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Zusammenfassung 

Es war das Ziel dieser Arbeit, neue Phthalocyanine und Pyrazinoporphyrazine mit 

Hauptgruppenelementen und Übergangsmetallen als Zentralatom zu synthetisieren. Die 

konformative Starrheit und sterische Hinderung ihrer peripher angeordneten 

Cyclohexen-Ringe führen zu einem tendenziell verringerten Aggregationsausmaß und 

erhöhen somit die Löslichkeit dieser 42 π – Hückel aromatischen Systeme ohne ihre 

Tendenz zur Bildung kristalliner Phasen zu beeinträchtigen. Bei Zentralmetallen mit 

einem Oxidationszustand > II wurde untersucht, ob anionische axiale Liganden Lax am 

Metallzentrum eingebracht werden können. Die optischen Eigenschaften dieser 

Chromophore wurden untersucht. Zusätzlich zu ihrer hohen Löslichkeit konnten einige 

der synthetisierten Chromophore sublimiert werden. Phthalocyanine und verwandte 

Verbindungen sind interessante Materialien für optoelektronische Anwendungen. Daher 

wird ein Überblick über eine Studie der elektronischen HOMO und LUMO Anpassung 

und Kopplung dieser neuen Chromophore an Heterogrenzflächen gegeben. 

 

Die Synthese von vier substituierten Phthalonitrilen und Pyrazin-Dinitrilen als 

chromophore Bausteine wird diskutiert. 

 

Während CatPzDN* nicht tetramerisiert, ist der Nutzen von PzDn# stark begrenzt durch 

die geringen Ausbeuten und geringe Löslichkeit seiner Komplexe. Die Verwendung von 

PDN* und PzDN* als Vorstufen führte dagegen zur Bildung sehr gut löslicher 

Makrozyklen, die durch 1H-NMR- und manchmal durch 13C-NMR-Spektroskopie 

analysiert werden konnten. Darüber hinaus erleichtert die Isomerenreinheit der 

Chromophore ihre Kristallisierung und die Analyse ihrer Kristallstrukturen. 

3d Metallkomplexe 

Mit Ausnahme von Scandium wurden Pc*-/Ppz*-Komplexe mit allen 3d-Elementen 

hergestellt: 
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Bei Pc*- und Ppz*-Komplexen mit Chrom und Eisen konnte das Metallzentrum entweder 

mit der Oxidationsstufe II oder III eingefügt werden. Ausgenommen von [Pc*Fe] und 

[Pc*FeCl] sind alle anderen 3d-Metallkomplexe sehr luft- und lichtstabil. Die 

metallfreien Liganden (Pc*H2 und Ppz*H2) sowie die Kupferkomplexe ([Pc*Cu] und 

[Ppz*Cu]) konnten ohne Zersetzung sublimiert werden. Die Metallkomplexe wurden 

vollständig charakterisiert und von den 3d-Metallkomplexen wurden die molekularen 

und die Gitterstrukturen von sechs Chromophoren bestimmt. Repräsentative Molekül- 

und Gitter-Strukturen werden unten gezeigt:  

 

 

 

 

[Pc*Cu] [Ppz*VO(OH2)] [Ppz*MnCl] 

Gitter-Strukturen                      [Pc*Co]    [Ppz*VO(OH2)] 
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Während [Pc*VO] Wasser nicht koordiniert, stellte sich heraus, dass das korrespondierende 

[Ppz*VO] einen Aqualiganden in einem oktaedrisch konfigurierten Komplex koordiniert. 

Dies resultiert aus der geringeren Lewis-Säurestärke des Pc*-Komplexes verglichen mit der 

des Ppz*-Gegenstücks. Um zwischen dem d1-Komplex [Ppz*VO(OH2)] und dem d0-Komplex 

[Ppz*VO(OH)] zu unterscheiden, wurden die paramagnetischen Eigenschaften des 

Komplexes durch SQUID-Untersuchungen bestätigt, und es zeigte sich, dass die magnetische 

Suszeptibilität des Komplexes temperaturabhängig ist. 

    

Wegen des größeren HOMO-LUMO 

Abstands bei Ppz*-Komplexen 

verglichen mit den Pc*-Gegenstücken 

zeigten die Pc*-Komplexe rot 

verschobene Q-Banden. Die Q-

Bandenergien der 3d-Metallkomplexe 

folgen nahezu dem Trend Mn > Ti ≈ V > 

Cr > Zn ≈ Cu > Co ≈ Ni ≈ Fe. Die Lagen 

der Q-Absorptionsbanden bei Pc*/Ppz* 

mit Cr und Fe werden nicht durch die 

Metalloxidationsstufe beeinflusst. Jedoch 

wird eine breite, schwache Bande, die in 

den Spektren von [Pc*FeCl] und 

[Ppz*FeCl] bei 878 nm beobachtet wurde 

und Ladungs-transferübergängen von 

alu(π) oder a2u(π) auf eg(dπ*) bei high-spin 

Eisen (III)-Komplexen zugerechnet wird, 

dazu verwendet zwischen, den Fe(II)- und 

den Fe(III)-Komplexen zu unterscheiden.   
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Komplexe von Hauptgruppenelementen (Gruppe 13 & 14) 

Die Pc*-/Ppz*-Komplexe der Gruppe-13- (Al, Ga und In) und Gruppe-14-Elemente (Si 

und Ge) wurden ebenfalls hergestellt und vollständig charakterisiert. Lösungen von 

[Pc*InCl] sind lichtempfindlich und zerfallen bei Licht schnell, während die anderen 

Komplexe eine hohe Stabilität aufweisen.  

 

Bei Gruppe-13 und weiterem Vorrücken zu schwereren Atomen (Al⇾Ga⇾In) wurde 

eine Rotverschiebung der Q-Bande beobachtet; dies könnte der geringeren Lewis-

Säurestärke der Gruppe-13-Elemente in dieser Sequenz zugeschrieben werden. Jedoch 

wird im Falle von Si- und Ge-Komplexen ein gegenteiliger Trend beobachtet, d. h. die Q-

Bande von [Ppz*Ge(OH)2] zeigt eine Blauverschiebung verglichen mit der von 

[Ppz*SiCl2]. Es wird angenommen, dass verschiedene strukturelle Konfigurationen der 

beiden Komplexe für den umgekehrten Trend verantwortlich sind: Chemisch nicht 

äquivalente Methyl- und Methylenprotonen wurden im 1H-NMR-Spektrum von cis-

[Ppz*Ge(OH)2] beobachtet, was auf einen Komplex mit einem stärker verzerrten π-

System hinweist, während [Ppz*SiCl2] äquivalente Protonen (1a/b und 2a/b) in 

Übereinstimmung mit einem trans-Komplex mit einem absolut planaren aromatischen 

System zeigt. 
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Die M-Cl Bindungen bei [Pc*AlCl]- und [Pc*GaCl]-Komplexen stellten sich als 

reaktionsfreudiger als die der Ppz*-Gegenstücke heraus. Während APCI+-MS-Messungen 

von [Ppz*AlCl] und [Ppz*GaCl] aus THF-Lösungen die erwarteten Molkülionen [MH]+ 

zeigten, wiesen die zugehörigen [Pc*AlCl]- und [Pc*GaCl]-Verbindungen Pseudo-

Molekülionen [PcM(thf)]+ auf. Diese Spezies wurden möglicherweise während des 

Ionisationsprozesses gebildet.  

Die Funktionalisierung der  drei- und vierwertigen Metallkomplexe wurde durchgeführt. 

Wegen der leichten Abbaubarkeit des Ppz*-Gerüsts zerstörten Reaktionen mit 

Reduktionsmitteln wie beispielsweise Kaliumgraphit das Ringsystem. Des Weiteren 

zersetzen sich die Ppz*-Chromophore sehr schnell in Anwesenheit von Organolithium-

Reagenzien oder in refluxierenden polaren aprotischen Lösungsmitteln wie z. B. Aceton 

und THF. Jedoch sind Ppz*-Lösungen ziemlich stabil in unpolaren Lösungsmitteln wie 

beispielsweise Toluol und Chloroform, sogar in Anwesenheit von Licht und bei erhöhten 

Temperaturen. Andererseits sind Pc*-Komplexe stabiler gegenüber nukleophilen oder 

reduzierenden Reagenzien.  

Die interessanten Chromophore [Pc*AlF] und 

[Ppz*AlF] wurden aus den analogen Chloro-

Komplexen in refluxierenden wässrigen KF-

Lösungen erzeugt . Wegen der starken Metall-

Fluor-Bindung erwarten wir, dass diese 

Chromophore bei geordneter Anbringung an 

einer Metall-Halbleiter-Schnittstelle die  

Exzitonendissoziation fördern könnten und es 

damit erlauben würden, die 

Ladungstransferdynamiken am Heteroübergang 

des Halbleiters zu untersuchen.  

Es wurden auch Versuche unternommen, axiale Amido-, Alkyl- und Phenyl-Al/Ga-

Komplexe von Pc* und Ppz* unter Verwendung von Lithium- oder Grignard-Reagenzien 

herzustellen.  Generell wurden die axialen n-Alkyl (Methyl, Butyl und Hexyl) und Phenyl- 

Gallium Phthalocyanine, [Pc*GaR] erfolgreich erhalten. Die elektronischen Spektren 
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dieser Komplexe wiesen nur eine sehr geringe Blauverschiebung von 2 nm des Q-Bande 

bezüglich [Pc*GaCl] auf. 

 

 

 

 

 

 

 

 

Fluoreszenzspektren 

Die Ppz*-Komplexe zeigen eine starke 

Fluoreszenz, die sogar mit bloßem 

Auge beobachtet werden kann. Die 

Fluoreszenzspektren einiger Ppz*-

Komplexe ([Ppz*TiO], [Ppz*VO], 

[Ppz*CrCl], [Ppz*AlCl], [Ppz*GaCl] and 

[Ppz*InCl]) wurden gemessen. Die 

Stokes-Verschiebung wurde für jeden 

Komplex bestimmt. Die kleinste 

Verschiebung wurde bei  [Ppz*TiO] ≈ 

2 nm gemessen, die größte 

Verschiebung wurde bei [Ppz*VO] ≈ 

13 nm beobachtet.  

 

Zyklische Voltammetrie 

Es wurden zyklische Voltammogramme der Pc*/Ppz*-Komplexe gemessen. Die 

Redoxprozesse können am Liganden und am Metallzentrum lokalisiert werden.  Die 

Reduktion des Liganden ([M(II)Pc(−2)] + e ⇔ [M(II)Pc(−3)]−) wird mit der Position des 

LUMOs in Verbindung gebracht, während die Oxidation des Liganden (M(II)Pc(−2) ⇔ 

[(M(II)Pc(−1)]− +e) mit der Position des HOMOs in Verbindung gebracht wird. Es ist 

möglich, zwei aufeinander folgende Ein-Elektronen-Oxidationen des Pc-Rings zu 

beobachten, die eventuell der Entnahme von Elektronen aus dem a1u Orbital zugeschrieben 

werden können, weiterhin vier aufeinander folgende Ein-Elektronen-Reduktionen in die 

beiden eg Orbitale. Falls Metallorbitale mit Energien zwischen dem HOMO und LUMO des 
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Makrozyklus liegen, kann Oxidation oder Reduktion am Zentralmetall auftreten. Dies ist der 

Fall bei Pc*-/Ppz*-Komplexen von Cr, Ti, Mn, Co und Fe. 

Einige Metalle, wie z. B.  Ni, Cu und V stellten sich elektronisch inaktiv heraus bezogen 

auf das Potenzialfenster des Liganden. Im Allgemeinen wird Ppz* leichter reduziert 

verglichen mit dem Pc*-System, aber es ist schwieriger zu oxidieren. Daher ist innerhalb 

des gleichen Potenzialfensters die Anzahl der Reduktionsprozesse für Ppz* gleich oder 

größer der entsprechenden Anzahl für Pc*. Auch müssen ähnliche Reduktionsprozesse 

von Ppz* bei weniger negativem Potenzial stattfinden als bei Pc*. Repräsentative 

Voltammogramme von [Pc*Cu] und [Ppz*Cu] werden unten gezeigt. Der Pc*-Komplex 

wies einen Oxidations- und einen Reduktionsprozess auf, während der Ppz*-Komplex 

zwei Oxidations- und einen Reduktionsprozess zeigte. Abgesehen vom 

Oxidationsprozess von [Ppz*Cu] sind alle anderen Prozesse reversibel. Jedoch ist wegen 

der  Tendenz des Komplexes an den Platinelektroden zu adsorbieren der anodische 

Strom des Oxidationsprozesses der CuPcs gewöhnlich viel höher als der kathodische 

Strom. In diesem Fall wurde der HOMO-LUMO Abstand durch CV gemessen. Je 

elektronenreicher der Ligand ist, desto kleiner war der HOMO-LUMO Abstand: z. B. ist 

der Abstand 1.664 V für [Pc*Cu] und 1.924 V für [Ppz*Cu].      

 

Das elektrochemische Verhalten der  Pc* / 

Ppz*-Komplexe mit elektroaktiven 

Metallen ist komplizierter. So zeigt 

beispielsweise [Pc*Co] drei Oxidations- 

und einen Reduktionsübergang. Laut 

Literatur ist der Reduktionsprozess 

metallzentriert. Dagegen werden die 

Oxidationsprozesse O1, O2 und O3 den Pc2-

/Pc-, Co2+/Co3+ bzw. Pc-/Pc0 Redoxpaaren 

zugeschrieben.  

[Pc*Co] 

[Pc*Cu] 

[Ppz*Cu] 
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Zusammenfassend kann gesagt werden, dass die Bildung löslicher, isomerenreiner Pc*- 

und Ppz*-Komplexe der 3d-Metalle sowie der Gruppe-13 und Gruppe-14 Elemente 

untersucht wurde. Die Komplexe wurden in relativ hohen Ausbeuten gebildet verglichen 

mit den typischen Ausbeuten für ring-substituierte Pc-Komplex-Synthesen. Die Struktur 

von sieben Komplexen wurde bestimmt unter Verwendung von XRD-Messungen. Die 

optischen und elektrochemischen  Eigenschaften der Komplexe, die für ihre Anwendung 

in Halbleiter-Heteroübergängen wichtig sind, wurden systematisch untersucht. 

 

 

[Ppz*FeCl] 
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1 Introduction 

Phthalocyanines (Pcs) and porphyrazines (Pzs) are important dyes containing a 16-

membered aromatic macrocycle.[1-3] Structurally, Pzs are similar to naturally occuring 

porphyrins (Pors), except that methine bridges (=CH- groups) between the five 

membered pyrrole rings in the porphyrin core are replaced by nitrogen atoms (Figure 

1). In turn, Pcs are Pz chromophores with extended conjugation as four benzene rings 

are anellated to the pyrroles, thus four isoindole rings are formed. 

Pyrazinoporphyrazines (Ppzs) are also analogous to the Pcs where the four benzene 

rings of a Pc are replaced by pyrazines. Pyrazinoporphrzyines are symmetrical 

octaazaphthalocyanines: eight =CH- groups are replaced by =N- moieties. According to 

Gouterman’s model,[319] the nitrogen Pπ- electrons contribute very little to the 

conjugation, and 18 π-electrons (shown in red, Figure 1) form the shortest cyclic 

conjugation path of these compounds. However, the total delocalized π-electrons are 

twenty-six for porphyrins and porphrazines, and fourty-two for phthalocyanines and 

pyrazinoporphyrazines.  

 

 

Figure 1: Structures of porphyrin, porphyrazine, phthalocyanine and pyrazinoporphyrazine. 

The first metal free macrocycle, PcH2, was obtained in 1907 as a blue by-product in the 

production of 2-cyanobenzamide; further investigations were not conducted at this 
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time.[4] In 1927, Swiss researchers accidentally synthesized copper phthalocyanine in an 

attempted conversion of o-dibromobenzene into phthalonitrile in presence of CuCN. 

They remarked on the enormous stability of these blue complexes, but did not further 

characterize them.[5] However the macrocyclic nature of the product was only 

determined in 1934 through the work of Linstead et al.[6]  

 

1.1 Phthalocyanines 

1.1.1 Synthesis of Phthalocyanines 

According to literature, several strategies can be applied to synthesize the Pcs (Figure 

2). Generally, Pcs form upon heating phthalic acid derivatives that contain nitrogen 

functional groups via a reductive cyclotetramerization process.[3] Classical precursors 

are phthalonitriles and diiminoisoindoles. However, even phthalic acid, phthalic 

anhydride, phthalimide, o-cyanobenzamide or dibromobenzene can be used as starting 

materials as the implementation of these substances leads usually to in situ formation of 

phthalonitrile and diiminoisoindoles, which are the actual precursors for the 

cyclotetramerization process.[7]  

 

 

Figure 2: Different synthetic routes of MPcs. 

In each reaction, typically four equivalents of a phthalic acid derivative react with an 

equivalent of a metal / metal salt at temperatures above 150°C, either in melt or in a 

high boiling solvent. Addition of an ammonia source, such as urea, is often desirable as it 

promotes the in situ formation of the diiminoisoindoles. Other than the 

http://en.wikipedia.org/wiki/Serendipity
http://en.wikipedia.org/wiki/Phthalic_acid
http://en.wikipedia.org/wiki/Phthalonitrile
http://en.wikipedia.org/w/index.php?title=Diiminoisoindole&action=edit&redlink=1
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cyclotetramerization of a dinitrile, MPcs could also be prepared by metalation of the 

metal free chromophore, PcH2, or from its salts, i.e. [PcLi2] or [PcK2]. 

Christie et al.[8] studied the formation mechanism of the Pcs (Figure 3). It is assumed 

that in the first step, a negative particle (X) nucleophilically attacks the dinitrile carbon 

to form the anion (A), where X is the counter ion of the metal cation in melt or an 

alkoxide in a basic solution of a high boiling alcohol. Once A is obtained, it attacks 

another dinitrile molecule (B) to form the dimeric complex (C), which is converted in a 

further step to (D). The addition of two more dinitrile molecules follows the same 

mechanism. Structure (E) indicates that the coordination of the precursor with the metal 

template favors the subsequent cyclization to (F). By elimination of X and transfer of two 

electrons, [PcM] then results.  

 

 

Figure 3: The proposed mechanism of cyclotetramerization. 
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The required electrons are supplied by different reagents depending on the nature of the 

starting materials. Most commonly, the electrons come from the oxidation of a high 

boiling alcohol, RCH2OH ⇾ RCHO + 2H+ + 2e, under basic conditions. However, the 

electrons could also be provided by a low-valent metal precursor, e.g. TiCl3 for the 

synthesis of PcTiCl2. Additionally, electrons can also be provided by X, originating from 

the metal template MXn.  

 

1.1.2 Structural Variations of Phthalocyanines 

The class of Pcs includes a large structural diversity[3] with a manifold of variations 

possible at the metal or on the ligand. Figure 4 summarizes the possible structures 

obtainable. The most common structure type, among all the divalent metal complexes, is 

Type G. Substitution of the ring could occur at either a peripheral or at a non-peripheral 

position, and up to sixteen H-atoms can be substituted on one Pc molecule. Another 

variation possibe is for the dimeric complexes [PcM-MPc], where metal-metal bonds 

exist. Examples including molybdenum and rhenium complexes [PcM ≣ MPc][9] (M = Mo, 

Re) in which the low oxidation of the heavy metal cation is stabilized by formation of 

metal-metal quadruple bonds. 

 

 

Figure 4: Structural variations of MPcs. 

Owing to its small atomic radius, the template-cyclization of the dinitriles with boron 

(III) compounds results in formation of subphthalocyanines, Type H, containing only 

three isoindole groups.[10] On the other hand, a comparatively large atom such as 
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uranium is templating the synthesis of superphthalocyanines, which contain five 

isoindole moieties.[11] 

For the large metal cations that do not fit into the ligand central cavity, double decker 

complexes [Pc2M] (Type I, M = rare earth (III)) can be obtained, where a monoanionic 

radical (Pc·-) is present.[12] These complexes have been intensively studied because of 

their unique electrochromic property[13–16], intrinsic semiconductivity[17–21] and single-

molecule magnetism.[316] 

To obtain neutral, mononuclear high valent MPcs, at least one anionic substituent in an 

axial position has to be present (Type J). This type is best described by the widely known 

titanyl phthalocyanine [PcTiO].[22, 23] In a special position within the complexes of this 

type, the dimers [PcM-μ-X-MPc] (e.g. M = Cr, Mn; X = O), in which the axial ligand bridges 

two MPc fragments, are described.[24] Structures of MPcs with two anionic axial ligands, 

depending on steric and geometrical factors, can lead to structures of Type K or Type L, 

e.g. the complex [PcTiCl2] shows a cis-arrangement of the dichloro substituents Type 

K[25] whereas the bulky OSiPh3 groups in [PcTi(OSiPh3)2] display a trans-coordination to 

each other Type L.[26] In some cases, high-valent metal cations, such as tantalum, take up 

to four axial ligands.[27]  

 

1.1.3 Symmetrical and Asymmetrical Phthalocyanines 

Generally, when a dinitrile is involved in a reductive cyclization reaction, its structure 

has a large impact on the products formed. Depending on the substitution and the 

symmetry of the precursor, a large number of symmetrically and asymmetrically 

substituted Pcs of type G could be obtained.[3] For example, cyclization of a mono-

substituted dinitrile could possibly lead to four regioisomers of different symmetries 

(Figure 5).[28]  

 

 

Figure 5: Regioisomers of tetrasubstituted MPcs. 
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The different symmetries of the isomers affect the Pcs’ lattice structures, and thus their 

optical properties. Additionally, if any axial ligand coordinates to the metal, the 

symmetry is further reduced (Types J and K), as various enantiomers could be present 

due to their planar chirality. However, it is generally difficult, or impossible, to separate 

such isomers due to their identical molecular weight and similar physical polarities. 

If a reaction involves two different nitriles, A and B, in addition to the standard A4 and B4 

systems, other macrocycles of different symmetries might form (Figure 6).[28, 29] The 

asymmetric introduction of substituents provides several advantages, such as the 

solubility enhancement due to reduced aggregation. Furthermore, sometimes, it is 

necessary to introduce a certain number of asymmetric units into the chromophore, e.g. 

A3B systems are highly attractive materials in nonlinear optics (NLO).[30]  

 

 

Figure 6: Different AnBm Pcs. 

The separation of these systems might be achieved by column chromatography; 

however, selective synthesis of an A3B system by the ring expansion of 

subphthalocyanines by diiminoisoindoline (Figure 7) is also possible.[31] It should be 

noted that only selective methods could be used to synthesize insoluble Pcs, as 

chromatographic purification is not possible. In the case of soluble Pcs, the 

chromatographic separation of the products is often less expensive than the preparation 

and purification of the corresponding subphthalocyanine and diiminoisoindoline. 
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Figure 7: Selective synthesis of an A3B complex by ring expansion of a subphthalocyanine. 

Also, polymer support can assist to obtain an A3B system.[32] In this method, a dinitrile or 

1,3-diiminoisoindoline is anchored to a polymer support. Afterwards, a second dinitrile 

is added and allowed to react; thereby obtaining a mixture of A4 Pc and a polymer 

supported A3B Pc. After isolating the A4 system, both the polymer support and the A3B 

Pc can be obtained.  

As the chromatographic separation of the C2v and D2h isomers of the A2B2 system is 

usually not possible, selective methods were developed to prepare a particular isomer, 

e.g. Young et al.[33] showed the synthesis of substituted D2h Pcs by the reaction of 1,1,3-

trichloroisoindoline and diiminoisoindoline derivatives at a relatively low temperature 

(Figure 8). 1,1,3-Trichlorisoindolines do not tetramerize, additionally the reaction 

temperature is too low to cyclize the diiminoisoindoline. Therefore, after elimination of 

NEt3HCl, only two different units can react together leading to selective formation of the 

D2h isomer.  

 

 

Figure 8: Selective synthesis of an ABAB phthalocyanine. 

The C2v A2B2 system, due to its polarizability, is a potential candidate for NLO 

applications. Nolan et al. therefore developed a selective synthetic strategy starting from 

"Half-a phthalocyanine" (Figure 9)[34], which could be prepared from the corresponding 

phthalonitrile and LiOMe in methanol. Subsequently, it is added to an excess of a second 

dinitrile in dimethylaminoethanol in the presence of a metal salt at 60°C. The low 

reaction temperature in this case prevents the cyclotetramerization of the second 

dinitrile so that a C2v symmetrical A2B2 Pc is obtained. 
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Figure 9: Selective synthesis of an A2B2 Phthalocyanine. 

  

1.1.4 Synthetic Strategies towards axially substituted metal phthalocyanines  

Usually, cyclization of a dinitrile precursor in the presence of a divalent metal cation e.g. 

Co2+, Ni2+, Cu2+ or Zn2+, results in neutral complexes without any axial functionalities. 

However, macrocycles of high-valent metals, e.g. Ti, V, Cr, Mn, Fe, Al, Ga, In, Si or Ge, 

containing one or more axially coordinating ligands, are of particular interest, as the 

variation of the axial ligand opens the possibility to change the complex structure and, 

hence, its reactivity. 

 

 

Figure 10: Different synthetic routes to the axially functionalized Pcs. 

When M (oxidation state > II) is involved in the tetramerization reaction, an MPc with at 

least one axial ligand can be obtained (Figure 10). Additionally, the metal precursors 

could react with either a free or a deprotonated ligand to form the axially substituted 

macrocycles. Furthermore, the axially functionalized Pcs might be accessible by 

substituting an existing axial ligand or by using oxidative addition procedures.  
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1.2 Pyrazinoporphyrazine 

Pyrazinoporphyrazines (Ppzs; X=N, Figure 11) are compounds where the carbon atoms 

in the non-peripheral positions of a phthalocyanine are substituted by N-atoms, i.e. the 

positions 1,4,8,11,15,18,22 and 25 of a Pc are known as non-peripheral, or α- positions, 

while positions 2,3,9,10,16,17,23 and 24 are known as peripheral, or β- positions 

(Figure 11).[140]  

  

 

Figure 11: Potential sites for Pc (X=CH) and Ppz (X=N) substitution (numbering used for nomenclature). 

Linstead et al[49] introduced the class of Ppz compounds for the first time in 1937, just 

three years after the structural elucidation of the Pcs. These chromophores could form 

upon reductive cyclotetramerization of a pyrazinedinitrile precursor using similar 

strategies to those used for the synthesis of the Pcs; however the pyrazinedinitriles 

could be easily obtained by condensation of 1,2-diketones and diaminomaleonitrile 

(DAMN) (Figure 12). Owing to their structural similarities, both Pcs and Ppzs have 

similar optical properties and comparable stability. 

 

 

Figure 12: Synthesis of pyrazinoporphyrazines (Ppzs). 

Synthesis of different dinitrile templates starting from 1,2-diketones allows for the 

introduction of different substituents by a simple synthetic approach, as a large number 

of 1,2-diketo compounds are commercially available or intensively studied.[50-52] The 
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condensation usually works in good yield, however, this reaction is acid catalyzed since 

a catalytic amount of an acid e.g. p-toluenesulphonic acid, must be added.[49]  

Compared to the phthalonitriles, pyrazinenitriles are more electron-deficient as a result 

of the substitution of carbon atoms with nitrogen atoms in the non-peripheral positions. 

For this reason, the cyclization is enhanced, and hence reductive cyclotetrameritzation 

of the pyrazinenitriles can occur at temperatures above 150 °C, even in absence of any 

metal template or ammonia source.[53]  

Also, in comparison to the Pc aromatic system, and due to the large contribution of the 

atomic orbitals to the HOMO at the positions where the N-atoms are located[55], the 

energy of the HOMO level is influenced, while the energy of the LUMO is remarkably 

unaffected.[54] This leads to a larger HOMO-LUMO gap and a blue shift of 60-70 nm, of 

the Q band is observed.  

Pcs and Ppzs posses comparable properties and have been almost examined in terms of 

similar applications. It is worthwhile to mention that Ppzs could be used as optical 

limiters (OL), since they have a higher efficiency compared to that obtained from the Pc 

homologues. Moreover, fluorescence of a Ppz solution shifts hypsochromically with 

respect to an analogous Pc, and its orange-red color could usually be seen with the eye. 

Furthermore, Ppzs were intensively studied regarding the singlet oxygen production.[57] 

However, Ppz complexes are less favored for the use in solar cells due to its energetically 

lower HOMO in comparison to their Pc counterparts, as the electron poor ligand can 

scavenge the charge carriers by the trapping effect, and thus the charge separation 

becomes more difficult.[56]  

 

1.3 Properties of Phthalocyanines 

The Pcs are known for their unique optical properties, as well as their chemical and 

thermal stabilities, e.g. the unsubstituted Pcs decompose at temperatures above 

600°C[3], and are relatively stable against acids and alkalis. Thus they could be possibly 

purified by sublimation, or by crystallization from a concentrated sulfuric acid 

solution.[1] Owing to their geometry and their planar π–system, the Pcs experience 

strong π- π interaction, resulting in practical insolubility in the most common organic 

solvents. However, the solubility is increased by means of bulky substituents attached to 

the Pc core.  

Owing to the aromatic, 18 π - electron system, Pcs are extensively used as pigments and 

in different areas of optoelectronics. The allowed π → π* transitions, which are 

responsible for the intense color of the chromophores, lie partly in the visible range.[28, 

35] It was reported[1] the unsubstituted Pcs display Q band transitions in the range of 

650-700 nm, corresponding to the HOMO- LUMO gap of the chromophore, while the 

higher energy B-band is observed at 200-350 nm.[1]  
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Literature[130-132] counted on modeling and experimental evaluation of the electronic 

properties of Pcs and MPcs. Gouterman’s model describes the origin of the main spectral 

features of the Pcs in terms of four orbitals, HOMO-1, HOMO, LUMO, and LUMO+1.[133, 134] 

In Pcs, due to the large energy gap between the 1a1u and 1a2u orbitals resulting from the 

presence of aza bridges, the Q and B bands appear in different regions.[135, 136] Generally, 

the Q and B bands are assigned respectively to the a1u(π) to eg(π*) and a2u(π) or b1u(π) 

to eg(π*) transitions. For metal free Pcs, Q band splitting is indicative of D2h symmetry 

with lifted orbital degeneracy, while the symmetry of MPcs is generally D4h.[137] Owing to 

the ligand cavity size, accommodation of some metals may result in doming or ring 

expansion of the macrocycle, causing distortion of the symmetry of the molecule.[138] 

Additionally, mixing the transition metal d-orbitals and the π-orbitals of the 

chromophore may change the electronic features of the complex. The metal macrocycle 

orbital interaction has been analyzed in detail by Rosa et al.[139]  

 

Fluorescence of Phthalocyanines  

Fluorescence spectroscopy has been considered as a significant achievement over the 

past years, as it has permitted the exploration of new avenues in molecular dynamics.[36-

38] As a result of its specificity, high sensitivity to small modifications in the structural 

dynamics, and the ability to detect very low concentrations, it has become a primary 

analytical tool in the disciplines of chemistry and biochemistry.[37, 39, 40] Stokes and 

Förster demonstrated the usefulness of fluorescence spectroscopy in important 

applications, including cell identification and detection for DNA sequencing.[41-45] 

Fluorescence is a short-lived type of luminescence created by electromagnetic 

excitation. It is generated when a substance absorbs light energy at a short wavelength 

and then emits at a longer one as it relaxes to the ground state.[36, 46] The span of time 

between the absorption and emission processes is relatively brief, ≈ 10-9 to 10-8 sec. 

However, the emission rate depends on the nature of the excited state. To understand 

the fate of an excited molecule, a general Jablonski diagram is shown (Figure 13).  

The electronic singlet states are S0, S1, and S2, in which all electrons are paired 

(multiplicity = 1), while the triplet states are those in which two electrons have parallel 

spins. Also, each electronic state is subdivided into vibrational states represented by 

horizontal lines. First, the molecule occupies the lowest energy singlet state S0. After 

absorption of a photon, the molecule is excited to occupy a vibrational level of an excited 

singlet state (e.g. S2); then the excited molecule partially loses some of its absorbed 

energy, creating a relaxed singlet state S1. This process, called internal conversion, takes 

place in about 10-11 sec. Fluorescence emission occurs when the molecule further 

relaxes to the ground state, S0, from the lowest excited singlet state S1, radiating energy 

in the form of light.[37,46,47] The emission process lasts approximately 10-8 sec. Also, when 
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a molecule is in the excited singlet state, an electron might change its spin, resulting in a 

transfer of the excited molecule to an excited triplet state through intersystem 

crossing.[37] The molecule then rapidly relaxes to the lowest vibrational level of the first 

excited triplet state, then to the ground state and emission is observed in the form of 

phosphorescence, which occurs in 10-4 to 10 s. In addition to fluorescence and 

phosphorescence, other non-radiative pathways, including intramolecular charge 

transfer and intermolecular processes, such as electron transfer and excimer formation, 

dimers associated with excited electronic states, could occur.[48]  

 

 

Figure 13: Simple diagram showing the excitation of a molecule and the relaxation process of the excited 
molecule. 

 

1.4 Applications of Phthalocyanines  

Generally, Pcs have been utilized in many fields, including: gas sensors[58], 

semiconducting materials[59], photovoltaic cells[60, 61], liquid crystals[62, 63], optical 

limiting devices[64-66], molecular electronics[67], non-linear optics[68], fibrous 

assemblies[69] and photodynamic therapy[70-73]. A brief overview on the use of different 

Pcs in selected applications is given below.  

 

1.4.1 Photosensitizers in PDT 

Photodynamic therapy (PDT) is a rapidly advancing treatment modality with diverse 

clinical applications. It involves exposure of tissues to a photosensitizing drug, followed 

by irradiation with light of an appropriate wavelength.[74,75] In the presence of molecular 

oxygen, triplet oxygen is generated from the introduced light energy. Transfer of this 

energy allows for the generation of singlet oxygen. This is termed the Type II redox 

reaction. Singlet oxygen is extremely toxic, and unlike other reactive species, has a 
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relatively long half-life time being measured in microseconds.[76] Current 

photosensitizers are designed to achieve high activity of this pathway with the 

generation of singlet oxygen. Therefore, singlet oxygen generation is regarded as the 

most important characteristic of a successful sensitizer. An activated sensitizer may also 

generate a Type I redox reaction. Here, rather than the triplet oxygen state being 

created, the energy transfer from the sensitizer may generate other reactive oxygen 

species (ROS). Should water be the target, this will create toxic hydroxyl radicals or 

superoxide ions. Potentially, a Type III, oxygen independent pathway may be followed. 

Here, the activated sensitizer directly destroys the target.[76]  

Photofrin®, the first US FDA-approved porphyrin photosensitizer, is administered 

intravenously, prior to irradiation of the tumor or pathologic tissue with 633 nm light. 

Because Photofrin® remains in tissues for up to several weeks, patients are advised to 

avoid natural sunlight or any intense artificial light to minimize the likelihood of 

developing photosensitive side reactions.[77, 78] Occasionally, side reactions may occur in 

patients who have compliance issues. 

Another example, Photosens® (Sulfonated AlPc), offered excellent clinical response and 

fluorescence in naturally occurring veterinary tumors.[79] It has had extensive use for 

both tumors and infections.[80, 81] This photosensitizer can be formulated for intravenous 

use, direct lesion injection and aerosol formulation. Treatment for early stage and 

recurrent lip, pharynx, larynx and tongue lesions was successful, as well as, for primary 

lung, recurrent lung and esophageal tumors.[82—85] Also, a SiPc photosensitizer has 

shown minimal toxicity in phase I/II clinical studies, with both intravenous and topical 

application.[86]   

Moreover, resulting from their physiological applications, Pcs and Ppzs with Zn, Mg, Al 

or Ga metal centers are extensively studied.[57] The fluorescence quantum yield of these 

complexes is about 0.2, while the quantum yield of the singlet oxygen production is 

about 0.7.[57, 87, 88] 

  

1.4.2 Applications in Bioimaging  

Pcs, due to their hydrophobicity, tend to aggregate in aqueous medium. To be used for 

bioimaging applications, they have to possess a reactive group for bioconjugation 

purposes. La Jolla Blue (Figure 14) was the first commercially available Pc dye having 

two axial polyethylene glycol moieties and two carboxylic acid groups free for 

bioconjugation.[141] The glycol moieties make the chromophore water soluble, and thus 

attractive as a biomarker. Therefore, different biomolecules, e.g. peptides and proteins, 

can bind to the dyes in bioimaging and bioanalytical fields.[142-145] Renzoni et al.[146], also 

synthesized MPcs containing both water soluble groups and another reactive group 
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bound to the benzo-ring (Figure 14). If the copper in this structure is replaced by silicon, 

this allows the chromophore to bear two axial ligands. 

 

 

Figure 14: Structure of a) La Jolla Blue dye and b) Copper sulfophthalocyanine dye. 

The conjugation of Pcs with peptides of specific receptors or antibodies that are 

overexpressed in cancer cells, such as the human epidermal growth factor receptor 

(EGFR), is a remarkable strategy for increasing their biological efficiency.[147-151] EGFR is 

over-expressed in various cancers, including small cancers (< 5 mm) and the flat, 

dysplastic and aberrant crypt foci, which are believed to precede the development of 

cancer.[152-154] To selectively deliver the cytotoxic drugs to the tumor sites[155-161], two 

small peptides[160-161] have proved attractive as a result of their availability, low 

immunogenicity, ease of conjugation to other molecules and a relatively superior EGFR-

targeting ability. Pc-peptide conjugates via various linkers for colorectal cancer (CRC) 

diagnostic applications have been evaluated in vitro and in vivo[162]. Polyethylene glycols 

have also been used as delivery vehicles[163,164], and may be covalently bound[165,166] to 

the Pcs to improve the delivery to specific target tissues. Moreover, pegylation of 

photosensitizers enhances their water solubility, serum life, tumor accumulation and 

also reduces their uptake by the reticuloendothelial system.[167,168] Investigations were 

carried out to identify potential ZnPcs that serve as photosensitizers with enhanced 

biological selectivity and effectiveness.  
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1.4.3 Nonlinear Optics 

Generally, optical limiting (OL) is a nonlinear effect consisting of a decrease in the 

sample transmittance under high intensity or fluence illumination. Ideally the 

transmitted intensity should remain constant above a certain illumination threshold. 

Consequently, the initial constant transmittance should linearly decrease to zero above 

the threshold. This effect finds useful applications for sensor protection, including the 

human eye. 

Optical limiting by Pcs was first reported by Coulter et al.[89] as they demonstrated the 

optical limiting effect of [PcAlCl]. Subsequently, a large number of other Pcs has been 

investigated, e.g. [PcInCl] and [t-Bu4PcIn(p-TMP)], where p-TMP is p-

(trifluoromethyl)phenyl).[90] Perry et al.[64] prepared a practical optical limiting device 

using a tetra-substituted chloro-InPc in an inhomogeneous distribution along the beam 

path. This device was able to attenuate nanosecond irradiation by factors of up to 540. 

It has been suggested[92] that asymmetrically substituted Pcs with suitable 

donor/acceptor groups capable of displaying efficient intramolecular charge transfer 

should exhibit interesting NLO responses. Thus, some research has been carried out to 

develop non-centrosymmetric, peripherally susbstituted Pcs, e.g. A2B2 and A3B systems. 

By applying an external electric field, a polarization can be induced, which alters the 

optical properties of the material as a function of the field strength. 

Most of the OL experiments on Pcs are discussed with respect to Figure 15. Under 

illumination, at around 550 nm, a photon is absorbed at the ground state level So. 

Therefore the molecule is excited to a higher vibrational level of a singlet electronic 

excited state S1 (corresponding to the Q-band). This state rapidly decays via ISC into a 

lower triplet energy level, T1 state, that may absorb another photon so that the system is 

excited to a higher level, T2. Moreover, transitions from S1 to a higher singlet state S2, are 

also possible. Generally, short pulse processes are dominated by singlet-singlet 

absorption before a significant population of the triplet has developed. In this case, if the 

cross section of the S1-S2 transition is larger than that of So-S1, reverse saturation 

behavior occurs. Under these conditions, the simplest three levels, So, S1 and S2, can be 

used to interpret the electronic dynamics of the system. On the other hand, the 

processes occurring under long pulse illumination are dominated by T1-T2 transitions. If 

this cross-section is larger than that of So-S1 transition, then optical limiting also takes 

place. 

In general, among the transition metal Pcs, VPcs display the fastest intersystem crossing, 

hence they are the best suited to OL applications.[55] Furthermore, Ppzs generally show 

enhanced OL properties compared to the analogous Pcs.[55]  
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Figure 15: Schematic diagram showing the levels and relevant transitions for optical limiting action. 

 

1.4.4 Applications as Optical Semiconducting Materials 

Unsubstituted MPcs are classical p-type, or hole, conductors. However, appropriate 

substitution can allow for fine tuning of the HOMO-LUMO levels.[93, 98] For example, Bao 

et al. explored a variety of MPcs as channels in n-type organic thin-film transistors 

(OTFTs).[94] It was shown that the introduction of electron withdrawing groups results 

in lowering of the LUMO level. Optimum results were obtained with a perfluorinated 

CuPc [F16CuPc], as the introduction of the fluorine atoms resulted in a 1.6 eV drop in the 

energy of the LUMO level.[98]  

Basically, the morphology of the Pc macrocycles affects their optoelectronic properties. 

To achieve good conducting properties, a special, spatial arrangement of the 

macrocycles is necessary.[99] Assuming a suitable distance between confacially arranged 

planar macrocycles possessing an extended π-electron system, electron delocalization 

by π-π overlap of the perpendicular orbitals in the stacked arrangement is possible.   

Intrinsically, electrically conductive MPcs could be prepared via bridging of the central 

metals with an axial ligand;[99] for example, the fluoro bridged MPcs [PcMF]n with Al, Ga 

or Cr.[95-97] Generally, all the known [PcMF]n complexes can be doped with iodine, and 

their conductivities rise with an increasing iodine content. However the highest 

conductivity observed was for [(PcAlF)I3.3]n (σRT = 5 S/cm, activation energy Ea = 0.017 

eV).[99]   

 

1.4.5 Application in Solar Cells[122] 

Energy will remain one of the most important factors influencing human society in the 

21st century[100, 101] as the cost, availability and sustainability of energy have a significant 

impact on the quality of our lives and the environment. Researchers are now focusing on 

the development of renewable energies[102] generated from natural resources, such as 

sunlight, wind, rain, tides and geothermal heat. Of these, the sun has the potential to 

make the largest energy contribution; only one hour of sunshine (3.8 × 1023 kW) is 

needed to satisfy the highest human demand for energy for an entire year (1.6 × 1010 
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kW in 2005).[103-106] Solar cells, also called photovoltaics,[107] are devices designed to 

convert sunlight into electricity via the photovoltaic effect. 

In 1954, the first silicon-based solar cell was developed with an efficiency, η, of 6 %.[108] 

Nowadays, values of η ~ 20 % can be achieved.[109] For optimal functioning of a Si solar 

cell, high-purity monocrystalline silicon is required. Although silicon is regarded as the 

second most abundant element in the earth's crust,[110] the production of highly pure 

silicon starting from SiO2 is an energy consuming process, which in turn leads to a high 

cost for the production of silicon solar cells.  

 

1.4.5.1 Heterojunction Solar Cells 

In 1986, Tang developed the first bilayer heterojunction solar cell based on [PcCu] as a 

donor material and a perylene derivative PTCBI as an acceptor (Figure 16).[112] After 

excitation of the Pc dye, migration of excitons takes place, leading to charge separation 

at the interface of the bilayer heterojunction.[111, 113] Based on this principle, different 

donor and acceptor materials have been developed.[111, 114, 115]  

 

 

Figure 16: Structure of the bilayer heterojunction solar cell. 

A disadvantage of this cell is its low efficiency.[111] This is a result of the low diffusion 

length of the excitons, as the donor and the acceptor must be of sufficient thickness to 

effectively collect light. When the diffusion length is insufficient, the excitons formed can 

not diffuse to the interface, and no efficient charge separation occurs. To resolve this 

problem, bulk heterojunction solar cells have been developed, in which a blend of a 

donor and an acceptor is employed. The achieved efficiency for a [PcCu] / C60-based 

bulk heterojunction solar cell is η = 2.56 % [116], which is clearly enhanced compared to 

that achieved by Tang (η = 0.95%).[112] Nevertheless, the efficiencies are significantly 

below those achieved by Grätzel cells (η ~ 11%).  

 

1.4.5.2 Operation of Grätzel Cell  

Dye-sensitized solar cells (DSSCs), known as Grätzel cells, where invented by Grätzel 

and O’Regan.[117] As a result of their high efficiency and stability, DSSCs were the first 

organic photovoltaic products to reach the market. G24 Innovations Limited (G24i), a 
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U.K. company founded in 2006, uses DSSCs technology to manufacture and design solar 

modules. The cells are extremely lightweight and ideal for integration or embedding into 

a wide array of products, such as mobile electronic devices, tents, and building 

materials.  

A DSSC (Figure 17) is composed of a fluorine-doped tin oxide (SnO2:F, FTO) covered 

glass anode, a thin wide-band gap oxide semiconductor mesoporous film, such as TiO2, a 

dye monolayer deposited on the surface of the TiO2 layer, an electrolyte (hole transport 

material) fully covering the TiO2/dye surface and a counter electrode, e.g. platinum on 

glass for electrolyte-containing DSSCs, or a silver or gold electrode for cells using organic 

hole conducting materials.[118, 119] Under irradiation, an electron is injected from the 

excited dye into the conduction band (CB) of the oxide. The electrons migrate across the 

inorganic semiconductor nanoparticle network to the current collector (FTO). After 

traversing the electrical load, the electrons proceed to the counter electrode. The 

organic electrolyte (the hole conductor) serves to regenerate the sensitizer and 

transport the positive charges to the counter electrode, where they recombine with the 

electrons. Liquid electrolyte DSSCs, with an iodide/triiodide redox couple, are the most 

efficient organic solar cells (up to 11%) till present.[120, 121] 

 

 

Figure 17: Construction of a DSSC.[122] 

 

1.4.5.2.1 Determination of Photovoltaic Performance[122] 

In addition to the overall photon to current conversion efficiency η, the photovoltaic 

performance is determined according to other parameters, including the incident 

photon to current conversion efficiency (IPCE), the short circuit current (Isc), the open 

circuit voltage (Voc) and the fill factor (FF). 
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Incident Photon to Current Conversion Efficiency (IPCE) 

The photocurrent action spectrum of solar cells provides important information about 

the character of new materials in a device. It represents the ratio of the observed 

photocurrent divided by the incident photon flux as a function of the excitation 

wavelength, and is referred to as the incident photon to current conversion efficiency 

(IPCE). Because normally the measured photocurrent is obtained outside the solar cell 

device, IPCE can also be called as external quantum efficiency (EQE), i.e. the current 

obtained outside the photovoltaic device per incoming photon: 
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Where, I, is the photocurrent in A m-2 and P is the incident light power in W m-2, e is the 

elementary charge 1.602x10-19 columb, c is the speed of light 3 x108 m/sec. and h is 

Planck’s constant (6.626x10-34 m2kg/s). By recording the photocurrent response while 

varying the incident light wavelength, the conversion efficiency of photons to electrons 

(IPCE) can be determined.  

The IPCE value is also given by: 

coIonjxxLHEIPCE  )()( 
 

Where LHE(λ) is the light harvesting efficiency of active materials, Φinj is the charge 

injection efficiency between the active materials and ΦcoI is the charge collection 

efficiency at the external electrodes. The maximum IPCE value (IPCEmax) is a key 

parameter for describing the device and correlating its performance to the dye 

absorption, and thereby its molecular structure. The higher the IPCEmax and the broader 

the spectrum, the higher the photocurrent will be.  

 

Power Conversion Efficiency (I-V Curve) 

The photocurrent action spectrum is used to assess the ability of the solar cells to 

convert photons efficiently. To determine whether or not a solar cell has the potential to 

be commercialized, the photocurrent and photovoltage under the simulated AM 1.5 

solar light (the standard intensity of spectral irradiance used for testing) must be 

measured. A typical solar cell I-V curve is shown in Figure 18.  

 



INTRODUCTION 

20 

 

 

Figure 18: Typical I-V curve of solar cells.[122] 

The overall power conversion efficiency (PCE), η, is given by: 
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Where P(out) is the maximum output electrical power (W m-2) of the device under 

illumination, P(in) is the light intensity incident on the device (W m-2), Voc is the open 

circuit voltage and Isc is the short circuit current in A m-2. 

The parameter FF, the fill factor, is defined as 
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Where Vmpp and Impp are the maximum power point voltage and current in the I-V curve, 

respectively.  

The maximum rectangular area, given by Vmpp × Impp under the I-V curve, corresponds to 

the maximum output power of the device. An ideal device would have a rectangular 

shaped I-V curve, therefore a fill factor FF ≈ 1. The overall efficiency is an important 

parameter for evaluating the performance of the device.  

 

1.4.5.2.2 Efficient Dyes in DSSCs  

An efficient sensitizer has to fulfill several requirements including[118, 169-176]:  

 Broad and strong absorption, preferably extending from the visible to the near-

infrared region. 

 Minimal deactivation of its excited state through emission of light or heat. 

 Firm and irreversible adsorption (chemisorption) to the semiconductor surface, 

and presence of strong electronic coupling between its excited state and the 

semiconductor conduction band.  

 Chemical stability in its ground, excited and oxidized states so that the resulting 

DSSCs will be stable over many years of exposure to sunlight. 
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 Reduction potential sufficiently higher (by ∼ 150–200 mV) than that of the 

semiconductor conduction band edge (Fermi level), in order to achieve an 

effective electron injection.  Also, the oxidation potential should be sufficiently 

lower (by ∼ 200–300 mV) than the redox potential of the electron mediator 

species for rapid regeneration processes.  

 Low cost. 

 Among the Pc dyes, ZnPcs have been involved in both liquid and solid state DSSCs. 

Unfortunately, the power efficiencies achieved with the Pc based DSSCs is η < 1%. This 

poor performance has been mainly ascribed to the general tendency of Pcs to aggregate 

on the surface of the metal oxide nanocrystals[123-125, 177] and to the lack of directionality 

of the excited state of symmetrically substituted Pcs. However, these limitations could 

be countered by substitution of the Pcs with bulky groups and by introducing electron 

withdrawing carboxylic acid groups at selected positions of the Pc macrocycle, thus 

leading to an efficient electron transfer from the excited dye to the TiO2 conduction band 

by improving the electronic overlap between the LUMO of the dye and the Ti 3d orbital.  

Examples of unsymmetrical ZnPcs designed for favorable push-pull and steric effects 

have been recently reported. Although contrasting results have been described,[126] a 

promising η = 4.6 % was achieved with DSSCs based on ZnPcs having carboxylated aryl 

groups and six electron donating 2,6-diphenylphenoxy groups  (Figure 19).[127] 

To suppress aggregation and recombination, the possible benefits offered by 

unsymmetrical fluorous ZnPcs were explored, since organic compounds characterized 

by the presence of extended, saturated fluorocarbon domains can lead to self-assembled 

nanoarchitectures where a fluid like hydro- and organophobic fluorous barrier 

surrounds nonfluorinated molecular moieties.  

The two fluorous ZnPcs[128] (Figure 20) contain one or two electron withdrawing 

carboxylic moieties directly linked to a benzene unit of the Pc ring, whereas appropriate 

insulating spacers between the Pc ring and the highly electronegative CnF2n+1 groups 

were introduced to counter the inductive effect of the fluorocarbon substituents, which 

would actually counteract the pull effect of the carboxylic groups and disfavor the 

electron transfer from the photoexcited dye to the TiO2 conduction band. DFT 

calculations showed that both the mono- and the dicarboxylic ZnPc derivatives display a 

perfectly planar geometry of the aromatic macrocycle. The calculated spectrum was in 

good agreement with the experimental one and the presence of transitions, in which the 

electronic density was shifted in the proximity of the carboxylic binding groups, thereby 

guaranting favourable electronic coupling with the acceptor states of TiO2, was 

confirmed.  
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Figure 19: Strucure of some ZnPcs used in DSSC. 

The dicarboxylated dye was found to be considerably more effective than the 

monocarboxylated one, due to a combination of factors mainly resulting from the 

presence of the twin anchor groups, which allowed for an improved surface coverage, 

and thus enhanced light absorption and passivation of the surface against electron 

recapture by (I3)-.[128] 

 

 

Figure 20: Molecular Structures of fluorous ZnPcs with carboxylate anchors. 
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Although the sterically hindered fluorous chains may help in shielding the titania surface 

and the dye itself against the back recombination involving I2 or (I3)−, the existence of 

specific fluorophilic interactions preventing electron recombination is not yet 

confirmed. Nevertheless, this basic information obtained is useful for the development 

of new Pc sensitizers for DSSCs with improved photoelectrochemical properties. 

Recently, Torres et al. confirmed the importance of an appropriate number of linkers for 

achieving an efficient and stable cell operation with unsymmetrical ZnPc dyes. Indeed, 

efficiencies approaching 4% have been recorded by using Pcs functionalized with two 

carboxylic acid groups directly attached to the ring [129] as in ZnPc(COOH)2 (Figure 21), 

or  a mono carboxylic acid moiety conjugated to the Pc ring via vinyl groups (Figure 

21).[91] The improved, long term stability of the dicarboxylated species compared to 

analogous, monocarboxylated derivatives is a further indication of the improvement 

seen by a more complete and stable surface coverage limiting the amount of exposed 

TiO2 surface that could act as an active recombination center.  

 

 

Figure 21: Molecular Structures of ZnPcs achieving efficiencies of 4 % in DSSCs. 
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1.5 Motivation for phthalocyanines 

Although phthalocyanines make up a quarter of the industrial synthetic organic 

pigments[330] with a worldwide production of 80,000 tons per year (over one billion US$ 

),[331] the usefulness of the phthalocyanines is limited due to their practical insolubility. 

Pyrazinoporphrazines also have similar characteristics, but as non-sublimable materials, 

they have not been considered attractive.  

Owing to the limited solubility of the phthalocyanines and pyrazinoporphyrazines, 

reserarchers are focusing on having substituted complexes, and, although many soluble 

phthalocyanines were reported, none reported on the sublimability of these compounds. 

Thus, the aim of this work is to find alternative complexes to the unsubstituted 

phthalocyanines that are highly soluble, isomerically pure and sublimable. The targeted 

pyrazinoporphyrazines mentioned in this thesis should also have these characterstics, 

but at the same time different absolute HOMO and LUMO levels.  
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2 Results and Discussion 

The results section is subdivided into several subsections. Section 2.1 deals with 

synthesis of the organic precursors, which were building blocks for macrocyclic 

complexes. Section 2.2 represents some testing conditions for unsuccessful 

tetramerization of CatPzDN*. In section 2.3, synthetic strategies for the preparation of 

different metal phthalocyanines and pyrazinoporphyrazines (including, for example, 

metals of 3d and elements of Group 13 & Group 14) are displayed. This section also 

includes some successful and unsuccessful testing conditions for the preparation of 

axially functionalized phthalocyanines, with focus on Group 13 complexes. Section 2.4 

describes the Ppz# complexes. Section 2.5 gives a short study on the fluorescence 

spectroscopy of some complexes. In section 2.6, the electrochemistry of the Pc* and Ppz* 

complexes was studied by cyclic voltammetry.  

 

2.1 Organic building blocks 

The focus of this work was to synthesize substituted MPcs and MPpzs of different metals 

as well as to axially functionalize the trivalent and tetravalent metal complexes. Hence, 

the reactions of metal templates with different building blocks for reductive cyclization 

were studied. The dinitriles used in this work are shown in Figure 22. 

  

 

Figure 22: Structure of the dinitriles. 

Synthesis of PDN* starting from 2,5-dimethyl-2,5-hexanediol is shown in Figure 23.[189, 

190] The starting dihydroxy compound reacted with hydrochloric acid to give the 

dichloro analog. Friedel-Crafts alkylation with o-xylene formed 1,1,4,4,6,7-

hexamethyltetraline. The latter, when oxidized by potassium permanganate in aqueous 

pyridine, 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid was obtained. In turn, 

treating the acid with acetyl chloride led to formation of the corresponding anhydride. 

The imide formed upon reacting the anhydride with ammonium acetate in acetic acid. 

Stirring the product for two days in an ammonia solution led to formation of the 

diamide. This amide was finally dehydrated and converted to the dinitrile precursor 
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PDN* using phosphorous oxychloride in DMF. The overall reaction yield via these seven 

steps is ≈ 6 %.  

 

 

Figure 23: Synthesis of PDN*. 

The precursor PDN* was also accessible using different procedures (Figure 24).[314] 

Once the dichloro compound was obtained, it can react with benzene in the presence of 

AlCl3 to give 1,1,4,4-tetramethyltetraline. Afterwards, the latter compound reacted with 

bromine in the prescence of trace amounts of iodine and iron powder to afford 1,1,4,4-

tetramethyl-6,7-dibromotetraline. Finally, using CuCN, the bromo subistituents were 

exchanged with cyano groups and PDN* was formed. The overall reaction yield of these 

procedures is ≈ 21 %. 

 

 

Figure 24: Shorter route for synthesis of PDN*. 

While all the products were confirmed by 1H-NMR, a crystal structure of the 

intermediate 1,1,4,4-tetramethyl-6,7-dibromotetraline was also obtained (Figure 25). 

The compound crystallizes free of any solvent molecules as colourless plates in the 

monoclinic space group P 21/c.  

The bond lengths and angles (Table 1) fit well with the expected results. However, as no 

unique structural parameters are observed, the molecular structure is not discussed in 

detail.  
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Figure 25: Molecular structure of 1,1,4,4-tetramethyl-6,7-dibromotetraline. 

 

Table 1: Selected Bond Lengths (Å) and Angles (°) of  

                  1,1,4,4-tetramethyl-6,7-dibromotetraline. 

Bond lengths/ Å  Angles/ °  

C1-Br1 1.888(3)  C2-C1-Br1 118.8(2) 

C10-Br2 1.893(3) C10-C1-Br1 121.6(2) 

C1-C2 1.378(4) C9-C10-Br2 119.3(2) 

C1-C10 1.388(4) C1-C10-Br2 121.5(2) 

C2-C3 1.399(4) C6-C7-C13 108. 1(11) 

 

Following literature procedures[191-193], the analogous pyrazindinitrile PzDN* was 

prepared in five steps (Figure 26) starting from pivalic acid. Pivalic acid underwent 

dimerization using Fenton's reagent (H2O2 + FeSO4) to form 2,2,5,5-tetramethyladipic 

acid. The reaction yield is highly dependent on the stirring rate, and, although it 

proceeds (with the highest stirring efficiency) in low yield, the reaction could be, due to 

the inexpensive starting materials, easily carried out in a large scale (1-1.5 mol). 

Generally, the dimerization reaction occurs by the action of the hydroxyl radicals 

generated from Fenton's reagent. A hydroxyl radical attacks the aliphatic acid to remove 

a hydrogen atom bonded to carbon; the free radicals formed then dimerize. After 

preparation of an adequate amount of the tetramethyladipic acid, the following steps, 

starting from the esterification reaction, could be easily performed in high yield. The 

esterification reaction with ethanol gave 80 % yield. Refluxing the diester with 

trimethylsilyl chloride and sodium in dry toluene led to the formation of 3,3,6,6-

tetramethyl-1,2-bis(trimethylsiloxy)cyclohexene. This product was, in turn, 

quantitatively oxidized by bromine in tetrachloromethane to form 3,3,6,6-

tetramethylcyclohexane-1,2-dione. Although the resulting yellow powder was 

characterized as the desired dione using 1H-NMR spectroscopy, small amount of a 

colorless by-product formed as single crystals suitable for XRD measurements. The 

crystals were manually separated, and surprisingly elucidated as 2-bromo-3,3,6,6-

hexamethylcyclohexanone. This compound might be formed upon the bromination of 

3,3,6,6-tetramethyl-1-mono(trimethylsiloxy)cyclohexene, which could be obtained by 

over-reduction of the bis (trimethylsiloxy)cyclohexene. Finally, the dione underwent a 

condensation reaction with diaminomaleonitrile (DAMN) in ethanol and in the presence 

of a catalytic amount of p-toluenesulfonic acid to obtain the desired precursor PzDN*. 
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Owing to the poor yield of the first step, the overall reaction yield was calculated as ≈ 

6%.  

 

 

Figure 26: Synthesis of PzDN*. 

The molecular structure of 2-bromo-3,3,6,6-hexamethylcyclohexanone is shown in 

Figure 27. The compound crystallizes free of any solvent molecules as colourless plates 

in the monoclinic space group P 21/c with four molecules per unit cell. The annulated 

cyclohexene ring adopts a twist-boat conformation. Selected bond lengths and angles 

are summarized in Table 2. However, the molecular structure is not discussed in detail, 

as no deviation from the expected bond distances is observed. 

 

Table 2: Selected Bond Lengths (Å) and Angles (°) of 2-bromo-3,3,6,6-hexamethylcyclohexanone. 

Bond lengths/ Å  Angles/ °  Angles/ °  

C1-O1 1.2100(15)  C1-C2-C3 112.85(10) C5-C4-C3 114.10(11) 

C2-Br1 1.9560(12) C1-C2-Br1 109.72(8) C1-C6-C8 109.85(11) 

C1-C2 1.5294(18) C3-C2-Br1 112.73(8) C1-C6-C5  108.94((11) 

C2-C3 1.5465(17) C9-C3-C10 109.72(11) C8-C6-C5 109.85(11) 

C3-C4 1.5428(18) C9-C3-C4 108.71(11) C1-C6-C7 108.17(11) 

C4-C5 1.526(2) C10-C3-C4 111.31(11) C8-C6-C7 109.12(12) 

C5-C6 1.5425(19) C9-C3-C2 110.08(10) C5-C6-C7 110.89(12) 

C6-C7 1.5462(19) C10-C3-C2 111.39(10) C4-C5-C6 113.45(11) 

C6-C8 1.5299(19) C4-C3-C2 105.54(10) O1-C1-C2 122.92(11) 

C3-C9 1.5294(18) O1-C1-C6 122.56(12) O1-C1-C6 114.51(10) 

C3-C10 1.5316(18)     

C1-C6 1.5251(17)     

 

The mechanism of obtaining 2-bromo-3,3,6,6-hexamethylcyclohexanone is proposed 

(Figure 28). This side product may result from over reduction of the bis-enolate 

followed  by bromination. 

It is worthwhile to mention that some reports counted on formation of 2-

bromocyclohexanone from (cyclohexenyloxy)trimethylsilane[301-303], but not using 

bromine.  
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Figure 27: Molecular structure of 2-bromo-3,3,6,6-hexamethylcyclohexanone. 

 

 

Figure 28: Suggested mechanism for formation of 2-bromo-3,3,6,6-hexamethylcyclohexanone using 
bromine. 

Structurally related to PzDN*, 2, 3-dicyanoquinoxaline (PzDN#) was readily prepared in 

one step (Figure 29) by refluxing DAMN and 1,2-cyclohexandione with a catalytic 

amount of p-TsOH in ethanol.[222]  

 

 

Figure 29: Synthesis of PzDN#. 

The new diaza derivative of the already known dibenzo[b,e][1,4]dioxine-2,3-

dicarbonitrile[194], 2,3-dicyanopyrazino[6,5-e]benzo[b][1,4]dioxane CatPzDN*, was 

synthesized for the first time in three steps according to Figure 30. First, by slowly 

adding the inexpensive, commercially available DAMN to a vigorously stirred oxalyl 

chloride solution in dioxane; if the addition rate is fast, N,N’-bis[(Z)-3-

amino(dinitrilo)but-2-en-yl]oxamide, which could not further react with oxalyl chloride 

to form 2,3-dioxo-1,2,3,4-tetrahydropyrazine-5,6-dicarbonitrile, would be obtained. 

Once the desired product was formed, it reacted with thionyl chloride to yield 5,6-

dichloropyrazine-2,3-dicarbonitrile.[195] Finally, the precursor was formed upon treating 

the latter compound with catechol and potassium carbonate in dimethylacetamide 

(DMA). The last step proceeds only in about 8% yield. The reaction yield was not 

optimized, as this yellow precursor did not tetramerize under several conditions.  
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Figure 30: Synthesis of CatPzDN*. 

 

2.2 Attempted Synthesis of [(CatPpz*)Zn] 

Several attempts were made to cyclotetrameraize the organic precursor CatPzDN* in the 

presence of Zn(OAc)2 (Figure 31), however the attempts to prepare [(CatPpz*)Zn] were 

unsuccessful. Table 3 summarizes all the reaction conditions used in an attempt to 

prepare the target complex.  

 

 

Figure 31: Attempted synthesis of [(CatPpz*)Zn]. 

 

Table 3: Unsuccessful attempts to prepare [(CatPpz*)Zn] 

Number Base Solvent Temperature Reaction time 

1 Urea  Quinoline 160oC 20 h 

2 Urea - 220oC 45 m 

3 DBU 1-Octanol 160oC 18 h 

4 Urea 1-CNP 160oC 20 h 

 

Although the selected procedures for the preparation of [(CatPpz*)Zn] have been 

successfully followed to cyclize other dinitriles, in all cases, the products obtained were 

not colorful and poorly soluble in the most common organic solvents. Furthermore, EI-
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MS measurements did not detect any ion peak assignable to the molecular ion of the 

expected product [(CatPpz*)Zn].  

 

2.3 Synthesis of Pc* and Ppz* complexes 

Since PDN* or PzDN* were first synthesized, many attempts have been made to 

cyclotetramerize them in the presence of different metal templates.  

PDN* was first described by Mikhalenko et al.[190] They prepared [Pc*Co], [Pc*Cu] and 

[Pc*VO] in 1-bromonaphthalene via reacting the organic dinitrile with the 

corresponding metal chloride in the presence of ammonium molybdate as a source of 

ammonia. Furthermore, the synthetic procedures of [Pc*Zn] using ZnI2, as a metal 

template, were described.[190] However, the authors did not succeed in determining the 

crystal structure of any complex. Recently in our group, Elisabeth Seikel was able to 

prepare and elucidate the crystal structure of [Pc*TiO].[197] The titanyl complex formed 

by reacting the dinitrile with Ti(On-Bu)4 in 1-octanol. Moreover, she obtained and 

described the crystal structure of the reactive dichloro analog [Pc*TiCl2].[196] 

Elisabeth also succeeded in introducing the pyrazinedinitrile PzDN*, but only its 

complexes with titanium[198] or molybdenum[193] as central atoms were prepared.  

Using PDN* and PzDN* led to three major advantages. First, the obtained symmetrical 

complexes are substituted in all the peripheral positions making them “isomerically 

pure”, and this facilitated their crystallization. Furthermore, solving their molecular 

structures using XRD should be much easier. Second, it is simple to characterize the 

diamagnetic complexes of PDN* and PzDN* using 1H NMR, as these precursors contain 

only three and two types of protons, respectively. All the proton types do not couple 

with each other, thus the respective bands appear as singlets. Finally, the bulky 

substituents improve the solubility of the macrocyclic complexes in the most common 

organic solvents.   

 

2.3.1 The Free Ligands Pc*H2 and Ppz*H2 

Owing to the necessity of using the metal free macrocycles in further reactions, Pc*H2 

and Ppz*H2 were prepared by treating the dinitrile with a catalytic amount of DBU in 1-

pentanol (Figure 32). The reaction requires a high temperature of ≈ 220 oC to proceed in 

less than 15 minutes. Below this temperature, no reaction takes place. The purification 

of the crude products was performed using column chromatography (CHCl3, Al2O3), and 

the products Pc*H2 and Ppz*H2 were obtained in 15 % and 24 %.  
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Figure 32: Synthesis of Pc*H2 and Ppz*H2. 

Formation of Ppz*H2 in high yield (85 %) by demetalation of [Ppz*Zn] was also 

successful by heating the complex with pyridine hydrochloride (Figure 33). However, 

this method is not economically desirable as it depends mainly on adding a large excess 

of pyridine hydrochloride (≈ 186 eq.).    

 

 

Figure 33: Synthesis of Ppz*H2 by demetalation of [Ppz*Zn] using pyridine hydrochloride . 

The macrocycles are highly soluble in a variety of organic solvents, including CHCl3, 

DCM, THF and toluene. The chromophores were identified using MS-APCI+ technique, 

and their spectra displayed protonated molecular ion peaks at 955.8 for Pc*H2 (Figure 

34) and 963.6 for Ppz*H2. 

 

 

Figure 34: APCI+ Mass Spectrum of Pc*H2. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 
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2.3.2 Titanium(IV) Complexes [Pc*TiO] and [Ppz*TiO]  

Generally, the oxidation state of titanium in most TiPcs is IV; hence, the titanium central 

atom coordinates axially to either a dianionic or two monoanionic ligands. However, 

TiPcs having central Ti(III) atom have been rarely described, e.g. synthesis of [PcTiCl] 

using TiCl3.[23, 223] 

By cyclization of the dinitriles in neat and in the presence of titanium trichloride (TiCl3), 

we expect the formation of the dichlorotitanium(IV)(aza)phthalocyanines.[196] After 15 

minutes from starting the reaction, a purple product of [Pc*TiCl2] or [Ppz*TiCl2] was 

formed. The obtained complexes could not be sufficiently purified by simple washing 

under an argon atmosphere, therefore purification using column chromatography 

(Al2O3, CHCl3) was required. After purifying the complexes, they were no longer purple; 

rather, a green [Pc*TiO] or a greenish blue [Ppz*TiO] complex was obtained (Figure 35), 

as the dichloro complexes underwent hydrolysis to form the corresponding 

oxotitanium(IV) macrocycles. The reaction yield was 52 % and 46 % for [Pc*TiO] and 

[Ppz*TiO], respectively. This yield of the substituted chromophores is enhanced 

compared to the previously published results.[197] 

 

 

Figure 35: Synthesis of [Pc*TiO] and [Ppz*TiO]. 

The complexes showed good solubility in most common organic solvents, such as THF, 

CHCl3, toluene, diethylether and DCM. Their enhanced solubility is due to the presence of 

methyl groups out of the plane of the macrocycles. These groups hinder the 

intermolecular interaction between the π-system of the Pc molecules.  

APCI+ mass spectral data of [Pc*TiO] and [Ppz*TiO] showed intense protonated 

molecular ion peaks at 1017.6 and 1025.7, respectively. The mass spectrum of [Ppz*TiO] 

is shown in Figure 36. In the figure, small peaks were observed at 1039.6 and 1071.6 

due to the interaction of the complex with the methanol added during the measurement 

to form the new species [Ppz*TiOMe+H]+ and [Ppz*Ti(OMe)2+H]+. 
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Figure 36: APCI+ Mass Spectrum of [Ppz*TiO]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern . 

Figure 37 shows the 1H-NMR spectrum of [Pc*TiO]. As a result of the molecular C4v 

symmetry, the 1H-NMR spectrum in CDCl3 displayed only four singlets. The signal 

observed at 9.63 ppm corresponds to the eight aromatic protons. The methyl protons 

appear as a set of two equivalent singlets at 1.81 and 1.89 ppm, integrated for twenty 

four protons each. This is not observed in macrocycles without axial ligands. This effect 

can be explained by the lowering of the molecular symmetry imposed by the axial Ti=O 

group. The upper and lower hemisphere of the macrocycle become inequivalent, and the 

methyl groups pointing towards the titanyl moiety (endo) and those pointing away 

(exo) are located in different chemical environments.[197] The other sixteen aliphatic CH2 

protons are observed at 2.09 ppm. On the other hand, the 1H-NMR spectrum of 

[Ppz*TiO] in CDCl3 showed its characteristic three singlets. The fourty eight protons of 

the methyl groups appeared as two singlets at 1.93 and 2.03 ppm and the sixteen CH2 

protons appeared at 2.26 ppm.   
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Figure 37: 1H-NMR spectra of [Pc*TiO] in CDCl3 (300 MHz). 

The UV/Vis. spectra of the complexes with C4V symmetry [Pc*TiO] and [Ppz*TiO] 

measured in CHCl3 are shown in Figure 38. The spectra exhibit typical B-bands between 

300 to 400 nm and narrow Q-bands in the near infrared region between 716 to 650 

nm.[201] This indicates monomeric behavior of the titanium complexes199], as aggregation 

in the MPc complexes is typified by a broadened or split Q-band with the high energy 

band belonging to the aggregate and the low energy band corresponding to the 

monomer. The Q-absorption band of [Pc*TiO] is red-shifted relative to that of [Ppz*TiO], 

which has been observed by E. Seikel for [Pc*Mo(Nt-Bu)Cl] and [Ppz*Mo(Nt-Bu)Cl] as 

well.[193] Furthermore, the main B-band of both [Pc*TiO] and [Ppz*TiO] was observed 

exactly at 348 nm. 

 

 

Figure 38: UV/Vis. spectra of [Pc*TiO] and [Ppz*TiO] in CHCl3. 
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Unlike [Ppz*TiO], the B bands of [Pc*TiO] are broadened due to the superimposition of 

the B1 and B2 bands.[200]  Additionally, in the range of 250-300 nm, the complexes 

exhibit a rarely observed N-band arising from deeper π levels due to LUMO transitions. 

However, these bands were usually observed only in UV transparent solvents such as 

DCM.[202, 203] The Q-band of the soluble [Pc*TiO] is also shifted bathochromically 

compared to that of the unsubstituted [PcTiO], as a result of the lower HOMO-LUMO gap 

of the Pc* complex relative to the gap of the unsubstituted Pc one.[198] 

 

2.3.3 Attempted Synthesis of Axially Functionalized Ti(IV)Pcs / Ti(IV)Ppzs  

One aim of this work was to synthesize axially functionalized MPcs or MPpzs for various 

applications as the number of axially substituted complexes is still small. The lack of 

selective syntheses might be a result of the insolubility of the unsubstituted 

macrocycles. The sulfur and selenium homologues of [Pc*TiO] and the peroxo complex 

[Pc*Ti(O2)], i.e. [Pc*TiS], [Pc*TiSe], [Pc*TiS2] and [Pc*TiSe2], have been already 

prepared, as the complexes of heavier sulfur and selenium are of particular interest in 

view of their optoelectronic properties.  

In this work, we applied the same synthetic strategy[196, 198] used for these complexes to 

prepare the corresponding Ppz* macrocycles. We expected that these chromophores 

could covalently link at different, well-ordered or even single-crystalline model 

interfaces of classical conductors, e.g. Au(111), Ag(111), Cu(111) or Si(001), and thereby 

allow us to study their electronic coupling at the heterojunction interface in order to 

compare their behavior with those of the physically adsorbed (unfunctionalized) parent 

chromophores. 

The reactive complex [Ppz*TiCl2][196] was prepared and kept under an argon 

atmosphere. Se8 or S8 was then added in the presence of the reducing agent C8K (Figure 

39). Unfortunately, attempted reduction in THF led to decomposition to unidentified 

products, however when toluene was used, no reaction was observed for 24 hours.  

 

 

Figure 39: Attempted Synthesis of [Ppz*TiSe2] and [Ppz*TiS2]. 

Another strategy, described for the unsubstituted complex [PcTiS2][26], was applied to 

synthesize [Ppz*TiS2] by refluxing [Ppz*TiO] with phosphorous pentasulphide P4S10 in 

dry toluene. This method led to formation of a very colorful blue compound. This 

compound might be surprisingly [(C6H4N2S2)4TiS2] (Figure 40) confirmed only by high 
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resolution MS-APCI+ results. To confirm this as the product, we tried to grow a single 

crystal for XRD; however, all the crystals obtained were not suitable for XRD 

measurements.    

 

 

Figure 40: Attempted Synthesis of [Ppz*TiS2] resulted in formation of [(C6H4N2S2)4TiS2] as confirmed by 
APCI+ MS technique. 

In addition to the soluble complexes, we tried to develop new strategies for the 

conversion of ring unsubstituted [PcTiO] to [PcTiS]. Upon using Lawesson’s reagent, the 

monosulphido-complex [PcTiS] was obtained.[320] However, due to the very limited 

solubilty of the reagent, it was rather difficult to purify the complex. Hence, a 

structurally similar compound to Lawesson’s reagent, but highly soluble in common 

organic solvents (Figure 41), where phenoxy groups replace the methoxy ones, was 

prepared.[315] Having the advantage of the high solubility of this reagent in THF at room 

temperature, the use of this reagent in excess allows for the synthesis of the 

monosulphido complex [PcTiS]. The molecular ion peak of this complex was detected 

using both of APCI+ and LDI mass spectroscopic measurements. However, the results 

also indicated the prescence of the oxido complex in small amount (< 5 %).  

Previous reports counted on the prescence of stretching vibration of (Ti=S) in the IR 

spectrum of [PcTiS] at 563 cm-1,[323] however, therein, the methods used to prepare 

[PcTiS] are known to be non-selective. In our case, the formation of [PcTiS] is 

accompanied by complete absence of the stretching vibration of (Ti=O), and appearance 

of a broad band between 900 and 1110 cm-1 . Furthermore, a new peak at 495 cm-1 was 

observed which might be attributed to a vibration of (Ti=S) bond.   

 

 

Figure 41: Synthesis of [PcTiS]. 
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The structurally similar complex [PcTiSe] was also formed (Figure 42) by the action of 

Woolins’ reagent.[317] However, unlike the APCI+ mass measurements, the molecular ion 

peak of this complex was only detected by LDI mass spectroscopy. Comparing the IR-

spectrum of the product with that of [PcTiO] revealed the absence of the stretching 

vibration of (Ti=O) at 978 cm-1 and appearance of a broad band between 890 and 948 

cm-1. Additionally, a new band is observed at 526 cm-1.     

 

Figure 42: Synthesis of [PcTiSe]. 

All the previously reported procedures showed low selectivity of substituting the oxido 

ligand for a sulphido one, as the Q-band of both of [PcTiO] and [PcTiS] was found to be 

exactly at 692 nm in chlorobenzene. However, upon the action of Lawesson’s reagent, a 

small red-shift of 2 nm was observed, hence [PcTiS] absorbs at 694 nm (Figure 43). 

Although the starting [PcTiO] was not any more detected by LDI, the Q-band of [PcTiSe] 

was found at 693 nm. This means that substituting O by S or Se is not affecting the two 

main absorption peaks of the chromophoric Pc ligands.  

 

 

Figure 43: UV / Vis. spectra of [PcTiO], [PcTiS] and [PcTiSe] in chlorobenzene. 

To conclude, a new synthesis for [PcTiS] and [PcTiSe] has been described. It leads to 

higher purity products, as indicated by the absence of the stretching vibration of (Ti=O) 

at 978 cm-1, detecting a small red-shift regarding the Q-band position of [PcTiS] and 
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[PcTiSe] compared to that of [PcTiO] and detecting the molecular ion peaks of the 

complexes [PcTiS] and [PcTiSe]. 

Other unsuccessful strategies for the formation of [PcTiS] were also attempted (see 

experimental section).                             

Pcs functionalized with the acidic anchor –COOH either axially or equatorially are 

known[198, 211, 212] and commonly used in DSSCs. This moiety allows for an efficient 

overlapping between the LUMO of the macrocycles and the conduction band of a metal 

oxide semiconductor surface, e.g. TiO2. Pcs with equatorial phosphonic acid moieties are 

also known[226-228, 249], however, attempted preparation of TiPcs with an axial 

phosphonic acid functionality was unsuccessful.[198] A comparison between the 

anchoring carboxylic and phosphonic acid moieties has been explored in detail.[249] The 

results showed that a carboxylic acid function leads to higher levels of dye adsorption 

than does a phosphonic acid anchoring group, and thus gives a slightly higher solar 

conversion efficiency. However, the phosphonic acid was shown to have stronger 

binding properties than the carboxylate anchoring group, which improves the durability 

of the DSSCs. In this work, we tried to perform a salt elimination reaction between 

K2HPO4 and [LTiCl2] (L=Pc* or Ppz*, Figure 44) in order to obtain TiPcs bearing an axial 

phosphoric acid functionality. The reactants were suspended and refluxed in dry toluene 

under an argon atmosphere. Unfortunately, the desired reaction did not proceed, and 

finally the titanyl complexes [Pc*TiO] and [Ppz*TiO] were obtained. 

 

 
Figure 44: Attempted Synthesis of [Pc*Ti(HPO4)] and [Ppz*Ti(HPO4)]. 

 

2.3.4 Vanadium(IV) Complexes [Pc*VO] and [Ppz*VO] 

Among all the oxidation states of vanadium, only VPcs containing V(III) and V(IV) are 

known. The axial ligand is either a halogen[204] or an oxygen[205]; however, the 

macrocycles of the type [PcVO] are the most common. In this work, we were able to 

prepare both the substituted [Pc*VO] and [Ppz*VO] complexes (Figure 45). Addition of 

urea was not essential but only used to increase the reaction yield. After purifying the 

products using column chromatography (CHCl3, Al2O3), [Pc*VO] and [Ppz*VO], especially 

the latter were obtained in high yield of 50 % and 84 %, respectively. The complexes are 

highly soluble in common organic solvents including: CHCl3, THF, DCM and toluene. 
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[Pc*VO] and [Ppz*VO] were clearly identified using UV-Vis. and APCI+ spectroscopic 

techniques and elemental analysis. 

 

 

Figure 45: Synthesis of [Pc*VO] and [Ppz*VO]. 

The APCI+ mass spectra of the complexes showed intense protonated molecular ion 

peaks at m/z 1020.5 and 1028.7 for [Pc*VO] and [Ppz*VO] (Figure 46), respectively, 

confirming the proposed molecular structures  

 

Figure 46: APCI+ Mass Spectrum of [Ppz*VO]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The UV-Vis. spectra of [Pc*VO] and [Ppz*VO] in CHCl3 are quite similar to those of the 

titanium ones, showing Q-bands at 717 and 648 nm respectively (Figure 47). The B 

bands lie in the range of 348-298 nm; however, the B bands of [Pc*VO] are not very well 

separated due to some superimposition.[200] The effect of substituting the benzene rings 

by pyrazine ones is clearly observable causing blue shifts in the spectra.  
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Figure 47: UV / Vis. spectra of [Pc*VO] and [Ppz*VO] in CHCl3. 

In the reaction, it is striking that the complexation process is associated with oxidation 

of V(III) to V(IV). To prove this, we were able to obtain suitable single crystals for XRD 

measurements.  

Suitable crystals for X-ray diffraction of [Pc*VO] were obtained by controlled diffusion of 

pentane vapor into a chloroform solution of the complex. The complex crystallizes as 

[Pc*VO].4CHCl3 (Figure 48) in the monoclinic space group P21/c as a green prism with 

ten formula units per unit cell. The vanadium atom is too large to occupy the Pc* cavity; 

it sits ‘atop’ or ‘out-of plane’ from the N4 plane, and has a five-coordinate, square-

pyramidal configuration. Owing to the C4v symmetry of the molecule, all the isoindole 

rings in the molecule are equivalent. Furthermore, the fused cyclohexene rings adopt a 

half-chair conformation. Selected structural parameters of the obtained vanadyl 

complex [Pc*VO].4CHCl3 are summarized in Table 4. 

 

Table 4: Selected Bond Lengths (Å) and Angles (°) for [Pc*VO].4CHCl3.  

Bond lengths/ Å  Angles/ °  

V1-N2 2.057(3)  N4-V1-N2 84.75(12) 

V1-N4 2.058(3) O1-V1-N2 146.04(8) 

V1-N2‘ 2.016(3) O1-V1-N4 106.9(2) 

V1-N4‘ 2.035(3) O1-V1-N2‘ 107.5(2) 

V1-O1 1.587(5) O1-V1-N4‘ 106.9(2) 

dV(out of plane) 0.600 N2-V-N2‘ 146.04(8) 

d(P1-P2) 3.927 N4-V1-N2‘ 84.90(12) 

d(V1-V2) 11.849 N4-V1-N4‘ 146.20(8) 

d(P1-P2) the distance between two neighboring N4 planes  
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Figure 48: Molecular structure of [Pc*VO].4CHCl3 crystallized from CHCl3. The four solvent molecules and 

all H atoms are omitted for clarity, Ellipsoids are shown at 50% probability. 

The unsubstituted [PcVO], like many MPcs, possesses interesting photoconductor and 

semiconductor properties. The complex, and its ring-substituted derivatives have found 

use as pigments, semiconductors, photoconductors, photoreceptors, imaging agents, and 

catalysts.  In a detailed study of the polymorphism in [PcVO] by Griffiths et al, three 

crystalline phases - α, β, and γ - were identified for the complex[235], but only the β phase 

was characterized, via a single-crystal, X-ray structural determination.[236]  

Comparing the β phase of [PcVO] to the substituted [Pc*VO].4CHCl3 crystals reveals 

closeness of the analogous bond lengths and angles between the two complexes. In 

[PcVO], the 𝑉𝑂2+ cation lies perpendicular to the isoindole nitrogen plane, with a V-O 

distance of 1.580(3) Å, the four N-V-N base angles have a mean value of 85.4(2), the two 

obtuse N-V-N angles are 146.8(1) and 147.2(1) and the V-N distances do not differ 

significantly; having a mean length of 2.026(7) Å. The oxovanadium cation of [PcVO] 

coordinates the four isoindole nitrogens with vanadium lying 0.575(1) Å above the 

plane formed by the four nitrogen atoms. Furthermore, The shortest centroid-centroid 

distance in [PcVO] is 5.378 Å and the shortest intermolecular distance between two 

neighboring N4 planes is 3.208 Å. Comparing to [Pc*VO], the intermolecular distance is 

3.927 Å and the closest vanadium-vanadium distance is 11.849 Å. The longer metal-

metal distance might be attributed to the prescence of the bulky substituents, which 

might prevent the coupling between the neighboring molecules. 

In the similar oxovanadium(IV)porphyrin ’’vanadyldeoxophylloerythroetioporphyrin-

l,2-dichloroethane solvate (Vanadyl DPEP)’’[324] (Figure 49 (a)), the V-O distance is 

1.62(1) Å  and the vanadium atom lies 0.48 Å above the isoindole nitrogen plane. The 

differences, which are marginally significant, correlate with the slightly larger 

coordination cavity of the porphyrin macrocycle. 
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Figure 49: Molecular structure of vanadyl DPEP (a)[324] and [F64PcVO(H2O)] (b). [237] 

The relative arrangement of the molecules to each other in the crystal lattice has a 

decisive influence on the electrical conductivity of the Pcs. Therefore, the arrangement 

of the aromatic system of [Pc*VO], with solvent molecules omitted, is shown in Figure 

50. Generally, a 50:50 disorder occurrs with respect to the orientation of V = O groups, 

which could be attributed to the steric shielding of the central metal by the peripheral 

alkyl groups. The cell packing of [Pc*VO] is composed of sheets of approximately parallel 

and weakly π-stacked molecules, with no evidence of the presence of a discrete dimer 

pair in the solid state. Generally, the Pcs can be considered electrically conductive if the 

π-systems of the adjacent molecules are able to overlap to promote the transfer of 

electrons or holes. In [Pc*VO], the axial moiety and the prescence of bulky substituents 

prevent strong aggregation of the π-systems. Furthermore, it has been reported that the 

formation of dimeric assemblies takes place via intermolecular contact of the benzene 

rings below the 3.6 Å threshold that is indicative of π-π interactions.[237] Owing to the 

higher intermolecular distance in this case, dimeric assemblies of the complex can be 

excluded. 

 

 

Figure 50: Unit cell packing of the aromatic system of [Pc*VO] molecules in the solid state. All the solvent 
molecules, H atoms and aliphatic substituents are removed for clarity. The orientation of the V=O moieties 

is not clear and might be located at both sides with 50% probability. 
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Slightly different results were obtained for the corresponding Ppz* derivative. Blue 

plates of [Ppz*VO(OH2)].8DCM formed by slow evaporation of DCM from a saturated 

solution of the complex. The complex crystallizes in the tetragonal space group 

P4/nmm. The complex molecular structure is shown in Figure 51.  

 

 

Figure 51: Molecular structure of [Ppz*VO(H2O)].8DCM crystallized from DCM. All the DCM molecules and 
H atoms are omitted for clarity. Ellipsoids are shown at 50% probability. 

All the isoindole rings in the molecule are equivalent, and the fused cyclohexene rings 

adopt a half-chair conformation. Surprisingly, the vanadium atom in this structure is 

octahedrally coordinated with the four nitrogen atoms of the four isoindole rings and 

two oxygen ligands occupying the axial positions. Furthermore, the vanadium atom 

resides only little above the N4 equatorial plane. To better understand the reason, it is 

worthwhile comparing the molecular structure of the complex with a molecular 

structure of an electron deficient vanadyl phthalocyanine, e.g. [F64PcVO(H2O)] (Figure 

49(b)).[237] Generally, the finding that a metal in a high valence state (IV) can be 

accommodated in such an electron deficient coordinating environment is surprising, but 

it can be rationalized by the presence of the axial oxo-ligand and an aqua lgand trans to 

the oxo one, the ligand with lowest thermodynamic trans effect. The additional H2O 

coordination was also postulated to occur in frozen DMSO solutions of t-butyl [PcVO] as 

a possible alternative to DMSO coordination.[238]  

 The bond distances and angles of [Ppz*VO(H2O)].8DCM (Table 5) agree well with the 

reported values of [F64PcVO(H2O)]. For [F64PcVO(H2O)], the V-N distances are 

statistically indistinguishable at 2.027(4) Å and close to those obtained for 

[Ppz*VO(OH2)].8DCM. The doming of [F64PcVO(H2O)] is virtually identical, with the V-N4 

(coordination plane) distances being 0.36(1) Å shorter than that obtained for 

[Ppz*VO(H2O)].8DCM. For [F64PcVO(H2O)], the V-O (H2O) and V=O distances are 

2.359(3) Å and 1.586(3) Å, respectively, and correspond to 2.353(13) Å and 1.594(11) Å 

for the [Ppz*VO(H2O)].8DCM, while the V=O distance in H16PcVO is 1.580(3) Å. The V=O 

distance is statistically insensitive to changes in the metal coordination environments. 

The intramolecular structural effects of perfluorinated [F64PcVO(H2O)] are apparent in a 
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comparison with those of the parent nonfluorinated [H16PcVO]. Although the V-N 

distances are quite close, 2.027(4) Å for [F64PcVO(H2O)] and 2.026(7) Å for [H16PcVO], 

the V atom is 0.2 Å closer to the N4 coordination plane in [F64PcVO(H2O)]. In our case, 

the V atom of [Ppz*VO(H2O)].8DCM deviates less from the planarity compared to 

[Pc*VO].4CHCl3, i.e the distance between the V atom and the N4 plane is 0.1865 Å closer 

than in the case of [Ppz*VO(H2O)].8DCM. Generally, this effect could be ascribed to an 

increase in the ligand coordination sphere and the approximate invariability of the V-N 

bond lengths. 

 

Table 5: Selected Bond Lengths (Å) and Angles (°) for [Ppz*VO(H2O)].8DCM.  

Bond lengths/ Å  Angles/ °  Angles/ °  

V1-N2 2.031(7)  N4-V1-N2 87.62(7) N4-V1-N4‘ 156.5(4) 

V1-N4 2.031(7) O1-V1-N2 101.75(18) O2-V-N2 78.25(18) 

V1-N2‘ 2.031(7) O1-V1-N4 101.75(18) O2-V1-N4 78.25(18) 

V1-N4‘ 2.031(7) O1-V1-N2‘ 101.75(18) O2-V1-N2‘ 78.25(18) 

V1-O1 1.594(11) O1-V1-N4‘ 101.75(18) O2-V1-N4‘ 78.25(18) 

V1-O2 2.353(13) N4-V1-N2‘ 87.62(7) O2-V1-O1 180.0 

dV(out of plane) 0.4135     

d(P1-P2) 6.664     

d(V1-V2) 6.654     

d(P1-P2) the distance between two neighboring N4 planes  

 

In Figures 52, the [Ppz*VO(OH2)] molecules showed columnar packing with four 

molecules per unit cell. The molecules are regularly packed in a face to back mode. 

However, surprisingly, the closest intermolecular distance between two neighboring N4 

planes and the closest distance between two vanadium atoms in neighboring molecules 

are very close, i.e. 6.664 Å and 6.654 Å, respectively. That means only a very short 

distance of 2.7146(2) Å is present between the oxido ligand of a molecule and the water 

oxygen atom of the neighboring molecule. Thus, in this case, formation of dimeric 

species (Figure 53) having hydrogen bonds between the adjacent molecules is expected.  

Usually coordinated water molecules could be confirmed in the metal complexes by the 

prescence of a sharp and a broad peak at 726 and 637 cm-1, respectively.[225] However, in 

this case, due to the absence of any broad peak at around 637 cm-1, the water molecule is 

supposed to be included during the crystallization process.  
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Figure 52: Unit cell packing of the aromatic system of [Ppz*VO(H2O)] molecules in the solid state. All the 
solvent molecules, H atoms and aliphatic substituents are removed for clarity.  

 

 

Figure 53: Two dimensional view for a unit cell of [Ppz*VO*(H2O)] showing the stacking probability of the 
π- system of the molecules. The aliphatic substituents, solvent molecules and H atoms are omitted for 

clarity. 

To further confirm the vanadium oxidation state in [Ppz*VO], i.e. V(IV) or V(V), we 

studied the magnetic behavior of the complex. In the case of V(V), the complex is 

diamagnetic and no net magnetic moment should be found for the complex. The other 

characteristic behavior of diamagnetic materials is that the susceptibility is temperature 

independent. However, the magnetic susceptibility values of a paramagnetic material 

change with the temperature following the Curie equation.[247, 248] 

χ =
C

T 
,   C = J(J + 1)g

2
μ

B
2

N

3kB

 

Where χ= the magnetic susceptibility, C= the material-specific Curie constant, T= 

Absolute temperature, g = the Landé g-factor, J(J+1)= the eigenvalue for eigenstate J2 for 

the stationary states within the incomplete atom shells (electrons unpaired), µB= the 

http://en.wikipedia.org/wiki/Curie_constant
http://en.wikipedia.org/wiki/Land%C3%A9_g-factor
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effective magnetic moment, kB = Boltzmann's constant and  N = the number of magnetic 

atoms (or molecules) per unit volume.  

Practically, the data obtained obeyed the Curie equation confirming the paramagnetic 

nature of the complex (Figure 54). Furthermore, the complex was found to have a 

magnetic moment of 1.73 Bohr Magneton which is previousely reported for d1 vanadium 

complexes.[321] 

   

 

Figure 54: Plots showing the relation bertween the magnetic susceptibility of [Ppz*VO(OH2)] and the 
absolute temperature. The results indicated the paramagnetic nature of the complex. 

 

2.3.5 Attempted Synthesis of Axially Functionalized Vanadium(IV)Ppz Complexes  

To obtain macrocycles able to connect to the surface of a metal oxide semiconductor, we 

tried to convert [Ppz*VO] to other axially substituted complexes with different acid 

functionalities, eg. -COOH and -SO3H. Thus, the vanadyl complex was treated with L-

phenylalanine or with sulfur containing compounds, such as the aliphatic sulfamic acid 

and the aromatic sulphanilic acid (Figure 55).  

 

 

Figure 55: Attempted conversion of [Ppz*VO] to [Ppz*V(NC8H8COOH)], [Ppz*V(NSO3H)], 
[Ppz*V(NC6H4SO3H)]. 

http://en.wikipedia.org/wiki/Boltzmann%27s_constant
http://en.wikipedia.org/wiki/Bohr_Magneton
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While the chromophore decomposed by an unidentified mechanism in the presence of 

the carboxylic aminoacid, no reaction took place with the acidic sulfur compounds; this 

is probably due to their zwitterionic nature.      

 

2.3.6 Chromium(II) and Chromium(III) Complexes ([Pc*Cr], [Ppz*Cr], [Pc*CrCl] and 

[Ppz*CrCl]) 

Depending on the oxidation state of the Cr template used in the reaction, i.e. either 

[Cr(CO)6] or CrCl3, we have successfully synthesized chromium complexes of the type 

[PcCr] or [PcCrCl] (Figure 56). The metal template was mixed with the dinitrile in 

presence of urea. The whole mixture was then heated at 220oC for 30 minutes under an 

argon atmosphere. The products were eluted as follows; (CHCl3, Al2O3) for [Pc*CrCl], 

(EtOAc, Al2O3) for [Ppz*CrCl] and the Cr(II) macrocycles, i.e. [Pc*Cr] and [Ppz*Cr], were 

eluted using CHCl3 on a short Al2O3 column. In addition to the high solubility of these 

complexes in CHCl3, THF and toluene, surprisingly, the complexes showed enhanced 

solubility in the nonpolar solvent diethyl ether. The products, especially the Ppz* 

complexes, were obtained in good yield, i.e. 38 % for [Pc*CrCl], 43 % for [Ppz*CrCl], 29 

% for [Pc*Cr] and 50 % [Ppz*Cr]. 

  

 

Figure 56: Synthesis of [Pc*Cr], [Ppz*Cr], [Pc*CrCl] and [Ppz*CrCl]. 

The APCI+ mass spectra of the complexes confirmed the proposed structures. The 

protonated molecular ion peaks were observed at m/z 1040.6 for [Pc*CrCl] and at 

1048.6 for [Ppz*CrCl]. Also, the mass spectra of [Pc*Cr] and [Ppz*Cr] showed intense 

peaks at m/z 1005.7 and 1013.6, corresponding to their protonated molecular ions. In 

the mass spectrum of [Pc*Cr] (Figure 57), although an ion peak at m/z = 1040.7 

corresponding to [MH+Cl]+ was observed, this species was probably due to an oxidative 

addition of a chlorine radical transferred from the chlorinated solvent CHCl3 during the 

APCI+ measurement, as the complex was prepared from starting materials that do not 

contain any chlorine.       
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Figure 57: APCI+ Mass Spectrum of [Pc*Cr]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The UV-Vis. spectra of the complexes were measured in chloroform. [Pc*CrCl] and 

[Ppz*CrCl] showed, respectively, intense Q-bands at 708 and 646 nm, in addition to clear 

B bands around 340-360 nm (Figure 58).  

 

 

Figure 58: UV/Vis. spectra of [Pc*CrCl] and [Ppz*CrCl] in CHCl3. 

Mainly, the spectrum of [Pc*CrCl] is red shifted compared to that of [Ppz*CrCl]. Other 

bands in the range of 470-550 nm could be attributed to the MLCT. The UV-Vis. spectra 
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of [Pc*Cr] and [Ppz*Cr] are similar to those obtained for [Pc*CrCl] and [Ppz*CrCl]. This is 

because the HOMO and LUMO levels are mostly localized in the aromatic systems of the 

macrocycles and changing the axial ligand only has little influence on the position of 

these levels.[229-232] Another reason might be the transfer of a chlorine radical from the 

chloroform to the Cr(II) complexes during the measurement. In CNP, the Q-band of 

[Pc*Cr] was reported to absorb at 710 nm. [198] 

 

2.3.7 Manganese(III) Complexes [Pc*MnCl] and [Ppz*MnCl] 

Heating PDN* or PzDN* with MnCl2 and urea in neat under an argon atmosphere led to 

the formation of a solid residue (Figure 59). After purification by column 

chromatography (CHCl3, Al2O3), an orange [Pc*MnCl] or a green [Ppz*MnCl] was 

obtained. These complexes are highly soluble in a variety of organic solvents, such as 

CHCl3, DCM, toluene and THF. [Pc*MnCl] and [Ppz*MnCl] formed in 29 % and 15 %, 

respectively. It is worthwhile to mention that the reaction is accompanied with 

oxidation of Mn(II) to Mn(III). Oxidation of Mn(II) during the MnPcs formation has been 

reported previously.[233, 234] Generally, the neutral Mn(II)Pc, i.e. [PcMn], is unusual[241] in 

two ways: firstly, it provides an almost unique example of the intermediate-spin state 

for Mn(II), S = 3/2; secondly, it is a rare example of a ferromagnetic molecular 

crystal.[242, 243] 

  

 

Figure 59: Synthesis of [Pc*MnCl] and [Ppz*MnCl]. 

An APCI+ MS experiment was performed for each complex. While the [Ppz*MnCl] 

spectrum displayed a protonated molecular ion peak at 1051.6, the [Pc*MnCl] spectrum 

(Figure 60) showed an ion peak at m/z = 1007.6, corresponding to [Pc*Mn + H]+. These 

values led to some doubt about the actual oxidation state of the central manganese ion, 

as both the interaction of the divalent manganese complexes with chlorine and the 

cleavage of the axial chlorine bonded to a trivalent manganese ion during the MS 

experiment are possible. Therefore, to properly identify the obtained complexes, 

performing other analyses was necessary. 
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Figure 60: APCI+ Mass Spectrum of [Pc*MnCl]. On the right, a high resolution of the ion peak [MH-Cl]+ 
position is shown compared with its theoretically calculated isotopic pattern. 

A method to distinguish between [Pc*MnCl] and [Pc*Mn] is the analysis of the chlorine 

content. While the first complex theoretically contains 3.40 % of chlorine, it is obvious 

that no chlorine should be detected when analyzing the latter. Elemental analysis of the 

complex indicated 3.14 % of chlorine, confirming its structure as [Pc*MnCl]. 

Unlike the other macrocycles, which are usually blue or green, Mn(III)Pcs in particular 

show a highly red shifted Q band.[202] In detail, the intense Q band of any other MPc 

usually lies at the red end of the visible spectrum and absorbs the red light, so that the 

transmitted light appears blue or green. In Mn(III)Pcs, the Q-band is shifted out of the 

visible region so that the color of the complex is now determined by the absorption at 

the blue end of the spectrum between 400–500 nm, and the red shift of the Q band is 

typical of the Mn(III)Pc complexes[207-210]; hence these complexes appear reddish.[209] 

The UV-Vis. spectra of [Pc*MnCl] and [Ppz*MnCl] measured in CHCl3 are shown in 

Figure 61. The [Pc*MnCl] spectrum showed a typical B-band at 374 nm while the Q-band 

is highly red-shifted to 749 nm. The spectrum of [Ppz*MnCl] seems similar to that of 

[Pc*MnCl], however all the bands are blue shifted, due to its higher HOMO-LUMO gap 

compared to that of [Pc*MnCl]. Thus the complex Q and B bands appeared at 674 and 

366 nm. Both [Pc*MnCl] and [Ppz*MnCl] displayed an additional band typical of 

Mn(III)Pcs[213, 214] at 545 and 489 nm, respectively. This band is due to charge transfer 

between the metal and the ligand.[202]  
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Figure 61: UV/Vis. spectra of [Pc*MnCl] and [Ppz*MnCl] in CHCl3. 

By controlled diffusion of pentane into a chloroform solution of [Ppz*MnCl], metallic 

dark blue plates of [Ppz*MnCl].5CHCl3 were obtained. The complex (Figure 62) 

crystallized in the tetragonal space group P42/n, with four formula units per unit cell. 

Selected bond lengths (Å) and angles (°) for [Ppz*MnCl].5CHCl3 are shown in Table 6.  

 

 

Figure 62: Molecular structure of [Ppz*MnCl].5CHCl3 crystallized from chloroform. All the CHCl3 
molecules and H atoms are omitted for clarity. Ellipsoids are shown at 50% probability. 

The molecular structures of other Mn(III)Pc complexes have been rarely reported, and 

no crystal structure of the unsubstituted [PcMnCl] has been reported yet. Thus, we 

compared the obtained complex to [Mn(TPP)Cl] (TPP = meso-

tetraphenylporphyrinate)[239] (Figure 63) and to [PcMnI].0.5I2.[240] In all cases, the Mn 
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center is coordinated to the four pyrrole nitrogen atoms of the ring and one terminal 

halogen, forming a slightly distorted square pyramid. In [Ppz*MnCl].5CHCl3, the Mn 

atom is displaced 0.2928 Å above the N4 plane towards the apical chlorido ligand. The 

displacement is longer than that in both [Mn(TPP)Cl] and [PcMnI].0.5I2. Additionally, the 

average Mn-N(isoindole) distance is shorter than that of [Mn(TPP)Cl] (2.02 Å), but 

agrees well with that of [PcMnI].0.5I2 (1.966(4) Å). This might be attributed to the larger 

central cavity of the TPP ring compared to that of the Pc one. The Mn-Cl distance 

(2.3439(18) Å) is slightly shorter than that in [Mn(TPP)Cl] (2.37 Å). Furthermore, It is 

shorter compared to the Mn-I distance of [PcMnI].0.5I2, as the lower electronegativity of 

iodine compared to that of chlorine results in longer and weaker bonds. 

 

 

Figure 63: Structure of [Mn(TPP)Cl]. 

 

Table 6: Selected Bond Lengths (Å) and Angles (°) for [Ppz*MnCl].5CHCl3.  

Bond lengths/ Å  Angles/ °  Angles/ °  

Mn1-N2 1.974(3)  N4-Mn1-N2 87.98(15)   

Mn1-N4 1.970(4) Cl1-Mn1-N2 98.78(11)   

Mn1-N2‘ 1.974(3) Cl1-Mn1-N4 98.53(11)   

Mn1-N4‘ 1.970(4) Cl1-Mn1-N2‘ 98.79(11)   

Mn1-Cl1 2.3439(18) Cl1-Mn1-N4‘ 98.54(11)   

dMn(out of plane) 0.2928 N4-Mn1-N2‘ 89.43(15)   

d(P1-P2) 4.289 N4-Mn1-N4‘ 162.9(2)   

d(Mn1-Mn2) 12.920 N2-Mn1-N2‘ 162.4(2)   

d(P1-P2) the distance between two neighboring N4 planes 

 

The crystal packing of [Ppz*MnCl].5CHCl3 is columnar, forming face to back dimers 

(Figure 64) with very little interaction between the π-systems of neighboring molecules. 

The intermolecular distance is 4.289 Å with manganese –manganese distance of 12.920 

Å , these values sugesst weak electrical conductivity of the crystal.    
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Figure 64: Unit cell packing of [Ppz*MnCl].5CHCl3 molecules in the solid state. All the solvent molecules, 
aliphatic substituents and H atoms are removed for clarity. 

 

2.3.8 Iron Complexes ([Pc*Fe], [Ppz*Fe], [Pc*FeCl] and [Ppz*FeCl]) 

Using PDN* or PzDN*, four different iron macrocycles, viz. [Pc*Fe], [Ppz*Fe], [Pc*FeCl] 

and [Ppz*FeCl] (Figure 65), were prepared. The synthetic strategy depends on melting 

Fe(II) or Fe(III) chloride with the dinitrile in the presence of urea and then purifying the 

obtained residue using column chromatography (CHCl3, Al2O3). Generally, the Fe(II) 

complexes formed in higher yield compared to the Fe(III) ones, i.e. 38 % for [Pc*Fe], 33 

% for [Ppz*Fe], 7 % for [Pc*FeCl] and 19 % for [Ppz*FeCl]. The complexes are all green 

and highly soluble in common organic solvents such as CHCl3, toluene, DCM and THF. 

However, in solution, unlike the stable [Ppz*Fe] and [Ppz*FeCl] complexes, green 

solutions of [Pc*Fe] and [Pc*FeCl] are highly light and air sensitive as they decompose 

fast to unidentified products forming brown solutions.  

 

 

Figure 65: Synthesis of [Pc*Fe], [Pc*FeCl], [Ppz*Fe] and [Ppz*FeCl]. 
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Mass spectra of [Pc*Fe], [Pc*FeCl], [Ppz*Fe] and [Ppz*FeCl], measured by the APCI+ 

technique, showed intense protonated molecular ion peaks of the complexes at 1009.7, 

1044.5, 1017.6 and 1052.6, respectively. The spectrum of [Ppz*FeCl] is shown in Figure 

66. Bsides the molecular ion peak (m/z = 1052.6), an ion peak was observed at 1017.6, 

which resulted from cleavage of the axial chlorine moiety during the measurement. 

 

 

Figure 66: APCI+ Mass Spectrum of [Ppz*FeCl]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

UV-Vis. spectra of [Pc*FeCl] and [Ppz*FeCl] (Figure 67) in CHCl3 showed two strong 

absorption regions, namely, 300–350 nm (Soret or B band) and Q-band at 678 and 636 

nm, respectively. The spectra of the analogous Fe(II) complexes are similar as the axial 

ligand does not have a large impact on the position of the Q-band.   

 

 

Figure 67: UV/Vis. spectra of [Ppz*Fe] and [Ppz*FeCl] in CHCl3. 



RESULTS AND DISCUSSION 

56 

 

Additionally, a broad weak band was observed in the spectra of [Pc*FeCl] and [Ppz*FeCl] 

at 878 nm (Figure 68). Comparing with literature [215-219], this peak is assigned to alu(π) 

or a2u(π) to eg(dπ*) charge transfer transitions in high spin iron (III) porphyrins and 

phthalocyanines. In [Pc*Fe] and [Ppz*Fe], this peak is completely absent, confirming the 

proposed structures for the complexes.   

 

 

Figure 68: The alu(π)/a2u(π) to eg(dπ*) transition for high spin iron(III)Pcs. 

 

2.3.9 Attempted Synthesis of [(Ppz*Fe)2N] 

Once the iron complexes were prepared, we attempted to obtain complexes of the type 

(PcFe)2N. The reason was to find a green catalyst for the selective, low temperature 

oxidation of methane. It has been reported that the binuclear MPc complexes exhibited 

better catalytic properties than the monomers.[297] The μ-Nitrido iron phthalocyanine 

complex (FePc)2N contains two equivalent iron centres, with a formal +3.5 oxidation 

state, bridged via nitrogen, was synthesized.[298] However, the insolubility of (FePc)2N in 

organic solvents makes its purification and use in catalysis difficult.   

Thus, the soluble complex [(FePct-Bu4)2N][299] was obtained. [(FePct-Bu4)2N] was found 

to interact with H2O2. In detail, (FePct-Bu4)2N coordinates H2O2 to form the hydroperoxo 

complex, FeIVNFeIIIOOH, which is probably in equilibrium with the deprotonated form 

FeIVNFeIIIOO-. Furthermore, (FePct-Bu4)2N oxo-complex could be formed from 

FeIVNFeIIIOOH via heterolytic cleavage of the O–O bond. 

Remarkably, the catalytic system ((FePct-Bu4)2N + H2O2) showed high stability with a 

possibility of recycling. It also exhibited a very high performance; more than 150 moles 

CH4 per mole of catalyst were oxidized to useful C1-products (formic acid and methanol). 
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This catalytic system showed several attractive features; the ecologically friendly 

oxidant (H2O2), the reaction medium (H2O) and the fact that the solid catalyst can easily 

be separated by filtration. Moreover, in contrast to the much more expensive porphyrin 

and non-heme complexes, phthalocyanines can be accessible in bulk quantities.[300] 

Unfortunately, owing to its instability in solution, it is not possible to use [Pc*Fe] as a 

starting material to prepare the nitrido complex. Moreover, the Ppz analog [Ppz*Fe] was 

destroyed when heated with sodium azide in 1-CNP (Figure 69). 

 

 

Figure 69: Attempted synthesis of [(Ppz*Fe)2N]. 

 

2.3.10 Cobalt(II) Complexes [Pc*Co] and [Ppz*Co] 

The highly soluble cobalt complexes were also prepared by melting CoCl2 with PDN* or 

PzDN* at 220oC in an inert atmosphere (Figure 70), then purifying the products by 

column chromatography (CHCl3, Al2O3). In the case of [Ppz*Co], no urea is required, but 

its prescence is always desirable to enhance the reaction yield, i.e. 62 % for [Pc*Co] and 

33 % for [Ppz*Co]. The obtained complexes dissolve well in DCM, CHCl3, THF and 

toluene.          

 

 

Figure 70: Synthesis of [Pc*Co] and [Ppz*Co]. 

The expected mass values measured using the APCI+ MS technique corresponded with 

the theoretical values for the complexes. The protonated molecular ion peaks of [Pc*Co] 

and [Ppz*Co] were observed at 1012.7 and 1020.7 (Figure 71), respectively. 
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Figure 71: APCI+ Mass Spectrum of [Ppz*Co]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The electronic spectral differences between the two cobalt complexes could be 

attributed to the difference in their HOMO-LUMO gaps, which resulted from the stronger 

electron donating ability of the [Pc*Co] benzene rings compared to the [Ppz*Co] 

pyrazine ones (Figure 72). In CHCl3, [Pc*Co] and [Ppz*Co] showed the characteristic 

single Q absorption band for the π- π* transition at 684 and 630 nm, respectively, with a 

weak vibrational band (shoulder) observed at around 616 and 572 nm. The B-bands 

were observed in the range of 295-333 nm.  

 

 

Figure 72: UV/Vis. spectra of [Pc*Co] and [Ppz*Co] in CHCl3. 
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Blue needles of [Pc*Co](Figure 73) formed by controlled diffusion of pentane into a 

chloroform solution of the complex. The complex crystallized in the triclinic space group 

P1̅ with an unidentified number of distorted solvent molecules. Thus, all the solvent 

molecules were not included into refinment to enable the crystal structure to be solved.  

The bond lengths and angles of [Pc*Co](Table 7) fit well with the data reported for the 

unsbstituted [PcCo].[241] Generally, [PcCo] was reported to be of the monoclinic, β-

polymorph type. The molecule is planar, and the Co atom occupies the Pc cavity with N3-

Co and N4-Co distances of 1.906(2) Å and 1.902(2) Å, respectively. The average distance 

between the Co and the N4 nitrogen atoms is 1.907(2) Å. Additionally, the two angles 

N3-Co-N4 and N4-Co-N3’ of the complex are 90.7(1) and 89.3(1); very close to the 

determined values of [Pc*Co], i.e. 90.06(6) and 89.94(6).    

 

 

Figure 73: Molecular structure of [Pc*Co] crystallized from CHCl3. H atoms are omitted for clarity. 
Ellipsoids are shown at 50% probability. 

 

Table 7: Selected Bond Lengths (Å) and Angles (°) for [Pc*Co].  

Bond lengths/ Å  Angles/ °  

Co1-N3 1.9162(15)  N3-Co1-N4 89.94(6) 

Co1-N4 1.9218(15) N3‘-Co1-N4‘ 89.94(6) 

Co1-N4‘ 1.9217(15) N3-Co1-N4‘ 90.06(6) 

Co1-N3‘ 1.9163(15) N4-Co1-N3‘ 90.06(6) 

d(P1-P2) 3.984   

d(Co1-Co2) 13.714   

d(P1-P2) the distance between two neighboring N4 planes 

 

The crystal packing of the complex (Figure 74) includes four molecules per unit cell. A 

columnar structure of co-planar Pc rings is observed. The closest intermolecular 

distance between two N4 Planes is 3.984 Å with a centroid-centroid distance of 13.714 

Å. These values are indicative for the low level of π- π interaction in the crystal. The 
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reason for that is probably the prescence of aliphatic substituents which hinder the 

interaction between the molecules. Generally, low electrical conductivity between the 

macrocycles is presumed.   

 

 

Figure 74: Unit cell packing of [Pc*Co] molecules in the solid state. Aliphatic substituents and H atoms are 
removed for clarity. 

 

2.3.11 Attempted conversion of [Ppz*Co] to [Ppz*CoI]  

Cobalt(III) salen co-catalysts are reported[305, 306] for coupling of CO2 and epoxides to 

produce polycarbonates and cyclic carbonates. For this reason, it was desirable to obtain 

the Co(III) macrocycle [Ppz*CoI]. Unfortunately, the Co(II) complex remained stable 

against oxidation with iodine in a potassium iodide solution (Figure 75).  

  

 

Figure 75: Attempted synthesis of [Ppz*CoI]. 
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2.3.12 Nickel(II) Complexes [Pc*Ni] and [Ppz*Ni] 

The nickel macrocycles formed upon heating the substituted dinitrile with NiCl2 and 

urea at 220oC under an argon atmosphere (Figure 76). To purify them, the reaction 

products were chromatographed using (CHCl3, Al2O3). The products formed in high 

yield, i.e. 57 % for [Pc*Ni] and 84 % for [Ppz*Ni]. They also showed high solubility in a 

variety of solvents, such as CHCl3, DCM, THF and toluene.     

   

 

Figure 76: Synthesis of [Pc*Ni] and [Ppz*Ni]. 

The APCI+ mass spectra of [Pc*Ni] (Figure 77) and [Ppz*Ni] clearly showed intense 

signals for their protonated molecular ions at 1011.6 and 1019.8, respectively. 

 

 

Figure 77: APCI+ Mass Spectrum of [Pc*Ni]. On the right, high resolution of the molecular ion peak 
position is shown compared with its theoretical calculated isotopic pattern. 

The typical UV–Vis. spectra of the complexes in CHCl3 exhibit characteristic Q and B 

bands (Figure 78). The first is in the visible region at 686 and 630 nm for [Pc*Ni] and 

[Ppz*Ni], respectively (The Q band appears with a shoulder at the slightly higher energy 

side for the Pc[218]) attributed to the π- π* transition from the highest occupied 



RESULTS AND DISCUSSION 

62 

 

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of the  

ring. The other B bands appeared in the UV region at 300–380 nm, arising from deeper π 

– levels to LUMO transition.  

 

 

Figure 78: UV/Vis. spectra of [Pc*Ni] and [Ppz*Ni] in CHCl3. 

When pentane vapor was allowed to diffuse into a saturated chloroform solution of 

[Pc*Ni], the complex (Figure 79) crystallized as green needles suitable for XRD 

measurements. 

 

 

Figure 79: Molecular structure of [Pc*Ni].4CHCl3 crystallized from chloroform. All the CHCl3 molecules 
and H atoms are omitted for clarity. Ellipsoids are shown at 50% probability. 

Selected bond-distances and angles for [Pc*Ni] are shown in Table 8. The obtained 

crystals grew in the monoclinic space group P21/c as [Pc*Ni].4CHCl3. The reports 

counted on the XRD measurements of the unsubstituted [PcNi][244, 245] did not fully 
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describe its crystal structure. However, it could be concluded that the unsubstituted 

complex crystallized nearly tetragonally but a small deformation still exists, with an 

average Ni-N distance ≈ 1.83 Å, which is a little shorter than that of [Pc*Ni].4CHCl3 

(1.889(4) Å) . Also, in agreement with our results for [Pc*Ni].4CHCl3, the nickel atom of 

[PcNi] is coplanar with the four surrounding isoindole nitrogen atoms. 

 

Table 8: Selected Bond Lengths (Å) and Angles (°) for [Pc*Ni].4CHCl3. 

Bond lengths/ Å  Angles/ °  

Ni1-N3 1.889(4)  N2-Ni1-N4 89.50(17) 

Ni1-N4 1.889(4) N2‘-Ni1-N4‘ 89.50(17) 

Ni1-N4‘ 1.889(4) N4-Ni1-N2‘ 89.50(17) 

Ni1-N3‘ 1.889(4) N2-Ni1-N4‘ 89.50(17) 

d(P1-P2) 4.027   

d(Ni1-Ni2) 11.727   

d(P1-P2) the distance between two neighboring N4 planes 

 

 

Figure 80: Unit cell packing of [Pc*Ni] molecules in the solid state. All the solvent molecules, aliphatic 
substituents and H atoms are removed for clarity. 

The molecular packing of a unit cell is shown in Figure 80; the complex is packed in a 

layered structure with independent two stacks of parallel but only slightly overlapping 

molecules, thus very little coupling between the aromatic systems of the adjacent 
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molecules. The closest distance between two N4 planes is 4.027 Å with a distance of 

11.727 Å between the two neighboring nickel atoms.  

 

2.3.13 Copper(II) Complexes [Pc*Cu] and [Ppz*Cu] 

When the organic precursors were heated with CuCl2 in an inert atmosphere at 220oC, 

[Pc*Cu] and [Ppz*Cu] (Figure 81) were formed. The reaction proceeds in the absence of 

any base catalyst, but the addition of urea improves the reaction yield. To purify them, 

the chromophores were subjected to column chromatography (CHCl3, Al2O3). The 

macrocycles are sublimable and also highly soluble in common organic solvents, such as 

THF, CHCl3, DCM and toluene. The products, in absence of urea, were obtained in 33 % 

for [Pc*Cu] and 39 % for [Ppz*Cu].  

        

 

Figure 81: Synthesis of [Pc*Cu] and [Ppz*Cu]. 

The APCI+ MS of the macrocycles confirmed the proposed structures. The protonated 

molecular ion peaks of the complexes appeared at 1016.8 and 1024.8 for [Pc*Cu] (Figure 

82) and [Ppz*Cu], respectively. 

 

 

Figure 82: APCI+ Mass Spectrum of [Pc*Cu]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 
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The CuPcs show typical electronic spectra, with two strong absorption regions; a Soret 

band at 300–400 nm, arising from deeper π- π* transition, and a Q-band in the range of 

600–700 nm attributed to the π- π* transition from the HOMO  to LUMO levels of the Pc 

core.[202] The electronic spectra of [Pc*Cu] and [Ppz*Cu] were measured in CHCl3 (Figure 

83). The Q-band of [Ppz*Cu] appeared at 638 nm, while, owing to the electron density 

enhancement of the ring by the akyl substituents, which resulted in lowering the HOMO-

LUMO gap, the Q-band of [Pc*Cu] was shifted to 694 nm. Additionally, weak vibronic 

bands at 624 and 580 nm could be observed for the [Pc*Cu] and [Ppz*Cu], 

respectively.[221] In [Ppz*Cu], a red-shifted shoulder was observed compared to the main 

Q-band; this might be attributed to the formation of J aggregates in solution. Aggregation 

effects of several Pc dyes have been documented.[310, 311] Two main aggregate species 

have been identified as J- and H- aggregates, with J-aggregates marked by a red shift in 

the monomer peak due to face-to-tail aggregation, while H-aggregates correspond to 

face-to-face dimerization marked by a blue shift.[142, 312]  

 

 

Figure 83: UV/Vis. spectra of [Pc*Cu] and [Ppz*Cu] in CHCl3. 

Slipped π–π -stacking arrangements with bathochromically shifted J-bands are of crucial 

importance for the applications of Pcs in the solid state as functional pigments.[329] 

CuPcs, depending on their packing arrangements in the solid state, different polymorphs 

are formed. The polymorph “β modification” is the thermodynamically most stable one, 

and is able to provide the cleanest shades of turquoise blue, as required for the cyan ink 

in three- and four-color printing. While CuPc are promising for achieving a pure cyan 

hue, its broadening and the bathochromic shift of the absorption band in the aggregate 

make this pigment an outstanding cyan colorant. Both effects can be related to the 
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excitonic coupling of the monomeric dyes in the crystal, where a major effect 

(bathochromic shift) arises from the coupling between adjacent dyes within the one-

dimensional π stacks and minor effects (band broadening) arise from the coupling to 

more distant dyes that are located in the neighboring π stacks. Different coloristic 

properties are accessible from the same dye molecule as a consequence of the different 

packing of the CuPc monomers in other polymorphs. Thus, the α and the ε modifications 

exhibit a more reddish blue hue, which is desirable for automotive finishes in both solid 

and metallic shades (α-CuPc) and for blue color filters of liquid-crystal displays (ε-CuPc). 

Blue-green prisms-like crystals of [Pc*Cu].4CHCl3 (Figure 84), suitable for XRD 

measurements, were obtained by controlled diffusion of pentane into a chloroform 

solution of the complex. The bond lengths and angles are listed in Table 9. It crystallized 

in the monoclinic space group P 21/c.  

The molecular structure of [PcCu] (β-polymorph) was previously solved.[246] The 

unsubstituted complex was found to have Cu-N mean distance of 1.934 Å in a square 

planar coordination system. This value lies in the range of the Cu-N distances obtained 

for [Pc*Cu].   

 

 

Figure 84: Molecular structure of [Pc*Cu].4CHCl3 crystallized from chloroform. All the CHCl3 molecules 
and H atoms are omitted for clarity. Ellipsoids are shown at 50% probability. 

 

Table 9: Selected Bond Lengths (Å) and Angles (°) for [Pc*Cu].4CHCl3. 

Bond lengths/ Å  Angles/ °  

Cu1-N3 1.918(6)  N1-Cu1-N3 90.4(2) 

Cu1-N1 1.949(5) N1‘-Cu1-N3‘ 89.6(2) 

Cu1-N3‘ 1.918(6) N3-Cu1-N1‘ 90.4(2) 

Cu1-N1‘ 1.949(5) N1-Cu1-N3‘ 89.6(2) 

d(P1-P2) 3.885   

d(Cu1-Cu2) 11.776   

d(P1-P2) the distance between two neighboring N4 planes 
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[Pc*Cu], with the solvent molecules omitted, is packed similarly to [Pc*Ni] with ten 

molecules per unit cell in two stacks of parallel molecules of different orientation 

(Figure 85). Owing to the steric hindrance caused by the bulky substituents, the closest 

intermolecular distance between two N4 planes is 3.885 Å with a centroid – centroid 

distance of 11.776 Å, that reveals almost no overlap between the π- electrons of adjacent 

molecules.  

 

 

Figure 85: Unit cell packing of [Pc*Cu] molecules in the solid state. All the solvent molecules, aliphatic 
substituents and H atoms are removed for clarity. 

 

2.3.14 Zinc(II) Complexes [Pc*Zn] and [Ppz*Zn] 

Heating PzDN* with zinc template in neat resulted in the formation of a solid residue. 

After purification using (CHCl3 / Al2O3), the blue complex [Ppz*Zn] was obtained in 30 % 

yield. The Pc* analog was synthesized using similar procedures but in the prescence of 

urea (Figure 86). However, the desired product appeared only upon elution with 

ethylacetae. In spite of the exhausting efforts to purify this complex, [Pc*Zn] which 

formed in 22 % yield, was not obtained in high purity. The macrocycles [Pc*Zn] and 

[Ppz*Zn] dissolved well in a variety of solvents, including DCM, CHCl3, THF and toluene.    
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Figure 86: Synthesis of [Pc*Zn] and [Ppz*Zn]. 

The protonated molecular ion peaks of [Pc*Zn] and [Ppz*Zn] (Figure 87), measured 

using APCI+ MS, were observed at 1017.6 and 1025.6, respectively. The values 

overlapped exactly with the theoretically calculated isotopic pattern of the elemental 

composition of the complex. 

 

 

Figure 87: APCI+ Mass Spectrum of [Ppz*Zn]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The UV-Vis. spectrum of the [Ppz*Zn] in CHCl3 (Figure 88) includes an intense Q-

absorption band at 642 nm indicative for the complex HOMO-LUMO gap and a B-band at 

349 nm resulting from deeper π- π* transition . On the other hand, although the [Pc*Zn] 

spectrum does not look really clean, its Q-band could be clearly seen at 692 nm.   
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Figure 88: UV/Vis. spectrum of [Ppz*Zn] in CHCl3. 

The 1H NMR spectrum of [Ppz*Zn] in CDCl3 (Figure 89) displayed two singlet peaks. 

While the fourty-eight methyl protons appeared at 1.64 ppm, the CH2 protons could be 

seen at 1.90 ppm. On the other hand, the 1H NMR spectrum of [Pc*Zn] is not well 

resolved. The characteristic three singlets displayed at 9.36, 2.04 and 1.78 ppm, 

corresponded to the aromatic, the methylene and the methyl protons, respectively. 

Other unidentified signals in the spectrum were also present. 

 

 

Figure 89: 1H-NMR spectra of [Ppz*Zn] in CDCl3 (300 MHz). 
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2.3.15 Aluminium(III) Complexes [Pc*AlCl] and [Ppz*AlCl] 

The aluminium complexes were prepared in neat by reacting the dinitriles with AlCl3 

and urea at 220oC under an inert atmosphere (Figure 90). The synthesis of [Pc*AlCl] 

does not proceed in absence of urea; however, in the case of [Ppz*AlCl], addition of urea 

just enhances the reaction yield. Both [Ppz*AlCl] and [Pc*AlCl] were purified by column 

chromatography on alumina using THF and CHCl3, respectively. The synthesized 

complexes are highly soluble in common organic solvents, such as THF, DCM, CHCl3 and 

toluene. The macrocycles [Pc*AlCl] and [Ppz*AlCl] were obtained in yield of 26 % and 71 

%, respectively.    

 

 

Figure 90: Synthesis of [Pc*AlCl] and [Ppz*AlCl]. 

Usually, the Pc*/Ppz* complexes are better purified by column chromatography using 

nonpolar solvents. That is because the product becomes more contaminated, when a 

more polar solvent is used. Therefore, CHCl3 is considered the perfect eluent. However, 

usually complexes having an axial dipole moment such as [Pc*AlCl] and [Ppz*AlCl], 

prefer to stick in the Al2O3 column, with no chance of obtaining the desired products 

when CHCl3 is used as an eluent. Therefore, a solvent of a slightly higher polarity (THF) 

was used instead of CHCl3. In this case, highly pure [Ppz*AlCl] was obtained, however, 

[Pc*AlCl] of lower purity was obtained. Furthermore, unlike [Ppz*AlCl], the molecular 

ion peak of [Pc*AlCl] can not be detected by APCI+ MS in the prescence of trace amount 

of THF. THF gets protonated under APCI-MS conditions and the protonated solvent then 

reacts with [Pc*AlCl] with elimination of HCl. Thus, in this case, a parent peak assignable 

for [Pc*Al(thf)]+ was detected (Figure 91). That was not observed in the case of 

[Ppz*AlCl], probably due to its lower Ppz* donor character, thus the chlorido ligand is 

more efficiently bound to the Al metal in [Ppz*AlCl] and does not react with the 

protonated THF solvent. To isolate pure [Pc*AlCl], the product obtained by elution using 

THF must be well dried under vacuum at 200oC.  However, an easier and more effective 

approach for highly pure [Pc*AlCl] is eluting the product using CHCl3 through a very 

short Al2O3 column (≈ 5 cm).  
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Figure 91: APCI+ Mass Spectrum of [Pc*AlCl] obtained in prescence of THF. On the right, a high resolution 
of the ion peak [Pc*Al(thf)]+ position is shown compared with its theoretically calculated isotopic pattern. 

The APCI+ MS of [Pc*AlCl] and [Ppz*AlCl] showed molecular ion peaks at m/z= 1015.7 

and 1023.6, respectively; supporting the proposed formula for the complexes. The 

spectrum of [Ppz*AlCl] is shown in Figure 92. In addition to the molecular ion peak, two 

other peaks appeared at 1019.5 and 1059.3 corresponding to [Ppz*AlOMe+H]+ and 

[Ppz*AlCl2+H]+, respectively, as the measurements were taken from solutions containing 

NaCl and methanol. Hence, substitution of the axial chlorido ligand with a methoxy 

group or addition of another chlorine atom to the chromophore is possible.  

  

 

Figure 92: APCI+ Mass Spectrum of [Ppz*AlCl]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 
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The UV/Vis. spectra of [Pc*AlCl] and [Ppz*AlCl] show sharp Q-bands at 706 and 642 nm, 

respectively,  in addition to B-bands appear around 290-360 nm (Figure 93). In general, 

the Q-band of [Pc*AlCl] is red-shifted compared to that of [Ppz*AlCl] as a result of the 

complex lower π-π* HOMO-LUMO gap, but the B-band of  [Pc*AlCl] (346 nm) is blue-

shifted compared to that of [Ppz*AlCl] (352 nm).  

 

 

Figure 93: UV/Vis. spectra of [Pc*AlCl] and [Ppz*AlCl] in CHCl3. 

1H-NMR spectra for [Pc*AlCl] and [Ppz*AlCl], measured in CDCl3, showed the expected 

pattern. The deshielded, aromatic protons of [Pc*AlCl] appear at 9.61 ppm, while the 

two singlet peaks at 1.83 and 1.43 ppm are assigned to the methylene and the methyl 

protons, respectively. Figure 94 shows the 1H NMR spectrum of [Ppz*AlCl], it displays 

two singlets at 1.44 and 2.28 ppm assigned to the methyl and methylene protons, 

respectively. It should be mentioned, although an axial ligand is present, the methyl 

protons appear to be chemically equivalent. This may be regarded as an indication that, 

due to the Lewis acidic nature of the cation in [Ppz*AlCl], a soluble coordination polymer 

or oligomer with [-Al-Cl-Al-Cl-Al-] backbone is present in non coordinating solvents. 

Such structural motif has been confirmed for some aluminium and gallium complexes, 

e.g. [(PcAl)]2O and [PcGaF].[326]  
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Figure 94: 1H-NMR spectra of [Ppz*AlCl] in CDCl3 (300 MHz). 

 

2.3.16 Attempted Synthesis of [Pc*AlOP(O)(OH)2] or [(Pc*AlO)2P(O)(OH)]  

Unlike the other Pc complexes (e.g. TiPcs), few examples for axial functionalization of 

Group 13 Pcs are known.[326-328] Thus, we tried to substitute the axial chlorido-ligand 

with other functionalities. The start was to try having an axial acidic anchor directly 

linked to the Al atom to allow connecting the macrocyles to an oxide semiconductor. 

Here the sensitivity of the Pc* and Ppz* complexes towards phosphoric acid was studied 

(Figure 95, the testing conditions are listed in Table 10 ). 

 

 

Figure 95: Attempted synthesis of [LAlOP(O)(OH)2] or [(LAlO)2P(O)(OH)], L=Pc* or Ppz*. 

Unfortunately, the axial ligand of [Pc*AlCl] showed high stability against substitution 

with a phosphoric acid moiety. While the analogous complex [Ppz*AlCl] showed no 

reaction at room temperature, the chromophore decomposed to unidentified products 

under refluxing conditions. 
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Table 10: Unsuccessful synthestic strategies of [LAlOP(O)(OH)2] or [(LAlO)2P(O)(OH)], L=Pc* or Ppz*.  

Target compound Reactants 
Testing 

conditions 
Product 

[Pc*AlOP(O)(OH)2] or [(Pc*AlO)2P(O)(OH)] 
[Pc*AlCl] + 

H3PO4 (85 %) 
Reflux/ overnight No reaction 

[Ppz*AlOP(O)(OH)2] or 

[(Ppz*AlO)2P(O)(OH)] 

[Ppz*AlCl] + 

H3PO4 (85 %) 

Stirring/ 24 

hours / 110oC 
No reaction 

Reflux/overnight Decomposition products 

 

2.3.17 Gallium(III) Complexes [Pc*GaCl] and [Ppz*GaCl] 

[Pc*GaCl] and [Ppz*GaCl] were prepared using the similar strategy that applied for 

synthesis of the aluminium macrocycles (Figure 96), except that GaCl3 was used as a 

metal template and no urea was required for the reaction to proceed, but only to 

enhance the reaction yield. The products were purified by column chromatography: 

[Pc*GaCl] was purified by elution with CHCl3 through a short column (≈ 5 cm) of Al2O3, 

while [Ppz*GaCl] was purified using THF and Al2O3. 

  

 

Figure 96: Synthesis of [Pc*GaCl] and [Ppz*GaCl]. 

Usually chloroform is used to purify the products via column chromatography. In this 

case, due to the axial dipole moment imposed by the Ga-Cl bond, CHCl3 is not a 

sufficiently polar solvent to elute the product, and a mobile phase of higher polarity is 

required. Hence, we used THF to obtain the pure [Ppz*GaCl] complex. In the case of 

[Pc*GaCl], when THF was used, the desired product was eluted with lower purity. 

Additionally, owing to the higher basicity of [Pc*GaCl] compared to the basicity of 

[Ppz*GaCl], the molecular ion peak of [Pc*GaCl] was not detected in the prescence of 

trace amount of THF. THF becomes protonated under the APCI-MS conditions then 

reacts with the complex. With elimination of HCl, a parent peak corresponding to 

[Pc*Ga(thf)]+ was detected (Figure 97). The pure [Pc*GaCl] complex is accessible by two 

ways. Firstly, after elution with THF, the complex must be then dried at 200oC for 2 

hours to remove any solvent molecules or organic matter. Secondly, the pure [Pc*GaCl] 

could be obtained directly by column chromatography (CHCl3, Al2O3), however, in this 

case, only a short aluminium oxide column was used. The reaction yield is high relative 

to the other soluble Pc complexes, viz. 46 % for [Pc*GaCl] and 42 % for [Ppz*GaCl] in the 
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absence of any catalyst. The complexes dissolve well in a variety of organic solvents 

including DCM, CHCl3, THF and toluene.  

 

 

Figure 97: APCI+ Mass Spectrum of [Pc*GaCl] in prescence of THF. On the right, a high resolution of the 
ion peak [Pc*Ga(thf)]+ position is shown compared with its theoretically calculated isotopic pattern. 

The APCI+ MS results of [Pc*GaCl] and [Ppz*GaCl] confirmed the proposed structures. 

The protonated molecular ion peaks were identified at m/z: 1059.80 [M+H]+ for 

[Pc*GaCl] and m/z: 1067.5 [M+H]+ for [Ppz*GaCl]. The spectrum of [Pc*GaCl] is shown in 

Figure 98; besides the protonated molecular ion peak of the complex, additional peaks 

were observed at 1052.6 and 1021.8, representing [Pc*GaOMe + H]+ and [Pc*Ga +H]+, 

respectively. The methoxy group originates from the co-solvent methanol. 
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Figure 98: APCI+ Mass Spectrum of [Pc*GaCl]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

UV-Vis. spectra of [Pc*GaCl] and [Ppz*GaCl] (Figure 99) in CHCl3 showed two strong 

absorption regions: B-bands appeared in the range of 300-360 nm and Q-bands 

appeared at 712 and 648 nm for [Pc*GaCl] and [Ppz*GaCl], respectively. The red-shift of 

the Q-band of [Pc*GaCl] compared to that of [Ppz*GaCl] is attributed to its lower π-π* 

HOMO-LUMO gap, which resulted from the enhanced electron donating ability of the 

benzene rings relative to the pyrazine ones. However, the main B-band of [Pc*GaCl] is 2 

nm blue-shifted compared to the B-band of [Ppz*GaCl].  

 

 

Figure 99: UV/Vis. spectra of [Pc*GaCl] and [Ppz*GaCl] in CHCl3. 



RESULTS AND DISCUSSION 

77 

 

Comparing the Ga complexes with the Al containing ones revealed a 6 nm red-shifted Q-

band in the case of Ga complexes. This might be attributed to the lower electron density 

of Pc*/Ppz* core in the case of aluminium relative to that when gallium is present, i.e., 

the weaker Lewis acidity character of gallium compared to that of aluminium; therefore, 

gallium withdraws little electron density from the Pc*/Ppz* core than aluminium does. 

The absorbance of the vibronic peak present at the higher energy side of the Q-band of 

[Pc*GaCl] is unusually higher than the expected pattern, but that might arise from the 

prescence of face to tail aggregates of the complex in the chloroform solution.   

Fiigure 100 shows the 1H NMR spectrum of [Ppz*GaCl] in CDCl3. In the figure, the two 

characteristic singlets of the complex could be clearly observed at 1.84 and 2.08 ppm, 

corresponding to the complex methyl and methylene protons, respectively. [Pc*GaCl] 

showed a very similar 1H NMR spectrum, but, in this case, three singlets are present at 

1.82, 2.07 and 9.60 ppm; the singlet peaks observed for the complex are assigned to its 

methyl, methylene and aromatic protons, respectively. In both cases, although of their 

molecular C4v symmetry, the peaks are not split. This might indicate an oligomeric or 

polymeric nature of the complex with [-Ga-Cl-Ga-Cl-Ga-] backbone in the solid state and 

even in a solution of non-coordinating solvent.   

      

 

Figure 100: 1H-NMR spectra of [Ppz*GaCl] in CDCl3 (300 MHz). 

 

2.3.18 Attempted Synthesis of Al(III) or Ga(III) Complexes Bearing Axial -OH or -SH 

Functionality  

Here, we tried to substitute the axial chlorido-ligand of four complexes, the Al- and Ga- 

complexes of Pc* and Ppz*, with either an –OH or an –SH moiety. Generally, insoluble 

complexes of the type [PcAlOH] and [PcGaOH] are known, while the Ppz counterparts 
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are not yet reported. Group 13 metal complexes with an axial -SH moiety are not known. 

Figure 101 and Table 11 display the preparative strategies followed to prepare the 

substituted complexes, with much focus on the Ppz* ones. Substitution of the axial Cl of 

the complexes with an SH moiety was attempted using NaSH in a variety of solvents 

under refluxing conditions (i.e. toluene and acetone). Unfortunately, no reaction 

occurred in toluene, and the Ppz complex [Ppz*AlCl] decomposed to unidentified 

products when allowed to react in refluxing acetone. The C=N bonds of the chromophore 

were probably attacked by the highly nucleophilic SH- anion.  Attempted synthesis of 

axial hydroxido complexes using a variety of different methods was also usuccessful. 

The tetramerization reaction of the nitriles in the presence of Al(OH)3 and DBU occured 

only at 220oC leading to formation of the metal free ligands Pc*H2 and Ppz*H2. 

Furthermore, [Ppz*AlCl] did not react with NH4OH in either water or triethylammine; 

however, when [Pc*GaCl] was refluxed in NH4OH/pyridine mixture, [Pc*Ga(pyridine)Cl] 

was obtained (Figure 102) and confirmed only by APCI+ MS and elemental analysis. The 

APCI+ MS of [Pc*Ga(pyridine)Cl] is shown in Figure 103: the parent ion peak of the 

complex was observed at 1100.4, corresponding to  [Pc*Ga(pyridine)]+. Besides this 

peak, two other fragments were detected corresponding to [Pc*GaCl+H]+ and [Pc*Ga]+. If 

the complex [Pc*Ga(pyridine)Cl] is heated at 200oC, it loses the coordinating pyridine 

ligand. Hence, analysis of the resulting compound confirms its structure as [Pc*GaCl].   

 

 

Figure 101: Attempted synthesis of [LAlOH], L=Pc* or Ppz and  [LMSH], M= Al or Ga. 

 

 

Figure 102: Synthesis of [Pc*Ga(pyridine)Cl]. 
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Table 11: Attempted synthesis of [Pc*AlOH], [Pc*AlSH], [Ppz*AlOH] and [Pc*GaSH]. 

Target 

compound  
reactants Base 

Coditions 

Solvent/temperature/duration 

Result 

[Pc*AlOH] 
PDN* + 

Al(OH)3  
DBU 

1-pentanol/220oC/1hour Pc*H2 

1-pentanol/160oC/overnight No reaction 

[Ppz*AlOH] 

PzDN* + 

Al(OH)3  
DBU 

1-pentanol/220oC/1 hour Ppz*H2 

1-pentanol/160oC/1 hour No reaction 

[Ppz*AlCl] 

+ NH4OH 
 

Water/reflux/overnight  No reaction 

Triethylamine/25oC/48 hours No reaction 

[Pc*GaOH] 
[Pc*GaCl] + 

NH4OH 
 

Pyridine/reflux/5 hours  [Pc*Ga(pyridine)Cl] 

Water /reflux/4 hours  No reaction 

[Pc*AlSH] 
[Pc*AlSH] 

+ NaSH 
 Toluene /reflux/overnight 

No reaction 

[Ppz*AlSH] 
[Ppz*AlCl] 

+ NaSH 
 

Toluene/reflux/overnight 
No reaction 

Acetone/reflux/3 hours 
Decomposition, chromophore 

destroyed 

 

 

Figure 103: APCI+ Mass Spectrum of [Pc*Ga(pyridine)Cl]. On the right, a high resolution of the ion peak 
[Pc*Ga(pyridine)]+ position is shown compared with its theoretically calculated isotopic pattern. 

 

2.3.19 Synthesis of [Pc*GaX] (X=CH3, C4H9, C6H13 and C6H5) 

When the [Pc*GaCl] was allowed to react with methyl-, n-butyl-, n-hexyl or phenyl- 

lithium overnight in dry THF, the axialy substituted alkyl- and phenyl- gallium 

phthalocyanines ([Pc*GaCH3], [Pc*GaC4H9], [Pc*GaC6H13], [Pc*GaC6H5]) were 
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successfully obtained (Figure 104) in high yield of 82 %, 71 %, 44 % and 71 %, 

respectively. The complexes are very soluble in a variety of solvents, including THF, 

DCM, CHCl3 and toluene. Additionally, compared to the chlorido-ligand, the alkyl- and 

aryl- substituents introduce steric crowding and should reduce the tendency to form 

aggregates.     

 

 

Figure 104: Synthesis of [Pc*GaMe], [Pc*Ga(n-Bu)], [Pc*Ga(n-Hex)] and [Pc*Ga(Ph)]. 

The APCI+ MS results of [Pc*GaMe], [Pc*Ga*(n-Bu)], [Pc*Ga(n-Hex)] and [Pc*GaPh]   

confirmed the proposed structures. The protonated molecular ion peak for each 

complex was identified at 1037.6, 1079.6, 1107.7 and 1099.6, respectively. In all cases, 

other peaks appear at higher m/z values. Representative examples are shown in Figures 

105 & 106. The spectrum of [Pc*GaC4H9] is shown in Figure 105, besides the protonated 

molecular ion peak of the complex, additional peaks were observed at 1195.7 and 

1253.7 representing [Pc*Ga(C4H9)3 + H]+ and [Pc*Ga(C4H9)4 + H]+. Furthermore, the 

spectrum of [Pc*GaPh] is shown in Figure 106, it also shows two ion peaks at 1099.5 and 

1178.6. These peaks correspond to [Pc*GaPh + H]+ and [Pc*Ga(Ph)2 + H]+.  

 

Figure 105: APCI+ Mass Spectrum of [Pc*Ga(n-Bu)]. On the right, a high resolution of the molecular ion 
peak position is shown compared with its theoretically calculated isotopic pattern. 
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Figure 106: APCI+ Mass Spectrum of [Pc*GaPh]. On the right, a high resolution of the molecular ion peak 

position is shown compared with its theoretically calculated isotopic pattern. 

The 1H-NMR spectra for the complexes are not completely understood with multiple 

peaks appearing, due to some splitting of the singlet peaks which probably resulted from 

some decomposition or prescence of the starting complex [Pc*GaCl]; also the mono-

lithio reactants, RLi, were found to be reactive at room temperature, so that by-products 

like dilithio phthalocyanine, formed almost exclusively.[307] However, the respective 

protons appeared at the expected chemical shifts. The 1H-NMR spectra of [Pc*GaCH3], 

and [Pc*GaC6H5] (Figure 107) measured in CDCl3 displayed better resolved results. 

[Pc*GaCH3] showed four peaks at 9.55, 2.07, 1.85 and 0.88 ppm, correponding to the 

aromatic, methylene, methyl protons of Pc* and the axial CH3 moiey, respectively. On the 

other hand, the protons of the axial phenyl group of [Pc*GaC6H5] appeared at 7.61 ppm, 

while the ring protons appear in the same regions as for [Pc*GaCH3], except that the 

methyl protons appear in two sets at 1.82 and 1.79 ppm. Additionally, in [Pc*GaC6H5], 

the methylene and aromatic protons appear at 2.08 and 9.60 ppm, respectively. 
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Figure 107: 1H-NMR spectra of [Ppz*GaPh] in CDCl3 (300 MHz). 

The exact nature of the side products could not be fully identified. Owing to the 

prescence of molecular ions with three and four alkyl groups, e.g. n-butyl, per gallium 

atom, and the relatively higher carbon content found in the elemental analysis of these 

complexes,  the side products might arise from the nucleophilic attack of the highly 

reactive R groups of LiR reagents at one, two, or three C=N bonds of the chromophore. 

This should be associated with the destruction of the π-system. The UV/Vis. spectra 

(Figure 109) shows relatively broad Q-bands accompanied by unusually strong bands in 

the higher energy region. This is probably indicative for the prescence of impurities of 

chromophore fragments of smaller π-system. A representative example of RLi addition 

to the chromophore followed by hydrolysis is shown in Figure 108.  

 

 

Figure 108: Proposed mechanism for attacking the Pc* ring with organolithium reagents. 

The axially substituted gallium complexes (Figure 109) showed UV-Vis. spectra (in 

CHCl3) very similar to the spectrum of [Pc*GaCl], except that a short blue shift (2 nm) 

was observed. This blue shift was previousely reported for axially substituted aryloxy 

gallium Pcs., as the substitution of the Cl atom results in a weak (2–3 nm) blue shift of 
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the Q-band.[307] Furthermore, the B-bands of the axially substituted Ga complexes are not 

sharp and not really clear, as a result of the impurities.   

 

 

Figure 109: UV/Vis. spectra of [Pc*GaCl], [Pc*GaMe], [Pc*Ga(n-Bu)], [Pc*(n-hex)] and [Pc*Ph] in CHCl3. 

[Pc*GaCl] was the only starting material to react selectively in some cases. All the Ppz* 

complexes and the aluminium complex [Pc*AlCl] did not react at all or did react 

unselectively with the alkylating reagents. The testing conditions are summarized in 

Figure 110 and Table 12.    

It is worthwhile to mention, after synthesizing the axially substituted alkyl- and phenyl- 

gallium complexes, we aimed to hydrolize them to obtain [Pc*GaOH]. However, the Ga 

complexes showed unexpected stability against hydrolysis with some amount of other 

decomposition products.   

 

 

Figure 110 :Attempted synthesis of [LMR], L=Pc* or Ppz*, R=CH3, C2H5 or C6H5 and  M= Al or Ga. 
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Table 12 : Successful/unsuccessful synthetic strategies of [LMR], L=Pc* or Ppz*, M= Al or Ga, R= alkyl or 

phenyl.  

Target compound Reactants 
Conditions 

Solvent/temperature/duration 
Result 

[Pc*AlCH3] 

[Pc*AlCl] 

+CH3Li  

THF/room 

temperature/overnight 
No reaction 

[Pc*AlCl] 

+CH3MgI  

THF/room 

temperature/overnight 
No reaction 

[Pc*AlC6H5] 
[Pc*AlCl] 

+C6H5Li  

THF/room 

temperature/overnight 
No reaction 

[Ppz*AlCH3] 

[Ppz*AlCl] 

+CH3Li  

Toluene/room temperature/3 

hours 
Unidentified decomposition products 

Diethyl ether/room 

temperature/3 hours 
Unidentified decomposition products 

[Ppz*AlCl] 

+CH3MgI  

THF/room temperature/3 hours Unidentified decomposition products 

Toluene /120oC /3 hours No reaction 

PzDN* + 

Al(CH3)3 
--------/220oC/30 minutes Unidentified green product 

[Ppz*AlC2H5] 
[Ppz*AlCl] + 

(C2H5)2Zn 

Diethyl ether / room temperature 

/ 3 hours 
Unidentified decomposition products 

[Ppz*AlC6H5] 
[Ppz*AlCl] + 

C6H5Li 
Toluene / 120oC/ 3 hours Unidentified decomposition products 

[Pc*GaCH3] 
[Pc*GaCl] + 

CH3Li 

THF / room temperature/ 

overnight 
[Pc*GaCH3] 

[Pc*GaC4H9] 
[Pc*GaCl] + 

C4H9Li 

THF / room temperature/ 

overnight 
[Pc*GaC4H9] 

[Pc*GaC6H13] 
[Pc*GaCl] + 

C6H13Li 

THF / room temperature/ 

overnight 
[Pc*GaC6H13] 

[Pc*GaC6H5] 
[Pc*GaCl] + 

C6H5Li 

THF / room temperature/ 

overnight 
[Pc*GaC6H5] 

[Ppz*GaCH3] 
[Ppz*GaCl] + 

CH3MgI 

Toluene/ 100oC/ overnight No reaction 

THF/ room temperature/ 

overnight 
Unidentified decomposition products 

[Ppz*GaCH3] 
[Ppz*GaCl] + 

CH3Li 

Toluene / room temperature/ 

overnight 
Unidentified decomposition products 

 
PzDN* + 

Ga(CH3)3 
----- / 220oC/ 30 minutes Unidentified green product 

 

2.3.20  Attempted Synthesis of Axially Substituted Amido Aluminium and Gallium 

Complexes 

After synthesis of [Pc*GaCH3], [Pc*GaC4H9], [Pc*GaC6H13] and [Pc*GaC6H5], we aimed to 

synthesize the axially substituted amido complexes by reacting the chlorido complexes 

with lithiated amides. Furthermore, titanium tetrakis(dimethylamide) was also allowed 

to react with [Ppz*AlCl]. Unfortunately, all attempts (Figure 111, Table 13) were 

unsuccessful.  
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Figure 111: Attempted synthsis of [LMR], L=Pc* or Ppz*, M= Al or Ga and R= H, CH3 or CH(CH3)2. 

 

Table 13 : Attempted synthsis of [LMR], L=Pc* or Ppz*, M= Al or Ga and R= H, Me or i-Pr.  

Target compound Reactants 
Conditions 

Solven/temperature/duration  
Result 

[Pc*AlNH2] 
[Pc*AlCl] + 

LiNH2 

THF/room 

temperature/overnight 
No reaction 

[Pc*Al(NMe2)] 
[Pc*AlCl] + 

LiN(Me)2 

THF/room 

temperature/overnight 
No reaction 

[Pc*Al(NiPr2)] 
[Pc*AlCl] + 

LiN(iPr)2 

THF/room 

temperature/overnight 
No reaction 

[Pc*GaNH2] 
[Pc*GaCl] + 

LiNH2 

THF/room 

temperature/overnight 
No reaction 

[Pc*Ga(NMe2)] 
[Pc*GaCl] + 

LiN(Me)2 

THF/room 

temperature/overnight 
No reaction 

[Pc*GaN(NiPr2)] 
[Pc*GaCl] + 

LiN(iPr)2 

THF/room 

temperature/overnight 
No reaction 

[Ppz*Al(NMe2)] 
[Ppz*AlCl] 

+Ti(NMe2)4 

Diethyl ether/ room 

temperature / 3 hours 
No reaction 

Toluene/ 100oC / 3 hours No reaction 

 

2.3.21 Indium(III) Complexes [Pc*InCl] and [Ppz*InCl] 

When PDN* and PzDN* were allowed to melt with InCl3 and urea under an argon 

atmosphere at 220oC, the desired complexes were obtained (Figure 112). However, in 

this case, purification of the products by column chromatography was not possible. 

Usually, the indium complexes are completely adsorbed on the top of the Al2O3 column 

when less polar eluents, such as DCM, THF and CHCl3, were used. Also, polar solvents 

such as CH3CN and methanol tend more to elute the reaction by-products. Thus, to 

purify the products, the reaction products were washed with methanol until the filtrate 

became colorless. Afterwards, the solid was collected and dissolved in DCM. After 

filtration, removing the DCM under vacuum resulted in obtaining the desired products in 
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low yield; 12 % for [Pc*InCl] and 13 % for [Ppz*InCl]. The products showed high 

solubility in DCM, THF, CHCl3 and toluene.    

 

 

Figure 112: Synthesis of [Pc*InCl] and [Ppz*InCl]. 

The presence of [Pc*InCl] and [Ppz*InCl] were confirmed by mass spectra (APCI+) 

showing protonated molecular ion peaks at 1103.6 and 1111.4, respectively. The 

spectrum of [Pc*InCl] is shown in Figure 113; the ion peak observed at 1165.5 is 

attributed to the complex adduct with two methoxy groups. 

 

 

Figure 113: APCI+ Mass Spectrum of [Pc*InCl]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The UV-Visible spectra of [Pc*InCl] and [Ppz*InCl] in CHCl3 showed the expected Q- and 

B-bands of the complexes (Figure 114). Generally, the main B-band of [Ppz*InCl] (356 

nm) is red-shifted compared to that of [Pc*InCl] (354 nm). The Q-band of [Pc*InCl] lies 

at 714 nm. However, owing to its higher HOMO-LUMO gap compared to that of  

[Pc*InCl], the Q-band of [Ppz*InCl] lies at 648 nm. In comparison with the gallium 

complexes, substitution of Ga with In resulted in a small redshift of 2 nm for the Pc* 

complexes. This shift is not observed in the case of the Ppz* complexes as the Q-band of 

[Ppz*InCl] and [Ppz*GaCl] lies almost at the same wavelength.  
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Figure 114: UV/Vis. spectra of [Pc*InCl] and [Ppz*InCl] in CHCl3. 

Figure 115 shows the 1H NMR spectrum of [Ppz*InCl]. As a result of the molecule’s C4v 

symmetry, the 1H-NMR spectrum in CDCl3 displayed only three singlets. The methyl 

protons appear as a set of two equivalent singlets at 1.83 and 1.93 ppm, integrating for 

twenty-four protons each. This effect can be explained by lowering of the molecular 

symmetry imposed by the axial In-Cl group. The upper and lower hemisphere of the 

macrocycle become inequivalent, and the methyl groups pointing towards the In-Cl 

moiety (endo) and those pointing away (exo) are located in different chemical 

environments. The other sixteen aliphatic CH2 protons are observed at 2.29 ppm. On the 

other hand, the 1H-NMR spectrum of [Pc*InCl] in CDCl3 showed its characteristic three 

singlets. However, here, the fourty-eight protons of the methyl groups appeared as one 

singlet at 1.86 ppm; also the sixteen CH2 protons appeared at 2.26 ppm, and the signal 

observed at 9.52 ppm corresponds to the eight aromatic protons.   

A monomeric or dimeric structure (Figure 116, A or B) is in accordance with chemically 

non equivalent methyl protons, while a chain structure / oligomer (Figure 116, C) would 

be in accordance with chemically equivalent methyl protons.   
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Figure 115: 1H-NMR spectra of [Ppz*InCl] in CDCl3 (300 MHz). 

 

 
Figure 116: Proposed structure for the indium complexes. 

 

2.3.22 Reactions of [Pc*MCl] and [Ppz*MCl]; M=Al, Ga, In with KF 

Refluxing [Pc*AlCl] or [Ppz*AlCl] with KF in water resulted in the formatiom of the 

fluoro analogs [Pc*AlF] or [Ppz*AlF] (Figure 117).  The products formed in high yield, i.e 

89 % for [Pc*AlF] and  96 % for [Ppz*AlF], and showed high solubility in a variety of 

organic solvents such as THF, toluene, DCM and CHCl3. Although the fluoro aluminium 

complexes were obtained this way, similar strategies, when applied for the gallium and 

indium complexes, were unsuccessful. 
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Figure 117: Reactions of [Pc*MCl] and [Ppz*MCl], M= Al, Ga or In with KF. 

The expected mass values measured using the APCI+ MS technique corresponded with 

the theoretical values for the complexes. The protonated molecular ion peaks of [Pc*AlF] 

and [Ppz*AlF] were observed at 999.6 and 1007.6 (Figure 118), respectively. 

 

 

Figure 118: APCI+ Mass Spectrum of [Ppz*AlF]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The UV/Vis. spectra of [Pc*AlF] and [Ppz*AlF] (Figure 119) show similar results 

compared to those of the chloro-analogs as the axial ligand does not influence the 

electronic spectra of the complexes. In detail, sharp Q-bands at 706 and 642 are 

observed for [Pc*AlF] and [Ppz*AlF], respectively. Generally, the Q-band of [Pc*AlF] is 

red-shifted compared to that of [Ppz*AlF] as a result of the lower HOMO-LUMO gap of 

the Pc* core compared to that of the Ppz* one. Additionally, substituting the benzene 

rings of the Pc* core with pyrazine ones led to a small redshift of the B-band of 4 nm, i.e, 

the B bands of [Pc*AlF] and [Ppz*AlF] lie at 344 and 348 nm, respectively.  
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Figure 119: UV/Vis. spectra of [Pc*AlF] and [Ppz*AlF] in CHCl3. 

Figure 120 shows the 1H-NMR spectrum of [Ppz*AlF] measured in CDCl3. The spectrum 

agrees well with the expected pattern. The two singlets displayed at 1.43 and 2.27 ppm 

are assigned and integrated well for the complex methyl and methylene proton. As no 

splitting is observed in the characterstic NMR signals of [Ppz*AlF], this might indicate an 

oligomeric or polymeric nature of the complex with [-Al-F-Al-F-Al-] backbone in the 

solid state or in a solution of nonpolar solvents. On the other hand, [Pc*AlF] showed its  

aromatic protons at 9.59 ppm. Additionally, the peak observed at 2.08 ppm integrated 

well for the sixteen methylene protons of the Pc* ring.  However, in this case, the methyl 

protons appear as a set of two equivalent singlets at 1.82 and 1.85 ppm integrating for 

twenty-four protons each. This can be attributed to the lowering of the molecular 

symmetry of the molecule imposed by the axial Al-F moiety. Hence, two sets of protons 

pointing towards the Al-F moiety (endo) and away (exo) are located in different 

chemical environments.  
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Figure 120: 1H-NMR spectra of [Ppz*AlF] in CDCl3 (300 MHz). 

Crystals of [Ppz*AlF] suitable for X-ray diffraction were obtained by slow diffusion of 

pentane vapor into a chloroform solution of the complex. The complex crystallizes in the 

monoclinic space group P21/c as four molecules per unit cell. The structure of the 

crystals is not fully resolved, due to the low quality of the crystals obtained. Thus, an 

unidentified number of disorded solvent molecules are present, but an octahedral 

aluminium species, [Ppz*AlF(OH2)], was identifiable (Figure 121). In general, few 

reports counted on the octahedral arrangement of aluminium phthalocyanines, rather 

than the bridged fluor- or chloro- aluminium phthalocyanine, AlPcs having trans thf 

radicals[328], or nitrito ligands[327] were also reported.      

As no coordinated water molecules were detected using FT-IR and the abscence of any 

molecular peak corresponds to [Ppz*AlF(OH2)] species in the APCI-MS measurement, 

we believe that the water molecule just coordinated to the metal during the 

crystallization process.  

 

 

Figure 121: Structure of [Ppz*AlF(OH2)] crystallized from chloroform. All solvent molecules and H atoms 
are omitted for clarity, Ellipsoids are shown at 50% probability. 
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The aluminum atom sits ‘atop’ or ‘out-of the N4 plane’ towards the fluorido ligand and is 

present in a centre of an octahedron. Both the fluorine and oxygen atoms are trans-to 

each other. The four isoindole rings in the molecule are equivalent, and the fused 

cyclohexene rings adopt a half-chair conformation. Selected structural parameters of the 

obtained species [Ppz*AlF(OH2)] are summarized in Table 14. 

 

Table 14: Selected Bond Lengths (Å) and Angles (°) for [Ppz*AlF(OH2)].  

Bond lengths/ Å  Angles/ °  Angles/ °  

Al1-N2 1.952(6)  N1-Al1-N2 89.7(2) N1-Al1-N1‘ 173.7(3) 

Al1-N1 1.987(6) F1-Al1-N2 91.4(2) O1-Al-N2 89.2(2) 

Al1-N2‘ 1.969(6) F1-Al1-N1 92.9(2) O1-Al1-N1 88.2(2) 

Al1-N1‘ 1.949(6) F1-Al1-N2‘ 93.3(2) O1-Al1-N2‘ 86.1(2) 

Al1-F1 1.732(5) F1-Al1-N1‘ 91.4(2) O1-Al1-N1‘ 85.5(2) 

Al1-O1 2.006(6) N2-Al1-N1‘ 85.4(2) F1-Al1-O1 178.8(3) 

d(P1-P2) 2. 900 N2-Al1-N2‘ 175.3(3) N2-Al1-N1‘ 89.4(2) 

d(Al1-Al2) 6.601 N1-Al1-N2‘ 89.9(2)   

d(P1-P2) the distance between two neighboring N4 planes 

 

The polymeric nature along Al-F axis was proposed for the unsubstituted [PcAlF]n  

crystals[308], due to the complex’s low solubility and low volatility, as well as the absence 

of an AlPcF+ peak in the mass spectrum of the complex and the prescence of an array for 

this ion in the spectrum of the pyridine washed precursor of the fluoride. Similar to our 

case, the structure of [PcAlCl] was determined[309]. The chlorido complex crystallized in 

the triclinic space group P1̅. The four Al-N distances were elucidated as 1.961(12) Å, 

1.962(13) Å, 1.966(12) Å and 2.018(12) Å. Thus, the mean distance is 1.977(12) Å; 

slightly longer than that of [Ppz*AlF(OH2)] (1.964(6) Å). The four N-Al-Cl angles 

[102.7(4)° , 100.7(4)° , 102.4(4)° and 102.1(4)°] are also longer than the four N-Al-F 

angles of [Ppz*AlF(OH2)] . The reported four vicinal N-Al-N angles of [PcAlCl] are 

86.8(5)°, 90.4(5)°, 84.9(5)° and 88.0(5)°, while the two N-Al-N angles of the opposite 

nitrogen atoms are 157.2(5)° and 154.2(6)°. In [Ppz*AlF(OH2)], the last two angles are 

175.3(3)° and 178.8(3)°, indicating that the Al atom deviates less form the N4 plane in 

the case of [PpzAlF(OH2)]. It is obvious that the Al-F bond 1.732(5) Å is shorter than the 

Al-Cl (2.179(6) Å).[309]    

Literature[313] reported on aluminium phthalocyanines bearing axial water molecule. It 

was suggested, in the presence of water, due to the Lewis acidity of the complex, a water 

molecule coordinates to the Al atom.  

The relative arrangement of [Ppz*AlF(OH2)] species is shown in Figure 122. The unit cell 

packing is composed of four formular units of [Ppz*AlF(OH2)]. Each two complex 

molecules are almost parallel but both overlap to the other two molecules. Face to back 

arrangement of each two parallel molecules is observed. Generally, the Pcs could be 

considered electrically conductive if the π-systems of the adjacent molecules are able to 
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overlap to promote the transfer of electrons or holes. In [Ppz*AlF(OH2)], although the 

closest intermolecular distance between two N4 neighboring planes is in the range of 

the effective π-π interactions for the planar phthalocyanines,[237] the closest centroid –

centroid distance is 6.601 Å indicating weak ovelaping between the complex molecules. 

 

 
Figure 122: Unit cell packing of [Ppz*AlF(OH2)] molecules in the solid state. All solvent molecules, 

aliphatic substituents and H atoms are omitted for clarity. 

 

2.3.23 Silicon Si(IV) and Ge(IV) Complexes  [Ppz*SiCl2] and [Ppz*Ge(OH)2] 

Melting a mixture of PzDN*, urea and SiCl4 or GeCl4 at 220oC under an argon atmosphere 

resulted in the formation of a solid residue. The residues were chromatographed using 

(CHCl3, Al2O3) to yield [Ppz*SiCl2] and [Ppz*Ge(OH)2] in 27 % and 28 % yield, 

respectively. The addition of urea is mandatory, as no reaction occurs in its absence. The 

formation of [Ppz*Ge(OH)2] might be explained by the larger size of Ge atom compared 

to the Si one. In the case of Ge, the atom is too large to occupy the central cavity. Hence, 

once the precursor is allowed to react with GeCl4 , the complex [Ppz*GeCl2] with a cis 

arrangement of its two chlorido axial ligands is formed first. However, hydrolysis of this 

product to [Ppz*Ge(OH)2] during its chromatographic purification is more readily 

occurring than in case of the corresponding silicon complex. The complexes are very 

soluble in common organic solvents. However, using the same preparative procedures, 

the analogous Pc* complexes could not be obtained (Figure 123, Table 15).   
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Figure 123: Reactions of PDN* and PzDN* with SiCl4 and GeCl4. 

 

Table 15 : Successful/unsuccessful synthetic strategies of [LMCl2] or [LMO], L=Pc* or Ppz*, M= Si or Ge.  

Target 

compound 

Reactant 

 

Base 

 

Conditions 

Duration/temperature 

Result 

 

[Ppz*SiCl2] PzDN* + SiCl4  Urea 30 minutes /220oC [Ppz*SiCl2] 

[Ppz*Ge(OH)2] PzDN* + GeCl4  Urea 30 minutes /220oC [Ppz*Ge(OH)2] 

[Pc*SiCl2] PDN* + SiCl4  Urea 30 minutes /220oC Unidentified uncolorful product 

[Pc*Ge(OH)2] PDN* + GeCl4  Urea 30 minutes /220oC Unidentified uncolorful product 

 

An APCI+ MS experiment was performed for each complex. The [Ppz*Ge(OH)2] spectrum 

displayed only one peak at 1065.6 corresponding to [PpzGeOMe+ H]+, the Me moiety 

resulted from the methanol added during the measurement. To distinguish between 

[Ppz*Ge(OH)2] and [Ppz*GeCl2], as cleavage of the chlorido ligands is possible during the 

APCI+ MS measurement, analysis of chlorine content was performed. Since no chlorine 

was detected in the sample, the formula [Ppz*Ge(OH)2] is best suited for the complex. 

The molecular ion peak at 1059.6 of [Ppz*SiCl2] is attributed to [M+H]+ (Figure 124), in 

addition to [M+H]+, an intense peak at 1051.7 is present. This peak is attributed to 

[Ppz*Si(OMe)2]+ as the MS measurement was conducted in the presence of methanol.  
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Figure 124: APCI+ Mass Spectrum of [Ppz*SiCl2]. On the right, a high resolution of the molecular ion peak 
position is shown compared with its theoretically calculated isotopic pattern. 

The electronic absorption spectra of the complexes measured in CHCl3 are shown in 

Figure 125. The two main absorption regions for the complexes appear as follows; the B-

band of [Ppz*SiCl2] and [Ppz*Ge(OH)2] lies at 357 and 354 nm, respectively, and the 

complexes show their charcterstic Q-bands at 652 and 636 nm, respectively. In this case, 

the electronic spectral differences between the two complexes might be explained by the 

electronegativity of the axial ligands, the central element and the configuration of the 

complex. Taking into account the higher electronegativity of oxygen compared to 

chlorine, the hydroxido ligands probably withdraw more electrons from the ring 

compared to the chloroido ligands. Furthermore, the trans arrangement of the chlorido 

ligands in the case of [Ppz*SiCl2] probably hinders their ability for withdrawing 

electrons from the ring, hence the electrons are probably centered close to the cental 

element. Finally the Ge atom is larger than Si, that means at least the Si-N bonding 

electrons are of higher covalent character compared to the Ge-N bonding electrons. 
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Figure 125: UV/Vis. spectra of [Pc*Ge(OH)2] and [Ppz*SiCl2] in CHCl3. 

The distinction between the different geometrical configurations of the complexes is 

indicated in their 1H-NMR spectra.  In the case of [Pc*SiCl2] (Figure 126), the small Si 

atom occupies the Ppz* cavity perfectly. Hence, the axial ligands prefer the trans 

arrangement, leading to a D4h symmetry. In this case, the methyl protons pointing 

towards the two chlorido-ligands are chemically equivalent and appear as one singlet at 

1.97 ppm. Additionally, the methylene protons of [Pc*SiCl2] appear as one singlet at 2.25 

ppm.  On the other hand, in [Ppz*Ge(OH)2] (Figure 127), the comparatively larger Ge 

atom does not fit well in the Ppz* cavity and is probably located above the N4 plane. 

Hence, a C4V pyramidal symmetry is obtained. That makes the hydrogen atoms 

chemically inequivalent (pointing towards different chemical environments). Hence, 

they appear as a set of two singlets at 1.95 and 1.96 ppm in close proximity. The 

methylene protons of [Ppz*Ge(OH)2] appear at 2.24 ppm as two singlets in close 

proximity. Additionally, a broad signal integrated for two protons is observed at 3.33 

ppm. This signal could be attributed to the two protons of the Ge(OH)2 moiety.  
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Figure 126: 1H-NMR spectra of [Ppz*SiCl2] in CDCl3 (300 MHz). 

 

 

Figure 127: 1H-NMR spectra of [Ppz*Ge(OH)2] in CDCl3 (300 MHz). 
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2.3.24 Attempted Synthesis of Axially Substituted Silicon Pyrazinoporphyrazines 

To obtain other axially substituted silicon complexes, several procedures were followed 

including tetramerization of PzDN* in the presence of dimethyl or diphenyl silicon 

dichloride, addition of lithiated or Grignard reagents to [Ppz*SiCl2] and refluxing the 

latter complex with KF solution or isopropanol (Figure 128). All conditions used are 

listed in Table 16. Except for a small signal corresponding to [Ppz*Si(OC3H7)2+ H]+ in the 

APCI+ MS was observed indicating a successful reaction of [Ppz*SiCl2] with refluxing 

isopropanol, none of the other desired products could be isolated. 

       

 

Figure 128: Successeful/unsuccessful synthesis of axially substituted silicon pyazinoporphyrazine. 

 

Table 16 : Testing conditions for synthesis of [Ppz*SiL2], L=OC3H7, F, CH3 and C6H5.  

Target compound Reactant Base 
Conditions 

Solvent/ temperature /duration 

Result 

[Ppz*Si(OC3H7)2] 
[Ppz*SiCl2] + 

C3H7OH 
 Iso-propanol/reflux/overnight 

[Ppz*Si(OC3H7)2] 

[Ppz*SiF2] [Ppz*SiCl2] + KF  Water/ reflux/overnight No reaction 

[Ppz*Si(CH3)2] 

[Ppz*SiCl2] + 

CH3MgI  

 THF/ room temperature/overnight 

Unidentified 

decomposition 

products 

 Toluene/ room temperature/overnight 

Unidentified 

decomposition 

products 

[Ppz*SiCl2] + 

CH3Li  
 Toluene/ room temperature/overnight 

Unidentified 

decomposition 

products 

PzDN* + 

(CH3)2SiCl2  
Urea ----------/220oC /30 minutes  

Unidentified green 

product 

[Ppz*Si(C6H5)2] 
PzDN* + 

(C6H5)2SiCl2  
Urea ----------/220oC /30 minutes 

Unidentified green 

product 
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2.3.25 Attempted Synthesis of Other Pc*/Ppz* Complexes 

In addition to the previousely reported results, Table 17 lists several unsuccessful attempts 

to obtain other Pc*/Ppz* complexes.   

  

Table 17: Attempted synthesis of other Pc*/Ppz* Complexes.  

Target 

compound 
Reactant Base 

Conditions 

Solvent/temperature /duration 

Result 

[Pc*Mg] PDN* + MgCl2.6H2O  DBU 1-pentanol/160oC/overnight 
Unidentified 

product 

[Pc*ScCl] PDN* + ScCl3  Urea 1-CNP/160oC/overnight 
Unidentified 

product 

[Pc*Cd] PDN* + CdCl2.H2O  

DBU 1-pentanol/160oC/overnight 
Unidentified 

product 

Urea ------------ /220oC/30 minutes 
Unidentified 

product  

[Ppz*Mg] PDN* + MgCl2.6H2O DBU 1-pentanol/220oC/20 minutes 
Unidentified 

product 

[Ppz*ScCl] PzDN* + ScCl3  

Urea 1-CNP/160oC/overnight 
Unidentified 

product 

Urea ------/220oC/30 minutes 
Unidentified 

product 

DBU 
1-Pentanol/220oC(60 minutes)/ 

160oC(overnight) 

Unidentified 

product 

[Ppz*ZrCl2] PzDN* + ZrCl4 Urea 

-------/220oC / 30 minutes 
Unidentified 

product 

1-CNP/220oC/90 minutes 
Unidentified 

product 

[Ppz*ZrBr2] PzDN* + ZrBr4 Urea -------/220oC / 30 minutes 
Unidentified 

product 

[Ppz*Mo] PzDN* + Mo(CO)6 Urea -------/220oC / 30 minutes 
Unidentified 

product 

[Ppz*MoO] 
PzDN* + 

(NH4)6Mo7O24.4H2O 
(NH4)6Mo7O24.4H2O -------/220oC / 30 minutes 

Unidentified 

product 

[Ppz*MoN] 
PzDN* + [MoN(Ot-

Bu)3] 
Urea -------/220oC / 30 minutes 

Unidentified 

product 

[Ppz*W] PzDN* + W(CO)6 Urea -------/220oC / 30 minutes 
Unidentified 

product 

[Ppz*WN] PzDN* + WNCl3 Urea -------/220oC / 30 minutes 
Unidentified 

product 

[Ppz*W(Nt-

Bu)Cl] 

PzDN* + [W(Nt-

Bu)2Cl2(Pyridine)2] 
Urea -------/220oC / 30 minutes 

Unidentified 

product 

[Ppz*WW 

Ppz*] 

PzDN* + 

[(Me2N)3WW(NMe2)3] 
Urea -------/220oC / 30 minutes 

Unidentified 

product 
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Table 17: Continued.  

Target 

compound 
Reactant Base 

Conditions 

Solvent/temperature /duration 

Result 

[Ppz*Re(Nt-

Bu)Cl] 

PzDN* + [Re(Nt-

Bu)2Cl3] 
Urea -------/220oC / 30 minutes 

Unidentified 

product 

[Ppz*Cd] PzDN* + CdCl2.H2O 

Urea -------/220oC / 30 minutes 
Unidentified 

product 

DBU 
1-pentanol/220oC(20 minutes) /160oC 

(overnight) 

Unidentified 

product 

[Ppz*SnCl2] 
PzDN* + 

SnCl4.5H2O 
Urea -------/220oC / 30 minutes 

Unidentified 

product 

[Ppz*Pb] 

PzDN* + PbO Urea -------/220oC / 30 minutes 
Unidentified 

product 

PzDN* + 

Pb(CH3COO)2 
Urea -------/220oC / 30 minutes 

Unidentified 

product 

 

2.4 Complexes of PzDN# 

PzDN# was heated at 220oC with a metal chloride (CoCl2 or CuCl2) and urea in neat 

under an argon atmosphere (Figure 129). The residues obtained were throughly washed 

with CHCl3, ethanol and water, and then eluted from a short Al2O3 column using 

pyridine. Although the formation of [Ppz#Co] and [Ppz#Cu] was confirmed by the APCI+ 

MS (the protonated molecular ion peaks appear at 796.3 and 800.3, respectively), we did 

not proceed with further reactions using this precursor due to some disadvantages 

including the very poor solubility of the products and the necessity of purifying the 

chromophores using (Pyridine, Al2O3), as washing the insoluble products with the 

common solvents was insufficient to properly purify them.  

 

 

Figure 129: Synthesis of [Pz#Co] and [Pz#Cu]. 

 

2.5 Fluorescence Study 

Owing to the strong fluorescent character of MPpz complexes, which could often be 

observed with the eye, it was important to study the fluorescence spectra of some of 

these complexes, e.g. [Ppz*TiO], [Ppz*VO], [Ppz*CrCl], [Ppz*AlCl], [Ppz*GaCl] and 

[Ppz*InCl].  

To measure the fluorescence spectra, all compounds were excited by UV light with an 

excitation wavelength λEx of 350 nm, since this lies in the absorption range of the B 
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bands. The absorption and emission spectra of [Ppz*TiO], [Ppz*VO], [Ppz*CrCl], 

[Ppz*AlCl], [Ppz*GaCl] and [Ppz*InCl] are shown in Figure 130. Table 18 lists the peak 

absorbance and peak emission as well as the Stokes shift, the difference between the 

two maxima. In all cases, the shift observed is only a few nanometers; showing that 

there is very little reorganization between the ground and excited states.[322] Therefore, 

the absorption and emission bands overlap in this area. The largest shift of 13 nm, is 

shown by the vanadium complex [Ppz*VO]. 

 

 

Figure 130: Absorption / Emission spectra of [Ppz*TiO], [Ppz*VO], [Ppz*CrCl], [Ppz*AlCl], [Ppz*GaCl] and 
[Ppz*InCl] in CHCl3. λEx = 350 nm. 
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Table 18: Absorption and Emission maxima of selected [Ppz*M]  

complexes in CHCl3, λEx = 350 nm. 

Complex 
λAbs/nm  

 

λEm/ nm 

 

∆(λEm-λAbs) 

 

[Ppz*TiO] 650 652 2 

[Ppz*VO] 648 661 13 

[Ppz*CrCl] 646 652 6 

[Ppz*AlCl] 642 647 5 

[Ppz*GaCl] 448 652 4 

[Ppz*InCl] 648 652 5 

 

2.6 Cyclic Voltammetry Study 

Cyclic voltammetry (CV) is a very versatile and modern electroanalytical technique for 

the characterization of electroactive species. It has been used to evaluate the diffusion of 

redox active reagents in different systems.[280] It provides valuable information 

regarding the stability of the analyte oxidation states and the electron transfer rate 

between the electrode and the analyte. Applications of CV have been extended to almost 

every aspect of chemistry.[281-285] Usually, the standard reduction potentials of the first 

oxidation and first reduction of a complex can be correlated to the energies of its highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), 

respectively.  

Cyclic voltammograms are obtained from measuring the Faradaic current as a function 

of the applied potential. Starting at an initial potential and varying it in a linear manner 

up to a limiting value. At this value, the scan direction is reversed and the same potential 

range is scanned in the opposite direction. Consequently, the species formed by 

oxidation on the forward scan might be reduced on the reverse scan.  

Generally, the anodic peak current (ip,a) denotes the current observed when scanning 

positively and when the scan is reversed; it is called the cathodic peak current (ip,c). The 

peak potentials corresponding to the Faradic currents are called the anodic peak 

potential (Ep,a) and the cathodic peak potential (Ep,c).  

The half-wave potential (E½) is given by:  

𝐸1/2 =
𝐸𝑝,𝑎 +  𝐸𝑝,𝑐

2
 

                                        

The difference between the two peak potentials (∆𝐸𝑝) allows for determination of the 

number of electrons involved in the redox process. 

                        ∆𝐸𝑝 =
𝑅𝑇

𝑛𝐹
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Where R is the gas constant (8.314 J.K-1mol-1), T is the temperature in Kelvin, n is the 

number of electrons and F is Faraday’s constant.   If T=298 K,   
𝑅𝑇

𝑛𝐹
 = 

0.059

𝑛
 𝑉𝑜𝑙𝑡𝑠. Thus, in a 

reversible, one electron redox process, ∆Ep = 0.059 V.  

A reversible system is one wherein the starting material is regenerated after oxidation 

or reduction with a rapid exchange rate of electrons between the working electrode and 

the analyte. Also, for a reversible reaction,  
𝑖p,a

𝑖c,a
= 1, and the current is defined by the 

Ilkovic equation: 

 
𝑖𝑝 = 2.69 𝑥 105𝑛3/2𝐴𝐶𝐷1/2𝑉1/2 

 

Where ip is the peak current, n (the mol equivalent), A (the electrode area), D (the 

diffusion coefficient), C (the analyte concentration) and V (the scan rate).   

When only a single oxidation or reduction wave is observed, this indicates an 

irreversible system. Slow electron exchange or chemical reactions at the electrode are 

common reasons for irreversibility. Quasi-reversibility is suggested when the return 

peak current is smaller than its couple or when ∆E is larger than what was expected for 

a reversible system. The current may be controlled by mass transport of any of the 

reaction components.[293] The peak current of an irreversible system is given by; 

𝑖𝑝 = 2.69 𝑥 105𝛼1/2𝐴𝐶𝐷1/2𝑉1/2 

 

where α is the transfer coefficient. 

The electrochemistry of MPcs is very rich with many redox processes. Incorporation of 

different metals into the Pc core and variations in the substituents on the periphery of 

the ring result in complexes of varied properties.[294]  

Redox processes occurring in MPc complexes may be centered at the Pc core or at the 

metal. It is possible to observe two, successive one-electron oxidations of the Pc ring by 

removal of electrons from the a1u orbital and four, successive one-electron reductions 

into the eg orbital. If metal orbitals lie at energies within the HOMO and LUMO of the 

ring, oxidation or reduction may occur at the central metal.[294] Redox processes 

occurring in MPcs are influenced by several factors, including the nature of the 

substituents on the Pc ring, the nature and oxidation state of the central metal, the 

nature of the axial ligands and the solvent. 

The CV technique is accomplished with a three-electrode arrangement: the potential is 

applied to the working electrode with respect to a reference electrode, while an 

auxiliary (counter) electrode is used to complete the electrical circuit. The potential at 

which a reversible redox couple takes place is recorded. However, the zero point 

potential is arbitrary. Conventionally, potentials are referenced to the Normal Hydrogen 

Electrode (NHE), but, experimentally, it is usually difficult to assemble a hydrogen 
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electrode for comparison. Other references commonly used are the Saturated Calomel 

Electrode (SCE), with the reduction potential at 0.241 V vs NHE, and the Ag/AgCl 

electrode at 0.197 V vs NHE. All of these are cumbersome to assemble, and the Fc/Fc+ 

couple of ferrocene has become a standard for calibration[286-290], since both ferrocene 

and ferrocenium are chemically rather inert. The oxidation of ferrocene Fe(C5H5)2 to the 

Fe(𝐶2𝐻5)2
+ is a standard, one-electron process, and the electron transfer rate is fast.[291, 

292] Furthermore, this couple is reversible and Nernstian in the majority of organic 

solutions, and its redox potential is only weakly influenced by such solvents.[295, 296] In 

practice, when the CV of a compound of interest is recorded, ferrocene is added to the 

solution, and the redox potentials of the compound are referenced to the Fc/Fc+ couple 

as zero or the experimental couple can be referenced to any of the other standard 

reference electrodes by noting that the Fc/Fc+ couple appears at 0.400 V vs NHE.[206] 

  

2.6.1 Cyclic voltammetry  of Pc*/Ppz* Complexes 

The CV measurements were performed in about 5 mM DCM solutions, while the 

concentration of TBAPF6 (to insure that the mass transfer of the analyte is only diffusion 

controlled) in the same solution is 0.1 M. Tables (19-30) list the assignments of the 

redox couples and the electrochemical parameters, including the half-wave peak 

potentials (E1/2), anodic to cathodic peak potential separation (∆Ep), ratio of anodic to 

cathodic peak currents (Ip,a/Ip,c) and the difference between the first oxidation and 

reduction potentials (∆E1/2).  

Redox processes in MPcs can be located at the ligand and at the metal center.[211, 269, 270] 

Reduction of the ligand is associated to the position of LUMO ([M(II)Pc(−2)] + e ⇔ 

[M(II)Pc(−3)]−) whereas oxidation of the ligand (M(II)Pc(−2) ⇔ [(M(II)Pc(−1)]− +e) is 

associated to the position of the HOMO. MPcs having a metal that possesses energy 

levels lying between the HOMO and the LUMO of the Pc ligand, will exhibit redox 

processes centered on the metal. This is the case for the Pcs of Cr, Mn, Co and Fe [259, 269, 

270], which have open d-shell structures.[269–271] 

 

2.6.1.1 Cyclic voltammetry of Pcs/Ppzs having a redox inactive metal center 

2.6.1.1.1 Metal free (aza)phthalocyanines Pc*H2 and Ppz*H2 

Figure 131 shows the CV of Pc*H2 in DCM containing TBAPF6. The free ligand gives two, 

one-electron reduction processes, labelled R1 at −1.553 V and R2 at -1.92V, and two, 

one-electron oxidation processes, labeled O1 at 0.073 V and O2 at 0.778 V, versus Fc/Fc+ 

couple at 0.100 Vs−1 scan rate. As no metal is present, all couples in the figure are 

assigned to the Pc ring. The values of the anodic to the cathodic peak separation (∆Ep= 

136-151 mV) and Ip,a/Ip,c (for the reduction processes) are close to unity, suggesting 

reversible to quasi-reversible redox processes.[211] While the anodic component of the 
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second oxidation process, O2, is split into two peaks, the cathodic one is very broad, both 

splitting and broadness indicate the presence of aggregation-disaggregation equilibrium 

between the complex species.[254, 263] This process is reversible to quasi-reversible; 

however, the peak broadness led to difficulty in determining the cathodic peak potential 

and the Ip,c/Ip,a for the O2 process. 

The separation between the first and second ring reductions was found to be 

approximately 0.367 V. This peak separation is in agreement with the reported values 

for redox processes in metal-free Pcs.[212] 

 
Figure 131: Cyclic voltammogram of 5 mM Pc*H2 in TBAPF6/DCM. 

A comparison between the voltammograms of Pc*H2 and Ppz*H2 (Figure 132) obtained 

under the same conditions clearly reveals that the reduction potentials of the former, 

probably owing to its higher electron density,  shift to relatively more negative values, 

and its oxidation potentials shift to less positive values. This suggests that, the redox 

potentials, and thus the efficiency of the Pc compounds in various applications, can be 

remarkably changed by altering the electron density of the ring. Ppz*H2 also gives two 

reductions, but only one oxidation couple (Table 19); however, the anodic component of 

the reduction couple (R2) is split, which implies the presence of aggregated species in 

solution.[212] The ∆Ep values indicate reversible to quasireversible behavior for the 

reduction processes, and irreversibility of the oxidation process was suggested due to 

the absence of any corresponding cathodic current in the reverse scan.  

 

 

Figure 132: Cyclic voltammogram of 5 mM Ppz*H2 in TBAPF6/DCM. 
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Table 19: The electrochemical data for the metal free (aza)phthalocyanines 

Complex 
Ring 

oxidation 

O1 

[L(-1)H2]+ 

/[L(-2)H2] 

O2 

[L(0)H2]2+ 

/[L(-1)H2]+ 

Ring 

Reduction 

R1 

[L(-2)H2] 

/[L(-3)H2]- 

R2 

[L(-3)H2]- 

/[L(-4)H2]2- 

∆E1/2 

Pc*H2 E1/2  0.073 0.778a E1/2  -1.553 -1.92 1.626 

 ∆Ep 0.136  ∆Ep 0.151 0.142  

 Ip,c/Ip,a   Ip,a/Ip,c 0.93 0.85  

Ppz*H2 E1/2 1.220a  E1/2 -0.737 -1.089 1.957 

 ∆Ep   ∆Ep 0.055 0.117  

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, ∆E1/2 = E1/2 (first oxidation)−E1/2 (first reduction) 

=HOMO–LUMO gap, a anodic current 

 

Reduction of the Pc ligand is associated with the position of the lowest unoccupied 

molecular orbital (LUMO), whereas oxidation of the ligand is related to the position of 

the highest occupied molecular orbital (HOMO). Thus, the difference between the half-

peak potentials of the first oxidation and the first reduction processes (∆E1/2) reflects 

the HOMO-LUMO gap for metal-free Pcs. This gap decreases by increasing the electron 

density of the ring[220], thus it is 1.626 V for Pc*H2 and 1.957 V for Ppz*H2 (Table 19).  

 

2.6.1.1.2 Nickel (aza)phthalocyanines [Pc*Ni] and [Ppz*Ni] 

According to literature [250], all the redox processes for NiPcs are attributed to the Pc ring 

system. The complex [Pc*Ni] (Figure 133) displays two reduction (R1 and R2) and two 

oxidation (O1 and O2) couples. The values of Ip,a/Ip,c and ∆Ep suggest a purely diffusion 

controlled, reversible, electron-transfer processes for at least three couples (R1, R2 and 

O1).[211] For O2, the cathodic to anodic peak current and the anodic to cathodic potential 

separation could not be accurately defined, due to broadness of the cathodic component 

of the process; this broadness could be attributed to an aggregation- disaggregation 

equilibrium of the complex species.[263]    

 
Figure 133: Cyclic voltammogram of 5 mM [Pc*Ni] in TBAPF6/DCM. 
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Figure 134: Cyclic voltammogram of 5 mM [Ppz*Ni] in TBAPF6/DCM. 

The analogous complex [Ppz*Ni] (Figure 134) shows similar behavior; however, it 

displays only one oxidation process (O1). As shown in Table 20, as a result of the lower 

electron density of the Ppz* ring compared to the Pc* one, oxidation of this complex is 

more difficult (at higher positive potential) but it is easier to be reduced (less negative 

potential). Reversibility of the redox processes was confirmed by the ∆Ep and Ip,c/Ip,a 

values. 

 
Table 20: The electrochemical data for the nickel (aza)phthalocyanines. 

Complex 
Ring 

oxidation 

O1 

[L(-1)Ni]+ 

/[L(-2)Ni] 

O2 

[L(0)Ni]2+ 

/[L(-1)Ni]+ 

Ring 

Reduction 

R1 

[L(-2)Ni] 

/[L(-3)Ni]- 

R2 

[L(-3)Ni]- 

/[L(-4)Ni]2- 

∆E1/2 

[Pc*Ni] E1/2  0.068 0.900a E1/2  -1.6 -1.987 1.668 

 ∆Ep 0.204  ∆Ep 0.154 0.13  

 Ip,c/Ip,a   Ip,a/Ip,c 0.98   

[Ppz*Ni] E1/2 0.857  E1/2 -1.15 -1.555 2.007 

 ∆Ep 0.147  ∆Ep 0.20 0.23  

 Ip,c/Ip,a   Ip,a/Ip,c 0.92 0.88  

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, ∆E1/2 = E1/2 (first oxidation)−E1/2 (first reduction) 

=HOMO–LUMO gap, a anodic current 

 

In comparison with the metal free complexes, the displacement of two protons with the 

nickel(II) ion shifts the first reduction potential of the ring to more negative values; this 

may be attributed to the increase in the negative charge on the ligand as a result of the 

strong coordination of nitrogen atoms to the metal ion.[267] The π-back-donation of the 

dπ of the metal ion into the empty Pc*(Ppz*)-π* orbitals, and the polarization of the 

ligand due to the eg symmetry with the displacement of protons by the metal ion, were 

previously reported[139] providing an additional support for the negative shift in the 

reduction potential of the macrocyclic ring. 
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2.6.1.1.3 Zinc (aza)phthalocyanines [Pc*Zn] and [Ppz*Zn] 

 
Figure 135: Cyclic voltammogram of 5 mM [Pc*Zn] in TBAPF6/DCM. 

Oxidation and reduction reactions of zinc phthalocyanines in solution are expected to 

occur at the Pc ring only, since Zn metal is electro-inactive.[251, 252] Figures 135 and 136 

show typical cyclic voltammograms of [Pc*Zn] and [Ppz*Zn], respectively. The 

voltammograms of both show very broad oxidation peaks indicating a high degree of 

aggregation-disaggregation equilibrium between the complex species.[263] Depending on 

the cathodic-to-anodic potential peak separations (Table 21), both [Pc*Zn] and [Ppz*Zn] 

display one reversible to quasi-reversible reduction process.[252] While the complex 

[Pc*Zn] gives two oxidation processes (O1 and O2), [Ppz*Zn] diplays only an irreversible 

O1 process within the same potential window. The first oxidation process O1 of [Pc*Zn] 

is reversible to quasireversible, depending on its ∆Ep value.[252] The voltammogram of 

the complex [Pc*Zn] shows an irreversible oxidation process, O2, just at the end of the 

potential window. Although a very broad peak in the voltammogram of [Ppz*Zn] was 

detected, this peak could not be considered as a second oxidation process O2. This might 

be attributed to aggregation of molecules in solution. The reason, why it does not 

represent a second oxidation process, is its potential value, as a second oxidation of 

[Ppz*Zn], due to its lower electron density, must occur at a more positive potential 

relative to the potential of the O2 process of the corresponding complex [Pc*Zn].             
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Figure 136: Cyclic voltammogram of 5 mM [Ppz*Zn] in TBAPF6/DCM. 

 
Table 21: The electrochemical data for the nickel (aza)phthalocyanines. 

Complex 
Ring 

oxidation 

O1 

[L(-1)Zn]+ 

/[L(-2)Zn] 

O2 

[L(0)Zn]2+ 

/[L(-1)Zn]+ 

Ring 

Reduction 

R1 

[L(-2)Zn] 

/[L(-3)Zn]- 

∆E1/2 

[Pc*Zn] E1/2  0.439 1.69a E1/2  -1.645 2.084 

 ∆Ep 0.142  ∆Ep 0.154  

[Ppz*Zn] E1/2 0.583a  E1/2 -1.509 2.092 

 ∆Ep   ∆Ep 0.168  

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, ∆E1/2 = E1/2 (first oxidation)−E1/2 (first reduction) 

=HOMO–LUMO gap, a anodic current 

 

2.6.1.1.4 Copper (aza)phthalocyanines [Pc*Cu] and [Ppz*Cu] 

Figure 137 shows a typical cyclic voltammogram of [Pc*Cu], at 0.1 Vs-1 scan rate in 

DCM/TBAPF6. It displays one reduction (R1) and two oxidation couples. It is well known 

that Cu(II) in the cavity of Pc core is redox inactive. Therefore, these redox couples are 

ligand-based.[253, 254]  

 
Figure 137: Cyclic voltammogram of 5 mM [Pc*Cu] in TBAPF6/DCM. 
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Owing to the lower electron density of [Ppz*Cu] (Figure 138) compared to [Pc*Cu], 

reduction of this complex is much easier than for [Pc*Cu], however, it is more difficult to 

be reduced. On the contrary of [Pc*Cu], the redox behavior of [Ppz*Cu] (Table 22) shows 

two reduction (R1, R2) and one oxidation O1 couple within the same potential window. 

The peak current of the oxidation process O1 is much higher than those of the other 

reduction processes. This observation provides strong support for a high adsorption 

tendency of the complex on the platinum working electrode. High adsorption tendency 

of CuPcs on platinum electrodes has also been reported previously.[255-257]  

 

 
Figure 138: Cyclic voltammogram of 5 mM [Ppz*Cu] in TBAPF6/DCM. 

 
Table 22: The electrochemical data for the copper (aza)phthalocyanines. 

Complex 
Ring 

oxidation 

O1 

[L(-1)Cu]+ 

/[L(-2)Cu] 

O2 

[L(0)Cu]2+ 

/[L(-1)Cu]+ 

Ring 

Reduction 

R1 

[L(-2)Cu] 

/[L(-3)Cu]- 

R2 

[L(-3)Cu]- 

/[L(-4)Cu]2- 

∆E1/2 

[Pc*Cu] E1/2  0.226 0.881 E1/2  -1.438  1.664 

 ∆Ep 0.074 0.075 ∆Ep 0.105   

 Ip,c/Ip,a   Ip,a/Ip,c 0.985   

[Ppz*Cu] E1/2 0.664  E1/2 -1.26 -1.661 1.924 

 ∆Ep 0.155  ∆Ep 0.112 0.158  

 Ip,c/Ip,a   Ip,a/Ip,c 0.875 0.98  

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, ∆E1/2 = E1/2 (first oxidation)−E1/2 (first reduction) 

=HOMO–LUMO gap, a anodic current 

 

Generally, the values of Ip,a/Ip,c  and anodic to cathodic peak separation of the [Pc*Cu]  

and [Ppz*Cu] redox processes suggest reversible redox processes.[211]  The HOMO – 

LUMO gap was calculated as the difference between the first oxidation and the first 

reduction potentials for the complexes. ∆E1/2 for complex [Pc*Cu] is 1.664 V 

(comparable with other studies 1.3 -1.7 V[268]), and the analogous [Ppz*Cu], due to its 

lower electron density, shows a higher HOMO – LUMO gap of 1.924 V.    
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2.6.1.1.5 Oxovanadium (aza)phthalocyanines [Pc*VO] and [Ppz*VO] 

The cyclic voltammogram of [Pc*VO] (Figure 139) displays two reduction (R1-R2) and 

three oxidation (O1-O3) couples. In comparison with literature,[264] the processes R1, R2 

and O1 could be easily assigned to [V(IV)OPc*(-2)]/[V(IV)OPc*(-3)]-, [V(IV)OPc*(-3)]-

/[V(IV)OPc*(-4)]2- and [V(IV)OPc*(-1)]+/[V(IV)OPc*(-2)]. A second oxidation process of 

oxovanadium Pcs is rarely mentioned[264], and it implies a second, ring-based oxidation 

of [V(IV)OPc*(0)]2+/[V(IV)OPc*(-1)]+. The third oxidation process cannot be firmly 

assigned, usually, a maximum of two, successive one-electron oxidation processes of the 

Pc core is allowed. Additionally, oxidation of the VO group in the cavity of a Pc has never 

been reported; however, there is no reports on the electrochemistry of the VPcs at this 

high positive potential. Hence, we propose that the third oxidation process O3 is metal 

based V(IV) ⇾ V(V). The V(V) species might be stabilized by the electron donating ability 

of the Pc* ligand.  

 

 
Figure 139: Cyclic voltammogram of 5 mM [Pc*VO] in TBAPF6/DCM. 

The analogous complex [Ppz*VO] (Figure 140), is more prone for reduction and more 

difficult to be oxidized (Table 23). Thus, it displays two reduction and only one ligand-

based oxidation processes. Except for the oxidation process of [Ppz*VO], the other two 

redox processes are reversible to quasirversible. ∆Ep suggests slow, electron-transfer 

redox processes for [Ppz*VO] compared to [Pc*VO]. Although ∆Ep value of the R2 of the 

complex [Ppz*VO] is somewhat high, reversibility is illustrated by the similarity in the 

forward and reverse scan.[78] 
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Figure 140: Cyclic voltammogram of 5 mM [Ppz*VO] in TBAPF6/DCM. 

 
Table 23: The electrochemical data for the oxovanadium (aza)phthalocyanines 

Complex 
Ring 

oxidation 

O1 

[L(-1)VO]+ 

/[L(-2)VO] 

O2 

[L(0)VO]2+ 

/[L(-1)VO]+ 

O3 

[L(0)VIVO]3+ 

/[L(-1)VVO]2+ 

Ring 

Reduction 

R1 

[L(-2)VO] 

/[L(-3)VO]- 

R2 

[L(-3)VO]- 

/[L(-4)VO]2- 

∆E1/2 

[Pc*VO] E1/2  0.218 0.868 1.338 E1/2  -1.36 -1.73 1.578 

 ∆Ep 0.082 0.088 0.03 ∆Ep 0.08 0.10  

 Ip,c/Ip,a    Ip,a/Ip,c 0.94 0.89  

[Ppz*VO] E1/2 1.017a   E1/2 -0.929 -1.525 1.946 

 ∆Ep    ∆Ep 0.141 0.241  

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, ∆E1/2 = E1/2 (first oxidation)−E1/2 (first reduction) 

=HOMO–LUMO gap, a anodic current 

 

2.6.1.1.6 Fluoroaluminium (aza)phthalocyanines [Pc*AlF] and [Ppz*AlF]  

As shown in Figures 141 and 142, both [Pc*AlF] and [Ppz*AlF] complexes, with 

electroinactive metal centers[279], give two, irreversible, ligand-based oxidation 

processes (Table 24), while no clear reduction peaks could be seen within the potential 

window (- 2V vs Fc/Fc+ couple). 

 

 
Figure 141: Fraction of the cyclic voltammogram of 5 mM [Pc*AlF] in TBAPF6/DCM. 
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Figure 142: Fraction of the cyclic voltammogram of 5mM [Ppz*AlF] in TBAPF6/DCM. 

 
Table 24: The electrochemical data for the fluoro 

     aluminium (aza)phthalocyanines. 

Complex Ring oxidation 

O1 

[L(-1)AlF]+ 

/[L(-2)AlF] 

O2 

[L(0)AlF]2+ 

/[L(-1)AlF]+ 

[Pc*AlF] Ea (anodic wave potential) 0.218 a 0.405a 

[Ppz*AlF] Ea (anodic wave potential) 0.533a 1.058a 

 

2.6.1.2 Cyclic voltammetry of complexes with a redox active metal center 

2.6.1.2.1 Manganese(III) (aza)phthalocyanines [Pc*MnCl] and [Ppz*MnCl] 

MnPcs have very interesting electrochemistry due to the fact that Mn exhibits variable 

oxidation states ranging from Mn(I) to Mn(IV) in such MnPc complexes.[207, 208, 213, 265, 266] 

This makes MnPcs potential catalysts for many reactions. Substituted MnPcs are still 

relatively rare, and their electrochemistry is not fully understood, compared to the other 

first-row transition metal MPc complexes. For example, the first reduction in [Pc(-2) 

Mn(II)] has been a subject of some controversy, with some reports proposing ring 

reduction to the [Mn(II)Pc(-3)]- species and others suggesting metal reduction to 

[Mn(I)Pc(-2)]-.[202] 

The voltammogram of the complex [Pc*MnCl] (Figure 143) clearly  displays two 

reversible to quasi-reversible reduction R1 and R2 and two irreversible oxidation O1 

and O2 processes. In comparison with literature values,[208, 210, 265, 266] we assign R1 to 

metal reduction process [Pc*(-2)Mn(III)]/[Pc*(-2)Mn(II)]-. Process R2 is then assigned 

to ring reduction, [Pc*(-2)Mn(II)]-/[Pc*(-3)Mn(II)]2-. Furthermore, the oxidation 

processes O1 and O2 are assigned to two successive metal and ligand oxidation 

processes [Pc*(-2)Mn(IV)]+/[Pc*(-2)Mn(III)] and [Pc*(-1)Mn(IV)]2+/ [Pc*(-2)Mn(IV)]+.  
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Figure 143: Cyclic voltammogram of 5 mM [Pc*MnCl] in TBAPF6/DCM. 

[Ppz*MnCl] (Figure 144) also undergoes two oxidation processes (the first oxidation is 

usually hard to be detected[210] and can be assigned to [Ppz*(-2)Mn(IV)]+/[Ppz*(-

2)Mn(III)]), but, as a result of its lower electron density, three reduction processes for 

the complex can occur, and the third reduction is attributed to a second ring-based 

reduction [Ppz*(-3)Mn(II)]2-/[Ppz*(-4)Mn(II)]3-. ∆Ep values of all the reduction 

processes suggest a slow electron transfer mechanism (Table 25). 

 

 

Figure 144: Cyclic voltammogram of 5 mM [Ppz*MnCl] in TBAPF6/DCM. 

It can be observed that the anodic and cathodic scans cross (Figures 143), or become 

very close (Figure 144) to, each other and this current shift occurs at a midpoint 

between the cathodic and the anodic components of the first reduction process. This 

suggests a system change such as a chemical reaction at this point. It has been 

documented that decreasing the oxidation state of a metal ion favors lower coordination, 

especially for CoPc and MnPc complexes.[251, 264] Actually, two chemical reactions could 

occur for the manganese (III) complexes during the voltammetric measurements, but 
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formation of the oxo-MnPc complex [PcMnIII–O–MnIIIPc] is diminished as the analyte 

solution was prepared in a glove box under an inert atmosphere just prior to 

measurement; hence, the only proposed mechanism is removal of the axial chlorine[264] 

and formation of the new complexes [Pc*Mn(II)] and [Ppz*Mn(II)].          

 
Table 25: The electrochemical data for the manganese (aza)phthalocyanines. 

Complex Ox. 

O1 

[L(-2)MIV]+  

/[L(-2)MIII] 

O2 

[L(-1)MIV]2+  

/[L(-2)MIV]+ 

Red. 

 

    R1 

 [L(-2)MIII]  

/[L(-2)MII]- 

R2 

 [L(-2)MII]-  

/[L(-3)MII]2- 

R3 

[L(-3)MII]2- 

/[L(-4)MII]3- 

[Pc*MnCl] E1/2  0.210 a 0.862a E1/2  -1.206 -1.915  

 ∆Ep   ∆Ep 0.565 0.19  

[Ppz*MnCl] E1/2 0.268a 1.006a E1/2 -0.660 -1.441 -1.889 

 ∆Ep   ∆Ep 0.500 0.288 0.192 

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1. ∆Ep = Ep,a – Ep,c at 100mVs−1, a anodic current,  

** A reaction, e.g. removal of the axial chlorine is expected and hence M= Mn or MnCl   

 

2.6.1.2.2 Iron azaphthalocyanines [Ppz*Fe] and [Ppz*FeCl] 

Owing to the air and light sensitivity of [Pc*Fe] and [Pc*FeCl], no clean voltammograms 

could be obtained for these complexes. However, herein we can explain the main CV 

behavior of the analogous [Ppz*Fe] or [Ppz*FeCl] complexes.    

Already reported,[260] iron(II) Pcs exhibit metal-based and ligand-based redox processes, 

regardless of the solvent used, the first oxidation and first reduction are metal-based 

processes[261]. However, usually when reduced, the reduction products get easily 

adsorbed onto the electrode, and the complexes degrade rapidly upon oxidation. Hence, 

in this work, we were only able to observe an irreversible reduction process R2. The 

irreversible behavior of this peak (Figure 145) suggests its assignment to the metal 

based reduction [Ppz*(-2)FeII] /[Ppz*(-2)FeI]-[261] (Table 26).  

 
Figure 145: Fraction of the cyclic voltammogram of 5 mM [Ppz*Fe] in TBAPF6/DCM. 
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Figure 146: Cyclic voltammogram of 5 mM [Ppz*FeCl] in TBAPF6/DCM. 

 
Table 26: The electrochemical data for the Iron azaphthalocyanines 

Complex Ox. 

O1 

[Ppz*(-1)MIII]+  

/[Ppz*(-2)MIII] 

O2 

[Ppz*(0)MIII]2+  

/[Ppz*(-1)MIII]+ 

Red. 

 

    R1 

 [Ppz*(-2)MIII]  

/[Ppz*(-2)MII]- 

R2 

 [Ppz*(-2)MII]-  

/[Ppz*(-2)MI]2- 

[Ppz*Fe] E1/2    E1/2   -1.573c** 

[Ppz*FeCl] 
E1/2 0.465a 1.155a E1/2 -0.271 -1.464a 

∆Ep   ∆Ep  0.404 

E1/2 = (Epa + Epc)/2 at 100mVs−1, ∆Ep = Epa – Epc at 100mVs−1, a anodic current, c cathodic current, M=Fe or FeCl 

** Also it denotes R2, this is the first reduction process in case of [Ppz*Fe], also, in this case, the formal charge of the 

complex oxidized and reduced forms are 0 and -1 respectively.    

 

[FePpz*Cl] (Figure 146) shows two reduction and two oxidation couples. Usually, iron 

(III) Pcs are highly aggregated at the concentrations used for cyclic voltammetry, and the 

observed peaks are mainly due to the aggregated species, with some contribution from 

the monomeric components.[213] As a result, only the cathodic or anodic component of 

the redox processes could be precisely determined. According to literature,[262] the two 

reduction processes are assigned to the metal reduction FeIII/FeII and FeII/FeI, while the 

oxidation processes are ligand based (Table 26). 

 

2.6.1.2.3 Cobalt (aza)phthalocyanines [Pc*Co] and [Ppz*Co] 

For CoPc complexes, it is known that the first reduction reaction of CoPc in solution or 

film states is expected to be a cobalt-based process because of the electroactive nature of 

cobalt metal coordinated to the macrocycle unit.[258, 272, 273] On the other hand, a second 

reduction of CoPc is based on the Pc ring. This behavior does not depend on solvent or 

electrolyte systems used in experiment. However, the first oxidation process usually 

occurs on the Pc ring in nonpolar solvents, such as DCM[254], as donor solvents strongly 

favour [Co(III)Pc(-2)] by coordinating along the axis to form a six coordinate species. If 
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such solvents are absent, then oxidation to Co(III) is inhibited and ring oxidation occurs 

first.[212] 

Therefore, as shown in Figure 147, the voltammogram of [Pc*Co] shows one reduction 

and three oxidation couples. The first reduction process of the complex is assigned to 

the [Pc(-2)Co(II)] / [Pc(-2)Co(I)]-, while the first oxidation, O1, is ligand-based due to 

[Pc*(-1)Co(II)]+ / [Pc*(-2)Co(II)] (Table 27). The second and third oxidation couples are 

assigned to the [Pc*(-1)Co(III)]2+ / [Pc*(-1)Co(II)]+  and [Pc*(0)Co(III)]3+ / [Pc*(-

1)Co(III)]2+ respectively. 

On the contrary of [Pc*Co], the voltammogram of [Ppz*Co] (Figure 148) shows two 

reduction and two oxidation couples. All the couples could be easily assigned as; R1 is 

[Ppz*(-2)Co(II)] / [Ppz*(-2)Co(I)]-, R2 is [Ppz*(-2)Co(I)]- / [Ppz*(-3)Co(I)]2-, O1 is 

[Ppz*(-1)Co(II)]+ / [Ppz*(-2)Co(II)] and O2 is [Ppz*(-1)Co(III)]2+ / [Ppz*(-1)Co(II)]+.  

 

 
Figure 147: Cyclic voltammogram of 5 mM [P*Co] in TBAPF6/DCM. 

The oxidation process O2 of [Ppz*Co] shows irreversible behavior. For the other 

couples, except for O3 for [Pc*Co],  the redox processes exhibit anodic to cathodic peak 

separation (∆Ep) from 61 to 147 mV (Table 27), suggesting reversible electron 

transfer.[211] Although, of the higher ∆Ep value of O3, some reversibility was shown in the 

reverse scan; suggesting the slow, electron-transfer mechanism for this process.  
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Figure 148: Cyclic voltammogram of 5 mM [Ppz*Co] in TBAPF6/DCM. 

 
Table 27: The electrochemical data for the manganese (aza)phthalocyanines. 

Complex Ox. 

O1 

[L(-1)CoII]+  

/[L(-2)CoII] 

O2 

[L(-1)CoIII]2+  

/[L(-1)CoII]+ 

O3 

[L(0)CoIII]3+  

/[L(-1)CoIII]2+ 

Red. 

 

    R1 

 [L(-2)CoII]  

/[L(-2)CoI]- 

R2 

 [L(-2)CoI]-  

/[L(-3)CoI]2- 

[Pc*Co] 

E1/2  0.1405 0.7705 1.424 E1/2  -0.924  

∆Ep 0.093 0.119 0.391 ∆Ep 0.147  

Ip,c/Ip,a 0.92   Ip,c/Ip,a 0.89  

[Ppz*Co] E1/2 0.153 0.968a  E1/2 -0.459 -1.551 

 ∆Ep 0.201   ∆Ep 0.109 0.139 

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, a anodic current 

 

2.6.1.2.4 Oxotitanium (aza)phthalocyanines [Pc*TiO] and [Ppz*TiO] 

Detailed electrochemical studies of TiPcs are not reported, as many as other reports on 

the electrochemistry of MPcs, such as ZnPc, CuPc and CoPc are given. Silver et al.[274] 

studied the thin film voltammetric behavior of [PcTiO] complex. They showed that 

[PcTiO] complex coated on ITO electrode displayed two ring reduction processes and 

decompose during the oxidation process. Nyokong and co-workers[199] studied the 

solution electrochemistry of TiPc derivatives, and reported that these complexes might 

give three reduction processes assignable to a two-electron metal centered reduction 

from Pc(2−)TiIVO to Pc(2−)TiIIO for first reduction couple, a combination of a one-

electron ligand reduction from Pc(2−)TiIIO to Pc(3−)TiIIO and a metal-centered one-

electron reduction from Pc(3−)TiIIO to Pc(3−)TiIO for the second reduction and finally, a 

one electron ligand reduction from Pc(3−)TiIO to Pc(4−)TiIO. However, according to 

literature,[275] the titanium complex showed clearly the one electron metal center 

reductions from [Pc(2−)TiIVO] to [Pc(2−)TiIIIO]− and from [Pc(2−)TiIIIO]− to 

[Pc(2−)TiIIO]2− for the first two reduction couples and finally a one electron ligand 

reduction from [Pc(2−)TiIIO]2− to [Pc(3−)TiIIO]3−.  

In this study, the cyclic voltammogram of [Pc*TiO] (Figure149) displays two quasi-

reversible reduction couples at -1.03 and -1.46 V, and, in comparison with literature,[275] 
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these half wave potentials are close to the second and third reduction processes of the 

complex. However, an overlap of the voltammograms for another substituted TiPc, 

whereby two 1-electron reductions resulted in one couple, was reported.[199, 276] Owing 

to the presence of three oxidation components for the two redox processes and the 

position of the first oxidation component at – 0.26 V (0.677 V far from the E1/2 for the 

first reduction couple) and the deviation of the anodic to the cathodic current from 

unity, where (Ip,a(R1a) / Ip,c(R1c) = 0.83 but Ip,a (R1a+R1a*) / Ip,c (R1c) = 0.94), we believe 

that the first reduction of the complex is a two electron process, however when the 

potential scan is reversed the molecule was re-oxidized clearly in two steps to the 

original molecule. 

 

 
Figure 149: Cyclic voltammogram of 5 mM [Pc*TiO] in TBAPF6/DCM. 

While reduction is expected to occur at both the central metal, as well as, on the ring, 

oxidation of TiPcs is expected to occur only at the ring[276], and hence, the two, 

irreversible oxidation processes shown in Figure 149 are assigned to the ring-based 

oxidations, Pc*(-1)/Pc*(-2) and Pc*(-0)/Pc*(-1). 

 

 
Figure 150: Fraction of the cyclic voltammogram of 5 mM [Ppz*TiO] in TBAPF6/DCM. 



RESULTS AND DISCUSSION 

120 

 

Although the voltammogram of the analogous complex [Ppz*TiO] looks very broad 

(Figure 150), probably due to the presence of aggregated species,[254, 263] three 

quasireversible reduction couples and two irreversible oxidation processes could be 

detected. The first two reduction couples are metal based while the third one is ligand 

based; however, in this case no overlap is expected. The ligand based oxidation couples 

O1 and O2 are shifted to a higher positive potential (Table 28) due to the relative 

difficulty in oxidizing the Ppz* core compared to the Pc* one.  

 
Table 28: The electrochemical data for the oxotitanium (aza)phthalocyanines. 

Complex Ox. 

O1 

[L(-1)TiIVO]+  

/[L(-2)TiIVO] 

O2 

[L(0)TiIVO]2+  

/[L(-1)TiIVO]+ 

Red. 

 

    R1 

 [L(-2)TiIVO]  

/[L(-2)TiIIIO]- 

    R2 

 [L(-2)TiIIIO]-  

/[L(-2)TiIIO]2- 

R3 

[L(-2)TiIIO]2-  

/[L(-3)TiIIO]3- 

[Pc*TiO] 

E1/2  0.642 a 1.271a E1/2  -1.068a  -1.458** 

∆Ep   ∆Ep 0.168  0.249 

Ip,c/Ip,a   Ip,a/Ip,c 0.94  0.95 

[Ppz*TiO] 
E1/2 0.688a 1.320a E1/2 -0.573 -1.061 -1.440 

∆Ep   ∆Ep 0.028 0.129 0.167 

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1, ∆Ep = Ep,a – Ep,c at 100mVs−1, a anodic current, ** shown as R2 in the literature and 

the voltammogram  

 

2.6.1.2.5 Chromium (aza)phthalocyanines [Pc*CrCl] and [Ppz*CrCl] 

The electrochemical data for the Cr(III) Pcs are very sparse. In the voltammogram of 

[Pc*CrCl], five redox processes were observed (Figure 151). The first reduction is known 

to occur at the central metal to give Cr(II)Pcs;[251, 278] thus, it is assigned to [Pc*(-

2)Cr(III)Cl]/[Pc*(-2)Cr(II)Cl]-. The cathodic component of this process is split, probably 

due to the presence of aggregated species. The second reduction could be attributed to 

the ligand-based reduction, [Pc*(-2)Cr(II)Cl]-/[Pc*(-3)Cr(II)Cl]2-.[278] In comparison with 

reported data,[278] the three oxidation processes of the complex are assigned to the metal 

oxidation [Pc*(-2)Cr(IV)Cl]+/[Pc*(-2)Cr(III)Cl] followed by two ligand-based oxidations 

[Pc*(-1)Cr(IV)Cl]2+/[Pc*(-2)Cr(IV)Cl]+ and [Pc*(0)Cr(IV)Cl]3+/[Pc*(-1)Cr(IV)Cl]2+ (Table 

29). 

 

 

Figure 151: Cyclic voltammogram of 5 mM [Pc*CrCl] in TBAPF6/DCM. 
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The complex [Ppz*CrCl] shows similar behavior (Figure 152); however, in this case, only 

two oxidation processes could be observed within the same potential window. This is 

attributed to the lower electron density of the Ppz* ring compared to the electron 

density of the Pc* one. Owing to the same reason, the reduction couples shift to less 

negative potentials. Moreover, while all the redox processes of [Pc*CrCl] show some 

reversibility, except for R1, no reversibility could be observed in the [Ppz*CrCl] 

voltammogram.   

  

 

Figure 152: Cyclic voltammogram of 5 mM [Ppz*CrCl] in TBAPF6/DCM. 

 
 
Table 29: The electrochemical data for the chlorochromium(III) (aza)phthalocyanines. 

Complex Ox. 

O1 

[L(-2)CrIVCl]+  

/[L(-2)CrIIICl] 

O2 

[L(-1)CrIVCl]2+  

/[L(-2)CrIVCl]+ 

 

O3 

[L(0)CrIVCl]3+  

/[L(-1)CrIVCl]2+ 

Red. 

 

    R1 

 [L(-2)CrIIICl]  

/[L(-2)CrIICl]- 

    R2 

 [L(-2)CrIICl]-  

/[L(-3)CrIICl]2- 

[Pc*CrCl] 
E1/2  0.064 0.772 1.319 E1/2  -1.445 -1.935 

∆Ep 0.281 0.072 0.207 ∆Ep 0.163 0.180 

[Ppz*CrCl] 
E1/2 0.499a 0.945a  E1/2 -0.709 -1.842a 

∆Ep    ∆Ep 0.168  

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1. ∆Ep = Ep,a – Ep,c at 100mVs−1. a anodic current 

 

2.6.1.2.6 Germanium azaphthalocyanine [Ppz*Ge(OH)2] 

Unlike the SiPcs which experience only ligand based redox processes, as electrochemical 

reduction to Ge(II) Pcs is known,[277] both metal and ligand based redox processes for 

GePcs is expected. 

The complex displays four redox processes (Figure 153), in comparison with 

literature,[277] oxidation of the ring, O1, and two successive ring reductions, R1 and R2, 

(Table 30) are possible. Although the available voltammograms of the GePcs do not 

show more than two reduction couples, in our study, a third reduction process, R3, 

followed by a crossing point, *, was observed. This crossing might indicate an associated 
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chemical reaction (removal of the axial ligand and formation of [Ppz*Ge(II)] complex. 

Hence, we assume the third reduction is a two-electron transfer process corresponding 

to the metal based process Ge(IV) to Ge(II). Unfortunately, the R3 components are split 

and rounded; thus, the anodic and/or cathodic current could not be accurately 

determined. 

 

 

Figure 153: Cyclic voltammogram of 5 mM [Ppz*Ge(OH)2] in TBAPF6/DCM. 

 

Table 30: The electrochemical data for [Ppz*Ge(OH)2]. 

Complex Ox. 

O1 

[Ppz(-1)GeIV(OH)2]+  

/[Ppz(-2)GeIV(OH)2] 

Red. 

 

    R1 

 [Ppz*(-2)GeIV(OH)2]  

/[Ppz*(-3)GeIV(OH)2]- 

    R2 

 [Ppz(-3)GeIV(OH)2]-  

/[Ppz(-4)GeIV(OH)2]2- 

R3 

[Ppz(-4)GeIV(OH)2]2-  

/[Ppz(-4)GeII]4- 

[Ppz*GeO] 

E1/2  0.642 a E1/2  -1.068a  -1.458** 

∆Ep  ∆Ep 0.168  0.249 

E1/2 = (Ep,a + Ep,c)/2 at 100mVs−1. ∆Ep = Ep,a – Ep,c at 100mVs−1, a anodic current 
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3 Summary 

The aim of this work was to synthesize novel phthalocyanines and 

pyrazinoporphyrazines with the main group elements and transition metals. The 

conformational rigidity and the steric bulk of their peripherally annelated  cyclohexene 

rings tend to reduce the degree of aggregation, thus enhancing the solubility of these 42 

π- Hückel aromatic system without inhibiting their tendencies to form crystalline 

phases. For central metals having an oxidation state > II, the possibility of introducing 

anionic axial ligands Lax, at the metal center was investigated and the optical properties 

of these chromophores were determined. In addition to their high solubility, some of the 

synthesized chromophores were found to be sublimable. Phthalocyanines and related 

compounds are interesting materials for optoelectronic applications; thus, a study of the 

electronic HOMO and LUMO alignment and coupling of these new chromophores at 

different heterojunction interfaces is outlined. 

.  

The synthesis of four substituted phthalonitriles and pyrazine dinitriles as chromophore 

building blocks is discussed.  

 

While CatPzDN* does not tetramerize, the usefulness of PzDN# is greatly limited by the 

poor yield and solubility of its complexes. The use of PDN* and PzDN* as precursors led 

to the formation of highly soluble macrocycles, which could be analysed by 1H NMR and 

sometimes by 13C NMR spectroscopy. Moreover, the isomerical purity of the 

chromophores facilitates their crystallization and analyzing their crystal structures.  
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3d metal complexes 

Except for scandium, Pc*/Ppz* complexes with all 3d elements were prepared: 

 

In Pc* and Ppz* complexes with chromium and iron, the metal center could be inserted 

in either oxidation state II or III. Except for [Pc*Fe] and [Pc*FeCl], all the other 3d metal 

complexes are highly air and light stable. The metal free ligands (Pc*H2 and Ppz*H2) as 

well as the copper complexes ([Pc*Cu] and [Ppz*Cu]) were found to be sublimable 

without decomposition. The metal complexes were fully characterized, and, among the 

3d metal complexes, the molecular and lattice structure of six chromophores was 

determined. Representative molecular and lattice structures are shown below:  

 

 

 

 

 

 

 

 

[Pc*Cu] [Ppz*VO(OH2)] [Ppz*MnCl] 

Lattice Structures                  [Pc*Co]    [Ppz*VO(OH2)] 
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While [Pc*VO] does not coordinate water, it was found that the corresponding [Ppz*VO] 

coordinates an aqua ligand in an octahedrally configurated complex. This is a result of 

the weaker Lewis acidity of Pc* complex compared to that of the Ppz* counterpart. To 

distinguish between the d1 complex [Ppz*VO(OH2)] and the d0 [Ppz*VO(OH)], the 

paramagnetic nature of the complex was confirmed by SQUID and the magnetic 

susceptibility of the complex was found to be temperature dependent. 

    

Due to the larger HOMO-LUMO gap of 

Ppz* complexes compared to Pc* 

counterparts, the Pc* complexes 

showed red-shifted Q-bands. The Q-

band energy of the 3d complexes 

almost follows the trend Mn > Ti ≈ V > 

Cr > Zn ≈ Cu > Co ≈ Ni ≈ Fe. The 

position of the Q-absorption band in 

Pc*/Ppz* with Cr and Fe is not affected 

by the metal oxidation state; however, 

a broad, weak band, observed in the 

spectra of [Pc*FeCl] and [Ppz*FeCl] at 

878 nm assigned to alu(π) or a2u(π) to 

eg(dπ*) charge transfer transitions in 

high spin iron(III) complexes, is used to 

distinguish between the Fe(II) and 

Fe(III) complexes.   
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Complexes of main group elements (Groups 13 & 14) 

The Pc*/Ppz* complexes of Group 13 (Al, Ga and In) and Group 14 elements (Si and Ge) 

were also prepared and fully characterized. Solutions of [Pc*InCl] are photosensitive and 

degrade rapidy in light, while the other complexes show high stability.  

 

Regarding Group 13, and moving towards heavier atoms (Al⇾Ga⇾In), a red-shift of the 

Q- band was observed; this might be attributed to the reduced Lewis acidity of Group 13 

elements in this sequence. However, in the case of Si and Ge complexes, an opposite 

trend is observed, i.e. the Q-band of [Ppz*Ge(OH)2] is blue-shifted compared to that of 

[Ppz*SiCl2]. It is believed that different structural configurations of both complexes are 

responsilble for this inverted trend: Chemically non-equivalent methyl and methylene 

protons are observed in the 1H NMR spectrum of cis-[Ppz*Ge(OH)2] indicative for a 

complex with a more distorted π-system, whereas [Ppz*SiCl2] is displaying equivalent 

protons (1a/b and 2a/b) in accord with a trans complex with a perfectly planar aromatic 

system.  
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The M-Cl bonds in the case of [Pc*AlCl] and [Pc*GaCl] complexes were found to be more 

reactive than those of the Ppz* counterparts. While APCI+ MS measurements of 

[Ppz*AlCl] and [Ppz*GaCl] from THF solutions showed the expected molecular ions 

[MH]+, the corresponding [Pc*AlCl] and [Pc*GaCl] compounds did show pseudo 

molecular ions [PcM(thf)]+. These species were probably formed during the ionization 

process.  

Attempts to functionalize tetravalent and trivalent metal complexes were performed. 

Owing to the ease of reduction of the Ppz* core, reactions involving reducing agents, e.g. 

potassium graphite, destroyed the ring. Furthermore, the Ppz* chromophores 

decompose very rapidly in the presence of organolithium reagents or in refluxing polar 

aprotic solvents, e.g. acetone and THF. However, solutions of Ppz* are quite stable in 

nonpolar solvents, e.g. toluene and chloroform, even in prescence of light and elevated 

temperatures. On the other hand, Pc* complexes are more stable with respect to 

nucleophilic or reducing reagents.  

 

The interesting chromophores [Pc*AlF] and 

[Ppz*AlF] were obtained when the analogous 

chloro complexes were refluxed in aqueous KF 

solutions. Owing to the strong metal-fluorine 

bond, we anticipate  that these chromophores, if 

orderly attached to a metal semiconductor 

interface, could promote the exciton 

dissociation, and hence allow to study the 

charge transfer dynamics at the semiconductors’ 

heterojunction.  

Attempts at synthesizing axial amido, alkyl and phenyl Al/Ga complexes of Pc* and Ppz* 

were also performed using either lithium or Grignard reagents.  In general, the axial n-

alkyl (methyl, butyl and hexyl) and phenyl gallium phthalocyanines, [Pc*GaR], were 

successfully obtained. The electronic spectra of these complexes showed only a very 

small blue shift of 2 nm of the Q-band relative to [Pc*GaCl]. 
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Fluorecence Spectra 

The Ppz* complexes show strong 

fluorescence, which is even 

observable with the eye. The 

fluorescence spectra of some Ppz* 

complexes ([Ppz*TiO], [Ppz*VO], 

[Ppz*CrCl], [Ppz*AlCl], [Ppz*GaCl] 

and [Ppz*InCl]) were measured. The 

Stokes shift for each complex was 

determined. While the smallest shift 

was found for [Ppz*TiO] ≈ 2 nm, the 

largest shift was observed for the 

[Ppz*VO] ≈ 13 nm.  

 

Cyclic Voltammetry 

Cyclic voltammograms of the Pc*/Ppz* complexes were measured. The redox processes 

can be located at the ligand and at the metal center. Reduction of the ligand 

([M(II)Pc(−2)] + e ⇔ [M(II)Pc(−3)]−) is associated to the position of LUMO  whereas 

oxidation of the ligand (M(II)Pc(−2) ⇔ [(M(II)Pc(−1)]− +e) is associated with the position 

of the HOMO. It is possible to observe two successive one-electron oxidations of the Pc 

ring tentatively assigned to removal of electrons from the a1u orbital and four successive 

one-electron reductions into the two eg orbitals. If metal orbitals lie at energies within 

the HOMO and LUMO of the macrocycle, oxidation or reduction may occur at the central 

metal. This is the case for Pc*/Ppz* complexes of Cr, Ti, Mn, Co and Fe. 
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Within the ligand potential window, some metals, e.g. Ni, Cu, and V, were found to be 

electronically inactive.  In general, Ppz* is more easily reduced compared to the Pc* 

system, but it is more difficult to oxidize it. Hence, within the same potential window, 

the number of the reduction processes of Ppz* is equal to or greater than the 

corresponding number of Pc*. Also, the similar reduction processes of Ppz* must occur 

at less negative potential compared to the Pc*. Representative voltammograms of 

[Pc*Cu] and [Ppz*Cu] are shown below. The Pc* complex displayed two oxidation and 

one reduction process, while the Ppz* complex showed one oxidation and two reduction 

processes. Apart from the oxidation process of [Ppz*Cu], all the other processes are 

reversible. However, the anodic current of the oxidation processes of CuPcs is usually 

much greater than the cathodic current, due to the complexes’ tendency to adsorb on the 

platinum electrodes.    In that case, the HOMO-LUMO gap was measured by CV, the more 

electron rich the ligand is, the smaller the HOMO-LUMO gap: e.g. the gap is 1.664 V and 

1.924 V for [Pc*Cu] and [Ppz*Cu], respectively.      

 

The electrochemical behavior of the 

Pc* / Ppz* complexes with electoactive 

metals is more complicated. For 

example, [Pc*Co], shows three 

oxidation and one reduction couples. 

Comparing with literature, the 

reduction process is metal-based.  

While the oxidation processes O1, O2 

and O3 are assigned to the Pc2-/Pc-, 

Co2+/Co3+ and Pc-/Pc0 redox couples, 

respectively.  

  

In summary, the formation of soluble and isomerically pure Pc* and Ppz* complexes of the 

3d metals as well as Groups 13 & 14 elements was studied. The complexes were formed in [Ppz*FeCl] 

[Pc*Co] 

[Ppz*Cu] 
[Pc*Cu] 
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relatively high yields compared to the typical yields for ring substituted Pc complex 

syntheses. The structure of seven complexes was determined using XRD measurements. The 

optical and electrochemical characteristics of the complexes, which are important for their 

application in semiconductor heterojunctions, were systematically studied.  
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4 Experimental 

4.1 General Techniques 

All reactions of hydrolysis and / or oxidation sensitive substances were carried out 

either in neat or in the presence of dry solvents using Schlenk line techniques and under 

an inert gas atmosphere. A changeable tap line with a rotary vane pump (type Pfeiffer 

Company DMO 10 M, final pressure approx. 6x10-3 mbar) was used. The remaining 

water in the used nitrogen (purification degree 5.0, Air Liquide Company) was removed 

using a column filled with P4O10. Also, handling and storing of hydrolysis and oxidation 

sensitive compounds was carried out in glove boxes kept under an inert nitrogen 

atmosphere (Type MB 150 BG-1, manufactured by BRAUN, Lab Master 130, BRAUN 

Company). Reactions requiring temperatures over 200 °C were carried out in Wood’s 

metal bath.[110] 

 

4.1.1 Solvents, Reagents and Starting materials 

All solvents were purified and rigorously dried according to the standard 

procedures.[178] The solvents were stored under dry argon over absorption columns 

filled with alumina/ 3Å molecular sieves/ R3-11G catalyst (BASF). Chlorine containing 

solvents were stored in dark bottles. Chloronaphthalene (CNP) was purchased from 

Acros as a mixture of 90% of 1-chloronaphthalene and 10% of 2-chloronaphthalene 

isomers. It was further dried by vacuum distillation over CaH2. 

The compounds/complexes PzDN,[179] PpzH2,[180] [PpzCu],[49] [PcTiO],[181] [PcTiS],[26] and 

[PcTiS2][26] were synthesized according to previously reported procedures. 

All other chemicals were purchased and used directly without any further purification, 

unless otherwise stated.  

 

4.1.2 Chromatography 

The purification by column chromatography was performed at room temperature using 

silica gel 60 or neutral aluminum oxide 90. Both aluminum oxide and silica gel were 

purchased from Macherey-Nagel GmbH & Co. Aluminum TLC plates 60 F254 (MERCK) 

were used for thin layer chromatography. For detection, a UV-lamp ( = (short 

wave) 254, (long wave) 366 nm) was used. 
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4.2 Analytical Methods 

4.2.1 Elemental Analysis 

CHNS analyses were carried out in the Department of Chemistry, Philipps-University 

Marburg using an ELEMNTAR Vario MICRO cube. Combustion of the samples was 

carried out at 950°C. Analysis of chlorine was carried out using 636 Titro-processor 

(Mit). All the values are given as weight percent.  

 

4.2.2 NMR spectroscopy 

1H and 13C-NMR spectra were measured in the Department of Chemistry, Philipps-

University Marburg using an AV 300 BRUKER (1H: 300.1 MHz, 13C: 75.5 MHz) and 

deuterated solvents (CDCl3, DMSO-d6, C6D6 and C4D8O) were used. Measurements at a 

DRX 400-spectrometer BRUKER Company (1H-NMR: 400.1 MHz, 13C: 100.6 MHz) were 

carried out by the service for NMR spectroscopy at the Department of Chemistry, 

Philipps-Universität Marburg. All measurements were carried out at 300 K.    

All the chemical shifts δ are reported in ppm, and the following abbreviations were used: 

s = singlet, d = doublet, t=triplet, m = multiplet and b = broad. Coupling between two 

nuclei X and Y with spin = ½ over n chemical bonds is indicated by the coupling constant 

in nJxy (Hertz). The signals were assigned according to the chemical shift, the integrals 

and the coupling pattern of the compound. The protons, to which the respective signal 

was assigned, are shown in italics (CH2CH3). Calibration of the 1H-NMR and 13C-NMR 

spectra was done using the residual proton signal of the solvent used[182] (1H-NMR 

CDCl3: 7.26 ppm, 1H-NMR DMSO-d6: 2.50 ppm, 1H-NMR C6D6: 7.16 ppm, 1H-NMR C4D8O: 

1.73, 3.58 ppm, 13C-NMR CDCl3: 77.16 ppm, 13C-NMR DMSO-d6: 39.52 ppm, 13C-NMR 

C6D6: 128.06 ppm, 13C-NMR C4D8O: 25.5 ppm).  

The assignment of the protons α, ε or δ of the metal complexes [Pc*M] and [Ppz*M] is 

shown in Figure 154. 

 

 

Figure 154: Assignment of the protons of [Pc*M] and [Ppz*M]. 
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4.2.3 IR spectroscopy 

The IR spectra were measured by a BRUKER Alpha FT-IR spectrometer including a 

diamond measuring cell in ATR mode (attenuated total reflection) with neat substances.  

To describe the IR signals, some symbols are used, e.g. vs = very strong, s = strong, m = 

medium, w = weak, vw = very weak, ν = wave number, b = broadened.  

 

4.2.4 UV / Vis. Spectroscopy 

The UV/Vis. spectra were recorded in a quartz cuvette with 1 cm coat thickness using an 

UV-1601 PC spectrometer purchased from Shimadzu Company.  

In analysis of the spectra, these abbreviations are used: λ = wavelength, s = strong,  

m = medium, sh = shoulder, w= weak, b = broadened.  

 

4.2.5 Fluorescence Spectroscopy 

Fluorescence spectral measurements were performed using a Varian Cary Eclipse-

spectrometer in quartz fluorescence cuvettes of 1 cm pathlength. The excitation 

wavelength was in the range of 350-600 nm.  Measurements were taken in the range of 

400-1000 nm with a scan rate of 600 nm / min.  

 

4.2.6 Mass Spectrometry 

APCI mass spectra were performed in Department of Chemistry, Philipps-University 

Marburg using a Finnigan LTQ-FT spectrometer purchased from THERMO FISCHER 

SCIENTIFIC. Suitable solvents, usually DCM and CHCl3, for sample preparation were 

used. EI mass spectra were measured with a Finnigan MAT95-Spectrometer of 

Thermo Fischer Scientific Company. MALDI measurements were performed using a 

Biflex III spectrometer purchased from Thermo Fischer Scientific Company.  

Molecular masses are given as mass to charge ratio (m/z) in atomic mass units (amu). 

Only signals having the largest isotopic abundance are given. The abundance isotopic 

ratio was determined theoretically.  

 

4.2.7 Magnetic susceptibility measurements 

The magnetic susceptibilities were measured in the Department of Chemistry, Philipps-

Universität Marburg using a Quantum Design SQUID magnetometer MPMS-XL. The 

magnetometer works between 1.8 and 400 K for dc applied fields ranging from -7 to 7 T.  
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4.2.8 Cyclic Voltammetry measurements 

Cyclic voltammetry (CV) data were collected using the Autolab potentiostat PGSTAT 30 

(Eco Chemie, Utretcht, The Netherlands) driven NOVA 1.10 software (Metrohm, Autolab 

B.V, Utrecht, The Netherlands) using the closed Microcell HC setup equipped with a 

temperature controller (rhd instruments) handled in a glove box (type 150 MB BG-1) 

manufactured by Braun Company. A three electrode setup consisting of a platinum 

working electrode (diameter 0.25 mm), a platinum wire psuedo reference electrode and 

a platinum crucible sample holder (counter electrode) was employed. Ferrocene was 

used as an internal reference. Electrochemical experiments were performed in dry DCM. 

The conducting electrolyte (tetrabutylammonium hexafluorophosphate (TBAPF6) for 

electrochemical analysis (purity ≥ 99.0 %, Fluka)) was used. All measurements were 

using 5mM of the analyte and 0.1 M of TBAPF6 at 25oC. Prior to scans, the platinum 

crucible and the working electrode were polished with polishing paste (xylene (0-0.5%) 

and fumed silica (99.8%), i.e pyrogenic silica, CAS number 112945-52-5) of 0.25 µm 

mean particle size, followed by washing with pentane and DCM.   

 

4.3 Synthesis of the organic compounds 

4.3.1 Synthesis of 6,7-dicyano-1,1,4,4-tetramethyltetraline 

4.3.1.1 Synthesis of 2,5-dichloro-2,5-dimethylhexane[189]  

OH

OH

Cl

Cl

conc. HCl

 

A mixture of 2,5-dimethyl-2,5-hexanediol (30.26 g, 206.9 mmol) and conc. HCl (300 mL) 

was stirred overnight at room temperature. To the mixture, DCM (300 mL) and water 

(300 mL) were added to dissolve the pink solid. Then, the aqueous layer was washed 

with DCM (2x50 mL) and the organics were collected. The combined organic layer was 

washed with water and 5% NaCl solution, dried using anhydrous MgSO4 and filtered. 

Finally, the solvent was removed under reduced pressure. 

Yield: 35.85 g, 235.5 mmol, 95 %.  

1H-NMR (CDCl3, 300 MHz): δ/ ppm = 1.60 (s, 12H, CH3), 1.95 (s, 4H, CH2). 

 

4.3.1.2 Synthesis of 1,1,4,4,6,7-hexamethyltetraline[189] 

Cl

Cl

o-xylene,  AlCl3
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A solution of 2,5-dichloro-2,5-dimethylhexane (39.90 g, 217.9 mmol) in o-xylene 

(70 mL) was added dropwise to a solution of  AlCl3 (4.32 g , 30 mmol) in o-xylene 

(100 mL) at 0°C. After 1.5 h, the mixture was warmed up to room temperature and 

stirred for another 1 h. After filtration and washing with water, the organic phase was 

washed with 5% NaOH solution (2x50 mL) and distilled water (100 mL), dried over 

MgSO4 and filtered before being concentrated under vacuum. The white product was 

recrystallized from pentane. 

Yield: 37.64 g, 174.0 mmol, 80 %. 

1H-NMR (CDCl3, 300 MHz): δ/ ppm = 1.26 (s, 12H, C(CH3)2), 1.66 (s, 4H, CH2), 

2.22 (s, 6H, Ar-CH3), 7.10 (s, 2H, Ar-H). 

 

4.3.1.3 Synthesis of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid[189]  

CO2H

CO2H

KMnO4
70% aq. pyridine

 

A solution of 1,1,4,4,6,7-hexamethyltetraline (15.06 g, 69.61 mmol) in 70% aqueous 

pyridine (250 mL) was heated up to 95oC, then KMnO4 (56.64 g, 358.4 mmol) was added 

slowly. The mixture was refluxed for 2h, cooled to room temperature, filtered to remove 

MnO2 and washed with 70% aqueous pyridine (2x100 mL). Stirring the filtrate was 

continued overnight until the disappearance of the violet color and formation of another 

amount of MnO2. The MnO2 was filtered and the water - pyridine mixture was 

concentrated under vacuum, then conc. HCl (200 mL) was added. Stirring the mixture 

was continued for 1h at 60oC. The resulting white solid was filtered and dried under 

vacuum. 

  Yield: 3.44 g, 12.45 mmol, 18 %. 

1H-NMR (DMSO-d6, 300 MHz): δ/ ppm = 1.26 (s, 12H, C(CH3)2), 1.67 (s, 4H, CH2), 

3.53 (bs, 2H, COOH), 7.58 (s, 2H, Ar-H).  

 

4.3.1.4 Synthesis of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid 

anhydride[189] 

CO2H

CO2H

O

O

O

acetyl chloride

 

A mixture of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid (12.11 g, 43.82 mmol) 

and acetyl chloride (50 mL) was refluxed for 3h. Subsequently, the acetyl chloride was 
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removed under vacuum. The residue, 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid 

anhydride, was obtained as a white precipitate.  

Yield: 10.87 g, 42.08 mmol, 96 %. 

1H-NMR (CDCl3, 300 MHz): δ/ ppm =1.36 (s, 12H, C(CH3)2), 1.75 (s, 4H, CH2) 7.96 

(s, 2H, Ar-H). 

 

4.3.1.5 Synthesis of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid imide[189] 

O

O

O

NH

O

O

NH4OAc 
glacial acetic acid

 

A mixture of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid anhydride (9.00 g, 34.84 

mmol), ammonium acetate (9.06 g, 117.5 mmol) and glacial acetic acid (36 mL) was 

refluxed for 1 h. Subsequently, the unreacted glacial acetic acid was removed under 

vacuum and the residue was treated with 10% aqueous Na2CO3 solution (100 mL). The 

white solid was filtered, washed with water and dried under vacuum. 

Yield: 8.52 g, 33.11 mmol 95 %. 

1H-NMR (CDCl3, 300 MHz): δ / ppm = 1.33 (s, 12H, C(CH3)2), 1.73 (s, 4H, CH2), 

7.50 (bs, 1H, NH), 7.82 (s, 2H, Ar-H). 

 

4.3.1.6 Synthesis of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid amide[189] 

NH

O

O

O

NH2

NH2

O

conc. NH3

 

A mixture of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid imide (3.51 g, 13.64 

mmol) and ammonia solution (25 %, 50 mL) was stirred for 24 h at room temperature. 

The resulting white solid was filtered, washed with dilute ammonia solution and dried 

under vacuum. 

Yield: 2.74 g, 9.97 mmol, 73 %.  

1H-NMR (CDCl3, 300 MHz): δ /ppm = 1.30 (s, 12H, C(CH3)2), 1.70 (s, 4H, CH2), 

5.77 (bs, 2H, NH2), 6.66 (bs, 2H, NH2), 7.63 (s, 2H, Ar-H). 
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4.3.1.7 Synthesis of 6,7-dicyano-1,1,4,4-tetramethyltetraline PDN*[189] 

 

To a suspension of 1,1,4,4-tetramethyltetraline-6,7-dicarboxylic acid amide (1.8 g, 6.561 

mmol) in DMF (19 mL) at about 0 oC, phosphoryl chloride (2.24 g, 14.61 mmol) was 

added slowly. The reaction mixture was stirred for 2.5 h at 5-10 oC before warming up to 

room temperature, then water (100 mL) was added. The white product was filtered, 

purified by column chromatography (CH2Cl2, silica gel) and dried under reduced 

pressure. 

Yield: 1.07 g, 4.489 mmol, 68 %. 

1H-NMR (CDCl3, 300 MHz): δ / ppm = 1.30 (s, 12H, C(CH3)2), 1.72 (s, 4H, CH2), 

7.71 (s, 2H, Ar-H). 

 

4.3.2 Synthesis of 6,7-dicyano-1,1,4,4-tetramethyltetraline(other procedures) 

4.3.2.1 Synthesis of 1,1,4,4-tetramethyltetraline[314] 

 

A solution of 2,5-dichloro-2,5-dimethylhexane (23.701 g, 129.4 mmol) in benzene (800 

mL) was stirred for 10 minutes at 50 oC. Anhydrous AlCl3 (6.873 g, 51.7 mmol) was 

added in small portions over 30 minutes. Afterwards, the solution was stirred at 55 oC 

for 24 hours. The resulting material was cooled to room temperature and the solvent 

was removed under vacuum. Dilute HCl solution was added, then the product was 

extracted using DCM. The organics were washed with water and dilute Na2CO3 solution, 

dried using MgSO4 and filtered. The brown product was mixed with activated charcoal 

and filtered again. After removing the solvent under reduced pressure, the product was 

obtained as a yellow oil. 

Yield: 22.37 g,118.8 mmol, 92 %. 

1H-NMR (300 MHz, CDCl3): δ/ppm = 7.30 (d, 2H), 7.14 (d, 2H), 1.69 (s, 4H, CH2), 

1.29 (s, 12H, C(CH3)2).  
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4.3.2.2 Synthesis of 6,7-dibromo-1,1,4,4-tetramethyltetraline[314] 

 

1,1,4,4-tetramethyltetraline (22.371 g, 118.8 mmol) was dissolved in DCM (350 mL), 

then iron powder (793 mg, 14.3 mmol) and iodine (302 mg, 1.2 mmol) were added. The 

mixture was cooled to 0oC and bromine (12.4 mL, 237.6 mmol) was added over 

30 minutes. After completion of the addition, the reaction was allowed to warm up to 

room temperature and stirred for 24 hours. The mixture was washed with aqueous 

sodium thiosulfate and sodium bicarbonate to remove the unreacted bromine, then DCM 

and water were added. The organic layer was washed with water and NaCl solution, 

dried over MgSO4 and filtered. The dark solution obtained was mixed with activated 

charcoal and filtered again, then dried under reduced pressure. The resulting solid was 

purified by column chromatography (PE:DCM (3:2), silica gel). After removing the 

solvent under reduced pressure, the product was obtained as a brownish-yellow solid.    

Yield: 39.18 g, 113.2 mmol, 95 %. 

1H-NMR (300 MHz, CDCl3): δ/ppm = 7.50 (s, 2H), 1.66 (s, 4H, CH2), 1.25 (s, 12H, 

C(CH3)2).  

 

4.3.2.3 Synthesis of 6,7-dicyano-1,1,4,4-tetramethyltetraline[314] 

 

A mixture of 6,7-dibromo-1,1,4,4-tetramethyltetraline (1.52  g, 4.39 mmol) and CuCN 

(1.97 g, 21.99 mmol) was refluxed in dry DMF (15 mL) under argon for 16 h. The 

reaction mixture was then cooled to room temperature and poured into an ammonia 

solution (15 mL). Afterwards, the mixture was stirred for 24 h. The resulting material 

was extracted with diethyl ether, washed with water and Na2CO3, dried over MgSO4 and 

filtered. The product was purified by column chromatography (PE:Et2O (7:1), silica gel) 

and dried under vacuum. 

Yield: 261 mg, 1.097 mmol, 25 %. 

1H-NMR (CDCl3, 300 MHz): δ / ppm = 1.30 (s, 12H, C(CH3)2), 1.72 (s, 4H, CH2), 

7.71 (s, 2H, Ar-H). 
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Additional information 

Attempted synthesis of the precursor using common procedures for cyanation of aryl 

bromides were unsuccessful.   

 

 

A mixture of 6,7-dibromo-1,1,4,4-tetramethyltetraline (7 g, 20.22 mmol), 

tris(dibenzylideneacetone)dipalladium (Pd2(dba)3, 370 mg, 0.4 mmol), 1,1/-

bis(diphenylphosphino)ferrocene (DPPF, 303 mg, 0.5 mmol) and Zn(CN)2 (2.375 g, 20.2 

mmol) was dissolved in DMA (40 mL), then polymethylhydrosiloxane (PMHS, 0.4 mL) 

was added. The mixture was stirred overnight at 115 oC. As checked by TLC, no reaction 

took place.  

 

4.3.3 2,3-Dicyano-5,5,8,8-tetramethyl-5,6,7,8-tetrahydroquinoxaline  

4.3.3.1 Synthesis of 2,2,5,5-tetramethyladipic acid[191] 

COOH2

COOH

COOH
FeSO4, H2SO4, 

H2O2, 35 °C

 

A 4 L reaction flask equipped with a KPG stirrer and two dropping funnels was charged 

with water (1200 mL), conc. sulfuric acid (15 mL) and pivalic acid (102.13 g, 1 mol). 

While the mixture was vigorously agitated, a hydrogen peroxide solution (150 mL, 6.67 

M) and a ferrous sulfate solution (750 mL, 1.33 M, prepared from ferrous sulphate 

pentahydrate (278 g), sulfuric acid (55 mL) and  water (575 mL)) were added 

simultaneously and equivalently. The temperature was held at 35oC by means of an ice 

bath during the 15 minutes required for the addition. Afterwards, a heater and a 

condenser were attached to the flask and about 500 mL of a mixture comprising water 

and pivalic acid was distilled. During distillation, a white crude product was formed. The 

product was purified by adding a conc. ammonia solution (100 mL, 35 %) and filtring to 

remove the iron compounds. The excess ammonia was boiled off, water (50 mL) was 

added, then a conc. HCl solution (50 mL) was added to precipitate the acid. The white 

resulting solid was separated and recrystallized from glacial acetic acid (1 mL / g). 

Yield: 12.03 g, 59.48 mmol, 12 %. 

1H-NMR (300 MHz, DMSO-d6): δ / ppm = 12.07 (s, 2H, COOH), 1.37 (s, 4H, CH2), 

1.06 (s, 12H, CH3). 
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4.3.3.2 Synthesis of 2,2,5,5-tetramethyladipic acid diethyl ester[192] 

COOH

COOH

COOEt

COOEt
EtOH, Toluene,

H2SO4, Reflux

 

A mixture of 2,2,5,5-tetramethyladipic acid (15 g, 74.17 mmol), toluene (300 mL), 

ethanol (50 mL) and  conc. sulfuric acid (4 mL) was refluxed for 20 h. Both the organic 

and aqueous layers were separated then the aqueous layer was washed with toluene 

(3x50 mL). The organics were collected and concentrated under vacuum, then diethyl 

ether (100 mL) was added. The combined organic layer was washed again using 10% 

Na2CO3 solution (3x50 mL), dried over MgSO4, filtered and concentrated under vacuum. 

The product was obtained as a yellow liquid. 

Yield: 15.38 g, 59.53 mmol, 80 %. 

1H-NMR (300 MHz, CDCl3): δ / ppm = 4.11 (q, 4H, CH2CH3), 1.42 (s, 4H, CH2), 1.23 

(t, 6H, CH2CH3), 1.13 (s, 12H, C(CH3)2). 

 

4.3.3.3 Synthesis of 3,3,6,6-tetramethyl-1,2-bis(trimethylsiloxy)cyclohexene[192] 

COOEt

COOEt OTMS

OTMS

Na, Toluene

TMSCl, Reflux

 

A mixture of sodium (5.50 g, 239.2 mmol) and toluene (700 mL) was refluxed until a 

suspension was obtained. After cooling to 90°C, trimethylsilyl chloride (26 mL, 

205.3 mmol) and 2,2,5,5-tetramethyladipinic acid diethyl ester (10 g, 38.71 mmol) were 

added under argon. The mixture was refluxed for 20 h, cooled to room temperature and 

filtered over celite under an argon atmosphere. The residue was washed with THF (2x50 

mL). After removing the solvent, the product was obtained as a yellow liquid. 

Yield: 10.74 g, 34.14 mmol, 88 %. 

1H-NMR (CDCl3, 300 MHz): δ = 0.19 (s, 18H, Si(CH3)3), 1.02 (s, 12H, C(CH3)2), 1.44 

(s, 4H, CH2) ppm. 

 

4.3.3.4 Synthesis of 3,3,6,6-tetramethylcyclohexane-1,2-dione[192] 

O

O

OTMS

OTMS

Br2, CCl4

 

To a solution of 3,3,6,6-tetramethyl-1,2-bis(trimethylsiloxy)cyclohexene (6.15 g, 19.55 

mmol) in CCl4 (100 mL), Br2 (1.1 mL, 21.36 mmol) was added dropwise. The solvent was 
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removed under reduced pressure. After drying under vacuum, the product was obtained 

as a yellow solid. 

Yield: 3.26 g, 19.38 mmol, 99 %. 

1H-NMR (300 MHz, CDCl3): δ / ppm = 1.86 (s, 4H, CH2), 1.15 (s, 12H, CH3). 

 

4.3.3.5 Synthesis of 2,3-dicyano-5,5,8,8-tetramethyl-5,6,7,8-tetrahydroquino-

xaline PzDN*[198] 

 

A mixture of 3,3,6,6-tetramethylcyclohexane-1,2-dione (5.00 g, 29.72 mmol) and DAMN 

(3.86 g, 35.71 mmol) was dissolved with a spatula tip of p-toluenesulfonic acid in dry 

ethanol (100 mL) and refluxed for 5 h. This resulted in a brown solution. After cooling, 

the solvent was removed under reduced pressure and the crude product was extracted 

with DCM. The DCM was removed and the product was purified by column 

chromatography ((DCM: PE) 1:1, silica gel). After drying under vacuum, the product was 

obtained as a pale yellow solid. 

Yield: 5.17 g, 21.51 mmol, 72 %. 

1H-NMR (300 MHz, CDCl3): δ / ppm = 1.85 (s, 4H, CH2), 1.36 (s, 12H, CH3). 

 

4.3.4 Synthesis of 2,3-dicyanopyrazino[6,5-e]benzo[b][1,4]dioxane CatPzDN* 

4.3.4.1 Synthesis of 2,3-dioxo-1,2,3,4-tetrahydropyrazine-5,6-dicarbonitrile[195]  

 

A solution of DAMN (9.6 8 g, 90.7 mmol) in dioxane (500 mL) was added dropwise to a 

vigorously stirred solution of oxalyl chloride (18.3 mL, 212 mmol) in dioxane (250 mL) 

over 3 h at 50oC. Stirring was continued at this temperature for another 3 hours. The 

precipitate was removed by filtration and the filtrate was concentrated under reduced 

pressure. The obtained product was purified by column chromatography (acetone, silica 

gel) and dried under vacuum. 

Yield: 12.42 g, 76.6 mmol, 85 %.  

13C-NMR (DMSO-d6), 75 MHz):  δ/ppm = 105.9 (2C, CAr-CN), 111.1 (2C, CN), 155.0 

(2C, C=O). 
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4.3.4.2 Synthesis of 5,6-dichloropyrazine-2,3-dicarbonitrile[195]  

 

A mixture of 2,3-dioxo-1,2,3,4-tetrahydropyrazine-5,6-dinitrile (10.0 g, 61.7 mmol) and 

thionyl chloride (22 mL, 303 mmol) in dioxane (400 mL) was stirred at 60oC for 1 h. 

DMF (10 mL, 130 mmol) was added and the dark reaction mixture was stirred at this 

temperature for another 1.5 h. The solvent was removed under reduced pressure and 

the residue was extracted with hot toluene (3x 100 mL). After removong the solvent, a 

crude tan solid was obtained. The solid was chromatographed (acetone, silica gel). After 

removing the solvent under vacuum, the product was obtained as a yellow solid. 

Yield: 7.69 g, 43.93 mmol, 71 %.  

13C-NMR (DMSO-d6, 75 MHz): δ/ppm =125.5 (2C, CAr-CN), 110.7 (2C, CN), 153.9 

(2C, CAr-Cl). 

 

4.3.4.3 Synthesis of 2,3-dicyanopyrazino[6,5-e]benzo[b][1,4]dioxane CatPzDN* 

 

In a 250 mL round bottomed flask, 5,6-dichloropyrazine-2,3-dicarbonitrile (4.86 g, 24.4 

mmol), dry K2CO3 (10.0 g, 72.4 mmol) and dry DMA (60 mL) were placed under an argon 

atmosphere. Then, catechol (2.68 g, 24.4 mmol) was added. The resulting mixture was 

stirred under argon at room temperature for 16h and at 50°C for 3h. Afterwards, it was 

poured into cold water (200 mL). The precipitate was collected by filtration and 

subjected to column chromatography (acetone, silica gel). After removing the solvent 

under vacuum, the desired product was isolated as a pale yellow solid.  

Yield: 0.501 g, 2.12 mmol, 9 %.  

Elemental analysis: (C12H4N4O2, 236.19 g/mol) 

Found (Calculated): C: 58.70%(61.02 %), H: 1.83%(1.71 %), N: 22.48%(23.72 %). 

1H-NMR (DMSO-d6, 300 MHz): δ/ppm =7.43 (d, 2 H), 7.52 (d, 2H). 
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4.3.5 Synthesis of 2,3-dicyano-5,6,7,8-tetrahydoquinoxaline PzDN#[222] 

 

DAMN (2.64 g, 22.77 mmol), 1,2-cyclohexanedione (5.49 g, 48.96 mmol) and a spatula 

tip of p-toluenesulfonic acid were refluxed for 2 h in absolute ethanol (100 mL). After 

removing the solvent under reduced pressure, the product was extracted into the 

organic phase with diethyl ether (3x50 mL). After removing the solvent, the desired 

product was obtained as a yellow solid. 

Yield: 3.12 g, 16.94 mmol, 69 %.  

1H-NMR (DMSO-d6, 300 MHz): δ/ ppm = 1.92 (t, 4H), 3.05 (t, 4H). 

 

4.3.6 Synthesis of 2,4-bis(4-phenoxyphenyl)-1,3,2,4-dithiadiphosphetan-2,4-

disulphide.[315] 

 

A mixture of P4S10 (8.8 g, 19.798 mol) and diphenylether (35 mL, 217.7 mmol) was 

stirred under nitrogen at 160 oC for 9 hours, then at room temperature for 15 hours. The 

yellow product was filtered, washed with dry toluene and dried under vacuum. 

 Yield: 10.98 g, 20.8 mmol, 53 %. 

1H-NMR (300 MHz, C4D8O): δ/ppm = 8.50 (q,  2H), 7.44-6.96 (m, 16H).  

13C-NMR (300 MHz, C4D8O): δ/ppm = 193.6, 189.1, 188.6, 183.9, 182.0, 179.3, 

177.7, 176.4. 

MS(APCI-HRMS(+)):m/z=528.9929[MH]+,calcd. for[C24H18O2P2S4H]+:528.9738. 

MS (EI): m/z = 170 [C6H4PS2]+, 141 [C6H4PS]+. 
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4.3.7 Synthesis of Woollin’s Reagent 

4.3.7.1 Synthesis of 1,2,3,4,5-pentaphenylpentaphospholane[317]  

 

A mixture of PhPCl2 (15.2 mL, 111.7 mmol) and Mg turnings (2.716 g, 111.7 mmol) was 

stirred in THF (100 mL) for 4 hours under nitrogen. Room temperature was maintained 

by means of an ice/water bath. Acetone (6 mL) was added and the excess Mg was 

filtered off. Water (100 mL) was added and the mixture was concentrated under 

reduced pressure until a precipitate was formed. The white product (PPh)5 was collected 

by suction filtration and dried under vacuum.  

Yield: 8.83 g, 81.7 mmol, 73 %. 

1H-NMR (300 MHz, C6D6): δ/ppm = 8.05-6.84 (m, 25H).  

1H-NMR (300 MHz, CDCl3): δ/ppm = 7.93-7.76 (m, 10H), 7.63-7.57 (m, 5H), 7.54-

7.47 (m, 10H).  

 

4.3.7.2 Synthesis of 2,4-diphenyl-2,4-diselanylene-1,3,2,4-diselenadiphosphe-

tane[317]    

 

A mixture of (PPh)5 (3.6 g, 6.7 mmol) and Se (3.6 g, 6.7 mmol) was refluxed in dry 

toluene (80 mL) for 5 h under nitrogen. After cooling to room temperature, the red 

product was collected by suction filtration, washed with toluene and dried under 

vacuum. 

Yield: 8.00 g, 15.0 mmol, 90 %. 

MS (EI): m/z = 266 [C6H5PSe2]+, 219 [P2Se2]+. 
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4.3.8 Synthesis of [Ti(S-t-butyl)4][318] 

 

To a solution of Ti(NMe2)4 (1.323 g, 5.9 mmol) in pentane (5 mL) at 25 °C, tert-butylthiol 

(6.7 mL, 59.0 mmol) was added. Immediately after the addition, the solution became 

dark red. The pentane and excess tert-butylthiol were removed under vacuum and the 

dark residue was extracted with pentane (2x30 mL). The extracts were concentrated to 

10 mL. Cooling the solution at -20 oC led to formation of the desired compound as red 

microcrystals. 

 Yield: 2.173 g, (5.4 mmol, 91.01%). 

1H-NMR (300 MHz, C6D6): δ/ppm = 1.76 (s, CMe3).  

 13C-NMR (300 MHz, C6D6): δ/ppm = 58.8 (s, CMe3), 36.1 (s, CMe3). 

 

4.4 Synthesis of Pc* complexes 

4.4.1 New synthetic method for [Pc*TiO] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and TiCl3 (97 mg, 

0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL), and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 168 mg, 0.165 mmol, 52 %.  

Elemental analysis: (C64H72N8TiO, 1017.17 g/mol) 

Found (Calculated): C: 77.61% (75.57%), H: 7.57% (7.13%), N: 9.33 % (11.02 %). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.63 (s, 8H, Ar-H), 2.09 (s, 16H, Hε) , 1.89 (s, 

24H, Hδ1), 1.81 (s, 24H, Hδ2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 152.3, 149.3, 135.1, 121.9, 36.1, 35.6, 33.1, 

29.6. 

UV/Vis. (CHCl3): λ/nm = 716 (s), 682 (sh), 645 (w), 390 (sh), 348 (m), 301 (m), 

277 (m), 244 (m). 

MS (APCI-HRMS(+)): m/z = 1017.5381[MH]+, calcd. for C64H73N8TiO+: 1017.5389. 
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4.4.2 Attempted synthesis of [Pc*Ti(PO4H)] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and TiCl3 (97 mg, 

0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. To the 

purple product, K2HPO4 (242 mg, 1.389 mmol) and  dry toluene (50 mL) were added, 

then the mixture was heated at 130oC for 4 hours. After cooling, the mixture was 

concentrated under reduced pressure, and purified by column chromatography (CHCl3, 

Al2O3). The green product was isolated and characterized as [Pc*TiO].   

 

4.4.3 Synthesis of [Pc*VO] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and VCl3 (99 mg, 

0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 162 mg, 0.158 mmol, 50 %. 

Elemental analysis: (C64H72N8VO, 1020.25 g/mol) 

Found (Calculated): C: 72.35% (75.34%), H: 7.62% (7.11%), N: 8.66% (10.98%). 

UV/Vis. (CHCl3): λ/nm = 717 (s), 685 (sh), 646 (w), 348 (m), 298 (m), 278 (sh), 

250 (m). 

MS (APCI-HRMS(+)): m/z = 1020.5335 [MH]+, calcd. for C64H73N8VO+: 1020.5342. 

 

4.4.4 New synthetic method for [Pc*Cr] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and [Cr(CO)6] (139 

mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 
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chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 93 mg, 0.0925 mmol, 29 %. 

Elemental analysis: (C64H72N8Cr, 1005.30 g/mol) 

Found (Calculated): C: 73.87% (76.46%), H: 7.61% (7.22%), N: 10.17% (11.15%). 

UV/Vis. (CHCl3): λ/nm =708 (s), 675 (sh), 635 (w), 508 (w), 360 (m). 

MS (APCI-HRMS(+)): m/z = 1005.5359 [MH]+, calcd. for C64H73N8Cr+: 1005.5359. 

 

4.4.5 Synthesis of [Pc*CrCl] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and CrCl3.6H2O (168 

mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 123 mg, 0.118 mmol, 37 %. 

Elemental analysis: (C64H72N8CrCl, 1040.76 g/mol) 

Found (Calculated): C: 72.12% (73.86%), H: 7.60% (6.97%), N: 8.60 % (10.77%). 

UV/Vis. (CHCl3): λ/nm = 708 (s), 673 (sh), 638 (w), 510 (w), 360 (m), 284 (m), 

250 (m). 

MS (APCI-HRMS(+)): m/z = 1040.5039[MH]+, calcd. for C64H73N8CrCl+ 1040.5048. 

 

4.4.6 Synthesis of [Pc*MnCl] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and MnCl2.4H2O 

(125 mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a red-orange solid. 

Yield: 95 mg, 0.091 mmol, 29 %. 
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Elemental analysis: (C64H72N8MnCl, 1043.70 g/mol) 

Found (Calculated): C: 71.75 (73.65%), H: 7.62% (6.95%), N: 8.55% (10.74%), Cl: 

3.19 % (3.40 %). 

UV/Vis. (CHCl3): λ/nm = 749 (s), 672 (w), 545 (w), 374 (m), 286 (m), 250 (s). 

MS(APCI-HRMS(+)):m/z =1008.5287[MH-Cl]+, calcd. for C64H73N8Mn+:1008.5209. 

 

4.4.7 Synthesis of [Pc*Fe] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and FeCl2.4H2O (125 

mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with pentane (2x20 mL), diethyl ether (20 mL) and purified by 

column chromatography (CHCl3, Al2O3). After removing the solvent, the desired product 

was obtained as a green solid. 

Yield: 120 mg, 0.119 mmol, 38 %. 

Elemental analysis: (C64H72N8Fe, 1009.15 g/mol) 

Found (Calculated): C: 74.41% (76.17%), H: 7.73% (7.19%), N: 9.24 % (11.10 %). 

UV/Vis. (CHCl3): λ/nm = 678 (m), 610 (w), 317 (sh), 249 (s). 

MS (APCI-HRMS(+)): m/z = 1009.5290 [MH]+, calcd. for C64H73N8Fe+: 1009.5304. 

 

4.4.8 Synthesis of [Pc*FeCl] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and FeCl3.6H2O (170 

mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the desired product was 

obtained as a green solid. 

Yield: 24 mg, 0.023 mmol, 7 %. 

Elemental analysis: (C64H72N8FeCl, 1044.61 g/mol) 

Found (Calculated): C: 70.27% (73.59%), H: 6.87% (6.95%), N: 10.06% (10.73%). 
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UV/Vis. (CHCl3): λ/nm = 878 (w), 678 (m), 615 (sh), 482 (sh), 343 (sh), 286 (sh), 

248 (s). 

MS (APCI-HRMS(+)): m/z = 1044.4991[MH]+, calcd. for C64H73N8FeCl+:1044.4993. 

 

4.4.9 New synthetic method for [Pc*Co] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and CoCl2.6H2O (150 

mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the desired product was 

obtained as a blue solid. 

Yield: 196 mg, 0.194 mmol, 62 %. 

Elemental analysis: (C64H72N8Co, 1012.24 g/mol) 

Found (Calculated): C: 74.07% (75.94%), H: 7.56% (7.17%), N: 9.51 % (11.07 %). 

UV/Vis. (CHCl3): λ/nm = 684(s), 650 (sh), 616 (w), 333 (m), 295 (m), 251 (m). 

MS (APCI-HRMS(+)): m/z = 1012.5277 [MH]+, calcd. for C64H73N8Co+: 1012.5285. 

 

4.4.10 Synthesis of [Pc*Ni] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and NiCl2.6H2O (150 

mg, 0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 182 mg, 0.180 mmol, 57 %. 

Elemental analysis: (C64H72N8Ni, 1012.00 g/mol) 

Found (Calculated): C: 73.84% (75.96%), H: 7.52% (7.17%), N: 9.99 % (11.07 %). 

UV/Vis. (CHCl3): λ/nm = 686 (s), 662 (sh), 618 (w), 376 (sh), 336 (w), 298 (m), 

278 (m), 246 (m). 

MS (APCI-HRMS(+)): m/z = 1011.5297 [MH]+, calcd. for C64H73N8Ni+: 1011.5304. 
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4.4.11 New synthetic method for [Pc*Cu] 

 

A mixture of PDN* (300 mg, 1.26 mmol) and CuCl2.2H2O (107 mg, 0.63 mmol) was 

heated at 220oC under an argon atmosphere for 30 minutes. The product was washed 

with diethyl ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). 

After removing the solvent, the product was obtained as a blue solid. 

Yield: 106 mg, 0.104 mmol, 33 %. 

Elemental analysis: (C64H72N8Cu, 1016.85 g/mol) 

Found (Calculated): C: 73.80% (75.59%), H: 7.39% (7.14%), N: 9.47 % (11.02 %). 

UV/Vis. (CHCl3): λ/nm = 694 (s), 664 (sh), 624 (w), 342 (m), 295 (w), 269 (w). 

MS (APCI-HRMS(+)): m/z = 1016.5236 [MH]+, calcd. for C64H73N8Cu+: 1016.5249. 

 

4.4.12 New synthetic method for [Pc*Zn] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and 

Zn(CH3COO)2.2H2O (138 mg, 0.63 mmol) was heated at 220oC under an argon 

atmosphere for 30 minutes. The product was washed with diethyl ether (2x20 mL) and 

purified by column chromatography (ethyl acetate, Al2O3). After removing the solvent, 

the desired product was obtained as a green solid.  

Yield: 70 mg, 0.069 mmol, 22 %. 

Elemental analysis: (C64H72N8Zn, 1018.70 g/mol) 

Found (Calculated): C: 71.90% (75.46%), H: 7.63 % (7.12%), N: 8.63% (11.00 %). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.36 (s, 8H, Hα), 2.04 (s, 16H, Hε), 1.78 (s, 

48H, Hδ1+2). 

UV/Vis. (CHCl3): λ/nm = 692 (s), 630 (sh), 344 (s), 301(s), 254(m). 

MS (APCI-HRMS(+)): m/z = 1017.5236 [MH]+, calcd. for C64H73N8Zn+: 1017.5244. 
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4.4.13 New Synthetic method for Pc*H2 

 

A mixture of PDN* (300 mg, 1.258 mmol) and DBU (0.5 mL) was heated at 220oC in 1-

pentanol (1 mL) for 15 minutes. After cooling, pentane (100 mL) was added to 

precipitate a solid residue. The residue was purified using column chromatography 

(CHCl3, Al2O3). After removing the solvent, the product was obtained as a green solid. 

Yield: 44 mg, 0.046 mmol, 15 %. 

MS (APCI-HRMS(+)): m/z = 955.6087 [MH]+, calcd. for [C64H75N8]+: 955.6109. 

 

4.4.14 Synthesis of [Pc*AlCl] 

 

A mixture of PDN* (300 mg, 1.26 mmol), urea (149 mg, 2.49 mmol) and AlCl3 (84 mg, 

0.63 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the desired product was 

obtained as a green solid. 

Yield: 83 mg, 0.082 mmol, 26 %. 

Elemental analysis: (C64H72N8AlCl, 1015.74 g/mol) 

Found (Calculated): C: 71.48% (75.68%), H: 7.13% (7.14%), N: 10.13% (11.03%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.61 (s, 8H, Ar-H), 1.83 (s, 16H, Hε), 1.43 (s, 

48H, Hδ1+ δ2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 132.6, 35.1, 34.1, 31.5. 

UV/Vis. (CHCl3): λ/nm = 706 (m), 675 (sh), 636 (w), 346 (w), 293 (w), 285 (sh), 

246 (s). 

MS(APCI-HRMS(+)):m/z = 1015.5448 [MH]+, calcd. for C64H73N8AlCl+: 1015.5457. 
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4.4.15 Synthesis of [Pc*AlF] 

 

A mixture of [Pc*AlCl] (122 mg, 0.120 mmol), KF (1.46 g, 25.2 mmol) and H2O (100 mL) 

was refluxed overnight. After cooling, the green solid was filtered, washed with water 

and dried under vacuum. 

Yield: 107 mg, 0.107 mmol, 89 %. 

Elemental analysis: (C64H72N8AlF, 999.29 g/mol) 

Found (Calculated): C: 78.18% (76.92%), H: 7.60% (7.26%), N: 11.30% (11.21%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.59 (s, 8H, Ar-H) , 2.08 (s, 16H, Hε), 1.85 (s, 

24H, Hδ1) 1.82 (s, 24H, H δ2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 151.7, 132.7, 115.9, 112.6, 36.1, 34.1, 31.6. 

IR: �̃�/cm-1 = 431 (w), 699 (m), 797 (s), 1009 (s), 1080 (s), 1259 (s), 1456 (m), 

2919 (m). 

UV/Vis. (CHCl3): λ/nm = 706 (s), 675 (sh), 637 (w), 346 (s), 298 (m), 254 (s). 

MS (APCI-HRMS(+)): m/z = 999.5745 [MH]+, calcd. for C64H73N8AlF+: 999.5752. 

 

4.4.16 Attempted synthesis of [Pc*Al(OH)] 

 

A mixture of PDN* (300 mg, 1.26 mmol), Al(OH)3 (357 mg, 4.58 mmol), 0.5 mL DBU and 

1-pentanol (2 mL) was heated at 220oC for 60 minutes. After cooling, pentane (20 mL) 

was added to precipitate a green solid. The solid was isolated and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the green product was 

identified as Pc*H2. 

Additional information 

When a similar mixture was heated overnight at 160oC, no reaction took place. 

 

4.4.17 Attempted synthesis of [Pc*AlCH3] 
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Attempt 1: A mixture of [Pc*AlCl] (132 mg, 0.130 mmol), CH3Li (5.61 mg, 0.255 mmol 

contained in 0.16 mL of 1.595 M in diethyl ether) and dry THF (30 mL) was stirred 

overnight under an argon atmosphere, then the solvent was removed under reduced 

pressure. After washing with pentane, the resulting product was characterized as 

[Pc*AlCl]. 

 

 

Attempt 2: A mixture of [Pc*AlCl] (113 mg, 0.111 mmol), CH3MgI (55.31 mg, 0.333 

mmol contained in 0.15 mL of 2.218 M in diethyl ether) and dry THF (30 mL) was 

stirred overnight under an argon atmosphere, then the solvent was removed under 

reduced pressure. After washing with pentane, the resulting compound was 

characterized as [Pc*AlCl].  

 

4.4.18 Attempted synthesis of [Pc*AlPh] 

 

A mixture of [Pc*AlCl] (110 mg, 0.108 mmol), PhLi (16.81 mg, 0.2 mmol contained in 0.1 

mL of 2.0 M in dibuyl ether) and dry THF (30 mL) was stirred overnight under an argon 

atmosphere, then the solvent was removed under reduced pressure. After washing with 

pentane, the resulting compound was characterized as [Pc*AlCl]. 

 

4.4.19 Attempted synthesis of [Pc*AlNH2] 

 

A mixture of [Pc*AlCl] (177 mg, 0.174 mmol), LiNH2 (8 mg, 0.348 mmol) and dry THF 

(30 mL) was stirred overnight under argon. The solvent was removed under reduced 

pressure. After washing with pentane, the green solid was identified as [Pc*AlCl].  
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4.4.20 Attempted Synthesis of [Pc*AlNMe2] 

 

A mixture of [Pc*AlCl] (209 mg, 0.206 mmol), LiNMe2 (21 mg, 0.412 mmol) and dry THF 

(30 mL) was stirred overnight under argon. The solvent was removed under reduced 

pressure. After washing with pentane, the green solid was identified as [Pc*AlCl]. 

 

4.4.21 Attempted Synthesis of [Pc*AlN(i-Pr)2] 

 

A mixture of [Pc*AlCl] (90 mg, 0.089 mmol), LiN(i-Pr)2 (19 mg, 0.177 mmol) and dry 

THF (30 mL) was stirred overnight under an argon atmosphere. The solvent was 

removed under reduced pressure. After washing with pentane, the green solid was 

identified as [Pc*AlCl].  

 

4.4.22 Attempted synthesis of [Pc*AlOP(O)(OH)2] or [(Pc*AlO)2P(O)(OH)] 

 

A mixture of [Pc*AlCl] (214 mg, 0.211 mmol) and H3PO4 (85 %, 100 mL) was refluxed 

overnight, then a precipitate was formed by adding water (300 mL). After filtration and 

washing with Na2CO3 solution. The product was characterized as [Pc*AlCl]. 

 

4.4.23 Synthesis of [Pc*GaCl] 

 

A mixture of PDN* (300 mg, 1.26 mmol) and GaCl3 (111 mg, 0.63 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. The product was washed with diethyl 
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ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). After removing 

the solvent, the product was obtained as a green solid. 

Yield: 153 mg, 0.145 mmol, 46 %. 

Elemental analysis: (C64H72N8GaCl, 1058.48 g/mol) 

Found (Calculated): C: 73.66% (72.62%), H: 7.45% (6.86%), N: 9.45% (10.59%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.60 (s, 8H, Ar-H), 2.07 (s, 16H, Hε), 1.82 (s, 

48H, Hδ1+ δ2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 153.3, 149.1, 134.9, 121.7, 36.1, 33.1, 29.9. 

UV/Vis. (CHCl3): λ/nm = 712 (s), 677 (m), 638 (m), 350 (s), 302 (m). 

MS(APCI-HRMS(+)): m/z= 1059.4883[MH]+, calcd. for C64H73N8GaCl+: 1059.4898. 

 

4.4.24 Attempted synthesis of [Pc*Ga(OH)] 

 

A mixture of [Pc*GaCl] (120 mg, 0.113 mmol), NH4OH (20 mL) and pyridine (50 mL) was 

refluxed for 5 hours then the solvent was removed by filtration. After drying under 

vacuum, the resulting colorful green product was characterized as [Pc*Ga(pyridine)Cl]. 

Elemental analysis: [C64H72N8Ga(C5H5N)Cl], 1137.58 g/mol) 

Found (Calculated): C: 71.63% (72.85%), H: 7.11% (8.82%), N: 10.06% (11.08%). 

MS (APCI-HRMS(+)): m/z = 1102.5544 [M-Cl]+, calcd. for [C64H73N8Ga(C5H5N)]+: 

1102.5566. 

Additional information: 

 Heating of [Pc*Ga(pyridine)Cl] at 200oC led to formation of [Pc*GaCl].  

 When [Pc*GaCl] was refluxed in NH4OH solution (30 %, 50 mL) for 4 hours, no 

reaction took place. 

 

4.4.25 Attempted synthesis of [Pc*GaF] 

 

A mixture of [Pc*GaCl] (107 mg, 0.101 mmol), KF (1.27 g, 21.94 mmol) and H2O (100 

mL) was refluxed overnight. The green solid was filtered and characterized as [Pc*GaCl]. 
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4.4.26 Synthesis of [Pc*GaCH3]  

 

A mixture of [Pc*GaCl] (193 mg, 0.182 mmol), CH3Li (7.71 mg, 0.351 mmol contained in 

0.22 mL of 1.595 M in diethyl ether) and dry THF (30 mL) was stirred overnight under 

an argon atmosphere. The solvent was removed under reduced pressure. After washing 

with pentane, the green solid was identified as [Pc*GaCH3]. 

Yield: 156 mg, 0.150 mmol, 82 %. 

Elemental analysis: (C64H72N8GaCH3, 1038.06 g/mol) 

Found (Calculated): C: 79.90% (75.20%), H: 10.14% (7.30%), N: 4.19% (10.80%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.55 (s, 8H, Ar-H), 2.07 (s, 16H, Hε), 1.85 (s, 

48H, Hδ1+ δ2), 0.88 (CH3-Ga). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 168.9, 152.4, 122.5, 37.0, 34.8, 32.1, 29.9, 

22.8, 14.2. 

UV/Vis. (CHCl3): λ/nm = 710 (s), 676 (sh), 635 (w), 477 (w), 346 (m). 

MS(APCI-HRMS(+)):m/z=1037.5438[MH]+, calcd. for C65H76N8Ga+:1037.5443. 

 

4.4.27 Synthesis of [Pc*GaC4H9]  

 

A mixture of [Pc*GaCl] (178 mg, 0.168 mmol), n-BuLi (21.62 mg, 0.338 mmol contained 

in 0.13 mL of 2.597 M in hexane) and dry THF  (30 mL) was stirred overnight under an 

argon atmosphere. The solvent was removed under reduced pressure. After washing 

with pentane, the green solid was identified as [Pc*GaC4H9]. 

Yield: 120 mg, 0.129 mmol, 71 %. 

Elemental analysis: (C64H72N8GaC4H9, 1080.14 g/mol) 

Found (Calculated): C: 80.00% (75.61%), H: 10.17% (7.57%), N: 4.18% (10.38%). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 32.0, 29.9, 22.8, 14.2. 

UV/Vis. (CHCl3): λ/nm = 710 (m), 676 (sh), 637(w), 639 (w). 

MS (APCI-HRMS(+)): m/z = 1079.5908 [MH]+, calcd. for C68H82N8Ga+: 1079.5913. 
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4.4.28 Synthesis of [Pc*GaC6H13]  

 

A mixture of [Pc*GaCl] (89 mg, 0.084 mmol), n-hexyllithium (14.81 mg, 0.161 mmol 

contained in 0.06 mL of 2.218 M in hexane) and dry THF (30 mL) was stirred overnight 

under an argon atmosphere. The solvent was removed under reduced pressure. After 

washing with pentane, the green solid was identified as [Pc*GaC6H13]. 

Yield: 41 mg, 0.0369 mmol, 44 %. 

Elemental analysis: (C64H72N8Ga C6H13, 1108.20 g/mol) 

Found (Calculated): C: 80.05% (75.86%), H: 10.19% (7.75%), N: 4.22% (10.11%). 

UV/Vis. (CHCl3): λ/nm = 710 (s), 678 (sh), 638 (w), 350 (m). 

MS (APCI-HRMS(+)) :m/z= 1107.6230[MH]+, calcd. for C70H86N8Ga+: 1107.6226. 

 

4.4.29 Synthesis of [Pc*GaC6H5]  

 

A mixture of [Pc*GaCl] (146 mg, 0.138 mmol), PhLi (23.94 mg, 0.26 mmol contained in 

0.13 mL of 2.0 M in dibutyl ether) and dry THF  (30 mL) was stirred overnight under an 

argon atmosphere. The solvent was removed under reduced pressure. After washing 

with pentane, the green solid was identified as [Pc*GaC6H5]. 

Yield: 107 mg, 0.097 mmol, 71 %. 

Elemental analysis: (C64H72N8GaC6H5, 1100.13 g/mol) 

Found (Calculated): C: 80.11% (76.42%), H: 10.22% (7.07%), N: 4.21% (10.19%). 

1HNMR (300 MHz, CDCl3): δ/ppm = 9.60 (s, 8H, Ar-H), 2.08 (s, 16H, Hε), 1.82 (s, 

24H, Hδ1), 1.79 (s, 24H, Hδ2), 7.61 (m, 5H, Ar-Ga). 

13CNMR (75 MHz, CDCl3): δ/ppm = 153.2, 148.7, 135.1, 130.8, 128.8, 127.3, 125.7, 

121.6, 35.9, 33.0, 29.8, 22.9, 14.2. 

UV/Vis. (CHCl3): λ/nm = 710 (s), 678 (sh), 638 (w), 380(sh), 351(m), 300(m). 

MS (APCI-HRMS(+)): m/z = 1099.5586 [MH]+, calcd. for C70H78N8Ga+: 1099.5600. 
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4.4.30 Attempted Synthesis of [Pc*GaNH2] 

 

A mixture of [Pc*GaCl] (138 mg, 0.131 mmol), LiNH2 (6 mg, 0.261 mmol) and dry THF 

(30 mL) was stirred overnight under argon. The solvent was removed under reduced 

pressure. After washing with pentane, the green solid was identified as [Pc*GaCl].  

 

4.4.31 Attempted synthesis of [Pc*GaNMe2] 

 

A mixture of [Pc*GaCl] (187 mg, 0.176 mmol), LiNMe2 (18 mg, 0.351 mmol) and dry THF 

(30 mL) was stirred overnight under argon. The solvent was removed under reduced 

pressure. After washing with pentane, the product was identified as [Pc*GaCl].  

 

4.4.32 Attempted synthesis of [Pc*GaN(i-Pr)2] 

 

A mixture of [Pc*GaCl] (64 mg, 0.061 mmol), LiN(i-Pr)2 (13 mg, 0.121 mmol) and dry 

THF (30 mL) was stirred overnight under argon. The solvent was removed under 

reduced pressure. After washing with pentane, the product was identified as [Pc*GaCl].  

 

4.4.33 Synthesis of [Pc*InCl] complex 

 

A mixture of PDN* (300 mg, 1.26 mmol) and InCl3 (139 mg, 0.63 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. After cooling, the product was added 

to CH2Cl2 (200 mL) and filtered to remove the solid residue. The solvent was removed 

under reduced pressure then the obtained solid was washed with methanol until the 

washing solution became colorless. The green product was dried under vacuum.   
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Yield: 42 mg, 0.038 mmol, 12 %. 

Elemental analysis: (C64H72N8InCl, 1103.58 g/mol) 

Found (Calculated): C: 70.10% (69.65%), H: 6.80% (6.58%), N: 9.50% (10.15%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 9.52 (s, 8H, Ar-H), 2.06 (s, 16H, Hε), 1.86 (s, 

48H, Hδ1+ δ2). 

UV/Vis. (CHCl3): λ/nm = 714 (s), 683 (sh), 643 (w), 354 (m), 302 (s), 244 (s). 

MS(APCI-HRMS(+)): m/z = 1103.4665[MH]+, calcd. for C64H73N8InCl+: 1103.4680. 

 

4.4.34 Attempted synthesis of [Pc*InF] 

 

A mixture of [Pc*InCl] (72 mg, 0.0652 mmol), KF (0.635 g, 10.93 mmol) and H2O (100 

mL) was refluxed overnight, then the solid was filtered and characterized as [Pc*InCl]. 

 

4.4.35 Attempted synthesis of [Pc*Mg] 

 

A mixture of PDN* (300 mg, 1.26 mmol), MgCl2.6H2O (128 mg, 0.63 mmol), DBU (0.5 

mL) and 1-pentanol (2 mL) was heated overnight at 160oC under an argon atmosphere. 

After cooling, pentane (20 mL) was added to precipitate a brown solid. The solid was 

isolated and purified by column chromatography (CHCl3, Al2O3). The product could not 

be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.4.36 Attempted synthesis of [Pc*ScCl] 

 

A mixture of PDN* (300 mg, 1.26 mmol), ScCl3 (93 mg, 0.63 mmol), urea (149 mg, 2.49 

mmol) and CNP (2 mL) was heated overnight at 160oC under an argon atmosphere. After 

cooling, pentane (20 mL) was added to precipitate a pale green solid. The solid was 

isolated and purified by column chromatography (CHCl3, Al2O3). The obtained pale green 

product could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 
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4.4.37 Attempted Synthesis of [Pc*Cd] 

 

Attempt 1: A mixture of PDN* (300 mg, 1.26 mmol), CdCl2.H2O (127 mg, 1.26 mmol), 

DBU (0.5 mL) and 1-pentanol (2 mL) was heated overnight at 160oC under an argon 

atmosphere. After cooling, pentane (20 mL) was added to precipitate a brown solid. The 

solid was isolated and purified by column chromatography (CHCl3, Al2O3). The obtained 

product could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

 

Attempt 2: A mixture of PDN* (300 mg, 1.26 mmol), CdCl2.H2O (127 mg, 0.63 mmol) and 

urea (149 mg, 2.49 mmol) was heated for 30 minutes at 220oC under an argon 

atmosphere. The obtained residue was washed with diethyl ether (2x20 mL) and 

purified by column chromatography (CHCl3, Al2O3). The resulting pale green product 

could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.4.38 Attempted Synthesis of [Pc*SiCl2] 

 

A mixture of PDN* (300 mg, 1.26 mmol), SiCl4 (118.4 mg, 0.08 mL, 0.70 mmol) and urea 

(149 mg, 2.49 mmol) was heated for 30 minutes at 220oC under an argon atmosphere. 

The obtained solid residue was washed with diethyl ether (2x20 mL) and dissolved in 

CHCl3, no chromophoric product was obtained. 

 

4.4.39 Attempted synthesis of [Pc*GeCl2] 

 

A mixture of PDN* (300 mg, 1.26 mmol), GeCl4 (150.4 mg, 0.08 mL, 0.701 mmol) and 

urea (149 mg, 2.49 mmol) was heated for 30 minutes at 220oC under an argon 

atmosphere. The obtained solid residue was washed with diethyl ether (2x20 mL) and 

dissolved in CHCl3, no chromophoric product was obtained.  
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4.5 Synthesis of Ppz* complexes 

4.5.1 New synthetic method for [Ppz*TiO] 

 

A mixture of PzDN* (300 mg, 1.248 mmol) and TiCl3 (96 mg, 0.624 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. The product was washed with diethyl 

ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). After removing 

the solvent, the product was obtained as a green solid. 

Yield: 146 mg, 0.142 mmol, 46 %. 

Elemental analysis: (C56H64N16TiO, 1025.08 g/mol) 

Found (Calculated): C: 63.12% (65.61%), H: 7.30% (6.29%), N: 19.54% (21.86%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.26 (s, 16H, Hε), 2.03 (s, 24H, Hδ1), 1.93 (s, 

24H, Hδ2). 

IR: �̃�/cm-1 = 1998 (s), 1954 (s), 1561 (b), 852 (w), 736 (w), 613 (w), 531 (w), 489 

(m), 461 (m), 432 (vs), 419 (s). 

UV/Vis. (CHCl3): λ/nm = 650 (s), 622 (sh), 590 (w), 348 (m), 302 (m), 246 (m). 

Fluorescence (CHCl3): λ = 652 nm. 

MS(APCI-HRMS(+)):m/z=1025.5001[MH]+, calcd. for [C56H65N16TiO]+:1025. 5008. 

 

4.5.2 Attempted synthesis of [Ppz*TiS2] 

 

Attempt 1: A mixture of PzDN* (300 mg, 1.248 mmol) and TiCl3 (96 mg, 0.624 mmol) 

was heated at 220oC under an argon atmosphere for 30 minutes. To the purple product, 

S8 (320 mg, 1.24 mmol), KC8 (422 mg, 3.12 mmol) and dry toluene (50 mL) were added. 

The mixture was heated overnight at 70oC then the insoluble residue was removed by 

filtration. The filtrate was concentrated under reduced pressure and purified by column 

chromatography (CHCl3, Al2O3). The green product was characterized as [Ppz*TiO].  

Additional information 

When the experiment was performed in dry THF, the chromophore was destroyed. 
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Attempt 2: A mixture of [Ppz*TiO] (238 mg, 0.232 mmol) and P4S10 (206 mg, 0.463 

mmol) in dry toluene was heated overnight at 100oC under an argon atmosphere then 

the solvent was removed under reduced pressure and the product was washed with 

diethyl ether. An unidentified colorful product was obtained. 

 

4.5.3 Attempted synthesis of [Ppz*TiSe2] 

 

A mixture of PzDN* (300 mg, 1.248 mmol) and TiCl3 (96 mg, 0.624 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. To the purple product, Se8 (789 mg, 

1.249 mmol), KC8 (422 mg, 3.122 mmol) and dry toluene (50 mL) were added. The 

mixture was heated overnight at 70oC then the insoluble residue was removed by 

filtration. The filtrate was concentrated under reduced pressure and purified by column 

chromatography (CHCl3, Al2O3). The green product was characterized as [Ppz*TiO]. 

Additional information 

When the experiment was performed in dry THF, the chromophore was destroyed. 

 

4.5.4 Attempted synthesis of [Ppz*Ti(PO4H)] 

 

A mixture of PzDN* (300 mg, 1.248 mmol) and TiCl3 (96 mg, 0.624 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. To the product, K2HPO4 (231 mg, 

1.326 mmol) and dry toluene (100 mL) were added, then the mixture was heated at 

130oC for 4 hours. After cooling, the mixture was concentrated under reduced pressure 

and purified by column chromatography (CHCl3, Al2O3). The blue – green product was 

characterized as [Ppz*TiO].   
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4.5.5 Synthesis of [Ppz*VO]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and VCl3 (98 mg, 0.624 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. The product was washed with diethyl 

ether (100 mL) and purified by column chromatography (CHCl3, Al2O3). After removing 

the solvent, the desired product was obtained as a blue - green solid. 

Yield: 268 mg, 0.261 mmol, 84 %. 

Elemental analysis: (C56H64N16VO, 1028.15 g/mol) 

Found (Calculated): C: 65.86% (65.42%), H: 7.64% (6.27%), N: 20.44% (21.80%). 

IR: �̃�/cm-1 = 3855 (w), 3710 (w), 2166 (m), 2037 (m), 1979 (m), 1941 (m), 463 

(s), 442 (s), 417 (s). 

UV/Vis. (CHCl3): λ/nm = 648 (s), 618 (sh), 590 (w), 346 (s), 300 (m), 250 (m). 

Fluorescence (CHCl3): λ = 661 nm. 

MS(APCI-HRMS(+)): m/z=1028.4961[MH]+, calcd. for [C56H65N16VO]+: 1028.4962.  

 

4.5.6 Attempted synthesis of [Ppz*V(NC8H8COOH)] 

 

A mixture of [Ppz*VO] (173 mg, 0.168 mmol) and L-phenylalanine (32 mg, 0.194 mmol) 

was refluxed in acetone for 3 hours. The chromophore was destroyed.  

 

4.5.7 Attempted synthesis of [Ppz*V(NSO3H)] 

 

A mixture of [Ppz*VO] (310 mg, 0.302 mmol) and sulfamic acid (58 mg, 0.603 mmol) 

was refluxed in toluene for 3 hours. After removing the solvent under reduced pressure, 

the obtained solid was characterized as [Ppz*VO].  
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4.5.8 Attempted synthesis of [Ppz*V(NC6H4SO3H)] 

 

A mixture of [Ppz*VO] (278 mg, 0.270 mmol) and sulfanilic acid (93 mg, 0.542 mmol) 

was refluxed in toluene for 3 hours. After removing the solvent under reduced pressure, 

the obtained solid was characterized as [Ppz*VO].  

 

4.5.9 Synthesis of [Ppz*Cr]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), [Cr(CO)6] (137 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with pentane and diethyl ether (20 mL) then purified by 

column chromatography (CHCl3, Al2O3). After removing the solvent, the product was 

obtained as a green solid. 

Yield: 158 mg, 0.156 mmol, 50 %. 

Elemental analysis: (C56H64N16Cr, 1013.21 g/mol) 

Found (Calculated): C: 66.70% (66.38%), H: 8.16% (6.37%), N: 18.95% (22.12%). 

IR: �̃�/cm-1 = 2527 (m), 2359 (s), 2260 (s), 2147 (s), 2050 (s), 1958 (m), 1870 (m), 

1540 (m), 727 (m), 672 (m), 589 (m), 558 (m), 471 (s), 444 (s), 405 (s). 

UV/Vis. (CHCl3): λ/nm = 647(s), 620(sh), 586(w), 478(w), 356(m), 300(m). 

MS(APCI-HRMS(+)): m/z = 1013.4982[MH]+, calcd. for [C56H65N16Cr]+: 1013.4979.  

 

4.5.10 Synthesis of [Ppz*CrCl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), CrCl3.6H2O (166 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with diethyl ether (2x20 mL) and purified by column 
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chromatography (ethyl acetate, Al2O3). After removing the solvent, the product was 

obtained as a green solid. 

Yield: 140 mg, 0.134 mmol, 43 %. 

Elemental analysis: (C56H64N16CrCl, 1048.66 g/mol) 

Found (Calculated): C: 62.95% (64.14%), H: 7.49% (6.15%), N: 16.95% (21.37%). 

IR: �̃�/cm-1 = 1607 (w), 1489 (w), 1414 (w), 1330 (s), 1286 (m), 1162 (w), 1117 

(s), 1066 (s), 960 (m), 892 (m), 726 (vs), 643 (m), 546 (w), 501 (w), 413 (w). 

UV/Vis. (CHCl3): λ/nm = 646 (s), 620 (sh), 568 (w), 474 (w), 344 (s), 318 (s), 292 

(s), 252 (s). 

Fluorescence (CHCl3): λ = 652 nm. 

MS(APCI-HRMS(+)):m/z=1048.4646[MH]+,calcd. for [C56H65N16CrCl]+:1048.4668.  

 

4.5.11 Synthesis of [Ppz*MnCl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), MnCl2.4H2O (124 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with pentane and diethyl ether (2x20 mL) then purified by 

column chromatography (CHCl3, Al2O3). After removing the solvent, the product was 

obtained as a green solid. 

Yield: 48 mg, 0.046 mmol, 15 %. 

Elemental analysis: (C56H64N16MnCl, 1051.61 g/mol) 

Found (Calculated): C: 66.53%(63.96%), H: 7.85% (6.13%), N: 19.49% (21.31%). 

UV/Vis. (CDCl3): λ/nm = 674 (s), 611(sh), 489 (sh), 366 (m), 303(m). 

MS (APCI-HRMS(+)): m/z = 1050.9475 [M]+, calcd. [C56H64N16MnCl]+: 1050.9475.  

 

4.5.12 Synthesis of [Ppz*Fe]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), FeCl2.4H2O (124 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with diethyl ether (2x20 mL), and purified by column 
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chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 102 mg, 0.100 mmol, 32 %. 

Elemental analysis: (C56H64N16Fe, 1017.06 g/mol) 

Found (Calculated): C: 70.11%(66.12 %), H: 9.05%(6.35%), N: 17.50% (22.03%). 

UV/Vis. (CHCl3): λ/nm = 636 (s), 578 (sh), 452 (m). 

MS(APCI-HRMS(+)):m/z = 1017.4919[MH]+, calcd. for [C56H65N16Fe]+: 1017.4923. 

 

4.5.13 Attempted synthesis of [(Ppz*Fe)2N]  

 

A mixture of [Ppz*Fe] (14 mg, 0.014 mmol), NaN3 (700 mg, 10.77 mmol) and 1-CNP (20 

mL) was heated at 220oC for 3 hours. Pentane (50 mL) was added to precipitate a non-

colorful yellow – green product.  

 

4.5.14 Synthesis of [Ppz*FeCl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), FeCl3.6H2O (168 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the product was obtained as 

a green solid. 

Yield: 64 mg, 0.061 mmol, 19 %. 

Elemental analysis: (C56H64N16FeCl, 1052.51 g/mol) 

Found (Calculated): C: 66.58% (63.90%), H: 8.18% (6.13%), N: 18.82% (21.29%). 

UV/Vis. (CDCl3): λ/nm = 878(w), 636 (s), 573 (sh), 418(sh), 305 (s). 

MS(APCI-HRMS(+)):m/z=1052.4607[MH]+,calcd. for [C56H65N16FeCl]+:1052.4623.  
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4.5.15 Synthesis of [Ppz*Co]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and CoCl2.6H2O (148 mg, 0.624 mmol) was 

heated at 220oC under an argon atmosphere for 30 minutes. The product was washed 

with diethyl ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). 

After removing the solvent, the product was obtained as a blue solid. 

Yield: 106 mg, 0.104 mmol, 33 %. 

Elemental analysis: (C56H64N16Co, 1020.15 g/mol) 

Found (Calculated): C: 67.20% (65.93%), H: 7.87% (6.32%), N: 20.79% (21.97%). 

IR: �̃�/cm-1 = 2615(m), 2546(m), 2481(m), 2292(m), 2222(s), 2145(s), 2086(s), 

2027(s), 1951(s), 1939(s), 858(m), 627(m), 558(m), 502(s), 425(s).  

UV/Vis. (CHCl3): λ/nm = 630 (s), 572 (sh), 328 (s). 

MS(APCI-HRMS(+)):m/z= 1020.4901 [MH]+, calcd. for [C56H65N16Co]+: 1020.4905.  

 

4.5.16 Attempted synthesis of [Ppz*CoI] 

 

A mixture of [Ppz*Co] (170 mg, 0.167 mmol), I2 (445 mg, 1.753 mmol) and KI solution (5 

%, 100 mL) was refluxed overnight. No reaction took place. 

 

4.5.17 Synthesis of [Ppz*Ni]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), NiCl2.6H2O (148 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the desired product was 

obtained as a blue solid. 

Yield: 266 mg, 0.261 mmol, 84 %. 

Elemental analysis: (C56H64N16Ni, 1019.91 g/mol) 
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Found (Calculated): C: 67.69% (65.95%), H: 8.08% (6.32%), N: 20.35% (21.97%). 

IR: �̃�/cm-1 = 2355 (w), 2255 (s), 2159 (vs), 2088 (s), 1996 (s), 1954 (vs), 773 (m), 

666 (w), 627 (w), 547 (m), 503 (m), 483 (s), 430 (s), 419 (s). 

UV/Vis. (CHCl3): λ/nm = 630 (s), 604 (sh), 572 (w), 358 (w), 330 (m). 

MS(APCI-HRMS(+)): m/z= 1019.4917[MH]+, calcd. for [C56H65N16Ni] +: 1019.4926.  

 

4.5.18 Synthesis of [Ppz*Cu]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and CuCl2.2H2O (106 mg, 0.624 mmol) was 

heated at 220oC under an argon atmosphere for 30 minutes. The product was washed 

with diethyl ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). 

After removing the solvent, the product was obtained as a blue solid. 

Yield: 126 mg, 0.123 mmol, 39 %. 

Elemental analysis: (C56H64N16Cu, 1024.76 g/mol) 

Found (Calculated): C: 68.80% (65.63%), H: 8.47% (6.29%), N: 18.67% (21.87%). 

UV/Vis. (CHCl3): λ/nm = 684 (sh), 638 (s), 580 (sh), 342 (m), 302(sh). 

MS(APCI-HRMS(+)):m/z= 1024.4868[MH]+, calcd. For [C56H65N16Cu]+: 1024.4869. 

 

4.5.19 New synthetic method for [Ppz*Zn]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and ZnCl2 (85 mg, 0.624 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. The product was washed with diethyl 

ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). After removing 

the solvent, the product was obtained as a blue solid. 

Yield: 97 mg, 0.095 mmol, 30 %. 

Elemental analysis: (C56H64N16Zn, 1026.60 g/mol) 

Found (Calculated): C: 65.12% (65.52%), H: 7.26% (6.28%), N: 21.33% (21.83%). 

1H-NMR (300 MHz, CHCl3): δ/ppm = 1.90 (s, 16H, Hε), 1.64 (s, 48H, Hδ1+2). 
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IR: �̃�/cm-1 = 2443 (m), 2264 (m), 2185 (m), 2153 (s), 2052 (m), 1979 (m), 1954 

(m), 1521 (w), 1101 (w), 942 (w), 851 (m), 648 (m), 508 (s), 445 (s), 413 (s). 

UV/Vis. (CDCl3): λ/nm = 642 (s), 614 (sh), 582 (s), 349 (s), 582 (s), 349 (s). 

MS(APCI-HRMS(+)):m/z= 1025.4866[MH]+,  calcd. for [C56H65N16Zn]+: 1025.4864.  

 

4.5.20 New synthetic method for Ppz*H2 

 

Method 1: A mixture of PzDN* (300 mg, 1.248 mmol) and DBU (0.5 mL) was heated at 

220oC in 1-pentanol (1 mL) for 15 minutes. After cooling, pentane (100 mL) was added 

to precipitate a solid residue. The residue was purified using column chromatography 

(CHCl3, Al2O3). After removing the solvent, the product was obtained as a green solid. 

Yield: 72 mg, 0.075 mmol, 24 %. 

MS (APCI-HRMS(+)): m/z = 963.5727 [MH]+, calcd. for [C56H67N16]+: 963.5729. 

 

 

Method 2: A mixture of [Ppz*Zn] (72 mg, 0.0701 mmol), pyridine (5 mL) and pyridine-

HCl (1.507 g, 13 mmol) was stirred overnight at 110oC under an argon atmosphere. 

Afterwards, the mixture was cooled down and H2O (10 mL) was added. Finally, the 

precipitate was filtered, washed with water and dried under vacuum.  

Yield: 57 mg, 0.0594 mmol, 85 %. 

 

4.5.21 Synthesis of [Ppz*AlCl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and AlCl3 (83 mg, 0.624 mmol) was heated at 

220oC under an argon atmosphere for 30 minutes. The solid residue was washed with 

diethyl ether (2x20 mL) and purified by column chromatography (THF, Al2O3). After 

removing the solvent, the product was obtained as a blue-green solid. 

Yield: 225 mg, 0.221 mmol, 71 %. 

Elemental analysis: (C56H64N16AlCl, 1023.65 g/mol) 
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Found (Calculated): C: 67.27% (65.71%), H: 7.97% (6.30%), N: 19.13% (21.89%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.27 (s, 16H, Hε), 1.43 (s, 48H, Hδ1+2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 125.5, 59.6, 38.2, 32.0, 29.7, 22.7, 14.2. 

UV/Vis. (CHCl3): λ/nm = 642 (s), 614 (sh), 582 (w), 352 (m), 296 (m), 244 (m). 

Fluorescence (CHCl3): λ = 647 nm. 

MS (APCI-HRMS(+)):m/z=1023.5083[MH]+,calcd. for [C56H65N16AlCl]+:1023.5075. 

 

4.5.22 Synthesis of [Ppz*AlF]  

 

A mixture of [Ppz*AlCl] (100 mg, 0.099 mmol), KF (1.45 g, 24.96 mmol) and H2O (100 

mL) was refluxed overnight. After cooling, the blue solid was filtered, washed with water 

and dried under vacuum. 

Yield: 94 mg, 0.094 mmol, 96 %. 

Elemental analysis: (C56H64N16AlF, 1007.19 g/mol) 

Found (Calculated): C: 68.34% (66.78%), H: 8.23% (6.40%), N: 20.07% (22.25%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.27 (s, 16H, Hε), 1.43 (s, 48H, Hδ1+2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 125.6, 68.1, 34.3, 30.4, 25.7, 21.3. 

IR: �̃�/cm-1 = 431 (w), 699 (m), 797 (s), 1009 (s), 1080 (s), 1259 (s), 1456 (m), 

2919 (m). 

UV/Vis. (CHCl3): λ/nm = 642 (s), 612 (w), 580 (w), 357 (s), 293 (m), 250 (m). 

MS (APCI-HRMS(+)): m/z = 1007.5370[MH]+, calcd. for C56H65N16AlF+: 1007.5372.  

 

4.5.23 Attempted synthesis of [Ppz*AlOH] 

 

Attempt 1: A mixture of [Ppz*AlCl] (100 mg, 0.098 mmol), conc. NH4OH (10 mL) and 

H2O (50 mL) was refluxed overnight, then the solvent was removed by filtration. The 

product was characterized as [Ppz*AlCl]. 
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Attempt 2: A mixture of PzDN* (300 mg, 1.248 mmol), excess Al(OH)3 (0.34 g, 3.33 

mmol), DBU (0.5 mL) and 1-pentanol (2 mL) was heated for 60 minutes at 220oC. After 

cooling, pentane (20 mL) was added to precipitate a solid. This solid was washed with 

diethyl ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). After 

removing the solvent, the resulting blue product was characterized as Ppz*H2. 

Additional information: 

When a similar mixture was heated overnight at 160oC, no reaction took place. 

 

 

Attempt 3: A mixture of [Ppz*AlCl] (124 mg, 0.121 mmol), conc. NH4OH (50 mL) and 

triethylamine (50 mL) was stirred for two days, then a solid was precipitated by adding 

pentane (200 mL). The solvent was removed by filtration and the obtained product was 

characterized as [Ppz*AlCl]. 

 

4.5.24 Attempted synthesis of [Ppz*AlSH] 

 

A mixture of [Ppz*AlCl] (100 mg, 0.098 mmol), NaSH (927 mg, 17.34 mmol) and toluene 

(100 mL) was refluxed overnight then the solvent was removed under reduced pressure 

and the product was characterized as [Ppz*AlCl].  

Additional information: 

When a similar mixture was refluxed for 3 h in acetone, the chromophore was 

destroyed. 

 

4.5.25 Attempted synthesis of [Ppz*AlCH3] 
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Attempt 1: A mixture of PzDN* (300 mg, 1.248 mmol) and Al(CH3)3 (60.16 mg, 0.08 mL, 

0.834 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x30 mL) then purified by column 

chromatography (THF, Al2O3). The green product could not be identified by MS (APCI-

HRMS(+)) measurements. 

 

 

Attempt 2: A mixture of [Ppz*AlCl] (104 mg, 0.102 mmol), CH3Li (2.45 mg, 0.112 mmol 

contained in 0.07 mL of 1.595 M in diethyl ether) and dry toluene (30 mL) was stirred 

under an argon atmosphere for 3 hours. The chromophore was destroyed. 

Additional information 

The same was obtained, when Et2O was used as a solvent. 

 

 

Attempt 3: A mixture of [Ppz*AlCl] (121 mg, 0.118 mmol), CH3MgI (22.27 mg, 0.134 

mmol contained in 0.06 mL of 2.218 M in diethyl ether) and dry THF (30 mL) was 

stirred for 3 hours under an argon atmosphere. This led to destruction of the 

chromophore. 

Additional information 

When the experiment was performed in dry toluene at 120oC, no reaction took place. 

 

4.5.26 Attempted synthesis of [Ppz*AlC2H5] 

 

A mixture of [Ppz*AlCl] (100 mg, 0.098 mmol), (C2H5)2Zn (12.07 mg, 0.0977 mmol 

contained in 0.110 g of toluene solution) and dry diethyl ether (30 mL) was stirred for 3 

h under an argon atmosphere. The chromophore was destroyed. 
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4.5.27 Attempted synthesis of [Ppz*AlC6H5] 

 

A mixture of [Ppz*AlCl] (164 mg, 0.160 mmol), C6H5Li (13.45 mg, 0.16 mmol contained 

in 0.08 mL of 2 M in dibutyl ether) and dry toluene (30 mL) was stirred at 120oC for 3 h 

under an argon atmosphere. The chromophore was destroyed. 

 

4.5.28 Attempted synthesis of [Ppz*AlNMe2] 

 

A mixture of [Ppz*AlCl] (100 mg, 0.098 mmol), Ti(NMe2)4 (48.8 mg, 0.214 mmol, 0.05 

mL) and dry diethyl ether (30 mL) was stirred for 3 hours under an argon atmosphere. 

The solvent was removed under vacuum and the product was characterized as 

[Ppz*AlCl].  

Additional information 

When the experiment was performed in dry toluene at 100oC,  no reaction took place. 

 

4.5.29 Attempted synthesis of [Ppz*AlOP(O)(OH)2] or [(Ppz*AlO)2P(O)(OH)] 

 

[Ppz*AlCl] (197 mg, 0.192 mmol) was stirred in H3PO4 (85 %, 25 mL) at 110oC for 24 h. 

Then, the product was precipitated by adding water (100 mL). After filtration, the 

product was washed with Na2CO3 solution and water. The product was characterized as 

[Ppz*AlCl]. 

Additional information: 

When the experiment was performed overnight under refluxing conditions, the 

chromophore was destroyed. 
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4.5.30 Synthesis of [Ppz*GaCl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and GaCl3 (109 mg, 0.624 mmol) was heated 

at 220oC under an argon atmosphere for 30 minutes. The obtained solid residue was 

washed with diethyl ether (2x20 mL) and purified by column chromatography (THF, 

Al2O3). After removing the solvent, the product was obtained as a green solid. 

Yield: 138 mg, 0.130 mmol, 42 %. 

Elemental analysis: (C56H64N16GaCl, 1066.39 g/mol) 

Found (Calculated): C: 63.04% (63.07%), H: 7.35% (6.05%), N: 19.47% (21.02%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.08 (s, 16H, Hε), 1.84 (s, 48H, Hδ1+2) 

13C-NMR (75 MHz, CDCl3): δ/ppm = 151.6, 135.9, 128.3, 125.6, 34.2, 30.4, 21.3. 

UV/Vis. (CHCl3): λ/nm = 648 (s), 622 (sh), 586 (w), 442 (sh), 352 (m), 278 (s), 

244 (s). 

Fluorescence (CHCl3): λ = 652 nm. 

MS(APCI-HRMS(+)):m/z=1067.4498[MH]+,calcd. for [C56H65N16GaCl]+:1067.4515.  

 

4.5.31 Attempted synthesis of [Ppz*GaF] 

 

A mixture of [Ppz*GaCl] (112 mg, 0.105 mmol) and KF (1.64 g, 28.23 mmol) and H2O 

(100 mL) was refluxed overnight. The green solid was filtered and characterized as 

[Ppz*GaCl]. 

 

4.5.32 Attempted synthesis of [Ppz*GaCH3]  

 

Attempt 1: A mixture of [Pz*GaCl] (230 mg, 0.216 mmol), CH3MgI (110.6 mg, 0.665 

mmol contained in 0.3 mL of 2.218 M in diethyl ether) and dry toluene (30 mL) was 

stirred overnight at 100oC under an argon atmosphere. The solvent was removed under 

reduced pressure. After washing with pentane, the product was identified as [Ppz*GaCl]. 
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Additional information: 

When the experiment was performed in dry THF at room temperature, the 

chromophore was destroyed. 

 

 

Attempt 2: A mixture of PzDN* (300 mg, 1.248 mmol) and Ga(CH3)3 (79.24 mg, 0.690 

mmol, 0.07 mL) was heated for 30 minutes at 220oC under an argon atmosphere. The 

obtained solid residue was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (THF, Al2O3). The resulting pale green product could not be identified 

by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

 

Attempt 3: A mixture of [Ppz*GaCl] (186 mg, 0.174 mmol), CH3Li (3.52 mg, 0.16 mmol, 

contained in 0.1 mL of 1.595 M in dimethyl ether) and dry toluene (30 mL) was stirred 

overnight under an argon atmosphere. The chromophore was destroyed. 

 

4.5.33 Synthesis of [Ppz*InCl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol) and InCl3 (138 mg, 0.624 mmol) was heated 

at 220oC under an argon atmosphere for 30 minutes. After cooling, the solid residue was 

added to CH2Cl2 (200 mL) and filtered off to remove the insoluble part. The filtrate was 

concentrated and washed with methanol until the washing methanol became colorless. 

The green product was dried under vacuum.   

Yield: 44 mg, 0.040 mmol, 13 %. 

Elemental analysis: (C56H64N16InCl, 1111.48 g/mol) 

Found (Calculated): C: 58.36% (60.50%), H: 6.08% (5.82%), N: 19.94% (20.17%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.29 (s, 16H, Hε), 1.93 (s, 24H, Hδ1), 1.83 (s, 

24H, Hδ2). 

13C-NMR (75 MHz, CDCl3): δ/ppm = 164.6, 150.4, 146.5, 39.4, 34.0, 30.7, 30.4. 

UV/Vis. (CHCl3): λ/nm = 648 (s), 621 (sh), 590 (m), 356 (s), 298 (m), 258 (m). 
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Fluorescence (CHCl3): λ = 652 nm. 

MS (APCI-HRMS(+)):m/z=1111.4293[MH]+,calcd. for [C56H65N16InCl]+:1111.4300.  

 

4.5.34 Attempted synthesis of [Ppz*InF] 

 

A mixture of [Ppz*InCl] (93 mg, 0.0836 mmol), KF (1.60 g, 27.54 mmol) and H2O (100 

mL) was refluxed overnight. Then, the green solid was filtered and characterized as 

[Ppz*InCl]. 

 

4.5.35 Synthesis of [Ppz*SiCl2] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), SiCl4 (148 mg, 0.1 mL, 0.871 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). After removing the solvent, the desired product was 

obtained as a blue-green solid. 

Yield: 88 mg, 0.081 mmol, 27 %. 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.25 (s, 16H, Hε), 1.97 (s, 48H, Hδ1+2). 

UV/Vis. (CDCl3): λ/nm = 652 (s), 590 (w), 357 (m), 296 (m), 244 (m). 

MS (APCI-HRMS(+)) : m/z = 1059.4719[MH]+ , calcd. for [C56H65N16SiCl2]+: 

1059.4730.  

 

4.5.36 Attempted synthesis of [Ppz*SiF2] 

 

A mixture of [Ppz*SiCl2] (113 mg, 0.107 mmol), KF (2.92 g, 50.3 mmol) and H2O (50 mL) 

was refluxed overnight. No reaction took place. 
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4.5.37 Synthesis of [Ppz*Si(Oi-Pr)2] 

 

A mixture of isopropanol (50 mL) and [Ppz*SiCl2] (114 mg, 0.108 mmol) was refluxed 

overnight. After removing the solvent under reduced pressure, the product was 

obtained as a blue - green solid. 

 Yield: 105 mg, 0.104 mmol, 89 %. 

UV/Vis. (CHCl3): λ/nm = 644(s), 606(m), 588(m), 384(m), 346(s), 320(s), 257(s). 

MS (APCI-HRMS(+)): m/z = 1107.6333 [MH]+, calcd. for [C56H65N16Si(OC3H7)2]+: 

1107.6336.  

 

4.5.38 Attempted synthesis of [Ppz*Si(CH3)2] 

 

Attempt 1: A mixture of [Ppz*SiCl2] (176 mg, 0.166 mmol), CH3MgI (89.54 mg, 0.586 

mmol contained in 0.38 mL of 2.218 M solution in diethyl ether) and THF (20 mL) was 

stirred overnight at room temperature under an argon atmosphere. This led to 

destruction of the chromophore. 

Additional information 

When the experiment was performed in dry toluene, the same result was obtained. 

 

 

Attempt 2: A mixture of [Ppz*SiCl2] (112 mg, 0.106 mmol), CH3Li (5.26 mg, 0.239 mmol 

contained in 0.15 mL of 1.595 M solution in diethyl ether) and dry toluene (20 mL) was 

stirred overnight under argon. This led to destruction of the chromophore. 
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Attempt 3: A mixture of PzDN* (300 mg, 1.248 mmol), (CH3)2SiCl2 (106 mg, 0.1 mL, 

0.824 mmol) and urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under 

an argon atmosphere. The product was washed with diethyl ether (2x20 mL) and 

purified by column chromatography (CHCl3, Al2O3). The pale green product could not be 

identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.39 Attempted synthesis of [Ppz*Si(C6H5)2] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), (C6H5)2SiCl2 (180.6 mg, 0.15 mL, 0.713 

mmol) and urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an 

argon atmosphere. The product was washed with diethyl ether (2x20 mL) and purified 

by column chromatography (CHCl3, Al2O3). The pale green product could not be 

identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.40 Synthesis of [Ppz*Ge(OH)2] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), GeCl4 (150.4 mg, 0.08 mL, 0.701 mmol) and 

urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. The product was washed with diethyl ether (2x20 mL) and purified by 

column chromatography (CHCl3, Al2O3). After removing the solvent, the product was 

obtained as a blue-green solid. 

Yield: 92 mg, 0.083 mmol, 28.221 %. 

Elemental analysis: (C56H64N16Ge(OH)2, 1067.87 g/mol) 

Found (Calculated): C: 58.82% (62.99%), H: 7.51% (6.23%), N: 17.94% (20.99%). 

1H-NMR (300 MHz, CDCl3): δ/ppm = 2.24 (s, 16H, Hε), 1.96 (s, 48H, Hδ1+2), 3.33 

(bs, 2H, Ge(OH)2) .  



EXPERIMENTAL 

179 

 

13C-NMR (75 MHz, CDCl3): δ/ppm = 165.7, 164.9, 145.4, 39.7, 34.2, 30.9, 29.5.  

UV/Vis. (CHCl3): λ/nm = 636(s), 610(sh), 577(w), 354(m). 

MS (APCI-HRMS(+)) : m/z = 1065.4883 [MH+CH3-H2O]+ , calcd. for 

[C56H65N16GeOCH3]+: 1065.4892.  

 

4.5.41 Attempted synthesis of [Ppz*Mg] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), MgCl2.6H2O (127 mg, 0.624 mmol), DBU (0.5 

mL) and 1-pentanol (3 mL) was stirred for 20 minutes at 220oC under an argon 

atmosphere. Then, the mixture was cooled to 160oC and stirred overnight at this 

temperature. After cooling, pentane (20 mL) was added to precipitate a brown solid. The 

solid was isolated and purified by column chromatography (CHCl3, Al2O3). The product 

could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.42 Attempted synthesis of [Ppz*ScCl] 

 

Attempt 1: A mixture of PzDN* (300 mg, 1.248 mmol), ScCl3 (94 mg, 0.624 mmol), urea 

(149 mg, 2.49 mmol) and 1-CNP (2 mL) was heated overnight at 160oC under an argon 

atmosphere. After cooling, pentane (20 mL) was added to precipitate a dark solid. The 

solid was purified by column chromatography (CHCl3, Al2O3).  The obtained pale green 

product could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

Attempt 2: A mixture of PzDN* (300 mg, 1.248 mmol), ScCl3 (94 mg, 0.624 mmol) and 

urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. Then, the product was washed with diethyl ether (2x20 mL) and purified 

by column chromatography (CHCl3, Al2O3). The pale green product could not be 

identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

 

Attempt 3: A mixture of PzDN* (300 mg, 1.248 mmol), ScCl3 (94 mg, 0.624 mmol), DBU 

(0.5 mL) and 1-pentanol (3 mL) was heated for 60 minutes at 220oC under an argon 
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atmosphere. After cooling to 160oC, stirring was continued overnight at this 

temperature then pentane (20 mL) was added to precipitate a brown solid. The solid 

was purified by column chromatography (CHCl3, Al2O3). The product could not be 

identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.43 Attempted synthesis of [Ppz*ZrCl2] 

 

Attempt 1: A mixture of PzDN* (300 mg, 1.248 mmol), ZrCl4 (145 mg, 0.624 mmol) and 

urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. The product was washed with diethyl ether (2x20 mL) and purified by 

column chromatography (CHCl3, Al2O3). The pale green product could not be identified 

by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

 

Attempt 2: A solution of PzDN* (300 mg, 1.248 mmol) in 1-CNP (2 mL) was heated at 

220oC for an hour, then ZrCl4 (145 mg, 0.624 mmol) was added and the solution was 

stirred at this temperature under an argon atmosphere for 30 minutes. After cooling, 

pentane (20 mL) was added to precipitate a dark residue. The residue was washed with 

diethyl ether (2x20 mL) and purified by column chromatography (CHCl3, Al2O3). The 

pale green product could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) 

measurements. 

 

4.5.44 Attempted synthesis of [Ppz*ZrBr2] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), ZrBr4 (256 mg, 0.624 mmol) and urea (149 

mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon atmosphere. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). The pale green product could not be identified by either 
1H-NMR or MS (APCI-HRMS(+)) measurements. 

 



EXPERIMENTAL 

181 

 

4.5.45 Attempted synthesis of [Ppz*Mo] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), Mo(CO)6 (165 mg, 0.624 mmol) and urea 

(149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon atmosphere. 

The product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). The pale green product could not be identified by either 
1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.46 Attempted synthesis of [Ppz*MoO] 

 

A mixture of PzDN* (300 mg, 1.248 mmol) and (NH4)6Mo7O24.4H2O (1.54 g, 1.248 mmol) 

was heated at 220oC for 30 minutes under an argon atmosphere. The obtained solid 

residue was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). The pale green product could not be identified by either 
1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.47 Attempted synthesis of [Ppz*MoN]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), [MoN(Ot-Bu)3] (206 mg, 0.624 mmol) and 

urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. After cooling, the solid residue was washed with diethyl ether and 

dissolved in chloroform. No chromophore was obtained. 

 

4.5.48 Attempted synthesis of [Ppz*W] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), W(CO)6 (220 mg, 0.624 mmol) and urea (149 

mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon atmosphere. The 

product was washed with diethyl ether (2x20 mL) and purified by column 
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chromatography (CHCl3, Al2O3). The pale green product could not be identified by either 
1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.49 Attempted synthesis of [Ppz*WN]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), WNCl3 (189 mg, 0.624 mmol) and urea (149 

mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon atmosphere. After 

cooling, the solid residue was washed with diethyl ether and dissolved in chloroform. No 

chromophore was obtained. 

 

4.5.50 Attempted synthesis of [Ppz*W(Nt-Bu)Cl]  

 

A mixture of PzDN* (300 mg, 1.248 mmol), [W(Nt-Bu)2Cl2(Py)2] (346 mg, 0.624 mmol) 

and urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. After cooling, the solid residue was washed with diethyl ether and 

dissolved in chloroform. No chromophore was obtained. 

 

4.5.51 Attempted synthesis of [Ppz*WWPpz*] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), [(MeN)3WW(NMe2)3] (394 mg, 0.624 mmol) 

and urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. After cooling, the solid residue was washed with diethyl ether and 

dissolved in chloroform. No chromophore was obtained. 

 

4.5.52 Attempted synthesis of [Ppz*Re(Nt-Bu)Cl] 
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A mixture of PzDN* (300 mg, 1.248 mmol), [Re(Nt-Bu)2Cl3] (271 mg, 0.624 mmol) and 

urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. After cooling, the solid residue was washed with diethyl ether and 

dissolved in chloroform. The product is not colorful. 

 

4.5.53 Attempted synthesis of [Ppz*Cd] 

 

Attempt 1: A mixture of PzDN* (300 mg, 1.248 mmol), CdCl2.H2O (125 mg, 0.624 mmol) 

and urea (149 mg, 2.49 mmol) was heated at 220oC for 30 minutes under an argon 

atmosphere. The product was washed with diethyl ether (2x20 mL) and purified by 

column chromatography (CHCl3, Al2O3). The pale green product could not be identified 

by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

 

Attempt 2: A mixture of PzDN* (300 mg, 1.248 mmol), CdCl2.H2O (125 mg, 0.624 mmol), 

DBU (0.5 mL) and 1-pentanol (3 mL) was stirred for 20 minutes at 220oC under an argon 

atmosphere. After cooling to 160oC, the mixture was stirred overnight at this 

temperature. Afterwards, pentane (20 mL) was added to precipitate a brown solid. The 

solid was isolated and purified by column chromatography (CHCl3, Al2O3). The obtained 

product could not be identified by either 1H-NMR or MS (APCI-HRMS(+)) measurements. 

 

4.5.54 Attempted synthesis of [Ppz*SnCl2] 

 

A mixture of PzDN* (355 mg, 1.477 mmol), SnCl4.5H2O (259 mg, 0.739 mmol) and urea 

(177 mg, 2.95 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. 

The obtained solid residue was dissolved in chloroform. No chromophore was obtained. 
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4.5.55 Attempted synthesis of [Ppz*Pb] 

 

A mixture of PzDN* (300 mg, 1.248 mmol), PbO (139 mg, 0.624 mmol) and urea (149 

mg, 2.49 mmol) was heated at 220oC under an argon atmosphere for 30 minutes. The 

product was washed with diethyl ether (2x20 mL) and purified by column 

chromatography (CHCl3, Al2O3). The pale green product could not be identified by either 
1H-NMR or MS (APCI-HRMS(+)) measurements. 

Additional information:  

Using Pb(CH3COO)2.3H2O as a metal template led to the same result. 

 

4.6 Synthesis of Ppz# complexes 

4.6.1 Synthesis of [Ppz#Co]  

 

A mixture of PzDN# (350 mg, 1.900 mmol), CoCl2.6H2O (228 mg, 0.96 mmol) and urea 

(228 mg, 3.80 mmol) was heated at 220oC for 30 minutes under an argon atmosphere. 

The product was washed with ethanol (3x20 mL), water (3x20 mL) and chloroform until 

the solution became colorless. Finally, the residue was dissolved in pyridine (10 mL) and 

filtered through a short Al2O3 column (~ 5 cm). After removal of pyridine under reduced 

pressure, the product was obtained as a green solid. 

MS (APCI-HRMS(+)): m/z = 796.2391 [MH]+, calcd. for [C40H33N16Co]+: 796.2401.  

 

4.6.2 Synthesis of [Ppz#Cu]  

 

A mixture of PzDN# (328 mg, 1.780 mmol), CuCl2.2H2O (153 mg, 0.90 mmol) and urea 

(215 mg, 3.56 mmol) was heated at 220oC for 30 minutes under an argon atmosphere. 

The product was washed with ethanol (3x20 mL), water (3x20 mL) and chloroform until 

the solution became colorless. Finally, the residue was dissolved in pyridine (10 mL) and 

filtered through a short Al2O3 column (~ 5 cm). After removal of pyridine under reduced 

pressure, the product was obtained as a green solid.  

MS (APCI-HRMS(+)): m/z = 800.2371 [MH]+, calcd. For [C40H33N16Cu]+: 801.2365. 
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4.7 Attempted synthesis of [(CatPpz*)Zn]  

 

Although several attempts to prepare the zinc azaphthalocyanine compound 

[(CatPpz*)Zn] were performed (Table 31), the obtained products are not colorful and 

could not be characterized by either EI mass spectrometry or UV / Vis. spectroscopy. 

 

Table 31: Testing conditions for attempted synthesis of [(CatPpz*)Zn]. 

Number CatPzDN* Zn(OAc)2.2H2O Base Solvent Temperature Duration 

1 
100 mg, 0.423 

mmol, 2.0 eq 

47 mg, 0.211 

mmol, 1.0 eq 
Urea  Quinoline(1mL) 160oC 

20h 

2 
200 mg, 0.847 

mmol, 2.0 eq 

93 mg, 0.423 

mmol, 1.0 eq 
Urea  - 220oC 

25 min. 

3 
200 mg, 0.847 

mmol, 2.0 eq 

93 mg, 0.423 

mmol, 1.0 eq 
DBU 1-Octanol(1mL) 160oC 

18h 

4 
50 mg, 0.212 mmol, 

2.0 eq 

23 mg, 0.106 

mmol, 1.0 eq 
Urea 1-CNP(1mL) 160oC 

20h 

 

4.8 New synthetic procedures for [PcTiS][320] 

4.8.1 Successful strategies  

 

Method 1: A mixture of [PcTiO] (1 g, 1.7 mmol) and Lawesson’s reagent (1.41 g, 

3.5 mmol) was refluxed in dry toluene (20 mL) for 8 hours then the solution was cooled 

to room temperature and stirred overnight. The resulting dark green product was 

washed with toluene and THF and dried under vacuum.  

Yield: 0.833 g (1.4 mmol, 81 %). 
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MS(APCI-HRMS(+)): m/z=591.1182[MH]+, calcd. for [C32H17N8TiS]+: 591.0614. 

 

 

Method 2: A mixture of [PcTiO] (1 g, 1.7 mmol) and 2,4-bis(4-phenoxyphenyl)-1,3,2,4-

dithiadiphosphetan-2,4-disulphide (3.69 g, 7.0 mmol) was refluxed in dry toluene for 

9 hours, then the solution was stirred overnight at 100 °C. The resulting dark green 

product was washed with THF and dried at 250oC under vacuum.  

Yield: quantitative. 

IR: �̃�/cm-1 = 495 (w), 732 (m), 1001 (b), 1240 (m). 

MS (APCI-HRMS(+)) m/z = 591.1169 [MH]+, calcd. for [C32H17N8TiS]+: 591.0614.  

MS (LDI-TOF): m/z = 592.45 [C32H16N8TiS]+.  

 

4.8.2 Unsuccessful strategies 

 

Method 1: A mixture of PDN (0.112 g, 0.9 mmol), Ti(S-tert-butyl)4 (0.349 g, 0.9 mmol) 

and thiourea (0.131 g, 1.7 mmol) was heated at 220 °C for 30 minutes under nitrogen. 

To the product, a mixture of DCM (50 mL) and TFA (5 mL) was added and the mixture 

was filtered under nitrogen to remove the insoluble black residue. Removing the solvent 

under reduced pressure resulted in formation of an unidentified green product.  

Additional information:  

Performing the experiment in 1-octanthiol for 6 h at 150oC resulted in formation of an 

unidentified brown product. 



EXPERIMENTAL 

187 

 

 

Method 2: To a solution of Ti(NMe2)4 (3 g, 13.37 mmol) in pentane (30 mL) at 25 °C, 1-

octanthiol (40 mL, 214.1 mmol) was added. Immediately after the addition, the solution 

became dark red then the excess pentane was removed under vacuum. To the product, 

PDN (3.127 g, 24.4 mmol) and thiourea (0.929 g, 12.2 mmol) were added then the 

mixture was heated at 150 °C for 6 hours under nitrogen. After cooling to room 

temperature, ethanthiol (20 mL) was added and the mixture was refluxed for 

30 minutes. The dark brown product was filtered, washed with toluene, ethanthiol and 

pentane and dried under vacuum. The product could not be identified by either (APCI-

HRMS(+)) or UV/Vis. measurements.  

 

4.8.3 Synthesis of [PcTiSe][320]  

 

A mixture of [PcTiO] (1 g, 1.7 mmol) and Woollin’s reagent (3.692 g, 6.9 mmol) was refluxed 

in dry toluene (100 mL) for 9 hours. Then, the solution was stirred overnight at 100°C. The 

resulting dark green product was washed with refluxing toluene and dried under vacuum.  

Yield: quantitative. 

IR: �̃�/cm-1 = 526 (w), 685 (w), 723 (w), 890 (s), 948 (m), 1066 (w), 1141 (s), 

1324 (s). 

MS (LDI-TOF): m/z = 639.35 [C32H16N8TiSe]+. 

UV/Vis (CNP): λ/nm = 693 (s), 363 (s). 
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4.9 Crystallographic Results  

The crystal structure analyses were carried out at the Department of Chemistry, 

Philipps-Universität Marburg on a Stoe IPDS 2 area detector system using MoKα 

radiation (λ = 71.073 pm) at 100 K.  Stoe IPDS software[183] was used for integration and 

data reduction. Structure solution and refinement were done using the WinGX 

program[184] suite using SHELX-86[185] and SHELX-97.[186] In the case of [Pc*Co], heavily 

disordered solvent molecules could not be modeled adequately. Thus the SQUEEZE 

routine of the PLATON program package[187] was used to remove the corresponding 

delocalized electron density from the data sets. Molecular graphics were produced with 

Diamond 3.0a.[188] In most cases, the hydrogen atoms and any solvent molecules have 

been removed for clarity. Ellipsoids are shown at 50% probability. 
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4.9.1 1,1,4,4-Tetramethyl-6,7-dibromotetraline 

Crystallographer Christian Prinzisky 

Habitus, colour  block,  translucent light colourless 

Crystal size 0.494 x 0.432 x 0.150 mm3 

Crystal system  Monoclinic 

Space group  P 21/c Z = 4 

Unit cell dimensions a = 8.2765(4) Å = 90°. 

 b = 9.0010(4) Å = 94.110(2)°. 

 c = 18.2323(7) Å  = 90°. 

Volume 1354.75(10) Å3 

Empirical formula  C14 H18 Br2 

Formula weight  346.10 

Density (calculated) 1.697 Mg/m3 

Absorption coefficient 5.956 mm-1 

F(000) 688 

Reflections collected 17790 

Independent reflections 2460 [R(int) = 0.0634] 

Completeness to theta = 25.000° 99.9 %  

Observed reflections  2203[II > 2(I)]  

Reflections used for refinement  2460 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.2846 

Largest diff. peak and hole 0.718 and -0.518 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 2460 / 0 / 149 

Goodness-of-fit on F2 1.071 

R index (all data) wR2 = 0.0686 

R index conventional  [I>2sigma(I)] R1 = 0.0263 
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4.9.2 2-Bromo-3,3,6,6-hexamethylcyclohexanone  

Crystallographer  Christian Prinzisky 

Habitus, colour  plate-like,  colourlessg  

Crystal size 0.350 x 0.120 x 0.020 mm3 

Crystal system  monoclinic 

Space group  P 21/c Z = 4 

Unit cell dimensions a = 8.6550(3) Å = 90°. 

 b = 12.7860(4) Å = 111.3530(10)°. 

 c = 10.3443(3) Å  = 90°. 

Volume 1066.15(6) Å3 

Cell determination  130 peaks with Theta 5.4 to 25.5°. 

Empirical formula  C10 H17 Br O 

Formula weight  233.14 

Density (calculated) 1.453 Mg/m3 

Absorption coefficient 3.811 mm-1 

F(000) 480 

Reflections collected 21513 

Independent reflections 2320 [R(int) = 0.0415] 

Completeness to theta = 25.000° 99.9 %  

Observed reflections  2147[II > 2(I)]  

Reflections used for refinement  2320 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7455 and 0.5298 

Largest diff. peak and hole 0.405 and -0.426 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 2320 / 0 / 113 

Goodness-of-fit on F2 1.066 

R index (all data) wR2 = 0.0445 

R index conventional  [I>2sigma(I)] R1 = 0.0174 
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4.9.3 [Pc*VO].4CHCl3 

Crystallographer Dr. Klaus Harms & Christian Prinzisky 

Habitus, colour  prism,  green 

Crystal size 0.29 x 0.07 x 0.05 mm3 

Crystal system  Monoclinic 

Space group  P 1 21/c 1 Z = 2 

Unit cell dimensions a = 11.8492(12) Å = 90°. 

 b = 23.456(2) Å = 90.054(6)°. 

 c = 12.8910(14) Å  = 90°. 

Volume 3582.9(6) Å3 

Cell determination  111 peaks with Theta 2.5 to 25.0°. 

Empirical formula  C68 H76 Cl12 N8 O V 

Formula weight  1497.71 

Density (calculated) 1.388 Mg/m3 

Absorption coefficient 0.634 mm-1 

F(000) 1550 

Reflections collected 60066 

Independent reflections 6299 [R(int) = 0.1067] 

Completeness to theta = 25.00° 99.9 %  

Observed reflections  4814[I>2(I)]  

Reflections used for refinement  6299 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7455 and 0.5704 

Largest diff. peak and hole 0.913 and -0.734 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 6299 / 86 / 468 

Goodness-of-fit on F2 1.119 

R index (all data) wR2 = 0.1564 

R index conventional  [I>2sigma(I)] R1 = 0.0704 
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4.9.4 [Pc*Co] 

Crystallographer Christian Prinzisky 

Habitus, colour  block-like,  blue 

Crystal size 0.140 x 0.130 x 0.090 mm3 

Crystal system  triclinic 

Space group  P -1 Z = 1 

Unit cell dimensions a = 10.4590(5) Å = 70.742(2)°. 

 b = 13.4426(6) Å = 67.879(2)°. 

 c = 13.6434(6) Å  = 70.993(2)°. 

Volume 1632.45(13) Å3 

Cell determination  124 peaks with Theta 3.6 to 23.2°. 

Empirical formula  C64 H72 Co N8 

Formula weight  1012.22 

Density (calculated) 1.030 Mg/m3 

Absorption coefficient 0.303 mm-1 

F(000) 539 

Reflections collected 7076 

Independent reflections 7076 [R(int) = ?] 

Completeness to theta = 25.000° 99.5 %  

Observed reflections  5849[II > 2(I)]  

Reflections used for refinement  7076 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9454 

Largest diff. peak and hole 0.846 and -0.391 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 7076 / 0 / 339 

Goodness-of-fit on F2 1.118 

R index (all data) wR2 = 0.1331 

R index conventional  [I>2sigma(I)] R1 = 0.0484 
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4.9.5 [Pc*Ni].4CHCl3 

Crystallographer  Lars Hendrik Finger 

Habitus, colour  needle,  green 

Crystal size 0.37 x 0.07 x 0.04 mm3 

Crystal system  Monoclinic 

Space group  P 21/c Z = 2 

Unit cell dimensions a = 11.727(4) Å = 90°. 

 b = 22.985(7) Å = 90.240(12)°. 

 c = 12.931(4) Å  = 90°. 

Volume 3485.5(19) Å3 

Cell determination  3687 peaks with Theta 2.4 to 24.5°. 

Empirical formula  C68 H76 Cl12 N8 Ni 

Formula weight  1489.48 

Density (calculated) 1.419 Mg/m3 

Absorption coefficient 0.786 mm-1 

F(000) 1544 

Reflections collected 32273 

Independent reflections 6135 [R(int) = 0.1617] 

Completeness to theta = 25.00° 99.9 %  

Observed reflections  3815[I>2(I)]  

Reflections used for refinement  6135 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7455 and 0.4738 

Largest diff. peak and hole 1.023 and -0.699 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 6135 / 0 / 411 

Goodness-of-fit on F2 1.018 

R index (all data) wR2 = 0.1813 

R index conventional  [I>2sigma(I)] R1 = 0.0693 
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4.9.6 [Pc*Cu].4CHCl3  

Crystallographer  Christian Prinzisky 

Habitus, colour  prism, blue-green 

Crystal size 0.27 x 0.04 x 0.04 mm3 

Crystal system  Monoclinic 

Space group  P 21/c Z = 2 

Unit cell dimensions a = 11.7760(11) Å = 90°. 

 b = 23.2066(13) Å = 90.314(8)°. 

 c = 12.9591(12) Å  = 90°. 

Volume 3541.4(5) Å3 

Cell determination  9350 peaks with Theta 1.7 to 25.1°. 

Empirical formula  C68 H76 Cl12 Cu N8 

Formula weight  1494.31 

Density (calculated) 1.401 Mg/m3 

Absorption coefficient 0.808 mm-1 

F(000) 1546 

Reflections collected 18719 

Independent reflections 6210 [R(int) = 0.1497] 

Completeness to theta = 25.00° 99.8 %  

Observed reflections  2970[I>2(I)]  

Reflections used for refinement  6210 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0047 and 0.8394 

Largest diff. peak and hole 0.609 and -1.903 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 6210 / 0 / 411 

Goodness-of-fit on F2 0.904 

R index (all data) wR2 = 0.2082 

R index conventional  [I>2sigma(I)] R1 = 0.0735 
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4.9.7 [Ppz*VO(H2O)].8DCM 

Crystallographer  Lars Hendrik Finger  

Habitus, colour  plate,  blue 

Crystal size 0.370 x 0.120 x 0.100 mm3 

Crystal system  tetragonal 

Space group  P 4/n m m Z = 2 

Unit cell dimensions a = 26.3873(17) Å = 90°. 

 b = 26.3873 Å = 90°. 

 c = 13.3566(11) Å  = 90°. 

Volume 9300.1(14) Å3 

Cell determination  122 peaks with Theta 2.3 to 17.8°. 

Empirical formula  C128 H161 Cl32 N32 O12 V2 

Formula weight  3576.17 

Density (calculated) 1.277 Mg/m3 

Absorption coefficient 0.617 mm-1 

F(000) 3678 

Reflections collected 109297 

Independent reflections 5551 [R(int) = 0.1120] 

Completeness to theta = 25.240° 99.9 %  

Observed reflections  3874[II > 2(I)]  

Reflections used for refinement  5551 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7455 and 0.6408 

Largest diff. peak and hole 2.045 and -1.108 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 5551 / 14 / 323 

Goodness-of-fit on F2 1.050 

R index (all data) wR2 = 0.3584 

R index conventional  [I>2sigma(I)] R1 = 0.1146 
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4.9.8 [Ppz*MnCl].5CHCl3 

Crystallographer Christian Prinzisky 

Habitus, colour  plate-like,  metallic dark blue-black 

Crystal size 0.280 x 0.250 x 0.050 mm3 

Crystal system  tetragonal 

Space group  P 42/n Z = 4 

Unit cell dimensions a = 17.5096(10) Å = 90.0000(10)°. 

 b = 17.5096(10) Å = 90.0000(10)°. 

 c = 24.5917(15) Å  = 90.0000(10)°. 

Volume 7539.5(10) Å3 

Cell determination  127 peaks with Theta 3.1 to 21.6°. 

Empirical formula  C61 H69 Cl16 Mn N16 

Formula weight  1655.40 

Density (calculated) 1.458 Mg/m3 

Absorption coefficient 0.792 mm-1 

F(000) 3388 

Reflections collected 39709 

Independent reflections 8200 [R(int) = 0.1168] 

Completeness to theta = 25.000° 99.7 %  

Observed reflections  5171[II > 2(I)]  

Reflections used for refinement  8200 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.000 and 0.845 

Largest diff. peak and hole 0.911 and -0.730 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 8200 / 48 / 534 

Goodness-of-fit on F2 1.136 

R index (all data) wR2 = 0.2301 

R index conventional  [I>2sigma(I)] R1 = 0.0826 
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4.9.9 [Ppz*AlF(OH2)] 

Crystallographer Christian Prinzisky   

Habitus, colour  block,  black 

Crystal size 0.284 x 0.121 x 0.118 mm3 

Crystal system  Monoclinic 

Space group  P 21/c Z = 4 

Unit cell dimensions a = 19.810(5) Å = 90°. 

 b = 23.975(5) Å = 105.703(5)°. 

 c = 15.377(5) Å  = 90°. 

Volume 7031(3) Å3 

Cell determination  9148 peaks with Theta 1.4 to 27.1°. 

Empirical formula  C61.14 H77.92 Al Cl3 F N16 O1.81 

Formula weight  1218.28 

Density (calculated) 1.151 Mg/m3 

Absorption coefficient 0.196 mm-1 

F(000) 2577 

Reflections collected 43343 

Independent reflections 14914 [R(int) = 0.1439] 

Completeness to theta = 25.00° 99.9 %  

Observed reflections  3802[I>2(I)]  

Reflections used for refinement  14914 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9724 and 0.9597 

Largest diff. peak and hole 1.021 and -0.292 e.Å-3 

Refinement  Full-matrix least-squares on F2 

Data / restraints / parameters 14914 / 36 / 826 

Goodness-of-fit on F2 0.861 

R index (all data) wR2 = 0.3423 

R index conventional  [I>2sigma(I)] R1 = 0.1078 
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