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Summary 

 Rice fields significantly contribute to the global methane emission. The continuous 

flooding of rice fields results in anoxic conditions in the soil, creating an optimal habitat for 

anaerobic bacteria and methanogenic archaea. Furthermore, rice plants supply important 

nutrients for soil microbes by significantly contributing to the carbon pool by excreting 

carbon compounds through their root system. It is assumed that this supply of nutrients from 

the rice plants influences the microbial community structure and diversity, but this influence 

is poorly understood.  

 The first part of this thesis investigates the impact of the rice plant and its growth 

stages on the microbial community inhabiting flooded rice field soil. In a greenhouse 

experiment we showed that the presence of the rice plant leads to increased growth of both 

Archaea and Bacteria by detecting a doubling of the 16S rRNA gene copies. The overall 

microbial community composition was mainly similar in planted and unplanted soil. 

However, specific bacterial lineages were more abundant in the presence of the rice plant 

(e.g Geobacter, Herbaspirillum and Opitutus). In the planted soil major OTUs increased in 

relative abundance with plant growth stage, indicating that the rice growth stages and 

dynamics in root exudation influenced the microbial community. Together, these results 

suggest that the microbial community in the rice field soil is highly adapted to the presence 

of rice plants, possibly because of the plant-supplied carbon compounds in the soil. 

 The traditional method for rice cultivation is the flooding of the field. However, with 

the anticipated increase in the human population the demand on resources such as water will 

increase. Therefore, rice farmers will probably face periods of restricted water availability. A 

method decreasing the water demand of rice cultivation is the rotation with plants cultivated 

under upland conditions such as maize, which require less water. Therefore, the second part 

of this thesis deals with the influence of the rice plant growth stages, field conditions and 

maize cultivation on the microbial community in rice field soil. During the plant growth 

stages we detected only minor changes in abundance, composition and activity of both 

archaeal and bacterial communities. In contrast, changes in field management such as 

drainage and the cultivation of maize resulted in comparatively stronger changes in the 

bacterial community. Bacterial lineages that increased in relative abundance under non-
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flooded conditions were either aerobes such as Spartobacteria and Sphingobacteria or were 

characterized by their ability to grow under low substrate conditions such as Bacteroidetes 

and Acidobacteria. Besides archaeal lineages commonly found in rice fields 

(Methanosarcinaceae, Methanosaetaceae, Methanobacteriaceae and Methanocellaceae) we 

found notably high numbers of GOM Arc I species within the order of Methanosarcinales, 

which may be anaerobic methane oxidizers. The archaeal community remained mainly 

unchanged throughout the monitored season. Interestingly, we observed increased ribosomal 

RNA levels per cell under the drained conditions. As these conditions were unfavorable for 

anaerobic bacteria and methanogenic archaea we interpreted this behavior as preparedness 

for becoming active when conditions improve.  

 In the third part of the thesis we followed the introduction of maize cultivation and 

concomitant non-flooded conditions on fields that had previously been managed as flooded 

rice fields. The crop rotation was monitored for two additional years. Thereby we found only 

minor differences in the bacterial community abundance and activity in the rotational fields 

in comparison to flooded rice fields. Acidobacteria and Anaeromyxobacter spp. were 

enriched in the rotational fields while members of anaerobic Chloroflexi and sulfite reducing 

members of Deltaproteobacteria were found in higher abundance in the rice fields. In 

contrast, we showed that rotation of flooded rice and upland maize lead to dramatic changes 

in the archaeal community, indicated by a decrease of anaerobic methanogenic lineages and 

an increase of aerobic Thaumarchaeota. This was especially apparent in the strong 

enrichment of Thaumarchaeota of the Soil Crenarchaeotic Group, mainly Candidatus 

Nitrososphaera, indicating the increasing importance of ammonia oxidation during drainage. 

Combining qPCR and pyrosequencing data again revealed increased ribosomal numbers per 

cell for methanogenic species during crop rotation. This stress response, however, did not 

allow the methanogenic community to recover in the rotational fields during the season of 

re-flooding and rice cultivation. 
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 This thesis provides evidence that the rice plants influence the microbial community 

in the soil (first part), and that alterations in field management such as drainage or maize 

cultivation under upland conditions have minor immediate effects on the overall microbial 

community (second part) but more strongly pronounced long term effects mainly on the 

archaeal community (third part).   
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Zusammenfassung 

 Reisfelder bieten ein optimales Habitat für anaerobe Bakterien und methanogene 

Archaeen, die wesentlich zur globalen Methanemission beitragen. Reisfelder zeichnen sich 

durch Flutung während des Reisanbaus aus, was die Bildung von anoxischen Nischen 

begünstigt. In diesen Nischen findet der anaerobe Abbau von organischem Material bis hin 

zur Bildung von Methan durch methanogene Archaeen statt. Ein wesentlicher Teil des 

organischen Materials in Reisfeldern stammt von der Reispflanze selbst, welche 

Kohlenstoffverbindungen über ihr Wurzelsystem ausscheidet. 

 Im ersten Teil dieser Arbeit wurde der Einfluss der Reispflanze auf die mikrobielle 

Gemeinschaft im Boden untersucht. Die bakterielle Gemeinschaft unterschied sich dabei nur 

geringfügig in ihrer Zusammensetzung zwischen bepflanztem und unbepflanztem 

Reisfeldboden. Dabei zeigten unter anderem Geobacter, Herbaspirillum and Opitutus eine 

höhere Abundanz im bepflanzten Boden. Während sich die Anzahl der Bakterien und der 

Archaeen im bepflanzten Boden verdoppelte, zeigte die Zusammensetzung der archaeellen 

Gemeinschaft wenig Veränderung. Über den Zeitraum des Pflanzenwachstums zeigten 

wenige bakterielle Gruppen eine Veränderung in ihrer relativen Abundanz. Dies weist auf 

einen möglichen Einfluss der Pflanze hin, da sich deren Wurzelexudate in Qualität und 

Quantität während der Wachstumsphasen unterscheidet. Zusammengefasst zeigten die 

Ergebnisse jedoch, dass die mikrobielle Gemeinschaft im Reisfeldboden stark an die 

Reispflanze und deren Wurzelexudation adaptiert ist.  

 Reis wird traditionell unter gefluteten Feldbedingungen angebaut. Aufgrund der 

stetig steigenden Weltbevölkerung ist ein Anstieg der Nachfrage für Ressourcen wie Wasser 

anzunehmen. Dies könnte eine eingeschränkte Verfügbarkeit an Wasser für den Reisanbau 

zur Folge haben. Alternative Anbaustrategien, die eine Reduzierung des Wasserverbrauchs 

im Vergleich zum konventionellen Reisanbau ermöglichen, rücken somit immer mehr in den 

Fokus. Der Fruchtfolgewechsel mit einer Pflanze wie Mais, die unter nicht gefluteten 

Feldbedingungen wächst, ist eine dieser Optionen. Der zweite Teil dieser Arbeit unterteilt 

sich daher in zwei Schwerpunkte: Unter Feldbedingungen wurde der Einfluss (I) der 

Wachstumsstadien der Reispflanze sowie (II) der von Feldbearbeitungsmaßnahmen wie der 

Dränage und dem Anbau von Mais unter nicht gefluteten Bedingungen auf die mikrobielle 
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Gemeinschaft im Reisfeldboden untersucht. Dabei wurde gezeigt, dass sich die 

Wachstumsstadien der Reispflanze nur begrenzt auf die Zusammensetzung und Aktivität der 

Mikroben auswirkten. Im Gegensatz dazu führten Dränage und der Anbau von Mais zu einer 

Abnahme der Abundanz der Mikroben. Desweiteren zeigten verschiedene bakterielle 

Gruppen eine Reaktion auf die Feldbearbeitungsmaßnahmen indiziert durch eine erhöhte 

relative Abundanz in den nicht gefluteten Feldern. Diese unterteilten sich in zwei Gruppen: 

(I) aerobe Organismen wie Spartobacteria und Sphingobacteria und (II) Bakterien, die unter 

substratlimitierten Bedingungen wachsen, wie Bacteroidetes und Acidobacteria. Im 

Gegensatz dazu blieb die archaeele Gemeinschaft weitestgehend unbeeinflusst. Generell 

konnten auch in dieser Arbeit reisfeldtypische Methanogene wie Methanosarcinaceae, 

Methanosaetaceae, Methanobacteriaceae und Methanocellaceae gefunden werden. 

Interessanterweise wurden innerhalb der Ordnung der Methanosarcinales eine große Anzahl 

an GOM Arc I Spezies gefunden, die potentiell zur anaeroben Methanoxidation fähig sind. 

Desweiteren, wurde während der nicht gefluteten Bedingungen beobachtet, dass der 

Ribosomengehalt pro Zelle auf einem hohen Niveau gehalten wurde. Dies wurde als 

Stressantwort aller anaeroben Archaeen und Bakterien auf die ungünstigen aeroben 

Bedingungen interpretiert.  

 Im dritten Teil dieser Arbeit wurden der Verlauf des Fruchtfolgewechsels und dessen 

Einfluss auf die mikrobielle Gemeinschaft im Boden über einen Zeitraum von zwei weiteren 

Jahren verfolgt. Nach Einführung der Maiskultivierung in das Reisökosytem erfolgte ein 

jährlicher Fruchtfolgewechsel mit Reis (geflutet) in der Regenzeit und Mais (nicht geflutet) 

in der Trockenzeit. Alternativ wurde in beiden Jahreszeiten Reis unter gefluteten 

Bedingungen angebaut. Die bakterielle Gemeinschaft zeigte eine geringe Reaktion auf den 

Fruchtfolgewechsel. Acidobacteria und Anaeromyxobacter sp. waren in den 

Fruchtfolgewechselfeldern angereichert, während anaerobe Chloroflexi und 

sulfatreduzierende Deltaproteobacteria in höherer Abundanz in den Reisfelder gefunden 

wurden. Eine stärkere Veränderung  erfolgte in der archaeellen Gemeinschaft. Ausgehend 

von einer von methanogenen Archaeen dominierten Gemeinschaft in den gefluteten 

Reisfeldern entwickelte sich in den nicht gefluteten Maisfeldern eine überwiegend aus 

aeroben Thaumarchaeoten bestehende Gemeinschaft. Innerhalb der Thaumarchaeoten wurde 

die Gruppe Soil Crenarchaeotic Group angereichert, welche hauptsächlich von 
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Ammoniumoxidierern (Candidatus Nitrososphaera) repräsentiert wurde. Dies deutet darauf 

hin, dass der Oxidation von Ammonium möglicherweise eine höhere Bedeutung in nicht 

gefluteten Boden zukommt. Desweiteren, zeigten auch hier die methanogenen 

Euryarchaeoten unter nicht gefluteten Feldbedingungen eine Stressreaktion in Form einer 

erhöhten Ribosomenzahl pro Zelle. Das erneute Fluten in der Regenzeit ermöglichte den 

Euryarchaeoten allerdings nicht, sich wieder zu erholen und ihre ursprüngliche Abundanz zu 

erreichen.  

 Die Ergebnisse dieser Arbeit lassen annehmen, dass die Reispflanze Einfluss auf die 

Mikroben im Reisfeldboden nimmt (erster Teil). Desweiteren führten Veränderungen in den 

Feldbearbeitungsmaßnahmen, wie Dränage und Fruchtfolgewechsel, zu einer schwachen 

kurzfristigen Reaktion der gesamten mikrobiellen Gemeinschaft (zweiter Teil) und einer  

stärkeren langfristigen Reaktion der methanogenen Archaeen (dritter Teil). 
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Chapter 1 

Introduction 

1.1  Atmospheric methane 

Methane (CH4) is a simple colorless, odorless and volatile hydrocarbon gas. This 

flammable gas was first discovered by Allesandro Volta in the year 1776. At the Lake 

Maggiore in Italy he observed this very flammable gas rising up when the shallow sediment 

was disturbed. Today methane is recognized as the second most important anthropogenic 

greenhouse gas after carbon dioxide (CO2), having a 25 times larger global warming 

potential than CO2 (Forster et al., 2007). The lifetime of methane in the atmosphere is about 

eight years and the global budget of atmospheric methane is in the order of 500-600 Tg per 

year (Denman et al., 2007; Forster et al., 2007; Thauer, 2011). Methane concentrations in 

the atmosphere varied between 350-800 ppbV in the past 800,000 years and increased 

dramatically in the last 250 years up to the present concentration ~1800 ppbV, mainly 

caused by increasing anthropogenic activity (Spahni et al., 2005; Loulergue et al., 2008; 

Forster et al., 2007; Hartmann et al., 2013; Figure 1.1A).  

Once methane is emitted into the atmosphere most of it is removed through chemical 

oxidation with hydroxyl radicals in the troposphere, while a minor part is lost to the 

stratosphere. An additional sink for methane is biological oxidation in e.g. upland soils. 

Methane emissions highly vary from year to year and great uncertainties regarding the global 

budget are recognized. 

The largest sources of atmospheric methane are natural wetlands, which emit 

together with termites, oceans and hydrates between 145-260 Tg CH4 per year (Forster et al., 

2007; Figure 1.1C). Besides these natural sources the majority of the emitted methane is of 

anthropogenic origin. Sources like landfills, biomass burning, rice agriculture, ruminant 

animals and energy generation account for up to 70% of the total global budget (Lowe, 

2006; Figure 1.1C).  

Biogenic methane is solely formed by the process of anaerobic methanogenesis 

which is conducted by a particular guild of microorganisms, the methanogenic Archaea. 
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Recently, non-biogenic methane emissions from plant leaves were observed (Keppler et al., 

2006).  

Here, the mechanism of methane formation is believed to proceed by photochemical 

cleavage of methyl groups of pectin found in leaf tissues by UV radiation (McLeod et al., 

2008). Nevertheless, this methane source has not been integrated in the majority of the 

global methane balances due to uncertainties in the estimated amounts. 

 

 

Figure 1.1 Atmospheric methane concentration and its sources. (A) Atmospheric methane 

concentration determined weekly (blue), monthly (red) and every quarter year (green). (B) Growth 

rate of atmospheric methane in the global average using the same color code as in (A) (figure adapted 

from Hartmann et al., 2013). (C) Anthropogenic (blue) and natural (green) sources of atmospheric 

methane (data from Lowe, 2006).  
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 A decreasing growth rate of methane in the atmosphere was reported from the early 

1980s until 1998 followed by a stabilization from 1999 to 2006 and an increase from 2007 to 

2011(Rigby et al., 2008; Dlugokencky et al 2009; Figure 1.1B). Potential missing sources 

(e.g. plant leaves) beside changes in agricultural practices or the decline in fossil-fuel can 

explain the variability observed (Kai et al., 2011; Aydin et al., 2011). While the rise of 

methane in the atmosphere seemed to be ceased since the late 1980s a recent increase was 

observed (Dlugokencky et al., 1998; Rigby et al., 2008). Suggested drivers of the increase in 

atmospheric methane were atypically elevated temperatures in the Arctic in 2007 and 

increased precipitation in the tropics during 2007 and 2008 (Dlugokencky et al., 2009; 

Bousquet et al., 2006).  
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1.2  Methanogenic Archaea 

Methanogenic archaea are characterized by their ability to gain energy by producing 

CH4. All known methanogens belong to the phylum Euryarchaeota and are confined to use 

methanogenesis as sole process for their energy metabolism (Whitman et al., 2006). The 

methanogens are phylogenetically divers. Until now seven orders of methanogens are 

described, namely Methanopyrales, Methanococcales, Methanobacteriales, 

Methanomicrobiales, Methanosarcinales, Methanocellales and the newly described 

Methanomassiliicoccales (Narihiro and Sekiguchi, 2011; Borrel et al., 2014).  

Methanogens are found in a large variety of environments characterized by limited 

electron acceptors like oxygen (O2), nitrate (NO3
-
), manganese (Mn

4+
), iron(III) (Fe

3+
) and 

sulfate (SO4
2-

) including flooded soils, freshwater and marine sediments, termites, human 

and animal gastrointestinal tracts, anaerobic digesters and landfills, geothermal systems and 

heartwood of trees (Liu and Whitman, 2008). Methanogens, independent of their diversity 

and large number of habitats, are limited in the substrates they are able to utilize. Three 

major groups are described as possible substrates: CO2, acetate and methyl-group containing 

compounds (Table 1.1). 

Table 1.1 Important methanogenic reactions and obtained free energy. 

Reaction ΔG° (kJ mol
-1

) Organism 

CO2   

4 H2 + CO2 → CH4 + 2 H2O -131 kJ Most methanogens 

Acetate   

CH3COOH → CH4 + CO2 -33 kJ Methanosarcina and 

Methanosaeta 

Methylated C1 compounds   

4 CH3COH → 3 CH4 + CO2+H2O -105 kJ Methylotrophic methanogens 

Modified from Hedderich and Whitman, 2006; Liu and Whitman, 2008; Zinder 1993. 

In rice field soils CH4 is produced by two major physiological guilds of 

methanogens, the hydrogenotrophic and acetotrophic methanogens. The hydrogenotrophic 

methanogens reduce CO2 with H2 to CH4 (Table 1.1), whereby CO2 is reduced successively 
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to CH4 through formyl, methylene and methyl levels. Acetotrophic methanogens convert 

acetate to CH4 and CO2 (Table 1.1). Here, acetate is split oxidizing the carboxyl-group to 

CO2 and reducing the methyl-group to CH4. Most methanogens are hydrogenotrophic using 

H2 as electron donor, while some also can use formate as electron donor. However, further 

more exotic electron donors are found to be used by hydrogenotrophic methanogens such as 

secondary alcohols (e.g. 2-propanol, 2-butanol) and ethanol. Only a limited number of the 

known methanogens is able to use acetotrophic methanogens for their energy metabolism 

namely Methanosaeta and Methanosarcina. Since acetate is a major intermediate in the 

anaerobic food chain in many environments two-thirds of the produced CH4 is 

acetotrophically generated (Liu and Whitman, 2008).  

 Despite the different substrates, the complex pathway of methanogenesis encloses 

key enzymes and coenzymes shared by all methanogens. These are tetrahydromethanopterin, 

F420-hydrogenase and coenzyme M. Coenzym M is fundamental for the last step of 

methanogenesis. In this last step the methyl-group bound to coenzyme M is reduced by the 

hydrogen provided by a reduced coenzyme B. This reaction is catalyzed by the methyl-

coenzyme M reductase (Mcr), which is the characteristic enzyme unique to all known 

methanogens (Thauer, 1998). The methyl-coenzyme M reductase is relatively well 

conserved and homologous in all methanogens and therefore the α subunit of the encoding 

gene (mcrA) is used as functional genetic marker to identify methanogens in the environment 

(Friedrich, 2005; Luton et al., 2002).  

In addition the archaeal 16S rRNA gene as marker gene for Archaea has been 

extensively used along with mcrA to study methanogenic archaea in rice field soil 

demonstrating a worldwide distribution (China, Italy, Japan and Philippines) of acetoclastic 

and hydrogenotrophic methanogens including members of Methanosarcinaceae, 

Methanobacteriales, Methanomicrobiales and Methanocellales (former RC-I) (Grosskopf et 

al., 1998; Ramakrishnan et al., 2001; Wu et al., 2006). In rice fields, Methanocellales are of 

great importance since they are the key CH4 producers in the rice rhizosphere (Lu and 

Conrad, 2005). 

 Methanogens show a specific style of stress resistance which stands in line with the 

suggestion that chronic energy stress is the primary selective pressure pushing the evolution 
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of Archaea (Valentine, 2007). Methanogens are known as strict anaerobes and harbor 

numerous enzymes with oxygen-sensitive redox centers (Jarrell, 1985). Consequently, 

methanogenesis is completely suppressed by exposure to oxygen as demonstrated in pure 

cultures and soil samples (Fetzer et al., 1993; Fetzer and Conrad, 1993; Yuan et al., 2009). 

Despite these facts, several species, mainly Methanosarcina spp. and Methanocella spp., 

were frequently found in aerated soils such as pasture and barley soils and even in desert 

biological soils crusts (Nicol et al., 2003; Poplawski et al., 2007; Angel et al., 2012; Conrad 

et al., 2012; Aschenbach et al., 2013). Additionally, methanogens have been shown to 

survive oxygen stress in pure culture and soil (Fetzer et al., 1993; Ueki et al., 1997; Liu et 

al., 2008; Ma and Lu, 2011). As several methanogens possess a relatively large number of 

genes coding for oxygen-detoxifying enzymes (Erkel et al., 2006) these may function as 

defense mechanism during oxygen stress, possibly allowing them to survive oxygen 

exposition in dry soils (Angel et al., 2011, 2012).  
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1.3  Biogeochemistry in rice fields 

Rice paddies represent a unique wetland type connected to the monoculture of rice 

plants. Wetlands are defined as ecosystems in which water saturation is the dominant factor 

determining soil development and composition of floral and faunal communities inhabiting 

the soil and its surface (Cowardin et al., 1979). In general, wetland rice agriculture is 

distinguished by the water profile of the fields. The three major types are (I) irrigated rice 

which is artificially flooded during the season and drained in the winter, (II) rain-fed rice 

which is only flooded after heavy rains and (III) permanently flooded deep water rice (Neue 

and Roger, 1993). 

Methanogens are found in high abundance in the rice field ecosystem which‘s 

biogeochemistry makes it a suitable habitat for these anaerobic archaea. In rice paddies the 

biogeochemical cycle is controlled by a) the input of organic carbon, b) the redox conditions 

rendered by the availability of oxygen as well as alternative electron acceptors (e.g. Fe
3+

, 

NO3
-
, Mn

4+
 and SO4

2-
) and c) an unique microbial community (Conrad and Frenzel, 2002). 

The organic carbon pool in rice paddies is composed of soil organic matter and the organic 

carbon originating from decayed plant material or released by the plant through root 

exudation (Hartmann et al., 2009). The impact of plant derived carbon on the microbes in 

the rice field soil will be explained in chapter 1.4.  

Oxygen availability is one of the important factors characterizing flooded rice 

paddies. Upon flooding oxygen is rapidly consumed in the soil and cannot be replenished 

since the water layer limits the gas diffusion. Hence oxygen only penetrates the upper few 

millimeters of the soil (Frenzel et al., 1992). On the other hand the intercellular aerenchyma 

system of the rice plant allows an oxygen transport throughout the plant root to deeper 

anoxic soil compartments (Armstrong, 1979; Frenzel et al., 1992; Große and Bauch, 1991). 

The limitation in oxygen shapes flooded paddy rice fields into three distinct compartments 

(major habitats for microorganisms) namely the anoxic bulk soil, the oxic surface soil, and 

the partially oxic rhizosphere (Figure 1.2).  
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Figure 1.2 Microbial habitats in rice field soil. The three major microbial habitats namely the oxic 

surface soil, the rhizosphere and the anoxic bulk soil are presented in addition to a simplified 

presentation of the redox cycling and methane emission pathway. Modified from: Conrad, 2007; 

Conrad and Frenzel, 2002. 

In upland soils the primary electron acceptor is oxygen. Organic carbon is completely 

oxidized to carbon dioxide. Under anoxic conditions the degradation of organic matter is 

more complex (Chin et al., 1998; Liesack et al., 2000; Figure 1.2): A cascade of alternative 

electron acceptors following the redox potential can be used instead of oxygen: NO3
-
, Mn

4+
, 

Fe
3+

 and SO4
2-

 (Patrick and Reddy, 1978; Ponnamperuma, 1972).  After flooding, when 

oxygen and nitrate are rapidly depleted, Fe
3+

 reduction is the dominating reaction (Conrad 

and Frenzel, 2002; Figure 1.2). In paddy fields Fe
3+

 is the most prominent electron acceptor 

(Yao et al., 1999). These electron acceptors can be regenerated at oxic-anoxic interfaces 

predominantly at the surface soil and at the rhizosphere, where a redox cycling of nitrogen 

(N), iron (Fe) and sulfur (S) takes place (Conrad and Frenzel, 2002; Figure 1.2). Only if 

these electron acceptors are depleted methanogenesis as the last step in anaerobic organic 

matter degradation is initiated.  
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While CO2 is the predominant end product of organic matter degradation in upland 

soils, various reduced intermediates can be found during the anaerobic degradation of 

organic matter: First polysaccharides are hydrolyzed by enzymes excreted by fermenting 

bacteria, which then convert the released monomeric sugars to alcohols, fatty acids and 

hydrogen (H2) (Chin et al., 1998; Liesack et al., 2000). Alcohols and fatty acids can be 

converted by syntrophic bacteria to acetate, formate (H2-CO2) and CO2. Homoacetogenic 

bacteria alternatively convert monomers like sugars directly to acetate (Liu and Whitman, 

2008) or reduce CO2 and H2 to acetate. In the final degradation step acetate or H2/CO2 

function as substrates for methanogens metabolizing it to CH4 and in the case of acetate to 

CH4 plus CO2 (Liesack et al., 2000).  

The generated CH4 then serves as substrate for methanotrophic bacteria. These 

bacteria can be found in habitats where methane and oxygen gradients overlap, mainly in the 

rhizosphere and the soil surface (Bosse and Frenzel, 1997; Eller and Frenzel, 2001; Gilbert 

and Frenzel, 1995). Besides the aerobic also the anaerobic oxidation of CH4 was observed in 

rice field soils. Several styles of anaerobic CH4 oxidation have been discovered: The first 

discovery of anaerobic CH4 oxidation was found to be coupled to sulfate reduction 

conducted by a syntrophic association between archaeal clades ANME-1, ANME-2 or 

ANME-3 and sulfate-reducing bacteria (Boetius et al., 2000; Cadwell et al., 2008; Harrison 

et al, 2009). Further the presence of denitrifying anaerobic methane-oxidizing (damo) 

bacteria was discovered (e.g.: Raghoebarsing et al., 2006; Ettwig et al., 2008). Recently, 

damo bacteria were identified as ‗Candidatus Methylomirabilis oxyfera‘ affiliated to the 

‗NC10‘ phylum (Ettwig et al., 2010). These organisms are able to couple anaerobic CH4 

oxidation to nitrite reduction with intercellular oxygen production (Ettwig et al., 2010; Zhu 

et al., 2010). Latest studies indicated ANME-2d to oxidize methane through reverse 

methanogenesis by using nitrate as terminal electron acceptor (Haroon et al., 2013). Thereby 

produced nitrite is reduced to dinitrogen gas by an anaerobic ammonium-oxidizing 

bacterium as a syntrophic partner (Haroon et al., 2013). The nitrite-dependent anaerobic CH4 

oxidation has been identified to occur in wetlands and rice fields (Hu et al., 2014; Zhu et al., 

2014; Zhou et al., 2014).  
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1.4  How plants influence microbes in the rhizosphere 

 In Figure 1.2 it was shown that rice plants allow oxygen to diffuse into the soil 

surrounding the rice roots, called rhizosphere. The rhizosphere was first defined by Hiltner 

(1904) and comprises the soil surrounding living roots which is influenced by root activity. 

In these soil regions  the  plants have to compete with other plants and soil-born organisms 

(e.g. bacteria, fungi, insects) for space, water, minerals and macronurtrients such as carbon 

or nitrogen (Ryan and Delhaize, 2001; Bais et al., 2004). The rhizosphere is a highly 

populated spot in the soil characterized by various interspecies interactions. It was reported 

that plants have the ability to mediate both positive and negative interactions in the 

rhizosphere (Bais et al., 2006; Philippot et al., 2013). Positive interactions include symbiotic 

interactions with beneficial microbes or recruitment of plant promoting bacteria whereas 

negative interactions are characterized by associations with pathogenic microbes, parasitic 

plants and invertebrate herbivores (Bais et al., 2006; Haichar et al., 2014; Philippot et al., 

2013). Specific plant-microbe interactions were reported for example relating to positive 

effects on the plant as on the plants immune system (Jones and Dangl, 2006) or for soil 

bacteria utilizing plant-born carbon (Dennis et al., 2010; Bais et al., 2006). 

 Plants release a large variety of compounds into the soil via their roots. During this 

process, the so called rhizodeposition, carbon and nitrogen compounds are released. The 

plant derived carbon release into the soil leads to changes in chemical, physical and 

biological characteristics in the rhizosphere soil which therefore can be differentiated from 

bulk soil (Barber and Martin, 1976). The compounds secreted by a plant into the rhizosphere 

are called root exudates. They are divided into low- and high-molecular weight compounds. 

Whereas the class of low-molecular weight compounds includes amino acids, organic acids 

and sugars, the latter one consists of polysaccharides and proteins (Badri and Vivanco, 

2009). Thereby some plants are able to secrete significant amounts (up to 60%) of their 

photosynthetically fixed carbon into the rhizosphere (Derrien et al., 2004; Lynch and 

Whipps, 1990). The amount of root exudation may vary since the quality and quantity is a 

function of plant species, plant age as well as of external biotic and abiotic factors (Jones et 

al., 2004). Especially for rice plants it was shown that root exudation varied in composition 

and rate during the growth of the plants (Aulakh et al., 2001).  
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 Root exudates represent the main part of the carbon released by plants into the soil 

(Hutsch et al., 2000; Nguyen, 2003). Thereby soluble low-molecular weight compounds 

diffuse passively from the root into the soil (Bertin et al, 2003; Bais et al., 2006). This 

diffusion is driven by a concentration gradient between the root and the soil. Diffusing 

compounds such as amino acids, organic acids, sugars or phenolics are present inside the 

root in significantly higher concentrations than in the surrounding soil as a result of the 

continuous replenishment inside the roots along with removal by the soil microbes (Jones et 

al., 2009).  

However, root exudation is not the only way in which plants influence the soil and 

possibly the inhabiting microbes. Further important mechanisms are the mucilage and border 

cells. Mucilage is a gelatinous layer surrounding root tips mainly composed of 

polysaccharides, proteins and phospholipids (Jones et al., 2009; Read et al., 2003). Its main 

function is besides protecting roots of toxic metals, to enhance the stability of soil 

aggregates. This in consequence promotes root growth and soil aeration (Jones et al., 2009). 

Border cells are metabolically active root cells, programmed to be released from the root into 

the surrounding soil (Hawes et al., 2000; Stubbs et al., 2004).  

Up to 90% of the excreted carbon were shown to be metabolized by the root-

associated microorganisms (Lynch and Whip; 1990). Especially in rice field soil close 

interactions between plants and microbes were reported. A dominant part of the CH4 

emissions (~60%) originate from root exudates or dead roots (Watanabe et al., 1999). Pulse 

labeling experiments indentified methanogenic archaea incorporating plant derived carbon 

(Lu and Conrad, 2005) and showed correlations between photosynthesis driven CH4 

emissions and abundance of methanogens on the root (Pump et al., 2014). Likewise bacterial 

lineages metabolizing plant derived carbon were identified inhabiting the rice roots and the 

surrounding rhizsophere soil (Hernández et al., 2015). Recently, the rice root-associated 

microbiome was investigated describing distinct communities in the endosphere (root 

interior), the rhizoplane (root surface) and the rhizsophere (Edwards et al., 2015).  
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1.5  Crop rotational systems  

 Rice (Oryza sativa L.) is a very important staple food feeding more than three 

billion people worldwide (Maclean et al., 2002). With the anticipated increase in the world‘s 

population the need for optimized rice cultivation will increase (Van Nguyen and Ferrero, 

2006). Accordingly, the global paddy rice production area increased from circa 115 in 1961 

to approximately 164 million hectare in 2013 underlining increasing demands (FAOSTAT, 

2012).  

The production of rice is intense in water usage since rice is generally cultivated 

under flooded field conditions. However, even in comparison with other irrigated crops rice 

requires enormous amounts of water (3,000 – 5,000 l/kg rice) as the water demand is tripled 

per hectare growing rice in comparison to other irrigated crops (Bouman et al., 2002, Tuong 

et al., 2005). Therefore up to one-third of the World‘s freshwater resources are used for rice 

cultivation (Bouman et al., 2007). The anticipated increase in world population will amplify 

the need for staple food like rice (Van Nguyen and Ferrero, 2006). To meet this enhanced 

demand rice production is anticipated to annually increase in the range of 8–10 million tons 

over the next 20 years (Liu et al., 2013). Furthermore, the increasing demand on water in 

municipal and industrial sectors and increasing climatic variability necessitates revision of 

rice production in the context of future changes in the accessibility to water resources. 

Consequently, it is predicted that rice farmers will face economic water scarcity as result of 

increasing costs for irrigation and physical water scarcity as supplies for irrigation shrink 

(Bouman et al., 2005, 2007). Especially Asia, harboring 89% of the world‘s rice paddies 

(FAOSTAT2012), will be heavily influenced by water scarcity (Tuong and Bouman 2003). 

For that reason, Asian rice farmers will be coerced to decrease their water consumption 

during irrigation of rice fields in times of low water availability (e.g. dry season). 

 Several management strategies have been developed to reduce water requirements of 

wetland rice fields such as alternate wetting and drying (Wassmann et al., 2000a, b), mid-

season drainage (Wassmann et al., 2000b), intermittent drainage (Yagi et al., 1996) or 

system of rice intensification (Stoop et al., 2002). These methods are all based on restricted 

irrigation patterns under cultivation of flooded rice. Thereby, short periods of drainage allow 
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the regeneration of inorganic electron acceptors and will affect the processes involved in 

anaerobic degradation of organic matter. 

 However, a different approach to reduce water consumption from rice fields is to 

rotate rice cultivation with upland crops that need less water such as maize. In this manner 

innate irrigated rice fields will face long periods (several months) of drainage along with 

upland field conditions. This includes long-term aeration of the soil possibly causing oxygen 

stress for inhabiting soil microorganisms. Indeed, a change from traditional rice–rice (wet–

dry season) systems to rice–maize cropping systems is observable across tropical and 

subtropical Asia. This is initiated not only by the water scarcity but also by increasing 

demand of maize for food (poultry) and biofuel production (Weller et al., 2015). 

Accordingly rice–maize systems are notably implemented today (Timsina et al., 2010). 

Changes from rice cultivation (flooded soil) to water-saving practices or diversified cropping 

systems were shown to impact yields, soil carbon and nitrogen turnover (Bronson et al., 

1997a, b; Abao et al., 2000; Wassmann et al., 2000a) along with greenhouse gases emissions 

(Nishimura et al., 2005, 2011; Weller et al., 2015).  

 The shift between flooded and drained conditions, linked with completely different 

redox conditions, will also affect the activity and composition of the present microbial 

communities. In drained upland soils CO2 is the sole mineralization product whereas only 

low CH4 formation was reported (Dutar and Verchot, 2007; Soussana et al., 2007). Drained 

uplands CH4 production can only occur in anoxic micro-niches and is generally of small 

extent (Megongial and Guenther, 2008). However, it has been shown that the likelihood of 

drained rice field soils to be sinks for atmospheric CH4 is rather small (Jäckel et al., 2001).  

In general, the bacterial community composition is prone to temporal and spatial 

changes as a result of changing soil conditions in rice field soil (Asakawa and Kimura, 2008; 

Noll et al., 2005; Shrestha et al., 2007; Shrestha et al., 2009). For instance, water-saving 

practices have been shown to impact the bacterial community abundance and composition in 

rice field soil under field conditions (Ahn et al., 2014; Itoh et al., 2013). Furthermore, as 

seen in the previous chapter, the root system of plants can impact the soil microbial 

community. Accordingly, crop rotational systems may lead to changes in bacterial 

community as each plant species possesses individual root exudates, which were already 
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shown to impact soil bacterial community structure (Marschner et al., 2001; Haichar et al., 

2008). The bacterial abundance, diversity and community composition was impacted by 

upland-upland crop rotations (Yin et al., 2010; Acosta-Martinez et al., 2008) and rotations of 

flooded rice with upland crops such as mungbean, maize, alfalfa (Xuan et al., 2012; Lopes et 

al., 2014). However, in a few cases crop rotations caused only minor effects on the bacterial 

community (Fernandez Scavino et al., 2013; Zhao et al., 2014).  

 The composition of archaeal communities in rice field soil seems to be relatively 

stable even when the soil conditions are changed (Krüger et al., 2005; Watanabe et al., 

2007). In contrast, the activity of archaeal communities changes (Krüger et al., 2001; Krüger 

et al., 2005; Watanabe et al., 2007). Furthermore, crop rotations with upland crops were 

shown to affect archaeal communities only minor (Asakawa and Hayano, 1995; Watanabe et 

al., 2006, 2011; Fernandez Scavino et al., 2013). The archaeal community structure 

remained stable even under upland field conditions for up to seven months. Nevertheless, 

several laboratory experiments demonstrated that drainage and oxygen exposure can impair 

the growth of methanogenic archaea (Ma and Lu, 2001; Ma et al., 2012; Yuan et al., 2009). 

Accordingly, in a field study a moderate influence on the methanogenic archaeal community 

as effect of water management was observed (Watanabe et al., 2013). Recently, decreased 

abundance of methanogenic archaea along with changes in community composition was 

reported in a flooded rice-soybean crop rotation (Liu et al., 2015). Nevertheless, the 

knowledge concerning the impact of crop rotations on the microbial community in rice field 

soil is rather limited and has to be improved in order to face increasing water demands and 

anticipated water scarcity.   
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1.6  Aims of the study 

 

Chapter 2: The influence of rice plants on the microbial community structure in 

flooded paddy soil at different growth stages  

Plants are known to be shaping the microbial community in the rhizosphere by providing 

organic and inorganic compounds via their roots, a process called rhizodeposition. For rice 

plants it was shown that the quantity and quality of rhizodeposits varies with plant age. Does 

the rice plant shape the microbial community in the rice rhizosphere? Do changes occur in 

the structure of the microbial community with changing rice plant growth stages? 

 

Chapter 3: Seasonal dynamics of bacterial and archaeal methanogenic 

communities in flooded rice fields and effect of drainage  

The rice plant is influencing the microbial community in the soil by providing organic and 

inorganic compounds via the root system – a dynamic process. Drainage and maize 

cultivation under upland conditions will result in completely different redox conditions. Is 

the microbial community in rice field soil impacted by rice plant growth stage under field 

conditions? Does the rice specific microbial community react to non-flooded conditions and 

to the presence or absence of maize plants? 

 

Chapter 4: Crop rotation of flooded rice with upland maize impacts resident 

and active methanogenic community in rice field soil 

Crop rotation system between flooded rice and upland maize will lead to dramatic changes 

in field conditions like completely different redox conditions. Additionally, the plant type 

may have an effect on the community structure of soil microbes. Does crop rotation with 

upland maize lead to changes in the microbial community in the soil? Do these communities 

recover during re-flooding and paddy rice cultivation? Do long term effects occur?  
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2.1 Abstract 

 The microbial community in the rhizosphere environment is critical for the growth of 

land plants and the recycling of soil organic matter. The objective of this study was to 

determine the extent to which rice plants shape the microbial community in rice field soil 

over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse 

conditions in rice field soil from Vercelli, Italy and the microbial community in the 

rhizosphere of planted soil microcosms was characterized at four plant growth stages using 

quantitative PCR and 16S rRNA gene pyrotag sequencing. The abundance of 16S rRNA 

genes were on average twice that of unplanted soil, indicating that microbial growth was 

stimulated in the rice rhizosphere. The 16S rRNA sequence analysis could distinguish the 

microbial community in planted with unplanted soil, but the overall difference was relatively 

small. Approximately 2% of operational taxonomic units (97% 16S rRNA identity) could be 

identified as significantly higher in either planted or unplanted soil. There was only weak 

evidence for a temporal pattern in soil community compositions. The conclusion is there was 

not a major shift in the relative abundance of microbial groups in planted soil despite a 

higher absolute abundance, suggesting that the soil microbial community is highly adapted 

to rice plants and that the microbial community in Vercelli rice field soil is relatively stable.  
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2.2 Introduction 

 Plants depend on their root system for the uptake of nutrients and water from the soil. 

The root system further allows plants to influence the microbes inhabiting the soil. The zone 

in the soil surrounding living roots and influenced by plant activity was first defined by 

Hiltner (1904) and termed the rhizosphere. The rhizosphere is characterized by highly 

dynamic interactions between plants and the soil-borne organisms including archaea, 

bacteria, fungi, nematodes and insects (Ryan and Delhaize, 2001; Bais et al., 2004). 

Permanent competition for space, water, minerals and macronutrients give rise to 

interactions between soil microbes and plants. These include symbiotic interactions with 

growth promoting bacteria, or potential attack from pathogens (Bais et al., 2006; Haichar et 

al., 2014; Philippot et al., 2013).  

 Plants influence the microbial community in soil by root-mediated release of organic 

and inorganic compounds, termed rhizodeposition. Rhizodeposition can be divided in three 

categories: (I) the release of low- and high-molecular weight compounds via the roots (root 

exudates), (II) a gelatinous layer surrounding root tips (mucilage) and (III) metabolically 

active root cells, programmed to be released from the root into the surrounding soil (border 

cells) (Badri and Vivanco, 2009; Hawes et al., 2000; Stubbs et al., 2004; Jones et al., 2009; 

Read et al., 2003). The amount of root exudation may vary since the quality and quantity is a 

function of plant species, plant age as well as of external biotic and abiotic factors (Jones et 

al., 2004). Root exudation by rice plants has been shown to vary in composition and rate 

during plant development (Aulakh et al., 2001). 

 Rhizodeposits are important substrates for the soil microbes since up to 90% is 

metabolized by the root-associated microorganisms (Lynch and Whip; 1990). Rice 

cultivation is also a major source of atmospheric methane (CH4), of which ~60% originates 

from root exudates or dead root material (Watanabe et al., 1999). Pulse-labeling experiments 

have identified methanogenic archaea incorporating plant-derived carbon in the rice 

rhizosphere (Lu and Conrad, 2005; Zhu et al., 2014). The microbial communities in the 

endosphere (root interior), the rhizoplane (root surface) and the rhizosphere (Edwards et al., 

2015) have been described and the bacterial lineages metabolizing plant-derived carbon in 
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the root environment have been identified (Hernández et al., 2015). The rice phyllosphere 

microbial community has been characterized by 16S rRNA pyrotag sequencing (Ren et al., 

2014) as well as using metagenomic and proteomic approaches (Knief et al. 2012). 

Despite the relatively detailed knowledge of the microbial community associated 

with rice plants, it is not known to what extent rice plants shape the rhizosphere microbial 

community during the course of plant growth. To investigate this, we performed a 

greenhouse experiment comparing planted and unplanted Vercelli rice field soil over a full 

vegetation period. In total four time points (34, 52, 62 and 90 days after planting) covering 

all plant growth stages were monitored. We quantified the absolute abundance of Archaea 

and Bacteria by quantitative PCR (qPCR) targeting the 16S rRNA gene. The microbial 

community composition in rhizosphere or bulk (unplanted) soil was evaluated by pyrotag 

sequencing analysis of the 16S rRNA gene.  
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2.3 Materials and methods 

2.3.1 Microcosms and incubations 

 Soil was sampled from rice fields at the Italian Rice Research Institute in Vercelli, 

air-dried and stored at room temperature until the start of the experiment. Immediately prior 

to the establishment of microcosms, soil was sieved through a stainless steel screen (0.2 mm 

mesh) and 2.5 kg was added to opaque plastic pots. The pots were flooded with deionized 

water one week before planting. Fertilizers included urea (CH4N2O, 45 g l
-1

) as nitrogen 

source, phosphorus (Na2HPO4*2H2O, 17 g l
-1

), potassium (KCl, 50 g l
-1

) and magnesium 

(MgSO4*7H2O, 2 g l
-1

). The phosphorus, potassium and magnesium solutions were added at 

a ratio of 10 ml kg
-1

 soil one day before planting, whereas 5 ml kg
-1

 of the urea was added 

twice, one day before planting and after 14 days of plant growth. Rice seeds (Oryza sativa 

var. Koral) were also obtained from the Rice Research Institute in Vercelli, Italy. The rice 

seeds were treated with the fungicide Aatiram and germinated at 25°C and 75% humidity in 

a greenhouse. Three germinated rice seedlings were planted each in a total of 20 pots. A 

further five pots were left unplanted. The pots were incubated in a greenhouse at 25°C and 

75% humidity with a twelve hour light/dark cycle. Pots were watered daily to maintain 

approximately 3 cm water overlying the soil. Plant heights and tiller number were recorded 

weekly. Five planted pots were sacrificed after 34, 52, 62 and 90 days after planting and 

rhizosphere soil (planted pots), bulk soil (unplanted pots) and pore water were collected 

aseptically using sterilized equipment. Plants were extracted from the pots and shaken to 

remove large soil aggregates and adhering soil (bulk soil). The soil remained attached on the 

roots (rhizosphere soil) was sampled using a sterile spatula. Samples were immediately 

frozen in liquid nitrogen and stored at -80°C until further analysis. The water content of each 

soil was determined gravimetrically by drying subsamples at 60°C until they reached a 

constant weight.  

2.3.2 Porewater analysis 

 100 g soil samples were centrifuged for 10 min at 20 000 g and 4°C in 50-ml 

centrifuge tubes. The supernatant was filter sterilized using 0.2 µm acetate-free filters (GE 

healthcare life science) and stored at -20°C until analysis. Organic acids were analyzed with 
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high performance liquid chromatography (HPLC, Krumböck and Conrad, 1991). Inorganic 

ions including chloride, nitrate, nitrite, phosphate and sulfate were detected using ion 

chromatography (Bak et al., 1991). 

2.3.3 Nucleic acid extraction  

 Soil DNA was extracted using the NucleoSpin® Soil Kit (Macherey-Nagel, Düren, 

Germany) following the manufacturer‘s instructions. DNA concentration and purity were 

determined spectrophotometrically (NanoDrop Technologies, USA). Only DNA samples 

with absorbance ratios of A260:A230 > 1.7 and A260:A280 > 1.8 were used for further 

analysis.  

2.3.4 Real-time quantitative PCR 

 Quantitative PCR (qPCR) was used to quantify archaeal and bacterial 16S rRNA 

gene copies using primers Ba519f/Ba907r (Lane, 1991) and Ar364f/Ar934br (Burggraf et 

al., 1997; Großkopf et al., 1998), respectively. All qPCR reactions were pipetted on ice with 

minimal light exposure. Each reaction contained in a total volume of 25 µl: 4 mM MgCl2, 

0.01 µM fluorescein calibration dye (Bio-Rad), 0.625 U Jump Start™ Taq ReadyMix™, 

0.60 µM of each primer, 1 µL template DNA. Standards containing known numbers of DNA 

copies of the target gene were serially diluted and used for construction of calibration curves 

in each reaction The qPCR reactions were performed on an iCycler thermocycler equipped 

with a MyiQ detection system (Bio-Rad, Munich, Germany). The following program was 

used for amplification of archaeal 16S rRNA gene copies: 94°C for 6 min, followed by 40 

cycles of 94°C for 35 s, 66°C for 30 s and 72°C for 45 s and single step of final elongation of 

86.5°C 10 s. A melting curve was performed from 75-95°C. The program for amplification 

of bacterial 16S rRNA gene copies was as follows: 94°C for 8 min, followed by 50 cycles of 

94°C for 20 s, 50°C for 20 s and 72°C for 50 s. A melting curve was performed from 75-

95°C. Data analysis was performed using BioRad IQ5 2.0 Standard Edition Optical System 

Software (Bio-Rad).  

2.3.5 16S rRNA amplicon pyrosequencing 

 A total of 24 samples were chosen for amplicon pyrosequencing. Samples 

corresponded to three replicate microcosms chosen at random from each of the two 
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treatments (planted, unplanted) and the four sampling time points. The 16S rRNA genes of 

bacteria and archaea were targeted with primers F515 and R806 described by Bates et al. 

(2011). The forward primer was tagged with unique 6-base barcode. Sequencing of the PCR 

products was performed at the Max Planck Genome Centre in Cologne using a Roche 454 

Genome Sequencer GS FLX+.  

Sequences were grouped into OTUs (97% similarity) with UPARSE (Edgar 2013) 

according to the standard procedure recommended by the developer, with the exception that 

singletons were retained. Representative sequences of OTUs were classified in mothur 

version 31.2 (Schloss et al., 2009) using the silva taxonomy and the Wang (naïve Bayesian 

classifier) method. Relative abundances of OTUs between samples were analyzed using the 

vegan package version 2.0-10 (Oksanen et al., 2013) in R version 3.0.2 (R Development 

Core Team, 2011). Other statistical tests were performed using the R package stats. OTU 

abundances were standardized by a Hellinger transformation using the decostand function. 

Principle components analysis (PCoA) were performed based on Bray-Curtis dissimilarities. 

Principle components analysis (PCA) was performed using prcomp and the 50 OTUs 

contributing the largest absolute loadings in the first dimension were obtained from the 

rotation file. A heatmap corresponding to the relative abundance of these 50 OTUs was 

prepared using the gplots package (version 2.16.0). The samples were clustered with hclust 

using the ‗Ward‘ method based on Manhattan distances calculated with vegdist. 

Phylogenetic trees were calculated by aligning OTU sequences with sina (Pruesse et al., 

2012) and added to the SILVA119 NR reference tree (Quast et al., 2013) by parsimony in 

ARB (Ludwig et al., 2004). A randomly subsampled dataset corresponding to 3707 reads per 

sample was obtained using the ―sub.sample‖ script in mothur. This subsampled data was 

used for metastats analysis (White et al., 2009), which was performed with CloVR 

Metagenomics 1.0 software platform (Angiuoli et al., 2011). Only OTUs displaying P-values 

< 0.01 were retained.  

2.3.6 Terminal restriction fragment length polymorphism (T-RFLP) 

 Archaeal 16S rRNA genes were amplified by PCR using the primers Ar109f 

(Grosskopf et al., 1998) and Ar912rt (Lueders and Friedrich, 2002) with the FAM (6-

carboxyfluorescein) on the reverse primer. All primers were obtained from (Sigma-Aldrich, 
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Taufkirchen, Germany). The PCR reactions were performed in a total volume of 50 µl 

containing 60 µM dNTPs (Fermentas, St. Leon-Rot, Germany), 1 x PCR-Buffer S (PeqLab, 

Erlangen, Germany), 0.5 μM of each primer, 0.2 mg ml
-1

 Bovine Serum Albumin (Roche, 

Grenzach, Germany), 1 U PeqLab Taq DNA polymerase (PeqLab) and 1 μl of DNA 

template (~ 20 ng/ µl). PCR amplification was performed using a GenAmp 9700 

Thermocycler (Applied Biosystems, Carlsbad CA, USA) as follows: 94°C for 2 min, 

followed by 30-35 cycles of 94°C for 30 s, 52°C for 45 s and 72°C for 60 s and a final 

elongation of 72°C for 7 min. The PCR products were purified using MinElute Purification 

Kit (Qiagen, Hilden, Germany). Archaeal genes were digested with TaqI (Promega) for 3 h 

at 37°C. Digested DNA was purified using SigmaSpin
TM

 post-reaction clean-up columns 

(Sigma-Aldrich). For T-RFLP, 2 to 4 µl digested DNA were mixed with 11 μl deionized 

HiDi formamide (Applera Deutschland GmbH, Darmstadt, Germany) and 0.2 μl of the 

internal DNA standard (X-Rhodamine MapMarker
®
 1000, BioVentures, Murfreesboro, 

Tennessee, USA). After DNA denaturation at 95°C for 3 min using a thermomixer 

(Thermomixer Comfort, Eppendorf, Hamburg, Germany), capillary size separation was 

performed with an ABI PRISM 3130 Genetic Analyzer (Applera Deutschland GmbH). 

Electropherograms were analyzed using Genescan 4.0 software (Applied Biosystems, 

Carlsbad CA, USA) and the T-RFLP profiles were standardized as described in Dunbar et al. 

(2001).  
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2.4 Results 

2.4.1 Characterization of microcosms 

The determination of the growth stage was conducted by monitoring rice plant height 

and tiller number (data not shown). Four sampling time points were selected corresponding 

to early vegetative (day 34), late vegetative (day 52), reproductive (day 62) and maturity 

(day 90) of rice plants. Soil pore water analyses indicated that lactate, formate, acetate, 

chloride and propionate concentrations were higher in the planted pots, but these differences 

were only statistically significant for chloride and propionate (Supplement Table 2.1). The 

concentrations of malate, nitrate and sulfate were similar between planted and unplanted 

pots.  

2.4.2 Bacterial and archaeal 16S rRNA abundance 

The influence of the rice plant on the microbial community size was determined by 

qPCR assays targeting the bacterial and archaeal 16S rRNA gene. Both bacterial and 

archaeal 16S rRNA abundances were about two-fold higher in rhizosphere (planted pots) 

than in soil from unplanted pots (Table 2.1). The 16S rRNA gene copy numbers of Bacteria 

were about 20 times more numerous than those of Archaea.  
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Table 2.1 Copy numbers of bacterial and archaeal 16S rRNA genes in planted and unplanted soil 

during the four sampled time points. Flooding period 1= 34 days; 2= 52 days; 3= 62 days ; 4= 90 

days. Same letters indicate that microbial communities are not significantly different (ANOVA, P< 

0.05). n=5, gdw= gram dry weight of soil. 

Flooding period Domain Sample type Copy number/gdw (± std.error) 

 

Bacteria Planted 6.6x10
9 a

 (±1.5x10
9
) 

1 

 

Unplanted 2.7x10
9 a

 (±8.7x10
8
) 

 

Archaea Planted 3.2x10
8 a

 (±1.0x10
8
) 

  

Unplanted 1.1x10
8 a 

(±1.8x10
7
) 

 

Bacteria Planted 5.8x10
9 a

 (±1.8x10
9
) 

2 

 

Unplanted 2.0x10
9 a

 (±5.0x10
9
) 

 

Archaea Planted 2.5x10
8 a

 (±5.7x10
7
) 

  

Unplanted 8.3x10
7 b

(±2.1x10
7
) 

 

Bacteria Planted 3.7x10
9 a 

(±7.2x10
8
) 

3 

 

Unplanted 2.5x10
9 a 

(±9.1x10
8
) 

 

Archaea Planted 1.7x10
8 a 

 (±2.3x10
7
) 

  

Unplanted 8.2x10
7 a 

 (±2.0x10
7
) 

 

Bacteria Planted 3.3x10
9 a 

(±1.1x10
9
) 

4 

 

Unplanted 1.7x10
9 a

 (±.3.6x10
8
) 

 

Archaea Planted 1.7x10
8 a 

 (±2.4x10
7
) 

  

Unplanted 1.1x10
8 a 

 (±1.5x10
7
) 

 

Bacteria Planted 4.8x10
9 a

 (±1.4x10
9
) 

All 

 

Unplanted 2.4x10
9 b

 (±6.9x10
8
) 

 

Archaea Planted 2.2x10
8 a

 (±5.9x10
7
) 

  

Unplanted 9.7x10
7 b

 (±1.9x10
7
) 

 

2.4.3 Bacterial and archaeal diversity 

Pyrosequencing of the bacterial 16S rRNA gene was performed to identify the 

phylogenetic groups influenced by the flooding period or the presence of the rice plant. A 

total of 175501 sequences were obtained after preprocessing and chimera removal. The 

sequences grouped into 8685 OTUs at 97% similarity. 

Sequences were classified and summarized by bacterial phylum, which did not show 

any significant difference between planted and unplanted soil samples (Figure 2.1) 

indicating the overall structure of the community at low phylogenetic resolution did not 

change between these environments. The microbial communities did separate by planted and 

unplanted based on the principle coordinates analysis (PCoA) of OTUs (Figure 2.2), 
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indicating that there was a change in the community structure at higher (97% identity) 

phylogenetic resolution. Despite this clear separation, the first axis only explained 8.6% of 

the variance in the data. There was no apparent clustering of rhizosphere samples based on 

plant growth stage or the corresponding sampling time in unplanted soil microcosms. 

Metastats analysis was used to quantify the extent to which OTUs differed between planted 

and unplanted samples. A total of 64 OTUs were identified as having significantly higher 

relative abundance in unplanted pots (Table 2.2). This corresponded to ~1% of OTUs and 

6.4% of reads. Similarly, 87 OTUs had higher relative abundance in the rhizosphere 

samples, corresponding to an average of 9.9% of reads in those samples (Table 2.3). These 

analyses indicated that there were differences between the soil communities in planted and 

unplanted microcosms, but in general these were few and characterized by subtle shifts in 

relative abundance of OTUs.  

 

 

Figure 2.1. Phylum level comparison of bacteria abundance in planted and unplanted pots based on 

454 pyrosequencing analysis of 16S rRNA genes. All phyla contributing less than 2% of sequences 

were summarized as others.  
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Table 2.2 Taxonomy of OTUs with significantly higher relative abundance (metastats, P<0.01) in 

unplanted than planted soil. The number of OTUs corresponding to each taxon is indicated and their 

average cumulative relative abundance within each taxon in planted and unplanted soil are indicated. 

  
OTUs Unplanted (%) Planted (%) 

Acidobacteria Gp1  3 0.26 0.12 

 

Gp16  2 0.08 0.02 

 

Gp18  1 0.03 0.00 

 

Gp3  2 0.09 0.03 

 

Gp7  1 0.05 0.02 

Actinobacteria Actinomycetales 1 0.07 0.01 

 

Solirubrobacterales  2 0.06 0.02 

 

Acidimicrobiales  1 0.02 0.00 

 

unclassified 1 0.03 0.01 

Armatimonadetes Gp2 2 0.04 0.00 

 

Chthonomonadaceae 1 0.12 0.03 

Bacteroidetes Chitinophagaceae 2 0.13 0.03 

     Chlorobi Ignavibacterium 1 0.04 0.01 

Chloroflexi Anaerolineaceae  1 0.07 0.02 

Cyanobacteria Order * 1 0.04 0.00 

Firmicutes Paenibacillaceae 2  1 0.24 0.14 

 

Tissierella  1 0.02 0.00 

 

Clostridium sensu stricto  1 0.03 0.00 

Gemmatimonadetes Gemmatimonas 7 1.01 0.45 

Alphaproteobacteria Rhodospirillales 2 0.08 0.01 

 

Porphyrobacter 1 0.04 0.01 

 

unclassified 2 1.00 0.73 

Betaproteobacteria Nitrosospira  1 0.09 0.05 

 

Burkholderiales 1 0.02 0.00 

 

unclassified 5 0.91 0.48 

Deltaproteobacteria Anaeromyxobacter 1 0.42 0.23 

 

Myxococcales 4 0.20 0.05 

Gammaproteobacteria Steroidobacter 1 0.03 0.00 

 

Dokdonella 1 0.14 0.08 

 

unclassified 3 0.19 0.07 

Unclass. Proteobacteria 

 

1 0.22 0.12 

Unclassified 

 

7 0.32 0.09 

Verrucomicrobia Spartobacteria genera* 1 0.25 0.13 

 

Subdivision3 family* 1 0.05 0.00 

 

Sum 64 6.39 2.97 

*=incertae sedis 

     

A heatmap was constructed to depict the relative abundance of OTUs that best 

represent the dissimilarity between the microbial communities in planted and unplanted 

microcosms. A total of 50 OTUs were selected, of which 34 could be classified to family 

level or lower and included in the heatmap (Figure 2.3). Most of the OTUs were also 

identified as significantly different (P < 0.01) in the metastats analysis (results not shown). 

These 50 OTUs alone were able to distinguish the planted and unplanted soil microbial 
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communities, as seen by the clustering of the samples. The rhizosphere soil contained a 

significantly higher abundance of OTUs corresponding to the rice mitochondria and plastid 

16S rRNA sequences, which likely arose from root cells sloughed-off into the rhizosphere. 

The clustering of unplanted soil communities suggested a separation into early and late 

sampling time, whereas no temporal pattern was apparent for the rhizosphere samples. 

Among the OTUs that appeared to shift in relative abundance from early to late in the 

unplanted soil included a Nitrosospira and a Gemmatimonas taxon. Cyanobacteria in 

particular tended to appear sporadically among samples rather than being evenly enriched 

between replicates.  

 

Figure 2.2 Principal coordinate analysis (PCoA) ordination based on relative abundance of 16S 

rRNA gene OTU abundances. Symbols represent sampling times according to plant age: square 

(stage 1, 34 days), triangles (stage 2, 52 days), circles (stage 3, 62 days) and diamonds (stage 4, 90 

days). Filled samples correspond to unplanted and open symbols to planted soil.  
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Table 2.3 Taxonomy of OTUs with significantly higher relative abundance (metastats, P<0.01) in 

planted than unplanted soil. The number of OTUs corresponding to each taxon is indicated with the 

average cumulative relative abundance of each taxon in planted and unplanted soil indicated. 

    OTUs Planted (%) Unplanted (%) 

Euryarchaeota Methanoregula 1 0.02 0.00 

Acidobacteria Gp16 2 1.60 1.16 

 

Gp23 1 0.02 0.00 

 

Gp4 1 0.46 0.27 

 

Gp7 3 1.05 0.66 

Actinobacteria Actinobacteria 1 0.09 0.04 

Bacteroidetes Unclassified 5 0.35 0.07 

Chloroflexi Anaerolineaceae 1 0.02 0.00 

Cyanobacteria Streptophyta 1 0.13 0.01 

 

Chlorophyta 1 0.03 0.00 

 

GpV 1 0.03 0.00 

 

Cyanobacteria order* 1 0.02 0.00 

Firmicutes Thermoactinomyces 1 0.10 0.04 

 

Clostridium sensu stricto 2 0.22 0.12 

 

Clostridium  1 0.07 0.01 

 

Clostridiales 1 0.21 0.07 

 

Clostridiaceae 1 0.07 0.00 

 

Veillonellaceae 2 0.09 0.02 

 

Clostridia 2 0.08 0.02 

Gemmatimonadetes Gemmatimonas 1 0.07 0.01 

Alphaproteobacteria Azospirillum 1 0.02 0.00 

 

Magnetospirillum 3 0.09 0.02 

 

Dongia 1 0.02 0.00 

 

Mitochondria genus* 1 0.06 0.01 

 

Rhizobiales 1 0.08 0.02 

Betaproteobacteria Comamonadaceae 1 0.19 0.02 

 

Burkholderiales 1 0.50 0.07 

 

Rhodocyclaceae 2 0.16 0.01 

 

Unclassified 1 0.09 0.02 

Deltaproteobacteria Geobacter 6 0.91 0.31 

 

Cystobacteraceae 1 0.11 0.02 

 

Anaeromyxobacter 4 0.68 0.32 

Gammaproteobacteria Methylomonas 1 0.02 0.00 

 

Xanthomonadaceae 1 0.02 0.00 

 

Unclassified 1 0.09 0.02 

Unclassified 

 

26 1.76 0.47 

Verrucomicrobia Opitutaceae 2 0.20 0.00 

 

Opitutus 2 0.16 0.02 

 

Spartobacteria genera* 1 0.02 0.00 

  Sum 87 9.91 3.83 

*=incertae sedis 
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Among these 50 OTUs, we then selected the ten with the highest contribution to the 

original PCA ordination and repeated the PCA separately using their relative abundance in 

unplanted (Figure 2.4A) or planted samples (Figure 2.4B). The ordination of the unplanted 

samples appeared to separate by early and late time points along the second axis of the 

ordination. In the ordination using the rhizosphere samples the replicates from each time 

point did not overlap, suggesting that their relative abundance shifted by plant growth stage. 

These OTUs included several that could not be classified below the level of order using the 

naïve Bayesian classifier, and therefore we added them to a phylogenetic tree to indicate 

their closest relatives (Figure 2.4c). All the OTUs belonged to Proteobacteria, with the 

exception of OTU_73 that could not be clearly assigned to any bacterial phylum. 
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Figure 2.3 Heatmap depicting the relative abundance of OTUs with greatest dissimilarity between 

planted and unplanted microcosms. Samples were clustered based on Manhattan distances. OTUs 

were classified and only those that could be classified to order or lower were included. The sampling 

times (1-4) correspond to 34, 52, 62 and 90 days after planting. 
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Figure 2.4 Analysis of ten top OTUs explaining difference between planted and unplanted microbial 

communities. PCoA of the ten OTUs in the unplanted (A) and planted (B) samples. The corners of 

the triangles correspond to the positions of the triplicates. Phylogenetic tree (C) for the ten OTUs 

showing representatives of their closest relatives in the Silva 16S rRNA database.  
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 Although the metastats analysis and the PCA/heatmap provided hints as to which 

bacterial phyla were differentially abundant between planted and unplanted soil microcosms, 

we wanted to determine if this pattern could be seen for individual bacterial phyla alone. To 

determine this, OTUs from bacterial phyla were selected and analyzed individually by 

PCoA. The dissimilarity between planted and unplanted soil was seen most notably for 

Acidobacteria, Bacteroidetes, Gemmatimonadetes, Proteobacteria and Verrucomicrobia 

(Figure 2.5). The distribution of samples from several phyla, such as Actinobacteria, 

Armatimonadetes, Cyanobacteria and Planctomycetes overlapped in the ordination and the 

BRC phylum showed no apparent separation of planted and unplanted communities along 

either the first or second axis. Archaea also showed no separation based on planted and 

unplanted microcosms (Figure 2.6a). Since Archaea represented only 1.2% of reads, one 

possibility was that the relatively poor coverage hampered the statistical power to resolve 

patterns between planted and unplanted samples. Therefore, we repeated the analysis using 

Archaea-specific 16S rRNA primers and T-RFLP. Again, no difference between planted and 

unplanted samples was seen in the in the PCoA ordination (Figure 2.6b), indicating that 

indeed the distribution of Archaea did not differ between rhizosphere and unplanted soil, 

despite an increase in their absolute abundance (Table 2.1). 
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Figure 2.5 PCoA analysis of 16S rRNA gene OTUs assigned to major bacterial phyla detected in 

Vercelli rice field soil. Unplanted samples are depicted with red symbols and planted samples in 

blue. 
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Figure 2.6 PCoA analysis of archaeal OTUs. (A) Pyrosequencing data using universal 16S rRNA 

primers, and (B) T-RFLP analysis using Archaea-specific primers. Unplanted samples are depicted 

with red symbols and planted samples in blue.  
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2.5 Discussion 

 The microbial community in the rhizosphere is known to be influenced and shaped 

by the plant, but the exact nature of the change and the extent to which this occurs in a single 

growing season of rice was not known. Therefore we examined the size and composition of 

the community in the rhizosphere at different plant growth stages. We compared this to 

unplanted rice soil microcosms to control for changes in the community resulting from soil 

flooding and fertilization, such as the sequential enrichment of microbes able to exploit 

different electron acceptors (Shrestha et al., 2007). The key finding was that the greatest 

difference in microbial community was between planted (i.e. rhizosphere) and unplanted soil 

(Figure 2.2), with only minor changes occurring over time. This indicates that the plant is the 

major driver of microbial community composition in rice field soil. In addition, the 

differences between the planted and unplanted microbial communities were relatively subtle. 

 The rhizosphere is generally known as a compartment in the soil influenced by the 

plant and where organic matter is introduced via rhizodeposition and sloughed-off cells. 

Rhizodeposition by rice plants has been described (e.g. Aulakh et al., 2001; Wu et al., 2008) 

and shown to enhance microbial activity in the rhizosphere compared with bulk soil (Butler 

et al. 2003). Oxygen is also released from rice roots (e.g. Armstrong, 1979; Frenzel et al., 

1992) and serves as an electron acceptor for aerobic microorganisms. The volume and 

composition of organic molecules released from roots changes somewhat with rice plant 

growth stage (Aulakh et al., 2001), which in theory could also cause temporal shifts in the 

rhizosphere microbial community. Our data (Supplement Table 2.1) and other studies show 

that the combined influence of the rice plant and the microorganisms in the rhizosphere act 

to modify the chemical composition of the soil environment. We show that the abundance of 

Archaea and Bacteria were two-fold higher in the rice rhizosphere than the bulk soil of the 

unplanted pots (Table 2.1). 

Although there was a doubling of the bacterial community in the rhizosphere as 

determined by qPCR targeting bacteria 16S rRNA genes, there was no significant difference 

in the relative abundance of bacterial at the phylum level (Figure 2.1). This indicates that this 

increase in abundance occurred evenly, otherwise the relative abundance of the stimulated 

phyla would have increased and unresponsive phyla would have decreased relative to the 
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unplanted control. Without targeted qPCR assays for individual phyla we lack the statistical 

power to prove that all the bacterial phyla were stimulated in the rhizosphere, but we can 

conclude that the stimulation of microbial growth in the rhizosphere was not limited to a 

small subset of phyla. To explore this further we focused on a comparison of OTUs (97% 

sequence identity) within individual phyla to determine if there was a differential response 

by phylum members. The within-phylum community structure was clearly affected by the 

rice plant in several cases, but most notably Acidobacteria, Gemmatimonadetes, 

Planctomycetes, Proteobacteria and Verrucomicrobia (Figure 2.5). The clear separation of 

planted and unplanted communities for these phyla along the first axis of the ordinations 

indicates differential effects of the rice plant on the phylum members, and that the rice plant 

was the primary factor affecting the relative abundance of OTUs.  

In the case of Archaea, their abundance was on average more than two-fold greater in 

rhizosphere than unplanted soil (Table 2.1), but the archaeal community composition was 

apparently not differentially shaped by these locations (Figure 2.6). An increase in the 

absolute abundance of a group without a change in the relative abundance of the individual 

OTUs would indicate an equal stimulation of all taxa, which appeared to be the case of 

Archaea in our experimental system. Studies have shown that archaeal communities are 

relatively stable once established and are resistant to environmental perturbation, such as 

drainage (Chapter 3, Breidenbach and Conrad, 2015; Krüger et al., 2005; Scavino et al., 

2013; Watanabe et al., 2006), or oxygenation in the case of strict anaerobes (Yuan et al., 

2011). The lower abundance of Archaea in the unplanted soil compared with rhizosphere is a 

reflection of energy or carbon limitation in the absence of rice plants. Our current hypothesis 

is that the relative abundance of Archaea in Vercelli rice field soil is shaped by their growth 

in the rhizosphere, and that archaeal OTUs respond proportionally to carbon or energy 

limitation.  

The overall archaeal and bacterial communities in the planted and unplanted pots 

were mainly similar possibly indicating a pronounced influence of the soil type and 

conditions. Rice field soil is mainly flooded during rice cultivation resulting in anoxic soil 

compartments which are colonized by anaerobic microbes. The soil we used in the present 

study has been used for rice cultivation for more than 100 years 
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(http://sito.entecra.it/portale/cra_dati_istituto.php?id=226&lingua=EN). It is likely that the 

microbial communities inhabiting the soil are highly adapted to the anoxic conditions and 

are shaped by rice plant nutrient inputs since rice is cultivated as a monoculture in these 

fields. The soil is typically drained after harvest and therefore is accustomed to a cycle of 

dessication followed by flooding. Similarly, the soil was dried in the laboratory prior to the 

experiment and both planted and unplanted microcosms were fertilized, as is also common 

practice for the cultivation of rice in Vercelli rice fields. As water regime and fertilization 

were equal in both planted and unplanted soil, the different patterns observed result either 

directly or indirectly from the rice plant. 

 In both planted and unplanted soil we were not able to detect dramatic temporal 

changes in the microbial community composition. This may indicate that this community is 

highly adapted to nutrients available and that for example species involved in the anaerobic 

breakdown of organic matter are specialized in the Vercelli rice field soil. The sequential 

enrichment of microbes as a consequence of the availability of different electron acceptors 

(Shrestha f., 2007) was not clearly observed in the present study. However, these processes 

occur shortly after flooding when electron acceptors such as oxygen and nitrate are rapidly 

depleted (Conrad and Frenzel, 2002). Therefore, it is likely that these sequential dynamics 

occurred before our first sampling on day 34. An analysis of the ten OTUs with the greatest 

dissimilarity between planted and unplanted microcosms did suggest a temporal change in 

the rhizosphere according to plant age (Figure 2.4b), supporting the hypothesis that changes 

in rhizodeposition during rice plant growth may impact microbes in the rhizosphere. Also, 

the unplanted soil revealed slight differences in relative abundances of OTUs between early 

and late sampling time points (e.g. Figure 2.3, Figure 2.4).  

 Despite the overall bacterial community was similar in planted and unplanted soil we 

found specific bacterial groups differing. In the planted soil we found bacterial lineages 

which likely were influenced by the oxygen supply of the rice plant such as Rhizobiales, 

which are known aerobes (Yanagi and Yamasto, 1993) and have also been identified a 

capable of consuming rice plant-derived carbon (Hernández et al., 2015). Furthermore, the 

anaerobic iron reducers Geobacter and Anaeromyxobacter were found enriched in the 

planted soil. Oxidants such as ferric iron are rapidly reduced in rice field soils (Conrad and 

http://sito.entecra.it/portale/cra_dati_istituto.php?id=226&lingua=EN
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Frenzel, 2002), but may be regenerated when plants release O2 from their roots. The second 

group of bacteria found enriched in the planted soil may be support the rice plant growth by 

providing nitrogen and sulfur compounds such as Herbaspirillum, Burkholderia and 

Comomonas. Herbaspirillum and Burkholderia spp. are both capable of nitrogen fixation 

and reported to increase biological nitrogen fixation in rice plants (Baldani et al., 2000). 

Also, Burkholderia were identified to actively assimilate rice plant derived carbon (Lu et al., 

2006). Comomonas were recently identified enriched on rice roots (Hernández et al., 2015) 

and might have a role in supplying plants with sulfur via desulfonation reactions (Inceoglu et 

al., 2010). Finally, Opitutus and Clostridia were found to be enriched in the rhizosphere 

compared with unplanted soil, and were both identified consumers of plant-derived carbon 

(Hernández et al., 2015). Both these organisms are strict anaerobes with fermentative 

metabolism (Andreesen et al., 1973, Chin et al., 2001).  

 The bacterial lineages found in higher abundance in the unplanted soil can be divided 

into two groups: (I) anaerobes degrading complex carbon compounds adapted to low 

substrate conditions and (II) aerobic organisms. The first group was composed of 

Actinobacteria which were suggested to be involved in decomposition of less-degradable 

compounds (Rui et al., 2001) and recently identified to be involved in hemicellulose 

breakdown in rice field soil (Wegner and Liesack., 2015). The second group comprises 

Gemmatimonadetes, Nitrosospira and Spartobacteria. Recently, Spartobacteria were 

reported to using plant carbon colonizing the rice roots (Hernández et al., 2015). The aerobic 

Chthoniobacter flavus is one of the only characterized isolates of Spartobacteria and was 

shown to grow on saccharides including starch and cellulose (Sangwan et al., 2004). 

Nitrosospira spp. are represented by aerobic ammonia-oxidizing bacteria and have been 

isolated from the rhizoplane of rice (Aleem et al., 1965; Tomiyama et al., 2001). The higher 

relative abundance of a Nitrosospira OTU in the unplanted soil compared to the rhizosphere 

might be a reflection of less competition for ammonia in the absence of rice plants. Lastly, 

there are only two isolates belonging to the Gemmatimonadetes and both are aerobes capable 

of polyphosphate accumulation (Zhang et al., 2003; DeBruyn et al., 2013). It is possible that 

these OTUs were enriched during soil storage prior to start of the experiment, after which 

their relative abundance decreased in the rhizosphere as the absolute abundance of the total 

bacterial community increased in this zone. 
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 The results of this study indicate that the rice plant is the major driver of microbial 

community composition in rice field soil and that this community is highly adapted to the 

specific conditions of rice plant growth. Future studies could explore this by cultivating 

other crops in Vercelli rice field soil to determine if this results in a relatively large shift in 

the rhizosphere microbial community. Furthermore, it would be intriguing to expose Vercelli 

soil to repeated cycles of flooding without rice plants to determine if the historical influence 

of rice cultivation begins to dissipate and a more pronounced shift in the microbial 

community structure is observed.  
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2.6 Supplemental material 

Supplement Table 2.1 Concentrations of organic acids and inorganic ions detected in the porewater of planted and unplanted pots. Values indicate 

the average and standard deviation in millimolar concentrations. Flooding period 1= 34 days; 2= 52 days; 3= 62 days ; 4= 90 days. Values with the 

same letters indicate that organic acid and inorganic ion concentrations are not significantly different (P< 0.05) by ANOVA. ND indicates not 

detected.  

Flooding period Malate Lactate Formate Acetate Propionate Chloride Nitrate Sulfate 

Planted          

1 70.23 ± 23.05
a
 0.98 ± 1.01

a
 0.13 ± 0.14

a
 0.44 ± 0.42

a
 0.06 ± 0.09 12.70 ± 4.08 

a
 0.02 ± 0.02

a
 0.03 ± 0.03

a
 

2 69.18 ± 25.17
a
 1.41 ± 1.39

a
 0.10 ± 0.10

a
 0.50 ± 0.56

a
 1.17 ± 1.69 30.95 ± 2.40 

b, c
 0.01 ± 0.01

a
 0.02 ± 0.02

a
 

3 103.51 ± 11.45
a
 1.16 ± 0.40

a
 0.31 ± 0.14

a
 0.48 ± 0.41

a
 0.38 ± 0.20 29.06 ± 5.98 

b ,c
 0.05 ± 0.05

a
 0.02 ± 0.01

a
 

4 121.92 ± 19.63
a
 1.26 ± 0.53

a
 0.40 ± 0.09

a
 0.55 ± 0.41

a
 0.96 ± 0.35 34.91 ± 2.08 

b
 Nd 0.03 ± 0.02

a
 

Unplanted          

1 85.96 ± 9.43
a
 0.17 ± 0.18

a
 0.03 ± 0.05

a
 0.02 ± 0.04

a
 Nd 12.05 ± 1.07 

a
 0.13 ± 0.20

a
 0.02 ±0.02

a
 

2 101.31 ± 8.37
a
 0.01 ± 0.02

a
 0.09 ± 0.02

a
 0.01 ± 0.01

a
 Nd 14.49 ± 1.64 

a
 0.05 ± 0.05

a
 0.02 ±0.02

a
 

3 119.89 ± 58.70
a
 0.03 ± 0.07

a
 0.05 ± 0.03

a
 Nd 0.03 ± 0.00 16.48± 3.36 

a
 0.14 ± 0.15

a
 0.03 ± 0.02

a
 

4 148.13 ± 88.17
a
 0.04 ± 0.07

a
 0.04 ± 0.03

a
 0.01 ± 0.01

a
 Nd 19.10 ± 4.52

 a, c
 0.23  ± 0.30

a
 0.05 ±0.03

a
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3.1 Abstract 

We studied the resident (16S rDNA) and the active (16S rRNA) members of soil 

archaeal and bacterial communities during rice plant development by sampling three growth 

stages (vegetative, reproductive and maturity) under field conditions. Additionally, the 

microbial community was investigated in two non-flooded fields (unplanted, cultivated with 

upland maize) in order to monitor the reaction of the microbial communities to non-flooded, 

dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR 

showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies 

throughout the growth season. Community profiling by T-RFLP indicated a relatively stable 

composition during rice plant growth whereas pyrosequencing revealed minor changes in 

relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with 

flooded rice fields showed that the community composition of the Bacteria was slightly 

different, while that of the Archaea was almost the same. Only the relative abundance of 

Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded versus 

flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in 

flooded rice fields, followed by non-flooded maize and unplanted fields. However, the 

abundance of ribosomal RNA (active microbes) was similar indicating maintenance of a 

high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for 

anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as 

preparedness for activity when conditions improve. In summary, the analyses showed that 

the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively 

stable over the season but reacted upon change in field management.  
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3.2. Introduction 

Methane (CH4) is the second most important greenhouse gas after carbon dioxide 

(CO2) and has a 25 times larger global warming potential than CO2 (Forster et al., 2007). 

The global budget of atmospheric CH4 is on the order of 500-600 Tg per year (Forster et al., 

2007) and rice fields contribute in the range of 25-300 Tg CH4 per year (Chen and Prinn, 

2005, Bridgham et al., 2013). Rice production will probably increase, in order to feed an 

increasing human population (Van Nguyen and Ferrero, 2006) so that CH4 emission from 

rice fields may also increase in future. In rice fields CH4 is produced as end product of the 

anaerobic degradation of organic matter by a complex microbial community consisting of 

hydrolytic and fermentative bacteria, and methanogenic archaea (Zinder, 1993; Conrad, 

2007). Flooded rice fields have been used as a model system for studying the functioning of 

anoxic methanogenic microbial communities (Conrad, 2007; 2009).  

In rice fields methane is produced by two major physiological guilds, the 

acetotrophic and the hydrogenotrophic methanogens. Acetotrophic methanogens dismutate 

acetate to CH4 and CO2, while the hydrogenotrophic methanogens reduce CO2 with H2 to 

CH4 (Conrad, 2007). Molecular characterization of 16S rDNA showed a worldwide 

distribution of methanogens in rice fields (China, Italy, Japan and Philippines) including 

Methanosarcinaceae, Methanosaetaceae, Methanobacteriales, Methanomicrobiales and 

Methanocellales (Großkopf et al., 1998; Ramakrishnan et al., 2001; Wu et al., 2006). The 

composition of the soil archaeal community changes if temperature is increased (Peng et al., 

2008; Conrad et al., 2009) or the rice field soil is treated with organic matter such as rice 

straw (Conrad and Klose, 2006; Peng et al., 2008). Under field conditions, however, the 

archaeal communities were usually found to be rather stable even after short term drainage 

or extended periods of managing rice fields as upland fields (Krüger et al., 2005; Watanabe 

et al., 2006; Fernandez Scavino et al., 2013). In a recent study of a Korean rice field, 

numbers of archaea and methanogens changed by less than a factor of two throughout a 

cropping season (Lee et al., 2014).  

In contrast to the archaeal community it has been shown that the bacterial community 

in rice field soil changes with time after flooding (Noll et al., 2005; Rui et al., 2009). 

Bacterial communities in irrigated rice fields are described as complex (Asakawa and 

Kimura, 2008) and differ between oxic and anoxic zones (Shrestha et al., 2007). 
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Additionally, temporal and spatial changes in the composition of the bacterial communities 

with changing soil conditions were observed (Noll et al., 2005; Shrestha et al., 2009). 

Variations in relative abundance of dominant phyla under alfalfa-rice crop rotation system 

were revealed (Lopes et al., 2014) whereas pasture-rice crop rotation showed a rather stable 

bacterial community composition (Fernandez Scavino et al., 2013).  

Moreover, archaeal and bacterial communities in the rhizosphere can be shaped by 

the plant species (e.g. Grayston et al., 1998; Smalla et al., 2001; Conrad et al., 2008). 

Several other studies demonstrated that plant type had an effect on soil microbial community 

structure (Marschner et al., 2001; Smalla et al., 2001; Costa et al., 2006). In addition to plant 

residues and soil organic matter, rhizodeposits are the major substrate input into soil 

(Kimura et al., 2004). Rhizodeposits are plant-derived carbon-containing compounds, which 

are actively secreted via the plant roots or originate from sloughed-off root cells (reviewed 

by Dennis et al., 2010). Rhizodeposition takes place at the zone around the plant root called 

rhizosphere which was shown to harbor a specific microbial community (Kowalchuk et al., 

2010). Rhizodeposition depends on environmental factors, plant species, type and cultivar as 

well as plant age (Aulakh et al., 2001; Uren, 2007). The microbial community in the 

rhizosphere may be influenced by these variations in rhizodeposition. 

Therefore, we hypothesized that the microbial community in rice field soil will be 

influenced by rice plant growth stage. Since a comprehensive seasonal record of resident and 

active microorganisms was lacking, we investigated the archaeal and bacterial community in 

the soil under field conditions by sampling three distinct plant growth stages. Additionally, 

the microbial community was investigated in two fields that were not flooded and were 

either unplanted or cultivated with upland maize in order to monitor the reaction of the rice 

specific microbial community to non-flooded conditions and to the presence or absence of 

maize. The microbial composition and abundance was assessed by fingerprinting with 

terminal-restriction fragment length polymorphism (T-RFLP) and quantitative PCR (qPCR) 

targeting the archaeal and bacterial ribosomal 16S rRNA and 16S rDNA, respectively. In 

order to identify changes in the lower taxonomic groups, archaeal and bacterial 16S rRNA 

was targeted by 454 pyrosequencing. Interestingly, we observed rather stable archaeal and 

bacterial communities in the soil during rice plant growth but detected more pronounced 

differences between flooded and non-flooded fields.   
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3.3 Material and methods 

3.3.1 Sampling site and sample processing 

The sampling site was located at the International Rice Research Institute (IRRI) in 

Los Banos, Philippines. Detailed site description can be found in Heinz et al. (2013). Briefly, 

we studied fields cultivated with irrigated rice throughout one cropping season at the 

vegetative (February 2012), reproductive (March 2012) and maturity (May 2012) growth 

phase of the rice plants (variety: NSIC Rc222). Additionally rice fields, which had been 

drained and were now managed as upland fields cultivating upland maize (variety: Pioneer 

P3482YR) were sampled after plowing and before maize seeding and fertilization as 

unplanted and drained rice field (unplanted) and during the reproductive growth phase of 

maize (maize). The study site was cropped with paddy rice in both wet and dry season over 

two decades (Weller et al., 2014). This season (dry 2012) was the first season in which the 

fields were managed as upland maize fields. Fields were operated in triplicates and managed 

with conventional N-fertilization (rice: seeding 30 kg N/ha, 30 kg P2O5/ha, 30 kg K2O/ha; at 

28 and 55 days after seeding (DAS) 50 kg N/ha; maize: seeding 30 kg N/ha, 50 kg P2O5/ha, 

30 kg K2O/ha; at 27-29 and 47-50 DAS 50 kg N/ha). In each of these fields we randomly 

selected three sampling plots of one square meter and sampled one soil core (5 cm diameter) 

from each plot. Soil cores were always taken from the vicinity of a plant (ca. 10 cm). The 

soil contained numerous fine roots and thus was most probably influenced by the plant roots. 

However, no attempts were made to separate a specific rhizospheric soil compartment. 

Subsequently, soil samples of 5 g were taken from the middle of the core (~ 10 cm depth), 

added to 10 mL RNAlater© solution (Life Technologies, Darmstadt, Germany), kept on ice 

and later stored at -20°C to ensure RNA stability. For further analysis (determination of soil 

variables), additional samples of 50 g were taken from the same soil core and stored at -

20°C.  

3.3.2 Determination of soil variables 

For determination of soil water content small amounts of soil (1-5 g) were dried at 

65°C for 3 days. The gravimetric water contents of the samples from fields cultivated with 

rice or maize and unplanted fields were 42.8 ± 3.5%, 34.3 ± 1.2% and 36.0 ± 2.2%, 
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respectively. The pH of the soil was analyzed following the DIN ISO 10390 protocol. 

Briefly, 3 g of soil was mixed with 0.01 M CaCl2 in a ratio of 1:2.5 and incubated rotating at 

25°C for 10 min. Subsequently, the samples were incubated at 25°C for 60 min without 

agitation and then, after shaking the sample, the pH was measured using a pH meter (pH530 

WTW, Weilheim, Germany). The pH values in rice, maize and unplanted fields were pH 6.8, 

6.6 and 6.2, respectively. The soil texture was silt loam and the determination was conducted 

using a laser particle measuring device (LS13320, Beckmann-Coulter, Krefeld, Germany) at 

the geographic institute of the RTWH Aachen. 

3.3.3 Nucleic acid extraction 

Nucleic acids were extracted following a modified version of the protocol from 

Bürgmann et al. (2001). Briefly, after removal of RNAlater© solution by centrifugation at 

2,500 x g for 2 min, 0.5 g of soil were extracted via bead-beating for 45 s at 6 m/s using a 

FastPrep®-24 (MP Biomedicals, Eschwege, Germany) in the presence of a 850 µl extraction 

buffer (20 ml 1 M sodium phosphate (pH 8.0), 2.5 g SDS, 10 ml 0.5 M EDTA (pH 8.0) and 

2 ml 5 M NaCl). The tube was centrifuged at maximum speed for 5 min at 20°C. Then, 

850 µl of phenol/chloroform/isoamylalcohol (25:24:1; Fluka, Sigma-Aldrich, Taufkirchen, 

Germany) was added to the supernatant and mixed. The bead beating was repeated twice 

using fresh extraction buffer. After mixing, the tubes were centrifuged for 5 min at 

maximum speed at 20°C. Then, 800 µl of chloroform/ isoamylalcohol (24:1; Fluka, Sigma-

Aldrich, Taufkirchen, Germany) was added to the supernatant. After further centrifugation, 1 

ml of precipitation solution (20 g PEG 6000, 16.6 g NaCl) was added to the aqueous 

supernatant, mixed, and kept at room temperature for 1 h. After centrifugation for 1 h with 

maximum speed at 4°C the sample was resuspended in 75% ice cold ethanol (Roth, 

Karlsruhe, Germany) and subsequently centrifuged for 10 min at maximum speed and 4°C. 

The resulting pellet was air dried and resuspended in 100 µl nuclease free water (Invitrogen, 

Darmstadt, Germany) and stored at -80°C until analysis. The total nucleic acids in 50 µl 

aliquot were digested with 37.5 µl nuclease free water (Invitrogen), 2.5 µl RNase-free 

DNase and 10 µl buffer RDD (Qiagen, Hilden, Germany) at room temperature for 10 min. 

The digest was then purified using RNeasy kit (Qiagen) following the RNA Cleanup 

protocol in the manufacturer´s instructions. Complete DNA removal was verified by failure 
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to obtain a PCR amplification product of bacterial 16S rDNA with the purified RNA 

template using the conditions described below. cDNA was synthesized from purified RNA 

using SuperScript™ III reverse transcriptase (Invitrogen) according to the manufacturer‘s 

instructions. Random hexamer primers (50ng/µl) were used for complete cDNA synthesis 

which was used for amplification of the archaeal and bacterial 16S rRNA.  

3.3.4 Quantitative polymerase chain reaction 

The quantification of archaeal and bacterial 16S rDNA/rRNA was conducted using 

quantitative polymerase chain reaction (qPCR) using primer combinations Ba519f / Ba907r 

(Stubner, 2002) for bacterial and Ar364f (Burggraf et al., 1997) / Ar934br (Großkopf et al., 

1998) for archaeal genes. The qPCR was conducted in 96-well micro titer plates (BioRad, 

München, Germany) using an iCycler MyiQ™ (BioRad). Each qPCR reaction contained in a 

total volume of 25 µl, 1 x SYBRGreen Ready Mix (Sigma), 3 mM MgCl2 (Sigma), 0.25-

0.66 µM of each primer and 1 µM FITC (fluorescein thiocyanat; BioRad) as well as 1-2 µl 

target DNA respectively cDNA. Purity of the used reagents was ensured using negative 

controls not containing any DNA matrix. The DNA standard prepared from clones 

containing bacterial or archaeal 16S rDNA in a plasmid insert was applied in a dilution 

series containing 1 x 10
7
 to 1 x 10

1
 gene copies. The thermal profile used for amplification 

included 40 to 50 cycles of denaturation at 94°C for 30 s, primer annealing at 50°C (Ba519f 

/Ba907r ) or 66°C (Ar364/Ar934br) for 20-30 s and primer extension at 72°C for 45 s. 

Afterwards a melting curve from 75°C to 95°C (0.2°C s
−1

) was performed in order to 

confirm specificity of the real time PCR reaction. The data were analyzed using BioRad IQ5 

2.0 Standard Edition Optical System software (Biorad). 

3.3.5 Terminal fragment length polymorphism (T-RFLP) 

T-RFLP analysis of archaeal and bacterial 16S rRNA/rDNA was conducted based on 

fractionation of terminal fluorescence-labeled PCR products after use of restriction enzymes 

as described (Chin et al., 1999) using the primer combination Ar109f (Großkopf et al., 1998) 

/ Ar912rt-FAM (Lueders and Friedrich, 2003) and Ba27f-FAM (Osborne et al., 2005) / 

Ba907r (Muyzer et al., 1995), respectively. All PCR reactions were performed in a total 
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volume of 50 µl. For amplification each reaction contained 5 x Green GoTaq® Flexi buffer 

(Promega, Mannheim, Germany), 200 µM deoxy-nucleoside triphosphates (dNTPs; 

Fermentas, St. Leon-Rot, Germany), 0.5 µM of each primer, 10 µg bovine serum albumin 

(BSA; Roche, Grenzach, Germany), 1 U GoTaq® Flexi DNA polymerase (Promega) and 1 

µl DNA matrix (in most cases diluted to a concentration of 20 ng/µl). All amplifications 

were carried out in a GenAmp 9700 Thermocycler (Applied Biosystems, Carlsbad CA, 

USA). The thermal profile used for amplification included 25 to 30 cycles of primer 

annealing at 52°C for 45 s, primer extension at 72°C for 90 s, and denaturation at 94°C for 

45 s. PCR product purification was conducted using the GenElute™ PCR Clean-up kit 

(Sigma) following the manufacturer´s instructions. The purified amplicons were digested by 

using MspI (cutting side: 5‘-C▼CGG-3`, 37° C; Fermentas) for bacterial and TaqI (cutting 

side: 5‘-T▼CGA-3`, 65° C; Fermentas) for archaeal 16S rDNA/rRNA. The fragmented 

DNA was purified using SigmaSpin™ Post Reaction Clean-Up columns (Sigma) following 

the manufacturer´s instructions. T-RFLP reactions contained 0.2 µl size standard (X-

rhodamine MapMarker® 1000, BioVentures, Murfreesboro, USA). Separation was 

accomplished using capillary electrophoresis in an ABI PRISM 3130 Genetic Analyzer 

(Applera). Data analysis was conducted using GENESCAN Analysis software 4.0 (Applied 

Biosystems, Carlsbad, USA). Normalization and standardization of the T-RFLP profiles was 

done according the method from Dunbar et al. (2001). The relative abundance was 

calculated from the ratio between the height of the fluorescence signal and the total height of 

all signals in one sample.  

3.3.6 Cloning and sequencing 

A clone library of archaeal 16S rDNA was created for subsequent phylogenetic 

classification. The pGEM®-T Easy Vector System (Promega) was used. The purified PCR 

products were ligated into the pGEM®-T Easy Vector according to the manufacturer´s 

instructions. Each ligation reaction contained 5 µl 2X Rapid Ligation Buffer (Promega), 1 µl 

pGEM®-T Easy Vector (50 ng; Promega), 1 µl T4 DNA ligase (3 Weiss units/µl; Promega) 

and 50 ng PCR product. Sterile water was added to reach a total volume of 10 µl. The 

transformation of Escherichia coli JM109 high efficient competent cells (Promega) was 

carried out according to the manufacturer´s instructions. Randomly chosen white colonies 
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were sequenced using Sanger sequencing. The received raw data (electropherograms) were 

processed using the program Seqman II (DNAStar, Madison, USA). The phylogeny of the 

archaeal sequences was analyzed using the ARB software (http://www.arb-home.de/). For 

the archaeal 16S rRNA sequences the public available database was downloaded from 

SILVA homepage (http://www.arb-silva.de/) and integrated into ARB. Alignment was 

conducted using the Fast Aligner tool in ARB (Ludwig et al., 2004). The alignment was then 

manually checked and where necessary corrected. Subsequently, the aligned sequences were 

calculated into the archaeal 16S rRNA tree under usage of the neighbor-joining algorithm as 

described in detail by Wu et al. (2006). The restriction sides characteristic for the fragment 

length of the T-RFs were determined. The T-RFs determined from T-RFLP analyses were 

assigned to the corresponding clones and their phylogeny. The archaeal 16S rRNA 

sequences data have been submitted to the GenBank databases under accession numbers: 

KM463011 - KM463082. 

3.3.7 454 Pyrosequencing 

Tagged pyrosequencing of the bacterial and archaeal community was conducted 

using primer combinations F515/R806 (Bates et al., 2011) and Arch344F (Casamayor et al., 

2002) / A934br (Großkopf et al., 1998), respectively.  The forward primers were tagged with 

a unique 8-base pair barcode. Sequencing of the PCR products was done at the Max Planck 

Genome Centre in Cologne using a Roche 454 Genome Sequencer GS FLX+. Data analysis 

was performed using mothur software package version 1.31.2 (http://www.mothur.org/) 

following the standard operational procedure including sequence quality management (SOP, 

Schloss et al., 2009). OTU clustering and analysis was conducted using UPARSE pipeline as 

described by Edgar (2013). Only microbial high-quality sequences with a minimum read 

length of 200 bp were used. Sequences that did not match the primer sequences and were 

smaller than 200 bp or contained any ambiguities were excluded from further analysis. After 

denoising, sequences were aligned against the SILVA bacteria/archaea 16S rDNA database 

(Schloss et al., 2011; Pruesse et al., 2007). Sequences which were not assigned to bacteria or 

respectively archaea were discarded. Operational taxonomic units (OTU) were defined using 

a distance matrix with 3% dissimilarity (Zinger et al., 2011). Further analyses including 

rarefaction curves, species richness and  diversity indices were conducted as described in the 
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SOP pyrosequencing pipeline (Schloss et al., 2011). An overview of the number of 

sequences retrieved and the accession numbers of the submitted sequences can be found in 

Tables 3.2 and 3.3. 

3.3.8 Statistical analysis  

Statistical analyses were done in R version 2.14.1 (R Development Core Team, 

2011). If necessary, normal distribution was achieved by log-transforming the data. Analysis 

of variance (ANOVA), PERMANOVA (ADONIS) and canonical correspondence analysis 

(CCA) were conducted with package vegan version 2.0.5 (Oksanen et al., 2012). All levels 

of significance were defined at P ≤ 0.05. Ternary plots were created using package vcd 

version 3.0.3.   
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3.4 Results 

3.4.1 Bacterial and archaeal 16S rDNA/rRNA copy numbers  

For quantification of bacteria and archaea in rice field soil during rice plant growth 

we used quantitative PCR (qPCR) targeting the bacterial and archaeal 16S ribosomal RNA 

(16S rRNA) and their genes (16S rDNA). Copy numbers of bacterial and archaeal 16S 

rDNA and rRNA were quantified at three different growth stages and in differently cropped 

fields (Figure 3.1). Both bacterial and archaeal 16S rDNA copy numbers were highest during 

rice growth at reproductive stage, whereas the 16S rRNA copy numbers were constant 

during the whole season (Figure 3.1A, B). Comparing rice and maize cultivated soils during 

the reproductive growth phase, the highest copy numbers of 16S rDNA and rRNA were 

detected in the rice fields (Figure 3.1C, D). The unplanted fields contained less 16S rDNA 

copies than the fields cultivated with either rice or maize (Figure 3.1C, D). However, the 

numbers of archaeal and bacterial 16S rRNA copies were similar to those in the rice fields 

(Figure 3.1C, D) resulting in a high ratio of rRNA and rDNA copies (Figure 3.2). In contrast, 

bacterial 16S rRNA copies were lower in the maize field than in the rice cultivated and 

unplanted fields (Figure 3.1C).  
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Figure 3.1 Ribosomal 16S rRNA and rDNA copy numbers quantified using qPCR. Abundance of 

bacterial 16S rDNA and rRNA (A, C) and archaeal 16S rDNA and rRNA (B, D) in rice fields at 

different plant growth stages (A, B) as well as in fields planted with rice, maize or unplanted at the 

reproductive growth stage (C, D). Different letters indicate significant difference (mean ± SE, n=9). 

 

 Although the ratio of bacterial and archaeal rRNA/rDNA copies was significantly 

increased in unplanted fields in comparison to the fields cultivated with either rice or maize 

across all the replicates sampled, samples from replicate field 7 did not show such increase 

(Figure 3.2). The behavior of these particular replicates could not be explained by analyzing 

possible correlation with soil characteristics (contents of carbon, nitrogen, sulfate, nitrate, 

water). 
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Figure 3.2 Ratio of ribosomal 16S rRNA and rDNA copy numbers quantified using qPCR. Bacterial 

(A) and archaeal (B) ratios are shown for each replicate in the unplanted, rice and maize cultivated 

fields. 
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3.4.2 Bacterial and archaeal community analyzed by T-RFLP 

For community profiling we used T-RFLP targeting the bacterial and archaeal 

16S rDNA and rRNA. To identify parameters which significantly explain the variance in the 

microbial community, canonical correspondence analysis (CCA) was performed. Field 

management (rice, maize, unplanted), growth stage (vegetative, reproductive, maturity) and 

gravimetric water content were identified to significantly affect the microbial community 

explaining 6-23% of the variance (Figure 3.3A-D). The pure effect of each factor is shown in 

Supplement Table 3.1, with field management explaining 12-16%, growth stage 11-23% and 

gravimetric water content 6-12% of the variance.  Although these factors were significant, 

the resident bacterial (Supplement Figure 3.1) and the archaeal (Figure 3.4) community 

composition did not change significantly during rice plant growth (ADONIS, P > 0.05). The 

non-flooded fields (unplanted and maize) also revealed a bacterial and archaeal community 

composition that was not significantly different from the rice field community (ADONIS, P 

> 0.05). Only the archaeal T-RF of 186 bp significantly increased during maize cultivation in 

comparison to the rice fields (Figure 3.4; ANOVA, P < 0.05). The more active bacterial and 

archaeal communities (16S rRNA) showed only minor variations in relative abundance of T-

RFs during rice plant growth and in the unplanted and maize fields. These variations were 

not statistically significant (ADONIS, P > 0.05).  
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Figure 3.3 Canonical correspondence analysis (CCA) biplot of T-RFLP based on bacterial and 

archaeal communities. T-RFLP based communities of bacterial 16S rDNA and rRNA (A,B) as well 

as archaeal 16S rDNA and rRNA (C,D) are displayed. Arrows indicate the direction and relative 

importance (arrow lengths) of environmental variables associated with bacterial and archaeal 

community structures, respectively. Solely the environmental variables significantly influencing the 

model were displayed (ANOVA p< 0.05). Circle, triangle and square symbols, respectively, 

represent vegetative, reproductive and maturity growth phase of rice. Inverted triangle and diamante 

symbols, respectively, characterize samples originating from maize and unplanted fields while 

crosses represent T-RFs.  
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The archaeal T-RFs were assigned to different archaeal lineages by sequence analysis 

(Table 3.1). The assignment was based on a clone library of 16S rDNA containing 72 

randomly selected clones retrieved from soil cultivated with rice and maize. The major T-

RFs of 95, 186, 286, 396 and 810 bp were assigned as Methanobacteriales, 

Methanosarcinaceae, Methanosaetaceae, Methanocellales and Miscellaneous 

Crenarchaeota, respectively (Table 3.1). Some additional T-RFs of minor relative 

abundance were detected at 75, 308, 611, 671, 682, 695, 737 and 771 bp (most of them are 

too minor to be shown in Figure 3.4), which were not represented in the clone library, and 

therefore could not be assigned. A few clones, which were solely found in the clone library 

but not in the T-RFLP analysis, were assigned as Miscellaneous Crenarchaeota (97, 263, 

333, 656. 725 bp).  

 

Table 3.1 Lengths of distinct terminal restriction fragments (T-RFs) of different archaeal 16S rDNA 

clones obtained rice and maize cultivated Philippine rice field soil and affiliation with a distinct 

phylogenetic lineage by 16S rDNA sequence analysis of the clones. 

Phylogenetic                 

affiliation 

Terminal restriction             

fragment lenght (bp) 

No. of clones        

rice field 

No. of clones      

maize field 

Miscellaneous 

Crenarchaeota 

83, 95, 191, 254, 263, 286, 379, 

395, 656, 725, 795, 810 27 28 

Soil Crenarchaeotic Group 191 - 1 

Crenarchaeota Group C3 380 - 1 

Methanobacteriales 95 1 - 

Methanosarcinaceae 186 9 2 

Methanosaetaceae 286 1 - 

Methanocellales 396 1 1 
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Figure 3.4 Histograms of the relative abundance of T-RFs obtained from T-RFLP analysis of 

archaeal 16S rDNA and rRNA during rice plant growth. Terminal restriction fragment sizes and 

affiliated clone taxonomy are given in brackets. Bars represent standard errors of n=9.  
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3.4.3 Pyrosequencing of bacterial 16S rDNA and rRNA 

Pyrosequencing targeting the bacterial 16S rDNA and rRNA was conducted in order 

to indentify the resident and the active bacterial phylotypes in the Philippine rice field soil 

and to monitor the influence of plant growth stage on the bacterial community composition. 

Therefore, triplicate samples were sequenced for each growth stage resulting in 3,468 to 

11,311 high quality sequences of rDNA as well as 2,062 to 10,275 sequences of rRNA 

(Table 3.2). For bacterial rDNA, the most dominant phylum was Proteobacteria (23-32%) 

followed by Acidobacteria (16-20%). Other important bacterial phyla were Chloroflexi (8-

10%), Verrucomicrobia (5-6%), Firmicutes (4-5%), Actinobacteria (2-3%), Planctomycetes 

(2%) and Cyanobacteria (1-3%) (Supplement Figure 3.2A - E). The bacterial community 

composition did not change dramatically during the rice growing season (Supplement Figure 

3.2A - C). Comparison of the dominant OTUs retrieved at different rice plant growth stages 

showed a uniform distribution over the season (Figure 3.5A). Only OTUs with a minor 

relative abundance were distinct for a particular growth stage, e.g., OTU 396 identified as 

Anaeromyxobacter, which was only found at the vegetative growth stage (Figure 3.5A). 

Comparison of unplanted, maize and rice cultivated fields showed more pronounced 

differences among bacterial OTUs. The OTUs number 1 (Spartobacteria), 4 (Unclassified) 

and 7 (Acidobacteria Gp25) were more abundant in the unplanted and in the upland maize 

fields than in the rice fields, while OTU number 9 (Deltaproteobacteria) was relatively more 

abundant in the rice fields (Figure 3.5C). Additionally, unplanted fields as well as fields 

cultivated with upland maize showed significantly less Proteobacteria in comparison to rice 

fields (Supplement Figure 3.2A, D, E). The lower relative abundance of the Proteobacteria 

was due to the lower abundance of Geobacteraceae. Otherwise, however, the bacterial 

community composition was not affected by the rice growth stage or the type of crop 

(ADONIS, P> 0.005).  
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Figure 3.5 Ternary plots showing the distribution of bacterial and archaeal 16S rDNA/rRNA based 

OTUs. Axes represent rice plant growth stages (vegetative, reproductive and maturity) (A, B, E) as 

well as unplanted and maize cultivated fields in comparison to rice cultivated fields (C,D,F) and the 

percentage of reads associated with each sample for each OTU. Bacterial 16S rDNA (red, A, C) and 

16S rRNA (B, D) as well as archaeal 16S rDNA (blue, E, F) are displayed. Each circle represents an 
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individual OTU while its size indicates number of reads associated. The position of each OTU is 

determined by the contribution of the sample type to the total count (n=3).  

The sequences of ribosomal RNA presumably represent the more active bacterial 

community. This community was composed of the same phyla as the ribosomal gene-based 

community, but exhibited a different composition (Supplement Figure 3.2F - J). The most 

dominant phyla within the bacterial rRNA community were Proteobacteria (36 -40%) 

followed by Acidobacteria (14-18%). Other important bacterial phyla were Chloroflexi (3-

4%), Verrucomicrobia (4-6%), Firmicutes (3-4%), Actinobacteria (2-4%), Planctomycetes 

(5-6%) and Cyanobacteria (3-9%) (Supplement Figure 3.2F - J). At the phylum level the 

bacterial community was not significantly different between the different plant growth stages 

(ADONIS, P> 0.005). Nevertheless, specific bacterial groups changed in abundance during 

rice plant growth. Only OTUs with relatively low abundance were characteristic for 

individual growth stages, whereas the dominant OTUs were equally distributed and observed 

at all three growth stages. Only OTU number 4 (Methylocystis) was more prominent at the 

vegetative and reproductive than at the maturity stage (Figure 3.5B). Additionally, 

Verrucomicrobia and Bacteroidia increased from vegetative to reproductive growth stage, 

Cyanobacteria decreased (data not shown). Comparison of the ribosomal OTUs in 

unplanted, maize and rice-cultivated soils showed more pronounced preferences 

(Figure 3.5D). The most dominant OTU number 1 (Myxococcales) was preferentially 

associated with the non-flooded fields (unplanted, maize) while OTU number 3 

(Acidobacteria Gp6) and 2 (Cystobacteraceae) were found in all field types.  Additionally 

unplanted fields showed higher Bacteroidetes and Sphingobacteria than the rice fields 

(ANOVA, p< 0.05). Less Verrucomicrobia were detected in the unplanted fields in 

comparison with rice and maize fields.  

The analysis of presence and absence of individual OTUs based on rRNA revealed 

that the OTUs detected in all fields (core OTUs) constituted 70%, 74% and 71% of the 

relative abundance in rice, maize and unplanted fields, respectively. Direct comparison of 

the rice and the unplanted fields showed similar distribution of bacterial lineages in core, 

shared and unique OTUs (Figure 3.6). The relative abundance of core OTUs assigned as 

Deltaproteobacteria and unique OTUs assigned as Armantimonadetes, Bacteroidetes, 
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Alphaproteobacteria and Gammaproteobacteria was increased in the unplanted fields 

(Figure 3.6).  

 

Figure 3.6 OTU based relative sequence abundance of bacterial phyla based on 16S rRNA in the rice 

and unplanted fields. OTUs detected in all fields (core), only in unplanted and rice cultivated fields 

(shared) and OTUs only detected in rice or unplanted fields (unique) were presented. The shaded 

areas serve visualization and have no special meaning.   
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3.4.4 Pyrosequencing of archaeal 16S rDNA and rRNA 

Analogously to the bacterial community, the archaeal community was analyzed using 

pyrosequencing targeting archaeal 16S rDNA and rRNA. Sequencing resulted in 1,326 to 

9,290 high quality sequences of rDNA as well as 532 to 1,962 sequences of rRNA (Table 

3.3). For archaeal rDNA, the major taxa with a relative abundance of >2% in at least one 

sample are shown in Supplement Figure 3.3A. The most dominant class was 

Methanomicrobia (40-50% relative abundance) followed by Soil Crenarchaeotic Group (20-

34%), Misc. Crenarchaeotic Group (17-23%) and Methanobacteria (2-6%). The class 

Methanomicrobia was further subdivided into orders and families. The most dominant 

archaeal order was Methanosarcinales with the families Methanosarcinaceae, 

Methanosaetaceae and the group GOM Arc I (Supplement Figure 3.3A). Comparison of the 

dominant OTUs retrieved at different rice plant growth stages showed a uniform distribution 

over the season (Figure 3.5E). Most dominant OTUs were assigned as Soil Crenarchaeotic 

Group and Methanosarcina and their distribution did not change in composition during rice 

plant growth (Figure 3.5E). Several trends, albeit not significant, are worth mentioning. 

Thus, the relative abundance of Methanobacteriaceae, Methanosarcinaceae, 

Methanosaetaceae and Methanocellaceae was relatively high in the reproductive stage, 

while that of GOM Arc I was relatively low (Supplement Figure 3.3A). The relative 

abundance of the genera Methanolinea and Candidatus Methanoregula decreased from 

vegetative to later growth stages. 

Comparison of unplanted, maize and rice cultivated fields showed again a uniform 

distribution of the OTUs (Figure 3.5F). However, the OTUs assigned as Misc. 

Crenarchaeotic Group and unclassified were more abundant in the planted fields (rice, 

maize), while the unclassified OTU was more associated with the maize field. Similar to T-

RFLP analysis an increase of Methanosarcinaceae in the maize fields and unplanted fields 

was observed, but not statistically significant (Supplement Figure 3.3A). In fact, no 

significant changes in the archaeal community composition were observed (ADONIS, P> 

0.05). 
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Table 3.2: Number of bacterial sequences before and after quality management, barcode, number of OTUs, coverage, Chao1 and inverted Simpson index of the 

environmental samples analyzed by 454-pyrosquencing. Raw data were deposited under the study accession numbers SRP047272 for bacterial sequences in the 

NCBI Sequence Read Archive (SRA). Sample from one field (A, B or C) was randomly chosen and analyzed as representative of the field. 

Gene Name 
Growth 

Stage 
Plant Barcode Accession Raw seqs No. seqs* 

No. 

OTU 

Good´s 

coverage 
Chao1 

1/ 

Simpson 

 RWVF3 Vegetative Rice ACGTAC SRS715481 9579 6472 2089 0.83 3794 585 

 RWVF6 Vegetative Rice ACTGCA SRS715482 10001 6551 2092 0.83 3694 483 

 RWVF9 Vegetative Rice AGAGTC SRS715483 7818 4985 1749 0.81 3110 575 

 RWRF3 Reproductive Rice ATCGAT SRS715487 10831 7284 2301 0.84 4076 606 

 RWRF6 Reproductive Rice ATGCTA SRS715488 13418 7135 2055 0.85 3636 503 

 RWRF9 Reproductive Rice CACAGT SRS715489 4950 3111 1328 0.74 2739 532 

 RWMF3 Maturity Rice CGCGCG SRS715493 8464 5920 1613 0.86 2878 338 

16S rDNA RWMF6 Maturity Rice CGTATA SRS715494 4079 2815 1255 0.73 2506 546 

 RWMF9 Maturity Rice GACTAG SRS715495 6081 3225 1339 0.75 2836 566 

 MMRF4 Repoductive Maize CAGTCA SRS715490 6108 3290 1269 0.78 2575 454 

 MMRF7 Reproductive Maize CATGAC SRS715491 5609 3112 1244 0.77 2321 473 

 MMRF10 Reproductive Maize CGATAT SRS715492 5449 3689 1331 0.80 2494 345 

 MMVF4 - Unplanted AGCTGA SRS715484 11301 7849 2233 0.86 3850 521 

 MMVF7 - Unplanted AGTCAG SRS715485 5719 3102 1251 0.77 2419 520 

 MMVF10 - Unplanted ATATCG SRS715486 7679 4264 1470 0.81 2572 442 

 RWVF3 Vegetative Rice ACGTAC SRS715481 12186 10275 2332 0.91 3501 511 

 RWVF6 Vegetative Rice ACTGCA SRS715482 8936 6732 1952 0.86 3141 533 

 RWVF9 Vegetative Rice AGAGTC SRS715483 9028 6831 1939 0.86 3302 464 

 RWRF3 Reproductive Rice ATCGAT SRS715487 10353 7672 2166 0.86 3606 586 

 RWRF6 Reproductive Rice ATGCTA SRS715488 12335 7107 1990 0.87 3230 459 

 RWRF9 Reproductive Rice CACAGT SRS715489 6965 4713 1560 0.84 2505 510 

 RWMF3 Maturity Rice CGCGCG SRS715493 5812 4344 1374 0.84 2371 304 

16S rRNA RWMF6 Maturity Rice CGTATA SRS715494 3070 2062 980 0.71 1983 467 

 RWMF9 Maturity Rice GACTAG SRS715495 5440 3129 1249 0.78 2274 387 

 MMRF4 Repoductive Maize CAGTCA SRS715490 10351 5974 1675 0.86 2784 223 

 MMRF7 Reproductive Maize CATGAC SRS715491 7890 4481 1517 0.83 2520 229 

 MMRF10 Reproductive Maize CGATAT SRS715492 6226 4438 1422 0.85 2225 304 

 MMVF4 - Unplanted AGCTGA SRS715484 7452 6039 1790 0.86 2918 455 

 MMVF7 - Unplanted AGTCAG SRS715485 9622 6399 1781 0.87 2890 296 

 MMVF10 - Unplanted ATATCG SRS715486 10313 6230 1755 0.87 2859 466 

*: number of sequences after quality analysis. Partial 16S rRNA primers: Bacteria: F515 (5'-GTGCCAGCNGCCGCGGTAA), R806 (5'-

GGACTCVSGGGTATCTAAT). Adaptor primes: forward (5'-GATGGCCATTACGGCC), reverse (5'-GGTGGCCGAGGCGGCC) 
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Table 3.3: Number of archaeal sequences before and after quality management, barcode, number of OTUs, coverage, Chao1 and inverted Simpson 

index of the environmental samples analyzed by 454-pyrosquencing. Raw data were deposited under the study accession numbers SRP047229 for 

archaeal sequences in the NCBI Sequence Read Archive (SRA). Sample from one field (A, B or C) was randomly chosen and analyzed as 

representative of the field. 

Gene Name 
Growth 

Stage 
Plant Barcode Accession Raw seqs No. seqs* 

No. 

OTU 

Good´s 

coverage 
Chao1 

1/ 

Simpson 

 RWVF3 Vegetative Rice ACGTAC SRS715481 4063 1956 164 0.97 208 32 

 RWVF6 Vegetative Rice ACTGCA SRS715482 2572 1326 140 0.96 205 24 

 RWVF9 Vegetative Rice AGAGTC SRS715483 4886 2828 177 0.98 293 29 

 RWRF3 Reproductive Rice ATCGAT SRS715487 7437 3753 231 0.98 359 30 

 RWRF6 Reproductive Rice ATGCTA SRS715488 5458 2410 188 0.97 264 32 

 RWRF9 Reproductive Rice CACAGT SRS715489 1414 929 112 0.95 168 18 

 RWMF3 Maturity Rice CAGTCA SRS715493 6656 3630 202 0.98 291 25 

16S rDNA RWMF6 Maturity Rice CATGAC SRS715494 4312 2137 176 0.97 284 31 

 RWMF9 Maturity Rice CGATAT SRS715495 6515 3250 201 0.97 492 26 

 MMRF4 Repoductive Maize CAGTCA SRS715490 8727 4644 206 0.99 256 17 

 MMRF7 Reproductive Maize CATGAC SRS715491 7723 3378 192 0.98 251 29 

 MMRF10 Reproductive Maize CGATAT SRS715492 6280 2894 164 0.99 194 23 

 MMVF4 - Unplanted AGCTGA SRS715484 6678 3369 168 0.99 215 10 

 MMVF7 - Unplanted AGTCAG SRS715485 2918 1504 128 0.97 185 16 

 MMVF10 - Unplanted ATATCG SRS715486 3909 2049 159 0.98 208 23 

 RWRF3 Reproductive Rice ATCGAT SRS715487 3232 1962 169 0.97 232 36 

 RWRF6 Reproductive Rice ATGCTA SRS715488 2797 1727 128 0.97 239 25 

 RWRF9 Reproductive Rice CACAGT SRS715489 572 565 74 0.95 126 19 

16S rRNA MMRF4 Repoductive Maize CAGTCA SRS715490 7914 804 74 0.96 115 8 

 MMRF7 Reproductive Maize CATGAC SRS715491 1459 775 85 0.96 109 14 

 MMRF10 Reproductive Maize CGATAT SRS715492 831 532 55 0.96 78 10 

*: number of sequences after quality analysis. 

Partial 16S rRNA primers: 

Archaea: Arch344F (5'-ACGGGGYGCAGCAGGCGCGA), Arch934br (5'-GTGCTCCCCCGCCAATTCCT) 

Adaptor primes: forward (5'-GATGGCCATTACGGCC), reverse (5'-GGTGGCCGAGGCGGCC)  
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The sequences of ribosomal RNA were composed of the same archaeal lineages as 

the ribosomal gene-based community, but exhibited different relative abundances 

(Supplement Figure 3.3B). The most dominant class was Methanomicrobia (38-61% relative 

abundance) followed by Soil Crenarchaeotic Group (18-31%), Misc. Crenarchaeotic Group 

(4%) and Methanobacteria (2-6%).  The archaeal community composition was not 

significantly different between fields cultivated with rice and maize on class, order and 

family level (ADONIS, P> 0.005). Nevertheless, specific archaeal groups changed in 

abundance. A significant increase of Soil Crenarchaeotic Group in the maize fields was 

observed (Supplement Figure 3.3B). Within Soil Crenarchaeotic Group Candidatus 

Nitrososphaera was higher in maize cultivated fields (data not shown). Only the top 30 

OTUs representing up to 80% of all sequences were used for analysis (Figure 3.7). Again, 

there was a trend that methanogenic archaeal lineages (Methanosarcina,  Methanosaeta, 

Methanocella, Methanobacterium) were more abundant in the rice than in the maize 

cultivated soil, and that non methanogenic groups (Soil Crenarchaeotic Group, GOM Arc I, 

Misc. Crenarchaeotic Group, Candidatus Nitrososphaera) were in particular observed in the 

maize field, but the trend was not statistically significant.   
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Figure 3.7 Relative abundance of the archaeal OTUs in rice field soil. Based on relative abundance 

top 30 OTUs derived from pyrosequencing of the archaeal 16S rRNA were grouped according to 

their phylogenetic assignment. OTUs were monitored in rice (blue) and maize (red) fields. Columns 

represent mean and bars standard errors of n=3.   
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3.5 Discussion 

3.5.1 Bacterial and archaeal communities at different rice growth stages 

Total bacterial and archaeal 16S rDNA copy numbers increased during reproductive 

growth stage indicating growth. Recently, Lee et al. (2014) likewise described in a Korean 

rice field an increase in bacterial and archaeal copy numbers during rice plant growth 

followed by a decrease at plant maturity. Although the microbial numbers in our Philippine 

soil were one order of magnitude higher than in the Korean soil (Lee et al., 2014), in both 

soils the microbial numbers changed by only a factor of two over the season. A similar 

observation was made by Itoh et al. (2013) showing a moderate increase of the resident 

microbes during rice plant growth under flooded conditions in a Japanese rice field. 

Textbook knowledge tells that plants secrete a complex mixture of organic and inorganic 

compounds (rhizodeposits) via their root system. Several studies showed an increase in root 

exudation with rice plant growth reaching a maximum at reproductive stage and decreasing 

again towards maturity of the rice plants (Aulakh et al., 2001; Lu et al., 2002; Watanabe et 

al., 2004; Pump and Conrad, 2014). Therefore, it is likely that the modest increase from 

vegetative to reproductive and the decrease towards maturity of the bacterial and archaeal 

abundance is driven by root exudation.  

In contrast to the change in the resident (16S rDNA) populations, the numbers of the 

active populations (16S rRNA) were stable and did not show seasonal dynamics. Studies 

comprehensively covering the resident and active archaeal as well as bacterial communities 

in rice fields during plant growth are hardly available (Itoh et al., 2013). The detection of 

ribosomal RNA is equivalent to that of ribosomes, which are indicative for actively dividing 

or actively metabolizing microbial cells (Blazewicz et al., 2013). Therefore, changes in the 

16S rRNA pool caused by growing cells can be superimposed by fluctuations in the amount 

of active but non-growing cells. Additionally, it was shown that different taxa can have 

different numbers of 16S rDNA copies (e.g. Sukenik et al., 2012). Interestingly, the standard 

errors of the abundance of both active bacterial and archaeal populations were higher in the 

vegetative and reproductive plant growth phase and decreased with plant maturity. This may 

be an indication for the influence of root exudation affecting microbial activity. All together 

the data indicates that the bacterial and archaeal communities were composed of active and 
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growing cells being enhanced during the reproductive growth stage possibly due to root 

exudation.   

The composition of both the resident (16S rDNA) and the active (16S rRNA) 

bacterial community revealed only minor changes with the rice plant growth stages. Among 

the resident bacteria, only OTUs with negligible relative abundance were found to be 

specific for a particular plant growth stage. E.g., an OTU identified as Anaeromyxobacter 

was specific for the vegetative growth stage. Anaeromyxobacter spp. are known as iron 

reducers and are possibly important for carbon and iron dynamics in the rice rhizosphere 

(Ratering and Schnell, 2001; Treude et al., 2003). In rice fields oxidants like ferric iron are 

rapidly reduced (Conrad et al., 2014), but may be regenerated when plants allow O2 release 

from their roots, thus as during vegetative plant growth (Liesack et al., 2000). Among the 

active bacteria, Cyanobacteria were highest during the early vegetative growth phase 

possibly caused by the previous field preparation (i.e. puddling) mixing sun-exposed soil 

parts into the bulk. The increase in relative abundance of active Verrucomicrobia and 

Bacteroidia during reproductive plant growth may be a consequence of their ecophysiology, 

which is playing a role in carbon degradation (Sugano et al., 2005; Tanahashi et al., 2005; 

Kikuchi et al., 2007; Rui et al., 2009). A member of Verrucomicrobia, i.e., Opitutus terrae, 

was isolated from a paddy rice field as potential polysaccharolytic and saccharolytic and 

capable of hydrogen production (Chin et al., 1999; 2001). Bacteroidia are known key 

players in decomposition of rice plant residue (Weber et al., 2001; Akasaka et al., 2003) and 

Bacteroidetes prominent heterotrophs in rice field soil including a propionate-producing 

fermentative representative (Akasaka et al., 2003). The OTU based analysis showed that the 

methanotrophic Methylocystis became prominent before plant maturity. Methylocystis, a 

type-II methanotroph, has commonly been found in rice field soil (Murase and Frenzel, 

2007; Shrestha et al., 2010). Methanotrophs are dependent on their primary substrate 

methane and oxygen. Oxygen was probably released by the roots during the reproductive 

growth phase of the rice plant. For example Gilbert and Frenzel (1998) reported radial 

oxygen loss by roots of up to 6 weeks old rice plants.  

The T-RFLP analysis in the Philippine rice fields showed a relatively constant 

composition of the archaeal community over the season. Similar results had been obtained in 
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an Italian rice field (Krüger et al., 2005). Our pyrosequencing data indicated an increase in 

relative abundance of the dominating methanogens (Methanosarcinaceae, 

Methanosaetaceae, Methanobacteriaceae and Methanocellaceae) during reproductive 

growth stage, but this increase was statistically not significant. Within the order of 

Methanosarcinales GOM Arc I species were notably detected under all tested conditions and 

decreased during reproductive stage. GOM Arc I was formerly known as ANME-2d caused 

by phylogenetic relation to the anaerobic methanotrophs ANME-2 (Mills et al., 2005; 

Martinez et al., 2006). Nevertheless, the role of GOM Arc I in the methane biogeochemistry 

is still unclear (Lloyd et al., 2006; Knittel and Boetius, 2009). We speculate that the 

importance of these organisms which were previously detected in relatively high numbers in 

South Korean rice field soil (Ahn et al., 2014) has been underestimated and strengthen the 

need to identify their function in methane cycling.  

All together rhizodeposition and oxygen release seemed to increase growth and 

activity of specific bacterial and archaeal lineages during the reproductive growth stage. 

However, changes over the season were only small and the resident and active microbial 

communities remained relatively conserved. 

3.5.2 Bacterial and archaeal communities in flooded and non-flooded fields 

Rotation of the cultivated crop from paddy rice (flooded) to upland maize (non-

flooded) changes the field conditions dramatically. In our study, we were dealing with 

flooded rice fields and non-flooded unplanted fields, which were then planted with maize, 

but kept under non-flooded conditions. Anaerobic degradation of organic matter to CH4 is 

only possible if the bulk of the soil is anoxic, such as in flooded fields. In non-flooded fields 

no or comparatively little anaerobic microbial activity is expected. Indeed, compared to the 

flooded fields CH4 emission was only minor from the non-flooded fields (Weller et al., 

2014). Therefore, living conditions of obligately anaerobic microorganisms, such as 

methanogenic archaea and many fermenting bacteria, were restricted.  

The abundances of resident bacteria and archaea (16S rDNA) were lowest in 

unplanted fields, whereas they were highest in the flooded rice fields and intermediate in the 

non-flooded maize fields. The microbial populations apparently increased in number when 
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the non-flooded fields were planted with maize, but did not reach the same level as in the 

flooded rice fields. Hence, microbial abundance was apparently affected by both flooding 

and the presence of vegetation. The low microbial abundance in unplanted fields was 

possibly due to the absence of release of organic material from roots and/or lack of 

fertilization, which allowed the microbes to grow to some extent in the maize fields. In these 

oxic soils, however, the number of microbes remained lower than in the anoxic flooded 

fields. Surprisingly, the abundance of ribosomal RNA, being indicative for active microbes, 

was in the same range for both unplanted and planted fields and for both non-flooded maize 

and flooded rice fields. Therefore, we assume that the microbial cells in non-flooded 

unplanted soil, and to some extend also the maize field soil, contained more ribosomal RNA 

than those in the flooded rice field soil. The rather high ratio of rRNA/rDNA in non-flooded 

fields was observed in most replicate samples, but there were a few replicates, which 

behaved differently. High ratios of rRNA/rDNA have also been observed in non-flooded 

Japanese rice fields but not been further discussed (Watanabe et al., 2007). However, 

numbers of rRNA decreasing with drainage have also been observed in a Japanese rice field 

(Itoh et al., 2013). At a first glance high ratios of rRNA/rDNA seem surprising, since 

anaerobic microorganisms should be less active in the unplanted and maize fields than in the 

flooded rice fields. However, it has been shown that even dormant cells harbor measureable 

amounts of 16S rRNA and that in some cases the 16S rRNA amount can even be 

significantly higher than in vegetative cells (Chambon et al., 1968; Sukenik et al., 2012). 

The maintenance of a high level of ribosomal RNA under unfavorable conditions is 

interpreted as preparedness for activity when conditions improve. Hence, we assume that 

numbers of anaerobic microorganisms decreased when the flooded rice fields were turned 

into non-flooded maize fields, but at the same time increased the cellular levels of rRNA 

(presumably ribosomes) as a stress response and possibly to be prepared for new flooding.  

However, there may be additional explanations for the high ratio of rRNA/rDNA in 

the non-flooded soil. For example, during field preparation and after drainage soil structure 

gets disturbed, and this process may cause death of microbes by breaking up the cells. The 

nutrients of the dead cells become then available for the surviving microbes and may thus 

enhance their activity. The soil texture was a silt loam, which is characterized by a high 

water holding capacity. The high water holding capacity may have allowed the maintenance 
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of anaerobic microniches with active populations of anaerobic microorganisms. Finally, 

drainage may have allowed an increase of the soil temperature, thus promoting the activity 

of the overall community which inhabits the anaerobic microniches. Interestingly, the 

microbial community compositions were not much different between flooded and non-

flooded fields. Although CCA analysis of the community based on T-RFLP revealed some 

differences in composition, the variance on the two CCA axes were less than 16%. Only the 

analysis by 454 pyrosequencing unveiled some changes in relative abundance of few 

bacterial groups but no dramatic community shifts. In the present study these bacterial 

lineages can be grouped due to their ecophysiology. Spartobacteria and Sphingobacteria 

were both described as aerobes and increased in their relative abundance in the non-flooded 

fields possibly due to decreasing water level and concomitant increased oxygen exposure. 

The first isolate of Spartobacteria was described as an aerobic heterotrophic bacterium able 

to grow on saccharide components of plant biomass (Sangwan et al., 2004). Additionally, 

some members of the Sphingobacteria were described as aerobes, while others are anaerobes 

or facultative anaerobes suggesting a dependence on oxygen levels (Janssen, 2006). The 

second group of bacterial lineages (Bacteroidetes and Acidobacteria) increasing in non-

flooded fields is associated with their ability to sustain low substrate conditions and to 

degrade complex organic compounds under anaerobic conditions. For instance Bacteroidetes 

were frequently detected during rice plant residue decomposition (e.g. Weber et al., 2001; 

Rui et al., 2009) and have the ability to grow on various complex carbon substrates 

(Kirchman, 2002). Although Acidobacteria are widely distributed and highly abundant in 

soil environments little is known about their ecology (Lee and Cho, 2009). Various 

observations suggest that the chemo-organotrophic and oligotrophic Acidobacteria are 

adapted to low substrate availability highlighted by slow growth rates (e.g. Davis et al., 

2005, 2011) and are able to decompose complex carbon compounds like xylan, cellulose and 

pectin (Eichorst et al., 2011). The last bacterial lineage more pronounced in the non-flooded 

fields was Myxococcales. Iron reducing Anaeromyxobacter are members of Myxococcales 

and represented the maturity of the order in the present study. During drainage regeneration 

of inorganic electron acceptors like ferric iron occurs. Therefore, it is likely that iron 

reducers out of Myxococcales are supported in their competition with methanogens for 

electron acceptors like hydrogen and acetate (Ratering and Conrad, 1998). In summary, the 
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bacterial groups in the unplanted fields were characterized by their abilities to grow under 

oxic conditions and to degrade complex carbon substrates.  

Similarly, the archaeal community composition was quite similar in non-flooded and 

flooded fields. This observation is consistent with previous studies showing that crop 

rotation including upland crop management affected archaeal communities only little 

(Watanabe et al., 2006; 2011; Fernandez Scavino et al., 2013). However, we observed a 

significant increase in relative abundance of Methanosarcinaceae in upland maize fields by 

T-RFLP analysis and a non-significant increase by pyrosequencing. In Japanese rice fields 

Methanosarcinales were a major group under both flooded and drainage conditions 

(Watanabe et al., 2009; Itoh et al., 2013). Methanosarcina spp. together with Methanocella 

spp. have also been found in dry ecosystems, such as upland soils and desert biological soil 

crusts (Nicol et al., 2003; Angel et al., 2012; Conrad et al., 2012; Aschenbach et al., 2013). 

These species possess a relatively large number of genes coding for oxygen-detoxifying 

enzymes (Erkel et al., 2006), thus probably allowing them to survive exposition to oxygen in 

dry soils (Angel et al., 2011; Angel et al., 2012). Therefore, it is likely that Methanosarcina 

spp. survived relatively well when the flooded rice fields were turned into non-flooded 

maize fields, thus increasing their relative abundance among the other archaea.  

The Soil Crenarchaeotic Group also showed a relatively high abundance in the non-

flooded maize fields. The ecophysiology of Crenarchaeota is largely unknown (Pester et al., 

2011), although Thaumarchaeota, with potential for ammonia oxidation are found as a 

dominant archaeal group in aerated soils (e.g. Nicol et al., 2003). An upland pasture in 

Uruguay was reported to be dominated by Crenarchaeota/Thaumarchaeota, which 

decreased in relative abundance as soon as the soil was turned into a pasture-rice crop 

rotation (Fernandez Scavino et al., 2013).  The predominance of Methanosarcinaceae and 

Soil Crenarchaeotic Group in non-flooded soils emphasizes their capability to withstand 

temporal desiccation and oxygen stress. 
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3.5.3 Conclusion 

The bacterial and archaeal abundance and activity only moderately changed during 

rice growth most likely by the influence of rice plants and its root exudation. However, 

neither archaeal nor bacterial community composition changed much suggesting good 

adaptation to the conditions in the rice field. By contrast, the change from flooded rice to 

non-flooded cropping caused a comparatively stronger change in the microbial community 

composition, which however, was also not very dramatic. The relatively minor effect of 

change to non-flooded cropping was probably caused by the fact that the microbial 

communities in the rice field soil were historically adapted to regular drainage. This 

adaptation was also seen by the maintenance of a high ratio of ribosomal RNA per gene 

copy, being equivalent to a high number of ribosomes per cell, indicating a preparedness for 

change between unfavourable non-flooded to favourable flooded conditions for the 

methanogenic archaea and anaerobic bacteria resident in the rice field soil. The similarity in 

composition together with the statistically significant increase in ribosomal numbers imply 

that it was not so much specific members of the communities that regulated their ratios of 

rRNA/rDNA, but the communities in general that reacted upon the change from flooded to 

non-flooded state. We conclude that methods reducing greenhouse gas emission from rice 

fields like mid-season drainage and crop rotation (Wassmann et al., 2000; Li et al., 2006; 

Pittelkow et al., 2014) will have only little immediate effect on the bacterial and archaeal 

communities and thus, allow their function to be largely conserved over unfavourable 

periods.   
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3.6 Supplemental material 

Supplement Table 3.1: Proportion of variance explained (percentage of total variation) by 

environmental variables determined by CCA for the resident (16s rDNA) and active (16S 

rRNA) bacterial and archaeal community based on T-RFLP. 

Community Variable % Variance 

explained 

P-value 

16S rDNA Bacteria 

Field management 

Growth stage 

Gravimetric water 

content 

12.0 

10.5 

5.8 

0.01* 

0.01* 

0.01* 

16S rRNA Bacteria 

Field management 

Growth stage 

Gravimetric water 

content 

14.4 

21.4 

5.7 

0.01* 

0.01* 

0.01* 

16S rDNA Archaea 

Field management 

Growth stage 

Gravimetric water 

content 

16.2 

22.8 

7.5 

0.01* 

0.01* 

0.02* 

16S rRNA Archaea 

Field management 

Growth stage 

Gravimetric water 

content 

15.7 

11.2 

11.7 

0.01* 

0.01* 

0.01* 

*: significant. Significance was tested by ANOVA.  
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Supplement Figure 3.1 Histograms of the relative abundance of T-RFs obtained from T-RFLP 

analysis of bacterial 16S rDNA (left, dark columns) and rRNA (right, light columns) during rice 

plant growth and in non-flooded fields (unplanted, maize).  Bacterial T-RFs with minimum 2% of 

relative abundance in at least one sample are mapped. Remaining T-RFs were summarized as Misc. 

Bars represent standard errors of n=9.   
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 Supplement Figure 3.2 Relative abundance of the dominant bacterial phyla detected in rice field 

soil by pyrosequencing of 16S rDNA/rRNA. Bacterial phyla based on 16S rDNA during different 

rice plant growth stages (A-C) as well as in unplanted (D) and maize cultivated fields (E) and 

bacterial phyla based on 16S rRNA during different rice plant growth stages (F-H) as well as in 

unplanted (I) and maize cultivated fields (J) are displayed. Only phyla with a minimum of 2% 

relative abundance are shown, those with <2% are summarized as Misc. (n=3). 
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Supplement Figure 3.3 Relative abundance of the archaeal lineages detected in rice field soil by 

pyrosequencing of 16S rDNA (A) and of 16S rRNA (B). Archaeal lineages with minimum 2% of 

relative abundance in at least one sample are mapped. Remaining phyla were summarized as Misc. 

Columns represent mean and bars standard errors of n=3. Asterisk indicates significant difference.   
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4.1 Abstract 

 Crop rotation of flooded rice with upland crops is a common management scheme 

allowing the reduction of water consumption along with the reduction of methane emission 

from paddy rice fields. The introduction of an upland crop into the paddy rice ecosystem 

leads to dramatic changes in field conditions (oxygen availability, redox conditions). 

However, the impact of this practice on the archaeal and bacterial community has scarcely 

been studied.  Here, we provide a comprehensive study focusing on the crop rotation 

between flooded rice in the wet season and upland maize (RM) in the dry season in 

comparison to flooded rice (RR) in both seasons. The composition of the resident and active 

microbial communities was assessed by 454 pyrosequencing targeting the archaeal and 

bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed 

dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic 

lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, 

Methanosarcinaceae, Methanosaetaceae, Methanocellaceae were equally depressed in the 

rotational fields indicating influence on both acetoclastic and hydrogenotrophic 

methanogens. Contrary, members of Soil Crenarchaeotic Group, mainly Candidatus 

Nitrososphaera, were higher in the rotational fields possibly indicating increasing importance 

of ammonia-oxidation during drainage. In contrast minor effects on the bacterial community 

were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational 

fields while members of anaerobic Chloroflexi and sulfite reducing members of 

Deltaproteobacteria were found in higher abundance in the rice fields. Quantitative PCR 

(qPCR) targeting the archaeal and bacterial 16S rRNA genes and 16S rRNA revealed a 

decrease of the resident bacterial and archaeal community during maize cultivation followed 

by increased growth during rice cultivation. Combining qPCR and pyrosequencing data 

revealed increased ribosomal numbers per cell for methanogenic species during crop 

rotation. This stress response, however, did not allow the methanogenic community to 

recover in the rotational fields during re-flooding and rice cultivation. In summary, the 

analyses showed that crop rotation with upland maize led to dramatic changes in the archaeal 

community composition whereas the bacterial community was only little affected.  
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4.2 Introduction 

 Rice is one of the most consumed staple foods worldwide and nourishes about 3 

billion people (Maclean et al., 2002). With the anticipated increase in world‘s population the 

need for cultivating rice will increase (Van Nguyen and Ferrero, 2006). However, growing 

rice implies intensive water consumption (3,000 – 5,000 l/kg rice) as rice consumes up to 2-3 

times more water per hectare than other crops (Tuong et al., 2005). Therefore, it is predicted 

that rice farmers will face ―economic water scarcity‖ with increasing costs for irrigation and 

―physical water scarcity" as water supplies for irrigation shrink (Bouman et al., 2005). In 

contrast, maize does not require as much as water as rice and furthermore, is considered to 

be a cash crop, which already dominates the upland agricultural system in the Philippines 

(Kenmore and Flinn 1987; Bertomeu, 2012). Increasing demands of maize for fodder 

(poultry) and biofuel production (Weller et al., 2015a) along with a reduced water 

consumption may lead to increasing conversion from traditional rice–rice (wet–dry season) 

to rice–maize cropping management systems in tropical and subtropical Asia. Consequently, 

rice–maize systems are notably implemented today (Timsina et al., 2010). 

In rice-maize crop rotations long-term submerged and anoxic soil conditions are 

changed to long-term aerated soil conditions accompanied by completely different redox 

conditions. Flooding of rice field soil causes a sequential depletion of the oxidants O2, 

nitrate, ferric iron and sulfate that usually lasts several days (Ponnamperuma 1972; Conrad 

and Frenzel 2002). Throughout this period of changing redox processes CO2 is the main 

product of degradation of organic matter. Afterwards, methanogenesis is the exclusive 

process in which organic matter is anaerobically degraded to CH4 and CO2. In upland soils, 

by contrast, CO2 is the exclusive product of organic matter degradation.  Moreover, upland 

soils quite often act as a sink for atmospheric CH4 (Dutaur and Verchot 2007; Soussana et al. 

2007). However, drained rice field soil apparently is not a sink for atmospheric CH4 (Jäckel 

et al., 2001). In upland soils and drained soils CH4 production occurs rather rarely, and if 

CH4 is produced, production occurs in small anoxic microniches (Megonigal and Guenther 

2008).  
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Particularly since the production of CH4 in rice fields occurs under anaerobic 

conditions and the catalyzing microbial community is oxygen sensitive, crop rotations can 

have dramatic effects on the processes and organisms involved in methane production. 

However, archaeal communities were usually found to be rather stable in composition during 

stress events under field conditions. For example, after short term drainage or extended 

periods of managing rice fields as upland fields the archaeal community was only little 

affected (Krüger et al., 2005; Watanabe et al., 2006; Fernandez Scavino et al., 2013; 

Chapter 3, Breidenbach and Conrad, 2015). However, the expression of the activity of the 

methanogenic archaeal community changed over the season and with the flooding regime 

(Watanabe et al., 2007). By contrast, the bacterial community in rice field soil changed with 

time after flooding (Noll et al., 2005; Rui et al., 2009) and differed between oxic and anoxic 

zones (Shrestha et al., 2007). Furthermore, water-saving practices were shown to impact the 

bacterial community in rice field soil under field conditions (Ahn et al., 2014; Itoh et al., 

2013). 

Several management strategies have been developed to reduce water requirement for 

wetland rice fields such as alternate wetting and drying (Wassmann et al., 2000a, b), mid-

season drainage (Wassmann et al., 2000b), or intermittent drainage (Yagi et al., 1996). All 

these strategies are based on restricted irrigation patterns during the cultivation of flooded 

rice. Thereby, short periods of drainage (weeks) allow the regeneration of inorganic electron 

acceptors (Ratering and Conrad, 1998). After re-flooding the sequential depletion of the 

oxidants is occurring again thereby suppressing methanogenic conditions until all the 

inorganic oxidants are depleted. Short term drainage strategies thus result in a repetition of 

the complete redox sequence as after the first flooding of the fields in the season.  

In contrast, during crop rotations with upland crops innate irrigated rice fields are 

exposed to long periods (several months) of drainage during which the conditions are 

comparable to those in upland fields. This includes long-term aeration of the soil, which 

possibly causes oxygen stress for the inhabiting anaerobic microorganisms, and instead 

enhances the activity of aerobic microorganisms. Furthermore, the introduction of an 

allochthonous plant may impact the microbial community since rhizodeposition differs 

between plants (Klein et al., 1988; Marschner et al., 2001). Several studies showed that the 
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bacterial communities are affected by root exudation (Marschner et al., 2004; Haichar et al., 

2008). Rice plants were also shown to support archaeal and bacterial lineages with plant 

derived carbon (Lu and Conrad, 2005; Pump et al., 2014; Hernández et al., 2015; Zhu et al., 

2014).  

The present study was part of the multidisciplinary research project ‖Introduction of 

non-flooded crops in rice-dominated landscapes and its impact on carbon, nitrogen and water 

cycles (ICON)‖ conducted at experimental fields of the International Rice Research Institute 

(IRRI) in the Philippines. During this study we found that the immediate effect of 

introducing drainage and maize cultivation to indigenous flooded rice fields were only minor 

(Chapter 3, Breidenbach and Conrad, 2015). Thereby, the effect of drainage seemed to be 

more pronounced than the shift in cropping from rice to maize. Field scale gas measurements 

showed a decrease in CH4 emission upon maize cultivation (Weller et al., 2015a). However, 

the immediate effect of drainage and change of crop may not completely describe the 

response of the resident microbial community to such dramatic changes in field condition. 

Several questions arise, such as whether long term changes occur in the microbial 

community and if so, whether these changes are reversible.  

We therefore made a comprehensive long-term study monitoring both archaeal and 

bacterial resident and active communities in response to crop rotation under field conditions. 

We hypothesized that the microbial community in rice field soil will be altered by crop 

rotation of rice (flooded soil) and upland maize (drained soil). Therefore, one crop rotation 

system (RM) with cultivation of irrigated rice in the wet season (summer) and upland maize 

in the dry season (winter) was compared to a control system with flooded rice cultivated in 

both seasons (RR). We investigated the microbial communities in the soil under field 

conditions over two years of crop rotation including five seasons. The microbial composition 

and abundance was assessed by fingerprinting with terminal-restriction length polymorphism 

(T-RFLP) and quantitative PCR (qPCR) targeting the archaeal and bacterial ribosomal 16S 

rRNA and 16S rRNA gene, respectively. In order to identify changes in the lower taxonomic 

groups, archaeal and bacterial 16S rRNA was targeted by 454 pyrosequencing.  
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4.3 Material and methods 

4.3.1 Sampling site and sample processing 

The sampling site was located at the International Rice Research Institute (IRRI) in 

Los Banos, Philippines. Detailed site description can be found in Heinz et al. (2013). This 

work was part of the interdisciplinary project ―Introducing Non-Flooded Crops in Rice-

Dominated Landscapes: Impact on Carbon, Nitrogen, and Water Cycles (ICON)‖. A detailed 

description of the field experiment can be found in Weller et al. (2015a). The experiment 

consisted of a flooded rice–maize crop rotation (maize-mix; RM) and a control with only 

flooded rice (rice-wet; RR). Briefly, we studied fields cultivated with either irrigated rice or 

upland maize at the reproductive growth phase of the plants over three years in both the dry 

season and the wet season. Fields under crop rotation (RM) were drained and managed as 

upland fields cultivating upland maize (variety: Pioneer P3482YR) in the dry season and 

flooded again and cultivated with rice (variety: NSIC Rc222) in the wet season. The control 

fields (RR) fields were flooded and cropped with rice both in the dry and the wet season with 

drainage in between. A detailed overview of the crop rotation system and the sampling time 

points is given in Table 4.1. Fields were operated in triplicates (RR: fields 3,6,9; RM: fields 

4,7,10) and managed with conventional N-fertilization (rice: seeding 30 kg N/ha, 30 kg 

P2O5/ha, 30 kg K2O/ha; at 28 and 55 days after seeding (DAS) 50 kg N/ha; maize: 30 kg 

N/ha, 50 kg P2O5/ha, 3 0 kg K2O/ha; at 27-29 and 47-50 DAS 50 kg N/ha). In each of these 

fields we randomly selected three sampling plots of one square meter and sampled one soil 

core (5 cm diameter, 20 cm length) from each plot. The samples of the wet season 2011 were 

only generated from one field and sampled in triplicates (n=3). Soil cores were always taken 

in the vicinity of a plant (ca. 10 cm). The soil contained numerous fine roots and thus was 

most probably influenced by the plant roots. However, no attempts were made to separate a 

specific rhizospheric soil compartment. Subsequently, soil samples of 5 g were taken from 

the middle of the core (~ 10 cm depth), added to 10 mL RNAlater© solution (Life 

Technologies, Darmstadt, Germany), kept on ice and later stored at -20°C to ensure RNA 

stability. For further analysis (determination of soil variables), additional samples of 50 g 

were taken from the same soil core, homogenized and stored at -20°C.  
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4.3.2 Determination of soil variables 

For the determination of soil water content small amounts of soil (1-5 g) were dried 

at 65°C for 3 days. The pH of the soil was analyzed following the DIN ISO 10390 protocol 

as described in Chapter 3, Breidenbach and Conrad (2015). Results are shown in 

Supplement Table 4.1. The soil texture was silt loam (Chapter 3).  

4.3.3 Nucleic acid extraction 

Nucleic acids were extracted from all replicates (n=9) following a modified version 

of the protocol of Bürgmann et al (2001) described in detail in Chapter 3, Breidenbach and 

Conrad (2015). Briefly, cells were mechanically disrupted by bead-beating in the presence of 

a phosphate buffer containing SDS. Total nucleic acids were purified using 

phenol/chloroform. Thereafter a subsample was treated with DNase in order to recover pure 

RNA after purification. Complete DNA removal was verified by failure to obtain a PCR 

amplification product of bacterial 16S rRNA genes with the purified RNA template using the 

conditions described below. cDNA synthesis was conducted using random hexamers in 

reverse transcription.  

4.3.4 Quantitative polymerase chain reaction 

The quantification of archaeal and bacterial 16S rDNA/rRNA was conducted using 

quantitative polymerase chain reaction (qPCR) based on a SYBRGreen approach. Therefor 

primer combinations Ba519f / Ba907r (Stubner, 2002) for bacterial and Ar364f (Burggraf et 

al., 1997) / Ar934br (Großkopf et al., 1998) for archaeal genes were used. A detailed 

protocol is given in Chapter 3. 

4.3.5 454 Pyrosequencing 

Tagged pyrosequencing of the bacterial and archaeal community was conducted 

using primer combinations F515/R806 (Bates et al., 2011) and Arch344F (Casamayor et al., 

2002) / A934br (Großkopf et al., 1998), respectively. The forward primers were tagged with 

a unique 8-base pair barcode. Sequencing of the PCR products was done at the Max Planck 

Genome Centre in Cologne using a Roche 454 Genome Sequencer GS FLX+.  One of the 
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triplicate samples from each field was randomly chosen and analyzed as representative for 

the field. Data analysis was performed using mothur software package version 1.31.2 

(http://www.mothur.org/) following the standard operational procedure (SOP, Schloss et al., 

2009). Sequence quality management and operational taxonomic units (OTU) analysis was 

conducted using UPARSE pipeline as described by Edgar (2013). Sequences derived from 

Chapter 3, RR and RM samples in dry season 2012, were integrated into the analysis 

(Supplement Table 4.2 to 4.5). Only microbial high-quality sequences with a minimum read 

length of 200 bp were used. Sequences that did not match the primer sequences and were 

smaller than 200 bp or contained any ambiguities were excluded from further analysis. After 

denoising, sequences were aligned against the SILVA bacteria 16S rRNA gene database 

using the naïve Bayesian classifier (Schloss et al., 2011; Wang et al., 2007; Pruesse et al., 

2007). Sequences which were not assigned to bacteria or respectively archaea were 

discarded. OTUs were defined using a distance matrix with 3% dissimilarity (Zinger et al., 

2011). Further analyses including rarefaction curves, species richness and diversity indices 

were conducted as described in the SOP pyrosequencing pipeline (Schloss et al., 2011). An 

overview of the number of sequences retrieved and the accession numbers of the submitted 

sequences can be found in Supplement Tables 4.2 to 4.5. 

4.3.6 Statistical analysis  

Statistical analyses were conducted in R version 2.14.1 (R Development Core Team, 

2011). Analysis of variance (ANOVA), Hellinger transformation and principal component 

analysis (PCA) were done with package vegan version 2.0.5 (Oksanen et al., 2012). In order 

to identify OTUs which were detected in all samples (core) and OTUs which were specific 

for one sample (unique) venn diagrams were used. These venn diagrams were created using 

web based tool developed by Bioinformatics & Evolutionary Genomics department of the 

University Gent (http://bioinformatics.psb.ugent.be/webtools/Venn/). Heatmaps representing 

the relative sequence abundance of bacterial OTUs between samples were constructed with 

package gplots (Warnes, 2011). PCA was performed using Hellinger transformed OTU 

abundance and resulted in PC1, PC2 and PC3 explaining 13%, 10% and 7% of the variance 

for bacterial 16S rDNA and PC1, PC2 and PC3 explaining 17%, 10% and 6% for bacterial 

16S rRNA, respectively. The OTUs explaining most of the differences between samples 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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were defined as the OTUs with the highest loadings. For 16S rDNA 13 OTUs of PC1, 10 

OTUs of PC2 and 7 OTUs of PC3 were chosen to construct the heatmap (Abdi and 

Williams, 2010; Deng et al., 2014). For 16S rRNA 17 OTUs of PC1, 10 OTUs of PC2 and 6 

OTUs of PC3 were chosen. Finally, a heatmap was constructed using the selected OTUs.  
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4.4 Results 

4.4.1 Archaeal and bacterial 16S rDNA/rRNA copy numbers  

In order to quantify archaea and bacteria in the flooded rice (RR) and the rice-upland 

maize crop rotation (RM) we used quantitative PCR (qPCR) targeting the archaeal and 

bacterial 16S ribosomal RNA (16S rRNA) and their genes (16S rDNA). Copy numbers of 

archaeal and bacterial 16S rDNA and rRNA were quantified at three wet and two dry 

seasons in the differently cropped fields (Figure 4.1). Both resident (16S rDNA) archaeal 

and bacterial abundances did not show large differences between the seasons (dry, wet) in 

the RR fields (Figure 4.1A, C; RR). However, variations between the seasons were observed 

for the active community (16S rRNA) (Figure 4.1B, D), also seen by the different ratios of 

16S rRNA/rDNA copies (Supplement Figure 4.1). In comparison to RR fields, archaeal and 

bacterial 16S rDNA copy numbers in RM fields were always lower during the dry season 

when cropped with maize (Figure. 4.1). 
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 Figure 4.1. Ribosomal 16S rDNA and rRNA copy numbers quantified using qPCR. Abundance of 

archaeal 16S rDNA and rRNA (A, B) and bacterial 16S rDNA and rRNA (C, D) in control rice fields 

(RR, dark grey) and rice-upland maize crop rotation (RM, light grey) during dry (dry) and wet (wet) 

season. Asterisks indicate significant difference between RR and RM (ANOVA, P< 0.05) (mean ± 

SE, n=3 (2011 Wet), n=9 (all others)).   
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Table 4.1 Overview of cropping system and sampling time points for the investigated field types. 

 2011 2012 2013 

Field type Wet (July) Dry (April) Wet 

(August) 

Dry 

(February) 

Wet (July) 

RR Rice¶ Rice¶ Rice¶ Rice¶ Rice¶ 

RM Rice
*
 Maize¶ Rice¶ Maize¶ Rice¶ 

* = not sampled, ¶ n= 3 

The decrease of the resident archaeal and bacterial community was significant during 

the first maize cultivation in the dry season 2012 (ANOVA, P < 0.05, Figure 4.1A, C). The 

number of archaeal 16S rDNA was again significantly lower under maize cultivation in the 

following dry season 2013 (ANOVA, P < 0.05, Figure 4.1A), but the decrease in bacterial 

abundance in dry season 2013 was not statistically significant (Figure 4.1C). In contrast to 

the resident archaea and bacteria (16S rDNA), the numbers of the active members (16S 

rRNA) were similar for RR and RM fields, except the bacterial 16S rRNA copies during the 

first dry season 2012 in the maize fields, which were significantly lower in RM than in RR 

(Figure 4.1C, D).   
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4.4.2 Pyrosequencing of archaeal 16S rDNA and rRNA 

Pyrosequencing targeting archaeal16S rDNA and rRNA was conducted in order to 

identify the resident respectively the active archaeal phylotypes in the Philippine rice field 

soil and to monitor the influence of season and crop rotation on the archaeal community 

composition. The communities were dominated by sequences of members of the classes Soil 

Crenarchaeotic Group and Methanomicrobia (Supplement Figures 4.3, 4.4). The class Soil 

Crenarchaeotic Group consisted mainly of Unclassified Soil Crenarchaeota and of members 

of the Candidatus Nitrosophaera, indicating that these Crenarchaeota can probably be 

classified as Thaumarchaeota (Pester et al., 2011). The class Methanomicrobia mainly 

consisted of Methanosarcinales with minor (<5%) contributions by Methanomicrobiales and 

Methanocellales (Supplement Figure 4.3, 4.4). Methanobacteriales (class Methanobacteria) 

were also present in low amounts (<5%).   

The relative proportion of the resident community of Euryarchaeota (mainly 

Methanosarcinales) versus Crenarchaeota (presumably mainly Thaumarchaeota) stayed 

relatively constant with time in the RR fields, but changed in the RM fields (Figure 4.2A, B). 

Thus, the relative abundance of the resident Crenarchaeota strongly increased in the wet 

season 2012 following the first maize cultivation. At the same time, the relative abundance 

of the resident Euryarchaeota decreased. The relative increase of Crenarchaeota and 

decrease of Euryarchaeota further intensified in the dry season 2013. In contrast to the 

resident communities, the active communities (16S rRNA) of Crenarchaeota and 

Euryarchaeota did not exhibit such a distinct behavior (Figure 4.2C, D), although the 

relative abundance of Crenarchaota was always higher than that of Euryarchaeota in RM 

soil during the dry season, i.e. when the fields were cultivated with upland maize.  
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Figure 4.2 Radar plot of archaeal phyla represented as relative abundance of sequences from 454 

pyrosequencing. Temporal dynamics of resident (A, B) and active (C, D) Euryarchaeota (A, C) and 

Crenarchaeota (B, D) in control rice fields (RR; blue) and rice-upland maize crop rotation (RM; red) 

during dry (dry) and wet (wet) season are shown.  
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In order to analyze the dynamics within the resident (rDNA) and active (rRNA) 

archaeal community, the 50 most abundant OTUs, which represented 64 - 83% of the 

sequences, were identified (Supplement Table 4.6). The detailed taxonomic classification of 

the top 50 archaeal OTUs is given in Supplement Table 4.7. The compositional change of 

the archaeal community over the season and between RR and RM fields is shown in Figure 

4.3. Therefore the taxonomy of the archaeal OTUs is represented in on lowest taxonomic 

level.  

The resident archaeal community was dominated by the Soil Crenarchaeotal Group, 

of which the relative abundance increased in the RM versus the RR fields from wet season 

2012 until wet season 2013 (ANOVA, P < 0.05, Figure 4.3). While the Soil Crenarchaeotal 

Group showed constant relative abundance (~10%) in the RR fields, an increase in 

abundance in the RM fields with up to ca. 50% during dry season 2013 was observed (Figure 

4.3A). By contrast, GOM Arc I (Methanosarcinales) decreased in the RM fields during dry 

season 2013 in comparison to the RR fields (ANOVA, P < 0.05, Figure 4.3A). Some 

methanogenic phyla showed statistically higher abundances in the RR fields than in the RM 

fields, for example Candidatus Methanoregula (wet, 2011) and Methanosaeta (dry, wet 

2013) (ANOVA, P < 0.05, Figure 4.3A). In addition, several trends, albeit not statistically 

significant, are worth to be mentioned. While thaumarchaeotal Candidatus Nitrososphaera 

was higher in the RM fields, the methanogenic lineages Methanobacterium and 

Methanosarcina increased in abundance during the dry seasons (2012, 2013) in the RR 

fields. 
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Figure 4.3 OTU based relative abundance of the archaea. The top 50 OTUs, based on relative 

abundance, were grouped according to their phylogenetic assignment for 16S rDNA (A) and 16S 

rRNA (B). Bubble plot of the archaeal OTUs in control rice fields (RR) and rice-upland maize crop 

rotation (RM). Bubble represents phylogenetic group and bubble size the relative sequence 

abundance (0.3 - 60%). Phylogenetic groups were ordered according to the number of OTUs they 

represent.  
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The active archaeal community was dominated by the same species as the resident 

community, namely Soil Crenarchaeotic Group and Methanosaeta (Figure 4.3B). Here, 

several trends, albeit not statistically significant, are worth to be mentioned: Crenarchaeota, 

Candidatus Nitrososphaera and Misc. Crenarchaeotic Group (probably belonging to 

Thaumarchaeota) showed increased relative abundances in the RM fields (Figure 4.3B). 

However, methanogenic groups like Methansaeta and Methanosarcina were seemingly more 

active in the RR than RM fields (Figure 4.3B).  

The ratio between 16S rRNA/rDNA of the different phylogenetic groups was 

determined by multiplying the relative sequence abundances with the corresponding qPCR 

data. The 16S rRNA/rDNA ratios all increased from dry season 2012 until dry season 2013 

and then decreased again, however only some statistically significant (ANOVA P < 0.05; 

Figure 4.4). Interestingly, the 16 rRNA/rDNA ratios of the classes Methanobacteria and 

Methanomicrobia were always higher in the RM than RR fields from wet season 2012 

onwards (Figure 4.4A), while it was opposite for the Soil Crenarcheotic Group, which were 

higher in the RR than RM fields during wet season 2012 and dry season 2013 (Figure 4.4B). 

Deeper phylogenetic analysis revealed that among the Methanobacteria and 

Methanomicrobia it was the groups of Methanobacteriaceae, Methanocellaceae, Candidatus 

Methanoregula and genus Methanolinea that exhibited the relative increase of 16S 

rRNA/rDNA ratios in the RM fields (Supplement Figure 4.5B, C). Among the Soil 

Crenarchaeotic Group there was not a particular phylogenetic group that showed such 

increase in the RR fields (Supplement Figure 4.5A). 
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Figure 4.4 Ratio of ribosomal 16S rRNA and rDNA copy numbers multiplied by the relative 

sequence abundance of archaeal classes. Euryarchaeotic (A) and thaumarchaeotic (B) classes derived 

ratios are shown for dry and wet season 2012 and 2013 in the fields with control rice cultivation (RR; 

blue) and the flooded rice-upland maize crop rotational fields (RM, red). Columns represent mean 

and bars standard errors of n=3. Asterisk represents statistically significant differences at one 

particular season (ANOVA, P < 0.05). 
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4.4.3 Pyrosequencing of bacterial 16S rDNA and rRNA 

The pyrosequencing for monitoring bacterial phylotypes in the rice-upland maize 

crop rotation (RM) and the wetland rice control (RR) targeted the bacterial 16S rDNA 

(resident bacteria) and rRNA (active bacteria). Both the resident and active bacterial 

communities were dominated by Proteobacteria and Acidobacteria. The resident community 

was in addition dominated by Chloroflexi (Supplement Figure 4.5). The pyrosequences were 

grouped into OTUs, of which only 2-7% were unique, while 33-75% were found in all 

replicate samples, i.e. were core OTUs for a particular type of field and season (Supplement 

Table 4.6). The core OTUs of the resident (Figure 4.5A) and the active (Figure 4.5B) 

communities also show the dominance of Deltaproteobacteria, Acidobacteria and 

Chloroflexi (only resident community). Among these major taxa there was not much change 

in their relative abundance from dry season 2012 to wet season 2013 and there were no 

statistically significant differences (ANOVA, P > 0.05) in RM versus RR fields (Figure 4.5) 

both among resident and active bacterial communities. Analysis of individual phylotypes 

among the resident bacterial community showed seasonal differences within the 

Acidobacteria, Chloroflexi and Deltaproteobacteria, for example the Anaerolineaceae and 

Anaeromyxobacter in the RR fields (ANOVA, P < 0.05; Figure 4.6A), and the 

Caldilineaceae in the RM fields (ANOVA, P < 0.05; Figure 4.6A). A similar pattern was 

seen in the communities of active bacteria (Figure 4.6B).  
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Figure 4.5 OTU based relative abundance of the bacteria. OTUs detected in all fields (core) were 

grouped according to their phylogenetic assignment for 16S rDNA (A) and 16S rRNA (B). Bubble 

plot of the archaeal OTUs in control rice fields (RR) and rice-upland maize crop rotation (RM). 

Bubble represents phylogenetic group and bubble size the relative sequence abundance (0.5 - 20%). 

Phylogenetic groups were ordered according to the number of OTUs they represent.   
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Since it was at the first glance not possible to identify specific bacterial phylotypes 

that were impacted by crop rotation, we used two approaches, i.e., (i) a PCA-based approach 

and (ii) a hypothesis driven approach. In the PCA-based approach the OTUs with the highest 

loadings on the major 3 PCA axes were chosen and represented in a heatmap (see Material 

and Methods, Figure 4.7). The selected OTUs representing the resident bacterial community 

showed clustering dependent on year and field type (Figure 4.7A). Most of these OTUs were 

found in similar relative abundance in both field types. However, in both years OTUs 

assigned to the Acidobacteria were more abundant in the RM fields while 

Deltaproteobacteria were higher in the RR fields. OTUs assigned as Cystobacteraceae 

showed increased abundance in wet season 2013 for both field types. The OTUs 

representing the active bacterial community showed clustering again among the same 

phylotypes, but with Deltaproteobacteria especially in RM fields in 2013 but without 

preference for dry or wet season (Figure 4.7B). 
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Figure 4.6 Individual phylogenetic groups out of the bacterial core OTUs. Phylogenetic groups are 

displayed based on 16S rDNA (A) and 16S rRNA (B) for the control rice fields (RR) and the rice-

upland maize crop rotation (RM). Columns represent mean and bars standard deviations of n=3. 

Asterisk represents statistically significant differences within a field type over the seasons and letters 

between the field types at one particular season (ANOVA, P < 0.05). 
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In the hypothesis driven approach Desulfobacterales and Syntrophobacterales were 

analyzed, as they had been hypothesized to be potential syntrophic partners for 

methanogenic archaea (Itoh et al., 2013). In fact, these phyla exhibited a higher relative 

abundance in the RR than the RM fields (Figure 4.8A). However only some were 

statistically significant (ANOVA P< 0.05). Furthermore, Bacilalles and Clostridiales out of 

Firmicutes were analyzed, as they had been hypothesized to be favoured during upland soil 

conditions in crop rotations due to their ability to form endospores (Fernandez Scavino et al., 

2013). Here, Bacilalles showed a higher relative abundance in the RM than the RR fields, 

however not statistically significant (ANOVA P> 0.05; Figure 4.8B). In addition, 

Planctomycetes were analyzed, as they several members able to perform anaerobic 

ammonium oxidation (annamox) had been hypothesized to be potential syntrophic partners 

for anaerobic methane oxidizers out if the archaea (Haroon et al., 2013) which in fact were 

found in higher abundance in the only rice fields. Here, Planctomycetes did not shown 

differences between the rotational and the rice fields, however not statistically significant 

(ANOVA P> 0.05; Figure 4.8C).  
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Figure 4.7 Heatmap showing the relative abundance of selected bacterial OTUs. OTUs based on 16S rDNA 

(A) and 16S rRNA (B) representing the resident and active bacterial community are displayed. The samples are 

clustered according to Bray-Curtis distances. The colors correspond to the relative sequence abundance of the 

OTUs, as indicated by the color legend. The taxonomy of each OTU is provided to the lowest-level achieved 

during the classification. Unclassified OTUs were excluded from the analysis. Samples from control rice fields 

(RR) and rice-upland maize crop rotation (RM) were represented and abbreviations specify crop maize (M) and 

rice (R), season dry (D) and wet (W), and year 2012 (12, grey) and 2013 (13, black). 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 145  

 

 

Figure 4.8 Relative abundance of selected bacterial (16S rDNA) core OTUs. OTUs assigned as 

Desulfobacterales and Syntrophobacterales (A), Bacilalles and Clostridiales (B) as well as 

Planctomycetes (C) are displayed. OTUs were obtained in control rice fields (RR) and rice-upland 

maize crop rotation (RM) during dry (dry) and wet (wet) season 2012 (12) and 2013 (13). Bars 

represent standard deviations of n=3. Asterisk represents statistically significant differences at one 

particular season (ANOVA, P < 0.05).    
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4.5 Discussion 

Our study showed that introduction of crop rotation to irrigated rice cultivation 

resulted in a pronounced change in the composition of the communities of resident and 

active Archaea, but only in a minor change in those of the Bacteria. These changes were 

manifested not immediately after the first cultivation of upland maize, but established in the 

subsequent seasons, when irrigated rice cultivation in the wet season was alternated with 

upland maize cultivation in the dry season. 

4.5.1 Impact of crop rotation on the archaeal community 

Whereas the abundance of the resident Archaea was decreased during maize 

cultivation and recovered during re-flooding and rice cultivation, the archaeal community 

composition was affected more persistently. The community composition in the crop 

rotational fields diverged in comparison to that in the irrigated rice fields in the wet season 

(2012) after maize cultivation, when the fields were re-flooded and cultivated with rice. 

Notably, the abundance of non-methanogenic Crenarchaeota/Thaumarchaeota increased 

while the methanogenic Euryarchaeota decreased. This trend was not reversible during the 

following season and even strengthened at the second maize cultivation in dry season 2013. 

Along with the decreasing relative abundance of methanogens in the present study, 

significantly lower CH4 emissions were observed in the crop rotational fields than in the 

control rice fields even after re-flooding and cultivation of irrigated rice (Weller et al., 

2015b, in preparation). The annual emissions were found to be reduced to about 25% of the 

ones from irrigated rice fields. In contrast to our observations it was previously suggested 

that the methanogenic community can recover after periods of upland crop cultivation 

(Eusufzai et al., 2010). However, our observations are consistent with reports of lower 

numbers of resident and active archaea in drained versus flooded rice fields in Japan (Itoh et 

al., 2013) and with decreasing numbers of methanogens in Chinese fields during a rice-

soybean rotation which never recovered to the level of the control rice fields without rotation 

(Liu et al., 2015).  

 The relative increase of Crenarchaeota/Thaumarchaeota was due to increase of 

members of the Soil Crenarchaeotic Group represented by Candidatus Nitrososphaera. Itoh 
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et al. (2013) also showed increased relative abundance of Candidatus Nitrososphaera related 

clones in drained rice field soil in comparison to flooded soils. Only recently, the first 

isolate, Nitrososphaera viennensis, was described, also proposing the novel genus 

Nitrosophaera within the novel family Nitrosospharaceae and novel order 

Nitrososphaerales (Stieglmeier et al., 2014). Nitrososphaera viennensis is an aerobic 

ammonia-oxidizing archaeon, thus suggesting that ammonia-oxidizing archaea become 

increasingly important in rice-maize rotational fields.  Their increased importance may 

explain the increased N2O emissions observed during the dry season in the maize fields by 

members of the ICON group (Weller et al., 2015b, in prep.).   

Contrary to the thaumarchaeotal species, methanogenic Euryarchaeota 

(Methanosaeta, Candidatus Methanoregula, Methanobacterium and Methanosarcina) were 

found in lower relative abundance in the crop rotational fields indicating unfavourable 

conditions for these strict anaerobes in the drained fields. Thus, both acetoclastic and 

hydrogenotrophic methanogens were affected by crop rotation in the Philippine rice field 

soil. Other studies reported negative effects of drainage on the acetotrophic methanogenic 

community (Krüger et al., 2001; Zhang et al., 2012), but also on the hydrogenotrophic 

community (Itoh et al., 2013). There are also controversial results concerning the total 

methanogenic community, as several studies showed significant effects (Ma and Lu, 2011; 

Watanabe et al., 2013; Itoh et al., 2013), whereas other studies found that the archaeal 

communities were only little affected by crop rotation with upland crops (Asakawa and 

Hayano, 1995; Watanabe et al., 2006, 2009; Fernandez Scavino et al., 2013; Chapter 3, 

Breidenbach and Conrad, 2015). These differences are not easily explained, since 

comparison of different field experiments with their intrinsically complex conditions is 

notoriously difficult. We would like to emphasize that the effects of introduction of crop 

rotation on the methanogenic communities were relatively little and delicate. It is noteworthy 

that the discussed rotations differed in substantial aspects from each other, to name some 

rotation history, soil type/texture and plant species. The latter was maize in the present study 

while the Japanese rice was rotated with wheat (Asakawa and Hayano, 1995; Watanabe et 

al., 2006, 2009) and in the Uruguayan rotations pasture was used (Fernandez Scavino et al., 

2013). Since it is known that plants influence the microbes in the soil e.g. via 

rhizodeposition and different plants select for different microbial communities (e.g.: 
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Marschner et al., 2004; Haichar et al., 2008) it may possible that the maize plant as a more 

pronounced influence on the microbes than pasture or wheat. Additional soil type may 

explain differences. Watanabe et al. (2006) suggested that the methanogenic communities in 

differed between two field location as result of different soil types described by 

dissimilarities in temperature and contents of total carbon and nitrogen. Further the history 

of crop rotation, meaning time from the first crop change to upland conditions, may explain 

the observed differences. To our knowledge the study of Breidenbach and Conrad (2015) 

(Chapter 3) followed by the present study are the first studies investigating the effect of 

crop rotation directly from the time point of the first rotation. In contrast, Asakawa and 

Hayano (1995) sampled the first time during the second upland phase and wheat cultivation 

and the fields studied by Watanabe et al. (2006, 2009) undergone the rotation pattern since 

1963. Liu et al. (2015) reported that the methanogens differed in abundance and the 

composition between the rotational fields and the control rice fields, but within the rotational 

fields the numbers and community composition were unaltered regardless of managing the 

fields as flooded rice field or as upland soybean fields. Together with the results obtained in 

the present study this may indicate that the microbial community has first to adept to the 

stress of crop rotation before the archaeal and especially the methanogenic community 

reveals the relative stability observed in rice-wheat and pasture-rice crop rotations.  

In the present study sequences assigned as GOM Arc I were found in all treatments 

and decreased significantly with upland conditions. GOM Arc I was formerly known as 

ANME-2d because of its phylogenetic relation to the anaerobic methanotrophs ANME-2 

(Mills et al., 2005; Martinez et al., 2006). Recently, Haroon et al. (2013) identified members 

of ANME-2d capable of anaerobic methane oxidation (AOM) and proposed the name 

Candidatus Methanoperedens nitroreducens for the ANME-2d lineage. These organisms 

oxidize CH4 through reverse methanogenesis using nitrate as terminal electron acceptor 

(Haroon et al., 2013). The thereby produced nitrite is reduced to dinitrogen gas by anaerobic 

ammonium-oxidizing bacteria (Planctomycetes) in a syntrophic interaction. However, here 

the Planctomycetes did not shown differences between the field types. Recently, high 

abundances of AOM bacteria were reported in a Chinese rice field (Zhou et al., 2014). As 

GOM Arc I/ANME-2d were found in relatively high relative abundance in Philippine and 
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South Korean rice field soil (Chapter 3, Breidenbach and Conrad, 2015; Ahn et al., 2014) 

we speculate that AOM conducted by Archaea has been underestimated in rice fields.  

 Despite the changes in relative abundance during crop rotation the full range of 

different methanogenic taxa (members of: Methanomicrobiales, Methanosarcinaceae, 

Methanosaetaceae, Methanocellaceae) was still present in the soil irrespectively of season, 

crop and water management. Some methanogenic groups were apparently not affected at all, 

e.g., Methanocellacea and Methanosarcinaceae. These groups were also reported in other 

studies to be present in rice field soil despite drainage or rotation with upland crops (Liu et 

al., 2015; Watanabe et al., 2009; Itoh et al., 2013; Fernandez Scavino et al., 2013). Both, 

Methanosarcina spp. and Methanocella spp. are conspicuous residents of dry and aerated 

soils, even in desert biological soils crusts (Nicol et al., 2003;  Poplanski et al., 2007; Angel 

et al., 2012; Conrad et al., 2012; Aschenbach et al., 2013).  

The active archaeal community composition was less affected by the crop rotation 

than the resident community. However, several trends were identical to the ones already 

discussed for the resident community, e.g., the increase of the 

Crenarchaeota/Thaumarchaeota in the rotational fields, and the decrease of the 

methanogenic Euryarchaeota in the irrigated fields. The determination of rRNA/rDNA 

ratios showed that these values were indeed different between methanogenic and non-

methanogenic phyla, which were higher or lower, respectively, in the rotational than in the 

irrigated fields. Such behavior, with increased rRNA/rDNA ratios in drained rice fields has 

been observed before (Watanabe et al., 2007; Chapter 3, Breidenbach and Conrad, 2015). 

One should note that although ―active‖ community members were defined by their 

ribosomal RNA, since the number of ribosomes is considered to reflect activity (e.g. Egert et 

al., 2011.), it remains unknown whether the microbes with increased numbers of ribosomes 

really expressed a higher level of activity. In fact, we believe that this is not necessarily the 

case, since increase of ribosomal RNA per cell can be interpreted as stress reaction in order 

to be prepared for potential better conditions (re-flooding) (Chapter 3, Breidenbach and 

Conrad, 2015). All together this leads to the conclusion that methanogenic archaeal lineages 

increased their ribosomal activity in order to be prepared for better conditions, while 

thaumarchaeotal lineages were stimulated by the crop rotation and increased their abundance 
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with active growth. These changes in the archaeal community were before the following 

season. Since sampling was done at the middle of each season, the microbes were exposed to 

upland conditions for nearly three months before the field was again flooded, possibly 

allowing the growth of aerobic Crenarchaeota/Thaumarchaeota during this time. 

4.5.2 Impact of crop rotation on the bacterial community 

The resident and active bacterial community was not dramatically impacted by the 

introduction of the upland maize cultivation. Only minor changes in relative abundance of 

several bacterial lineages were observed, mainly significant at the second period of maize 

cultivation during dry season 2013. These results were seen from the relative abundances of 

both bacterial sequences (16S rDNA and rRNA), most frequent core OTUs, and a selection 

of OTUs explaining most of the differences between the samples. Little effects on the 

bacterial communities have also been observed in an alfalfa-rice crop rotation (Lopes et al., 

2014) and a winter wheat-rice- winter wheat-maize cropping system (Zhao et al., 2014). 

Furthermore, changes in the irrigation treatment in South Korean rice fields did not affect the 

overall bacterial community and impacted only the activity of some bacterial groups (Ahn et 

al., 2014). Since the texture of the Philippine rice field soil (silt loam) enables potential 

anaerobic microniches due to its high water holding capacity (Chapter 3, Breidenbach and 

Conrad, 2015) it is possible that anaerobic microorganisms potentially maintain their activity 

in these niches.  

 Only some bacterial lineages were affected by the crop rotation in the present study. 

For example, some OTUs of Acidobacteria exhibited higher relative abundance in the 

rotational fields while others, especially active Acidobacteria (assessed from rRNA 

sequences) were more numerous in the control rice fields. Acidobacteria are widely 

distributed and abundant soil microbes, which can adapt to low substrate availability and 

exhibit slow growth rates (Lee and Cho, 2009; Davis et al., 2005, 2011). Eichorst et al. 

(2011) showed that Acidobacteria are able to decompose complex carbon compounds like 

xylan, cellulose and pectin. Lopes et al. (2014) suggested Acidobacteria to play an important 

role in cycling of plant derived carbon in rice fields. High abundance of Acidobacteria was 

reported for ancient rice fields in China (Sheng et al., 2015). Conclusively, the relatively 
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high abundance of Acidobacteria in the Philippine fields may be the result of their versatile 

but central role in degradation of organic matter.  

The second bacterial group of importance was the Deltaproteobacteria, namely 

Anaeromyxobacter and Haliangiaceae (Haliangium). The Anaeromyxobacter spp. are 

probably prominent iron reducers in the rice field soil (Ratering and Schnell, 2001; Treude et 

al., 2003). Drainage enabling increasing O2 inflow in the soil may result in continuous 

regeneration of ferric iron thus supporting iron reducers within anoxic microniches, as 

suggested for South Korean rice fields (Ahn et al., 2014) and an unplanted and drained field 

on the present experimental site (Chapter 3, Breidenbach and Conrad, 2015). Haliangium, 

which is an aerobic bacterium (Fudou et al., 2002) was recently found to be enriched on rice 

roots in comparison to rhizospheric soil (Hernández et al., 2015). 

Other Deltaproteobacteria were found to be in higher abundance in the control rice 

fields than the rotational fields, namely Desulfobacterales and Syntrophobacterales, which 

are known as sulfate reducers or syntrophic fermenting bacteria. For example, 

Syntrophobacterales may reduce sulfate and syntrophically interact with hydrogenotrophic 

methanogens (Kato and Watanabe, 2010). Therefore, it was hypothesized that they may be 

important for sulfate reduction and hydrogen production in rice fields under anoxic 

conditions (Itoh et al., 2013). Our observations support this hypothesis, since fields that were 

always managed as irrigated rice fields apparently provided a better environment for these 

bacteria than fields managed in rotation with upland crops.  

A third group with relatively high abundance, both within the resident and the active 

communities of rotational and control fields, were members of the phylum Chloroflexi, e.g. 

Anaerolineaceae. Ahn et al., (2012) proposed Chloroflexi to be primary degraders of 

polysaccharides in anoxic rice field soil. Recently, increased abundance of Chloroflexi in 

flooded rice field in a rice-wheat cropping system was reported (Zhao et al., 2014). 

Accordingly, increased abundance of Chloroflexi was shown for rice fields during alfalfa-

rice crop rotation (Lopes et al., 2014).  

Lastly, Firmicutes were also present in the Philippine fields, albeit at relatively low 

abundance. These bacteria are suggested to tolerate drainage stress as they can form 
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endospores (Fernandez Scavino et al., 2013). Indeed we found an increased relative 

abundance of OTUs belonging to Bacillales in soil from the crop rotation compared to the 

control rice fields supporting this hypothesis. 

4.5.3 Conclusion 

 The introduction of upland maize cultivation into an agricultural system dominated 

by irrigated rice cultivation and the concomitant change from mainly flooded to non-flooded 

conditions led to significant changes in the archaeal community.  Methanogenic lineages 

decreased in abundance whereas non-methanogenic Thaumarchaeota relatively increased in 

the rotational fields. This change proved to be persistent over the next rotational cycles. On 

the other hand, the methanogenic archaeal community seemed to increase the number of 

ribosomes per cell, probably as a stress response reaction to the change in field management. 

Despite these changes it is noteworthy, that none of the methanogenic groups was lost from 

the soil but persisted despite adverse conditions (seen by the drastic decease of methane 

emission) of crop rotation. In contrast to the Archaea, only minor changes were observed in 

the bacterial community upon introduction of crop rotation, e.g., suppression of anaerobic 

syntrophic Deltaproteobacteria bacteria, enhancement of endospore-forming Bacillales, and 

diverse effects on members of Acidobacteria and Chloroflexi.  
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4.6  Supplemental material 

Supplement Table 4.1 Soil variables in continuous rice fields (RR) and rice-maize crop 

rotation (RM) during dry and wet season 2012 and 2013.  

Soil variable Field type 2012 2013 

  Dry Wet Dry Wet 

Water content 

 [gdw
-1

] 

RR 42.8 ± 3.5 47.8 ± 3.5 64.5 ± 7.2 51.2 ± 3.6 

RM 34.3 ± 1.0 44.0 ± 5.0 51.5 ± 7.2 52.1 ± 4.2 

pH 
RR 6.5 ± 0.2 6.7 ± 0.0 6.7 ± 0.2 6.8 ± 0.1 

RM 6.1 ± 0.4 6.8 ± 0.0 5.5 ± 0.0 6.9 ± 0.1 

Mean ± standard deviations of n=3 are shown. 
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Supplement Table 4.2 Number of archaeal 16S rDNA sequences before and after quality management, barcode, number of OTUs, 

coverage, Chao1 and inverted Simpson index of the environmental samples analyzed by 454-pyrosquencing. Raw data were deposited 

under the study accession numbers SRP047229 for archaeal sequences in the NCBI Sequence Read Archive (SRA). Sample from one 

field (A, B or C) was randomly chosen and analyzed as representative of the field. 

Name Season Plant Barcode Accession 
No. 

OTU 

Good´s 

coverage 
Chao1 

1/ 

Simpson 
Source 

RRF3 2012 dry Rice ATCGAT SRS715487 60 0.85 104 20 
a 

RRF6 2012 dry Rice ATGCTA SRS715488 126 0.95 220 37 
a 

RRF9 2012 dry Rice CACAGT SRS715489 145 0.96 192 28 
a 

RMF4 2012 dry Maize CAGTCA SRS715493 136 0.96 201 32 
a 

RMF7 2012 dry Maize CATGAC SRS715494 139 0.96 197 34 
a 

RMF10 2012 dry Maize CGATAT SRS715495 144 0.97 206 10 
a 

RRF3 2012 wet Rice ACGTAC  124 0.97 161 30 This study 

RRF6 2012 wet Rice ACTGCA  112 0.93 169 30 This study 

RRF9 2012 wet Rice AGAGTC  109 0.96 165 28 This study 

RMF4 2012 wet Rice AGCTGA  116 0.95 151 33 This study 

RMF7 2012 wet Rice AGTCAG  49 0.93 57 14 This study 

RMF10 2012 wet Rice ATATCG  130 0.97 177 14 This study 

RRF3 2013 dry Rice ACACGT  187 0.97 278 33 This study 

RRF6 2013 dry Rice ACGTAC  192 0.98 266 34 This study 

RRF9 2013 dry Rice ACTGCA  170 0.96 251 37 This study 

RMF4 2013 dry Maize AGAGTC  119 0.97 164 5 This study 

RMF7 2013 dry Maize AGCTGA  113 0.98 138 7 This study 

RMF10 2013 dry Maize AGTCAG  63 0.94 79 4 This study 

RRF3 2013 wet Rice ATATCG  195 0.96 377 10 This study 

RRF6 2013 wet Rice ATCGAT  138 0.96 257 30 This study 

RRF9 2013 wet Rice ATGCTA  220 0.97 295 39 This study 

RMF4 2013 wet Rice CACAGT  214 0.98 273 24 This study 

RMF7 2013 wet Rice CAGTCA  177 0.98 228 12 This study 

RMF10 2013 wet Rice CATGAC  175 0.98 270 10 This study 
a
 : Breidenbach and Conrad, 2015. Partial 16S rRNA primers: Archaea: Arch344F (5'-ACGGGGYGCAGCAGGCGCGA), Arch934br (5'-

GTGCTCCCCCGCCAATTCCT). Adaptor primes: forward (5'-GATGGCCATTACGGCC), reverse (5'-GGTGGCCGAGGCGGCC)  
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Supplement Table 4.3 Number of archaeal16S rRNA sequences before and after quality management, barcode, number of OTUs, 

coverage, Chao1 and inverted Simpson index of the environmental samples analyzed by 454-pyrosquencing. Raw data were deposited 

under the study accession numbers SRP047229 for archaeal sequences in the NCBI Sequence Read Archive (SRA). Sample from one 

field (A, B or C) was randomly chosen and analyzed as representative of the field. 

Name Season Plant Barcode Accession 
No. 

OTU 

Good´s 

coverage 
Chao1 

1/ 

Simpson 
Source 

RRF3 2012 dry Rice ATCGAT SRS715487 89 0.94 134 18 a 

RRF6 2012 dry Rice ATGCTA SRS715488 222 0.96 344 42 a 

RRF9 2012 dry Rice CACAGT SRS715489 182 0.97 293 28 a 

RMF4 2012 dry Maize CAGTCA SRS715490 128 0.96 177 15 a 

RMF7 2012 dry Maize CATGAC SRS715491 140 0.94 268 15 a 

RMF10 2012 dry Maize CGATAT SRS715492 160 0.98 253 11 a 

RRF3 2012 wet Rice ACGTAC  108 0.93 145 23 This study 

RRF6 2012 wet Rice ACTGCA  83 0.89 152 20 This study 

RRF9 2012 wet Rice AGAGTC  77 0.91 121 14 This study 

RMF4 2012 wet Rice AGCTGA  90 0.92 145 22 This study 

RMF7 2012 wet Rice AGTCAG  55 0.89 106 10 This study 

RMF10 2012 wet Rice ATATCG  130 0.97 191 15 This study 

RRF3 2013 dry Rice CGATAT  183 0.99 272 4 This study 

RRF6 2013 dry Rice CGCGCG  215 0.98 317 10 This study 

RRF9 2013 dry Rice CGTATA  299 0.98 419 41 This study 

RMF4 2013 dry Maize GACTAG  202 0.96 308 20 This study 

RMF7 2013 dry Maize GAGATC  181 0.97 262 29 This study 

RMF10 2013 dry Maize GATCGA  202 0.98 302 12 This study 

RRF3 2013 wet Rice GTACAC  241 0.98 413 15 This study 

RRF6 2013 wet Rice ¶ - - - - - - 

RRF9 2013 wet Rice GTGTGT  215 0.99 266 9 This study 

RMF4 2013 wet Rice TACGTA  237 0.98 358 32 This study 

RMF7 2013 wet Rice TAGCAT  236 0.98 332 29 This study 

RMF10 2013 wet Rice TATACG  198 0.98 327 17 This study 
a
: Breidenbach and Conrad, 2015.  

¶
: sequencing failed. Partial 16S rRNA primers: Archaea: Arch344F (5'-ACGGGGYGCAGCAGGCGCGA), 

 Arch934br (5'-GTGCTCCCCCGCCAATTCCT). Adaptor primes: forward (5'-GATGGCCATTACGGCC), reverse (5'-GGTGGCCGAGGCGGCC) 
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Supplement Table 4.4 Number of bacterial 16S rDNA sequences before and after quality management, barcode, number of OTUs, 

coverage, Chao1 and inverted Simpson index of the environmental samples analyzed by 454-pyrosquencing. Raw data were deposited 

under the study accession numbers SRP047272 for bacterial sequences in the NCBI Sequence Read Archive (SRA). Sample from one 

field (A, B or C) was randomly chosen and analyzed as representative of the field. 

Name Season Plant Barcode Accession 
No. 

OTU 

Good´s 

coverage 
Chao1 

1/ 

Simpson 
Source 

RRF3 2012 dry Rice ATCGAT SRS715487 2342 0.83 4143 630 
a 

RRF6 2012 dry Rice ATGCTA SRS715488 2098 0.85 3808 499 
a 

RRF9 2012 dry Rice CACAGT SRS715489 1362 0.73 2806 525 
a 

RMF4 2012 dry Maize CAGTCA SRS715490 1301 0.78 2519 470 
a 

RMF7 2012 dry Maize CATGAC SRS715491 1256 0.77 2335 491 
a 

RMF10 2012 dry Maize CGATAT SRS715492 1774 0.82 3392 416 
a 

RRF3 2012 wet Rice ACGTAC  2117 0.83 3806 563 This study 

RRF6 2012 wet Rice ACTGCA  2144 0.82 3917 481 This study 

RRF9 2012 wet Rice ¶ - - - - - - 

RMF4 2012 wet Rice AGCTGA  2267 0.85 4093 531 This study 

RMF7 2012 wet Rice AGTCAG  1277 0.76 2462 538 This study 

RMF10 2012 wet Rice ATATCG  1481 0.81 2568 458 This study 

RRF3 2013 dry Rice ACACGT  2742 0.86 4771 696 This study 

RRF6 2013 dry Rice ACGTAC  1213 0.76 2474 408 This study 

RRF9 2013 dry Rice ACTGCA  1102 0.73 2446 325 This study 

RMF4 2013 dry Maize AGAGTC  2278 0.83 4125 587 This study 

RMF7 2013 dry Maize AGCTGA  823 0.74 1885 158 This study 

RMF10 2013 dry Maize AGTCAG  880 0.73 1962 341 This study 

RRF3 2013 wet Rice ATATCG  1117 0.74 2539 332 This study 

RRF6 2013 wet Rice ATCGAT  1104 0.71 2367 339 This study 

RRF9 2013 wet Rice ATGCTA  1311 0.75 2674 330 This study 

RMF4 2013 wet Rice CACAGT  996 0.72 2105 406 This study 

RMF7 2013 wet Rice CAGTCA  898 0.71 2140 348 This study 

RMF10 2013 wet Rice CATGAC  862 0.67 1933 520 This study 

 
a
 : Breidenbach and Conrad, 2015. 

¶
: sequencing failed. Partial 16S rRNA primers: Bacteria: F515 (5'-GTGCCAGCNGCCGCGGTAA),  

R806 (5'-GGACTCVSGGGTATCTAAT). Adaptor primes: forward (5'-GATGGCCATTACGGCC), reverse (5'-GGTGGCCGAGGCGGCC).  
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Supplement Table 4.5 Number of bacterial 16S rRNA sequences before and after quality management, barcode, number of OTUs, 

coverage, Chao1 and inverted Simpson index of the environmental samples analyzed by 454-pyrosquencing. Raw data were deposited 

under the study accession numbers SRP047272 for bacterial sequences in the NCBI Sequence Read Archive (SRA). Sample from one 

field (A, B or C) was randomly chosen and analyzed as representative of the field. 

Name Season Plant Barcode Accession 
No. 

OTU 

Good´s 

coverage 
Chao1 

1/ 

Simpson 
Source 

RRF3 2012 dry Rice ATCGAT SRS715487 2829 0.86 4667 604 a 

RRF6 2012 dry Rice ATGCTA SRS715488 2636 0.88 4276 509 a 

RRF9 2012 dry Rice CACAGT SRS715489 2126 0.85 3507 587 a 

RMF4 2012 dry Maize CAGTCA SRS715490 2138 0.87 3558 253 a 

RMF7 2012 dry Maize CATGAC SRS715491 1966 0.83 3493 308 a 

RMF10 2012 dry Maize CGATAT SRS715492 1505 0.83 2482 307 a 

RRF3 2012 wet Rice ACGTAC  3500 0.89 6037 652 This study 

RRF6 2012 wet Rice ACTGCA  3160 0.85 5581 725 This study 

RRF9 2012 wet Rice ¶ - - - - - - 

RMF4 2012 wet Rice AGCTGA  2774 0.86 4837 578 This study 

RMF7 2012 wet Rice AGTCAG  2850 0.86 5246 517 This study 

RMF10 2012 wet Rice ATATCG  3199 0.86 5895 500 This study 

RRF3 2013 dry Rice CGATAT  771 0.72 1858 209 This study 

RRF6 2013 dry Rice CGCGCG  1895 0.85 3222 386 This study 

RRF9 2013 dry Rice CGTATA  1440 0.75 2669 585 This study 

RMF4 2013 dry Maize GACTAG  1844 0.82 3196 464 This study 

RMF7 2013 dry Maize GAGATC  2226 0.88 3653 230 This study 

RMF10 2013 dry Maize GATCGA  1820 0.85 2997 386 This study 

RRF3 2013 wet Rice GTACAC  2347 0.88 3957 377 This study 

RRF6 2013 wet Rice GTCACA  899 0.72 1843 303 This study 

RRF9 2013 wet Rice GTGTGT  1266 0.78 2574 368 This study 

RMF4 2013 wet Rice TACGTA  802 0.71 1713 244 This study 

RMF7 2013 wet Rice TAGCAT  930 0.73 1944 206 This study 

RMF10 2013 wet Rice TATACG  779 0.69 1643 295 This study 

 
a
 : Breidenbach and Conrad, 2015. 

¶
: sequencing failed. Partial 16S rRNA primers: Bacteria: F515 (5'-GTGCCAGCNGCCGCGGTAA),  

R806 (5'-GGACTCVSGGGTATCTAAT). Adaptor primes: forward (5'-GATGGCCATTACGGCC), reverse (5'-GGTGGCCGAGGCGGCC).   
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Supplement Table 4.6 Relative number of sequences (%) represented by core (C, bold) and unique (U, light) 

OTUs of the bacterial and the top 50 OTUs of the archaeal community in continuous rice fields (RR) and rice-

maize crop rotation (RM). 

Target gene 

2012 2013 

Dry Wet Dry Wet 

RR RM RR RM RR RM RR RM 

Bacteria         

 C U C U C U C U C U C U C U C U 

16S rDNA 49.1 5.6 54.7 4.2 33.2 14.2 51.5 4.7 53.7 6.5 57.4 5.2 56.8 8.5 57.2 7.0 

16S rRNA 49.5 2.5 66.8 5.4 76.0 4.3 66.5 5.7 70.1 4.8 65.9 6.1 74.2 4.2 68.1 4.5 

Archaea Top 50 OTUs 

16S rDNA 76.2 76.6 78.4 77.6 75.5 87.5 63.7 81.1 

16S rRNA 79.4 80.9 83.1 77.9 76.9 76.5 84.1 77.5 
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Supplement Table 4.7 Taxonomic assignment of archaeal OTUs based on 16S rDNA and 16S rRNA. Assignments down to the 

lowest taxonomic level are shown. Taxonomic level and rank are given along with taxon, number of detected OTUs and OTU name.  

                  16S rDNA                 16S rRNA 

Tax. 

level 
rankID Taxon 

No. 

OTUs 
OTU Name 

No. 

OTUs 
OTU Name 

1 0.1 Archaea     

2 0.1.2 Crenarchaeota 1 15 1 3 

3 0.1.2.8 Misc. Crenarchaeotic Group 7 6, 12, 19, 33, 48, 266, 349 5 13, 20, 21,  38, 516 

3 0.1.2.9 Soil Crenarchaeotic Group 8 1, 2, 8, 13, 20, 123, 226, 510 7 1, 2, 5, 9, 12, 140, 428 

4 0.1.2.9.1 Candidatus Nitrososphaera 3 4, 103, 370 3 4, 34, 219 

3 0.1.2.12 Thermoprotei   1 600 

2 0.1.3 Euryarchaeota     

6 0.1.3.3.1.1.1 Methanobacterium 2 16, 54 2 11, 48 

6 0.1.3.5.4.1.1 Methanocella 3 17, 24, 26 3 14, 23, 25 

4 0.1.3.5.5 Methanomicrobiales   1 43 

5 0.1.3.5.5.1 Candidatus Methanoregula 2 25, 27 1 33 

5 0.1.3.5.5.4 Methanolinea 1 21 1 26 

4 0.1.3.5.6 Methanosarcinales     

5 0.1.3.5.6.3 GOM Arc I 10 10, 14, 18, 22, 29, 30, 229, 283, 391, 554 6 10, 15, 17, 19, 29, 40 

6 0.1.3.5.6.5.1 Methanosaeta 6 11, 28, 31, 32, 40, 56 9 6, 18, 24, 27, 35, 36, 182, 288, 544 

6 0.1.3.5.6.6.5 Methanolobus   1 46 

6 0.1.3.5.6.6.8 Methanosarcina 4 5, 38, 52, 359 6 7, 39, 195, 226, 295, 621 

2 0.1.6 unclassified 3 3, 7, 9 3 8, 16, 143 

Tax. Level: taxonomic level; rankID: taxonomic rank; No. OTUs: number of detected OTUs.   
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Supplement Figure 4.1 Ratio of ribosomal 16S rRNA and rDNA copy numbers quantified by 

qPCR. Archaeal (A, C, E, G) and bacterial (B, D, F, H) ratios are shown for each replicate during 

dry and wet season 2012 (A, B; C, D) and 2013 (E, F; G, H) in the fields with control rice 

cultivation (RR; blue) and the flooded rice-upland maize crop rotational fields (RM, red). 
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Supplement Figure 4.2 Relative abundance of archaeal sequences based on 454 pyrosequencing. 

16S rDNA sequences obtained in control rice fields (RR) and rice-upland maize crop rotation (RM) 

are shown on class (A), order (B) and family level (C). Bars represent standard deviations of n=3. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 162  

 

 

Supplement Figure 4.3 Relative abundance of archaeal sequences based on 454 pyrosequencing. 

16S rRNA sequences obtained in control rice fields (RR) and rice-upland maize crop rotation (RM) 

are shown on class (A), order (B) and family level (C). Bars represent standard deviations of n=3. 
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Supplement Figure 4.4 Ratio of ribosomal 16S rRNA/rDNA copy numbers multiplied by the 

relative sequence abundance of archaeal classes. Ratios of Thaumarchaeota (A), Methanobacteria 

(B) and Methanomicrobia (C) on family level derived ratios are shown for dry and wet season 2012 

and 2013 in the fields with control rice cultivation (RR; blue) and the flooded rice-upland maize crop 

rotational fields (RM, red) are displayed. Columns represent mean and bars standard errors of n=3. 

Asterisk represents statistically significant differences at one particular season (ANOVA, P < 0.05).   
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Supplement Figure 4.5 Relative abundance of bacterial sequences based on 454 pyrosequencing. 

16S rDNA (A) and 16S rRNA (B) sequences obtained in control rice fields (RR) and rice-upland 

maize crop rotation (RM) are shown on order level. Bars represent standard deviations of n=3.  



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 165  

 

4.7 Acknowledgement 

This work has been funded as part of the ICON consortium (BR2238/9-1). We thank 

the German Research Foundation (DFG) for funding (FOR 1701, ‗Introducing Non-Flooded 

Crops in Rice-Dominated Landscapes: Impacts on Carbon, Nitrogen and Water Cycles 

[ICON]‘. We are thankful to Franziska B. Brandt for valuable comments on the manuscript. 

Furthermore, we thank the International Rice Research Institute and Reiner Wassmann for 

providing research space and support during sample collection. We thank Mary Louise 

Mendoza, Eugene Aquino and Jerico Stefan Bigornia for sample collection. We thank Peter 

Frenzel for valuable comments on the study. We thank the Max-Planck-Genome-Center in 

Cologne for access to the sequencing facility and support.   



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 166  

 

4.8  References 

Abdi, H., and Williams, L. J. (2010). Principal component analysis. WIREs Comp. Stat. 2, 

433-459. 

Ahn, J. H., Choi, M. Y., Kim, B. Y., Lee, J. S., Song, J., Kim, G. Y., and Weon, H. Y. 

(2014). Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic 

communities in rice paddy soil. Microb. Ecol. 68, 271-283. doi: 10.1007/s00248-014-0371-

z. 

Ahn, J. H., Song, J., Kim, B. Y., Kim, M. S., Joa, J. H., and Weon, H. Y. (2012). 

Characterization of the bacterial and archaeal communities in rice field soils subjected to 

long-term fertilization practices. J. Microbiol. 50, 754-765. 

Angel, R., Claus, P., and Conrad, R. (2012). Methanogenic archaea are globally ubiquitous 

in aerated soils and become active under wet anoxic conditions. ISME J.  6, 847-862. 

Asakawa, S., and Hayano, K. (1995). Population of methanogenic bacteria in paddy field 

soil under double cropping conditions (rice-wheat). Biol. Fertil. Soils 20, 113-117. 

Aschenbach, K., Conrad, R., Řeháková, K., Doležal, J., Janatková, K., and Angel, R. (2013). 

Methanogens at the top of the world: occurrence and potential activity of methanogens in 

newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front. 

Microbio. 4, 359. doi:10.3389/fmicb.2013.00359. 

Bates, S. T., Cropsey, G. W., Caporaso, J. G., Knight, R., and Fierer, N. (2011). Bacterial 

communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77, 1309-1314. 

doi: 10.1128/AEM.02257-10. 

Bertomeu, M. (2012). Growth and yield of maize and timber trees in smallholder 

agroforestry systems in Claveria, northern Mindanao, Philippines. Agrofor. Syst. 84, 73-87. 

Bouman, B. A. M., Peng, S., Castaneda, A. R., and Visperas, R. M. (2005). Yield and water 

use of irrigated tropical aerobic rice systems. Agric. Water Manag, 74, 87-105. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 167  

 

Breidenbach, B., and Conrad, R. (2015). Seasonal dynamics of bacterial and archaeal 

methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5, 

752. doi: 10.3389/fmicb.2014.00752 

Burggraf, S., Huber, H., and Stetter, K.O. (1997). Reclassification of the crenarchaeal orders 

and families in accordance with 16S rRNA sequence data. Int. J. Syst. Evol. Microbiol. 47, 

657-660. 

Bürgmann, H., Pesaro, M., Widmer, F., and Zeyer, J. (2001). A strategy for optimizing 

quality and quantity of DNA extracted from soil. J. Microbiol. Meth. 45, 7-20. 

Casamayor, E. O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V. J., et al. 

(2002). Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by 

comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. 

Microbiol. 4, 338-348. 

Conrad, R. (2007). Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 

1-63. 

Conrad, R., and Frenzel, P. (2002). ―Flooded soils‖. in: Encycl. Environ. Microbio., ed. G. 

Britton, John Wiley and Sons, New York, USA, 1316-1333. 

doi:10.1002/0471263397.env034. 

Conrad, R., Klose, M., Lu, Y., and Chidthaisong, A. (2012). Methanogenic pathway and 

archaeal communities in three different anoxic soils amended with rice straw and maize 

straw. Front Microbiol 3, 4. doi:10.3389/fmicb.2012.00004. 

Davis, K. E., Joseph, S. J., and Janssen, P. H. (2005). Effects of growth medium, inoculum 

size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. 

Microbiol. 71, 826-834. 

Davis, K. E., Sangwan, P., and Janssen, P. H. (2011). Acidobacteria, Rubrobacteridae and 

Chloroflexi are abundant among very slow‐growing and mini‐colony‐forming soil bacteria. 

Environ. Microbiol. 13, 798-805. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 168  

 

Deng, Y., Cui, X., Hernández, M., and Dumont, M. G. (2014). Microbial diversity in 

hummock and hollow soils of three wetlands on the Qinghai-Tibetan plateau revealed by 

16S rRNA pyrosequencing. PloS one, 9, E103115 doi:10.1371/journal.pone.0103115. 

Dutaur, L., and Verchot, L. V. (2007). A global inventory of the soil CH4 sink. Global 

Biogeochem. Cycles 21, GB4013, doi:10.1029/2006GB002734. 

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon 

reads. Nat. Methods 10, 996-998. 

Egert, M., Schmidt, I., Höhne, H. M., Lachnit, T., Schmitz, R. A., and Breves, R. (2011). 

rRNA-based profiling of bacteria in the axilla of healthy males suggests right–left 

asymmetry in bacterial activity. FEMS Microbiol. Ecol. 77, 146-153. 

Eichorst, S. A., Kuske, C. R., and Schmidt, T. M. (2011). Influence of plant polymers on the 

distribution and cultivation of bacteria in the phylum Acidobacteria. Appl. Environ. 

Microbiol. 77, 586-596. 

Eusufzai, M. K., Tokida, T., Okada, M., Sugiyama, S., Liu, G. C., Nakajima, M., and 

Sameshima, R. (2010). Methane emission from rice fields as affected by land use change. 

Agric. Ecosyst. Environ. 139, 742-748. 

Fernandez Scavino, A., Ji, Y., Pump, J., Klose, M., Claus, P., and Conrad, R. (2013). 

Structure and function of the methanogenic microbial communities in Uruguayan soils 

shifted between pasture and irrigated rice fields. Environ. Microbiol. 15, 2588-2602. 

Fudou, R., Jojima, Y., Iizuka, T., and Yamanaka, S. (2002). Haliangium ochraceum gen. 

nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria 

isolated from coastal saline environments. J. Gen. Appl. Microbiol. 48, 109-116. 

Großkopf, R., Janssen, P. H., and Liesack, W. (1998). Diversity and structure of the 

methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation 

and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 64, 960-969. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 169  

 

Haichar, Z. F., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., et al. 

(2008). Plant host habitat and root exudates shape soil bacterial community structure. ISME 

J. 2, 1221-1230. 

Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., et al. (2013). 

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. 

Nature 500, 567-570. 

Heinz, E., Kraft, P., Buchen, C., Frede, H. G., Aquino, E., and Breuer, L. (2013). Set up of 

an automatic water quality sampling system in irrigation agriculture. Sensors 14, 212-228. 

Hernández, M., Dumont, M. G., Yuan, Q., and Conrad, R. (2015). Different bacterial 

populations associated with the roots and rhizosphere of rice incorporate plant-derived 

carbon. Appl. Environ. Microbiol. doi:10.1128/AEM.03209-14. 

Itoh, H., Ishii, S., Shiratori, Y., Oshima, K., Otsuka, S., Hattori, M., and Senoo, K. (2013). 

Seasonal transition of active bacterial and archaeal communities in relation to water 

management in paddy soils. Microbes Environ. 28, 370-380. 

Jäckel, U., Schnell, S., and Conrad, R. (2001). Effect of moisture, texture and aggregate size 

of paddy soil on production and consumption of CH4. Soil. Biol. Biochem. 33, 965-971. 

Kato, S., and Watanabe, K. (2010). Ecological and evolutionary interactions in syntrophic 

methanogenic consortia. Microbes Environ. 25, 145-151. 

Kenmore, Z. F., and Flinn, J. C. (1987). An ethnohistory of an upland area: Claveria, 

Misamis Oriental. International Rice Research Institute (IRRI), Manila, Philippines. 

Klein, D. A., Frederick, B. A., Biondini, M., and Trlica, M. J. (1988). Rhizosphere 

microorganism effects on soluble amino acids, sugars and organic acids in the root zone of 

Agropyron cristatum, A. smithii and Bouteloua gracilis. Plant Soil 110, 19-25. 

Krüger, M., Frenzel, P., and Conrad, R. (2001). Microbial processes influencing methane 

emission from rice fields. Global Change Biol. 7, 49-63. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 170  

 

Krüger, M., Frenzel, P., Kemnitz, D. and Conrad, R. (2005). Activity, structure and 

dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS 

Microbiol. Ecol. 51, 323-33. 

Lee, S. H., and Cho, J. C. (2009). Distribution patterns of the members of phylum 

acidobacteria in global soil samples. J. Microbiol. Biotech. 19, 1281-1287. 

Liu, D., Ishikawa, H., Nishida, M., Tsuchiya, K., Takahashi, T., Kimura, M., and Asakawa, 

S. (2015). Effect of paddy-upland rotation on methanogenic archaeal community structure in 

paddy field soil. Microb. Ecol. 69, 160-168. 

Lopes, A. R., Manaia, C. M., and Nunes, O. C. (2014). Bacterial community variations in an 

alfalfa‐rice rotation system revealed by 16S rRNA gene 454‐pyrosequencing. FEMS 

Microbiol. Ecol. 87, 650-663. 

Lu, Y., and Conrad, R. (2005). In situ stable isotope probing of methanogenic archaea in the 

rice rhizosphere. Science 309, 1088-1090. 

Ma, K., and Lu, Y. (2011). Regulation of microbial methane production and oxidation by 

intermittent drainage in rice field soil. FEMS Microbiol. Ecol. 75, 446-456. 

Maclean, J. L., Dawe, D. C., Hardy, B., and  Hettel, G. P. (eds) (2002). ―Rice almanac: 

source book for the most important economic activity on earth, 3rd edn‖ CABI Publishing, 

Wallingford, United Kingdom. 

Marschner, P., Crowley, D., and Yang, C. H. (2004). Development of specific rhizosphere 

bacterial communities in relation to plant species, nutrition and soil type. Plant  Soil, 261, 

199-208. 

Marschner, P., Yang, C. H., Lieberei, R., and Crowley, D. E. (2001). Soil and plant specific 

effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33, 

1437-1445. 

Martinez, R.J., Mills, H.J., Story, S., and Sobecky, P.A. (2006). Prokaryotic diversity and 

metabolically active microbial populations in sediments from an active mud volcano in the 

Gulf of Mexico. Environ. Microbiol. 8, 1783-1796. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 171  

 

Megonigal, J. P., and Guenther, A. B. (2008). Methane emissions from upland forest soils 

and vegetation. Tree Physiol. 28, 491-498. 

Mills, H. J., Martinez, R. J., Story, S., and Sobecky, P. A. (2005). Characterization of 

microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of 

DNA- and RNA-derived clone libraries. Appl. Environ. Microbiol. 71, 3235-3247. 

Nicol, G. W., Glover, L. A., and Prosser, J. I. (2003). The impact of grassland management 

on archaeal community structure in upland pasture rhizosphere soil. Environ. Microbiol. 5, 

152-162. 

Noll, M., Matthies, D., Frenzel, P., Derakshani, M., and Liesack, W. (2005). Succession of 

bacterial community structure and diversity in a paddy soil oxygen gradient. Environ. 

Microbiol.  7, 382-395. 

Oksanen, J., Blanchet, G. F., Kindt, R., Legendre, R., Minchin, P. R., O'Hara, R. B., et al. 

(2012). vegan: Community Ecology Package ver. 2.0-5. Available online at: http://cran.r-

project.org/web/packages/vegan/index.html 

Pester, M., Schleper, C., and Wagner, M. (2011). The Thaumarchaeota: an emerging view 

of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300-306. 

Ponnamperuma, F.N. (1972). The chemistry of submerged soils. Adv.Agron. 24, 29-96. 

Poplawski, A. B., Martensson, L., Wartiainen, I., and Rasmussen, U. (2007). Archaeal 

diversity and community structure in a Swedish barley field: specificity of the Ek510r/ 

(EURY498) 16S rDNA primer. J. Microbiol. Methods 69, 161-173. 

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., and Glöckner, F. 

O. (2007). SILVA: a comprehensive online resource for quality checked and aligned 

ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188-7196 

Pump, J., Pratscher, J., and Conrad, R. (2014). Colonization of rice roots with methanogenic 

archaea controls photosynthesis‐derived CH4 emission. Environ. Microbiol. Rep. 

doi:10.1111/1462-2920.12675 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 172  

 

R Development Core Team (2011). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 

Available online at: http://www.R-project.org/. 

Ratering, S., and Schnell, S. (2001). Nitrate‐dependent iron (II) oxidation in paddy soil. 

Environ. Microbiol. 3, 100-109. 

Ratering S., and Conrad, R. (1998).  Effects of short-term drainage and aeration on the 

production of methane in submerged rice soil. Glob. Change Biol. 4, 397-407. 

Rui, J., Peng, J., and Lu, Y. (2009). Succession of bacterial populations during plant residue 

decomposition in rice field soil. Appl. Environ. Microbiol. 75, 4879-4886. 

Schloss, P. D., Gevers, D., and Westcott, S. L. (2011). Reducing the effects of PCR 

amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6: e27310. 

doi:10.1371/journal.pone.0027310 

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. 

(2009). Introducing mothur: open-source, platform-independent, community-supported 

software for describing and comparing microbial communities. Appl. Environ. Microbiol. 

75, 7537-7541. 

Sheng, R., Qin, H., O‘Donnell, A. G., Huang, S., Wu, J., and Wei, W. (2015). Bacterial 

succession in paddy soils derived from different parent materials. J. Soil. Sediment. 15, 982-

992. 

Shrestha, P. M., Noll, M., and Liesack, W. (2007). Phylogenetic identity, growth-response 

time and rRNA operon copy number of soil bacteria indicate different stages of community 

succession. Environ. Microbiol. 9, 2464-2474. 

Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C., et al. 

(2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European 

grassland sites. Agric. Ecosyst. Environ. 121, 121-134. 

Stieglmeier, M., Klingl, A., Alves, R. J., Simon, K. M. R., Melcher, M., Leisch, N., and 

Schleper, C. (2014). Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 173  

 

mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum 

Thaumarchaeota. Int. J. Syst. Evol. Microbiol, 64, 2738-2752. 

Stubner, S. (2002). Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field 

soil by real-time PCR with SybrGreen™ detection. J. Microbiol. Meth. 50, 155-164. 

Timsina, J., Jat, M. L., and Majumdar, K. (2010). Rice-maize systems of South Asia: current 

status, future prospects and research priorities for nutrient management. Plant Soil 335, 65-

82. 

Treude, N., Rosencrantz, D., Liesack, W., and Schnell, S. (2003). Strain FAc12, a 

dissimilatory iron‐reducing member of the Anaeromyxobacter subgroup of Myxococcales. 

FEMS Microbiol. Ecol. 44, 261-269. 

Tuong, T. P., Bouman, B. A. M., and Mortimer, M. (2005). More rice, less water-integrated 

approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant 

Prod. Sci. 8, 231-241. 

Van Nguyen, N., and Ferrero, A. (2006). Meeting the challenges of global rice production. 

Paddy Water Environ. 4, 1-9. doi: 10.1007/s10333-005-0031-5. 

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for 

rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. 

Microbiol.  73, 5261-5267. 

Warnes, G. R. (2011) Gplots: Various R programming tools for plotting data. http://cran.r-

project.org/web/packages/gplots/index.html  

Wassmann, R., Buendia, L. V., Lantin, R. S., Bueno, C. S., Lubigan, L. A., Umali, A., et al 

(2000a). Mechanisms of crop management impact on methane emissions from rice fields in 

Los Banos, Philippines. Nutr Cycl Agroecosyst 58, 107-119. doi:10.1023/A:1009838401699 

Wassmann, R., Lantin, R. S., Neue, H. U., Buendia, L. V., Corton, T. M., and Lu, Y. 

(2000b) Characterization of methane emissions from rice fields in Asia. III. Mitigation 

options and future research needs. Nutr Cycl Agroecosyst 58, 23-36. 

doi:10.1023/A:1009874014903 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 174  

 

Watanabe, T., Hosen, Y., Agbisit, R., Llorca, L., Katayanagi, N., Asakawa, S., and Kimura, 

M. (2013). Changes in community structure of methanogenic archaea brought about by 

water-saving practice in paddy field soil. Soil Biol. Biochem. 58, 235-243. 

Watanabe, T., Kimura, M., and Asakawa, S. (2006) Community structure of methanogenic 

archaea in paddy field soil under double cropping (rice-wheat). Soil Biol. Biochem. 38, 1264-

1274. 

Watanabe, T., Kimura, M., and Asakawa, S. (2007). Dynamics of methanogenic archaeal 

communities based on rRNA analysis and their relation to methanogenic activity in Japanese 

paddy field soils. Soil Biol. Biochem. 39, 2877-2887. 

Watanabe, T., Kimura, M. and Asakawa, S. (2009). Distinct members of a stable 

methanogenic archaeal community transcribe mcrA genes under flooded and drained 

conditions in Japanese paddy field soil. Soil Biol. Biochem. 41, 276-285. 

Watanabe, T., Wang, G., Lee, C. G., Murase, J., Asakawa, S., and Kimura, M. (2011). 

Assimilation of glucose-derived carbon into methanogenic archaea in soil under unflooded 

condition. Appl. Soil Ecol. 48, 201-209. 

Weller, S., Kraus, D., Ayag, K. R. P., Wassmann, R., Alberto, M. C. R., Butterbach-Bahl, 

K., and Kiese, R. (2015a). Methane and nitrous oxide emissions from rice and maize 

production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 101, 37-53. 

Weller, S., Kraus, D., Racela, H. S., Wassmann, R., Butterbach-Bahl K., and Kiese, R. 

(2015b). Two-year automated measurement of methane and nitrous oxide emissions from 

paddy rice based rotation systems in the Philippines CH4 and N2O measurements in rice 

rotation systems. (In preparation) 

Yagi, K., Tsuruta, H., Kanda, K., and Minami, K. (1996). Effect of water management on 

methane emission from a Japanese rice paddy field: auto-mated methane monitoring. Glob. 

Biogeochem. Cycles 10, 255-267. doi:10.1029/96GB00517. 



 Chapter 4 – Crop rotation impacts methanogenic community 
 

 
Page | 175  

 

Zhang, G., Ji, Y., Ma, J., Xu, H., Cai, Z., and Yagi, K. (2012). Intermittent irrigation changes 

production, oxidation, and emission of CH4 in paddy fields determined with stable carbon 

isotope technique. Soil. Biol. Biochem. 52, 108-116. 

Zhao, J., Zhang, R., Xue, C., Xun, W., Sun, L., Xu, Y., and Shen, Q. (2014). Pyrosequencing 

reveals contrasting soil bacterial diversity and community structure of two main winter 

wheat cropping systems in China. Microb. Ecol. 67, 443-453. 

Zhou, L., Wang, Y., Long, X. E., Guo, J., and Zhu, G. (2014). High abundance and diversity 

of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS 

Microbiol. Ecol.  360, 33-41. 

Zhu, W., Lu, H., Hill, J., Guo, X., Wang, H., and Wu, W. (2014). 
13

C pulse-chase labeling 

comparative assessment of the active methanogenic archaeal community composition in the 

transgenic and nontransgenic parental rice rhizospheres FEMS Microbiol. Ecol.  87, 746-

756. 

Zinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., Horner-Devine, M., Huse, S. M., Welch, 

D. B., et al. (2011). Global patterns of bacterial beta-diversity in seafloor and sea-water 

ecosystems. PLoS ONE 6:e24570. doi:10.1371/ journal.pone.0024570. 

  



 Chapter 5 – Discussion 
 

 
Page | 176  

 

Chapter 5 

Discussion and concluding remarks 

 Rice is a major staple food and its demand is anticipated to increase along with the 

increasing world population. Rice agriculture provides around 10% of the global 

atmospheric methane budget. The biogeochemistry of rice fields as wetlands and their 

inhabiting microbial community has been studied extensively, however numerous open 

questions still remain unclear. 

 In this thesis the impact of the rice plant on the microbial community living in the 

soil was investigated in a greenhouse experiment comparing planted and unplanted rice field 

soil (Chapter 2). Further, dynamics in the microbial community during the rice plant growth 

stages were elucidated by studying a time series (Chapter 2). The microbial community 

composition and abundance was assessed using several molecular techniques (T-RFLP, 454 

pyrosequencing, qPCR) targeting the ribosomal 16S rRNA gene (16S rDNA) allowing to 

monitor the resident microbes. The issue of potential impacts of rice plant growth stages on 

the microbial community was further tackled as part of a field study embedded in the 

multidisciplinary research project ‖Introduction of non-flooded crops in rice-dominated 

landscapes and its impact on carbon, nitrogen and water cycles (ICON)‖ conducted at 

experimental fields of the International Rice Research Institute (IRRI) in the Philippines 

(Chapter 3). Additionally, in this part of the thesis the active microbial community was 

assessed targeting the ribosomal RNA (16S rRNA).  

 The second part of this thesis concentrated on consequences of crop rotational 

systems on the microbial community in the rice field soil. As a part of the ICON project we 

studied the impact of the introduction of an upland plant (maize) and concomitant drainage 

on the rice soil microbial community. We used several molecular techniques targeting the 

ribosomal 16S rDNA and 16S rRNA allowing to examine the resident and active community 

in abundance and composition. In Chapter 3 the immediate reaction of the microbial 

community to changes in field management was studied. Subsequent, we followed the crop 
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rotation over two years by comparing the rotational fields to a field solely managed as 

flooded rice field. The long term effects of the crop rotation were reported in Chapter 4.   



 Chapter 5 – Discussion 
 

 
Page | 178  

 

5.1 Microbial communities in the rice rhizosphere 

 Rhizodeposition, a process excreting organic and inorganic compounds, is a 

mechanism regularly used by plants (among others, e.g. nutrient uptake) to influence the 

microbial community in the soil surrounding the roots. The compounds, called rhizodeposits, 

are excreted via the plant root. For rice plants it was shown that the quantity and quality of 

these rhizodeposits change with the plant growth stage (Aulakh et al., 2001). Further, 

rhizodeposits are the major carbon input into the soil besides plant residues and soil organic 

matter (Kimura et al., 2004). Therefore, a pot experiment was conducted to investigate 

whether the microbial community in the rhizosphere differs from the community in 

unplanted soil and whether dynamics within the rice plant growth stages occur (Chapter 2). 

Little impact of plant growth stage was observed on the resident archaeal and bacterial 

community. More distinct differences were shown between the microbial communities in the 

rhizosphere and in the unplanted bulk soil suggesting a plant effect. On field scale similar 

patterns were observed confirming previous results of the greenhouse experiment (Chapter 

3). Only a few microbial lineages differed between the rice growth stages. In contrast, 

stronger variations were found between the planted and the unplanted fields. However, these 

were mainly accounted to the difference in water management as the planted fields were 

flooded and the unplanted fields drained. In contrast, during the greenhouse experiment in 

Chapter 2 both planted and unplanted pots were treated equally, as they were flooded 

throughout the experiment. Together, these results may indicate that the overall microbial 

community in rice field soil is only minor affected by the rice plant. However, focusing on 

specific microbial lineages we were able to detect differences (Chapter 2, 3). Further, stable 

isotope tracer studies were able to identify the bacterial and archaeal lineages assimilating 

carbon compounds derived from the rice plant in the rhizosphere or in the rhizoplane (root 

surface) (Lu and Conrad, 2006; Zhu et al., 2014; Hernández et al., 2015). Additional, 

distinct microbial communities in the endosphere (root interior), the rhizoplane and the 

rhizosphere of rice were reported (Edwards et al., 2015). Therefore, the distinct sampling 

seems to be of high importance since different microbial communities were identified 

inhabiting specific locations next to the plant, on the plant or even inside the plant. In this 

thesis we focused on the soil attached to the rice roots (rhizosphere; Chapter 2) and in the 
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vicinity of the plant (Chapter 3) enabling the detection of dynamics in the microbial 

community.  

 The observed stability of the overall microbial community may be a consequence of 

the adaption to the rice field ecosystem. The rice field ecosystem is constitutively 

determined by the monoculture of rice plants and concomitant water saturated soil. Short 

periods of drainage occur only during rice harvest and field preparation. In this thesis two 

soils from different locations (Vercelli, Italy (Chapter 2); Los Banos, Philippines (Chapter 

3)) cultured with two special rice plant varieties (Oryza sativa: Koral (Chapter 2); NSIC 

Rc222 (Chapter 3)) revealed comparable patterns during rice plant growth. However, minor 

changes in the community were observed concentrating on specific microbial lineages at 

explicit locations influenced by the rice plant. These results strengthen the assumption of a 

highly adapted overall microbial community in rice field soil.   
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 5.2 Crop rotation 

 Crop rotation between flooded rice and upland plants are gaining more and more 

importance in the world‘s major-rice producing region Asia. Since the world‘s population is 

anticipated to increase, the need for cultivating staple foods like rice will further enlarge 

(Van Nguyen and Ferrero, 2006). However, rice cultivation is accompanied with intensive 

water consumption (Tuong et al., 2005) and so farmers are anticipated to face periods of 

water scarcity (Bouman et al., 2005).  The upland crop maize is commonly cultivated in the 

Philippine uplands (Bertomeu, 2012) and its demand is increasing due to poultry and biofuel 

production (Weller et al., 2015a).  Further, maize is a cash crop and therefore maize farming 

is economical which leads to notably realized rice–maize rotation systems (Timsina et al., 

2010). The impact of crop rotations on crop yields and health were studied extensively in the 

past revealing positive effects on both (Xuan et al., 2012; Peters et al., 2003; Mendes et al., 

2011). 

 However, the impacts on the rice field soil inhabiting microbial communities and 

their activity are rarely studied and rather focused on either the archaeal or the bacterial 

community (Table 5.1). In this thesis a rice-maize crop rotation was investigated focusing on 

both, the resident and active archaeal as well as bacterial community. Therefore, a crop 

rotational field rotating irrigated rice and upland maize was studied in comparison to a field 

only cultivated with rice. The impact of rotation was thereby investigated in detail during the 

first season of rotation revealing immediately occurring effects (Chapter 3) and over two 

years of rotation screening for long term effects (Chapter 4).  

 Studies focusing on crop rotations including flooded rice can be divided in two 

categories: (I) native upland systems in which flooded rice is implemented and (II) flooded 

rice field systems rotated with plants under upland conditions. These categories have to be 

differentiated based on their field management history, meaning whether these fields were 

historically under drained or flooded conditions. For crop rotation systems out of category 

(I) it was shown that the bacterial community changed in composition, especially anaerobes 

were found in higher relative abundance with rice cultivation and accompanied water 

saturated conditions enabling anoxic niches (Table 5.1; Lopes et al., 2014; Fernandez 

Scavino et al., 2013; Zhao et al., 2014b).  In a pasture-rice rotation it was shown that once 
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pasture soil has been rotated with flooded rice a constant methanogenic microbial 

community was established, even if the flooded conditions were followed by 4 years of 

upland conditions (Fernandez Scavino et al., 2013). These studies indicate that the 

introduction of irrigated crops like rice in drained upland ecosystems leads to the enrichment 

of anaerobic archaea and bacteria, which tend to withstand periods of drainage once they 

established.  

 Since communities of anaerobic archaea and bacteria seem to establish relatively fast 

and display the ability to resist periods of drainage, the question can be raised how innate 

anaerobic communities are impacted by the introduction of upland plants and the 

accompanied drainage (category II). Several studies focused on crop rotation systems of 

flooded rice and upland crop in Asian countries such as Japan, China, Vietnam and 

Philippines (Table 5.1; Asakawa and Hayano, 1995; Liu et al., 2015; Zhao et al., 2014 a; 

Watanabe et al., 2006, 2009; Xuan et al., 2012; Chapter 3,4). Different crop rotational 

systems were examined such as a multiannual rice-soybean rotation, where the fields were 

cultivated alternating with irrigated rice for several years followed by the cultivation of 

soybean for several years (Liu et al., 2015). Thereby, the microbial community is exposed to 

extended periods (years) of drained conditions in multiannual rotation systems.  Liu et al. 

(2015) showed that the rotation affected the methanogenic community negatively indicated 

by a decrease of the overall methanogenic abundance and the relative abundance of some 

species out of the Methanosarcinales.  

 In rotation systems which alternate crops in two or three seasons per year (bi-, 

triannual systems) the time of drainage and possibly increased oxygen exposure is rather 

limited (several months). The effects of rotations of flooded rice with wheat, maize or 

mungbean resulted in differences in the bacterial community (Table 5.1; Xuan et al., 2012; 

Zhao et al., 2014a). These studies showed dynamics in the bacterial community composition 

in the rotational fields possibly due to their ecophysiology.  However, these studies only 

monitored the effect of the crop rotation in already established rotation systems which were 

managed for several years (Xuan et al., 2012: 7 years; Zhao et al., 2014a: 2 years). In this 

thesis the effect of the first introduction of the upland plant maize on the microbial 

community inhabiting the rice field soil was investigated (Chapter 3). To our knowledge 
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Chapter 3 was the first study investigating the effect of the primary introduction of maize 

into the rice field soil. Thereby we showed that the bacterial community was only slightly 

affected and seemed to respond stronger to drainage than to the introduction of the maize 

plant.  Long term effects on the bacterial community were also not very dramatic (Chapter 

4). Only Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields 

possibly due to the increased oxygen inflow, while members of anaerobic Chloroflexi and 

sulfite reducing members of Deltaproteobacteria were found in higher abundance in the 

continuous rice fields indicating a negative effect of drainage on these anaerobic bacteria in 

the rotational fields. This raises the question why the introduction of maize caused only 

minor changes in the Philippine rice field soil while different rice-upland rotations revealed 

even stronger changes in the bacterial community (Table 5.1; Xuan et al., 2012; Zhao et al., 

2014a). These differences are not easily explained, however it is noteworthy that the 

discussed rotations differed in substantial aspects from each other such as rotation history, 

soil type/texture and plant species. 

 The impact of crop rotations on the methanogenic community has been studied 

mainly in Japanese rice fields (Table 5.1; Asakawa and Hayano, 1995; Watanabe et al., 

2006, 2009). In these rice-wheat rotations the resident community was unaffected in 

abundance and the composition was mainly stable, as only some methanogens differed 

between rotation and control fields (Table 5.1; Watanabe et al., 2006, 2009). In this thesis 

the immediate effect of maize cultivation on the archaeal community was likewise minor 

since only Methanosarcinaceae and Soil Crenarchaeotic Group were impacted (Chapter 3). 

In the season following the first maize cultivation dramatic changes in the archaeal 

community were observed (Chapter 4). It may be possible that the changes occurred in the 

time between our samplings. Between the sampling time points the microbes were exposed 

to upland conditions for nearly three months. Thereby potential aerobic Archaea such as 

Crenarchaeota/Thaumarchaeota increased their relative abundance while anaerobic 

methanogens decreased. This seems to be very dramatic in comparison with the observations 

from the Japanese rice fields (Asakawa and Hayano, 1995; Watanabe et al., 2006, 2009). 

However, in the investigated fields in these studies were subjected to crop rotation since 

1963 (Watanabe et al., 2006, 2009) and Asakawa and Hayano (1995) started sampling in the 

second phase of upland conditions. In contrast, the Philippine study site investigated in this 
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thesis was cultivated with flooded rice for over 20 years before the first introduction of 

maize (Weller et al., 2015a) which was monitored in Chapter 3. Therefore it may be that the 

microbial community has first to adapt to the stress of crop rotation (Chapter 4) before the 

archaeal/methanogenic community reveals the relative stability observed in previous studies 

monitoring rice-wheat and pasture-rice crop rotations (Table 5.1; Asakawa and Hayano, 

1995; Fernandez Scavino et al., 2013; Watanabe et al., 2006, 2009). Indeed this may be 

indicated by Liu et al. (2015) monitoring rice-soybean crop rotation in comparison to only 

rice fields at two different locations in Japan. Thereby, the abundance and the composition of 

methanogens differed between the rotational fields and the control rice fields, but within the 

rotational fields the numbers and of methanogens and their community composition was 

unaltered regardless of managing the fields as flooded rice field or as upland soybean fields 

(Liu et al., 2015). However, further extended studies are needed to confirm this hypothesis. 

 All together it was shown that the bacterial and archaeal communities respond in 

different ways to crop rotations and changes in field management. In this thesis a detailed 

analysis of the impact of the introduction of upland maize into rice dominated landscape was 

given, revealing minor immediate effects (Chapter 3) and stronger pronounced long term 

effects (Chapter 4) on the microbial community. However, extended observation of the 

impact of crop rotation on the microbial communities is needed to understand the ability of 

anaerobic archaeal and bacterial communities to survive these extended periods of drainage 

and oxygen exposure.  

 



 Chapter 5 – Discussion 
 

 
Page | 184  

 

Table 5.1 Summary of studies investigating the impact of rice crop rotational systems on the archaeal and bacterial community. 

Rotation systems Archaea Bacteria Reference 

Pattern Crops Abundance Composition Abundance Composition  

Upland-irrigated (category I)      

multiannual Alfalfa-rice - - - 

Increase of anaerobes with rice 

Second rice cultivation resulted 

in stronger change 

Lopes et al., 

2014 

multiannual Pasture-rice 
Higher methanogenic 

archaea in rotational fields 

 Minor changes in 

rotational fields 
- 

Different community patterns 

in  rotational and pasture fields 

Fernandez 

Scavino et 

al., 2013 

biannual Wheat-rice - - - 

Minor effect of crop rotation 

Increase of anaerobes and 

diversity with rice cultivation 

Zhao et al., 

2014b 

Irrigated-upland (category II)      

multiannual Rice-soybean 
Methanogens decreases in 

rotational fields 

Composition changes: 

Some Methanosarcinales 

negatively affected 

- - 
Liu et al., 

2015 

biannual Rice-wheat 
Constant numbers of 

methanogens in rotation 
- - - 

Asakawa and 

Hayano, 1995 

biannual Rice-wheat - - - 
Shift in community 

Increase of anaerobes with rice  

Zhao et al., 

2014a 

biannual Rice-wheat - 
Composition was 

unaffected by rotation 
- - 

Watanabe et 

al., 2006 

biannual Rice-wheat 

Similar numbers of 

resident and higher active 

during rice cultivation  

Methanogenic 

community differed on 

species level 

- - 
Watanabe et 

al., 2009 

biannual Rice-maize 

Decrease of resident 

archaea with maize 

cultivation 

More Thaumarchaeota 

less Euryarchaeota in 

rotational fields 

Decrease of resident 

bacteria with maize 

cultivation 

Minor changes in bacterial 

community composition 
Chapter 3, 4 

triannual Rice-maize-rice - - - 
Diversity and composition 

differed from  rice fields 

Xuan et al., 

2012 

triannual 
Rice-mungbean-

rice 
- - - 

Diversity and composition 

differed from rice fields 

Xuan et al., 

2012 

Biannual: two seasons per year, mainly winter (upland crop) and sommer (irrigated crop); triannual: three seasons per year; multiannual: only one crop per year, then change with 

rotational crop; -: not investigated 
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5.3 Increased rRNA levels - a potential stress response? 

 In this thesis resident and active communities of bacteria and archaea were studied by 

monitoring the abundance (qPCR) and composition (454 pyrosequencing) targeting the 

16S rDNA respectively 16S rRNA. Here, the active community members were defined by 

their ribosomal RNA, since the number of ribosomes is considered to reflect activity (e.g. 

Egert et al., 2011.). However, it remains unknown whether the microbes with increased 

numbers of ribosomes really express a higher level of activity. Recently, the detection of 

rRNA and its implications were critically illuminated (Blazewicz et al., 2013). Here, during 

drainage of Philippine rice field soil an increased RNA/DNA ratios were observed for both, 

bacteria and archaea, in comparison to a flooded rice field (Chapter 3). The abundance of 

the 16S rDNA decreased whereas the abundance of ribosomal RNA was unaltered indicating 

the maintenance of a high level of ribosomal RNA. This phenomenon was interpreted as 

stress response to the drainage and as preparedness for activity when conditions improve. 

Supporting similar increased ratios of rRNA/rDNA have also been observed in non-flooded 

Japanese rice fields (Watanabe et al., 2007). Contrary, decreasing rRNA levels with 

drainage, were reported for a Japanese rice field (Itoh et al., 2013). It has been already 

discussed that the increased RNA/DNA ratio can be interpreted as an enhanced activity since 

the microbes possibly were protected in anaerobic microniches along with easily available 

nutrients and/or increased temperature (Chapter 3).   

 In the following dry season increased RNA/DNA ratios were observed for members 

of the archaeal community (Chapter 4). Again, these increased ratios were found under 

unfavourable conditions i.e. for the strict anaerobic methanogens under drainage during 

maize cultivation. This finding supports the suggestion that the increase of ribosomal RNA 

may be a stress reaction. Indeed it has been shown that dormant cells can contain more 

rRNA than vegetative cells (Sukenik et al., 2012). Non-dormant pure cultures retained 

ribosome levels greater than current synthesis requirements (Koch 1971, Alton and Koch, 

1974; Flärdh et al., 1992) indicating better adaption to changing conditions by enabling the 

shift of metabolic functions if needed (Blazewicz et al., 2013). Recently, the maintenance of 

16 rRNA levels was observed for methanotroph pure cultures under extended periods of 

starvation (Brandt et al., in preparation). Further, ammonia-oxidizers showed unaltered 
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ribosome abundance with starvation (Morgenroth et al., 2000) or inhibition (Schmid et al., 

2000; Wagner et al., 1995).  

 Supporting our hypothesis that retained or even increased ribosome abundance under 

starvation/stress serves as preparedness for improving conditions it was described that 

mRNAs are maintained in the cell by revealing extended half life times. The global mRNA 

half-life in bacterial and archaeal pure cultures ranges between 5-10 minutes (Hambraeus et 

al., 2003; Selinger et al., 2003; Andersson et al., 2006), however some mRNAs have half-

lives of more than 15 minutes (Hambraeus et al., 2003; Brandt et al., in preparation). In 

Lactococcus lactis the stability of most mRNAs increased with decreasing growth rate 

(Dressaire et al., 2013). Investigating transcripts of functional marker genes coding for 

enzymes important for the metabolism under starvation or stress conditions revealed 

interesting patterns. For instance, a basal pool of pmoA mRNA, encoding a subunit of the 

methane monooxygenase, was maintained in methanotrophs under starvation (Brandt et al., 

in preparation). Further, incubating Philippine rice field soil under drained conditions also 

resulted in a decrease of mcrA mRNA level during the first 48 h, which was then stabilized 

for more than 60 days (Breidenbach et al., in preparation; data not shown). Together, the 

ability to maintain basal levels of mRNA under unfavourable conditions in turn indicates the 

need for maintaining high amounts of ribosomes as sites of biological protein synthesis.  

 In conclusion, the maintenance of high numbers of ribosomes under drained 

conditions may function as stress response and potential preparedness for improving 

conditions as it enables spontaneous shifts in metabolic functions by providing immediate 

protein synthesis potential.     
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5.4 Outlook 

 In this thesis we provided evidence that the rice plants are able to influence the 

microbial community in the soil surrounding the roots. In a greenhouse experiment we were 

able to identify bacterial lineages which were stimulated in the presence of the rice plant 

(Chapter 2). Further research is needed to directly identify the microbes which assimilate 

the carbon compounds provided by the plant. Several stable isotope tracer studies were 

already successful indentifying bacterial and archaeal lineages assimilating these carbon 

compounds (Lu and Conrad, 2006; Zhu et al., 2014; Hernández et al., 2015). However, these 

studies only investigated one particular time point during plant growth. Therefore stable 

isotope tracers experiments following the growth stages are still missing. Further, dedicated 

analysis of the active microbes in the rhizosphere can be conducted. Methods such as 

metatranscriptomics and metaproteomics allow the detection of the active microbes by 

tracking their total RNA and the proteins. Another aspect to follow may be the analysis of 

the compounds excreted by the rice plants. If these were identified, experiments using stable 

isotope or radioactive labeled replicates of these compounds could be conducted. Incubation 

of labeled compounds with rice field soil enables the identification of the microorganisms 

involved in their degradation. Lastly, the influence of several microbial lineages on the plant 

can be investigated to identify plant growth promoting lineages. Therefore, more 

sophisticated experiments with plants growing in soil mimicking material under addition of 

several defined microbial communities are needed. These experiments also have the 

potential to indentify further microbe-plant interactions.  

 The second part of this thesis concentrated on the impact of changes in field 

management such as crop rotation on the microbial community in rice field soil. We showed 

that the introduction of maize plants cultivated as upland crop into a flooded rice ecosystem 

resulted in minor short term (Chapter 3) and strong long term effects (Chapter 4). The 

main effect of the crop rotation was found in the archaeal community as it shifted from 

mainly anaerobic methanogens to aerobic Thaumarchaeota. Contrary, many other studies 

showed that the archaeal community is relatively stable during crop rotations. To our best 

knowledge this thesis is the first investigation of a crop rotation from the primary 

introduction of the unfamiliar plant and upland cultivation to the soil. Equally to previous 
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studies we anticipated that the community in the Philippine soil will also reveal such 

stability after adaption to the stress of crop rotation, which may last for several seasons. To 

prove this, long term experiments (several years) monitoring the crop rotational at the field 

site in the Philippines are needed. Within the multidisciplinary research project ‖Introduction 

of non-flooded crops in rice-dominated landscapes and its impact on carbon, nitrogen and 

water cycles (ICON)‖ we will be able to connect the gained knowledge in soil microbiology 

with measured nutrient fluxes at the field site. It is of high importance to connect processes 

with microbial activity such as transcription or protein assembling. New techniques such as 

single-cell Raman spectroscopy in combination with stable isotope probing offer culture-

independent investigations of genetic functions and physiology of unculturable 

microorganisms in an ecosystem (Li et al., 2014). In this thesis we reported relatively high 

numbers of archaeal lineages taxonomically assigned as GOM Arc I. We speculated that 

these were actually ANME-2d species capable of anaerobic methane oxidation. One possibly 

approach to test this hypothesis would be to spot these archaea with specific fluorescence in 

situ hybridization (FISH) probes and to investigate their genetic functions and physiology in 

the soil using Raman. However, more classical approaches such as enrichment under defined 

conditions aiming for pure cultures of these species may also serve this purpose. Progress in 

the identification of anaerobic methane oxidizers may further help identifying the 

importance of this mechanism on field scale. The techniques mentioned above may also 

serve to prove our hypothesis that the increased number of ribosomes per cell serves as stress 

response. Therefore an experiment incubating Philippine rice field soil under drainage and 

rewetting stress might be conducted. 

 On a more global scale it is important to follow the practices used by farmers in the 

rice fields to reduce water consumption and mitigate CH4 emissions. Understanding the 

mechanisms underlying the effects resulting from these practices is highly significant. 

Besides the crop rotation systems a catalog of water reducing techniques is implemented 

already in the daily routine such as intermittent drainage, mid-season drainage and alternate 

wetting and drying. Besides the changes in water levels soil amendments (e.g. 

phosphogypsum, silicate fertilizer) can further mitigate greenhouse gas emissions and 

improve rice yields (Richards and Sander, 2014). These techniques are suggested in 
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implementation guidance for policymakers and investors. However, the underlying processes 

are not fully understood and further research is needed.   
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