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Short Summary 

With an objective of designing gelatin based nanoparticulate delivery system for 

macromolecules, some of the important challenges associated with gelatin nanoparticles are 

addressed in this thesis. The first goal is to avoid aggregation, one of the most often 

encountered problems during nanoparticle formation from gelatin. In this context, different 

parameters involved in nanoprecipitation technique are investigated, in order to obtain 

optimum preparative conditions. Effective loading of FITC-dextran as a model hydrophilic 

macromolecule shows good potential of the system for macromolecular drugs. Attempts are 

also made to modify the surface of gelatin nanoparticles with PEI, in order to facilitate surface 

adsorption of negatively charged macromolecules. However, the size of nanoparticles is 

substantially increased after PEI coating. Moreover, the particles strongly positively charged 

particles showed an increased toxic behavior after surface modification with PEI.  

The second main challenge in gelatin nanoparticles is the use of crosslinkers for stabilization 

of particles. Since crosslinkers not only crosslink gelatin but also the active sites of 

therapeutic proteins, this may lead to biological inactivity of proteinaceous compounds. 

Therefore, we introduce an alternative approach of stabilization. Gelatin nanoparticles are 

entrapped in nanospheres made of synthetic polymers, using a unique technique of 

nanoprecipitation-emulsion solvent evaporation. PLGA seems to be ineffective, while 

Eudragit® E100 efficiently entraps gelatin nanoparticles in nanosphere matrix depending on 

concentration. 
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Kurzzusammenfassung 

Die Herstellung gelatinebasierter nanopartikulärer Drug Delivery Systeme für 

Makromoleküle birgt viele Herausforderungen. Diese Arbeit beschäftigt sich mit einigen der 

wichtigsten Schwierigkeiten bei der Herstellung von Gelatine-Nanopartikeln.  

Das erste Ziel stellt die Vermeidung der Partikelaggregation dar, eines der häufigsten 

Probleme mit dem die Herstellung von Gelatine-Nanopartikeln assoziiert ist. Zur 

Identifikation der diesbezüglich optimalen Herstellungsbedingungen wurden verschiedene 

Parameter der Nanopräzitations-Technik untersucht. Durch die effektive Beladung mit dem 

hydrophilen Modellmakromolekül FITC-Dextran konnte das hohe Potential dieses 

Trägersystems für makromolekulare Wirkstoffe gezeigt werden. Darüber hinaus wurde 

versucht die Oberfläche der Gelatine-Nanopartikel mit PEI zu modifizieren, um die 

Oberflächenadsorption von negativ geladenen Makromolekülen zu erleichtern. Neben der 

erfolgreichen PEI-Adsorption und der damit verbundenen positiven Oberflächenladung, nahm 

die Partikelgröße deutlich zu und die positiven Ladungen führten zu einer verstärkten 

Beeinträchtigung der Zellviabilität. Ein weiteres Problem bei der Herstellung von Gelatine-

Nanopartikeln stellt die Verwendung von Quervernetzer zur Stabilisierung der Partikel dar. 

Derartige Quervernetzer können nicht nur Gelatine, sondern auch aktive Zentren von 

therapeutischen Proteinen vernetzen, wodurch diese ihre biologische Aktivität verlieren 

können. Um dem entgegenzuwirken, wurde im Rahmen dieser Arbeit ein alternativer Ansatz 

zur Partikelstabilisierung entwickelt. Hierbei wurden die Gelatine-Nanopartikel unter 

Nutzung der einzigartigen Nanopräzipitation-Emulsions-Evaporations-Technik in 

Nanosphären verkapselt, die aus einem synthetischen Polymer bestehen. PLGA hat sich 

diesbezüglich als ungeeignet erwiesen, wohingegen Eudragit® E100 die 

konzentrationsabhängige Verkapselung von Gelatine-Nanopartikel in Nanosphären auf 

effiziente Weise ermöglicht. 
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1.1. Introduction 

Conventionally most of the pharmacologically active compounds have been of low-molecular 

weight. However advances in biotechnology have paved new ways for macromolecular drugs 

to become new therapeutics for several major disorders [1, 2]. These so-called biologicals are 

expected to occupy about 50 % sale of the top hundred drugs by 2018 [3]. Due to high 

molecular weight, macromolecules have limited ability to cross biological barriers. Hence, the 

factors required for delivery of appropriate amount of macromolecular drugs to the desired 

site of the body are significantly different from those required for conventional small 

therapeutic moieties. 

1.2. Delivery of Macromolecules 

Macromolecules are conventionally administered in aqueous solution using needles and 

syringes [4]. For the improvement in therapeutic efficacy of macromolecules, several 

approaches have been utilized e.g., photochemical internalization [5, 6], pH gradient 

exploitation [7], hydrogels [8-11], microneedles [12, 13], microparticles [14, 15], and 

nanoparticles [16, 17]. Nanoparticles have been proved to be one of the most promising 

delivery systems. The submicron size of nanoparticles favors intracellular uptake compared to 

larger carriers [18, 19]. Consequently, nanoparticles have gained increasing attention for the 

delivery of macromolecules [20, 21]. However, these systems are mostly based on 

hydrophobic polymers, which may induce unfolding and hence inactivation of hydrophilic 

macromolecules [22-24]. For this reasons, interests are diverting towards biopolymers as 

nanomaterial for the delivery of labile macromolecular drugs [25, 26], since biopolymers 

exhibit congruent properties in terms of their suitability for macromolecular drugs [27]. 



5 

 

1.3. Biopolymers 

Biopolymers are polymers produced and isolated from living organisms. They are typically 

safe materials having immense applications in devices intended for application in 

pharmaceutical and medical fields [28].  

Pharmaceutically used biopolymers are classified into two major classes: (1) polysacharides 

(e.g., chitosan, hyaluronan, dextran, cellulose, pullulan, chondroitin sulfate, alginate, etc.), 

and (2) proteins (e.g., collagen, gelatin, gliadin, albumin, etc.). Both groups are hydrophilic, 

biocompatible and biodegradable. However, comparison of both groups based on their merits 

is difficult because each group possesses its characteristic advantages. Some of the typical 

examples for naturally occurring biopolymers and their chemical structures are given in 

table 1.1.  

1.4. Gelatin   

Gelatin, as a prominent biopolymer, is a generic name for the mixture of purified protein 

fractions obtained from collagen [29]. It is isolated mainly from bovine hide, pork skin, and 

cattle bones. However, non-mammalian sources e.g. fish are also gaining interest [30-32]. 

Commercially two different types of gelatin (type A & type B) are available depending on the 

method of collagen hydrolysis. Type A gelatin is obtained by acid hydrolysis of gelatin. Acid 

processing barely affect the amide groups of glutamine and asparagine, resulting in an higher 

isoelectric point (IEP), i.e., 7-9 [33]. Contrarily, alkaline treatment hydrolyses asparagine and 

glutamine to aspartate and glutamate, respectively. Thus type B gelatin possesses a greater 

proportion of carboxyl groups, rendering it negatively charged and lowering its IEP (i.e. 4.5-

6.0) [34]. 
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Table. 1.1. Common biopolymers used in preparation of nanoparticulate drug delivery 

Biopolymers Bio-Source  Chemical Structure  Ref.  

Polysaccharides    

Cellulose Wood and agricultural residues 

 

[35] 

Chitosan Shells of marine crustaceans 

 

[36] 

Dextran Brown algae Leuconostoc 
mesenteroides 

 

[28] 

Alginate Bacteria e.g., Azotobacter and 
Pseudomonas species.  

[37] 

Hyaluronan Cartilage, skin, rooster combs, etc., 
Bacteria e.g., Streptococcus 
zooepidemicus. 

 

[38] 

Pullulan Bacterium Aureobasidium pullulans 

 

[39] 

Chondroitin 
sulfate 

Animal cartilage 

 

[40] 

Proteins    

Animal Proteins    

Gelatin Animal bones or skin 
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[41] 

Albumin Human or animal albumin - [42] 

    

Plant Proteins    

Gliadin Wheat gluten 

         

[43] 

Zein Maize (corn) - [44] 

Soy Proteins Soybeans - [45] 
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Gelatin dissolves in warm water forming a solution of uniformly distributed gelatin molecules. 

At temperature ˃35-40 °C gelatin-water mixture exists as sol [46]. At further lower 

temperature the intra-molecular hydrogen bonding induces a transition from sol to a 

structured three dimensional gel, at concentration higher than approximately 1% [47]. Lower 

concentration does not have sufficient molecules to support infinite three-dimensional gel 

network [48]. Various grades of gelatin are commercially available with different granule size, 

molecular weight etc. and grading is usually done by jelly strength (Bloom strength) [32]. 

Being a versatile natural polymer, gelatin has a broad range of applications i.e. food, 

photographic, medical and pharmaceutical products. In the food products, it is utilized as film 

former, gelling agent providing texture and shape to food [49, 50]. In the medical field it is 

used in artificial organs and tissue engineering [51, 52]. In pharmaceutical field it is 

conventionally used as emulsifier [53, 54], binder [55], gelling agent [56], vaccine stabilizer 

[57], and plasma expander [58]. Due to its innate properties it has gained new interests in drug 

delivery systems [59] such as hydrogels [60], films [61], microcapsules [62], nanoparticles, 

etc. [63-65]. 

1.5. Gelatin Nanoparticles (GNPs) 

The potentials of gelatin as nanomaterial was explored in 1980s for the first time [66, 67]. 

Biodegradability and biocompatibility are some of the important merits of gelatin 

nanoparticles development for in vivo application [68, 69]. Drugs can be effectively 

incorporated or attached to the surface of the nanoparticle matrix. Its proteinaceous origin has 

raised specific interest, due to the presence of different accessible functional groups. This 

provides multiple opportunities for modification e.g. attachment of targeting-moieties, 

crosslinkers and shielding substances [70-72]. All these virtuous properties of gelatin make it 
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an attractive biomaterial for nanoparticulate drug delivery systems [73].  

1.5.1. Preparation Techniques 

Different preparation techniques have been adopted by various investigators for gelatin 

nanoparticles, summarized in table 1.2. For instance, emulsion/solvent evaporation [74, 75], 

reverse phase preparation [76], inverse miniemulsion [77], coacervation [66, 67, 78-80], 

desolvation [63, 81-85], and more recently nanoprecipitation [86]. Some of the frequently 

used techniques are discussed as follows. 

Simple w/o Emulsion Method 

Cascone and Lazzeriet [75] introduced solvent evaporation technique based on single water-

in-oil (w/o) emulsion. Typically, the gelatin aqueous solution is homogenized in nonpolar 

phase comprised of poly(methylmethacrylate) (PMMA) dissolved in chloroform/toluene. Size 

of droplets is reduced by homogenization to obtain nanoemulsion, which is subsequently 

crosslinked to produce homogeneous solid gelatin nanoparticles in the size range 100-200 nm. 

Despite of difficult washing steps to remove PMMA, emulsion solvent evaporation was used 

by some researchers [74, 87]. 

Reverse Phase Preparation Technique 

In this method the particles are formed inside the inner aqueous core of reverse micellar 

droplets formed by surfactant bis(2-ethylhexyl sulphosuccinate) (AOT) in n-hexane [76]. 

Gelatin aqueous solution is accommodated in the internal aqueous core which is subsequently 

crosslinked. This method yields gelatin nanoparticles in the size range 40 nm. Nevertheless, 

the use of apolar solvent, and complexity in washing step are the main disadvantages of this 

technique [88]. 
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Inverse Miniemulsion Technique 

In this method two inverse miniemulsions are formed (i.e. emulsions A and B). Gelatin 

aqueous solution in p-Xylene, containing emulsifier comprises emulsion A. Similarly 

emulsion B is formulated by emulsifying glutaraldehyde (crosslinker) aqueous solution in p-

Xylene. Both crude emulsions are separately sonicated to form miniemulsions which are 

subsequently mixed and sonicated in an ice bath to fuse the droplets and produce crosslinked 

gelatin nanoparticles. Fusion and fission is considered to be the governing phenomenon for 

nanoparticles formation by inverse miniemulsion [77, 89]. Higher polydispersity, difficulty in 

removal of p-Xylene and repeated sonication are the main demerits of this technique. 

Coacervation Technique 

In coacervation/desolvation process, nanoparticles are formed by addition of sodium sulfate 

as coacervating agent to the gelatin solution [66]. This leads the system to liquid-liquid phase 

separation. Consequently a polymer rich dense phase (coacervate phase), is induced due to 

rolling up of gelatin molecules. Hence nanoparticles are formed due to the dehydration of 

gelatin molecules [67, 78], which are subsequently crosslinked by glutaraldehyde. Despite the 

addition of tween 20, the GNPs produced by sodium sulfate coacervation have bigger sizes 

and a broader size distribution [79, 80] than other techniques. 

Desolvation Technique 

In desolvation technique gelatin aqueous solution is desolvated at controlled pH by the 

addition of a desolvating agent (e.g., alcohol) under continuous stirring. Typically 

nanoparticles are formed as controlled precipitates when the solvent composition is changed 

from 100% water to 65% hydro-alcoholic solution [81, 90-92]. After crosslinking gelatin 

nanoparticles in the size range 200-500 nm are produced [82-84, 93-98]. Nanoparticles 



10 

 

produced by this technique are heterogeneous in size and have stability issues [85]. Besides, 

the reproducibility for different batches of nanoparticles and phase separation after a slight 

excess of ethanol, are some of the problems associated with desolvation [99]. Desolvation of 

gelatin aqueous solution is a very complex phenomenon. It can be affected by many factors 

such as pH, temperature, ethanol concentration and molecular weight [100]. The process of 

aggregation by ethanol induced desolvation is explained in detail by Mohanty et al [81, 91, 

92].  

Two-Step Desolvation Technique 

In an attempt to solve the stability problems associated with conventional desolvation, an 

important progress was made by Coester et al. in 2000 [85]. They introduced a two-step 

desolvation technique for gelatin nanoparticles. Typically, the low molecular weight portion 

of gelatin is discarded after the first desolvation. The high molecular weight precipitate is 

dissolved in water and re-desolvated at controlled pH. This technique produces particles in the 

size range of 100-300 nm. Two step desolvation has been one of the most widely employed 

techniques for preparation of GNPs [63, 99, 101-104]. Nevertheless, this technique works at a 

narrow pH range i.e., 2.3 to 4.0 before the second desolvation. Moreover, the temperature of 

gelatin solution, the amount of precipitate after the first desolvation step, and the speed of 

acetone addition during the second desolvation are some of the important factors affecting the 

size and homogeneity of produced nanoparticles [99]. The Asymmetrical Flow Field Flow 

Fractionation (AF4) and Multi Angle Light Scattering (MALS) showed that lowering the 

amount of low molecular weight fraction in gelatin bulk material omits the need of first 

desolvation step [102]. More specifically, gelatin batches containing less than 20 % (w/w) of 

<65 kDa molecular weight peptides resulted in successful nanoparticles formation by one-step 

desolvation. On the other hand gelatin with increased amount of high molecular weight 
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component >104 kDa failed to yield nanoparticles by one step desolvation. Thus, contrary to 

the earlier study of Farrugia & Groves [100], it is not essential to have increased amount of 

the high molecular weight fraction for the production of stable and homogeneous gelatin 

nanoparticles. Rather reduction of very low molecular weight components (<65 kDa) is 

critical for the stability and homogeneity of produced nanoparticles [99, 102]. Two-step 

desolvation enables the production of homogeneous gelatin nanoparticles. However, critical 

requirement for molecular weight and a narrow pH range are some of the drawbacks limiting 

the flexibility and reproducibility of the technique for broader application range. 

Nanoprecipitation Technique 

In order to produce gelatin nanoparticles without changing the native pH of gelatin solution 

and to avoid pretreatment of gelatin bulk material, i.e., removal of low molecular weight 

portion, nanoprecipitation technique was introduced [86]. Nanoprecipitation requires two 

miscible solvents; the polymer can be dissolved in one (the solvent) but not in the other (the 

nonsolvent). Typically, gelatin aqueous solution is dropped into the nonsolvent containing 

poloxamer as stabilizer. An interfacial turbulence is created due to solvent diffusion. 

Subsequently, a violent spreading occurs because of the solvent/nonsolvent mutual 

miscibility. Thus droplets of nanometer range are torn from the interface [105-107]. 

Nanoparticles are formed immediately when water diffuses to the nonsolvent, leaving behind 

the poloxamer stabilized gelatin nanoparticles. Those are then crosslinked with glutaraldehyde 

in order to obtain stable nanoparticles [108]. The size of nanoparticles can be tuned by 

changing gelatin concentration in the solvent phase and altering the composition of 

nonsolvent as described in chapter two. 
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Table 1.2. Advantages and disadvantages of different preparation techniques for gelatin 
nanoparticles. 

Preparation Method Size 
(nm) 

Positive aspects Negative aspects Reference 

Desolvation 200-500  Simple procedure Agglomeration, 
Polydispersity and stability 
issues. 

[83] 

Two step desolvation 100-300 Homogeneous size Narrow pH range,  
Specific molecular weight 
requirement.  

[85, 109] 

Emul./solvent evaporation 100-200 Homogeneous size Hectic procedure of washing 
for nanoparticles isolation 

[75] 

Reverse phase preparation 40 Small size Nanoparticles isolation [76] 

Inverse miniemulsion  150-200 No special gelatin 
needed 

High polydispersity and 
difficult procedure 
 

[77] 

Nanoprecipitation 250-350 Simple and straight 
forward procedure 

High amount of surfactant 
needed.  

Described in 
Chapter 2 

 

1.5.2. Drug Loaded Gelatin Nanoparticles  

Nanoparticles for drug delivery systems should ideally have high loading capacity so that a 

lower amount of carrier is required for delivery of a certain dose of the drug. Drug loading of 

the nanoparticles is achieved by two ways: The drug is either incorporated in the polymer 

solution before nanoparticle preparation, or by soaking the particles in drug solution, i.e., the 

drug is sorbed into the particles after preparation. A good incorporation method is thought to 

exhibit efficient loading compared to soaking method [110-113]. 

Different outcomes have been reported for various drugs in terms of loading and release 

(summarized in table 1.3). Overall, no concrete conclusion can be drawn for encapsulation 

efficiency. However, some of the factors can be assumed as important parameters, such as 
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solubility, ionization, and bloom strength of gelatin etc. For instance, Vandervoort and Ludwig 

[82] observed the important role of solubility in encapsulation. Such as, about 50% 

encapsulation was observed for hydrophilic compound pilocarpine HCl. The protonated 

pilocarpine molecule was considered to be attracted by negatively charged gelatin B. 

Comparatively lesser entrapment (i.e. 35%) was observed for hydrocortisone, a well know 

hydrophobic compound, however conjugation with cyclodextrins increased the encapsulation 

of hydrocortisone to 45%. On the other hand loading as high as 70% and 90% was observed 

for hydrophobic compounds like didanosine and cyclosporine respectively [114-116]. Thus 

encapsulation efficiency of the drug cannot be solely attributed to the solubility. Decrease in 

entrapment was observed for methotrexate upon increase in drug-polymer ratio [75]. 

Moreover, drug loading was also affected by the crystallinity of drug. For example entrapment 

efficiency of 33% was observed for an extremely hydrophobic compound paclitaxel because 

it existed in amorphous state. However, the entrapment of paclitaxel increased to 78% with 

higher bloom gelatin [117]. This means bloom strength also has an effect on entrapment. For 

instance 26% cycloheximide was loaded into gelatin nanoparticles prepared with 75 bloom, 

while the entrapment efficiency increased to 41% when gelatin of 300 bloom was used [118]. 

The release of drug from nanoparticles may be controlled by diffusion or dissolution. The 

mechanism of drug release from gelatin nanoparticles is considered to be controlled by 

diffusion, since the crosslinked nanoparticles matrix does not degrade in normal release 

medium [74]. Therefore, swelling of gelatin matrix, solubility of drug, molecular size of drug 

and involvement of drug in crosslinking can be considered critical in defining the release 

pattern of gelatin nanoparticles [119]. For instance, didanosine a sparingly water soluble 

compound showed a release of 50% in 24 hours, while a biphasic release with an initial burst 

release was observed for the water insoluble drug amphotericin B [120, 121]. A very rapid 

release of i.e.,∼90% release after 2 h was observed for paclitaxel from gelatin nanoparticles. 
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The reason for such a fast release was explained to be the amorphous nature of encapsulated 

paclitaxel [117]. Moreover, the extent of crosslinking obviously affects the drug release, i.e., 

gelatin nanoparticles with higher crosslinking degree exhibited slower release [74, 87, 119]. 

Moreover, the release rate and extent of release was dependent on the amount of drug loaded. 

Faster release was observed when higher amount of drug was used in formulation [74, 75]. 

Another important property of gelatin is the bloom strength. Gelatin with lower bloom 

showed faster release compared to higher blooms [118]. This may be due to better mechanical 

properties of gel network prepared with higher bloom [122]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

Table. 1.3. Examples of studies conducted on drug loaded gelatin nanoparticles 
Encapsulant Loading method Nanoparticle 

preparation method 
E.E (%) Ref. 

Methotrexate incorporation prior nanoparticle 
formation  

Emulsion  5-15 [75] 

Chloroquine 
phosphate 

Swelling post nanoparticles 
formation 

Emulsion 15-20% [74] 

BSA incorporation prior nanoparticle 
formation 

Emulsion - [123] 

Cytarabine Swelling post nanoparticles 
formation 

Emulsion - [74] 

Paclitaxel  Mixed with desolvating agent Desolvation with 
sodium sulfate 

33-78% [117] 

Pilocarpine incorporation Prior nanoparticle 
formation 

Desolvation with 
ethanol 

50 % [82] 

Hydrocortisone incorporation Prior nanoparticle 
formation 

Desolvation with 
ethanol 

35 % [82] 

Doxorubicin incorporation Prior nanoparticle 
formation 

Desolvation with 
sodium sulfate 

42 % [78-80] 

Didanosine incorporation Prior nanoparticle 
formation 

Two-step desolvation 70 % [116] 

Sulphamethaxazole Swelling post nanoparticles 
formation 

Emulsion method 18-39 % [87] 

Cycloheximide incorporation prior nanoparticle 
formation 

Two-step desolvation 25-40 % [118] 

Cyclosporine incorporation Prior nanoparticle 
formation 

Emulsion method 90 % [114] 

Rosiglitazone incorporation Prior nanoparticle 
formation 

Two-step desolvation 90 % [115] 

Amphotericin B incorporation prior nanoparticle 
formation 

Two-step desolvation 45% [120] 

Iron oxide incorporation prior nanoparticle 
formation 

Two-step desolvation    - [124] 

FITC-dextran incorporation Prior nanoparticle 
formation 

One step desolvation 10-80% [98] 
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1.5.3. Modified Gelatin Nanoparticles  

The presence of various functional groups (Figure 1.1) in the structure of gelatin makes it an 

interesting nanomaterial. Depending upon the purpose and intended application, gelatin 

provides different modification opportunities [83, 125].  

 

Figure 1.1. Chemical structure of gelatin 

Modification can be done before or after nanoparticle formation. Different modification 

strategies are summarized in table 1.4. For instance, the α-amino groups of gelatin can be 

modified to free thiol groups by 2-iminothiolane (Traut’s reagent), succinimidyl 3-(2-

pyridyldithio) propionate (SPDP), and succinimidyl 4-(p-maleimidophenyl) butyrate (SMPB). 

Alternatively, by quenching the aldehyde groups of the crosslinker glutaraldehyde (GTA) 

with cysteine, free sulfhydryl groups are generated on the surface of gelatin nanoparticles 

[126]. Similarly, carboxylic groups can be attached to other ligands by 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC), and dicyclohexyl carbodiimide 

(DCC). 

Modification for Extended Circulation Time 

Poly(ethylene-glycol) modification (PEGylation) is one of the most widely used approach to 

improve the circulation time of bioavailable drugs, hence decreasing dosing frequency [42–

47]. For this purpose Kaul and Amiji [83] modified gelatin nanoparticles by reacting them 
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with PEG-epoxide. In a different approach, Kim and Byun [127] adopted the approach of 

coupling carboxylated mPEG to amine groups of gelatin nanoparticles. PEGylated 

nanoparticles showed extended circulation time in breast tumor (MDA-MB-435)-bearing 

nude mice [97]. (PEG)–modified thiolated gelatin nanoparticles were developed as a long-

circulating passively targeted delivery system, which released the load in response to 

intracellular glutathione to enhance DNA delivery and transfection [96]. Furthermore, The 

mean residence time, and the area-under-the-curve (AUC) of PEGylated gelatin nanoparticles 

were significantly higher than those of the unmodified gelatin nanoparticles [94, 95]. 

Modification for Cell Specific Trafficking 

In an attempt to link avidin, the surface functional groups of the gelatin nanoparticles were 

thiolated and linked through a bifunctional spacer at high levels. Biotinylated peptide nucleic 

acid (PNA) was effectively complexed by the avidin-conjugated nanoparticles in order to 

explore the potential of the carrier system for biotinylated drug derivatives in antisense 

therapy. Likewise biotinylated epithelial growth factor (EGF) molecules were conjugated with 

gelatin nanoparticles to target lung adenocarcinoma (which contains EGF receptors) [40]. 

This increased uptake into adenocarcinoma cells (A549) compared to the uptake in normal 

lung cells (HFL1) [128, 129]. Balthasar et al [70] attached biotinylated anti-CD3 antibodies to 

gelatin nanoparticles by avidin-biotin-complex formation. The resulting nanoparticles could 

specifically target T-lymphocytes. A similar strategy was used for targeting CD3-positive 

human T-cell leukemia cells. An anti-CD3-antibody was conjugated with gelatin 

nanoparticles [130]. Furthermore, Kaur et al reported three times increase in uptake of gelatin 

nanoparticles into macrophage rich organs (lung, liver, and lymph nodes), by modification 

with mannose. 
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Modification for DNA and RNA delivery 

Surface modified gelatin nanoparticles as a potential carrier system for double stranded DNA 

and RNA oligonucleotides is reported. Zwiorek et al [131] modified the free carboxylic 

groups of gelatin nanoparticles with a quaternary amine (cholamine). This rendered the 

particles positively charged. These particles were then incubated with DNA solution in order 

to bind the negatively charged DNA electrostatically to the positively charged cholamine. The 

DNA transfection efficiency and cell viability studies were performed on the cultured human 

cells. The amount of nucleic acid loading was found to be dependent on the particle's zeta 

potential and the type of incubation medium [132, 133]. 

Table. 1.4. Approaches for modification of gelatin nanoparticles 

Modification Purpose Modifying moiety  Therapeutic improvement References 

Modification for 
hydrophilization 

PEG Long circulation 
[83, 93] 

 PEG 
Targeting subcutaneous 
lewis lung carcinoma cells 

[95] 

 PEG 
Targeting murine fibroblast 
cells (NIH3T3). 

[84, 96, 
97] 

Modification for site 
specific trafficking 

Biotinylated epithelial 
growth factor (EGF) 

Targeting adenocarcinoma 
cells (A549) 

[40, 128, 
129] 

 
Anti-CD3 antibodies Targeting CD3-positive 

human T-cell leukemia cells 
[70] 

 
Anti-CD3-antibody Targeting CD3-positive 

human T-cell leukemia cells 
[130] 

 
Mannose Targeting macrophages 

containing tissues (lung, 
liver, and lymph nodes) 

[116] 

Modification for DNA or 
RNA delivery 

Cholamine 
Positively charged for gene 
delivery [132, 133] 
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2. Aim and Scope of the Thesis 
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Most of the preparation techniques for gelatin nanoparticles are either tedious, require specific 

proportion of certain molecular weight fraction or need a narrow range of relevant pH. The 

requirement of extreme acidic or basic pH for successful nanoparticle preparation may affect 

the macromolecules to be loaded. Therefore the first objective was to offer an optimized 

technique without altering the intrinsic properties of gelatin. In this context a straight forward 

technique of nanoprecipitation will be presented. The effects of various parameters involved 

in the particle preparation process were investigated, in order to obtain optimum preparative 

conditions. FITC-dextran will be employed to assess the possible potential of macromolecular 

loading. The surface of gelatin nanoparticles will also be modified with PEI, in order to 

facilitate surface adsorption of negatively charged macromolecules. 

Secondly, an alternative approach for stabilization of gelatin nanoparticles without 

crosslinking will be presented. Since loading of proteinaceous drugs in gelatin nanoparticles 

due to the generalized reaction of crosslinkers with proteins seems to be impossible with no 

involvement in crosslinking. Therefore, a method of gelatin nanoparticles stabilization 

without crosslinking is needed. To date, no study has been performed to address this issue of 

gelatin nanoparticles. Therefore, we will present a novel technique for maintaining the 

structural integrity of gelatin nanoparticles in polymeric nanospheres, using nanoparticles in 

nanospheres (NiNOS) concept. The effect of different parameters and the physicochemical 

properties of nanosphere preparation will be investigated to get optimum formulation. 
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3. Improvement of Nanoprecipitation for Gelatin 
Nanoparticles Preparation 

 

 

 

 

 

 

 

Parts of this chapter have been published in: 

 
Saeed Ahmad Khan, Marc Schneider, Improvement of Nanoprecipitation Technique for Preparation of 

Gelatin Nanoparticles and Potential Macromolecular Drug Loading. Macromolecular Bioscience (2013) 

13(4):455-63. 

 

Saeed Ahmad Khan, Marc Schneider, Nanoprecipitation versus two step desolvation technique for 

the preparation of gelatin nanoparticles, SPIE conference proceedings volume:8595 (Colloidal 

Nanoparticles for Biomedical Applications VIII, 2013). 
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3.1. Abstract  

This chapter deals with the improvement of a previously developed nanoprecipitation 

technique for the preparation of gelatin nanoparticles. A sub-micrometer size range relevant 

for nanomedicines with a narrow size distribution was aimed for. An optimum preparation 

technique was established, which was based on the addition of an aqueous gelatin solution to 

a nonsolvent containing a stabilizer. Subsequent crosslinking with glutaraldehyde resulted in 

stable gelatin nanoparticles. Several factors of the preparation process, such as the surfactant 

concentration, type of surfactant, type of nonsolvent and gelatin concentration in the solvent 

phase were evaluated. Gelatin nanoparticles in the size range of 200-300 nm can be produced 

with 20-30 mg/ml of gelatin concentration in the solvent phase. Minimum stabilizer 

(Poloxamer 407 or Poloxamer 188) concentration of 7% w/v in the nonsolvent phase was 

needed. Furthermore, acetone and acetonitrile as nonsolvents yielded nanoparticles of size 

around 250 nm and 340 nm respectively at the same gelatin concentration. However, the size 

can be changed by varying the acetone/acetonitrile ratio. Moreover, the entrapment and 

release of FITC-dextran as a model macromolecular drug was dependent on molecular 

weight. About 70% and 90% entrapment efficiency was observed for 42kDa and 167kDa 

FITC-dextran. Faster and consistent release was exhibited by small molecular weight FITC-

dextran. Complete release was only possible after enzymatic digestion with trypsin. 

Furthermore, as a proof of biocompatibility cytotoxicity against L929 and SKOV-3 cell lines 

was investigated not indicating an acute toxicity. 
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3.2. Introduction  

In the past nanoparticles from gelatin were prepared by desolvation with sodium sulfate [134]. 

However, due to the polyampholytic nature and broad molecular weight distribution of 

gelatin, it has always been a challenging task to prepare stable and monodisperse 

nanoparticles from gelatin, without aggregation during crosslinking [99]. Therefore, various 

investigators have utilized different techniques for preparation of gelatin nanoparticles [74-77, 

81-84, 119, 135]. In this context Coester et al. introduced a two-step desolvation technique 

[136], which differed from the previous approaches in the sense that low molecular weight 

gelatin was discarded before formation of nanoparticles. This procedure allowed to form 

homogeneous sized nanoparticles. As a consequence, two-step desolvation has become the 

most widely used method so far [137-139]. However, removal of a major portion of gelatin 

and a narrow pH range (i.e. highly acidic or basic) as mandatory requirement for successful 

preparation are some of the drawbacks in two-step desolvation. Therefore, we explored the 

potential of nanoprecipitation for gelatin nanoparticle preparation, as a straightforward 

technique without altering the intrinsic properties of gelatin [86].  

Nanoprecipitation requires two miscible solvents. The polymer is soluble in one solvent (the 

solvent), but not in the second (the nonsolvent). The polymer in the solvent phase is added to 

the nonsolvent containing stabilizer [86, 140]. Interfacial turbulence due to solvent diffusion 

reduces the size to the nano range [23]. Nanoparticles are formed due to polymer aggregation 

in the stabilized droplets [141, 142]. The major drawback in nanoprecipitation was that it 

could only be used for nanoparticles formation from hydrophobic polymers. Thus 

encapsulating hydrophilic drugs especially macromolecules had always been difficult due to 

incompatible with the hydrophobic polymers [22, 23, 143]. Keeping in view this challenge, 

our focus was to explore the potential of nanoprecipitation for the encapsulation of a model 
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hydrophilic macromolecule (FITC-dextran) within gelatin nanoparticles. In this context, we 

also aimed to improve the nanoprecipitation technique for gelatin nanoparticles, and to define 

parameters for a stable gelatin nanoparticle formulation. Hence, the effect of various 

preparation parameters was investigated allowing to determine a reproducible formulation 

with uniform size. Furthermore, we also compared our technique with the most commonly 

used two-step desolvation technique for gelatin nanoparticles preparation.  

3.3. Experimental  

3.3.1. Materials 

Gelatin B bloom75 from bovine skin, Pluronic F-68 (Poloxamer 188), FITC-dextran (42 kDa, 

167 kDa and 580 kDa) and polysorbate 80 were obtained from Sigma-Aldrich. Lutrol® F127 

(Poloxamer 407) was obtained from BASF, Germany. Trypsin was from Sigma life science, 

USA. Ethanol, Methanol and n-Propanol were supplied by Sigma-Aldrich Germany (adjusted 

to 95% to favor dissolution of stabilizer). Acetone and Acetonitrile were obtained from Fisher 

Chemicals Germany. PBS ready mix was used to prepare phosphate buffered solution. 

TritonX-100 and glutaraldehyde were provided by BDH-Prolabo Chemicals. Polysorbate 20 

was obtained from Atlas Chemicals (Houston, USA). Millipore water with a resistivity of 18.2 

MΩ⋅cm was used throughout the experiments. 

3.3.2. Nanoparticles Fabrication by Nanoprecipitation  

20 mg gelatin was dissolved in 1ml of de-ionized water at 50 °C, it was then added drop-wise 

to 10 ml of ethanol containing Lutrol® F127 (7% w/v), and subsequently crosslinked with 0.5 

ml glutaraldehyde solution (2%, w/v). The system was stirred overnight to allow crosslink 

formation in the particles. 
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3.3.3. Formulation Optimization 

Gelatin nanoparticles tend to aggregate during the preparation process, which is augmented by 

the crosslinking reaction. Thus the formulation was optimized to obtain stable nanoparticle 

dispersions. In this regard, various parameters were investigated for their effects on particle 

size before and after crosslinking reaction.  

Stabilizer Type and Concentration 

To see the suitability of various stabilizers, poloxamer 407, poloxamer 188, polysorbate 80, 

polysorbate 20 and tritonX-100 were investigated at various concentrations (2-10%). The 

gelatin concentration in the solvent phase (20 mg/ml), solvent/nonsolvent ratio (1:10), and the 

glutaraldehyde amount (0.5 ml of 2% w/v) was kept constant. 

Nonsolvent Type and Volume 

In order to investigate the effect of the nonsolvent type, different nonsolvents (i.e. ethanol, 

methanol, isopropanol, acetonitrile, and acetone) were studied. Besides that, the effect of the 

solvent (aqueous phase) to nonsolvent (ethanol phase) ratio on the size was assessed.  

Gelatin concentration in the solvent phase was kept constant at 20 mg/ml. Furthermore, the 

mass ratio of gelatin to stabilizer (i.e. 1/32) and glutaraldehyde amount (0.5 ml of 2% w/v) 

was maintained unchanged. 

Gelatin Concentration in the Solvent Phase 

The ratio of solvent/nonsolvent(1/15), mass ratio of  gelatin to stabilizer (1/32), 

glutaraldehyde amount (0.5ml of 2%w/v), and the volume of nonsolvent(15 ml ethanol) were 

kept constant. However, gelatin concentration in the solvent phase was varied from 20 mg/ml 

to 35 mg/ml. Similarly using acetone as nonsolvent, gelatin nanoparticles with different 
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gelatin concentrations were also prepared.  

Comparison with Two-step Desolvation Technique  

Nanoprecipitation was compared with two-step desolvation for the effect of gelatin 

concentration on particle size and PDI.  

Particles preparation by two-step desolvation adopted the following protocol: 

200-400 mg of gelatin was dissolved in 10.0 ml water at 50 °C and then 10.0 ml acetone was 

added drop-wise. The solution was kept stagnant for two minutes to allow the high Mw 

fraction to sediment. After discarding the supernatant, the precipitate was redissolved in 10.0 

ml water at 50 °C, the pH was adjusted to 8.35. Then 25 ml of acetone was added drop-wise 

under vigorous stirring. The nanoparticles were crosslinked with 2.5 ml glutaraldehyde (2%) 

overnight. The nanoparticles were purified by three times centrifugation (10,000g/15 minutes) 

and redispersion in water and subsequently freeze dried.   

3.3.4. Loading of Gelatin Nanoparticles with Model Drug 

FITC-Dextran was chosen as a model macromolecular drug, because it lacks primary amino 

groups in its structure, thereby does not participate in the crosslinking process [144].  

Loaded gelatin nanoparticles were produced with typical procedure; briefly 22 mg of gelatin 

was dissolved in water containing 0.22 mg of FITC-dextran, it was subsequently added to 

ethanol. The produced nanoparticles after overnight crosslinking, were isolated and washed 

with water by three centrifugation/redispersion cycles and then freeze dried. 

Three different molecular weight FITC-dextrans (42 kDa, 167 kDa and 580 kDa) were used to 

see the effect of molecular weight. 
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Blank particles were prepared in the same way except that no FITC-dextran was added to the 

gelatin solution. 

3.3.5. Size and Zeta Potential of Nanoparticles 

Samples from crude nanosuspension were withdrawn just after production, as well as after 

overnight crosslinking, and 100 times diluted with the respective nonsolvent (ethanol, 

methanol, n-propanol or acetone). Then the mean size and polydispersity were measured three 

times for each batch by dynamic light scattering (DLS), using a Zetasizer nano-ZS (Malvern 

Instruments Ltd., UK).   

Size determination of the washed particles was done with 100 times diluted samples in water. 

Zeta potential of the dispersed particles was measured at different pH values using Zetasizer 

nano-ZS (Malvern Instruments Ltd., UK).  

3.3.6. Morphological Analysis 

Scanning Probe Microscopy (SPM) 

The crosslinked nanoparticles were centrifuged for 20-min cycles at 10,000×g. Afterwards the 

samples were redispersed and the procedure was repeated three times in order to gradually 

remove the dispersing medium and excess stabilizer. These samples were then evaluated by 

SPM. 

SPM analysis was performed at room temperature; the washed nanoparticles were diluted with 

ethanol. A drop of ethanol dispersed particles (to avoid agglomeration of particles during 

drying) was placed on a freshly cleaved mica sheet (Plano Planet GmbH, Wetzlar, Germany), 

and subsequently dried overnight. SPM imaging was performed under atmospheric conditions 

using a Bioscope® with a NanoscopeIV controller (DI Digital Instruments, Bruker 
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Corporation) in tapping mode. A cantilever with a spring constant of 40 N/m and a scan rate 

of 0.5 Hz (256 lines per image) was used for image acquisition. Raw data was processed by a 

flattening algorithm to remove background slopes, and hence analyzed by Nanoscope SPM 

software regarding size. 

Scanning Electron Microscopy (SEM) 

The morphology of nanospheres was also confirmed by SEM. For sample preparation, a 

silicon wafer was mounted on a metal hub using carbon adhesive tape. A drop of the washed 

nanosuspension was dropped onto the silicon wafer. Samples were dried by overnight 

evaporation under ambient conditions. Samples were coated with platinum. SEM images were 

obtained by JSM-7500F SEM (JEOL (Germany), München, Germany).  

3.3.7. Determination of Crosslinking Extent 

The extent of crosslinking in the gelatin nanoparticles was determined by an established 

trinitro benzenesulfonic acid (TNBS) assay [145]. 10-12 mg freeze dried gelatin nanoparticles 

(crosslinked and un-crosslinked) were dispersed in 1 ml 4% NaHCO3 and 1 ml 0.5% TNBS 

and heated at 40 °C for 4 hours. 3 ml of 6 M HCl was added and the mixture was autoclaved 

for 1 hour at 120 °C. The hydrolysate was diluted to 10 ml with water, and extracted with 

ethyl acetate to remove un-reacted TNBS. 5 ml aliquot of the aqueous phase was diluted to 25 

ml with water and the absorbance was measured at 349 nm (using PerkinElmer Lambda35 

UV/VIS spectrophotometer) against a blank.  

Blanks were prepared by the same procedure as above except that no gelatin was added. The 

number of primary amino groups as a parameter for crosslinking extent was obtained by the 

following formula:  
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cm)(b)(x)104L/mole.×(1.46
)ce)(0.025L2(absorban

gramin gelatin  of Mass
groups aminoprimary  of Moles

  

where 1.46×104L/mole.cm is the molar absorbtivity of TNB-lys, b is the path length in cm, 

and x is the sample weight in grams.  

3.3.8. Measurement of Drug Content and In Vitro Release 

FITC-dextran content in nanoparticles was evaluated in terms of entrapment efficiency 

(E.E%), which was determined by fluorescence intensity after enzymatic degradation. Briefly, 

5 mg of freeze dried particles were dispersed in 5 ml PBS (pH 7.4) at room temperature (23 

±2°C), containing 2.5 mg trypsin. After six hours of digestion the samples were diluted to 

25 ml and filtered using 0.22 µm filter. Fluorescence intensity was measured by 

Infinite®M200 plate reader (Tecan group, Switzerland). Calibration curve was prepared with 

different FITC-dextran concentration in PBS (the presence of gelatin and trypsin had no effect 

on the fluorescence intensity). Unloaded particles (no FITC-dextran) were used as blank. The 

entrapment efficiency was calculated by the following equation:  

100
usedgelatin  of   / Weightused drug ofWeight 

lesnanopartic of / Weight lesnanoparticin  drug ofWeight      (%) Efficiency Entrapment    

For estimation of the in vitro release process, 5 mg of gelatin nanoparticles were dispersed in 

25 ml PBS (pH 7.4). 2 ml samples were withdrawn at defined time intervals, and were 

centrifuged for 20 min at 10,000×g. Then 1 ml aliquots were withdrawn from the supernatant, 

1 ml PBS was added to the pellets. The pellets were redispersed and added to the original 

dissolution medium keeping the particle concentration constant. In the aliquots withdrawn, the 

amount of FITC-dextran was quantified. After five days gelatin nanoparticles were digested 

with trypsin (0.5 mg trypsin per mg of gelatin nanoparticles), in order to estimate total amount 

of FITC-dextran.   
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The turbidity of nanoparticles in PBS (pH 7.4) was measured in terms of absorbance at 600 

nm (using PerkinElmer Lambda 35 UV/VIS spectrophotometer), to correlate the release of 

FITC-dextran with dissolution of particles. 

In order to study the effect of molecular weight on the release, around 5 mg of freeze dried 

FITC-dextran (42 kDa, 167 kDa and 580 kDa) loaded particles were dispersed in 10 ml of 

phosphate buffer solution (pH 7.4). Aliquots of 1 ml were taken out in different Eppendorf 

tubes and incubated at 37°C. At different time intervals the tubes were centrifuged at 20000×g 

for 15 minutes. Supernatant was collected and analyzed for fluorescence intensity. 

3.3.9. MTT Assay 

Cell viability was performed using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT) assay, to determine in vitro toxicity of particle. This is a colorimetric assay 

based on reduction of MTT by mitochondrial succinate dehydrogenase in metabolically active 

cells. The MTT is converted to a dark purple colored formazan product, which is solubilised 

with DMSO and quantified spectrophotometrically as a measure for viability of the cells, 

since reduction of MTT can only occur in metabolically active cells. 

L929 murine fibroblast, one of the most intensively used cell line for cytotoxicity studies was 

used. Additionally, SKOV-3 human ovarian carcinoma cell line was used as a representative 

for human cancer. Cell were cultured at a density of 1×104 cells per well in a 96-well plate 

for 24 h. 100µl of nanoparticles diluted with cell culture media were put in each well and 

incubated at 37ºC for 24 hours. After the exposure time 100µl of cell culture medium 

containing MTT was added to each well and incubated for further four hours. After removal 

of the culture medium 100µl DMSO was added in each well to dissolve formazan product, 

which was measured by spectrophotometer at 495nm. Cells without any treatment were used 
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as negative control and cells treated with TritonX-100 were used as positive control. The cell 

viability was calculated using the following equation. 

100
control) Positive -control (Neagative

control) Positive - (Sample     (%)Viability  Cell   

 

3.4. Results and Discussion 

The original nanoprecipitation technique was based on poly-(D,L-lactide) (PLA) 

nanocapsules, being prepared by deposition of the polymer at the o/w interface following 

acetone displacement from oily nanodroplets [106]. The organic solvent phase was a serious 

constraint in the procedure, since it rendered the technique only suitable for water insoluble 

polymers [22]. However, the procedure was modified to produce nanoparticles from gelatin as 

a hydrophilic polymer [86]. This simple technique is shown schematically in Figure 3.1. 

Nanoparticles are formed instantaneously after addition of gelatin solution to nonsolvent. The 

mechanism of particle formation is explained by the interfacial turbulence created due to the 

solvent diffusion. Subsequently, a violent spreading occurs because of the solvent/nonsolvent 

mutual miscibility. Thus droplets of nanometers range are torn from the interface, which are 

eventually needed to be stabilized by a surfactant. Consequently aggregation of polymer 

chains leads to the formation of nanoparticles [107].  
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Figure 3.1. Schematic representation of gelatin nanoparticle formation by nanoprecipitation technique. 
 

3.4.1. Effect of Stabilizer Type and Concentration 

Gelatin is a polyampholyte, containing both positively and negatively charged segments in the 

polymer backbone. In the presence of nonsolvent, sequential intermolecular charge 

neutralization of gelatin molecules takes place; this intermolecular interaction typically leads 

to agglomeration [146]. Besides this, gelatin based devices readily lose shape in water, hence 

abruptly releasing the load [147]. Therefore crosslinking is an inevitable step in the 

preparation of gelatin nanoparticles. For crosslinking bifunctional crosslinkers are usually 

used e.g. glutaraldehyde, formaldehyde, carbodiimide [148]. The crosslinking step may also 

form inter-particular crosslinks simultaneous to intra-particular crosslinks, which may lead to 

aggregation as illustrated in Figure 3.2.  
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Figure 3.2. Schematic representation of glutaraldehyde crosslinked gelatin nanoparticles, (a) 
intraparticular crosslinks, (b) interparticular crosslinks. 
 

In order to circumvent possible instabilities due to agglomeration, stabilizers were used in the 

nonsolvent. Polysorbate 20 and Polysorbate 80 did not stabilize the suspension, while the 

effect of Poloxamers was concentration dependent. Poloxamer concentration affected the 

mean size of particles (Figure 3.3). Particles increased by 2-3 fold in the presence of 2% 

stabilizer. A similar trend was seen with stabilizer concentration as high as 5%. The increase 

in size is probably due to the formation of interparticular aggregates resulting in an 

inhomogeneous size distribution, which is apparent from the high value of the polydispersity 

index (PDI of 0.4-0.5) (Figure 3.3). Further increase of the stabilizer concentration to 6%, 

reduced the PDI to around 0.25 but it is still higher than that before crosslinking i.e. 0.1. At a 

stabilizer concentration of 7% or more (up to 10%), the mean size and PDI remained stable 

during crosslinking. Thus it can be said that a minimum of 7% poloxamer is necessary to 

produce stable nanoparticles in the size range of 150-250 nm.  
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Figure 3.3. Effect of stabilizer concentration on the particle size and polydispersity. In the figure, 
BC=Before crosslinking, AC=After crosslinking, P407=Poloxamer407, P188=Poloxamer188, 
PDI=Polydispersity index. 
 

SPM investigation showed spherical particles with smooth surfaces (Figure 3.4). Image 

analysis for particles size by SPM revealed smaller sizes than that measured by the Zetasizer 

(as shown in Table 3.1). The smaller size of nanoparticles shown by SPM is most likely due to 

the drying effects of the sample, whereas particles in dispersion are swollen and yield 

hydrodynamic radii. In addition, the presence of some larger particles in SPM micrographs 

(Figure 3.4) underlines the broader size distribution (obvious from PDI values in Table 3.1).  
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Figure 3.4. SPM analysis of gelatin nanoparticles highlighting some of the particles used in section 
analysis, (Formulation: 25 mg/ml gelatin in solvent phase).  
 

 
Table 3.1. Size characterization of gelatin nanoparticles by two methods 

      Size in nm ± S.D 

Stabilizer  Mol.Wt a b  Zeta sizer  AFM 

Poloxamer 407  12000 75 30  249.9 ±7.1 (0.12)*  100.8 ±52.3 

Poloxamer 188  8350 98 67  258.6 ±6.5 (0.16) *  138.2 ±56.4 
a, number of poly oxypropylene chains; b, number of polyoxyethylene chains. 
Formulation: Gelatin concentration: 25 mg/ml, nonsolvent: Ethanol (10 ml). 
*Values in parenthesis represent polydispersity index. 

 

3.4.2. Effect of Nonsolvent 

In preliminary experiments we had found that acetone and acetonitrile could not produce 

nanoparticles. Indeed, as soon as the polymer solution was dropped into these nonsolvents, 

the polymer underwent intense agglomeration and formed a visible precipitate. We thought 

the possible reason for nanoprecipitation failure might be the big difference in the solubility 

parameter values. However, we have found that the reason was actually the inefficient 

stabilizer chosen. Actually, we had used TritonX-100 instead of Poloxamer, due to the 
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insolubility of Poloxamer. In fact poloxamer can be dissolved if a portion of acetone is 

replaced with water. Hence, nanoparticles can be produced with these acetone and acetonitrile 

if poloxamer is used as a stabilizer. Figure 3.5 shows that the mean size of nanoparticles 

obtained with ethanol as nonsolvent was 244 nm, while acetone produced nanoparticles of 

around 250 nm. Nanoparticles produced with acetonitrile as nonsolvent were around 350 nm 

in size. However, the size can be changed by altering acetone/acetonitrile ratio. 

 
Figure 3.5. Effect of nonsolvent on particle size and polydispersity of gelatin nanoparticles 

 

 

Nanoprecipitation is governed by a complex phenomenon of polymer–nonsolvent–solvent 

system. Hence, solvent-nonsolvent interaction parameter, X, is an important parameter to 

explain solvent-nonsolvent affinity [149]. Equation (1) was used to calculate X [150], in order 

to correlate with nanoparticles size. 

X = 
VNS 

(δS - δNS)2                                          (1)                    
RT 

Where VNS is the molar volume of nonsolvent, R is the gas constant, T is the absolute 

temperature, and δS and δNS are the Hildebrand solubility parameters of solvent and 

nonsolvent, respectively.  

Solvent-nonsolvent interaction plays a vital role in the solvent diffusion phenomenon during 
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nanoparticles formation. Lower XS-NS values represent high affinity of the solvent for the 

nonsolvent, thus leading to formation of smaller nanoparticles due to faster diffusion [149]. 

Therefore the increase of particle size in Figure 3.5 can be attributed to an increase in XS-NS 

values, shown in Figure 3.5. However, the interaction parameter solely cannot be attributed to 

the solvent/nonsolvent affinity. Just as seen in case of acetone compared to ethanol as 

nonsolvent, where interaction parameter for acetone is 24 compared to 11 of ethanol. But the 

increase in size is not substantial. 

3.4.3. Effect of Solvent/Nonsolvent Ratio 

The solvent/nonsolvent ratio is an important parameter for preparing stable nanosuspensions; 

a ratio of as low as 1:7.5 lead to visible particles in the system with both the poloxamer types, 

though high PDI value is depicted only for poloxamer 188 as shown in Figure 3.6. 

Solvent/nonsolvent ratio of 1:10 could produce stable nanoparticles in the range of 250 nm. 

However, further increase in nonsolvent volume did not affect the size and PDI of particles.  

 
Figure 3.6. Effect of ethanol volume on particle size and polydispersity. BC=Before crosslinking, 
AC=After crosslinking, P407=Poloxamer407, P188=Poloxamer188, PDI=Polydispersity index. 
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3.4.4. Effect of Gelatin Concentration  

The mean size of gelatin nanoparticles increased with increasing concentration of gelatin in 

the solvent phase; for instance 20 mg/ml gelatin could produce particles in the size range of 

around 200 nm. The mean size increased to around 250 nm with a gelatin concentration of 30 

mg/ml. Additionally, SPM images reveal that the nanoparticles have spherical shape and are 

distinctly separated from each other. However, a concentration higher than 30 mg/ml 

produced big visible particles besides nanoparticles, which can be seen in figure 3.8(e) and 

which is also obvious from the higher mean size and polydispersity index (Figure 3.7). This 

might be due to the increase in viscosity of the gelatin solution, since increased viscosity of 

the solvent phase due to higher polymer concentration retards diffusion of the solvent toward 

the nonsolvent [23]. These results are in accordance with our expectations regarding similar 

data for other materials described in literature [151]. 

 
Figure 3.7. Effect of gelatin concentration on the particle size and polydispersity. BC=Before 
crosslinking, AC=After crosslinking, P407=Poloxamer407, P188=Poloxamer188, PDI=Polydispersity 
index, (ethanol as nonsolvent). 
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Figure 3.8. Scanning probe micrographs of nanoparticles produced by nanoprecipitation under 
different conditions: (a) 25 mg/ml gelatin, poloxamer407 as stabilizer; (b) 25 mg/ml gelatin, 
Poloxamer188 as stabilizer; (c) 30 mg/ml gelatin, poloxamer407 as stabilizer; (d) 30 mg/ml gelatin, 
poloxamer188 as stabilizer; (e) 35 mg/ml gelatin, poloxamer407 as stabilizer. 
 
 
 
 

(c) (d) 
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The effect of gelatin concentration using acetone as nonsolvent is shown in Figure 3.9. 

Gelatin nanoparticles of around 250 nm size can be produced with gelatin concentration 20 

mg/ml. The size increased to around 300 nm when gelatin concentration was increased to 35 

mg/ml gelatin. Visible aggregates appeared with gelatin concentration 45 mg/ml. This was 

depicted in the PDI value of 0.37. Particles produced with gelatin concentrations lower than 

30 mg/ml were monodisperse showing a PDI less than 0.2. However the PDI steadily 

increased with higher gelatin concentrations.  

 

Figure 3.9. Effect of gelatin concentration on the particle size and polydispersity (Acetone as 
nonsolvent). 
 

SEM images (Figure 3.10) show that nanoparticles have spherical shape. The black square 

shaped spot in the middle of Figure 3.10(f) is a common artifact observed in SEM analysis, 

due to longer exposure of sample in electron beam. The particle size calculated from SEM 

using imageJ® is summarized in table 3.2, which also shows the change in size due to 
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                            (a)                                                                (b) 

              
                           (c)                                                                 (d) 

              
                           (e)                                                                  (f) 

Figure 3.10. SEM images of gelatin nanoparticles produced under different conditions: (a) 20 mg/ml 
gelatin, ethanol as nonsolvent; (b) 20 mg/ml gelatin, acetone as nonsolvent; (c) 20 mg/ml gelatin, 
acetonitrile as nonsolvent; (d) 25 mg/ml gelatin, acetone as nonsolvent; (e) 35 mg/ml gelatin, acetone 
as nonsolvent; (f) 45 mg/ml gelatin, acetone as nonsolvent. 
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Table 3.2. Size characterization of gelatin nanoparticles produced at different conditions. 

Nonsolvent Conc.  (mg/ml)* 1Size by DLS (PDI)  2Size from SEM  

Ethanol 20   244.0 ± 3.2  (0.15)    186.7 ± 65.0  

Acetone 20   253.9 ± 4.0  (0.16)    182.6 ± 49.2  

Acetonitrile 20   347.4 ± 20.4  (0.31)    326.2 ± 150.8 

Acetone 25   253.7 ± 4.2  (0.18)    221.8 ± 65.6 

Acetone 35   300 ± 6.5  (0.26)    287.0 ± 71.8 

Acetone 45   328.9 ± 5.6  (0.37)    308.1 ± 115.6 
            *Gelatin concentration in the solvent phase, 1 Dispersed in water after washing, 2 50 particles analyzed using ImageJ®  

 

3.4.5. Comparison of Nanoprecipitation with Two-Step Desolvation Technique  

Nanoprecipitation and two-step desolvation were compared for the effect of gelatin 

concentration on the mean size of gelatin nanoparticles. In case of nanoprecipitation when the 

gelatin concentration was increased from 20 mg/ml to 35 mg/ml, the mean size of particles 

increased from 206 nm to 299 nm and 214 nm to 291 nm (using poloxamer N407 and 

poloxamer 188 as stabilizer, respectively, as shown in Figure 3.11a), and the PDI values 

almost doubled in case of both the stabilizers (Figure 3.11b). The increase in PDI can be 

attributed to the big visible particles produced, as shown in Figure 3.12c.  

Two-step desolvation yield comparatively smaller particles than nanoprecipitation. However, 

a similar trend of increase in size was observed, where the particle size increased from 60 nm 

to 155 nm when the concentration was increased from 20 mg/ml to 35 mg/ml (Figure 3.11a). 

However the PDI values show that particles produced with higher concentration of gelatin 

were more uniform in size than those produced with smaller gelatin concentration, as shown 

in Figure 3.11b. 
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Figure 3.11. Effect of gelatin concentration on the size (a) and polydispersity index (PDI) (b) of 
nanoparticles produced by two stefp desolvation and nanoprecipitation. 
 

Thus, for both techniques a general trend of increasing particle size was observed with 

increase in gelatin concentration. However, the increase in PDI was contrary in both cases; at 

higher gelatin concentration, PDI increased in case of nanoprecipitation, while a decrease in 

PDI was observed for two-step desolvation. 

SPM images revealed that nanoparticles prepared by nanoprecipitation at low concentration 

(i.e. 25 mg/ml) are uniformly spherical (Figure 3.12a), while those prepared by two-step 

desolvation with a similar gelatin concentration are comparatively irregular in shape (Figure 

3.12b) Contrarily, at higher concentration (35 mg/ml) two-step desolvation produced 

comparatively more spherical and uniform particles (Figure 3.12d) than nanoprecipitation 

(Figure 3.12c). 
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Figure 3.12. SPM analysis of gelatin nanoparticles produced by (a) Nanoprecipitation (20 mg/ml 
gelatin) (b) Two-step desolvation (20 mg/ml gelatin) (c) Nanoprecipitation (35 mg/ml gelatin) (d) 
Two-step desolvation (35 mg/ml gelatin).         
 

3.4.6. Zeta Potential of Nanoparticles 

Gelatin is a polyelectrolyte containing both anionic and cationic groups. The net charge 

depends on the type of gelatin and the solution pH. During nanoparticles formation, gelatin 

chains are crosslinked to form stable nanoparticles. However, not all the primary amino 

groups are crosslinked (evident from the 72% crosslinking degree in table 3.3), though the 

number of positively charged groups is decreased. Hence, the zeta potential profile of gelatin 

nanoaparticles at different pH values shows that ionized cationic groups predominate at lower 

pH, thus rendering the overall surface positively charged. The net charge on particles’ surface 

is almost zero at around pH 5. While at higher pH the particles tend to be negatively charged, 

as shown in Figure 3.13. 

(a) (b) 

(c) (d) 
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Figure 3.13. Zeta potential of gelatin nanoparticles determined at different pH values. 

 

3.4.7. Extent of Crosslinking of Gelatin Nanoparticles 

The extent of crosslinking in glutaraldehyde crosslinked gelatin nanoparticles was determined 

by trinitro-benzenesulphonic acid (TNBS) assay. It is based on the estimation of primary 

amino groups in crosslinked and uncrosslinked particles. TNBS reacts with the primary amino 

groups under mild alkaline conditions to produce an unstable Meisenheimer complex. 

Subsequent acidification rapidly converts the orange unstable product to a yellow stable 

trinitrophenol derivative, which has maximum absorbance at approximately 349 nm.  

The absorbance of uncrosslinked and crosslinked gelatin nanoparticles is correlated with the 

number of free amino groups present. The result shows that gelatin nanoparticles crosslinked 

with 0.5 mg GTA/1 mg gelatin exhibited around 72.5 ±0.12% crosslinking extent (as shown 

in table 3.3). 
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Table. 3.3. The extent of crosslinking in gelatin nanoparticles prepared by standard recipe. 

Gelatin 

Nanoparticles 

Size in nm ± 

S.Dev 

Crosslinking 

% 

Uncrosslinked 231.4 ± 6.1 0 

Crosslinked 225.5 ± 7.8 72.5 ± 0.12% 

 

 

3.4.8. Drug Loading and Release 

The entrapment efficiency (E.E) increases with increase in molecular weight. FITC-dextran of 

42 kDa showed around 70% E.E, while around 90% entrapment was observed for 167 kDa 

FITC-dextran. The maximum entrapment was seen for 580 kDa FITC-dextran i.e., ca. 100%, 

as shown in Figure 3.14. The low entrapment of small molecular weight FITC-dextran is 

probably due to escape of loosely entrapped FITC-dextran during washing. On the other hand 

high Mw bigger FITC-dextran molecules are possibly entangled firmly within the 

nanoparticles matrix, hence resist the leakage during washing step thus showing higher 

entrapment. Such an increase in entrapment due to increase in molecular weight of FITC-

dextran was observed by other investigators as well [152].  

 

 
Figure 3.14. Effect of molecular weight of FITC-dextran on entrapment efficiency of gelatin 
nanoparticles. 
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The release profile of different molecular weight FITC-dextran is given in Figure 3.14. Which 

shows that smaller molecular weight FITC-dextran exhibited faster release compared to 

higher molecular weight FITC-dextran. For instance 42 kDa FITC-dextran showed around 

10% release in the initial half hour. Followed by a continuous release for 144 hour where 

almost half of the drug is released. In case of 167 kDa FITC-dextran, just 10% release was 

observed in 8 hours. However the release reached to a plateau at 20% in 72 h. Similar slow 

release was also exhibited by 580 kDa FITC-dextran. This slow release of high molecular 

weight dextran is not due to involvement of the drug in the crosslinking process, since dextran 

is a polysaccharide lacking primary amino groups and hence does not participate in the 

chemical crosslinking process [144]. Most likely there exists a molecular weight cutoff point 

for diffusion from the nanoparticles matrix. Possibly, 42 kDa is below that limit, hence a 

continuous release is observed. Contrarily, 167 kDa and 580 kDa seem to be big enough that 

free diffusion of FITC-dextran molecules from the nanoparticles matrix is hindered. This is 

reflected in almost similar release profile of 167 kDa and 580 kDa FITC-dextran, where a 

plateau at 20% indicates no further release of FITC-dextran.  

 

Figure 3.14. Effect of FITC-dextran molecular weight on release from gelatin nanoparticles 
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The trypsin induced destruction of gelatin network and hence dissolution of particles is 

evident from the turbidity profile in Figure 3.15. This can be correlated to an abrupt release of 

about 80% of the loaded FITC-dextran within an hour after tryptic digestion. Gelatin being a 

protein is composed of amino acids; Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro [153]. This 

makes it prone to tryptic digestion. Likewise, trypsin, an endopeptidase which operates by 

preferentially cleaving the carboxyl side of lysine and arginine residues, i.e. hydrolyzes 

specific peptide linkages of gelatin. Thus liberating the FITC-dextran encapsulated within the 

gelatin matrix [154]. It can be concluded that tryptic digestion breaks the crosslinked gelatin 

network, hence leading to free diffusion of the remaining FITC-dextran from the 

nanoparticles. 

 

Figure 3.15. In vitro release profile of FITC-dextran and turbidity of gelatin nanoparticles in PBS (pH 
7.4), before and after addition of digestive enzyme. 
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3.4.9. Cytotoxicity Studies 

MTT assay was used to assess the cytotoxicity of gelatin nanoparticles. Four different 

concentrations of gelatin nanoparticles were tested. The results show no substantial 

cytotoxicity of SKOV-3 and L929 cells incubated with gelatin nanoparticles for 24 hours 

(Figure 3.16). Thus it can be concluded that the nanoparticles are biocompatible and do not 

possess any significant toxicity in vitro. 

Though the charge on surface of gelatin nanoparticles is dependent on the pH of the medium, 

at neutral or physiological pH the particle are negatively charged (mentioned before). This is a 

well-known fact that anionic nanoparticles are more compatible with the cell surface than 

cationic particles [155]. Hence, the biocompatibility of gelatin nanoparticles can be attributed 

to the negative surface of nanoparticles. 

  

Figure 3.16. Cytotoxicity analyses results by MTT assay after 24 hour incubation with gelatin 
nanoparticles. 
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3.5. Conclusion 

Gelatin nanoparticles (200-350 nm) could be effectively prepared by nanoprecipitation using 

poloxamer 407 and poloxamer 188 as stabilizers and ethanol, acetone and acetonitrile as 

nonsolvent. Particles stability was greatly affected the presence of stabilizers and the 

respective stabilizer concentration. A minimum of 7% stabilizer concentration was necessary 

to prevent aggregation during the crosslinking process. The size can be tuned by either 

varying gelatin concentration in the solvent phase or changing the nonsolvents. However, too 

high concentration of gelatin led to big visible precipitates. With similar gelatin concentration, 

two-step desolvation produced smaller particles compared to nanoprecipitation. Additionally, 

increase in gelatin concentration increased the homogeneity of nanoparticles in case of two-

step desolvation. FITC-dextran as a model hydrophilic macromolecule can be effectively 

loaded into gelatin nanoparticles via nanoprecipitation. The release was dependent on the 

molecular weight. Faster and continuous release was exhibited by smaller FITC-dextran and 

vice versa. Total release was possible after digestion with trypsin. No cytotoxicity was 

observed on L929 and SKOV-3 cell lines. Thus it can be concluded that the system provides a 

good opportunity for the delivery of macromolecular drugs. 
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4. Surface Modification of Gelatin Nanoparticles with 
Polyethylenimine  
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4.1. Abstract 

Gelatin nanoparticles are negatively charged at neutral pH, independent on the type of bulk 

gelatin used. Since most of the amino groups are crosslinked during the process of 

nanoparticles preparation. For surface loading of negatively charged substances e.g., 

oligonucleotides and plasmid DNA, the nanoparticles surface is rendered cationic by 

introduction of positively charged moieties such as quaternary amines. This is usually done by 

covalent modification of gelatin before or after nanoparticle formation. This study focuses on 

cationization of nanoparticles surface without covalent modification. Polyethylenimine (PEI) 

was physically adsorbed onto the anionic surface of gelatin nanoparticles. The effect on size, 

PDI, and zeta potential of GNPs after coating with different volume ratio of PEI was studied. 

The size of crude GNPs increased from 200 nm to around 325 nm with a PDI of around 0.3 

after coating with PEI. The size of GNPs after dispersing in PEI solution before centrifuged 

was around 225 nm which increased to around 350 nm after washing steps. pH of coating 

solution above 4 was important for successful coating. Uncoated GNPs had a zeta potential of 

-20 mV while that of PEI coated particles was in the range of shows +45 to +50 mV, 

regardless of volume of PEI.   
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4.2. Introduction 

Commercially two different types of gelatin (type A & type B) are available depending on the 

method of collagen hydrolysis. Type A gelatin is obtained by acid hydrolysis of gelatin. Acid 

processing barely affects the amide groups of glutamine and asparagine, resulting in higher 

isoelectric point (IEP), i.e., 7-9 [24]. On the other hand, alkaline treatment hydrolyses 

asparagine and glutamine to aspartate and glutamate, respectively. Thus it possesses a greater 

proportion of carboxyl groups, rendering it negatively charged and lowering its IEP to 4.5-

6.0) [34]. However, contrary to the bulk gelatin, gelatin nanoparticles are negatively charged 

at neutral pH, independent of the type of gelatin [63].  

Therefore, enabling the surface of GNPs to adsorb negatively charged substances like 

oligonucleotide, plasmids, small interfering (si) RNA, locked nucleic acid (LNA) nucleotide 

etc., would profit from introducing positively charged moieties such as quaternary amines. 

This is usually done by covalent modification, which can be done before or after nanoparticle 

formation. In most of the cases reactive linkers like succinimidyl 3-(2-pyridyldithio) 

propionate (SPDP), succinimidyl 4-(p-maleimidophenyl) butyrate (SMPB), 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC), and dicyclohexyl carbodiimide 

(DCC) are used [156]. Zwiorek et al [133] and Ziellis et al [132] modified the free carboxylic 

groups of gelatin nanoparticles with a quaternary amine (cholamine) using EDC as linker. The 

particles are then incubated with DNA or plasmid DNA solution in order to bind the 

negatively charged DNA electrostatically [157].  

The aim of the present work was to formulate and optimize primary amine modified gelatin 

nanoparticles. Polyethylenimine was electrostatically deposited on the negatively charged 

surface of gelatin nanoparticles. The nanoparticles were characterized for size, zeta potential, 

morphology, and cytotoxicity. 
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4.3. Experimental 

4.3.1. Materials 

Gelatin B bloom75 from bovine skin, pluronic F-68 (poloxamer 188), glutaraldehyde (GTA) 

and polyethylenimine (PEI) were obtained from Sigma-Aldrich, Munich Germany. Acetone 

was obtained from Merck Millipore, Darmstadt, Germany. Millipore water was used 

throughout the experiments. 

4.3.2. GNPs by Nanoprecipitation  

20 mg gelatin was dissolved in 1 ml of millipore water at 50 °C. It was then added drop wise 

to 15 ml of acetone containing Pluronic® F-68, and subsequently crosslinked with 0.5 ml 

glutaraldehyde solution (2% w/v). The nanoparticles suspension was stirred overnight for 

crosslinking.  

4.3.3. Coating of GNPs with PEI 

Coating of Crude GNPs 

Gelatin nanoparticles after overnight crosslinking were diluted with 15 ml water and added to 

60 ml PEI solution (2%). After 4 hours of stirring the particles were washed three times by 

centrifugation (10000×g, 15min) and redispersed in water. 

Coating of Centrifuged GNPs 

Gelatin nanoparticles after overnight crosslinking were centrifuged at 10000×g for 15min. 

The pellet was re-dispersed in 30 ml water and added to 60 ml PEI solution (2%). After 4 

hours of stirring the particles were washed three times using centrifugation (10000×g, 15min) 

and redispersed in water. 
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4.3.5. Size and Zeta Potential of Nanoparticles 

The size (z-average mean) and zeta potential of the nanoparticles were analyzed by Zetasizer 

nano-ZS (Malvern Instruments Ltd., Worcestershire, UK). The nanoparticles suspension was 

approximately 100 times diluted with de-ionized water at 25°C before measurement. Each 

sample was analyzed in triplicate. 

To see the effect of PEI solution volume, 1 ml of GNPs suspension was added to different 

volumes (0.25 ml, 1 ml, 2 ml and 4 ml) of PEI solution. Additionally the size and 

zetapotential was also measured at different centrifugation steps.   

The pH of PEI solution was varied between 2-11 to see the effect on size and zetapotential. 

4.3.6. Morphological Analysis 

TEM (Transmission Electron Microscopy) samples were prepared at ambient condition; a 

drop of nanoparticles suspension was placed on a TEM grid, stained with 0.1% uranyl acetate 

and visualized after drying using a JOEL model JEM-2010 instrument (JEOL GmbH, 

München, Germany).  

4.3.7. MTT Assay 

Particles were tested for in vitro toxicity using MTT assay . This is an assay used to quantify  

metabolically active cells colorimetrically. Mitochondrial succinate dehydrogenase reduces 

MTT to a dark purple colored formazan product, which after dissolution in DMSO is 

quantified spectrophotometrically as a measure for cell viability. 

One of the most intensively used cell line for cytotoxicity studies i.e., L929 murine fibroblast, 

was used. Besides this, SKOV-3 human ovarian carcinoma cell line were used as 

representative for human cancer.  
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Nanoparticles suspension was serially diluted with culture medium. 100 µg/ml of cell culture 

medium containing nanoparticles (i.e., 750 µg/ml, 187.5 µg/ml and 93.75 µg/ml) was added 

into each well of a 96 well plate containing a density of 1×104 cells per well. After incubation 

at 37ºC for 24 hours 100 µL of cell culture medium containing MTT was added to each well 

and incubated for further four hours. Then the cell culture medium was removed. Formazan 

product was dissolved in 100µl DMSO per well and measured with a spectrophotometer at 

495nm. Cells without any treatment were used as negative control and TritonX100 was used 

as positive control. The cell viability was calculated using the following equation. 

 

100
control) Positive-control (Negative

control) Positive - (Sample     (%)Viability  Cell   

 

4.4. Results and Discussion 

Gelatin is a polyelectrolyte containing both positive and negative charged groups. The net 

charge depends on the solution pH. During nanoprecipitation sequential intermolecular charge 

neutralization in gelatin molecules leads to nanoparticles formation. Crosslinking is an 

inevitable step in preparation of gelatin nanoparticles. Crosslinkers like glutaraldehyde, 

formaldehyde links primary amino groups giving a stable solid structure to the particles. It 

must be realized that the crosslinker does not crosslink all the primary amino groups (evident 

from the 72% crosslinking degree, discussed in chapter 3). Thus gelatin nanoparticles contain 

both positively and negatively charged groups, depending on the pH one type of groups 

predominate the others thus influence the overall surface charge of the particles. At lower pH 

values carboxylic groups are not deprotonated, thus GNPs are positively charged, and vice 
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versa at higher pH values. Hence, the effect of pH on the zeta potential is evident from Figure 

4.1. 

 
Figure 4.1. Zeta potential of gelatin nanoparticles measured at different pH values. 

 

Hence our strategy was to deposit PEI (a branched poly-anion) on the negatively charged 

surface of gelatin nanoparticles in neutral condition. Gelatin nanoparticles were prepared by 

nanoprecipitation technique. The proposed electrostatic binding of PEI to the nanoparticles 

surface is schematically shown in Figure 4.2.  

 
Figure 4.2. Schematic illustration of PEI deposition onto the surface of gelatin nanoparticles 
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4.4.1. Physicochemical Characterization 

Effect of GNPs to PEI Solution Volume Ratio  

GNPs were coated with PEI preparing different volume ratios of PEI (2% solution). As shown 

in Figure 4.3(a), the size of GNPs is around 250 nm after centrifugation, which increased to 

around 400 nm when coated with PEI. On the other hand, in case of crude GNPs (without 

centrifugation) the effect of PEI coating on size was comparatively less pronounced, i.e., the 

size increased from 200 nm to 325 nm after PEI coating (GNPs/PEI volume ratio 1/4 and 1/2). 

This might be because of the Poloxamer which was used for preparation of GNPs providing 

steric hindrance during coating and easy redispersion after centrifugation. As a result, the 

crude particles have lower PDI values compared to centrifuged particles, after PEI coating.   

Figure 4.3(b) shows the zeta potential values. The uncoated GNPs had a zeta potential of -

20 mV while that of PEI coated particles was in the range of +45 to +50 mV. the PEI volume 

does not have any effect on zeta potential. This means that the surface of gelatin nanoparticles 

is fully coated with PEI, independent of the PEI volume. 

        
                                        (a)                                                                                     (b) 

Figure 4.3. Effect of Gelatin/PEI volume ratio on the size, (a) and zeta potential (b) of nanoparticles. 
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Effect of Centrifugation Step 

It was important to see the effect of each centrifugation step on the particles. The size and zeta 

potential was measured at every centrifugation step.  

A slight increase in size and PDI was seen for uncoated particles after first centrifugation. 

However, the size remained consistent in the range of around 250 during centrifugation-

redispersion cycles. On the other hand, the size of PEI coated particles was substantially 

increased after each consecutive centrifugation step. For example the size of PEI coated GNPs 

was around 224 nm before centrifugation, however an increase of around 50 nm was observed 

after first centrifugation. Similarly, second and fourth centrifugation step increased the size by 

80 nm and 150 nm, respectively, as shown in Figure 4.4(a). Thus it can be said that the size 

did not increase primarily due to coating. Rather the centrifugation redispersion step was 

mainly responsible for the size increase.  

The reason for increase in size after PEI coating was not clear, however, size increase after 

each consecutive step of centrifugation suggests that the increase might be due to 

interparticular aggregation during centrifugation-redispersion cycle. However, size calculated 

from SEM and TEM images (section 4.4.2) showed literally bigger particles with uniform 

sizes, this excludes the possibility of size increase due to interparticular bridging during 

centrifugation. Perhaps, it might be due to the diffusion of PEI within the nanoparticle matrix 

which may alter the overall swelling of particles. Additionally, the PEI shell around particles 

may also be responsible for increasing the hydrodynamic radii of particles 



60 

 

     
                                      (a)                                                                                       (b) 
Figure 4.4. Effect of centrifugation on the (a) size and (b) zetapotential of GNPs and PEI coated 
GNPs. 

The zeta potential of uncoated GNPs remained around -20 mV to -25 mV, while PEI coated 

GNPs showed zeta potential +10 mV before centrifugation and around +45 mV to +50 mV 

after washing, as shown in Figure 4.4(b). 

Effect of PEI Solution pH 

It is well known that pH has an influence on the electrostatic interaction of weak 

polyelectrolytes such as PEI [158]. Therefore, the pH of the PEI solution was systematically 

varied from 2 to 11 to study the influence on coating onto GNPs. The effect on size and zeta 

potential was investigated. GNPs coated at pH below 4 could not be re-dispersed after 

centrifugation. Hence, a substantial increase can be seen in the size and PDI. However, at pH 

4 the particles showed comparatively less increase in size. Nevertheless, PDI value is still 

considerably high (i.e., around 0.4), as shown in Figure 4.5(a). The increase in PDI is 

probably due to inefficient coating of the nanoparticles, as a result big agglomerates are 

formed during the centrifugation steps. 

It should be noted that, though PEI is a polycation, but the surface charge of GNPs depends 

on the pH (Figure 4.1). At lower pH GNPs are positively charged and may prevent adsorption 
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of PEI to the surface, which is evident from the zeta potential values, shown in Figure 4.5(b). 

Normally, GNPs after efficient PEI coating are positively charged (Figure 4.3 and 4.4), but 

here we see that the particles coated at pH ˂4 are negatively charged even after coating step. 

Hence, it can be assumed that, at pH ˂4 the GNPs could not be coated with PEI.  

The possible coating of GNPs at pH 4 is exhibited as a slightly positive zeta potential (7.6 

mV). Perhaps, though at pH 4 the GNPs surface is predominantly cationic, however some of 

the carboxylic groups might be de-protonated. Hence, several PEI molecules might be 

adsorbed to the surface, thus changing the overall zeta potential of the particles. 

        
                                 (a)                                                                                (b) 

Figure 4.5. Effect of pH of PEI solution on the (a) size and (b) zetapotential of PEI coated GNPs. 

 

4.4.2. Morphological Characterization  

SEM and TEM images reveal spherical shape of particles, however the size of PEI coated 

particles are fairly bigger than that of uncoated GNPs (Figure 4.6).  
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                                        (a)                                                                             (b) 
 

            
                                         (c)                                                                             (d) 

Figure 4.6. (a) SEM micrographs of uncoated GNPs and (b) SEM micrographs PEI coated GNPs, 
(c) TEM micrographs of uncoated GNPs and (d) TEM micrographs PEI coated GNPs. 

The size of particles calculated using imageJ® from SEM images show an increase of around 

70 nm in the size of PEI coated particles compared to that of uncoated GNPs (Table 4.1). 

 
Table. 4.1 Size of nanoparticles from SEM images 
Samples *Size in (nm) ±STDEV 
GNPs 182.6 ± 49.2 

PEI coated GNPs 256.2 ± 65.8 
                                                 *50 particles analyzed using ImageJ® 

 

The increase in size cannot be assumed solely due to PEI shell, since a possible shell found on 

some of the particles is less than 15 nm (Figure 4.7), which is an observable trend for PEI 

shell around nanoparticles [159]. However, we additionally presume PEI might diffuse within 

nanoparticles matrix, hence may alters the mechanical properties and swelling properties of 
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nanoparticles. Consequently, the size of PEI coated GNPs appear larger than that of uncoated 

ones.   

 

                      
                                      (a)                                                                 (b) 

Figure 4.7. TEM micrographs of (a) uncoated GNPs and (b) PEI coated GNPs. 

 

4.4.3. Cytotoxicity Evaluation 

MTT assay shows that cytotoxicity of PEI coated GNPs decreased with the decreasing 

concentration of particles. PEI coated particles were highly toxic in the concentration up to 

275 µg/ml, while at lower concentration around 188 µg/ml around 50% of the cells were 

viable. The cell viability was above 80% when 94 µg/ml particles concentration was used, as 

shown in Figure 4.8.   

As explained in chapter 3, crosslinked gelatin nanoparticles are non toxic up to 1 mg/ml 

concentration. However, when coated with PEI, the particles turn out to be toxic. Obviously 

this is due to the extreme cytotoxic behavior of PEI. PEI being adsorbed on the surface may 

disrupt the cell membrane leading to immediate cell death. Additionally, after internalization 

of the particles PEI may disrupt the mitochondrial membrane leading to delayed cell death. 
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Figure 4.8. Cytotoxicity analysis results by MTT assay after 24 hours incubation with PEI-coated 
gelatin nanoparticles. 
 

4.5. Conclusion 

This study presents that the surface of gelatin nanoparticles can be modified by PEI without 

the use of covalent modification. PEI coating makes the surface of gelatin nanoparticles 

positively charged. The size and PDI is increased after coating. The volume of PEI solution 

cannot be correlated with the size increase, though PDI is higher with lower PEI volume. pH 

of coating solution must be above 4 for efficient coating. However, PEI coating renders the 

particle cytotoxic. 
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5. Stabilization of Gelatin Nanoparticles without 
Crosslinking 
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Saeed Ahmad Khan, Marc Schneider, Stabilization of Gelatin Nanoparticles Without 

Crosslinking - submitted to Macromolecular Bioscience. 
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5.1. Abstract  

Gelatin nanoparticles have intensively been reported to have the potential of being a 

promising nanocarrier for many therapeutic agents. However, the necessity of crosslinking for 

stabilization is a serious constraint for the application of gelatin nanoparticles for 

proteinaceous drugs. This chapter presents an alternative approach to crosslinking. The 

structural integrity of gelatin nanoparticles was kept intact by coating them with synthetic 

polymers forming hybrid nanospheres. For preparation, a hybrid technique of 

nanoprecipitation-emulsion solvent evaporation was employed. The inefficient entrapment 

and substantial burst release proved PLGA not a suitable polymer for this purpose. While 

Eudragit® E 100 showed promising result. However, its concentration was found to be critical 

for morphology and effective entrapment of GNPs. Nanospheres produced with lower 

Eudragit® E 100 concentration showed spherical depressions of around 90 nm on the surface 

(termed as porosity here). The porosity decreased with increase in Eudragit® E 100 

concentration, which in turn improved gelatin entrapment. Additionally, a raise in Eudragit® E 

100 concentration decreased the initial burst release of gelatin from the particles. The final 

size of nanospheres was mainly determined by homogenization speed. This study is the first 

step to extend the use of gelatin nanoparticles for the delivery of arbitrary biologicals. 
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5.2. Introduction 

Hydrophilicity is an important characteristic for biocompatibility of gelatin, but it also imparts 

drawbacks in its use for drug delivery. Gelatin-based devices rapidly swell upon contact with 

biological fluids, thus lose their structural integrity and release their contents abruptly [160, 

161]. Therefore, for improved mechanical properties and extended release, crosslinking is an 

inevitable step for gelatin based delivery systems. Gelatin nanoparticles are usually stabilized 

by crosslinking with glutaraldehyde [162], glyoxal [94], carbodiimide [148], Genipin [163], 

transglutaminase [164], and reduced sugars [165]. A crosslinker links gelatin chains to each 

other [166]. Particles maintain their structural integrity in aqueous environment, since the 

gelatin chains are tied together by strong covalent bonds.[167] However, due to the 

generalized reaction of crosslinker with reactive groups (mainly -NH2), loading of 

proteinaceous drugs in gelatin nanoparticles before crosslinking with no involvement in 

crosslinking, seems to be impossible. This impedes efficient loading and application of gelatin 

nanoparticles for delivery of all kinds of macromolecular drugs.[27] 

Therefore, it is worthwhile introducing an alternative approach for gelatin nanoparticles 

stabilization without crosslinking, in order to protect their structural integrity. This could be 

an important aspect for application and release of drugs from the gelatin matrix. We proposed 

an alternative stabilization approach without using crosslinker. Gelatin nanoparticles were 

entraped in polymeric nanospheres using the concept of nanoparticles in nanospheres 

(NiNOs). PLGA and Eudragit E100 were employed as polymers for preparation of 

nanospheres. The effect of different parameters and the physicochemical properties of 

nanosphere preparation were investigated to get optimum formulation. Gelatin nanoparticles 

in PLGA nanospheres and Eudragit® E 100 nanospheres, are addressed as GP-NiNOs and 

GE100-NiNOS, respectively. A dual technique of nanoprecipitation-emulsion solvent 
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evaporation was employed. Gelatin nanoparticles were produced by nanoprecipitation, which 

were subsequently entrapped in Eudragit® E 100 (E.100) nanospheres by emulsion solvent 

evaporation technique. Dynamic light scattering (DLS) studies were performed to ascertain 

critical factors affecting the size of nanoparticles. Scanning electron microscopy (SEM) 

measurements were done for size and morphological analysis. Gelatin release from the 

particles was used as a parameter to determine the effective entrapment of gelatin NPs in 

nanospheres and hence the integrity of the E.100 shell. 

5.3. Experimental 

5.3.1. Materials 

Gelatin B bloom75 from bovine skin, was obtained from Sigma-Aldrich, Munich, Germany. 

Dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) were supplied by Carl Roth 

GmbH, Karlsruhe, Germany. Acetone and ethyl acetate were obtained from VWR-

International, Darmstadt, Germany. PBS ready mix was used to prepare phosphate buffered 

solution. Mowiol® (PVA) was provided by Kuraray Europe GmbH, Hattersheim, Germany. 

QuantiPro® BCA kit was from Sigma-Aldrich, Munich, Germany. Eudragit® E100 was 

provided by Evonik Industries, Darmstadt, Germany. Millipore water with a resistivity of 18.2 

MΩ⋅cm was used throughout the experiments. 

5.3.2. Preparation of Gelatin Nanoparticles 

40 mg gelatin was dissolved in 1.0 ml DMSO (2% w/v). 250µl of gelatin solution was added 

drop wise to 1.5 ml acetone-DMF mixture (1:1) while stirring.  

With an intention to get smaller monodisperse particles, different gelatin concentration (4-

6%), water as solvent phase, and acetone as nonsolvent phase were investigated. The 
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objective was to produce gelatin nanoparticles small enough to be entrapped in E.100 

nanospheres in a subsequent step. Based on the results, 4% Gelatin in DMSO as solvent phase 

and acetone-DMF (1:1) mixture as nonsolvent phase was chosen for the typical procedure. 

5.3.3. Entrapment of Gelatin Nanoparticles in Polymeric Nanospheres 

GNPs in PLGA nanospheres (GP-NiNOS) 

GNPs were produced using standard procedure. 250µl of stabilizer solution was added to 

gelatin nanosuspension, and was subsequently added to PLGA solution (2% w/v in ethyl 

acetate). The organic phase containing GNPs was slowly dropped into 10 ml PVA (2%) 

solution. The crude emulsion was homogenized using Ultra-Turrax at 15,000 rpm and 

subsequently diluted with 20 ml water. After an overnight stirring to evaporate ethyl acetate 

GP-NiNOS were obtained using centrifugation at 10000×g for 15 minutes and freeze dried. 

Similarly blank PLGA nanospheres for comparison were prepared without gelatin. 

In order to vary the droplet size and in turn the nanosphere size, different homogenization 

speeds (i.e. 5000, 10000, 15000 rpm) were used. PLGA concentration was kept constant at 

2%. Furthermore, in different set of experiments PLGA concentration was varied (1.75%-

2.5%), while keeping the homogenization speed constant at 15,000 rpm.  

GNPs in E.100 nanospheres (GE100-NiNOS) 

Gelatin nanosuspension was added to E.100 solution (2% w/v in ethyl acetate). It was 

dropped slowly into 10 ml PVA (2%) solution. After 30 minutes of vigorous stirring the crude 

emulsion was homogenized using Ultra-Turrax at 15,000 rpm. Subsequently, about 20 ml 

water was added. The system was stirred overnight to evaporate ethyl acetate. GE100-NiNOS 

were isolated by centrifugation at 10,000×g for 15 minutes and resuspended in distilled water 

before freeze drying.   



70 

 

Blank E.100 nanospheres for comparison were prepared with the same procedure, without 

addition of gelatin in DMSO.  

The size of droplet and hence the final size of nanoparticles is dependent upon the 

emulsification step. Therefore, keeping E.100 concentration constant (2%), the effect of 

homogenization speed (i.e. 5000, 8000, 15000 rpm) was studied.   

Furthermore, the effect of E.100 concentration in ethyl acetate was also investigated by 

varying the concentration between 2 to 6% w/v. 

5.3.4. Measurement of Particle Size and Zeta Potential 

The size (z-average mean) and zeta potential of the nanoparticles were analyzed by dynamic 

light scattering and laser Doppler anemometry, respectively, using a Zetasizer nano-ZS 

(Malvern Instruments Ltd., Worcestershire, UK). The nanoparticles suspension was 

approximately 100 times diluted with distilled water at 25°C before measurement. Each 

sample was analyzed in triplicate. 

5.3.5. Morphological Characterization  

Scanning Probe Microscopy (SPM) 

The freshly prepared nanosuspension was centrifuged and washed three times with water and 

later resuspended. A drop of nanosphere suspension was placed on a freshly cleaved mica 

sheet (Plano GmbH, Wetzlar, Germany) and subsequently dried by overnight evaporation. 

SPM imaging was performed using a Bioscope® (DI Digital Instruments, Bruker corporation, 

Billerica, USA) in tapping mode, using a cantilever with a spring constant of 40 N/m (Anfatec 

Instruments AG, Oelsnitz, Germany) and a scan rate of 0.5 Hz under ambient conditions. Raw 

data was processed by flattening algorithm to remove background slopes, and analyzed by 
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Nanoscope SPM software. 

Scanning Electron Microscopy (SEM) 

For sample preparation, a drop of the washed nanosuspension was dropped onto a silicon 

wafer mounted on a metal hub using carbon adhesive tape. Samples were dried by overnight 

evaporation under ambient conditions. Samples were coated with gold, in an argon 

atmosphere using Q150RES sputter coater (Quorum Technologies Ltd. Laughton, UK).  

SEM images were obtained on an EVO HD microscope (Carl Zeiss Microimaging, GmbH, 

Jena, Germany).  

Surface Analysis of GE100-NiNOS 

In the initial experiments it was observed that the GE100-NiNOS show spherical depressions 

on the surface. Here termed as "porosity" of the particles. These holes were analyzed in terms 

of porous particle fraction (i.e. % of all particles), as well as particles to pores surface ratio 

(PPSR), as follows.  

About 60-70 nanoparticles were manually observed for porous particle fraction. It was 

calculated using the following equation: 

Porous	Particles	(%) =
Number	of	Porous	Particles

Number	of	Observed	Particles 	× 100																																														 

 

For PPSR, the SEM images of different batches (i.e. 2-6% E.100 concentration produced with 

8000 rpm homogenization speed) were analyzed. The surface area of particles (i.e. 4r2) and 

the pores area was calculated using imageJ® software. The PPSR was calculated using the 

following equation: 

Particles	to	pores	surface	ratio	(PPSR) =
	Sum	of	Particles	Surface	Area

Sum	of	Area	of	Pores 																										 
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5.3.6. Measurement of Gelatin Entrapment and Release 

In order to estimate how efficiently gelatin nanoparticles have been entrapped within the 

nanospheres, percent gelatin entrapment was used as a quantitative parameter. It was 

determined by a bicinchoninic acid protein (BCA) assay using QuantiPro® BCA kit (Sigma-

Aldrich, Munich, Germany). Briefly, 10 mg of freeze dried nanospheres were dispersed in 1 

ml HCl (0.1 N). After an hour of dissolution a clear solution was obtained, which was 

neutralized by 1 ml NaOH (0.1 N). The volume was made up to 10 ml and centrifuged at 

24,000×g for 15 minutes. 0.1 ml samples were filled into a 96 well plate, followed by addition 

of BCA reagent. After 2 hours of incubation at 37°C, absorption was measured at 562 nm by 

Infinite®M200 plate reader (Tecan group Ltd., Männedorf, Switzerland). Calibration curve 

was prepared with different gelatin concentrations in water. Nanospheres not containing 

gelatin were used as blank. The percent gelatin entrapment was calculated using the following 

equation:  

 

Gelatin Entrapment (%) = 
Gelatin in Nanospheres (g) / Nanospheres (g) 

×100       
Gelatin used (g) / Polymer used (g) 

 

Since gelatin is a hydrophilic macromolecule, it readily diffuses to the aqueous phase if not 

stabilized [168]. Therefore, the stabilization effectiveness of gelatin nanoparticles within 

nanospheres was estimated in terms of gelatin release from nanospheres to aqueous medium. 

Briefly, 10 mg of Nanospheres were dispersed in 10 ml of phosphate buffer solution (pH 7.4). 

Aliquots of 1 ml were taken out in different Eppendorf tubes and incubated at 37°C. At 

different time intervals the tubes were centrifuged at 24,000×g for 15 minutes. Supernatant 

was collected for gelatin quantification by BCA assay, and sediment was discarded.  
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In case of GE100-NiNOS a portion of nanospheres in release medium were dissolved after 24 

hours by adding 1ml HCl (0.1 N), in order to release the entire entrapped gelatin. 

5.4. Results and Discussion 

The objective of this research is to introduce a new approach for stabilization of gelatin 

nanoparticles as a first step to circumvent the use of crosslinking agents. We developed a 

technique for maintaining the structural integrity of gelatin nanoparticles by entrapping them 

in polymer nanospheres.  

The ampholytic nature of gelatin nanoparticles makes them theoretically susceptible for 

surface adsorption of cationic and anionic polymers. For instance Shutava et al. coated 

crosslinked gelatin nanoparticles with different polyelectrolytes using LbL technique [169]. 

However, coating of uncrosslinked gelatin nanoparticles is a question that has not yet been 

addressed. Practically it is a big challenge, since uncrosslinked gelatin nanoparticles on one 

hand dissolve in hydrophilic environment and on the other hand tend to aggregate in organic 

medium (preliminary experiments). 

In this scenario, the concept of gelatin nanoparticles in nanospheres (NiNOS) is put forward, 

employing a dual technique of nanoprecipitation-double emulsion (schematically given in 

Figure 5.1). The technique used is associated with the following five steps: (a) preparing of 

gelatin nanoparticles by nanoprecipitation, (b) dispersing gelatin nanoparticles in organic 

phase, (c) emulsifying organic phase in aqueous PVA solution, (d) reducing the globule size 

by high speed homogenization, and (e) evaporating the organic solvent.  
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Figure 5.1. Schematic representation of hybrid nanoprecipitation-emulsion solvent evaporation 
technique for preparation NiNOS. 

 

5.4.1. Gelatin nanoparticles by nanoprecipitation 

Gelatin nanoparticles by nanoprecipitation are formed instantly due to rapid diffusion of 

solvent phase to the nonsolvent phase. The interfacial turbulence created due to solvent 

diffusion, forms nanodroplets at the interface. Consequently, aggregation of gelatin within the 

droplets leads to nanoparticle formation [170].  

Nanoprecipitation is based on a complex phenomenon associated with the mutual relationship 

of the polymer–nonsolvent–solvent system. It is governed by the diffusion of solvent into 

nonsolvent. Therefore, the affinity of the solvent for the nonsolvent is of more importance 

than the individual solvent characteristics. In this respect, the solvent-nonsolvent interaction 

parameter, X, is of relevance [149]. Therefore, it was calculated using the following equation 

[150], and was correlated with the nanoparticles size. 
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X = 
VNS 

(δS - δNS)2                                                              
RT 

where VNS is the molar volume of the nonsolvent, R is the gas constant, T is the absolute 

temperature, and δS and δNS are the Hildebrand solubility parameters of solvent and 

nonsolvent, respectively. Solubility parameter proposed by J. H. Hilderbrand in 1936 is the 

square root of the cohesive energy density as a numerical value indicating the solvency 

behavior of specific solvent. 

The size of gelatin nanoparticles correlated with solvent-nonsolvent interaction parameter, is 

shown in Table 1. DMSO as solvent produced smaller nanoparticles, i.e., around 90 nm. It can 

be seen that the lower the XS-NS values, the smaller the NP mean size. For instance keeping 

gelatin concentration constant (i.e., 4% w/v), the size of GNPs increased to 149 nm when 

three parts of the DMSO were replaced with water in the solvent phase. Furthermore, when 

acetone alone was used as nonsolvent, the size further increased to around 160 nm. It can be 

seen that particle size increases with increase in XSNS values. This confirms that the solvent-

nonsolvent interaction plays a vital role in the solvent diffusion phenomenon during 

nanoparticles formation. Lower XS-NS values represent high affinity of the solvent for the 

nonsolvent, thus leading to formation of smaller nanoparticles, due to faster diffusion [149]. 

However, the interaction parameter cannot be considered as the sole factor for 

solvent/nonsolvent affinity. For example when water alone was used as solvent against 

acetone/DMF mixture the size remained almost unchanged while interaction parameter 

increased from 13 to 21, as shown in table 5.1. 
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Table 5.1. Effect of solvent/nonsolvent on the size and polydispersity of gelatin nanoparticles (mean ± 
standard deviation) 

aBatch Solvent Phase Nonsolvent  Interaction 

parameter, 

χb 

Size ± S.D. PDI ± 

S.D. 

1 DMSO  DMF+Acetone 0.63 94.2 ± 6.1 0.16 ± 0.01 

2 DMSO +Water  (7 : 1) DMF+Acetone 1.62 102.1 ± 7.3 0.15 ± 0.01 

3 DMSO +Water  (3 : 1) DMF+Acetone 2.99 107.5 ± 3.2 0.15 ± 0.02 

4 DMSO +Water  (5 : 3) DMF+Acetone 4.83 119.7 ± 1.1 0.15 ± 0.02 

5 DMSO +Water  (1 : 1) DMF+Acetone 6.92 131.2 ± 2.3 0.14 ± 0.02 

6 DMSO +Water  (1 : 3) DMF+Acetone 12.98 149.4 ± 3.9 0.11 ± 0.03 

7 Water  DMF+Acetone 20.61 148.9 ± 6.8 0.07 ± 0.01 

8 Water  Acetone 24.10 160.4 ± 2.7 0.12 ± 0.01 
a All batches were prepared with 250 µl of solvent phase containing 10 mg of gelatin and 1.5 mL of nonsolvent phase. 
b Calculated for T=25 °C (298 K). 
 

Regarding other effects on the mean size of gelatin nanoparticles, it was found that it 

increases with increasing concentration of gelatin in the solvent phase; (Figure 5.2). For 

instance, 2% gelatin produced particles in the size of around 55 nm. The mean size increased 

to around 90 nm with a gelatin concentration 4%, while about 150 nm particles were 

produced when the concentration was further increased to 6%. Similarly, a constant increase 

in polydispersity index (PDI) values was observed with increase in gelatin concentration. For 

example it was 0.1 with 2% gelatin and increased to 0.16 and 0.18 when gelatin concentration 

was increased to 4% and 6%, respectively. Nevertheless, the PDI values in all the cases were 

in the range of 0.1-0.2 which reflects narrow distribution of produced nanoparticles. The 

improvement in size of nanoparticles with rise in concentration is thought to be due to 

increased viscosity of the gelatin solution. Since, higher viscosity of the solvent phase due to 

higher polymer concentration retards appropriate diffusion of the solvent towards the 

nonsolvent [23]. These results are in accordance with our expectations regarding similar data 

for other materials described in literature [151]. 
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Figure 5.2. Effect of gelatin concentration on the size of nanoparticle produced by nanoprecipitation 

 

5.4.2. Gelatin Nanoparticles in PLGA Nanosphere (GP-NiNOS) 

Gelatin nanoparticles are hydrophilic and tend to aggregate in organic solvents. Therefore in 

order to achieve homogeneous dispersion of gelatin nanoparticles in ethyl acetate, different 

stabilizers were tested. i.e., gelatin nanoparticles were coated with stabilizers before 

dispersing them in ethyl acetate containing PLGA (Figure 5.3).  

 

Figure 5.3. Schematic representation of gelatin nanoparticles coating with DDA before dispersion in 
PLGA solutions. 
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Among the studied stabilizers dodecylamine (DDA) and polyethylene glycol 1000 (PEG1000) 

were found to be effective. The final size of nanospheres is not affected by different 

stabilizers at this stage i.e. the size remains in the range of 200-250 nm (Figure 5.4).  

 

Figure 5.4. Effect of stabilizers for GNPs on the final size of gelatin nanoparticles 

 

Physicochemical Characterization 

In our protocol, an emulsion-solvent evaporation step is employed for the entrapment of 

gelatin nanoparticles in PLGA nanospheres. Thus, homogenization speed is considered to be 

critical for the final size of GP-NiNOS. Hence, nanospheres were produced with different 

homogenization speeds. Results are given in Figure 5.5(a). Lower speed of homogenization 

produced bigger nanoparticles and vice versa. For instance, the size of nanospheres was 

around 2 µm with a broad size distribution (PDI value around 0.3). Increasing 

homogenization speed to 10000 rpm decreased the size and the PDI to around 350 nm and 

0.2, respectively. The smallest particle size (ca. 200 nm) with a narrow distribution (PDI 

˂ 0.1) was observed at 15000 rpm.  

Additionally, no considerable difference was observed in the size of blank PLGA nanospheres 
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as well as GP-NiNOS in all the studied cases, except in the case of 5000 rpm homogenization 

speed. However, this cannot be considered as a considerable difference with such a huge 

standard deviation as shown in Figure 5.5(a).  

Emulsification of PLGA ethyl acetate solution (containing dispersed GNPs) in PVA solution 

is actually responsible for gelatin nanoparticles entrapment within the nonpolar phase. For this 

reason the final size of nanospheres is governed by homogenization speed.  

For the effect of polymer concentration in organic phase (PLGA in ethyl acetate solution), 

different PLGA amounts was investigated. No correlation was observed between the particle 

size and PLGA concentration, given in Figure 5.5(b). Furthermore, the size of blank PLGA 

nanospheres as well as GP-NiNOS was around 200 nm with all the studied PLGA 

concentrations. 

            

                                     (a)                                                                               (b) 

Figure 5.5. Effect of homogenization speed (a) and PLGA concentration (b) on the size and 
polydispersity of nanospheres. 
 

Morphological Analysis 

SPM images showed no apparent difference in the blank PLGA nanospheres and GP-NiNOS. 

The images showed smooth surface and spherical shape, shown in Figure 5.6.  
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                     (a)                                                                            (b) 
Figure 5.6. SPM micrographs of nanospheres (a) blank PLGA nanospheres, (b) GP-NiNOS. 
Preparation conditions: 2% PLGA concentration, 15,000 rpm homogenization. 

 

5.4.3. Gelatin Entrapment and Release 

The amount of gelatin entrapped was used as a parameter to assess the effective entrapment of 

gelatin nanoparticles in PLGA nanospheres. As mentioned earlier, different stabilizers were 

investigated to stabilize gelatin nanoparticles for homogeneous dispersion in PLGA solution. 

Their effect on gelatin entrapment is given in Figure 5.7. Gelatin entrapment of around 35% 

was observed with DDA and span20. Maximum entrapment of around 45% was witnessed 

with PEG1000. While Brij35 exhibited the lowest entrapment i.e. 30%. 

 

Figure 5.7. Effect of stabilizer used on gelatin entrapment in GP-NiNOS. 
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Gelatin entrapment slightly decreased with increase in PLGA concentration. For instance, it 

decreased from around 35% to less than 30 % when PLGA concentration was increased from 

to 1.75% to 2.5%, shown in Figure 5.8(a). However, homogenization speed inversely affected 

% gelatin entrapment. For instance, at 5000 rpm and 10000 rpm homogenization speed, 

approx. 65% gelatin was entrapped. While at 15000 rpm around 35% entrapment was 

observed, as shown in Figure 5.8(b). 

         

                                  (a)                                                                             (b) 

Figure 5.8. Effect of (a) PLGA concentrations and (b) homogenization speed on gelatin entrapment 
within GP-NiNOS. 
 

The release of gelatin from GP-NiNOS studied in PBS (pH 7.4) showed that around 60% of 

the entrapped gelatin was released in the first half hour (Figure 5.9) reaching a plateau 

remaining unchanged for ~48 hours. However, the released amount reached another plateau of 

70% after 72 hours.  
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Figure 5.9. Release pattern of gelatin from GP-NiNOS in PBS (pH 7.4) at 37°C 

As mentioned above, at 15,000 rpm the nanospheres had gelatin entrapment of less than 40%. 

Furthermore, the release was as fast as 60% in just half hour. Both these factor contribute to 

the inefficient entrapment of gelatin nanoparticles in PLGA nanospheres. Therefore, another 

film forming polymer was tested. In this regard Eudragit®E100 (E.100) served the purpose. 

Substituting PLGA with E.100 concentration not only improved the entrapment but also 

eliminated the need for stabilizer before gelatin nanoparticles dispersion in organic phase.  

5.4.4. Gelatin Nanoparticles in E.100 Nanospheres (GE100-NiNOS) 

Physicochemical Characterization 

As mentioned earlier, upon evaporation of ethyl acetate the emulsion droplets were converted 

into E.100 nanospheres. Thus emulsification of E.100 ethyl acetate solution (containing 

dispersed GNPs) in PVA solution is actually responsible for gelatin nanoparticles entrapment 

within the E.100 nanospheres. For this reason the final size of nanoparticles is governed by 

the homogenization speed, i.e., nanosphere size decreases with increase in homogenization 

speed and vice versa. As shown in Figure 5.10(a), lower homogenization speed produced 

nanospheres in the range of 800-1000 nm with a very broad size distribution (PDI value 0.3-

0.4). Increasing homogenization speed to 8,000 rpm decreased the size and the PDI to around 
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400-500 nm and 0.2, respectively. The smallest particle size with a narrow distribution (PDI 

0.1) was observed at 15,000 rpm.  

Additionally, the size of blank E.100 nanospheres is lower than that of GE100-NiNOS in all 

the studied cases, except at 15000 rpm. For instance at homogenization speed of 5000 rpm the 

size of GE100-NiNOS is around 127 nm greater than blank E.100 nanospheres while at 8000 

rpm and 1000 rpm this difference in size is of around 55 nm whereas at an homogenization 

speed of 15000 rpm the difference is not noticeable.  

For the effect of polymer concentration in organic phase (E.100 ethyl acetate solution), 

different E.100 amounts were investigated. It can be seen from the relationship between 

particle size and E.100 concentration, given in Figure 5.10(b), that 2% E.100 in ethyl acetate 

produced nanospheres in the size range of 160-180 nm. While an increase in polymer 

concentration barely affected the size. For instance, hardly 20-30 nm increase in size was 

observed for a threefold increase in E.100 concentration. Thus it can be said that the effect of 

polymer concentration on the final droplet size and in turn particle size was not substantial. 

            

                                    (a)                                                                            (b)                                                         

Figure 5.10. Effect of homogenization speed (a) and Eudragit® E 100 concentration (b) on the size and 
polydispersity of nanospheres. 
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Analyzing the particles size by SEM revealed smaller sizes than those measured by the 

Zetasizer (as shown in Table 5.2). This is most likely due to the drying effects of the sample, 

whereas SPM analysis show slight discrepant results for particles sizes. This is probably due 

to imprecise boundary of the overlapping particles in SPM image analysis and convolution 

effects of tip and object geometry [171]. Blank nanospheres reveal a smooth surface (Figure 

5.11a). In contrast, the morphological analysis of the GE100-NiNOS shows spherical 

depressions on the surface (Figure 5.11b). 

 

Table 5.2. Size characterization of nanospheres by DLS, SEM, and SPM 

                   Size in nm ± S.D 

Nanospheres Zeta sizer       SEM*      SPM* 

Blank nanospheres 202.4 ± 4.5  194.7 ± 51.6  227.1 ± 36.2 

GE100-NiNOS 215.3 ± 8.6  200.1 ± 47.3  212.6 ± 40.6 
               *data based on analysis of 20 nanospheres. 

 

          

                                  (a)                                                                              (b) 

Figure 5.11. SEM micrographs of nanospheres (a) blank E.100 nanospheres, (b) GE100-NiNOS. 
Preparation conditions: 4% E.100 concentration, 15,000rpm homogenization. 
 

Concerning the zeta potential, the values were consistent between +40 and +50 mV for all the 

studied cases. There is no big difference in the zeta potential values of blank E.100 

nanospheres and GE100-NiNOS (Figure 5.12) suggesting that the surface properties of the 

disperse systems might equal.  
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                                     (a)                                                                                   (b) 

Figure 5.12. Effect of Eudragit® E 100 concentration (a) and homogenization speed (b) on the zeta 
potential of nanospheres. 
 

Morphological Analysis 

As mentioned earlier, SPM and SEM micrographs reveal spherical depressions on the surface 

of GE100-NiNOS. Two semi-quantitative parameters, i.e., porous particle fraction (% of all 

particles) and particle surface to pore surface ratio (PPSA), were proposed, to be good 

parameters to describe the porosity. Nanoparticles were manually analyzed for porous 

particles fraction. The number of porous particles to the total number of particles was used to 

determine porous particle fraction.  

For PPSA, the surface area of particles and pores were calculated by pixel analysis using 

imageJ® software. The total surface area of the particles as calculated from their radius was 

divided by the total area of the pores as derived from the images.   

We found that the porosity decreased with increasing E.100 concentration. SEM images from 

different batches with different E.100 concentration were taken (Figure 5.13) and the surface 

area of the nanospheres and the pores was determined using imageJ® software.  
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                                      (a)                                                                              (b)  

 

   

                                        (c)                                                                            (d) 

Figure 5.13. SEM images of GE100-NiNOS produced by hybrid nanoprecipitation-emulsion solvent 
evaporation technique, at different E.100 concentrations: (a) 2%, (b) 3.6%, (c) 4.2%, and (d) 6%, 
(constant homogenization speed 8,000 rpm). 
 

The results of this analysis are given in Figure 5.14. An inverse relationship between porous 

particles fraction and E.100 concentration was observed; increase in E.100 concentration 

steadily decreased the porous fraction of the nanospheres produced. For instance, about 68% 

of the nanospheres were porous when 2% E.100 concentration was used. A decline of about 

20% was observed when E.100 concentration was increased to 3% (i.e. 51% porous particles). 

Further increase in E.100 concentration slightly lowered the number of porous particles. 
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However, a substantial decline was witnessed between 4.5% and 4.8% E.100 concentration, 

where 27% of the nanospheres were found to be porous. Further rise in E.100 concentration to 

5.7 % and 6 %, decreased the porous fraction to 10% and 5 % respectively. 

Contrarily, a reciprocal relationship was observed between PPSR value and E.100 

concentration; an increase in PPSR value was seen with increase in E.100 concentration. 

However the effect is somewhat invisible until E.100 concentration 4.5%. This is probably 

due to the closure of smaller pores (depicted in vanishing of porous fraction, Fig. 6), while the 

net PPSR remained more or less constant since only porous particles were considered for the 

calculation. For example, PPSR value of about 50 was seen with 2% E.100, and it remained in 

the range of 60-100 with E.100 concentration as high as 4.2%. However, further increase in 

E.100 concentration (4.5%) resulted in a sharp rise in PPSR value to 276, which further 

increased to around 378 with 5.4 % E.100 concentration. Higher values of PPSR i.e. 530 and 

504 were seen at 5.7% and 6% E.100 concentration, respectively. The slight fluctuation in the 

PPSR value at higher concentration might be because of an analytical error, due to ill-defined 

boundaries of the pores on the surface, and less number of porous particles available for 

analysis.  

Ultimately the decrease in the number of porous particles and rise in the PPSR values 

contribute to the fact that porosity of the nanospheres is inversely proportional to E.100 

concentration. Thus it can be said that GE100-NiNOS prepared with low E.100 concentration 

cannot entrap gelatin nanoparticles efficiently. This can be depicted as a decline in gelatin 

entrapment with decreased E.100 concentration (Figure 5.14). However, with the porosity and 

the amount of porous particles the burst release could be possibly adjusted and controlled. 
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Figure 5.14. Correlation of porosity in terms of % porous particles and PPSA value, in dependence 
from E.100 concentration. 
 
 

 

                            (a)                                                                                         (b) 

Figure 5.15. (a) Average size of pores on the surface of GE100-NiNOS prepared at 2% E.100 
concentration (SEM) and gelatin nanoparticle size by DLS. (b) Schematic representation of possible 
gelatin leaching from the surface of nanospheres to the aqueous phase. 
 

From the similarity in size of the pores and gelatin nanoparticles (Figure 5.15a), it can be 

conceived that the pores were apparently formed by leaking of gelatin nanoparticles from the 

surface to aqueous medium due to incompletely coated GNP, schematically shown in Figure 

5.15b. Before emulsification gelatin nanoparticles were primarily dispersed in organic phase 
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containing E.100. Possibly, at low concentrations of E.100, the amount was insufficient to 

entrap all gelatin nanoparticles efficiently. Thus gelatin nanoparticles at the surface not fully 

covered were prone to leak to the external aqueous phase, hence leaving a pore of its size on 

the surface. 

5.4.5. Gelatin Entrapment and Release 

Gelatin entrapment diminished with decrease in E.100 concentration. For instance, it 

decreased from around 100% to 55 % when E.100 concentration was decreased from 6 to 2%. 

Nevertheless, when homogenization speed was reduced to 8,000 rpm gelatin entrapment was 

slightly increased to around 65%, compared to 55% at 15,000 rpm, as shown in Figure 5.16. 

 

Figure 5.16. Effect of Eudragit® E 100 concentrations and homogenization speed on gelatin 
entrapment within GE100-NiNOS. k: ×1000 rpm, representing homogenization speed. 
 
 

The release of gelatin from GE100-NiNOS was studied in PBS (pH 7.4). As shown in Figure 

5.17(a), comparatively higher burst release was observed for nanospheres prepared at low 

concentration of E.100. For instance, nanospheres prepared with 2% and 3% E.100 

concentration showed 27.1% and 18.6% initial release, respectively. On the other hand, 

around 10% of entrapped gelatin was released from nanospheres produced with 4-6% E.100.  

0

20

40

60

80

100

120

6%, 15k 5%, 15k 4%, 15k 3%, 15k 2%, 15k 2%, 10k 2%, 8k

G
el

at
in

 E
nt

ra
pm

en
t (

%
)

Preparation Conditions



90 

 

The comparatively higher initial burst release at lower E.100 concentration could be due to 

the loosely embedded gelatin nanoparticles in the surface layer. It may also be attributed to 

the morphology of the nanospheres. Since nanospheres produced with low concentration were 

more porous (as explained previously), they exposes greater surface area to the release 

medium.  

To see the effect of nanosphere size on release, different sized nanospheres were obtained by 

lowering the homogenization speed (keeping E.100 concentration constant, i.e., 2%). It was 

found that the initial burst release was reduced when the size of nanosphere was increased, as 

shown in Figure 5.17(b). For instance, almost fourfold decrease (i.e. decreased from 27% to 

6.7%) in initial burst release was observed when the size of nanospheres was increased from 

176 ± 5 nm to 433 ± 88 nm. Similarly, 295 ± 59 nm nanospheres exhibited around 15% 

release in the first half hour. The reason for this may be the lower surface area of larger 

nanospheres than that of smaller ones which was expected based on literature [172, 173]. 

Nevertheless, in all the studied cases the release profile remained unchanged over 24 hours. 

However, upon acidifying the medium (pH < 5) the entire entrapped gelatin was released. This 

could obviously be attributed to the dissolution of  E.100 at pH values below 5.5 [174]. 
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                                       (a)                                                                                      (b) 

Figure 5.17. Effect of E.100 concentration (a) and nanosphere size (b), on gelatin release from GE100-
NiNOS in PBS (pH 7.4) at 37°C, and after dissolution of nanospheres.  
 

5.5. Conclusion 

This work demonstrates a novel approach for stabilization of gelatin nanoparticles without the 

use of crosslinking agents. A unique technique of nanoprecipitation-double emulsion is 

presented. Gelatin nanoparticles are produced by nanoprecipitation, and are subsequently 

entrapped in polymeric nanospheres by emulsion-solvent evaporation technique. The final 

size of nanospheres is mainly affected by homogenization speed. Smaller particles were 

produced at higher speeds and vice versa. The immense burst release reveals the inefficiency 

of PLGA for entrapment of gelatin nanoparticles. In case of GE100-NiNOS, the entrapment of 

gelatin is dependent on concentration. The porosity on nanosphere surface and in turn the 

initial burst release of gelatin from nanospheres decreases with increase in E.100 

concentration. At pH below 5 all the entrapped gelatin is released due to dissolution of E.100. 

It can be concluded that the system provides a good opportunity for stabilization of gelatin 

nanoparticles. The study is seemingly a promising step towards stabilization of gelatin 

nanoparticles without crosslinking. 
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6. Summary and Outlook 

 

Macromolecules are conventionally administered in aqueous solution using needles and 

syringes. In order to develop delivery systems for other routes, attempts are made to 

encapsulate macromolecules in polymers, e.g. microparticles, hydrogels, beads, nanoparticles, 

etc. Nanoparticles have been proved to be one of the most promising delivery system due to 

its size. However, these systems are mostly based on hydrophobic polymers, which may 

induce unfolding, and hence inactivation of some macromolecular drugs. Gelatin being a 

hydrophilic biopolymer may exhibit better compatibility with macromolecular drugs. 

During preparation of nanoparticles from gelatin special attention needs to be taken for the 

interparticular aggregation. For this reason, most of the preparation are either tedious, require 

specific proportion of certain molecular weight fraction or need a narrow range of appropriate 

pH. The requirement of extreme acidic or basic pH for successful nanoparticle preparation 

may affect some sensitive macromolecules. Therefore the first objective was to offer an 

optimized technique without altering the intrinsic properties of gelatin. In this context, a 

straight forward technique of nanoprecipitation was optimized. The effects of various 

parameters involved in the particle preparation process were investigated. The presence of 

poloxamer was a critical factor for the stability of the nanoparticles. The size of nanoparticles 

was tuned by changing gelatin concentration in the solvent phase and by changing the 

nonsolvent composition. The potential of the system for delivery of hydrophilic 

macromolecules was demonstrated using FITC-dextran as model drug. The release from 

glutaraldehyde crosslinked gelatin nanoparticles was dependent on the molecular weight of 

FITC-dextran. Surface modification of the particles was done by physically adsorbing PEI on 

the surface. Uncrosslinked particles cannot be coated with PEI, while crosslinked gelatin 
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nanoparticles could effectively bind PEI on its surface rendering the zeta potential positively 

charged. 

It should be noted that release of FITC-dextran cannot be correlated with peptide based 

macromolecular drugs, since protein based macromolecules contain primary amino groups. 

Which due to involvement in the crosslinking process, presumably will not only affect the 

release pattern but also the biological activity of the drugs. Hence, efforts need to be taken to 

explore other possibilities for stabilization of gelatin nanoparticles without crosslinking. To 

date, no study has been performed to address this issue of gelatin nanoparticles. Therefore, we 

presented a novel technique for maintaining the structural integrity of gelatin nanoparticles in 

polymeric nanospheres, using nanoparticles in nanospheres (NiNOS) concept. PLGA and 

Eudragit E100 were employed as polymers for preparation of nanospheres. The effect of 

different parameters and the physicochemical properties of nanosphere preparation were 

investigated to get optimum formulation. It was found that PLGA could not stabilize gelatin 

nanoparticles, since gelatin was immediately released from the nanospheres. On the other 

hand Eudragit E100 was effective in stabilizing gelatin nanoparticles. However, E100 

concentration was critical for morphology of the nanospheres, and in turn the stability of 

gelatin nanoparticles within the nanospheres matrix. Our study is the first step of its kind 

towards stabilization of gelatin nanoparticles without crosslinking. However, due the 

limitations in application of Eudragit E100 besides oral route, other biodegradable materials 

need to be investigated. 

In this context, we are planning to investigate the possibility of using spray drying technique. 

The decisive factor will be to keep the integrity of gelatin nanoparticles in biodegradable 

polyester microspheres. We are also looking forward to association with our collaborators 

from University of Leipzig, on the assumption to covalently crosslink nanoparticle surface 
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without harming the internal core. This will give us the opportunity to load protein based 

macromolecules within the core of nanoparticles not interfering with the crosslinker being 

only present on the surface. Furthermore, we are working in close collaboration with our 

institute members to deliver specific plasmid, intended for application against fibrosis.  
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