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Zusammenfassung

Allgemein kann man inverse Probleme als die Aufgabe beschreiben, aus gegebenen
Daten ' Riickschliisse auf deren Ursache u' zu ziehen. Mathematisch kann dies als
die Inversion einer Operatorgleichung

K(u') =y

beschrieben werden. Von besonderem Interesse ist hierbei der Fall, dass es sich um
ein schlecht konditioniertes oder schlecht gestelltes Problem handelt. Um zu einem
sinnvollen Losungsbegriff zu kommen, konnen Regularisierungstechniken angewendet
werden. Eines der wichtigsten Regularisierungsverfahren ist die sogenannten Tikhonov
Regularisierung. Hier werden zuséatzliche Annahmen an die Losung gemacht, was mit-
tels eines Strafterms .%, : X — R modelliert wird. Zur Losung des inversen Problems
betrachtet man zunachst Naherungslosungen

d

ud, = argminlﬂlC(u) — 1’112 + a.Z (u), (0.1)
ueX 2
die auf ungenauen Daten [|y° — y'||y < & beruhen.

Die Konvergenz der Folge der Minimierer ud, gegen u' fiir eine gegebene Parameter-
wahl @ = a(d) wurde in der Vergangenheit intensiv studiert. Diese Regularitatstheorie
fiir inverse Probleme ist in weiten Teilen nahezu vollstandig, insbesondere fiir nicht-
lineare Operatoren K.

Im Gegensatz dazu ist die Entwicklung von effizienten Losungsverfahren zur Berech-
nung der Minimierer ul, ein Feld aktueller Forschung. Ein hiufig gemachter erster
Ansatz ist, Strafterme .# zu betrachten, die eine einfache Struktur der Losung erzwin-
gen. Fiir den Fall, dass X ein Hilbertraum ist, der mit Hilfe einer Riesz Basis diskreti-
siert wird, sind gewichtete ¢,-Normen der Entwicklungskoeffizeiten beziiglich der Ba-
sis von Interesse. Fiir 1 < p < 2 ist fiir solche Strafterme bekannt, dass die Entwick-
lungskoeffizienten der Minimierer ud in lyp—1y liegen, was insbesondere fir p = 1
eine endliche Darstellung bedeutet. Zur Berechnung der Minimierer kommen typis-
cherweise verallgemeinerte Gradientenabstiegsverfahren zum Einsatz. Fiir gewichtete

¢,-Norm Strafterme fiihren diese auf iterative Verfahren der Gestalt
ul® = 8, (u™ — (K (™))" (K (u™) — y)), (0:2)

wobei S, ein sogenannter Soft-Shrinkage-Operator ist, der einzelne Entwicklungsko-
effizienten dampft und (-)* den adjungierten Operator bezeichnet.
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Zusammenfassung

Viele praktische Anwendungen fiihren auf allgemeine nichtlinearer Vorwértsopera-
toren K. Die fiir diesen Fall bestehenen Verfahren der Bauart (0.2) teilen gemein-
same Schwachen. Im Allgemeinen kann nur gezeigt werden, dass die berechnete Folge
(u™),en konvergente Teilfolgen besitzt, und das diese gegen stationire Punkte der
rechten Seite von (0.1) konvergieren. Diese Punkte besitzen allerdings keine Regu-
larisierungseigenschaften. Erfahrungsgeméafl konvergiert das unmodifizierte Verfahren
(0.2) nur sehr langsam. Dabei umfasst jeder Iterationsschritt die Anwendung von
K und der Adjungierten seiner Ableitung. Dies kann fiir sich genommen bereits nu-
merisch sehr anspruchsvoll sein.

Die naherungsweise Losung allgemeiner nichtlinearer inverser Probleme stellt eine
sehr grofle numerische Herausforderung dar. Um diese anzugehen, werden in dieser
Arbeit zwei Ansatze verfolgt:

T1. Entwicklung einer Strategie zur schnellen Minimierung des Problems (0.1) mit
beweisbaren Konvergenzeigenschaften.

T2. Entwicklung, Analyse und Verallgemeinerung von effizienten numerischen Ver-
fahren fiir die Teiloperatoren, die in jedem einzelnen Iterationsschritt auftreten.

Ein erstes Ergebnis dieser Arbeit ist eine Beschleunigungsstrategie fiir die Iteration
(0.2), die auf einer streng monoton abfallenden Wahl fiir «™ \ a beruht. Wenn eine
Lipschitz Stetigkeitsannahme fiir den nichtlinearen Operator I und seine Ableitung
erfiillt ist, und weiterhin eine lokale Kontraktionsbedingung erfiillt ist, konvergiert die
Iterationsfolge (u(™),cy mit linearer Rate gegen das gesuchte globale Minimum ..
Die gemachten Annahmen sind fiir verschiedene Klassen von nichtlinearen Operatoren
erfiillt. Fir nichtlineare Probleme, die sich als nichtlineare Storung eines linearen
Problems darstellen lassen, kann die erwiinschte lokale Kontraktionsbedingung durch
eine spezielle Vorkonditionierungsstrategie erfiillt werden.

Eine sehr wichtige Klasse von inversen Problemen stellen Parameteridentifikation-
sprobleme fiir partielle Differentialgleichungen dar. Bei diesen Problemen sollen aus
gegebenen Daten die Parameter in der zugrundeliegenden partiellen Differentialgle-
ichung rekonstruiert werden. Als Prototyp fiir diese Klasse von inversen Problemen
und zur Motivation der weiteren Vorgehensweise beim Verfolgen von Ansatz T2 wird
zunachst ein spezielles Parameteridentifikationsproblem fiir eine parabolische partielle
Differentialgleichung betrachtet. Der Vorwartsoperator wird eingehend analysiert, um
die Anwendbarkeit von (0.2) zur Minimierung des Tikhonov Funktionals in (0.1) zu
gewahrleisten. Dabei muss beachtet werden, dass die zulassigen Parameter sowohl den
Einschrankungen aus der Losbarkeitstheorie parabolischer partieller Differentialgle-
ichungen unterliegen als auch durch die Praxis gegebenen L., Schranken. In diesem
Beispiel ist es moglich, die Wirkung des Operators (K'(u(™))* wiederum als die Lésung
einer parabolischen Differentialgleichung zu charakterisieren.

Ein Weg parabolische Differentialgleichungen numerisch zu behandeln, ist die so-
genannte horizontale Linienmethode, die oft auch als Rothe’s Methode bezeichnet

Viil



wird. Hierbei wird das parabolische Problem als abstraktes Cauchy Problem aufge-
fasst und zunéchst, tiblicherweise implizit, in der Zeit diskretisiert. Dies wird dann
mit einer Diskretisierung der resultierenden S-stufigen Systeme von raumlichen Prob-
lemen kombiniert. Die Effizienz von Rothe’s Methode hangt von den numerischen
Verfahren ab, die fiir die zeitliche und die raumliche Diskretisierung eingesetzt wer-
den. Einen viel versprechenden Ansatz bilden adaptive Diskretisierungsverfahren.
Generell handelt es sich hierbei um selbststeuernde Verfahren, die a posteriori Fehler-
schétzer einsetzen, um die Diskretisierung an die aktuelle Naherungslosung anzu-
passen bis eine vorgegebene Fehlertoleranz erreicht ist. Hierdurch werden hochgradig
nicht-uniforme Diskretisierungen realisiert. Im Vergleich zu klassischen Diskretisierun-
gen wird dadurch die Anzahl der benotigten Freiheitsgrade, um eine vorgegebene
Fehlertoleranz zu erreichen, drastisch reduziert.

Adaptive Verfahren koénnen prinzipiell sowohl fiir die zeitliche als auch fiir die
raumliche Diskretisierung in Rothe’s Methode eingesetzt werden. In dieser Arbeit
wird als erster Schritt in diese Richtung die Kombination aus zeitlich uniformer und
raumlich adaptiver Diskretisierung betrachtet. Um die Konvergenz dieses Ansatzes
sicher zu stellen, wird die S-stufige inexakte Rothe Methode, die sich durch die in-
exakte Losung der S Stufengleichungen bis auf gewisse Toleranzen ergibt, im Detail
analysiert. Es werden Schranken fiir diese Toleranzen angegeben, so dass die zeitliche
Konvergenzrate der exakten Rothe Methode erhalten bleibt. Linear implizite Zeit-
diskretisierungen fithren auf S-stufige Systeme von elliptischen Differentialgleichun-
gen im Raum. Besonders effiziente Verfahren zur Losung der elliptischen Teilprob-
leme sind asymptotisch optimale adaptive Verfahren, die auf Diskretisierungen mit
Wavelet Basen beruhen. Diese Verfahren konvergieren asymptotisch mit der selben
Rate wie die beste m-Term-Approximation. Damit wird eine obere Schranke fir die
Anzahl der benotigten Freiheitsgrade hergeleitet, die notig sind, um das gesamte
parabolische Problem bis auf eine vorgegebene Fehlertoleranz zu 16sen. Dieses Ergeb-
nis hangt von den Approximationseigenschaften der Wavelet Diskretisierung und der
Regularitat der Losungen der elliptischen Stufengleichungen ab. Fiir die Stufengle-
ichungen, die sich bei der Diskretisierung der Waremeleitungsgleichung ergeben, wird
ein neues Regularitatsresultat bewiesen und eingesetzt, um die Gesamtkomplexitat
des Verfahrens in diesem Beispiel abzuschétzen.

Damit ist es nun vollig gerechtfertigt, die raumlich adaptive Rothe Methode zur
Losung des zuvor analysierten Parameteridentifikationsproblems anzuwenden. Nu-
merische Tests werden fiir ein vereinfachtes Parameterrekonstruktionsproblem durch-
gefiihrt. Hierzu wird gezeigt, dass eine biorthogonale Tensor-Wavelet Diskretisierung
in dem asymptotisch optimalen adaptiven Verfahren zur Losung der gegebenen el-
liptischen Teilprobleme eingesetzt werden kann. Tensor-Wavelet Basen sind spezielle
Wavelet Basen, die sich durch die Tensorierung univariater Wavelet Basen ergeben.
Ihr Hauptvorteil gegeniiber klassischen Wavelet Basen ist, dass die beste m-Term-
Approximation mit Tensor-Wavelets mit einer dimensionsunabhéangigen Rate kon-
vergiert.

Die klassische Tensor-Wavelet Konstruktion ist auf Gebiete mit einer einfachen Pro-
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Zusammenfassung

duktgeometrie beschrankt, was die Anwendbarkeit dieser Wavelets stark einschrankt.
Aus diesem Grund wird in dieser Arbeit eine Konstruktion fiir eine verallgemeinerte
Tensor-Wavelet Basis fiir Sobolev Raume iiber einem Gebiet () mit relativ allgemeiner
Geometrie entwickelt. Die Konstruktion basiert auf der Anwendung von Fortset-
zungsoperatoren auf passende Basen auf Teilgebieten €;, die eine nichtiiberlappende
Gebietszerlegung von () bilden. Zunachst werden Bedingungen identifiziert an die
Randbedingungen, die von den lokalen Basen erfiillt werden miissen, damit geeignete
Fortsetzungsoperatoren als beschrankte Abbildungen iiberhaupt existieren. Den Aus-
gangspunkt fiir eine rekursive Beschreibung der globalen Basiskonstruktion bildet
eine Zerlegung von 2 in nichtiiberlappende Hyperwiirfel, die an einem Cartesischen
Gitter ausgerichtet sind und mit Tensor-Wavelet Basen versehen werden. Die Basen
auf den Teilgebieten werden sukzessive miteinander verschmolzen, indem rekursiv
univariate Fortsetzungsoperatoren auf sie angewendet werden. Die beste m-Term-
Approximation beziiglich der neuen Basis reproduziert die von klassischen Tensor-
Wavelets bekannte dimensionsunabhéangige Konvergenzrate. Es wird gezeigt, dass die
hierfiir notwendige Regularitat fiir die Losung elliptischer Gleichungen der Ordnung
2m = 2 uber einem polygonalen oder polyhedralen Gebiet fiir geniigend glatte rechte
Seiten gewéhrleistet ist. Numerische Tests mit asymptotisch optimalen adaptiven
Verfahren werden durchgefiihrt, die belegen das die theoretisch optimale Rate in der
Praxis auch realisiert wird.



Abstract

In general, inverse problems can be described as the task of inferring conclusions
about the cause u' from given observations y' of its effect. This can be described
mathematically as the inversion of an operator equation

K(uh) =y

Particularly interesting is the case that this Problem is ill-posed or ill-conditioned.
To arrive at a meaningful solution in this setting, regularization schemes need to be
applied. One of the most important regularization methods is the so called Tikhonov
regularization. In this approach a penalty term %, : X — R is introduced to enforce
additional properties on the solution.

As an approximation to the unknown truth w' it is possible to consider the mini-
mizer

u’ = arg min 1||IC(u) — 1’112 + a.Z (u), (0.3)
ueX 2

where 9 is subject to ||y° — yT|ly < 6. The convergence of the sequence v to u' for
appropriate parameter choice rules a = a(d) and 6 — 0 was studied intensely in the
past. Indeed, the analysis of such regularization properties can almost be regarded
as complete for many settings, including the important case of general nonlinear
operators K over a Hilbert space X that are penalized with weighted ¢,-norm penalty
terms on the coefficients with respect to a Riesz Basis.

In contrast the development of efficient minimization schemes for the computation
of u? is a field of ongoing research. A popular approach is to consider penalty terms
that enforce a simple structure on the minimizers. For Hilbert space settings, one such
choice are the aforementioned weighted ¢, penalty terms. For 1 < p < 2 they enforce
that the coefficients of the minimizers u} with respect to the Riesz basis belong to
lyp—1y. In particular, p = 1 implies the finiteness of the coefficient vector of the
minimizer. Most computation schemes for u® are based on some generalized gradient
descent approach. For problems with weighted ¢,-penalty terms this typically leads
to iterations of the form

u = 8, (ul") — () (™) - ) 04)

where S, is the well known soft shrinkage operator applied to each coefficient and (-)*
denotes the adjoint operator.

The schemes that are available for the numerical treatment of inverse problems
related to general nonlinear operators IC share some practical downsides. Convergence
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Abstract

of the sequence (u(”))neN is usually only guaranteed for subsequences and only to
stationary points of the right-hand side of (0.3). In general, these points do not
have any regularization properties. Also, the scheme (0.4) in its basic form is known
to converge very poorly in practice. This is critical as each iteration step includes
the application of L and the adjoint of its derivative. This in itself may already be
numerically demanding.

The approximate solution of general nonlinear inverse problems poses a highly
challenging numerical task. To approach this issue two strategies are investigated in
this thesis:

T1. Development of a strategy for the fast minimization of (0.3) with provable
convergence properties.

T2. Development, analysis and generalization of efficient numerical methods for the
operators that are applied in each iteration step.

As the first result of this thesis an acceleration strategy for the iteration (0.4)
which is based on a decreasing strategy o™ \, « for the thresholding parameter is
proposed. If the nonlinear Operator K and its derivative K’ are Lipschitz continuous,
and further a certain local contraction assumption holds, then the resulting algorithm
is linearly convergent to a global minimizer and the iteration is monotone with respect
to the Tikhonov functional. The assumptions are satisfied for important classes of
operator equations. For operators I that consist of the sum of a linear part and a
nonlinear perturbation a certain preconditioning strategy is introduced to promote
the convergence assumptions.

A very important class of inverse problems are parameter identification problems
for partial differential equations. Here the goal is to reconstruct parameters of the
differential equations from given realizations. Both as a prototype for this class of
inverse problems and further to motivate a certain approach to 72 a parameter iden-
tification problem for a parabolic differential equation is investigated. The forward
operator K is analyzed in order to justify that the scheme (0.2) is applied to compute
the minimizer of the Tikhonov functional in (0.1). The set of admissible parameters
in this analysis is subject to L,, conditions arising from the solution theory of partial
differential equations as well as L., bounds arising from the underlying practical mo-
tivation. It is possible to describe the action of the adjoint of K as the solution of a
parabolic differential equation.

One approach for the numerical treatment of parabolic differential equations is the
so called horizontal method of lines, also known as Rothe’s method. The parabolic
problem is interpreted as an abstract Cauchy problem. It is discretized in time by
means of an implicit scheme. This is combined with a discretization of the resulting
system of spatial problems. The efficiency of the Rothe method depends on the numer-
ical schemes that are applied for the temporal and spatial discretization. A promising
approach is the application of adaptive discretization schemes. Such schemes are non-
linear approximation methods that utilize a posteriori error estimation to adapt the
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discretization to the current approximation until a prescribed error tolerance is sat-
isfied. They realize highly nonuniform discretizations. Therefore, such schemes tend
to require much less degrees of freedom to than classical discretization schemes.

Adaptive methods may be employed in Rothe’s method for both the temporal as
well as the spatial discretization. As a first step in this thesis temporal uniform and
spatially adaptive Rothe methods are considered. To ensure the convergence of such
a scheme a rigorous convergence proof is given for the general setting that the tem-
poral discretization leads to a system of S stage equations in space that are solved
up to given tolerances. It is investigated how the tolerances in each time step have
to be tuned in order to preserve the asymptotic temporal convergence order of the
time stepping. In particular, the case of linearly-implicit time integrators and asymp-
totically optimal adaptive wavelet discretizations in space is discussed. Such spatial
discretization schemes asymptotically converge with the same rate as the best-m-term
approximation. Using concepts from regularity theory for partial differential equations
and from nonlinear approximation theory, we determine an upper bound for the de-
grees of freedom for the overall scheme that are needed to adaptively approximate
the solution up to a prescribed tolerance. As an important case study, the complex-
ity of the approximate solution of the heat equation is investigated for a temporal
discretization by means of a linearly implicit Euler scheme. To this end a regularity
result for the resulting stage equations that are of Helmholtz type is proven.

The spatially adaptive Rothe method is applied to the previously investigated
parabolic parameter identification problem. Numerical experiments are performed
for a simplified parameter reconstruction problem. The the spatially adaptive scheme
that is applied is based on a biorthogonal tensor wavelet basis. It is proven that such
wavelet may be applied in an asymptotically optimal numerical scheme. Standard
tensor wavelet bases are wavelet bases that consist of tensors of univariate wavelet
bases. Their main advantage compared to classical constructions is that the best-m-
term approximation with tensor wavelets exhibits dimension independent convergence
rates.

The classical tensor wavelet construction is limit to domains with simple product
geometry, seriously limiting the applicability of such wavelets. A construction for a
generalized tensor wavelet basis for a range of Sobolev spaces over a domain () with
a fairly general geometry is proposed. The construction is based on the application
of extension operators on appropriate local bases on subdomains €2; that form a non-
overlapping domain decomposition. Conditions on the boundary conditions on each
subdomain are derived that need to be satisfied to guarantee that extension oper-
ators exist as bounded mappings. As subdomains, we take hypercubes, or smooth
parametric images of those, and equip them with tensor product wavelet bases. The
hypercubes are assumed to be aligned to a Cartesian grid. The bases on the sub-
domains are recursively merged by applying univariate extension operators. The ap-
proximation rates from the resulting piecewise tensor product basis are proven to be
independent of the spatial dimension of (2. For two- and three-dimensional polytopes
it is shown that the solution of Poisson type problems satisfies the required regular-
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ity condition. The dimension independent rates will be realized numerically in linear
complexity by the application of the asymptotically optimal adaptive scheme.
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1 Introduction and overview

The mathematical research area of inverse problems is concerned with the extraction
of information about a model system from given data. An incomplete list of applica-
tions includes for example the fields of computer vision, geophysics, medical imaging,
nondestructive testing.

The classical setting of an inverse problem involves a bounded linear operator

K:X—=Y

acting between two Hilbert spaces X and Y with respective norms || - ||x and || - ||y-
The task is to compute an approximation to the unknown truth u! from noisy data
y® such that the fidelity term satisfies

[Kul — |y < 6.

This problem is usually ill-posed and the set of admissible solutions {u € X : ||[Ku —
y’|ly < 4} is unbounded. Regularization schemes need to be employed in order to
arrive at a meaningful solution. A regularization scheme is a family of operators
{Ts}a>0 such that the related sequence of minimizers u‘; = T,y° satisfies u‘;( 5 uf
for § — 0 and an appropriate parameter choice rule «(d). Most regularization schemes
can either be characterized as iterative schemes, are based on a discretization approach
or follow Tikhonov’s approach.
For any given regularization scheme two important issues need to be addressed:

1. What are the regularization properties of the scheme? How should « be chosen
and what can be said about convergence and convergence rates of ui( 5)?

2. How can we efficiently compute approximations to the minimizers u??

o

For an introduction to the regularization theory for classical linear inverse problems
in Hilbert spaces we refer to [54, 90, 81, 106]. In recent years, many regularization
results were generalized to the case of nonlinear operators K : D(K) C X — Y. We
will focus on the most widely used approach, that is Tikhonov regularization. One
reason is that convergence and convergence rates of the minimizers {ui( 5)}520 can be
established under relatively mild assumptions. Moreover, there exist robust schemes
to approximate those minimizers.
In Tikhonov regularization one is interested in the minimizers u’, of

D) = S0 — [} + 0 (u), (101)



1 Introduction and overview

where % : X — RT U{0} is a proper and convex penalty term. In classical Tikhonov
regularization the penalty is chosen as . % = || - ||%. However, in practice this leads to
overly smooth results. Therefore, in recent years, penalty terms were intensely studied
that promote additional features of the minimizers, such as sparsity. We focus on the
case that sparsity of a function u € X is understood as sparsity of its coefficient
vector with respect to a given discretization of X. We call a coefficient vector sparse,
if it is finitely supported or has rapidly decaying entries. This can be exploited by
using weighted ¢,-penalty terms. In case of a discretization of X by an orthonormal
basis {7, },es we consider terms of the form

F(u) = Zwu|<u>77u>X‘p> (1.0.2)

nedJ

where w, > w > 0,p € J and 1 < p < 2. For such penalty terms it has been
shown in [87] that ul, € la,—1)(J) holds. In particular, this implies that for p = 1 the
minimizers are finitely supported. This justifies the diction sparsity promoting penalty
term for penalty terms as in (1.0.2).

So far we did not assume that the unknown truth u' is sparse. Therefore, in general
the minimizers u®, only provide a sparse approximation of a non sparse function. This
approach might nonetheless be numerically appealing as the computational effort for
the computation of the minimizers is closely related to their support sizes. However,
under the additional assumption that u! is sparse, it is possible to derive improved
convergence results. For instance, it has been shown in [63] that the choice o ~ 0
leads to the convergence result

lup, =[x ~ 6,

provided that K is Gateux differentiable in uf, the restriction of its derivative to
finite-dimensional subspaces of X is injective and the ¢,-penalty term is related to K
by means of an apropriate source condition.

Sparsity promoting penalty terms were first introduced to Tikhonov regularization
in the fundamental paper [46]. It is concerned with linear problems in a Hilbert
space setting that are discretized by means of an orthonormal basis. Regularization
properties of the Tikhonov approach are derived and convergence of an iterative
scheme to compute the minimizers based on soft-shrinkage is proven. Since then,
the linear theory has been successfully generalized in several ways. It is possible to
consider discretizations by means of Riesz bases or frames, more general penalty
terms and operators acting on Banach spaces, cf. the survey [78]. The regularization
properties of Tikhonov regularization for nonlinear inverse problems in a Hilbert space
setting with ¢,-sparsity constraints have been intensely studied in the last years and
their analysis can almost be regarded as complete [76, 13, 15, 102]. For the treatment
of nonlinear inverse problems in general abstract Banach space settings we refer to
[108, 109].



For practical applications the efficient numerical approximation of the minimizers
u? is essential. The most well-known iterative scheme for inverse problems with /-
penalty terms is the iterative soft thresholding algorithm, that has been proposed
for linear inverse problems in [46]. By now, several algorithms for the treatment of
nonlinear settings have been proposed. However, most of them can be interpreted as
soft shrinkage schemes with differently chosen parameters, confer [76], and are special
cases of the generalized conditional gradient method, which was considered in [13, 15].

The generalized conditional gradient scheme deals with the approximation of the

minimizers of the functional
F(u) =& (u) + F(u). (1.0.3)

Here it is assumed that & : X — R is continuous, has Lipschitz continuous Fréchet
derivative 8" : X — L(X,R), & + % is proper, non-negative and coercive, and
Z : X — R is convex and lower weakly semi-continuous. However, it is neither
assumed that & is convex nor that .%# is differentiable.

The key ingredient of the scheme is a first order necessary condition for the mini-
mizers of (1.0.3), that is given by

E'(u)(u) + F(u) = E}Iél)I{l &' (u)(v) + F (v), (1.0.4)

which has been proven for instance in [86]. An algorithm for computing the minimizers
of (1.0.3) is then derived by minimizing the right-hand side of (1.0.4) in each iteration
step:

1: Choose u® € X, such that .% (u(¥) < o0;

2: Determine v™ € X by

o™ = arg ml)? &' (W™ (v) + F(v); (1.0.5)
ve

3: Determine step size s™ € [0, 1] via

s = arg n%in] Eu™ + s(v™ —u™)) 4+ Z (W™ + s(u™ —u™));  (1.0.6)
s€|0,1

4: Put u™ ) = 4™ 4+ s (p() — ™) Return to step 2.
The connection to iterative soft thresholding schemes is given by the choice

1 A
£(u) = 51K (@) I = 5l
A
F(w) = Slull + o S wllwnxl

neg

where A > 0 will turn out to be an additional step size parameter for the descent
direction. In order to derive a reformulation of (1.0.5) we state that the derivative
&' (u) € L(X,Y) reads as

&' (u)(-) = ((K'(w))"(K(u) — ") = Xu, )x,
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where (K'(u))* € L(Y, X) denotes the adjoint of K'(u). By inserting this into (1.0.5)
and adding a quadratic term that does not influence the minimizer we conclude

n . !/ n * n n >\
o) = argmin((K'(u®))" (£(u™) = y) = 2, v)x + S|l +a Y wallv, na)xl?

nedJ
o1 N n " 2
= argggg\\x(’c'(u( N (K™) —y°) —u™ + o5 + Tl;quv,Wx\p
_ : Lt W (1 )Y 08y () 2a p
= argmin 37 (1 (/@) (UC®) — 57) — 1 + v+ (0, 1l
neJ

The minimizer of such a functional combining an f-norm fidelity term and a weighted
¢,-norm penalty can be directly computed using a soft thresholding operation, see
[18, 46]. It holds that

n n 1 n * n
o) = S (0 — (K (™)) (™) — o), (1.0.7)
where Sew , is a shrinkage operator defined by

S%,p(u) = Z S%,p(<ua7lu>X)77w

neJ

and the shrinkage maps S vy, are given by

S ([E) _ sgn(w)[|x| - Oé]_;,_, p= ]-7
a’p - —
Gop(), p>1,
where G, ,(7) = 2+ apsgn(z)|z|P~'. We conclude that one iteration step of the basic
iterated soft shrinkage algorithm is given by

n n n n 1 !/ n * n n
a0 = s (S () — SO @) () =) =), (10.8)

where s is given by (1.0.6) and w = (w,,).c.7-

The line search (1.0.6) in step 3 of the generalized conditional gradient algorithm
guarantees that I'(u(™) decreases in each iteration step if u(™ is not already a station-
ary point. However, in many cases the optimal value for the step size s presented
in (1.0.6) is purely theoretical and a priori or heuristic choice rules need to be ap-
plied. Convergence of the scheme for such suboptimal choices of s can nonetheless
be ensured in many settings. Indeed, it has been shown in [13, Lemma 2.4] that if
A is chosen big enough, it is possible to choose s = 1 and to omit the line search
completely.

A typical convergence result for the iterated soft thresholding algorithm holds un-
der the assumption that IC is continuous with Lipschitz continuous derivative, and



furthermore that for any sequence (v™),en C X its convergence v(™ — v also implies
the convergence (K'(v™))*(K(v™) — %) — (K'(v))*(K(v) — %°). Then, it has been
shown in [76, Theorem 4.3] that the sequence (u'™),cn has a subsequence that con-
verges to a stationary point of I'. This type of convergence result has to be expected
since we are dealing with a gradient based iterative scheme and the nonlinearity of
K implies that the target functional I' may have several local minima. However, only
the global minimizers of I' have reliable regularizing properties.

Several different approaches to solve the central minimization problem related to
(1.0.1) lead to iterated soft thresholding algorithms. Such algorithms have in common
that they are relatively easy to implement and numerically robust. Furthermore,
the related regularization theory is well established and convergence can be shown
under relatively mild assumptions. However, iterated soft shrinkage algorithms share
some serious practical downsides. Fach shrinkage step (1.0.7) typically involves the
application of the nonlinear operators K and (K'(-))*. This in itself already poses a
highly challenging numerical task. Further, the method in its basic form is known
for its poor convergence speed and speed up strategies are pivotal for its numerical
applicability.

Therefore, we have identified two tasks that need to be addressed in order to im-
prove the convergence speed of the iterated soft thresholding algorithm:

T1. top level speed up strategies,

T2. fast solvers for the forward problem, that is, the for the application of K and
the adjoint of X'.

By now there exist several approaches for speed up strategies for linear inverse
problems with sparsity constraints, see [89] for a comparison. First steps have been
made to generalize some approaches to nonlinear settings, however, this is still a field
of ongoing research.

One interesting strategy that has been recently considered for nonlinear inverse
problems is based on a quadratic approximation of I" in =Y. The resulting approx-
imation I'(-,u"™") is then used to determine the descent direction in each iteration
step. This is combined with an parameter choice rule for A, In each iteration step
the step size A is chosen according to a heuristic rule inside a prescribed interval
A\, where A® = X would guarantee a decrease of T'. If the current choice of the
step size does not reduce I', it is increased a maximal finite number of times. This
strategy was first applied to nonlinear finite-dimensional settings in [95]. In [88] it
was applied to a general nonlinear Hilbert space setting and some modifications were
discussed. The convergence analysis relies mainly on a Lipschitz continuity assump-
tion on the derivative of K. However, convergence is only proven in the sense that
IT(u™) —T'(a®)| behaves as O(n~') for the basic algorithm. For convex fidelity terms
this rate improves to O(n=?2).

First steps are undertaken to apply semi-smooth Newton methods to sparsity con-
straint inverse problems [73, 64, 72]. The results seem promising, however, the con-
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vergence analysis of these methods is still ongoing.

For p = 1 the application of the shrinkage operator S, , ensures the finite support of
the iterates u™ in (1.0.8). Another way to enforce the finite support of the iterates is
to replace the soft shrinkage by compressed hard thresholding. That is, discretization
coefficients below a threshold are neglected and the remaining ones are not changed.
The resulting algorithm has been studied for instance in [103], and performed quite
well in computations. However, the iteration is not directly related to the minimization
of a functional and therefore it is difficult to proof regularization properties.

Our main interest lies in the global minimizer of I". Convergence results for the
strategies scetched above yield at best convergence of subsequences towards criti-
cal points of I'. However, nothing is known about the regularizing properties of the
stationary points of I'. In Chapter 2, we propose a to consider a parameter choice
strategy for the thresholding parameter a. We investigate conditions on K such that
a decreasing strategy for the a leads to linear convergence of the iterates towards
the global minimizer of I, thus ensuring regularization properties. Our work is com-
pletely covered by the the framework of Tikhonov regularization that we presented
so far. However, to ease notation we will consider the discretized inverse problem for

K=KoS§:0,(J)—=Y, where

S b(T) =X, ver Y v,

neJ

is the synthesis operator related to the discretization {7,},cs of X.
We propose to minimize the functional

Lo (@) = [K(w) = "I} + > aflu,l,

neg

in each iteration step, where the parameters a™ € R{ are chosen as entrywise
decreasing sequences with lim,_,. @™ = a that are bounded away from 0, that is,
a&"), a, > a € Ry, pe J. This is achieved by applying a soft shrinkage operator

u = 5 o (0 - %(K’(u(”)))*(K(u(")) ). (1.0.9)
We assume that A is chosen big enough such that we may choose s = 1.

The approach is based on the investigations in [36], where a decreasing thresholding
approach has been applied to a linear inverse problem with a ¢;-penalty term. Linear
convergence of the scheme has been proven under the condition that K satisfies a
restricted isometry property, that is, for some fixed £ € N and all A C J with
#A < k it holds that

[(Id =K K)oy e a)) < e < 1 (1.0.10)

where (-)|a denotes the restriction to the index set A. In this setting the limit of
the thresholded iteration is indeed the global minimizer of (1.0.1), that is, it holds



that lim,,_,. u™ = u‘;(n>. Furthermore, it was investigated in [36] how the restricted

isometry property can be obtained by means of a multilevel preconditioning strategy.

The generalization of the decreasing thresholding approach to the full nonlinear
setting relies on two fundamental assumptions. We need that the operator K and its
derivative are Lipschitz continuous on closed and bounded sets. Moreover, we have
to assume that the operator

T:0(T)—=0(T), v=>T(V)=v— %(K/(VD*(K(V) — ), (1.0.11)
restricted to finite index sets A C J, is a contraction on a sufficiently small ball
around a critical point u* of the functional (1.0.1). This condition on 7" is used as a
nonlinear analog of the restricted isometry property assumption (1.0.10).

Then the main convergence result, specified in Theorem (2.2.4) holds: The iteration
is linearly convergent, that is,

Ju* — a7y < YU |leyiz),  for some y <1,
whenever the a(™ > « are chosen according to

max |a,” — a,| < Ce'™,
neJ | # ,u| -

with C' as in (2.2.35). Moreover, the iteration is monotone in the sense that
Fa<n+1>(u(”+1)) < Fa(n)(u(n)),

provided that u™ is not a critical point of I' ).

The local contraction condition on 7" may be hard to verify. In the Sections 2.2.2 and
2.2.3, we discuss in detail two classes of operators where it is satisfied. The first class
consists of operators with bounded second derivatives and with first derivatives that
satisfy the contraction property. The second class is given by nonlinear perturbations
of linear operators that satisfy the restricted isometry property (1.0.10). It was shown
in [36] that for large classes of linear operators where the restricted isometry property
is not satisfied, it can actually be established by preconditioning. We investigate
the application of such preconditioning strategies for linear operators with nonlinear
perturbations.

The analysis is performed in an infinite-dimensional setting. In general the precon-
ditioning strategy D : {5(J) — Ran(D) is allowed to be unbounded in the topology
of lo(J). Further the operators K and K’ cannot be evaluated exactly in an infinite
dimensional setting. Fortunately, we are able to address both issues by employing
implementable numerical approximations schemes for the application of K and K'.
We prove that the resulting inexact version of (1.0.9) again converges with linear rate.
Moreover, the support of all iterates is contained in an a priori unknown finite index
set Ag C J, which is constructed on the fly by the method. The problematic topology
introduced by the preconditioning is circumvented by proving the equivalence of the
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inexact scheme to a finite-dimensional scheme on R*. Qur analysis relies on adaptive
numerical methods for the approximation of K and K’, which we will present in more
detail below.

The speed up strategy based on a decreasing thresholding parameter a™ that we
derive in Chapter 2 may to some degree be compatible with the strategy based on
quadratic approximation proposed in [88]. The local contractivity assumption on the
operator T' (1.0.11) for some fixed A implies the same property for a certain range
A, X] of step sizes. The prospect is that such a range of admissible step sizes may
be exploited as in [88] and should lead to a quantitative improvement of the conver-
gence results therein. For settings where the local contractivity assumption on T is
not satisfied it may be fruitful to investigate the decreasing thresholding strategy in
the setting of [88]. This will probably not provide a qualitative improvement to the
convergence rate. We can only expect the convergence of a subsequence with the error
being bounded by |I'(u™) —TI'(u?)|. None the less, the combination of both strategies
holds some potential for a further speed up of the iterated soft thresholding algorithm.

The remainder of this exposition is dedicated to the central task T2 of deriving
fast numerical solvers for the forward operator K and the adjoint of its derivative K'.
The outline is as follows. We begin by presenting in detail an inverse problem that
is given by the parameter reconstruction problem related to a parabolic partial dif-
ferential equation. This problem can be considered to be prototypical for this central
class of inverse problems. A class of highly efficient numerical schemes are adaptive
numerical methods. The underlying strategy is described with a focus on adaptive
discretizations with wavelets. Then we discuss how adaptive methods may be applied
for the treatment of parabolic operator equations. One of the most widely used nu-
merical schemes for the treatment of parabolic equations is the horizontal method of
lines, often called Rothe’s method. Here the problem is discretized first in time and
then in space. A rigorous error and complexity analysis is performed for the special
case that adaptive methods are applied in the spatial discretization. A method of
this type is applied to a simplified problem derived from the initial prototypical in-
verse problem. One of the key building blocks of adaptive methods is the underlying
discretization. Wavelet bases of tensor type are especially interesting as they pro-
vide dimension independent approximation rates under relatively mild smoothness
assumptions. We generalize the classical tensor wavelet construction that is limited
to simple product domains to fairly general bounded domains. The dimension inde-
pendent approximation rates are again realized. Thus, the overall applicability of the
tensor wavelet approach is greatly increased.

In genetic research advances in experimental techniques have lead to the availability
of large-scale gene expression data sets. However, experiments for deriving informa-
tion on the interaction of genes remain very challenging. A far reaching approach for
the field of functional genomics opens up if one considers sophisticated mathematical
models for the gene expression. If biologically interesting quantities such as the in-
teraction of genes are the parameters of the model they are accessible as the solution



of the related inverse problem. The results can then be used to generate interest-
ing hypotheses to direct further experiments. One of the most important biological
model organisms is the fruit fly drosophila melanogaster. The inference of biological
information by reconstructing model parameters related to the interaction of genes
of the fruit fly is a field of current research [61, 62, 83]. We will focus on a model
for the early development of the animal, the so called embryogenesis. Sophisticated
reaction-diffusion models for the gene expression that take into account the interac-
tion of different genes have been developed in [104, 49, 129, 22]. We will focus on
the fundamental approach in [104]. Therein, the evolution of gene expression levels is
modeled as a deterministic system of parabolic differential equations. The model con-
tains several a priori unknown parameters that depend on time and space. Transport
of gene products within the admissible domain, that is, the embryo, is modeled by
a diffusion term D. The limited life span of gene products as well as consumption is
addressed by a linear decay term A. Finally, the synthesis is modeled as the product
of a maximal synthesis rate R and a response function ®. The signal response is mod-
eled as a nonlinear function ® : R — [0, 1], which takes as its argument the feedback
W g, where g is the vector of gene concentrations and W is an interaction matrix. The
matrix W is the biologically most interesting parameter. Positive entries describe an
amplifying influence of one gene on another, whilst negative entries correspond to an
inhibiting effect.

The complete model is then given as follows. Let 2 C R, n = 2,3 denote some
bounded Lipschitz domain. The gene concentrations are modeled as real valued func-

tions g;, @ = 1,..., N on the spatial-temporal domain € x [0,7]. Then the evolution
of the gene expression levels is modeled by the reaction-diffusion equation
dg; : .
I div(DiVg:) + N - g = Ri®i(Wg):) in Q x (0,77,
ot
St (1.0.12)
8‘% =0 ondQx(0,7], ¢g(-,0)=gp onQ,
v

where ®; : R — R, ®;(z) = 1((2? + 1)"2z+41,andi=1,...,N.

The data y°, that is available in practice, consists of measurements of gene concen-
trations at certain points in time. This is modeled by introducing a sampling operator
M which maps the solution space W of the partial differential equation (1.0.12) to
an observation space O of finite temporal granularity. The forward operator related
to (1.0.12) is denoted as

D:P—-W, m=(D,\RW)r the solution g of (1.0.12).
Then the inverse problem reads as
Mo 9(m) =’. (1.0.13)

That this is indeed an ill-posed problem becomes apparent by checking that choos-
ing the parameters as m = (D, \, 5, W) and (D, X, ®(WZ(7)),0) yields the same
right-hand side in (1.0.12).
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The analysis of the inverse problem (1.0.13) is performed in Chapter 3. Tikhonov
regularization is applied and the solution by means of iterated soft shrinkage is dis-
cussed. Finally an adaptive solution scheme based on the concepts outlined in this
exposition is proposed and applied to a simplified version of the parameter recon-
struction problem.

In our analysis of the mapping properties of 2 we aim at a fairly general setting
and incorporate quite recently established results on maximal L,-regularity of the
solution of parabolic equations [67, 4]. This allows us to choose a weak topology
for the admissible set of parameters. It will turn out that we are able to consider
parameters

D€ Lo ([0,T] x URY), e L, ([0,T] x URY),
Re L, ([0,T] x URYN), W € L, ([0,T] x U RY*N),
that are additionally subject to the L., bounds
0<Cp1<D,A<Cpy, 0SRZCpy, Wi <Cppa.

The L., restrictions on the parameters have to be expected for real world parameters.
We denote the parameter space for D with Pp ={D € L : 0 < Cp1 < D < Cps}
and Py, Pgr, and Py, analogously. Then the global parameter space is defined as

P ="Pp x P\ X Pr x Pw

equipped with the product norm of the individual L, spaces.

The generality of the parameter space comes at a price. If at least one of the
indices py, pr, pw differs from oo then P is not a metric space. It is a subset of a
vector space, however, relative open sets are not open in the global L, topology.
Therefor we have to clarify the meaning of differentiation with respect to 7 € P. Our
definition of differentiation on non-open sets of vector spaces follows [75] and is given
in Definition 3.2.1. Careful analysis shows that the regularization theory for inverse
problems carries over to this general setting.

The analysis of the forward operator & begins with an existence and uniqueness
result for the solution to (1.0.12). Further, we proof that & is continuously differen-
tiable with a Lipschitz continuous derivative. Finally, in Remark 3.3.7 the action of
the adjoint of (Z(m))’ is explicitly expressed as the solution of a parabolic differential
equation similar to (1.0.12). Therefore, in order to address the issue 72 it is sufficient
to investigate efficient schemes for parabolic differential equations.

In order to derive an efficient numerical scheme for the iterated soft shrinkage algo-
rithm (1.0.8) we will focus on adaptive methods. Adaptive discretization schemes are
nonlinear approximation methods that utilize a posteriori error estimation to adapt
the discretization to the unknown solution until a prescribed error tolerance is satis-
fied. They realize highly nonuniform discretizations compared to classical discretiza-
tion schemes. Likewise, they tend to require less degrees of freedom than classical
schemes, leading to highly increased numerical performance.

10



A central quality to compare adaptive methods is the concept of optimality. We
say that a method is asymptotically optimal if it converges with the same rate as the
best-m-term approximation. For a given discretization we call an approximation to
a signal a best-m-term approximation to that signal if it uses at most m degress of
freedom and realizes the best possible approximation among all such approximations.

Adaptive schemes based on finite element discretizations have a long and successful
history in applications. Despite their good practical performance, their convergence
properties are still a field of current research for many settings. For instance, con-
vergence in the classical setting of second order elliptic equations was only recently
shown in [94]. In particular, results on the optimality of such schemes were proven
only recently [12, 120].

We focus on adaptive schemes based on a discretization by wavelets. The classical
wavelet basis is a hierarchical Riesz basis for Ly(R™) that consists of translated,
dilated and scaled versions of a single (or multiple) mother-wavelet. Wavelet bases
excel because of their analytic properties:

e compact support of the individual wavelets,

e characterization of classical function spaces by means of weighted norms for the
sequence space of the wavelet expansion coefficients,

e cancelation properties, that is, the inner product of the wavelets with a smooth
function decays exponentially with increasing wavelet scales.

The characterization of function spaces by wavelets makes it possible to relate the
convergence order of best m-term wavelet approximation to the smoothness of the
function v, that one wants to approximate. We refer to the survey article [48] for
a detailed discussion. One central result is the following. Let us denote the error of
best m-term wavelet approximation in the Sobolev space H”(£2) by means of classical
isotropic wavelets by 01%¢(v). Further, let v > 0 and v be contained in the Besov

space ,
1 — 1
B;(Lq(Q)), where 5 = 5 0 v + 5, S > V.

Then, if the wavelets under consideration are of sufficiently high order, the error of
best m-term wavelet approximation in H”(2) can be estimated as follows:

S—V

O‘Tinsf;(’v) < Ciso ||U||33(Lq(g)) mon (1.0.14)
with a constant Cig, > 0, which does not depend on v or m.

Such a deterioration of convergence properties with respect to the space dimension
is commonly referred to as the curse of dimensionality. One way to approach this
issue is to consider discretizations by means of tensor wavelets. The classical tensor
wavelet basis is derived as the tensor product of univariate wavelet bases and is
limited to product domains [J. Consequently tensor wavelets differ from classical

11
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isotropic wavelets by the fact that wavelets on different levels are tensorized with each
other, leading to rectangular and highly anisotropic supports. The main advantage
of the tensor wavelet approach is that the rate of convergence of the best m-term
approximation by means of tensor wavelets is independent of the space dimension.
Indeed, it can be bounded by

Ty (V) < Cren [|V]

m,v

HS

m,0

oym U, (u € H,(O) N HY(O)), (1.0.15)

where Clep > 0 does not depend on v or m, and H,ﬁ’g([l) is a weighted Sobolev space.
We refer to Chapter 5 for details.

The tensor wavelet approach provides a mean to break the curse of dimension-
ality at least for moderate space dimensions. With increasing space dimension any
asymptotically optimal numerical scheme based on tensor wavelets will give rise to
an error bound reading as (1.0.15) with some constant Cysyy. However, in general the
quotient Chgyn(Cien)* will grow exponentially in the space dimension. One reason is
that the condition number of the tensor wavelet basis depends in general exponen-
tially on the space dimension. Only if Ls-orthogonal univariate wavelets are used in
the construction, the condition number of the basis may be bounded independently
of n. The adaptive solution of a second order elliptic equation with constant coeffi-
cients with such wavelets was studied in [51]. In that setting C'(n)C;.. can indeed be
bounded uniformly in n. Still, numerical experiments suggest that the constant Cley,
itself grows with possible exponential rate in the space dimension. We refer to the
discussion in [121]. Therefore, it is mandatory for the treatment of high-dimensional
problems to utilize additional structural information. An interesting approach in this
direction, that is closely related to classical tensor wavelet approximation, is to con-
sider functions that admit a low rank tensor approximation. For first results in this
direction we refer to [7].

For practical applications it is often mandatory to consider discretizations for gen-
eral bounded domains. Most wavelet constructions for domains with complicated
geometries are related to a nonoverlapping domain decomposition into subdomains
with simple geometries. A basis on the whole domain may then be derived by applying
extension operators to local wavelet bases on the subdomains, , as proposed in [44].
Another approach that was considered in [43, 17], is to glue wavelets from neighbor-
ing domains together along the interfaces. The former approach is very technical and
indeed, the extension operators needed in the construction do not exist as bounded
mappings for some combinations of geometries and boundary conditions. The latter
approach yields bases with limited global smoothness. For a detailed discussion we
refer to [24]. So far, tensor wavelets have only been considered on simple product
domains. Below, we outline the construction of generalized tensor wavelets that we
propose in Chapter 5.

An interesting alternative to wavelet bases is to consider a discretization based
on wavelet frames. For a domain () with a complicated geometry, an elegant way
to construct a frame is to consider an overlapping decomposition into subdomains

12



{€;} with simple geometries. An aggregated wavelet frame is simply devised as the
union of the extensions by 0 of local wavelet bases on the subdomains. However, the
reduced complexity of the construction comes at the price of introducing redundancy.
This complicates the design and the following analysis of numerical schemes based
on a frame discretization. Moreover, in applications, redundancy of the discretization
system may lead to an increased computational cost as there may be unneeded active
coefficients in any given numerical solution. None the less this approach is feasible. For
the treatment of elliptic operator equations by means of adaptive wavelet methods
based on an aggregated frame discretization we refer to the Ph.D. thesis [130]. Because
of the additionally technical difficulties when using frames and the availability of our
generalized tensor wavelet, we focus on discretizations by means of wavelet bases in
the following.

In the last years adaptive wavelet methods have become a well established tool for
the treatment of operator equations, including problems on bounded domains and
closed manifolds. We refer to the monographs [40, 25, 125] for an introduction to
the treatment of operator equations with wavelets. One of the main reasons for the
popularity of adaptive wavelet methods is the availability of provable asymptotically
optimal schemes with linear complexity, that is, the number of operations needed to
compute an approximation scales linear with the degrees of freedom involved. Such
schemes were first developed in the fundamental papers [26, 27] for linear operator
equations. For a comparison of these methods as well as an overview of adaptive
wavelet methods for linear operator equations we refer to the survey [121]. General-
izations to the nonlinear case exist by now, see [28, 9, 45, 79]. However, the theory is
only fully established for the classical isotropic wavelet constructions. For first results
concerning the case of anisotropic tensor wavelets we refer to [112].

Our main focus lies on the efficient numerical treatment of parabolic initial value
problems, such as (1.0.12). To this end, there exist three distinct approaches. The
parabolic problem can be considered as an asymmetric problem over the full spatial-
temporal domain Q2 x (0, 7). A tensor wavelet basis over such a product domain can be
derived as the tensor product of a wavelet basis for the temporal domain and a tensor
wavelet basis over the spatial domain. For linear parabolic equations an adaptive
method based on spatial-temporal tensor wavelets was investigated in [111, 19]. It
was shown that the method converges with optimal rate and with linear complexity.

Different approaches are followed by the vertical method of lines and the horizontal
method of lines. The former starts with a semidiscretization in space. Then, the
remaining task is to solve a system of coupled ordinary differential equations in time.
We refer to [68, 77, 124] for detailed information. The latter, which is also known as
Rothe’s method, starts with a semidiscretization in time, followed by a discretization
in space. It has been studied in for example in [84, 91, 101]. In Rothe’s method, the
parabolic equation is interpreted as an abstract Cauchy problem, that is, an ordinary
differential equation in time over a suitable function space over the spatial domain.
This problem is usually stiff, therefore the temporal discretization must be based on
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1 Introduction and overview

an implicit scheme. In particular, linearly-implicit schemes are of interest, because
their realization leads to a system of linear elliptic stage equations, that has to be
solved in each time step.

Adaptive numerical methods may be implemented in Rothe’s method in two pos-
sible ways. The temporal discretization scheme may utilize adaptive step size control
based on an a posteriori error estimator. The local temporal error estimates may for
instance be based on an embedded scheme of lower order or an extrapolation scheme.
Clearly, it makes sense to adapt the temporal stepsizes to the temporal smoothness
of the solution. However, results on the convergence properties of temporal adaptive
schemes remain an field of ongoing research. For a discussion of temporal adaptive
discretizations as well as numerical tests we refer to [101]. For linearly-implicit tem-
poral discretizations, on which we focus, another way to incorporate adaptivity is to
use adaptive numerical methods for the solution of the elliptic stage equations.

The combination of adaptive techniques for the temporal and spatial discretization
seems natural. However, not much is known about this setting. In particular a com-
parison with the fully adaptive discretization on € x (0,7"), as proposed in [111, 19],
would be fitting.

As a first step into this direction we investigate the combination of a uniform dis-
cretization in time with adaptive solution schemes for the stage equations. Concerning
the convergence analysis of such inexact Rothe methods, the most far reaching results
that we are aware of have been obtained in [84] for parabolic equations and finite ele-
ment discretization in space. Therefore, we perform a thorough convergence analysis
of Rothe’s method, with uniform discretization in time and adaptive discretization in
space in Chapter 4. Therein, we begin by considering an abstract temporal discretiza-
tion that amounts to the solution of S stage equations in each time step and that is
assumed to exhibit some overall temporal convergence rate. Then we investigate the
inexact scheme, where the stage equations are only solved up to known tolerances.
Under a Lipschitz continuity assumption for the operators, that describe the stage
equations, we derive bounds for the tolerances of the solvers, such that the inexact
scheme converges with the same rate as the exact scheme.

A large class of temporal discretization that fits our abstract assumptions are lin-
early implicit S-stage methods. Prominent examples of such schemes are methods of
Rosenbrock type and the larger class of so called W-methods. For the convergence
analysis of exact S-stage W-methods we refer to [91].

We apply our abstract analysis to the special case that adaptive wavelet methods
are used to solve the stage equations. We focus on asymptotically optimal schemes
with linear complexity. For such schemes approximation results similar to (1.0.14)
and (1.0.15) hold, depending on the discretization. By the linear complexity of the
method, our previous results on the tolerances needed in each stage equation translate
into complexity estimates for the overall Rothe method under the assumption that
all solutions to the stage equations belong to the appropriate smoothness spaces.

As an important case study, we investigate the discretization of the heat equation
by means of a linearly implicit Euler scheme. In this example, there is only one stage
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equation and the corresponding operator is of the form (I —7AL)~! where AL is the
Dirichlet-Laplacian and 7 is the temporal step size. For this setting we derive a new
Besov regularity result that justifies the smoothness assumption on the solution of
the stage equation and state the resulting complete complexity result for the solution
of the heat equation.

On the basis of these theoretical considerations, we apply Rothe’s method for the
solution of the inverse problem (1.0.13). In Section 3.5 we consider a linearly implicit
Rothe method with uniform discretization in time which utilizes an adaptive tensor
wavelet solver for the spatial subproblems. The solver is asymptotically optimal with
linear complexity and is based on biorthogonal univariate wavelets. For the closely
related setting of a tensor wavelet basis based on Ls-orthogonal univariate wavelets
it was shown in [51], that such schemes indeed exhibit optimal convergence rates in
practice. We apply the new biorthogonal tensor wavelet method to a parameter recon-
struction problem in a simplified setting and present numerical results in Section 3.6.

Classical tensor wavelet constructions are limited to product domains, significantly
limiting their applicability. In Chapter 5 we consider a generalized tensor wavelet ba-
sis construction for fairly general domains. The new basis reproduces the dimension
independent convergence rate of classical tensor wavelet bases. Our approach follows
the ideas outlined in [23, 44]. The construction is based on a nonoverlapping domain
decomposition of the global domain 2 into subdomains €2;. It is possible to consider
parametric images of the subdomains. A global basis is constructed by applying ex-
tension operators to local bases on the subdomains. As a first step the abstract setting
of a decomposition into two subdomains is considered. In this setting necessary con-
ditions on the boundary conditions imposed on the local bases are stated such that
an extension operator to the global domain exists as a bounded mapping. This ap-
proach can be applied recursively for the case of multiple subdomains. The abstract
considerations are applied to general domains €2 that consist of nonoverlapping cubic
subdomains that are aligned to a cartesian grid. In this setting it is possible to con-
sider tensor wavelet bases for the subcubes and then to recursively apply univariate
extension operators. This yields a global basis, where each individual basis function
is again a tensor of extended univariate wavelets. To preserve the locality of the new
basis, scale dependent univariate extension operators are considered that only extend
wavelets with supports close to the boundary. The new generalized tensor wavelet
basis reproduces the dimension independent approximation result of classical tensor
wavelets under relatively mild assumptions. Indeed, the function that is approximated
only needs to satisfy a piecewise weighted Sobolev smoothness assumption, that is, its
restriction to the subcubes is assumed to satisfy the smoothness assumption required
for classical tensor wavelet approximation. A regularity result for elliptic boundary
value problems of order 2 on polygonal and polyhedral domains is derived that en-
sures the piecewise smoothness of the solution of the problem for smooth right-hand
sides. Finally, numerical experiments confirm that the theoretical approximation rate
of the basis is obtained in practice.
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2.1 Introduction

The aim of this paper is to derive an efficient numerical algorithm for the global
minimization of functionals of the form

Ta(u) = ||K ) = y|l, + 2/l ). webLT), (2.1.1)

where K : l5(J) — Y is a nonlinear, continuously Fréchet differentiable operator act-
ing between the sequence space ¢5(J) over the countable index set J and a separable
Hilbert space Y. Here y € Y is a given datum, and

alles o) =Y vl

neJ
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2 Multilevel preconditioning for sparse optimization of functionals

denotes the weighted ¢;-norm of u with respect to a positive weight sequence o € R{ .
We shall assume that there exists an o > 0 such that o, > « for all p € J. Whenever
the index set J is fixed and clear from the context, we will drop it in the notation
and simply write ¢y and ¢, o, respectively.

Typical examples where minimization problems of the form (2.1.1) arise are Tikhonov
regularizations of nonlinear operator equations

K(u) =y (2.1.2)

when the forward operator K : X — Y maps a separable Hilbert space X into Y.
We refer, e.g., to [54, 107, 109] for a detailed discussion of Tikhonov regularization
schemes. If the unknown solution is guaranteed to have a sparse expansion with
respect to some suitable countable Riesz basis W := {9, },c7 for X, it makes sense to
utilize the £;-norm to promote sparse solutions. Denoting the linear synthesis operator
associated to ¥ with

u=Y wah, = F), ueb(J)

neJ

and setting K := Ko F, the minimization of (2.1.1) will produce a sparsely populated
coefficient array u with K(u) ~ y. The modeling motivation is the search of the
“simplest” (in this case modeled by the “sparsest”) explanation to the given datum
y, resulting from the nonlinear process /C, in the spirit of the Occam’s razor. Moreover,
it is known that, under certain smoothness conditions, the global minimizers of (2.1.1)
are regularizers for the problem.

By now there is a vast literature concerning sparse regularization of nonlinear
inverse problems, see for example [13, 15, 102, 123]. For most of the results in the
literature related to minimizing algorithms for functionals of the type (2.1.1) usually
only convergence to critical points is shown. Unfortunately, differently from global
minimizers, nothing is really known concerning the regularization properties of critical
points, significantly questioning the relevance of such convergence results.

The starting point of our present discussion is a generalized conditional gradient
method which is known to guarantee the computation of subsequences converging to
critical points of (2.1.1). The scope of this paper is to show under which sufficient
conditions on K one may expect to have linear convergence of a suitable modifica-
tion of this algorithm towards a global minimizer, hence guaranteeing regularization
properties.

Several authors have independently proposed such an algorithm, see [53, 60, 116,
117] for the case of linear operators K and [13, 15] for the generalization to the
nonlinear case. The general setting can be described as follows. One introduces an
auxiliary parameter A € R, and considers the splitting

Pa(u) = [ K(u) g} — Aul?, + Xul, +2[ul,., (2.1.3)
=TV (u) =T (u)
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2.1 Introduction

Then FE\I) is continuously Fréchet differentiable and FE\QZX is convex, lower semicontin-
uous, and coercive with respect to || - ||¢,, so that all the necessary properties to set

up a generalized conditional gradient method are satisfied. The algorithm is given by

Algorithm 2.1.1 ISTA
1: Choose ul®) € ¢, 4; n :=0;
2: Determine descent direction v

(n) i < a™))* (™) _ ) — Au®™
v Garg{,rélér; 2((K'(u™))" (K (u™) —y) — xu'™, v),,

(2.1.4)
FAIVIE, + 2vle )

3: Determine step size s

s ¢ arg H%in} To(u™ + s(v™ —u™)); (2.1.5)
s€[0,1

4: Set ut = u™ 4 s (v(® —u™): = n + 1; return to step 2.

Here (K'(u™))" € L(Y, ) denotes the adjoint mapping of K'(u™) € L((,,Y).
We refer to [13] for a detailed discussion and convergence analysis of Algorithm 2.1.1.
If the parameter \ is chosen large enough, it is possible to choose s = 1 and to
omit the third step of the algorithm, see [13, Lemma 2.4]. Throughout this paper we
always make this assumption, hence we focus on the minimization problem (2.1.4)
in the following. Observe that by expanding the quadratic term below, (2.1.4) is
equivalent to

1 .
argiréiﬁr; v — (u™ — X(K’(u(”))) (Ku™) —y))|IZ, + QHVHEL%. (2.1.6)

The minimizer of such a functional combining an f5-norm fidelity term and weighted
{1-norm penalization can be directly computed using a soft thresholding operation,
see [18, 46]. By defining

rT—a, T>a
Sa(flj) = 07 ‘.I" S «,
rt+oa < -—q,
and S (u), := Sa, (u,) it holds that
Se(a) = argmin [|v —allg, +2||vlle, .- (2.1.7)
Consequently, through (2.1.6), we obtain that (2.1.4) is uniquely solved by

v = Se <u<"> + %(K’(uw))*(y — K(u<">))>. (2.1.8)
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2 Multilevel preconditioning for sparse optimization of functionals

This explains why Algorithm 2.1.1 is also known as the iterated soft thresholding
algorithm (ISTA) or the thresholded Landweber iteration.

The convergence of Algorithm 2.1.1 for nonlinear operators K was studied in [15].
There it was shown that the sequence (u("))n y has subsequences which are guaran-
teed to converge to a stationary point u* of (2.1.1), i.e.,

u” € arg min 2((K'(u"))" (K (w') —y) = M, v)e, + AIV[E +20v]e o
However, it is known from the linear case, that the algorithm in its most basic form
converges rather slowly. Strategies to accelerate the convergence of the method are
necessary for its applicability. In [36] three of us considered the case of linear operators
K and proposed to choose a decreasing thresholding strategy for the parameters o™,
In the setting of [36], u* = u}, is a global minimizer of (2.1.1). Moreover it has been
possible to show that the resulting scheme is guaranteed to converge linearly, under
spectral conditions of K, the so-called restricted isometry property, see (2.2.51) below.
Furthermore this property is obtainable for certain classes of operators by means of
multilevel preconditioners, we refer to [36] for details. This paper is concerned with
the generalization of this strategy to nonlinear operators K. That is, we are interested
in the convergence analysis of the iteration

W = S <u(n) n %(K’(u(n)))*(y N K(u(")))>, (2.1.9)

where a™ € R‘Z is an entrywise decreasing sequence with lim,_,., o™ = a and
ozftn),au >acR ,peJ.

The basic convergence analysis is outlined in Section 2.2. Our analysis relies on two
fundamental assumptions. We need that the operator K satisfies certain boundedness
and Lipschitz continuity conditions, see (2.2.12). Moreover, we have to assume that
the operator

T:ly—tly, viuT(V):=v+ %(K’(V))*(y— K(v))

is a contraction on a sufficiently small ball around a critical point u* of the functional
['w, which will turn out to be the unique global minimizer there. Then the iteration
is linearly convergent, i.e.,

lu* —u™l, <70, for some y < 1.
Moreover, the iteration is monotone in the sense that
Fa(n+1)(u(”+1)) < Fa(n)(u(n)), (2.1.10)

provided that u™ is not a critical point of I',). These properties are specified in
Theorem 2.2.4 which is the main result of this paper.
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2.2 Convergence analysis

The local contraction condition (2.2.32) on 7' may be hard to verify. In the Sec-
tions 2.2.2 and 2.2.3, we discuss in detail two classes of operators where it is satisfied.
The first class consists of operators with bounded second derivatives and first deriva-
tive that satisfies the contraction property. The second class is given by nonlinear
perturbations of linear operators satisfying the restricted isometry property (2.2.51).
As already shown in [36] for large classes of linear operators K where (2.2.51) fails, it
can actually be restored by preconditioning. Details will be outlined for the case of a
nonlinear /C which is a mild perturbation of a linear operator in Section 2.3.

The analysis in this paper is performed in an infinite-dimensional setting. In this
general setting, clearly the operator K and K’ cannot be evaluated exactly. There-
fore, in Section 2.4, we discuss strategies to solve the infinite-dimensional problem by
turning it into a finite-dimensional one and using the expected sparsity of the mini-
mizer. If implementable approximations of the actions of K and K’ up to prescribed
tolerances are applied, then the resulting inexact, but implementable, version of the
algorithm will again be linearly convergent. If the underlying Riesz basis is of wavelet
type, then the desired approximations are known in the literature for certain classes
of nonlinearities [45, 28, 79].

2.2 Convergence analysis

In this section we analyze the convergence properties of the iteration (2.1.9). As
a first step we show that under relatively mild assumptions 'y (u™) decreases
monotonically. It is known that in the case of constant thresholding parameters a™ =
a, n € N, the sequence (u("))nEN has a convergent subsequence and every convergent
subsequence converges to a stationary point of (2.1.1). However, we are particularly
interested in the global minimizer of (2.1.1). Therefore, we prove that under more
restrictive assumptions and for decreasing thresholing parameters a™ the iterates
converge linearly to the global minimizer of (2.1.1). In the remainder of this section
we present examples of settings where our analysis can be applied. In Section 2.2.2,
we describe how our assumptions can be fulfilled under smoothness conditions on the
nonlinear operator K and its derivative. In Section 2.2.3 we present the important
special case where K can be expressed as the sum of a linear operator satisfying the
restricted isometry property, and a small nonlinear perturbation.

2.2.1 A general convergence result

We are particularly interested in computing approximations with the smallest possible
number of nonzero entries to solutions of (2.1.2). As a benchmark, we recall that the
most economical approximations of a given vector v € {5 are provided by the best
N-term approximations vy, defined by discarding in v all but the N € Ny largest
coefficients in absolute value. The error of best N-term approximation is defined as

on(v) = v — vyl (2.2.1)
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2 Multilevel preconditioning for sparse optimization of functionals

The subspace of all /5 vectors with best N-term approximation rate s > 0, i.e.,
on(v) S N~* for some decay rate s > 0, is commonly referred to as the weak ¢, space
0°(J), for T = (s + 3)~*, which, endowed with

[V]gw(gy = sup (N + 1)°on(v), (2.2.2)
NeNy

becomes the quasi-Banach space (€2 (), || (7)) Moreover, for any 0 < ¢ < 2—7, we
have the continuous embeddings ¢ (J) — (“(J) — l;1.(J), justifying why ¢¥(7)
is called weak £, (7). As before we omit the dependency on the index set J whenever
it is clear from the context.

When it comes to the concrete computations of good approximations with a small
number of active coefficients, one frequently utilizes certain thresholding procedures.
Here small entries of a given vector are simply discarded, whereas the large entries
may be slightly modified. In this paper, we will make use of soft thresholding that
we already introduced in (2.1.7). It is well-known that S, is non-expansive for any
a € RY,

Moreover, for any fixed x € R, the mapping § +— Ss(z) is Lipschitz continuous
with

|Ss(z) — Sg(z)| < |8—p|, forall B, >0. (2.2.3)
We readily infer the following technical estimate (for the proof we refer the reader to

36]).

Lemma 2.2.1. Assume v € {5, o, 3 € R‘Z such that 0 < o = min (infu oy, inf, 5u)>
and define

A(v)i={pe T vl >a}.
Then

1/2
[Satv) = S5l < (#4a()) " max o, — 4. (22.4)

In the sequel, we shall also use the following support size estimate, the proof of
which follows the lines of Lemma 5.1 in [26], more details are provided in [36].

Lemma 2.2.2. Let v € (¥ and w € {y with ||v —w||,, <e. Assume oo = (o) ues €
RY and inf, a, = a > 0. Then it holds that

4e? .,
#supp Sa (W) < #A,(w) < 7 +4C|v[pua, (2.2.5)

where C'= C(1) > 0. In particular if v € {y then the estimate is refined

4e?
#supp Sa (W) < #A,(w) < el + || v|eo- (2.2.6)
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2.2 Convergence analysis

For the analysis of the iteration (2.1.9), we will always assume that the datum
y € Y is fixed and contained in a bounded set, i.e.,

lylly < Cy < . (2.2.7)

In this setting, we define the operator

T:ly—ly, v—=T(V):=v+ %(K'(V))*(y — K(v)). (2.2.8)

In the following we want to show the convergence of the iteration (2.1.9) to station-
ary points of I',, and to estimate the rate of convergence. In order to do that we shall
in particular show that, under certain local contraction properties of the operator T,
the stationary point is actually unique in a predetermined ball around 0 and coincides
with the global minimizer of I'y,. First of all, we need to characterize the ball where
the interesting stationary points should be searched.

To this end, we recall that for each a € R:Z yo > a>0,u € J, the related energy
functional T, from (2.1.1) is coercive, i.e., I'q(v) — 00 as ||v||s, — oc. In particular
this implies that

R:=sup{||v]e, : Ta(v) <Thw(0)} (2.2.9)

is finite, and we define
B(R):={v € ly:||v|]e < R}. (2.2.10)
Notice that for v € {5 such that I'a(v) < ', (0), we have
2a|[vlle, < 2f[ vl 0 < Ta(v) < To(0),

hence,

[ (0)
200
For the remainder of this section we will make the following additional assumption.

The operators K and K’ are Lipschitz continuous on closed bounded sets, i.e., for all

closed and bounded O C ¢, we assume

R< (2.2.11)

1K (w) — KW)ly < C7(O)lu=v]e, uveO,

, , e (2.2.12)
K7 (w) = K'(V)lle(e2.v) < O’ (O)[u = Ve, w,v €O,

With a slight abuse of notation we denote the Lipschitz constants of K and K’ on
B(R) by CK?(R) and CKP(R), respectively. In particular (2.2.12) implies that K and
K’ are bounded on closed and bounded sets. Indeed, let O C ¢, and vg € O. Then
we may bound K by estimating

sup || K(v)|ly < sup [|[K(v) = K(vo)|ly + [|K (vo)lly
veO veO

i (2.2.13)
< CkM(O)sup |[v = volle, + [[K(vo) [y < oo,
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2 Multilevel preconditioning for sparse optimization of functionals

and K’ by a similar estimate. We introduce the abbreviations

C’}’?d(R) = sup |IK(v)l|y, Cb”/d(R) = sup HKI(V)Hﬁ(g%Y). (2.2.14)
€B(R) vEB(R)

v

With these preliminaries, we can formulate the following proposition, which general-
izes [13, Lemma 2.4].

Proposition 2.2.3. Suppose that (2.2.7) and (2.2.12) hold. For some Ao > 0 and R
as in (2.2.9) we define
1
R =R+ )\—C})?,d(R)(C}’?d(R) + Cy). (2.2.15)
0

Then ||K(-) — y||? is locally Lipschitz. We choose in (2.1.3)
A > Ain = max (Ao, CiF (R)(CHYR) + Cy) + CRHRNCEP(R))  (2:2.16)

and denote by (u("))neN the iterates of the decreasing thresholding iteration (2.1.9)
starting from u'® = 0. Then it holds

Fa(n+1)(u(n+1)) < Fa(n)(u(n)), (2.2.17)

as long as u™ is not yet a critical point of T ywy. Furthermore the iterates fulfill the
bound
[u™|e, <R, neN. (2.2.18)

Proof. We shall prove by induction over n that
[u™]|,, < R and Ty (u™) < T 40 (0). (2.2.19)

We will show that if ) is chosen according to (2.2.16) and u™ # u™*+Y which is the
case if u®™ is no critical point of I, then this implies

Lo (u™) < T (™). (2.2.20)

From the fact that a™ decreases componentwise to a, together with (2.2.20) and
(2.2.19) we obtain

Fa(u(n+1)) < Fa<n+1)(u("+1)) < Fa<n)(u("+1)) < Fa(n>(u(”)) < Fa(o)(()).

By (2.2.9) this also implies the validity of (2.2.19) for n — n + 1, and simultaneously
of (2.2.17) and (2.2.18) for all n € N.

Notice that (2.2.19) in particular holds for n = 0. We begin by proving u"*! ¢
B(R'), where R’ is defined in (2.2.15). We use the fact that soft shrinkage is nonex-
pansive, together with (2.2.14) and (2.2.7), to estimate

: oo AN * n
[u® Ok, < [ 4+ £ (K@) (y = K@)
(2.2.21)

1
< [[u™le, + FORA(R)(CRI(R) + Cy) < R
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2.2 Convergence analysis

Hence it follows that u™ u™*) € B(R'). To prove (2.2.20) we shall use (2.1.4),
reformulated for u™ and 0z(u( ). In (2.1.3) we introduced the splitting

1
Pa(u) = I3 (w) + IV (),
where F&l) is continuously Fréchet differentiable. The derivative of FE\I) was already
implicitly stated in (2.1.4) and may be reformulated by means of T" as follows:

(O (w)v = 2((K'(0))" (K () — y) — Au, v)g, = —2X(T (), V), (2.2.22)

Recall that by means of (2.1.7), (2.1.6), and (2.2.22), the definition of u* in (2.1.9)
can be reformulated as

uth) — arg min ||v — T(u(n))H?z +2[[vle Lg(n)
vELy bxe

= arg min —2M(T(u™), v),, + |V, +2||v|.

vEly o)

= argmin (1Y) (w™)v + T (v).

vEly

In particular it follows that

1)\/ n n n DAY n " 2 "
() (@ u 0 4 0E @) < (0F) (@™)a® + ¢ ()

holds, which is equivalent to

/ n n n n
(TD) () (™) — ) < ﬁj;( (™) =1 (u+D), (2.2.23)

A, aln)
Next, we apply the fundamental theorem of calculus to I' (A) and write

1 n 1 n
1Y (D) — M (u™)

1
- / (T (0™ + 7 (™) — u™)) (D) —u®™)dr
0

1
= / ((I‘E\l))/(u(n) 4 T<u(n+1) — u("))) _ (Fg\l))/(u(n))) (u(n+1) _ u(”)) dr

0
1)\/ n n n
+ () (@) (D — u),
This, together with (2.2.23) and (2.2.22) yields

| (u("+1)) -T (n)(u(n))
= (PP )+ ¢ @) — (T ™) + T8, (™))
</ (Y 4 ) () ) ) )7
0
= /1 2((K'(u™ + 7(u™™ —a™))) (K (u™ + 7™ —u™)) —y)
(RO (K () = g), () a0y dr = M — u,

(2.2.24)
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2 Multilevel preconditioning for sparse optimization of functionals

Moreover, by the assumptions (2.2.12) on K and K’, we can estimate for u,v € B(R')
(K ()" (K () = ) = (K'(v)) (K(¥) = y)lle,
= (&) = (K'(¥)") (K (w) = ) + (K'(v) (K (w) = K¥))]|.
< )‘min”u - VHEQ-

We apply this inequality for the special case u = u™ 4 7(u™*) —u™), v = u™, to
further estimate (2.2.24) as follows:

[ g0 (™) — T o (™)

aln
1
< / 27 Ain [[u T —u™ |12 dr — Aju™ ) — a7 (2.2.25)
0
= (Amin — A) 0™ — a7 .

Furthermore the right-hand side is negative if A is chosen according to (2.2.16) and
u™ #£ ul*Y which is the case if u®™ is no critical point of I, and this shows
(2.2.20) and concludes the proof. O

Notice that we decided to start our iteration from u® = 0. On the one hand, this
choice is motivated by the fact that a priori we do not dispose of any information
on potentially interesting stationary points and an arbitrary choice of the initial
iteration has to be made. On the other hand, as we will show below, under certain
assumptions, we will be able to identify in this way the unique global minimizer of the
functional I'y,. As we are seeking for stationary points which are limits of the sequence
(u(”))nGN of the iterates of the decreasing thresholding iteration (2.1.9) starting from
ul® = 0, in view of Proposition 2.2.3 we can assume without loss of generality that
interesting stationary points u* belong to the ball B(R). This assumption is not void,
because a global minimizer u® of T'y, necessarily has to lie in the ball B(R), because
['a(u®) < T'4(0). We shall also show below that all the iterates (u("))ne are actually
additionally located within the ball

N

Bi={vely:|u — vl < [uls). (2.2.26)

where u* is an arbitrary stationary point of I', within B(R). Hence, under the reg-
ularity assumption so far made for the operators K and K’, the reference domain of
the iterations of the algorithm is BN B(R). Within this setting we make the following
assumption: T satisfies the Lipschitz condition

IT(0) = T(V)[le, < CE?|0" = vl v EBNB(R), yeY, lyly < Cy, (2227)

for any fixed stationary point u*. (As we shall see below, such a condition is not so
strong as we shall apply it to only one stationary point.) Furthermore we define for
some fixed A\g > 0 the analogue of (2.2.15) on BN B(R) , that is

R =R+ Aicb",d(za A B(R))(C(B N B(R)) + Cy). (2.2.98)
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2.2 Convergence analysis

Then, the following convergence theorem holds.

Theorem 2.2.4. Let u* be a stationary point of (2.1.1) that satisfies T'(u*) € (¥ for
some 0 < 17 < 2. For some \g > 0 and R" as in (2.2.28) we choose

A > max (Ao, (CEP(BAB(R")(C(B B(R")) + Cy)

. (2.2.29)
+ (BN B(R")CEP (BN B(R“)))).
Furthermore let o™, a0 € R{ with oz,(f) >a,>acR,ueJ. We set
A(CH P w2 2 o (O
L= = + 40| T (") 7 <X> , (2.2.30)

with C' as in Lemma 2.2.2 and C’%ip as in (2.2.27). Moreover we define the set
B :={v e ly:||u" — vl <||u|y, #suppv < L}. (2.2.31)

Let us assume that there exists some 0 < 79 < 1, such that for all v € Br and
supp(v) C A C J with #A < 2L

H (T(u*) - T(V))|S*UA“€2(S*UA) < ’YOHU* - VHZQ? (2232)

where S* := suppu*. Then, for any vy < v < 1, the sequence (u(”))nEN obtained by
(2.1.9) fulfills

(u™) ., CBLNB(R) (2.2.33)
and converges to u* at a linear rate
[ = u™ g, <™ =" [u"e, (2.2.34)
whenever the o™ > a are chosen according to
(n) _ ~5(~ — (n)
I;lé?dau a,| <AL72(y — )™ (2.2.35)

Moreover, the iteration is monotone in the sense that
Fa(n+1)(u(n+1)) < Fa<n)(u(n)),
provided that u™ is not yet a critical point of T ywm) .

Remark 2.2.5. 1. Before proving Theorem 2.2.4, let us comment the following
fundamental implication: by the Lipschitz condition (2.2.27) and local contrac-
tion property (2.2.32), the iterations (u(”))n oy Of the algorithm starting from
u® = 0 must converge to any stationary point u* € B(R), hence implying
automatically its uniqueness. In fact, if there was another stationary point, it
would also coincide with the limit of this sequence. In particular, the global
minimizer u® of I'y, necessarily lies in the ball B(R) and is a stationary point
of T'y, and we have linear convergence of the iterates to u°.
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2. The contractivity condition (2.2.32) is partially related to the convexity of I'y in

the vicinity of a stationary point u*. However, in general the condition (2.2.32)
does not imply strict convexity of 'y in a neighborhood of u*. We will discuss
this relationship for simplicity in a finite-dimensional setting.

On the one hand, if #7 = L < 0o, (2.2.32) indeed implies the convexity of T,
near u*. In this situation, (2.2.32) simplifies to

HT(u*) - T(V)”e2 < vllu* = v|e, forallve/ly,

which entails [|[77(u*)|lz@,) < 7 < 1. If, additionally, I'q is smooth in the
vicinity of u*, the local convexity of I', follows from the monotonicity of its

gradient
VIla(u) =2\ (u —T(u)) + 2sign(u”)e,

because we have

<VFa(u) —VIla(v),u— V>€2 >0
for all u, v from a sufficiently small neighborhood of u*.

On the other hand, in the generic case that L is small with respect to the cardi-
nality of 7, the Tikhonov functional I', might be nonconvex in each neighbor-
hood of u* despite the validity of (2.2.32). As an example, let oy, > 0 and
K : R? — R? be the smooth mapping

ul—&1—1

K = ’ f H E RQ.
(u) ((% +1 arctan(20z27fu2))1/2> s

Further let y = 0. By definition, I', separates into a sum of one-dimensional
functionals,

Lo(u) = Ji(ur) + Jo(us),
with

Jl(ul) = (u1 — 1 — 1)2 + 20[1’U1|,

Jo(ug) := 5 + T arctan(20omus) + 2as|us|.

The functional J; is strictly convex, with unique minimizer uj = S,, (14+a;) = 1,
whereas J, is nonconvex in each open neighborhood of its unique minimizer
uy = 0, see also Figure 2.1. Therefore, u* = (}) is the unique minimizer of
[, but I'y is nonconvex in each open neighborhood of u*. However, if A > 1,

(2.2.32) holds for all L < } and 7 :=1— 1 € [0, 1), because

K'(u) = (1) 092
(4a§7r2u§+1)\/%+% arctan(2aemug)
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JQ(UQ)

U2

Figure 2.1: The functional J, from Remark 2.2.5, plotted for as, = 0.5.

is diagonal. Therefore, the affinity of K(-); yields
(T(u) =T(v)), = (1= ) (ur —v1), forallu,veR?
and hence
(T (u) - T(V))|{1}Hf2({1}) <(1-1)u=v|e, foraluveR. (2.2.36)
Choosing u = u* and v = 0 in (2.2.36) yields (2.2.32).
Let us now address the proof of Theorem 2.2.4.

Proof. The proof is performed by induction over n. There is nothing to show for n = 0.
The first step is to prove that u™*Y is indeed contained in By. Let u'™ € B, N B(R),
then since a™ is decreasing to a it holds that

supp u™Y = supp S%am) (T(u(”))) C supp S%Q(T(u(”))). (2.2.37)
By using (2.2.27) for v = u™, Lemma 2.2.2 tells us that

#supp S14(T(u™)) < As (T(u™))
(e L

(2.2.38)

+4C|T (a7 (%)‘ < L.
We conclude that # suppu®™t? < L. Let us denote S™ = suppu™, S* = supp u*,
and A = §* U S U S+ Notice that #5™ U S+ < 2L. By the thresholding
properties it is clear that after restriction to A™

Uy = S§a(T(U*)|A(n>), (2.2.39)
and
ufw) = S14m (T(™) 1) (2.2.40)
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2 Multilevel preconditioning for sparse optimization of functionals

hold. This, together with the nonexpansiveness of soft thresholding, Lemma 2.2.1
in the second inequality, and (2.2.32) together with # suppu™*!) < L in the third
inequality yields

lu* —u™ Y,

= ||u|A<n> - ‘1|Z<t§)||e2(/\(n>)
= [S14(T(*)jam) = S14m(T'(a ™) a0 |l ey atm)
< [S1a(T()am) = S14(T(u ™) 400 lgaatmy
+[S1a(T (™ ))wm) = S100 (T (™) 509) g (a0
< HT(U*)MW - T(u(n))m(n)HeQ(Am))
L (A (T())

(n)
max a, —
X e thtaeny %~
1/2
<ol —u® |y, + S—( max a, —aflV))

A hEAa(T(u™))
< 0e™ + (7 =)™ = 7e™ = e,

The last inequality is a consequence of induction hypothesis and (2.2.35). This proves
u™) € By. Obviously u™* € B(R) because of the monotonicity of the iterations:

Fa(u(n+1)) < Fa(n+1)<u(n+1)) < Tom (u("H)) < Fa(n>(u(n)> <T',(0). ]

2.2.2 Nonlinear operators with bounded second derivatives

In this section we state smoothness conditions on the nonlinear operator K which
imply that the operator 7' defined in (2.2.8) fulfills (2.2.27) and (2.2.32). In the
following we assume that S* is the support of a global minimizer u* of I'y in B(R). As
discussed above, once we prove that 7" fulfills (2.2.27) and (2.2.32), then by Theorem
2.2.4 we automatically have that u* is actually the unique stationary point of Iy, in
B(R).

Theorem 2.2.6. Let the data fulfill assumption (2.2.7). Assume that K is twice con-
tinuously differentiable on an open set that contains B and, together with its derivative

K, is bounded on B. Furthermore, assume that there exist 0 < v, < v, < 1 such that
forall A C J,#N < 2L and ¢ € B,supp C S* U A, the following local contraction

property
H( d——(K’(C)) K’ (C)) 22570y ea(5708)) < V2 (2.2.41)

|S*UA X S*UA

holds. Moreover, let us assume that the uniform spectral gap condition
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2.2 Convergence analysis

1 *
I (X(K"(C)(')) (v - K(C»)S*uAXs*UAHE(KQ(S*UA),ZQ(S*UA)) <y—m (2242

holds. Then T defined in (2.2.8) fulfills (2.2.27) and (2.2.32).

Proof. The proof is an application of the mean value theorem. In order to compute
the derivative of T" we introduce the auxiliary operator

G:(u,v)—>u+ %(K’(u))*(y— K(v)), (u,v)€lyx 1l

and observe
T =Go(Id,1d)T.

We compute

')z

(%, %f) ((¢,¢)) o (1d,1d)" z
1

(1045 (K70 (v = K(©), —5 (K(©) K(O))) o (1,1) 2
1

=5t 1 (K"(Q)2)" (v~ K(©) — 1 (K'Q) K'(¢)

(2.2.43)
Observe that K : by = Y, K" : by — L(l5,Y), and K" : {5 — L(l3, L(l2,Y)). There-
fore K"(¢)z € L({,Y) holds. Consequently (K”(¢)z)" € L(Y,{s), so that the com-
position in (2.2.43) is well defined. By our assumptions K, K’, and K" are bounded
on the bounded set B. This, together with (2.2.7) implies supgcp [|T7(§) || £(e2,62) < 0.
Since B is convex we can use the mean value theorem to conclude the Lipschitz prop-
erty (2.2.27). In order to prove (2.2.32), let v € By and supp(v) C A C J with
#A < 2L. Then, by (2.2.43), (2.2.41), and (2.2.42) the estimate

1(T'(¢)) 570Axs=un | £(Ea(570A) ta(570A))

1 .
< 1Id=-=(K’ K’ . .
< ||< d—+(K'(¢)) (C))S*WS*LJA”‘“Q(S UA),£2(S*UA))
1 x
+| (X(K”(C)(-)) (v - K()) 5+t un | EE(SUR)(5701)
<M

holds. The restriction Bjg-up := {ujs-upr,u € B} of B onto the index set S* U A is
a convex set in ¢5(S* U A). Hence, we can apply the mean value theorem again to
finalize the proof as follows:

| (T(U*) - T(V))|S*UAH€2(S*UA)

< 5w ((T(0) s unnsrun lletats-omeasmuay [0 = Vile,
[S*UA

< mllu® =i,
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2.2.3 Nonlinear perturbation of linear operators

In this section we discuss the validity of (2.2.32) for the special case that K is given by
the sum of a linear operator and a nonlinear perturbation. To be specific, we consider

K,=A+0N, (2.2.44)

where 0 € Ry, A€ L({5,Y) and N : {5 — Y is a nonlinear perturbation with Fréchet
derivative N’ : ¢y — L(l3,Y") and the property that

N, N’ are Lipschitz continuous on closed bounded sets. (2.2.45)

Similarly to (2.2.12) and (2.2.14) we denote the respective Lipschitz constants and
suprema on B(R) with CyP(R), Cx?(R), C%4(R), and C%4(R).
We begin by deriving uniform bounds for those constants. We denote
R(0) = sup{|[vllez, Tavo (V) < 00 ,(0)},

where I, , is the functional I'y, for K = K, depending on o. Accordingly we denote
/ 1 T mn
R'(0) := R(o) + )\_oCb 4(R(0))(C%4(R(c)) + Cy).

We denote with C(¢) the set of critical points of 'y , in B(R(0)). For any u*(o) € C(0)
we denote

4(C7™)?||u* (o) [7,3°
2

Lu*(0)) := +4C|T(w*(0))]7 (%)_ . (2.2.46)
Lemma 2.2.7. Let the data fulfill assumption (2.2.7). Further let o € Ry and K,
o € (0,00, be of the form (2.2.44). Suppose that the assumptions (2.2.45) hold. Then
it holds that

«

Ry := sup R(0) < oo,
o0€[0,00]

Ry := sup R/(o) < oo,
c€[0,00]

sup CII}ZP(R/(O')) < 00,
o0€(0,00]

sup CHP(R'(0)) < oo.
o0€[0,00] 7

(2.2.47)

Under the additional assumption

sup  sup |T,(u"(0))|w < o0 (2.2.48)
o0€[0,00] u*(c)eC(o)

it further holds that

Ly:= sup sup L(u*(0)) < oc. (2.2.49)
o€[0,00] u*(c)eC(o)
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Remark 2.2.8. Before proving this lemma, let us comment on the condition (2.2.48),
requiring to consider a supremum over the set C(¢), which a priori can be very
large. As we will show later, the boundedness of the quantities of this lemma and
an additional spectral property on the operator A, the so-called restricted isometry
property, see formula (2.2.51) below, will imply the operator T to fulfill (2.2.32). As
already stated above, under this condition, the set C(o) consists only of one point,
i.e., the global minimizer of I', . Hence the condition (2.2.48) will turn out to be
much less restrictive as it seems at a first glance.

Let us now prove Lemma 2.2.7.

Proof. It is immediate to see that (2.2.11) implies

sup r (0
R(O’) < Ps €[0,00] ( a0 o ( )) '
2a

Furthermore the term sup,cp yo (Fa© (0)) is finite, as
0" = T (0) = [’ N(0) — yll3

is continuous and bounded on [0, o¢], because of the assumptions (2.2.7) and (2.2.45).
Hence, we conclude the boundedness of Ry in (2.2.47). By the assumption (2.2.45)
we may bound the Lipschitz constant of K, on B(R,) as follows:

Cl(R(0)) < [[Alleeay) + 00O (Ro). (2.2.50)

The constant C’[L(zp (R(0)) may be bounded analogously. By the same reasoning as
in (2.2.13) it follows that the two constants C}4(R(c)) and C%*(R(0)) may be
bounded independently of o € [0,00]. This proves the existence of uniform bounds
for the constants C}4(R(0)) and C%%(R(c)), and consequently of Rj in (2.2.47).
Using assumption (2.2.45) on B(R)) allows us to estimate similarly to (2.2.50) uni-
form bounds for the constants CIL(iGp (R'(0)) and CEP(R'(0)). It remains to prove the
finiteness of L in (2.2.49). To this end observe that the Lipschitz property of K, and
K! on B(Ry) imply that T,, defined in (2.2.8), is Lipschitz on B(R;) and that the
corresponding Lipschitz constants may be uniformly bounded in ¢. The remaining
terms in (2.2.46) are bounded uniformly in ¢ by assumption (2.2.48) and the estimate
[u*(o)le, < R(o) < Ro. O

We are now able to state conditions under which the fundamental contraction
property (2.2.32) of the operators T, defined by (2.2.8) can be ensured uniformly in
o for oq sufficiently small.

Lemma 2.2.9. Let the assumptions of Lemma 2.2.7 hold. Fixz oo € RT. For all o €
[0, 00], we fix u*(o) € C(o) and denote S% := suppu*(c). We make the assumption
that the linear part A of K, fulfills the restricted isometry property

[(Id =A""A*A) jpoxpo

Llta(n0) e2(80)) <M < 1 (2.2.51)
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2 Multilevel preconditioning for sparse optimization of functionals

for all A° C J with #A° < 3Ly. By using the notations as in (2.2.47), the constant

C == Al £t ) CN" (Ro)
+ CNP(Ro) (IA] 22,3y Ro + 00C%(Ro) + C') (2.2.52)
+ O (Ro) (1Al 22,y + 00CN" (Ro))
is bounded and for all o with 0 < ¢ < min (0'0, (1-— 71))\0_1) the following holds:
For all v € B(Rg) with #suppv < Lg, and supp(v) C A C J with #A < 2Ly, the

contraction property

(T (u*(0)) — TU(V>)‘S;U/\||€2(S(’;UA) < yllu (o) — vle,, (2.2.53)
holds with vy := v + o A71C < 1.

Proof. We begin by proving that the constant C' in (2.2.52) is bounded. To this end
we apply Lemma 2.2.7 and observe that the Lipschitz property of N and N" on B(Ry)
implies similarly to (2.2.13) that N and N’ are also bounded on B(Ry).

Fix o € [0,00] and let v € B(Ry), #suppv < Ly and suppv C A C J with
#A < 2L and denote A° := S¥ UA.

We use the splitting

T,(v) — Ty(u*(0)) = v —u*(o) — A TA*A(v —u*(0)) — 0)\_1/4* (N(v) = N(u*(0)))

— oA (N'(v) = N'(u(0)) (A + oN)(v) — y)
— oA (N'(u(0)) " ((A+oN)(v) = (A+UN)(U*( )
together with the assumption (2.2.51) to estimate

1(To(v) = Tow* () .

< (-2 A" A) (v = () ey + oA (1 (A" (N(V) = N (0))) .
+ (V') = N (0))) " (A + o N)(¥) =) e leaar
+ (N (u(0))) (A + oN)(v) = (A+oN)(u(0)))) .
< (1 + oA (|4l CR™ (o)

Cz%rlfp (Ro) ([1A]l 2(t2,vy Ro + 00CR“(Ro) + C)
¥ (Ro) (I 4] cqea) + 00CR (Ro))) ) IV = 0(0) e
= m + oA Oy = u* (@)

La(A°)

La(A°)

12 (AO))

which implies that the contraction property (2.2.53) holds. O

The last lemma established the contraction property (2.2.53) uniformly in o. There-
fore, for the current choice of K = K, as in (2.2.44), we are able to apply directly
Theorem 2.2.4. Let us summarize the result as follows.

34



2.3 Preconditioning

Theorem 2.2.10. Let the assumptions of Lemma 2.2.9 hold for some \ with
A > max (Ao, C &P (Ro) (CRARG) + Cy) + CR (R CEP(RY)).

Then, for all
0 < o < min (g9, (1 —1)AC™Y)

andyy < v < 1, if we choose (a(”))neN according to (2.2.35) the sequence (u™ (o))

defined by (2.1.9) with initial guess ul®) = 0 satisfies "
(u"(0)), . € B(Ro). (2.2.54)

Furthermore, u™ (c) converges to u*(c) € C(o) at a linear rate, i.e.,
lu*(0) = u™(0)]le, < 7" u"(0) = u' (o), (2.2.55)

and moreover
[ i1 o (0" (0)) < Ty ,(u™(0)),

provided that u™ (o) is not yet a critical point of T g . In particular u*(c) € C(o)
has to be the only critical point of I, in B(Ry) with #suppu*(c) < Lo, actually it
is its unique global minimizer in B(Ry).

2.3 Preconditioning

The convergence analysis in Section 2.2 for the iteration (2.1.9) relies on the contrac-
tion property (2.2.32) of the operator T defined in (2.2.8). This property also ensures
that, despite the fact that I'y, is a nonconvex functional, it has nevertheless a unique
global minimizer in a prescribed ball centered at 0 and that the iteration (2.1.9) is
guaranteed to converge to it with linear rate. Unfortunately, we can not expect this
powerful property to hold in general, even in the case that the underlying operator
K is linear and compact. Therefore, in this section, we present how preconditioning
can be applied to promote property (2.2.32) in the case that K is a nonlinear pertur-
bation of a linear operator. We have to imagine the action of this preconditioning as
a sort of “stretching” of the functional I'y, so that no local minimizers or stationary
points remain around 0 other than a unique global minimizer. Preconditioning also
changes the topology of the minimization problem related to (2.1.1). Therefore, in
Section 2.3.1, we begin by discussing the related topological issues. In Section 2.3.2
we present a preconditioning strategy and state conditions under which the restricted
isometry property (2.2.51) will be satisfied. Finally in Section 2.3.3 we apply our
findings to an interesting class of operators.
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2.3.1 General setting

We shall consider the following modified functional
(TaoD ') (z) =|(KoD ") (z) —yl} + 2D "2, ., z€Ran(D), (2.3.1)

where

D : ly — Ran(D)

is a suitable preconditioning matrix with well defined formal inverse D! : Ran(D) —
{5. Moreover we assume that D maps finitely supported vectors on finitely supported
vectors and that

ID™"2le, o ~ || diag(D™")zl¢, ., (2.3.2)

which is the case, e.g., for block-diagonal matrices with invertible diagonal blocks.

Note, that preconditioning of the energy functional (2.1.1) changes the topology of
the associated minimization problem. Moreover, the preconditioning operator D may
be unbounded in the topology of /5. However, as we will see below, this is not an issue
here. Indeed, Theorem 2.4.3, which will be proved later in Section 2.4, enables us to
reduce the setting to a finite-dimensional one whenever needed, so that we can use
the equivalence of norms on finite-dimensional vector spaces.

To this end we begin with the observation that any stationary point u* of (2.1.1)
can be characterized by having vanishing directional derivatives,

0="T/,(u*,d):=1lim Fa(u’ +1d) — Ta(u’)

, d el
N0 t

An analogous characterization holds for the stationary points z* of (2.3.1). By the
chain rule for directional derivatives, see [113, Proposition 3.6], we have

0= (TaoD ™V (z",d) =TL(D"'2", D7'd), d €l

In other words, there is a one-to-one relationship of the stationary points of (2.1.1) and
(2.3.1). Moreover, by our assumptions on D, if u* is a finitely supported stationary
point of (2.1.1), the related stationary point z* = Du* of (2.3.1) is also finitely
supported.

We will use the assumption (2.3.2) to simplify the preconditioned energy func-
tional T'y o D', Indeed, motivated by the observation that || diag(D ")z, =
and with a slight abuse of notation we will consider the modified energy

HZ ||Zl,diag(D_1)a
functional

I'2(z) .= ||(K o D71)(z) — y||2 + 2|2, z € Ran(D), (2.3.3)

1,diag(D~ 1 )

and the resulting minimization problem.
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Remark 2.3.1. In the case of a nondiagonal weight matrix D, the modified energy
functional T'Z will typically not have the same minimizer(s) as the original functional
['n o D7 and we do not assume that this is the case. However, this is not so much
an issue in view of regularization problems. In the original topology of /5 the penalty
term of 'Y o D is the weighted ¢;-norm

[ Dull, = || diag(D~") Dul¢, .-

1,diag(D~ 1)

By using (2.3.2) one can show that such penalty terms are proper, weakly lower semi-
continuous and have bounded level sets. The regularization properties of such penalty
terms have been studied in even more general settings [76].

We avoid to deal with the topology of Ran(D) in the following way. Let z* be a
fixed stationary point of the preconditioned energy functional (2.3.3) of finite support
and Ay C J an arbitrary finite set such that suppz* C Aq. The restriction of (2.3.3)
onto Ag is then given by

Lo ay(2) = (K 0 D™)a,(2) — yll§ + 2]|zlle ze RV, (2.3.4)

1(diag(D=1)e) (Ao)>
The minimization problem can now be considered in R* endowed with the Euclidean
norm. We denote the restriction of z* onto Ag by zjy  and by Ea, : 2(Ag) — £, the
trivial extension by 0. Then it follows by the chain rule for directional derivatives
that

0= (T2)'(z", Ex,d)

o
= (Fg)/(EAOZTAoﬂ EAod)
= (I5,,) (Z), . d), deR™.
Consequently Zy, 1 also a stationary point of the finite-dimensional energy functional
(2.3.4). Unfortunately, the converse is not valid, because F,, does not have dense
range and a stationary point for Fg A, does not necessarily correspond a priori to the
restriction to a finite-dimensional set Aq of a stationary point of 'Y in Ran(D).

Nevertheless, if one could assume that Fg A, has actually only one critical point in
R4 for any choice of Ay C J finite, then we can argue the uniqueness of the critical
point of I'2 in Ran(D) as well. In fact, if there were two critical points z} and z} for
I'D in Ran(D), their support could be included in a finite set A} of indexes. Without
loss of generality this set could be assumed to be a subset of Ay for the latter large
enough. Hence, the assumed uniqueness of the critical point in R4 for Fg A, Would
immediately imply that (z})jx, = (23)ja, Or, equivalently, that z] = z3. In turn this
means that, in the situation of a unique critical point in finite dimensions, the mini-
mization of the finite-dimensional problem is actually equivalent to the minimization
of the infinite-dimensional one.

In Section 2.4 we will present an implementable numerical scheme, which solves the
finite-dimensional minimization problem related to (2.3.4). We shall also show that a
priori knowledge of the set Aj is not needed. In fact, it will be constructed on the fly
by the presented adaptive scheme.
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2 Multilevel preconditioning for sparse optimization of functionals

2.3.2 Multilevel preconditioning

In Section 2.2.3 we considered the case that K consists of a dominant linear part A and
a nonlinear perturbation. In this setting, we were able to show that the contraction
assumption (2.2.32) can be guaranteed if the linear part of the equation fulfills the
restricted isometry property (2.2.51). In general this condition will fail to hold, even
if A is a compact linear operator. Nevertheless, in this section, we show that this issue
can be solved by a preconditioning strategy. To this end, we partly follow the lines of
[36] and recall the corresponding results as far as they are needed for our purposes.

In the following we will assume that  C R? is a bounded Lipschitz domain and
¥ = {9, },ecs is a compactly supported wavelet basis or frame of wavelet type for
Ly(92), see e.g. [25, Section 2.12]. Every p € J is of the form u = (j,k,e), where
j € Z is the scale, often denoted as |u|, k € Z¢ is the spatial location and e is the type
of ¢,,. We refer to [25, 26] for further details concerning this notation. We do not go
into construction details concerning these bases or the alternative of wavelet frames.
In fact, we simply assume the following properties for all ¢ € J. Furthermore, for the
ease of presentation, we formulate them for the case of an orthogonal wavelet basis
on = (0,1)<:

W1) The support 2, := su fulfills |Q,| ~ 27IM4 Furthermore there exists a
pPp u PP Yy u
suitable cube @), centered at the origin, such that, €2, C 271l 4271, see [25,
Section 2.12].

(W3) The basis has the cancellation property fQ 5'6@%(5) dE =0 |8 =0... d €N
(W) Wullpioy < C29720.

Examples of wavelet bases satisfying these conditions can be found in [42]. In this
setting the synthesis map related to W reads as

Fily— Ly(Q), Fu):=Y wuty, uclb. (2.3.5)

neg

Its adjoint is given by

F*iLo(2) = by, Fr(u) == ({(t, V) £2(0) ) pes - (2.3.6)

Let A € L(Ly(92),Y) be a linear operator and consider its discretization A := AF.
In this section we aim at stating conditions under which (2.2.51) can be ensured
by means of a preconditioning strategy. We will make technical assumptions on the
matrix G = (G“7y)u,uej given by

G = A"A = ((A" Ay, ¥u) o)) (2.3.7)

wveJ "

To be specific, we will assume that there exist constants ¢y, ca,¢3,8, 17,7 € Ry r > d,
such that the following conditions hold for all p = (4, k,e),v = (j', k', ¢') € J:
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2.3 Preconditioning

e The entries of GG satisfy the decay estimate

9—slul—=v|[9—n min(|ul],|v])

G, <e . _ 2.3.8
| M, | = ¢1 (1 + 2m1n(|u|7|u|) diSt(QM, Qy)) ( )
e On the diagonal, i.e., 4 = v, it holds that
G| > 27 (2.3.9)
e For the same scale, i.e., |u| = |v|, the entries satisfy
o 9—2n|pl
L — 2.3.10
| “’|_C3(1+|k—k’/|)’" ( )

Under these conditions the following holds.

Theorem 2.3.2 ([36, Theorem 4.6.]). Suppose that G fulfills (2.3.8), (2.3.9), and
(2.3.10) with ¢y > c3/(r — d). Let D be the block-diagonal matriz consisting of the
square roots of the diagonal level blocks of G, 1i.e.,

G2 -
Dp,,z/ — My ‘/’L‘ ’V|7 (2311>
0 otherwise.

Then there exists a constant C = C(cy, cq, c3,1,d) such that for each finite set A C J
with |A] < 2°C~1 the sub-matriz (D™*GD™")|axa satisfies

[(Id =D 'GD ™Y axall < C 2767 D|A

and

14 C276=3)|A]
D'GD™! < .
R((DTGD ™ Nan) < 77 C2 (DA

2.3.3 Integral operators with Schwartz kernels on disjoint
domains

In this section we study a class of operators which fits into the setting of Section 2.2.3.
Let ,Q c R be two bounded Lipschitz domains with dist (2, Q) =6 > 0. For fixed
t € R, we consider

K=A+0N: Ly(Q) — H(Q),

A A

where 0 € Ry, A € L(Ly(2), H(2)) is linear, and N : Ly(2) — H'(Q)) is a nonlinear
operator. Furthermore, we assume that the linear part A is an integral operator with
a Schwartz kernel. To be specific, we assume that A is given by

v Av = /Q(I)(-,f)v(f) d¢, (2.3.12)
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2 Multilevel preconditioning for sparse optimization of functionals

where @ : Q) x Q — R is a kernel of Schwartz type, i.e.,
0200z, €)| < caglt — E[EHHHAHA o g e N (2.3.13)

holds. Concerning the nonlinear perturbation A, we assume that it is given by

vHNww:Aémmmm%a

where ® also fulfills (2.3.13). This condition implies that A and A are well defined as
operators mapping into H t(Q) Moreover, the nonlinear perturbation N is twice con-
tinuously differentiable and consequently indeed A/ and N are Lipschitz continuous
on bounded closed sets: To see this, we write N = N} o N3 with

NllL(Q)%Ht , Ul—>/ df,
Ny Ly(Q) — Li(Q), v vt

Here the operator N; as well as the derivative of N5, i.e.,
NZI L2(Q> _)E(LQ(Q)aLl(Q))a Ul—>2’U-,

are linear. Recall that the synthesis map F associated to W is given by (2.3.5). It is
linear and hence Lipschitz. Together with the Lipschitz properties of A, this implies
that the discretized version of the nonlinear part, i.e., N = N o F, fulfills (2.2.45).

Let us now assume that the linear term A = AF of K = A+ oN does not fulfill
already (2.2.51). We want to show that setting

KoD=AoD+oNoD,

for a suitable preconditioning matrix D, will allow us now to fulfill it for Ao D. More-
over the new nonlinear perturbation N o D will again satisfy the Lipschitz continuity
conditions (2.2.45) as soon as we will remember that, eventually, the problem will be
turned into a finite-dimensional one. We shall construct the preconditioning matrix
D by using the multilevel techniques presented in Section 2.3.2. To be specific, the
remainder of this section is dedicated to the proof of property (2.3.8) of the matrix

= (AF)"AF. (The other required properties (2.3.9) and (2.3.10) may be difficult
to be shown, but they are often verified in practice.) To this end we follow the lines
of [35]. To be explicit, with (2.3.7), the entries of G are given as

<A*A¢V7 ¢,¢L>L2(Q <-A1/)1/7-A77Z)y>Ht (2314)

We begin with the special case ¢ = 0. and apply Taylor’s formula to the kernel ®
around a point &, € §2,. For every £ € Q,, there exists some 6 € [0, 1] such that

PP (x, &) PD(x, & + 06 — &))
y Ens) >, =

P(z,§) = ] (£—&0)°+ 3 (£—&)P. (2.3.15)

IB|<d* |B|=d*+1
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2.3 Preconditioning

With (2.3.13) we can estimate
OED(x, & +0(¢ — &)
DD

(€ —&)°|
1Bl=d+1 A
gil(¢ ~ &)1 sup [0 2(a. ) (2.3.16)
|ﬁ|zd:+l p! ’ geQy ¢
< Z é(f £0)P|co g dist(, Q) (@H2+d" D),
|B|=d*+1

The cancellation property (W) of 1, € W, together with (2.3.15) and (2.3.16) yields

A, (2)] = | / Bz, €0 (€) de|

* (2.3.17)
<Y 5 Lo pist(a, )02+ / (€ = €)P 1) de.

IBI d* +1

By our assumptions (W) and (W3) on the wavelets, i.e., Q, C 27k + 27H@Q and
9l Loy < C2¢211 ] together with & € €, it holds that

/ (€ — &) 46,(6)] de < C28 / (€ — &)P) de
Q, Q

< 025K / (27 l(g + k) — &2~ d¢’

< C/Q—M(SQJrﬂ)_
The combination of (2.3.17) and the last estimate implies

At (2)] < Cye dist(, ) @20+ 0= lul(G+d"+1), (2.3.18)
Since we assumed that 2 and  are disjoint domains, it holds for &, &' € Q with € # ¢
and [|§ — x| > 4, [|§" — x[l2 > 0 that
1 1
E—alle —al = el

Furthermore C, 5 can be bounded by Cj, independently of . With (2.3.18) we prove
immediately, for p # v with dist(£2,, £2,) > 0 the estimate

|<-Awu> Awu>L2(Q)’
< (O )P2 Wt +a 1) / (dist(x, €,) dist(, 2,)) " da
Q

< (Cd*)205’§)’2*(|u|+\1/|)( D) it (€, Q) (@2 (2.3.19)

9=kl =[vl[(§+d*+1) 9 —min(|pl,|v|)(d* +1-2¢)

= (Cd*)205|9| —.
(2min(\u|7|u\) diSt(le Qy))d+2t+d +1
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2 Multilevel preconditioning for sparse optimization of functionals

For the case dist(€2,,(2,) = 0 we use again (2.3.18) and apply dist(z, §2,) > § directly
to derive the simpler estimate

A _ v d * _ *
(A, Ay o] < (Cae ) [ Q27 (HHIDGHER s2(d 2t ™), (2.3.20)

Together (2.3.19) and (2.3.20) imply that ((A¢y, Ay),, @)
tion (2.3.8).

For the general case t > 0, we consider ((9(At,.), 08 (Ay)) 1)
In this setting

e fulfills the assump-

d
e @€ ING.

0% (Ad,) = / O2B(-, €)1, (€) d

is again an integral with a Schwartz kernel. Indeed, an analogous argumentation as
in the case t = 0 yields condition (2.3.8) for the case t € N, and consequently for
teRy.

2.4 Equivalence to an inexact finite-dimensional
scheme

In practice, whenever we deal with infinite-dimensional problems, the two operators
K and K’ can not be evaluated exactly, and one has to replace their output by suitable
numerical approximations. In this section we study the convergence behavior of the
resulting inexact algorithm to solve the preconditioned minimization problem (2.3.3).
Although the original problem is posed in general in infinite dimensions, adaptive
approximations will allow us to show the confinement of the iteration within a well-
determined finite-dimensional space. In particular, in Theorem 2.4.3 below, we show
that the global support of all iterates is contained in a finite set Ag. From a practical
point of view, there would be no difference between the iterates produced by the
adaptive scheme over the whole index set 7 or if we would restrict the set of possible
indices to the (a priori unknown) set Ag. Therefore, by arguing as in Section 2.3.1,
the combination of preconditioning and adaptive solvers yields an iterative scheme
for the minimization of the unpreconditioned functional I',.

We focus on the error introduced by the inexact evaluation of the nonlinear func-
tional K and the linear operator (K’())*. To this end let us assume that for given
tolerances 0,6 > 0, there exist approximation schemes which for every v € ¢, and
pairs (v, w) € {3 xY, respectively, compute finite-dimensional approximations [K (v)],
and [(K'(v))"(w)]s such that

1K) = [KW)]lly < o.
(K (v) " (w) = [(K'(v)" (w)]s]le, < 6.

This assumption is realistic, e.g., if the exact application of K and (K'(-))* involves
the solution of partial differential or integral equations and the numerical approxima-
tions can be computed by means of adaptive discretization schemes. Let us mention

(2.4.1)
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2.4 Equivalence to an inexact finite-dimensional scheme

two prominent examples from the context of adaptive wavelet schemes of linear and
nonlinear operator equations.

Example 2.4.1. Let ¥x = {¢x , } e and Wy = {¢y, }eq, be wavelet Riesz bases
for X and Y, respectively, such that the assumptions of Section 2.3.2 are satisfied.
We denote the associated synthesis operators by Fx and Fy. Furthermore let K =
Ko Fx : ly — Y for some nonlinear operator K : X — Y.

1. For the efficient approximate application of the linear operator (K’'(v))* to a
given point w € Y, it is advantageous if the coefficient array w € (5(Jy) of
w = Fy(w), or at least good approximations of it, has a fast decay [26]. In that
case, one may exploit the representation

(K'(v))"(w) = (Fx o (K'(Fx(v))" o Fy)(w) = Ayw

and the compressibility of the stiffness matrix A, € L({o(Jy), l2(Tx)). In fact,
if Ay € LY (Ty), 0¥ (Tx)) for all 0 < 79 < 7 < 2, then the second inequality
in (2.4.1) can be ensured by suitable matrix compression techniques. In the
special case of wavelet Riesz bases Wy, Wy and K'(Fx(v)) being a differential
operator or an integral operator with Schwartz kernel, e.g., we can expect that
the stiffness matrix A, is s*-compressible, i.e., there exist biinfinite matrices
A, ; with at most a constant multiple of 2/ nontrivial entries per row and
column, such that |[Ay—Ay ;||2 < Cs277¢,0 < s < s*. This property implies that
A, boundedly maps ¢¥(Jy ) into £¥(Jx ). We refer to [26, 119] and related works
on the compressibility of operators in wavelet coordinates and the concrete
realization of associated adaptive matrix-vector multiplications.

2. The approximate evaluation of the nonlinearity K itself at a given input v € /5
is enabled under additional assumptions on the type of the nonlinearity. In the
context of nonlinear operators, tree approximation techniques play an important
role. Here a tree structure is imposed on the coefficient array of the output
argument. For example, in the special case that X is a closed subspace of H*({2),
s >0, Q C R? a bounded domain, Y = X’ and K decomposes into K = A+ N
with a linear, boundedly invertible operator A : X — X’ and a Nemytskii-type
nonlinearity

N:X =X, (Nw)(z)=f(0"v(z),...,0%v(z)), B; €N,

adaptive wavelet tree approximation techniques have been developed and im-
plemented in [9, 28, 45, 79].

For simplicity, we will assume in the sequel that y is given exactly. For convenience,
we define the analogue of (2.2.8) by

1

Tps(v) = v — X[(K'(V))*([K(V)]g —y)ls- (2.4.2)
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2 Multilevel preconditioning for sparse optimization of functionals

An implementable version of ISTA with decreasing threshold parameters a™, i.e.,
(2.1.9), is then given by

e

arth) = S%a(n) (T (n) §(n) (ﬁ(n))). (2.4.3)

The following theorem shows that if the parameters o™, §(™ are suitably chosen, the
overall algorithm is still linearly convergent.

Theorem 2.4.2. Let u* be a stationary point of (2.1.1) that satisfies T'(u*) € £*(J)
for some 0 < 7 < 2. Furthermore let o™, o € RY with afbn) >a,>2a€R,peJ.
We set 1®) = 0 and assume that T' fulfills condition (2.2.27). With C’%ip be as therein
and C' is as in Lemma 2.2.2 we set

| ~ el N\ 2
P A((CFP7 + 7 = ) [utley) N
— I

HACIT() 5 ()

and define B; analogously to (2.2.31). Let us assume that there exists some 0 < yp <
1, such that for all v € B; and supp(v) C A C J with #A < 2L

| (T(U*> - T(V))|S*UAHZ2(S*UA) < Yollu* = v, (2.4.4)
For the operator K' we assume

CPAB;) == sup ||[K' (V)| 2y < 00 (2.4.5)

veB;
Then, for any vo < v <7 < 1 the inexact thresholded iteration (2.4.3) fulfills
(™), € Bz
and converges to u* at a linear rate
[ —atl,, <™= 5" [u"|s,, (2.4.6)

whenever the parameters and tolerances are chosen according to

- (C‘md(B o +60) < (5 —7)e®, (2.4.7)
max|oz — | <AL (7 Yo)E™. (2.4.8)
pneJ

Proof. The proof is an induction over n. The case n = 0 is covered by the assumptions.
Now let ™ € B; and (2.4.6) hold for n € N. We begin by proving # supp a"*? < L.
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2.4 Equivalence to an inexact finite-dimensional scheme

To this end we use the standing assumption (2.4.1) on the inexact operator evalua-
tions, together with the assumption (2.4.7) to estimate for v € Bj

IT(v) = Ty 500 (V)|
= 1|| (K'(v)) (K(v) =) = [(K'(v)) ([K(V)] g0 = )]s lle,

< A(H(K'(v))( (v) =) = (K'0) (K)o = 9) e o10)
+ (K ) (KW)gor = 9) = (K@) (KW g0 = 9o e

< §(|| <K'<v>)*||ay,b>g<”> +60)

< (F - 7)™,

This inequality, applied for v = 4™ € B;, implies together with the Lipschitz conti-
nuity assumption (2.2.27) that

1T (0") = Ty 5m (T |l

= ||T(u*) = T(@"™) + T(@") — Ty 500 (@™,
< (CFP +7 = 7)™,

By invoking Lemma 2.2.2 we can conclude

#supp(a™*) = # supp S1 g (Tyom 500 (™)) < L. (2.4.10)

For the second part of the proof we set

A™ = §* U supp a™ U supp u™+Y.

Notice that # supp a™ U supp a(™*?) < 2L. Because shrinkage is nonexpansive and
by the assumption (2.4.4) we may estimate

||u‘A(n) S%a (T(u( ))If\(”)) ||42(]x<n>)

Siq ( A<n)>_Sla(T( ())Am)Hzg (n) <’YO€()
| )\ |A( )

P

(2.4.11)

Moreover, we may use the Lipschitz assumption (2.2.27) and invoke Lemma 2.2.2
directly to conclude

oy = AT = T@™) |20
#suppS1 o (T(@™)) < PR

_ 4(CEPetm)2 )2
<L

+aci) (5)

+4C|T(u") [}, (%)_ (2.4.12)
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2 Multilevel preconditioning for sparse optimization of functionals

Since a™ is decreasing to a it holds that
supp S%a(n) (T(ﬁ("))) C supp S%a (T(ﬁ(”))).
This, together with (2.4.8) gives

1516 (T(@"™) 5m) = St (T@™) 50 ey
#supp S1,(T'(a™)))2
| ta(T(™))) maxaf®) — | (2.4.13)
A neJ

< (v = 70)e™.

-

Finally, we use that shrinkage in nonexpansive, together with (2.4.9) for G a™ for the
estimate

Hgia“ﬂ (T<ﬁ(n))A(”)) 81 (n)( o s0m (0 " ))\mn))HzQ(A(n)) < (F—m)EM. (2.4.14)
The combination of (2.4.11), (2.4.13), and (2.4.14) finalizes the proof
Ju* — a+ Héz < HuA(n) S§a (T(ﬁ("))wn))|\€2(;\(n))
+[S1a(T (@) ze) — S1am (T@™) 300 o iy

~(n ~ (n+1)
+ HS§a<”) (T(u( )>|/~\(”)) |AJ”;L> “EQ A(”))

< 708" + (7 = 70)e™ + (5 — 7)™ = gD, O

We have shown that the support size of each iterate 1™ can be bounded by a
uniform constant. As it turns out there also exists a bounded set Ag C J that
contains all those supports.

Theorem 2.4.3. Let the assumptions of Theorem 2.4.2 hold. Let N € N be large
enough such that there exists some § > 0 with

1
N 1§ < - \ ik . (2.4.15)

Then it holds that
supp(™) C As(T'(u*)), n=>N,

and consequently

supp(a (U supp(a > UAs;(T(u*)) =1 Ay, neN.
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2.4 Equivalence to an inexact finite-dimensional scheme

Proof. We prove that for any fixed n > N and for all u € J\ As(T(u*)) it holds that
(@™*+D), = 0. To this end let 0 < 79 <y <7 < 1 be as in Theorem 2.4.2 and denote

A™ = §* Usuppu™ U a1, Recall that by estimating as in equation (2.4.9) it
holds that )
(T @™) = Ty 50 (8™)) 3w iy < (7 = 7)E™, (2.4.16)

and further that, since # supp a™ < L, we can use (2.4.4) to estimate
| (T(U-*) - T(ﬁ(n)))‘]\(n) HgQ(]\(n)) < 705(”)_ (2.4.17)

By definition p € A\ As(T(u*)) implies that |(T(u*))u| < §. Therefore, for such p
we may use (2.4.16), (2.4.17), (2.4.15), and the fact that o™ is decreasing to a to
estimate

[Ty g0 (@) | < (T () = Ty 500 (@) i lea oy + 1(T(w) |

1 1
< &N+ L5 < Zinf a, < = inf oz,(j").
A ved Aved

Finally, by the definition of 81, it follows that (a+Y), = 0. O
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nonlinear parameter identification
problem for a parabolic differential
equation with sparsity constraints
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Abstract: In this paper, we combine concepts from two different mathematical
research topics: Adaptive wavelet techniques for well-posed problems and regular-
ization theory for nonlinear inverse problems with sparsity constraints. We are con-
cerned with identifying certain parameters in a parabolic reaction-diffusion equa-
tion from measured data. Analytical properties of the related parameter-to-state
operator are summarized, which justify the application of an iterated soft shrink-
age algorithm for minimizing a Tikhonov functional with sparsity constraints. The
forward problem is treated by means of a new adaptive wavelet algorithm which
is based on tensor wavelets.

In its general form, the underlying PDE describes gene concentrations in embryos
at an early state of development. We implemented an algorithm for the related
nonlinear parameter identification problem and numerical results are presented
for a simplified test equation.

MSC 2010: 46N10, 47A52, 49M99, 65F20, 65F50, 656M32, 656M60, 65N12, 65T60.
Key Words: Regularization of ill-posed problems, sparsity, adaptive numerical
schemes, tensor wavelets, parabolic partial differential equations, iterated soft
shrinkage, embryogenesis.

3.1 Introduction

For about 30 years the advances of experimental techniques in genetic research have
produced an abundance of data on gene expression. With full justification one may
say that genetic research has matured enough for the application of mathematical
methods permitting the extraction of structural information from this compiled data.
A particularly popular object of genetic research is the Drosophila fly in which by
genetic manipulation one may investigate the effect and the mutual interaction of
certain genes on the development of the animal. However, conducting these experi-
ments in-vitro is a challenging process. Therefore it is desirable to determine certain
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3 An adaptive solver for a parameter identification problem

critical parameters 7 in the animal’s evolution from the measured expression of genes
at certain times of its life cycle. One approach in studying gene regulation is to con-
sider gene product concentrations as the state variables of a model and to assume
that mutual gene interactions correspond to the synthesis rate of mentioned gene
products [104].

Mathematically this amounts to solving an operator equation of the kind

9(m) =y,

where Z is the so-called control-to-state operator mapping the model parameters 7
to the solution of a system of parabolic partial differential equations, i.e., the data
y. In the case of embryogenesis models, the set of parameters 7 includes reaction
and diffusion coefficients, and the corresponding data y denotes the concentrations of
different genes as a function in time and space. In practice the data ygat. is usually
only available at certain time instances, i.e., we have to deal with yga..a = My, where
M is a restriction operator to a finite set of time samples. Further the data is assumed
to be contaminated with noise, i.e., it is given as ¥°, ||Yaara — ¥°|| < . The operator
2 is nonlinear and ill-posed, so regularization techniques have to be employed. The
reader unfamiliar with regularization may consult standard references such as the
monographs [54, 90].

We use Tikhonov regularization to reformulate the inverse problem as finding the
minimizer of the functional

IM2(7) — y°||* + o (7). (3.1.1)

The choice of the penalty term J gives some leeway to enforce certain characteristics
of the minimizer, such as sparsity with respect to a chosen discretization. A typical
choice that promotes sparsity are weighted sequence norms J(-) = || * [lwg, 1 < ¢ < 2,
of the solution coefficients with respect to a Riesz basis or a frame. The biology of the
underlying problem justifies this approach: the gene interactions are localized at very
specific parts of the embryo and the mutual influence of all genes on the synthesis of
one particular gene is limited, i.e., only few genes interfere with one particular gene.

This type of Tikhonov functionals has been investigated in the pioneering paper
[46] for linear operators Z in a Hilbert space setting and a penalty term with respect
to an orthonormal basis. Subsequently, several approaches for generalizations to non-
linear operator equations have been proposed, see e.g. [15, 13, 102]. We will follow
the approach of [15, 13] and use an iterated soft shrinkage method to compute the
minimizer of (3.1.1). This method requires the solution of a forward problem and of
some adjoint equation as well as a thresholding procedure in each iteration step.

Adaptive wavelet methods are ideally suited for solving the forward problem: the
structure of the wavelet expansions matches well the biological qualities of the data,
e.g., spatial localization of features. Further, the expansion coefficients provided by the
wavelet solver almost immediately provide the needed coefficients for the thresholding
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3.1 Introduction

procedure. Furthermore, adaptive wavelet methods converge with the same order as
the best N-term approximation which is particularly fast for sparse signals.

In the context of finite element schemes, adaptive algorithms for well-posed operator
equations have a long, successful history, see [26] for an overview. Moreover, quite
recently the design of adaptive algorithms based on wavelets has lead to a fundamental
breakthrough. Indeed, in [26, 27] optimal adaptive algorithms in the above sense
that are guaranteed to converge for a large class of problems, including operators of
negative order, have been designed.

So far, the whole theory of adaptive wavelet solvers is well-developed for bound-
edly invertible operators. Some effort has been spent to generalize these ideas also
to inverse problems, we refer for example to [36, 103], but this field is still in its
infancy. However, since we utilize an iterative approach, we can take advantage of
the mentioned adaptive algorithms at least for the forward problem, and embed this
into a regularized iteration procedure for solving the inverse problem. The classical
approach would be to use isotropic wavelets that span a complement space between
consecutive spaces of a multi-resolution analysis. However, in this case the order of
convergence of the wavelet algorithm deteriorates dramatically with the space di-
mension. Therefore in this paper, we use an algorithm based on recently developed
anisotropic wavelets. Such a tensor basis contains the so-called sparse grid or hy-
perbolic cross spaces [16, 131]. It is known that a function with Ly bounded mixed
derivatives of a sufficiently large order can be approximated from sparse grid spaces
at a rate that does not deteriorate as a function of the space dimension. In this sense
the so-called curse of dimensionality is avoided. As demonstrated in [51, 110] also in
the tensor product setting, adaptive wavelet methods realize the rate of best N-term
approximation in linear complexity. Let us briefly mention that quite recently the
construction of anisotropic tensor wavelets has been generalized to quadrangulable
domains [20].

In summary, we are faced with the following tasks: First of all one needs to ana-
lyze the analytical properties of &, in order to verify the assumptions of Tikhonov
regularization with sparsity constraints. We do so in a fairly general setting and incor-
porate quite recently established results on maximal L,-regularity of the solution of
parabolic equations [67, 4]. Secondly, we need to compute the minimizer of (3.1.1). To
this end we apply a generalized conditional gradient method, which is reformulated as
an iterated soft shrinkage method. We give explicit formulas for the solutions to the
forward problem and the adjoint problem. Moreover, as an important building block,
an optimal solver for these problems utilizing tensor wavelets has to be designed.

Therefore the outline of the paper is as follows. As already mentioned, this paper
aims at combining recent results on the analytic properties of nonlinear parameter
identification problems for parabolic problems [105] with adaptive wavelet solvers for
the underlying PDEs, see [101]. In order to make this paper self-contained, we review
the major building blocks in the first sections. Nevertheless, these survey sections
contain some new results, e.g., the specification of the iterated soft shrinkage method
for the embryogenesis problem, the results in the Theorem 3.3.6 about local Lip-
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3 An adaptive solver for a parameter identification problem

schitz continuity of the derivative of the control-to-state operator and Theorem 3.5.8
regarding the fast decay of entries of stiffness matrices arising from tensor wavelet
discretization of elliptic PDEs. We start in Section 3.2 with a formulation of the bio-
logical model problem as a nonlinear parabolic equation (3.2.1). Then the functional
analytic setting is given. Properties of the underlying operators, such as Lipschitz
continuity and Fréchet differentiability are derived and the existence and uniqueness
result related to (3.2.1) is summarized. In Section 3.3 we analyze the mapping prop-
erties of the control-to-state map 2. We prove differentiability and local Lipschitz
continuity and give an explicit formula for the adjoint of &’. In Section 3.4 a regular-
ization procedure is derived. We state a generalized conditional gradient method and
its numerical implementation as a soft shrinkage procedure. Section 3.5 is dedicated
to basic ideas of adaptive wavelet algorithms for elliptic equations with a special em-
phasis on the tensor wavelet setting. We describe how adaptive strategies can be used
to treat parabolic equations by means of Rothe’s method, i.e., the parabolic equation
is first discretized in time and then in space. For stability reasons, one has to use an
implicit scheme, so that an elliptic subproblem has to be solved in each time step.
This is achieved by means of the proposed adaptive tensor wavelet solver. Finally in
Section 3.6 the adaptive wavelet methods from Section 3.5 are combined with the al-
gorithm for the inverse problem developed in Section 3.4. Numerical experiments for
a simplified parabolic model problem in one and two space dimensions are presented.

3.2 Analysis of the forward problem

In this section we present and analyze the forward problem (3.2.1). We begin by
presenting the biological model and the admissible set of parameters. Then the as-
sociated function spaces and operators are introduced. Finally, the solution theory
is presented as far as it is needed and the existence and uniqueness of a solution of
(3.2.1) is proved.

3.2.1 The biological model

The state variables, i.e., the concentrations of gene products, undergo permanent
change over time. One of the assumed reasons for this change is direct regulation
of the synthesis of one gene by the concentrations of other genes; further causes are
diffusive processes of gene products through the admissible domain and decay, i.e.,
consumption, of the respective gene products. The synthesis requires some regulating
function in a manner that reflects saturation in the signal response.

A mathematical formulation is given as follows. Let U C R", n = 2,3 denote some
bounded Lipschitz domain and Ur := (0,7 x U. The following model describes the
interaction of N genes, the concentration of the i-th gene on Ur is denoted by g;.
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3.2 Analysis of the forward problem

Then the gene expression evolution is modeled by the reaction-diffusion equation

9gi . .
agt — div(D;Vg;) + Ai - g = Ri®;(Wg);) in Ur
dg: (3.2.1)
5 =0 on [0, 7] x0U, ¢(0)=goon {0} xU
v
wherei=1,..., N, a% denotes the normal derivative. In the following we use a vector
notation, e.g., R:= (Ry,...,Ry), ® := (Pq,...,Py). For the initial value we assume

go € W (U,RY). In our setting, a natural choice of the solution spaces to (3.2.1)
are subspaces of Bochner integrable functions, i.e., generalized Sobolev spaces, see
Section 3.2.2.

The model includes diffusion and decay of gene products via the parameters D and
A, both varying in time and space. The synthesis term R® (W) consists of a maximal
synthesis rate R and the sigmoidal signal response function

1 Y
D :R—-R; O(y) == (— + 1) : (3.2.2)
2\Vyr+1

Our particular choice of a sigmoidal signal response function is motivated by the
investigations of [93]. However, other response functions are possible, see Section 3.2.2.
The parameter that is most relevant from a biological point of view is the coupling
matrix W. Here positive entries correspond to amplifying effects of gene products on
others and negative ones describe an inhibiting influence.

The biological background of the model justifies certain assumptions on the pa-
rameters. First of all, all parameters are bounded, i.e., the admissible sets are subsets
of L., spaces. Further D and A may only assume positive values. However, we want
to apply generalized gradient methods which involve the dual space of the parameter
space. The L, topology would then require dealing with the very inconvenient dual
of some L., product space. Whenever theory permits, we will try to avoid this.

We therefor consider all parameters

D € Loo([0,T] x URY), Xe L, ([0,T] x URY),
R€ L,,([0,T] x URY), W e L,,([0,T] x URYN)

that are additionally elements of the respective L., spaces fulfilling the bounds
0<Cp1 <D AX<Cpy, 0<SR<ZCpo, Wi, <Cpo.

The particular choice of 2 < py, pr, pw < oo will be specified later on. It will guarantee
the existence and uniqueness of solutions for our PDE in some appropriate solution
space. Moreover, our choice will ensure that the PDE solutions depend differentiable
on the parameters. We denote the parameter space for D with Pp = {D € L, : 0 <
Cp1 < D < Cps} and Py, Pg, and Py analogously. The global parameter space is
defined as

P = PD X ’P)\ X PR X PW (323)
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3 An adaptive solver for a parameter identification problem

equipped with the product norm of the individual L, spaces. Observe that by the
finiteness of U, the boundedness conditions of the individual parameters imply the
boundedness of P.

The analytic results presented in the following section are dealing with the full
(n + 1)—dimensional problem for N genes. However, the numerical results presented
in Section 3.6 will deal with simplified models in 1 and 2 space dimensions. The
simplified model aims at determining the biologically most relevant parameter W,
which describes gene interaction as well as creation and absorption. Hence, for N = 1
and A\=0,D =1,¢(x) =2+ % we obtain the test equation

1
u/—Au—Wu:é.

This still poses a nonlinear inverse problem, which we will treat by Tikhonov regu-
larization with sparsity constraints.

3.2.2 Function spaces and operators
Solution space and time derivatives

We will develop the solution theory for the well-known spaces of Bochner integrable
functions. The general definitions and basic theory about these spaces can be found
in [114, Ch. II1.1-2].
Let us now fix the notation for our setting. We introduce the spaces
VZI = qu(U7 RN)?
Vsq = Ls(0,T:V,)
with ¢ > n and s € (1,00). The conjugate exponent ¢ is given by 1/¢+1/¢ = 1.
We call u € Vs, differentiable in time, if there exists v’ € L4(0,T’; (V,)'), such that

T
(', v) = —/ /uv'dxdt,
o Ju

for all v € C5°([0, 7], C*(U,RY)). «' is then the (temporal) derivative of w.
With these conventions we define the generalized Sobolev space

W, = {u €V, ' € L0,T; (Vy))},

[ellw, = ul

o1 1| oo, riv,0)-

The solution theory of (3.2.1) follows [67]. We fix q € (n,n + ¢), with ¢ =
e(U,Cp1,Cpo) as in [67, Thm. 5.14] to ensure solvability of (3.2.1), see Section 3.2.3
for details. We set s = q and use the simplified notation V, := V,, . However, all
results of this paper can be generalized to arbitrary s € (1, 00).

The solution space we will use for (3.2.1) is then given by

Wo={ueVy:u' € (Vy)} where [lullw, = ullv, + [vllv, -
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3.2 Analysis of the forward problem

Bilinearform

Recall that the space of admissible parameters P, defined in (3.2.3), is a non-open
subset of a Cartesian product of L, spaces that is bounded in L. For any 7 € P
no L, neighborhoods are contained in P. Therefore, we need to clarify the meaning
of differentiation with respect to m. We define the differentiation on non-open sets of
vector spaces, following [75].

Definition 3.2.1. Let Z be a Banach space and Y a subset of a normed vector space
X. A function f : Y — Z is called strongly differentiable at some x € Y, if there is
some A(z) € L(X, Z), such that we have

flx+e)— flz) — A(x)e

le]

lim  sup =0,

=20 le||=t, ec€(x)

where the set of admissible displacement vectors at x € Y is
E(z)={e:x+ecY} CX.
In case the limit exists, A(z) is called the derivative of f at .

Note that this definition coincides with the usual Fréchet derivative if Y is an open
subset of a normed vector space. We refer to [105] for a more detailed discussion of
this setting.

We fix an arbitrary v > ¢ and consider p) according to

1 1

+

- <
Px r

= | =

[oB

Then the elliptic part of our model in (3.2.1) defines the bilinear operator

P x Wy — (Vy),

o (m,u)(v) = /OT/U(D Vu, Vv) + Auvdzdt. (3.24)

We introduce the notation 7. (-)(-) := &/(m,-)(-) and omit the dependency on
whenever it is clear from the context.

Since as usual a bounded linear operator coincides with its derivative, we obtain
continuity and therefore continuous differentiability with respect to both input argu-
ments u and 7. Note, that by definition the differential operator % Wy = (Vy),
u — u' is well-defined and bounded. Furthermore, these properties also hold if it is

trivially extended to P x W,. Together this gives the following theorem.

Theorem 3.2.2. The differential operator & + o/ : P x Wy — (Vy)' is well-defined
and continuous.
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3 An adaptive solver for a parameter identification problem

Nonlinear right-hand side

We want to prove the differentiability of the nonlinear right-hand side of (3.2.1). To
do so we need to be able to embed W, into spaces with higher integrability.

Theorem 3.2.3 ([1, Thm. [11.4.10.2]). Forr > q there exists a continuous embedding
W, — C([0,T], L,.(U,RY)).

Our analysis of the nonlinear right-hand side follows [3] and utilizes so-called su-
perposition operators. With v > q as before, our proofs rely on the specific choice

Further the signal response functions ®; in (3.2.2) need to be smooth, globally Lip-
schitz continuous and globally bounded. In this sense the particular choice of ®; in
(3.2.2) can be generalized to a larger class of right-hand sides.

Lemma 3.2.4 ([3, Thm. 3.8]). Let the response functions ®; given by (3.2.2). Then
the map

F:P x L(0,T; L(U,RY)) — Ly(0, T; Ly(U,RY)) — (Vy),

N . (3.2.5)
(m,u) = (Fi(m,u)ily = (R (Wu)i))ily

18 continuous.

If it is clear from the context, we will omit the dependency of F' in (3.2.5) on one
parameter, denoting F'(m) or F'(u), respectively.

Theorem 3.2.5 ([3, Thm. 3.13, Rem. p. 105]). The partial derivatives of I defined
in (3.2.5) are Lipschitz continuous. Denoting mo = (Do, Ao, Ro, Wy) they are given by

F
a—(ﬂo,uo) 1P — Lg(0,T; Ly(U,RY)),

or
™= (Ri®i(Wouo)i) + (Ro)i@5(Wouo):) (Wuo)i) X,

and
OF
—— (70, u0) : Le(0, T; L(U,RY)) = Ly(0,T; Ly(U,RY)),

ou
w i ((Ro)i®i((Wog):) (Wo)ij)i—ytt -

3.2.3 Solvability

In order to define a suitable function space for the initial value of the PDE, we need
the following embedding.
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3.3 The control-to-state map

Theorem 3.2.6 ([4]). Let 0 =1 —2/q. Then there exists a continuous embedding
W, = C([0,T],G),
with G denoting the Besov space BY (U, R").
With this, the weak formulation of our model PDE can be stated as follows.
Definition 3.2.7. A function u € V, is a weak solution of the PDE (3.2.1), iff
weW,: v+du=Fu) in V), u0,)=u <G, (3.2.6)
where o7 and F' are defined in (3.2.4) and (3.2.5), respectively.
The main result of this section then reads as follows.
Theorem 3.2.8. The Cauchy problem as stated in (3.2.6) has a unique weak solution.
Proof. Consider the linearized problem
weW,: u+du=f inVy), u0,)=u <G (3.2.7)

Then the results of [105] building on the main statements in [67, 4] imply that (3.2.7)
has a unique solution that depends continuously on f € (V).

Next, we use the embedding from Theorem 3.2.6 and consider the map
B:C(0,7],G) — C(0,T],G)

which assigns to w the unique solution of (3.2.7) with right-hand side f = F(w). By
splitting [0, 7] into to sufficiently small subintervals we can obtain a contraction and
apply Banach’s fixed point theorem, see [59, pp. 500] for this classical technique. O

3.3 The control-to-state map

Knowledge of the properties of the control-to-state map 2 : P — W,, 7™ — u,
assigning to each tuple of parameters 7 the unique solution of (3.2.6) is the key for
our analysis. In this section we summarize the needed results for the regularization
scheme and steepest descent method we will employ later to solve the inverse problem.
For detailed proofs we refer to the Ph.D. thesis [105].

3.3.1 Continuity and differentiability

In this section we present continuity and differentiability results and give an explicit
formula for the derivative of the control-to-state map.
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3 An adaptive solver for a parameter identification problem

Our analysis relies on the auxiliary operator

C: PxW,—GxVy),
(7, u) = (u(0) — ug, v’ + pu — F(m,u)).

We equip the product spaces with the usual product norm. Then, by Theorem 3.2.6
and the assumptions on 7 and F, it follows that % is well defined.

For the next lemma we fix the first argument and show continuous differentiability
with respect to the second argument.

Lemma 3.3.1. Let my € P be fized. The map € (mo,-) : Wy — G x Vy)' is con-
tinuously differentiable and the derivative at any w is an isomorphism from Wy onto

G x (Vq/)/.

Proof. Differentiability of the nonlinear part F' was proved in Theorem 3.2.5. For
the linear part it is a consequence of Theorem 3.2.2, as continuous linearity implies
continuous differentiability. The continuous invertibility of the derivative is equivalent
to the uniqueness, existence and stability that is guaranteed by solvability theory. [J

By using similar arguments, one can also establish differentiability with respect to
the first argument.

Lemma 3.3.2. Let ug € W, be fized. The map € (-, up) : P — G x (Vy) is continu-
ously differentiable.

In our setting, i.e., for subsets of non-complete normed vector spaces, a version
of the implicit function theorem exists, we refer to [85]. Together with the last two
lemmata this leads to the following statement.

Theorem 3.3.3. The control-to-state map & is continuously differentiable. With a
slight abuse of notation let m, = (Dg, \x, Re, W), k = 1,2 and ug := Z(my). Then
the derivative

g_f(m)(m) - (aa_cf(ﬂoauoo ° Z_Cf(ﬁo’%)(”l) -V (3.3.1)

of the control-to-state map & coincides with the solution v to the Cauchy problem

Ul + %ﬂov — R0®/<W0U0)Wov = —%11/4] + qu)(W()Uo) + ROCI)/(WQUO)WluO,
v(0) = 0.

3.3.2 Adjoint of the derivative

The explicit formula for the derivative of the control-to-state map at some 7 stated
in Theorem 3.3.3, enables us to investigate further useful properties of 2’. We show
local Lipschitz continuity of 2’ and give an explicit formula for its adjoint.
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3.3 The control-to-state map

Lemma 3.3.4. The map
o€ -
(%(a )) PP X Wy = LG x (V) . W)
(70, ug) +> ((vg,f) — solution of v' + v — Ry®' (Wouo)Wov = f,
v(0) = vo)
is uniformly continuous and locally Lipschitz continuous with uniform Lipschitz con-

stant, i.e., each argument (m,u) is contained in a ball of uniform radius, such that the
map is Lipschitz continuous with (globally) uniform Lipschitz constant on this ball.

Proof. The proof rests essentially on the Lipschitz continuity that was proved for
the nonlinear right-hand side F' in Theorem 3.2.5 and a theorem concerning the
differentiability of operator inversion [10, Cor. 50.3]. For details we refer to [105]. [

Lemma 3.3.5. The operator

0%
% P x Wq — E(P,G X (Vq/)/)

(0, u) > (1 = (0, \yu — div (D Vu) — Ri®(Wou) — Re®' (Wou)Wiu))
18 Lipschitz continuous.

Proof. Similar to the proof the preceding lemma concerning concerning %, the proof
can be played back to the Lipschitz continuity of the nonlinearity F'. For details we
refer to [105]. O

The following theorem is an application of Lemmata 3.3.4 and 3.3.5.

Theorem 3.3.6. The map &' is locally Lipschitz continuous in the sense of Lemma 3.3./
and in particular uniformly continuous.

Below, we will use the operator (2'(m))”" as part of an iterative method to compute
the minimizer of the Tikhonov functional (3.1.1). To this end we need to derive an
explicit expression for

(2 (1)) = — (%(WO,UO* o (<%(ﬂo,u))l)*. (3.3.2)

Remark 3.3.7. Concerning the inner part ((2%(mg,u))™")* let # be defined by

H P x Wy — (V)
(m,u) = (v rv — R (Wu)Wo).

Then a straightforward computation shows that ((%Z (7, u))™")* maps w € (Vy)' to
the solution of the PDE problem

—v' + A (mo,u)v =w in (Vy)', o(T) =0.
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3 An adaptive solver for a parameter identification problem

Similarly, the adjoint of the operator

0% ,
a—ﬂ_(ﬂ'o,U) P — G X (Vq/)

is given by
(ho, h) = ((Vhi, V), hiug, —h; - @(Wou)s), —hi - (Ro):® (Wou))ul )X,

3.4 Regularization

3.4.1 Tikhonov regularization

In the applications we have in mind, we are given observed data y in some observation
space O. It is related to Z(m) via a measurement operator M : W, — O. A typical
function space for data given by finitely many measurements at discrete times 0 =
to < ...<tg =1, is given by

O = Ly({t:}io, Lo(U,RY)).

This model also allows to include deterministic noise in the data, i.e., if only noisy
data y° with ||y — ¢°|| < 4 is available.

The existence of minimizers of Tikhonov functionals (3.1.1) as well as the related
stability analysis have been studied in fairly general settings, cf. [76]. In our setting
they are given in the following theorem. Its proof is a direct consequence of the
analytic properties of & that we derived in the previous section. We refer to [105] for
more details.

Theorem 3.4.1. Let the Tikhonov functional be defined as
IM2(7) = |5 + o (m).
Assume there exists at least one exact solution to the noise-free equation
M (m) =y

and that the penalty term J : P — R, is lower semicontinuous with respect to an
auxiliary Loo-weak® topology and has L..-weak precompact level sets.

Then for any such y° some minimizer of the Tikhonov functional can be found.
Furthermore, for decreasing noise levels, i.e., 6, — 0 and the parameter choice rule
a = afd,y°), such that

2
n

a, >0, — =0, for n— oo,

n

the corresponding sequence of minimizers (T, Jnen has a subsequence that converges
P-weakly to an exact solution of the noise-free equation.
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Note that the auxiliary L.-weak* topology is solely used to verify the feasibility of
our regularization procedure. The conditions of the theorem are fulfilled in all settings
presented in this paper.

3.4.2 The generalized conditional gradient method

The major practical problem that remains is to compute a solution 7' = 7(y°) for a
fixed regularization parameter o as in

! = arg min IMP() — °||5 + aJ(T). (3.4.1)
IS

To this end we will employ a generalized conditional gradient method. This methods
is a well-established tool for computing the Tikhonov minimizer of (3.4.1). For linear
forward operators Z it was analyzed in the paper by [46]. Its generalization to the
nonlinear case has been discussed, e.g., in [15, 13, 102], at least in a Hilbert space
setting. However, we are dealing with Banach space topology rather than Hilbert
space topology. In the following we adapt the statements of [15] to our setting.

We consider a Banach space X and two functionals &,.% : X — RJ Uco. In
addition to the usual norm topology on X we introduce some topology 7 on X, for
which norm bounded sets are T precompact.

The abstract goal is then to solve

arg Hél)r(l E(v) + .F(v). (3.4.2)

In this setting we make the following assumptions.

Assumption 3.4.2. For & we assume continuous differentiability. .# does not need
to be differentiable, but needs to satisfy

Cy. F(x) < oo for some x € X,
Cs. F is convex,
C5. % is sequentially 7 lower semicontinuous, i.e.,

F(x) <liminf.#(z,), whenever x = lim xz,,

Cy. Z is coercive, i.e., F(x,) — oo, whenever ||z, || — oo,
(5. the problem arg min,cx &' (z)(v) + % (v) has some solution,

Cs. Z has weakly compact sublevel sets.
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3 An adaptive solver for a parameter identification problem

Remark 3.4.3. Two details of this approach demand closer attention. The first is
the compactness requirement (Cg) on the sub-level sets of the penalty term .#. This
assumption is satisfied for a weighted ¢, penalty term, 1 < ¢ < 2, if the weights are
bounded away from 0, see e.g. [63]. The second aspect is the uniform continuity of
the derivative of &, which is covered by the analysis of the control-to-state operator
in Section 3.3.

The generalized conditional gradient method (GCGM) that we will utilize to com-
pute an approximation of the minimizer of (3.4.2) is given as follows.

Algorithm 3.4.4 GCGM
1: Choose xy € X, such that Z(xy) < o0;
2: Determine v, € X by

v, = arg Hél)f(l &' (x,)(v) + F(v); (3.4.3)

3: Determine step size s, € [0, 1] via

Sp, = arg rr?(i)n] E(xy + s(vp — xp)) + F (0 + 5(V5 — 4)); (3.4.4)
s€l|0,1

4: Put x4 =, + sp(vn, — x,). Return to step 2.

3.4.3 Iterated soft shrinkage

In this section we present a specific choice for & and % that allows the reformula-
tion of the minimization in (3.4.3) by the application of a soft shrinkage operator.
In particular, this allows an efficient numerical treatment of the problem. Further,
this explains why the reformulated algorithm is often called iterated soft shrinkage
algorithm (ISTA).

We begin by considering P as a subset of

4 = (Ly([0,T) x U, RN))® x Ly([0,T] x U, RV*N),

and fix a biorthogonal wavelet Riesz basis (0 = {¢, : v € T}, ¥ = {4, v € J})
for 4. A detailed description can be found in Section 3.5.1.

The connection between the minimization problem (3.4.1) induced by Tikhonov
regularization and (3.4.3) is then given by the choice (compare [15, pp. 185])

1 o
£(m) = SIMP () = 5715 = Tl

O- ~
F(m) = §H7TH?; +a Y w, ().
veJ
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where w, > wy > 0 and o > 0. This choice satisfies Assumption 3.4.2, cf. Re-
mark 3.4.3. The minimization problem (3.4.1) then reads as

1 .
w! = argmin 5| MP(m) - vl + a;wyl(w, )|, (3.4.5)

The minimization problem in the second step of the GCGM algorithm is given by

_ : ! * * T AN g N2
Uy = argrﬂnelgg (2 (1)) M*(MPD () — y°) — o + 27r,1p,,>|
+ aw, |(m,1,)|7,

under the assumption that (2'(m,))*M*(MZ(x,) — y°) is an element of ¥.

The minimizer of such a functional combining an f,-norm and a weighted ¢,-norm
can be directly computed using a soft thresholding operation, see [18, 46]. It holds
that

(vns ))veg = Sew o ({mn — %(@/(WH»*M*(M@(WR) ") 0))ves)s  (3.4.6)

where Sew , is a shrinkage operator that applies to each coefficient the shrinkage maps
Saw, .. These maps are defined by

awy

sgn(x)[|z] — =], q=1,
awy = g 4
S a’»Q<x> {Gw}m,q(l’), q> 17 (3 7)

where Gaw, (1) = 2 + “2gsgn(z)]z]?",

Remark 3.4.5. 1. In order to utilize an expansion with respect to ¥, we need to
ensure that (2'(m,))* M*(MZ(x,) — y°) lies in ¢ in each step of the iteration.
Since the adjoint operator 2'(m)* maps to the dual space of P, this is property
automatically holds for all parameters but D by the L,-maximal regularity
theory we used.

2. If we choose o large enough, it is possible to omit the line search in the third
step of Algorithm 3.4.4 and to choose s, =1, n > 0, in (3.4.4). We refer to [13,
Lem. 2.4] for details.

3.5 Discretization of the model PDE

In this section, we briefly explain how to apply adaptive wavelet methods for the
numerical solution of the model PDE (3.2.6). First of all, in Section 3.5.1, we recall
the wavelet setting. Then, in Section 3.5.2, we discuss adaptive wavelet schemes for
elliptic problems. Finally, in Section 3.5.3, we are concerned with generalizations to
parabolic equations.
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3 An adaptive solver for a parameter identification problem

3.5.1 Wavelets

Let us briefly recall the wavelet setting as far as it is needed for our purposes. We will
not go into construction details and confine the discussion to the basic facts. For the
anisotropic tensor wavelet construction in arbitrary dimensions we follow the paper
47].

We assume a univariate wavelet collection ¥ = {4, : v € J} on the unit interval
7 := (0,1) is available. The dual basis is denoted by ¥ = {4, : v € J}. The indices
v € J encode several types of information, namely the level, denoted with |v|, and
the spatial location.

For some fixed ¢ > 0 we make the following assumptions on the univariate wavelets.

Assumption 3.5.1. Wavelet assumptions

Py. {¢, :v e J} is a Riesz basis for Ly(Z);

Py. {27Vt - v € J} is a Riesz basis for W(T).
Furthermore we assume that for some N > d > ¢

Py [, )o@l S 27"l g uppanyy  u € WE(T);

Py. 0 = sup 2" max(diam supp 1, diam supp )
veJ

~ ing 21"l max(diam supp 1, diam supp ),
ve

Ps. sup #{v e J :|v]=j and

7,k€Np
k279, (k + 1)277] N (supp ¢b, U supp ) # B} < oo.

The properties (P;) and (Ps5) will be referred to by saying that both primal and
dual wavelets are localized or locally finite, respectively. Denoting the unit cube for
n € N with [0 :=Z", the equalities

Ly(O) = ® Ly(T)

and
WD) =Wi(Z) R Loy(Z) @+ @ Ly(Z) N -+ N Lo(Z) @ - -+ @ Lo(T) @ Wi(T)

hold.

The anisotropic tensor product wavelet collection

xp::{zp,,::wm@---@wyn:vejzzﬁj},
i=1
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3.5 Discretization of the model PDE

and its renormalized version {(>_1_, 4ti1)=Y/2¢, : v € J} are Riesz bases for Ly(0)
and W1(O), respectively, i.e., (P) and (P,) hold for the multivariate case. The col-
lection that is dual to ¥ reads as

@Z:{@ZVIZQEW(@"'@ILVR11/6.7}.

Forv e J, we set [v| = (|val,. .., [Va])-

It is one of the most important advantages of anisotropic tensor wavelets that they
give rise to dimension independent approximation rates, provided that the object one
wants to approximate has sufficient smoothness in the weighted Sobolev scale. For
0 > 0, the weighted Sobolev space HY(Z) is defined as the space of all measurable
functions v on Z for which the norm

d
gy = [ 10 =)' @) da
=0

is finite. For m € {0,..., [t]} we will consider the weighted Sobolev space

ng,e(D) = ﬂ ® Hg—(sm min(m,f) (2),

p=1 i=1

equipped with the norm

n
2 — 2
||u||Hg%9(D) T 2; ||U,||®;1:1 Hg—épimin(m,@)(l-)‘
p:

The mentioned dimension independent approximation result is then given by the
following theorem.

Theorem 3.5.2 ([47, Thm. 4.3]). For any 0 € [0,d), there exist a (nested) sequence
(T m)men C T with #T y =~ M, such that for all u € ng(D) N war(0O)

inf lu — vllwpe S M)

vespan{yp: VET rr}

holds. Form =0, M~ should be read as (log #M)"D+d pr—d.

|U||Hgl,9(m)7

Remark 3.5.3. (i) The theory in this section remains valid if essential boundary
conditions are considered.

(ii) The anisotropic tensor wavelet construction differs from standard isotropic ten-
sor wavelet constructions by the fact that wavelets on different levels are ten-
sorized with each other, leading to rectangular and highly anisotropic supports.

(iii) Suitable constructions of isotopic wavelets on domains can be found, e.g., in
[42, 43, 44, 17]. We also refer to [24] for a detailed discussion. A generalized
construction of anisotropic tensor wavelets on complex domains is developed
in [20]. The dimension independent approximation result from Theorem 3.5.2
remains valid.
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3 An adaptive solver for a parameter identification problem

3.5.2 Adaptive wavelet schemes for elliptic problems

In this section, we briefly recall how wavelets can be used to treat elliptic operator
equations of the form

Au = f, (3.5.1)

where we will assume A to be a boundedly invertible operator from some Hilbert
space H into its normed dual H’, i.e.,

[Aullzer ~ fullz, v e H.

We shall only discuss the basic ideas, for further information, the reader is referred
to [33, 26, 27]. In applications H is typically a Sobolev space Wk(£2) on some domain
Q2 C R"™. We shall mainly focus on the special case where

a(v,w) := (Av,w)
defines a symmetric bilinear form on H which is elliptic in the sense that
alv,0) ~ [[o]2. (3.5.2)

Usually, operator equations of the form (3.5.1) are solved by a Galerkin scheme, i.e.,
one defines an increasing sequence of finite-dimensional approximation spaces

Sa, :==span{n, : p € A},
where Sy, C Sa,,,, and projects the problem onto these spaces, i.e.,
(Aup,,v) = (f,v) forall ve Sy,.
To compute the actual Galerkin approximation, one has to solve a linear system
Gaen, =1fa, G, = (A ) e Tay = ((F5 1) Juen,-

Then the question arises how to choose the approximation spaces in a suitable way,
for doing that in a somewhat clumsy fashion would yield a very inefficient scheme.
One natural idea would be to use an adaptive scheme, i.e., an updating strategy which
essentially consists of the following three steps:

solve — estimate — refine
Ga,ch, = £, lu —up, || =7 add functions
a posteriori if necessary.

error estimator

Already the second step is highly nontrivial since the exact solution u is unknown, so
that clever a posteriori error estimators are needed. Then another challenging task is
to show that the refinement strategy leads to a convergent scheme and to estimate its
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3.5 Discretization of the model PDE

order of convergence, if possible. In recent years, it has been shown that both tasks
can be solved if wavelets are used as basis functions for the Galerkin scheme as we
shall now explain.

The first step is to transform (3.5.1) into a discrete problem. By using the properties
(Py) and (P) of the multivariate wavelet basis (3.5.1) is equivalent to

Au=f~f (3.5.3)
where

A=D YAV, ¥)'D"!, u:=Dc, u=c'¥, f:=D'f ),

n —-1/2
- tlv]
D = ((24 ) 5y,y,)
i=1 vv'eJ

is a diagonal scaling matrix.
Now (3.5.2) implies that

and

1Al ceaiay < 00, AT lzqa(ay < o0,
and the computation of the Galerkin approximation amounts to solving the system
Apuy =y =1y, Ay = (D HAP, ¥)"D )]y,
Now, ellipticity (3.5.2) and the Riesz property yield

[u—unlle,z) ~ [[A( —up) e, 7) ~ If — Auplle, ) ~ lItalle. )

so that the fo-norm of the residual rp serves as an a posteriori error estimator. Each
individual coefficient (r,), can be viewed as a local error indicator. Therefore a natu-
ral adaptive strategy would consist in catching the bulk of the residual, i.e., to choose
the new index set A such that

Iralilleaa) = Clitalless),  for some ¢ € (0,1).

However, such a scheme would not be implementable since the residual involves in-
finitely many coefficients. To transform this idea into an implementable scheme, the
following three subroutines can be utilized:

e RHS[e, g] — g.: determines for g € ¢»(J) a finitely supported g. € ¢5(J) such
that

18 — 8:lle() < e

e APPLY e, A, v] — w.: determines for a finitely supported v € ¢2(J) a finitely
supported w. such that
AV = W[ (7) < e
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3 An adaptive solver for a parameter identification problem

e COARSE[e, v] — v.: determines for a finitely supported v € £5(J) a finitely

supported v, € (5(J) with at most M significant coefficients, such that
Iv = V.lliar) < <. (35.4)

Moreover, M < My, holds, My, being the minimal number of entries for
which (3.5.4) is valid.

Then, employing the key idea outlined above, the resulting fundamental algorithm
reads as follows:

Algorithm 3.5.4 SOLVE[¢e, A f] — u.

No=0;rp, :=1; g0 := ||f|ler); 7 :=0; wo :=0;
while ¢; > ¢ do

eje1 = 27 U]y Ajo = Agi g ==y
for(=1,...L do
Compute Galerkin approximation uy,, , for Aj; ;
Compute
f’Aj’171 = RHS[Clt01€j+1’ ﬂ — APPLY[CltOISj+1, A, UA
Compute smallest set Aj;,
such that, ||f.Aj,l71|Aj,lH£2(J) > %’|fAj,l—1||€2(J);
end for
COARSE[C;¢j11,up,, ] = (Aji1, wipa);
j=itL;

j,l—l]’

end while

Remark 3.5.5. (i) We shall not discuss in detail the concrete numerical realiza-
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tion of the three fundamental subroutines. The subroutine COARSE consists
of a thresholding step, whereas RHS essentially requires the computation of a
best N-term approximation. The most complicated building block is APPLY.
The subroutine can be realized and optimality of the resulting algorithm can
be proved up to order s*, if the stiffness matrix A is s*-compressible, i.e., there
exists matrices A7, J € N, with

1A — A7l piyay) S Mj°

for all s < s*, where A7 has O(Mj) nontrivial entries per column.

For elliptic operators with Schwartz kernels, the cancellation property of wavelets
can be used to establish compressibility. For isotropic wavelets, the reader is re-
ferred to [26, 27, 118]. The anisotropic case using Lo-orthogonal wavelets has
been dealt with in [51].

In Algorithm 3.5.4, ¢1, ¢ and c¢3 denote some suitably chosen constants whose
concrete values depend on the problem at hand. Also the parameter L has to
be chosen in a suitable way. We refer again to [26] for details.



3.5 Discretization of the model PDE

Concerning the realization of APPLY in the biorthogonal anisotropic setting of
Section 3.5.1 we generalize the findings in [51]. There, a stiffness matrix induced by
the bilinear form

a(u,v) = /couv + chakuakv dz = f(v), (3.5.5)
4 k=1
with constant coefficients ¢ > 0 and ¢, > 0,k = 1,...,n, is considered. Additional

mild assumptions have to be imposed on the one-dimensional wavelets.
Assumption 3.5.6. Wavelet assumptions for compressibility of A
Ps. [¥lliwm S 27, N[dullpw@ S 2% for allv € 7,
P;. for all x € Z the cardinality of
{veJ:|v|=jand z € conv{supp ¢, }}
is bounded independently of 7 € N,

Ps. 1), is piecewise polynomial of order d with singular support uniformly bounded
in [v],

Py. 1, has d vanishing moments if supp ¢, C (0, 1).

The proof of compressibility consists of an application of the Schur lemma, together
with estimates for the absolute value of a, ,, := a(¢,,%,) and for the cardinality of

AL e (€ Ty #0and |[v] — ully =1}, vedT, leN.
The first estimate is not influenced by the change of setting. We just cite the result:
[ABS 2_1/2”|V‘_|“H|1||¢V||W21(EI)H¢MHW21(D)- (3.5.6)
In our biorthogonal setting the following statement is true.
Lemma 3.5.7. Let v € J be fized. It holds that
#aL S0
and consequently

#JAL ST

1<J

All constants are uniformly bounded in |||v|||;.
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3 An adaptive solver for a parameter identification problem

Proof. We begin by considering the one-dimensional case n = 1 and fix v € J. We
show that #{n € J : [u| =l and (¢, ¥ ) w1z # 0} is bounded uniformly in [v| and
.

The number of boundary adapted wavelets, i.e., those with

{0,1} Nsupp ey, # 0,

is bounded independently of |u|.

For the interior, i.e., p € J with suppv, Usuppy, C I, we use (Fs) and (Fp)
to conclude that (v, %,)r,@) = 0 if the intersection of the singular support of 1,
and supp v, is empty. Partial integration and (%) yield the same result for the inner
product of the derivatives (1),,4,)1,(z). The number of wavelets 1, |u| = I, with
nontrivial intersection of the singular support of ¢, and supp ¢, is bounded by (P),
uniformly in |v|.

For higher dimensions note, that the cardinality of {k € N" : |k||; = [} is domi-
nated by ["~! and consequently the cardinality of {k € N" : ||k||; < J} is dominated
by J". O]

Theorem 3.5.8. Let A as in (3.5.3) be induced by (3.5.5) and

(A-J)V/,L — (A)V,uv |||V| - |l‘l’|||1 < J’
’ 0, otherwise.

Then A7 has O(J") nontrivial entries per column and
I n
1A = Al cpiay S 27207
Thus A is compressible with s* = oo.

Proof. The proof is an application of the Schur lemma to the matrix
B’ :=A-A"’

Let v € J be fixed. We use (3.5.6) and Lemma 3.5.7 to estimate

o) - B 0o o
5 Bl = 3 5D onlD i 5 30 102
neg I=J peAl I=J+1
where the last sum is convergent and dominated by 275 Jn, O]

It can be shown that Algorithm 3.5.4 has the following basic properties:

e Algorithm 3.5.4 is guaranteed to converge for a huge class of problems, i.e.,

lu =) Se
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3.5 Discretization of the model PDE

e The order of convergence of Algorithm 3.5.4 is optimal in the sense that it
asymptotically realizes the convergence order of best N-term wavelet approxi-
mation, i.e., if the best N-term approximation satisfies O(N~*), then

[u —u.lle,7) = O((#suppuc) ).

e The number of arithmetic operations stays proportional to the number of un-
knowns, that is, the number of floating point operations needed to compute u.
satisfies O(#suppu,).

Remark 3.5.9. The analysis in this chapter was treated for the linear case. General-
izations to the nonlinear case exist by now, see [28, 9, 45, 79]. However, the theory is
only fully established for the isotropic case. For first results concerning the anisotropic
case we refer to [112]. These specific results are based on interpolets.

3.5.3 Adaptive wavelet schemes for parabolic problems

In this section, we turn to the development of adaptive wavelet-based numerical
schemes for linear parabolic problems of the form (3.2.6). We assume that we are
given a Gelfand triple V < X < V' of Hilbert spaces and that A(t) : V — V’ fits
into the setting of Section 3.5.2. Moreover, we assume that

—A(t): D(A) € X — X

is sectorial, i.e., there are constants zy € R, wy € (§,7) and L > 0, such that the
resolvent set o(—.A(t)) contains the open sector

Yo = {z € C\ {z0} : |arg(z — 20)| < wo},

and the resolvent operator R(z, —A(t)) := (21 +.A(t))~! of —A(t) is bounded in norm
by

L
HR(z, _‘A(t))H[:(X) < | 2 € X wo-

z— 2|
We may then consider (3.2.6) as an abstract initial value problem for a Hilbert space-
valued variable w : [0,7] — V. For its numerical treatment, we use the Rothe method
which is also known as the horizontal method of lines. Doing so, the discretization is
performed in two major steps. Firstly, we consider a semidiscretization in time, where
we will employ an S-stage linearly implicit scheme. We shall end up with an orbit of
approximations u(™ € X at intermediate times ¢, that are implicitly given via the S
elliptic stage equations. In a finite element context, this very approach has already
been propagated in [84]. For the realization of the increment u(™ s 41 and the
spatial discretization of the stage equations, we will then employ the adaptive wavelet
scheme introduced in Section 3.5.2 as a black box solver.

71



3 An adaptive solver for a parameter identification problem

Let us start with the time discretization. In order to obtain a convenient notation,
we will consider (3.2.6) in the generalized form

u'(t) = H(t,u(t), t€(0,T], u(0)=u,
where H : [0,T] x V — V' is given as
H(t,v) = —A(t)v+ F(t,v), te€][0,T], veV.

We consider an S-stage linearly implicit method for the semidiscretization in time.
By this we mean an iteration of the form

S
ul™ =l L By bk (3.5.7)
=1

with the stage equations

i—1

i—1

j=1 j=1

1=1,...,5, where we set

i—1 i
Q1= E Qigy Vi = E Yij-
j=1 j=1

The operator I — hv;;J in (3.5.8) has to be understood as a boundedly invertible
operator from V' to V' with the equality (3.5.8) in the sense of V’. Such a scheme is
also known as a method of Rosenbrock type, see [66, 122] for details. All the quantities
h, J, k; and ¢ in (3.5.8) do of course depend on the time step number n, but we drop
the index n here for readability. The coefficients b;, ; ; and ~; ; have to be suitably
chosen according to the desired properties of the Rosenbrock method. As a special
case of (3.5.8), a Rosenbrock-Wanner method or ROW-method results if one chooses
the exact derivatives J = 0,H (t,,u™) and g = 9,H(t,,u™). In this paper, we will
confine the setting to these ROW-type methods.

In practice, a Rosenbrock scheme will be implemented in a slightly different way
than given by (3.5.8). Introducing the variable w; := hZ;:lvm-kj, the additional
application of the operator J in the right-hand side of (3.5.8) can be avoided by
rewriting (3.5.8) as

i—1 i—

1 n Ci 4
(hmf - J> u; = H(tn +agh, ™+ 3 ai,juj) +) #uj + hvg,  (3.5.9)

j=1 7j=1

1=1,...,5, and

S
) = 4 Z mi; (3.5.10)
i=1
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3.5 Discretization of the model PDE

where we have used the coefficients

I'= (7i,j)z"s:j:17

(ai,j>§j:1 = (ai,j)szlrila
(ci7j>5j:1 = dlag(/YI_,ll7 s a’)/,;l,s’) - F_la
(m17 cee amS)T = (b17 s 7bS)TF_1'

It is well-known that for a strongly A(#)-stable Rosenbrock method the numerical
approximations according to (3.5.7) indeed converge to the exact solution as h — 0,
see [91] for details. However, a constant temporal step size h might not be the most
economic choice. At least for times ¢ close to 0 and in situations where the driving
term f is not smooth at ¢, it is advisable to choose small values of h in order to track
the behavior of the exact solution correctly. In regions where f and u are temporally
smooth, larger time step sizes may be used. As a consequence, we have to employ an a
posteriori temporal error estimator to control the current value of h. The traditional
approach resorts to estimators for the local truncation error at ¢,

Sn(tn) := @t (u(t,)) — ult, + h),

where
Plmtnth s X — X

is the increment mapping of the given Rosenbrock scheme at time t,, with step size
h. For the global error at t =t,,1 = t,, + h,, we have the decomposition

€ni1 = u(n—l—l) . U(tn—o—l) _ (I)tn,tn—i-hn (u(n)) . (I)tn,tn—i-hn (u(tn)) + 5hn (tn)7

i.e., ;41 comprises the local error at time ¢, and the difference between the current
Rosenbrock step ®!ntn+n(y() and the virtual step ®'t+h(y(t,)) with starting
point u(t,). Estimators for the local discretization error dy, (t,) can be either based
on an embedded lower order scheme or on extrapolation techniques, see [65, 66].
For applications to partial differential equations, embedding strategies yield sufficient
results and thus are our method of choice.

Since the iteration (3.5.7) cannot be implemented numerically, we will now finally
address the numerical approximation of all the ingredients by finite-dimensional coun-
terparts. Precisely, we have to find approximate, computable iterands %"+ such that
the additional error @™t —u (™1 introduced by the spatial discretization stays below
some given tolerance ¢ when measured in an appropriate norm. Hence this pertur-
bation of the virtual orbit (u(™),ecn, can be interpreted as a controllable additional
error of the temporal discretization. The accumulation of local perturbations in the
course of the iteration is then an issue for the step size controller. In order not to
spoil the convergence behavior of the unperturbed iterands u(™ we will demand that
@D — 4+ stays small in the topology of X, which results in the requirement

Ha(n—i—l) . u(n—H)HX <e
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3 An adaptive solver for a parameter identification problem

for the numerical scheme, where ¢ > 0 is the desired target accuracy. To achieve
this goal, we want to use the convergent adaptive wavelet schemes as outlined in
Section 3.5.2. Observe that by (3.5.10), the exact increment u™*Y differs from u(™
by a linear combination of the exact solutions u; of the S stage equations (3.5.9).

In case that the ellipticity constants of 9, H (t,,u™) do not depend on ¢ and v, and
we choose J = 0, H (t,,u'™) as above, the operators involved in (3.5.9) take the form

Ba:=al +A(t), a>0,
where a = (hy;;)~" for the i-th stage equation. By the estimate

(Bov,v) < (Byv,v) = a(v,v)y + (Byv,v) < (Ca+ 1)(Bov,v), veV,

1/2

we see that the energy norms ||v||g, := [(Bav,v)|'/* differ from ||v||p, =~ ||v||v only

by an a-dependent constant:
lollse < I0lls. < (Cat1)|o]lg, veV.
Consequently, if we define

(Da)l/,u = ||2/}u||Ba7 Vec j;

then the system D, !'W is a Riesz basis in the energy space (V.|| - ||g,), with Riesz
constants independent of a > 0:

lellesr) ~ lle DI T, ¢ € bL(T).

Therefore, we can use the Riesz basis DJ'W, o = (hvy;;)"" as test functions in a
variational formulation of (3.5.9). Abbreviating the exact right-hand side of (3.5.9)
by

i—1

i—1
Cij
Tip i= H<tn + azh,ul™ 4 Z ai,j“j) + Z #Uj + hvig,
: =

Jj=1

we get the system of equations
(Boui, DY) = (1, DMWY (3.5.11)

Inserting a wavelet representation of u; = (D,u;) D 'W into the variational formu-
lation (3.5.11), we end up with the biinfinite linear system in ¢5(J)

D, YB, ¥, ¥) "D 'Dyu; = D (r;p, ¥) T (3.5.12)

Now we observe that problem (3.5.12) exactly fits into the setting of Section 3.5.2.
A detailed analysis of the concepts outlined above can be found in the Ph.D. thesis
101].
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3.6 Numerical experiments

In this section we apply the algorithms outlined in Sections 3.4 and 3.5 to solve the
parameter identification problem associated to the fundamental problem (3.2.1). We
want to highlight the potential of sparsity constrained Tikhonov regularization in
connection with an adaptive wavelet solver for the forward problem in this nonlinear
inverse problem. Parameter identification problems for parabolic differential equations
are amongst the most demanding inverse problems, both in terms of analytic as
well as numerical complexity, see e.g. [76]. In our case we computed a parameter
that appears in a (linearized) reaction-diffusion equation from the noise-contaminated
solution sampled at certain timesteps.

As a first step and as a proof of concept, we consider a linearized version of (3.2.1)
and the reconstruction of one parameter for one gene from synthetic data. After
presentation of the simplified problem and the resulting algorithm we give numerical
results for spatial domains U = (0,1)", n = 1,2. Just to emphasize the numerical
complexity, we want to stress that each iteration step of the iterated soft shrinkage
procedure requires to solve two parabolic PDEs. Our numerical tests were routinely
done with 10* iterations. For the shrinkage parameter o and the noise levels § we
considered 20 and 12 different values for the one-dimensional example and 7 and
13 values for the two-dimensional case, respectively. That is, our test runs required
the solution of about 6.62 - 10° parabolic PDEs which amounts to several days of
computing time assuming that each cycle in the iteration (two calls to the forward
solver, one multiplication) is done in 5 — 15 seconds, depending on the parameters.
The computations presented in the following sections were done on the Linux clusters
of the Center for Industrial mathematics at the University of Bremen (36 compute
nodes: 2 or 4 x Intel Opteron 2376 or 8378, 16 or 32 GByte RAM; 320 cores in total)
and of the Philipps-University Marburg (MARC; 142 compute nodes: 2xDualCore
Intel Opteron 270 or 2216, 8 or 16 GByte RAM; 568 cores in total).

3.6.1 An algorithm for a model problem

The previous sections were dealing with analytic properties of the parameter identi-
fication problem (3.2.1) and with algorithms for approximating its solution. We now
derive a simplified test problem, which aims at reconstructing the biologically most
important parameter W. The simplified test problem is chosen in order to allow ex-
haustive numerical tests. We therefore derive a model problem by linearization of
(3.2.1), that is, by the choice ¢(z) =  + 5. Additionally we set N = 1, i.e., we con-
sider a single gene, choose T' = 1 and fix the parameters D = 1, A =0, and R = 1.
The remaining task is to identify the interaction matrix

Wtrue S LQ(O, 17 LQ(U, R))

from given synthetic data yqaa := Z2(W™"®). This still poses a nonlinear inverse
problem.
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3 An adaptive solver for a parameter identification problem

In practical applications the synthetic data yqa.:a Will often be corrupted by noise.
We consider additive /5 noise of magnitude  and denote the data we used for recon-
struction as v°.

For simplicity we discretize the parameter space by means of isotropic Haar wavelets
up to a given maximal level and consequently choose the ¢1-norm of the Haar coef-
ficients as the penalty term for the regularized minimization problem (3.4.5). This
choice determines the sense in which sparsity of the reconstruction has to be under-
stood.

We apply Algorithm 3.4.4 with the specifications made in Section 3.4.3 to compute
a minimizer of (3.4.5). The second step of the algorithm is given by (3.4.6) and
consequently two parabolic equations have to be solved in each iteration step. The
first one corresponds to the action of the control-to-state operator & which maps the
parameter W to the solution u of

u’—Au—VVu:1 in (0,1] x U,
o 2 (3.6.1)
$:0on [0,7] x 90U, u(0) =uy on {0} x U.

The second task is to solve the adjoint problem given by (2/(W))*(w), with w =
2(W) —1°. Using the explicit formula derived in Remark 3.3.7, the solution is given
by

— N —Ah—Wh=w in (0,1] x U,

3.6.2
%—Oon[O,T]xaU, B(1) = 0 on {0} x U. (36.2)

Let us note, that the steady state solution of this problem coincides with the standard
test problem for nonlinear parameter identification, see e.g. [54, Ex. 10.16].

Both parabolic problems are solved with the Rothe method using inexact linearly
implicit increments, see Section 3.5.3. Consequently we do not need to consider a
measurement operator M since we have full knowledge of yqat» and the solutions to
(3.6.1) and (3.6.2) at all time steps. For the experiments, we choose the second-order
Rosenbrock scheme ROS2. We use equidistant time steps. The elliptic subproblems
are discretized by means of anisotropic tensor wavelets for W, (U) as described in
Section 3.5.1. We solve the subproblems adaptively by means of Algorithm 3.5.4.
The biorthogonal one-dimensional wavelets used in the construction are taken from
[99] and are chosen to be piecewise polynomial of order d and to have d vanishing
moments. For simplification we set ¢ = 1 in (3.4.6) and s, = 1,n > 0 to omit the
line search (3.4.4) in Algorithm 3.4.4, cf. Remark 3.4.5.

The algorithm for solving the parameter identification problem is given by Algo-
rith 3.6.1. There, u®™ and h(™ denote the coefficients of the solutions (™ and A"
of the problems (3.6.1) and (3.6.2) with respect to the spatial discretization, respec-
tively. As a slight abuse of notation we also denote the Haar wavelet coefficients of the
product u™ - A with boldface letters. It can be efficiently computed by using the
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3.6 Numerical experiments

Haar generator coefficients of u(™ and h(™. The application of S, has to be under-
stood for each time step and coefficient. For the sake of comparability of the results
we use a fixed number of iterations as a stopping criterion in our simulations.

Algorithm 3.6.1 RECONSTRUCT

n:=0; WO .=,

repeat
Compute the solution u™ of (3.6.1) with parameter W™,
Compute the solution h™ of (3.6.2) with the right-hand side
given by ul™ — yapa;
Compute Haar wavelet coefficients u™ - h( of the product u(™ - h(™):
Apply shrinkage W) = § (W —u™ . h() (with S, as in (3.4.7));
n:=n+1;

until |[[W — WO, /[W®l, <e

3.6.2 Numerical results

For the case n = 1 we chose the order d and the vanishing moments d of the primal
wavelets as d = d = 3 for representing the solution  of the forward problem. Temporal
discretization is done with 11 points.

We generated the synthetic data with W™ given by the projection of

Wit 2) = 200 s (0, (- — )t — ) max(0, (&~ )(z — 2))

onto the set of admissible Haar wavelets, see Figure 3.1.

Figure 3.1: Exact unknown parameter W e,

For given noise level 9 and shrinkage parameter o we denote the computed recon-
struction with W¢. For choosing a we use an explorative approach and test all «

7



3 An adaptive solver for a parameter identification problem

n
{1, 20, 30, 50, 100, 120, 170, 230, 310, 390, 460, 550, 630, 750, 900,
1300, 2000, 3500, 5000, 10000} - 10_7,

which are then compared with the L-curve criterion [70]. That is, « is determined by
the point of maximal curvature in the |[W? ||, over [ly° — D(W?)]|L, plot. We denote
this choice in the following with (4, y?).

First we present our results for the case without noise in Figure 3.2. Note that
the best approximation is not obtained at the smallest tested value o = 107 but
rather at o = 1.2 - 107°. This is due to the trade-off between discretization level,
numerical artifacts and loss of detail. The reconstruction is given in Figure 3.5. The
reconstruction obtained for zero noise level and with o determined by the L-curve
criterion is denote by

WPt = W 0)-

We regard this as the best achievable reconstruction within the restrictions of the

chosen discretization scheme and compare our numerical reconstructions for noisy
data with TWePt,

-7 54
—0.=50"e-7
+ a=100"1e-7
o=120"1e-7
o=170"1e-7 5.2

* o.=2301e-7
0.=750"1e-7
—0.=3500"1e-7|

o 1y

Yaata Il
.
®

nw true_

109,011 U™ = Y, Il

48 K .

4.6
0

Ihwey,

Figure 3.2: § = 0. Left: log-discrepancy over |[W™||,,, right: unknown true recon-
struction error.

Since the basic problem is ill-posed, understanding the dependence of the recon-
struction method on the noise level is crucial. We explored /5 noise of magnitudes
§ from {1,3,5,7,10,12,15,25,30} - 1072, resulting in relative noise levels §/||yqatal| ¢,
ranging from 0.313% to 9.36%.

As an example we present the special case of relative noise level 4.68%. The decline
of the discrepancy over the course of iterations is rather fast during the first itera-
tions and then levels out depending on «, see Figure 3.3. This seems to be a typical
behavior. The reconstruction error is presented in Figure 3.4. To give a qualitative
understanding of the reconstruction we present Figure 3.5.

As a practical proof of convergence we analyzed the reconstruction error

WPt — W5 e
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-0.5
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Figure 3.3: Noise 4.68%. Left: log-discrepancy over iterations, right: L-curve.
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Figure 3.4: Noise 4.68%. Left: [[W*e

— W2 ||, over a, right: |[W°Pt — W? ||, over a.

Figure 3.5: Reconstructions. Left: o = 1.2 - 107°,6 = 0, right: o = 1.7 - 1075, noise

4.68%.
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101
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Figure 3.6: ||[W°Pt — Wi(&y[;)ﬂgl over 0.

for decreasing noise levels . The convergence of the method is shown in Figure 3.6.

For the two-dimensional case n = 2, we used a similar approach. Order and van-
ishing moments of the primal univariate wavelets used in the anisotropic construc-
tion were chosen to be d = d = 2. We considered a temporal discretization with 9

points. The synthetic data were computed using W™ consisting of the projection of
W (t,x) = h(t)g(x), given by

0= S (0.~ D (L)

1 3 3
g(x) = max (0, min <4<x1 - Z_l>7 1>) max (0, min (5 —4|zy — §|, 1)),
onto the set of admissible Haar wavelets. See Figure 3.7 for the value of W% at
t=0.5.

Figure 3.7: Exact parameter W™ at ¢ = 0.5.

For our experiments we considered values for the shrinkage parameter o from
{1,5,10,15,25,50,100} - 10~7 and 13 noise levels ¢ of magnitudes between 107 and
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3.6 Numerical experiments

0.5. They correspond to relative noise levels between 0.023% and 11.41%. The con-
vergence behavior of the method is quite similar to the one-dimensional case depicted
in Figure 3.3. In this example we observed that the method is more sensitive to noise
than in the one-dimensional case. To give a qualitative understanding of the depen-
dency of the method on a and § we present several reconstructions at ¢ = 0.5 in
Figure 3.8.

o0 ==

o o
MO M=

[ o J—

o o
MO =M

—_

¢ o
—motowb

=)

Figure 3.8: Reconstructions at ¢t = 0.5. From left to right: o = 107, 1075, 5-107%, from
top to bottom: § = 0, 6-1073, 4-1072, i.e., relative noise 0%,0.14%,0.91%.
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asymptotic temporal convergence order of the time stepping also in the presence of
spatial discretization errors. In particular, we discuss the case of linearly-implicit
time integrators and adaptive wavelet discretizations in space. Using concepts from
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tion theory, we determine an upper bound for the degrees of freedom for the overall
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4.1 Introduction

This paper is concerned with the numerical treatment of evolution equations of
parabolic type, i.e.,

u'(t) = F(t,u(t)), w0)=uy, te]l0,T]. (4.1.1)
Typical examples are, for instance, semilinear equations of the form
u'(t) = Au(t) + f(t,u(t), u(0)=ug, ¢te€][0,T], (4.1.2)

where, in practical applications, usually A is a differential operator and f a linear
or nonlinear forcing term. Such equations describe diffusion processes and they are
very often used for the mathematical modelling of biological, chemical and physical
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4 On the convergence analysis of spatially adaptive Rothe methods

processes. There are two principally different approaches to solve (4.1.1): the vertical
method of lines and the horizontal method of lines. The former starts with an ap-
proximation first in space and then in time. We refer to [68], [77], [124] for detailed
information. The latter starts with a discretization first in time and then in space; it
is also known as Rothe’s method. It has been studied in [84], [91]. These references
are indicative and by no means complete.

In this paper, we concentrate on Rothe’s method for the following reasons. In the
horizontal method of lines, the parabolic equation can be interpreted as an abstract
Cauchy problem, i.e., as an ordinary differential equation in some suitable function
space. This immediately provides a way to employ adaptive strategies. Indeed, in time
direction we might use one of the well known ODE solvers with step size control.
This solver must be based on an implicit discretization scheme since the equation
under consideration is usually stiff. Linearly-implicit one-step methods are of primary
interest because their realization only requires to solve a system of linear elliptic stage
equations per time step. To this end, as a second level of adaptivity, well-established
adaptive numerical schemes based, e.g., on wavelets or finite elements, can be used.
We refer to [26], [27], [37] for the wavelet case, and [5, 6, 8|, [14], [55, 56, 57, 58], [69],
[126], [127] for the finite element case. As before, these lists are not complete.

Although the combination of Rothe’s method with adaptive strategies is natural, a
rigorous convergence analysis seems to be still in its infancy. For parabolic equations
and finite element discretization in space, the most far reaching results have been
obtained in [84].

Not very much seems to be known about fully adaptive schemes. This paper can be
seen as a first step in this direction. We still use uniform discretizations in time, but for
the space discretization we use an arbitrary (non-uniform and adaptive) discretization
scheme that allows to compute an approximation to the exact solution of an elliptic
subproblem up to a prescribed accuracy. To treat the convergence problem, we start
with the observation that at an abstract level, Rothe’s method can be reformulated as
the consecutive application of two types of operators, the inverse of a (linear) elliptic
differential operator and certain (nonlinear) evaluation operators. Adaptivity enters
via the inexact application of both types of operators in each time step, up to a given
tolerance. Obviously, we need to know whether the whole scheme still converges with
all these perturbations and how the tolerances in each time step have to be tuned to
obtain convergence and corresponding convergence orders. These aspects are studied
in Section 4.2.

Fortunately, it turns out that a huge class of concrete discretization schemes can be
written as abstract Rothe schemes in the sense of Section 4.2. Indeed, in Section 4.3
we show that any linearly-implicit one-step scheme of W-type falls into this category.
By combining our analysis with the convergence results for the unperturbed schemes,
which, e.g., are outlined in [91], we are therefore able to provide rigorous convergence
proofs for spatially adaptive versions of W-methods. The analysis is substantiated by
several examples, where special emphasis is layed on the semilinear case (4.1.2).

The analysis in the Section 4.2 and 4.3, respectively, holds for any spatially adaptive
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4.2 Abstract description of Rothe’s method

numerical scheme that provides an approximation of the unknown solution up to any
prescribed tolerance. In the finite element setting, such strategies have been derived
in [12], [52], [120], however, for several reasons, we are in particular interested in
spatially adaptive schemes based on wavelets. In recent studies, it has turned out that
the strong analytical properties of wavelets can be used to design adaptive numerical
schemes that are guaranteed to converge with optimal order, i.e., with the same
order as best m-term wavelet approximation. We refer, e.g., to [26], [27] for details.
These relationships pave a way to rigorous complexity estimates in the wavelet case.
Indeed, it is well-known that the convergence order of best m-term approximation
depends on the smoothness of the object one wants to approximate in specific scales
of Besov spaces [48]. So, the overall complexity can be determined by combining
our abstract analysis with estimates for the Besov smoothness of the solutions to
the elliptic subproblems in each time step. In Section 4.4, we show that, although
technically quite involved, this way is indeed passable. In particular, we study the
case of the classical heat equation and the linearly-implicit Euler schemes.

4.2 Abstract description of Rothe’s method

We begin with an example that motivates our perspective on the analysis of Rothe’s
method. The setting and notation will be given in Section 4.2.2, and in Section 4.2.3
we state and prove one of our main results, that is an abstract convergence proof.

4.2.1 Motivation

To introduce our abstract setting of Rothe’s method, let us consider the heat equation
u'(t) = Au(t) + f(t,u(t)) onQ, te(0,7T],

u(0) = ug on €2, (4.2.1)

0 on 09, t € (0,7,

u

where Q C R? d > 1, denotes a bounded Lipschitz domain. We discretize this
equation by means of a linearly-implicit Euler scheme with uniform time steps. Let
K € N be the number of subdivisions of the time interval [0, T], where the step size
will be denoted by 7 := T/K, and the k-th point in time is denoted by ¢ = Tk,
k € {0,..., K}. The linearly-implicit Euler scheme, starting at uo, is given by

U — U
% = Augpr + [t wr),

ie.,

(I - TA)U].C_H = ug + Tf(tk, uk), (4.2.2)
for k=0,..., K — 1. If we assume that the elliptic problem

Livi=(I—-7Aw=w on{, wv|gg=0,
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4 On the convergence analysis of spatially adaptive Rothe methods

can be solved exactly, then one step of the scheme (4.2.2) can be written as
g1 = L7 Ry p(uyg), (4.2.3)

where
Rr,k(v) =+ Tf(tlm ’U)

and L, is a boundedly invertible operator between suitable Hilbert spaces. That is,
we can look at this equation in a Gelfand triple setting (H}(Q), Lao(Q2), H1(Q))
with L, as an operator from Hg(2) to H'(Q), where H} () denotes the H'-Sobolev
space with Dirichlet boundary conditions, H~*(Q) its normed dual, and Ly(Q2) the
Lebesgue space of quadratic integrable functions. We may also consider (4.2.3) in
Ly(R2), since Hy(Q) is embedded in Ly(2) and Ly () is embedded in H (), provided
that R, @ Lo(2) — Lo(Q2) is well defined.

Having the above simple example in mind, we observe that the fundamental form
of (4.2.3) essentially remains the same even if we introduce more sophisticated dis-
cretizations in time, e.g., as outlined below and in Section 4.3.

4.2.2 Setting and assumptions

In many applications not only one-stage approximation methods, such as the linearly-
implicit Euler scheme, are used, but also more sophisticated S-stage schemes. The
reason is, S-stage schemes can lead to higher temporal convergence orders, see Sec-
tion 4.3 for further details. Therefore, in this subsection we state a scheme with the
same form as in (4.2.3) that provides an abstract interpretation of linearly-implicit
S-stage schemes, where S € N.

As above, we begin with a uniform discretization of the time interval [0,7] with
K € N subdivisions, step size 7 := T/K, and t;, := k7 for k € {0,..., K}. Taking an
abstract point of view, we introduce separable real Hilbert spaces H, G, and consider
a mapping u : [0, 7] — H. Furthermore, let L,; be a family of, possibly unbounded,
linear operators which have bounded inverses L. 1 :1G — H, and let

RipiHx---xH—>G (4.2.4)

)

be a family of (nonlinear) evaluation operators for k € {0,..., K—1}andi=1,...,8S.
As the norm on the Cartesian product in (4.2.4) we set

%
H(Ula <. 7Ui)”7—l><-~><?—[ = Z ||Ul||'H
=1

Remark 4.2.1. (i) The function w : [0,7] — H is understood to be a solution of a
parabolic partial differential equation of the form (4.1.2).

(ii) In most cases L ! is not given explicitly and, for this reason, we need an efficient
numerical scheme for its evaluation. The situation is completely different with R, ;,
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which is usually given explicitly and does not require the solution of an operator
equation for its evaluation. Concrete examples of these operators will be presented
and studied in Section 4.3.

(iii) In a Gelfand triple setting (V, U, V*) typical choices for the spaces H and G
are H=V,G=V*or H =G = U. However, also a more general setting such as

VCHCUCV CG

is possible. Observe that our motivating example from Section 4.2.1 fits in this setting
with H}(Q) = H C Ly(Q) and G = H ().

Starting from the given value ug := u(0) € H, we define the abstract exact S-stage
scheme iteratively by

S
Upg1 = W 4,
s Z b (4.2.5)
=1
Wi = L Repi(tp, we, . .o wei—), i=1,....85,
for k=0,..., K — 1. One step of this iteration can be described as an application of

the operator

Er,k,k—i-l H — 7‘[,

S
v Zwk,i(v), (4.2.6)
i=1
Wy (v) 1= L;;Rﬂk,i (v, we(v),. .. ,wkvi_l(v)), 1=1,...,8.

If we define the family of operators

E._ i, J <k
B, pi= {] FLR G B Bmge ) (4.2.7)
9 .] - ka

then the output of the exact S-stage scheme (4.2.5) is given by the sequence
U = E7707k(u0), k= 0, . ,K. (428)

The convergence analysis which we present relies on a crucial technical assumption
on the operators defined in (4.2.7).

Assumption 4.2.2. For all 0 < j,k < K the operators
E.;r:H — H are globally Lipschitz continuous
with Lipschitz constants C-P

T?j7k :
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Remark 4.2.3. Assumption 4.2.2 is relatively mild, as it is usually fulfilled in the
applications we have in mind. Concrete examples will be given at the end of this
section, as well as in Section 4.3.

We call the sequence (4.2.8) the output of the exact S-stage scheme, since the oper-
ators involved in the definition of E. (; are evaluated exactly. In practical applications
this is very often not possible; the operators L;zl and IR, ; can only be evaluated up
to a prescribed accuracy. Therefore, as a start, we make the following

Assumption 4.2.4. For all 7, k € {0,..., K — 1}, and for any prescribed tolerance
gr > 0 and arbitrary v € H, we have an approximation E~T,k,k+1(v) of E;jrt+1(v) at
hand, such that B

HET,k,k+1<U) — Er,k,kﬂ(U)HH <eép
with a known upper bound M, (e, v) < oo for the degrees of freedom needed to
achieve the prescribed tolerance ey.

Remark 4.2.5. In this abstract setting the term degrees of freedom might be a bit
vague, since the precise meaning of this term depends on the concrete form of the
applied approximation scheme. For instance, in the finite element and the wavelet
setting, the degrees of freedom refer to the number of basis functions, which are
needed for the approximant to achieve the tolerance.

For simplicity, we make the following

Assumption 4.2.6. The initial value is given exactly, i.e.,
ao = U(O)

Remark 4.2.7. The case where Assumption 4.2.6 does not hold, i.e., @y # u(0), can
be handled in a similar way. However, this only increases notational complexity.

Given an approximation scheme satisfying Assumption 4.2.4 and using Assump-
tion 4.2.6, the abstract inexact variant of (4.2.5) is defined by

’[LO = U~(O),

) ) (4.2.9)
U1 = Erppyr(ty) fork=0,..., K —1.

We will show in Theorem 4.2.18 how to tune the tolerances (ej)x—o,. x—1 in such
a way that the scheme (4.2.9) has the same qualitative properties as the exact
scheme (4.2.5). As in (4.2.7), we define

5 o E’V’TJgfl’k 0...0 ET,j,j+17 J <k
7,7,k * ]’ ] = k.

Consequently, the output of the inexact S-stage scheme (4.2.9) is given by

U, = Erop(u(0)), k=0,...,K.
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Now, we are faced with the following problems. In practice, the Lipschitz constants
CTL’ ox of B jk, given in Assumption 4.2.2, might be hard to estimate directly and are
only available in very specific situations. As we shall see in Section 4.4, the individ-
ual operators L Z-IRTM, 1 =1,...,95, are much easier to handle. Moreover, a direct
approximation scheme for E. 11, as required by Assumption 4.2.4, might also be
hard to get directly. Nevertheless, very often, one has convergent numerical schemes
for the individual operators L;Zl R ii. Therefore, with these observations in mind, we

are now going to state the corresponding assumptions for these individual operators.

Assumption 4.2.8. For k =0,...,K — 1 and ¢ =1,...,5 the operators

L iR pi:H x -+ x H — H are globally Lipschitz continuous
s )y \ /

i
with Lipschitz constants Cf’i,s(i).

Remark 4.2.9. Note that, on the one hand, Assumption 4.2.2 is slightly more general
than Assumption 4.2.8, since it is easy to see that a composition of non-Lipschitz con-
tinuous operators can be Lipschitz continuous. On the other hand, Assumption 4.2.8
implies Assumption 4.2.2. This is a consequence of the fact, that, if we introduce the

constants
S

Li
Crig) = H (1+ Cﬂklz(l)) (4.2.10)
l=i+1

for k=0,..., K—1andi=0,...,5, we can estimate the Lipschitz constants Cfljpk
of F ;1 as follows:

k—1
r=j

This will be worked out in detail in the proof of Theorem 4.2.21.
The analogue to Assumption 4.2.4 is

Assumption 4.2.10. For all 7, £k € {0,...,K — 1}, i € {1,...,S}, there ex-
ists a numerical scheme that, for any prescribed tolerance ¢,; > 0 and arbitrary

Vg, ..., Vi1 € H, yields an approximation [v]., , of
V= L;%Rr,k,i(vm Vi),
such that
HU - [U]Ek,i H S Ek’,i

with a known upper bound M, ;(ex,i, v) < oo for the degrees of freedom needed to
achieve the prescribed accuracy ey ;.
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For any numerical scheme satisfying Assumption 4.2.10, and given tolerances €j; >
0,k=0,...,K—1,i=1,...,5, the corresponding inexact variant of (4.2.5) is defined
by

g = u(0),
S
g1 7= Y W, (4.2.12)
i=1
wk,i = [L;}RT,k‘,i<ﬁ’k‘7 wk,l? s 7wk,i—1)]€ ) 1= 17 R Sa

ki

for k=0,..., K —1. Note that (4.2.12) is consistent with (4.2.9), since it corresponds
to the specific choice

r- )

ET,k,kJrl H— H)
S
Vi Y ii(v), (4.2.13)
=1
Bs(0) = (Lo R (00is (0), o ()], . i = 1.8,

In Theorem 4.2.23 we will show how to tune the tolerances in the scheme (4.2.12) in
such a way that the approximation of u in H has the same qualitative properties as
the exact scheme (4.2.5).

Remark 4.2.11. (i) For E, ;441 as in (4.2.13) and arbitrary v € H, the estimate

S
||E‘r,k,k+1 (U) - Ef,k,k+1 (U)HH < Z C7l'7k,(7;)€k,i (4214)
i=1

holds with C” k(i) 8lven by (4.2.10). Thus, for any prescribed tolerance ey, if Assump-
tions 4.2.8 and 4.2.10 are fulfilled, we can choose ;4,7 = 1,..., S, in such a way that
the error we make by applying ET’k,kH from (4.2.13) instead of E. 1 is bounded
by e, uniformly in H. In this sense Assumption 4.2.10 implies Assumption 4.2.4.
Detailed arguments for the validity of estimate (4.2.14) will be given in the proof of
Theorem 4.2.21.

(ii) We do not specify the numerical scheme |- ]. at this point. It might be based on,
e.g., a spectral method, an (adaptive) finite element scheme, or an adaptive wavelet
solver. The latter case will be discussed in detail in Section 4.4. There, M, (e, v)
will be an upper bound for the number of elements of the spatial wavelet system that
is needed to achieve the desired tolerance.

(iii) Later on, in Section 4.4, we will assume that the operators R,y; can be
evaluated exactly which, of course, may not always be possible. We postpone the
analysis of these additional difficulties to a forthcoming paper.
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4.2.3 Controlling the error of the inexact schemes

We want to use the schemes described in Section 4.2.2 to compute approximations
to a solution w : [0,7] — H of a parabolic partial differential equation. The analysis
presented in this section is based on the central assumption that the ezxact scheme
(4.2.5) converges to the solution with a given approximation order §, cf. Assump-
tion 4.2.14. In Theorem 4.2.18 and Theorem 4.2.23, we state conditions how to tune
the tolerances in the inezact schemes (4.2.9) and (4.2.12), respectively, so that they
still converge to u and inherit the approximation order § of the exact scheme. We
start with a natural assumption.

Assumption 4.2.12. There exists a unique solution u : [0,7] — H to the problem
under consideration, i.e., to (4.1.1) or (4.1.2), respectively.

Remark 4.2.13. Of course, the type of such solutions depends on the form of the
specific parabolic partial differential equation. We avoid, on purpose, a detailed dis-
cussion of this aspect in this section. Further information are given in Remark 4.3.7.

The analysis presented in this section is based on the following central

Assumption 4.2.14. The ezact scheme (4.2.5) converges to u(T") with order § > 0,
i.e., for some constant Cygact > 0,

[u(T) = Erox((0))]],, < Coxact 7°.
where the constant may depend on f, T', and ug, but not on 7.

Remark 4.2.15. Error estimates as in Assumption 4.2.14 are quite natural and hold
very often, see Section 4.3 and the references therein, in particular, [91, Theorem 6.2].

At first, we give an estimate for the error propagation of the scheme (4.2.9) mea-
sured in the norm of H.

Theorem 4.2.16. Suppose that Assumptions 4.2.2, 4.2.4, 4.2.6, and 4.2.12 hold.
Let (ux)E,, K € N, be the output of the exact scheme (4.2.5), and let (ux)E_, be the
output of the scheme (4.2.9) with given tolerances ey, k =0, ..., K — 1. Then, for all
0<k<K,
k-1
lu(te) — dilly < llulte) — wlls + > CrP e
5=0

Proof. The triangle inequality yields

[u(tn) — Gl < |Jultn) — ul],, + e — @l
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4 On the convergence analysis of spatially adaptive Rothe methods

so it remains to estimate the second term. We write E; ;, := E; ;  for simplicity. Using
ug = g and writing uy — 4y as a telescopic sum, we get
U — U = (Eo,k(fbo) — El,kEO,l(ﬁo))
+ (EvxEo (o) — Es x Eo (i)

+ (Ek—1,kE0,k—1(ﬁo) - Eo,k(ﬂo))
1
= > (EjrEoi(uo) = Bji1:Eo 541 (uo)).

J

E

Il
=)

Another application of the triangle inequality yields

??‘

|ug — ]2 < Z E; 1 Eo,5(uo) Ej+1,kED,j+1(u0)HH'

§=0
Due to the Lipschitz continuity of E. ;, cf. Assumption 4.2.2, each term in the sum
can be estimated from above by
H k:EOJ Uo Ej+1,kE0,j+1(Uo)HH
= HEj-l-l kE',j+1E0j(U0) - Ej+1 kEO,j—H Uo HH
Lip
< C ]+1kHE]J+1E07J (Uo) E07J+1 Ug HH (4215)

With Ey;(ug) = @; and using Assumption 4.2.4, we observe
| Ejj1E0,5(w0) = Eo i (wo) ||, = | By (@) — Ejja ()|, < 5. O

Remark 4.2.17. In the description of our abstract setting we have chosen the spaces
‘H and G to be the same in all time steps. However, at the expense of a slightly more
involved notation, the result of Theorem 4.2.16 stays true with H replaced by variable
spaces Hi, k = 0,..., K — 1, as long as we can guarantee the Lipschitz continuity
of the mappings E.;; : H; — Hj; with corresponding Lipschitz constants C’Lljpk,

1<j<k

Based on Theorem 4.2.16 we are now able to state the conditions on the tolerances
(€k)k=0,... .k —1 such that for the scheme (4.2.9) our main goal is achieved.

Theorem 4.2.18. Suppose that Assumptions 4.2.2, 4.2.4, 4.2.6, and 4.2.12 hold. Let
Assumption 4.2.14 hold for some 6 > 0. If we consider the case of inexact operator
evaluations as described in (4.2.9) and choose

0<er < (071-:2)—1-1,[{)_1 T,
k=0,...,K—1, then we get

||U(T> - ~7'0K H’H Cexact + T) 7—6
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4.2 Abstract description of Rothe’s method

Proof. Applying Theorem 4.2.16, Assumption 4.2.14 and K = T'/7, we obtain

K-1

|u(tx) — ﬁKHH < |Jultx) — UKHH + Z Cf,iifﬂ,K Ek
k=0
K-1

) z : Lip Lip -1 146
S Cexact T + Cq—7k+1,K ( T,k+1,K) T
k=0
) 1+6 )
= Coxact T° + KT = (Cexact + T) T [

One of the final goals of our analysis is to provide upper estimates for the overall
complexity of the resulting scheme. As a first step, in this direction, we provide a
quite abstract version, which is a direct consequence of Theorem 4.2.18.

Corollary 4.2.19. Suppose that the assumptions of Theorem /.2.18 are satisfied.
Choose _
€k = (Cvl-:llg—i-l,K)_l T,

fork=0,..., K — 1, then the realization of E}O’K(uo) requires at most
K-1
M7 (0, (er)) = M- (ex, Er s (Ur))
k=0

degrees of freedom.

Remark 4.2.20. At this point, without specifying an approximation scheme and
therefore without a concrete knowledge of M, (¢, -), Corollary 4.2.19 might not look
very deep. Nevertheless, it will be filled with content in Section 4.4. There, we will
discuss the specific case of adaptive wavelet solvers for which concrete estimates for
M. (g, -) are available.

The next step is to play the same game for the inexact scheme (4.2.12). We start
again by controlling the error propagation.

Theorem 4.2.21. Suppose that Assumptions 4.2.6, 4.2.8, 4.2.10, and 4.2.12 hold.
Let (ux)E,, K €N, be the output of the exact scheme (4.2.5), and let (ax)X_, be the
output of the inexact scheme (4.2.12) with prescribed tolerances ey, k =0,..., K —1,

1=1,...,58. Then, for all 0 < k < K,

—
N
—_

s
( H ( ‘/r,l,(O) - 1)) Z Cﬂl-,j,(i)ng
0 i=1

I=j+1

)= il < [t =l + 3

Proof. We just have to repeat the proof of Theorem 4.2.16 with the special choice
(4.2.13) for E;kkt1, and to include two modifications. First, instead of the exact
Lipschitz constants C j11 x in (4.2.15), we can use their estimates (4.2.11) presented in
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4 On the convergence analysis of spatially adaptive Rothe methods

Remark 4.2.9. Second, in the last step of the proof of Theorem 4.2.16, we may estimate

the error we make when using ETJJH instead of £, ; ;11 as in Remark 4.2.11(i). Thus,

to finish the proof we have to show that the estimates (4.2.11) and (4.2.14) hold.
We start with (4.2.11). Note that it is enough to show that

Coti1 <Chro—1 0<k<K-1, (4.2.16)
since, obviously,
k—1
crr <J[Cih 0<j<k<K
r=j

Thus, let us prove that (4.2.16) is true, if Assumption 4.2.8 holds. To this end, we
fix k € {0,..., K — 1} as well as arbitrary u,v € H. Using (4.2.6) and the triangle
inequality, we obtain

HE'nk,k—&-l(u) — B (v HH < Z | wg.i (1) — wii (V) || (4.2.17)

Applying Assumption 4.2.8, we get for each ¢ € {1,...,S}:

i—1
| wri(u) = wei(v)],, < CLIP (HU — vy + Z || wi(u) — wk,l(v)HH>-
=1

Hence, for r =0,...,5 — 1, we have
r+1 r
D i) = sl < (U CoE) o) = sl
+ CTL,E),(TH)”U = 0l|n

By induction, it is easy to show that e, ; < a,e,. + b, and ey = 0 imply

T

€r S ibj_l H ar—1. (4219)

j=1 I=j+1

In our situation, this fact leads to the estimate

S
> wes(u) = wes(v H%<ZCTL§51>HU vl H (1+Cry)
=1

I=i+1

since (4.2.18) holds for r = 0,...,5 — 1. Furthermore, we can use the equality
S

Li Li Li
ZC : H I+ =10+ w) —1=Cri — 1

l=i+1 =1

94



4.2 Abstract description of Rothe’s method

to obtain

S
D Mwni(w) = wia(0)|l,, < (Craoy — Dllu— vll.
i=1

Together with (4.2.17), this proves (4.2.16).

Finally, let us move to the estimate (4.2.14). Fix k € {0,..., K —1} and let E, 141
be given by (4.2.13) with the prescribed tolerances e ;, ¢ = 1,...,S, from our asser-
tion. Then, for arbitrary v € H, we have

| Er esr (0) — Er g1 (v HH < Z || we(v) @m("’)HH (4.2.20)

Using the triangle inequality, as well as Assumption 4.2.8, we obtain for every ¢ =

1,...,5,

Hum,z(“) - wkl(v)HH

= L;iRT’k@(v, W1 (V) ooy Wi i—1(V))

- [LT_;RTjk,i(v,zbm(v), ...,wk,i_l(v))] N
LRy g (0, wer (0), ooy w1 (0) — Lt R0, g1 (0), o 51 (1)) H
mi R, 1 (v), o W1 (V)

- [L;;RT,/C,Z'(U7 ,J)k,l (U); seey ,Lbk‘;i—l ('U)):|

Ek,i

IN

H

€k,i

H

< CLlp z)ZHwkl wk,l(v)“ﬂ+€k,i'

Thus, forr=0,...,5 —1,

r—+1
Zme(U) — Wi (v HH (1+CTLIIS r+1) ZHw’“ _wk»i@)HHJFgW“'
= =1

Arguing as above, cf. (4.2.19), we get

s s s
Z | w,i(v) — @kz(U)HH < Zc":‘k,i H (14 C';i;f Z T, () E ki
=1

=1 l=itl
Together with (4.2.20), this proves (4.2.14). O

Remark 4.2.22. By construction, Theorem 4.2.21 is slightly weaker than Theo-
rem 4.2.16, but from the practical point of view Theorem 4.2.21 is more realistic.
As already outlined in Section 4.2.2, in many cases, estimates for the Lipschitz con-
stants according to Assumption 4.2.8 and convergent numerical schemes according to
Assumption 4.2.10 are available.
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4 On the convergence analysis of spatially adaptive Rothe methods

Based on Theorem 4.2.21, we are able to state the conditions on the tolerances
eris k=0,...,K—1,i=1,...,5, such that the scheme (4.2.12) converges with the
desired order. We put

K-1
Y= 11 (Crry—1) (4.2.21)
I=k+1

for k=0,..., K — 1, where C;,l,(o) is given by (4.2.10).

Theorem 4.2.23. Suppose that Assumptions 4.2.6, 4.2.8, 4.2.10, and 4.2.12 hold.
Let Assumption 4.2.14 hold for some § > 0. If we consider the case of inexact operator
evaluations as described in (4.2.12) and choose

1 1
0< 5]4;71' S E(O’;’,k’cg',h(l)) 7_1—"_67 (4222)

then we get
[u(T) — ik ||, < (Coxaet + T) 7°. (4.2.23)

Proof. Applying Theorem 4.2.21, Assumption 4.2.14, and choosing ¢ ; as in (4.2.22),
we obtain

K-1 S
luttre) = sl < Mfutae) = uncllyy + 3 D CraCri o
k=0 i=1
- (Cexact + T) 7-6’ O

Remark 4.2.24. (i) Let us take a closer look at condition (4.2.22). The number of
factors in C’;” i 1s proportional to K —k, so that the tolerances are allowed to grow with
k (if all factors in C7 are greater than or equal to 1, which is usually the case). This
means that the stage equations at earlier time steps have to be solved with higher
accuracy compared to those towards the end of the iteration. Furthermore, the number
of factors in C. i) is proportional to S — i, but independent of k. Consequently, also
the early stages have to be solved with higher accuracy compared to the later ones.

(ii) In Theorem 4.2.23, i.e., (4.2.22) a specific choice for the tolerances e ;, k =
0,...., K —1,7=1,...,5, has been used. Essentially, it is an equilibrium strategy.
However, also alternative choices are possible. Indeed, an inspection of the proof of
Theorem 4.2.23 shows that any choice of ¢ ; satisfying

" \N—1 _1+6
E : gkl — T,k:) T

would also be sufficient.

(iii) In practical applications, it would be natural to use the additional flexibility
for the choice of € ; as outlined in (ii) to minimize the overall degrees of freedom of
the method, given by

K-1 §
MT,T((S) = MT’T((S (Ek i)k, Z = Z Z MT k,i Ek i U}k z) (4224)

k=0 i=1
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4.2 Abstract description of Rothe’s method

where for k=0,... K —-1,1=1,...,5,
Wi = L;gRr,k,i(aka Wi, Whio1), (4.2.25)
and M,y ;(€g:, Wk,;) as in Assumption 4.2.10. We will omit the dependency on (e ;)i

whenever the tolerances are clear from the context. This leads to the abstract mini-
mization problem

K-1 8 K-1 8
. ~ . " ! )
(gm)n_ E M .i(€kq, Wi,;) subject to E E CryCry Era < TT°.
Rkt p—0 i=1 k=0 i=1

We conclude this section with first applications of Theorem 4.2.18.

Example 4.2.25. Let us continue the example from the very beginning of this section
and consider Eq. (4.2.1) in the Gelfand triple (H3 (), L2(Q2), H1(Q)). We want to
interpret the linearly-implicit Euler scheme as an abstract one-stage method with
H =G = Ly(R2). To this end, let

Af i D(AR) C Ly() — Ly(9),
denote the Dirichlet Laplacian with domain

d
82
D(AR) = {ue Hy(Q): Aui= Sue Ly()},
=1 ?

which is defined as in Appendix A.1, starting with the elliptic, symmetric and bounded
bilinear form
a: Hy(Q) x Hy() = R
4.2.26
(u,v) — a(u,v) = /(Vu, V) dz. ( )
Q
Here, we pick a smooth initial value uy € D(AL), and consider a continuously
differentiable function

f:00,T) x La(Q) — La(Q),

which we assume to be Lipschitz continuous in the second variable, uniformly in
t € [0,T]. We denote the Lipschitz constant by C'1P/. Since AL generates a strongly
continuous contraction semigroup on Lo(£2) (cf. Appendix A.1), Eq. (4.2.1) has a
unique classical solution, see, e.g. [98, Theorems 6.1.5 and 6.1.7]. Thus, there exists
a unique continuous function w : [0,7] — Lo(2), continuously differentiable in (0, 77,
taking only values in D(AE), and fulfilling

u(0) = ug, as well as u'(t) = AJu(t) + f(t,u(t)), for t € (0,T).
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4 On the convergence analysis of spatially adaptive Rothe methods

In this setting, we can state the exact linearly-implicit Euler scheme (4.2.2) in the
form of an abstract one-stage scheme as follows: With H = G = Ly(2) and 7 =T/ K,
we define the operators

Liy: La(Q) — La(9)

7—7
v Lojv = (I —7A8) M,
as well as

RT,k,l : LQ(Q) — L2(Q>
v Rep1(v) i=v 4 7f(tg,v),
for k=0,..., K — 1. Then the exact linearly-implicit Euler scheme fits perfectly into
the abstract exact scheme (4.2.5) with S = 1.
Under our assumptions on the initial value ug and the forcing term f, this scheme

converges to the exact solution of Eq. (4.2.1) with order § = 1, i.e., there exists a
constant Ceyact > 0, such that

||U(T> - UKHLQ(Q) S Cexact7_17

see for instance [30]. Therefore, Assumption 4.2.14 is satisfied.

Assumption 4.2.2 can be verified by the following argument: It is well known that
for any 7 > 0, the operator L_ 1 defined above is bounded with norm less than or
equal to one (cf. Appendix A.1). Because of the Lipschitz continuity of f, for each
k€ {0,..., K — 1}, the composition

ET,k,k+1 = L;%RT,]ﬁl : L2(Q) — LQ(Q)
is Lipschitz continuous with Lipschitz constant
Li Lip,
CT,llf,k—i-l S 1 + 7C lpf.

Thus, if we define E; i @ Lo(2) — Ly(Q) for 0 < j < k < K as in (4.2.7), these
operators are Lipschitz continuous with Lipschitz constants

CrP < (L4 rCMPI YR,

Tk =

i.e., Assumption 4.2.2 is fulfilled. Furthermore, these constants can be estimated uni-
formly for all 7, k and 7, since

1< CHPL < (14 7CMPIE < exp(TCHPT).

Now, let us assume that we have an approximation Eﬁk,kﬂ(v), v € Ly(Q), such
that Assumption 4.2.4 is fulfiled. We want to use the abstract results from above and
present a concrete way to choose the tolerances (x)r', so that the output (i)K,
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4.2 Abstract description of Rothe’s method

of the inexact linearly-implicit Euler scheme (4.2.9) converges to the exact solution
with the same order 6 = 1. Therefore, if we choose

7_2

<
~ exp(TCLir.f)

we can conclude from Theorem 4.2.18 that the inexact linearly-implicit Euler-scheme
(4.2.9) converges to the exact solution of Eq. (4.2.1) with order 6 = 1, i.e.,

HU(T) - aKHL2(Q) < (Cexact + T) Tlv

for k=0,..., K —1,

for all K € N.

Example 4.2.26. In the situation from Example 4.2.25, let us consider a specific
form of f: (0,7 x Ly(€2) — Lo(2), namely

(t,’U) = f(tv U) = f(U),

where f : R — R is continuously differentiable with bounded, strictly negative deriva-
tive, i.e., there exists a constant B > 0, so that

_ d -
—B < —f(x) <0 forall z € R.
dx
Then, for arbitrary vy, vy € Ly(2) we get for any k =0,..., K — 1,
||LT_&RTJ€,1(01) - L;%Rf,kyl(UQ)HLg(Q)
< HRT,k,l(?h) - RT,kJ(UZ)HLQ(Q)
= ||Ul + Tf(Ul) - (Uz + Tf(UQ))||L2(Q)

1+7’if(x)

x

z€R

o1 — 02||L2(Q)-

Thus, if 7 < 2/B, we have a contraction. For K € N big enough, and &, < 72,

k=0,..., K —1, we can argue as in Example 4.2.25 to show that
||U(T> - aKHLQ(Q) S (Cexact + T) 7_1’

i.e., the inexact linearly-implicit Euler scheme (4.2.9) again converges to the exact
solution of Eq. (4.2.1) with order § = 1, but for much larger values of ¢, thus, with
much less degrees of freedom.

Remark 4.2.27. In principle, the abstract description of Rothe’s method might
potentially also be applied to stochastic evolution equations of the form

du(t) = F(t,u(t)) dt + Blu(t)) dW (), u(0) = up,

where u is a stochastic process and W a Wiener process. By proceeding in this way
one would end up with an abstract approximation scheme that provides a unified
treatment of deterministic and stochastic equations. However, a detailed elaboration
of the stochastic setting would be beyond this manuscript and will therefore be pre-
sented in a forthcoming paper.
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4 On the convergence analysis of spatially adaptive Rothe methods

4.3 Application to linearly-implicit one-step schemes

In this section we substantiate our abstract convergence analysis to the case when
Rothe’s method is induced by a linearly-implicit S-stage time integrator. We want to
compute solutions u : (0,7] — V to initial value problems of the form (4.1.1) where
F :[0,T] x V — V* is a nonlinear right-hand side and ug € V' is some initial value.
Consequently, we consider the Gelfand triple setting (V, U, V*).

Essentially this section consists of two parts. First, we show that linearly-implicit S-
stage schemes fit nicely into the abstract setting as outlined in Section 4.2 with H =V
and G = V*, see Observation 4.3.2. In the second part, given in Observation 4.3.10,
we analyse the case H = G = U, since error estimates for the discretization in time
are often formulated in the norm of U and then a higher order of convergence might
be achieved, cf. Theorem 4.3.6.

In their general form, linearly-implicit S-stage methods are given by

s
uk+1:uk+72miyk7i, k=0,1,..., K —1, (4.3.1)

i=1
with S linear stage equations

i—1 i—1

(I — 7% )Yri = F(tk + a;T,uR + T Z ai’jyk’j) + Z CijYkj + TVib, (4.3.2)

j=1 Jj=1
and
- j i
V5l
a; 1= Qi,j Z %7 Vi = Z%’,l; (4.3.3)
j=1 =1 13 =1
fori =1,...,S. By J and g we denote (approximations of) the partial derivatives

F,(ty, ux) and Fy(tg, ug), respectively. This particular choice for a; ensures that J does
not enter the right-hand side of (4.3.2). The parameters a; ;, ¢; j, 7i,; and m; # 0 have
to be suitably chosen according to the desired properties of the scheme.

Remark 4.3.1. If J = F,(tx,ux) and g = Fy(tg, ux) are the exact derivatives, the
corresponding scheme is also known as a method of Rosenbrock type. However, this
specific choice of J and ¢ is not needed to derive a convergent time discretization
scheme. In the larger class of W-methods, J and g are allowed to be approximations
to the exact Jacobians. Often one chooses g = 0, which is done at the price of a
significantly lower order of convergence and a substantially more complicated stability
analysis.

First, we consider the case H = V', G = V*. The scheme (4.3.1) immediately fits
into the abstract setting of Section 4.2, as long as we interpret the term w; as the
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4.3 Application to linearly-implicit one-step schemes

solution to an additional Oth stage equation given by the identity operator I on V.

Now, if we define
LTJ V= V*,

4.3.4
v (I =730 )v ( )

and use the right-hand side of the stage equations (4.3.2) to define the operators

Ripi:Vx--xV =V~ (4.3.5)

Qg j
j

i1
ey Vi) lFt iT,
(voy -+, V1) Tm( (k—i-aTvo—l—j;m

i—1
Ci g
vj) + Z T—ijvj + T%g),
j=1
fork=0,...,K—1andi=1,...,5, then the scheme (4.3.1),(4.3.2),(4.3.3) is related
to the abstract Rothe method (4.2.5) as follows.

Observation 4.3.2. for k =0,..., K —1 andi = 1,...,S let L;; and R, be
defined by (4.3.4) and (4.3.5), respectively, and set L (R.po = Iy_yv. Then the
linearly-implicit S-stage scheme (4.3.1),(4.3.2),(4.3.3) is an abstract (S + 1)-stage
scheme in the sense of (4.2.5) with H =V, G =V*. We have

S
U1 = E Wi i
i=0

71 P
Wy = L Re (g, Wets -+ Weio1), 1=0,...,S,
fork=0,..., K —1.

Remark 4.3.3. Of course, since the operators R, ; are derived from the right-hand
side F', it might happen that they contain, e.g., nontrivial partial differential oper-
ators. Nevertheless, even in this case these differential operators are only applied to
the current iterate and do not require the numerical solution of an operator equation,
and that is why the operators R, ; can still be interpreted as evaluation operators.

Let us now look at an example, where a simple one-stage scheme of the form
(4.3.1),(4.3.2),(4.3.3) with X = V and G = V* is translated into a scheme with
H=G=U.

Example 4.3.4. Let Q C R? be a bounded Lipschitz domain. Consider the heat
equation (4.2.1) in the Gelfand triple (HZ(Q), L2(Q2), H1(Q)) with Afu + f(t,u) =:
F(t,u) and F : [0,T] x H}(Q) — H7'(Q). Assume that f fulfils the conditions
from Example 4.2.25. The scheme (4.3.1),(4.3.2),(4.3.3) with S =1, v11 = my = 1,
J=Af8:HYQ) — H1(Q), and g = 0 leads to

Ukl = Ug +T(I—TA£)_1<A£uk —i—f(tk,uk)), k= O,...,K— 1,

which fits perfectly into the setting of Section 4.2. It can be rewritten as a 2-stage
scheme of the form (4.2.5) with H =V and G = V*, cf. Observation 4.3.2. However,
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4 On the convergence analysis of spatially adaptive Rothe methods

since the Dirichlet-Laplacian is not bounded on Ly(f2), it can not be understood
directly as an S-stage scheme of the form (4.2.5) with H = G = Ly(Q), but a short
computation shows that it can be rewritten as

Uk—i-l:(I_TAg)_l(uk—FTf(fk,uk)), k=0,..., K —1.

Thus, if we start with up € D(AL), and consider the Dirichlet Laplacian as an
unbounded operator on Ly(€2), this scheme can be interpreted as an abstract one-
stage scheme of the form (4.2.5) with H = G = U: It is just the linearly-implicit
Euler scheme for the heat equation we have already discussed in Example 4.2.25 and,
as we have seen, it converges with rate 6 = 1. It is worth noting that this result stays
true for a wider class of operators A instead of AL, see [30] for details.

The next step is to discuss the case H = G = U in detail. In order to avoid technical
difficulties, we restrict the discussion to the case of semi-linear problems (4.1.1) with
a right-hand side of the form

F:0,T|xV =V* F(t,u):=Alt)u+ f(t,u), (4.3.6)

where A(t) is given for all t € (0,7") in the sense of Appendix A.1. Furthermore, we
will focus on W-methods with the specific choice

J(ty) == A(ty), ¢:=0, (4.3.7)

in (4.3.2). We restrict our analysis to these methods for the following reasons. First,
the linearly-implicit Euler scheme, which is the most important example, is a W-
method and not a Rosenbrock method. Second, the choice of J in (4.3.7) avoids the
evaluation of the Jacobian in each time step, which might be numerically costly.

In our setting, the overall convergence rate that can be expected is limited by the
convergence rate of the exact scheme, cf. Theorem 4.2.23 and Assumption 4.2.14.
Therefore, to obtain a reasonable result, it is clearly necessary to discuss the approx-
imation properties of the exact S-stage scheme. To the best of our knowledge, the
most far reaching results concerning the convergence of S-stage W-methods for evo-
lution problems have been derived by Lubich and Ostermann [91]. For the reader’s
convenience, we discuss their results as far as it is needed for our purposes. To do so,
we need the following definitions and assumptions.

The method (4.3.1),(4.3.2),(4.3.3) is called A(f)-stable if the related stability func-
tion )

R(z):=1+zm" <I — (ci,j)szl — z(diag(7i,) + (ai,j)fj:1)> 1,
where 17 := (1,...,1)T and m" := (my,...,mg)", fulfils
|R(z)| <1 forall z € C with |arg(z)| > 7 — 6.

If, additionally, the limit |R(c0)| := lim|.| |R(2)| < 1, then the method is called
strongly A(0)-stable.
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4.3 Application to linearly-implicit one-step schemes

We say that the scheme (4.3.1),(4.3.2),(4.3.3) is of order p € N, if the error of the
method, when applied to ordinary differential equations defined on open subsets of
R? with sufficiently smooth right-hand sides, satisfies

lu(ty) — ukl|ra < Cora 77,

uniformly on bounded time intervals.

Assumption 4.3.5. Let Cygeer > 0 and denote j(t) = A(t) + Cofrset ! -

(i) For both instances G(t) := F,(t,u(t)) and G(t) := J(t) it holds that G(t) : V —
V* t € [0,7T], is a uniformly bounded family of linear operators in L£(V,V*). Each
G(t) is boundedly invertible and the family G(¢)~!, ¢ € [0, 7], is uniformly bounded
in L(V*,V).

(ii) There exist constants ¢ < 7/2, C#** > 0, i = 1,2 such that for all ¢t € [0, T]
and z € C with |arg(z)| < 7 — ¢ the operators zI — F,(t,u(t)) and zI — J(t) are
invertible, and their resolvents are bounded on V, i.e.,

sect sect
Ci ; &
9

IGT = Fult wl®) | pwy < T M= T gy <

2| K

(iii) The mapping t — F,(t,u(t)) € L(V, V™) is sufficiently often differentiable on
[0,T] and fulfils the Lipschitz condition

| Fu(t, u(t) — Fu(t’,u(t’))Hﬁ(vy*) <OFjt—t| for0<t<t <T.

(iv) The following bounds hold uniformly for v varying in bounded subsets of V'
and 0 <t <T:

1 Frut, v}l

Ve < C£||w||v, HFuu(t7v)[wlvw2H

e < Chullwnllv]lws v
(v) There exists a splitting
fult,u(t)) = S + 5" (4.3.8)

and constants p < 1, > p (positive), C,gl) (sufficiently small) as well as c”

ko
and C,ET%, such that

Ck,57

1S ey < Y,
ST ey < G
177 (t) (Fu(te, w(t)) ™| £y < Choss

172 8) ST )| gy < CF

17T @) | sy < CHb-
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4 On the convergence analysis of spatially adaptive Rothe methods

Now, given above terms, [91, Thm. 6.2] reads as follows.

Theorem 4.3.6. Suppose that the solution u of Eq. (4.1.1), together with (4.3.6),
is unique and has sufficiently reqular temporal derivatives. Let Assumption 4.3.5
hold. Suppose that the scheme (4.3.1),(4.3.2),(4.3.3) is a W-method of order p > 2
that is strongly A(0)-stable with 8 > ¢ and ¢ < w/2, cf. 4.3.5(ii). Let B € [0,1]
be as in 4.3.5(v) such that D(A(t)?) is independent of t (with uniformly equiva-
lent norms), APy’ € Lo(0,T; V). Then the error provided by the numerical solution
ug, k=0,..., K 1s bounded in 7 < 1y by

- 9\ 1/2
(Tkzzo ||uk — u(tk)HV> + og}%}% Huk — u(tk>HU

T
< Clconv,rl—i-ﬁ (O2COHV + C«lconvcv]gl)> C’gl) </0 HAﬁu’(t) Hf/ dt) 12 (439)

reeme([laewelas [l [ leol.a)”

The constants C™, C5°™, and 19 depend on the concrete choice of the W -method,
the constants in the assumptions, and on T'. The maximal time step size Ty depends
in addition on the size of the integral terms in (4.3.9).

Remark 4.3.7. As in Theorem 4.3.6, and throughout this section, we assume that a
unique solution exists, i.e., Assumption 4.2.12 holds. This is the starting point for our
convergence analysis of inexact S-stage schemes. Thus, we will not discuss the solv-
ability and uniqueness theory for PDEs in detail. However, since in the forthcoming
examples we will use the results from [91], let us briefly recall which solution concept
is used in the following standard situation: Consider a linear operator A : V. — V*
fulfilling the conditions from Appendix A.1, and assume that F' in (4.1.1) has the
form F(t,u) := Au+ f(t). Then, a weak formulation of Eq. (4.1.1) is: find

uwe C(0,T);U)N Le(0, T3 V),

such that

%(u(t),v)[] = (Au(t),v)v-xv + (f(t),v)r for all v € V,t € (0, 7.

Before we continue our analysis, let us present a well-known W-method which fulfils
the assumptions of Theorem 4.3.6.

Example 4.3.8. For S = 2, we present the following scheme taken from [128], which
is a strongly A(f)-stable (6 = 7/2) W-method of order p = 2. It is sometimes called
ROS2 in the literature and is given by

U1 = U + ETyk,l + §Tyk,2a
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4.3 Application to linearly-implicit one-step schemes

where .
yra = (I — 72:\/514(7%)) (Ate)ur + f (e, u)),

—1
Yre = (1 — T2+1ﬂA(tk)) (A(tr + 7)(uk + Tyra)
+ f(te 4 7wk + Tye1) — 2ur1)-

It fits into the setting of (4.3.1),(4.3.2),(4.3.3) with m; = 3/2, ma = 1/2, v11 = Y92 =
(2 + \/5)71, g1 = 1 and Co1 = —2.

To avoid technical difficulties we will restrict the setting of (4.3.6) for the remainder
of this section to the special case

F:0,T]xV =V F(t,u):= Au+ f(t), (4.3.10)

where A : 'V — V* is given in the sense of Appendix A.1, and f : [0,7] — U is
a continuously differentiable function. In this case, as already mentioned in Exam-
ple 4.2.25, Eq. (4.1.1) has a unique classical solution, provided ug € D(A;U), see e.g.,
[98, Cor. 2.5]. It is worth noting that this unique solution is a also a weak solution in
the sense of [91], as addressed in Remark 4.3.7.

Using the abstract results from Section 4.2, we will analyse the inexact S-stage
method corresponding to the W-method with

J:=A and g¢:=0. (4.3.11)

In the sequel, we will restrict the discussion to the case S = 2. This is not a major
restriction for the following reason: In Theorem 4.3.6, the maximal convergence order
of W-methods is bounded by § = 1 4 3, where 8 € [0,1]. In Example 4.3.11 we
will show that an F' of the form (4.3.10) fulfils Assumption 4.3.5(v) with g = 1. If
we additionally impose the asserted regularity assumptions with g = 1, see (4.3.17)
below, then we can apply Theorem 4.3.6 with f = 1 to the ROS2-method from
Example 4.3.8 above (which is a 2-stage method), and get the optimal order in this
context.

The structure (4.3.10) of the right-hand side F' in (4.1.1), allows the following
reformulation of the W-method with (J, g) as in (4.3.11) (a proof can be found in
Appendix A.2).

Lemma 4.3.9. Consider the S-stage W-method given by (4.3.1),(4.3.2),(4.3.3) with
S =2and F and (J,g) as in (4.3.10) and (4.3.11), respectively. Then, if ~;; # 0, for

1=1,2, we have

- _mi _ mp (q _ %21 _ az,1
Uk+1 (1 a T e (1 ))uk + <Tm1 TMo )Uk,l + TMov 2,

V1,1 2,2
where
v = Lot (= + (1),
Vg2 = L;%((mﬁ(l - %) - :il’?l)uk + (% + co1) k1 + f (e + a27)>.
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4 On the convergence analysis of spatially adaptive Rothe methods

Observation 4.3.10. Note that, if v;; # 0, for i = 1,2, and my7y22 # meag,, the
scheme under consideration perfectly fits into the setting of Section 4.2 with H =G =
U. It can be written in the form of the abstract Rothe method (4.2.5). More precisely,

2
Uk+1 = Zwkm
o (4.3.12)
Wi = L—;ilRT,k,i(uk7 Wg,1,--- awk,i—l)a 1= 07 17 27
with
L7} :U—U,
’ (4.3.13)

v (] — T'yiviA)flv, fori=1,2,
the evaluation operators

Repr:U—U,

v (B - B0 7(m —mat) S0,

(4.3.14)

as well as

Ropo:UxU—T,
(vo, 1) = (22(1 = 32) — 24w (4.3.15)

maaz,1+may2,2€2,1
et vr + Tma f (t + a27),

and a Oth step given by

L gReko:U— U,

V= (1_ﬂ_m(1_£))v
1,1 72,2 71,1 ’

(4.3.16)

This is an immediate consequence of Lemma 4.3.9.
An easy computation, together with the fact that L;i and L;; are contractions on
U (cf. Appendiz A.1), yield the Lipschitz constant

CLip _|ma m2a2,1‘
7k, (1) 1,1 Y2,271,1

of L;iRﬂk,l. Stmultaneously, the Lipschitz constant of L;%R7—7k72 can be estimated as
follows:

Lip < ‘ mo a2 1 maca 1
max | |=2(1 — =2) — :
CTJ%(Q) — < ’72,2( "/1,1) V1,1

m2a2,1+m2vy2,2¢2,1 ‘
71 may2,2—meaz

Note that both constants are independent of k and .

Example 4.3.11. As a first step towards the case of inexact operator evaluations
we need to check the applicability of Theorem 4.3.6 in the current setting (4.3.10),
(4.3.11). Therefore, we now check Assumption 4.3.5. We begin by choosing Cyset = 0.

106



4.3 Application to linearly-implicit one-step schemes

As a consequence it holds that J = F,(t,u(t)) = A, independently of ¢. Assump-
tion 4.3.5(i) holds by the assumptions on A, see Appendix A.1. This, together with
the ellipticity assumption (A.1.1) already implies Assumption 4.3.5(ii), see [80]. Fur-
ther, A = F,(t,v) is independent of (¢,v), and as a consequence Assumptions 4.3.5(iii)
and (iv) hold with CI' = CF = CF = 0. Finally, since J is the exact Jacobian, it
is possible to Choose S(l S(T) 0 in (4.3.8), such that Assumption 4.3.5(v) holds
with C’,gl C’ oy = CT) = 0, Cyp = 1 and B = 1. Concerning the W-method
(4.3.1),(4.3.2),(4.3.3) we assume it to be of order p > 2 and strongly A(f)-stable with
0 > ¢, where ¢ is as in Assumption 4.3.5(ii). E.g., the scheme from Example 4.3.8
could be employed. If for the solution of Eq. (4.1.1) with F" as in (4.3.10) the regularity
assumptions

Au' u" € Ly(0,T; V), u" € Ly(0,T; V) (4.3.17)
hold, then we can apply Theorem 4.3.6. Using C’,gl) = 0 and # = 1, the convergence

result (4.3.9) reads as

(-

1/2
s = we)lly) 4+ e [l = uto),

]~

i

0
conv,__2 T / 2 r " 2 4 1 2 1/2
< cem (/0 ||Au(t)Hth+/0 | (t)||th+/0 o). ae) "

That means, the error measured in the norm || - || is of order § = 2.

Example 4.3.12. We employ the method ROS2 from Example 4.3.8 to our general
convergence results for the case of inexact solution of the stage equations, cf. Theo-
rem 4.2.23. First, we present the method in its reformulation on H = G = U, as given
in Observation 4.3.10. Inserting the coefficients

my = %, ma = %a Y1 = 722 = (2+ \/5)717 azp =1, and ¢ = —2
into (4.3.12), (4.3.13), (4.3.14), (4.3.15), and (4.3.16) yields

2
Uk+1 = E Wk 4,
i=0

71 .
Wi = LT,i RT,kJ(uk? W1y - - 7wk,i71)7 1= 07 17 27
where the Oth stage vanishes, i.e., L;éRT,k,O =0,
Li=L3:U—=U
1 — 12
1

v (I—Terl\/iA)* v,

and the evaluation operators are given by
Rop1:U—=U,
v —‘/Tiv + Tl_Tﬁf(tk),
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4 On the convergence analysis of spatially adaptive Rothe methods

and
RT,k,Z U xU— U,

(vo,v1) —\/7%0 + lf/im + T%f(tk +7).

This scheme fits perfectly into the abstract Rothe method (4.2.5) with S = 2. By Ob-

servation 4.3.10, we get the following estimates of the Lipschitz constants of L;iRT,k,i,
1=1,2:

Lp  _ V2 Li VI V3 2
Coy =% and C7o) < max (3, 0%) <

As in Example 4.3.11, we assume that the exact solution u satisfies (4.3.17). Further-
more, we assume we have a method at hand, such that Assumption 4.2.10 is satisfied.

Then, by Theorem 4.3.6 and Theorem 4.2.23, if we choose the tolerances ¢y ;, for
k=0,...,K—1andi=1,2, so that they satisfy

2
0<en; <iF%(3+ \/§)K_k_1 H (1+2),
l=i+1
the corresponding inexact 2-stage scheme (4.2.12) converges with order 6 = 2. The
computational cost can be estimated by

=

(MT,k,1(€k,1, Wy1) + Mg 2(ek2, wm))
0

e
Il

with M, ;,(-,-) as in Assumption 4.2.10 and wy; as in Remark 4.2.24(iii).

Remark 4.3.13. For methods of Rosenbrock type, i.e., under the assumption that we
use exact Jacobians J and g, a result similar to Theorem 4.3.6 holds. In [91, Theorem
5.2] it is shown that for methods of order p > 3 and under certain additional regularity
assumptions on the exact solution u of Eq. (4.1.1) the error can be bounded similar
to (4.3.9) with rate 7277, 3 € [0, 1].

4.4 Spatial approximation by wavelet methods

For the inexact Rothe method in Section 4.2 we assumed, cf. Assumption 4.2.10, that
we have a numerical solver which enables us to compute the solution of the subproblem
arising at the k-th time step and i¢-th stage up to a prescribed tolerance e ;. In
practice, this goal can be achieved by employing adaptive discretization strategies
with a posteriori error control and guaranteed convergence properties, like adaptive
discretizations based on finite element or wavelet methods.

Our analysis will focus on the application of adaptive wavelet schemes. As will be
explained in Section 4.4.3, there exist adaptive strategies based on wavelets that are
guaranteed to converge for a large range of problems. Moreover, they are asymptot-
ically optimal, i.e., they (asymptotically) realize the same convergence order as best
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4.4 Spatial approximation by wavelet methods

m-term wavelet approximation and the computational effort is proportional to the
degrees of freedom m.

We start in Section 4.4.1 by introducing the wavelet setting as far as it is needed
for our purposes. In Section 4.4.2, we combine estimates for optimal wavelet solvers
with the complexity results for the inexact Rothe method (4.2.12) of Section 4.2. For
equations of the form (4.4.2), we derive estimates on the degrees of freedom, which
are needed to guarantee that the inexact scheme converges with the same order as
the exact scheme. In Section 4.4.3 we outline the construction of an optimal adaptive
wavelet solver in practice.

As always, Q C R? d > 1, will denote a bounded Lipschitz domain.

4.4.1 Wavelet setting

Let us briefly recall the wavelet setting. In general, a wavelet basis ¥ = {¢,, : p € J}
is a Riesz basis for Ly(2), that is, there exists two positive constants, cg and Cp,

such that )
CR(Z‘GHF) < HZ“#%L SCR(ZMHF)
neJ neJ neJ

holds for all (a,).cs € ¢2(J) and clos(span v,) = Ly(€2). This property is numeri-
cally essential, since small errors in the coefficients have a controllable impact on the
wavelet expansion. The indices p € J typically encode several types of information,
namely the scale (often denoted by |u|), the spatial location as well as the type of
the wavelet. For instance, on the real line, ;1 can be identified with a pair of integers
(4, k), where j = |u| denotes the dyadic refinement level and 277k the location of the
wavelet.

We will ignore any explicit dependence on the type of the wavelet from now on,
since this only produces additional constants. Hence, we frequently use p = (j, k) and

j: {(]7k) : j2j07k€-7j}7

where J; is some countable index set and |(j, k)| = j. Moreover,
U={):pneJ}
denotes the dual wavelet basis, which is biorthogonal to V¥, i.e.,

<¢u,1/zu> - 5u,u7 w,v e j

We will not discuss any technical description of the basis V. Instead, we assume that
the domain €2 enables us to construct a wavelet basis U with the following properties:

(W1) The wavelets are local in the sense that there exist two constants ¢joc, Cloc > 0,
independent of p € 7, such that

010027|M| S diarn(supp wu) S C1loc2i|'u|7 H € j
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(W2) The wavelets satisfy the cancellation property, i.e., for some parameter m € N,

—lul(E+m
’<U,¢M>L2(Q)| < Ccan2 Iul(z+ )’U‘Wm(Loo(supplbu))
for |u| > jo, with a constant Ct,, > 0, which does not depend on v and p.

(W3) The wavelet basis induces characterizations of Besov spaces Bj(L,(f2)), i.e.,
there exist constants ¢orm, Chorm > 0, independent of v, such that

(s td(3- 1 5 p\ 9P
qu(Lp(Q)) S 223( (3 p))q < Z |<Uuw,u,>L2(Q)} >

J=jo HET;
q
< CnormHU‘ B (Lp(9)) (441)

Crorm ||V

holds for 0 < p,q < oo and all s with s; > s > d(1/p— 1), for some parameter
S1.

In (W3) the upper bound s; depends, in particular, on the smoothness and the
approximation properties of the wavelet basis.
From now on we always include the following Assumption.

Assumption 4.4.1. There exists a biorthogonal wavelet basis U for L,(2) that
satisfies the properties (W1), (W2), (W3) for a sufficiently large range of parameters
s1,8,p,q and m.

Remark 4.4.2. (i) The norm equivalence (4.4.1) and the fact that B5(Ly(Q2)) =
H?*(Q2) imply that a simple rescaling immediately yields a Riesz basis for H*(£2) with
0 < s < s1. We will also assume that Dirichlet boundary conditions can be included,
so that a characterization of the type (4.4.1) also holds for Hg(2).

(ii) Suitable constructions of wavelet systems on domains can be found, e.g., in
[17], [42, 43, 44]. For a detailed discussion we refer to [24].

4.4.2 Complexity estimates for a wavelet-Rothe method

In this section, we study Rothe schemes based on wavelets. In 4.4.2 we combine the
abstract analysis presented in Section 4.2 with complexity estimates for adaptive
wavelet solvers. We derive estimates for the degrees of freedom, which are needed
to guarantee that the inexact scheme (4.2.12) converges with the same order as the
exact scheme (4.2.5) within the wavelet setting. As it turns out, among other things,
regularity estimates for the exact solution in specific Besov spaces are essential. Then,
in 4.4.2, we substantiate the analysis further and discuss regularity estimates for the
heat equation. It turns out, that in this case concrete Besov regularity estimates and
an explicit estimate of the overall complexity can be derived.
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Complexity estimates using adaptive wavelet solvers

To keep the technical difficulties at a reasonable level, we restrict ourselves to parabolic
evolution equations of the form

u'(t) = A@®)u(t) + f(t,u(t), te(0,T], u(0)= u, (4.4.2)

where A : (0,T] xV — V* f:(0,T] x U = U, and (V,U,V*) is a Gelfand triple
with V' = H5(Q), U = Ly(Q), and V* = H5(Q2), § > 0. So, we are in the setting
of Section 4.2 with H = H"(Q2) (for some smoothness parameter 0 < v < §) and
G O H=*(2). Recall, that we assume 4.2.12 and that an exact scheme (4.2.5) is given
which satisfies Assumption 4.2.8 and 4.2.14.

We split our analysis into two parts. In the first part, we concentrate on the (rather
theoretical) case, where the solutions of the stage equations are approximated by us-
ing best m-term wavelet approximation; and the complexity estimate is given in
Theorem 4.4.8. Unfortunately, best m-term approximation is not implementable in
our case, since the solutions to the subproblems are not known explicitly, so the
m largest wavelet coefficients cannot be extracted directly. Therefore, in the second
part, we turn our attention to the case where the stage equations are solved numer-
ically by using an implementable wavelet solver which is asymptotically optimal. In
Theorem 4.4.10 we show that the complexity estimate, derived in Theorem 4.4.8,
immediately extends to this case.

Now to the first part. We apply best m-term wavelet approximation as an ap-
proximation scheme in place of Assumption 4.2.10. The error of best m-term wavelet
approximation in H"(€2) is defined as

Omp(V) == inf{Hv — Z Cuthyl

HEA

i) ¢ Cn eR,AcJ,#A:m}.

The following theorem can be derived from [48, Section 7.7], see also [32, Chapter 7].
Theorem 4.4.3. Let v > 0 and v € B}(Ly(2)), where

1 s—v 1
- = — > V. 4.4.3

Furthermore, let Assumption 4.4.1 hold with s, > s. Then the error of best m-term
wavelet approximation in H"(2) can be estimated as follows:

s—v

T (V) < Cutin [[V]| Bs (L,2) M 7, (4.4.4)

with a constant Chyn > 0, which does not depend on v or m.

Remark 4.4.4. (i) In the case that ¥ is an orthonormal wavelet basis, a best m-
term approximation to a function v can be derived by selecting the m largest wavelet
coefficients (in absolut value) in the wavelet expansion of v. In the biorthogonal
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4 On the convergence analysis of spatially adaptive Rothe methods

case, choosing the m largest coefficients yields a best m-term approximation up to a
constant. In this sense best m-term approximation is an approximation scheme that
fulfils Assumption 4.2.10.

(ii) The scale of Besov spaces B;(L4(€2)), where the parameters (s,q) are linked
by (4.4.3) for a v > 0 is called the nonlinear approzimation line for approrimation in
H”(Q). In Fig. 4.1(a) it is displayed in a DeVore-Triebel diagram for the case v = 0,
ie, HY(Q) = Ly(Q2) and for the case v = 1.

(iii) We refer to the survey article [48] for a detailed discussion of best m-term
wavelet approximation and other nonlinear approximation schemes.

Now, consider the inexact scheme (4.2.12) based on best m-term approximation in
each stage. We can apply Theorem 4.2.23 and derive an estimate for the degrees of
freedom needed to compute a solution up to a tolerance (Cexact + T') 70

Lemma 4.4.5. Suppose that Assumptions 4.2.6, 4.2.8, 4.2.12, and 4.4.1 hold. Let
Assumption 4.2.14 hold for some § > 0 and let the inexact scheme (4.2.12) be based
on best m-term wavelet approximation with the tolerances given by

= (SCLClyw) T (4.4.5)

with C7 ) as in (4.2.10) and C7), as in (4.2.21). Let the ezact solutions wy,; of the

stage equatzons in (4.2.12), be given by (4.2.25), and assume that all Wy ; are contained
in the same Besov space Bg(Ly(S)) with (4.4.3). Then we have (4.2.23), i.e

S (Cexact + T) 7-6

HU(T) - ﬂK’ HY ()

and the number of the degrees of freedom M, 1(6), given by (4.2.24), that are needed
for the computation of (tx)k_, is bounded from above by

e d __d_
s—v -1 146 s—v
<§:§jmmwmq@®(wa%mm)7+) L
k=0 i=1

with Coin as in (4.4.4), and where [-] denotes the upper Gauss-bracket.

Proof. We are in the setting of Theorem 4.2.23. By Theorem 4.4.3 we may, for each
stage equation, choose m € Ny as the smallest possible integer, such that

T (Wr ) < Chtin|| Wk 4] Bg(Lq(Q))mi% < &k,

holds, that is

d __d_
Bitra@) el |
Using (4.4.5) and summing over k and ¢ completes the proof. O

m = ’V(Cnlin ||wk,z

Lemma 4.4.5 shows that we need estimates for the Besov norms of the exact so-
lutions wy; of the stage equations in (4.2.12). We can provide an estimate in the
following setting.
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v+

(a)v>0,2-¢e) —2<v<i

Figure 4.1: DeVore-Triebel diagrams, d = 3

Lemma 4.4.6. Suppose L} € L(Ly(2), B3(Lg(2))) with (4.4.3), i =1,...,S, and
assume that the operators Rﬂkﬂ : Lo(2) X - -+ X Lo(§2) — Lo(2) are Lipschitz continu-
ous with Lipschitz constants C’TLIE(?; forallk=0,.... K—1,i=1,...5. With C’;j )
as in (4.2.10), we define

1—1
Cri® 1—<H(1+max( Cop o L7 RBekn (0, 0| o)) (T4l Lo
=1

i1 k-1 k-1 S
+ H W+ )Y (T (Chnw = D) X e
= j=0 n=j+1 r=1
i—1
+ZE’€J H 1+CTL,i;f,(z))>- (4.4.6)

Jj=1 I=j+1

Then all Wy, as defined in (4.2.25), are contained in the same Besov space By (Ly(§2))
with (4.4.3), and their norms can be estimated by

[@nill B (Lo < N Lrill2(La().Bs (La@)))

4.4.7
xmax( LlpR N Rrei (0,25 0) || oo )C’Bes. ( )

Proof. The proof is similar to the proof of Theorem 4.2.21. It can be found in
Appendix A.2. O

Remark 4.4.7. In Lemma 4.4.6, the assumption L.} € L£(L2(Q), B:(Ly(R2))) with
(4.4.3), and the Lipschitz continuity of R,j; imply Assumption 4.2.8 with H =
H" (). However, this Lipschitz constant may not be optimal.

The combination of Lemma 4.4.5 and 4.4.6 yields the main result of the first part,
i.e., the complexity estimate for the case that best m-term approximations are used
for the solution of the stage equations.
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4 On the convergence analysis of spatially adaptive Rothe methods

Theorem 4.4.8. Let the assumptions of the Lemmas 4.4.5 and 4.4.6 be satisfied.
With C7 . .y as in (4.2.10) and C7) as in (4.2.21), we have

M, (5

)

N

—1 d

> [Crfhrf (max (CHPE Rk 0, - O)ll ) ) ™ (4.4.8)

k=0 i=1

— _d 1 _&
% (12 ecaaton sceaon) = (S CluClru) ") 77

As outlined above, the next step is to discuss the complexity of Rothe’s method
in the case that implementable numerical wavelet schemes instead of the best m-
term approximation are employed for the stage equations. We make the following
assumptions, cf. Assumption 4.2.10 and Remark 4.2.11(iii).

Assumption 4.4.9. (i) There exists an implementable asymptotically optimal nu-
merical wavelet scheme for the stage equations arising in (4.2.12). That is, if the best
m-term approximation in H" () converges with rate m=(=)/4 for some s > v > 0,
then the scheme computes finite index sets A; C J and coefficients (c,,),eca, With

Z Cutu

HEN;

< O (Lojv) (#M) T (4.4.9)

HY(Q)

for some constant C3%, (L ;jv). Further, for all € > 0 there exists an I(¢) such that

T,1,8,V
1
v — g cuthy

‘ Li
HEN

< [>1
o I (©),

and such that ;
#Aie) < Claen(Lr, )i )57E~

T,2,S,V

(ii) The operators R, j; can be evaluated exactly.

In Section 4.4.3 we discuss a prototype of an adaptive wavelet method, fulfilling
Assumption 4.4.9(i), which has been derived in [26]. It satisfies an optimality estimate
of the form (4.4.9) for the energy norm (4.4.22). However, since the energy norm is
equivalent to some Sobolev norm || - || gv, cf. (4.4.23), the estimate (4.4.9) also holds
for this case. Moreover, it has been shown in [26] that the constant is of a specific
form, which is similar to (4.4.4). Therefore, we specify Assumption 4.4.9(i) in the
following way.

Assumption 4.4.9. (iii) The constant C ), (L jv) in (4.4.9) is of the form

T,2,8,V

1_s—y+1
Lq(Q)) q_ d 27

T,1,8,V

Crra(Lyjv) = ORI Lo ol

with a constant éijm independent of L_ ;v
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4.4 Spatial approximation by wavelet methods

In this setting we are immediately able to state our main result.

Theorem 4.4.10. Let the assumptions of the Lemmas 4.4.5 and 4.4.6 be satisfied.
If an optimal numerical wavelet scheme, that satisfies Assumption 4.4.9, is used for
the numerical solution of the stage equations, then the necessary degrees of freedom
can be estimated as in Theorem 4.4.8 with CA’ffiym instead of Cyin, i.e.,

M, (0
K-1 S . 4 . d_
<302 [ (max (ORI IR0, O) o) GEF)
k=0 i=1
_ —d_ -1 -4
X (127 Netaten.matea@n) =7 ((8 CraCri) ") 7. (4.4.10)

Remark 4.4.11. The constant C*™ depends on the concrete design of the adaptive

method at hand. As an example7this constant may depend on the design of the

routines APPLY, RHS and COARSE, as presented in Section 4.4.3. Moreover the
value of CA’ijm depends on the equivalence constants of the energy norm and the
Sobolev norm in (4.4.23). Therefore this constant may grow as 7 gets small. However,
the reader should observe that this is an intrinsic problem and not caused by our
approach.

Now the question arises if and how the Besov norms of the exact solutions of the
stage equations wy;, cf. (4.4.7) can be specified, and moreover how all the constants
involved in (4.4.8) and (4.4.10) can be estimated. In the next subsection we will
present a detailed study for the most important model problem, that is the linearly-
implicit Euler scheme applied to the heat equation.

Complexity estimates for the heat equation

In this subsection, we conclude the discussion of Example 4.2.25. We derive a concrete
estimate of the overall complexity of the linearly-implicit Euler scheme applied to the
heat equation in the wavelet setting. Recall,

u'(t) = Au(t) + f(t,u(t)) onQ, te(0,7T],
u(0) = g on {2,
u=20 on 0%, t € (0,7,

on a bounded Lipschitz domain  C R%, and consider the case H =G = U = Ly(9).
The operators L; % and R,y are given by

Ly = =7A)7" Repa=1+7f(t,). (4.4.11)

The first step is to estimate the Besov regularity of the solutions to the stage
equations. To this end, the mapping properties of L 1 with respect to the adaptivity
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4 On the convergence analysis of spatially adaptive Rothe methods

scale of Besov spaces (4.4.3) have to be analysed. Recall that for special cases bounds
for the Lipschitz constant of R, 1 : L2(§2) — L2(©2) have already been proven in the
Examples 4.2.25, 4.2.26, i.e.,

1 —l—Tif(x)

CHrly 170Ut Ol < splt e

) z€R

are shown in Example 4.2.25 and Example 4.2.26, respectively. We put
cl = (A8

Bes,e

-1
) Hﬁ(Lz(Q),Bf*E(Ll(Q))) (4.4.12)

and
Lap ., D\—1
Coay = ||(A%) HC(LQ(Q),H?’/2(Q))’
where (AD)™' € L(Ly(Q), B ¢(L1(2))) has been shown in [34], see also [39, Cor. 1]

for details. The fundamental result (A)™ € L£(Ly(Q),H??()) has been shown in
74, Thm. BJ.

Lemma 4.4.12. Let € > 0. Then the operator (I —7AE)™" is contained in the spaces
L(Ly(Q), B ¢(L1())) and L(Lo(2), H3%(Q)). The respective operator norms can be
estimated by

(1~ TAg)_lHL(LQ(Q),Bf_E(Ll(Q))) < %CB%;{)E (4.4.13)
and )
HU - TAg)_lllﬁ(Lg(Q),H3/2(Q)) < ;Csiipa (4'4-14)
respectively.

Proof. We start by proving (4.4.13). The observation
(I —7AS) = (—7A) (I — (I - TAg)_l)
leads to

H(I—TAQ < 7 toler HI—(I—TAQ

)7 o sy < Bes.c )7 (o

and the last term can be bounded from above by

HI_ (I— TAg)_lHi(Lz(Q)) = ” ”su(p) 12 |(1 — (1= 7)), €k>L2(Q)|2
UL (=" keN

1—7'/\k

<U7 €k>L2(Q)

= sup E ‘
||U||L2(Q):1 kEN
2

< sup Z )<U>€k>L2(Q)
||U||L2(Q):1 keN
=1.

The estimate (4.4.14) follows in a similar fashion. O
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4.4 Spatial approximation by wavelet methods

With Lemma 4.4.12 at hand, we are now ready to prove the desired mapping
properties for L} : Ly(€2) — B:(Ly(R2)), where (4.4.3) holds. We put

Cnter(8) = (Cs))' ™ (Cal)’, € (0,1). (4.4.15)

Lemma 4.4.13. Lete >0,d >2, v >0. (i) For (2—¢)— % <v <2, that is
3—2v

= ——— 1 4.4.1
i—ir2: <O (4.4.16)
we have
3d — 2v + 4ev
. Dy—1 s ; —
(I —7AqQ) " € L(L2(Q), By (Ly()))  with s ol =21 i
and 1/q = (s —v)/d + 1/2. Its norm can be bounded in the following way

< chap(e). (4.4.17)

||(I — TAg)ilHL(LQ(Q),BS(L(I(Q))) = [ inter

(ii) For 0 <v < (2—¢) — £, we have
2d
4—2—2w+d

(I —7A8) ™" € L(La(Q), B °(Le()) with q=

and its norm can be bounded by 7 C’éfspa as in (4.4.13).

Proof. (i) The proof is based on interpolation properties of Besov spaces, see [11] for
details. For real interpolation it holds that

(Bpo (Lo (), Byt (Ly, ()5, = By (Lp()

0.p
in the sense of equivalent (quasi) norms, provided that the parameters satisfy

~ _ . 1 1-60 0
0<0<1l, s=(1—-0)so+0s, —= + — (4.4.18)
p Po P1

and sg,s1 € R, 0 < pg,p1 < oo. Furthermore, if (4.4.18) holds, a linear operator
T that is contained in L£(Lo(S2), Byo(Ly,(€2))) and L(Lx(R2), By} (Ly, (£2))) is also an
element of L£(L2(Q2), B;(Ly(£2))). Its norm can be estimated by

7
HTHE(Lz(Q),Bi;(Lp ) S HT“E L2(2),B52 (Lpy () HTHL(LQ(Q),BZ} (Lp, ()"

Observe that H¥2(Q) = BY?(L,(€)) and that we can apply Lemma 4.4.12. We
need to determine the value for , such that the resulting interpolation space lies
on the nonlinear approximation line 1/p = (s — v)/d + 1/2. This is the case for
0= (3—2v)/(d— 1+ 2¢), cf. Figure 4.1(a).

(ii) The proof is a combination of (4.4.13) in Lemma 4.4.12 and the continuous
embedding of Bf°(L1(Q2)) < B27*(L,(Q)). The value of ¢ is determined by the
intersection of the lines s = (2 —¢) and 1/p = (s —v)/d + 1/2, cf. Figure 4.1(b). O
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4 On the convergence analysis of spatially adaptive Rothe methods

Remark 4.4.14. Our findings for the discretization of the heat equation by means of
the linearly-implicit Euler scheme carry over to discretizations with S > 1 stages. For
the case S = 2 the operators L;%, R; ki, @ = 1,2, are provided by Observation 4.3.10

and are similar to (4.4.11), e.g.,
Lij=(I-myAQ)7", i=12

Lemma 4.4.13 can be reformulated with 7, ; replacing 7, and the Lipschitz continuity
of R, can be established directly as before.

We are now able to give specific bounds for the degrees of freedom needed to
compute the solution of the heat equation by means of the linearly-implicit Euler
scheme. Again, we split our analysis into two parts. First, we apply Theorem 4.2.23
to the case when best m-term approximation (with respect to the H”(£2) norm, v > 0)
is used in each step of the inexact scheme (4.2.12).

Theorem 4.4.15. Let the assumptions of the Lemmas 4.4.5, 4.4.6 and 4.4.13 hold.
Let 7 be small enough such that

(14 7€ S0 S 1
We put Cupu = SUDyeqo 17 |w(®)]| o) and
Con G2 (14 7CH1) - 0y < (2-)— 4

CVs or = i
) {Cmmc.wpw)<1+70Llpvf> (-9 —d<v<iv>0

inter 29

where Cylin, Cé“js?g, CL and 6 are given by (4.4.4), (4.4.12), (4.4.15), and (4.4.16),
respectively. Let Coacy be given as in Assumption 4.2.14. In the setting of Fxam-
ple 4.2.25, if best m-term wavelet approximation for the spatial approzimation of the
stage equations is applied, then the degrees of freedom M, needed to compute a

solution up to a tolerance (Cexact + 1) T can be estimated by
-1, 1 3 (2+1_—(2+1) ) —(5+1)
MT,T < TT + 2 (2Cshort(7—)> (Te T Y + Chrn(T)T 0 )7
with

Lip,f\ 277!
Chim(7) == (1 + Caupu + CexaCtT)%T(l + 7O . _2 1.
1= (14 7Chnf) 3

Furthermore,
lim Cii (7) = (1 + Caupon)  (CHPF) 7 (exp (CHPIET) — 1),

Proof. We apply Theorem 4.4.8 with S = 1 and § = 1. In the setting of Exam-
ple 4.2.25 it holds that

Coviy =1+7C" Oy =1, Crpg=2+7C"7,
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4.4 Spatial approximation by wavelet methods

independently of k. Thus (4.2.21) reads as C, = (1+7CYP/)X=+1 and (4.4.6) can
be simplified to

OP* =1+ [lugl| o) + R(CEE) 572

The norm of ||ug|/z,) can be bounded as follows. By Assumption 4.2.14 we have
lu(te) — uk| o) < Cexact™ and as a consequence

lurll o) < [Julte) = wel| gy + luti)lla@) < CexaceT + Coup,

where Cyyp,y 1s finite since [0,7] is compact and u is continuous. Using the bound
(4.4.17) of Lemma 4.4.13(i) in the estimate (4.4.8) we obtain
K—-1 2
i P 0
MTT S ’7<Csh0rt ((C.,I::]E’(If))K kT 3(1 + Csup,u + CexactT) + k)) -‘
K—1 2

<K+ 3 (Conon (CHEE Y7314 Cunpat Cosaa) + 1) )

An application of Jensen’s inequality and the geometric series formula yield

M, 7 < K+C’9 951

short
1 — 2 2
X Z ( (G2 77 (1 + Coupaa + Cexaa))? +ke>
k=0

< K (14 2(2Ch0n K)?)

. 2
o, 2(1+7CURT)IR — 1
+ 7775 (2Csm0n (1 4 Coupas + Coxaci 7)) 1— (1+ 7CLPS) =5

The proof is finalized by the insertion of K = 77! and the observations

. Lip,f\ 277! 1 = Lip,fg _
llg(l)(l—l—TC’ ) 1=exp(C QT) 1,
I ! !

im = —.

=01 — (1 + TCLip,f)*% %CLlp’f

The case, where Lemma 4.4.13(ii) is applied to (4.4.8), is analogous. O

Now, we turn to the case when an optimal numerical wavelet scheme is used for
the numerical solution of the stage equations in (4.2.12). The wavelet schemes we
have in mind are optimal with respect to the energy norm (4.4.22), see Section 4.4.3.
In our setting it is induced by L, and equivalent to the Sobolev norm H'(2). For
this reason, we now state the estimate for the degrees of freedom in the case of the
Sobolev norm H'(Q), i.e., v = 1.
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4 On the convergence analysis of spatially adaptive Rothe methods

Theorem 4.4.16. Let the assumptions of Theorem 4.4.15 hold, whereas we now
employ an implementable asymptotically optimal numerical scheme, such that As-
sumption 4.4.9 holds for v = 1. Using Cgor(T) = C’ffslymCiﬁgg(H) (1 + 7CUPT) | the
degrees of freedom needed to compute a solution up to a tolerance (Cexact +T) T can

be estimated by

~ 2 2 2 A
Moz < T 4 (20 qion (7)) T (T3 177 GHY 4 Gy ()~ GHD), (4.4.19)
with N
. 2 (14 7CUPYTT
C’imT = 1_f'c’su u+OexacT °T - 2
im(7) = (( " 7)) 1— (14 7CuPS)"5
and 1
0= ——. 4.4.20
d—1+2¢ ( )
Furthermore,

tim i (7) = §(1+ Cup) | (CPF) 7 (exp(CHPI2T) — 1),

Remark 4.4.17. (i) The calculations above shows that, among other things, the
overall complexity of the resulting scheme heavily depends on the Besov smoothness
of the exact solutions to the stage equations. Due to the Lipschitz character of the
domain €2, and since we are working in the Ls-setting, this Besov regularity is limited
by s = 2. However, for more specific domains, e.g., polygonal domains in R? and
smoother right-hand sides, much higher Besov smoothness can be achieved, see, e.g.,
[31], [38] for details. Therefore, for polygonal domains and smoother source terms
f we expect that also in our case higher Besov smoothness for the solutions of the
stage equations arises, yielding a much lower overall complexity. The details will be
discussed in a forthcoming paper.

(ii) Let us further discuss the asymptotic behavior of M, 1 as 7 tends to zero. For
simplicity, let us consider the case d = 2, then we can choose 6 arbitrary close to 1.
Asymptotically optimal schemes are usually described in the energy norm induced by
the operator L., whith a constant analogous to (4.4.9) that is independent of L, ,
see, e.g., [26]. With the notation as (4.4.23) the following consideration for the energy
norm induced by L,

<(I + TA£>U, u>L2(Q) > <U,, u>L2(Q) + Tcgnergy<A£) ”uH%{l(Q)?

implies Copergy (1 + TAL) > 72 Copengy (AL), s0 that we can conclude

N

NG

asym __ A —
1 Cl T

with some constant Cy independent of 7. In this case (4.4.19) reads as

1, | ) ,
M, 7 <T7t '+ 5 (2010Lap(1 + TC’L‘p’f))Q(T?’T_4 + Clim (T)7757),

inter
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4.4 Spatial approximation by wavelet methods

i.e., for small 7 the last term is dominating and therefore the number of degrees of
freedom behaves as 778t

4.4.3 Adaptive wavelet schemes for elliptic problems

We show how wavelets can be used for the adaptive numerical treatment of elliptic
operator equations. To be specific, we are interested in equations of the form

Au = f, (4.4.21)

where we will assume A to be a boundedly invertible operator from some Hilbert
space V' into its normed dual V* i.e.,

canl[vfly <[l Av]

ve < Callv|ly, veW.

Consequently, we are again in a Gelfand triple setting (V, U, V*). We will only discuss
some basic ideas. For further information, the reader is referred to [26], [27], [33]. In
our setting, that is the setting of the Rothe method, the operator A will be one of
the operators L,; that arise in the treatment of the stage equations. Therefore, in
the applications we have in mind V' will always be one of the Sobolev space H"({)
or HY(Q).

We will focus on the special case where

CL(U, ’LU) = <AU, w)V*XV

defines a continuous, symmetric and elliptic bilinear form on V' in the sense of (A.1.1).
Then, of course, A corresponds to the operator —A in (A.1.2). In this setting the
bilinear form induces a norm on V', the energy norm, by setting

1
-1l = a(, )3, (1.4.22)
It is equivalent to the Sobolev norm, i.e.,
Conergy || * 1w (@) < ||+ | < Clnergy | - |7 (0- (4.4.23)

Usually, operator equations of the form (4.4.21) are solved by a Galerkin scheme,
i.e., one defines an increasing sequence of finite dimensional approximation spaces
Sa, = span{n, : u € A}, where S, C Sy,,,, and projects the problem onto these
spaces, i.e.,

(Aup,, v)vexy = (f,v)y+xy forall v e Sy,.

To compute the current Galerkin approximation, one has to solve a linear system
Gy,cn, = i,

with GAZ = (<A77u/777u>V*><V)u,u’€Ap (fA)u = <fa 77#>V*><V7 W e Al-
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4 On the convergence analysis of spatially adaptive Rothe methods

It is a somewhat delicate task to choose the approximation spaces in the right way.
Doing it in an arbitrary way might result in a very inefficient scheme. A natural idea
is to use an adaptive scheme, i.e., an updating strategy which essentially consists of
the following steps

solve — estimate — refine
Gach, =1y, lu—wupl =7 add functions
a posteriori if necessary.

error estimator

The second step is highly nontrivial since the exact solution u is unknown, so that
clever a posteriori error estimators are needed. An equally challenging task is to show
that the refinement strategy leads to a convergent scheme and to estimate its order
of convergence, if possible. In recent years, it has been shown that both tasks can be
solved if wavelets are used as basis functions for the Galerkin scheme as we will now
explain.

The first step is to transform (4.4.21) into a discrete problem. From the norm
equivalences (4.4.1) it is easy to see that (4.4.21) is equivalent to

Au=1f

where

A =D AV V). D' u:=Dc, fi=Df V).,

and D := (27¢" 6, 1), ves. Computing a Galerkin approximation amounts to solving
the system

Apuy = £ =1y, Ay = (27 WD @AY ey ) pen

Now, ellipticity and the norm equivalences (4.4.1) yield

u—ualley(g) < caisl| A = un) e
< Cais|[f = A(aa)ex()
= Cais|[ralle, (),
so that the (5(J)-norm of the residual ry serves as an a posteriori error estimator.
Each individual coefficient (ry), can be viewed as a local error indicator. Therefore

a natural adaptive strategy would consist in catching the bulk of the residual, i.e., to
choose the new index set A such that

Iralillear) = Cllralleyr),  for some ¢ € (0,1).

However, such a scheme cannot be implemented since the residual involves infinitely
many coefficients. To transform this idea into an implementable scheme, the following
three subroutines can be utilized
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4.4 Spatial approximation by wavelet methods

(S1) RHS|e, g] — g. determines for g € ¢5(J) a finitely supported g. € ¢2(J) such
that

Hg - gsHb(J) <e.

(S2) APPLY[¢, G,v] — w. determines for G € L(¢2(J)) and for a finitely sup-
ported v € (5(J) a finitely supported w. € ¢5(J) such that

|GV — Welle,) < e

(S3) COARSE[e,v] — v, determines for a finitely supported v € ¢5(7) a finitely
supported v, € ¢5(J) with at most m significant coefficients, such that
HV — V5Hg2(j) <e. (4424)

Moreover, m < Cmy, holds, my, being the minimal number of entries for
which (4.4.24) is valid.

Then, by employing the key idea outlined above, we get the following fundamental
algorithm:

Algorithm 4.4.18 SOLVE[e, A f] — u.
Ao = 0; ra, := £ €0 1= [|f[|e7); J == 05 g :=0;
while €; > ¢ do
gjr1 = 27UV Eley gy Ao 1= Ajs g = wy;
for/=1,...,L do
Compute Galerkin approximation uy,, , for Aj; ;
Compute
IN'AJ.,Z71 = RHS[Clt()lngrl, f] - APPLY[Cf01€j+1, A, uAj,l—l];
Compute smallest set A;;,
such that, [[Ta,, ,[a,,lle@) > 51T4,, 4 lew);
end for
COARSE[Cy¢j 1, up;, | = (Aj1, wjp1);
Ji=J+L
end while

Remark 4.4.19. In [26], it has been shown that Algorithm 4.4.18 exactly fits into
the setting of Assumptions 4.4.9. Let us denote by A, C J the final index set when
Algorithm 4.4.18 terminates (the method of updating ¢; ensures termination). Then
Algorithm 4.4.18 has the following properties.

(P1) Algorithm 4.4.18 is guaranteed to converge for a huge class of problems, in
particular for the differential operators L., that we have in mind. Denoting
with H”(2) the Sobolev space according to (4.4.23), we have

Ju— Z cutull v @) < Clu)e.

HEA,
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4 On the convergence analysis of spatially adaptive Rothe methods

(P2) Algorithm 4.4.18 is asymptotically optimal in the sense of Assumption 4.4.9,
ie., with 1/¢g = (s —v)/d+1/2, we have

Hu - Z CMM

HEA:

o (s—v)

Bs(Lo() (FA) T T .

oy < Ol

Remark 4.4.20. (i) We will not discuss the concrete numerical realization of the
three fundamental subroutines in detail. The subroutine COARSE consists of a
thresholding step, whereas RHS essentially requires the computation of a best m-
term approximation. The most complicated building block is APPLY. Let us just
mention that its existence can be established for elliptic operators with Schwartz
kernels by using the cancellation property of wavelets.

(ii) In Algorithm 4.4.18, Cf°! and Cf°! denote some suitably chosen constants whose
concrete values depend on the problem under consideration. The parameter L has to
be chosen in a suitable way. We refer again to [26] for details.

(iii) It has been shown in [26] that Algorithm 4.4.18 has the additional prop-
erty that the number of arithmetic operations stays proportional to the number of
unknowns, i.e., the number of floating point operations needed to compute u. is
bounded by Cgupp#supp u..

A.1 Variational operators

In the preceding sections, we very often considered the same problem on different

spaces, e.g., we switched from an operator equation defined on V' to the same equation

defined on U. In this section we want to clarify in more detail why this is justified.
Let (V, (-,-)v) be a separable real Hilbert space. Furthermore, let

a(+,):VxV =R

be a continuous, symmetric and elliptic bilinear form. This means that there exist
two constants cey, Con > 0, such that for arbitrary u,v € V, the bilinear form fulfills
the following conditions:

car [ulliy < a(u,u),  alu,v) =alv,u),  la(u,v)] < Callullv|vllv.  (A1.1)
Then, by the Lax-Milgram theorem, the operator

AV V"

v Av = —a(v,") (A.1.2)

is boundededly invertible. Let us now assume that V' is densely embedded into a real
Hilbert space (U, (-, )y) via a linear embedding j. We write

J

V< U
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A.1 Variational operators

Furthermore, we identify the Hilbert space U with its topological dual space U* via
the Riesz isomorphism U 3 u +— ®u := (u, )y € U*. The adjoint map j* : U* — V*
of j embeds U* densely into the topological dual V* of V. All in all we have a so
called Gelfand triple (V,U, V*),

v uLu Ly
Using (-, -)y+xy to denote the dual pairs of V' and V*, we have

(J(v1),7(v2))u = (J* P j(v1), v2)yexy for all v, vy € V. (A.1.3)

In this setting, we can consider the operator A : V' — V* as an unbounded operator
on the intermediate space U. More precisely, set

D(A) :=D(A;U) ={ueV : Auec j°0(U)},
and define the operator

A:D(A):=j(D(AU)CU - U
u— Au= o A

Such an (unbounded) linear operator is sometimes called variational. It is densely
defined, since U* is densely embedded in V*. Furthermore, the symmetry of the
bilinear form a(-,-) implies that A is self-adjoint. At the same time, it is strictly
negative definite, because of the ellipticity of a. Moreover, since A : V. — V* is
boundedly invertible, the operator A~! : U — U, defined by A~! := jA~15*® is the
bounded inverse of A. It is compact if the embedding j of V in U is compact.

Let us now fix 7 > 0 and consider the bilinear form

a,:VxV =R
(U,U) = a’T(“’? U) = T(](U),j(l]))(] + a(u,v),

which is also continuous, symmetric and elliptic in the sense of (A.1.3). Obviously,
for u,v € V, we have the identity

ar(u,v) = 77" ®j(u), v)vexy — (Au, v)ysxy
= <(Tj*¢j - A)U, U>V*><V7

so that applying again the Lax-Milgram theorem, we can conclude that (7j*®j — A) :
V' — V* is boundedly invertible. Therefore, the operator

(t1 —A):D(A) CU - U
u— (11 — A)u = Tu — Au,
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4 On the convergence analysis of spatially adaptive Rothe methods

which com(ndes with ®=1j*~1(75*®j — A)j~! on D(A), possesses a bounded inverse
(t1— A~ = j(rj*®j — A) 1j*® : U — U. Thus, the resolvent set o(A) of A contains
all 7 > 0. In particular, for any 7 > 0, the range of the operator (71 — A) is all
of U. Since, furthermore, A is dissipative, the Lumer-Phillips theorem implies that
A generates a strongly continuous semigroup {etA}t>0 of contractions on U, see, e.g.
(98, Theorem 1.4.3]. Thus, an application of the Hille- Y051da theorem (see e.g. [98,
Theorem 1.3.1]) shows that the operator L-' := (I —7A)"' =7(r] - A~ : U - U
is a contraction for each 7 > 0.
By an abuse of notation, we sometimes write A instead of A.

A.2 Proofs of Lemma 4.3.9 and Lemma 4.4.6

Proof of Lemma 4.3.9. By (4.3.10) and (4.3.11) the stage equations (4.3.2) read as

(I — my11A)we 1 = Aug + f(tr),

(I — Ty20A) w2 = A(ug + Tas wy1) + f(te + aeT) + co1wp 1.
We begin with an application of the following basic observation, that

I=(I—-CA(I-CA)
implies
(I -CA)A= _EI+ C(I cA)!
It follows that
Wg = ((— L4 1 (I —7n 1A)_1)uk + (I - 77171A)_1f(tk)

7'711 TY1,1

= k+L‘rl(~r'y 1uk+f(tk>)

T'Yl 1

We denote
vy = L 1(77 —ug + f(t1))-

A similar computation for the second stage equation yields

Wy o = (— 1 I+ 1 ([ — 7727214)71)(’11% -+ TCLQJU)]CJ)

T72,2 T72,2
+ (I — 7y22A4)7" (f(tk + asT) + 02,1wk,1)

= _77122<(1 a21)uk+7'&211)k1)

+ L‘r2<7-722 ((]. — 3? 1)Uk -+ Ta21Vk 1)

n)

+ f(te + ao7) + co1(—

+ <— + Co I)Ukz 1 —+ f(tk + CLQT))

V2,2
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A.2 Proofs of Lemma 4.3.9 and Lemma 4.4.6

We denote

72,2

v = L3 (5 (1= 222) = 20 Yy + (22 4 )y + f(ti + 0a7))

and arrive at

Upy1 = up + 7my(— Ly, + Vk1)

a
—l—ng(—mlm( f/fi)uk—w—kavaH)
= (1—7’?—;—7”;—2(1— 3?1))uk+(7m1—ngr)vk1+7m2vk2 O
Proof of Lemma 4.4.6. We start with the estimate
lnillmgcran = || Lri Reopilns B, o rion) | gy 1,0
<L £(La().B (La()) || Br i (G, W1, ...,wk,i,l)HLQ(Q

The Lipschitz continuity of R ; implies the linear growth property

HRT,k,i(ﬁk, W15 eey Wheyie1) ||L2(Q)

i—1
< 28 (Mo + 3 ksl ra@) ) + [ Rri (0, 0)[|
= i—1
< max (CHPE [ R0, )|y ) % (14 1 sy + D sy
o
< max (O R (0 0)| 1y ) % (1l aor + D llnllzacon
i—1 -
= el + 3 ks = B lrace)-
j=1

As before, the Lipschitz continuity of L;}Rﬂk,i implies

||wk7i||L2(Q) = HL;,ilRT,k,i(Uh W15« - - ’wkvi_1>HL2(Q)

1—1
R0 Oy ) % (14 Tl o+ D s e )

j=1

< max (C’TL;S (i)’

By induction, we estimate
i—1

Lt ([l o) + D 1wl o)
j=1

i—1
< TT (1 ma (2 [ Rt 0, 0) ) ) (1 k)
=1
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4 On the convergence analysis of spatially adaptive Rothe methods

Note that
Wk, — Wil Lo) < Wk — Wil 5v ) < €k

This enables us to follow similar lines as in the proof of Theorem 4.2.21. We estimate
i—1
o = @ikl o) + D Nk — @i a0
j=1

i—2
Li ~ ~
<Q+C7 ) (Huk — k|| ) + Y llwn — wk,jHLz(Q)>
j=1

-1 ~ ~ ~
+ } Lq—,i_lRT,k,ifl<uka W,y -y Whi—2)

— [L; i Rr i (g, g, - - 7U~Jk,i—2)}€k il Loy
’ 2

1—2
Li ~ ~
<A+ ) (HUk — gl o) + D lwn — waHb(ﬂ)) + Ekji-1
j=1

and conclude by induction

1—1

k= il o) + Y Wiy — i ll oo
j=1
i—1 i—1 i—1
Li ~ Li
< ([T +CER oDk = ooy + > ey [ @+ CER).
=1 j=1 I=j+1
The proof is finished by
k=1 k-1 S
e — ik ooy <Y ( IT i) — 1)> > L i
J=0 I=j+1 =1
which is shown as in Theorem 4.2.21. O
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5 Piecewise tensor product wavelet
bases by extensions and
approximation rates

Authors: Nabi Chegini, Stephan Dahlke, Ulrich Friedrich, Rob Stevenson.
Journal: Mathematics of Computation 82 (2013), no. 284, 2157-2190.
Abstract: Following [Studia Math., 76(2) (1983), pp. 1-58 and 95-136] by
Z. Ciesielski and T. Figiel and [SIAM J. Math. Anal., 31 (1999), pp. 184-230]
by W. Dahmen and R. Schneider, by the application of extension operators we
construct a basis for a range of Sobolev spaces on a domain €2 from corresponding
bases on subdomains that form a non-overlapping decomposition. As subdomains,
we take hypercubes, or smooth parametric images of those, and equip them with
tensor product wavelet bases. We prove approximation rates from the resulting
piecewise tensor product basis that are independent of the spatial dimension of
Q. For two- and three-dimensional polytopes we show that the solution of Poisson
type problems satisfies the required regularity condition. The dimension indepen-
dent rates will be realized numerically in linear complexity by the application of
the adaptive wavelet-Galerkin scheme.

AMS 2000 subject classification: 15A69, 35B65, 41A25, 41A63, 42C40, 65N12,
65T60.

Key Words: Wavelets, tensor product approximation, domain decomposition, ex-
tension operators, weighted anisotropic Sobolev space, regularity, adaptive wavelet
scheme, best approximation rates, Fichera corner.

5.1 Introduction

Let Q = UN_Qx C R™ be a non-overlapping domain decomposition. By the use of
extension operators, we will construct isomorphisms from the Cartesian product of
Sobolev spaces on the subdomains, which incorporate suitable boundary conditions,
to Sobolev spaces on (2. By applying such an isomorphism to the union of Riesz bases
for the Sobolev spaces on the subdomains, the result is a Riesz basis for the Sobolev
space on ).

Since the approach can be applied recursively, to understand the construction of
such an isomorphism, it is sufficient to consider the case of having two subdomains.
For i € {1,2}, let R; be the restriction of functions on {2 to §2;, let 75 be the extension
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5 Piecewise tensor product wavelet bases

by zero of functions on €2, to functions on €2, and let E; be some extension of functions
on € to functions on  which, for some m € Ny, is bounded from H™ () to the

m Ry . gm m m :
target space H™(2). Then [Rg(ld B E1R1>] FH™(Q) = H™(Q1) X Hi'go, 00, (22) 18

boundedly invertible with inverse [E) 1], see Figure 5.1 (H'sg, g0, (£22) is the space
of H™(§22) functions that vanish up to order m — 1 at 9; N 9€2). Consequently, if

7 Ry(1d — E\Ry)u
.\/-\’*/\' - ElRlu
Ql I QQ

Figure 5.1: Splitting of u into a sum of functions on the subdomains.

U, is a Riesz basis for H™(€)) and W, is a Riesz basis for H%q raq,(22), then
E Wy UnyWy is a Riesz basis for H™ ().

The principle to construct a basis for a function space on {2 by applying an iso-
morphism from this space onto the product of corresponding function spaces on non-
overlapping subdomains was introduced in [23]. In [44] (see also [82]), this idea was
revisited with the aim to practically construct such a basis for doing computations,
rather than to show its existence.

In addition to the findings from [44], in the current work we derive precise conditions
on the ordering of the subdomains so that the corresponding “true” extension oper-
ators (not the trivial zero extensions), being the building blocks of the isomorphism,
actually do exist as bounded mappings. To explain this, as an example, consider the
construction of a basis for H!(Q) where Q is an L-shaped domain subdivided into 3
subdomains as illustrated in Figure 5.2. The arrows depict the direction and the or-

Q3 Q3
Q2 Ql QQ Ql
1— =1

Figure 5.2: A feasible and a non-feasible configuration for H* ().

dering of the extensions. The construction requires homogeneous boundary conditions
on incoming interfaces and no boundary conditions on outgoing interfaces. In the left
case we begin by constructing a basis for H& 90m90; (£21US) as the union of a basis for
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5.1 Introduction

Hj 50,m00, (1) and the image of a basis for H yq,00,(2) under the first extension,
which has to be bounded as an operator from Hg 50,0, (22) t0 H{ 50,n90, (€1 UQs).
The full basis is constructed by adding the image of a basis for H'(23) under the
second extension, which needs to be a bounded operator from H'(23) to H'(Q).
Choosing the action of the extension operators as illustrated in the right case yields
an invalid configuration. This is due to the fact that in the first step we would need
a bounded extension operator from H'(4) to Hj 50,n90,( 1 U Qs). In view of the
boundary condition incorporated in the latter space, this is, however, impossible.
The conditions on the directions of the arrows depend on the boundary conditions
imposed on 99, e.g., they will be different when a basis for Hj(f2) is sought.

Our main interest in the construction of a basis from bases from subdomains lies
in the use of piecewise tensor product approrimation. On the hypercube

O:=(0,1)",

one can construct a basis for the Sobolev space H™(O) (or for a subspace incorporat-
ing Dirichlet boundary conditions) by taking an n-fold tensor product of a collection
of univariate functions that forms a Riesz basis for Ly(0, 1) as well as, properly scaled,
for H™(0,1). Thinking of a univariate wavelet basis of order d > m, the advantage of
this approach is that the rate of nonlinear best M-term approximation of a sufficiently
smooth function u is d — m, compared to d_Tm for standard best M-term isotropic
(wavelet) approximation of order d on [J. The multiplication of the one-dimensional
rate d — m by the factor % is commonly referred to as the curse of dimensionality.

One may argue that for any fixed n, a rate d —m can also be obtained by isotropic
approximation by increasing the order from d to nd — (n — 1)m. Concerning the
required smoothness of u, however, in the latter case it is (essentially) necessary
and sufficient that for 1 < i < n, 0 < k < m, it holds that aaafu € L,(O) for
p=(d—m+3)"and ||ally < n(d—m), where o denotes a multiindex, i.e., o € Nj.
With tensor product approximation the last condition reads as the much milder one
||| < d—m (a precise formulation of the smoothness conditions in terms of (tensor
products of) Besov spaces can be found in [97, 115]).

Actually, the above conditions guarantee only any rate s < d — m. Arguments
from interpolation space theory that are used do not give a result for the “endpoint”
s=d—m.

In any case, for dimensions n > 3, the solution of an elliptic boundary value
problem of order 2m = 2 generally does not satisfy the conditions such that isotropic
approximation converges with the best, or any near best possible rate allowed by
the polynomial order, i.e., d’Tm for order d. In order to achieve this rate, generally
anisotropic approximation is mandatory (cf. [2]).

In addition to avoiding the curse of dimensionality, the possibility of anisotropic
approximation is automatically included in (adaptive) tensor product approximation.
In [47], see also [96], it was shown that best approximations of w from a suitably
chosen nested sequence of spaces spanned by tensor product wavelets realizes the
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5 Piecewise tensor product wavelet bases

best possible rate d —m, so not only any near best possible rate, when for 1 <1¢ < n,
0 <k <mand ||alje < d—m, 0“0Fu is in a weighted Lo(0J) space, with a weight
being an n-fold product of univariate weights on (0, 1) that vanish at the endpoints.
Clearly, the optimal rate d — m for this linear approximation scheme implies this
rate for the nonlinear best M-term approximation from the tensor product basis.
What is more, in [47] it was shown that for a sufficiently smooth right-hand side,
the solution of Poisson’s problem on the n-dimensional unit cube [J satisfies this
regularity condition.

In view of these results on [, we consider a domain €2 whose closure is the union of
subdomains 7+ 0 for some 7 € Z", or a domain §) that is a parametric image of such
a domain under a piecewise sufficiently smooth, globally C™~! diffeomorphism &, be-
ing a homeomorphism when m = 1. We equip H™({2) (or a subspace incorporating
Dirichlet boundary conditions) with a Riesz basis that is constructed using extension
operators as discussed before from tensor product wavelet bases of order d on the
subdomains, or from push-forwards of such bases. Our restriction to decompositions
of €2 into subdomains from a topological Cartesian partition will allow us to rely on
univariate extensions. We will show the best possible approximation rate d — m for
any u that restricted to any of these subdomains has a pull-back whose derivatives of
sufficiently high order are in the aforementioned weighted Ly([J)-spaces. The latter
proof turns out to be technically hard. Indeed, in order to end up with locally sup-
ported wavelets, we will apply local, scale-dependent extension operators — i.e., only
wavelets that are non-zero near an interface will be extended, — which do not preserve
more smoothness than essentially membership of H™.

Furthermore, using anisotropic regularity results recently shown in [29], we show
that if, additionally, 2 is a two- or, more interesting, a three-dimensional polytope,
then for a sufficiently smooth right-hand side, the solution of Poisson’s problem sat-
isfies this piecewise regularity condition. For that to hold in three dimensions, it will
be needed that the parametrization map x is piecewise trilinear, and it may require
a refinement of the initial decomposition of €.

Since it defines a boundedly invertible mapping from a Hilbert space, being Hg (),
to its dual, the Poisson problem is an example of a well-posed operator equation.
Equipping H}(2) with a Riesz basis constructed using extension operators from ten-
sor product wavelet bases of order d on the subdomains, the operator equation is
equivalently formulated as a boundedly invertible bi-infinite matrix vector equation.
Approximate solutions produced by the adaptive wavelet-Galerkin method ([26, 121])
were proven to converge with the best possible rate in linear complexity. We perform
numerical tests in two and three dimensions with wavelets of order d = 5 that confirm
that this rate is d — m.

This paper is organized as follows: In Sect. 5.2, we present the abstract idea be-
hind the construction of isomorphisms from a Sobolev space on a domain onto the
product of corresponding Sobolev spaces on subdomains that form a non-overlapping
decomposition.
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5.2 Construction of the isomorphisms

In Sect. 5.3, we recall results on tensor product approximation on a hypercube,
and collect assumptions on the univariate wavelets, being the building blocks of the
tensor product wavelets.

In Sect. 5.4, we consider a domain {2 that is the union of hypercubes from a Carte-
sian partition of R™ into hypercubes. We formulate precise conditions on the order
in which univariate extensions over interfaces have to applied, and which boundary
conditions have to be imposed, such that for a range of smoothness indices the com-
position of these extensions is an isomorphism from a Sobolev spaces on {2 onto the
product of the corresponding Sobolev spaces on the collection of hypercubes. Equip-
ping these hypercubes with tensor product wavelet bases, we end up with a piecewise
tensor product wavelet basis on (2.

In order to obtain locally supported primal and dual wavelets, in Sect. 5.5 the
extension operators are replaced by scale-dependent modifications, in the sense that
only wavelets with supports “near” the interfaces are extended. It is shown that
approximation from the resulting piecewise tensor product basis gives rise to rates that
are independent of the spatial dimension, assuming the function that is approximated
satisfies some mild, piecewise weighted Sobolev smoothness conditions.

In Sect. 5.6, these regularity conditions are verified for the solution of Poisson’s
problem with sufficiently smooth right-hand side in two and three-dimensional poly-
topes.

The best possible rates from the piecewise tensor product basis can be realized
in linear complexity by the application of the adaptive wavelet-Galerkin scheme.
In Sect. 5.7, we present numerical results obtained with this scheme for the two-
dimensional slit domain, and the three-dimensional thick L-shaped domain and the
Fichera corner domain.

5.2 Construction of the isomorphisms

In an abstract setting, for a class of mappings from a Banach space to the Cartesian
product of two other Banach spaces, we give conditions on such mappings to be
isomorphisms. The results will be applied to construct isomorphisms from a Sobolev
space on a domain onto the product of Sobolev spaces on subdomains.

Proposition 5.2.1. For normed linear spaces V and V; (i = 1,2), let £y € B(V4,V),
ne € B(V,,V), Ry € B(V, V1), and Ry € B(S1, V2) be such that

R,\E, = Id, Rg?]g = Id, R17]2 = 0, %(Id — ElRl) C %7]2

Then
E =[E, mna) € B(Vy x Vo, V) is boundedly invertible,

with tnverse

-1 _ Ry
E = {RQ(Id—ElRl) '
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5 Piecewise tensor product wavelet bases

Proof. Using that Ry Fy = Id, Rins = 0, Rone = Id, we have
Ry C1d o
[Rz(ld— ElRl)} By m] = [0 Id} ’
and using that I(Id — E1Ry) C Sn, and Renp = Id, we have
Ry
Er ] {RQ(Id - ElRl)]

In applications V' (V;) will be densely embedded in a Hilbert space H (H;). Ques-
tions about boundedness of £ or E~! in dual spaces then reduce to properties of
the Hilbert adjoint of E. Study of the Hilbert adjoint will also be relevant for the
investigation of dual bases.

Proposition 5.2.2. For Hilbert spaces H and H; (i = 1,2), let R; € B(H, H;), and
isometries n; € B(H;, H) be such that

Ry =0;; (1,5 €{1,2}), H=Sma" S,

and let By € B(Hy, H) be such that Ry Fy = 1d.
Then mRy +mneRe =1d, E' € B(Hy x Hy, H) is boundedly invertible, nf = R;, and

= E1R1 + 772R2(Id — ElRl) =Id. O

« | BT — .
E" = [R1:| ) E = [771 (Id - 771E1)772]-
2

Proof. The first statement statement follows from 1Ry + 9 Ry = Id on S7);. The
second statement follows from Proposition 5.2.1 once we have verified that $(Id —
E1Ry) C Q1. Writing (Id — EyRy)x = myx1 + nmee, and applying R; to both sides,
we find x; = 0 as required. For any v € H;, v € H,

(miv, v) i = (i, Z'f]jRjU>H = (niw, i Rv)n = (u, Riv)
J

or nf = R;. Now the last statement follows from the formulas for £ and E~! given in

Proposition 5.2.1. O
Remark 5.2.3. The formulas for £ and E~*, and so those for £~! and E* are
symmetric, with reversed roles of H; and Hs, in the sense that with Ey := (Id —

1 E7)ne, it holds that (Id — neE3)m = Ei.
Let V and V; (i = 1,2) be reflexive Banach spaces with
Ve H , f/z — H; with dense embeddings.
In this setting, we have that boundedness, or bounded invertibility of
E:V/xV]j—=V
is equivalent to boundedness, or to bounded invertibility of

E*:V = Vi x V.
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Proposition 5.2.4. Let the assumptions of Proposition 5.2.2 be valid. Let

RQ € B(V>‘72)7 Ui € B(‘P}Lv)? Eik € B(Vam)

Then E* € B(V,V; x V3), and so E €~B(f/1’ x V4, V"), is boundedly invertible if and
only if Ry has a right-inverse Ey € B(Va, V).

Proof. The assumptions imply that E* € B(f/, Vi X ‘72), and that for E~* € B(\71 X
Va, V) it suffices to show that E, := (Id — g E¥)n, € B(Va, V). If the latter is true,
then, since Ry Fy = Id, we can take Eg = k.

Conversely, let E,eB (\N/Q, \N/) be a right-inverse of Ry. We have that

R1 (Id — EQRQ) = R1 — RlngRQ + R17]1EI772R2 = R1 + ETTIQRQ
= Ej(mBy +mRy) = B} € BV, V1).

So
Id — FyRy = (m Ry + moRy)(Id — EyRy) = mRy(Id — E3Ry) € B(V, V),
or FyRy € B(‘N/, ‘7) But then Fy = EQRQEQ € B(‘N/Q, ‘7) ]

Finally in this section, we apply arguments from interpolation space theory to
conclude boundedness of E in scales of Banach spaces.

Proposition 5.2.5. (a). Let V.,V and V;, V, (i = 1,2) be Banach spaces with
V=V, V.=V, with dense embeddings.

Let the mappings (Ry, Ra, Ey,m2) satisfy the conditions from Proposition 5.2.1 for
both triples (V,V1,V32) and (V,V,,V,). Then for s € [0,1], q € [1, 00],

E € B([Vi,V3]sq X [Va,Volsg: [V, Vl]sq) is boundedly invertible.

(b). Let V,V, and V;, EZ be reflexive Banach spaces, and H and H; be Hilbert
spaces (i = 1,2) with

2 Ve H, El — ‘N/Z — H; with dense embeddings.

Let the conditions of Proposition 5.2.2 be satisfied, as well as the conditions of Propo-
sition 5.2.4 for both triples (V, V1, Va) and (V,V |, V). Then fors € [0,1], q € [1, o],

E e B([Vi, V], , x Va,V,. ., [V, V].,) is boundedly invertible.

S7q7
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5 Piecewise tensor product wavelet bases

5.3 Approximation by tensor product wavelets on the
hypercube

We will study non-overlapping domain decompositions, where the subdomains are
either unit n-cubes or smooth images of those. Sobolev spaces on these cubes, that
appear with the construction of a Riesz basis for a Sobolev space on the domain as a
whole, will be equipped with tensor product wavelet bases. From [47], we recall the
construction of those bases, as well as results on the rate of approximation from spans
of suitably chosen subsets of these bases.

For t € [0,00) \ (Ng + {3}) and & = (04, 0,) € {0,..., [t + 1]}? with T := (0, 1),
let

HLYT) ={ve H(T) : v(0)=--- =0 V(0)=0=0(1) =--- =0 D)}

Remark 5.3.1. Later, we will use this definition also with Z reading as a general
non-empty interval, with 0 and 1 reading as its left and right boundary.

For t and & as above, and for ¢ € [0,00) \ (Ng+ {3}) and G = (60,6,) €{0,...,|I+
+1}?, we assume univariate wavelet collections

Qu

Y

= {7 )\EVM}CHt (T)

Qu

&
such that

Wi. VU, 5 is a Riesz basis for Ly(Z),

W. {2_"“%5\‘?’5) : A € V, 2} is a Riesz basis for H.(Z),

where |\| € NO denotes the level of A. Denoting the dual basis of W > for Ly(Z) as

33 = {w : A € V; 5}, furthermore we assume that

Ws. {2*"“%5\5’5) A € V; 5} is a Riesz basis for Hé(Z),

and that for some
N>d>t,

W4 ’<,l/} 0.0.)7 U>L2(I)| S./ 2_|/\|d||uHHd(supp1E<5¢5)) (u 6 Hd(I) m H:;(I))?

:‘
0'

Ws. 0 = SuDjey_. 21A |max(d1amsuppzz/\ , diam supp w)\a&)

~ mf,\evﬁQ‘ | max(diam supp @b/\’ ),dlamsupp%\’ )),

We. sup £\ = j: k279, (k + 1)277] N (supp 77 Usupp 7)) £ 0} < oo

7,k€Ng
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5.3 Approximation by tensor product wavelets on the hypercube

The conditions (W5) and (Ws) will be referred to by saying that both primal and dual
wavelets are local or locally finite, respectively. For some arguments, it will be used
that by increasing the coarsest scale, the constant o can always be assumed to be
sufficiently small.
With, for n € N,
0.=7",

one has Ly(0J) = ® , Ls(Z). For

o = (0i = ((0:)e, (0:)r))1<i<n € ({0, [t + 5]32)",
we define
H.(D):=H: ()@ Lo(I) @+ @ Lo(Z) N -+ NLo(Z) ® -+ @ Lo(Z) @ HE (T),

which is the space of H*((J)-functions whose normal derivatives of up to orders (o;),
and (0;), vanish at the facets 70! x {0} x 7" and Z¢~! x {1} x "¢, respectively
(1 < i < n) (the proof of this fact given in [47] for ¢ € Ny can be generalized to
t€[0,00) \ (No+ 3)).

The tensor product wavelet collection
n
‘Ilo',& = ®:’L:1 Fi,60 {1'0(0. o = 2 1 /\01 ) T € V"'U : Hv(r’i,gi}’
i=1

and its renormalized version { (.7, 4t|’\i|)_l/ 21/)&”’&) : A € V45 } are Riesz bases for
Ly(0) and H(O), respectively. The collection that is dual to ¥, 5 reads as

= {15;0’&) = ®i AUZ ) rA € VUU}

and its renormalized version { (> 7, 4"\i|)_t/ 2@5&”’&) : A € V,5} is a Riesz basis for
HE(OD).

For A € V, 5, we set |A] := (|A1],...,|A\n]). As usual, for 5,7 € Ni, |7] < [g] will
mean that [j|; < |g|; (1 <i <n), whereas |j| > || or |j| = |g| will mean that |3| < |j]
or 7] < || and |7] > |g|, respectively.

For § > 0, the weighted Sobolev space HE(Z) is defined as the space of all measurable
functions v on Z for which the norm

Jullgin = [Z [l =2 @) da

1
2

is finite. For

me{0,..., [t}
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5 Piecewise tensor product wavelet bases

we will consider the weighted Sobolev space

H’flnﬁ(m) = mg z 1 HG dip min(m, 9)(‘2’-)7

equipped with a squared norm that is the sum over p =1, ..., n of the squared norms
on ®l 1%0 8;p min(m,0) (I) :

Theorem 5.3.2 ([47, Thm. 4.3]). For any 0 € [0,d), there exist a (nested) sequence
(V9N yen C Voiz with #V 7% =~ M, such that

inf lu = vllm@y S M lullya o), (u € Hy,o(@) N HZ(D)),
vEspan{qp(a 5, )\ev(" ")} m,0 ,

where for m =0, M=) should be read as (log #M)n—DE+d) pf—d,
The index sets V(G’G) can be chosen to have the following multiple tree property:
For any A € V %) and any j € N” with j < ||, there exists a p € VS\Z’G) with

| = 4, and supp 7% N supp pie? £ 0.

With the notations v € H.(a + 0) and u € H, 4(a 4+ O), we will mean that
u(- + ) € Hy(O) or u(- + a) € HY, o(0), respectively.

5.4 Construction of Riesz bases by extension

Let {O,...,0xn} be a set of hypercubes from {r + 0 : 7 € Z"}, and let Q be a
(reference) domain (i.e., open and connected) in R™ with UN_ [, € Q < (UN_O,)™,
and such that 9 is the union of (closed) facets of the [J;’s. The case Q C (UM Op)
corresponds to the situation that ) has one or more cracks. We will describe a con-
struction of Riesz bases for Sobolev spaces on ) from Riesz bases for corresponding
Sobolev spaces on the subdomains [;, using extension operators. We start with giving
sufficient conditions (D;)—(Ds) such that suitable extension operators exist. At the
end of this section, we will consider domains given as the parametric image of Q.

We assume that there exists a sequence ({ngq) : ¢ < k < N})o<g<n of sets of
polytopes, such that Q () = [x and where each next term in the sequence is created
from its predecessor by joining two of its polytopes. More precisely, we assume that for
any 1 < g < N, thereexistsaq < k=% < Nandq—1< k _k(Q) % ky = Q) <N
such that

~ ~ ~ A\ int R

D;. Q]%q) = (Qg_l) U Q,(g_l) \ 89) is connected, and the interface J : Q]% \
(Q,(z_l) U Qg_l)) is part of a hyperplane,

Dy {00 g <k<NE#k}={Q0 "V :q—1<k<NE#{k,k}},
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5.4 Construction of Riesz bases by extension

For some
t €10,00)\ (No + {3}),

to each of the closed facets of all the hypercubes [, we associate a number in
{0,..., [t+1]} indicating the order of the Dirichlet boundary condition on that facet
(where a Dirichlet boundary condition of order 0 means no boundary condition). On
facets on the boundary of Q, this number can be chosen at one’s convenience (it is
dictated by the boundary conditions of the boundary value problem that one wants
to solve on Q), and, as will follow from the conditions imposed below, on the other
facets it should be either 0 or [t + 3 ].

By construction, each facet of any Q,(f’) is a union of some facets of the [Jy/’s, that
will be referred to as subfacets. Letting each of these subfacets inherit the Dirichlet
boundary conditions imposed on the [y/’s, we define

H(O),

and so for k = ¢ = N in particular [ift(fl) = ]g[t(Q%V)), to be the closure in Ht(Q,(f))
of the smooth functions on Q;,q) that satisfy these boundary conditions. Note that for
0 <k <N, for some o (k) € ({0,..., [t + 1]},

H'(O) = H'(Oy) = HE 4 (D).

Remark 5.4.1. On the intersection of facets of hypercubes [J;/, the natural inter-
pretation of the boundary conditions is the minimal one such that the boundary
conditions on each of these facets is not violated.

The boundary conditions on the hypercubes that determine the spaces Jig t(Q,(f)),
and the order in which polytopes are joined should be chosen such that

D,. on the Q,(g_l) and Q,&Z_l) sides of J, the boundary conditions are of order 0 and
[t + 1], respectively,

and, w.l.o.g. assuming that J = {0} x J and (0,1) x J C Q,(frl),

Ds. for any function in i t(Q,(g_l)) that vanishes near {0,1} x J, its reflection in
{0} x R"! (extended with zero, and then restricted to Ql({i_l)) is in Ht(Ql(;i_l)).

The condition (Dj) can be formulated by saying that the order of the boundary

)

condition at any subfacet of Q,(g_ adjacent to J should not be less than this order

at its reflection in J, where in case this reflection is not part of 8@2‘2_1) the latter
order should be read as the highest possible one [t + %J, and furthermore, that the

order of the boundary condition at any subfacet of Q,(f;l) adjacent to J should not be
larger than this order at its reflection in J, where in case this reflection is not part of
8qu1_1), the latter order should be read as the lowest possible one 0. See Figure 5.3
for an illustration.
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5 Piecewise tensor product wavelet bases

order i < order j order [t+ | order i < order j
v v’ LV
Ala=1) |J Ala—1)
oSSR R N U N " I
S }
order |t 5] — order 0
order 0

Figure 5.3: Two illustrations with (D;)—(D;). The fat arrow indicates the action of

the extension F.?.

Given 1 < ¢ < N, for i € {1,2}, let R\ be the restriction of functions on QY @) to
Q(q 2 , let m () be the extension of functions on Q ) to Q by zero, and let E ) be

1)
some extension of functions on Qg to QEQ).

Proposition 5.4.2. Assume that
B € B(Lo(@ "), L), E{” € BH'(Q7Y), H'(Q)).
Then for s € [0, 1]

2
BO = 5" a1 € B(LTILa(0) B O oo [L2(00), H'(G)]s2)

i=1
1s boundedly invertible.

Proof. Taking V(@ = LQ(Q,E;I ), VD = L), V@ = {1(QW), v — (Y,
and noting that SId—EY R ¢ {u € Ht(fllgq)) cu=0on Ql(g_l)} = ( éq)|H @q,l))),
ko

the result follows from an application of Proposition 5.2.5(a). O

Corollary 5.4.3. For E being the composition for ¢ = 1,..., N of the mappings
@) from Proposition 5.4.2, trivially extended with identity operators in coordinates

ke{g—1,.... NI\ {K? KPV, it holds that

n

E € B( TT(La(00), 7002, [2(Q), H'(Q)]s2). (5.4.1)

k=0
15 boundedly invertible.

Under the conditions (D;)—-(Ds), the extensions E{‘I) can be constructed (essen-
tially) as tensor products of univariate extensions with identity operators in the other
Cartesian directions.
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5.4 Construction of Riesz bases by extension

Proposition 5.4.4. W.Lo.g. let J = {0} x .J and (0,1) x J C Q,(g_l). Let Gy be an
extension operator of functions on (0,1) to functions on (—1,1) such that

Gy € B(Ly(0,1), Ly(—1,1)), Gy € B(H(0, 1),H§U+%m(—1, 1)).

Then E(q defined by RQq)E being the composition of the restriction to (0,1) x j,
followed by an application of

followed by an extension by 0 to Qg];l) \ (—1,0) x J, satisfies the assumptions made
in Proposition 5.4.2.

Remark 5.4.5. The condition that an extension by G; vanishes up to order |t + %J
at —1 is fully harmless since it can easily be enforced by multiplying an extension by
some smooth cut-off function. The scale-dependent extension that we will discuss in
Subsection 5.5.1 satisfies this boundary condition automatically.

Our main interest of Corollary 5.4.3 lies in the following:

Corollary 5.4.6. For 0 < k < N, let W} be a Riesz basis for Lo(Oy), that renormal-
ized in H'(Oy,), is a Riesz basis for Jig (Ow) = He 4y (D). Then for s € [0, 1], and with

E from Corollary 5.4.3, the collection E([]n_, ®x), normalized in the corresponding
norm, is a Riesz basis for [Ly(S), Ht(Q)]

Remark 5.4.7. Although we allow for ¢ € (0, %), for these values of ¢ our exposition
is not very relevant. Indeed, for those ¢, a piecewise tensor product basis can simply
be constructed as the union of the tensor product bases on the hypercubes.

To find the corresponding dual basis, we follow Section 5.2. Taking forqg =1,..., N

Y

HO = Ly(7),  H" = Ly(Q)?),

and with 7? being the extension of functions on Q,(g_l) to QW

% by zero, Proposi-
tion 5.2.2 shows that

(B =i (1d =i (B?) )ng")

Corollary 5.4.8. In the situation of Corollary 5.4.06, let U, the Riesz basis for Lo(O)
that is dual to Wy. Then E‘*(Hffzo W,.) is the Riesz basis for Ly()) that is dual to
E(ch\;o W,.). The operator E~* is the composition for g =1,..., N of the mappings
(BDY= trivially extended with identity operators in coordinates k € {qg—1,..., N} \
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5 Piecewise tensor product wavelet bases

Below we give conditions such that E‘*(H,ivzo W,.), properly scaled, is a Riesz basis
for a range of Sobolev spaces with positive smoothness indices, and so, equivalently,
E(TT._, ¥1) to be a Riesz basis for the corresponding dual spaces.

For some ¢ € [0,00) \ (No + {3}), to each of the closed facets of all the hypercubes
Ok, we associate a number in {0, ..., |{+3 ]} indicating the order of the dual Dirichlet
boundary condition on that facet. On facets on the boundary of (), this number can
be chosen arbitrarily, where on the interior facets it is 0 or [£ + 1 ].

We define Iflt(fl( ), and so for k = ¢ = N in particular Jig (Q) = ];Tt(fl(N)) to be
the closure in H t(Q( ) of the smooth functions on Q (@) that on any of its facets satisfy
the boundary conditions that were imposed on each of its subfacets Note that with
some abuse of notation, even when f = ¢ generally i t( Q)) + il t( ) and that for
0<k<N, ~ ]

H'(O) = H'(0y) = H (D).
for some & (k) € ({0,..., [f+ 1]}H)™

We make the following assumptions on the selection of the boundary conditions
that determine the dual spaces H t(Q,(f)):

D). on the Q,Eg_l) and Q,&Z_l) sides of J, the boundary conditions are of order |f+ 1]
and 0, respectively,

and, w.l.o.g. assuming that J = {0} x .J and (0,1) x J C Q;(ﬁ_l%

Di. for any function in Ht(Q(q Y that vanishes near {—1,0} x J, its reflection in
{0} x R"7! (extended with zero, and then restricted to Qg_l ) is in Ht(Q(q W,

Proposition 5.4.9. For 1 < q < N, let the extension E be of tensor product form

* t t
as in Proposition 5.4.4 with G} € B(H(0 i+ J)( 1, 1)’H(Lt+§J7Lt+5J)(0 1)), and let By,

properly scaled, be a Riesz basis for Jig (Dk) Then for s € [0,1], E‘*(H]kvzo \ilk) is,
properly scaled, a Riesz basis for [L(Q), Ht(Q)]&Q

Remark 5.4.10. The boundary conditions imposed on Gju at 1 are fully harmless.
The scale-dependent extension (7 that we will discuss in Subsection 5.5.1 satisfies
these boundary conditions automatically. On the other hand, thinking of ¢ > ¢, the
boundary conditions at 0 are, when ¢t > %, the only properties that are not already
implied by the conditions on G from Proposition 5.4.4.

Proof. The conditions (D)), (D5) imply both that R has a right-inverse which is
in B(H Q" “) Hf(sz@ )) and (E\")* € B(H'(QD), Ht(Q(q ), by the assumption
on G}. Since RY ¢ B(Ht(Q]%q) Ht(Q(q ), n\? e B(Ht(Q(q Wy, Ht(Q ")) directly
follow from (Dj), an N-fold application of Proposition 5.2.4 together w1th the as-
sumption on the bases ¥y completes the proof. O
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5.5 Approximation by —piecewise— tensor product wavelets

To end the discussion about the stability of E(II})_ %) in dual norms, we note
that for ¢ < %, which suffices for our application for solving PDEs, the conditions
(D)), (DL), and those from Proposition 5.4.9 are void, with the exception of the very

mild condition of ¥y, properly scaled, being a Riesz basis for i E(Dk).

The construction of Riesz bases on the reference domain € extends to more general
domains in a standard fashion. Let €2 be the image of Q) under a homeomorphism
k. We define the pull-back k* by k*w = w o k, and so its inverse £~ *, known as the
push-forward, satisfies kK *v = v o xk™ L.

Proposition 5.4.11. Let k* be boundedly invertible as a mapping both from Lo (€2)
to Ly(Q) and from H'(Q) to HY(Q). Setting Ht(Q) = Sk e @ e have that
K e B([Lg(@),]f]t<§2)]32, [La(2), Ht(Q)]SQ) is boundedly invertible (s € [0,1]). So if
W is a Riesz basis for Ly(Q) and, properly scaled, for Ht(Q) then for s € [0,1], k*W
is, properly scaled, a Riesz basis for [La(€2), Ht(Q)]&g

If W is the collection dual to ¥, then |detD/i*1(~)|/(*il 15 the collection dual to
KW,

5.5 Approximation by —piecewise— tensor product
wavelets

In the setting of Proposition 5.4.4, Corollary 5.4.6 and Proposition 5.4.9, writing
Ok = O+ ag, where ay, € Z™, we select the the primal and dual bases for Ly(0y) to
be
‘I’a(k),&(k)(' — ag), ‘I’o(k)v&(k)(' — ay)

as constructed in Section 5.3, which, properly scaled, are Riesz bases for H,t;(k)(Dk)
and Hf;(k)(Dk), respectively. )

In the setting of Proposition 5.4.11, for m € {0,...,[t]} and v € H™(Q) =
[L2(S2), H' ()]n /1.2, with additionally

N N
u € li_*(H ’anﬁ(Dk)) ={v: Q= R:vok€ H’Hfm@([]k)}, (5.5.1)
k=0 k=0

we study approximation rates from /f‘*E(H]kVZO W o), (- — ak)) in the H™(Q)-
norm. Since, as is assumed in Proposition 5.4.11, k* € B(ﬁ]m(Q),Hm(Q)) is bound-
edly invertible, it is sufficient to study this issue for the case that x = Id and so
Q=Q.

We will apply extension operators E(q) that are built from univariate extension
operators. The latter will be chosen such that the resulting primal and dual wavelets
on O are, restricted to each 0, C 2, tensor products of collections of univariate
functions that are local and locally finite (cf. parts (1) and (2) of the forthcoming
Proposition 5.5.4).
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5 Piecewise tensor product wavelet bases

5.5.1 Construction of scale-dependent extension operators
We make the following additional assumptions on the univariate wavelets. For ¢ =

op,00) €40, |t+ 1]}, 6 = (60,6,) € {0,...,[f+ L]}% and with 0 := (0,0),
2 2

Wr. Vj@ = Span{gb)\ 79 A e Vs Al < j} is independent of &, and V;(E) =
V¥ nHY(T),

Ws. V2 is the disjoint union of Va,_; G0 v, fo?,&r such that
i) sup 2|z < o, sup 21—z S o,
)\Evg)g,xesuppw;&’&) AGVET):,xesupp 1/15\5’(”

ii) for A € VU (U 7 (0 0 , zb)\a 9 = w (©.0) , and the extensions of w;ﬁ,@) and
zb/\o 9 by zero are in H t(}R) and H'(R), respectively.

spanw(““ (1-):Ae VO, A = j} =spanf{u® : A e VO, |A] = j},
W. Span{wmgr UZG'T)( ) Aevffiw’ P\‘—j}—
span{w(ar 00060 Ly e VUT 50 A =7},

(2" € span{yf s e vw b (1eNg, A evy ),
Wio. (0,0)
\ (2-)€span{¢)y cpe VW (1eNy, Aev),

As (W;)-(Wk), these conditions are satisfied by following the biorthogonal wavelet
constructions on the interval from [100, 50] ((W;) is not satisfied by the construction

from [41], but the following exposition can be adapted to apply to these wavelets as
well).

Remark 5.5.1. In view of the boundary conditions that are imposed on the inter-
facets, see (D,) and (D)), it is actually sufficient to impose (Wy)—(W,o) for (oy, &),

(Ura6r> € {(Lt+ %J’O)a (07 LE_'_ %J)}

We consider the setting of Proposition 5.4.4. W.1.o.g. we assume that J = {0} x J,
and (0,1) x Jc Q,(g_l). We assume to have available a univariate extension operator

), H'(=1,1)),

GleB( 10,1
1,1),H Lt+J0)(O’1))'

G1 € B(L2(0,1), Ly(—1,1)) with Gt € B(H! (-

(5.5.2)

Let m; and 7, denote the extensions by zero of functions on (0,1) or on (—1,0) to
functions on (—1,1), with R; and Ry denoting their adjoints. We assume that G; and
its “adjoint extension”

v

G = (Id — m Gny
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5.5 Approximation by —piecewise— tensor product wavelets

(cf. Remark 5.2.3) are local in the sense that

{ diam(supp ReGhu) < diam(suppu) (u € Ly(0,1)), (5.53)

diam(supp R1Gou) < diam(suppu) (u € Ly(—1,0)),

see Figure 5.4 for an illustration.
Ry 72 m Ry
GQ él T

Figure 5.4: Univariate extensions and restrictions.

Examples are given by Hestenes extensions ([71, 44, 82]), which are of the form

Gio(—z) =Y () (Bx) (veE Ly(I), x € I), (5.5.4)

(and, being an extension, Gyv(z) = v(z) for z € T), where 5 € R, f > 0, and
¢ : [0,00) — [0, 00) is some smooth cut-off function with ¢ = 1 in a neighborhood of
0, and supp ¢ C [0, min;(3;, ;7 1)]. Its adjoint reads as

Grw(z) = w(z) + C(z )Z ;ﬁ (;;) (w € Lo(~1,1), z € T).

A Hestenes extension satisfies (5.5.2) if and only if
Z'Vlﬁl_ No9l< Z’Yﬂl A )J+1(N 9]<Lt__J)

With a univariate extension Gy as in (5.5.2) at hand, the obvious approach is
to define Efq) according to Proposition 5.4.4 with G; = Gi. A problem with the
choice Gy = G is that generally (5.5.3) does not imply the desirable property that
diam(supp Gyu) < diam(suppu). Indeed, think of the application of a Hestenes ex-
tension to a u with a small support that is not located near the interface.

To solve this and the corresponding problem for the adjoint extension, in any case
for u being any primal or dual wavelet, respectively, following [44] we will apply our
construction using the modified, scale-dependent univariate extension operator

w0 WL+ Y w0 eme”. (5.5.5)

Aev() xevOuv{?)
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5 Piecewise tensor product wavelet bases

Taking G1 to be a Hestenes extension, under the condition of ¢ being sufficiently
small, its first advantage is that its application in (5.5.5) does not “see” the cut-off
function ¢, which prevents potential quadrature problems.

Proposition 5.5.2. Assuming o to be sufficiently small, the scale- dependent exten-
sion Gy from (5.5.5) satisfies, for G € {0,..., [t + 1]}, 6 € {0,..., [T+ 1]}?

R (,5)
Gﬂbfj’"’) _ 7211/42# . when |1 € V( U VUT 55 (5.5.6)
G when p € VJZ Gy

Assuming, additionally, Gy to be a Hestenes extension with By = 2!, the resulting
adjoint extension Gy := (Id — mG7)ny satisfies

=

. oa (I £)
Galii (1)) = § PO ) when W € VIUT e (g
Go(77 (1 + ) when p e VY

Or,Or "

We have Gy € B(Ly(0,1), Ly(—1,1)), Gi € B(H*(0,1),H(-1,1)), and G} €
B(H'(-1,1), H&H 1 0) (0,1)).
Finally, for p € Vaw it holds that

diam(supp le 7.3) )) < diam(supp wl(f’g)),
diam(supp GQZZJM ’ ) < diam(supp @Z;l(f’g)). (5.5.8)

Proof. By (Ws)(ii), for p € VI U VU 50 N E V(()g[)), one has ( ,fg ,@D)\OO Vo) = 0,
and so G107 P = ZAeVM(i/JuU 9) ; E\O 0)>L2(I)771@/JE\6’ = mb 7% the last equality from
U0 being a Riesz basis’ for Ly(Z), and 7)1 being Lo-bounded.
o A€V UVOO, it holds that ( (UU),w/\W}LQ @ =0, and
S0 Gﬂb/;7 ) Z)\GV(O 0)< (a 0)7 %DAO 0 >L2 1¢ 00 _ Gﬂﬂug ) .

If G, is a Hestenes extension with 3; = 2!, then for v € Ly(Z),

Gim(v(L+)) = 3 (Cmalv(d+ ). 04 )y i

Slmllarly, for p € v

AEV@"@
= Y (01— ), (RGN (=) Ly
Aevm
= 3 (1 =) (ReC) (=) 1y
AEVD
= 3 (vii- Z W 0@)) g0, (5.5.9)
AEVY r2o
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5.5 Approximation by —piecewise— tensor product wavelets

_, ~a

For v = 1/;,(? and p € VU 5, one has <v( S o%(@ﬁ,\ (2! )>L o 0 for

Ae vy V(()f()) by (W), (Wio), and (Ws)(ii). So for those y, one has Ginotp” %) =
CUJTT]Q@ZJL&’&), which completes the proof of (5.5.7).

Since span{@bﬁo’o) TS V(I)UV(()T()]}‘I—SPELD{@/)LO’O) RS V((fz)} defines a stable splitting
of both Ly(Z) and H*(Z) into two subspaces, the statements about the boundedness
of Gy follow from (5.5.6) with (¢,5) = (0,0), (5.5.2), and (Ws)(iii).

The mapping P : u +— ZuGV“)uvffe)Y&( <U7¢f(f’g)(1 + N Lo 10 M2 (0 7@, ")(1 + ) is in

_,

B(H'(—1,1), H'(—1,1)) by the assumption on (@) and (Wj)(ii). Since \11(575)(1 +-)
is a Riesz basis for Ly(—1,0),

RoI—=Plu= > (u, T 1+ ) 1?1+,

MGV(T)

or,Gr

For v = ~,(f?’§) and p € VI U V((,)U (5.5.9) is zero by (Wy), Who), and (Ws)(ii).
,0)

We conclude that (G} — éT)ﬂQRQ(I — P) = 0. Since Gy and G, are extensions,
we also have Gim = Id = G — 1", and so Gi(I — P) = Gi(mBi + n2Ra) (I —
P) = Gi(I — P). Together with GiP = 0, from (5.5.2) we conclude that G} €
B(Ht(—l, 1) Hat+ JO)(O71))‘

The last statement is a direct consequence of (5.5.6) and (5.5.7). O

Remark 5.5.3. Although implicitly claimed otherwise in [44, (4.3.12)], we note that
(5.5.7), and so (5.5.8), cannot be expected for G being a general Hestenes extension
as given by (5.5.4), so without assuming that 3, = 2.

Moreover, (5.5.7), and so (5.5.8), are only guaranteed when, for (o, 5¢) = (0, |t +
%J), for any A € V, z for which either 1/1&5’&) or @Zf\a’&) “depends on” the boundary

conditions imposed at the left boundary, the primal wavelet z/&&’&) is extended by the
application of G1. The reason to emphasize this is that with common biorthogonal
wavelet constructions on the interval, the number of dual wavelets that depend on
the boundary conditions is larger than that of the primal ones. Note that even if dual
wavelets may not enter the computations, their locality as given by (5.5.8) will be
used to prove the forthcoming Theorem 5.5.6 about the approximation rates provided
by the primal piecewise tensor product wavelets.

Some examples of relevant Hestenes extensions with 3; = 2! are:
o [ =0,y =1 (reflection). Satisfies (5.5.2) for t < %, t< %,
o L =1, =3,y = —2. Satisfies (5.5.2) for t < 2
o L =1, = -3, 1 = 4. Satisfies (5.5.2) for t < 3

o L =2 v =-5 7 =10,y = —4. Satisfies (5.5.2) for t < 2, < 3.
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5 Piecewise tensor product wavelet bases

In order to identify individual wavelets from the collections constructed by the
applications of the extension operators, we have to introduce some more notations.
For 0 < ¢ < N, we set the index sets

Vl(co) = Vow),sk) % {k} and, for ¢ > 0,
oo . | Vi uvEt itk =k,
R I if k € {q,.... N} \ {k} and Q7 = Q"

and, for (\,p) € V;Cq), the primal and dual wavelets,

0,k o(p),c 7 (0,k 7 (o(p),o
BOD — g0, GO GO ),

and, for ¢ > 0,
¢ (@), (a1 k) (¢-1) )
(a,k) E(}z qul k2) A.p) € V'(“,;_l) if k =k,
Yxp = i (A\.p) € V!
) : _ B
\"l’ql 1fk€{q,...,N}\{k}andQl(;I):Qéq 1)’
(q ’l/J (g—1,k1) A (¢—1)
,p) €V , _
;@) @) (@ (g—1,k2) (A7) ?&—1) if k =k,
Yy = (Id m(Ey)* ) 7# (A p) eV,!
k 7 —
kip(q 1 lfke{q""’N}\{k}ande@q):Qg v

Then, as we have seen,

(B B0) = () - () € VIOL X, 2 (p) € V7))

is a pair of biorthogonal Riesz bases for LQ(Q](;])), and for s € [0,1], \II(Q) or \ill(fq)

are, properly scaled, Riesz bases for [Ly(Q\), Ht(Q( Nz and [Ly(QL?), Ht( Q)0
respectively.

Proposition 5.5.4. With Efq) being defined using the scale-dependent extension op-
erator as in Proposition 5.5.2, for 0 < q < k < N, we have

1. supp wg‘{f), supp 7,5(;{;,’“) are contained in a hyperrectangle aligned with the Carte-
sian coordinates with sides in length of order 2= . 27l

2. for any y € R™ and j € NU, the hyperrectangle y + [[;_,[0,277] is intersected
by the SU ports at most a uniformly bounded number of primal or dual wavelets
Py, P with [A| = g,

3. let
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5.5 Approximation by —piecewise— tensor product wavelets

and e := (1,...,1)7 € R"™. Then for some constants m,, M, € Ny, for all
je{mym,+1,...}",

Vicmye (A7) € Zi(4) € Viar,e ().

q€

Proof. Parts (1) and (2) follow from the locality and the locally finiteness of the
univariate primal and dual wavelets ((Ws) and (Ws)), and the locality of the extension
and the adjoint extension given by (5.5.6) and (5.5.7).

By construction of the wavelet basis, the second inclusion in (3) follows from (5.5.6)
and G, being a Hestenes extension with 3 = 2!, (Who), Ws), and (Wy). The constant
M, can be taken to be less than or equal to 2L, or to L when the domain has no
cracks.

The first inclusion in (3) holds true for ¢ = 0 with my = 0 by (Wy). Suppose, for
some m,_1, it is true for ¢ — 1 and ¢ — 1 < k < N. For some constant m, > m,_1

that will be determined below, let v € Vi_p,o(%?). Then R{"v € Vi, o) C

A(g—1
Zj+(mq_rmq)e(91(£ )), and so

EYRD0 € Ziy my 1 mpe(QY) € Z;(Q9) (5.5.10)

by definition of \Il]%q).
From (5.5.10), we have EYRWy € VjJr(mq_lJquimq)e(Q(q))7 and so (I— YRy e

Vit (mg_1+ Mq,mq)e(fl]%q)), and therefore

Rg]) (Id _ Efq)qu))U

A(g—1 n 0
e {ue L) ul-+aw)la € @V rm,

(O € O ))

Since, as shown in the proof of Proposition 5.4.2, (Id — E\Y R}y € %(néq)\ﬁt(ﬂ(q,l) ),
L)

and so R\ (Id — EWRW)y e Iflt(fl,(é_l)), we infer that
A (g1 A (g1
qu) (Id - E£q)R§q))v € Vi‘f‘(mqfl‘*‘Mq_mq)e(Q;; )) - Zj+(2mq—1+Mq_mq)e(Q/(<g ))

By taking m, = 2m,_1 + M,, we conclude that (Id — E§Q)R§Q))v = néq)Réq)(Id —
EY Ry ¢ Zj(QI%q)) by definition of \Il]%q). Together with (5.5.10), this completes the
proof. n

Remark 5.5.5. The above proof shows that for L = 0 (reflection), VJ-(Q,(;])) =
Z(47).

Now we are ready to study the question, raised at the beginning of this section,
about the rate of approximation in H™(2) from the span of ¥ := ‘IIE\],V) :
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5 Piecewise tensor product wavelet bases

Theorem 5.5.6. Let the EY]) be defined using the scale-dependent extension operators
as in Proposition 5.5.2. Then for any 0 € [0,d), and any 0 < g < k < N, there exists

a (nested) sequence (V,(ﬂw)MeN - V,(f) with #V,(gqgw ~ M, such that

inf [t = | gy S M w2, . (5.5.11)
vEspan{1p§\q,;7k>:()\,p)evl(ﬂw} H™@Q) ~ Z HiL,G(Dk)

for any u € Hm( ) for which the right-hand side is finite (for g =k = N, i.e., for
Q,(gq = Q, this is equwalent to saying that u satisfies (5.5.1) (with k = 1d)).
Form =0, the factor M~@=™) in (5.5.11) has to be read as (log M)®=DGE+d pp—d,

Proof. We prove the statement with the additional property that the index sets V,(gq}w
have the multiple tree property introduced in Theorem 5.3.2 for subsets of V4 5,

and that in the current generalized setting reads as: For any (A, p) € V,(ﬂw and any
j eNr with 4 < |A|, there exists a (X', p') € V), with [X'| = 4, and supp i 0

supp ) # 0.

For ¢ = 0, the so extended statement is equal to that of Theorem 5.3.2. Let us
assume that the statement is valid for some 0 <¢—1< N — 1.

To prove the statement for ¢, it is sufficient to consider k = k. Let o be a smooth
function on R™ such that for some sufficiently small e, > £; > 0, 0 = 1 within distance
g1 of the interface J between Q,(Cq;l) and Q,(ﬁq;l), and vanishes outside distance 5 of

J. Writing any function v on Qf—f) as ov + (1 — p)v induces a stable splitting of
Hm(Q](f)) N HDk/cﬂﬁf) H, o(0p) into two subspaces.

For functions u of type (1 — g)v, one has u|@§§;—1) € Hm(Q,(fQ_l)), and, assuming o

to be sufficiently small, <u|Q(q 1),'¢(q bRy Ly@a-vy = 0 for all (A, p) € V;gl_l) with
k1 k1

(Q)w,/)(q Lk1) =+ E(Q)'l,b(q L) We conclude that for such functions (5.5.11) is valid
when
v, 2 viluvil

In the remainder of this proof, we consider functions of type u = pv, so with
support inside some sufficiently small neighborhood of J. For ¢ — 1 < k < N, we set
the biorthogonal projectors

P,if]]\}l) I Z (u,v,E(;{;”“)> @) ¥y, (@=1k)

Ap)evid,

W.lo.g. we assume J = {0} x J and define the (scale-independent) extension E as

E? with G, reading as Gy, defined by Gho(—z) = Sor  yw(2'z) and Giv(z) = v(x)
(x € 7). So Gy is the Hestenes extension G without the smooth cut-off function
which is not needed here because of the assumption on supp u.
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5.5 Approximation by —piecewise— tensor product wavelets

It holds that R (Id — EY Ry € ﬁm(ﬂg—n) and R\"u € ]flm(ng‘i_l)). Since
EAf'I) preserves the piecewise weighted Sobolev smoothness of a function supported
near the interface, we have

> IR M- B Rl o0t D IR ulie o

O Y Op O

S Y Nl o

Dk/CQ%q)

(5.5.12)

Setting u; := P,gf p R(q u, ug = Pk(;q_l)Réq)(Id - Efq)qu))Ua from [EA£q) Uéq)] €
B(ﬁm(ﬂl(z—l)) » Hm(Q](qu 1) ) H (Q]% )) (see Proposition 5.4.2), we conclude that

=B s + 157 0) | g i)

R R(Q) Uy

— [E(q) n(q)] 1 U —
1 2 Rg]) (Id _ E%q)qu)) U2 Hm(QI%Q))
@ @ ~() @) (5.5.13)

< \/||qu w= il g, IR 00 = BRIl

—(d—m) 2
5 M Z HUHH%Q(D;C)’

Dk/CQ(Lv
the last inequality by the induction hypothesis and (5.5.12).
Next, we write

w— (B\%ur + 0" us) = u — (BPuy +1%us) + (B — B )uy. (5.5.14)

By construction of G; from Gy, we have that (Id — {? R (E? — E9)y; = 0, and
RO(EY — EDYy, e Hm(Q(q Yy, and so

- ~(g—1,k Lk
(EYI) . E§Q))u1 — Z <R5‘1)<E( q) E(Q)) ug, ,,’bgzﬁ 2)>L2(Q (a— 1))772Q)¢(q 2)
Apevit
We set
2 (g—1 R~ ~1 - ~(g—1,k
Vil = {0) € VLY (BP(EY — EP)un, ) sy 40,
for some u; € %Pk(lq;\})}.

Below we will show that, even after a pos&ble enlargement to ensure the nlultl le
tree property, it holds that #V,(f ]\14 S#V (a— 1) . Defining V = V,g Uy sz VAS

V/,(C M), the proof is completed.
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5 Piecewise tensor product wavelet bases

It (A,p) € ViT ), then (R Ey{ 1 5 1)) L@ty 7 0 for some (X, p) €

1 1Lk m Alg—1 A(g—1
VD with R EDy ) e Q). Using Ziag (@) € Viapar, o(QF )
and the assumptions on the extension, we have

lk A(g—1 A(g—1
E(Q)tb(q 2 €V|>\\+(Mq_1+L)e(Q§€Z ))CZ|A|+(M4_1+mq_1+L)e(QI(fZ )

and so |A| < |A|+ (M,_, +my_1 + L)e. Here we applied both inclusions from Propo-
sition 5.5.4(3).

Thanks to the multiple tree property of V;ffz\l} , there exists a (N, p') € V(q 2 With
IN|; = min(JA];, |Al;) (1 <i<n)and supp¢(q LR A supp ¥y, (@~ lkl ) % (). Note that
because of |A| < [A| + (M, 1 4+ my_1 + L)e, we have [N| < |}\| < N+ (Myq +
mg-1 + Le.

The “localness” of \Il ) as given by Proposition 5.5.4(1), the assumptions on the
extension, and the “locally finiteness” of \Il(q Y as glven by Proposition 5.5.4(2) show
that the number of (X, p) € V(q U with (R q)E(q py! (@ 1k1),¢ a—1k2) ) @) # 0 on
the same level || < |A| + (My_q + mq_1 + L)e is unlformly bounded. With this,
we conclude that with the above mapping ()\,p) (N, p'), an at most uniformly
bounded number of (5\,]5) € 61&27]\14) is mapped onto any (X, p’) € Vk M, and so that
#VI SHVI

Finally, to bound #Vk M, we only used that for (5\,15) € @,(Cq_]\? there exists a
(A, p) € VY M ) with supp RWE Q)z,b(q L) ﬂsupp’t/J(q YR 2 and [A] < A4+ (My_1+
Mg—1 + L)e. The same proof would have applied Wlth the condition about the non-
empty intersection of the supports reading as the condition that supp R(q) . (q)@b(q*l’kl)

has non-empty intersection with some hyperrectangle, containing supp @b (g=Lk1) , that

is aligned with the Cartesmn coordinates with sides of lengths of order 2~ |>‘|1 cey 27 Al
In view of this, if V does not already has the multlple tree property, then it can

be enlarged to have thls property while retaining #V,€2 M S #V (a— 1) O

5.6 Regularity
We study the issue whether we may expect (5.5.1) for u being the solution of an

elliptic boundary value problem of order 2m = 2.

5.6.1 Two-dimensional case

Let © be a polygonal domain. This means that its boundary is the union of a finite
number of line segments, knowns as edges, with ends known as corners. It is not
assumed that €0 is a Lipschitz domain, so it may contain cracks. We denote with £
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5.6 Regularity

the set of edges, with C the set of corners, and set for ¢ € C,
re(x) = dist(x, c).

Following [29], for m € Ny, we define the (non-homogeneous) weighted Sobolev space
J5 () as the set of u € LP°(2) that have a finite squared norm

1oy =D > L] T & 1070l 0)-

k=0 |a|=k ceC

(in [29] the generalization is considered of 8 being possibly dependent on c).

Let A be a constant, real, symmetric and positive definite 2 x 2 matrix. Let £p C &,

and
{ve H'(Q) :vle =0Ve € Ep} when Ep # 0,

V)= { {ve H(Q) : [,v dz =0} otherwise.
Given g € V(2), let u € V() denote the solution of

/ AVu - Vv dr =g(v) (veV(Q)). (5.6.1)
0

Theorem 5.6.1. For m € Ny, there exists a b* € (0,m + 2| such that for any
b€ [0,b%), the mapping g — u € B(J" 1 (2), J"H5 ().

The proof follows from [29, formula (6.7)]. As stated in [29, Example 6.7], for m
sufficiently large, b* > i.

We refer to [29, Sect. 7] for generalizations of Theorem 5.6.1 to differential operators
with variable coefficients and/or lower order terms.

Concerning the smoothness condition on the right-hand side g, note that for b <
m+ 1,

H™(Q) = J711(Q).

Let us now consider the situation that Q = UX €, is an essentially disjoint subdi-
vision into subdomains, where ; = x;(0J) with x; being a regular parametrization.
Let R; denote the restriction of functions on €2 to €2;.

Proposition 5.6.2. If x; € C™**(0) and b < m + 1, then
kiR € B(JT5(Q), T ().

Proof. 'This follows from the smoothness of x;, and from the fact that x}u|qg, localized
near corners of [J that do not correspond to corners of € is a function in H™*?
J™+2 the latter by —b—14+m +2 > 0. O

The following Proposition demonstrates (5.5.1).
Proposition 5.6.3. For d € Ny, § > max(1,d — b/2), it holds that

T2, (0) = M, (T) @ HY(T) N HY(T) @ H_,(I) = H1 (D).

Proof. This follows from max(x?~1y? z%%1) < 271 < 2971 wwhen 79 € [0,1]. O
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5 Piecewise tensor product wavelet bases

5.6.2 Three-dimensional case

As in the previous section we follow [29] closely. Let Q be a polyhedral domain. This
means that its boundary is the union of a finite number of polygons, known as the
faces; the segments forming their boundaries are the edges, and the ends of the edges
are the corners. It is not assumed that 2 is a Lipschitz domain, so it may contain
crack surfaces. We denote with F, £, and C the set of faces, edges, and corners,
respectively, and set for e € £ and ¢ € C,

re(x) := dist(x, e), r.(x) := dist(x, c), re(x) := rglelél re(x), re(x) = rgel? Teo(X).

There exists an € > 0 small enough such that if we set
Qe = {x €N :71e(x) <&, 18(x) >71e(x) (£ €€ &), and re(x) > 5}
Qe = {x € Q:7e(x) <eand reg(x) > 5re(x)}
Qee :={x € Q:1e(x) < e and re(x) < ere(x)}
Qi ={xeQ:re(x) > 5}

we have the following properties

ﬁeﬂﬁelzm, ﬁceﬂﬁce/:{c} (e%e'GS,CGC),
B(C; E) N B(C/; E) =0 (C 7é ¢ € C), Q=Q U{CEC} Qe U{eeg} Qe U{cEC,eEf} Qee.

In a neighborhood of any edge e € £, we will take partial derivatives in an orthogonal
coordinate system with one of the coordinate directions being parallel to e. For a
multi-index « in that coordinate system, |a | will denote the sum of the coordinates
in the directions perpendicular to e, and |oy| := |a| — [y |.

For m € Ny, > —m, and & C &, we define the anisotropic weighted Sobolev space

NP(Q,C, &) = {u e L°(Q) : Ya, |a] < m, 8%u € La(Qy),

re(x)P1010% € Ly(Q) Ve e C,
Te(x)P1019% € Ly(Qe) Ve € &,
re(x) T (re(x) /1e(x))P 0% € Ly(Qee) Ve €C, e € &
re(x)mex(BHlasl0gay e 1,(Q.) Ve € £\ &,
1o(3) P19 (1 (%) /o ()1 BHALL0 92y € L[o(Qce) Ve € C, e € €\ 50},
(5.6.2)
with squared norm being the sum over |a| < m of the squared Ls-norms over ),
Qe, Qe, Qee, and ¢ € C, e € &, respectively. (As in the two-dimensional case, this

definition can be generalized to  being possibly dependent on ¢ and e).

The definition of Nj*(€2,C, &) is a special case of a definition of Nz*(€2,Cy, &) from
29] for general Cy C C. In particular, the definition of the (fully) non-homogeneous
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anisotropic weighted Sobolev space Nj*(Q2) := Nz (2, 0,0) is obtained from (5.6.2) by
taking & = (), and by replacing 7. (x)**lol by re(x)m@x(5+1l.0) on all three occurrences.
Obviously,

NI, C, &) < NJ(S). (5.6.3)

Let A be a constant, real, symmetric and positive definite 3 x 3 matrix. Let Fp C F,

and
V(Q) = {ve HY(Q) :v|g =0 Vf € Fp} when Fp # 0,
T {ve HY(Q) : [ v dz =0} otherwise.

Given g € V(Q2)', let u € V() denote the solution of
/ AVu - Vo de =gv) (veV(Q)). (5.6.4)
Q

Theorem 5.6.4. Let & be the set of all e € € that are an edge of an f € Fp. There
exists a b* € (0,1] such that for m € N, m > 1, and for any b € [0,b*), the mapping
grruc€ B(Nlnib(Q7C7 80)7 NTl—b<Q> Ca 50)) :

Indeed, with the isotropic weighted Sobolev spaces J3*(€2) as defined in [29, Def. 5.9]
(where we consider the value of 5 to be independent of the edges and corners),
(92, Th. 7.1] shows that g — u € B(J) ,(Q),J2,(Q)), and thus that g — u €
B(J?_,(Q), ] ,(Q)). Using that N, (Q,C, &) < J? (), we conclude the state-
ment of the theorem from the anisotropic regqularity shift theorem [29, (5.25)(a)]. Here
we used that the Assumptions 5.5 and 5.13 from [29] for e € & or e € £\ &, respec-
tively, are satisfied by an application of [92, Th. 7.2].

Concerning the smoothness condition on the right-hand side g, note that for b < 1,
Hm<Q) — Nlnib(Q7 C? 80)

The fact, as proven in Thm. 5.6.4, that for sufficiently smooth right-hand side, the
tangential derivatives of sufficiently high order along the edges of 2 of the solution of
(5.6.4) are in the (unweighted) Lo(2) space, is essential for our goal of proving ap-
proximation rates with piecewise tensor product approximation as for one-dimensional
problems.

Let us consider the situation that Q = UX €, is an essentially disjoint conforming
subdivision into hexahedra that are images of [J under trilinear diffeomorphisms &;,
with infxeq |Dri(x)| > 0.

Aiming at deriving a three-dimensional analogue of Proposition 5.6.2, care has to
be taken that for xfR;u to be in N™ _,(0J), its tangential derivatives along an edge
up to order m have to be in Ly([J). Therefore, we have to ensure that if an edge of
O is mapped onto the boundary of €2, then lines parallel to this edge are (smoothly)
mapped onto lines parallel to the boundary of €.
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5 Piecewise tensor product wavelet bases

Proposition 5.6.5. Let for any i, k; be such that if it maps an edge e of I to an
edge of €, then it maps all three edges that are parallel to e to edges that are parallel
to ki(e). Then

ki Ri € B(N",_,(2), N7, _,(00)).

Proof. What has to be shown is that if an edge e of [J is mapped to the boundary
of €, then the tangential derivatives along e of u o k; up to order m are a smooth
functions of the tangential derivatives of u along x;(e) up to order m.

W.lo.g., let e be one of the edges eV, ..., e® that are parallel to the first unit
vector. The vector J;k;(x) is a bilinear function of x9 and 3, and so in particular
constant on each of the el). These constant vectors are the differences of the endpoints
of k;(e\?), and so, by assumption, multiples of 1 k;|e. We conclude that d;x;(x) is a
multiple of a bilinear scalar function and 0 Ke. O

Next we will show that the condition on the parametrizations imposed in Proposi-
tion 5.6.5 can always be satisfied by making some refinement of the initial conforming
subdivision into hexahedra: Let us cut each hexahedron in the partition along 6 planes
parallel to the 6 faces of the hexahedron on distance ( > 0, see Figure 5.5. When (

Figure 5.5: Hexahedron cut into 3% subhexahedra.

is small enough, then the planes parallel to opposite faces of the hexahedron do not
intersect inside the hexahedron, and we obtain a subdivision of the hexahedron in
3% hexahedra. Eight of these hexahedra share a corner with the original hexahedron
and so have three edges on edges of this hexahedron, and so possibly three edges on
edges of ). These hexahedra are parallelepipeds and so satisfy the condition from
Proposition 5.6.5. Twelve other hexahedra have one edge on an edge of the original
hexahedron, and so possibly on an edge of €. For each of these hexahedra, the edges
opposite to this specific edge are parallel to this edge and so satisfy the condition
from Proposition 5.6.5. The remaining seven hexahedra have no edges on edges of the
original hexahedron, and thus no edge on an edge of €. Six of them have a face on
a face of the original hexahedron, whereas the boundary of the remaining “interior”
hexahedron has empty intersection with the boundary of the original hexahedron.
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Above subdivision of a hexahedron induces a subdivision of each of its faces into
3?2 quadrilaterals; 4 parallelograms at the corners, 4 trapezoids at the edges, and
one interior quadrilateral. Conversely, such a subdivision of 3 non-opposite faces of
the hexahedron, where the interior quadrilaterals are sufficiently large, determines
uniquely the subdivision of the hexahedron into 3* subhexahedra by making cuts
along planes parallel to the faces. So if we start with a subdivision of one hexahedron
and use the resulting subdivision of its faces to induce subdivisions of its neighbors,
then by choosing ( small enough we obtain a refinement of the original conforming
decomposition into hexahedra to a conforming decomposition into hexahedra that
satisfy the conditions needed for Proposition 5.6.5.

What is left to show is whether the hexahedra in the refined subdivision are im-
ages of O under trilinear diffeomorphisms x;, with infyeq |Dr;(x)| > 0. When the
aforementioned parameter { tends to zero, the interior hexahedron converges to the
hexahedron in the original decomposition, which was assumed to have this property.
So for ¢ small enough, the interior hexahedra have this property.

The other hexahedra in the refined subdivision have at least two parallel faces,
and so are instances of a prismatoid. Let us consider such a hexahedron with its
parallel faces, being convex quadrilaterals, on the planes z = 0 and z = 1. Let
q1,q2 : (0,1)> — R? be bilinear parametrizations of the bottom and top face with
inf(, ) e0,1)2 | Dgi(x, y)| > 0, and such that the images of each corner of (0,1)* under ¢
and ¢y are connected by an edge in the hexahedron. Then a trilinear parametrization
O — R? is given by

r(e,y,2) = (1= 2)qu(x, ) + 2q2(2, )

and so inf(,  yeo |[Dr(2,y, 2)| = infy2)en(l — 2)|Dai (2, y)| + 2|Dge(z, y)| > 0.
The following Proposition demonstrates (5.5.1).

Proposition 5.6.6. For d € Ny, 0 > max(1,d — g) where b > 0, it holds that
N3_,(0) = Hie(D)
Proof. 1t is sufficient to show continuity of the embedding of the spaces restricted to
Qc, Qe, and e intersected with (0, %)3, where ¢ = (0,0,0) and e = e;.
For ||or||s < d, the conditions on # show that on Q. N (0,1)3,
maX(xG—IyQZﬁ’ lﬁye—lZ&, x0y620—1> < TC(X)39_1 < TC(X)max(_l_bHal’O),
and on Qe N (0, 3)%,

lZe,yGZG_l) S Te(X)20_1 S Te(X)maX(_l_b+a2+a3’O).

max(y’z’, "~
On Qe N (0, 3)%, we have

rnaX<x071y9267 meyeflzej xeyezefl) S TC(X)GTe(X)Qeil.
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5 Piecewise tensor product wavelet bases

To show that this right-hand side can be bounded on

)max(—l—b+\a| ,0)—max(—1—b+az+as3,0) )max(—l—b+a2 +a3,0)

re(x Tre(x

we distinguish between 3 cases: For —1 — b + |a| < 0, this results from # > 0 and
20 —1>0.For =1 —b+]al| > 0> —1—0b+ as+ as, we have 7¢(x)re(x)?0~!
re(x)%71 <ro(x) 71l by 0 > d — L. For =1 — b+ as + a3 > 0, re(x)re(x)% !
Te(X)P 31 (X)X 7175 < 1o (x) 7 (x) 71002t by § > d — 3

O IAIA

5.7 Numerical results

As the univariate building block of the piecewise tensor product wavelet construction,
we apply the C'!, piecewise quartic (so d = 5) (multi-) wavelets, with (discontinuous)
piecewise quartic duals as constructed in [21]. The primal wavelets satisfy Dirichlet
boundary conditions of order 1 at both boundaries 0 and 1, i.e., & = (o4, 0,) = (1,1),
whereas at the dual side no boundary conditions can be imposed, i.e., &= (G¢,0,) =
(0,0).

For the present work, we generalized this construction to obtain also wavelet col-
lections that satisfy no boundary conditions (at primal side) at either or both bound-
aries, i.e., @ € {0,1}*\ {(1,1)}. Actually, we also slightly modified the biorthog-
onal collections (\11(1,1),(070),@(171)’(0,0)) from [21] with the aim to minimize, for ¢ €
{0,132\ {(1,1)}, the number of X\ € V3 (o0 for which either w/(\&,(o,o)) Z V(11),00) OF
@EE\E’(O’O)) ¢ @(1,1)7(070). Indeed, recall from Remark 5.5.3 that the extension operator
has to be applied to all primal wavelets with such indices A (at either left or right
boundary). We obtained the result that the number of such A\ on each level at left
or right boundary is equal to 2. One of them corresponds to a primal wavelet that
does not vanish at the boundary and therefore has to be extended to obtain a con-
tinuous extension, whereas the primal wavelet corresponding to the other only has to
be extended to guarantee locality of the resulting dual wavelets by an application of
Proposition 5.5.2.

As extension operator, we apply the simple reflection suited for % <t< %, 0<t<
1

As domains, we consider the two-dimensional slit domain Q = (0,2)?\ {1} x [1,2),
whose closure is the union of 4 squares 7 + [0,1]* (7 € Z?), the three-dimensional
“thick” L-shaped domain Q = (0,2)* x (0,1) \ [1,2)? x (0,1), whose closure is the
union of 3 cubes 7+(0, 1]* (7 € Z?), and the three-dimensional Fichera corner domain
Q= (0,2)*\[1,2)?, whose closure is the union of 7 cubes 7+ [0,1]* (7 € Z*). Aiming
at constructing Riesz bases for [H'(Q), H;(Q)]s2 (s € [0,1]), in particular for H}(S2),
we impose homogeneous Dirichlet boundary conditions of order 1 at 0f).

In the slit domain case, we consider tensor product wavelet bases on (0,1)%, on
{(1,0)} +(0,1)? with no boundary conditions on its left edge, and on {(0,1)}+(0,1)?
and {(1,1)} + (0,1)? with no boundary conditions on their bottom edges, all with
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homogeneous Dirichlet boundary conditions of order 1 on the remaining edges. By
applying the scale-dependent extension, first from {(1,0)} + (0,1)? to (0,2) x (0, 1),
and then from both top domains {(0,1)} + (0,1)? and {(1,1)} + (0,1)* over their
bottom edges to 2 (see Figure 5.6), we end up with a piecewise tensor product basis.

In the thick L-shaped domain case, we consider tensor product wavelet bases on

2 2
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Figure 5.6: The direction and ordering of the extensions.

(0,1)3, and on {(1,0,0)}+(0,1)® and {(0,1,0)}+ (0, 1)® with no boundary conditions
on their interface with (0,1), all with homogeneous Dirichlet boundary conditions
of order 1 on the remaining faces. By applying the scale-dependent extension from
{(1,0,0)} + (0,1) to (0,2) x (0,1)% and then from {(0,1,0)} + (0,1)® to Q (see
Figure 5.6), a piecewise tensor product basis is obtained.

In the Fichera corner domain case, we consider tensor product wavelet bases on
(0,1)3,0n {(1,0,0)}+(0, 1)® with no boundary conditions on its left face, on {(1,0,1)}+
(0, 1)3 with no boundary conditions on its left and bottom faces, on {(1,1,0)}+(0,1)3
with no boundary conditions on its left and front faces, on {(0,0,1)} + (0,1)® with
no boundary conditions on its bottom face, on {(0,1,0)} + (0,1)® with no boundary
conditions on its front face, and on {(0,1,1)}+ (0, 1)® with no boundary conditions on
its front and and bottom faces, all with homogeneous Dirichlet boundary conditions
of order 1 on the remaining faces. By applying the scale-dependent extensions in the
order as indicated in Figure 5.6, a piecewise tensor product basis is obtained.

Using these piecewise tensor product bases, we solved the Poisson problem of finding
u € H} () such that

/ Vu-Vo=fv) (ve H;( )
Q
by applying the adaptive wavelet-Galerkin method ([26, 121]). This method is known

to produce a sequence of approximations from the span of the basis that converges in
H'(2)-norm with the best possible rate. Assuming a sufficiently smooth right-hand
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side, Theorem 5.5.6 together with the regularity results from §5.6.1 or §5.6.2 show
that this rate is d — m =5 — 1 = 4 (indeed an even higher rate can generally not be
expected).

Furthermore, if the bi-infinite stiffness matrix of the PDE w.r.t. the basis is suf-
ficiently close to a sparse matrix, in the sense that it is s*-compressible for some
s* > 4, then this adaptive method has optimal computational complexity. The uni-
variate wavelet basis from [21] was designed such that any second order PDE on
(0,1)™ with homogeneous Dirichlet boundary conditions gives rise, w.r.t. the tensor
product basis, to a bi-infinite stiffness matrix which is truly sparse. By losing the
Dirichlet boundary conditions on one side of each interface between subdomains, and
by the application of reflections, this sparsity, however, is partly lost in the sense that
columns corresponding to wavelets that are non-zero at an interface contain infinitely
many non-zero entries. The sizes of these entries, however, decay sufficiently fast as
function of the difference in levels of the wavelets involved so that, nevertheless, the
stiffness matrix is s*-compressible with s* = 0o, meaning that indeed the adaptive
method has optimal computational complexity.

In all three examples, to avoid approximating an infinite forcing vector, for our
convenience we took as right hand side function f = 1. As this right-hand side
nowhere vanishes on the boundary, it gives rise to all singular terms in the solution
associated to corners and edges. Our solution method does not take advantage of
symmetries in the solution due to those in the right-hand side, or of other special
properties of f = 1. As such, we expect that our results are representative for those
that are obtained for any smooth right-hand side function that nowhere vanishes on
the boundary.

To investigate how the application of the extensions, and the incorporation of uni-
variate wavelet bases without boundary conditions at either or both endpoints af-
fects the conditioning of the bi-infinite stiffness matrix, we computed numerically
the condition number of the stiffness matrix (“preconditioned” by its diagonal) re-
stricted to “full-grid” wavelet index sets. We considered the cases of the slit domain
(0,2)%\ {1} x [1,2) subdivided into 4 squares, the square (—1,1)? subdivided into 4
squares, and the square (0,1)? not being subdivided. The results, given in Table 5.1,
show the price to be paid for the construction of a piecewise tensor product basis,
as well as that seemingly a re-entrant corner does not negatively affect the condition
number.

Let us now first consider the Poisson problem with f = 1 on the two-dimensional
slit domain. Its solution is illustrated in Figure 5.7.

In Figure 5.8 we give support lengths of the approximate solutions in piecewise
tensor product wavelet coordinates obtained by the adaptive wavelet-Galerkin scheme
vs. the (relative) fo-norm of their residual in the bi-infinite matrix vector system,
the latter being equivalent to the H'(f2)-norm of the error. The optimal rate -4
indicated by the slope of the hypotenuse of the triangle is accurately approached for
the problems sizes near the end of the computation.

At the end of this computation, the cardinality of the set of adaptively selected
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J 0 1 2 3 4 5 6 7
(—1,1)*into 4 | 790 | 1180 | 1288 | 1816 | 2335 | 2827 | 3263 | 3650
slit domain into 4 | 378 | 634 | 860 | 1167 | 1509 | 1882 | 2258 | 2620
J 1 2 3 4 5 6 7 8
(0,1) 37 | 61 96 | 122 | 146 | 167 | 185 | 201

Table 5.1: Condition numbers of the diagonally preconditioned stiffness matrix re-
stricted to the square block corresponding to row and column indices A
with |||A]]|cc < J. The cardinality of this set of row- or column-indices is
(approximately) equal to 9.4772 (first two cases) and 9.47*1 (last case),
respectively.

Figure 5.7: The solution of the Poisson problem with f = 1 on the slit domain (0, 2)%\

1} % [1,2).

wavelets was approximately 1.5 - 10°. The maximum of |||A|||« or |[|A][l1 over all A
from this set was equal to 39 or 78, respectively, essentially meaning that locally,
near the re-entrant corner the approximation space has the character of a “full-grid”.
The smallest non-adaptive “full-grid” or “sparse-grid” index set that contains all
adaptively selected wavelets has cardinality equal to approximately 4.4 - 10%° and
6.8 - 10?7, respectively, illustrating the strong local refinement.

Centers of supports of the piecewise tensor product wavelets that were selected by
the adaptive wavelet-Galerkin scheme are indicated in Figure 5.9.

Next, we give numerical results for the Poisson problem with f = 1 on the thick
L-shaped domain Q = (0,2)% x (0,1) \ [1,2)* x (0,1). In Figure 5.10, we give the
support lengths, in piecewise tensor product wavelet coordinates, of the approximate
solutions obtained by the adaptive wavelet-Galerkin scheme vs. the (relative) fo-norm
of their residual in the bi-infinite matrix vector system, the latter being equivalent
to the H'(f2)-norm of the error. The optimal rate -4 indicated by the slope of the
hypotenuse of the triangle is quite accurately approached for the problems sizes near
the end of the computation.

The centers of supports of the piecewise tensor product wavelets that were selected
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Figure 5.8: Support length vs. relative residual of the approximations produced by
the adaptive wavelet-Galerkin scheme for the Poisson problem with f =1
on the slit domain (0,2)?\ {1} x [1,2) with the piecewise tensor product
basis.

by the adaptive wavelet-Galerkin scheme are illustrated in Figure 5.11.

At the end of the computation, the cardinality of the set of adaptively selected
wavelets was approximately 3-10°. The maximum of [||A|||s or [[|A]||l; over all A from
this set was equal to 46 or 92, respectively. The maximum of |||A|||; was attained for
A with [A| = (46,46,0), cf. the clustering of points around (1,1, 3) in Figure 5.11.
The smallest non-adaptive “full-grid” or “sparse-grid” index set that contains all
adaptively selected wavelets has cardinality equal to approximately 2.3 - 10** and
2.8 - 103, respectively.

Finally, we give numerical results for the Poisson problem with f = 1 on the Fichera
corner domain = (0,2)3 \ [1,2)%. In Figure 5.12, we give the support lengths, in
piecewise tensor product wavelet coordinates, of the approximate solutions obtained
by the adaptive wavelet-Galerkin scheme vs. the (relative) f5-norm of their residual
in the bi-infinite matrix vector system, the latter being equivalent to the H'(2)-norm
of the error. Due to strong singularities caused by the re-entrant corners and edges,
even with a problem size at the end of our computation of approximately 2.5 - 106,
the rate is not yet very close to the asymptotic rate —4. Nevertheless, we consider
a reduction of the initial error by more than a factor 10° to be a convincing result
for this notorious hard problem. Recall that a rate —4 in the H'(Q2)-norm with an
isotropic method would require approximation of order 13, if already attainable at all
in view of regularity constraints.

The centers of supports of the piecewise tensor product wavelets that were selected
by the adaptive wavelet-Galerkin scheme are illustrated in Figure 5.13. The maximum
of |[|A]]|ee or [[|A]|l1 over all A from the set of adaptively selected wavelets at the end
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Figure 5.9: Centers of the supports of the piecewise tensor product wavelets that were
selected by the adaptive wavelet-Galerkin scheme for the slit domain. The
number of wavelets is here 25339. The right picture is a zoom in of the
left one.

of our computation was equal to 32 or 64, respectively. The maximum of |||A|||; was
attained for XA with |A| equal to (32,32,0), (32,0,32) or (0,32,32), cf. the clustering
of points around (1,1,1) &+ 2¢; (1 < ¢ < 3) in Figure 5.13. The smallest non-adaptive
“full-grid” or “sparse-grid” index set that contains all adaptively selected wavelets
has cardinality approximately equal to 1.2 - 1032 and 3.6 - 10?°, respectively.
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Figure 5.10: Support length vs. relative residual of the approximations produced by
the adaptive wavelet-Galerkin scheme for the Poisson problem with f =1
on the thick L-shaped domain Q = (0,2)* x (0,1) \ [1,2)? x (0,1) with
the piecewise tensor product basis.

Figure 5.11: Centers of the supports of the piecewise tensor product wavelets that
were selected by the adaptive wavelet-Galerkin scheme for the thick L-
shaped domain. The number of wavelets is here 20421.
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Figure 5.12: Support length vs. relative residual of the approximations produced by
the adaptive wavelet-Galerkin scheme for the Poisson problem with f =1
on the Fichera corner domain Q = (0,2)% \ [1,2)® with the piecewise

tensor product basis.

Figure 5.13: Centers of the supports of the piecewise tensor product wavelets that
were selected by the adaptive wavelet-Galerkin scheme for the Fichera
corner domain. The number of wavelets is here 30104.
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