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6 Abbreviations 

Abbreviations 

   

2xYT  Double amount of yeast extract and tryptone 

Å  Angström (1 Å = 10-10 m) 

A280nm  Absorption at 280 nm 

ADP  Atomic displacement parameters 

Ala  Alanine 

APS  Ammonium peroxydisulfate 

Arg  Arginine 

Asn  Asparagine 

Asp  Aspartate 

bcc  Bond charge correction 

BSA  Bovine serum albumin 

B. taurus Bos taurus  

C  Celsius 

CAC  Critical aggregation concentration 

CaDA  Cationic dummy atom 

clog P  Calculated logarithm of the octanol-water partition coefficient 

cpm  Counts per minute 

CSD  Cambridge Structural Database 

CYM  Anionic form of cysteine in MD simulations 

Cys  Cysteine 

∆G0  Gibbs free energy 

∆H0/∆Hbind Enthalpy of binding 

∆Hion  Heat of ionization 

∆Hobs  Observed enthalpy of binding not corrected for heat of ionization 

∆S0  Entropy of binding 

d  Distance 

D  Diffusion coefficient 

Da  Dalton 

DAQ  2,6-diamino-3H-quinazolin-4-one 

dd  Double distilled 

DD/AA  Donor-donor/acceptor-acceptor motif 

d(H)   Hydrodynamic diameter 
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DLS  Dynamic light scattering 

DMSO  Dimethylsulfoxide 

ds  Double stranded 

DTT  1,4-Dithiothreitol 

E. coli  Escherichia coli 

ECY2  Unmodified Escherichia coli tRNATyr 

EDTA  Ethylenediaminetetraacetate 

f-  femto- 

FAE  Follicle-associated epithelium 

FBLD  Fragment based lead discovery 

Fc  Calculated structure factor amplitudes 

Fo  Observed structure factor amplitudes 

g  gramm 

GA  Genetic algorithm 

gaff  General amber force field 

GE  Group efficiency 

Gln  Glutamine 

Glu  Glutamate 

Gly  Glycine 

HABA  2-(4-Hydroxyphenylazo)-benzoic acid 

H-bond  Hydrogen bond 

Hepes  2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid 

HID  Histidine with its hydrogen at δ-position in MD simulations 

HIE  Histidine with its hydrogen at ε-position in MD simulations 

HIN  Anionic form of histidine in MD simulations 

His  Histidine 

HPLC  High performance liquid chromatography 

HTS  High Throughput Screening 

Hz  Hertz 

IFN  Interferone 

IL  Interleukine 

Ile  Isoleucine 

IPTG  Isopropyl-β-D-thiogalactopyranoside 

IQR  Interquartile range 

ITC  Isothermal titration calorimetry 



 
8 Abbreviations 

K  Kelvin 

kB  Boltzmann constant (1.380 650 ∙ 10-23 J ∙ K-1) 

kb  Kilo-base pair 

kcal  Kilocalorie 

kcat  Catalytic constant 

Kd  Dissociation constant 

Ki  Inhibitory constant 

kJ  Kilojoule 

KM  Michaelis-Menten constant 

LB  Luria-Bertani 

LE  Ligand efficiency 

Leu  Leucine 

Lys  Lysine 

m  Meter 

m-  milli-   

µ-  micro- 

M  Molarity (mol ∙ l-1) 

MD  Molecular dynamics 

MES  2-(N-Morpholino)ethanesulfonic acid 

Met  Methionine 

min  Minute 

l  Litre 

MR  Molecular replacement 

MWCO  Molecular weight cut-off 

n-  nano- 

NMR  Nuclear magnetic resonance 

OD600  Optical density at 600 nm 

p-  pico- 

PAMPA  Parallel artificial membrane permeability assay 

PCR  Polymerase chain reaction 

PDB  Protein data bank 

PDB ID  Protein data bank identifier 

PEG  Polyethylene glycol 

PEOE  Partial equalization of orbital electronegativities 

pH  Negative decimal logarithm of the hydrogen ion activity 
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Phe  Phenylalanine 

pKa  Negative decimal logarithm of the acid dissociation constant 

PME  Particle Mesh Ewald 

Pro  Proline 

PyBOP  Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

Q1/Q3  First/third quartile 

rpm  Rounds per minute 

s/sec  Second 

SAR  Structure-activity relationship 

SDS page Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Ser  Serine 

SPR  Surface plasmon resonance 

T  Temperature in Kelvin 

TCA  Trichloroacetic acid 

TEMED  Tetramethylenediamine 

TGT  tRNA-guanine transglycosylase 

Thr  Threonine 

TLS  Translation/libration/screw-motion 

Tricine  N-(Tris(hydroxymethyl)methyl)glycine 

Tris  2-Amino-2-(hydroxymethyl)-propane-1,3-diol 

tRNA  Transfer ribonucleic acid 

Trp  Tryptophane 

Tyr  Tyrosine 

UV  Ultraviolet   

V  Volume 

v0  Initial velocity 

Val  Valine 

vmax  Maximal velocity 

v/v  Volume per volume 

W  Watt 

WT  Wild type 

w/v  Weight per volume 

Z. mobilis Zymomonas mobilis 

η  Viscosity  

°  Degree 
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14 1. Introduction and Motivation 

1. Introduction and Motivation 

1.1 Structure-Based Drug Design 

Structure-based drug design is an important tool in the development of novel drugs and 

represents the basis for the rational design of new drugs. Thereby, the setup of experiments 

relies on the knowledge of macromolecular target structures mainly derived by X-ray 

crystallography or NMR spectroscopy. With their help complex interaction patterns of 

potential drug candidates within the binding pocket can be visualized in the early stage of 

lead structure generation as well as in further optimization steps. Metaphorically speaking, 

this procedure provides a three-dimensional model to find the right key (ligand) that 

optimally fits the lock (target protein) [Klebe, 2009]. The number of crystal structures 

available in the protein data bank (PDB) increases drastically. Up to date, nearly 100’000 

structures are deposited of which more than 90’000 were determined by X-ray 

crystallography [PDB, April 2014].  

However, information concerning the driving forces for binding affinity cannot be 

derived from structural data alone. Therefore, the concept of shape-complementarity has to 

be expanded by thermodynamic data, which have been shown to be an essential 

complement to crystal structure analyses [Henry, 2001]. In this context, isothermal titration 

calorimetry (ITC) is not only able to elucidate the potency of a ligand but also its enthalpic 

contribution and the stoichiometry of the binding process within one experiment.    

Taking all these data together, structure-based drug design is able to produce highly 

potent and selective drug candidates, thus, saving a tremendous amount of time, money and 

laboratory animals. 

The enzyme tRNA-guanine transglycoslase (TGT) is one example to which the method 

of structure-based drug design was applied. TGT plays a key role in the pathogenicity of 

Shigella, the causative agent of shigellosis [Durand et al., 1994]. The crystal structure of the 

binary complex containing the closely similar TGT from Z. mobilis and preQ1, one of its 

natural substrates, served as a starting point. After initital computational approaches and 

subsequent iterative optimization cycles lin-benzopurines were found to be highly potent 

inhibitors of TGT [Hörtner et al., 2007; Stengl et al., 2007; Kohler et al., 2009; Barandun et 

al., 2012]. Unfortunately, lin-benzopurines show unsatisfying membrane permeation ability 

and therefore, need further optimization [Barandun et al., 2012]. 
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1.2 Aims of the thesis 

In the framework of this thesis different aspects concerning the optimization of the highly 

potent lin-benzopurines should be analyzed. These comprised the setup of new 

methodologies as well as subsequent investigations with respect to bioavailability, resistance 

development, binding mode predictions by computational approaches as well as fragment-

based lead discovery of new inhibitor classes: 

 A method was established to obtain the thermodynamic signature of lin-

benzopurines binding to TGT via isothermal titration calorimetry (ITC). Subsequently, 

the robustness of this method was analyzed with respect to organic and inorganic 

ligand impurities as well as protein impurities (Chapter 2). 

 Based on the observation that lin-benzopurines exhibit a poor ability to penetrate 

through cell membranes, the protonation states of lin-benzoguanines and lin-

benzohypoxanthines in solution and in the TGT-bound state were investigated by pKa 

calculations and ITC measurements. Potential protonation sites were verified using 

site-directed mutagenesis and crystal structure analysis (Chapter 3). 

 A proposed entropic term of a series of 2-amino-lin-benzoguanines and 2-amino-lin-

benzohypoxanthines with varying substituents in 2-position that were shown to 

exhibit an increased flexibility was analyzed using ITC. Screening for modified 

crystallization conditions gave insight in the so far unknown binding mode of the 2-

substituent and allowed a correlation of thermodynamic properties to the substrate 

recognition mechanism and pocket cross-talk of TGT (Chapter 4).  

 Mutagenesis combined with affinity measurements should show whether a binder 

with high residual mobility can avoid a loss in binding affinity compared to a binder 

adopting one ordered binding mode and therefore achieve an advantage as a more 

competent antibiotic less affected by resistance mutations (Chapter 5). 

 MD simulations were used to predict the binding mode of a new series of extended 

2-amino-lin-benzoguanines. Crystal structure analysis of these ligands revealed a so 

far novel binding mode occupying further subpockets of TGT (Chapter 6). 

 In a fragment-based approach a new class of ligands with expected improved 

bioavailability and synthetic accessibility based on a 5-azacytosine scaffold was 

investigated in a comprehensive in-silico and in-vitro study (Chapter 7). 
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1.3 Shigellosis 

Shigellosis is an infectious bowl disease that predominantly occurs in developing countries. 

The uptake of only 10 to 100 organisms of the causative agent Shigella is sufficient to result 

in a severe infection affecting over 165 million people annually with 1.1 million fatalities 

[DuPont et al., 1989; Kotloff et al., 1999], although more recent estimates suggest a reduced 

case-fatility of 90 million cases with 108’000 fatalities each year [WHO, 2009]. A remarkably 

high number of incidents, namely 70% of all episodes and 60% of all deaths, affect children 

under the age of five years [Niyogi, 2005]. However, a rising number of episodes is also 

found in the industrialized world, especially among military troops and travellors.  

Humans represent the only natural host for Shigella. The disease is transmitted by 

the faecal-oral route mainly via contaminated food and water or due to person-to-person 

contact [Niyogi, 2005]. Recently, also the transmission via house flies (Musca domestica) has 

been reported [Levine and Levine, 1991]. Therefore, the occurrence of shigellosis is primarily 

restricted to poor populations with insufficient hygiene standards and sanitation but also to 

settings of large crowds, political revolutions or natural disasters . 

The etiopathology of the disease depends on several factors, i. e. the infecting 

species of Shigella, the age of the host, the presence of further risk factors and the immune 

state of the patient. Shigellosis is often self-limiting in healthy humans, who will usually 

recover within five to seven days, if no further complications manifest. Within this period an 

initially appearing watery diarrhoea with abdominal cramps is quickly followed by fever, pain 

and tenesmus, which is characterized by bloody, mucoid and purulent stools [Niyogi, 2005]. 

With high prevalence shigellosis turns into a life-threatening situation in malnourished 

infants and children due to the occurrence of intestinal complications, metabolic 

dysfunctions, anaemia in form of the haemolytic uremic syndrome, pneumonia, and diverse 

inflammatory reactions [Sack et al., 2001].  

 

1.4 Therapy of Shigellosis 

As a life-saving first step in the treatment of shigellosis the World Health Organization 

(WHO) recommends oral rehydration and an overall improvement in nutrition [Niyogi, 

2005]. The prescription of antibiotics depends on several factors like the severity of the 

disease, the age of the patient and the likelihood of further transmission. For risk groups an 
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early microbial therapy is advised in order to reduce the duration of illness and thus the risk 

of complications and transmission. Disappointingly, the treatment becomes more and more 

challenging due to the increasing resistance of Shigella to current antibiotics (Figure 1.1) 

[Sack et al., 1997]. Strains resistant to sulfonamides, tetracycline, ampicillin, and TMP-SMX 

exist worldwide. It has been shown that drug resistance is mediated by mobile plasmids 

encoding “resistance factors”, which are transferred by conjugation [Sack et al., 2001].   

Currently, the WHO recommends the use of ciprofloxacin as first-line antibiotic for 

patients of all ages [WHO, 2005]. Major concerns about the use of fluoroquinolones in 

children exist due to the potential side-effects of arthropathy. However, in view of life-

threatening complications caused by shigellosis this risk is accepted. Alternatives to 

ciprofloxacin include cephalosporins (cefixime, ceftriaxone), azithromycin, and pivmecillinam 

but the use of these alternatives exhibits problems concerning costs, formulation, and 

efficacy [Mandal et al., 2012]. 

Vaccination offers an additional alternative to the antimicrobial therapy. Thereby, 

immunity is directed to the O-somatic antigen, which is narrowly type specific. Up-to-date, 

there is no vaccine available on the market. Vaccines under development include 

polysaccharide conjugate and live-attenuated vaccines focusing on the Shigella species S. 

flexneri type 2a, S. sonnei and S. dysenteriae type 1 [WHO, 2009]. 

 

 

Figure 1.1 Resistant antibiotics in the antimicrobial therapy of shigellosis. A) Antibiotics affected by resistance 

development of Shigella (red) and current alternatives. B) Mechanism of resistance in strains of Shigella. 
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1.5 Classification of Shigella Bacteria 

Shigella bacteria belong to the family of Enterobacteriacae [Sansonetti, 2001]. They are 

characterized as nonsporulating, facultative anaerobic Gram-negative rods that are 

unencapsulated and non-motile. The name Shigella results from its discoverer Kiyoshi Shiga, 

who first reported about this bacterium in Japan, 1898 [Niyogi, 2005]. Based on DNA 

hybridization analyses, Shigella cannot be distinguished from Escherichia coli on the 

polynucleotide level, however, it can be differentiated on the virulence phenotype. 

Biochemically, both species share a high similarity and thus, Shigella is often referred to as 

enteroinvasive E. coli (EIEC) [Escobar-Páramo et al., 2004]. The genus Shigella comprises four 

different species whose classification is based on biochemical and serological variations of 

their O-polysaccharide portion of their LPS (Table 1.1) [Sansonetti, 2001]. 

 

Table 1.1 The four Shigella species and their characteristics in order of their frequency. 

Species # serotypes Geographical distribution Etiopathology 

S. flexneri 6 
Worldwide, mainly in            

the developing world 
Less severe 

S. sonnei 1 Central Europe Less severe 

S. boydii 8 
Indian and North             

African subcontinent 
Harmless 

S. dysenteriae 16 Tropic and subtropic regions 
Most pathogenic due to 

shigatoxin (subtype 1) 

 

1.6 Molecular and Cellular Pathogenicity of Shigella 

Shigella bacteria are unable to enter the epithelial cells of the colon directly form the apical 

side (Figure 1.2). Contrary, the basolateral side can be efficiently invaded by the bacteria. 

Thus, they have to choose specific areas to translocate the epithelium in order to infect the 

host cells [Sansonetti, 2001].  

M-cells belong to the follicle-associated epithelium (FAE). Their task is to transport 

lumenal antigens across the epithelium and present them to mucosa-associated lymphoid 

follicles filled with lymphocytes and macrophages, which then initiate a mucosal immune 

reaction. These cells offer Shigella the oppurtunity to translocate to the basolateal pole. 
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Once invaded into M-cells the bacteria escape from the endocytic vacuole without damage 

and reach the associated macrophages, where it gets phagocytosed. Within the macrophage 

Shigella bacteria activate the cysteine protease caspase 1, which in return causes apoptosis 

of the invaded immune cells. In its second function caspase 1 activates the proinflammatory 

signaling by hydrolyzing (IL)-1β and pro-IL-18 to their mature forms IL-1β and IL-18, 

respectively [Sansonetti, 2001]. The release of the bacteria and mature interleukins out of 

the macrophages leads to a severe inflammation. IL-1β triggers the loss of integrity of the 

epithelial barrier causing further diffusion and invasion of Shigella. IL-18 acts as an interferon 

(IFN)-γ inducer targeting natural killer cells and T lymphocytes. 

At the basolateral side of the epithelium free Shigella bacteria enter the host cells via 

macropinocytosis. After having escaped from the phagocytic vacuole into the cytoplasm, the 

bacteria are able to spread intra- and intercellularly and thus, colonize the epithelium. The 

infected cells release IL-8 that in combination with IL-1β recruits polymorphonuclear 

leukocytes (PMNs) in subepithelial tissues [Sansonetti, 2001; Jennison and Verma, 2004]. On 

the one hand, PMNs are, contrary to macrophages, able to phagocytose and kill Shigella 

bacteria. On the other hand, however, they simultaneously increase their M-cell 

independent invasion to the basolateral side by facilitating transmigration through the 

epithelial cells due to tissue destruction.  

 

 

Figure 1.2 Invasion mechanism of Shigella into epithelial cells of the colon and involved virulence factors 

modified according to Sansonetti and Bergounioux, 2008. 
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For the apoptotic death of macrophages, the invasion of Shigella bacteria into the 

eukaryotic cells of the colon and the cell-to-cell spread several virulence factors are required 

[Nhieu et al., 2000; Fernandez and Sansonetti, 2003].  

The macrophage-induced apoptosis depends on the secretion of IpaB, which is 

responsible for the activation of caspase 1. For the invasion of epithelial host cells the 

bacteria form a pore into the cytoplasmic membrane via a Shigella type III secreton 

[Sansonetti, 2001]. This tube-like apparatus contains a hydrophobic complex composed of 

IpaB and IpaC proteins. Its function is firstly the secretion of various proteins into the 

cytoplasm of the host cell and secondly the induction of internalization of shigellae due to a 

signalling cascade leading to polymerization and depolymerization of the actin tubuli via the 

C-terminal domain of IpaC. The maturation of the thus formed cell extension underlies then 

the control of IpaA and IpgD. Cell-to-cell spread of Shigella bacteria also relies on actin 

polymerization and is achieved by the surface-exposed virulence factor IcsA (VirG). 

The complete sequence of the S. flexneri virulence plasmid is known. Most of the 

invasion genes are present within a 30-kb region of the 214-kb virulence plasmid, which is 

named Shigella pathogenicity island (PAI) [Dorman and Porter, 1998]. The expression of its 

chief components is kept under the control of the virF and virB gene products (Figure 1.2). 

VirB is directly involved in the transcription of a large number of pathogenicity genes, while 

VirF regulates this process indirectly by controlling the concentration of VirB. In addition, 

VirF directly activates transcription of the icsA (virG) gene. Therefore, VirF exhibits a major 

role in the pathogenicity cascade of Shigella.  

Interestingly, a certain threshold level of VirF is a prerequisite for the transcription of 

virulence factors. This level within the bacterial cell is influenced by several factors like 

nutrition factors, temperature, pH value, and osmolarity [Durand et al., 2000]. Optimal 

conditions comprise a temperature of 37°C at pH 7.4 and a moderate osmotic level similar to 

physiological saline as well as the presence of the free amino acids arginine and methionine. 

However, the expression of VirF can also be effected on the translational level since for the 

ribosomal translation of VirF-mRNA modified tRNA is required. These modifications 

comprise two positions within the tRNA: Firstly, guanine-34 in the wobble position of the 

anticodon has to be exchanged against the highly modified base queuosine. Secondly, the 

modified nucleoside 2-methylthio-N6-isopentenyladenosine has to be incorporated at 

position 37. The relevance of the thus derived tRNA in respect to the VirF concentration has 
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been tested in gene-knock-out experiments. The modification in position37 depends on the 

miaA gene product. Mutational changes of the miaA gene decrease the intracellular 

concentration of VirF to 10% resulting in a drop of haemolytic activity to 10 – 20% compared 

to the wild type. The incorporation of a queuine precursor in position 34 of the tRNA is 

catalyzed by the tgt (vacC) gene product. Mutation of the corresponding gene reduces the 

VirF concentration and the haemolytic activity to 50 – 60% compared to the wild type 

[Durand et al., 1994; Durand et al., 1997; Durand et al., 2000]. 

These investigations demonstrate that the above-named tRNA-modifying enzymes 

represent promising drug targets leading to a significant decrease in the pathogenicity of 

Shigella. Potent inhibitors exhibit the potential to act as selective antibiotics potentially less 

affected by resistance development. The tgt gene product tRNA-guanine transglycosylase 

isolated from E. coli is well characterized in diverse studies. Zymomonas mobilis TGT serves 

as a model system sharing a sequence identity of 60.4% with the orthologue of S. flexneri 

[Reuter and Ficner, 1995]. As expression and crystallization protocols are available for this 

system, it can be used as the basis for structure-based drug design [Reuter and Ficner, 1995; 

Romier et al., 1996; Romier et al., 1996].  

 

1.7 Biosynthesis of Queuine in Prokaryotes 

Until today, over 70 modifications in nucleobases of transfer RNA have been identified 

[Hoops et al., 1995]. One of these modified nucleobases is queuine, which replaces the 

genetically encoded guanine in position 34 (the “wobble” position) of particular tRNAs. 

Remarkably, queuine is the sole RNA base in which the parent basic ring system is modified. 

It is present in almost all eucaryotes and bacteria. Rare exceptions are Saccharomyces 

cerevisiae and some Actinobacteria (Mycobacerium, Corynebacerium, Streptomyces, 

Bifidobacterium) [Reader et al., 2004]. The base exchange reaction in which guanine is 

substituted against the queuine precursor preQ1 is catalyzed by the enzyme tRNA-guanine 

transglycosylase (Figure 1.3) [Hoops et al., 1995]. In only four different tRNA variants the 

incorporation of queuine can be observed. As a prerequisite they have to exhibit the 

anticodon sequence U33G34U35N36 where N represents adenine, cytosine, guanine, or uracil. 

This sequence is found in tRNAs specific for the amino acids histidine, tyrosine, aspartate, 
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and asparagine. Recognition of this motif is achieved by interactions to Arg286 and Arg289 

[Xie et al., 2003]. 

 

 

Figure 1.3 Biosynthesis of Q-34-tRNA out of GTP and involved enzymes according to Biela et al., 2013. 

  

For this purpose preQ1 is obtained in a multistep reaction out of guanosine 5’-

triphosphate (GTP). Its synthesis involves diverse enzymes, namely the GTP cyclohydrolase I 

(FolE) [Phillips et al., 2008], 6-carboxy-5,6,7,8-tetrahydropterin synthase (QueD) [McCarty et 

al., 2009], an S-adenosyl-L-methioninedependent organic radical-generating enzyme (QueE), 

preQ0 synthetase (QueC) [McCarty et al., 2009] and a nitrile reductase (QueF) [Lee et al., 

2007]. After preQ1 is incorporated it is further modified to queuine in two following 

reactions: Firstly, a ribosyl moiety is added to preQ1 by the S-adenosylmethionine:tRNA 

ribosyltransferase/isomerase (QueA) [Van Lanen et al., 2003]. Secondly, the generated 

epoxide is reduced by the coenzyme B12-dependent epoxyqueuosine reductase (QueG) [Frey 

et al., 1988]. 

Also in eukaryotes, tRNAs harboring the above-mentioned recognition sequence are 

modified in position 34. Contrary to bacteria, eukaryotes do not have the ability to 
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synthesize queuine or its precursor molecule de novo. Therefore, its incorporation 

mechanism differs significantly. After queuine is assimilated as a nutrient from diet, it is 

directly inserted into tRNA within a single reaction performed by the eukaryotic TGT [Okada 

and Nishimura, 1979; Chen et al., 2011]. It is known that queuosine is further transformed 

by glycosylation of the hydroxyl groups of the pentenyl moiety but the related enzymes of 

these reactions are not yet sufficiently explored [Iwata-Reuyl, 2003].  

 

1.8 Base Exchange Mechanism of TGT 

The base exchange of guanine in position 34 of the tRNA against the modified base preQ1 

follows a ping-pong mechanism (Figure 1.4) [Xie et al., 2003].  

  

 

Figure 1.4 Base exchange mechanism of G-34 against preQ1 catalyzed by TGT according to Biela et al., 2013. 
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In the first step of the reaction Asp280 attacks nucleophilically C(1) of ribose-34 after 

tRNAHis,Tyr,Asp,Asn is bound to the enzyme (Figure 1.4A). Thereby, a covalent TGT∙tRNA 

intermediate is formed (Figure 1.4B). The cleaved guanine molecule is released from the 

binding site after picking up a proton. The origin of this proton is not finally clear. While Xie 

et al. discuss Asp102 to release the proton, recent considerations of Biela et al. suggest a 

close-by water molecule as the likely proton donor. As an argument for the latter serves the 

irreversibility of the base exchange: By-products of the above-described reaction are a 

hydroxide ion (Figure 1.4B) and an oxonium ion (Figure 1.4D). Mutual neutralization detracts 

both ions from equilibrium and thus, prevents a reaction in the reversionary direction.  

Subsequently, preQ1 enters the empty binding site (Figure 1.4C). Interestingly, this 

step induces a backbone flip of the carboxamide group between Leu231 and Ala232 

changing its donor functionality to that of an acceptor. This orientation of the backbone is 

stabilized by Glu235, which is able to interact with both backbone orientations depending on 

its protonation state [Brenk et al., 2003]. The exocyclic amino function of preQ1 displaces the 

previously described water molecule within the recognition site and experiences a hydrogen 

bond to the backbone C=O function of Leu231, which in its new position faces the binding 

pocket. Finally, the distance between the covalently bound ribose-34 located within the 

TGT∙tRNA complex and preQ1 is lowered due to repulsive interactions between Val45, Leu68 

and the ribose moiety enabling the nucleophilic attack of preQ1 to C(1) of ribose-34. Most 

likely, the released proton originating from N(9) of guanine’s imidazole moiety is accepted by 

a neighbouring water molecule. The covalent bond to TGT is subsequently broken and the 

modified tRNA leaves the catalytic site (Figure 1.4D). 

 

1.9 Structure of Z. mobilis TGT 

1.9.1 Secondary Structure 

The crystal structure of Z. mobilis TGT exhibits the typical sequence of α-helices and β-sheets 

classifying it as member of the family of the (β/α)8-barrel enzymes, also known as TIM-

barrels (Figure 1.5A and 1.6) [Brenk et al., 2003]. A prominent member of this family is 

triose-phosphate isomerase for which this fold was first discovered.  
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Figure 1.5 TGT’s primary and secondary structure (A) as well as a topology diagram of secondary structure 

elements (B). The typical TIM-barrel structure elements are colored in blue (β-sheets) and red (α-helices). 

 

Contrary to the commonly found folding pattern, various deviations in the sequence 

of secondary structure elements can be observed for Z. mobilis TGT (Figure 1.5B) [Brenk et 

al., 2003; Immekus et al., 2012]. These comprise an antiparallel three-stranded β-sheet 

located at the N-terminus of the enzyme, a beta3-alpha3 insertion as well as a subdomain 

offering a binding site for a zinc ion by tetrahedral coordination to the amino acids Cys318, 

Cys320, Cys323, and His349. Thereby, the zinc binding site involves helix α8 of the TIM-

barrel. Both, the beta3-alpha3 insertion and the zinc binding domain are involved in the 
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recognition of tRNAHis,Tyr,Asp,Asn. Helix αB acts as a linker connecting the TIM-barrel domain 

with the zinc binding domain. The active site of Z. mobilis TGT is located at the C-terminus of 

the barrel motif [Okada and Nishimura, 1979; Curnow and Garcia, 1995]. 

 

1.9.2 Dimeric Assembly 

From detailed studies it is known that TGT is only active as a homodimer in which the two 

monomers are related by a 2-fold symmetry (Figure 1.6) [Xie et al., 2003; Stengl et al., 2007].  

    

 

Figure 1.6 Secondary structure and dimeric assembly shown for TGT apo structure 1PUD [Romier et al., 1996]. 

The structure contains one monomer in the asymmetric unit. Thus, the crystal mate was generated using the 

program PyMOL. 

 

Upon dimerization an interface with the size of 1667 Å2 is formed [Ritschel et al., 

2009]. Contrary to apo structures and TGT∙ligand complexes where the complementary 

monomer has to be generated by symmetry operations, the deposited structures of 

TGT∙tRNA complexes (PDB ID: 1Q2R, 1Q2S [Xie et al., 2003]) exhibit the dimeric state in the 

asymmetric unit. The homodimer is stabilized by diverse hydrogen bonds, salt bridges and 

van der Waals interactions occurring twice in the homodimer due to the observed C2 

symmetry. Interestingly, the amino acid residues involved in dimer formation are highly 

conserved among various prokaryotic organisms [Stengl et al., 2007]. While initially the focus 

was set on the strong polar interactions Lys52 ∙∙∙ Glu339’, Lys55 ∙∙∙ Glu348’, and                 
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Lys85 ∙∙∙ Glu309’, recent studies reveal the aromatic cluster Trp326, Tyr330, Phe92', and 

His333 to be the key motif for dimer stabilization [Ritschel et al., 2009; Jakobi, 2013].   

Based on crystal structure analysis as well as non-denaturing mass spectrometry 

experiments a 1:1 binding stoichiometry between the tRNA and the TGT homodimer is 

suggested (Figure 1.7A) [Xie et al., 2003; Ritschel et al., 2009]. While the base exchange of 

guanine against the modified base preQ1 is performed at the active site of the first 

monomer, the second monomer stabilizes the ternary complex most likely via its beta3-

alpha3 insertion. In this part of the protein several positively charged amino acid residues 

are present at the protein surface offering the ability to form strong polar interactions to the 

negatively charged phosphate backbone of the tRNA. 

 

1.9.3 Active Site 

TGT specifically recognizes the tRNA nucleobases uracil-34, guanine-34, and uracil-35 [Okada 

and Nishimura, 1979; Curnow and Garcia, 1995]. While both uracil nucleobases bind to 

rather undefined, largely solvent-exposed pockets, guanine-34 is buried in a tunnel-shaped 

binding site offering two openings of which one is closed upon substrate binding. Thereby, 

guanine-34 is sandwiched between Tyr106 and Met260 forming π-stacking interactions to 

both residues (Figure 1.7B).  

 

 

Figure 1.7 Crystal structure of the 1:1 ternary complex of TGT∙tRNA (PDB ID: 1Q2S *Xie, Liu et al., 2003]). The 

crystal structure contains two TGT monomers in the asymmetric unit. A) While the base exchange reaction is 

performed at the guanine-34 binding site of the first monomer (red), the second monomer (blue) stabilizes the 

complex via its beta7-alpha6 insertion. B) Binding mode of preQ1 within the guanine-34 recognition site. 



 
28 1. Introduction and Motivation 

Furthermore, the substrate is recognized by hydrogen bonds to Asp102, Asp156, 

Gln203, and a water-mediated one to Leu231. Except of Tyr106, which is substituted by 

phenylalanine in TGT of S. flexneri, all residues are identical between the TGTs of S. flexneri 

and Z. mobilis [Grädler et al., 2001]. 

Depending on the pH value and the ligand bound in the active site, its constitution 

alters: Firstly, the carboxyamide group located between Leu231 and Ala232 is able to flip its 

donor/acceptor functionality. Secondly, Asp102 resting in the apo state within the protein 

rotates towards the binding site once a substrate is bound [Brenk et al., 2003].   
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2. Impact of Protein and Ligand Impurities on ITC-derived 

Protein-Ligand Thermodynamics 

 

2.1 Introductory Remarks 

The following chapter has been published in the scientific journal Biochimica et Biophysica Acta – General 

Subjects.
1
 TGT compounds were synthesized by Luzi Jakob Barandun and Christoph Hohn (ETH Zürich). Studies 

on trypsin were performed by Stefan Grüner (Philipps-Universität Marburg). Trypsin ligands were prepared by 

Frank Sielaff (Philipps-Universität Marburg). All studies on TGT binding were executed by the author of this 

thesis. The paper was drafted by Grüner and Neeb. 

 

 

 

2.2 Abstract 

The thermodynamic characterization of protein-ligand interactions by isothermal titration 

calorimetry is a powerful tool in drug design, giving valuable insight into the interaction 

driving forces. Isothermal titration calorimetry is thought to require protein and ligand 

solutions of high quality, meaning both the absence of contaminants as well as accurately 

determined concentrations. Ligands synthesized to deviating purity and protein of different 

pureness were titrated by isothermal titration calorimetry. Data curation was attempted also 

considering information from analytical techniques to correct stoichiometry. We used 

                                                           
1 Grüner, Neeb et al. (2014). Impact of Protein and Ligand Impurities on ITC-derived Protein-Ligand Thermodynamics. Biochimica et 

Biophysica Acta 1840, 2843-2850. 
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trypsin and tRNA-guanine transglycosylase (TGT), a tRNA modifying enzyme, together with 

high affinity ligands to investigate both the effect of errors in protein concentration as well 

as the impact of ligand impurities on the apparent ligand binding thermodynamics. We 

found that errors in protein concentration of up to 33% did not change the thermodynamic 

properties obtained significantly. However, most ligand impurities led to pronounced 

changes in binding enthalpy. In cases where protein binding of the respective impurity would 

not have been expected, the actual ligand concentration was corrected for and the thus 

revised data compared to thermodynamic properties obtained with the respective pure 

ligand. Even in these cases, we observed differences in binding enthalpy of about 

4 𝑘𝐽 ∙ 𝑚𝑜𝑙−1, which is considered as significant. In summary, our results indicate that the 

ligand purity is the critical parameter to monitor if accurate thermodynamic data of a high 

affinity protein-ligand complex are to be recorded. Furthermore, artificially changing fitting 

parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized 

ligand impurities may lead to thermodynamic parameters significantly deviating from the 

accurate thermodynamic signature. 

 

2.3 Introduction 

Thermodynamic characterization of protein-ligand interactions by isothermal titration 

calorimetry (ITC) has become a routinely used method in understanding interactions of 

biomolecules with naturally occurring binding partners as well as a powerful tool in drug 

design [Freyer and Lewis, 2008]. The obtained thermodynamic data of an interaction are 

most valuable to complement structural information resulting from X-ray crystallography or 

NMR spectroscopy methods in order to rationally improve a lead compound in structure-

based drug design [Chaires, 2008]. However, ITC experiments usually require substantial 

amounts of the interacting partners, both being of high purity. Successful production of high 

amounts and purity might be possible with well-selected model systems for which an 

efficient expression and purification protocol is available and ligands result from simple 

synthesis. This becomes, however, increasingly difficult if real drug targets and ligands from 

multistep synthesis are considered. To investigate the impact of impurities present in both 

the protein and ligand solution focusing on relevant drug discovery cases, we characterized 

binding of several competitive inhibitors to B. taurus trypsin and Z. mobilis tRNA-guanine 
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transglycosylase (TGT) by ITC, taking into account different amounts of protein impurities 

and using ligand preparations containing organic and inorganic impurities, respectively. 

Trypsin is a well-studied serine protease involved in digestive processes and serves 

frequently as a surrogate for actual drug targets in the design of protease inhibitors or to 

learn about specificity and selectivity discrimination [Rauh et al., 2002; Rauh et al., 2003; 

Rauh et al., 2004]. However, being an extracellular mammalian protein, it is difficult to 

obtain in high amounts in its active form by heterologous production in simple expression 

systems such as E. coli. Similar issues arise for other proteins relevant to drug development 

such as thrombin [Yonemura et al., 2004]. For some of these proteins, natural sources are 

abundantly available but material might be contaminated with impurities and is usually 

supplied in lyophilized form which is known to contain hydrate water [Wang, 2000]. Protein 

concentration is then routinely determined by spectrophotometric measurements, which 

are often calibrated via an easily calculated extinction coefficient [Gill and Hippel, 1989]. 

However, the provided extinction coefficient may differ from the actual one, thereby 

falsifying the protein concentration systematically. This difference is especially pronounced 

for trypsin’s precursor trypsinogen and amounts to 11% [Gill and Hippel, 1989]. Therefore, 

trypsin was an ideal candidate to investigate how errors in protein concentration and 

possible impurities affect the thermodynamic characterization of ligand binding determined 

by ITC. 

The tRNA modifying enzyme tRNA-guanine transglycosylase is known to play a key 

role in the pathogenicity of Shigella, the causative agent of Shigellosis [Sansonetti, 2001]. It 

catalyzes a base exchange of guanine by a modified base in position 34 of the tRNA-

anticodon loop [Xie et al., 2003]. This exchange is essential to produce virulence factors 

necessary for cell invasion. Thus, blocking the enzymatic activity of TGT prevents invasion of 

Shigella [Durand et al., 2000]. The expression protocol in E. coli is well established and yields 

due to favorable solubility features protein of high purity as confirmed by mass 

spectrometry, SDS page, and dynamic light scattering measurements [Reuter and Ficner, 

1995; Romier et al., 1996]. However, the highly potent 6-amino-1,7-dihydro-8H-imidazo[4,5-

g]quinazolin-8-ones (lin-benzoguanines) exhibit unfavorable solubility and polarity issues 

complicating the synthesis of compounds with high purity [Hörtner et al., 2007]. Hence, TGT 

was selected as a second real case example to study the influence of organic and inorganic 

impurities in ligand preparations on ITC measurements.  
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2.4 Material and Methods 

2.4.1 Protein Preparation and Quantification. Bovine pancreas trypsin from natural source 

was purchased as ethanol precipitate from Sigma (product number: T8003). Dry weight 

determination was performed in duplicate to estimate the amount of associated volatile 

substances, i.e. mainly hydrate water. The protein precipitate was dried at 378 K at normal 

atmospheric pressure and recurrently weighted after cooling in a desiccator until stable 

weight was reached [Kupke and Dorrier, 1978]. Protein concentration was determined by 

two methods. Firstly, the micro-biuret method was used, measuring absorbance at 545 nm 

after trichloroacetic acid/desoxycholate precipitation and using bovine serum albumin as 

reference protein [Goa, 1953; Bensadoun and Weinstein, 1976]. Secondly, UV 

spectrophotometry at 280 nm (A280nm) was employed, using an experimental absorbance 

coefficient of 1.54 𝑚𝑔 ∙ 𝑚𝐿−1 at 280 nm and a molecular weight of 23305 Da as calculated 

by ProtParam for cationic bovine trypsin (UniProt-ID: P00760), giving 𝜖280 = 35890 𝑀−1 ∙

𝑐𝑚−1 [Robinson et al., 1971; Koeppe and Stroud, 1976; Gasteiger et al., 2005]. The 

extinction coefficient of trypsin at 280 nm was 𝜖280 = 37650 𝑀−1 ∙ 𝑐𝑚−1 as directly 

calculated by ProtParam. Percentage errors in protein concentration refer to the deviation 

from the concentration determined by the micro-biuret method. 

Z. mobilis TGT was expressed and purified as described in detail elsewhere [Reuter 

and Ficner, 1995; Romier et al., 1996]. The protein concentration was determined firstly by 

UV spectrophotometry at 280 nm (A280nm).  An absorption of 0.778 (10 mm path) 

corresponds to 1 𝑚𝑔 ∙ 𝑚𝐿−1 (23.4 µM) as suggested by ProtParam [Gasteiger et al., 2005]. 

Secondly, a Bradford assay was applied on the basis of protein-dye binding using bovine 

serum albumin as a standard [Bradford, 1976]. Both methods resulted in a closely similar 

protein concentration.  

 

2.4.2 Isothermal Titration Calorimetry. ITC experiments were performed using an iTC200 

microcalorimeter (GE Healthcare Europe GmbH, Freiburg, Germany). All experiments were 

performed at 25°C using filtered solutions only. The reference cell contained demineralized 

water. The trypsin precipitate was dissolved in ITC buffer (50 mM Tris/HCl, 100 mM NaCl, 

0.1% (w/v) polyethylene glycol 8000, pH 7.8) supplemented with 3% (v/v) DMSO and stored 

on ice. The protein solution was freshly prepared daily. No measurable trypsin autodigestion 
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occurred as judged by the interaction stoichiometry remaining stable for at least 12 hours 

under the applied protein concentrations. The final protein concentration in the sample cell 

was 15 µM based on weight, 12.3 µM based on dry weight measurements and 11.3 µM 

based on micro-biuret and spectrophotometric measurements. Ligand stock solutions of 1 

and 2 of 10 mM were prepared by weight in 100% (v/v) DMSO, subsequently diluted to 

concentrations ranging from 250 to 400 µM with ITC buffer and adjusted to 3% (v/v) DMSO 

prior to the experiment. TGT was dissolved in the experimental buffer containing 50 mM 

Hepes, 200 mM NaCl, and 0.037% (v/v) Tween 20, pH 7.8 to a final concentration of 10 µM 

containing 3% (v/v) DMSO. Due to their low solubility, ligands 3a and 4a were first dissolved 

in 100% (v/v) DMSO and diluted with buffer solution to a final DMSO concentration of 3%.  

Ligand concentration in the syringe was adjusted to 200 – 245 µM with experimental buffer. 

The ligand solution containing syringe was stirred at 1000 rpm and injection started after a 

stable baseline had been established. A first injection of 0.3 µL was followed by 15 injections 

of 1.1 to 2.2 µL. All injections were spaced by 120 s to 180 s intervals. Raw data were 

collected as released heat per time. The collected data were analyzed using ORIGIN Software 

7.0 (Microcal Inc.). The area under each peak was integrated, followed by correction for 

heats of dilution and mixing by subtracting the final baseline, which consisted of small peaks 

of comparable size. The data point resulting from the first injection was deleted after 

integration as it is error prone [Mizoue and Tellinghuisen, 2004]. A single-site-binding 

isotherm that yields the enthalpy of binding Δ𝐻0 and the dissociation constant 𝐾𝑑  was fitted 

to the data [Wiseman et al., 1989]. Each experiment was performed at least in triplicate. For 

representative curves see Figure 2.1. 

 

2.4.3 Dynamic Light Scattering. Potentially aggregation behavior of Z. mobilis TGT in the 

absence and presence of an inhibitor was determined by Dynamic Light Scattering (DLS) 

using a Zetasizer Nano ZS (Malvern Instruments, Herrenberg, Germany) equipped with a 10 

mW HeNe laser at a wavelength of 633 nm at 25°C. Scattered light was detected at a 173° 

angle with laser attenuation and measurement position adjusted automatically by the 

software. The same conditions as in ITC experiments were used (10 µM protein in ITC buffer, 

3% DMSO, addition of 28 µM (= 20 injections of 2 µl) of ligand 4a). The given data comprised 

three measurements of at least 10 runs.  
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Figure 2.1 Representative ITC thermograms for 1  and 2 directly titrated to trypsin (A) as well as 3a and 4a 

directly titrated to TGT (B). Shown are titrations of impure preparations, which were partially re-fitted for 

ligands 2, 3a and 4a to a more reasonable stoichiometry according to data from pure ligand 2 and to 

elementary analysis for 3a and 4a, respectively. 
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2.5 Results 

2.5.1 Errors in Protein Concentration Did Not Affect the Thermodynamic Profiles of High 

Affinity Protein-Ligand Binding 

To investigate the impact of impurities present in the protein preparation on the 

thermodynamic characterization of a protein-ligand interaction, binding of two competitive 

inhibitors (Figure 2.2A) to trypsin was studied by ITC.  

 

 

Figure 2.2 Chemical structures of the studied ligands. A) Ligands binding to trypsin. B) Ligands binding to TGT. 

 

First, varying degrees of impurities present in the trypsin preparation were taken into 

account during modeling of thermodynamic data to study protein impurity-related 

deviations. The amount of hydrate water present in the protein precipitate was estimated by 

using the dry weight method. It revealed a hydrate water content of 18% (w/w). Therefore, 

the actual protein concentration would have been overestimated by 22%, if it was solely 

determined by weighing. However, all thermodynamic parameters only showed subtle, if 
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any, changes on considering hydrate water content in data modeling (Table 2.1). The only 

fitting parameter that changed was the interaction stoichiometry n. It increased to values 

closer to 1, the expected value for the interactions investigated. This supports the idea that 

considering the water content reveals the more correct model for the interaction, even in 

the absence of other changes in thermodynamic parameters. Hence, ignoring the water 

content of the used solid protein preparation did not influence the thermodynamic 

characterization of ligand binding. Next, the actual protein concentration was determined by 

a colorimetric and a spectrophotometric method, the micro-biuret and A280nm-assay, 

respectively. Both techniques yielded very similar values, if the experimentally determined 

extinction coefficient of trypsin was used for the A280nm-assay. If the determination of 

protein concentration was based on weight, it deviated from the actual protein 

concentration by 33%. The difference between the calculated and previously experimentally 

determined extinction coefficient of trypsin resembled the already known difference for 

trypsinogen [Gill and Hippel, 1989]. The difference in protein concentration to dry weight 

determination is probably due to low molecular weight substances such as salts. Nucleic 

acids were not present in the precipitate. Despite this rather large deviation of 33%, 

modeling based on the actual protein content also did not significantly change the values of 

thermodynamic parameters obtained by ITC experiments but interaction stoichiometries 

approximated much closer to 1, confirming that a better model was fitted (Table 2.1). 

 

2.5.2 Organic Ligand Contaminations Can Affect Thermodynamic Profiles of Protein-

Ligand Binding Significantly 

In order to study how impurities in ligand preparations impact the obtained thermodynamic 

parameters, two preparations of each trypsin-binding ligand 1 and 2 of different purities 

were used, referred to as the “impure” and “pure” preparation, respectively. The impure 

preparation of ligand 1 contained a by-product of its synthesis with similar retention 

behavior in HPLC, constituting about 20% of the ligand preparation based on HPLC-coupled 

UV-spectrophotometry. Thermodynamic characterization revealed a high-affinity interaction 

with an interaction stoichiometry larger than one, indicating that less ligand than assumed 

was present (Table 2.2, Figure 2.3). ITC experiments using a purified ligand preparation 

resulted in a slightly improved standard free binding energy as well as standard binding 
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enthalpy (∆∆𝐺0 = −1.9 𝑘𝐽 ∙ 𝑚𝑜𝑙−1, ∆∆𝐻0 = −2.3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1) and an interaction 

stoichiometry n of reasonable value (1.0).  

 

Table 2.1 Thermodynamic parameters of ligand binding as determined by ITC and modeling with different 

protein impurity levels. 

Ligand Correction[a] n[b] ∆𝑮𝟎(𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏)[b] 

∆𝑯𝟎(𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏)[b] 

−𝑻∆𝑺𝟎(𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏)[b] 

1 none 0.75 ± 0.02 -45.9 ± 1.5 -27.5 ± 1.1 -18.4 ± 1.8 

 hydrate 0.92 ± 0.02 -45.9 ± 1.6 -27.5 ± 1.1 -18.4 ± 1.9 

 protein 1.00 ± 0.02 -46.0 ± 1.6 -27.5 ± 1.2 -18.4 ± 2.0 

2 none 0.68 ± 0.01 -46.3 ± 0.9 -20.4 ± 0.7 -26.0 ± 1.1 

 hydrate 0.83 ± 0.01 -46.2 ± 0.7 -20.4 ± 0.7 -25.8 ± 1.0 

 protein 0.90 ± 0.01 -46.1 ± 0.7 -20.4 ± 0.7 -25.7 ± 1.0 

a
Correction states the method by which the protein concentration used for thermogram modeling was 

determined: none – concentration as calculated by protein weight (33% deviation); hydrate – hydrate water 

content was considered (22% deviation); protein – concentration as determined by micro-biuret/A280nm. 

Deviations are relative to concentration measured by micro-biuret assay. 
b
Given errors are standard deviations 

of at least triplicates. 

 

Ligand 2 was contaminated in its impure form with an organic compound. It was 

mass spectrometrically identified as 1,1’,1’’-phosphinylidtrispyrrolidin (CAS-no. 6415-07-2), 

which is a reaction product of benzotriazol-1-yl-oxytripyrrolidinophosphonium 

hexafluorophosphate (PyBOP), a peptide coupling agent used during synthesis. 

Characterizing ligand binding with the impure preparation showed a high-affinity interaction 

with trypsin (𝐾𝑑 = 11 𝑛𝑀, Table 2.2), which was apparently dominated by its entropic 

component, contributing almost 70% to the overall standard free binding energy. However, 

an abnormally high interaction stoichiometry of about 1.5 indicated considerable ligand 

purity issues. Further purification of the ligand and additional ITC experiments showed that 

the actual affinity of the pure ligand was slightly stronger (𝐾𝑑 = 8 𝑛𝑀). Therefore, the ligand 

purity did not strongly influence the measured binding affinity. In contrast, the obtained 

interaction stoichiometry approached values closer to the theoretically expected one (0.9).  
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Table 2.2 Thermodynamic parameters of ligand binding and impact of ligand impurities. 

Ligand Purity n ∆𝑮𝟎(𝒌𝑱

∙ 𝒎𝒐𝒍−𝟏) 

𝑲𝒅(𝒏𝑴) ∆𝑯𝟎(𝒌𝑱

∙ 𝒎𝒐𝒍−𝟏) 

−𝑻∆𝑺𝟎(𝒌𝑱

∙ 𝒎𝒐𝒍−𝟏) 

1 pure[a] 1.00 ± 0.02 -46.0 ± 1.6 9 ±   6 -27.5 ± 1.2 -18.4 ± 2.0 

 impure 1.15 ± 0.03 -44.1 ± 1.0 19 ±   8 -25.2 ± 0.3 -18.9 ± 1.0 

2 pure[a] 0.90 ± 0.01 -46.1 ± 0.7 8 ±   2 -20.4 ± 0.7 -25.7 ± 1.0 

 impure 1.48 ± 0.05 -45.5 ± 1.9 11 ±   8 -14.6 ± 0.7 -30.9 ± 2.0 

 impureM[b] 0.89 ± 0.02 -46.8 ± 1.8 6 ±   5 -24.2 ± 0.8 -22.6 ± 2.0 

3a pure 0.73 ± 0.05 -41.6 ± 0.1 52 ±   2 -74.8 ± 1.8  33.2 ± 1.8 

 Impure 1.16 ± 0.01 -40.3 ± 0.3 86 ± 12 -48.3 ± 0.4    8.0 ± 0.5 

 impureM-C[c] 0.84 ± 0.00 -41.2 ± 0.2 60 ±   8 -66.1 ± 0.5 24.9 ± 0.6 

 impureM-N[d] 0.76 ± 0.00 -41.2 ± 0.4 61 ±   9 -74.5 ± 0.6 33.3 ± 0.7 

4a pure 0.68 ± 0.00 -42.2 ± 0.4 41 ±   6 -78.3 ± 1.2  36.1 ± 1.2 

 impure 2.23 ± 0.01 -42.4 ± 0.4 38 ±   5 -27.3 ± 0.1 -15.1 ± 0.4 

 impureM-C[c] 0.73 ± 0.00 -45.6 ± 0.7 11 ±   3 -81.4 ± 0.7  35.8 ± 1.0 

a
Results from pure ligand preparations as in Table 1 shown for ease of comparability. 

b
Thermograms resulting 

from impure preparation were used and fitted to reach the same interaction stoichiometry n as thermograms 

obtained with pure preparation. 
c
Thermograms resulting from impure preparation were used and fitted based 

on the corrected ligand concentration deduced from the carbon value of elementary analysis. 
d
Thermograms 

resulting from impure preparation were used and fitted based on the corrected ligand concentration deduced 

from the nitrogen value of elementary analysis. 

 

Furthermore, the standard binding enthalpy drastically improved (∆∆𝐻0 = −5.8 𝑘𝐽 ∙

𝑚𝑜𝑙−1). Consequently, the entropic contribution to binding decreased by a similar 

magnitude (−𝑇∆∆𝑆0 = 5.2 𝑘𝐽 ∙ 𝑚𝑜𝑙−1) and afforded then only about 55% of the total 

standard free binding energy. Re-fitting of the thermograms obtained with the impure ligand 

was done with a corrected ligand concentration giving similar interaction stoichiometries as 

the pure ligand (“impureM”). Correcting the ligand concentration yielded a concentration 

40% less than originally assumed. The obtained thermodynamic data of these corrected 

fittings were compared to the data resulting from the pure ligand preparation. Whereas the 

standard free binding energies were in close agreement (∆∆𝐺0 = −0.7 𝑘𝐽 ∙ 𝑚𝑜𝑙−1), the 

enthalpic and entropic contributions still differed significantly by −3.8 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 and 
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3.1 𝑘𝐽 ∙ 𝑚𝑜𝑙−1, respectively [Holdgate, 2001]. Hence, the thermodynamic profile of the 

ligand resulting from the impure, newly modeled preparation did not reasonably agree with 

the profile obtained from a pure preparation. 

 

 

Figure 2.3 Thermodynamic properties for ligands 1 and 2 from impure and pure preparations as determined by 

ITC. Shown are mean values and standard deviations as error bars of at least triplicates. Purity: impure – ligand 

preparations containing a contaminant were used for experiments with no correction for actual ligand content; 

pure – repurified ligand preparations were used; impureM – ligand preparations containing a contaminant 

were used for experiments and actual ligand content was taken into account for modeling. 

 

Additionally, the impact of an organic impurity on the thermodynamic profile of TGT 

ligand 3a (Figure 2.2B) was investigated by analyzing the ligand before and after HPLC 

purification. Unfortunately, the exact chemical composition of the impurity could not be 

identified. Elementary analysis revealed that the values for carbon and nitrogen are affected 

differently (Table 2.3). Considering the determined carbon value, an actual purity of 

approximately 73% was estimated. In the case of the found value for nitrogen, purity 

appeared to be further lowered to around 66%. ITC measurements characterized 3a in its 

impure form as a potent inhibitor of TGT (𝐾𝑑 = 86 𝑛𝑀) with a mainly enthalpic contribution 

to binding (Table 2.2).  
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Table 2.3 Elemental analysis of the impure lin-benzoguanines after precipitation. 

Ligand  C: H: N: 

     3a 

        

calcd: 52.17 4.38 36.50 
found: 37.86 4.48 23.92 

     4a 

22  

calcd:[a] 44.78 5.26 24.37 

found: 14.69 2.29   7.78 

        a
The calculation assumes 4a to be present as dihydrochloride. 

 

Accompanied by the described deviations found in elementary analysis, the 

interaction stoichiometry is increased to a value of 1.16. Re-fitting of the data for the impure 

ligand following the elementary analysis resulted in small changes of the standard free 

binding energy (∆∆𝐺0 = −0.9 𝑘𝐽 ∙ 𝑚𝑜𝑙−1). However, the thermodynamic profile shows a 

more pronounced enthalpy term of ∆∆𝐻0 = −17.8  to −26.2  𝑘𝐽 ∙ 𝑚𝑜𝑙−1. The difference 

between the two newly fitted data sets is significantly increased, especially for ∆𝐻0 

(∆∆𝐻0 = 8.4 𝑘𝐽 ∙ 𝑚𝑜𝑙−1). As a consequence, the entropic term shifts to more unfavorable 

values. The interaction stoichiometry improved to reasonable values of 0.84 and 0.76, 

respectively, taking into account that expression and purification did not yield fully active 

protein. To get a hint about the impurity’s composition, the values were compared to those 

of 3a in its pure state, after further purification steps via HPLC. ∆𝐺0 remained the same 

within the range of error compared to the re-fitted value (∆∆𝐺0 = −1.3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1), similar 

to refitting data of the impure ligand. The enthalpic term drastically increased compared to 

the batch of 3a before HPLC purification (∆∆𝐻0 = 26.5  𝑘𝐽 ∙ 𝑚𝑜𝑙−1). Contrary to that, the 

values are in excellent agreement with the re-fitted values for a purity of approximately 66% 

(∆𝑛 = 0.03, ∆∆𝐺0 = −0.4  𝑘𝐽 ∙ 𝑚𝑜𝑙−1, ∆∆𝐻0 = −0.3  𝑘𝐽 ∙ 𝑚𝑜𝑙−1, −𝑇∆∆𝑆0 = −0.1 𝑘𝐽 ∙

𝑚𝑜𝑙−1). 

 

2.5.3 Inorganic Ligand Contaminations Can Also Affect Thermodynamic Profiles of 

Protein-Ligand Binding 

A second TGT inhibitor was included in our studies. Compound 4a shows low purity after 

synthesis without any further purification steps. According to elementary analysis, the 
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powder contains the desired compound 4a to approximately one-third. Contrary to the 

results of 3a, the yield resulting from the ratio found to theoretical percentage of carbon and 

nitrogen, respectively, shows only subtle differences (∆𝑦𝑖𝑒𝑙𝑑 = 0.9%). Therefore, most 

likely an inorganic impurity originating from synthesis is present in the ligand preparation. 

The binding isotherm yielded a binding affinity of 𝐾𝑑 = 38 𝑛𝑀 for the impure sample of 4a 

and 𝐾𝑑 = 41 𝑛𝑀 for the pure one (∆∆𝐺0 = 0.2 𝑘𝐽 ∙ 𝑚𝑜𝑙−1). Again, the largest changes 

between pure and impure preparations are noticeable in the thermodynamic partitioning: 

The enthalpic term increases remarkably from −27.3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 to −78.3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 

(∆∆𝐻0 = −51.0  𝑘𝐽 ∙ 𝑚𝑜𝑙−1), the entropic contribution decreases from −15.1 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 to 

an unfavorable term of 36.1 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 (−𝑇∆∆𝑆0 = 51.2 𝑘𝐽 ∙ 𝑚𝑜𝑙−1). In addition, 

stoichiometry is diminished by a factor of about three from 2.23 to a more reasonable value 

for this inhibitor of 0.68. In the observed case, re-fitting of data could be performed easier 

since the results from elementary analysis indicated a purity level of approximately 33% due 

to an inorganic salt. The obtained values were in good agreement with the values derived 

from the pure ligand preparation, even if close to the significance level. Stoichiometry 

differed by 0.05, ∆𝐻0 by −3.1 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 and −𝑇∆𝑆0 by −0.3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1. Changes in ∆𝐺0 

were slightly higher than for the other described compounds 1 – 3a (∆∆𝐺0 = −3.4 𝑘𝐽 ∙

𝑚𝑜𝑙−1, 𝐾𝑑 = 41 𝑛𝑀  vs. 11 𝑛𝑀). 

It is known that salts can significantly influence the activity and stability of proteins in 

aqueous solution both in favorable and unfavorable means according to the Hofmeister 

series [Kunz et al., 2004]. Indeed, TGT needs high salt conditions to be soluble in the long 

term. To determine possibly occurring protein or ligand aggregation due to an increased salt 

concentration, dynamic light scattering (DLS) measurements were performed additionally. 

While inactive aggregates formed by the protein are not expected to change the 

thermodynamic profile drastically as shown in our studies, aggregates formed by ligands are 

able to bind to the protein unspecifically leading to false positive signals [McGovern et al., 

2002]. Measurements were carried out in the absence and presence of 4a (Figure 4.4) using 

the same conditions as in the ITC experiments. Neither the obtained mean peak size 

(∆𝑑 = 0.9) nor the average peak volume (∆𝑉 = 0.0) deviated significantly. Therefore, the 

difference in enthalpy of  ∆∆𝐻0 = −3.1  𝑘𝐽 ∙ 𝑚𝑜𝑙−1  between re-fitted data originating from 

impure ligand preparation and data from repurified ligand preparation was unexpected. 
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Figure 2.4 Influence of 4a on the size distribution by volume of Z. mobilis TGT. In both cases a 10 µM protein 

solution was analyzed. A) A total of three DLS measurements of TGT in the absence of any ligand show a 

monomodal size distribution with an average diameter of 9.3 nm. The mean peak volume is 99.97%. B) A total 

of three DLS measurements of TGT in presence of 4a with a concentration of 28 µM (equivalent to 20 injections 

of 2 µl of a 200 µM inhibitor solution) show no influence on the monomodal size distribution. The average 

diameter of the protein is 10.2 nm with a mean peak volume of 99.97%. 

 

2.6 Comparative discussion 

In biophysical investigations, one is urged to work with protein and in the field of protein-

ligand interactions also with ligands of high purity [Daviter and Fronzes, 2013]. ITC is a key 

technique to thermodynamically characterize chemical and biochemical binding processes. 

Before analyzing the interaction of interest, particular attention needs to be paid to carefully 

calibrate the microcalorimeter using well-known standard chemical reactions as well as to 

the achievable precision and systematic differences reported for various microcalorimeters 

[Wadsö, 2000; Tellinghuisen, 2007; Baranauskienė et al., 2009] When it comes to analyzing 

the thermodynamics of protein-ligand interactions, ITC is a central method but frequently 

proteins and ligands are difficult to prepare at high purity. Therefore, we investigated the 

effects of errors in protein and ligand concentration and impurities on the obtained 

thermodynamic property values. We found that, for high-affinity interactions with c values 

over 100 [Wiseman et al., 1989], neither considering hydrate water nor further uncertainties 
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in protein concentration resulted in differences of thermodynamic property values 

compared to values obtained with the simple protein weight concentration. Hence, ignoring 

a concentration error of up to 33% and thereby hydrate water and contaminants such as 

salts in the protein preparation did not affect the apparent thermodynamic data of a 

protein-ligand interaction. This finding is in agreement with a study of metal ions binding to 

crown ethers [Turnbull and Daranas, 2003]. Errors in the receptor (crown ether) 

concentration of up to 15% lead neither to changes in the standard free binding energy nor 

the binding enthalpy [Turnbull and Daranas, 2003]. The c value is defined as 𝑐 = 𝑛 ∙

 𝑃𝑟𝑜𝑡 𝑡𝑜𝑡𝑎𝑙 /𝐾𝑑 . Even a more than twice as large error of 33% was found to be acceptable in 

this study. The tolerance can be rationalized by the idea that for high affinity ligands, the 

amount of ligand binding to its receptor for each injection is almost solely dependent on the 

actual amount of ligand injected and therefore not sensitive to changes in receptor 

concentration and errors in its determination are compensated for during modeling by the 

stoichiometry parameter n [Tellinghuisen, 2005; Tellinghuisen and Chodera, 2011]. Changes 

of the latter mainly lead to shifting the binding isotherm to different interaction 

stoichiometries accompanied by small changes in ∆𝐺0. Still it is important for experimental 

accuracy to determine the actual protein concentration as precisely as possible, especially if 

the interaction stoichiometry is unknown. We showed that routine use of a calculated 

extinction coefficient might not accurately reflect the actual absorption property of a protein 

as it is the case for trypsin, hinting at differences in absorption profiles between its native 

and denatured form. In the absence of a known experimental extinction coefficient, the 

micro-biuret assay proved to be a valuable method safeguarding against inaccurately 

quantifying protein concentration. 

Considering the ligand, a larger impact of concentration inaccuracies and impurities 

on thermodynamic properties is to be expected. The fitting process involves normalization of 

observed heat per injection by the amount of ligand added and the normalized heat is then 

plotted against the molar ratio of ligand per receptor. Supporting this reasoning, variability 

in thermodynamic parameters of a benchmarking protein-ligand interaction in an 

interlaboratory study was found to be mainly caused by varying errors in determining the 

ligand concentration [Myszka et al., 2003; Tellinghuisen and Chodera, 2011]. Indeed, impure 

ligand preparations of ligands 1–4a used in this study all showed a reduced apparent binding 
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enthalpy compared to binding enthalpy of the pure ligand. Impurities present in a ligand 

preparation can be thought of as principally belonging to three major classes:  

Firstly, side products of synthesis, which contain fragments of the actual ligand and 

are capable of binding to the same protein, thereby acting as competitive ligand. The 

contaminant of ligand 1 showed a similar HPLC-retention and UV-absorption behavior as the 

ligand itself, pointing toward possible structural similarities to the ligand. Therefore, the 

contaminant itself might also exhibit protein-binding activity. A mixture of ligand and 

protein-binding by-product is difficult to model in ITC data, as quantification of the ligand 

content alone is not sufficient for accurate correction. In those cases, ligand repurification is 

inevitable. Due to the minor impurity content of ligand 1, the deviations in thermodynamic 

parameters ∆𝐺0 and ∆𝐻0 were in the range of 2 𝑘𝐽 ∙ 𝑚𝑜𝑙−1.  

The second class of impurities are organic compounds originating from the synthesis 

itself, such as coupling agent reaction products, or remaining from so called “leaking” 

columns used in purification. These compounds are unlikely to exhibit specific protein 

binding but might otherwise influence the protein-ligand interaction. The contaminants of 

ligands 2 and 3a belong to that class. In both cases, an impurity content of up to 40% led to a 

drastically decreased apparent binding enthalpy whereas ∆𝐺0 was much less affected. 

Thereby, a much more entropically driven ligand binding is suggested. As ligands 1 and 2 

belong to the same congeneric ligand series where the latter contains a more hydrophobic 

substituent in position R, one could have expected a trend toward increased entropic 

contribution. However, characterization using the pure ligand preparation showed a less 

pronounced trend of such an entropic contribution. This case underlines the importance of 

considering the observed binding stoichiometry as a parameter for quality control. An 

interesting question arose after the pure ligand 2 was characterized: Are thermodynamics 

profiles of impure and pure ligand preparations of 2 comparable if corrected for the actual 

ligand concentration by fitting to the same interaction stoichiometry? Identical values 

indicate that solely adjusting ligand concentration during modeling might be sufficient. 

However, a difference in standard binding enthalpy of 3.8 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 remained between re-

fitted data and data of pure ligand, pointing toward the contaminant influencing the protein-

ligand interaction. The underlying mechanism remained unclear. The magnitude of the 

observed difference is close to the threshold of 4 𝑘𝐽 ∙ 𝑚𝑜𝑙−1, above which a difference in 

binding enthalpy is considered to be significant [Holdgate, 2001]. 
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In contrast, comparison of the re-fitted data of the contaminated ligand 3a and its pure form 

showed that it is possible to obtain the actual thermodynamic parameters under 

consideration of elementary analysis results. The data fitted to a purity of 66%, taking into 

account the ratio between the found and theoretical nitrogen value, give the same 

parameters like the pure compound does, within the error limits. However, the fit to a purity 

of 73%, as suggested by the ratio between found and theoretical values for carbon, failed to 

yield the same thermodynamic signature as for the pure ligand. Therefore, a prerequisite for 

the successful re-fitting is the knowledge of the composition of the impurity contained in the 

ligand preparation. Furthermore, even if no structural similarities are present, one has to 

reassure that the contamination does not interact with the protein or influence its stability 

or interaction with a ligand during the measurement period.   

Hence, even when correcting for the actual ligand concentration, one has to be 

aware that the resulting apparent thermodynamics may not accurately reflect the actual 

thermodynamics. This deviation may go undetected if ligand concentration is adjusted 

during the fitting process in order to give a reasonable interaction stoichiometry and no 

revalidation is performed to what extent that adjustment is sufficient. Therefore, this 

manual adjustment is poor practice.  

Thirdly, the ligand preparation may contain a varying proportion of salts resulting 

from synthesis and/or purification, which may change the thermodynamic properties 

similarly like an organic impurity. As described for 2 and 3a, also 4a shows significant 

changes in its enthalpic and entropic properties while  ∆𝐺0 remains largely unaffected. Re-

fitting according to elementary analysis yielded improvements only toward the pure 

compound close to the significance limit. Influences of ions binding to the protein surface 

might be imaginable. Besides that, the solubility of compound and protein at high 

concentrations needed for ITC measurements might be negatively affected. The impact of 

ligand as well as protein aggregation can be easily monitored by Dynamic Light Scattering.  

Within the error range of the method, elementary analysis gave the identical yield of 

4a regarding analyzed values for carbon and nitrogen. As a consequence, it can be assumed 

that an inorganic salt resulting from synthesis as part of the ligand powder. When including 

the actual yield of 4a into the fitting procedure of the binding isotherm, the derived data 

showed a good approximation to the thermodynamic properties obtained with the further 

purified ligand. Despite this and similar to the modeled data of 1 and 2, deviations close to 
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the significance level could be observed (∆∆𝐺0 = 3.4  𝑘𝐽 ∙ 𝑚𝑜𝑙−1, ∆∆𝐻0 = −3.1  𝑘𝐽 ∙

𝑚𝑜𝑙−1). Also DLS measurements did not give any explanations for those deviations. Protein 

and ligand aggregation could be excluded according to the conducted experiments. This 

result was expected since the salt of the ligand powder increases the concentration of the 

salt contained in the experimental buffer by only 0.1% (w/v calculated as NaCl). However, 

also if no measurable protein or ligand aggregation could be observed in dynamic light 

scattering measurements, an influence of increased salt concentrations by other means 

cannot be totally excluded.  

To further verify thermodynamic results, a reverse experimental setup can be 

devised. In such a reverse titration, protein solution is titrated into the ligand containing cell 

and is especially useful to check interaction stoichiometry [Velazquez-Campoy and Freire, 

2006]. For a simple 1:1 interaction, the results should be invariant to the normal 

experimental setup but may change if more complex interaction modes are investigated 

[Liang, 2008; Brown, 2009]. However, protein is required in higher amounts and 

concentrations in such experiments, making additional validation of the absence of possible 

protein aggregation necessary. The herein introduced DLS method is ideally suited for this 

purpose. Unfortunately, this setup is hardly feasible for our model proteins: The self-

digestion of trypsin is increased at higher concentrations. Thus, no reliable results can be 

expected over the period of an ITC experiment. Similarly, TGT’s solubility is drastically 

lowered at low salt concentrations applied during the titration. Therefore, precipitation of 

the protein occurred during a reversed experimental setup at the needed concentrations. 

Additionally to systematic errors discussed above, statistical errors and their correct 

treatment should also be considered [Tellinghuisen, 2003; Tellinghuisen, 2004]. 

 

2.7 Conclusions 

It can be concluded that impurities present in protein preparations used for thermodynamic 

characterization of a protein-ligand interaction by ITC do not necessarily translate into 

deviations from the actual thermodynamic data. Under special circumstances, they can even 

be ignored as it was the case for the protein preparation in the study of high affinity 

interactions. More caution has to be paid to the preparation of high affinity ligands. Even 

contaminants without apparent protein-binding capabilities may distort the thermodynamic 
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properties of a protein-ligand interaction, which goes undetected by sole fitting 

adjustments. Our studies dealing with high c value titrations demonstrated that it is possible 

to derive thermodynamic data from impure ligands, which are in good accordance to data 

obtained with the pure ligand. The basis for successful fitting is the knowledge about the 

composition of the contaminant and its potential influence on the analyzed system, which is 

unfortunately often difficult to estimate. Fitting the binding isotherm of an impure ligand 

following elementary analysis results yielded a good approximation to the actual value in 

one case, proving elementary analysis to be a well-suited complementary analysis to NMR 

and MS methods when it comes to ligand synthesis for ITC purposes. In another case, the 

same data as with a pure compound were obtained. Nonetheless, this procedure is limited 

since only a small data range is accepted before deviations get significant. For ligands 

showing large differences in their thermodynamic profile among each other, this might be 

negligible. However, the practice of sole fitting adjustments may mislead correlation to 

structural data of protein-ligand complexes or interpretation of thermodynamic trends 

observed in a congeneric series of ligands. The latter is especially deleterious as 

thermodynamic characteristics of such stepwise ligand modifications may not show big 

differences between the individual components of the series but are frequently used in 

conjunction with structural data to establish basic mechanisms underlying molecular 

interactions [Snyder et al., 2011; Biela et al., 2013]. In summary, this study pointed out that 

thermodynamic characterization of high affinity protein-ligand interactions by ITC shows 

different robustness against possible experimental errors and highlights the experimental 

parameters which must be rigorously monitored to obtain accurate and reliable 

thermodynamic data. If especially ligand purity cannot be assured, the actual value might be 

at least approximated. However, accurateness of these assumptions and considered values 

may be difficult to assess. Therefore, the efforts should be rather put in reliable purification 

protocols, both for proteins as well as ligands, to provide the basis to obtain accurate data 

by ITC. 
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3.1 Introductory Remarks 

The following chapter was published in the scientific Journal of Medicinal Chemistry.
2
 pKa Calculations were 

carried out by Paul Czodrowski (Merck Discovery Technologies, Darmstadt). TGT compounds were synthesized 

by Luzi Jakob Barandun and Christoph Hohn (ETH Zürich). All crystal structures and ITC measurements were 

performed by the author of this thesis along with drafting the article.  

 

 

 

3.2 Abstract 

A drug molecule will exhibit more desirable properties, if it remains uncharged while it 

travels through the body, is transported across membranes, and adopts a charged state only 

upon protein target binding as usually higher affinity results when charged species interact 

with one another. Such a strategy requires careful design of pKa properties and methods to 

elucidate whether and where protonation state changes occur. We investigated the 

protonation inventory in a series of lin-benzoguanines binding to tRNA-guanine 

transglycosylase, which shows pronounced buffer dependency during ITC measurements. 

Chemical modifications of the parent ligand scaffold along with ITC measurements, pKa 

calculations, and site-directed mutagenesis allow elucidating the site of protonation. The 

                                                           
2 Neeb et al., (2014). Chasing Protons: How Isothermal Titration Calorimetry, Mutagenesis, and pKa Calculations Trace the Locus of Charge 

in Ligand Binding to a tRNA-Binding Enzyme. Journal of Medicinal Chemistry 57, 5554-5565. 
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parent scaffold exhibits two guanidine-type portions and both appear as likely candidates for 

proton uptake. Even mutually compensating effects resulting from proton release of the 

protein and simultaneous trapping by the ligand can be excluded. A cluster of two adjacent 

Asp residues induces a strong pKa shift at the ligand resulting in a transition to the 

protonated state. Furthermore, an array of two parallel H-bonds avoiding secondary 

repulsive effects contributes to the high affinity binding of the lin-benzoguanine scaffold. 

 

3.3 Introduction 

In recent time, isothermal titration calorimetry (ITC) has become a powerful tool in life 

sciences with a broad scope of application, e.g. to obtain insight into the energetics or 

kinetics of binding, permeation through lipids as well as the characterization of low or high 

affinity binding ligands that are not accessible by direct titrations [Zhang and Zhang, 1998; 

Velazquez-Campoy and Freire, 2006; Tsamaloukas et al., 2007; Burnouf et al., 2012]. In 

structure-based drug design, this method is of utmost importance to obtain not only 

information about binding affinities but also to access the entire thermodynamic signature 

of a ligand within one experiment [Ladbury et al., 2010]. In addition, it gives valuable insight 

into changes of protonation states upon protein–ligand binding when the measurements are 

carried out in different buffer systems showing deviating contributions to the heat of 

ionization ∆𝐻𝑖𝑜𝑛  [Baker and Murphy, 1996]. 

Numerous studies have underlined the importance to investigate the protonation 

state of bound ligands to their target enzyme [Dullweber et al., 2001; Raffa et al., 2004; 

Czodrowski et al., 2007; Steuber et al., 2007; Baum et al., 2009; Biela et al., 2012; Biela et al., 

2012]. In fact, the ITC method quantifies the molar amount of protons transferred from or 

released to the buffer environment. Unfortunately, it does not provide any information 

about the exact protonation site. Supporting the ITC measurements by pKa calculations and 

mutational studies can help to detect the residue or ligand functional group responsible for 

the protonation reaction. pKa calculations suggest the likely candidate residues of interest 

and subsequent titrations of the specifically generated mutants can verify the protonation 

sites experimentally [Czodrowski et al., 2007; Steuber et al., 2007]. In an unfortunate 

situation no overall change in protonation can be observed, even though different buffers 

have been used and protons are transferred. Recently, Baum et al. observed the 
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simultaneous superposition of proton uptake and release reaction leading overall to a 

balanced proton inventory during ITC titrations [Baum et al., 2009]. This study underlines the 

importance to investigate congeneric ligand series, which differ only by small gradual 

changes varying the basic or acidic properties, respectively. 

On the one hand, understanding the properties of titratable groups that can change 

their protonation state upon binding, both on the protein and the ligand sites, is an 

important prerequisite to correctly assign and subsequently interpret the thermodynamic 

signature of a compound. For instance, the enthalpic signal recorded in a titration comprises 

the heat contributions of all interactions that are formed between the ligand and the amino 

acids of the target protein as well as those to trapped or released water molecules or ions. 

Depending on the type of interaction ranging from simple hydrogen bonds between 

uncharged species to charge-assisted ones and hydrogen bonds with salt-bridge character, 

their strength and thus their contribution to the enthalpic signal of the binding event can 

vary strongly. Taking continuum electrostatics as a reference, this fact can be easily 

understood. If charge-assisted contacts are formed in an environment of low local dielectric 

conditions, which are usually given in deeply buried binding pockets of significant 

hydrophobic character, they will exhibit large contributions. This results from the fact that 

electrostatic forces, described by Coulomb’s law, show the product of the charges in the 

numerator and, apart for the squared contact distance (if the potential is considered, it is 

inverse-linear in distance), the dielectricity constant ε in the denominator. Thus, high 

dielectricity as given in an aqueous environment (ε ≈ 80) attenuates charge-assisted contacts 

strongly. In hydrophobic environment, where ε is small (ε ≈ 1 – 4), an increasingly 

exothermic signal is experienced as there the involved interacting groups are shielded from 

the solvent environment. The thermodynamic signature of protein–ligand binding can 

become quite complex. For the interpretation of such data, it is therefore of utmost 

importance to know whether and where possible changes in protonation states might create 

charge-assisted contacts. If these contacts are planned and subsequently established in 

buried binding pockets they can contribute significantly to the exothermic binding signature 

and thus enhance affinity in a tailored fashion. 

On the other hand, proper adjustment of protonation states plays an important role 

for the permeation and distribution of the potential drug molecule to obtain access to a 

target cell under consideration. It is well known that permeation depends on multiple 
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factors such as lipophilicity, hydrogen bonding properties, which are important for the 

transfer from the water phase into the lipid bilayer, or the shape of a drug molecule and last 

but not least its charge [Schanker, 1962; Spencer et al., 1979; Conradi et al., 1991; El Tayar et 

al., 1991; Testa et al., 1996]. Drug molecules often contain functional groups of acidic and 

basic character and thus, occur dependent on their pKa values and the local pH conditions of 

the surrounding compartment as charged or neutral species in equilibrium. The uncharged 

form of a drug will permeate to a greater extent through biological membranes than its 

corresponding charged form. Accordingly, it would be highly desirable that a drug molecule 

remains uncharged as long as it is transported via membranes and adopts a charged state 

only upon binding to the target protein as usually higher affinity results when charged 

species interact with one another (see above). 

In the present study we investigated a series of ligands comprising a 6-amino-1,7-

dihydro-8H-imidazo[4,5-g]quinazolin-8-one (lin-benzoguanine) and a 1,7-dihydro-8H-

imidazo[4,5-g]quinazolin-8-one (lin-benzohypoxanthine) scaffold with respect to their 

inhibitory potency of the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT) from 

Zymomonas mobilis [Stengl et al., 2007; Barandun et al., 2012]. TGT has been shown to be a 

putative target to fight the pathogenicity of shigellosis, a severe diarrheal disease [Durand et 

al., 1997; Grädler et al., 2001]. Previous comparisons of the lin-benzoguanines and lin-

benzohypoxanthines already showed surprising differences concerning their binding modes 

and their binding affinities [Barandun et al., 2012], which prompted us to take a closer look 

at the features of the two scaffolds in the TGT-bound state. 

  

3.4 Results and Discussion 

3.4.1 Selected Ligands and Binding Mode of lin-Benzopurines to Z. mobilis TGT 

In order to study putative changes in the protonation states of lin-benzopurines, 4a has been 

selected for our initial measurements (Scheme 3.1).  

This compound exhibits several basic functional groups appropriate to pick-up a 

proton, namely N(5) of the aminopyrimidinone substructure (encircled in orange), N(3) of 

the attached aminoimidazole ring (encircled in green), and the nitrogen of the morpholino 

substituent (encircled in blue). 
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Scheme 3.1 Chemical formulae of the investigated ligands. lin-Benzoguanine 4a changes protonation state 

upon binding and exhibits three potential protonation sites (colored circles). Each of these sites is altered and 

possibly removed by chemical means in the ligands 3a – 3c. 

 

A crystal structure of TGT in complex with 4a was determined to a resolution of 

1.42 Å (Figure 3.1A). The lin-benzoguanine scaffold is well-defined in the  𝐹𝑜  −  𝐹𝑐   

difference electron density and a π-stacking interaction between the side chains of Tyr106 

and Met260 can be observed. Polar interactions of the aminopyrimidinone ring are 

experienced with the side chains of Asp102, Asp156, Gln203, and the backbone NH of 

Gly230 as analogously found for other members of this compound series [Stengl et al., 

2007]. The guanidinium moiety of the aminoimidazole ring forms interactions to the closely 

adjacent backbone carbonyl oxygens of Ala232 and Leu231 and contacts a conserved water 

molecule, which itself is part of a crucial cluster of water molecules [Kohler et al., 2009]. The 

two guanidine-type portions of the parent scaffold are highly buried in the protein and thus 

fully shielded from solvent access (aminopyrimidinone portion: 100%, aminoimidazole 

portion: ≈ 96%, if the conserved water molecule is excluded from the calculation).  

We observed a reasonably well-defined electron density for the entire ligand. 

Although the average B-factor of the morpholino moiety is approximately three-times larger 

than that of the tricyclic scaffold (𝐵𝑚𝑜𝑟𝑝 𝑜𝑙𝑖𝑛𝑒 = 21.5Å2  vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 9.1 Å2), the 
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N+-CH2-CH2-NH linker to the morpholine ring is observed in a gauche-conformation partly 

occupying the flat ribose-33 subpocket and forming a weak charge-assisted hydrogen bond 

(3.3 Å) via its morpholino oxygen to the guanidinium group of Arg286. The morpholine ring 

adopts a chair conformation and was refined in the shown orientation with an occupancy of 

80%. To a minor extent the residual density indicates the fully extended substituent with an 

anti-conformation of the linker.  

Since a broad series of lin-benzoguanines has been synthesized during our studies 

[Hörtner et al., 2007; Stengl et al., 2007; Kohler et al., 2009; Barandun et al., 2012], we 

considered selected ligands in the present work, either avoiding or decreasing the basic 

character of the scaffold and the substituents under consideration (Scheme 3.1).  

 

 

Figure 3.1 Binding modes of TGT∙4a (PDB ID: 4PUJ) and TGT∙3a (PDB ID: 4PUK). The protein is represented as 

cartoon. The ligand and interacting residues are represented as sticks (carbon Protein = gray, carbon Ligand = 

blue/green, nitrogen = blue, oxygen = red). For clarity the π-stacking residues Tyr106 and Met260, which flank 

the tricyclic core, are not shown. The lin-benzoguanine scaffold located in the guanine 34 binding pocket is well 

defined in the  𝐹𝑜 −  𝐹𝑐  difference electron density (green) at a sigma level of 2.5. The ligands form several 

interactions to Asp102, Asp156, Gln203, Gly230, Leu231, and Ala232 (dashed lines). The hydrogen bond to 

Leu231 is enabled by a ligand induced backbone-flip, which is stabilized by Glu235. A) The morpholinoethyl 

substituent shows residual mobility in the bound state indicated by the less well-defined electron density. 

Nevertheless, it was refined to an occupancy of 80%. The linker to the morpholine substituent adopts a gauche-

conformation and forms a weak charge-assisted hydrogen bond of 3.3 Å between the oxygen of the 

morpholine ring and the guanidinium group of Arg286. To minor extent, the residual density indicates the fully 

extended anti-conformer. B) Due to the lack of the extended 2-substituent, the methyl group interacts with the 

solvent (green spheres) showing C∙∙∙O distances of up to 4.1 Å. 
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In ligand 3a the basic morpholinoethyl substituent is replaced by a simple methyl 

group. The binary complex with Z. mobilis TGT was obtained with a maximum resolution of 

1.49 Å (Figure 3.1B). The scaffold adopts exactly the same binding mode forming similar 

interactions to 4a. Due to the lack of the extended 2-substituent, the methyl group is in 

direct contact with five water molecules showing C∙∙∙O distances up to 4.1 Å. 

In addition to the changes found in lin-benzoguanine 3a, the exocyclic amino function 

at the pyrimidinone ring has been removed in lin-benzohypoxanthine 3b. Barandun et al. 

recently reported on the binding mode of this class of lin-benzopurines [Barandun et al., 

2012]. In contrast to binary complexes observed with the lin-benzoguanines, Asp102 adopts 

a downwards-rotated orientation pointing away from the ligand and the binding pocket. The 

observed rotamer undergoes hydrogen bonds to the side chain of Asn70 and the backbone 

NH of Thr71. A similar geometry is found in apo TGT [Brenk et al., 2003]. The created empty 

space between ligand and protein is filled by a cluster of six water molecules. All other 

interactions are established similarly as in the TGT complexes with lin-benzoguanines. 

The strongly basic character of the aminoimidazole moiety in 2-amino-lin-

benzopurines 3a, 3b, and 4a has been changed to a less basic amidinium portion in 3c. 

Except for the hydrogen bond to the backbone oxygen of Ala232, this compound is able to 

undergo the same hydrogen bonding pattern as described for the above-mentioned crystal 

structure (PDB ID: 3C2Y) [Ritschel et al., 2009]. 

 

3.4.2 Protonation States of lin-Benzopurine∙TGT Complexes 

To obtain insights into the potentially superimposed protonation effects that occur upon 

ligand binding, ITC measurements were performed using Hepes, Tris, and Tricine buffer at 

pH 7.8. The three buffers differ in their enthalpy of ionization [Christensen, 1976; Fukada 

and Takahashi, 1998]. The observed enthalpies for the complexation of the studied ligands 

were plotted against the heat of ionization of the buffers (Figure 3.2), and the recorded 

thermodynamic profiles are listed in Table 3.1. Ligand 4a picks up 0.95 protons per mole 

formed complex, which either protonate the protein or the bound ligand (Figure 3.2, blue).  

Apart from the basic functionalities of 4a, there are several amino acid residues that 

could also be involved in the proton uptake. Within a 12 Å radius centered at Cγ of Tyr106 

(Figure 3.3) around the binding pocket, Asp102, Asp156, Glu157, Glu235, and Asp280 are 
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putative proton acceptor groups. According to Poisson-Boltzmann calculations these 

residues can be assumed as fully deprotonated at the applied pH conditions between 5.5 

and 8.5 [Ritschel et al., 2009]. Asp102 and Asp156 are directly involved in ligand binding 

(Figure 3.1).   

 

 

Figure 3.2 ∆𝐻𝑜𝑏𝑠  is plotted against ∆𝐻𝑖𝑜𝑛  for ligands 3a – 4a binding to TGT. The icons indicate the mean of the 

measured enthalpy values for each buffer system in kJ/mol. A linear fit was applied to the data points 

illustrated as solid lines. The positive slope shows a buffer dependency of 3a, 3c, and 4a suggesting an uptake 

of approximately one proton per mole by the complex. Only binding of 3b does not experience any changes in 

protonation state. The corrected value for ∆𝐻𝑏𝑖𝑛𝑑  can be extracted from the intercept, the number of captured 

protons results from the slope, which was calculated separately taking the standard deviations of each data 

point into account. 

 

We decided to first investigate the ligand series exhibiting different basic characters. 

The lin-Benzoguanines 3a (0.96 protons per mole; Figure 3.2, red) and 3c (0.95 protons per 

mole; Figure 3.2, green) also suggest the uptake of approximately one proton. Only lin-

benzohypoxanthine 3b (0.02 protons per mole; Figure 3.2, purple) is obviously not capable 

to share these properties. 

Our findings agree with the experimentally determined pKa values reported for the 

lin-benzohypoxanthines and lin-benzoguanines in aqueous solution (Table 3.2) [Hörtner et 

al., 2007; Barandun et al., 2012]. 
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Table 3.1 Thermodynamic profiles of the investigated ligands in the applied buffer systems. 

Ligand TGT variant 𝑲𝒅 𝒏𝑴  
∆𝑮𝟎 𝒌𝑱

∙ 𝒎𝒐𝒍−𝟏  
buffer 

∆𝑯𝒐𝒃𝒔 𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏 [a] 

−𝑻∆𝑺𝟎 𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏 [b] 

3a Wild type 52.4 ± 6.9 -41.6 ± 0.3 Hepes -74.8 ± 1.8 33.2 ± 1.9 

    Tricine -66.7 ± 0.1 25.1 ± 0.3 

    Tris -50.9 ± 0.9   9.3 ± 0.9 

     -97.4 ± 2.2 55.8 ± 2.2 

3a D102N 146.1 ± 25.6 -39.0 ± 0.4 Hepes -33.5 ± 0.4  -6.1 ± 0.5 

    Tricine -35.0 ± 0.4  -4.0 ± 0.5 

    Tris -33.9 ± 0.3  -4.8 ± 0.4 

     -33.9 ± 2.1 -4.9 ± 2.1 

3a D156N 188.1 ± 59.1 -38.5 ± 0.8 Hepes -51.4 ± 0.2 13.0 ± 0.4 

    Tricine -52.6 ± 2.5 13.4 ± 2.5 

    Tris -49.2 ± 0.4 11.4 ± 0.6 

     -53.2 ± 0.4  12.6 ± 0.9 

3b Wild type 411.0 ± 63.8 -36.5 ± 0.4 Hepes -48.0 ± 0.2 11.5 ± 0.4 

    Tricine -47.7 ± 0.2 11.2 ± 0.5 

    Tris -47.6 ± 0.3 11.1 ± 0.5 

     -48.4 ± 0.3 11.9 ± 0.5 

3c Wild type 287.5 ± 52.9 -37.4 ± 0.5 Hepes -69.3 ± 0.8 31.9 ± 0.9 

    Tricine -57.1 ± 1.6 19.7 ± 1.6 

    Tris -43.4 ± 0.1   6.0 ± 0.5 

     -89.2 ± 1.4 51.8 ± 1.5 

4a Wild type    35.0 ± 6.9    -42.6 ± 0.5[c] Hepes -78.3 ± 1.2     35.7 ± 1.3[c] 

    Tricine -65.8 ± 0.3  23.2 ± 0.6 

    Tris -51.9 ± 1.1    9.3 ± 1.2 

        -96.4 ± 4.0[d]    53.8 ± 4.0[d] 

4a E235Q 1275.6 ± 297.3 -33.8 ± 0.6 Hepes -51.0 ± 0.7 17.9 ± 0.7 

    Tricine -39.9 ± 0.5   6.0 ± 0.5 

    Tris -28.6 ± 0.3  -5.7 ± 0.5 

     -66.2 ± 3.2 32.4 ± 3.3 

a
The corresponding plot to obtain net ∆𝐻𝑏𝑖𝑛𝑑  of wild type TGT corrected for ionization effects is shown in 

Figure 2. 
b
−𝑇∆𝑆0 was calculated according to the Gibbs-Helmholtz equation. 

c
Errors were estimated by means 

of standard deviation for 𝐾𝑑  and ∆𝐺0 comprising at least six measurements and for ∆𝐻𝑜𝑏𝑠  at least two. The 

error for −𝑇∆𝑆0 was calculated according to error propagation. 
d
Buffer corrected data are displayed in bold. 
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Unfortunately, no values are available for the morpholinoethyl substituent in 4a; we 

therefore assume a value similar to that of parent morpholinoethyl. The value for the latter 

has been reported to be pKa = 7.7 [Hall, 1957]. We suppose that this assumption is justified 

as the morpholino portion is attached via an aliphatic ethyl linker which largely avoids 

transmission of electronic effects across molecular portions. For 2-amino-lin-benzoguanines 

a value of 4.4 has been assigned to N(5)H+ and 5.7 to N(3)H+ in lin-benzoguanine 3a 

[Barandun et al., 2012]. Remarkably, the acidity of N(5)H+ is shifted by about two logarithmic 

units to pKa = 1.8 in lin-benzohypoxanthine 3b. 

 

Table 3.2 Measured pKa values for the scaffolds of lin-benzoguanines 3a, 3c, 4a, and lin-benzohypoxanthine 3b. 

  pKa measurements 
  N(7)H N(3)H+ N(5)H+ 

3a 

            

7

5

1

3

7

5

1

3  

> 10 
5.7 

  6.2[b] 
4.4 

3b 

         

> 10 5.6 1.8 

3c 

                               

n.d.[a] 5.4 n.d.[a] 

4a 

                        

n.d.[a] n.d.[a] n.d.[a] 

a
n.d.: not determined.

 b
Data of Barandun et al., 2012 supersede Hörtner et al.,2007.  

 

In order to confirm the experimentally derived evidence, Poisson-Boltzmann 

calculations were consulted to analyze shifts of pKa values of the active site residues and the 

ligand functional groups upon binding [Czodrowski et al., 2006]. Within the 12 Å sphere 

centered around Cγ of Tyr106 all titratable residues were selected and the corresponding 

pKa values were calculated prior and after complex formation. The calculations reveal only 

significant shifts in basic or acidic properties for Asp102, Asp156, and N(3) or N(5) of ligand 

4a (Table 3.3). Accordingly as a first working hypothesis, either N(3), embedded into an 

aminoimidazole substructure, or N(5), being part of an aminopyrimidinone moiety, could be 

likely candidates for the proton uptake. The shift suggested for N(5) appeared larger 
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(∆pKa = 2.6) compared to N(3) (∆pKa = 1.0), however, as N(3) shows the more basic character 

in aqueous solution, both sites appear appropriate to pick up a charge. 

 

Table 3.3. Calculated pKa values of the crucial amino-acid residues within the binding pocket and ligand 3a 

before and after complex formation. 

Residue[a] pKa prior to complexation[b] pKa in complexed state 

  N3 N5 

Asp102 1.63 1.64 -2.12 

Asp156 5.44 4.40  3.02 

3a[c]  6.65  7.00 
a
All other side chains exhibited only marginal changes in their pKa values and are hence not listed. 

b
For the 

Poisson-Boltzmann calculations a dielectric constant of ε = 20 at a pH of 7.8 was applied.  
c
pKa values in 

aqueous solution according to Barandun et al., 2012. 

  

A previous study on the pKa properties of TGT∙2-amino-lin-benzoguanine inhibitor 

complexes was based on the hypothesis that the ligands bind with N(3) in protonated state 

[Hörtner et al., 2007; Ritschel et al., 2009]. Accordingly, the 2-aminoimidazole moiety of the 

ligand scaffold would be positively charged and form charge-assisted hydrogen bonds to the 

backbone carbonyl oxygens of Leu231 and Ala232. This interaction would induce a backbone 

flip, which is stabilized by a further charge-assisted hydrogen bond formed between Glu235 

and the backbone NH of Leu231 [Hörtner et al., 2007; Ritschel et al., 2009]. The nearly 30-

fold increase in binding affinity suggested by a biochemical assay between 3a and 3c was 

considered as clear indication of this protonation event at the imidazole moiety of 3a. 

However, recent results also support the hypothesis that N(5) is the likely candidate to pick-

up a proton. A newly published crystal structure of Z. mobilis TGT in complex with 2-amino-

lin-benzohypoxanthine-type inhibitors shows that Asp102 adopts a significantly different 

orientation in the complexes compared to the corresponding lin-benzoguanine complexes 

[Barandun et al., 2012]. This residue is rotated away from the ligand towards the ribose 34 

subpocket as similarly found in the apo-enzyme [Brenk et al., 2003; Barandun et al., 2012]. In 

the new position, Asp102 forms an interaction with the carboxamide group of Asn70 and the 

backbone NH of Thr71 [Barandun et al., 2012]. By capturing a proton, the lin-benzoguanine 

moiety obviously shifts its pKa properties and induces an alternative conformation of Asp102 

to interact with the ligand’s guanidinium group.  
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In order to assess whether N(3) or N(5) becomes protonated upon protein binding or 

whether an even more complex situation with several superimposed and mutually 

compensating effects is given, we embarked onto a systematic mutational study combined 

with subsequent ITC experiments and pKa calculations.   

 

3.4.3 Mutational Studies 

According to our pKa calculations, Asp102 and Asp156 form charge-assisted interactions with 

the aminopyrimidinone portion of the lin-benzoguanine-type inhibitors and might be 

involved in the protonation of N(5). Therefore, we decided to replace Asp by Asn at both 

sites to investigate the impact of these residues on ligand binding. 

The replacement by Asn avoids the negative charge in this region and introduces a 

permanently uncharged contact. While the Asp156Asn mutant still exhibits some, however 

by a factor of three significantly reduced catalytic activity compared to the wild type, the 

Asp102Asn mutant shows no activity at all [Romier et al., 1996]. For both mutants, the 

crystal structures with 3a were determined and ITC measurements carried out in the three 

buffer systems.  

Structural data were recorded to a resolution of 1.65 Å and 1.85 Å. Ligand 3a adopts 

in the Asp156Asn mutant a similar binding mode to the wild type (Figure 3.3A and 3.3B). The 

aminopyrimidinone ring interacts with the side chains of Asp102, Asn156, Gln203, and the 

backbone NH of Gly230. The orientation of the replaced Asn156 residue is slightly shifted 

compared to the wild type moving the terminal carboxamide group approximately 16° out of 

the plane through the lin-benzoguanine scaffold. The interaction between the terminal 

carboxamide oxygen of Asn156 and the ligand’s exocyclic amino function remains 

unchanged compared to the wild type (∆d = 0.1 Å). However, the adjacent contact via the 

NH2 of the carboxamide group of Asn156 and N(7) of 3a is extended from 2.7 Å to 2.9 Å. This 

expansion both results from the larger radius of the nitrogen atom and the replacement of a 

charge-assisted hydrogen bond by a neutral one. Additionally, the side chain oxygen of 

residue Gln203 tilts about 13° to the front elongating the distance between its amino 

function and the same group in Asn156 from 2.8 Å to 3.2 Å. The strength of the interaction 

formed to the carbonyl oxygen of the complexed ligand and Gln203 remains unaffected as 

the uncharged contact distance suggests. Also the interactions formed between the ligand 
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and the side chain of Asp102 do not differ from the wild type. To establish this interaction 

pattern, the proton at N(7) must be transferred to N(5) to produce the other tautomer. In 

summary, neutral hydrogen bonds are formed to Asn156 and charge-assisted ones to 

Asp102 (Scheme 3.2). 

 

 

Figure 3.3 The protein is displayed as cartoon with its interacting residues shown in line representation. The 

mutated side chains and 3a are highlighted by sticks (nitrogen = blue, oxygen = red). Dashed lines represent 

hydrogen bonds. Distances are given in Å. A) Superimposition of 3a as bound to wild type TGT (cyan; PDB ID: 

4PUK), mutant Asp102Asn (yellow; PDB ID: 4PUL) and mutant Asp156Asn (orange; PDB ID: 4PUM). The ligands 

adopt overall the same orientation in all displayed complexes. The side chain of Asn102 adopts a conformation 

rotated away from the binding site compared to Asp102 in the wild type enzyme. Contrary, Asn156 remains in 

a similar position as observed for Asp156. B) Close-up of the interactions of the mutated residue Asn156 

(orange) compared to those of wild type enzyme (cyan). Asn156 is slightly rotated by 16° extending the 

interaction to the amino group of Gln203 and N(7) of the ligand. All other connections remain unaffected. C) 

Close-up of the interactions of the mutated residue Asn102 (yellow) compared to those of wild type enzyme 

(cyan). Asn102 shows the rotated orientation adopting a similar conformation as found for the lin-

benzohypoxanthine complexes. Instead of interacting similarly with the ligand as Asp102 in the wild type, 

Asn102 forms contacts to the backbone NH of Asn70 and a nearby water molecule.  
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In the complex structure of the Asp102Asn mutant with 3a, the ligand adopts a 

position similar to the one in the wild type. It is slightly shifted off from the position of 

Asp156 (Figure 3.3A). The mutated residue Asn102 does not form hydrogen bonds to the 

aminopyrimidinone moiety of the ligand but adopts an orientation similar to those of wild 

type enzymes with the lin-benzohypoxanthine-type inhibitors. A hydrogen bond is formed to 

a nearby water molecule (2.8 Å) and the backbone NH of Thr71 (2.7 Å) [Barandun et al., 

2012].   

As expected, the binding affinity of 3a determined by ITC measurements drops for 

both mutant variants as favorable interactions are lost in both cases. For the Asp156Asn 

mutant a reduction by a factor of nearly four (wild type: 49 ± 5 nM, mutant: 188 ± 59 nM) is 

found, whereas a threefold loss is recorded for the Asp102Asn mutant (146 ± 26 nM). 

Surprisingly, 3a does not show any significant buffer dependency upon binding to the 

two mutants (Table 3.1). Also, Poisson-Boltzmann calculations performed on these mutant 

complexes support this hypothesis (Table 3.4). The close contacts to the two negatively 

charged aspartates in the wild type reinforce protonation of the ligand and cause the strong 

pKa shift.  

Remarkably, in the Asp102Asn mutant, the presence of Asp156 as charged residue 

and the neutral Asn102, which is rotated away from the binding site is not sufficient to 

induce an equally strong pKa shift and thus, a protonation of the ligand as experienced in the 

wild type. This finding also correlates with the expanded interactions of Asn156 and the 

ligand’s aminopyrimidinone moiety in the Asp156Asn mutant where no positive charge is 

located on this part of the ligand. 

 

Table 3.4 Calculated pKa values of the crucial amino-acid residues within the binding pocket of Asp102Asn and 

Asp156Asn, respectively, and N(5) of ligand 3a before and after complex formation. 

Mutant Residue pKa prior to complexation[a] pKa in complexed state 

Asp102Asn Asp156 2.80  2.57 

-1.14  3a  

Asp156Asn Asp102 1.29 -2.31 

 5.32  3a  

a
For the Poisson-Boltzmann calculations the same conditions were applied as noted in Table 3. 
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Scheme 3.2 Interactions formed between 3a and amino acids 102 and 156 of wild type TGT (cyan), the D156N 

mutant (orange) and the Asp102Asn mutant (yellow). In the TGT∙3a complex N(5) of the parent scaffold 

becomes protonated upon binding and forms salt bridges to Asp102 and Asp156. To bind to the Asp156Asn-

mutant in a similar way, the proton at N(7) must be transferred to N(5), then forming hydrogen bonds to 

Asn156 and charge-assisted ones to Asp102. In the Asp102Asn∙3a complex Asn102 is rotated off the binding 

pocket. Therefore, N(7) carries the proton to form charge-assisted hydrogen bonds to Asp156.  
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Up to this point all experimental findings indicate a protonation of N(5) in the 

aminopyrimidinone moiety. Does this, however, rule out the former hypothesis that N(3) in 

the aminoimidazole portion changes protonation and that the picked-up charge contributes 

significantly to the enhanced binding affinity? Also, a more complex situation with respect to 

changes of protonation states might be given in this part of the structure. In this area, 

Glu235 takes an important role on ligand-binding and protein function. It has been shown 

that Glu235 adapts its protonation state depending on the orientation of the peptide bond 

between Leu231 and Ala232 (Scheme 3.3A, B) [Brenk et al., 2003]. This peptide bond is 

exposed to the binding pocket and experiences a backbone flip upon ligand binding or upon 

changes in the environmental pH value. If a lin-benzopurine binds to the active site, the 

peptide bond’s carbonyl oxygen of Ala232 is oriented into the binding pocket and accepts a 

hydrogen bond from N(1)H of the ligand (Scheme 3.3C). In consequence, Glu235 becomes 

deprotonated in order to accept a hydrogen bond of the flipped backbone NH group [Tidten 

et al., 2007]. Glu235 is the only proximal amino acid involved in ligand binding, which could 

be able to release a proton.  

Based on these considerations, we mutated Glu235 to Gln to experimentally assess 

the remaining overall protonation inventory. ITC experiments were carried out with the 

Gln235 variant in the three mentioned buffer systems indicating an overall proton uptake of 

0.79 protons per mole. This nearly identical protonation inventory speaks for N(5) in the 

aminopyrimidinone moiety as sole proton acceptor of the lin-benzoguanine scaffold. 

Nonetheless, these experiments do not completely rule out a possibly more complex 

situation. Glu235 has to release a proton in consequence of the peptide bond flip. This only 

makes this bond able to recognize the lin-benzopurine scaffold.  

It could be imagined that the proton release of Glu235 is combined with the 

simultaneous protonation of N(3) in the aminoimidazole portion. In this case both effects 

would mutually compensate and nullify in the inventory. The following experiment makes 

this consideration unlikely. Previously, we were able to determine the apo structures of TGT 

wild type at pH 5.5 and 8.5 [Romier et al., 1996; Brenk et al., 2003]. At pH 5.5, the NH group 

of the Leu231/Ala232 peptide bond is oriented towards the binding pocket and Glu235 must 

adopt a protonated state to stabilize the peptide bond (Scheme 3.3A). At pH 8.5, the flipped 

peptide bond orientation is given and Glu235 has to adopt a deprotonated state 
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(Scheme 3.3B). We therefore took crystals grown at pH 5.5 and transferred them in a 

gradual stepwise fashion to higher pH finally reaching a value of 7.8. 

 

 

Scheme 3.3 Dependence of the peptide bond between Leu231 and Ala232 on the pH value and ligand binding. 

TGT apo structures of crystal grown at different pH values clearly indicate that a backbone flip between Leu231 

and Ala232 occurs dependent on the environmental pH value and the ligand bound. A) Scheme of the 

backbone orientation at pH 5.5. The backbone NH group of Leu231 is facing the binding pocket. The carboxyl 

group of Glu235 is present in its protonated state interacting with the carbonyl function of Leu231 and the 

backbone NH group of Val233. B) Scheme of the backbone orientation at pH 8.5. The backbone carbonyl 

function of Leu231 is exposed to the binding pocket. Hence, the side chain of Glu235 accepts two hydrogen 

bonds from the backbone NH groups of Ala232 and Val233 and must occur in its deprotonated form. The 

crystal structure determined at pH 7.8 and obtained by a gentle pH transition from pH 5.5 shows the same 

backbone orientation as at pH 8.5. This clearly indicates that Glu235 is already deprotonated in the apo 

structure at pH 7.8. C) Scheme of the ligand bound backbone orientation. Taking the orientation of the peptide 

bond between Leu231 and Ala232 in the apo structure at pH 7.8 into account, Glu235 accommodates a bound 

ligand without release of a proton at this pH value. D) Overlay of TGT apo structures at pH 5.5 (PDB ID: 1P0D), 

7.8 (PDB ID: 4PUN) and 8.5 (PDB ID: 1PUD). Amino acid residues are shown in stick representation (nitrogen = 

blue, oxygen = red). For clarity the side chain of Val233 is not shown. 
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Subsequently, we subjected the thus treated crystal to a structure determination and 

observed the geometry of the peptide bond with the backbone carbonyl group oriented 

towards the binding pocket (Scheme 3.3B). This geometry is only compatible with Glu235 

present in the deprotonated state. We thus conclude that the backbone flip must occur 

already at lower pH and ligand binding studied by our ITC titrations occurs to the enzyme 

with the peptide bond in the orientation for binding the ligand and with Glu235 in the 

deprotonated state. Therefore, a simultaneous compensating protonation change of N(3) 

and Glu235 can be excluded. 

Finally, there remains the question why the addition of the exocyclic C(2)–NH group 

at the imidazole moiety of the lin-benzopurines (3a compared to 3c) results in a significant 

affinity enhancement, which made Ritschel et al. to believe that this part of the ligand would 

bear a charge improving the affinity contribution of the formed additional hydrogen bonds 

[Ritschel et al., 2009]. The biochemical assay exaggerated this improvement (factor 30) as 

the ITC experiments suggest a smaller value (factor 5.5). Nonetheless, the enhancement is 

still remarkable. It has to be regarded that both NH functionalities of the 2-aminoimidazole 

portion forming the hydrogen bonds to the neighboring carbonyl groups of Leu231 and 

Ala232 are mutually adjacent (Scheme 3.3C). This dual hydrogen bonding array involves a 

pattern of two donor and acceptor groups with parallel orientation. Such an arrangement 

avoids secondary repulsive interactions that, for example, are given in the above-discussed 

contact of the aminopyrimidinone moiety and Asn156 (Scheme 3.2, center). The separation 

distance of the hydrogen atoms in the directly adjacent hydrogen bonds is rather short and 

thus substantial electrostatic interactions will occur [Jorgensen and Pranata, 1990]. Partial 

positive charges are given on the hydrogen atoms whereas partial negative charges are 

experienced on the nitrogen and oxygen atoms in the NH∙∙∙O hydrogen bonds. A favorable 

situation is given, as in the present case, where one of the binding partners bears all the 

hydrogen donor groups, the other all acceptor groups. The situation is worse, if donor and 

acceptor sites alternate between both partners, since then secondary repulsive interactions 

results from complexation. This incident is given in the contact to Asn156 and clearly 

responded by the structure with expanded and distorted geometry (Figure 3.3B). The 

enhancement of adjacent hydrogen bonding contacts following the DD/AA pattern has 

already been described in host–guest complexes many years ago [Murray and Zimmerman, 

1992]. 
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3.5 Conclusion 

In the present study, changes of the protonation states of ligands binding to the active site 

of the enzyme TGT were investigated. ITC measurements supported by pKa calculations 

confirmed the uptake of one proton in case of the lin-benzoguanine-type ligands. The 

structurally related lin-benzohypoxanthines do not show such a pick-up of a proton. 

Considering the adopted binding modes, the lin-benzohypoxanthines do not induce a 

relocation of the side chain of Asp102, which binds in case of the lin-benzoguanines directly 

to the ligand via two short hydrogen bonds. This relocation of Asp102 and the presence of 

Asp156 in short distance to the aminopyrimidinone moiety of the ligand creates a negatively 

charged environment. This provokes a significant pKa shift of the ligand’s heterocyclic 

moiety, which therefore becomes protonated and thus positively charged. Mutational 

exchanges of both Asp residues by Asn underline that the cluster of negative charges is 

responsible for this induced pKa shift.  

However, the intrinsic pKa values of the uncomplexed ligand under consideration 

must fall into a crucial window to achieve such a change in protonation upon binding. Both, 

the lin-benzoguanines and the lin-benzohypoxanthines exhibit a second guanidinium type 

motif in the five-membered imidazole portion. Our investigations reveal, however, that N(3) 

of the aminoimidazole moiety does not change its protonation state upon binding but the 

moiety experiences favorable hydrogen bond contacts to the protein avoiding secondary 

repulsive interactions. In summary, the lin-benzoguanines bear no charge in aqueous 

solution at pH 7.8 but become positively charged at the binding site. The charge is mainly 

distributed over the guanidine motif of the aminopyrimidinone and only minor effects might 

influence the aminoimidazole portion. 

This observation explains the high potency of the lin-benzoguanines showing binding 

affinities down to the one-digit nanomolar range. Their binding is characterized by a strong 

enthalpic binding signature resulting from the salt bridges formed between the 

aminopyrimidinone moiety and the deprotonated side chains of Asp102 and Asp156 

(Table 1). The contacts to both acidic residues are established in a deeply buried binding 

pocket that shields the formed charge-assisted interactions from solvent access. In this 

environment of low local dielectricity the formed charged contacts experience an enhanced 

affinity contribution [Bogan and Thorn, 1998]. In addition, the hydrogen bonds formed 
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between the aminoimidazole ring and the backbone carbonyl oxygens of Leu231 and Ala232 

are expected to be energetically favorable avoiding repulsive effects. 

The dramatic loss in binding affinity in case of the lin-benzohypoxanthines results 

from a loss of the interaction to Asp102, which rotates away from the ligand recognition site 

towards the ribose-34 binding pocket. As a consequence, the pyrimidinone ring remains 

uncharged, as found in aqueous solution prior to binding. Obviously, Asp156 alone does not 

take sufficient impact on the adjacent pyrimidinone moiety of the lin-benzohypoxanthines to 

induce a sufficiently large pKa shift to result in protonation and consequently charge-assisted 

interactions.  

With respect to bioavailability, the aminopyrimidinone portion in the lin-

benzoguanines exhibits the desirable feature of getting protonated upon protein binding 

only. Despite this advantage, overall the molecular properties of the ligands are not yet ideal 

regarding membrane transportation due to a large polar character of the molecules. Both 

the lin-benzoguanines and the lin-benzohypoxanthines show unsatisfactory membrane 

permeation in PAMPA measurements [Barandun et al., 2012]. 

This study demonstrates the importance to analyze the protonation properties of 

structurally closely related ligands. ITC titrations, performed in different buffer conditions, 

allow elucidating the net protonation inventory and stoichiometry. These studies, however, 

have to be complemented by site-directed mutagenesis and pKa calculations to trace where 

the protons go and accordingly the charges reside on the formed complex. They also help to 

avoid false conclusions resulting from mutually compensating effects and allow to localize 

the hot spots of binding and to tailor ligand properties so that transformation to the charged 

state only occurs upon target binding.  
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4. Beyond Affinity: Enthalpy–Entropy Factorization Unravels 

Complexity of a Flat Structure–Activity Relationship for 

Inhibition of a tRNA-Modifying Enzyme 

 

4.1 Introductory Remarks 

The following chapter was published in the scientific Journal of Medicinal Chemistry.
3
 Water cluster analyses 

were carried out by Michael Betz (Philipps-Universität Marburg). TGT compounds were synthesized by Luzi 

Jakob Barandun and Christoph Hohn (ETH Zürich). All crystallographic and microcalorimetric studies have been 

performed by the author of this thesis along with the drafting and discussion of the paper. 

 

 

 

4.2 Abstract 

Lead optimization focuses on binding affinity improvement. If a flat structure–activity 

relationship (SAR) is detected, usually the optimization strategy will be abolished as 

unattractive. Nonetheless, as affinity is composed of an enthalpic and entropic contribution, 

factorization of both can unravel the complexity of a flat, on first sight tedious SAR. In such 

cases, the binding free energy of different ligands can be rather similar, its factorization into 

enthalpy and entropy can be distinct. We investigated the thermodynamic signature of two 

classes of lin-benzopurines binding to tRNA–guanine transglycosylase. While the differences 

                                                           
3 Neeb et al. (2014). Beyond Affinity: Enthalpy-Entropy Factorization Unravels Complexity of a Flat Structure-Activity Relationship for 

Inhibition of a tRNA-Modifying Enzyme. Journal of Medicinal Chemistry 57, 5566-5578. 
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between the two series are hardly visible in the free energy term, they involve striking 

enthalpic and entropic changes. Analyzing thermodynamics along with structural features 

revealed that one ligand set binds to the protein without inducing significant changes 

compared to the apo structure, however, the second series provokes complex adaptation 

leading to a conformation closely similar to the substrate-bound state. In the latter state, a 

cross-talk between two pockets is suggested based on these observations. 

 

4.3 Introduction 

In a medicinal chemistry program, the optimization of a given lead structure seeks for an 

improvement of binding affinity. This goal is usually achieved by systematic replacement and 

expansion of functional groups and building blocks at the parent scaffold of the lead 

structure. Nowadays, the optimization process is supported by structure-based 

considerations, particularly if the 3D structure of the target protein is available. The value of 

such modeling attempts is highly appreciated, however, the experts also know that modeling 

might predict correct affinity correlations and structure–activity relationships based on false 

assumptions, which remain undiscovered as long as only affinity data are available. Without 

performing crystal structure determinations of every optimization candidate with the target 

protein, such putative misconceptions about binding modes or interaction patterns could 

easily remain undetected. Complex and difficult structure–activity relationships can even be 

reflected by featureless and flat correlations due to compensating effects. In such cases, it 

might be important to validate whether additional parameters beyond affinity can help to 

obtain more relevant insights into the properties of the studied system.  

The binding affinity is a Gibbs free energy value that decomposes into an enthalpic 

and entropic contribution. Both properties can provide additional information about the 

binding event, however, as their changes are also related to the entire protein–ligand 

binding process, any modification of the whole system will be compressed into the 

measured overall ∆𝐺0, ∆𝐻0, and 𝑇∆𝑆0. It is therefore extremely difficult to factorize the 

changes of these properties into individual contributions that can be assigned to single 

interactions or particular binding steps. Only within congeneric series of ligands and 

considering the binding to proteins classified as rigid, such decompositions have been 

successful [Dullweber et al., 2001; Baum et al., 2010; Snyder et al., 2011; Biela et al., 2012; 
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Biela et al., 2012; Biela et al., 2013; Martin and Clements, 2013]. In these analyses, it should 

not be forgotten that changes in the individual solvation pattern resulting from differences 

of one single water molecule can strongly perturb and shift the thermodynamic signature 

between ligands. Nonetheless, differences in the thermodynamic profiles of chemically 

closely related ligands usually indicate deviating binding features and help to validate 

structure–activity relationships.  

In the current study, we investigated the binding of two ligand series modified at two 

positions of the parent lin-benzopurine scaffold (Scheme 4.1) [Barandun et al., 2012]. The 

first modification involves attachment of an exocyclic amino group to a pyrimidinone 

headgroup, which makes the considered ligands competent to establish enhanced charge-

assisted or even salt-bridge type hydrogen bonds [Neeb et al., 2014]. The second 

modification concerns attachment of a series of substituted amino groups at the remote end 

of the parent scaffold [Ritschel et al., 2009]. The binding affinity determined via the 

dissociation constant (𝐾𝑑  value) measured by isothermal titration calorimetry varies only 

slightly among individual derivatives of the two series and differs among corresponding 

members of both series by about one order of magnitude depending whether the amino 

group is present or absent at the pyrimidinone moiety [Barandun et al., 2012]. It is 

exceptional is, however, that the attachment of the remote amino substituents of chemically 

rather different nature does not have much influence on the affinity. This at first glance 

rather unspectacular flat structure–activity relationship turns out to be very substantial if 

thermodynamic profiles and detailed binding modes are correlated.  

The addressed structure–activity relationship is presented for the binding of ligands 

to the tRNA-modifying enzyme tRNA–guanine transglycosylase (TGT). This enzyme catalyzes 

a complete exchange of a nucleobase at the wobble position of some tRNAs [Xie et al., 

2003]. Inhibition of this protein in bacteria is a promising therapeutic perspective as its 

function has been linked to the pathogenicity of Shigella, the causative agent of bacterial 

dysentery [Durand et al., 2000; Sansonetti, 2001]. Shigellosis occurs predominantly in 

developing countries and is responsible for more than 100’000 lethal cases every year 

[Kotloff et al., 1999]. 

In the present study, we show that two ligand series based on two slightly different 

parent scaffolds show quite distinct thermodynamic signatures even though the same 

substituents are attached. The recorded differences find an explanation in the features of 
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the protein conformer to which the ligands bind. Whereas one series binds to a protein 

conformer similar to that of the apo protein, the other series binds to the enzyme in a 

conformation related to the one adopted with the bound substrate. Due to considerable 

rearrangements of the protein, a crosstalk between binding subpockets is established, which 

gives rise to differences in the thermodynamic signatures. These significant differences in 

the binding properties would have never been detected if solely affinity data across the two 

ligand series would have been evaluated. Only by taking the thermodynamic profiles and the 

partitioning in enthalpy and entropy into account these differences do become apparent. 

 

4.4 Results and Discussion 

4.4.1 Binding Affinities and Thermodynamic Profiles of the 2-Amino-lin-benzopurines 

 

Scheme 4.1 Chemical formulas of the investigated ligands 3a – 6a and 3b – 6b. 

 

To establish a structure–activity relationship for the two compound series 3a – 6a and 3b –

6b (Scheme 4.1), we determined their inhibitory potency (𝐾𝑖  values). In previous studies, we 

characterized this property by a functional biochemical assay, which records by how much 

the incorporation of radioactively labeled guanine into the tRNA is suppressed when the 

catalytical properties of the target enzyme TGT are blocked [Meyer et al., 2006]. This assay is 

a rather indirect measure, as guanine itself exhibits some inhibitory potency and a size-

dependent inhibition model has to be considered for the bound ligands. Inhibitors decorated 
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by large substituents are competitive with tRNA binding whereas inhibitors of the size of the 

natural nucleobase substrates can block the enzyme, even if the tRNA is intermediately 

covalently attached to the protein. They compete for the binding site of the exchanged 

nucleobase. In the latter situation, the protein must be present in the substrate-bound 

conformation. As this binding assay superimposes multiple steps to the actual binding event 

and characterizes the inhibitory potential of the ligands rather indirectly, we used isothermal 

titration calorimetry (ITC) in the present study instead. This method directly reveals the 

dissociation constant 𝐾𝑑  for the binary protein–ligand binding event. From this, the Gibbs 

free energy of binding can be accessed using the equation ∆𝐺 = 𝑅 ∙ 𝑇 ∙ 𝑙𝑛 𝐾𝑑 . The measured 

data are listed in Figure 4.1. Remarkably, the ITC binding data of 3a – 6a match quite well 

with those determined by the biochemical assay, whereas for the series 3b – 6b deviations 

up to a factor of 16 (for 3b) are found [Ritschel et al., 2009; Barandun et al., 2012]. Apart 

from differences in the applied assay buffer conditions and the temperature used to run the 

experiments (ITC: 25°C, biochemical assay: 37°C), conformational differences given for the 

protein and discussed later in this contribution might give rise to these deviations. 

The Gibbs free energy of binding shows rather similar values across the lin-

benzoguanine 3a – 6a (mean: −41.6 ± 1.4 kJ ∙ mol−1) and lin-benzohypoxanthine 3b – 6b 

series (mean: −35.7 ± 1.8 kJ ∙ mol−1) indicating a flat and at first sight rather unspectacular 

structure–activity relationship. Without consulting the additional thermodynamic properties, 

this finding could have been the end of the current drug development study. The more it is 

surprising that the thermodynamic signature factorizes in both series very differently in 

enthalpy and entropy. All inhibitors exhibit strong exothermic binding and, as expected, this 

strong negative enthalpic contribution is larger for the lin-benzoguanine series. Remarkably, 

the enthalpic signature scatters for the lin-benzohypoxanthines series across a rather small 

window of ∆∆𝐻0 = 8.5 kJ ∙ mol−1 whereas the lin-benzoguanines spread over a nearly four 

times larger range of ∆∆𝐻0 = 31.1 kJ ∙ mol−1. Among the latter compound series, 6a 

exhibits with −66.3 kJ ∙ mol−1 the smallest exothermic signal followed by 5a with 

−78.9 kJ ∙ mol−1. Inhibitors 3a and 4a show the largest negative enthalpy, −97.4 kJ ∙ mol−1 

and −96.4 kJ ∙ mol−1. The entropic contribution is unfavorable for all ligands of both series. 

Remarkably, the methyl derivative 3a and the morpholinoethyl derivative 4a exhibit nearly 

identical entropic signatures. Overall, the entropic contribution is detrimental to the free 

energy of binding, resulting in pronounced enthalpy/entropy compensation in both series.  
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Figure 4.1 Chemical formulas and thermodynamic profiles of the investigated ligands. The compounds 3 – 6 

differ in their substitution pattern in 2-position. Additionally, their scaffolds vary among each other from lin-

benzoguanines (X = NH2) to lin-benzohypoxanthines (X = H). Values for the Gibbs free enthalpy are shown as 

blue bars, buffer corrected enthalpy values as green bars, and entropy values as red bars, each in units of 

kJ ∙ mol−1. Measurements to obtain ∆𝐺0comprise at least six measurements. Compounds 3a, 4a, 5a, and 6a 

show a buffer dependency. On average, approximately one proton is picked up by the ligand upon binding. 

Thus, ∆𝐻𝑜𝑏𝑠  was measured at least in duplicate in three different buffer systems (Hepes, Tris, Tricine). 

Subsequently, enthalpy values of lin-benzoguanines were corrected for buffer contribution. ∆𝐺0  and ∆𝐻𝑏𝑖𝑛𝑑  

values for lin-benzohypoxanthines represent the mean of at least three independent measurements. −𝑇∆𝑆0 

was calculated according to the Gibbs-Helmholtz equation.  

 

The observed trends in the thermodynamic signatures indicate that the attached 

substituents in the ribose-33 pocket are not the sole determinant for the observed profiles, 

as the relative differences in the thermodynamic properties among ligands with the same 2-

substituents do not match across the two series a and b. Also the differences between ligand 

pairs within the two series do not correspond to one another. Focusing on a mutual 

comparison of ligands from both series with identical 2-substitution reveals differences in 

∆∆𝐻0 of 24.2 kJ ∙ mol−1 to 49.7 kJ ∙ mol−1. At first glance, they should map the energy 
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difference resulting from the exocyclic NH2 group at the pyrimidinone moiety. Nonetheless, 

the deviating factorization of the thermodynamic data of the two compound series indicates 

a more complex structure–activity relationship than initially anticipated. Thus, to obtain a 

more detailed insight into the binding properties of the two ligand series, we resolved the 

crystal structures of the studied inhibitors bound to the enzyme. 

 

4.4.2 Crystal Structures and Binding Modes of 2-Amino-lin-benzopurines in Z. mobilis TGT 

The 2-amino-lin-benzoguanines 3a – 6a were determined at pH 5.5 with a resolution of 

1.25 – 1.49 Å, the corresponding lin-benzohypoxanthines 3b – 6b provided crystals that 

diffracted to 1.33 – 1.65 Å (Figure 4.2). The structures of 3a [Neeb et al., 2014], 3b 

[Barandun et al., 2012], and 4a [Neeb et al., 2014] had been previously determined. 

In all structure determinations, the tricyclic lin-benzoguanine scaffold is well-defined 

in the electron density. It adopts a binding pose with favorable π-stacking interactions to the 

adjacent Tyr106 and Met260. As reported previously, ligands based on the lin-benzoguanine 

scaffold form hydrogen bonds to the side chain functional groups of Asp102, Asp156, 

Gln203, and the backbone NH group of Gly230 (Figures 4.2A, C, E, G) [Hörtner et al., 2007; 

Stengl et al., 2007; Kohler et al., 2009]. In addition, the backbone carbonyl groups of Leu231 

and Ala232 are hydrogen-bonded to the aminoimidazole portion of the ligand. Exposure of 

the two backbone C=O groups to the binding pocket in parallel fashion requires a peptide-

backbone flip compared to the apo protein determined at a pH value of 5.5. The adjacent 

Glu235 carboxylate group is deprotonated and accepts two hydrogen bonds from the 

neighboring backbone NH groups of Ala232 and Val233. The interaction pattern stabilizes 

the backbone flip and makes a dual ladder of parallel hydrogen bonds to the bound ligand 

possible avoiding unfavorable secondary repulsive interactions among the closely 

approaching hydrogens in the hydrogen-bonding arrays [Immekus; Brenk et al., 2003; Neeb 

et al., 2014].  

Detailed analyses of the protonation inventory overlaid to the binding event showed 

that N(5) of the lin-benzoguanine scaffold becomes protonated whereas N(3) remains in the 

neutral uncharged state [Neeb et al., 2014]. 
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Figure 4.2 Binding modes of the investigated ligands to TGT (PDB IDs: 3a, 4PUK; 3b, 3S1G; 4a, 4PUJ; 4b, 4Q4R; 

5a, 4Q4O; 5b, 4Q4P; 6a, 4Q4S; 6b, 4Q4Q). The protein is represented as cartoon; similar protein states with 

respect to helix αA are colored identically (cp. Figure 7). The ligand and interacting residues are represented as 

sticks (nitrogen = blue, oxygen = red, sulfur = yellow). Chloride ions are shown as green spheres. For clarity, the 

π-stacking residues Tyr106 and Met260 are not shown, except when involved into the binding of the 2-

substituent. Water molecules are also not displayed in the representation. The lin-benzopurine scaffold located 

in the guanine 34 binding pocket is well defined in the  𝐹𝑜  −  𝐹𝑐  difference electron density (green) at a sigma 

level between 2.5 and 3.0. The scaffold forms several interactions with Asp102, Asp156, Gln203, Gly230, 

Leu231, and Ala232 (dashed lines). The hydrogen bond to Leu231 is enabled by a ligand induced backbone-flip, 

which is stabilized by Glu235. The substituents are not equally well defined as the scaffolds suggesting residual 

mobility to some extent. Occupancies for the different substituents are given using the corresponding color of 

the ligand.  

 

The lin-benzohypoxanthine scaffold adopts a very similar binding mode, and the 

interaction pattern to Asp156, Gln203, Gly230, Leu231, and Ala232 is analogously 

established [Barandun et al., 2012]. The lin-benzohypoxanthines lack the exocyclic NH2 

group at the pyrimidinone moiety. This results in different contacts with the adjacent 

Asp102. The latter residue orients its carboxylate group off from the binding site and 

remains in a geometry very similar to that found in the apo structure of the enzyme [Brenk 

et al., 2003]. Instead of forming a direct contact to the bound ligand, Asp102 experiences 

hydrogen bonds to the carboxamide NH2 of Asn70 and the backbone NH group of Thr71 

(Figures 4.2B, D, F, H). As a consequence of this outwards rotated pose of the Asp102 

carboxylate group, a network formed by up to six adjacent water molecules is established 

involving the carboxylate groups of Asp102 and Asp156 [Barandun et al., 2012]. As the 

parent ligand scaffold is no longer involved in a direct contact to Asp102, a small 

displacement of the ligand is observed resulting in slightly reduced distances to the 

remaining residues in contact with the lin-benzohypoxanthines. ITC measurements revealed 

that the lin-benzohypoxanthines bind to the protein without entrapping a proton at N(5) 

[Neeb et al., 2014]. As a result, the lin-benzohypoxanthines bind significantly weaker than 

the lin-benzoguanines. The salt-bridge type hydrogen bonds to Asp156 formed by the lin-

benzoguanines are replaced by more weakly charge-assisted contacts in the lin-

benzohypoxanthines [Neeb et al., 2014]. 
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In previous studies [Ritschel et al., 2009], it has been assumed that the substituents 

attached in 2-position to the lin-benzopurine scaffold of both parent structures exhibits large 

residual mobility in the bound state as no properly defined electron density was detected for 

this part of the ligands. Screening for modified crystallization conditions performed in the 

current study revealed for most of the studied ligands difference electron density in the 

crystals, which allows assignment of the 2-substituent in ordered geometry. Nonetheless, 

reduced population and elevated B-factors found for this part of the ligands suggest also in 

the recent structure determinations some residual mobility or scatter over multiple 

orientations. 

The difference electron density  𝐹𝑜  −  𝐹𝑐   fully defines the binding mode of 3a and 

3b (Figure 4.2A, B). The 2-methyl group at both parent scaffolds points towards Val282 in 

the ribose-33 pocket (cp. Figure 4.3). The remaining part of the ribose-33 pocket is virtually 

unoccupied by the ligand due to the small size of the methyl group, instead several water 

molecules are found in the pocket. 

The morpholinoethyl substituent of 4a has been refined in the displayed gauche 

conformation to a population of 80%. The remaining tricycle converges to an occupancy of 

100% (Figure 4.2C). A similarly reduced population (73%) is found for the 2-substituent in 4b, 

even though the substituent adopts an all-trans conformation in this case (Figure 4.2D). In 

both examples, elevated B-factors are assigned to the morpholinoethyl substituents in 

comparison to the parent scaffolds (4a: 𝐵𝑚𝑜𝑟𝑝 𝑜𝑙𝑖𝑛𝑒 = 21.5 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 9.1 Å2; 4b: 

𝐵𝑚𝑜𝑟𝑝 𝑜𝑙𝑖𝑛𝑒 = 26.4 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 18.4 Å2), suggesting enhanced residual mobility of this 

part of the ligand. Although different conformers with slightly different placements in the 

ribose-33 pocket are experienced, the terminal ether oxygen of the morpholine ring forms 

expanded hydrogen bond contacts to Arg286 (4a: 3.2 Å; 4b: 3.1 and 3.1 Å). In the latter case, 

refinement indicates the presence of two disordered conformers of the arginine side chain 

exhibiting equal population. The six-membered heterocycle exhibits a favorable chair 

conformation in 4a and 4b. 

The nearly isostructural piperidinoethyl substituents of 5a and 5b are both well 

visible in the difference electron density with virtually identical poses matching that of the 

all-trans conformer in 4b (Figure 4.2E, F). Whereas the substituent at the lin-benzoguanine 

scaffold refines to 64% occupancy, the one attached to the lin-benzohypoxanthine moiety is 

fully populated. Also for these ligands, the B-factors suggest enhanced residual mobility   
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(5a: 𝐵𝑝𝑖𝑝𝑒𝑟𝑖𝑑𝑖𝑛𝑒 = 19.8 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 13.1 Å2; 5b: 𝐵𝑝𝑖𝑝𝑒𝑟𝑖𝑑𝑖𝑛𝑒 = 22.8 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 =

17.2 Å2). In both structures, the piperidine ring adopts the energetically favored chair 

conformation. As a special feature, both ligands entrap a chloride ion at a position occupied 

in the other structures by a water molecule. Assignment of a chloride ion to this density peak 

was confirmed by evaluating the density maps for anomalous scattering using the program 

ANODE [Thorn and Sheldrick, 2011]. In the structure of 5b, the anomalous density signal of 

𝜎 = 5.73 appears close to the signal of the structural zinc atom and the sulfur atoms of 

some methionines. In the complex TGT∙5a, an anomalous signal of 𝜎 = 4.23 is found. Most 

likely, the entrapping of the chloride ion correlates with the occupancy of the piperidine side 

chain, thus a reduced value for the chloride signal is reasonable in the latter structure. 

Refinement with Phenix [Adams et al., 2010] converged to 69% chloride occupancy, well in 

agreement with the substituent population in 5a. Crystal growth of TGT is performed under 

1 M NaCl concentration; accordingly, the uptake of a chloride ion appears likely. This 

assumption is supported by the fact that the most likely protonated piperidine nitrogen (pKa 

value ≈ 11.2 [Berrien et al., 2007]) forms a hydrogen bond to the chloride ion. This ion is 

further stabilized through contacts to the backbone NH group of Val282 and an adjacent 

water molecule (Figure 4.3). 

 

 

Figure 4.3 Position of the captured chloride ion. The protein is represented as cartoon, the ligand and 

interacting residues as sticks (nitrogen = blue, oxygen = red, sulfur = yellow). Chloride ions are shown as green 

spheres. The anomalous signal calculated with the program ANODE is shown at a sigma level of 3.0. The 

chloride ion is clearly defined by the anomalous electron density interacting with the most likely protonated 

nitrogen of the ligand’s piperidinoethyl substituent and the backbone NH of Val282. Occupancy refinement 

results in a similar value as found for the compound’s substituent. In TGT∙5a (PDB ID: 4Q4O), it is occupied to 

100%, in TGT∙5b (PDB ID: 4Q4P) to 69%. Peak intensities for the anomalous signal are given as green numbers. 
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In the complexes of 4a, 4b, and 5a the substituent refines to reduced occupancy. The 

analysis of the difference electron density on a reduced sigma level suggests the presence of 

a minor populated gauche or anti conformer, respectively. Consulting the geometries found 

in small molecule crystal structures deposited in the CSD [Allen, 2002] reveals preferred 

angular distributions around ±60° and 180° for an N+-CH2-CH2-NH torsion fragment (Figure 

4.4). The distribution suggests only minor preference for the gauche conformation. 

Accordingly, we also assume in the TGT complexes studied here that two arrangements are 

adopted. 

 

 

Figure 4.4 Rose plot of the CSD search results for the torsion angles of a N
+
-CH2-CH2-NH linker as found in the 

substituents of 4 and 5. The circles represent the frequency [%] of the matched torsion angle in steps of 

20 percent. The position on the circumference gives the value of the torsion angle. The data set comprised 414 

structures (updated CSD version 5.34; filters: not disordered, no errors, not polymeric, only organics). The 

carbon atoms were defined to be acyclic. Overall, gauche conformations are present in 39% of all analyzed 

structures, and the anti conformation is adopted in 61% of all cases.  

 

Interestingly enough, the difference electron density does not disclose any 

orientation of the thiophenomethyl substituent in 6a even though the better diffracting 

sulfur atom should be easier to detect. The electron density allows placement of the methyl 

group, however, the terminal thiophene moiety appears to be scattered over multiple 

orientations (Figure 4.2G). In contrast, the analogous lin-benzohypoxanthine derivative 6b 
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discloses the thiophenomethyl substituent in two equally populated orientations (Figure 

4.2H). The first conformer A orients the thiophene moiety into the ribose-33 pocket and 

experiences weak hydrophobic interactions with the side chain of Ala232. In the second 

conformation B, the thiophene ring rotates out of the ribose-33 pocket and approaches 

Tyr106. A weak hydrogen bond between the thiophene sulfur atom and the Tyr106 OH is 

established (3.1 Å). Also in this structure, the B-factors of the thiophene substituent refine to 

a value significantly larger as those of the parent scaffold (𝐵𝑡𝑖𝑜𝑝𝑒𝑛𝑒  𝐴 = 27.5 Å2, 

𝐵𝑡𝑖𝑜𝑝𝑒𝑛𝑒  𝐵 = 21.7 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 11.2 Å2). 

 

4.4.3 Correlation of Thermodynamic Signatures and Binding Modes 

As described above, the lin-benzoguanines 3a – 6a form, upon protonation at N(5), two 

bidentate salt bridges to Asp102 and Asp156. In contrast, the lin-benzohypoxanthines 3b – 

6b do not induce a similar reorientation of Asp102 and the carboxylate group of this residue 

remains in its orientation pointing away from the binding pocket. In consequence, the pKa 

shift at N(5) of the lin-benzohypoxanthine moiety is not provoked and one of the salt bridges 

assigned in case of the lin-benzoguanines to the guanidinium portion is lost. The second one 

transforms into two most likely attenuated charge-assisted hydrogen bonds to Asp156 

[Neeb et al., 2014]. As they lack secondary repulsive interactions [Jorgensen and Pranata, 

1990; Murray and Zimmerman, 1992], they can still contribute significantly. The 

thermodynamic and structural data recorded for thrombin-ligand binding have shown that 

the loss of a bidentate salt-bridge is equivalent to about −25 kJ ∙ mol−1 in ∆∆𝐻0 [Baum et 

al., 2009]. This value is approximately matched by the congeneric pairs 5a/5b and 6a/6b 

whereas 3a/3b and 4a/4b show significantly larger enthalpy differences. This finding 

indicates that the thermodynamic signatures in the current compound series are determined 

by additional effects superimposed on the sole loss of a salt bridge.  

Comparing the structural data of the apo protein with those of the lin-

benzohypoxanthine complexes, it becomes evident that Asp102 virtually remains in its 

original conformation upon ligand binding (Figure 4.5B) [Brenk et al., 2003; Barandun et al., 

2012]. Also the network of water molecules found in the apo structure is maintained and 

contributes contacts between the protein and the accommodated ligands. Accordingly, the 

lin-benzohypoxanthines 3b – 6b bind to the enzyme without inducing major changes 
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compared to the apo structure, which might require a strong enthalpic price to be paid. 

Notwithstanding, overall, a significant enthalpy-driven binding is observed for the lin-

benzohypoxanthine series. 

The structural situation is different for the lin-benzoguanines. Their binding triggers 

the rearrangements of Asp102 towards the binding pocket. This movement narrows the 

binding pocket, and the network of water molecules is displaced from the binding site in 

contrast to the binding of the lin-benzohypoxanthines. Subsequent to the reorientation of 

Asp102 and as a consequence of the loss of interactions with the adjacent residues such as 

Asn70, a cascade of structural rearrangements is induced, which results in a collapse of the 

interaction patterns among Asp102, Asn70, Thr47, and Gln107 previously seen in the apo 

protein (Figure 4.5) [Brenk et al., 2003; Stengl et al., 2007].  

 

 

Figure 4.5 Cascade of residue rotation initiated by the movement of Asp102. The same representation was 

applied as noted for Figure 4.2. For crystal structure analysis, all complexes containing lin-benzoguanines (A) 

and lin-benzohypoxanthines (B) were aligned, respectively. A) The side chains of Thr47, Asn70, His73, Gln107, 

and Asp102 are involved in the domino effect. All complex structures with lin-benzoguanine-based ligands 

show a high flexibility of the involved amino acid residues. Due to the missing interaction to Asp102, Asn70 is 

not fixed in an ordered conformation interacting either with Thr47 or Gln107. Gln107 can be found in multiple 

conformations, indicated by a partly missing electron density for its side chain. The previously found interaction 

to His73 cannot be detected in any of the complex structures under investigation. B) In binary complexes with 

lin-benzohypoxanthine-type inhibitors, residue Asp102 serves as an anchor point fixing the side chain of Asn70 

in a position competent to build hydrogen bonds to Thr47 similar to the apo enzyme. The side chain of Gln107 

shows different conformations capable to interact either with His73 or Asp102. 
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Even some movements of secondary structural elements are observed compared to 

the apo protein and the lin-benzohypoxanthine complexes (Figure 4.6). Accordingly, the 

binding of the lin-benzoguanines involves a fair number of adaptation processes, which all 

will be linked to significant changes of the thermodynamic properties. The formation of the 

salt bridges was already mentioned as an enthalpically driven step. The displacement of 

ordered water molecules from a protein binding site usually results in an entropically 

favorable binding signal [Baum et al., 2009; Biela et al., 2012].  

 

 

Figure 4.6 Influence of Asp102 on secondary structure elements of TGT. An overlay of all investigated 

structures of the TGT-bound lin-benzohypoxanthines (white) and lin-benzoguanines (dark gray and blue) shows 

substantial differences in the position of the β3-αA-loop, β-strand 2, helix α2A, and the β1-α1-loop. The binding 

of members of the lin-benzohypoxanthine series has only a slight effect on the global protein structure, which 

stays closely to the state of the apo enzyme. Contrary, due to the up-rotation of Asp102 towards the ligand, 

members of the lin-benzoguanine series trigger a kind of domino effect by which the β3-αA-loop, β-strand 2, 

helix α2A, and the β1-α1-loop move closer to the guanine 34 binding pocket. 

 

In 4a, 4b, 5a, 6a, and 6b, a residual mobility of the 2-substituent is observed that 

might suggest an entropically favorable contribution to binding. Most likely, these effects are 

beneficial for ligand binding but they will be partly compensated by the rearrangements 

crystallographically observed in the protein. They will cost a price in either enthalpy or 
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entropy. Nonetheless, overall a net improvement in the Gibbs free energy of binding of 

about −6 kJ ∙ mol−1 is observed for the lin-benzoguanines over the lin-benzohypoxanthines. 

Detailed factorization appears difficult in the present case, also as the price for the 

desolvation will be distinct for the lin-benzoguanine and lin-benzohypoxanthine series. 

The detailed comparison of the thermodynamic profiles of the lin-benzoguanines 

3a – 6a and lin-benzohypoxanthines 3b – 6b unravels another striking feature (Figure 4.1). 

Whereas the lin-benzohypoxanthines factorize quite similarly in enthalpy and entropy, the 

members of the lin-benzoguanine series exhibit large differences in their profiles. This 

observation suggests that the lin-benzohypoxanthines do not experience large differences in 

their thermodynamic properties. Thus, hardly any dependence on the actual size and 

chemical properties of the substituents attached at the 2-position is observed. This picture 

appears different for the lin-benzoguanines as here the thermodynamic profile is 

significantly modulated by the properties of the attached 2-substituent. Obviously, in the 

latter compound series a crosstalk between the rearrangement of Asp102 and the binding to 

the ribose-33 pocket is given, whereas across the lin-benzohypoxanthine series this 

interdependence can hardly be recognized. 

To find some explanations for these differences in the pocket crosstalk, we have 

analyzed the crystal structures of the various complexes. Interestingly enough, binding of the 

lin-benzoguanines, which recruits Asp102 for ligand recognition translates into a significant 

shift of helix αA (Figure 4.7). This helix adopts virtually the same geometry in the apo protein 

and the lin-benzohypoxanthine-bound complexes. It is placed nearly perpendicular to the 

guanine-34 recognition site and extends from Tyr106 to Leu110. Once the lin-benzoguanines 

are bound to the enzyme, this helix is significantly shifted towards the ligand-binding site. 

This movement is triggered by the rearrangement of Asp102. A comparison of the enzyme 

structure with the bound substrate tRNA and the discussed lin-benzoguanine inhibitor 

complexes is quite conclusive. Obviously, also the binding of the tRNA induces this shift of 

helix αA very similar to that observed in the lin-benzoguanine complexes but clearly distinct 

from the geometry found for the apo protein and the lin-benzohypoxanthine complexes. A 

predominant role can be assigned to Tyr106, which resides on this helix. Upon the shift of 

the helix, the Tyr106 side chain penetrates by 2.5 Å deeper into the ribose-33 pocket. This 

replacement allows Tyr106 to experience whether any ligand portion is bound to the ribose-

33 pocket. In the apo protein and the structurally very similar lin-benzohypoxanthine 
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complexes, Tyr106 remains in a remote position, but for the lin-benzoguanine complexes, 

Tyr106 is pushed to varying extend (1.3 – 1.9 Å) into a proximate position bordering the 

ribose-33 pocket (Figure 4.8). 

 

 

Figure 4.7 Influence of the various ligands on helix αA. The protein is represented as cartoon. The ligands are 

shown as sticks and colored according to Figure 4.2. A) All binary TGT complexes with lin-benzohypoxanthine- 

based inhibitors exhibit one fixed helix conformation (white). lin-Benzoguanine·TGT complexes show different 

conformations of the helical part: TGT∙3a (green), TGT∙4a (blue), and TGT∙5a (orange) show a similar position 

among each other, which deviate from that in the lin-benzohypoxanthine∙TGT complexes (gray). An even larger 

perturbation results from the binding of 6a which leads to strong repositioning of Gln107, Val108, and Met109 

concomitant with an up-rotation of the helix (blue). Additionally, TGT∙4a shows a second populated binding 

mode with an up-rotated helix conformation as similarly found in complex TGT∙6a (blue). B) Modulations of the 

backbone trace of the β3-αA loop upon formation of the different complexes. lin-Benzohypoxanthine 

complexes are displayed in white, TGT∙3a, TGT∙5a in gray, and TGT∙4a, TGT∙6a in blue. All white structures show 

a conserved orientation of helix αA. It is noticeable that the backbone of the β3-αA loop adopts a conformation 

distal to the tricyclic ligand core. In lin-benzoguanine∙TGT complex structures, the whole loop region is 

positioned closer to the ligand’s scaffold. Thereby, the closest position can be found, if helix αA is rotated 

upwards (TGT∙4a, TGT∙6a). TGT∙5a adopts an intermediate orientation since Tyr106 indicates that an up-

rotated helix conformation could be possible, although not observed in electron density. 

 

Obviously, the lin-benzohypoxanthines bind to TGT in a conformation that closely 

resembles that of the apo protein whereas the lin-benzoguanines provoke an arrangement 

that approximates the architecture of the enzyme in the substrate-bound state as observed 
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in the covalent tRNA intermediate (PDB ID: 1Q2R) trapped by crystallization with the 

substrate mimetic 9-deazaguanine (Figure 4.9). This finding explains why the thermodynamic 

binding signature of the latter inhibitors is more sensitive to the properties of the attached 

2-substituent as the presence of such a substituent is recognized and thus transmitted via 

Tyr106 and the shifted helix αA. With respect to the enzymatic function, such a behavior 

appears very reasonable as the enzyme must distinguish what is bound to the ribose-33 

recognition pocket. Discrimination between correct and false substrates relies on the 

recognition of the nucleobase in this pocket. Accordingly, the binding properties of this part 

of the substrate must be transmitted and have to result in a varying thermodynamic binding 

profile. Exactly this feature we also observe between the lin-benzohypoxanthine and lin-

benzoguanine-type inhibitor series, which gives rise to the rather complex structure–activity 

relationship between both series. 

 

 

Figure 4.8 Overlay of the TGT structure binding the natural substrate tRNA (PDB ID: 1Q2R) as well as the 

analyzed lin-benzoguanine and lin-benzohypoxanthine-bound structures. Helix αA as well as the tRNA are 

visualized in cartoon representation (lin-benzohypoxanthines = white, lin-benzoguanines = gray/blue, 1Q2R = 

green). The ligands, nucleic acid bases, and Tyr106 are highlighted as sticks (nitrogen = blue, oxygen =red). The 

α-helix A of the TGT∙tRNA complex adopts an orientation similar to the lin-benzoguanine-bound protein. In the 

same way, Tyr106 of the latter complexes reaches deeper into the ribose-33 subpocket. Obviously, these 

positional changes induce a cooperativity between the guanine-34 recognition site and the ribose-33 

subpocket leading to the observed diverse thermodynamic profiles. 
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Figure 4.9 Influence of substrate recognition on the guanine-34 recognition site. As representatives, the 

complexes TGT∙3b (A), TGT∙3a (B), the apo enzyme at pH 7.8 (C), and the ternary complex TGT∙9-

deazaguanine∙tRNA (D) are illustrated. The latter complexes mimic an intermediate situation during the 

nucleobase exchange reaction when tRNA is covalently attached and guanine is cleaved off. This situation is 

captured in the cocrystallized ternary complex using the geometrically identical but chemically unreactive 

9-deazaguanine. The protein is shown in surface representation (white = apo state, gray = substrate bound 

state). The ligands are displayed as sticks, the tRNA stem loop as cartoon (nitrogen = blue, oxygen = red, 

sulphur = yellow, phosphorus = orange). In complex TGT∙3b (PDB ID: 3S1G, A), the lin-benzohypoxanthine is not 

recognized as substrate-like by Asp102 as the exocyclic NH2 group is missing. Asp102 adopts a conformation 

remaining within the protein similar to apo TGT (PDB: 4PUN, C). Therefore, they share a similar protein surface 

(white) exhibiting two entries to the active site indicated by arrows. In complexes TGT∙3a (PDB ID: 4PUK, B) and 

TGT∙9-deazaguanine∙tRNA (PDB ID: 1Q2R, D), the lin-benzoguanine and the substrate mimetic 9-deazaguanine, 

respectively, are recognized as substrate surrogates by the enzyme. Asp102 rotates towards the guanine-34 

recognition site and forms hydrogen bonds to the aminopyrimidinone moiety of the ligand. Provoked by the 

structural changes due to the up-rotation of Asp102, the second entrance to the guanine-34 recognition site is 

closed (gray). 
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We mentioned above the deviating potency profiles obtained by the biochemical 

assay and the ITC data, particularly for the lin-benzohypoxanthine series (differences in 𝐾𝑖  

values up to a factor of 16 for 3b). ITC measures directly the binding to the protein 

conformer competent to accommodate a ligand, yielding 𝐾𝑑  values. The biochemical assay 

requires the protein to be in the state able to recognize the tRNA substrate, thus with 

Asp102 oriented towards the binding pocket. Only the lin-benzoguanines will bind to this 

conformation, not the lin-benzohypoxanthines. Thus, a conformational change would be 

required to accommodate the latter ones. However, as a size-dependent inhibition model 

has to be assumed for the ligands binding to the enzyme, small inhibitors can show a 

significant inhibitory component even if the intermediately bound tRNA is attached to the 

protein. Supposedly, this inhibitory component can only be realized by the lin-

benzoguanines and not by the lin-benzohypoxanthines. Possibly, this effect also has 

influence on the inhibitory properties determined by the biochemical assay or ITC and 

underestimates the intrinsic binding potency of the lin-benzohypoxanthines in the 

biochemical assay.   

 

4.5 Conclusions 

The two congeneric series of inhibitors, varied at the pyrimidinone moiety and the 2-amino 

substituents of a lin-benzopurine scaffold, show a rather flat and unattractive SAR with 

nearly unchanged binding affinities within the series and an offset of about one order of 

magnitude between both series. The loss in affinity between the lin-benzoguanine and the 

lin-benzohypoxanthine series can be related at first glance to the loss of a salt bridge formed 

to the pyrimidinone moiety with and without an attached amino group. The unmodulated 

affinity recorded for the attachment of a 2-amino substituent at the remote end of the 

parent lin-benzopurine scaffold can hardly be explained on the affinity level. The 

thermodynamic signature accessible by ITC measurements provides some surprises as in the 

lin-benzohypoxanthine series all ligands factorize similarly in enthalpy and entropy whereas 

the lin-benzoguanines show strong and complex changes in the enthalpy/entropy signature. 

Interestingly enough, the crystallographic analysis shows that the lin-benzohypoxanthines 

bind to the protein without inducing major conformational changes of the enzyme 
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compared to the apo structure. With respect to the thermodynamic properties, small or 

large 2-substituents of deviating chemical nature experience the same hardly discriminating 

profile. The lin-benzoguanines bind to a protein conformation approximating the enzyme in 

the substrate-bound geometry. Major conformational changes are all triggered by the 

reorientation of Asp102. This residue is important for substrate recognition. Simultaneously, 

the protein architecture varies in a way that a crosstalk between the binding signature 

resulting from the ligand portion accommodating the guanine-34 and the ribose-33 pocket is 

established. In consequence, quite surprisingly, the attached 2-substituents at the lin-

benzoguanine scaffold receive an individually modulated thermodynamic signature across 

the compound series. 

The example shows, even though a detailed partitioning in individual thermodynamic 

contributions is impossible due to the given complexity of the system, that a combination of 

thermodynamic signature analysis and structural information provides an insight into 

structure–activity relationships beyond sole affinity considerations. They are important for a 

rational and predictive design of novel inhibitors. 
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5. Creating a Resistance Model for TGT: the Effect of Mutations on 

Flexible lin-Benzoguanine Substituents 

 

5.1 Introduction 

After the successful design of high-affinity inhibitors for a distinct target, which exhibit 

favorable bioavailability features, the development of drug resistance due to active-site as 

well as non-active-site mutations often constitutes a painful backlash [Erickson and Burt, 

1996]. Such mutations can either result in a decreased binding affinity of the ligand or an 

enhanced activity of the enzyme overcoming the inhibitory effect [Luque et al., 1998].   

In order to tackle this problem investigations were directed towards the analysis of 

the enthalpic and entropic properties of various inhibitors and how their binding is 

influenced by the appearance of resistance mutations [Velazquez-Campoy et al., 2000; 

Velazquez-Campoy et al., 2001; King et al., 2012]. Data collected for HIV-protease inhibition 

suggested that ligands binding with a mainly entropic contribution to the target enzyme are 

more susceptible to variations in the amino acid sequence. It could be shown in case of HIV-

protease that favorable entropy could mainly be achieved by rigidifying the inhibitor in a 

way that it optimally fits the active site of the enzyme. As a consequence, the ligand looses 

less conformational degrees of freedom upon binding. Simultaneously, however, its ability to 

escape mutational variations within the binding site is significantly reduced. Contrary to rigid 

molecules, flexible compounds were found to respond to mutational perturbations at critical 

positions of the target protein with a less pronounced decrease in binding affinity. As a 

strategy to overcome the loss in conformational entropy upon binding of a previously 

flexible ligand, an enthalpic compensation was conceived. To achieve this goal, polar groups 

were introduced to the molecules, which were assumed to form strong hydrogen bonds or 

salt bridges, respectively. As a result not only enthalpy-entropy compensation was partly 

avoided but also the binding specificity to the target enzyme could be increased.  

As a model system to investigate the behaviour of different ligands towards 

mutations, we selected the tRNA modifying enzyme tRNA-guanine transglycosylase, which 

plays a key role in the pathogenicity of Shigella bacteria, the causative agent of Shigellosis 

[Sansonetti, 2001]. Disappointingly, the treatment of the disease becomes more and more 
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challenging due to the increasing resistance development of Shigella to current antibiotics 

[Ashkenazi et al., 2003]. Therefore, the design of new selective antibiotics inhibiting TGT is of 

utmost importance. In the present study, we chose 2-amino-lin-benzoguanine type TGT 

inhibitors as model compounds to test their resistance tolerance in TGT binding [Hörtner et 

al., 2007]. 

As reported in chapter 3 and 4 these ligands exhibit pronounced enthalpic binding 

due to various favorable van der Waals interactions, hydrogen bonds and salt bridges 

formed between the protein and the ligand [Neeb et al., 2014]. Crystal structure analysis 

revealed that the substituents attached in 2-position of the parent lin-benzoguanine scaffold 

exhibit enhanced residual mobility indicated by increased B-factors compared to the parent 

scaffold and by the presence of multiple conformations of the 2-substituents [Neeb et al., 

2014]. This flexibility of the 2-substituents might be advantageous as ligand portions capable 

to bind with multiple orientations might be better suited to cope and tolerate resistance 

mutations of the target protein. We hypothesized that such ligands or ligand portions are 

potentially more appropriate for targeting mutated TGT variants since no specific 

interactions with any protein side chains are required and the ligand can still find an 

acceptable binding pose.  

Overall, this study was intended to show whether a ligand exhibiting high residual 

mobility is better able to avoid a loss in binding affinity upon a target protein mutation than 

a ligand adopting only one ordered binding mode.  

 

5.2 Results 

5.2.1 Mutations of Wild Type TGT 

The simulation of resistance development requires the selection of amino acids appropriate 

for mutagenesis. Since resistance mutations usually do not affect residues, which are directly 

involved in catalysis, we focused on amino acids present in the uridine-33 subpocket. The 

number of exposed side chains in this pocket is limited due to the fact that the area of this 

pocket, which is located next to the ligand’s substituent, mainly contains backbone atoms 

and glycine residues (Figure 5.1A). Accordingly, Val262 was chosen for mutational analysis, 

and replaced by threonine, aspartate and cysteine, respectively. The presence of each 
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mutated codon was confirmed by sequencing and mass spectrometry (see appendix). 

Subsequently, the putative influence of the respective mutations on the binding mode of the 

ligand were analyzed by MD simulations (not shown), and the steric and electronic 

consequences of the newly introduced side chains were investigated by X-ray 

crystallography.  

The apo structure of TGT(Val262Thr) was determined at a resolution of 1.24 Å (Figure 5.1B, 

green). The mutated threonine residue adopts a conformation similar to that of Val262 in 

the wild type enzyme. In addition, a second orientation is indicated by the difference 

electron density, which could, however, not satisfyingly be resolved during refinement. Yet, 

in this alternative position Thr262 seems to be slightly shifted into the ribose-33 subpocket 

and most likely forms, via its side chain hydroxyl, a hydrogen bond to the side chain 

carboxylate of the adjacent Asp267. The solvation pattern within the pocket is similar to the 

one observed in the apo structure of the wild type. 

The apo structure of TGT(Val262Asp) shows a nominal resolution of 1.33 Å (Figure 

5.1C, yellow). The mutated aspartate is well-defined by the electron density. Compared to 

the apo structure of the wild type, the peptide bond between Gly261 and Asp262 is flipped. 

As a consequence, the backbone of Asp262 reaches into the ribose-33 subpocket with its 

side chain interacting with the backbone NH groups of Val282 (3.08 Å) and Leu283 (2.79 Å) 

as well as three close-by water molecules (2.79 – 3.05 Å). To avoid unfavorable contacts to 

the side chain of Asp262 the positions of Asp280, Cys281, Val282 and Leu283 are slightly 

altered compared to the wild type. 

The nominal resolution of the TGT(Val262Cys) structure amounts to 1.44 Å (Figure 

5.1D, cyan). Surprisingly, the crystal structure shows a disulfide bridge, which is partially 

formed between Cys262 and Cys281 despite of the presence of DTT as reducing agent during 

crystallization. Similar to TGT(Val262Asp) the peptide bond between Gly261 and Cys262 is 

flipped. The formation of the disulfide bridge is concomitant with the rearrangement of 

several amino acids resulting in the dislocation of residues Leu283 to Arg289.  

Kinetic characterization of the mutated variants revealed both for TGT(Val262Thr) 

and TGT(Val262Asp) a turn-over number which was, compared to the wild type enzyme, only 

slightly reduced (see Appendix 10.6). Therefore, and as the Val262Thr and the Val262Asp 

mutations each led to different alterations of the uridine-33 subpocket, they provide a good 

platform to investigate various resistance scenarios. 
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Figure 5.1 Apo structures of the analysed mutated variants of TGT. The protein is shown in cartoon 

representation. The mutated residues as well as adjacent amino acids possibly affected by the respective 

mutation are depicted as sticks (nitrogen = blue, oxygen = red, sulphur = yellow). For clarity, water molecules, 

which are not in contact with the mutated residues are not shown. Interactions formed by the mutated residue 

with its local environment are visualized as dashes. For comparison, the structure of the wild type enzyme 

(transparent) is superimposed in images B – D. A) Apo structure of wild type TGT (PDB ID: 1PUD [Romier et al., 

1996]). The uridine-33 subpocket is mainly bordered by backbone atoms restricting possible sites appropriate 

for site-directed mutagenesis. B) TGT(Val262Thr). This variant shows a similar structure as the wild type 

enzyme. Accordingly, Thr262 adopts an orientation similar to that of the wild type, although a second 

conformation interacting via its hydroxyl group with the side chain of Asp267 is weakly indicated by the 

difference electron density. C) TGT(Val262Asp). Asp262 interacts with the backbone NH groups of Val282 (3.08 

Å) and Leu283 (2.79 Å) resulting in the positional deviations of residues Gly261 and Asp262 as well as Asp280 

to Leu283 from the wild type. D) TGT(Val262Cys). Cys262 forms a disulfide bond with Cys281 leading to a 

similar backbone orientation of Gly261 and Cys262 as observed in TGT(Val262Asp). Additionally, the formation 

of the disulfide bridge results in the dislocation of residues Leu283 to Arg289 (dotted cyan line). 



 
5. Creating a Resistance Model for TGT: the Effect of Mutations on Flexible lin-Benzoguanine 

Substituents 
93 

Unfortunately, the Val262Cys mutant did not yield kinetics that could be evaluated 

conclusively in a Michealis-Menten plot despite of its present activity. Presumably, the 

partially formed disulfide bridge between Cys262 and Cys281 caused the inconsistent data. 

Nonetheless, the mutated variant still exhibits reasonable kinetic activity. In order to 

produce reliable kinetic results for this variant, TGT(Val262Cys) has to be expressed, purified 

and crystallographically analyzed in the absence of oxygen and under inert gas conditions 

that guarantee Cys262 and Cys281 to be present in their reduced state. 

 

5.2.2 Binding Affinities 

To address the question whether a ligand showing residual mobility constitutes a more 

resistance tolerant antibiotic, the 𝐾𝑑  values of different 2-amino-lin-benzoguanines were 

measured against the three generated mutants using isothermal titration calorimetry. The 

obtained values were compared to the data obtained for the wild type protein (Table 5.1). 

 

Table 5.1 Binding affinities of lin-benzoguanine type inhibitors to mutated TGT variants as determined by 

isothermal titration calorimetry at least in triplicates.   

Ligand Chemical formulae 
𝑲𝒅[nM] 

WT Val262Thr Val262Asp Val262Cys 

3a 
 

49 ±   5 44 ±   5 158 ±   5 16 ± 1 

4a 
 

32 ±   7 27 ±   7 181 ± 17 18 ± 4 

5a 
 

34 ±   7 34 ±   4 152 ±   9 ---[a] 

6a 
 

81 ±   8 63 ± 15 557 ± 20 27 ± 2 

7 

 

57 ± 14 36 ±   5 359 ± 18 19 ± 2 

a
𝐾𝑑  for the Val262Cys variant was measured against the oxidized protein and is thus not listed. 
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Thereby, 3a served as a reference as, due to the small size of its 2-substituent, it 

hardly occupies the ribose-33 subpocket. 

Interestingly, all ligands respond to the introduced mutations in a similar way, 

independently of the respective 2-substituent. As expected, the binding affinities for the 

TGT(Val262Thr) resemble, within the range of experimental accurancy, those obtained for 

the wild type enzyme. In this variant only minor changes in the binding pocket were 

introduced. In contrast, the binding affinities to TGT(Val262Asp) are consistently decreased 

by a factor of three to seven. Remarkably, all 2-amino-lin-benzoguanines show a two- to 

threefold increase in potency towards TGT(Val262Cys). 

  

5.2.3 Exploring the Adaptations of 4a Targeting the Mutated TGT Variants 

As a representative for the 2-amino-lin-benzoguanine type ligands, 4a was chosen and its 

binding mode with the mutated TGT variants was investigated by crystal structure analysis. 

We focused on the response of ligand binding on the modified protein environment as well 

as on the orientation of the 2-substituent within the altered uridine-33 subpocket.  

The structure of TGT(Val262Thr) in complex with 4a shows a maximum resolution of 

1.89 Å. The parent lin-benzoguanine scaffold adopts the previously described binding mode 

involving the π-stacking residues Tyr106 and Met260 as well as hydrogen bonds to Asp102, 

Asp156, Gln203, Gly230, Leu231 and Ala232 (Figure 5.2A). As similarly observed in the 

corresponding complex structures of the wild type enzyme, the 2-substituent is positioned 

within the ribose-34 subpocket adopting a gauche-conformation. The morpholine ring is 

weakly defined most likely showing the favorable chair conformation. Its occupancy 

amounts to 82%. Via its morpholino oxygen the substituent interacts with the side chain of 

Arg286. Contrary to the apo structure of TGT(Val262Thr), no difference electron density 

indicating a second conformation of Thr262 is observed. The side chain of Thr262 is solely 

present in an orientation similarly found for the valine side chain in wild type TGT.   

The binary complex of TGT(Val262Asp) with 4a was determined at a resolution of 

1.38 Å. As expected, the lin-benzoguanine scaffold as well as its 2-substituent show the same 

interaction pattern as observed in previous structures (Figure 5.2B). The morpholine ring is 

weakly defined by the electron density. It is refined in its chair conformation to an 

occupancy of 69%.  
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Figure 5.2 Binding mode of 4a as bound to the different mutated TGT variants. The protein is displayed in 

cartoon representation. The ligand as well as interacting protein residues are highlighted as sticks (nitrogen = 

blue, oxygen = red, sulphur = yellow). Hydrogen bonds are visualized as dashes. Delocalized protein residues 

are indicated by dotted lines. The 2  𝐹𝑜 −  𝐹𝑐   density is shown at a sigma level of 1.0 in blue. For clarity, water 

molecules are not shown. A) Binding mode of 4a to TGT(Val262Thr). The same interaction patterns are 

experienced by the lin-benzoguanine scaffold as in the wild type. The 2-substituent shows a gauche 

conformation forming a hydrogen bond to Arg286 at a distance of 3.0 Å. Its occupancy amounts to 82%. Thr262 

adopts a conformation similar to that of Val262 in the wild type protein. B) Binding mode of 4a to 

TGT(Val262Asp). The lin-benzoguanine scaffold forms the same interactions as previously described. Its 2-

substituent binds in a gauche conformation and is refined to an occupancy of 69%. The side chain of Arg286, 

usually interacting with the terminal ether oxygen of the morpholine ring, is not resolved in the electron 

density. Upon binding of the lin-benzoguanine scaffold Ser287 and Gly288 get completely disordered (dotted 

orange line). The hydrogen bonds experienced by the mutated aspartate to Val282 and Leu283 in the apo 

protein are broken and its side chain faces the most likely protonated morpholine ring. C) In the complex of 4a 

bound to TGT(Val262Cys) only the tricyclic core of the ligand is clearly defined. Contrary to the other crystal 

structures, the 2-substituent could not be assigned to the difference electron density. Similarly as in the apo 

state, Cys262 and Cys281 form a disulfide bridge. Due to minor rearrangements next to the site of mutation, 

helix αB is completely disordered (dotted blue line). 

 

The difference electron density for the mutated aspartate is not as properly defined 

as in the apo structure. The hydrogen bonds to Val282 and Leu283 are broken and the side 

chain of Asp262 is rotated towards 4a being in van der Waals contact with the ligand’s 

morpholino moiety. Furthermore, the difference electron density for the region comprising 

Asp280 to Arg286 indicates higher residual mobility than observed in the apo form. An 

increased mobility is also observed for the neighboured amino acids Ser287 and Gly288 

whereby no electron density can be detected for the latter one. 

A data set with a maximum resolution of 1.72 Å was collected for the 

TGT(Val262Cys)∙4a complex. Also in the complex structure, the disulfide bridge between 

Cys262 and Cys281 is clearly visible. Contrary to the above-described inhibitor complexes, 

the present crystal structure shows well-defined electron density only for the parent scaffold 

while no defined density is observed for the 2-substituent (Figure 5.2C) indicating enhanced 

flexibility of this part of the ligand. Also no defined electron density can be assigned to helix 

αB comprising the amino acids Leu283 to Asn290. 
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5.3 Discussion 

To investigate the effects of the introduced mutations on the binding affinity to the 2-amino-

lin-benzoguanine scaffold, the 𝐾𝑑  values of 3a, which is 2-substituted with only a methyl 

group, and the mutated variants were determined first. In a second step, the influences of 

the 2-substituents were evaluated by comparing the affinities and crystallographically 

determined binding modes of the remaining ligands to that of the reference ligand 3a. 

Within the range of experimental accuracy all ligands exhibit the same affinity 

towards TGT(Val262Thr) as towards the wild type. This result is well consistent with the 

crystal structures obtained from this variant: Firstly, the binding of the lin-benzoguanine 

scaffold does not take any influence on the order of the protein’s secondary structure 

elements as shown by the comparison of the TGT(Val262Thr) apo structure and its complex 

structure with 4a. Secondly, the morpholinoethyl substituent of the ligand adopts a similar 

gauche-conformation in TGT(Val262Thr) as described for the wild type. Also the enthalpies 

recorded for the binding of the different ligands to this mutated variant are similar to those 

observed for the wild type (Figure 5.3, green bars). Therefore, it is highly probable that the 

substituents of 5a, 6a and 7 behave upon binding to TGT(Val262Thr) similarly as described 

for wild type TGT in chapter 4.  

The 𝐾𝑑  values of the different 2-amino-lin-benzoguanines measured for 

TGT(Val262Asp) show, compared to the wild type TGT, a significant loss in binding affinity. 

Taking a closer look at the crystal structure of the TGT(Val262Asp)∙4a complex, the position 

and orientation of the morpholinoethyl substituent exhibits no major difference to the WT 

TGT∙4a complex. However, it can be clearly noticed that the β8αB-loop as well as helix αB 

show a signficantly increased flexibility upon ligand binding, which leads to the complete 

dislocation of two amino acids. In contrast to the structure in complex with 4a, this part of 

TGT(Val262Asp) adopts a more rigid geometry in the apo structure. Possibly, the observed 

increase in flexibility is responsible for the drop in binding affinity. Moreover, this loss is 

more pronounced for 6a and 7, which are endowed with hydrophobic substituents, while 4a 

and 5a, endowed with polar most likely charged substituents, experience no changes in their 

𝐾𝑑𝑠 compared to the reference ligand 3a. Additionally, a significant loss in binding enthalpy 

and simultaneous gain in entropy is experienced by the ligands 3a, 4a 6a and 7 upon 

mutation of Val262 to aspartate (Figure 5.3, orange bars). An exception represents 5a. 
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Certainly, electrostatic interactions either attractive (4a and 5a) or repulsive (6a and 7) will 

influence the resulting binding constants and thermodynamic profiles.  

 

 

Figure 5.3 Enthalpy differences of the investigated ligands 3a – 7 compared to wild type TGT. The ∆∆𝐻 values 

are shown as bars in units of kJ ∙ mol−1. ∆𝐻𝑜𝑏𝑠  was measured in triplicates. The errors were calculated 

according to error propagation. The light gray box represent the ± 4 kJ ∙ mol−1 area, within that data are 

considered not significantly different. 

 

The binding potency of the investigated ligands towards the protein slightly increases 

upon mutation of Val262 to cysteine. Although parts of helix αB are delocalized in the 

structure of this variant in complex with 4a no impact on the 𝐾𝑑  value is noticeable in 

comparison to Val262Asp∙4a. Inspecting the crystal structure, however, shows already a high 

flexibility of this part of the protein in the apo state of the mutant variant. The observed 

affinity gain and enthalpy differences (Figure 5.3, blue bars) can hardly be explained by 

means of the crystal structures since the disulfide bridge is presumably not present in 

solution and only formed during crystallization in consequence of an exposure of the sample 

to oxygen over several days. Also the fact that stored and subsequently thawed protein 

shows a drastically decreased affinity in ITC measurements supports the assumption that the 

freshly expressed protein is initially present in its reduced state. 
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5.4 Conclusions 

The present chapter describes how various lin-benzoguanine type inhibitors with different 

flexible 2-substituents respond, with respect to their binding affinities, to mutations 

changing the properties of the flat, solvent-exposed uridine-33 subpocket of the target 

protein TGT.  

The 2-amino-lin-benzoguanines included in this study exhibit varying behaviours of 

their 2-substituents: While 3a serves as a reference ligand lacking any substituent to be 

deeply placed into the ribose-33 subpocket, 4a and 5a are endowed with flexible 

substituents attached to the tricyclic parent scaffold. Conformationally, the attached 

substituents might swap between gauche- and anti-conformation giving rise to enhanced 

residual mobility. For 6a this flexibility is particularly pronounced, which is why no properly 

defined difference electron density for the thiophenomethyl substituent was detected in 

multiply recorded data sets. In contrast, 7 binds to TGT with its phenylethyl substituent in 

one single fully occupied orientation.  

Our studies confirmed that gaining reliable information concerning the development 

of potential resistances requires the presence of an appropriate resistance model. As a 

prerequisite for the reasonable interpretation of crystal structures, these have to reflect the 

behaviour of the protein in solution best possible, which, in the present study, only applied 

to TGT(Val262Thr) and TGT(Val262Asp). Considering the potency of a compound we were 

able to show that not only the substituent, which binds into the pocket of interest, has to be 

taken into account but also the binding of the parent scaffold. In case of TGT(Val262Asp) the 

mere binding of the tricyclic core provoked disorder within the protein structure next to the 

site of mutation, which drastically decreased the binding affinity of the investigated 

inhibitors. Moreover, our studies indicate that the various 2-substituents do not show a 

large difference in their potency compared to the reference ligand 3a. If at all, the 

investigated 2-amino-lin-benzoguanines only show any significant variance with respect to 

the 2-substituent when binding to TGT(Val262Asp) (factor three to seven). However, these 

could rather be explained by their chemical properties than by differences in their 

occupancies. Obviously, those ligands, which are endowed with a positively charged 

substituent, are able to attract the Asp262 side chain carboxylate, which leads, compared to 

the uncharged hydrophobic derivatives, to a less pronounced loss of affinity. The more 
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electron-rich aromatic substituents, in contrast, experience a distinct loss in potency most 

likely due to unfavourable electrostatic interactions. 

In summary, the responses of the tested ligands upon mutations in the uridine-33 

binding pocket of TGT proved diverse results. Although the crystal structures determined in 

this study suggest closely related binding modes of the ligands to the mutated variants, no 

clear correlation with respect to their 2-substituents was found. This leads to the conclusion 

that their potency predominantly results from the binding of their tricyclic scaffold. 
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6. Addressing a New Subpocket of TGT by Elongated 2-Amino-lin-

benzoguanines 

 

6.1 Introduction 

The rational design and synthesis of potent ligands which do not only occupy the tunnel-

shaped guanine-34 recognition site but also target the neighboring subpockets has been one 

of the major goals in the development of new TGT inhibitors. To this end various 

substituents were attached to the parent tricyclic scaffold of lin-benzoguanine. As 

appropriate substitution sites the 2-position and/or the 4-position were used resulting in 

potent ligands binding in the low nanomolar range [Stengl et al., 2007; Kohler et al., 2009; 

Ritschel et al., 2009; Ritschel et al., 2009; Barandun et al., 2013]. While in the crystal 

structures of these compounds in complex with TGT the position of the 4-substituent could 

be clearly assigned to the difference electron density in nearly all cases, in no case any 

reasonable difference electron density could be spotted for the 2-substituent [Kohler et al., 

2009; Ritschel et al., 2009]. This observation led to the assumption that the attached 2-

substituents may be highly flexible even in the enzyme bound state. 

Thus, further substituents were synthesized with the goal to fix this ligand portion 

within the uracil-33 subpocket by implementing basic ring systems that were meant to 

interact with backbone groups within the pocket. Similarly, polar terminal functions were 

attached to the ring systems that were meant to experience hydrogen bonds to Asp267 and 

Lys264 located at the far end of the uracil-33 subpocket. Furthermore, combined ring 

systems were added to mimic the uracil portion of the natural substrate and to achieve high 

shape-complementary. Finally, for crystallographic reasons, various substituents containing 

the stronger diffracting sulphur were synthesized [Ritschel, 2009].    

Unfortunately, none of the chemical modifications resulted in an ordered binding 

mode of the 2-substituent visible in the crystal structure and, consequently, all previous 

studies had to consider binding geometries suggested by docking. However, also docking 

yielded multiple orientations of the attached 2-substituents, which made it impossible to 

detect the actual binding mode reliably [Ritschel, 2009; Ritschel et al., 2009]. 
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In the present study we performed an excessive screening for modified crystallization 

conditions, which ultimately enabled us to trace the positions of the various 2-substituents 

[Neeb et al., 2014]. Although new interactions between the substituents and the protein 

could be identified within the ribose-34 subpocket, the originally addressed uracil-33 

subpocket remained unoccupied. Therefore, we decided to extend the substitution pattern 

of the ligand in order to occupy additional chemical space and gain affinity. Thus, we 

designed modified ligands based on a successfully crystallized ligand exhibiting a phenylethyl 

substituent in 2-position.  

Since docking results had not been able to indicate the binding poses of the 2-

substituent in previous studies, we used MD simulations as an alternative computational 

method to predict binding poses, particularly of ligands exhibiting residual mobility. 

Subsequently, we determined the crystal structures of the designed ligands in complex with 

TGT to check for the actual binding modes, and quantified their binding affinities via a 

biochemical assay. 

 

6.2 Results and Discussion 

6.2.1 Ligand Design 

As a starting point for ligand design we selected the 2-amino-lin-benzoguanine 7 decorated 

with a phenylethyl substituent (Table 6.1).  

The first criterion for this choice had been bioavailability since the class of lin-

benzoguanine-based inhibitors shows only poor permeability in PAMPA measurements 

[Barandun et al., 2012]. From a bioavialability-point-of-view the phenylethyl substitution 

bears no additional protonation site that potentially lowers the permeability through cell 

membranes at a physiological pH value as it is the case, e.g., for the basic morpholinoethyl or 

piperidinoethyl substituent.  

Secondly, we had focused on the binding affinity (𝐾𝑖) of the ligands. Remarkably, 

attachment of the phenylethyl substituent increases the potency of the parent inhibitor 

scaffold by a factor of about ten in the biochemical assay although, compared to the parent 

scaffold, no further polar interactions are provided [Ritschel et al., 2009].  

Finally, we had selected this substitution pattern from crystallographic 

considerations. Solely the phenylethyl substitution had resulted in a ligand that could be 
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refined to an occupancy of 100% while all other members of the 2-amino-lin-benzoguanine 

compound class under investigation had exhibited a reduced occupancy due to scatter over 

multiple conformations.  

In the present study, we designed and synthesized, based on the parent scaffold 7, 

four different elongation motifs exhibiting diverse chemical properties (Table 6.1). 

 

Table 6.1 Chemical formulae and binding affinities of the extended 2-amino-lin-benzoguanines. 

Compound 

 

𝑲𝒊 [nM] 

7    10 ± 3[a] 

7a 

    

  2 ± 2 

7b 

 

  7 ± 3 

7c 

     

21 ± 8 

7d 

       

30 ± 7 

  a
𝐾𝑖  value according to Ritschel et al., 2009.  

 

6.2.2 MD Simulations 

MD simulations were performed using the program AMBER under NTP conditions 

(𝑝 = 1𝑏𝑎𝑟,𝑇 = 300𝐾). 7a and 7d were simulated over 10 ns. 7b and 7c were trapped in a 

local minimum over a 10 ns period. Thus, for these ligands simulation time was extended to 

100 ns. Subsequently, the ligand conformations taken up along the trajectory were 

hierarchically clustered into families with maximal RMSDs of 2 Å using the program ptraj and 

representative arche types were visually inspected. The results are listed in Table 6.2.
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Table 6.2 Results of the hierarchical clustering after the performed MD simulations. Given is the total 

simulation time, the number of observed clusters, the most populated binding poses, their percental 

occurrence, and the RMSD compared to the binding mode observed in the subsequently determined crystal 

structure. 

 time # clusters Binding poses[a] Occurrence RMSD[b] 

7a 10 ns 3 

 

63.6% 

 

63.6% 

0.4 Å 

 

0.4 Å 

7b 100 ns 8 

 

46.8% 

 

  4.3% 

4.9 Å 

 

0.4 Å 

7c 100 ns 6 

 

76.1% 

 

  2.5% 

3.5 Å 

 

1.6 Å 

7d 10 ns 8 

 

34.2% 

   

8.8% 

1.3 Å 

 

1.1 Å 

a
Color code: green = most represented, blue = most similar to crystal structure, yellow = crystal structure. 

b
RMSD values were calculated using fconv after alignment on the tricyclic scaffold without hydrogens [Neudert 

and Klebe, 2011]. 

 

All simulations were able to find a binding pose of the 2-substituent similar to the 

one observed in the crystal structure within an RMSD between 0.4 Å and 1.6 Å. Thereby, the 

pose of 7a matched particularly well (RMSD = 0.4 Å) and, moreover, was the most 

representative in terms of percental occurrence, closely similar to the occupancy found by 
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X-ray crystallography (63.6% vs. 74%). For the remaining ligands 7b, 7c and 7d different 

binding poses were suggested as the most populated orientations deviating between 1.3 Å 

to 4.9 Å compared to those found in the subsequently determined crystal structures. 

 

6.2.3 Affinity Data 

Binding affinities were obtained via a radioactive enzyme assay. Thereby, the incorporation 

of [8-3H]guanine into tRNATyr (ECY2) at position G34 at pH 7.3 and 37°C was measured by 

liquid scintillation counting. Inhibition constants were calculated by the comparison of the 

initial velocities of the base-exchange reaction in absence and presence of the ligand. 

All analyzed ligands show a binding affinity in the low one- to two-digit nanomolar 

range (Table 6.1). Reference ligand 7 exhibits a binding affinity of about 10 nM [Ritschel et 

al., 2009]. Interestingly, the attachment of the methylester in 7a is able to achieve a 

significant enhancement in binding affinity by a factor of five. For 7b further decoration of 

the phenyl moiety does not yield a significant change in the 𝐾𝑖  value, although its ligand 

efficiency is decreased by the attachment of the hydroxyethyl group. In contrast, 7c and 7d 

show a slightly decreased potency. Compared to the unsubstituted phenylethyl lead 

structure the value for the derivative 7c with an attached nitrile group is reduced about 

twofold, while the decoration with a carboxylate group in 7d results in a loss by a factor of 

three. Obviously, the desolvation costs especially of the attached polar functional group of 

7d are larger than the actual gain in affinity due to newly formed interactions. 

 

6.2.4 Crystal Structure Analysis 

For the investigated ligands crystal structures were determined with a resolution of 1.14 – 

1.40 Å. In all structures the fully occupied lin-benzoguanine scaffold is well-defined in the 

difference electron density (Figure 6.1). It is placed into the guanine-34 recognition pocket 

forming a π-stacking between the side chains of Tyr106 and Met260 and establishing the 

same interactions to neighboured amino acids as previously described [Stengl et al., 2007; 

Kohler et al., 2009; Ritschel et al., 2009; Ritschel et al., 2009; Barandun et al., 2013]. 
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Figure 6.1 Binding modes of the analyzed lin-benzoguanines 7 (A), 7a (B), 7b (C), 7c (D) and 7d (E) as well as a 

tRNA analogue (F). The protein surface is shown in white. The ligands and interacting residues are displayed as 

sticks (nitrogen = blue, oxygen = red, phosphorus = orange). Hydrogen bonds are visualized as dashes. The 

 𝐹𝑜  −  𝐹𝑐   difference electron density is illustrated at a sigma-level of σ = 2.5 as green meshes. For clarity the 

π-stacking residues Tyr106 and Met260 as well as water molecules are not shown. A – E) The tricyclic parent 

scaffold is well defined in the difference electron density experiencing hydrogen bonds to residues Asp102, 

Asp156, Gln203, Gly230, Leu231 and Ala232 within the guanine-34 recognition site. Depending on its 

substitution pattern, the phenylethyl substituent in 2-position adopts either an orientation within the ribose-33 

subpocket or is rotated out of it facing the backbone of Val233 and Gly234. Only 7d (E) forms additional polar 

interactions to the guanidinium head group of Arg286. While in the complex structures TGT∙7, TGT∙7a and 

TGT∙7d the side chain of Arg286 closes the ribose-32 subpocket, 7b and 7c are able to bind to that site turning 

the side chain of Arg286 apart. F) Binding of tRNA induces the same conformation of Arg286 as found in the 

complexes TGT∙7b and TGT∙7c opening the ribose-32 subpocket (blue). Ribose-32 interacts with the side chain 

of Arg286 via two charge-assisted hydrogen bonds. 

 

The  𝐹𝑜  −  𝐹𝑐    difference electron density fully defines the binding mode of 7 (Figure 

6.1A). Yet, increased B factors of the 2-substituent compared to the tricyclic parent scaffold 

are observed (𝐵𝑝𝑒𝑛𝑦𝑙 = 31.5 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 17.2 Å2). The phenylethyl substituent 

occupies the ribose-33 subpocket adopting an all-trans conformation. Weak hydrophobic 

interactions are experienced between the side chains of Ala232, Cys281, Val282, Leu283 and 

the 2-substituent, which covers in lid-like fashion the hydrophobic residues in this pocket. 

The 2-substitutent of 7a refines to a reduced occupancy of 75% indicating higher 

flexibility of this moiety compared to that observed for 7 (𝐵𝑝𝑒𝑛𝑦𝑙 = 28.9 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 =

14.6 Å2). The C-CH2-CH2-NH linker adopts a gauche conformation with a torsion angle of -

61.3°, which, most likely, is energetically less favourable (Figure 6.1B). Contrary to the 

gauche-isomer of the substituent in 4a (Chapter 4), the one in 7a is oriented out of the 

ribose-33 subpocket facing the backbone of Val233 and Gly234. Obviously, an extended all-

trans conformation of this substituent would lead to a clash with Arg286 and, therefore, is 

not adopted. Instead, the substituent is forced to fold back into the described conformation 

moving the ligand out of the ribose-33 pocket. Weak van-der-Waals interactions are formed 

to the side chain of Ala232. Additionally, an expanded hydrogen-bond contact between the 

backbone NH group of Gly234 and the carbonyl oxygen of the ester group in 7a is formed 

(3.51 Å). Remarkably, such a folded conformation is observed for an attached 2-substituent 

for the first time.  
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For 7b two data sets showing different results with respect to the substituent’s 

binding mode were obtained (Figure 6.1C). The first structure displays the 2-substituent in 

two conformations with a summed overall occupancy of 100%. In both conformations the 

substituent is not sufficiently resolved in the difference electron density due to the residual 

mobility of that part of the molecule resulting in an ill-defined difference electron density for 

the hydroxyethly moiety. In the first conformer, the C-CH2-CH2-NH linker adopts an all-trans 

conformation with an occupancy of 56% and enhanced residual mobility (𝐵𝑝𝑒𝑛𝑦𝑙 = 20.3 Å2 

vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 11.9 Å2). The adopted orientation is similar to that observed for 7. In the 

second conformer, the linker exhibits gauche conformation resulting in an analogous binding 

mode as observed for 7a (𝐵𝑝𝑒𝑛𝑦𝑙 = 19.8 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 11.9 Å2). In this orientation the 

substituent refines to 44%. In a second independently collected data set using another 

crystal the whole ligand is visible in the difference electron density in the all-trans 

conformation only, although a slightly reduced occupancy for the 2-substituent of 87% is 

refined. With increasing distance from the parent scaffold the difference electron density 

becomes more smeared out and, accordingly, the assigned temperature factors increase 

(𝐵𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 = 26.4 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 12.4 Å2). The position of the hydroxyethly portion can 

hardly be assigned to the density. Interestingly, the side chain of Arg286 is shifted out of the 

ribose-33 subpocket presumably to create sufficient space to accommodate the 

hydroxyethyl moiety of the ligand now extending its binding towards the ribose-32 

subpocket. This region of the protein has never been occupied by synthetic ligands so far. 

Comparably, also the 2-substituent of 7c adopts an all-trans conformation 

penetrating into the ribose-32 subpocket (Figure 6.1D). The whole ligand is fully occupied, 

although its 2-substituent shows increased temperature factors compared to the parent 

scaffold (𝐵𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 = 17.4 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 9.8 Å2). The terminal nitrile group does not 

experience specific interactions with any of the amino acid residues found in the ribose-32 

subpocket. Only a single water molecule is located in close distance (3.0 Å) to the nitrile 

functional group. The side chain of Arg286 has to change its orientation and is shifted out of 

the ribose-33 subpocket adopting the previously found conformation.  

The binding mode of 7d is fully defined in the  𝐹𝑜  −  𝐹𝑐   difference electron density  

(Figure 6.1E). The C-CH2-CH2-NH linker adopts an all-trans conformation reaching into the 

ribose-33 subpocket. Under the applied pH conditions the terminal carboxylate group is 

most likely deprotonated. In this state, it forms a bidentate salt-bridge to the guanidinium 
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moiety of Arg286. In order to do so, the polar group of Arg286 bends towards the ribose-32 

subpocket. Despite of the strong electrostatic interaction between the carboxylate group of 

the ligand and the side chain of Arg286, the 2-substituent exhibits B factors, which are 

similarly increased as those of the remaining derivatives investigated in this study 

(𝐵𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 = 21.1 Å2 vs. 𝐵𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 = 11.1 Å2).  

 

6.3 Conclusions 

In the present chapter the binding modes of five extended 2-amino-lin-benzoguanines were 

predicted using MD simulations as in silico design technique. Subsequent to synthesis their 

binding modes were determined experimentally by crystal structure analyses whereby 

modified crystallisation conditions were developed. Previous studies based on docking 

predictions and crystal structure analyses using soaking protocols had failed to actually 

characterize the binding poses of the attached 2-substituents [Ritschel, 2009; Ritschel et al., 

2009]. In all cases enhanced disorder and scatter over multiple orientations of the 

substituent was suggested. Therefore, we applied molecular dynamic simulations as this 

method is better suited to explore the accessible configuration space of the 2-substituent. In 

one example the MD simulations predict the binding mode, which was subsequently found 

via X-ray crystallography, well. Also in the other three cases binding modes, which are similar 

to those found in the crystal structures, are predicted by MD. However, the attributed 

populations of the different configurations do not match with the refined occupancies in the 

respective crystal structures.  

The subsequently determined crystal structures of the four TGT-ligand complexes, 

which were based on a co-crystallization protocol, provide a more detailed insight into the 

binding mode of the extended 2-substituents. While in previous studies our design 

hypotheses were based on in silico docking performed to interpret the ill-defined difference 

electron density in the area where the 2-substituent would be expected, reasonable 

 𝐹𝑜  −  𝐹𝑐   density is observed for nearly all ligands in the analyses presented in this 

contribution. The crystal structures indicate different conformations of the attached 2-

substituents, which will either reach into the ribose-33 subpocket, if the C-CH2-CH2-NH linker 

adopts an all-trans conformation, or out of the ribose-33 pocket facing the backbone of 

Val233 and Gly234, if the linker folds into a gauche orientation. Surprisingly, the terminal 
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groups of 7b and 7c are able to force Arg286 into a conformation pointing off the ribose-34 

subpocket. The latter residue acts as a kind of flexible gatekeeper, which controls access to 

the ribose-32 subpocket. In a conformation oriented out of the ribose-33 pocket, it adopts a 

position similarly found in the structure with the natural RNA substrate (Figure 6.1F). In this 

geometry the pocket is opened towards the uridine/cytosine-32 recognition site, a pocket, 

which previously had never been addressed by any of our synthetic ligands. Remarkably, the 

displacement of the flexible side chain of Arg286 does not result in a significant affinity loss.  

The deduced information concerning the binding modes of the extended 2-

substituent opens the perspective for a new strategy to design more potent ligands forming 

new interactions within the nucleoside-32 subpocket. This region offers polar side chains to 

be addressed similarly as by the ribose-32 portion of the natural substrate tRNA. 

Two messages can be learnt from this contribution. First of all, the visibility of 

substituents in the difference electron density may depend on the applied crystallization 

protocol. In consequence, not every ill-defined electron density inevitably indicates the 

residual mobility or the scatter of a substituent in the protein-bound state. It may instead 

result from the particular protein conformation preformed during crystallization. This 

preformed conformation may prevent the mutual conformational adaptation of the protein 

and the ligand and thus, prevent the ligand from adopting a defined and, from an enthalpic 

point of view, favorable conformation when bound to the crystallized protein. Accordingly, it 

is of utmost importance to distinguish if soaking or co-crystallization protocols were applied 

when discussing the results of structural studies including protein-bound ligands. As a 

consequence, the direct comparison of protein-ligand complex structures must be deemed 

problematic, if the considered crystals were not produced via the same crystallization 

protocol. 

The second message concerns the attachment of polar groups at the terminal end of 

ligands. In the present compound series no dramatic change in binding affinity was 

experienced in comparison to the original phenylethyl reference substituent, although in the 

case of 7d even a novel salt bridge contact to Arg286 is established. Nonetheless, this ligand, 

which is endowed with a carboxylate group, looses affinity. This may, at least in part, be due 

to the high desolvation costs for such a charged functional group. Definitely, this example 

underlines that a solvent-exposed salt-bridge as the one formed to Arg286 at the rim of the 

ribose-33 pocket has hardly any enhancing effect on binding affinity. Such an interaction will 
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only improve binding affinity strongly, if it is formed in a deeply buried environment well-

shielded from the surrounding water. Only there a charge-assisted contact is strongly 

enhanced by the local environment of low dielectricity. This has to be well regarded if 

putative interaction sites in flat solvent-exposed binding pockets are thought of as potential 

hot-spots to be addressed in a drug design study. 



 
112 

7. 5-Azacytosine as a Novel Scaffold to Inhibit Z. mobilis TGT with Expected Improved 

Bioavailability and Synthetic Accessibility 

7. 5-Azacytosine as a Novel Scaffold to Inhibit Z. mobilis TGT with 

Expected Improved Bioavailability and Synthetic Accessibility 

 

7.1 Introduction  

Fragment-based lead discovery (FBLD) has been well established as an alternative to high-

throughput screening (HTS) in the field of lead finding to develop novel drug-like candidates. 

Prerequisite for the success of such approaches was the introduction of sensitive biophysical 

methods such as surface plasmon resonance (SPR) [Perspicace et al., 2009; Navratilova and 

Hopkins, 2010] or NMR [Fejzo et al., 1999; Dalvit et al., 2002], which are able to detect weak 

ligand-protein binding. FBLD comprises several steps starting with the design of an 

appropriate fragment library, followed by in-vitro testing of fragments detected in 

biophysical prescreening by X-ray crystallography and reliable affinity measurements. In a 

subsequent phase promising fragments have to be evolved to putative lead structures either 

by fragment growing, linking or merging. This strategy is accompanied by multiple steps of 

optimization consisting of modelling, structure determination and assay measurements.   

Although HTS focuses on the testing of a large magnitude of compounds in the range 

of 106, this method faces a number of problems with respect to subsequent optimization, 

such as too high lipophilicity or poor solubility of the initial hits leading to false positives in 

the primary HTS assays [Scott et al., 2012]. Also discovered hits do not necessarily fill binding 

pockets of the target protein in an optimal manner as the initial test compounds are rather 

large with respect to their molecular weights ranging from 300 to 500 Da [Lipinski et al., 

2001]. Even though discovered hits might show low-micromolar binding, their suitability as 

starting point for the optimization is difficult to estimate since the contribution of individual 

interactions to binding affinity remains virtually undefined. 

Optimal compound selection for FBLD was suggested to follow the Astex Rule of 

Three, which means that the molecular weight should be below 300 Da, not more than three 

hydrogen bond acceptor or donor functionalities should be present and the calculated logP 

value has to be lower than three [Congreve et al., 2003]. Attributed to the smaller size of 

fragments, test libraries usually comprise only 103 members and still are assumed to cover 

the chemical space sufficiently well, much better than HTS collections can actually achieve 
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[Makara, 2007]. Moreover, the quality of the formed interactions between the small and 

often optimally fitting fragments and the target’s amino acids is better and more efficient 

than with HTS compounds since a weak binding fragment has to establish binding via fewer 

interactions.   

To better relate the potency of a compound to its actual size ligand efficiency (LE) 

measures have been suggested, which determine the ratio between Gibbs free energy of 

binding (−Δ𝐺 (𝑘𝑐𝑎𝑙 𝑚𝑜𝑙−1)) and the number of non-hydrogen atoms of the compound 

[Kuntz et al., 1999]. Thus, efficient ligands will only be attributed to high affinity binding, if 

they simultaneously exhibit low molecular weight. More recently, the concept of group 

efficiency (GE) has been proposed to estimate the contribution of an added functional group 

to the free energy during optimization [Verdonk and Rees, 2008]. Group efficiency defines 

the gain in affinity (𝑘𝑐𝑎𝑙 𝑚𝑜𝑙−1) compared to the molecule lacking the functional group 

under investigation related to the number of added non-hydrogen atoms.   

The optimization of fragment and HTS hits is illustrated in Figure 7.1. The goal to hit 

by putative drug candidates is an area of high LE with a molecular weight not exceeding 

500 Da. HTS hits start at lower LE than fragments as they exhibit already a molecular weight 

approaching the 500 Da limit. Therefore, LE of HTS hits has to be increased while there is 

only little room to simultaneously introduce new functional groups, which augment 

molecular weight. Thus, interactions experienced by the HTS hits have to be replaced by 

alternative ones leading to stronger interactions whereby even a reduction in ligand size 

might be necessary. In contrast, fragment hits exhibit low LE but they offer multiple options 

to attach additional groups to achieve more contacts with the protein and improve LE. 

Recently, the 6-amino-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-ones (lin-benzo-

guanines) and 1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-ones (lin-benzohypoxanthines) 

were introduced as potent scaffolds inhibiting the tRNA-modifying enzyme tRNA-guanine 

transglycosylase (TGT) from Zymomonas mobilis [Stengl et al., 2007; Barandun et al., 2012]. 

Substituents attached at position 2 and 4 of the parent scaffolds lead to binding affinities in 

the nanomolar range [Hörtner et al., 2007; Kohler et al., 2009]. Despite their high potency, 

lin-benzopurines do not exhibit ideal properties for good in vivo activity as parallel artificial 

membrane permeability assay (PAMPA) measurements suggest that they may hardly be 

transported over biomembranes [Barandun et al., 2012]. Unfortunately, the most promising 

compounds only accumulate within the membrane but do not succeed in transportation.  
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Figure 7.1 Comparison of fragment based lead discovery (FBLD) and high throughput screening (HTS) 

approaches modified according to Scott et al., 2012. The molecular weight of putative hits is plotted against 

their potency. The right corner represents the low LE area, the left corner the high LE area. Fragment hits 

(orange) exhibit low molecular weight as well as low binding affinity. Upon optimization fragments are 

iteratively grown, linked or merged to a putative drug candidate (blue) of higher molecular weight settled in 

the Lipinski area between 300 and 500 Da. By this procedure potency is gained by attaching additional 

functional groups and high LE is reached. Contrary, HTS hits (red) show already a high molecular weight, which 

makes the introduction of new functional groups difficult. Therefore, existing functionalities have to be 

replaced by ones of higher quality. Even a reduction of the molecule’s size might be necessary.  

 

Therefore, the search for novel scaffolds with improved bioavailability is of utmost 

importance. In the present study we embarked onto a fragment-based approach aimed at 

the reduction of the tricyclic ring system of the lin-benzopurines. Starting point for the 

design was a fragment suggested by modelling, which consists of a 5-azacytosine core. In its 

structural and physicochemical properties it exhibits similarity with the natural substrate 

guanine and bears a directly linked phenyl ring. We focused on the optimization of this initial 

fragment by attaching additional groups in order to improve its LE. 

 

7.2 Results and Discussion 

7.2.1 Ligand Design 

Z. mobilis TGT exerts a nucleobase exchange of guanine by a modified base in the wobble 

position G34 of the tRNA-anticodon loop. Thereby, the molecular recognition of the 
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substrate is established by the amino acid side chains of Asp102, Asp156, Gln203 and the 

backbone NH of Gly230. Additionally, the nucleobase is sandwiched in π-stacking fashion 

between Tyr106 and Met260 located above and below the binding site [Xie et al., 2003; 

Tidten et al., 2007].  

 

Table 7.1 Chemical formulae, calculated cLog P values, corresponding 𝐾𝑖  values to Z. mobilis TGT determined 

by the radioactive enzyme assay and ligand efficiencies of the 5-azacytosine analogues.  

  cLog P[a] 𝑲𝒊 [µM] LE 

 

8 0.40 465 ± 139 0.32 

 

9 0.25 346 ± 210 0.30 

 

10 -0.74 107 ± 231 0.34 

 

11 1.39 4 ± 222 0.41 

 

12 0.24 1476 ± 648 0.24 

a
cLog P values were calculated using the Properties Viewer online software on chemicalize.org. 

 

The 5-azacytosine core is deduced from the natural substrate guanine. During design 

it was assumed to establish similar interactions to Asp102, Asp156, Gln203 and Gly230. The 

attached phenyl ring is meant to enhance binding affinity by π-stacking interactions to 

Tyr106 and Met260. In addition, it serves as an anchor point to decorate the novel scaffold 

by easily accessible chemistry with substituents in 2- and 4-position. These substituents were 

planned to reach into the hydrophobic ribose-34 subpocket flanked by Val45, Leu68, Leu100 

and Val282 and the solvent-exposed uridine-33 cavity made up of various backbone atoms 

and sealed at the far end by residues Lys264 and Asp267.  
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In addition to the described scaffold, also ligands exhibiting small decorations at the 

phenyl moiety were synthesized in order to search for promising substituents as starting 

points for fragment growing. These included a nitrile, an aminomethyl and a methoxy group 

in meta position of the phenyl ring as well as an additional fused aromatic ring leading to a 

naphthyl substituent. Details concerning the physicochemical properties of ligands 8 – 12 are 

listed in Table 7.1.   

 

7.2.2 Inhibition Mode and Affinity Data 

The blocking of the function of the target protein TGT can follow, depending on the size of 

the active-site ligand, an inhibition mechanism which is competitive or non-competitive with 

simultaneous binding of the tRNA. Therefore, prior to affinity measurements the inhibition 

mode was determined by a trapping experiment [Xie et al., 2003]. The results are visualized 

in Figure 7.2A. All investigated ligands show only one band attributed to the mass of TGT 

with the bound ligand at approximately 43 kDa. This clearly indicates that a competitive 

binding mode is given not allowing the tRNA molecule to bind to the protein-inhibitor-

complex. Obviously, the tRNA is sterically blocked from simultaneous binding to the protein 

likely due to the attached phenyl ring at the basic scaffold (Figure 7.2B).  

Binding affinities were determined via a radioactive enzyme assay. Thereby, the 

incorporation of [8-3H]guanine into tRNATyr (ECY2) at position G34 at pH 7.3 and 37°C is 

measured by liquid scintillation counting [Stengl et al., 2005]. Inhibition constants were 

calculated by the comparison of the initial velocities of the base-exchange reaction in the 

absence and presence of the inhibitor. 

The phenyl derivative 8 shows an inhibitory constant of 465 µM. Compared to the lin-

benzoguanine scaffold affinity drops by a factor of approximately 100 [Hörtner et al., 2007]. 

The substitution of the phenyl ring in meta position by a nitrile group in 9 does not result in a 

noticeable change of the 𝐾𝑖  value within the range of error, yielding a value of 346 µM. By 

introducing an aminomethyl group (10) an approximately 4.3-fold increase in binding 

strength could be measured, resulting in a 𝐾𝑖  value of 107 µM.  

Unexpectedly, the naphthyl substituent of 11 improves affinity significantly to the 

one-digit micromolar range to 4 µM, which corresponds to a more than 100-fold affinity 
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increase. In case of GABAA antagonists a similar affinity gain has been observed by increasing 

the hydrophobicity of the ligand from a phenyl to a naphthyl moiety [Frølund et al., 2002].  

Contrary to the other ligands, compound 12 changes the potency to the worse by a 

factor of 3.2 compared to the parent scaffold 8. Its 𝐾𝑖  amounts to 1476 µM.   

 

 

Figure 7.2 Inhibition mode of 5-azacytosine type ligands. A) Trapping experiment performed by SDS-PAGE using 

a mixture of TGT, tRNA and the different 5-azacytosines. M, size marker; DAQ, 2,6-diamino-3H-quinazolin-4-

one. The reference band 1 as well as the samples 2 – 6 containing 5-azacytosine based ligands show only one 

band indicating a competitive inhibition mode. The reference sample  containing DAQ as an uncompetitve 

inhibitor, which stabilizes the covalently linked TGT∙tRNA complex, exhibits an additional retarded band (lane 

7). B) Superimposition of the proposed binding mode of 8 (cyan) and the tRNA stem loop (green, PDB ID: 

1Q2R). The ligands are shown in stick representation. Oxygen atoms are colored in red, nitrogen atoms in blue 

and phosphate atoms in orange. The surface of the protein is represented in gray. For clarity, the surface of 

Tyr106 and Cys158 is not shown. The inhibition mode is confirmed by the proposed binding mode of 8. The 

phenyl ring in 6-position and ribose-34 of the tRNA are in too close proximity (2 Å) to allow the binding of 8 to 

the guanine-34 recognition site of the enzyme-tRNA intermediate.  

 

7.2.3 Putative Agglomeration Behaviour of the Naphthyl Derivative 11 

Hydrophobic ligands tend to agglomerate above a critical agglomeration concentration 

(CAC), which is typically found in the micromolar range [McGovern and Shoichet, 2003; Coan 

and Shoichet, 2008; Doak et al., 2010]. The agglomerate binds to the protein surface in 

unspecific manner and suggests false positive signals [Feng and Shoichet, 2006; Feng et al., 

2007; Thorne et al., 2010]. According to Table 7.1 11 exhibits the lowest solubility in aqueous 

solution in agreement with the cLog P value of 1.39. Therefore, the question arises, whether 
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the high potency of 11 is due to an unspecific binding event. To rule out this eventuality the 

following experiments were performed:  

Dynamic light scattering (DLS) measurements were carried out to identify potential 

aggregate formation [Feng et al., 2005]. A ligand solution was analyzed under the same 

conditions as applied in the assay measurements (200 mM Hepes pH 7.3, 20 mM MgCl2 and 

0.037% (v/v) Tween 20 at 37°C).  

 

 

Figure 7.3 DLS measurements. A) Boxplot showing the count rates of the analyzed samples in kHz. The gray box 

represents the interquartile range (IQR) with its borders giving the first (Q1) and third quartile (Q3) of the 

measurements. The median is represented by a gray bar within the box. The average count rate is visualized by 

a circle; the red color indicates that the signal exceeds the 10-fold of the blank value. The borders of the 

dashed lines give Q1 – 1.5 IQR and Q3 – 1.5 IQR, respectively. While 11 shows a count rate in the range of the 

blank measurement (24 kHz vs. 27 kHz), clotrimazole exhibits an over 100-fold increased count rate of 3020 

kHz. B) Autocorrelation functions of the samples plotted against time. 11 shows a similar autocorrelation 

function as the measurement of the sole buffer. Clotrimazole exhibits a sigmoidal autocorrelation function 

indicating its behaviour as strong aggregate former.  
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The ligand concentration was adjusted to 20 µM corresponding to the highest 

concentration of the dilution series in the assay. Samples were measured iteratively every 

ten minutes over a period of one hour and compared to the data observed by the strong 

aggregate former clotrimazole [Seidler et al., 2003].  

According to theory, the autocorrelation function of a DLS measurement shows a 

sigmoidal curve in case of an agglomeration event accompanied by the significant exceeding 

of the count rate compared to blank measurements, which displays the number of photons 

detected per second and therefore, serves as an indicator for signal strength and sample 

quality.  

Figure 7.3 summarizes the results of the analyzed compounds. The average count 

rates are shown in Figure 7.3A. While 11 exhibits an average count rate in the range of the 

blank measurement (24 kHz vs. 27 kHz), clotrimazole exhibits a signal height which is 

drastically increased by a factor about 100 (3020 kHz). Furthermore, only the autocorrelation 

function of clotrimazole exhibits a sigmoidal shape (Figure 7.3B). Therefore, DLS experiments 

suggest that 11 does not form aggregates in solution over the period of an assay 

measurement at the chosen concentration.    

Furthermore, the binding of 11 to an alternative protein was tested in ITC 

measurements according to an application note suggested by the manufacturer (28-9815-

96). Thereby, the ligand was titrated either to the target protein TGT or bovine serum 

albumin (BSA), respectively.  

BSA is commonly used in biochemical assays to reduce the tendency for 

agglomeration [McGovern et al., 2002]. The mechanism of this interference is not yet fully 

understood. Titration of 11 to BSA should only yield a binding isotherm if the ligand 

agglomerates in solution and thus, unspecifically mounts to the BSA surface. 

The obtained thermograms are shown in Figure 7.4. As already indicated by DLS also 

the ITC measurements support the assumption that no aggregate formation has warped the 

assay results: Only in case of the titration of 11 to TGT a binding isotherm is observed (Figure 

7.4A), while the addition to BSA yields only heat signals of dilution (Figure 7.4B). The 𝐾𝑑  

value of 11 determined by ITC averages to 7 µM, which is in good accordance with the 

results of the [8-3H]guanine assay. 
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Figure 7.4 Thermograms for the binding of 11 to TGT (A) and BSA (B). Titrating 11 to its target protein TGT 

yields an endothermic binding isotherm. Due to the low affinity of the ligand it does not exhibit a sigmoidal 

shape. The resulting 𝐾𝑑  value is comparable to that observed in the enzyme assay. However, the reaction 

shows an unreasonable binding stoichiometry. Therefore, a second experiment revealing potentially unspecific 

binding to the protein surfaces was performed by titrating 11 in a BSA solution. Contrary to A only small peaks 

of dilution could be observed during this titration. Details concerning the setup of the measurements are listed 

in the experimental section. 

 

7.2.4 Crystal Structure Analysis 

A crystal structure of TGT in complex with 8 was determined at a resolution of 1.62 Å. The 6-

phenyl-5-azacytosine scaffold is well defined in the  𝐹𝑜  −  𝐹𝑐   difference electron density 

(Figure 7.5). Most likely, due to its low solubility, the ligand is not fully populated in the 

guanine recognition site (84% occupancy). The ligand skeleton intercalates similar to the 

natural substrate guanine between Tyr106 and Met260 (Figure 7.6). Additionally, it forms 

hydrogen bonds to the side chains of Asp102, Asp156, Gln203 and the backbone NH of 

Gly230. A further interaction is mediated via a water molecule between N1 of the 5-

azacytosine moiety and the backbone NH of Ala232. As a donor function is missing in this 
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area no backbone flip is induced as in case of preQ1 or lin-benzopurines [Stengl et al., 2007; 

Barandun et al., 2012].  

 

 

Figure 7.5 Binding mode of 8 within the guanine-34 recognition site (PDB ID: 4Q4M). The protein is shown as a 

cartoon, interacting residues as well as 8 in stick representation (carbon = cyan, oxygen = red, nitrogen = blue). 

Water molecules are represented as spheres. Hydrogen bonds are visualized as dashed lines with their 

distances given in Å. The 6-phenyl-5-azacytosine scaffold is contoured at 3σ in the  𝐹𝑜 −  𝐹𝑐   density map 

(green) of the structural model refined after removing the ligand. Compound 8 adopts a similar binding mode 

as the natural substrate guanine with an occupancy of 84%. Several hydrogen bonds are formed to the side 

chains of Asp102, Asp156, Gln203 and the backbone NH group of Gly230. In addition, the ligand interacts with 

the backbone of Gly230, Leu231 and Ala232 via a close-by water molecule. Contrary to guanine, 8 does not 

show a fully planar binding geometry and the phenyl moiety exhibits a torsion angle Φ of about 35° with 

respect to a plane through the heterocycle. Furthermore, the side chain of Asp102 adopts two different 

positions: In its ligand-facing orientation it is able to interact with the exocyclic amino function of the 5-

azacytosine ring via one hydrogen bond (cyan, 42%). The second orientation is similar to that in TGT apo 

structures forming hydrogen bonds to the side chain of Asn70 and the backbone of Thr71 (teal, 58%). The 

water molecule encircled in red will only be present, if Asp102 is rotated out of the pocket. 

 

Unlike previously known substrates and ligands, the ring system of 8 does not adopt 

a planar geometry at the binding site. The phenyl ring is rotated approximately 35° out of 

plane of the heterocycle (Figure 7.5). Furthermore, the hydrogen bond formed to Asp102 

suggests suboptimal interaction geometry. In the binary complex of TGT and guanine (PDB 
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ID: 2PWU) the substrate shows an occupancy of 75% [Tidten et al., 2007]. Asp102 is present 

in two conformations, one facing the ligand by establishing two parallel hydrogen bonds to 

N3 and the exocyclic amino function of guanine (75%). The second conformer (25%) is 

rotated out of the pocket interacting with the side chain of Asn70 and the backbone NH of 

Thr71, an orientation also found in the apo enzyme [Brenk et al., 2003]. The structure 

indicates that the rotation of Asp102 into the binding pocket is ligand-induced and correlates 

with the observed occupancy of the compound.  

 

 

Figure 7.6 2D ligand interaction diagram of 8 and guanine generated with MOE. The two ligands exhibit similar 

interaction patterns within the guanine-34 recognition site forming hydrogen bonds to the side chains of 

Asp102, Asp156, Gln203 and the backbone NH group of Gly230. The water mediated interaction between the 

backbone NH group of Ala232 and N1 of the 5-azacytosine 8 is performed by N7 in case of guanine as the 

binding partner. 

 

Although 8 is occupied to 84%, the higher populated conformation A of Asp102 is 

rotated out of the guanine recognition site (58%). In that case, a close-by water molecule is 

observed adjacent to the aspartate side chain (Figure 7.5). The other conformer (42%) of 

Asp102 orients towards the ligand and the above-mentioned water molecule is displaced. 

However, the side chain of Asp102 adopts a conformation orthogonal to a best plane 
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through 8. Only one H-bond is formed to the carboxylate oxygens via the exocyclic amino 

group of the 5-azacytosine. Due to the one-sided fixation of the its scaffold, 8 exhibits a 

rather loose binding with an average B-factor of 26.4 Å2 showing its highest flexibility at the 

phenyl portion.  

For complex TGT∙9 a maximum resolution of 1.79 Å was achieved. The binding mode 

observed for 8 is also found for 9 (Figure 7.7A). The occupancy of the common 6-phenyl-5-

azacytosine core amounts to 84%. Unfortunately, sufficient difference electron density for 

the nitrile substituent in meta position is lacking. A small bulge next to the phenyl ring 

suggests that the nitrile moiety points towards the ribose-33 subpocket (Figure 7.7B).  

 

 

Figure 7.7 Binding mode of 9. The same options for visualization have been applied as in Figure 7.5. A) The 

binding mode of the 6-phenyl-5-azacytosine scaffold of 8 is confirmed by 9. The heterocycle is clearly defined 

by the  𝐹𝑜 −  𝐹𝑐   density map (green) showing an occupancy of 84%. However, adequate difference electron 

density is missing for the attached nitrile substituent at the phenyl ring. B) Close-up of the phenyl moiety and 

its nitrile substituent in meta position. A small bulge of the difference electron density suggests the nitrile 

functionality to point towards the adjacent ribose-33 subpocket. 

 

Again, Asp102 adopts the previously described conformations. The occupancy of the 

side chain conformer facing the ligand amounts to 46%. Thus, the orientation of Asp102 

resembling the one, which is found in the apo enzyme, also represents the predominant 

conformation in this complex. Similarly, the ligand shows elevated B-factors of 36.3 Å2. 
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The binary complex of TGT∙10 shows a resolution of 1.76 Å. The 6-phenyl-5-

azacytosine core refines to 88% occupancy. The position of the aminomethyl substitution 

cannot be clearly assigned to the  𝐹𝑜  −  𝐹𝑐  electron density due to an enhanced residual 

flexibility of this ligand portion with an average B-factor of 48.3 Å2. The conformer of Asp102 

oriented by a monodentate H-bond towards the 5-azacytosine moiety represents 46% 

population. 

Data sets for TGT∙11 and TGT∙12 were collected with a resolution of 1.35 Å and 

1.74 Å, respectively, including crystals grown under varying co-crystallization conditions. 

Unexpectedly, difference electron density neither for the 5-azaytosine core nor for the 

substituted phenyl ring could be observed, probably due to low solubility (compound 11) or 

rather reduced potency (compound 12). 

 

7.2.5 MD Simulation 

To investigate the properties of the 6-phenyl-5-azacytosine scaffold within the guanine 

recognition site and to get an idea about its flexibility considering the meta substituent, a 

short molecular dynamic (MD) simulation of 10 ns was carried out for the complex TGT∙9.  

 

 

Figure 7.8 Results of the MD simulation performed for 9. A) Dialplot tracing the movement of the phenyl 

moiety in 6-position along the trajectory. The radius of the plot represents the time scale of the simulation, the 

circumference the value for the calculated dihedral. The plotted dihedral ranges between -154.9° and 144.9°. 

B) Visualisation of the distance, which is covered by the nitrogen of the nitrile group due to the variance in the 

torsion angle marked in red. ∆𝑑 is calculated as segment along the circular arc.  
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The trajectory was analyzed by means of the torsion angle formed between N3 and 

C6 of the 5-azacytosine moiety and C1 and C2 of the attached phenyl ring (Figure 7.8B, red). 

The results are visualized in terms of a dialplot in Figure 7.8A.  

The torsion angle oscillates by about 60° between extrema of 144.9° and -154.9° with 

an average value of 171.2°. This torsion oscillation translates into a wiggling motion of the 

nitrile group swinging along a circular arc (Figure 7.8B). Overall, a maximum scatter of 3.8 Å 

is covered by the carbon and 4.9 Å by the nitrogen atom of the nitrile group explaining why 

no properly defined density is visible for this part of the molecule.       

 

7.2.6 Docking Solutions 

The crystal structures of the various TGT-ligand complexes do not provide a satisfactory 

explanation for the affinity differences of the inhibitors 8 – 12. To obtain additional insight 

into possible binding modes, 9 – 12 were docked into the guanine recognition site. The 

suggested binding modes are summarized in Figure 7.9.  

 

 

Figure 7.9 Docking solutions of ligands 9 – 12 generated by GOLD. The protein surface is shown in gray except 

for Tyr106 and Cys158, which are omitted from the plot for clarity. The ligands are visualized in stick 

representation (oxygen = red, nitrogen = blue).  
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The scaffold intercalates between Tyr106 and Met260 and hydrogen bonds are 

formed to the side chains of Asp102, Asp156, Gln203 as well as the backbone NH of Gly230.  

As expected, the docked binding mode of 9 suggests the nitrile substitution to be oriented 

towards the uracil-33-subpocket without forming any directional interaction. The torsion 

angle between the 5-azacytosine and the phenyl ring averages to 50°. However, also the 

alternative orientation of the nitrile group towards the ribose-34 pocket is observed on the 

less well ranked docking solutions. 

In contrast to 9, docking suggests one consistent binding mode for 10 placing the 

aminomethyl substituent into the ribose-34 subpocket next to the side chains of Asp102 and 

Asp280. Thereby, the substituent displaces a water molecule and participates in interactions 

with a water cluster placed between the two aspartates (Figure 7.10).  

 

 

Figure 7.10 Five-membered water cluster located between Asp102 and Asp280 in TGT∙8. The protein surface is 

shown in gray. Water molecules are represented as blue spheres and contoured at 1σ in the 2  𝐹𝑜 −  𝐹𝑐   

density map (dark blue). Compound 8 and residues forming hydrogen bond contacts to the water cluster are 

visualized in stick representation (carbon, gray/cyan; oxygen, red; nitrogen, blue). Hydrogen bonds are 

indicated by blue dashes up to a maximum distance of 3.6 Å. 

 

In these docking solutions the torsion angle between the 5-azacytosine and the 

phenyl ring amounts to 10° to 25°. The enhanced binding affinity of 10 is in agreement with 

this binding mode and mirrors the properties of similarly substituted lin-benzoguanine 

inhibitors. In this series, an attached terminal amino group also replaces a water molecule 

and participates in a cluster of water molecules located between Asp102 and Asp280 
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without a loss in affinity compared to the unsubstituted parent structure (Figure 7.11) 

[Ritschel et al., 2009]. In case of 10 even a gain in affinity by a factor of 4.3 is noticed. 

The loss in binding affinity of 12 by a factor of 3.2 can be explained by similar 

considerations. The meta methoxy substituent at the phenyl ring is placed into the ribose-

34-subpocket upon docking. Thereby, it disturbs the mentioned water cluster and 

experiences unfavorable contacts to the most likely charged side chains of Asp102 and 

Asp280, which explains its loss in binding affinity. 

 

 

Figure 7.11 Influence of various substituents placed into the ribose-34 subpocket on the binding affinity to Z. 

mobilis TGT. On the left hand side, ligands 8, 10 and 12 representing 5-azacytosine type inhibitors are displayed 

while the right hand side shows members of the lin-benzoguanines with similar substituents at the 4-position 

of the scaffold. In each case the compound in the center of the scheme serves as a reference lacking a 

substitution, which binds to the ribose-34 subpocket. In both ligand series a substituent exhibiting a primary 

amino function is related to affinity gain. This functionality displaces a water molecule of the network located 

between Asp102 and Asp280 and is able to actively interfere with this network.  

 

For the placement of the naphthyl substituent 11 docking suggests two different 

binding modes. For the better ranked docking solutions a coplanar orientation of the 

naphthyl ring with the heterocycle is found with deviations from a common plane of 25° and 
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40°. The less well ranked solutions show the naphthyl substituent in perpendicular 

orientation to the cytosine moiety. This orientation of the naphthyl ring appears less 

favourable as it penetrates between Asp102 and Asp280 and disturbs the five-membered 

water cluster resulting in a loss of binding affinity.  

 

7.3 Conclusions 

In the present chapter a new class of fragment-like TGT inhibitors with potentially increased 

bioavailability has been studied. The 5-azacytosine scaffold was selected as it should exhibit 

similar features as the closely related natural substrate guanine. Considering the key 

interactions to Asp102 and Asp156, which are prerequisite to induce a protonation change 

of the ligand and therefore provoke the potent binding of a charged ligand was assumed to 

be transferable to the 5-azacytosines. Another advantage of the compound class is its easy 

synthetic accessibility allowing for the production of multiple derivatives. 

Unfortunately, the newly introduced unsubstituted 6-phenyl-5-azacytosine scaffold 

showed only binding affinity in the three-digit micromolar range. Further decorations in 

meta position did not yield a satisfactory increase in potency. Successfully accomplished 

crystal structures of 8, 9, and 10 indicate that the interaction to Asp102 is not optimally 

formed to the 5-azacytosine scaffold. The latter amino acid has been shown to exhibit a key 

role in substrate recognition, ligand protonation and pocket crosstalk (Chapter 4). Especially 

the protonation provoked by a strong pKa shift at N(5) in case of the lin-benzoguanines 

resulted in a substantial increase in potency due to the formation of two bidentate salt 

bridges between Asp102, Asp156 and the ligand [Neeb et al., 2014]. Additionally, the pKa 

value assigned to the change in protonation at N(5) is essential for the protonation 

behaviour of the ligand and the generation of a charged species. In contrast to the lin-

benzoguanines, the pKa value of the 5-azacytosine moiety is lowered by almost one 

logarithmic unit from approximately 4.4 to 3.5 [Tyagi et al., 2003; Barandun et al., 2012]. 

This difference makes a pKa shift induced by the two adjacent aspartate residues 

rather unlikely. In consequence of the absent protonation of the 5-azacytosine moiety no 

charged species seems to be created and the salt bridges to the protein are supposedly not 

formed.  
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In summary, as shown by crystal structure analyses and assay measurements, the low 

pKa value of the novel parent scaffold paralleled by the deviation from planarity of the 

attached phenyl ring most likely results in a perturbation of the key interaction to Asp102. In 

consequence, only unsatisfying LEs are observed for this scaffold. Obviously, the formation 

of salt bridges to Asp102 and Asp156 are essential for potent binding. 

Surprisingly, the naphthyl derivative 11 shows significantly improved binding with a 

remarkable LE of 0.41 𝑘𝑐𝑎𝑙 𝑚𝑜𝑙−1 similar to those of lin-benzoguanine type inhibitors. 

Unfortunately, a crystal structure of TGT in complex with this ligand could not be 

determined. Accordingly, it remains purely speculative to assume that this ligand exhibits 

properties to induce a sufficient pKa shift to bind in protonated state. At least such behavior 

could explain the substantial increase in binding affinity. Despite good LE of 11, the 

compound appears less suited for further optimization due to its low solubility and the 

danger of aggregation at higher concentrations even though at lower concentrations this 

behaviour could be ruled out by DLS experiments. As general strategy, polar groups are 

introduced to a fragment to allow for the formation of hydrogen bonds to the protein and to 

achieve sufficient solubility. In later design cycles hydrophobic groups can be attached to the 

lead fragment. In order to follow this basic rule, the design of alternative fragment-like TGT 

inhibitors should focus on an ammeline scaffold, which exhibits an elevated pKa of 4.5 

[Schmitt et al., 1997], and an attached second amino group suitable to avoid unfavourable 

contacts to Asp102. 
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8. Summary and Outlook 

 

The present thesis deals with structure-based design, in particular the characterization and 

improvement of selective antibiotics targeting the enzyme tRNA–guanine transglycosylase. 

TGT plays a key role in the pathogenicity of Shigella, the causative agent of Shigellosis, 

performing a base exchange reaction that yields modified tRNA. This modification is 

essential for Shigella to invade the epithelial cells of the colon. The worldwide increasing 

resistance of Shigella species against currently administered antibiotics requires the urgent 

development of novel drugs for the treatment of Shigellosis especially to cure patients in 

developing countries. 

Recently, the lin-benzopurine scaffold was introduced as promising starting point for the 

structure-based design of TGT inhibitors. Two classes, namely the lin-benzoguanines and lin-

benzohypoxanthines varying in an exocyclic amino functionality, were found to inhibit the 

target enzyme in the nanomolar range. However, the analyzed molecules did not yet show 

ideal drug metabolism and pharmacokinetic features since firstly they showed poor 

permeation through cell membranes in PAMPA measurements and secondly their attached 

2-substituents binding to the ribose/uracil-33 subpocket were poorly defined in the 

difference electron density in crystal structures complicating the establishment of a 

structure–activity relationship. 

In a comprehensive study the first issue was addressed by focusing on the protonation 

inventory of lin-benzopurines prior to and after complex formation. Different in vitro and in 

silico methods comprising isothermal titration calorimetry, site-directed mutagenesis and 

Poisson-Boltzmann calculations were applied to identify and verify the site of protonation. 

Prerequisite for this assignment is the set-up of ITC measurements appropriate to 

analyze the buffer dependency of the lin-benzopurines, which in return allows concluding 

the proton uptake or release by the system under investigation (Chapter 2). Subsequently, 

the robustness of the settings was tested by investigating the influence of protein and ligand 

impurities on the derived thermodynamic profiles. The latter comprised organic and 

inorganic impurities. Due to the low solubility of lin-benzopurines combined with 

unfavorable polar properties such impurities are complicating the preparation of pure 

compounds. Accompanied by measurements including the second model system trypsin, our 
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investigations showed that protein impurities are not necessarily influencing the 

thermodynamic properties of high affinity ligands binding to the target protein. Their 

presence is rather reflected in the binding stoichiometry. However, caution has to be paid 

especially in case of analyzing unknown binding reactions since incorrect binding 

stoichiometry of the interacting species can be suggested. Contrary to protein impurities, 

impure ligand preparations were found to influence the partitioning of the enthalpic and 

entropic term significantly while the binding free energy remains largely uneffected. In case 

of an impurity exhibiting similar binding properties to the intended ligand the actual 

thermodynamic profile cannot be deduced from ITC measurements and further purification 

is inevitable. Even organic and inorganic impurities that are not able to interact with the 

target protein can influence the thermodynamic properties drastically. In the fortune case of 

knowledge about the exact composition of the impurity, elementary analysis provides a 

helpful tool to support re-fitting the derived thermodynamic data yielding a good 

approximation to the actual enthalpic and entropic terms. This procedure, however, should 

be applied with caution since only a small deviation is accepted until changes in the 

thermodynamic signature are considered as significant. Especially in congeneric series, 

which might show only marginal differences in their binding enthalpy and entropy, sole re-

fitting may lead to a misinterpretation of data. Instead, more effort should be spent into the 

purification protocol of the ligands. If pure ligands cannot be obtained at all, reverse 

titrations might be consulted. However, this set-up also bears several problems like the 

requirement of large amounts of pure protein, which must be stable in the applied buffer 

system over the period of titration. For this purpose, dynamic light scattering has been 

shown to provide valuable insights to access whether protein or ligand aggregation 

influences the experiments. 

The established ITC technique has then been used to analyze the protonation 

inventory of the complex formation between lin-benzopurines and TGT (Chapter 3). Initial 

ITC measurements performed with lin-benzoguanine-type ligands suggested the uptake of 

one proton by either the protein or the ligand. Focusing on the ligand side, subsequent pKa 

calculations identified two basic nitrogens within the guanidine moiety of either the 

aminoimidazole or the aminopyrimidinone portion of the parent scaffold exhibiting 

significant changes in their pKa properties upon complexation. Even though being the less 

basic group, the protonation of the aminopyrimidinone moiety was suggested to be more 
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likely; however, the results obtained for the aminoimidazole did not allow to fully exclude 

protonation at this site. Thus, we analyzed different ligands in further ITC experiments, each 

of them excluding one of the basic sites by chemical modifications. Surprisingly, the lin-

benzoguanines exhibited a distinct buffer dependency while the lin-benzohypoxanthines did 

not show this behavior. To explain these results crystal structures of both inhibitor classes 

were consulted. A major difference in their binding modes was observed for the 

aminopyrimidinone portion: While the lin-benzohypoxanthines bind to a TGT conformation 

closely similar to the apo enzyme interacting with only one aspartate within the guanine-34 

recognition site, addition of the exocyclic amino functional group in case of the lin-

benzoguanines induces the rotation of a second aspartate towards the binding pocket. 

Obviously, the negatively charged environment of both aspartates in short distance 

provokes a pKa shift in case of the lin-benzoguanines strong enough to induce the uptake of 

a proton. If only one aspartate residue is oriented towards the binding pocket this shift is not 

sufficient for protonation as shown for the lin-benzohypoxanthines. This hypothesis could be 

confirmed by generating mutants with the aspartates replaced by asparagines, respectively. 

Performing similar ITC experiments titrating the lin-benzoguanines to the Asn-mutants did 

not show the previously observed buffer dependency anylonger. Previous in silico studies 

concerning the same issue proposed that the aminoimidazole portion of the parent scaffold 

would also change protonation state in the protein-bound state. According to our ITC 

measurements, this moiety would only become protonated upon binding if a protein residue 

simultaneously released a proton. The sole candidate to feature this property is a proximal 

glutamate residue, which is known to change its protonation state depending on the bound 

ligand or the applied environmental pH value. pH-Soaking experiments unravelled that this 

residue is already deprotonated at the applied pH value and thus, the aminoimidazole 

portion must remain in uncharged state. The gain in binding affinity previously ascribed to 

the protonation event could be attributed to an array of two parallel H-bonds directly 

formed with two adjacent C=O groups of the protein backbone avoiding secondary repulsive 

interactions. 

PAMPA measurements unravelled that the parent scaffold of the lin-benzoguanines 

exhibits a too polar character to permeate through the membrane of cells. Taking the 

present studies into account, it does not come as a surprise that the lin-benzohypoxanthines 

do not show an improvement of the PAMPA scores. Future design strategies must address 
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the polarity of the tricyclic scaffold focusing on the aminoimidazole portion. An approach, in 

which this part of the molecule is masked by appropriate functional groups turning it into a 

pro-drug, could help to achieve the desired partitioning.  

Considering the binding affinities across the series of lin-benzopurines, a rather flat 

structure–activity relationship is observed. Therefore, additional insight into the driving 

forces of binding was gained by factorizing the free binding energy into enthalpy–entropy 

contribution (Chapter 4). A modified crystallization protocol enabled to spot the flexible 2-

substituent of the analyzed 2-amino-lin-benzopurines in most cases yielding the basis to link 

structural features to the derived thermodynamic data. Crystal structures unravelled that 

the lin-benzohypoxanthines bind to TGT in a state closely similar to the apo enzyme showing 

Asp102 in an orientation oriented off from the binding pocket. In contrast to that, the lin-

benzoguanines induce the rotation of Asp102 towards the binding pocket. Thus, a proton is 

picked up by the aminopyrimidinone moiety of the parent scaffold then forming an 

additional bidentate salt-bridge to Asp102. Triggered by the movement of Asp102 several 

amino acid residues and secondary structure elements rearrange and transform the protein 

to a conformation as similarly found in the tRNA-substrate bound state. These changes were 

found to result in major differences determining the binding affinity in a biochemical assay, 

which yields an inhibitory constant (𝐾𝑖), and ITC measurements, from which a dissociation 

constant (𝐾𝑑 ) can be derived. In the biochemical assay the incorporation of radioactively-

labeled guanine into tRNA is measured. As a prerequisite, TGT is required in its substrate-

bound state. Thus, lin-benzohypoxanthines appear less potent since the protein has to be 

transformed into the substrate-bound state first. Contrary, ITC measurements record the 

change in heat released or absorbed during the binding reaction and a pure dissociation 

constant of the binding equilibrium to the required protein conformer is derived. Thereby, 

TGT binds the lin-benzohypoxanthines in its apo state showing an increased binding potency. 

  As expected, bindings of both series, lin-benzoguanines and lin-benzohypoxanthines, 

were found to be enthalpy-driven. Thereby, the lin-benzohypoxanthines exhibit a less 

pronounced enthalpic term due to their missing interaction to Asp102, which can be partly 

compensated by a crystallographically conserved water cluster located at the bottom of the 

guanine-34 recognition site. While the thermodynamic profiles of the lin-benzohypoxanthine 

series remains nearly unchanged, data for the lin-benzoguanine series are found to be quite 

diverse. Thus, assigning the contribution of the attached 2-substituent was hardly possible. 
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Obviously, the structural changes triggered by Asp102 in case of the lin-benzoguanines 

enable a cross-talk between ribose/uracil-33 subpocket addressed by the 2-substituent and 

the guanine-34 recognition site occupied by the parent scaffold. Helix αA located nearly 

perpendicular to the bound ligands was shown to play a crucial role in mediating the 

interactions between both pockets. After the lin-benzoguanines are recognized by the 

protein via Asp102 as substrate-like this helix is, amongst others, changing its position as 

observed similarly in tRNA∙TGT complexes. Accompanied by this movement, Tyr106 

penetrates deeper in the ribose/uracil-33 subpocket to experience whether this part of the 

protein is occupied. This procedure guarantees to differentiate correct from false substrates. 

Further design cycles should consider that ligands addressing the ribose/uracil-33 

subpocket have to be recognized as substrate-like triggering the rotation of Asp102 into the 

guanine-34 binding pocket in order to provoke the described cross-talk. Additionally, only 

the thus discriminated ligands are able to modulate binding affinity by forming bidentate 

salt-bridges to both aspartates, if their pKa values fall into a range appropriate to induce a 

protonation change. 

Based on the observations that 2-amino-lin-benzoguanines show a reduced occupancy 

combined with elevated temperature factors of the 2-substituent, a high flexibility of that 

part of the molecule was assumed. Therefore, we tested whether a binder with high residual 

mobility can avoid a loss in binding affinity compared to a binder adopting one ordered 

binding mode and therefore achieve an advantage as a more competent antibiotic less 

affected by resistant mutations (Chapter 5). After selecting Val262 within the ribose-33 

subpocket as mutation site, three different mutants were expressed (Val262Thr, Val262Asp, 

Val262Cys) and crystallized. Subsequently, the binding affinities (𝐾𝑑 ) of various 2-amino-lin-

benzoguanines were determined and discussed with respect to structural information 

derived from crystal structures of the TGT mutants in complex with reference 4a. 

Compared to the wild type, the analyzed 2-amino-lin-benzoguanines showed the 

same binding affinity towards variant Val262Thr. This result was expected since the 

properties of the pocket were only slightly changed. Contrary, potencies towards variant 

Val262Asp decreased significantly while the 𝐾𝑑  values towards variant Val262Cys increased. 

The observed changes could be related to the binding of the parent scaffold rather than to 

the different 2-substituents inducing disorder of the protein in proximal distance to the 
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mutation site. Only marginal differences could be ascribed to the properties of the 

substitution pattern in case of Val262Asp, most likely due to electrostatic attractions and 

repulsions, respectively. Nevertheless, this fact indicates that flexible portions of a drug are 

able to modulate binding affinity in the unfortunate situation of resistance mutations. 

In chapter 6 molecular dynamic simulations were used to predict the binding modes of 

extended 2-amino-lin-benzoguanines, which could not be sufficiently described by docking 

results in previous studies. Unfortunately, MD simulations succeeded only in one out of four 

cases to reliably describe the binding mode of the ligand in a way to match with the 

determined crystal structure. Nevertheless, subsequent crystal structure analyses using 

modified crystallization conditions resulted in reasonable difference electron density for all 

extended 2-amino-lin-benzoguanines. The refined data sets unravelled novel aspects 

important for the further design and characterization of TGT inhibitors:  

Firstly, using a modified crystallization protocol we were able to spot the 2-

subsituent of the extended 2-amino-lin-benzoguanines, which bind to the ribose-32 

subpocket that has never been occupied before. The collected data sets provide the basis for 

new synthesis strategies forming novel interactions within this part of the protein that is 

better shielded than its neighboring solvent-exposed environment. In that context, another 

ligand binding to the ribose-33 subpocket via a bidentate salt bridge showed a reduced 

binding potency. This example unravelled that solvent-exposed interactions formed between 

ligand and protein in the flat ribose-33 subpocket, if at all, hardly contribute to binding 

affinity since high desolvation costs have to be paid in this environment of high dielectric 

conditions. Therefore, further drug design cycles addressing this part of the protein have to 

account for an optimization of rather hydrophobic 2-substituents.  

Secondly, the results of this chapter emphasize the importance of the applied 

crystallization conditions. Poorly defined electron density does not always indicate ligands or 

substituents exhibiting high mobility in the protein-bound state. The applied crystallization 

protocol takes a major impact on the derived difference electron density and has to be 

considered in the discussion of the obtained structures. 

The class of 5-azacytosines was investigated as a novel scaffold to inhibit TGT with 

potentially increased bioavailabilty (Chapter 7). Similarly as the lin-benzopurines, also the 5-

azacytosines are deduced from the natural substrate guanine and were expected to 
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establish similar binding features. An attached phenyl ring serves as an anchor point for 

substituents reaching into the neighbored ribose-33 and ribose-34 subpockets. Compared to 

the lin-benzoguanines, this new class of inhibitors offers the advantage of better synthetic 

accessibility. The pKa value of its aminopyrimidinone moiety (N(5)), however, is found 

between the one of lin-benzohypoxanthines and lin-benzoguanines and represented a 

crucial issue to be analyzed in respect to its protonation behavior. 

 Unfortunately, the ligands show only binding affinities in the low micromolar range 

except of one compound decorated with a naphthyl moiety, which exhibits a binding 

potency in the one-digit micromolar range similar as the closely related guanine. Crystal 

growth proved to be difficult due to the low solubility of all compounds. Nevertheless, 

crystal structures could be solved for three out of five ligands. As expected, the 5-

azacytosine scaffold binds to the guanine-34 recognition site similarly as guanine, however, 

the key interaction to Asp102 that was proven to be of utmost importance for substrate 

recognition, ligand protonation, and pocket crosstalk is poorly established. The reason for 

the disturbance of this interaction can be deduced from the binding mode of the 6-phenyl-5-

azacytosines: Different from all known TGT inhibitors, they do not bind to the protein in a 

planar fashion since the attached phenyl ring rotates out of the plane defined by the 

heterocycle. In consequence, the – compared to lin-benzoguanines – low pKa cannot be 

shifted into a window appropriate for ligand protonation by the interactions formed to 

Asp102 and Asp156 and the drop in affinity can be explained. For the more potent naphthyl 

derivative a crystal structure with bound ligand could not be determined. Up to this point it 

remains unclear, whether the naphthyl substituent induces the conformational transition of 

Asp102 to form the desired bidentate salt bridge to the parent scaffold and thereby, induces 

the protonation step necessary to increase binding affinity. 

 Despite its promising potency, the naphthyl derivative is not an appropriate starting 

point for further optimization since it tends to form aggregates at higher concentrations 

providing significant problems in its handling during synthesis and subsequent analysis. 

Instead, further design cycles should concentrate on the closely related ammelines. An 

additional exocyclic amino functionality attached to the heterocylce does not only represent 

a linker region creating more space towards the side chain of Asp102 but also increases the 

pKa value about one logarithmic unit thus likely falling into a window that allows protonation 

of the parent scaffold. 
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8. Zusammenfassung und Ausblick 

 

Die vorliegende Arbeit behandelt das strukturbasierte Wirkstoffdesign, insbesondere die 

Charakterisierung und Optimierung selektiver Antibiotika gegen das Enzym tRNA-Guanin 

Transglykosylase. Die TGT spielt eine Schlüsselrolle in der Pathogenität von Shigellen, den 

Erregern der Shigellenruhr, indem sie eine Basenaustauschreakion katalysiert, die 

modifizierte tRNA liefert. Diese Modifizierung ist essenziell für Shigellen, um die Epithelzellen 

des Darms zu befallen. Weltweit steigen die Resistenzen von Shigellen gegen gängige 

Antibiotika an, sodass dringend neue Wirkstoffe zur Behandlung der Shigellenruhr 

insbesondere von Patienten in Entwicklungsländern benötigt werden. 

Kürzlich wurde das lin-Benzopurin-Grundgerüst als vielversprechender Ausgangspunkt für 

das strukturbasierte Design von TGT-Inhibitoren eingeführt. Zwei Klassen wurden als 

potente Inhibitoren im nanomolaren Bereich identifiziert – die lin-Benzoguanine und lin-

Benzohypoxanthine, die sich in einer exozyklischen Aminofunktion voneinander 

unterscheiden. Allerdings zeigen die untersuchten Moleküle noch keine idealen 

Eigenschaften in Bezug auf Metabolismus und Pharmakokinetik: Zum einen weisen sie eine 

geringe Permeation durch Zellmembranen in PAMPA-Messungen auf. Zum anderen ist ihr 

angefügter Substituent in 2-Position, der in der Ribose/Uracil-33 Tasche bindet, nur schwach 

durch Differenzelektronendichte in entsprechenden Kristallstrukturen definiert. Dies 

erschwert es eine Struktur–Wirkungsbeziehung aufzustellen. 

In einer umfassenden Studie wurde der erstgenannte Sachverhalt adressiert, indem der 

Protonierungszustand der lin-Benzopurine vor und nach der Komplexbildung betrachtet 

wurde. Verschiedene in vitro und in silico Methoden einschließlich Isothermaler 

Titrationskalorimetrie, ortsgerichteter Mutagenese und Poisson-Boltzmann-Berechnungen 

wurden angewendet, um die Protonierungsstelle zu identifizieren und zu verifizieren. 

Voraussetzung dafür ist die Etablierung von ITC-Messungen, die sich eignen die 

Pufferabhängigkeit der lin-Benzopurine zu analysieren, die wiederum Rückschlüsse auf die 

Protonenaufnahme bzw. –abgabe des betrachteten Systems erlaubt (Kapitel 2). 

Anschließend wurde die Robustheit dieser Versuchsbedingungen getestet, indem der 

Einfluss von Protein- und Ligandverunreinigungen auf die erhaltenen thermodynamischen 
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Daten untersucht wurde. Diese enthielten sowohl organische als auch anorganische 

Verunreinigungen. Verschuldet durch die geringe Löslichkeit  und ungünstige Polarität der 

lin-Benzopurine erschweren solche Verunreinigungen die Darstellung reiner Präparate. 

Zusammen mit Messungen an dem zweiten Modellsystem Trypsin wurde deutlich, dass 

Verunreinigungen des Proteins nicht zwangsläufig die thermodynamischen Eigenschaften 

von hochaffinen Liganden beeinflussen. Ihr Vorhandensein wird vielmehr in der 

Bindungsstöchiometrie widergespiegelt. Dieses Vorgehen muss jedoch mit Vorsicht 

betrachtet werden, insbesondere wenn unbekannte Bindungsreaktionen untersucht 

werden, da Rückschlüsse auf eine falsche Bindungsstöchiometrie der interagierenden 

Partner gezogen werden können. Im Gegensatz zu Proteinverunreinigungen beeinflussen 

verunreinigte Ligandpräparate die Aufspaltung in Enthalpie und Entropie signifikant, 

während die Freie Bindungsenergie größtenteils unberührt bleibt. Weist eine Verunreinigung 

ähnliche Bindungseigenschaften wie der beabsichtigte Ligand auf, kann das tatsächliche 

thermodynamische Profil nicht aus den ITC-Messungen abgeleitet werden und eine weitere 

Aufreinigung ist unumgänglich. Aber auch organische und anorganische Verunreinigungen, 

die nicht in der Lage sind mit dem Zielprotein zu interagieren, können sich drastisch auf die 

thermodynamischen Eigenschaften auswirken. Eine Elementaranalyse kann eine hilfreiche 

Methode darstellen, um die erhaltenen Daten so anzupassen, dass man eine gute 

Annäherung an die tatsächlichen enthalpischen und entropischen Beiträge erhält. Für dieses 

Vorgehen ist allerdings die genaue Kenntnis über die Zusammensetzung der Verunreinigung 

nötig. Jedoch sollte bei diesem Verfahren bedacht werden, dass nur geringfügige 

Abweichungen akzeptiert werden bis ein Unterschied der Daten als signifikant angesehen 

wird. Vor allem in Ligandserien, die unter Umständen nur marginale Änderungen in ihrer 

Bindingsenthalpie und –entropie zeigen, kann eine blinde Anpassung der Daten zu 

Missinterpretationen führen. Stattdessen sollte das Hauptaugenmerk auf geeigneten 

Aufreinigungsprotokollen liegen. Wenn eine vollständige Aufreinigung unmöglich sein sollte, 

sollten reverse Titrationen in Betracht gezogen werden. Jedoch birgt dieses Verfahren 

wiederum neue Problemstellungen wie den Einsatz von großen Mengen reinem Protein, das 

in dem angewendeten Puffersystem über die Dauer der Titration stabil in Lösung vorliegen 

muss. Zu diesem Zweck konnte gezeigt werden, dass die Methode der Dynamischen 

Lichtstreuung wertvolle Einblicke gibt, ob Protein- oder Ligandaggregationen die 

Experimente beeinflusst. 
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Die etablierte ITC-Methode wurde anschließend genutzt, um das Protonierungs-

verhalten während der Komplexbildung zwischen lin-Benzopurinen und TGT zu analysieren 

(Kapitel 3). Zunächst mit lin-Benzoguaninen durchgeführte Messungen suggerierten die 

Aufnahme von einem Proton, entweder durch das Protein oder den Liganden. Mit Fokus auf 

letzteren konnten mittels pKa-Berechnungen zwei basische Stickstoffe der Guanidinstruktur 

identifiziert werden, die sowohl in dem Aminoimidazol- als auch in dem 

Aminopyrimidinonteil des Grundgerüstes enthalten ist. Beide Teilstrukturen zeigten 

signifikante Änderungen ihres pKa-Wertes während der Komplexbildung. Obwohl weniger 

basisch, war eine Protonierung der Aminopyrimidinonstruktur wahrscheinlicher. Die 

erhaltenen Ergebnisse für die Aminoimidazolstruktur erlaubten es jedoch nicht, diese als 

Protonierungsort vollständig auszuschließen. Daher wurden verschiedene Liganden in 

weitere ITC-Experimenten einbezogen, die jeweils eines der basischen Strukturelemente 

aufgrund chemischer Modifikationen ausschließen. Überraschenderweise zeigen alle lin-

Benzoguanine eine deutliche Pufferabhängigkeit, während die lin-Benzohypoxanthine dieses 

Verhalten nicht aufweisen. Um dieses Result zu erklären, wurden Kristallstrukturen beider 

Inhibitorklassen herangezogen. Ein Hauptunterschied im Bindungsmodus der 

Aminopyrimidinonpartialstruktur konnte beobachtet werden: Während die lin-

Benzohypoxanthine an eine dem Apo-Enzym ähnelnde Konformation der TGT binden, bei 

der die Liganden mit nur einem Aspartat in der Guanin-34-Tasche interagieren, induziert die 

zusätzliche Aminogruppe im Falle der lin-Benzoguanine die Rotation einer zweiten 

Aspartatseitenkette in Richtung Bindetasche. Offensichtlich verursacht die negativ geladene 

Umgebung beider Aspartate in kurzer Distanz die Änderung des pKa-Wertes im Falle der lin-

Benzoguanine, die stark genug ist, um eine Protonenaufnahme zu begünstigen. Ist nur ein 

Aspartatrest zur Bindetasche orientiert, ist diese Änderung für eine Protonierung nicht 

ausreichend, wie für die lin-Benzohypoxanthine gezeigt. Diese Hypothese konnte durch 

Mutanten abgesichert werden, bei denen jeweils ein Aspartat- gegen einen Asparaginrest 

ausgetauscht wurde. In analogen ITC-Experimenten, in denen die lin-Benzoguanine zu der 

jeweiligen Asn-Mutante titriert wurden, konnte die zuvor festgestellte Pufferabhängigkeit 

nicht weiter beobachtet werden. In früheren in silico Studien, die dasselbe Thema 

adressierten, wurde die These aufgestellt, dass der Aminoimidazolteil des Grundgerüsts 

ebenfalls seine Protonierung im proteingebundenen Zustand ändern würde. Unseren ITC-

Messungen zufolge würde dieser Teil nur dann bei der Bindung protoniert, wenn eine 
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Aminosäureseitenkette gleichzeitig ein Proton abgibt. Der einzige Kandidat, der diese 

Eigenschaft aufweist, ist ein nahegelegener Glutamatrest, von dem bekannt ist, dass er 

seinen Protonierungszustand abhängig von dem gebundenen Liganden oder dem 

vorherrschenden pH-Wert der Umgebung ändern kann. pH-Soaking-Experimente ergaben, 

dass diese Seitenkette schon vor der Ligandbindung bei dem in den Messungen 

verwendeten pH-Wert deprotoniert vorliegt und daher die Aminoimidazolgruppe im 

ungeladenen Zustand verbleiben muss. Der Affinitätsgewinn, der zuvor dem 

Protonierungsereignis zugeschrieben wurde, konnte zwei parallel ausgebildeten H-Brücken 

zugeordnet werden, die unmittelbar zu zwei benachbarten C=O Gruppen des 

Proteinrückgrates gebildet werden. Auf diese Weise werden sekundär repulsive 

Interaktionen vermieden. 

PAMPA Messungen deckten auf, dass das Grundgerüst der lin-Benzoguanine einen zu 

polaren Charakter aufweist, um durch Zellmembranen zu wandern. Unter Berücksichtigung 

der vorliegenden Studien ist es nicht überraschend, dass die lin-Benzohypoxanthine keine 

Verbesserung des PAMPA-Scores zeigen. Zukünftige Design-Strategien müssen sich mit der 

Polarität des trizyklischen Grundgerüsts mit besonderem Fokus auf der 

Aminoimidazolstruktur beschäftigen. Durch einen Ansatz, in dem dieser Molekülteil durch 

geeignete funktionelle Gruppen maskiert ist und den Liganden so in ein Pro-Pharmakon 

überführt, könnte die gewünschte Partitionierung erreicht werden. 

Unter Berücksichtigung der Bindungsaffinitäten ist eine eher flache Struktur–

Wirkungsbeziehung über die Serien der lin-Benzopurine zu beobachten. Daher wurden 

zusätzliche Einblicke in die treibenden Kräfte der Bindung über die Aufspaltung der Freien 

Bindungsenergie in enthalpische und entropische Beiträge gewonnen (Kapitel 4). Ein 

modifiziertes Kristallisationsprotokoll ermöglichte es, den flexiblen 2-Substituenten der 

analysierten 2-Amino-lin-Benzoguanine in den meisten Fällen zu erkennen. Dies legte die 

Grundlage, um strukturelle Eigenschaften mit den erhaltenen thermodynamischen Daten in 

Verbindung zu setzen. Die Kristallstrukturen deckten auf, dass die lin-Benzohypoxanthine an 

einen Zustand der TGT binden, der dem Apo-Enzym ähnelt und Asp102 in einer der 

Bindetasche abgewandten Orientierung zeigt. Im Gegensatz dazu induzieren die lin-

Benzoguanine die Rotation von Asp102 zur Bindetasche. Dadurch wird ein Proton von der 

Aminopyrimidinonestruktur des Grundgerüsts aufgenommen und die Ausbildung einer 
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zusätzlichen, zweizähnigen Salzbrücke zu Asp102 ermöglicht. Ausgelöst durch die Bewegung 

von Asp102 ordnen sich verschiedene Aminosäurereste und sekundäre Strukturelemente 

um, sodass das Protein in eine Konformation überführt wird, die dem tRNA gebundenen 

Zustand ähnelt. Diese Änderungen resultieren in wesentlichen Unterschieden zwischen der 

Bestimmung der Bindungsaffinitäten in einem biochemischen Assay, der eine 

Inhibitionskonstante (𝐾𝑖) liefert, und ITC-Messungen, aus denen man eine 

Dissoziationskonstante (𝐾𝑑 ) erhalten kann. Im biochemischen Assay wird der Einbau von 

radioaktiv markiertem Guanin in die tRNA gemessen. Als Voraussetzung wird die TGT in 

ihrem substratgebundenen Zustand benötigt. Dadurch erscheinen die lin-

Benzohypoxanthine weniger potent, da das Protein zunächst in die substratgebundene Form 

überführt werden muss. Im Gegensatz dazu erfassen ITC-Messungen die Änderungen der 

Wärme, die während der Bindung abgegeben oder aufgenommen wird und man erhält eine 

reine Dissoziationskonstante des Bindungsgleichgewichtes zwischen Ligand und benötigtem 

Proteinkonformer. Dabei bindet die TGT die lin-Benzohypoxanthine in ihrem Apo-Zustand, 

wodurch eine verbesserte Bindungsstärke verzeichnet wird.  

 Wie erwartet, binden beide Ligandserien, lin-Benzohypoxanthine und lin-

Benzoguanine, enthalpisch. Dabei weisen die lin-Benzohypoxanthine einen weniger 

ausgeprägten enthalpischen Beitrag auf, da die Interaktion zu Asp102 fehlt. Diese kann 

teilweise durch ein kristallographisch konserviertes Wassernetzwerk am Grunde der 

Guanine-34-Tasche kompensiert werden. Während die thermodynamischen Profile der lin-

Benzohypoxanthin-Serie fast unverändert bleiben, sind die Daten für die lin-Benzoguanine 

recht divers. Dadurch war es nur schwer möglich, den Beitrag des angefügten 2-

Substituenten zu bestimmen. Offensichtlich ermöglichen die strukturellen Änderungen 

induziert durch Asp102 im Falle der lin-Benzoguanine eine Kommunikation zwischen 

Ribose/Uracil-33-Tasche, die vom 2-Substituenten adressiert wird, und der Guanin-34-

Tasche, die das Ligandgrundgerüst besetzt. Helix αA, die fast orthogonal zu dem gebundenen 

Liganden steht, spielt eine entscheidende Rolle dabei, die Interaktionen zwischen den 

beiden Taschen zu vermitteln. Nachdem die lin-Benzoguanine über Asp102 als 

substratähnlich vom Protein erkannt werden, ändert unter anderem diese Helix ihre Position 

wie es auch in ähnlicher Art und Weise in tRNA·TGT Komplexen beobachtet wird. Begleitet 

von dieser Bewegung dringt Tyr106 tiefer in die Ribose/Uracil-33-Tasche vor und nimmt 
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wahr, ob dieser Teil des Proteins besetzt ist oder nicht. Dieses Vorgehen garantiert richtige 

von falschen Substraten zu unterscheiden.  

 Zukünftige Designzyklen sollten berücksichtigen, dass Liganden, die die Ribose/Uracil-

33-Tasche adressieren, als substratähnlich erkannt werden müssen und damit die Rotation 

von Asp102 in die Guanin-34-Tasche bewirken, sodass die beschriebene Kommunikation 

zwischen den Bindetaschen erfolgen kann. Zusätzlich sind nur die so unterschiedenen 

Liganden in der Lage die Bindungsaffinität durch zweizähnige Salzbrücken zu beiden 

Aspartaten zu modulieren, vorausgesetzt ihr pKa-Wert fällt in einen Bereich, der geeignet ist 

eine Protonierungsänderung zu bewirken. 

Basierend auf der Beobachtung, dass die 2-Amino-lin-Benzoguanine eine erniedrigte 

Besetzung in Verbindung mit erhöhten Temperaturfaktoren des 2-Substituenten zeigen, 

wurde eine hohe Flexibilität dieses Molekülteils angenommen. Darauf aufbauend wurde 

getestet, ob ein Ligand mit hoher residualer Beweglichkeit einen Bindungsverlust eher 

vermeiden kann als ein Ligand, der einen geordneten Bindungsmodus einnimmt, und so 

einen Vorteil als ein wirksameres Antibiotikum erzielen kann, das weniger von 

Resistenzentwicklungen betroffen ist (Kapitel 5). Nachdem Val262 inmitten der Ribose-33-

Tasche als Mutationsstelle ausgewählt wurde, folgte die Expression und Kristallisation drei 

verschiedener Mutanten (Val262Thr, Val262Asp, Val262Cys). Anschließend wurde die 

Bindungsaffinität (𝐾𝑑 ) verschiedener 2-Amino-lin-Benzoguanine bestimmt und in Bezug auf 

strukturellen Informationen diskutiert, die aus Kristallstrukturen der TGT-Mutanten im 

Komplex mit Ligand 4a erhalten wurden.   

 Verglichen mit dem Wildtyp zeigten die analysierten 2-Amino-lin-Benzoguanine die 

gleiche Bindungsaffinität zu Mutante Val262Thr. Dieses Ergebnis war wie erwartet, da die 

Eigenschaften der Tasche nur leicht verändert wurden. Im Gegensatz dazu verringerte sich 

die Potenz gegenüber Mutante Val262Asp signifikant während die 𝐾𝑑 -Werte zu Mutante 

Val262Cys anstiegen. Die beobachteten Änderungen konnten eher in Zusammenhang mit 

dem Grundgerüst als mit den verschiedenen 2-Substituenten gebracht werden, das 

Unordnung seitens des Proteins in naher Umgebung zur Mutationsstelle verursacht. Nur 

marginale Unterschiede konnten den Eigenschaften des Substitutionsmusters im Falle von 

Val262Asp zugeschrieben werden, die höchstwahrscheinlich auf elektrostatische 

Anziehungs- und Abstoßungskräfte zurückzuführen sind. Nichtsdestotrotz deutet dieser Fakt 
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an, dass flexible Teile eines Arzneistoffmoleküls dazu in der Lage sind, die Bindungsaffinität 

in der ungünstigen Situation einer Resistenzentwicklung durch Mutation zu modulieren. 

In Kapitel 6 wurden Molekulardynamiksimulationen genutzt, um den Bindungsmodus 

verlängerter 2-Amino-lin-Benzoguanine vorauszusagen, der nicht zufriedenstellend durch 

vorherige Dockingstudien beschrieben werden konnte. Unglücklicherweise konnte nur eine 

von vier MD-Simulationen den Bindungsmodus des Liganden zuverlässig voraussagen, sodass 

dieser mit dem der gelösten Kristallstruktur übereinstimmte. Nichtsdestotrotz resultierte die 

anschließende Kristallstrukturanalyse unter modifizierten Kristallisationsbedingungen in 

einer angemessenen Differenzelektronendichte für alle verlängerten 2-Amino-lin-

Benzoguanine. Die verfeinerten Datensätze deckten neuartige Aspekte auf, die entscheidend 

für das weitere Design und die Charakterisierung von TGT Inhibitoren sind: 

 Erstens waren wir dazu in der Lage mit einem modifizierten Kristallisationsprotokoll 

den 2-Substituenten der verlängerten 2-Amino-lin-Benzoguanine zu erkennen, der in der 

Ribose-32-Tasche bindet, die zuvor noch nie besetzt wurde. Die gesammelten Datensätze 

liefern die Grundlage für neue Synthesestrategien, durch die neuartige Interaktion in diesem 

Proteinteil geschlossen werden können, der besser abgeschirmt ist als seine benachbarte, 

solventexponierte Umgebung. In diesem Zusammenhang zeigte ein anderer Ligand, der in 

der Ribose-33-Tasche eine zweizähnige Salzbrücke zum Protein ausbildet, eine erniedrigte 

Bindungspotenz. Dieses Beispiel verdeutlicht, dass solventexponierte Interaktionen, die 

zwischen Ligand und Protein innerhalb der flachen Ribose-33-Tasche gebildet werden, wenn 

überhaupt nur wenig zur Bindungsaffinität beitragen, da hohe Desolvatisierungskosten in 

der Umgebung hoher Dielektizitätsverhätltnisse gezahlt werden müssen. Daher müssen 

zukünftige Wirkstoffdesignzyklen, die diesen Teil des Proteins adressieren, die Optimierung 

eher hydrophober 2-Substituenten berücksichtigen. 

 Zweitens unterstreichen die Ergebnisse dieses Kapitels die Wichtigkeit der 

verwendeten Kristallisationsbedingungen. Schlecht definierte Elektronendichte deutet nicht 

notwendigerweise auf Liganden oder Substituenten hin, die eine hohe Beweglichkeit im 

proteingebundenen Zustand besitzen. Das verwendete Kristallisationsprotokoll beeinflusst 

die erhaltene Differenzelektronendichte maßgeblich und muss in der Diskussion der 

erhaltenen Strukturen berücksichtigt werden.  
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Die Substanzklasse der 5-Azacytosine wurde als neuartiges Grundgerüst untersucht, das die 

TGT mit potentiell erhöhter Bioverfügbarkeit inhibiert (Kapitel 7). Ähnlich den lin-

Benzopurinen sind auch die 5-Azacytosine von dem natürlichen Substrat Guanin abgeleitet 

und vergleichbare Bindungseigenschaften wurden erwartet. Ein angefügter Phenylring dient 

als Ankerpunkt für Substituenten, die in die benachbarten Ribose-33 und Ribose-34-Taschen 

reichen. Im Vergleich zu den lin-Benzoguaninen bietet diese neue Inhibitorklasse den Vorteil 

der verbesserten synthetischen Zugänglichkeit. Der pKa-Wert ihrer Amino-

pyrimidinoneinheit (N(5)) liegt jedoch zwischen dem der lin-Benzohypoxanthine und lin-

Benzoguanine und stellt somit einen kritischen Sachverhalt dar, der in Bezug auf das 

Protonierungsverhalten der 5-Azacytosine genauer betrachtet werden muss. 

 Unglücklicherweise zeigen die Liganden nur Bindungsaffinitäten im niedrig 

mikromolaren Bereich. Ausnahme bildet ein Präparat, das mit einer Naphthyleinheit 

dekoriert ist und eine Bindungspotenz im einstellig mikromolaren Bereich aufweist, ähnlich 

dem nahe verwandten Guanin. Das Kristallwachstum stellte sich als schwierig heraus, da alle 

Präparate durch eine geringe Löslichkeit gekennzeichnet waren. Nichtsdestotrotz konnten 

Kristallstrukturen für drei der fünf Liganden gelöst werden. Wie erwartet bindet das 5-

Azacytosin-Grundgerüst in der Guanin-34-Bindungstasche ähnlich wie Guanin, jedoch ist die 

Interaktion zu Asp102 schwach ausgebildet, die sich als äußerst wichtig für die 

Substraterkennung, Ligandprotonierung und Kommunikation zwischen den Bindetaschen 

herausgestellt hat. Der Grund für die Störung dieser Interaktion kann von dem 

Bindungsmodus der 6-Phenyl-5-Azacytosine abgeleitet werden: Anders als alle bekannten 

TGT-Inhibitoren binden sie nicht in einer planaren Art und Weise an das Protein, da der 

angefügte Phenylring aus der Ebene rotiert, die durch den Heterozyklus definiert wird. In 

Folge wird der im Vergleich zu den lin-Benzoguaninen niedrigere pKa-Wert nicht durch die 

Interaktionen zu Asp102 und Asp156 in ein Fenster geeignet für die Ligandprotonierung 

verschoben und der Einbruch der Affinität kann dadurch erklärt werden. Für das potentere 

Naphthylderivat konnte keine Kristallstruktur mit dem gebundenen Liganden bestimmt 

werden. Bis zu diesem Zeitpunkt bleibt unklar, ob der Naphthylsubstituent einen 

konformationellen Wechsel von Asp102 veranlasst, um die gewünschte zweizähnige 

Salzbrücke zum Grundgerüst auszubilden und damit den Protonierungsschritt induziert, der 

für den Affinitätsgewinn nötig ist. 
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 Trotz der vielversprechenden Bindungsstärke ist das Naphthylderivat kein geeigneter 

Startpunkt für weitere Optimierungen, da es dazu neigt bei höheren Konzentrationen 

Aggregate zu bilden. Dies bereitet erhebliche Probleme im Umgang während der Synthese 

und nachgeschalteter Analyse. Stattdessen sollten sich zukünftige Designzyklen auf die nahe 

verwandten Ammeline konzentrieren. Eine zusätzliche Aminogruppe außerhalb des 

Heterozyklus stellt nicht nur eine Verbindungsregion dar, die einen größeren Abstand zu der 

Seitenkette von Asp102 schafft, sondern erhöht auch den pKa-Wert um eine logarithmische 

Einheit und fällt damit wahrscheinlich in einen Bereich, der die Protonierung des 

Grundgerüstes erlaubt. 
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9. Materials and Methods 

9.1 In-silico Methods 

9.1.1 pKa Calculations 

A consistent charge model was produced by a modified version of the charge distribution 

algorithm that initially was developed by Gasteiger and Marsili, named “partial equalization 

of orbital electronegativities” (PEOE) [Barken and Gasteiger, 1980]. According to previous 

studies on the target, a dielectric constant of ε = 20 was chosen to describe the properties of 

the binding pocket considering an implicit solvent model [Ritschel et al., 2009]. 

For the calculation of the pKa values all titratable groups within a radius of 12Å 

around the active site were considered for the site-site interaction portion of the pKa 

calculations (Cγ of Tyr106 was taken as center of the selection). Thereby, the following 

residues were identified as titratable groups: Lys52, Tyr72, His73, Asp/Asn102, Tyr106, 

Asp/Asn156, Glu157, Cys158, Tyr161, Glu173, Tyr226, Glu235, Asp238, Glu239, Asp245, 

Tyr258, Lys264, Asp266, Asp267, Asp280, Cys281, Tyr354, and Tyr381. With the program 

REDUCE, all hydrogens were added to the protein in which all acidic residues were 

deprotonated and basic ones were protonated [Word et al., 1999]. For the uncharged state 

of the ligand, SYBYL atom types were assigned and an explicit charge of 0 was set for the 

hydrogen atom of the titratable group prior to the partial charge calculation. 

After this preparation, the Poisson–Boltzmann calculation was started using the 

program MEAD [Bashford, 1997]. The resulting pKa shifts of the crucial amino acid residues 

are listed in Tables 3.3 – 3.4 at pH 7.8. A detailed list of all analyzed residues is shown in the 

appendix. 

 

9.1.2 Molecular Dynamic Simulation 

Molecular dynamic (MD) simulations were performed with the program AMBER11 [Case et 

al., 2005]. In chapter 6 the docking results (8.1.3) of the corresponding ligands served as 

starting coordinates, in chapter 7 the complex structure TGT∙9. Prior to the simulation, the 

pdb-file had to be modified: All crystallographically determined water molecules were 

extracted. Missing amino acids as well as the most probable conformer of missing side 

chains were added. In case of more than one visible conformation, the highest occupied one 

was kept during the simulation. Protonation states of histidines were inspected visually and 
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set as HID (hydrogen at δ-position, HIS#: 90, 257, 319, 332) or HIE (hydrogen at ε-position, 

HIS#: 73, 145, 333). The zinc ion was mimicked by four massless dummy atoms, each with a 

charge of +0.5 using the CaDA approach by Pang [Pang et al., 2000; Pang, 2001]. Cysteine 

residues involved in the binding of the zinc ion were set as CYM (CYS#: 308, 310, 313), 

histidines as HIN (HIS#:349).  

Due to the required computational time the calculations were based on only one TGT 

monomer. Parameters for the ligands were generated with the program antechamber using 

the general amber force field (gaff) [Wang et al., 2004], its charges were calculated via bond 

charge correction (bcc) [Jakalian et al., 2000; Jakalian et al., 2002]. Addition of hydrogen 

atoms to the protein, neutralization of the system by adding two sodium ions and solvation 

of the complex in a TIP3P water box was done with the tleap [Jorgensen et al., 1983]. 

After a minimization of the water box comprising 100 steps and the whole system 

comprising 500 steps performed with a generalized Born solvent model, all following 

simulations included periodic boundary conditions, the Particle Mesh Ewald procedure 

(PME) [Darden et al., 1993] and the SHAKE algorithm [Ryckaert et al., 1977] using the ff99SB 

force field [Hornak et al., 2006] with a cut-off of 10 Å. Thereby, the system is heated up to 

300 K stepwise (0 K ∙∙∙ 150 K ∙∙∙ 225 K ∙∙∙ 300 K) over a period of 150 ps fixing the TGT 

monomer with weak restraints (25 kcal ∙ mol−1 ∙ Å−2). Subsequently, the pressure is 

adjusted to 1 bar over a time scale of 50 ps followed by a productive simulation for 10 to 

100 ns using 2 fs time steps under NPT conditions. The trajectory derived under these 

conditions was further analyzed with the program ptraj, whereby every second frame was 

included into the analyses. The dialplot was generated using R. 

   

9.1.3 Docking 

Docking was performed using GOLD Suite v5.1 [The Cambridge Crystallographic Data Centre: 

Cambridge, U.K.], the default values for the genetic algorithm (GA) [Jones et al., 1997] and 

the scoring function ChemScore [Eldridge et al., 1997]. For each ligand 30 – 100 GA runs 

were performed with 100’000 operations. As a protein model the coordinates of the crystal 

structure 2QZR (chapter 6) and TGT∙8 (chapter 7) were used. Since Asp102 is present in two 

different conformations in TGT∙8, its side chain was kept flexible during docking. The binding 

site included all atoms within a distance of 10 Å to the sulfur of Met260. Ligands were drawn 

using the MOE builder. 
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9.2 Experimental Methods 

9.2.1 Chemicals 

 

Chemicals used in the context of this work are listed in table 9.1. 

 
Table 9.1 Used chemicals as well as their manufacturer in alphabetical order. 

Name Manufacturer 

Acetic Acid 100% 

Acrylamide/bisacrylamide (30% / 0.8%) 

Agar-agar 

Agarose 

Ammonium peroxydisulfate (APS) 

Ammonium sulfate 

Ampicillin 

Anhydrotetracycline hydrochloride 

Antarctic Phosphatase 

Biotinylated thrombin 

Bovine serum albumin (BSA) 

Bromphenol blue 

Chloramphenicol 

Chloroform:Isoamyl alcohol 24:1 

Complete™ mini protease inhibitor, EDTA free 

Coomassie Brilliant Blue R250 

d-Desthiobiotin 

Dimethylformamide 

Dimethylsulfoxide (DMSO) p. a. 

1,4-Dithiothreitol (DTT) 

EcoRV-HF® 

Ethanol 96% 

Ethylenediaminetetraacetate (EDTA) 

Glucose 

Glycerol 

[8-3H]-Guanine 

Guanine hydrochloride 

Hydrochloric acid 

2-(4-Hydroxyphenylazo)-benzoic acid (HABA) 

2-(4-(2-Hydroxyethyl)- 1-piperazinyl)-ethanesulfonic acid (Hepes) 

Isopropyl-β-D-thiogalactopyranoside (IPTG) 

Kanamycin sulfate 

Magnesium chloride hexahydrate 

6x Mass Ruler Loading Dye (R0621) 

ROTH 

ROTH 

ROTH 

Fluka 

ROTH 

ROTH 

ROTH 

Fluka 

New England BioLabs 

Novagen 

Sigma Aldrich 

Merck 

ROTH 

ROTH 

Roche 

ROTH 

IBA 

Merck 

ROTH 

ROTH 

New England BioLabs 

ROTH 

Merck 

ROTH 

Acros Organics 

Hartmann Analytics 

Sigma Aldrich 

Fisher Scientific 

Fluka 

ROTH 

ROTH 

AppliChem 

Merck 

Fermentas 
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β-Mercaptoethanol 

2-(N-Morpholino)ethanesulfonic acid (MES) 

Methanol p. a. 

NheI 

PageRuler™ Prestaint Protein Ladder (SM0671/2) 

Phenol:Chloroform:Isoamyl alcohol 25:24:1 

Polyethylene glycol MW 400 (PEG 400) 

Polyethylene glycol MW 8000 (PEG 8000) 

Protein assay dye reagent concentrate 

Rotiphorese® Gel 30 (Acrylamide:N,N-Methylenbisacrylamide 

37.5:1) 

Rotiphorese® 10x SDS-PAGE 

Rotiszint®eco plus 

Sodium chloride 

Sodium dodecyl sulfate 

Sodium hydroxide 

SYBR® Safe DNA gel stain 

T4 DNA Ligase 

Tetramethylenediamine (TEMED) 

Trichloroacetic acid (TCA) 

 N-(Tris(hydroxymethyl)methyl)glycine (Tricine) 

 2-Amino-2-(hydroxymethyl)-propane-1,3-diol (Tris) 

Tryptone 

Tween 20 

Yeast extract 

Merck 

ROTH 

Fluka 

New England BioLabs 

Fermentas 

ROTH 

Sigma Aldrich 

Fluka 

BioRad 

ROTH 

 

ROTH 

ROTH 

ROTH 

ROTH 

Grüssing 

invitrogen 

New England BioLabs 

ROTH 

Fluka 

Merck 

ROTH 

ROTH 

Sigma Aldrich 

ROTH 

 

 

9.2.2 Equipment 

 

Equipment used in this work is given in table 9.2. 

 
Table 9.2 Employed equipment as well as its manufacturer in alphabetical order. 

Device Manufacturer 

ÄKTA FPLC 

Autoklave type FVA2 

Centrifuge Avanti J-10 / J-25 

Centrifuge Biofuge fresco 

Centrifuge Biofuge pico 

Centrifuge Multifuge 3 

Dialysis membrane Zellu Trans 4,000 – 6,000 MWCO 

Elektrophoresis cell OWL EASYCAST™ B1A 

FiveEasy pH meter 

GE Healthcare 

Fedegari 

Beckman Coulter 

Heraeus 

Heraeus 

Heraeus 

ROTH 

Thermo Scientific 

Mettler Toledo 
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HERAsafe biological safety cabinet 

Incubator shaker Innova 4200 

Incubator shaker Innova 4230 

Incubator type B5060 EC-CO2 

iTC200 microcalorimeter 

Magnetic stirrer IKA-COMBIMAG REO 

Microskope Typ SZ 60 

Micro weighing scale type CP2P 

Mini Cycler™ PTC-150 

Nanodrop 2000c 

NAP-25 Sephadex column 

Phenyl Sepharose column XK16 

Pipettes 

Precision weighing scale type 404/13 

Q Sepharose column XK26 

Safe Imager™ Blue Light-Transilluminator 

Shaker Polymax 1040 

SDS-PAGE Mini-PROTEAN® Tetra Electrophoresis System 

SpectroSize™ 300 

Speed-Vac DNA mini 

Strep-Tactin Superflow Sepharose column 

Scintillation Counter TRI-CARB® 1900CA 

Thermomixer Comfort 2mL 

Ultrasonic Sonifier 250 

Ultrasonic bath Elmasonic S 10/(H) 

UV-Vis Spectrometer Smart Spec 3000 

Vakuum pump type N811KN.18 

Vivaspin® 20 centrifugal concentrator 30,000 MWCO 

Vortex mixer VF1 

Weighing machine type 572/45 

Zetasizer Nano ZS 

Thermo Scientific 

New Brunswick Scientific 

New Brunswick Scientific 

Heraeus 

GE Healthcare 

Janke & Kunkel 

Olympus 

Sartorius 

MJ Research 

Thermo Scientific 

GE Healthcare 

Amersham Bioscience 

Eppendorf 

Sauter 

Amersham Bioscience 

invitrogen 

Heidolph 

BioRad 

Molecular Dimensions 

Jouan Nordic 

IBA 

Packard 

Eppendorf 

Branson 

Elma 

BioRad 

KNF  

Sartorius 

Janke & Kunkel 

Kern 

Malvern Instruments 

 

 

9.2.3 Buffer, Solutions and Media 

 

Table 9.3 comprises a list of the buffers, solutions and media that were used in the context 

of this work. If not explicitly described, chemicals were dissolved in demineralized water. The 

desired pH value was achieved by the addition of sodium chloride solution (10 M) or 

hydrochloric acid (32%) using a FiveEasy pH meter. Buffers were freshly prepared and sterile 

filtered through a Millipore Steritop™ bottle top filter with a pore size of 0.22 µm before 

usage.   
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Table 9.3 Used buffer, solutions and media in alphabetical order. 

Name Composition 

Ampicillin solution 

Anhydrotetracycline solution 

APS solution 

Antarctic Phosphatase Reaction  

     Buffer (1x) 

Assay buffer 

Buffer A 

Buffer B 

Buffer C 

Buffer E 

 

Buffer R 

Buffer W 

Chloramphenicol solution 

Cryo buffer A 

 

Cryo buffer B 

 

Cryo buffer C 

 

Cryo buffer D 

 

Crystallisation buffer A 

Crystallisation buffer B 

CutSmart™ Buffer 

 

Destaining solution 

Dialysis buffer 

Guanine  solution 

IPTG stock solution 

ITC buffer A 

ITC buffer B 

ITC buffer C 

Kanamycin solution 

Laemmli buffer 

Luria-Bertani agar 

 

Luria-Bertani medium 

 

Makroseeding buffer 

High salt buffer 

Lysis buffer 

 

Running gel buffer 

100 mg/ml ampicillin, sterile filtered 

2 mg/ml anhydrotetracycline in DMF, sterile filtered 

10% (w/v) ammonium peroxydisulfate 

 

50 mM Bis-Tris-propane hydrochloride, 1 mM MgCl2, 0.1 mM ZnCl2 

200 mM HEPES, 20 mM MgCl2, 0.037% (v/v) Tween 20, pH 7.3 

10 mM Tris, 1 mM EDTA, 1 mM DTT, pH 7.8 

10 mM Tris, 1 mM EDTA, 1 mM DTT, 1 M NaCl, pH 7.8 

10 mM Tris, 1 mM EDTA, 1 mM DTT, 1 M (NH4)2SO4, pH 7.8 

100mM Tris, 150mM NaCl, 1mM EDTA, 2.5mM d-desthiobiotin, 

pH 7.8 

100mM Tris, 150mM NaCl, 1mM EDTA, 1 mM HABA, pH 7.8 

100mM Tris, 150mM NaCl, 1mM EDTA, pH 7.8 

34 mg/ml chloramphenicol in ethanol, sterile filtered 

50 mM MES, 0.3 M NaCl, 2 % (v/v) DMSO, 4 % (w/v) PEG8000, 30% 

(v/v) glycerole, pH 5.5 

50 mM Tris, 0.3 M NaCl, 2% (v/v) DMSO, 4% (w/v) PEG8000,  30% 

(v/v) glycerole, pH 8.5 

80 mM MES, 8% (v/v) DMSO, 10.4% (w/v) PEG8000, 20% (v/v) 

PEG 400, pH 5.5 

80 mM Tris, 8% (v/v) DMSO, 6.4% (w/v) PEG8000, 20% (v/v) 

PEG400, pH 7.8 

100 mM MES, 10% (v/v) DMSO, 11 – 13% (w/v) PEG8000, pH 5.5 

100 mM Tris, 10% (v/v) DMSO, 6 – 8% (w/v) PEG8000, pH 8.5 

50 mM potassium acetate, 20 mM Tris-acetate, 10 mM 

magnesium acetate, 100 μg/ml BSA 

10% (v/v) acetic acid, 40% (v/v) methanol 

10 mM Tris, 500 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.8 

188 µM guanine hydrochloride 

1 M IPTG, steril filtered 

50 mM HEPES, 200 mM NaCl, 0.037% (v/v)Tween 20, pH 7.8 

50 mM Tris, 200 mM NaCl, 0.037% (v/v) Tween 20, pH 7.8 

50 mM Tricine, 200 mM NaCl, 0.037% (v/v) Tween 20, pH 7.8 

30 mg/ml kanamycin sulfate 

0.25 M Tris, 2 M glyerole, 1% (w/v) SDS, pH 8.3 

1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 1.5% 

(w/v) agar-agar, autoclaved 

1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 

autoclaved 

100 mM Tris, 10% (v/v) DMSO, 5% (w/v) PEG 8000, pH 7.8 

10 mM Tris, 1 mM EDTA, 2 M NaCl, pH 7.8 

20 mM Tris ,10 mM EDTA, 1 mM DTT, 1 tablet/50 ml Complete™, 

pH 7.8 

1 M Tris, pH 8.8 
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SDS solution 

SDS sample buffer (4x) 

 

SOC medium 

 

Stacking gel buffer 

Staining solution 

 

T4 DNA Ligase Reaction Buffer 

TAE buffer (50x) 

TCA solution A 

TCA soution B 

Tween solution 

2xYT medium 

10% (w/v) SDS 

250 mM Tris, 8% (w/v) SDS, 40% (v/v) glycerole, 0.04% (w/v) 

bromphenol blue, 8% (w/v) β-mercaptoethanol, pH 6.8 

20% (w/v) tryptone, 5% (w/v) yeast extract, 0.5% (w/v) NaCl, 

10 mM MgCl2, 0.4% (w/v) glucose 

1 M Tris, pH 6.8 

10% (v/v) acetic acid, 40% (v/v) methanol, 1 g/l Coomassie Brilliant 

Blue R250 

50 mM Tris-HCl, 10 mM MgCl2, 1 mM ATP, 10 mM DTT 

2 M Tris, 50 mM EDTA, pH 7.8 

5% (w/v) trichloroacetic acid 

10% (w/v) trichloroacetic acid 

1% (w/v) Tween 20 

16% (w/v) tryptone, 10% (w/v) yeast extract, 5% (w/v) NaCl, 

autoclaved 

 

 

9.2.4 Bacterial Strains and Plasmids 

 

Plasmids and bacterial strains are given in Tables 9.4 and 9.5.  

 
Table 9.4 Used plasmid vectors as well as their characteristics and manufacturers in alphabetical order. 

Name Characteristics  Manufacturer 

pASK-IBA13plus-ZM10 

 

 

pET9d-ZM4 

 

 

pET9d-ZM4-D102N 

pET9d-ZM4-E235Q 

pPR-IBA2-ZM10 

 

 

 

pPR-IBA2-ZM10-D156N 

pPR-IBA2-ZM10-V262C 

pPR-IBA2-ZM10-V262D 

pPR-IBA2-ZM10-V262T 

ptRNA2 

Ampr, Cmr; Strep-tag II®; ColE1-origin, 

tet-promotor; inserted tgt-gene as 

1.2 kb BsaI fragment 

Cmr, Kmr; ColE1-origin, tac-promotor, 

coding for laqlqmalE lacZα; inserted tgt-

gene as 1.3 kb BamHI/NcoI fragment 

Cmr, Kmr; TGT-D102N 

Cmr, Kmr; TGT-E235Q 

Ampr, Cmr; Strep-tag II®; ColE1-origin, 

T7-promotor based expression; 

inserted tgt-gene as 1.2 kb NheI/EcoRV 

fragment 

Ampr, Cmr; TGT-D156N 

Ampr, Cmr; TGT-V262C 

Ampr, Cmr; TGT-V262D 

Ampr, Cmr; TGT-V262T 

Ampr; E. coli tRNATyr as BstNI fragment 

under control of T7-promotor in 

pTZ18U 

[Jakobi, 2013] 

 

 

[Reuter and Ficner, 1995] 

 

 

[Romier et al., 1997] 

[Tidten et al., 2007] 

This work 

 

 

 

This work 

This work 

This work 

This work 

[Curnow et al., 1993] 
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Table 9.5 Used E. coli host cells including their genotype and vendor in alphabetical order. 

Host cell Genotype    Vendor 

BL21(DE3)pLysS 

BL21-CodonPlus(DE3)-RIPL 

 

Rosetta 2(DE3) 

 

XL10-Gold 

 

F– dcm ompT hsdS(rB
–mB

–) gal λ(DE3) [pLysS Camr]  

F– ompT hsdS(rB
– mB

–) dcm+ Tetr gal λ(DE3) endA Hte  

[argU proL Camr] [argU ileY leuW Strep/Specr] 

F– ompT hsdSB(rB
– mB

–) gal dcm (DE3) pRARE23 

(Camr) 

Tetr∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 

supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB 

lacIqZ∆M15 Tn10 (Tetr) Amy Camr] 

Stratagene 

Stratagene 

      

  Stratagene 

     

Stratagene 

 

 

9.2.5    Molecular biological methods 

9.2.5.1    Cloning 

 

In order to achieve a higher protein yield the sequence encoding the strep-tagged wild type 

TGT of the pASK-IBA13plus-ZM10 plasmid [Jakobi et al., 2014] was cloned into the T7-

promotor based expression vector pPR-IBA2 (Table 9.6). Therefore, the tgt-gene as well as 

the new vector were separately cut with the restriction enzymes NheI-HF®and EcoRV-HF®. 

For dephosphorylation the cut vectors were treated with Antarctic Phosphatase. 

 

Table 9.6 Composition of the digestion, dephosphorylation and ligation mixtures. 

Digestion Dephosphorylation Ligation 

pPR-IBA2 vector /  

pASK-IBA13plus-ZM10 

NheI-HF® 

EcoRV-HF®  

CutSmart™ Buffer 

(10x) 

ddH2O 

 

1 µg 

1  µl 

1  µl 

 

5  µl 

42  µl 

 

 

Antarctic Phosphatase 

 

Antarctic Phosphatase 

Reaction Buffer (1x) 

ddH2O 

 

 

1 µl 

 

 

6 µl 

3 µl 

pPR-IBA2 vector 

tgt-gene 

T4 DNA Ligase 

 

T4 DNA Ligase 

Reaction Buffer (10x) 

ddH2O 

0.5 µl 

9.5 µl 

1 µl 

 

 

2 µl 

7 µl 

 

The tgt-gene (373 kDa) was separated from the cut pASK-IBA13plus (840 kDa) by 

agarose gel electrophoresis and the corresponding band cut out of the gel. For the extraction 

of the DNA out of the gel the QIAquick Gel Extraction Kit (Qiagen) was used. Subsequently, 

the tgt-gene and the pPR-IBA2 vector were ligated for one hour at 37°C. For transformation 

10 µl of the sample were used. The resulting plasmid was named pPR-IBA2-ZM10. 
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9.2.5.2 Protein Expression and Purification 

9.2.5.2.1 Expression of the Z. mobilis tgt gene via the vector pET9d 

 

Bacterial cells BL21(DE3)pLysS transformed with pETZM4 [Reuter and Ficner, 1995] were 

grown in a pre-culture of 100 ml LB medium containing 30 mg/l kanamycin and 34 mg/ml 

chlorampenicol at 37°C and 220 rpm shaking overnight and transferred into two liters LB 

medium. The main culture was raised to an optical density at 600 nm (OD600) of 0.8 under 

the same conditions as listed for the pre-culture. Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) was added in a concentration of 1 mM to induce overproduction for 20 hours at 14°C. 

Cells were harvested by centrifugation (10000 rpm at 4°C) and resuspended in 50 ml lysis 

buffer. The suspension was sonicated six times for 90 seconds on ice and subsequently 

centrifuged for 1 hour at 20000 rpm (Beckman Coulter, J-25.50).  

The purification via FPLC comprised two steps: Firstly, the clear supernatant was 

applied onto a Q Sepharose XK26 (anion exchange column) previously conditioned on buffer 

A. After an initial washing step with buffer A the protein was eluted by a linear gradient 

reaching from 0 to 100% of buffer B at a flow rate of 4 ml/min (Figure 9.1A). Fractions 

containing TGT were identified by SDS gel electrophoresis [Laemmli, 1970].  

 

 

Figure 9.1 Chromatograms recorded during the purification of TGT wild type using the anion exchange column 

Q Sepharose XK26 (A) and the hydrophobic interaction column Phenyl Sepharose XK16 (B).  The UV absorption 

(blue line; proportional to the protein amount), the conductivity (black line; indicating the NaCl concentration) 

and the adjusted gradient (green line) are shown in dependence of the elution volume. The fractions containing 

the desired protein as confirmed by SDS PAGE are marked by a black bar. 
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Secondly, 1 M ammonium sulphate was added to the chosen TGT fractions, which 

were then loaded onto a Phenyl Sepharose XK16 (hydrophobic interaction column) 

previously conditioned on buffer C. The column was washed with buffer C and the protein 

was eluted by a linear gradient reaching from 0 to 100% of buffer A at a flow rate of 

2 ml/min (Figure 9.1B). Again, fractions containing the desired protein were identified by 

SDS gel electrophoresis and subsequently concentrated to a final concentration of at least 3 

mg/ml using VIVASPIN®20 centrifugal concentrators (Sartorius) with a cutoff of 30,000 Da. 

The final purification step was reached by micro-crystallization. Therefore, the 

protein solution was dialyzed against 5 l of buffer A. The precipitated protein was harvested 

by centrifugation and resolved with high salt buffer to the required concentration. The 

derived protein solution was stored at -20°C. 

 

 

9.2.5.2.2 Expression of the Z. mobilis tgt gene via the vector pPR-IBA2  

 

Bacterial cells BL21-CodonPlus(DE3)-RIPL (V262T, V262D, V262C) and Rosetta 2(DE3) 

(D156N) transformed with pPR-IBA2-ZM10 were grown in a pre-culture of 100 ml 2×YT 

medium containing 100 mg/l ampicillin and 34 mg/ml chlorampenicol at 37°C and 220 rpm 

shaking overnight and transferred into two liters 2×YT medium. The main culture was raised 

to an optical density at 600 nm (OD600) of 0.8 under the same conditions as listed for the pre-

culture. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at a concentration of 1 mM 

to induce overproduction for 16 hours at 14°C. Cells were harvested by centrifugation 

(10000 rpm at 4°C) and resuspended in 50 ml lysis buffer. The suspension was sonicated six 

times for 90 seconds on ice and subsequently centrifuged for 1 hour at 20000 rpm (Beckman 

Coulter, J-25.50). 

In the course of this work it was observed that also nucleic acids bind to the Strep-

Tactin Superflow column the clear supernatant was firstly applied onto a Q SepharoseTM 

XK26 column previously conditioned on buffer A. After an initial washing step with buffer A 

the protein was eluted by a linear gradient reaching from 0 to 100% of buffer B at a flow rate 

of 4 ml/min (Figure 9.1A). Fractions containing TGT were identified by SDS gel 

electrophoresis [Laemmli, 1970] and loaded onto a Strep-Tactin Superflow column. After a 

stable UV signal was reached by a washing step with buffer W the protein was eluted with 

buffer E at a flow rate of 2 ml/min (Figure 9.2).  
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Figure 9.2 Chromatogram recorded during the purification of strep-tagged wild type TGT using the Strep-Tactin 

Superflow column. The UV absorption (blue line; proportional to the protein amount) is plotted in dependence 

of the elution volume. The fractions containing the desired protein as confirmed by SDS PAGE are marked by a 

black bar. 

 

Subsequently, the sample was dialyzed (cutoff 4,000 – 6,000) to higher salt 

conditions against dialysis-buffer for at least 4 hours. 

The strep-tag® II was removed via the Thrombin Cleavage Capture Kit (Novagen®) for 

16 hours at 20°C following the manufacturer’s instructions. Afterwards, the cleaved tag as 

well as the biotinylated Thrombin was captured using streptavidin agarose via filtration.  

For the stability of the protein it was of utmost importance to cleave the tag before 

concentrating the sample via VIVASPIN®20 centrifugal concentrators (Sartorius; 

30,000 MWCO) and exchanging the buffer to high salt conditions. The protein solution was 

stored at -20°C.  

 

 

9.2.5.3    Mutagenesis 

 

In order to generate mutated plasmids the QuikChange® Lightning Site-Directed Mutagenesis 

Kit (Stratagene) based on the principle of the polymerase chain reaction (PCR) was used. 

Oligonucleotide primers were designed following the vendor’s instructions and synthesized, 

purified and analysed by MWG Operon (Ebersberg). For the PCR reaction the protocol 

suggested by the manufacturer (Table 9.7) was applied using pPR-IBA2-ZM10 as a template. 

The oligonucleotide primers are listed in Table 9.8. 
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Table 9.7 Composition and applied protocol of the PCR reaction. 

Composition of the reaction:    Applied protocol: 

dsDNA template 

Primer forward 

Primer backward 

10x buffer 

dNTP mix 

ddH2O 

DNA polymerase 

10 – 100 ng   

125 ng   

125 ng   

5 µl 

1 µl 

ad 50 µl 

1 µl 

   Starting phase 

 

   Denaturation 

   Hybridisation 

   Synthesis 

 

   End phase 

120 s 

 

20 s 

10 s 

150 s 

 

300 s 

95°C 

 

95°C 

60°C 

68°C 

 

68°C 

 

 

 

 

 

RPT 18x 

 

After the reaction parental methylated and hemimethylated DNA was digested by 

Dpn I. Subsequently, 2 µl of the PCR product was transformed into XL10-GOLD cells during 

an incubation period of 30 minutes followed by a heat shock of 30 seconds at 42°C. To select 

only mutated plasmids the host cells were raised in SOC medium for one hour at 37°C, 

plated on LB agar containing 100 mg/l ampicillin and incubated over night at 37°C. Finally, a 

single clone was picked and transferred into 10 ml of LB medium containing 100 mg/l 

ampicillin. The resulting culture was shaken overnight at 220 rpm and 37°C. 

700 µl of the bacterial cell cultures were mixed with 300 µl glycerol and stored at -

80°C. The remaining culture was harvested for plasmid extraction using the peqGOLD 

Plasmid Miniprep KitII (PEQLAB Biotechnologie GmbH) following the manufacturer’s 

instructions. For the extracted and purified plasmid the presence of the desired mutation as 

well as the absence of any further mutations were confirmed by sequence analysis (Eurofins 

MWG Operon, Ebersberg). Subsequently, the plasmid was transformed into BL21-

CodonPlus(DE3)-RIPL or Rosetta 2(DE3) cells by heat shock for 20 seconds at 42°C followed 

by the selection routine as previously described. 

 

Tabelle 9.8  Used oligonucleotide primers in site-directed mutagenesis. 

Oligonucleotide primer Sequence 5‘- ... -3‘[a] 

D156N_forward 

D156N_backward 

V262C_forward 

V262C_backward 

V262D_forward 

V262D_backward 

V262T_forward 

V262T_backward 

5’-ATT GTT ATG GCA TTT AAT GAA TGT ACC CCG TAT-3’ 

5’-ATA CGG GGT ACA TTC ATT AAA TGC CAT AAC AAT-3’ 

5’-CAT TAT CTG ATG GGT TGT GGT AAA CCG GAT GAT-3’ 

5’-ATC ATC CGG TTT ACC ACA ACC CAT CAG ATA ATG-3’ 

5’-CAT TAT CTG ATG GGT GAT GGT AAA CCG GAT GAT-3’ 

5’-ATC ATC CGG TTT ACC ATC ACC CAT CAG ATA ATG-3’ 

5’-CAT TAT CTG ATG GGT ACT GGT AAA CCG GAT GAT-3’ 

5’-ATC ATC CGG TTT ACC AGT ACC CAT CAG ATA ATG-3’ 
a
The mutated codon is underlined.  
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9.2.5.4    In-vitro Transcription and Purification of E. coli tRNATyr 

 

The preparation of E. coli tRNATyr was carried out using the T7 RiboMAX™ Express Large 

Scale RNA Production System (Promega). Thereby, the synthesis reaction was performed 

using the ptRNA2 plasmid (Table 9.4), which was subsequently digested by RQ1 DNase. 

The purification comprised two extraction steps using a 2.1 ml mixture of 

phenol:chloroform:isoamyl alcohol 125:24:1 (v/v/v) followed by another extraction using a 1 

ml mixture of chloroform:isoamyl alcohol 24:1 (v/v). Subsequently, the sample was applied 

to a NAP-25 column and the eluate of approximately 1.5 ml evaporated overnight at 1 mbar 

and 34°C. The tRNA was resolved in HEPES buffer and monomerized by applying a 

temperature gradient reaching from 20°C to 70°C in 10°C steps each for 10 minutes. A final 

monomerization step at 70°C was performed for two hours after the addition of MgCl2 to a 

final concentration of 1 mM. Again, the sample was purified via a NAP-25 column and 

afterwards evaporated overnight under the previously mentioned conditions. The tRNA was 

resolved in assay buffer and the concentration adjusted to 200 µM using UV-Vis 

spectroscopy. 1 µM tRNATyr corresponds to an absorption of 0.703 𝐴260𝑛𝑚 .   

 

 

9.2.5.5    Agarose Gel Electrophoresis 

 

For gel electrophoresis a 1% (w/v) agarose gel was used. Thus, 0.5 g agarose were dissolved 

in 49.5 ml 1×TAE buffer by heating the suspension up in a microwave. 5 µl SYBR® Safe DNA 

gel stain solution were added directly before pouring the gel. 30 µl of the DNA sample were 

mixed with 5 µl 6×Mass Ruler Loading Dye and loaded on the gel. Fastruler™ DNA Ladder 

Middle Range and Fastruler™ DNA Ladder Low Range served as references. The gel was run 

for one hour at 100 V in 1×TAE buffer. Subsequently, bands became visible under UV light. 

 

 

9.2.5.6    Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

 

The identification and purity of TGT was analyzed via SDS-PAGE. For that purpose, gels were 

freshly prepared before usage consisting of an upper stacking and a lower running gel 

(Table 9.9).   
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Table 9.9 Stacking and running gel composition. 

 Stacking gel (2x) Running gel (2x) 

Acrylamide/bisacrylamide (30% / 0.8%) 

APS solution 

TEMED 

Stacking gel/running gel buffer 

SDS solution 

ddH2O 

1 ml 

60 µl 

6 µl 

1.2 ml 

60 µl 

3.75 ml 

3 ml 

60 µl 

6 µl 

2 ml 

60 µl 

0.95 ml 

 

30 µl of the sample were mixed with 10 µl 4×SDS sample buffer and incubated at 

95°C for 15 minutes. After centrifugation of the sample at 13000 rpm for one minute 15 µl 

were loaded to an SDS gel. The PageRuler™ Prestaint Protein Ladder served as a reference.    

SDS-PAGE was performed in Laemmli buffer at 130 V. Afterwards protein bands were 

uncovered by incubation the gel in staining solution overnight and exposing it to destaining 

solution for one hour, whereby each step was accompanied by gentle shaking.   

 

 

9.2.5.7    Determination of Protein and DNA Concentrations 

 

Concentrations of protein, DNA and tRNA solutions were determined by UV-Vis 

spectroscopy at 280 nm and 260 nm. Previous to the measurement a blank value was 

generated using the buffer free of any sample to be analyzed.  

After calculating the extinction coefficient with ProtParam the concentrations of 

protein solutions were calculated using Equation 9.1. For Z. mobilis TGT expressed without 

the strep-tag II an absorption of 0.778 𝐴280𝑛𝑚 correlates to a concentration of 1 mg/ml 

(23.4 µM). For the tagged variant an absorption of 0.875 𝐴280𝑛𝑚   corresponds to 1 mg/ml 

before and an absorption of 0.789 𝐴280𝑛𝑚   after cleavage. 

 

𝑐𝑃𝑟𝑜𝑡𝑒𝑖𝑛 =
𝐴280𝑛𝑚

𝜖𝜆 ∙𝑑
       

(Equation 9.1) 

 

The purity of protein samples could be concluded from the 𝐴260𝑛𝑚 /𝐴280𝑛𝑚  ratios 

listed in Table 9.10 [Sambrook and Russell, 2001]. 
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Table 9.10 Purity of protein samples derived by their 𝐴260𝑛𝑚 /𝐴280𝑛𝑚  ratio. 

Protein [%] Nucleic acid [%] 𝑨𝟐𝟔𝟎𝒏𝒎/𝑨𝟐𝟖𝟎𝒏𝒎 ratio 

100 0 0.57 

95 5 1.06 

90 10 1.32 

70 30 1.73 

 

Additionally, a Bradford assay was applied on the basis of protein-dye binding using 

bovine serum albumin in a concentration range of 0.2 to 0.9 mg/ml dissolved in the 

corresponding buffer as a standard. Both methods resulted in a closely similar protein 

concentration.  

 

The concentration of extracted and purified DNA was calculated according to Equation 9.2. 

 

𝑐𝐷𝑁𝐴 = 𝐴260𝑛𝑚 ∙ 50 μg/ml ∙ dilution factor       

(Equation 9.2) 

 

 

9.2.6    Enzyme Kinetics 

9.2.6.1    Trapping Experiment 

 

The base exchange mechanism allows two putative inhibition modes. Firstly, competitive 

binding is possible, which either allows tRNA or the small molecule ligand to bind to the 

active site. Secondly, a mixed binding mode can be observed in the case of small guanine-like 

inhibitors, allowing the formation of a tertiary complex after the tRNA is bound to the 

protein and guanine present in position 34 is cleaved and expelled from the binding pocket.   

To analyze the inhibition mode of the 5-azacytosine type inhibitors a trapping experiment 

was conducted as described by Xie et al., 2003.  

5 µM Z. mobilis TGT, 100 µM E. coli tRNATyr (ECY2) and 200 – 500 µM ligand depending 

on its solubility in 10 µL of 200 mM Hepes buffer pH 7.3 containing 20 mM MgCl2 were 

incubated for 1 h at room temperature. After that, 10 µL SDS buffer was added to the 

mixture and incubated for another hour to guarantee sufficient unfolding. 10 µL of each 

mixture were loaded onto a 15% SDS gel. The same conditions as described under 8.2.5.6 

were applied. After electrophoresis, protein bands were stained with Coomassie™ brilliant 
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blue R-250 (Bio-RAD). In case of a competitive inhibition mode only one band is visible at 43 

kDa. An uncompetitve binding mode is indicated by two bands. The additional band 

corresponds to the covalent tRNA-TGT complex. As a reference for uncompetitive binding 

2,6-diamino-3H-quinazolin-4-one (DAQ) was used [Brenk et al., 2004]. 

 

 

9.2.6.2    Enzyme Assay 

 

The method used for the kinetic characterization of TGT is based on the work of Grädler et 

al., 2001 and Stengl et al., 2005. Due to their low solubility the ligands were first dissolved in 

100% DMSO and subsequently diluted to the desired concentration containing 5% DMSO 

with assay buffer. The protein dissolved in the same buffer was added to the various ligand 

samples with a final concentration of 150 nM and incubated for 10 min at 37°C. Additionally, 

a reference without the ligand only containing DMSO and buffer was incubated under the 

same conditions. Subsequently, base exchange was started by the 1:1 addition of a similarly 

prepared solution containing E. coli tRNATyr (ECY2; 3 µM) and a mixture of guanine and 

radioactively labelled [8-3H]guanine (20 µM). 15 µL aliquots were removed from this mixture 

(76 µL) every two minutes and pipetted on Whatman GC-F glass microfiber filters. The 

reaction was immediately quenched in 10% (w/v) trichloroacetic acid solution at 0°C. In 

order to separate the tRNA from excess [8-3H]guanine not incorporated into tRNA, the glass 

microfiber filters were washed twice in a 5% (w/v) TCA solution for 10 min followed by an 

additional washing step using technical grade ethanol over 20 min. The labelled tRNA was 

captured in the filters during the described steps. Afterwards the filters were dried at 60°C 

for at least 30 min. The resulting count rate was obtained after the addition of 4 mL 

Rotiszent™ to each filter by liquid scintillation counting. 𝐾𝑖  values were determined using the 

method described by Dixon at least in duplicate [Dixon, 1953]. Thereby, the slope of the 

plotted count rates (GraFit 4.09™, Erithacus Software) yields the initial velocities at given 

inhibitor concentrations:  

 

𝑣𝑖 =
𝑣𝑚𝑎𝑥 ∙ 𝑆 

𝐾𝑚 ∙ 1+
 𝐼 

𝐾𝑖
 + 𝑆 

        

(Equation 9.3) 
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The reproducibility of the maximal velocity 𝑣0 defined by equation 9.3 [Michaelis and 

Menten, 1913] is low and therefore, has to be determined again for every series of 

measurements. The combination of equation 9.3 and 9.4 yields the inhibition constant 𝐾𝑖  

corresponding to equation 9.5. Thereby, a Michaelis-Menten constant of 0.9 µmol ∙ L−1 was 

used for data evaluation [Biela et al., 2013]. 

 

𝑣0 =
𝑣𝑚𝑎𝑥 ∙  𝑆 

𝐾𝑚 +  𝑆 
       (Equation 9.4) 

𝑣𝑖 =
𝑣𝑚𝑎𝑥 ∙ 𝑆 

𝐾𝑀 ∙ 1+
 𝐼 

𝐾𝑖
 + 𝑆 

       𝑣0 =
𝑣𝑚𝑎𝑥 ∙ 𝑆 

𝐾𝑀+ 𝑆 
       

𝑣0

𝑣𝑖
∙
𝐾𝑀+ 𝑆 

𝑀
=

1

𝐾𝑖
∙  𝐼 +  

 𝑆 

𝐾𝑀
+ 1        

(Equation 9.5) 

𝑣0   Initial velocity in absence of an inhibitor 

𝑣𝑖  Initial velocity in presence of an inhibitor 

𝐾𝑀  Michaelis-Menten constant of tRNA
Tyr

 

 𝑆  Concentration of tRNA
Tyr

 

 𝐼  Inhibitor concentration 

𝐾𝑖  Competitive inhibition constant 

 

 

9.2.6.3    Kinetic characterization 

 

Deviating from the described enzyme assay various E.coli tRNATyr concentrations (0.5 µM, 

1.0 µM, 1.5 µM, 3.0 µM, 6.0 µM 15.0 µM) were used for the kinetic characterization of the 

TGT mutants while keeping the guanine (15% radioactively labelled) and protein 

concentration (75 nM) fixed. This time the guanine / radioactively labelled guanine substrate 

(20 µM) was pre-incubated together with tRNA (150 nM) in assay buffer for 10 minutes at 

37°C. Subsequently, the protein dissolved in assay buffer was added in a 1:2 manner. 15 µl 

aliquots were removed from this mixture (76 µl) every four minutes over a total period of 16 

minutes and pipetted on Whatman GC-F glass microfiber filters. The reaction was 

immediately quenched in 10% (w/v) TCA solution at 0°C followed by the previously 

described washing steps. Afterwards the filters were dried at 60°C for at least 30 minutes. 

The resulting count rate was obtained after the addition of 4 ml Rotiszent™ to each filter by 

liquid scintillation counting. After converting the derived cpm signal into the amount of 
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incorporated radioactive guanine via a calibration line the initial velocities 𝑣0 for each tRNA 

concentration were plotted against the reaction time (GraFit 4.09™, Erithacus Software). 

Based on this plot a Michaelis-Menten curve was generated yielding the Michaelis-Menten 

constant 𝐾𝑀  as well as 𝑘𝑐𝑎𝑡  according to the Michaelis-Menten Equation 9.6. Measurements 

were at least carried out in duplicate. 

 

𝑣0 =

𝑘𝑐𝑎𝑡
[𝐸]

∙ 𝑆 

𝐾𝑀+ 𝑆 
       (Equation 9.6) 

𝑣0   Initial velocity 

𝑘𝑐𝑎𝑡  Catalytic constant of the base exchange 

𝐾𝑀  Michaelis-Menten constant of tRNA
Tyr

 

 𝑆  Concentration of tRNA
Tyr

 

 𝐸  Concentration of Z. mobilis TGT 

 

 

9.2.7    Isothermal Titration Calorimetry  

 

ITC measurements were performed using a Microcal iTC200 microcalorimeter system (GE 

Healthcare). The protein was dissolved in the experimental buffer to a final concentration of 

10 µM for the titrations of lin-benzoguanines, 20 µM for the titrations of lin-

benzohypoxanthines, and 30 µM for the titrations of the 5-azacytosine derivative 11, each 

containing 3% DMSO. Due to their low solubility the ligands were first dissolved in 100% 

DMSO and diluted with the buffer solution to a final DMSO concentration of 3%. The ligand 

concentration in the syringe was adjusted to 200 – 300 µM with the experimental buffer. To 

examine a potential buffer dependency of the binding process, experiments were carried out 

in three different buffer systems containing either 50 mM Hepes, Tris or Tricine, 200 mM 

NaCl and 0.037% Tween 20, pH 7.8 at least in duplicate. The experimentally determined 

enthalpy ∆𝐻𝑜𝑏𝑠  was plotted against the heat of ionization ∆𝐻𝑖𝑜𝑛  as reported in literature and 

fitted by linear regression [Christensen, 1976; Fukada and Takahashi, 1998]. The intercept of 

the y axis represents the enthalpy corrected for buffer contributions and the slope discloses 

the number of protons released or taken up per mole formed complex upon binding 

according to Equation 9.7. The positive slope for the measurements involving the lin-
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benzoguanine series indicated the uptake of one proton by the ligand. Therefore, enthalpy 

values were corrected for buffer dependency as described above. The lin-

benzohypoxanthine series did not show a significant proton uptake. Thus, the mean of three 

independent measurements was calculated. 

 

∆𝐻𝑜𝑏𝑠 = ∆𝐻𝑏𝑖𝑛𝑑 + 𝑛𝐻+ ∙ ∆𝐻𝑖𝑜𝑛        (Equation 9.7) 

 

All ITC experiments were run at 25°C after a stable baseline had been achieved. The 

reference cell contained filtered demineralized water. The initial delay before the injections 

were started and the spacing between each injection were adjusted to 180 s. The first 

injection contained 0.3 – 0.5 µL of the ligand solution followed by 14 – 24 injections of 1.0 – 

2.0 µL. A stirring speed of 1000 rpm was chosen. Raw data were collected as released heat 

per time. 

To analyze the raw data using the Origin 7.0 software, the baseline and integration 

limits were adjusted manually. After integrating the area under the peaks, the first data 

point was removed due to its reduced accuracy [Mizoue and Tellinghuisen, 2004]. The 

influence of the heat of dilution was corrected considering the heat contributions collected 

after saturation of the protein. 𝐾𝑑  as well as ∆𝐻0 were extracted applying a single-site 

binding model as provided by the manufacturer. Subsequently, −𝑇∆𝑆0 was calculated 

according to the Gibbs-Helmholtz equation. 

 

 

9.2.8    Dynamic Light Scattering 

 

The potential aggregation behavior of the 5-azacytosine derivative 11 was determined by 

Dynamic Light Scattering (DLS) under assay conditions (200 mM, HEPES, 20 mM MgCl2, 

0.037% (v/v) Tween 20, 5% (v/v) DMSO, pH 7.3) at a final concentration of 20 µM using a 

SpectroSizeTM 300 (Molecular Dimensions Limited) equipped with an optical power of 

100 mW at a wavelength of 660 nm at 37°C. The scattered light was detected at a 90° angle. 

The given data comprised at least two measurements of 30 runs over 15 s. Clotrimazole 

served as a reference as a strong aggregator at a concentration of 100 µM in assay buffer 

containing 5% (v/v) DMSO [Seidler et al., 2003]. Count rate and autocorrelation function 

were plotted using the program R. 
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The calculation of the particle size was based on the Brownian motion. The bigger a 

particle, the slower is its movement through a medium and the slower is the change in its 

scattered light. This relationship is expressed by the Stokes-Einstein equation: 

 

𝑑 =
𝑘𝐵𝑇

3𝜋𝜂𝐷
       (Equation 9.8) 

𝑑 Hydrodynamic diameter 

𝑘𝐵  Boltzmann constant 

𝑇 Temperature in Kelvin 

𝜂 Viscosity of the medium 

𝐷 Diffusion coefficient 

 

 

9.2.9    X-ray Crystallography 

9.2.9.1    Z. mobilis TGT Crystallization 

 

Crystals were grown in the presence of the inhibitor using the sitting drop vapor diffusion 

method at 291 K. The protein solution was adjusted to 12 mg ∙ mL−1 by dilution with high 

salt buffer (10 mM Tris, 2 M NaCl, 1 mM EDTA, pH 7.8) and incubated with the inhibitor 

previously dissolved in 100% DMSO at a final concentration up to 1.5 mM depending on the 

solubility of the corresponding ligand. This solution was mixed with 1.5 µL reservoir solution 

(100 mM MES, pH 5.5, 10% (v/v) DMSO, 11 – 13% (w/v) PEG 8000) to a 3 µL droplet. The 

reservoir contained 1.0 mL of the above-mentioned solution. Within one week crystals 

showing an appropriate size for data collection were obtained.  

 

For crystals grown in the presence of a ligand which did not show an appropriate size 

or form sufficient for diffraction experiments a soaking protocol was applied (TGT∙3a, 

TGT∙5b, TGT Val262Thr∙4a, TGT Val262Asp∙4a, TGT Val262Cys∙4a, TGT∙7). For that purpose, 

crystals were grown in the absence of the ligand according to the previously described 

protocol. Instead of mixing the protein solution with the inhibitor before crystallization, pre-

grown apo crystals were transferred to a 3 µL droplet of reservoir solution mixed with the 

stock solution containing the desired ligand to a final concentration of 1 mM. The droplet 

was sealed against 1.0 mL reservoir solution and soaked into the crystal overnight. 
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9.2.9.2    pH Soaking 

 

For pH soaking a single crystal grown at pH 5.5 was transferred and incubated over a period 

of 5 min into droplets consisting of reservoir solution and buffer containing 100 mM Tris, 

pH 7.8, 10% (v/v) DMSO, 8% (w/v) PEG 8000 mixed in a 3:2, 1:2, and 2:3 manner, 

respectively. Subsequently, the crystal was equilibrated in a droplet of sole buffer pH 7.8 

overnight to guarantee a homogeneous pH over the whole crystal. As a cryoprotectant for 

the apo crystal 20% (v/v) PEG 400 (cryo buffer D) was used.   

 

 

9.2.9.3    Data Collection 

 

For data collection the crystals were transferred into the corresponding cryoprotectant 

solution (cryo buffers A – C, Table 8.3) for 20 seconds followed by immediate flash-freezing 

in liquid nitrogen. Due to their low affinity, the corresponding 5-azacytosine based ligands 

were added to the cryoprotectant solution in the same concentration as applied to the 

crystallization conditions to prevent diffusion out of the crystals. 

Data sets were collected at the BESSY II (Helmholtz-Zentrum, Berlin, Germany) 

beamline 14.2 at a wavelength of λ = 0.91841 Å and 14.3 at a wavelength of λ = 0.89460 Å 

both using a Rayonix MX225 CCD detector. Additionally, complex structures were collected 

at the PETRA III (EMBL, Hamburg, Germany) beamline P14 at a wavelength of λ = 1.23953 Å 

and λ = 0.97627 Å using a PILATUS 6M-F detector. To minimize radiation damage, all data 

sets were collected at cryo-conditions (100 K).  

All TGT crystals showed the monoclinic space group C2 containing one monomer in 

the asymmetric unit. Data sets TGT∙3a, TGT∙4a, TGT∙4b, TGT∙5a, TGT∙5b, TGT∙6a, TGT∙6b, TGT 

Val262Thr, TGT Val262Asp, TGT Val262Cys, TGT Val262Thr∙4a, TGT Val262Cys∙4a, TGT∙7, 

TGT∙7a, TGT∙8, TGT∙9, and TGT∙10 were processed and scaled with the HKL2000 package 

[Otwinowski and Minor, 1997]. Data processing and scaling for TGT Asp102Asn∙3a, 

Asp156Asn∙3a, TGT-apo pH 7.8, TGT∙7b, TGT∙7c, and TGT∙7d were performed with XDS and 

XSCALE [Kabsch, 2010], respectively. Data set TGT Val262Asp∙4a was processed with 

iMOSFLM 1.0.6 [Battye et al., 2011] and subsequently scaled with the program SCALA of the 

ccp4 program suite [Winn et al., 2011]. Cell dimensions, data collection and processing 

statistics are given in the appendix (Table 10.8). 
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9.2.9.4      Calculation of the Anomalous Map 

 

The anomalous electron density was generated using the program ANODE [Thorn and 

Sheldrick, 2011]. Unit-cell parameters, space-group notation, and atom coordinates were 

extracted from the pdb-files. Reflection indices,  𝐹𝐴  and α values originated from the 

reflection file derived with XPREP [Sheldrick, 2008]. 

 

 

9.2.9.5    Structure Determination and Refinement 

 

The coordinates of the TGT apo-structure 1PUD served as a starting model for molecular 

replacement using the program Phaser MR of the ccp4 program suite [McCoy, 2007]. 

Structures were refined using the program Phenix [Adams et al., 2010] starting with a first 

cycle of simulated annealing using default parameters. Further refinement cycles comprised 

the coordinate xyz, occupancy and individual B-factor refinement as well as applying metal 

restraints for the zinc ion. In case of the structures TGT∙3a, TGT∙6b, and TGT-apo pH 7.8 the 

weights between X-ray target and stereochemistry restraints were optimized in addition to 

individual atomic displacement parameter (ADP) weights refined for TGT∙3a, TGT∙4a, TGT∙4b, 

TGT∙5a, TGT∙5b, TGT∙6a, TGT∙6b, TGT∙7, TGT∙7a, TGT∙7b, TGT∙7c, TGT∙7d, and TGT-apo 

pH 7.8. The temperature factors of structures TGT∙3a, TGT∙4a, TGT-apo pH 7.8, TGT∙4b, 

TGT∙5a, TGT∙6a, TGT∙6b, TGT Val262Thr, TGT Val262Asp, TGT Val262Cys, TGT Val262Asp∙4a, 

TGT∙7, TGT∙7a, TGT∙7b, TGT∙7c, and TGT∙7d were refined anisotropically, while for structures 

TGT Asp102Asn∙3a, Asp156Asn∙3a, TGT∙5b, TGT Val262Thr∙4a, TGT Val262Cys∙4a, TGT∙8, 

TGT∙9, and TGT∙10 a TLS refinement was performed after selecting appropriate TLS groups 

with the phenix.find_tls_groups option [Painter and Merritt, 2006]. The calculation of the 

Rfree value comprised a 2 – 5% fraction of the data.  

For all structures amino acid side chains were fitted according to their σA-weighted 

2 𝐹𝑜  −  𝐹𝑐  and  𝐹𝑜  −  𝐹𝑐   electron density obtained in the program Coot [Emsley and 

Cowtan, 2004]. After the initial refinement cycles, the zinc ion as well as water and glycerol 

molecules were implemented in the model. For adding water molecules, the option “update 

waters” included in Phenix was used after increasing the hydrogen bond length threshold for 

the solvent-model and solvent-solvent contacts to 2.3 Å. The inserted molecules were 

visually reviewed afterwards. Ligand restraints were generated by the CSD based 
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gradeWebServer [http://grade.globalphasing.org] in case of 3a, 4a, 4b, 5a, 5b, 6a, 6b, 7b, 7c 

and 7d. Ligands were built and minimized using the program MOE [MOE 2012.10] and 

geometric restraints calculated subsequently by the program Monomer Library Sketcher 

[Winn et al., 2011] in case of 7, 7a, 8, 9, and 10. Multiple protein residue conformations 

were assigned in case a reasonable electron density was observed and were kept during 

refinement if the side chain with the lowest occupancy showed a value of at least 20%. In 

case of 4a, 4b, 5a, 5b, 6a, 6a, and 7b the occupancies of the 2-substituent were refined due 

to elevated B-factors observed for this portion. In the same manner the occupancies of 8, 9, 

and 10 were refined for the whole molecule. Ramachandran plots were generated with the 

program PROCHECK [Laskowski et al., 1993]. For the analysis of temperature factors the 

program Moleman was used [Kleywegt, 2001]. The burial of molecular ligand portions in the 

protein binding pocket was computed using the program MS [Connolly, 1983]. 

 

 

9.3 Synthesis  

 

Ligands were synthesized and purified as described in detail elsewhere [Hörtner et al., 2007; 

Barandun et al., 2012; Neeb et al., 2014; Neeb et al., 2014]. 
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10. Appendix 

10.1 Calculation of pKa Values of Titratable Groups of the TGT Active Site 

10.1.1 TGT Wild Type 

Table 10.1 Calculated pKa values of the amino acid residues within a 12 Å sphere around Cγ of Tyr106 of TGT 

wild type and 3a before and after complex formation. 

Residue pKa prior to complex formation[a]                                pKa in complexed state 

  N3 N5 

CYS-281 10.40 10.32 10.25 

CYS-158 11.87 11.96 12.23 

ASP-156 5.44 4.40 3.02 

ASP-280 2.18 0.59 1.44 

ASP-266 3.24 3.21 3.24 

ASP-267 0.66 0.48 0.66 

ASP-245 3.80 3.79 3.80 

ASP-238 3.98 3.98 3.98 

ASP-102 1.63 1.64 -2.12 

LYS-52 8.75 8.74 8.71 

LYS-264 12.39 12.35 12.37 

HIS-73 4.08 3.97 3.98 

3a[b]  6.65 7.00 

GLU-235 4.20 3.55 4.30 

GLU-239 3.24 3.24 3.23 

GLU-173 4.57 4.58 4.60 

GLU-157 3.13 3.06 3.16 

TYR-72 12.02 11.96 11.93 

TYR-106 10.77 11.60 11.53 

TYR-226 11.66 11.67 11.67 

TYR-381 10.83 10.81 10.82 

TYR-354 15.55 15.53 15.52 

TYR-161 10.70 10.67 10.70 

TYR-258 16.51 16.76 16.65 

a
For the Poisson-Boltzmann calculations a dielectric constant of ε = 20 was applied. 

b
pKa values in aqueous 

solution according to Barandun et al., 2012. 
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10.1.2 TGT Asp102Asn 

Table 10.2 Calculated pKa values of the amino acid residues within a 12 Å sphere around Cγ of Tyr106 of TGT 

Asp102Asn and 3a before and after complex formation. 

Residue pKa prior to complex formation[a] pKa in complexed state  

N5 

CYS-281 8.73 8.67 

CYS-158 10.40 11.00 

ASP-156 2.80 2.57 

ASP-280 1.37 1.19 

ASP-266 3.70 3.70 

ASP-267 0.47 0.52 

ASP-245 3.71 3.72 

ASP-238 3.90 3.89 

LYS-52 8.40 8.36 

LYS-264 12.97 12.97 

3a[b]  -1.14 

HIS-73 3.94 3.84 

GLU-235 3.67 4.00 

GLU-239 3.27 3.26 

GLU-173 4.40 4.41 

GLU-157 2.47 2.52 

TYR-72 11.17 11.06 

TYR-106 10.69 11.37 

TYR-226 10.83 10.83 

TYR-381 11.75 11.73 

TYR-354 14.59 14.59 

TYR-161 10.67 10.67 

TYR-258 15.58 15.55 
a, b

The same conditions are applied as denoted in Table 10.1. 
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10.1.3 TGT Asp156Asn 

Table 10.3 Calculated pKa values of the amino acid residues within a 12 Å sphere around Cγ of Tyr106 of TGT 

Asp156Asn and 3a before and after complex formation. 

Residue pKa prior to complex formation[a] pKa in complexed state  

N5 

CYS-281 9.31 9.28 

CYS-158 10.46 10.76 

ASP-280 2.29 1.36 

ASP-266 3.42 3.40 

ASP-267 1.70 1.70 

ASP-245 3.97 3.95 

ASP-238 4.09 4.08 

ASP-102 1.29 -2.31 

LYS-52 8.66 8.64 

LYS-264 11.32 11.30 

3a[b]  5.32 

HIS-73 3.84 3.50 

GLU-235 4.37 4.31 

GLU-239 3.50 3.47 

GLU-173 4.55 4.52 

GLU-157 3.72 3.46 

TYR-72 10.83 10.77 

TYR-106 11.62 12.34 

TYR-226 11.36 11.36 

TYR-381 9.18 9.19 

TYR-354 14.44 14.45 

TYR-161 10.85 10.85 

TYR-258 16.34 16.52 
a, b

The same conditions are applied as denoted in Table 10.1. 
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10.2 Anomalous Density Data  

 
Table 10.4 Anomalous density data for TGT∙5a. 

Peak Height Nearest atom[a] [Å]  Peak Height Nearest atom[a] [Å] 

1 53.36 ZN_B:ZN1 0.04  33 4.39 C_A:TYR381 1.37 

2 8.69 SD_A:MET176 0.09  34 4.37 OD1_A:ASN304 1.34 

3 7.46 SD_A:MET153 0.34  35 4.36 CA_A:VAL322 1.36 

4 7.43 SD_A:MET278 0.32  36 4.35 OE2_A:GLU273 1.00 

5 7.27 SD_A:MET75 0.16  37 4.30 NH2_A:ARG211 0.65 

6 6.94 SD_A:MET250 0.16  38 4.27 C_A:SER205 0.42 

7 6.73 SG_A:CYS318 0.22  39 4.27 OG_A:SER371 1.66 

8 6.63 SG_A:CYS158 0.12  40 4.24 CA_A:GLY87 2.13 

9 6.53 O_S:HOH1 0.11  41 4.23 O_S:HOH14
[b]
 0.15 

10 6.43 SD_A:MET43 0.22  42 4.22 O_A:SER170 0.46 

11 6.23 SD_A:MET260 0.13  43 4.20 CA_A:LEU54 2.16 

12 6.00 SD_A:MET172 0.37  44 4.20 N_A:ASP96 1.09 

13 5.78 SD_A:MET240 0.28  45 4.18 NE_A:ARG34 2.24 

14 5.29 SG_A:CYS318 1.18  46 4.17 O_A:LEU357 1.72 

15 5.06 O_S:HOH2 0.61  47 4.17 CB_A:ALA352 1.58 

16 4.94 SG_A:CYS320 0.83  48 4.15 OE1_A:GLN372 4.30 

17 4.92 NZ_A:LYS312 1.40  49 4.13 O_S:HOH62 0.26 

18 4.90 N_A:CYS323 1.90  50 4.12 C_A:VAL269 0.73 

19 4.83 SD_A:MET358 0.11  51 4.12 O_A:GLU317 1.46 

20 4.70 SD_A:MET240 1.38  52 4.11 CG2_A:VAL206 1.43 

21 4.61 O_S:HOH369 1.36  53 4.11 O_S:HOH349 1.25 

22 4.60 SD_A:MET344 0.46  54 4.11 O_A:SER287 1.16 

23 4.58 CE1_A:HIS349 1.15  55 4.10 O_S:HOH359 1.55 

24 4.55 O_A:ALA383 5.09  56 4.09 O_S:HOH101 0.90 

25 4.54 CA_A:GLU235 1.14  57 4.08 O_S:HOH269 0.48 

26 4.50 O_S:HOH123 0.28  58 4.07 N_A:ARG132 3.42 

27 4.50 O_A:GLY230 0.31  59 4.06 N_A:GLU173 0.37 

28 4.44 O_S:HOH428 3.37  60 4.06 CD2_A:LEU89 2.06 

29 4.44 C_A:TRP95 1.08  61 4.03 NE1_A:TRP178 0.88 

30 4.42 O_S:HOH196 1.15  62 4.02 O_S:HOH203 0.91 

31 4.41 CB_A:ASP363 1.51  63 4.01 O_S:HOH269 3.96 

32 4.40 SD_A:MET109 0.30      
a
The nearest atom is listed in the form atom_chain:residue. 

b
Anomalous data for the identified chloride ion. 
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Table 10.6 Anomalous density data for TGT∙5b. 

Peak Height Nearest atom[a] [Å]  Peak Height Nearest atom[a] [Å] 

1 60.59 ZN_B:ZN1 0.03  20 4.37 O_F:HOH1 1.13 

2 7.01 SD_A:MET153 0.21  21 4.37 SD_A:MET346 0.19 

3 6.50 SD_A:MET43 0.42  22 4.31 O_A:ARG34 1.67 

4 6.50 SD_A:MET358 0.21  23 4.31 SD_A:MET172 0.19 

5 6.03 SD_A:MET344 0.38  24 4.30 O_A:SER366 1.59 

6 5.98 SD_A:MET278 0.14  25 4.30 SG_A:CYS281 0.48 

7 5.73 O_G:HOH1
[b]
 0.11  26 4.29 CA_A:GLY234 4.95 

8 5.24 SD_A:MET176 0.25  27 4.29 O_S:HOH292 3.36 

9 5.01 SD_A:MET250 0.34  28 4.25 CB_A:THR295 1.21 

10 4.92 O_S:HOH241 1.23  29 4.25 O_A:MET109 4.66 

11 4.77 O_S:HOH290 3.05  30 4.22 OD2_A:ASP238 7.99 

12 4.74 SG_A:CYS158 0.14  31 4.19 SG_A:CYS323 0.16 

13 4.66 SD_A:MET93 0.50  32 4.17 CA_A:SER287 1.17 

14 4.47 NH1_A:ARG34 4.05  33 4.16 CA_A:SER112 1.89 

15 4.42 CA_A:ARG303 0.92  34 4.15 N_A:SER17 0.83 

16 4.41 SD_A:MET260 0.43  35 4.10 O_S:HOH184 3.08 

17 4.41 N_A:LEU68 1.05  36 4.09 C_A:LYS125 1.76 

18 4.39 OD1_A:ASN290 2.21  37 4.09 CZ_A:PHE42 1.14 

19 4.37 O_F:HOH1 1.13  38 4.08 CB_A:SER205 2.01 
a
The nearest atom is listed in the form atom_chain:residue. 

b
Anomalous data for the identified chloride ion. 
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10.3 Thermodynamic Data of lin-Benzopurines 

 
Table 10.6 Raw data as well as thermodynamic profiles after correction for buffer distribution of the 

investigated ligands measured at 25 °C. 

Ligand 𝑲𝒅 𝒏𝑴  
∆𝑮𝟎 𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏 [] 
buffer 

∆𝑯𝒐𝒃𝒔 𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏 [a] 

−𝑻∆𝑺𝟎 𝒌𝑱 ∙

𝒎𝒐𝒍−𝟏 [a] 

3a 52.4 ± 6.9 -41.6 ± 0.3 Hepes -74.8 ± 1.8    33.2 ± 1.9[b] 

   Tricine -66.7 ± 0.1 25.1 ± 0.3 

   Tris -50.9 ± 0.9   9.3 ± 0.9 

    -97.4 ± 2.2    55.8 ± 2.2[c] 

3b 411.0 ± 63.8 -36.5 ± 0.3 Hepes -48.0 ± 0.2 11.5 ± 0.4 

   Tricine -47.7 ± 0.2 11.2 ± 0.5 

   Tris -47.6 ± 0.3 11.1 ± 0.5 

    -47.7 ± 0.3 11.2 ± 0.5 

4a 35.0 ± 6.9 -42.6 ± 0.5 Hepes -78.3 ± 1.2  35.7 ± 1.3 

   Tricine -65.8 ± 0.3  23.2 ± 0.6 

   Tris -51.9 ± 1.1    9.3 ± 1.2 

    -96.4 ± 4.0  53.8 ± 4.0 

4b 369.2 ± 25.3 -36.7 ± 0.2 Hepes -50.1 ± 0.4 13.4 ± 0.4 

   Tricine -49.3 ± 0.4 12.6 ± 0.4 

   Tris -47.4 ± 0.4 10.7 ± 0.4 

    -48.9 ± 1.4 12.2 ± 1.4 

5a 34.3 ± 6.5 -42.6 ± 0.5 Hepes -66.7 ± 0.5 24.1 ± 0.7 

   Tricine -56.9 ± 0.5 14.3 ± 0.7 

   Tris -48.8 ± 0.4   6.2 ± 0.6 

    -78.9 ± 3.7  36.3 ± 3.7 

5b 407.4 ± 46.0 -36.5 ± 0.3 Hepes n.d.    n.d.[d] 

   Tricine -50.6 ± 0.7 14.1 ± 0.8 

   Tris -50.6 ± 1.7 14.1 ± 1.8 

    -50.6 ± 1.4 14.1 ± 1.4 

6a 111.6 ± 11.8 -39.7 ± 0.3 Hepes -50.9 ± 0.6 11.2 ± 0.6 

   Tricine -44.0 ± 1.5   4.3 ± 1.5 

   Tris -31.2 ± 0.8 -8.5 ± 0.8 

    -66.3 ± 0.8 26.6 ± 0.9 

6b 1638.9 ± 204.7 -33.0 ± 0.3 Hepes -42.1 ± 0.4   9.1 ± 0.5 

   Tricine -41.8 ± 0.4   8.8 ± 0.5 

   Tris -42.3 ± 0.5   9.3 ± 0.6 

    -42.1 ± 0.3   9.1 ± 0.4 
a
−𝑇∆𝑆0 was calculated according to the Gibbs-Helmholtz equation. 

b
Errors were estimated by means of 

standard deviation for 𝐾𝑑  and ∆𝐺0  comprising at least six measurements and for ∆𝐻𝑜𝑏𝑠  at least two. The error 

for −𝑇∆𝑆0 was calculated according to error propagation. 
c
Buffer corrected data are displayed in bold. 

d
Not 

determined. 
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10.4 Sequencing Results of the Strep-tagged TGT Variants after Cleavage 

 
D156N           GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

WT              GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

                ************************************************************ 

 

D156N           VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

WT              VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

                ************************************************************ 

 

D156N           EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFNECTPYPATPSRAASSMERSMRW 180 

WT              EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

                *************************************:********************** 

 

D156N           AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

WT              AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

                ************************************************************ 

 

D156N           EMFRVLDFSVPMLPDDKPHYLMGVGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

WT              EMFRVLDFSVPMLPDDKPHYLMGVGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

                ************************************************************ 

 

D156N           PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

WT              PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

                ************************************************************ 

 

D156N           QKIRDSISEGRFSQFAQDFRARYFARNS 388 

WT              QKIRDSISEGRFSQFAQDFRARYFARNS 388 

                **************************** 

 

Scheme 10.1 Sequence alignment of mutant Asp156Asn. 

 

 
V262C           GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

WT              GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

                ************************************************************ 

 

V262C           VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

WT              VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

                ************************************************************ 

 

V262C           EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

WT              EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

                ************************************************************ 

 

V262C           AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

WT              AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

                ************************************************************ 

 

V262C           EMFRVLDFSVPMLPDDKPHYLMGCGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

WT              EMFRVLDFSVPMLPDDKPHYLMGVGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

                *********************** ************************************ 

 

V262C           PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

WT              PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

                ************************************************************ 

 

V262C           QKIRDSISEGRFSQFAQDFRARYFARNS 388 

WT              QKIRDSISEGRFSQFAQDFRARYFARNS 388 

                **************************** 

 

Scheme 10.2 Sequence alignment of mutant Val262Cys. 
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V262D           GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

WT              GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

                ************************************************************ 

 

V262D           VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

WT              VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

                ************************************************************ 

 

V262D           EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

WT              EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

                ************************************************************ 

 

V262D           AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

WT              AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

                ************************************************************ 

 

V262D           EMFRVLDFSVPMLPDDKPHYLMGDGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

WT              EMFRVLDFSVPMLPDDKPHYLMGVGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

                *********************** ************************************ 

 

V262D           PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

WT              PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

                ************************************************************ 

 

V262D           QKIRDSISEGRFSQFAQDFRARYFARNS 388 

WT              QKIRDSISEGRFSQFAQDFRARYFARNS 388 

                **************************** 

 

Scheme 10.3 Sequence alignment of mutant Val262Asp. 

 

 
V262T           GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

WT              GSMVEATAQETDRPRFSFSIAAREGKARTGTIEMKRGVIRTPAFMPVGTAATVKALKPET 60 

                ************************************************************ 

 

V262T           VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

WT              VRATGADIILGNTYHLMLRPGAERIAKLGGLHSFMGWDRPILTDSGGYQVMSLSSLTKQS 120 

                ************************************************************ 

 

V262T           EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

WT              EEGVTFKSHLDGSRHMLSPERSIEIQHLLGSDIVMAFDECTPYPATPSRAASSMERSMRW 180 

                ************************************************************ 

 

V262T           AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

WT              AKRSRDAFDSRKEQAENAALFGIQQGSVFENLRQQSADALAEIGFDGYAVGGLAVGEGQD 240 

                ************************************************************ 

 

V262T           EMFRVLDFSVPMLPDDKPHYLMGTGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

WT              EMFRVLDFSVPMLPDDKPHYLMGVGKPDDIVGAVERGIDMFDCVLPTRSGRNGQAFTWDG 300 

                ***********************.************************************ 

 

V262T           PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

WT              PINIRNARFSEDLKPLDSECHCAVCQKWSRAYIHHLIRAGEILGAMLMTEHNIAFYQQLM 360 

                ************************************************************ 

 

V262T           QKIRDSISEGRFSQFAQDFRARYFARNS 388 

WT              QKIRDSISEGRFSQFAQDFRARYFARNS 388 

                **************************** 

 

Scheme 10.4 Sequence alignment of mutant Val262Thr. 
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10.5 Mass Spectra of the Strep-tagged TGT Variants after Cleavage 

 

 
 Figure 10.1 Mass spectrum of TGT Asp156Asn (theoretical mass: 43012.8 Da).  

 

 
 Figure 10.2 Mass spectrum of TGT Val262Cys (theoretical mass: 43017.8 Da). 

 

  
 Figure 10.3 Mass spectrum of TGT Val262Asp (theoretical mass: 43029.7 Da). 

 

 
 Figure 10.4 Mass spectrum of TGT Val262Thr (theoretical mass: 43015.8 Da). 
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10.6 Enzyme Kinetics of the Strep-tagged TGT Variants after Cleavage 

 
Table 10.7 Initial velocities, Michaelis-Menten plot and kinetic data of the different TGT variants. 

TGT Wild Type 
[Jakobi, 2013] 

                KM (tRNA)                 4.8   µM 
               kcat                                      1.2 10-2 s-1 

 
TGT D156N 

 
 
 

 
 

               KM (tRNA)                 5.25 µM 
               kcat                                      3.4 10-3 s-1 

 
TGT V262C Active (multiple measurements did not yield an evaluable result) 

 
TGT V262D 

 
 
 

 
 

               KM (tRNA)                 6.49 µM 
               kcat                                      4.0 10-3 s-1 

 
TGT V262T 

 
 
 

 
 

               KM (tRNA)                 3.52 µM 
               kcat                                      5.3 10-3 s-1 
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10.7 Data Collection and Refinement Statistics 

 
Table 10.8 Data collection, processing and refinement statistics for the investigated TGT-ligand-complexes. 

Crystal data TGT∙3a Asp102Asn∙3a Asp156Asn∙3a TGT∙4a Apo pH 7.8 

PDB ID 4PUK 4PUL 4PUM 4PUJ 4PUN 

A) Data collection and processing      

Collection site BESSY 14.2 PETRA P14 PETRA P14 BESSY 14.2 PETRA P14 

No. crystals used 1 1 1 1 1 

λ *Å+ 0.91841 1.23953 1.23953 0.91841 0.97627 

Space group C2 C2 C2 C2 C2 

Unit cell parameters      

a [Å] 90.8 89.7 89.7 90.6 90.5 

b [Å] 65.0 64.2 64.7 64.8 64.7 

c [Å] 71.0 70.4 70.8 71.0 69.9 

β *°+ 96.3 92.9 93.1 96.2 96.0 

B) Diffraction data
[a]

      

Resolution range [Å] 30 - 1.49 80 - 1.65 80 - 1.93 30 - 1.42 50 - 1.25 

 (1.52 - 1.49) (1.85 - 1.65) (1.98 - 1.93) (1.44 - 1.42) (1.30 - 1.25) 

Unique reflections 66573 43729 30236 76897 107127 

 (3339) (9984) (2238) (3785) (11652) 

R(I)sym [%]
[b]

 5.1 (48.1)  2.9 (27.5)  4.7 (50.5) 5.7 (50.5) 3.0 (50.0) 

Completeness [%] 99.4 91.6 99.0 99.3 96.8 

 (98.8) (73.8) (99.4) (98.4) (95.3) 

Redundancy 5.1 (4.9) 3.1 (2.6) 4.7 (4.6) 5.2 (5.1) 3.3 (3.3) 

I/σ (I) 29.3 (3.4) 22.3 (3.8)  21.6 (3.4) 28.6 (3.9) 18.0 (2.7) 

Wilson B-factor [Å
2
] 15.7 22.4 25.8 12.8 14.5 

Matthews Coefficient [Å
3
/Da] 2.4 2.4 2.4 2.4 2.4 

C) Refinement      

PHENIX version 1.8.4_1496 1.8.1_1168 1.8.1_1168 1.8.4_1496 1.8.4_1496 

Resolution range [Å] 27.3 - 1.49 70.3 - 1.65 70.7 - 1.93 29.5 - 1.42 45.0 - 1.25 

Reflections used for Rfree  
Reflections used for Rwork 

2000 
64506  

1312 
42417  

1512 
28724  

2000 
74896 

5357 
101770 

Final R values
[a]

      

Rfree  [%]
[c]

 17.2 18.9 20.2 16.0 16.2 

Rwork [%]
[d]

 13.9 16.7 15.9 12.9 13.9 

No. of atoms (non-hydrogen)      

Protein atoms 2922 2829 2854 2911 2920 

Water molecules 365 261 219 388 373 

Ligand atoms 17 17 17 24 --- 

RMSD, angle [°] 1.3 1.1 1.1 1.0 1.4 

RMSD, bond [Å] 0.014 0.008 0.009 0.007 0.013 

Ramachandran plot
[e]

      

Most favoured regions [%] 95.3 95.9 95.9 94.2 94.0 

Additionally allowed regions [%] 4.4 3.8 3.8 5.4 5.6 

Generously allowed regions [%] 0.3 0.3 0.3 0.3 0.3 

Mean B-factors [Å
2
]      

Protein atoms 19.4 24.6 25.1 14.3 18.5 

Water molecules 33.3 33.7 31.0 32.5 29.8 

Ligand atoms 16.7 22.6 24.9 13.8 --- 
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Crystal data TGT∙4b TGT∙5a TGT∙5b TGT∙6a TGT∙6b 

PDB ID 4Q4R 4Q4O 4Q4P 4Q4S 4Q4Q 

A) Data collection and processing      

Collection site BESSY 14.2 BESSY 14.2 BESSY 14.3 BESSY 14.2 BESSY 14.2 

No. crystals used 1 1 1 1 1 

λ *Å+ 0.91841 0.91841 0.89460 0.91841 0.91841 

Space group C2 C2 C2 C2 C2 

Unit cell parameters      

a [Å] 89.9 89.8 90.0 90.9 91.3 

b [Å] 64.8 64.7 64.9 64.9 64.9 

c [Å] 70.8 70.7 70.7 70.5 70.4 

β *°+ 93.1 93.4 93.3 95.9 96.1 

B) Diffraction data
[a]

      

Resolution range [Å] 30 - 1.45 30 - 1.35 30 - 1.54 30 - 1.25 30 - 1.41 

 (1.48 - 1.45) (1.37 - 1.35) (1.57 - 1.54) (1.27 - 1.25) (1.43 - 1.41) 

Unique reflections 71426 87189 60063 109841 78370 

 (3566) (4254) (2924) (5550) (3931) 

R(I)sym [%]
[b]

 8.6 (46.5) 4.6 (38.8)  6.7 (30.2)  4.7 (45.5) 7.1 (49.1) 

Completeness [%] 99.6 98.8 99.8 97.5 99.8 

 (99.9) (98.3) (99.5) (98.8) (99.9) 

Redundancy 3.1 (3.0) 2.1 (2.0) 3.7 (3.0) 2.4 (2.3) 2.9 (2.9) 

I/σ (I) 12.2 (2.2) 15.4 (2.0) 18.9 (3.6) 19.0 (2.1) 15.6 (3.1) 

Wilson B-factor [Å
2
] 17.3 14.9 17.5 11.9 10.7 

Matthews Coefficient [Å
3
/Da] 2.4 2.4 2.4 2.4 2.4 

C) Refinement      

PHENIX version 1.8.4_1496 1.8.4_1496 1.8.4_1496 1.8.4_1496 1.8.4_1496 

Resolution range [Å] 29.8 - 1.45 27.1 - 1.35 27.2 - 1.54 22.6 - 1.25 25.2 - 1.41 

Reflections used for Rfree  
Reflections used for Rwork 

3607 
67805 

4379 
82794 

3033 
57026 

1991 
107849 

1675 
76695 

Final R values
[a]

      

Rfree  [%]
[c]

 17.2 16.2 17.0 17.2 16.1 

Rwork [%]
[d]

 13.6 13.7 15.2 13.2 12.5 

No. of atoms (non-hydrogen)      

Protein atoms 2865 2923 2851 2892 2914 

Water molecules 282 389 330 310 351 

Ligand atoms 23 24 23 17 21 

RMSD, angle [°] 1.0 1.1 1.1 1.0 0.9 

RMSD, bond [Å] 0.007 0.007 0.008 0.006 0.006 

Ramachandran plot
[e]

      

Most favoured regions [%] 95.1 95.2 96.1 94.2 96.5 

Additionally allowed regions [%] 4.5 4.4 3.6 5.1 3.2 

Generously allowed regions [%] 0.3 0.3 0.3 0.6 0.3 

Mean B-factors [Å
2
]      

Protein atoms 21.8 17.1 21.1 17.9 16.3 

Water molecules 35.3 31.9 33.0 32.8 31.3 

Ligand atoms 21.5 15.6 19.4 12.5 15.7
[f]
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Crystal data Val262Thr Val262Asp Val262Cys Val262Thr∙4a Val262Asp∙4a 

PDB ID 4Q8M 4IPP 4Q8N 4Q8O 4Q4P 

A) Data collection and processing      

Collection site BESSY 14.2 BESSY 14.2 BESSY 14.2 BESSY 14.2 BESSY 14.2 

No. crystals used 1 1 1 1 1 

λ *Å+ 0.91841 0.91841 0.91841 0.91841 0.91841 

Space group C2 C2 C2 C2 C2 

Unit cell parameters      

a [Å] 90.4 91.0 91.9 91.3 91.4 

b [Å] 64.8 65.1 65.3 64.9 65.0 

c [Å] 70.3 70.3 70.2 71.4 70.4 

β *°+ 95.6 96.2 96.5 96.6 96.1 

B) Diffraction data
[a]

      

Resolution range [Å] 30 - 1.24 30 - 1.33 30 - 1.45 30 - 1.89 25.3 - 1.45 

 (1.26 - 1.24) (1.35 - 1.33) (1.48 - 1.45) (1.92 - 1.89) (1.53 - 1.45) 

Unique reflections 113077 93075 72428 32679 72559 

 (5575) (4631) (3585) (1625) (10548) 

R(I)sym [%]
[b]

 4.8 (48.0) 5.2 (24.4)  5.8 (47.1) 7.9 (43.4) 10.0 (49.5) 

Completeness [%] 99.3 99.4 99.0 97.9 99.9 

 (98.5) (99.9) (99.7) (96.3) (99.9) 

Redundancy 3.3 (3.3) 3.0 (3.0) 3.2 (3.0) 3.2 (3.2) 3.7 (3.7) 

I/σ (I) 23.2 (2.5) 20.4 (4.4) 18.3 (2.7) 15.1 (2.9) 8.3 (2.9) 

Wilson B-factor [Å
2
] 12.1 11.6 14.4 21.1 12.5 

Matthews Coefficient [Å
3
/Da] 2.4 2.4 2.4 2.4 2.4 

C) Refinement      

PHENIX version 1.8.4_1496 1.8.1_1168 1.8.4_1496 1.8.4_1496 1.8.4_1496 

Resolution range [Å] 17.5 - 1.24 19.0 - 1.33 20.8 - 1.45 23.6 - 1.89 23.3 - 1.45 

Reflections used for Rfree  
Reflections used for Rwork 

2000 
111076 

2000 
91075 

1983 
70443 

1652 
31018 

3657 
68901 

Final R values
[a]

      

Rfree  [%]
[c]

 16.0 15.0 15.5 19.1 16.5 

Rwork [%]
[d]

 14.2 13.3 13.4 15.6 13.8 

No. of atoms (non-hydrogen)      

Protein atoms 2903 2926 2830 2838 2875 

Water molecules 301 408 343 252 319 

Ligand atoms --- --- --- 24 24 

RMSD, angle [°] 1.1 1.1 1.0 1.1 1.0 

RMSD, bond [Å] 0.007 0.008 0.007 0.009 0.007 

Ramachandran plot
[e]

      

Most favoured regions [%] 95.3 94.4 94.3 94.6 94.6 

Additionally allowed regions [%] 4.4 5.3 5.4 5.1 5.1 

Generously allowed regions [%] 0.3 0.3 0.3 0.3 0.3 

Mean B-factors [Å
2
]      

Protein atoms 17.1 13.8 19.8 24.1 17.1 

Water molecules 32.7 28.2 35.0 32.9 32.0 

Ligand atoms --- --- --- 27.9 21.0 
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Crystal data Val262Cys∙4a TGT∙7 TGT∙7a TGT∙7b (1) TGT∙7b (2) 

PDB ID 4Q8Q 4Q8T 4Q8U --- --- 

A) Data collection and processing      

Collection site BESSY 14.2 BESSY 14.2 BESSY 14.2 PETRA P14 PETRA P14 

No. crystals used 1 1 1 1 1 

λ *Å+ 0.91841 0.91841 0.91841 0.97627 0.97627 

Space group C2 C2 C2 C2 C2 

Unit cell parameters      

a [Å] 91.4 90.2 89.8 89.8 90.2 

b [Å] 65.0 64.6 64.5 64.7 64.8 

c [Å] 70.3 71.0 70.9 70.6 70.3 

β *°+ 96.0 93.2 93.2 96.1 96.2 

B) Diffraction data
[a]

      

Resolution range [Å] 30 - 1.72 30 - 1.40 30 - 1.31 50 - 1.20 80 - 1.20 

 (1.75 - 1.72) (1.42 - 1.40) (1.33 - 1.31) (1.24 - 1.20) (1.24 - 1.20) 

Unique reflections 37958 80321 96126 122015 123477 

 (1991) (3968) (4340) (11647) (11058) 

R(I)sym [%]
[b]

 9.9 (37.4) 5.8 (48.9) 4.8 (47.4)  3.0 (50.5)  2.9 (49.2) 

Completeness [%] 87.5 99.9  99.1 97.4 98.3 

 (91.0) (98.3) (89.9) (90.5) (94.4) 

Redundancy 2.6 (2.5) 4.2 (3.8) 3.3 (2.9) 3.3 (2.8) 3.3 (2.8) 

I/σ (I) 9.4 (2.4) 22.7 (2.4) 21.8 (2.0) 20.3 (2.4) 19.8 (2.2) 

Wilson B-factor [Å
2
] 15.4 17.1 15.8 12.7 12.8 

Matthews Coefficient [Å
3
/Da] 2.4 2.4 2.4 2.4 2.4 

C) Refinement      

PHENIX version 1.8.4_1496 1.8.4_1496 1.8.4_1496 1.8.4_1496 1.8.4_1496 

Resolution range [Å] 29.5 - 1.72 29.8 - 1.40 18.1 - 1.31 44.6 - 1.20 69.9 - 1.20 

Reflections used for Rfree  
Reflections used for Rwork 

1898 
36060 

1949 
78372 

4815 
91306 

6101 
115914 

6174 
117303 

Final R values
[a]

      

Rfree  [%]
[c]

 20.5 15.4 16.2 16.8 15.9 

Rwork [%]
[d]

 17.3 13.8 14.0 14.4 13.8 

No. of atoms (non-hydrogen)      

Protein atoms 2762 2899 2892 2936 2937 

Water molecules 293 311 330 361 354 

Ligand atoms 17 24 28 24 27 

RMSD, angle [°] 1.0 1.1 1.1 1.1 1.1 

RMSD, bond [Å] 0.008 0.007 0.007 0.007 0.007 

Ramachandran plot
[e]

      

Most favoured regions [%] 94.1 95.3 94.9 95.3 94.9 

Additionally allowed regions [%] 5.6 4.4 4.7 4.4 4.8 

Generously allowed regions [%] 0.3 0.3 0.3 0.3 0.3 

Mean B-factors [Å
2
]      

Protein atoms 19.4 20.7 18.8 16.4 16.4 

Water molecules 29.3 33.8 32.8 29.2 29.6 

Ligand atoms 16.1 22.6 21.2 14.9
[f]

 18.6 
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Crystal data TGT∙7c TGT∙7d TGT∙8 TGT∙9 TGT∙10 

PDB ID 4Q8V 4Q8W 4Q4M --- --- 

A) Data collection and processing      

Collection site BESSY 14.2 PETRA P14 BESSY 14.3 BESSY 14.3 BESSY 14.2 

No. crystals used 1 1 1 1 1 

λ *Å+ 0.91841 0.97627 0.89460 0.89460 0.91841 

Space group C2 C2 C2 C2 C2 

Unit cell parameters      

a [Å] 91.2 89.8 88.5 88.8 89.8 

b [Å] 65.1 64.7 63.9 64.6 64.2 

c [Å] 70.8 70.7 70.4 70.5 70.6 

β *°+ 96.3 96.3 93.0 93.5 93.1 

B) Diffraction data
[a]

      

Resolution range [Å] 50 - 1.40 80 - 1.14 30 - 1.62 30 - 1.84 30 - 1.76 

 (1.48 - 1.40) (1.19 - 1.14) (1.65 - 1.62) (1.87 - 1.84) (1.79 - 1.76) 

Unique reflections 79794 134549 48799 35510 38423 

 (12619) (15089) (2059) (1778) (1860) 

R(I)sym [%]
[b]

 6.2 (48.3) 2.8 (30.9) 5.0 (30.0) 15.9 (50.0)  12.9 (46.7) 

Completeness [%] 97.8 92.0 98.0 99.9 97.7  

 (95.8) (80.0) (82.6) (100.0) (96.3) 

Redundancy 2.9 (2.9) 5.7 (5.0) 3.1 (2.0) 3.7 (3.6) 2.3 (2.3) 

I/σ (I) 11.0 (2.0) 27.8 (4.7) 21.5 (2.8) 8.3 (2.9) 7.4 (2.2) 

Wilson B-factor [Å
2
] 12.1 11.6 15.6 20.9 21.4 

Matthews Coefficient [Å
3
/Da] 2.4 2.4 2.3 2.4 2.4 

C) Refinement      

PHENIX version 1.8.4_1496 1.8.4_1496 1.8.4_1496 1.8.1_1168 1.8.1_1168 

Resolution range [Å] 21.8 - 1.40 70.3 - 1.14 26.8 - 1.62 28.7 - 1.84 29.7 - 1.76 

Reflections used for Rfree  
Reflections used for Rwork 

3990 
75804 

6728 
127821  

2467 
46332 

1725 
32928 

1922 
36501 

Final R values
[a]

      

Rfree  [%]
[c]

 16.3 15.0 18.9 19.3 19.1 

Rwork [%]
[d]

 13.1 13.4 15.7 15.8 16.2 

No. of atoms (non-hydrogen)      

Protein atoms 2913 2927 2847 2828 2839 

Water molecules 384 376 339 323 273 

Ligand atoms 26 27 14 16 14 

RMSD, angle [°] 1.1 1.1 1.1 1.1 1.1 

RMSD, bond [Å] 0.007 0.007 0.008 0.008 0.008 

Ramachandran plot
[e]

      

Most favoured regions [%] 95.0 94.9 94.5 95.5 94.6 

Additionally allowed regions [%] 4.7 4.8 5.2 4.2 5.1 

Generously allowed regions [%] 0.3 0.3 0.3 0.3 0.3 

Mean B-factors [Å
2
]      

Protein atoms 14.6 15.1 19.6 21.5 27.0 

Water molecules 29.4 28.0 31.9 31.4 36.1 

Ligand atoms 13.0 15.5 26.4 36.3 48.3 
a
Values in parentheses are statistics for the highest resolution shell. 

b
𝑅(𝐼)𝑠𝑦𝑚 =     𝐼𝑖  −  𝐼()  /𝑖

  𝐼𝑖()𝑖  𝑥100, in which  𝐼()  is the mean of the 𝐼() observation of reflection . 
c
𝑅𝑤𝑜𝑟𝑘 =   𝐹𝑜 − 𝐹𝑐 /𝑘𝑙

  𝐹𝑜 𝑘𝑙 . 
d
𝑅𝑓𝑟𝑒𝑒 was calculated as shown for 𝑅𝑤𝑜𝑟𝑘 but on refinement-excluded 2 - 5 % of data. 

e
Statistics from 

PROCHECK [Laskowski et al., 1993]. 
f
Averaged value of the two observed conformations. 
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