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Zusammenfassung

Seit der Herstellung des ersten funktionsfähigen Transistors im Jahre 1948 von Barde-

en, Brattain und Shockley, hat die Halbleiterindustrie einen damals ungeahnten Sieges-

zug vollzogen. Heutzutage bilden Halbleiterbauelemente den Grundstein für fast jedes

elektronische Gerät. Insbesondere der Computer, welcher den Alltag der Menschen

revolutioniert hat, basiert vor allem auf Entwicklungen aus der Halbleiterforschung.

Halbleiter werden nicht nur in Form von Schaltelementen in elektrischen Kreisen ein-

gesetzt, sie besitzen auch sehr nützliche, optische Eigenschaften und kommen z.B. als

Leuchtdioden (LEDs), als Laserdioden, als CCD1-Chips oder als Solarzellen in unserem

täglichen Leben zum Einsatz.

Über Jahrzehnte lag der Fokus der Halbleiterforschung auf anorganische Materialsys-

teme, wobei Silizium einen exklusiven Part einnahm, aufgrund seiner bedeutsamen

Stellung in der Mikroelektronik. In den letzten Jahren allerdings, wächst vermehrt

der Anteil der Forchung an organischen Halbleitern. Vor allem die organischen LEDs

(OLEDs) haben mitlerweile den Einzug in die kommerzielle Anwendung gefunden,

und werden bevorzugt als Basis für Smartphone-Displays verwendet. Ihre Vorteile ge-

genüber LCDs2 liegen dabei im Farbkontrast, sowie in der Biegsamkeit.

Andererseits, blieben Solarzellen auf Basis von organischen Halbleitern bisher ihre Pra-

xistauglichkeit schuldig. Grundsätzlich bieten sie die Möglichkeit der kostengünstigen

Massenproduktion auf flexiblen Substraten, auch mit innovativen Herstellungsverfah-

ren, wie das Tintenstrahldrucken. Allerdings konnten sie bisher zwei fundamentale

Voraussetzungen nicht ausreichend erfüllen: die Langzeitstabilität, sowie die Quan-

teneffizienz. Organische Solarzellen degenerieren meist aufgrund von Oxidation oder

1charged coupled device: in etwa
”
ladungsgekoppeltes Bauelement“

2liquid crystal display: Flüssigkristall Display
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Zusammenfassung

Reduktion, was dann erheblich die Photon-zu-Ladungsträger Konversioneffizienz her-

absetzt. Hier gilt es, für die organische Chemie, neue Materialsysteme zu synthetisieren,

die robuster gegenüber den weltlichen Witterungen sind.

Die Quanteneffizienz hängt unmittelbar von der Energieumsetzung eines einzelnen

Photons in einen Ladungsträger ab und wie effizient dieser entnommen wird. Der

bestimmende Faktor sind die Grenzflächenzustände zwischen aktiven Material und

Kontakt; die Überschussenergie zwischen dem Leitungsband des aktiven Materials und

des Grenzflächenzustandes geht beim Übergang als Wärme verloren. Genauso verhält

es sich mit Photonenenergien, die die Bandlücke weit übersteigen, auch diese Ener-

gie geht typischerweise als Wärme verloren. Diese beschränkende Energiekonversions-

Eigenschaft ist bekannt als Shockley-Queisser Limes und gilt grundsätzlich für alle ein-

fachen Halbleiter-Solarzellen. In organischen Solarzellen kommt es außerdem verstärkt

zur Ladungsträgerrekombination. Diese ergibt sich aus der hohen Bindungsenergie der

erzeugten Exzitonen und dem damit zusammenhängenden großen räumlichen Über-

lapp. Das führt zu geringen Diffusionslängen im Material, so dass ein großteil der

Exzitonen nicht zum Photostrom beitragen.

Ein Weg, die Überschussenergie zu nutzen, ist die gezielte Vervielfachung der Ladungs-

träger nach optischer Anregung. In organischen Halbleitern bietet die Singlet-Exziton-

Spaltung eine solche Möglichkeit. Hierbei wird ein Singlet-Exziton in zwei Triplet-

Exzitonen aufgespalten. Dieser Prozess erfolgt exotherm, sobald die Singlet-Exzitonen

Energie mehr als das Zweifache der Triplet-Exzitonen Energie übersteigt. Ist diese Be-

dingung erfüllt, erfolgt die Aufspaltung in wenigen hundert Femtosekunden nach der

optischen Anregung.

In dem Kapitel 5 wird anhand des Modelsystems von Perfluoropentacen (PFP) Einkris-

tallen, die Singlet-Exziton-Aufspaltung, zum ersten Mal, entlang aller Kristallachsen

mit Hilfe der Anrege-Abfrage-Spektroskopie vermessen. Dies wird ermöglicht durch

das besondere Kristallwachstum von PFP, welches auf Naf(100) eine stehende Geo-

metrie einnimmt und auf KCl(100) eine Liegende. Dadurch sind alle Achsen in nor-

maler Transmissions-Geometrie adressierbar. Die Messungen ergeben, dass die inter-

molekulare Kopplung primär entlang der versetzten π-Stapelung, bzw. entlang der
þb-Achse erfolgt. Diese Beobachtung entspricht der Vorhersage der Theorie, welche in
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diesem Aspekt bestätigt wird. Zusätzlich wird der kohärente Zustand zwischen Singlet-

Exziton und Triplet-Exzitonen, das sogenannte Triplet-Paar (1TT ), als direkt nach der

Anregung induzierte Fano-Resonanz entlang der þa-Achse beobachtet. Die asymmetri-

sche Resonanz resultiert aus der Interferenz der Übergangsamplituden von T1 → T4,

der neun einzelnen, nicht-entarteten Sublevels des Triplet-Paars. Nach 15 ps ist die

kohärente Überlagerung der beiden Triplet-Exzitonen aufgehoben und der T1 → T4

Übergang ist als symmetrische Resonanz zu sehen. Während der Aufspaltung, rela-

xiert das Triplet-Paar in einen Excimer-artigen Zustand, dessen Übergänge sich in

Form von einer breitbandig induzierten Absorption entlang der þb-Achse manifestie-

ren. Ein Großteil der Triplet-Paare relaxiert strahlend zurück in den Grundzustand,

sichtbar als Photolumineszenz 300 meV unterhalb der untersten Exziton-Resonanz. Die

Rekombination der Triplet-Exzitonen, welche nach Dephasierung des Triplet-Paares als

individuelle Exzitonen agieren, erfolgt auf Nanosekunden-Skala aufgrund des nötigen

Spin-Umklapp-Prozesses.

In Kapitel 4 zeigen polarisationsabhängige Absorptionsmessungen der PFP Einkris-

talle eine schwache Davydov-Aufspaltung von 25 meV. Die Davydov-Aufspaltung ist,

in erster Näherung, ein Resultat der Dipolkopplung zwischen den nicht-Translations-

invarienten Basis-Molekülen. Da diese im PFP Kristall fast einen rechten Winkel auf-

spannen, ist die Kopplung klein. Jedoch existiert, wie schon erwähnt, eine starke Kopp-

lung entlang der þb-Achse, welche als H- und J-Aggregate-artige Absorption bei höheren

Energien beobachtet wird. Interessanterweise kann durch angeregte Ladungsträger die-

se Kopplung gehemmt werden, was sich in den Anrege-Abfrage Messungen zeigt.

Im letzten Ergebnis-Kapitel, Kapitel 6, wird mit Hilfe von kohärenten Oszillationen die

Dephasierungszeit von exzitonischen Resonanzen in Ge/SiGe Quantenfilmen ermittelt.

Kohärente Oszillationen treten bei Anrege-Abfrage-Messungen kurz vor dem Zeitüber-

lapp von Anrege- und Abfrage-Impuls auf. Aus der Transiente dieses kohärenten Ef-

fekts, lässt sich die Dephasierung der entsprechenden Resonanz extrahieren. Dement-

sprechend, kann bei der Ladungsträger-Analyse, im Anrege-Abfrage-Experiment, die

Dephasierungszeit der adressierten Übergänge mitgemessen werden. Die Methode wird

auf eine Reihe von Ge/SiGe Quantenfilm Proben angewandt, welche nominell die sel-

ben Wachstumsparameter besitzen. Es zeigt sich, dass der Dephasierungsprozess durch
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Zusammenfassung

den intrinsischen Streukanal von Γ- zu L-Tal dominiert ist und somit lediglich eine

maximale Dephasierungszeit von 300 fs erreicht werden kann. Die beste Probe zeigt

eine Dephasierungszeit von 250 fs und somit eine homogene Verbreiterung über den

gesamten, untersuchten Temperaturbereich.
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1 Introduction

The realization of the first bipolar junction transistor in the year 1948 by Bardeen,

Brattain and Shockley [1] sparked off the semiconductor industry, which gradually

revolutionized the way we live. Nowadays, semiconductors are the fundamental buil-

ding blocks of every high-tech electronic device, most notably the computer which has

become an inescapable part of our daily lives. Besides voltage and current control ca-

pabilities, semiconductors exhibit intriguing opto-electronic properties; the best known

and commercially most successful applications are light emitting diodes (LEDs), laser

diodes, charged coupled devices (CCD) and solar cells.[2, 3, 4] Due to the broad variety

of material systems, they cover virtually the complete optical spectrum while simulta-

neously being cost-efficient and easy to miniaturize.

Until the late 90ies, commercially available devices were exclusively based on inorganic

semiconductors, primarily on Silicon. However, over the last decade, the class of orga-

nic semiconductors has gained an increasing amount of interest, e.g., now one of the

most popular smartphone’s display1 is based on OLED2-technology. Flexibility upon

stress and deeper color contrasts are typically named as their main advantages over

conventional liquid crystal displays (LCD).

While organic semiconductor devices are already well established as light emitters, they

are still in research state as light harvesters. In general, organic solar cells offer high

photon cross sections in combination with similar flexibility as OLED displays. Addi-

tionally, they exhibit the potential for low-cost mass-production, including innovative

and versatile procedures such as ink-jet printing.[6, 7] However, two major challenges

still exist which need to be addressed before organic solar cells become compatible:

1Galaxy S5: 5.1 in (130 mm) 1920x1080 px (432 ppi) Full HD Super AMOLED.[5]
2organic light emitting diode
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Introduction

the long-term stability and the quantum efficiency.[8] The fast degradation of organic

solar cells is caused by oxidation, reduction and thermal instabilities. Research in this

field focuses on the synthesis of new organic molecules, thus, it can be assigned to

the organic chemistry sector. Quantum efficiencies are determined by the microscopic

photon to carrier conversion, i.e., the photovoltaic effect, therefore, it is predominantly

a research topic of solid state physics.

This thesis focuses mainly on aspects of the quantum efficiency in the polyacene Per-

fluoropentacene (PFP) and its underlying decay processes, namely the electronic rela-

xation dynamics after optical excitation. In particular, the process of singlet exciton

fission is analyzed which promises to double the quantum efficiencies, as it converts one

singlet exciton into two triplet excitons.[9] Excitons are correlated electron and hole

pairs: neutral excitations of the crystal after absorption of a photon. Singlet exciton

fission was first proposed in 1968 in order to explain the drastic photoluminescence

quench of Tetracene crystals compared to Anthracene crystals.[10] It has gained re-

newed attention lately, due to its potential application in the growing field of organic

solar cells. However, the microscopic understanding is still in its infancy which hampers

essential progress in this field; for instance, the influence of the geometrical order of

the molecules within the crystal on singlet exciton fission has only been analyzed theo-

retically. The reason is the lack of single crystal samples allowing for the correlation

of molecular packing and electronic dynamics.[9] This issue is resolved in Chapter 5

for the model system of PFP single crystals, where for the first time the singlet exci-

ton fission dynamics are observed along the three crystal axes by polarization-resolved

pump-probe spectroscopy. Moreover, the efficient coupling direction is identified as well

as the preceding electronic species of the two triplet excitons.

Although spectroscopic analysis on polyacenes date back to the 40ies [11], lack of com-

putational power and interest lead to the sad state that even interpretations of the

linear absorption are still debated today. However, basic knowledge of the linear ab-

sorption is essential in order to interpret the non-linear dynamics. Therefore, Chapter

4 serves as a precursor, where the linear absorption of the PFP samples is interpre-

ted using phenomenological models. Here, first indications are given for a dominant

coupling direction within the PFP crystal which are then confirmed in Chapter 5.

2



Furthermore, the amount of exciton splitting in PFP is determined, also known as the

Davydov-splitting.[12] It is induced by dipole coupling between the two basis molecules

of the crystal lattice during excitation.

In Chapter 6 the focus is shifted to inorganic semiconductors. The chapter introduces a

fast and convenient method to determine dephasing times of induced coherent exciton

polarizations with more precision than a common lineshape analysis of the absorption

spectrum. In pump-probe spectroscopy, the transients of the coherent oscillations are

exploited to serve as phase indicators for the several excitonic transitions. These tran-

sients are observed during the coherent regime before pump and probe pulses perfectly

overlap in time.[13] As a proof of principle, the methodology is applied to a set of

Germanium quantum well samples and evaluated in respect to their optical quality. In

addition, the main dephasing mechanism in Germanium quantum wells is identified.

These three chapters capture the results of the thesis and are preceded by introducto-

ry chapters covering basic light-matter interactions and experimental details; they are

succeeded by a conclusion chapter summarizing the essential findings.
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2 Basics of Light Matter Coupling

in Semiconductors

A basic introduction to fundamentals of light matter coupling in mole-

cules and in-/organic semiconductors is given. The Frank-Condon prin-

ciple in single molecules is reviewed as well as the singlet and triplet

spin systems typically relevant in optical processes with weak spin-orbit

coupling. The second part focuses on optical excitations within crystals,

with emphasis put on the quasi-particle description of Coulomb bound

electron hole pairs, so called excitons. Their distinction into three diffe-

rent classes, namely Frenkel-, Charge-Transfer and Wannier-excitons, is

introduced. For a detailed description the reader is referred to one of the

many textbooks covering these topics.[14, 15, 13, 16, 17]

2.1 Introduction

Starting from classic macroscopic electrodynamics, where a sinusoidal electromagnetic

wave þE(þr, t) is irradiated on a medium, a polarization þP (þr′, t′) is induced according to

the susceptibility χij(þr, ω) tensor inherent in the medium:

Pi(þk, ω) = χij(þk, ω)Ej(þk, ω), (2.1)

where the Fourier transforms are given, after applying the convolution theorem.[14]

Typically, for comparison with experiments the dieelectric tensor is used defined as the

5



Basics of Light Matter Coupling in Semiconductors

material parameter of the electric displacement induced by the electric field and the

polarization and related to the susceptibility as follows:

ǫ(þk, ω) = 1 + 4πχij(þk, ω). (2.2)

Assuming an isotropic medium, where relevant dimensions for excitation such as lattice

spacings are significantly smaller than the excitation wavelength, i.e., the photon wa-

vevector can be approximated to be zero, the dieelectric tensor simplifies to the scalar

dieelectric function ǫ(ω). It is related to the complex refractive index ñ by:

ǫ(ω) = ñ2. (2.3)

Since they are the Fourier components of the real space quantities, they can be complex

quantities. Generally, the complex component of ñ is referred to as the extinction

coefficient κ capturing the amount of light damped in the material. It is proportional

to the absorption coefficient α of Beer’s Law:

α =
4π

λ0

κ, (2.4)

where λ0 is the vacuum wavelength. This quantity and its change under excitation is

predominantly determined throughout this thesis.

On a microscopic scale, a system’s energy is quantized due to its wave nature, i.e.,

below an excitation continuum the system exhibits discrete eigenstates corresponding

to standing waves confined within the related potential. Depending on the coupling

mechanism, transitions between these states can be induced when distinct criteria are

matched, most notably the energy difference between these states. This intrinsic fea-

ture of nature is the origin, for instance, of the discrete spectral lines observed in Neon

light tubes. Since this thesis covers optical spectroscopy of semiconductors, transitions

between the system’s states occur in first approximation exclusively through dipole

coupling.

Considering a dipole allowed transition from the groundstate |0〉 of a system to the ith

6



Introduction

excited state |i〉 of the system with dipoles polarized along the x-axis the first order

susceptibility can be given by:[15]

χ(1)(ω) =
N

ǫ0~

∑

i

[

〈0 |µ̂x| i〉 〈i |µ̂x| 0〉
Ωi − ω

+
〈0 |µ̂x| i〉 〈i |µ̂x| 0〉

Ωi + ω

]

, (2.5)

where Ωi = (Ei − E0)/~ is the angular transition frequency of the state |i〉 and µ̂x is

the dipole moment along the x-axis. With the introduction of the oscillator strength:

fi =
2m

e2~
Ωi |〈0 |µ̂x| i〉|2 , (2.6)

Eq. 2.5 is simplified to:

χ(1)(ω) =
Ne2

mǫ0

∑

i

fi

Ω2
i − ω2

. (2.7)

The oscillator strength has to fulfill the important sum rule:

∑

i

fi = Ne, (2.8)

where Ne is the number of valence electrons. Realistically, the induced polarization by

the electric field is a damped oscillation, hence, a damping factor γ is introduced in

Eq. 2.7 and with the relation of Eq. 2.2 the following form is reached:

ǫ(ω) = 1 +
Ne2

mǫ0

∑

j

fj

Ω2
j − ω2 − iωγj

. (2.9)

Following Eq. 2.4, where the imaginary part of Eq. 2.9 yields the absorption, and ass-

uming a single resonance, we get:

κ(ω) =
ωγf

(Ω2
i − ω2)2 + ω2γ2

. (2.10)

This is the typical Lorentzian line-shape often observed in absorption spectra where

inhomogeneous broadening is negligible. The homogeneous broadening of the resonance

is determined by the damping factor γ, which is physically the decay of the induced

7



Basics of Light Matter Coupling in Semiconductors

Abbildung 2.1: (a) Delocalized π-system formed by the six pz-orbitals of the carbon
atoms oriented perpendicular to the molecular plane in benzene. From
Ref. [18]. (b) Molecules of the acene-class.

polarization, i.e., the reciprocal of the dephasing time (γ = 1/T2).

2.2 Optical Properties of Single Molecules

The building block of the acenes, such as pentacene and perfluoropentacene, are benze-

ne molecules which are linearly
”
fused“ (Fig. 2.1 (b)). Benzene exhibits an sp2-hybridization

where the six carbon atoms form a planar ring with six σ-bonds in an angle of 120◦. The

remaining six pz-orbitals are oriented perpendicular to the plane and do not participate

in the σ-bonds (see Fig. 2.1 (a)). These dangling orbitals overlap and form a π-system,

where the electrons delocalize over the entire ring (see Fig. 2.1 (a)). Hence, these type

of molecules are also called unsaturated or conjugated.[15] In first approximation, σ-

and π-electrons are decoupled where the σ-electrons are considered as core electrons

predominantly responsible for the bonding. Due to the weaker bonding character of

the π-orbitals, they constitute the HOMO and LUMO orbitals. Transitions between

bonding and antibonding π-orbitals lie within a few eV (1-3 eV) whereas transitions

between σ-orbitals often exceed 10 eV. Consequently, optical properties of acenes are

well described by π-electron models where the σ-electrons and core electrons are trea-

ted as a background screening potential. There are many different models with different

approximations trying to describe quantitatively the physical properties of π-systems;

the most famous are given below:[15]

8



Optical Properties of Single Molecules

• Hückel-model:

Noninteracting electrons with a fixed geometry

• Su-Schrieffer-Heeger-model (SSH):

Noninteracting electrons with dynamic nuclei

• Peierls-model:

Static-nuclear limit of the SSH-model

• Pariser-Par-Pope-model (P-P-P):

Interacting electrons with a fixed geometry

and their combinations. After having determined the several π-orbitals the optical pro-

perties can be calculated by evaluating the transition dipole moment 〈I |µ̂| J〉. Probably,

its most prominent treatment is covered in the next section.

2.2.1 Franck Condon Principle

Essentially, optical transitions between molecular orbitals are described by the transi-

tion dipole moments 〈I |µ̂| J〉. As the states |I〉 and |J〉 have many degrees of freedom

including positions of electrons and nuclei, calculations would be typically too complex

to be performed. Therefore, besides considering only the π-system electrons, further

approximations have to be applied. One of the earliest, most drastic and probably best

known approximation is the Franck-Condon principle. It adapts the Born-Oppenheimer

approximation, where the electronic motion is considered to be too fast for the nuclei

to follow. In Fig. 2.2 (a) the simplified adiabatic energy potentials for two electronic

states of a molecule are sketched as a function of the general coordinate R1. Typically,

the minimum of the higher electronic states are at a different R than in the groundstate

potential, due to the changed electronic distribution. The offset between the minima

1In the simplest case known as the diatomic model, R describes the inter-molecular distance.
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Abbildung 2.2: (a) Franck-Condon energy level scheme with possible relaxation chan-
nels in a single molecule. (b) Single particle energy levels in an organic
crystal with possible relaxation channels after optical excitation.
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Optical Properties of Single Molecules

is characterized by the Huang-Rhys parameter which is given by:

S =
Mω

2~
(Ri − Rj)2, (2.11)

where Ri,j denote the minima of the potentials, M the molecular mass and ω the radial

eigenfrequency of the vibron. Following the approximation of vanishing nuclear motion

during optical transitions, excitations occur vertical within this scheme, i.e., R is not

changed. As always, the effective overlap between initial and final state governs the

transition rate and, accordingly, the oscillator strength. Since both energy potentials

differ, an electronic excitation is predominantly accompanied by a vibronic excitation.

Consequently, the resonance with the highest oscillator strength is not the ν0 → ν
′

0

transition but, in general, some higher transition ν0 → ν
′

n (marked with a black vertical

arrow in Fig. 2.2 (a)).

In first approximation the electronic states can be assumed as the product of electronic

and vibrational wavefunction:[15]

|J〉 = |j; R〉 |νj〉 , (2.12)

where |j; R〉 is the electronic state parametrized by R and |νj〉 is the vibrational state.

Then, the dipole operator for an optical transition can be treated as the sum of elec-

tronic and nuclear dipole moments:

µ̂ = µ̂e + µ̂N . (2.13)

Eventually, the total transition dipole moment is given by:

〈I |µ̂| J〉 = 〈i; R| µ̂e |j; R〉 〈νi| νj〉 + 〈i; R| j; R〉 〈νi| µ̂N |νj〉 , (2.14)

= 〈i; R| µ̂e |j; R〉 〈νi| νj〉 . (2.15)

As |i; R〉 and |j; R〉 are ortho-normal, the second term on the RHS of Eq. 2.14 vanishes.

Thus, the transition probability is given by the electronic dipole moment scaled by the

overlap integral of both nuclear wavefunctions at the same general coordinate R. The

measured intensity of a transition is given by the square of the total dipole moment, so

11
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that we end up with the scaling factor Fij = 〈νi| νj〉2 for the oscillator strength, which

is also known as the Franck-Condon factor.

After excitation the excited molecule relaxes towards the lowest vibrational level within

the excited electronic potential; this internal conversion happens non-radiatively, and

in general on a picosecond timescale. When the lowest vibrational level is reached, ty-

pically the molecule returns to its electronic groundstate by radiative emission, again,

according to the Franck-Condon principle (blue arrow in Fig. 2.2 (a)). Similar to the

absorption process, the overlap integral betwen nuclear wavefunctions plays the crucial

role of the observed intensity distribution. As a result, a mirror image of the absorption

is observed in the photoluminescence spectrum (cf. inset Fig 2.2 (a)).

The spectrum of many conjugated molecules is dominated by a stretching mode posi-

tioned at an energy around 175 meV.[19] However, in complex systems such as acenes,

a manifold of Raman-active vibrons exist which are superimposed in the absorpti-

on spectrum. Consequently, the observed vibronic progression is severely broadened

with significant asymmetric lineshapes which hamper a precise determination of the

eigenfrequency. In the crystal phase, coupling between the basis molecules introduces

sidebands which are observed as Davydov-split resonances in IR-spectroscopy.[20] Ad-

ditionally, low energy crystal lattice excitations (≈ 9 eV) are present further broadening

the spectrum. Anyhow, schematically the Franck-Condon principle is also applied here,

shown in Fig. 2.2 (b).

2.2.2 Singlet and Triplet System

In acenes the spin-orbit coupling is weak, and considered to be negligible. This is

reasonable, since the spin-orbit coupling scales with the cube of the atomic number,

which is low in Hydrogen, Carbon and Fluor. Therefore, spin is still a good quantum

number in these systems. As mentioned before, optical excitation in acenes occurs

in the conjugated π-system, where the HOMO constitutes the initial state and the

anti-bonding π-orbitals, mainly the LUMO, constitute the final states. In acenes, the

HOMO is saturated, i.e., it is populated with two electrons with opposite spin. The

total electronic wavefunction is antisymmetric under the exchange of two electrons, a

12
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consequence of their fermionic nature. Since spin-orbit coupling is negligible, the total

wavefunction can be written as the product of spatial and spin wavefunction:

Φ(þr, þσ) = ϕ(þr)χ(þσ). (2.16)

Either one of them is antisymmetric while the other is symmetric in order to get an

overall antisymmetric wavefunction. Hence, the groundstate is a singlet state where

the spin function is antisymmetric and the electrons populate the same orbital:

1Φ(þr, þσ) = ϕ1(1)ϕ1(2) {χ↑(1)χ↓(2) − χ↓(1)χ↑(2)} , (2.17)

where ϕi(j) denotes the orbital and χ↓↑(j) the spin state of electron j. The next hig-

her states are the triplet states where the spin function is symmetric and the spatial

wavefunction is antisymmetric. As a consequence, three spin settings with nearly dege-

nerate eigenenergies are possible where both electrons cannot populate the same orbital

anymore:

3Φ(þr, þσ) = {ϕ1(1)ϕ2(2) − ϕ1(2)ϕ2(1)} χ↑(1)χ↑(2), (2.18)

3Φ(þr, þσ) = {ϕ1(1)ϕ2(2) − ϕ1(2)ϕ2(1)} χ↓(1)χ↓(2), (2.19)

3Φ(þr, þσ) = {ϕ1(1)ϕ2(2) − ϕ1(2)ϕ2(1)} {χ↑(1)χ↓(2) + χ↓(1)χ↑(2)} . (2.20)

Due to spin conservation during dipole transitions, optical excitations are restricted to

one spin system. However, the strict rule in an ideal system is weakened in the real

system, so that transitions from the singlet groundstate into an excited triplet state

is possible, however, with virtually vanishing probability. The same holds true for the

system relaxation after optical excitation. Accordingly, in Fig. 2.2 (a) we also see the

intersystem crossing (ISC) as a relaxation channel, i.e., non-radiative relaxation into

the triplet system, e.g., S1 → T1, with consecutive phosphorescence into the ground-

state. The term phosphorescence is used to highlight the average lifetime of the excited

triplet state, which occasionally lasts for many hours and is then considered as metasta-

ble. In Ch. 5 an unusual relaxation process in Perfluoropentacene crystals is analyzed,

where the excited singlet excitons relax into the triplet state on an ultrafast timescale

13
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(below 100 fs) by exciting another triplet exciton on an adjacent lattice site. This so

called singlet exciton fission process promises to double the light to carrier conversion

efficiency.

2.3 Optical Properties of Single Crystals

Changing from the single molecule to the crystal, the picture of a single excitation

is replaced by a collective excitation of the crystal. Consequently, the eigenstates of

the molecule are no longer valid; they are replaced by eigenstates , which comply

the symmetries of the crystal. This also implies the formation of bands due to the

interaction of the discrete atomic or molecular levels. Optical transitions in crystals

are then treated as electron-hole excitations, where dealing with the complete set of

valence electrons is avoided by describing the electron vacancy effectively as a positive

hole in the valence band. Due to their Coulomb attraction they form electron-hole pairs,

so called excitons which are subdivided into the three classes (see Fig. 2.3): Frenkel,

Charge-Transfer and Wannier. Roughly speaking, they are classified according to their

electron-hole correlation length, i.e., their binding energy. The Frenkel exciton exhibits

the highest binding energy with around 1 eV and is the extreme case of a completely

localized excitation on one lattice site. The other extreme is the Wannier exciton which

exhibits an exciton Bohr radius of 10 nm with a binding energy of around 4.5 meV in

the prototypical model system GaAs and is considered as completely delocalized upon

several hundred lattice sites. The charge-transfer exciton is considered as the transition

between both extremes. The spatial extension of electron and hole is not confined on one

lattice site but distributed over nearest neighbors. In the following a short introduction

to the three exciton types is given.

2.3.1 Frenkel Excitons

The Frenkel exciton is the limit of neutral excitation completely localized on one lattice

site which is sometimes considered to be the lowest optical transition in organic acene
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Abbildung 2.3: The three prevailing types of excitons commonly found in semiconduc-
tors: Frenkel- and Charge-Transfer excitons in organic semiconductors;
Wannier excitons in inorganic semiconductors.

crystals. In these crystals bonding is mediated by weak van der Waals interaction alone,

which leads to low dispersion and consequently high probability of localization. Corre-

spondingly, the excited electron-hole pair does experience very weak screening effects

by other excited carriers which explains their strong Coulomb correlation, i.e., their

typically large binding energies. One of the first treatments of the optical excitation

has been done by A. S. Davydov, whose work gave a qualitative understanding of the

split exciton resonance in organic crystals with two basis molecules.[12]

Starting with the simple case of one basis molecule in the unit cell of the crystal with

no intermolecular interaction the groundstate is the direct product of the molecular

groundstate |GS〉i at crystal site i:

|GS〉 =
N∏

i=1

|GS〉i . (2.21)

Now an electron-hole pair excitation is considered at lattice site m (|EX〉m):

|EX〉 = |EX〉m

N−1∏

i=1

|GS〉i . (2.22)

However the exciting photon is delocalized according to its wavelength, hence, the

excitation is also delocalized, i.e., it is a crystalline excitation with periodic boundary
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conditions. The generally applied solution is the Bloch-wave ansatz, which yields:

ψk(þr) =
1√
N

N∑

n=1

Φn(þr) exp (−ikna), (2.23)

with the local exciton function Φn(þr) ≡ 〈þr| EX〉, the wavevector k and the lattice

parameter a. Consequently, in the case of zero coupling every state which differs in k

would be degenerate.

Although, the coupling within organic crystals is weak, it is not negligible and leads

to the observation of exciton band dispersion and splitting which is known as the

Davydov-splitting.

Davydov-Splitting

The Davydov splitting describes the excitonic band splitting due to the transition dipole

coupling of adjacent molecules. Coupling is induced by the Coulomb interaction and is

treated by the Coulomb correlation term He−e
mn in the system hamiltonian. Considering

resonant exciton transfer between molecules, which is the case in optical transitions2,

the system is transfered from the initial |I〉 to the final state |F 〉 described by the

transfer integral Wmn:

Wmn = 〈F | He−e
mn |I〉 (2.24)

with |I〉 = |EX〉m |GS〉n

N−2∏

i

|GS〉i (2.25)

and |F 〉 = |GS〉m |EX〉n

N−2∏

i

|GS〉i . (2.26)

Now, only dimer coupling is treated, where exchange exciton transfer is ignored (Wmn →
Jmn), i.e., triplet exciton transfer. Thus, in second quantization the transfer integral

2The exciton transfer time is shorter than the phonon and/or vibron scattering time.
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yields:

Jmn =
∑

i∈m,j∈n

Vij

[

m 〈GS| (N̂i − 1) |EX〉m

] [

n 〈EX| (N̂j − 1) |GS〉n

]

, (2.27)

where N̂i,j are the particle number operator and

Vij =
e2

|þri − þrj|

the matrix elements of the Coulomb potential. In order to evaluate the transfer integrals

the dipole approximation is applied:

∑

i∈m,j∈n

1

|þri − þrj|
≈

∑
þ̃ri · ∑

þ̃rj

|þRmn|3
−

3
(

∑ þRmn · þ̃ri

) (
∑ þRmn · þ̃rj

)

|þRmn|5
(2.28)

where þRm and þRn are the center of mass coordinates of molecule m and n and þ̃ri(j)
3 are

the site coordinates relative to the centre-of-mass. Now Eg. 2.27 can be separated in a

directional term (κmn) and a term J0
mn describing the interaction of the dipole matrix

elements:

Jmn = (þerm
· þern

− 3 (þeRmn
· þerm

) (þeRmn
· þern

))
︸ ︷︷ ︸

κmn

× [m 〈GS| µ̂m |EX〉m] [n 〈EX| µ̂n |GS〉n]

|þRmn|3
︸ ︷︷ ︸

J0
mn

(2.29)

with the unit vectors þern(m)
and þeRmn

and the dipole operators µ̂m(n)
4. Accordingly,

Eq. 2.29 describes the coherent transfer of dipole allowed excitons within this approxi-

mation. Due to the coupling new eigenstates occur:

|±〉 = |EX〉m |GS〉n ± |GS〉m |EX〉n (2.30)

3þ̃ri(j) = þri(j) − þRm(n)

4µ̂m = e
∑

þ̃ri

(

N̂i − 1
)
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Abbildung 2.4: The three prevailing cases of dipole coupling within an organic crystal.

with the eigenenergies EDS = E0 ± Jmn and hence, an energy spltting (Davydov split-

ting) of ∆E = 2Jmn.

A typical evaluation of the Davydov splitting is performed by another simplification;

only the coupling of two dipoles is considered geometrically oriented within a plane, as

it is shown in the top right corner of Fig. 2.4. Then the geometrical term κmn can be

parametrized by the angles α and θ and the Davydov splitting is given by:

∆E =
2 · |〈GS| µ̂ |±〉|2

|þRmn|3
(cos α − 3 cos2 θ), (2.31)

where additionally the dipole moments of both basis molecules are considered to be

equal. Accordingly, in polarization dependent linear absorption measurements, a cos2 θ

dependence is observed. A distinction is drawn between the three cases shown in

Fig. 2.4. The first two are the extreme cases of the Davydov-splitting, also known

as J- and H-aggregate. Within both aggregates, in linear absorption no exciton band

splitting is observed, since anti-phase dipole coupling leads to destructive interference
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Abbildung 2.5: (a) Crystal structure of Pentacene within the ab-plane. (b) Two-
dimensional electron-hole correlation function for the non-interacting
electron-hole wavefunction. (c) Electron-hole correlation function for
the singlet exciton. In both cases the position of the hole is fixed to the
center. Adapted from Ref. [21].

and dark states. Concerning the J-aggregate, the evaluation of Eqs. 2.29 and 2.31 leads

to a negative value (−2J0
mn), hence, a reduction of the transition energy. The reverse

situation is found in the H-aggregate, here, a the evaluation yields a positive value

(J0
mn) and consequently a shift of the transition to higher energies.

2.3.2 Charge-Transfer Excitons

The Davydov description of excitons in organic crystals gives only qualitative results

concerning the exciton band splitting.[19] In addition, without the knowledge of the

ground and excited wavefunctions no calculation can be performed. Thus, the major

challenge lies within their determination.

In the following, a rough description of an ab initio method is given which has proven

to be a versatile and powerful tool to calculate absorption spectra correctly for a wide

range of material systems, e.g., pentacene single crystals or carbon nanotubes.[22, 23]

In pentacene crystals for instance, it revealed the strong charge transfer character of

even the lowest excitonic resonances, shown in Fig. 2.5.[21] The short description is

taken from Ref. [22] and can be read in full detail in Ref. [24].
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The theoretical treatment is sepparated into three steps:

1. The groundstate of the interacting many-electron system is determined by density

functional theory (DFT) by solving a set of effective, self-consistent, single-body

equations.[25, 22]

2. The excited single particle states are corrected by the GW -approximation of the

non-local self-energy.[26] The adjusted states are valid for single particle excita-

tion, e.g., the addition or removal of an electron.

3. The GW corrected states are used to calculate bound two-particle states with

the Bethe-Salpeter Equation (BSE).[24] They yield the excitonic states observed

in the absorption spectra.

Accordingly, the solution of the Kohn-Sham equations lay the foundation for the theo-

retical description of the system under consideration:

[

−~
2∇2

2m
+ Vion(þr) + VH(þr) + Vxc(þr)

]

φj(þr) = ǫjφj(þr), (2.32)

where φj(þr) are the Kohn-Sham orbitals, Vion is the Coulomb interaction between

electrons and atomic nuclei, VH is the Coulomb repulsion between an electron and the

field generated by the average electronic distributionon, i.e., the Hartree level, and Vxc is

an exchange-correlation potential that encodes the complex, quantum electron-electron

interactions. In order to solve the equations, typically a few approximations need to

be performed, which are reviewed in Ref. [27]. Especially Vxc is tricky to handle, and

a standard approach is the local density approximation (LDA) where long-range and

energy dependent interactions are ignored. It yields accurate results for the ground-

state, however, grossly wrong results for excited states. This issue is tackled by many-

body perturbation theory, where firstly the one-particle Green’s function provide the

correct quasi-particle properties of excited electrons or holes within the system and

secondly the two-particle Green’s function handles the Coulomb interaction between

electron and hole which are both created at an absorption incident. The quasiparticle
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Abbildung 2.6: Calculated absorption spectra for carbon nanotubes with increasing
Coulomb correlation accuracy. Adapted from Ref. [22].

energies and amplitudes are determined by the self-consistent Dyson equation:

[

−~
2∇2

2m
+ Vion(þr) + VH(þr)

]

ψj(þr) +
∫

dþr′

∑

xc
(þr, þr′ , ǫj) ψj (þr′) = ǫjψj(þr). (2.33)

Here, the local, energy-independent exchange-correlation potential Vxc(þr) of Eq. 2.32 is

substitued by
∑

xc (þr, þr′ , ǫj) which encodes the non-local, energy-dependent exchange-

correlation potential for an excited quasiparticle induced by the surrounding electronic

medium. However, in practice, the exact
∑

xc (þr, þr′ , ǫj) potential is approximated by the

GW -method.[26] It approximates the exchange-correlation function as the convolution

of the screened Coloumb interaction W (þr, þr′ ; ǫj) and the one-particle Green function

G (þr, þr′ ; ǫj):[23]

∑

xc
= iG1W. (2.34)

Typically, a band energy accuracy of ≈ 0.1 − 0.2 eV is achieved. In case of high exciton

binding energies the GW -bandgap deviates significantly from the optical gap, e.g., in
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carbon nanotubes or organic crystals. As excitons are two-particle quantities they can

be described by a two-particle Green’s function approach. The corresponding equation

of motion is the Bethe-Salpeter equation, describing bound states of the two-particle

Dyson equation:

(ǫc − ǫv) AS
cv +

∑

c′v′

K (ΩS)cv,c′v′ AS
c′v′ = ωSAS

cv, (2.35)

where ǫc;v are the GW -energies for valence and conduction band, AS
cv are the electron-

hole correlation coefficients of the exciton wavefunction, ΩS are the exciton energies for

the various exciton states S and K (ΩS)cv,c′v′ is the so called electron-hole interaction

kernel which includes an attractive long-range screened Coulomb interaction as well as

a short-range repulsive
”
exchange“ interaction.[22] The exciton wavefunction χS (þre, þrh)

is treated within the Tamm-Dancoff approximation:

χS (þre, þrh) =
∑

cv

AS
cvψc (þre) ψ∗

v (þrh), (2.36)

it is the sum over the free GW electron and hole states where AS
cv allow for correlation

and entanglement of the electron and hole and the formation of excitons. By solving

the BSE the desired quantities ΩS and AS
cv are determined, so that excitonic spectrum

and relative electron-hole positions can be analysed.

The relative electron-hole wavefunction change from single particle GW-states to two-

particle states (BSE) is shown in Figs. 2.5 (b) and (c) in the case of pentacene, where

the hole is fixed to the center. Apparently, without two-particle correlation the electron

wavefunctions are Bloch-waves according to the lattice potential, however, with two-

particle correlation excitons are formed with an increased localization of electron and

hole. Nevertheless, a significant amount of the electron wavefunction is extended over

neighbouring lattice sites, i.e., they form charge-transfer excitons. Hence, ab initio

calculation show that even the excitons with the highest binding energy are no pure

Frenkel excitons.[21]

An overview of the transition energies for each calculation step is given in Fig. 2.6 for

carbon nanotubes. As expected, DFT calculations severely underestimate the band gap

which is corrected by GW. However, strong Coulomb correlation shifts the transitons
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back to lower energies. In general, the BSE-GW approach achieves an agreement with

experiment in the range of 0.1-0.2 eV.

2.3.3 Wannier Excitons

For an inorganic, direct gap semiconductor valence and conduction band are considered

to be parabolic at the direct transition, which are typically located at the highest

symmetry point of the reciprocal lattice, the Γ-point. Due to the strong delocalized

nature of electrons and holes it is valid to apply the effective mass approximation which

captures the quasi free carriers within the periodic lattice potential. Again, Coulomb

interaction leads to bound excitonic states, however, with between one or two orders

of magnitude lower binding energies, e.g., GaAs ≈4.5 meV in comparison to speculated

≈0.5 eV in Pentacene.[28, 29]

We start with the exciton wavefunction which is comparable to Eq. 2.36 considering

Bloch waves:

χ (þre, þrh) ∼=uc0uv0

∑

þke,þkh

A(þke, þkh)eiþke·þreeiþkh·þrh

︸ ︷︷ ︸

Φ(þre,þrh)

(2.37)

∼=uc0uv0Φ(þre, þrh), (2.38)

where Φ(þre, þrh) is the exciton envelope function and uc0uv0 the atomic functions which

are considered to vary slowly with þk and therefore are evaluated at the Γ-point.[28]

The exciton envelope function describes the long range relative motion of electron and

hole and obeys the two-particle Schrödinger equation with effective masses of electron

and hole. Consequently, in the case of one excited exciton, the description is equal to

the hydrogen atom. By changing to relative (þr) and center-of-mass (þR) coordinates the

exciton envelope function can be separated:

Φ(þR,þr) = g(þR)φ(þr). (2.39)
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Abbildung 2.7: Calculated absorption spectrum with the Elliott formula for three di-
mensions. Clearly the transition from discrete to continuum states is
observed. Adapted from Ref. [13]

It shows that the center of mass of the electron-hole pair moves like a free particle and

the relative mass wavefunction obeys the Schrödinger equation of the relative mass

hydrogen atom and is commonly known as the Wannier equation:[28]

[

− ~
2

2mr

∇2
r − e2

ǫ0þr

]

φ(þr) = Erφ(þr). (2.40)

It is solved accordingly with the eigenenergies:

Er ≡ En,l,m =
mre

4

2~2ǫ2
0

(
1

n2

)

= − ~
2

2mra2
B

(
1

n2

)

, (2.41)

where aB = ǫ0~
2/mre

2 is the exciton Bohr radius.

The transition probability W is calculated by evaluating the interband matrix elements

between all combinations of electron-hole states that make the exciton wave packet

according to Fermi’s golden rule:

W ∝

∣
∣
∣
∣
∣
∣
∣

∑

þke,þkh

A(þke, þkh)
∫

dþr(uc0eiþke·þre)∗(e · þr)(uv0eiþkh·þrh)

∣
∣
∣
∣
∣
∣
∣

2

. (2.42)
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The absorption coefficient for excitons is then obtained by evaluating the Elliott formula

which is derived from Eq. 2.42:[13]

α(ω) =
8π2ω|dcv|2

nbc

∑

n

|φn(þr = 0)|2 δ
(

~ω − Eg +
EB

n2

)

(2.43)

with the interband dipole matrix element dcv, the background refractive index nb, the

quasi particle bandgap energy Eg and the Coulomb enhancement factor |φn(þr = 0)|2.
Since |φn(þr = 0)|2 is only nonzero for s states, these are the only states visible in

the optical spectrum. A result of the Elliott formula for three dimensions is shown in

Fig. 2.7.[13]
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3 Experimental Details

This chapter shortly reviews the applied spectroscopic techniques used

throughout this thesis. Furthermore, handling procedures are presen-

ted, which are necessary to get correct and low-noise data. The applied

methods include linear absorption, CW photoluminescence spectroscopy

and pump-probe spectroscopy.

3.1 Linear Spectroscopy

Linear spectroscopy is a fast method to gain insights of the dipole allowed excited

states within the detected spectral range. Here,
”
linear“ refers to the regime, where

the analyzed system’s response is proportional to the intensity change of the analyzing

electromagnetic field. Typically, it is assumed, that Coulomb and phonon scattering are

negligible resulting in the completely re-emitted light of the induced polarization. Fur-

thermore, continuous wave (CW) photoluminescence spectroscopy is introduced in this

section, although strictly speaking, it is a non-linear spectroscopic method, applied to

analyze the occupied state after excitation. However, both measurements are performed

with the same time-integrating setup, suggesting for a combined treatment.

3.1.1 Linear Absorption

The linear absorption setup is depicted in Fig. 3.1. Exclusively, reflective aluminum op-

tics are used, minimizing chromatic aberrations and enabling measurements within the
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Tungsten  
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Laser (532 nm) 

To Detection 

Abbildung 3.1: Linear absorption and CW photoluminescence setup. The customized
microscope allows for high spatial resolution (≤ 2 µm) and broadband
spectral (300 nm-1100 nm) linear absorption measurements. Graphic
adapted from Ref. [30].
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Abbildung 3.2: Schematic pump-probe setup used for time-resolved non-linear optical
spectroscopy. It captures the carrier dynamics of the analyzed sample
within the probed energy spectrum after optical excitation.
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UV1-range. A white-light source, switchable between Tungsten filament and Deuterium

arc-lamp, is focused onto a pinhole with a diameter of 25 µm. The pinhole serves as a

spatial filter, in first approximation emitting elementary, spherical waves like a point-

source. Consequently, after collimation with an off-axis parabolic mirror, where the

focal point is positioned at the pinhole, the transmitted radiation is well described by

plane waves. Then, the light is focused onto the sample by a Schwarzschild objective2.

Accordingly, the pinhole is imaged on the sample with the ratio:

M ≈ fSchw

fColl

=
0.625 cm

5 cm
=

1

8
. (3.1)

As a result, the spotsize on the sample is around 3 µm. After passing through the

sample, the transmitted light is focused on a spectrometer, where it is dispersed and

detected by a thermo-electrically cooled (TE-cooled) Silicon charge coupled device

(CCD) chip (1024x512px) with a spectral resolution of 1 nm.

The sample can be mounted into a customized liquid-Helium flow cryostat, where a

temperature range from 10 K to 500 K can be mapped. Between collimating mirror

and Schwarzschild objective, i.e., before the sample, additional optics can be inclu-

ded, such as polarizers and filters. Furthermore, an optical control is implemented,

where the sample surface is imaged by a camera, using the Schwarzschild objective in

combination with a beam-splitter. Especially, in the case of temperature dependent

measurements, when the cryostat’s cold finger contracts or expands and the sample

position is inevitably changed, it is crucial to relocate the initial position in order to

gain comparable results.

The absorption measurement is performed in normal incidence, eliminating angle-

dependent polarization effects and simplifying the evaluation. In general, the absorption

(A) is given by:

A = 1 − T − R, (3.2)

1ultra-violet radiation (here, potentially 170 nm-380 nm)
2NA=0.35
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with the transmission (T) and the reflection (R). In this setup, essentially the trans-

mission of the sample is measured as follows:

Tsample − TBg

T0 − TBg

. (3.3)

In first approximation, the reflection is considered as a flat constant background, which

is subtracted after measurement. Then, by applying Lambert-Beer’s law[31, 32]:

Tsample

T0

= exp (−αL)

→ −ln
(

Tsample

T0

)

=αL (3.4)

the extinction αL3 is determined, where α is directly related to the imaginary part of

the refractive index (see Ch. 2).

3.1.2 Continuous Wave Photoluminescence

In the setup, a frequency-doubled Nd:YAG laser is implemented, which is aligned into

the same optical path as the white-light by a flip-mirror (see Fig. 3.1). The laser com-

bines two-aspects: firstly, it visualizes the analyzed sample position within the optical

control, secondly, it is utilized as a pump source for photoluminescence measurements

with an excitation energy of 2.33 eV. The intensity is tuned by neutral density filters

placed between collimating off-axis parabolic mirror and Schwarzschild objective. Then,

the emitted light is measured by the same detection scheme as the linear absorption,

except for the band-pass filter, which eliminates transmitted and scattered laser stray-

light resulting from the excitation.

The photoluminescence is detected in transmission geometry, i.e., the emitted photo-

lumiscence of the sample is transmitted through the sample and its substrate before

it is detected. As a result, the substrate needs to be transparent within the expected

spectral region of the emitted photoluminescence. Otherwise, it is reabsorbed before

3In its application in solution, α is the product of the extinction coefficient ǫλ times the molar
concentration c, while L refers to the length of the cuvette.
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leaving the sample and cannot be detected. Nevertheless, even when the substrate is

transparent, the sample, as the source of the photoluminescence, is not; the detected

photoluminescence is spectrally shaped by the absorption of the sample, artificially

enhancing the intensity distribution to the Stokes-shifted components. This effect is

avoided in reflection geometry. Since, parts of this work deliberately covers only the

Stokes-shifted components, this setup is sufficient.

Furthermore, by the evaluation of the detected photoluminescence, it has to be taken

care of the wavelength to energy scale conversion. In the detection a grating is utilized

for spectral resolution, making use of the wave properties of light. The dispersed light

is then measured by the equidistant pixels of the CCD detector, hence, the detected

light intensity is measured over equidistant wavelength intervals:

f(λ)dλ. (3.5)

The wavelength to energy conversion is given by:

E =
hc

λ
, (3.6)

accordingly, the detected intensity has to be converted as follows, applying energy

conservation:

f(E)dE = f(λ)λ (3.7)

→ f(E) = f(λ)
dλ

dE
=f(λ)

d

dE

(

hc

E

)

= −f(λ)
hc

E2
. (3.8)

The minus sign can be ignored, as it merely reflects the different directions of integration

in wavelength and energy.[33] Consequently, both, scale and measured intensity have

to be adapted when switching from wavelength to energy scale. However, this is only

relevant for absolute measurements covering a broad spectral range, thus, absorption

and change of absorption measurements as well as measurements of laser-line spectra

are not affected.[34]
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Abbildung 3.3: The four fundamental ∆αL-signals frequently observed in pump-probe-
spectroscopy. Typically, a superposition of these signatures is measured
increasing its complexity.

3.2 Pump-Probe Spectroscopy

Powerful tools to learn more about electronic excitations and their underlying dyna-

mics are non-linear spectroscopic methods. As the term
”
non-linear“ suggests, high

intensity light sources are necessary to conduct these experiments. Our goal is to ana-

lyze the carrier dynamics after optical excitation within a bulk material. Consequently,

two conditions have to be fulfilled, besides the excitation of carriers: firstly, excited

carriers have to be made
”
visible“ and, secondly, they have to be monitored time resol-

ved. This is accomplished by time-resolved pump-probe spectroscopy, where two laser

pulses are deployed to pump and probe the material system. The spectrally narrow,

high intensity pump pulse excites the sample at a desired energy, so that the induced

high polarization density within the material system experiences significant amount

of scattering and incoherent carriers are created. The excited carriers invoke changes

in the linear absorption of the sample, which are captured by the delayed broadband,
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weak probe pulse.

The principle of pump-probe spectroscopy with the experimental setup is depicted in

Fig. 3.2. As an analogy, one can think of shaking a snow globe and filming the falling

snow flakes; shaking the snow globe is equivalent to the excitation induced by the

pump pulses, the stirred and falling snow flakes resemble the relaxing carriers and the

recording camera shots are comparable to the delayed probe pulses.

The time delay between both laser pulses is set by a delay stage, tuning the optical

path length in either the pump or the probe arm. In our case, the step size of the stage

(6 µm) allows for a potential time-resolution of 20 fs by a maximum adjustable time

delay of 3 ns.

The actual measurement of the change of absorption (∆αL) is performed as follows:

the transmission of the sample (Tpr) is recorded by the probe pulse, while the pump

pulse is blocked by a shutter. Then, the transmission of the excited sample is recorded

(Tppr), i.e., both, pump- and probe-arm are open. The ∆αL is determined by the ratio

of both signals:

Tppr/T0

Tpr/T0

=
Tppr

Tpr

=
exp (−(αL + ∆αL))

exp (−αL)
= exp (−∆αL) (3.9)

→ ∆αL = − ln
(Tppr − Tp)

(Tpr − Tbg)
, (3.10)

where in the last row, additionally, the background (Tbg; both arms closed) and the

pump background (Tp; probe arm closed) are subtracted, correcting for ambient light,

as well as photoluminescence and Rayleigh scattering from the sample’s surface.

Typically, the detected ∆αL-signals are complex differential absorption signatures de-

manding to interpret. As a starting point, essentially four fundamental ∆αL-signatures

can be distinguished, sketched in Fig. 3.3 with their corresponding initial (solid line)

and changed (dashed line) absorption resonances. When a resonance loses oscillator

strength due to excited carriers, it is observed as a purely negative ∆αL-signal after

spectral integration, and known as bleaching. Bleaching is a direct consequence of the

fermionic nature of electrons, where the Pauli-principle inhibits occupation of identical

quantum states. Typically it follows, that bleaching of a resonance indicates its popula-

tion by excited carriers. However, in the case of excitonic transitions the population of
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the 1s-state also induces bleaching in the 2s-transition, yet, with a reduced factor.[35]

Thus, bleaching of a transition does not necessarily mean, that it is occupied, but so-

lely, that it is no longer available.

Further frequently observed signatures are shift signals, where the original resonance is

either shifted to lower or higher energies. Here, the oscillator is strength is not changed

resulting in ∆αL-signals with equal amounts of positive and negative amplitudes and

the spectral integration yields a zero. Shift signals are observed, when the Coloumb

potential is changed, in our case, due to excited carriers. In inorganic semiconductors,

higher order Coloumb correlations can either induce blue- or red-shifts depending on

the specific material system.[36, 37, 38]

Broadening of a resonance is the result of excitation induced dephasing (EID), i.e.,

the dephasing time of a polarization (T2-time) is reduced due to increased Coloumb-

scattering with excited density. Again, the oscillator strength is not changed and spec-

tral integration yields a vanishing ∆αL-signal. A comparable effect is observed, when

going from liquid-He temperatures to room temperature, where the resonances are se-

verly broadened by phonon scattering.

The fourth fundamental signature is induced absorption; it can be considered as the

reverse of bleaching, where new transitions emerge after excitation. Induced absorp-

tion originate from second order transitions, these include two photon absorptions or

excitations of excited carriers into higher states. Hence, unlike the previous signatures,

they are not correlated with any resonance of the linear response. Spectral integration

yields an overall positive ∆αL-signal.

Unfortunately, nature is never simple and generally a superposition of the fundamental

∆αL-signals is observed. Therefore, extraction of transients from the ∆αL-signals have

to be performed carefully, where spectral integration is usually inevitable in order to

gain viable results.
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3.3 Pump-Probe Setup

The pump-probe setup is seen schematically in Fig. 3.2. In this section the essential

elements of the setup and their function are introduced. A Ti:Sapphire amplifier system

serves as the source for the experiment. It starts with a frequency doubled, diode

pumped Nd:YAG laser, which pumps the passively mode-locked Ti:Sapphire oscillator.

The oscillator emits 100 fs short laser pulses with a tunable central wavelength between

700 nm-1000 nm and a repetition rate of 80 MHz. The output power is ≈1 W, where only

one fifth is used for seeding the amplifier. The amplifier itself is a Q-switched, cavity-

dumped Ti:Sapphire laser with a repetition rate tunable between 10 kHz and 100 kHz.

Before the seed pulses are coupled into the amplifier, their pulse length is stretched

by gratings in order to avoid laser crystal damage by the high electric fields. After

amplification, the energy of the laser pulses are around 10 µJ (100 kHz) in comparison

to 12.5 nJ of the oscillator laser pulses. These high pulse energies are necessary to

drive the non-linear processes essential for fs-pump whitelight-probe spectroscopy. The

exiting pulses are compressed back to the 100 fs by gratings in reverse geometry.

3.3.1 Opto Parametric Amplifier

After the pulse compression the output pulses are split into pump and probe arm.

In the pump arm it drives an opto parametric amplifier (OPA), which converts the

input pulses with a central wavelength of 800 nm into pump pulses with a central wa-

velength tunable between 400 nm-800 nm. The tunable central wavelength of the pump

pulse allows for excitation energy dependent experiments, furthermore, it guaranties

flexibility concerning various material systems with different band-gap energies. The

OPA utilizes the χ2 opto-parametric amplification-process within a crystal, where the

photon energy of the input pulse (the
”
pump“) is transferred to the two output pulses

(
”
signal“ and

”
idler“). In order to achieve high conversion efficiencies, a crystal with

a lack of an inversion symmetry is chosen, exhibiting a high χ2 factor4. In the non-

4Here, a β − BaB2O4 is the crystal of choice.
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degenerate case, pump and signal5 are co-linearly irradiated on the BBO-crystal, where

initially difference frequency generation (DFG) generates the idler with the following

frequency:

ωI = ωP − ωS. (3.11)

Subsequently, both, signal and idler are further amplified by the pump, eventually redu-

cing its amplitude. This is the actual opto-parametric amplification, which is described

in the simple, stationary dispersion-theory as follows:

∂AI

∂r
∝χ2ASAP exp (−∆kr), (3.12)

∂AS

∂r
∝χ2AIAP exp (−∆kr), (3.13)

∂AP

∂r
∝ − χ2AIAS exp (−∆kr), (3.14)

with the complex amplitudes AI;S;P and the phase matching ∆k = kP − (kS + kI),

with the wave-vectors of pump, signal and idler.[39] Evidently, Equation 3.14 shows,

that the conversion efficiency is crucially dependent on the phase-matching. Due to

the anisotropic dispersion relation (kP ;I;S =
ωP ;I;S

νP h

) of the BBO-crystal, the frequen-

cy components of signal and idler can be tuned by adjusting the angle of incidence,

i.e., adjusting the phase-matching. However, energy conservation (frequency relation

in Eq. 3.11) is always fulfilled. At the end, the output pump pulses, now at the desired

frequency, are compressed by a prism-pair, compensating for introduced chirp.

3.3.2 White-Light Supercontinuum

The probe pulse needs to be ultrafast (≈100 fs) for the time-resolution and spectrally

broad (≈400 nm-1000 nm) for full coverage of the resonances of interest. The whitelight-

supercontinuum by self-phase modulation (SPM) fulfills these requirements. It is ge-

nerated in crystals with inversion symmetry and high χ3 non-linearity, e.g., Sapphire

5The signal is selected by phase-matching from a whitelight supercontinuum (cf. Sec. 3.3.2), before-
hand generated by the pump.
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or Yttrium-Aluminum-Garnet (YAG), by intense laserpulses. Within the crystal the

propagating laserpulse with slowly varying envelope A(t, r) can be described in first

order dispersion-theory as follows:[39]

∂A(t, r)

∂r
+

1

νG

∂A(t, r)

∂t
∝ iχ3|A(t, r)|2A(t, r), (3.15)

with the group velocity νG of the laser pulse. After performing the coordinate trans-

formation η = t − r/νG a solution of Eq. 3.15 is given by:

A(η, r) ∝ A0(η)eiχ3|A0(η)|2r. (3.16)

Consequently, the phase of the transmitted laser pulse is the following:

ϕ(η, r) = χ3I0(η)r. (3.17)

The time derivative of the phase yields the instantaneous frequency of the propagating

laser pulse:

δω(η, r) = −∂ϕ(η, r)

∂t
= −χ3 ∂I0(η)

∂η
r. (3.18)

Thus, the instantaneous frequency changes linearly with the time-dependent change

of the laser pulse intensity. Since, in femtosecond pulses emitted by the amplfifier sys-

tem the intensity changes rapidly with time, the transmitted probe pulse experiences

strong spectral broadening covering several hundred nanometer around the initial cen-

tral wavelength, typically referred to as whitelight supercontinuum. Additionally, the

introduced strong spectral chirp is inevitably connected with strong temporal chirp,

so, although spectral contributions of the whitelight supercontinuum exhibit their am-

plitude maximum only for tens of femtoseconds, overall the pulse length is stretched

to over 2 ps.

After generation, the whitelight supercontinuum is focused onto the sample, transmit-

ted, and eventually detected by a spectrometer combined with a TE-cooled Si-CCD

camera. The probe spot profile on the sample is a Gaussian distribution with a FWHM
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Abbildung 3.4: Evaluation of the whitelight-supercontinuum chirp by two-photon ab-
sorption in GaP and the subsequent numerically correction procedure.
The extracted cross-correlation (open dots) is fitted with a Gaussian
(solid red line) and reveals ΓF W HM ≈295 fs; it gives a conservative esti-
mate of the time-resolution inherent to the experiment.

of 20 µm, while the pump spot size is significantly larger in order to ensure homoge-

neous excitation within the probed region.

Glen-Laser polarizers in combination with broadband λ/2-waveplates in both arms

are put directly in front of the focusing lenses before sample transmission; it allows

for precise adjustment of the polarization state of pump and probe with a contrast

of 100:1. Consequently, we can measure the change of absorption spectral-, time- and

polarization-resolved.

3.3.3 Chirp

As mentioned in the previous section the generation of the white-light supercontinuum

induces a non-linear chirp in the probe pulse. This means, at a distinct time delay not

all spectral components within the probe pulse experience their amplitude maximum.

In other words, the instantaneous frequency changes with time. Consequently, the time

38



Pump-Probe Setup

steps performed by the delay stage are not absolute for all spectral components, but

relative for one. This leads to temporal distortions within the experimental data in time

steps below the envelope function of the probe pulse, i.e., steps below 2 ps around time-

zero. By measuring the cross correlation of the pump and probe pulse by two-photon

absorption in GaP, the instantaneous frequency is determined by the ∆αL-maximum

in the induced absorption at every spectral position (see Fig. 3.4). Then, the maximum

of the two-photon absorption signal is set to time-zero correcting for all other optical

elements. Consequently, after the correction, all spectral amplitude maxima are located

on a horizontal line at zero time delay. The missing time steps at a distinct spectral

position are interpolated. This method can be applied as long as the photon energy of

the probe pulse lies below the indirect bandgap of GaP at 2.26 eV.[40]

However, the numerical corrections lead to diagonal stripe artefacts resulting from

noise in the spectra and are ignored in the following. The whole procedure is shown

step-by-step in Fig. 3.4. The determined chirp function is applied to all experimental

data correcting for the temporal shifts within the spectral components. It should be

noted, that this procedure has to be repeated when changing the spectral window of

the probe pulse.

The cross-correlation of the corrected two-photon absorption data yields a ΓF W HM of

295 fs which serves as a conservative estimate of the time resolution for the experimental

response (see Fig. 3.4).
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4 Frenkel and Charge-Transfer

Excitons in Perfluoropentacene

In organic crystals consisting of closed shell molecules, typically, bonding

between lattice sites is established by a groundstate energy reduction due

to induced dipoles, quadrupoles or beyond, i.e., they consist of van der

Waals bonds generally considered as weak. Consequently, in first ap-

proximation electron-hole pairs are localized to one lattice site and are

referred to as Frenkel excitons. However, in a crystalline environment

with the appropriate packing motif the short ranged van der Waals in-

teractions lead to considerable inter-molecular coupling which lift strict

localization and a variety of partially delocalized excitons emerge, known

as charge-transfer excitons.

In this chapter the linear absorption of PFP single crystals is analyzed

crystal axes resolved. A phenomenological interpretation of the various

resonances will be given, partially in the context of the Davydov splitting

of the exciton band. These analysis serve as a precursor for the following

chapter, where the exciton dynamics are examined carefully.

4.1 Perfluoropentacene Single Molecules

Before the measurement and analysis of the linear response of the PFP crystal it is

advisable to gain some fundamental insights into the molecule itself. This is especially

important for van der Waals bond crystals, where lattice site interactions are weak
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Abbildung 4.1: Schematic structures of PEN and PFP and the corresponding electro-
nic densities mapped as the electrostatic surface potentials. Regions of
higher electron density are shown in red and of lower electron density
in blue. Adapted and extrapolated from Ref. [42].

and the crystal’s linear response may still be dominated by the single molecule, e.g., in

benzene crystals.[41] Consequently, a short introduction to the molecular properties of

PFP is given followed by an analysis of its gasphase and solution absorption spectra.

4.1.1 Generals

PFP (C22F14) is the perfluorinated counterpart of Pentacene (PEN; C22H14) and was

first synthesized in 2004 by Sakamoto et al.[43] It consists of five fluorinated benzene

rings arranged in a planar row, therefore, exhibiting an inversion center. The schematic

structures of both molecules PEN and PFP are depicted in Fig. 4.1. Due to the high

electronegativity of Fluor in comparison to Carbon1, the electron density of the deloca-

lized π-system in PFP molecules predominantly reside on the Fluor shell-atoms of the

molecule, in contrast to PEN, where the π-system is located on the benzene-rings, i.e.,

1F=4; C=2.6, on the Allred-Rochow-Scale[44]
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the backbone of the molecule. This is shown in Fig. 4.1 below the schematic structu-

res, where the electrostatic surface potential is mapped onto a surface of total electron

density (B3LYP/6-1G** Calculation).[42] Another important difference between PFP

and PEN is the atomic mass ratio of the basis atoms; Fluor is heavier than Carbon, as

a consequence, the atomic-displacement oscillations in a PFP vibron occur mostly wi-

thin the Carbon rings, whereas in PEN the situation with Hydrogen is vice versa.[20]

Figuratively speaking, in PFP the tail wags the dog. Due to the inverse electronic

properties of PFP in comparison to PEN, mixed crystals or/and heterostructures on

the basis of both molecules potentially pave the way for high-performance, organic

pn-junctions.[43]

4.1.2 Linear Absorption

The groundstate of PFP is a closed-shell singlet configuration with the triplet state as

the next higher energy level, 0.62 eV above it.[47] Due to negligible spin-orbit coupling,

spin is a good quantum number and dipole transitions, e.g. single photon excitations,

occur within one spin-system. Consequently, linear absorption of PFP molecules takes

place from singlet ground to singlet excited state, where the lowest dipole transition

is oriented along the short axis of the molecule (S0 → S1; 11Ag → 11B2u).[48] In first

approximation the triplet states are not addressable, thus, considered as dark states,

which makes an experimental determination of their transition energies challenging.

For instance, in PEN, the lowest triplet state is determined to be at 0.85 eV by electron

energy loss spectroscopy.[49]

A straight forward approach to linear absorption of single PFP molecules is in solution,

e.g., in Dichlorobenzene as a solvent. However, due to the dielectric environment of the

surrounding solvent molecules, the transitions of PFP molecules experience a shift to

lower energies, known as the solvent shift (cf. Ch. 2). In gasphase absorption the diel-

ectric environment is eliminated and the absorption spectrum is solvent shift free with

the draw-back of highly broadened resonances resulting from the high temperatures

necessary for sublimation. For a rigorous single molecule study with the possibility to

resolve rotational transitions, more effort has to be put into the experimental prepe-
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Abbildung 4.2: Solvent shift comparison of PEN and PFP. The gasphase absorption
spectra were taken at a temperature of 600 K (adapted from Ref. [45]).
The solution spectra were taken at room temperature with Dichlorben-
zene as a solvent (adapted from Ref. [46]).

Abbildung 4.3: Tentative explanation for the larger solvent shift of PFP in Dichloro-
benzene. 10 solvent molecules can be bound by hydrogen bonds in PFP
in comparison to only 7 in PEN.
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rations. Such methods are: molecular jet spectroscopy [50] (drawback: ensemble mea-

surement), noble gas matrix spectroscopy [51] (drawback: partially ensemble measure-

ment, dielectric environment) or near-field scanning microscopy of dispersed solution

[52] (drawback: dielectric environment). Anyhow, solution and gasphase absorption are

sufficient to get first insights into the linear response of single PFP molecules.

The results of the solution and gasphase absorption measurements are presented in

Fig. 4.2 and compared to PEN. As expected, the PEN solution spectrum shows the

well known solvent shift [53], which amounts to 170 meV. According to Ref. [54], in

the situation where solvent and solute molecules are both non-polar the red shift is

associated solely to the polarization effect of the surrounding solvent molecules, i.e.,

it depends on the refractive index of the solvent, while the vibrational progression is

retained. In the case of PFP, with more than 700 meV the solvent shift is significantly

larger, although the same solvent is used. Thus, the interaction of solvent and solute

molecules goes beyond the polarization effects of a surrounding dielectric media. So

called Hydrogen bonding is an explanation for the large solvent shift; it is also ass-

umed to be responsible for different shifts of different electronic transitions within a

solute molecule absorption spectrum.[54] In Fig. 4.3 the maximum amount of Hydrogen

bonds are depicted for PFP and PEN in 1,2-Dichlorobenzene; apparently, more bonds

are formed in the case of PFP where additionally a stabilization between the solvent

molecules is established. This clustering increases the solvent-solute interaction and

lowers the transition energy leading to a larger solvent shift in PFP.

In Fig. 4.4 (a) the gas phase absorption of PFP is shown with a Lorentzian fit of the

second electronic transition. By subtraction of the Lorentzian the superimposed lo-

west electronic transition with its vibronic progression is gained; the result is shown

in Fig. 4.4 (b).2 The gas phase spectrum exhibits a vibronic spacing of ≈170±10 meV

which is 1372 cm−1 and corresponds well to the measured and calulated mode with one

of the highest Huan-Rhys factors in PFP.[42][20][55] In solution (shown in Fig. 4.4 (c))

the spacing of the progression is slightly increased with the resonances being less broa-

dened due to lower temperatures. As there are several modes involved in the optical

response and the resolution is not sufficient, the direct origin of the slight increase

2This offset correction is only a qualitative guide-to-the-eye, since a correct correction requires a full
vibronic Poisson model of both electronic transitions.
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Abbildung 4.4: (a) Lorentzian fit (dashed red line) of the second dipole-allowed electro-
nic transition (S0 → S3) in the gasphase (solid blue line). (b) Extracted
lowest electronic transition (S0 → S1) with its vibronic progression in
the gasphase by subtraction of the Lorentzian fit. (c) Lowest electronic
transition (S0 → S1) of PFP in Dichlorbenzene solution. The insets
depict a tentative explanation for the redistribution of the oscillator
strength in the context of the Franck-Condon principle.

remains unclear. Strikingly, in the gas phase, the distribution of oscillator strength

between the three resonances is significantly altered. We observe a redistribution of

oscillator strength to higher energies. Tentatively, it is attributed to a relative shift bet-

ween the ground and excited state potential sketched in the insets of Figs. 4.4 (b) and

(c). Accordingly, applying Franck-Condon’s principle, the overlap integrals of ground

and excited wavefunctions shift towards higher excited vibronic states which yields

higher oscillator strength at higher energies. At the same time the overlap with lower

vibronic states is reduced, hence, a reduction of the oscillator strength of the lower re-

sonances is observed. The ratio of the peak amplitudes imply a high Huan-Rhys factor

beyond 1. However, the Lorentzian subtraction is not the most elegant method, there-

fore, molecular jet spectroscopy at liquid helium temperatures would be necessary to

verify this hypothesis.
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4.2 Perfluoropentacene Single Crystals

Having established an idea of the single-molecule optical-response, we can focus on

the single crystal response with its enriched complexity due to anisotropic coupling

between nearest neighbor molecules and new crystal symmetries. One key question is

the coupling of the translational unequal basis molecule within the unit cell, i.e., the

Davydov splitting which has so far not been identified in PFP. The road to success will

be polarization resolved linear absorption measurements of PFP single crystals grown

on the alkali halide substrates NaF(100) and KCl(100). Unlike previous works the single

crystal domains are large enough to optically address them and measure each crystal

axis individually.[46] The PFP samples were grown and characterized by Dr. Tobias

Breuer and Prof. Gregor Witte from the molecular solids group in Marburg.[56]

4.2.1 Growth and Characterization

PFP exhibits an inverted quadrupole-moment compared to PEN, which is a direct

result of the inverted electron density distribution of the π-system. Nonetheless, on

weakly interacting substrates, PFP adopts a herring-bone structure3 within the thin

film phase, similar to PEN.[43] Yet, the two basis molecules show a nearly rectangular

herring-bone angle of 91.2◦ (e.g., see Fig. 4.5 (a)), which is considerably higher than the

angle in PEN with 51.2◦. It will be shown, that this feature has intriguing effects on

the electronic excitations within the PFP crystal.

The PFP thin films are prepared on the alkali halide substrates NaF and KCl, where

not only macroscopic PFP single crystal growth is possible, but also the crystals ex-

hibit two different orientations (standing vs. lying4, cf. Figs. 4.5 and 4.6). The growth

procedure and characterization is given in detail in Ref. [56], in the following, only a

small excerpt is given.

The alkali halide surfaces were prepared by cleaving slices of about 2 mm thickness

3Here, monoclinic lattice with crystal basis consisting of two translational nonequivalent molecules.
4Note, strictly speaking they exhibit four orientations with two on every substrate, however, within

the substrate plane they are rotationally equivalent, e.g., see Fig. 4.5(c).
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Abbildung 4.5: (a) Sketch of the PFP crystal orientation on the NaF(100) substrate. (b)
X-Ray Diffraction patterns of the PFP thin film on NaF(100): specular
scan (left inset) and azimuthal scans along (112)P F P and (11-2)P F P . (c)
Microscopic image for perpendicular set polarizations, revealing single
crystal domains with 90◦ lateral rotation. (d) AFM micrographs of
the PFP thin films. The image is aligned along the substrate’s [100]
direction. Adapted from Ref. [56].

from a single-crystal rod. Subsequently, the highly-crystalline PFP (purity > 99%)

thin films (150 nm) were prepared under ultra-high-vacuum conditions by molecular

beam deposition onto KCl(100) and NaF(100) surfaces. The molecules assemble in

an upright fashion with their þb- and þc-axes parallel to the surface on NaF(100) (cf.

Fig. 4.5(a)) while a recumbent orientation is adopted on KCl(100) yielding the þa- and

the þb-axes of the PFP lattice parallel to the substrate surface (cf. Fig. 4.6(a)).

The film morphology was characterized by atomic force microscopy at ambient condi-

tions. Exemplary film morphologies are depicted in Figs. 4.5 (d) and 4.6(d). They show

islands with preferred orientations along the NaF<100> and KCl<110> directions.

Due to the fourfold symmetry of the substrates, four 90◦-rotated domains are found.

The crystalline orientation of the samples was determined from X-Ray Diffraction

(XRD) data. Bragg-Brentano scans of PFP/NaF(100) are given in Fig. 4.5 where the

PFP(n00) diffraction peaks are clearly observed. These lattice planes correspond to

uprightly oriented molecules as shown schematically in the inset. Additionally, azimu-

thal scans of lattice planes which are not parallel to the substrate have been performed
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Abbildung 4.6: (a) Sketch of the PFP crystal orientation on the KCl(100) substrate. (b)
X-Ray Diffraction patterns of the PFP thin film on KCl(100): specular
scan (left inset) and azimuthal scans along (112)P F P and (11-2)P F P . (c)
Microscopic image for perpendicular set polarizations, revealing single
crystal domains with 90◦ lateral rotation. (d) AFM micrographs of
the PFP thin films. The image is aligned along the substrate’s [100]
direction. Adapted from Ref. [56].

to determine the exact lateral arrangement. A scan of the PFP(112) and (11-2) lattice

planes (which are recorded simultaneously due to their similar lattice spacing) yields

16 peaks. After elimination of the peaks resulting from the fourfold-symmetry and the

mirror-domains, two peaks with a mutual splitting of ∆Φ=3.1◦ remain. Subsequent

consideration of the relative orientation between the projection of the lattice plane

onto the PFP(100) lattice plane allows to determine the orientation of the unit cell

axes on the surface. This yields that the molecular þb-axis are oriented along the [100]

directions of the substrate with a slight misorientation of Φ = ±1.55◦. The epitaxial

alignment of the film as well as the slight misorientation are attributed to the nearly

perfectly equivalent values of the PFP þc-axis (4.49 Å) and the distance of two sodium

atoms along the NaF <100> directions (4.62 Å).

Figure 4.6(b) presents the X-ray diffraction patterns of PFP deposited on KCl(100).

Here, the (102) peak is observed, which corresponds to a lying orientation of the mole-

cules. An evaluation of the azimuthal distribution of (012) and (01-2) peak intensities

yields that the molecular þb- and þa-axis are oriented along the substrate’s <110> direc-
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Abbildung 4.7: Bandstructure calculations of PEN (Campbell phase calculation from
Ref. [57]) and PFP (thin film phase calculation from Ref. [42]) crystals.

tion. The adoption of a recumbent orientation on this surface is attributed to higher

order commensurability in the following direction: 15dKK = |4þaP F P − 2þcP F P |. Figures

4.5 (c) and 4.6 (c) show microscope images of the sample taken by T. Breuer with a

polarization filter. Clearly, the individual single crystal domains are seen extending

over several tens of micrometers. Therefore, in combination with the experimental spot

sizes, which are below 20 µm, it is possible to address the individual transition dipole

moments along the three crystal axes in PFP. This has been successfully exploited to

characterize the vibronic Davydov splitting in PFP.[20]

In ideal crystals with periodic boundary conditions electronic excitations can be expres-

sed in terms of Bloch waves, i.e., the wavevector þk of the electrons is a good quantum

number. Accordingly, the dispersion relation (bandstructure) can be calculated along

the high symmetry points within the first Brillouin zone. Such calculations have been

performed for PEN and PFP and are shown in Fig. 4.7. Typical for organic semicon-

ductors, the bandwidth of the HOMO and LUMO band are in both cases narrow with

less than 500 meV. On the other hand, distinct differences are present between PEN
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and PFP. In PEN a clear splitting of the bands is observed, which is virtually absent

in PFP. The bandsplitting in PEN is a direct consequence of the coupling between

the two basis molecules, i.e., the Davydov splitting. Consequently, calculations predict

a vanishing Davydov splitting for PFP crystals. Furthermore, the bands in PFP are

predominantly flat except for symmetries along the slip stacked direction, where as far

as organic semiconductors are concerned strong dispersion is predicted. In PEN such a

monodirectional dispersion is not observed; the small dispersion present is distributed

over several directions. Hence, in PFP we expect one-dimensional excitons partially

delocalized along the slip stacked packing motif.

4.2.2 Polarization-Resolved Linear Absorption

The absorption measurements are performed with the setup shown in Fig. 3.1 at liquid

Helium temperatures in order to reduce homogeneous broadening due to phonon scat-

tering. At first, the measured linear responses are assigned to the three crystal axes.

Due to the unique growth characteristic of PFP on NaF and KCl in normal incidence

all three axes are accessable. Thus, the assignment is performed by comparing the

linear responses of PFP on both substrates (þb- and þc-axis in PFP/NaF(100); þb- and

þa-axis in PFP/KCl(100)) as it is shown in Fig. 4.8. Since the dipole moment of the

HOMO-LUMO transition (S0 → S1) resides within the short axis of the molecule, the

absorption along the þa-axis virtually vanishes and therefore, is not included in this

figure. The remaining response along the þb-axis of PFP/KCl(100) serves as the refe-

rence to identify the þb-axis in PFP/NaF(100). The blow out shows the high energy part

of the spectra starting at 2.25 eV. Here, the þb-axis response of PFP/KCl(100) shows

vanishing absorption, whereas one crystal axis spectrum of PFP/NaF(100) exhibits a

clear absorption band with presumably a vibronic progression. Accordingly, the linear

absorption with the high energy absorption band can be assigned to the þc-axis of PFP.

Having successfully assigned the spectra, an overview of the linear absorptions along

all three crystal axis of PFP is given in Fig. 4.9. Additionally, the solution absorption

spectrum is included as a grey shaded area for reference. The transition at 1.95 eV in

the crystal phase is attributed to the slightly red shifted HOMO-LUMO transition.[43]
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Abbildung 4.8: Crystal axes identification on the basis of the third absorption band in
the linear absorptions of PFP/NaF(100) and PFP/KCl(100). A pro-
nounced absorption in combination with a vibronic progression is only
observed along one axis in PFP/NaF(100), ergo the þc-axis in PFP.

As mentioned above, the lowest transition virtually vanishes for polarization along the

þa-axis, the residual signature is a result of the small tilt angle which the molecules ad-

apt in respect to the þa-axis. The second electronic transition dipole moment is oriented

along the long axis of the molecule, thus observed along the þa-axis with no apparent

solvent to crystal shift. In the following we will focus on the lowest transitions in the

spectral range from 1.6 eV to 2 eV.

Interpretation in the Context of the Davydov Formalism

A detailed view of the lowest transitions observed along the þb- and þc-axis is given in

Fig. 4.10. Three distinct resonances are identified in the spectra, where the lowest two

are attributed to the Davydov-split Frenkel excitons in the traditional manner between

the two basis molecules (X1 and X2). In the scheme the dipole coupling is depicted as

vector additions (in-phase and out-of-phase) of the molecular dipole moments resul-

ting in two exciton bands, as described in Ch. 2. However, the splitting amounts to

only 25 meV, which is significantly smaller than the 120 meV in PEN and corroborates
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Abbildung 4.9: Overview of the linear absorptions along all three crystal axes.
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Abbildung 4.10: Three excitonic resonances identified in the polarization resolved linear
absorption of PFP/NaF(100) single crystals with an interpretation in
the context of the Davydov splitting.

the theoretical prediction of weak coupling between the basis molecules. It has been

shown, that in theory, dipole coupling alone is not capable of quantitatively reprodu-

cing experimental results.[58] The second ingredient for the correct description of the

Davydov splitting is mixture of Frenkel and charge transfer (CT) states between the

two translational nonequivalent molecules. In Tetracene, not including charge transfer

states lead to a minimal Davydov splitting of 4 meV (experiment 78 eV) and with the

wrong sign. With the inclusion of CT-states quantitative agreement is achieved reve-

aling CT admixture in the lowest transitions of up to 30%.[58] The decisive parameters

for mixing between Frenkel and CT-states are the Frenkel exciton dissociation integrals

De and Dh which are in good approximation the electron and hole resonance integrals

tLUMO and tHOMO defined by the molecular orbitals between nearest neighbors.[58]

For PFP crystals in Ref. [42] all nearest neighbor resonance integrals are performed

revealing negligible charge transfer resonances between the two nonequivalent basis

molecules. Consequently, the observed Davydov splitting solely originates from the

dipole coupling explaining its factor 5 reduced splitting compared to PEN. Further-

more, it is highly improbable that CT states between these molecules exist. This is in

contrast to PEN, where theoretical calculations predict a planar delocalization of the

lowest excitons.[59][23][21]
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Abbildung 4.11: (a) Polarization resolved linear absorption of PFP/NaF(100) single
crystals. (b) Polarization resolved linear absorption of PFP/KCl(100)
single crystals. (c) Gaussian fits of the three identified exciton re-
sonances with their amplitudes plotted over the polarization angle
showing the cos2(φ) dependence typical for dipole coupling.

On the other hand, the resonance transfer integrals between molecules within a sublat-

tice of PFP crystals exceed the ones in PEN by nearly a factor 2 (PFP: te=73 meV,

th=-132 meV; PEN: te=81 meV, th=85 meV)5.[42] Accordingly, both electron and hole

are mobile within the slip stacked direction. Since the third peak does not coincide

with an internal or external vibron it is attributed to an exciton resonance (X3) par-

tially delocalized along the þb-axis. Typically the oscillator strength of CT excitons are

considered as weak [58], here however, the state resides only 45 meV above the Frenkel

exciton resonances in comparison to 290 meV in PEN [60] which implies strong mixing

between these states and therefore an increased oscillator strength. Along the þc-axis its

oscillator strength is severely reduced and probably vanishes completely in ideal PFP

crystals, hence, the dipole moment is predominantly oriented along the slip stacked

direction as expected from the calculated transfer integrals.

In Fig. 4.11 the polarization dependent linear absorptions are given for PFP/NaF(100)

and PFP/KCl(100) at 10 K. The three identified excitonic resonances are fitted with

5The maximum values from all crystalline directions are given.
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Abbildung 4.12: Comparison of the vibronic progression at 2 eV in solution and in
crystalline phase along the þc-axis of PFP. Along the þb-axis these si-
gnatures are suppressed.

three Gaussian forms where all parameters are kept constant except for the amplitude.

In Fig. 4.11 (c) the two fits along the þc- and þb-axis (φ = 10◦; φ = 90◦) are given as an

example. The amplitudes of the three resonances extracted from the fits are plotted as

dots against the polarization angle where polarization along the þc-axis is set to zero.

They show a cos2(φ) behavior illustrated by the dashed-line fits in very good agreement

with classical dipole coupling (cf. Ch. 2).

Now that the lowest excitonic resonances are identified we focus on the higher absorp-

tion band, which is dominant along the þc-axis. In Fig. 4.12 the two linear absorptions

along the þb- and þc-axis are compared to the linear absorption of PFP in solution. Ap-

parently, the absorption band at 2.3 eV present along the þc-axis resembles the lowest

transition with its vibronic progression of PFP in solution, however, with shifted energy

spacing between the progressions and an overall shift to higher energies. This is unex-

pected, since in a diffusive background with dense packing the increased polarizability

of the surroundings typically induces a shift to lower energies, as it is the case from gas

phase to solution absorption. Along the þb-axis only residual signatures of the higher

band are present, yet, an increased oscillator strength at the 1.95 eV HOMO-LUMO

transition is observed.

Again, considering the packing of the molecules and correspondingly the orientation of

their dipole moments, the observed absorption signatures can be interpreted as H- and

J-aggregate like transitions. The orientation of the dipole moments within the bc-plane
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is sketched in Fig. 4.13 with the projected dipole according to the polarization of the

incident light. Taking into account dominant dipole coupling between the slip stacked

molecules we see that along the þb-axis the dipoles are strung together in a J-aggregate

fashion, whereas along the þc-axis an H-aggregate like arrangement is adopted. The J-

aggregate (H-aggregate) can be viewed as an extreme case of the Davydov splitting

where the higher (lower) transition is dipole forbidden, i.e., a dark state (cf. Ch. 2).

On the right hand side of Fig. 4.13 theoretical calculations from Ref. [19] are shown

for ideal J- and H-aggregate absorptions with increasing dipole coupling strength. In

the calculation electronic coupling to the typically dominant vibron in Oligoacenes at

around 1400 cm−1 is included. The corresponding calculated solution spectrum (single

molecule absorption) is given as a grey shaded area for reference. The energy shift of the

transition resulting from the solid state background is omitted in order to emphasize

the effect of the aggregate. In the case of the J-aggregate, already for weak coup-

ling, the progression is suppressed and the lowest transition gains oscillator strength.

Furthermore, the absorption band is shifted towards lower energies. As the coupling

is increased the vibronic progression virtually disappears and a single resonance pre-

vails. A similar behavior is identified along the þb-axis where the oscillator strength of

the transition at 1.95 eV is increased and the higher progressions are reduced in good

agreement with the J-aggregate interpretation.

The calculation of an ideal H-aggregate reveals a shift of the absorption band to higher

energies, additionally, the initially equidistant energy spacing between the resonances

of the progression becomes irregular as well as the oscillator strength. In the case of

strong coupling the progression is barely visible, similar to the J-aggregate with one

single resonance dominating the spectrum, however, here the peak resides at higher

energies. Correspondingly, the absorption band at 2.3 eV observed along the þc-axis is

attributed to an H-aggregate like absorption with intermediate dipole coupling.

Due to the double molecular basis in PFP crystals an ideal J- or H-aggregate situati-

on cannot capture the complexity of the absorption spectrum.[19] Nevertheless, both

crystal axes exhibit qualitatively the expected features, leading us to the conclusion of

enhanced dispersion along the slip stacked direction as it is predicted by theory.
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Abbildung 4.13: Polarization-dependent coupling of the slip-stacked molecules along
the þb-axis. On the right hand side, theoretical absorption spectra for
ideal J- and H-aggregates with increasing coupling strength J0 are
shown in comparison to solution spectra. Adapted from Ref. [19].
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Abbildung 4.14: (a) Temperature dependence of the Davydov components along the
þb- and þc-axis from 10 K to 280 K. (b) Temperature dependent linear
absorption along the þc-axis. (c) Temperature dependent linear absorp-

tion along the þb-axis.

Organic semiconductor crystals have relatively large thermal expansion coefficients in

comparison to inorganic semiconductors, e.g., Pentacene exhibits a thermal expansion

coefficient along the þa-axis of αþa = 1.1 × 10−4 K−1 in contrast to αZnO = 3 × 10−6 K−1

of ZnO6.[61] In PFP comparable thermal expansion coefficients are expected because

of their close relation. Besides the fact, that a decrease in temperature leads typically

to an increased bandwidth [62] resulting from higher orbital overlap and consequent-

ly to a reduced bandgap [17], temperature dependent absorption measurements are

interesting for possible changes in the crystalline phase which induce different inter-

molecular spacings and/or altered basis molecule angles. As a result, the modified

inter-molecular coupling is directly observable in transmission measurements. For in-

stance, slight changes of the Davydov splitting with temperature occur in Pentacene

crystal phases.[61] Thus, temperature-dependent position measurements of the two Da-

vydov components in PFP are monitored in a range from 10 to 300 K. The results are

6Zinc-oxide
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plotted in Fig. 4.14 (a) where the peak position of the lowest component is taken into

account. A general red shift of the bandgap with decreasing temperature is observed

attributed to reduced inter-molecular spacing, i.e., denser molecular packing ergo hig-

her coupling. The measured shift of ≈30 meV exceeds reported values for Pentacene

by a factor of 3.[61] Tentatively, this indicates a higher thermal expansion coefficient

in PFP.7 However, the Davydov splitting remains the same within the experimental

error. Hence, a drastic change of the angle between the two basis molecules is ruled out.

Furthermore, the resonances exhibit an expected increased homogeneous broadening

at elevated temperatures evoked by an increased phonon population.

7Note however, that the temperature dependent bandgap shift is not linear with the inter molecular
spacing, so a direct correlation between expansion coefficient und bandgap shift is not possible.
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5 Exciton Dynamics in

Perfluoropentacene

In the previous chapter the linear response of PFP was analyzed, showing

distinct excitations along the three crystal axes. Based on a phenome-

nological interpretation, there are strong indications of a 1D partially

delocalized exciton within the þb-axis. Preliminary ab-initio calculations

come to similar conclusions. A way to gather more information about

the nature of the optical excitation and its dynamics are the applicati-

on of non-linear spectroscopic methods. Here, the method of choice is

time-resolved pump white-light probe spectroscopy, since it is a powerful

tool to study the incoherent carrier dynamics. In this chapter a rigorous

analysis of the carrier dynamics during the first nanosecond after exci-

tation in PFP is given, including all three crystal axes. The results are

discussed in the context of singlet exciton fission via excimer formation;

both processes have been observed (singlet fission) or proposed (excimer

formation) in the closely related PEN crystal. Consequently, the chapter

starts with an overview of the observed and proposed dynamics in PFP

related crystals. Some of the concepts are then applied to the results and

reviewed accordingly.
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5.1 Decay Mechanisms in Organic Semiconductors

after Optical Excitation

This section covers briefly some of the most frequently occurring decay mechanisms ob-

served in crystalline organic semiconductors. The major part of this section is dedicated

to singlet fission, which has gained some reviving attention lately, due to its potential

to overcome the Shockley-Queisser limit in organic solar cells.[63] The subsections de-

aling with the several decay mechanisms are ordered in their chronological occurrence

after optical excitation, as far as possible. Since no time-resolved spectroscopic analysis

on PFP exists so far, decay mechanisms of related crystals, e.g. Anthracene, PEN and

Perylene, are reviewed. An overview of the primary decay mechanisms in these three

model systems is given in Figs. 5.1,5.12,5.7. These figures are not exhaustive and should

only guide through proposed and accepted relaxation processes after optical excitation.

Moreover, they only refer to the documented decay mechanisms of the crystalline pha-

se, the solution and the gas-phase of these materials show completely different decay

times and mechanisms and are not treated in this work.

5.1.1 Excimer Formation

The word
”
excimer“ is derived from

”
excited dimer“, meaning a shared excitation bet-

ween two monomers. The simplest known case is the Helium excimer.[64] In the ground

state of the hypothetical He2 molecule, the anti-bonding character1 of the 1sσ∗2 mole-

cular orbital outmatches the binding character of the 1sσ2 orbital. Consequently, the

energy potential between both atoms is repulsive in the ground state, i.e. the binding is

energetically unfavorable. However, in the case of an excited He atom the population of

the orbitals in the He2 molecule is as follows: 1sσ21sσ∗12sσ1. The anti-binding charac-

ter is decreased, while simultaneously increasing the binding character by populating

2sσ. As a result, the excited He2 molecule is energetically favorable compared to two

separate He atoms, with one being in the ground state and the other one in the first

1Anti-bonding orbitals are marked with a star.
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Abbildung 5.1: Decay mechanisms of the α-Perylene crystal, a prominent example of
excimer formation.

excited state.

The relaxation back to the ground state happens radiatively. Since the ground-state

potential is purely repulsive, the emitted radiation is usually broadband featureless lu-

minescence, peaked at the excited potential’s minimum. This can be easily seen in the

energy level diagram in Fig. 5.2 (a), where RA,B (Å) is the general reaction coordinate,

in this case the average distance between the two He nuclei. The actual binding energy

levels are far more complicated, where mixing of orbitals due to spin-orbit coupling,

vibrational and rotational states have to be considered. The He2 excimer states are, as

all rare gas excimer states, of the Rydberg type. This means, that predominantly the

bonding character of the ion pair (He+
2 ) is responsible for the excimer formation. The

Rydberg electron2 wavefunction is diffuse and has only little bonding or anti-bonding

contributions. Nonetheless, the bonding states are influenced to some extent. Especi-

ally at long internuclear separations, where the Rydberg electron starts to screen the

ion significantly, deviations between the ion pair and Rydberg states are observed.[65]

In Fig. 5.2 (b) the lowest Rydberg levels of the Ne2 excimer are shown with their corre-

2The electron, which is excited to higher states
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Abbildung 5.2: (a) Simplified He excimer energy level diagram, with the resulting fea-
tureless radiative decay. (b) Repulsive ground state and lowest excited
Rydberg states of the Ne2 excimer with the corresponding molecular
orbitals (orbitals with spin-orbit coupling in brackets) and resulting
states after dissociation. Vibrational and rotational states are ignored.
Adapted from Ref. [66].

sponding orbital notation according to Hückel’s case a and b, i.e., no spin-orbit coup-

ling, and in brackets to Hückel’s case c, i.e., with spin-orbit coupling. Vibrational and

rotational states are omitted. It has been shown that spin-orbit coupling mixes Singlet

and Triplet states in two of the three lowest lying Rydberg states (in 1u and 0+
u ),

which results in initially forbidden dipole allowed transitions from free atomic ground

to bound excimer states. However, the transition probabilities are crucially dependent

on the internuclear separation, with vanishing transition matrix elements at the lowest

excimer binding lengths. This is the reason for the relatively long relaxation times of

the several excimer states (≈90ns) even being considered metastable in the 1u state.[67]

In general, one distinguishes between three extreme cases of bonding excimer states:

the previously described Rydberg, covalent and charge transfer states. As the molecu-

lar excimer states probably primarily contain Rydberg and charge transfer states or

a mixture of both, the treatment of the covalent excimer type is omitted. The reader
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Abbildung 5.3: Energy level diagram of the lowest KrF dimer states without spin-orbit
coupling. Adapted from Ref. [68].

interested in covalent excimer states is referred to Ref.([65]).

Prominent examples of charge transfer excimers (also called ion pair excimers), are

rare gas-halides, such as KrF or XeF. Ignoring charge transfer mixing or van der Waals

interaction, one finds a purely repulsive ground state, due to the exchange repulsion of

the F valence electrons with the closed shell of the rare gas. However, if charge transfer

mixing is included, the repulsion turning point is shifted towards lower internuclear

separations to such an extent, that van der Waals interaction are no longer negligible.

Eventually, both contributions lead to a bonding ground state (2Σ+) in XeF with a

dissociation energy of 140meV. This configuration is considered to be the most sta-

ble charge transfer rare gas halide diatomic complex. In KrF, for instance, the charge

transfer contributions cannot overcome the exchange repulsion energy leading to a pu-

rely repulsive ground state.[68, 65]

In principal, the lowest excimer states are ion pair states, although one should always

keep in mind that potential Rydberg states exist. A simple rule whether the lowest ex-

cimer states are of ionic or Rydberg type is to compare the ionization potentials of the

participating elements. Regarding HeI, the lowest excited states are Rydberg states,
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since the ionization potential of I is significantly lower than the one of He. In XeF the

situation is vice versa, consequently the lowest states are ion pair states. Nevertheless,

this evaluation does not give any information, whether the lowest excited states are

bonding or not. In Fig. 5.3 the lowest excimer states (without spin-orbit coupling) of

KrF are given as an example. The energy difference of Rydberg and ion pair states in

the binding region is more than 3 eV, so that mixing of these states is weak.

One of the early observations of aromatic excimer formation was the concentration

dependent change of the Pyrene fluorescence in solution. With increasing concen-

tration the initially violet fluorescence decreased and a featureless blue fluorescence

emerged.[69] Later, excimer formation was proposed in several other planar aromatic

molecules, e.g. Anthracene and Naphtalene, trying to explain the observation of de-

layed fluorescence in the gas phase and in solution.[70, 71] Moreover, in Ref.[71] the

first consideration was uttered of a possible correlation between a singlet excited dimer

and two molecular triplet states, where the latter is populated diabatically by a collisi-

on of two molecules in the ground and excited singlet states. This process is nowadays

known as singlet fission.

Theoretical Treatment

The theoretical treatment of molecular excimers is still today a subject of scientific re-

search. One key ingredient in the aromatic stabilization is the closed-shell ground state

configuration.[64] Therefore, the starting point of the excimer formation is comparable

to the rare gas dimers. In aromatic molecules the highest valence electrons occupy de-

localized π-orbitals extending over the entire molecule. Accordingly, the anti-bonding

π∗-orbitals are the lowest excited states. As a result, one has to deal with two large

correlated electron systems interacting with each other.

In the following a brief introduction to an exemplary up-to-date theoretical treatment

of aromatic excimers is given. This can be read in more detail in Ref.[72], where it is

taken from.

Early ab-initio calculations dealing with aromatic excimers are based on configuration
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interaction singles and required empirical corrections only to get qualitive agreement

with experiment. Typically, lack of electron correlation treatment is the cause for insuf-

ficient results. Recent advances in theoretical methods, e.g. TD-DFT3 or MRPTs4, and

computational power tackled this issue and enabled quantitive accurate results of exci-

ted states in aromatic systems. The presented method MCQDPT5 is one of the MRPTs

known to be successful calculating excited states. As a starting point, the molecular

orbitals are separated into active and inactive orbitals. The inactive molecular orbitals

are always occupied for the valence states and always unoccupied for the conduction

states. Then the complete active space (CAS) is generated by distributing the active

electrons in all possible ways among the active molecular orbitals, while the others are

kept fixed. The many-body wavefunction is then optimized by employing the complete

active space self-consistent field (CASSCF) procedure. After optimization, the wave-

function serves as a reference in order to evaluate the dynamic electron correlation

energies by subsequent MCQDPT calculations.

In case of benzene, all bonding and anti-bonding π-orbitals can be treated as active,

while in other aromatic molecules already a truncation of the active space is necessa-

ry for reasons of insufficient computational capabilities. Thus, only the HOMO and

LUMO of the monomer are taken into account, as the related transition is an eligible

approximation for the single-electron excitation. The interaction of these orbitals form

the four active orbitals of the dimer:

(L + 1)D =
1

√

2(1 − SL
AB)

[(LA) − (LB)] , (5.1)

LD =
1

√

2(1 + SL
AB)

[(LA) + (LB)] , (5.2)

HD =
1

√

2(1 − SH
AB)

[(HA) − (HB)] , (5.3)

(H − 1)D =
1

√

2(1 + SH
AB)

[(HA) + (HB)] . (5.4)

3Time Dependent Density Functional Theory
4Multireference Perturbation Theory
5MultiConfiguration Quasi-Degenerate Perturbation Theory
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Abbildung 5.4: Two of the four excimer states constructed from the excited monomer
states. The dimer states are shown greyed. It should be kept in mind
that the sole dimer and monomer states are not equivalent, only the
shown linear combinations are. (a) Excimer state related to Frenkel
exciton excitation. (b) Excimer state related to charge transfer con-
tributions. Note that in the dimer presentation a separation of these
contributions is not possible.
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Where HA,B and LA,B are HOMO and LUMO of molecule A and B and SL,H
AB their over-

lap integrals. Now utilizing Slater-determinant notations, the single-electron excited

states can be written as follows:

|ΦHD;LD
〉 =

1√
2

∣
∣
∣(core)(H − 1)↑

D(H − 1)↓
D

{

H↑
DL↓

D + L↑
DH↓

D

}〉

(5.5)
∣
∣
∣ΦHD;(L+1)

D

〉

=
1√
2

∣
∣
∣(core)(H − 1)↑

D(H − 1)↓
D

{

H↑
D(L + 1)↓

D + (L + 1)↑
DH↓

D

}〉

(5.6)
∣
∣
∣Φ(H−1)

D
;LD

〉

=
1√
2

∣
∣
∣(core)H↑

DH↓
D

{

(H − 1)↑
DL↓

D + L↑
D(H − 1)↓

D

}〉

(5.7)
∣
∣
∣Φ(H−1)

D
;(L+1)

D

〉

=
1√
2

∣
∣
∣(core)H↑

DH↓
D

{

(H − 1)↑
D(L + 1)↓

D + (L + 1)↑
D(H − 1)↓

D

}〉

(5.8)

The (core) functions are the closed shell orbitals. Due to the linearity of Eqs. 5.1-5.4,

the monomer orbitals can be reversely expressed as linear combinations of the dimer

orbitals, e.g.:

HA =
1√
2

{√

1 + SH
AB (H − 1)D +

√

1 − SH
ABHD

}

. (5.9)

Therefore, single-electron excitations can also be expressed in terms of the monomer

orbitals, e.g.:

|A∗B〉 =
1√
2

∣
∣
∣(core)H↑

BH↓
B

{

H↑
AL↓

A + L↑
AH↓

A

}〉

, (5.10)

∣
∣
∣A−B+

〉

=
1√
2

∣
∣
∣(core)H↑

AH↓
A

{

H↑
BL↓

A + L↑
AH↓

B

}〉

. (5.11)

These are again the known description of the Frenkel- and charge transfer excitons

in a dimer from the previous chapter. Since, in a dimer they are indistinguishable

excitations, the spatial- and spin-symmetry adapted excited states are constructed
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from the determinants in Eqs. 5.5-5.5 as follows:

|Ψ1〉 =
1√
2

(

|ΦHD;LD
〉 +

∣
∣
∣Φ(H−1)

D
;(L+1)

D

〉)

=
1√
2

(|A∗B〉 − |AB∗〉) , (5.12)

|Ψ2〉 =
1√
2

(∣
∣
∣ΦHD;(L+1)D

〉

+
∣
∣
∣Φ(H−1)

D
;(L)

D

〉)

=
1√
2

(|A∗B〉 + |AB∗〉) , (5.13)

|Ψ3〉 =
1√
2

(∣
∣
∣ΦHD;(L+1)D

〉

−
∣
∣
∣Φ(H−1)

D
;(L)

D

〉)

=
1√
2

(∣
∣
∣A−B+

〉

+
∣
∣
∣A+B−

〉)

, (5.14)

|Ψ4〉 =
1√
2

(

|ΦHD;LD
〉 −

∣
∣
∣Φ(H−1)

D
;(L+1)

D

〉)

=
1√
2

(∣
∣
∣A−B+

〉

−
∣
∣
∣A+B−

〉)

. (5.15)

Hence, within this approximation, four excimer eigenstates exist, with Frenkel (Eqs. 5.12,

5.13) and charge transfer contributions (Eqs. 5.14,5.15). In Fig. 5.4 two of the four ex-

cimer states are shown with the corresponding electronic populations. In comparison

to the dipole coupled dimer (Ch. 4), here, an additional stabilization is evoked by char-

ge transfer. This happens in two ways; firstly, the intermolecular Coulomb interaction

induces an attraction between the electron on molecule A and the hole on molecule

B, i.e. a weakly bound charge transfer exciton emerges, secondly, coupling of charge

transfer and Frenkel exciton contributions occur, reducing the overall potential.[15] The

degeneracies of Eqs. 5.12,5.13 and Eqs. 5.14,5.15 are lifted by dipole and charge transfer

interaction, respectively. A similar resonance stabilization is found for the ground-state

of benzene, where not only all possible double bonds need to be considered, but also

the Dewar- and ionic isomers.[64]

The four states are essential to describe excimer bonding in organic dimers, yet, trea-

ting the other monomer orbitals merely as a constant background obviously leads to

lower calculation accuracy. The monomer ground states are determined by common

DFT calculations, eventually building the dimer states. In the following, the dimer

ground and excited states are optimized by CASSCF and simultaneously perturbed

using MCQDPT. During these procedures the spatial conformation of monomers and

dimer are not changed, leaving them as phenomenological presets. With this method,

the calculated energy of excimer photoluminescence for Perylene deviated by 13% from

experiments.[72]

As expected, analysis of the bonding excimer state reveals significant admixture of

charge transfer contributions. In Fig. 5.5 the weights of the charge transfer and Frenkel
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Abbildung 5.5: Weights of the
Frenkel- and charge
transfer exciton
wavefunctions as a
function of intermo-
lecular separation.
Adapted from
Ref.[72].

exciton contributions are shown as a function of intermolecular separation applying the

following approximation (from Eqs. 5.12,5.15) for the bonding dimer wavefunction:

cα |ΦHD;LD
〉 + cβ

∣
∣
∣Φ(H−1)D;(L+1)D

〉

=
(

cα + cβ

2

)

(|A∗B〉 − |AB∗〉)

+
(

cα − cβ

2

)

(
∣
∣
∣A−B+

〉

−
∣
∣
∣A+B−

〉

). (5.16)

In the binding region, where the nature of the excimer is predominantly governed by

the lowest dimer state |ΦHD;LD
〉, strong mixing of the excitonic wavefunctions occur

with nearly equal weights. This emphasizes the importance of the charge transfer con-

tributions to the excimer formation.

Excimer formation in α-perylene crystals

Moving from the isolated dimer picture to the crystal, α-Perylene is a prominent system

to study excimer dynamics. The α-Perylene crystal exhibits a herringbone structure,

where the primitive cell is composed of four molecules arranged in two pairs. The

”
paired“ molecules face each other with their planar sides, close to an eclipsing confor-

mation. It is within these pairs, where the excimer formation takes place.

The population of the excimer state after excitation happens over a direct and an

indirect pathway. The direct population occurs during the first one hundred femto-

seconds, shortly after internal conversion steps, while the indirect population follows
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Abbildung 5.6: (a) Temperature dependent photoluminescence of α-perylene. Obser-
vation of the transition from E- to Y-state. Adapted from Ref. [73]. (b)
Proposed α-perylene excimer relaxation scheme. (c) Change of photolu-
minescence with PTCDA coverage on mica substrate. Transition from
a monomeric, vibronic progression dominated photoluminescence into
a bulk, excimer photoluminescence. Adapted from Ref. [74].

with a time constant of 2 ps.[75] The decay of the excimer is primarily radiative with

a decay constant of around 100 ns.[76, 73] Temperature dependent photoluminescence

studies have shown an odd behavior: with decreasing temperature the featureless exci-

mer fluorescence vanishes and a structured blue-shifted fluorescence emerges, which is

sometimes called the Y-state. At liquid Helium temperatures it is assumed, that after

excitation and internal conversion the dimer relaxes into the intermediate Y-state, not

capable of overcoming the energy barrier to the fully relaxed E-state (see Fig. 5.6 (b)).

Although being assigned to some sort of excimeric state[77], the origin of the Y-state

has never been satisfactorily clarified and even a monomeric origin is not completely ru-

led out.[73] Another material system, where the excimer formation has been extensively

studied, is PTCDA6, a Perylene derivative. Here, a detailed analysis, where step-by-

step the PTCDA coverage on a mica subtsrate is increased, impressively showed the

transition from the monomer to the excimer photoluminescence (Fig. 5.6 (c)).[74]

6Perylene-3,4,9,10-tetracarboxylic dianhydride
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Abbildung 5.7: Decay mechanisms of PEN crystals. Singlet fission converts the majori-
ty of neutral carriers from the singlet to the triplet system. Free carrier
creation (Polaron creation) occurs at an electron-acceptor interface,
e.g., C60.

5.1.2 Singlet Exciton Fission

Singlet fission is considered as a competing relaxation channel to excimer formation

and consequently occurs right after optical excitation. It involves the conversion of one

singlet exciton into two triplet excitons (Fig. 5.8). Due to the apparent carrier multi-

plication, singlet fission is regarded as a process with the potential to increase light

conversion efficiencies of solar cells significantly.

In general, an electronic excitation induced by an absorbed photon in a molecule re-

sults in an excited singlet state. However, this is not necessarily the lowest electronic

excitation. In polyacenes the excited triplet states are considerably lower in energy (see
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Ch. 2, Sec. 2.2.2, p.12), e.g., in PEN the first excited triplet state T1 is estimated to be

at 0.85±0.03 eV in comparison to S1 at 1.8±0.1 eV.[78, 60, 79, 61] Although, as stated

before, the energetic position of T1 in a solid is still under debate (Ch. 2, Sec. 2.2.2,

p.12), it is accepted that in polyacenes the T1 state lies below the S1.

Due to the singlet ground state in combination with dipole selection rules, typically

the optical transitions in polyacenes are singlet excitations. So after optical excitation

the exciton is in the singlet state, where subsequently it experiences various relaxation

and possibly scattering processes in order to return to its ground state. In Sec. 2.2.2 it

has been stated that the inter-system crossing from pure singlet to pure triplet systems

is forbidden and for organic systems composed of elements with low atomic numbers

in a first approximation this holds true. Still, normally the inter-system crossing rate

is finite but small compared to other relaxation processes, e.g., solid Naphtalene: inter-

system-crossing rate 1.6 · 106 s−1; luminescence-decay rate 1.2 · 107 s−1.[80, 81] Anyhow,

as a consequence, in Naphtalene crystals the quantum efficiency at the S1 → S0 tran-

sition is just 0.1 ± 0.02, in contrast to Anthracene crystals, where quantum efficiencies

of even 0.80 ± 0.05 have been observed.[82, 83]

On the other hand, in Tetracene crystals only weak photoluminescence was detected

with an estimated quantum efficiency of merely 0.05 ± 0.005.[11] Despite the fact, that

the determined quantum efficiencies should be treated with caution and their compa-

rability is not fully given (In the introduction of Ref. [83] it says:
”
Literaturwerte (für

die Quantenausbeute von Naphtalin) sind wenig einheitlich: Die Messwerte bei Raum-

temperatur (293 K) liegen zwischen 0.7 und 0.18,...“7.), the order of magnitude lower

photoluminescence is an indicator for efficient inter-system crossing. Strikingly, the

evaluated quantum efficiency of Tetracene in solution is 0.21 at the singlet transition,

suggesting a relaxation process in the crystal involving more than one molecule.[84]8

Temperature dependent photoluminescence measurements on Tetracene crystals later

revealed an increase of the emission with decreasing temperature by a factor of 100.[86]

Shortly afterwards, this increase was interpreted as a quench of the singlet fission pro-

7engl. (loose translation): The quantum efficiency of Naphtalene results in literature show large
discrepancies: the measured values at room temperature vary between 0.18 and 0.7 at room tem-
perature.

8This value has been taken from Ref. [85]. Ref. [84] was not accessible.
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Abbildung 5.8: Schematic representation of the singlet exciton fission process. The
singlet exciton exhibits partial charge transfer contributions. Adapted
from Ref. [87].

cess, which is suggested to be the major decay mechanism of the singlet population

at room temperature.[10] This hypothesis was verified by measuring the photolumine-

scence in an externally applied magnetic field.[85] In that experiment, it was shown,

that the emission efficiency increased with increasing magnetic field strength and chan-

ged with changing field orientation in respect to the crystal planes.

The basic idea of the underlying mechanisms responsible for singlet fission hasn’t chan-

ged much, since it’s postulation in the 60ies. Singlet fission is regarded as the reverse

process of triplet annihilation, which in turn is responsible for delayed fluorescence. It

involves at least two monomers; the excited singlet exciton relaxes to the lower lying

triplet state, while simultaneously exciting a second triplet exciton in the adjacent mo-

lecule (see Fig. 5.8). Apparently, the singlet energy needs to be at least twice the triplet

energy so that singlet fission happens exothermic:

0 ≤ E(S1) − 2 × E(T1). (5.17)

This requirement is not fulfilled in Naphtalene (≈ -1.3 eV) and Anthracene (≈ -0.55 eV)

and not even in Tetracene (≈ -0.21 eV), where singlet fission was initially proposed.[88]
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However, PEN, the next polyacene in the list, fulfills the requirement (≈ 0.1 eV) and

serves supposedly as an ideal model system to study this process. The simplified kinetic

scheme of the conversion is traditionally written as follows:[9]

S0 + S1

k−2−−⇀↽−−
k2

1(TT )
k−1−−⇀↽−−
k1

T1 + T1 (5.18)

This scheme includes the conversion of the singlet exciton S1 to the so called
”
correlated

triplet pair“ 1(TT ) and the following dissociation into two separate triplet excitons.

Therein, the three steps are characterized by the rates k−2;2;1;−1, treating back and

forth conversions. Furthermore, a branching ratio can be defined:

ǫ =
k2

k−1

, (5.19)

indicating the conversion efficiency of the singlet fission process.

The spin multiplicity in the correlated triplet pair is denoted as a singlet state, due to

the simple picture of two triplet states, whose spin functions couple into a pure singlet.

A more appropriate description of this singlet state is the coherent superposition of all

possible nine triplet sublevels created by two triplet excitons, which themselves are no

longer pure spin eigenstates.[9] Correspondingly, 1(TT ) is also referred to as a multi-

exciton state.[89] The transition step between both singlet states in Eq. 5.18 should

not be regarded as an incoherent scattering channel. Since both states can be observed

simultaneously in 2PPE experiments right after optical excitation, they are necessarily

coupled coherently (see Fig. 5.9).[89] Within this transition state, only the electrostatic

Hamiltonian (Hel) is allowed to act. In the second step, the spin Hamiltonian (Hspin)

introduces decoherence and exciton diffusion in order to create two separate triplet

pairs.[9] Thus, the interaction Hamiltonian is divided into two parts:

H = Hel + Hspin. (5.20)

It is obvious, that a separated treatment of the electrostatic and spin interactions

cannot reflect the complete nature of the dynamics, however, to some extent they are

able to identify pathways for this process.
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Abbildung 5.9: 2PPE measurement of
10 monolayers PEN.
The excitation energy
of the pump pulse was
tuned to 2.15 eV and
the ionization energy
of the probe pulse to
4.65 eV. Singlet (S1)
and correlated Triplet
(1TT ) signals occur at
the same time. Adapted
from Ref. [89].

Typically the rate constant k−2 is treated in terms of an Arrhenius equation:[9]

k−2 = A[S1S0 → 1(TT )]e
− ∆E

kBT , (5.21)

with the frequency factor A[S1S0 → 1(TT )] for the conversion of a singlet exciton

into a triplet pair, the activation energy ∆E and the Boltzmann constant kB. The

determination of A[S1S0 → 1(TT )] for a simple dimer model will be given below. The

activation energy ∆E for exoergic singlet fission is zero, unlike for endoergic singlet

fission, where it is at least equal to the energy difference between S1S0 and 1(TT ). In

fact, the magnitude of ∆E is strongly dependent on possible intra- or inter-molecular

structural changes, which might be necessary for singlet fission to occur. Therefore, a

general assumption for all systems experiencing singlet fission is impossible. As far as

Eq. 5.17 is concerned, typically, the energies of states 1(TT ) and T1 +T1 are assumed to

be equal; a reasonable assumption for weakly interacting molecules and questionable

for strong interactions.[9]

The starting point of a simple theoretical treatment is again a system of two weakly

interacting molecules. The electrostatic Hamiltonian (Hel) of the total system is then

again approximated as the sum of the individual molecular Hamiltonians (Hel;A,B)

and the interaction Hamiltonian (Hint). The participating orbitals in the process are

reduced to the HOMO (HA,B) and the LUMO (LA,B) of the monomers, similar to the

treatment of the excimer, yet, without the consideration of the core-levels. Hence, the
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essential states for the description of singlet fission are given as follows:

∣
∣
∣SA

1 SB
0

〉

= |A∗B〉 ≈
∣
∣
∣H↑

BH↓
B

{

H↑
AL↓

A + H↓
AL↑

A

}〉

, (5.22)

∣
∣
∣
1AACB

〉

=
∣
∣
∣A−B+

〉

≈
∣
∣
∣H↑

AH↓
A

{

H↑
BL↓

A + H↓
BL↑

A

}〉

, (5.23)

∣
∣
∣
1(TT )

〉

= |A∗B∗〉 ≈
∣
∣
∣

{(

H↑
AL↑

A

)

+
(

H↓
AL↓

A

)

+
[(

H↑
AL↓

A

)

+
(

H↓
AL↑

A

)]}〉

×
∣
∣
∣

{(

H↑
BL↑

B

)

+
(

H↓
BL↓

B

)

+
[(

H↑
BL↓

B

)

+
(

H↓
BL↑

B

)]}〉

. (5.24)

The eigenenergies relative to the ground state, including interaction corrections of

Hint
9, are denoted as E(S1S0), E(1(TT )) and E(1CA), respectively. The resulting

truncated Hamiltonian matrix of the system is:[9]

Hel =




















E(1CA) 〈1CA|Hel|S1S0〉 〈1CA|Hel|
1(T T )〉 〈1CA|Hel|S0S1〉 〈1CA|Hel|

1AC〉 〈1CA|Hel|S0S0〉

〈S1S0|Hel|
1CA〉 E(S1S0) 〈S1S0|Hel|

1(T T )〉 〈S1S0|Hel|S0S1〉 〈S1S0|Hel|
1AC〉 〈S1S0|Hel|S0S0〉

〈1(T T )|Hel|
1CA〉 〈1(T T )|Hel|S1S0〉 E(1(TT)) 〈1(T T )|Hel|S0S1〉 〈1(T T )|Hel|

1AC〉 〈1(T T )|Hel|S0S0〉

〈S0S1|Hel|
1CA〉 〈S0S1|Hel|S1S0〉 〈S0S1|Hel|

1(T T )〉 E(S0S1) 〈S0S1|Hel|
1AC〉 〈S0S1|Hel|S0S0〉

〈1AC|Hel|
1CA〉 〈1AC|Hel|S1S0〉 〈1AC|Hel|

1(T T )〉 〈1AC|Hel|S0S1〉 E(1AC) 〈1AC|Hel|S0S0〉

〈S0S0|Hel|
1CA〉 〈S0S0|Hel|S1S0〉 〈S0S0|Hel|

1(T T )〉 〈S0S0|Hel|S0S1〉 〈S0S0|Hel|
1AC〉 0




















The individual matrix elements can be found in more detail in Ref. [9]. The off-diagonal

elements describe the coupling between the singlet states. In the case of localized states

and small interaction, the time development of the system can be described by first-

order perturbation theory. Accordingly, the transition rate of the initially populated

state S1 + S0 to the quasi-continuum of vibrational states of 1(TT ) can be determined

9Corrections are given by the diagonal elements of Hint
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by applying Fermi’s golden rule:[9]

A
[

S1S0 → 1(TT )
]

=
(

2π

~

) ∣
∣
∣〈 1(TT )|Hel |S1S0〉

∣
∣
∣

2
ρ

{

E(1(TT ))
}

, (5.25)

where ρ is the Franck-Condon weighted density of states at the energy E(1(TT )). This

would be the route for the direct singlet fission process, with the responsible matrix

elements marked in red. It has been shown that these transition rates are very sensitive

to the orientation of the two molecules. Actually, perfectly stacked molecules are not

necessarily the most efficient configuration for the direct transition, on the contrary,

they have vanishing matrix elements. For Isobenzofuran, for instance, a slightly parallel

shifted stacking order seems to be the optimal case.[9]

The indirect pathway is marked in blue and cyan; a localized Frenkel exciton couples

to the charge transfer state (cyan matrix elements), which consecutively couples to the

triplet pair state (blue matrix elements). As a result second order perturbation theory

has to be applied in order to deal with this two step singlet fission mechanism:

A
[

S1S0 → 1CA → 1(TT )
]

=
(

2π

~

)

|〈 1(TT )|Hel |S1S0〉

− 〈 1(TT )|Hel| 1CA〉〈 1CA + 1AC)|Hel| S1S0〉
∆ECT

|2ρ
{

E(1(TT ))
}

, (5.26)

where ∆ECT is the difference between the energy of the CT states and the energy of the

S1S0 and 1(TT ) states.[90] For slip-stacked ethylene molecules it has been shown that

Eq. 5.26 is dominated by the indirect terms. So, neglecting the direct term and addi-

tionally applying the zero differential overlap approximation10 in combination with an

expansion of the molecular to atomic orbitals, within the tight-binding approximation,

Eq. 5.26 is simplified and can now be used as a quick tool to estimate the singlet fissi-

on rate for various molecules and packing motifs.[90] Figure 5.10 shows the simplified

singlet fission rate equation, where the sums are performed over pairs of interacting

neighboring atomic orbitals (µν) with their corresponding amplitudes cµl;h;νl;h

11 and

their resonance integrals βµν .

10Here, completely neglecting two-electron repulsion integrals.
11l: LUMO; h: HOMO
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Abbildung 5.10: Simplified singlet exciton fission rate calculation for the indirect path.
Graphical results of the amplitude products for the HOMO and LU-
MO (taken from Ref. [42]) of PFP are shown. Purple spaces indicate
positive results, while yellow spaces indicate negative results.

Additionally, in Fig. 5.10 a quick analysis is performed for a pair of PFP molecules.

However, instead of atomic orbitals DFT calculated molecular orbitals from Ref. [42]

are used, slightly increasing accuracy. Two situations are considered: eclipse stacking,

where the molecular orbitals of the π-system overlap perfectly and still maintain an

inversion symmetry, and slipped stacking, where the molecules experience a slip along

their short axis and the inversion symmetry of the pair is broken. The graphical results

of the convolution of the wavefunctions’ amplitudes are given as purple (positive sign)

and yellow (negative signs) spaces below the orbitals of the DFT calculation. Each

space represents the performed product marked in the singlet fission rate equation.

Considering the eclipse stacking, we see that the analysis results in equal amounts

of positive and negative amplitudes which cancel after summation. Consequently, the

left-hand side of the product is zero, turning the whole expression to zero and leading

to a vanishing singlet fission rate.

In the slip-stacked arrangement the first term is dominated by negative amplitudes, so
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that summation yields an overall negative result, in contrast to the eclipse-stacking.

In the second term in Fig. 5.10, the first product in the summation yields an overall

positive amplitude, while the second turns out to be negative. However, since the se-

cond product is subtracted from the first, it further increases the rate, making the slip

stacking an ideal packing motif for singlet fission.

Now, if the singlet excitation, i.e.
∣
∣
∣SA

1 SB
0

〉

;
∣
∣
∣
1AACB

〉

and their counterparts are delo-

calized over both molecules, e.g. in PEN or PFP, then the superposition of these states

have to be considered:

∣
∣
∣SA

1 SB
0

〉

±
∣
∣
∣SA

0 SB
1

〉

(5.27)
∣
∣
∣
1AACB

〉

±
∣
∣
∣
1CAAB

〉

(5.28)

Furthermore, these states mix significantly, if they are close in energy, resulting in non-

vanishing cyan matrix elements.[9] As a consequence, the strict distinction between a

direct and an indirect path in singlet fission can no longer be made.

Having established the way, how a singlet excitation can couple to the correlated triplet

pair, the essential second step in Eq. 5.18, for a complete singlet fission process, is the

decoupling of the triplet pair into two uncorrelated triplet excitons and eventually,

their diffusion onto different crystal sites. In order to speak of two independent triplet

excitons, the correlated triplet pair needs to lose its phase relation, i.e., they need to

dephase. As said before, the 1(TT ) state is composed of nine sublevels, which are all

eigenfunctions of the total system Hamiltonian Hel + Hspin (illustrated in Fig. 5.11).

In more detail, these sublevels are usually mixtures of singlet 1(TT ), triplet 3(TT ) and

quintet 5(TT ) eigenstates, e.g., for the kth function:

Ψk = φSCk
S |S〉

︸ ︷︷ ︸

1(T T )

+ φT

4∑

l=2

Ck,l
T

∣
∣
∣T l

〉

︸ ︷︷ ︸

3(T T )

+ φQ

9∑

l=5

Ck,l
Q

∣
∣
∣Ql

〉

︸ ︷︷ ︸

5(T T )

, (5.29)

where φS;T ;Q are the three spatial wavefunctions and
∣
∣
∣S; T L; QL

〉

are the spin wavefunc-

tions. The amount of mixture present, depends on the off-diagonal elements of the spin

Hamiltonian Hspin matrix in combination with the energy splitting of the three spin
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Abbildung 5.11: Simple representation of the nine sublevels resulting from the super-
position of two triplet excitons in the correlated triplet pair. The ex-
citons reside on translational non-equivalent lattice sites. In the case
of symmetric lattice sites, the states marked in dotted boxes are in-
distinguishable, eventually resulting in six sublevels.

states E(1(TT );3 (TT );5 (TT )). The higher the amount of mixture, the higher the pro-

bability of the correlated excitons to lose their phase relation and, consequently, to act

as independent triplet excitons. The energy splitting of the spin states is predominantly

determined by Hel, since the spin-spin dipole interaction between electrons on adjacent

molecules is generally considered small. However, the exact energy alignment cannot

be estimated merely by looking at the crystalline structure, but has to be calculated

explicitly. As again, potential admixture of charge transfer contributions can severely

alter the eigenenergies of these states. Anyhow, the subsystem of the nine correlated

triplet pair states in Eq. 5.29 is not degenerate.

Moreover, it is assumed, that the amount of 1(TT ) back-conversion into singlet excitons

is governed by the number of 1(TT ) sublevels, carrying significant singlet wavefuncti-

on admixture. Accordingly, the back-conversion and, subsequently, the radiative decay

increases with increasing amount of Ψk, where Ck
S is different from zero.[91] In the

case of homofission12 combined with symmetry equivalent chromophores, only three

correlated triplet pair states carry singlet spin functions.[91] Consequently, only these

three states take part at the singlet fission and fusion process. This selection rule is

12The participating chromophores in the fission process are of equal kind.
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Abbildung 5.12: Decay mechanisms of the Anthracene crystal. Triplet annihilation
leads to delayed fluoroscence.

lifted, as soon as either an external magnetic field is applied, or the correlated triplet

pair is delocalized to some extent over chromophores with unequal symmetry.

5.1.3 Triplet Annihilation

In the 60ies, magnetic field dependent measurements of the luminescence of Anthra-

cene and Tetracene eventually lead to the formulation of the singlet fission and triplet

fusion processes. Triplet annihilation or fusion is the reverse process of singlet fission.

Two triplet excitons hop to adjacent chromophores and scatter into a correlated tri-

plet pair state. The conversion into a singlet exciton is then governed by the amount

of sublevels with singlet spin function contributions. Respectively, the annihilation is

observed as delayed photoluminescence out of the singlet state. This is observed, for

instance, in Anthracene single crystals after directly exciting carriers into the triplet

state (Fig. 5.13 (a)).[92]

In the case of an external magnetic field, when the Zeeman splitting exceeds the zero

field splitting, the spin states are quantized along the magnetic field.[91] In the simplest
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Abbildung 5.13: (a) Delayed singlet fluorescence (3.42 eV) from an Anthracene single
crystal after laser excitation into the triplet state (1.79 eV). Adapted
from Ref. [92]. (b) Top: Energy calculation of correlated triplet pair
states with partial singlet spin function. Bottom: Singlet fluorescence
efficiency η(H) as a function of orientation of the magnetic field vector.
Adapted from Ref. [85].

case, the correlated triplet again has three states with singlet contributions. However,

two of them are degenerate and since some weak spin-spin coupling needs to be present

for the annihilation process, their symmetric and antisymmetric combinations are the

eigenstates of the system. One of the two new eigenstates is spatially purely antisym-

metric, hence, a pure triplet state. This reduces the amount of eigenstates with singlet

character. Consequently, the effective triplet annihilation rate is reduced with increasing

magnetic field strength.[93] It is observed as reduced delayed fluorescence in Anthrace-

ne or as reduced singlet fission in Tetracene, shown in Fig. 5.13 (b).[85] Changing the

magnetic field vector changes the eigenenergies of the two partially singlet states. At

the point, where they are degenerate the fission/fusion rate is at its minimum which

is observed as peaks in the singlet fluorescence efficiency as a function of the magnetic

field vector (Fig. 5.13 (b)). In general, the triplet annihilation does not necessarily end

up in singlet excitons, but also in hot triplet excitons or quintet excitons, although the

latter is typically considered energetically unfavorable and, therefore, negligible. The
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rate of the triplet channel, i.e., the channel where the correlated triplet pair fuses into

a hot triplet exciton, is independent of the magnetic field, as, in a first approximati-

on, these purely antisymmetric wavefunctions do not mix with the singlet or quintet

wavefunctions.[94] On the other hand, this leads to a purely triplet fusion channel,

which also acts as a non-radiative relaxation channel. In principle, the conversion of a

hot triplet exciton into a singlet exciton is possible, however, in many polyacenes this

rate is six orders of magnitude lower than the internal conversion within the triplet

system.[95] Consequently, the energy of one triplet exciton is dissipated as heat to the

lattice.

5.1.4 Polarons

Until now, only neutral excitations were treated. However, in order to get a photocur-

rent, charge separation of electron and hole, i.e., exciton ionization has to take place.

Since the results presented in this thesis are all based on neutral excitations, just a

rough description is given for the sake of completeness.

In organic heterojunctions, e.g., PEN/C60, charge separation occurs at the donor-

acceptor interfaces. Due to the large exciton binding energies in organic crystals, the

acceptor levels typically have to overcome several hundreds of meV. After separation,

the carriers act as single quasi-particles in the crystal lattice. As they are no longer

neutral, they induce attractive (repulsive) forces towards surrounding molecules which

lead to a local distortion of the crystal lattice. The distortion can be considered as a

phonon cloud composed of a superposition of longitudinal optical phonons surrounding

the charge carrier.[17] This entity is called a polaron with its own excitation spectrum.

The formation time of polarons is directly coupled to the diffusion of the excited ex-

citons which first have to reach an appropriate interface. In PEN/C60 this happened

after a few ≈2.5 ns.[96]

Charge separation not only occurs on interfaces, but can also occur at lattice defects

or at surface states.

85



Exciton Dynamics in Perfluoropentacene

2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

 PFP/DCB solution

 E||c (PFP/NaF)

 E||b (PFP/NaF)

 

 

A
b
s
o

rp
ti
o

n
 (

1
-T

)

Energy (eV)

1.6 1.7 1.8 1.9 2.0
0

500

1000

1500

2000

 

 

a
rb

. 
u
n

it
s
.

Energy (eV)

 Transmission E||b-axis

 Transmission E||c-axis

a) b) 

Abbildung 5.14: (a) Excitation energy of the pump pulse with the linear absorption of
the sample. The excitation corresponds to the HOMO-LUMO transi-
tion of PFP in Dichlorbenzene solution. (b) Alignment of the probe
polarization to a crystalline axes controlled by the transmission of the
sample. The lowest resonance shifts in energy when changing from the
þc- to the þb-axis.

5.2 Polarization-Resolved Nonlinear Absorption of

Perfluoropentacene

In this section the ultrafast carrier dynamics of PFP after optical excitation are ana-

lyzed with polarization resolved pump-probe spectroscopy. The experiments are per-

formed on the same single crystalline samples as in Ch. 4 allowing for the correlation

of carrier dynamics and crystalline directions. It shows that the dynamics are highly

anisotropic, thus, strongly correlated to the packing nature of the molecules along the

different crystalline axes. In the slipped stack direction of the crystal, i.e., the þb-axis,

the excited excitons are significantly delocalized corroborating the strong coupling bet-

ween molecules along this direction, as suggested in the previous Ch. 4. Furthermore,

excimer as well as triplet pair formation along the b-axis are identified and their decay

mechanisms are described using a rate-equation model. The samples are provided by

T. Breuer and G. Witte from the Philipps-University Marburg.
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5.2.1 Experimental Details

The analyzed sample #0058 is a PFP thin film epitaxially grown on NaF(100) with

a nominal film thickness of 150 nm. Here, a standing conformation of the molecules is

found, where the þb- and þc-axis of the crystal are optically addressable in transmission

geometry. The sample #0051 is a PFP thin film epitaxially grown on KCl(100) with

the same nominal film thickness of 150 nm. However, the molecules are found in lying

conformation, thus, the crystalline þa- and þb-axis are optically addressable in transmis-

sion geometry.

The non-linear absorption experiments are performed with the pump-probe setup

described in Ch. 3. The excitation energy of the pump pulse is set to 1.95 eV (see

Fig. 5.14 (a)), if not stated otherwise. It corresponds to the HOMO-LUMO transition

of PFP soluted in Dichlorbenzene.[43]

The pump and probe polarizations are adjusted with half-wave plates before the sam-

ple. Before the experiment, the probe pulse polarization is aligned to a crystalline axis

with the help of the sample’s transmission spectrum. Here, the previously discussed

Davydov-splitting, i.e., the energy shift of the lowest resonance clearly identifies the

crystalline axis (see Fig. 5.14 (b)). Accordingly, the maximum blue shift in the transmis-

sion spectrum identifies the þb-axis’ of the crystal. Moreover, the transmission spectrum

is used to find single crystalline domains by comparing amount of shift, which is maxi-

mized in a single crystalline domain, as well as linewidth of the fundamental transition

for several sample positions.

The orientation of the probe pulse polarization allows for the correlation of structural

properties and electronic excitation. Its polarization is thus set parallel either to the
þb- or the þc-axis for the samples grown on NaF and along the þa- or the þb-axis for the

samples grown on KCl.

5.2.2 Non-linear absorption of PFP: the c- and b-axis

We start with the sample PFP/Naf(100) where the þc- and þb-axis are optically ad-

dressable by transmission spectroscopy in normal incidence. The differential absorpti-
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Abbildung 5.15: (a) 2D false-color plot of the differential absorption (∆αL) along the
þb-axis. (b) 2D false-color plot of the ∆αL along the þc-axis.
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Abbildung 5.16: (a) ∆αL spectrum of theþb-axis after 300 fs. (b) ∆αL spectrum of the þc-

axis after 300 fs. (c) ∆αL spectrum of the þb-axis after 1 ps. Solid black

line: linear absorption of the þb-axis for reference. (d) ∆αL spectrum
of the þc-axis after 1 ps. Solid black line: linear absorption of the þc-axis
for reference.
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on (∆αL) is shown as a function of energy and time-delay in a 2D false-color plot in

Figs. 5.15 (a,b) along both crystal axes. Clearly, we observe significant differences in the

non-linear response. The most pronounced anisotropy is the strong broadband indu-

ced absorption parallel to the þb-axis below the fundamental transition. This feature is

absent along the þc-axis; cf. Figs. 5.16 (c,d), where the ∆αL-spectra 1ps after excitation

along the þb- and þc-axis are given.

The induced absorption is a consequence of emerging new absorption channels, due

to excited carriers. Evidently, the dipole moment of the new absorption channels is

oriented along the þb-axis. Furthermore, the induced absorption is a clear crystalline

signature, since the two molecules in the unit cell exhibit a nearly rectangular confor-

mation, and accordingly, should show practically a degenerate response, if they acted

as isolated monomers. As this is not the case, the excitations have to be virtually ex-

clusively delocalized along the þb-axis.

As mentioned before, along the þb-axis the molecules are stacked parallel face-to-face in

slightly slipped fashion. This slipped stacking already lead to the observed H-aggregate

in linear absorption in Ch. 4. Thus, the molecular coupling is not only responsible for

constructive interference of the transition dipoles, but also for the delocalization of the

excited singlet excitons.

In Figs. 5.16 (a,b) the ∆αL-spectra are shown for a time-delay of 300 fs. At this time de-

lay the bleaching, i.e., negative ∆αL-signal, is already present, whereas the broadband

induced absorption is not. In general, bleaching of the fundamental transition indica-

tes, that some of the original, optically allowed transitions are blocked. This means,

that either the state is already occupied by a fermion, i.e., Pauli-blocking, or that the

probed system no longer resides in the ground state. Accordingly, after 300 fs excited

carriers are present in the system. A closer look at the spectrum Fig. 5.16 (a) reveals,

that the bleaching is accompanied by a narrow induced absorption resonance at 1.53 eV

(FWHM≈12 meV). Hence, before the broadband induced absorption a discrete indu-

ced absorption is present. Similar to the broadband induced absorption, this feature is

only observed along the þb-axis (cf. Figs. 5.16 (a,b)). Furthermore, we observe an ener-

getic shift of the bleaching with delay time by comparing the spectra at τDelay=300 fs

(Figs. 5.16 (a,b)) with the spectra at τDelay=1 ps (Figs. 5.16 (c,d)).
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Abbildung 5.17: (a) 2D false-color plot of the ∆αL along the þb-axis. Transients are
extracted from the marked regions, which are spectrally integrated.
(b) 2D false-color plot of the ∆αL along the þc-axis. Transients are
extracted from the marked regions, which are spectrally integrated.
(c) Transients from the marked regions in (a). (d) Transients from the
marked regions in (b).
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Abbildung 5.18: (a) Short term comparison of the induced absorption transient along
the þc-axis at 1.9 eV with the evaluated transient of the narrowband
induced absorption along the þb-axis at 1.54 eV. (b) same as (a) with
long term evolution.

Transients from the prominent features are plotted in Figs. 5.17 (c,d), in order to deter-

mine their rise times. The transients are extracted by spectrally integrating the regions,

which are marked by the boxes in Figs. 5.17 (a,b).

First, we focus on the þb-axis’ transients shown in Fig. 5.17 (c). As already expected

from the ∆αL-spectra, the onset of the broadband induced absorption is delayed by

approximately 120 fs in respect to the bleaching and the discrete induced absorption.

Interestingly, the broadband induced absorption starts, when the bleaching peaks. Sub-

sequently, the bleaching experiences a dip after 650 fs, just 150 fs before the broadband

induced absorption reaches its maximum. However, the bleaching nearly fully recovers

afterwards. The discrete induced absorption at 1.53 eV starts with the bleaching, but

it shows a longer rise time than both, the bleaching and the broadband induced ab-

sorption. This is a result of the overlaid broadband induced absorption signal, which

extends the rise time artificially. In order to extract the real dynamics of the discrete

induced absorption, the scaled broadband induced absorption transient is subtracted.

The result is plotted as open circles in Fig. 5.18.
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Abbildung 5.19: Comparison of PFP absorption spectra with the two-photon induced-
absorption along the þb- and þc-axis.

The transients of the þc-axis are given in Fig. 5.17 (d). The bleaching shows the same rise

time as the bleaching along the þb-axis. This is not surprising, since both have the same

origin. Moreover, an induced absorption is observed around 1.6 eV. As its dynamics are

similar to the broadband induced absorption along the þb-axis, it is assigned to residual
þb-axis signal. At 1.9 eV an induced absorption is observed, which is absent along the
þb-axis. Its transient has two time regimes: a short signal at a time delay of 450 fs with

a FWHM comparable to the excitation pulse and a long term signal decaying on a

picosecond time scale.

The short term þc-axis signal at 1.9 eV is compared to the extracted þb-axis discrete indu-

ced absorption signal at 1.53 eV along with the cross-correlation of the pump and probe

pulse in Fig. 5.18. Apparently, all three signatures show the same temporal behavior.

Since the cross correlation of pump and probe is extracted from two photon absorpti-

on in GaP, we come to the conclusion that both short induced absorption signatures

originate from two photon absorption processes within PFP. Two photon absorptions

allow for even parity transitions. Hence, the induced absorption shifted by the pump
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Tabelle 5.1: Results of the double exponential fits of the transients in Fig. 5.21.

A1 τ1 A2 τ2

þb-axis bleaching 5±0.1 15 ps±1 ps 3.5±0.08 1 ns±0.5 ns
(1.7 eV-1.86 eV)

þb-axis induced absorption 7.2±0.3 16.8 ps±1.2 ps 1.95±0.3 0.5 ns±0.37 ns
(1.45 eV-1.7 eV)

þc-axis bleaching 5.6±0.1 14.5 ps±1 ps 2.3±0.1 0.6 ns±0.35 ns
(1.66 eV-1.83 eV)

energy does not correspond to any transition in the linear absorption of PFP, shown

in Fig. 5.19. The excitation around 3.85 eV could be the dipole forbidden transition

S0 →S6, which was calculated by single molecular TD-DFT to be at 4 eV.[48] However,

the transition at 3.5 eV does not fit to any of the listed transitions in Ref. [48]. The only

close transition with 3.68 eV lies within the long axis of the molecule and, therefore,

can be ruled out. Anyhow, both signatures show a polarization dependence, which is

a hint for a crystalline response.

We now focus on the long term dynamics of the observed signals. An overview of the

∆αL-signal along both axes is given in Fig. 5.20. First, the essential three ∆αL-signals

are analyzed, namely the bleaching and broadband induced absorption along the þb-axis

(long dashed and and short dashed box) and the bleaching along the þc-axis (short das-

hed box). The corresponding spectrally integrated transients are shown in Fig. 5.21.

On first sight, all three signals virtually show the same decay dynamics on the longer

time-scale. Additionally, they do not follow a mono-exponential but at least a double-

exponential form. Therefore, more than simply one relaxation path exists: either the

population within that state exhibits at least two scattering channels to lower states or

the state is fed by at least one higher state. Accordingly, fitting the transients double-

exponentially gives a good agreement with the experiment. The results of the fits are

given in Table 5.1. As presumed before, the decay constants are the same within the

experimental error, merely the amplitudes differ. Since bleaching is the result of exci-

ted carriers, we conclude that after τ1 ≈15 ps the majority of the carriers are relaxed
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Abbildung 5.20: (a) 2D false-color plot of the ∆αL spectra along the þb-axis. (b) 2D
false-color plot of the ∆αL along the þc-axis. The scattered pump light
is left out for aesthetic reasons.
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Abbildung 5.21: (a) Transient of the þb-axis’ broadband induced absorption (spectrally

integrated long-dashed box in Fig. 5.20 (a)). (b) Transient of theþb-axis’
bleaching (spectrally integrated short-dashed box in Fig. 5.20 (a)). (c)
Transient of the þc-axis bleaching (spectrally integrated short-dashed
box in Fig. 5.20 (b)). All transients are shown with corresponding
double-exponential fit.
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Abbildung 5.22: (a) Dimer picture of the excimer formation. (b) Schematic energy-level
diagram of the excimer binding potential and induced absorption into
higher states.

back to the ground-state. The long term decay constants (τ2) are severely error affec-

ted, due to the small signal change within the measured time window13. Thus, they

are nothing more than an estimate. However, approximately one third of the popula-

tion resides within an excited state indicated by the sustained bleaching and induced

absorption.

A first Interpretation: Excimer Formation

In general, induced absorption is a consequence of new absorption channels arising due

to excited carriers. Here, the transition dipole moment of the new absorption channels

is oriented along theþb-axis. Thus, the excitations have to be delocalized along theþb-axis

as expected from the observed resonance coupling in the linear absorption in Ch. 4. This

anisotropy in carrier dynamics betweenþb- and þc-axis has been predicted theoretically by

Delgado et. al, where the transfer integrals of HOMO’s (tH) and LUMO’s (tL) along the

three crystal axes were calculated.[42] The results are shown in Table 5.2. Strikingly,

13In general, a good guess of a signal’s decay time can be given when its change is measured over two
orders of magnitude.
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Tabelle 5.2: DFT-PW91 calculated transfer-integrals along the three different crystal-
line axes of PFP single crystals. From Ref. [42].

Crystalline axis tH [meV] tL [meV]

þb-axis -132 73

þc-axis 0 0

þa-axis 3 -7

there are virtually vanishing transfer integrals along the þc-axis and the þa-axis. The

dominant coupling present in PFP is along the slip-stacked direction of the þb-axis. In

addition, the corresponding transfer integrals of -132 meV and 73 meV are relatively

large compared to PEN, where the largest values are found along the diagonal of

the ab-plane with 85 meV. A comparison of the transfer integrals of PEN and PFP

is given in Fig. 5.23. It illustrates the fundamental difference between both systems;

PEN is predicted to experience significant 2D coupling within the ab-plane, while PFP

supposedly shows a 1D behavior. The experimental results confirm the distinct 1D

dispersion along the þb-axis, which in turn implies strong charge-transfer character of

the excited excitons. Exciton Bohr radius calculation with calculated effective masses

from Ref. [42] contradict these findings:

αex
B = αH

B · ǫP F P · m0

µ
= 0.53Å · 2.7 · m0

0.77m0

= 1.86Å. (5.30)

Here the estimated 1.86 Å delocalization is less than half the amount of the þb lattice

vector with 4.45 Å, which indicates, that the effective mass approximation is not valid

in organic crystals.

As mentioned in the beginning of Sec. 5.1, partially delocalized excitons are precursors

for excimer formation. In general, excimer formation is a diabatic process14, where the

14Born-Oppenheimer approximation is not valid.
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Abbildung 5.23: Comparison of transfer-integrals of PFP and PEN. Significant coup-
ling in PFP is only found along the þb-axis, whereas in PEN there is
considerable 2D-coupling within the ab-plane.

atomic disposition in the participating monomers is changed and the system’s ener-

gy is reduced, schematically depicted in Fig. 5.22. Accordingly, the formation evolves

through a conical intersection of two crossing potential energy surfaces as shown in

Fig. 5.24 (a). In the simplified pictures of Fig. 5.22 and Fig. 5.24 the excimer formation

is parameterized only by the generalized coordinate R of two monomers, illustrated

as the intermolecular distance. The intermolecular distance just serves as an example

for R and should not be considered as the general case; all kinds of intra- and inter-

molecular conformational changes can be a part of the formation process. The conical

intersection of repulsive and bonding state is the point where both potentials cross, in

Fig. 5.24 approximated as the 1D cut through their potential energy surfaces parallel

to R. Moreover, it is assumed, that the shown path portrays the global minimum of all

possible paths along the potential surfaces.

Now, the system’s dynamics can be described in terms of wave-packet-dynamics [97];

The system is excited from the weakly bonding ground-state into a repulsive state

and evolves as a wave-packet along the repulsive energy potential surface (first step

in Fig. 5.24 (a)). While the excited system propagates along the potential surface the

probe invokes stimulated emission leading to radiative relaxation of the system from

excited to ground-state. The stimulated emission is observed as bleaching, which shifts

in energy with time-delay (see Fig. 5.24 (b)). When the system has reached the conical

intersection, it crosses into the binding excimer potential and new absorption channels

emerge observed as induced absorption. So, the induced absorption along the þb-axis are
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Abbildung 5.24: (a) Proposed wave-packet dynamics of excimer formation in PFP
through a conical intersection. (b) High temporal resolution of the

differential absorption along the þb-axis. The signal is not dechirped.

interpreted as transitions between different excimer states, as sketched in Fig. 5.22 (c).

When the wave-packet has crossed into the excimer potential, the stimulated emission

is reduced, due to vanishing effective overlap between excimer and ground-state wave

functions. However, the bleaching recovers, as the excimer inhibits the fundamental

transition. The combination of both effects results in the observed dip in the bleaching

transient(Fig. 5.24 (b)). Therefore, the dynamics through the conical intersection can

be directly monitored in pump-probe spectroscopy.

According to the measurements, the conical intersection is reached after approxima-

tely 700 fs. This is around one order of magnitude slower than the wave-packet dy-

namics through the conical intersection of the Rhodopsin molecule after resonant

excitation.[98] Tentatively, this discrepancy is explained by the different energies of the

mediating quasi-particles: In Rhodopsin, it is an intra-molecular change of conformati-

on mediated by vibrons, typically in the range of a few hundred meV (200 meV→ T ≈
20 fs); in PFP crystals, it is in first approximation an inter-molecular change of confor-

mation, mediated by phonons in the range of a few meV (10 meV→ T ≈ 400 fs).

Nonetheless, one should keep in mind that the PFP considerations are done by igno-

ring the crystalline surrounding, where the distances between the molecules along the
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Abbildung 5.25: CW photoluminescence measurement of PFP with the same excitation
conditions as in the pump-probe experiments. The gray shaded areas
show the linear absorption along the þb- and þc-axes as a reference.

þb-axis are equidistant, i.e., excitations exhibit periodic boundary conditions. Thus, the

excitations between two nearest neighbors are indistinguishable, exceeding a dimeric

treatment of the problem. Consequently, the knowledge of the full energy potential of

the crystal is necessary to gain a more quantitative understanding.

Excimer formation occurs, when it lowers the excited system’s energy and its formation-

path along the potential surface is energetically favorable. One possible way for the

system to relax back to the ground state is by spontaneous emission. As mentioned

in Sec. 5.1, the energy reduction results in featureless photoluminescence shifted to

lower energies compared to the fundamental transition in linear absorption. Although,

the ground- and excimer-states have a reduced wave-function overlap it is finite, so

that radiative recombination is expected. In Fig. 5.25 photoluminescence spectroscopy

of the PFP crystal is presented, where the excitation conditions are set equal to the

pump-probe measurements. We observe a broadband, featureless15 signature below the

15The small dip is a pixel artefact in the detection scheme.
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Abbildung 5.26: Temperature dependent CW photoluminescence spectroscopy of the
PFP crystal. The excitation energy was set to 2.33 eV. (a) at 10K .
(b) at 300K.

fundamental transition with its peak intensity at 1.4 eV. The measured photolumine-

scence corroborates the excimer formation hypothesis, since a Stokes shift of 300 meV

is incompatible with a vibronic progression. Additionally, the 300 meV give an estimate

of the binding energy, which is gained by excimer formation compared to the exciton.

Temperature dependent CW photoluminescence measurements, with the excitation

energy set to 2.33 eV, reveal an unexpected shift of the peak position to higher ener-

gies, see Fig. 5.26. The energy difference between the lowest photoluminescence peak

position and the fundamental transition is reduced to 195 meV, resembling the energy

of the dominant vibron, identified in the previous chapter in the absorption spectrum.

So, similar to α-Perylene, in PFP the low-energy excimer like photoluminescence at

room temperature seems to change to a monomeric photoluminescence at 10 K. Howe-

ver, the low energy tail does not vanish at 10 K, on the contrary, it is slightly increased

(cf. Fig. 5.26 (a,b)). Therefore, the vibronic progression emerges without replacing, but

dominating the excimeric photoluminescence .

According to Fermi’s Golden Rule, the rate of radiative recombination, in first appro-

ximation, is proportional to the square of the dipole matrix element of initial and final
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state. Since the overlap of excimer and ground state wavefunction is small, the expec-

ted photoluminescence decay rate should be slow. For instance, this relation can be

observed in TRPL measurements of the quantum confined Stark effect in ZnO, where

the fundamental photoluminescence decay rate decreases with reduced electron-hole

wavefunction overlap.[99] Automatically, for excimer relaxation in PFP this means,

that other non-radiative decay mechanisms become important. As mentioned in the

previous section, the decay dynamics of the induced absorption, which is now asso-

ciated with the excimer, shows an at least double exponential decay. Consequently,

radiative recombination is not the only dominant decay mechanism.

5.2.3 Non-linear absorption of Perfluoropentacene: the a-axis

The ∆αL-dynamics in PFP show two distinct time-regimes, a fast decay with a decay

constant of 15 ps and a slow decay with a decay constant of 1 ns. The fast relaxation

channel is the radiative recombination of the excimer, identified in the previous secti-

on. The second decay is significantly slower pointing to an excited triplet state, which

is dipole forbidden and consequently cannot recombine radiatively in an ideal organic

crystal16. In order to verify, whether the system relaxes into a triplet state, pump-probe

spectroscopy along the þa-axis of the PFP crystal is performed. The reason to look for

a triplet response in the þa-axis lies within the crystalline packing motif of PFP. The

long axis of the PFP molecules are oriented virtually parallel to the þa-axis. Apparently,

the same dipole-moment orientation is predicted for the lowest, dipole allowed triplet

intra-system transitions by single molecular TD-DFT calculations, namely T1 → T2

(1.11 eV; fosc = 0.004) and T1 → T4 (2.16 eV; fosc = 0.581) with their corresponding

transition energies and oscillator strengths given in brackets.[48] If an inter-system

crossing occurs, these triplet transitions should be observed as induced absorption in

pump-probe spectroscopy.

In Ch. 4 it is shown, that the dipole moment of the singlet exciton is oriented along the

short axis of the molecule, hence, transferred to the crystalline phase it corresponds

16Here, a crystal without incorporated heavy atoms in any sense, so that spin-orbit coupling is negli-
gible.
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Abbildung 5.27: ∆αL-measurements of PFP crystal (a) along theþb-axis (b) along the þa-
axis, shown as 2D false-color plots. Dashed boxes mark the integrated
spectral region for the extracted transients in Fig. 5.28 (c). Horizontal
lines mark the time delay positions of the shown ∆αL-spectra shown
in Fig. 5.28 (a,b).
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Abbildung 5.28: (a) Grey shaded area: ∆αL-spectrum along the þa-axis at a time delay
of 1 ps showing an asymmetric induced absorption at 2.28 eV. Red line:
Fano-fit of the asymmetric peak. (b) Grey shaded area: ∆αL-spectrum
along the þa-axis at a time delay of 90 ps. Red line: Voigt-fit of the
symmetric peak. Same Voigt-fit with adapted amplitude is shown in
(a) as a dashed line. (c) Top: Transient of the exciton bleaching along

the þb-axis. Bottom: Transient of induced absorption along the þa-axis.
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to the þb- and þc-axis. As a result, there is vanishing absorption along the þa-axis in the

relevant spectral region from 1.5 eV to 2.5 eV, except for a residual response of the

singlet exciton, due to a tilt angle of 11◦ of the molecules’ long axes in respect to

the crystalline axis. Therefore, singlet exciton bleaching, broadening or shift signatures

cannot superimpose the non-linear response, reducing related misinterpretations to a

minimum. On the other hand, the pump pulse polarization inevitably needs to be set

along the þb-axis, otherwise the carrier injection would be rather challenging. So the

excitation conditions are the same as in Sec. 5.2.2 with a pump pulse energy of 1.95 eV.

Again, the probe polarization is set according to the desired crystal axis, i.e. along the
þb- and þa-axes, which are optically addressable with normal incidence in PFP crystals

grown on KCl(100) substrate.

The ∆αLresults for both crystal axes are shown as 2D false-color plots in Fig. 5.27.

As expected, the ∆αL-measurements of the þb-axis in PFP/KCl(100) shows the same

dynamics as the ∆αL-measurements of the þb-axis in PFP/NaF(100), emphasizing its

intrinsic crystalline origin. Strikingly, along the þa-axis, immediately after excitation an

asymmetric induced absorption is observed at an energy of 2.28 eV. The peak energy

deviates from the calculated single molecular T1 → T4 transition by 120 meV. In re-

spect of the general challenges in DFT calculations to gain quantitative valid results

for transition energies in combination with neglecting crystalline boundary conditions,

the observed induced absorption is in very good agreement with theory.

In Fig. 5.28 (a,b) ∆αL-spectra along the þa-axis are shown for time delays of ∆t = 1 ps

and ∆t = 90 ps marked as solid and dashed lines in Fig. 5.27 (b). Evidently, at early

time delays the induced absorption has an asymmetric line-shape, which successive-

ly evolves into a symmetric one. The symmetric peak (∆t = 90 ps) is fitted with

a Voigt-function, capturing the associated lifetime, including the inhomogeneity in

the sample. The asymmetric peak (∆t = 1 ps) is fitted with a Fano-function, which

is typically observed when the transition amplitude associated with a resonance ex-

periences constructive and destructive interference with a continuum of background

transitions[100]:

f(E) =
(q + ǫ)2

1 + ǫ2
; ǫ =

E − Eφ − F
1
2
Γ

, (5.31)

103



Exciton Dynamics in Perfluoropentacene

with the Fano parameter q, giving the ratio of the transition probabilities to the discrete

and the continuum states, the resonance energy Eφ, the homogeneous broadening Γ

and the resonance shift F , resulting from configuration interaction. The Voigt-fit with

adapted amplitude fails to capture the line shape of the asymmetric peak (gray, dashed

line in Fig. 5.28).

The dynamics of the induced absorption is analyzed in Fig. 5.28 (c), where transients

of the spectrally integrated regions shown as dashed boxes in Fig. 5.27 are given. The

rise dynamics of the exciton resonance’s bleaching along the þb-axis and of the induced-

absorption along the þa-axis are identical and occur simultaneously within the time

resolution. Additionally, the decay dynamics of the þa-axis follows at least a double-

exponential form, similar to the þb-axis. In particular, double-exponential fits yield the

following decay constants: τ1 = 12±3 ps and τ2 = 0.5±0.3 ns. Consequently, bleaching

and induced absorption showing the same dynamicsresult from the same excited species

within PFP.

Interpretation: Correlated Triplet-Pair Formation

As previously speculated in Sec. 5.2.2 and confirmed in this section, the excited carri-

ers predominantly reside within the triplet system after 15 ps. However, the identified

triplet intra-system transition T1 → T4 at 2.28 eV rises on the same timescale as the

bleaching of the singlet exciton resonance and, hence, is observed immediately after ex-

citation. This fast or rather instantaneous inter-system crossing is explained by singlet

exciton fission, which is consistent with the expected large fission rate along the þb-axis,

due ot the slip-stacked packing motif. In the introduction to singlet exciton fission

the process is artificially separated into two steps, while it is mentioned, that in pre-

sence of CT-excitons it is reduced to simply one, mediated by direct coupling between

CT-exciton and 1(TT ). The instantaneous rise of the triplet transition in combination

with the observed CT-exciton contributions, identified as broadband induced absorp-

tion along the þb-axis, lead us to the conclusion, that singlet exciton fission in PFP is

directly mediated. Therefore, the asymmetric induced absorption along the þa-axis is

attributed to 1(TT ); the afore mentioned nine non-degenerate sub-levels of this cor-
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Abbildung 5.29: Schematic diagram of the line-shape evolution of the induced absorp-
tion along the þa-axis. Interference of the nine 1(TT ) sublevels’ tran-
sition amplitudes results in the observed Fano-resonance. When the
coherence is lifted a symmetric resonance remains.

related triplet pair state act as a quasi-continuum, where the transition amplitudes

of the intra-triplet resonance T1 → T4 interfere. The result is the observed Fano-like

resonance. As soon as the coherent state is lifted and the triplet excitons act inde-

pendently, the T1 → T4 resonance exhibits a Lorentzian line-shape or in the case of

inhomogeneous broadening a Voigt line-shape. The origin of the resonance’s appearan-

ce is illustrated in Fig. 5.29. The coherence of 1(TT ) decays predominantly by radiative

recombination, whereas approximately one third diffuses into triplet excitons evaluated

by the bleaching ratios at short and long delay times.

The triplet excitons are generally regarded as strictly Frenkel-type excitons, completely

localized to one lattice site, i.e., the molecule. Hence, a crystalline, anisotropic response

in PFP is not expected, due to the rectangular packing motif. However, evaluating

the induced absorption below the bleaching for the þb- and þc-axis yields a significant

anisotropy over the entire temporal range. This is shown in Fig. 5.30, where the same

spectral region along both axis is integrated, in order to extract the transients. Again,

the transition dipole moment of the broadband induced absorption is oriented along
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Abbildung 5.30: (a) Transients of the induced absorption in the spectral region of 1.5 eV

to 1.7 eV: red dots þb-axis, black dots þc-axis. An anisotropic triplet
response is observed. (b) Spectral evolution of the induced absorption

along theþb-axis with time delay. The induced absorption changes when
the spin-system changes.

the þb-axis of PFP. Accordingly, the triplet exciton is not confined to one molecule, but

is to some extent delocalized similar to the singlet exciton.

Since the excited excitons transfer from a delocalized, singlet-like state into a delo-

calized, triplet-like state a qualitative, spectral change within the induced absorption

should be observed. The spectral evolution of the broadband induced absorption is

given in Fig. 5.30 (a). Clearly, the initial line-shape changes; the resonance at 1.44 eV

disappears, while the low-energy resonance at 1.38 eV prevails and eventually domi-

nates the spectrum. As the broadband induced absorption is polarization dependent,

transitions of captured excited carriers at defect states are ruled out. Therefore, the

broadband-induced absorption-spectrum monitors the transition from the singlet-like
1(TT ) excimer state to the individual triplet excitons. Furthermore, the triplet exciton

probably resides in a similar excimer state as the singlet exciton, due to the similarity

of their induced absorption spectra. Such a triplet excimer is discussed, for instance,

in the case of naphthalene dimers.[101]

Turning to Fig.5.20 again, the dotted boxes mark regions with a signal before the

time-zero of the experiment. This residual signal indicates that not all excited carriers
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xes in Fig.5.20 (blue dots along theþb-axis; black dots along the þc-axis).
Bottom: Integral of the ∆αL-signals.

are back in the ground-state, when the next laser pulse arrives. Due to the 100 kHz

repetition rate of the experiment, the time delay of the signal is 10 µs. Since 10 µs is

large compared to 2 ps, one can simply temporally average the spectral region marked

by the dotted boxes, in order to gain a ∆αL-signal with a very good signal-to-noise

ratio for a delay time of 10 µs. The result is shown in Fig. 5.31, still exhibiting a clear

anisotropy between the þb- and the þc-axis. Reminiscent of Ch. 3, an idea of the signal’s

nature is gained by spectrally integrating it. Apparently, setting the integration limit

to different energies alters the interpretation severely, e.g. integration of the þc-axis si-

gnal until 1.75 eV results in a bleaching signal, while integration until 1.9 eV results in a

strong shift signature with a negligible amount of bleaching. Although, the signal along

the þc-axis is asymmetric17 around zero-crossing, it is interpreted as a shift signal with

a small residual amount of bleaching. The þb-axis on the other hand, shows a dominant

17Presumably due to interference with higher energy resonances.[13]
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bleaching signal even when setting the integration limit to 1.9 eV. Consequently, triplet

excitons block direct transitions within the þb-axis of the PFP crystal even after 10 µs,

while the transitions along the þc-axis predominantly are shifted in energy.

5.2.4 Excimer? Correlated Triplet-Pair? or Both?

Now that two species are identified, namely the excimer and the correlated triplet pair
1(TT ), the question remains what picture holds. The interplay of both species is of

particular interest, as the role of excimers in singlet exciton fission is presently deba-

ted controversially. Sometimes, they are considered parasitical [9], while others identify

their formation as the mediating mechanism [102, 103, 104].

In the previous section, it is shown that the inter-triplet transition T1 → T4 at 2.28 eV

along the þa-axis is asymmetrically broadened, due to the sublevels of 1(TT ). The rise

dynamics of singlet exciton bleaching and induced absorption of 1(TT ) are identical

within the experimental error. Furthermore, an anisotropic induced absorption along

the þb-axis is observed even after the inter system crossing via singlet fission. The spec-

tral signature changes during the transition from 1(TT ) to individual triplet excitons,

which is a clear evidence that the excited carriers are transferred into a new state. The

anisotropic response of the triplet system within the bc-plane indicates that the triplet

excitons are to some extent delocalized.

Concerning the excimer, in Sec. 5.2.2 Fig. 5.17 shows, that the onset of the associated

broadband induced absorption along the þb-axis is delayed compared to the singlet ex-

citon bleaching. In combination with the observed, excimer luminescence at identical

excitation conditions and the formation dynamics presumably resulting from the co-

nical intersection, the formation of an excimer type species is plausible. Consequently,

both views hold and the comprehensive scenario appears as follows: the initial bleaching

results from stimulated emission and blocked absorption experienced by the probe pul-

se after the crystal is excited. The coupled state of 1(TT ) and singlet exciton crosses

into the excimer potential diabatically and the broadband induced absorption along the
þb-axis emerges. At this point, the stimulated emission is reduced due to the vanishing

effective overlap between the excited excimer and ground state wave functions. Howe-
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Abbildung 5.32: One possible charge transfer scheme in the 1(TT ) state.

ver, the bleaching recovers as the excimer inhibits the fundamental absorption, where

it blocks at least two transition channels instead of one. The decay with a constant of

around τ1=12±3 ps is assigned to the radiative relaxation of the excimer, observed as

luminescence below the fundamental transition and the dephasing of the 1(TT ). The

second, slower decay is attributed to relaxation of triplet excitons into the ground-state,

which lasts for over 10 µs. Thus, neither is the excimer formation in competition with
1(TT ) formation nor is the excimer a precursor for the 1(TT ) formation.

The fundamental question of singlet fission is, if the energy balance E(S1) ≥ 2 × E(T1)

is fulfilled, i.e., if the fission process is exothermic. As a result, the relaxation into an

excimeric state with a consecutive singlet fission is rather unintuitive; in general, after

excimer formation, the system’s energy would be lowered to such an extent, that the

energy balance is no longer fulfilled and singlet fission is endothermic. In PEN crystals

such calculations have been performed and it was concluded that excimer formation

is energetically unfavorable compared to 1(TT ) [105]. Now, in PFP, the energy gap

between excimer and ground-state is approximately 1.4 eV, determined in Sec. 5.2.2 by

the peak energy of the observed photoluminescence. Hence, exothermic singlet fission is

expected, as long as the lowest triplet energy is equal or below 0.7 eV (E(T1) ≤ 0.7 eV ).

Single molecular DFT calculations predict, that the lowest triplet state is at 0.62 eV,

thus, well within the limit [47]. In turn this explains, why both relaxation channels are

not in competition and observed in the experiment.

Regarding the excimer formation of the coupled state, consisting of singlet exciton and
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1(TT ) exciton pair, charge-transfer states may be responsible for the stabilization. In

Fig. 5.32 one thinkable charge transfer composition, build from one of the nine presen-

ted substates is presented. Since the transfer integrals of both, HOMO and LUMO,

are comparably large, possible charge transfer states are further increased, enhancing

stabilization.

A simple model

In order to better quantify the decay and formation times of the excimer and the 1(TT ),

the above findings are implemented into a simple rate-equation. The considered energy

levels and relaxation mechanisms are depicted in Fig. 5.33, where singlet exciton (XS1)

and 1(TT ) are modeled as an indistinguishable coupled state, which act as one. The

solid blue arrows mark radiative relaxation channels, whereas the solid red arrows indi-

cate new absorption channels, due to excited carriers observed as induced absorption.

The dashed arrows represent non-radiative relaxation, albeit the triplet exciton (XT 1)

may relax radiatively, however on a nanosecond time-scale. Furthermore, next to the

levels, the evaluated and estimated energies are given. The underlying rate-equation

model is the following:

dNS0

dt
= + NS1 · τ(S1 → S0) + NXS1

· τ(XS1 → S0)

+ NEX · τ(EX → S0) + NXT 1
· τ(XT 1 → S0) − NS0G, (5.32)

dNS1

dt
= + NS0G

− NS1 · τ(S1 → S0) − NS1 · τ(S1 → XS1), (5.33)

dNXS1

dt
= + NS1 · τ(S1 → XS1)

− NXS1
· τ(XS1 → S0) − NXS1

· τ(XS1 → EX), (5.34)

dNEX

dt
= + 2 · NXS1

· τ(XS1 → EX)

− NEX · τ(EX → S0) − NEX · τ(EX → XT 1), (5.35)

dNXT 1

dt
= + NEX · τ(EX → XT1) − NXT 1

· τ(XT 1 → S0), (5.36)
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Abbildung 5.33: (a) Energy level scheme and underlying relaxation mechanisms imple-
mented in the rate-equation model. The solid blue arrows represent
radiative recombination, the dashed arrows non-radiative relaxation.
Red arrows indicate induced absorption. (b) Bleaching transient from
Fig. 5.17 (blue circles), rate-equation fit (solid blue line) and the indi-
vidual contributions (shaded areas). (c) Same as (b) for the induced
absorption of Fig. 5.17.

with the states’ populations NS0;...;XT 1
, the excimer state EX and the relaxation rates τ

with their respective relaxation paths given in brackets. The experiment is initiated by

the population of S1 with the rate G, where G corresponds to the temporal evolution of

the pump pulse and is modeled according to the cross-correlation of pump- and probe

pulse (cf. Ch. 3) as a Gaussian with a ΓF W HM of 300 fs:

G(t) =
A0√
2πσ

exp

(

−(t − t0)
2

2σ2

)

with σ =
ΓF W HM

2
√

2ln2
. (5.37)

Once S1 is populated, the system relaxes back to the ground-state via the several

pathways, populating all modeled states along the way. The coupled state of singlet

exciton and 1(TT ) is simply denoted as XS1 and is populated by internal conversion

from S1. Consecutively, the coupled state relaxes into the excimer state EX, where the

multiplication process is implemented, since then at least two lattice sites are occupied.

The EX state decays radiatively to the ground state or diffuses into individual triplet

excitons, which eventually return to the ground state or decay otherwise.
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Having established the model to simulate the population dynamics, we are now able to

fit the bleaching of the fundamental transition. Here, it is assumed that all populated

states contribute equally to the bleaching, following the simple explanation of excited

electrons no longer being available for the fundamental transition. The model is applied

to the bleaching and induced absorption transients along the þb-axis shown in Fig. 5.17,

where all the significant signatures are present.

The results for both transients are presented in Fig. 5.33 (b,c), where the experimental

results are given as open circles, the rate-equation fit as solid lines and the individual

contributions as the shaded areas. Excellent agreement is found for both signatures

with applying the same set of parameters. Remarkably, even the dip at 700 fs in the

bleaching is reproduced. Its origin is the combined effect of stimulated emission from the

initial excited state S1 and the delayed carrier multiplication process, where the coupled

state XS1 relaxes into the excimer state EX. In the case of the induced absorption,

only the EX and the triplet excitons contribute, in agreement with their delocalized

nature. The extracted decay rates are given in Table 5.3.

Tabelle 5.3: Decay constant results of the rate-equation model shown in Fig. 5.33.

Relaxation channel τ [fs−1] τ−1 [fs] Relaxation channel τ [fs−1] τ−1 [fs]

τ(S1 → S0) 1 × 10−2 100 τ(EX → S0) 1.1 × 10−4 9000

τ(S1 → XS1) 2.8 × 10−3 350 τ(EX → XT 1) 8.3 × 10−5 12000

τ(XS1 → S0) 6.1 × 10−4 1650 τ(XT 1 → S0) 2.5 × 10−6 400000

τ(XS1 → EX) 2.5 × 10−3 400
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5.2.5 Higher Energy Resonances

The formation of 1(TT ) with the consecutive relaxation into an excimer state is iden-

tified in the previous sections. Due to the presence of excited carriers the fundamental

transition energies are altered; the system resides in an excited state with changed

interaction potentials and consequently exhibits a changed absorption behavior. In in-

organic semiconductors for instance, excited carriers screen the Coulomb attraction of

electron and holes, resulting in lower exciton binding energies and a shifted exciton

resonance to higher energies. On the other hand, the excited carriers also induce a

bandgap renormalization, which shifts the bandgap to lower energies; in the special ca-

se of GaAs these two effects annihilate each other.[13] In addition to Coulomb induced

effects, also spin orientation introduces changes in the fundamental absorption, e.g.,

the spin bandgap renormalization observed in Ge/SiGe quantum wells.[106]

In organic semiconductors, the exciton binding energies are significantly higher and

plasma at these excitation energies is not found, consequently screening effects are

improbable. However, two effects should significantly alter the fundamental response:

Firstly, the delocalized nature of the excited excitons on a lattice site changes the Cou-

lomb potential of molecules in the vicinity, comparable to bandgap renormalization in

inorganic semiconductors, secondly, and this is the dominant contribution, the excimer

formation breaks the initial symmetry of the crystal, due to the diabatic relaxation.

The latter leads to changed selection rules resulting in new, dipole allowed transiti-

ons and forbidden or at least reduced fundamental transitions. These changes of the

fundamental reponse are monitored by pump-probe measurements. As shown in Ch. 3,

these signatures are not easy to distinguish from other non-linear responses. Nonet-

heless, when looking at transition energies above the pump energy, at least bleaching

signatures from occupied states can be ruled out.

The results of the pump-probe experiments for high transition energies are given in

Figs. 5.34 and 5.35. The spectra in Fig. 5.35 are temporally integrated over the marked

regions in Fig. 5.34. The linear absorptions of both axes are included for reference as

gray shaded areas: þb-axis dark gray and þc-axis light gray.

As expected strong anisotropies are observed. Intriguingly, on first sight, the þb-axis

response shows the mirror image of the þc-axis response for energies above 2.2 eV. First,
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Abbildung 5.34: ∆αL 2D false-color plots of PFP/NaF(100) along the þb- and þc-axis.
The high energy (2-2.5 eV) non-linear response also shows anisotropies.
The lower energy signals are shown greyed for clarity.

we focus on the þc-axis in Fig. 5.35 (b). The bleaching signatures starting at 2.29 eV

resemble the high energy band identified as the monomeric response with a vibronic

progression in Ch. 4 (light gray linear absorption). Since no shifts in energy are ob-

served and the energy difference between the two bleaching peaks is unchanged, these

signatures can be definitely associated with the high energy band. Consequently, it is

a pure bleaching signature of the monomeric response, due to occupied states after

excitation, although it is rather unintuitive, that a vibronic progression, or more speci-

fically, a vibron as a boson shows Pauli-blocking. However, the progression is coupled

to an electronic excitation, which is fermionic, explaining the observed bleaching.

The induced absorption at around 2.08 eV is either related to the excimer or to a shift

in energy of the HOMO-LUMO transition to higher energies. A shift of the HOMO-

LUMO transition is less probable, as the induced absorption is energetically broader

and exhibits a higher oscillator strength than the bleaching reduces. Therefore, the

transition is associated to the excimer. This is corroborated by its dynamics: At longer

delay times the signature changes its spectral shape and virtually vanishes, when chan-

ging the spin system. The remaining induced absorption results from the asymmetric

shift signature of the fundamental singlet exciton transition. The change in spectral

signature, as well as the transition from the singlet system into the triplet system is also
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marked in Fig. 5.20 (b) by the two dashed arrows. Although, the excimer is delocalized

along the þb-axis, the electromagnetic field can couple to it perpendicularly. A similar

situation is found in inorganic quantum wires, where excitonic resonances are observed

with the electromagnetic field set parallel to the direction of the confining potential,

yet higher in ernegy.[107]

The þb-axis shows a distinctively different response. Instead of a bleaching, several

induced absorption features appear. Additionally, the features evolve spectrally with

time and slightly shift to lower energies. As far as the line-shape is concerned, the

peaks resemble a vibronic progression, similar to the energy band starting at 2.29 eV

in the linear absorption along the þc-axis (cf. red solid line and light gray shaded area

in Fig. 5.35 (a)). Since the vibronic progression along the þc-axis is attributed to the

monomeric response, the emerging progression along the þb-axis is a strong indication,

that the crystalline response is lifted by the excited carriers and monomeric dipole

transitions are allowed. Consequently, as expected, the excimer formation alters the

selection rules and molecules not involved in the formation process act more indivi-
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Abbildung 5.36: Simplistic explanation of the emerging monomeric response observed
along the þb-axis after optical excitation.

dually. Hence, they can couple efficiently to inner vibrons after optical excitation, in

line with Ref. [58]. Strikingly, the absolute position and the energy spacing of the peaks

do not match with the monomeric response of the þc-axis. Yet, this is explained by the

different background potential evoked by surrounding excimers, or excited carriers in

general, in comparison to the ground state potential along the þc-axis. A change in the

background potential is then again observed, when the 1(TT ) excimer diffuses into

individual triplet excitons after approximately 12 ps (blue solid line in Fig. 5.35 (a));

the vibronic progression shifts to lower energies and the oscillator strength of the indi-

vidual contributions is adapted. A simple scheme explaining the emerging monomeric

vibronic progression is shown in Fig. 5.36.

5.2.6 Low Temperature Analysis

In Ch. 4, it is seen that the fundamental transitions are severely broadened at room

temperature and cooling the lattice to liquid helium temperatures lead to the observa-

tion of the high energy Davydov component along the þb-axis. Accordingly, pump-probe

measurements at 10 K are performed along the þb- and þc-axes, with a focus on the ex-

cimer formation and its decay. The experiments are performed with a 1 kHz amplifier

system, using a liquid nitrogen cooled InGaAs photodiode array as a detector. The

InGaAs detector has an effective photon-energy response, ranging from 0.8 eV to 2 eV,

well within the desired window.

The results are shown as a 2D false-color plot in Fig. 5.37 for both axes. We observe a
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Abbildung 5.37: ∆αL 2D false-color plots of PFP/NaF(100) crystals at 10 K: (a) along

the þb-axis; (b) along the þc-axis.

broadband induced absorption along the þb-axis with a distinct resonance at 1.38 eV. As

expected, this signature is not found along the þc-axis, in agreement with room tempera-

ture measurements. The broadband signal extends over the entire low-energy spectral

range, emphasizing the delocalized nature of the excimer and its continuum-like inter-

system transitions (cf. schematic illustration in Fig. 5.22 (b)). Remarkably, already the

2D plots reveal different dynamics between the distinct resonance and the broadband

signature; the distinct resonance lasts at least an order of magnitude longer. In order

to further analyze and quantify this, spectra and transients of the þb-axis are extracted

and given in Fig. 5.38 and Fig. 5.39.

Figure 5.38 shows the comparison of the broadband induced absorption spectrum at

10 K and its counterpart at room temperature, both along the þb-axis. Note, that the

room temperature induced absorption is the one associated to inter-triplet transitions

at a delay time of 70 ps. Although, the peak at room temperature is heavily broade-

ned18, the peak transition energies are comparable. Because of similar long decay times

and spectral line-shapes at 10 K and room temperature, the resonance at 1.38 eV is

attributed to the same inter-triplet transition. Tentatively, it is assigned to the dipole

forbidden T1 → T3 transition, predicted to be at 1.69 eV by single molecular TD-DFT

calculations.[48] In a system with inversion symmetry, e.g., single PFP molecules, pa-

18This is attributed to enhanced phonon scattering.
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Abbildung 5.38: (a) Comparison of the induced absorption along the þb-axis for 10 K
and 300 K. (b) Transients of the bleaching (blue open circles) and
the induced absorption (red open circles) spectrally integrated over
regions marked as boxes in Fig. 5.37.

rity is a good quantum number and this strict dipole selection rule holds. However,

the PFP crystal does not have an inversion symmetry, consequently, in the case of a

dipole transition, where now the symmetry of the crystal counts, parity selection rules

are weakened.[17] Especially in the case of transitions along the þb-axis, where signi-

ficant delocalization is present, such a scenario is plausible, resulting in the observed

resonance.

In Fig. 5.38 the dynamics of the triplet resonance is compared with the fundamental

transition bleaching, both transients are plotted on a logarithmic time delay scale and

are extracted from the marked regions in Fig. 5.37 (b). Roughly speaking, three dis-

tinct time regimes are observed. During excitation the bleaching transient preludes the

induced triplet absorption, then the triplet absorption sets in, when half of the funda-

mental bleaching is reached. At the peak maximum of the bleaching (≈1 ps) both signal

dynamics change; the growth rate of the induced triplet absorption decreases and the

bleaching starts to decay. When the induced triplet absorption reaches its maximum,

the fundamental bleaching signal is reduced to half its initial value. Subsequently, both
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Abbildung 5.39: (a) Temporal evolution of the induced absorption’s spectral signature,

along the þb-axis. (b) Transient of the peak feature compared to the
one of the broadband signature marked in (a).

signals decay on nanosecond time scale. These observations are in good agreement with

the interpretation of a diffusing correlated triplet pair with two relaxation channels,

i.e., radiative recombination out of the excimer state and the diffusion into individual

triplet excitons. The bleaching decays as the radiative recombination proceeds, where-

as the triplet induced transition increases, due to an increasing amount of individual

triplet excitons. The difference between excimer associated and triplet associated in-

duced absorption is further clarified in Fig. 5.39. Clearly, the evolution of a singlet like

excimer into a triplet like excimer is seen. The onset of both signals happen simulta-

neously within the time-resolution of the experiment, but the subsequent dynamics are

different. Initially, the broadband induced absorption is dominant, while the distinct

triplet resonance is only weakly detected (after ≈500 fs). The picture changes, as soon

as the excimer signature declines, while the distinct triplet resonance prevails (after

≈14.5 ps) eventually observed as an isolated transition.

At the end, the transients of induced absorption below the fundamental transition are

compared for the þb- and þc-axes. The results are shown in Fig. 5.40. The þb-axis exhibits
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Abbildung 5.40: (a) Induced absorption along the þb-axis. Inset: Extracted transient,
spectrally integrated over the white dashed region.(b) Negligible in-
duced absorption observed along the þc-axis. Inset: Extracted transient,
spectrally integrated over the white dashed region.

the in detail discussed broadband induced absorption. Along the þc-axis, a residual in-

duced absorption signal is detected, yet significantly weaker and with a sub-picosecond

decay time. Due to the weak oscillator strength in combination with its temporal finger-

print, this signature is attributed to a two-photon absorption.

In general, the excitation dynamics at liquid helium temperatures are similar to the

one at room temperature. The initial bleaching of the fundamental transition is fol-

lowed by the broadband induced absorption resulting from the formed excimer and

solely observed along the þb-axis. Within the broadband induced absorption a distinct

resonance emerges. It shows at least an order of magnitude slower decay dynamics than

the broadband excimer signature and is in good agreement with the evolving correlated

triplet pair.

In summary, in this chapter a detailed analysis of the excitation dynamics in PFP

crystals is given. For the first time it was possible to monitor the process of singlet ex-

citon fission within an organic semiconductor crystal axes resolved. It shows that PFP

is an ideal model system, where the fission process is highly anisotropic and happens

mono-directional along the þb-axis. Respectively, two important theoretical predictions
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are verified: the one-dimensional delocalized excitations along the þb-axis [42] and the

singlet exciton fission enhancement for slipped stacked molecules [90]. The excited

singlet exciton directly couples to the correlated triplet pair 1(TT ), which is observed

along the þa-axis as the inter-triplet transition T1 → T4 at 2.28 eV. The superposition

state of the two triplet excitons dephases on a picosecond time scale, manifested in the

evolution of the T1 → T4 line-shape; the initial asymmetric Fano-resonance changes

into a Voigt-like resonance. After the superposition is lifted the triplet excitons act

individually and return to the ground state on a nano-to-µs time-scale.

Additionally, the coupled excitation of singlet exciton and correlated triplet pair crosses

into an excimer state identified by the broadband induced absorption below the fun-

damental transition, exclusively observed along the þb-axis. Hence, the corresponding

dipole moment is oriented accordingly, which implies the one dimensionality of the

delocalized excitation. The excimer hypothesis is corroborated by broadband, feature-

less luminescence 300 meV below the fundamental transition. Consequently, radiative

recombination is the second dominant dephasing channel of the correlated triplet pair.

Furthermore, due to the changed symmetry along the þb-axis, resulting from the local

lattice relaxation, new monomeric absorption features emerge at energies above the

associated HOMO-LUMO transition. Along the þc-axis, only a bleaching of the mono-

meric resonances is seen.

The individual triplet excitons are, in contrast to prevailing opinions, not strictly

Frenkel-type. The tentatively assigned T1 → T3 transition is again exclusively ob-

served along the þb-axis. It emphasizes the, in van der Waals bond crystals, comparably

strong inter-molecular coupling and the direct consequence of significant delocalization

of the excitations. As a result, the collective crystal eigenstates have to be considered,

which exhibit mixed states enhancing singlet to triplet transitions by singlet fission and

excimer formation.
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6 Dephasing of Wannier Exciton

Polarization in Germanium

In the last chapter we turn to the inorganic material system of Germa-

nium quantum wells. Their spectrum is dominated by Wannier excitonic

resonances which show rich coherent dynamics in non-linear pump-probe

measurements. The dephasing times of the induced excitonic polariza-

tion play a crucial role in such experiments, thus, their knowledge is

inevitable. Here, a methodology is presented capable to determine the

excitonic dephasing times by exploiting their coherent non-linear respon-

se in pump-probe spectroscopy. As a proof of principle, it is applied to the

three excitonic resonances lowest in energy in a Ge/SiGe quantum well

sample and compared to their FWHMs in the linear absorption. Fur-

thermore, their temperature dependence is analyzed. At the end, four

nominally equal samples are characterized and evaluated in respect to

their optical qualities with the developed method.

6.1 Introduction

6.1.1 Sample

Unlike Silicon, the bandgap of Ge is typically labeled quasi-direct as it displays a local

conduction band minimum at the Γ-point ≈150 meV above the indirect band gap (see

123



Dephasing of Wannier Exciton Polarization in Germanium

Abbildung 6.1: (a) Bandstructures of the prototypical semiconductors Si and GaAs
in comparison to the bandstructure of Ge. (b) Calculation of the lo-
west electronic subbands with schematic structure of the quantum well
samples.

Fig. 6.1 (a)). As a consequence, Ge exhibits optical properties similar to GaAs, a direct-

gap semiconductor. Accordingly, typical direct gap characteristics on Ge/Si material

systems have been found, including transient gain, direct-gap electroluminescence, op-

tically and electrically pumped lasing, the quantum-confined Stark effect, and a strong

dynamical Stark shift.[108, 109, 110, 111, 38, 112]

Some of these experiments are performed on Ge/SiGe quantum wells, heterostructures

which confine the electrons to two dimensions. The resulting quantized sublevels in the

z-direction are shown in Fig. 6.1 (b) with the corresponding schematic structure of the

samples, which will be analyzed in this chapter. All samples named from A to D con-

tain 50 compressively strained 10 nm thick Ge QWs between 20 nm thick Si0.15/Ge0.85

barriers grown on a graded buffer on Si as a virtual substrate. All samples are nomi-

nally identical but display different optical qualities thoroughly evaluated later.

The band structure shows some noteworthy peculiarities; the global minimum in the

conduction band is the fourfold degenerate L-valley which is sketched as the red dotted

line in Fig. 6.1 (b). Additionally, the confining potential between light-and heavyhole is
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Abbildung 6.2: (a) Linear absorption of the analyzed Ge/SiGe quantum well sample
A with the marked sublevels. (b) Density of states of the free electron
gas in two dimensions. The dotted line marks the density of states for
three dimensions.

not identical; the lighthole potential is not as deep and marked as a blue line.

Due to the confinement, the density of states is reduced and shows a step-like function

owing to the quantization. Hence, the absorption of such a system in principle follows its

combined density of states and resembles the step-like function, see Fig. 6.2. However,

in addition, the sublevels exhibit pronounced excitonic resonances slightly below their

continua. They result from the induced excitonic polarization, i.e., Coulomb enhanced

pair states of electron and hole.

6.1.2 Excitonic Polarization

During excitation the excitonic polarization is coherent to the exciting electromagnetic

field until it is either Coulomb or phonon scattered to form excited, incoherent carriers

or re-emitted as radiation. Both processes contribute to the dephasing of the induced

excitonic polarization and are encoded in the homogeneous broadening of the reso-
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nance.

In general, all coherent effects in optically excited materials depend crucially on the de-

phasing of the addressed states. The dynamical Stark shift in Ge serves as an example:

it is two times larger than in GaAs which is attributed to an increased temporal over-

lap of pump pulse and the dephasing probe polarization.[36, 38] Hence, the knowledge

of dephasing times in material systems, which are typically referred to as T2-times,

is essential in order to interpret and model coherent effects correctly. In particular, it

is often used as a phenomenological damping parameter γ = 1/T2 in theoretical des-

criptions which summarizes all underlying processes invoking decoherence after optical

excitation.[13]

Assuming a dephasing excitonic polarization as a damped dipole oscillation we expect

a Lorentzian lineshape in the spectrum where the T2-time can be extracted from the

ΓF W HM as follows:[17]

γ =
1

T2

=
ΓF W HM

2~
. (6.1)

However, this estimate is strongly error-affected when the excitonic resonance exhibits

inhomogeneous broadening; then the lineshape becomes a convolution of a Lorentz and

a Gauss due to slight fluctuations of the quantum well width. Furthermore, when si-

gnificant overlap with the continuum exists, particularly in case of the higher subband

resonances (cf. Fig. 6.2 (a): transitions from LH1-E1 onwards), it yields grossly wrong

results.

Typically, the method to determine macroscopic dephasing times is degenerate four

wave mixing (FWM) spectroscopy which has been performed extensively on various

systems including bulk Ge.[113, 114, 115, 116, 117, 118, 119] Here, the duration of

the FWM-signal is directly governed by the dephasing of the induced polarization.

Yet, when excitonic resonances exhibit significant overlap with continuum states, the

FWM-signals show rather complicated structures and the extraction of the macrosco-

pic dephasing times of single excitonic resonances becomes tricky.[120]

Ultrafast pump-whitelight-probe spectroscopy offers the possibility to extract the ma-

croscopic dephasing time of the excitonic resonances within one spectrum with relative
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ease by exploiting a well-known coherent phenomena known as coherent oscillations.[121]

Pump-probe experiments are commonly performed to analyze the dynamics of the in-

coherent carriers after optical excitation.[120] Nevertheless, one should always consider

that the probe signal in pump-probe experiments contains a superposition of coherent

and incoherent responses. Especially in the time reversed situation, coherent effects

dominate the ∆αL spectrum; the probe pulse first excites a weak polarization in the

sample which is then scattered by the much stronger time-delayed pump.

Coherent oscillations are observed, when the initial
”
slow“ free induction decay (FID)

of the probe polarization governed by the reversible and the irreversible phase relaxati-

on comes to an abrupt end, e.g., by the pump-pulse excited high density of carriers (see

Fig. 6.3 (b)).[13] This quasi-instantaneous decay in the time domain causes an oscillato-

ry feature in the frequency domain. The microscopic theoretical framework capable to

calculate coherent and incoherent excitation dynamics correctly are the semiconductor

Bloch equations.[122] Concerning coherent oscillations, their central peak amplitude’s

dependence on the time delay between pump and probe can be approximated by an

exponential decay, if the pump pulse is set to energies high into the continuum and the

pump fluencies are large enough to bleach the excitonic resonances:[123]

∆T

T
∝ exp

(
τd

T2

)

; for τd < 0, (6.2)

with the differential transmission ∆T/T and the delay time τd. Hence, the dephasing

time can be directly extracted from the coherent oscillations’ transients.

6.2 Coherent Oscillation Spectroscopy

The measurements are performed in the ultrafast pump-whitelight-probe set-up descri-

bed in Ch. 3. The excitation energy is tuned well above the bandgap for all experiments

with photon fluencies of 1 × 1016 Photons/cm2 per pulse (100 fs). These high fluencies

assure that the required pump conditions are fulfilled in order to apply the approxima-

tion of Eq. 6.2. The linear absorption spectra are measured with both the pump-probe
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Abbildung 6.3: (a) Measured coherent oscillations from the excitonic resonance HH1-
E1 for different time delays between pump and probe τd. (b) Schematic
illustration of the abrupt end of the free induction decay (FID). (c)
Exponential decay of the coherent oscillation’s peak amplitude towards
negative time delays. (d) Detailed dephasing analysis of the three lowest
excitonic resonances in the Ge/SiGe quantum well sample A. Adapted
from Ref. [124].

setup and a Fourier-transform spectrometer, where it is taken care of that the lineshape

of one sample agrees well in both experiments.

A typical evaluation of the coherent oscillations with the extraction of the dephasing

time is presented in Fig. 6.3 (a,c). The differential transmission spectra are plotted ver-

sus energy around the HH1-E1 excitonic resonance for various time delays. Clearly, the

coherent oscillations are observed with their increasing peak amplitude and their diver-

ging oscillation period with decreasing negative time delays. The extracted intensity

of the central peak is given in Fig. 6.3 (c). Applying Eq. 6.2, the single-exponential fit

yields a measured dephasing time of 250 fs for the lowest excitonic resonance (HH1-E1).

Previous pump-probe measurements on Ge/SiGe quantum wells revealed an intervalley

scattering time τΓ−L of around 300 fs which can be assumed as the upper limit to form

incoherent, excited carriers.[125] Since the extracted dephasing time is comparable to
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τΓ−L, we conclude that the dephasing of the coherent polarization in Ge quantum wells

is governed by phonon scattering into the L valleys. Similar assumptions have been

made by Rappen et. al. for bulk Ge which is here confirmed for quantum wells.[118]

Therefore, the dephasing mechanism is in contrast to direct-gap semiconductors such as

GaAs, where Coulomb scattering and intra-valley phonon scattering are the main dri-

ving force typically exhibiting dephasing times of several ps in high-quality samples.[17]

The determined dephasing times for the lowest three excitonic resonances for sam-

ple A at a lattice temperature of 7 K are plotted in Fig. 6.3(d). The linear absorption

of the sample is included as a reference. The analysis yields 250 fs for the HH1-E1

transition, 210 fs for the LH1-E1 transition, and 130 fs for the HH2-E2 transition. In

order to interpret these results the peculiarities of the band structure of this sample

has to be considered which was previously evaluated by k·p-calculations and is shown

in Fig. 6.1.[126] As mentioned before, the LH1-subband is less confined and has conse-

quently a higher wave function overlap with the barriers. Therefore, an induced LH1-E1

excitonic polarization has an increased probability of scattering with structural defects

in the barriers which consequently reduces the dephasing time. The dephasing time

of the HH2-E2 excitonic polarization is nearly by a factor two smaller. Two efficient

scattering mechanisms are responsible for the fast dephasing: firstly, in Ge quantum

wells an inter-subband relaxation process of electrons from E2 to E1 exists during the

first 100 fs[127] and, secondly, the hole scattering efficiencies between HHk-HHl is two

orders of magnitude larger than the LHk-HHl efficiencies.[128]

The differences in the dephasing times also manifest themselves in the linear absorption

spectra: in Fig. 6.3(d) the determined total FWHMs of the excitonic resonances from

the linear absorption are given as black dots. They are determined by the half width

at half maximum of the low-energy flank in the linear absorption carefully avoiding

any continuum contributions. The total FWHMs of the two HH resonances, HH1-E1

and HH2-E2, are in good agreement with the extracted dephasing times. However, the

LH1-E1 resonance’s total FWHM is nearly twice as large as the broadening expected

from the coherent oscillations’ dephasing time. Again it is explained by the the weaker

confinement of the LH-sublevel: it leads to a lower oscillator strength which in combi-
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Abbildung 6.4: (a) Temperature dependence of the lowest excitonic resonance’s broa-
dening extracted by the coherent oscillation analysis and from the li-
near absorption. (b) Linear absorption comparison of two nominally
equal samples which exhibit two different lineshapes. (c) Dephasing ti-
me analysis for four nominally equal samples all exhibiting different
optical quality.

nation with the superimposed continuum makes the determination of the resonance’s

total FWHM from the linear absorption highly inaccurate. Hence, for LH1-E1 the sim-

ple estimation of Eq. 6.1 obviously fails to determine the dephasing time correctly. In

Fig. 6.4 (a) the temperature dependence of the total FWHM of the HH1-E1 excitonic

resonance of sample A from the linear absorption is compared to the extracted broa-

dening from the coherent oscillations. For all measured temperatures, the determined

values by the two methods agree well within the experimental error. Thus, the sample’s

lowest-lying transition is dominated by homogeneous broadening over the entire tem-

perature range. The decrease of dephasing time, i.e., the broadening of the resonance

with increasing temperature, is caused by the increase of phonon population providing

an enhanced number of possible scattering processes at higher temperatures.[129] At

room temperature, a dephasing time of 130 fs is extracted for the HH1-E1 excitonic

resonance.
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In the last part of this chapter the coherent oscillation analysis is applied to three

additional samples (B, C and D) with different linewidths in their linear absorption

spectra. The results are shown in Fig. 6.4 (c) where the total FWHM of the HH1-E1

excitonic resonance of the linear absorption is plotted against the extracted broade-

ning from the dephasing times at the lattice temperature of 7 K. All three samples

show shorter dephasing times than sample A which correlates with the corresponding

broader total FWHMs. These findings are tentatively explained by an increase of in-

terface roughness and structural defects which not only increase the inhomogeneity of

the sample (reversible phase relaxation) but also provide new scattering channels for

an induced polarization (irreversible phase relaxation), both decreasing the macrosco-

pic dephasing time.[120, 17, 130] In the inset the linear absorption of sample A and

sample B is plotted on a logarithmic scale clearly portraying the different lineshapes

(Fig. 6.4 (b)). Sample A shows a Lorentzian shape emphasizing the previously identi-

fied homogeneous broadening while sample B’s shape is more Gaussian-like indicating

the dominating presence of inhomogeneous broadening. Accordingly, dephasing times

can be used to determine optically high quality samples in Ge/SiGe material systems.

Here, sample A is the one with the highest quality, for it exhibits the longest dephasing

time with 250 fs. Considering the intrinsic scattering time of 300 fs, this sample exhibits

exceptional optical quality.
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7 Conclusions

”
As we all know, everthing was foretold by Aristotle or Jesus Christ. So

it is only with timidly throbbing heart that your author dares to ask the

deciding question: What might be novel in this article?“ U. Brosa [131]

Perfluoropentacene (PFP) single crystals are an ideal model system to study the ex-

citon dynamics after optical excitation. For the first time, it was possible to monitor

singlet exciton fission crystal-axis resolved, due to the unique growth characteristics

of PFP on the alkali-halide substrates NaF(100) and KCl(100). Here, this ultrafast

process occurs between the slip-stacked molecules along the þb-axis of the crystal. These

findings confirm theoretical works which predict strong inter-molecular coupling along

this direction as well as enhanced singlet exciton fission for a slip-stacked geometry.

Additionally, the coherent state of singlet and triplet excitons, the correlated triplet

pair 1(TT ), is identified as an asymmetric Fano resonance polarized along the þa-axis.

It emerges as a new absorption channel directly after optical excitation in pump-probe

experiments. The resonance is attributed to the inter-triplet system transition T1 → T4

at 2.25 eV which has been predicted previously by TD-DFT. The asymmetric Fano-

like lineshape is a result of the interference of the transition amplitudes from the nine
1(TT ) sublevels into the excited T4 state. As soon as the coherence is lifted, the induced

transition is observed as a symmetric Voigt resonance.

During the fission process, 300 fs after excitation, the 1(TT ) relaxes into an excimer

like state observed as broadband induced absorption along the þb-axis. This feature is

absent along the þc-axis, showing the virtually exclusive coupling along the slip-stacked

packing motif. Predominantly, the 1(TT ) recombines radiatively from the excimer-like

state to the ground-state manifested in featureless luminescence 300 meV below the lo-

west exciton transition. The residual triplet excitons, which act as individual excitons
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after ≈15 ps, decay on a nanosecond timescale. The gained findings were successfully

modeled with rate-equations taking into account all participating species.

In summary, the exciton dynamics in PFP occur exclusively along the þb-axis making

PFP virtually a 1D system. Here, the opportunity arises to thoroughly study the rich

and complex dynamics of interacting molecules in a slip-stacked arrangement. Further-

more, the comparison to other crystal structures have to be pursuit in order to learn

more about the correlation between packing motif and exciton dynamics. For instan-

ce, on metal surfaces, PFP adopts a planar crystal structure without an herringbone

angle, where the distance between slip-stacked molecules is reduced to 3.07 Å.[132]

Consequently, the inter-molecular interaction should be further increased changing the

exciton dynamics. In addition, synthesis and crystal growth of molecules with partial

fluorinated shell offer the possibility to study herringbone crystal structures with chan-

ged angles and lateral displacement between slip-stacked molecules.

In Chapter 4 the PFP single crystals are utilized for the first determination of the

Davydov-splitting in PFP. Since, the basis molecules adopt a nearly rectangular con-

formation yielding virtually vanishing transfer integrals, a Davydov-splitting of merely

25 meV is measured. It is a factor five lower than in Pentacene. Yet, due to the large

transfer integrals within the þb-axis and the corresponding strong dipole coupling, H-

aggregate (J-aggregate) like absorption is observed when the light is polarized parallel

to the þc-axis (þb-axis). Intriguingly, these signatures are reduced when the sample is op-

tically excited, indicating the loss of efficient coupling between molecules in the ground

and excited state. The temperature dependent measurement revealed a red shift of the

lowest exciton transition while the Davydov-splitting remains the same.

In Chapter 6 the dephasing times of excitonic resonances in Ge/SiGe quantum wells

were analyzed by evaluation of the coherent oscillations’ transients. This approach is a

fast and flexible alternative to FWM experiments typically used to determine depha-

sing times. A dephasing time of 250 fs was extracted for the lowest-lying HH-E1 exciton

resonance in the highest quality sample. This is in the order of previously reported in-

tervalley scattering times. Consequently the phonon scattering from the Γ to the L

valleys is the dominant dephasing mechanism for the coherent polarization in Ge. The

reduced dephasing time of 130 fs at room temperature is a consequence of the tempe-
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rature dependent phonon scattering rates which increase with temperature. Applying

the developed methodology to samples with different linewidths shows that higher in-

terface roughness and an increased number of structural defects further decrease the

dephasing times, and an inhomogeneous broadening in the HH-E1 excitonic resonance

is observed. Nevertheless, the supremum of sample quality in Ge/SiGe quantum wells

is reached when the macroscopic dephasing time approaches the intrinsic scattering

time of about 300 fs or a total FWHM of 4.4 meV at 7K.

As a concluding remark; all works concerning the study of PFP are interpreted with

the means of an experimental solid-state physicist, hence, based on phenomenological

methods. Rigorous quantum-mechanical calculations are necessary to confirm or dis-

prove the stated hypotheses. I could go by James Joyce,
”
A man of genius makes no

mistakes; his errors are volitional and are the portals of discovery.“, but I don’t walk

this way. So my hopes rely on the groups of L. Kronik and J. Neaton to reveal the

nature of the excitons in PFP in more detail.
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S. Chatterjee. Spin band-gap renormalization and hole spin dynamics in Ge/SiGe

quantum wells. Physical Review B, 85(24):1–5, June 2012.

147



Literaturverzeichnis

[107] U. Bockelmann and G. Bastard. Interband absorption in quantum wires. I. Zero-

magnetic-field case. Physical Review B, 45(4):1688–1699, January 1992.
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terjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, O. Rubel and

A. Thränhardt

Phys. Stat. Sol. (b), 2011, 248, pp. 851-854

• Clustering effects in Ga(AsBi)

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata,
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größten Herausforderungen war. Von daher gilt mein erster Dank selbstverständlich der
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