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Zusammenfassung 

Neben der Beschaffenheit des Kernmaterials von Nanopartikeln (NP) spielt ihre Oberfläche 

eine wichtige Rolle, da durch diese die physikalisch-chemischen Eigenschaften des 

Nanopartikels maßgeblich beeinflusst werden, was insbesondere die Wechselwirkung mit 

umgebenden Medien, biologischen Systemen oder der Umgebung beeinflusst, über die Art 

von möglichen Oberflächenmodifikationen entscheidet und letztendlich damit die 

Anwendungsbereiche der Nanopartikel definiert. 

Das Hauptaugenmerk dieser Dissertation liegt auf der Synthese, der kontrollierten 

Oberflächenmodifikation, der Funktionalisierung, der Aufreinigung und schließlich der 

Charakterisierung von unterschiedlichen Arten von Nanopartikeln (plasmonische, magnetische 

und Halbleiternanopartikel) um am Ende Kolloide in hochgradig stabilen wässrigen 

Suspensionen zu erhalten, die sich gleichermaßen für umweltbezogende als auch für 

biologische Anwendungen eignen. 

Der größte Teil der ihm Rahmen dieser Arbeit hergestellten Partikel wurde aus anorganischen 

Materialien hergestellt (5 nm große Au NP, 12 nm große magnetische NP aus Eisenoxid, 3 nm 

große Eisen-Platinum Partikel, 8 nm große Kobalt-Platinum NP, CdSe/ZnS Hybridpartikel 

unterschiedlicher Größenverteilungen von 3-5 nm und 7 nm große Quantenpunkte aus ZnO) 

und durch hydrophobische organische Moleküle, auch Surfactant- order Ligandenmoleküle 

genannt, stabilisiert. Diese Liganden spielen außerdem eine wichtige Rolle um Form und Größe 

der Partikel während der Synthese zu kontrollieren und verhindern zusätzliche durch 

stabilisierende Eigenschaften, dass die NP agglomerieren. 

Wasserunlösliche (durch hydrophobische Liganden stabilisierte) Nanopartikel, wurden mit 

Hilfe amphiphiler Polymere, nach einem bereits etablierten Verfahren, von der organischen 

Phase in wässrige Lösung überführt. Dieses Verfahren ist notwendig, da insbesondere für die 

meisten bekannten biologischen Anwendungen die Nanomaterialien wasserlöslich sein 

müssen. Die Stabilisierung der NP in wässriger Lösung basiert dabei auf der Wechselwirkung 

hydrophober Seitenketten des amphiphilen Polymers, die sich an den ebenfalls hydrophoben 

NP anlagern, während das hydrophile Rückgrat des Polymers Wasserlöslichkeit garantiert. 

Dank freier Carboxylatgruppen eignet sich das verwendete Polymer zusätzlich um die nun 

hydrophile Oberfläche der NP weiter mit beliebigen biologisch aktiven Molekülen zu 

funktionalisieren.  

Die erhaltenen, Polymer-umhüllten NP wurden aufgereinigt und mit Hilfe unterschiedlicher 

Techniken wie Agarosegelelektrophorese, Größenausschluss-Chromatographie, UV-Vis 

Spektroskopie, Fluoreszenzspektroskopie (im Falle fluoreszierender Materialien), 

Transmissionselektronenmikroskopie (TEM) und dynamischer Lichtstreuung (DLS) 

charakterisiert. Eine schmale Größenverteilung der hydrodynamischen Durchmesser 

zusammen mit negativer Oberflächenladung (Zeta-Potential) lassen dabei auf eine hohe 

Qualität und kolloidale Stabilität der synthetisierten monodispersen Nanopartikel schließen. 
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Des Weiteren wurde die Oberfläche einiger wasserlöslicher, Polymer-umhüllter Nanopartikel 

entweder mit Fluoreszenzfarbstoffen (z.B. Dy-495, DY-647 oder Rhodamin), oder mit 

Polyethylenglycol, Folsäure oder Methotrexat modifiziert mit dem Ziel, multifunktionale 

Nanopartikel zu erzeugen, und dadurch ein großes Anwendungsspektrum in biologischen 

Bereichen zu ermöglichen wie Tracking, Markieren von bestimmten Strukturen, multimodale 

Bildgebung und gezielter Wirkstofftransport.   



Nanoparticles: Synthesis, Surface Modification and Functionalization for Biological and Environmental Applications 

 

Abuelmagd M. Abdelmonem  Page VIII 
 

Abstract 

In addition to the type or nature of the nanoparticles (NPs) core, the surface of the obtained 

nanoparticles plays a crucial role and has great impact on the physicochemical properties of 

the nanoparticles which reflect in turn on the nanomaterials interactions (with the 

surrounding medium, biological systems and environment), functionalities and their possible 

applications. 

The general focus of this doctoral dissertation has been paid to the synthesis, controlled 

surface modification, functionalization, purification and characterization of different types of 

(plasmonic, semiconductor and magnetic) nanoparticles providing water soluble and highly 

colloidally stable nanoparticles proper for environmental and biological applications. 

Most of the as synthesized nanoparticles are inorganic particles (e.g. 5 nm Au NPs, 12 nm 

magnetic iron oxide NPs, 3 nm iron platinum NPs, 8 nm cobalt platinum NPs, CdSe/ZnS 

core/shell QDs of different sizes from 3-5 nm to 7 nm ZnO QDs) stabilized by hydrophobic 

organic molecules known as the surfactant or ligand which play an important role to control 

the shape and growth of the during the nanoparticles synthesis in addition to its role as 

stabilizing agents preventing the nanoparticles to be agglomerated. 

In case of water insoluble (hydrophobically capped) nanoparticles (not suitable for the 

biological applications), they were transformed from organic phase to aqueous environment  

using a very general protocol known as amphiphilic polymer coating which is based on the 

hydrophobic interaction between the hydrophobic ligands on the surface of the nanoparticles 

and the hydrophobic side chains of the used polymer. The polymer coating of originally 

organic-solvent soluble nanoparticles converts them to water soluble ones (thanks to the free 

carboxylate groups on surface) which have the ability to be further functionalized with extra 

functional and/or biologically active molecules of interest. 

The obtained polymer coated nanoparticles were purified and characterized using different 

techniques, such as agarose gel electrophoresis, size exclusion chromatography, UV-Vis 

spectroscopy, fluorescence spectroscopy (in case of fluorescent materials), transmission 

electron microscopy (TEM) and dynamic light scattering (DLS). Monodisperse different types 

of polymer coated nanoparticles were obtained with a high quality and colloidal stability as 

inferred from their physicochemical properties such as narrow hydrodynamic diameter 

distribution and the negative surface charges expressed as zeta potential.  

Furthermore, the surface of some water soluble polymer coated nanoparticles was modified 

with different functionalities such as some fluorophores (e.g. Dy-495, DY-647 and rhodamine), 

polyethylene glycol, folic acid and methotrexate to obtain multifunctional nanoparticles that 

could be useful for a wide range of biological applications such as tracking, labeling and 

multimodal imaging and targeting drug delivery. 
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1. Introduction 

Engineered nanomaterials have received a fast growing increased interest in the recent years 

due to their unique physical and chemical properties which are expected to open new novel 

avenues of different technological, environmental and biological applications of these 

nanomaterials in catalysts, semiconductors, sensors, drug carriers, and personal care 

products. Nanoscience and nanotechnology are believed to be a revolution expected to cause 

enormous impacts on the human life within the near future. Commercial products that 

contain synthetic nanomaterials are expected to grow significantly in the coming years [1, 2]. 

Before to go ahead forward, it is highly important to make some definitions for nanoscience, 

nanotechnology and nanoparticles, which it is not so easy because there is no definitive 

definition for each but we will use the most commons. Nanoscience could be defined as the 

study of the phenomena and the manipulation of materials at atomic, molecular scales, where 

the properties strongly differ in comparison to their large scale counterparts and 

nanotechnology is design, functionalization, characterization and make use of the materials at 

the nanometer scale. Despite that the term “nanoparticles” refer to the materials in the range 

less than 1000 nm, but in the field of nanotechnology, the nanoparticles are typically in the 

size range between 1-100 nm 
[1]

.  

The nanomaterials subject to the fundamental laws of the universe despite that they have 

properties varying to those of their bulk counterparts. The most important reasons behind 

that are that effects that are negligible and can be ignored at the big scales cannot be ignored 

at the nano-scale range such as quantum effects and the high surface area to volume ratio.
 [2]

 

Nanoparticles can be prepared by an enormous variety of methods which usually are 

categorized in two main synthetic routes which are the top down and the bottom up 

approaches. In the top down routes, the nanoparticles are obtained from their bulk materials 

using different methods and techniques like lithography and laser ablation. In contrary, in the 

bottom up synthesis, the nanoparticles are obtained from their basic building blocks (atoms or 

molecules) which react to generate the nanoparticle of the desired shape and size
 [3, 4]

. 

Currently, nanoparticles are made out of an extremely wide variety of materials including 

inorganic, organic and biomolecules, and hence the nanoparticles might be categorized into 

two main groups “organic” and “inorganic” nanoparticles.   

1.1. Types of Inorganic Nanoparticles and Their Physico-Chemical 

Properties  

1.1.1. Plasmonic Nanoparticles  
Plasmonic nanoparticles like silver and gold nanoparticles are a very important class of the 

inorganic nanoparticles due to their promising different applications from sensing and 

catalysis to biological applications 
[5-7]

, which are attributed to their unique electronic and 

optical properties, mainly the localized surface plasmon resonance (LSPR). In physics, the 

oscillation of a quasi free electrons gas is known as plasmon. The surface plasmon resonance 
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is the coherent collective oscillation of the free electrons in the conduction band due to a 

coherent excitation of the free electrons induced by the interaction with an electromagnetic 

field. When the frequency of the light (electromagnetic field) interacting with the plasmonic 

nanoparticle matches the frequency of the oscillating electrons, the frequency of incident 

photons are in resonance with the collective oscillation of the electrons in the conduction 

band creating a collective oscillation of electrons in resonance with the incident light 

frequency, the so called localized surface plasmon resonance (LSPR), on the surface of the 

nanoparticles 
[8-14]. 

LSPR causes a strong extinction band (absorption and scattering) and strong electromagnetic 

field near the nanoparticle surface. In addition to the material of the nanoparticles, the LSPR 

(frequency and intensity) is also is highly sensitive to the size and the shape of the 

nanoparticles as well as the local dielectric constant of the nanoparticles. All these unique 

properties of the plasmonic nanoparticles are the basis for their pioneering applications in 

different areas such as catalysis, sensing, Raman spectroscopy and the biological applications 

from diagnosis to drug delivery 
[11, 15-17]. 

1.1.2. Quantum Dots 

Highly fluorescent semiconductor nanocrystals or quantum dots (QDs), also known as artificial 

atoms, are a class of the inorganic nanomaterials of great importance exhibiting the so-called 

quantum size effect. Their composition, small size and size tunable unique optical and 

electronical properties give these dots extraordinary importance. The QDs are able to absorb 

light at a wavelength shorter than the one corresponding to the band gap energy, and reemit 

light (fluorescence) but in a color roughly corresponding to the band gap energy. Further 

characteristic features are narrow and symmetric emission spectra, broad absorption spectra 

and that different quantum dots with multiple size dependent fluorescence colors can be 

excited simultaneously using a single excitation wavelength. Furthermore, the largely reduced 

photobleaching compared to common organic fluorophores should be mentioned 
[18-20]

. The 

most striking optical feature of the QDs is that the color of quantum dots (absorption and 

emission wavelength) is size dependent and hence tunable 
[21-23]

.  

The unique properties of the QDs are attributed to the changes in the density of states and 

the quantum confinement associated with the size reducing to nanoscale of radius smaller 

than the Bohr radius. Moving down from bulk material to smaller and smaller sizes reaching 

certain dimensions, a new regime starts to take place making the particles exhibit changes in 

their optoelectronic properties. When the size is small enough, the charge carriers (electrons 

and holes) inside the particle start to recognize the volume limitations (the walls) of the 

particles and the spatial distribution of charge carriers inside the particle get confined to a 

restricted volume in a phenomenon known as quantum confinement or size quantization. The 

allowed electronic energy levels are no longer continuous or band-like as in their bulk 

counterparts and instead they become discrete quantized energy levels 
[24-27]. As a 

consequence of the quantum confinement, due to the increasing in the bandgap, the onset of 
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the optical absorption and 

energies with decreasing the size of the nanoparticles 

As it is the case with the bulk semiconductors

larger or equal to the bandgap energy, the electrons are photoexcited from the valence band 

to the conduction band creating a

exciton) exhibiting also Coulombic interaction

the positively charged hole. The excited electrons 

recombining with the hole in process

either a radiative or a non

certain energy corresponding to the bandgap of the material 

(wavelength) of the emitte

This mechanism explains why QDs 

bandgap converting them to a single color.

Figure 1.1: Mechanism of photoexcitation and

(fluorescence) 

The band gap energy in semiconductor quantum dots can be calculated using 

equation as follows: [31, 32] 

������� � ���	
��

Where Eg (QDs) and Eg (bulk) refer to the bandgap energy of QDs and bulk semiconductor, r is the 

radius of the QDs, me
 and m

constant, ε is the dielectric constant of the solid 

equation illustrates that the binding energy in quantum dots is the sum of the bandgap of the 

bulk material (first term E

particle-in-a-box confinement of the exci

the electron and the hole included in the third term.
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with decreasing the size of the nanoparticles 
[28-30]. 

the case with the bulk semiconductors, when the energy of the incident photons 

the bandgap energy, the electrons are photoexcited from the valence band 

to the conduction band creating a state consisting of an electron and a hole 

oulombic interactions between the negatively charged electron and 

the positively charged hole. The excited electrons can relax back to the valence band 

recombining with the hole in processes known as electron hole recombination

non-radiative process. In the radiative recombination, a photon of a 

corresponding to the bandgap of the material is emitted
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bandgap converting them to a single color. 
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refer to the bandgap energy of QDs and bulk semiconductor, r is the 

and mh
  are the effective electron and hole masses

dielectric constant of the solid and ε0 is  permittivity of a vacuum;

equation illustrates that the binding energy in quantum dots is the sum of the bandgap of the 

bulk material (first term Eg (bulk)), the quantum confinement (second term) based on the 

box confinement of the exciton, and the effect of Coulomb attraction between 

the electron and the hole included in the third term. 
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Recently a fast growing interest  paid to make use of the unique properties of the nanocrystals 

QDs in different applications like light emitting diodes and solar energy  [33-35]
, optoelectronics 

[36] and the biological applications for sensing, labeling,  imaging and diagnosis 
[19, 37-45]

.  

ZnO QDs 

Zinc oxide is an important inorganic II-VI semiconductor material with unique optical and 

electronical properties due to its direct wide bandgap and large exciton binding energy at 

room temperature. ZnO nanoparticles have a wide bandgap of 3.37 eV and a large exciton 

binding energy about 60 meV at room temperature. The exciton binding energy of the ZnO 

nanoparticles in comparison to other QDs e.g. CdSe nanoparticles makes their luminescence 

efficiency more thermally stable
 [46, 47]

. In the recent years, considerable interest has been paid 

to ZnO nanoparticles to make use of their promising multifunctional properties such as their 

direct and wide bandgap 
[48]

, the high exciton binding energy, the high electron mobility, high 

thermal conductivity, strong luminescence, large non-linear optical coefficients, large 

piezoelectric constants and high transparency in the visible regime
 [49-57]

. As a semiconductor, 

the optical and electronic properties of ZnO nanocrystals arise from the interaction between 

electrons and holes and the local environments and exhibit quantum confinement effect 
[58-61]

. 

When the excitation energy of the photons exceeds the bandgap energy, the electrons in ZnO 

QDs get excited from the ground state (valence band) to the conduction band. The excited 

electrons may recombine with holes via radiative or non-radiative electron-hole 

recombination. The bandgap of the ZnO lies in the near UV region, but the photoluminescence 

(PL) of ZnO nanoparticles mostly exhibit two emission bands. The first one, the near UV 

emission arise from (i) the typical exciton emission as a result of the recombination of the 

photo-excited electrons in the conduction band with holes in the valence band 
[62] 

and/or (ii) 

near-band-edge emission resulting from the recombination of the photo-excited electrons in 

the conduction band with the holes trapped near the valence band [63]. The second emission 

maximum lies in the visible part of the spectrum. The mechanism of the visible emission most 

probably is due to trap emission. However, it is still under debate and not completely 

understood. There are many mechanisms which have been suggested to explain the visible 

photoluminescence of the ZnO nanoparticles, such as oxygen vacancies (VO), zinc vacancies 

(VZn), zinc interstitials(Zni) 
[64]

, oxygen interstitials (Oi), and antisite oxygen (OZn)
[50, 65-68]

. Among 

the different proposed mechanisms, the most widely used are two mechanisms attributing 

the visible fluorescence to the presence of the oxygen vacancies [69-79]
.  

Figure 1.2 shows a schematic illustration for the UV emission and the most widely suggested 

two mechanisms explaining the visible emission based on oxygen vacancies. 
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Figure 1.2: Schematic illustration for 

the recombination of the photoexcited electrons in 

valence band and the visible fluorescence resulting from 

electrons with the deeply trapped holes 

with the shallowly trapped holes

As described above, ZnO exhibits

biocompatibility, environmentally 

as safe by the FDA)
[81]

. ZnO nanoparticles 

variety of applications such as solar cells 

and light emitting devices 

applications, ZnO nanoparticles are used as 

radiation 
[113]

.Furthermore, the ZnO nanoparticles are highly promising for 

applications 
[114]

 like diagnosis and therapy (nanotheragnosti

applications in the selective destruction of tumors 
[114]

, labeling and bioimaging 

1.1.3. Magnetic Nanomaterials

Magnetic nanoparticles are a highly important class of nanomaterials expected to extend to 

different applications due to its unique and tunable magnetic properties which are 

significantly different from their bulk counterparts

In order to make the reader

important to give a brief general 

the electron spin (spin magnetic moment) and the orbital motion (orbital magnetic moment) 

of the electrons around the nucleus. Any matter consists of atoms
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chematic illustration for the UV emission (A), excitonic emission resulting 

the recombination of the photoexcited electrons in the conduction band with holes in the 

valence band and the visible fluorescence resulting from recombining the shallowly trapped 

electrons with the deeply trapped holes (B) and recombining the deeply trapped electrons 

with the shallowly trapped holes (C).  

described above, ZnO exhibits promising physical and chemical properties in addition to its 

environmentally friendliness and low toxicity 
[80]

 (ZnO is generally recognized 

ZnO nanoparticles represent a promising multifunctional material in a 

variety of applications such as solar cells [55, 82-92], catalysis [93-98], electronics, ultraviolet lasers 

 [47, 99-105]
, piezoelectric devices  [53, 54]

 and sensors 

applications, ZnO nanoparticles are used as sunscreens for the protection from the ultraviolet 

.Furthermore, the ZnO nanoparticles are highly promising for 

like diagnosis and therapy (nanotheragnostic). Here, for example, 

selective destruction of tumors 
[115-116]

, targeted delivery and drug release 

, labeling and bioimaging 
[71, 72, 118]

 are nowadays intensely investigated. 

Magnetic Nanomaterials 

Magnetic nanoparticles are a highly important class of nanomaterials expected to extend to 

different applications due to its unique and tunable magnetic properties which are 

different from their bulk counterparts. 

make the reader understand the properties of magnetic nanoparticles

general overview about magnetism. The magnetism originates from 

spin (spin magnetic moment) and the orbital motion (orbital magnetic moment) 

of the electrons around the nucleus. Any matter consists of atoms, and in 
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excitonic emission resulting from  

conduction band with holes in the 

recombining the shallowly trapped 

recombining the deeply trapped electrons 

promising physical and chemical properties in addition to its 

generally recognized 

a promising multifunctional material in a 

electronics, ultraviolet lasers 

sensors 
[106-112]. In cosmetic 

for the protection from the ultraviolet 

.Furthermore, the ZnO nanoparticles are highly promising for biological 

. Here, for example, 

targeted delivery and drug release 

  

Magnetic nanoparticles are a highly important class of nanomaterials expected to extend to 

different applications due to its unique and tunable magnetic properties which are 

magnetic nanoparticles, it is highly 

tism originates from 

spin (spin magnetic moment) and the orbital motion (orbital magnetic moment) 

and in the atom the spin 
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magnetic moments of some electron pairs cancel each other, and the same could happen for 

the orbital magnetic moments. The overall magnetic moment for an atom is the sum of all 

orbital and spin magnetic moments in the atom. All materials are magnetic and display some 

magnetic response which varies about many orders of magnitude between different 

materials. Some materials display much more magnetism than others where some materials 

have no collective interaction between the atomic magnetic moments and other materials 

have a very strong interaction between atomic magnetic moments. Depending on their 

magnetic responses, the materials can be classified as diamagnetic, paramagnetic, 

ferromagnetic, ferrimagnetic or antiferromagnetic. 

Diamagnetism is an inherent and very weak magnetism in all materials arising from the 

orbiting electrons and it is observed only upon exposure to an external applied magnetic field. 

The diamagnetic material is composed of atoms in which all orbital shells are filled and there 

are no unpaired electrons, i.e. no net magnetic moment but when exposed to a magnetic 

field, a negative magnetization is obtained and thus the susceptibility is negative according to 

the Equation 2, 

' � (	)													�� !"#$%&	2� 
The susceptibility in the diamagnetic materials is temperature independent and the 

magnetization is zero when the field is zero. 

Paramagnetism is a magnetism observed in materials in which the atoms contain unpaired 

electrons and partially filled orbital shells and thus have permanent net dipole magnetic 

moments. In paramagnetic materials the individual magnetic moments do not magnetically 

interact with each other. Therefore, in absence of an external magnetic field, the spins are 

randomly aligned giving a zero net magnetic moment (the magnetization H=0). If an external 

magnetic field is applied, the magnetic moments align along the field direction and partial 

magnetic alignment occurs producing positive magnetization and positive susceptibility which 

can be described by the Curie law. 

M � ,	H	 � C	
T 			H							�� !"#$%&	3� 

Where χ is the susceptibility, C is Curie’s constant, H is the magnetic field and T is the absolute 

temperature. 

Ferromagnetism is a very strong form of magnetism observed in materials with strongly 

interacting magnetic moments due to a process called exchange coupling. In ferromagnetic 

materials, the magnetic moments interact with each other and align in the same direction 

resulting in a strong permanent internal magnetic field inside the material which leads to a 

large net magnetization.  

Most of the ferromagnetic materials are comprised of magnetic regions called magnetic 

domains. Each magnetic domain is a region of the material where the magnetic dipole 

moments are aligned in one direction. However, not all the various domains should be aligned 
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in the same direction. The ferromagnetism is strongly temperature-dependent where the 

magnetization is inversely related to temperature by: 

1 � 	 C
T � 	θ							�� !"#$%&	4) 

Where C is Curie’s constant and θ is the Curie temperature (also known as transition 

temperature) for the material. The Curie temperature is the temperature above which there is 

no exchange coupling. Above the Curie temperature, a ferromagnetic material behaves as a 

paramagnetic material 
[119-122]

. 

Magnetometry (Figure 1.3) is an important measurement that sheds the light on the magnetic 

properties of a material of interest, by measuring the magnetic response of the material with 

respect to an external applied magnetic field (H) 
[123]

. The hysteresis loop refers to the case 

when the magnetic response of the measured material during demagnetization (removal of 

the applied field) does not match the magnetization curve. It gives many significant 

parameters such as (i) the saturation magnetization (MS) which is the maximum magnetization 

where any increase in the applied magnetic field does not increase in the sample 

magnetization, the remanent magnetization (MR) which is the material magnetization when 

the applied field is zero (H= 0) and the coercivity (HC), which is a measurement of the strength 

of the magnetic field required to remove the remanent magnetization and get zero 

magnetization).  

 

Figure 1.3: Hysteresis loop showing the magnetization (M), saturation magnetization (MS), 

remanent magnetization (MR) and coercivity (HC) for ferromagnetic (black sold line) and 

superparamagnetic (red dot line) materials. 

The aforementioned magnetic behaviors strongly depend on the size, meaning that the 

magnetic behavior for a material at a particular temperature can be altered by tuning the size. 



Nanoparticles: Synthesis, Surface Modification and Functionalization for Biological and Environmental Applications 

 

Abuelmagd M. Abdelmonem  Page 8 
 

The size tunable magnetic properties of the nanoparticles could be attributed to the thermal 

energy and the single magnetic domain due to the finite size effect. Below a certain size 

known as critical size, a magnetic nanoparticle becomes a single domain particle exhibiting 

superparamagnetic behavior at temperature higher than so-called blocking temperature [124-

126]
.  

Magnetic fluids or ferrofluids are colloidally stable homogenous suspensions made of 

magnetic nanoparticles suspended in a solvent (organic or aqueous solvent). The term 

“ferrofluid” refers to the ferromagnetic behavior of these fluids containing magnetic 

nanoparticles in response to an external magnetic field because these nanoparticles are 

attracted to a magnetic field with no residual magnetism after the field is removed. Each of 

the magnetic nanoparticles is capped with a surfactant which provides the colloidal stability 

preventing the aggregation of the nanoparticles [127]
. Owing to their fascinating properties like 

small size and superparamagnetic behavior, magnetic nanoparticles and ferrofluids have been 

extensively studied in several technological and biological applications 
[22, 127-134]

.  

1.2. Application of Nanoparticles 
As briefly mentioned before, in virtue of their fascinating unique properties, the extremely 

huge diversity of the materials, characteristics, functionalities and surface modifications of the 

nanomaterials, the nanomaterials are intensively studied to make use of their properties in 

different applications. Here a brief introduction about the different applications of the 

nanomaterials is presented in which, and for the simplicity, the different applications are 

categorized in three classes, (1) industrial and technical applications, (2) environmental and 

(3) biological applications. 

1.2.1. Industrial and Technical Applications  

Semiconductor nanocrystals have been intensively studied and used for a variety of technical 

applications like laser and light-emitting diodes, [46, 47, 99-105, 135-138] and other electrical devices 

solar cells 
[33-35, 55, 82-90,92, 139-141], chemical catalysts 

[93, 94, 96-98]
,  transistors and optoelectronics  

[36, 142-147], piezoelectric devices 
[53, 54]. Quantum dots have been widely studied for sensing 

applications 
[148-150]

, for example ZnO nanoparticles has been used as ultraviolet detectors 
[151-

155]
, temperature, chemical; pH and gas sensors 

[106,108, 109, 111-112, 156-160]
. Magnetic nanoparticles 

have been studied for a variety of technical and industrial applications for example magnetic 

nanoparticles are expected to find a way in the high density data storage and hard disk 

devices [161-168] especially magnetic FePt nanoparticles. Magnetic nanoparticles offer promising 

opportunities in spintronics and electronic devices 
[169, 170].  

In chemistry, magnetic nanoparticles are heavily studied and expected to have promising 

potential uses as a catalysts and/or catalyst supporting material 
[171-173] for the chemical 

synthesis with a fascinating capabilities due to the high surface area and magnetic properties 

making them recyclable and reusable. As nanocatalysts, magnetic nanoparticles have been 

studied to catalyze many chemical reactions such as esterification, oxidation and reduction 
[174-179]

. More details and discussion can be found in recent review articles 
[180, 181]

. In addition, 



Nanoparticles: Synthesis, Surface Modification and Functionalization for Biological and Environmental Applications 

 

Abuelmagd M. Abdelmonem  Page 9 
 

the magnetic nanoparticles have been studied for magnetically guided separation and 

purification 
[182-189] for the industrial and chemical applications. 

1.2.2. Environmental Applications  

The environmental applications of the nanomaterials are a highly important area including 

sensors for the pollution and contamination detection. In this regard there are a huge number 

of studies of the nanoparticles based sensing and the detection of pollutants like small 

molecules 
[107] and microbial detection 

[190-194]
. 

The environmental applications of the nanomaterials are not limited to the sensing and 

detection but extend beyond to environmental remediation using a wide range of techniques 

like photodegradation or photocatalysis using photoactive nanomaterials [98, 195-197], 

destruction, desorption  or magnetically guided separation and purification using magnetic 

nanomaterials 
[198, 199]

. 

Different types of magnetic nanoparticles like Fe3O4, Fe2O3 and MFe3O4 with different surface 

modifications have been widely studied for the environmental remediation and removal of 

the contaminants, especially heavy metals 
[197, 200-202]

, water treatment and purification of 

different pollutants, ranging from heavy metals to carcinogenic aromatic amines 
[203-209]. 

ZnO nanoparticles are photoactive materials widely reported for the photocatalytic 

degradation and photo remediation of the environmental pollutants. For example ZnO 

nanoparticles were used for photocatalytic degradation of cyanide [210]
, ciprofloxacin as an 

example for antibiotic drug water contamination [95] and organic dyes [93, 211]. More details 

about some environmental applications of the nanoparticles could be found in the review 

article of Tang and Lo 
[129]

. 

1.2.3.  Biological Applications  

1.2.3.1. Biomedical Applications 
In the field of medicine, the applications of nanoparticles include but it is not limited to, 

targeted drug delivery, magnetically guided drug delivery and drug controlled release, 

hyperthermia, and non-viral gene delivery for genotherapy. 

Despite the gold nanoparticles (Au NPs) have been applied for long time to stain the tissues as 

electron dense agents in electron microscopy, currently the plasmonic nanoparticles in 

general and Au NPs in particular, are investigated for a wide range of biomedical applications. 

Au NPs are widely used in optical microscopy as for diagnosis and bioimaging applications, for 

example as contrast agents for computed tomography [212-217]
. Au NPs are also successfully 

used for the sensitive and early detection of pathogens and infectious diseases 
[218]

, detection 

and quantitative determination of tumor markers for early diagnosis of cancer 
[219-221] and 

selective drug delivery systems for therapeutic purposes 
[222-226]

.   

The noble metal nanoparticles, due to their localized surface plasmon resonance have strong 

cross section absorption, and have the ability to convert the absorbed light to thermal energy 

producing local heat which can be used for the photodestruction of the tumors. This process is 
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typically referred as photothermal therapy 
[6, 227, 228]

. The general mechanism for the 

phototherapeutic agents could be explained as nonradiative relaxation of the excited 

electrons from the excited state to the ground state producing thermal energy. The resulting 

photothermal energy can be employed for the photothermal therapy. 

Silver nanoparticles (Ag NPs) as well are investigated in the medical applications and especial 

interest has been paid to make use of their antimicrobial properties in the medical 

applications have 
[229-234].  

QDs have promising applications in the medical field for labeling, tracking, sensing diagnosis 

and bioimaging, mainly due to their tunable photophysical properties 
[30, 235-238]. Due to their 

unique luminescence characteristics, QDs are very promising candidates as bioimaging agent, 

which have been widely reported using different QDs types like CdSe, CdTe, CdSe/ZnS core 

shell QDs 
[239-247]. Recently, more interest has been paid to the cadmium free and non toxic 

quantum dots especially for in vivo applications 
[248, 249]. Zinc oxide nanocrystals, among the 

most promising cadmium free quantum dots, have been studied for the cell labeling and 

bioimaging applications 
[71-73, 75, 117, 250-254].  

In therapeutics, quantum dots can be exploited in different ways, for example as carrier 

platforms for targeted and controlled release drug delivery [255-257]
. ZnO nanoparticles have 

been widely studied for targeted drug delivery and controlled release [80, 113, 258]
, for example, 

the acid induced dissolution of the ZnO nanoparticles was exploited to achieve targeted 

delivery and drug release of anticancer drug [259, 260]. In addition to the applications of the ZnO 

quantum dots in the drug delivery and triggered release, ZnO nanoparticles themselves have 

been studied as anticancer because it was found that ZnO nanoparticles are able to achieve 

selective destruction of tumors 
[12-116, 261]. ZnO nanoparticles have many other medical 

applications 
[262-264]

, including antibiotic and antimicrobial activity 
[265-270]

, biomedical sensors 

and clinical diagnosis 
[271-273]

 and photodynamic therapy 
[273-277]. Recently ZnO nanoparticles 

have been reported as potential phototherapy agents for jaundice disease and it was found 

that the ZnO nanoparticles were able to catalyze the photodegradation of the bilirubin 
[278]. 

Similarly, magnetic nanoparticles have been widely used in a variety of biomedical 

applications especially the magnetic resonance imaging as MRI contrast agents. Magnetic 

resonance imaging is a powerful non-invasive imaging technique in the medicine. In MRI, the 

protons are excited with radio frequency pulses and the induced decay as they relax is 

measured providing an image of the scanned tissue. The obtained MRI image strongly 

depends on proton density where the areas of high proton densities exhibit strong signal and 

appear bright while areas with low proton densities (like tissue with low water content) have a 

weak signal and appear dark. Different contrast agents have been developed in order to 

enhance MRI signals and allow soft-tissue discrimination. Superparamagnetic nanoparticles 

are a unique class of MRI contrast agent currently used to improve the MRI imaging. These 

contrast agents can accelerate the decay (relaxation) time of protons from excited to ground 

state and as a result, the regions where the contrast agent is located appear darker than those 

with no contrast agents. Magnetic nanoparticles have been studied as MRI contrast agents in 
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a wide range of biomedical imaging in vivo and in vitro, like in targeted  tumor and other 

pathologies imaging 
[279-281]

, in vivo tracking and monitoring of labeled dendritic cells [254]
, 

migration of stem cells used for therapeutic applications , multimodal magnetic resonance 

imaging probes [282] and real time  in vivo molecular imaging like enzyme activity, gene 

expression, apoptosis detection and biomolecules metabolism  
[283, 284]

.  

In addition to their use in bioimaging as MRI contrast agents, the magnetic nanoparticles have 

been utilized in a wide variety of biomedical applications both in vitro and in vivo, for example 

the targeted drug delivery for a wide range of drugs of different properties e.g. polar, 

nonpolar and cytotoxic drugs 
[285, 286]

, magnetic field-assisted transport (magnetically guided) 

drug delivery [287, 288]
 and magnetofection for gene therapy 

[289-291]
.   

Moreover, a great interest has been paid to the applications of the magnetic nanoparticles as 

heat mediators in the magnetic hyperthermia 
[292, 293]

. Magnetic fluid hyperthermia (MFH) is a 

promising therapeutic technique used as a potential treatment for cancer using induction of 

heating of the targeted region, above the body temperature (between 42 and 43 ˚C). The MFH 

as a cancer treatment is based on induced direct killing of cancer cells at temperatures of ~ 

42˚C as a result of the heating of the magnetic nanoparticles when exposed to external 

alternating AC magnetic fields by the energy loss mechanisms that occur during the 

reorientation of the magnetization of magnetic nanomaterials 
[294-298]

.  

Other important applications of the magnetic nanoparticles have been focused on the 

ultrasensitive detection and separation like viruses and other pathogens detection 
[299-304]

. 

1.2.3.2.  Food and Nutrition Applications 
The applications of nanotechnology and nanomaterials in the food industry and nutrition are 

relatively new comparing with the other applications in biomedical and information 

technology industries. Different types of nanoparticles have been investigated to make use of 

their unique properties in the food science sector. 

Nanoparticles have been widely reported as analytic tools and biosensors in the field of food 

analysis, chemistry and food safety 
[305, 306]

. Quantum dots have been widely investigated in 

this regard 
[306-308] 

for example, ZnO nanoparticles have been utilized for voltammetric 

determination of ascorbic acid 
[309]

 and folic acid 
[310]

 in the food. CdSe/ZnS QDs were utilized 

for the fast determination of diquat herbicide in food 
[311]

.  

Au NPs also have been investigated for the food analysis and safety. For example, Au NPs 

labeled with streptavidin–horseradish peroxidase were used efficiently for the determination 

of zearalenone (a mycotoxin produced in foods and feeds by some fungi belonging to the 

genus Fusarium) using chemiluminescence immunoassay 
[312]

. Recently Au NPs have been 

widely employed for determination of food ingredients like folic acid, soy protein, antioxidants 

[
313-316] 

and food safety for detection and determination of toxins and pathogens 
[317-321]

.  

Magnetic nanoparticles have a variety of applications in the food sector like magnetic field 

assisted separation, purification detection and determination in food analysis and safety 
[322]

. 
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Magnetic nanoparticles are widely reported for the separation, preconcentration and 

detection of food pollutants like dyes and heavy metals 
[323-325]

, food toxins like ochratoxin and 

aflatoxins 
[326-329]

 and pathogens like Escherichia coli O157:H7, Cronobacter sakazakii, Bacillus 

anthracis and Salmonella [330-334]. 

Also magnetic nanoparticles have been reported for the magnetically guided separation and 

purification of food from dyes [
335]

, and magnetic separation of free fatty acids with iron oxide 

nanoparticles and for the deacidification and purification of vegetable oils [
185]

. 

Other important application of the nanomaterials in the food sector is the use of the 

nanoparticles in the food packaging and coatings. Organic or polymeric nanoparticles like 

chitosan nanoparticles are the most reported nanomaterials in food packaging 
[336]

. Among 

the inorganic nanoparticles used in food packaging and coatings, ZnO nanoparticles have been 

widely studied for the use in the packaging 
[337-341]

.   

The use, design and development of the nanomaterials for the delivery  and controlled release 

of nutrients, nutraceuticals and bioactive food ingredients is a fast growing area of interest to 

food science and nutrition for the protection and/or enhancing of physicochemical properties,  

biological activities and enhancing solubility and bioavailability  aiming to the designing and 

development of biologically active functional foods able to perform some physiological health 

functions beyond the basic nutrition. Lipid based nanomaterials are the most rapidly and 

widely used for the delivery and controlled release of the nutraceuticals and bioactive food 

ingredients like vitamins, coenzymes and polyphenols and antioxidants, such as tocopherols, 

carotenoids and ubiquinones 
[342-346]

. One of the few available studies based on the inorganic 

nanomaterials is the effect of ZnO-ZnS nanocrystals on enhancing the binding affinities of 

different types of flavanoids with bovine serum albumin and their potential use for food and 

drug delivery applications 
[347]

. 

1.2.3.3. Agricultural Applications 

In the field of agricultural applications of the nanotechnology, nanoparticles could be uses as 

carriers for delivery and controlled release 
[348]

 of the agrochemicals like fertilizers, pesticides, 

herbicides and plant growth regulators providing protection, sustainable, prolonged and 

controlled release for the agrochemicals.  

Nanoparticles themselves might work as micronutrients and have stimulating effects on seed 

germination, growth and production. For example, the treatment of peanut with 25nm ZnO 

nanoparticles (1000 ppm) promoted seed germination and seedling 
[349]. In another study it 

was found that the treatment of cucumber with ZnO nanoparticles increased starch and 

protein content to some extent but significantly decreased the concentration of Cu and Mo 

micronutrients 
[350]

. In another example it was found that anatase TiO2 nanoparticles (at 

concentrations form 10-40 mg/ml) cause enhancement in the germination percent and other 

germination parameters of parsley seeds 
[351]

. In study conducted to investigate the effect on 

seed germination and uptake of FITC labeled silica NPs and CdSe QDs on rice seedlings and 
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their potential applications as biolabels for plants, good germination was observed in the 

presence of FITC-labeled silica NPs but the germination was arrested with CdSe QDs 
[352]

.   

Nanomaterials based technologies could be developed and used as sensing and detection 

systems for real time monitoring and control the field, soil, crop and environment to optimize 

the resources and maximize the crop production conditions 
[353]

. Also nanoparticles might be 

enables the early detection and diagnosis of pests and plant disease management 
[354]

.  

In the animal production and veterinary, the nanoparticles could be used in different ways like 

pathogen detection and removal, animal feeding, vaccination and vaccine adjuvant and 

veterinary medicine as diagnosis, drug delivery, gene therapy and tissue repairing 
[353, 355]

.  

1.3. Nanomaterials: Health and Environmental Concerns 

The increased interest about the nanomaterials applications in a huge range of disciplines has 

generated increased and fast growing concerns about the potential toxicological, health and 

ecological effects of the nanomaterials. In fact the health and environmental issues related to 

the design and applications of the nanomaterials are highly complicated. The toxicological, 

health and environmental effects of the nanomaterials unlike the traditional or the bulk 

materials do not depend only on the nature or type of material, but also on the size, shape, 

quality and colloidal stability, surface modification and surface charges, the medium (solvent, 

buffer or biological media) and a wide range of other physico-chemical properties as well as 

the continuous changes and transformation of the nanomaterials due to the interaction with 

the surrounding 
[356]

.   

Surface modification of the nanoparticles strongly affects the chemical and colloidal stability, 

bio-interaction and then the fate of nanoparticles. As an example for this, the polymer coating 

of the intrinsically toxic nanoparticles like cadmium based nanocrystals reduces the 

aggregation, increasing the colloidal stability and hence possibly, it reduces their toxicity 
[357]

. 

Polyethylene glycol on the surface also known as “PEGylation”, effectively increases the 

stability and furthermore reduces the opsonization and clearance of the nanoparticles by the 

reticuloendothelial system increasing the circulation time 
[358]

.  

The size of the nanoparticles strongly affects the absorption, distribution, interaction, 

secretion and fate of the nanoparticles. As an example to study the effect of sizes on the fate 

of the nanoparticles, different sizes (from 1.4-200 nm) radiolabeled Au NPs were 

administrated through intra-esophageal instillation. The distribution of the nanoparticles of 

the different size was quantitatively measured in the organs and tissues after one day. It was 

found that the highest absorption through the intestine was for the smallest NPs, whereas the 

18 nm AuNPs were the highest accumulated in the brain and heart; the 1.4 nm AuNPs were 

the highest in the blood, liver, spleen, kidneys, and urine. Despite no general rule about 

accumulation was abstracted, it was clearly stated that for the use of the NPs for specific 

orally drug delivery, the nanoparticles have to be individually designed according to the 

targeted organ 
[359]

. 
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Surface charges strongly influence the interaction of the nanoparticles with the surroundings 

and thus their fate, where the nanoparticles with positive charges interact with the cells and 

biological identities differently than those with negative surface charge. In general the 

positively charged NPs are incorporated in the cells faster and the nanoparticles have charge-

dependent toxicity 
[356, 360]

.  

Chemical and colloidal stability, like aggregation and/or dissolution of the nanoparticles are 

among the most important parameters that significantly govern the interactions, 

transformations and fate of the nanomaterials, especially that colloidal stability strongly affect 

the most of other physicochemical properties 
[356, 361, 362]

. Well-dispersed, highly chemical and 

colloidally stable nanoparticles are required for the biological applications in particular to 

address the toxicological and environmental issues for the nanoparticles. 

From these few examples and the tiny discussion about the toxicological and environmental 

aspects of the nanomaterials, it is obviously clear that what is studied till now is not enough 

and just the beginning, and enormous toxicological and environmental concerns need to be 

addressed for better understand about the safety of the nanomaterials on the human and 

environment. 
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2. Synthesis, Surface Modification and Characterization of the Nanoparticles  

This dissertation is written in a cumulative way and represents the synthesis, surface 

modification, functionalization and characterization of nanoparticles of different types 

(Plasmonic, fluorescent semiconductor QDs and magnetic). In this chapter, the synthesis, 

surface modification and characterization of different types of nanoparticles are briefly 

described. For more experimental details, the reader might be referred to the publications. 

2.1. Gold Nanoparticles 

Gold nanoparticles (Au NPs) were synthesized according to the Brust two-phase method 
[363]

 

with some modifications. In the first step the AuCl
4-

 ions form tetraoctylammonium-gold 

tetrachloroaurate ion pairs according to the equation:  

AuCl67		�aq� 
 :N	�C<H=>�6?@		�tol� → 		 :N	�C<H=>�6?@	:AuCl6?7		�tol� 
The Au NPs were obtained by reduction of the gold ions mediated by the NaBH4 and the color 

was changed from deep orange to red-violet indicating the nucleation of the gold clusters. 

TOAB as surfactant is weak ligand because the relatively weak binding compared with thiol 

containing surfactants like dodecanethiol due to the high binding affinity of the thiol groups to 

the gold.  For this reason, the Au NPs obtained after overnight stirring (to allow the “Ostwald 

ripening” happens) were subjected to a ligand exchange with dodecanethiol to enhance the 

colloidal stability. Monodisperse, spherical dodecanethiol capped AuNPs with core diameter 

of 4.6± 0.9 nm were obtained as it shown in Figure 2.1. 
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Figure 2.1: TEM images of the Au NPs at different magnifications (low and high) scale bars 

corresponding to a) 50, b) 20 nm and c) 10 nm. Note that only the inorganic gold cores 

provide contrast, the organic surfactant shells are not visible. d) Histogram showing the size 

distribution of the inorganic core diameter (dc). N refers to the number for each diameter dc.  

The average dc = 4.6± 0.9 nm   

The AuNPs concentration was determined from its plasmon peak recorded by UV-vis 

absorption (Figure 2.2) measurement using the Beer-Lambert law: 

D � 	E	. F	.		C																	(� !"#$%&	5)  
Where;  A is the absorbance, ε is the molar extinction coefficient of the sample (M

-1
cm

-1
), Here 

ε = 8.7×10
6
 M

-1
cm

-1
 corresponding to their plasmon peak at 517 nm is used 

[364]
,l is the path 

length (cm) and C is the concentration of the sample (M). 
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Figure 2.2: Absorption spectra of the 4.6 nm Au NPs. 

2.2. Transformation of Organic Soluble to Water Soluble Nanoparticles 

For the biological applications of the nanomaterials, it is of great importance to obtain water 

soluble nanoparticles. In the current work, to achieve phase transfer and transform the 

organic soluble nanoparticles to aqueous soluble, an amphiphilic polymer coating was utilized. 

The amphiphilic polymer coating is an efficient and very general strategy to convert 

hydrophobically capped nanoparticles to water soluble which can be used then for biological 

applications. In general, the mechanism of the polymer coating is based on the hydrophobic 

interaction between the hydrophobic surfactant on the surface of the particles and the 

hydrophobic side chains of the amphiphilic polymer. This universal method can be applied to 

all NPs having hydrophobic surfactants on the surface regardless the nature of the core 
[365, 

366].  

In general, the amphiphilic polymer consists of two moieties of different nature, one 

hydrophobic and the other hydrophilic. The hydrophobic part is responsible for the interaction 

with the hydrophobic surfactant on the particles while the hydrophilic part provide the water-

solubility. The structure of the amphiphilic polymer used in this work (PMA) is a hydrophilic 

backbone of poly(isobutylene-alt-maleic anhydride) modified with dodecylamine as 

hydrophobic part. The hydrophilic backbone not only makes the nanoparticles water soluble 

but also provides with functionality and plays an important role in the surface modification of 

the nanoparticles because many molecules of different activities (drugs, chelators, 

fluorophores) could be covalently attached to the polymer shell around the particles 

producing multifunctional nanoparticles.   

This amphiphilic polymer (PMA) was synthesized as has been reported in literature 
[3661]

 as 

follows. Briefly, 2.70 g (15 mmol) of the dodecylamine (98%, Sigma, # D22,220-8) was well 

dissolved in a 100 mL of anhydrous tetrahydrofurane (99.9%, Aldrich, #186562) then poured 
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into another bottom-round flask containing 3.084 g (20 mmol expressed as monomer) of the 

hydrophilic backbone poly(isobutylene-alt-maleic anhydride), average Mw ~ 6,000 g/mol, 

(Sigma, #531278) and the cloudy mixture was sonicated for few seconds (~20 s) and then 

heated under reflux for three hours. After three hours, some THF was evaporated using the 

rotary evaporator and the solution was concentrated to 30-40 mL then heated under reflux 

overnight. Finally, the solvent was completely evaporated under reduced pressure in the 

rotary evaporator and the product was redissolved in 40 mL anhydrous chloroform to a final 

concentration of 0.5 M. The polymer was prepared in anhydrous organic solvents in order to 

maintain the activity of the maleic anhydride rings. The ratio of dodecylamine to maleic 

anhydride rings was designed in a way that 75% of the rings react, leaving only 25% of them 

intact for further modification with other functionalities. The maleic anhydride rings can be 

opened with the addition of basic water solutions forming negatively charged carboxylate 

groups, providing colloidal stability in aqueous solutions.  

The required amount of polymer for the NPs coating was determined by first calculating the 

total effective surface area of the hydrophobically capped nanoparticles (ANP). The inorganic 

core diameter denominated as dc measured from the TEM images was used to calculate the 

effective diameter deff , from the following equation: 

HIJJ � KL 
 	2M							�� !"#$%&	6�	 
Where; deff is the effective diameter, dc is diameter of inorganic core measured from the TEM 

images and L is the length of the hydrophobic surfactant on the surface of the nanoparticles. 

Normally 1 nm is used as L. 

The effective diameter was used to calculate the surface area on single nanoparticles and then 

the total surface area:  

OPQ � 4�	 RK�SS2 T
�
					= 						�	. 	K�SS� 					(� !"#$%&	7) 

O = VWX	. Y	. Z	. 	[\ 			= 	�	. 	K�SS� 		. Y	.		Z	. [\												(� !"#$%&	8) 
Where ANP is the area of a single nanoparticle (nm

2
), A is the total surface area of the 

nanoparticles used for coating, V is the volume of the colloidal NPs solution (L), C is the 

concentration of NPs solution (mol/L), NA is the Avogadro’s number (6.023 x 10
23

). 

And the amount of the amphiphilic polymer required for the polymer coating of the 

hydrophobically capped nanoparticles as follows: 

]Q = PQ^Q 				= 			 V	.		_X	[\	. YX 			= 	�	.		K�SS� 	.		Y	. Z	.		_X
YX 														(� !"#$%&	9) 

Where; VP is the volume of the polymer required for the nanoparticles coating, NP is the 

number of the polymer monomers required for the coating, CP is the concentration of the 

polymer expressed as the monomers concentration in M and RP is the ratio of numbers of 

polymer monomers per unit area of nanoparticles (monomer units/nm
2
). Enough monomer 

should be used for efficient polymer coating and RP from 60-100 monomers per nm
2
 was used 
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to achieve good coating. Where the less some aggregate was observed and the excess 

polymer causes difficulties in the next purification steps.

For the polymer coating, the hydrophobically capped nanoparticles in the organic solvent 

(normally chloroform) is mixed with the calculated amount

chloroform and stirred for several minutes at room temperature. After few minutes of st

the solvent was completely removed under reduced pressure using the rotary evaporator, 

gentle stream of nitrogen was passed on the dried film to remove any trace of solvent and 

then the well dried coated NPs are dissolved in sodium borate buffer (1

polymer coating process takes place by the hydrophobic interaction between the hydrophobic 

side chain of the polymer (dodecylamine) and the hydrophobic surfactants on the surface of 

the nanoparticles. Figure 2

sketches the polymer coated nanoparticles. 

Figure 2-3: Schematic depiction of the polymer coating process and the structure of the used

amphiphilic polymer consisting of a polyisobutylene

backbone (blue) and dodecylamine hydrophobic side chains (red). The anhydride rings of the 

hydrophilic polymer backbone are covalently connected by amide bonds to the amine groups 

of hydrocarbon chains. 
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to achieve good coating. Where the less some aggregate was observed and the excess 

polymer causes difficulties in the next purification steps.  

polymer coating, the hydrophobically capped nanoparticles in the organic solvent 

chloroform) is mixed with the calculated amount of the amphiphilic polymer in 

stirred for several minutes at room temperature. After few minutes of st

the solvent was completely removed under reduced pressure using the rotary evaporator, 

gentle stream of nitrogen was passed on the dried film to remove any trace of solvent and 

then the well dried coated NPs are dissolved in sodium borate buffer (100mM SBB pH 12). 

takes place by the hydrophobic interaction between the hydrophobic 

side chain of the polymer (dodecylamine) and the hydrophobic surfactants on the surface of 

Figure 2-3 illustrate the structure of the used amphiphilic polymer and 

the polymer coated nanoparticles.  

3: Schematic depiction of the polymer coating process and the structure of the used

amphiphilic polymer consisting of a polyisobutylene-alt-maleic anhydride hydrop

backbone (blue) and dodecylamine hydrophobic side chains (red). The anhydride rings of the 

hydrophilic polymer backbone are covalently connected by amide bonds to the amine groups 
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polymer coating, the hydrophobically capped nanoparticles in the organic solvent 
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the solvent was completely removed under reduced pressure using the rotary evaporator, 

gentle stream of nitrogen was passed on the dried film to remove any trace of solvent and 

00mM SBB pH 12). The 

takes place by the hydrophobic interaction between the hydrophobic 

side chain of the polymer (dodecylamine) and the hydrophobic surfactants on the surface of 

e of the used amphiphilic polymer and 

 

3: Schematic depiction of the polymer coating process and the structure of the used 

maleic anhydride hydrophilic 

backbone (blue) and dodecylamine hydrophobic side chains (red). The anhydride rings of the 

hydrophilic polymer backbone are covalently connected by amide bonds to the amine groups 
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2.3. Purification of the Coated Nanoparticles 

Once nanoparticles are coated and the dried nanoparticles were dissolved in the proper 

buffer mostly SBB pH 12, the nanoparticles were submitted to successive different purification 

steps to remove the agglomerated particles and the free micelles (the excess amphiphilic 

polymer) to get aqueous soluble NPs with good colloidal stability. As a preliminary purification 

step, the nanoparticles dissolved in the buffer (ultrasonication could be used to aid the 

dissolve of the agglomerated NPs) were filtered using a 0.22 μm syringe filter to get rid of 

aggregates. After the filtration, the nanoparticles solution was further purified and 

concentrated using Amicon centrifuge filters (100 kDa MWCO). 

Gel Electrophoresis  

Gel electrophoresis was applied as a characterization technique and for the purification of the 

coated nanoparticles from the free polymer micelles. For the gel electrophoresis, 2% agarose 

gel was prepared by dissolving 7 g Ultrapure Agarose (Invitrogen, # 16500) in 350 mL 0.5x TBE 

(Tris-borate-EDTA buffer, pH 8.3) in a 500 mL Erlenmeyer flask. The flask was covered with 

watch–glass and heated in a microwave oven for about 6 minutes (until the solution boils). 

The hot, well melted clear agarose gel was poured in a 10 x 15 cm gel tray in a gel caster 

(BioRad) with a proper comb (1, or multiwells) and covered with aluminum foil then the gel 

was left at room temperature for one hour to solidify. Then, the comb was removed and the 

solidified gel was transferred to the electrophoresis chamber (BioRad) filled with 0.5 X TBE. 

The concentrated NPs suspension obtained from the centrifuge filter was mixed with 20% of 

its volume loading buffer (30 % glycerol and 0.3 % Orange G in TBE 0.5x) and carefully loaded 

to the agarose gel wells and the electrophoresis devices connected to the power source  was 

run for 60 minutes at a constant applied voltage of 100 V (corresponding to 10 V/cm). 

Commercial 10 nm, phosphine stabilized Au NPs also were loaded in a well and run on the 

same gel under the same conditions and for the same time as internal standard. 

Gel electrophoresis allows efficient separation of the charged materials according to their 

electrophoretic mobility which depends mainly on the charge to mass ratio. The free empty 

polymer micelles (the excess of amphiphilic polymer) migrate through the gel network faster 

than the NPs due to its bigger charge/mass ratio compared to the lower charge/mass ratio of 

the polymer coated nanoparticles. At the end of the run and after the bands separation, the 

gel was taken out and digital images were taken using (BioRad Gel Doc) and the taken images 

were saved as TIFF files. The bands of interest were cut and each band was put in a dialysis 

membrane (MWCO = 50 kDa)  and the dialysis membrane was filled with 0.5x TBE buffer, 

closed well and put again in the electrophoresis chamber. The coated nanoparticles were 

extracted from the gel matrix by running the electric field again under the same conditions for 

about 30 minutes (or until the NPs pass out from the gel).  The particles extracted from the gel 

are trapped inside the dialysis bag because they are not able to pass through the pores of the 

dialysis membrane due its MWCO. The nanoparticles suspension was transferred to a 
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centrifuge filter (100kD MWCO) and the TBE was exchanged by many rounds of 

centrifugation. 

Size Exclusion Chromatography 

Other main purification technique used for a further purification and also characterization is 

size exclusion chromatography (SEC). The NPs suspension was purified using a self packed size 

exclusion gel filtration column connected to a standard high-performance liquid 

chromatography system (HPLC, Agilent 1100) using Sephacryl S-300 HR (GE Healthcare, #17-

0599-10) as stationary phase and sodium borate buffer (SBB pH 9) as mobile phase. About 600 

µL of the sample was injected and run for 140 min at flow rate 1mL per minute. The materials 

or molecules have different elution pattern according to their size i.e. the materials have size-

dependent elution time where the biggest particles are eluted first and smaller molecules 

remain longer in the column. By this way the polymer-coated nanoparticles could be 

separated and purified from the free empty micelles (the excess polymer), small molecules or 

small NPs aggregates. 

The sample was eluted and fractionated into vials and fractions of interest (the samples 

containing the nanoparticles) observed by their characteristic absorption and/or emission 

peak were collected. The collected solution containing purified polymer coated NPs was 

transferred to an Amicon centrifuge filter (100 kDa MWCO) and the buffer was exchanged to 

Millipore water with the aid of several rounds of centrifugation. Finally, the concentrated NPs 

suspension was purified with a PD- desalting column (GE Healthcare, # 17-0851-01) and 

filtered with a 0.2 µm sterile syringe filter in laminar flow and sterile conditions for biological 

experiments.  

2.4. UV-Vis Absorption Spectroscopy and Fluorescence Spectroscopy 

The UV/Vis absorption spectra of the nanoparticles samples were measured using a UV-Vis 

spectrophotometer (Agilent Technologies 8453 UV-Vis spectrometer). The absorption spectra 

were measured from 200 – 1100 nm after recording background of the blank absorption 

spectrum of the used solvent.  

The photoluminescence (PL) spectra of the luminescent materials and nanoparticles were 

measured using a fluorometer (a Fluorolog®-3 spectrofluorometer, HORIBA JOBIN YVON) in a 

three window glass cuvette. 

2.5. Dynamic Light Scattering and ζ- Potential Measurements 

The zeta potential and hydrodynamic diameter of the nanoparticles are important indicators 

for the colloidal stability and quality on the nanoparticles. The hydrodynamic diameter and 

the zetapotential were measured using Zetasizer instrument (Nanosizer Nano ZS, Malvern, 

Worcestershire, UK) equipped with a red laser (HeNe laser operating at λ=632.8 nm) as light 

source was used at 173° backscatter detection mode.  

The nanoparticles suspended in the proper solvent or buffer were equilibrated at temperature 

of 25 °C for 5 minutes before the measurement and each sample was measured five times (12 

measurements each). All values shown here are the averages of the all measurements. For the 
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zeta-potential measurements the samples were equilibrated at the same temperature for 

same time.  

2.6. Transmission Electron M

The size and shape of the nanoparticles were studied by transmission electron microscopy 

(TEM, Jeol JEM-3010). According to the nature of solvent (aqueous or organic)

were used for the preparation of the NPs sample for the TEM measurements

suspended in organic solvent, the sample was prepared by dipping the copper grid directly in 

the solution of the proper 

at room temperature. 

In the case of NPs suspended in aqueous solvents, first the copper grids were converted to 

hydrophilic by placing them 

preparing the TEM samples then to prepare the TEM sample, a 

of the sample was dropped on the copper grid and allowed to dry. 

Figure 2.4 a and b are images of the water soluble polymer coated Au NPs on both, the gel

electrophoresis and the size exclusion chromatography showing a narrow band which is 

comparable to the 10nm commercial phosphine capped Au NPs indicating the colloidal 

stability and the narrow size distribution. These results were further confirmed from t

narrow hydrodynamic diameter (d

(Figure 2.5) and the negative charges (

groups as shown from the zeta potential (Figure 2.6) measurements.

Figure 2.4:  a) Gel electrophoresis 

after NPs have run for 1 hour at constant 100V.

control. b) Elution profile of the polymer coated NPs running through a size ex

The absorption of the elutes (A) is plotted versus the elution time (t).
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Transmission Electron Microscopy (TEM) 

The size and shape of the nanoparticles were studied by transmission electron microscopy 

3010). According to the nature of solvent (aqueous or organic)

paration of the NPs sample for the TEM measurements

suspended in organic solvent, the sample was prepared by dipping the copper grid directly in 

the solution of the proper concentration for few seconds and the grid was dried for short time 

In the case of NPs suspended in aqueous solvents, first the copper grids were converted to 

hydrophilic by placing them in a stream of ethanol in closed tube for about 5 hours before 

preparing the TEM samples then to prepare the TEM sample, a few microliters ( ~ 

of the sample was dropped on the copper grid and allowed to dry.  

Figure 2.4 a and b are images of the water soluble polymer coated Au NPs on both, the gel

electrophoresis and the size exclusion chromatography showing a narrow band which is 

comparable to the 10nm commercial phosphine capped Au NPs indicating the colloidal 

stability and the narrow size distribution. These results were further confirmed from t

narrow hydrodynamic diameter (dh= 11.9 ± 0.7 nm) as measured by the DLS measurements 

(Figure 2.5) and the negative charges (ζ= -32.9 ± 2.7mV) stemming from the free carboxylate 

groups as shown from the zeta potential (Figure 2.6) measurements. 

Gel electrophoresis image of the polymer coated Au NPs on 2 % agarose gel 

after NPs have run for 1 hour at constant 100V. Left lane is 10 nm phosphine coated Au NPs

b) Elution profile of the polymer coated NPs running through a size ex

The absorption of the elutes (A) is plotted versus the elution time (t). 
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In the case of NPs suspended in aqueous solvents, first the copper grids were converted to 

a stream of ethanol in closed tube for about 5 hours before 

few microliters ( ~ 25µL) of the  

Figure 2.4 a and b are images of the water soluble polymer coated Au NPs on both, the gel 

electrophoresis and the size exclusion chromatography showing a narrow band which is 

comparable to the 10nm commercial phosphine capped Au NPs indicating the colloidal 

stability and the narrow size distribution. These results were further confirmed from the 

= 11.9 ± 0.7 nm) as measured by the DLS measurements 

from the free carboxylate 

 

mage of the polymer coated Au NPs on 2 % agarose gel 

10 nm phosphine coated Au NPs as 

b) Elution profile of the polymer coated NPs running through a size exclusion column. 
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Figure 2.5: Hydrodynamic

with DLS. N refers to the number distribution. d

Figure 2.6:  Zeta potential distribution of the polymer coated Au NPs. 

2.7. Magnetic Nannoparticles

2.7.1. Iron Oxide Nanoparticles

Monodisperse, oleic acid capped magnetic i

synthesized using a previously published protocol 

pentacarbonyl in octyl ether as solvent. Briefly, a mixture of octyl ether (10 mL, 99% Sigma

Aldrich #249599)) and 1.28 g of 

flask was heated to 60 °

increased to 100 °C where the iron precursor (0.28 mL of iron pentacarbonyl, 99.99% Sigma

Aldrich #481718), l) was swiftly injected and temperature was increased up to refluxing 

temperature (~300 °C). The mixture was refluxed at this temperature for 1 hour under 

vigorous magnetic stirring. The initial yellow color of the mixture changed with the time to 

black. After one hour, the heating mantle was removed and the mixture was cooled down to 

N
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Hydrodynamic diameter dh of the polymer coated Au NPs as determined 

N refers to the number distribution. dh = 11.9 ± 0.7 nm. 

potential distribution of the polymer coated Au NPs. ζ  = 
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Iron Oxide Nanoparticles 

se, oleic acid capped magnetic iron oxide nanoparticles (MIONPs) were 

synthesized using a previously published protocol 
[367]

 by the thermal decomposition of iron 

pentacarbonyl in octyl ether as solvent. Briefly, a mixture of octyl ether (10 mL, 99% Sigma

Aldrich #249599)) and 1.28 g of oleic acid (90 % Sigma-Aldrich #364525) in three neck round 

°C and degassed for 20 min. Then the mixture temperature was 

where the iron precursor (0.28 mL of iron pentacarbonyl, 99.99% Sigma

as swiftly injected and temperature was increased up to refluxing 

C). The mixture was refluxed at this temperature for 1 hour under 

vigorous magnetic stirring. The initial yellow color of the mixture changed with the time to 

one hour, the heating mantle was removed and the mixture was cooled down to 
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the room temperature (RT)

Aldrich #T0514) was added and the mixture heated again to 130 

hours, the mixture's temperature was increased up to the refluxing temperature 

°C/min speed. The solution was kept at 

heating mantle was removed and the nanoparticles solution was allowed to cool d

RT. Just the mixture cooled down to the RT, ~ 5

by 30 mL of anhydrous methanol and the MIONPs were collected by centrifugation at 2000 

rpm for 5 min. The supernatant was trashed and particles pellets wer

and the nanoparticles were collected again by adding methanol and centrifugation at 2000 

rpm for 5 min. The last washing step was repeated three times again and finally the 

nanoparticles were dissolved in 20 mL anhydrous chloroform

quasi-spherical iron oxide 

dc = 12.8± 2.1 nm. 

Figure 2.7: TEM images of the iron oxide NPs at different magnifications (low and high) scale

bars corresponding to a) 50, b) 20 nm and c) 10 nm. d) Histogram showing the size distribution 

of the inorganic core diameter (d

dc = 12.8± 2.1 nm  
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(RT) where trimethylamine N-oxide dehydrate (0.34 g, 98% Sigma

Aldrich #T0514) was added and the mixture heated again to 130 °C for 2 h. Again after two 

, the mixture's temperature was increased up to the refluxing temperature 

. The solution was kept at this temperature for extra one hour after which, the 

heating mantle was removed and the nanoparticles solution was allowed to cool d

RT. Just the mixture cooled down to the RT, ~ 5-7 mL anhydrous toluene was added followed 

by 30 mL of anhydrous methanol and the MIONPs were collected by centrifugation at 2000 

rpm for 5 min. The supernatant was trashed and particles pellets were redissolved in toluene 

and the nanoparticles were collected again by adding methanol and centrifugation at 2000 

rpm for 5 min. The last washing step was repeated three times again and finally the 

nanoparticles were dissolved in 20 mL anhydrous chloroform. TEM images of the obtained 

spherical iron oxide nanoparticles are shown in Figure 2.7 with inorganic

TEM images of the iron oxide NPs at different magnifications (low and high) scale

bars corresponding to a) 50, b) 20 nm and c) 10 nm. d) Histogram showing the size distribution 

of the inorganic core diameter (dc). N refers to the counts for each diameter d
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oxide dehydrate (0.34 g, 98% Sigma-

C for 2 h. Again after two 

, the mixture's temperature was increased up to the refluxing temperature using a 15 

temperature for extra one hour after which, the 

heating mantle was removed and the nanoparticles solution was allowed to cool down to the 

7 mL anhydrous toluene was added followed 

by 30 mL of anhydrous methanol and the MIONPs were collected by centrifugation at 2000 

e redissolved in toluene 

and the nanoparticles were collected again by adding methanol and centrifugation at 2000 

rpm for 5 min. The last washing step was repeated three times again and finally the 

. TEM images of the obtained 

nanoparticles are shown in Figure 2.7 with inorganic core diameter 

 
TEM images of the iron oxide NPs at different magnifications (low and high) scale 

bars corresponding to a) 50, b) 20 nm and c) 10 nm. d) Histogram showing the size distribution 

). N refers to the counts for each diameter dc.  The average 
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The magnetic iron oxide nanoparticles were transferred to water using the polymer coating 

technique and purified as it described in sections 2.2 - 2.6. Also the surface of the coated  

magnetic nanoparticles was further functionalized with extra functional molecules for 

example, surface modification of the MIONPs with fluorescent dyes (e.g. DY-495 and 

Rhodamine) as it shown in gel images (Figure 2.8), absorption emission spectra (Figure 2.9 and 

Figure 2.10), hydrodynamic diameter (Figure 2.11). To obtain multifunctional fluorescent 

magnetic nanoparticles which could be of a great importance in labelling, tracking and 

multimodal bioimaging like MRI imaging and fluorescence microscopy.  

 
Figure 2.8: Gel electrophoresis images of the polymer coated Iron Oxide NPs with no further 

surface modification (a), polymer coated MIONPs modified 2% DY-495 (b), modified with   0.5 

% Rhodamine (c) and d) is the same (c) but with polyethylene glycol of different molecular 

weights, 3, 5 and 10 kDa PEG from left to right. On a 2 % agarose gel at constant 100V. 
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Figure 2.9: Absorption emission spectra of the polymer coated iron oxide NPs modified with Dy-

495. The emission maximum is 520 nm and the simple was excited at 450 nm. 

 
Figure 2.10: Absorption emission spectra of the polymer coated Iron oxide NPs modified with 

0.5 %  Rhodamine. The simple was excited at 535 nm and the emission maximum is 575 nm.  
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Figure 2.11: Hydrodynamic diameter dh of the polymer coated MIONPs (green line, dh =19.2 ± 

1.0), modified with Dy-495 (red line, dh = 19.9 ± 1.4) and modified with Rhodamine (blue line, 

dh = 21.5 ± 1.5) as determined with DLS. N refers to the number distribution. 

Nanomaterials combining different functionalities within one entity known as multifunctional 

nanoparticles offer exceptional and promising prospects in many disciplines especially 

fundamental biology and biomedical applications like imaging, diagnosis and drug delivery. A 

variety of nano-theranostics combining several diagnostic (e.g. magnetic resonance imaging, 

radioactivity and fluorescence) and therapeutic (e.g. targeted drug delivery and hyperthermia) 

features are currently under intensive investigation in nanomedicine 
[368-370]

. 

The surface of the coated nanoparticles was modified with methotrexate as an anti-cancer 

drug. The methotrexate was covalently conjugated to the surface of the polymer coated 

magnetic iron oxide nanoparticles using amine modified polyethylene glycol (PEG) as 

crosslinker via EDC chemistry as depicted in Figure 2.12. 

 
Figure 2.12: Sketch illustrating the polymer coated MIONPs modified with anti-cancer, 

methotrexate drug. 

dh [nm ]

N



Nanoparticles: Synthesis, Surface Modification and Functionalization for Biological and Environmental Applications 

 

Abuelmagd M. Abdelmonem  Page 28 
 

In Figure 2.13, absorption spectra of  the magnetic MIONPs  before and after the surface 

modification with the methotrexate after the purification showing the characteristic peaks of 

the methotrexate indicating the bioconjugation of the methotrexate to surface of the 

nanoparticles. 

 
Figure 2.13: Absorption spectra of methotrexate (green line), polymer coated magnetic 

MIONPs (blue) and MIONPs-MTX bioconjugate after the purification.  

2.7.2. FePt Nanoparticles 
FePt nanoparticles (NPs) were synthesized by reduction of platinum acetylacetonate 

[Pt(acac)2] to Pt by 1,2-hexadecanediol simultaneously with  the thermal decomposition of 

iron pentacarbonyl [Fe(CO)5] at high temperature in dioctyl ether in the presence of 

oleylamine and oleic acid 
[371]

. Briefly, 95 mg Pt(acac)2 (98%, Sigma Aldrich), 195 mg 1,2 

hexadecanediol (Tech 90%, Sigma Aldrich)) and 10 mL octyl ether (99 %, Sigma Aldrich) were 

mixed in a 50 mL three necked-bottomed flask under nitrogen atmosphere inside glove-box 

and the temperature was raised to 100 °C. The mixture was kept at this temperature until 

turned to a clear translucent yellow solution and then the iron precursor (mixture consisting 

of 80 μL oleic acid, 80 μL Oleylamine and 65 μL iron pentacarbonyl) was swiftly injected. The 

temperature of the mixture was gradually increased to 280 °C at a rate of 15 °C/min and kept 

at this temperature under nitrogen atmosphere and vigorous magnetic stirring for 30 min. 

After 30 min of stirring, the heating mantle was removed and the NPs solution was cooled 

down to the room temperature. The as prepared FePt NPs were precipitated by addition of 

anhydrous methanol (15 mL) and centrifugation for 5 min at 2000 rpm. After centrifugation, 

the supernatant was discarded and the precipitate containing the hydrophobic FePt NPs was 

redissolved in anhydrous toluene and washed again by addition of the methanol. The 

nanoparticles were separated by centrifugation at 2000 rpm for 5 min and finally the 

hydrophobic FePt NPs were dissolved in anhydrous chloroform. 
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Figure 2.20: TEM images of the polymer coated FePt NPs at 

high)  scale bars corresponding to a) 50, b) 20 nm and c) 2 nm and d) Histogram showing the 

size distribution of the inorganic core diameter (d

diameter dc.  The average d

 

 

The monodisperse small 3.5nm FePt NPs were transferred to aqueous phase using the 

polymer coating followed by purification and characterization as described before. Figure 2.20 

-2.23 show the TEM images, Gel electrophoresis images, size exclusion ch

and zeta potential results indicating a really small colloidal monodi

NPs with small and inorganic core, hydrodynamic diameter, narrow size distribution and 

negative net surface charges.  
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TEM images of the polymer coated FePt NPs at different magnifications (low and 

high)  scale bars corresponding to a) 50, b) 20 nm and c) 2 nm and d) Histogram showing the 

size distribution of the inorganic core diameter (dc). N refers to the number of for each 

diameter dc.  The average dc = 3.5± 0.6 nm.  

The monodisperse small 3.5nm FePt NPs were transferred to aqueous phase using the 

polymer coating followed by purification and characterization as described before. Figure 2.20 

show the TEM images, Gel electrophoresis images, size exclusion ch

and zeta potential results indicating a really small colloidal monodisperse water soluble FePt 

NPs with small and inorganic core, hydrodynamic diameter, narrow size distribution and 

negative net surface charges.   
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different magnifications (low and 

high)  scale bars corresponding to a) 50, b) 20 nm and c) 2 nm and d) Histogram showing the 

). N refers to the number of for each 

The monodisperse small 3.5nm FePt NPs were transferred to aqueous phase using the 

polymer coating followed by purification and characterization as described before. Figure 2.20 

show the TEM images, Gel electrophoresis images, size exclusion chromatography, DLS 

perse water soluble FePt 

NPs with small and inorganic core, hydrodynamic diameter, narrow size distribution and 
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Figure 2.21:  a) Gel electrophoresis image of the polymer coated FePt NPs on 2 % agarose 

gel after NPs have run for 1 hour at constant 100V. b) Elution profile of the polymer 

coated FePt NPs running through a size exclusion column. The absorption of the elutes A 

is plotted versus the elution time (t) 

 
Figure 2.22:  Hydrodynamic diameter dh of the polymer coated FePt NPs as determined with 

DLS. N refers to the number distribution. dh= 9.0 ± 0.4 nm. 

dh [nm ]

N
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Figure 2.23:  Zeta potential distribution of the polymer coated FePt NPs.  ζ=  - 28.3 ± 0.5 mV. 

2.7.3. CoPt3 Nanoparticles 

Cobalt platinum (CoPt3) nanocrystals with size about 8.6 nm were synthesized according to 

the previously described method 
[372] from cobalt octacarbonyl and platinum acetylecetonate 

as precursors for cobalt and platinum respectively. Briefly, in a mixture of solvents consisting 

of diphenyl ether (2.0 ml, 99%, Sigma-Aldrich #24083-4) and hexadecylamine (4.0 g, technical 

grade, Sigma-Aldrich #H740-8), 33 mg Pt(acac)2, 0.13 g of 1,2-hexadecanediol  (technical 

grade, Sigma-Aldrich #21374-8) and  0.25 g 1-adamantanecarboxylic acid (99%, Sigma-Aldrich 

#01823) were heated to 65 °C and the obtained melted clear yellowish mixture was  degassed 

for about 20 minutes. The mixture temperature was increased to 200 °C and a freshly 

prepared cobalt precursor stock solution (0.015 g of Co2(CO)8 (Strem #270400) dissolved in 0.7 

ml of 1,2-dichlorbenzene (99%, Sigma-Aldrich #24066-4) was injected and solution was kept at 

this temperature for 30 min under vigorous stirring then the temperature was increased again 

to 290 °C and kept for extra 30 min. Finally, the heating mantle was removed and the solution 

was cooled down to the room temperature and the CoPt3 NPs were cleaned by methanol and 

centrifugation as described previously.  

 

ζ [mV ]

N
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Figure 2.24: a) and b) are TEM images of the uncoated CoPt3 NPs in chloroform. The scale bars 

corresponding to 50 and 20 nm. c) Histogram showing the size distribution of the inorganic 

core diameter (dc). N refers to the counts for each diameter dc. The average dc = 8.6± 1.0 nm.  

2.8. Quantum Dots 

2.8.1. CdSe/ZnS Core Shell Quantum Dots 
CdSe QDs cores were prepared according previously published method 

[373]
 with some 

modifications using CdO and Selenium as precursors for Cd and Se respectively.   

A shell of ZnS was grown around the CdSe QDs to passivate the CdSe QDs core and enhance 

their fluorescence using diethylzinc and hexamethyldisilathiane as zinc (Zn) and sulfur (S) 

precursors by drop-wise injection to allow slow and uniform shell growth at relatively low 

temperature to prevent the nucleation of ZnS QDs. The emission of the CdSe QDs increased 

after the first few injections, indicating the growth of a ZnS shell. The shell growth was 

controlled using the UV-Visible and fluorescence spectroscopy. As soon as the brightness (the 

fluorescence intensity) started to drop, the growth of the ZnS shell was stopped by stopping 

the ZnS precursor injection and cooling down.  
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The obtained QDs of the desired size were the transferred to water via the amphiphilic 

polymer coating as described in section 2.2 followed by purification and characterization as 

described in sections 2.3 – 2.6. 

CdSe/ZnS core/shell QDs of different colors (from green to red) and core diameters (from 2.8 

– 5 nm) as shown in the TEM images in Figure 2.25 and Figure 2.31  were obtained which were 

further transformed to aqueous phase via the polymer coating and purified as described 

before. The resulted polymer coated CdSe/ZnS core/shell QDs showed green  (Gel image 

shown in Figure 2.26  and absorption emission spectra  shown in Figure 2.27 ) and red  (Gel 

image shown in Figure 2.30  and absorption emission spectra  shown in Figure 2.33) visible 

fluorescence, with small core and hydrodynamic diameters and narrow size distribution. 

These small water soluble fluorescent nanocrystals might be of great importance for many 

applications for sensing, tracking, bioimaging and other theragnostic applications 
[39, 42, 374, 375]

.   

 

Figure 2.25: TEM images of the polymer coated green luminescent CdSe/ZnS core shell QDs 

534 nm. Scale bars are 50 and 20 nm. c) Histogram showing the size distribution of the 

inorganic core diameter (dc). N refers to the counts of each diameter. The average dc = 2.8± 

0.7 nm.  
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Figure 2.26:  a) Gel electrophoresis image of the polymer coated green luminescent CdSe/ZnS 

core shell QDs 534 nm run on 2 % agarose gel for 1 hour at constant 100V. b) Elution profile of 

the polymer coated green QDs running through a size exclusion column. The absorption of the 

elute A is plotted versus the elution time (t). 

 
Figure 2.27: Absorption emission spectra of the polymer coated green luminescent  

CdSe@ZnS core shell QDs 534 nm with absorption/emission max 534/560nm. 
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Figure 2.28:  Hydrodynamic diameter (dh) of the polymer coated green luminescent 

CdSe@ZnS core shell QDs 534 nm N refers to the number distribution. dh =10.0 ± 1.5 nm. 

 

Figure 2.29:  Zeta potential distribution of the green luminescent CdSe@ZnS core 

shell QDs. ζ=  - 22.6 ± 4.8 mV. 

 

Figure 2.30: a) Gel electrophoresis image of the polymer coated red luminescent CdSe/ZnS 

core shell QDs 602 nm run on 2 % agarose gel for 1 hour at constant 100V. b) Elution profile of 

the polymer coated red QDs running through a size exclusion column. The fluorescence 

intensity of the elute A is plotted versus the elution time (t). 
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N
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Figure 2.31: TEM images of the red luminescent CdSe/ZnS core shell QDs at different 

magnifications (low and high).  Scale bars corresponding to a) 50, b) 20 nm and c) 10 nm. d) 

Histogram showing the size distribution of the inorganic core diameter (dc). N refers to the 

counts for each diameter dc.  The average dc = 4.8± 0.9 nm. 
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Figure 2.32:  Absorption emission spectra of the polymer coated red CdSe@ZnS 

core shell QDs with absorption/emission max 602/622nm. 

 

Figure 2.33:  Hydrodynamic diameter (dh) of the polymer coated red luminescent 

CdSe@ZnS core shell QDs 602 nm N refers to the number distribution. dh =11.6 ± 1.9 nm. 
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Figure 2.34: Zeta potential distribution of the red luminescent CdSe@ZnS core shell 

QDs. ζ= - 30.1 ± 1.8 mV. 

Surface Modification of the Red CdSe/ZnS QDs with 2 kDa Diamine PEG 

The surface of the purified polymer coated red CdSe/ZnS core/shell QDs obtained from the 

last step was further modified with 2 kDa diamine polyethylene glycol. Briefly, a 10 µL of the 

previously prepared polymer coated CdSe/ZnS QDs (5.4 x 10
-6 

M in Sodium borate buffer, SBB 

pH=9) was mixed with 13.8 µL (0.5M) freshly prepared solution of 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC, Sigma-Aldrich, # E7750) so the molar ratio of the 

QDs to the EDC was kept at 1:128000, and the mixture shaken for few minutes then 54 µL of 

100, 50, 25 or 12.5 mM solution of PEG-(NH2)2-2 kDa ( Rapp polymer, # 11-2000-2) was added 

to each tube to get QDs:PEG molar ratios 1:100000, 1:50000, 1:25000 or 1:12500 respectivly. 

The mixture was shaken and kept for 2 hours at room temperature. After 2 h, the PEGylated 

CdSe/ZnS QDs were run on 2 % agarose gel for one hour at constant voltage of 100 V, with 10 

nm phosphine capped AuNPs as control. 

Figure 2.35 a shows the difference in the retardation and electrophoretic mobility of the 

polymer coated CdSe/ZnS QDs modified with the diamine PEG at different molar ratios. The 

polymer coated QDs and the control (commercial 10 nm phosphine coated gold NPs) has 

comparable retardation and electrophoretic mobility, while the electrophoretic mobility of 

the PEGylated polymer coated QDs were more retarded. The electrophoretic mobility was 

more reduced with increasing the molar ratio of the polyethylene glycol form 12500 to 

100000. The reduced mobility of the polymer coated QDs with increasing the molar ratio of 

PEG could be attributed to the increase of the size as indicated from the hydrodynamic 

diameter measured by the DLS and also to the reduction in the number of the negative 

charges due to the reduction in the free carboxylate groups which covalently linked to the 

amine groups of the polyethylene glycol forming amide bonds in aid of the EDC chemistry. 
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Finally, big batch of the polymer coated CdSe/ZnS core shell QDs was prepared using molar 

ratio 1:128000:100000 of polymer coated QDs:EDC:PEG and the PEGylated QDs was purified 

and characterized as described before in sections 2.3 – 2.6. 

 

Figure 2.35:  a) Gel electrophoresis image of the polymer coated CdSe/ZnS core shell QDs 602 

modified with 2 kDa diamine PEG on a 2 % agarose gel. Lanes from left to right are 10 nm 

phosphine coated Au NPs (run as control in the left), coated QDs, 12500:1, 25000:1, 50000:1 

and 100000:1 PEG:QDs. b) Elution profile of the  polymer coated  QDs modified 2kDa PEG 

(saturated) running through a size exclusion column. The fluorescence intensity of the elutes A 

is plotted versus the elution time (t). 

 

Figure 2.36:  TEM image (a)  and size distribution (b) of  the polymer coated  red 

CdSe@ZnS core shell QDs modified with 2 kDa PEG with an average  core diameter 

dc=4.89±1.2 . 

From the DLS and zeta potential it was found that the hydrodynamic diameter (dh) was 

increased from 11.6 ± 1.9  nm  for the only polymer coated (no PEG in the sell) QDs to 18.66 ± 

2.83 nm for the polymer coated QDs modified with 2 kDa PEG (Figure 2.19). Also in the same 

manner, the zeta potential was increased to - 6.0 ± 3.9 mV mV compared to -30.1 ± 1.8 mV for 

the polymer coated QDs before the modification with 2kDa PEG. These results of the 

hydrodynamic diameter and zeta potential are in coincidence with the gel image and the 

reduced electrophoretic mobility as a result of the QDs PEGylation. 
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Figure 2.37:  Hydrodynamic diameter dh of the polymer coated red CdSe/ZnS core shell QDs 

before (blue line) and after PEGylation with 2 kDa PEG (red line) as determined with DLS. N 

refers to the number distribution. The hydrodynamic diameter dh  increased from 11.6 ± 1.9 

for the non-PEGylated to 18.8 ± 2.8 nm for the polymer coated QDs modified with 2 kDa PEG.  

2.8.2. ZnO Nanoparticles  
2.8.2.1. Arginine Capped ZnO Nanoparticles 

Arginine capped ZnO nanocrystals were prepared as follow;  Zn(Ac)2.2H2O (1.46 g) was 

dissolved in 62.5 mL of methanol and heated to 60 °C. A solutions consisting of KOH (0.7 g 

dissolved in 32.5 mL methanol) and arginine solution (10 mL, 0.2 M in Millipore water) were 

mixed and added dropewise over about 10 minutes with vigorous magnetic stirring. Zinc 

hydroxide was precipitated and the solution became cloudy after about 5 minutes of the 

arginine and KOH addition. The mixture was stirred for 1 hour then the heater and the stirrer 

were removed and the solution was cooled to RT and precipitated with the aid of centrifuge at 

2000 rpm for 5 minutes. The precipitate was dissolved in methanol and precipitated by 

centrifugation at 2000 rpm for 5 minutes. The last washing step was repeated twice and 

finally the ZnO nanocrystals were dissolved in 40 mL Millipore water giving clear transparent 

solution which was filtrated using 0.22 µm filter for further purification. 

By this method, water soluble positively charged ZnO nanocrystals were directly obtained with 

no need for polymer coating or other phase transfer methods to get water soluble 

nanoparticles. The core diameter of inorganic ZnO core is 6.8± 1.9 nm as it shown in the TEM 

images in Figure 2.38. These obtained ZnO nanocrystals show a hydrodynamic diameter about 

18 nm (Figure 2.39) and positive surface charge with zeta potential ζ   + 26.6 ± 0.4 mV (Figure 

2.40). 

dh [nm ]

N
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Figure 2.38: TEM images of the positively charged (arginine capped) ZnO n

different magnifications (low and high).  Scale bars corresponding to 50

nm. d) Histogram showing the size distribution of the inorganic core diameter (d

to the counts for each diameter d

Figure 2.39:  Hydrodynamic diameter (d

nanocrystals with dh =18.1 ± 0.9 nm.
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ages of the positively charged (arginine capped) ZnO n

different magnifications (low and high).  Scale bars corresponding to 50 (a)

. d) Histogram showing the size distribution of the inorganic core diameter (d

to the counts for each diameter dc.  The average dc = 6.8± 1.9 nm.  

Hydrodynamic diameter (dh) of the positively charged (arginine capped) ZnO

=18.1 ± 0.9 nm. 
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ages of the positively charged (arginine capped) ZnO nanocrystals at 

(a), 20 (b) and 10  (c) 

. d) Histogram showing the size distribution of the inorganic core diameter (dc). N refers 

 

) of the positively charged (arginine capped) ZnO 
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Figure 2.40:  Zeta potential distribution of the positively charged (arginine capped) ZnO 

nanocrystals.  ζ =  + 26.6 ± 0.4 mV. 

The obtained ZnO nanocrystals have two emission bands, the first one is a narrow peak  in the 

UV region with maximum intensity at 365 nm and the second is a wide peak in the visible 

band with a maximum intensity at 521 nm in the green region (Figure 2.41). The first one, the 

near UV emission arising from (i) the typical exciton emission as a result of the recombination 

of the photo-excited electrons in conduction band with holes in the valence band 
[62] (ii) near-

band-edge emission resulting from the recombination of the photo-excited electrons in 

conduction band with the holes trapped near the valence band. The second one, the visible 

photoluminescence might be attributed to the oxygen vacancies [69-79]
. 

 

Figure 2.41: Absorption emission spectra of the positively charged (arginine capped) ZnO 

nanocrystals showing two fluorescence band one in the UV region with intensity max at 

365nm and the other one in the visible region with intensity max at 521 nm. The excitation 

wavelength was 335 nm.  
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2.8.2.2. Polymer Coated ZnO Nanoparticles 

Oleic acid capped ZnO nanocrystals were prepared with a modified method reported in 

literature 
[376] as follow. In details, 1.46g of zinc acetate dihydrtate (# 383058, Sigma-Aldrich) 

was dissolved in 62.5 mL of methanol (#8388.6, Carl Roth) and heated to 60 °C. Solution of 

KOH (#5658.1, Carl Roth, 0.7 g) dissolved in 32.5 mL methanol was added dropewise over 

about 10 minutes under magnetically vigorous stirring. After about 5 minutes of the starting 

of the KOH addition, zinc hydroxide was precipitated and the solution became cloudy. The 

stirring was continued after the complete addition of the KOH solution, and the solution 

converted from cloudy to translucent after 20 minutes. At this point the solution was 

sonicated for 10 minutes and 1 mL of oleic acid (#364525, Sigma-Aldrich) was added. The 

mixture was sonicated again for extra 5 minutes and then stirred for 10 minutes. The stirring 

was stopped and the heater removed. The nanoparticles were cooled to RT and precipitated 

with the aid of centrifuge at 2000 rpm for 5 minutes. The precipitate was dissolved in 

chloroform (#Y015.2, Carl Roth) and then methanol added and precipitated again using the 

centrifuge at 2000 rpm for 5 minutes. The last washing step was repeated twice and finally the 

ZnO nanocrystals were dissolved in 25mL chloroform giving clear transparent solution.  

The as prepared ZnO nanocrystals obtained from this method are hydrophobically capped 

(oleic acid capped particles), were converted to water soluble by the polymer coating protocol 

(section 2.2) and purified using gel electrophoresis and size exclusion chromatography as 

described in sections 2.3- 2.6 and shown in Figure 2.42. 

 

Figure 2.42:  a) Gel electrophoresis image of the polymer coated ZnO nanocrystals on a 2 % 

agarose gel. The sample was run for 60 minutes at constant voltage 100 V.   b) Elution profile 

of the polymer coated nanocrystals running through a size exclusion column. The 

fluorescence intensity of the elute A is plotted versus the elution time (t). 

The water soluble resulted ZnO nanocrystals obtained, have inorganic core diameter 6.7± 1.5 

nm as shown TEM images and size distribution histogram (Figure 2.43), and hydrodynamic 

diameter (dh) 18.4 ± 1.4 nm with negative surface charge - 35.2 ± 3.6 mV as shown in 

hydrodynamic diameter distribution measured by the DLS and shown in Figure 2.44 and the 

zeta potential distribution show in Figure 2.45. 
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Figure 2.43: TEM images of the polymer coated ZnO nanocrystals at different magnifications 

(low and high).  Scale bars corresponding to a) 50, b) 20 nm and c) 5 nm. d) Histogram 

showing the size distribution of the inorganic core diameter (dc). The average dc = 6.7± 1.5 nm.  

 

Figure 2.44: Hydrodynamic diameter (dh) of the polymer coated ZnO nanocrystals with dh 

=18.4 ± 1.4 nm. 
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Figure 2.45:  Zeta potential of the polymer coated ZnO nanocrystals. ζ= -35.2±3.6 mV. 

As shown in the gel images (Figure 2.42), the obtained polymer coated ZnO nanocrystals have 

strong visible fluorescence. As the case with the positively charged arginine capped ZnO 

nanocrystals, the negatively charged polymer coated ZnO nanocrystals also showed two 

emission bands, but unlike to arginine capped ZnO nanocrystals, the first narrow peak in the 

UV region is relatively small with maximum intensity at 364 nm and the second is a wide peak 

in the visible band with a maximum intensity at 543 nm (Figure 2.46). The first one, the near 

UV emission arising from (i) the typical exciton emission as a result of the recombination of 

the photo-excited electrons in conduction band with holes in the valence band 
[62]

 (ii) near-

band-edge emission resulting from the recombination of the photo-excited electrons in 

conduction band with the holes trapped near the valence band. The second one, the visible 

photoluminescence might be attributed to the oxygen vacancies 
[69-79]. The strong visible 

fluorescence in case of polymer coated ZnO nanocrystals might be mean more oxygen 

vacancies compared to the arginine capped. 

 

Figure 2.46:  Absorption emission spectra of the polymer coated ZnO nanocrystals showing 

two fluorescence band one in the UV region with intensity max at 364 nm and the other one 

in the visible region with intensity max at 543 nm. The excitation wavelength was 325 nm.  
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3. Nanoparticles: Cell
This chapter is dedicated to 

the obtained nanoparticles

possible utilization of these nanomaterials in the biological and environmental applications

Cell experiments were carried out by the group of 

General Biochemistry and Physical Pharmacy

University, Belgium. 

3.1. Effect of PEGylation

Cellular Uptake, Interactions and Cytotoxicity

PEGylation of the nanoparticles is 

physicochemical purposes like modification the surface properties

stability and increasing the circulation time.

PEGylated with methoxy 2kD

toxicological parameters and cellular interaction. The polymer coated gold NPs  were modified 

and saturated  with mPEG

elsewhere 
[377]

. The polymer coated Au

modified with mPEG as follows

polymer coated Au NPs (3.1 µM in 

(0.1 M) of  freshly prepared solution of 1

Sigma-Aldrich, # E7750) and the mixture was shaken for 2 minutes then 155 µL (1X 10

solution of mPEG-NH2 -2 kDa ( Rapp polymer, #12

shaken and kept for 2 hours at room temperature. The molar ratio between the Au NPs: 

mPEG-NH2: EDC are 1:500:128000 which designed to insure sufficient saturation of the 

surface of the NPs with the mPEG. After 2 h, the PEGylated god nanoparticles (mPEG

NPs) were purified using gel 

characterized as described in section 2.2

surface modification process of the polymer coated Au NPs

Figure 3.1: Schematic illustration for the surface modification of the polymer coated

Au NPs with 2kDa MeO
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Cellular Interactions and Toxicity 
This chapter is dedicated to shed the light on some conducted biological studies

the obtained nanoparticles to investigate the nano-bio interactions/transformations and then 

possible utilization of these nanomaterials in the biological and environmental applications

Cell experiments were carried out by the group of Prof. Stefaan De Smedt

al Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent 

Effect of PEGylation of the polymer coated Au Nanoparticles on the 

Cellular Uptake, Interactions and Cytotoxicity 

PEGylation of the nanoparticles is widely used mechanism for many biological and 

physicochemical purposes like modification the surface properties, enhancing the colloidal 

stability and increasing the circulation time. Here in this chapter we have prepared Au NPs 

PEGylated with methoxy 2kDa-Polyethylene glycol (mPEG) followed by studying the multi 

toxicological parameters and cellular interaction. The polymer coated gold NPs  were modified 

and saturated  with mPEG-NH2 via EDC chemistry and purified as previously published 

e polymer coated Au NPs obtained as described in sections 2.1

modified with mPEG as follows. In an eppendorf tube, 100 µL of the previously prepared 

polymer coated Au NPs (3.1 µM in sodium borate buffer (SBB pH 9)  was mixed with 397 µL 

freshly prepared solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 

Aldrich, # E7750) and the mixture was shaken for 2 minutes then 155 µL (1X 10

2 kDa ( Rapp polymer, #12-2000-2) was added. The mixture was 

haken and kept for 2 hours at room temperature. The molar ratio between the Au NPs: 

NH2: EDC are 1:500:128000 which designed to insure sufficient saturation of the 

surface of the NPs with the mPEG. After 2 h, the PEGylated god nanoparticles (mPEG

purified using gel electrophoresis and size exclusion chromatography and 

characterized as described in section 2.2-2.6. Figure 3.1 is a schematic sketch showing the 

surface modification process of the polymer coated Au NPs with 2kDa MeO

Schematic illustration for the surface modification of the polymer coated

Au NPs with 2kDa MeO-PEG-NH2.  
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shed the light on some conducted biological studies on some of 

transformations and then 

possible utilization of these nanomaterials in the biological and environmental applications.  

Prof. Stefaan De Smedt, Laboratory for 

Faculty of Pharmaceutical Sciences, Ghent 

of the polymer coated Au Nanoparticles on the 

widely used mechanism for many biological and 

enhancing the colloidal 

Here in this chapter we have prepared Au NPs 

Polyethylene glycol (mPEG) followed by studying the multi 

toxicological parameters and cellular interaction. The polymer coated gold NPs  were modified 

via EDC chemistry and purified as previously published 

in sections 2.1-2.6 was 

n an eppendorf tube, 100 µL of the previously prepared 

)  was mixed with 397 µL 

dimethylaminopropyl) carbodiimide (EDC, 

Aldrich, # E7750) and the mixture was shaken for 2 minutes then 155 µL (1X 10
-3

M)  

2) was added. The mixture was 

haken and kept for 2 hours at room temperature. The molar ratio between the Au NPs: 

NH2: EDC are 1:500:128000 which designed to insure sufficient saturation of the 

surface of the NPs with the mPEG. After 2 h, the PEGylated god nanoparticles (mPEG-PMA-Au 

electrophoresis and size exclusion chromatography and 

a schematic sketch showing the 

with 2kDa MeO-PEG-NH2.  

 

Schematic illustration for the surface modification of the polymer coated 
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The polymer coated Au NPs modified with mPEG are more retarded on the gel comparing to 

the non-PEGylated polymer coated Au NPs due to the increase in hydrodynamic diameter and 

the decrease of  net negative surface charges of the mPEG modified Au NPs (Figure 3.2). In the 

size exclusion chromatography, the PEGylated polymer coated Au NPs had less elution or 

retention time and appear first (dashed line Figure 3.2 b) owing to the their big size in 

comparison to non PEGylated NPs (solid line Figure 3.2 b) . 

 

Figure 3.2:  a) Gel electrophoresis image of the polymer coated Au NPs (left) and polymer 

coated Au NPs modified with 2kDa mPEG (right) on a 2 % agarose gel. b) elution profile of 

the polymer coated Au NPs before (solid line) and after modification with 2 kDa mPEG 

(dashed line) running through a size exclusion column. The absorption of the elute A is 

plotted versus the elution time (t). 

The number distribution of hydrodynamic diameter dh of the mPEG-PMA-Au NPs measured by 

the DLS was increased to 21.7±2.9 nm compared to the polymer coated Au NPs used before 

PEGylation (dh was 12.6 ± 1.1 nm ). On other hand, the  measured zeta potential for the 

PEGylated Au NPs was  reduced to -7.6 ± 0.8 mV in comparison to the zeta potential of the 

original polymer coated Au NPs before the PEGylation (- 31.9 ± 5.2) which could be attributed 

to the PEGylation  and reduction in the free carboxylate groups due to the PEG linkage. 

Table 3.1: Hydrodynamic diameters (dh expressed as number distribution) and zeta 

potential (ζ) of the polymer coated Au NPs before and after the modification with 2kDa 

PEG-OCH3 as measured in SBB pH9 using DLS. 

Sample dh [nm] ζ [mV] 

Coated Au NPs 12.6 ± 1.1 - 31.9 ± 5.2 

Coated Au NPs modified with 2kDa mPEG 21.7±2,9 -7.6 ± 0.8 
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Figure 3.3: Hydrodynamic diameter (dh) of the polymer coated Au NPs before (red line) 

and after modification (green line) with mPEG of 2 kDa as determined with DLS.  

Cellular Uptake of the PEGylated Au NPs 

The uptake and interactions nanoparticles with the cells studies were performed according to 

standard published protocols 
[378, 379]. Three types of cells, human umbilical vein endothelial 

cells (HUVECs), murine C17.2 neural progenitor cells, and rat PC12 pheochromocytoma cells 

were used. Briefly the cells seeded in 25 cm² cell culture flasks were incubated with 50 nM 

polymer coated Au NPs for 24 h at 37°C and 5% CO2. After 24 h, the cells were washed three 

times with PBS buffer and the cells were detached using trypsination for few minutes. The 

cells were collected by centrifugation and treated with 2% paraformaldehyde (PFA) for 20 min 

for cell fixation and then the cells were washed three times with PBS. The cells were then 

pelleted at 4×10
5
 cells/condition in 0.2 M cacodylate buffer (pH 7.4) and postfixed using 1% 

osmium tetroxide (dissolved in the same buffer) for 1 h at 4 °C. The cell pellets dehydrated 

with ethanol were then embedded in Epon-Araldite and thin sections (70 nm) were stained 

with uranyl acetate (5%) and then with the citrate (1%). Finally the samples scanned using 

transmission electron microscope. 

For quantitative cellular uptake of the NPs, C17.2, HUVEC or PC12 cells were incubated with 

different concentrations (from 0 to 800 nM)) for 24 h. The cells were trypsinated and 

centrifuged as described above followed by fixation in PFA after which the cells were washed 

three times with PBS and kept as a pellet of 4×10
5
 cells/condition in 0.5 mL PBS. Aqua regia (2 

mL) was added and the samples were digested in microwave (MLS 1200 Mega, Milestone, and 

Shelton, CT, USA). The digested samples were diluted to the proper concentration and the 

gold concentrations were measured by inductively coupled plasma mass spectrometry (ICP-

MS) analysis.  

PEGylated polymer coated Au NPs were found to be uptaken by all the tested cells  (HUVECs, 

murine C17.2 and PC12) as indicated from the TEM images (Figure 3.4 A) and the ICP 

measurements (Table 3.2) but the PEGylation significantly reduced the uptake of the polymer 

coated Au NP. The intracellular distribution of the Au NPs was not affected by PEGylation of 

the polymer coated Au NPs compared to the coated Au NPs with no PEG on the surface 
[378]

. 
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The uptake pattern measured by TEM and inductively coupled plasma–mass spectrometry 

(ICP–MS) after 24 h was significantly different between the different cells where the highest 

uptake level was found to be for HUVECs, followed by C17.2 and PC12 cells, clearly indicating 

that uptake level of the PEGylated NPs is cell type dependent and should be addressed 

individually. 

 Cellular levels of PEGylated Au NPs 
(in 105 NPs/cell) 

Au NPs [nM] HUVEC C17.2 PC12 

50 5.2 2.9 2.4 

100 9.3 4.5 3.9 

200 16.7 7.8 6.9 

400 27.4 13.3 12.2 

800 46.4 22.9 19.6 

Table 3.2: Change of the cellular levels of the PEGylated Au NPs for the different tested 

cells at different concentrations (from 50 to 800 nM Au NPs) as determined by ICP-MS. 

   

 

Figure 3.4: A) TEM images of C17.2, HUVEC and PC12 cells incubated with 50 nM of 

PEGylated polymer coated Au NPs for 24 h revealing clear cellular uptake. B) Cell 

viability and C) ROS induction of the cells treated with the PEGylated polymer coated Au 

NPs. The data are the mean of 5 measurements (n=5) + SEM relative to untreated 

control cells .The statistical significance levels are indicated (*: p < 0.05, **: p < 0.01, 

***: p < 0.001).
[379] 
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Viability test  

MTT assay was employed to quantitatively asses the cell viability of the C17.2, HUVEC and 

PC12 cells exposed to different concentrations of the PEGylated Au NPs. For this purpose, the 

cells were seeded at density of 5 x 104 cells/well in 96-well plates (200 µL/well) and incubated 

overnight. On the next day, the cells were incubated for 24 h with different concentrations (0, 

10, 20, 50, 100, 200, 400 or 800) of the PEGylated polymer coated Au NPs. Then the MTT 

(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma-Aldrich, Bornem, Belgium) 

assay  was conducted  according to the manufacturer’s protocol where 25 µL MTT solution (5 

mg/ml) was added per well and incubated for 4 h. The data are expressed as percentage to 

the untreated control cells. 

The effect of PEGylation of the polymer coated Au NPs on the cell viability, as inferred from 

the MTT toxicological measurements (Figure 3.4 B) clearly revealed that the cell viability was 

affected at the higher NPs concentrations (≤ 400 X 10
-9 

M) in cell type dependent manner. The 

cell viability of cells was related to the uptake level where the highest toxicity levels were 

reported to the HUVECs compared to those with the less uptake levels (C17.2 and PC12 cells). 

Another toxicological parameter, induction of reactive oxygen species (ROS) was also 

performed and showed again concentration dependent effect (Figure 3.4 C).  

3.2. Cellular Uptake, Interactions and Cytotoxicity of Polymer Coated 

CdSE/ZnS core shell QDs:   

CdSe/ZnS core/shell QDs were prepared as described in section 2.7 followed by polymer 

coating purification using gel electrophoresis (Figure 3.5 A) and size exclusion chromatography 

(Figure 3.5 B). The water soluble polymer coated QDs have absorption emission max at 

587/597nm (Figure 3.6), quantum yield 6.7%, inorganic core diameter (dc) 4.7 ± 0.9 nm as 

measured by the TEM (TEM images Figure 3.7), hydrodynamic diameter dh =11.0 ± 3 nm 

(Figure 3.8)  and negative surface charges (ζ =  -18 ± 1 mV, Figure 3.9).  

 
Figure 3.5: a) Gel electrophoresis image of the polymer coated red luminescent 

CdSe/ZnS core shell QDs 587 nm run on 2 % agarose gel for 1 hour at constant 100V. b) 

Elution profile of the polymer coated green QDs running through a size exclusion 

column. The absorption of the elutes A is plotted versus the elution time (t). 
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Figure 3.6:  Absorption emission spectra of the polymer coated red CdSe@ZnS 

QDs 587 nm with absorption/emission max 587/599 nm. 
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Figure 3.7: TEM images of the red luminescent CdSe/ZnS QDS at different magnifications (low 

and high).  Scale bars corresponding to a) 50, b) 20 nm and c) 10 nm. d) Histogram showing 

the size distribution of the inorganic core diameter (dc). N refers to the counts of each 

diameter.  The average dc = 4.4± 0.8 nm  
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The results indicated that the polymer coated red luminescent QDs showed concentration

dependent toxicity as inferred from the MTT assay

(Figure 3.10 B) with non-toxic concentration

showing the uptake of these polymer coated red CdSs/ZnS core/shell

potential applications as labeling agent for bioimaging and tracking.
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Hydrodynamic diameter (dh) of the polymer coated red luminescent 

CdSe@ZnS QDs 587 nm. N refers to the number distribution. dh =11.0 ± 3 nm.

Zeta potential distribution of the polymer coated red 

= - 25.3 ± 2.9 mV. 

A multiparametric toxicological method was used to evaluate the toxicity of water soluble, 

colloidally stable red luminescent QDs using the same cell lines mentioned above (HUVECs, 

C17.2 and PC12) in order to address the nontoxic concentration applicable in the cell labeling. 

The results indicated that the polymer coated red luminescent QDs showed concentration

as inferred from the MTT assay (Figure 3.10 A) and ROS measurements 

toxic concentration 2 nM. Figure 3.11 shows some confocal images 

showing the uptake of these polymer coated red CdSs/ZnS core/shell 

potential applications as labeling agent for bioimaging and tracking. 
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Figure 3.10: A) Cell viability and B) ROS induction of the PC12, HUVEC and C17.2 cells 

incubated with the polymer coated red luminescent CdSe/ZnS QDs. The statistical 

significance levels are indicated (*: p < 0.05, **: p < 0.01, ***: p < 0.001). [380] 

 

Figure 3.11: Confocal microscope images of HUVEC cells incubated with red luminescent 

polymer coated CdSe/ZnS QDs for 24 h at 5 nM (left column), 10 nM (middle row) and 20 

nM (right column). The shown images are merged images of QDs (red) and α-tubulin 

cytoskeleton (green). Scale bars corresponding to 50 µm.
(380)
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4. Conclusion and Outlook 

In summary, in the present study, magnetic, fluorescent and noble metal nanoparticles were 

synthesized. Most of the as synthesized nanoparticles prepared in this thesis are capped 

with hydrophobic ligands giving the nanoparticles the hydrophobic nature and making them 

water insoluble. Very general amphiphilic polymer coating protocol was harnessed to 

convert the hydrophobic nanoparticles from the organic solvent to aqueous phase where 

the nanoparticles get enwrapped by the polymer shell. Further surface modification, 

bioconjugation and functionalization easily can be performed on the obtained polymer 

coated nanoparticles directly by modification of the amphiphilic polymer before the coating 

or indirectly by modification of the coated nanoparticles via the EDC chemistry and 

activation of the free carboxylic groups on the surface of particles. 

Also different general purification strategies like ultrafiltration, gel electrophoresis and size 

exclusion chromatography were utilized for the purification during the polymer coating, 

surface modification and functionalization to obtain well purified and defined nanoparticles. 

The colloidal stability and physicochemical properties of the nanoparticles at the different 

modification stages were investigated using different characterization techniques like TEM, 

DLS, UV-visible spectroscopy and fluorescence spectroscopy.  

Covalently attachment of functional molecules to the surface of the nanoparticles or what is 

known as nanoparticles conjugation and/or functionalization is a promising approach in the 

materials sciences which could provide the basis for functional designed materials toward a 

wide range of different applications especially biological and environmental applications. 

Multifunctional nanoparticles which combine different functionalities (e.g. magnetic, 

fluorescent, radioactivity, therapeutic, specific targeting and controlled release) are of 

significant importance and expected to have a great impact in different areas in particular 

the biological and biomedical applications for diagnosis (like MRI and fluorescence 

multimodal imaging), targeting and therapy (controlled release and drug delivery). Here in 

this work different types of nanoparticles easily and effectively have been functionalized. For 

example, magnetic iron oxide nanoparticles were covalently functionalized with different 

fluorophores like tetramethylrhodamine cadaverine (TAMRA), DY-495 and DY-647 via 

activation of the free carboxylate groups using EDC chemistry. These fluorescent magnetic 

nanoparticles could be employed as multifunctional material for magnetic guided separation 

and purification, tracking, sensing and multimodal imaging using MRI and optical 

(fluorescence) imaging. Also, the surface of the coated magnetic iron oxide nanoparticles 

was modified for the therapeutic and targeted delivery purposes. The methotrexate as anti-

cancer drug and folic (for targeted delivery) were covalently linked to the surface of the 

polymer coated magnetic iron oxide nanoparticles and polyethylene glycol (PEG) was 

employed as a crosslinker. These methotrexate functionalized magnetic nanoparticles is 
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considered a good example for the multifunctional nanoparticles in the therapeutic and 

diagnostic medical applications. 

Zinc oxide nanoparticles have earned great importance for the environmental and biological 

applications in the recent few years. In this work positively charged arginine capped zinc oxide 

nanocrystals were directly prepared with no need for phase transfer polymer coating and 

further purification steps using gel electrophoresis and size exclusion chromatography 

required for the purification of the polymer coated nanoparticles to get rid of the free polymer 

micelles. The size of the inorganic ZnO cores prepared in this method has comparable size for 

the oleic acid capped ZnO. The negatively charged polymer coated ZnO nanocrystals and the 

positively charged arginine capped ZnO, both have similar hydrodynamic diameter but 

different surface charges and surface chemistry which might be lead to in vitro and in vivo 

different biological interactions.  

Beside the nature, size and shape of the engineered nanomaterials, the surface modification 

and functionalization of the nanomaterials could increase the diversity of nanomaterials 

properties and their different applications. A huge number of nanoparticles of different types, 

shape sizes can be synthesized and their surfaces might be modified, conjugated and 

functionalized with enormous number of the different materials with different properties and 

functionalities aiming to increase the stability, tailor, tuning the surface properties and/or 

incorporate novel functionalities with a final purpose to make use of the combined unique 

properties (fluorescence, plasmonic, optical or magnetic) of the core and surface tuned 

properties.  

A major task for the future is to optimize the surface modification and the physicochemical 

properties of the engineered nanomaterials to achieve maximum functionalities and benefits 

for human being and environment as well as to get rid, overcome or reduce the possible side 

effects of the nanomaterials on human health and environment. 
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5. Publications 

1.1. Nanoparticles; Synthesis, Surface Modification, Characterization and Bio 

Interaction  

A1 –   Kreyling, W.; Abdelmonem, A. M.; Ali, Z.; Haberl, N.; Hartmann, R.; Hirn, S; de 

Aberasturi, j. D.; Khadem-Saba1, G.; Montenegro, J.; Rejman, J.; Rojo, T.; de Larramendi I.; 

Wenk1, A.; Parak, W. J., In vivo integrity of colloidal nanoparticles. NATURE 

NANOTECHNOLOGY. (In Revision).   

This paper is dedicated to address the integrity of the colloidal polymer coated nanoparticles 

in vivo. 

Well colloidally stable radioactive gold (
198

Au) nanoparticles were labeled with radioactive 

indium (
111

In) via DOTA chelator covalently attached to the surface of the polymer coated 
198

Au NPs. The multimodal radioactive 
198

Au NPs-
111

In nanoparticles were intravenously 

administered to rats. The distribution of the whole 
198

Au NPs-
111

In nanoparticles, 
198

AuNPs 

cores and the radioactive 111-Indium in the body were probed by the gamma spectroscopy.  

The biodistribution data clearly indicate that, in vivo the polymer shell at least partially 

detaches from nanoparticle core. The suggested mechanism for the partial removal of the 

polymer shell could be attributed to the enzymatic degradation in particular the hydrolytic 

affect proteolytic enzymes and breaking the amide bonds. This suggested hypothesis was 

tested in tube using external proetolytic enzymes and it was found that the proteolytic 

enzymes able to cause partially release of the polymer shell. The results of this paper indicate 

that the physicochemical properties of the nanoparticles even the well defined highly stable 

nanoparticles of could be dramatically changed in vivo. 

Contribution to this paper; 

Synthesis of hydrophobically capped 4.5 nm Au nanoparticles, 4.8 nm red luminescent 

CdSe/ZnS core shell quantum dots, the amphiphilc polymer, DY-495 modified polymer, DY-636 

modified polymer and the polymer modified with 1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid (DOTA) as chelator for the indium, polymer coating of the Au NPs with the 

plain polymer, polymer coating with the chelator and fluorophores modified polymers,  

decoration of the polymer coated radioactive gold nanoparticles (
198

Au NPs) with the 

radioactive indium (
111

In) and nonradioactive indium, purification and characterization of the 

nanoparticles and quantum dots of the different modifications using ultrafiltration, gel 

electrophoresis, size exclusion chromatography (SEC) and PD-10 desalting columns, sterilizing 

the modified nanoparticles for the biological applications, full characterization of the different 

nanoparticles and quantum dots before and after surface modification with dynamic light 

scattering (DLS), Doppler Anemometry, UV-Vis spectroscopy and fluorescence spectroscopy. 

Data analysis, editorial works for the paper and writing most of the supporting information. 
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A2 –   Mahmoudi, M.; Abdelmonem, A. M.; Behzadi, S.; Clement, J.; Dutz, S.; Ejtehadi, M.; 

Hartmann, R.; Kantner, K.; Linne, U.; Maffre, P.; Metzler, S.; Moghadam, M.; Pfeiffer, C.; 

Rezaei, M.; Ruiz-Lozano, P.; Serpooshan, V.; Shokrgozar, M.; Nienhaus, G.; Parak, W., 

Temperature: The "Ignored" Factor at the NanoBio Interface. ACS NANO. 2013, 7, (8), 6555-

6562. 

This article was dedicated to study the effect of the temperature on interaction of the 

nanoparticles with biomolecules especially proteins and the protein corona formation on the 

surface of the nanoparticles. In this paper it was clearly found that the protein corona 

formation (both the degree of coverage and composition of protein corona adsorbed on the 

surface of the nanoparticles) is strongly temperature dependent which might affect in turn on 

the cellular uptake of these nanoparticles. 

Contribution to this paper; 

Synthesis of oleic acid capped FePt nanoparticles, the amphiphilc polymer and the modified 

polymer, polymer coating of the nanoparticles,  purification and characterization of the 

coated FePt nanoparticles with gel electrophoresis and size exclusion chromatography (SEC), 

full characterization of the nanoparticles before and after surface modification with dynamic 

light scattering (DLS), Doppler Anemometry, UV-Vis spectroscopy and fluorescence 

spectroscopy. Surface modification of the polymer coated FePt NPs with bovine serum 

albumin (BSA). Transmission electron microscope (TEM) measurements of all nanoparticles 

used in this article, some editorial works for the paper and writing a big part of the supporting 

information. 

A3 –   Soenen, S. J.; Manshian, B. B.; Abdelmonem, A. M.; Montenegro, J.-M.; Tan, S.; Balcaen, 

L.; Frank Vanhaecke; Brisson, A. R.; Parak, W. J.; Smedt, S. C. D.; Braeckmans, K., The Cellular 

Interactions of PEGylated Gold Nanoparticles: Effect of PEGylation on Cellular Uptake and 

Cytotoxicity. Part. Part. Syst. Charact. 2014, doi: 10.1002/ppsc.201300357. 

PEGylation of the nanoparticles is widely used mechanism for many biological and 

physicochemical purposes like modification of the surface properties, enhancing the colloidal 

stability and increasing the circulation time. In this article, the cellular interaction and 

toxicological effect of the polymer coated Au NPs modified with methoxy polyethylene glycol 

(mPEG) have been investigated.  

Contribution to this paper; Synthesis of dodecanethiol capped 4.6 nm Au NPs and the 

amphiphilc polymer, polymer coating of the Au NPs,  modification of the coated Au NPs with 

polyethylene glycol (PEG-2kDa), purification and characterization of the coated and PEGylated 

Au NPs using gel electrophoresis and SEC, full characterization of the Au NPs before and after 

surface modification with dynamic light scattering (DLS), Doppler Anemometry, transmission 

electron microscope, UV-Vis spectroscopy in addition to some editorial works in the main 

paper and the supporting information. 
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A4 –   Soenen, S.; Montenegro, J.; Abdelmonem, A.; Manshian, B.; Doak, S.; Parak, W.; De 

Smedt, S.; Braeckmans, K., The effect of nanoparticle degradation on poly(methacrylic acid)-

coated quantum dot toxicity: The importance of particle functionality assessment in 

toxicology. ACTA BIOMATERIALIA 2014, 10, (2), 732-741. 

A growing great interest recently has been paid to the unique properties of the colloidal 

fluorescent semiconductor nanocrystals for a wide range of technological and biological 

applications form sensing, tracking, bioimaging to the theranostic applications powered by 

their optical and fluorescence properties. The biological applications of the heavy metal 

containing QDs are a matter of debate due to the toxic effects which might estimate from the 

possible intracellular degradation of the QDs inside the different cellular compartments. In 

this article, a multiparametric toxicological evaluation was performed to evaluate cytotoxicity, 

the intracellular fate and functionality of the well characterized polymer coated red CdSe/ZnS 

core/shell QDs.  The QDs exposed to acidic pH inside the endosomes were partially degraded 

and released cadmium ions resulting in reduced fluorescence intensity and triggering particle 

toxicity. 

Contribution to this paper; 

Preparation of hydrophobically capped red luminescent CdSe/ZnS core/shell QDs with 

emission maximum at 597nm, the amphiphilc polymer, coating of the CdSe/ZnS QDs,  

purification and characterization of the coated using gel electrophoresis and SEC and full 

characterization of the QDs using DLS, Doppler Anemometry, TEM, UV-Vis spectroscopy and 

fluorescence spectroscopy. Studying the effect of pH on the degradation and chemical 

stability of the CdSe/ZnS QDs. Also I have contributed to some editorial works and supporting 

information writing. 

1.2. Nanoparticles in Sensing Applications  

A5 –   Riedel, M.; Göbel, G.; Abdelmonem, A. M.; Parak, W. J.; Lisdat, F., Photoelectrochemical 

Sensor based on Quantum Dots and Sarcosine Oxidase. ChemPhysChem 2013, 14, 2338-2342. 

Sarcosine, also known as N-methylglycine, is a natural nonprotein amino acid formed as 

intermediate and byproduct in the glycine metabolism both anabolism and catabolism. High 

sarcosine level is related to some disorders and diseases like kidney diseases and prostate 

cancer. Recently sarcosine has been extensively investigated as a biomarker for prostate 

cancer diagnosis. In this paper the CdSe/ZnS core/shell quantum dots have been utilized for 

the Sarcosine detection. 

In this study, a sarcosine photoelectrochemical sensor based on the CdSe/ZnS core shell QDs 

is reported. To achieve this purpose, 1,4-benzenedithiol (BDT) capped CdSe/ZnS core shell 

QDs were prepared then electrodes were modified by the BDT capped QDS followed by 

immobilization of the sarcosine oxidase enzyme (SOD) on the QDs uing polyelectrolyte layer 

by layer (LBL) assembly and the dependence of photocurrent on the oxygen is evaluated 

under illumination. 
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Contribution to this paper; 

Synthesis of green fluorescent CdSe/ZnS core/shell quantum dots dispersed in toluene and 

characterization of the prepared QDs using TEM, UV-Vis spectroscopy and fluorescence 

spectroscopy. Editorial works for the paper and writing the supporting  information. 

1.3. Reviews 

A6 –  Fadeel, B.; Feliu, N.; Vogt, C.; Abdelmonem, A. M.; Parak, W. J., Bridge over troubled 

waters: understanding the synthetic and biological identities of engineered nanomaterials. 

Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 2013, 5, (2), 111-129. 

Due to the fast growing interest in the design, manipulation and applications engineered 

nanomaterials and their potential adverse effect on the environment and human health, this 

review tries to shed light on the effect of the different physicochemical properties of the 

nanoparticles on the environmental and toxicological aspects of the nanoparticles. Special 

interest has been paid to the interaction of the nanomaterials with the biological systems and 

biomolecules and the impact of bio-corona formation and its biological identity on the 

biological behavior.  

A7 –  Carregal-Romero, S.; Caballero-Diaz, E.; Beqa, L.; Abdelmonem, A. M.; Ochs, M.; Hühn, 

D.; Suau, B. S.; Valcarcel, M.; Parak, W. J., Multiplexed Sensing and Imaging with Colloidal 

Nano- and Microparticles. Annual Review of Analytical Chemistry 2013, 6, 53-81. 

Making use of the unique properties of the different types of engineered micro- and nano- 

materials (luminescent, plasmonic and magnetic) in the sensing and imaging applications is 

extremely fascinating and fast growing field. 

In the multiplexed sensing, different types of analytes could be probed, detected and/or 

determined in parallel. The multiplexed or multimodal imaging implies that different types of 

materials/tissues can be imaged simultaneously or that different imaging modalities or 

techniques could be combined together in single system to make use of the different 

functionalities like luminescence, plasmonic and magnetic properties. This review focuses on 

the multiplexed sensing, bioimaging applications and concepts of different techniques based 

on nano and microparticles.  After a brief introduction to the main detection, sensing and 

imaging modes, we present to the multiplexed applications and the promising advantageous 

of combining different types of individual NPs into multifunctional system and finally address 

to the challenges and the future prospects of the hybrid nano- and micro inorganic materials in 

the multiplexed sensing and imaging.  
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Abstract 

Colloidal nanoparticles composed out of a 4 nm monodisperse, radioactively labelled gold core 

(198Au) and a radioactively labelled polymer shell (111In) were administered via intravenous 

injection to rats. These nanoparticles have excellent colloidal stability in vitro. Independent 

biodistribution data obtained from the 198Au and 111In labels indicate that in vivo the polymer 

shell comes at least partially off the nanoparticle core. This demonstrates that even high quality 

nanoparticles with well defined colloidal properties in vitro, can radically change their physico-

chemical properties in in vivo scenarios. Additional “in test tube” and in vitro data suggest that 

degradation of the polymer shell may be caused by proteolytic enzymes. Thus physicochemical 

characterization as performed of the nanoparticles in media outside cells has to be considered to 

apply only partly for internalized nanoparticles. 
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Introduction 

The interaction of colloidal nanoparticles (NPs) with living organisms is of utmost importance. 

Currently many clinical applications of NPs are envisaged, and for such intended use their 

properties and mechanisms of interaction need to be well understood. Naturally, in addition to 

those opportunities NPs offer, their potential risks need to be considered as well. Besides 

exposure scenarios based on intended use of NPs on humans for medical applications, also 

unintended exposure due to environmental contamination has to be taken into account. Here, in 

order to predict risks in a quantitative way, data about the interaction of NPs with organisms are 

highly needed. Preferentially mechanisms of interaction could be correlated with the physico-

chemical properties of the NPs, which would facilitate theoretical extrapolation to new classes of 

NP materials 1-3. However, even in in vitro experiments the interaction of NPs with cells can not 

be correlated to their physico-chemical properties in a straight-forward way. We know that the 

hydrodynamic diameter 4, 5, the charge 6-8, the shape 9-11, the colloidal stability, the inertness 12-14, 

and the protein corona 15-17 of NPs can have profound effect on their interaction with cells. 

However, unfortunately most of these parameters are entangled and their effects are hard to 

pinpoint separately 18. Nevertheless, on an in vitro level NPs interaction with cells has been 

investigated with a set of established techniques, which has led to a large base of knowledge. It is 

for example well known that for many NPs colloidal properties may change upon their 

internalization by cells 19, 20. This involves the decrease of pH in endo/-lysosomal compartments 
21. Reduced pH can trigger agglomeration of NPs, which are often stabilized by negatively 

charged groups (such as -COO-) having pKa values higher than the pH in the intracellular 

compartment in which the NPs are typically located after incorporation, thus leading to loss of 

charge and in consequence agglomeration22. Reduced pH also can enhance corrosion of NPs 23 

and in this way result in release of toxic ions, as it is for example the case for CdSe or Ag NPs 13, 

24-26. Uptake even may result in a phase separation of different compartments within one NP 27.  

Besides changing the NP core properties, uptake by cells can also lead to a removal of their 

surface capping as well in vitro 20, 28, 29 as in vivo 30, 31. NP internalization also involves the 

presence of intracellular enzymes, which may degrade the protein corona adsorbed to the NP 

surface, or even may modify the surface chemistry of the NPs 19, 29, 32. As already mentioned, 

these conclusions could be drawn as the fate of NPs and their properties during their life cycle 

can be observed in vitro in model environments by a set of sophisticated optical techniques. 

Fluorescence correlation spectroscopy (FCS) 33 is an example in this direction, which allows for 



determining hydrodynamic radii on a single NP basis. Another important technique is confocal 

microscopy, which allows for tracing of different (fluorescently labelled) parts of NPs inside cells 
7, 20. However, unfortunately these techniques are relatively hard to apply in vivo. While 

recording of biodistributions of NPs is widely reported in literature 34-41, and has been reviewed 

recently 42
, these data do not give direct insight in the physico-chemical properties of the NPs in 

vivo. Though tricks and experimental models exist which allow for accessing NPs directly in vivo 
43, 44, the investigation about the in vivo fate of the physico-chemical properties of NPs remains an 

experimental challenge. Thus, biodistribution can be only correlated to the physico-chemical 

properties of the NPs before NPs administration, but not to the actual in vivo physico-chemical 

properties. Most important hereby is the question about the integrity of the NPs themselves. 

Obviously NPs with poor in vitro properties (i.e. in particular under presence of salt and 

proteins), such as low colloidal stability or degradation by release of ions / ligands from their 

surface, will perform even worse in vivo. But what happens to NPs which are well characterized 

and have been reported to be stable in vitro? In order to trace the fate of the different NPs 

compounds, involving an inorganic core, the organic surface capping, and the adsorbed protein 

corona each of the compounds of the NPs needed to be tagged individually with a label allowing 

for in vivo detection. In this work we have individually labelled the core and the shell of 

monodisperse Au NPs with radioisotopes 45 and followed their respective in vivo biodistribution. 

Equal biokinetics of both radiolabels would indicate in vivo integrity of the NPs, while different 

biodistribution of core and shell would indicate (partial) in vivo degradation of the NPs. 

 

 

Materials and Methods 

NPs preparation and characterization: In this study we decided to individually label inorganic 

cores and their organic surface capping with radionuclides. Radioactive labelling with γ-emitters 

are very well suited for quantitatively recording in vivo biodistributions of NPs 42, 46. Gamma-

radiation is barely absorbed by tissue, it is not changed by conditions in different compartments 

of an organism (fluorescence can be for example quenched depending on the local pH), and by 

using radioisotope emitters at different energies multiple labels can be observed. As NP material 

we used Au, as these NPs can be conveniently made radioactive by neutron irradiation as 

described earlier 34. Neutron activated Au cores contain the isotope 198Au, which emits γ-

radiation at 315 keV and 412 keV. There are no naked NPs in biological environments and in 



order to stabilize them an organic coating (either artificial or natural by proteins) is required 18. 

We chose a polymer-coating procedure for providing colloidal stability to the Au NPs 47. The 

entire system (small Au cores of core diameter dc = 4  2 nm with polymer coating leading to a 

hydrodynamic diameter of dc = 13    1 nm, cf. the Results section) was chosen on purpose, as 

these NPs have been characterized in detail in the last decade 47. It has to be pointed out however, 

that these NPs are smaller than 30 nm core Au NPs which are frequently proposed for therapeutic 

applications (e.g. AurimuneTM 48-50 and AuroshellTM 51, 52) and thus will result in a different 

biodistribution 53. As coating we chose a previously established polymer-coating procedure 47 as 

this coating can be used for NPs with cores of most materials and thus is very universal, and has 

been characterized in detail in vitro concerning physicochemical properties (in particular 

concerning colloidal stability 8, 54), NP incorporation 8, and cytotoxic properties 55-57. It is also 

compatible with basic in vivo requirements 35. Most important, the polymer shell can be easily 

individually labelled. By introduction of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 

(DOTA) as chelator specific for indium, the radioisotope 111In was integrated into the polymer 

shell 45. Carrier-free 111In was purchased from Perkin & Elmer. 111In emits γ-radiation at 171 keV 

and 245 keV and thus can be in principle independently recorded from 198Au at higher γ-energies 

of 315 keV and 412 keV after correction of the Compton irradiation of 198Au in the 111In photo-

peak. The geometry of these NPs is shown in Figure 1. Gamma-emission spectra were in 

agreement with our previous study 45. Purification of the NPs from unbound 111In ions was 

achieved by extensive washing steps with size exclusion columns 45, yielding to a NPs solution in 

which virtually no free 111In or 198Au (which might have been removed from the Au core) existed. 

Based on the reaction protocol and stringent purification we assume strong linkage of DOTA as 

the chelator for 111In to the polymer shell around the 198Au NPs. Linkage however also partly may 

involve electrostatic binding of the positively charged 111In ions to the negatively charged 

polymer shell (see the Supporting Information for a detailed experimental assessment). In  

addition to polymer coated Au NPs with radioactive double label (198Au and 111In label in the Au 

core and the polymer shell with incorporated DOTA, respectively) we also used polymer coated 

quantum dots (CdSe/ZnS QDs) with double fluorescence label, which were synthesized 

according to previous reports 45. The intrinsic fluorescence of the inorganic QDs (@ 605 nm) 

hereby was the label for core of the NPs. The fluorophore DY495 was covalently attached to the 

polymer shell and thus formed the shell label. 

 



Animals: Healthy, female Wistar-Kyoto rats (WKY/Kyo@Rj rats, Janvier, Le Genest Saint Isle, 

France), 8–10 weeks of age (approximately 250 g body weight) were housed in pairs in humidity 

and temperature-controlled ventilated cages on a 12 h day/night cycle. Rodent diet and water 

were provided ad libitum. All experiments were conducted under German federal guidelines for 

the use and care of laboratory animals and were approved by the Regierung von Oberbayern 

(Government of District of Upper Bavaria, Approval No. 55.2-1-54-2531-26-10) and by the 

Institutional Animal Care and Use Committee of the Helmholtz Center Munich. 

 

NPs administration and animal maintenance in metabolic cages: The entire administration has 

been already described previously 34-37. Briefly, the rats were anesthetized by inhalation of 5 % 

isoflurane until muscular tonus relaxed. NPs suspensions (50 to 70 µL containing 1-10 µg of 

double-labelled gold NPs) were administered to the animals via intravenous injection into the tail 

vein of the animal. After administration of the NPs suspensions, rats were kept individually in 

metabolic cages for separate collection of total urine and feces. 

 

Sample preparation and radio analysis: One hour or 24 hours post exposure, rats were 

anesthetized (5 % isoflurane inhalation) and euthanized by exsanguination via the abdominal 

aorta. Approximately 70 % of the total blood volume was withdrawn. Radio analysis was 

performed on at least four rats for each time point according to the previous description 34-37. 

Briefly, total organs, tissues, body fluids, the remaining carcass, and total excretion were sampled 

and γ-spectrometrically analysed as previously described 34-37. The 198Au or 111In radioactivities 

of all samples were measured without any further physico-chemical preparation of the samples by 

gamma-spectroscopy. Small organ and tissue samples were analyzed in a lead-shielded, 10 mL 

well type NaI(Tl) scintillation detector while a lead-shielded, 1 L well type NaI(Tl) scintillation 

detector was used for large samples like the remaining carcass. The Compton correction was 

carried out using the gamma acquisition analysis software Genie 2000 (Canberra Industries, 

Rüsselsheim, Germany). The count rates were adjusted for physical decay and background 

radiation. Additionally, the 198Au or 111In count rates were calibrated to either a 198Au or 111In 

reference source at a reference date in order to correlate 198Au and 111In radioactivities to the 

numbers and masses of the Au NPs. Samples yielding net counts (i.e. background-corrected 

counts) in the photo-peak region-of-interest of the 198Au gamma spectrum were defined to be 

below the detection limit when they were less than three standard deviations of the background 



counts of this region-of-interest. While dissecting, no organs were cut and all fluids were 

cannulated when necessary in order to avoid any cross contamination. By this approach we 

quantitatively determined the entire 198Au and 111In dose independently from each other in the 

entire animal by analysing for each radio-isotope each organ and tissue and total excretion. Thus, 

for each radio-isotope a 100 % balance of the biodistribution was performed.  

 

Blood correction: Blood contents of organs and the remaining body were calculated according to 

the findings of Oeff et al. 58 as described previously 34-37. 

 

Calculations and statistical analysis: All calculated data are given as a percentage of the relevant 

integral radioactivity of all samples in each animal with the standard error of the mean (SEM).  

 

Accompanying “in test tube” and in vitro experiments with QDs: In order to support the in vivo 

observations as obtained with polymer-coated Au NPs with double radionucleotide labelling 

additional "in test tube" and in vitro experiments were performed with polymer-coated QDs with 

double fluorescence labelling (one colour for the inorganic NP core, one colour for the organic 

polymer shell) which had similar geometry, surface chemistry, and colloidal properties. "In test 

tube" polymer coated QDs were incubated with different proteolytic enzymes and resulting 

fragments of the DY495-labelled polymer shell / released DY495 were separated from the NPs 

by filtration. The amount of released fluorescence label by enzymatic degradation from the 

polymer coating was quantified with fluorescence spectroscopy. For in vitro experiments Huvec 

and Kupffer cells (which are relevant for NPs incorporated in the liver) were exposed to polymer 

coated QDs labelled with different fluorophore labels in their polymer shell. Colocalization 

experiments between the QD core and the polymer shell label were performed. The fluorescence 

spectra of exocytosed QDs and QDs found in cell lysate were compared (for details see the 

Supporting Information). 

 

Results  

Characteristics of the double radio-labelled Au NPs using 198Au and 111In: The prepared Au NPs 

had a core diameter of dc = 4  2 nm (as determined by transmission electron microscopy, TEM), 

a hydrodynamic diameter of dh = 13  1 nm (as determined by dynamic light scattering, DLS), 



and a zeta-potential of - 46  16 mV (as determined via Laser Doppler Velocimetry, LDV, cf. the 

Supporting Information for more details). The QDs had a core diameter of dc = 3 ± 1 nm (as 

determined by TEM) and a -potential of 28 ± 4 mV (as determined by LDV). Due to the 

intrinsic fluorescence of the QDs we were unable to measure their hydrodynamic diameter with 

DLS. However, as Au NPs and QDs had a similar core size and also a similar polymer was used 

for coating, leading to highly negatively charged NPs,  in accordance with previous studies 59 we 

assume similar colloidal properties.  

 

In vivo biodistribution of core (198Au) and shell (111In): Note, if both radio-labels are firmly 

attached to the gold NPs the biodistribution is expected to be identical at any retention time. In 

Figure 2 the quantitatively balanced biodistribution (i.e. the sum of all 198Au radioactivities and 

of all 111In radioactivities as detected in all organs is 100%, respectively) of the NP core radio-

label 198Au and the NP shell radio-label 111In are shown 1 h and 24 h after intravenous (i.v.) 

injection on a logarithmic scale (the same data as plotted on a linear scale are shown in the 

Supporting Information). One hour after i.v. injection liver retention is dominant by far followed 

by the spleen for both radio-isotopes. Also the retention in the remaining carcass consisting of 

soft tissues, skin and skeleton is almost 10% for both radioactivities. There is a striking difference 

between both radio-isotopes with much more 111In in blood and urine than 198Au. There are only 

very slight differences in the 198Au patterns as observed after 1-hour versus 24-hours, in 

agreement with previous studies 35. In contrast, there are considerable variations in kidneys, 

blood, remainder, and in fecal and urinary excretion of the 111In label of the shell. Concerning the 

stability of the radioactive labels the 198Au within the stable 197Au matrix as a result of the 

neutron-activation of the original gold NPs has been shown to dissolve negligibly out of the gold 

NPs cores and, thus, the gold NPs are virtually insoluble 60. Therefore the 198Au label indicates 

the biokinetics of the gold NPs which does not change much between 1 and 24 hours. However, 

in order to analyse the data more rigorously by calculating the 111In to 198Au ratio for each organ 

and tissue and each time point, major differences between the retention of the two radio-isotopes 

become evident. This is shown in Figure 2e (one hour) and Figure 2f (24 hours). After one hour 

the isotope ratios of the organs deviate between 0.5 and 1.8 from unity (cf. the table 

corresponding to the data of Figure 2 in the Supporting Information). However, the 111In retention 

in blood and urine is two orders of magnitude higher than the 198Au content. Similarly, the 111In 

retention in the gastro-intestinal-tract and feces is ten-fold higher than the 198Au retention and 



excretion. After 24 hours the ratios in liver and spleen – those organs which retain most of both 

radio-isotopes – remain virtually unchanged. Yet, remarkable changes of the 111In to 198Au ratio 

are observed elsewhere with a large increase in the kidneys from 1.6 to 5.6 and a two-fold 

increase in the remainder from one to 24 hours. In contrast, the 111In to 198Au ratio decreases 

massively a ten-fold in blood and it increases four-fold in GIT and feces. These changes are 

mainly caused by changes of the 111In retention, while the 198Au retention remained rather 

unchanged between 1 and 24 hours. This differential behaviour indicates dissociation and 

removal of the 111In label from the shell of the initial NP. The stability of the 111In label 

(concerning its location in regard to the Au NPs) is more complicated to discuss. We had already 

performed auxiliary biokinetics studies in C57 Bl6 mice using a soluble form of the 111In radio-

isotope (as free ion) and of a complex of 111In with the chelator diethylene triamine pentaacetic 

acid (DTPA) in order to distinguish the biodistribution of the soluble form (111In ions) from the 

chelated form (111In-DTPA) and from the particulate form (polymer coated Au NPs with 111In in 

the polymer shell) using the same quantitative approach (cf. Figure 3 and the Supporting 

Information). The biodistribution of the 111In ions is remarkably different to the one of chelated 
111In (cf. Figure 3). While 111In ions are barely excreted in urine, the chelated form of 111In is in 

particular excreted in the urine at both time points. The 24 hours biodistribution of the 111In ions 

appears to be similar in most organs and in the remainder compared to the biodistribution of the 

initially administered particulate form, but it differs in blood and excreta when comparing Figure 

2d with Figure 3. The biodistribution of the particulate form thus resembles more the one of the 

chelated form, in particular, when concerning excretion in urine. Admittedly the biodistribution 

data obtained from mice cannot be compared directly to the rat data due to possible species 

differences. Yet they are suitable to serve as trend indicators in case there are major similarities 

or major differences between the soluble ionic 111In in mice and the 111In in rats, which may or 

may have not left within the shell of the double labelled Au NPs. Clearly the soluble 111In ions 

are also retained predominantly in the liver, spleen, lungs, and the remaining carcass, like the 
111In of the shell label of core-shell Au NPs does. Hence, these data are an additional indicator for 

a NP-free retention of the 111In label supporting our above noted conclusions based on the 

comparison of Figure 2a versus Figure 2c after 1 h and Figure 2b versus Figure 2d after 24 h, that 

part of the 111In label had come off the Au NPs. Interestingly, the differences in Figures 2d and 3 

for blood and urine indicate that not the 111In ion may have come off the gold NP but parts or the 

entire polymer shell may have been removed from the NP in the complex biological system of 



the rat body. This is supported by the differing data obtained from GIT-feces which represent the 

hepato-biliary clearance (HBC) of 111In from the liver via the bile into the lower intestine 36. The 

HBC of the Au NPs is lower (Figure 2b), but the HBC of 111In shells is 25-fold higher (Figure 

2d). The HBC of free 111In ions is in-between (Figure 3). In particular, the data of the initially 

administered particulate form of 111In are similar with the chelated form of 111In, which is another 

indication that not the 111In itself may have come off the NPs, but parts of the polymer shell with 

the chelated 111In. While our biodistribution analysis employing radioactive labels allows us to 

conclude which percentage of the labelled parts of the NPs (the 198Au-labelled core and the 111In-

labelled (fragmented) polymer shell) is found in the respective organs, our data do not provide 

information about the distribution within the organs, i.e. in which cells NPs have been 

incorporated. As we anticipated to administer a very low NP dose in order to prevent any toxic 

effect eventually caused by a high mass dose of Au NPs, the number of NPs is so low that they 

are significantly (in terms of absolute mass) only found in the prominent organs of accumulation 

(in particular the liver), cf. Figure 2, which also is in line with our previous publication 36. In 

principle histological studies on each of the investigated organs (by using for example silver 

staining 61) would allow for determining the NP distribution within each organ. In the present 

study such analysis was not performed, assuming that the NP distribution within the different 

organs will be similar to the one of other NPs, which have been investigated. In a previous study 

it has been found for example, that within the liver (which as mentioned is the organ of main 

interest) Au NPs with dc = 18 nm were prominently found in Kupffer cells, but also in 

hepatocytes and in endothelial cells 36. 

 

Enzymatic degradation of the polymer shell: The data shown in Figure 5a demonstrate that after 

incubation of the QDs with different proteolytic enzymes such as those found in serum, - trypsin, 

pronase, proteinase 3, and cathepsin G - part of the DY495 label is removed from the QDs, be it 

in its free form, or bound to released polymer molecules. Presence of proteolytic enzymes thus 

degrades the polymer shell "in test tube".  

 

In vitro degradation of the polymer shell: Huvec and Kupffer cells were incubated with QDs. 

Colocalization analysis of the fluorescence originating from the QD core and the fluorescence 

originating from the fluorescence label of the polymer shell indicate that after several hours the 

polymer shell label is partly displaced from the QD label, which is in agreement with findings of 



others 20. In the medium the fluorescence of exocytosed QDs has a lower fraction of QD 

fluorescence compared to DY495 fluorescence, as it is found for QDs inside cells which have 

been analysed after cell lysis. Also these data indicate that the DY495-labelled polymer shell and 

/ or the DY495 label partly come off the QDs and are preferentially exocytosed, cf. Figure 5b. 

 

Discussion 

Remarks on the stability of 198Au within the core of the Au NPs: The isotope ratio of 198Au to 

stable 197Au is 6.610−6 for the 4 nm sized monodisperse Au cores used. Note that this ratio is 

extremely low, so that statistically only one 198Au isotope can be found in one Au NP and only 

one out of 50 Au NPs contains one radioactive 198Au atom at all. In addition, when calculating 

the number of Au atoms on the surface of the 4 nm Au NPs over the total number of Au atoms 

contained in one Au NP this ratio is 0.3. Since the neutron irradiation process in the nuclear 

reactor leads to an isotropic and statistically determined nuclear conversion reaction of stable 
197Au into radioactive 198Au, about one third of the radio-labelled atoms are on the surface and 

two thirds are distributed within the cores of the Au NPs. Even the fraction on the Au NPs 

surface is still mainly bound tightly within the matrix of the Au NPs lattice. Hence, release of Au 

atoms from the Au NPs surface at best will be rather small. Since 198Au ions released from Au 

NPs would have been excreted predominantly via urine the observed 198Au percentage in urine of 

0.02% indicates a much lower leaching than the 198Au surface fraction. This was confirmed in a 

recent publication 60, in which we compared the biokinetics of dissolved Au ions versus Au NPs 

and found that the entire biokinetics patterns is very distinct between the two forms supporting 

the notion, that dissolution or dissociation of the 198Au label is negligible. The observed urinary 

NPs excretion is consistent with our previous data of 5 nm Au NPs coated with 

triphenylphosphine 35, 36. In addition, this fraction of Au atoms being eventually detachable was 

washed away during the thorough washing procedures after first the neutron irradiation and 

multiple times after the Au NPs surface coating by the polymer molecules and the additional 

labelling with radioactive 111In ions. Hence, virtually the entire 198Au radio-labels are firmly 

bound to the Au NPs which were finally administered to the animals. 

 

Remarks on the stability of 111In within the shell of the Au NPs: 111In is specifically chelated by 

ABz-DOTA (S-2-(4-Aminobenzyl)-modified DOTA, whereby the amino group is used for 

linkage of the chelator to the polymer shell), which itself is covalently attached to the polymer 



shell. However, positively charged 111In can also electrostatically adsorb to the negatively 

charged polymer surface of the Au NPs. X-ray photoelectron spectroscopy (XPS) data reveal that 

Au NPs bearing ABz-DOTA in their shell bind at least twice more 111In than Au NPs without 

ABz-DOTA (cf. the Supporting Information). Inductively coupled plasma mass spectrometry 

(ICP-MS) data of our previous study suggest an even higher increase in attachment upon 

presence of ABz-DOTA 45. Thus we assume that at least 50% of 111In is chelated by ABz-DOTA. 

ABz-DOTA is linked via amide-bond formation to the polymer shell. 1H NMR data clearly show 

presence of ABz-DOTA in the polymer shell, but however do not prove covalent character of 

bonding. However, XPS data suggest a higher amount of amide-bonds in the polymer shell after 

attachment of ABz-DOTA, which would be in line with the assumption of covalent linkage (cf. 

the Supporting Information). Though our data do not permit a final proof of covalent attachment 

of ABz-DOTA, the used reaction scheme for conjugation, stringent purification protocols which 

would have removed adsorbed ABz-DOTA, and XPS data suggest at least a high fraction of 

covalent attachment.  

 

Results indicate that the biodistribution of 111In and 198Au are not the same: The two patterns of 

biokinetics clearly indicate different biokinetic fates of the two radio-labels, cf. Figure 2. Since 

the 198Au label is firmly bound to the core of the stable 197Au NPs it is an indicator of the 

biokinetics of the Au NPs themselves. Hence, the 111In label had come off the NP surface. 

Furthermore, the auxiliary studies on the 24 h biodistribution of the pure, soluble, 111In ions 

intravenously injected in C57 Bl6 mice is rather similar to the pattern of the 111In in the 

predominant sites of retention – liver, spleen, lungs and the remaining carcass - which originally 

was bound to the polymer on the surface of the Au NPs. While biodistribution of pure, soluble, 
111In ions and chelated 111In in mice will not be identical to the corresponding biodistribution in 

rats, the data still show a trend, in particular pointing out that free and chelated 111In have a 

completely different biodistribution, cf. Figure 3. Whereas the Au NPs (198Au label), and the 

ionic from of 111In were barely excreted in urine, chelated 111In and the particulate form of In 

(111In label of the polymer shell) were found in significant amounts in urine (cf. Figures 2 and 3). 

Thus we conclude that the 111In was not predominantly released from the polymer (as free ion), as 

in this case much fewer 111In would be expected to be found in the urine. Thus the most likely 

explanation is that at least fragments or the entire polymer molecule was detached from the Au 

NPs surface. This is also indicated by the fact that the 111In bound to the polymer shell is excreted 



via urine, as chelated 111In. As less 111In-labelled polymer than chelated 111In is excreted the 

polymer fragments detached from the Au NP surface seem to be bigger than one individual 111In-

DTPA complex, which makes filtering in the kidney less efficient. This is indeed was rather 

surprising to us, since the polymer binding and its molecular stability was considered to be fairly 

stable. However, similar findings have been claimed in vitro 20. Yet it indicates that the plethora 

of enzymes and proteins in the extracellular body fluids and within the intracellular cytosols of 

endocytotic cells may possess the capacity to crack these bindings, as will be discussed in the 

next section. Even considering the fact that at maximum 50% of attached 111In may be only 

electrostatically adsorbed to the NP surface and not chelated by ABz-DOTA, the ratio of 111In to 
198Au changed by much more than 50% after i.v. injection, see Figures 2e,f. Thus a significant 

part of the released 111In must have come off the NP surface still chelated by DOTA. However, 

our biokinetic data cannot discriminate whether the entire polymer shell with DOTA-chelated 
111In was removed from the Au NPs surface or only in part. As the exact amount of polymer on 

the NP surface is unknown (the added part of polymer is known, but not the attached one after 

stringent purification) it is hard to estimate the average number of 111In ions per polymer 

molecule on the NP surface. In addition, we cannot fully exclude release of DOTA (together with 

chelated 111In) from the polymer shell. However, as we assume covalent attachment of DOTA to 

the polymer shell, whereas the polymer shell itself is bound to the Au cores only via hydrophobic 

interaction 47 it is rather likely that DOTA-chelated 111In came off the Au NPs with fragments of 

the polymer shell. 

 

Remarks on the influence of the surface chemistry of the Au NPs: In a previous report we studied 

the biokinetics of 5 nm core Au NPs coated either with triphenylphosphine sulfonate (TPPS), or 

with a polymer shell similar to the one used in this study, which had been further conjugated with 

polyethylene glycol (PEG) of either 750 Da or 10 kDa molecular weight 35. We found a 

prolonged time of NP circulation - as predicted for intravenously administered PEGylated NPs - 

only for the Au NPs coated with the long chain PEG (10 kDa). The short chain (750 Da) 

PEGylated Au NPs showed a similar pattern as the TPPS coated Au NPs. Already in this 

previous report we discussed this finding as an indication for a possible instability of the short-

chain PEG coating. Comparing the 24 h biodistribution of the 198Au core from the present study 

to that of 5 nm Au NPs coated with TPPS of our previous study 35, 36 the similarity in each organ, 

tissue and body fluid is remarkable (cf. Figure 4). Since the protein corona plays a significant role 



in the determination of the biokinetic fate of the intravenously injected Au NPs, the similar 

patterns indicate that the protein coronas seem to be very similar. On the other hand, it appears 

unlikely that the two different coating molecules – polymer versus TPPS – bind exactly the same 

pattern of serum proteins. However, for the TPPS coated Au NPs it was shown that the coating 

was rather quickly removed in a cellular in vitro assay 62. This suggests that also the polymer 

coated Au NPs get rid of major parts of their polymer coating in vivo and the protein corona is 

formed on a partly “naked” surface of the Au NPs. If this is true and taking into account the 

similarity shown in Figure 4, it appears likely that the polymer shell of the Au NPs in our present 

study was also partly stripped off resulting in a similar protein corona on partly “naked” Au NP 

surface and hence to a similar biodistribution. This is all in line with our final conclusion that 

under in vivo scenarios part of the organic coating around inorganic NP cores is displaced.  

 

Remarks about potential consequences for drug targeting with NPs: While NPs may loose part of 

their original colloidal stability after intravenous administration by loss of the original organic 

coating, possible consequences for drug targeting will depend on the precise kinetics. Figure 2e, f 

demonstrates that while after 1 h the polymer shell around the Au NPs in blood still seems to be 

dominantly intact, after 24 hours a significant part of the polymer shell of Au NPs circulating in 

blood is already removed. Once the NPs have reached their potential target (e.g. a tumour), loss 

of the polymer shell will have little consequences, whereas partial degradation already in blood 

may lead to reduced retention times in blood. Thus, the time scale for the degradation of the 

polymer shell needs to be put into context with the retention time of the NPs in blood. Future 

studies in which degradation is kept constant, while retention times are increased, e.g. by further 

overcoating with PEG 35 may provide important additional information. 

 

The partly removal of the polymer shell may be caused by enzymatic degradation: Our working 

hypothesis for explaining the in vivo degradation of the polymer shell is proteolytic digestion. 

Proteolytic enzymes cut amide bonds and thus could directly release the shell label (DOTA 

chelator for 111In or DY495 fluorophore) or cause release of polymer molecules by cutting the 

hydrophobic side chains, which are attached to the polymer backbone via amide bonds. "In test 

tube" data demonstrate that proteolytic enzymes in fact cause (partial) release of the polymer 

shell from the NPs. Both, in blood and after internalization by cells, NPs are in fact exposed to 

proteolytic enzymes, which makes the above described scenario plausible. Our in vitro data 



demonstrated that also for NPs incorporated by cells (typically in endo/lysosomal compartments) 

there is a (partial) separation of the organic shell from the inorganic NP core. While these data 

are clearly not sufficient to ultimately proof a pathway for the in vivo degradation of the NPs, 

they suggest degradation by proteolytic enzymes as likely scenario. 
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Figures 

 

 

Figure 1: Sketch of the NPs with double radio-label. 

   



 

 

Figure 2: Quantitative balance of the 1 hour and 24 hours biodistribution of double-labelled Au 

NPs (dc = 4 ± 2 nm) with a 198Au core radio-label and an 111In shell radio-label in Wistar-Kyoto 

rats. Mean data ( SEM) are given in percent of administered dose (n = 4). “Remainder” 

represents radio-labels found in the remaining rest of the carcass, including soft tissues, skin and 

skeleton, after sampling of all organs and tissues. “GIT+feces” represents the radio-labels found 

in the gastro-intestinal-tract and in feces (note that after 1 hour no radio-labels were found in 

feces). “Blood” represents the total content of radio-labels as calculated from the measured 

content in the blood sample and the estimate of the total blood volume (cf. Methods). a, b) 

biodistribution of the 198Au NP core radio-label. c, d) biodistribution of the 111In shell radio-label. 

e, f) ratio of 111In shell to 198Au NP radio-label in each organ and tissue. 



 

 

Figure 3: 3 and 24 hours biodistribution of soluble free 111In ions and of 111In-DPTA chelate 

complexes after intravenous administration in C57 Bl6 mice. Mean data ( SEM) are given in 

percent of administered dose (n = 4).  

 

 

Figure 4: 24 hours biodistribution of monodisperse Au NPs (dc = 5 nm) coated with 

triphenylphosphine (TPPS) (data taken from our previous study 35) and of Au NPs (dc = 4 ± 2 

nm) coated with a DOTA-modified polymer shell (data taken from Figure 2b) in Wistar-Kyoto 

rats. Mean data ( SEM) are given in percent of administered dose (n = 4). 

  



 

 

Figure 5: a) Fraction I518/I518(0) of DY495 label released from the shell around the QDs after 24 h 

"in test tube" incubation with phosphine buffered saline (PBS, pH = 7.4), fetal bovine serum 

(FBS, 10%), trypsin (0.05%), pronase (0.2 units/mL), proteinase 3 (0.003 units/mL), and 

cathepsin G (13 units/mL) as quantified by the fluorescence  I518 of DY495 (@ 518 nm) of the 

released DY495 label after separation of by ultrafiltration, as compared to the original 

fluorescence I518(0) of the DY495 label attached to the QDs. b) Ratio of QD and DY495 

fluorescence (I605 /I518) for exocytosed QDs and QDs found inside cells (cell lysate) after Kupffer 

cells had been incubated with the QDs for 22 h followed by additional 3 h incubation after having 

removed the free QDs from the medium.  
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N
anoparticles (NPs) are presently
being employed in a wide variety
of biomedical and biotechnological

applications. In some applications, such as
targeted drug delivery, researchers aim
to develop NPs such that they are selec-
tively incorporated by specific cell types in
living tissue. In other applications, such as
NP-based contrast agents for magnetic res-
onance imaging, NPs should stay in the
bloodstream and subsequently be cleared
by the kidneys, but not be internalized by
cells. It is known that cellular NP uptake is
strongly influenced by the NP size as well as
their surface properties, including decora-
tion by functional groups and biomolecules.
A detailed understanding of the interac-
tions between NPs and different cell types
is key to understanding and controlling
cellular uptake mechanisms.1�4

NPs entering the human body first come
in contact with a biological fluid, e.g., blood
or lung-lining fluid. They interact with the
dissolved biomacromolecules, in particular

proteins, and an adsorption layer of proteins,
the so-called “protein corona”, forms around
the NPs.5�7 While protein adsorption onto
planar surfaces has been investigated for
decades, detailed studies of NP�protein in-
teractions have only started recently.8�13

Studies have especially focused on the ef-
fects of physicochemical parameters of
NPs (e.g., size, shape, composition, surface
roughness, porosity, surface charge) on the
formation of the protein corona.14 The tem-
perature, however, at which theNPs and the
protein are maintained in solution likewise
should be an important factor influencing
the corona composition. For example, it has
been shown that the composition of the
protein corona formed upon NP exposure
to heat-inactivated proteins (preheating
at 56 �C) and non-heat-inactivated proteins
is different.15 As a result, significant differ-
ences were observed in the amounts of
NPs taken up by cells. However, tempera-
ture effects close to physiological tempera-
ture (i.e., not involving denaturation) on the
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ABSTRACT Upon incorporation of nanoparticles (NPs) into the body, they are exposed to

biological fluids, and their interaction with the dissolved biomolecules leads to the formation

of the so-called protein corona on the surface of the NPs. The composition of the corona plays a

crucial role in the biological fate of the NPs. While the effects of various physicochemical

parameters on the composition of the corona have been explored in depth, the role of

temperature upon its formation has received much less attention. In this work, we have probed the effect of temperature on the protein composition on the

surface of a set of NPs with various surface chemistries and electric charges. Our results indicate that the degree of protein coverage and the composition of

the adsorbed proteins on the NPs' surface depend on the temperature at which the protein corona is formed. Also, the uptake of NPs is affected by the

temperature. Temperature is, thus, an important parameter that needs to be carefully controlled in quantitative studies of bionano interactions.

KEYWORDS: colloidal magnetic nanoparticles . protein corona . temperature dependence . uptake by cells . protein adsorption
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protein corona have not yet been studied in detail.
Those effectsmay be relevant for in vivo applications of
NPs because body temperature can vary significantly.
The mean human body temperature ranges from 35.8
to 37.2 �C and varies for different parts of the body.16 It
decreases during sleep and increases by up to 2 �C
during physical activities and can even climb to 41 �C in
the case of fever.17 It is also known that the tempera-
ture in peripheral parts of the body (e.g., skin) during
exposure to cold weather can drop to 28 �C.18 Very
recently, even the intracellular temperature of living
cells was shown to be inhomogeneous.19,20

If protein adsorption onto the surface of NPs de-
pends on the body temperature, it may also result in a
significant effect on the cellular uptake of NPs in vivo.
Therefore, we have studied the influence of near-
physiological temperature variation on the formation
of the protein corona, using superparamagnetic NPs
synthesized from different materials with different
surface coatings and thus different ζ-potentials as
model NPs. Magnetic NPs enable effective magnetic
washing and separation, which is beneficial for han-
dling of small amounts of NP sample. Precisely defined
and well-characterized polymer-coated FePt NPs were
incubated with human serum albumin (HSA) and apo-
transferrin (apo-Tf) at different concentrations and
temperatures, and the monolayer formation of adsorbed
proteins was quantified by using fluorescence correla-
tion spectroscopy (FCS). Moreover, larger FeOx NPs
(superparamagnetic ironoxideNPs, SPIONs) withpositive
and negative charge and also with neutral surfaces were
incubated in fetal bovine serum (FBS) at different tem-
peratures, and the compositions of the resulting coronae
were analyzed as a function of the incubation tempera-
ture.Wehavealso assessed the effect of the temperature-
dependent corona composition on cellular uptake.

RESULTS AND DISCUSSION

Temperature Dependence of HSA and apo-Tf Monolayer
Formation on FePt NPs. For our protein adsorption studies
we used fluorescently labeled, negatively charged
polymer-coated FePt NPs. The inorganic core diameter,
dc, was determined by transmission electron micro-
scopy (TEM). The hydrodynamic diameter, dh, was
measured by dynamic light scattering (DLS, cf.
Table 1) and fluorescence correlation spectroscopy
(FCS, cf. Table 2) at room temperature in phosphate-
buffered saline (PBS). Results obtained with the FCS
method (dh = 12.0 ( 0.2 nm and 10 ( 0.4 nm for two
different batches at room temperature) are very pre-
cise and reproducible and have been verified in several
independent studies.21�24 The DLS data on bare NPs
without proteins (dh = 10 ( 5 nm) are;within experi-
mental error;in agreement with the FCS data but
have larger margins of error.21,24 Furthermore, the FCS
data (cf. Table 2) indicate that temperature variation
between 9 and 43 �C does not affect the hydrodynamic

diameter of the bare FePt NPs. Thus, the polymer
surface of these NPs can be considered to be stable
in this temperature range. In a previous study, we also
demonstrated that the polymer shell of the NPs dis-
solved in PBS remains stable over time.14

Protein adsorption was quantified in terms of
changes in hydrodynamic radius, rh = dh/2, of the
NPs by using FCS. We studied the adsorption of HSA
and apo-Tf, two important serum proteins, onto poly-
mer-coated FePt NPs. Please note that, due to the small
size of the NPs and due to the thin protein shell (which
provides only little contrast), TEM turned out not to be
the method of choice for the analysis of the protein
corona (cf. Supporting Information). FCS analysis was
performed directly on NP solutions with varying pro-
tein concentrations. Because the fluorescent labels
reside in the polymer shell of the FePt NPs and not
on the proteins, there was no need for purification
steps to remove unbound proteins, which may
introduce errors in the quantitative assessment of
protein�NP interactions. Thus, FCS measurements
allow for the direct analysis of the proteins forming
the protein corona in situ. Because the surface of our
polymer-coated FePt NPs is homogeneous, a spherical
shape will be maintained under saturating conditions,
i.e., when the whole NP surface is covered with protein.
In the other limit, i.e., upon binding of only one or two

TABLE 1. Core (dc) and Hydrodynamic (dh) Diameters of

NPs As Determined with TEM and DLS (at room tempera-

ture in PBS)

NP material charge dc [nm] dh [nm]

FePt Negative 3.5 ( 0.6 10 ( 5
FeOx Negative 15 ( 5 33 ( 8
FeOx Neutral 22 ( 7 33 ( 10
FeOx Positive 17 ( 5 79 ( 7

TABLE 2. Temperature-Dependent Protein Adsorption

ontoFePtNPsAsDerived fromFCSMeasurements inPBSa

HSA

T [�C] rh(0) [nm] rh(Nmax) [nm] K0D [μM] n Nmax

13 5.5 ( 0.3 9.2 ( 0.4 10 ( 4 0.6 ( 0.1 31 ( 5
23 6.0 ( 0.1 9.3 ( 0.2 6.3 ( 2.2 0.9 ( 0.2 30 ( 3
43 6.0 ( 0.1 8.8 ( 0.2 0.8 ( 0.4 0.7 ( 0.2 23 ( 2

Apo-Tf

T [�C] rh(0) [nm] rh(Nmax) [nm] K0D [μM] n Nmax

9 5.1 ( 0.2 15.1 ( 0.8 13 ( 4 0.6 ( 0.1 47 ( 7
22 5.0 ( 0.2 14.3 ( 0.7 16 ( 6 0.7 ( 0.1 40 ( 6
43 5.3 ( 0.1 11 ( 0.4 5 ( 1 0.7 ( 0.1 17 ( 2

a rh(0) and rh(Nmax) are the hydrodynamic radii of NPs without adsorbed proteins
and upon saturation of the NP surface with proteins, respectively; n is the Hill
coefficient, which controls the steepness of the binding curve, Nmax is the maximum
number of proteins adsorbing onto a single NP, and K0D represents the concentra-
tion of protein molecules at half coverage. Data for two different proteins are
shown, HSA and apo-Tf.
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protein molecules per NP, the resulting shape is
aspherical. However, FCS is not sensitive to small
deviations from a spherical shape. In fact, in the
analysis, we have made the approximation that the
shape of the NPs remains spherical upon protein
binding.

In accordance with our previous study21 at room
temperature HSA adsorption increases with protein
concentration in the solution up to the formation of a
protein monolayer, as we have observed in situ by
using FCS. In Figure 1a, we show HSA monolayer for-
mation for a set of three temperatures (13, 23, 43 �C), as
inferred from (i) the observed saturation behavior, i.e.,
the NP size does not continue to increase beyond a
certain HSA concentration, and (ii) the increase in NP
size due to HSA binding, which corresponds to the
physical size of the HSA molecules. The structure of
HSA can be modeled as a 3 nm thick equilateral
triangle with sides that are 8 nm long. At 13 and
23 �C the thickness of the protein corona is in agree-
ment with our previous results taken at room tempera-
ture, rh ≈ 3.3 nm.21,24 The measured protein corona
thickness of 3.3 nm indicates that the HSA molecules
adsorb with their triangular surface facing the NPs,
supposedly via the big, positively charged patch on the
surface of one of the two triangular faces, which binds
to the negatively charged NPs via Coulomb interac-
tions.24 At 43 �C, the radius increase upon HSA binding
is slightly smaller, which may result from an enhanced
flexibility of the polymer shell wrapping the FePt core
of the NPs at higher temperature, so that the adsorbed
HSA proteins may partially penetrate the shell, leading
to an overall radius increase just slightly below 3.3 nm.
Most remarkable, however, is the finding that the
binding affinity displays a marked temperature depen-
dence, as seen from the values of K0D, the concentra-
tion at half coverage (Table 2). Surprisingly, K0D
decreases with temperature, so the highest protein
binding affinity is found at the highest temperature.
Usually, one would expect that a system tends to
dissociate into its individual components at higher
temperature so as to increase the overall translational
entropy. The observed stronger binding of HSA to the
NPs at 43 �C, however, may arise from structural
fluctuations of the proteins and/or the polymer shell

around the NPs, which will be enhanced at higher
temperature. These could induce structural changes
that lead to a free energy-optimized binding interface.

We also note that the maximum number, Nmax, of
HSA molecules per NP appears to decrease at 43 �C
(Table 2). The Nmax values, however, should be taken
with a grain of salt. They are based on a geometrical
model that assumes (1) that the NPs have a smooth
spherical surface and (2) that the added volume due to
protein adsorption, which we infer from the change in
rh, is homogeneously filled with protein. At 43 �C, Nmax

will be underestimated if HSA molecules partially
enter the polymer shell, as we expect from the smaller
thickness of the protein corona. At 23 or 13 �C, Nmax

may be overestimated if the monolayer formed is not
completely densely packed.

The binding of apo-Tf onto the FePt NPs was
studied at 9, 22, and 43 �C (cf. Figure 1b). The data
indicate formation of a monolayer of apo-Tf around
each NP under saturating conditions.22 As for HSA, the
affinity of apo-Tf toward the FePt NPs is greater at 43 �C
than at room temperature, as indicated by the smaller
ligand concentration producing half occupation K0D at
43 �C (cf. Table 2). The affinities of Apo-Tf toward the
NPs are identical within experimental error at 22 �C and
at 9 �C. The measured protein corona thickness is
also very similar at 22 and 9 �C, i.e., 9.3 and 10 nm.
The overall size of apo-Tf protein is around 4.2 � 10 �
7 nm3. It consists of two identical subunits each having
dimensions of 4.2� 5� 7 nm3.25 Because the thickness
of the protein corona correlates with one dimension
of the protein, Apo-Tf presumably binds to the NPs
with the 4.2 � 7 nm2 face. We note that, in earlier
experiments,22 we had observed an apo-Tf corona of
7 nm, which suggests that apo-Tf binds to the NP
surface with the 4.2 � 10 nm2 face. Considering the
surface charge and the structure of apo-Tf (cf. the
Supporting Information) and assuming that apo-Tf
binds to the negatively charged NPs via positive
patches on its surface, apo-Tf may be able to adsorb
to theNPswith the 4.2� 7 nm2 aswell aswith the 4.2�
10 nm2 face. In fact, we have observed different corona
thicknesses on apo-Tf with different protein batches
purchased from the same supplier. For the same batch
of apo-Tf, however, the results were always reproduci-
ble. At 43 �C, the experiments revealed a 3 to 4 nm
reduced thickness of the protein corona as compared
with 22 or 9 �C. Therefore, the added volume due to
apo-Tf adsorption is significantly smaller, which results
in only 17 apo-Tf molecules attached per NP under
saturation conditions in our analysis (cf. Table 2). As for
HSA, this may be due to conformational changes of the
proteins upon binding, which could involve changes in
how the positive patches on the surface of the proteins
are exposed to the solvent. Consequently, the overall
orientation of the proteins on the surface may also
change. Another possible scenario is that the proteins

Figure 1. Change of the hydrodynamic radius, rh, of nega-
tively charged FePt NPs as a function of (a) HSA and (b) apo-
Tf concentration in the solutiondue toprotein adsorption at
different temperatures T.
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partially penetrate the polymer shell, which may be
more flexible at this temperature.

Compound-Specific Adsorption of FBS onto FeOx NPs. Be-
cause magnetic separation of the small, colloidally
stable, and highly defined FePt NPs was not feasible
due to their small size, data involving removal of
unbound protein were carried out with the bigger
FeOx NPs. Structural and colloidal properties of dextran-
coated FeOx NPs were investigated with TEM and DLS.
The diameter dc of the inorganic FeOx core and the
hydrodynamic diameter dh (as determined in PBS),
respectively, are included in Table 1. Due to their larger
size, these NPs allow for convenient magnetic separa-
tion and, thus, removal of unbound proteins. However,
the NP cores have a relatively large size distribution
and were partly agglomerated (especially the posi-
tively charged NPs), as indicated by hydrodynamic
diameters much bigger than the diameters of the
inorganic cores (cf. the Supporting Information). After
incubation of the NPs in protein solution (10% FBS þ
90% PBS) for 1 h at different temperatures, unbound or
loosely bound proteins were removed by two washing
steps in succession, during which the magnetic NPs
were trapped in a strong magnetic field, while the
eluted washing solutions were discarded. All washing
steps were performed using prewarmed/-cooled
washing solutions of the same temperature as during
incubation. Only strongly attached proteins are re-
tained on the NP surface after washing.

The proteins were afterward extracted from theNPs
and then run on SDS-PAGE. The amount of protein was
inferred from the integrated intensities along each line
in the gel. An example of a gel with proteins that had
adsorbed onto negatively charged NPs (incubated
at different temperatures) is shown in Figure 2a
(further data and details are included in the Supporting
Information). The temperature dependence of the total
amount of adsorbed proteins is reported in Figure 2b
for the three types of FeOx NPs. Our data indicate that
even a slight temperature increase can already cause
remarkable changes in the band intensities and, con-
sequently, the composition of the protein adsorption

layer. In order to challenge these findings, control
experiments were performed to study the influence
of possible sources of error. (i) As FeOx NPs were found
to be partly agglomerated, batch-to-batch variations
were probed. (ii) During the washing steps, some NPs
might get lost and the amount of the detached
proteins might also vary. Thus, variations among dif-
ferent purification runs were probed. (iii) SDS-PAGE
and the subsequent quantification of protein may
introduce errors: therefore, also these variations were
also examined. The observed peak variations were
below 10%, which in addition to the smooth connec-
tion between the data points indicates that the peaks
in the amount of detected corona proteins (Figure 2b)
are real. The amount of adsorbed proteins was highest
around 40 �C. Also, for neutral and negatively charged
NPs, less pronounced maxima exist around 43 and
37 �C, respectively.

The contribution of individual proteins to the co-
rona under conditions of varying NP functionalization
and incubation temperature was investigated with
liquid chromatography/mass spectrometry (LC-MS/MS)
(Figure 3). Significant differences were found between
the protein profiles at various temperatures. In parti-
cular, we focused on the adsorption of three important
serum proteins, for which association to FePt NPs has
been previously investigated by using FCS: serum
albumin (Mw = 66 kDa),21,24 serotransferrin (Mw =
76 kDa),22 and apolipoprotein A-I (Mw = 28 kDa).24 In
addition, we also studied alpha-2-HS-glycoprotein
(Mw = 49 kDa). The contributions of serum albumin,
serotransferrin, apolipoprotein A-I, and alpha-2-HS-
glycoprotein demonstrate a temperature-dependent
corona. Noticeably, increased protein adsorption
can be seen around 40 �C, in particular for positively
charged NPs and for alpha-2-HS-glycoprotein. The
significance of this peak, which also appears in the
SDS-PAGE data (Figure 2), is further strengthened
by the fact that it extends consistently over several
data points. However, due to the large error bars (cf.
the Supporting Information) and also due to limited
quality of the FeOx NPs concerning size distribution

Figure 2. (a) SDS-PAGE gel of proteins adsorbed onto the surfaces of negatively charged FeOx NPs after 1 h incubation in FBS
at different temperatures. Themolecular weightsMw of the proteins in themarker lane on the left are reported for reference.
(b) Quantification of the amount of adsorbed proteins on negatively charged (�), neutral (0), and positively charged (þ) NPs
as derived from the total band intensities of proteins on the SDS-PAGE gels.
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and colloidal dispersion, the data presented here
rather have to be interpreted in a qualitative than in
a quantitative way. Also, in the FCS data on FePt NPs, a
noticeable difference in the protein corona was ob-
served between room temperature and 43 �C. Thus,
our data indicate that the composition of the corona
strongly depends on the temperature at which the
corona is formed (i.e., the incubation temperature).

NP Interaction with Cells. Cellular endocytotic pro-
cesses are intrinsically temperature-dependent.26�28

For example, below 4 �C, active internalization is
suppressed. Also the protein layers formed on the NP
surface affect their uptake and trafficking inside cells.29,30

We have demonstrated above that the formation of the
protein corona is temperature-dependent. Thus one
may ask how much of this temperature-dependent for-
mation of the protein corona is reflected in temperature-
dependent internalization of NPs by cells. In order to
investigate this, uptake of fluorescence-labeled FePt NPs
under serum-free and serum-containing conditions was
analyzed with confocal microscopy at different incuba-
tion temperatures. Active cellular uptake of NPs involves
the transfer of NPs into endosomes and subsequently
lysosomes.1 Thus we quantified uptake in terms of the
amount of NPs found inside cells and of the amount of
NPs found inside lysosomes.

In accordance with previous studies,14,22,30,31 we
noticed that NP uptake was reduced by protein corona
formation compared to bare NPs, as inferred from
measurements with incubation in serum-containing
versus serum-free medium (cf. Figure 4c,f). We also

observed a clear enhancement of NP uptake (in terms
of mean NP intensity inside cells) with increasing
temperatures, as well as with serum-free (Figure 4a)
and serum-containing media (cf. Figure 4b). This trend
was not as clear in the case where only NPs inside
lysosomes were considered (cf. Figure 4c,d). In order to
infer whether the protein corona plays a role in the
temperature-dependent uptake of NPs, we analyzed
the temperature dependence of the ratio of the uptake
of NPs under serum-free and serum-containing condi-
tions. Within our experimental errors we at best can
speculate that the amount of NPs internalized by cells
may rise faster with temperature under serum-free
than under serum-containing conditions (cf. Figure 4c).
In the case where NP uptake is quantified only by NPs
localized inside lysosomes a different tendency was
observed (cf. Figure 4f). Thus, evenwithout considering
that the impact of identical NPs on various cells can be
significantly different4,32,33 our data do not allow for
deriving a sharp conclusion about the correlation
between the temperature-dependence of protein co-
rona formation and NP uptake. Taking into account the
differentmethods of quantificationwe applied, neither
can we prove that the temperature-dependent forma-
tion of the protein corona around NPs may have some
influence on the temperature-dependence of NPs
uptake by cells, nor can we claim the opposite. Other
temperature-dependent effects, such as active NP
transport, are likely to play important roles in the
temperature dependence in NP uptake, and thus the
importance of the temperature dependence of protein

Figure 3. Temperature-dependent amounts of specific proteins in the protein corona of negatively charged (�), positively
(þ), charged, and neutral (0) FeOx NPs, as obtained from LC-MS/MS data. Mean values over three independentmeasurements
are shown with their corresponding standard deviations.

A
RTIC

LE



MAHMOUDI ET AL . VOL. 7 ’ NO. 8 ’ 6555–6562 ’ 2013

www.acsnano.org

6560

corona formation on the temperature dependence in
NP uptake can be fully elucidated with more sophisti-
cated assays. Also entanglement of size and protein
corona formation needed to be considered, as NP
uptake is also size-dependent.34 In Figure 1we demon-
strated that at the same protein concentration the
effective NP radius can be significantly different due
to different corona formation, and a detailed analysis
also would need to take size effects into account.

CONCLUSIONS

In this study, we have investigated the influence of
the exposure temperature, ranging from 5 to 45 �C, on
the formation and composition of the protein corona
on magnetic NPs. The influence of temperature on

NP�cell interactions was also investigated. We have
shown that changes in the incubation temperature can
cause significant effects in protein corona formation
and composition, although this is not necessarily al-
ways the case. Temperature effects for the NPs inves-
tigated by us were especially pronounced in the
physiologically highly relevant temperature window
of 37�41 �C. Thus, our findings suggest that studies on
the formation of a protein corona on NPs should be
carried out at well-controlled temperatures to enable
comparison and reproduction of results from different
laboratories. The results presented are expected to
apply to other classes of NPs, such as fluorescent or
plasmonic NPs, with similar surface functionalization,
although we did not prove this yet experimentally.

MATERIALS AND METHODS

Synthesis of FePt NPs and Investigation of Adsorbed HSA with FCS.
Synthesis of polymer-coated FePt NPs with a fluorophore
(DY-636) in the polymer shell has been reported previously.21

Our two-focus fluorescence correlation spectroscopy setup has
recently been described.24 For incubation with proteins, FePt
NPs and proteins were mixed and incubated at a controlled
temperature, T, for 10 min. HSA and apo-Tf were purchased
from Sigma Aldrich as lyophilized powders (A8763 and T4382,
respectively). The proteins were suspended in PBSwithout Ca2þ

and Mg2þ ions (PAA Laboratories) at room temperature at a
concentration of 1 mM or less. Subsequently, FCS measure-
ments were carried out for 4 min at the same temperature, T. A
40 μL amount of solution was filled into a sample chamber
consisting of a small borosilicate glass cylinder glued to a
coverslip with epoxy. The sample chamber was kept in a small
water bath within an aluminum block heated or cooled to the
desired temperature with a Peltier element. Thermal expansion
effects due to temperature changes in the objective led to small
variations in the focusing properties and, thus, to slight changes of
the confocal volume, as was observed by measuring the point
spread function (PSF) using laser light reflectedoff 100nmgoldNPs.

We compensated the temperature effect by changing the
position of the correction collar normally used to correct for
different coverslip thicknesses. The position of the correction
collar was adjusted so as to achieve maximum fluorescence
intensity, which also correlates with the smallest dimensions
of the measured confocal volume. Furthermore, we measured
deviations in the interfoci distance resulting from temperature
changes with a reference sample, Atto655 in buffer solution.
The measured size of the NPs was corrected according to the
calibration obtained with the reference sample. Temperature
was directly measured in the sample solution. Hydrodynamic
radii, rh, were determined by FCS and plotted versus the HSA
concentration in solution, c(HSA), as shown in Figure 1. At
saturation, the hydrodynamic radius of one NP was calculated
according to21

rh(Nmax) ¼ rh(0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cNmax

3
p

(1)

where c = Vp/V0 is the volume ratio of protein molecules to NP.
For the NPs, the volume was simply calculated by using V0 =
(4π/3)(rh(0))

3. For apo-Tf, the volume was estimated from the
physical dimensions, i.e., Vp = 10� 7� 4.2 = 294 nm3. Likewise,

Figure 4. Uptake of fluorescently labeled FePt(�) NPs by HeLa cells after 3 h of incubation. Mean fluorescence intensities I of NPs
uponusing serum-free (I0) and serum-containing (IFBS) culturemedia areplotted. (a, b, c)Meanfluorescence intensities IofNPs that
are localized inside cells. Each data point corresponds to the mean value of at least 2000 analyzed cells and the corresponding
standard deviation. Exponential curves are added in order to serve as guide to the eyes. Also the ratio I0/IFBS is plotted for the
different incubation temperatures T. (d, e, f) Mean fluorescence intensities I of NPs that are localized inside lysosomes. Each data
point corresponds to the mean value of at least 30 analyzed cells and the corresponding standard deviation.
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for HSA, the volume of a triangular prism with 8 nm side length
and 3 nm thickness was computed, i.e., Vp = 3 � (8/2) �
(82 � 42)1/2 = 83 nm3. Note that, for HSA, which is a compact
globular protein, Vp can equally well be calculated by using Vp =
(Mw/NA)/Fp, with the molecular weight, Mw, of HSA, Avogadro's
constant, NA, and the protein density, Fp = 1.35 g/cm3. Nmax is
the maximum number of adsorbed molecules. Concentration-
dependent adsorption was described by the Hill equation,

N ¼ Nmax
1

1þ (K 0D=[Pr])
n (2)

where N is the number of adsorbed protein molecules per NP,
K0D represents the concentration of protein molecules for half
coverage, and n is the Hill coefficient, which determines the
steepness of the binding curve.21

Synthesis of FeOx NPs and Investigation of Adsorbed FBS with PAGE and
MS. Syntheses of dextran-coated FeOx NPs (SPIONs, inorganic
core diameter) with negative, neutral, and positive surface
charges were performed according to our previously published
protocols (hydrodynamic radii together with their characteriza-
tion are presented in the Supporting Information).35 To study
the interactions of the NPs with FBS, 100 μL of NP solution (with
a concentration of 100 μg/mL) was mixed with 900 μL of FBS
and incubated at T = 5, 15, 25, 35, 37, 39, 41, 43, and 45 �C.
The protein/NP mixtures were run through a strong magnetic
field using a magnetic-activated cell sorting system. NPs were
trapped inside the magnetic column, and the flow-through
fraction (two washing steps with 500 μL of PBS buffer) was
removed. We ensured that all washing solutions were at the
same temperature as themedia used during incubation. Finally,
the column was removed from the magnetic field, and the
released NPs were collected. The protein/NP mixtures were
immediately resuspended in protein loading buffer containing
10% dithiothreitol, followed by boiling for 5 min at 100 �C to
remove the proteins from the NPs.3 To quantify the amount of
proteins on the surface of the various NPs, equal sample
volumes of the solution were loaded into sodium dodecyl
sulfate polyacrylamide gel electrophoresis (1D SDS-PAGE). Gel
electrophoresis was carried out at 120 V, 400 mA, for about
60 min each, until the proteins approached the end of the gel.
While the NPs stick in the wells of the gels, the desorbed
proteins migrate in the applied electric field. The gels were
stained by silver nitrate in order to visualize the proteins and
scanned using a Biorad GS-800 calibrated densitometer scan-
ner, and gel densitometry was performed using Image J (1.410
version). Intensity profiles of the stained proteins along the
migration direction of the proteins were recorded to quantify
the total amount of protein in each lane and the contribution of
the proteins of different molecular weight to the total amount.
An example of a gel after SDS-PAGE is shown in Figure 2a. To
determine the relative amounts of proteins adsorbed onto
different NPs, the collected proteins were digested with trypsin
and analyzed by LC-MS/MS. A semiquantitative evaluation of
the data was done by using the peptide spectrum matches
(i.e., “spectral counts”) assigned to a distinct protein by Pro-
teome Discoverer software.

Uptake of FePt NPs by Cells. HeLa cells were incubated with
polymer-coated FePt NPs with integrated fluorophore (DY-636)
at different temperatures for 3 h with and without serum (FBS)
in the culture medium. Nuclei, membranes, and lysosomes of
the cells were stained, and fluorescence images of these cellular
compartments together with images of the NP distribution
were recorded with confocal microscopy (for details refer to
the Supporting Information). Cellular compartments were iden-
tified with the open source software CellProfiler. NPs located in
the specific compartments (here either inside cells or inside
lysosomes) were identified by overlay of a mask corresponding
to the locations of the compartments with the image of the NP
distribution.36 As well, the total amount of NPs incorporated per
cell (as quantified by the mean fluorescence intensity I inside
cells), as the amount of NPs that co-localized with the lysosome
(as quantified by the mean fluorescence intensity I inside
lysosomes),37 was determined. Please note the limited depth
resolution of confocal microscopy, which makes it complicated
to distinguish between NPs only adherent to the outer cell

surface and internalized NPs. One could clearly distinguish
between both cases using pH-sensitive fluorophores attached
to the NPs38,39 In our case we also stained the cell membrane.
We did not observe a significant amount of NPs at positions
close to the cell membrane, and thus the error in the quantifica-
tion of internalized NPs by wrongfully counting also NPs
attached to the outer membrane is very small.
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 Poly(ethylene glycol) (PEG) is frequently used to coat various medical nano-
particles (NPs). As PEG is known to minimize NP interactions with biological 
specimens, the question remains whether PEGylated NPs are intrinsically less 
toxic or whether this is caused by reduced NP uptake. In the present work, 
the effect of gold NP PEGylation on uptake by three cell types is compared 
and evaluated the effect on cell viability, oxidative stress, cell morphology, 
and functionality using a multiparametric methodology. The data reveal that 
PEGylation affects cellular NP uptake in a cell-type-dependent manner and 
infl uences toxicity by different mechanisms. At similar intracellular NP num-
bers, PEGylated NPs are found to yield higher levels of cell death, mostly by 
induction of oxidative stress. These fi ndings reveal that PEGylation signifi -
cantly reduces NP uptake, but that at similar functional (= cell-associated) NP 
levels, non-PEGylated NPs are better tolerated by the cells. 

in vitro cell imaging, cancer therapy, cell 
transplantation, and as carriers for drug 
and/or gene delivery. [ 1 ]  There are no 
“naked” NPs in biological environments 
as their surface is always covered with 
organic matter. [ 2 ]  One frequently used 
intentional organic surface coating of NPs 
is based on poly(ethylene glycol) (PEG). [ 3 ]  
This fl exible molecule, available in various 
chain lengths and terminal functional 
groups, effectively shields the surface from 
the surrounding environment. Thereby, it 
provides colloidal stability by sterically hin-
dering NP agglomeration. [ 2 ]  Furthermore, 
PEGylation of NPs under in vitro condi-
tions has shown reduced cellular uptake 
and improved biocompatibility. [ 4 ]  Under 
in vivo conditions, PEGylation promotes 

the in vivo blood circulation time of NPs by reducing their 
opsonization and thereby impeding clearance of the NPs by 
the reticuloendothelial system. [ 4e , 5 ]  Recently, however, the use 
of PEG has been described to induce infl ammation and cause 
hypersensitivity. [ 5a ]  In vitro, the effect of PEG density and PEG 
chain length has been well studied with respect to their effect 
on cellular NP uptake, [ 4d ]  where PEG has been shown to reduce 
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  1.     Introduction 

 The interest in the use of nanoparticles (NPs) for biomedical 
applications is vastly increasing owing to the wide plethora 
of enticing features that NPs possess. [ 1 ]  This makes them fre-
quently studied as tools for improved noninvasive in vivo and 
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NP binding and associated uptake levels of NPs where the 
uptake kinetics of bound NPs were not affected. [ 6 ]  Indirectly, 
some studies have also pointed to a higher biocompatibility of 
PEGylated NPs, which is likely to be a direct result of the lower 
amount of cell-associated nanomaterials. [ 4d ]  For cell labeling 
applications in which a minimal number of cell-internalized 
NPs is essential, it is as of yet unclear whether higher levels 
of PEGylated NPs would be a better choice than lower levels of 
non-PEGylated NPs (resulting in similar cellular NP levels) as 
little data are available on the effect of PEG on cell homeostasis 
at similar cellular NP levels. 

 Nanotoxicology is a complex fi eld where minor changes in 
NP surface chemistry can drastically alter the interaction of NPs 
with cells. [ 7 ]  Therefore, it is of interest to investigate the effect of 
applying a PEG coating to Au NPs in terms of their cytotoxicity. 
PEG can be attached directly via thiol groups to the surface of 
Au NPs. [ 4c , 8 ]  Alternatively, PEG can also be covalently attached 
to more complex NP surfaces, such as NPs stabilized with an 
amphiphilic polymer, [ 9 ]  for example, poly(isobutylene- alt -maleic 
anhydride)-dodecylamine (PMA). PMA-coated Au NPs were 
prepared, analogously as previously described. [ 9b ]  Presence of 
PEG can be conveniently verifi ed by retarded mobilities in gel 
electrophoresis experiments (see Supporting Information). [ 2 , 9b ]  

The number of PEG molecules per NP can also be quantifi ed 
by NMR. [ 10 ]    

 2.     Results and Discussion  

 2.1.     Nanoparticle Characterization 

 It has to be noted that PEGylation does not only change the 
surface chemistry of NPs but also infl uences other physico-
chemical parameters. [ 2 ]  Obviously, addition of PEG increases 
the hydrodynamic diameter of the NPs. [ 9b ]  However, it also 
changes the surface charge of the NP by the complexation of 
cations. [ 11 ]  In addition, PEGylation, in general, improves the 
colloidal stability of NPs by introducing sterical repulsion 
between the NPs. [ 2,12 ]  In the present study, polymer (PMA)-
coated Au NPs with a saturated methoxy-PEG (mPEG) shell 
were investigated and compared with the same Au NPs without 
PEG, which were analyzed in a previous study. [ 13 ]  Au NPs with 
a core diameter of 4.6 ± 1.1 nm were used ( Figure    1  ). Whereas 
the polymer-coated Au NPs without saturated PEG shell had a 
hydrodynamic dia meter of 12.6 ± 1.1 nm and a ζ-potential of 

 Figure 1.    A) Transmission electron microscopy (TEM) images of C17.2, HUVEC, and PC12 cells exposed to 50 × 10 −9   M  of PEGylated Au NPs for 24 h 
revealing clear cellular uptake. B,C) Effects of PEGylated Au NPs on B) cell viability and C) reactive oxygen species (ROS) induction at different Au NP 
incubation concentrations. Data are expressed relative to untreated control cells as mean ± SEM ( n  = 5). When appropriate, the degree of signifi cance 
is indicated (*:  p  < 0.05, **:  p  < 0.01, ***:  p  < 0.001).
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–31.9 ± 5.2 mV. [ 13 ]  The addition of a saturated shell of meth-
oxyl-terminated PEG ( M  w  = 2 kDa) resulted in a hydrodynamic 
diameter of 21.7 ± 2.9 nm and a ζ-potential of −7.6 ± 0.8 mV, as 
measured by dynamic light scattering (DLS) using a zetasizer. 
The hydrodynamic diameter determined here for the PEGylated 
NPs is signifi cantly higher than the ones determined with dif-
ferent methods in previous studies. Data indicate an increase in 
hydrodynamic diameter and a less negative ζ-potential due to 
the complexation of cations upon PEGylation.  

 To evaluate the effect of PEGylation on cellular uptake of NPs 
and its consequent cytotoxicity, a recently described multipara-
metric methodology was used. [ 14 ]  This methodology allows 
to defi ne the noncytotoxic concentration of the NP tested for 
a variety of cell types and to identify the mechanisms under-
lying the NP’s cytotoxic profi le. Furthermore, this methodology 
enables to evaluate and compare the intrinsic toxicity levels 
and the mechanisms underlying these events. Although the 
Au NPs evaluated in this study are very interesting for biomed-
ical research, their toxicological profi le still has not been fully 
unraveled. [ 15 ]  Previously, the same Au NPs as used in this study, 
but without the PEG shell, were evaluated through this meth-
odology, revealing NP-concentration-dependent cytotoxicity (see 
 Table    1  ) and defi ning the nontoxic concentration of the NPs 
at 10 × 10 −9   M . [ 13 ]  In the present work, identical Au NPs satu-
rated with methoxy-terminated PEG ( M  w  = 2 kDa) are used to 
evaluate the effect of PEGylation on NP uptake and interactions 
with cultured cells.    

 2.2.     Cellular Nanoparticle Uptake 

 In the present study, the PEGylated Au NPs were used to label 
three different cell types, being human umbilical vein endothe-
lial cells (HUVECs), murine C17.2 neural progenitor cells, and 
rat PC12 pheochromocytoma cells. These cells have previously 
shown to be effi cient model systems for cytotoxicity studies, [ 16 ]  
where both HUVEC and C17.2 cells are extensively explored 
in cell transplantation studies and are thus often used for 
dosing with nanomaterials in order to facilitate in vivo cellular 
tracking. [ 17 ]  These cells additionally differ quite a bit, including 
human and rodent cells as well as endothelial and neural cell 
types, which are common target cell types. Therefore, these cells 

can provide a nice overview of how cells, in general, interact 
with a certain type of NP. Additionally, these cells have been 
used in various previous studies, allowing a direct comparison 
of any toxicity data obtained for different types of materials. 

 In terms of uptake, PEGylated Au NPs were found to be 
taken up by all three cell types used. As evidenced by transmis-
sion electron microscopy (TEM) (Figure  1 A), the Au NPs are 
typically located in endosomal structures, though it is known 
that they also can reach other intracellular compartments. [ 4c ]  
The images themselves reveal the presence of the NPs in struc-
tures consisting out of a unilamellar-enclosed cytoplasmic 
compartment, which is typical for endosomal compartments. 
Recently, the role of NPs in inducing autophagy as a key nano-
toxicity mechanism has gained a lot of importance. [ 18 ]  The TEM 
structure revealed in these images, however, differs from those 
observed for autophagosomes, [ 19 ]  in that the latter compart-
ments consist of a double lamellar membrane. [ 18a ]  As such, 
no clear signs of autophagy have been observed, suggesting 
that autophagy likely does not play a major role in the cellular 
processing of these nanomaterials, but more research on this 
interesting phenomenon should be performed before any fi rm 
conclusions can be drawn. 

 An important fi nding in this regard is the localization of the 
NPs with endosomal compartments, which is similar to the 
localization observed for the non-PEGylated Au NPs. [ 13 ]  This 
fi nding reveals that PEGylation of the Au NPs did not affect the 
intracellular distribution of the NPs and suggests that a similar 
uptake mechanism is involved. Although, in neither study, any 
NPs were observed in the cell nuclei, the transfer of a limited 
number of NPs toward the nuclear region cannot be ruled out 
completely and may also follow a dose-dependent trend. [ 20 ]  The 
similar intracellular distribution of the NPs is of great impor-
tance for a direct comparison of any toxicological effects as the 
nature and degree of any effects observed depends on the exact 
intracellular location of the NPs. [ 20 ]  

 The TEM images qualitatively show large differences in the 
levels of NP uptake between the different cell types, where 
HUVECs have the highest uptake levels, followed by C17.2 
and PC12 cells. This qualitative measurement was further 
confi rmed by quantitative determination of cellular NP levels 
by inductively coupled plasma–mass spectrometry (ICP–
MS) after 24 h (Table S2, Supporting Information). A similar 

  Table 1.    Overview of the total NP numbers of non-PEGylated and PEGylated Au NPs at which signifi cant levels of bio-effects were occurring.  

 Non-PEGylated NPs  PEGylated NPs  

Bio-effect Exposure conc. 

[× 10 −9  M ]

Intracellular NP amount 

[× 10 5  NPs/cell]

Exposure conc. 

[× 10 −9  M ]

Intracellular NP amount 

[× 10 5  NPs/cell]

 Cell death 200  62 400  27.4 

 ROS 50  21 100  9.3 

Cell morphology 50  21 400  27.4 

 PC12 functionality 20  9 100  4.5 

 No toxicity observed 10  6 50  3.5 

 *The total NP numbers of non-PEGylated and PEGylated Au NPs at which signifi cant levels of bio-effects were occurring are given for both the concentration of NPs in the 
media upon incubation (expressed as  M ) as well as the intracellular number of NPs (expressed as 10 5  particles per cell). For all effects, the level of NPs in HUVEC cells 
was selected, apart from PC12 functionality, where the level is chosen in PC12 cells and the level where no toxicity is observed is the average value for all three cell types. 
Bio-effects, which occurred at lower intracellular NP numbers for PEGylated NPs, are indicated in italic, those which occurred at lower levels of non-PEGylated NPs are 
highlighted in bold.   
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trend was observed and the uptake effi cacy of HUVECs was 
approximately twofold higher than that of the C17.2 and PC12 
cells. These data are in sharp contrast with the data for non-
PEGylated Au NPs, as shown in Table  1 . For non-PEGylated 
NPs, C17.2 and HUVEC cells had similar uptake levels, where 
the addition of PEG has signifi cantly reduced the uptake of the 
NPs in all cell types, [ 13 ]  in accordance with previous studies. [ 4c ]  
However, the extent of the effects of PEGylation on NP uptake 
is clearly cell type-dependent, where for HUVECs, maximally 
a fourfold reduction is observed, compared with an eightfold 
reduction for PC12 cells and a tenfold reduction in C17.2 cells. 
These data clearly indicate that the effect of PEGylation on NP 
uptake can vary signifi cantly between different cell types and 
that specifi c targeting will be signifi cantly mediated by PEGyla-
tion of the NPs.   

 2.3.     Effect of PEGylated Nanoparticles on Cell Viability and 
Oxidative Stress 

 After 24 h of incubation, cell viability was found to be affected 
at high Au NPs doses (starting from 400 × 10 −9   M  of exposure 
concentrations) and was found to be cell type-dependent. These 
data were in correlation with the cell uptake levels (Figure  1 B), 
resulting in highest toxicity levels for HUVEC cells compared 
with PC12 or C17.2 cells. Similarly, a concentration-dependent 
induction of reactive oxygen species (ROS) was observed 
(Figure  1 C) in all three cell lines. Interestingly, the addition of 
5 × 10 −3   M   N -acetylcysteine (NAC), an FDA-approved free-radical 
scavenger, completely inhibited ROS induction and restored 
cell viability (Figure S9, Supporting Information). Furthermore, 
high NP levels were found to affect mitochondrial membrane 
potential, cytoplasmic Ca 2+  levels, and DNA damage ( Figure    2  ) 
that are important pathways involved in ROS-dependent cell 
death. [ 21 ]  Compared with non-PEGylated Au NPs, the induction 
of ROS at identical incubation doses was approximately 1.7-fold 
lower, [ 13 ]  which is in line with other studies where PEGylation 
of NPs resulted in a lower induction of oxidative stress. [ 22 ]  How-
ever, more interestingly, when comparing similar intracellular 
NP levels (as determined by ICP–MS) the induction of ROS was 
approximately 1.6-fold higher for PEGylated NPs in all three cell 
types. These fi ndings are in contrast with the general belief that 
PEGylation reduces ROS levels and can be explained by the fact 
that, here, ROS levels were compared at similar intracellular 
levels of PEGylated and non-PEGylated NPs whereas in nearly 

all previous studies, NPs have been compared with respect to 
their exposure concentrations. [ 4d , 22 ]  However, in plant cells, 
PEG chains have been found to induce ROS indirectly as a 
result of altering water stress levels. [ 23 ]  The precise mechanism 
for the enhanced ROS production here remains unclear but can 
probably be attributed to the altered physicochemical proper-
ties of the NPs upon PEGylation. One important contributor 
to the level of oxidative stress may be p53, a key transcription 
regulator for many intracellular pathways including infl amma-
tion and oxidative stress sensing. [ 24 ]  It would be interesting to 
see whether PEG chains in themselves are ROS inducing and 
whether this involved p53 activity. Taken together, these data 
point to the importance of ROS in the toxicological profi le of 
the PEGylated Au NPs, with a cell type-dependent correlation 
between ROS levels, stemming from the intracellular localiza-
tion of the NPs and a reduction of cell viability. [ 25 ]  Interestingly, 
ROS-associated secondary effects, such as DNA damage, are 
signifi cantly higher for PEGylated NPs than for their corre-
sponding non-PEGylated counterparts for similar intracellular 
NP levels (= the number of NPs per cell).    

 2.4.     Effect of PEGylated Nanoparticles on Cell Morphology 

 Apart from ROS, which is an important mediator in the toxic 
potential of NPs, [ 26 ]  several other mechanisms have been sug-
gested to play an important role, such as cellular deformations 
and effects on the cell cytoskeleton architecture. [ 27 ]  To further 
defi ne the mechanisms underlying the toxicity of the PEGylated 
Au NPs, the effect of the NPs on HUVEC cell morphology and 
cytoskeleton architecture was analyzed as described previously 
( Figure    3  ). [ 16 ]  For this analysis, only the HUVEC cells were 
considered as the rounded PC12 and C17.2 cells are intrinsi-
cally far less spread and are therefore not well suited for this 
type of analysis. The functionality of these cell types is inves-
tigated using specifi c assays later on in this manuscript. No 
effect on cell morphology or cytoskeleton architecture could be 
observed at nontoxic concentrations of the PEGylated Au NPs, 
i.e., up to 400 × 10 −9   M  (added exposure concentration). These 
observations were different to the results obtained for various 
types of non-PEGylated Au NPs, [ 28 ]  including PMA-coated Au 
NPs, where cellular deformations were already observed at 
50 × 10 −9   M . [ 13 ]  Interestingly, at 400 × 10 −9   M  (added exposure 
concentration) of PEGylated Au NPs, higher intracellular NP 
levels (1.3-fold) and higher ROS levels (1.6-fold) were found 

 Figure 2.    Effects of PEGylated Au NPs (incubation concentration  c  [× 10 −9   M ]) on HUVEC cell as given as relative signal intensities  I  [a.u.]. A) mitochon-
drial membrane potential, B) cytoplasmic calcium levels, and C) DNA double-strand breaks in the absence (dark gray) and presence of 5 × 10 −3   M  NAC 
(light gray), when cells were exposed to PEGylated Au NPs for 24 h at 100, 200, 400 or 800 × 10 −9   M . Data are expressed relative to the values obtained 
for untreated control cells as mean ± SEM ( n  = 4).
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than for non-PEGylated Au NPs at 50 × 10 −9   M  (external con-
centration). However, even at higher intracellular NP levels, 
PEGylated NPs were not found to induce any morphological 
or cytoskeletal alterations (Table  1 ). These data suggest that the 
cellular morphological changes observed previously for the Au 
NPs are ROS independent and furthermore, the addition of 
PEG appears to be able to overcome these effects.  

 To test this more thoroughly, the effect of the PEGylated Au 
NPs on the expression and activation of two key signaling path-
ways [NFκB and focal adhesion kinase (FAK)] was analyzed in 
the HUVEC cells. Whereas the NFκB pathway is known to be 
an important mediator in ROS-induced signaling, [ 29 ]  the activa-
tion status of FAK is linked to the cytoskeletal architecture [ 30 ]  

and was previously shown not to be prone to direct ROS-
induced signaling. [ 16a , b ]   Figure    4  A,B shows a clear concentra-
tion-dependent activation of the NFκB pathway, which could be 
overcome by co-treatment with NAC, indicating a ROS depend-
ence. No effect was seen on the expression or activation of FAK 
(Figure  4 C,D), supporting our earlier fi ndings that PEGylation 
of Au NPs protects the cells from cytoskeletal deformations, 
even at conditions where similar intracellular NP concentra-
tions have been obtained (Table  1 ). In the latter experiment, 
PC12 cells were not included as these cells are only semi-
attached and therefore only form minimal focal adhesions. 
The level of FAK activation is closely linked to the formation of 
fully mature focal adhesions, which results in minimal levels of 
active FAK in the PC12 cells.    

 2.5.     Effect of PEGylated Nanoparticles on Cell Functionality 

 As a fi nal test, the effect of the PEGylated Au NPs on PC12 
functionality was assessed, where the ability of the cells to 
induce the outgrowth of neurites was evaluated as described 
elsewhere. [ 31 ]   Figure    5   shows a clear concentration-dependent 
inhibition of PC12 functionality, where effects were notice-
able from 100 × 10 −9   M , which is in line with the onset of ROS 
induction. These data show that the induced ROS effects can 
result in reduced cell functionality, which has important con-
sequences for the use of such labeled cells for any biomedical 
purposes. Based on these results, we defi ne the nontoxic con-
centration of PEG Au NPs as 50 × 10 −9   M  (exposure concen-
tration), which is higher than the nontoxic concentration of 
10 × 10 −9   M  (exposure concentration) for non-PEGylated Au 
NPs, which was obtained using exactly the same method-
ology. [ 13 ]  However, given the lower uptake effi ciency of cells for 

 Figure 3.    Histogram representing the distribution of cell areas of con-
trol HUVEC cells or cells exposed to PEGylated Au NPs at 100, 200, or 
400 × 10 −9   M  incubation concentration for 24 h and analyzed at 24 h post-
cell labeling, as described in the Supporting Information.

 Figure 4.    The effects of PEGylated Au NPs in dependence of incubation concentration on activation of A,B) NFκB and C,D) FAK in the A,C) absence 
or B,D) presence of NAC, a ROS scavenger.
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PEGylated Au NPs, the higher level of PEGylated Au NPs in 
the incubation medium does not correspond to a higher level 
of intracellular Au NPs, as is also shown in Tables S2 and S3 
(Supporting Information).  

 Overall, the current study highlights the importance of 
a thorough investigation into the effect of altering the sur-
face chemistry of the NP of interest with regard to its effect 
on cultured cells. PEGylation in itself will drastically alter the 
chemistry of the NP surface. As shown in Section 2.1., addi-
tion of the PEG chains increases the hydrodynamic diameter 
and alters the surface charge of the NPs. Additionally, the col-
loidal stability of NPs is generally improved by PEGylation 
due to steric repulsion between NPs. The effect of PEGylation 
therefore infl uences quite a large number of different param-
eters, all known to affect cellular interaction. [ 11,12 ]  However, 
the precise effect of any of these individual parameters is hard 
to predict as all of them are closely linked. For instance, with 
regard to cellular uptake, the enhanced colloidal stability likely 
results in higher uptake values for smaller NPs, where exten-
sive agglomeration is known to impede NP uptake. [ 32 ]  Alterna-
tively, the increase in hydrodynamic diameter, the decrease in 
surface charge, and the presence of a long, fl exible hydrocarbon 
chain that hinders the actual NPs of coming into close contact 
with the cell membrane will all impede cellular uptake. One 
key aspect of the addition of PEG chains is their infl uence on 
the protein corona, which forms around any type of nanoma-
terial in serum-containing media. [ 33 ]  Given the loss in charges 
and the fl exible nature of the PEG chains, PEGylation is known 
to impede protein binding onto the particle surface. [ 34 ]  There-
fore, the protein corona formed around non-PEGylated and 
PEGylated particles will be quite different. This protein corona 
is however extremely important in determining “cell vision,” 
i.e., the way in which cells will see the foreign NPs and how 
they will interact with them. [ 35 ]  This effect of PEGylation is 
therefore quite important and cannot be ignored when trying 
to understand the precise mechanisms behind the observed 
effects in our study.    

 3.     Conclusion 

 The data summarized in Table  1  indicate that on average, for the 
different cell types, higher intracellular levels of non-PEGylated 
Au NPs can be achieved without inducing any toxic effects than 
is the case for PEGylated NPs. In general, these data therefore 
show that the reduced toxic effects of NPs upon PEGylation 
is primarily driven by a signifi cant drop in cellular NP uptake 
levels, as at least for PMA-coated Au NPs, the intrinsic toxicity 
for similar intracellular numbers of NPs appears to be higher 
upon PEGylation. Interestingly, PEGylation of the Au NPs had 
a clear cell type-dependent effect on NP uptake and toxicity. In 
addition, in terms of toxicity mechanisms, PEGylation of NPs 
was found to affect the underlying causes, resulting in higher 
ROS levels and higher secondary ROS mechanisms but no 
effect on cytoskeletal aberrations for similar intracellular levels 
of PEGylated NPs compared with non-PEGylated NPs (Table  1 ). 
The exact reason for this currently remains unclear, but the 
addition of a fl exible shielding layer appears to drastically alter 
cell–NP interactions and requires further studies to shed more 
light on this complex issue. The question therefore remains 
whether PEGylation of NPs is actually benefi cial or potentially 
hazardous for in vitro labeling of cultured cells.   

 4.     Experimental Section 
 A full experimental methodology including NP synthesis and 
characterization, and setup of cell–NP interaction studies can be found 
in the Supporting Information that accompanies this manuscript.  

  Supporting Information 
 Supporting Information is available from the Wiley Online Library or 
from the author.  
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 Figure 5.    Effect of PEGylated Au NPs on neurite induction from PC12 
cells exposed to incubation concentrations of Au NPs of 0, 50, 100, 200, 
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Data are expressed as the total number of neurites of a certain length per 
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Colloidal semiconductor nanoparticles (quantum dots) have attracted a lot of interest in technological
and biomedical research, given their potent fluorescent properties. However, the use of heavy-metal-
containing nanoparticles remains an issue of debate. The possible toxic effects of quantum dots remain
a hot research topic and several questions such as possible intracellular degradation of quantum dots
and the effect thereof on both cell viability and particle functionality remain unresolved. In the present
work, poly(methacrylic acid)-coated CdSe/ZnS quantum dots were synthesized and characterized, after
which their effects on cultured cells were evaluated using a multiparametric setup. The data reveal that
the quantum dots are taken up through endocytosis and when exposed to the low pH of the endosomal
structures, they partially degrade and release cadmium ions, which lowers their fluorescence intensity
and augments particle toxicity. Using the multiparametric method, the quantum dots were evaluated
at non-toxic doses in terms of their ability to visualize labeled cells for longer time periods. The data
revealed that comparing different particles in terms of their applied dose is challenging, likely due to dif-
ficulties in obtaining accurate nanoparticle concentrations, but evaluating particle toxicity in terms of
their biological functionality enables an easy and straightforward comparison.

� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The use of colloidal nanoparticles (NPs) in technological and
biomedical applications is vastly increasing [1,2]. There are cur-
rently over 800 consumer products containing NPs, including
many foods, beverages and cosmetics. The nanotechnology indus-
try is growing very rapidly, and is predicted to have a total value of
US$3.1 trillion by the year 2015 [3]. Currently, NPs are omnipres-
ent in many different consumer products, but the number of
biomedical applications is still limited due to several questions
remaining on the possible induction of toxic side-effects by NPs
[4–6]. Uncertainties regarding the safety of NPs are being fed by
the continuous discovery of new pathways and mechanisms by
which NPs may interfere with cellular wellbeing, which can either
be beneficial for biomedical purposes or pose serious threats to hu-
man health [7]. One example is the recent finding that NPs can
induce DNA damage and chromosome mutations, as shown for car-
bon nanotubes that were found to selectively stabilize human telo-
meric i-motif DNA and inhibit telomerase activity [8]. To progress
towards use of NPs without risks, more data are required on the
(toxic) effects of NPs on cells, tissues and whole organisms [9]. In
order to fulfill the current needs in nanotoxicity research, NPs
should be screened rapidly on a variety of cells under standardized
conditions, enabling a comparison of data obtained for different
materials and between different research groups [10]. In this view,
we recently established a multiparametric methodology that looks
at the interactions between cultured cells and NPs in order to get a
profound knowledge of the possible effects of these materials on
cultured cells [11]. Using a variety of cell types that have shown
great potential for nanotoxicity research [12–14], being primary
human umbilical vein endothelial cells (HUVECs), murine C17.2
neural progenitor cells and rat PC12 pheochromocytoma cells,
the obtained results are representative for a wide variety of cell
types. This methodology therefore allows for determining the
non-cytotoxic levels of NPs (i.e. the concentration of NPs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.actbio.2013.09.041&domain=pdf
http://dx.doi.org/10.1016/j.actbio.2013.09.041
mailto:Stefaan.Desmedt@ugent.be
http://dx.doi.org/10.1016/j.actbio.2013.09.041
http://www.sciencedirect.com/science/journal/17427061
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appropriate for cell labeling applications) and additionally helps in
unraveling the mechanisms that are involved in the cytotoxic
profile of the NPs under investigation. Furthermore, by comparing
the data obtained against data for other NPs that have been tested
under identical conditions, physicochemical features of the NPs
that contribute to their cytotoxicity can be defined, paving the
way for a more rational and safer NP design.

One important aspect with respect to rigorous NP toxicity test-
ing is the design, purification and characterization of the NPs under
investigation [15]. If any cytotoxic effects are to be ascribed to spe-
cific physicochemical features of the NPs, it is of utmost impor-
tance to test well-characterized NPs free of contaminants or
impurities [16]. In this direction, poly(methacrylic acid)
(PMA)-coated CdSe/ZnS core–shell quantum dots (QDots) are a
useful system, as these NPs are well defined and have been exten-
sively characterized. QDots are small semiconductor NPs that pos-
sess several exciting features such as high photostability, narrow
and tunable emission spectra and high brightness [17]. Owing to
these properties, QDots have shown great potential for many bio-
medical applications, including cell labeling applications [18–21],
long-term tracking of (single) molecules [22], in vivo imaging
[23,24] and photodynamic therapy [25,26]. However, despite their
excellent photophysical properties, their toxicity, in particular due
to the release of Cd2+ ions [27,28], remains an issue of debate
[29,30].
2. Materials and methods

2.1. Nanoparticles

CdSe/ZnS colloidal nanoparticles were synthesized and made
water-soluble as described in the Supplementary information.
The nanoparticles were carefully characterized as also described
in full detail in the accompanying Supplementary information.
2.2. Cell culture

C17.2 neural progenitor cells and PC12 cells are maintained in
high glucose Dulbecco’s modified Eagle’s medium (DMEM), sup-
plemented with 10% fetal bovine serum, 5% horse serum, 2 mM
L-glutamine and 1% penicillin/streptomycin (Gibco, Invitrogen,
Merelbeke, Belgium). Cells were maintained in a humidified atmo-
sphere at 5% CO2 and fresh medium was given every other day.
C17.2 cells were passaged (1/10) when reaching 90% confluency.
PC12 cells were grown in 25 cm2 cell culture flasks (Corning,
Amsterdam, The Netherlands) that were coated with collagen
(rat tail collagen type I, Invitrogen, Belgium) and passaged (1/5)
when growing in small clumps (�5 cells per clump and reaching
70–80% confluency). Fresh medium was given every other day.

For some long-term experiments, such as the effect of intracel-
lular pH on Cd2+ in time, and the toxicity derived from this free
Cd2+, non-proliferating cell cultures are required as dilution of
the number of particles per cell due to cell division abolishes any
attempt to analyze these parameters. Therefore, in the current
study, non-proliferating cell populations were established to
enable the investigation the time-dependent effects of the intracel-
lular environment on QDot functionality and toxicity. Next to ana-
lyzing these effects without the problem of exponential QDot
dilution, these conditions also better mimic the in vivo conditions
where autologous cells or stem cells after transplantation show
minimal proliferation. To establish non-proliferating cell popula-
tions, cells were exposed with 60 lM Apigenin (Sigma–Aldrich,
Bornem, Belgium) together with the Sil NP exposure. After removal
of the medium, fresh media containing 60 lM Apigenin were used,
where media were replaced for 50% every other day with fresh
Apigenin-containing medium for the duration of the experiments.
Under these conditions, cell death was found to be minimal and
cell proliferation was reduced to �9% of the normal value. Further-
more, removal of the medium with normal cell culture medium
not containing any Apigenin resulted in a recovery of cell prolifer-
ation to near-control levels after �3 days.

Primary human umbilical vein endothelial cells (HUVECs) were
kindly provided by Dr. Aldo Ferrari (ETH Zurich, Switzerland). For
cultivation, cells were kept in 75 cm2 cell culture flasks (Corning,
Amsterdam, The Netherlands) coated with collagen (rat tail colla-
gen type I, Invitrogen, Belgium) prior to cell seeding. The cells were
maintained in endothelial cell basal growth medium and growth
supplement (Cell Applications, Tebu-Bio, Le Perray en Yvelines,
France) and passaged (1/5) when reaching 80–90% confluency.
Every other day, fresh medium was given. For HUVEC cells, the Api-
genin treatment resulted in slight toxic effects and proliferation
could be impeded better using serum-free conditions. To establish
non-proliferating HUVEC cultures, cells were given endothelial cell
serum-free defined medium (Cell Applications, Tebu-Bio, Le Perray
en Yvelines, France) when reaching high levels of confluency. Con-
fluent HUVEC monolayers could then be maintained for at least
1 week without any observable signs of cell death or reactive oxy-
gen species (ROS) induction.
2.3. Cell–nanoparticle interaction studies

The following cell–NP interactions were studied; a full method-
ology can be found in the Supplementary information that accom-
panies this paper.
2.3.1. Intracellular QDot localization
To evaluate possible endosomal localization of the QDots, C17.2,

HUVEC or PC12 cells were seeded in collagen-coated 35 mm diam-
eter glass bottom MatTek dishes (MatTek Corporation, Ashland,
MA, USA) at 4 � 104 cells per dish in 1.5 ml of full culture medium.
Cells were allowed to settle overnight prior to being incubated
with the lipophilic membrane tracer dye 3,30-dioctadecyloxacarbo-
cyanine perchlorate (DiO; Molecular Probes, Invitrogen, Belgium)
for 30 min at 2.5 lg ml�1. Next, a mixture of the QDot at 15 nM
and the lipophilic dye DiO (2.5 lg ml�1) in full cell medium was
prepared and added to the cells for 30 min at 37 �C at a humidified
atmosphere. Subsequently, the media were removed, cells washed
three times with phosphate buffered saline (PBS) and fixated with
4% paraformaldehyde (PFA) for 15 min at ambient temperature
prior to visualization using a Nikon Cs1 confocal laser scanning
microscope (Nikon Belux, Brussels, Belgium).

Cellular uptake of the PMA-coated QDots was also evaluated
using transmission electron microscopy (TEM), following 24 h
exposure of the various cell types to 10 nM of QDots, as described
in the Supplementary information.
2.3.2. Quantitative determination of cellular QDot levels
The number of QDots per cell was determined by measuring the

cellular Cd2+ levels using the Measure-iT kit (Molecular Probes,
Invitrogen, Merelbeke, Belgium) as described in the Supplementary
information.
2.3.3. Effect of pH on QDot stability
The effect of pH on QDot fluorescence intensity and release of

Cd2+ ions was determined by preparing three buffer solutions of
pH 7.4, 5.5 and 4.5, after which the QDots (5 nM) were exposed
to these buffers for a period up to 5 days. Every 24 h, fluorescence
intensity or Cd2+ release was measured, as described in the
Supplementary information.
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2.3.4. Determination of intracellular QDot degradation
C17.2, PC12 or HUVEC cells were seeded in 75 cm2 cell culture

flasks at a density of 2.5 � 106 cells per flask and allowed to settle
overnight. Then, the cells were given fresh medium containing
10 nM of QDots and allowed to incubate for 24 h. For C17.2 and
PC12 cells, their medium was supplemented with 60 lM Apigenin.
For HUVEC cells, cells were allowed to form confluent monolayers
after cell labeling and medium was transferred to serum-free de-
fined medium for culture of non-proliferative HUVECs. Next, media
were aspirated, cells washed twice with PBS and fresh media opti-
mized for non-proliferating cultures was given as described above,
after which the cells were kept in culture for the duration of the
experiment. After 1, 2, 3, 4 and 5 days of further culture under pro-
liferation-restricted conditions, cells from the various flasks were
lifted and centrifuged at 0.4 rcf. The cells were redispersed in PBS
and counted using a Bürker chamber. Then, 2 � 106 cells were ta-
ken, which were centrifuged again, after which 50 ll of DMSO
was added to every pellet to lyse all cells. A 10 ll aliquot was col-
lected from every sample and transferred to wells of a 96-well
plate, after which 200 ll per well of the Measure-iT kit was added
and Cd2+ concentrations were measured according to the manufac-
turer’s instructions (kex: 490 nm; kem: 520 nm) using a Wallac
Envision plate reader instrument. The Cd2+ concentrations were
determined using the Cd2+ calibration curve which is part of the
kit. Note that, as this is an end-point assay, the samples measured
after 1, 2, 3, 4 and 5 days were all obtained from different flasks.
Data are expressed as mean ± SEM for three independent
experiments.

Along with the determination of free cellular Cd2+ levels, the to-
tal Cd2+ levels were determined at the same time points as de-
scribed above. These data revealed no significant differences in
the total Cd2+ content (both free and QDot-associated) at the differ-
ent time points. Previous experiments furthermore revealed no
interference of the QDots themselves with the assay readout, see
Supplementary information Section V.

For CdCl2-treated cells, a similar approach was followed, where
cells were incubated with CdCl2 at different concentrations (0, 1, 5,
20, 50, 100, 250 or 500 nM) for 24 h, after which the cells were
washed twice with PBS, lifted and centrifuged at 0.4 rcf. The cells
were redispersed in PBS and counted using a Bürker chamber.
Then, 2 � 106 cells were taken, which were centrifuged again, after
which 50 ll of DMSO was added to every pellet to lyse all cells and
Cd2+ concentrations were then determined as described above.

2.3.5. Determination of cell viability
Cell viability for all three cell types was assessed using an MTT

assay, both in proliferative and in non-proliferative cell popula-
tions. This assay was performed both for cells exposed to QDots
and cells exposed to CdCl2. A full description of both methodolo-
gies can be found in the accompanying Supplementary
information.

2.3.6. Determination of reactive oxygen species
Induction of reactive oxygen species for all three cell types was

assessed using 10 lM 5-(and-6)-chloromethyl-20,70-dichlorodihy-
drofluorescein diacetate, acetyl ester (CM-H2DCFDA; Molecular
Probes, Invitrogen, Merelbeke, Belgium), both in proliferative and
in non-proliferative cell populations. This assay was performed
for both cells exposed to QDots and cells exposed to CdCl2. A full
description of both methodologies can be found in the accompany-
ing Supplementary information.

2.3.7. Determination of mitochondrial membrane potential and DNA
damage

For these studies, cells were incubated with the PMA-coated
QDots for 24 h at various concentrations (from 0 to 30 nM), after
which mitochondrial membrane potential was evaluated spectro-
fluorometrically using 20 lM JC-10 dye and DNA damage was as-
sessed by staining for phosphorylated c-H2Ax using fluorescent
antibodies followed by fluorometric plate reading as described in
full in the Supplementary information.
2.3.8. Determination of HUVEC cell morphology
The morphology of HUVEC cells was evaluated by exposing the

cells to the PMA-coated QDots for 24 h at concentrations at which
no acute toxicity was noticed (up to 20 nM), after which cells were
stained for Tubulin and F-Actin and visualized using a Nikon Cs1
confocal laser scanning microscope as described in the Supplemen-
tary information.
2.3.9. Determination of PC12 functionality
The ability of PC12 cells to induce neurite sprouting was evalu-

ated after exposing the cells for 24 h to the PMA-coated QDots at
concentrations at which no acute toxicity or effects on cell mor-
phology were noticed (up to 10 nM). After QDot-exposure, the cells
were incubated with nerve growth factor for 48 h and stained for
a-tubulin followed by confocal laser scanning analysis as described
in the Supplementary information.
2.3.10. Determination of QDot transfer in proliferating cells
QDot distribution in proliferation cells was evaluated as fol-

lows: C17.2, PC12 or HUVEC cells were seeded at 1.25 � 105 cells
per flask (5 ml total medium) and allowed to settle overnight, after
which the cells were incubated with the QDots at 0 or 2 nM for
24 h. Following incubation, media were aspirated, cells washed
twice with PBS, lifted by trypsin and kept in culture in full medium,
without any QDots, where for half of the dishes, cells were resee-
ded in MatTek dishes at 2.5 � 104 cells per dish and 1.25 � 105

cells per flask every other day, at either the odd or even days after
QDot exposure. The cells reseeded in the flasks were kept in culture
for 2 more days and then treated similarly for the duration of the
experiment (a total of 9 days), where the MatTek seeded cells were
allowed to settle for 2 h. Prior to analysis, media were removed,
cells washed three times with PBS, fixed in 2% PFA for 20 min at
ambient temperature and permeabilized in 0.1% Triton X-100 for
15 min at ambient temperature. Cell nuclei were then counter-
stained using DAPI (300 nM; 5 min) after which the dishes were
stored at 4 �C until being viewed by epifluorescence microscopy
(Nikon Cs1).

The number of QDot positive cells was determined by analyzing
the microscopy images using ImageJ. From the collected images,
more than 250 cells per condition out of three independent exper-
iments were analyzed for the total number of cell nuclei and the
number of QDot-positive cells. Data are expressed as mean ± SEM
and are gathered for more than 250 cells analyzed per condition.
Data are given as the number of QDot positive cells over the total
number of DAPI-stained cells.
2.4. Statistical analysis

All data are expressed as mean ± SEM unless indicated other-
wise and data were analyzed using one-way analysis of variance
(ANOVA). When comparing different QDot concentrations to the
same control group (the reference group), the Dunnett post hoc
analysis method was used. In all cases, the degree of significance
is indicated when appropriate (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001).
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3. Results and discussion

3.1. Nanoparticle characterization

The synthesis of the PMA-QDots used in the present work has
been well-documented in multiple studies. The PMA-QDots have
been thoroughly characterized and display a decent batch-to-batch
reproducibility [18,28,31]. The QDots used in the present study
consist of spherical CdSe/ZnS core–shell structures with a diameter
of the inorganic core–shell structure of �4.7 ± 0.9 nm diameter, as
assessed by TEM (Supporting Fig. S.2), with initially hydrophobic
surfactant capping. These QDots are overcoated with PMA mole-
cules, which are amphiphilic. The hydrophobic side-chains of
PMA can interdigitate the hydrophobic surfactants on the original
QDot surface, while the hydrophilic backbone renders the resulting
QDots water-soluble [29]. Upon applying the PMA coating and
transferring the QDots to an aqueous environment (10 mM PBS,
pH 7.4), QDots with a hydrodynamic diameter of dh 11 ± 3 nm
and a zeta potential of �18 ± 1 mV were obtained, as determined
by dynamic light scattering and electrophoretic mobility measure-
ments, which is in line with previous reports. In PBS, the QDots re-
mained stable in suspension for at least 3 months without any
detectable agglomeration. The particles have a maximal emission
at 597 nm and a quantum yield of 6.7%.
3.2. Cellular uptake of PMA-coated QDots

In view of cell labeling and NP-toxicity studies, cell uptake lev-
els and intracellular localization of the QDots must be carefully
evaluated. Upon incubating the cells with 15 nM QDots, which is
a typical QDot concentration used for cell labeling [18], confocal
microscopy revealed endolysosomal localization of the QDots in
all three cell types (Fig. 1A) as is commonly observed for NPs
[32–34]. For endosomal visualization, the lipophilic dye 3,30-dioc-
tadecyloxacarbocyanine perchlorate (DiO) was used. As this dye
eventually will stain multiple intracellular compartments, the
exposure time of the cells was kept low (30 min), in which case
mostly endosomes will be stained positive. Additionally, the QDots
themselves were only allowed to be taken up by the cells for
30 min, resulting in relatively low uptake values compared to data
obtained after longer incubations (see, for instance, Fig. 4). Note
that due to the resolution limit of optical microscopy no individual
QDots inside the endosomes can be resolved, and that the fluores-
cence signals originate from clusters of QDots within the same
endosomal vesicles [35]. In order to obtain more quantitative infor-
mation, the level of cell-associated Cd2+ was determined using a
previously validated spectrophotometric technique [36], as de-
scribed in the Supporting information. In short, this fluorescent
dye-based technique makes use of an increase in fluorescence that
occurs when the dye binds free Cd2+ ions and has been used by
multiple groups [32,36]. Upon acidic digestion of cell-associated
QDots, the level of free Cd2+ is determined, from which the number
of QDots is calculated using a dilution series of the QDot stock-
treated under identical conditions. The accuracy of this quantita-
tive assessment therefore depends on the intrinsic problems asso-
ciated with determining QDot concentrations and determining
QDot-associated Cd2+ levels [16]. Therefore, the obtained absolute
values are prone to error. However, relative values can be used for
comparative purposes in between different experiments using the
same samples. Quantitative determination of cellular QDot levels
upon 24 h exposure to various QDot concentrations revealed a con-
centration-dependent, sub-linear increase in the number of QDots
per cell as well as the total number of cell-associated QDots (Fig. 1B
and C), suggestive of a saturable endosomal uptake mechanism for
the QDots. Interestingly, C17.2 and HUVEC cells had similar uptake
levels, whereas PC12 cells had ingested lower numbers of QDots,
which has been observed for various types of NPs [14,37]. This is
likely due to the smaller overall size of the PC12 cells and their
smaller surface area, resulting in a reduced area of interaction of
NPs with the cell membrane, hereby impeding NP uptake.

As the lipophilic dye DiO and the QDots could only be used for
short exposure times, the intraendosomal localization of the QDots
at later time points was further shown by TEM of the three differ-
ent cell types, following a 24 h exposure to the QDots at 10 nM.
This slightly lower concentration was selected to avoid conditions
at which acute toxic effects occur, as this might lead to artifacts in
terms of cell organelle structure and organization. Fig. 2 shows that
for all three cell types, the QDots reside in vesicular structures,
bearing the morphological features of endosomal or lysosomal
compartments. Together, these data indicate that the particles
are taken up through the endosomal pathway and finally reside
in the endolysosomal compartment, where they will be subjected
to lower pH values, different ionic strengths and different protein
compositions than in the extracellular or cytoplasmic
environment.

3.3. Effect of pH-mediated QDot degradation on Cd2+ release and
fluorescence intensity

For cadmium-based QDots, one primary cause of toxicity has
been suggested to be free Cd2+ ions [27,28], a well-known metal
toxicant [29,38]. However, it also has been shown that a ZnS shell
around the CdSe core slows down corrosion of the QDots and thus
reduces cytotoxicity [28]. By using the fluorescent dye-based as-
say, the presence of free Cd2+ ions in the 2 lM QDot stock suspen-
sion was evaluated, showing levels of 3.9 lM of free Cd2+.
Comparison to the Cd2+ concentration after acidic digestion of
the QDots, as determined with the same assay, demonstrates that
in neutral aqueous solution �1.6% of the total Cd2+ content of the
QDots is present as free Cd2+, the rest is bound to the QDots. Note
that this percentage may depend on the QDot concentration. Under
diluted conditions the equilibrium can shift towards a larger per-
centage of dissolved Cd2+. In previous work we calculated the per-
centage of Cd2+ which is on the surface of the CdSe core to be �4%
(cf. the Supporting information). Thus �40% of the surface Cd2+

atoms from the CdSe cores (under the ZnS shell) in the 2 lM QDot
stock solution had dissolved under equilibrium conditions.

Free Cd2+ has been found to be able to affect cells starting from
concentrations of 1 lM, but this value has been found to be depen-
dent of cell type and conditions of incubation [28]. In context with
the determined value of 3.9 lM of free Cd2+ in the stock solution
and the further dilution of the QDots in cell medium prior to cell
labeling (at least by 100-fold), this suggests that the free QDot-de-
rived Cd2+ (in the cell medium) is likely not to be solely responsible
for acute cytotoxic effects. Although the dilution of the QDots will
shift the equilibrium between free and NP-associated Cd2+, the
high dilution levels used here will likely not shift the equilibrium
to such extent that more than 1 lM of free Cd2+ could be obtained.
This was further verified by exposing cells for 24 h to pre-condi-
tioned medium that was previously exposed to the QDots at the
concentrations used for cell labeling (up to 20 nM) for 24 h and
was subsequently ultracentrifuged at 115,584g. This medium then
only contained free ions derived from the diluted QDot stocks,
which was found not to result in significant effects on cell viability
(Supporting Fig. S.5).

Upon endosomal uptake, the QDots will however be exposed to
varying environmental pH values, ranging from 7.4 for extracellu-
lar medium to 4.5 in the lysosomes. As acidic conditions are known
to induce acid etching of the QDot surface and hereby release Cd2+

[37,39], the effect of pH on Cd2+ release was evaluated using previ-
ously optimized endosomal-pH buffer systems [36] (see Support-



Fig. 1. (A) Representative confocal images of PC12 (top row), HUVEC (middle row) and C17.2 cells (bottom row) incubated with 15 nM PMA-coated QDots (left column: red)
for 30 min in the presence of the lipophilic dye DiO (middle column: green). A merged image of both the QDots and the DiO positive endosomes is shown in the right column
where the percentage of colocalization of both QDots and DiO positive endosomes is shown in the top right corner. Scale bars: 30 lm. (B) The total number of QDots per cell as
a function of the QDot concentration after 24 h incubation. (C) The number of QDots containing endosomal vesicles per cell as quantified from the microscopy images after
24 h of cell exposure to the QDots. Data are shown as mean ± SEM (n = 4). For (B) and (C), any difference between the different cell types in terms of total QDots per cell or
total QDot clusters per cell is indicated when statistically significant (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001). (D) Levels of free Cd2+ in suspensions of PMA-coated QDots at various
pH values (7.4, 5.5, 4.5) as a function of time as determined by acid digestion of the QDots followed by quantitation of the level of Cd2+ by means of Cd2+-responsive
fluorescence dye as described in the Supporting information. Data are expressed as mean ± SEM (n = 3). When appropriate, the degree of significance for any condition
compared to the control value at pH 7.4 is indicated (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001).
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ing information for full experimental details). Fig. 1D shows a clear
pH-dependent release of Cd2+ under these cell-free conditions as a
function of time, resulting in a �15-fold increase in Cd2+ levels
after 5 days at pH 4.5 compared to 5 days at pH 7.4.

The degradation of the QDots is also reflected in their fluores-
cence intensities, which rapidly drop upon exposure to lower pH
values, but further decrease in time as a result of QDot surface
etching (Fig. 3A). Transferring the QDots to PBS at pH 7.4 restores
the initial loss of fluorescence intensity back to near control levels,
whereas for QDots that were exposed to acidic environments for
several days, the fluorescence intensities could not be fully recov-
ered (Fig. S.4). Additionally, the effect of the low pH has also been
investigated using TEM, where micrographs were taken of QDots in
organic phase (Fig. 3B1) and of the same QDots after 2 days’ expo-
sure to pH 3 (Fig. 3B2). The data clearly indicate changes in the
shape of the QDots after exposure to low pH values, which is con-
sistent with surface etching of the QDots and associated release of
Cd2+ ions. To evaluate the extent and kinetics of intracellular QDot
degradation, the level of intracellular Cd2+ was evaluated in non-
proliferating cells, established as previously described (see Sup-
porting information for a full experimental methodology) [36].
Non-proliferating cells were used to enable an accurate follow-
up of Cd2+ release in cells as a function of time, while minimizing
the effect of QDot dilution due to cell division. The data show a
clear time-dependent increase in cellular Cd2+ (only free Cd2+,
not QDot-associated Cd2+) the level of which also correlated with
intracellular QDot levels (Fig. 4).
3.4. Effects of QDot degradation on cell viability

Next, the cytotoxic effects of the QDots were evaluated, reveal-
ing a concentration-dependent toxicity in all three cell types, start-
ing from 20 nM or higher for C17.2 and HUVEC cells and 30 nM for
PC12 cells (Fig. 5A). The latter is likely explained by the lower lev-
els of cell-associated QDots for the PC12 cells (Fig. 1B). Interest-
ingly, when non-proliferating cells were loaded with QDots, the
cytotoxic effects of the QDots significantly augmented in time, in
close correlation with the elevated Cd2+ levels (Supporting
Fig. S.6). When using CdCl2 as a source of free Cd2+, only minimal
cytotoxic effects were observed. Fig. 6 shows the intracellular level
of Cd2+ measured in C17.2 cells after 24 h exposure to CdCl2 at var-
ious concentrations. The data reveal that at the highest dose
(500 nM CdCl2), the intracellular level of Cd2+ was substantially
higher than the level obtained when cells were exposed to QDots
(Fig. 4C). Therefore, the data collectively show that the toxicity in-
duced by Cd2+ ions by CdCl2 addition is less substantial than the
toxicity induced by Cd2+ derived from intracellular QDot degrada-
tion. Caution must be considered when trying to explain the lack of
effect of CdCl2 at the ‘‘same intracellular concentrations’’ as only
free Cd2+ was considered and the Cd2+ still in the QDots, or the ions
present on the QDot surface were not taken into account, which
may all play a significant role in QDot-mediated toxicity. However,
the low effects of free Cd2+ at high intracellular levels given by
CdCl2 suggest that other than immediate toxicity of free Cd2+, dif-
ferent mechanisms appear to be contributing to the QDot-induced



Fig. 2. Transmission electron micrographs of (A) C17.2, (B) HUVEC and (C) PC12 cells exposed to QDots for 24 h at 10 nM. The bottom figures are enlarged views of the
respective areas indicated in the top figures. Scale bars: (A,B) 200 nm, (C) 100 nm.

Fig. 3. (A) Effect of pH on QDot fluorescence intensity. Relative fluorescence intensity levels of 5 nM suspensions of PMA-coated QDots at various pH values (7.4, 5.5, 4.5) as a
function of time. Data are expressed as mean ± SEM (n = 3) and the degree of statistical significance of treated samples vs. control samples is indicated when appropriate
(⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001). (B) Transmission electron micrographs of the QDots upon synthesis (B1) and after 2 days’ exposure to pH 3 (B2). Scale bars: (B1) 10 nm,
(B2) 20 nm.
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toxicity (Supporting Figs. S.7 and S.8). One possible explanation for
the clear correlation between QDot-induced toxicity and intracel-
lular QDot-derived Cd2+ levels, lies in the endosomal enclosure of
the QDots [36]. Where Cd2+ derived from CdCl2 can more freely dis-
tribute throughout the cell cytoplasm and will be taken up by the
cell in a short time span, this is not the same for Cd2+ derived from
cadmium-based QDots. The intraendosomal degradation of the
QDots likely results in a more heterogeneous distribution of Cd2+,
with very high local Cd2+ concentrations in a confined space (endo-
some) that easily exceed the toxic threshold, thereby affecting cell
homeostasis. Additionally, the Cd2+ derived from QDots is gradu-
ally released over time and will immediately be subjected to a deg-
radative environment of low pH, unlike the Cd2+ ions that are
derived from CdCl2. The presence of the ions in the low pH environ-
ment of the endosomes at high local concentrations may result in
higher toxic effects than more homogeneously distributed Cd2+.
Furthermore, NPs such as QDots are known to affect cellular well-
being, for instance by the induction of ROS. When cells are already
subject to stress induced by the intracellular presence of NPs, the
additional presence of Cd2+ will likely result in toxic effects more
quickly than the same levels of Cd2+ would in cells that have no
other stress inducers. This hypothesis also supports the earlier
work of other groups [40,41] who found that intracellular Cd2+ re-
lease was more toxic than extracellular Cd2+.

These data collectively show that minor toxic effects occur at
concentrations of 500 nM of free Cd2+. Compared to the QDots,
similar minor toxic effects were noticeable at concentrations of
10 nM. Whereas the amount of free intracellular Cd2+ derived from
the QDots was much lower than Cd2+ levels derived from CdCl2, the
total amount of Cd2+ added was much higher in the case of the
QDots (for 10 nM QDots; an experimental value of 1.32 lM Cd2+

was obtained). Based on these values, it can be concluded that
the majority of QDot-associated Cd2+ is not released and remains
confined within the QDot core. These ions do not appear to play
any major role in the toxicological effects of Cd2+ as when compar-
ing the toxicity of CdCl2 and QDots based on the total amount of
Cd2+ added, the QDots display less toxicity.

3.5. Effects of QDots on oxidative stress

To further test this hypothesis, the effect of CdCl2 and QDots on oxi-
dative stress were evaluated in non-proliferating cells, indicating a



Fig. 4. (A–C) Levels of free Cd2+ in (A) PC12, (B) HUVEC and (C) C17.2 cells exposed to various concentrations of PMA-coated QDots for 24 h and subsequently kept in non-
proliferating state, after which the cellular Cd2+ levels are measured after 1, 2, 3, 4 and 5 days. Data are expressed as mean ± SEM (n = 3). Note that only free Cd2+ was
measured, no acid digestion was employed and any remaining QDots were found not to significantly interfere with the assay readout.

Fig. 5. (A) Viability and (B) ROS induction of PC12, HUVEC and C17.2 cells as a function of QDot concentration after 24 h incubation. Data are represented as mean ± SEM
(n = 6) and expressed as relative to untreated control cells. (C) Quantitative levels of JC-10 (light grey) and c-H2Ax (dark grey) for HUVEC cells exposed for 24 h to different
concentrations of QDots. Data are expressed as mean ± SEM (n = 3) and are presented as relative to that of untreated control cells (=100%). When appropriate, the degree of
significance is indicated (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001).
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clear concentration-dependent induction of ROS for either CdCl2 or
QDots (Fig. 5B, Supporting Figs. S.8 and S.9). However, for the QDots,
the level of ROS also increased in time, which is in line with the increas-
ing Cd2+ concentrations. As the level of ROS is higher for the QDots than
for CdCl2, this supports our hypothesis on local high Cd2+ concentra-
tions obtained upon intraendosomal QDot degradation. When cells
were co-incubated with 5 mM N-acetylcystein (NAC), an FDA-ap-
proved free radical scavenger, ROS levels were reduced to near control
levels (Supporting Fig. S.8). The addition of NAC was also able to par-
tially restore cell viability (Supporting Fig. S.6), indicating that ROS
are an important mediator in QDot-induced toxicity, but other mecha-
nisms must also contribute to the overall cytotoxicity.

To evaluate whether the elevated ROS levels have any secondary
effects on cell physiology, mitochondrial membrane potential
(DWm) and DNA damage were evaluated. The DWm was evaluated
using the JC-10 dye, which remains in the cytoplasm as green mono-
mers until it is taken up by healthy mitochondria with a normal
DWm, which will make the dye aggregate and its fluorescence emis-
sion will shift (red color). The ratio of green over red (as shown in
Fig. 5C) therefore indicates the ratio of damaged over healthy mito-
chondria. The data show that, in line with the onset of ROS, at QDot
concentrations from 10 nM and above, a clear and significant in-
crease in damaged mitochondria can be seen, at levels below those
at which acute toxicity occurs (30 nM). The significant effects at con-
centrations below toxic levels clearly indicate that these results are
not artifacts caused by cell death, but rather that the QDot-mediated
onset of ROS precedes cell death. Together with the observation that
NAC treatment can partially overcome QDot-induced toxicity, these



Fig. 6. Levels of free Cd2+ in C17.2 cells exposed to various concentrations (1, 5, 20,
50, 100, 250 and 500 nM) of CdCl2 for 24 h. Data are expressed as mean ± SEM
(n = 3). ND: non-detectable (values are within noise-level of the assay and cannot
be distinguished from the background level).
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results show that ROS induction is one of the prime mechanisms by
which these NPs elicit toxic effects.

As elevated ROS levels are known to possibly result in DNA
damage, which may have far-reaching consequences in the safety
of these materials as this a hallmark of carcinogenicity, the occur-
rence of DNA double strand breaks was evaluated (Fig. 5C). This
was done by staining for phosphorylated c-H2Ax foci, which are
formed by the rapid phosphorylation of histone H2Ax at sites of
DNA double strand breaks. Similar as for the loss of DWm, signifi-
cant DNA damage was found to occur at doses at which acute tox-
icity was minimal (20 nM).

Taken together, these data indicate that the QDot-induced ROS
levels result in secondary effects which, at higher levels, will result
in cell death, but are still significant even at lower levels, where
they induce cell stress or carcinogenicity.
Fig. 7. (A) Representative confocal images of HUVEC cells exposed for 24 h to PMA-coate
images shown are merged images of QDots (red) and a-tubulin cytoskeleton (green). Sc
exposed to PMA-coated QDots for 24 h and stained after 2 additional days of culture. The
§ for 20 nM-treated cells. (C) Effect of QDots on PC12 cell functionality. Representative co
2 (2nd column), 5 (3rd column) or 10 nM (4th column) and subsequently exposed to nerv
QDots (red) and a-tubulin (green). The area indicated by the white rectangle is magnified
(D) The number of neurites of a certain length per cell after 3 days of NGF exposure for cel
of significance is given when compared with untreated control cells (⁄p < 0.05; ⁄⁄p < 0.0
3.6. Effects of QDots on cell morphology and functionality

To further refine the non-toxic concentration of PMA-coated
QDots and to analyze the contribution of time-dependent Cd2+ re-
lease, the morphology of QDot-exposed HUVECs was evaluated. As
a primary human cell type with a typical well-spread morphology,
these cells are perfectly suited to assess QDot-mediated distur-
bance of actin or tubulin cytoskeleton [14]. Furthermore, previous
data on iron oxide NPs have shown that cell deformations usually
occur after 2–3 days after initial cell exposure [14], making this an
interesting parameter to study with respect to time-dependent
Cd2+ release. Fig. 7A and B reveals a concentration-dependent
reduction in cell-spreading, which is in line with previous reports
on various types of nanoparticles [36,42,43]. Note that for these as-
says, only low QDot concentrations (up to 20 nM) were selected
that do not induce significant levels of acute cell death as the
occurrence of apoptotic bodies or condensed cells would substan-
tially influence the results obtained. The reduction in cell spreading
correlates well with the onset of ROS, suggesting a possible influ-
ence of ROS in the cytoskeletal deformations. However, previous
data have suggested that the conjoined effects of multiple mecha-
nisms play a role in cell deformations, including (1) the endosomal
localization of QDots resulting in enlarged lysosomal compart-
ments [30] and (2) a loss of lysosomal functionality, resulting in
large compartments containing high numbers of rigid NPs and
hereby occupying a substantial part of the cellular cytoplasmic
compartment, sterically hindering normal cytoplasmic functional-
ity [36].

Next, the effect of the QDots on cell functionality was investi-
gated. To evaluate the effect of Cd2+ release, the PC12 model sys-
tem was used, which was previously found to be an excellent
model for a fast, sensitive and quantifiable assessment of cell func-
tionality upon nanoparticle exposure. In this assay, cell functional-
ity is evaluated by induction of neurite outgrowth upon
d QDots at 5 nM (left column), 10 nM (middle row) and 20 nM (right column). The
ale bars: 50 lm. (B) Histograms representing the cell area distribution of HUVECs

average cell areas are indicated with ⁄ for control cells, X for 10 nM-treated cells and
nfocal images of PC12 cells exposed to PMA-coated QDots for 24 h at 0 (left column),
e growth factor (NGF; 100 ng ml�1) for 2 days. Images shown are merged images of
at the bottom of the image, showing only the QDot fluorescence. Scale bars: 30 lm.

ls exposed to 0, 1, 2, 5 or 10 nM of PMA-coated QDots. When appropriate, the degree
1; ⁄⁄⁄p < 0.001).



Fig. 8. The percentage of QDot positive cells for cells incubated with 2 nM QDots for
24 h after 0, 2, 4 and 6 average cell doubling times as evaluated by microscopy
analysis. The data are expressed as mean ± SEM (n = 3).
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stimulation with nerve growth factor (NGF) [13]. When cells were
exposed to QDots at nominally non-toxic concentrations, the out-
growth of neurites after 2 days of stimulus with NGF (4 days after
initial cell exposure) was found to be significantly impeded at
higher QDot concentrations (Fig. 7C and D).
3.7. Assessment of QDot functionality for comparative data analysis

Based on all the data obtained, the non-cytotoxic concentration
of PMA-coated core/shell QDots of 4.7 nm CdSe/ZnS diameter is
�2 nM. Previously, the multiparametric methodology applied in
the current study has been used to evaluate PMA-coated Au NPs
of the same size and identical (PMA) surface coating [43] as well
as commercially available polymer-coated core–shell QDots [36].
For the Au particles, the non-toxic level was found to be 10 nM,
indicating a fivefold higher toxicity of the QDots, owing to differ-
ences in the metal core of the NPs and the forthcoming photophys-
ical properties of these materials as QDots, for instance, are well-
known to produce ROS under light irradiation which less outspo-
ken for Au NPs. Interestingly this value fits remarkably to very
early studies, in which PMA-coated CdSe/ZnS QDots were found
to be more than three times toxic than PMA-coated Au NPs [28].
Given the difficulties in accurately assessing NP concentrations
[16], differences in the uniformity by which the PMA polymer
covers the NPs and polydispersity differences between the two dif-
ferent NP types, these absolute values should, however, be treated
with care and making comparisons should be done cautiously.

Given the difficulties in comparing different NPs due to the
problems associated with accurately determining NP concentra-
tions [16], the applicability of the QDots for fluorescence cell
tracking was evaluated at their non-toxic concentration (2 nM).
In previous work, it was found that carboxyl-functionalized com-
mercially available QDots of similar size tested under identical
conditions were found to be non-toxic at 1 nM [36]. Note that also
the PMA-coated QDots as used in this study are terminated by car-
boxyl-groups. Differences in the methods used for determining
QDot concentrations are most likely the reason for the slight differ-
ence in the values of these studies [16]. At non-toxic concentra-
tions, labeled cells were able to be monitored by fluorescence
microscopy for approximately four cell doublings (Fig. 8). In the
end, the duration by which QDot labeled cells could be efficiently
visualized at non-toxic conditions (approximately four cell dou-
blings) was the same for both types of carboxylated Qdots (com-
mercial and synthesized ones), indicating that both types of
QDots resulted in similar efficiencies in terms of cell labeling strat-
egies. The ability to track the cells by fluorescence microscopy is
influenced by the number of QDots internalized by the cell, as well
as other factors such as their coating and quantum yield. These
data demonstrate that when assessing NP toxicity, the number of
cell-associated NPs determines cytotoxic effects rather than the to-
tal number of NPs added to the cells, which is in line with earlier
findings [44]. Here, we demonstrated the importance of intracellu-
lar NP concentrations in the cytotoxicity of nanomaterials as well
as the necessity to assess the functionality of the nanomaterials
at non-toxic conditions. In the end, it is important to evaluate
whether the NPs at their non-toxic concentration are still func-
tional for the desired application, such as cell tracking. Especially
given the difficulties in accurately determining NP concentrations,
assessing their biomedical functionality appears like an informa-
tive and fruitful tool, which allows the comparison of particles
with respect to both toxicological and technical features of the
NPs, thereby providing a good overview of the respective NP
strength for a selected purpose.

4. Conclusions

In conclusion, the present work demonstrates the importance of
NP degradation in the cellular microenvironment in the cytotoxic
effects of nanomaterials. Therefore, the data collectively show that
the toxicity induced by Cd2+ ions by CdCl2 addition is less substan-
tial than the toxicity induced by Cd2+ derived from intracellular
QDot degradation (when compared at the same intracellular free
Cd2+ concentration). Note that under the conditions used in this
study, the majority of QDot-associated Cd2+ is not released and re-
mains confined within the QDot core. These ions do not appear to
play any major role in the toxicological effects of Cd2+ as when
comparing the toxicity of CdCl2 and QDots based on the total
amount of Cd2+ added, the QDots display less toxicity. Together,
these data reveal that while current cadmium-containing QDots
are well-suited for monitoring cell behavior by fluorescence
microscopy for a low number of cell divisions, Cd2+-based QDot
formulations do not appear to be optimally suited for long-term
cell tracking after endosomal uptake. Optimization of QDot formu-
lations can occur at both the level of the QDot core as at the level of
the coating applied for QDot biofunctionalization. The current
study demonstrates the need for specialized model systems, such
as non-proliferating cells, in order to be able to study this effect
in more detail at later time points under conditions close to rele-
vant physiological conditions. Additionally, there is a need for
techniques that enable one to determine the chemical state of all
NP-associated ions in real-time in live cells. Considering the
technical difficulties in terms of accurately assessing NP concentra-
tions, it is also vital to accurately assess functional (= cell-associ-
ated) NP levels. In order to enable a comparison of different NPs,
it is therefore more suited to use NP functionality (e.g. the ability
to fluorescently visualize labeled cells) at non-toxic concentrations
as the final parameter which determines NP safety, rather than
comparing various NP concentrations, which may not be very
insightful.
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Appendix B. Figures with essential colour discrimination

Certain figures in this article, particularly Figures 1 and 7, are
difficult to interpret in black and white. The full colour images
can be found in the on-line version, at doi:http://dx.doi.org/
10.1016/j.actbio.2013.09.041.
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Photoelectrochemical Sensor Based on Quantum Dots and
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Fred Lisdat*[a]

1. Introduction

The combination of nanostructures and biomolecules has been
followed with growing interest in the last decade.[1, 2] Different
nanostructures, such as quantum dots (QDs),[3] nanowires,[4]

nanorods[5] or nanotubes,[6, 7] have been established and char-
acterised. Through their small size in at least one dimension,
nanostructures often possess different chemical and physical
properties than those of their bulk counterparts.

QDs, in particular, have been intensively investigated be-
cause of their unique optical properties.[8, 9] They can consist of
different semiconductors, such as CdSe, CdS, ZnS or ZnSe, with
sizes of only a few nanometres. Through illumination, QDs can
be excited to generate electron–hole pairs. Relaxation of elec-
trons in the initial state may result in light emission; the band
gap defines the emission energy and increases with decreasing
QD diameter. QDs also possess broad absorption spectra.[3, 10]

Size-tuneable emission spectra allow the multiple read-out of
differently sized QDs in a sample.[11, 12] These properties make
them a more attractive biological label than alternative organic
dyes.[13] Thus, QD labels coupled to recognition molecules have
been investigated in vivo and in vitro.[14]

In addition to the use of QDs as an optical marker, several
investigations have been performed for coupling QDs to elec-
trochemistry.[15–17] Hereby, the generation of light-induced elec-
tron–hole pairs in QDs is utilised to achieve electron transfer

from the electrode via the QDs to a redox-active molecule in
solution or vice versa. This enables the construction of light-
triggered sensors ; a concept that has been discussed for many
years.[19–21] Direct protein electrochemistry can also be shown
with QD electrodes, allowing the construction of sensor
schemes for superoxide[21] or enzyme substrates such as lactate
or nitrate.[22]

Various approaches exist to create a surface that makes QDs
more suitable for applications in biological systems. When QD
synthesis is performed in organic solvents, the resulting QDs
are capped with ligands such as trioctylphosphine oxide
(TOPO). For investigations in biological systems, QDs have to
be transferred to aqueous solutions.[23, 24] Thus, various layers
consisting of silicone oxide,[25] polymers[26] or proteins[27] have
been attached to the QD surface. Another method applies
ligand exchange with thiol-containing substances, such as 4-
mercaptophenol,[28] 11-mercaptoundecanoic acid,[29] 1,4-benze-
nedithiol (BDT)[30] or dihydrolipoic acids.[31] For the coupling of
biomolecules to water-soluble QDs, different methods have
been investigated, of which the covalent linkage of an amino
group and a carboxylic group of the QD ligand is the most
widely used one.[3] Another possibility is coupling between dif-
ferently charged QDs and proteins through electrostatic inter-
actions.

Herein, a light-triggered CdSe/ZnS QD sensor for the enzy-
matic detection of sarcosine is demonstrated. The sensor is
based on the influence of oxygen on QDs, as verified in previ-
ous studies.[32–33] To build a sensor, the oxygen-consuming
enzyme sarcosine oxidase (SOD) is immobilised on a QD-modi-
fied electrode, leading to suppression of the photocurrent in
the presence of sarcosine. This is illustrated in Scheme 1.

In this study, a photobioelectrochemical sensor for the detec-
tion of sarcosine is reported. For this purpose, CdSe/ZnS quan-
tum dot (QD) modified electrodes are prepared and the
oxygen-dependent photocurrent is evaluated under illumina-
tion. By using sarcosine oxidase (SOD), the photocurrent can
be suppressed because of biocatalytic oxygen reduction. For
the construction of a sensor, SOD is immobilised on the QDs
by means of the polyelectrolyte poly(allylamine hydrochloride)

(PAH). Multi-layer systems have been built up to six bilayers
through electrostatic interactions. The assembly can be verified
by surface plasmon resonance measurements. By varying the
number of layers, the influence of the amount of enzyme on
the sensitivity of the sensor can be shown. The [SOD/PAH]6-
layer system results in a signal change of 0.041 % mm

�1 in the
linear range from 100 mm to 1 mm of sarcosine.
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2. Results and Discussion

2.1. Oxygen Influence on the QD Electrode and the Sensing
Principle

Herein, we use CdSe/ZnS QDs with an absorption maximum at
524 nm and a diameter of around 3.1 nm. A TEM image and
fluorescence spectrum of the QDs are given in the Supporting
Information.

For the preparation of a functional QD electrode, BDT-func-
tionalised QDs are immobilised on a gold electrode by chemi-
sorption. Under illumination, a photocurrent can be generated.
Previous studies have shown that, by varying the wavelength
of excitation, the photocurrent follows the absorption spectra
of the QDs used.[21] The photocurrent is potential dependent,
resulting from electron-transfer reactions from or to the excit-
ed QDs. The clear potential dependence can be seen as evi-
dence of the quality of the QDs prepared with a low number
of surface states. This is mainly caused by the ZnS shell around
the CdSe core. The change from cathodic to anodic photocur-
rent depends on several parameters, such as the modification
of the QDs, and also on the solution composition (such as the
presence or absence of donor/acceptor compounds). For fur-
ther sensor applications, we first investigate the influence of
oxygen on the photocurrent of the QD electrode. These meas-
urements are performed in air-saturated and argon-purged
buffer at pH 7.6 at a potential of �350 mV (vs Ag/AgCl).
During illumination, a photocurrent is obtained that becomes
stable after six to eight light pulses. The influence of oxygen
on the photocurrent is shown in Figure 1. The results illustrate
a decreased cathodic photocurrent in the absence of oxygen;
this is about 50–60 % smaller than the signal in air-saturated
solution. Thus, under illumination, electron–hole pairs are gen-
erated in the QDs and electron transfer from the conduction
band to molecular oxygen is feasible under these experimental
conditions. Oxygen acts as an electron acceptor here, and
thus, helps to separate light-generated charge carriers in the
QDs, which limits recombination processes and results in
a stable photocurrent response. A potential variation of the
QD electrode verifies, on the one hand, that increasing poten-
tial results in smaller photocurrents. On the other hand, more
negative potentials than �350 mV versus Ag/AgCl do not sig-
nificantly enhance the current. Thus, this potential is used
hereafter for further studies.

The influence of oxygen found provides the basis for the
combination of QDs with the enzyme SOD to detect sarcosine
through the enzymatic consumption of the co-substrate. This
leads to a competition situation between the enzyme and the
QDs to reduce oxygen in the presence of the analyte, as illus-
trated in Scheme 1.

Sarcosine is an intermediate in the enzymatic analysis of cre-
atinine, and thus, a sarcosine sensor could be beneficial for the
diagnosis of kidney diseases. Different creatinine detection
methods have been established by the use of SOD[34–36] and
sarcosine sensors have also been reported.[37, 38]

2.2. Optimisation of Biocatalyst Deposition

To attach the enzyme to the QD electrode surface at a high
concentration, we chose a layer-by-layer assembly with the
polyelectrolyte poly(allylamine hydrochloride) (PAH; as illustrat-
ed in Figure 2 B). This is based on electrostatic interactions be-

Scheme 1. Sensing principle of the QD electrode in combination with the
enzyme SOD. During the enzymatic conversion of sarcosine, oxygen is re-
duced to hydrogen peroxide. This process competes with electron transfer
from the excited QDs to oxygen, resulting in a photocurrent change that is
detected at the electrode.

Figure 1. A) Photocurrent measurements of CdSe/ZnS QD-modified electro-
des in argon-purged (1) and air-saturated (2) buffer [100 mm N-(2-hydroxy-
ethyl)piperazine-N-(2-ethanesulfonic acid) (HEPES) pH 7.6; �350 mV vs Ag/
AgCl; arrows indicate the switching on (fl) and off (›) of the light source] .
B) Illustration of the electron-transfer steps at the QD electrode.

Figure 2. A) Surface plasmon resonance (SPR) measurements of the assem-
bly of one SOD/PAH bilayer on a BDT-modified Au SPR chip [5 mm sodium
phosphate buffer (NaPP) pH 7.6; flow rate 1 mL min�1] . B) Illustration of the
SOD/PAH layer assembling on a BDT-modified SPR chip.
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tween the negatively charged enzyme (pI 5.3) and the positive-
ly charged polyelectrolyte at pH 7.6.[39] This immobilisation
method is investigated by SPR to obtain information on the as-
sembling conditions. To simulate the QD electrode surface, SPR
Au chips are modified with BDT. When the assembly is per-
formed with 2 mm NaPP at pH 7.6, only very weak deposition
of the enzyme is found. However, with 5 mm NaPP at pH 7.6,
SOD and PAH are successfully immobilised in a layer-like
format. Figure 2 B shows the formation of one bilayer on the
surface. Thus, these conditions are used for further sensor con-
structions with SOD.

2.3. Study of the Behaviour of the SOD–QD Electrode

Firstly, a QD electrode was combined with a six-layer system
[SOD/PAH]6 to verify that the sensing principle is working.
Therefore, the photocurrent measurement is started in pure
buffer and then increasing concentrations of sarcosine are
added. Figure 3 shows the current response to single light
pulses at various sarcosine concentrations and illustrates the
decrease of the photocurrent through enzymatic substrate oxi-
dation accompanied by oxygen consumption. A constant pho-
tocurrent is formed three to four light pulses after a change of
concentration in solution.

To investigate the influence of the number of layers on the
sensing properties, different [SOD/PAH]n-layer systems are built
up on QD electrodes. Figure 4 shows the relative photocurrent
change of multi-layer systems with different numbers of layers.
All of the multi-layer systems prepared show significant photo-
current suppression in the presence of sarcosine. The magni-
tude of the photocurrent change depends on the number of
bilayers deposited. While the two-layer system [SOD/PAH]2 and
the four-layer system [SOD/PAH]4 give only slight differences,
the sarcosine response of the [SOD/PAH]6-layer system is clear-
ly higher. The investigations show that sarcosine can
diffuse into the whole layer system and enzyme mol-
ecules immobilised near the electrode are also in-
volved in the generation of the enzymatic signal.
Under substrate saturation, up to 60 % of the whole
photocurrent can be suppressed. This corresponds to
the oxygen-dependent part of the photocurrent, as
demonstrated by the measurements recorded before
without enzyme. It can be concluded that, with a six-
layer assembly, a sufficient SOD amount can be im-
mobilised to make use of the full range of oxygen
sensitivity of the QD electrode. The linear range is be-
tween 100 mm and 1 mm sarcosine for all multi-layer
systems, whereby the [SOD/PAH]6-layer system has
the highest sensitivity (0.041 % mm

�1). The dynamic
range proceeds up to 30 mm sarcosine. Higher con-
centrations do not lead to a further photocurrent
suppression. The apparent Km value of the immobi-
lised SOD is determined to be 1 mm compared with
a Km value of 12 mm for SOD of Bacillus sp. in solu-
tion.[40] The sensitivity of the system is slightly too
low to allow the detection of sarcosine concentra-
tions that would appear during creatinine analysis in

serum samples. However, as already shown in a previous
study,[33] the adjustment of the enzyme immobilisation condi-
tions (e.g. concentration or cross-linking) offers the possibility
of tuning the sensitivity to a suitable dynamic range.

After substrate measurement, the photocurrent can be re-
covered very well in buffer solution and the sensor is ready for
further analysis. The first stability tests of the [SOD/PAH]n-layer
systems do not show a significant decrease in the signal, but
give a stable photocurrent response for up to three days. For
this period, preserved enzyme activity and sustained inclusion
of SOD in the layered system are achieved.

In sample solutions for analysis, a high number of different
molecules can occur, which could disturb application of the

Figure 3. Photocurrent measurements of a [SOD/PAH]6-layer modified QD
electrode in solutions with different sarcosine concentrations (a = 30 mm,
b = 1 mm, c = 500 mm, d = 0 mm ; 6 light pulses after substrate addition;
�350 mV vs Ag/AgCl, 100 mm HEPES pH 7.6).

Figure 4. Relative change of the photocurrent of different QD-modified electrodes with
immobilised SOD depending on the sarcosine concentration in the range of 0–30 and 0–
1 mm (inset A) for a) [SOD/PAH]2, b) [SOD/PAH]4 and c) [SOD/PAH]6 (100 mm HEPES
pH 7.6; �350 mV vs Ag/AgCl). Inset B) Schematic illustration of the [SOD/PAH]n-layer as-
sembly on the QD-modified electrode.
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sensor. Therefore, initial investigations with potentially interfer-
ing molecules, such as hydrogen peroxide, urea and glycine,
are realised under working conditions with concentrations of
200 mm. It can be shown that these molecules do not influence
the photocurrent behaviour of a QD electrode with immobi-
lised SOD. Because the redox-active hydrogen peroxide, in par-
ticular, is co-produced during sarcosine conversion, these stud-
ies also demonstrate that no products of the enzyme reaction
are responsible for the signal depression found. Furthermore,
whether sarcosine could be directly converted at the excited
QDs under negative polarisation is studied. Again no change
in photocurrent behaviour is found when the sarcosine con-
centration in solution increases. Because direct analyte conver-
sion can be excluded, in contrast to, for example, glucose de-
tection with illuminated QDs,[41] a defined signal generation
process can be verified here for the proposed system. As for all
biosensors based on oxygen consumption, sufficient air con-
tact of the sample solution to be analysed has to be ensured.

The biosensor principle illustrated in this study is based on
photocurrent measurements of a QD electrode. It possesses
great potential for parallel analysis of different enzyme sub-
strates when the corresponding enzymes can be separately
fixed on the surface and spatially resolved illumination is used.
The spatially resolved immobilisation of SOD in small and de-
fined spots, however, needs further investigation.

3. Conclusions

A photobioelectrochemical sensor based on CdSe/ZnS QDs
and SOD is developed to determine sarcosine concentrations.
Firstly, the oxygen dependence of the cathodic photocurrent
of the QD electrode during illumination is demonstrated as the
basis for an analytical application. Secondly, the layer-by-layer
assembling technique, utilising positively charged PAH as
a polyelectrolyte, is performed as an efficient method to de-
posit SOD at a high concentration onto the QD electrode; this
is verified by SPR. We show that SOD in combination with the
QD electrode leads to a photocurrent change in the presence
of sarcosine because of a competitive situation with respect to
oxygen. The linear range is from 100 mm to 1 mm and the sen-
sitivity depends on the number of immobilised enzyme layers.
It is demonstrated that the [SOD/PAH]6-layer system is well
suited for sensitive sarcosine detection. The study opens the
way for utilising other oxygen-consuming enzymes, and thus,
a tool box is created for multi-analyte sensing on one sensor
surface through illumination of the respective area and photo-
current detection.

Experimental Section

Procedures

Benzenedithiol (BDT) is purchased from Alfa Aesar (Karlsruhe, Ger-
many). Argon is acquired from Air Liquide (D�sseldorf, Germany).
Anhydrous sodium dihydrogen phosphate, 99.5 % HEPES, sodium
hydroxide (�97 %), sarcosine, toluene, SOD (EC 1.5.3.1, SOD) from
Bacillus sp. and PAH are purchased from Sigma–Aldrich (Steinheim,
Germany). Sulfonic acid (96 %) and methanol (99.9 %, �50 ppm

H2O) are obtained from Roth (Karlsruhe, Germany). All aqueous sol-
utions are prepared with ultrapure water. Structural images of SOD
are obtained from the RCSB Protein Data Bank.

CdSe/ZnS nanoparticles (QDs) are synthesised by following an es-
tablished protocol.[42] In the presence of TOPO, the diameter of the
inorganic part of the QDs synthesised is 3.1 nm and they are
stored in toluene.

Electrode Cleaning

Gold electrodes (3 mm diameter BASi, UK) are polished for 4 min
with Al2O3 powder of various sizes (1 mm, 0.05 mm). Thereafter, the
electrodes are sonicated for 10 min. Each electrode is electrochemi-
cally cleaned by cyclic voltammetry in 1 m NaOH (�800 to
+ 200 mV vs Ag/AgCl, 1 m KCl, scan rate 300 mV s�1) and 0.5 m

H2SO4 (�200 mV to + 1.75 V vs Ag/AgCl, 1 m KCl, scan rate
300 mV s�1).

Electrode Modification

A 10 mm solution of CdSe/ZnS QDs is incubated with a 100 mm so-
lution of BDT in toluene for 3 h in a thermoshaker at 40 8C to ex-
change the ligand TOPO. Afterwards methanol is added (1:1) and
the solution is centrifuged at 14 500 rpm for 40 min. The precipitat-
ed QDs in the pellet are re-suspended in toluene before the
cleaned Au electrodes are immersed in BDT-coated QDs for 24 h
on a shaker. After incubation, the electrodes are rinsed with tolu-
ene to remove insufficiently attached QDs.

SOD Immobilisation

For layer-by-layer deposition of the enzyme, the QD-modified Au
electrodes are incubated first in 1 mm SOD solution (pH 7.6, 5 mm

NaPP) for 15 min. After a washing step, the electrodes are im-
mersed in PAH (1.8 mg mL�1, pH 7.6, 5 mm NaPP) for another
15 min before a next washing step is performed. This layer-by-layer
deposition procedure is repeated to establish two, four and six bi-
layer systems with alternating layers of SOD and PAH. Before meas-
urements are recorded, the modified electrodes are stored for
15 min in sarcosine solution (30 mm, pH 7.6, 100 mm HEPES buffer)
to condition the system.

Measurements

Photocurrent measurements are performed amperometrically with
a three-electrode arrangement consisting of the QD working elec-
trode, an Ag/AgCl reference electrode and a platinum wire as the
counter electrode. A halogen reflector lamp from Schott (Mainz,
Germany) with a light intensity of about 230 mW (before the opti-
cal window of the measuring cell) is used as the light source. The
light is placed opposite the working electrode. For all photocurrent
measurements, 100 mm HEPES buffer (pH 7.6) is used and a poten-
tial of �350 mV (vs Ag/AgCl) is applied. Every 10 s during the mea-
surement, the light is switched on and off to generate a photocur-
rent.

To study the O2 dependency on the photocurrent, QD-modified Au
electrodes are investigated in air-saturated and in argon-purged
buffer.

Furthermore, the effects of different SOD/PAH multi-layers on the
photocurrent are analysed. Sarcosine solutions between 0.1 and
30 mm are prepared with 100 mm HEPES at pH 7.6. Before these in-
vestigations are carried out, buffer is added to the measurement
cell to evaluate the system. Afterwards sarcosine solutions with in-

� 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 6 &4&

These are not the final page numbers! ��

CHEMPHYSCHEM
ARTICLES www.chemphyschem.org

www.chemphyschem.org


creasing concentrations are added by exchanging the whole solu-
tion.

To investigate enzyme immobilisation, a Biacore T100 device is
used to perform SPR spectroscopy. Therefore, a SPR chip is incu-
bated for 12 h in a 100 mm solution of BDT in toluene. Thereafter,
the SPR chip is integrated into the SPR device. For measurements,
a 2 or 5 mm sodium phosphate running buffer at pH 7.6 is used
(1 mL min�1). SOD (15 mL; 2 or 5 mm sodium phosphate buffer,
pH 7.6) and PAH (0.02 m monomer concentration; 2 or 5 mm

sodium phosphate buffer, pH 7.6) are injected alternately. After
each injection, a washing step is performed to remove weakly at-
tached molecules.
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Photoelectrochemical Sensor Based on
Quantum Dots and Sarcosine Oxidase

Sarcosine sensor: A photobioelectro-
chemical sensor based on the combina-
tion of quantum dots (QDs) with an
enzyme is developed to allow a light-di-
rected sensor read-out (see picture). The
generation of charge carriers in the QDs
by illumination is coupled to charge
transfer with the electrode and the co-
substrate of the enzyme.
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Overview

Bridge over troubled waters:
understanding the synthetic and
biological identities of engineered
nanomaterials
Bengt Fadeel,1∗ Neus Feliu,1 Carmen Vogt,1 Abuelmagd M.
Abdelmonem2 and Wolfgang J. Parak2

Engineered nanomaterials offer exciting opportunities for ‘smart’ drug delivery
and in vivo imaging of disease processes, as well as in regenerative medicine. The
ability to manipulate matter at the nanoscale enables many new properties that
are both desirable and exploitable, but the same properties could also give rise
to unexpected toxicities that may adversely affect human health. Understanding
the physicochemical properties that drive toxicological outcomes is a formidable
challenge as it is not trivial to separate and, hence, to pinpoint individual
material characteristics of nanomaterials. In addition, nanomaterials that interact
with biological systems are likely to acquire a surface corona of biomolecules
that may dictate their biological behavior. Indeed, we propose that it is the
combination of material-intrinsic properties (the ‘synthetic identity’) and context-
dependent properties determined, in part, by the bio-corona of a given biological
compartment (the ‘biological identity’) that will determine the interactions of
engineered nanomaterials with cells and tissues and subsequent outcomes. The
delineation of these entwined ‘identities’ of engineered nanomaterials constitutes
the bridge between nanotoxicological research and nanomedicine. © 2013 Wiley
Periodicals, Inc.

How to cite this article:
WIREs Nanomed Nanobiotechnol 2013, 5:111–129. doi: 10.1002/wnan.1206

INTRODUCTION

Nanomaterials are in the same size range as
biomolecules and cellular structures; this fact

lies at the very heart of nanomedicine, a field in which
many applications rely on nanoscale interactions.
However, this is also the reason for the current
concern surrounding nanomaterials: the interference
of man-made nanomaterials with biological systems
could also lead to hazardous effects on human
health.1 While the interest in nanoscale materials has
increased tremendously in recent years, important
observations on their interactions with biological

∗Correspondence to: bengt.fadeel@ki.se
1Division of Molecular Toxicology, Institute of Environmental
Medicine, Karolinska Institutet, Stockholm, Sweden
2Fachbereich Physik and Wissenschaftlichen Zentrum für Material-
wissenschaften, Philipps Universität Marburg, Marburg, Germany

systems were reported much earlier. For instance,
the fact that nanoparticles are typically incorporated
by cells via endocytosis was known for decades.2

In addition, colloidal nanoparticles were shown to
induce alterations in the blood–air barrier in the
mouse lung more than half a century ago.3 Numerous
studies have been published more recently in which
exposure to engineered nanoparticles has been linked
to toxicity.4–6 However, understanding which of
the physicochemical properties of nanomaterials that
are driving toxicity remains a challenge; if one
could connect material properties (size, shape, surface
charge, porosity, colloidal stability, purity/degree of
contamination, etc.) with toxicity, then this would
enable prediction of potential hazards and could also
lead to the design of nanomaterials with minimal
toxicity.7 In addition, a thorough understanding of the
properties of nanomaterials that determine biological
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responses would also facilitate the design of better
nanomedicines for the treatment of human disease.

In this review, we discuss the bridging
of nanotoxicological research and nanomedicine.
We suggest that a careful understanding of
nanomaterial physicochemical properties, i.e., the
‘synthetic identity’, constitutes the bridge between
these two disciplines. Moreover, we propose that the
‘biological identity’ of nanomaterials is determined,
in part, by the adsorption of biomolecules onto the
nanomaterial surface upon introduction into a living
system. In fact, as pointed out by Walkey and Chan8

in their excellent review on the protein corona as
it applies to nanomaterials, ‘once fully mapped, the
relationships between synthetic identity, biological
identity, and physiological response will enable
researchers to predict the physiological response
of a nanomaterial by characterizing its synthetic
identity’. This statement points toward a predictive
nanotoxicology, the ultimate goal of which is to
decode nanomaterial properties to enable redesign
of materials that are both useful and safe.9

NANOMATERIALS IN MEDICINE

Engineered nanomaterials offer great potential in
medical applications.10 The variety of possible
applications is very broad. Here, we provide
some highlights, and we attempt to emphasize the
physicochemical properties that make nanomaterials
so favorable, in particular for medical imaging and
drug or gene delivery.

Medical Imaging
Medical imaging is typically based on the use
of contrast agents, which facilitate visualization
of tissues and organs. For imaging, two basic
properties are required. First, the contrast agent
should provide contrast compared to the local
environment, and second, the contrast agent should
be specifically localized at the region of interest. What
may nanoparticles contribute in this direction? The
first answer to this question is relatively obvious:
nanoparticles can provide higher contrast because of
their larger size compared to individual molecules.
Furthermore, instead of having only one fluorophore
for fluorescence imaging, or just one chelated ion such
as Gd2+ to provide contrast for magnetic resonance
imaging (MRI), several fluorophores or Gd2+ ions can
be combined in one nanoparticle, and this multivalent
display may provide higher contrast. In fact, the
combination of different contrast agents in a single
nanoparticle allows for multimodal imaging.11 The

combination of diagnostic and therapeutic functions
in a single ‘theranostic’ platform has also been
attempted. Yang et al.12 functionalized a reduced
graphene oxide–iron oxide nanoparticle (RGO-IONP)
complex with poly(ethylene glycol) (PEG), obtaining
a RGO-IONP-PEG theranostic nanoprobe that was
used for in vivo trimodal fluorescence, photoacoustic,
and MR imaging, uncovering high passive tumor
targeting, which was further exploited for thermal
ablation of tumors in mice.

The second answer to the aforementioned ques-
tion is less obvious. Nonetheless, because of their
larger size compared to molecules, nanoparticles
are passively trapped in tumors; this phenomenon
is known as the enhanced permeability and reten-
tion (EPR) effect. Nanoparticles are small enough
to leak out from the bloodstream into tumors, yet
big enough to be trapped in the tumor vascula-
ture. Hence, nanoparticles with many fluorophores
can passively accumulate in tumors more efficiently
than the same individual fluorophores.13 However,
subsequent penetration into the tumor itself is not
readily achieved. Wong et al.14 generated a mul-
tistage nanoparticle delivery system for deep pen-
etration into tumors. Hence, the gelatin core of
100-nm nanoparticles was degraded by proteases
present in the tumor microenvironment thereby releas-
ing 10-nm quantum dots (QDs) after extravasation.
Chauhan et al.15 investigated how vascular normaliza-
tion affects nanoparticle delivery by studying whether
a vascular endothelial growth factor receptor-2-
blocking antibody modulates nanoparticle penetration
rates in mammary tumors in vivo. The authors demon-
strated that 12-nm particles penetrate tumors better
than larger particles (125 nm) once abnormal vessels
are repaired, suggesting that small nanoparticles less
than 12 nm are superior because of higher tumor
penetration.

Kim et al.16 provided a particularly relevant
example of nanoparticle-based imaging involving QD-
based fluorescence labeling, allowing for sentinel
lymph node mapping in large animals under image
guidance. This approach could have significant impact
on such surgical procedures in cancer patients,
provided that toxicity of QDs is controlled. This
is a nontrivial question, as QDs are typically made
from inherently toxic components such as cadmium,
a heavy metal with known adverse effects on
human health. A recent study in nonhuman primates
suggested that phospholipid micelle-encapsulated
CdSe/CdS/ZnS QDs do not induce major signs
of toxicity up to 90 days postexposure; however,
chemical analysis revealed that most of the initial
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dose of cadmium remained in the liver, spleen, and
kidneys.17

Finally, it is noteworthy that nanoparticles also
afford label-free detection. Hence, carbon nanotubes
have been shown to be useful for photoacoustic
imaging, an approach that offers higher spatial
resolution and allows deeper tissues to be imaged
compared with most optical imaging techniques.18

In a more recent study, Tong et al.19 reported that
transient absorption microscopy offers an alternative,
label-free method to image both semiconducting and
metallic single-walled carbon nanotubes (SWCNTs)
in vitro and in vivo, in real time, with submicrometer
resolution.

Drug Delivery
Nanoparticles clearly offer novel features for ‘smart’
drug delivery.20 First of all, nanoparticles offer
potential as passive carrier systems for delivery. This
is due to the fact that drug-loaded nanoparticles
interact differently with cells than the corresponding
drug alone.13 Nanoparticles can also be loaded with
drugs in a way that allows for their slow release.
Fine tuning of the surface of nanoparticles allows
for regulation of nanoparticle interactions with cells
and thus the mode of delivery.21,22 Nanoparticles can
be used to increase the local concentration of drugs
in, for instance, cancer cells. Ashley et al.23 designed
porous nanoparticle-supported lipid bilayers termed
protocells that synergistically combined properties of
liposomes and nanoporous particles. The protocells
can be loaded with combinations of therapeutic
agents, e.g., drugs or small interfering RNAs. The very
high capacity of the high-surface area nanoporous
core combined with the enhanced targeting efficacy
toward cancer cells enabled by the fluid-supported
lipid bilayer enabled a single protocell loaded with
a drug cocktail to kill a drug-resistant human
hepatocellular carcinoma cell, representing a million-
fold improvement over comparable liposomes. Further
in vivo studies are certainly warranted. Davis et al.24

administered nanoparticles functionalized with a
targeting ligand (transferrin) systemically to a small
number of cancer patients and were able to
demonstrate successful RNA interference, i.e., specific
inhibition of gene expression.

Notably, in a recent landmark study, the gap
between preclinical development and clinical transla-
tion was bridged using targeted doxorubicin-loaded
nanoparticles.25 The nanoparticles were developed
from a combinatorial library of more than 100 tar-
geted nanoparticle formulations varying with respect
to particle size, targeting ligand density, surface

hydrophilicity, drug loading, and drug release prop-
erties. In tumor-bearing mice, rats, and nonhuman
primates, doxorubicin-loaded nanoparticles displayed
pharmacokinetic characteristics consistent with pro-
longed circulation of nanoparticles in the vascular
compartment and controlled release of the drug. In
addition, clinical data in patients with advanced solid
tumors indicated a pharmacokinetic profile consis-
tent with the preclinical data as well as some cases
of tumor shrinkage at doses below the solvent-based
doxorubicin formulation dose typically used in the
clinic.25 This study shows that the ‘valley of death’
between preclinical research and clinical applications
can be bridged through a rational design approach
(Figure 1).

Moreover, inorganic nanoparticles can be used
for introducing new functionalities. Here, two
fascinating examples are given. First, magnetic
nanoparticles can be used for locally trapping
drugs (which are attached to the nanoparticles) by
application of magnetic field gradients.26 Magnetic
targeting has been applied both in vitro27 and in
vivo.28 Although clinical applications so far are
limited to pets, this technology has the potential
for being applied to humans in the future, in
particular in cases of tumors close to the skin,
as sufficiently high magnetic field gradients can be
directed to the body surface.28 Second, plasmonic
nanoparticles, in particular those based on gold,
can be used for light-controlled release of drugs.29

Upon optical excitation at the plasmon resonance
frequency, collective motion of electrons ultimately
leads to dissipation and thus local heating of the
environment of the nanoparticle surface.30 Initially,
gold nanoparticles directed to tumor tissue have been
used for local tissue destruction by light-induced
heating, also referred to as hyperthermal ablation.31

Hence, nanoparticles may not only deliver drugs but
can also act as therapeutic agents per se (further
examples of such nanomaterial-intrinsic effects are
discussed below). The same phenomenon, however,
can be employed for controlled delivery. Upon heat
formation on the nanoparticle surface, molecular
bonds can be broken and attached molecules can
thus be released based on light triggers. Double-
stranded DNA is a good linker, as it can be molten
at temperatures well below the boiling point of water.
Light-controlled heating can also be used for the
regulated opening of the nanoscale containers.32 This
may thus enable release of drugs by local illumination.
Because of absorption of light by tissue [even in
the near-infrared (NIR)], the most likely in vivo
applications will be for tumors located close to the
skin.
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FIGURE 1 | Bridging nanotoxicology and nanomedicine. We posit
that careful assessment of the physicochemical properties of engineered
nanomaterials constitutes the ‘bridge’ between nanotoxicological
research and nanomedicine insofar as a detailed understanding of
material properties, i.e., the ‘synthetic identity’ is critical both for
toxicological assessment of nanomaterials and for the development of
novel nanomedicines (a). Furthermore, understanding the ‘synthetic’
and ‘biological’ identities of nanomaterials will facilitate the bridging of
preclinical studies and the use of nanomaterials in medical imaging,
drug delivery, and regenerative medicine (b). The ‘biological’ identity of
a nanomaterial is largely determined by the ‘corona’ of biomolecules
that forms in a biological environment; see text for details.

Regenerative Medicine
Nanomaterials may also have considerable impact
on regenerative medicine, i.e., the replacement or
regeneration of human cells, tissues, or organs.33 For
instance, magnetic nanoparticles can be used to image
and guide stem cells to their target in stem cell-based
therapies.34,35 Cells interact with the surrounding
environment by making nanoscale interactions with
extracellular signals and nanomaterials can be
employed as biomimetic scaffolds to stimulate tissue
growth. Intriguingly, supramolecular nanostructures
that mimic, for instance, a growth factor can
be used as a strategy for tissue regeneration and
repair.36,37 Furthermore, in a recent clinical study,
Jungebluth et al.38 reported the first transplantation
of an artificial trachea in a cancer patient. After
complete tumor resection, the patient’s airway was
replaced with a tailored bioartificial nanocomposite
previously seeded with autologous bone marrow
mononuclear cells in a bioreactor. The cells
differentiated into appropriate cell types. There are
several advantages to this approach. For instance, by
using the patient’s own stem cells to populate the

scaffold, there are no concerns over rejection of the
transplant.39

SAFETY ASSESSMENT
OF NANOMATERIALS

Rational design of ‘nanomedicines’ began almost half
a century ago, and several products including lipo-
somes (i.e., passive nanoscale carriers) have entered
into routine clinical use (see Duncan and Gaspar40 for
an excellent historical perspective). However, count-
less other, more sophisticated nanomedicines are in
the pipeline and the potential risks to human health
of these novel entities need to be seriously considered.
The latter is certainly true for all pharmaceutical prod-
ucts. Nanotoxicology attempts to investigate the inter-
actions of nanomaterials with biological systems.41

However, there are several important and complicat-
ing aspects to address in nanotoxicological studies
including not only the need for standardized assays
and reference materials9 but also the issue of the
most appropriate dose metric to use (surprisingly, this
remains largely unresolved), and it may as yet be too
early to draw general conclusions regarding toxicity
of nanomaterials; the prevailing view today is that
nanomaterials should be studied on a case-by-case
basis.42 Nevertheless, some lessons can be garnered
from studies conducted over the past several years. In
the following sections, we will discuss why engineered
nanoparticles are potentially hazardous, with the aim
to elucidate physicochemical properties that have been
linked to toxicity. We also provide an overview of
emerging trends in nanotoxicology including high-
throughput screening (HTS) and in silico modeling
approaches.

High-Throughput Screening
As pointed out recently,43 results of toxicological stud-
ies using extraordinarily high doses of nanomaterials
have to be interpreted with caution. Indeed, while in
vitro tests may prove useful for hazard identification,
in vivo studies are needed to bridge the gap between
cell culture model systems and the human exposure
situation, in order to understand whether nanomate-
rials pose any risk to human health. At the same time,
it is not ethically, economically, or practically feasi-
ble or reasonable to screen all nanomaterials using
animal models. Moreover, a model is only a model
(and ‘essentially, all models are wrong, but some are
useful’, as the statistician George Box famously wrote)
and we would be amiss to assume that results com-
ing from animal studies are always relevant.44 How,
then, do we move forward? Lai45 has proposed a
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nanotoxicity testing strategy based on short-term in
vivo animal studies (i.e., shorter than a conventional
90-day study) in conjunction with HTS and mecha-
nistic in vitro studies, and comparing the data with
those of reference nanomaterials for the specific sub-
class in question—an approach in concordance with
the ‘Toxicity Testing in the 21st Century’ strategy for
chemicals.46

To this end, more advanced in vitro models
are needed, in particular, assays that can be adapted
for HTS. Huh et al.47 reported on a biomimetic
microsystem that reconstitutes the critical functional
alveolar-capillary interface of the human lung. This
‘lung mimic’ revealed that cyclic mechanical strain
accentuates toxic and inflammatory responses of the
lung to silica nanoparticles. The authors concluded
that mechanically active ‘lung-on-a-chip’ microdevices
that reconstitute tissue–tissue interfaces critical to
organ function may provide low-cost alternatives to
animal studies for toxicity testing. The ‘lung mimic’
might also be amenable to HTS.47

Naturally, it is important to validate in vitro
assays. Han et al.48 administered doses of titanium
dioxide nanoparticles of different sizes (3–100 nm)
to a rat alveolar epithelial cell line in vitro and
the same nanoparticles by intratracheal instillation
in rats in vivo to examine the correlation between
in vitro and in vivo responses. The in vivo endpoint
was the number of neutrophils in bronchoalveolar
lavage fluid following exposure to nanoparticles.
The correlations were based on toxicity rankings
of nanoparticles after adopting surface area as dose
metric and response per unit surface area as response
metric. Slope analyses of the dose response curves
showed that in vitro and in vivo responses were
well correlated. This study underlines the importance
of determining the appropriate dose metric in
nanotoxicity studies. Shaw et al.49 applied a high-
content approach, i.e., a battery of test for multiple
endpoints using multiple cell lines to test nanoparticles
and derived detailed structure–activity relationships
for the various nanomaterials tested. Importantly,
nanoparticles with similar activity profiles in vitro
exerted similar effects on monocyte numbers in
vivo.

HTS is a method for scientific experimentation
that comprises the screening of large chemical libraries
for activity against biological targets via the use
of automation, miniaturized assays, and large-scale
data analysis.50 HTS techniques have emerged as
a potentially useful tool to predict the possible
hazards of nanomaterials.51,52 However, the fact that
nanomaterials may interfere with commonly used in
vitro assays needs to be taken into account.4 Indeed,

novel nanotoxicity assays based on label-free detection
of cellular responses are needed.53

Mortimer et al.54 demonstrated that the so-
called kinetic Vibrio fischeri luminescence inhibition
test is a potentially useful tool for screening of the
toxicity of nanomaterials that can be adapted for
HTS of ecotoxicological effects of nanomaterials.
Jan et al.55 reported on high-content screening for
‘fingerprinting’ of nanomaterials using cancer cell
lines of neuronal and hepatic origin. George et al.56

provided evidence that an in vitro-based HTS
approach combined with in silico data handling and
zebrafish testing may constitute a paradigm for rapid
screening of nanomaterials.

In Silico (Modeling) Approaches
Toxicology assessment of nanomaterials is expensive
and time-consuming. Therefore, in addition to
experimental approaches for hazard assessment, there
is a need for in silico methods in order to develop
structure–activity relationships that correlate toxicity
endpoints. These structure–activity relationships can
be quantitative or qualitative in nature and they
can predict toxicological effects directly from the
physicochemical properties of the entities, e.g.,
nanoparticles of interest.57

There are currently only a handful of nano-
QSAR modeling studies. In one recent study, the
authors developed a model to describe the cytotoxicity
of 17 different types of metal oxide nanoparticles to
Escherichia coli. The model was found to reliably
predict the toxicity of metal oxide nanoparticles.58

Using a more extensive dataset of 109 nanoparticles
possessing the same metal core but different organic
molecules on their surface, Fourches et al.59 found
that the cellular uptake of nanoparticles can be
predicted by taking into account the chemical
structure of the coating molecules. The chemical or
structural properties of nanomaterials are represented
by mathematical objects called descriptors, many
of which can be calculated rather than measured.
Examples of descriptors suitable for nanomaterials
include particle size, shape, and surface area,
ionization potentials of metals, zeta potentials, and
physicochemical properties of molecules covalently
bound to nanoparticle surfaces.57 In a physiological
environment, nanoparticles selectively absorb proteins
to form a nanoparticle ‘corona’, a process governed
by molecular interactions between chemical groups on
the nanoparticle surfaces and the amino acid residues
of the proteins (see below). Recently, a biological
surface adsorption index (BSAI) was developed based
on the competitive adsorption onto nanoparticles of
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a set of small-molecule probes that mimic amino
acid residues.60 By assuming that the adsorption
was governed by five basic molecular forces, the
measured adsorption coefficients were used to develop
descriptors, which, in turn, could be used to predict the
adsorption of small molecules to other nanomaterials.
In a subsequent study of a panel of 16 different
nanomaterials, the nanomaterials were classified into
distinct clusters according to their surface adsorption
properties.61 It will be of interest to see whether the
BSAI could be used to predict the formation of a
protein corona in a physiological setting.

Linking Toxicity to Material Properties
To systematically investigate toxic effects of the
nanoparticles, it would be highly desirable to
correlate their toxic effects with their physicochemical
properties.5,62 However, unfortunately, this approach
is not straightforward, as many physicochemical
properties are strongly entangled and are difficult to
control independently.7 Nevertheless, in the following
section, we discuss selected studies showing how
material properties may be linked to toxicity. Careful
assessment of material properties serves as the
bridge between nanotoxicology and nanomedicine
(Figure 1).

Size matters, in particular, for cellular uptake
of nanoparticles. Moreover, in general, the greater
the intracellular dose of nanoparticles, the more the
toxic effects they generate. Chan and coworkers
demonstrated in a series of experiments that there
can be an optimal size for nanoparticle uptake.63,64

Similar claims have been made by several other
authors, but the latter work stands out, as size
was controlled in an exclusive way. Indeed, the
nanoparticles were colloidally stable and thus were
not agglomerated, i.e., they did not have the effectively
larger diameter of an agglomerate of nanoparticles,
and surface chemistry was the same for all sizes. In this
way, the size dependence of nanoparticle uptake and
cytotoxicity could be investigated. However, cellular
uptake is not mandatory for cytotoxicity to occur:
cobalt–chromium nanoparticles can damage human
fibroblasts across an intact cellular barrier without
having to cross the barrier. The outcome, which
includes DNA damage without significant cell death,
is different from that observed in cells subjected to
direct exposure to nanoparticles.65

Also, shape can be important, though it is
probably overrated. The classical example is carbon
nanotubes, which are thought to exert toxicity by
virtue of their ‘needle-like’ shape, i.e., an extremely
high aspect ratio enabling these materials to pierce
cell membranes. This may be relevant at least for

multiwalled carbon nanotubes (MWCNTs) with high
width and, therefore, high rigidity.66 Interestingly, in
the latter study, thin and thick nanotubes similarly
affected macrophages, while the deleterious effects of
carbon nanotubes on human mesothelial cells were
diameter-dependent. However, it is important to ask
when a fiber is a fiber, and when is it, effectively, a
particle? Murray et al.67 have recently shown that
it is important to factor in agglomeration when
assessing the in vivo toxicity of SWCNTs. Shape can
influence the mode of cellular uptake. Consider a rod-
shaped nanoparticle and a spherical nanoparticle of
the same volume: the leading edge of the rod-shaped
nanoparticle has a much smaller cross-section and may
therefore penetrate cell membranes more effectively.
However, in many studies, in particular, in theoretical
simulations, aspect ratios are calculated for the
nanoparticle cores, neglecting the surface coating and
the adsorbed protein corona (discussed below), which
reduces the effective aspect ratio and thus nullifies
potential shape effects. Furthermore, agglomeration
in physiological media may rule out effects of
the shape of individual nanoparticles.68 Schaeublin
et al.69 investigated two gold nanoparticles with
different aspect ratios using a keratinocyte cell line and
found that gold nanospheres were nontoxic, whereas
the gold nanorods induced apoptosis. Notably, both
nanoparticles formed agglomerates in cell culture
medium, but the spherical particles had a large fractal
dimension (i.e., tightly bound and densely packed)
while the nanorod agglomerates had a small fractal
dimension (i.e., loosely bound).

Surface charge strongly influences uptake
of nanoparticles. In general, positively charged
nanoparticles are incorporated faster by cells than
negatively charged ones, which is typically explained
by the overall net negative charge of cellular surfaces.
Although studies exist that demonstrate that in
some cases positively charged nanoparticles interact
with cells differently when compared to negatively
charged ones, resulting in different mechanisms of
cytotoxicity, the higher toxicity of positively charged
nanoparticles is generally correlated to their enhanced
cellular uptake.70 To elucidate surface charge-
dependent toxicity, nanoparticles with different
surface charge, but with other physicochemical
parameters constant are required, which often is
experimentally complicated to achieve.71,72 However,
as pointed out by Walkey and Chan,8 the protein
corona tends to give nanomaterials a zeta potential
of about −10 to −20 mV irrespective of the
nanomaterial chemistry; this ‘normalization’ of zeta
potentials is related to the fact that most plasma
proteins carry a net negative charge at physiological
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pH. In other words, the ‘biological’ identity may
override the ‘synthetic’ identity.

Perhaps, the most important physicochemical
parameter that interferes with most others is colloidal
stability. Obviously, agglomerated nanoparticles do
not have the size of the individual nanoparticles but
the size of the agglomerate. This means, therefore,
that unless nanoparticles are very well dispersed, any
statement about size- or shape-dependent uptake or
cytotoxicity is not sound, as the cell would interact
with the agglomerates and not with the individual
nanoparticles. Besides the fact that agglomeration
masks effects of other physicochemical parameters, it
can also directly affect interaction with cells. ‘Sticky’
agglomerates of nanoparticles tend to precipitate on
top of cells and thus can cause cytotoxic effects.73

Many metal and metal oxide nanoparticles
can undergo dissolution within acidic compartments
(lysosomes) in the cell which could drive toxicity.
This phenomenon, sometimes referred to as a
Trojan horse-type uptake mechanism because it
circumvents the plasma membrane barrier and allows
toxic ions to ‘sneak’ into cells, has been shown,
for instance, for oxides of zinc, iron, manganese,
and cobalt.74 Cho et al.75 evaluated the pulmonary
inflammogenicity of 15 different metal/metal oxide
nanoparticles and showed that toxicity of the
nanomaterials displayed a significant correlation
with one of two physicochemical parameters: zeta
potential under acid conditions for low-solubility
nanoparticles and solubility (degree of dissolution) for
high-solubility nanoparticles. The authors suggested
that in the case of high-solubility nanoparticles,
inflammogenicity depends on the ions that are
produced during dissolution of nanoparticles inside
the acidic phagolysosomes of the cells.

Catalytic effects at the nanoparticle surface
play an important role in the generation of reactive
oxygen species (ROS).76 Sayes et al.77 studied the
effects of titanium dioxide nanoparticles in cell
culture and found that the extent to which nanoscale
titania affected cellular behavior was not dependent
on surface area; what did correlate strongly to
cytotoxicity, however, was the phase composition of
the nanoscale titania insofar as anatase TiO2 was 100
times more toxic than rutile TiO2. The most cytotoxic
nanoparticle samples were also the most effective at
generating ROS.

In synopsis, it may seem disappointing that
one cannot pinpoint how a certain physicochemi-
cal parameter influences the toxicity of (all) nano-
materials. This is due, in part, to the fact that
many studies published to date are based on poorly
defined nanoparticles, in which many physicochemical

parameters are entangled. In fact, it is nontrivial to
change only one physicochemical parameter, without
affecting others. In addition, not all nanomaterials are
created equal. Thus, a conclusive picture remains elu-
sive. To be more conclusive, toxicity studies should be
performed with well-defined model nanoparticles, in
which specific particle properties can be independently
varied. Advanced synthesis approaches are pointing
in this direction, for instance by creating nanoparti-
cles in which surface charge can be tuned (almost)
independently from other particle properties.72 How-
ever, most studies are performed with nanoparticles
of poor definition and/or agglomerated nanoparticle
systems. To remedy this situation, enhanced commu-
nication between material scientists and toxicologists
is needed.

THE NANO-BIO-CORONA CONCEPT

To go one step further in terms of understanding
the interactions of engineered nanomaterials with
living systems, we need to consider the fact that
nanomaterials may adopt a ‘new’ identity through
the adsorption of biomolecules, a phenomenon that,
in turn, is linked to nanomaterial-intrinsic properties,
e.g., size (surface curvature) and hydrophobicity.
Indeed, as stated recently by Mahon et al.,78 ‘pristine
nanoparticles in biological fluids act as a scaffold
for biomolecules, which adsorb rapidly to the
nanoparticle surface, conferring a new biological
identity’. Furthermore, the formation of a ‘bio-
corona’ on nanoparticles is an inherently bilateral
phenomenon, as proteins that adsorb to nanoparticle
surfaces may also alter their behavior as a result
of unfolding79 or fibrillation.80 The opsonization of
particles with serum proteins is, however, not really a
‘new’ phenomenon81 even though recent research has
provided new insights into the parameters that control
this process.

It is generally believed that immediately after
contact with biological media, an initial corona is
formed on nanoparticles by loosely bound, low-
affinity proteins. Prolonged incubation in plasma
allows the formation of a denser, irreversibly attached
‘hard’ corona with high-affinity proteins82,83 and
a satellite ‘soft’ corona that undergoes intensive
exchange with the surrounding media.84 The ‘hard’
corona is formed because of the direct interaction
of proteins with the surface of the nanoparticles,
whereas protein–protein interactions dominate the
interactions of the ‘soft’ corona with the ‘hard’
corona.85 The time scale of the process probably is
very short. The ‘hard’ protein corona that is strongly
attached to the surface of nanoparticles is likely
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the most relevant one for the in vivo fate of long-
circulating nanoparticles.86 Furthermore, changes in
the ‘hard’ corona may occur when nanoparticles
are transferred to a new biological compartment,
e.g., upon translocation of nanoparticles across the
plasma membrane.86 Recent studies have shown that
the corona of biomolecules attached to nanoparticles
is degraded by the protease cathepsin L within the
endosomal compartment following endocytosis of
nanoparticles.87 This needs to be taken into account
when designing nanomaterials for intracellular
applications. Sund et al.88 noted that the binding of
cytoplasmic proteins depends on the surface chemistry
of the nanoparticles. Hence, uncoated anatase and
rutile phases of TiO2 nanoparticles adsorbed proteins
similarly, whereas alumina and silicone-coated rutile
forms of TiO2 bound only a few proteins.

Walkey and Chan8 recently provided a
compilation of 26 published studies on the plasma-
derived protein corona, and concluded that ‘the
protein corona is complex, that there is no
one ‘universal’ plasma protein corona for all
nanomaterials, and that the relative densities of
the adsorbed proteins do not, in general, correlate
with their relative abundances in plasma’ (in other
words, there is a degree of specificity). Instead,
it is suggested that the protein corona depends
on the ‘synthetic identity’ of each nanomaterial.8

Indeed, the adsorption of biomolecules is driven
by surface charge, hydrophobicity/hydrophilicity, and
particle size.83,89,90 Our recent studies show that
superparamagnetic iron oxide nanoparticles (SPIONs)
with different surface coating display distinct plasma
protein corona compositions (Vogt et al., manuscript
in preparation). Does the bio-corona cover the
nanoparticle surfaces completely or will targeting
ligands remain accessible? Simberg et al.91 reported
that both the dextran coat and the iron oxide core of
dextran-coated SPIONs remained accessible to specific
probes after incubation in plasma, suggesting that the
nanoparticle surface could be available for recognition
by cells despite the bio-corona.

The majority of bio-corona studies have been
performed with plasma proteins,92 which is certainly
relevant in cases when nanoparticles are administered
into the bloodstream. Nevertheless, it is important to
also consider other portals of entry of nanomaterials
into the body, e.g., via inhalation or through the
skin or via the gastrointestinal tract as the corona
composition is likely to change as a function of the
anatomical site and the specific biofluids encountered
at each of these sites. Kapralov et al.93 reported on
the in vivo formation of a lipid–protein corona on
the surface of SWCNTs following administration

by pharyngeal aspiration in mice. The bio-corona
was identical to lung surfactant and subsequent in
vitro studies demonstrated a role for the surfactant
corona of lipids + proteins in macrophage uptake of
carbon nanotubes. Of note, plasma protein adsorption
to MWCNTs is influenced by prior adsorption of
pulmonary surfactant lipids.94

There are, overall, few studies on long-term
effects of nanomaterials and few, if any, of these
studies have addressed the potential role of the
‘intrinsic’ versus the ‘biological’ identity of the
nanomaterials in question. Nevertheless, it may be
useful to consider whether the bio-corona plays a role
under such conditions. In a recent study, Ruge et al.95

studied the impact of lung surfactant components
on macrophage clearance of nanoparticles and
they concluded that because of the interplay of
both surfactant lipids and proteins, the alveolar
macrophage clearance of nanoparticles is essentially
the same, regardless of different intrinsic surface
properties. The latter study thus suggests that the
‘biological’ identity may override the ‘synthetic’
identity of nanoparticles (at least in the short term).
However, we postulate that in the long term, material-
intrinsic properties (i.e., the ‘synthetic’ identity) will
come into play and the long-term fate of nanoparticles
will depend largely on whether the nanoparticles
undergo dissolution and/or are susceptible to
biodegradation, or whether they escape clearance by
the reticuloendothelial system and are subsequently
cleared from the body. Indeed, in the chronic phase,
at which point the nanoparticles have left the systemic
circulation and have been uptaken by cells, the
body’s own responses to the nanoparticles may
predominate. For instance, inhalation of SWCNTs
in mice will trigger a cascade of pathological events
realized through early inflammatory responses and
the induction of oxidative stress culminating in the
development of multifocal granulomatous pneumonia
and interstitial fibrosis.96 Thus, while the carbon
nanotubes represent the initial offending trigger, the
long-term effects (including potential carcinogenic
effects) are manifested through subsequent cellular
responses to this trigger; moreover, such organ and
tissue responses may follow a common pattern of
host defense reactions (oxidative stress, inflammation,
etc.) toward foreign intrusion. In another recent
study, Mahler et al.97 showed that chronic oral
exposure to polystyrene nanoparticles can influence
iron uptake and iron transport in an in vivo chicken
intestinal loop model. Importantly, chronic exposure
caused remodeling of the intestinal villi in exposed
animals, which increased the surface area available
for iron absorption. In other words, the physiological
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responses triggered by the nanoparticles (in this
case, tissue remodeling) may determine long-term
outcomes, not the nanoparticles per se and not the
bio-corona.

Controlling the Bio-Corona
From a nanomedicine point of view, it may be
desirable to avoid ‘nonspecific’ protein adsorption,
i.e., bio-corona formation. This is commonly achieved
by grafting PEG onto nanoparticles; this may prevent
nonspecific uptake of nanoparticles by cells of the
immune system, thereby prolonging their half-life in
circulation.10 Modifying the surface of nanoparticles
with an antifouling polymer makes the protein
adsorption thermodynamically unfavorable, while
the high-molecular-weight polymeric chains induce
protein ‘repulsion’ because of their conformational
flexibility and induced steric hindrance. PEGylation
does not, however, prevent protein adsorption
altogether.78 Increased PEG grafting density on the
surface of gold nanoparticles positively correlates with
a decrease in total protein adsorption and reduced
uptake in J774A.1 murine macrophages.98

On the other hand, one may consider
to exploit the bio-corona phenomenon for tar-
geting purposes. PEG-polyhexadecylcyanoacrylate
(PEG-PHDCA) nanoparticles have been shown to
translocate into the brain after intravenous injection
in rats, whereas PHDCA nanoparticles do not. Kim
et al.99 found that, after incubation with rat serum,
apolipoprotein E (ApoE) adsorbed more onto PEG-
PHDCA than onto PHDCA nanoparticles. Moreover,
ApoE or ApoB-100 preadsorption onto PEG-PHDCA
nanoparticles was required for efficient penetration
into rat brain endothelial cells. These data suggest
the involvement of apolipoproteins in the transport
of PEG-PHDCA nanoparticles across the blood–brain
barrier, which could be deployed for delivery of drugs
into the brain. Prapainop et al.100 attempted cell-
specific uptake of nanomaterials by ‘reprogramming’
of the behavior of the protein corona on nanomateri-
als. Specifically, the surface of CdSe/ZnS QDs possess-
ing an amino-functionalized, PEGylated hydrophilic
surface was decorated with the inflammatory metabo-
lite, cholesterol 5,6-secosterol atheronal-B, and the
resulting nanoparticles were shown to bind to and
induce the misfolding of apolipoprotein B leading
to uptake by RAW264.7 murine macrophages. As
pointed out by the authors, the ability to program
the bio-corona on nanoparticles with small molecules
could be developed to direct nanoparticles into cell
types that they may not have been able to reach
before.100

Impact of Bio-Corona on Cellular Functions
The protein corona has been shown to play an
important role in modulating uptake and toxicity
of SWCNTs.101,102 However, it remains to be firmly
established whether the biological identity of nanopar-
ticles is the result of a specific protein(s) in the
nanoparticle corona or a nonspecific effect related
to the fact that proteins may alter the agglomeration
behavior of nanoparticles leading to a difference in
cellular uptake, which, in turn, has an impact on cyto-
toxicity. Ehrenberg et al.103 reported that the capacity
of polystyrene nanoparticle surfaces to adsorb pro-
tein is indicative of their tendency to associate with
cells. However, removal of the most abundant pro-
teins from cell culture media did not affect the level
of cell association, and the authors concluded that
cellular association is not dependent on the identity
of adsorbed proteins. Lartigue et al.104 studied the
adsorption of proteins on biomedically relevant iron
oxide nanoparticles by magneto-optical birefringence;
the effect of plasma at different concentrations rang-
ing from 1 to 100% on nanoparticle behavior was
assessed. It was noted that at low plasma concen-
trations (representative of most in vitro conditions),
the nanoparticles tended to form clusters triggered by
proteins such as fibrinogen, whereas at high plasma
concentrations (closer to the physiological situation)
other proteins such as apolipoproteins tended to coat
and subsequently to stabilize individual nanoparticles.
This, in turn, affected in vitro uptake by macrophages.
Lesniak et al.105 reported that silica nanoparticles
incubated with A549 cells in the absence of serum
have a stronger adhesion to the cell membrane and
higher internalization efficiency when compared with
nanoparticles with a preformed surface corona.

In a key study of the bio-corona phenomenon,
Deng et al.79 demonstrated that negatively charged
poly(acrylic acid)-conjugated gold nanoparticles bind
to and induce unfolding of fibrinogen, which
promotes interaction with integrin receptors on
macrophage-like THP.1 cells, resulting in the release
of inflammatory cytokines (Figure 2). In a follow-
up study, the authors showed that fibrinogen bound
with high affinity to positively and negatively charged
gold nanoparticles.106 However, only the negatively
charged nanoparticles triggered cytokine release in
THP.1 cells, perhaps because of a different orientation
of the protein on the different particles. Thus, while
common proteins may bind to different nanoparticles,
the physiological response may not be the same.

The complement system constitutes an impor-
tant barrier to infection or other foreign intru-
sion. Nanoparticles may also activate complement;
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FIGURE 2 | Protein corona: role in proinflammatory responses.
Fibrinogen is the major human plasma protein bound by poly(acrylic
acid)-coated gold nanoparticles (PAA–GNP). (a) SDS–PAGE of human
plasma proteins bound to PAA–GNP with diameters of 5, 10, and
20 nm. Three major protein bands were observed at 65, 55, and 45 kDa.
(b) Unbound fibrinogen following pull-down with PAA–GNP with
diameters of 5 nm (blue) or 20 nm (red). Purified fibrinogen (0.6 mg)
was incubated with increasing amounts of PAA–GNP. Inset: unbound
fibrinogen is plotted against total surface area for the two
nanoparticles. (c) Crystal structure of fibrinogen. The protein was drawn
using Swiss-PdbViewer and coordinates for PDB entry 3GHG. Common
domains are shown. Inset: the C-terminus of the g chain (purple) that
interacts with the Mac-1 receptor. (Reprinted with permission from Ref
79. Copyright 2011 Macmillan Publishers Ltd.) (d) The schematic
diagram illustrates how unfolding of fibrinogen on the surface of
PAA–GNP leads to interaction with the integrin receptor, Mac-1, on the
surface of THP.1 monocytes, which in turn increases NF-κB signaling
leading to secretion of tumor necrosis factor-α. It is pertinent to note
that fibrinogen, which has a length of 45 nm and a diameter of
5 nm, is much larger than the 5-nm PAA–GNP. Deng et al.79 showed
that the maximum protein binding was 2 μg for the 5-nm PAA–GNP,
which represents one to two nanoparticles per fibrinogen molecule.

this may be viewed as a special case of bio-
corona formation and one that is of particular
relevance in nanomedicine. Nanomaterial interac-
tion with the complement system is complex and
regulated by interrelated physicochemical factors
such as size, morphology, and surface properties.107

Hamad et al.108 investigated polystyrene nanoparti-
cles with surface-projected polyethylene oxide chains

in ‘mushroom-brush’ and ‘brush’ configurations and
found that distinct polymer architectures mediate
switching of complement activation pathways. As
pointed out by the authors, these studies suggest a
rational basis for the design of targetable nanosystems
for nanomedicine applications.

THE IN VIVO FATE
OF NANOPARTICLES

In addition to understanding the synthetic and bio-
logical identities of nanomaterials, it is important to
take into consideration the context-dependent behav-
ior of a nanomaterial. In other words, to consider how
the biological identity of a nanomaterial may change
depending on the specific biological compartment (in
the body or within a cell). Indeed, as noted previ-
ously, ‘one of the key features of nanoscale materials,
and the one that may suggest novel and unantici-
pated health risks, may very well be the propensity of
such materials to cross biological barriers in a man-
ner not predicted from studies of larger particles of
the same chemical composition’.9 Here, we discuss
some studies illustrating how nanoparticles may cross
biological barriers, and how material-intrinsic proper-
ties may dictate such interactions. We will also touch
on factors that regulate nanoparticle pharmacokinet-
ics. Understanding the in vivo fate and behavior of
nanomaterials is another area of common interest in
nanotoxicology and nanomedicine.

Crossing Biological Barriers
Nanoparticles can cross biological barriers and enter
and distribute within cells by different pathways
and for this reason they are considered a primary
vehicle for targeted therapies. In the body, we find
cellular barriers that include the cell membrane,
and endosomal–lysosomal and nuclear membranes,
and physiological barriers that prevent extravasation
of foreign substances from the blood such as the
blood–brain barrier. The skin is the main barrier that
protects our body from the external environment.
Understanding the barriers imposed by a biological
system is critical to the design of nanomaterials for
biomedical applications (see Kievit and Zhang109

for an excellent review). It is also important to
consider whether one should attempt to breach
biological barriers between bodily compartments with
nanoparticles as this may trigger unexpected toxicities
and disease processes.110

Yamashita et al.111 showed that silica and
titanium dioxide nanoparticles with diameters of
70 and 35 nm, respectively, can cross the placenta

120 © 2013 Wiley Per iodica ls, Inc. Volume 5, March/Apr i l 2013



WIREs Nanomedicine and Nanobiotechnology Bridging nanotoxicology and nanomedicine

and cause pregnancy complications when injected
intravenously into pregnant mice. Larger (300 and
1000 nm) silica particles did not induce such
complications. It remains unclear if the fetotoxicity
was caused by direct exposure to the nanoparticles
or by the damage to the placenta. Nonetheless, the
detrimental effects were abolished when the surfaces
of the silica nanoparticles were modified with carboxyl
and amine groups. Hence, size and surface charge
both may impact on the propensity of nanoparticles
to cause damage to the unborn fetus. Similarly, Schleh
et al.112 demonstrated that size and surface charge
of gold nanoparticles determine absorption across
intestinal barriers and accumulation in secondary
target organs after oral administration in a rat
model. Choi et al.113 determined that nanoparticles
with hydrodynamic diameter less than 34 nm with
noncationic surface charge translocate rapidly from
the lungs to regional lymph nodes in rats following
intratracheal instillation. Furthermore, nanoparticles
with a hydrodynamic diameter less than 6 nm were
found to traffic rapidly from the lungs to lymph nodes
and the bloodstream, ultimately being cleared from
the body through the kidneys. Moreover, as discussed
in further detail below, nanoparticle behavior was
found to depend strongly on surface coating. These
findings suggest strategies for the rational design of
nanoparticles for drug delivery via lung inhalation.
Kannan et al.114 recently devised a prodrug approach
to treat cerebral palsy, a developmental disorder
resulting from an insult to a growing fetal or infant
brain. In this preclinical study, N-acetyl-cysteine
(NAC) was linked to polyamidoamine dendrimers
that enabled NAC to cross the blood–brain barrier and
reach microglia and astrocytes. This nanoformulation
(D-NAC) was administered within 6 h of birth with
improvement in motor performance and amelioration
of inflammation in newborn animals.

However, nanoparticles may disrupt or even
remodel biological barriers. Mahler et al.97 reported
that chickens acutely exposed to carboxylated
polystyrene nanoparticles had a lower iron absorption
than unexposed or chronically exposed birds.
As mentioned earlier, Chronic exposure caused
remodeling of the intestinal villi, which increased the
surface area available for iron absorption, and this
increase in intestinal surface area compensated for
the lowered iron transport caused by nanoparticle
exposure.

Biodistribution and Tumor Targeting
Pharmacokinetics is concerned with quantifying the
adsorption, distribution, metabolism, and elimination
(ADME) of chemicals and drugs in the body; the

aim is to relate drug dose or chemical exposure to
biological effects.115 Evaluation of ADME properties
of nanomaterials is crucial for the medical imple-
mentation of these materials. To this end, in vivo
model systems are certainly needed. Riviere115 has
provided a concise overview of studies on the in
vivo disposition of fullerenes, carbon nanotubes, and
QDs after parenteral administration. Functionalized,
water-soluble SWCNT and MWCNT may negotiate
the glomerular filtration barrier and undergo renal
excretion without extensive accumulation in the body,
in a manner dependent upon the degree of individu-
alization of the nanotubes.116,117 Notably, pristine
SWCNTs may undergo enzymatic biodegradation in
vitro118and in vivo119; biodegradation by neutrophils
is promoted when the carbon nanotubes are coated
with a corona of immunoglobulins, which leads to
enhanced cellular uptake via Fc receptors expressed on
neutrophils.118

How about the disposition of biomedically rel-
evant nanomaterials? Schädlich et al.120 investigated
the influence of the size of biodegradable PEG-PLA
nanoparticles both in vivo and ex vivo and found
that nanoparticles of 111 and 141 nm accumulated
in human xenograft tumor tissue while slightly bigger
nanoparticles (166 nm) were rapidly eliminated by the
liver. These studies demonstrate how different biodis-
tribution may occur because of small nanoparticle
size differences. The importance of further miniatur-
izing nanocarrier size to optimize tumor accumula-
tion and penetration was recently shown121 (and see
above, section on Medical Imaging, for additional
examples).

The EPR effect and/or targeting approaches may
enable nanoscale carriers to reach a tumor, but this
does not necessarily mean that the nanoparticles will
also penetrate into the tumor and deliver their payload
of anticancer drugs. Cabral et al.122 compared the
accumulation and effectiveness of different sizes
(30, 50, 70, and 100 nm) of long-circulating, drug-
loaded polymeric micelles in highly versus poorly
permeable tumors in a preclinical model, and found
that only the 30-nm micelles could penetrate poorly
permeable, hypovascular pancreatic tumors to achieve
an antitumor effect. Interestingly, the penetration and
efficacy of the larger nanoparticles could be enhanced
by pharmacologically increasing the permeability of
the tumors.

Choi et al.113 followed the fate of intratra-
cheally instilled NIR fluorescent nanoparticles that
were varied systematically in size, surface modi-
fication, and core composition and showed that
nanoparticle behavior depends strongly on the sur-
face coating, which affects protein adsorption in body

Volume 5, March/Apr i l 2013 © 2013 Wiley Per iodica ls, Inc. 121



Overview wires.wiley.com/nanomed

fluids; hence, for charged nanoparticles, nonspecific
adsorption of endogenous proteins, mostly albumins,
resulted in a large increase in hydrodynamic size of
the nanoparticles, and this affected the biodistribution
of the nanoparticles following their uptake in this rat
model.

Finally, von Maltzahn et al.123 have provided
a fascinating example of ‘communicating’ nanopar-
ticle systems based on nanotechnological mimicry of
the recruitment of immune cells to an inflammatory
lesion to improve in vivo tumor-targeting efficiency.
Hence, the authors designed multifunctional systems
whereby the coagulation cascade in tumors is activated
by photothermal heating of gold nanorods in order to
‘broadcast’ tumor location to clot-targeted nanopar-
ticles, i.e., doxorubicin-loaded liposomes coated with
Factor XIII, a component of the coagulation cas-
cade. This approach, which thus takes advantage of
the endogenous coagulation cascade, yielded over 40
times higher doses of doxorubicin in tumors when
the drug is loaded with Factor XIII-covered liposomes
when compared to plain liposomes.123

A CASE OF STOLEN IDENTITY

Nature may inspire the design of synthetic
nanoparticles. Bertram et al.124 developed ‘artificial
platelets’ based on Arg-Gly-Asp (RGD)-functionalized
nanoparticles, which halved the bleeding time after
intravenous administration in a rat model of
major trauma. The synthetic platelets consisting
of poly(lactic-co-glycolic acid)–poly-l-lysine block
copolymer cores conjugated with PEG chains termi-
nated with RGD functionalities were cleared within
24 h, and no toxicity was seen up to 7 days postin-
fusion. Hu et al.125 presented a novel approach in
particle functionalization by coating biodegradable
polymeric nanoparticles with a corona of natural
membranes derived from red blood cells, including
both membrane lipids and associated membrane pro-
teins, in order to achieve ‘stealthy’, long-circulating
nanoparticles for drug delivery. The latter study rep-
resents an example of ‘borrowed identity’ of nanoma-
terials. Indeed, biomimetic design could be exploited
for drug delivery.126 Interestingly, the immune system
utilizes its very own nanoparticles (exosomes) to trans-
mit information between cells. Exosomes may contain
both mRNA and microRNA, and the transferred exo-
somal mRNA has been shown to be translated in
the recipient cell.127 More recent studies confirmed
that the transmitted microRNA is also functional.128

Hence, exosomes serve as a template for the delivery of
short RNAs for modulation of gene expression using

Physiological responses
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- tissue targeting
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- cytotoxicity
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- immunogenicity
- degradation, excretion
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eg. protein, lipids

Material-intrinsic
properties

- size, shape, aspect-ratio
- surface charge
- colloidal stability
- stability / disssolution
- catalytic properties
- etc
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- body fluid / organ
- subcellular compartment
temporal determinants:
- acute or long-term effect
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properties

FIGURE 3 | Synthetic and biological identities of nanomaterials.
Schematic view of the ‘synthetic’ identity of nanomaterials that is
determined by material-intrinsic properties and the ‘biological’ identity
that is manifested in a living system and can be viewed as the sum of
the context-dependent properties of the nanomaterial. As discussed in
this review, the biological identity is shaped, in part, by the adsorption
of biomolecules (proteins and lipids) that form a ‘corona’ on the surface
of nanoparticles; the composition of the bio-corona depends on the
particular biofluid (e.g., blood, lung fluid, and gastrointestinal fluid) and
may exhibit dynamic changes as the nanoparticle crosses from one
biological compartment to another. The physiological responses to
nanomaterials are dictated by the synthetic and biological identities; a
partial list of possible biological/toxicological outcomes is shown in this
figure.

nanoscale delivery vehicles that are, by definition,
biocompatible.

Stark has pointed out that nanoparticles dif-
fer from molecules in several respects; nevertheless, he
concludes that ‘from a functional point of view, chem-
ically well-defined nanoparticles are an extension of
the classical concept of the molecule’, as they combine
the properties of solids with mobility (a property of
molecules).74 Indeed, certain nanoparticles appear to
bridge the gap between molecules and particles. Den-
drimers are polymeric nanoparticles with perfectly
defined structure and molecular weight.129 Hayder
et al.130 reported recently that azabisphosphonate
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(ABP)-capped dendrimers selectively target monocytes
and direct them toward anti-inflammatory activation.
The dendrimers also exhibited antiosteoclastic activ-
ity, thus preventing bone erosion. Intravenous injec-
tions of ABP-capped dendrimers inhibited the devel-
opment of inflammatory arthritis in two animal
models. This exciting study suggests that dendrimers
could function as novel therapeutics for rheumatoid
arthritis. Moreover, dendrimers conjugated to glu-
cosamine and glucosamine 6-sulfate were shown to
possess immunomodulatory and antiangiogenic prop-
erties, respectively, and when administered together,
the nanoparticles increased the long-term success of
glaucoma surgery in an animal model by prevent-
ing scar tissue formation.131 Thus, in some cases, the
synthetic and biological identities of a nanomaterial
appear to blend into one: dendrimers may function
as drugs per se by virtue of their unique physico-
chemical properties, i.e., size and multivalent surface
functionalities, which allow these nanoparticles to
directly engage biological receptors and modulate cell
function.

CONCLUSIONS AND PERSPECTIVES
The Stone Age did not end because they ran out
of stones. New technologies inevitably replace old
ones. We are now at the dawn of a nanotech-
nological revolution with far-reaching implications
for society and it is crucial that we ensure the
safety of these novel materials while not imped-
ing their implementation in important areas such
as in medicine. In this review, we have attempted
to highlight the role of physicochemical properties
of engineered nanomaterials and their impact on
nanomaterial behavior in biological systems. Impor-
tantly, a growing body of evidence indicates that the
adsorption of biomolecules onto nanoparticle surfaces
may bestow a new ‘biological identity’ onto these
materials.8,78 This has considerable ramifications not
only for nanotoxicological assessment of synthetic
nanoscale materials but also for their implementa-
tion in medicine. Of note, the bio-corona of serum
proteins should not necessarily be viewed as an unde-
sirable biological phenomenon; the bio-corona can
be controlled100 and may even be exploited for drug
delivery.132 In addition, we would be amiss to ignore
fundamental physicochemical properties of nanoma-
terials: the cells may also ‘see’ what is beneath the
corona.

Careful assessment of material-intrinsic proper-
ties and how these properties are linked to physio-
logical responses is thus essential both in nanotoxi-
cology and in nanomedicine. Notably, the very same
property may be highly desirable for certain clini-
cal applications (for instance, the delivery of small
particles to exploit the EPR effect) but could also
yield unwanted hazardous effects. Taking into con-
sideration not only the synthetic identity but also
the biological identity of nanomaterials, and how
these identities may evolve over time and as a
function of different biological compartments in the
body or at the subcellular level may enable a better
understanding of nanomaterial-induced physiological
responses (Figure 3). More studies are needed on the
long-term effects of nanomaterials and on the rel-
ative importance of surface-adsorbed biomolecules
(the bio-corona) versus material-intrinsic properties
of nanomaterials under such conditions; understand-
ing how common physiological reactions (oxidative
stress, inflammation, etc.) are triggered is also of
importance in order to mitigate adverse effects follow-
ing nanomaterial exposure. Furthermore, more refined
techniques to study the corona of adsorbed proteins,
lipids, and other biomolecules on nanomaterial sur-
faces are warranted along with a greater emphasis on
the potential impact of individual components of the
corona on physiological responses. Bioinformatics-
based approaches may prove helpful when deciphering
the bio-corona data. New approaches including HTS
for the rapid screening and ranking of the hazard
potential of vast numbers of engineered nanomateri-
als and mathematical modeling of structure–activity
relationships of nanomaterials may also facilitate the
development of safe and useful nanomaterials for in
vivo imaging, drug delivery, and other clinical appli-
cations.
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cun H, Desmaële D, Taran F, Georgin D, Couvreur
P. Translocation of poly(ethylene glycol-co-
hexadecyl)cyanoacrylate nanoparticles into rat brain
endothelial cells: role of apolipoproteins in receptor-
mediated endocytosis. Biomacromolecules 2007,
8:793–799.

100. Prapainop K, Witter DP, Wentworth P. A chemical
approach for cell-specific targeting of nanomateri-
als: small-molecule-initiated misfolding of nanopar-
ticle corona proteins. J Am Chem Soc 2012,
134:4100–4103.

101. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ,
Fifield LS, Jacobs JM, Addleman SR, Kaysen GA,

Volume 5, March/Apr i l 2013 © 2013 Wiley Per iodica ls, Inc. 127



Overview wires.wiley.com/nanomed

Moudgil BM, Weber TJ. Adsorbed proteins influ-
ence the biological activity and molecular targeting
of nanomaterials. Toxicol Sci 2007, 100:303–315.

102. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y,
Zhou R, Zhao Y, Chai Z, et al. Binding of blood pro-
teins to carbon nanotubes reduces cytotoxicity. Proc
Natl Acad Sci U S A 2011, 108:16968–16973.

103. Ehrenberg MS, Friedman AE, Finkelstein JN, Ober-
dorster G, McGrath JL. The influence of protein
adsorption on nanoparticle association with cultured
endothelial cells. Biomaterials 2009, 30:603–610.

104. Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse
A, Bacri JC, Luciani N, Gazeau F. Nanomagnetic
sensing of blood plasma protein interactions with iron
oxide nanoparticles: impact on macrophage uptake.
ACS Nano 2012, 6:2665–2678.

105. Lesniak A, Fenaroli F, Monopoli MP, Åberg
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Abstract

Sensing and imaging with fluorescent, plasmonic, and magnetic colloidal
nano- and microparticles have improved during the past decade. In this
review, we describe the concepts and applications of how these techniques
can be used in the multiplexed mode, that is, sensing of several analytes in
parallel or imaging of several labels in parallel.
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1. INTRODUCTION

During the past decade, the use of colloidal nano- and microparticles in biological sciences has
attracted a great deal of attention. They have long been used as contrast agents for imaging
(1–3) and transducers for molecular sensing (4). Materials developed for these purposes range
from single nanoparticles (NPs) and microparticles to complex hybrid nano- and microstructures.
Nanoengineering allows for the integration of different functionalities into a single carrier system.
Examples of multifunctional composites include the recently described nanocomposites based on
silica, silver, and gold NPs (AuNPs), which have applications in photodynamic therapy, photother-
molysis, and IR detection (5). Our review focuses on the use of inorganic NPs as building blocks
of multifunctional composites on the nano- and micrometer scales, and on their applications in
biosensing and diagnostics. After briefly introducing the main detection modes, we discuss why
and how the assembly of individual NPs into multifunctional composites allows for multiplexing.
Multiplexed sensing and imaging mean that several analytes can be detected in parallel and that
different types of particles can be imaged simultaneously. Finally, we discuss some issues and new
challenges concerning sensing and imaging involving hybrid materials based on inorganic NPs.

2. DETECTION MODES

In sensing and imaging applications, NPs are used to provide readout. In sensing applications, the
transduction principle, which provides readout in the presence of a specific analyte, can depend on
either direct interaction between the NP and the analyte or interaction between the analyte and
another entity supported on the NP, which then interacts with the NP. The NP ultimately changes
the signal for readout in the presence of the analyte. In the case of imaging, NPs are typically used
as markers that provide contrast (and thus readout) for different imaging techniques. Readout is
usually based on optical, electrical, or magnetic detection, as we discuss in detail below. However,
naturally there are also other detection schemes, such as detection with X-rays (6), radioactivity
(7), or mass changes (8); we do not focus on those techniques in this review.

2.1. Optical Detection

The principle of optical detection is based on the interaction between continuous or pulsed light
and the sample to be analyzed. This interaction causes changes in the initial incident light wave in
terms of frequency, amplitude, phase, polarization state, or time dependence. Figure 1 summarizes
some of the phenomena that are useful for analysis; these phenomena may occur when incident
light interacts with a sample of dispersed colloidal particles (9). In general, transmission, elastic
and inelastic scattering, and absorption processes can occur. In the case of transmission, light
passes through the object and is normally affected in terms of amplitude or intensity. In the case
of scattering phenomena, the interaction between light and the particles changes the direction of
the incident light wave. However, following elastic scattering, the energy of the incident light,
and thus the wavelength, remains unchanged. The Rayleigh and Mie theories describe typical
particle-based scattering for small (<5-nm) and large (>5-nm) particles, respectively. In contrast,
following inelastic scattering, the energy of the incident light, and thus the wavelength, changes.
The inelastic scattering process (Raman scattering) is especially important for colloidal particles.
The interaction between the incident light and the sample modifies the energy of the internal
(typically rotational or vibronic) states of the particle, and the scattered light has either higher
or lower energy, termed anti-Stokes or Stokes scattering, respectively. For luminescent particles,
other interesting processes, such as the emission of light, may occur. This phenomenon is based
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Figure 1
Possible interactions between a particle and light.

on the excitation of energetic states by the charge carrier’s absorption of the incident wave energy,
which in general is possible only if the incident wave is in resonance with the excited electronic state.
The light that is reemitted following relaxation of the excited states to the ground states is termed
fluorescence if the emitted light is less energetic than the incident light (more conventional process)
and upconversion fluorescence if the emitted light is more energetic (less conventional process).
Other parts of the energy can be converted into heat. This nonradiative energetic contribution is
referred to as absorption, which does not lead to the emission of light, and whereby the energy
remains in the sample.

Various techniques exist for the optical detection of particles on the basis of the above-
mentioned mechanisms. Hereafter, we distinguish between plasmonic (10) and fluorescent (11)
particles (12).

NPs of several metals, such as platinum, copper, gold, and silver, or alloys such as Cu2−xSe,
demonstrate surface plasmon resonance (SPR) due to the collective oscillation of the free
electrons stimulated by incident light of an appropriate wavelength (13); they are therefore
referred to as plasmonic NPs. This property has been exploited in many analytical techniques
for sensing and imaging.

1. Localized surface plasmon resonance (LSPR) spectroscopy benefits from the high sensitivity
of the plasmon resonance to changes in the local refractive index, and it can be applied to both
individual NPs and periodic arrays of NPs. The light scattered by individual plasmonic NPs,
for example, can be detected with dark-field microscopy (14). Plasmon resonance wavelength
and intensity can be modified by the temporal or irreversible presence of an analyte (bound
or adsorbed) on the NP surface. LSPR is a very sensitive tool for quantitative analyte analysis
(15), allowing for even single-molecule detection (16, 17).
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2. Colorimetric sensors are also based on LSPR techniques, but they were developed on the
basis of the visible color changes that plasmonic NPs undergo in the presence of a target
analyte that triggers the agglomeration (or redispersion) of an assembly of NPs (18). Al-
though similar concepts have previously been used (19), the breakthrough in this technique
was achieved by target DNA–mediated agglomeration of oligonucleotide-modified AuNPs,
as introduced by the Mirkin group (4). In that study, the presence of target DNA was ob-
served by the naked eye following a color change of a AuNP solution from red to blue.
This concept has been further extended and has led to, for example, the development of
scanometric sensors for DNA strands according to the specific binding of oligonucleotide-
functionalized AuNPs in a DNA array. The change of color due to analyte recognition was
further amplified through the addition of a silver layer onto the AuNPs. This process causes
visible darkening of the array surface only in the presence of a complementary target (20).
Colorimetric detection of analytes via analyte-induced agglomeration of plasmonic NPs is
currently used for many different analytes (21, 22).

3. Surface-enhanced Raman spectroscopy (SERS) benefits from the intense electromagnetic
field generated on some plasmonic nanostructures due to their LSPRs. Applications of
this technique are expanding because of the possibility of ultrasensitive molecule detection
without the need for special preparation of the sample. Imaging and sensing can be achieved
with SERS labels in close contact with plasmonic NPs (23–26).

4. The nonradiative decay of plasmons can produce a localized increase of temperature on
the plasmonic NP surface that can be exploited for imaging. Relevant techniques include
photothermal microscopy (27, 28) and photoacoustic tomography (29, 30).

Fluorescence microscopy, spectroscopy, and flow cytometry are among the most powerful tools
for imaging and analytical detection of molecules and ions. Several types of fluorescent particles
can be used for sensing and imaging applications.

1. Quantum dots (QDs), namely semiconductor NPs, with tunable light emission. QDs com-
posed by atoms in groups II–VI (CdSe, CdS, etc.) have been studied largely because of their
higher stability against oxidation or agglomeration in biological fluids, compared with those
of other semiconductor materials (31, 32). However, QDs based on silicon or carbon are
more interesting for biological applications due to their reduced toxicity. Efforts to synthe-
size, stabilize, and use silicon and carbon QDs as contrast agents and sensors are under way
in clinical applications (33–36).

2. Noble-metal clusters. Silver NPs or AuNPs with diameters less than 2 nm do not exhibit
SPR, but they can present fluorescence owing to their molecule-like properties (37, 38).
Such small NPs can be used as fluorescent labels within multifunctional nanostructures or
individually if they are properly stabilized.

3. Upconversion NPs and complexes. Based mostly on lanthanide-doped materials, these ma-
terials are promising for in vivo imaging. Their range of excitation/emission wavelengths
can be tuned to the near-IR region, in which tissue produces minimal absorption and scat-
tering of light. Moreover, they have low cytotoxicity, a long lifetime, and a narrow emission
bandwidth (39, 40).

4. Inorganic NPs acting as passive carriers. These NPs can accumulate organic dyes and bi-
oluminescent or chemiluminescent molecules either on the surface of or within a particle
(41).

5. Polymeric nanomatrices acting as passive carriers. Photonic explorers for bioanalysis with
biologically localized embedding (PEBBLE) sensors are a prominent example. They can be
loaded with several dyes, permitting ratiometric sensor preparation and multiplexing (42).
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6. Microbeads and microcapsules. Due to their size, they can be simultaneously loaded with
both organic dyes and fluorescent NPs. Multitasking can be readily achieved with such
materials (43, 44).

Detection based on fluorescent particles depends on the physicochemical process involved in
the modification of the emitted light upon analyte–particle interaction. The main applied concepts
for fluorescence detection include the following.

1. Readout based on analyte-sensitive fluorophores. The presence of the analyte can directly
modify the emission of the fluorophore (45).

2. Readout based on the quenching of QD fluorescence through the proximity of another NP,
such as a AuNP (46).

3. Readout based on photoinduced electron-transfer (PET) sensors. They consist of one fluo-
rescent species attached to a recognition group that acts as a quencher in the unbound dark
state. The binding of the recognition component with the analyte (normally metal cations
and protons) cancels the electron transfer and dequenches the fluorophore (47).

4. Readout based on Förster resonance energy transfer (FRET) between two fluorophores.
Often, QDs act as donors and transfer energy to an analyte-sensitive fluorophore that acts
as an acceptor, but FRET in which the QDs are acting as the acceptors can occur (48). The
lifetime of and the response to analytes of the acceptor fluorophore are modified due to the
presence [within a short (<10-nm) distance] of the donor fluorophore.

5. Readout based on chemiluminescence resonance energy transfer (CRET). In CRET, a
chemiluminescent probe is the donor; it excites the acceptor fluorophore, which can be a
dye or a particle. The chemiluminescent probe should be analyte sensitive and should be
formed by two species that react to produce emission of light only in the presence of the
analyte (49).

6. Readout based on bioluminescence resonance energy transfer (BRET). Bioluminescent pro-
teins are efficient energy donors for QDs (50). Because CRET and BRET processes do not
need light excitation, their sensitivity is high.

2.2. Electrical Detection

Electrical detection modes deal mainly with NPs that conduct electricity, such as noble metals or
semiconductors, which are typically supported by a flat electrode (51, 52). However, oxide NPs
and hybrid multifunctional NPs have also been used as electrochemical sensors and biosensors.
The function of the NPs in such sensors varies not only according to the nature of the NP but also
on the basis of how the analyte is detected. Luo et al. (53) provide some important examples of the
functions of NPs in electrical sensors: (a) The NPs are reactants themselves (54), (b) they are cata-
lysts of electrochemical reactions (55), (c) they provide an appropriate surface for immobilization of
biomolecules (e.g., analyte receptors) (56), (d ) they improve or vary the conductivity between the
analyte receptor and the electrode (57, 58), (e) they enhance electron-transfer processes (59), and
( f ) they perform labeling (60). The four main electroanalytical categories of detection involving
NPs are (a) classic potentiometry (which involves potential measurements) (61), (b) coulometry
(by measuring current, the amount of matter transformed during the electrolysis reaction is cal-
culated) (62), (c) amperometry (wherein ions are detected on the basis of current measurements)
(54), and (d ) voltammetry (in which current measurements are performed while the potential is
changed) (55). Electrochemical biosensing is often applied to the detection of biomolecules such
as enzymes, antigens, and DNA, which are responsible for specifically recognizing the analyte
and, in the case of enzymes, for converting the analyte in the signal that is actually detected (such
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as electrons, H+, and H2O2). Many comprehensive reviews summarizing the most significant im-
provements in nanomaterial-based electrical biosensing have been published, and we recommend
reading them for further information (63, 64).

Hybrid systems that mix optical and electrical measurements for analyses involving NPs have
been performed. Electrochemical-LSPR biosensors have been developed for label-free detection
of peptide toxins through the use of core-shell NP arrays (65). The substrate comprised silica
NPs used as the core and a thin gold film used as the shell, which simultaneously acted as a
working electrode and an LSPR sensor. The binding of the peptide toxin melittin to the hybrid
electrode was optically detected by LSPR, and the membrane-disturbing properties were assessed
electrochemically (65). In the case of fluorescent NPs, optical excitation can be used to modulate
the electrochemical signal. The illumination of QDs, immobilized on an electrode, generates
charge carriers (electrons and holes) and gives rise to a photocurrent. This detection scheme has
been employed in, for instance, the light-triggered electrochemical detection of aminophenyl
phosphate (66).

2.3. Magnetic Detection

Functionalized magnetic nanoparticles (MNPs) are widely used for sensing and imaging in the
context of magnetic resonance (MR) (67–69). When used as targeted contrast agents, molecules
or functional groups on the MNP surface bind the targeted molecules, first producing local
inhomogeneities in the applied magnetic field that affect the proton spin precession (decreasing
the relaxation time) within the target molecules and then increasing the contrast. These changes
in relaxation times have been extensively utilized for high-sensitivity detection. For example,
a recently published study used polymerase chain reaction detection, which normally requires
fluorescence readout methods (70).

Magnetic relaxation switches are MR-based assays that are associated with different spin–
spin relaxation times between the dispersed and agglomerated states of MNPs (71). SQUIDs
(superconducting quantum interference devices) have been used for sensing on the basis of the
change of the relaxation magnetic moment in the presence or absence of the corresponding analyte
(72). Moreover, magnetoresistance can be also applied to magnetic sensing (73). In this case, the
change of the sensor’s electrical resistance is measured following analyte binding in the presence of
a magnetic field. Superparamagnetic NPs are normally used as magnetic field concentrators, but
they need to be functionalized with a molecule that specifically binds the corresponding analyte.
Proteins, DNA, and enzyme reactions have been detected with this technique, given that it is one
of the most sensitive magnetic sensing methods (71, 74).

3. MULTIPLEXED SENSING

Analyte detection involving colloidal NPs often requires the use of multifunctional NPs. In
this context, the simplest sensing system would be formed by NPs that produce or enhance a
signal (which can be detected optically, electrically, magnetically, etc.), coated with a recognition
element such as an antibody or an analyte-sensitive fluorophore. Multianalyte sensing could be
achieved simply by producing similarly functionalized NPs with different recognition elements
according to the respective analytes and with individually resolved readout (for example, by
different wavelengths in the case of optical readout). However, practical problems, such as
cross-reactivity between analytes to different recognition elements involving limited selectivity,
signal overlap of the different readouts, and limitations related to the NP functionalization, have to
be considered. Not only does multiplexed detection reduce costs, sample volume, and assay time,
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Figure 2
Classification of sensors on the basis of multifunctional particles. (a) Particles are dispersed in solution, and
following analyte binding, readout can be performed in solution or on a planar surface, where sensor
particles are randomly distributed. (b) Readout is based on structured surfaces on which the particles are
bound to specific locations.

but it is convenient for the analysis of real samples, such as blood or river water, in which many
different analytes can interfere with the signal of a specific sensor. Therefore, there is increasing
interest in developing multiplexed sensors that can substitute individual analyte-detection assays,
such as enzyme-linked immunosorbent assays (ELISAs) for tumor markers (75).

In this section, we discuss some recent nanotechnology strategies applied to multiplexed sens-
ing. There are two different approaches: assays based on particles in suspension and assays based
on planar arrays. Advantages of the use of particle sensors in suspension include (a) the higher
surface-to-volume ratio for receptor conjugation and target analyte binding; (b) the better acces-
sibility of the analyte to the sensing surface, given that sensor particles move in solution similarly
to the analyte; and (c) the possibility of incorporation in vivo by targeted delivery. This approach
also has some drawbacks: (a) Particles in suspension are normally less sensitive (i.e., have higher
detection limits) than planar array sensors; (b) their stability and reusability are often lower;
(c) multiplexing due to spatial separation is more easily achieved for planar arrays of NPs; and
(d ) in the case of in vivo sensing, one must take into account the fact that NPs may stay in the
body for a long time and thus have cytotoxic effects. We describe two scenarios: sensing based on
dispersed particles in solution and sensing based on particles associated with planar arrays. In the
first case, readout is typically carried out without the particles having to be ordered on specific
positions; in other words, the particles are randomly dispersed in solution (after the binding of the
analyte) or are randomly associated with a surface (without order). In the second case, readout is
based on structured surfaces on which the particles are bound to specific locations (Figure 2).

3.1. Multiplexed Sensors Based on Dispersed Particles in Solution

For multiplexed detection in solution, particles must be designed to carry receptors for specific
analytes. Also required are the corresponding transducer and an encoding scheme for use in
determining which receptor is emitting the signal (76). In this section, we focus on optical readout
because it is the most frequently used technique for multiplexed sensing with dispersed particles.

Multiplexing can be achieved by spectral, spatial, and temporal separation of the readout orig-
inated from different particles (which are sensitive to different analytes) (77). Before we describe
the different principles for multiplexed sensing, we note that in all sensing applications involving
particle-based sensors, one must be aware that the analyte concentration close to the (sensitive)
particle surface in general differs from that in bulk (76). This problem can be easily understood
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with the following examples. First, in the case of ion detection, electrostatic interaction between
the corresponding ion and the particle surface occurs when the particles are charged. Debye–
Hückel–based screening on the particle charge with counterions thus involves ion concentrations
close to the particle surface (where the actual detection takes place) that are different from those
in bulk (78–80). Second, in the case of protein detection, one has to be aware that proteins often
(nonspecifically) adsorb to the surface of particles, forming the so-called protein corona (81, 82).
Thus, the protein concentration at particle surfaces is generally higher than in bulk. Third, the
sensing element (for example, an analyte-sensitive fluorophore bound to the particle) can be influ-
enced by the particle. If the sensing element, the actual probe, is bound inside a (porous) particle
or to the particle surface, then the particle impregnates a different environment to the probe. The
environment near the particle can be, for example, more apolar than the surrounding aqueous
solution, which can affect the response of the probe (83). One must therefore be aware that what
particle-based sensors actually detect are local analyte concentrations, not bulk concentrations.

In case the spectrally resolved readout is based on fluorescent particles, multiplexing can be
performed by using a set of particles emitting at different wavelengths, whereby the fluorescence
readout of each particle-based sensor is sensitive to one analyte species. Spectrally resolved fluores-
cence measurements allow several analytes to be detected in parallel. The most significant problem
with this approach is spectral overlap of the fluorescence from different particles. QDs are better
suited to this purpose than particles that are decorated or filled with organic fluorophores, given
that the emission spectra of QDs are generally narrower and do not have a red tail (1). For exam-
ple, investigators have simultaneously detected enzymatic activity from two different enzymes by
using a simple assay procedure based on QDs with distinct emission spectra (46). The enzymatic
biomarkers uPA protease and Her2 kinase were detected at concentrations that were clinically
relevant for the determination of breast cancer prognosis by use of two differently functionalized
QDs with different emission spectra. The first QD dequenched following enzymatic degradation
(Figure 3a,b). FRET occurred between the second QD (donor) and an organic dye (acceptor)
when the residue of the enzymatic reaction was bound to a specific antibody functionalized with
organic dyes on the surface of the QD (Figure 3c,d ). Another example, also based on various QD
emissions, involves a direct multiplexed sensor for Ag+ and Hg2+. The QDs were functionalized
with different nucleic acids that specifically bound Ag+ or Hg2+ (84). Thereafter, the presence
of these ions in solution caused the formation of Ag+–cytosine or Hg2+–thymine complexes and
resulted in QD electron-transfer quenching.

Multiplexed, spectrally resolved optical readout can also take place with plasmonic NPs because
the LSPR depends on the size and shape of the plasmonic NPs (85). Thus, plasmons of different
types of NPs can be recorded at different wavelengths. This property has been used to create a
multiplexed LSPR sensor involving gold nanorods (AuNRs) with different aspect ratios (86). In
this study, the ratio between the length and the thickness of the rods determined the respective
readouts. NRs with different aspect ratios were modified with recognition molecules for various
analytes. The binding of the analytes to the different AuNRs can shift the plasmon band position
and modify its extent. In this context, investigators have carried out parallel detection of three
different cell-surface markers and detection of two different types of bacteria (87, 88). Although
these sensors can detect only a few different analytes in parallel (given that the plasmonic peaks
are relatively broad and thus suffer from spectral overlap), they are interesting because of their
simple design and ease of use.

The principles discussed above are based on ensemble measurements that allow for simulta-
neous readout. Each particle is responsible for the detection of one analyte, giving rise to the
corresponding signals at different wavelengths. Thus, readout can be spectrally resolved. How-
ever, there is an alternative way to read out particles one by one; in other words, readout can
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Figure 3
A multiplexed sensor for uPA protease and Her2 kinase. (a,b) The protease sensor is based on the quenching
of quantum dots (QDs) emitting at 525 nm (a) and further dequenching in the presence of uPA that cleaves
the substrate and releases the gold nanoparticles (AuNPs) responsible for the quenching. AuNPs absorb light
very efficiently due to their surface plasmon resonance (b). (c,d ) The kinase sensor is based on Förster
resonance energy transfer (FRET) from QDs emitting at 655 nm to organic dyes that label the antibody
bound to the analyte on the surface of the QDs following an enzymatic reaction. Modified from Reference
46 with permission.

be spatially resolved. In this case, spectral overlap does not pose a problem because the particles
are spatially separated and readout can be correlated with individual particles (77). To read out
particles one by one in solution, one can use either flow cytometry or microscopy.

In this context, there are two readout strategies both based on bar-coding. In the first strategy,
analyte-sensitive readout can be combined with a bar code. The bar code identifies the analyte for
each optical readout. Consider, for example, a class of fluorophores that are sensitive to Na+ and
another class sensitive to K+ and that the emission spectra of both types of fluorophores overlap.
If two types of particles that make up either the Na+- or K+-sensitive fluorophores, along with a
corresponding bar code, are produced, then one can classify each particle by first reading the bar
code, which reveals whether the fluorescence from the analyte-sensitive fluorophore corresponds
to Na+ or K+ (77). QDs are very useful for the production of fluorescent bar codes due to their
narrow emission band. Compared with that of organic dyes, the emission of different QD species
can be better spectrally resolved, so more codes can be generated. For instance, the inner cavities of
porous microparticles (polyelectrolyte capsules) were loaded with analyte-sensitive fluorophores,
and the surfaces of the fluorophores were tagged with a QD-based fluorescence bar code. This
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Figure 4
Simplified scheme of multiplexed sensors for H+, Na+, and K+ based on quantum dot (QD) bar codes. Ion-sensitive dyes are
encapsulated, together with a reference dye, in a permeable multiple-shell structure within the capsule to enable ratiometric
measurements. The emission of the specific ion sensors may overlap, but the bar codes made with the different QDs allow for
discrimination between signals.

system allowed three ions (H+, Na+, and K+) to be detected in parallel, despite the spectral overlap
of the analyte-sensitive fluorophores (Figure 4) (44).

The second bar code–based strategy is based not on active sensing (i.e., there is no molecule or
particle of which the readout is altered following binding of the analyte), but on passive detection.
On the basis of molecular recognition, analyte molecules in solution are tagged with a bar code;
that is, bar codes need to be modified with analyte receptors. Consider a scenario in which different
viruses are to be detected in solution. Antibodies for the different viruses would be modified with
different bar codes. By observing one by one the conjugates that form (as mentioned above in the
context of flow cytometry or with microscopy), one can identify the different viruses. An important
example is a multiplexed sensor for five different genetic biomarkers (human immunodeficiency
virus, malaria, hepatitis B, hepatitis C, and syphilis) developed by Giri et al. (43). These authors
encoded microbeads with QDs of different emission wavelengths and intensities to produce a
library of bar codes for multiplexed detection; this library exceeded the limit of 100 useful bar
codes of similar systems involving organic dyes instead of QDs. The bar-coded particle bound
the biomarker without causing any change in its fluorescent emission. A universal fluorescent
probe that binds all biomarkers was used to discriminate between the unbound bar codes and the
analyte–bar-coded particles. Only when there was colocalization between the emission of the bar
code and the universal probe was the analyte bound to the bar code. Readout was performed with
flow cytometry (Figure 5).

SERS-encoded NPs are a promising alternative to bar-coding (89). Particles should contain
organic molecules (SERS reporters) in close contact with or bound to the plasmonic surfaces,
providing the signature of the particle (90). The particle should be separately functionalized with
an analyte receptor (91). Due to the uncountable number of molecules, each of which has specific
vibrational spectra, a multiplexed sensor based on SERS-encoded NPs can be considered limitless.
However, the number of codes that can be experimentally produced is restricted by several factors
involved in the synthesis of multifunctional particles, such as the binding of the SERS reporter
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Figure 5
Microbeads labeled with different mixtures of quantum dots for multiplexed biomarker detection. Each
sensor is functionalized with a capture DNA strand (steps � through �). In solution, hybridization occurs
between the specific target biomarkers and the universal detection probe. The universal labeled probe is used
to differentiate between bar codes bound to the biomarkers and free ones. Finally, the sample is analyzed by
flow cytometry, in which each particle is analyzed individually.

on the metallic surface, the insufficient field enhancement necessary to raise the SERS signal up
to detectable levels, and the stability of the particles. Many examples of the synthesis of encoded
NPs for SERS sensing in solution exist (92, 93) but the multiplexed sensing of a large number of
analytes is still in its infancy, so more universal strategies for the SERS-encoding and detection
should be performed. In vivo multiplexed sensing has been demonstrated only recently (94).

Another example involves plasmonic NPs assembled on a surface for the design of SERS-based
multiplexed sensing platforms (95). So-called sandwich-type DNA coated silver NPs arrays have
been used to specifically hybridize various DNA strands labeled with different SERS probes (96).
Multiplexing can take place because different SERS labels can conveniently be spectrally resolved
(Figure 6); thus, no structuring of the surface is required. The number of DNA strands that can
be detected in parallel is limited by the number of SERS labels that can bind DNA and by the
length of the DNA strand (with sufficient enhancement of the Raman signal, which depends on
the number of labels and the distance between the labels and the surface). The creation of hot
spots following DNA hybridization has also been exploited in multiplexed SERS-based sensors
involving sandwich-type DNA arrays to reach a DNA detection limit of 10 pM (97).

Encoded hybrid materials can help improve the number of analytes detected in parallel, as
discussed in the previous section. However, if a second encoding scheme is added to multifunctional
NPs, then the number of parallel detected analytes can be multiplied. This idea was introduced by
Wang et al. (98), who recently produced a hybrid system based on AuNRs coated with SiO2 and
encoded with different QDs with different emission and SERS labels. The resulting immunoassay
has great potential for multiplexing.

In addition to spectral and spatial discrimination, temporal resolution of different optical
sensors can also be performed. In the case of fluorescent particles, analyses of luminescence
lifetime and the intensity-to-lifetime ratio allow for discrimination between signals that may
be spectrally overlapped (99, 100). Sensors based on lifetime measurements of QDs exist (101),
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Figure 6
A multiplexed DNA sensor based on silver nanoparticles (AgNPs) deposited on silicon wafers and functionalized with thiolated DNA
(1 and 2) strands for the specific hybridization of DNA (1) and DNA (2) and the corresponding surface-enhanced Raman spectroscopy–
labeled DNA reporters. (a) Only DNA (1) in solution. (b) A mixture of DNA (1) and DNA (2) in solution. (c) Only DNA (2) in solution.
Abbreviation: SH, thiol group termination. Modified from Reference 96 with permission.

but to the best of our knowledge, multiplexed sensors based on lifetime measurements are still
uncommon. Techniques such as fluorescence lifetime imaging microscopy (FLIM) will probably
extend the use of temporal discrimination in optical biosensing. Recently, cellular viscosity was
studied with fluorescent ratiometry and FLIM (102), and multiplexed sensing is likely to evolve
in this direction by simultaneously taking advantage of several measurements, either spectral and
temporal or spatial and temporal (103). An example of a promising technique in multiplexing
wherein lifetime and spectral measurements of fluorophores can reveal information about analyte
binding involves multiplexed FRET assays. If FRET occurs, not only the emission intensity
and wavelength of the donor and acceptor fluorophore but also the lifetime can be changed
(Section 2). Multiplexed FRET assays for biosensing have been developed on the basis of (a) FRET
from luminescent lanthanide complexes to several different QDs (acceptors) following molecular
recognition (104) or (b) FRET from several QDs (donors) to organic dyes for the detection of DNA
(105).

Although most of the examples of multifunctional NPs used for multiplexed sensing in solution
involve optical detection, there are remarkable examples that mix several detection modes. These
include magnetofluorescent nanoparticles, which can be used for flow cytometry and diagnostic
MR detection (106, 107).
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Figure 7
A scanometric immunoassay. Abbreviation: AuNP, gold nanoparticle. Modified in part from Reference 116.

3.2. Multiplexed Sensors Based on Particles Associated with Planar Arrays

Planar arrays, composed mainly of metallic and semiconductor NPs and arrays of biomolecules
such as DNA and antibodies that bind NPs, have been extensively studied for use in NP-based
optical or electrical biosensors (108–110). Multiplexed sensing with NPs associated with (typically
planar) arrays can easily be performed because of the possibility of positional encoding (111). The
general idea is to detect various analytes at different positions of the (generally structured) array.
In this section, we discuss recent examples of multiplexed sensors based on NP planar arrays.

3.2.1. Localized surface plasmon resonance spectroscopy. LSPR-based multiplexed sensors
detect, for example, changes in interparticle distance; modification of the refractive index; and
changes in color in the LSPR of NPs due to the presence of analytes, whose individual signal can
be differentiated by specific receptors, normally DNA or antibodies (112–114). Colorimetric as-
says can be produced through functionalization of a microstructure chip with different antibodies
in different regions. The addition of a solution with antigen produces specific antibody–antigen
binding, and depending on the amount of antigen, the response in color (and absorbance) may
differ. This method is sensitive and specific. Endo et al. (115) applied this method to eight dif-
ferent proteins. In a similar approach, investigators modified the above-mentioned scanometric
assay by using antibodies instead of DNA microarrays and electroless deposition of gold instead
of silver. The light was thereby scattered by antibody–oligonucleotide hybrid AuNPs, and the
amplification of the signal was greater than that of precedent scanometric assays due to gold de-
position (Figure 7). The assay detected very low concentrations of different proteins, in this case
in serum, without the need to trap of the analyte in solution with two differently labeled NPs.
This process eliminated several steps from the production of the multiplexed sensors (116). Note
that scanometric assays are US Food and Drug Administration–approved detection methods for
biological samples. Therefore, they are among the most-studied and most widely used methods
for multiplexed analyses involving NPs.
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A bio-bar-coded gold nanoparticle (AuNP) assay for multiplexed protein detection. Scanometric detection also involves a silver coating
to improve sensitivity (not shown for simplicity). Abbreviation: SH, thiol group termination. Modified from Reference 117 with
permission.

In addition to direct arrangement of the NPs via recognition of the analyte on the array surface,
NPs that have captured an analyte can also be arranged via bar codes. Bar codes can be made,
for example, with biological molecules. An interesting example is a multiplexed sensor based on
bio-bar-coded AuNPs and scanometric detection (involving colorimetric detection) (117). The
analytes—in this case, protein cancer markers—are trapped by two different types of NPs, DNA
bar-coded AuNPs and MNPs, which have different antibodies that bind the same protein in
different epitopes. Magnetic separation is applied after the analytes are trapped in solution by
the antibodies bound to the surface of the MNPs. The DNA used as a bar code is then released
from the gold surface and quantified in a scanometric detector (LSPR-based detection). Again, the
detector involves (smaller) AuNPs and a silver-layer coating that significantly amplified the signal
and reduced the detection limits. Figure 8 depicts this multiplexed sensor, which is very sensitive
and specific. However, it requires many functionalization steps for numerous different NPs.

Recently, copper-capped silica particles have been used to develop a cost-effective optical setup
on disposable chips capable of multiplexed sensing of biomolecules; the chips have a detection
limit of 10 fM. The assay is based on measurable changes in the refractive index in the presence
of analytes (in this case, different DNA strands), which arise from the LSPR of the copper layer
deposited on the silica NPs (118). The combination of LSPR refractive-index sensing and the
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well-known ELISA assay has led to the development of another colorimetric multiplexed sensor
with single-molecule sensitivity. This new technique takes advantage of the amplification of the
shift of the LSPR scattering maximum following an enzymatic reaction that allows for the detection
of one or a few enzymes (119). The authors have not yet applied this new approach to multianalyte
analyses, but due to the sensor configuration and the results from single-particle analyses, mul-
tiplexing is highly anticipated, along with the development of nonfluorescence single-molecule
ELISA assays.

3.2.2. Electrochemical immunosensors and immunoassays. Electrochemical immunosensors
and immunoassays (EIIs) are electrochemical sensors in which antibody–antigen interactions occur
on an electrochemical transducer (in immunosensors) or the immunological material is immobi-
lized on a solid support, such as a nanomaterial. Following sandwich or competitive immunore-
actions, the solid support containing the immunological material is attached to the transducer
surface (in immunoassays) (120). EIIs are excellent candidates for multianalyte analysis in terms
of clinical diagnosis, in which the biological agents to be detected are present in very low con-
centrations (121). Multiplexed analysis can be performed in EIIs when the sensing electrodes are
sufficient separated to prevent signal interference (cross talk) between neighboring electrodes.
Very low analyte concentrations can be detected through amplification of the antibody–antigen
interaction transduction signal with labels such as enzymes or NPs (122). NPs can have different
functions within the sensor (Section 2.2), such as trapping analytes and improving the transducer
surface for better antibody adhesion.

Interesting examples of EIIs involving multifunctional NPs have recently been provided
(60, 123). Mani et al. (124) produced a multiplexed sensor for four different oral cancer biomark-
ers that can be used with clinical samples. These authors achieved ultralow detection (5–50 fg
ml−1) on the basis of amperometric measurements. In another study, magnetic nanobeads were
functionalized with both an antibody to capture a specific analyte and horseradish peroxidase to
amplify the signal during the detection on the planar electrode. In the first step of the detection, the
magnetic beads functionalized with specific antibodies captured the corresponding analyte due to
antibody–antigen interactions; then, these magnetic nanobeads were magnetically separated from
the solution. The second step of the detection involved the binding of a second antibody with the
corresponding antigen on a planar electrode. This time, the second antibody bound to another
epitope of the same antigen, and the unbound magnetic nanobeads were washed out. Multiplex-
ing was achieved through the use of several electrodes in parallel (125). Figure 9 depicts this
multiplexed sensor.

AuNP arrays are useful in immunoassays for several reasons. First, they increase the electrode
surface area. Second, they facilitate the attachment of numerous antibodies due to the easy func-
tionalization of gold surfaces. The production of high-AuNP-coverage electrodes depends on both
the stabilizing molecule on the gold surface and the electrode surface. Often, it is necessary to
coat the electrode with a layer of molecules that increase the adhesion of the AuNP. For example,
positively charged polyelectrolytes such as PDDA [poly(diallyldimethylammonium chloride)] can
be used to increase the AuNP’s adhesion. Similar electrodes have been produced for multiplexed
protein detection by use of carbon nanotube arrays, but their detection limits, reproducibility, and
stability were lower than those of the AuNPs arrays (124, 126, –127).

Multiplexing, as discussed above, is based on the use of an array of differently functionalized
electrodes. Geometrically, the number of electrodes that can be used in parallel is limited (128).
However, as an alternative to electrode arrays, spatial resolution and, thus, multiplexing capa-
bility can be achieved by use of a light pointer in connection with a semiconducting electrode
surface to select defined points on an electrode surface (129–131). The light pointer creates a local
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Figure 9
A gold nanoparticle (AuNP) array functionalized with antibodies (Ab2) for the ultrasensitive detection of cancer biomarkers. The
sensor also contains magnetic beads labeled with antibodies (Ab1) and horseradish peroxidase for amplification and biomarker capture.
Multiplexing is achieved through parallel detection in different electrodes.

photocurrent whose amplitude is influenced by local redox reactions on the electrode surface. The
semiconductor layer can be constructed from QDs (57, 58). The first observations of enzymatic
reactions have already been reported (55, 66, 132, 133). Although multiplexed analysis has not yet
been practically demonstrated, its spatial resolution capability clearly demonstrates its potential.

3.2.3. Giant magnetoresistive sensors. Giant magnetoresistive (GMR) sensors are a promis-
ing and low-cost alternative for the detection of proteins and nucleic acids. In the former case,
antibodies arrays must be prepared beforehand to specifically capture the corresponding analyte.
Functionalized MNPs in solution that bind the same antigen are used to detect the presence of
an analyte by measuring the small changes in resistance due to the binding event in the presence
of a magnetic field. Multiplexed sensors have been developed using this technique, but their re-
producibility and sensitivity remain compromised in extended sensing applications with real and
untreated samples (134–138).

There are many other examples of the use of NP arrays or NPs as labels in immunoassays,
such as chemiluminescence imaging immunoassays involving horseradish peroxidase and AuNPs
(139). New strategies for multiplexing with planar arrays are continually being introduced due to
their significant possibilities in multifunctional NP synthesis and the application of new materials,
such as fluorescent nano–graphene oxide and ensemble aptamers instead of more specific DNAs
for analyte recognition (140).

4. MULTIMODAL IMAGING

In recent years, many applications of NPs to bioimaging and diagnosis have been developed
(141–143). The most important example is undoubtedly the use of MNPs in magnetic reso-
nance imaging (MRI) (144–147). However, many other NP applications are expected to find
clinical use in the near future. Advances in colloidal chemistry have enabled “à la carte” de-
sign of multifunctional particles. By combining elements such as radioactive isotopes, QDs
(31, 148), and organic dyes in the same nanostructure or microparticle, one can easily obtain
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multimodal nano- or microcomposites. The use of multimodal labels is necessary to overcome the
limits of any single technique, such as spatial resolution or bleaching. Cheon & Lee (149) explored
these ideas on the basis of multimodal imaging probes consisting of MNPs with further function-
alities, namely radionuclides enabling positron emission tomography and fluorescent moieties for
optical tracking. These probes can be modified with anchor molecules such as antibodies, peptides,
DNA, and RNA, permitting the investigators to address specific targets.

Liong et al. (150) provided an example of advantageous MNP-based multimodal systems.
These authors applied multifunctional iron oxide–mesoporous silica NPs that were detectable both
optically and by MRI. They rendered the particles suitable for live-cell imaging and therapeutic
purposes by targeting them specifically to human cancer cells. Moreover, those particles were
simultaneously used to deliver hydrophobic anticancer drugs (or other molecules) into cells.

Nahrendorf et al. (151) investigated a comparable trimodal imaging system comprising MRI
(iron oxide core), PET sensors (chelator ligand complexing the radiotracer Cu64), and fluorescence
(VivoTag-680TM) that enabled in vivo studies of the detection of macrophage markers, specifically,
the detection of inflammatory atherosclerosis. Given the lower required concentration of NPs
and their higher target-to-background ratio, the authors found this technique especially relevant
for clinical use. The production of nano- or microprobes for multimodal imaging in vivo can
be difficult, mainly because of targeting issues (152, 153), the colloidal stability and purity of the
probes, the retention time in vivo (154), the long-term stability of the signal, degradability, possible
toxicity, and the clearance mechanisms of the probes in humans. Degradation over the long term
and dissolution of the nanoprobes within the body are very difficult to avoid, in particular in the
case of corrosive NP materials such as CdSe or silver. Regarding in vivo applications, the use of
toxic materials (e.g., radiotracers) or materials that deliver toxic ions during dissolution (e.g., CdSe
QDs) should be minimized. Nevertheless, in specific instances, the lack of a diagnosis would be
worse for the patient than the risk posed by the probe itself (e.g., a PET sensor).

Several types of multimodal particle platforms exist. On the NP level, for example, polymer-
coated NPs purified with gel electrophoresis and size-exclusion chromatography fulfill most of
the above-mentioned requirements (80, 155). They are very stable and pure (156–158); their size
is reasonably small; and in the size range longest blood circulation time (10–100 nm) (159), the
surface charge can be varied (160), the polymer shell itself does not impose enhanced cytotoxicity
(161), and the polymer protecting the core can be loaded with functional entities (162). For these
NPs, the inorganic core can be used as the first label (for example, it can be made magnetic,
fluorescent, or radioactive), and the second label can be incorporated within the amphiphilic
polymer that stabilizes the NP surface (155, 157, 158). Both labels are thereby protected from
the biological environment, which helps improve signal stability and leaves the NP surface free
for further functionalization by, for instance, cell-penetrating peptides, molecular receptors, or
molecules that improve cell circulation such as poly(ethylene glycol) (154). Figure 10 presents
examples of such probes.

Fluorescent microscopy can be conveniently combined with SERS imaging through the incor-
poration of dyes, SERS probes, and even surface-enhanced resonance Raman scattering (SERRS)-
active labels in the same multifunctional particle. Core-shell particles made from a gold core and
an organosilica shell are good platforms for the simultaneous entrapment of fluorophores and
SERS probes. Cui et al. (163) produced ∼100-nm-diameter core-shell particles loaded with flu-
orescein isothiocyanate and malachite green isothiocyanate (green dye and SERS label). In a
further demonstration of multiplexing, the authors synthesized similar particles with fluorescein
isothiocyanate and X-rhodamine-5-(6)-isothiocyanate (green dye and SERRS label) (Figure 11a).
Multimodal imaging in living cells was thereby demonstrated with these two differently labeled
types of particles.
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Figure 10
Strategy to produce multifunctional nanoparticles (NPs) for dual imaging. (a) Inorganic cores ( gray) can be synthesized with different
materials that are magnetic, fluorescent, or radioactive. Organic molecules are stabilized the NP surface following core synthesis. The
cores are coated with an amphiphilic polymer that makes them water soluble. The amphiphilic polymer is loaded prior to coating with
the second label (fluorophore, radioactive atom, etc.), and the final NP is double labeled. (b) Table including the possibilities of NPs for
dual imaging based on polymer-coated NPs.

Currently, SERS imaging is limited by light penetration. NPs can be detected at a maximum
depth of 1 cm (164). The combination of SERS with techniques such as spatially offset Raman
spectroscopy could pave the way for clinical detection because the depth can be increased to up
to 5 cm (165). In SERS applications and, more importantly, in bioimaging, the metallic surface of
the NPs should be protected with an appropriate shell that hinders the adsorption of molecular
species that could interfere with the vibrational code of the SERS probe. Silica shells have been used
primarily for SERS applications and for multimodal imaging based on colloidal NPs because of
their (a) reduced agglomeration, (b) biocompatibility, (c) optical transparency, (d ) tunable porosity,
(e) chemical inertness, and ( f ) ease of further functionalization (166). Figure 11 shows several
examples of multimodal NP imaging probes built up with silica shells and different inorganic cores.
Not only do silica shells act as protective shells, but also they can be loaded with fluorophores,
SERS and SERRS labels, or other NPs (Figure 11a). For example, the surface of Fe3O4@SiO2

core-shell particles was further functionalized with AuNRs for in vivo MRI and IR imaging (167).
Also, more than two imaging modalities can be used within one NP (Figure 11c). Hwang et al.
(41) have produced quadruple-labeled particles by first coating cobalt ferrite NPs with a silica shell
entrapping rhodamine B isothiocyanate and then functionalizing the silica surface with an organic
dye. The bioluminescent protein luciferase was added as a third label and radioactive 68GaCl3 as
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Figure 11
Different multimodal nanoparticle (NP) probes made with core-shell particles involving silica coating. (a) Particles for surface-enhanced
Raman spectroscopy (SERS) and fluorescence imaging. Gold nanoparticles (AuNPs) are coated with a silica layer that entraps both the
SERS probe and the fluorophore. Image adopted from Cui et al. (163). (b) Particles for in vivo magnetic resonance imaging and IR
thermal imaging. Fe3O4 ellipsoids are coated with silica and gold nanorods (AuNRs). Image adapted from Ma et al. (167). (c) Quadruple
imaging based on a magnetic core coated with a silica shell embedding a fluorophore, and further silica surface functionalization with a
bioluminescent protein and a radioactive isotope. Abbreviation: PEG, poly(ethylene glycol). Data adapted from Hwang et al. (41).

the fourth. These particles were successfully used in five in vivo imaging techniques: fluorescence,
bioluminescence, BRET, positron emission tomography, and MRI. The same authors monitored
in vivo and in vitro uptake in target cells of similar particles that were functionalized with specific
aptamers with fluorescent microscopy, radioactive detection, and MRI (168).

Silica shells have also helped produce lanthanide-based multifunctional NPs. Upconverting
NPs are interesting for multimodal imaging due to their special 4f electron structure, their rich
optical and magnetic properties, their biocompatibility, and the tunability of their emission wave-
length (169). More importantly, the upconversion of light due to anti-Stokes emission significantly
minimized the background and simplified the discrimination of the signal from the target tissues or
cells, compared with other optical techniques. Core-shell trimodal particles involving silica shells

www.annualreviews.org • Colloidal Nano- and Microparticles 71



AC06CH03-Parak ARI 13 February 2013 20:38

MNP

PL-PEG-COOH

PLH

Gold shell

HAuCl4

NH2OH

Figure 12
Core-shell iron oxide–gold nanoparticles. Magnetic nanoparticles (MNPs) were initially stabilized with oleic acid ( gray), then coated
with phospholipid–poly(ethylene glycol) (PL-PEG)-COOH and polyhistidine (PLH) to form a gold layer through the reduction of the
salt HAuCl4 by NH2OH on the particle surface.

have recently been produced for X-ray computed tomography, MRI, and fluorescence imaging,
demonstrating their suitability for further in vitro and in vivo applications (170, 171).

Multifunctional particles can also extend the application of certain imaging techniques, such
as for magnetophotoacoustic (MPA) imaging. MPA imaging is based on the synergy of magneto-
motive ultrasound, photoacoustic, and ultrasound imaging. It is a noninvasive technique that can
be applied in diagnosis. To this end, Jin et al. (172) recently introduced a new class of core-shell
NPs made from an iron oxide core and a gold shell separated by phospholipid–poly(ethylene)
glycol and a layer of polyhistidine (Figure 12). Due to the hybrid nature of these NPs, their con-
trast, resolution, and sensitivity obtained in ultrasound imaging were acceptable. Otherwise, the
technique is not yet good enough in terms of contrast, although it remains interesting due to its
resolution at reasonable depths, nonionizing nature, cost-effectiveness, and portability. Moreover,
the particles can be imaged with electron microscopy, MRI, and scattering-based techniques.

Multilayer polyelectrolyte capsules are promising candidates for multimodal imaging because
they can simultaneously incorporate several labels that are spatially separated. In Section 3.1,
we describe bar-coded capsules for multiplexed analysis (44). Multimodal imaging can be easily
achieved in the same manner by combining organic labels with inorganic NPs that act as contrast
agents. In addition to optical detection with fluorescence microscopy, the magnetic properties
of capsules loaded with superparamagnetic NPs are suitable for MRI (173). Moreover, Johnston
et al. (174) have demonstrated that it is possible to control the binding and uptake of such capsules
on target cells by antibody labeling.

5. IMAGING AND SENSING

Many multifunctional NPs can be used for either imaging or sensing. The classical example is
iron oxide–based NPs, which are useful in MRI as negative-contrast agents (image darkening)
and in magnetoresistive immunoassays as nanotags (134, 144). However, there are fewer examples
of particles that can be applied simultaneously to in vivo or in vitro imaging and sensing. The
application of multifunctional particles for such purposes could lead to great advances in diagnosis.
The size of NPs is similar to that of ribosomes and some proteins; therefore, NPs may be able to
simultaneously detect and localize changes in biomolecule or ion concentrations that are related
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to many diseases. In this context, nanoprobes based on organic polymers have been used to simul-
taneously image and estimate local concentrations of O2 in vitro (175, 176). Moreover, polymer
matrices such as PEBBLE nanosensors have incorporated several fluorophores for imaging and
ratiometric determination of in vitro ion concentrations (177). Rare earth–doped NPs have been
used as in vitro and in vivo luminescent tags and temperature sensors (178, 179). Recently, SERS
nanotags were simultaneously employed to image and detect cancer biomarkers in vivo (94).

Another alternative, similar to PEBBLE sensors, is the nanostructured production of polymer
microcapsules that simultaneously incorporate NPs and fluorophores that are sensitive to different
analytes (44, 180). In vitro experiments to estimate pH changes in cells have been performed, but
given the feasibility for multifunctionalization involving bar-coding, antibody functionalization,
and ratiometric measurements, many future applications involving simultaneous imaging and
sensing are likely (44, 174, 181).

6. OUTLOOK

This review describes many strategies for multiplexed sensing and multimodal imaging involving
multifunctional nano- and microparticles. Although interesting examples have been published,
most of these techniques have not yet been used for detection with real samples, such as blood
serum, or for in vivo imaging. Some of these sensing techniques still lack reproducibility. With
regard to in vitro detection, DNA arrays, for example, have been successfully used for multiplexed
sensing of various analytes. However, the values obtained for the analyte concentrations are often
only informative and not quantitative. Antibody arrays are promising substitutes for DNA arrays
because they can detect, in the case of gene expression, proteins directly from protein–antigen
interactions, so quantification should be easier to perform. However, the use of antibodies for
analyte trapping or recognition poses certain problems. The epitope where antibody–antigen
binding takes part is only a small part of the analyte, and antibodies often aberrantly bind epitopes
of nontargeted analytes. Some of the examples discussed above regarding antibody arrays involve
several antibody–antigen binding events to reduce cross-reactivity. New amplification methods
are currently being developed to improve sensitivity by improving analyte–receptor interaction
specificity, as is the case in applications of orthogonal chemistries to diagnosis and imaging (107,
182). Particle stability (76) still poses a problem for in vivo applications such as particle-based
sensors and contrast agents for imaging. Circulation within the bloodstream and further uptake
in target tissues remain the most critical challenges for nanomedicine (183).
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52. Yáñez-Sedeño P, Pingarrón JM, Riu J, Rius FX. 2010. Electrochemical sensing based on carbon nan-
otubes. Trends Anal. Chem. 29:939–53

53. Luo X, Morrin A, Killard AJ, Smyth MR. 2006. Application of nanoparticles in electrochemical sensors
and biosensors. Electroanalysis 18:319–26

54. Xu J-J, Luo X-L, Du Y, Chen H-Y. 2004. Application of MnO2 nanoparticles as an eliminator of
ascorbate interference to amperometric glucose biosensors. Electrochem. Commun. 6:1169–73
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biofunctional magnetic nanoparticles for biotechnological applications. Nanoscale 2:1746–55
70. Alcantara D, Guo Y, Yuan H, Goergen CJ, Chen HH, et al. 2012. Fluorochrome-functionalized magnetic

nanoparticles for high-sensitivity monitoring of the polymerase chain reaction by magnetic resonance.
Angew. Chem. Int. Ed. 51:6904–7

71. Koh I, Josephson L. 2009. Magnetic nanoparticle sensors. Sensors 9:8130–45
72. Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, et al. 2011. Detection of breast cancer

cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res.
13:R108

73. Gaster RS, Xu L, Han S-J, Wilson RJ, Hall DA, et al. 2011. Quantification of protein interactions and
solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6:314–20

76 Carregal-Romero et al.



AC06CH03-Parak ARI 13 February 2013 20:38
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