
Cross-Layer Cloud Performance Monitoring,
Analysis and Recovery

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik

der Philipps-Universität Marburg

vorgelegt von

M.Sc. Afef Mdhaffar

geboren in Sfax, Tunesien

Marburg, 2014

Hochschulkennziffer 1180

Vom Fachbereich Mathematik und Informatik der
Philipps-Universität Marburg als Dissertation am
19.12.2014
angenommen.

Erstgutachter: Prof. Dr. Bernd Freisleben, Philipps-Universität Marburg

Zweitgutachter: Prof. Dr. Mohamed Jmaiel, Université de Sfax, Tunisia

Tag der Einreichung: 20.11.2014
Tag der mündlichen Prüfung: 19.12.2014

Abstract

The basic idea of Cloud computing is to offer software and hardware resources
as services. These services are provided at different layers: Software (Software
as a Service: SaaS), Platform (Platform as a Service: PaaS) and Infrastructure
(Infrastructure as a Service: IaaS). In such a complex environment, performance
issues are quite likely and rather the norm than the exception. Consequently,
performance-related problems may frequently occur at all layers. Thus, it is
necessary to monitor all Cloud layers and analyze their performance parameters
to detect and rectify related problems.

This thesis presents a novel cross-layer reactive performance monitoring ap-
proach for Cloud computing environments, based on the methodology of Complex
Event Processing (CEP). The proposed approach is called CEP4Cloud. It an-
alyzes monitored events to detect performance-related problems and performs
actions to fix them. The proposal is based on the use of (1) a novel multi-layer
monitoring approach, (2) a new cross-layer analysis approach and (3) a novel
recovery approach.

The proposed monitoring approach operates at all Cloud layers, while col-
lecting related parameters. It makes use of existing monitoring tools and a
new monitoring approach for Cloud services at the SaaS layer. The proposed
SaaS monitoring approach is called AOP4CSM. It is based on aspect-oriented
programming and monitors quality-of-service parameters of the SaaS layer in a
non-invasive manner. AOP4CSM neither modifies the server implementation nor
the client implementation.

The defined cross-layer analysis approach is called D-CEP4CMA. It is based
on the methodology of Complex Event Processing (CEP). Instead of having to
manually specify continuous queries on monitored event streams, CEP queries
are derived from analyzing the correlations between monitored metrics across
multiple Cloud layers. The results of the correlation analysis allow us to reduce
the number of monitored parameters and enable us to perform a root cause
analysis to identify the causes of performance-related problems. The derived
analysis rules are implemented as queries in a CEP engine. D-CEP4CMA is
designed to dynamically switch between different centralized and distributed CEP
architectures depending on the load/memory of the CEP machine and network
traffic conditions in the observed Cloud environment.

The proposed recovery approach is based on a novel action manager frame-

–iii–

work. It applies recovery actions at all Cloud layers. The novel action manager
framework assigns a set of repair actions to each performance-related problem
and checks the success of the applied action.

The results of several experiments illustrate the merits of the reactive perfor-
mance monitoring approach and its main components (i.e., monitoring, analysis
and recovery). First, experimental results show the efficiency of AOP4CSM (very
low overhead). Second, obtained results demonstrate the benefits of the analysis
approach in terms of precision and recall compared to threshold-based methods.
They also show the accuracy of the analysis approach in identifying the causes of
performance-related problems. Furthermore, experiments illustrate the efficiency
of D-CEP4CMA and its performance in terms of precision and recall compared
to centralized and distributed CEP architectures. Moreover, experimental results
indicate that the time needed to fix a performance-related problem is reasonably
short. They also show that the CPU overhead of using CEP4Cloud is negligible.
Finally, experimental results demonstrate the merits of CEP4Cloud in terms of
speeding up the repair and reducing the number of triggered alarms compared to
baseline methods.

–iv–

Zusammenfassung

Die Grundidee des Cloud Computing ist es, Software und Hardware-Ressourcen
als Dienste anzubieten. Diese Dienste werden in verschiedenen Schichten bereitge-
stellt, als Software (Software as Service: SaaS), Plattform (Platform as a Service:
PaaS) und als Infrastruktur (Infrastructure as a Service: IaaS). In diesem kom-
plexen Umfeld stellt eine gute Koordination eine besondere Herausforderung dar,
insbesondere, weil Leistungseinbußen oft in jeder Schicht zu verzeichnen sind. Da-
her ist es notwendig, Leistungsparameter aller Schichten des Cloud-Systems zu
überwachen, um mögliche Probleme frühzeitig zu erkennen, zu analysieren und
zu beheben.

Diese Arbeit stellt einen neuen, Schichten übergreifenden Ansatz zur Überwa-
chung und Steuerung von Cloud-Computing-Umgebungen vor. Dieser basiert auf
dem sogenannten Complex Event Processing (CEP), also der Verarbeitung kom-
plexer Ereignisse. Der vorgeschlagene Ansatz wird als CEP4Cloud bezeichnet. Er
analysiert die überwachten Ereignisse, um leistungsbezogene Probleme zu erken-
nen und leitet auch Maßnahmen zu ihrer Behebung ein. Der Vorschlag basiert
auf der Verwendung eines (1) neuartigen Mehrschichtenüberwachungskonzepts,
(2) einer speziellen Schichten übergreifenden Analyse und (3) einem neuen Re-
paraturverfahren.

Der vorgeschlagene Überwachungsentwurf berücksichtigt alle Schichten des
Cloud-Systems bei der Erhebung der notwendigen Parameter. Er nutzt bereits
vorhandene Überwachungswerkzeuge zusammen mit einem neuen Überwachungs-
konzept für Dienste in der SaaS-Schicht. Dieser Ansatz wird als AOP4CSM be-
zeichnet. Mittels aspektorientierter Programmierung werden Qualitätsparameter
transparent aus der SaaS-Schicht ermittelt. Dabei ändert AOP4CSM weder die
server-seitige Implementation noch die Software des Klienten.

Der erarbeitete Schichten übergreifende Analyseansatz basiert auf der CEP-
Methodik und wird als D-CEP4CMA bezeichnet. Anstatt einer aufwändigen ma-
nuellen Spezifikation von Abfragen an die kontinuierlich überwachten Ereignis-
ströme werden CEP-Abfragen hierbei automatisch aus Korrelationen zwischen
den erfassten Metriken der verschiedenen Cloud-Schichten abgeleitet. Die Kor-
relationsanalyse erlaubt eine Reduktion der Anzahl überwachter Parameter und
mit ihnen auch eine effektive Identifikation der Ursachen leistungsbezogener Pro-
bleme. Die abgeleiteten Analyseregeln werden als Abfragen in einem CEP-Modul
realisiert. D-CEP4CMA wurde so entworfen, dass abhängig von der Netzwerklast

–v–

und den Speicherresourcen des CEP-Rechners dynamisch zwischen verschiedenen
zentralen und verteilten CEP-Architekturen in der Cloud umgeschaltet werden
kann.

Der vorgeschlagene Wiederherstellungs-Ansatz basiert auf einem neuartigen
Verfahren für die Verwaltung von Reparatur-Aktivitäten in den drei Cloud-Schich-
ten. Ein spezieller Aktionsmanager bringt, je nach der Art des identifizierten Pro-
blems, verschiedene Reparaturmaßahmen zur Anwendung und überprüft auch
deren Erfolg.

Die durchgeführten Experimente veranschaulichen die Vorteile der vorgeschla-
genen reaktiven Cloud-Monitoring und -Steuerungslösung in den Bereichen Mo-
nitoring, Analyse und Reparatur. Einerseits zeigen die Experimente eine hohe
Effizienz von AOP4CSM im Hinblick auf geringe zusätzliche Laufzeiten und Spei-
cherplatzbedarf. Zugleich werden im Vergleich zu einfachen schwellwertbasierten
Methoden gute Ergebnisse bei der Identifikation von leistungsbezogenen Proble-
men erzielt (im Sinne der statistischen Größen precision und recall). Dasselbe
gilt auch im Hinblick auf das gute Abschneiden von D-CEP4CMA im Vergleich
zu zentralisierten und verteilten CEP-Architekturen. Die experimentellen Ergeb-
nisse zeigen auch, dass mit der vorgeschlagenen Methode nur relativ wenig Zeit
benötigt wird, um leistungsbezogene Problem zu beheben. Die erzeugte CPU-
Last durch Verwendung von CEP4Cloud ist dabei vernachlässigbar. Im Vergleich
zu anderen Methoden liefert CEP4Cloud also schnellere Reparaturmaßnahmen
bei einer geringeren Anzahl ausgelöster Fehlalarme.

–vi–

Résumé

L’idée fondamentale du Cloud computing consiste à tout offrir (i.e. ressources
matérielles et logicielles) comme un service. Les services du Cloud sont fournis à
différentes couches : Software (Software as a Service : SaaS), Plateforme (Plat-
form as a Service : PaaS) et Infrastructure (Infrastructure as a Service : IaaS).
Dans de tels environnements aussi complexes, les dégradations de performance
sont très fréquentes et peuvent toucher toutes les couches du Cloud. Ainsi, il
est nécessaire de surveiller toutes ces couches et d’analyser leurs paramètres de
performance, pour résoudre les problèmes les concernant.

Cette thèse présente une nouvelle approche de � monitoring � pour contrôler
les environnements du Cloud computing. L’approche proposée est réactive et
inter-couches. Elle est basée sur la méthodologie de Complex Event Process-
ing (CEP), et ainsi appelée CEP4Cloud. Dans cette approche, les évènements
de monitoring sont analysés pour détecter les dégradations de performance et
lancer les actions de réparation nécessaires au rétablissement de l’état du Cloud.
CEP4Cloud est basée sur l’utilisation de trois nouvelles méthodes: (1) une ap-
proche multi-couches de monitoring, (2) une approche inter-couches d’analyse et
(3) une approche de réparation.

L’approche de monitoring proposée permet de surveiller toutes les couches
du Cloud en collectant les paramètres de performance qui y sont liés. Elle est
composée des outils de monitoring existants et de notre nouvelle approche de
monitoring, appelée AOP4CSM. AOP4CSM permet de surveiller la couche soft-
ware. Elle est basée sur la programmation orientée aspect et permet de collecter
les paramètres de la qualité de service de la couche Software, sans modifier ni
l’implémentation du service, ni celle du client.

L’approche inter-couches d’analyse proposée est appelée D-CEP4CMA. Elle
est basée sur la méthodologie de Complex Event Processing (CEP). Les requêtes
utilisées par le moteur de CEP sont déduites d’une étude de corrélations entre
les différents paramètres du Cloud, au lieu d’être spécifiées manuellement. Les
résultats de notre analyse de corrélations nous ont permis de réduire le nombre
de paramètres à surveiller. En outre, cette analyse nous a été utile pour identifier
la cause d’une dégradation de performance, tout en adoptant la méthode � Root
Cause Analysis �. Les règles d’analyse déduites sont ainsi implémentées, en tant
que requêtes au niveau du moteur CEP. D-CEP4CMA est capable de sélectionner
dynamiquement, au moment de l’exécution, l’architecture la plus adaptée (cen-

–vii–

tralisée ou distribuée) à l’état du Cloud. Le processus de sélection est basé sur
la charge et la mémoire de la machine hébergeant le moteur CEP, ainsi que sur
l’état du Cloud.

L’approche de réparation proposée est basée sur l’utilisation d’un nouveau
framework de gestion d’actions. Ce framework applique des actions de réparation
sur toutes les couches du Cloud. En outre, il attribue plusieurs actions de
réparation à toute dégradation de performance et vérifie le succès de l’action
appliquée.

Les résultats de plusieurs expérimentations ont montré les avantages de notre
approche réactive de monitoring et de ses principaux composants (i.e. monitor-
ing, analyse et réparation). Ils ont tout d’abord montré, l’efficacité d’AOP4CSM
(overhead très réduit). Ensuite, ces expérimentations ont montré les mérites de
notre approche d’analyse en termes de précision et de rappel, en comparaison
avec les approches basées sur les seuils. Ces résultats obtenus ont montré aussi
l’exactitude de notre approche dans l’identification de la cause de la dégradation.
En plus, nos expérimentations ont prouvé que D-CEP4CMA est efficace en ter-
mes de performance, de précision et de rappel, en comparaison avec les ar-
chitectures centralisées et distribuées. Aussi, les résultats obtenus ont illustré
que le temps de réparation est relativement réduit et ont montré que l’overhead
CPU de CEP4Cloud est négligeable. Ces résultats ont démontré les avantages
de CEP4Cloud en termes de temps de réparation et de nombre d’alarmes, en
comparaison avec les approches de référence.

–viii–

Erklärung

Ich versichere, dass ich meine Dissertation

Cross-Layer Cloud Performance Monitoring, Analysis and Recovery

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als
der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Die Dis-
sertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen
Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.

Marburg, den

Afef Mdhaffar

–ix–

Dedication

This dissertation is dedicated to the memory of my dear mother who left us sud-
denly and accidentally during the final stages of this work. After your departure,
I have just lost my love of life. I still see your smile, still hear your voice and
still keep trying to achieve my (our) dreams, as you always taught me. I am very
close to realize our first dream. I hope you can see/feel that.

–xi–

Acknowledgments

This thesis was partly supported by the German Ministry of Education and
Research (BMBF) and the German Academic Exchange Service (DAAD). It was
elaborated under a jointly supervised thesis agreement between the University
of Marburg, Germany and the National School of Engineers of Sfax (ENIS),
University of Sfax, Tunisia. This gave me the great chance to have two excellent
supervisors: Prof. Dr. Bernd Freisleben (University of Marburg) and Prof. Dr.
Mohamed Jmaiel (ENIS).

Mohamed Jmaiel has supervised my Master thesis and showed me the basis
of research. He introduced me to Bernd Freisleben, in the context of a DAAD
workshop. This gave me the opportunity to visit a German research group.

I feel very lucky that Bernd Freisleben supervised my research. This PhD
thesis is largely due to his outstanding support; Bernd taught me a lot about
research and showed me the art of scientific writing. This dissertation would
look completely different without him.

Riadh Ben Halima deserves special thanks, as he shared with me his knowledge
and his research experience.

I am grateful to the committee members for accepting to evaluate this PhD
thesis.

I also want to thank Thomas Gebhardt and Markus Böttner from the local
computer center at the University of Marburg, for their valuable technical support
and their patience, when a new machine fails again.

Additionally, I want to thank Cornelia Hanzlik-Rudolph and Anke Bahrani
from the DAAD office (north Africa section), for their availability.

Special thanks go to Näıma Kolsi-Benzina, Marc Strickert and Amira Abdel-
Aziz for proofreading parts of this dissertation.

I also want to thank my colleagues at the Distributed Systems Group (Uni-
versity of Marburg) and at the ReDCAD laboratory (University of Sfax) for our
interesting discussions.

Mechthild Keßler, our secretary at the University of Marburg, deserves par-
ticular thanks, for efficiently dealing with all administrative tasks.

Most of all, I want to thank my father Anouar for his extraordinary support
during the last 374 months. I owe to him what I am today.

Distinctive thanks go to my sister Rim, my brothers Habib and Mohamed
Ali, and my aunts Näıma and Sondos, for their care and valuable support.

–xiii–

Last but certainly not least, I thank my nephews Mohamed, Zeineb and Karim
for the innocent and sweet Skype discussions that made my life happier.

–xiv–

Contents

Declaration ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions . 3
1.4 Publications . 4
1.5 Structure of the Thesis . 5

2 Fundamentals 7
2.1 Introduction . 7
2.2 Autonomic Computing . 7
2.3 Cloud Computing . 10

2.3.1 Essential Characteristics of Cloud Computing 11
2.3.2 Cloud Computing Architecture 11
2.3.3 Cloud Services . 12
2.3.4 Deployment Models of Cloud Computing 13
2.3.5 OpenStack . 14

2.4 Virtualization . 17
2.4.1 Types of Virtualization . 18
2.4.2 Xen . 20

2.5 Aspect-Oriented Programming . 21
2.6 Complex Event Processing . 23

2.6.1 CEP Architecture . 23
2.6.2 Esper . 24

2.7 Root Cause Analysis . 24
2.8 Summary . 25

3 Related Work 27
3.1 Introduction . 27
3.2 Monitoring . 27

3.2.1 Monitoring: Software Layer 28
3.2.2 Monitoring: Platform Layer 30

–xv–

Contents

3.2.3 Monitoring: Infrastructure Layer 30
3.2.4 Monitoring: All Cloud Layers 31
3.2.5 Discussion . 31

3.3 Analysis . 32
3.3.1 Centralized Analysis Approaches 32
3.3.2 Distributed Analysis Approaches 36
3.3.3 Discussion . 38

3.4 Recovery / Self-healing Approaches for Cloud Computing Envi-
ronments . 40

3.5 Requirements Catalog . 45
3.6 Summary . 46

4 CEP4Cloud: Complex Event Processing for Reactive Cloud Mon-
itoring 47
4.1 Introduction . 47
4.2 CEP4Cloud in a Nutshell . 47

4.2.1 The Architecture . 48
4.2.2 The Monitoring Agent . 49
4.2.3 The Analysis Agent . 49
4.2.4 The Action Manager Framework 49

4.3 Monitoring . 50
4.3.1 PI Monitor . 50
4.3.2 VI Monitor . 50
4.3.3 P Monitor . 51
4.3.4 S Monitor (AOP4CSM) 51

4.4 Analysis . 56
4.4.1 CEP4CMA . 56
4.4.2 D-CEP4CMA . 82

4.5 The Action Manager Framework 92
4.6 Summary . 96

5 Implementation 97
5.1 Introduction . 97
5.2 Implementation of CEP4Cloud 97
5.3 Monitoring . 98

5.3.1 S Monitor: AOP4CSM . 99
5.3.2 P Monitor: JVMSensor . 102
5.3.3 VI Monitor . 103
5.3.4 PI Monitor . 105

5.4 Analysis . 105
5.4.1 Implementation of CEP4CMA 105
5.4.2 Implementation of D-CEP4CMA 108

5.5 The Action Manager Framework 109

–xvi–

Contents

5.6 Summary . 110

6 Experimental Results 111
6.1 Introduction . 111
6.2 Testbeds . 111

6.2.1 Testbed I: A Medical Workflow as a Service 112
6.2.2 Testbed II: The OpenStack Cloud Platform 112

6.3 Evaluation of the Multi-layer Monitoring Approach 113
6.3.1 Evaluation of AOP4CSM 113
6.3.2 Evaluation of the Multi-layer Monitoring Agent 114

6.4 Evaluation of the Analysis Approach 116
6.4.1 Evaluation of CEP4CMA 116
6.4.2 Evaluation of D-CEP4CMA 121

6.5 Evaluation of the Action Manager Framework 124
6.5.1 Overhead of the Action Manager Framework 125
6.5.2 Action Manager Framework vs. Baseline Approaches . . . 126

6.6 Evaluation of CEP4Cloud . 126
6.6.1 Time-to-Repair . 127
6.6.2 Overhead of CEP4Cloud 129
6.6.3 CEP4Cloud vs. Rules-B2 129

6.7 Summary . 131

7 Conclusion 133
7.1 Summary . 133
7.2 Future Work . 134

7.2.1 Dynamic Analysis Rules 135
7.2.2 Predictive Performance Monitoring 135
7.2.3 Scalability . 135
7.2.4 Security Intrusions . 135
7.2.5 Reliability . 135

List of Figures 137

List of Tables 142

List of Listings 144

Index 146

Bibliography 146

Curriculum Vitae 159

–xvii–

“The greatest challenge to any thinker is stating the problem in a
way that will allow a solution.”

Bertrand Russell

1
Introduction

1.1 Motivation

In the context of MIT’s centennial (1961), the computer scientist John McCarthy
predicted that computing may be offered as a public utility like water and elec-
tricity [33]. Several decades later, a new computing technology, called Cloud
computing, has emerged to make McCarthy’s prediction true. Indeed, Cloud
computing has been designed to offer everything as a service. Its basic idea is
very exciting since it makes accessing many thousands of computers possible and
as easy as online shopping.

Contrary to traditional computing paradigms, Cloud computing offers many
levels of services to customers. The most known ones are SaaS (Software as a Ser-
vice), PaaS (Platform as a Service) and IaaS (Infrastructure as a Service). These
services are delivered on demand, while following the “Pay as You Go” model
(i.e., paying exactly what you use). This allows customers (i.e., Cloud users) to
save a potentially large amount of money by renting the required infrastructure.

Today’s Cloud computing environments are typically based on a layered archi-
tecture consisting of infrastructure, platform and software layers. Clouds consist
of many hardware and software resources and are accessed by many concurrent
users. In such a complex environment, performance-related problems are quite
likely and rather the norm than the exception. Consequently, it is necessary to
monitor and analyze performance parameters of Cloud computing environments
to detect and rectify related problems.

This thesis focuses on defining, implementing and validating a reactive per-
formance monitoring approach for Cloud computing environments. The target

–1–

Chapter 1. Introduction

solution should be able to efficiently detect and rectify performance-related prob-
lems, while monitoring and analyzing performance parameters.

1.2 Problem Statement

Designing a reactive monitoring solution for Cloud computing environments is a
challenging task since it leads to three main research topics. The first topic deals
with Cloud monitoring, the second topic is related to Cloud analysis, and the
third topic deals with Cloud recovery.

Most existing monitoring approaches for Cloud services (SaaS layer) require
access to the source code of the services being monitored and are typically oper-
ated by the provider. The first challenge to be solved is to define a non-invasive
monitoring approach for Cloud services.

Related monitoring and analysis approaches have been designed to separately
work for only one of the Cloud layers (infrastructure, platform, software) and
thus do not consider the interactions between these layers. Exploiting the rela-
tionships between metrics across Cloud layers is promising in terms of accuracy,
but expensive in terms of rapidity. Actually, a multi-layer monitoring and ana-
lysis approach generates a huge volume of data. Thus, it could be quite slow
and could consume a lot of storage space. The second challenge of this thesis is
to define a fast and an accurate analysis approach that exploits the interactions
between Cloud layers.

Existing analysis approaches are based either on a centralized architecture or
on a distributed architecture. Each architecture has some disadvantages and does
not fit to an elastic Cloud. A centralized analysis component could easily become
a bottleneck if the amount of monitored data exceeds its processing capacities
(i.e., the size of the Cloud increases). On the other hand, distributed analysis
architectures suffer from the potentially large number of messages exchanged
between the distributed analysis components. They become unnecessary if the
size of the Cloud goes down. The third challenging task to be solved is the
definition of a dynamic analysis architecture that fits to the elasticity property
of Clouds (i.e., scale up/down).

Related recovery approaches are usually based on assigning a single recovery
action to a given performance-related problem and they do not check the success
of the applied action. This could lead to bad results if the applied recovery action
has failed. The fourth challenge of this thesis is to define a recovery approach
that is able to identify all possible recovery actions to a given performance-related
problem and validate the success of the applied recovery action.

The last challenging task to be solved is to combine the monitoring, ana-
lysis and recovery approaches to build an efficient cross-layer reactive monitoring
solution for Cloud computing environments.

–2–

1.3. Contributions

1.3 Contributions

The contributions of this thesis are summarized below:

• A novel monitoring approach for Cloud services is defined. The proposed
approach is called AOP4CSM for “Aspect-Oriented Programming for Cloud
Service Monitoring”. AOP4CSM uses Aspect-Oriented Programming (AOP)
as a method to collect, in a non-invasive manner, quality of service (QoS)
parameters such as the execution and the response times of Cloud services
at the SaaS layer. AOP4CSM does not require access to the source code of
a service, and can be installed by the client.

• A novel cross-layer monitoring and analysis approach for Cloud computing
environments is proposed. The defined approach deals with performance-
related problems. It is called CEP4CMA for “Complex Event Processing
for Cloud Monitoring and Analysis”. CEP4CMA offers accurate diagno-
sis and does not require any storage space for recording monitored events.
It is based on the methodology of Complex Event Processing (CEP). The
novelty of CEP4CMA is that the CEP queries are derived from a com-
prehensive analysis of the relationships between monitored metrics across
Cloud layers. The correlations between the monitored metrics on different
Cloud layers are obtained via a set of experiments and well known statis-
tical methods. The results of our correlation study allow us to reduce the
number of monitored parameters. Furthermore, they are used to perform a
Root Cause Analysis (RCA) to identify the causes of performance-related
problems.

• A novel dynamic architecture for Cloud performance monitoring and ana-
lysis based on CEP is proposed. The defined architecture is called D-
CEP4CMA for “Dynamic Complex Event Processing for Cloud Monitoring
and Analysis”. The basic idea of D-CEP4CMA is to dynamically switch
between different CEP architectures depending on the current conditions
of the observed Cloud environment. It is based on two novel algorithms
to decide whether to activate particular architectural components. D-
CEP4CMA’s algorithms are deduced from an experimental study of three
different CEP architectures for Cloud monitoring and analysis, a centralized
one and two distributed ones.

• A novel multi-level recovery approach is proposed. It is based on a new
action manager framework that (1) assigns a set of repair actions to each
performance-related problem and (2) dynamically selects and applies the
most adequate one. The success of the applied action is checked in our
proposal.

–3–

Chapter 1. Introduction

• A novel cross-layer reactive performance monitoring approach for Cloud
computing environments is presented.

1.4 Publications

The following papers have been published in the context of this thesis:

Journal Publications

• Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
D-CEP4CMA: A Dynamic Architecture for Cloud Performance Monitoring
and Analysis via Complex Event Processing. International Journal of Big
Data Intelligence, 1(1/2):89–102, 2014

• Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
Reactive Performance Monitoring of Cloud Computing Environments. 2014.
Submitted for publication

Conference Publications

• Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
CEP4Cloud: Complex Event Processing for Self-Healing Clouds. In Pro-
ceedings of the 23rd IEEE International Conference on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, pages 62–67, Parma, Italy,
2014. IEEE Press

• Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
CEP4CMA: Multi-Layer Cloud Performance Monitoring and Analysis via
Complex Event Processing. In Proceedings of the 2nd International Con-
ference on Networked Systems, volume 8593 of Lecture Notes in Computer
Science, pages 138–152, Marrakech, Morocco, 2014. Springer

• Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
A Dynamic Complex Event Processing Architecture for Cloud Monitoring
and Analysis. In Proceedings of the IEEE 5th International Conference
on Cloud Computing Technology and Science, pages 270–275, Bristol, UK,
2013. IEEE Press

• Afef Mdhaffar, Riadh Ben Halima, Ernst Juhnke, Mohamed Jmaiel, and
Bernd Freisleben. AOP4CSM: An Aspect-Oriented Programming Approach
for Cloud Service Monitoring. In Proceedings of the 11th IEEE International
Conference on Computer and Information Technology, pages 363–370, Pa-
phos, Cyprus, 2011. IEEE Press

–4–

1.5. Structure of the Thesis

• Meriam Mahjoub, Afef Mdhaffar, Riadh Ben Halima, and Mohamed Jmaiel.
A Comparative Study of the Current Cloud Computing Technologies and
Offers. In Proceedings of the 1st International Symposium on Network Cloud
Computing and Applications, pages 131–134, Toulouse, France, 2011. IEEE
Press

• Afef Mdhaffar, Soumaya Marzouk, Riadh Ben Halima, and Mohamed Jmaiel.
A Runtime Performance Analysis for Web Service-Based Applications. In
Proceedings of the 1st Workshop on Engineering SOA and the Web held
in conjunction with the 10th International Conference on Web Engineering,
volume 6385 of Lecture Notes in Computer Science, pages 313–324, Vienna,
Austria, 2010. Springer

The paper entitled “CEP4Cloud: Complex Event Processing for Self-
Healing Clouds” received a “Best Paper Award” at the “23rd IEEE Inter-
national Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises” (WETICE 2014), Parma, Italy, in 2014.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 introduces basic concepts related to this thesis. This includes auto-
nomic computing, Cloud computing and virtualization. Furthermore, Chapter 2
presents approaches and techniques used during the course of this work, such as
aspect-oriented programming, complex event processing and root cause analysis.

Chapter 3 describes and discusses related work. It focuses on monitoring,
analysis and recovery approaches for Cloud computing environments. Based on
the drawn conclusions, Chapter 3 identifies the requirements of this thesis.

Chapter 4 details the design of the cross-layer reactive monitoring approach
for Cloud computing environments, called CEP4Cloud. First, it describes the ar-
chitecture of CEP4Cloud. Second, it details the main components of CEP4Cloud:
the multi-layer monitoring agent, the CEP-based cross-layer analysis agent and
the action manager framework.

Chapter 5 details the implementation of CEP4Cloud and its main compo-
nents. First, it presents a high-level view of CEP4Cloud’s structure. Then, it
gives implementation details regarding the monitoring, analysis and recovery ap-
proaches

–5–

Chapter 1. Introduction

Chapter 6 presents and discusses experimental results. It illustrates the merits
of CEP4Cloud compared to baseline approaches.

Chapter 7 concludes this thesis and outlines areas of future research.

–6–

“The greatest obstacle to discovery is not ignorance – it is the illusion
of knowledge.”

Daniel J. Boorstin

2
Fundamentals

2.1 Introduction

This chapter introduces the basic concepts related to this thesis. It covers auto-
nomic and Cloud computing, virtualization, and the methodologies / techniques
used in the context of this research work, such as Aspect-Oriented Programming
(AOP), Complex Event Processing (CEP) and Root Cause Analysis (RCA). Sec-
tion 2.2 deals with autonomic computing, while Section 2.3 focuses on Clouds.
An overview of virtualization is given in Section 2.4, since it plays a principal role
to build a Cloud computing environment. Afterwards, the methodologies used to
define and develop the proposed approaches are presented. An introduction to
Aspect-Oriented Programming is given in Section 2.5. The techniques of Com-
plex Event Processing and Root Cause Analysis are described in Sections 2.6 and
2.7, respectively. Section 2.8 summarizes this chapter.

2.2 Autonomic Computing

The idea of autonomic computing has firstly been introduced by Paul Horn, IBM’s
senior vice president of research [52]. Horn has used a biological connotation to
describe the autonomic computing paradigm. He viewed an autonomic system as
the human nervous system that it is able to self-govern the heart rate and the body
temperature. Indeed, IBM has defined autonomic computing as a computing
environment which is able to (1) “know it self ”, (2) “re-configure itself under
changing conditions”, (3) “heal it self, when a problem occurs”, (4)“optimize
it self ” and (5) “protect it self from dangerous situations” [35]. So, autonomic

–7–

Chapter 2. Fundamentals

computing systems should be able to achieve the four following objectives [44, 77]:

Self-configuration: An autonomic system is able to configure and re-configure
it self according to changing and unpredictable conditions. It automatically
adapts to the needs of the environment (e.g., platform, user).

Self-healing: An autonomic system is able to detect, diagnose and repair po-
tential issues, without stopping to function.

Self-optimization: An autonomic system is able to monitor and automatically
optimize / tune its resources to meet the defined requirements (e.g., improve
quality of service, improve performance).

Self-protection: An autonomic system should be able to prevent security is-
sues from occurring. It has to protect it self from malicious attacks.

As shown in Figure 2.1, these self-X objectives are related to the properties
of software agents, identified by Wooldrige and Jennings [106]: Autonomy, Social
ability, Reactivity and Pro-activeness [44].

Autonomic	
Compu,ng	

Self-‐configuring	 Autonomy	

Self-‐healing	 Reac,vity	

Self-‐op,mizing	 Social	 ability	

Self-‐protec,ng	 Pro-‐ac,veness	

Figure 2.1: Autonomic computing

Autonomy is the capability of operating without direct human intervention or
any other kind of external control [44].

–8–

2.2. Autonomic Computing

Social ability characterizes agents which interact with other agents or humans
via some communication protocols [44].

Reactivity is the capability of an agent to evaluate itself and react in a timely
fashion to changes [44].

Pro-activeness characterizes agents that are able to predict problems and pre-
vent them from occurring [44].

To achieve the Self-X objectives described above, an autonomic system is
typically based on the MAPE-K (Monitoring, Analysis, Planning, Execution -
Knowledge) loop. It firstly starts by collecting events. Afterwards, it analyzes
the gathered data to describe its state and plans recovery actions, if a failure has
been detected. The planned recovery action will then be executed. These phases
are usually based on some knowledge. The MAPE-K loop is detailed in the next
section.

MAPE-K Loop

Figure 2.2 depicts the MAPE-K loop. It consists of four main steps and makes
use of some knowledge about the managed element.

	 	 Plan	

Execute	 Monitor	

Managed	 element	

Analyze	

Knowledge	

Figure 2.2: MAPE-K loop [52]

The main elements of the MAPE-K loop are described below.

–9–

Chapter 2. Fundamentals

Monitor: The first step of the MAPE-K loop allows us to monitor the managed
element, while collecting related metrics.

Analyze: The second step of the MAPE-K loop allows us to analyze and diag-
nose the monitored metrics, collected during the first phase. The analysis phase
generates diagnosis reports describing the state of the managed system. More-
over, it detects failures, triggers alarms and notifies the planning phase (i.e., third
step of the MAPE-K loop) to ask for recovery actions.

Plan: The third step of the MAPE-K loop is the planning phase. It allows us
to identify the best recovery action to repair the detected failure.

Execute: The last step of the MAPE-K loop is in charge of executing the
planned recovery actions.

Knowledge: The knowledge element of the MAPE-K loop is used to describe
the characteristics of the managed system, such as the system configuration [52].

2.3 Cloud Computing

The basic idea of Cloud computing is not new. It refers to a long-held dream
of computing as a utility [3, 33], that has finally been established [4]. Indeed,
Cloud computing is a new computing model that provides hardware and software
resources as utilities [110].

The term Cloud does not have a standard definition. Therefore, many re-
searchers have tried to standardize the definition of Cloud computing. For in-
stance, Armbrust et al. [4] discussed the most known Cloud definitions. In this
thesis, we adopt the definition provided by the National Institute of Standards
and Technology (NIST), since it covers the main characteristics of Cloud com-
puting.

Cloud Computing Definition (provided by NIST)

NIST defines Cloud computing as “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider in-
teraction” [71].

The remainder of this section describes the main aspects of Cloud computing.
First, we detail the five principal characteristics of Clouds. Second, we describe
the layered architecture of Cloud computing. Third, we present the most known

–10–

2.3. Cloud Computing

Cloud services. Finally, we give an overview about the deployment models of
Cloud computing.

2.3.1 Essential Characteristics of Cloud Computing

On-demand self-service: Cloud services are available on-demand and could
be rented by Cloud customers at any time, without human intervention [71].

Broad network access: Cloud services are available via network connections
and accessed from all kinds of devices: thick and thin client platforms (e.g. work-
stations, laptops, tablets and mobile phones) [71].

Resource pooling: The model of Cloud computing is multi-tenant. Cloud
resources are pooled to serve many Cloud users. They are allocated and re-
allocated, according to the demands of Cloud consumers [71].

Rapid elasticity: Cloud resources are elastically allocated and released to meet
the requirements of Cloud users (e.g. scale up when the resources are over-used)
and save resources (e.g., scale down when the resources are not used), respectively
[71].

Measured service The usage of Cloud resources is monitored and reported.
The generated reports can be accessed by the customers and the provider of
the Cloud. Based on a pay-per-use strategy, Cloud resources are automatically
optimized [71].

2.3.2 Cloud Computing Architecture

Figure 2.3 depicts the layered architecture of Cloud computing.
It consists of four main layers: (1) the physical infrastructure layer, (2) the

virtualization layer, (3) the platform layer and (4) the software layer. Cloud
layers are detailed below.

The physical infrastructure layer is composed of hardware resources such
as physical machines, routers, switches and power. Physical resources are usually
organized in racks and interconnected via switches or routers.

The virtualization layer is in charge of managing virtual machines (VMs).
It is based on a virtualization technology such as Xen, KVM and VMware, to
create and manage virtual resources.

–11–

Chapter 2. Fundamentals

Virtualiza)on	 Layer	

So1ware	

Pla4orm	

Infrastructure	 (physical	 resources)	 	

Figure 2.3: The layered architecture of Cloud computing

The platform layer is running on top of the virtualization layer. It is com-
posed of operating systems and running platforms such as database and web
servers.

The software layer is the highest layer of the Cloud computing architecture.
It consists of applications and services, such as web services.

2.3.3 Cloud Services

The main idea of Cloud computing is to offer everything as a service (XaaS).
As shown in Figure 2.4, the most known Cloud services are related to the Cloud
computing architecture. They are:

Infrastructure as a Service (IaaS) is a Cloud service that offers, in an on-
demand fashion, a virtualized infrastructure (i.e., virtual machines) as a service,
through the use of virtualization technologies. The most known IaaS are Amazon
EC2 [59] , Flexiscale [32] and GoGrid [97] .

Platform as a Service (PaaS) is the second most known Cloud service. It
provides a software platform as a service, such as Google’s App Engine [20] and
Microsoft Azure [103]. Google’s App Engine allows us to develop and run Web
application on Google’s platform.

Software as a Service (SaaS) is a Cloud service that offers a software (i.e.
application) as a service, such as e-mail clients (e.g., Gmail) and document man-
agement software (e.g., Google Docs).

–12–

2.3. Cloud Computing

Infrastructure	 as	 a	 Service	 (IaaS)	

Pla3orm	 as	 a	 Service	 (PaaS)	

So6ware	 as	 a	 Service	 (SaaS)	

Applica'ons,	 Web	 services	

Pla3orms	 (e.g.	 Web	 servers,	 Database,	 …);	
Opera'ng	 systems	

Virtual	 resources	 (VMs)	

Amazon	 EC2	
GoGrid	
Flexiscale	

Google	 App’s	 Engine	
Microso6	 Azure	

Gmail	
Google	 Docs	
Facebook	

Figure 2.4: The most known Cloud services

Since Cloud computing is based on the “Pay as You Go” model, it allows
Cloud customers to save a potentially large amount of money, by renting the
required software / hardware resources.

2.3.4 Deployment Models of Cloud Computing

As shown in Figure 2.5, there are four deployment models of Cloud computing:
private Cloud, community Cloud, public Cloud and hybrid Cloud. They are
described below.

Private Cloud

The Cloud environment is exclusively used by a single (private) organization
composed of many consumers. It is usually owned and managed by the same
organization and/or another Cloud provider [71].

Community Cloud

A community Cloud environment is exclusively used by a specific community
of consumers belonging to several organizations, that share common concerns
such as mission and policy. The community Cloud environment could be owned
and managed by one or many organizations of the community, or another Cloud
provider (i.e., a third party), or a combination of them [71].

–13–

Chapter 2. Fundamentals

Public Cloud

A public Cloud environment can be used by everyone. It is owned and managed
by one or many organizations [71].

Hybrid Cloud

A hybrid Cloud consists of many (two or more) Cloud environments (private,
community, or public) that share standardized technology to enable the porta-
bility of applications and data [71].

Public	
Cloud	

Community	
Cloud	

Private	
Cloud	

Hybrid	 Cloud	

Figure 2.5: Deployment models of Cloud computing

Existing Cloud computing platforms are clustered into two groups: commer-
cial and open source platforms. For instance, Amazon EC2 is a commercial IaaS,
while OpenStack is an open source IaaS. For research and developing purposes,
it is more convenient to use an open source Cloud since it allows developers to
access the source code. The most prominent examples of open source Cloud
computing platforms are OpenStack, Eucalyptus, OpenNebula and CloudStack.
Several research work have compared and discussed the merits and issues of these
open source Clouds. For instance, Sempolinski et al. [90] provides a comparison
between Eucalyptus, OpenNebula and Nimbus.

In this research work, we use OpenStack, since it meets our needs. The next
section details OpenStack.

2.3.5 OpenStack

OpenStack [99] is an open source IaaS Cloud, licensed under the Apache 2.0
License. It has been founded by “Rackspace Hosting” and “NASA”. The Open-

–14–

2.3. Cloud Computing

Stack project is now managed by the OpenStack Foundation, established in
September 2012 [51]. OpenStack has released ten OpenStack releases: from
Austin (October 2010) to Juno (October 2014). The eleventh OpenStack re-
lease is called Kilo. Kilo is still under development and will be released in April
20151. OpenStack is written in Python and can be used to build IaaS Clouds.

Openstack is based on a modular architecture. It consists of seven main
services, which can be clustered into five groups. As shown in Figure 2.6, the first
group includes compute services, while the second one is composed of networking
services.

Your	 Applica,ons	

APIs	 OPENSTACK	
CLOUD	 OPERATING	 SYSTEM	

OpenStack	 Dashboard	

Compute	 Networking	 Storage	

Standard	 Hardware	

OpenStack	 Shared	 Services	

Figure 2.6: OpenStack architecture 2

The third group includes the storage services, while the fourth one consists of
the OpenStack dashboard. The last one is composed of shared services. These
groups and their components are summarized in Table 2.1 and detailed below.

Compute service

Compute services are used to manage instances (i.e., virtual machines), while
retrieving images and associated metadata. They are also called “Nova” services.

Networking services

The networking services are in charge of managing the virtual network of the
created instance (e.g., assigning IP addresses to instances).

1https://wiki.openstack.org/wiki/Releases
2http://www.openstack.org/software/
3OpenStack includes also telemetry, orchestration and database services

–15–

Chapter 2. Fundamentals

Table 2.1: OpenStack services
Service Group Service Name Service Identifier

Compute Compute Nova
Networking Network Quantum / Neutron

Storage
Block Storage Cinder
Object Storage Swift

Dashboard Dashboard Horizon

Shared services3
Identity Keystone
Image Glance

Storage services

The storage services include the object storage and block storage services. The
object storage service, also known as “Swift”, allows users to store and/or retrieve
data. The block storage service, called “Cinder” is responsible of providing stor-
age volumes for the compute services.

Dashboard

The dashboard is the web management interface of OpenStack. It is called “Hori-
zon” and can be used to access OpenStack services, such as launching virtual ma-
chines and creating snapshots. Figure 2.7 shows a screen snapshot of “Horizon”.

Figure 2.7: OpenStack dashboard: Horizon

–16–

2.4. Virtualization

Shared services

OpenStack makes use of many shared services, which allow the communication
between OpenStack components. The most important shared services of Open-
Stack are the image and the identity services. The image service, also called
“Glance”, is used to store the images. The identity service, known as “Key-
stone”, is the authentication system of OpenStack. It is used to manage users,
tenants and permissions.

OpenStack services cooperate with each other to achieve the operations re-
quired by the users. Figure 2.8 depicts the relationships between OpenStack
services. It shows the conceptual diagram of OpenStack.

Figure 2.8: The conceptual diagram of OpenStack 4

As already mentioned, Cloud computing environments are typically based
on the use of vitualization technologies, to create and manage virtual resources.
Virtualization technologies are detailed in Section 2.4.

2.4 Virtualization

Virtualization is a technique that allows us to logically separate between the
physical resources and the running software. It provides an abstraction layer
between running applications and the hardware. Indeed, the virtualization tech-

4http://docs.openstack.org/training-guides/content/developer-getting-started.html

–17–

Chapter 2. Fundamentals

nology makes the software independent of the hardware [42]. In particular, vir-
tualization can be used to run many operating systems on the same physical
machine. The running operating systems correspond to virtual machines. This
corresponds to a specific type of virtualization, called “Server and Machine Virtu-
alization”. There are many other types of virtualization like application, desktop
and network virtualization. The next section gives and describes existing types
of virtualization.

2.4.1 Types of Virtualization

There are six principal types of virtualization. They are described below [42]:

Application virtualization

Application virtualization allows us to compile applications into a byte code that
is independent of the machine. The produced byte code can be used on any
system that has an execution environment, based on the same virtual machine.
The most known example of this type of virtualization is the byte code generated
by the compilers for the Java programming language [42].

Desktop virtualization

Desktop virtualization is a technique that allows us to display a graphical desk-
top of one machine on another machine. The most known example of desktop
virtualization is VNC (Virtual Network Computing). Von Hagen [42] believes
that the term “desktop virtualization” does not really describe a virtualization
technique. Actually, displaying the graphical desktop of a remote machine on
another machine is not related to virtualization, since the applications are still
running on the same and single (remote) machine [42].

Network virtualization

Network virtualization is a logical abstraction of physical network resources. It
allows us to logically refer to network resources [42]. Chowdhury et al. [18]
provide a detailed description of a network virtualization environment (NVE)
and compare a NVE to a traditional network model. The classic example of
network virtualization is VPN (Virtual Private Network). VPN allows users to
logically connect multiple sites.

Storage virtualization

Storage virtualization is well known and has been defined since several years.
It represents the logical abstraction of physical storage. LVM (Logical Volume
Manager) is the most familiar example of storage virtualization [42].

–18–

2.4. Virtualization

System-level virtualization

The system-level virtualization, also called operating system virtualization, is
based on the concept of change root (chroot). As shown in Figure 2.9, system-
level virtualization allows users to run many virtual servers on a shared (single)
copy of an operation system kernel [42].

Hardware	

Host	 Opera-ng	 System	

Virtual	 Server	 Virtual	 Server	 Virtual	 Server	

Single	 Kernel	

Figure 2.9: System-level or operating system vitualization [42]

Server virtualization

Server virtualization, also called machine virtualization, is the most famous vir-
tualization type [42]. It allows users to run many virtual machines on another
operating system. The running virtual machines have their own operating sys-
tem. They are able to execute their applications within their own operating
systems. Hardware resources are logically assigned to virtual machines. In con-
trast to system-level virtualization, server virtualization does not require to share
the same kernel. Therefore, it is widely used. There are several approaches to
server virtualization. The most known ones are detailed below:

• Full virtualization: It consists of abstracting all physical hardware and
running unmodified operating systems [17], such as Virtualbox.

• Hardware-assisted virtualization: It allows us to run an unmodified
operating system [17]. An example of a Hardware-assisted virtualization is
KVM.

–19–

Chapter 2. Fundamentals

• Para-virtualization: It consists of running a modified operating system
and does not require to virtualize all physical hardware, such as Xen [17].

Since Xen is used during the course of this thesis, it is detailed in the next
section.

2.4.2 Xen

The Xen Virtual Machine Monitor (VMM) is a key element of the XenoServer
project [34], launched at the University of Cambridge and led by Ian Pratt. Xen
supports the capability of running multiple operating systems on a single physical
machine [42]. It is based on para-virtualization [8].

Xen Architecture

Xen stands between the hardware and the operating system. A Xen system is
composed of three core components [17]:

• The hypervisor

• The kernel

• The userspace applications

As shown in Figure 2.10, the core components of a system involving Xen are
organized in a layered fashion.

2	 0	 1	 2	 3	 0	 1	 2	 3	

Na(ve	 Paravirtualized	

Hypervisor	 Kernel	 Applica(ons	 Unused	

Figure 2.10: Ring usage in native and paravirtualized systems [17]

–20–

2.5. Aspect-Oriented Programming

The operating system kernel is running in Ring 1 (i.e., under Xen), instead of
ring 0 (i.e., Native) in the context of 32 bit hardware. Thus, the kernel is protected
from applications and other kernels; and is able to access memory allocated to
applications, which are running in Ring 3. The hypervisor is running in Ring 0.
It is protected from kernels (in Ring 1) and applications in Ring 3 [17].

The hypervisor is used to start guests, which are running in environments,
called domains. There are typically two kinds of domains: Domain 0 (Dom0)
and Domain U (DomU). Dom0 has high privileges and boots after starting Xen.
DomU is an unprivileged (U) domain and is started via Dom0 [17].

To manage Xen systems, we use a toolstack such as Xl [107], Libvirt [58] and
Xapi [80]. Xl is the default toolstack of Xen. It is compatible with the xm CLI.
Libvirt is a virtualization toolkit, which is used to manage many virtualization
technologies. It is able to communicate with xm. Xapi is usually used for Clouds.
It is compatible with the xe CLI. We used Xapi to build our OpenStack Cloud
environment.

During the course of this thesis, we used three principal techniques:

• Aspect-Oriented Programming (AOP)

• Complex Event Processing (CEP)

• Root Cause Analysis (RCA)

The used techniques are detailed in Sections 2.5, 2.5 and 2.7.

2.5 Aspect-Oriented Programming

In 1997, Kiczales et al. defined and developed a new programming paradigm,
called Aspect-Oriented Programming (AOP) [54]. AOP complements previous
programming paradigms like Object-Oriented Programming (OOP), while intro-
ducing the concept of crosscutting concerns [81].

According to [53], Aspect-Oriented Programming (AOP) has the same sig-
nificance for crosscutting concerns as Object-Oriented Programming (OOP) has
for encapsulation and inheritance. The authors argue that crosscutting concerns
can be programmed in a modular way and one can benefit from this modularity
by “simpler code that is easier to develop and maintain, and that has greater
potential for reuse” [53].

Indeed, AOP is based on a set of “aspects”. An aspect is a unit of modular-
ity, which implements a concern. We usually use an aspect-oriented programming
language to define aspects and integrate them within the functional code. The
integration process is called “weaving” and is performed via the use of an “Aspect
Weaver”. There are several implementations of AOP. The most known and doc-
umented one is AspectJ [81]. It is a free Java implementation of AOP. AspectJ
extends Java to support the concept of aspect. It adds the new keyword “aspect”

–21–

Chapter 2. Fundamentals

[50]. The definition of an aspect is based on three keywords: joinpoint, pointcut
and advice. They are detailed below:

• A join point is a well-defined point in the execution trace of a program.
For instance, in AspectJ, a join point could be a call of a method or the
execution of an exception handler [50].

• A pointcut is a query that selects a set of join points and collect their
context, where the crosscutting function should be executed. For instance,
a pointcut selects the call of a method M1 and captures its context. The
context of M1 could be the return value or the type of M1’s parameters
[50].

• The advice is a piece of code that is executed when the defined join point
is reached. It implements the crosscutting functionality. It is equivalent
to a method in the context of object oriented programming. The main
difference between a method (OOP) and an advice (AOP) is the fact that
an aspect is never explicitly called [50]. In AspectJ, there are three advices:
(1) before advice, (2) around advice and (3) after advice [81].

The pointcut language defines a set of join points where the advice are inte-
grated into the code. Therefore, aspect-oriented programming eases the develop-
ment of reusable and maintainable code [63].

Listing 2.1 shows an example of an aspect written in the AspectJ language.
It allows us to send an SMS after every bank transaction. The pointcut “sms-
funtion()” (see Line 3 of Listing 2.1) specifies where the “send sms” concern will
be executed. This pointcut captures the call of any method belonging to the
class “Account” (i.e. all bank transactions). The advice (see Lines 5, 6 and 7
of Listing 2.1) specifies when the concern will be executed (line 5) and what is
the main behavior of the concern (line 6). Thus, this aspect allows us to send an
SMS after every bank tansaction.

1 Public aspect SMSBank{

3 Pointcut smsfunction (): execution (* Account .*(float));

5 After : smsfunction (){

sendSMS () ;

7 }

}

Listing 2.1: Aspect: An example written in AspectJ

–22–

2.6. Complex Event Processing

2.6 Complex Event Processing

Complex Event Processing (CEP) is an approach to realize publish-subscribe
systems. It can be used to monitor, process and analyze elementary events to
deduce complex events describing the state of the monitored system.

The main functionality of a CEP system is to process events [39]. Processing
events includes two main functions [39]:

• Consume events from the inputs of the system.

• Produce events on the outputs of the system.

An event describes the state of something (e.g., a parameter or a system) at
a specific timestamp. There are two types of events: (1) elementary events and
(2) complex events. Elementary events, also called simple events, are usually the
inputs of a CEP engine. Complex events, also called composite events, represent
the outputs of a CEP system. For instance, if the CEP engine receives the four
following elementary events:

1. Church bells ringing,

2. A man wearing a nice suit,

3. A woman wearing a white dress,

4. People throwing rice.

Then, the CEP system generates a complex event, as output, indicating that
there is a wedding [78].

2.6.1 CEP Architecture

Figure 2.11 [24] depicts a high-level view of a complex event processing system.
As shown in Figure 2.11, a CEP system is based on three main actors:

• The event observers (also called sources)

• The CEP engine

• The event consumers (also called sinks)

The sources observe notifications of elementary events that have happened in
the external world (i.e., the external monitored system). The CEP engine is in
charge of processing (e.g., filtering, combining, joining ...) the received events to
generate complex events describing the state of the monitored system. The gen-
erated complex events are consumed by the sinks (also called event consumers).

The CEP engine is usually based on a set of queries, to process elementary
events.

The most prominent example of complex event processing systems is Esper
[96]. It is an open source CEP system. Esper is presented in Section 2.6.2.

–23–

Chapter 2. Fundamentals

8 · G. Cugola and A. Margara

2.2.3 Complex Event Processing Systems. The limitation above originates from
the same nature of DSMSs, which are generic systems that leave to their clients the
responsibility of associating a semantics to the data being processed. Complex Event
Processing (CEP) Systems adopt the opposite approach. As shown in Figure 3, they
associate a precise semantics to the information items being processed: they are
notifications of events happened in the external world and observed by sources.
The CEP engine is responsible for filtering and combining such notifications to
understand what is happening in terms of higher-level events (sometimes also called
composite events or situations) to be notified to sinks, which act as event consumers.

Complex Event
Processing Engine

Event observers
(sources)

Event consumers
(sinks)

Fig. 3. The high-level view of a CEP system

Historically, the first event processing engines [Rosenblum and Wolf 1997] focused
on filtering incoming notifications to extract only the relevant ones, thus support-
ing an interaction style known as publish-subscribe. This is a message oriented
interaction paradigm based on an indirect addressing style. Users express their
interest in receiving some information by subscribing to specific classes of events,
while information sources publish events without directly addressing the receiving
parties. These are dynamically chosen by the publish-subscribe engine based on
the received subscriptions.

Conventional publish-subscribe comes in two flavors: topic and content-based [Eu-
gster et al. 2003]. Topic-based systems allow sinks to subscribe only to prede-
fined topics. Publishers choose the topic each event belongs to before publishing.
Content-based systems allow subscribers to use complex event filters to specify the
events they want to receive based on their content. Several languages have been
used to represent event content and subscription filters: from simple attribute/value
pairs [Carzaniga and Wolf 2003] to complex XML schema [Altinel and Franklin
2000; Ashayer et al. 2002].

Whatever language is used, subscriptions may refer to single events only [Aguilera
et al. 1999] and cannot take into account the history of already received events or
relationships between events. To this end, CEP systems can be seen as an extension
to traditional publish-subscribe, which allow subscribers to express their interest
in composite events. As their name suggests, these are events whose occurrence
depends on the occurrence of other events, like the fact that a fire is detected when
three different sensors, located in an area smaller than 100m2, report a temperature
greater than 60oC, within 10 sec. one from the other.

CEP systems put great emphasis on the issue that represents the main limitation
of most DSMSs: the ability to detect complex patterns of incoming items, involving
sequencing and ordering relationships. Indeed, the CEP model relies on the ability

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure 2.11: Complex event processing [24]

2.6.2 Esper

The Esper CEP engine is typically used to analyze and react to events. It has been
applied in several domains such as business process management and automation,
finance and network monitoring [96].

Esper implements EPL (Event Processing Language) queries. EPL is a SQL-
like language. It runs queries on streams of events instead of tables. All SQL
clauses (e.g., SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY)
and SQL concepts of correlation (e.g., join, filtering) are available. Moreover,
Esper supports pattern matching [96].

Esper is available in two versions:

• A Java version, called Esper (used during the course of this research work).

• A .Net version, called NEsper.

For more details about Esper, the reader is referred to the online tutorial of
Esper [96].

The “Root Cause Analysis” approach has also been used during the course of
this thesis. It is detailed in Section 2.7.

2.7 Root Cause Analysis

Root Cause Analysis (RCA) is an analytic approach that helps analysts to di-
agnose crisis situations, while identifying the cause of failures [12]. It is the
process that allows us to discover what happened, why it happened and how to
prevent / solve it [12].

The most prominent tools that can perform a root cause analysis are “5
Whys”, “Pareto chart” and “Fishbone diagrams” [46].

In this thesis, fishbone diagrams are used to perform root cause analysis.
Fishbone diagrams are detailed below.

–24–

2.8. Summary

Fishbone Diagram

The fishbone diagram, also called cause-effect diagram or Ishikawa diagram, was
introduced by Ishikawa in 1960 [46]. The fishbone diagram is a visual method
that follows the root cause analysis approach to detect failures and identify their
causes. Cause-effect diagrams are more useful than “5 Whys”, when the consid-
ered issue is very complex and involves a lot of data [92]. In a fishbone diagram,
the causes are clustered into categories. Each group of causes is related to finer
causes. Figure 2.12 shows an example of a fishbone diagram, created by the
Xmind tool [108]. Xmind is Java tool that allows us to design several types of
diagrams, such as fishbone diagrams.

Effect

Ca
us

e
1

Cause 1.1

Cause 1.2

Report 1.1

Report 1.1
Ca

us
e

2

Cause 2.1

Cause 2.2

Report 2.1

Report 2.2

Figure 2.12: Fishbone diagram: An example

As shown in Figure 2.12, a fishbone diagram consists of three main elements:

• The effect represents the detected failure.

• The cause represents the origin of the detected failure (e.g. Cause 1) .

• The report describes the failure and its origins; and gives some hints to
repair / prevent it (e.g. Report 1.1).

2.8 Summary

In this chapter, we have introduced basic concepts related to this thesis, such
as autonomic and Cloud computing, and virtualization. Moreover, a description
of approaches and techniques used in the course of this thesis has been given.
This includes an overview about Aspect-Oriented Programming, Complex Event
Processing and Root Cause analysis. The next chapter presents and discusses
related work.

–25–

“People think that computer science is the art of geniuses but the
actual reality is the opposite, just many people doing things that
build on each other, like a wall of mini stones.”

Donald Knuth

3
Related Work

3.1 Introduction

In this chapter, related research projects with respect to self-healing approaches
for Cloud computing environments are studied. These projects can be divided
into three main groups. The first one includes solutions that focus on the first
phase of the MAPE-K loop (i.e., monitoring). Related monitoring approaches
are described and discussed in Section 3.2. The second group deals with ana-
lysis solutions that naturally include monitoring approaches. Existing monitor-
ing and analysis solutions for Cloud computing environments in the presence of
performance-related problems are presented and discussed in Section 3.3. The
last group consists of self-healing approaches, addressing all the stages of the
MAPE-K loop (i.e., monitoring, analysis and recovery). Section 3.4 presents and
discusses related self-healing approaches. Based on the conducted study, the re-
quirements of this thesis are defined. They are detailed in Section 3.5. Section
3.6 summarizes this chapter.

3.2 Monitoring

Existing monitoring approaches for Cloud computing environments can be grouped
into four categories, according to the monitored Cloud layer. The first one in-
cludes monitoring approaches that collect QoS parameters at the software layer.
The second category allows to monitor the platform layer, while the third one
collects infrastructure-related parameters such as the CPU usage and the free
memory. The fourth group includes multi-layer monitoring approaches that op-

–27–

Chapter 3. Related Work

erate at all Cloud layers and gather related parameters. Our related work study
has shown that monitoring approaches usually use existing monitoring tools to
gather parameters related to the infrastructure and platform layers. Also, we
have learned from our study that QoS monitoring (software layer) is still a chal-
lenging topic. Moreover, our study has illustrated that the majority of existing
monitoring approaches do not deal with all Cloud layers together. They usually
consider them separately and do not propose a multi-layer monitoring approach
for Cloud computing environments.

The rest of this section describes and discusses existing monitoring approaches
for Cloud computing environments, while classifying them according to the mon-
itored Cloud layer.

3.2.1 Monitoring: Software Layer

In this section, related work with respect to monitoring approaches for Web
services and Cloud services is presented.

Web Service Monitoring

Thio et al. [102] propose a QoS monitoring framework for web service based
applications. It clusters QoS parameters into two groups. The first group includes
QoS metrics that can be measured from the Client side. The second group con-
sists of QoS parameters that can be gathered from the server side. The authors
define and discuss three different monitoring approaches to collect QoS param-
eters from both sides. The first proposed approach is called “low-level packet
monitoring approach” and is based on monitoring tools such as libpcap [95] and
winpcap [105]. The basic idea of this approach consists of capturing SOAP mes-
sages (both incoming and outgoing). This approach has some drawbacks, as the
libpcap tool depends on the hardware. The second defined monitoring approach
is “Proxy approach”. It is based on the use of a proxy that is able to monitor
activities exchanged between the Client and the service. To use this approach,
we have to configure the client and server code. The third proposed monitor-
ing approach is called “SOAP engine library modification approach”. It extends
the SOAP implementation API, both for the client and the server, to measure
and log QoS parameter values. This enables the user to perform automated
performance measurements. The approach depends on the used SOAP imple-
mentation: The required QoS monitoring extensions have to be deployed into
the SOAP implementation used by the provider. Thus, this solution modifies the
SOAP implementation.

Rosenberg et al. [85] propose a monitoring approach for Web services. Their
approach makes use of monitoring tools such as Jpcap [48] for latency measure-
ment. It relies on aspect-oriented and object-oriented programming techniques.

–28–

3.2. Monitoring

This proposal [85] does not require access to the Java source code of the service
implementation, but it requires information related to the implementation of the
monitored web service, such as endpoint and reference to WSDL.

Repp et al. [83] present an approach for monitoring performance across net-
work layers such as HTTP, TCP, and IP. The basic idea of the proposed approach
consists of measuring relevant points on different layers. These measurements
points are used to deduce QoS parameters. This approach is aimed at detecting
faults early. It reconfigures the system at real time while minimizing the substitu-
tion cost. It makes use of the windump tool that requires access to the hardware
for monitoring. This means that its installation needs a special hardware config-
uration.

QOSH [9] is a self-healing middleware for web services. It allows to monitor
QoS parameters of web services. The monitoring module of QOSH operates at
the communication level. It is based on intercepting SOAP messages and adding
QoS metadata to their headers. The QoS metadata depend on the collected QoS
parameter. It could include relevant time stamps, if the monitored parameter is
the response time. The monitoring module of QOSH consists of three compo-
nents: the provider side monitor (PSM), the requester side monitor (RSM) and
the logging manager. The PSM is in charge of intercepting and extending incom-
ing messages, while the RSM intercepts and enriches outgoing SOAP messages.
The logging manager is used to store data in the database. As this approach
enriches SOAP messages with QoS information, QOSH modifies the client and
the server implementation to allow QoS parameter evaluation.

Cloud Service (SaaS) Monitoring

Boniface et al. [13] propose a monitoring module that collects QoS parame-
ters of SaaS. They use a monitoring application component (AC), which collects
QoS parameters at both application and technical level. This AC has to be
described and registered in the application repository in order to be used. De-
scription and registration of AC makes this approach complicated and hard to
install.

Cao et al. [15] propose a monitoring architecture for Cloud computing. It
describes a QoS model that collects QoS parameter values such as response time,
cost, availability, reliability and reputation. Their architecture has not been
implemented yet. Technical details are not provided in the paper.

–29–

Chapter 3. Related Work

3.2.2 Monitoring: Platform Layer

Several monitoring tools have been developed to monitor the platform layer. All
of them depend on the deployed platform. For instance, Jconsole [47] allows us to
monitor JVM-Based platforms. Existing tools, dealing with platform monitoring,
allow us to perfectly monitor the platform layer. They usually rely on engineering
tasks and do not solve special research challenges. Therefore, it is judicious to
choose one of these tools for platform monitoring. The choice is usually based on
the nature of the Cloud platform layer.

3.2.3 Monitoring: Infrastructure Layer

About a decade ago, many approaches have been proposed to deal with hardware
resources monitoring, such as Ganglia [36, 62], Nagios [74] and Chukwa [19,
82]. These approaches are now used for data center monitoring. They allow us
to monitor the infrastructure layer of Cloud environments, while collecting all
related parameters.

De Chave et al. [28] present a monitoring architecture for an IaaS Cloud.
The authors intend to provide the first open source monitoring framework for
Clouds. The proposed architecture, called PCMONS, makes use of open source
monitoring tools such as Nagios. The challenge of this work is to deal with the
majority of Cloud technologies. An integration layer that makes PCMONS easy
to install in Cloud platforms such as OpenNebula and Eucalyptus is presented.
PCMONS is limited to an IaaS Cloud; SaaS and PaaS are not considered.

DARGOS [79] is a monitoring system for multi-tenant IaaS Cloud computing
environments. It is based on the publish-subscribe paradigm. The architecture
of DARGOS consists of two main entities:

• Node Monitor Agent (NMA)

• Node Supervisor Agent (NSA)

The NMAs are in charge of collecting monitoring data from the local node and
sending it to the interested node. The NSAs gather monitoring data from remote
hosts and send it to the Cloud administrator via DARGOS API. The commu-
nication between NMAs and NSAs is performed via the use of a decentralized
approach based on the Data Distribution System (DDS) data-centric middleware.
The current implementation of DARGOS is based on the OpenStack IaaS Cloud
(Nova project). The source code of OpenStack has been modified to support
DARGOS. Thus, the current version of DARGOS is limited to the infrastruc-
ture layer and strongly depends on the architecture and implementation of the
OpenStack Nova project.

–30–

3.2. Monitoring

3.2.4 Monitoring: All Cloud Layers

The majority of existing monitoring approaches deals with one Cloud layer. A
few ones have been designed to operate at all Cloud layers, such as RMCM [91].
RMCM stands for “Runtime Model for Cloud Monitoring”. It is a runtime moni-
toring model for Cloud computing environments. RMCM models all Cloud layers
and collects related parameters. In the SaaS layer, RMCM monitors applications
with respect to their design models and required constraints. For this issue, it
converts the constraints to a corresponding instrumented code and deploys the
resulting code at the appropriate location of the monitored applications. RMCM
uses interceptors (as filters in Apache Tomcat and handlers in Axis) for service
monitoring. This makes RMCM an invasive approach, since it modifies the source
code of the applications. RMCM needs to be more flexible to let users decide
about the monitoring metrics.

3.2.5 Discussion

Table 3.1 summarizes the main characteristics of studied monitoring approaches.

Table 3.1: Monitoring approaches for Cloud computing environments
Monitoring Cloud layers
approaches Software Platform Infrastructure

invasive non-invasive
Thio et al. [102] ×

Rosenberg et al. [85] ×
Repp et al. [83] ×

QOSH [9] ×
Boniface et al. [13] ×

Cao et al. [15] No technical details
Jconsole [47] ×
Ganglia [62] ×
Chukwa [82] ×
Nagios [74] ×

PCMONS [28] ×
DARGOS [79] ×
RMCM [91] × × ×

As shown in Table 3.1, existing monitoring approaches, operating at the soft-
ware layer are invasive. They require access to the source code of the services
being monitored and are typically operated by the provider. These approaches
can not be easily applied in the context of Cloud computing, since they modify
the source code of the client and/or the service. Therefore, it is necessary to de-
fine a non-invasive monitoring approach for Cloud services. The target approach

–31–

Chapter 3. Related Work

does not require access to the source code of a service, and can be installed by
the client. It neither modifies the server implementation, nor the client code.

Table 3.1 has also shown that the majority of existing monitoring approaches
do not deal with all Cloud layers, except RMCM [91], which still lacks some
flexibility in adjusting the monitored parameters. Thus, it is crucial to propose
a multi-layer monitoring approach that operates at all Cloud layers and collects
all related parameters.

The next section presents and discusses existing analysis approaches for Cloud
computing environments.

3.3 Analysis

Monitoring is essential for analyzing a Cloud computing environment. Therefore,
analysis approaches are naturally based on the use of existing / new monitoring
tools. In this section, we present and discuss analysis approaches for Cloud
computing environments and their related monitoring tools. Existing analysis
approaches can be classified according to three main criteria:

• The Cloud layer

• The architectural design (centralized or distributed)

• The need of storage space

We use the same criteria as in Section 3.2 to classify the used monitoring
approaches.

3.3.1 Centralized Analysis Approaches

Teixeira et al. [101] propose a monitoring and analysis architecture for data
centers. The proposed architecture is called HOLMES. It is based on the publish-
subscribe paradigm, where all principal modules are viewed as publishers and
subscribers to an event broker (i.e., event/message bus). HOLMES consists of
four modules. The first one is a CEP engine. It is in charge of correlating mon-
itoring events, via user-defined CEP queries. The second module is based on
machine learning techniques. It analyses incoming monitoring data, organized in
time series, to detect performance anomalies. The third module is called “visu-
alization”. It feeds real-time web charts. The last module is called “storage”. It
is used for storing historical data. HOLMES is based on a single CEP engine.
The used CEP engine executes analysis queries to detect performance anomalies.
These queries get the observed data of the monitoring sensors as inputs, process
them and generate alarms when an anomaly is detected. The used monitoring
sensors act at the infrastructure layer. This means that HOLMES is not able

–32–

3.3. Analysis

to detect anomalies related to higher layers. Moreover, HOLMES uses straight-
forward analysis rules that analyze only a single category of parameters. The
proposed analysis rules are mostly based on pre-defined thresholds. Thus, this
analysis is not able to accurately identify the source of an anomaly due to the
lack of relevant analyzed metrics. The architecture of HOLMES is centralized,
which suffers from the bottleneck and single point of failure issues in the case of
large scale systems.

Narayanan et al. [75] define a monitoring and analysis framework for data
centers. The proposed framework is based on CEP techniques. It consists of
three main components. The first component is in charge of monitoring the data
centers. In particular, it monitors the storage, servers, network and applications.
The second component, called Event Collector Engine, allows to (1) collect the
monitored data, (2) convert collected data into a special format and (3) send it
to the CEP engine, which is the third component of the monitoring framework.
The CEP engine correlates the incoming events via the execution of a set of CEP
queries. The open source system CAYUGA [14] has been used to define the used
CEP queries.

The proposed framework [75] utilizes a single CEP engine. Therefore, it suffers
from the bottleneck issue in the context of large scale Cloud environments.

C-Meter [109] is a performance analysis framework for Cloud computing. It
is an extension of Grenchmark: a Grid tool, allowing performance tests in Grid
computing environments. C-Meter is composed of three subsystems: (1) Core
subsystem, (2) Cloud Interaction subsystem and (3) Utilities subsystem. The
Core subsystem provides the main functions of C-Meter. It is composed of three
modules. The first one, called “Listener”, listens to job submissions from the
workload generator of GrenckMark and commands users (e.g., terminate an ex-
periment). The received job descriptions are queued to the second module: Job
Queue. Jobs remain in the Job Queue until they become ready for submitting.
The third module is called “Job Submission”. It allows to transfer the job to
the “execution” module, which executes the job on virtual resources (i.e., the
Cloud). The Execution modules reports statistics to C-Meter. The Cloud Inter-
action subsystem is in charge of managing the interactions between C-Meter and
the Cloud environment under test. It is composed of two modules: (1) the Re-
source Management module and (2) the Connection Management module. The
Resource Management module is used to allocate and release virtual machines
/ resources. The Connection Management module is in charge of establishing
connections with the Cloud environment. The Utilities subsystem provides basic
utilities such as configuring the test and providing statistic funtionalities. As
mentioned above, C-Meter makes use of the workload generator of GrenchMark.
It generates synthetic and real workloads. These workloads, consisting of sev-

–33–

Chapter 3. Related Work

eral jobs, are submitted to analyze a Cloud’s performance. The studied analysis
framework mainly operates at the infrastructure layer, since it monitors virtual
resources. The authors are aware of the necessity of monitoring jobs, since this
would improve the results of the analysis.

Ostermann et al. [76] evaluate the performance of Amazon’s EC2 Cloud.
The authors launch large scale experiments on EC2, an IaaS Cloud. The pre-
sented performance assessment is mainly based on monitoring selected performan-
ce-related parameters, but does not consider relations between these parameters.

Cohen and Chase [21] present an analysis approach for web services architec-
tures consisting of three layers: Web Server (Apache), AppServer (BEA Weblogic)
and Database Server (Oracle). The proposed analysis approach is based on the
use of Tree-Augmented Bayesian Networks (TAN). The used TANs model the
correlations between the Service Level Objective (SLO) and the resource usage.
The proposal allows (1) the detection of SLO violations via simple comparisons
with pre-defined thresholds; and (2) the identification of the cause of a violation
via the use of correlations between the different monitored metrics. The TANs
(modeling correlations) are deduced from historical data that were previously
collected and stored in a separate database. This means that a training period
is necessary for the execution of this approach. During this training period, the
system is unable to identify the cause of a violation. Moreover, it is hard to apply
this approach in the context of Cloud computing due to the large volume of data
that has to be stored.

EbAT [104] is an online detection method of Cloud computing anomalies. It
analyzes distributions of metrics instead of individual metrics. EbAT follows
three main steps to calculate and analyze the multi-level entropy. First, EbAT
collects Cloud metrics. Cloud components are organized in a hierarchy and clus-
tered into two groups: leaf node and non-leaf node. A leaf node gathers data form
its local sensors, while a non-leaf node collects data from its local sensors and its
child nodes. Afterwards, it normalizes and groups data into intervals. According
to the type of the node (i.e. leaf or non-leaf node), monitoring events are either
generated from “local metrics” or from “local metrics and child nodes”. The
generated monitoring events are, then, used to calculate the entropy time series.
Finally, EbAT analyzes the calculated entropy time series via the use of spike
detection methods or signal processing approaches of subspace solutions. The
used spike detection methods are: (1) visual identification and (2) exponential
weighed moving average (EWMA), while the used signal processing approach is
wavelet analysis. EbAT is based on the use of online singular value decomposition
(SVD) as a subspace analysis approach.

EbAT collects OS (Operating System), applications and platform metrics. It

–34–

3.3. Analysis

does not take into account infrastructure metrics for the analysis. Moreover, it
needs a storage space to keep historical data.

Li et al. [57] propose a CEP-based monitoring system for Cloud computing
environments. The defined system is composed of four main components: (1) the
basic event cloud, (2) the CEP engine, (3) the action part and (4) the database.
The basic event Cloud is used to monitor Cloud computing systems. The CEP
engine, based on the database, implements the detection algorithm and triggers
alarms when an unhealthy situation is detected. The action part is associated to
a dashboard, which allows a real-time visualization of monitoring data. The CEP
engine is based on a CEP-rule setting interface, which allows users to define and
launch CEP queries. The detection algorithm is the core component of the CEP
engine. It analyzes recorded events and detects unhealthy situations via the use
of statistical functions.

The proposed system operates at the software layer and is based on a single
CEP engine that might become a bottleneck in the context of large scale Cloud
environments.

Zhu et al. [111] propose a fault diagnosis framework for Cloud-based systems.
The proposed framework is composed of two main components: (1) the offline
model training and (2) the online fault diagnosis. First, the offline model training
is in charge of generating training data for applications with injected faults. Sec-
ond, it monitors the Cloud (i.e. applications, virtual machines, physical machines
and clusters). The monitoring data is, then, used by the offline model training to
create the substitution graph and the detection graph. The substitution graph
is based on the recipe concept by replacing a metric A (ingredient A) by metric
B (ingredient B). Actually, it examines the correlation between metrics/events
and classifies the metrics/events into clusters. Each cluster includes strongly cor-
related metrics/events. Therefore, the substitution group allows to substitute
one event/metric by another one, belonging to the same cluster. The normalized
Mutual Information (NMI) is used to identify these clusters. In fact, NMI is con-
sidered as a similarity measure. The detection graph allows to detect the fault.
Zhu et al. defines the fault pattern as an ordered sequence of events. They use
the EdgeRank [30] algorithm to identify the most critical events that should be
included in the fault pattern. The online fault diagnosis uses the learned fault
patterns and constructed graphs to generate the diagnosis paths. The generated
diagnosis paths are used to diagnose the fault and identify its cause.

This proposal operates at the virtual infrastructure and software layers; and
follows a centralized design. Moreover, it does not exploit the relationships be-
tween Cloud metrics to optimize the defined fault patterns and diagnosis paths.

–35–

Chapter 3. Related Work

3.3.2 Distributed Analysis Approaches

Leitner et al. [56] propose a monitoring and analysis approach for Cloud
applications. Their approach is integrated within the “CloudScale” framework,
and allows to track the application performance. The presented approach is based
on the concepts of event-based monitoring and complex event processing. So, it
mainly consists of event emitters and CEP engines. The event emitters monitor
Clouds and emit monitoring events. The produced events are processed by the
used CEP engines to detect performance-related problems. This approach makes
use of several CEP engines organized in a hierarchical fashion. The authors define
three correlation levels that are processed by three different CEP engines. The
first level concerns “host correlation”, and it is realized by the first involved CEP
engine. Its results are sent to the second CEP engine that accomplishes “resource
correlation”. The results of the “resource correlation” CEP engine are forwarded
to a third CEP engine that is in charge of “application correlation”.

This approach needs a database for storing metrics. It generates considerable
network traffic, due to the large number of messages exchanged between the
different CEP engines, as shown by the experiments performed by the authors.

Baresi and Guinea [7] propose an event correlation middleware, called ECoW-
are. It is a distributed event correlation and aggregation framework for multi-
layer monitoring. ECoWare consists of three main components: (1) the probes,
(2) the processors and (3) the ECoWare dashboard. The probes are the used
monitoring tools. They are inserted into the execution environments to collect
relevant metrics. For instance, the probes inserted into Ubuntu virtual machines
are based on the collectd tool [22]. The processors are used to process monitoring
data. They can be clustered into three groups: (i) KPI processors, (ii) Aggre-
gators and (iii) Analyzers. The KPI processors are used to implement mlCCL
KPI collection. mlCCL (multi-layer Collection and Constraint Language) is an
event processing language. The Aggregators are in charge of data aggregation.
The KPI processors and aggregators are built using the CEP Esper [96]. The
Analyzers allows to analyze data.

ECoWare uses two cooperating CEP engines. It consists of several compo-
nents that communicate via a publish/subscribe system (Siena). In a large scale
Cloud infrastructure, it is likely that the number of messages exchanged between
these components in ECoWare will increase significantly.

Kutare et al. [55] propose a large scale monitoring and analysis approach,
called Monalytics, to manage large scale data centers. Monalytics allows to mon-
itor and analyze Xen-based environments. It includes a set of agents and brokers.
The agents are used to monitor the system. The brokers allow to aggregate and
analyze the outputs of the agents (i.e., monitoring data). Monalytics is based on
the use of the EVPath eventing system to enable the communication between the

–36–

3.3. Analysis

agents and the brokers. The analysis approach EbAT [104] is used by Monalytics
to detect a problem. Monalytics focuses on the monitoring of a Cloud infrastruc-
ture (Infrastructure-as-a-Service (IaaS)) and virtualized systems (i.e., Xen-based
systems). The authors define different deployment topologies between monitor-
ing brokers and analysis agents. The topologies are represented as graphs and
can be managed at runtime. The Monalytics system monitors CPU and memory
utilization. It is integrated into the Xen virtualization infrastructure.

Monalytics needs a database for storing data. It is limited to the IaaS layer
and does not take into account monitoring data from higher layers (i.e., Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS) layers). The communica-
tion between the brokers and agents could introduce a high network traffic.

Haibo et al. [72] propose a performance analysis approach for Cloud comput-
ing systems, called Magnifier. It allows to detect performance-related problems,
while identifying their prime causes. Magnifier includes a monitoring and an
analysis modules. The monitoring module is based on trace collecting daemons,
which are installed on each server. The used daemons collect traces related to
requests. The authors propose a hierarchical structure (i.e. tree) to model a
request. The proposed hierarchical structure is composed of three layers (compo-
nent, module, function). This structure helps the authors to diagnose Cloud ser-
vices, detect performance-related problems layer by layer, separately and identify
their root causes. The detection procedure is based on a basic threshold compar-
ison. Magnifier makes use of a diagnosis algorithm to localize abnormal elements
(e.g. components, modules and functions) at each layer. The proposed diagnosis
algorithm follows 3 steps. First, it calculates the normal and abnormal latency
of each element and their corresponding fluctuation range. Then, it calculates
the fluctuation extent of each element. Finally, elements are ranked according to
their extent. This ranking allows to identify abnormal elements.

Magnifier operates at the software layer and does not consider the effect of
the platform and infrastructure layers. Monitored metrics have to be stored in a
database.

Dyk [29] presents a distributed monitoring and analysis architecture based on
CEP engines. He illustrates the disadvantages of such architectures, in particu-
lar that distributed CEP architectures suffer in general from a synchronization
problem.

Grell and Nano [40] discuss issues related to large scale Internet services
monitoring via CEP. They propose two different CEP architectures, a centralized
and a distributed CEP architecture.

The proposed centralized architecture consists of four components. The first
one allows us to monitor services. It is based on the use of a Watch Dog in-

–37–

Chapter 3. Related Work

frastructure that generates syntactic transactions. The second component is a
publish-subscribe system. It forwards the results of the syntactic transactions
to the third component of the architecture, called SLA monitoring service. The
latter analyzes the received data and returns the state of the monitored service.
The analysis is mainly based on threshold comparison. The results of the SLA
monitoring service are sent back to the publish-subscribe system, which forwards
them to the e-mail service, fourth component of this architecture, in case a SLA
violation has been detected. The proposed distributed architecture is similar to
the centralized one. The main difference is the fact that it includes one SLA
monitoring service per machine.

The work indicates that the choice of the CEP architecture depends on the
requirements of the monitored system. The approach is not useful for Cloud mon-
itoring and analysis, due to the dynamicity of a Cloud environment. Moreover,
the proposed architectures operate at the software layer and do not consider the
platform and infrastructure layers.

Balis et al. [6] propose a CEP-based approach for real-time grid monitor-
ing and analysis. The proposed approach is called GEMINI2. It is based on a
distributed CEP architecture. GEMINI2 makes use of three main components:
sensors, monitors and clients. Each sensor incorporates a CEP engine. It gener-
ates simple events that describe the state of grid components. The sensors allow
to reduce the number of events via the use of reduction rules. The monitors are
based on CEP engines. They run the main analysis rules. The clients generate
complex events by subscribing to monitors.

GEMINI2 may overload the virtual machines, since it assigns a CEP engine
to every sensor. Moreover, it could introduce a high network traffic in the con-
text of Cloud computing environments. Furthermore, GEMINI2 operates at the
infrastructure layer and does exploit the interactions with higher layers to detect
the problem.

3.3.3 Discussion

Table 3.2 summarizes the studied analysis approaches, while focusing on their
main characteristics.

–38–

3.3. Analysis

T
ab

le
3.

2:
A

n
al

y
si

s
ap

p
ro

ac
h
es

fo
r

C
lo

u
d

co
m

p
u
ti

n
g

en
v
ir

on
m

en
ts

1

A
n
al

y
si

s
M

on
it

or
in

g
A

n
al

y
si

s
A

p
p
ro

ac
h
es

S
P

V
I

P
I

C
en

tr
al

iz
ed

D
is

tr
ib

u
te

d
S
to

ra
ge

In
va

si
ve

N
on

-i
n
va

si
ve

S
P

V
I

P
I

S
P

V
I

P
I

H
O

L
M

E
S

[1
01

]
×

×
n
ee

d
ed

N
ar

ay
an

an
et

al
.

[7
5]

×
×
×

×
C

-M
et

er
[1

09
]

×
×

O
st

er
m

an
n

et
al

.
[7

6]
×

×
n
ee

d
ed

C
oh

en
et

al
.

[2
1]

×
×

×
×
×

×
n
ee

d
ed

E
b
A

T
[1

04
]

×
×
×

×
×
×

n
ee

d
ed

L
i

et
al

.
[5

7]
N

ot
m

en
ti

on
ed

×
n
ee

d
ed

Z
h
u

et
al

.
[1

11
]

N
ot

m
en

ti
on

ed
×

×
×

×
×

n
ee

d
ed

L
ei

tn
er

et
al

.
[5

6]
×

×
×

×
×
×

n
ee

d
ed

E
C

oW
ar

e
[7

]
N

ot
m

en
ti

on
ed

×
×

×
×
×

M
on

al
y
ti

cs
[5

5]
×

×
n
ee

d
ed

M
ag

n
ifi

er
[7

2]
×

×
n
ee

d
ed

G
E

M
IN

I2
[4

0]
×

1
S
:

S
of

tw
ar

e
la

ye
r;

P
:

P
la

tf
or

m
la

y
er

;
V
I:

V
ir

tu
a
li

za
ti

o
n

la
y
er

;
P
I:

P
h
y
si

ca
l

In
fr

a
st

ru
ct

u
re

la
ye

r

–39–

Chapter 3. Related Work

As shown in Table 3.2, the majority of existing approaches do not exploit the
relationships between Cloud metrics, and need storage space to record monitored
events. Thus, it is necessary to propose an analysis approach that takes into
account the interactions between Cloud layers. The target approach should be
able to process events without storing them.

Moreover, Table 3.2 shows that existing analysis approaches are based on
either a centralized architecture or a distributed one. Each architecture has some
disadvantages. In existing approaches based on a single CEP engine, the CEP
engine itself represents a single point of failure. Moreover, a single CEP engine
could easily become a bottleneck if the amount of monitored data exceeds the
processing capacities of the CEP engine. On the other hand, distributed CEP
architectures suffer from the potentially large number of messages exchanged
between the distributed CEP engines. Therefore, it is crucial to design a dynamic
architecture that dynamically switches between different architectures depending
on the current conditions of the observed Cloud environment.

As mentioned above, analysis approaches allow us to characterize the state of
a Cloud computing environment and detect unwanted situations. Their outputs
are usually used by the last step of the self-healing process (i.e. recovery) to
fix detected problems. Section 3.4 presents and discusses existing recovery and
self-healing approaches for Cloud computing environments, in the presence of
performance issues.

3.4 Recovery / Self-healing Approaches for Cloud Computing

Environments

Monitoring and analysis are important to detect and recover performance-related
problems, which might occur in Cloud computing environments. Thus, existing
recovery approaches include monitoring and analysis components. All together
(i.e., monitoring, analysis and recovery) constitute a self-healing solution. In
this section, we present, discuss and classify self-healing approaches for Cloud
computing environments, in the presence of performance issues. The classification
of recovery approaches is based on the two following criteria:

• The addressed Cloud layer

• The capability of the recovery approach in validating the applied action

We use the same criteria as in Section 3.2 and 3.3 to classify the used moni-
toring and analysis approaches, respectively.

FDCS [11] is a fault detection framework for Cloud systems. It makes use of
Ganglia to monitor virtual machines. Monitored data are stored in a database.
In FDCS, Cloud machines collaboratively monitor performance parameters of

–40–

3.4. Recovery / Self-healing Approaches for Cloud Computing Environments

other machines in the system and trigger an alarm, if a fault occurs. They are
organized in a unidirectional ring (i.e., a machine is able to communicate with
another machine having a higher id). FDCS is based on a distributed outlier
detector algorithm to detect the failed machine and the responsible parameter
(e.g., CPU). The proposed outlier detector algorithm is faster than centralized
approaches, since it is based on in-network processing of messages. FDCS is
based on a distributed setup with a central machine for final reporting, called
reporter. The reporter machine reports the activities of all outlier detectors.
FDCS’s workers have two operation modes: push and pull. FDCS allows us to
isolate the fault and identify the most faulty features. This avoids cascading
faults. However, this does not repair the fault.

FDCS operates at the virtualization layer and does not exploit the relation-
ships between Cloud metrics. Therefore, it is not able to accurately characterize
the failure and its cause.

Dai et al. [25] propose a self-healing approach for Cloud computing environ-
ments. The proposed approach is based on consequence-oriented diagnosis. It
uses the observed symptoms to predict the consequences. The proposal combines
multiple-valued decision diagrams and the Naive Bayes Classifier to determine the
severity level of the system, identify the consequences and prevent them. Based
on the multiple-valued decision diagram and the observed symptoms, the pro-
posed system defines the severity level of the observed Cloud situation. Second,
it identifies the consequence category that corresponds to the defined severity
level. Afterwards, the system identifies the required diagnosis system, according
to the identified category. Actually, a diagnosis system is assigned to each cate-
gory of consequence. This step is based on a “Naive Bayes Classifier” approach.
The identified diagnosis system allows to open and execute the most suitable pre-
scription for healing. The results of healing are, then, sent back to the system to
update the Naive Bayes Classifier in the diagnosis system. This step is based on a
set of machine learning techniques and allows to improve the quality of recovery.

The approach proposed by Dai et al. monitors the virtualization layer and
stores collected parameters (i.e. symptoms) in a database. It only addresses
performance degradations occurring at the virtual infrastructure layer.

Magalhaes et al [60] propose a self-healing framework for Cloud-host web-
based applications, called SHoWA. It allows Cloud customers to launch recovery
actions when a performance degradation occurs. SHoWA consists of three main
components: the “Monitoring” component, the “Data analysis” component and
the “Recovery” component. The Monitoring component is composed of two main
modules: the “Sensor” and the “Data preparation” modules. The Sensor module
collects application, application server and system metrics. The data collected
by the Sensor module of SHoWA can be classified into two groups, according to

–41–

Chapter 3. Related Work

their level of granularity. The first group includes “user-transaction level moni-
toring” data (i.e., system and server application metrics), such as CPU load and
JVM heap memory. The second group includes “profiling level monitoring” data
(i.e., application metrics). The Data preparation module is in charge of aggregat-
ing the data gathered by the Sensor module. The diagnosis module of SHoWA
examines the correlation coefficient value between 2 parameters belonging to 2
different Cloud layers (virtual infrastructure and software layers), to detect the
degradation and identify its cause. The diagnosis module is running on a single
VM. It has to store all monitored data and calculate the correlation coefficient
between every pair of metrics. Therefore, the decision could take a lot of time in
the context of large scale Cloud computing environments.

The recovery module of SHoWA is similar to a disease database. It is based on
the use of “If-Then” rules to fix detected performance-related problems. More-
over, it does not validate the applied recovery action. SHoWA does not monitor
the physical infrastructure layer.

Alhosban et al. [1] propose a self-healing technique for Cloud services (soft-
ware layer), called a fault occurrence likelihood estimation and exception tech-
nique. It allows to monitor, evaluate performance parameters of Cloud services
and repair services in case a fault has been detected. The proposed technique
starts by collecting service parameters such as service history, execution time and
other QoS parameters. Afterwards, it analyzes collected data by calculating the
fault likelihood of the services. This allows to identify and generate the adequate
planning strategies. The generated planning strategies are then stored for fu-
ture use. To repair a service, the proposed technique follows two steps. First, it
chooses the most adequate recovery action. Second, it executes it. To achieve the
first step (i.e., choose the best recovery action), the proposed technique computes
the fault likelihood and the utility of the service.

The technique proposed by Alhosban et al. operates at the software layer,
does not consider the relationships between Cloud layers and does not check
the success of the applied recovery action. Thus, it is not able to accurately
characterize the failure and efficiently repair it.

Casalicchio et al. [16] propose a self-adaptable architecture for Cloud-based
systems. It allows to manage resources under changing conditions. The proposed
architecture is modular and based on the MAPE-K loop. Therefore, it consists
of 5 modules. The “Monitor” module is in charge of collecting and aggregating
(1) performance indexes such as CPU utilization and network traffic and (2)
workload details like arrival time and average response time. The “Analyze”
module diagnoses monitoring data to decide whether an adaptive action is needed.
The conducted analysis is based on the requested level of QoS. In case an adaptive
action is required, the “Plan” module is triggered. Based on the state of the Cloud

–42–

3.4. Recovery / Self-healing Approaches for Cloud Computing Environments

system and its performance model, the “Plan” module identifies the adequate
adaptive action (allocate or de-allocate VMs). The chosen adaptive action is then
applied by the “Execute” module. The “Knowledge” module stores information
about the Cloud system and is updated during the stages of the autonomic loop.

The “Analyze” module of this approach is based on comparing the values of
monitored parameters to pre-defined thresholds. It does not exploit relationships
between Cloud layers. The “Plan” module is quite simple and only considers two
adaptive actions to solve the problem. Moreover, it does not check the success
of the applied adaptive action. This proposal does not consider platform and
physical infrastructure layers.

Sarkar et al. [89] present a self-healing system for PaaS Clouds to deal with
performance-related problems. It is based on a layered architecture. The first
layer, called “monitoring layer”, includes the used monitoring tools that gather
infrastructure and platform metrics. The second layer is called “automated in-
cident management layer”. It is composed of a centralized database and 6 com-
ponents: (1) the event aggregation and correlation system, (2) the automated
incident management system (AIMS), (3) the incident ticket creation and res-
olution, (4) the automated incident handling, (5) the workflow system and (6)
the provisioning system. The analysis is based on the two first components: the
Event Aggregation and Correlation System and the Automated Incident Man-
agement System (AIMS). The Event Aggregation and Correlation System is in
charge of receiving events from the monitoring module. It stores received events
within a window of time. Then, it performs aggregation, correlation and sup-
pression of events. Subsequently, a filtering activity is performed. It decides
about events that should be sent to the AIMS. The latter detects performance
incidents. Correlations, in this work, are determined by the aggregation oper-
ations. These just decide about the relevant events to observe and do not aim
to extract relationships between collected metrics. This is the reason why this
analysis approach cannot accurately identify the cause of a performance incident.
Moreover, this approach only acts on the platform layer. The recovery is based
on the four last components. The “Automated Incident Handling” is used to
apply a corrective action, if an incident has been detected. It communicates with
the “Workflow System” to schedule a workflow. The “Incident Ticket Creation
and Resolution” is used to create and resolve a ticket, when the event should be
ignored (no incident has happened).

Discussion

Table 3.3 summarizes the studied self-healing solutions. It shows the main char-
acteristics of the involved monitoring, analysis and recovery approaches.

–43–

Chapter 3. Related Work

T
ab

le
3.

3:
S
el

f-
h
ea

li
n
g

ap
p
ro

ac
h
es

fo
r

C
lo

u
d

co
m

p
u
ti

n
g

en
v
ir

on
m

en
ts

2

S
el

f-
h
ea

li
n
g

M
on

it
or

in
g

A
n
al

y
si

s
R

ec
ov

er
y

A
p
p
ro

ac
h
es

S
P

V
I

P
I

C
en

tr
al

iz
ed

D
is

tr
ib

u
te

d
S
to

ra
ge

S
u
cc

es
s

va
li
d
at

io
n

In
va

si
ve

N
on

-i
n
va

si
ve

S
P

V
I

P
I

S
P

V
I

P
I

S
P

V
I

P
I

F
D

C
S

×
×

n
ee

d
ed

N
[1

1]
D

ai
et

al
.

×
×

n
ee

d
ed

Y
[2

5]
S
H

oW
A

×
×
×

×
×
×

n
ee

d
ed

N
N

N
[6

0]
A

lh
os

b
an

N
ot

m
en

ti
on

ed
×

n
ee

d
ed

N
et

al
.

[1
]

C
as

al
ic

ch
io

N
ot

m
en

ti
on

ed
×

×
×

n
ee

d
ed

N
et

al
.

[1
6]

S
ar

ka
r

×
×

n
ee

d
ed

N
et

al
.

[8
9]

2
S
u
c
c
e
ss

v
a
li
d
a
ti
o
n
:

D
o
es

th
e

re
co

ve
ry

ap
p

ro
a
ch

ch
ec

k
th

e
su

cc
es

s
o
f

th
e

a
p

p
li

ed
a
ct

io
n

?
Y
:

Y
es

;
N
:

N
o

–44–

3.5. Requirements Catalog

As shown in Table 3.3, existing self-healing approaches do not deal with all
Cloud layers. They typically focus on one of the stages of the self-repairing pro-
cess (monitoring and/or analysis) and define simple recovery approaches. The
majority of existing recovery approaches do not check the success of the ap-
plied action. Therefore, it is crucial to define a cross-layer reactive monitoring
approach that monitors, detects and rectifies performance-related problems,
which might occur on all Cloud layers.

The conducted study and discussion of related approaches (monitoring, ana-
lysis and recovery) have allowed us to identify the requirements of this PhD thesis.
They are summarized in the next section.

3.5 Requirements Catalog

This thesis should fulfill the following requirements:

R1: It is necessary to propose, design and implement a non-invasive approach
for Cloud services (software layer).

R2: It is required to propose and validate a multi-layer monitoring approach for
Cloud computing environments that collects performance parameters belonging
to all Cloud layers.

R3: It is crucial to define and validate a cross-layer analysis approach for
Clouds, which exploits the relationships between Cloud layers to rapidly detect
a performance-related problem and accurately identify its cause.

R4: It is crucial to define and validate a dynamic architecture for Cloud ana-
lysis, to ensure the scalability of the analysis agent and fits to the elasticity
property of Clouds (i.e., scale up/down).

R5: It is necessary to define and validate a multi-level recovery approach that
applies actions on all Cloud layers and validates the success of the applied recovery
action.

R6: It is crucial to combine the proposed approaches (Monitoring, Analysis and
Recovery) in a single framework, to fix performance-related problems that might
occur in Cloud computing environments.

–45–

Chapter 3. Related Work

3.6 Summary

This chapter has analyzed and discussed related work (monitoring, analysis and
recovery approaches). Based on this analysis, we have identified the requirements
that should be fulfilled by this thesis. The next chapter details the proposed
approach.

–46–

“I want to do it because I want to do it.”

Amelia Earhart

4
CEP4Cloud: Complex Event Processing

for Reactive Cloud Monitoring

4.1 Introduction

This chapter presents our cross-layer reactive performance monitoring approach
for Cloud computing environments, called CEP4Cloud. It is based on the method-
ology of Complex Event Processing and allows us to detect performance-related
problems and fix them with minimal human intervention. First, we give an
overview of CEP4Cloud, while outlining its general architecture (see Section 4.2).
Then, we describe the main components of CEP4Cloud. The multi-layer mon-
itoring agent is detailed in Section 4.3. Section 4.4 describes the cross-layer
CEP-based analysis agent. The action manager framework is presented in Sec-
tion 4.5. The last section summarizes this chapter. Parts of this chapter have
already been published in [64–67, 69].

4.2 CEP4Cloud in a Nutshell

This section presents our reactive performance monitoring approach for Cloud
computing environments, called CEP4Cloud. First, we outline its general archi-
tecture. Then, we briefly describe the main components of CEP4Cloud.

–47–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

4.2.1 The Architecture

Figure 4.1 shows the architecture of CEP4Cloud. It consists of three main com-
ponents:

• The multi-layer monitoring agent

• The cross-layer CEP-based analysis agent

• The action manager framework

Monitoring	 	 Ac+on	 Manager	

Virtualiza+on	 Layer	

A
c+on	 Planner	

VI_Monitor	

P_Monitor:	 JVMSensor	

S_Monitor:	 AOP4CSM	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CEP4CMA	

PI_Monitor	

Monitoring	 Data	

Elementary	
events	

(Sources)	 	 	

Complex	 	
Events	
(Sinks)	 	 	

SoGware	

PlaIorm	

Infrastructure	

Analysis	 rules	

I_Tuning	

P_Reconf	

S_Repair	

CEP	 engine(s)	

Figure 4.1: The architecture of CEP4Cloud

The multi-layer monitoring agent relies on four monitoring components:

• PI Monitor: Physical Infrastructure Monitor

• VI Monitor: Virtual Infrastructure Monitor

• P Monitor: Platform Monitor

• S Monitor: Software Monitor

PI Monitor, VI Monitor, P Monitor and S Monitor send collected data to
the analysis agent of CEP4Cloud. It is based on the use of a CEP engine to
process and analyze received events. The conducted analysis detects performance-
related problems, generates diagnosis reports and sends notifications to the action

–48–

4.2. CEP4Cloud in a Nutshell

manager framework, if a performance degradation occurs. Based on the received
diagnosis reports, the action manager framework identifies the adequate recovery
action, executes it and validates it.

The multi-layer monitoring agent, the analysis agent and the action manager
framework are described in Sections 4.3, 4.4 and 4.5, respectively and briefly
introduced below.

4.2.2 The Monitoring Agent

The monitoring agent consists of 4 components. They make use of existing sen-
sors, as discussed below.

• PI Monitor monitors the physical infrastructure layer and gathers metrics
related to the consumption of hardware resources, such as memory con-
sumption. PI Monitor uses a set of existing sensors: Xenmon [41], Ganglia
[36, 62], IoStat [45] and MpStat [73].

• VI Monitor monitors virtual machines. It uses Ganglia, MpStat and Io-
Stat.

• P Monitor operates on the platform layer and gathers corresponding data.

• S Monitor operates on the software layer and collects performance pa-
rameters of Cloud services at the SaaS layer, such as the execution and
communication times. It is based on the use of AOP4CSM, a monitoring
approach based on aspect-oriented programming proposed and validated in
the context of this thesis [69].

4.2.3 The Analysis Agent

The analysis agent of CEP4Cloud allows to analyze recorded events and detect
performance-related problems, while identifying their causes. The analysis agent
is based on CEP. It makes use of a set of cross-layer analysis rules. They are
implemented in the Esper CEP engine, as queries. The used analysis rules are
defined on the basis of relationships between the monitored parameters across
Cloud layers, while following a root cause analysis approach.

4.2.4 The Action Manager Framework

The action manager framework is used to fix performance-related problems that
might occur in Cloud computing environments. It consists of two main compo-
nents: the action planner and the action executor. The action planner allows to
identify and validate the suitable recovery action. The action executor operates
at all Cloud layers and executes the identified recovery action.

–49–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

The main components of CEP4Cloud are based on new monitoring, analysis
and recovery approaches. They are described in Sections 4.3, 4.4 and 4.5, respec-
tively.

4.3 Monitoring

The multi-layer monitoring agent is based on the use of (1) our novel Cloud service
monitoring approach (AOP4CSM); and (2) the results of existing monitoring
tools that typically operate on a single Cloud layer (e.g., [28, 62, 82]). Thus, the
four components of our monitoring agent described above make use of AOP4CSM
and existing sensors, as presented below.

4.3.1 PI Monitor

PI Monitor monitors the physical infrastructure layer and gathers metrics related
to the consumption of hardware resources, such as the CPU usage of the physical
cores, the waiting and blocked times spent by virtual machines to access the
physical disk, the memory consumption etc. It is installed in the privileged
domain (Dom0) with direct access to the XEN hypervisor, the virtualization
technology used in this work. PI Monitor makes use of a set of existing sensors:
Ganglia [36, 62], IoStat [45], MpStat [73] and Xenmon [41]. Xenmon collects
information about the CPU such as the blocked, the waiting times and the number
of executions per second. Ganglia mainly gathers information about the state of
resources, such as disk and memory consumption. Moreover, it measures the
network link quality. IoStat measures disk transactions such as the I/O requests
to the physical disk. It is running in the privileged domain (Dom0) that has direct
access to the physical disk. Finally, MpStat gathers the software and hardware
interrupts of Dom0. Table 4.1 details the metrics collected by PI Monitor.

4.3.2 VI Monitor

VI Monitor operates at the virtualization layer and monitors virtual machines. It
is installed on each virtual machine. VI Monitor makes use of Ganglia, MpStat
and IoStat. Ganglia collects CPU, RAM, disk and network metrics of the virtual
machines, such as the used swap and the throughput of the network (BytesIn
and BytesOut). MpStat measures the CPU steal of virtual machines, reflecting
the time spent by the VM waiting for the hypervisor’s tasks. IoStat gathers
information about the number of read and written pages of the considered virtual
machine (see Table 4.2).

–50–

4.3. Monitoring

Table 4.1: PI Monitor: components, used sensors and monitored metrics
Used Sensors Metrics Metrics’ Designation

Xenmon

CpuUsedDom0 CPU used by the privileged domain
(Dom0)

CpuBlockedDomU The time spent by DomU, blocked on
the physical CPU

CpuWaitingDomU The time spent by DomU, waiting on
the physical CPU

ExecSec The number of executions per seconds

Ganglia

P-DiskFree The free disk value
P-DiskUsed The used disk value
P-RamFree The free memory value
P-RamUsed The used memory value
P-SwapFree The free swap value
P-RamUsed The used swap value

P-Load The load of Dom 0
P-ProcNb The number of running processes
P-BytesIn The number of bytes in

P-BytesOut The number of bytes out

IoStat
IOReqDisk The number of I/O requests to the hard

disk
P-Read The number of read pages
P-Wrtn The number of written pages

MpStat
HwInterr The number of hardware interrupts
SwInterr The number of software interrupts

4.3.3 P Monitor

P Monitor operates on the platform layer and gathers corresponding data. For
this purpose, the JVMSensor tool has been developed to deal with Java Virtual
Machine (JVM) monitoring. JVMSensor measures JVM platform metrics, such
as the CPU time of the running threads, the heap memory and the number of
loaded classes. Table 4.3 shows all metrics gathered by JVMSensor. JVMSensor
is based on the Jconsole tool [47].

4.3.4 S Monitor (AOP4CSM)

S Monitor operates on the software layer and collects performance-related pa-
rameters of Cloud services at the SaaS layer. It makes use of our monitoring
approach, called AOP4CSM for “Aspect-Oriented Programming for Cloud Ser-
vice Monitoring”. It is detailed below.

–51–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

Table 4.2: VI Monitor: components, used sensors and monitored metrics
Used Sensors Metrics Metrics’ Designation

Ganglia

CPUuser The CPU user of the virtual machine
(VM)

CPUSystem The CPU System of the VM
CPUWait The CPU Wait of the VM

V-DiskFree The free disk value of the VM
V-DiskUsed The used disk value of the VM
V-RamFree The free memory value of the VM
V-RamUsed The used memory value of the VM
V-SwapFree The free swap value of the VM
V-RamUsed The used swap value of the VM

V-Load The load of the VM
V-ProcNb The number of running processes of the

VM
V-BytesIn The number of bytes in of the VM

V-BytesOut The number of bytes out of the VM

IoStat
V-Read The number of read pages of the VM
V-Wrtn The number of written pages of the VM

MpStat
CpuStealVM The time spent by the virtual machine,

waiting for the hypervisor tasks

Table 4.3: P Monitor: components, used sensors and monitored metrics
Used Sensors Metrics Metrics’ Designation

JVMSensor

CpuTimeTh The CPU time of a running thread
WaitedCountTime The number of times, the thread was

waiting to access the CPU
ExcepNb The number of handled exception per

second
HeapMem The heap memory usage of the JVM

NonHeapMem The Non heap memory usage of the
JVM

ClassNb The number of loaded classes

AOP4CSM is a monitoring approach based on aspect-oriented programming.
It measures five QoS parameters: (i) execution time, (ii) response time, (iii)
communication time, (iv) throughput and (v) availability. They are explained
below.

• The response time Tresp defines the time needed to serve a request [85]. It
starts when the client sends its request and finishes when the client receives
the corresponding response. Thus, it is the temporal difference between the

–52–

4.3. Monitoring

instant (i1) when the client invokes the request and the instant (i8) when
the client receives the corresponding response (see Figure 4.2).

• The execution time Texec measures the time needed to execute a request
on the server (see Figure 4.2) [10].

• The communication time Tcom is the time needed to transfer the request
from the client to the server plus the time needed to transfer the response
from the server to the client (see Figure 4.2). Thus, the communication time
is the response time minus the time necessary for executing the request and
the time necessary for processing the messages involved (see Equation 4.20).

Tcom = Tresp − (Texec + Tprocessing) (4.1)

Tprocessing is the time required for message processing (see Figure 4.2).

Cloud Client Cloud Provider

i1

i7

i3
i4

i5
i6

i8

i2

Texec

Tprocessing

Tprocessing

Tprocessing

Tprocessing
Tcom

Tcom

Tresp

Figure 4.2: QoS parameters

When using Axis, Tprocessing corresponds to the time consumed by the Axis
handler chain to perform message processing (such as dealing with security
attributes or adding a message header for reliable messaging). In this work,
Tprocessing is a negligible value, since the handler chain is typically empty.

• The throughput measures the number of successful requests (SuccRe-
quests) during a period of time T (see Equation 4.2) [10].

Throughput = SuccRequests/T (4.2)

–53–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

SuccRequests represents the number of successful requests during a period
T . T is a parameter that is set when AOP4CSM is configured. A successful
request is a request with a successful response; a successful response is a
response that successfully reached the server.

• The availability measures the accessibility of a service [10]. It is calculated
using the formula shown in Equation (4.3).

Availability = SuccRequests/AllRequests (4.3)

AllRequests is the number of all requests sent during the period T .

AOP4CSM gathers and assesses the QoS parameters values described above.
Its approach of measuring these parameters is described below.

Functionality of AOP4CSM AOP4CSM is based on aspect-oriented pro-
gramming code that intercepts client and server methods at well defined join
points to collect data at important instants of time. These instants are t1, t2, t3
and t4 (see Figure 4.3); where

• t1 is the instant when the client invokes the request

• t2 is the instant when the server receives the request

• t3 is the instant when the server sends the response

• t4 is the instant when the client receives the response

In addition, the proposed aspect code computes the number of successful
invocations (processed requests) while intercepting the corresponding method at
the join point that corresponds to t4. Moreover, the number of all sent requests
is evaluated by advice 1 (see Figure 4.3).

Recorded timestamps allow us to assess QoS parameters. The procedure is
as follows. First, AOP4CSM is based on four specific join points. Each one
corresponds to an instant (t1, t2, t3 and t4) where AOP4CSM intercepts method
calls. Second, AOP4CSM executes the corresponding advice (for each join point)
which consists of (1) saving the timestamp and (2) calculating the number of
invocations at the client (advices 1 and 4). When all instants have been processed,
AOP4CSM computes the difference between t4 and t1 to deduce the response
time. It also subtracts t2 from t3 to calculate the execution time. The difference
between the response time and the execution time represents the communication
time.

AOP4CSM assesses the throughput by (1) calculating the number of successful
invocations at the client side (fourth join point) [SuccRequests] and (2) dividing
this number by a period of time [T] (in our case T is equal to 10 minutes) as

–54–

4.3. Monitoring

t1

t4

t2

t3

Advice1:
save t1 & the

number of
invocations

Advice2:
save t2

Advice3:
save t3

--> calculate
Texec

Advice4:
save t4 & the number

of
invocations

--> calculate Tresp,
Throughput and

Availability

Cloud Client Cloud Provider

Invocation of
method X1 Invocation of

method X2

Invocation of
method X4

Invocation of
method X3

Pointcut2

Pointcut3

Pointcut1

Pointcut4

Figure 4.3: Functionality of AOP4CSM

described in Equation (4.2). Moreover, AOP4CSM calculates the availability as
described in Equation (4.3).

AOP4CSM fulfills the first requirement of this thesis R1, since it neither
modifies the server implementation, nor the client code.

The multi-layer monitoring agent operates on all Cloud layers and collects
related parameters. Therefore, it fulfills the second requirement of this thesis
R2.

–55–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

PI Monitor, VI Monitor, P Monitor and S Monitor make use of basic TCP/IP
sockets to send collected data to the Elementary Event Collector (EVC). The
EVC sends monitored data to the analysis agent of CEP4Cloud. It is detailed in
Section 4.4.

4.4 Analysis

An important component of CEP4Cloud is the analysis agent. It is based on the
methodology of CEP and is used to detect performance-related problems, while
identifying their causes and the corresponding layers (physical infrastructure, vir-
tual infrastructure, platform and software). The analysis agent is based on two
new analysis approaches. The first one is called CEP4CMA for “Complex Event
Processing for Cloud Monitoring and Analysis”. The novelty of CEP4CMA
is that the CEP queries (i.e., analysis rules) are derived from a comprehen-
sive analysis of the relationships between monitored metrics across Cloud lay-
ers. CEP4CMA is presented in Section 4.4.1. The second analysis approach
mainly deals with the architectural design of the analysis agent and is called
D-CEP4CMA for “Dynamic Complex Event Processing for Cloud Monitoring
and Analysis”. The basic idea of D-CEP4CMA is to dynamically switch between
different CEP architectures depending on the current conditions of the observed
Cloud environment. D-CEP4CMA is described in Section 4.4.2.

4.4.1 CEP4CMA

Figure 4.4 depicts the architecture of CEP4CMA. It makes use of a set of cross-
layer analysis rules (i.e., queries) implemented within a CEP engine. In this work,
the Esper CEP engine has been used. Thus our analysis rules are implemented
as EPL queries.

The used analysis rules are defined on the basis of relationships between the
monitored parameters across Cloud layers.

In particular, extracting relationships (i.e., correlations) between metrics has
two main benefits. First, it allows us to reduce the number of monitored pa-
rameters, since analyzing two “highly” correlated metrics gives the same result
as analyzing one of these two metrics. Second, the relationships are very useful
to define the analysis rules. Consequently, it is possible to rapidly detect a per-
formance degradation (thanks to the reduced number of metrics) and accurately
identify its layer and its cause (thanks to the intelligent analysis rules).

To identify the relationships between the monitored parameters, we have used
statistical methods, such as the calculation of the correlation and multiple cor-
relation coefficients. Thus, we performed several experiments that consist of
(1) monitoring the defined parameters (see Table 3.1); and (2) computing, via
different statistical methods, the correlation between them. The conducted ex-

–56–

4.4. Analysis

Virtualiza)on	 Layer	

Pla1orm	

Infrastructure	

So8ware	 S_Monitor	

P_Monitor	

VI_Monitor	

PI_Monitor	

CEP	 Engine	

Elem
entary	 Events	 Collector	

Com
plex	 Events	

Analysis	 Rules	

Diagnosis	
Reports	

+	
Failure	
Alarms	

Monitoring	 Agent	

Analysis	 Agent	

Figure 4.4: The architecture of CEP4CMA

periments, results and obtained conclusions showing the relationships between
parameters across Cloud layers are detailed in the next section and summarized
in Table 4.4. Our experiments have been performed on serveral samples. The
sample size depends on the scenario. It varies between 20 and 100 data points.
A data point represents one measurement of the studied metric. Table 4.4 shows
the number of data points (Pnb) for all experiments. It should be pointed out
that Table 4.4 does not state the correlation coefficient and the number of data
points of straightforward relationships. For instance, the correlation coefficient
between the free disk and the used disk is not given.

Relationships between Cloud Layers

To study the relationships between Cloud layers, we followed two steps. First, the
interactions between metrics across Cloud layers have been theoretically exam-
ined. Second, several experiments have been conducted to verify the theoretically
obtained relationships. The experimental results are used to remove incorrect
theoretical relationships, keep the correct ones and update the not well defined
ones. This thesis only presents the verified relationships (theoretically defined
and experimentally verified).

The conducted experiments allow us to compute statistical indicators like
the correlation and the multiple correlation coefficients, in order to prove the
identified relationships. They are partitioned into three groups. The first group
of experiments consists of measuring two metrics in normal conditions (without

–57–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

generating any load) and calculating the correlation coefficient. According to its
value, we deduce the relationship between the two metrics [94]. The second group
of experiments deals with the case when there are more than two related metrics.
The related metrics are monitored in normal conditions and the multiple correla-
tion coefficient between them is computed [23]. The G*Power [31, 38] tool is used
to compute the multiple correlation coefficient. The last group of experiments
consists of generating load with respect to the first parameter and observing its
effects on the second one. If both increase, decrease or inversely vary together,
this means that they are related. Since in this step we deal with correlation ex-
periments, we use a small testbed. It allows us to isolate the studied metrics and
easily identify their relationships. The testbed for the correlation experiments is
composed of one physical node with 1 GB of RAM and 100 GB of disk, running
under the Debian operating system. Xen 4.1 was chosen as the virtualization
technology. It allows us to administer virtual machines through its hypervisor
and its privileged domain Dom0 [42]. Moreover, it manages access to the hard-
ware resources, such as the disk and the memory, via Dom0 and the hypervisor.
The testbed for the correlation experiments has a Cloud architecture with four
layers. The hardware resources, Xen, its hypervisor and Dom0 constitute the
physical infrastructure layer. The virtual infrastructure layer is composed of the
DomU virtual machines. The used platform layer consists of the Java Virtual
Machine (JVM) with Apache Tomcat as a web server. Under Tomcat, the Axis
engine is deployed to manage web services. The Axis engine and the web services
constitute the software layer (see Figure 4.5).

 Hardware	

Hypervisor	

Dom0	

DomU1	
(VM1)	 	

Tomcat	

Axis	

WS	

JVM	

So?ware	 Layer	

PlaCorm	 Layer	

Virtual	 Infrastructure	 layer	

Physical	 Infrastructure	 Layer	

Figure 4.5: Testbed for correlation experiments

–58–

4.4. Analysis

To extract relationships between the monitored metrics in a theoretical study,
we classified the monitored metrics according to two criteria: the layer of a met-
ric (e.g., the infrastructure layer) and the category of a metric (e.g., the CPU
category). Thus, we have four groups of relationships:

• Intra-Category, Intra-Layer Relationships describe relationships be-
tween metrics belonging to the same layer and the same category. The
majority of these relationships are used to reduce the number of parame-
ters. For example, experiments confirmed that the CPU time of a running
thread is related to its waited count by calculating the correlation coefficient
(0.9) of the two parameters for 50 data points. Such a relationship allows us
to reduce the number of monitored parameters. It is sufficient to monitor
only one of the two metrics, since they describe the same information.

• Intra-Category, Inter-Layer Relationships describe relationships be-
tween metrics belonging to the same category. They are used to define
the analysis rules. For example, an experiment based on 30 data points
has shown that the CPU time of a Java thread is related to the CPU user
time of its virtual machine, since the corresponding correlation coefficient
is equal to 0.5. This observation allows us to deduce the cause of a VM
CPU performance-related problem.

• Inter-Category, Intra-Layer Relationships describe relationships be-
tween metrics belonging to the same Cloud layer. They are useful to reduce
the number of observed metrics if this reduction does not affect the quality
of the analysis. Otherwise, these relationships are used to define the ana-
lysis rules. For example, an experiment based on 65 data points has shown
that the number of running processes is related to the machine load, since
the correlation coefficient is equal to 0.9. Such a relationship is used to
define the analysis rules.

• Inter-Category, Inter-Layer Relationships describe relationships be-
tween metrics belonging to different layers and different categories, such
as the relationship between the I/O requests to the physical disk and the
number of Bytes In and the number of Bytes Out. This relationship is il-
lustrated by calculating the multiple correlation coefficient (0.8) of the I/O
disk requests and Bytes In and Bytes Out for 30 data points. The majority
of such relationships are used in the analysis rules.

Table 4.4 shows the classification of the metrics and the extracted relationships
(i.e., correlations). In the columns, we have the four Cloud layers: the physical
infrastructure, the virtual infrastructure, the platform and the software layers.
In the rows, we have the different categories: CPU, memory, disk, load, network,
interrupts, Java classes and time related quality-of-service parameters.

–59–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

We start by studying simple relationships inside a category and a layer, such
as the relationship between the CPU metrics at the virtual infrastructure layer.
The first extracted relationship can be used to reduce the number of monitored
CPU metrics by removing the CPU idle time. Actually, the CPU idle time de-
pends on other CPU metrics (user, system, wait and steal). Thus, it is not neces-
sary to monitor the CPU idle time. Figure 4.6 shows the conducted experiment
demonstrating this relationship.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	

CpuUserVM	

CpuSystemVM	

CpuWaitVM	

CpuStealVM	

CpuIdleVM	

Figure 4.6: Relationship between CPU metrics and CPU idle time

Moreover, experiments (see Figure 4.7) showed that the CPU time of a run-
ning thread is highly related to its waited count. This means that it is sufficient
to monitor one of these two metrics. We have chosen to monitor the CPU time.

In the group of inter-layer relationships, we found that the thread CPU time
is related to the CPU user of its virtual machine (see Figure 4.8). Due to the high
number of threads running on a virtual machine, only two threads are presented in
Figure 4.8. The two correlation coefficients are 0.4 and 0.5, respectively. Thus,
the CPU user of a virtual machine is related to the CPU time of the running
threads.

Moreover, the relationship between the CPU user metrics at the virtual and
physical (hypervisor) layers has been studied. Figure 4.9 shows the correlation
between the Dom0 CPU usage and the virtual machine CPU user. In this sce-
nario, we have one virtual machine running on a physical node that contains two
cores. Figure 4.9 shows that the usage of the physical core 1 is highly related
to the CPU user of the virtual machine since the correlation coefficient value is
equal to 0.8. However, Figure 4.9 also shows that the core 0 usage is not related

–60–

4.4. Analysis

y	 =	 9E-‐10x	 -‐	 0.4126	
R²	 =	 0.99989	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

0	 5E+10	 1E+11	 1.5E+11	

W
ai
te
dC

ou
nt
	

CpuTimeTh	

WaitedCount	

Linear(WaitedCount)	

Figure 4.7: The CPU time of a thread is highly correlated to its waited count;
the correlation coefficient is equal to 0.99.

y	 =	 1E+08x1.0875	
R²	 =	 0.52299	

y	 =	 1E+08x1.3489	
R²	 =	 0.45856	

0	

500000000	

1E+09	

1.5E+09	

2E+09	

2.5E+09	

3E+09	

0	 2	 4	 6	 8	 10	 12	

Cp
uT
im

eT
h	

CpuUserVM	

CpuTimeTh_1	
CpuTimeTh_2	
Power(CpuTimeTh_1)	
Power(CpuTimeTh_2)	

Figure 4.8: The CPU time of a thread is related to the CPU user of the corre-
sponding virtual machine.

to the VM CPU user since the correlation coefficient value is around 0. This is

–61–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

actually related to the fact that the virtual machine is only using core 1 in this
scenario. The multiple correlation coefficient between the virtual machine CPU
user and the CPU usage of the two cores is around 0.8, which implies a strong
relationship between these metrics.

y	 =	 -‐0.0006x	 +	 1.5759	
R²	 =	 0.00016	

y	 =	 1.1582x	 -‐	 0.1667	
R²	 =	 0.745	

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	 10	 20	 30	 40	 50	 60	

Cp
uU

se
dD

om
0	

CpuUserVM	

CpuUsedDom0_core0	

CpuUsedDom0_core1	

Linear(CpuUsedDom0_core0)	

Linear(CpuUsedDom0_core1)	

Figure 4.9: The CPU user of the virtual machine is related to the Dom0 CPU
usage.

In addition, we verified that the VM CPU steal is related to the DomU waiting
time. Figure 4.10 shows the relationship between the virtual machine CPU Steal
and its waited time to access the physical CPU. In this scenario, we generated
CPU load on the virtual machine (via a script calculating the factorial of a big
number), and we observed its effect on the waited time on core 0 and core 1 of the
CPU. This experiment shows that the considered parameters increase together.
The correlation coefficients of the VM CPU steal and the VM CPU waiting time
of Core 0 and Core 1 are 0.45 and 0.40, respectively. This implies that they are
related.

In the memory category, we observed that the JVM heap Memory is related
to the free memory of the VM. As shown in Figure 4.11, 3 JVMs are running
on the used testbed. They correspond to the Tomcat web server, the used web
service and the JVMSensor tool. The conducted experiments show that the
heap memory of JVM1 and JVM3 are correlated to the free memory of the VM.
However, they also show that the JVM2 heap memory is not correlated with the
VM free memory. This does not necessarily invalidate the relationship between
the JVM heap memory and the VM free memory. Actually, we are studying the
correlation between one parameter (VM free memory) and three other parameters
(JVM1 / JVM2 / JVM3 heap memory). In such a case, it is more significant to
calculate the multiple correlation coefficient. It is equal to 0.81, which reflects a
strong relationship between the JVM heap memory and the VM free memory.

Like the JVM heap memory, the non-heap memory is also related to the

–62–

4.4. Analysis

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	 50	 100	 150	 200	 250	 300	

Cp
uS
te
al
/C
pu

W
ai
3n

g_
Co

re
0/
Cp

uW
ai
3n

g_
Co

re
1	

CpuStealVM	

CpuWai3ngDomU_Core0	

CpuWai3ngDomU_Core1	

Figure 4.10: Relationship between the CPU steal of the virtual machine and its
waited time to access the CPU

y	 =	 -‐156.63x	 +	 2E+07	
R²	 =	 0.3982	

y	 =	 -‐43.805x	 +	 2E+07	
R²	 =	 0.0542	

y	 =	 -‐65.835x	 +	 4E+06	
R²	 =	 0.60653	

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

0	 10000	 20000	 30000	 40000	 50000	 60000	

M
em

U
sa
ge
JV
M
	

V-‐MemFree	

MemUsageJVM1	

MemUsageJVM2	

MemUsageJVM3	

Linear(MemUsageJVM1)	

Linear(MemUsageJVM2)	

Linear(MemUsageJVM3)	

Figure 4.11: The JVM memory usage is negatively correlated with the free mem-
ory of the virtual machine.

virtual machine free memory. Figure 4.12 depicts the results of the conducted
experiments. We are still using the same scenario with 3 JVMs. It is visually

–63–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

clear that the non-heap memory values of JVM1 and JVM3 are highly correlated
to the VM free memory (see Figure 4.12). Morevover, it is easy to notice that the

y	 =	 -‐61.396x	 +	 2E+07	
R²	 =	 0.92683	

y	 =	 2E+07	

y	 =	 -‐28.065x	 +	 7E+06	
R²	 =	 0.96322	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

10000	 25000	 40000	 55000	

non_heap_mem_JVM1	

non_heap_mem_JVM2	

non_heap_mem_JVM3	

Linear(non_heap_mem_JVM1)	

Linear(non_heap_mem_JVM2)	

Linear(non_heap_mem_JVM3)	

Figure 4.12: The non-heap JVM memory is negatively correlated with the free
memory of the virtual machine.

JVM2 heap memory distribution is constant. Thus, it is not possible to calculate
the correlation coefficient in this case. Therefore, it is not correlated with the VM
free memory. Nevertheless, it is still possible to confirm a relationship between the
JVM non-heap memory and the VM free memory. Actually, it is not surprising,
in a multiple correlation scenario, that one of the parameters (JVM2 non heap
memory) is not correlated with the main parameter (VM free memory), when the
two other parameters (JVM1 / JVM3 non-heap memory) are highly correlated
to the same parameter (VM free memory).

–64–

4.4. Analysis

T
a
b

le
4
.4

:
C

lo
u

d
p

ar
am

et
er

s:
cl

as
si

fi
ca

ti
on

an
d

re
la

ti
on

sh
ip

s

P
h
y
si

ca
l

L
ay

er
V

ir
tu

al
L

ay
er

P
la

tf
or

m
L

ay
er

S
o
ft

w
a
re

L
ay

er

C
P

U
M

et
ri

cs

C
p

u
U

se
d

D
o
m

0
C

p
u

U
se

rV
M

C
p

u
T

im
eT

h
C

p
u

B
lo

ck
ed

D
o
m

U
C

p
u

W
ai

tV
M

“
W

a
it

ed
C

o
u

n
t”

C
p

u
W

ai
ti

n
g
D

o
m

U
C

p
u

S
y
st

em
V

M
E

x
ec

S
ec

“C
p
u

Id
le

V
M

”
C

p
u

S
te

al
V

M

In
tr

a-
ca

te
go

ry
,

In
tr

a-
la

y
er

R
el

at
io

n
sh

ip
s

C
p

u
U

se
rV

M
=

-f
(C

p
u

Id
le

V
M

)1
C

p
u

T
im

eT
h

=
f(

W
ai

te
d

C
o
u

n
t)

2

C
p

u
W

ai
tV

M
=

-f
(C

p
u

Id
le

V
M

)
S

ee
F

ig
u

re
4.

7
C

p
u

S
y
st

em
V

M
=

-f
(C

p
u

Id
le

V
M

)
C

or
r(

C
p

u
T

im
eT

h
,

W
ai

te
d

C
o
u

n
t)

=
0
.9

C
p

u
S

te
al

V
M

=
-f

(C
p
u

Id
le

V
M

)
C

or
r

is
th

e
co

rr
el

a
ti

on
co

effi
ci

en
t

P
n
b

=
70

,
S

ee
F

ig
u

re
4.

6
P

n
b

=
50

In
tr

a-
ca

te
go

ry
,

In
te

r-
la

y
er

R
el

at
io

n
sh

ip
s

C
p

u
T

im
eT

h
=

f(
C

p
u

U
se

rV
M

),
P

n
b

=
30

,
se

e
F

ig
u

re
4.

8
C

p
u

U
se

rV
M

=
f(

C
p

u
U

se
d

D
o
m

0)
,

M
C

C
(C

p
u

U
se

rV
M

,
C

p
u

U
se

d
D

om
0C

or
e)

=
0.

8,
P

n
b

=
20

,
se

e
F

ig
u

re
4
.9

C
p

u
S

te
al

V
M

=
f(

C
p

u
W

a
it

in
g
D

om
U

),
C

or
r(

C
p

u
S

te
al

V
M

,
C

p
u

W
ai

ti
n

gD
om

U
)=

0.
4
,

P
n
b

=
2
0
,

se
e

F
ig

u
re

4
.1

0
M

C
C

is
th

e
m

u
lt

ip
le

co
rr

el
a
ti

on
co

effi
ci

en
t

M
em

o
ry

M
et

ri
cs

P
-R

a
m

F
re

e
V

-R
am

F
re

e
H

ea
p

M
em

“P
-R

a
m

U
se

d
”

“V
-R

a
m

U
se

d
”

N
on

H
ea

p
M

em
“P

-S
w

a
p
In

”
“V

-S
w

a
p
In

”
“P

-S
w

a
p
O

u
t”

“V
-S

w
a
p
O

u
t”

P
-S

w
ap

F
re

e
V

-S
w

ap
F

re
e

P
-R

ea
d

V
-R

ea
d

P
-W

rt
n

V
-W

rt
n

C
o
n
ti

n
u

ed
..

.

1
-f

()
in

d
ic

at
es

a
n

eg
at

iv
e

re
la

ti
on

sh
ip

b
et

w
ee

n
th

e
tw

o
p

a
ra

m
et

er
s:

If
th

e
fi

rs
t

p
a
ra

m
et

er
in

cr
ea

se
s,

th
e

se
co

n
d

o
n

e
d

ec
re

a
se

s
a
n

d
v
ic

e
v
er

sa
.

2
f(

)
in

d
ic

at
es

a
p

os
it

iv
e

re
la

ti
on

sh
ip

b
et

w
ee

n
th

e
tw

o
p

a
ra

m
et

er
s:

If
th

e
fi

rs
t

p
a
ra

m
et

er
in

cr
ea

se
s,

th
e

se
co

n
d

o
n

e
in

cr
ea

se
s

a
n

d
v
ic

e
ve

rs
a
.

–65–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

P
h
y
si

ca
l

L
ay

er
V

ir
tu

al
L

ay
er

P
la

tf
or

m
L

ay
er

S
o
ft

w
a
re

L
ay

er
..

.
C

on
ti

n
u

ed

In
tr

a-
ca

te
go

ry
In

tr
a-

la
y
er

R
el

at
io

n
sh

ip
s

P
/V

-S
w

ap
In

=
-f

(P
/V

-S
w

ap
F

re
e)

P
/V

-S
w

ap
O

u
t

=
-f

(P
/V

-S
w

ap
F

re
e)

P
/V

-R
am

U
se

d
=

-f
(P

/V
-R

am
F

re
e)

P
/V

-R
am

F
re

e
=

0
”i

m
p

li
es

”
P

/V
-S

w
ap

F
re

e
d

ec
re

as
es

In
tr

a-
ca

te
go

ry
In

te
r-

la
y
er

R
el

at
io

n
sh

ip
s

H
ea

p
M

em
=

-f
(V

-R
am

F
re

e)
,

M
C

C
(V

-R
am

F
re

e,
H

ea
p

M
em

)=
0.

8,
P

n
b

=
35

,
se

e
F

ig
u

re
4.

11
N

on
H

ea
p

M
em

=
-f

(V
-R

am
F

re
e)

,
M

C
C

(V
-R

am
F

re
e,

N
on

H
ea

p
M

em
)=

0.
9,

P
n
b

=
35

,
se

e
F

ig
u

re
4
.1

2
V

-R
am

F
re

e
=

f(
P

-R
am

F
re

e)
,

C
or

r(
V

-R
am

F
re

e,
P

-R
am

F
re

e)
=

0.
9,

P
n
b

=
60

,
se

e
F

ig
u

re
4.

13

D
is

k
M

et
ri

cs

P
-D

is
k
F

re
e

V
-D

is
k
F

re
e

“
P

-D
is

kU
se

d
”

“
V

-D
is

kU
se

d
”

IO
R

eq
D

is
k

In
tr

a-
ca

te
go

ry
,

In
tr

a-
la

y
er

R
el

at
io

n
-

sh
ip

s

P
/V

-D
is

k
U

se
d

=
-f

(P
/V

-D
is

k
F

re
e)

In
te

r-
ca

te
go

ry
,

In
tr

a-
la

y
er

R
el

at
io

n
sh

ip
s

P
/V

-S
w

ap
F

re
e

=
f(

P
/V

-D
is

k
F

re
e)

P
/V

-R
ea

d
=

-f
(P

/V
-D

is
k
F

re
e)

,
P

/V
-W

rt
n

=
-f

(P
/V

-D
is

k
F

re
e)

M
C

C
(P

/V
-D

is
k
F

re
e,

(P
/V

-W
rt

n
,

P
/V

-R
ea

d
))

=
0.

83
IO

R
eq

D
is

k
=

f(
P

-R
ea

d
,

P
-W

rt
n
),

P
n
b

=
10

0,
se

e
F

ig
u

re
4.

14

C
on

ti
n
u

ed
..

.

–66–

4.4. Analysis

P
h
y
si

ca
l

L
ay

er
V

ir
tu

al
L

ay
er

P
la

tf
or

m
L

ay
er

S
o
ft

w
a
re

L
ay

er
..

.
C

o
n
ti

n
u

ed
In

tr
a-

ca
te

go
ry

,
In

te
r-

la
y
er

R
el

at
io

n
-

sh
ip

s

P
-D

is
k
F

re
e

=
f(

V
-D

is
k
F

re
e)

,
C

or
r(

P
-D

is
k
,

V
-D

is
k
)

=
0.

4,
P

n
b

=
10

0

In
te

r-
ca

te
go

ry
,

In
te

r-
la

y
er

R
el

at
io

n
sh

ip
s

IO
R

eq
D

is
k

=
-f

(V
-R

am
F

re
e)

,
C

or
r(

IO
R

eq
D

is
k
,

V
-R

am
F

re
e)

=
-0

.8
,

P
n
b

=
30

IO
R

eq
D

is
k

=
f(

C
p

u
B

lo
ck

ed
D

om
U

),
C

or
r(

IO
R

eq
D

is
k
,

C
p

u
B

lo
ck

ed
D

om
U

)=
0.

3
,

P
n
b

=
3
0

IO
R

eq
D

is
k

=
-f

(E
x
ec

S
ec

),
C

or
r(

IO
R

eq
D

is
k
,

E
x
ec

S
ec

)=
-0

.1
,

P
n
b

=
30

IO
R

eq
D

is
k

=
f(

C
p

u
W

ai
ti

n
gD

om
U

),
C

or
r(

IO
R

eq
D

is
k
,

C
p

u
W

ai
ti

n
gD

om
U

)=
0.

2,
P

n
b

=
3
0

T
h

e
sq

u
a
re

o
f

th
e

m
u
lt

ip
le

co
rr

el
at

io
n

co
effi

ci
en

t=
0.

2,
P

n
b

=
30

T
h
u

s,
th

e
m

u
lt

ip
le

co
rr

el
a
ti

on
co

effi
ci

en
t=

0.
43

L
oa

d
P

-L
o
ad

V
-L

oa
d

In
tr

a-
ca

te
go

ry
,

In
te

r-
la

y
er

R
el

at
io

n
-

sh
ip

s

V
-L

o
ad

=
f(

P
-L

o
ad

),
C

or
r(

V
-L

oa
d

,
P

-L
oa

d
)=

0.
77

,
P

n
b

=
65

,
se

e
F

ig
u

re
4.

15

In
te

r-
ca

te
go

ry
,

In
te

r-
la

y
er

R
el

at
io

n
sh

ip
s

IO
R

eq
D

is
k

=
f(

P
-L

oa
d

),
C

or
r(

IO
R

eq
D

is
k
,

P
-L

oa
d

)
is

ab
ou

t
0.

4,
P

n
b

=
30

N
et

w
o
rk

P
-B

y
te

sI
n

V
-B

y
te

sI
n

P
-B

y
te

sO
u

t
V

-B
y
te

sO
u

t

C
o
n
ti

n
u

ed
..

.

3
T

h
e

m
u

lt
ip

le
co

rr
el

at
io

n
co

effi
ci

en
t

is
co

m
p

u
te

d
v
ia

th
e

G
*
P

ow
er

to
o
l.

It
ta

ke
s

a
s

in
p

u
ts

(1
)

th
e

co
rr

el
a
ti

o
n

co
effi

ci
en

t
va

lu
es

b
et

w
ee

n
th

e
ou

tc
om

e
(I

O
R

eq
D

is
k
)

an
d

th
ei

r
p

re
d

ic
to

rs
(C

p
u

B
lo

ck
ed

D
o
m

U
,

E
x
ec

S
ec

,
C

p
u

W
a
it

in
g
D

o
m

U
)

a
n

d
(2

)
th

e
co

rr
el

a
ti

o
n

va
lu

es
b

et
w

ee
n

p
re

d
ic

to
rs

.

–67–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

P
h
y
si

ca
l

L
ay

er
V

ir
tu

al
L

ay
er

P
la

tf
or

m
L

ay
er

S
o
ft

w
a
re

L
ay

er
..

.
C

on
ti

n
u

ed
In

te
r-

ca
te

go
ry

,
In

te
r-

la
y
er

R
el

at
io

n
sh

ip
s

IO
R

eq
D

is
k

=
-f

(V
-B

y
te

sI
n

),
C

or
r(

IO
R

eq
D

is
k
,

V
-B

y
te

sI
n

)=
-0

.8
2,

P
n
b

=
30

IO
R

eq
D

is
k

=
-f

(V
-B

y
te

sO
u

t)
,

C
or

r(
IO

R
eq

D
is

k
,

V
-B

y
te

sO
u

t)
=

-0
.3

4,
P

n
b

=
30

T
h

e
sq

u
ar

e
of

th
e

m
u

lt
ip

le
co

rr
el

at
io

n
co

effi
ci

en
t=

0.
72

T
h
u

s,
th

e
m

u
lt

ip
le

co
rr

el
at

io
n

co
effi

ci
en

t=
0.

8

P
ro

ce
ss

es
P

-P
ro

cN
b

V
-P

ro
cN

b

In
te

r-
ca

te
go

ry
,

In
tr

a-
la

y
er

R
el

at
io

n
sh

ip
s

P
-P

ro
cN

b
=

f(
P

-L
oa

d
)

V
-P

ro
cN

b
=

f(
V

-L
oa

d
)

C
or

r
=

0.
9,

P
n
b

=
65

C
or

r
=

0.
9,

P
n
b

=
65

S
ee

F
ig

u
re

4.
17

S
ee

F
ig

u
re

4.
17

In
te

rr
u

p
ts

H
w

In
te

rr
S

w
In

te
rr

E
x
ce

p
N

b

In
te

r-
ca

te
go

ry
,

In
te

r-
la

y
er

R
el

at
io

n
sh

ip
s

C
p

u
W

ai
tV

M
=

f(
H

w
In

te
rr

)
C

p
u

W
ai

tV
M

=
f(

S
w

In
te

rr
),

C
or

r(
C

p
u
W

ai
tV

M
,

S
w

In
te

rr
)

=
0.

8,
P

n
b

=
10

0,
se

e
F

ig
u

re
4.

18
C

p
u

W
ai

tV
M

=
f(

E
x
ce

p
N

b
)

C
la

ss
es

“C
la

ss
N

b
”

In
te

r-
ca

te
go

ry
,

In
tr

a-
la

y
er

R
el

at
io

n
sh

ip
s

C
la

ss
N

b
=

f(
H

ea
p

M
em

),
C

or
r(

C
la

ss
N

b
,

H
ea

p
M

em
)=

0
.9

,
P

n
b

=
3
5

se
e

F
ig

u
re

4.
16

T
im

e
R

el
at

ed
Q

oS
p

ar
am

et
er

s

T
ex

ec
T

co
m

“
T

re
sp

”

C
on

ti
n
u

ed
..

.

–68–

4.4. Analysis

P
h
y
si

ca
l

L
ay

er
V

ir
tu

al
L

ay
er

P
la

tf
or

m
L

ay
er

S
o
ft

w
a
re

L
ay

er
..

.
C

o
n
ti

n
u

ed
In

tr
a-

ca
te

go
ry

,
In

tr
a-

la
y
er

R
el

at
io

n
-

sh
ip

s

T
re

sp
= T

ex
ec

+ T
co

m
[6

9
]

T
ri

v
ia

l
S

y
m

p
to

m
s

o
f

a
p

er
fo

r-
m

a
n

ce
d

eg
ra

d
a
ti

on

A
H
ig
h

D
is
k
C
o
n
su

m
p
ti
o
n

le
ad

s
to

th
e

d
eg

ra
d

at
io

n
of

T
e
x
e
c

A
H
ig
h

C
P
U

C
o
n
su

m
p
ti
o
n

le
ad

s
to

th
e

d
eg

ra
d

at
io

n
of

T
e
x
e
c

A
H
ig
h

M
e
m
o
ry

C
o
n
su

m
p
ti
o
n

le
ad

s
to

th
e

d
eg

ra
d

at
io

n
of

T
e
x
e
c

A
H
ig
h

L
o
a
d

le
a
d

s
to

th
e

d
eg

ra
d

at
io

n
of

T
e
x
e
c

A
H
ig
h

N
e
tw

o
rk

U
sa

g
e

le
ad

s
to

th
e

d
eg

ra
d

at
io

n
of

T
c
o
m

E
n

d

–69–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

Figure 4.13 shows that the VM free memory is highly related to the free
memory of the physical machine. The correlation coefficient is around 0.9.

y	 =	 0.0604x	 +	 55760	
R²	 =	 0.90344	

58500	

59000	

59500	

60000	

60500	

61000	

61500	

62000	

45000	 55000	 65000	 75000	 85000	 95000	

V-‐
M
em

Fr
ee
	

P-‐MemFree	

Figure 4.13: Relationship between the physical machine free memory and the
VM free memory

It is plausible that the number of read/written pages is related to the number
of I/O requests to the disk. This relationship has been proven via experiments.
As shown in Figure 4.14, the number of written pages is correlated to the number
of I/O requests to the disk.

y	 =	 45.509x	 -‐	 23.517	
R²	 =	 0.68222	

y	 =	 -‐0.3321x	 +	 28.489	
R²	 =	 0.00362	

0	

200	

400	

600	

800	

1000	

1200	

1400	

0	 5	 10	 15	 20	 25	

V-‐
W
rt
n	
/	
V-‐
Re

ad
	

IOrequestP-‐Disk	

V-‐Wrtn	

V-‐Read	

Linear(V-‐Wrtn)	

Linear(V-‐Read)	

Figure 4.14: Relationship between the I/O requests to the physical disk and the
number written/read pages of the virtual machine

However, the number of read pages is not, since it almost follows a constant
distribution. The multiple correlation coefficient between the number of I/O

–70–

4.4. Analysis

requests to the disk and the number of read/written pages is equal to 0.83. This
value implies a strong relationship between the corresponding parameters.

In addition, it has been proved that the privileged domain (Dom0) load is re-
lated to the VM load. Figure 4.15 shows that the correlation coefficient between
the two loads (Dom0 and VM) is about 0.77, which implies a high correlation/re-
lationship between the virtual load and the physical one.

y	 =	 0.5214x	 +	 0.0409	
R²	 =	 0.60229	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0	 0.5	 1	 1.5	

V-‐
Lo
ad
	

P-‐Load	

V-‐Load	

Linear(V-‐Load)	

Figure 4.15: The load of the virtual machine is highly related to the load of the
privileged domain (Dom0).

In the platform layer, a strong relationship between the number of loaded
classes and the Non-Heap memory usage has been proved (see Figure 4.16).
Actually, the number of loaded classes is highly correlated to the non-heap mem-
ory usage. The correlation coefficient is about 0.91. This means that the increase
of the non-heap memory usage is mainly related to an increase of the number of
loaded classes. Thus, it is not necessary to measure the number of loaded classes.

The relationship between the number of processes and the machine load has
also been studied. This study demonstrates that the machine load is related
to the number of processes. Figure 4.17 shows the corresponding experimental
result.

Moreover, there are relationships between the interrupts and the virtual ma-
chine CPU wait. Interrupts create context switches that lead to the increase of
the CPU wait. This means that interrupts (hardware interrupts, software in-
terrupts and exceptions) are related to the virtual machine CPU wait. Figure

–71–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

y	 =	 2E-‐05x	 +	 2297.9	
R²	 =	 0.83747	

2595	

2600	

2605	

2610	

2615	

2620	

2625	

2630	

2635	

2640	

14500000	 15000000	 15500000	 16000000	 16500000	 17000000	

Cl
as
sN

b	

NonHeapMem	

ClassNb	

Linear(ClassNb)	

Figure 4.16: Correlation between the number of loaded classes and the non-heap
memory usage

y	 =	 467.01x	 +	 684.61	
R²	 =	 0.82134	

720	

770	

820	

870	

920	

970	

1020	

1070	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	

Pr
oc
	

Load	

Proc	 Linear(Proc)	

Figure 4.17: Relationship between the number of processes and the load of a
machine

–72–

4.4. Analysis

4.18 shows the correlation between the number of the Dom0 software interrupts
and the virtual machine CPU wait. The majority of points follows the same

y	 =	 72.326x	 -‐	 1.9474	
R²	 =	 0.7707	

0	

20	

40	

60	

80	

100	

120	

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2	 1.4	 1.6	

Cp
uW

ai
tV
M
	

SwInterr	

CpuWaitVM	

Linear(CpuWaitVM)	

Figure 4.18: Software interrupts are highly related to the CPU wait of a virtual
machine in the absence of exceptions and hardware interrupts

linear spectrum. The correlation coefficient is about 0.877, which indicates a
relationship between the VM CPU wait and the software interrupts number of
Dom0.

In the software layer, the time related QoS parameters are also depending on
each other. Actually, the response time is equal to the sum of the execution and
the communication time [69]. Thus, measuring the response time will not bring
new information to the analysis. This is the reason why we only monitor the
execution and the communication times.

It should be pointed out that the correlation coefficient reflects the relation-
ship between the corresponding parameters. A positive / negative correlation
is deduced when the correlation coefficient is near to 1 / -1. Values in between,
where the absolute values vary from 0.3 to 1, reflect a relation between the treated
metrics. Crocker [23] has shown that a correlation coefficient equal to 0.3 could
reflect a strong causal link, in case the relationship is meaningful. He presents
the example of the causal relationship between smoking and lung cancer, and
he assumes that a correlation coefficient equal to 0.3 is very significant in this
case. We believe that Crocker’s observations are also valid in our scenario. For
instance, it is obvious that the CPU idle percentage is related to all other CPU
percentages (such as CPU user, CPU system and CPU wait). Such correlations
can be directly deduced from the definition of the metrics. According to our
observations, the correlation coefficient of the CPU idle and CPU wait is around
0.4. This value implies a correlation between the two metrics, since the rela-

–73–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

tionship is meaningful. This is what we do in this study: presenting meaningful
relationships between Cloud metrics (deduced by thinking) and showing these
relationships via experiments. In the experimental step, a correlation coefficient
value very close to 1/-1 is not required to deduce a relationship (0.4 could be
significant and sufficient).

As mentioned earlier, extracting relationships between parameters across Cloud
layers allows us to reduce the number of gathered metrics. All removed parame-
ters are written in italics (see Table 4.4). Moreover, these relationships are used
to define the analysis rules. The next section details the proposed analysis rules,
the associated cause-effect (Fishbone) diagrams and their corresponding analysis
rules.

The Analysis Rules

The definition of analysis rules is based on the extracted relationships between
metrics across Cloud layers (see Table 4.4), while adopting a Root Cause Analysis
(RCA) approach.

We use fishbone diagrams to perform Cloud performance analysis. Thus, we
start the analysis by stating the trivial causes of a performance-related problem
(see Table 4.4). Starting the analysis by studying such evident causes is necessary,
but not sufficient to give accurate information about the nature of a degradation.
Figure 4.19 shows a high-level view of our cause-effect diagram.

Performance
degradation

Te
xe

c
↑

High Disk Consumption
High CPU Consumption

High Memory Consumption
High Load

Tc
om

 ↑

Network Congestion

Figure 4.19: The cause-effect diagram: A high level view

As shown in Figure 4.19, the first step of the analysis only states trivial causes
of a performance degradation. Stopping the analysis in this step could lead, in
some cases, to wrong results, due to the interaction between Cloud metrics. This
is the reason why it is necessary to continue the analysis of these evident causes.
For instance, this first analysis (see Figure 4.19) shows that a communication time
degradation is always related to a network congestion (low throughput). However,
expanding this branch on the basis of the extracted relationships demonstrates

–74–

4.4. Analysis

that such a degradation could also be related to a huge number of requests to
the physical disk (see Figure 4.20).

Performance
degradation

Te
xe

c
↑

Tc
om

 ↑
Network
Congestion

P-
By

te
sI

n
Or

 P
-B

yt
es

Ou
t ↓

V-
By

te
sI

n
Or

 V
-B

yt
es

Ou
t ↓

IOReqDisk ↑

Internal Failure,
physical layer,
many VMs
accessing the
disk

External Failure, physical layer, over used links

Figure 4.20: The cause-effect Diagram: The analysis of a communication time
degradation

Next, we expand branches related to the execution time analysis. The first
branch deals with the case when an execution time degradation is related to a
high load. According to the extracted relationships, we conclude that this high
load could be related to a large number of processes or to a continuous increase
of the number of I/O requests to the physical disk. As presented in Figure 4.21,
diagnosis reports accurately show the cause of the performance degradation.

The next branch deals with the case when an execution time degradation is
related to a high CPU consumption (see Figure 4.22). A simple analysis shows
that the cause is certainly related to the CPU. However, this is not true in most
of the cases. Actually, the extracted relationships show that such degradation
could be related to disk problems or to a large number of interrupts. Figure
4.22 shows this branch. It details the origins of a CPU exhaustion. As shown in
Figure 4.22, a high CPU consumption is related to six different causes:

• An increase of the Dom0 CPU user that is related, according to the ex-
tracted relationships, to an increase of the VM CPU user. The latter is
caused by an increase of threads’ CPU time. This means that a high CPU
consumption is related, in this case, to the large number of threads due to
the fact that the waited count of a thread is highly correlated to its CPU
time.

–75–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

Performance
degradation

Te
xe

c
↑

High Disk
Consumption

High CPU
Consumption

High Memory
Consumption

High Load P-
Lo

ad
 ↑

V-Load ↑ V-

Pr
oc

 ↑

Internal Failure,
Virtual layer, many

virtual processes

P-Proc ↑

IOReqDisk ↑

Internal Failure,
physical layer, many
VMs accessing the

disk

Internal Failure,
Physical layer,
many processes

Tc
om

 ↑

Figure 4.21: The analysis of an execution time degradation: The load branch

• A degradation of the blocked time of DomU (running virtual machines)
that is mainly related to an increase of the number of I/O requests to the
physical disk.

• An increase of the waiting time of DomU that could be related to an increase
of the number of I/O requests to the physical disk or to an increase of the
CPU Steal.

• A decrease of the number of the executions per second that is also caused
by an increase of the number of I/O requests to the physical disk.

• An increase of the virtual machine CPU wait that could be related to a
large number of interrupts (hardware interrupts, software interrupts and
exceptions).

• An increase of the virtual machine CPU system, which means that the
virtual machine is overloaded and needs more virtual resources.

Figure 4.22 shows the deduced diagnosis reports. They point out the fact that
a CPU problem could be related to another resource (different to CPU).

–76–

4.4. Analysis

Perform
ance

degradation

Texec ↑

H
igh D

isk
Consum

ption

H
igh CPU

Consum
ption

 CpuUsedDom0 ↑

CpuUserVM
↑

 CpuThread ↑

Internal Failure, Platform
,

M
any concurrent threads

CpuBlockedDomU ↑IOReqDisk↑

Internal
Failure,
physical
layer, m

any
VM

s
accessing
the disk

 CpuWaitingDomU↑

IOReqDisk↑

CpuStealVM

↑

Internal Failure,
physical layer, m

any
VM

s accessing the
disk

Internal failure
Level: Physical
Infrastructure
C

ause: overloaded
node (m

any VM
s

and processes)

ExecSec ↓

 IOReqDisk↑

Internal
Failure,
physical
layer, m

any
VM

s
accessing
the disk

 CpuWaitVM ↑

HwInterr↑

SwInterr↑

ExcepNb↑

Internal
Failure,
Physical
Infrastructure,
H

ardw
are

Failure
Internal Failure,
Virtual layer, M

any
concurrent VM

s

Internal Failure,
Platform

,
Program

m
ing

code issues

 CpuSystemVM ↑

Internal Failure, Virtual layer, exhausted virtual C
PU

H
igh M

em
ory

Consum
ption

H
igh Load

Tcom ↑

Figure 4.22: The analysis of an execution time degradation: The CPU branch

–77–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

The following branch of the cause-effect diagram (see Figure 4.23) deals with
the case when the degradation of the execution time is caused by a high mem-
ory consumption. Since the virtual machine free memory is highly related to
the physical machine free memory, we deduce that a high memory consumption
is mainly caused by a decrease of the VM free memory. The latter, as demon-
strated in Table 4.4, could have three different origins. It could be related to an
increase of the JVM heap memory. In this case, we deduce that the origin of the
performance problem is the huge number of Java objects. Thus, launching the
garbage collector could solve the problem. A decrease of the VM free memory
could be also related to an increase of the JVM non-heap memory. In this case,
we deduce that the cause of the performance degradation is the huge number
of loaded classes since the number of loaded classes is highly correlated with the
non-heap memory usage. Moreover, the exhaustion of the VM free memory could
be related to the large number of I/O requests to the physical disk.

Performance
degradation

Te
xe

c
↑

High Disk
Consumption

High CPU
Consumption

High Memory
Consumption V

-R
am

Fr
ee

 ↓

IOReqDisk ↑

HeapMem ↑

NonHeapMem ↑

Internal Failure,
physical layer,
many VMs
accessing the
disk

Internal Failure,
Platform, Many
Java Objects

Internal
Failure,
Platform, Many
loaded classes

High Load

Tc
o
m

 ↑

Figure 4.23: The analysis of an execution time degradation: The memory branch

The last branch of the cause-effect diagram deals with the case when an
execution time degradation is caused by a high disk usage. It is presented in
Figure 4.24 and shows the possible causes of a high disk consumption. As already
discussed, the free physical disk is related to the free VM disk. Thus, the main
cause shown by this diagram is the continuous decrease of the free virtual disk
amount. This could be related to an increase of the number of I/O requests to

–78–

4.4. Analysis

the physical disk or to a decrease of the Swap Memory. In the last case, we
conclude that the virtual allocated RAM is exhausted and more memory should
be allocated to this virtual machine.

Performance
degradation

Te
xe

c
↑

High Disk
Consumption V-

Di
sk

Fr
ee

 ↓

V-SwapFree ↓

 V-Read OR V-Wrtn ↑ IO
Re

qD
is

k
↑

Internal Failure,
physical layer,
many VMs
accessing the
disk Internal

Failure,
Virtual layer,
Virtual RAM
exhaustion

High CPU
Consumption

High Memory
Consumption

High Load

Tc
om

 ↑

Figure 4.24: The analysis of an execution time degradation: The disk branch

Figure 4.19, 4.20, 4.21, 4.22, 4.23 and 4.24 constitute the different parts of
the cause-effect diagram, which describes the different origins of a performance-
related problem. This diagram is then transformed into a set of analysis rules
that are implemented as queries within the CEP engine.

Each elementary branch of the cause-effect diagram is translated into an ana-
lysis rule. It is composed of a set of symptoms and a diagnosis report. An
analysis rule is analytically represented by R(S1, S2, .. , Sn // D), where R
is the rule; S1, S2, .. , Sn are the observed symptoms, and D is the deduced
diagnosis report. For instance, the first part of the cause-effect diagram, showing
the communication time analysis (see Figure 4.20) is translated into two analysis
rules R1 (see formula (4.4)) and R2 (see Formula (4.5)).

R1(Tcom ↑, P −BytesIn ↓ OrP −BytesOut ↓
//External Failure,

Physical layer,

over − used links)

(4.4)

–79–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

R2(Tcom ↑, V −BytesIn ↓ OrV −BytesOut ↓,
IOReqDisk ↑ //

Internal Failure,

Physical layer,

Many VMs accessing the disk)

(4.5)

The obtained rules are implemented as queries in the CEP engine. Therefore,
we will get a large number of queries that could take a long time to be processed
by the CEP engine. This could delay the recovery, especially in the context of a
large Cloud computing environment. Thus, it is necessary to reduce the number
of rules. Our rule reduction approach is detailed below.

Reduction of Rules

The cause-effect diagram (represented by Figures 4.19, 4.20, 4.21, 4.22, 4.23, 4.24)
shows that some branches have exactly the same:

• first symptom

• last symptom

• diagnosis report

These branches can be reduced to a single branch, since they represent the
specific cases of a general branch. The resulting branch is a very simple one,
consisting of two symptoms (the first and the last one) and the diagnosis report.

The first part of the cause-effect diagram, dealing with the analysis of the
communication time (see Figure 4.20) could not be reduced to a single branch,
since the two last symptoms are different. Nevertheless, it is possible to replace
six branches of the second part of the cause-effect diagram by only a single branch.
The second part of the cause effect diagram deals with execution time analysis
and is presented in Figures 4.21, 4.22, 4.23 and 4.24.

It is evident that six branches of this cause-effect diagram part have the same
first symptom (the continuous increase of the execution time: Texec ↑), the same
last symptom (the continuous increase of the number of the I/O requests to the
physical disk: IOReqDisk ↑), and the same diagnosis report. These six branches
are shown in Figure 4.25.

The diagram of Figure 4.26 shows the resulting branch, replacing the six
branches represented in Figure 4.25.

The new branch shown in Figure 4.26 is translated into a simple analysis rule.
The resulting rule replaces six analysis rules and is described by Formula (4.6).

–80–

4.4. Analysis

Perform
ance degradation

Texec ↑

High Disk Consum
ption

V-DiskFree ↓V-Read O
R V-W

rtn ↑

IOReqDisk ↑

Internal Failure, physical layer, m
any VM

s accessing the disk

High CPU
Consum

ption

 CpuBlockedDomU ↑IO
ReqDisk

 ↑
Internal Failure, physical layer, m

any VM
s

accessing the disk

 CpuWaitingDomU ↑

IO
ReqDisk ↑

Internal Failure, physical layer, m
any VM

s
accessing the disk

ExecSec ↓ IO
ReqDisk ↑

Internal Failure, physical layer,
m

any VM
s accessing the disk

High M
em

ory
Consum

ption

V-RamFree ↓IO
ReqDisk ↑

Internal Failure, physical layer, m
any VM

s accessing the disk

High Load

P-Load ↑IO
ReqDisk ↑

Internal Failure, physical layer, m
any VM

s accessing the disk

Figure 4.25: Similarities between six branches in the cause-effect diagram

–81–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

Performance
degradation

Te
xe

c
↑ IOReqDisk ↑

Internal Failure,
physical layer,
many VMs
accessing the disk

Figure 4.26: A simple branch (analysis rule) replaces 6 branches (6 analysis rules).

Rs(Texec ↑, IOReqDisk ↑ //
Internal Failure,

Physical layer,

Many concurrent V Ms accessing the disk)

(4.6)

This section has presented the first version of the monitoring and analysis
agent, CEP4CMA. It fulfills the third requirement R3, but still suffers from
some drawbacks. Actually, it is based on the use of a single CEP engine that can
easily become a bottleneck. Therefore, we defined a novel dynamic architecture
for Cloud performance monitoring and analysis based on the use of many CEP
engines. The proposed architecture is called D-CEP4CMA and is detailed in
Section 4.4.2.

4.4.2 D-CEP4CMA

This section presents our dynamic CEP approach for Cloud performance monitor-
ing and analysis, called D-CEP4CMA for “Dynamic Complex Event Processing
for Cloud Monitoring and Analysis”. The basic idea is to dynamically switch
between different CEP architectures depending on the current conditions of the
observed Cloud environment. D-CEP4CMA is deduced from an experimental
study of three different CEP architectures for Cloud monitoring and analysis, a
centralized one and two distributed ones. First, we outline its general architec-
ture. Second, the CEP architectures involved in the D-CEP4CMA life cycle are
presented. Finally, we describe the D-CEP4CMA algorithms that allow us to
switch between the different CEP architectures.

D-CEP4CMA Architecture

Figure 4.27 shows the architecture of D-CEP4CMA. The analysis agent of D-
CEP4CMA is based on the use of many CEP engines and dynamically switches

–82–

4.4. Analysis

between different CEP architectures. The used CEP architectures are described
below.

Virtualiza)on	 Layer	

Pla1orm	

Infrastructure	

So8ware	 S_Monitor

P_Monitor

VI_Monitor

PI_Monitor

Dynamic	 CEP	 Architecture	

Analysis	 Rules	

Distributed	 CEP	
Architecture	

Central	 CEP	
engine	

XOR	

Simple	
Events	

Complex	
Events	

Analysis	
Results	

Figure 4.27: The architecture of D-CEP4CMA

The CEP Architectures

In this section, three CEP architectures for Cloud monitoring and analysis, a
centralized architecture relying on a single CEP engine and two distributed ar-
chitectures based on a set of cooperating CEP engines, are presented.

A Centralized CEP Architecture Figure 4.28 shows our centralized archi-
tecture for Cloud monitoring and analysis. It is based on a single CEP engine.
The CEP engine processes all monitored data and detects performance problems
in the Cloud using our analysis rules. The analysis rules are implemented as EPL
queries within the Esper CEP engine.

CEP	 Engine	

Analysis	 Rules	

Analysis	
Results	

Simple	
Events	

Complex	
Events	

Pla7orm	

Infrastructure	

Sensors	 	
Virtualiza>on	 Layer	

So@ware	

Figure 4.28: The centralized CEP architecture

The centralized CEP architecture suffers from two principal problems: a)
it has to process a potentially large number of events and thus may become

–83–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

bottleneck; b) it represents a single point of failure. Therefore, it is not suitable
for large Cloud computing environments. Consequently, D-CEP4CMA involves
two other distributed CEP architectures to deal with the case of large Clouds.
They are presented below.

Distributed CEP Architectures Figures 4.30 and 4.31 show two distributed
CEP architectures for Cloud monitoring and analysis. They rely on “many” CEP
engines instead of a single one. The used CEP engines have two different roles
and are able to communicate with each other. The first role is called “CEP
Manager”. It is taken by the CEP engine that processes the main analysis rules4.
Depending on the size of the Cloud, the distributed CEP architectures make use
of one or several CEP Managers(s). If several CEP Managers are present, each
CEP Manager is responsible for a particular set of physical Cloud machines, and
each of them operates independently without communicating with other CEP
Managers. The second role is called “CEP Worker”. It is played by the rest
of CEP engines. The CEP Workers have two main tasks. First, they share the
analysis tasks. Second, they filter events and only send pertinent events to the
CEP Manager. The first task is related to the distributed nature of the analysis,
i.e., the monitoring data is not sent to a single CEP, but to many cooperative
CEP Workers. The second task concerns the functionality of filtering events. It is
based on our Outlier Detector approach. When a CEP Worker detects an outlier,
it notifies the rest of CEP Workers and the monitoring sensors. The latter sends
data to the CEP Manager(s). The Outlier Detector approach is presented below.

The Outlier Detector As shown in Figure 4.29, the Outlier Detector is
based on robust statistics to calculate the z-score and detect outliers. Its life
cycle consists of two phases. The first phase is the training period. During this
phase, the Outlier Detector computes the values of the median and the Mean
Absolute Deviation (MAD) of its inputs. To calculate the median of a set of

n values (xi), we sort them and calculate xn+1
2

if n is odd, and
xn/2+xn/2+1

2
if n

is even [86]. The MAD is the median of all absolute deviations, multiplied by
a corrective coefficient (see Formula (4.7)) [86]. The median and the MAD are
more robust against outliers than the mean and the standard deviation (SD),
respectively [86].

MAD = 1.483 ∗mediani=1..n|xi −median(xj)j=1..n| (4.7)

The second phase is used to compute the z-score of the incoming monitored
data (xi). The z-score of xi is the difference between xi and the median, divided
by the MAD (see Formula (4.8)) [86].

4In the centralized CEP architecture, the CEP Manager corresponds to the used (single)
CEP engine.

–84–

4.4. Analysis

Outlier	
Detector	

-‐Median	
-‐MAD	

-‐Mean	
-‐SD	

xi	 z-‐score:	 z	 |z|	 >	
3?	

NO	
Yes	

1st	 Phase:	 Training	 Period	

2nd	 Phase	

Monitoring	 Sensors	

NoCfy:	
 CEP	 Workers	
 Sensors	

Figure 4.29: The outlier detector

z-score =
xi −median(xj)j=1..n

MAD
(4.8)

The z-score indicates whether the new incoming monitored value xi is an
outlier. In fact, if the absolute value of the z-score exceeds 3, then xi is an
outlier. Otherwise, xi is an acceptable value [26]. If (|z-score| < 3), the Outlier
Detector computes the mean and the standard deviation, while using the new
incoming value and the old computed median and MAD. The mean and the
standard deviation are used in the second phase, since we are sure that the used
values are not outliers. The use of robust statistical metrics (like the median
and MAD) during the first phase is required, since outliers could often appear
during the training period. However, it is more significant to use traditional
statistical metrics during the second phase, since we are sure that all values,
used to calculate the mean and the standard deviation, are not outliers. In fact,
during the second phase we calculate the z-score of every new incoming data xi,
and check whether xi is an outlier. If xi is not an outlier, we use it to update
the mean and the standard deviation. Otherwise, we keep the old values of the
mean and the standard deviation (see Figure 4.29). Moreover, the mean and the
standard deviation are more precise than the median and the MAD, respectively,
in the absence of outliers.

The two distributed CEP architectures make use of the Outlier Detector.
Their design and functionality are described below.

–85–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

Design I Figure 4.30 shows the first distributed CEP architecture based
on multiple CEP engines. It is called “Design I” in the remainder of this thesis.
Design I assigns a CEP Worker to every Cloud machine (physical and virtual):
one CEP Worker per Cloud machine. The CEP Workers are running on all phys-

.	

.	

CEP	 Manager	

Node1	

..	
VMn	 S	 CEP	 Worker	

S	 CEP	 Worker	

VM2	 S	 CEP	 Worker	

VM1	 S	 CEP	 Worker	

Node2	

..	
VMn	 S	 CEP	 Worker	

S	 CEP	 Worker	

VM2	 S	 CEP	 Worker	
VM1	 S	 CEP	 Worker	

Noden	

..	
VMn	 S	 CEP	 Worker	

S	 CEP	 Worker	

VM2	 S	 CEP	 Worker	
VM1	 S	 CEP	 Worker	

Cloud	

Figure 4.30: The distributed CEP architecture: Design I

ical and virtual machines of the Cloud. They communicate with the monitoring
sensors (S) and their CEP Worker neighbors. First, the sensors send the values of
the monitored metrics to the CEP Workers. Since the CEP Workers implement
the Outlier Detector, they process the received data and check whether there are
outliers. If a CEP Worker detects an outlier, it first sends the recorded data (at
instant ti) to the CEP Manager, which is in charge of processing the analysis
rules. Second, it notifies its CEP Worker neighbors to ask them to send the last
monitored data (recorded at ti) to the CEP Manager. Third, the CEP Worker
notifies the sensors and asks them to send the next N data values to the CEP
Manager who processes the main analysis rules (see Figure 4.30). N depends on
the used analysis rules. It indicates how often the symptoms should be observed
to detect an unwanted situation. Therefore, N represents the number of required
data values to process the analysis queries. Design I makes use of a few Out-

–86–

4.4. Analysis

lier Detectors, related to pertinent metrics, and implements a selection algorithm
that allows to only send pertinent data, regarding the detected outlier.

Design II Figure 4.31 depicts the second distributed architecture, called
Design II. It involves less CEP Workers: one CEP Worker per physical node.
The CEP Worker processes data coming from the physical node and its virtual
machines. If one of the CEP Workers detects an outlier, it sends and asks sensors
/ CEP Workers neighbors to send monitored data to the CEP Manager, as in
Design I. Design II assigns Outlier Detectors to pertinent metrics, and implements
a selection algorithm to send selected data to the CEP Manager.

.	

.	

CEP	 Manager	

Node1	

..	
VMn	 S	

S	 CEP	 Worker	

VM2	 S	

VM1	 S	

Node2	

..	
VMn	 S	

S	 CEP	 Worker	

VM2	 S	
VM1	 S	

Noden	

..	
VMn	 S	

S	 CEP	 Worker	

VM2	 S	
VM1	 S	

Cloud	

Figure 4.31: The distributed CEP architecture: Design II

The centralized architecture, Design I and Design II have been experimentally
evaluated. The evaluation was based on:

• Quality analysis metrics, such as precision and recall.

• Performance indicators, such as load and network communication, of the
Cloud machines.

• Performance indicators of the CEP Manager, such as the load and the
memory of its hosting machine.

–87–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

The choice of these evaluation criteria is partially based on the relationships
between them and the Cloud size. Indeed, the CEP Manager machine memory
and load metrics depend on the volume of events (i.e., monitoring results) pro-
cessed by the CEP Manager. The volume of these events is highly related to the
Cloud size. In fact, the number of monitored events increases when the number
of Cloud machines increases.

The lessons learned from the experimental evaluation can be summarized as
follows:

• The centralized architecture is a single point of failure, but it gives good
results in terms of precision and recall. The centralized architecture is also
more efficient than the distributed architectures, since it neither saturates
the network nor the virtual machines. Thus, a centralized architecture
should be used when a single CEP engine is able to handle all received
data.

• A distributed architecture is more efficient than the centralized CEP archi-
tecture for large scale Cloud environments.

The evaluation results illustrate that from a performance point of view, we
should not use a distributed CEP architecture, if a centralized CEP architecture
could solve the problem. They also indicate that it is necessary to migrate to
a distributed architecture, if the amount of data to be processed by the CEP
engine exceeds its capacities, in terms of load and used memory.

These conclusions have been used to propose the dynamic CEP architecture
algorithms presented below.

Algorithms for a Dynamic CEP Architecture

The basic idea of the dynamic architecture is to take profit of the centralized
and distributed architectures and avoid their disadvantages, while choosing the
most suitable design. It is mainly based on the scale up and scale down algo-
rithms shown in Figures 4.32 and 4.33, to decide whether to activate particular
architectural components.

The scale up algorithm (see Figure 4.32) allows us to choose the suitable ar-
chitectural design when the size of the Cloud grows. It starts with a centralized
CEP architecture relying on a single CEP engine. The scale up algorithm peri-
odically checks whether the single CEP engine is overloaded, by comparing the
load and the free memory of the physical machine hosting the CEP engine to
the upper thresholds. If it is overloaded (in terms of memory or load), the al-
gorithm switches to Design II, and activates the required number of components
for Design II. It then checks whether Design II leads to an overloaded physical
machine hosting the CEP Manager. If this is the case, the algorithm switches to
Design I and activates the selection algorithm. Otherwise, the algorithm checks

–88–

4.4. Analysis

check(machine[CEP	 Manager(s)])	

Load	 is	 not	 Ok	 	
OR	 	

RAM	 is	 not	 Ok?	

Keep	 Centralized	
Design	

Migrate	 to	
Design	 II	

check(machine[CEP	 Manager(s)])	

Migrate	 to	 Design	 I	

Bytes	 In/
Out	 Ok	 ?	

Keep	 Design	 I	

Yes	

-‐Switch	 to	 Design	 II	
-‐ParKKon	 the	 Cloud	
machines	 into	 two	

groups	
-‐Add	 a	 new	 CEP	 Manager	

for	 the	 new	 group	

No	

Keep	 Design	 II	

Yes	

No	 Yes	

No	 Bytes	 In/
Out	 Ok	 ?	

Yes	

-‐ParKKon	 the	 Cloud	 machines	 into	 two	
groups	

-‐Add	 a	 new	 CEP	 Manager	 for	 the	 new	
group	

Load	 is	 not	 Ok	 	
OR	 	

RAM	 is	 not	 Ok	
?	

No	

Figure 4.32: D-CEP4CMA algorithm: scale up

the network state by comparing bytes In/Out to an adequate threshold. Actu-
ally, the average of the bytes In/Out of the Cloud machines are measured, to
assess the network state of the Cloud. If the network state is acceptable, then
the algorithm keeps Design II. Otherwise, it divides the physical Cloud machines

–89–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

into two groups and starts a new CEP Manager for the new group, following the
centralized design. In the case the algorithm has migrated to Design I, it checks
the network state by measuring the bytes In/Out. If the network state is accept-
able, it keeps Design I. In the opposite case, it switches to Design II, partitions
the physical Cloud machines into two groups and activates a new CEP Manager
for the new group. The partitioning process is based on two key parameters:
CEP Id and Part Id. CEP Id identifies the CEP Manager. It is equal to the IP
address of its hosting machine. Every Cloud machine is identified by (CEP Id,
Part Id), while Part Id designates the partition number. It is either equal to 1 or
to 2. If the switching algorithm decides to partition the Cloud machines into two
groups, the machines with Part Id equal to 2 will be assigned to the new CEP
Manager. Their CEP Id value is equal to the IP address of the machine hosting
the new CEP Manager. The set of machines assigned to the old / new CEP
Manager are divided into two groups. The Part Id of the first group is equal to
1, while the Part Id of the second group is equal to 2.

As shown in Figure 4.33, the scale down algorithm allows us to choose the
suitable architectural design when the size of the Cloud decreases. It periodically
checks whether the number of used CEP Managers is greater than 1. If only one
CEP Manager is used, the algorithm checks whether the centralized design is cur-
rently adopted. If the centralized design is not adopted, the scale down algorithm
checks whether the CEP Manager machine is under-used, by comparing the load
and free memory values to the lower thresholds. If the CEP Manager machine
is under-used, the algorithm migrates to the centralized design. Otherwise, it
keeps the current design. If there are many CEP Managers (more than one),
the scale down algorithm checks the load and the free memory values of all used
CEP Manager machines. If it detects that there are under-used CEP Manager
machines, the scale down algorithm checks their currently adopted design. If
there is more than one CEP Manager following the centralized design, the scale
down algorithm replaces all pairs of CEP Managers by a single CEP Manager.
If the centralized design was not adopted, the scale down algorithm migrates to
the centralized design.

Ganglia is used to measure the load and the free memory metrics of the
machine hosting the CEP Manager. The load and the free memory thresholds
are defined as follows. In both cases, the upper thresholds are equal to the sum of
the corresponding mean value and the standard deviation. The lower threshold of
the load is equal to the minimum (observed) value of the load minus the standard
deviation. The lower threshold of the memory is equal to the maximum (observed
value) of the memory plus the standard deviation. The mean, the minimum, the
maximum and the standard deviation are obtained by measuring the load and free
memory values of the machine running the CEP Manager in normal conditions.

The checking period depends on:

• The size of the Cloud

–90–

4.4. Analysis

Check(CEP_Manager_number)	

check(machine	 (CEP	 Manager)	 Load	 /	 RAM)	

Migrate	 to	 Centralized	
Architecture	

CEP_Manager_number	 (n)	 >	 1	 ?	

No	

Current	 design	 	
=	 	

(Design	 I)	 Or	 (Design	 II)	
?	

(Load	 <	 Thmin)	 	
and	 	

(RAM_free	 >	
Thmax)?	

Yes	

Yes	

Yes	

(Load	 <	 Thmin)	 	
and	 	

(RAM_free	 >	
Thmax)?	

check(machine	 (CEP	 Managers)	 Load	 /	
RAM)	 	

i	 =	 i	 +	 1	 	

j	 =	 j	 +	 1	
i1	 =	 0	
C	 =	 0	 	

Yes	

i	 <	 n	

Check	 (current_design)	 Centralized	
Design?	

i1	 =	 i1	 +	 1	 	

C	 =	 C	 +	 1	

C	 >	 1?	

Yes	

Migrate	 to	 Centralized	
Architecture	 i1	 <	 j	

i	 =	 0	
j	 =	 0	 	

Yes	

Yes	

No	 	

i	 <	 n	

Cnew	 	 =	 C	 div	 2	 +	 C	 mod	 2	
Reduce	 the	 number	 of	 CEP	 Managers	 to	 Cnew	 (replace	 all	 pairs	 of	 CEP	 Managers	 by	 a	 single	 one)	

No	

Figure 4.33: D-CEP4CMA algorithm: scale down

• The frequency of receiving monitoring data

• The user preferences

A short checking period implies a faster decision. However, a long period leads
to a more accurate decision.

–91–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

It should be pointed out that the D-CEP4CMA algorithms (scale up and scale
down) stop their operations for a period of time (WT) when a new CEP archi-
tecture is selected. This allows us to test the efficiency of the newly selected CEP
architecture. If the performance indicators of the CEP Manager have improved
after the end of the WT period, then the selected CEP architecture is the best one
for this Cloud and should be kept until the size of the Cloud changes. Otherwise,
the D-CEP4CMA algorithms resume their search for a suitable CEP architecture.
The WT period is the time needed by the machine running the CEP Manager to
reach its normal behavior after a degradation of its performance parameters. In
this work, the WT period is experimentally measured.

D-CEP4CMA fulfills the requirement R4, in ensuring the scalability (scale-up
and scale-down) of the analysis approach.

The outputs of D-CEP4CMA (i.e., diagnosis reports) are used by the action
manager framework, to identify and apply the adequate recovery action. The
next section describes the action manager framework.

4.5 The Action Manager Framework

This section presents the novel action manager framework. It is used to fix
performance-related problems that might occur in Cloud computing environ-
ments. First, we outline its general architecture. Then, the main components of
the action manager framework are described.

Action Manager Architecture: Figure 4.34 depicts the architecture of the
action manager framework.

Ac#on	 Executor	

S_Repair	

P_Reconf	

I_Tuning	

Ac#on	
Planner	

RCA	
Analysis	
Results	

Virtualiza#on	
Layer	

So?ware	

PlaAorm	

Infrastructure	

Ac#on	 Manager	
Framework	

Monitoring	
Data	

Figure 4.34: The action manager framework

–92–

4.5. The Action Manager Framework

It consists of two main components: the action planner and the action ex-
ecutor. It follows three steps to rectify a performance-related problem. First,
the action planner uses the received diagnosis reports to choose the adequate
recovery action. Second, the chosen recovery action will be applied by the ac-
tion executor. Third, the action planner checks whether the applied action has
successfully repaired a performence-related problem in the Cloud. In case the ap-
plied action has failed to repair the problem, the action planner looks for another
repair action. If another recovery action does exist, the action planner applies it.
Otherwise, it asks the Cloud administrator to update the set of recovery actions
related to this performance degradation.

As shown in Figure 4.35, each performance-related problem is identified by:

• A set of suitable recovery actions

• The last observed symptom in the path of the corresponding fishbone
branch

PP	 Last	 Symptom	

A1	

.	

.	

.	

.	

.	

.	

E1	

Legend	 	
PP:	 Performance-‐related	 Problem	 	
A{i=1..n}:	 Recovery	 AcAons	
E{i=1..n}:	 Side-‐Effect	 	
S{i=1..n}:	 Success	 rate	

S1	

A2	

E2	

S2	

A2	

E2	

S2	

A2	

E2	

S2	

Figure 4.35: A performance-related problem: The model

Each recovery action is characterized by (1) its side-effect level (Ei,i=1..n) and
(2) its success rate (Si,i=1..n). The side-effect level of a recovery action describes
the severity of this action. Its value varies between 0 and 2. If it is equal to 0,
this means that this recovery action has no effect. In case the side-effect level is
equal to 1, this indicates that this recovery action has an acceptable effect on this
system. The recovery action has a severe effect on the system, if the side-effect
value is equal to 2. For instance, “Kill a Virtual Machine” is a severe recovery
action. Its side-effect level is equal to 2.

The action planner and the action executor are described below.

–93–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

The Action Planner

The action planner is in charge of selecting the suitable recovery action and
validating its success. It is based on our novel repair algorithm (see Figure 4.36).

As shown in Figure 4.36, the repair algorithm starts by sorting the available
recovery actions according to their side-effect level (E). Afterwards, the algorithm
checks whether the recovery action having the minimum value of E is not severe
(E < 2). If this recovery action is not severe, the repair algorithm applies it and
validates its success, by checking whether the last symptom has disappeared. If
the last symptom has disappeared, the repair algorithm increases the success
rate of this recovery action by 1. Otherwise, it checks the side-effect of the next
recovery action if there is one; and decreases the success rate of the failed recovery
action by 1. In case the side-effect of the first selected recovery action is equal to
2, the repair algorithm checks whether there are more recovery actions associated
with the corresponding performance-related problem. If there are more recovery
actions, the algorithm selects the best one in terms of success rate (S > 0), applies
it and validates it, using the same procedure as described above. If there is only
one recovery action with a side-effect equal to 2 and a success rate equal to 0,
the repair algorithm asks the Cloud administrator to decide whether to apply
this recovery action. If the Cloud administrator approves this recovery action,
it is retained and its success rate is updated. Otherwise, this recovery action is
removed and will be substituted by an “emergency” recovery action identified by
the Cloud administrator.

The Action Executor

The action executor is in charge of applying the chosen recovery action. It is
composed of three execution modules: I Tuning, P Reconf and S Repair. They
are described below.

I Tuning executes recovery actions on the virtualization layer, such as tuning
resources, killing virtual machines or migrating them from a physical node to
another.

P Reconf operates on the platform layer. It executes platform reconfiguration
actions such as re-setting the number of concurrent clients and killing processes.

S Repair acts on the software layer and applies related recovery actions, such
as substituting and duplicating services.

The action manager framework fulfills the requirement R5. In fact, it assigns
many recovery actions to a given performance-related problem and checks the
success of the applied action.

–94–

4.5. The Action Manager Framework

Sort	 (Aj,	 E{i=1..n},	 ascending)	
j	 =	 indexof_first_occurence(Min	 E{i=1..n})	 	 	 1	

Apply	 Aj	

Has	 “Last	
Symptom”	

disappeared?	 	 	

Sj	 =	 Sj	 -‐	 1	
j	 =	 j	 +	 1	

No	

j	 <=	
n?	

NoLfy	 the	 Cloud	
Admin	 (update	
recovery	 acLons)	

No	

min	 E{i=1..n}	 	
<	 2?	 	

Yes	

j	 =	
n?	

No	

Sort	 (Aj,	 S{i=1..n},	 descending)	
j	 =	 indexof_first_occurence(Max	 S{i=1..n})	 	 	 n	

Sj	 >	 0?	 Yes	

Max	 S{i=1..n}	 >	
0?	 	

Ask	 Cloud	
Admin:	
“Apply	
Aj”?	 	

Yes	

Yes	

NoLfy	 the	
Cloud	
Admin	
(update	
recovery	
acLons)	

Sj	 =	 Sj	 +	 1	

Yes	

Yes	

No	 j	 >=	
n?	

Yes	

j	 =	 j	 +	 1	

No	

No	

Ask	 Cloud	
Admin:	

“Apply	 Aj”?	 	
Yes	

No	

No	

No	

Yes	

Figure 4.36: The repair algorithm

–95–

Chapter 4. CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring

4.6 Summary

This chapter has presented a cross-layer reactive performance monitoring ap-
proach for Cloud computing environments, called CEP4Cloud. It allows us to
monitor and analyze performance metrics across Cloud layers, detect performance-
related problems and fix them with minimal human intervention. This chapter
has demonstrated that CEP4Cloud fulfills all requirements stated in the third
chapter (see Section 3.5). Implementation details regarding CEP4Cloud and its
main components are given in Chapter 5.

–96–

“Talk is cheap. Show me the code.”

Linus Torvalds

5
Implementation

5.1 Introduction

This chapter details the implementation of CEP4Cloud and its main compo-
nents. First, it presents a high level view of CEP4Cloud, while showing its main
structure. Then, it gives implementation details regarding the components of
CEP4Cloud: the multi-layer monitoring agent, the cross-layer analysis agent and
the action manager framework. Parts of this chapter have already been published
in [64–67, 69].

5.2 Implementation of CEP4Cloud

CEP4Cloud makes use of the Esper-4.6.0 CEP engine (Java version). Therefore,
the structure of CEP4Cloud consists of three main packages: sensors, analysis
and sinks (see Figure 5.1). The package “sensors” is in charge of establishing
the communication between the multi-layer monitoring agent and the CEP en-
gine. The package “analysis” implements the main functionality of the CEP
engine (i.e., analysis rules). The package “sinks” is used by the action manager
framework to launch suitable recovery actions. The packages “dynamicalgo” and
“action.manager” are used by the analysis agent and the action manager frame-
work, respectively.

CEP4Cloud is based on three main steps. In the first step, we register the
sources of events to allow the communication between our multi-layer monitoring
agent and the CEP engine. Listing 5.1 illustrates the first step. It shows three
examples of event sources registration.

–97–

Chapter 5. Implementation

Figure 5.1: The structure of CEP4Cloud

cepConfig.addEventType (" IoStatData", IoStatSensor.class.

getName ());

2 cepConfig.addEventType (" JVMData", JVMSensor.class.getName ()

);

cepConfig.addEventType (" LoadData", LoadSensor.class.getName

());

Listing 5.1: Registration of event sources

The second step consists of implementing and launching our analysis rules as
EPL queries. This allows us to process the received event sources and characterize
the state of the Cloud. Listing 5.2 presents the implementation / launching
procedure of the analysis rules. A concrete example of the implementation of an
analysis rule is given in Listing 5.13.

1 EPStatement IOStatement = cepAdm.createEPL(analysis_rule);

Listing 5.2: The implementation of an analysis rule

The last step deals with the implementation of the event sinks and their
registration within the EPL queries. In our case, the event sinks allow us to launch
the suitable repair action, if a performance-related problem has been detected by
the EPL queries. Listing 5.3 presents a code snippet allowing us to register the
EPL query of Listing 5.2 within the sink “RepairIO”. The latter implements our
action manager framework to repair an I/O performance-related problem.

1 IOStatement.addListener(new RepairIO ());

Listing 5.3: Registration of event sinks

The first task of CEP4Cloud consists of collecting Cloud metrics and sending
them to the CEP engine. Section 5.3 gives details regarding our multi-layer
monitoring agent.

5.3 Monitoring

The multi-layer monitoring agent is composed of four main components: S Monitor,
P Monitor, VI Monitor, PI Monitor. Implementation details regarding these
components are given, below.

–98–

5.3. Monitoring

5.3.1 S Monitor: AOP4CSM

AOP4CSM has been implemented within Axis1 and Axis2. The Axis1 implemen-
tation is presented in the following; the Axis2 implementation works accordingly.

The implementation within Axis1 makes use of two components. The first
one, called AOP4CSM Client, operates at the client side and calculates (1)
the response time and (2) the number of invocations (all invocations: advice 1
and successful invocations: advice 4). The second component operates at the
server (provider) side. It evaluates the execution time. It is called AOP4CSM
Server. The implementation of AOP4CSM Client and AOP4CSM Server
is described below.

Implementation of AOP4CSM Client

AOP4CSM Client is aspect code that intercepts the Client at t1 and t4. Its
implementation is based on the identification of the methods that the web service
engine invokes at t1 and t4. In Axis1 [5], the method invoked at t1 is init(. . .)
of the AxisEngine class located in org.apache.axis package (see Listing 5.4 line
6). When the client sends a request, the Axis engine of the client side is invoked
via the method init(. . .). At t4, the method extractAttachments(. . .) of the Stub
class located in org.apache.axis.client package (see Listing 5.4 line 11) is invoked.
The method extractAttachments(. . .) implies, when invoked, that the response
is received by the client.

1 // Calculate the number of successful invocations

int InvosNumber = 0

3 // Pointcut1: t1

pointcut requestClient (): call(* execution (* org.apache.

axis.AxisEngine.init (..));

5 after(): requestClient () {

Treq = System.currentTimeMillis ();

7 }

// Pointcut4: t4

9 pointcut responseClient (): execution (* org.apache.axis.

client.Stub.extractAttachments (..));

after(): responseClient () {

11 Tresp = System.currentTimeMillis ();

RespTime = Tresp - Treq;

13 //send and/or save RespTime

// Increment the number of invocations

15 InvosNumber ++;

}

Listing 5.4: AOP4CSM client implementation for Axis 1

–99–

Chapter 5. Implementation

Implementation of AOP4CSM Server

The second component of our monitoring approach is the AOP4CSM Server. It is
aspect code (see Listing 5.5) that assesses the execution time. To implement the
AOP4CSM Server within Axis1, it is necessary to identify pointcut 2 and pointcut
3 and the methods intercepted. Pointcut 2 corresponds to the instant t2 when
the request arrives at the server side. Pointcut 3 describes the instant t3 when
the response leaves the server side. The execution of the method invoke(. . .) of
the class SOAPService located in the org.apache.axis.handlers.soap package is in
charge of the request processing at the server side. This means that saving the
instants before and after the execution of this method lead to the computation
of the execution time value (see Listing 5.5).

Thus, pointcuts 2 and 3 correspond to the interception of the execution of this
method, and the related advices should be applied before and after this method,
respectively (see Listing 5.5).

// ...

2 // Pointcut2: t2

pointcut requestServer (): execution (* org.apache.axis.

handlers.soap.SOAPService.invoke (..));

4 before (): requestServer () {

TreqS = System.currentTimeMillis ();

6 }

// Pointcut3: t3

8 pointcut responseServer (): execution (* org.apache.axis.

handlers.soap.SOAPService.invoke (..));

after (): responseServer () {

10 TrespS = System.currentTimeMillis ();

Texec = TrespS - TreqS;

12 //Send and/or save Texec

}

14 // ...

Listing 5.5: AOP4CSM server implementation for Axis 1

AOP4CSM also handles multiple clients. It is able to distinguish between
clients by using their IP addresses. Moreover, AOP4CSM uses the request ref-
erences to differentiate between concurrent requests running on the same client.
Thus, it associates monitored QoS parameters to the corresponding client. Based
on AOP, the AOP4CSM Server extracts the client and the server IP addresses
that correspond to the collected monitored QoS parameters. Furthermore, the
AOP4CSM Client distinguishes between concurrent requests running on the same
client, while extracting their references.

It should be pointed out that the AOP4CSM components (Server and Client)
are completely independent of the original server (Axis in our case). In fact, the
developed aspect codes are not located inside the server source code. Thanks to

–100–

5.3. Monitoring

the weaving mechanism of AOP, they intercept methods at defined join points
and record relevant timestamp information without modifying the source code of
Axis.

AOP4CSM Installation Procedure

The installation of AOP4CSM does not need any access to the source code of
the service and can be completely performed by the Cloud client as long as
the client has access to the hosting platform, i.e., the web service middleware.
Thus, the client only has to upload the AOP4CSM components to the client side
(AOP4CSM Client component) and to the server side (AOP4CSM Server com-
ponent). As shown in Figure 5.2, the installation of AOP4CSM is quite simple.

AOP4CSM
Client

AOP4CSM
Server

S

E

R

V

E

R

(1)

(2-b)(2-a)

(3-a)

AOP4CSM

(3-b)

C

L

I

E

N

T

Figure 5.2: AOP4CSM: Installation process

It is composed of three main steps. The first step (1) consists of downloading the
implementation of AOP4CSM. The second step distributes the components of
AOP4CSM to the server and the client sides. Thus, it consists of two sub-steps.
In the first sub-step (2-a), the Cloud client uploads the AOP4CSM Client to
the client side. The second sub-step (2-b) consists of uploading the AOP4CSM
Server to the server side. Finally, in the third sub-steps (3-a) and (3-b), the Client
enables the weaving in the client and the server side while launching traditional
weaving commands, i.e., it takes care that the corresponding advice codes will
be executed at the defined join points. The weaving mechanism does not need
any access to the source code; it is applied to the executables of the system (.jar
files of Axis in our case). In fact, the weaving commands only need access to the
source code of AOP4CSM, which is completely independent of the server source
code.

–101–

Chapter 5. Implementation

AOP4CSM has also been implemented within Axis2. Details about the imple-
mentation of AOP4CSM within Axis2 are given on the AOP4CSM web site [2].
The most important task for implementing AOP4CSM in other environments
consists of identifying the methods to be intercepted at the four instants and
their corresponding join points. This task is quite simple, since it only requires
knowledge about the server structure.

It should be pointed out that as SaaS provider, we operate at the Platform
layer. So, we have access to the middleware. Thus, it is possible to install
AOP4CSM on commercial PaaS solutions. Moreover, AOP4CSM can be installed
in the context of commercial SaaS Solutions if the cloud provider allows an access
to the executables of the hosting platform.

5.3.2 P Monitor: JVMSensor

JVMSensor allows us to collect JVM-related parameters. It is written in Java
and based on the Jconsole tool. This section gives some details regarding the
implementation of JVMSensor. It focuses on:

• The source code allowing us to collect thread-related metrics.

• The source code allowing us to collect memory metrics such as the heap
memory usage.

Collect thread-related metrics: Source code

Listing 5.6 shows a code snippet allowing us to collect thread-related parameters.

private List <JvmThread > getThreadList () {

2 List <JvmThread > threadList = new ArrayList <JvmThread >();

try {

4 ThreadMXBean tb = jmxConnector.getBean(

ThreadMXBean.class , ManagementFactory.

THREAD_MXBEAN_NAME);

for (long threadId : tb.getAllThreadIds ()) {

6 threadList.add(fillJvmThread(tb.

getThreadInfo(threadId),

tb.getThreadCpuTime(threadId)));

8 }

} catch (BeanNotFoundException e) {

10 logger.warn(" Cannot get thread bean from JVM. "

+ e);

return null;

12 }

return threadList;

14 }

Listing 5.6: Thread-related metrics

–102–

5.3. Monitoring

As shown in Listing 5.6, JVMSensor follows four steps to collect thread met-
rics. First, it connects to the JMX agent (see Line 4 of Listing 5.6). Second, it
gets the identifier of all threads (see Line 5 of Listing 5.6). Third, it builds the
list of all threads (see Line 6 of Listing 5.6). Finally, it returns the thread list
(see Line 13 of Listing 5.6).

Collect (jvm) memory metrics: Source code

Listing 5.7 shows a code snippet allowing us to collect (jvm) memory parameters.

1 public void getMemoryStats () throws BeanNotFoundException {

MemoryMXBean mb;

3 mb = parentJvm.getJmxConnector ().getBean(MemoryMXBean.

class , ManagementFactory.MEMORY_MXBEAN_NAME);

setUsedMemory(mb.getHeapMemoryUsage ().getUsed ());

5 setMaxMemory(mb.getHeapMemoryUsage ().getMax ());

setInitMemory(mb.getHeapMemoryUsage ().getInit ());

7 setUsedNonHeapMemory(mb.getNonHeapMemoryUsage ().getUsed

());

setMaxNonHeapMemory(mb.getNonHeapMemoryUsage ().getMax ()

);

9 setInitNonHeapMemory(mb.getNonHeapMemoryUsage ().getInit

());

}

Listing 5.7: Memory metrics

As shown is listing 5.7, JVMSencor collects memory statistics from the JMX
agent and stores them as attributes.

5.3.3 VI Monitor

This section gives the main details regarding the implementation of VI Monitor.
It is based on the use of Ganglia, IoStat and MpStat. These tools are either
started by VI Monitor (e.g. MpStat, IoStat) or started during the boot of the
machine (e.g. Ganglia). Implementation details regarding the integration of
Ganglia, MpStat and IoStat within VI Monitor are given below.

Ganglia

VI Monitor typically parses the XML file generated by Ganglia daemons (gmond
and gmetad), to get the values of collected metrics and send them via sockets
to the analysis agent. Listing 5.8 shows the method used to parse the XML file
generated by Ganglia.

1 public HashMap <String , String > processXML(String xml) {

–103–

Chapter 5. Implementation

DocumentBuilderFactory dbf = DocumentBuilderFactory.

newInstance ();

3 DocumentBuilder db = null;

try {

5 db = dbf.newDocumentBuilder ();

} catch (ParserConfigurationException e) {

7 e.printStackTrace ();

}

9 StringReader reader = new StringReader(xml);

InputSource inputSource = new InputSource(reader);

11 Document doc = null;

try {

13 doc = db.parse(inputSource);

} catch (SAXException e) {

15 e.printStackTrace ();

} catch (IOException e) {

17 e.printStackTrace ();

}

19 reader.close ();

doc.getDocumentElement ().normalize ();

21 NodeList nodeLst = doc.getElementsByTagName (" METRIC ");

HashMap <String , String > metrics = new HashMap <String ,

String >();

23 for(int i = 0 ; i < nodeLst.getLength (); i++) {

Node n = nodeLst.item(i);

25 if (n.getNodeType () == Node.ELEMENT_NODE) {

}

27 NamedNodeMap map = n.getAttributes ();

metrics.put(map.getNamedItem ("NAME").toString (), map.

getNamedItem ("VAL").toString ());

29 }

nodeLst = doc.getElementsByTagName ("HOST");

31 return metrics;

}

Listing 5.8: Ganglia: Parsing method

SysStat: IoStat and MpStat

VI Monitor starts IoStat and MpStat, while using the Java code shown in Listing
5.9.

Process p=Runtime.getRuntime ().exec(" iostat -d 15");

Listing 5.9: Starting procedure of IoStat

–104–

5.4. Analysis

After starting IoStat and MpStat, VI Monitor stores the outputs in a file,
parses the generated file and sends the extracted metrics to the analysis agent,
via TCP/IP sockets.

5.3.4 PI Monitor

PI Monitor is based on the use of Ganglia, IoStat, MpStat and Xenmon. PI Monitor
uses the same method as VI Monitor to extract data from Ganglia, IoStat and
MpStat. The source code of Xenmon has been modified to send collected metrics
to the analysis agent via TCP/IP sockets (see Listing 5.10)

1 s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

s.connect ((CEPIP ,port))

3 s.send("Xenmon ,"+str(socket.gethostname ())+","+str(cpuidx)

+","+str(domain_id[dom])+","+str(h1[dom][0][0]) +","+str(

h1[dom][0][1]) +","+str(h1[dom][0][2]) +","+str(h1[dom

][1]) +","+str(h1[dom][2][0]) +","+str(h1[dom][2][1]) +","+

str(h1[dom][2][2]) +","+str(h1[dom][3][0]) +","+str(h1[dom

][3][1]) +","+str(h1[dom][3][2]) +","+str(h1[dom][4]) +","+

str(h1[dom][5][0]) +","+str(h1[dom][5][1]))

Listing 5.10: Modification of Xenmon

PI Monitor, VI Monitor, P Monitor and S Monitor make use of basic TCP/IP
sockets to send collected data to the analysis agent. Implementation details
regarding the analysis agent are given below.

5.4 Analysis

The analysis agent of CEP4Cloud is based on the use of the Esper CEP en-
gine to process elementary monitoring events, characterize the state of the Cloud
and notify the action manager framework, if a performance-related problem oc-
curs. Our analysis agent is mainly based on the analysis queries of CEP4CMA
and the dynamic architecture of D-CEP4CMA. Implementation details regarding
CEP4CMA and D-CEP4CMA are given in Sections 5.4.1 and 5.4.2, respectively.

5.4.1 Implementation of CEP4CMA

CEP4CMA implements the proposed analysis rules as EPL queries to process
the received monitoring events and characterize the state of the Cloud. Thus, it
follows three steps. First, it receives the monitoring data, formats it, sends it and
registers it as elementary events within the CEP engine. Second, it implements
the proposed analysis rules as EPL queries. Third, CEP4CMA generates complex
events, describing the state of the Cloud and registers them within the sinks. So,
CEP4CMA relies on the three main packages of CEP4Cloud: sensors, analysis

–105–

Chapter 5. Implementation

and sinks. Implementation details regarding these three Java packages are given
in the remainder of this section.

The “sensors” package

The “sensors” package allows us to record incoming events, format and send
them to the CEP engine. As shown in listing 5.11, received monitoring events
are firstly formatted (see Line 1 of Listing 5.11). Afterwards, the resulting events
are used to instantiate a new object of the corresponding sensor (see Line 2 of
Listing 5.11). The created object is finally sent to the CEP engine.

1 formatMSG(MsgR , 4, metricsTexec);

TexecSensor TS = new TexecSensor(metricsTexec);

3 cepRT.sendEvent(TS);

Listing 5.11: Register the incoming data within the CEP sensors

It should be pointed out that the “EPRuntime” class allows us to send
recorded events to the CEP sensors. Actually, the object “cepRT” (see listing
5.11) is an instance of the “EPRuntime” class. It is used to register the incoming
event with the CEP sensor (TS). The code snippet of Listing 5.11 shows the
formatting and sending procedure of the Texec sensor.

Each monitored metric has its own sensor class. The sensor class defines the
fields (i.e. attributes) and get methods related to this metric.

The “analysis” package

The “analysis” package mainly includes the implementation of the proposed ana-
lysis rules as EPL queries. It allows us to register elementary events within the
CEP engine and process them, while using a set of EPL queries. The first step
consists of setting the CEP configuration up (see Lines 2,3 and 4 of Listing 5.12)
and registering the elementary events (see Line 6 of Listing 5.12).

1 //CEP configuration

Configuration cepConfig = new Configuration ();

3 cepConfig.getEngineDefaults ().getExecution ().

setDisableLocking(true);

cepConfig.getEngineDefaults ().getThreading ().

setThreadPoolOutbound(true);

5 // Register the received elementary events with the CEP

engine

cepConfig.addEventType (" BytesInData", BytesInSensor.class.

getName ());

Listing 5.12: The first step of the analysis: Configure the CEP and add event
types

–106–

5.4. Analysis

The second step of the analysis consists of implementing and launching the
CEP queries. For instance, listing 5.13 represents an example of an EPL query.
The shown query allows us to detect a degradation of the communication time.
It is the implementation of the analysis rule (R1) shown in Formula 4.4.

select * from JoinTcomB

2 match_recognize (partition by IP

measures A.IP as id,

4 A.Tcom as tcom_v1 , B.Tcom as tcom_v2 ,

C.Tcom as tcom_v3 , D.Tcom as tcom_v4 ,

6 A.PBytesIn as bi_v1 , B.PBytesIn as bi_v2 ,

C.PBytesIn as bi_v3 , D.PBytesIn as bi_v4 ,

8 A.PBytesOut as bo1 , B.PBytesOut as bo2 ,

C.PBytesOut as bo3 , D.PBytesOut as bo4 ,

10 A.TimeValue as TVBegin ,

D.TimeValue as TVEnd

12 pattern (A B C D)

define

14 B as B.Tcom > A.Tcom and ((B.PBytesOut < A.PBytesOut) or (B

.PBytesIn < A.PBytesIn)),

C as C.Tcom > B.Tcom and ((C.PBytesOut < B.PBytesOut) or (C

.PBytesIn < B.PBytesIn)),

16 D as D.Tcom > C.Tcom and ((D.PBytesOut < C.PBytesOut) or (D

.PBytesIn < C.PBytesIn)))

Listing 5.13: An example of a CEP query

As shown in Listing 5.14, the third step of the analysis deals with creating (see
Line 1 of Listing 5.14) and registering the EPL queries within the corresponding
sink (see Line 2 of Listing 5.14).

IOStatement = cepAdm.createEPL(IOrule);

2 IOStatement.addListener(new IOListener ());

Listing 5.14: Create and register CEP queries

The last step of the analysis consists of starting the queries (see Listing 5.15).

MainReceiver(cepRT);

Listing 5.15: Receive data and start queries

The “sinks” package

The “sinks” package is used to subscribe to complex events. It allows us to trigger
alarms when a performance-related problem is detected. Listing 5.16 shows an
example of a sink that detects an I/O performance-related problem, prints it and
saves it in a log file.

–107–

Chapter 5. Implementation

1 public class Alarm implements UpdateListener {

@Override

3 public void update(EventBean [] arg0 , EventBean [] arg1)

{

System.out.println ("*******I/O Performance -related

Problem *******"+ arg0 [0]. getUnderlying ());

5 Logger.getLogger (" FileIO ").info("I/O Performance -

related Problem !! "+arg0 [0]. getUnderlying ());

}

7 }

Listing 5.16: A sink class

Our analysis agent is based on a dynamic architecture, called D-CEP4CMA.
It dynamically switches between centralized and distributed CEP architectures
depending on the load/memory of the CEP machine and network traffic con-
ditions in the observed Cloud environment. Implementation details regarding
D-CEP4CMA are given below.

5.4.2 Implementation of D-CEP4CMA

D-CEP4CMA is based on two main algorithms (see Figures 4.32 and 4.33). They
allow us to dynamically choose the appropriate architecture (centralized or dis-
tributed) for the analysis. Both algorithms check the state of the Cloud and the
machine hosting the CEP engine to activate the suitable design and its related
components for the analysis. The implementation of D-CEP4CMA algorithms is
included in the “de.umr.dynamicalgo” package.

To activate architectural components, D-CEP4CMA algorithms connect to
the Cloud machines via ssh and remotely launch scripts allowing us to activate
/ deactivate components. Listing 5.17 shows the connection procedure.

1 JSch jsch=new JSch();

jsch.setKnownHosts ("~/. ssh/known_hosts ");

3 Session session=jsch.getSession(user , host , 22);

session.setPassword(passwd);

5 java.util.Properties config = new java.util.Properties ();

config.put(" StrictHostKeyChecking", "no");

7 session.setConfig(config);

Listing 5.17: SSH connection

After connecting to the Cloud machine, D-CEP4CMA launches special scripts
to activate / deactivate architectural designs. Listing 5.18 gives relevant details
regarding the activation / deactivation procedure of a component.

1 Channel channel=session.openChannel ("exec");

–108–

5.5. The Action Manager Framework

((ChannelExec)channel).setCommand ("cd "+path +""+ Newline+

script);

Listing 5.18: Activation / Deactivation procedure of a component

The outputs of the analysis agent (i.e., diagnosis reports) are used by the
action manager framework, to identify and apply the adequate recovery action.
Implementation details regarding our action manager framework are given in
Section 5.5.

5.5 The Action Manager Framework

The action manager framework is in charge of choosing and applying the suitable
recovery action, if a performance-related problem occurs. It is based on the re-
pair algorithm shown in Figure 4.36 and is implemented within the sink. Listing
5.19 shows a code snippet of the sink RepairIO. First, it deduces the name of the
over-loaded VM and the IP of its physical host (see Lines 2 and 4 of Listing 5.19).
Based on the deduced data, the recovery actions (i.e. recovery scripts) are gener-
ated (see Lines 8,9,10,13,14 and 16 of Listing 5.19). Then, the RepairIO sink gets
the latest recorded values of the number of I/O requests to the physical disk and
the host name of the overloaded physical machine, when the performance problem
has been detected (see Lines 22 and 26 of Listing 5.19). These values are used
to check the success of the applied action. Finally, the RepairIO sink applies our
repair algorithm (see Line 29 of Listing 5.19). The “de.umr.cep.action.manager”
includes the implementation of our repair algorithm.

//VM hostname (deduced from the query outputs)

2 String VMname = (String) arg0 [0]. get(" vmname ");

4 // Physical host IP (deduced from the query outputs)

String PhyHostIP = (String) arg0 [0]. get(" physiqueIP ");

6

// Action1: Reconfigure database service

8 String scriptReconf = "./ configureDB.sh";

CentraCEP4CMA.A1.setcommand(scriptReconf);

10 CentraCEP4CMA.A1.setHost(PhyHostIP);

12 // Action2: Migrate VM

String scriptMigrate = "HOSTNAME ="+ namelabel +" ./ migrateVM.

sh";

14 CentraCEP4CMA.A2.setcommand(scriptMigrate);

// Since we use the migration functionality of OpenStack , we

launch our script from the controller machine

16 CentraCEP4CMA.A2.setHost(IPControllerDomU);

–109–

Chapter 5. Implementation

18 ActionManager [] AsI = {CentraCEP4CMA.A1 ,CentraCEP4CMA.A2};

20 //I/O req value recorded when the I/O performance -related

problem has been detected by the EPL rule

//This value is used to check the success of the applied

action

22 float IOvalueDeg = (Float) arg0 [0]. get(" ioreq3 ");

24 // Hostname of the physical host

//used to get the value of I/O req after applying the

recovery action

26 String hostnameIO = (String) arg0 [0]. get("PN");

28 //Apply the repair algorithm

As[0]. repairCloud(As, IOvalueBefore , "IO", hostnameIO);

Listing 5.19: Code snippet of the sink RepairIO

5.6 Summary

This chapter has presented implementation details of CEP4Cloud and its different
components. It has shown the benefits of using Aspect-Oriented-Programming
to implement our non-invasive monitoring approach (AOP4CSM). Moreover, this
chapter has given relevant code snippets showing the main implementation steps
of CEP4CMA. Furthermore, implementation details regarding the dynamic CEP
architecture have been presented. They show the activation / deactivation proce-
dure of different architectural designs. This chapter has also provided implemen-
tation details of the action manager framework. CEP4Cloud and its components
have been evaluated via several experiments. Conducted experiments are pre-
sented and discussed in Chapter 6.

–110–

“The difference between theory and practice is that in theory, there
is no difference between theory and practice.”

Richard Moore

6
Experimental Results

6.1 Introduction

To evaluate CEP4Cloud and its main components, several experiments have been
conducted using two different testbeds. The performed experiments assess many
aspects of each particular component and illustrate the merits of CEP4Cloud.
This chapter presents the used testbeds, the conducted experiments and their
corresponding setups. It is organized as follows. Our testbeds are described in
Section 6.2. Section 6.3 deals with assessing the overhead of using AOP4CSM
and the multi-layer monitoring agent. The analysis approaches (CEP4CMA and
D-CEP4CMA) are evaluated in Section 6.4. Section 6.5 illustrates the merits of
the action manager framework. The evaluation of CEP4Cloud is given in Section
6.6. The last section summarizes this chapter.

Parts of this chapter have already been published in [64–67, 69].

6.2 Testbeds

To illustrate our proposal, we used two different testbeds. The first one has been
used to evaluate AOP4CSM. It is a private SaaS Cloud that hosts a medical work-
flow from the area of sleep research. The second testbed has been used to assess
our multi-layer monitoring agent, CEP4CMA, D-CEP4CMA, our action man-
ager framework and CEP4Cloud. It is a private Cloud computing environment,
based on the open source Cloud software OpenStack and hosts web applications
such as web services and the benchmark Day Trader. The used SaaS medical
workflow and our private Cloud environment are presented in Sections 6.2.1 and

–111–

Chapter 6. Experimental Results

6.2.2, respectively.

6.2.1 Testbed I: A Medical Workflow as a Service

To evaluate AOP4CSM, several experiments have been conducted in a private
Cloud. It consists of three dedicated nodes. The first node is a Core 2 Duo (2.4
GHz) with 4 GB of RAM. It is running under the Mac OS X operating system
and hosts the BPEL engine. The two other nodes are running under the Ubuntu
operating system and host the workers in an Apache Tomcat servlet container.
One of them is a Pentium(R) 4 (3.4 GHz) with 2GB of RAM and the other one
is a Pentium Dual Core (1.46 GHz) with 3GB of RAM. The monitored Cloud
service is running in the two Tomcat workers. The client invokes the BPEL
engine, which in turn calls the service hosted in the Tomcat worker. As a Cloud
service, a workflow from the area of sleep research that has been developed in
cooperation with researchers from the MediGrid (Medical Grid) [98] project of
the German Grid initiative (D-Grid) is used. This workflow makes use of a set of
open source tools (Physio toolkit [100]) to perform an electrocardiogram analysis
and uses the produced results to conduct apnea detection. More information
about this workflow is available in [49].

6.2.2 Testbed II: The OpenStack Cloud Platform

Figure 6.1 depicts the layered-architecture of the Cloud environment used in our
experiments. It is composed of one Cloud controller and a set of compute nodes.
The Cloud controller machine has a 64-bit CPU, with 250 GB of disk and 16
GB of RAM. The Ubuntu Server 12.04 TLS is used as the operating system
for the physical machines (controller and compute nodes). The number and the
characteristics of the used compute nodes depend on the particular experimental
scenario. They are precised for each conducted experiment. The Xen Server is
the used virtualization technology. The open source Cloud software OpenStack
[99] has been deployed in order to upload Cloud images, launch, re-size and mi-
grate instances. The used OpenStack release is precised for each experiment.
Based on the Ubuntu Cloud image, we build the used image. It includes the
proposed monitoring agent. This image has been uploaded into our OpenStack
Cloud platform. It is used to launch instances (i.e. virtual machines). A Java
Virtual Machine (JVM) and a web application (web service or Day Trader bench-
mark) are running on all instances. Our testbed environment has a typical Cloud
architecture, since it makes use of OpenStack and is composed of the four prin-
cipal Cloud layers (physical infrastructure, virtual infrastructure, platform and
software layers). The physical infrastructure layer is composed of the physical
resources, Xen server and OpenStack. The VM instances constitute the virtual
infrastructure layer. The JVM and the used web server are the main components
of the platform layer. The software layer consists of our web application. The

–112–

6.3. Evaluation of the Multi-layer Monitoring Approach

used web server and web application depend on the experimental scenario and
are precised for each experiment.

 Hardware	

…	 DomU1
(VM1)	 	

Tomcat	

Axis	
WS	

JVM	

Physical	 Infrastructure	 Layer	

DomU2	
	 (VM2)	 	

Tomcat	

Axis	
WS	

JVM	

DomU3
(VM3)	 	

Tomcat	

Axis	
WS	

JVM	

DomUn
(VMn)	 	

Tomcat	

Axis	
WS	

JVM	 PlaGorm	 Layer	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Tenant	 Instances	 	

Virtual	 Infrastructure	 layer	

SoHware	 Layer	

Figure 6.1: The Cloud environment testbed

6.3 Evaluation of the Multi-layer Monitoring Approach

This section presents and discusses the conducted experiments to evaluate AOP4CSM
and the multi-layer monitoring agent.

6.3.1 Evaluation of AOP4CSM

To evaluate the performance of AOP4CSM, several experiments have been con-
ducted, using the testbed described in Section 6.2.1. The main objective of these
experiments is to evaluate the computational overhead of AOP4CSM. For this
purpose, we measured the response time of the used Cloud service (i.e. the med-
ical workflow) while applying the two following scenarios:

• Without AOP4CSM

• With AOP4CSM

Actually, the computational overhead of AOP4CSM is defined as the differ-
ence between the response time of a Cloud service that does not use AOP4CSM
and the response time of the same Cloud service that uses AOP4CSM. Naturally,
these two times are measured without using the functionality of AOP4CSM. The
client source code has been modified to compute the response time: timestamps

–113–

Chapter 6. Experimental Results

have been inserted before and after the call(. . .) method. In a first scenario,
we executed the medical workflow 100 times without adding AOP4CSM to our
platform. The results show that the response time is between 140110 and 140311
milliseconds. The average value is about 140165 milliseconds (see Figure 6.2).

139.9

140

140.1

140.2

140.3

140.4

140.5

with AOP4CSM without AOP4CSM

se
c

Figure 6.2: Overhead of AOP4CSM

In a second scenario, AOP4CSM (Client and Server components) has been
installed on our platform. Again, the same medical workflow has been executed
100 times on the same pool of machines. We also have used the same method
(timestamps inside the client source code) to measure the response time. The
average value of the response times is about 140199 milliseconds. The values vary
between 140113 and 140441 milliseconds (see Figure 6.2).

Thus, the average value of the AOP4CSM overhead is about 34 milliseconds.
Its lowest value is around 3 milliseconds, while its highest value is about 130
milliseconds (see Figure 6.2). Thus, the highest value of the overhead is 130
milliseconds, which is considered as a negligible value compared to the response
time value (140441 milliseconds). This indicates that the overhead of AOP4CSM
is quite low.

6.3.2 Evaluation of the Multi-layer Monitoring Agent

To evaluate the proposed multi-layer monitoring agent, we assessed its CPU
overhead. For this purpose, we measured the CPU usage of the physical machine
hosting our multi-layer monitoring agent, while varying the number of virtual
machines running on this physical machine, and applying the two following sce-
narios:

–114–

6.3. Evaluation of the Multi-layer Monitoring Approach

• Without the multi-layer monitoring agent

• With the multi-layer monitoring agent

Actually, the CPU overhead of using our multi-layer monitoring agent is de-
fined as the difference between the CPU usage of a machine that does not host
the multi-layer monitoring agent and the CPU usage of the same machine that
hosts and runs our multi-layer monitoring agent. Naturally, the CPU usage of the
physical machine is measured without using the functionality of our multi-layer
monitoring agent. The Sar [88] tool has been used to monitor the CPU usage
of our compute machine. This experiment has been conducted, using our pri-
vate Cloud (see Section 6.2.2). In this scenario, we have installed the “Icehouse”
release of Openstack and used one compute node. The used compute machine
has a 64-bit CPU, with 32 GB of RAM and 250 GB of disk. It hosts 16 virtual
machines. Each virtual machine has 1 virtual CPU and 1 GB of RAM, with 10
GB of disk. A Java Virtual Machine (JVM), an Apache Geronimo web server
and a Day Trader benchmark [37] are running on all instances. This experiment
was running for 20 minutes, 10 times. Figure 6.3 shows the obtained results. It
illustrates the average CPU usage of the physical machine, hosting our multi-
layer monitoring agent. Experimental results indicate that the CPU overhead of
using our multi-layer monitoring agent varies between 0.5% and 1%. Thus, the
average value of the CPU overhead of using our multi-layer monitoring agent is
equal to 0.8%, which is a negligible value.

0	

0.5	

1	

1.5	

2	

2.5	

2	 VMs	 4	 VMs	 8	 VMs	 16	 VMs	

CP
U
	 U
sa
ge
	 (%

)	

Number	 of	 Virtual	 Machines	 (VMs)	

Without	 the	 mulD-‐layer	 monitoring	 agent	

With	 the	 mulD-‐layer	 monitoring	 agent	

Figure 6.3: CPU overhead of using the multi-layer monitoring agent

–115–

Chapter 6. Experimental Results

6.4 Evaluation of the Analysis Approach

This section presents and discusses the conducted experiments to evaluate our
analysis approaches (CEP4CMA and D-CEP4CMA).

6.4.1 Evaluation of CEP4CMA

To evaluate CEP4CMA, two groups of experiments have been conducted. The
first group is used to illustrate the benefits of using relationships between metrics
for analysis, mainly in terms of rapidity. The second set of experiments allows
us to evaluate CEP4CMA, while assessing its precision, recall and diagnosis ac-
curacy.

These experiments have been performed, using the private Cloud described
in Section 6.2.2. In this scenario, we installed the “Folsom” release of OpenStack
and used 8 compute nodes. Each compute machine has a 64-bit CPU, with 250
GB of disk. Six of them have 16 GB of RAM. The seventh compute node has
12 GB of RAM, and the last one has 8 GB of RAM. For testing purposes and
to show the feasibility of CEP4CMA, 80 VM instances have been launched, via
OpenStack horizon (i.e. web management interface of OpenStack). Each instance
has 1 virtual CPU and 1 GB of RAM, with 10 GB of disk. A Java Virtual Machine
(JVM) and an Apache Tomcat web server are running on all instances. Moreover,
the Axis engine is deployed on every Tomcat, in order to manage web services.
The analysis agent is installed on a dedicated machine, called Cloud Analyzer. It
is running under an Ubuntu Server 12.04 TLS. The Cloud Analyzer machine has
a 64-bit CPU, with 4 GB of RAM and 140 GB of disk. It receives monitoring
data and processes analysis rules to detect performance-related problems.

Rule Rs versus 6 Corresponding Rules

As described in Section 4.4.1, six analysis rules (see Figure 4.25) are replaced
by Rs, a very simple rule (see Figure 4.26). The objective of this experiment is
to investigate the correctness of this reduction and its benefits with respect to a
faster detection of a degradation. First, we compared the quality of the analysis
using the 6 rules with the simple rule Rs. For that, we measured the number
of triggered alarms of the set of 6 rules and Rs, respectively, while varying N
from 2 to 5. N is the number of times the symptoms should be verified to detect
a performance-related problem. Since we view a performance degradation as a
continuous decrease of the performance parameters, the minimum value of N is
equal to 2. However, N also depends on the provider’s requirements and the
use cases. If the provider requires (for a particular use case) a fast detection
process and does not care about false alarms, then 2 is the best value of N. If
the provider cares about the number of false alarms (as in our use case), then
N should be strictly greater than 2. In this work, 3 has been chosen as the best

–116–

6.4. Evaluation of the Analysis Approach

value of N, since it eliminates false alarms. This experiment has been executed 5
times, for 30 minutes, while varying the number of nodes. The results show that
the number of triggered alarms of the simple rule Rs is almost the same as the
number of alarms of the 6 rules.

5	

4	

3	
2	

0	

20	

40	

60	

80	

100	

120	

140	

160	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	 1	 Node	

2	 Nodes	
3	 Nodes	

4	 Nodes	
5	 Nodes	

6	 nodes	
7	 nodes	

8	 nodes	

4	 VMs	
12	 VMs	

24	 VMs	
36	 VMs	

48	 VMs	
60	 VMs	

72	 VMs	
80	 VMs	

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

0	 0	 0	 0	 0	 0	 1	 1	 1	 1	 0	 0	 1	 1	 0	 0	

5	 5	
19	 19	

49	 49	 48	
45	

66	
58	

69	
61	

127	
118	

141	
132	

N	

Fa
ls
e	
A
la
rm

s	
N
um

be
r	

Nodes	 Number	 /	 VMs	 Number	

Figure 6.4: Analysis quality: Rs vs. 6 rules

Figure 6.4 depicts the experimental results. It shows that additional alarms
are only observed when N=2. For N larger than 2, there are no additional alarms.
This illustrates that the quality of analysis offered by Rs is exactly the same as
the quality offered by the set of 6 analysis rules, since we will not set N to 2.
Thus, the use of the simplified rule allows us to reduce the number of sensors and
the number of rules without losing any pertinent information.

Furthermore, using Rs instead of the set of 6 rules allows us to perform a
faster analysis. In fact, the next set of experiments shows that the use of Rs

is significantly faster than using the set of 6 rules. The experiment consists of
injecting a failure (I/O load) via dbench [27] and measuring: (1) the detection
time of Rs, and (2) the time needed by the 6 analysis rules to detect the failure.
Dbench is a benchmark that generates I/O load. It allows us to launch concurrent
clients that perform I/O tasks.

We launched this experiment 5 times, while varying the number of nodes.
Figure 6.5 shows the obtained results. It illustrates that Rs takes less time than
the six other rules to detect a performance degradation. Figure 6.5 also shows
the minimum, average, maximum values of the time needed by Rs and the set
of 6 rules to detect a failure. The gain is the difference between the detection

–117–

Chapter 6. Experimental Results

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

6R
ul
es
	

Rs
	

1	 node	 2	 nodes	 3	 nodes	 4	 nodes	 5	 nodes	 6	 nodes	 7	 nodes	 8	 nodes	

4	 VMs	 12	 VMs	 24	 VMs	 36	 VMs	 48	 VMs	 60	 VMs	 72	 VMs	 80	 VMs	

52100	

30300	

58600	

30300	

60000	

30400	

74100	

36400	

75000	

36400	

75200	

36600	

75000	

38100	

75400	

40600	

71380	

37450	

64060	

35380	

84720	

39980	

84540	

40300	

88380	

41860	

96660	

41620	

100160	

41920	

98300	

44300	

79200	

43600	

78800	

44800	

105600	

45000	

105000	

44200	

120500	

45600	

121000	

45000	

121300	

45500	

125100	

45700	

D
et
ec
9o

n	
Ti
m
e	
(m

s)
	

Nodes	 Number	 /	 VMs	 Number	

Min	 Avg	 Max	

Figure 6.5: Detection time: Rs vs the group of 6 rules

time of the set of 6 rules and the detection time of Rs, divided by the detection
time of the set of 6 rules, and multiplied by 100. The gain value varies between
41.8% and 62.8%. Its highest value (62.8%) has been observed in the case of 8
nodes (80 VMs). Thus, the gain is more significant for a large number of nodes.
This indicates that our approach is potentially suitable to monitor and analyze
a large-scale Cloud computing environment in an efficient manner.

CEP4CMA: Precision/Recall

To evaluate CEP4CMA, we compare it to baseline analysis methods in terms of
precision, recall and F1-measure. These three metrics are often used to inves-
tigate the quality of failure prediction approaches [87]. The precision expresses
the probability of CEP4CMA to generate correct alarms. It is determined by
calculating the ratio of the number of true alarms to the number of all alarms
(see formula 6.1) [87].

Precision =
TP

TP + FP
(6.1)

where TP is the number of True Positive (correct alarms); and FP is the number
of False Positive (false alarms).

–118–

6.4. Evaluation of the Analysis Approach

The recall is defined as the ratio of correct alarms to the number of true failures
(see formula 6.2) [87]. It reflects the probability of detecting true failures.

Recall =
TP

TP + FN
(6.2)

where FN is the number of False Negative (missing alarms).
The F1-measure was introduced by Rijsbergen [84, 87] to integrate the trade-

off between precision and recall. It represents the harmonic (balanced) mean of
precision and recall (see formula 6.3) [87].

F1−measure =
2 ∗ Precision ∗Recall

Precision + Recall
(6.3)

We have chosen threshold-based detection approaches as our baseline meth-
ods. We use an ’oracle’-based approach [104] to set a threshold’s value. It consists
of (1) monitoring the corresponding parameters during a training period, and (2)
calculating the lowest and highest 1% of the extracted values, while considering
them as outliers. The acceptable range is then taken between the lowest and the
highest 1% of the values [104].

We compared CEP4CMA to 3 different threshold-based approaches. The first
one is an I/OReq-based method. It checks whether the I/OReq value is in the
acceptable range, to decide about the Cloud state. The second one, similar to
the first one, is based on the CPU usage metric. The third approach combines
the two previous methods. It analyzes the Cloud state according to the values of
the I/OReq value and CPU usage.

First, we injected 30 I/O failures, via Dbench, and compared CEP4CMA
to the I/OReq-based method. The results of this first experiment show that
CEP4CMA is better than the I/OReq-based method, in terms of precision, recall
and F1-measure. Actually, CEP4CMA achieves a precision of 89.2%, while the
I/OReq-based approach’s precision is 57.1%. Moreover, the recall of CEP4CMA
is 83.3%, while the I/OReq-based approach achieves a recall of 53.3%. Also, the
F1-measure of CEP4CMA (86.2%) is better than the F1-measure of the I/OReq-
based method (55.1%). Thus, CEP4CMA outperforms the I/OReq-based method
by a precision, recall and F1-measure improvement of 56.2%.

Second, we injected 30 CPU failures, via Sysbench [93], and evaluated the
precision and the recall of CEP4CMA and the CPU-based approach. Sysbench
is a multi-threaded benchmark tool. It allows us to evaluate operating system
parameters, while injecting different kinds of load. Our experimental results show
that CEP4CMA achieves better precision (86.6%) than the CPU-based approach
(73.9%). Thus, the improvement of precision is around 17.2%. Furthermore, the
recall of CEP4CMA is about 86.6%. It outperforms the CPU-based method by
an improvement of 58%. In fact, the recall of the CPU-based method is 54.8%.
Also, the F1-measure of CEP4CMA (86.6%) is better than the F1-measure of

–119–

Chapter 6. Experimental Results

the CPU-based approach (62.9%). Thus, the improvement of the F1-measure is
around 37.6%.

Third, we compared CEP4CMA to the combined approach (based on I/OReq
and CPU thresholds). For this purpose, 60 failures have been injected: 50% of
them are I/O failures (i.e., injected via Dbench), and the remaining 50% are
CPU failures (i.e., injected via Sysbench). In this scenario, we noticed that
CEP4CMA achieves a precision of 87.9% and a recall of 85%. Thus, the F1-
measure of CEP4CMA is about 86.4%. The precision of the combined approach
is about 34.7%, while its recall is around 55%. Thus, the F1-measure of the
combined approach is about 42.5%. This means that CEP4CMA is also better
than the combined approach: It improves the precision and recall by 153.1%
and 54.5%, respectively, and outperforms the F1-measure by an improvement
of 103%. Thus, the improvement of the recall is similar for the three conducted
experiments. This implies that the three threshold-based approaches have almost
the same capabilities in detecting true failures. Using two parameters, in the case
of the combined approach, does not make a big difference. Actually, CEP4CMA
still achieves similar improvements, when compared to the combined approach.
On the other hand, we observed that the combined approach does not reach
better results in terms of precision. Indeed, using two threshold comparisons
increases the number of false alarms. This is why CEP4CMA outperforms the
combined approach by an improvement of 153.1% in terms of precision.

CEP4CMA: Accuracy of the Diagnosis

To demonstrate the accuracy of the diagnosis reports generated by CEP4CMA,
we injected 4 different performance-related problems and observed the returned
outputs. First, we generated I/O load on the physical machine “compute05”, via
the benchmark Dbench. In this scenario, we observed that CEP4CMA raised
two alarms: the first one indicates that a degradation of the execution time has
happened on one of the VMs, belonging to “compute05”, due to a high I/O load.
The second alarm identified a degradation of the communication time on another
VM, also hosted by “compute05”. It indicated again that the performance-related
problem was caused by a high I/O load. This demonstrates that CEP4CMA
was able to correctly identify the overloaded VMs and the degradation’s cause.
Second, we injected a Java memory failure. To this end, a benchmark that
consumes a lot of memory has been implemented. When we started running
this benchmark on one of our VMs, CEP4CMA raised an alarm while accurately
identifying the overloaded VM and the cause of the degradation. It indicated that
the performance problem was caused by an increase of the Java heap memory.
Third, we used the Hping3 [43] benchmark to saturate the network links. Hping3
is a networking tool that allows to send TCP/IP packets, and could generate a
Denial-of-Service (DoS) attack when used with the flood option. In this scenario,
CEP4CMA accurately identified the overloaded physical node. It was also able

–120–

6.4. Evaluation of the Analysis Approach

to deduce the cause of the performance-related problem: a network congestion.
Fourth, we injected a CPU load via Sysbench. CEP4CMA raised an alarm, when
Sysbench was running on one of the VMs. It correctly identified the overloaded
VM and the degradation’s cause (high CPU load).

6.4.2 Evaluation of D-CEP4CMA

To evaluate D-CEP4CMA, several experiments have been conducted, using the
private Cloud environment described in Section 6.2.2. In this experiment, we
installed the Folsom release of OpenStack and used 4 compute nodes. Each
compute machine has a 64-bit CPU, with 250 GB of disk, and 32 GB of RAM.
We launched 80 virtual machines (instances), using OpenStack Horizon. Each
compute machine hosts 20 virtual machines (VMs). Each VM has 1 virtual
CPU and 1 GB of RAM, with 8 GB of disk. A Java Virtual Machine (JVM)
and an Apache Tomcat web server are running on all instances. Moreover, the
Axis engine is deployed on every Tomcat, in order to manage web services. The
CEP Workers are running on the Cloud components (compute nodes and virtual
machines). The CEP Manager is running on a separate machine. It has a 64-bit
CPU, with 4 GB of RAM and 140 GB of disk. The CEP Manager machine is
running under an Ubuntu Server 12.04 TLS (see Figure 6.6).

compute1	

compute2	

compute3	

compute4	

CEP	 Manager	

CEP	 Worker(s)1	 	

CEP	 Worker(s)2	 	

CEP	 Worker(s)4	 	

CEP	 Worker(s)3	 	

Figure 6.6: Evaluation of D-CEP4CMA: The testbed

The conducted experiments are partitioned into three groups. The first group
is concerned with measuring the time (IT) when D-CEP4CMA stops operat-
ing to switch between two CEP architectures, called the inactivity time of D-

–121–

Chapter 6. Experimental Results

CEP4CMA. The second group of experiments evaluates D-CEP4CMA in terms
of precision and recall. The last group of experiments evaluates the impact of D-
CEP4CMA on the machine running the CEP Manager in terms of computational
load and used memory.

Inactivity Time of D-CEP4CMA To evaluate the inactivity time, we run
D-CEP4CMA for one hour, while varying the number of physical machines com-
posing the Cloud (1..4).

The first experiment was performed with a single Cloud machine (i.e., 20
virtual machines). The centralized CEP architecture was kept until the end of
this experiment. Therefore, the inactivity time is equal to 0.

In the second experiment, we added a second machine to the Cloud. We
noticed that D-CEP4CMA turned the centralized CEP architecture off after 5
minutes, and replaced it by Design II. The latter was kept until the end of the
experiment. The inactivity time was about 7 seconds.

The third experiment was performed with three Cloud machines (i.e., 60 vir-
tual machines). Like before, D-CEP4CMA migrated to Design II after 5 minutes.
However, D-CEP4CMA did not keep Design II until the end of the experiment.
It switched to Design I 23 minutes later. Then, Design I was kept until the end of
this experiment. The inactivity time is the sum of (a) the time needed to switch
to Design II and (b) the time spent to migrate to Design I. The inactivity time
recorded in this experiment was about 20 seconds.

In the last experiment, our Cloud testbed consisted of four physical machines
(i.e., 80 virtual machines). The observed behavior of D-CEP4CMA was similar
to the third experiment. D-CEP4CMA migrated to Design II 2 minutes after the
start of the experiment. Then, Design II was adopted by D-CEP4CMA for the
next 22 minutes. Afterwards, D-CEP4CMA decided to migrate to Design I. The
inactivity time was around 22 seconds.

These experiments indicate that the highest value of the inactivity time is
about 22 seconds. This value is negligible, in comparison to the duration of the
experiment (1 hour).

D-CEP4CMA: Precision/Recall To assess the merits of D-CEP4CMA, we
compare it to the centralized architecture, Design I and Design II, in terms of
precision and recall.

Our comparison between the different CEP architectures (D-CEP4CMA, Cen-
tralized Architecture, Design I and Design II) is based on studying them sepa-
rately in the same conditions. For each CEP architecture, we (a) injected 30 I/O
performance-related problems on the virtual machines, and (b) observed the be-
havior of each architecture by measuring the number of true alarms, false alarms
and missing alarms.

The I/O performance issues were injected via the use of Dbench. The obtained

–122–

6.4. Evaluation of the Analysis Approach

results are summarized in Table 6.1. It indicates that D-CEP4CMA achieves the
same results as the Centralized Architecture in terms of recall and precision. How-
ever, it does not suffer from its disadvantages in terms of becoming a bottleneck
and a single point of failure.

Table 6.1: Evaluation of CEP architectures
Centralized Architecture Design I Design II D-CEP4CMA

TP 25 25 23 25
FP 3 2 4 3
FN 5 5 7 5

Precision 89.2% 92.5% 85.1% 89.2%
Recall 83.3% 83.3% 76.6% 83.3%

Impact of D-CEP4CMA on the Machine of the CEP Manager The
third group of experiments allows us to compare the performance impact of D-
CEP4CMA on the machine running the CEP Manager to the other CEP archi-
tectures (centralized architecture, Design I and Design II). For this purpose, we
executed the analysis functionality in the different CEP architectures in normal
conditions for one hour, and we measured the load and the free memory of the
physical machine hosting the CEP Manager.

Figure 6.7 shows that D-CEP4CMA has a negligible impact on the machine
running the CEP Manager. The average load of the physical machine hosting

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

Centralized	 	 Design	 I	 Design	 II	 D-‐CEP4CMA	

O
ne

	 M
in
ut
e	
Lo
ad
	 A
ve
ra
ge
	

Load	

Figure 6.7: Comparison of CEP architectures: CEP manager machine load

the CEP Manager in D-CEP4CMA is lower than the average load measured in
the case of the centralized architecture and Design II. However, the average load

–123–

Chapter 6. Experimental Results

of the physical machine hosting the CEP Manager in Design I is slightly lower
than the average load measured in the case of D-CEP4CMA. This is related to
the D-CEP4CMA strategy. In fact, it uses a centralized CEP architecture during
the first stages of its life cycle. This increases the average load of the machine
hosting the CEP Manager.

Figure 6.8 indicates that the machine running the CEP Manager consumes
less memory in the dynamic CEP architecture (D-CEP4CMA) and Design II.
The average free memory of the CEP Manager machine in D-CEP4CMA is lower
than the average memory measured in the case of Design II. This is due to the
D-CEP4CMA methodology. Actually, it uses a centralized design during its first
phases. This leads to a decrease of the average free memory.

1480000	

1485000	

1490000	

1495000	

1500000	

1505000	

1510000	

1515000	

1520000	

Centralized	 	 Design	 I	 Design	 II	 D-‐CEP4CMA	

Fr
ee
	 M

em
or
y	
(B
yt
e)
	

Free	 Memory	

Figure 6.8: Comparison of CEP architectures: CEP manager machine free mem-
ory

6.5 Evaluation of the Action Manager Framework

To evaluate the proposed action manager framework, we conducted several ex-
periments, using the private Cloud environment described in Section 6.2.2. In
this experiment, we installed the “Icehouse” release of OpenStack and used 5
computes machines. Each physical machine has a 64-bit CPU, with 250 GB of
disk. Four of them have 32 GB of RAM and the remaining one has 16 GB of
RAM. To show the feasibility of the action manager framework, we launched 80
VM instances. Each instance has 1 virtual CPU and 1 GB of RAM, with 10 GB
of disk. A Java Virtual Machine (JVM), an Apache Geronimo web server and
a Day Trader benchmark are running on all instances. CEP4Cloud is installed

–124–

6.5. Evaluation of the Action Manager Framework

on a dedicated machine. It is running under an Ubuntu Server 12.04 TLS. The
CEP4Cloud machine has an eight-core Intel i7-4771 3.5 GHz processor, 32 GB of
RAM and 250 GB of disk. The conducted experiments are partitioned into two
groups. The first group is concerned with measuring the overhead of our action
manager framework. The second group of experiments allows us to illustrate the
benefits of our action manager framework compared to baseline approaches.

6.5.1 Overhead of the Action Manager Framework

To assess the overhead of the proposed action manager framework, we measured
the CPU usage and free memory of the machine hosting the action manager
framework, while varying the number of machines composing the Cloud, and
applying the two following scenarios:

• Without the action manager framework

• With the action manager framework

Actually, the overhead of the action manager framework is defined as the dif-
ference between the CPU usage / free memory of a machine that does not host
the action manager framework and the CPU usage / free memory of the same
machine that hosts and runs the action manager framework. This experiment
was running for 20 minutes, 10 times. Figure 6.9 illustrates the average CPU us-
age of the machine hosting the action manager framework. It indicates that the

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

1	 PM	 /	 6	 VMs	 2	 PMs	 /	 23	 VMs	 3	 PMs	 /	 41	 VMs	 4	 PMs	 /	 60	 VMs	 5	 PMs	 /	 80	 VMs	

CP
U
	 u
sa
ge
	 (%

)	

Number	 of	 Physical	 Machines	 (PMs)	 /	 Virtual	 Machines	 (VMs)	

CPU	 Overhead	

Without	 the	 acJon	 manager	 framework	

With	 the	 acJon	 manager	 framework	

Figure 6.9: CPU overhead of the action manager framework

CPU overhead of our action manager framework varies between 0.02% and 0.5%.
Thus, the average value of the CPU overhead of the action manager framework
is equal to 0.2%, which is a negligible value.

–125–

Chapter 6. Experimental Results

Figure 6.10 illustrates the average free memory of the machine hosting the
action manager framework. It indicates that the RAM overhead of our action
manager framework varies between 21 MB and 351 MB. Thus, the average value
of the RAM overhead of our action manager framework is equal to 155 MB, which
is a negligible value.

16500000	

17000000	

17500000	

18000000	

18500000	

19000000	

19500000	

20000000	

20500000	

21000000	

21500000	

1	 PM	 /	 6	 VMs	 2	 PMs	 /	 23	 VMs	 3	 PMs	 /	 41	 VMs	 4	 PMs	 /	 60	 VMs	 5	 PMs	 /	 80	 VMs	

RA
M
	 F
re
e	
(K
b)
	

Number	 of	 Physical	 Machines	 (PMs)	 /	 Virtual	 Machines	 (VMs)	

RAM	 Overhead	

Without	 the	 acKon	 manager	 framework	

With	 the	 acKon	 manager	 framework	

Figure 6.10: RAM overhead of the action manager framework

6.5.2 Action Manager Framework vs. Baseline Approaches

To illustrate the benefits of the proposed action manager framework, we com-
pare it to a baseline approach that triggers an alarm when a performance-related
problem occurs. The used baseline approach is called “Alarms-B1”. This ex-
periment consists of measuring the number of alarms triggered by our action
manager framework (N1), the number of alarms triggered by Alarms-B1 (N2)
and comparing N1 and N2. For this purpose, we injected 60 performance-related
problems and observed the results returned by our action manager framework and
Alarms-B1, respectively. The obtained results indicate that our action manager
framework has triggered one alarm (i.e., N1 = 1), while Alarms-B1 has triggered
60 alarms (i.e., N2 = 60). This demonstrates that our action manager framework
has reduced the number of alarms by 98.33%.

6.6 Evaluation of CEP4Cloud

To evaluate CEP4Cloud, we used the same testbed setup as in the case of the
action manager framework (see Section 6.5). The conducted experiments are

–126–

6.6. Evaluation of CEP4Cloud

partitioned into three groups. The first group is concerned with measuring the
time-to-repair of CEP4Cloud. The time-to-repair (TTR) is the time needed by
CEP4Cloud to detect and repair a performance-related problem. It is equal to the
sum of the detection time (DT), the time-to-choose (TTC) an action, the time-
to-apply (TTA) an action and the validation time (VT), as shown in Formula 6.4.

TTR = DT + TTC + TTA + V T (6.4)

where:

• DT (Detection Time) is the time needed to detect a performance-related
problem.

• TTC (Time-To-Choose an action) is the time spent by our repair algorithm
to choose the most adequate recovery action.

• TTA (Time-To-Apply an action) is the time needed to execute the chosen
action.

• VT (Validation Time) is the time spent by our repair algorithm to check
the success of the applied recovery action.

The second group of experiments allows us to assess the overhead of CEP4Cloud.
The third group of experiments is used to illustrate the merits of CEP4Cloud
compared to baseline approaches.

6.6.1 Time-to-Repair

To measure the time-to-repair of CEP4Cloud, two experiments have been con-
ducted.

In the first experiment, we injected 20 I/O performance-related problems:
50% of them have been injected via the benchmark sysbench; and the remaining
50% have been injected by launching many virtual machines (>=20VMs) on the
same physical node. Our repair algorithm considers two suitable recovery actions
to repair an I/O performance-related problem. The first recovery action consists
of re-configuring a MySQL database to avoid / fix an I/O bottleneck. The second
recovery action allows us to migrate a VM, if many VMs are running on the
same physical node. Experimental results indicate that our repair algorithm has
always chosen the first recovery action during the first iteration. Actually, the
side-effect of the first recovery action (i.e., re-configure MySQL) is less severe
than the second one (i.e., migrate a VM). Thus, the first 10 I/O performance-
related problems (injected via sysbench) have been repaired by the execution
of the first recovery action (i.e., re-configure MySQL). However, the remaining
50% of injected I/O degradations (i.e., many VMs running on the same physical
node) have been fixed during the second iteration, via the execution of the second

–127–

Chapter 6. Experimental Results

recovery action (i.e., migrate a VM). Therefore, the average time-to-repair (see
Figure 6.11) measured in the case of the first 10 I/O degradations (60.1 seconds)
is much more lower than the average time-to-repair observed in the case of the
second 10 I/O degradations (805.7 seconds). This is related to the time needed
to migrate a VM (733.8 seconds) in the second case (see Figure 6.11).

52.9736	

3.8688	

733.8024	

15.1264	

Many	 VMs	
Detec7on	 Time:	 DT	
(seconds)	

Time-‐To-‐Choose	 an	
ac7on:	 TTC	 (seconds)	

Time-‐To-‐Apply	 an	
ac7on:	 TTA	 (seconds)	

Valida7on	 Time:	 VT	
(seconds)	

49.3263	

1.251	

1.1506	

8.4041	

Sysbench	

Figure 6.11: Time-To-Repair: I/O performance-related problem

It should be pointed out that we use the VM migration functionality of Open-
Stack.

The second experiment consists of injecting 10 Java memory failures and
measuring the time spent by CEP4Cloud to fix the injected performance-related
problem. For this purpose, we implemented a benchmark that consumes a lot

63.2559	

0.6516	

16.0044	

8.954	

Heap	 Memory	 Degrada8on	

Detec8on	 Time:	 DT	
(seconds)	

Time-‐To-‐Choose	 an	
ac8on(s):	 TTC	 (seconds)	

Time-‐To-‐Apply	 an	
ac8on(s):	 TTA	 (seconds)	

Valida8on	 Time:	 VT	
(seconds)	

Figure 6.12: Time-To-Repair: High heap memory usage

of Java heap memory. The proposed repair algorithm considers four recovery

–128–

6.6. Evaluation of CEP4Cloud

actions to fix the problem of high usage of java heap memory. The considered
recovery actions allow us to request garbage collection or restart JVM-based
applications like the Day Trader application and Apache Geronimo. Depending
on the scenario, one of these actions has been executed to repair the problem.
Figure 6.12 shows the average time-to-repair spent to fix a java heap memory
failure. It is equal to 88.8 seconds: 71% of it is spent on the detection, 11%
is spent on choosing and validating the applied recovery action(s) and the rest
(18%) is spent on the execution of the recovery action(s). This indicates that our
repair algorithm is very fast, since it needs only 9.6 seconds (around 11% of the
total time-to-repair) to achieve its tasks.

6.6.2 Overhead of CEP4Cloud

To assess the overhead of CEP4Cloud, we measured the CPU usage and free
memory of the machine hosting the CEP engine, while varying the number of
machines composing the Cloud, and applying the two following scenarios:

• Without CEP4Cloud

• With CEP4Cloud

Actually, the overhead of CEP4Cloud is defined as the difference between the
CPU usage / free memory of a machine that hosts and runs CEP4Cloud and the
CPU usage / free memory of the same machine that does not host CEP4Cloud.
This experiment was running for 20 minutes, 10 times. Figure 6.13 illustrates
the average CPU usage of the CEP4Cloud machine. It indicates that the CPU
overhead of CEP4Cloud varies between 0.6% and 3.2%. Its average value is equal
to 2%, which is considered to be quite low.

Figure 6.14 illustrates the average free memory of the CEP4Cloud machine.
It indicates that the RAM overhead of CEP4Cloud varies between 0 GB and 2
GB. Its average value is equal to 1 GB, which is considered to be reasonably low.

6.6.3 CEP4Cloud vs. Rules-B2

To assess the merits of CEP4Cloud, we compare it to a baseline approach, called
Rules-B2, in terms of time-to-repair (TTR).

Rules-B2 makes use of a recovery module that is based on simple “If-Then”
rules. Formula (6.5) shows an example of the rules used by the second baseline
approach.

if (performance-problem-type == I/O)

Then (MigrateVM)
(6.5)

–129–

Chapter 6. Experimental Results

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

1	 PM	 /	 6	 VMs	 2	 PMs	 /	 23	 VMs	 3	 PMs	 /	 41	 VMs	 4	 PMs	 /	 60	 VMs	 5	 PMs	 /	 80	 VMs	

CP
U
	 U
sa
ge
	 (%

)	

Number	 of	 Physical	 Machines	 (PMs)	 /	 Virtual	 Machines	 (VMs)	

CPU	 Overhead	

Without	 CEP4Cloud	

With	 the	 analysis	 agent	

With	 CEP4Cloud	

Figure 6.13: CPU overhead of using CEP4Cloud

15000000	

16000000	

17000000	

18000000	

19000000	

20000000	

21000000	

22000000	

1	 PM	 /	 6	 VMs	 2	 PMs	 /	 23	 VMs	 3	 PMs	 /	 41	 VMs	 4	 PMs	 /	 60	 VMs	 5	 PMs	 /	 80	 VMs	

RA
M
	 F
re
e	
(K
b)
	

Number	 of	 Physical	 Machines	 (PMs)	 /	 Virtual	 Machines	 (VMs)	

Without	 CEP4Cloud	

With	 CEP4Cloud	

Figure 6.14: RAM overhead of using CEP4Cloud

For this purpose, we injected 10 I/O performance-related problems and mea-
sured the TTR of CEP4Cloud and Rules-B2, respectively. 50% of the I/O perfor-
mance issues have been injected via Sysbench and the remaining 50% are related

–130–

6.7. Summary

to a large number of VMs running on the same physical node. Figure 6.15 illus-
trates the results. It shows that the average TTR of CEP4Cloud (381.8 seconds)
is much lower than the average TTR of Rules-B2 (779.4 seconds). This demon-
strates that CEP4Cloud outperforms Rules-B2 by an improvement of 51.01%.
This is due to the fact that CEP4Cloud assigns two recovery actions to fix an
I/O performance-related problem and chooses the most adequate one. However,
Rules-B2 uses the rule shown in Formula (6.5). Thus, it migrates the VM when
an I/O performance-related problem occurs. This might increase the TTR.

0

100

200

300

400

500

600

700

800

900

Rules-B2 CEP4Cloud

Ti
m

e
To

 R
ep

ai
r (

s)

Figure 6.15: CEP4Cloud vs. Rules-B2: Time-To-Repair (TTR)

6.7 Summary

This chapter presented the used testbeds and conducted experiments to eval-
uate CEP4Cloud and its main components. Our experimental results proved
the efficiency and feasibility of CEP4Cloud and its main components. They il-
lustrated that the overhead of using CEP4Cloud and its individual components
is low. Moreover, experimental results demonstrated the merits of CEP4CMA
compared to threshold-based methods. Furthermore, conducted experiments il-
lustrated the benefits of D-CEP4CMA, in comparison with centralized and dis-
tributed designs. Also, the conducted experiments proved the merits of our action
manager framework and CEP4Cloud compared to baseline approaches. The next
chapter summarizes this thesis and outlines areas for future research.

–131–

“Perfection is achieved, not when there is nothing more to add, but
when there is nothing left to take away.”

Antoine de Saint-Exupéry

7
Conclusion

7.1 Summary

This thesis has presented a cross-layer reactive performance monitoring approach
for Cloud computing environments, called CEP4Cloud. It allows us to monitor
and analyze performance metrics across Cloud layers, detect performance-related
problems and fix them.

CEP4Cloud is based on three new approaches: (1) a multi-layer monitor-
ing approach, (2) a dynamic cross-layer analysis approach and (3) a multi-level
recovery approach.

The multi-layer monitoring approach operates at all Cloud layers, while col-
lecting related parameters. It consists of existing tools and a new monitoring
approach, called AOP4CSM. AOP4CSM is based on Aspect-Oriented Program-
ming. It monitors quality of service (QoS) parameters of the SaaS layer without
modifying the service implementation. AOP4CSM is a non-invasive monitoring
approach. Its installation does not need any access to the source code of the
service and the client.

The dynamic cross-layer analysis approach is based on using CEP engines
to continuously run queries on streams of monitored events across several Cloud
layers. It is called D-CEP4CMA for “Dynamic Complex Event Processing for
Cloud Monitoring and Analysis”. D-CEP4CMA relies on novel analysis rules
(i.e., CEP queries) and a new architectural design.

In contrast to other approaches where the queries must be written manually,
we derive them from the results of a theoretical and experimental analysis of the
relationships of monitored metrics on different Cloud layers and follow a root

–133–

Chapter 7. Conclusion

cause analysis approach. The proposed approach allows us to reduce the number
of sensors and the number of analysis rules (i.e., queries). Furthermore, it does
not require a database to store the monitored data, thanks to the use of the CEP
engine.

D-CEP4CMA has been designed to dynamically switch between different cen-
tralized and distributed CEP architectures depending on the current machine load
and network traffic conditions in the observed Cloud environment. It perfectly
fits to the elasticity property of Clouds, since it allows us to use the required
number of CEP engines when new machines join/leave the Cloud.

The multi-level recovery approach makes use of a novel action manager frame-
work that assigns a set of repair actions to each performance-related problem and
checks the success of the applied action. The recovery actions could be applied
at all Cloud layers and are updated at runtime.

The conducted experiments have shown the benefits of CEP4Cloud and its
components.

First, experimental results have shown that the computational overhead of
using AOP4CSM is very low.

Second, obtained results have indicated that monitoring and analysis can
be performed very fast without affecting the quality of the diagnosis. They have
demonstrated the merits of our analysis approach in terms of precision and recall,
in comparison with threshold-based methods. Furthermore, our experimental
results have shown that the proposed analysis rules are suitable for the diagnosis
of Cloud environments, in the sense that they generate an accurate diagnosis
report.

Third, the conducted experiments have shown the merits of the dynamic CEP
architecture in comparison to centralized and distributed CEP architectures, in
terms of precision and recall. Experiments have also indicated that the time
needed to switch between two CEP architectures is negligible.

Fourth, the obtained results have demonstrated that D-CEP4CMA does not
overload the machine hosting the CEP engine.

Fifth, the results of several experiments have indicated that the time needed
to detect and fix a performance-related problem is reasonably short and that the
CPU overhead of using CEP4Cloud is low.

Finally, experimental results have illustrated the merits of CEP4Cloud in
terms of speeding up the repair and reducing the number of triggered alarms
compared to baseline methods.

7.2 Future Work

There are several areas for future research to be conducted in the field of perfor-
mance monitoring for Cloud computing environments. Some of them are briefly
described in the following.

–134–

7.2. Future Work

7.2.1 Dynamic Analysis Rules

The current version of CEP4Cloud is based on static analysis rules that are
deduced from our correlation study. The rules and their levels of relevance depend
on the specific use case. Indeed, an analysis rule could be triggered many times
in the context of use case I and never triggered in the context of use case II.
Therefore, it might be interesting to propose new intelligent approaches, based
on machine learning techniques, allowing us to dynamically update the used
analysis rules at run-time. This includes the following three operations:

• Adding new analysis rules

• Removing unused analysis rules

• Updating analysis rules

7.2.2 Predictive Performance Monitoring

Predictive performance monitoring is a challenging research topic, since it allows
to prevent performance-related problems from occurring. Therefore, CEP4Cloud
should be extended to predict and prevent performance issues from occurring in
Cloud computing environments.

7.2.3 Scalability

Although CEP4Cloud has been well tested on a private OpenStack Cloud com-
puting environment (composed of 80 virtual machines), additional experiments
should be performed in a large-scale Cloud environment (i.e., many thousands of
machines) to assess the scalability of CEP4Cloud.

7.2.4 Security Intrusions

Since Cloud computing environments suffer from several security issues, it is
crucial to extend CEP4Cloud to detect and prevent security intrusions. The idea
consists of using the extracted relationships to define new security analysis rules.
The defined rules are used to detect security anomalies. For instance, a denial-
of-service (DoS) attack can be viewed as a deviation from the normal behavior,
when the CPU load is correlated to the number of users requesting the service.
Thus, a DoS attack could be detected when the CPU load is increasing and not
correlated to the number of users.

7.2.5 Reliability

Ensuring the reliability of Cloud computing environments is a challenging task.
CEP4Cloud could be extended to detect and repair failures. This includes propos-

–135–

Chapter 7. Conclusion

ing new analysis rules allowing us to detect failures and identify their primary
causes.

–136–

Lists and Registers

–137–

List of Figures

2.1 Autonomic computing . 8
2.2 MAPE-K loop [52] . 9
2.3 The layered architecture of Cloud computing 12
2.4 The most known Cloud services 13
2.5 Deployment models of Cloud computing 14
2.6 OpenStack architecture 1 . 15
2.7 OpenStack dashboard: Horizon 16
2.8 The conceptual diagram of OpenStack 2 17
2.9 System-level or operating system vitualization [42] 19
2.10 Ring usage in native and paravirtualized systems [17] 20
2.11 Complex event processing [24] . 24
2.12 Fishbone diagram: An example 25

4.1 The architecture of CEP4Cloud 48
4.2 QoS parameters . 53
4.3 Functionality of AOP4CSM . 55
4.4 The architecture of CEP4CMA 57
4.5 Testbed for correlation experiments 58
4.6 Relationship between CPU metrics and CPU idle time 60
4.7 The CPU time of a thread is highly correlated to its waited count;

the correlation coefficient is equal to 0.99. 61
4.8 The CPU time of a thread is related to the CPU user of the cor-

responding virtual machine. 61
4.9 The CPU user of the virtual machine is related to the Dom0 CPU

usage. 62
4.10 Relationship between the CPU steal of the virtual machine and its

waited time to access the CPU . 63
4.11 The JVM memory usage is negatively correlated with the free

memory of the virtual machine. 63
4.12 The non-heap JVM memory is negatively correlated with the free

memory of the virtual machine. 64
4.13 Relationship between the physical machine free memory and the

VM free memory . 70

–139–

List of Figures

4.14 Relationship between the I/O requests to the physical disk and the
number written/read pages of the virtual machine 70

4.15 The load of the virtual machine is highly related to the load of the
privileged domain (Dom0). 71

4.16 Correlation between the number of loaded classes and the non-heap
memory usage . 72

4.17 Relationship between the number of processes and the load of a
machine . 72

4.18 Software interrupts are highly related to the CPU wait of a virtual
machine in the absence of exceptions and hardware interrupts . . 73

4.19 The cause-effect diagram: A high level view 74
4.20 The cause-effect Diagram: The analysis of a communication time

degradation . 75
4.21 The analysis of an execution time degradation: The load branch . 76
4.22 The analysis of an execution time degradation: The CPU branch . 77
4.23 The analysis of an execution time degradation: The memory branch 78
4.24 The analysis of an execution time degradation: The disk branch . 79
4.25 Similarities between six branches in the cause-effect diagram . . . 81
4.26 A simple branch (analysis rule) replaces 6 branches (6 analysis rules). 82
4.27 The architecture of D-CEP4CMA 83
4.28 The centralized CEP architecture 83
4.29 The outlier detector . 85
4.30 The distributed CEP architecture: Design I 86
4.31 The distributed CEP architecture: Design II 87
4.32 D-CEP4CMA algorithm: scale up 89
4.33 D-CEP4CMA algorithm: scale down 91
4.34 The action manager framework 92
4.35 A performance-related problem: The model 93
4.36 The repair algorithm . 95

5.1 The structure of CEP4Cloud . 98
5.2 AOP4CSM: Installation process 101

6.1 The Cloud environment testbed 113
6.2 Overhead of AOP4CSM . 114
6.3 CPU overhead of using the multi-layer monitoring agent 115
6.4 Analysis quality: Rs vs. 6 rules 117
6.5 Detection time: Rs vs the group of 6 rules 118
6.6 Evaluation of D-CEP4CMA: The testbed 121
6.7 Comparison of CEP architectures: CEP manager machine load . . 123
6.8 Comparison of CEP architectures: CEP manager machine free

memory . 124
6.9 CPU overhead of the action manager framework 125

–140–

List of Figures

6.10 RAM overhead of the action manager framework 126
6.11 Time-To-Repair: I/O performance-related problem 128
6.12 Time-To-Repair: High heap memory usage 128
6.13 CPU overhead of using CEP4Cloud 130
6.14 RAM overhead of using CEP4Cloud 130
6.15 CEP4Cloud vs. Rules-B2: Time-To-Repair (TTR) 131

–141–

List of Tables

2.1 OpenStack services . 16

3.1 Monitoring approaches for Cloud computing environments 31
3.2 Analysis approaches for Cloud computing environments3 39
3.3 Self-healing approaches for Cloud computing environments4 44

4.1 PI Monitor: components, used sensors and monitored metrics . . 51
4.2 VI Monitor: components, used sensors and monitored metrics . . 52
4.3 P Monitor: components, used sensors and monitored metrics . . . 52
4.4 Cloud parameters: classification and relationships 65

6.1 Evaluation of CEP architectures 123

–143–

List of Listings

2.1 Aspect: An example written in AspectJ 22

5.1 Registration of event sources . 98
5.2 The implementation of an analysis rule 98
5.3 Registration of event sinks . 98
5.4 AOP4CSM client implementation for Axis 1 99
5.5 AOP4CSM server implementation for Axis 1 100
5.6 Thread-related metrics . 102
5.7 Memory metrics . 103
5.8 Ganglia: Parsing method . 103
5.9 Starting procedure of IoStat . 104
5.10 Modification of Xenmon . 105
5.11 Register the incoming data within the CEP sensors 106
5.12 The first step of the analysis: Configure the CEP and add event

types . 106
5.13 An example of a CEP query . 107
5.14 Create and register CEP queries 107
5.15 Receive data and start queries . 107
5.16 A sink class . 108
5.17 SSH connection . 108
5.18 Activation / Deactivation procedure of a component 108
5.19 Code snippet of the sink RepairIO 109

–145–

Bibliography

[1] Amal Alhosban, Khayyam Hashmi, Zaki Malik, and Brahim Medjahed.
Self-Healing Framework for Cloud-Based Services. In Proceedings of the
ACS International Conference on Computer Systems and Applications,
pages 1–7, Fes/Ifrane, Morocco, 2013. IEEE Press.

[2] AOP4CSM. AOP4CSM: Aspect-Oriented Programming for Cloud Service
Monitoring. http://www.redcad.org/members/mdhaffar/aop4csm/. On-
line; accessed 13-November-2014.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. A View of Cloud Computing. Communa-
tions of the ACM, 53(4):50–58, 2010.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, 2009.

[5] Axis. Web Services - Axis. http://axis.apache.org/axis/. Online;
accessed 13-November-2014.

[6] Bartosz Balis, Bartosz Kowalewski, and Marian Bubak. Leveraging Com-
plex Event Processing for Grid Monitoring. In Parallel Processing and
Applied Mathematics, volume 6068 of Lecture Notes in Computer Science,
pages 224–233, Wroclaw, Poland, 2010. Springer.

[7] Luciano Baresi and Sam Guinea. Event-Based Multi-Level Service Moni-
toring. In Proceedings of the IEEE 20th International Conference on Web
Services, pages 83–90, Santa Clara Marriott, CA, USA, 2013. IEEE Press.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 164–177, New York, NY, USA, 2003. ACM.

–147–

http://www.redcad.org/members/mdhaffar/aop4csm/
http://axis.apache.org/axis/

Bibliography

[9] Riadh Ben-Halima, Khalil Drira, and Mohamed Jmaiel. A QoS-Oriented
Reconfigurable Middleware for Self-Healing Web Services. In Proceedings
of the IEEE International Conference on Web Services, pages 104–111,
Beijing, China, 2008. IEEE Press.

[10] Riadh Ben-Halima, Emna Fki, Khalil Drira, and Mohamed Jmaiel. A
Large-Scale Monitoring and Measurement Campaign for Web Services-
Based Applications. Concurrency and Computation: Practice and Expe-
rience, 22(10):1207–1222, 2010.

[11] Kanishka Bhaduri, Kamalika Das, and Bryan L. Matthews. Detecting Ab-
normal Machine Characteristics in Cloud Infrastructures. In Proceedings of
the International Conference on Data Mining Workshops, pages 137–144,
Vancouver, Canada, 2011. IEEE Press.

[12] Subir K. Bhaumik. Root Cause Analysis in Engineering Failures. Transac-
tions of the Indian Institute of Metals, 63(2-3):297–299, 2010.

[13] Michael Boniface, Bassem Nasser, Juri Papay, Stephen C. Phillips, Arturo
Servin, Xiaoyu Yang, Zlatko Zlatev, Spyridon V.Gogouvitis, Gregory Kat-
saros, Kleopatra Konstanteli, George Kousiouris, Andreas Menychtas, and
Dimosthenis Kyriazis. Platform-as-a-Service Architecture for Real-Time
Quality of Service Management in Clouds. In Proceedings of the 5th Inter-
national Conference on Internet and Web Applications and Services, pages
155–160, Barcelona, Spain, 2010. IEEE Press.

[14] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Os-
sher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker
White. Cayuga: A High-Performance Event Processing Engine. In Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data, pages 1100–1102, Beijing, China, 2007. ACM.

[15] Bu-Qing Cao, Bing Li, and Qi-Ming Xia. A Service-Oriented Qos-Assured
and Multi-Agent Cloud Computing Architecture. In Proceedings of the
1st International Conference on Cloud Computing, volume 5931 of Lecture
Notes in Computer Science, pages 644–649, Beijing, China, 2009. Springer.

[16] Emiliano Casalicchio and Luca Silvestri. Architectures for Autonomic Ser-
vice Management in Cloud-Based Systems. In Proceedings of the 16th IEEE
Symposium on Computers and Communications, pages 161–166, Kerkyra
(Corfu), Greece, 2011. IEEE Press.

[17] David Chisnall. The Definitive Guide to the Xen Hypervisor. Prentice Hall
Open Source Software Development Series, 2008.

–148–

Bibliography

[18] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. Network Virtual-
ization: State of the Art and Research Challenges. IEEE Communications
Magazine, 47(7):20–26, 2009.

[19] Chukwa. Chukwa. https://chukwa.apache.org/. Online; accessed 12-
November-2014.

[20] Eugene Ciurana. Developing with Google App Engine. Apress, Berkely, CA,
USA, 2009.

[21] Ira Cohen, Moises Goldszmidt, Terence Kelly, and Julie Symons. Corre-
lating Instrumentation Data to System States: A Building Block for Au-
tomated Diagnosis and Control. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, pages 231–244, San Fran-
cisco, CA, 2004.

[22] Collectd. Collectd – The System Statistics Collection Daemon. http:

//collectd.org/. Online; accessed 11-November-2014.

[23] Douglas C. Crocker. Some Interpretations of the Multiple Correlation Co-
efficient. The American Statistician, 26(2):31–33, 1972.

[24] Gianpaolo Cugola and Alessandro Margara. Processing Flows of Informa-
tion: From Data Stream to Complex Event Processing. ACM Computing
Surveys, 44(3):1–62, 2012.

[25] Yuanshun Dai, Yanping Xiang, and Gewei Zhang. Self-Healing and Hybrid
Diagnosis in Cloud Computing. In Proceedings of the International Confer-
ence on Cloud Computing Technology and Science, volume 5931 of Lecture
Notes in Computer Science, pages 45–56, Beijing, China, 2009. Springer.

[26] Michal Daszykowski, Krzysztof Kaczmarek, Yvan Vander Heyden, and
Beata Walczak. Robust Statistics in Data Analysis – A Review: Basic
Concepts. Chemometrics and Intelligent Laboratory Systems, 85(2):203 –
219, 2007.

[27] Dbench. Dbench: I/O Benchmark. https://dbench.samba.org/. Online;
accessed 13-November-2014.

[28] Shirlei Aparecida De Chaves, Rafael Brundo Uriarte, and Carlos Becker
Westphall. Toward an Architecture for Monitoring Private Clouds. IEEE
Communications Magazine, 49(12):130–137, 2011.

[29] Grzegorz Dyk. Grid Monitoring Based on Complex Event Processing Tech-
nologies. Master’s thesis, University of Science and Technology in Krakow,
2010.

–149–

https://chukwa.apache.org/
http://collectd.org/
http://collectd.org/
https://dbench.samba.org/

Bibliography

[30] EdgeRank. EdgeRank. http://edgerank.net/. Online; accessed 12-
November-2014.

[31] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. Sta-
tistical Power Analyses using G*Power 3.1: Tests for Correlation and Re-
gression Analyses. Behavior Research Methods, 41(4):1149–1160, 2009.

[32] FlexiScale. FlexiScale: Utility Computing on Demand. http://www.

flexiscale.com/. Online; accessed 13-November-2014.

[33] Ian T. Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing
and Grid Computing 360-Degree Compared. In Proceedings of the Grid
Computing Environments Workshop, pages 1–10, Austin, TX, USA, 2008.
IEEE Press.

[34] Keir A. Fraser, Steven M. Hand, Timothy L. Harris, Ian M. Leslie, and
Ian A. Pratt. The Xenoserver Computing Infrastructure: A project
overview. Technical Report 552, University of Cambridge, 15 JJ Thom-
son Avenue Cambridge CB3 0FD, United Kingdom, 2003.

[35] Alan G. Ganek and Thomas A. Corbi. The Dawning of the Autonomic
Computing Era. IBM Systems Journal, 42(1):5–18, 2003.

[36] Ganglia. Ganglia Monitoring System. http://ganglia.sourceforge.

net/. Online; accessed 12-November-2014.

[37] Apache Geroninmo. Day Trader - Apache Geroninmo J2EE 1.4 Bench-
mark Sample. http://geronimo.apache.org/GMOxDOC10/day-trader.

html. Online; accessed 13-November-2014.

[38] G*Power. G*Power: Statistical Power Analyses for Windows and Mac.
http://www.gpower.hhu.de/. Online; accessed 13-November-2014.

[39] Torsten Grabs and Ming Lu. Measuring Performance of Complex Event
Processing Systems. In Proceedings of the 3rd TPC Technology Conference
on Topics in Performance Evaluation, Measurement and Characterization,
volume 7144 of Lecture Notes in Computer Science, pages 83–96, Seattle,
WA, 2012. Springer.

[40] Stephan Grell and Olivier Nano. Experimenting with Complex Event Pro-
cessing for Large Scale Internet Services Monitoring. In Proceedings of the
1st International Workshop on Complex Event Processing for the Future,
pages 1 – 10, Vienna, Austria, 2008. CEUR WS series.

[41] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. XenMon: QoS
Monitoring and Performance Profiling Tool. Technical Report HPL-2005-
187, HP Labs, 2005.

–150–

http://edgerank.net/
http://www.flexiscale.com/
http://www.flexiscale.com/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://geronimo.apache.org/GMOxDOC10/day-trader.html
http://geronimo.apache.org/GMOxDOC10/day-trader.html
http://www.gpower.hhu.de/

Bibliography

[42] William Von Hagen. Professional Xen Virtualization. Wiley Publishing,
Inc., 2008.

[43] Hping3. Hping3 - Linux Man Page. http://linux.die.net/man/8/

hping3. Online; accessed 13-November-2014.

[44] Markus C. Huebscher and Julie A. McCann. A Survey of Autonomic Com-
puting - Degrees, Models, and Applications. ACM Computing Surveys,
40(3):1–28, 2008.

[45] IoStat. IoStat: Linux User’s Manual. http://linuxcommand.org/man_

pages/iostat1.html. Online; accessed 13-November-2014.

[46] Abhishek Jayswal, Xiang Li, Anand Zanwar, Helen H. Lou, and Yinlun
Huang. A Sustainability Root Cause Analysis Methodology and Its Appli-
cation. Computers and Chemical Engineering, 35(12):2786 – 2798, 2011.

[47] Jconsole. The Java Monitoring and Management Console (Jconsole).
http://openjdk.java.net/tools/svc/jconsole/. Online; accessed 11-
November-2014.

[48] Jpcap. Jpcap – A Network Packet Capture Library for Applications Writ-
ten in Java. http://jpcap.sourceforge.net/. Online; accessed 11-
November-2014.

[49] Ernst Juhnke, Tim Dörnemann, and Bernd Freisleben. Fault-Tolerant
BPEL Workflow Execution via Cloud-Aware Recovery Policies. In Proceed-
ings of 35th Euromicro Conference on Software Engineering and Advanced
Applications, pages 31–38, Patras, Greece, 2009. IEEE Press.

[50] Slim Kallel. Specifying and Monitoring Non-Functional Properties. PhD
thesis, Darmstadt University of Technology, 2011.

[51] Rohit Kamboj and Anoopa Arya. OpenStack: Open Source Cloud Com-
puting IaaS Platform. International Journal of Advanced Research in Com-
puter Science and Software Engineering, 4(5):1200–1202, 2014.

[52] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Com-
puting. Computer Journal, 36(1):41–50, January 2003.

[53] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G Griswold. An Overview of AspectJ. In Proceedings of the
15th European Conference on Object-Oriented Programming, volume 2072
of Lecture Notes in Computer Science, pages 327 – 353, Budapest, Hungary,
2001. Springer.

–151–

http://linux.die.net/man/8/hping3
http://linux.die.net/man/8/hping3
http://linuxcommand.org/man_pages/iostat1.html
http://linuxcommand.org/man_pages/iostat1.html
http://openjdk.java.net/tools/svc/jconsole/
 http://jpcap.sourceforge.net/

Bibliography

[54] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Program-
ming. In Proceedings of the 11th European Conference on Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer Science, pages
220–242, Jyväskylä, Finland, 1997. Springer.

[55] Mahendra Kutare, Greg Eisenhauer, Chengwei Wang, Karsten Schwan,
Vanish Talwar, and Matthew Wolf. Monalytics: Online Monitoring and
Analytics for Managing Large Scale Data Centers. In Proceedings of the 7th
International Conference on Autonomic Computing, pages 141–150, Wash-
ington, DC, USA, 2010. ACM.

[56] Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin Satzger,
and Schahram Dustdar. Application-Level Performance Monitoring of
Cloud Services Based on the Complex Event Processing Paradigm. In
Proceedings of the 5th IEEE International Conference on Service-Oriented
Computing and Applications, pages 1–8, Taipei, Taiwan, 2012. IEEE Press.

[57] Long Li, Buyang Cao, and Yuanyuan Liu. A Study on CEP-Based System
Status Monitoring in Cloud Computing Systems. In Proceedings of the 6th
International Conference on Information Management, Innovation Man-
agement and Industrial Engineering, pages 300–303, Xi’an, China, 2013.
IEEE Press.

[58] Libvirt. Libvirt - The Virtualization API. http://libvirt.org/. Online;
accessed 13-November-2014.

[59] Amazon Web Services LLC. Amazon Elastic Compute Cloud. http://

aws.amazon.com/. Online; accessed 13-November-2014.

[60] Joao Paulo Magalhaes and Luis Moura Silva. A Framework for Self-Healing
and Self-Adaptation of Cloud-Hosted Web-Based Applications. In Proceed-
ings of the 5th IEEE International Conference on Cloud Computing Tech-
nology and Science, pages 555–564, Bristol, UK, 2013. IEEE Press.

[61] Meriam Mahjoub, Afef Mdhaffar, Riadh Ben Halima, and Mohamed Jmaiel.
A Comparative Study of the Current Cloud Computing Technologies and
Offers. In Proceedings of the 1st International Symposium on Network Cloud
Computing and Applications, pages 131–134, Toulouse, France, 2011. IEEE
Press.

[62] Matthew L. Massie, Brent N. Chun, and David E. Culler. The Ganglia
Distributed Monitoring System: Design, Implementation, and Experience.
Parallel Computing, 30(5-6):817– 840, 2004.

–152–

http://libvirt.org/
http://aws.amazon.com/
http://aws.amazon.com/

Bibliography

[63] Hidehiko Masuhara and Gregor Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. In Proceedings of the 17th European Conference on
Object-Oriented Programming, volume 2743 of Lecture Notes in Computer
Science, pages 2–28, Darmstadt, Germany, 2003. Springer.

[64] Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
A Dynamic Complex Event Processing Architecture for Cloud Monitoring
and Analysis. In Proceedings of the IEEE 5th International Conference
on Cloud Computing Technology and Science, pages 270–275, Bristol, UK,
2013. IEEE Press.

[65] Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
CEP4Cloud: Complex Event Processing for Self-Healing Clouds. In Pro-
ceedings of the 23rd IEEE International Conference on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, pages 62–67, Parma,
Italy, 2014. IEEE Press.

[66] Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
CEP4CMA: Multi-Layer Cloud Performance Monitoring and Analysis via
Complex Event Processing. In Proceedings of the 2nd International Con-
ference on Networked Systems, volume 8593 of Lecture Notes in Computer
Science, pages 138–152, Marrakech, Morocco, 2014. Springer.

[67] Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
D-CEP4CMA: A Dynamic Architecture for Cloud Performance Monitoring
and Analysis via Complex Event Processing. International Journal of Big
Data Intelligence, 1(1/2):89–102, 2014.

[68] Afef Mdhaffar, Riadh Ben Halima, Mohamed Jmaiel, and Bernd Freisleben.
Reactive Performance Monitoring of Cloud Computing Environments.
2014. Submitted for publication.

[69] Afef Mdhaffar, Riadh Ben Halima, Ernst Juhnke, Mohamed Jmaiel, and
Bernd Freisleben. AOP4CSM: An Aspect-Oriented Programming Approach
for Cloud Service Monitoring. In Proceedings of the 11th IEEE International
Conference on Computer and Information Technology, pages 363–370, Pa-
phos, Cyprus, 2011. IEEE Press.

[70] Afef Mdhaffar, Soumaya Marzouk, Riadh Ben Halima, and Mohamed
Jmaiel. A Runtime Performance Analysis for Web Service-Based Appli-
cations. In Proceedings of the 1st Workshop on Engineering SOA and the
Web held in conjunction with the 10th International Conference on Web
Engineering, volume 6385 of Lecture Notes in Computer Science, pages
313–324, Vienna, Austria, 2010. Springer.

–153–

Bibliography

[71] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting. Technical report, National Institute of Standards and Technology,
Information Technology Laboratory, 2011.

[72] Haibo Mi, Huaimin Wang, Gang Yin, Hua Cai, Qi Zhou, Tingtao Sun, and
Yangfan Zhou. Magnifier: Online Detection of Performance Problems in
Large-Scale Cloud Computing Systems. In Proceedings of the 11th IEEE
International Conference on Services Computing, pages 418 – 425, Wash-
ington, DC, 2011. IEEE Press.

[73] MpStat. MpStat: Linux User’s Manual. http://www.linuxcommand.org/
man_pages/mpstat1.html. Online; accessed 13-November-2014.

[74] Nagios. Nagios is the Industry Standard in IT Infrastructure Monitoring.
http://www.nagios.org/. Online; accessed 11-November-2014.

[75] Krishnaprasad Narayanan, Sumit Kumar Bose, and Shrisha Rao. Towards
’Integrated’ Monitoring and Management of Data Centers using Complex
Event Processing Techniques. In Proceedings of the 4th Annual ACM Ban-
galore Conference, pages 1–5, Bangalore, India, 2011. ACM.

[76] Simon Ostermann, Alexandru Iosup, Nezih Yigitbasi, Radu Prodan,
Thomas Fahringer, and Dick H. J. Epema. A Performance Analysis of
EC2 Cloud Computing Services for Scientific Computing. In Proceedings
of the 1st International Conference on Cloud Computing, volume 34 of
Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, pages 115–131, Beijing, China, 2009.
Springer.

[77] Manish Parashar and Salim Hariri. Autonomic Computing: An Overview.
In Proceedings of the International Workshop on Unconventional Program-
ming Paradigms, volume 3566 of Lecture Notes in Computer Science, pages
257–269, Le Mont Saint Michel, France, 2005. Springer.

[78] John Plummer and Jeff Johnson. Complex Event Processing. Slides, 2008.

[79] Javier Povedano-Molina, Jose M. Lopez-Vega, Juan M. Lopez-Soler, Anto-
nio Corradi, and Luca Foschini. DARGOS: A Highly Adaptable and Scal-
able Monitoring Architecture for Multi-Tenant Clouds. Future Generation
Computer Systems, 29(8):2041 – 2056, 2013.

[80] Xen Project. XAPI: Open Source Software to Build Private and Pub-
lic Clouds. http://www.xenproject.org/developers/teams/xapi.html.
Online; accessed 13-November-2014.

–154–

http://www.linuxcommand.org/man_pages/mpstat1.html
http://www.linuxcommand.org/man_pages/mpstat1.html
http://www.nagios.org/
http://www.xenproject.org/developers/teams/xapi.html

Bibliography

[81] Niklas P̊ahlsson. Aspect-Oriented Programming: An introdution to Aspect-
Oriented Programming and AspectJ. pages 1–12. 2002. University Lecture,
Departement of Technology, University of Kalmar, Sweden.

[82] Ariel Rabkin and Randy Katz. Chukwa: A System for Reliable Large-
Scale Log Collection. In Proceedings of the 24th International Conference
on Large Installation System Administration, pages 1–15, San Jose, CA,
2010. USENIX Association.

[83] Nicolas Repp, Rainer Berbner, Oliver Heckmann, and Ralf Steinmetz. A
Cross-Layer Approach to Performance Monitoring of Web Services. In Pro-
ceedings of the Workshop on Emerging Web Services Technology, pages 21
– 32, Zurich, Switzerland, 2006. Birkhäuser Basel.

[84] Cornelis J Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 1979.

[85] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrap-
ping Performance and Dependability Attributes of Web Services. In Pro-
ceedings of the IEEE International Conference on Web Services, pages 205–
212. IEEE Press, 2006.

[86] Peter J. Rousseeuw and Mia Hubert. Robust Statistics for Outlier Detec-
tion. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 1(1):73–79, 2011.

[87] Felix Salfner, Maren Lenk, and Miroslaw Malek. A Survey of Online Failure
Prediction Methods. ACM Computing Surveys, 42(3):1–42, 2010.

[88] Sar. Sar: Linux User’s Manual. http://linuxcommand.org/man_pages/

sar1.html. Online; accessed 13-November-2014.

[89] Soumitra Sarkar, Ruchi Mahindru, Rafah A. Hosn, Norbert Vogl, and
HariGovind V. Ramasamy. Automated Incident Management for a
Platform-as-a-Service Cloud. In Proceedings of the 11th USENIX Con-
ference on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, pages 1–6, Berkeley, CA, USA, 2011. USENIX As-
sociation.

[90] Peter Sempolinski and Douglas Thain. A Comparison and Critique of Eu-
calyptus, OpenNebula and Nimbus. In Proceedings of the IEEE 2nd Inter-
national Conference on Cloud Computing Technology and Science, pages
417–426, Indianapolis, USA, 2010. IEEE Press.

–155–

http://linuxcommand.org/man_pages/sar1.html
http://linuxcommand.org/man_pages/sar1.html

Bibliography

[91] Jin Shao, Hao Wei, Qianxiang Wang, and Hong Mei. A Runtime Model
Based Monitoring Approach for Cloud. In IEEE 3rd International Con-
ference on Cloud Computing, pages 313–320, Miami, Florida, USA, 2010.
IEEE Press.

[92] BRC Global Standards. Understanding Root Cause Analysis. http://www.
tuv-nord.com/cps/rde/xbcr/SID-926CD5F4-935229F0/tng_be_nl/

bijlage-nieuwsbrief-januari-2013-brc-understanding-root-cause-an.

pdf, 2012. Online; accessed 02-November-2014.

[93] SysBench. SysBench: a System Performance Benchmark. https://

launchpad.net/sysbench. Online; accessed 13-November-2014.

[94] Richard Taylor. Interpretation of the Correlation Coefficient: A Basic Re-
view. Journal of Diagnostic Medical Sonography, 6(1):35–39, 1990.

[95] TCPDump. TCPDump and LibpCap. http://www.tcpdump.org/. Online;
accessed 11-November-2014.

[96] Esper Team. Esper Reference. http://esper.codehaus.org/esper-4.6.
0/doc/reference/en-US/pdf/esper_reference.pdf, 2012. Online; ac-
cessed 31-October-2014.

[97] GoGrid Team. GoGrid. http://gogrid.com/. Online; accessed 13-
November-2014.

[98] MediGrid Team. MediGrid. http://www.medigrid.de/. Online; accessed
13-November-2014.

[99] OpenStack Team. OpenStack: The Open Source Cloud Operating System.
http://www.openstack.org/. Online; accessed 02-November-2014.

[100] Physio Team. PhysioToolkit. http://www.physionet.org/physiotools/.
Online; accessed 13-November-2014.

[101] Pedro Henriques Dos Santos Teixeira, Ricardo Gomes Clemente,
Ronald Andreu Kaiser, and Denis Almeida Vieira-Jr. HOLMES: An Event-
Driven Solution to Monitor Data Centers through Continuous Queries and
Machine Learning. In Proceedings of the 4th ACM International Confer-
ence on Distributed Event-Based Systems, pages 216–221, Cambridge, UK,
2010. ACM.

[102] Niko Thio and Shanika Karunasekera. Automatic Measurement of a QoS
Metric for Web Service Recommendation. In Proceedings of the Australian
Conference on Software Engineering, pages 202–211, Brisbane, Australia,
2005. IEEE Press.

–156–

http://www.tuv-nord.com/cps/rde/xbcr/SID-926CD5F4-935229F0/tng_be_nl/bijlage-nieuwsbrief-januari-2013-brc-understanding-root-cause-an.pdf
http://www.tuv-nord.com/cps/rde/xbcr/SID-926CD5F4-935229F0/tng_be_nl/bijlage-nieuwsbrief-januari-2013-brc-understanding-root-cause-an.pdf
http://www.tuv-nord.com/cps/rde/xbcr/SID-926CD5F4-935229F0/tng_be_nl/bijlage-nieuwsbrief-januari-2013-brc-understanding-root-cause-an.pdf
http://www.tuv-nord.com/cps/rde/xbcr/SID-926CD5F4-935229F0/tng_be_nl/bijlage-nieuwsbrief-januari-2013-brc-understanding-root-cause-an.pdf
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://www.tcpdump.org/
http://esper.codehaus.org/esper-4.6.0/doc/reference/en-US/pdf/esper_reference.pdf
http://esper.codehaus.org/esper-4.6.0/doc/reference/en-US/pdf/esper_reference.pdf
http://gogrid.com/
http://www.medigrid.de/
http://www.openstack.org/
http://www.physionet.org/physiotools/

Bibliography

[103] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
Break in the Clouds: Towards a Cloud Definition. SIGCOMM Computer
Communication Review, 39(1):50–55, 2008.

[104] Chengwei Wang, Vanish Talwar, Karsten Schwan, and Parthasarathy Ran-
ganathan. Online Detection of Utility Cloud Anomalies using Metric Dis-
tributions. In Proceedings of the 12th IEEE/IFIP Network Operations and
Management Symposium, pages 96–103, Osaka, Japan, 2010. IEEE Press.

[105] WinPcap. WinPcap: The Industry-Standard Windows Packet Capture
Library. http://www.winpcap.org/. Online; accessed 11-November-2014.

[106] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory
and Practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[107] XL. XL - Xen Management Tool, Based on LibXenlight. http://

manpages.ubuntu.com/manpages/trusty/man1/xl.1.html. Online; ac-
cessed 13-November-2014.

[108] XMind. XMind6 Tool. http://www.xmind.net/. Online; accessed 13-
November-2014.

[109] Nezih Yigitbasi, Alexandru Iosup, Dick Epema, and Simon Ostermann.
C-Meter: A Framework for Performance Analysis of Computing Clouds.
In Proceedings of the 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 472–477, Shanghai, China, 2009. IEEE
Press.

[110] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-of-the-
Art and Research Challenges. Journal of Internet Services and Applica-
tions, 1(1):7–18, 2010.

[111] Qian Zhu, Teresa Tung, and Qing Xie. Automatic Fault Diagnosis in Cloud
Infrastructure. In Proceedings of the 5th IEEE International Conference
on Cloud Computing Technology and Science, pages 467–474, Bristol, UK,
2013. IEEE Press.

–157–

http://www.winpcap.org/
http://manpages.ubuntu.com/manpages/trusty/man1/xl.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/xl.1.html
http://www.xmind.net/

Curriculum Vitae

Personal Data

Name Afef Mdhaffar
Date and Place of Birth 17.10.1983, Sfax, Tunisia
Contact mdhaffar@mathematik.uni-marburg.de

Education

Jan 2011- PhD Candidate, Joint PhD, Philipps-Universität Marburg, Ger-
many / École Nationale d’Ingénieurs de Sfax, Université de Sfax,
Tunisia (ENIS)

July 2009 Master’s Degree, ENIS, Grade: Very Good
Jun 2007 Diploma in Computer Engineering, ENIS, Best Graduation

Project
Juin 2002 Baccalauréat Mathematics, Lycée Habib Maazoun, Sfax, Tunisia

Work Experience

2013 - 2014 Research Assistant, Philipps-Universität Marburg, Germany
2011 - 2013 Research Internship, Philipps-Universität Marburg, Germany,

DAAD Grants, Sandwich Model
Jun - Nov 2010 Research Internship, Philipps-Universität Marburg, Germany,

Project : Service-oriented Distributed Software Architectures

2009 - 2010 Teaching Assistant, Faculté des Sciences Économiques et de Ges-
tion de Sfax, Tunisia

2008 - 2009 Teaching Assistant, ENIS
2007 - 2008 Business Intelligence Engineer, Offshore Decision, Sfax, Tunisia
Feb - Mai 2007 Engineering Training, Offshore Decision, Sfax, Tunisia

–159–

mdhaffar@mathematik.uni-marburg.de

	Declaration
	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Publications
	Structure of the Thesis

	Fundamentals
	Introduction
	Autonomic Computing
	Cloud Computing
	Essential Characteristics of Cloud Computing
	Cloud Computing Architecture
	Cloud Services
	Deployment Models of Cloud Computing
	OpenStack

	Virtualization
	Types of Virtualization
	Xen

	Aspect-Oriented Programming
	Complex Event Processing
	CEP Architecture
	Esper

	Root Cause Analysis
	Summary

	Related Work
	Introduction
	Monitoring
	Monitoring: Software Layer
	Monitoring: Platform Layer
	Monitoring: Infrastructure Layer
	Monitoring: All Cloud Layers
	Discussion

	Analysis
	Centralized Analysis Approaches
	Distributed Analysis Approaches
	Discussion

	Recovery / Self-healing Approaches for Cloud Computing Environments
	Requirements Catalog
	Summary

	CEP4Cloud: Complex Event Processing for Reactive Cloud Monitoring
	Introduction
	CEP4Cloud in a Nutshell
	The Architecture
	The Monitoring Agent
	The Analysis Agent
	The Action Manager Framework

	Monitoring
	PI_Monitor
	VI_Monitor
	P_Monitor
	S_Monitor (AOP4CSM)

	Analysis
	CEP4CMA
	D-CEP4CMA

	The Action Manager Framework
	Summary

	Implementation
	Introduction
	Implementation of CEP4Cloud
	Monitoring
	S_Monitor: AOP4CSM
	P_Monitor: JVMSensor
	VI_Monitor
	PI_Monitor

	Analysis
	Implementation of CEP4CMA
	Implementation of D-CEP4CMA

	The Action Manager Framework
	Summary

	Experimental Results
	Introduction
	Testbeds
	Testbed I: A Medical Workflow as a Service
	Testbed II: The OpenStack Cloud Platform

	Evaluation of the Multi-layer Monitoring Approach
	Evaluation of AOP4CSM
	Evaluation of the Multi-layer Monitoring Agent

	Evaluation of the Analysis Approach
	Evaluation of CEP4CMA
	Evaluation of D-CEP4CMA

	Evaluation of the Action Manager Framework
	Overhead of the Action Manager Framework
	Action Manager Framework vs. Baseline Approaches

	Evaluation of CEP4Cloud
	Time-to-Repair
	Overhead of CEP4Cloud
	CEP4Cloud vs. Rules-B2

	Summary

	Conclusion
	Summary
	Future Work
	Dynamic Analysis Rules
	Predictive Performance Monitoring
	Scalability
	Security Intrusions
	Reliability

	List of Figures
	List of Tables
	List of Listings
	Index
	Bibliography
	Curriculum Vitae

