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Chapter 1

Introduction

This thesis is concerned with the regularity of (semi-)linear second order parabolic stochastic
partial differential equations (SPDEs, for short) of Itô type on bounded Lipschitz domains. They
have the following form:

du =

( d∑
i,j=1

aijuxixj +
d∑
i=1

biuxi + cu+ f + L(u)

)
dt

+
∞∑
k=1

( d∑
i=1

σikuxi + µku+ gk + (Λ(u))k
)

dwkt on Ω× [0, T ]×O,

u = 0 on Ω× (0, T ]× ∂O,
u(0) = u0 on Ω×O.


(1.1)

Here, and in the rest of this thesis, O is a bounded Lipschitz domain in Rd (d ≥ 2) and T ∈ (0,∞)
denotes a finite time horizon. Moreover, (wkt )t∈[0,T ], k ∈ N, is a sequence of independent real
valued standard Brownian motions with respect to a normal filtration (Ft)t∈[0,T ] on a complete
probability space (Ω,F ,P) and du denotes Itô’s stochastic differential with respect to the time
t ∈ [0, T ]. The coefficients aij , bi, c, σik, and µk with i, j ∈ {1, . . . , d} and k ∈ N := {1, 2, . . .}, are
real valued functions on Ω× [0, T ]×O and fulfil certain conditions which will be specified later
on in Chapter 3, see Assumption 3.1. The non-linearities L and Λ are assumed to be Lipschitz
continuous in suitable spaces, see Chapter 5, in particular Assumption 5.9, for details. In this
thesis we take a functional analytic point of view, meaning that the solution u is not considered
as a real valued function depending on (ω, t, x) ∈ Ω× [0, T ]×O but as a function on Ω× [0, T ]
taking values in the space D′(O) of real valued distributions on O.

The most prominent equation of the type (1.1) is the stochastic heat equation with additive
or multiplicative noise. More general equations of the form (1.1) with finitely many (wkt )t∈[0,T ],
k ∈ {1, . . . , N}, appear in the context of non-linear filtering problems, see, e.g., [80, Section 8.1]
and [107]. Choosing infinitely many Brownian motions (wkt )t∈[0,T ], k ∈ N, allows us to consider
equations driven by space-time white noise, cf. [80, Section 8.3]. These equations are suggested,
for instance, as mathematical models for reaction diffusion systems corrupted by noise, see
[32, Section 0.7] and the references therein, in particular, [9]. In general, the question whether
a unique solution to Eq. (1.1) exits is well-studied. However, in the majority of cases, this
solution can not be specified. Thus, in order to make equations of the form (1.1) ready to use
as mathematical models in applications, the solution has to be constructively approximated.
Therefore, efficient numerical methods are needed. Usually, their performance depends on the
regularity or smoothness of the solutions to the considered SPDEs in specific scales of function
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spaces. As we will elaborate later on in detail, the scale

Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, α > 0, (∗)

of Besov spaces (p ≥ 2 being fixed) plays an outstanding role in this context. We refer to
Subsection 2.3.4 for the definition of Besov spaces.

In this thesis we analyse the regularity of SPDEs of the form (1.1) in the scale (∗). We will
be mainly concerned with the following two tasks:

(T1) Spatial regularity. We use the scale (∗) to measure the smoothness of the solution u
with respect to the space coordinates. That is, we ask for an α∗ > 0 as high as possible,
such that for all 0 < α < α∗ and 1/τ = α/d + 1/p, the solution u is contained in the
space of (equivalence classes of) p-integrable Bα

τ,τ (O)-valued stochastic processes.

(T2) Space time regularity. Under the assumption that the solution u is a Bα
τ,τ (O)-valued

stochastic process with α and τ as in (∗), we analyse the Hölder regularity of the paths
of this process.

Before we continue our exposition, we motivate our analysis by elaborating in detail the impor-
tance of the topics (T1) and (T2). In particular, we will emphasize their link with the convergence
analysis of certain numerical methods.

1.1 Motivation

Our motivation to study the regularity of SPDEs in the scale (∗) of Besov spaces is closely
related to the theme of adaptive numerical wavelet methods. Since this topic is not a common
prerequisite in the stochastic analysis community we give a rather detailed exposition aiming to
point out the significance of our results from the point of view of numerical analysis. However,
we will not be too rigorous in a formal sense, but rather try to emphasize some key principles
and basic results from the theory of numerical methods and non-linear approximation which
motivate our analysis. For an in-depth treatment of these topics we refer to the monograph [27]
on numerical wavelet methods and to the survey article [46] on non-linear approximation theory,
see also [37].

Usually, the term wavelet is used for the elements of a specific kind of basis for the space
L2(O) of quadratically Lebesgue-integrable functions on a domain O ⊆ Rd, which allows the
decomposition of functions into components corresponding to different scales of resolution [33].
Such a basis is typically constructed by means of a multiresolution analysis (MRA, for short),
i.e., a sequence (Sj)j≥j0 of closed linear subspaces of L2(O) with

Sj ⊂ Sj+1 for all j ≥ j0, and

( ⋃
j≥j0

Sj

)‖·‖L2(O)

= L2(O).

The latter means that the union of all Sj , j ≥ j0, is dense in L2(O). The MRA is designed in such
a way that for each j ≥ j0, the space Sj is spanned by a Riesz basis {φλ : λ ∈ ∆j} of so-called
scaling functions. Furthermore, the complement of Sj in Sj+1 is spanned by another Riesz basis
{ψλ : λ ∈ ∇j} of so-called wavelets. Following the notation from [27] we write ∇j0−1 := ∆j0 and
denote the scaling functions spanning Sj0 also by ψλ, λ ∈ ∇j0−1. Then, setting ∇ := ∪j≥j0−1∇j ,
we call

{ψλ : λ ∈ ∇} :=
⋃

j≥j0−1

{ψλ : λ ∈ ∇j}
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a wavelet Riesz basis of L2(O). The index λ ∈ ∇ typically encodes several types of information,
namely the scale level j + 1 ≥ j0, if λ ∈ ∇j , the spatial location, and also the type of the
wavelet. For constructions of wavelet bases for diverse shapes of bounded domains including
polygonal and polyhedral domains we refer to [42–44] or [19, 20], see also [27, Section 1.2] for a
detailed discussion. Typically, the elements of a wavelet basis are local in the sense that they have
compact supports and the size of the supports decays exponentially with the scale. Furthermore,
they fulfil appropriate smoothness assumptions and have vanishing moments up to a prescribed
order. These properties yield the following facts [33]:

� Weighted sequence norms of wavelet coefficients are equivalent to Lebesgue, Sobolev and
Besov norms (for a certain range of regularity and integrability parameters, depending in
particular on the smoothness of the wavelets).

� The representation of a wide class of operators in the wavelet basis is nearly diagonal.

� The vanishing moments of wavelets remove the smooth part of a function.

Due to these features, wavelets become a powerful tool for solving operator equations. Let us
discuss this topic with the help of a classical example. We write W̊ 1

2 (O) for the closure of the space
C∞0 (O) of infinitely differentiable functions with compact support on O in the L2(O)-Sobolev
space of order one, which we denote by W 1

2 (O); see Subsection 2.3.1 for a precise definition of
Sobolev spaces. Let a : W̊ 1

2 (O) × W̊ 1
2 (O) → R be a continuous, symmetric and elliptic bilinear

form, so that, in particular, there exists a finite constant C > 0, such that

1

C
‖u‖2

W̊ 1
2 (O)

≤ a(u, u) ≤ C ‖u‖2
W̊ 1

2 (O)
, u ∈ W̊ 1

2 (O). (1.2)

It defines an isomorphism

A : W̊ 1
2 (O)→W−1

2 (O)

u 7→ a(u, ·),

where W−1
2 (O) denotes the dual of W̊ 1

2 (O). Thus, for f ∈W−1
2 (O), the equation

Au = f, (1.3)

has a unique solution u ∈ W̊ 1
2 (O), which is simultaneously the unique solution of the variational

problem

a(u, v) = f(v), v ∈ W̊ 1
2 (O). (1.4)

However, in general this solution is not known explicitly. Therefore, in order to use (1.3) as a
mathematical model in real-life applications, the solution has to be constructively approximated.
To this end, Eq. (1.4) is discretized. One classical way to discretize this equation is to employ a
Galerkin method. That is, we choose an increasing sequence (Vm)m∈J with J ⊆ N0 of subspaces
of W̊ 1

2 (O) and determine the solutions um ∈ Vm to the variational problems

a(um, vm) = f(vm), vm ∈ Vm, (1.5)

successively for m ∈ J . The index m denotes the number of degrees of freedom (here: scaling
functions and wavelets) spanning the subspace Vm. We distinguish two kinds of numerical meth-
ods, depending on the way the refinement from a space Vm to its successor Vm′ , m,m

′ ∈ J ,
is performed. In our context ‘refinement’ means to add wavelets to the basis functions used to
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approximate the current approximative solution um. On the one hand, we can develop a uniform
method which is based on the underlying MRA and set

Vm(j) := Sj , j ≥ j0,

where m(j) =
∣∣ ∪ji≥j0−1 ∇i

∣∣ ∈ N for j ≥ j0 (usually, on bounded domains the cardinality of ∇j
behaves like 2jd). This method is called ‘uniform’, since when passing from Vm(j) to Vm(j+1) we
add all the wavelets at the scale level j+1, i.e., we choose a finer resolution uniformly on the entire
domain. On the other hand, since the approximation um might be already sufficiently accurate
in some regions of the domain, it is reasonable to look for a self-regulating updating strategy
and try to refine the resolution only at that parts where the accuracy is not yet satisfactory.
Such an adaptive method , executes the following steps successively for m ∈ J :

1. Solve Eq. (1.5) in Vm.

2. Estimate the local error of u− um in a suitable norm ‖·‖E .

3. Refine where it is necessary.

Of course, for the second step one needs a posteriori error estimators, since the solution u is
not known exactly. These estimators should rely on local error indicators, so that they provide
information about the way the space Vm has to be refined in the subsequent step.

However, one is faced with at least three major difficulties on the way to a fully-fledged
adaptive method. Firstly, the design of local error estimators as they are needed for adaptive
strategies is not a trivial task. A second difficulty is the convergence proof for adaptive strategies
and the estimation of their convergence rates. Thirdly, their implementation turns out to be
much more difficult than the implementation of uniform counterparts. Thus, before we decide
to work on the development of an adaptive method, we need to check whether adaptivity really
pays, in the sense that there is any chance to obtain a higher convergence rate than by uniform
alternatives. A numerical method is said to have convergence rate s > 0 in the Banach space
(E, ‖·‖E), if there exists a constant C ∈ (0,∞), which does not depend on the number of degrees
of freedom m ∈ J needed to describe the approximative solution um ∈ Vm, such that

‖u− um‖E ≤ Cm−s, m ∈ J ,

where u ∈ E denotes the exact solution of the given problem. The benchmark for any numer-
ical approximation method based on {ψλ : λ ∈ ∇} is the rate of the best m-term (wavelet)
approximation error

σm,E(u) := inf
um∈Σ̃m

‖u− um‖E ,

where

Σ̃m :=

{∑
λ∈Λ

cλψλ : Λ ⊂ ∇,
∣∣Λ∣∣ = m, cλ ∈ R, λ ∈ Λ

}
is the space of m-term approximations from {ψλ : λ ∈ ∇}, m ∈ N. As it is easy to see, Σ̃m is not
a linear space: The sum of two functions, each of which uses m basis elements, might make use
of up to 2m basis elements and is therefore usually not contained in Σ̃m. This is why m-term
approximation is referred to as a non-linear approximation method . Obviously, the convergence
rate of any numerical method based on {ψλ : λ ∈ ∇} is dominated by the decay rate of the best
m-term approximation error σm,E(u), m ∈ N. Since, in general, the solution u is not known,
we will not be able to find approximations um, m ∈ N, reproducing the errors σm,E(u), m ∈ N.
However, what we can aim for is to develop a numerical method which has the same convergence
rate as the best m-term approximation error.
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If the convergence rate of a uniform method meets the benchmark, then working on the
development of adaptive algorithms is superfluously. However, if the converse is true, i.e., if
the rate of best m-term approximation is strictly higher than the convergence rate of uniform
methods, the development of adaptive methods is completely justified. Since the error of uniform
numerical methods based on Vm(j) = Sj , with m(j) =

∣∣∪ji≥j0−1∇i
∣∣ ∈ N, j ≥ j0, is dominated by

em,E(u) := inf
um∈Vm

‖u− um‖E , m = m(j), j ≥ j0,

this means: Adaptivity pays, only if there exists an α > 0 and a corresponding constant C,
which does not depend on m ∈ N, such that1

σm,E(u) ≤ Cm−α/d, m ∈ N, (1.6)

holds for the solution u ∈ E, and, simultaneously,

α > smax(u) := sup
{
s ≥ 0 : ∀j ∈ N : em(j),E(u) ≤ Cm(j)−s/d, C independent of j

}
. (1.7)

The question whether (1.6) and (1.7) with E = Lp(O) are simultaneously fulfilled, where
p ∈ (1,∞), can be decided after a rigorous regularity analysis of the target function u. On the
one hand, it is well-known that—under certain technical assumptions on the wavelet basis, which
can be found, e.g., in [27, Chapter 3 and 4]—the decay rate of em(u) := em,Lp(O)(u) is linked
with the Lp(O)-Sobolev regularity of the target function. That is, there exists an upper bound
s̃ ∈ N, depending on the smoothness and polynomial exactness of the wavelet basis, such that,
for all s ∈ (0, s̃),

u ∈W s
p (O) implies em(u) ≤ Cm−s/d, m = m(j), j ≥ j0, (1.8)

with a constant C ∈ (0,∞) which does not depend on m. As mentioned in the introduction
of [27, Chapter 3], statements similar to (1.8) also hold for approximation methods based on
finite elements instead of wavelets—of course, with adjusted spaces Vm, m ∈ J (see also the
standard literature on finite elements like [21] or [100]). One can also show the following converse
of (1.8): The existence of a constant C ∈ (0,∞) such that

em(u) ≤ Cm−s/d, m = m(j), for all j ≥ j0, implies u ∈W s′
p (O), s′ < s.

In particular, if u /∈ W s
p (O) for some s ∈ (0,∞), then smax(u) ≤ s with smax(u) as defined in

(1.7). This yields
smax(u) = sSob

max(u) := sup
{
s ≥ 0 : u ∈W s

p (O)
}
. (1.9)

On the other hand, the convergence rate of the bestm-term wavelet approximation error σm(u) =
σm,Lp(O)(u), m ∈ N, is governed by the smoothness of u in the so-called (Lp(O)-)non-linear
approximation scale

Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, α > 0, (∗)

of Besov spaces. That is, for all α ∈ (0, s̃),

u ∈ Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
implies σm(u) ≤ Cm−α/d, m ∈ N.

Therefore, if

u ∈ Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
with α > sSob

max(u), (1.10)

1The factor 1/d in the exponent is just a useful convention in order to match with the results presented below.
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then (1.6) and (1.7) are simultaneously satisfied with smax(u) = sSob
max(u). In this case, the decay

rate of the best m-term wavelet approximation error is higher than the convergence rate of the
uniform wavelet method presented above. Thus, by our expositions above, if (1.10) is fulfilled,
working on the development of adaptive wavelet methods is completely justified.

For deterministic elliptic equations it could be already shown that, indeed, adaptivity pays:
The results from [34–36,38,40] together with [57,58] show that solutions of elliptic equations on
non-smooth domains generically behave like described by (1.10). Simultaneously, for this class
of equations, there exist adaptive wavelet methods which realise the convergence rate of the
best m-term approximation error in a Hilbert space setting (p = 2), see, e.g., [28,39]. The error
is measured in the energy norm induced by the equation, which is, in general, equivalent to a
suitable Sobolev norm. In our example from above, the energy norm is given by ‖·‖a :=

√
a(·, ·)

and it is equivalent to the L2(O)-Sobolev norm of order one in W̊ 1
2 (O) by (1.2). There also exist

optimal adaptive wavelet algorithms for more general deterministic equations, see, e.g., [29,112],
this list being by no means complete.

Our analysis is motivated by the question whether these results can be extended to solutions
of SPDEs of the form (1.1). We tackle and solve the tasks (T1) and (T2) with the following
scopes:

ad (T1). Spatial regularity. By analysing the spatial regularity of the solution process u in
the scale (∗) of Besov spaces we aim to clarify whether u = u(ω, t, ·) fulfils

u ∈ Lp(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, with α > s̃Sob

max(u), (1.11)

where
s̃Sob

max(u) := sup
{
s ≥ 0 : u ∈ Lp(Ω× [0, T ];W s

p (O))
}
. (1.12)

If so, the decay rate of the best m-term wavelet approximation error for the solu-
tion to the considered SPDE with respect to the space variables is higher than the
convergence rates of uniform wavelet based alternatives. In this case, the attempt to
develop numerical wavelet methods for SPDEs working adaptively in space direction
is completely justified.

ad (T2). Space time regularity. If our analysis of the spatial regularity shows that, indeed,
adaptivity with respect to the space coordinates pays, the next reasonable step is to
develop a space time scheme for the pathwise approximation of the solutions to SPDEs
of the type (1.1), which works adaptively in space direction. To this end, variants of
Rothe’s method suggest themselves. That is, the equations is first dicretized in time.
Then, since for stability reasons one has to take an implicit scheme, in each time step
an elliptic subproblem has to be solved. To this end, optimal adaptive solvers of the
type mentioned above have to be employed. At the end, we need to estimate the overall
error of such a scheme. We conjecture that our analysis of the Hölder regularity of the
paths of the solution, considered as a stochastic process taking values in the Besov
spaces from the non-linear approximation scale (∗), can be used for estimating the
overall error of spatially adaptive variants of Rothe’s method. Such an analysis has
been started in [23], see also [77], but is still in its infancy.

1.2 Overview of the relevant regularity theory

In order to relate our results to the current state of research, we give a brief overview of the
regularity theory which is relevant for our analysis. We begin with the significant achievements
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obtained from the analytic and from the semigroup approach to SPDEs. Then we discuss what
is known about the regularity of (deterministic and stochastic) equations in the non-linear ap-
proximation scale (∗). In contrast to the rest of this thesis, in this section, we do not assume
that O ⊂ Rd is bounded or Lipschitz.

The analytic approach of N.V. Krylov provides a quite complete and satisfactory Lp-theory
(p ≥ 2) for (semi-linear) parabolic SPDEs of second order on the whole space Rd, see in particular
[79,80]. Roughly speaking, the main results concerning the spatial regularity are of the form: If
the free term f in Eq. (1.1)—with O = Rd and without the boundary condition—takes values
in the space Hγ

p (Rd) of Bessel potentials, and the g = (gk)k∈N take values in the corresponding
space Hγ+1

p (Rd; `2), then there exists a unique solution of this equation with values in Hγ+2
p (Rd).

Thus, the spaces of Bessel potentials are suitable for the regularity analysis of SPDEs on the
whole space Rd. Recall that, for γ ∈ N, Hγ

p (Rd) coincides with W γ
p (Rd), the Lp-Sobolev space of

order γ, see, e.g., [84, Theorem 13.3.12]. A precise definition of the spaces of Bessel potentials
and their counterparts Hγ

p (Rd; `2) for `2-valued functions can be found in Subsection 2.3.2.

On domains O ⊂ Rd with non-empty boundary ∂O one is faced with (at least) two additional
difficulties in order to obtain a similar theory. On the one hand, because of the behaviour of the
infinitesimal differences of the driving noise, the second derivatives of the solution to Eq. (1.1)
may blow up near the boundary. Then, the solution process fails to take values in W 2

2 (O). This
may happen, even if the domain and the data of the equation are smooth, see, e.g., [78]. On the
other hand, if the boundary of the domain is not very smooth, the singularities may become
even worse caused by the influence of the shape of the boundary, see [91]. A natural way to
deal with these difficulties is to consider the solution (u(t))t∈[0,T ] as a stochastic process taking
values in suitable weighted Sobolev spaces. These spaces allow to include solutions for which the
higher-order derivatives might explode near the boundary, since this behaviour is compensated
by the weight. This approach has been initiated and developed by Krylov and collaborators:
first as an L2-theory for general smooth domains [78], then as an Lp-theory (p ≥ 2) for the half
space [85,86] and subsequently also for general smooth domains [72,76]. Recently, an Lp-theory
(p ≥ 2) for SPDEs on more general bounded domains admitting Hardy’s inequality, such as
bounded Lipschitz domains, has been established by K.-H. Kim in [75]. The results in those
publications are proven for linear equations of the form (1.1) with L = Λ = 0.

The weighted Sobolev spaces Hγ
p,θ(O) ⊂ D′(O) used in the theory described above are of the

following form: For integer γ ∈ N and θ ∈ R, they consist of all measurable functions having
finite norm

u 7→

( ∑
|α|≤γ

∫
O

∣∣ρO(x)|α|Dαu(x)
∣∣pρO(x)θ−d dx

)1/p

,

where ρO(x) denotes the distance of a point x ∈ O to the boundary ∂O of the domain. For non-
integer γ > 0 they can be characterized as complex interpolation spaces and for γ < 0 the usual
duality relation holds. A precise definition can be found in Subsection 2.3.3. It turns out that
this is a suitable scale to study the regularity of second-order (semi-)linear parabolic SPDEs on
domains in the following sense: If the free terms f and g = (gk)k∈N in the equation have spatial
weighted Sobolev regularity γ and γ + 1, respectively, and the initial condition u0 is smooth
enough, then the solution has spatial weighted Sobolev regularity γ + 2 (with properly chosen
weight parameters θ ∈ R on the different parts of the equation). Hence, the spatial regularity
of the solution in the scale Hγ

p,θ(O), γ > 0, increases with the weighted Sobolev regularity of
the free terms f and g of the equation. Furthermore, the weighted Sobolev norm of the solution
process can be estimated from above by the corresponding weighted Sobolev norms of f , g and
u0.
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Another way to analyse the regularity of solutions of Eq. (1.1) is the semigroup approach.
Developed mainly by G. Da Prato and J. Zabczyk in a Hilbert space framework [32], it has been
generalized by Brzeźniak to M -type 2 Banach spaces [15, 16] and by J.M.A.M. van Neerven,
M.C. Veraar and L. Weis to umd Banach spaces [121, 122]—‘umd’ stands for ‘unconditional
martingale differences’. In this approach, infinite dimensional ordinary stochastic differential
equations (SDEs, for short) of the form

dU(t) +AU(t) dt = F (t, U(t)) dt+ Σ(t, U(t)) dWH(t), t ∈ [0, T ],

U(0) = u0,

}
(1.13)

are considered. The operator A is the infinitesimal generator of a strongly continuous analytic
semigroup on a suitable Banach space E (usually Lp(O) with p ≥ 2), and Eq. (1.13) is interpreted
as an abstract Cauchy problem. Roughly speaking, typical results are of the following form:
If (−A) has a ‘good’ H∞-functional calculus (in the sense of McIntosh, see Section 2.4 for
details) and the coefficients and non-linearities of the equations are smooth enough (where the
smoothness is measured in domains of fractional powers of the leading operator), then there
exists a unique strong solution in the space

Lq(Ω× (0, T );D(A)) ∩ Lq(Ω;C([0, T ]; (E,D(A))1− 1
q
,q)).

Here,D(A) denotes the domain of the operator A in the Banach space E, whereas (E,D(A))1− 1
q
,q

is a real interpolation space.
For many prominent examples the domain of the leading operator A can be characterized

in terms of well-studied function spaces, so that the abstract results of [121, 122] pave the
way to a powerful regularity theory for SPDEs. In contrast to the theory of Krylov and col-
laborators, which relies mainly on hard PDE techniques, in this approach (almost) everything
stands and falls with the ‘good’ H∞-functional calculus of (−A). To mention an example, the
Dirichlet-Laplacian ∆D

p,w on Lp(O) (p ≥ 2) has an H∞-calculus which is good enough, provided
the boundary ∂O of the domain is sufficiently regular—in general, C2 is assumed. In this case,
D(∆D

p,w) = W 2
p (O)∩W̊ 1

p (O), where W̊ 1
p (O) denotes the closure of C∞0 (O) in W 1

p (O). Using these
facts and the abstract theory from [121], one obtains an Lq(Lp)-theory for the heat equation on
bounded smooth domains. It is worth noting that similar results hold also for more general sec-
ond order elliptic operators, if the boundary of the domain O is smooth enough. Hence, equations
of the form (1.1), which are analysed in the analytic approach, also fit into this framework. How-
ever, we would like to mention that in the semigroup approach certain compatibility conditions
between the noise term and the leading operator A have to be fulfilled. This makes the admis-
sible class of noises smaller compared to those that can be treated with the analytic approach,
see, e.g., the discussion in [121, Section 7.4]. On the plus side, one obtains Lq(Lp)-regularity
results with different integrability parameters q and p in time and space—even the case q < p
is possible. With the techniques used by Krylov and collaborators, such results could not yet
been proven. Also, in the semigroup framework one can treat more general second (2m-th) order
parabolic equations with Dirichlet and Neumann boundary conditions, stochastic Navier-Stokes
equations and other important classes of equations (see, e.g., the examples presented in [121]).

In this thesis, we are explicitly interested in domains with non-smooth boundary, in partic-
ular, we focus on general bounded Lipschitz domains O ⊂ Rd. This covers nearly all domains
of practical interest. However, the characterization of the domain of the Dirichlet-Laplacian in
terms of Sobolev spaces presented above, fails to be true if the boundary of the domain O is
assumed to be only Lipschitz. Indeed, it has been proven in [57,58] for polygonal and polyhedral
domains, and in [67] for general bounded Lipschitz domains, that W 2

2 (O) ∩ W̊ 1
2 (O) ( D(∆D

p,w).
Moreover, to the best of our knowledge, in the case of general bounded Lipschitz domains,
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a characterization of D(∆D
p,w) in terms of function spaces is not yet available. Thus, a direct

application of the results from [121] does not lead to optimal regularity results.

To the best of our knowledge, so far there does not exist any analysis of the regularity of
SPDEs in the non-linear approximation scale (∗) of Besov spaces—except the recent results
in [22,25,26] by the author and collaborators, which are essential parts of this thesis.

It is worth noting that a direct application of the semigroup approach does not immediately
lead to regularity results in the scale (∗). As already mentioned above, the semigroup framework
has been used in [121] to derive regularity results in Lp-Sobolev and Lp-Besov spaces (p ≥ 2) on
sufficiently smooth domains O ⊆ Rd. The cornerstone for this theory is a generalization of Itô’s
stochastic integration theory to umd Banach spaces, see Section 2.2 for details. However, for
α > d(p−1)/p, the scale (∗) does not consist of Banach spaces, but of quasi-Banach spaces. Thus,
a direct application of the semigroup approach in order to obtain (sufficiently high) regularity in
the scale (∗) requires (at least!) a fully-fledged theory of stochastic integration in proper classes
of quasi-Banach spaces which is not yet available.

We also want to mention that by the same reason, we can not expect direct results from
the so called variational approach for SPDEs initiated by E. Pradoux in [101]; we also refer
to [104, Chapter 4] and the literature therein for more details. This approach has been designed
particularly for the treatment of non-linear SPDEs and uses a Gelfand triple setting. In par-
ticular, the state space of the solution process needs to be a reflexive Banach space V which
is continuously embedded into a Hilbert space E. It is known that any Besov space Bα

τ,τ (O)
from the scale (∗) with p = 2 is continuously embedded in the Hilbert space L2(O). However,
as already mentioned, for α > d/2, Bα

τ,τ (O) is just a quasi-Banach space which is not reflexive.
Since the reflexivity and the Banach space property are essential in this framework, we can not
obtain regularity results in the non-linear approximation scale (∗) by a direct application of the
abstract results within this approach.

However, as already mentioned in Section 1.1, the non-linear approximation scale (∗) has
been already used for analysing the regularity of solutions to deterministic partial differential
equations. First results on the regularity of the Dirichlet problem for harmonic functions and of
the Poisson equation on general bounded Lipschitz domains in the Besov spaces from (∗) have
been obtained by S. Dahlke and R.A. DeVore in [38]. Several extensions followed: In [34] elliptic
boundary value problems with variable coefficients are analysed. The special cases of polygonal
and polyhedral domains have been considered in [35] and in [36], respectively. Also, equations
on smooth and polyhedral cones have been considered, see [40]. Extensions to deterministic
parabolic equations have been studied in [3–5]. Simultaneously, P. Grisvard shows in [57, 58]
that the Sobolev regularity of solutions to elliptic and parabolic equations on non-smooth and
non-convex domains is generically limited from above. Bringing those results together shows
that, in general, solutions to deterministic partial differential equations on non-smooth and non-
convex domains have the behaviour described by (1.10). Thus, in this case, the decay rate of the
best m-term wavelet approximation error is higher than the convergence rate of wavelet based
uniform approximation methods (see Section 1.1 for details).

1.3 The thesis in a nutshell

Framework: the Lp-theory from the analytic approach

In the previous section, we explained that the abstract results from the semigroup approach and
from the variational approach can not be used directly to obtain regularity results for SPDEs in
the non-linear approximation scale (∗). Therefore, we take an indirect way to prove regularity
in (∗) of the solutions to SPDEs of the form (1.1). Our analysis takes place in the framework
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of the analytic approach. We borrow (and expand) the Lp-theory for linear SPDEs from [75],
which gives us the existence and uniqueness of a solution to Eq. (1.1) on general bounded
Lipschitz domains O ⊂ Rd. Then, we analyse the spatial Besov regularity, that is topic (T1),
and the Hölder regularity of the paths, that is topic (T2), of this solution. We start by proving
a fundamental embedding of weighted Sobolev spaces into Besov spaces from the non-linear
approximation scale (∗).

Embeddings of weighted Sobolev spaces into Besov spaces

The solutions to the linear SPDEs considered in [75] are elements of special classes Hγp,θ(O, T ),

consisting of certain predictable p-Bochner integrable Hγ
p,θ−p(O)-valued stochastic processes. In

particular,

Hγp,θ(O, T ) ↪→ Lp(Ω× [0, T ];Hγ
p,θ−p(O)). (1.14)

(‘↪→’ means ‘continuously linearly embedded’.) Hence, one way to extract regularity results in the
non-linear approximation scale from this theory, is to prove an embedding of weighted Sobolev
spaces into Besov spaces from (∗). This idea is underpinned by the fact that, in the deterministic
setting, weighted Sobolev estimates have been used to establish Besov regularity in the scale (∗)
for the solutions of elliptic boundary value problems, such as the Dirichlet problem for harmonic
functions and the Poisson equation, see, e.g., [38]. This has been performed by estimating the
wavelet coefficients of the unknown solution by means of weighted Sobolev (semi-)norms. Then,
by using the equivalences of Besov norms and weighted sequence norms of wavelet coefficients,
the desired Besov estimates were established.

Using similar techniques, we can prove that for arbitrary bounded Lipschitz domains O ⊂ Rd
and parameters p ∈ [2,∞) and γ, ν ∈ (0,∞),

Hγ
p,d−νp(O) ↪→ Bα

τ,τ (O),
1

τ
=
α

d
+

1

p
, for all 0 < α < min

{
γ, ν

d

d− 1

}
, (1.15)

see Theorem 4.7. Our proof for integer γ ∈ N follows the line of the proof of [38, Theorem 3.2].
Additionally we use and prove the following embedding of weighted Sobolev spaces into Sobolev
spaces without weights:

Hγ
p,d−νp(O) ↪→ W̊ γ∧ν

p (O), (1.16)

which holds under the same requirements on the parameters and the shape of the domain
(Proposition 4.1). By using complex interpolation we are able to prove Embedding (1.15) for
arbitrary γ > 0 (Theorem 4.7). It is worth noting that this generalization has been proven
in [26, Theorem 6.9] by the author and collaborators in a different more direct way without
using interpolation methods.

The impact of (1.15) is obvious: Up to a certain amount, the analysis of the spatial regularity
of SPDEs in the scale (∗) can be traced back to the analysis of the weighted Sobolev regularity
of the solutions. In other words, every result on the weighted Sobolev regularity of SPDEs
automatically encodes a statement about the Besov regularity in the scale (∗).

(T1) Spatial regularity in the non-linear approximation scale

As mentioned above, in this thesis, the solutions to SPDEs of the form (1.1) are elements of the
classes Hγp,θ(O, T ) with p ∈ [2,∞), γ, θ ∈ R. Since

θ − p = d−
(

1 +
d− θ
p

)
p,
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combining the embeddings (1.14) and (1.15) shows that

Hγp,θ(O, T ) ↪→ Lp(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, for all 0 < α < γ∧

(
1+

d− θ
p

)
d

d− 1
. (1.17)

In Chapter 5 we use this embedding to prove spatial Besov regularity in the scale (∗) for linear
and semi-linear SPDEs on general bounded Lipschitz domains O ⊂ Rd.

Linear equations

The Lp-theory developed in [75] provides existence and uniqueness of solutions u ∈ Hγp,θ(O, T ),
p ∈ [2,∞), γ, θ ∈ R, for a wide class of linear second order stochastic parabolic differential
equations of the form (1.1) with vanishing L and Λ. Applying Embedding (1.17) proves that

u ∈ Lp(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, for all 0 < α < γ ∧

(
1 +

d− θ
p

)
d

d− 1
, (1.18)

see Theorem 5.2. Hence, we have found an

α∗ := min

{
γ,

(
1 +

d− θ
p

)
d

d− 1

}
> 0,

such that for all 0 < α < α∗ and 1/τ = α/d+1/p, the solution u to the linear SPDEs as discussed
in [75] is contained in the space of (equivalence classes of) p-integrable Bα

τ,τ (O)-valued stochastic
processes. The precise conditions on the weight parameter θ ∈ R, for which (1.18) holds, can be
found in the statement of our main result, Theorem 5.2. For example, in the two-dimensional
case, we can choose p = 2, γ = 2 and θ = d = 2, which yields

u ∈ L2(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

2
+

1

2
, for all 0 < α < 2.

Our result together with the analysis of the maximal Sobolev regularity of SPDEs in [92] shows
that, in general, on bounded Lipschitz domains O ⊂ Rd which are non-convex at the singularities
of ∂O, the solutions to the linear SPDEs considered in [75] behave as described in (1.11). By
our exposition in Section 1.1, this is a clear theoretical justification for the design of spatially
adaptive wavelet schemes for linear SPDEs. For the detailed analysis and several examples we
refer to Section 5.1.

Semi-linear equations

Many physical or chemical systems are described by equations, which are rather non-linear.
Thus, it is an immediate question whether the results presented above can be extended to non-
linear SPDEs. As a first step in this direction we consider semi-linear equations. That is, we
consider equations of the type (1.1) with Lipschitz continuous non-linearities L and Λ.

As before, we use Embedding (1.17) to prove spatial Besov regularity in the scale (∗). Since
there is no Lp-theory for semi-linear SPDEs on bounded Lipschitz domains, we first prove
existence and uniqueness of solutions in the classes Hγp,θ(O, T ), see Theorem 5.13. We assume that
the non-linearities L and Λ in Eq. (1.1) fulfil suitable Lipschitz conditions (Assumption 5.9), such
that our equation can be interpreted as a disturbed linear equation. Then, by using fixed point
arguments, see Lemma 5.16, we obtain existence and uniqueness of a solution u ∈ Hγp,θ(O, T )
to Eq. (1.1), which by (1.17) automatically fulfils (1.18). In this way, spatial regularity in the
non-linear approximation scale (∗) can be established also for semi-linear SPDEs, see our main
result in Theorem 5.15.
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(T2) Space time regularity

After we have proven that the solutions u ∈ Hγp,θ(O, T ) to linear and semi-linear SPDEs of the
form (1.1) can be considered as a Bα

τ,τ (O)-valued stochastic processes for 0 < α < α∗, where
1/τ = α/d + 1/p, we can move on to the second main topic in this thesis: The analysis of the
Hölder regularity of the paths of this process, which will be presented in Chapter 6.

The Lp-theory developed in [75] already provides Hölder estimates for elements of the classes
Hγp,θ(O, T ), considered as stochastic processes with values in weighted Sobolev spaces. In partic-

ular, it has been shown therein that for u ∈ Hγp,θ(O, T ) and 2/p < β̃ < β ≤ 1,

‖u‖Cβ̃/2−1/p([0,T ];Hγ−β
p,θ−(1−β)p

(O))
<∞ P-a.s., (1.19)

where for any quasi-Banach space (E, ‖·‖E), (Cκ([0, T ];E), ‖·‖Cκ([0,T ];E)) denotes the space of
κ-Hölder continuous E-valued functions on [0, T ], see Subsection 2.1.4 for a precise definition.
An immediate idea is to use the embedding (1.15) and obtain Hölder regularity for the paths of
the solutions u ∈ Hγp,θ(O, T ) considered as stochastic processes taking values in the Besov spaces
from the scale (∗). However, since the Hölder regularity in (1.19) depends on the summability
parameter p used to measure the regularity with respect to the space variables and because of
the restrictions on the weight parameters θ ∈ R needed in [75] to establish existence of solutions
in the classes Hγp,θ(O, T ), this does not yield satisfactory results—we refer to the introduction of
Chapter 6 for more details.

We overcome these difficulties by using the following strategy. Instead of Hγp,θ(O, T ), we

consider their counterparts Hγ,qp,θ(O, T ), which consist of certain q-integrable Hγ
p,θ−p(O)-valued

stochastic processes, where the integrability parameter q in time direction (and with respect to
ω ∈ Ω) is explicitly allowed to be greater than the summability parameter p used to measure
the smoothness with respect to the space variables. We first prove that for u ∈ Hγ,qp,θ(O, T ) with

2 ≤ p ≤ q <∞, γ ∈ N and 2/q < β̃ < β ≤ 1,

‖u‖Cβ̃/2−1/q([0,T ];Hγ−β
p,θ−(1−β)p

(O))
<∞ P-a.s.,

see Theorem 6.1. In particular, the Hölder regularity of the paths does not depend on the
summability parameter p with respect to the space variables. Therefore, even if the restrictions
from [75] on the weight parameter θ have to be imposed, satisfactory Hölder estimates for the
paths of elements u ∈ Hγ,qp,θ(O, T ), considered as stochastic processes with state spaces from the
scale (∗), are possible (Theorem 6.2).

However, if we want to apply these results in order to obtain improved space time regularity
of the solutions to SPDEs, we have to prove that—under suitable assumptions on the data of
the considered equation—the solution lies in Hγ,qp,θ(O, T ) where q and p are explicitly allowed to
differ. In other words, we need to extend the Lp-theory from [75] to an Lq(Lp)-theory for SPDEs
with q 6= p. In this thesis we prove a first Lq(Lp)-thoery result for the stochastic heat equation
on general bounded Lipschitz domains (Theorem 6.11). Our proofs rely on a combination of the
semigroup approach and the analytic approach. From the semigroup approach, we obtain the
existence of a solution with low weighted Sobolev regularity (Proposition 6.12). Using techniques
from the analytic approach we can lift this regularity, if we can increase the regularity of the
free terms (Theorem 6.7). At this point, when merging results from the two different different
approaches, we will need the isomorphy between the spaces Hγ

p,θ(O; `2), which are central within

the analytic approach, and the corresponding spaces Γ(`2, H
γ
p,θ(O)) of γ-radonifying operators

from `2 to Hγ
p,θ(O). This will be proven in Subsection 2.3.3, see Theorem 2.54.

Finally, we can bring those results together proving Hölder regularity of the paths of the
solution u ∈ Hγ,qp,θ(O, T ) to the stochastic heat equation, considered as a stochastic process
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with values in the Besov spaces from the scale (∗). In particular, we prove that, under suitable
assumptions on the data of the equation,

‖u‖Cβ̃/2−1/q([0,T ];Bατ,τ (O))
<∞ P-a.s.,

where
2

q
< β̃ < 1,

1

τ
=
α

d
+

1

p
, and 0 < α <

(
1− β̃

) d

d− 1
.

For the precise formulation of our main result on space time regularity, which includes also
estimates of the Hölder-Besov norm of the solution by the weighted Sobolev norms of the free
terms, we refer to Theorem 6.17.

1.4 Outline

This thesis starts with some preliminaries (Chapter 2). First we fix some notational and con-
ceptual conventions in Section 2.1. Then, in Section 2.2, we give a brief inside into the theory
of stochastic integration in umd Banach spaces as developed recently in [120]. In this context,
we also discuss some geometric properties of Banach spaces, like ‘type’ and ‘umd property’,
and the class of γ-radonifying operators. Afterwards, in Section 2.3, we introduce and discuss
some properties of relevant function spaces, pointing out several known relationships between
them. In particular, in Subsection 2.3.3, we focus on the weighted Sobolev spaces Hγ

p,θ(G) and

their counterparts Hγ
p,θ(G; `2) for `2-valued functions, which play an important role within the

analytic approach (G ⊂ Rd is an arbitrary domain with non-empty boundary). Section 2.4 deals
with semigroups of linear operators. We mainly focus on analytic semigroups and on the notion
of H∞-calculus, which is relevant within the semigroup approach for SPDEs. We also consider
the class of variational operators.

Chapter 3 is concerned with the Lp-theory for linear SPDEs in weighted Sobolev spaces,
recently developed in [75] within the analytic approach. The analysis therein takes place in the
stochastic parabolic weighted Sobolev spaces Hγp,θ(G,T ), p ∈ [2,∞), γ, θ ∈ R. In Section 3.1 we

introduce and discuss some properties of these spaces (and of their generalizations Hγ,qp,θ(G,T ),
q ∈ [2,∞)). We also fix some other notation, which is common within the analytic approach.
Afterwards, in Section 3.2, we present the main results from the aforementioned Lp-theory. We
restrict ourselves to the case of bounded Lipschitz domains. The solution concept borrowed
from [75] is introduced in Definition 3.10 and it is related to the concept of weak solutions, as
it is used within the semigroup approach, in Proposition 3.18.

In Chapter 4 we leave the SPDE framework for a moment and prove Embedding (1.15)
of weighted Sobolev spaces on bounded Lipschitz domains O ⊂ Rd into Besov spaces from
the non-linear approximation scale (∗), see Theorem 4.7. We also prove Embedding (1.16), see
Proposition 4.1. From the latter, we can conclude that the elements of weighted Sobolev spaces
are zero at the boundary in a well-defined sense, see Corollary 4.2 and Remark 4.3 for details.

Chapter 5 is devoted to the spatial regularity of SPDEs in the scale (∗) of Besov spaces,
i.e., topic (T1). In Section 5.1, we state and prove our main result concerning linear equations,
Theorem 5.2. We also present several examples and discuss the results from the point of view of
approximation theory and numerical analysis. In the subsequent Section 5.2 we consider semi-
linear equations. We first prove the existence of solutions in the classes Hγp,θ(O, T ), p ∈ [2,∞),
γ, θ ∈ R, under suitable assumptions on the non-linearities, see Theorem 5.13. Then, we prove
our main result concerning the spatial regularity of semi-linear SPDEs in the scale (∗), see
Theorem 5.15.

The final Chapter 6 is concerned with the space time regularity of the solution to the stochas-
tic heat equation on bounded Lipschitz domains, i.e., with topic (T2). In Section 6.1 we analyse
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the Hölder regularity of the paths of elements from Hγ,qp,θ(O, T ): first, considered as stochastic
processes taking values in weighted Sobolev spaces (Theorem 6.1), and, subsequently, considered
as stochastic processes with state spaces from the non-linear approximation scale (Theorem 6.2).
We are particularly interested in the case q 6= p. Afterwards, in Section 6.2 we show that the
spaces Hγ,qp,θ(O, T ) with q ≥ p ≥ 2 are suitable for the analysis of SPDEs in the following sense:

If we have a solution u ∈ Hγ,qp,θ(O, T ) with low regularity γ ≥ 0, but the free terms f and g have
high Lq(Lp)-regularity, then we can lift up the regularity of the solution (Theorem 6.7). Finally,
in Section 6.3 we prove the existence and uniqueness of a solution in the class Hγ,qp,θ(O, T ) to
the stochastic heat equation (Theorem 6.11). Combined with the results mentioned above, this
yields our main result on the space time regularity of the stochastic heat equation, Theorem 6.17.

A short German summary of this thesis starts on page 131. A list of notation can be found
starting on page 137 and an index begins on page 151.
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Chapter 2

Preliminaries

In this chapter we present definitions and results needed later on for our analysis. In the first
section we fix some conceptual and notational conventions from different mathematical areas.
Afterwards, we give a brief inside into the theory of stochastic integration in Banach spaces
developed mainly in [120] (Section 2.2). In this context we will also discuss some geometric
Banach space properties and the class of γ-radonifying operators. In Section 2.3 we will introduce
the function spaces appearing in this thesis and discuss and prove some of their properties which
are relevant for the subsequent analysis. Finally, Section 2.4 is devoted to analytic semigroups
and the concept of H∞-calculus, and to variational operators.

2.1 Some conventions

In order to guarantee conceptual clarity, in this section we summarize the conventions made in
this thesis. We give a fast overview of the notation and the basic concepts we will use later on.
We start with classes of bounded operators. Then, we consider domains in Rd and present the
definitions of different classes of domains. In particular, we substantiate the notion of a bounded
Lipschitz domain, which is central in this thesis. Afterwards, we recall the basics from (quasi-)
Banach space valued measure and integration theory. We continue with different aspects from
probability theory and the underlying probabilistic setting. Then, we strike the subject of real
and complex valued functions and distributions. At this point, we want to emphasize that in this
thesis, unless explicitly stated otherwise, functions and distributions are meant to be real-valued.
Finally, we present some miscellaneous notation. In the course of this thesis, the reader is invited
to use the list of notations on page 137 and the index on page 151 and come back to this section
whenever more conceptual clarity is needed.

2.1.1 Bounded operators

Let (E, ‖·‖E) and (F, ‖·‖F ) be two real normed spaces. We write L(E,F ) for the space of all
linear and bounded operators from E to F , endowed with the classical norm

‖R‖L(E,F ) := sup
x∈E,‖x‖E≤1

‖Rx‖F , R ∈ L(E,F ).

If F = E we use the common abbreviation L(E) := L(E,E). E∗ := L(E,R) denotes the dual
space of E. We will use the notation

〈x∗, x〉 := 〈x∗, x〉E∗×E := x∗(x), x∗ ∈ E∗, x ∈ E,
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for the dual pairing. The adjoint R∗ ∈ L(F ∗, E∗) of an operator R ∈ L(E,F ) is uniquely
determined by

〈R∗y∗, x〉E∗×E = 〈y∗, Rx〉F ∗×F , y∗ ∈ F ∗, x ∈ E.

If (H, 〈·, ·〉H) is a real Hilbert space, we usually identify H and H∗ via the Riesz isometric
isomorphism H 3 h 7→ 〈h, ·〉H ∈ H∗ with

〈h, ·〉H : H → R
g 7→ 〈h, g〉H .

If H is implicitly given by the context, we write 〈·, ·〉 := 〈·, ·〉H for short. Assume that (U, 〈·, ·〉U )
is a further real separable Hilbert space. Following [32] and [104] we write L1(H,U) for the
space of nuclear operators and L2(H,U) for the space of Hilbert-Schmidt operators from H to
U , see also (2.10). We will also use the common abbreviations L1(H) and L2(H), respectively,
if U = H.

Recall that a quasi-normed space (E, ‖·‖E) is a vector space E endowed with a map ‖·‖E :
E → [0,∞), which is positive definite and homogeneous (as a norm) but fails to fulfil the triangle
inequality. Instead, there exists a constant C, which is allowed to be greater than one, such that

‖x+ y‖E ≤ C
(
‖x‖E + ‖y‖E

)
, x, y ∈ E.

Such a map is called a quasi-norm. A quasi-Banach space is a quasi-normed space which is
complete with respect to the quasi-metric d(x, y) := ‖x − y‖E , x, y ∈ E. We will use the
notations from above also in the case of quasi-normed spaces, whenever it makes sense.

2.1.2 Domains in Rd

Throughout this thesis, G will denote an arbitrary domain in Rd, i.e., an open and connected
subset of the d-dimensional Euclidian space Rd (d ≥ 2). If G has a non-empty boundary, we
will denote it by ∂G. In this case, we will write ρ(x) := ρG(x) := dist(x, ∂G) for the distance
of a point x ∈ G to the boundary ∂G. Furthermore, in this thesis, O will always denote a
bounded Lipschitz domain in Rd. Let us be more precise.

Definition 2.1. We call a bounded domain O ⊂ Rd a Lipschitz domain if, and only if, for any
x0 = (x1

0, x
′
0) ∈ ∂O, there exists a Lipschitz continuous function µ0 : Rd−1 → R such that, upon

relabelling and reorienting the coordinate axes if necessary, we have

(i) O ∩Br0(x0) = {x = (x1, x′) ∈ Br0(x0) : x1 > µ0(x′)}, and

(ii) |µ0(x′)− µ0(y′)| ≤ K0|x′ − y′|, for any x′, y′ ∈ Rd−1,

where r0,K0 are independent of x0.

Some results will be also formulated for domains of the following class.

Definition 2.2. Let G be a domain in Rd with non-empty boundary ∂G. We say that G satisfies
the outer ball condition if for each x ∈ ∂G, there exists an r = r(x) > 0 and a point x1 = x1(x) ∈
Rd, such that

Br(x)(x1) ⊂ (Rd \G) and x ∈ ∂Br(x)(x1). (2.1)

G satisfies a uniform outer ball condition if there exists an R > 0, such that for all x ∈ ∂G,
r(x) = R can be chosen in (2.1).



2.1 Some conventions 17

We will sometimes compare our results for SPDEs on bounded Lipschitz domains with results
which can be proven for bounded domains of class C1

u. Equations on domains of this class have
been analysed by N.V. Krylov and collaborators, see, e.g., [72,76]. We recall the definition given
in [72, Assumption 2.1]. It is worth noting that the conditions imposed on the diffeomorphism
Ψ therein and its inverse Ψ−1 are not symmetric. We fix a function κ̃0 defined on [0,∞) such
that κ̃0(ε) ↓ 0 for ε ↓ 0. Furthermore, ∂

∂xj
Ψ(i) denotes the classical partial derivative of the i-th

coordinate of a function Ψ : G ⊆ Rd → Rd with respect to the j-th variable xj , i, j ∈ {1, . . . , d}.

Definition 2.3. We call a domain G ⊂ Rd of class C1
u or simply a C1

u-domain, if there exist con-
stants r0,K0 > 0 such that for any x0 ∈ ∂G, there exists a one-to-one continuously differentiable
Ψ from Br0(x0) onto a domain J ⊂ Rd such that

(i) J+ := Ψ(Br0(x0) ∩G) ⊂ Rd+ := {y = (y1, y′) ∈ Rd : y1 > 0} and Ψ(x0) = 0;

(ii) Ψ(Br0(x0) ∩ ∂G) = J ∩ {y ∈ Rd : y1 = 0};

(iii) supx∈Br0 (x0)

(∣∣Ψ(x)
∣∣+∑d

i,j=1

∣∣ ∂
∂xj

(Ψ(i)(x))
∣∣) ≤ K0 and

∣∣Ψ−1(y1)−Ψ−1(y2)
∣∣ ≤ K0|y1− y2|

for any y1, y2 ∈ J ;

(iv)
∑d

i,j=1

∣∣ ∂
∂xj

Ψ(i)(x1)− ∂
∂xj

Ψ(i)(x2)
∣∣ ≤ κ̃0(|x0 − x1|) for any x1, x2 ∈ Br0(x0).

2.1.3 Measurable mappings and Lp-spaces

Let (M,A, µ) be a σ-finite measure space and let (E, ‖·‖E) be a Banach space. We call a
function u : M → E A-simple, if it has the form u =

∑K
k=1 1Akxk with Ak ∈ A and xk ∈ E

for 1 ≤ k ≤ K < ∞. A function u : M → E is called strongly A-measurable, if there exists a
sequence (fn)n∈N of A-simple functions approximating f pointwise in M. It is well-known that,
if E is separable, a function u : M→ E is strongly A-measurable if, and only if, it is A/B(E)-
measurable in the classical sense, i.e., if u−1(B) ∈ A for all B ∈ B(E), where B(E) denotes
the Borel σ-field on E. In this case, we also say u is A-measurable for short. Two strongly A-
measurable functions which agree µ-almost everywhere on M are said to be µ-versions or simply
versions of each other. For p ∈ (0,∞), Lp(M,A, µ;E) denotes the space of all (µ-equivalence
classes of) strongly A-measurable functions u : M→ E such that

‖u‖Lp(M,A,µ;E) :=

(∫
M
‖u‖pE dµ

) 1
p

<∞, (2.2)

the integral being understood as a Lebesgue integral (see, e.g., [111]). As usual, we follow the
convention that a µ-equivalence class [u] ∈ Lp(M,A, µ;E) contains all functions u : M\M0 → E
defined on M except a µ-null set M0 ∈ A, µ(M0) = 0, such that u1M\M0

∈ [u]. We simply write u
instead of the [u] ∈ Lp(M,A, µ;E). We will sometimes use the common abbreviations Lp(M;E)
and Lp(M) if E = R. u ∈ Lp(M;E) will be called p-Bochner integrable or simply p-integrable.
A function u ∈ L1(M;E) is also called Bochner integrable or simply integrable. In this case,∫

M
udµ =

∫
M
u(x)µ(dx) =

∫
M
u(x) dµ(x) ∈ E

is well-defined as a Bochner integral, see, e.g., [118, Chapter 1] for details. L∞(M,A, µ;E)
(sometimes L∞(M;E), for short) denotes the Banach space of all (µ-equivalence classes of)
strongly A-measurable functions u : M → E for which there exists a finite number r ≥ 0 such
that µ

(
{x ∈M : ‖u(x)‖E > r}

)
= 0. It is endowed with the norm

‖u‖L∞(M;E) := inf
{
r ≥ 0 : µ

(
{x ∈M : ‖u(x)‖E > r}

)
= 0
}
, u ∈ L∞(M;E).
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For a countable set I, we write `p(I) := Lp(I,P(I),
∑

i∈I δi;R), where P(I) denotes the power
set of I and δi is the common notation for the Dirac measure at the point i ∈ I. For a ∈ `p(I)
we write ai := a(i) for the i-th coordinate. The function

〈a,b〉`2(I) :=
∑
i∈I

ai bi, a,b ∈ `2(I),

defines a scalar product on the Hilbert space `2(I) and |·|`2(I) :=
√
〈·, ·〉`2(I) is the corresponding

norm. If I = N := {1, 2, 3, . . .} we write `2 := `2(N), and denote by {ek : k ∈ N} the standard
orthonormal basis of `2, i.e., for i, k ∈ N, eik = 0, if i 6= k and ekk = 1.

By λd we denote the Lebesgue measure on B(Rd) and its restriction to B ∈ B(Rd). When
integrating with respect to λd we will often write shorthand dx instead of λd(dx). If a measure
µ has density g with respect to the Lebesgue measure λd, we write µ = gλd and gdx instead of
gλd(dx). Moreover, we write Lp instead of Lp(Rd,B(Rd), λd;R). For f, g : G → R, we will use
the notation

〈f, g〉 :=

∫
G
fg dx (2.3)

whenever fg ∈ L1(G,B(G), λd;R). We say a function f : G → R is locally integrable in G, if it
is B(G)/B(R)-measurable and ∫

K
|f(x)|dx <∞,

for every compact subset K of G.
If (E, ‖·‖E) is just a quasi-Banach space and p ∈ (0,∞) we use the analogous notation

Lp(M,A, µ;E)—and the corresponding abbreviations—to denote the set of all (µ-equivalence
classes of) strongly A-measurable E-valued functions fulfilling (2.2).

2.1.4 Probabilistic setting

Throughout this thesis (Ω,F ,P) will denote a probability space.

Random variables

A strongly F-measurable mapping u from Ω into a quasi-Banach space E will be called E-valued
random variable. If this function is F-simple, we will call it an F-simple random variable. If E
is a Banach space and u ∈ Lp(Ω;E) for some p ∈ [1,∞), we write E[u] for its expectation, i.e.,
E[u] :=

∫
Ω udP. If E[u] = 0 we call the random variable centred. A random variable u : Ω→ E

is called Gaussian if 〈x∗, u〉 is a real-valued Gaussian random variable for any x∗ ∈ E∗. The
positive definite and symmetric operator Q ∈ L(E∗, E) defined via

E∗ 3 x∗ 7→ Qx∗ := E
[
〈x∗, u− E[u]〉(u− E[u])

]
∈ E

is called covariance operator of the Gaussian random variable u.

Stochastic processes

Let E be a quasi-Banach space and J an arbitrary set. A stochastic process u = (u(j))j∈J on
(Ω,F ,P) with index set J is a mapping u : Ω × J → E such that for any j ∈ J , the mapping
u(j) = u(·, j) : Ω → E is strongly F-measurable. We will sometimes use the notation (uj)j∈J
instead of (u(j))j∈J . For any ω ∈ Ω, the map J 3 j 7→ u(ω, ·) ∈ E is called path or trajectory of
the process u. Two stochastic processes (u(j))j∈J and (v(j))j∈J on a common probability space
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(Ω,F ,P) are modifications of each other, if P({ω ∈ Ω : u(ω, j) = v(ω, j)}) = 1 for each j ∈ J . If
P({ω ∈ Ω : u(ω, j) = v(ω, j) for all j ∈ J}) = 1, the two processes are called indistinguishable.
Assume that the index set (J,≤) is partially ordered (e.g., J = [0, T ] with T > 0 or J is a
separable subset of R). A filtration (Fj)j∈J on (Ω,F ,P) is an increasing family of sub-σ-fields
of F . An E-valued stochastic process u = (u(j))j∈J is called adapted to the filtration (Fj)j∈J
((Fj)j∈J -adapted, for short), if for any j ∈ J the random variable u(j) is strongly Fj-measurable.
Let E be a Banach space and (J,≤) be partially ordered. An (Fj)j∈J -adapted stochastic process
u : Ω× [0, T ]→ E is called martingale with respect to (Fj)j∈J if uj ∈ L1(Ω;E) for any j ∈ J ,
and for any i, j ∈ J with i ≤ j,

E(uj |Fi) = ui (P-a.s.),

where E(uj |Fi) denotes the conditional expectation of uj with respect to Fi. If, furthermore, for
some p ∈ [1,∞), uj ∈ Lp(Ω;E) for all j ∈ J , the martingale (uj)j∈J is called an Lp-martingale.

Regularity of paths

Let (u(t))t∈[0,T ] be a stochastic process with index set J := [0, T ] taking values in a quasi-Banach
space E. We will measure the smoothness of the paths of u by means of their Hölder regularity.
For κ ∈ (0, 1) and a quasi-Banach space (E, ‖·‖E) we denote by Cκ([0, T ];E) the Hölder space
of continuous E-valued functions on [0, T ] with finite norm ‖·‖Cκ([0,T ];E) defined by

[u]Cκ([0,T ];E) := sup
s,t∈[0,T ]
s6=t

‖u(t)− u(s)‖E
|t− s|κ

,

‖u‖C([0,T ];E) := sup
t∈[0,T ]

‖u(t)‖E ,

‖u‖Cκ([0,T ];E) := ‖u‖C([0,T ];E) + [u]Cκ([0,T ];E).

Operator valued stochastic processes

Let E1, E2 be two Banach spaces. An operator valued function Φ : Ω × [0, T ] → L(E1, E2) is
called an E1-strongly measurable stochastic process if for any x ∈ E1, the E2 valued stochastic
process Φx : Ω× [0, T ]→ E2, (ω, t) 7→ Φx(ω, t) := Φ(ω, t)x is strongly F ⊗B([0, T ])-measurable.
An E1-strongly measurable stochastic process is called adapted to a filtration (Ft)t∈[0,T ] on
(Ω,F ,P) (or, simply (Ft)t∈[0,T ]-adapted) if for any x1 ∈ E1, the process Φx1 is adapted to
(Ft)t∈[0,T ].

Let (H, 〈·, ·〉H) be a Hilbert space and let (E, ‖·‖E) be a Banach space. Let Φ : Ω× [0, T ]→
L(H,E) be an H-strongly measurable stochastic process. We write

Φ∗ : Ω× [0, T ]→ L(E∗, H)

(ω, t) 7→ Φ∗(ω, t) := Φ(ω, t)∗,

identifying H and its dual H∗ via the Riesz isomorphism. Φ is said to belong to L2([0, T ];H)
scalarly almost surely if for all x∗ ∈ E∗,

Φ∗(ω, ·)x∗ ∈ L2([0, T ];H) for P-almost all ω ∈ Ω.

Note that the exceptional set may depend on x∗. For p ∈ [2,∞), Φ is said to belong to
Lp(Ω;L2([0, T ];H)) scalarly if for all x∗ ∈ E∗,

Φ∗x∗ ∈ Lp(Ω;L2([0, T ];H)).
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A stochastic process Φ : Ω × [0, T ] → L(H,E) which belongs to L2([0, T ];H) scalarly al-
most surely is said to represent a random variable X : Ω → L(L2([0, T ];H), E), if for all
f ∈ L2([0, T ];H) and x∗ ∈ E∗ we have

〈x∗, X(ω)f〉E∗×E =

∫ T

0
〈Φ∗(ω, t)x∗, f(t)〉H dt for P-almost all ω ∈ Ω.

Stochastic integration in Hilbert spaces

We assume that the reader is familiar with the issue of stochastic integration (in the sense of Itô)
with respect to (cylindrical) Q-Wiener processes in the Hilbert space setting, as described, e.g.,
in [32] or [104]. Let (H, 〈·, ·〉H) and (U, 〈·, ·〉U ) be two real Hilbert spaces. Furthermore, assume
that (WQ(t))t∈[0,T ] is an H-valued Q-Wiener process with Q ∈ L1(H). We write(∫ t

0
u(s) dWQ(s)

)
t∈[0,T ]

for the stochastic Itô integral of a process u : ΩT → L2(H0, U) which is stochastically integrable
with respect to WQ. Here, (H0, 〈·, ·〉H0) := (Q1/2H, 〈Q−1/2·, Q−1/2·〉H) is the reproducing kernel
Hilbert space, Q−1/2 being the pseudo-inverse of Q1/2. In particular, if a real valued stochastic
process (gt)t∈[0,T ] is stochastically integrable with respect to a real valued Brownian motion
(wt)t∈[0,T ], we write (∫ t

0
gs dws

)
t∈[0,T ]

for the stochastic integral process. A brief overview of the extension of this theory to certain
classes of Banach spaces will be given later on in Section 2.2.

Miscellaneous conventions on the probabilistic setting

In this thesis, T > 0 will always denote a finite time horizon and (wkt )t∈[0,T ], k ∈ N, will be a
sequence of independent real-valued standard Brownian motions with respect to a normal filtra-
tion (Ft)t∈[0,T ] on a complete probability space (Ω,F ,P). By normal we mean that (Ft)t∈[0,T ]

is right continuous and that F0 contains all P-null sets. We will use the common abbreviation
ΩT := Ω× [0, T ] as well as

PT := σ
({
Fs × (s, t] : 0 ≤ s < t ≤ T, Fs ∈ Fs

}
∪
{
F0 × {0} : F0 ∈ F0

})
⊆ F ⊗ B([0, T ])

for the (Ft)t∈[0,T ]-predictable σ-field. Furthermore, we will write PT for the product measure
P⊗ dt on F ⊗ B([0, T ]) and for its restriction to PT . The abbreviation

Lp(ΩT ;E) := Lp(ΩT ,PT ,PT ;E), p ∈ (0,∞],

will often be used in this thesis to denote the set of predictable p-integrable stochastic processes
with values in a (quasi-)Banach space E.

2.1.5 Functions, distributions and the Fourier transform

In this thesis, unless explicitly stated otherwise, functions and distributions are meant to be real
valued. For a domain G ⊆ Rd and r ∈ N, Cr(G) denotes the space of all r-times continuously
differentiable functions, whereas C(G) is the space of continuous functions. We will write C∞0 (G)
for the set of test functions, i.e., the collection of all infinitely differentiable functions with
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compact support in G. For bounded domains G ⊂ Rd, the notation Cr(G) is used for the set
of all functions which are continuous on the closure G of G and possess derivatives up to and
including the order r ∈ N, which are continuous on G and can be extended by continuity to G.
C(G) stands for the space of continuous functions on G. For a multi-index α = (α1, . . . , αd) ∈ Nd0
with |α| := α1 + . . .+ αd = r and an r-times differentiable function u : G→ R, we write

D(α)u =
∂|α|

∂(x1)α1 · · · ∂(xd)αd
u

for the corresponding classical partial derivative. S(Rd) denotes the Schwartz space of rapidly
decreasing functions, see e.g. [108, Section 7.3]. The set of distributions on G will be denoted by
D′(G), whereas S ′(Rd) denotes the set of tempered distributions on Rd. The terms distribution
and generalized function will be used synonymously. For the application of a distribution u ∈
D′(G) to a test function ϕ ∈ C∞0 (G) we write (u, ϕ). The same notation will be used if u ∈ S ′(Rd)
and ϕ ∈ S(Rd). Let u ∈ D′(G). If there exists a locally integrable function f : G→ R such that

(u, ϕ) = 〈f, ϕ〉 =

∫
G
f(x)ϕ(x) dx, for all ϕ ∈ C∞0 (G),

we say that the distribution u is regular . Since such an f is uniquely determined, we do not
distinguish between u and f . For u ∈ D′(G) and a multi-index α = (α1, . . . , αd) ∈ Nd0, we
write Dαu for the α-th generalized , weak or distributional derivative of u with respect to x =
(x1, . . . , xd) ∈ G, i.e., Dαu is a distribution on G, uniquely determined by the formula

(Dαu, ϕ) := (−1)|α|
(
u,D(α)ϕ

)
, ϕ ∈ C∞0 (G),

see e.g. [108, Section 6.12]; D0 := Id. By making slight abuse of notation, for m ∈ N0, we
write Dmu for any (generalized) m-th order derivative of u and for the vector of all m-th order
derivatives of u. E.g. if we write Dmu ∈ E, where E is a function space on G, we mean Dαu ∈ E
for all α ∈ Nd0 with |α| = m. We also use the notation uxi := Deiu and uxixj := DeiDeju,
where for i ∈ {1, . . . , d}, ei denotes the i-th unit vector in Rd, i.e., eii = 1 and eki = 0 for i 6= k.
The notation ux (respectively uxx) is used synonymously for Du := D1u (respectively for D2u),
whereas ‖ux‖E :=

∑
i‖uxi‖E (respectively ‖uxx‖E :=

∑
i,j‖uxixj‖E). We write

∆u :=

d∑
i=1

uxixi

whenever it makes sense. If we consider spaces of complex-valued functions and distributions we
will indicate this explicitly by writing e.g. S ′(Rd;C) or D′(G;C). The notation (·, ·) is generalized
to

(u, ϕ) :=

∫
Rd
u(x)ϕ(x) dx

on S ′(Rd;C)×S(Rd;C). Here, ϕ(x) denotes the complex conjugate of ϕ(x), x ∈ Rd. The analo-
gous meaning is given to (·, ·) on D′(G;C)×D(G;C). In thesis, we denote by

F : S ′(Rd;C)→ S ′(Rd;C)

the Fourier transform on the space of complex valued tempered distributions S ′(Rd;C). For
u ∈ S ′(Rd;C), it is defined by

(Fu, ϕ) := (u,Fϕ), ϕ ∈ S(Rd;C),
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where

Fϕ :=
1

(2π)d/2

∫
Rd
ϕ(x)e−i〈x,ξ〉 dξ, ϕ ∈ S(Rd;C).

Its inverses is denoted by F−1. For more details on the Fourier transform of tempered distribu-
tions we refer to [108, Chapter 7].

2.1.6 Miscellaneous notation

For two quasi-normed spaces (Ei, ‖·‖Ei), i = 1, 2, E1 ↪→ E2 means that E1 is continuously
linearly embedded in E2, i.e., there exists a linear continuous embedding j : E1 → E2. If we

want to specify the embedding, we write E1
j
↪→ E2. If E1 and E2 are normed and there exists a

(topological) isomorphism between E1 and E2, i.e., a bijective linear continuous mapping from
E1 to E2 with bounded inverse, we write E1 ' E2. The two spaces are then called isomorphic.
The notation E1

∼= E2 is used if there exists an isometric isomorphism between E1 and E2, i.e., if
there exists a norm preserving isomorphism from E1 to E2. The space E1×E2 := {(x1, x2) : x1 ∈
E1, x2 ∈ E2}, is endowed with the norm ‖(x1, x2)‖E1×E2 := ‖x1‖E1 +‖x2‖E2 , (x1, x2) ∈ E1×E2.
For a compatible couple (E1, E2) of Banach spaces, [E1, E2]η denotes the interpolation space of
exponent η ∈ (0, 1) arising from the complex interpolation method, see, e.g., [13, Chapter 4].
Furthermore, the intersection E1 ∩ E2 is endowed with the norm

‖x‖E1∩E2 := max
{
‖x‖E1 , ‖x‖E2

}
, x ∈ E1 ∩ E2.

Throughout this thesis, C denotes a positive and finite constant which may change its value
with every new appearance. If we have two terms depending on a parameter u, which might be
a distribution or a distribution valued process or something else, and write

f1(u) ≤ C f2(u)

we mean: There exists a constant C ∈ (0,∞), which does not depend on u, such that, if f2(u)
makes sense and is finite, so does f1(u), and the inequality holds. We will also write

f1(u) � f2(u)

if simultaneously

f1(u) ≤ C f2(u) and f2(u) ≤ C f1(u).

2.2 Stochastic integration in UMD Banach spaces

The predominant part of this thesis is based on the generalization of Itô’s stochastic integration
theory for operator valued stochastic processes with respect to (cylindrical) Wiener processes,
where the operators are mappings from a real separable Hilbert space into another. Even more,
in the most parts we use just results from finite-dimensional stochastic analysis. However, in
Chapter 6, we will use regularity results in Lp-Sobolev spaces (p ≥ 2) as derived by van Neerven,
Veraar and Weis [121]. The cornerstone for this theory is a generalization of Itô’s stochastic
integration theory to certain classes of Banach spaces, see [120] as well as [123] and [17]. It is
the aim of this section to give a brief overview of this theory and to present basic results which
we will use later on.
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2.2.1 Geometric properties of Banach spaces

The generalization of Itô’s stochastic integration theory does not work for arbitrary Banach
spaces. What we need are certain geometric properties of these spaces, which we present now.
Throughout this subsection, (Ω,F ,P) denotes a probability space and (E, ‖·‖E) is an arbitrary
Banach space. For further notation commonly used in probability theory, we refer to Subsec-
tion 2.1.4.

The first geometric property we introduce is the so-called ‘umd’ property. Before we define
this notion, we need to recall what is said to be a martingale difference sequence. Our definitions
are taken from [18].

Definition 2.4. A sequence (dk)k∈N of E-valued Bochner integrable random variables is a mar-
tingale difference sequence relative to a filtration (Fk)k∈N if for every k ∈ N, the random variable
dk : Ω→ R is Fk-measurable and

E(dk+1|Fk) = 0. (2.4)

If, additionally, (dk)k∈N ⊆ Lp(Ω;E) for some p ∈ [1,∞), then we call (dk)k∈N an Lp-martingale
difference sequence.

Definition 2.5. A Banach space (E, ‖·‖E) is said to be a umd space (or to satisfy the umd
property) if for some (equivalently, for all) p ∈ (1,∞) there exists a constant C, depending
only on p and E, such that for any Lp-martingale difference sequence (dk)k∈N and any finite
{−1, 1}-valued sequence (εk)

K
k=1, one has:

(
E

[∥∥∥ K∑
k=1

εkdk

∥∥∥p
E

]) 1
p

≤ C

(
E

[∥∥∥ K∑
k=1

dk

∥∥∥p
E

]) 1
p

.

The abbreviation ‘umd’ stands for ‘unconditional martingale differences’. The following well-
known facts about umd spaces will be useful later on. Their proofs, as well as a proof of the
p-independence of the umd property, can be found in [118, Chapter 12], see also the references
therein.

Lemma 2.6. (i) Banach spaces isomorphic to closed subspaces of umd spaces satisfy the
umd property.

(ii) Every Hilbert space is a umd space.

(iii) Let E be a umd space and (M,A, µ) be a σ-finite measure space. Then Lp(M,A, µ;E) is
a umd space for any p ∈ (1,∞).

(iv) E is a umd space if, and only if, the dual E∗ is a umd space.

The second geometric property of Banach spaces required later on is the so-called ‘type’ of a
Banach space. Before we present its definition, we need to recall what is said to be a Rademacher
sequence.

Definition 2.7. A Rademacher sequence is a sequence {rk : k ∈ N} of independent and identi-
cally distributed {−1, 1}-valued random variables with

P(r1 = 1) = P(r1 = −1) = 1/2.

In what follows, {rk : k ∈ N} will always denote a Rademacher sequence.
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Definition 2.8. Fix p ∈ [1, 2]. A Banach space (E, ‖·‖E) is said to have type p, if there exists a
constant C such that for all finite sequences (xk)

K
k=1 ⊆ E the following estimate holds:(

E

[∥∥∥ K∑
k=1

rk xk

∥∥∥p
E

]) 1
p

≤ C

(
K∑
k=1

‖xk‖pE

) 1
p

. (2.5)

Obviously, every Banach space E has type 1. If the type of E is strictly greater than one, we
say E has non-trivial type. In the following lemma we collect some useful and well-known facts
regarding the type of Banach spaces, see, e.g., [103] and the references therein.

Lemma 2.9. (i) If a Banach space E has type p′ for some p′ ∈ [1, 2], then E has type p for
all p ∈ [1, p′].

(ii) Every Hilbert space has type 2.

(iii) Let (M,A, µ) be a σ-finite measure space and let p ∈ [1,∞). Then, Lp(M,A, µ;R) has
type r := min{2, p}.

(iv) Let E1 and E2 be isomorphic Banach spaces and let p ∈ [1, 2]. Then, E1 has type p if, and
only if, E2 has type p.

(v) Let E be a umd Banach space. Then, the following assertions are equivalent:

(1) E has type 2.

(2) E has M -type 2, i.e., there exists a constant C such that for every E-valued L2-
martingale (Mk)k∈N the following inequality holds:

sup
k∈N

E
[∥∥Mk

∥∥2

E

]
≤ C

∞∑
k=1

E
[∥∥Mk −Mk−1

∥∥2

E

]
,

with the usual convention M0 := 0.

The term on the left hand side of (2.5) depends on p only up to a constant. This is due to
the Kahane-Khintchine inequality, which is the content of the next lemma. A proof based on
Lévy’s inequality can be found e.g. in [118, Theorem 3.11].

Lemma 2.10. For all p, q ∈ [1,∞), there exists a constant Cp,q, depending only on p and q,
such that for all finite sequences (xk)

K
k=1 ⊆ E we have(

E

[∥∥∥ K∑
k=1

rk xk

∥∥∥p
E

]) 1
p

≤ Cp,q

(
E

[∥∥∥ K∑
k=1

rk xk

∥∥∥q
E

]) 1
q

.

This result can be extended to the case where the Rademacher sequence is replaced by a
Gaussian sequence. Let us first recall what we mean by that.

Definition 2.11. A Gaussian sequence is a sequence {γk : k ∈ N} of independent real valued
random variables, each of which is standard Gaussian.

In what follows, {γk : k ∈ N} will always denote a Gaussian sequence. A proof of the following
generalization of Lemma 2.10, which is based on the central limit theorem, can be found in [118,
Theorem 3.12]. We will refer to it as the Kahane-Khintchine inequality for Gaussian sums.

Lemma 2.12. For all p, q ∈ [1,∞), there exists a constant Cp,q, depending only on p and q,
such that for all finite sequences (xk)

K
k=1 ⊆ E we have(

E

[∥∥∥ K∑
k=1

γk xk

∥∥∥p
E

]) 1
p

≤ Cp,q

(
E

[∥∥∥ K∑
k=1

γk xk

∥∥∥q
E

]) 1
q

.
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2.2.2 γ-radonifying operators

In this subsection we discuss the notion of γ-radonifying operators from a real Hilbert space
(H, 〈·, ·〉H) into a Banach space (E, ‖·‖E). These operators usually appear in the context of
Banach space valued Gaussian random variables. It is a well-known result that an operator
Q ∈ L(E∗, E) is the covariance operator of a centred E-valued Gaussian random variable if,
and only if, Q = RR∗ with R being a γ-radonifying operator from a Hilbert space H into E,
see e.g. [118, Theorem 5.12]. This class of operators is also central in the development of the
notion of stochastic integration in umd Banach spaces with respect to H-cylindrical Brownian
motions of van Neerven, Veraar and Weis [120], which we will discuss in the next subsection.
Our exposition follows the lines of [118, Chapter 5], see also the survey [119]. The notation used
in the subsection before is still valid. Remember that {γk : k ∈ N} is a Gaussian sequence, see
Definition 2.11.

Definition 2.13. A linear operator R : H → E is called γ-summing if

‖R‖Γ∞(H,E) := sup

(
E

[∥∥∥ K∑
k=1

γkRhk

∥∥∥2

E

]) 1
2

<∞, (2.6)

where the supremum is taken over all finite orthonormal systems {h1, . . . , hK} ⊆ H. The space
of γ-summing operators from H to E will be denoted by Γ∞(H,E) and endowed with the norm
‖·‖Γ∞(H,E) introduced in (2.6).

Remark 2.14. (i) Γ∞(H,E) ↪→ L(H,E), since for any R ∈ Γ∞(H,E),

∥∥R∥∥L(H,E)
= sup
‖h‖H=1

∥∥Rh∥∥
E

= sup
‖h‖H=1

(
E
[∥∥γ1Rh

∥∥2

E

]) 1
2 ≤

∥∥R∥∥
Γ∞(H,E)

.

(ii) Let p ∈ [1,∞). Let Γ∞p (H,E) be the set of all linear operators R : H → E such that

∥∥R∥∥
Γ∞p (H,E)

:= sup

(
E

[∥∥∥∥ K∑
k=1

γkRhk

∥∥∥∥p
E

]) 1
p

<∞,

where the supremum is taken over all finite orthonormal systems {h1, . . . , hK} ⊆ H. Then,
by the Kahane-Khintchine inequality for Gaussian sums, see Lemma 2.12,

Γ∞p (H,E) = Γ∞(H,E).

Moreover, the norms ‖·‖Γ∞p (H,E) and ‖·‖Γ∞(H,E) are equivalent.

(iii) (Γ∞(H,E), ‖·‖Γ∞(H,E)) is a Banach space, see, e.g., [118, Theorem 5.2].

For h ∈ H and x ∈ E, we sometimes write h ⊗ x := 〈h, ·〉Hx ∈ L(H,E) for the rank one
operator

H 3 h̃ 7→ 〈h, h̃〉H x ∈ E. (2.7)

Furthermore, we will use the notation

Lf (H,E) :=
⋃
J∈N

{ J∑
j=1

hj ⊗ xj : hj ∈ H,xj ∈ E for j = 1, . . . , J

}
⊆ L(H,E)

for the subspace of linear and bounded finite rank operators. Obviously, Lf (H,E) ⊆ Γ∞(H,E).
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Definition 2.15. The space Γ(H,E) of γ-radonifying operators is defined as the closure of the
space of finite rank operators Lf (H,E) in Γ∞(H,E). I.e.,

Γ(H,E) := Lf (H,E)
‖·‖Γ∞(H,E) ⊆ Γ∞(H,E).

Remark 2.16. (i) By definition, Γ(H,E), endowed with the norm ‖·‖Γ∞(H,E) inherited from
Γ∞(H,E) is a Banach space. We will use the abbreviations

‖R‖Γ(H,E) := ‖R‖Γ∞(H,E), R ∈ Γ(H,E),

and, for p ∈ [1,∞),

‖R‖Γp(H,E) := ‖R‖Γ∞p (H,E), R ∈ Γ(H,E).

Note that for any p ∈ [1,∞), the norm equivalence

‖R‖Γ(H,E) � ‖R‖Γp(H,E), R ∈ Γ(H,E) (2.8)

holds, see also Remark 2.14(ii).

(ii) In general, Γ(H,E) ( Γ∞(H,E). An example for a γ-summable operator which is not
γ-radonifying can be found in [90]. However, if the Banach space E does not contain a
closed subspace isomorphic to the space c0 of sequences converging to zero endowed with
the supremum norm, then Γ(H,E) = Γ∞(H,E). This can be proven by using the results
of Hoffmann-Jørgensen and Kwapień concerning sums of independent symmetric Banach
space valued random variables [65,88], see [119, Theorem 4.3].

Now we collect some properties and useful characterizations of Γ(H,E). The proofs can be
found in [118, Chapter 5]. We start with the ideal property of γ-radonifying operators.

Theorem 2.17. Let R ∈ Γ(H,E). Let H ′ be another real Hilbert space and E′ be another
Banach space. Then for all U ∈ L(E,E′) and S ∈ L(H ′, H) we have URS ∈ Γ(H ′, E′) and for
all p ∈ [1,∞),

‖URS‖Γp(H′,E′) ≤ ‖U‖L(E,E′)‖R‖Γp(H,E)‖S‖L(H′,H).

Often, the Hilbert space H is assumed to be separable and the following characterization of
γ-radonifying operators is taken as a definition.

Theorem 2.18. Let H be a separable real Hilbert space. Then for an operator R ∈ L(H,E) the
following assertions are equivalent:

(i) R ∈ Γ(H,E).

(ii) For all orthonormal bases {hk : k ∈ N} of H and all p ∈ [1,∞) the series
∑∞

k=1 γkRhk
converges in Lp(Ω;E).

(iii) For some orthonormal basis {hk : k ∈ N} of H and some p ∈ [1,∞) the series
∑∞

k=1 γkRhk
converges in Lp(Ω;E).

In this situation, the sums in (ii) and (iii) converge almost surely and for all orthonormal bases
{hk : k ∈ N} of H and p ∈ [1,∞),

∥∥R∥∥p
Γp(H,E)

= E

[∥∥∥∥ ∞∑
k=1

γkRhk

∥∥∥∥p
E

]
. (2.9)
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Remark 2.19. Let (H, 〈·, ·〉H) be a separable real Hilbert space and assume that (E, 〈·, ·〉E) is
also a separable real Hilbert space. Furthermore, let {hk : k ∈ N} be an orthonormal basis of H.
Recall that

L2(H,E) :=
{
T ∈ L(H,E) : ‖T‖2L2(H,E) :=

∞∑
k=1

‖Thk‖2E <∞
}

(2.10)

is the space of Hilbert-Schmidt operators from H to E. Then, L2(H,E) = Γ(H,E) and for any
R ∈ Γ(H,E) we have

‖R‖Γ(H,E) = ‖R‖L2(H,E).

This is an immediate consequence of Theorem 2.18 above and Pythagoras’ theorem.

If E is an Lp-space on a σ-finite measure space, Γ(H,E) can be also characterized as follows.
The proof relies on the Kahane-Khintchine inequality for Gaussian sums, see Lemma 2.12.

Theorem 2.20. Let H be a separable real Hilbert space. Furthermore, let (M,A, µ) be a σ-finite
measure space and p ∈ [1,∞). For an operator R ∈ L(H,Lp(M)) the following assertions are
equivalent:

(i) R ∈ Γ(H,Lp(M)).

(ii) For all orthonormal bases {hk : k ∈ N} of H the function
(∑∞

k=1|Rhk|2
) 1

2 belongs to
Lp(M).

(iii) For some orthonormal basis {hk : k ∈ N} of H the function
(∑∞

k=1|Rhk|2
) 1

2 belongs to
Lp(M).

In this case, there exists a constant C = C(p) independent of R ∈ Γ(H,Lp(M)) such that

1

C
‖R‖Γ(H,Lp(M)) ≤

∥∥∥( ∞∑
k=1

|Rhk|2
) 1

2
∥∥∥
Lp(M)

≤ C ‖R‖Γ(H,Lp(M)). (2.11)

2.2.3 Stochastic integration for cylindrical Brownian motions

Using the notions introduced in the previous subsections, we are now able to give a brief intro-
duction to the theory of stochastic integration in Banach spaces as developed in [120,123]. The
integrator is an H-cylindrical Brownian motion. We collect the relevant definitions and results
without proofs. We follow [118] and [31] in our exposition.

Throughout this subsection, (H, 〈·, ·〉H) denotes a separable real Hilbert space and (Ft)t∈[0,T ]

is a normal filtration on a complete probability space (Ω,F ,P). (E, ‖·‖E) denotes an arbitrary
real Banach space.

Definition 2.21. An H-cylindrical Brownian motion with respect to (Ft)t∈[0,T ] is a family W =
(WH(t))t∈[0,T ] of linear operators from H to L2(Ω) with the following properties:

[W1] For every h ∈ H, (WH(t)h)t∈[0,T ] is a real-valued Brownian motion with respect to
(Ft)t∈[0,T ].

[W2] For every t1, t2 ∈ [0, T ] and h1, h2 ∈ H, we have

E [WH(t1)h1WH(t2)h2] = min{t1, t2}〈h1, h2〉H .

From now on, WH = (WH(t))t∈[0,T ] denotes an H-cylindrical Brownian motion with respect to
(Ft)t∈[0,T ]. We do not specify (Ft)t∈[0,T ] if it is clear from the context which filtration is meant.
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Example 2.22. Let H be a separable real Hilbert space with orthonormal basis {hk : k ∈ N}.
Furthermore, let {(wkt )t∈[0,T ] : k ∈ N} be a collection of independent real-valued standard
Brownian motions with respect to (Ft)t∈[0,T ] on (Ω,F ,P). Then,

H 3 h 7→WH(t)h :=
∞∑
k=1

wkt 〈hk, h〉H ∈ L2(Ω), t ∈ [0, T ], (2.12)

defines an H-cylindrical Brownian motion with respect to (Ft)t∈[0,T ].

Stochastic integration of functions: the Wiener integral

We first define the stochastic integral of operator valued functions having the following simple
structure.

Definition 2.23. An operator valued function Φ : [0, T ]→ L(H,E) of the form

Φ(t) :=

J∑
j=1

1(tj−1,tj ](t)

K∑
k=1

〈hk, ·〉H xj,k, t ∈ [0, T ], (2.13)

with 0 = t0 < t1 < . . . < tJ = T , {h1, . . . , hK} ⊆ H orthonormal, and xj,k ∈ E, 1 ≤ j ≤ J ,
1 ≤ k ≤ K, for some finite J,K ∈ N, is called finite rank step function.

The stochastic integral of a finite rank step function is defined in the following natural way.

Definition 2.24. Let Φ be a finite rank step function of the form (2.13). The stochastic integral
of Φ on [0, T ] with respect to WH is the E-valued random variable

∫ T

0
Φ(t) dWH(t) :=

J∑
j=1

K∑
k=1

(WH(tj)hk −WH(tj−1)hk)xj,k.

Note that the stochastic integral of a finite rank step function is a centred E-valued Gaussian
random variable. The class of stochastically integrable functions is introduced as follows.

Definition 2.25. A function Φ : [0, T ] → L(H,E) is said to be stochastically integrable with
respect to WH if there exists a sequence (Φn)n∈N of L(H,E)-valued finite rank step functions
on [0, T ] such that:

(i) for all h ∈ H we have limn→∞Φnh = Φh in measure on [0, T ], i.e., for any ε > 0,

lim
n→∞

λ
({
t ∈ [0, T ] : ‖Φn(t)h− Φ(t)h‖E > ε

})
= 0 ;

(ii) there exists an E-valued random variable X, such that limn→∞
∫ T

0 Φn(t) dWH(t) = X in
probability.

In this situation, the stochastic integral of Φ with respect to WH is defined as the limit in
probability ∫ T

0
Φ(t) dWH(t) := lim

n→∞

∫ T

0
Φn(t) dWH(t). (2.14)

Since, as mentioned above, (
∫ T

0 Φn(t) dWH(t))n∈N in (2.14) is a sequence of centred Gaussian
random variables, it converges also in Lp(Ω;E) for any p ∈ [1,∞), and the stochastic integral∫ T

0 Φ(t) dWH(t) is again centred Gaussian, see, e.g., [118, Theorem 4.15].
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In [123], the following analogue of the Itô isometry has been proven for finite rank step
functions Φ : [0, T ]→ L(H,E):(

E

[∥∥∥ ∫ T

0
Φ(t) dWH(t)

∥∥∥2

E

]) 1
2

= ‖RΦ‖Γ(L2([0,T ];H),E), (2.15)

where RΦ : L2([0, T ];H)→ E is the operator represented by Φ, i.e.,

RΦf :=

∫ T

0
Φ(t)f(t) dt, f ∈ L2([0, T ];H). (2.16)

Furthermore, the following alternative characterization of the set of stochastically integrable
functions holds: An H-strongly measurable function Φ : [0, T ] → L(H,E) is stochastically
integrable on [0, T ] with respect to WH if, and only if, (t 7→ Φ∗x∗(t) := Φ(t)∗x∗) ∈ L2([0, T ];H)
for all x∗ ∈ E∗ and there exists an operator RΦ ∈ Γ(L2([0, T ];H), E), such that

R∗Φx
∗ = Φ∗x∗ in L2([0, T ];H) for all x∗ ∈ E∗.

The isometry (2.15) extends to this situation. Remember that, unless explicitly stated otherwise,
we identify H with its dual space H∗ via the Riesz isometric isomorphism h 7→ 〈h, ·〉H .

Stochastic integration of stochastic processes

The integral defined above has been extended to L(H,E)-valued stochastic processes for umd
Banach spaces E in [120]. The construction starts with the definition of the stochastic integral
for so-called finite rank step processes.

Definition 2.26. A finite rank (Ft)t∈[0,T ]-adapted step process is an L(H,E)-valued stochastic
process Φ = (Φ(t))t∈[0,T ] of the form

Φ(ω, t) :=

J∑
j=0

1(tj−1,tj ](t)

M∑
m=1

1Aj,m(ω)

K∑
k=1

〈hk, ·〉H xj,m,k, (ω, t) ∈ ΩT , (2.17)

where 0 = t0 < t1 < . . . < tJ = T , and the sets {Aj,1, . . . , Aj,M} ⊆ Ftj−1 are disjoint for each
1 ≤ j ≤ J (with the convention (t−1, t0] = {0} and F−1 = F0), the vectors {h1, . . . , hK} ⊆ H are
orthonormal, and xj,m,k ∈ E, 1 ≤ j ≤ J , 1 ≤ m ≤ M , 1 ≤ k ≤ K, for some finite J,M,K ∈ N.
(In [120] such processes are called elementary adapted to (Ft)t∈[0,T ].)

Definition 2.27. Let Φ be a finite rank (Ft)t∈[0,T ]-adapted step process of the form (2.17). The
stochastic integral of Φ with respect to WH is defined as the E-valued random variable∫ T

0
Φ(t) dWH(t) :=

J∑
j=1

M∑
m=1

1Aj,m

K∑
k=1

(WH(tj)hk −WH(tj−1)hk)xj,m,k.

Note that the stochastic integral of a finite rank step process is centred and p-integrable for any
p ∈ [1,∞). The class of stochastically integrable processes is defined as follows.

Definition 2.28. Let E be a Banach space and fix p ∈ (1,∞). Let WH be an H-cylindrical
Brownian motion with respect to (Ft)t∈[0,T ]. An H-strongly measurable process Φ : Ω× [0, T ]→
L(H,E) is called Lp-stochastically integrable with respect to WH if there exists a sequence of
finite rank (Ft)t∈[0,T ]-adapted step processes Φn : Ω× [0, T ]→ L(H,E), n ∈ N, such that:

(i) for all h ∈ H we have limn→∞Φnh = Φh in measure on ΩT , i.e., for any ε > 0,

lim
n→∞

PT
({

(ω, t) ∈ ΩT : ‖Φn(ω, t)h− Φ(ω, t)h‖E > ε
})

= 0 ;
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(ii) there exists a random variable X ∈ Lp(Ω;E) such that

lim
n→∞

∫ T

0
Φn(t) dWH(t) = X in Lp(Ω;E).

In this situation, the stochastic integral of Φ with respect to WH is defined as the Lp(Ω;E)-limit∫ T

0
Φ(t) dWH(t) := lim

n→∞

∫ T

0
Φn(t) dWH(t).

It is easy to see that, if Φ : Ω × [0, T ] → L(H,E) is Lp-stochastically integrable with respect
to WH and S ∈ L(E,F ), F being another Banach space, then, SΦ : Ω × [0, T ] → L(H,F ) is
Lp-stochastically integrable with respect to WH . Furthermore,

S

∫ T

0
Φ(t) dWH(t) =

∫ T

0
SΦ(t) dWH(t) in Lp(Ω;F ). (2.18)

The paths of finite rank step processes are finite rank step functions. Thus, for any ω ∈ Ω, the
path t 7→ Φω(t) := Φ(ω, t) defines an operator RΦω ∈ Γ(L2([0, T ];H), E) by (2.16). This leads
to an F-simple random variable RΦ : Ω→ Γ(L2([0, T ];H), E). If E is a umd Banach space, one
can use ‘decoupling’ and prove that for finite rank adapted step processes Φ,(

E

[∥∥∥ ∫ T

0
Φ(t) dWH(t)

∥∥∥p
E

]) 1
p

�
(
E
[
‖RΦ‖pΓ(L2([0,T ];H),E)

]) 1
p
,

where the constants involved do not depend on Φ. This extension of the analogue (2.15) of Itô’s
isometry can be generalized in the following way (see [120, Theorem 3.6 and Remark 3.7]).

Theorem 2.29. Let E be a umd Banach space and fix p ∈ (1,∞). Furthermore, let Φ : Ω ×
[0, T ] → L(H,E) be an H-strongly measurable (Ft)t∈[0,T ]-adapted process. Assume that for any
x∗ ∈ E∗, the stochastic process

Φ∗x∗ : Ω× [0, T ]→ H

(ω, t) 7→ Φ(ω, t)∗x∗

belongs to Lp(Ω;L2([0, T ];H)), i.e., Φ is belongs to Lp(Ω;L2([0, T ];H)) scalarly. Then, the fol-
lowing assertions are equivalent:

[S1] Φ is Lp-stochastically integrable with respect to WH .

[S2] There exists a strongly measurable random variable X ∈ Lp(Ω;E) such that for all x∗ ∈ E∗
we have

〈x∗, X〉 =

∫ T

0
Φ∗x∗(t) dWH(t) in Lp(Ω). (2.19)

[S3] There exists RΦ ∈ Lp(Ω; Γ(L2([0, T ];H), E)) such that for all x∗ ∈ E∗ we have

R∗Φx
∗ = Φ∗x∗ in Lp(Ω;L2([0, T ];H)).

In this situation, X =
∫ T

0 Φ(t) dWH(t) and RΦ in [S3] above is uniquely determined. Moreover,(
E

[∥∥∥ ∫ T

0
Φ(t) dWH(t)

∥∥∥p
E

]) 1
p

�
(
E
[∥∥RΦ

∥∥p
Γ(L2([0,T ];H),E)

]) 1
p
,

where the constants involved do not depend on Φ and T .
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Remark 2.30. In the setting of Theorem 2.29, [S3] means that Φ represents an element RΦ ∈
Lp(Ω; Γ(L2([0, T ];H), E)). By [120, Propositions 2.11 and 2.12], RΦ belongs to the closure of the
finite rank step processes in Lp(Ω; Γ(L2([0, T ];H), E)), which, in analogy to the notation used
in [120], will be denoted by LF

p(Ω; Γ(L2([0, T ];H), E)).

Later on, we will need the following series expansion of the stochastic integral which can be
found in [120, Corollary 3.9].

Theorem 2.31. Let E be a umd Banach space and fix p ∈ (1,∞). Assume that the H-strongly
measurable and (Ft)t∈[0,T ]-adapted process Φ : Ω×[0, T ]→ L(H,E) is Lp-stochastically integrable
with respect to WH . Then, for all h ∈ H the process Φh : Ω × [0, T ] → E is Lp-stochastically
integrable with respect to WHh. Moreover, if {hk : k ∈ N} is an orthonormal basis of H, then∫ T

0
Φ(t) dWH(t) =

∞∑
k=1

∫ T

0
Φ(t)hk dWH(t)hk (convergence in Lp(Ω;E)).

We have already mentioned in Lemma 2.9(v), that a umd Banach space has type 2 if, and
only if, it has M -type 2. Stochastic integration of processes in M -type 2 Banach spaces has
been studied by several authors, see the literature overview in [120, p. 1460] for a short list. As
mentioned therein, according to [106,124], if E has type 2, then

L2([0, T ]; Γ(H,E))
R·
↪→ Γ(L2([0, T ];H), E), (2.20)

with R· : Φ 7→ RΦ given by (2.16). Consequently, the following result holds, see [120, Corol-
lary 3.10].

Theorem 2.32. Let E be a umd Banach space and fix p ∈ (1,∞). If E has type 2, then
every H-strongly measurable and adapted process Φ ∈ Lp(Ω;L2([0, T ]; Γ(H,E))) belongs to
Lp(Ω;L2([0, T ];H)) scalarly, is Lp-stochastically integrable with respect to WH and we have

(
E

[∥∥∥ ∫ T

0
Φ(t) dWH(t)

∥∥∥p
E

]) 1
p

≤ C
(
E
[∥∥Φ

∥∥p
L2([0,T ];Γ(H,E))

]) 1
p
,

where the constant C does not depend on Φ.

2.3 Function spaces

In this section we introduce some function spaces, which will be used later on for the analysis of
the regularity of SPDEs. We will also collect and prove some useful properties of these spaces,
especially of the weighted Sobolev spaces in Subsection 2.3.3.

2.3.1 Sobolev spaces

The Sobolev spaces on an arbitrary domain G ⊆ Rd are defined as follows.

Definition 2.33. Let p ∈ (1,∞).

(i) For m ∈ N0,

Wm
p (G) :=

{
u ∈ Lp(G) : Dαu ∈ Lp(G) for all α ∈ Nd0 with |α| ≤ m

}
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is called the Sobolev space of (smoothness) order m with summability parameter p. It is
endowed with the norm

‖u‖Wm
p (G) :=

( ∑
|α|≤m

‖Dαu‖pLp(G)

)1/p

, u ∈Wm
p (G).

(ii) For s = m+ σ with m ∈ N0 and σ ∈ (0, 1), we denote by

W s
p (G) :=

{
u ∈Wm

p (G) : |u|pW s
p (G) :=

∑
|α|=k

∫
G

∫
G

∣∣Dαu(x)−Dαu(y)
∣∣p

|x− y|σp+d
dxdy <∞

}

the Sobolev space of fractional (smoothness) order s ∈ (0,∞) \N with summability param-
eter p. It is endowed with the norm

‖u‖W s
p (G) :=

(
‖u‖pWm

p (G) + |u|pW s
p (G)

)1/p
, u ∈W s

p (G).

(iii) For s ≥ 0 we denote by W̊ s
p (G) the closure of the test functions C∞0 (G) in W s

p (G), endowed
with the norm ‖·‖W s

p (G).

(iv) For s < 0, we denote by W s
p (G) the dual space of W̊−sp (G), endowed with the canonical

dual norm.

Remark 2.34. (i) Remember that in this thesis, Dαu denotes the α-th generalized derivative
of a distribution u (see Subsection 2.1.5 for details). Thus, for m ∈ N and p ∈ (1,∞),
u ∈ Wm

p (G) means that u ∈ Lp(G) and that for all α ∈ Nd0 with |α| ≤ m, the α-th
generalized derivative is regular and is (interpreted as a function) an element of Lp(G).

(ii) For arbitrary domains G ⊆ Rd and arbitrary p ∈ (1,∞) and s ≥ 0, W s
p (G) is a Banach

space, see, e.g., [2, Theorem 3.3] for the case s ∈ N0 and [51, Theorem 6.3.3] for fractional
s ∈ (0,∞) \ N. Also, W̊ s

p (G) is complete, since it is a closed subspace of W s
p (G). The

corresponding duals W s
p (G), s < 0, are consequently also Banach spaces.

(iii) For fractional s ∈ (0,∞) \ N, the space W s
p (G) is sometimes called Slobodeckij space and

the scale W s
p (G), s ≥ 0, is referred to as the scale of Sobolev-Slobodeckij spaces. Even if this

terminology would be historically more correct, in this thesis we will call the space W s
p (G)

for any s ∈ R a Sobolev space. For further details regarding the historical background, we
refer to [115].

(iv) Let G ⊂ Rd be a bounded domain and p ∈ (1,∞). For m ∈ N, the expression

[u]Wm
p (G) :=

( ∑
|α|=m

‖Dαu‖pLp(G)

)1/p

, u ∈ W̊m
p (G),

is an equivalent norm on W̊m
p (G). This is a consequence of Poincaré’s inequality, see,

e.g. [53, Theorem 5.6/3].



2.3 Function spaces 33

2.3.2 Spaces of Bessel potentials

In this subsection we introduce the spaces Hγ
p (Rd) of Bessel potentials and discuss some of their

properties which we will use in this thesis. Furthermore, we present the definition of the spaces
Hγ
p (Rd; `2). They have been used in [80] by N.V. Krylov for the development of the analytic

approach to SPDEs on the whole space Rd. We prove that the spaces Hγ
p (Rd; `2) are isomorphic

to the corresponding spaces Γ(`2, H
γ
p (Rd)) of γ-radonifying operators from `2 to Hγ

p (Rd). Due
to this fact, under suitable assumptions, the SPDEs from [80] can be rewritten as Banach space
valued stochastic differential equations in the sense of van Neerven, Veraar and Weis [121].

For γ ∈ R, we denote by (1−∆)γ/2 the pseudo-differential operator with symbol

Rd 3 ξ 7→ (1 + |ξ|2)γ/2 ∈ R+.

That is,

(1−∆)γ/2 : S ′(Rd;C)→ S ′(Rd;C)

u 7→ (1−∆)γ/2u := F−1
(
ξ 7→ (1 + |ξ|2)γ/2F(u)(ξ)

)
,

where F denotes the Fourier transform on the space of complex valued tempered distributions
S ′(Rd;C), see Subsection 2.1.5 for details.

Definition 2.35. Let p ∈ (1,∞) and γ ∈ R. Then

Hγ
p := Hγ

p (Rd) := (1−∆)−γ/2Lp(Rd) =
{

(1−∆)−γ/2f : f ∈ Lp(Rd)
}

is the space of Bessel potentials of order γ with summability parameter p. It is endowed with the
norm

‖u‖Hγ
p (Rd) :=

∥∥(1−∆)γ/2u
∥∥
Lp(Rd)

, u ∈ Hγ
p (Rd).

Remark 2.36. (i) Recall that in Section 2.1 we have postulated that in this thesis, unless
explicitly stated otherwise, functions and distributions are meant to be real valued. In
particular, Lp(Rd) stands for the space of real valued p-Bochner integrable functions on
Rd. What about the (generalized) functions in the spaces Hγ

p (Rd) defined above? At first
view, even if f is real valued, we can not guarantee that (1−∆)−γ/2f is real valued, since the
pseudo-differential operator maps into the space of complex valued tempered distributions
S ′(Rd;C). However, the following arguments show that (1−∆)−γ/2f is indeed a real valued
tempered distribution if f ∈ Lp(Rd), and, therefore, that Hγ

p (Rd) as defined above, consists
of real valued (generalized) functions.

Fix γ ∈ R and f ∈ Lp(Rd) for some p ∈ (1,∞). Then, (1 −∆)−γ/2f ∈ S ′(Rd;C) is given
by the formula(

(1−∆)−γ/2f, ϕ
)

=

∫
Rd
f (1−∆)−γ/2ϕdx, ϕ ∈ S(Rd;C). (2.21)

Assume that ϕ ∈ C∞0 (Rd). Then, (1−∆)−γ/2ϕ can be expressed as

(1−∆)−γ/2ϕ(x) =

∫
Rd
G(y)ϕ(x− y) dy, x ∈ Rd, (2.22)

where G denotes the Green function of (1−∆)γ/2 and is given by

G(y) =
1

(2π)d
lim
R→∞

∫
{|ξ|≤R}

1

(1 + |ξ|2)γ/2
ei〈x,ξ〉 dξ, y ∈ Rd,
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see [84, Chapter 12] for details. Due to the symmetry properties of the function

Rd 3 ξ 7→ 1

(1 + |ξ|2)γ/2
∈ R+,

G is real valued. Therefore and by (2.22), (1 −∆)−γ/2ϕ is real valued too. Inserting this
into (2.21), we obtain

(
(1−∆)−γ/2f, ϕ

)
=

∫
Rd
f (1−∆)−γ/2ϕdx ∈ R, ϕ ∈ C∞0 (Rd).

Hence, (1 −∆)−γ/2f is a real valued (generalized) function. Consequently, the tempered
distribution (1−∆)−γ/2f ∈ S ′(Rd;C) is real valued, since for any ϕ ∈ S(Rd), there exists
a sequence (ϕn)n∈N ⊆ C∞0 (Rd) converging to ϕ in S(Rd). All in all, we have shown that

Hγ
p (Rd) =

{
u ∈ S ′(Rd) : u = (1−∆)−γ/2f for some f ∈ Lp(Rd)

}
.

(ii) For p ∈ (1,∞) and γ ∈ R, the space Hγ
p (Rd) of Bessel potentials is a Banach space. For a

proof see, e.g., [84, Theorem 13.3.3(i)] and use part (i) of this remark.

The following result shows that the spaces of Bessel potentials are generalizations of the
Sobolev spaces Wm

p (Rd), m ∈ N0. A proof can be found e.g. in [84, Theorem 13.3.12].

Lemma 2.37. Let p ∈ (1,∞) and γ = m ∈ N0. Then,

Hm
p (Rd) = Wm

p (Rd) (equivalent norms).

It is well-known that for p, p′ ∈ (1,∞) with 1/p+ 1/p′ = 1, the mapping

Ψ : Lp′(Rd)→
(
Lp(Rd)

)∗
, (Ψf)(g) :=

∫
Rd
f(x)g(x) dx,

is an isometric isomorphism. In particular, Lp′(Rd) ∼=
(
Lp(Rd)

)∗
. This duality relation can be

extended to the scale of Bessel potential spaces, as the following result shows. The proof is left
to the reader.

Lemma 2.38. Let γ ∈ R and p, p′ ∈ (1,∞) with 1/p + 1/p′ = 1. Then, for any u ∈ H−γp′ and

ϕ ∈ C∞0 (Rd), ∣∣(u, ϕ)
∣∣ ≤ ‖u‖H−γ

p′
‖ϕ‖Hγ

p
.

Thus, for any u ∈ H−γp′ , there exists a unique functional Ψu ∈ (Hγ
p )∗ such that its restriction to

the test functions C∞0 (Rd) coincides with (u, ·), i.e.,

Ψu|C∞0 (Rd) = (u, ·). (2.23)

Moreover, the expression

Ψ : H−γp′ → Hγ
p

u 7→ Ψ(u) := Ψu,

with Ψu from above, is an isometric isomorphism. In particular, H−γp′
∼= (Hγ

p )∗.
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Recall that the notation (u, ϕ) is used to denote the application of a distribution u to a test
function ϕ. In what follows we extend the meaning of (·, ·) and write

(u, ϕ) := Ψu(ϕ), for all u ∈ H−γp′ and ϕ ∈ Hγ
p , (2.24)

with Ψu as in Lemma 2.38. This is justified by (2.23).

The following can be said about the geometric properties of the spaces of Bessel potentials.

Remark 2.39. For any p ∈ (1,∞) and γ ∈ R, Hγ
p (Rd) is a umd Banach space, since (1−∆)γ/2 :

Hγ
p (Rd) → Lp(Rd) is an isometric isomorphism and Lp(Rd) is umd, see Lemma 2.6. The same

argument, together with Lemma 2.9(iii) and (iv), shows that Hγ
p (Rd) has type r := min{2, p}.

Now we recall the definition of the spaces Hγ
p (Rd; `2) given in [80]. As already mentioned,

these spaces are used therein for the formulation of the SPDEs under consideration.

Definition 2.40. For p ∈ (1,∞) and γ ∈ R,

Hγ
p (`2) := Hγ

p (Rd; `2) :=
{
g = (gk)k∈N ∈

(
Hγ
p (Rd)

)N
:

‖g‖Hγ
p (`2) :=

∥∥∥∣∣∣((1−∆)γ/2gk
)
k∈N

∣∣∣
`2

∥∥∥
Lp
<∞

}
.

Remark 2.41. Let p ∈ (1,∞). Remember that in this thesis we write {ek : k ∈ N} for the
standard orthonormal basis of `2 = `2(N).

(i) The mapping Φ : H0
p (Rd; `2) → Lp(Rd,B(Rd), λd; `2) assigning the function (equivalence

class)

Φ(g) : Rd → `2

x 7→
∞∑
k=1

gk(x) ek (convergence in `2)

to each g ∈ H0
p (Rd; `2) is an isometric isomorphism. In particular, we have

H0
p (Rd; `2) ∼= Lp(Rd,B(Rd), λd; `2).

Consequently, since Lp(Rd; `2) is complete, H0
p (Rd; `2) is a Banach space.

(ii) Let γ ∈ R. Then,

Φγ : Hγ
p (Rd; `2)→ H0

p (Rd; `2)

g = (gk)k∈N 7→
(
(1−∆)γ/2gk

)
k∈N

is an isometric mapping. Furthermore,

Φ̃γ : H0
p (Rd; `2)→ Hγ

p (Rd; `2)

g = (gk)k∈N 7→
(
(1−∆)−γ/2gk

)
k∈N

defines a right inverse for Φγ . Thus, Φγ is a surjective isometric mapping, and therefore
an isometric isomorphism. Consequently, Hγ

p (Rd; `2) is a Banach space, since H0
p (Rd; `2)

is complete by part (i) of this remark.

Finally, we prove that the space Hγ
p (Rd; `2) is isomorphic to Γ(`2, H

γ
p (Rd)).
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Theorem 2.42. Let γ ∈ R and p ∈ [2,∞). Then the operator

Φ : Hγ
p (Rd; `2)→ Γ(`2, H

γ
p (Rd))

(gk)k∈N 7→
∞∑
k=1

〈ek, ·〉`2 gk (convergence in Γ(`2, H
γ
p (Rd)))

is an isomorphism, and, therefore,

Hγ
p (Rd; `2) ' Γ(`2, H

γ
p (Rd)).

Proof. Fix γ ∈ R. First of all we have to show that the operator Φ is well defined. To this end,
since Γ(`2, H

γ
p (Rd)) is complete, it is enough to prove that for any fixed g ∈ Hγ

p (Rd; `2), the
sequence (

Rn
)
n∈N :=

( n∑
k=1

〈ek, ·〉`2 gk
)
n∈N
⊆ Lf (`2, H

γ
p (Rd))

is a Cauchy sequence in Γ(`2, H
γ
p (Rd)). Fix g ∈ Hγ

p (Rd; `2). Using the fact that (1 − ∆)−γ/2 :
H0
p (Rd)→ Hγ

p (Rd) is an isometric isomorphism together with the ideal property of γ-radonifying
operators, see Theorem 2.17 above, we obtain that for arbitrary m,n ∈ N,

‖Rn −Rm‖Γ(`2,H
γ
p (Rd)) =

∥∥∥ n∑
k=m+1

〈ek, ·〉`2gk
∥∥∥

Γ(`2,H
γ
p (Rd))

=
∥∥∥(1−∆)−γ/2

n∑
k=m+1

〈ek, ·〉`2(1−∆)γ/2gk
∥∥∥

Γ(`2,H
γ
p (Rd))

≤ ‖(1−∆)−γ/2‖L(H0
p(Rd),Hγ

p (Rd))

∥∥∥ n∑
k=m+1

〈ek, ·〉`2(1−∆)γ/2gk
∥∥∥

Γ(`2,H0
p(Rd))

=
∥∥∥ n∑
k=m+1

〈ek, ·〉`2(1−∆)γ/2gk
∥∥∥

Γ(`2,H0
p(Rd))

.

Thus, since H0
p (Rd) = Lp(Rd), we obtain from (2.11),

‖Rn −Rm‖Γ(`2,H
γ
p (Rd)) ≤ C

∥∥∥( n∑
k=m

|(1−∆)γ/2gk|2
) 1

2
∥∥∥
Lp(Rd)

.

Therefore,
(
Rn
)
n∈N converges in Γ(`2, H

γ
p (Rd)) and the series

∑∞
k=1〈ek, ·〉`2 gk is well-defined.

Moreover, using the same arguments, it follows that

‖Φ(g)‖Γ(`2,H
γ
p (Rd)) =

∥∥∥ ∞∑
k=1

〈ek, ·〉`2gk
∥∥∥

Γ(`2,H
γ
p (Rd))

≤
∥∥∥ ∞∑
k=1

〈ek, ·〉`2(1−∆)γ/2gk
∥∥∥

Γ(`2,H0
p(Rd))

≤ C
∥∥∥( ∞∑

k=1

|(1−∆)γ/2gk|2
) 1

2
∥∥∥
Lp(Rd)

= C ‖g‖Hγ
p (Rd;`2).

Consequently, the obviously linear operator Φ is bounded. Simultaneously, one easily checks that

Φ̃ : Γ(`2, H
γ
p (Rd))→ Hγ

p (Rd; `2)

R 7→ (Rek)k∈N

is the inverse of Φ, which is well-defined, linear and bounded by Theorem 2.20.
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2.3.3 Weighted Sobolev spaces

In this subsection we recall the definition and some basic properties of the weighted Sobolev
spaces Hγ

p,θ(G) as introduced e.g. in [93]. These spaces serve as state spaces for the solution
processes u = (u(t))t∈[0,T ] of SPDEs on domains in the Lp-theory of N.V. Krylov and collab-
orators (see, e.g., [72, 73, 75, 76, 85, 86]). Although in this thesis we consider only SPDEs on
bounded Lipschitz domains, we introduce and analyse the weighted Sobolev spaces on arbitrary
domains G in Rd with non-empty boundary ∂G. Among others, we will prove that Hγ

p,θ(G)
possesses the umd property and has type r := min{p, 2}, see Lemma 2.50. We will also consider
the spaces Hγ

p,θ(G; `2) used in the mentioned Lp-theory and prove that they are isomorphic to

Γ(`2, H
γ
p,θ(G)), see Theorem 2.54, which is a generalization of the just proven Theorem 2.42. This

will allow us to apply the stochastic integration theory from Section 2.2 to stochastic processes
Φ : Ω× [0, T ]→ Hγ

p,θ(G; `2) in Chapter 6.

Let G ⊂ Rd be an arbitrary domain with non-empty boundary ∂G. Remember that ρ(x) =
ρG(x) denotes the distance of a point x ∈ G to the boundary ∂G. We fix an infinitely differen-
tiable function ψ defined on G such that for all x ∈ G,

ρ(x) ≤ Cψ(x), ρ(x)m−1|Dmψ(x)| ≤ C(m) <∞ for all m ∈ N0, (2.25)

where C and C(m) do not depend on x ∈ G. For a detailed construction of such a function see,
e.g., [113, Chapter VI, Section 2.1]. Let ζ ∈ C∞0 (R+) be a non-negative function satisfying∑

n∈Z
ζ(en+t) > c > 0 for all t ∈ R. (2.26)

Note that any non-negative smooth function ζ ∈ C∞0 (R+) with ζ > 0 on [e−1, e] satisfies (2.26).
Without loss of generality, wee assume that ζ takes values in the interval [0, 1]. For x ∈ G and
n ∈ Z, define

ζn(x) := ζ(enψ(x)). (2.27)

Then, there exists k0 > 0 such that, for all n ∈ Z,

supp ζn ⊂ Gn := {x ∈ G : e−n−k0 < ρ(x) < e−n+k0},

i.e., ζn ∈ C∞0 (Gn). Moreover, |Dmζn(x)| ≤ C(ζ,m)emn for all x ∈ G and m ∈ N0, and∑
n∈Z ζn(x) ≥ δ > 0 for all x ∈ G. Using this localisation sequence the weighted Sobolev spaces

Hγ
p,θ(G) can be introduced as follows.

Definition 2.43. Let G be an arbitrary domain in Rd with non-empty boundary. Furthermore,
let ζn, n ∈ Z, be as above, p ∈ (1,∞), and γ, θ ∈ R. Then

Hγ
p,θ(G) :=

{
u ∈ D′(G) : ‖u‖Hγ

p,θ(G) :=
(∑
n∈Z

enθ‖ζ−n(en·)u(en·)‖p
Hγ
p

) 1
p
<∞

}
.

It is called weighted Sobolev space of (smoothness) order γ with summability parameter p and
weight parameter θ.

Remark 2.44. The reason why Hγ
p,θ(G) is called weighted Sobolev space is the fact that

Lp,θ(G) := H0
p,θ(G) = Lp(G,B(G), ρθ−dλd;R),

with equivalent norms, and that, if γ = m ∈ N is a positive integer,

Hm
p,θ(G) =

{
u ∈ Lp,θ(G) : ρ|α|Dαu ∈ Lp,θ(G) for all α ∈ Nd0 with |α| ≤ m

}
,



38 Preliminaries

‖u‖pHm
p,θ(G) �

m∑
k=0

|u|p
Hk
p,θ(G)

(2.28)

where

|u|p
Hk
p,θ(G)

:=
∑
α∈Nd0
|α|=k

∫
G

∣∣ρ(x)|α|Dαu(x)
∣∣pρ(x)θ−d dx, (2.29)

for k ∈ {0, . . . ,m}; see, e.g., [93, Proposition 2.2].

Now we present some useful properties of the space Hγ
p,θ(G) taken from [93], see also [80,81].

Lemma 2.45. Let G ⊂ Rd be a domain with non-empty boundary ∂G, γ, θ ∈ R, and p ∈ (1,∞).

(i) Hγ
p,θ(G) is a separable and reflexive Banach space.

(ii) The space C∞0 (G) is dense in Hγ
p,θ(G).

(iii) u ∈ Hγ
p,θ(G) if, and only if, u, ψux ∈ Hγ−1

p,θ (G) and

‖u‖Hγ
p,θ(G) ≤ C‖ψux‖Hγ−1

p,θ (G)
+ C‖u‖

Hγ−1
p,θ (G)

≤ C‖u‖Hγ
p,θ(G).

Also, u ∈ Hγ
p,θ(G) if, and only if, u, (ψu)x ∈ Hγ−1

p,θ (G) and

‖u‖Hγ
p,θ(G) ≤ C‖(ψu)x‖Hγ−1

p,θ (G)
+ C‖u‖

Hγ−1
p,θ (G)

≤ C‖u‖Hγ
p,θ(G).

(iv) For any ν, γ ∈ R, ψνHγ
p,θ(G) = Hγ

p,θ−νp(G) and

‖u‖Hγ
p,θ−νp(G) ≤ C‖ψ−νu‖Hγ

p,θ(G) ≤ C‖u‖Hγ
p,θ−νp(G).

(v) If 0 < η < 1, γ = (1 − η)ν0 + ην1, 1/p = (1 − η)/p0 + η/p1 and θ = (1 − η)θ0 + ηθ1 with
ν0, ν1, θ0, θ1 ∈ R and p0, p1 ∈ (1,∞), then

Hγ
p,θ(G) =

[
Hν0
p0,θ0

(G), Hν1
p1,θ1

(G)
]
η

(equivalent norms).

Consequently, if γ ∈ (ν0, ν1) then, for any ε > 0, there exists a constant C, depending on
ν0, ν1, θ, p, and ε, such that

‖u‖Hγ
p,θ(G) ≤ ε‖u‖Hν1

p,θ(G) + C(ν0, ν1, θ, p, ε)‖u‖Hν0
p,θ(G).

Also, if θ ∈ (θ0, θ1) then, for any ε > 0, there exists a constant C, depending on θ0, θ1, γ,
p, and ε, such that

‖u‖Hγ
p,θ(G) ≤ ε‖u‖Hγ

p,θ0
(G) + C(θ0, θ1, γ, p, ε)‖u‖Hγ

p,θ1
(G).

(vi) There exists a constant c0 > 0 depending on p, θ, γ and the function ψ such that, for all
c ≥ c0, the operator ψ2∆− c is an isomorphism from Hγ+1

p,θ (G) to Hγ−1
p,θ (G).

(vii) If G is bounded, then Hγ
p,θ1

(G) ↪→ Hγ
p,θ2

(G) for θ1 < θ2.



2.3 Function spaces 39

(viii) The dual of Hγ
p,θ(G) and the weighted Sobolev space H−γp′,θ′(G) with 1/p + 1/p′ = 1 and

θ/p+ θ′/p′ = d are isomorphic. That is,

(
Hγ
p,θ(G)

)∗ ' H−γp′,θ′(G) where
1

p
+

1

p′
= 1 and

θ

p
+
θ′

p′
= d. (2.30)

Remark 2.46. Assertions (iv) and (vi) in Lemma 2.45 imply the following: If u ∈ Hγ
p,θ−p(G)

and ∆u ∈ Hγ
p,θ+p(G), then u ∈ Hγ+2

p,θ−p(G) and there exists a constant C, which does not depend
on u, such that

‖u‖
Hγ+2
p,θ−p(G)

≤ C‖∆u‖Hγ
p,θ+p(G) + C‖u‖Hγ

p,θ−p(G).

A proof of the following equivalent characterization of the weighted Sobolev spaces Hγ
p,θ(G)

can be found in [93, Proposition 2.2].

Lemma 2.47. Let {ξn : n ∈ Z} ⊆ C∞0 (G) be such that for all n ∈ Z and m ∈ N0,

|Dmξn| ≤ C(m) cnm and supp ξn ⊆ {x ∈ G : c−n−k0 < ρ(x) < c−n+k0} (2.31)

for some c > 1 and k0 > 0, where the constant C(m) does not depend on n ∈ Z and x ∈ G.
Then, for any u ∈ Hγ

p,θ(G),∑
n∈Z

cnθ‖ξ−n(cn·)u(cn·)‖p
Hγ
p
≤ C ‖u‖p

Hγ
p,θ(G)

.

If in addition ∑
n∈Z

ξn(x) ≥ δ > 0 for all x ∈ G, (2.32)

then the converse inequality also holds.

The following sequences {ξn : n ∈ Z} will be useful, when we apply Lemma 2.47 in the proofs
of Lemma 3.5(i), Lemma 4.9 and Theorem 6.7, respectively.

Remark 2.48. (i) It can be shown that for any i, j ∈ {1, . . . , d}, both{
ξ(1)
n := e−n(ζn)xi : n ∈ Z

}
and

{
ξ(2)
n := e−2n(ζn)xixj : n ∈ Z

}
satisfy (2.31) with c := e. Thus, for any p ∈ (1,∞) and θ ∈ R,∑

n∈Z
enθ
(
‖en(ζ−n)xi(e

n·)u(en·)‖p
Hγ
p

+ ‖e2n(ζ−n)xixj (e
n·)u(en·)‖p

Hγ
p

)
≤ C‖u‖p

Hγ
p,θ(G)

.

(ii) Let c0 > 1 and k1 > 0. Fix a non-negative function ζ̃ ∈ C∞0 (R+) with

ζ̃(t) = 1 for all t ∈
[ 1

C
c−k1

0 , C(0) ck1
0

]
,

where C and C(0) are as in (2.25). Then, the sequence {ξn : n ∈ Z} ⊆ C∞0 (G) defined by

ξn := ζ̃(cn0ψ(·)), n ∈ Z,

fulfils the conditions (2.31) and (2.32) from Lemma 2.47 with c = c0 and a suitable k0 > 0.
Furthermore,

ξn(x) = 1 on
{
x ∈ G : c−n−k1

0 ≤ ρ(x) ≤ c−n+k1
0

}
.
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(iii) Let {ξn : n ∈ Z} ⊆ C∞0 (G) fulfil the conditions (2.31) and (2.32) from Lemma 2.47 for
some fixed constants c > 1 and k0 > 0. Consider the sequence {ξ∗n : n ∈ Z} ⊆ C∞0 (G) given
by

ξ∗n :=
ξn∑
j∈Z ξj

, n ∈ Z.

Obviously, ∑
n∈Z

ξ∗n(x) = 1 for all x ∈ G. (2.33)

By standard calculations one can check that the sequence {ξ∗n : n ∈ Z} ⊆ C∞0 (G) also fulfils
the condition (2.31) from Lemma 2.47. The following fact might be useful: Any x ∈ G is
contained in at most finitely many stripes

Gn(c, k0) :=
{
x ∈ G : c−n−k0 < ρ(x) < c−n+k0

}
, n ∈ Z. (2.34)

Even more, there exists a finite constant C = C(c, k0) which does not depend on x ∈ G
such that ∣∣{n ∈ Z : x ∈ Gn(c, k0)

}∣∣ ≤ C. (2.35)

Let us also be a little bit more precise on the duality statement from Lemma 2.45(viii).

Remark 2.49. Fix γ ∈ R, p ∈ (1,∞), θ ∈ R and let p′ and θ′ be as in (2.30). Fix {ξn : n ∈
Z} ⊆ C∞0 (G) with

∑
n∈Z ξn = 1 on G satisfying (2.31) from Lemma 2.47 for some fixed c > 1

and k0 > 0. Simultaneously, assume that we have a sequence {ξ̃n : n ∈ Z} ⊆ C∞0 (G) such that
for every n ∈ Z, ξ̃n equals one on the support of ξn, i.e.,

ξ̃n

∣∣∣
suppξn

= 1, (2.36)

and satisfying (2.31)—with the same c > 1 but possibly different k0 > 0—and (2.32) from
Lemma 2.47. By Remark 2.48(ii) and (iii), it is clear that we can construct such sequences.
The assertion of Lemma 2.45(viii) has been proven in [93, Proposition 2.4] by showing that the
mapping

Ψ : H−γp′,θ′(G)→
(
Hγ
p,θ(G)

)∗
u 7→ Ψ(u) := [u, ·]

with

[·, ·] : H−γp′,θ′(G)×Hγ
p,θ(G)→ R, [u, v] :=

∑
n∈Z

cnd
(
ξ̃−n(cn·)u(cn·), ξ−n(cn·)v(cn·)

)
(2.37)

is an isomorphism; see (2.24) for the meaning of (·, ·) on H−γp′ (Rd) ×Hγ
p (Rd). From now on we

will use this notation also on H−γp′,θ′(G)×Hγ
p,θ(G) and define

(·, ·) := [·, ·] on H−γp′,θ′(G)×Hγ
p,θ(G), (2.38)

with [·, ·] as in (2.37). This is justified by the following calculation: Let u ∈ H−γp′,θ′(G) ⊆ D′(G)

and ϕ ∈ C∞0 (G). Then, since
∑

n∈Z ξn = 1 and ξ̃n is constructed in such a way that (2.36) holds,
we obtain

(u, ϕ) =
(
u,
∑
n∈Z

ξ−nϕ
)

=
∑
n∈Z

(
u, ξ−nϕ

)
=
∑
n∈Z

(
ξ̃−nu, ξ−nϕ

)
= [u, ϕ].



2.3 Function spaces 41

After presenting and discussing these fundamental properties of weighted Sobolev spaces, we
prove now that they satisfy the following geometric Banach space properties.

Lemma 2.50. Let G be an arbitrary domain in Rd with non-empty boundary. Let γ, θ ∈ R and
p ∈ (1,∞). Then Hγ

p,θ(G) is a umd space with type r := min{2, p}.

Proof. First we prove the umd property. Obviously, the linear operator

S : Hγ
p,θ(G)→ Lp

(
Z,P(Z),

∑
n∈Z

enθδn;Hγ
p (Rd)

)
u 7→

(
n 7→ ζ−n(en·)u(en·)

)
.

is isometric. Therefore, and since Hγ
p,θ(G) is complete, the range of S is a closed subspace of

Lp
(
Z,P(Z),

∑
n∈Z e

nθδn;Hγ
p (Rd)

)
, which satisfies the umd property by Lemma 2.6(iii). Thus,

Hγ
p,θ(G) is isomorphic to a closed subspace of a umd Banach spaces. Hence, due to Lemma 2.6(i)

and Remark 2.39, the umd property of Hγ
p,θ(G) follows.

In order to prove that Hγ
p,θ(G) has type r = min{2, p} we argue as follows: Fix an arbitrary

Rademacher sequence (rk)
∞
k=1 and a finite set {u1, . . . , uK} ⊆ Hγ

p,θ(G). Then, by the Kahane-
Khintchine inequality, see Lemma 2.10, we have

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥r
Hγ
p,θ(G)

]) 1
r

≤ C

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥p
Hγ
p,θ(G)

]) 1
p

.

By the definition of the weighted Sobolev norm, this yields

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥r
Hγ
p,θ(G)

]) 1
r

≤ C

(
E

[∑
n∈Z

enθ
∥∥∥ζ−n(en·)

( K∑
k=1

rkuk

)
(en·)

∥∥∥p
Hγ
p (Rd)

]) 1
p

.

Using Fubini’s theorem and the fact that ζ−n(en·)
(∑K

k=1 rkuk
)
(en·) =

∑K
k=1 rkζ−n(en·)uk(en·),

we obtain the estimate

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥r
Hγ
p,θ(G)

]) 1
r

≤ C

(∑
n∈Z

enθE

[∥∥∥ K∑
k=1

rkζ−n(en·)uk(en·)
∥∥∥p
Hγ
p (Rd)

]) 1
p

.

Thus, using again the Kahane-Khintchine inequality, we have

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥r
Hγ
p,θ(G)

]) 1
r

≤ C

(∑
n∈Z

enθ
(
E

[∥∥∥ K∑
k=1

rkζ−n(en·)uk(en·)
∥∥∥r
Hγ
p (Rd)

]) p
r

) 1
p

.

Since Hγ
p (Rd) has type r, see Remark 2.39, this leads to

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥r
Hγ
p,θ(G)

]) 1
r

≤ C

(∑
n∈Z

enθ
( K∑
k=1

∥∥ζ−n(en·)uk(en·)
∥∥r
Hγ
p (Rd)

) p
r

) 1
p

.
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Therefore, applying the triangle inequality in Lp/r(Z,P(Z),
∑

n e
nθδn;R) yields

(
E

[∥∥∥ K∑
k=1

rkuk

∥∥∥r
Hγ
p,θ(G)

]) 1
r

≤ C
∥∥∥ K∑
k=1

(
n 7→

∥∥ζ−n(en·)uk(en·)
∥∥r
Hγ
p (Rd)

)∥∥∥ 1
r

Lp/r

(
Z,P(Z),

∑
n e

nθδn;R
)

≤ C
( K∑
k=1

∥∥∥n 7→ ∥∥ζ−n(en·)uk(en·)
∥∥r
Hγ
p (Rd)

∥∥∥
Lp/r

(
Z,P(Z),

∑
n e

nθδn;R
)) 1

r

= C

( K∑
k=1

(∑
n∈Z

enθ‖ζ−n(en·)uk(en·)‖pHγ
p (Rd)

) r
p

) 1
r

= C

( K∑
k=1

‖uk‖rHγ
p,θ(G)

) 1
r

.

The assertion follows.

Remember that in this thesis we are mainly concerned with SPDEs on bounded Lipschitz
domains O ⊂ Rd. As already mentioned, the weighted Sobolev spaces introduced above will serve
as state spaces for the solutions processes u = (u(t))t∈[0,T ] of the SPDEs under consideration.
Therefore, since we are interested in solutions fulfilling a zero Dirichlet boundary condition,
we need to check whether the elements of the the weighted Sobolev spaces introduced above
‘vanish at the boundary’ in an adequate way. In order to answer this question for the relevant
range of parameters (this will be done in Remark 4.3) we will need the following lemma. It
is an immediate consequence of [87, Theorem 9.7]. Let us mention that this result holds for a
wider class of domains. E.g. it stays true for bounded domains with Hölder continuous boundary,
see [87, Remark 9.8(ii)] for details. However, in the course of this thesis, we will not need these
generalizations.

Lemma 2.51. For a bounded Lipschitz domain O ⊂ Rd and k ∈ N0,

W̊ k
p (O) = Hk

p,d−kp(O)

with equivalent norms.

In order to formulate the stochastic equations under consideration, we will use the following
spaces Hγ

p,θ(G; `2). They are counterparts of the spaces Hγ
p (Rd; `2) introduced in the previous

subsection. We define and discuss them for the general case of arbitrary domains with non-empty
boundary, although later on we are mainly interested in the case of bounded Lipschitz domains.

Definition 2.52. Let G be an arbitrary domain in Rd with non-empty boundary. For γ ∈ R,
p ∈ (1,∞) and θ ∈ R, we define

Hγ
p,θ(G; `2) :=

{
g = (gk)k∈N ∈

(
Hγ
p,θ(G)

)N
:

‖g‖p
Hγ
p (G;`2)

:=
∑
n∈Z

enθ
∥∥∥(ζ−n(en·)gk(en·)

)
k∈N

∥∥∥p
Hγ
p (`2)

<∞
}
,

with ζn, n ∈ Z, from above, cf. (2.27).

Remark 2.53. For p ∈ (1,∞) and γ, θ ∈ R, Hγ
p,θ(G; `2) is a Banach space. This can be proven by

following the lines of the proof of the completeness of Hγ
p,θ(G) presented in [93, Proposition 2.4.1].

The details are left to the reader.



2.3 Function spaces 43

In Chapter 6 we will need the fact that Hγ
p,θ(G) is isomorphic to the corresponding class of

γ-radonifying operators from `2(N) to Hγ
p,θ(G). We prove this now. As in Subsection 2.2.2, from

now on {γk : k ∈ N} denotes a Gaussian sequence, see Definition 2.11. Remember that for h ∈ `2
and u ∈ E, where E is a Banach space, we use to write h⊗u for the rank one operator 〈h, ·〉`2u,
see also (2.7).

Theorem 2.54. Let G be an arbitrary domain in Rd with non-empty boundary. Furthermore,
let γ, θ ∈ R and p ∈ [2,∞). Then, the operator

Φ : Hγ
p,θ(G; `2)→ Γ(`2, H

γ
p,θ(G))

(gk)k∈N 7→
∞∑
k=1

ek ⊗ gk (convergence in Γ(`2, H
γ
p,θ(G)))

is an isomorphism, and therefore,

Hγ
p,θ(G; `2) ' Γ(`2, H

γ
p,θ(G)).

Proof. First of all we show that Φ is well-defined and bounded. Fix g ∈ Hγ
p,θ(G; `2). Then,

using the equality (2.9) from Theorem 2.18 together with the norm equivalence (2.8), for any
m1,m2 ∈ N, we can estimate the norm of the finite rank operator

∑m2
k=m1

ek ⊗ gk as follows∥∥∥∥ m2∑
k=m1

ek ⊗ gk
∥∥∥∥p

Γ(`2,H
γ
p,θ(G))

≤ C E

[∥∥∥∥ m2∑
k=m1

γk g
k

∥∥∥∥p
Hγ
p,θ(G)

]
.

Since for every ω ∈ Ω,∥∥∥∥ m2∑
k=m1

γk(ω)gk
∥∥∥∥p
Hγ
p,θ(G)

=
∑
n∈Z

enθ
∥∥∥∥ m2∑
k=m1

γk(ω)ζ−n(en·)gk(en·)
∥∥∥∥p
Hγ
p (Rd)

,

with {ζn : n ∈ Z} as defined in (2.27), an application of Beppo-Levi’s theorem yields∥∥∥∥ m2∑
k=m1

ek ⊗ gk
∥∥∥∥p

Γ(`2,H
γ
p,θ(G))

≤ C
∑
n∈Z

enθE

[∥∥∥∥ m2∑
k=m1

γk ζ−n(en·)gk(en·)
∥∥∥∥p
Hγ
p (Rd)

]
. (2.39)

For every n ∈ Z, we can apply Equality (2.9) from Theorem 2.18 to the finite rank operator

m2∑
k=m1

ek ⊗
(
ζ−n(en·)gk(en·)

)
∈ Lf (`2, H

γ
p (Rd)) ⊆ Γ(`2, H

γ
p (Rd)),

followed by the norm equivalence (2.8), and obtain

E

[∥∥∥∥ m2∑
k=m1

γk ζ−n(en·)gk(en·)
∥∥∥∥p
Hγ
p (Rd)

]
= C

∥∥∥∥ m2∑
k=m1

ek ⊗
(
ζ−n(en·)gk(en·)

)∥∥∥∥p
Γp(`2,H

γ
p (Rd))

≤ C
∥∥∥∥ m2∑
k=m1

ek ⊗
(
ζ−n(en·)gk(en·)

)∥∥∥∥p
Γ(`2,H

γ
p (Rd))

.

Thus, if we set

g̃kn(m1,m2) :=

{
ζ−n(en·)gk(en·), if k ∈ {m1, . . . ,m2}
0 , else

}
,
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obviously,
(
g̃kn(m1,m2)

)
k∈N ∈ H

γ
p (Rd; `2), and an application of Theorem 2.42 leads to

E

[∥∥∥∥ m2∑
k=m1

γk ζ−n(en·)gk(en·)
∥∥∥∥p
Hγ
p (Rd)

]
≤ C

∥∥∥(g̃kn(m1,m2)
)
k∈N

∥∥∥p
Hγ
p (Rd;`2)

,

the constant C being independent of n ∈ Z and g. Inserting this into the estimate (2.39), we
obtain ∥∥∥∥ m2∑

k=m1

ek ⊗ gk
∥∥∥∥p

Γ(`2,H
γ
p,θ(G))

≤ C
∑
n∈Z

enθ
∥∥∥(g̃kn(m1,m2)

)
k∈N

∥∥∥p
Hγ
p (Rd;`2)

.

Since g ∈ Hγ
p,θ(G; `2), the right hand side converges to zero for m1,m2 → ∞ by Lebesgue’s

dominated convergence theorem. Thus, the sequence(
Rm
)
m∈N :=

( m∑
k=1

ek ⊗ gk
)
m∈N

⊆ Lf (`2, H
γ
p,θ(G))

converges in Γ(`2, H
γ
p,θ(G)) and its limit

∑∞
k=1 ek⊗gk is well-defined. The boundedness of Φ can

now be proven by repeating the calculations above with m1 = 1 and m2 =∞.
By the open mapping theorem, showing that

Φ̃ : Γ(`2, H
γ
p,θ(G))→ Hγ

p,θ(G; `2)

R 7→ (Rek)k∈N

is the inverse of Φ, would finish the proof. Let us check whether this operator is well-defined. If
so, then the fact that it is the inverse of Φ follows by simple calculations. Fix R ∈ Γ(`2, H

γ
p,θ(G)).

Since for every n ∈ Z, the operator

Sn : Hγ
p,θ(G)→ Hγ

p (Rd)

u 7→ ζ−n(en·)u(en·)

is obviously bounded, the composition SnR is γ-radonifying, i.e., SnR ∈ Γ(`2, H
γ
p (Rd)), see

Theorem 2.17. Furthermore, by Theorem 2.42,∥∥∥(SnRek
)
k∈N

∥∥∥
Hγ
p (Rd;`2)

=
∥∥∥(ζ−n(en·)Rek(e

n·)
)
k∈N

∥∥∥
Hγ
p (Rd;`2)

≤ C
∥∥SnR∥∥Γ(`2,H

γ
p (Rd))

with a constant C independent of n ∈ Z and R. Using this together with Equality (2.9) from
Theorem 2.18 together with the norm equivalence (2.8), yields∑

n∈Z
enθ
∥∥∥(ζ−n(en·)Rek(e

n·)
)
k∈N

∥∥∥p
Hγ
p (Rd;`2)

≤ C
∑
n∈Z

enθ
∥∥SnR∥∥pΓ(`2,H

γ
p (Rd))

≤ C
∑
n∈Z

enθE

[∥∥∥∥ ∞∑
k=1

γkSnRek

∥∥∥∥p
Hγ
p (Rd)

]
.

Applying Beppo-Levi’s theorem and using the definitions of the norms we obtain∑
n∈Z

enθ
∥∥∥(ζ−n(en·)Rek(e

n·)
)
k∈N

∥∥∥p
Hγ
p (Rd;`2)

≤ C E

[∑
n∈Z

enθ
∥∥∥∥ ∞∑
k=1

γkSnRek

∥∥∥∥p
Hγ
p (Rd)

]

= C E

[∑
n∈Z

enθ
∥∥∥∥ ∞∑
k=1

γk ζ−n(en·)Rek(e
n·)
∥∥∥∥p
Hγ
p (Rd)

]

= C E

[∥∥∥∥ ∞∑
k=1

γkRek

∥∥∥∥p
Hγ
p,θ(G)

]
.
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Therefore, another application of Equality (2.9) from Theorem 2.18 followed by the norm equiv-
alence (2.8), leads to∑

n∈Z
enθ
∥∥∥(ζ−n(en·)Rek(e

n·)
)
k∈N

∥∥∥p
Hγ
p (Rd;`2)

≤ C ‖R‖p
Γ(`2,H

γ
p,θ(G))

.

Thus, (Rek)k∈N ∈ Hγ
p,θ(G; `2).

We occasionally use the following properties of the spaces Hγ
p,θ(G; `2) in this thesis. In several

publications like [73, 75], these properties are stated and used without proof. Since we did not
find any proof in the literature, we sketch a proof based on the isomorphy from Theorem 2.54
above. The details are left to the reader.

Lemma 2.55. Let G be an arbitrary domain in Rd with non-empty boundary, p ∈ (1,∞) and
γ, θ ∈ R.

(i) g = (gk)k∈N ∈ Hγ
p,θ(G; `2) if, and only if, g, (ψgkx)k∈N ∈ Hγ−1

p,θ (G; `2) and

‖g‖Hγ
p,θ(G;`2) ≤ C

∥∥(ψgkx)k∈N
∥∥
Hγ−1
p,θ (G;`2)

+ C‖g‖
Hγ−1
p,θ (G;`2)

≤ C‖g‖Hγ
p,θ(G;`2).

Also, g = (gk)k∈N ∈ Hγ
p,θ(G; `2) if, and only if, g, ((ψgk)x)k∈N ∈ Hγ−1

p,θ (G; `2) and

‖g‖Hγ
p,θ(G;`2) ≤ C

∥∥((ψgk)x)k∈N
∥∥
Hγ−1
p,θ (G;`2)

+ C‖g‖
Hγ−1
p,θ (G;`2)

≤ C‖g‖Hγ
p,θ(G;`2).

(ii) For any ν, γ ∈ R, ψνHγ
p,θ(G; `2) = Hγ

p,θ−νp(G; `2) and

‖g‖Hγ
p,θ−νp(G;`2) ≤ C

∥∥(ψ−νgk)k∈N
∥∥
Hγ
p,θ(G;`2)

≤ C‖g‖Hγ
p,θ−νp(G;`2).

(iii) There exists a constant c0 > 0 depending on p, θ, γ and the function ψ such that, for all
c ≥ c0, the operator

ψ2∆− c : Hγ+1
p,θ (G; `2)→ Hγ−1

p,θ (G; `2)

g = (gk)k∈N 7→ (ψ2∆− c)g :=
(
(ψ2∆− c)gk

)
k∈N

is an isomorphism.

(iv) If G is bounded, then Hγ
p,θ1

(G; `2) ↪→ Hγ
p,θ2

(G; `2) for θ1 < θ2.

(v) If 0 < η < 1, γ = (1 − η)ν0 + ην1, 1/p = (1 − η)/p0 + η/p1 and θ = (1 − η)θ0 + ηθ1 with
ν0, ν1, θ0, θ1 ∈ R and p0, p1 ∈ (1,∞), then

Hγ
p,θ(G; `2) =

[
Hν0
p0,θ0

(G; `2), Hν1
p1,θ1

(G; `2)
]
η

(equivalent norms).

Sketch of proof. The assertions can be proven by using the isomorphism from Theorem 2.54
together with the ideal property of γ-radonifying operators (Theorem 2.17) and the correspond-
ing properties of the spaces Hγ

p,θ(G), γ, θ ∈ R, p ∈ (1,∞), from Lemma 2.45. In order to prove
the interpolation statement (v) one additionally needs the fact that[

Γ(`2, H
ν0
p0,θ0

(G)),Γ(`2, H
ν1
p1,θ1

(G))
]
η

= Γ(`2, H
γ
p,θ(G)).

This follows from [114, Theorem 2.1] with H0 = H1 = `2, X0 = Hν0
p0,θ0

(G) and X1 = Hν1
p1,θ1

(G).
(Note that, by a result of G. Pisier, the B-convexity of X0 and X1 assumed in [114, Theorem 2.1]
is equivalent to the fact that the Banach spaces have non-trivial type, see, e.g., [49, Theo-
rem 13.10] for a proof.)
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2.3.4 Besov spaces

One of the main goals of this thesis is to analyse the spatial regularity of the solutions to SPDEs
on bounded Lipschitz domains in the particular scale (∗) of Besov spaces. In this subsection we
recall the definition of Besov spaces by means of the Fourier transform and present an alternative
(intrinsic) characterization via differences. In certain publications, such as [27], [46] and [48], the
latter is used as a definition of Besov spaces for 0 < p, q <∞ and s > 0.

Denote by ϕ0 ∈ C∞0 (Rd) a compactly supported, infinitely differentiable function having the
properties

ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2. (2.40)

For k ∈ N define

ϕk(x) := ϕ0(2−kx)− ϕ0(2−k+1x) for x ∈ Rd (2.41)

to obtain a smooth dyadic resolution of unity on Rd, i.e., ϕk ∈ C∞0 (Rd) for all k ∈ N, and

∞∑
k=0

ϕk(x) = 1 for all x ∈ Rd. (2.42)

Definition 2.56. Let {ϕk}k∈N0 ⊆ C∞0 (Rd) be a resolution of unity according to (2.40)–(2.42).

(i) Let 0 < p, q <∞, s ∈ R, and

‖u‖Bsp,q(Rd) :=

( ∞∑
k=0

2ksq‖F−1 [ϕkFu]‖q
Lp(Rd)

)1/q

.

Then

Bs
p,q(Rd) :=

{
u ∈ S ′(Rd) : ‖u‖Bsp,q(Rd) <∞

}
is the Besov space of (smoothness) order s with summability parameter p and fine tuning
parameter q.

(ii) Let G ⊆ Rd be an arbitrary domain. Then, for 0 < p, q < ∞ and s ∈ R, the Besov space
Bs
p,q(G) of (smoothness) order s with summability parameter p and fine tuning parameter

q on G is defined as follows:

Bs
p,q(G) :=

{
u ∈ D′(G) : there exists g ∈ Bs

p,q(Rd) : g
∣∣
G

= u
}
.

It is endowed with the norm

‖u‖Bsp,q(G) := inf
g∈Bsp,q(Rd)

g|G=u

‖g‖Bsp,q(Rd), u ∈ Bs
p,q(G). (2.43)

Remark 2.57. For 0 < p, q <∞ and s ∈ R, the Besov space Bs
p,q(G), endowed with the quasi-

norm ‖·‖Bsp,q(G), is a quasi-Banach space. If 1 ≤ p, q <∞, then ‖·‖Bsp,q(G) is a norm and therefore

(Bs
p,q(G), ‖·‖Bsp,q(G)) is a Banach space. A proof can be found in [115, Theorem 2.3.3(i)] for the

case G = Rd. For general domains we refer to the proof of [115, Proposition 3.2.3(i)]. Note that
the assumed smoothness property for the boundary of the underlying domain therein does not
have any relevance in the proof of the completeness of the Besov spaces.
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As already mentioned in the introduction to this subsection, besides the definition given
above, Besov spaces are frequently defined by means of differences. In general, it is not im-
mediately clear whether the two definitions yield the same spaces. However, if G = Rd, for
p, q ∈ (0,∞) and s > max{0, d(1/p − 1)}, the two ways of defining Besov spaces match. This
follows from [115, Theorem 2.5.12] and the integral transformation formula for rotationally sym-
metric functions, see, e.g. [111, Corollary 15.14]. In this thesis, we will also need this statement
for the case that G is a bounded Lipschitz domain in Rd. It has been proven in [50, Theo-
rem 3.18]. In the next theorem, we present these results in detail. We use the following notation.
Let G be an arbitrary domain in Rd. For a function u : G→ R and a natural number n ∈ N let

∆n
h[u](x) := ∆n

hu(x) :=

n∏
i=0

1G(x+ ih) ·
n∑
j=0

(
n

j

)
(−1)n−j u(x+ jh)

be the n-th difference of u with step h ∈ Rd. For p ∈ (0,∞), the n-th order Lp-modulus of
smoothness of u is given by

ωn(t, u,G)p := ωn(t, u)p := sup
|h|<t

∥∥∆n
hu
∥∥
Lp(G)

, t > 0.

Theorem 2.58. Let G be either Rd or a bounded Lipschitz domain in Rd. Let p, q ∈ (0,∞),
s > max{0, d(1/p − 1)} and n ∈ N with n > s. Then Bs

p,q(G) is the collection of all functions
u ∈ Lp(G) such that

|u|Bsp,q(G) :=

(∫ ∞
0

(
t−s ωn(t, u,G)p

)q dt

t

)1/q

<∞. (2.44)

The function

Bs
p,q(G) 3 u 7→ ‖u‖Lp(G) + |u|Bsp,q(G) (2.45)

is an equivalent (quasi-)norm for ‖·‖Bsp,q(G) on Bs
p,q(G).

Remark 2.59. In this thesis we will be mainly concerned with Besov spaces Bs
p,p(G) with

p ≥ 2 and s > 0, and on the non-linear approximation scale Bα
τ,τ (G), 1/τ = α/d + 1/p, α > 0,

with p ≥ 2, where either G = Rd or G is a bounded Lipschitz domain in Rd. In both cases,
the parameters fulfil the assumptions from Theorem 2.58. Therefore, the definition based on the
Fourier transform and the intrinsic characterization of Besov spaces via differences are equivalent.

In the next theorem we collect some parameter constellations, for which Besov and Sobolev
spaces coincide. As in the theorem before, we restrict ourselves to the cases which are relevant
for this thesis and assume that the underlying domain is either the whole space or a bounded
Lipschitz domain in Rd. For G = Rd the statements are taken from [116]: The first assertion can
be found in [116, Section 2.5.1, especially Remark 4] and the second follows from [116, Theo-
rem 2.3.2(d) together with Theorem 2.3.3(b)]. For the case that G is a bounded Lipschitz domain,
the first assertion can be found in [116, Remark 4.4.2/2], whereas for the second statement we ad-
ditionally need [116, Proposition 4.2.4 together with Definition 4.2.1/1 and Theorem 4.6.1(b)].
It is worth noting that in the just mentioned references, the statements are proven for more
general bounded domains. That is, the statements hold for bounded domains of cone-type in
the sense of [116, Definition 4.2.3]. However, bounded Lipschitz domains are of cone-type, see
e.g. [2, Sections 4.8, 4.9 and 4.11].

Theorem 2.60. Let G be either Rd or a bounded Lipschitz domain in Rd.
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(i) For p ∈ (1,∞) and s ∈ (0,∞) \ N the following equality holds (equivalent norms):

W s
p (G) = Bs

p,p(G).

(ii) For s ∈ (0,∞) the following equality holds (equivalent norms):

W s
2 (G) = Bs

2,2(G).

We present now three embeddings of Besov spaces, which we will frequently use in this thesis.

Theorem 2.61. (i) Let G be an arbitrary domain in Rd. Then, for any p ∈ (0,∞) and
s0, s1 ∈ R with s1 > s0 the following embedding holds:

Bs1
p,p(G) ↪→ Bs0

p,p(G). (2.46)

(ii) Let G be either Rd or a bounded Lipschitz domain in Rd and fix p ∈ (1,∞). Furthermore,
assume that α2 > α1 > 0 and let τ1, τ2 > 0 fulfil

1

τi
=
αi
d

+
1

p
, i = 1, 2.

Then the following embeddings hold:

Bα2
τ2,τ2(G) ↪→ Bα1

τ1,τ1(G) ↪→ Lp(G). (2.47)

(iii) Let O be a bounded Lipschitz domain in Rd and let 0 < p < q <∞. Then, for

s > s− ε > max

{
0, d

(
1

p
− 1

)}
, (2.48)

the following embedding holds:

Bs
q,q(O) ↪→ Bs−ε

p,p (O). (2.49)

Proof. (i) This is an immediate consequence of the definition of Besov spaces given above.
(ii) For G = Rd, the first embedding in (2.47) is proved in [27, Corollary 3.7.1], whereas the

second embedding can be found in [117, Theorem 1.73(i)]. If G is a bounded Lipschitz domain,
the assertion follows from the case G = Rd by using the existence and boundedness of the
extension operator introduced in [110] for bounded Lipschitz domains.

(iii) Note that since (2.48) holds, we are in the setting of Theorem 2.58. Thus, using the
equivalent characterisation of Besov spaces via differences, we immediately obtain

Bs
q,q(O) ↪→ Bs

p,q(O),

by an application of Hölder’s inequality to the moduli of smoothness (remember that O is
bounded). In order to prove that simultaneously

Bs
p,q(O) ↪→ Bs−ε

p,p (O)

holds, we can argue as follows. First one can check the equivalence of the (quasi-)semi-norm
(2.44) and ∥∥(2jsωn(2−j , u,O)p

)
j∈N
∥∥
`q
,

see also [27, Remark 3.2.1]. Then, the arguments from the proof of [115, Proposition 2.3.2/2(ii)]
yield the asserted embedding.
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r

1
q

1
2

t

Bt
2,2(O) = W t

2(O)

1
p′

1
q
7→ max

{
0, d

(
1
q
− 1

)}

ε

1
p

s
Bs
p,p(O)

Figure 2.1: Visualisation of Besov spaces on bounded Lipschitz
domains O ⊂ Rd in a DeVore/Triebel diagram.

Remark 2.62. (i) In order to prove the embeddings (2.47) for bounded Lipschitz domains,
we only need the existence of a linear and bounded extension operator as presented in [110].
Thus, the statement of Theorem 2.61(ii) stays true for any domain G ⊆ Rd, where a linear
and bounded extension operator from the proper Besov spaces on G to the corresponding
Besov spaces on Rd (and from Lp(G) to Lp(Rd)) exist.

(ii) The short proof of Theorem 2.61(iii) presented above reveals that, if the Besov spaces are
defined via differences, then the embedding (2.49) holds for any for any s > s− ε > 0 with
O replaced by an arbitrary bounded domain G ⊂ Rd.

Remark 2.63. In Figure 2.1 we use a so-called DeVore/Triebel diagram for a visualisation of
the results presented above for bounded Lipschitz domains O ⊂ Rd. In this (1/q, r)-diagram,
a point (1/p, s) in the first quadrant (0,∞)2 stands for the Besov space Bs

p,p(O) as introduced
in Definition 2.56. The shaded area delimited by the coordinate axes and the ray with slope d
starting at the point (1, 0) represents the range of parameters (1/q, r) ∈ (0,∞)2 fulfilling

r > max

{
0, d

(
1

q
− 1

)}
.

In particular, for any (1/q, r) in this area, the alternative characterization of the correspond-
ing Besov space Br

q,q(O) via differences from Theorem 2.58 holds. As we have seen in Theo-
rem 2.60(ii), for p = 2, the Besov spaces coincide with the Sobolev spaces introduced in Subsec-
tion 2.3.1. In our diagram these spaces are represented by the points above (1/2, 0). The three
arrows starting at (1/p, s) stand for the three embeddings from Theorem 2.61. In clockwise
orientation: Firstly, the arrow pointing to the right stands for (2.49); the ε at the arrowhead
indicates that the smoothness decreases by an arbitrarily small ε > 0 in this case. Secondly,
the trivial embedding (2.46) is represented by the arrow pointing straight down. Finally, the
third arrow starting at (1/p, s) and pointing to the south-west with a slope d stands for the first
embedding in (2.47). This embedding is a generalization of the well-known Sobolev embedding.
Therefore, a ray contained in the shaded area, starting at a point (1/p′, 0) with slope d is usually
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called a Sobolev embedding line. Note that for p ∈ (1,∞), the non-linear approximation scale
(∗) of Besov spaces is represented by a Sobolev embedding line.

2.3.5 Triebel-Lizorkin spaces

In this subsection we present a Fourier analytic definition of the Triebel-Lizorkin spaces. They
will be used when analysing the relationship between Sobolev spaces with and without weights,
respectively, in Chapter 4.

Definition 2.64. Let {ϕk}k∈N0 ⊆ C∞0 (Rd) be a resolution of unity according to (2.40)–(2.42).

(i) Let 0 < p, q <∞, s ∈ R, and

‖u‖F sp,q(Rd) :=
∥∥∥( ∞∑

k=0

2ksq
∣∣F−1 [ϕkFu]

∣∣q)1/q∥∥∥
Lp(Rd)

.

Then

F sp,q(Rd) :=
{
u ∈ S ′(Rd) : ‖u‖F sp,q(Rd) <∞

}
is the Triebel-Lizorkin space of (smoothness) order s with summability parameters p, q.

(ii) Let G ⊆ Rd be an arbitrary domain. Then, for 0 < p, q <∞ and s ∈ R, the Triebel-Lizorkin
space F sp,q(G) of order s on G is defined as follows:

F sp,q(G) :=
{
u ∈ D′(G) : there exists g ∈ F sp,q(Rd) : g

∣∣
G

= u
}
.

It is endowed with the norm

‖u‖F sp,q(G) := inf
g∈F sp,q(Rd)

g|G=u

‖g‖F sp,q(Rd), u ∈ F sp,q(G).

Remark 2.65. For 0 < p, q <∞ and s ∈ R, the Triebel-Lizorkin space F sp,q(G), endowed with
the quasi-norm ‖·‖F sp,q(G), is a quasi-Banach space. If 1 ≤ p, q <∞, then ‖·‖F sp,q(G) is a norm and

therefore (F sp,q(G), ‖·‖F sp,q(G)) is a Banach space. A proof can be found in [115, Theorem 2.3.3(ii)]

for the case G = Rd. For general domains we refer to the proof of [115, Proposition 3.2.3(iii)].
Note that the assumed smoothness property for the boundary of the underlying domain therein
does not have any relevance in the proof of the completeness of the Triebel-Lizorkin spaces.

The following relationships of Triebel-Lizorkin spaces to Besov and Sobolev spaces respec-
tively will be used in this thesis. A proof of assertion (i) can be found in [116, Theorem 4.6.1(b)].
The second part of the theorem is taken from [117, Proposition 1.122(i)]—at least the casem ∈ N.
A proof for the more general case of bounded domains of cone-type in the sense of [116, Defini-
tion 4.2.3] can be found in [116, Theorem 4.2.4]. For m = 0, (2.50) holds for arbitrary domains
G ⊆ Rd instead of O. This follows from the fact that F 0

p,2(Rd) = Lp(Rd). A proof of the latter
can be found in [115, Proposition 2.5.6].

Theorem 2.66. (i) Let G be an arbitrary domain in Rd. Then, for p ≥ 2 and s ∈ R,

F sp,2(G) ↪→ Bs
p,p(G).

(ii) Let O be a bounded Lipschitz domain in Rd. Then, for p ∈ (1,∞) and m ∈ N0,

Fmp,2(O) = Wm
p (O) (equivalent norms). (2.50)
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As a consequence, one obtains the following relationship between Sobolev spaces and Besov
spaces on bounded Lipschitz domains, in the case that the smoothness parameter is a non-
negative integer.

Corollary 2.67. Let O be a bounded Lipschitz domain in Rd. Then, for p ≥ 2 and m ∈ N0,

Wm
p (O) ↪→ Bm

p,p(O).

2.4 Semigroups of linear operators

In the semigroup approach to SPDEs, the equation is rewritten as a vector-valued ordinary
stochastic differential equation of the form

dU(t) +AU(t) dt = F (U(t), t) dt+ Σ(U(t), t) dWH(t), t ∈ [0, T ]

U(0) = u0.

}
The leading operator A is usually unbounded and −A generates a strongly continuous semigroup
on a suitable Banach space. In this section we recall the terminology from the semigroup theory,
focusing first on analytic semigroups. Afterwards, we give a definition of what is sometimes
called variational operators and collect some properties needed later on.

Let E be a Banach space (real or complex). In general, we call a linear mapping B : D(B) ⊆
E → E, defined on a linear subspace D(B) of E, a linear operator with domain D(B). (B,D(B))
is said to be closed , if its graph {(x,Bx) : x ∈ D(B)} is a closed subset of E × E. It is densely
defined , if D(B) is dense in E, i.e., if

D(B)
‖·‖E

= E.

The resolvent set of B is the set ρ(B) consisting of all λ ∈ C for which there exists a bounded
inverse (λ−B)−1 : (E, ‖·‖E)→ (D(B), ‖·‖E) of (λ−B) := (λId−B). The spectrum of B is its
complement σ(B) := C \ ρ(B). If B is an operator on a real Banach space we put ρ(B) = ρ(BC)
and σ(B) := σ(BC), where BC is a complexification of B, see, e.g., [98] or [8, p. 4ff.] for details.

Recall that a family S = {S(t)}t≥0 ⊆ L(E) of bounded linear operators is called a C0-
semigroup (or, alternatively, a strongly continuous semigroup), if S(0) = Id, S(t)S(s) = S(t+ s)
for any t, s ≥ 0, and limt↓0‖S(t)x − x‖E = 0 for every x ∈ E. S = {S(t)}t≥0 is called a
contraction semigroup, if additionally ‖S(t)‖L(E) ≤ 1 for all t ≥ 0. The infinitesimal generator ,
or briefly the generator , of a C0-semigroup S = {S(t)}t≥0 is the (unbounded) linear operator
B : D(B) ⊆ E → E defined by

D(B) :=

{
x ∈ E : lim

t↓0

S(t)x− x
t

exists in E

}
,

Bx := lim
t↓0

S(t)x− x
t

, x ∈ D(B).

By [102, Corollary 2.5], any generator (B,D(B)) of a C0-semigroup is densely defined and closed.
Therefore, the domain D(B) endowed with the graph norm

‖x‖D(B) := ‖x‖E + ‖Bx‖E , x ∈ D(B),

becomes a Banach space. Obviously, if 0 ∈ ρ(B), the graph norm is equivalent to ‖B·‖E . A
contraction semigroup S = {S(t)}t≥0 is said to be of negative type, if there exists an ω < 0 such
that

‖S(t)‖L(E) ≤ eωt, t ≥ 0.



52 Preliminaries

From [102, Theorem 5.3] one can deduce that, if (B,D(B)) is the generator of a semigroup S of
negative type, then (A,D(A)) := (−B,D(B)) is positive in the sense of [115, Definition 1.14.1],
i.e., (−∞, 0] ⊆ ρ(A) and there exists a constant C ∈ (0,∞) such that

‖(A− λ)−1‖L(E) ≤
C

1 + |λ|
, λ ∈ (−∞, 0].

A C0-semigroup S = {S(t)}t≥0 on the Banach space E := Lp(G) with p ∈ [1,∞) is called positive
if for each t ≥ 0,

f ∈ Lp(G), f ≥ 0 a.e. on G implies S(t)f ≥ 0 a.e. on G,

see [52, p. 353].

Analytic semigroups

Now we collect some definitions and results from the theory of analytic semigroups. We restrict
ourselves to the topics we will need in this thesis and refer to the monographs [102], [52], or [94] for
an in-depth treatment of the theory. For σ ∈ (0, π), we write Σσ := {z ∈ C \ {0} : |arg (z)| < σ}.

Definition 2.68. Let σ ∈ (0, π/2). A C0-semigroup S = {S(t)}t≥0 ⊆ L(E) acting on a Banach
space E is called analytic on Σσ if

A1. S extends to an analytic function S : Σσ → L(E), z 7→ S(z);

A2. limz→0,z∈Σσ S(z)x = x for every x ∈ E;

A3. S(z1)S(z2) = S(z1 + z2) for z1, z2 ∈ Σσ.

We say that a C0-semigroup S is analytic, if it is analytic on Σσ for some σ ∈ (0, π/2). If, in
addition,

A4. z 7→ ‖S(z)‖L(E) is bounded in Σσ′ for every 0 < σ′ < σ,

we call S a bounded analytic semigroup.

Next, we introduce the notion ‘H∞-calculus’ of a sectorial operator. Originally developed
by McIntosh and collaborators [6, 11, 95], it has found various applications in the context of
(stochastic) partial differential equations. Our definition is taken from [122]. Let (−A,D(−A))
be the generator of a bounded analytic semigroup on a Banach space E. Then, see, e.g., [8,
Proposition I.1.4.1],

σ(A) ⊆ Σσ0 for some σ0 ∈ (0, π/2),

and for all σ ∈ (σ0, π),

sup
z∈C\Σσ

‖z(z −A)−1‖L(E) <∞,

i.e., in the terminology used e.g. in [60, Chapter 2], A is a sectorial operator. Let H∞(Σσ)
denote the Banach space of all bounded analytic functions f : Σσ → C endowed with the
supremum norm. Furthermore, H∞0 (Σσ) denotes the subspace of H∞(Σσ), consisting of all
functions satisfying

|f(z)| ≤ C |z|ε

(1 + |z|2)ε
, z ∈ Σσ, (2.51)
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for some ε > 0. For f ∈ H∞0 (Σσ) and σ′ ∈ (σ0, σ), due to (2.51), the L(E)-valued Bochner
integral

f(A) :=
1

2πi

∫
∂Σσ′

f(z)(z −A)−1 dz

converges absolutely. Furthermore, it is independent of σ′. We say that the operator (A,D(A))
admits a bounded H∞(Σσ)-calculus if there exists a constant C ∈ (0,∞) such that

‖f(A)‖L(E) ≤ C ‖f‖∞ := C sup
z∈Σσ

|f(z)|, f ∈ H∞0 (Σσ).

The infimum of all σ such that (A,D(A)) admits a bounded H∞(Σσ)-calculus is called angle of
the calculus. The following two results are mentioned in [122].

Theorem 2.69 ( [71, Corollary 5.2]). Let G ⊆ Rd be an arbitrary domain and let p ∈ [1,∞).
If (−A,D(−A)) is the generator of a positive analytic contraction semigroup on Lp(G), then,
(A,D(A)) admits a bounded H∞-calculus of angle less than π/2.

The next result can be derived from [60, Corollary 3.5.7].

Theorem 2.70. If 0 ∈ ρ(A) and (A,D(A)) admits a bounded H∞-calculus of angle less than
π/2, then, A has bounded imaginary powers and supt∈[−1,1]‖Ait‖L(E) <∞.

Variatonal operators

Let (V, 〈·, ·〉V ) be a separable real Hilbert space. Furthermore, let

a(·, ·) : V × V → R

be a continuous, symmetric and elliptic bilinear form. This means that there exist two constants
δell,Kell > 0, such that for arbitrary u, v ∈ V , the bilinear form fulfils the following conditions:

δell ‖u‖2V ≤ a(u, u), a(u, v) = a(v, u), |a(u, v)| ≤ Kell ‖u‖V ‖v‖V . (2.52)

Then, by the Lax-Milgram theorem, the operator

A : V → V ∗

v 7→ Av := a(v, ·)
(2.53)

is an isomorphism between V and its dual space V ∗. Let us now assume that V is densely
embedded into a real Hilbert space (E, 〈·, ·〉E) via a linear embedding j. Then, the adjoint map
j∗ : E∗ → V ∗ of j embeds E∗ densely into the dual V ∗ of V . If we identify the Hilbert space E
with its dual E∗ via Riesz’s isometric isomorphism E 3 u 7→ Ψu := 〈u, ·〉E ∈ E∗, we obtain a so
called Gelfand triple (V,E, V ∗),

V
j
↪→ E

Ψ∼= E∗
j∗

↪→ V ∗. (2.54)

We have

〈j(v1), j(v2)〉E = 〈j∗Ψj(v1), v2〉V ∗×V for all v1, v2 ∈ V. (2.55)

It is worth noting that, although V is a Hilbert space, at this point we do not identify V and
its dual V ∗ via the Riesz isomorphism in V . This would not match with (2.54) and (2.55). Here,
the vector space V is considered as a subspace of V ∗ by means of the embedding j∗Ψj, where
Ψ is the Riesz isomorphism for E and not for V . In this setting, we can consider the operator
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A : V → V ∗ as an (in general) unbounded operator on the intermediate space E. Therefore, we
set

D(A) := D(A;E) := {u ∈ V : Au ∈ j∗Ψ(E)},

and define the operator

Ã : D(Ã) := j(D(A;E)) ⊆ E → E

u 7→ Ãu := Ψ−1j∗−1Aj−1u.

The (unbounded) linear operator −Ã with domain D(−Ã) := D(Ã) is sometimes called vari-
ational . It is densely defined, since E∗ is densely embedded in V ∗ and A is isomorphic. Fur-
thermore, the symmetry of the bilinear form a(·, ·) implies that Ã, and therefore also −Ã, is
self-adjoint. That is, (Ã,D(Ã)) = (Ã∗, D(Ã∗)), where Ã∗ : D(Ã∗) ⊆ E → E denotes the adjoint
operator defined by

D(Ã∗) :=
{
u1 ∈ E : ∃u2 ∈ E : 〈Ãu, u1〉E = 〈u, u2〉E for all u ∈ D(Ã)

}
,

Ã∗u1 := u2, u1 ∈ D(Ã∗),

where u2 ∈ E fulfils 〈Ãu, u1〉E = 〈u, u2〉E for all u ∈ D(Ã) and is unique by the density of
D(Ã) in E. At the same time, since A : V → V ∗ is an isomorphism, the operator (−Ã)−1 :
(E, ‖·‖E) → (D(−Ã), ‖·‖E), defined by (−Ã)−1 := j(−A)−1j∗Ψ is the bounded inverse of −Ã.
Thus, 0 ∈ ρ(−Ã) and, therefore, (−Ã,D(−Ã)) is a closed operator on E. Moreover, by (2.52)
and the definition of Ã, for arbitrary λ > 0 and u ∈ D(−Ã),

‖(λId− (−Ã))u‖E ≥ 〈λu, u〉E + a(u, u) ≥ λ‖u‖E ,

i.e., −Ã is dissipative, see [102, Theorem 4.2]. Therefore, by the Lumer-Philips Theorem, see in
particular [102, Corollary 4.4], (−Ã,D(−Ã)) is the generator of a contraction semigroup on E.
By making slight abuse of notation, we sometimes write A instead of Ã, especially when j = Id.
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Chapter 3

Starting point: Linear SPDEs in
weighted Sobolev spaces

In this chapter we present and discuss the main results from the Lp-theory of SPDEs on non-
smooth domains as developed in [75] within the analytic approach. It is the starting point for
our regularity analysis, providing existence and uniqueness of solutions for a wide class of linear
SPDEs on general bounded Lipschitz domains O ⊂ Rd. The solutions are elements of certain
classes Hγp,θ(O, T ) of predictable p-Bochner integrable Hγ

p,θ−p(O)-valued stochastic processes.
Since in the next chapter we will be able to prove a general embedding of weighted Sobolev
spaces into Besov spaces from the scale (∗), this Lp-theory turns out to be tailor-made for our
regularity analysis in the non-linear approximation scale (∗). A combination of the existence
results from this section with the aforedmentioned embedding will lead to a statement about
the spatial Besov regularity for linear SPDEs, as stated and proven in Section 5.1. In order
to obtain similar spatial regularity results for semi-linear equations, in Section 5.2 we will also
extend the Lp-theory from [75] to a class of semi-linear SPDEs. Furthermore, while analysing
the Hölder regularity of the paths of the solution process in Chapter 6, we present an extension
to an Lq(Lp)-theory for the heat equation on bounded Lipschitz domains. That is, we prove
the existence of a solution in certain classes Hγ,qp,θ(O, T ) of predictable q-Bochner integrable

Hγ
p,θ−p(O)-valued stochastic processes, explicitly allowing the summability parameter q in time

(and with respect to ω ∈ Ω) to be greater than the summability parameter p used to measure
the smoothness in space direction.

We split this chapter in two parts: In Section 3.1 we discuss the spaces Hγ,qp,θ(O, T ), whereas
Section 3.2 is concerned with those fragments from the Lp-regularity of SPDEs developed in [75]
which are relevant for our analysis.

Before we start our exposition, we fix some notation and specify the class of equations
considered in this chapter. Let O be a bounded Lipschitz domain in Rd. (Ω,F ,P) denotes a
complete probability space and T > 0 is a finite time horizon. Moreover, (wkt )t∈[0,T ], k ∈ N,
is a sequence of independent real-valued standard Brownian motions with respect to a normal
filtration (Ft)t∈[0,T ] on (Ω,F ,P). We write shorthand ΩT instead of Ω × [0, T ]. We consider
equations of the form

du =
(
aijuxixj + biuxi + cu+ f

)
dt+

(
σikuxi + µku+ gk

)
dwkt on ΩT ×O,

u(0) = u0 on Ω×O,

}
(3.1)

where the coefficients aij , bi, c, σi,k and µk, for i, j ∈ {1, . . . , d} and k ∈ N, are assumed to fulfil
certain assumptions. We want to emphasize that in this thesis, for a better readability, we use
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the so-called summation convention on the repeated indices i, j, k when writing down equations,
see also Remark 3.12(i) as well as Remark 5.12(i). In order to state the assumptions on the
coefficients, we need some additional notation. For x, y ∈ O we write ρ(x, y) := ρ(x)∧ρ(y), ρ(x)
being the distance of a point x ∈ O to the boundary ∂O, i.e., ρ(x) = dist(x, ∂O). For α ∈ R,
δ ∈ (0, 1] and m ∈ N0 we set

[f ](α)
m := sup

x∈O
ρm+α(x)|Dmf(x)|,

[f ]
(α)
m+δ := sup

x,y∈O
|β|=m

ρm+α(x, y)
|Dβf(x)−Dβf(y)|

|x− y|δ
,

|f |(α)
m :=

m∑
l=0

[f ]
(α)
l and |f |(α)

m+δ := |f |(α)
m + [f ]

(α)
m+δ,

whenever it makes sense. We use the same notations for `2-valued functions (just replace the
absolute values in the above definitions by the `2-norms). Furthermore, let us fix an arbitrary
function

η : [0,∞)→ [0,∞) ,

vanishing only on the set of non-negative integers, i.e., η(j) = 0 if, and only if, j ∈ N0. We set

t+ := t+ η(t).

These notations at hand, we present the assumptions on the coefficients of Eq. (3.1), which
are identical with the ones in [75, Assumption 2.10], see also [73, Assumptions 2.5 and 2.6].
The precise solution concept for equations of the type (3.1) fulfilling these assumptions will be
specified in Definition 3.10.

Assumption 3.1. (i) For any fixed x ∈ O, the coefficients

aij (·, ·, x) , bi (·, ·, x) , c (·, ·, x) , σik (·, ·, x) , µk (·, ·, x) : ΩT → R

are predictable processes with respect to the given normal filtration (Ft)t∈[0,T ].

(ii) (Stochastic parabolicity) There are constants δ0,K ∈ (0,∞), such that for all (ω, t, x) ∈
ΩT ×O and λ ∈ Rd,

δ0|λ|2 ≤
d∑

i,j=1

ãij(ω, t, x)λiλj ≤ K|λ|2,

where ãij := aij − 1
2〈σ

i·, σj·〉`2 for i, j ∈ {1, . . . , d}.

(iii) For all (ω, t) ∈ ΩT ,

|aij(ω, t, ·)|(0)
|γ|+ + |bi(ω, t, ·)|(1)

|γ|+ + |c(ω, t, ·)|(2)
|γ|+

+
∣∣(σik(ω, t, ·))k∈N∣∣(0)

|γ+1|+ +
∣∣(µk(ω, t, ·))k∈N∣∣(1)

|γ+1|+ ≤ K.

(iv) The coefficients aij and σi· are uniformly continuous in x ∈ O, i.e., for any ε > 0 there is
a δ = δ(ε) > 0, such that∣∣aij(ω, t, x)− aij(ω, t, y)

∣∣+
∣∣σi·(ω, t, x)− σi·(ω, t, y)

∣∣
`2
≤ ε,

for all (ω, t) ∈ ΩT , whenever x, y ∈ O with |x− y| ≤ δ.
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(v) The behaviour of the coefficients bi, c and µ can be controlled near the boundary of O in
the following way:

lim
ρ(x)→0
x∈O

sup
ω∈Ω
t∈[0,T ]

{
ρ(x)|bi(ω, t, x)|+ ρ2(x)|c(ω, t, x)|+ ρ(x)|µ(ω, t, x)|`2

}
= 0.

3.1 Stochastic parabolic weighted Sobolev spaces Hγ,q
p,θ(G, T )

The analysis of SPDEs in the analytic approach takes place in the spaces Hγ,qp,θ(G,T ) consisting of

certain predictable q-Bochner integrable Hγ
p,θ−p(G)-valued stochastic processes. In this section

we present the precise definition of these spaces. Furthermore, we collect some of their properties
which are relevant for our analysis later on. We start with common notations for predictable
processes taking values in weighted Sobolev spaces, which are frequently used in the analytic
approach. In the sequel, we write PT for the (Ft)t∈[0,T ]-predictable σ-field on ΩT and PT :=

P⊗dt. Unless explicitly stated otherwise, G denotes an arbitrary domain in Rd with non-empty
boundary.

Definition 3.2. Let G be a domain in Rd with non-empty boundary. For p, q ∈ (1,∞) and
γ, θ ∈ R we define

Hγ,q
p,θ(G,T ) := Lq(ΩT ,PT ,PT ;Hγ

p,θ(G)),

Hγ,q
p,θ(G,T ; `2) := Lq(ΩT ,PT ,PT ;Hγ

p,θ(G; `2)),

Uγ,qp,θ (G) := Lq(Ω,F0,P;H
γ−2/q
p,θ−(1−2/q)p(G)).

If p = q we also write Hγ
p,θ(G,T ), Hγ

p,θ(G,T ; `2) and Uγp,θ(G) instead of Hγ,p
p,θ (G,T ), Hγ,p

p,θ (G,T ; `2)

and Uγ,pp,θ (G) respectively.

Unless explicitly stated otherwise, from now on we assume that

p ∈ [2,∞), q ∈ [2,∞), γ ∈ R, θ ∈ R.

Definition 3.3. Let G be a domain in Rd with non-empty boundary, p, q ∈ [2,∞) and γ, θ ∈ R.
We write u ∈ Hγ,qp,θ(G,T ) if, and only if, u ∈ Hγ,q

p,θ−p(G,T ), u(0) ∈ Uγ,qp,θ (G), and there exist some

f ∈ Hγ−2,q
p,θ+p(G,T ) and g ∈ Hγ−1,q

p,θ (G,T ; `2) such that

du = f dt+ gk dwkt

in the sense of distributions. That is, for any ϕ ∈ C∞0 (G), with probability one, the equality

(u(t, ·), ϕ) = (u(0, ·), ϕ) +

∫ t

0
(f(s, ·), ϕ) ds+

∞∑
k=1

∫ t

0
(gk(s, ·), ϕ) dwks (3.2)

holds for all t ∈ [0, T ], where the series is assumed to converge uniformly on [0, T ] in probability.
In this situation we write

Du := f and Su := g

for the deterministic and for the stochastic part of u, respectively. The norm in Hγ,qp,θ(G,T ) is
defined as

‖u‖Hγ,qp,θ (G,T ) := ‖u‖Hγ,qp,θ−p(G,T ) + ‖Du‖Hγ−2,q
p,θ+p(G,T )

+ ‖Su‖Hγ−1,q
p,θ (G,T ;`2)

+ ‖u(0)‖Uγ,qp,θ (G). (3.3)

If p = q we also write Hγp,θ(G,T ) instead of Hγ,pp,θ (G,T ).
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Remark 3.4. (i) The phrase “. . . , with probability one, the equality (3.2) holds for all t ∈
[0, T ], . . . ” in the definition above, means: There exists a set Ω0 ∈ F with P(Ω0) = 1, such
that for any fixed ω ∈ Ω0, Equality (3.2) is fulfilled for all t ∈ [0, T ]. In particular, the
P-null set where (3.2) might not hold, does not depend on t ∈ [0, T ].

(ii) Replacing G by Rd and omitting the weight parameters in the definitions above, we obtain
the spaces Hγ,q

p (T ) = Hγ,q
p (Rd, T ), Hγ,q

p (T ; `2) = Hγ,q
p (Rd, T ; `2), Uγ,qp = Uγ,qp (Rd), and

H γ,q
p (T ) as introduced in [83, Definition 3.5]. The latter are denoted by Hγ,qp (T ) in [82];

if q = p they coincide with the spaces Hγp(T ) introduced in [80, Definition 3.1].

Lemma 3.5. Let G be a domain in Rd with non-empty boundary, p, q ∈ [2,∞) and γ, θ ∈ R.

(i) If g ∈ Hγ,q
p,θ(G,T ; `2) then, for any ϕ ∈ C∞0 (G), the series

∞∑
k=1

∫ ·
0

(gk(s, ·), ϕ) dwks (3.4)

from (3.2) converges in L2(Ω; C([0, T ];R)).

(ii) The pair (Du,Su) ∈ Hγ−2,q
p,θ+p(G,T ) × Hγ−1,q

p,θ (G,T ; `2) in Definition 3.3 is uniquely deter-

mined by u ∈ Hγ,qp,θ(G,T ).

(iii) Hγ,qp,θ(G,T ) is a Banach space.

Proof. (i) The convergence of the sum (3.4) in L2(Ω; C([0, T ];R)) has been proven in [91,
Section 3.5]. However, we need to correct a minor mistake in the first equality in the last
estimate on page 91 in [91].

Let {ξn : n ∈ Z} ⊆ C∞0 (G) with
∑

n∈Z ξn = 1 on G fulfil (2.31) for some c > 1 and k0 > 0.

Furthermore, fix a sequence {ξ̃n : n ∈ Z} ⊆ C∞0 (G), also fulfilling (2.31)—with a possibly
different k0 > 0—, such that

ξ̃n

∣∣∣
supp {ξn}

= 1 for all n ∈ Z.

By Remark 2.48(ii) and (iii), it is clear that we can construct such sequences. Now, by mimicking,
the proof in [91, Section 3.5] with gκn := ξn(cn·)gκ(cn·) and φn := ξ̃n(cn·)φ(cn·) for n ∈ Z and
κ ∈ N, the assertion follows.

(ii) This assertion follows by using the arguments from [80, Remark 3.3].
(iii) By (ii) we know that the norm (3.3) is well-defined. The completeness can be proven

by following the lines of [83, Remark 3.8] with Rd+ replaced by G.

Proposition 3.6. Let G be a domain in Rd with non-empty boundary, p, q ∈ [2,∞) and γ, θ ∈ R.
Fix g ∈ Hγ,q

p,θ(G,T ; `2) and let Φ : Hγ
p,θ(G; `2)→ Γ(`2, H

γ
p,θ(G)) be the isomorphism introduced in

Theorem 2.54. Then, the Γ(`2, H
γ
p,θ(G))-valued stochastic process

Φg := Φ ◦ g (3.5)

is Lq-stochastically integrable with respect to the `2-cylindrical Brownian motion

`2 3 h 7→W`2(t)h :=
∞∑
k=1

wkt 〈ek, h〉`2 ∈ L2(Ω), t ∈ [0, T ].

Moreover,
∞∑
k=1

∫ ·
0

(
gk(s, ·), ϕ

)
dwks =

(∫ ·
0

Φg(s) dW`2(s), ϕ
)

P-a.s. (3.6)

in C([0, T ];R).
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Proof. Fix g ∈ Hγ,q
p,θ(G,T ; `2) = Lq(ΩT ,PT ,PT ;Hγ

p,θ(G; `2)). Then, since Φ is bounded from

Hγ
p,θ(G; `2) to Γ(`2, H

γ
p,θ(G)), we have

Φg ∈ Lq(ΩT ,PT ,PT ; Γ(`2, H
γ
p,θ(G))). (3.7)

In particular, Φg is an `2-strongly measurable (Ft)t∈[0,T ]-adapted process. Also, Φg belongs to
Lq(Ω;L2([0, T ], H)) scalarly, and, since Hγ

p,θ(G) is a umd Banach space with type 2, compare
Lemma 2.50, Φg is stochastically integrable with respect to the `2-cylindrical Brownian motion
(W`2(t))t∈[0,T ], cf. Theorem 2.32. Consequently, by Theorem 2.29, see also Remark 2.30, Φg

represents a random variable RΦg ∈ LF
q (Ω; Γ(L2([0, T ];H), E)). In particular, by [120, Proposi-

tion 4.3], there exists a continuous (Ft)t∈[0,T ]-adapted version of the Hγ
p,θ(G)-valued stochastic

process (∫ t

0
Φg(s) dW`2(s)

)
t∈[0,T ]

,

which, by the Burkholder-Davis-Gundy inequality proved in [120, Theorem 4.4], satisfies

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Φg(s) dW`2(s)

∥∥∥∥q
Hγ
p,θ(G)

]
≤ C E

[∥∥RΦg

∥∥q
Γ(L2([0,T ];`2),Hγ

p,θ(G))

]
.

Using Embedding (2.20) and the fact that Φ is an isomorphism between the spaces Hγ
p,θ(G; `2)

and Γ(`2, H
γ
p,θ(G)), see Theorem 2.54, this leads to

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Φg(s) dW`2(s)

∥∥∥∥q
Hγ
p,θ(G)

]
≤ C E

[ ∫ T

0
‖Φg‖qΓ(`2,H

γ
p,θ(G))

dt
]
≤ C ‖g‖qHγ,qp,θ (G,T ;`2)

.

Fix two arbitrary positive integers m ≤ n and set gm,n := (gkm,n)k∈N with

gkm,n :=

{
gk, if k ∈ {m, . . . , n}
0 , else

}
∈ Hγ,q

p,θ(G,T ; `2).

Then, by the same arguments as above, the stochastic processes( n∑
k=m

∫ t

0
gk(s, ·) dwks

)
t∈[0,T ]

and

(∫ t

0
Φgm,n(s) dW`2(s)

)
t∈[0,T ]

have continuous versions, which, by Theorem 2.31 coincide P-a.s. in C([0, T ];Hγ
p,θ(G)). Moreover,

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Φgm,n(s) dW`2(s)

∥∥∥∥q
Hγ
p,θ(G)

]
≤ C ‖gm,n‖qHγ,qp,θ (G,T ;`2)

.

The right hand side converges to zero as m,n→∞, since g ∈ Hγ,q
p,θ(G,T ; `2). Consequently, the

series

∞∑
k=1

∫ ·
0
gk(s, ·) dwks

converges in the Banach space Lq(Ω; C([0, T ];Hγ
p,θ(G))), and, by another application of Theo-

rem 2.31,

∞∑
k=1

∫ ·
0
gk(s, ·) dwks =

∫ ·
0

Φg(s) dW`2(s) P-a.s.
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in C([0, T ];Hγ
p,θ(G)). For ϕ ∈ C∞0 (G) ⊆ (Hγ

p,θ(G))∗ ' H−γp′,θ′(G) with 1/p + 1/p′ = 1 and θ/p +
θ′/p′ = d, see Lemma 2.45(viii) and (ii) together with Remark 2.49, the linear operator (·, ϕ) :
Hγ
p,θ(G)→ R, v 7→ (v, ϕ), is bounded. Thus, for any t ∈ [0, T ],

( ∞∑
k=1

∫ t

0
gk(s, ·) dwks , ϕ

)
=

∞∑
k=1

∫ t

0

(
gk(s, ·), ϕ

)
dwks P-a.s.,

and, therefore,

∞∑
k=1

∫ ·
0

(
gk(s, ·), ϕ

)
dwks =

(∫ ·
0

Φg(s) dW`2(s), ϕ
)

P-a.s. (3.8)

in C([0, T ];R)—after possibly changing to suitable versions of the processes.

Remark 3.7. It is worth noting that similar arguments as in the proof of Proposition 3.6 yield
an alternative proof of the convergence of the series (3.4) in L2(Ω; C([0, T ];R)), and even in
Lq(Ω; C([0, T ];R)).

Besides the analysis of the spatial regularity of solutions to SPDEs, in this thesis we are also
interested in the Hölder regularity of the paths of the solution processes. Since our solutions
will always be contained in Hγ,qp,θ(G,T ), results on the Hölder regularity of the elements of these
spaces are of major interest. For p = q ∈ [2,∞) the following result concerning the regularity
of the paths of an element of Hγp,θ(G,T ), considered as a stochastic process with values in
weighted Sobolev spaces, can be found in [75, Theorem 2.9]. Its proof strongly relies on [83,
Corollary 4.12 and Remark 4.14], which are corresponding results on the whole space Rd. Note
that the statement of [75, Theorem 2.9] is formulated only for a certain class of bounded non-
smooth domains. However, the arguments go through for arbitrary domains with non-empty
boundary.

Theorem 3.8. Let G ⊂ Rd be an arbitrary domain with non-empty boundary, γ ∈ R, and θ ∈ R.

(i) Let 2/p < β̃ < β ≤ 1. Then

E
[
u
]p
Cβ̃/2−1/p([0,T ];Hγ+2−β

p,θ−(1−β)p
(G))
≤ C T (β−β̃)p/2 ‖u‖p

Hγ+2
p,θ (G,T )

,

where C ∈ (0,∞) is a constant independent of T and u.

(ii) Let p ∈ [2,∞). Then

E

[
sup
t∈[0,T ]

‖u‖p
Hγ+1
p,θ (G)

]
≤ C ‖u‖p

Hγ+2
p,θ (G,T )

,

where the constant C depends on d, p, γ, θ, G, and T . The function T 7→ C(T ) is
non-decreasing. In particular, there exists a constant C ∈ (0,∞), such that for any u ∈
Hγ+2
p,θ (G,T ) and all t ∈ [0, T ],

‖u‖p
Hγ+1
p,θ (G,t)

≤ C
∫ t

0
‖u‖p

Hγ+2
p,θ (G,s)

ds.

Remark 3.9. In Chapter 6 we will need a generalization of Theorem 3.8(i) for the paths of
elements of Hγ,qp,θ(O, T ) with p 6= q in order to obtain Hölder regularity of the solution to the
stochastic heat equation, considered as a process taking values in the Besov spaces from the
scale (∗); see Theorem 6.1. Its proof will require more involved arguments.
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3.2 An Lp-theory of linear SPDEs on bounded Lipschitz do-
mains

In this section we present the main existence and uniqueness result of the Lp-theory of linear
SPDEs on bounded non-smooth domains developed recently in [75]. Since in this thesis we are
only interested in SPDEs on bounded Lipschitz domains O ⊂ Rd, we will restrict ourselves to
this case, and consider equations of the form (3.1) with coefficients fulfilling Assumption 3.1.
We first specify the solution concept which will be used in this thesis. For i, j ∈ {1, . . . , d} and
a D′(O)-valued function u on ΩT we use the common notation uxi := uxi(ω, t) := u(ω, t)xi and
uxixj := uxixj (ω, t) := u(ω, t)xixj , (ω, t) ∈ ΩT , respectively.

Definition 3.10. Let O be a bounded Lipschitz domain in Rd. Given γ ∈ R, let aij , bi, c,
σik and µk, where i, j ∈ {1, . . . , d} and k ∈ N, satisfy Assumptions 3.1. A stochastic process
u ∈ Hγ,q

p,θ−p(O, T ) is called a solution of Eq. (3.1) in the class Hγ,qp,θ(O, T ) if, and only if, u ∈
Hγ,qp,θ(O, T ) with

u(0, ·) = u0, Du =
d∑

i,j=1

aijuxixj +
d∑
i=1

biuxi + cu+ f, and Su =

( d∑
i=1

σikuxi +µku+ gk
)
k∈N

in the sense of Definition 3.3.

Remark 3.11. In this thesis, if we call an element u ∈ Hγ,qp,θ(O, T ) a solution of Eq. (3.1), we

mean that u is a solution of Eq. (3.1) in the class Hγ,qp,θ(O, T ).

Remark 3.12. (i) As already mentioned, throughout this thesis, for a better readability, we
omit the notation of the sums

∑
i,j and

∑
k when writing down equations and use the

so-called summation convention on the repeated indices i, j, k. Thus the expression

du =
(
aijuxixj + biuxi + cu+ f

)
dt+

(
σikuxi + µku+ gk

)
dwkt

is shorthand for

du =

( d∑
i,j=1

aijuxixj +

d∑
i=1

biuxi + cu+ f

)
dt+

( d∑
i=1

σikuxi + µku+ gk
)

dwkt

in the sense of Definition 3.3.

(ii) The solution concept presented in Definition 3.10 is a natural generalization of the defini-
tion given in [75]. Therein, only the case p = q is considered. However, we will need this
generalization later on in Chapter 6.

The main existence and uniqueness results for equations on bounded Lipschitz domains
proven in [75], see Theorem 2.12, Remark 2.13 as well as Theorem 2.15 therein, can be summa-
rized as follows.

Theorem 3.13. Let O be a bounded Lipschitz domain in Rd, and γ ∈ R. For i, j ∈ {1, . . . , d}
and k ∈ N, let aij, bi, c, σik, and µk be given coefficients satisfying Assumption 3.1 with suitable
constants δ0 and K.

(i) For p ∈ [2,∞), there exists a constant κ0 ∈ (0, 1), depending only on d, p, δ0, K and O,
such that for any θ ∈ (d+ p− 2−κ0, d+ p− 2 +κ0), f ∈ Hγ

p,θ+p(O, T ), g ∈ Hγ+1
p,θ (O, T ; `2)

and u0 ∈ Uγ+2
p,θ (O), Eq. (3.1) has a unique solution u in the class Hγ+2

p,θ (O, T ). For this
solution

‖u‖p
Hγ+2
p,θ (O,T )

≤ C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
, (3.9)
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where the constant C depends only on d, p, γ, θ, δ0, K, T and O.

(ii) There exists p0 > 2, such that the following statement holds: If p ∈ [2, p0), then there
exists a constant κ1 ∈ (0, 1), depending only on d, p, δ0, K and O, such that for any
θ ∈ (d − κ1, d + κ1), f ∈ Hγ

p,θ+p(O, T ), g ∈ Hγ+1
p,θ (O, T ; `2) and u0 ∈ Uγ+2

p,θ (O), Eq. (3.1)

has a unique solution u in the class Hγ+2
p,θ (O, T ). For this solution, estimate (3.9) holds.

Remark 3.14. (i) For p = 2 there is no difference between (i) and (ii) in Theorem 3.13.
In particular, existence of solutions in Hγ2,d(O, T ) ↪→ L2(ΩT ; W̊ 1

2 (O)) is guaranteed under
suitable assumptions on the data of the equation. Things are different if p > 2. Since we do
not know the precise value of κ0 = κ0(d, p,O), we can not expect that d ∈ (d+p−2−κ0, d+
p− 2 + κ0) if p > 2. Thus, Theorem 3.13(i) does not yield the existence of a solution u ∈
Hγp,d(O, T ), even if the data of the equation are assumed to be arbitrarily smooth. However,
Theorem 3.13(ii) guarantees that at least for certain p > 2, i.e., for p ∈ [2, p0) with some
p0 > 2, a solution u ∈ Hγp,d(O, T ) ↪→ Lp(ΩT ; W̊ 1

p (O)) exists under suitable assumptions on
the data. In general, p0 is not very high due to a counterexample of N.V. Krylov, which
can be found in [75, Example 2.17]. It is shown therein that for any p > 4, there exists
a bounded Lipschitz domain O ⊂ R2 and a function f ∈ Lp([0, T ];Lp(O)) such that a
solution of the (deterministic) heat equation

du =
(
∆u+ f

)
dt on ΩT ×O,

u(0) = 0 on Ω×O,

}

fails to be in Lp([0, T ];Lp,d−p(O)), see [75, Example 2.17]. Thus, if we do not specify any
further properties of the domain O except the fact that it is bounded and Lipschitz, the
assertion of Theorem 3.13(ii) holds only with p0 ≤ 4.

(ii) Assume that the bounded O is not only Lipschitz but of class C1
u, see Definition 2.3. Then,

if σ = 0, the statement of Theorem 3.13(i) holds for any p ∈ [2,∞) and θ ∈ R fulfilling

d− 1 < θ < d+ p− 1; (3.10)

see [72, Theorem 2.9 together with Remark 2.7]. That is: Let O be a bounded C1
u-domain in

Rd, and assume that aij , bi, c, and µk with i, j ∈ {1, . . . , d} and k ∈ N, are given coefficients
satisfying Assumption 3.1 for some γ ∈ R with σ = 0 and suitable constants δ0 and K.
Then for any p ∈ [2,∞) and any θ ∈ R fulfilling (3.10), Eq. (3.1) with u0 ∈ Uγ+2

p,θ (O),

f ∈ Hγ
p,θ+p(O, T ) and g ∈ Hγ+1

p,θ (O, T ; `2) has a unique solution u in the class Hγ+2
p,θ (O, T ).

Moreover, the estimate (3.9) holds.

(iii) As mentioned in [86, Remark 3.6], if O is replaced by Rd+, the statement of Theorem 3.13
fails to hold for θ ≥ d+ p− 1 and θ ≤ d− 1. Therefore, in general, we do not expect that
the κ0 and κ1 can be chosen to be greater than one. Explicit counterexamples on general
bounded Lipschitz domains are yet to be constructed.

(iv) Remember that, as mentioned in the introduction, in this thesis we are interested in
equations with zero Dirichlet boundary conditions. However, it is not immediately clear in
which sense solutions in the class Hγ,qp,θ(O, T ) fulfil such boundary conditions and therefore
can be understood as solutions to Eq. (1.1). This will be clarified in Chapter 4, see in
particular Remark 4.3.



3.2 An Lp-theory of linear SPDEs on bounded Lipschitz domains 63

(v) The statement of Theorem 3.13 is proved in [75] not only for bounded Lipschitz domains
but for any bounded domain G ⊂ Rd which admits the Hardy inequality , i.e., for which∫

G

∣∣ρG(x)−1ϕ(x)
∣∣2 dx ≤ C

∫
G
|ϕx(x)|2 dx, for all ϕ ∈ C∞0 (G), (3.11)

with a constant C which does not depend on ϕ ∈ C∞0 (G); the solution concept is analogous
to the one introduced in Definition 3.10 with G instead of O. It is known that bounded
Lipschitz domains admit the Hardy inequality, see, e.g., [99] for a proof.

The analysis in [75] is done in the framework of the analytic approach. As pointed out in
the introduction, alternatively, equations of the type (3.1) can be consider within a semigroup
framework. Since many contributions to the regularity analysis of SPDEs use this semigroup
approach, it is important to know whether the solution concept used in this thesis matches
with the one(s) used therein. In what follows we present a specific setting where a solution to
Eq. (3.1) in the sense given above is a weak solution of the corresponding Cauchy problem in
the sense of Da Prato and Zabczyk [32, Section 5.1.1], which is the common solution concept
used within the semigroup approach. We restrict ourselves to the Hilbert space case (i.e., p = 2)
and particularly to equations in L2(O). A generalization to Banach spaces (i.e., p > 2) will be
discussed in Chapter 6. We start by defining what is called a weak solution in the semigroup
framework. To this end, we first fix our specific setting.

Assumption 3.15. (i) The operator (−A,D(−A)) generates a strongly continuous semi-
group

{
S(t)

}
t≥0

in L2(O).

(ii) (WQ(t))t∈[0,T ] is a Q-Wiener process in a real Hilbert space (H, 〈·, ·〉H) adapted to the
given normal filtration (Ft)t∈[0,T ] with covariance operator Q ∈ L1(H).

(iii) f : ΩT → L2(O) is a predictable stochastic process with P-a.s. Bochner integrable trajec-
tories.

(iv) B ∈ L(H,L2(O)).

(v) u0 : Ω→ L2(O) is an F0-measurable random variable.

Under these conditions we can define what is called a weak solution of the L2(O)-valued
SDE

du(t) +Au(t) dt = f(t) dt+B dWQ(t), t ∈ [0, T ],

u(0) = u0,

}
(3.12)

in the semigroup approach of Da Prato and Zabczyk [32, Section 5.1.1].

Definition 3.16. Let (A,D(A)), (WQ(t))t∈[0,T ], f , B and u0 fulfil Assumption 3.15. Then, an
L2(O)-valued stochastic process u = (u(t))t∈[0,T ] is a weak solution of Eq. (3.12), if it has the
following properties:

(i) u has P-a.s. Bochner integrable trajectories.

(ii) For all ζ ∈ D(A∗) and t ∈ [0, T ], we have

〈u(t), ζ〉L2(O) = 〈u0, ζ〉L2(O) −
∫ t

0
〈u(s), A∗ζ〉L2(O) ds

+

∫ t

0
〈f(s), ζ〉L2(O) ds+ 〈BWQ(t), ζ〉L2(O) P-a.s.

(3.13)
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Remark 3.17. (i) In parts of the literature such as [104] a weak solution in the sense of
Definition 3.16 is called analytically weak solution.

(ii) Typically, if H ↪→ L2(O) and B is the identity operator from H into L2(O), we omit B in
(3.12) and (3.13).

Now we can prove exemplarily that in a specific setting the solution to Eq. (3.1) is a weak
solution of the corresponding L2(O)-valued SDE of the form (3.12).

Proposition 3.18. Assume that the coefficients (aij) are constant and symmetric, i.e., they
do not depend on (ω, t, x) ∈ ΩT × O and aij = aji for i, j ∈ {1, . . . , d}. Furthermore, let
Assumption 3.1 be fulfilled with vanishing bi, c, σik, and µk, for i ∈ {1, . . . , d} and k ∈ N.
Fix f ∈ H0

2,d(O, T ), g ∈ H1
2,d(O; `2) and u0 ∈ U2

2,d(O). Then, the solution u ∈ H2
2,d(O, T ) of

Eq. (3.1), which exists by Theorem 3.13, is the unique weak solution of Eq. (3.12), where B is
the identity operator from H1

2,d(O) into L2(O),

(−A,D(−A)) :=

( d∑
i,j=1

aijuxixj ,

{
u ∈ W̊ 1

2 (O) :

d∑
i,j=1

aijuxixj ∈ L2(O)

})
, (3.14)

and

WQ(t) :=

∞∑
k=1

gkwkt , t ∈ [0, T ], (3.15)

is an H1
2,d(O)-valued Q-Wiener process with covariance operator Q ∈ L1(H1

2,d(O)) given by

Qv =

∞∑
k=1

〈gk, v〉H1
2,d(O)g

k, v ∈ H1
2,d(O).

Proof. In the given setting, by Theorem 3.13, the equation

du =
(
aijuxixj + f

)
dt+ gk dwkt on ΩT ×O,

u(0) = u0 on Ω×O

}
(3.16)

has a unique solution u ∈ H2
2,d(O, T ). In particular, for all ϕ ∈ C∞0 (O), with probability one, the

equality

(u(t, ·), ϕ) = (u(0, ·), ϕ) +

∫ t

0

( d∑
i,j=1

aijuxixj (s, ·) + f(s, ·), ϕ
)

ds+

∞∑
k=1

∫ t

0
(gk, ϕ) dwks (3.17)

holds for all t ∈ [0, T ]. Fix ζ ∈ D(A∗) ⊆ W̊ 1
2 (O). Then, there exists a sequence (ϕn)n∈N ⊆ C∞0 (O)

approximating ζ in W̊ 1
2 (O). We fix such a sequence and show that for any t ∈ [0, T ], each side

of (3.17) with ϕn instead of ϕ converges P-a.s. to the corresponding side of (3.13) with with
A, B and WQ as defined in (3.14) and (3.15). This obviously would prove the assertion of the
theorem. We start with the left hand sides. Since u ∈ H2

2,d−2(O, T ), by Theorem 3.8, it has a

version with continuous paths, if considered as a process with state space H1
2,d(O). Consequently,

with probability one, u(t, ·) ∈ L2(O) for all t ∈ [0, T ]. Thus, with probability one,

lim
n→∞

(u(t, ·), ϕn) = lim
n→∞

〈u(t, ·), ϕn〉L2(O) = 〈u(t, ·), ζ〉L2(O) for all t ∈ [0, T ].

We continue with the right hand sides. Since u0 ∈ U2
2,d(O) = L2(Ω,F0,P;H1

2,d(O)), u0 ∈ L2(O)
P-a.s., and

lim
n→∞

(u0, ϕn) = lim
n→∞

〈u0, ϕn〉L2(O) = 〈u0, ζ〉L2(O) P-a.s.
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Furthermore, since f ∈ H0
2,d(O, T ) = L2(ΩT ,PT ,PT ;L2(O)), using Tonelli’s theorem and the

dominated convergence theorem, we obtain that with probability one,

lim
n→∞

∫ t

0
(f(s, ·), ϕn) ds =

∫ t

0
〈f(s, ·), ζ〉L2(O) ds

holds for all t ∈ [0, T ] (after possibly passing to a subsequence). Moreover, since g ∈ H1
2,d(O) and

the Brownian motions (wkt )t∈[0,T ], k ∈ N, are independent, an application of Doob’s inequality
yields

E

[
sup
t∈[0,T ]

∥∥∥∥ ∞∑
k=1

gkwkt

∥∥∥∥2

H1
2,d(O)

]
≤ C T ‖g‖2H1

2,d(O;`2).

In particular, the series
∑∞

k=1 g
kwk· converges in L2(Ω; C([0, T ];H1

2,d(O))). Thus, using the prop-
erties of Itô’s one-dimensional stochastic integral, yields that with probability one,

lim
n→∞

∞∑
k=1

∫ ·
0

(gk, ϕn) dwks = 〈
∞∑
k=1

gkwk· , ζ〉L2(O).

It remains to prove that for all t ∈ [0, T ],

lim
n→∞

∫ t

0

( d∑
i,j=1

aijuxixj (s, ·), ϕn
)

ds = −
∫ t

0
〈u,A∗ζ〉L2(O) ds P-a.s., (3.18)

which can be proven by reasoning as follows: The operator (−A,D(−A)) in (3.14) can be intro-
duced as the variational operator (−Ã,D(−Ã)) in Section 2.4 starting with the bilinear form

a : W̊ 1
2 (O)× W̊ 1

2 (O)→ R

(u, v) 7→ a(u, v) :=

∫
O

d∑
i,j=1

aijuxivxj dx.
(3.19)

Thus, it is a densely defined, closed, self-adjoint and dissipative operator generating a contraction
semigroup {S(t)}t∈[0,T ] on L2(O). Since ux ∈ H1

2,d(O, T ) ⊆ H0
2,d(O, T ), which easily follows by

(2.28) and the fact that u ∈ H2
2,d−2(O, T ), the equality

(aijuxixj , ϕn) = −(aijuxi , (ϕn)xj ) = −
∫
O
aijuxi(ϕn)xj dx = −〈aijuxi , (ϕn)xj 〉L2(O)

holds PT -a.e. for all i, j ∈ {1, . . . , d} and n ∈ N. Therefore,

lim
n→∞

d∑
i,j=1

(aijuxixj , ϕn) = −
d∑

i,j=1

〈aijuxi , ζxj 〉L2(O) PT -a.e.,

and, consequently,

lim
n→∞

d∑
i,j=1

(aijuxixj , ϕn) = −a(u, ζ) = 〈u,−Aζ〉L2(O) = −〈u,A∗ζ〉L2(O) PT -a.e.,

where a(·, ·) is given by (3.19). Now one can use the dominated convergence theorem to prove
that (3.18) holds for all t ∈ [0, T ]. In summary, u is a weak solution of the corresponding
infinite-dimensional SDE of the type (3.12). The uniqueness follows from [32, Theorem 5.4].
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Chapter 4

Embeddings of weighted Sobolev
spaces into Besov spaces

In this chapter we analyse the regularity within the non-linear approximation scale

Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, α > 0, (∗)

of elements from the weighted Sobolev spaces Hγ
p,θ(O) introduced in Subsection 2.3.3. Our main

goal is to prove that for γ, ν > 0 and p ≥ 2, the space Hγ
p,d−νp(O) is embedded into the Besov

spaces Bα
τ,τ (O) from (∗) for certain α < αmax = αmax(γ, ν, d). As before, also in this chapter, O

denotes a bounded Lipschitz domain in Rd.
Remember that, if we want to clarify whether adaptive wavelet methods for solving SPDEs

bear the potential to be more efficient than their uniform alternatives, we need to analyse the
regularity of the corresponding solution in the scale (∗), cf. Section 1.1. In Chapter 3 we have
seen that there exists a quite satisfactory solvability theory for a wide class of linear SPDEs
within the spaces Hγp,θ(O, T ) = Hγ,pp,θ (O, T ) with suitable parameters γ ∈ R, p ∈ [2,∞) and θ ∈ R
(cf. Theorem 3.13). For q, p ∈ [2,∞) and γ, θ ∈ R, the elements of Hγ,qp,θ(O, T ) are Lq-integrable
stochastic processes taking values in

Hγ
p,θ−p(O) = Hγ

p,d−νp(O) with ν = 1 +
d− θ
p

.

Thus, a combination of the embedding mentioned above with Theorem 3.13 yields a statement
about the spatial regularity of linear SPDEs within the scale (∗) of Besov spaces (Theorem 5.2).
Even more, this embedding shows that—to a certain extent—the regualrity analysis for SPDEs
in terms of the scale (∗) can be traced back to the analysis of such equations in terms of the
spaces Hγ,qp,θ(O, T ) (see Theorem 5.1).

Our results also have an impact on the regularity analysis of deterministic partial differen-
tial equations. E.g., the results from [76] on the weighted Sobolev regularity of deterministic
parabolic and elliptic equations on bounded C1

u-domains will automatically lead to regularity
results in the scale (∗) for these equations. Using the mentioned embedding, one can also derive
Besov regularity estimates for degenerate elliptic equations on bounded Lipschitz domains as
considered, e.g., in [93]. Our results can also be seen as an extension of and a supplement to the
Besov regularity results for elliptic equations in [38] and [34–36, 40, 63]. It is worth noting that
first results on the regularity in the scale (∗) of solutions to (deterministic) parabolic equations
have been obtained in [3], see also the preparative results in [4, 5].

We choose the following outline. First, we will discuss the relationship between weighted
Sobolev spaces with and without weights (Section 4.1). As we have mentioned in Subection 2.3.3,
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Hm
p,d−νp(O) = W̊m

p (O) for m ∈ N0, see Lemma 2.51. We generalize this result and prove a general
embedding of weighted Sobolev spaces into Sobolev spaces without weights (Proposition 4.1).
Moreover, we enlighten the fact that, for the range of parameters γ and ν relevant for SPDEs,
the elements of Hγ

p,d−νp(O) have zero boundary trace. In particular, this justifies saying that the
solutions considered in this thesis ‘fulfil a zero Dirichlet boundary condition’. In the intermediate
Section 4.2, we recall some fundamental results on the wavelet decomposition of Besov spaces.
They will be used in Section 4.3, when proving the embedding mentioned above of weighted
Sobolev spaces into Besov spaces from the scale (∗) (Theorem 4.13). The proof of this theorem
is split into two parts: In Part One, we restrict ourselves to integer γ ∈ N. In Part Two the
complex interpolation method of A.P. Calderón and its extension to suitable quasi-Banach spaces
by O. Mendez and M. Mitrea [96] is applied in order to prove the embedding for fractional
γ ∈ R+ \ N. In Section 4.4, we present an alternative proof of Theorem 4.7, which does not
require any knowledge about complex interpolation in quasi-Banach spaces.

4.1 Weighted Sobolev spaces and Sobolev spaces without weights

We start with a general embedding of weighted Sobolev spaces into the closure of C∞0 (O) in the
Sobolev spaces without weights.

Proposition 4.1. Let γ, ν ∈ (0,∞) and p ∈ [2,∞). Then the following embedding holds:

Hγ
p,d−νp(O) ↪→ W̊ γ∧ν

p (O). (4.1)

Proof. Since C∞0 (O) is densely embedded in the weighted Sobolev spaces, see Lemma 2.45(ii),
it is enough to prove that Hγ

p,d−νp(O) ↪→ W γ∧ν
p (O) for the particular parameters. We start the

proof by considering the case where γ = ν, i.e., we prove that for γ > 0 and p ∈ [2,∞) we have

Hγ
p,d−γp(O) ↪→W γ

p (O). (4.2)

For γ = m ∈ N0 this follows from Lemma 2.51. In the case of fractional γ ∈ R+ \N we argue as
follows. Let γ = m+ η with m ∈ N0 and η ∈ (0, 1). By Lemma 2.45(v),

Hm+η
p,d−(m+η)p(O) =

[
Hm
p,d−mp(O), Hm+1

p,d−(m+1)p(O)
]
η
.

Thus, since (4.2) holds for the integer case,

Hm+η
p,d−(m+η)p(O) ↪→

[
Wm
p (O),Wm+1

p (O)
]
η
.

By Theorem 2.66(ii) this yields

Hm+η
p,d−(m+η)p(O) ↪→

[
Fmp,2(O), Fm+1

p,2 (O)
]
η
.

Since the Triebel-Lizorkin spaces constitute a scale of complex interpolation spaces, see, e.g.,
[117, Corollary 1.111], this leads to

Hm+η
p,d−(m+η)p(O) ↪→ Fm+η

p,2 (O).

Therefore, since Fm+η
p,2 (O) ↪→ Bm+η

p,p (O) by Theorem 2.66(i),

Hm+η
p,d−(m+η)p(O) ↪→ Bm+η

p,p (O) = Wm+η
p (O),
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where the last equality follows from Theorem 2.60(i). Thus, Embedding (4.2) is proven. The
embedding (4.1) for γ 6= ν follows now by using standard arguments. Indeed, since γ ≥ γ ∧ ν we
have

Hγ
p,d−νp(O) ↪→ Hγ∧ν

p,d−νp(O),

see [93, page 3]. Furthermore, the boundedness of the domain O and the fact that d − νp ≤
d− (γ ∧ ν)p imply

Hγ∧ν
p,d−νp(O) ↪→ Hγ∧ν

p,d−(γ∧ν)p(O),

see Lemma 2.45(vii). A combination of these two embeddings with (4.2) finally gives the asserted
Embedding (4.1).

The following embedding is a consequence of Corollary 2.67, Theorem 2.60(i) and Lem-
ma 2.45(ii). We use the common notation

B̊s
p,q(O) := C∞0 (O)

‖·‖Bsp,q(O)

for the closure of the test functions C∞0 (O) in the Besov space Bs
p,q(O) for s ∈ R and p, q ∈ (0,∞).

Corollary 4.2. Let γ, ν ∈ (0,∞) and p ∈ [2,∞). Then the following embedding holds:

Hγ
p,d−νp(O) ↪→ B̊γ∧ν

p,p (O).

Remark 4.3. Since O ⊂ Rd is assumed to be a bounded Lipschitz domain, we know by [69,
Chapter VIII, Theorem 2] that for 1/p < s the operator Tr, initially defined on C∞(O) as the

restriction to ∂O, extends to a bounded linear operator from Bs
p,p(O) to B

s−1/p
p,p (∂O), see [69] for

a definition of Besov spaces on ∂O. In this case we denote by Bs
p,p,0(O) the subspace of Bs

p,p(O)
with zero boundary trace, i.e.,

Bs
p,p,0(O) :=

{
u ∈ Bs

p,p(O) : Tru = 0
}
,

1

p
< s.

If additionally s < 1 + 1/p, then, by [67, Theorem 3.12], these spaces coincide with the closure
of C∞0 (O) in Bs

p,p(O), i.e.,

B̊s
p,p(O) = Bs

p,p,0(O) for
1

p
< s < 1 +

1

p
.

Thus, if 1/p < γ ∧ ν < 1 + 1/p, by Corollary 4.2,

Hγ
p,d−νp(O) ↪→ B̊γ∧ν

p,p (O) = Bγ∧ν
p,p,0(O) =

{
u ∈ Bγ∧ν

p,p (O) : Tru = 0
}
.

In Section 3.2 we considered SPDEs in the setting of [75]. The solutions to these equations are
stochastic processes taking values in Hγ

p,d−νp(O) with ν := 1 + d−θ
p , where the value of θ never

leaves the range

d− 1 < θ < d+ p− 1; (4.3)

see also Remark 3.14(ii) and (iii). This condition is equivalent to 1/p < ν < 1 + 1/p with ν as
introduced before. Hence, if γ > 1/p we deal with solutions fulfilling a zero Dirichlet boundary
condition in the sense that they can be considered as stochastic processes taking values in
Bγ∧ν
p,p,0(O).
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4.2 Wavelet decomposition of Besov spaces on Rd

In this section we present some fundamental results on the wavelet decomposition of Besov
spaces. They will serve as a key ingredient in the proof of an embedding of weighted Sobolev
spaces into Besov spaces from the non-linear approximation scale (∗) in the subsequent section.
Our standard reference concerning wavelete decompositions of Besov spaces is the monograph
[27], we also refer to the seminal works [47,56,64,97,109,117] for further details.

Throughout this chapter, let φ be a scaling function of tensor product type on Rd and let
ψi, i = 1, . . . , 2d− 1, be corresponding multivariate mother wavelets such that, for a given r ∈ N
and some M > 0, the following locality, smoothness and vanishing moment conditions hold. For
all i = 1, . . . , 2d − 1,

supp φ, supp ψi ⊆ [−M,M ]d, (4.4)

φ, ψi ∈ Cr(Rd), (4.5)∫
Rd
xα ψi(x) dx = 0 for all α ∈ Nd0 with |α| ≤ r. (4.6)

For the dyadic shifts and dilations of the scaling function and the corresponding wavelets we
use the abbreviations

φk(x) := φ(x− k), x ∈ Rd, for k ∈ Zd, and (4.7)

ψi,j,k(x) := 2jd/2ψi(2
jx− k), x ∈ Rd, for (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd, (4.8)

and assume that {
φk, ψi,j,k : (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd

}
is a Riesz basis of L2(Rd). Further, we assume that there exists a dual Riesz basis satisfying
the same requirements. That is, there exist functions φ̃ and ψ̃i, i = 1, . . . , 2d − 1, such that
conditions (4.4), (4.5) and (4.6) hold if φ and ψi are replaced by φ̃ and ψ̃i, and such that the
biorthogonality relations

〈φ̃k, ψi,j,k〉 = 〈ψ̃i,j,k, φk〉 = 0 , 〈φ̃k, φl〉 = δk,l, 〈ψ̃i,j,k, ψu,v,l〉 = δi,u δj,v δk,l ,

are fulfilled. Here we use analogous abbreviations to (4.7) and (4.8) for the dyadic shifts and
dilations of φ̃ and ψ̃i, and δk,l denotes the Kronecker symbol. We refer to [27, Chapter 2] for the
construction of biorthogonal wavelet bases, see also [45] and [30]. To keep notation simple, we
will write

ψi,j,k,p := 2
jd
(

1
p
− 1

2

)
ψi,j,k and ψ̃i,j,k,p′ := 2

jd
(

1
p′−

1
2

)
ψ̃i,j,k,

for the Lp-normalized wavelets and the correspondingly modified duals, with p′ := p/(p − 1) if
p ∈ (0,∞), p 6= 1, and p′ :=∞, 1/p′ := 0 if p = 1.

The following theorem shows how Besov spaces on Rd can be described by decay properties
of the wavelet coefficients, if the parameters fulfil certain conditions.

Theorem 4.4. Let p, q ∈ (0,∞) and s > max {0, d (1/p− 1)}. Choose r ∈ N such that r > s
and construct a biorthogonal wavelet Riesz basis as described above. Then a locally integrable
function f : Rd → R is in the Besov space Bs

p,q(Rd) if, and only if,

f =
∑
k∈Zd
〈f, φ̃k〉φk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k,p′〉ψi,j,k,p (4.9)
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(convergence in D′(Rd)) with( ∑
k∈Zd

∣∣〈f, φ̃k〉∣∣p) 1
p

+

( 2d−1∑
i=1

∑
j∈N0

2jsq
( ∑
k∈Zd

∣∣〈f, ψ̃i,j,k,p′〉∣∣p) q
p
) 1
q

<∞, (4.10)

and (4.10) is an equivalent (quasi-)norm for Bs
p,q(Rd).

Remark 4.5. A proof of this theorem for the case p ≥ 1 can be found in [97, §10 of Chapter 6].
For the general case see for example [89] or [27, Theorem 3.7.7]. Of course, if (4.10) holds then
the infinite sum in (4.9) converges also in Bs

p,q(Rd). If s > max {0, d (1/p− 1)} we have the

embedding Bs
p,q(Rd) ↪→ Ls0(Rd) for some s0 > 1, see, e.g., [117, Theorem 1.73(i)].

A simple computation gives us the following characterization of Besov spaces Bα
τ,τ (Rd), in

the case that the parameters α and τ are linked as in the scale (∗).

Corollary 4.6. Let p ∈ (1,∞), α > 0 and τ ∈ R such that 1/τ = α/d+ 1/p. Choose r ∈ N such
that r > α and construct a biorthogonal wavelet Riesz basis as described above. Then a locally
integrable function f : Rd → R is in the Besov space Bα

τ,τ (Rd) if, and only if,

f =
∑
k∈Zd
〈f, φ̃k〉φk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k,p′〉ψi,j,k,p (4.11)

(convergence in D′(Rd)) with( ∑
k∈Zd

∣∣〈f, φ̃k〉∣∣τ) 1
τ

+

( 2d−1∑
i=1

∑
j∈N0

∑
k∈Zd

∣∣〈f, ψ̃i,j,k,p′〉∣∣τ) 1
τ

<∞ , (4.12)

and (4.12) is an equivalent (quasi-)norm for Bα
τ,τ (Rd).

4.3 Weighted Sobolev spaces and the non-linear approximation
scale

In this section we prove our main result concerning the relationship between weighted Sobolev
spaces and the Besov spaces from the non-linear approximation scale (∗). That is, we prove the
following embedding.

Theorem 4.7. Let O be a bounded Lipschitz domain in Rd. Let p ∈ [2,∞), and γ, ν ∈ (0,∞).
Then

Hγ
p,d−νp(O) ↪→ Bα

τ,τ (O),
1

τ
=
α

d
+

1

p
, for all 0 < α < min

{
γ, ν

d

d− 1

}
. (4.13)

Before we start proving this result, we make some notes on our strategy. We split our proof
into two parts. In the first part we assume that γ is an integer, i.e., γ ∈ N. In this particular case
we follow the lines of the proof of [38, Theorem 3.2]. This theorem can be restated as follows: If
a harmonic function u lies in the Besov space Bν

p,p(O) for some p ∈ (1,∞) and ν > 0, then it is
contained in the Besov spaces

Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, for all 0 < α < ν

d

d− 1
. (4.14)

In order to prove this statement, the authors of [38] use fundamental results on extension op-
erators [110] and on wavelet characterizations of Besov spaces—as presented in the previous
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section—and estimate the (weighted) `τ -norm of suitable wavelet coefficients. In this way they
prove that any harmonic function u ∈ Bν

p,p(O) fulfils the estimate

‖u‖Bατ,τ (O) ≤ C‖u‖Bνp,p(O),
1

τ
=
α

d
+

1

p
, for all 0 < α < ν

d

d− 1
, (4.15)

where the constant C does not depend on u. A close look at the proof reveals that two facts are
proven and combined in order to show that (4.15) holds in the prescribed setting. First, without
making use of the harmonicity of the considered function u ∈ Bν

p,p(O), it is proven that

‖u‖Bατ,τ (O) ≤ C
(
‖u‖Bνp,p(O) + |u|Hγ

p,d−νp(O)

)
,

1

τ
=
α

d
+

1

p
, for all 0 < α < γ∧ν d

d− 1
, (4.16)

provided the semi-norm

|u|p
Hγ
p,d−νp(O)

=
∑
|α|=γ

∫
O

∣∣ρ(x)|α|Dαu(x)
∣∣pρ(x)−νp dx, (4.17)

is finite for some γ ∈ N with γ > ν. Then, it is proven in the same publication, see [38,
Theorem 3.1], that for any harmonic function we have

|u|Hγ
p,d−νp(O) ≤ C ‖u‖Bνp,p(O), for all 0 < ν < γ ∈ N. (4.18)

Finally, a combination of (4.16) and (4.18) yields (4.15) for harmonic functions. However, as
already mentioned, (4.16) can be proven without assuming that u is harmonic. Thus, if we
assume that u ∈ Hγ

p,d−νp(O) ∩Bν
p,p(O) with γ ∈ N, the same strategy yields the estimate

‖u‖Bατ,τ (O) ≤ C
(
‖u‖Bνp,p(O) + ‖u‖Hγ

p,d−νp(O)

)
,

1

τ
=
α

d
+

1

p
, for all 0 < α < min

{
γ, ν

d

d− 1

}
.

Since, as proven in Corollary 4.2, Hγ
p,d−νp(O) ↪→ Bν

p,p(O) for p ∈ [2,∞) and ν < γ, this leads to

‖u‖Bατ,τ (O) ≤ C ‖u‖Hγ
p,d−νp(O),

1

τ
=
α

d
+

1

p
, for all 0 < α < γ ∧ ν d

d− 1
,

and all u ∈ Hγ
p,d−νp(O), if p ∈ [2,∞) and 0 < ν ≤ γ ∈ N. But this is exactly our assertion for

γ ∈ N (and ν ≤ γ).

Now we present this proof strategy in detail. The case γ ∈ R+\N will be considered thereafter
in Part Two.

Proof of Theorem 4.7 (Part One). In this first part, we prove that the assertion holds for
γ ∈ N. We fix p ∈ [2,∞) and start with the case ν > γ. Then, by Corollary 4.2 and Theo-
rem 2.61(iii), for any 0 < α < γ, we have

Hγ
p,d−νp(O) ↪→ Bγ

p,p(O) ↪→ Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
.

Therefore, in this case the assertion follows immediately. From now on, let us assume that
0 < ν ≤ γ ∈ N. We fix α and τ as stated in the theorem and choose a wavelet Riesz basis{

φk, ψi,j,k : (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd
}
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of L2(Rd) which satisfies the assumptions from Section 4.2 with r > γ and some arbitrary M > 0.
(Later on, without loss of generality, 2M ∈ N will be assumed.) Given (j, k) ∈ N0 × Zd let

Qj,k := 2−jk + 2−j [−M,M ]d,

so that supp ψi,j,k ⊂ Qj,k for all i ∈ {1, . . . , 2d−1} and supp φk ⊂ Q0,k for all k ∈ Zd. Remember
that the supports of the corresponding dual basis meet the same requirements. For our purpose
the set of all indices associated with those wavelets and scaling functions that may have common
support with the domain O will play an important role and we denote them by

Λ :=
{

(i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd : Qj,k ∩ O 6= ∅
}
,

and

Γ :=
{
k ∈ Zd : Q0,k ∩ O 6= ∅

}
.

After these preparations, we fix u ∈ Hγ
p,d−νp(O). Due to Corollary 4.2 we have u ∈ Bν

p,p(O). As
O is a Lipschitz domain there exists a linear and bounded extension operator E : Bν

p,p(O) →
Bν
p,p(Rd), i.e., there exists a constant C > 0, such that

Eu
∣∣
O = u and ‖Eu‖Bνp,p(Rd) ≤ C‖u‖Bνp,p(O), (4.19)

see, e.g., [110]. The constant in (4.19) as well as all the constants C appearing in the rest of this
proof do not depend on u. In the sequel we will omit the E in our notation and write u instead
of Eu. Theorem 4.4 tells us that the following equality holds on the domain O:

u =
∑
k∈Γ

〈u, φ̃k〉φk +
∑

(i,j,k)∈Λ

〈u, ψ̃i,j,k,p′〉ψi,j,k,p,

where the sums converge unconditionally in Bν
p,p(Rd). Furthermore, cf. Corollary 4.6, we have

‖u‖τBατ,τ (O) ≤ C
(∑
k∈Γ

∣∣〈u, φ̃k〉∣∣τ +
∑

(i,j,k)∈Λ

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ).
Hence, in order to prove Embedding (4.13), it is enough to prove that∑

k∈Γ

∣∣〈u, φ̃k〉∣∣τ ≤ C ‖u‖τBνp,p(O) (4.20)

and ∑
(i,j,k)∈Λ

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C (‖u‖Hγ
p,d−νp(O) + ‖u‖Bνp,p(O)

)τ
, (4.21)

cf. Corollary 4.2.

We start with (4.20). The index set Γ introduced above is finite because of the boundedness of
O, so that we can use Jensen’s inequality followed by Theorem 4.4 together with the boundedness
of the extension operator to obtain

∑
k∈Γ

∣∣〈u, φ̃k〉∣∣τ ≤ C
((∑

k∈Γ

∣∣〈u, φ̃k〉∣∣p) 1
p

)τ
≤ C ‖u‖τBνp,p(O).



74 Embeddings of weighted Sobolev spaces into Besov spaces

To prove (4.21), we introduce the following notation:

ρj,k := dist(Qj,k, ∂O) = inf
x∈Qj,k

ρ(x),

Λj :=
{

(i, l, k) ∈ Λ : l = j
}
,

Λj,m :=
{

(i, j, k) ∈ Λj : m2−j ≤ ρj,k < (m+ 1)2−j
}
,

Λ0
j := Λj \ Λj,0,

Λ0 :=
⋃
j∈N0

Λ0
j ,

where j,m ∈ N0 and k ∈ Zd. We split the expression on the left hand side of (4.21) into∑
(i,j,k)∈Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ +
∑

(i,j,k)∈Λ\Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ =: I + II (4.22)

and estimate each term separately.
Let us begin with I, i.e., with the coefficients corresponding to wavelets with support guar-

anteed to be completely contained in the domain O. Recall that in this thesis we write A◦ for
the interior of a set A ⊆ Rd. Fix (i, j, k) ∈ Λ0. In this case, the semi-norm

|u|W γ
p (Q◦j,k) := sup

|α|=γ
‖Dαu‖Lp(Qj,k)

is finite, since ρj,k = dist(Qj,k, ∂O) > 0 and since u ∈ Hγ
p,d−νp(O), which implies

|u|p
Hγ
p,d−νp(O)

=
∑
|α|=γ

∫
O

∣∣ρ(x)|α|Dαu(x)
∣∣pρ(x)−νp dx <∞,

cf. Remark 2.44. By a Whitney-type inequality, also known as the Deny-Lions lemma, see,
e.g., [48, Theorem 3.4], there exists a polynomial Pj,k of total degree less than γ, and a constant
C, which does not depend on j or k, such that

‖u− Pj,k‖Lp(Qj,k) ≤ C 2−jγ |u|W γ
p (Q◦j,k).

Since ψ̃i,j,k,p′ is orthogonal to every polynomial of total degree less than γ, we have∣∣〈u, ψ̃i,j,k,p′〉∣∣ =
∣∣〈u− Pj,k, ψ̃i,j,k,p′〉∣∣

≤ ‖u− Pj,k‖Lp(Qj,k) ‖ψ̃i,j,k,p′‖Lp′ (Qj,k)

≤ C 2−jγ |u|W γ
p (Q◦j,k).

The constant C does not depend on j or k, since ‖ψ̃i,j,k,p′‖Lp′ (Qj,k) = ‖ψ̃i‖Lp′ (Rd). Inserting the

definition of the semi-norm on the right hand side and putting 1 = ρ(x)γ−νρ(x)ν−γ into the
integrals, yields

∣∣〈u, ψ̃i,j,k,p′〉∣∣ ≤ C 2−jγ sup
|α|=γ

(∫
Qj,k

∣∣Dαu(x)
∣∣p dx

) 1
p

≤ C 2−jγ ρν−γj,k sup
|α|=γ

(∫
Qj,k

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

) 1
p

=: C 2−jγ ρν−γj,k µj,k.
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Fix j ∈ N0. Summing over all indices (i, j, k) ∈ Λ0
j and applying Hölder’s inequality with

exponents p/τ > 1 and p/(p− τ) one finds∑
(i,j,k)∈Λ0

j

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C ∑
(i,j,k)∈Λ0

j

2−jγτρ
(ν−γ)τ
j,k µτj,k

≤ C

( ∑
(i,j,k)∈Λ0

j

µpj,k

) τ
p
( ∑

(i,j,k)∈Λ0
j

2
−j γτp

p−τ ρ
(ν−γ)τp
p−τ

j,k

) p−τ
p

,

(4.23)

where C does not depend on j. In order to estimate the first sum in the product on the right
hand side of (4.23) we regroup the cubes Qj,k, k ∈ Zd, in the following way. Without loss of
generality, we assume that 2M ∈ N. Let an, n = 1, . . . , (2M)d, be an arbitrary arrangement of
the d-tuples from {0, 1, . . . , 2M − 1}d, and define

Rj,n :=
{
Qj,k : k ∈ an + 2MZd

}
, n ∈ {1, . . . , (2M)d}. (4.24)

Then, one can check that {Rj,n : n ∈ {1, . . . , (2M)d}} is a finite partition of {Qj,k : k ∈ Zd},
i.e.,

(2M)d⋃
n=1

Rj,n =
{
Qj,k : k ∈ Zd

}
and Rj,n ∩Rj,n′ = ∅ for n 6= n′. (4.25)

Furthermore, for any fixed n ∈ {1, . . . , (2M)d},

if Qj,k, Qj,k′ ∈ Rj,n for some k 6= k′, then Q◦j,k ∩Q◦j,k′ = ∅. (4.26)

Thus, setting

R0
j,n :=

{
(i, j, k) ∈ Λ0

j : Qj,k ∈ Rj,n
}
, n ∈ {1, . . . , (2M)d},

and using (4.25), we obtain( ∑
(i,j,k)∈Λ0

j

µpj,k

) τ
p

=

( ∑
(i,j,k)∈Λ0

j

sup
|α|=γ

∫
Qj,k

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

) τ
p

=

(
(2M)d∑
n=1

∑
(i,j,k)∈R0

j,n

sup
|α|=γ

∫
Qj,k

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

) τ
p

.

Together with (4.26) and using the norm equivalence (2.28) together with some standard com-
putations, this yields( ∑

(i,j,k)∈Λ0
j

µpj,k

) τ
p

≤ C

( ∑
|α|=γ

∫
O

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

) τ
p

≤ C ‖u‖τHγ
p,d−νp(O), (4.27)

with a constant C, which does not depend on j. In order to estimate the second sum on the
right hand side of (4.23) we use the Lipschitz character of the domain O which implies that

|Λj,m| ≤ C 2j(d−1) for all j,m ∈ N0. (4.28)
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Moreover, the boundedness of O yields Λj,m = ∅ for all j,m ∈ N0 with m ≥ C2j , where the
constant C does not depend on j or m. Consequently,( ∑

(i,j,k)∈Λ0
j

2
−j γpτ

p−τ ρ
(ν−γ)pτ
p−τ

j,k

) p−τ
p

≤

(
C2j∑
m=1

∑
(i,j,k)∈Λj,m

2
−j γpτ

p−τ ρ
(ν−γ)pτ
p−τ

j,k

) p−τ
p

≤ C

(
C2j∑
m=1

2j(d−1) 2
−j γpτ

p−τ (m 2−j)
(ν−γ)pτ
p−τ

) p−τ
p

≤ C
(

2
j
(
d−1− νpτ

p−τ

)
+ 2

j
(
d− γpτ

p−τ

)) p−τ
p

.

(4.29)

Now, let us sum over all j ∈ N0. Inequalities (4.29) together with (4.27) and (4.23) imply

∑
(i,j,k)∈Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C ∑
j∈N0

(
2
j
(
d−1− νpτ

p−τ

)
+ 2

j
(
d− γpτ

p−τ

)) p−τ
p

‖u‖τHγ
p,d−νp(O).

Obviously, the sums on the right hand side converge if, and only if, α ∈
(

0, γ ∧ ν d
d−1

)
. Finally,∑

(i,j,k)∈Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C ‖u‖τHγ
p,d−νp(O).

Now we estimate the second term II in (4.22). First we fix j ∈ N0 and use Hölder’s inequality
and (4.28) to obtain

∑
(i,j,k)∈Λj,0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C 2
j(d−1) p−τ

p

( ∑
(i,j,k)∈Λj,0

∣∣〈u, ψ̃i,j,k,p′〉∣∣p) τ
p

,

with a constant C which does not depend on j. Summing over all j ∈ N0 and using Hölder’s
inequality again yields∑

(i,j,k)∈Λ\Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ =
∑
j∈N0

∑
(i,j,k)∈Λj,0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ
≤ C

∑
j∈N0

(
2
j(d−1) p−τ

p

( ∑
(i,j,k)∈Λj,0

∣∣〈u, ψ̃i,j,k,p′〉∣∣p) τ
p
)

≤ C
( ∑
j∈N0

2
j
(

(d−1)(p−τ)
p

−ντ
)

p
p−τ

) p−τ
p
( ∑
j∈N0

∑
(i,j,k)∈Λj,0

2jνp
∣∣〈u, ψ̃i,j,k,p′〉∣∣p) τ

p

.

Using Theorem 4.4 and the boundedness of the extension operator, we obtain

∑
(i,j,k)∈Λ\Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C ‖u‖τBνp,p(O)

( ∑
j∈N0

2
j
(

(d−1)(p−τ)
p

−ντ
)

p
p−τ

) p−τ
p

.

The series on the right hand side converges if, and only if, α ∈
(

0, ν d
d−1

)
. We thus have∑

(i,j,k)∈Λ\Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C ‖u‖τBνp,p(O).
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So far we have proven the assertion of Theorem 4.7 provided the smoothness parameter γ
is an integer. In what follows, we consider the complementary case of fractional γ ∈ R+ \ N.
Our strategy for proving Embedding (4.13) in this case relies on a combination of the already
proven assertion for γ ∈ N and suitable applications of the complex interpolation method of
A.P. Calderón. This method is initially defined only for Banach spaces and its extension to
quasi-Banach spaces is not a trivial task. However, in our approach we need such an extension,
which preserves the interpolation property and is applicable to compatible couples of Besov
spaces (Bs1

p1,q1(O), Bs2
p2,q2(O)) on bounded Lipschitz domains O ⊂ Rd with s1, s2 ∈ R and 0 <

p1, p2, q1, q2 <∞. Fortunately, such a method has been developed in [96], see also [70] for more
details. We use the notation [

Bs1
p1,q1(O), Bs2

p2,q2(O)
]
η

for the (extended) complex interpolation method from [70, 96] applied to a compatible couple
(Bs1

p1,q1(O), Bs2
p2,q2(O)) of Besov spaces. Then, since the interpolation property is preserved,

Bs1
p1,p1

(O) ↪→ E1 and Bs2
p2,p2

(O) ↪→ E2 imply
[
Bs1
p1,p1

(O), Bs2
p2,p2

(O)
]
η
↪→
[
E1, E2

]
η

for a compatible couple (E1, E2) of Banach spaces (η ∈ (0, 1)). The following result concern-
ing the complex interpolation of Besov spaces is an immediate consequence of [117, Proposi-
tion 1.114], see also [70, Theorem 9.4]. It is a major ingredient in Part Two of the proof of
Theorem 4.7.

Theorem 4.8. Let O be a bounded Lipschitz domain in Rd, and p ∈ [2,∞). Furthermore, let
0 ≤ α0 < α1 <∞ and τ0, τ1 ∈ (0,∞) be such that

1

τ0
=
α0

d
+

1

p
and

1

τ1
=
α1

d
+

1

p
. (4.30)

Then, for any η ∈ (0, 1), [
Bα0
τ0,τ0(O), Bα1

τ1,τ1(O)
]
η

= Bα
τ,τ (O), (4.31)

where

α = (1− η)α0 + ηα1 and
1

τ
=
α

d
+

1

p
.

Proof. By [117, Proposition 1.114], equality (4.31) holds with

1

τ
=

1− η
τ0

+
η

τ1
.

Inserting (4.30), the assertion follows.

This result at hand, we are ready to prove Embedding 4.13 for γ ∈ R+ \ N.

Proof of Theorem 4.7 (Part Two). Let γ ∈ R+ \ N, ν ∈ (0,∞) and p ∈ [2,∞). If ν > γ,
(4.13) follows with the same arguments as in Part One. Thus, in what follows, we assume that
0 < ν ≤ γ. We distinguish five cases.

Case 1. Let γ := m + η, with m ∈ N, η ∈ (0, 1), and ν d
d−1 ≥ m + 1. Then, we can argue as

follows. Fix an arbitrary ε > 0 with ε ≤ η. Set α0 := m−ε, α1 := m+1−ε and let τ0, τ1 ∈ (0,∞)
be given by (4.30). Then, by Part One, Hm+1

p,d−νp(O) ↪→ Bα1
τ1,τ1(O) and Hm

p,d−νp(O) ↪→ Bα0
τ0,τ0(O).

Thus, [
Hm
p,d−νp(O), Hm+1

p,d−νp(O)
]
η
↪→
[
Bα0
τ0,τ0(O), Bα1

τ1,τ1(O)
]
η
.
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Hence, by Theorem 4.8 and Lemma 2.45(v),

Hm+η
p,d−νp(O) ↪→ Bα∗

τ∗,τ∗(O),

with α∗ = m+ η − ε and 1/τ∗ = α∗/d+ 1/p. This is true for arbitrary ε ∈ (0, η]. We therefore
obtain

Hγ
p,d−νp(O) = Hm+η

p,d−νp(O) ↪→ Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, for all 0 < α < m+ η = min

{
γ, ν

d

d− 1

}
,

by simply applying the first embedding from Theorem 2.61(ii).
Case 2. Let γ := η ∈ (0, 1) and ν d

d−1 ≥ 1. Then, since Lp(O) ↪→ B0
p,p(O) for p ≥ 2, see

Corollary 2.67, we also have H0
p,d−νp(O) = Lp,d−νp(O) ↪→ B0

p,p(O) for any ν > 0. Simultaneously,

by Part One, for any ε ∈ (0, 1), H1
p,d−νp(O) ↪→ B1−ε

τ1,τ1(O) with 1/τ1 = (1 − ε)/d + 1/p. Thus,
using again Theorem 4.8 and Lemma 2.45(v) we obtain

Hη
p,d−νp(O) ↪→ B

(1−ε)η
τ∗,τ∗ (O),

1

τ∗
=

(1− ε)η
d

+
1

p
,

for any ε ∈ (0, 1), and therefore

Hγ
p,d−νp(O) = Hη

p,d−νp(O) ↪→ Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, for all 0 < α < η = min

{
γ, ν

d

d− 1

}
.

Case 3. Let γ := m+η, with m ∈ N, η ∈ (0, 1), and ν d
d−1 ≤ m. Since in this case, Hγ

p,d−νp(O) =

Hm+η
p,d−νp(O) ↪→ Hm

p,d−νp(O), the embedding (4.13) holds due to the the fact that, by Part One,

Hm
p,d−νp(O) ↪→ Bα

τ,τ (O),
1

τ
=
α

d
+

1

p
, for all 0 < α < ν

d

d− 1
= min

{
γ, ν

d

d− 1

}
.

Case 4. Let γ := m+ η, with m ∈ N0, η ∈ (0, 1), and m < ν d
d−1 ≤ m+ η. Fix η0 ∈ (0, 1) with

η0 ≤ η, such that ν d
d−1 = m+ η0. Also, let ε ∈ (0,m), and let α0 := m− ε, α1 := m+ 1− ε, and

τ0, τ1 ∈ (0,∞) be given by (4.30). (If m = 0, set α0 := 0.) By Part One,

Hm
p,d−m d−1

d
p
(O) ↪→ Bα0

τ0,τ0(O) and Hm+1

p,d−(m+1) d−1
d
p
(O) ↪→ Bα1

τ1,τ1(O).

Therefore, by Theorem 4.8 and Lemma 2.45(v),

Hm+η0

p,d−νp(O) = Hm+η0

p,d−(m+η0) d−1
d
p
(O) ↪→ Bα∗

τ∗,τ∗(O),
1

τ∗
=
α∗

d
+

1

p
,

with α∗ = m+ η0 − ε (α∗ = η0 − εη0, if m = 0). Since ε ∈ (0,m) is arbitrary, and Hγ
p,d−νp(O) =

Hm+η
p,d−νp(O) ↪→ Hm+η0

p,d−νp(O), we obtain

Hγ
p,d−νp(O) ↪→ Bα

τ,τ (O),
1

τ
=
α

d
+

1

p
, for all 0 < α < m+ η0 = ν

d

d− 1
= min

{
γ, ν

d

d− 1

}
.

Case 5. Finally, let γ := m+ η, with m ∈ N0, η ∈ (0, 1), and m+ η ≤ ν d
d−1 ≤ m+ 1. Following

the lines of Case 5 with η instead of η0, we obtain

Hm+η

p,d−(m+η) d−1
d
p
(O) ↪→ Bα

τ,τ (O),
1

τ
=
α

d
+

1

p
, for all 0 < α < m+ η = min

{
γ, ν

d

d− 1

}
.

Since (m+ η)d−1
d ≤ ν, and therefore d− νp ≤ d− (m+ η)d−1

d p, we have

Hm+η
p,d−νp(O) ↪→ Hm+η

p,d−(m+η) d−1
d
p
(O).

These two embeddings prove (4.13) also for this particular case.



4.4 An alternative proof of Theorem 4.7 79

4.4 An alternative proof of Theorem 4.7

In this section we present an alternative proof of Theorem 4.7 for arbitrary γ ∈ R, which does
not require any knowledge about complex interpolation of quasi-Banach spaces. However, the
arguments are quite involved and not as elegant as in the section before. We use the same
notation as in the previous sections of this chapter.

A close look at Part One of the proof of Theorem 4.7 presented in the previous section reveals
that the restriction γ ∈ N is required only when estimating the series

I =
∑

(i,j,k)∈Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ
from (4.22). Let us be more detailed: The restriction γ ∈ N is needed for the first time when
applying the Deny-Lions lemma [48, Theorem 3.4], which yields the existence of a polynomial
Pj,k of total degree less than γ, and a constant C, which does not depend on j or k, such that

‖u− Pj,k‖Lp(Qj,k) ≤ C 2−jγ |u|W γ
p (Q◦j,k). (4.32)

Using this and the orthogonality of ψ̃i,j,k,p′ to every polynomial of total degree less than γ, we
obtain ∣∣〈u, ψ̃i,j,k,p′〉∣∣ ≤ C 2−jγ |u|W γ

p (Q◦j,k),

which is transformed into

∣∣〈u, ψ̃i,j,k,p′〉∣∣ ≤ C 2−jγ ρν−γj,k sup
|α|=γ

(∫
Qj,k

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

) 1
p

,

by putting 1 = ρ(x)ν−γρ(x)γ−ν into the integrals and using ρj,k = dist(Qj,k, ∂O). Then, applying
Hölder inequality, we show that

I ≤ C

( ∑
(i,j,k)∈Λ0

j

sup
|α|=γ

(∫
Qj,k

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

)) τ
p
( ∑

(i,j,k)∈Λ0
j

2
−j γτp

p−τ ρ
(ν−γ)τp
p−τ

j,k

) p−τ
p

.

At this point we use the norm equivalence (2.28), which holds only for γ ∈ N, in order to obtain

∑
(i,j,k)∈Λ0

j

sup
|α|=γ

(∫
Qj,k

∣∣ρ(x)γ−νDαu(x)
∣∣p dx

)
≤ C ‖u‖p

Hγ
p,d−νp(O)

,

with a constant C which does not depend on j. This is the last time we use the restriction γ ∈ N
in Part One of the proof of Theorem 4.7.

Let us now assume that we are given the setting of Theorem 4.7 with 0 < ν ≤ γ without any
additional restriction on γ ∈ (0,∞). Fix u ∈ Hγ

p,d−νp(O). The explanations above show that, in
this generalized setting, if want to apply the same strategy as in the case of integer γ in order
to estimate the sum I from (4.22) by the weighted Sobolev norm of u, we first need an estimate
similar to (4.32). To this end we can use Corollary 4.2, which provides Hγ

p,d−νp(O) ↪→ Bν
p,p(O) in

the given setting, together with [48, Theorem 3.5], which is a generalization of the Deny-Lions
lemma to arbitrary γ ∈ (0,∞). From these two facts we obtain the existence of a polynomial
Pj,k of total degree less than γ, such that

‖u− Pj,k‖Lp(Qj,k) ≤ C 2−jγ |u|Bγp,p(Q◦j,k), (4.33)
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where the constant C does not depend on j or k. As in the integer case, we can use the orthog-
onality of ψ̃i,j,k,p′ to every polynomial of total degree less than γ, which yields∣∣〈u, ψ̃i,j,k,p′〉∣∣ ≤ C 2−jγ |u|Bγp,p(Q◦j,k).

If we multiply the right hand side with 1 = ρν−γjk ργ−νj,k , we obtain∣∣〈u, ψ̃i,j,k,p′〉∣∣ ≤ C 2−jγ ρν−γjk ργ−νj,k |u|W γ
p (Q◦j,k).

Thus, an application of Hölder’s inequality leads to

∑
(i,j,k)∈Λ0

∣∣〈u, ψ̃i,j,k,p′〉∣∣τ ≤ C
( ∑

(i,j,k)∈Λ0
j

(
ργ−νj,k |u|Bγp,p(Q◦j,k)

)p) τ
p
( ∑

(i,j,k)∈Λ0
j

2
−j γτp

p−τ ρ
(ν−γ)τp
p−τ

j,k

) p−τ
p

.

The following lemma shows that the first sum on the right hand side can be estimated by the
weighted Sobolev norm of u times a constant C which does not depend on j or u. Using this
estimate and replacing the right places in Part One of the proof presented in the previous section
by the calculations above, Theorem 4.7 can be proven directly for arbitrary γ ∈ (0,∞). The
details are left to the reader.

Lemma 4.9. Let O be a bounded Lipschitz domain in Rd. Let p ∈ [2,∞), γ ∈ (0,∞) and ν ∈ R
with γ ≥ ν. Furthermore, assume u ∈ Hγ

p,d−νp(O). Then, for all j ∈ N0, the inequality∑
(i,j,k)∈Λ0

j

(
ργ−νj,k |u|Bγp,p(Q◦j,k)

)p
≤ C ‖u‖p

Hγ
p,d−νp(O)

(4.34)

holds, with a constant C ∈ (0,∞) which does not depend on j or u.

Proof. Fix j ∈ N0. Let k1 ≥ 1 be such that

2 + 2M
√
d < 2k1 , (4.35)

and construct a sequence {ξn : n ∈ Z} ⊆ C∞0 (O) as in Remark 2.48(ii). In order to prove the
assertion we are going to show the estimates∑

(i,j,k)∈Λ0
j

(
ργ−νj,k |u|Bγp,p(Q◦j,k)

)p
≤ C

∑
n∈N0

2−(j−n)(γ−ν)p|ξj−nu|pBγp,p(Rd)
, (4.36)

and
|ξj−nu|pBγp,p(Rd)

≤ C 2−(j−n)(d−γp)∥∥ξj−n(2−(j−n) ·
)
u
(
2−(j−n) ·

)∥∥p
Hγ
p (Rd)

, (4.37)

where the constant C does not depend on j and n. This will prove the assertion since, assuming
that (4.36) and (4.37) are true, their combination gives∑

(i,j,k)∈Λ0
j

(
ργ−νj,k |u|Bγp,p(Q◦j,k)

)p
≤ C

∑
n∈N0

2−(j−n)(d−νp)∥∥ξj−n(2−(j−n) ·
)
u
(
2−(j−n) ·

)∥∥p
Hγ
p (Rd)

≤ C
∑
n∈Z

2n(d−νp)∥∥ξ−n(2n · )u(2n · )∥∥pHγ
p (Rd)

,

which by Remark 2.48(ii) and Lemma 2.47 yields∑
(i,j,k)∈Λ0

j

(
ργ−νj,k |u|Bγp,p(Q◦j,k)

)p
≤ C ‖u‖p

Hγ
p,d−νp(O)

.
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Let us first verify inequality (4.37). To this end, let r be the smallest integer strictly greater
than γ. Recall that ∆r

h[f ] denotes the the r-th difference of a function f : Rd → R with
step h ∈ Rd, compare Subsection 2.3.4. Writing out the Besov semi-norm and applying the
transformation formula for integrals we see that

|ξj−nu|pBγp,p(Rd)
=

∫ ∞
0

t−γp sup
|h|<t

∥∥∆r
h[ξj−nu]

∥∥p
Lp(Rd)

dt

t

= 2−(j−n)d

∫ ∞
0
t−γp sup

|h|<t

{∫
Rd

∣∣∆r
h[ξj−nu]

(
2−(j−n)x

)∣∣p dx

}
dt

t

Since the equality

∆r
h [f ] (cx) = ∆r

h/c [f(c · )] (x), x ∈ Rd,

holds for any function f : Rd → R and c > 0, we obtain

|ξj−nu|pBγp,p(Rd)
= 2−(j−n)d

∫ ∞
0
t−γp sup

|h|<2j−nt

{∫
Rd

∣∣∣∆r
h

[
ξj−n

(
2−(j−n) ·

)
u
(
2−(j−n) ·

)]
(x)
∣∣∣p dx

}
dt

t
.

A further application of the transformation formula for integrals yields

|ξj−nu|pBγp,p(Rd)
= 2−(j−n)d2(j−n)γp

∫ ∞
0

t−γp sup
|h|<t

∥∥∥∆r
h

[
ξj−n

(
2−(j−n) ·

)
u
(
2−(j−n) ·

)]∥∥∥p
Lp(Rd)

dt

t

= 2−(j−n)(d−γp)∣∣ξj−n(2−(j−n) ·
)
u
(
2−(j−n) ·

)∣∣p
Bγp,p(Rd)

,

which implies (4.37) since the space Hγ
p (Rd) of Bessel potentials is continuously embedded in

the Besov space Bγ
p,p(Rd), see [116, Theorem 2.3.2(d) combined with Theorem 2.3.3(a)].

It remains to prove inequality (4.36). Recall that the index i referring to the different types
of wavelets on a cube Qj,k ranges from 1 to 2d−1. Since Λ0

j consists of those indices (i, j, k) ∈ Λj
with 2−j ≤ ρj,k, we have∑

(i,j,k)∈Λ0
j

(
ργ−νj,k |u|Bγp,p(Qj,k)

)p
= (2d − 1)

∑
k∈Λ?j

(
ργ−νj,k |u|Bγp,p(Qj,k)

)p
, (4.38)

where we used the notation

Λ?j :=
{
k ∈ Zd : (i, j, k) ∈ Λ0

j

}
.

Now we get the required estimate in three steps.

Step 1. We first show that the cubes supporting the wavelets fit into the stripes where the
cut-off functions (ξn) are identical to one. That is, we claim that the proper choice of k1, see
(4.35), leads to the fact that, for any k ∈ Λ?j , there exists a non-negative integer n ∈ N0 such
that

Qj,k ⊆ Sj−n :=
{
x ∈ O : 2−(j−n)2−k1 ≤ ρ(x) ≤ 2−(j−n)2k1

}
.

To prove this, we first note that, since k1 ≥ 1,⋃
k∈Λ?j

Qj,k ⊆
⋃
n∈N0

Sj−n. (4.39)
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Fix k ∈ Λ?j . Because of (4.39), we can define n∗ to be the smallest non-negative integer such
that Qj,k ∩ Sj−n∗ 6= ∅, i.e.,

n∗ := inf
{
n ∈ N0 : Qj,k ∩ Sj−n 6= ∅

}
.

Then, there are two possibilities: On the one hand, Qj,k might be contained completely in
Sj−n∗ , i.e., Qj,k ⊆ Sj−n∗ . Then we are done. On the other hand, it might happen that Qj,k is
not completely contained in the stripe Sj−n∗ . In this case, we claim that Qj,k ⊆ Sj−(n∗+1), i.e.,

ρ(x) ∈
[
2−j+n

∗+12−k1 , 2−j+n
∗+12k1

]
for all x ∈ Qj,k.

Let us therefore fix x ∈ Qj,k. Then, since the length of the diagonal of Qj,k is 2−j2M
√
d, we

have

ρ(x) ≤ ρj,k + 2−j2M
√
d.

Also, ρj,k ≤ 2−j+n
∗
2k1 since Qj,k ∩ Sj−n∗ 6= ∅. Hence,

ρ(x) ≤ 2−j+n
∗
2k1 + 2−j2M

√
d.

Since 2M
√
d ≤ 2k1 , we conclude that

ρ(x) ≤ 2−j+n
∗+12k1

(
1

2
+

2M
√
d

2n∗+12k1

)
≤ 2−j+n

∗+12k1

(
1

2
+

1

2n∗+1

)
≤ 2−j+n

∗+12k1 . (4.40)

It remains to show that ρ(x) ≥ 2−j+n
∗+12−k1 . We argue as follows: Since Qj,k is not completely

contained in Sj−n∗ , there exists a point x0 ∈ Qj,k such that ρ(x0) > 2−j+n
∗
2k1 . Therefore, since

the length of the diagonal of Qj,k is 2−j2M
√
d and since (4.35) holds, we have

ρ(x) > 2−j+n
∗
2k1 − 2M

√
d 2−j = 2−j+n

∗+12−k1

(
22k1

2
− 2M

√
d 2k1

2n∗+1

)
≥ 2−j+n

∗+12−k1 . (4.41)

Thus, since (4.40) and (4.41) hold for arbitrary x ∈ Qj,k, we have shown that Qj,k ⊆ Sj−(n∗+1).
Step 2. Let us fix k ∈ Λ?j and estimate the Besov semi-norm of the restriction of u to the corre-
sponding cube Q◦j,k. To this end, we use the results from [68], where the modulus of smoothness
ωr(t, f,G)p, t ∈ (0,∞), of a function f defined on a domain G is compared with the Peetre
K-functional

Kr(t, f,G)p := inf
g∈W r

p (G)

{
‖f − g‖Lp(G) + t |g|W r

p (G)

}
, t ∈ (0,∞), f ∈ Lp(G).

In particular, it is shown therein that for all t ∈ (0,∞), and f ∈ Lp(G) for some p ≥ 1,

ωr(t, f,G)p ≤ max
{

2r, dr/2
}
Kr(t, f,G)p

holds for r ∈ N, see [68, Lemma 1]. Using this, we obtain the following estiamte:

|u|p
Bγp,p(Q◦j,k)

=

∫ ∞
0

t−γpωr(t, u,Q◦j,k)
p
p

dt

t

≤ C
∫ ∞

0
t−γpKr(t

r, u,Q◦j,k)
p
p

dt

t

= C

∫ ∞
0

t−γp inf
g∈W r

p (Q◦j,k)

{
‖u− g‖Lp(Qj,k) + tr|g|W r

p (Q◦j,k)

}p dt

t

≤ C
∫ ∞

0
t−γp inf

g∈W r
p (Q◦j,k)

{
‖u− g‖pLp(Qj,k) + trp|g|pW r

p (Q◦j,k)

} dt

t
,
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where the constant C depends only on r, d and p. (Recall that r is the smallest integer strictly
greater than γ.)

Step 3. Now we collect the fruits of our work and approximate the sum on the right hand side
of (4.38). As in Part One of the proof of Theorem 4.7 from the previous section, we use the
partition Rj,m, m ∈ {1, . . . , (2M)d}, of the set {Qj,k : k ∈ Zd} defined in (4.24). Furthermore,
we write

R?j,m :=
{
k ∈ Λ?j : Qj,k ∈ Rj,m

}
, m ∈

{
1, . . . , (2M)d

}
, (4.42)

and

S?j,n := {k ∈ Λ?j : Qj,k ∈ Sj−n}, n ∈ N0.

Form Step 1 we can deduce that

Λ?j =
⋃
n∈N0

S?j,n.

Thus, since (4.25) holds, we have

Λ?j = Λ?j ∩
(2M)d⋃
m=1

R?j,m =
⋃
n∈N0

(2M)d⋃
m=1

S?j,n ∩R?j,m.

Therefore,

∑
k∈Λ?j

(
ργ−νj,k |u|Bγp,p(Q◦j,k)

)p
≤
∑
n∈N0

(2M)d∑
m=1

∑
k∈S?j,n∩R?j,m

(
ρ

(γ−ν)p
j,k |u|p

Bγp,p(Q◦j,k)

)
. (4.43)

Let us fix n ∈ N0 such that S?j,n 6= ∅ as well as m ∈ {1, . . . , (2M)d}. Then, ρj,k ≤ 2k12−(j−n) for
k ∈ S?j,n, so that using the estimate from Step 2 we obtain

∑
k∈S?j,n∩R?j,m

(
ρ

(γ−ν)p
j,k |u|p

Bγp,p(Q◦j,k)

)

≤ C
∑

k∈S?j,n∩R?j,m

(
2−(j−n)(γ−ν)p

∫ ∞
0

t−γp inf
g∈W r

p (Q◦j,k)

{
‖u− g‖pLp(Qj,k) + trp|g|pW r

p (Q◦j,k)

} dt

t

)

≤ C2−(j−n)(γ−ν)p
∑

k∈S?j,n∩R?j,m

∫ ∞
0

t−γp inf
g∈W r

p (O)

{
‖u− g‖pLp(Qj,k) + trp|g|pW r

p (Q◦j,k)

} dt

t
.

Furthermore, since ξj−n = 1 on Qj,k for any k ∈ S?j,n,

∑
k∈S?j,n∩R?j,m

(
ρ

(γ−ν)p
j,k |u|p

Bγp,p(Q◦j,k)

)

≤ C2−(j−n)(γ−ν)p
∑

k∈S?j,n∩R?j,m

(∫ ∞
0

t−γp inf
g∈W r

p (O)

{
‖ξj−nu− g‖pLp(Qj,k) + trp|g|pW r

p (Q◦j,k)

} dt

t

)

≤ C2−(j−n)(γ−ν)p

∫ ∞
0

t−γp inf
g∈W r

p (O)

{ ∑
k∈S?j,n∩R?j,m

(
‖ξj−nu− g‖pLp(Qj,k) + trp|g|pW r

p (Q◦j,k)

)} dt

t
.
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Since Q◦j,k ∩Q◦j,` = ∅ for k, ` ∈ R?j,m if k 6= `, see (4.26) together with (4.42), we obtain∑
k∈S?j,n∩R?j,m

(
ρ

(γ−ν)p
j,k |u|p

Bγp,p(Q◦j,k)

)
≤ C2−(j−n)(γ−ν)p

∫ ∞
0

t−γp inf
g∈W r

p (O)

{
‖ξj−nu− g‖pLp(O) + trp|g|pW r

p (O)

} dt

t

≤ C2−(j−n)(γ−ν)p

∫ ∞
0

t−γpKr(t
r, ξj−nu,O)pp

dt

t
.

Now we use another result from [68], which shows that the K-functional can be estimated by the
modulus of smoothness. That is, [68, Theorem 1] yields the existence of a constant C, depending
only on r, p and O, such that

Kr(t
r, ξj−nu,O)p ≤ C ωr(t, ξj−nu,O)p.

Putting everything together, we have shown that there exists a constant C which does not
depend on j, n or m such that∑

k∈S?j,n∩R?j,m

(
ρ

(γ−ν)p
j,k |u|p

Bγp,p(Q◦j,k)

)
≤ C2−(j−n)(γ−ν)p

∫ ∞
0

t−γpωr(t, ξj−nu,O)pp
dt

t

= C2−(j−n)(γ−ν)p|ξj−nu|pBγp,p(O)

≤ C2−(j−n)(γ−ν)p|ξj−nu|pBγp,p(Rd)
.

Inserting this estimate into (4.43) yields∑
k∈Λ?j

(
ρ

(γ−ν)p
j,k |u|p

Bγp,p(Q◦j,k)

)
≤ C

∑
n∈N0

2−(j−n)(γ−ν)p|ξj−nu|pBγp,p(Rd)
,

which combined with (4.38) proves (4.36).
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Chapter 5

Spatial Besov regularity of SPDEs
on bounded Lipschitz domains

In this chapter, we are concerned with the spatial regularity of solutions to SPDEs on bounded
Lipschitz domains O ⊂ Rd in the non-linear approximation scale

Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, α > 0, (∗)

with p ≥ 2 fixed (i.e., topic (T1) in the introduction). We use the same setting and notation as
introduced in Chapter 3.

The embedding of weighted Sobolev spaces into Besov spaces from the scale (∗) proven in the
previous chapter (Theorem 4.7), shows that—to a certain extent—the analysis of the regularity
of SPDEs in terms of the scale (∗) can be traced back to the analysis of such equations in terms
of the spaces Hγ,qp,θ(O, T ). In particular, the following embeddings hold.

Theorem 5.1. Let O be a bounded Lipschitz domain in Rd. Fix γ ∈ (0,∞), p, q ∈ [2,∞), and
θ ∈ R. Then

Hγ,qp,θ(O, T ) ↪→ Hγ,q
p,θ−p(O, T ) ↪→ Lq(ΩT ;Bα

τ,τ (O)),

for all α and τ with

1

τ
=
α

d
+

1

p
and 0 < α < min

{
γ,

(
1 +

d− θ
p

)
d

d− 1

}
.

Proof. The first embedding follows from the definition of the stochastic parabolic weighted
Sobolev spaces Hγ,qp,θ(O, T ), see Definition 3.3, and holds actually on arbitrary domains with
non-empty boundary. Since

Hγ
p,θ−p(O) = Hγ

p,d−νp(O), with ν := 1 +
d− θ
p

,

the second embedding follows immediately from Theorem 4.7.

We use this result to prove spatial Besov regularity of the solutions to SPDEs in the scale
(∗) of Besov spaces. We divide this chapter into two sections. We start with the linear equations
introduced in Section 3.2. As outlined therein, in this setting, the Lp-theory from [75], already
provides existence (and uniqueness) of solutions in the classes Hγp,θ(O, T ) = Hγ,pp,θ (O, T ), p ∈
[2,∞), γ, θ ∈ R. Thus, we can apply Theorem 5.1 directly and obtain spatial regularity results
in the right scale, see Theorem 5.2. Afterwards, in Section 5.2, we generalize our results to a
class of semi-linear SPDEs: The linear part will be of the same form as in [75], whereas the
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non-linearities fulfil certain Lipschitz conditions. Since in this case, existence of solutions has
not been established yet, we first have to extend the main existence result of the aforementioned
Lp-theory to this class of equations. This will be done in Theorem 5.13. Afterwards, we can apply
Theorem 5.1 and obtain spatial regularity in the scale (∗) of Besov spaces, see Theorem 5.15.

The examples and remarks presented in Section 5.1 have been partially worked out in col-
laboration with F. Lindner, S. Dahlke, S. Kinzel, T. Raasch, K. Ritter, and R.L. Schilling [25].

5.1 Linear equations

In this section we use the scale (∗) with fixed p ≥ 2 to analyse the spatial regularity of the
solutions u ∈ Hγp,θ(O, T ) of the linear SPDEs of the form (3.1) studied in [75], see Section 3.2.

Since we already have an existence and uniqueness result for this type of equations in Hγp,θ(O, T ),
see Theorem 3.13, we can immediately extract an assertion about the spatial regularity of the
solution in the scale (∗) by applying Theorem 5.1. After stating and proving this result, we
present several examples and make some additional remarks. In particular, we enlighten the fact
that, on bounded Lipschitz domains, the spatial smoothness of the solution in the non-linear
approximation scale (∗) of Besov spaces is generically higher than its spatial Sobolev regularity.
The relevance of this characteristic from the point of view of approximation theory and numerical
analysis has been pointed out in Section 1.1.

We begin with the main result on the spatial regularity in the scale (∗) of the solutions to
linear SPDEs. It is an improvement of [25, Theorems 3.1 and B.3], see also Remark 5.3 below.

Theorem 5.2. Let O be a bounded Lipschitz domain in Rd. Given γ ∈ (−2,∞), let aij, bi,
c, σik and µk, i, j ∈ {1, . . . , d}, k ∈ N, satisfy Assumption 3.1 with suitable constants δ0 and
K. Furthermore, assume that u ∈ Hγ+2

p,θ (O, T ) is the unique solution of Eq. (3.1) with f ∈
Hγ
p,θ+p(O, T ), g ∈ Hγ+1

p,θ (O, T ; `2) and u0 ∈ Uγ+2
p,θ (O), where

(i) p ∈ [2,∞) and θ ∈ (d+ p− 2− κ0, d+ p− 2 + κ0)

or, alternatively,

(ii) p ∈ [2, p0) and θ ∈ (d− κ1, d+ κ1),

with κ0, κ1 ∈ (0, 1) and p0 > 2 as in Theorem 3.13. Then,

u ∈ Lp(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, for all 0 < α < min

{
γ + 2,

(
1 +

d− θ
p

)
d

d− 1

}
. (5.1)

Moreover, for any α and τ fulfilling (5.1), there exists a constant C, which does not depend on
u, f , g and u0 such that

‖u‖pLp(ΩT ;Bατ,τ (O)) ≤ C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
.

Proof. The assertion is an immediate consequence of Theorem 5.1 and the existence and unique-
ness statements from Theorem 3.13.

Remark 5.3. A result similar to Theorem 4.4 has been proven in [25, Theorem 3.1, see also
Theorem B.3]. However, there are three major improvements in Theorem 5.2 compared to [25,
Theorems 3.1 and B.3]1. Firstly, we have no restriction on γ + 2 ∈ (0,∞), whereas in [25] only

1We remark that the assumptions made in [25, Theorem B.3] are stronger than actually needed. In the notation
used therein, the assumptions [K1]–[K5] only need to be fulfilled for γ − 2 instead of γ.
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integer γ + 2 ∈ N are considered. Secondly, we obtain Lp-integrability in time of the Bα
τ,τ (O)-

valued process for arbitrary p ≥ 2 fulfilling the assumptions (i) or (ii) from Theorem 3.13. With
the techniques used in [25] just Lτ -integrability in time can be established. Thirdly, we do not
need the extra assumption u ∈ Lp([0, T ] × Ω;Bs

p,p(O)) for some s > 0. Due to Corollary 4.2, it

suffices that u ∈ Hγ+2
p,θ−p(O, T ).

Next, we give some examples of applications of Theorem 5.2 and interpret our result from the
point of view of the question whether adaptivity pays, cf. our motivation for studying topic (T1)
from Section 1.1. We are mainly interested in the Hilbert space case p = 2 since, as already
pointed out in Section 1.1, it provides a natural setting for numerical discretization techniques
like adaptive wavelet methods, see also the expositions in [105, 125] for more details. We begin
with an application of Theorem 5.2 for particular parameters γ, θ ∈ R and p = 2.

Example 5.4. Assume that we have given coefficients aij , bi, c, σik, and µk, with i, j ∈ {1, . . . , d}
and k ∈ N, fulfilling Assumption 3.1 with γ = 0. Furthermore, fix arbitrary f ∈ H0

2,d+2(O, T ), g ∈
H1

2,d(O, T ; `2) and u0 ∈ U2
2,d = L2(Ω,F0,P;H1

2,d(O)). Then, by an application of Theorem 3.13

with γ = 0, p = 2 and θ = d, Eq. (3.1) has a unique solution u ∈ H2
2,d(O, T ). Due to Theorem 5.2,

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all 0 < α <

d

d− 1
. (5.2)

In the two-dimensional case, this means that

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

2
+

1

2
, for all 0 < α < 2.

Note that if we assume slightly more regularity on the coefficients, the initial condition u0

and the free terms f and g, we can included the border case α = d/(d − 1) in (5.2). To this
end, assume that the coefficients aij , bi, c, σik, and µk, with i, j ∈ {1, . . . , d} and k ∈ N, fulfil
Assumption 3.1 for some arbitrary positive γ > 0. Furthermore, fix an arbitrary ε > 0 and assume
that f ∈ Hγ

2,d−ε+2(O, T ), g ∈ Hγ+1
2,d−ε(O, T ; `2) and u0 ∈ Uγ+2

2,d−ε = L2(Ω,F0,P;Hγ+2
2,d−ε(O)). Then,

there exists an ε1 ∈ (0, κ1) with κ1 > 0 from Theorem 3.13(ii), such that Eq. (3.1) has a unique
solution u ∈ Hγ+2

2,d−ε1(O, T ). Due to Theorem 5.2,

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all 0 < α < min

{
γ + 2,

(
1 +

ε1

2

)
d

d− 1

}
,

and therefore, since γ and ε1 are strictly positive,

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all 0 < α ≤ d

d− 1
,

which in the two-dimensional case yields

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all 0 < α ≤ 2.

The example above shows that equations of the type (3.1) on general bounded Lipschitz
domains have spatial Besov regularity in the scale (∗) up to order α = 2. In order to answer
the question whether this is enough for justifying the development of spatially adaptive wavelet
methods, we have to compare this result with the spatial Sobolev regularity of the solution
under consideration. We give now a concrete example of an SPDE of the type (3.1) with solution
u ∈ H2

2,d(O, T ) whose spatial Besov regularity in the scale (∗) is strictly higher than its spatial
Sobolev regularity.
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Figure 5.1: Polygon in R2 with βmax = β6 = 5π/4.

Example 5.5. We consider an equation of the type (3.1) on a polygonal domain O ⊂ R2 and
show that, under natural conditions on the data of the equation, if the underlying domain is
not convex, the spatial Besov regularity of the solution in the scale (∗) is strictly higher than
its spatial Sobolev smoothness. In particular, this shows that, generically, solutions to linear
SPDEs on bounded Lipschitz domains behave as described in (1.11), so that the use of spatially
adaptive methods is recommended. For more details on the link between regularity theory and
the convergence rates of numerical methods we refer to Section 1.1.

Let O ⊂ R2 be a simply connected bounded domain in R2 with a polygonal boundary ∂O
such that O lies on one side of ∂O. It can be described by a finite set {Vn : n = 1, . . . , N} of
vertices of the boundary numbered, e.g., according to their order in ∂O in counter-clockwise
orientation. For n ∈ {1, . . . , N}, we write βn ∈ (0, 2π) for the interior angle at the vertex Vn and
denote by βmax the maximal interior angle of O, i.e.,

βmax := max
{
βn : n = 1, . . . , N

}
.

An example of such a domain with βmax = 5π/4 is shown in Figure 5.1. Assume that we have
an initial condition u0 ∈ U2

2,2(O) additionally satisfying

u0 ∈ L2(Ω,F0,P; W̊ 1
2 (O)) ∩ Lq(Ω,F0,P;L2(O))

for some q > 2. Furthermore, let f ∈ L2(ΩT ;L2(O)) ↪→ H0
2,4(O, T ) and let g ∈ H1

2,2(O; `2).
Typically, we make slight abuse of notation and write g also for the constant stochastic process
g ∈ H1

2,d(O, T ; `2) with g(ω, t) := g for all (ω, t) ∈ ΩT . Then, due to Theorem 3.13, the stochastic
heat equation

du =
(
∆u+ f

)
dt+ gk dwkt on ΩT ×O,

u(0) = u0 on Ω×O,

}
(5.3)

has a unique solution u ∈ H2
2,2(O, T ).

We want to compare the spatial Besov regularity of the solution to Eq. (5.3) in the scale (∗)
with its spatial Sobolev regularity. Regarding the spatial regularity in the non-linear approxi-
mation scale (∗), an application of Theorem 5.2 yields

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

2
+

1

2
=
α+ 1

2
, for all 0 < α < 2. (5.4)
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Concerning the spatial Sobolev regularity of the solution, by our analysis so far, we can only
guarantee that

u ∈ L2(ΩT ; W̊ 1
2 (O)),

which is a consequence of Proposition 4.1. Together with (5.4), this suggests that the Besov
regularity of the solution to Eq. (5.3) in the scale (∗) is generically higher than its spatial
Sobolev regularity in the following sense: There exist polygonal domains O ⊂ R2 and free terms
f and g fulfilling the assumptions from above, such that

s̃Sob
max(u) < 2, (5.5)

with s̃Sob
max(u) as introduced in (1.12). We can confirm this statement by exploiting the recent

results from [92]. Therefore, let us denote by ∆D
2,w : D(∆D

2,w) ⊆ L2(O) → L2(O) the weak
Dirichlet-Laplacian on L2(O), i.e.,

D(∆D
2,w) :=

{
u ∈ W̊ 1

2 (O) : ∆u ∈ L2(O)
}
,

∆D
2,wu := ∆u, u ∈ D(∆D

2,w).

From Proposition 3.18 we already know that our solution u ∈ H2
2,2(O, T ) is also the unique weak

solution (in the sense of Da Prato and Zabczyk [32]) of the L2(O)-valued ordinary SDE

du(t)−∆D
2,wu(t) dt = f(t) dt+ dWQ(t), t ∈ [0, T ],

u(0) = u0,

}
(5.6)

driven by the H1
2,2(O)-valued Q-Wiener process (WQ(t))t∈[0,T ] :=

(∑
k∈N g

kwkt
)
t∈[0,T ]

with co-

variance operator Q :=
∑

k∈N〈gk, ·〉H1
2,2(O)g

k ∈ L1(H1
2,2(O)). Moreover, due to Theorem 3.8(ii),

sup
t∈[0,T ]

E
[
‖u(t)‖2L2(O)

]
≤ E

[
sup
t∈[0,T ]

‖u(t)‖2L2(O)

]
≤ C ‖u‖2H2

2,2(O,T ) <∞,

and by [32, Theorem 5.4], for all t ∈ [0, T ],

u(t) = S2(t)u0 +

∫ t

0
S2(t− s)f(s) ds+

∫ t

0
S2(t− s) dWQ(s) P-a.s.,

where
{
S2(t)

}
t≥0

denotes the contraction semigroup on L2(O) generated by (∆D
2,w, D(∆D

2,w)).

Thus, u is the unique (up to modifications) mild solution of Eq. (5.6) which is studied in [92],
see also [91, Chapter 4]. Therein, techniques from [57, 58] have been adapted to the stochastic
setting, and it has been shown that this solution can be divided into a spatially regular and a
spatially irregular part, regularity being measured by means of Sobolev spaces. In particular, if
we assume that the range of the covariance operator Q is dense in H1

2,2(O) ↪→ L2(O), it follows
from [92, Example 3.6] that

u /∈ L2(ΩT ;W s
2 (O)) for any s > 1 +

π

βmax
. (5.7)

Thus, if O is not convex, we have

s̃Sob
max(u) ≤ 1 +

π

βmax
< 2,

with s̃Sub
max(u) as defined in (1.12). Together with (5.4), this shows that the solution to Eq. (5.3)

generically behaves as described in (1.11). Therefore, the development of suitable spatially adap-
tive numerical methods is completely justified.
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Figure 5.2: Spatial Besov regularity in the scale Bα
τ,τ (O), 1/τ = (α+ 1)/2,

versus spatial Sobolev regularity of the solution of Eq. (5.3),
illustrated in a DeVore/Triebel diagram.

Figure 5.2 shows a DeVore/Triebel diagram illustrating the situation described above (see
Remark 2.63 for details on the visualisation of Besov spaces using this type of diagrams). The
fact that (5.4) holds, is represented by the solid segment {(1/τ, α) : 1/τ = (α + 1)/2, 0 ≤
α < 2} of the L2(O)-non-linear approximation line and the annulus at (3/2, 2), which stands
for the Besov space B2

2/3,2/3(O). The point at (1/2, 1) shows that u ∈ L2(ΩT ;W 1
2 (O)). In this

situation, by Theorem 2.61 and standard interpolation results, see, e.g. [117, Corollary 1.111],
u ∈ L2(ΩT ;Br

q,q(O)) for all (1/q, r) in the interior of the polygon with vertices at the points
(1/2, 0), (1/2, 1), (3/2, 2), (2, 2), and (1, 0). This is indicated by the shaded area. The border at
(1/2, 3/2) illustrates the following consequence of (5.7): For any ε > 0, there exists a polygonal

domain O ⊂ R2, such that u /∈ L2(ΩT ;W
3/2+ε
2 (O)). The concrete border for the example in

Figure 5.1 is indicated by the annulus at (1/2, 1 + π/βmax) = (1/2, 9/5), which stands for the

Sobolev space W
9/5
2 (O).

In the following example we are concerned with equations of the form (3.1) driven by a
specific type of noise.

Example 5.6. We consider an equation of the type (3.1) driven by a time-dependent version
of the stochastic wavelet expansion introduced in [1] in the context of Bayesian non-parametric
regression and generalized in [14] and [24]. This noise model is formulated in terms of a wavelet
basis expansion on the domain O ⊂ Rd with random coefficients of prescribed sparsity and thus
tailor-made for applying adaptive techniques with regard to the numerical approximation of
the corresponding SPDEs. Via the choice of certain parameters specifying the distributions of
the wavelet coefficients it also allows for an explicit control of the spatial Besov regularity of
the noise. We first describe the general noise model and then deduce a further example for the
application of Theorem 5.2.

Let {ψλ : λ ∈ ∇} be a multiscale Riesz basis of L2(O) consisting of scaling functions at
a fixed scale level j0 ∈ Z and of wavelets at level j0 and all finer levels. We follow [27] and
use the same notation as in Section 1.1. Information like scale level, spatial location and type
of the wavelets or scaling functions are encoded in the indices λ ∈ ∇. In particular, we write
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∇ =
⋃
j≥j0−1∇j , where for j ≥ j0 the set ∇j ⊂ ∇ contains the indices of all wavelets ψλ at scale

level j and where ∇j0−1 ⊂ ∇ is the index set referring to the scaling functions at scale level j0
which we denote by ψλ, λ ∈ ∇j0−1, for the sake of notational simplicity; |λ| := j for all λ ∈ ∇j .
We make the following assumptions concerning our basis. Firstly, the cardinalities of the index
sets ∇j , j ≥ j0 − 1, satisfy

C−12jd ≤ |∇j | ≤ C2jd, j ≥ j0 − 1, (5.8)

with a constant C which does not depend on j. Secondly, we assume that the basis admits norm
equivalences similar to those described in Theorem 4.4. That is, there exists an s0 ∈ N (depending
on the smoothness of the scaling functions ψλ, λ ∈ ∇j0−1, and on the degree of polynomial
exactness of their linear span), such that, given p, q > 0, max{0, d(1/p − 1)} < s < s0, and a
real valued distribution v ∈ D′(O), we have v ∈ Bs

p,q(O) if, and only if, v can be represented as
v =

∑
λ∈∇ cλψλ, (cλ)λ∈∇ ⊂ R (convergence in D′(O)), such that

( ∞∑
j=j0−1

2
jq
(
s+d
(

1
2
− 1
p

))( ∑
λ∈∇j

|cλ|p
) q
p

) 1
q

<∞. (5.9)

Furthermore, ‖v‖Bsp,q(O) is equivalent to the (quasi-)norm (5.9). Concrete constructions of bases

satisfying these assumptions can be found e.g. in [42–44] or [19, 20], see also [27, Section 2.12
together with Section 3.9] for a detailed discussion. Concerning the family of independent stan-
dard Brownian motions (wkt )t∈[0,T ], k ∈ N, in (3.1), we modify our notation and write (wλt )t∈[0,T ],
λ ∈ ∇, instead. The description of the noise model involves parameters a1 ≥ 0 , a2 ∈ [0, 1], b ∈ R,

with a1 + a2 > 1. For every j ≥ j0 − 1 we set ςj := (j − (j0 − 2))
bd
2 2−

a1(j−(j0−1))d
2 and let Yλ,

λ ∈ ∇j , be {0, 1}-valued Bernoulli distributed random variables on (Ω,F0,P) with parameter
pj = 2−a2(j−(j0−1))d, such that the random variables and processes Yλ, (wλt )t∈[0,T ], λ ∈ ∇, are
stochastically independent. The noise in our equation will be described by the L2(O)-valued
stochastic process (Mt)t∈[0,T ] defined by

Mt :=
∞∑

j=j0−1

∑
λ∈∇j

ςjYλψλ · wλt , t ∈ [0, T ]. (5.10)

Using (5.9), (5.8) and a1 + a2 > 1, it is easy to check that the infinite sum converges in
L2(ΩT ;L2(O)) as well as in L2(Ω; C([0, T ];L2(O))). Moreover, by the choice of the parame-
ters a1, a2 and b one has an explicit control of the convergence of the infinite sum in (5.10) in
the (quasi-)Banach spaces Lp2(ΩT ;Bs

p1,q(O)), s < s0, p1, q > 0, p2 ≤ q. (Compare [24] which can
easily be adapted to our setting.)

For simplicity, let us consider the two-dimensional case, i.e., d = 2. Assume that we have
a given f ∈ H0

2,2(O, T ), an initial condition u0 ∈ U2
2,2(O), and coefficients aij , bi and c, with

i, j ∈ {1, . . . , d}, fulfilling Assumption 3.1 with σ = 0 and µ = 0. We consider the equation

du =
(
aijuxixj + biuxi + cu+ f

)
dt+ ς|λ|Yλψλ dwλt on ΩT ×O,

u(0) = u0 on Ω×O,

}
(5.11)

where we sum over all λ ∈ ∇ instead of k ∈ N. That is, we understand this equation similar
to equations of the type (3.1), where the role of k ∈ N in the required definitions is taken by
λ ∈ ∇. In this setting, let g := (gλ)λ∈∇ := (ς|λ|Yλψλ)λ∈∇. Since a1 +a2 > 1 and ‖g‖H0

2,2(O,T ;`2) =√
2/T‖M‖L2(ΩT ;L2(O)) we have g ∈ H0

2,2(O, T ; `2). Let us impose a bit more smoothness on g
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and assume that a1 + a2 > 2. This is sufficient to ensure that g ∈ H1
2,2(O, T ; `2), since

‖g‖2H1
2,2(O,T ;`2) = E

[ ∫ T

0
‖g‖2H1

2,2(O;`2) dt

]
= E

[ ∫ T

0

∑
λ∈∇
‖gλ(t, ·)‖2H1

2,2(O) dt
]

= T E
[ ∞∑
j=j0−1

∑
λ∈∇j

ς2
j Y

2
λ ‖ψλ‖2H1

2,2(O)

]
,

so that by (2.28),

‖g‖2H1
2,2(O,T ;`2) ≤ C

∞∑
j=j0−1

∑
λ∈∇j

ς2
j pj

∑
|α|≤1

‖ρ|α|Dαψλ‖2L2(O)

≤ C
∞∑

j=j0−1

∑
λ∈∇j

ς2
j pj‖ψλ‖2W 1

2 (O).

Since W 1
2 (O) = B1

2,2(O), see Theorem 2.60(ii), we can use the equivalence (5.9) with v = ψλ
followed by (5.8) with d = 2 to obtain

‖g‖2H1
2,2(O,T ;`2) ≤ C

∞∑
j=j0−1

∑
λ∈∇j

ς2
j pj2

2j

= C

∞∑
j=j0−1

|∇j |(j − (j0 − 2))2b2−2a1(j−(j0−1))2−2a2(j−(j0−1))22j

≤ C
∞∑

j=j0−1

(j − (j0 − 2))2b2−2j(a1+a2−2).

Thus g ∈ H1
2,2(O, T ; `2) and for any ϕ ∈ C∞0 (O),∑

λ∈∇

∫ ·
0

(gλ, ϕ) dwλt = (M·, ϕ) P-a.s.

in C([0, T ];R), see also Proposition 3.6 and the definition of stochastic integrals from Subsec-
tion 2.2.3 for details. As in the examples above, by Theorem 3.13, there exists a unique solution
of Eq. (5.11) in the class H2

2,2(O, T ). As shown in Examples 5.5, in general, the solution pro-
cess is not in L2(ΩT ;W s

2 (O)) for all s < 2, but, by Theorem 5.2, it belongs to every space
L2(ΩT ;Bα

τ,τ (O)) with α < 2 and τ = 2/(α+ 1).

We make the following note regarding adaptive versus uniform methods in Sobolev spaces.

Remark 5.7. As already mentioned in the introduction, in different deterministic settings,
there exist adaptive wavelet-based schemes realising the convergence rate of the best m-term
approximation error in the energy norm. This norm is determined by the equation and is usually
equivalent to an L2(O)-Sobolev norm and not to the L2(O) norm itself. Thus, the question arises
whether our regularity results underpin the use of adaptivity also in the case that the error
is measured in a suitable Sobolev norm. Again this question can be decided after a rigorous
regularity analysis of the target function, since the results on the link between regularity theory
and the convergence rate of approximation methods discussed in Section 1.1 can be generalised
to the case where the error is measured in a Sobolev spaces W r

2 (O) with r > 0 instead of Lp(O).
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Figure 5.3: Spatial Besov regularity in the scale Bα
τ,τ (O), 1/τ = α/2, versus

spatial Sobolev regularity of the solution to Eq. (5.3),
illustrated in a DeVore/Triebel diagram.

Let us denote by {ηλ : λ ∈ ∇} a wavelet basis of W r
2 (O) for some r > 0. Such a basis can

be obtained by rescaling a wavelet basis {ψλ : λ ∈ ∇} of L2(O) as the one used in Example 5.6
and by using the norm equivalence (5.9), see, e.g., [27] or [41]. For the error of the best m-term
wavelet approximation error in this Sobolev norm, it is well-known that

u ∈ Bα
τ,τ (O),

1

τ
=
α− r
d

+
1

2
implies σm,W r

2 (O)(u) ≤ Cm−(α−r)/d, (5.12)

where

σm,W r
2 (O)(u) := inf

{
‖u− um‖W r

2 (O) : um ∈ Σ̃m,W r
2 (O)

}
with

Σ̃m,W r
2 (O) :=

{∑
λ∈Λ

cληλ : Λ ⊂ ∇,
∣∣Λ∣∣ = m, cλ ∈ R, λ ∈ Λ

}
,

see, e.g., [125, Corollary 3.2] and the references therein, in particular, [27]. Therefore, similar to
the L2(O)-setting, on the one hand, the decay rate of the best m-term wavelet approximation
error in E = W r

2 (O) depends on the Besov regularity of the target function. On the other hand,
the convergence rate of uniform numerical methods is determined by the Sobolev regularity of
the solution to be approximated. It is well-known that, under fairly natural conditions, if um,
m ∈ N, is a uniform approximation scheme of u, then,

‖u− um‖W r
2 (O) ≤ Cm−(s−r)/d‖u‖W s

2 (O), m ∈ N;

see, e.g., [37], [46] or [61] for details. If we consider uniform wavelet approximation, the following
converse assertion also holds: If u /∈W s

2 (O), then the convergence rate of the uniform method in
W r

2 (O) is limited by (s− r)/d, see, e.g., [125, Proposition 3.2] and the references therein. This
means that, if the error is measured in W r

2 (O), adaptivity pays if the spatial smoothness of the
solution in the Besov spaces from (5.12) is strictly higher than its spatial Sobolev regularity.
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Let us consider the setting from Example 5.5 and discuss the relationship between the spa-
tial Sobolev and Besov regularity in view of approximation in W 1

2 (O), i.e., r = 1. We use a
DeVore/Triebel diagram to visualise our explanations, see Figure 5.3. Due to (5.7),

s̃Sob
max(u) ≤ 1 +

π

βmax
, (5.13)

with s̃Sob
max(u) as defined in (1.12). Thus,

sup
{

(s− 1)/2 : u ∈ L2(ΩT ;W s
2 (O))

}
≤ π

2βmax
. (5.14)

Let us assume that the spatial Sobolev regularity of the solution u reaches its maximum, i.e.,

that u ∈ L2(ΩT ;W
1+π/βmax

2 (O)), cf. (5.7). Then, due to (5.4), by Theorem 2.61 and standard
interpolation results, see, e.g. [117, Corollary 1.111],

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α− 1

2
+

1

2
=
α

2
for all 0 < α < α∗ :=

βmax + 3π

βmax + π
.

This is illustrated in Figure 5.3 by the solid segment of the line 1/q 7→ 2/q delimited by the origin
and the annulus at (1/τ∗, α∗) = (α∗/2, α∗). Thus, the decay rate of the best m-term wavelet
approximation error in W 1

2 (O) with respect to the space coordinates goes up to π/(βmax + π),
which is greater than π/(2βmax) whenever βmax > π, i.e., whenever the polygonal domain O is
not convex. Therefore, also in this setting, the implementation of adaptive wavelet methods is
justified.

In all the other examples from above we consider general bounded Lipschitz domains. In this
case, we do not have an explicit bound for the spatial Sobolev regularity of the solution. Thus,
we can only assume the limit case βmax = 2π. Inserting this into the calculations from above,
we can say that, in the worst case,

sup
{

(s− 1)/2 : u ∈ L2(ΩT ;W s
2 (O))

}
≤ 1

4
. (5.15)

Simultaneously,

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α− 1

2
+

1

2
=
α

2
for all 0 < α <

5

3
.

Since (5/3 − 1)/2 = 2/6 > 1/4, the development of optimal adaptive algorithms with respect
to the space coordinates, where the error is measured in W 1

2 (O), is recommended. We illustrate
this limiting case in Figure 5.4 by using again a DeVore/Triebel diagram.

We conclude this section with an example showing that, in contrast to what is known to hold
for deterministic equations, adaptive wavelet methods for SPDEs may pay even if the underlying
domain is smooth.

Example 5.8. Let O be a bounded C1
u-domain (and, therefore, a bounded Lipschitz domain)

in Rd. Furthermore, let aij , bi, c, and µk, with i, j ∈ {1, . . . , d} and k ∈ N, be given coefficients
satisfying Assumption 3.1 with γ = 0, σ = 0 and suitable constants δ0 and K. Fix p ∈ [2,∞) and
let f ∈ H1

p,d−1+p(O, T ), g ∈ H2
p,d−1(O, T ; `2) and u0 ∈ U3

p,d−1(O). Then, by [72, Theorem 2.9]

there exists a unique solution u of Eq. (3.1), which is in the class H3
p,d−ε(O, T ) for any ε > 0;

see also Remark 3.14(ii). Due to Theorem 5.1 this yields

u ∈ Lp(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, for all 0 < α <

(
1 +

ε

p

)
d

d− 1
, ε ∈ (0, 1).
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illustrated in a DeVore/Triebel diagram.

Thus, in the two-dimensional case, if p = 2, we have

u ∈ Lp(ΩT ;Bα
τ,τ (O)),

1

τ
=
α+ 1

2
, for all 0 < α < 3.

What about the spatial Sobolev regularity of this solution? It is known from [78, Example 1.2]
that if we consider R+ instead of O, there exists a non-random g, continuously differentiable on
[0,∞)× [0,∞) such that the second partial derivatives with respect to the space coordinates of
the solution to the heat equation

du = ∆udt+ gk dwkt , u
∣∣
∂R+

= 0, u(0) = 0,

on R+, do not lie in L2(ΩT ;L2(R+)). This is due to the incompatibility of the noise with the
zero Dirichlet boundary condition. Exploiting the compatibility results from [55], it is reasonable
to expect that we can construct similar examples on smooth bounded domains, with maximal
spatial Sobolev regularity strictly less than the spatial Besov regularity in the non-linear ap-
proximation scale (∗). If this is indeed the case, it shows that in the stochastic setting, adaptive
methods are a serious alternative to uniform methods even if the underlying domain is smooth.
It is worth noting that this would be completely different from what is known to hold in the
deterministic setting, where adaptivity does not pay on smooth domains.

5.2 Semi-linear equations

In this section we continue our analysis of the spatial regularity of SPDEs in the scale (∗) of Besov
spaces. We generalize the results from the previous section to a class of semi-linear equations on
bounded Lipschitz domains O ⊂ R. However, for semi-linear SPDEs, existence of solutions in
the classes Hγp,θ(O, T ), γ ∈ R, is yet to be proven. Therefore, before we can apply Theorem 5.1
in order to obtain spatial regularity in the non-linear approximation scale (∗), we have to extend
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the main existence (and uniqueness) result of the Lp-theory from [75], cf. Theorem 3.13, to
semi-linear SPDEs. The equations considered in this section are of the form

du =
(
aijuxixj + biuxi + cu+ f + L(u)

)
dt

+
(
σikuxi + µku+ gk + (Λ(u))k

)
dwkt on ΩT ×O,

u(0) = u0 on Ω×O.

 (5.16)

While the linear parts of Eq. (5.16) are supposed to satisfy Assumption 3.1 as in the previous
section, we impose the following conditions on the non-linearities L and Λ.

Assumption 5.9. The functions

L : Hγ+2
p,θ (O, T )→ Hγ

p,θ+p(O, T ) and Λ : Hγ+2
p,θ (O, T )→ Hγ+1

p,θ (O, T ; `2)

fulfil the following conditions:

(i) For all u, v ∈ Hγ+2
p,θ (O, T ) and t ∈ [0, T ]

‖L(u)− L(v)‖pHγp,θ+p(O,t) + ‖Λ(u)−Λ(v)‖p
Hγ+1
p,θ (O,t;`2)

≤ ε‖u− v‖p
Hγ+2
p,θ−p(O,t)

+K1‖u− v‖pHγ+1
p,θ (O,t)

(5.17)

with ε > 0 and K1 ∈ [0,∞) independent of u, v and t ∈ [0, T ].

(ii) The non-linearities vanish at the origin, i.e., L(0) = 0 and Λ(0) = 0.

We use the following solutions concept, which is a straight-forward generalization of the
solution concept presented in Definition 3.10.

Definition 5.10. Given γ ∈ R, let aij , bi, c, σik and µk, i, j ∈ {1, . . . , d}, k ∈ N, fulfil As-
sumption 3.1. Furthermore, let Assumption 5.9(i) be satisfied for given θ ∈ R and p ∈ [2,∞). A
stochastic process u ∈ Hγ

p,θ−p(O, T ) is called a solution of Eq. (5.16) in the class Hγp,θ(O, T ) if,

and only if, u ∈ Hγp,θ(O, T ) with

u(0, ·) = u0, Du = aijuxixj+b
iuxi+cu+f+L(u), and Su =

(
σikuxi+µ

ku+gk+(Λ(u))k
)
k∈N

in the sense of Definition 3.3.

Remark 5.11. In this thesis, if we call an element u ∈ Hγp,θ(G,T ) a solution of Eq. (5.16), we

mean that u is a solution of Eq. (5.16) in the class Hγp,θ(G,T ).

Remark 5.12. As already mentioned, throughout this thesis, for a better readability, we omit
the notation of the sums

∑
i,j and

∑
k when writing down equations and use the so-called

summation convention on the repeated indices i, j, k. Thus, the expression

du =
(
aijuxixj + biuxi + cu+ f + L(u)

)
dt+

(
σikuxi + µku+ gk + (Λ(u))k

)
dwkt

is short-hand for

du =

( d∑
i,j=1

aijuxixj +

d∑
i=1

biuxi + cu+ f + L(u)

)
dt+

( d∑
i=1

σikuxi + µku+ gk + (Λ(u))k
)

dwkt

in the sense of Definition 3.3.

We first state our main result on the existence and uniqueness of solutions of Eq. (5.16) in
weighted Sobolev spaces.
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Theorem 5.13. Let O be a bounded Lipschitz domain in Rd, and γ ∈ R. For i, j ∈ {1, . . . , d}
and k ∈ N, let aij, bi, c, σik, and µk be given coefficients satisfying Assumption 3.1 with suitable
constants δ0 and K.

(i) For p ∈ [2,∞), there exists a constant κ̃0 ∈ (0, 1), depending only on d, p, δ0, K and O,
such that for any θ ∈ (d+ p− 2− κ̃0, d+ p− 2 + κ̃0), f ∈ Hγ

p,θ+p(O, T ), g ∈ Hγ+1
p,θ (O, T ; `2)

and u0 ∈ Uγ+2
p,θ (O), the following holds: There exists an ε0 > 0 such that, if L and Λ fulfil

Assumption 5.9 with ε < ε0 and K1 ∈ [0,∞), Eq. (5.16) has a unique solution u in the
class Hγ+2

p,θ (O, T ). For this solution, the a priori estimate

‖u‖p
Hγ+2
p,θ (O,T )

≤ C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
, (5.18)

holds with a constant C which does not depend on u, f , g and u0.

(ii) There exists p0 > 2, such that, if p ∈ [2, p0), then there exists a constant κ̃1 ∈ (0, 1), de-
pending only on d, p, δ0, K and O, such that for any θ ∈ (d−κ̃1, d+κ̃1), f ∈ Hγ

p,θ+p(O, T ),

g ∈ Hγ+1
p,θ (O, T ; `2) and u0 ∈ Uγ+2

p,θ (O), the following holds: There exists an ε0 > 0 such
that, if L and Λ fulfil Assumption 5.9 with ε < ε0 and K1 ∈ [0,∞), Eq. (5.16) has a unique
solution u in the class Hγ+2

p,θ (O, T ). For this solution, the a priori estimate (5.18) holds.

Before we present a proof of this result (starting on page 101), we make some remarks on the
assumptions therein. Furthermore, we state and prove the consequences concerning the spatial
Besov regularity in the scale (∗) of solutions to Eq. (5.11), and prove an auxiliary theorem, which
we will need for proving Theorem 5.13.

Remark 5.14. (i) The constants κ̃0 and κ̃1 coincide with the constants κ0 and κ1, respec-
tively, from Theorem 3.13. Moreover, p0 > 2 is the same p0 as in Theorem 3.13(ii).

(ii) The statement of Theorem 5.13(i) with K1 = 0 has been already proven in [22], see
Theorem 4.1 together with Remark 4.2 therein. Note that the assumptions made in [22,
Theorem 4.1] are stronger than actually needed, since the assumptions (K1)–(K5) therein
only need to be fulfilled with γ − 2 instead of γ.

(iii) The assumption that the non-linearities vanish at the origin is made only for convenience.
To see this, let all assumptions of Theorem 5.13 be fulfilled except Assumption 5.9(ii), i.e.,
we allow L(0) 6= 0 and Λ(0) 6= 0. Then, Eq. (5.16) can be rewritten as

du =
(
aijuxixj + biuxi + cu+ f + L(0) + L1(u)

)
dt

+
(
σikuxi + µku+ gk + (Λ(0))k + (Λ1(u))k

)
dwkt on ΩT ×O,

u(0) = u0 on Ω×O.

 (5.19)

with L1(u) := L(u) − L(0) and Λ1(u) := Λ(u) − Λ(0) for u ∈ Hγ+2
p,θ (O). Then, As-

sumption 5.9 is fulfilled with L1 and Λ1 instead of L and Λ, respectively. Thus, since
L(0) ∈ Hγ

p,θ+p(O, T ) and Λ(0) ∈ Hγ+1
p,θ (O, T ; `2), applying Theorem 5.13 yields the exis-

tence of a unique solution u ∈ Hγ+2
p,θ (O, T ) of Eq. (5.16), which fulfils the estimate

‖u‖p
Hγ+2
p,θ (O,T )

≤ C
(∥∥f + L(0)

∥∥p
Hγp,θ+p(O,T )

+
∥∥g + Λ(0)

∥∥p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
,

with a constant C which does not depend on u, f , g, and u0.
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(iv) Let ε0 > 0. Assume that there exists an η ∈ (0, 1) such that the two functions

L : Hγ+2
p,θ (O, T )→ Hγ

p,θ+p(O, T ) and Λ : Hγ+2
p,θ (O, T )→ Hγ+1

p,θ (O, T ; `2)

fulfil the estimate

‖L(u)− L(v)‖pHγp,θ+p(O,t) + ‖Λ(u)− Λ(v)‖p
Hγ+1
p,θ (O,t;`2)

≤ ε̃‖u− v‖p
Hγ+2
p,θ−p(O,t)

+ K̃1‖u− v‖pHγ+2η
p,θ+p−2ηp(O,t)

,
(5.20)

for some ε̃ ∈ (0, ε0) and K̃1 ∈ [0,∞) independent of u, v ∈ Hγ+2
p,θ (O, T ) and t ∈ [0, T ].

Then, by Lemma 2.45(v), the estimate

‖L(u)− L(v)‖pHγp,θ+p(O,t) + ‖Λ(u)− Λ(v)‖p
Hγ+1
p,θ (O,t;`2)

≤ ε̃‖u− v‖p
Hγ+2
p,θ−p(O,t)

+ K̃1‖u− v‖pHγp,θ+p(O,t),

holds with potentially different ε̃ ∈ (0, ε0) and K̃1 ∈ [0,∞), which again do not depend on
u, v ∈ Hγ+2

p,θ (O, T ) and t ∈ [0, T ]. Also, the reverse direction holds, since O ⊂ Rd is assumed

to be bounded and therefore Hγ+2η
p,d+p−2ηp(O) ↪→ Hγ

p,d+p(O) for every η ∈ (0, 1), see also
Lemma 2.45(vii). Note that (5.20) with η = 1/2 is exactly (5.17) from Assumption 5.9(i).

Next, we present our main result concerning the spatial regularity of semi-linear equations in
the non-linear approximation scale (∗) of Besov spaces. It is an extension and an improvement
of [22, Theorem 4.4].

Theorem 5.15. Given the setting from Theorem 5.13, let u ∈ Hγ+2
p,θ (O, T ) be the unique solution

of Eq. (5.16). Then,

u ∈ Lp(ΩT ;Bα
τ,τ ),

1

τ
=
α

d
+

1

p
, for all 0 < α < min

{
γ + 2,

(
1 +

d− θ
p

)
d

d− 1

}
. (5.21)

Moreover, for any α and τ fulfilling (5.21), there exists a constant C, which does not depend on
u, f , g and u0 such that

‖u‖pLp(ΩT ;Bατ,τ (O)) ≤ C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
.

Proof. This is an immediate consequence of Theorem 5.13 and Theorem 5.1.

Now we state and prove an auxiliary result, which we will use later on in order to prove The-
orem 5.13. It shows how fixed point arguments can be used to prove existence and uniqueness of
a solution to the semi-linear equation (5.16), provided this result is already established for the
corresponding linear equation. One needs Assumption 5.9 for the non-linearities and suitable
a priori estimates for the linear equations with vanishing initial value. Similar ideas have been
already used in the context of SPDEs on the whole space Rd by N.V. Krylov, see [80, Theo-
rem 6.4].

Lemma 5.16. Given the setting from Theorem 3.13, assume that the solution u ∈ Hγ+2
p,θ (O, T )

of Eq. (3.1) with f ∈ Hγ
p,θ+p(O, T ), g ∈ Hγ+1

p,θ (O, T ; `2) and u0 = 0, fulfils the estimate

‖u‖p
Hγ+2
p,θ (O,t)

≤ C0

(
‖f‖pHγp,θ+p(O,t) + ‖g‖p

Hγ+1
p,θ (O,t;`2)

)
(5.22)
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for all t ∈ [0, T ] with a constant C0 ∈ (0,∞) independent of t ∈ [0, T ], u, f and g. Then there
exists an ε0 > 0 (depending on T in general), such that, if Assumption 5.9 is fulfilled with
ε < ε0 and K1 ∈ [0,∞), the following holds: For any f ∈ Hγ

p,θ+p(O, T ), g ∈ Hγ+1
p,θ (O, T ; `2) and

u0 ∈ Uγ+2
p,θ (O), there exists a unique solution u∗ of Eq. (5.16) in the class Hγ+2

p,θ (O, T ). Moreover,
there exists a constant C ∈ (0,∞) which does not depend on u∗, f , g and u0, such that

‖u∗‖p
Hγ+2
p,θ (O,T )

≤ C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
. (5.23)

Proof. For i, j ∈ {1, . . . , d} and k ∈ N, let aij , bi, c, σik, and µk, fulfil Assumption 3.1 for some
γ ∈ R. Furthermore, let p and θ be as in Theorem 3.13(i) or (ii) and fix f ∈ Hγ

p,θ+p(O, T ),

g ∈ Hγ+1
p,θ (O, T ; `2) and u0 ∈ Uγ+2

p,θ (O). Then, the operator

N : Hγ+2
p,θ (O, T )→ Hγ+2

p,θ (O, T )

u 7→ N (u),

where N (u) is the unique solution in the class Hγ+2
p,θ (O, T ) of the linear equation

dv =
(
aijvxixj + bivxi + cv + f + L(u)

)
dt

+
(
σikvxi + µkv + gk + (Λ(u))k

)
dwkt on ΩT ×O,

v(0) = u0 on Ω×O,


is well-defined by Theorem 3.13. Fix arbitrary u, v ∈ Hγ+2

p,θ (O, T ). Then N (u) − N (v) is the

unique solution in the class Hγ+2
p,θ (O, T ) of the equation

dṽ =
(
aij ṽxixj + biṽxi + cṽ + L(u)− L(v)

)
dt

+
(
σikṽxi + µkṽ + (Λ(u))k − (Λ(v))k

)
dwkt on ΩT ×O,

ṽ(0) = 0 on Ω×O.


By (5.22),∥∥N (u)−N (v)

∥∥p
Hγ+2
p,θ (O,t) ≤ C0

(
‖L(u)− L(v)‖pHγp,θ+p(O,t) + ‖Λ(u)− Λ(v)‖p

Hγ+1
p,θ (O,t;`2)

)
for all t ∈ [0, T ]. If Assumption 5.9 is fulfilled with some ε > 0 and K1 ∈ [0,∞), this leads to∥∥N (u)−N (v)

∥∥p
Hγ+2
p,θ (O,t) ≤ C0 ε ‖u− v‖pHγ+2

p,θ−p(O,t)
+ C0K1 ‖u− v‖pHγ+1

p,θ (O,t)
. (5.24)

Let us first assume that K1 = 0. In this case we are done: If we choose ε > 0 small enough, e.g.,
ε < ε0 := 1/C0, the operator N turns out to be a contraction on the Banach space Hγ+2

p,θ (O, T ).
Therefore, by the Banach fixed point theorem, N has a unique fixed point. Regarding the fact
that any solution of Eq. (5.16) in the class Hγ+2

p,θ (O, T ) is a fixed point of N and vice versa,
we have just proven the fact that, given the setting from Theorem 3.13, if Assumption 5.9(i)
holds with ε > 0 small enough and K1 = 0, Eq. (5.16) has a unique solution u∗ in the class
Hγ+2
p,θ (O, T ). We can also obtain Estimate (5.23) arguing as follows: Start the fixed point iteration

with u(0) := 0 ∈ Hγ+2
p,θ+p(O, T ) and set u(j+1) := N (u(j)) for j ≥ 0. Then (u(j))j∈N converges

to the unique solution u∗ in Hγ+2
p,θ (O, T ). Furthermore, since Assumption 5.9(ii) is fulfilled and

estimate (3.9) holds, we have∥∥N (u(0))
∥∥
Hγ+2
p,θ (O,T )

≤ C1/p
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)1/p
. (5.25)
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Hence, using the a priori estimate from the Banach fixed point theorem, as it can be found
in [66, Theorem 3.1.2], we obtain

∥∥u∗∥∥p
Hγ+2
p,θ (O,T )

≤

(
1

1− C1/p
0 ε1/p

)p
C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
.

For K1 ∈ (0,∞) we still have to work in order to prove that the operatorN has a unique fixed
point under suitable assumptions on ε. To this end, we will prove that, given the setting from
Theorem 3.13, if Assumption 5.9(i) is fulfilled with ε > 0 small enough, we can find an m ∈ N,
depending (among others) on ε, K1 and T , such that Nm becomes a contraction on Hγ+2

p,θ (O, T ).
Due to the Banach fixed point theorem, this leads to the existence of a unique fixed point of
Nm, which automatically implies that N has a unique fixed point, and, therefore, Eq. (5.16)
has a unique solution u∗ in the class Hγ+2

p,θ (O, T ), cf. Remark 5.17 below. By Theorem 3.8(ii),
there exists a constant C1, depending on T in general, such that for all t ∈ [0, T ]

‖u− v‖p
Hγ+1
p,θ (O,t)

≤ C1

∫ t

0
‖u− v‖p

Hγ+2
p,θ (O,s)

ds.

Using this, we obtain from (5.24), that∥∥N (u)−N (v)
∥∥p
Hγ+2
p,θ (O,t) ≤ C0 ε ‖u− v‖pHγ+2

p,θ−p(O,t)
+ C0K1C1

∫ t

0
‖u− v‖p

Hγ+2
p,θ (O,s)

ds,

for all t ∈ [0, T ]. As a consequence, we can prove by induction, that for any m ∈ N the following
estimate holds for all t ∈ [0, T ]:∥∥Nm(u)−Nm(v)

∥∥p
Hγ+2
p,θ (O,t) ≤C

m
0 εm ‖u− v‖p

Hγ+2
p,θ (O,t)

+

m∑
k=1

(
m

k

)
Cm0 εm−kKk

1 C
k
1

∫ t

0

(t− s)k−1

(k − 1)!
‖u− v‖p

Hγ+2
p,θ (O,s)

ds.

For t = T and each k ∈ {1, . . . ,m} we can approximate the integrals on the right-hand side by
‖u− v‖p

Hγ+2
p,θ (O,T )

T k/(k − 1)!. Consequently,∥∥Nm(u)−Nm(v)
∥∥p
Hγ+2
p,θ (O,T )

≤ Cm0 εm ‖u− v‖p
Hγ+2
p,θ (O,T )

+ Cm0 εm
m∑
k=1

(
m

k

)(
K1C1T

ε

)k 1

(k − 1)!
‖u− v‖p

Hγ+2
p,θ (O,T )

≤ Cm0 εm

(
1 + 2m max

1≤k≤m

{(
K1C1T

ε

)k 1

(k − 1)!

})
‖u− v‖p

Hγ+2
p,θ (O,T )

.

Now assume that Assumption 5.9(i) holds with ε > 0 small enough, e.g., ε ≤ 1/(8C0), and
K1 ∈ (0,∞). Then,

∥∥Nm(u)−Nm(v)
∥∥p
Hγ+2
p,θ (O,T )

≤

(
1

8m
+

1

4m
max
k∈N

{(
K1C1T

ε

)k 1

(k − 1)!

})
‖u− v‖p

Hγ+2
p,θ (O,T )

.

Since for any fixed x ∈ (0,∞) the function k 7→ xk/(k− 1)! is decreasing for sufficiently large k,
we have

max
k∈N

{(
K1C1T

ε

)k 1

(k − 1)!

}
= C3 <∞,
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and, consequently,∥∥Nm(u)−Nm(v)
∥∥p
Hγ+2
p,θ (O,T )

≤ 1

4m
(1 + C3) ‖u− v‖p

Hγ+2
p,θ (O,T )

, m ∈ N. (5.26)

Thus, there exists an m ∈ N, such that Nm is a contraction on the Banach space Hγ+2
p,θ (O, T ).

Consequently, by the Banach fixed point theorem, Nm (and therefore N ) has a unique fixed
point, and, therefore, Eq. (5.16) has a unique solution u∗ in the class Hγ+2

p,θ (O, T ). In order to

prove Estimate (5.23), we argue as follows: Take the sequence (u(j))j∈N0 defined above. Then
for any j ∈ N0, since u(0) = 0,

∥∥u(j+1)
∥∥
Hγ+2
p,θ (O,T )

≤
j∑
i=0

∥∥u(i+1) − u(i)
∥∥
Hγ+2
p,θ (O,T )

=

j∑
i=0

∥∥N (i+1)
(
u(0)

)
−N (i)

(
u(0)

)∥∥
Hγ+2
p,θ (O,T )

.

Using (5.26) and u(0) = 0, we obtain

∥∥u(j+1)
∥∥
Hγ+2
p,θ (O,T )

≤
j∑
i=0

1

4i
(1 + C3)

∥∥N (u(0)
)∥∥

Hγ+2
p,θ (O,T )

,

and by (5.25),

∥∥u(j+1)
∥∥p
Hγ+2
p,θ (O,T )

≤

(
1 + C3

1− 1/4

)p
C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

+ ‖u0‖p
Uγ+2
p,θ (O)

)
.

Since by the Banach fixed point theorem, there exists a subsequence of (u(j))j∈N0 converging to

u∗ in Hγ+2
p,θ (O, T ), this finishes the proof.

Remark 5.17. In the proof of Lemma 5.16 above, we use the following fact:

If the m-th power Nm, m ∈ N, of a mapping N : E → E on a Banach space (E, ‖·‖E)
has a unique fixed point, then, so does N .

This can be seen as follows: Let u be the unique fixed point of Nm for some m ∈ N. In particular,

Nmu = u,

and, therefore, due to the associativity of the composition of functions,

NmNu = Nu.

Consequently, Nu is a fixed point of Nm, and, due to the uniqueness assumption, Nu = u. The
uniqueness of the fixed point of N follows immediately from the uniqueness of the fixed point
of Nm.

After these preparations, we are able to prove Theorem 5.13 in the following way.

Proof of Theorem 5.13. We prove that in the different situations of Theorem 3.13, the solu-
tion u ∈ Hγ+2

p,θ (O, T ) of Eq. (3.1) with u0 = 0 fulfils the a priori estimate (5.22) for all t ∈ [0, T ]
with a constant C0 which does not depend on t ∈ [0, T ]. Since we have proven Lemma 5.16, this
automatically implies our assertion with κ̃0 = κ0 and κ̃1 = κ1 from Theorem 3.13. We prove the
a priori estimate in four different situations.

Case 1. Assume that aij and σik do not depend on x ∈ O and fulfil Assumption 3.1 with
γ ≥ 0 and bi = c = µk = 0 for all i ∈ {1, . . . , d} and k ∈ N. Furthermore assume that
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θ ∈ (d + p − 2 − κ0, d + p − 2 + κ0) with κ0 ∈ (0, 1) as in Theorem 3.13(i). In this case we can
argue as follows: Given f ∈ Hγ

p,θ+p(O, T ) and g ∈ Hγ+1
p,θ (O, T ), the solution of the equation

du =
(
aijuxixj + f

)
dt+

(
σikuxi + gk

)
dwkt on ΩT ×O,

u(0) = 0 on Ω×O.

}
(5.27)

fulfils the estimate

‖u‖p
Hγ+2
p,θ (O,T )

≤ C
(
‖f‖pHγp,θ+p(O,T )

+ ‖g‖p
Hγ+1
p,θ (O,T ;`2)

)
(5.28)

with a constant C which does not depend on T . This has been proven in [75], see especially
Corollary 3.6 therein. Therefore, since the restriction u|Ω×[0,t] is the unique solution in the class

Hγ+2
p,θ (O, t) of the equation

dv =
(
aijvxixj + f |Ω×[0,t]

)
ds+

(
σikvxi + gk|Ω×[0,t]

)
dwks on Ω× [0, t]×O,

v(0) = 0 on Ω×O.

}

for any t ∈ [0, T ], Estimate (5.22) is fulfilled with C independent of t ∈ [0, T ].

Case 2. Consider the situation from Case 1 and relax the restriction γ ≥ 0 allowing γ to be
negative. In order to prove that Estimate (5.22) holds also in this situation with a constant
independent of t ∈ [0, T ], we will prove that (5.28) holds with a constant C independent of T .
We follow the lines of Case 2 in the proof of [73, Theorem 4.7]. Let us assume that γ ∈ [−1, 0].
(The case γ < 1 can be proven analogously by iterating the proof for γ ∈ [−1, 0].) For ν ∈ [0,∞),
let

R : Hν
p,θ+p(O, T )×Hν+1

p,θ (O, T ; `2)→ Hν+2
p,θ (O, T )

(f, g) 7→ R(f, g)

be the solution operator for Eq. (5.27), i.e., R(f, g) ∈ Hν+2
p,θ (O, T ) denotes the unique solution

of Eq. (5.27), given f ∈ Hν
p,θ+p(O, T ) and g ∈ Hν+1

p,θ (O, T ; `2). Notice that by the uniqueness of
the solution, this operator does not depend on ν ∈ [0,∞). Furthermore, by the a priori estimate
(5.28), it is a bounded operator with operator norm independent of T , which we will denote by
‖R‖ν . Fix (f, g) ∈ Hγ

p,θ+p(O, T ) × Hγ+1
p,θ (O, T ; `2). Furthermore, let ψ be an infinitely differen-

tiable function on O fulfilling (2.25) and choose c0 > 0, such that the operator L := ψ2∆− c0 is
an isomorphism between Hγ+2

p,θ+p(O) and Hγ
p,θ+p(O) and between Hγ+3

p,θ (O; `2) and Hγ+1
p,θ (O; `2),

respectively; this is possible due to Lemma 2.45(vi) and Lemma 2.55(iii), respectively. Set

(f̃ , g̃) := L−1(f, g).

Then,

f = ψDr(ψDrf̃)− ψψxrDrf̃ − c0f̃ and g = ψDr(ψDrg̃)− ψψxrDrg̃ − c0g̃.

For r = 1, . . . , d, denote

ur := R(ψDrf̃ , ψDrg̃), u0 := R(−ψψxrDrf̃ − c0f̃ ,−ψψxrDrg̃ − c0g̃),

and set

v := u0 +

d∑
r=1

ψDrur.
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Note that, by Theorem 3.13 and Lemma 2.45(iii) and (iv) together with Lemma 2.55(i) and (ii),
u0, ur ∈ Hγ+3

p,θ (O, T ), r = 1, . . . , d, and v ∈ Hγ+2
p,θ−p(O, T ) are well-defined. A short calculation

shows that for all ϕ ∈ C∞0 (O), with probability one, the equality

(v(t, ·), ϕ) =

∫ t

0
(aij(s)vxixj (s, ·) + f0(s, ·) + f(s, ·), ϕ) ds

+
d∑

k=1

∫ t

0
(σik(s)vxi(s, ·) + gk0 (s, ·) + gk(s, ·), ϕ) dwks

holds for all t ∈ [0, T ] with

f0 := −aij
(
ψxixjD

rur + ψxiD
rurxj + ψxjD

rurxi
)

and g0 := (−σikψxiDrur)k∈N.

Using the decay properties (2.25) of ψ and its derivatives, Assumption 3.1 as well as Lemma 2.45,
we can deduce that there exists a constant C, which does not depend on T , such that

‖f0‖Hγ+1
p,θ+p(O,T )

+ ‖g0‖Hγ+2
p,θ (O,T ;`2)

≤ C
d∑
r=1

‖ur‖Hγ+3
p,θ−p(O,T )

. (5.29)

Thus, by Lemma 2.45(iii) and Lemma 2.55(i), v ∈ Hγ+2
p,θ (O, T ) and solves the equation

dv =
(
aijvxixj + f0 + f

)
dt+

(
σikvxi + gk0 + gk

)
dwkt on ΩT ×O,

v(0) = 0 on Ω×O.

}
(5.30)

Set ṽ := R(f0, g0) ∈ Hγ+3
p,θ (O, T ). Then, obviously u := v − ṽ ∈ Hγ+2

p,θ (O, T ) solves Eq. (5.27).
Moreover,

‖u‖
Hγ+2
p,θ (O,T )

≤ ‖v‖
Hγ+2
p,θ (O,T )

+ ‖ṽ‖
Hγ+2
p,θ (O,T )

. (5.31)

We first prove that there exists a constant C, which does not depend on T , such that

‖ṽ‖
Hγ+2
p,θ (O,T )

≤ C
(
‖f‖Hγp,θ+p(O,T ) + ‖g‖Hγ+1

p,θ (O,T ;`2)

)
. (5.32)

We argue as follows: Since R is a bounded operator,

‖ṽ‖
Hγ+2
p,θ (O,T )

≤ ‖ṽ‖
Hγ+3
p,θ (O,T )

≤ ‖R‖γ+1

(
‖f0‖Hγ+1

p,θ+p(O,T )
+ ‖g0‖Hγ+2

p,θ (O,T ;`2)

)
.

The same argument, together with Lemma 2.45(iii) and Lemma 2.55(i), shows that

d∑
r=1

‖ur‖Hγ+3
p,θ−p(O,T )

≤ C2 ‖R‖γ+1

(
‖f̃‖Hγ+2

p,θ+p(O,T )
+ ‖g̃‖Hγ+3

p,θ (O,T ;`2)

)
with a constant C2 independent of T . Consequently,

d∑
r=1

‖ur‖Hγ+3
p,θ−p(O,T )

≤ C2 ‖R‖γ+1 ‖L−1‖
(
‖f‖Hγp,θ+p(O,T ) + ‖g‖Hγ+1

p,θ (O,T ;`2)

)
,

where ∥∥L−1
∥∥ := max

{∥∥L−1
∥∥
L(Hγ+1

p,θ (O;`2),Hγ+3
p,θ (O;`2))

,
∥∥L−1

∥∥
L(Hγ

p,θ+p(O),Hγ+2
p,θ+p(O))

}
.
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Finally, using estimate (5.29), we obtain (5.32) with a constant C independent of T . We move
on and estimate ‖v‖

Hγ+2
p,θ (O,T )

. Since v ∈ Hγ+2
p,θ (O, T ) solves Eq. (5.30),

‖v‖
Hγ+2
p,θ (O,T )

≤ ‖v‖Hγ+2
p,θ−p(O,T )

+ ‖aijvxixj‖Hγp,θ+p(O,T ) + ‖f0‖Hγp,θ+p(O,T ) + ‖f‖Hγp,θ+p(O,T )

+ ‖σikuxi‖Hγ+1
p,θ (O,T ;`2)

+ ‖g0‖Hγ+1
p,θ (O,T ;`2)

+ ‖g‖Hγ+1
p,θ (O,T ;`2)

.

Thus, we can argue as before when estimating ‖ṽ‖
Hγ+2
p,θ (O,T )

and obtain

‖v‖
Hγ+2
p,θ (O,T )

≤ C
(
‖f‖Hγp,θ+p(O,T ) + ‖g‖Hγ+1

p,θ+p(O,T ;`2)

)
with a constant C which does not depend on T . This, together with (5.31) and (5.32), proves
that (5.28) holds with a constant C independent of T .

Case 3. Assume that aij and σik do not depend on x ∈ O and fulfil Assumption 3.1 with γ ∈ R
and bi = c = µk = 0 for all i ∈ {1, . . . , d} and k ∈ N. Furthermore assume that θ ∈ (d+κ1, d+κ1)
with κ1 ∈ (0, 1) and p ∈ [2, p0) as in Theorem 3.13(ii). In this situation, the assertion for γ ≥ 0
can be proven by following the lines of [75, Section 5]. Essentially, this strategy makes use of the
fact that the complex interpolation method is an exact interpolation method and that for two
compatible couples (A0, B0) and (A1, B1) of Banach spaces,

[A0 ×A1, B0 ×B1]η = [A0, B0]η × [A1, B1]η,

with equivalent norms (η ∈ (0, 1)). Additionally, in order to apply this strategy in the case of
bounded Lipschitz domains, Lemma 2.45(v) and Lemma 2.55(v), concerning complex interpola-
tion of weighted Sobolev spaces and of their generalizations Hγ

p,θ(O; `2), are required. Using the
argumentation line from Case 2 above, we can obtain the assertion also for γ < 0.

Case 4. Finally, we consider the general case. We assume that θ ∈ (d+p−2−κ0, 2+p−2+κ0) and
p ∈ [2,∞) or, alternatively, that θ ∈ (d− κ1, d+ κ1) and p ∈ [2, p0) as in the different situations
of Theorem 3.13(i) and (ii), respectively. Following the lines of the proof of [75, Theorem 3.7]
(see also Section 5 in [73]) and using what we have proved in the first three cases, we can show
that there exists a constant C3 independent of t ∈ [0, T ] such that

‖u‖p
Hγ+2
p,θ (O,t)

≤ C3

(
‖u‖p

Hγ+1
p,θ (O,t)

+ ‖f‖pHγp,θ+p(O,t) + ‖g‖p
Hγ+1
p,θ (O,t;`2)

)
for all t ∈ [0, T ]. By Theorem 3.8 this leads to

‖u‖p
Hγ+2
p,θ (O,t)

≤ C4

∫ t

0
‖u‖p

Hγ+2
p,θ (O,s)

ds+ C3

(
‖f‖pHγp,θ+p(O,t) + ‖g‖p

Hγ+1
p,θ (O,t;`2)

)
for all t ∈ [0, T ] with a constant C4 independent of t ∈ [0, T ]. Using Gronwall’s lemma (see,
e.g., [7, Corollary (6.2)]) this proves that for all t ∈ [0, T ],

‖u‖p
Hγ+2
p,θ (O,t)

≤ C3 e
tC4

(
‖f‖pHγp,θ+p(O,t) + ‖g‖p

Hγ+1
p,θ (O,t;`2)

)
Thus, Estimate (5.22) is fulfilled with C0 := C3e

tC4 , which does not depend on t ∈ [0, T ].

We conclude this section with two examples. The first one is put in a setting similar to the
one presented in [121, Section 7]. However, we are able to treat the case of general bounded
Lipschitz domains, whereas [121, Section 7] is restricted to bounded domains with C2 boundary.
As pointed out in Remark 4.3, we are only concerned with equations fulfilling zero Dirichlet
boundary conditions. Using the notation from [121], this means that Γ0 = ∂O and therefore
Γ1 = ∅.
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Example 5.18. For i, j ∈ {1, . . . , d} and k ∈ N, let aij , bi, c, σik, and µk be given coefficients
fulfilling Assumption 3.1 with γ = 0. Let

fL : ΩT ×H1
2,d(O)→ H0

2,d+2(O) and gkΛ : ΩT ×H1
2,d(O)→ H1

2,d(O), k ∈ N,

be strongly PT ⊗ B(H1
2,d(O))-measurable mappings. Assume that

fL(ω, t, 0) = gk(ω, t, 0) = 0 for all (ω, t) ∈ ΩT , k ∈ N,

and that there exist CL ∈ L∞(ΩT ;R) and CΛ = (CkΛ)k∈N ∈ L∞(ΩT ; `2) such that for all
u, v ∈ H1

2,d(O),

‖fL(ω, t, u)− fL(ω, t, v)‖H0
2,d+2(O) ≤ CL(ω, t) ‖u− v‖H1

2,d(O)

and
‖gkΛ(ω, t, u)− gkΛ(ω, t, v)‖H1

2,d(O) ≤ CkΛ(ω, t) ‖u− v‖H1
2,d(O), k ∈ N.

Then, the functions

L : H2
2,d(O, T )→ H0

2,d+2(O, T )

u 7→ L(u) :=
(

(ω, t) 7→ fL(ω, t, u(ω, t, ·))
)

and

Λ : H2
2,d(O, T )→ H1

2,d(O, T ; `2)

u 7→ Λ(u) :=
((

(ω, t) 7→ gkΛ(ω, t, u(ω, t, ·))
)
k∈N

)
are well-defined and fulfil Assumption 5.9 with

ε = 0 and K1 = max
{∥∥CL∥∥2

L∞(ΩT ;R)
,
∥∥CΛ

∥∥2

L∞(ΩT ;`2)

}
<∞.

Therefore, by Theorem 5.13, Eq. (5.16) with L and Λ as defined above has a unique solution
u ∈ H2

2,d(O, T ). Furthermore, due to Theorem 5.15,

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all 0 < α <

d

d− 1
.

In the two-dimensional case, this yields

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

2
+

1

2
, for all 0 < α < 2.

Also in this case, we expect that, at least on non-smooth and non-convex domains, s̃Sob
max(u) < 2,

cf. Example 5.5.

The following example is inspired from [59, Section 6.1]. Therein space time discretization
schemes for SPDEs are discussed.

Example 5.19. Let again aij , bi, c, σik, and µk with i, j ∈ {1, . . . , d} and k ∈ N be given
coefficients fulfilling Assumption 3.1 with γ = 0. Furthermore, let

F : ΩT ×O × Rd × R→ R

be a strongly PT ⊗B(O)⊗B(Rd)⊗B(R)-measurable function satisfying the following conditions:
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[F1] There exists a constant CF , which does not depend on (ω, t, x) ∈ ΩT ×O, p1, p2 ∈ Rd, and
r1, r2 ∈ R such that∣∣F (ω, t, x, p1, r1)− F (ω, t, x, p2, r2)

∣∣ ≤ CF (|p1 − p2|+ ρ(x)−1|r1 − r2|
)
;

[F2] For all (ω, t, x) ∈ ΩT ×O:

F (ω, t, x, 0, 0) = 0.

Then, for any u ∈ H1
2,d(O, T ), the function

ΩT 3 (ω, t) 7→ F (ω, t, ·, ux(ω, t, ·), u(ω, t, ·)) ∈ H0
2,d+2(O)

is well-defined, strongly PT -measurable and for u, v ∈ H1
2,d(O, T ) and arbitrary t ∈ [0, T ],∫

Ω

∫ t

0
‖F (ω, s, ·, ux(ω, s, ·), u(ω, s, ·))− F (ω, s, ·, vx(ω, s, ·), v(ω, s, ·))‖2H0

2,d+2(O)P⊗ λ
1(d(ω, s))

≤ C
∫

Ω

∫ t

0

∫
O

∣∣F (ω, s, x, ux(ω, s, x), u(ω, s, x))

− F (ω, s, x, vx(ω, s, x), v(ω, s, ·))
∣∣2ρ(x)2 dxP⊗ λ1(d(ω, s))

≤ C
∫

Ω

∫ t

0

∫
O

4C2
F

(
|ux(ω, s, x)− vx(ω, s, x)|2ρ(x)2

+
∣∣u(ω, s, x)− v(ω, s, x)

∣∣2)dxP⊗ λ1(d(ω, s))

≤ C‖u− v‖2H1
2,d(O,T ),

where in the last step we have used the norm equivalence (2.28). Therefore, there exists a
constant K1 ∈ [0,∞) such that Assumption 5.9 is fulfilled with

L : H2
2,d+2(O, T )→ H0

2,d+2(O, T )

u 7→ L(u) :=
(

(ω, t) 7→ F (ω, t, ·, ux(ω, t, ·), u(ω, t, ·))
)

and ε = 0 (Λ = 0). Thus, by Theorem 5.13, there exists a solution u ∈ H2
2,d(O, T ) of Eq. (5.16)

with L as defined above and Λ = 0. Due to Theorem 5.15, this solution also fulfils

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all 0 < α <

d

d− 1
.

In the two-dimensional case, this means that

u ∈ L2(ΩT ;Bα
τ,τ (O)),

1

τ
=
α

2
+

1

2
, for all 0 < α < 2.

In the light of Example 5.5, in general, we expect that s̃Sob
max(u) < 2; at least on non-smooth and

non-convex domains.
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Chapter 6

Space time regularity of the
inhomogeneous heat equation with
additive noise

In this chapter we are concerned with the Hölder regularity of the paths of the solution to the
inhomogeneous stochastic heat equation with additive noise

du =
(
∆u+ f

)
dt+ gk dwkt on ΩT ×O,

u(0) = 0 on Ω×O,

}
(6.1)

considered as a stochastic process taking values in Besov spaces from the scale (∗). Eq. (6.1) is
understood in the sense of Definition 3.10 with aij = δi,j , i, j ∈ {1, . . . , d}. It will be sometimes
referred to as the stochastic heat equation.

As we have already seen in Chapter 3, see Theorem 3.13, it is known that for γ ∈ R,
certain p ∈ [2,∞) and corresponding θ ∈ R, Eq. (6.1) has a unique solution u within the
class Hγ+2

p,θ (O, T ), provided f ∈ Hγ
p,θ+p(O, T ) and g ∈ Hγ+1

p,θ (O, T ; `2). Applying Theorem 3.8 we
obtain

E
[
u
]p
Cβ̃/2−1/p([0,T ];Hγ+2−β

p,θ−(1−β)p
(O))
≤ C T (β−β̃)p/2‖u‖p

Hγp,θ(O,T )
<∞,

with the restriction
2

p
< β̃ < β ≤ 1. (6.2)

Thus, a simple application of the embedding (4.13) already yields a first result concerning the
Hölder regularity of the paths of u, seen as a stochastic process with values in the Besov spaces
from the scale (∗). That is,

E
[
u
]p
Cβ̃/2−1/p([0,T ];Bατ,τ (O))

≤ C T (β−β̃)p/2‖u‖p
Hγ+2
p,θ (O,T )

,

and therefore
P
([
u
]
Cβ̃/2−1/p([0,T ];Bατ,τ (O))

<∞
)

= 1, (6.3)

for all α and τ with

1

τ
=
α

d
+

1

p
and 0 < α < min

{
γ + 2− β,

(
1 +

d− θ
p
− β

)
d

d− 1

}
.

However, this result turns out to be not at all satisfactory: The range of parameters in Theo-
rem 3.13 is restricted to
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� p ∈ [2,∞) and θ ∈ (d+ p− 2− κ0, d+ p− 2 + κ0)

or, alternatively,

� p ∈ [2, p0) and θ ∈ (d− κ1, d+ κ1),

with κ0, κ1 ∈ (0, 1) depending on d, p and O, and p0 ∈ (2, 4], see also Remark 3.14(iii) and (i).
Since we do not have any lower bound for κ0, in the first case we can only guarantee that for
arbitrary p ∈ [2,∞) our solution exists in Hγ+2

p,θ0
(O, T ) with θ0 := d + p − 2 (provided f and g

are smooth enough). But, in this case

min

{
γ + 2− β,

(
1 +

d− θ0

p
− β

)
d

d− 1

}
< 0,

so that the calculations above are useless. In the second case, due to the same arguments, we can
only guarantee that, for sufficiently smooth f and g, the solution is in Hγ+2

p,d (O, T ) for p ∈ [2, p0).
Moreover, if we consider general bounded Lipschitz domains, we have to assume that p0 ≤ 4,
compare Remark 3.14(i). Thus, by the calculations above, if p ∈ (2, p0), this solution fulfils (6.3)
for all α and τ with

1

τ
=
α

d
+

1

p
and 0 < α < min

{
γ + 2− β,

(
1− β

) d

d− 1

}
< 1, (6.4)

since (6.2) has to be fulfilled. This is indeed a first result. However, it still has two drawbacks.
Firstly, it does not allow to consider the Hilbert space case p = 2. Secondly, in the view of the
convergence rate of the best m-term wavelet approximation error, α > 1 would be desirable,
cf. Section 1.1.

In order to overcome these difficulties, we apply the following strategy. We start with the
analysis of the Hölder regularity of the paths of elements of Hγ,qp,θ(O, T ) for the case q > p. We
are motivated by the fact that in [83, Theorem 4.1] it has been proved that for q ≥ p ≥ 2,

E
[
u
]q
Cβ̃/2−1/q([0,T ];Hγ+2−β

p,θ−(1−β)p
(Rd+))

≤ C T (β−β̃)q/2‖u‖q
Hγ,qp,θ (Rd+,T )

,

provided
2

q
< β̃ < β ≤ 1.

Note that a generalization of this result to the case of bounded Lipschitz domains O ⊂ Rd
instead of Rd+ would allow us to choose simultaneously, e.g., p = 2 and β close to zero, such
that α in (6.4) might become greater than 1. We prove this generalization in Section 6.1. After
applying Embedding (4.13), this leads to Hölder regularity results for elements of Hγ,qp,θ(O, T ),
considered as stochastic processes with values in the scale (∗) of Besov spaces. From the point of
non-linear approximation theory, the permitted range of p and α is much more satisfactory than
in the case q = p. In Section 6.2 we prove one aspect of the ‘suitability’ of the spaces Hγ,qp,θ(O, T )

for the regularity analysis of SPDEs: We show that, if we have a solution u ∈ Hγ,qp,θ(O, T ) with
low regularity γ ≥ 0, but f and g have high Lq(Lp)-regularity then we can lift up the regularity
of the solution. Finally, in Section 6.3 we prove that under suitable assumptions on the Lq(Lp)-
regularity of f and g, the stochastic heat equation has a solution in the space Hγ,qp,θ(O, T ). Then
we can apply the results from Section 6.1 and obtain space time regularity results for the solution
to the stochastic heat equation.

Slightly different versions of the results and proofs presented in this chapter have been
partially worked out in collaboration with K.-H. Kim, K. Lee and F. Lindner [26].
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6.1 Space time regularity of elements from Hγ,q
p,θ(O, T )

In this section we analyse the Hölder regularity of the paths of elements of Hγ,qp,θ(O, T ). We are
mainly interested in the case where the summability parameters p and q in space and time,
respectively, do not coincide. We start by presenting the two main results: the first one is a
generalization of Theorem 3.8 to the case q > p; u ∈ Hγ,qp,θ(O, T ) is seen as a stochastic process

taking values in the weighted Sobolev spaces Hν
p,θ̃

(O), ν, θ̃ ∈ R. The second one is concerned

with the Hölder regularity of u ∈ Hγ,qp,θ(O, T ), seen as a stochastic process taking values in the
Besov spaces from the scale (∗).

Theorem 6.1. Let O be a bounded Lipschitz domain in Rd. Let 2 ≤ p ≤ q <∞, γ ∈ N, θ ∈ R,
and u ∈ Hγ,qp,θ(O, T ). Moreover, let

2

q
< β̃ < β ≤ 1.

Then there exists a constant C, which does not depend on T and u, such that

E[u]q
Cβ̃/2−1/q([0,T ];Hγ−β

p,θ−(1−β)p
(O))

≤ CT (β−β̃) q
2

(
‖u‖qHγ,qp,θ−p(O,T )

+ ‖Du‖q
Hγ−2,q
p,θ+p(O,T )

+ ‖Su‖q
Hγ−1,q
p,θ (O,T ;`2)

)
≤ CT (β−β̃) q

2 ‖u‖q
Hγ,qp,θ (O,T )

,

(6.5)

and

E‖u‖q
Cβ̃/2−1/q([0,T ];Hγ−β

p,θ−(1−β)p
(O))

≤ CT (β−β̃) q
2

(
E‖u(0)‖q

Hγ−β
p,θ−(1−β)p

(O)
+

‖u‖qHγ,qp,θ−p(O,T )
+ ‖Du‖q

Hγ−2,q
p,θ+p(O,T )

+ ‖Su‖q
Hγ−1,q
p,θ (O,T ;`2)

)
≤ CT (β−β̃) q

2 ‖u‖q
Hγ,qp,θ (O,T )

.

(6.6)

Before we prove this theorem, we present our second main result, which follows immediately
form Theorem 6.1 by applying Embedding (4.13).

Theorem 6.2. Let O be a bounded Lipschitz domain in Rd. Let 2 ≤ p ≤ q <∞, γ ∈ N, θ ∈ R,
and u ∈ Hγ,qp,θ(O, T ). Moreover, let

2

q
< β̃ < min

{
1, 1 +

d− θ
p

}
.

Then, for all α and τ with

1

τ
=
α

d
+

1

p
and 0 < α < min

{
γ − β̃,

(
1 +

d− θ
p
− β̃

) d

d− 1

}
,

we have

E
[
u
]q
Cβ̃/2−1/q([0,T ];Bατ,τ (O))

≤ C(T )
(
‖u‖qHγ,qp,θ−p(O,T )

+‖Du‖q
Hγ−2,q
p,θ+p(O,T )

+‖Su‖q
Hγ−1,q
p,θ (O,T ;`2)

)
, (6.7)

and

E‖u‖q
Cβ̃/2−1/q([0,T ];Bατ,τ (O))

≤ C(T ) ‖u‖q
Hγ,qp,θ (O,T )

. (6.8)

The constants C(T ) in (6.7) and (6.8) are given by C(T ) = C supβ∈[β̃,1]

{
T (β−β̃)q/2

}
, with C

from (6.5) and (6.6) respectively.
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Proof. The assertion is an immediate consequence of Theorem 6.1 and Theorem 4.7.

Now we turn our attention to the proof of Theorem 6.1. For the case that the summability
parameters in time and space coincide, i.e., q = p, the assertion is covered by Theorem 3.8.
A proof of Theorem 3.8 can be found in [75, Theorem 2.9]. It is straightforward and relies
on [83, Corollary 4.12], which is the analogue of Theorem 6.1 on the whole space Rd. However,
we are explicitly interested in the case q > p since it allows for a wider range of parameters
β̃ and β, and therefore leads to better regularity results. Unfortunately, the proof technique
used in [75, Proposition 2.9] does not work any more in this case. Therefore, we use a different
approach: We make use of [83, Proposition 4.1], which covers the assertion of Theorem 6.1
with Rd+ := {(x1, x′) ∈ Rd : x1 > 0} instead of O, and the Lipschitz character of ∂O to derive
Theorem 6.1 via a boundary flattening argument. To this end, we need the following two lemmas,
which we prove first. We start with a transformation rule for weighted Sobolev spaces, where
the transformation and its inverse are assumed to be Lipschitz. Remember that ρG(x) denotes
the distance of a point x ∈ G to the boundary ∂G of a domain G ⊂ Rd.

Lemma 6.3. Let G(1), G(2) be two domains in Rd with non-empty boundaries, and let φ : G(1) →
G(2) be a bijective map, such that φ and φ−1 are Lipschitz continuous. Furthermore, assume that
there exists a constant C ∈ (0,∞), such that

1

C
ρG(1)(φ−1(y)) ≤ ρG(2)(y) ≤ CρG(1)(φ−1(y)) for all y ∈ G(2),

and that the ( a.e. existing) Jacobians Jφ and Jφ−1 fulfil∣∣Det Jφ
∣∣ = 1 and

∣∣Det Jφ−1
∣∣ = 1 (a.e.).

Then, for any γ ∈ [−1, 1], p ∈ (1,∞), and θ ∈ R, there exists a constant C = C(d, γ, p, θ, φ) ∈
(0,∞), which does not depend on u, such that

1

C
‖u‖Hγ

p,θ(G(1)) ≤
∥∥u ◦ φ−1

∥∥
Hγ
p,θ(G(2))

≤ C‖u‖Hγ
p,θ(G(1))

in the sense that, if one of the norms exists, so does the other one and the above inequality holds.

Remark 6.4. (i) A Lipschitz continuous function φ : G(1) → G(2) with Lipschitz continuous
inverse, as in the assumptions of Lemma 6.3, is usually called bi-Lipschitz .

(ii) The Jacobians Jφ and Jφ−1 in Lemma 6.3 exist λd-a.e. on G(1) and G(2), respectively,
due to Rademacher’s theorem: “Let U ⊆ Rd be an open set and let m ∈ N. A Lipschitz
continuous function f : U → Rm is λd-a.e. (totally) differentiable (in the classical sense).”
A proof can be found e.g. in [54, Section 3.1].

(iii) The meaning of u ◦ φ−1 for u ∈ Hγ
p,θ(G

(1)) with γ ≥ 0 and φ as in Lemma 6.3 is naturally
given as the composition of the two functions. However, for negative γ ∈ [−1, 0) this
definition is not suitable anymore, since in this case u ∈ Hγ

p,θ(G
(1)) is not necessarily a

function, but only a distribution. We will define u ◦ φ−1 in this case during the proof of
Lemma 6.3 in such a way that, in particular, the identity

(u ◦ φ−1, ϕ) = (u, ϕ ◦ φ), ϕ ∈ C∞0 (G(2)), (6.9)

holds.
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Proof of Lemma 6.3. We consider consecutively the cases γ = 0, 1,−1. For fractional γ ∈
(−1, 1), the statement follows then by using interpolation arguments and Lemma 2.45(v). Fur-
thermore, we restrict ourselves to the proof of the right inequality in the assertion of the Lemma,
i.e., that there exists a constant C = C(d, γ, p, θ, φ) ∈ (0,∞), such that for any u ∈ Hγ

p,θ(G
(1))

the following inequality holds:∥∥u ◦ φ−1
∥∥
Hγ
p,θ(G(2))

≤ C‖u‖Hγ
p,θ(G(1)).

The left inequality can be proven analogously. For γ = 0, the assertion follows immediately
by using the assumptions of the Lemma and the change of variables formula for bi-Lipschitz
transformations, see, e.g., [62, Theorem 3]. Let us go on and look at the case γ = 1. Because
of the density of the test functions C∞0 (G(1)) in H1

p,θ(G
(1)), see Lemma 2.45(ii), it suffices to

prove the asserted inequality for u ∈ C∞0 (G(1)). In this case, because of the assumed Lipschitz-
continuity of φ−1, the classical partial derivatives of u ◦ φ−1 exist a.e., compare Remark 6.4(ii),
and ∣∣∣∣∣ ∂∂yj (u ◦ φ−1

) ∣∣∣∣∣ =

∣∣∣∣∣
d∑
i=1

(
∂

∂xi
u

)
◦ φ−1 ∂

∂yj
(φ−1)i

∣∣∣∣∣ ≤ C
d∑
i=1

∣∣∣∣∣
(
∂

∂xi
u

)
◦ φ−1

∣∣∣∣∣ (a.e.),

since the absolute values of the derivatives ∂
∂yj

(φ−1)i, j = 1, . . . , d, of the coordinates (φ−1)i,

i = 1, . . . , d, are bounded by the Lipschitz constant of φ−1. Thus, applying again the change
of variables formula for bi-Lipschitz transformations and the assumed equivalence of ρG(1) and
ρG(2) ◦ φ on G(1), we can use the norm equivalence (2.28) together with the fact that, since
u ∈ C∞0 (G(1)), the classical derivatives ∂

∂xi
u coincide with the generalized derivatives uxi , for

i ∈ {1, . . . , d}, and estimate

∫
G(2)

∣∣ (u ◦ φ−1
)

(y)
∣∣pρG(2)(y)θ−d dy +

d∑
j=1

∫
G(2)

∣∣∣∣ ∂∂yj (u ◦ φ−1
)

(y)

∣∣∣∣pρG(2)(y)p+θ−ddy

≤ C
(∫

G(2)

∣∣ (u ◦ φ−1
)

(y)
∣∣pρG(2)(y)θ−d dy +

∫
G(2)

d∑
i=1

∣∣∣∣ ( ∂

∂xi
u

)
(φ−1(y))

∣∣∣∣pρG(2)(y)p+θ−ddy

)

≤ C
(∫

G(1)

|u(x)|pρG(1)(x)θ−d dx+
d∑
i=1

∫
G(1)

∣∣∣∣ ∂∂xiu(x)

∣∣∣∣pρG(1)(x)p+θ−ddx

)
≤ C‖u‖p

H1
p,θ(G(1))

.

By the norm equivalence (2.28), these calculations yield∥∥u ◦ φ−1
∥∥
H1
p,θ(G(2))

≤ C ‖u‖H1
p,θ(G(1)),

if we can guarantee that for any j ∈ {1, . . . , d}, the a.e. existing classical partial derivative
∂
∂yj

(u ◦ φ−1) is a version of the corresponding generalized derivative (u ◦ φ−1)yj . This can be

deduced as follows: By the above calculations, u ◦ φ−1 and ∂
∂yj

(u ◦ φ−1) are locally integrable

functions on G(2). Furthermore, u ◦ φ−1 is Lipschitz continuous. Thus, u ◦ φ−1 has a Lipschitz
continuous extension to Rd, compare, e.g., Theorem 1 in [54, Section 3.1.1], which we also denote
by u ◦ φ−1. Moreover,

R 3 yj 7→ u ◦ φ−1(y1, . . . , yj−1, yj , yj+1, . . . , yd)
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is absolutely continuous on compact subsets of R for every (y1, . . . , yj−1, yj+1, . . . , yd) ∈ Rd−1

(see [54, Section 4.9] for a precise definition of absolute continuity). Thus, as in the proof of
Theorem 2 in [54, Section 4.9.2], we can do integration by parts and obtain for every ϕ ∈
C∞0 (G(2)), ∫

G(2)

∂

∂yj
(u ◦ φ−1)(y)ϕ(y) dy = −

∫
G(2)

(u ◦ φ−1)(y)
∂

∂yj
ϕ(y) dy.

Therefore,
∂

∂yj
(u ◦ φ−1) = (u ◦ φ−1)yj (a.e.),

and the assertion for γ = 1 follows. Finally let us consider the case γ = −1. Assume for a
moment that u ∈ C∞0 (G(1)). By the change of variables formula for bi-Lipschitz transformations,
we have

(u ◦ φ−1, ϕ) = (u, ϕ ◦ φ), ϕ ∈ C∞0 (G(2));

see also (2.38) in Remark 2.49 for the extended meaning of (·, ·). Using Lemma 2.45(viii), i.e.,
the fact that

H−1
p,θ (G(i)) '

(
H1
p′,θ′(G

(i))
)∗
, with

1

p
+

1

p′
= 1 and

θ

p
+
θ′

p′
= d (i = 1, 2), (6.10)

see also Remark 2.49, we obtain∣∣(u, ϕ ◦ φ)
∣∣ ≤ C ‖u‖H−1

p,θ(G(1))‖ϕ ◦ φ‖H1
p′,θ′ (G

(1)), ϕ ∈ C∞0 (G(2)).

Thus, an application of the already proven assertion for γ = 1, yields∣∣(u, ϕ ◦ φ)
∣∣ ≤ C ‖u‖H−1

p,θ(G(1))‖ϕ‖H1
p′,θ′ (G

(2)), ϕ ∈ C∞0 (G(2)).

Hence, by the density of C∞0 (G(2)) in H1
p′,θ′(G

(2)), cf. Lemma 2.45(ii), we obtain∥∥(u ◦ φ−1, ·)
∥∥(

H1
p′,θ′ (G

(2))
)∗ ≤ C ‖u‖H−1

p,θ(G(1)).

Applying (6.10), this shows that∥∥u ◦ φ−1
∥∥
H−1
p,θ(G(2))

≤ C‖u‖H−1
p,θ(G(1)), u ∈ C∞0 (G(1)). (6.11)

Let us consider the general case and assume that u ∈ H−1
p,θ (G(1)). We fix a sequence (un)n∈N

approximating u in H−1
p,θ (G(1)), which exists by another application of Lemma 2.45(ii). By (6.11),

(un ◦ φ−1)n∈N is a Cauchy sequence in the Banach space H−1
p,θ (G(2)) and, therefore, converges in

H−1
p,θ (G(2)). We set

u ◦ φ−1 := lim
n→∞

(
un ◦ φ−1

)
, (convergence in H−1

p,θ (G(2))).

Then, Equality (6.9) holds, and, by (6.11),∥∥u ◦ φ−1
∥∥
H−1
p,θ(G(2))

≤ C ‖u‖H−1
p,θ(G(1)), u ∈ H−1

p,θ (G(1)).

We use Lemma 6.3 to prove the following rule for bi-Lipschitz transformations of elements
of H1,q

p,θ(O, T ).
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Lemma 6.5. Let G(1), G(2) be bounded domains in Rd and let φ : G(1) → G(2) satisfy the
assumptions of Lemma 6.3. Furthermore, let u ∈ H1,q

p,θ(G
(1), T ) with 2 ≤ p ≤ q <∞ and θ ∈ R.

Then u ◦ φ−1 ∈ H1,q
p,θ(G

(2), T ) with deterministic part D(u ◦ φ−1) = Du ◦ φ−1 and stochastic part

S(u ◦ φ−1) = Su ◦ φ−1. In particular, for any ϕ ∈ C∞0 (G(2)), with probability one, the equality(
u(t, ·) ◦ φ−1, ϕ

)
=
(
u(0, ·) ◦ φ−1, ϕ

)
+

∫ t

0

(
(Du)(s, ·) ◦ φ−1, ϕ

)
ds+

∞∑
k=1

∫ t

0

(
(Sku)(s, ·) ◦ φ−1, ϕ

)
dwks

(6.12)

holds for all t ∈ [0, T ].

Proof. We set f := Du and g := Su. Since u ∈ H1,q
p,θ(G

(1), T ), Lemma 6.3 guarantees that

u ◦ φ−1 ∈ H1,q
p,θ−p(G

(2), T ), f ◦ φ−1 ∈ H−1,q
p,θ+p(G

(2), T ), g ◦ φ−1 ∈ H0,q
p,θ(G

(2), T ; `2) and u(0) ◦ φ−1 ∈
U1,q
p,θ (G(2)). Thus, all the terms in formula (6.12) are well-defined. In particular, since (6.9) holds,

showing that for any ϕ ∈ C∞0 (G(2)), with probability one, the equality(
u(t, ·), ϕ ◦ φ

)
=
(
u(0, ·), ϕ ◦ φ

)
+

∫ t

0

(
(Du)(s, ·), ϕ ◦ φ

)
ds+

∞∑
k=1

∫ t

0

(
(Sku)(s, ·), ϕ ◦ φ

)
dwks

(6.13)

holds for all t ∈ [0, T ], proves our assertion (with the right meaning of the brackets (·, ·), cf. Re-
mark 2.49). We consider two different cases.
Case 1. Firstly, we assume that p > 2. Let us fix ϕ ∈ C∞0 (G(2)). By Lemma 6.3, ϕ ◦ φ ∈
H1
p̃,θ̃−p̃(G

(1)) for any p̃ ∈ (1,∞) and θ̃ ∈ R, hence also for

p̃ :=
2p

p− 2
, i.e., p̃ fulfilling

2

p
+

1

p̃
= 1,

and

θ̃ := θ′
(

1 +
p

p− 2

)
− d p

p− 2
, where

θ

p
+
θ′

p′
= d with

1

p
+

1

p′
= 1.

Moreover, by Lemma 2.45(ii) we can choose a sequence ϕ̃n ⊆ C∞0 (G(1)) approximating ϕ ◦ φ in
H1
p̃,θ̃−p̃(G

(1)). We know that for all n ∈ N, with probability one, the equality

(
u(t, ·), ϕ̃n

)
=
(
u(0, ·), ϕ̃n

)
+

∫ t

0

(
f(s, ·), ϕ̃n

)
ds+

∞∑
k=1

∫ t

0

(
gk(s, ·), ϕ̃n

)
dwks (6.14)

holds for all t ∈ [0, T ]. Thus, if we can show that each side of (6.14) converges in L2(Ω; C([0, T ]))
to the respective side of (6.13), the assertion follows. We write

ṽn := ϕ̃n − ϕ ◦ φ for n ∈ N,

and start with the right hand side. We estimate

E

[
sup
t∈[0,T ]

∣∣∣∣(u(0, ·), ṽn
)

+

∫ t

0

(
f(s, ·), ṽn

)
ds+

∞∑
k=1

∫ t

0

(
gk(s, ·), ṽn

)
dwks

∣∣∣∣2
]

≤ C

(
E
[∣∣(u(0, ·), ṽn

)∣∣2]+ E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(
f(s, ·), ṽn

)
ds

∣∣∣∣2
]

+

E

[
sup
t∈[0,T ]

∣∣∣∣ ∞∑
k=1

∫ t

0

(
gk(s, ·), ṽn

)
dwks

∣∣∣∣2
])

=: C
(
I + II + III

)
,

(6.15)
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and prove that each of the terms on the right hand side converges to zero for n→∞. Before we
do this, we show that the following embeddings hold:

H1
p̃,θ̃−p̃(G

(1)) ↪→ Lp̃,θ̃(G
(1)), (6.16)

H1
p̃,θ̃−p̃(G

(1)) ↪→ H1
p′,θ′−p′(G

(1)), (6.17)

H1
p̃,θ̃−p̃(G

(1)) ↪→ Lp′,θ′(G
(1)). (6.18)

The first one follows immediately from Lemma 2.45(vii). In order to prove the second embedding,
we argue as follows: Using the fact that

p̃ = p′
(

1 +
p

p− 2

)
and p′ < p̃,

together with Hölder’s inequality, the boundedness of G(1), and the norm equivalence (2.28)
yields

‖ṽ‖H1
p′,θ′−p′ (G

(1)) ≤ C
(∫

G(1)

|ṽ(x)|p′ρ(x)θ
′−p′−d

) 1
p′

+ C
∑
|α|=1

(∫
G(1)

|Dαṽ(x)|p′ρ(x)θ
′−d
) 1
p′

≤ C
(∫

G(1)

|ṽ(x)|p̃ρ(x)θ̃−p̃−d
) 1
p̃

+ C
∑
|α|=1

(∫
G(1)

|Dαṽ(x)|p̃ρ(x)θ̃−d
) 1
p̃

≤ C ‖ṽ‖H1
p̃,θ̃−p̃

(G(1)),

with a constant C independent of ṽ ∈ H1
p̃,θ̃−p̃(G

(1)). The third embedding (6.18) follows with sim-

ilar arguments. Let us return to (6.15). Since (Lp,θ(G
(1)))∗ ' Lp′,θ′(G

(1)), cf. Lemma 2.45(viii),

using embedding (6.18) together with the fact that H
1−2/q
p,θ−(1−2/q)p(G

(1)) ↪→ Lp,θ(G
(2)), we obtain

I = E
[∣∣(u(0, ·), ṽn

)∣∣2] ≤ E[‖u(0, ·)‖2
Lp,θ(G(1))

]
‖ṽn‖2Lp′,θ′ (G(1))

≤ C‖u(0, ·)‖2
Uγ,qp,θ (G(1))

‖ṽn‖2H1
p̃,θ̃−p̃

(G(1))
.

(6.19)

Furthermore, since (H−1
p,θ+p(G

(1)))∗ ' H1
p′,θ′−p′(G

(1)), cf. Lemma 2.45(viii), we can use embedding
(6.17) together with Hölder’s inequality and estimate the second term as follows:

II = E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(
f(s, ·), ṽn

)
ds

∣∣∣∣2
]

≤ C E

[
sup
t∈[0,T ]

∫ t

0
‖f(s, ·)‖2

H−1
p,θ+p(G(1))

ds

]
‖ṽn‖2H1

p′,θ′−p′ (G
(1))

≤ C ‖f‖2H−1,q
p,θ+p(G(1),T )

‖ṽn‖2H1
p̃,θ̃−p̃

(G(1))
.

(6.20)
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Finally, by Doob’s inequality and Itô’s isometry, together with Jensen’s inequality and Fubini’s
theorem,

III = E

[
sup
t∈[0,T ]

∣∣∣∣ ∞∑
k=1

∫ t

0

(
gk(s, ·), ṽn

)
dwks

∣∣∣∣2
]

≤ C E

[∫ T

0

∞∑
k=1

∣∣(gk(s, ·), ṽn)∣∣2 ds

]

= C E

[∫ T

0

∞∑
k=1

∣∣∣ ∫
G(1)

gk(s, x)ṽn(x) dx
∣∣∣2 ds

]

≤ C E

[∫ T

0

∫
G(1)

∞∑
k=1

∣∣gk(s, x)
∣∣2 ∣∣ṽn(x)

∣∣2 dx ds

]
.

Thus, inserting 1 = ρ2(θ−d)/pρ2(θ′−d)/p′ and using Hölder’s inequality twice, followed by an ap-
plication of Embedding (6.16), yields

III ≤ C E
[ ∫ T

0

(∫
G(1)

( ∞∑
k=1

∣∣gk(s, x)
∣∣2) p2 ρ(x)θ−d dx

) 2
p

ds

](∫
G(1)

∣∣ṽn(x)
∣∣p̃ρ(x)θ̃−d dx

) 1
p̃

≤ C ‖g‖2H0,q
p,θ(G(1),T ;`2)

‖ṽn‖2H1
p̃,θ̃−p̃

(G(1))
.

(6.21)

The combination of the estimates (6.19), (6.20) and (6.21) with (6.15) yields the convergence
of the right hand side of (6.14) to the right hand side of (6.13) in L2(Ω; C([0, T ])). Let us now
consider the corresponding left hand sides. An application of Theorem 3.8(ii) and the fact that
q ≥ p lead to

E

[
sup
t∈[0,T ]

∣∣(u(t, ·), ṽn
)∣∣2] ≤ (E[ sup

t∈[0,T ]
‖u(t, ·)‖p

Lp,θ(G(1))

]) 2
p

‖ṽn‖2Lp′,θ′ (G(1))

≤ C‖u‖2
H1,p
p,θ(G(1),T )

‖ṽn‖2Lp′,θ′ (G(1))

≤ C‖u‖2
H1,q
p,θ(G(1),T )

‖ṽn‖2Lp′,θ′ (G(1))
.

Thus, by (6.18),

E

[
sup
t∈[0,T ]

∣∣∣(u(t, ·), ṽn
)∣∣∣2] ≤ C‖u‖2

H1,q
p,θ(G(1),T )

‖ṽn‖2H1
p̃,θ̃−p̃

(G(1))
.

Hence, also the left hand side of (6.14) converges to the left hand side of (6.13) in L2(Ω; C([0, T ]))
and the assertion is proved for p > 2.

Case 2. It remains to consider the case p = 2. Replacing p̃ by 2 and θ̃ by θ′ = 2d − θ and
arguing as in the first case using the inequality

E

[
sup
t∈[0,T ]

∣∣∣∣ ∞∑
k=1

∫ t

0

(
gk(s, ·), ṽ

)
dwks

∣∣∣∣2
]
≤ C‖g‖2H0,q

2,θ(G(1),T ;`2)
‖ṽ‖2

L2,θ′ (G
(1))

for the estimate of III, proves the assertion also for p = 2.

Now we are ready to prove our main result in this section.
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Proof of Theorem 6.1. As before, we simplify notation and write f := Du and g := Su
throughout the proof. We will show that (6.5) is true by induction over γ ∈ N; estimate (6.6)
can be proven analogously.

We start with the case γ = 1. Fix x0 ∈ ∂O and choose r > 0 small enough, e.g., r :=
r0(10K0)−1 with r0 and K0 > 1 from Definition 2.1. Let us assume for a moment that the
supports (in the sense of distributions) of u, f and g are contained in Br(x0) for each t and ω.
With µ0 from Definition 2.1, we introduce the function

φ : G(1) := O ∩Br0(x0) −→ G(2) := φ(O ∩Br0(x0)) ⊆ Rd+
x = (x1, x′) 7−→ φ(x) := (x1 − µ0(x′), x′),

which fulfils all the assumptions of Lemma 6.3. Note that, since r has been chosen sufficiently
small, one has ρO(x) = ρG(1)(x) for all x ∈ O ∩ Br(x0), so that one can easily show that the
equivalence

‖v‖Hν
p̃,θ̃

(O) � ‖v‖Hν
p̃,θ̃

(G(1)), v ∈ D′(O), supp v ⊆ Br(x0),

holds for all ν, θ̃ ∈ R and p̃ > 1. Together with Lemma 6.3 we obtain for any ν ∈ [−1, 1],

‖v‖Hν
p̃,θ̃

(O) � ‖v ◦ φ−1‖Hν
p̃,θ̃

(G(2)), v ∈ D′(O), supp v ⊆ Br(x0).

Thus, denoting ũ := u ◦φ−1, f̃ := f ◦φ−1 and g̃ := g ◦φ−1, by Lemma 6.5 we know that on G(2)

we have dũ = f̃dt + g̃kdwkt in the sense of distributions, see Definition 3.3. Furthermore, since
ρG(2)(y) = ρRd+

(y) for all y ∈ φ(O ∩Br(x0)), the equivalence

‖v ◦ φ−1‖Hν
p̃,θ̃

(G(2)) � ‖v ◦ φ
−1‖Hν

p̃,θ̃
(Rd+), v ∈ D′(O), supp v ⊆ Br(x0),

holds for any ν ∈ [−1, 1], where we identify v ◦ φ−1 with its extension to Rd+ by zero. Therefore,

by making slight abuse of notation and writing ũ, f̃ and g̃ for the extension by zero on Rd+ of ũ,

f̃ and g̃ respectively, we have

ũ ∈ H1,q
p,θ−p(R

d
+, T ), ũ(0) ∈ U1,q

p,θ (Rd+), f̃ ∈ H−1,q
p,θ+p(R

d
+, T ), g̃ ∈ H0,q

p,θ(R
d
+, T ; `2),

and dũ = f̃dt + g̃kdwkt is fulfilled on Rd+ in the sense of distributions, see Definition 3.3. Thus,
we can apply [83, Theorem 4.1] and use the equivalences above to obtain Estimate (6.5) in the
following way:

E[u]q
Cβ̃/2−1/q([0,T ];H1−β

p,θ−(1−β)p
(O))

≤ C E[ũ]q
Cβ̃/2−1/q([0,T ];H1−β

p,θ+p(β−1)
(Rd+))

≤ C T (β−β̃)q/2
(
‖ũ‖q

H1,q
p,θ−p(Rd+,T )

+ ‖f̃‖q
H−1,q
p,θ+p(Rd+,T )

+ ‖g̃‖q
H0,q
p,θ(Rd+,T ;`2)

)
≤ C T (β−β̃)q/2

(
‖u‖q

H1,q
p,θ−p(O,T )

+ ‖f‖q
H−1,q
p,θ+p(O,T )

+ ‖g‖q
H0,q
p,θ(O,T ;`2)

)
.

Now let us give up the assumption on the supports of u, f and g. Let ξ0, ξ1, . . . , ξm, be a finite
partition of unity on O, such that ξ0 ∈ C∞0 (O), and, for i = 1, . . . ,m, ξi ∈ C∞0 (Br(xi)) with
xi ∈ ∂O. Obviously, d(ξiu) = ξifdt+ ξig

k
t dwkt for i = 0, . . . ,m. Since

E[u]q
Cβ̃/2−1/q([0,T ];H1−β

p,θ−(1−β)p
(O))
≤ C(m, q)

m∑
i=0

E[(ξiu)]q
Cβ̃/2−1/q([0,T ];H1−β

p,θ−(1−β)p
(O))

,
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we just have to estimate E[ξiu]q
Cβ̃/2−1/q([0,T ];H1−β

p,θ−(1−β)p
(O))

for each i ∈ {0, . . . ,m}. For i ≥ 1

one obtains the required estimate as before, using the fact that C∞0 (O)-functions are pointwise
multipliers in all spaces Hν

p̃,θ̃
(O), ν, θ̃ ∈ R, p̃ > 1, see, e.g., [93, Theorem 3.1]. The case i = 0 can

be treated as follows: Since ξ0 has compact support in O, for all ν, θ̃ ∈ R and p̃ > 1, we have

‖vξ0‖Hν
p̃,θ̃

(O) � ‖vξ0‖Hν
p̃ (Rd), v ∈ D′(O), (6.22)

and consequently

E[ξ0u]q
Cβ̃/2−1/q([0,T ];H1−β

p,θ−(1−β)p
(O))
� E[ξ0u]q

Cβ̃/2−1/q([0,T ];H1−β
p (Rd))

.

By [83, Theorem 4.11], a further application of (6.22) and the fact that C∞0 (O)-functions are
pointwise multipliers in all spaces Hν

p̃,θ̃
(O), we obtain

E[ξ0u]q
Cβ̃/2−1/q([0,T ];H1−β

p (Rd))

≤ CT (β−β̃)q/2
(
‖ξ0u‖qH1,q

p (Rd,T )
+ ‖ξ0f‖qH−1,q

p (Rd,T )
+ ‖ξ0g‖qH0,q

p (Rd,T ;`2)

)
≤ CT (β−β̃)q/2

(
‖ξ0u‖qH1,q

p,θ−p(O,T )
+ ‖ξ0f‖qH−1,q

p,θ+p(O,T )
+ ‖ξ0g‖qH0,q

p,θ(O,T ;`2)

)
≤ CT (β−β̃)q/2

(
‖u‖q

H1,q
p,θ−p(O,T )

+ ‖f‖q
H−1,q
p,θ+p(O,T )

+ ‖g‖q
H0,q
p,θ(O,T ;`2)

)
.

This finishes the proof of estimate (6.5) for the case γ = 1.

Next, let us move to the inductive step and assume that the assertion is true for some
γ = n ∈ N. Fix u ∈ Hn+1,q

p,θ (O, T ) and let ψ denote an infinitely differentiable function on O
fulfilling (2.25). Then v := ψux ∈ Hn,qp,θ (O, T ) and dv = ψfxdt+ψgkxdwkt (component-wise). Also,
by Lemma 2.45(iii) and (iv),

E[u]q
Cβ̃/2−1/q([0,T ];Hn+1−β

p,θ−(1−β)p
(O))
≤ C

(
E[u]q

Cβ̃/2−1/q([0,T ];Hn−β
p,θ−(1−β)p

(O))
+

E[v]q
Cβ̃/2−1/q([0,T ];Hn−β

p,θ−(1−β)p
(O))

)
.

Using the induction hypothesis and applying Lemma 2.45(iii) and (iv) once more together with
Lemma 2.55(i) and (ii), we see that the induction goes through.

6.2 The spaces Hγ,q
p,θ(O, T ) and SPDEs

In this section we are concerned with one aspect of the ‘suitability’ of the spaces Hγ,qp,θ(O, T ) for
the regularity analysis of SPDEs. We prove that, if we know that the equation

du =
(
aijuxixj + f

)
dt+

(
σikuxi + gk

)
dwkt on ΩT ×O,

u(0) = 0 on Ω×O.

}
(6.23)

has a solution u ∈ Hγ,qp,θ(O, T ), and f and g = (gk)k∈N are smooth enough, then we can lift up the

regularity of the solution in the scale Hν,qp,θ(O, T ), ν ≥ γ, of parabolic weighted Sobolev spaces.
For simplicity, in this section we make the following restrictions.
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Assumption 6.6. (i) The coefficients aij and σik do not depend on x ∈ O and fulfil Assump-
tion 3.1 with vanishing bi, c, and µk, i, j ∈ {1, . . . , d} and k ∈ N. That is, aij and σik are
real valued predictable stochastic processes and there exist constants δ0,K > 0 such that
for any (ω, t) ∈ ΩT and λ ∈ Rd,

δ0|λ|2 ≤ ãij(ω, t)λiλj ≤ aij(ω, t)λiλj ≤ K|λ|2,

where ãij(ω, t) := aij(ω, t)− 1
2〈σ

i·(ω, t), σj·(ω, t)〉`2 , with σi·(ω, t) :=
(
σik(ω, t)

)
k∈N ∈ `2.

(ii) (aij) is symmetric, i.e., aij = aji for i, j ∈ {1, . . . , d}.

Under these assumptions we can prove the following result.

Theorem 6.7. Let O be a bounded Lipschitz domain in Rd and let aij and σik, i, j ∈ {1, . . . , d},
k ∈ N, be given coefficients satisfying Assumption 6.6. Fix γ ∈ R, p ∈ [2,∞) and q := mp
for some m ∈ N. Furthermore, assume that u ∈ Hγ+1,q

p,θ (O, T ) is a solution to Eq. (6.23) with

f ∈ Hγ,q
p,θ+p(O, T ) and g ∈ Hγ+1,q

p,θ (O, T ; `2). Then, u ∈ Hγ+2,q
p,θ (O, T ), and

‖u‖q
Hγ+2,q
p,θ−p(O,T )

≤ C
(
‖u‖q

Hγ+1,q
p,θ−p(O,T )

+ ‖f‖qHγ,qp,θ+p(O,T )
+ ‖g‖q

Hγ+1,q
p,θ (O,T ;`2)

)
,

where the constant C ∈ (0,∞) does not depend on u, f and g.

In order to prove this result, we will use the following lemma taken from [82, Lemma 2.3].
Recall that the spaces Hγp(T ) are the Rd-counterparts of the spaces Hγ,pp,θ (G,T ), compare Re-
mark 3.4.

Lemma 6.8. Let p ≥ 2, m ∈ N, and, for i = 1, 2, . . . ,m,

λi ∈ (0,∞), γi ∈ R, u(i) ∈ Hγi+2
p (T ), u(i)(0, ·) = 0.

Denote Λi := (λi −∆)γi/2. Then

E

[ ∫ T

0

m∏
i=1

‖Λi∆u(i)‖pLp dt

]

≤ C
m∑
i=1

E

[ ∫ T

0

(
‖Λif (i)‖pLp + ‖Λig(i)

x ‖
p
Lp(Rd;`2)

) m∏
j=1
j 6=i

‖Λj∆u(j)‖pLp dt

]

+ C
∑

1≤i<j≤m
E

[ ∫ T

0
‖Λig(i)

x ‖
p
Lp(Rd;`2)

‖Λjg(j)
x ‖

p
Lp(Rd;`2)

m∏
k=1
k 6=i,j

‖Λk∆u(k)‖pLp dt

]
,

where f (i) := Du(i) − arsu(i)
xrxs, g

(i)k := Sku(i) − σrku(i)
xr and Lp(`2) := H0

p (`2). The constant C
depends only on m, d, p, δ0, and K.

Now we prove the main result of this section.

Proof of Theorem 6.7. The case m = 1, i.e., p = q, is covered by [75, Lemma 3.2]. Therefore,
let m ≥ 2. According to Remark 2.46 it is enough to show that

‖∆u‖qHγ,qp,θ+p(O,T )
≤ C

(
‖u‖q

Hγ+1,q
p,θ−p(O,T )

+ ‖f‖qHγ,qp,θ+p(O,T )
+ ‖g‖q

Hγ+1,q
p,θ (O,T ;`2)

)
.
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Using the definition of weighted Sobolev spaces from Subsection 2.3.3, we observe that

‖∆u‖qHγ,qp,θ+p(O,T )
= E

[ ∫ T

0

(∑
n∈Z

en(θ+p)‖(ζ−n∆u(t))(en·)‖p
Hγ
p

)m
dt

]

≤ C E
[ ∫ T

0

(∑
n∈Z

en(θ+p)
(
‖∆(ζ−nu(t))(en·)‖p

Hγ
p

+ ‖(∆ζ−nu(t))(en·)‖p
Hγ
p

+ ‖(ζ−nxux(t))(en·)‖p
Hγ
p

))m
dt

]
.

(Here ζ−nxux is meant to be the scalar product in Rd.) Now we can use Jensen’s inequality and
Remark 2.48(i) to obtain

‖∆u‖qHγ,qp,θ+p(O,T )
≤ C E

[ ∫ T

0

(∑
n∈Z

en(θ+p)‖∆(ζ−nu(t))(en·)‖p
Hγ
p

)m
+ ‖u(t)‖q

Hγ
p,θ−p(O)

+ ‖ux(t)‖q
Hγ
p,θ(O)

dt

]
.

An application of Lemma 2.45(iii) and (iv) leads to

‖∆u‖qHγ,qp,θ+p(O,T )
≤ C E

[ ∫ T

0

(∑
n∈Z

en(θ+p)‖∆(ζ−nu(t))(en·)‖p
Hγ
p

)m
dt

]
+ C ‖u‖q

Hγ+1,q
p,θ−p(O,T )

.

Therefore, it is enough to estimate the first term on the right hand side, i.e.,

E

[ ∫ T

0

(∑
n∈Z

en(θ+p)‖∆(ζ−nu(t))(en·)‖p
Hγ
p

)m
dt

]

= E

[ ∫ T

0

∑
n1,...,nm∈Z

e

(∑m
i=1 ni

)
(θ+p)

m∏
i=1

‖∆(ζ−niu(t))(eni ·)‖p
Hγ
p

dt

]
.

Tonelli’s theorem together with the relation

‖u(c ·)‖p
Hγ
p

= cpγ−d‖(c−2 −∆)γ/2u‖pLp for c ∈ (0,∞), (6.24)

applied to ∆u(ni) with u(n) := ζ−nu for n ∈ Z, show that we only have to handle∑
n1,...,nm∈Z

e

(∑m
i=1 ni

)
(θ+p+pγ−d)

E

[ ∫ T

0

m∏
i=1

‖(e−2ni −∆)γ/2∆u(ni)(t)‖pLp dt

]
.

Note that since u ∈ Hγ+1,q
p,θ (O, T ) solves Eq. (6.23) with vanishing initial value,

du(n) = (arsu
(n)
xrxs + f (n)) dt+ (σrku

(n)
xr + g(n)k) dwkt ,

in the sense of distributions on Rd, see Definition 3.3, where

f (n) = −2ars(ζ−n)xsuxr − ars(ζ−n)xrxsu+ ζ−nf, g(n)k = −σrk(ζ−n)xru+ ζ−ng
k,

and u(n)(0) = 0. Furthermore, applying [80, Theorem 4.10], we have u(n) ∈ Hγ+2
p (T ). Thus, we

can use Lemma 6.8 to obtain

E

[ ∫ T

0

m∏
i=1

‖(e−2ni −∆)γ/2∆u(ni)(t)‖pLp dt

]
≤ C

m∑
i=1

(
Ini + IIni

)
+ C

∑
1≤i<j≤m

IIIninj
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where we denote

Ini := E

[ ∫ T

0
‖Λnif (ni)(t)‖pLp

m∏
j=1
j 6=i

‖Λnj∆u(nj)(t)‖pLp dt

]
,

IIni := E

[ ∫ T

0
‖Λnig(ni)

x (t)‖p
Lp(Rd;`2)

m∏
j=1
j 6=i

‖Λnj∆u(nj)(t)‖pLp dt

]
,

IIIninj := E

[ ∫ T

0
‖Λnig(ni)

x (t)‖p
Lp(Rd;`2)

‖Λnjg
(nj)
x (t)‖p

Lp(Rd;`2)

m∏
k=1
k 6=i,j

‖Λnk∆u(nk)(t)‖pLp dt

]
,

with Λn := (e−2n −∆)γ/2. Thus, it is enough to find a proper estimate for

∑
n1,...,nm∈Z

e

(∑m
i=1 ni

)
(θ+p+pγ−d)

( m∑
i=1

(
Ini + IIni

)
+

∑
1≤i<j≤m

IIIninj

)
.

Applying (6.24) first, followed by Tonelli’s theorem, then Hölder’s and Young’s inequality, leads
to

∑
n1,...,nm∈Z

e

(∑m
i=1 ni

)
(θ+p+pγ−d)

m∑
i=1

Ini

=
∑

n1,...,nm∈Z
e

(∑m
i=1 ni

)
(θ+p)

m∑
i=1

E

[ ∫ T

0
‖f (ni)(t, eni ·)‖p

Hγ
p

m∏
j=1
j 6=i

‖∆u(nj)(t, enj ·)‖p
Hγ
p

dt

]

≤ C E
[ ∫ T

0

(∑
n∈Z

en(θ+p)‖f (n)(t, en·)‖p
Hγ
p

)(∑
n∈Z

en(θ+p)‖∆u(n)(t, en·)‖p
Hγ
p

)m−1

dt

]

≤ C(ε)E

[ ∫ T

0

(∑
n∈Z

en(θ+p)‖f (n)(t, en·)‖p
Hγ
p

) q
p

dt

]

+ εE

[ ∫ T

0

(∑
n∈Z

en(θ+p)‖∆u(n)(t, en·)‖p
Hγ
p

) q
p

dt

]
.

Using the definition of f (n) and arguing as at the beginning of the proof, we obtain

∑
n∈Z

en(θ+p)‖f (n)(t, en·)‖p
Hγ
p
≤ C

(
‖ux(t)‖p

Hγ
p,θ(O)

+ ‖u(t)‖p
Hγ
p,θ−p(O)

+ ‖f(t)‖p
Hγ
p,θ+p(O)

)
≤ C

(
‖u(t)‖p

Hγ+1
p,θ−p(O)

+ ‖f(t)‖p
Hγ
p,θ+p(O)

)
.
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Moreover,∑
n∈Z

en(θ+p)‖∆u(n)(t, en·)‖p
Hγ
p

≤
∑
n∈Z

en(θ+p)‖(∆ζ−nu(t))(en·)‖p
Hγ
p

+
∑
n∈Z

en(θ+p)‖(ζ−nxux(t))(en·)‖p
Hγ
p

+
∑
n∈Z

en(θ+p)‖(ζ−n∆u(t))(en·)‖p
Hγ
p

≤ C
(
‖u(t)‖p

Hγ
p,θ−p(O)

+ ‖ux(t)‖p
Hγ
p,θ(O)

+ ‖∆u‖p
Hγ
p,θ+p(O)

)
≤ C

(
‖u(t)‖p

Hγ+1
p,θ−p(O)

+ ‖∆u‖p
Hγ
p,θ+p(O)

)
.

Combining the last three estimates, we obtain for any ε > 0 a constant C(ε) ∈ (0,∞), such that∑
n1,...,nm∈Z

e

(∑m
i=1 ni

)
(θ+p+pγ−d)

m∑
i=1

Ini

≤ ε ‖∆u‖qHγ,qp,θ+p(O,T )
+ C(ε)

(
‖f‖qHγ,qp,θ+p(O,T )

+ ‖u‖q
Hγ+1,q
p,θ−p(O,T )

)
.

Similar arguments yield also∑
n1,...,nm∈Z

e

(∑m
i=1 ni

)
(θ+p+pγ−d)

( m∑
i=1

IIni +
∑

1≤i<j≤m
IIIninj

)
≤ ε ‖∆u‖qHγ,qp,θ+p(O,T )

+ C(ε)
(
‖g‖q

Hγ+1,q
p,θ (O,T ;`2)

+ ‖u‖q
Hγ+1,q
p,θ−p(O,T )

)
,

which finishes the proof.

Iterating Theorem 6.7 and using the properties from Lemma 2.45 of the weighted Sobolev
spaces leads to the following result.

Corollary 6.9. Let O be a bounded Lipschitz domain in Rd and let aij and σik, i, j ∈ {1, . . . , d},
k ∈ N, be given coefficients satisfying Assumption 6.6. Fix γ ≥ 1, p ∈ [2,∞) and q := mp
for some m ∈ N. Furthermore, assume that u ∈ H0,q

p,θ(O, T ) is a solution to Eq. (6.23) with

f ∈ Hγ−2,q
p,θ+p(O, T ) and g ∈ Hγ−1,q

p,θ (O, T ; `2). Then u ∈ Hγ,qp,θ(O, T ), and

‖u‖q
Hγ,qp,θ (O,T )

≤ C
(
‖u‖q

H0,q
p,θ−p(O,T )

+ ‖f‖q
Hγ−2,q
p,θ+p(O,T )

+ ‖g‖Hγ−1,q
p,θ (O,T ;`2)

)q
,

where the constant C ∈ (0,∞) does not depend on u, f and g.

Remark 6.10. The assertion of Theorem 6.7 (and Corollary 6.9) can be proved in the same
way for arbitrary domains G ⊂ Rd with non-empty boundary instead of the bounded Lipschitz
domain O ⊂ Rd, see [26, Theorem 3.8]. Arguing along the lines of [73,75], it can also be extended
to the case where the coefficients depend on the space variable x ∈ O. Also, the symmetry of
(aij) can be dropped. Since we are mainly interested in the stochastic heat equation on bounded
Lipschitz domains, we do not consider these cases in this thesis.

6.3 The stochastic heat equation in Hγ,q
p,θ(O, T )

In this section we develop a first Lq(Lp)-theory for the stochastic heat equation on bounded
Lipschitz domains. We prove that under suitable conditions on the free terms, the stochastic heat
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equation possesses a unique solution in the class Hγ,qp,d(O, T ) with q > p ≥ 2 (Subsection 6.3.1).
This has important consequences for the space time regularity of the solution process (topic (T2)
in the introduction). We collect and discuss them in Subsection 6.3.2. In particular, we reach
our main goal in this chapter and prove a result on the Hölder regularity of the paths of the
solution to the heat equation, considered as a stochastic process taking values in Besov spaces
from the non-linear approximation scale (∗) (Theorem 6.17).

6.3.1 A result on the Lq(Lp)-regularity

We have already seen in Theorem 3.13 that the stochastic heat equation (6.1) has a solution u
in the class Hγp,d(O, T ) = Hγ,pp,d(O, T ), provided the free terms f and g fulfil adequate conditions.
In this subsection we want to extend this result and prove the existence of solutions to Eq. (6.1)
in the classes Hγ,qp,d(O, T ) with q > p ≥ 2 on general bounded Lipschitz domains O ⊂ Rd. Our
main goal is to prove the following statement.

Theorem 6.11. Let O be a bounded Lipschitz domain in Rd and let γ ≥ 0. There exists an
exponent p0 with p0 > 3 when d ≥ 3 and p0 > 4 when d = 2, such that for p ∈ [2, p0) and
p ≤ q <∞, Eq. (6.1) has a unique solution u ∈ Hγ+2,q

p,d (O, T ), provided

f ∈ H0,q
p,d(O, T ) ∩Hγ,q

p,d+p(O, T ) and g ∈ H1,q
p,d−p(O, T ; `2) ∩Hγ+1,q

p,d (O, T ; `2). (6.25)

Moreover, there exists a constant C ∈ (0,∞), which does not depend on u, f and g, such that

‖u‖q
Hγ+2,q
p,d (O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖f‖qHγ,qp,d+p(O,T )
+ ‖g‖q

H1,q
p,d−p(O,T ;`2)

+ ‖g‖q
Hγ+1,q
p,d (O,T ;`2)

)
, (6.26)

and if q = mp for some m ∈ N,

‖u‖q
Hγ+2,q
p,d (O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖f‖qHγ,qp,d+p(O,T )
+ ‖g‖q

Hγ+1,q
p,d (O,T ;`2)

)
. (6.27)

Furthermore, for arbitrary d ≥ 2, if O additionally fulfils a uniform outer ball condition, the
assertion holds with p0 =∞.

For bounded C1
u-domains, this theorem is covered by [74, Theorem 2.17]. Unfortunately,

the proof techniques used there do not work if the boundary is assumed to be only Lipschitz
continuous. Therefore, we use a different strategy. In a first step we use the stochastic maximal
regularity results from [121, 122] to prove that there exists a solution of the stochastic heat
equation in H1,q

p,d(O, T ) with q > p, i.e., we prove the following statement.

Proposition 6.12. Let O be a bounded Lipschitz domain in Rd. There exists an exponent p0

with p0 > 3 when d ≥ 3 and p0 > 4 when d = 2, such that for p ∈ [2, p0) and p ≤ q < ∞,
Eq. (6.1) has a unique solution u ∈ H1,q

p,d(O, T ), provided

f ∈ H0,q
p,d(O, T ) and g ∈ H1,q

p,d−p(O, T ; `2).

Moreover, there exists a constant C ∈ (0,∞), which does not depend on u, f and g, such that

‖u‖q
H1,q
p,d−p(O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H0,q
p,d(O,T ;`2)

)
. (6.28)

Furthermore, for arbitrary d ≥ 2, if O additionally fulfils a uniform outer ball condition, the
assertion holds with p0 =∞.
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As already mentioned, we want to apply the maximal regularity theory from [121, 122] in
order to prove this result. Therefore, we have to rewrite our equation as a Banach space valued
ordinary SDE of the form

du(t) +Au(t) dt = f(t) dt+ b(t) dWH(t), t ∈ [0, T ]

u(0) = 0,

}

where A is a suitable unbounded operator on some Banach space and WH is an H-cylindrical
Brownian motion on a Hilbert space H. Thus, before we start with the proof of Proposition 6.12,
we introduce a proper operator and check its relevant properties.

Let O be a bounded Lipschitz domain in Rd. As in [126, Definition 3.1], for arbitrary p ∈
(1,∞), we define the weak Dirichlet-Laplacian ∆D

p,w on Lp(O) as follows:

D(∆D
p,w) :=

{
u ∈ W̊ 1

p (O) : ∆u ∈ Lp(O)
}
,

∆D
p,wu := ∆u =

d∑
i,j=1

δi,juxixj , u ∈ D(∆D
p,w).

Fix p ∈ [2, p0) with either

[C1] p0 = 3 + δ when d ≥ 3, or

[C2] p0 = 4 + δ when d = 2, or

[C3] p0 =∞ when d ≥ 2 and O additionally fulfils a uniform outer ball condition,

where δ > 0 is taken from [126, Proposition 4.1]. Then, the unbounded operator ∆D
p,w gener-

ates a positive analytic contraction semigroup
{
Sp(t)

}
t≥0

of negative type on Lp(O), see [126,

Theorem 3.8, Corollary 4.2, Lemma 4.4, and Corollary 4.5]. Therefore, the positive operator
A := −∆D

p,w admits an H∞-calculus of angle less than π/2 and possesses bounded imaginary
powers (see Theorem 2.69 and Theorem 2.70). Thus, by [116, Theorem 1.15.3],[

Lp(O), D(−∆D
p,w)

]
1
2

= D((−∆D
p,w)

1
2 ), (6.29)

where the square root of the negative of the weak Dirichlet-Laplacian (−∆D
p,w)

1
2 is defined as

the inverse of the operator

(−∆D
p,w)−

1
2 := π−

1
2

∫ ∞
0

t−
1
2Sp(t) dt : Lp(O)→ Lp(O) (6.30)

with domain

D((−∆D
p,w)

1
2 ) := Range((−∆D

p,w)−
1
2 ),

see [102, Chapter 2.6]. Endowed with the norm

‖u‖
D((−∆D

p,w)
1
2 )

:= ‖(−∆D
p,w)

1
2u‖Lp(O), u ∈ D((−∆D

p,w)
1
2 ),

D((−∆D
p,w)

1
2 ) becomes a Banach space. Exploiting the fundamental results from [126] and [67],

we can prove the following identity, which is crucial if we want to apply the results from [121]
in our setting.
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Lemma 6.13. Let O be a bounded Lipschitz domain in Rd. There is an exponent p0 with p0 > 4
when d = 2 and p0 > 3 when d ≥ 3 such that if p ∈ [2, p0), then

D((−∆D
p,w)

1
2 ) = W̊ 1

p (O) (6.31)

with equivalent norms. Furthermore, for arbitrary d ≥ 2, if O additionally fulfils a uniform outer
ball condition, (6.31) holds for arbitrary p ∈ [2,∞) with equivalent norms.

Proof. We fix p ∈ [2, p0) with p0 as in [C1], [C2], or [C3] with δ > 0 from [126, Proposition 4.1].
As a consequence of [67, Theorem 7.5] we have

(−∆D
2,w)−

1
2Lp(O) = W̊ 1

p (O) (6.32)

and ∥∥(−∆D
2,w)

1
2u
∥∥
Lp(O)

� ‖Du‖Lp(O), u ∈ W̊ 1
p (O). (6.33)

Moreover, by [126, Proposition 4.1] the semigroups
{
S2(t)

}
t≥0

and
{
Sp(t)

}
t≥0

are consistent,
i.e.,

S2(t)f = Sp(t)f, f ∈ Lp(O), t ≥ 0,

and therefore

(−∆D
p,w)−

1
2 f = (−∆D

2,w)−
1
2 f, f ∈ Lp(O)

according to (6.30). Thus, by (6.32), W̊ 1
p (O) = Range((−∆D

p,w)−
1
2 ) = D((−∆D

p,w)
1
2 ), and the

norm equivalence follows immediately from (6.33).

Remark 6.14. The comparison of the Lp-norms of L1/2u and Du for second order elliptic
operators (−L) is known as Kato’s square root problem in Lp. On the whole space Rd and for
p = 2, equivalence of the norms for uniformly complex elliptic operators in divergence form
with bounded measurable coefficients has been established in the seminal work [10]. Also, on
bounded Lipschitz domains it has been proven in [12], among other themes, that for symmetric
real-valued elliptic operators the equivalence ‖(−L)1/2·‖Lp(O) � ‖D·‖Lp(O) holds for certain

p ≥ 2. We expect that, if the results concerning the semigroup generated by ∆D
p,w from [126],

which we use in the proof of Lemma 6.13 and in the proof of Proposition 6.12 below, extend
to second order elliptic operators, then Proposition 6.12 and Theorem 6.11 remain valid for
equations of the type

du =
(
Lu+ f

)
dt+ gk dwkt , u(0) = 0.

In order to keep the exposition at a reasonable level we do not go into details here.

After clarifying these properties of A = −∆D
p,w, we are ready to prove the existence of a

solution u ∈ H1,q
p,d(O, T ) to the stochastic heat equation.

Proof of Proposition 6.12. As in the proof of Lemma 6.13 we fix p ∈ [2, p0) with p0 satisfying
either [C1], [C2], or [C3] with δ > 0 from [126, Proposition 4.1]. Furthermore, we fix q ≥ p and
assume that f ∈ H0,q

p,d(O, T ) and g ∈ H1,q
p,d−p(O, T ; `2). We will write W`2 = (W`2(t))t∈[0,T ] for

the `2-cylindrical Brownian motion defined by

`2 3 h 7→W`2(t)h :=

∞∑
k=1

wkt 〈ek, h〉`2 ∈ L2(Ω), t ∈ [0, T ],
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where {ek : k ∈ N} denotes the standard orthonormal basis of `2, see also Example 2.22. Let
Φ be the isomorphism between H1

p,d−p(O; `2) and Γ(`2, H
1
p,d−p(O)) from Theorem 2.54. Then,

since H1
p,d−p(O) = W̊ 1

p (O), see Lemma 2.51,

Φg := Φ(g) ∈ Lq(ΩT ,PT ,PT ; Γ(`2, W̊
1
p (O))). (6.34)

Thus, by Lemma 6.13,

Φg ∈ Lq(ΩT ,PT ,PT ; Γ(`2, X 1
2
))

with

X 1
2

:=
[
Lp(O), D(−∆D

p,w)
]

1
2

= D((−∆D
p,w)

1
2 ),

see also (6.29). Moreover, as already mentioned, −∆D
p,w admits an H∞-calculus of angle less

than π/2, and X1 := D(∆D
p,w) ↪→ X0 := Lp(O) densely, since C∞0 (O) is contained in D(∆D

p,w).
Using all these facts, we can apply [121, Theorem 4.5(ii)] and obtain the existence of a stochastic
process

u ∈ Lq(ΩT ,PT ,PT ;D(−∆D
p,w)) (6.35)

solving the infinite dimensional ordinary SDE

du(t)−∆D
p,wu(t) dt = f(t) dt+ Φg(t) dW`2(t), t ∈ [0, T ],

u(0) = 0,

}

in the sense of [121, Definition 4.2]. In particular, there exists a modification ũ of u, such that,
with probability one, the equality

ũ(t) =

∫ t

0
∆ũ(s) ds+

∫ t

0
f(s) ds+

∫ t

0
Φg(s) dW`2(s) (in Lp(O)) (6.36)

holds for all t ∈ [0, T ]. Note that, since (6.34) holds and W̊ 1
p (O) = H1

p,d−p(O) is a umd Banach
space with type 2 (see Lemma 2.50), the stochastic integral on the right hand side is well-defined
in the sense of [120] as a W̊ 1

p (O)-valued stochastic processes, see Theorem 2.32. Fix ϕ ∈ C∞0 (O).
Then, P-a.s.,

(ũ(t, ·), ϕ) =

∫ t

0
(∆ũ(s, ·), ϕ) ds+

∫ t

0
(f(s, ·), ϕ) ds+

(∫ t

0
Φg(s) dW`2(s), ϕ

)
, t ∈ [0, T ],

since P-a.s. Equality (6.36) holds for all t ∈ [0, T ]. Furthermore, since

∞∑
k=1

∫ ·
0

(
gk(s, ·), ϕ

)
dwks =

(∫ ·
0

Φg(s) dW`2(s), ϕ
)

P-a.s.

in C([0, T ];R), cf. Proposition 3.6, the identity

(ũ(t, ·), ϕ) =

∫ t

0
(∆ũ(s, ·), ϕ) ds+

∫ t

0
(f(s, ·), ϕ) ds+

∞∑
k=1

∫ t

0
(gk(s, ·), ϕ) dwks , t ∈ [0, T ],

holds with probability one. Therefore, and by (6.35), since D(−∆D
p,w) ↪→ H1

p,d−p(O) = W̊ 1
p (O),

u belongs to H1,q
p,d(O, T ) and solves Eq. (6.1) in the sense of Definition 3.10. Since H1,q

p,d(O, T ) ↪→
H1,2

2,d(O, T ), the uniqueness follows from Theorem 3.13. Thus, in order to finish the proof, we show
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Estimate (6.28). To this end we will use the fact that the stochastic process V : ΩT → Lp(O)
defined as

V (t) :=

∫ t

0
Sp(t− s)f(s) ds+

∫ t

0
Sp(t− s)Φg(s) dW`2(s), t ∈ [0, T ],

is a modification of u, see [121, Proposition 4.4]. Since −∆D
p,w has the (deterministic) maximal

regularity property (see [126, Proposition 6.1]) and D(−∆D
p,w) ↪→ D((−∆D

p,w)
1
2 ) = H1

p,d−p(O),
we obtain

E

[∥∥∥∥t 7→ ∫ t

0
Sp(t− s)f(s) ds

∥∥∥∥q
Lq([0,T ];H1

p,d−p(O))

]
≤ C ‖f‖q

H0,q
p,d(O,T )

. (6.37)

Simultaneously, notice that A := −∆D
p,w and g (respectively Φg) fulfil the assumptions of [122,

Theorem 1.1]; we have already checked them in our explanations above. Thus, applying this
result, we obtain

E

[∥∥∥∥t 7→ ∫ t

0
Sp(t− s)Φg(s) dW`2(s)

∥∥∥∥q
Lq([0,T ];H1

p,d−p(O))

]
≤ C ‖g‖q

H0,q
p,d(O,T ;`2)

. (6.38)

The constants in (6.37) and (6.38) do not depend on f and g. Therefore, using the last two
estimates we obtain the existence of a constant C, independent of f or g, such that

‖V ‖q
H1,q
p,d−p(O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H0,q
p,d(O,T ;`2)

)
.

Since V is just a modification of the solution u, Estimate (6.28) follows.

Now using the lifting argument from Section 6.2 and interpolation theory we can prove the
main result of this subsection.

Proof of Theorem 6.11. Let γ ≥ 0. Again, as in the proof of Lemma 6.13, let p ∈ [2, p0) with
p0 satisfying [C1], or [C2], or [C3] with δ > 0 as in Theorem [126, Proposition 4.1]. We first
consider the case q = mp for some fixed m ∈ N. Assume that f and g fulfil (6.25). Then, by
Proposition 6.12 there exists a unique solution u ∈ H1,q

p,d(O, T ). An application of Corollary 6.9
yields the estimate

‖u‖q
Hγ+2,q
p,d (O,T )

≤ C
(
‖u‖q

H0,q
p,d−p(O,T )

+ ‖f‖qHγ,qp,d+p(O,T )
+ ‖g‖q

Hγ+1,q
p,d (O,T ;`2)

)
.

Thus, u ∈ Hγ+2,q
p,d (O, T ), and using Estimate (6.28), leads to

‖u‖q
Hγ+2,q
p,d (O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H0,q
p,d(O,T ;`2)

+ ‖f‖qHγ,qp,d+p(O,T )
+ ‖g‖q

Hγ+1,q
p,d (O,T ;`2)

)
. (6.39)

Hence, we have proven estimate (6.27), since Hγ+1
p,d (O; `2) ↪→ H0

p,d(O; `2) . In order to get rid
of the restriction q = mp with m ∈ N and prove the assertion for general q ≥ p we argue by
following the lines of [82, Proof of Theorem 2.1, page 7]. Let f and g fulfil (6.25) with a fixed
q ≥ p. Denote Eγ :=

(
Hγ
p,d+p(O) ∩ H0

p,d(O)
)
×
(
Hγ+1
p,d (O; `2) ∩ H1

p,d−p(O; `2)
)
. By (6.39) and

since H1
p,d−p(O; `2) ↪→ H0

p,d(O; `2), for any m ∈ N, the operator

Rm : Lmp(ΩT ,PT ,PT ;Eγ)→ Lmp(ΩT ,PT ,PT ;Hγ+2
p,d−p(O))

(f, g) 7→ Rm(f, g),
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where Rm(f, g) is the unique solution in the class Hγ+2,mp
p,d (O, T ) of the corresponding stochastic

heat equation (6.1), is well-defined. Moreover, it is a linear and bounded operator, and, be-
cause of the uniqueness of the solution, R = Rm is independent of m ∈ N. Therefore, using
interpolation results like, e.g., [13, Theorem 5.1.2], shows that R is a well-defined linear and
bounded operator from Lq(ΩT ,PT ,PT ;Eγ) to Lq(ΩT ,PT ,PT ;Hγ+2

p,d−p(O)) mapping any couple

(f, g) ∈ Lq(ΩT ,PT ,PT ;Eγ) to the unique solution R(f, g) = u ∈ Hγ+2,q
p,d (O, T ) of Eq. (6.1).

When proving Hölder regularity of the solution, considered as a stochastic process taking
values in Besov spaces from the scale (∗), we will mainly use the following consequence of
Theorem 6.11.

Corollary 6.15. Let O be a bounded Lipschitz domain in Rd. There exists an exponent p0 with
p0 > 3 when d ≥ 3 and p0 > 4 when d = 2, such that for p ∈ [2, p0) and p ≤ q < ∞, Eq. (6.1)
has a unique solution u ∈ H2,q

p,d(O, T ), provided

f ∈ H0,q
p,d(O, T ) and g ∈ H1,q

p,d−p(O, T ; `2). (6.40)

Moreover, there exists a constant C ∈ (0,∞), which does not depend on u, f and g, such that

‖u‖q
H2,q
p,d(O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H1,q
p,d−p(O,T ;`2)

)
,

and if q = mp for some m ∈ N,

‖u‖q
H2,q
p,d(O,T )

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H1,q
p,d(O,T ;`2)

)
.

Furthermore, for d ≥ 2, if O additionally fulfils a uniform outer ball condition, the assertion
holds with p0 =∞.

Proof. Since H0
p,d(O) ↪→ H0

p,d+p(O) and H1
p,d−p(O; `2) ↪→ H1

p,d(O; `2), condition (6.40) implies
(6.25) with γ = 0, and the assertion follows immediately from Theorem 6.11.

6.3.2 Space time regularity

In this subsection we collect the fruits of our work and present new results concerning the Hölder
regularity of the paths of the solution to the stochastic heat equation (6.1) on general bounded
Lipschitz domains. We start with a Hölder-Sobolev regularity result, i.e., with a result concerning
the Hölder regularity of the paths of the solution to the stochastic heat equation, considered as
a stochastic process taking values in weighted Sobolev spaces.

Theorem 6.16. Let O be a bounded Lipschitz domain in Rd and fix γ ∈ N0. Assume that
u ∈ Hγ+2,q

p,d (O, T ) is the unique solution of Eq. (6.1) with f ∈ H0,q
p,d(O, T ) ∩ Hγ,q

p,d+p(O, T ) and

g ∈ H1,q
p,d−p(O, T ; `2) ∩Hγ+1,q

p,d (O, T ; `2), where p ≤ q <∞ and p ∈ [2, p0) with

(i) p0 > 3 when d ≥ 3 and p0 > 4 when d = 2,

or, alternatively,

(ii) p0 =∞ for d ≥ 2, if O additionally fulfils a uniform outer ball condition,

as in Theorem 6.11. Furthermore, fix

2

q
< β̃ < β ≤ 1.
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Then there exists a constant C ∈ (0,∞), which does not depend on u, f and g, such that

E‖u‖q
Cβ̃/2−1/q([0,T ];Hγ+2−β

p,d−(1−β)p
(O))

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖f‖qHγ,qp,d+p(O,T )
+ ‖g‖q

H1,q
p,d−p(O,T ;`2)

+ ‖g‖q
Hγ+1,q
p,d (O,T ;`2)

)
,

and if q = mp for some m ∈ N,

E‖u‖q
Cβ̃/2−1/q([0,T ];Hγ+2−β

p,d−(1−β)p
(O))

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖f‖qHγ,qp,d+p(O,T )
+ ‖g‖q

Hγ+1,q
p,d (O,T ;`2)

)
.

Proof. The assertion is an immediate consequence of Theorem 6.11 and Theorem 6.1.

Now we look at the solution of the stochastic heat equation as a stochastic process taking
values in the Besov spaces from the scale (∗). Given the setting of Theorem 6.11, an application
of embedding (4.13) shows that the solution u ∈ Hγ+2,q

p,d (O, T ), γ ≥ 0, of the stochastic heat
equation fulfils

u ∈ Lq(ΩT ,PT ,PT ;Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, for all 0 < α <

d

d− 1
.

We are interested in the Hölder regularity of the paths of this Bα
τ,τ (O)-valued process.

Theorem 6.17. Let O be a bounded Lipschitz domain in Rd and let the setting of Corollary 6.15
be given. That is, let u ∈ H2,q

p,d(O, T ) be the unique solution of Eq. (6.1) with f ∈ H0,q
p,d(O, T ) and

g ∈ H1,q
p,d−p(O, T ; `2), where p ≤ q <∞ and p ∈ [2, p0) with

(i) p0 > 3 when d ≥ 3 and p0 > 4 when d = 2,

or, alternatively,

(ii) p0 =∞ for d ≥ 2, if O additionally fulfils a uniform outer ball condition,

as in Corollary 6.15. Furthermore, fix

2

q
< β̃ < 1.

Then, for all α and τ with

1

τ
=
α

d
+

1

p
, and 0 < α <

(
1− β̃

) d

d− 1
, (6.41)

there exists a constant C ∈ (0,∞) which does not depend on u, f and g such that

E‖u‖q
Cβ̃/2−1/q([0,T ];Bατ,τ (O))

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H1,q
p,d−p(O,T ;`2)

)
, (6.42)

and if q = mp for some m ∈ N,

E‖u‖q
Cβ̃/2−1/q([0,T ];Bατ,τ (O))

≤ C
(
‖f‖q

H0,q
p,d(O,T )

+ ‖g‖q
H1,q
p,d(O,T ;`2)

)
. (6.43)

Proof. The assertion follows immediately from Theorem 6.2 and Corollary 6.15.
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Remark 6.18. Since β̃ < 1 is assumed in Theorem 6.17, the Hölder regularity of the paths of
the solution process determined in (6.42) and (6.43) is always strictly less than 1

2 . Moreover,
we have a typical trade-off between time and space regularity: the higher the Hölder regularity
in time, the more restrictive condition (6.41), and therefore, the less the Besov regularity α in
space. If we rise the Hölder regularity in time direction by ε > 0, we lose 2ε d

d−1 from the Besov
regularity α in space.

Example 6.19. Let O be a bounded Lipschitz domain in Rd. Let p ∈ [2, p0) with p0 satisfying
condition (i) from Theorem 6.17 above or, alternatively, let p ∈ [2,∞) if O additionally fulfils a
uniform outer ball condition. Furthermore, assume that

f ∈ L∞(ΩT ,PT ,PT ;H0
p,d(O)) and g ∈ L∞(ΩT ,PT ,PT ;H1

p,d−p(O; `2)).

Then, for any q ≥ p, f ∈ H0,q
p,d(O, T ) and g ∈ H1

p,d−p(O, T ; `2), and, by Corollary 6.15, there

exists a unique solution u ∈ H2,q
p,d(O, T ) to the stochastic heat equation (6.1). Chose an arbitrary

α > 0 such that

0 < α <
d

d− 1
.

Then there exists a β̃ = β̃(α) > 0 and a corresponding m = m(α) ∈ N such that simultaneously

2

mp
< β̃ < 1 and α < (1− β̃)

d

d− 1
.

Therefore, an application of Theorem 6.17 yields

E‖u‖qCε([0,T ];Bατ,τ (O)) <∞,
1

τ
=
α

d
+

1

p
,

with ε = ε(α) := β̃
2 −

1
mp > 0. Thus, for all α and τ with

1

τ
=
α

d
+

1

p
, and 0 < α <

d

d− 1
,

we have

u ∈ C([0, T ];Bα
τ,τ (O)) P-a.s.
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Zusammenfassung

In der vorliegenden Arbeit wird die Regularität von Lösungen (semi)linearer parabolischer
stochastischer partieller Differentialgleichungen (in der Arbeit stets mit SPDEs abgekürzt) auf
beschränkten Lipschitz-Gebieten untersucht. Es werden Itô-Differentialgleichungen zweiter Ord-
nung mit Dirichlet-Nullrandbedingung betrachtet. Sie haben die allgemeine Form:

du =

( d∑
i,j=1

aijuxixj +

d∑
i=1

biuxi + cu+ f + L(u)

)
dt

+

∞∑
k=1

( d∑
i=1

σikuxi + µku+ gk + (Λ(u))k
)

dwkt on Ω× [0, T ]×O,

u = 0 on Ω× (0, T ]× ∂O,
u(0) = u0 on Ω×O.


(1)

Hierbei bezeichnet O ein beschränktes Lipschitz-Gebiet in Rd (d ≥ 2), während T ∈ (0,∞)
für den Endzeitpunkt steht. Mit (wkt )t∈[0,T ], k ∈ N, wird eine Folge unabhängiger reellwertiger
Standard-Brown’scher Bewegungen bezüglich einer normalen Filtration (Ft)t∈[0,T ] auf einem
vollständigen Wahrscheinlichkeitsraum (Ω,F ,P) bezeichnet und du ist im Sinne von Itôs sto-
chastischem Differential nach der Zeit t ∈ [0, T ] zu verstehen. Die Koeffizienten aij , bi, c, σik

und µk, mit i, j ∈ {1, . . . , d} und k ∈ N, sind reellwertige Funktionen auf Ω× [0, T ]×O, welche
bestimmten Bedingungen genügen. Diese sind in Kapitel 3 genau formuliert, siehe insbeson-
dere Assumption 3.1. Bei den Nichtlinearitäten L und Λ wird davon ausgegangen, dass sie in
geeigneten Räumen Lipschitz-stetig sind. Wie diese genau aussehen, wird in Kapitel 5 präzisiert,
siehe insbesondere Assumption 5.9. In dieser Arbeit wird eine funktionalanalytische Sichtweise
eingenommen. So wird die Lösung u einer SPDE nicht als eine von (ω, t, x) ∈ Ω × [0, T ] × O
abhängige reellwertige Funktion betrachtet. Diese wird vielmehr als eine auf Ω× [0, T ] definierte
Funktion mit Werten in dem mit D′(O) bezeichneten Raum reellwertiger Distributionen aufge-
fasst.

Eine der bekanntesten Gleichungen der Form (1) ist die stochastische Wärmeleitungsgleichung
mit additivem oder multiplikativem Rauschen. Allgemeinere Gleichungen vom Typ (1) mit
endlich vielen (wkt )t∈[0,T ], k ∈ {1, . . . , N}, treten beispielsweise in der nichtlinearen (stochas-
tischen) Filtertheorie auf, vgl. [80, Section 8.1]. Werden unendlich viele Brown’sche Bewegungen
(wkt )t∈[0,T ], k ∈ N, herangezogen, so können auch Systeme, welche einem weißen Rauschen in
Raum und Zeit unterliegen, betrachtet werden, vgl. [80, Section 8.1]. Diese Gleichungen werden
in der Literatur als mathematische Modelle für Reaktionsdiffusionsgleichungen, welche einem
nicht vernachlässigbaren Rauschen unterliegen, vorgeschlagen, vgl. [32, Section 0.7] und die
darin angegebene Literatur, insbesondere [9].

Die Frage nach der Existenz und Eindeutigkeit einer Lösung der Gleichung (1) ist weitgehend
geklärt, siehe hierzu exemplarisch [75]. Allerdings kann diese eine Lösung in den überwiegenden
Fällen nicht explizit angegeben und ebenso wenig numerisch exakt berechnet werden. Umso
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wichtiger sind daher numerische Verfahren, die eine konstruktive Approximation der Lösung
ermöglichen. Grundsätzlich wird hierbei zwischen uniformen und adaptiven numerischen Ver-
fahren unterschieden. Letztere versprechen eine effizientere Approximation, deren Implemen-
tierung ist allerdings mit einem erheblich höheren Aufwand verbunden. Daher muss vorab geklärt
werden, ob die erzielbare Konvergenzrate tatsächlich höher ist als bei uniformen Alternativen.
Diese Frage lässt sich in zahlreichen Fällen nach einer rigorosen Analyse der Regularität des
zu approximierenden Objekts (hier: die Lösung der SPDE) klären. Dies gilt insbesondere für
numerischen Methoden, welche auf Wavelets basieren.
In Abschnitt 1.1 dieser Arbeit werden die Zusammenhänge zwischen Regularität und Konver-
genzordnung numerischer Methoden für den Fall auf Wavelets basierender Verfahren zur Ap-
proximation einer p-fach Lebesgue-integrierbaren Funktion u ∈ Lp(O) ausführlich erläutert. Der
Fehler wird in der Lp(O)-Norm gemessen. In diesem Setting wird, einerseits, die Konvergenzord-
nung uniformer Verfahren durch die Regularität der Zielfunktion u in der Skala W s

p (O), s > 0,
von Lp(O)-Sobolev-Räumen bestimmt: u ∈W s

p (O) impliziert, dass uniforme Verfahren die Kon-
vergenzrate s/d erreichen können. Insbesondere gilt folgende Umkehrung: Falls u /∈ W s

p (O) für
ein s > 0, so wird ein uniformes Verfahren nie eine bessere Konvergenzrate als s/d erreichen.
Andererseits, wird die Rate der sogenannten ‘best m-term’-Approximation durch die Regularität
der Zielfunktion in der speziellen Skala

Bα
τ,τ (O),

1

τ
=
α

d
+

1

p
, α > 0, (∗)

von Besov-Räumen bestimmt. Bei dieser Methode wird u für jedes m ∈ N durch diejenige Linear-
kombination von m Termen (hier: Wavelets) approximiert, die den Fehler minimiert. Daher gilt
die Rate der ‘best m-term’-Approximation als Benchmark für die Konvergenzrate konstruktiver
Approximationsverfahren.
Die obigen Resultate haben folgende Konsequenzen für die Entscheidung, welche Klasse von
Verfahren bei der Lösung von Gleichungen der Form (1) zum Einsatz kommen sollte: Stimmen
die räumliche Sobolev-Regularität und die räumliche Besov-Regularität in der Skala (∗) der
Lösung u = u(ω, t, ·) überein, so sind uniforme Verfahren aufgrund ihrer (relativen) Einfachheit
vorzuziehen. Ist dies nicht der Fall, sprich, ist die räumliche Besov-Regularität in der Skala (∗)
höher als die räumliche Sobolev-Regularität, dann besteht die berechtigte Hoffnung, dass durch
räumlich adaptiv arbeitende Verfahren eine höhere Konvergenzordnung erreicht werden kann.
Vor diesem Hintergrund wird in der vorliegenden Arbeit folgenden beiden Fragestellungen nach-
gegangen:

(T1) Räumliche Regularität. Wie hoch ist die räumliche Regularität der Lösung u =
u(ω, t, ·) der Gleichung (1) in der Skala (∗) von Besov-Räumen? Es wird ein möglichst
hohes α∗ > 0 gesucht, so dass für alle 0 < α < α∗ und 1/τ = α/d + 1/p, die Lösung
u als p-fach Bochner-integrierbarer Bα

τ,τ (O)-wertiger stochastischer Prozess aufgefasst
werden kann.

(T2) Raum-zeitliche Regularität. Angenommen die Lösung u lässt sich als Bα
τ,τ (O)-

wertiger stochastischer Prozess mit α und τ wie in (∗) auffassen. Was kann über die
Hölder-Regularität der Pfade dieses Prozesses gesagt werden?

Die Behandlung des Punktes (T1) dient der Beantwortung der Frage, ob der Einsatz räumlich
adaptiver numerischer Verfahren zur Lösung von SPDEs gerechtfertigt ist. Sollte sich heraus-
stellen, dass

u ∈ Lp(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, mit α > s̃Sob

max(u), (2)
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wobei

s̃Sob
max(u) := sup

{
s ≥ 0 : u ∈ Lp(Ω× [0, T ];W s

p (O))
}
,

so lässt sich aufgrund der obigen Erläuterungen eine klare Empfehlung für die Entwicklung
adaptiver Verfahren formulieren. Hierbei bezeichnet Lp(Ω × [0, T ];E) den Raum aller vorher-
sagbaren, p-fach Bochner-integrierbaren stochastischen Prozesse mit Werten in einem (Quasi-)
Banach-Raum (E, ‖·‖E). Die Beantwortung der zweiten Frage (T2) soll bei der Konvergenzana-
lyse entsprechender numerischer Raum-Zeit-Schemata eingesetzt werden. Eine solche Analyse
wurde erst vor kurzem in [24] begonnen und befindet sich derzeit noch in ihren Anfängen.

Nachdem die Ziele formuliert sind und die Motivation erläutert wurde, sollen im Folgenden die
erzielten Resultate zusammengefasst werden.

Das Gerüst: Eine geeignete Lp-Theorie für SPDEs

Eine direkte Anwendung abstrakter Ansätze für SPDEs, wie zum Beispiel des Halbgruppenan-
satzes für SPDEs von Da Prato und Zabczyk [32] sowie dessen Weiterentwicklung in [121,
122] oder aber des von Pardoux begründeten Variationsansatzes für SPDEs [101], liefern keine
zufriedenstellenden Antworten auf die unter (T1) und (T2) formulierten Fragen.1 Daher wird
in dieser Arbeit ein indirekter Weg eingeschlagen. Die in [75] entwickelte Lp-Theorie wird
als Grundgerüst benutzt (und erweitert). Sie garantiert die Existenz und Eindeutigkeit einer
Lösung der Gleichung (1) auf allgemeinen beschränkten Lipschitz-Gebieten O ⊂ Rd – allerdings
noch nicht in den passenden Räumen. Daher muss diese Lösung anschließend hinsichtlich der
Fragestellungen (T1) und (T2) analysiert werden.

Einbettungen gewichteter Sobolev-Räume in Besov-Räumen

Die in [75] betrachteten Lösungen linearer SPDEs sind Elemente bestimmter Banach-Räume
Hγp,θ(O, T ) mit p ∈ [2,∞) sowie γ, θ ∈ R, welche aus stochastischen Prozessen mit Werten in

gewichteten Sobolev-Räumen Hγ
p,θ−p(O) bestehen. Für γ ∈ N lässt sich Hγ

p,θ(O) als der Raum
aller reellwertigen messbaren Funktionen auf O, welche endliche Norm

u 7→

( ∑
|α|≤γ

∫
O

∣∣ρO(x)|α|Dαu(x)
∣∣pρO(x)θ−d dx

)1/p

besitzen, definieren. Hierbei bezeichnet ρO(x) die Distanz zwischen einem Punkt x ∈ O und dem
Rand ∂O des Gebietes. Für nicht ganzzahlige γ ∈ (0,∞) \ N können diese Räume mittels kom-
plexer Interpolation gewonnen werden, während für negative γ < 0 eine Charakterisierung über
Dualität möglich ist. Aus der Definition der Banach-Räume Hγp,θ(O, T ) lässt sich unmittelbar

schließen, dass diese in dem Raum Lp(Ω× [0, T ];Hγ
p,θ−p(O)) der p-fach Bochner-integrierbaren,

vorhersagbaren Hγ
p,θ−p(O)-wertigen stochastischen Prozesse stetig linear eingebettet sind. In

Formeln:

Hγp,θ(O, T ) ↪→ Lp(Ω× [0, T ];Hγ
p,θ−p(O)). (3)

(‘↪→’ bedeutet ‘stetig linear eingebettet’.) Folglich, führt der Nachweis einer Einbettung gewich-
teter Sobolev-Räume in die Besov-Räume der Skala (∗) unmittelbar zu einer Aussage über die
räumliche Besov-Regularität von SPDEs im Sinne von (T1). Die Vermutung, dass eine solche
Einbettung tatsächlich nachgewiesen werden kann, ist durch die in [38] bewiesenen Resultate
gestützt. Darin wird, unter Ausnutzung gewichteter Sobolev-Normabschätzungen nachgewiesen,

1Die Gründe dafür werden ausführlich in Abschnitt 1.2 dieser Arbeit diskutiert.
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dass die Lösungen bestimmter deterministischer elliptischer Differentialgleichungen eine hohe
Besov-Regularität in der Skala (∗) aufweisen. Dies wurde unter anderem dadurch erreicht, dass
die Wavelet-Koeffizienten der Lösung mittels gewichteter Sobolev (Halb-)Normen abgeschätzt
werden konnten. Die Äquivalenz von Besov-Normen und entsprechenden gewichteten Folgen-
normen von Wavelet-Koeffizienten lieferten schließlich die gewünschte Abschätzung der Besov-
Norm.
Durch den Einsatz ähnlicher Techniken wird in Kapitel 4 dieser Arbeit nachgewiesen, dass für
beliebige beschränkte Lipschitz-Gebiete O ⊂ Rd und Parameter p ∈ [2,∞) sowie γ, ν ∈ (0,∞)
Folgendes gilt (vgl. Theorem 4.7):

Hγ
p,d−νp(O) ↪→ Bα

τ,τ (O),
1

τ
=
α

d
+

1

p
, für alle 0 < α < min

{
γ, ν

d

d− 1

}
. (4)

Die Beweisführung für den speziellen Fall γ ∈ N verläuft ähnlich wie in dem Beweis von [38, Theo-
rem 3.2]. Zudem wird auf auf die Tatsache zurückgegriffen, dass unter den gleichen Bedingungen,

Hγ
p,d−νp(O) ↪→ W̊ γ∧ν

p (O),

wobei W̊ s
p (O) für den Abschluss in W s

p (O) des mit C∞0 (O) bezeichneten Raumes der unendlich
oft differenzierbaren Funktionen mit kompaktem Träger inO steht. Diese Aussage wird in Propo-
sition 4.1 bewiesen. Durch den Einsatz der komplexen Interpolationsmethode lässt sich die Ein-
bettung (4) auch auf allgemeine γ > 0 übertragen (Theorem 4.7).
Folgende Konsequenzen des Theorems 4.7 liegen auf der Hand: Bis zu einem gewissen Grad
lässt sich die Untersuchung der räumlichen Regularität der Lösungen von SPDEs in der Skala
(∗) auf die Analyse der räumlichen gewichteten Sobolev-Regularität derselben zurückführen.
Mit anderen Worten verbirgt sich hinter jedem Resultat zur gewichteten Sobolev-Regularität
der Lösungen von SPDEs eine Aussage über deren räumliche Besov-Regularität in der Skala (∗).

(T1) Räumliche Regularität in der Skala (∗) von Besov-Räumen

Wie bereits erwähnt, sind die in dieser Arbeit betrachteten Lösungen von SPDEs der Form (1)
Elemente der Banach-Räume Hγp,θ(O, T ) mit p ∈ [2,∞), γ, θ ∈ R. Aufgrund der Gleichheit

θ − p = d−
(

1 +
d− θ
p

)
p,

folgt aus der Kombination der Einbettungen (3) und (4) dass

Hγp,θ(O, T ) ↪→ Lp(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, für alle 0 < α < γ ∧

(
1 +

d− θ
p

)
d

d− 1
. (5)

In Kapitel 5 wird diese Einbettung benutzt, um räumliche Regularität in der Skala (∗) für
Lösungen linearer und semilinearer SPDEs auf allgemeinen beschränkten Lipschitz-Gebieten
O ⊂ Rd nachzuweisen.

Lineare Gleichungen

Die in [75] entwickelte Lp-Theorie garantiert die Existenz und Eindeutigkeit einer Lösung u ∈
Hγp,θ(O, T ) für eine große Klasse linearer Gleichungen der From (1) mit L = 0 und Λ = 0. Die
Anwendung der Einbettung (5) zeigt, dass

u ∈ Lp(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

d
+

1

p
, für alle 0 < α < γ ∧

(
1 +

d− θ
p

)
d

d− 1
, (6)
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siehe hierzu Theorem 5.2. Damit wurde eine Antwort auf die unter (T1) formulierte Frage für
den Fall linearer Gleichungen gefunden: Die Lösung u ∈ Hγp,θ(O, T ) lässt sich als p-fach Bochner-
integrierbarer Bα

τ,τ (O)-wertiger stochastischer Prozess mit 1/τ = α/d+ 1/p auffassen, und zwar
für alle 0 < α < α∗, wobei

α∗ := min

{
γ,

(
1 +

d− θ
p

)
d

d− 1

}
> 0

gewählt werden kann. Die genauen Bedingungen an den Gewichtsparameter θ ∈ R, unter denen
(6) erfüllt ist, finden sich in dem Hauptresultat zur räumlichen Regularität der Lösung linearer
SPDEs, Theorem 5.2. Beispielsweise gilt die Aussage (6) für p = 2, γ = 2 und θ = d = 2, so
dass folglich

u ∈ L2(Ω× [0, T ];Bα
τ,τ (O)),

1

τ
=
α

2
+

1

2
, für alle 0 < α < 2

gilt. In Verbindung mit der in [92] etablierten Schranke für die räumliche Sobolev-Regularität der
Lösungen von SPDEs auf nicht-konvexen polygonalen Gebieten zeigen die erzielten Resultate,
dass, in der Tat die Lösung von SPDEs das durch (2) beschriebene Verhalten aufweisen kann.
Damit haben wir einen klaren Hinweis dafür, dass räumlich adaptiv arbeitende Verfahren für die
Lösung von SPDEs entwickelt werden sollten. Zahlreiche Beispiele, die diese These untermauern
sollen, sowie weiterführende Bemerkungen finden sich in Abschnitt 5.1.

Semilineare Gleichungen

Zahlreiche Phänomene aus der Physik oder aus der Chemie verlangen nach einer Modellierung
durch nichtlineare Gleichungen. Es ergibt sich daher die Frage, ob sich die weiter oben erziel-
ten Resultate zur Besov-Regularität der Lösungen linearer SPDEs auf nichtlineare Gleichungen
übertragen lassen. Als einen ersten Schritt in diese Richtung wird in Abschnitt 5.2 eine Klasse
semilinearer SPDEs der Form (1) mit Lipschitz-stetigen Nichtlinearitäten L und Λ daraufhin
untersucht.
Wie zuvor soll die Einbettung (5) für den Nachweis räumlicher Besov-Regularität in der Skala (∗)
herangezogen werden. Da allerdings für semilineare Gleichungen keine entsprechende Lp-Theorie
existiert, muss zunächst die Existenz einer Lösung u ∈ Hγp,θ(O, T ) unter geeigneten Bedingungen
nachgewiesen werden. Dies geschieht in Theorem 5.13. Die Nichtlinearitäten L und Λ genügen
bestimmten Lipschitz-Bedingungen (siehe Assumption 5.9), so dass (1) als ‘gestörte’ lineare
Gleichung interpretiert werden kann. Die Anwendung geeigneter Fixpunkt-Argumente, siehe
Lemma 5.16, liefert dann den Beweis für die Existenz einer Lösung u ∈ Hγp,θ(O, T ). Diese erfüllt
nach (5) zwangsläufig auch (6), so dass für die betrachtete Klasse semilinearer Gleichungen eine
Regularitätsaussage in der Skala (∗) bewiesen werden kann, siehe hierzu Theorem 5.15.

(T2) Raum-zeitliche Regularität

Nachdem nachgewiesen werden konnte, dass die Lösung u ∈ Hγp,θ(O, T ) linearer und nichtlinearer
SPDEs der Form (1) für 0 < α < α∗ und 1/τ = α/d + 1/p als Bα

τ,τ (O)-wertiger stochastischer
Prozess aufgefasst werden kann, wird die zweite große Fragestellung (T2) dieser Arbeit unter-
sucht: Die Hölder-Regularität der Pfade des Lösungsprozesses. Dies geschieht in Kapitel 6.
Die Analyse der Hölder-Regularität der Pfade der in den Banach-Räumen Hγp,θ(O, T ) enthaltenen
stochastischen Prozesse ist bereits Teil der in [75] entwickelten Lp-Theorie. Ein Element u ∈
Hγp,θ(O, T ) wird darin als stochastischer Prozess mit Werten in gewichteten Sobolev-Räumen

aufgefasst. Insbesondere wird nachgewiesen, dass für 2/p < β̃ < β ≤ 1,

‖u‖Cβ̃/2−1/p([0,T ];Hγ−β
p,θ−(1−β)p

(O))
<∞ P-fast sicher. (7)
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Hierbei wird, wie üblich, für einen beliebigen (Quasi-)Banach-Raum (E, ‖·‖E), der Raum der
κ-Hölder-stetigen E-wertigen Funktionen auf [0, T ] mit (Cκ([0, T ];E), ‖·‖Cκ([0,T ];E)) bezeichnet.
Auf den ersten Blick sieht es so aus, als ließe sich daraus unmittelbar eine Aussage über Hölder-
Regularität der Pfade der Lösungen u ∈ Hγp,θ(O, T ), aufgefasst als stochastische Prozesse mit
Werten in der Skala (∗) von Besov-Räumen, herleiten. Eine Anwendung der Einbettung (4)
würde genügen. Allerdings sind die sich daraus ergebenden Resultate nicht zufriedenstellend.
Dies liegt vorwiegend an der Kombination der folgenden beiden Umstände: Der Hölder-Exponent
κ = β̃/2− 1/p hängt von dem Parameter p, der gleichzeitig die Integrabilität in Raumrichtung
misst, ab. Gleichzeitig müssen bestimmte Annahmen über den Gewichtsparameter θ ∈ R getrof-
fen werden, um überhaupt die Existenz einer Lösung u ∈ Hγp,θ(O) zu erhalten.
Um trotz dieser Hürden geeignete Resultate zu erzielen, bedienen wir uns folgender Strategie.
Zunächst wird die Hölder-Regularität der Pfade der Klasse Hγ,qp,θ(O, T ) stochastischer Prozesse

untersucht. Die Elemente dieser Banach-Räume sind q-fach Bochner-integrierbare Hγ
p,θ−p(O)-

wertige stochastische Prozesse, welche bestimmten Bedingungen genügen. Im Grunde genom-
men sind es Erweiterungen der Klassen Hγp,θ(O, T ), wobei jetzt der Parameter q, der die Inte-
grabilität nach der Zeit (und nach ω ∈ Ω) misst, sich ausdrücklich von dem Parameter p, der
die Integrabilität in Raumrichtung angibt, unterscheiden darf. Es lässt sich nachweisen, dass für
u ∈ Hγ,qp,θ(O, T ) mit 2 ≤ p ≤ q <∞, γ ∈ N und 2/q < β̃ < β ≤ 1, gilt:

‖u‖Cβ̃/2−1/q([0,T ];Hγ−β
p,θ−(1−β)p

(O))
<∞ P-fast sicher,

siehe Theorem 6.1. Insbesondere, hängt jetzt der Hölder-Exponent nicht mehr vom räumlichen
Integrabilitätsparameter ab. Daher ergibt die Anwendung der Einbettung (7) brauchbare Re-
sultate zur Hölder-Besov-Regularität stochastischer Prozesse aus Hγ,qp,θ(O, T ) – auch für den Fall,
dass der Gewichtsparameter θ ∈ R den oben erwähnten Einschränkungen genügen muss.
Diese Resultate lassen sich nur dann für die Beantwortung der unter (T2) formulierten Frage
heranziehen, wenn nachgewiesen werden kann, dass die Lösungen zu den SPDEs der Form (1)
in der Klasse Hγ,qp,θ(O, T ) mit q 6= p enthalten sind. Das bedeutet, dass die in [75] entwickelte
Lp-Theorie soweit wie möglich zu einer Lq(Lp)-Theorie ausgebaut werden muss. In dieser Ar-
beit wird eine erste Lq(Lp)-Theorie für die stochastische Wärmeleitungsgleichung mit additivem
Rauschen auf allgemeinen beschränkten Lipschitz-Gebieten entwickelt, siehe hierzu insbeson-
dere Theorem 6.11. Die Beweise basieren auf einer Kombination von Resultaten aus dem Halb-
gruppenansatz mit Techniken aus dem von N.V. Krylov begründeten analytischen Ansatz für
SPDEs. Aus dem Halbgruppenansatz kann die Existenz einer Lösung, die allerdings geringe
räumliche gewichtete Sobolev-Regularität aufweist, gezeigt werden, siehe Theorem 6.12. In-
dem Techniken aus dem analytischen Ansatz benutzen werden, kann anschließend nachgewiesen
werden, dass diese Regularität anwächst, sobald die Koeffizienten der Gleichung eine höhere
Regularität haben, siehe Theorem 6.7. Um diese beiden Ansätze zusammenbringen zu können,
muss zunächst nachgewiesen werden, dass die jeweiligen Lösungsbegriffe übereinstimmen. Dazu
werden im Laufe der Arbeit einzelne Hilfsresultate bewiesen, siehe etwa Theorem 2.54 sowie
Proposition 3.6.
Die in Kapitel 6 durchgeführte Analyse führt schließlich zu einer zufriedenstellenden Aussage
über die Hölder Regularität der Pfade der Lösung der Wärmeleitungsgleichung u ∈ Hγ,qp,d(O, T ),
aufgefasst als stochastischer Prozess mit Werten in den Besov-Räumen aus der Skala (∗), siehe
Theorem 6.17. Insbesondere lässt sich unter geeigneten Bedingungen an die Komponenten der
Gleichung nachweisen, dass für alle Parameter, die der Bedingung

2

q
< β̃ < 1,

1

τ
=
α

d
+

1

p
, und 0 < α <

(
1− β̃

) d

d− 1

genügen, gilt:
‖u‖Cβ̃/2−1/q([0,T ];Bατ,τ (O))

<∞ P-fast sicher.
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Notation

We collect here frequently used notations from this thesis. The number in the right column refers
to the page where the symbol is introduced or where it appears first.

General mathematics

N set of positive integers {1, 2, . . .}
N0 set of non-negative integers {0, 1, 2, . . .}
Z set of integers
R set of real numbers
R+ set of positive real numbers (0,∞)
C set of complex numbers
d ∈ N, d ≥ 2 dimension
Rd d-dimensional Euclidian space {(x1, . . . , xd) : x1, . . . , xd ∈ R}
Rd+ half space in Rd, {(x1, . . . , xd) ∈ Rd : x1 > 0}
Br(x) open ball with radius r > 0 centred at x, {y ∈ Rd : |y − x| < r}
A◦ interior of a set A ⊆ Rd
AB set of all mappings from a set B to a set A
|.| absolute value, Euclidian norm on Rd, or cardinality of a finite set;

in Example 5.6 also used for the scale level (see p. 91)
Σσ the sector {z ∈ C \ {0} : |arg (z)| < σ} ⊆ C 52
δj,k Kronecker symbol
� norm equivalence 22
' isomorphic 22
∼= isometrically isomorphic 22
Id identity operator
1A indicator or characteristic function
u
∣∣
G

restriction of u to G

↪→ continuously linearly embedded 22
T > 0 time horizon 20

A
‖·‖B , A closure of A ⊆ B in (B, ‖·‖B)

[E1, E2]η complex interpolation space of exponent η ∈ (0, 1) 22, 77
E1 ∩ E2 intersection space for a compatible couple (E1, E2) 22
E1 × E2 cartesian product 22

∆u
∑d

i=1 uxixi , whenever it makes sense
∃ existential quantifier
A ⊆ B A is a subset of B
A ⊂ B A is a proper (or strict) subset of B, i.e., A ⊂ B and A 6= B
A ( B same meaning as A ⊂ B, emphasizing that A 6= B
z̄ complex conjugate of a complex number z ∈ C
∧, a ∧ b min{a, b}
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Operators

L(E1, E2) vector space of all linear and bounded operators from E1 to E2 15
L(E) L(E,E) 15
Lf (H,E) vector space of finite rank operators from H to E 25
L1(H,U) vector space of nuclear operators from H to U 16
L2(H,U) vector space of Hilbert-Schmidt operators from H to U 16, 27
E∗ dual space of E, i.e., E∗ := L(E,R) 15
〈x∗, x〉E∗×E dual pairing of x∗ ∈ E∗ and x ∈ E 16
〈x∗, x〉 dual pairing of x∗ ∈ E∗ and x ∈ E 16
Γ∞(H,E) vector space of γ-summing operators from H to E 25
‖·‖Γ∞p (H,E), p ≥ 1 norm on Γ∞(H,E), equivalent to ‖·‖Γ∞(H,E) 25

Γ(H,E) vector space of γ-radonifying operators 26
‖·‖Γp(H,E), p ≥ 1 norm on Γ(H,E), equivalent to ‖·‖Γ(H,E) 26

h⊗ x rank one operator 〈h, ·〉Hx ∈ L(H,E) 25
ran(S) range of an operator S : E1 → E2, {Sx : x ∈ E1}
D(A) domain of an (unbounded) operator A 51
ρ(A) resolvent set of an operator A 51
σ(A) spectrum of an operator A 51
∆D
p,w weak Dirichlet-Laplacian 123

Domains

G arbitrary domain, i.e., an open and connected subset of Rd 16
∂G boundary of a domain G ⊆ Rd 16
ρ(x), ρG(x) distance of a point x ∈ G to the boundary ∂G 16
ψ infinitely differentiable function on G, equivalent to ρG 37
O bounded Lipschitz domain in Rd 16

Measure theory and probability

(M,A, µ) σ-finite measure space 17
Lp(M,A, µ;E) space of µ-equivalence classes of p-integrable strongly A-

measurable functions from M to E, p ∈ (0,∞)
17

L∞(M,A, µ;E) space of µ-equivalence classes of strongly A-measurable functions
with a.e. finite norm

17

Lp(M;E) shorthand for Lp(M,A, µ;E), p ∈ (0,∞] 17
Lp(M) shorthand for Lp(M,A, µ;R), p ∈ (0,∞] 17
Lp Lp(Rd,B(Rd), λd;R) 18
B(E) Borel σ-field on a quasi-normed space E, i.e., the σ-field generated

by the standard topology on E
17

P(I) power set of I 18
δi Dirac measure 18
`p(I) Lp(I,P(I),

∑
i∈I δi;R) 18

〈·, ·〉`2(I) scalar product on `2(I) 18

|·|`2(I) norm
√
〈·, ·〉`2(I) on `2(I) 18

`2 `2(N) 18
λd Lebesgue measure on (Rd,B(Rd)) and restrictions on (A,B(A)) for

A ∈ B(Rd)
18

λ λ1
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gλd measure with density g with respect to λd 18
dx shorthand for λd(dx) 18
〈f, g〉

∫
G fg dx for fg ∈ L1(G,B(G), λd;R) 18

(Ω,F ,P) complete probability space 18
P complete probability measure on (Ω,F) 18
E[·], E expectation 18
(Ft)t∈[0,T ] normal filtration on (Ω,F ,P) 20

LF
p(Ω; . . .) closure of the finite rank (Ft)t∈[0,T ]-adapted step processes in

Lp(Ω; Γ(L2([0, T ];H), E))
31

{(wkt )t∈[0,T ]}k∈N sequence of stochastically independent real-valued standard Brow-
nian motions with respect to a normal filtration (Ft)t∈[0,T ]

20

WH H-cylindrical Brownian motion 27∫ T
0 Φ(t) dWH(t) stochastic integral of Φ with respect to WH 28–31

ΩT Ω× [0, T ] 20
PT predictable σ-field on ΩT 20
PT product measure P× λ1 on (ΩT ,F ⊗ B([0, T ])) and on (ΩT ,PT ) 20
a.e., µ-a.e. almost everywhere
a.s., P-a.s. almost surely

Distributions and derivatives

C∞0 (G) space of infinitely differentiable real-valued functions with compact
support in the domain G

20

D′(G) space of real-valued distributions 21
S(Rd) Schwartz space of rapidly decreasing real-valued functions on Rd 21
S ′(Rd) space of real-valued tempered distributions 21
S ′(Rd;C) space of complex-valued tempered distributions 21
F,F−1 Fourier transform on S ′(Rd;C) and its inverse 21
(u, ϕ) application of u ∈ D′(G) (u ∈ S ′(Rd)) to ϕ ∈ C∞0 (G) (ϕ ∈ S(Rd));

see also (2.24) and (2.38) for generalizations
21

D(α)u, α ∈ Nd0 classical derivative 21
Dαu, α ∈ Nd0 generalized/weak/distributional derivative 21
Dmu, m ∈ N generalized/weak/distributional derivative of order m and the vec-

tor of all generalized/weak/distributional derivatives of order m
21

ux, uxx, uxi , uxixj generalized/weak/distributional derivatives of first and second or-
der

21

supp u support of a distribution u ∈ D′(G)
H∞(Σσ) set of all bounded analytic functions on the sector Σσ 52
H∞0 (Σσ) subset H∞(Σσ) consisting of all functions fulfilling (2.51) 52

Function spaces

(∗) non-linear approximation scale 2
C(G) space of real-valued continuous functions on a domain G 20
Cr(G), r ∈ N space of real-valued r-times continuously differentiable functions 20

C(G) space of real-valued continuous functions on G 21

Cr(G), r ∈ N space of real-valued r-times continuously differentiable functions
with derivatives which can be extended to G

21

Cκ([0, T ];E) space of Hölder continuous functions taking values in the quasi-
Banach space E (κ ∈ (0, 1))

19
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W s
p (G) Lp-Sobolev space of order s 31

W̊ s
p (G) closure of C∞0 (G) in W s

p (G) 32

Hs
p , Hs

p(Rd) space of Bessel potentials 33

Hs
p(Rd; `2) space of Bessel potentials for `2-valued functions 35

Hs
p(`2) shorthand for Hs

p(Rd; `2) 35

Hγ
p,θ(G) weighted Sobolev space of order γ with summability parameter p

and weight parameter θ
37

Hγ
p,θ(G; `2) weighted Sobolev space of `2-valued functions 42

Lp,θ(G) H0
p,θ(G) 37

Bs
p,q(G) Besov space 46

B̊s
p,q(G) closure of C∞0 (G) in Bs

p,q(G) 69

F sp,q(G) Triebel-Lizorkin space 50

ωn(t, u,G)p n-th order Lp-modulus of smoothness 47
Kr(t, u,G)p Peetre K-functional 82
∆n
hu, ∆n

h[u] n-th difference of a function u with step h ∈ Rd 47

Spaces of stochastic processes and random variables

Lp(ΩT ;E) Lp(ΩT ,PT ,PT ;E), p ∈ (0,∞] 20
Hγ,q
p,θ(G,T ) Lq(ΩT ,PT ,PT ;Hγ

p,θ(G)) 57

Hγ,q
p,θ(G,T ; `2) Lq(ΩT ,PT ,PT ;Hγ

p,θ(G; `2)) 57

Uγ,qp,θ (G) Lq(Ω,F0,P;H
γ−2/q
p,θ−p−2p/q(G)) 57

Hγ,qp,θ(G,T ) see Definition 3.3 57

H γ,q
p (T ) see Remark 3.4 58
Hγ,qp (T ) see Remark 3.4 58
Du, Su deterministic and stochastic part of an element u ∈ Hγ,qp,θ(G,T ),

see Definition 3.3
57

Hγ
p,θ(G,T ) Hγ,p

p,θ (G,T )

Hγ
p,θ(G,T ; `2) Hγ,p

p,θ (G,T ; `2)

Uγp,θ(G) Uγ,pp,θ (G)

Hγp,θ(G,T ) Hγ,pp,θ (G,T )

Wavelets

φ scaling function of tensor product type on Rd 70
ψi multivariate mother wavelets corresponding to φ (i = 1, . . . , 2d−1) 70
ψi,j,k, φk dyadic shifts and dilations of the scaling function and the corre-

sponding wavelets ((j, k) ∈ N0 × Zd)
70

ψ̃i, ψ̃i,j,k, φ̃k elements of the corresponding dual Riesz basis 70
ψi,j,k,p Lp-normed wavelets 70

ψ̃i,j,k,p′ Lp′-normed dual wavelet, p′ = p/(p− 1) 70
{ψλ : λ ∈ ∇} wavelet Riesz basis of L2(O) 3
{ψλ : λ ∈ ∇j} wavelet basis at scale level j + 1 ≥ j0 2
{φλ : λ ∈ ∆j} scaling functions at level j ≥ j0 2
{ψλ : λ ∈ ∇j0−1} scaling functions at level j0 2
(Sj)j≥j0 multiresolution analysis 2

Σ̃m space of m-term approximation in Lp(O) 4

Σ̃m,W r
p (O) space of m-term approximation in W r

p (O) 93
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Semi-(Quasi-)Norms

[·]Wm
p (G) 32

|·|Wm
p (G), m ∈ N 74

|·|W s
p (G), s /∈ N 32

|·|Hk
p,θ(G) 38

|·|Bsp,q(G) 47

[u]Cκ([0,T ];E), ‖u‖C([0,T ];E), ‖u‖Cκ([0,T ];E) 19

[·](α)
m , |·|(α)

m , t+ 56
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