraph the smallest

of these scales are flocs consisting of 39 cells. While this seems to be a reasonable minimum of

the used mechanism (see section 3.4.2.2) it remains to investigate why it is this exact number.

The structure of the flocs that incorporate cheater cells suggests that the flocs consist of

a stable bearer backbone with holes stuffed by cheater cells. In this way though inhibiting

flocculation by diluting the cell culture the cheater cells can not destabilize the flocs. However

through this dilution process they reduce the efficiency of flocculation and the resulting flocs’

sizes.

In addition, the mechanical agent based model – even though at a level of a proof of concept

– qualitatively reproduces a good part of the experimental findings. To make it fit quantitatively

one has to put a lot of computational effort into the simulations. However, this qualitative

agreement proves, that there is no active mechanism that rules out the cheater cells but that

it is simply the outcome of a two-fold difference in the binding forces that leads to a self

114



3.4. A New Experimental Approach to Yeast Flocculation

assembly in a way that excludes cheater cells from a big part of the benefits of flocculation

and therefore compensates for their advantage in growth.

Another interesting question at hand is if Flo5 could be considered a green beard gene as

defined by Dawkins (1976) despite the fact that it does not specifically mediates an interaction

between carriers of this gene. The exposition of the cheater cells and their general position

inside the flocs are arguments that favor the view, that Flo5 fulfills the conditions to be a green

beard gene: while not directly recognizing other carriers of the gene it strongly favors carriers

of the gene just by reinforcing the interaction compared to the interaction to other cells.
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Chapter 4

Conclusion

This work gives new insights into the dynamics and structure of cellular aggregation starting

from cell motility as a precursor. I developed a generic model for mammalian cell migration

that is capable of explaining and characterizing several details of the motility of mammalian

cells purely based on mechanics.

Furthermore, this study introduces a toolkit to quantify patterns and new experimental pro-

cedures to visualize and “measure” patterns. As examples for different types of aggregation

I presented the aggregation of mouse embryonic fibroblast cells in two dimensions and the

three dimensional flocculation of yeast cells. Hand in hand with the experiments I developed

an individual based model capable of reproducing the dynamics and the structure of these

aggregation processes.

This chapter summarizes the results for the cell motility model, the MEF cell aggregation

and the flocculation. It also presents an outlook on further work that can be done in this fields.
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4.1 Mammalian Cell Motility

The mesenchymal mode of migration of epithelial cells is a very important mode of migration

in mammalian cells. In chapter 2 I introduced a generic two dimensional model that is capable

to simulate the large scale crawling dynamics of an epithelial cell in two dimensions. The

experimental observations at steps in substrate rigidity observed by Bordeleau et al. (2013)

and cellular morphology observed by Lo et al. (2000) are nicely reproduced by the model.

This model captures the very high efficiency in following gradients that has been observed by

(Theveneau et al., 2010).

The model can be used to estimate transition probabilities through rigid-soft interfaces

which are important in cancer metastasis (Bordeleau et al., 2013). Furthermore, the refractive

indices introduced in section 2.4 can be used to characterize substrate rigidity including an

appreciation of the biological impact of the material compared to a reference substrate.

All in all, my model produces reasonable results that fit many experimental observations

qualitatively. However, further experimental quantifications can be performed to validate the

model.

To quantify the chemotactic efficiencies one could rely on an experiment, where a gradient

is created using a Dunn-Chamber (Zicha et al., 1991) combined with time-lapse microscopy.

This can be done for a large number of cells using automation techniques (Fotos et al., 2006)

and cell-tracking methods (Chen et al., 2006).

To validate the results for spatial substrate heterogeneities in substrate adhesiveness,

chemoattractant concentration or substrate stiffness one could use the methods presented by

Bordeleau et al. (2013) to produce flat substrates of different stiffness and measure the polar-

ization axes of the cells before and after the interface and the transmission coefficients with

automatized time lapse microscopy and the before mentioned tracking methods (Chen et al.,

2006).
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So far I have neglected the mechanical effects that the cells have on the substrate. If a cell

attaches to the substrate and contracts, the substrate locally stiffens. This gradual increase in

stiffness could mediate a cell-cell interaction since it would attract cells that are in proximity

and in this way promote aggregation.

Another possible prosecution of this research is the extension of the model to three di-

mensions. This requires the incorporation of drags that the cell experiences while migrating

through the extracellular matrix (DiMilla et al., 1991).
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4.2 MEF Cell Aggregation

Our experimental approach combines time-lapse microscopy with new methods to quantify

patterns derived from fractal geometry and graph theory. The analysis of the microscopy series

showed that the aggregation can be subdivided into two phases: A spreading phase of about 20

hours and a contraction phase that can be distinguished by monitoring the surface area covered

by cells.

It was possible to estimate the aggregate growth rate that depends on the initial cell con-

centration by using the pair-correlation function as a measure for aggregate size. For very low

cell concentrations (10000 - 40000 cells per well) the growth rate is in the order of 0.1 µm/h.

For the higher concentrations (120000-160000 cells per well) the rate increases more than

tenfold to 1.4 µm/h. This shows that – as expected – the aggregation is much faster at high cell

concentrations.

As a structural measure for the regularity and density of the cluster we used the pair-

correlation function. A higher regularity of the cluster, i.e. a fractal dimension closer to two,

indicates a more area like structure. For each experiment the fractal dimension finally reaches

a saturation value depending on the initial cell concentration. The explanation of this phe-

nomenon is the dependence of the fractal dimension (and therefore the spatial structure of an

aggregate) on the aggregate size. Smaller aggregates are less regular. As the aggregates grow

in size the fractal dimension increases linearly until at a size of about 20.33 µm the fractal

dimension saturates at D f = 1.7. This structural similarity to aggregates formed by diffusion

limited aggregation (Witten Jr. and Sander, 1981) hints that the random motion of the cells,

i.e. the “diffusion”, might be an important factor in the process of aggregation.

However, the introduced model nicely reproduces the experimental findings quite well

while not explicitly modeling a random motion. Fitting the temporal dynamics of the fractal

dimension to the experimental data leads to a good qualitative agreement. In the simulations

120



4.2. MEF Cell Aggregation

we could also identify two phases: growth by acquisition of single cells in the first few hours

and growth by merger of larger clusters.

In the simulations we measured the size of the aggregates as the average number of cells per

aggregate. While showing a very similar behavior as the aggregate sizes in the experiments

it is difficult to compare these findings quantitatively without fitting the model to a larger

amount of experimental data. The simulation completely neglects the cell shape that is of

great importance for the final structure of the aggregates because the cells are the building

blocks of them.

If we analyze the dependency of the fractal dimension on the aggregate size we also see

a transition from an almost linear increase to a saturation. The transition is not as sharp as

it is in the experiments, but it reaches a similar saturation value (D f ,sim. = 1.76 compared to

D f ,exp ≈ 1.70).

The simulation allows for the analysis of quantities that are unaccessible for experimental

analysis. The temporal dynamics of the aggregation degree prove that the aggregation gets

faster and more efficient with higher cell concentrations. The finding that the aggregation

takes place in two phases in the simulation – growth by acquisition of single cells and growth

by merger of clusters – is supported by the temporal behavior of the clustering coefficient that

first strongly increases identically for all initial cell concentrations and the splits up to saturate

at values depending on the initial cell concentration.

All in all, this study emphasizes the importance of approaches that combine quantitative

analysis of patterns with modeling. Especially the sharp transition of the fractal dimension as

a function of the aggregate size was found by carefully quantifying the microscopy images

using techniques from various mathematical fields.

To further quantify the two aggregation phases (spreading and contraction) one has to in-

crease the number of experiments and analyze the average behavior to avoid errors occurring

from non-isotropic cell concentrations inside one well and from other noise effects. For the
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simulations it would be interesting to analyze a model extension that incorporates cell shape

and random motion. While the latter can be implemented straight forward using the results

from chapter 2 the first is challenging because the cell shape is highly irregular and it changes

randomly with time and through mechanical forces that are applied to the cell.

Another phenomenon that has been neglected in the model is the stacking of cells, i.e.

spreading in the third dimension. Experimentally it becomes evident when the surface area

covered by cells decreases below the initial area that the cells either decrease their projected

size or stack up into the third dimension. Since this phenomenon is not easily studied experi-

mentally it remains a challenging question.
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4.3 Flocculation of S. cerevisiae

We used a combination of a novel experimental approach to make a three dimensional visu-

alization of flocs and an individual based model towards the understanding of the principles

of S. cerevisiae flocculation. The most important results of this study are: (1) the flocculation

efficiency strongly depends on the cell concentration, (2) flocs are fractal structures (which

implies a self similarity), (3) the basic unit of this self similar structure is a floc that contains

39 cells, (4) cheaters inhibit flocculation only by diluting the bearer cells without destabilizing

the flocs and (5) cheaters are strongly enriched on the surface with a shift of about 30% in

favor of the bearer cells.

Especially the role of the cheater cells as a filling of a bearer backbone strongly supports

the idea of flocculation as a protective mechanism as suggested in Soares (2011), Bauer et al.

(2010) and Brückner and Mösch (2012). The enrichment on the surface of a floc that was

shown for the similar Flo1 system is also present in Flo5 mediated flocculation facilitating the

cheater cells as a first line of defense as suggested by Smukalla et al. (2008). In contrast to this

study of Flo1 mediated flocculation we were able to quantify this enrichment. Furthermore,

this work provides an analytical toolkit to analyze the three dimensional structure of flocs (or

other cell aggregates) that are fractal objects.

Being fractal structures flocs show self similarity. In contrast to mathematical fractals in-

troduced by Mandelbrot (1977) the self similarity of flocs has a finite range of scales in which

it really is fractal. The minimum scale of this range is a structure containing 39 cells that I

found using a monte-carlo approach to find the smallest structure reproducing the experimen-

tal findings.

The fact that the agent-based model that is solely based on mechanical interaction qualita-

tively reproduces a good part of the experimental findings proves, that there is no active mech-

anism that rules out the cheater cells. Instead the two-fold difference in the binding forces
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lead to a self assembly in a way that excludes cheater cells from a big part of the benefits of

flocculation and therefore compensates for their advantage in growth.

However, since a quantitative fit of the model requires a lot of computational effort this

results stay on a qualitative level but they provide a proof of concept for the individual based,

mechanical modeling of cellular aggregation.

While flo5 does not fulfill the literate definition of a green beard gene as defined by Dawkins

(1976) because it does not specifically bind carriers of the same gene. However, the exposition

of the cheater cells and their general position inside the flocs are arguments that favor the

view, that flo5 does mediate a very similar effect as do green beard genes: while not directly

recognizing other carriers of the gene it strongly shifts the outcome of the aggregation in favor

of carriers.

Further work could approach this topic from a more topological view. While establishing

a 39 cell floc as the unit structure of flocs it remains unclear why it is this exact number. The

exponential dependency between the minimal aggregate size and the fractal dimension is a

hint that there might be some topological reason for this.

Another interesting question would be the manipulation of the flocculent system. If one

could achieve a quantitative fit of the model it is easy to predict the effects of a change in model

parameters. This could finally lead to industrial applications in the field of fermentation for the

production of chemicals if it is possible to further improve the efficiency of the flocculation.
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