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Summary

The learning of predictive models that guarantee a monotonic relationship between
the output (response) and input (predictor) variables has received increasing atten-
tion in machine learning in recent years. While being less problematic for linear
models, the difficulty of ensuring monotonicity increases with the flexibility of the
underlying model class.

This thesis advocates the so-called Choquet integral as a mathematical tool for
learning monotone nonlinear models for classification. While being widely used
as a flexible aggregation function in fields such as multiple criteria decision mak-
ing, the Choquet integral is much less known in machine learning so far. Apart
from combining monotonicity and flexibility in a mathematically sound and elegant
manner, the Choquet integral has additional features making it attractive from a ma-
chine learning point of view. For example, it offers measures for quantifying the
importance of individual predictor variables and the interaction between groups of
variables, thereby supporting the interpretability of a model.

Concrete methods for learning with the Choquet integral are developed on the
basis of two different approaches, namely maximum likelihood estimation and struc-
tural risk minimization. While the first approach leads to a generalization of logis-
tic regression, the second one is put into practice by means of support vector ma-
chines. In both cases, the learning problem essentially comes down to identifying
the fuzzy measure on which the Choquet integral is defined. Since this measure
has a large number of degrees of freedom, learning the Choquet integral is critical
not only from a complexity point of view but also with regard to proper generaliza-
tion. Therefore, both methods are analyzed theoretically, and different approaches
to regularization and complexity reduction are proposed.

Experimental results conducted on a set of suitable benchmark data are quite
promising and suggest that the combination of monotonicity and flexibility offered
by the Choquet integral facilitates strong performance in practical applications.
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Zusammenfassung

In der jüngeren Vergangenheit hat das Lernen von Vorhersagemodellen, die eine
monotone Beziehung zwischen Ein- und Ausgabevariablen garantieren, wachsende
Aufmerksamkeit im Bereich des maschinellen Lernens erlangt. Besonders für flex-
ible nichtlineare Modelle stellt die Gewährleistung der Monotonie eine große Her-
ausforderung für die Umsetzung dar.

Die vorgelegte Arbeit nutzt das Choquet Integral als mathematische Grund-
lage für die Entwicklung neuer Modelle für nichtlineare Klassifikationsaufgaben.
Neben den bekannten Einsatzgebieten des Choquet-Integrals als flexible Aggre-
gationsfunktion in multi-kriteriellen Entscheidungsverfahren, findet der Formalis-
mus damit Eingang als wichtiges Werkzeug für Modelle des maschinellen Ler-
nens. Neben dem Vorteil, Monotonie und Flexibilität auf elegante Weise mathe-
matisch vereinbar zu machen, bietet das Choquet-Integral Möglichkeiten zur Quan-
tifizierung von Wechselwirkungen zwischen Gruppen von Attributen der Eingabe-
daten, wodurch interpretierbare Modelle gewonnen werden können.

In der Arbeit werden konkrete Methoden für das Lernen mit dem Choquet In-
tegral entwickelt, welche zwei unterschiedliche Ansätze nutzen, die Maximum-
Likelihood-Schätzung und die strukturelle Risikominimierung. Während der er-
ste Ansatz zu einer Verallgemeinerung der logistischen Regression führt, wird der
zweite mit Hilfe von Support-Vektor-Maschinen realisiert. In beiden Fällen wird
das Lernproblem im Wesentlichen auf die Parameter-Identifikation von Fuzzy-Maßen
für das Choquet Integral zurückgeführt. Die exponentielle Anzahl von Freiheits-
graden zur Modellierung aller Attribut-Teilmengen stellt dabei besondere Heraus-
forderungen im Hinblick auf Laufzeitkomplexität und Generalisierungsleistung. Vor
deren Hintergrund werden die beiden Ansätze praktisch bewertet und auch theo-
retisch analysiert. Zudem werden auch geeignete Verfahren zur Komplexitätsre-
duktion und Modellregularisierung vorgeschlagen und untersucht.

Die experimentellen Ergebnisse sind auch für anspruchsvolle Referenzprobleme
im Vergleich mit aktuellen Verfahren sehr gut und heben die Nützlichkeit der Kom-
bination aus Monotonie und Flexibilität des Choquet Integrals in verschiedenen An-
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sätzen des maschinellen Lernens hervor.
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∇F =
( ∂F
∂x1
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There is a real danger that computers will develop intelligence and take over.
We urgently need to develop direct connections to the brain so that computers can
add to human intelligence rather than be in opposition. (Stephen Hawking)
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1
Introduction

Machine learning as a sub field of AI attempts to generalize data by recognizing
proper structures, patterns and relationships. Data plays the role of an experience or
set of experiences and the ultimate goal is to design machines which are able to learn
from these experiences. The machines are adapted by experiences (given data) and
later on can improve themselves by adapting more experiences. In general, the task
in machine learning can be characterized by unsupervised and supervised learning.

In supervised learning the task is to make a generalization based on some obser-
vations and their responses; the response of an observation can be seen as output of
an unknown function given the observation. Contrary to supervised learning, in un-
supervised learning the goal is to generalize the observations without any response.
In fact, what distinguishes unsupervised learning from supervised learning, is the
type of data. In unsupervised learning the observations do not imply any informa-
tion about response, whereas in supervised learning the responses are additionally
given. More concretely, the core idea in supervised learning is to generalize the
dependency between observations and their responses in terms of a structure, a pat-
tern, a relationship or a function.

As will be clear later on, types of data (experiences), prior knowledge and the
learning algorithm have strong influences on such generalizations. Therefore the
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interaction of selecting a learning algorithm concerning the type of data and prior
knowledge is a crucial point and can improve the precision of generalization. In the
next section, the basic idea of prior knowledge is presented.

1.1 Prior Knowledge

In order to generalize data in a more accurate way, the machine can use some
promising knowledge. This knowledge indicates some trustworthy properties or re-
lationships with respect to observations. According to the existence of prior knowl-
edge, the space of candidate solutions is restricted to a sub space, in which such
dependencies or relationships are always valid. Considering the existence of prior
knowledge, there is a chance to improve inference.

For instance assume there is a generator which generates randomly numbers be-
tween [0, 1] using a Gaussian distribution with mean (µ) equal to 0.5 and variance
(σ) equal to 0.01. In this case, taking this distribution into account, the numbers
close to 0 or 1 are barely expected. Such information can be seen as prior knowl-
edge.

1.2 Monotonicity as a Specific Type of Prior Knowl-
edge

In this section, a specific kind of dependency between observations and their re-
sponses is discussed. This dependency in many applications is indeed desirable,
and therefore has attracted considerable attention in general and in particular in ma-
chine learning applications.
Before going into details, the concept of pareto dominance should be introduced:

Suppose x = (x1, . . . , xm) and x∗ = (x∗1, . . . , x
∗
m) are two elements in Rm. The

element x∗ is said dominates element x, in terms of pareto (x � x∗), if

xi ≤ x∗i , ∀i 1 ≤ i ≤ m

In order to emphasize this � is a Pareto dominance relation, in this thesis, �P is
used.

Now assume function f : X1 × . . .×Xm → R, where X1 × . . .×Xm ⊂ Rm, is
given. The function f(·, . . . , ·) is said to be a monotone function, if
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∀x,x∗ ∈ X1 × . . .×Xm s.t. x � x∗ then f(x) ≤ f(x∗)

This relationship between the domain of f(·, . . . , ·) and range of f(·, . . . , ·) is called
monotonicity dependency. In a general case, supposeD =

{
(xi, yi)

}n
i=1
⊂ Rm×R

be given data, where
{
xi
}n
i=1

are n observations and
{
yi
}n
i=1

are their responses.
The data D is said to be monotone, if

∀xi, xj ∈ D s.t. xi � xj then yi ≤ yj

In general, the response set can be considered as an ordinal set. This issue will be
discussed in more details in Chapter 4.

Since the monotonicity dependency demonstrates a kind of relationship. From a
supervised learning point of view, monotonicity is therefore counted as prior knowl-
edge.

The following are some examples related to real applications:

1.2.1 Medicine

Suppose an expert wants to model the dependency between a heart attack and hu-
man factors. It is obvious that the heart attack depends on several factors. For
instance, a heart attack depends on high blood pressure, tobacco consumption, age,
weight, etc. In this case, there is obviously a direct dependency between these fac-
tors and the probability of a heart attack occurring. For instance in the case of the
age factor; the higher one’s age is, the higher the probability of the heart attack
occurring. Such information can be considered as a kind of background knowledge.

1.2.2 Buying a Car

From a user’s point of view, a car can be characterized by several factors. For
instance, the user is usually interested in the engine power, capacity of the car,
the size of car boot, the safety level of car and the maintenance costs. In addition,
suppose the price of the car is given. Obviously there is a direct relationship between
the mentioned factors and the price of the car. The better the factors are, the higher
the price. This dependency indeed is the monotonicity dependency.

5



1.3 Monotonicity and Multiple Criteria Decision Mak-
ing

As mentioned earlier, monotonicity is an enticing property and in many applications
is required. From this perspective, one natural question is: what kind of dependency
should be taken into consideration to satisfy this expectation, namely, which frame-
work can assure monotonicity dependency. To this end, multiple criteria decision
making (MCDM) provides a family of monotone functions, i.e., each of which can
assure monotonicity property. Hence from a monotonicity point of view, the gener-
alization underlying such functions fulfills our expectations. From a multiple crite-
ria decision making point of view, those functions have a specific name; aggregation
function. A comprehensive review about MCDM is given in Chapter 3.

1.3.1 The Choquet Integral

As mentioned in previous section, the MCDM serves a family of monotone func-
tions. Seen from this perspective, each can satisfy monotonicity properties. In this
regard, it is worth mentioning that a precise generalization is always desirable, how-
ever what makes the generalization more understandable is the ability to interpret
the generalization in a promising way.
Among the monotone functions in this family, the so called Choquet integral satis-
fies these expectations; it is a monotone function and it is interpretable as well. In
addition, the Choquet integral is a non-linear function. The non-linearity yields the
ability to capture non-linear dependency. We discuss this issue in greater details in
Chapters 3 and 4.

1.4 The Choquet Integral and its Contribution to Ma-
chine Learning

The mentioned properties make the Choquet integral more desirable to exploit it in
the machine learning field; specifically for monotone learning. So far the Choquet
integral has been taken into account as a powerful aggregation function in decision
theory and multiple criteria decision making [42, 44, 54]. It has been used in many
applications, e.g., selecting an alternative or ordering several alternatives. However,
it has not been widely used in the machine learning field for arbitrary data. In
general, the proper parameters for the Choquet integral are given by experts in the
related fields. Seen from this view, there are at least two disadvantages:
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• For each data field, an expert is required, who can at least guess the proper
parameters. Especially if the data is unknown, it is impossible even to have
an approximate solution.

• For the large number of observations, it is almost impossible to find the pa-
rameters even approximately.

Already mentioned, the Choquet integral yields several promising properties,
which can make the generalization more understandable. Due to its non-linearity,
there is also a chance to model more complicated dependencies. As can be seen,
there is certainly a need to utilize the Choquet integral for arbitrary data. To this end,
the core idea of this thesis is to embed the Choquet integral in a machine learning
framework. From a machine learning point of view, this thesis embeds the Choquet
integral into two different frameworks, namely, the probabilistic and deterministic
frameworks. For the probabilistic framework, the Maximum Likelihood Approach,
and for deterministic framework Kernel Based Learning and Support Vector Ma-
chines, are taken into account.
For each framework, the precise algorithms and the core motivations are given. Also
the advantages and disadvantages of each of them are described in a comprehensive
manner.
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2
Background in Machine Learning

2.1 Introduction

As already mentioned, monotonicity describes a kind of dependency between ob-
servations and their responses. Thus, it is related to a supervised learning problem.
From this perspective, this chapter begins by exploring some preliminaries in su-
pervised learning. In this regard, the basic ideas and definitions of the learning
problem, loss functions and example of classic learning problems are presented. In
Section 2.3, two different approaches for induction, namely the maximum likelihood
principle and structural risk minimization are introduced. In Section 2.4, the linear
logistic regression and support vector machines, which are derived from inductive
principles, are introduced. Finally, the idea of monotone classifiers is presented.

2.2 Supervised Learning

In supervised machine learning, the final goal is to induce a model from the obser-
vations and their responses. The observations used for induction are called training
data. They are defined based on some attributes, e.g., weight, height or consump-
tion. More formally an observation/instance x has the following form:
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x = (x1, . . . , xm) ∈ X = X1 × . . .×Xm ,

where Xi is domain of attributes i-th.

Because of consistency, a well-known assumption is taken to the account called
i.i.d (independent and identically distributed). This assumption assures that the data
points are drawn independent and identically.

Before continuing the topic the following definition should be introduced:
Assume the joint probability P(·, ·) on X × Y is given, where X is domain of
attributes and Y is domain of responses. Then given an observation x, the response
y, for joint probability distribution P(x, y) is called ground truth.

2.2.1 Basic Setting

In order to make a proper generalization from given training data, all candidates for
generalization are taken into account. The set of all candidates for generalization is
called the hypothesis space. The hypothesis space is defined formally as follows:

H =
{
h
∣∣h : X → Y

}
Here X is domain of attributes and Y is domain of responses. Also every function
h(·) in the hypothesis space is called a hypothesis. Additionally, if the set H is
restricted to a specific family of hypothesis F , it is called the model class under F
and is defined as follows:

HF =
{
h ∈ F

∣∣h : X → Y
}

From a probabilistic point of view, the risk of the hypothesis h, namely, R(h) is
defined in terms of its expected loss:

R(h) =

ˆ
X×Y

l(h(x), y)dPXY (x, y) , (2.1)

where l(·, ·) is a loss function penalizing incorrect predictions. The final goal is
to find a hypothesis which minimizes the risk function. In the following sections
related to each learning problem, the corresponding loss function is introduced.

10



2.2.2 Loss Functions

From a machine learning point of view, given the training data, the goal is to induce
a model which is in agreement with ground truth as much as possible. However,
quantifying such agreement is defined in a completely different way. In fact, from a
machine learning point of view, we are interested indeed in disagreement, namely,
how many mistakes the prediction has. Such determinations are called loss func-
tions and depends on the problem, the algorithm tries to minimize through the ex-
pectation of loss functions (risk function). Taking this fact into account, respect to
each problem, the risk function can demonstrate the performance of the model and
in essence is defined related to learning-problem. The algorithm in accordance with
the problem minimizes such risk function.

Since the number of training data is restricted, the whole learning-space cannot
be covered. What is expected is to approximate the loss function. In this regard, two
types of loss functions can be considered from the scholarly literature as follows:

• Empirical Risk Minimization (ERM): In the case of supervised learning,
the empirical loss function refers to the case, when the joint probability dis-
tribution of the inputs and outputs is unknown. However, there are some ob-
servations (training examples) through which the error approximatively com-
puted.

• Theoretical Risk Minimization (TRM): Knowing the joint probability dis-
tribution with respect to inputs and outputs, the exact risk (error) can be com-
puted. This error is called theoretical loss function.

Note that usually it is not possible to find the exact joint probability distribution.
Hence, it is common the empirical risk minimization to be taken into account.

0/1 Loss

In the binary class classification problem, the most commonly used loss is the sim-
ple 0/1 loss given by:

l0/1(y, ŷ) =

 0 if ŷ = y

1 if ŷ 6= y
, (2.2)
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in which y is ground truth and ŷ is predicted label. In order to have normalized
version, the following form is usually used:

l∗0/1 =
1

n

n∑
i=1

l(yi, ŷi) .

Therefore l∗0/1 ranges in [0, 1].

L1 Loss

The L1 loss or say Manhattan distance is defined as follows:

L1(y, ŷ) = |y − ŷ| (2.3)

in which y is ground truth and ŷ is predicted label. Moreover for y, ŷ the assumption
is y, ŷ ∈ {1, . . . , K}. L1 loss can be used for the ordinal classification problem.
The normalized version of the L1 loss usually is assumed in the following:

L∗1 =
1

n

n∑
i=1

|yi − ŷi| .

Hence L∗1 ranges in [0, K − 1].

2.2.3 Binary Classification

From a supervised learning point of view, binary classification is a kind of rudi-
mentary learning problem. In this case, every instance is labeled by a label from
{−1,+1}. So now assume the training data is given as follows:

D =
{

(xi, yi)
}n
i=1
⊂ X ×

{
− 1,+1

}
,

in which D is supposed to be an i.i.d. (independent and identically distributed)
generated by an underlying (though unknown) probability measure PXY on X ×Y .
The goal in binary classification is to induce a classifier L : X → {−1,+1}, which
minimizes the corresponding risk function. In this case, the 0/1 loss, is the most
commonly used loss.

12



2.2.4 Ordinal Classification

In binary classification, the response consists of only two classes, typically called
the negative (−1) and the positive (+1) class. In ordinal classification, the response
contains more classes, where in addition the classes are ordered. More formally,
assume Y = {y1, . . . , yK} are the classes. In an ordinal case, it is supposed that,

yσ(1) ≺ yσ(2) ≺ . . . ≺ yσ(K) ,

where σ is a permutation of {1, . . . , K} and ≺ is referred to as an ordering.
In this thesis, the ordinal classes are natural numbers and have the following form:

y1 < y2 < . . . < yK ,

The goal in ordinal classification is to learn a classifier L : X → Y from a given set
of training data:

D =
{

(xi, yi)
}n
i=1
⊂ X × Y .

The data D is supposed to be an i.i.d. sample generated by an underlying (though
unknown) probability measure PXY on X × Y . A common goal, then, is to induce
a classifier with minimal risk, where the risk R(L) of a classifier L is defined in
terms of its expected loss, i.e., the loss in (2.1). In order to take the order of the
classes in an ordinal classification case, usually L1 loss is taken into account.

2.3 The Principles of Induction

The principles of induction are used to find an optimal generalization from seen
observations. In this case, assume data and also the hypothesis space are given. In
fact, the duty of inductive principles is to chose a proper hypothesis in the hypothesis
space.

2.3.1 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation makes induction in a probabilistic frame work.
Roughly speaking, maximum likelihood maximizes the likelihood of observing
data. Accordingly, it seeks out the parameters, which are most likely for the given
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data. Historically at the beginning of 20th century Fisher proposed the initial idea
of maximum likelihood [1].

Following the core idea of maximum likelihood, assume the observations X ={
xi
}n
i=1

in which the i.i.d. assumption is supposed, are given. Moreover assume a
family of density function

{
f(x; θ)

}
θ

is given, where additionally the probability
distribution is assumed with respect to θ is continuous. Since the i.i.d. assumption
is supposed, the joint density function for

{
xi
}n
i=1

is equal to:

f(X; θ) =
n∏
i=1

f(xi; θ) .

From a statistical point of view, the function L(θ;x) = f(x; θ), is called a likeli-
hood function. Taking this fact into account, the following equality is obtained:

L(θ;X) =
n∏
i=1

f(xi; θ) .

In general the basic idea of maximum likelihood is to find parameter θ which maxi-
mizes the above inequality, i.e., maximizing the likelihood of observing data. Con-
cretely the goal is to find the θ∗ as follows:

θ∗ = arg max
θ
L(θ;X) .

From a computational point of view, it is more convenient to maximize the loga-
rithm of the likelihood function. To this end, the following equation is taken into
account:

logL(θ;X) =
n∑
i=1

log f(xi; θ) .

Then the ultimate goal is to find parameter θ which maximizes the logarithm of the
likelihood function. Interestingly, Wald in 1949 showed the consistency of maxi-
mum likelihood principle [110], namely assume ω is a closed subset of the parame-
ter space Ω \ {θ∗}. Moreover assume θ∗n = arg maxθ L

(
θ; {x}ni=1

)
, and θ∗ is equal

to limn→∞ θ
∗
n. Then

P

{
lim
n→∞

supθ∈ω
∏n

i=1 f(xi, θ)∏n
i=1 f(xi, θ∗)

= 0

}
= 1 .

It means with probability 1 the sequence {θi}i converges to the optimal solution.
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2.3.2 Structural Risk Minimization (SRM)

VC Dimension

It is clear that each hypothesis has specific properties, and in general each hypoth-
esis space provides different properties. In this regard, the flexibility (capacity) of
each hypothesis space can be studied. Here the flexibility of a hypothesis space
can be seen as the ability to provide flexible hypotheses. In order to quantify the
so-called capacity of one classifier Vapnik proposed in [108] the concept of the VC
dimension. Roughly speaking, the VC dimension is the maximum number of in-
stances, in which the classifier can classify those instances with respect to arbitrary
labels without any mistakes. Before going into details, the concept of shattering
should be introduced:

From a binary classification point of view, given n instances {x1, . . . ,xn} ⊂
Rm there are 2n ways to assign labels {−1,+1} to these instances. The instances
{x1, . . . ,xn} are said to be shattered by the model class H if, for all possible la-
beling (2n cases), there exists at least one model from model class H which can
classify the instances without any error. So the largest number of instances, which
can be shattered by model classH is called the VC dimension of model class. More
formally, based on the Vapnik and Chervonenkis, the VC dimension of model class
F is defined as follows:

max
{
|X|
∣∣X ⊂ X , ∀g ∈ {−1,+1}X ,∃h ∈ F such that ∀x ∈ X, h(x) = g(x)

}
.

By way of example, for a model class of linear functions with m variables, the
VC dimension is equal to m + 1. In Figure 2.1 all existing label assignments and
corresponding separations are shown. If for a model class the VC dimension is un-
bounded, then the VC dimension is infinite.

Loosely speaking, the VC dimension reveals the flexibility of a model class, the
higher the VC dimension, the more flexible the model class is.

15



Figure 2.1: The illustration of shattering of three instances for model class linear functions
with two variables

Structural Risk Minimization (SRM)

Under empirical risk minimization, two well-known problems can occur during the
learning process. They are called, overfitting and underfitting. The overfitting prob-
lem refers to when the capacity (complexity) of the learner clearly is higher than
what is required. Likewise, the underfitting problem occurs when the capacity
(complexity) of the learner is clearly lower compared to what indeed is needed.
In order to overcome this problem, or let say, find the proper learner, Vapnik pro-
posed the idea of structural risk minimization. Assume a family class of learners is
given. Moreover, assume there is a possibility to order the learners based on their
complexity, e.g. VC dimension. The main goal under structural risk minimization
is to find a trade-off between the complexity of the learner and the goodness of
generalization. More formally, the goal is to minimize

Remp(w) + λCP (w) ,

where Remp is referred to the empirical risk, CP is referred to complexity penalty
and finally λ is the trade-off parameter, which is determined empirically. In this
regard, Vapnik proposed a bound to show a sound dependency between the risk and
empirical risk given the VC dimension of the model.

Theorem 2.1 (Vapnik) Assume H is the class of functions, with a VC dimension of
v. Then for any distribution P and for any sample data {(xi, yi)}ni=1 drawn from
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this distribution, the following inequality is valid with probability 1− η.

∀h ∈ H, R(h) ≤ Remp(h) +

√
v(log 2n

v
+ 1)− log(n

4
)

n
+

1

n
. (2.4)

More formally, assume there is a possibility to order the hypotheses in hypothesis
space as follows:

H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ H ,

whereH = ∪∞i=0Hi. Moreover assume the VC dimension of eachHi is equal to vi.
It is clear that

v0 < v1 < v2 < . . .

In general, choosing the hypothesis with a high VC dimension, due to high flexibil-
ity reduces the empirical risk, while strengthening the overfitting problem. On the
other hand, choosing the hypothesis with a low VC dimension reduces the flexibil-
ity and hence increases the empirical risk. The core idea under SRM, is to find a
trade-off (see Figure 2.2) between the complexity of the hypothesis and the quality
of fitting in order to reduce the generalization error (R(h)) as much as possible.
Note that based on the Vapnik theorem, choosing a hypothesis with high flexibility
increases the second term in the right hand side of the equation (2.4).
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Figure 2.2: The illustration of structural risk minimization, showing the trade-off between
the complexity and the quality of fitting

The Concept of Regularization

In last part it was discussed that the higher flexibility of the learner increases the
chance of the overfitting problem occurring. To this end, the core idea of SRM is to
find a trade-off between the complexity of the learner and the quality of generaliza-
tion in a proper way. To reduce the complexity of the learner, the parameters of the
learner are restricted. To this end, the idea of regularization comes into play. The
idea is to consider follwoing risk:

Rreg(f) = Remp(f) + λΩ(f) ,

where f refers to a learner. In addition, the function Ω(·) measures the regularity.
Here Rreg is called regularized risk.
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2.4 The Methods Derived from Inductive Principles

2.4.1 Linear Logistic Regression

In linear regression, given the data D =
{

(xi, yi)
}n
i=1
⊂ Rm×R, the goal is to find

β = (β1, . . . , βm) ∈ Rm and ε ∈ R, such that

yi = β1xi1 + β2xi2 + . . .+ βmxim + ε ∀i, i ∈ {1, . . . , n}

Here xi = (xi1, . . . , xim) ∈ Rm. Each xij is called a regressor or predictor variable
and yi is called a response.

The logistic regression modifies linear regression for the purpose of predicting
(probabilities of) discrete classes instead of real-valued responses. To this end, the
probability of the positive class (and hence of the negative class) is modeled as a
linear function of the input attributes. More specifically, since a linear function
does not necessarily produce values in the unit interval, the response is defined as a
generalized linear model, namely in terms of the logarithm of the probability ratio:

log

(
P(y = 1 |x)

P(y = 0 |x)

)
= ω0 + ω>x , (2.5)

whereω = (ω1, ω2, . . . , ωm) ∈ Rm is a vector of regression coefficients and ω0 ∈ R
a constant bias (the intercept). A positive regression coefficient wi > 0 means that
an increase of the predictor variable xi will increase the probability of a positive re-
sponse while a negative coefficient implies a decrease of this probability. Besides,
the larger the absolute value |ωi| of the regression coefficient, the stronger the influ-
ence of xi.
Since P(y = 0 |x) = 1 − P(y = 1 |x), a simple calculation yields the posterior
probability

πl
df
= P(y = 1 |x) =

1

1 + exp(−ω0 − ωTx)
. (2.6)

Assume some observations are given, where the i.i.d. assumption is assumed. In
order to find the proper generalization for given data, suitable parameters should be
determined. This can be done by employing a maximum likelihood estimation. In
the following analysis we will describe in more detail the maximum likelihood es-
timation for a binary case. Assume the instance x and its label y ∈ {0, 1} is given.
Moreover assume a family of probability distribution P(·, ·) is given. In general,
the likelihood function for a binary class given an instance x and model parameters
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η is equal to:

P(y | x;η) =
{
P(y = 1 | x;η)

}y
·
{
P(y = 0 | x;η)

}1−y
(2.7)

So now, assume some observations with corresponding responses are given, where
the observations are i.i.d. as follows:

D =
{

(xi, yi)
}n
i=1
⊂ Rm ×

{
0, 1
}

For more than one instance, i.e.,
{
xi, yi

}n
i=1

, since i.i.d. is assumed, the likelihood
function is formalized as follows:

L(η) = P(y |X;η) = P
(
y1, . . . , yn | x1 . . . ,xn;η

)
= P

(
y1|x1; η

)
× . . .×P

(
yn|xn; η

)
=

n∏
i=1

{
P(yi = 1 | xi;η)

}yi
·
{
P(yi = 0 | xi;η)

}1−yi
, (2.8)

whereX =
{
xi

}n
i=1
⊂ Rm and y =×n

i=1

{
yi

}
∈
{

0, 1
}n

.
So the core idea of maximum likelihood is to find the parameters which maximize
L(η). Instead of maximizing the function in (2.8), it is more convenient to maxi-
mize the logarithm of the function:

l(η) = logL(η) = logP(y |X;η)

=
n∑
i=1

{
yi · logP(yi = 1 | xi;η) + (1− yi) · logP(yi = 0 | xi;η)

}
.

If the above function is given probability distribution be convex, then the optimal
solution can be determined as follows:

∂l(η)

∂ηi
= 0 ∀i 1 ≤ i ≤ p ,

where p is assigned to the number of parameters. In this regard, the common ap-
proach like Newton or quasi Newton can be used. In binary case, the log likelihood
function is as follows:
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l(ω, ω0) = logP(ω, ω0) = log

(
n∏
i=1

P(yi |xi;ω, ω0)

)

=
n∑
i=1

{
yi log π

(i)
l +

(
1− yi

)
log
(
1− π(i)

l

)}
, (2.9)

where π(i)
l is referred to in the equation in (2.6), where the instance xi is considered.

In addition P(y(i) | x(i);ω, ω0) =
(
π

(i)
l

)y(i) . It is not difficult to check that the log
likelihood function in (2.9), has a negative semidefinite Hessian matrix [15, 96].
Therefore, the function −l(ω, ω0) it is a convex function and to find the optimal
solution the usual methods like gradient descent or the Newton method can be em-
ployed. For the Newton method, the optimal solution is as follows:

ω(n+1) = ω(n) −H−1∇ω
(
− l(ω)

)
,

where H and ∇ are referred to the Hessian matrix and gradient respectively.
Furthermore, in order to establish a monotone learner, considering the linear logistic
regression as a base-line, the following optimization problem is taken into account:

max
ω,ω0

n∑
i=1

{
yi log π

(i)
l +

(
1− yi

)
log
(
1− π(i)

l

)}
(2.10)

s.t.

ωi ≥ 0 ∀i ∈ {1, . . . ,m} (2.11)

The constraints in (2.11) indeed assure the monotonicity for the linear logistic re-
gression. The objective function in (2.10) is still convex, although beside some
constraints exist. To this end, Lagrange optimization can accomplish the optimiza-
tion problem.

2.4.2 Margin Maximization Principle

In this section, the basic idea of a large margin approach, namely the linear margin,
is presented. Assume some labeled instances, which are supposed to be i.i.d. given
as follows:

D =
{

(xi, yi)
}n
i=1
⊂ Rm × {−1,+1} .
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The labels {−1,+1}, can be considered as negative and positive classes respec-
tively. The labeled instances are separable by a hyperplane ω∗ ∈ Rm and intercept
b ∈ R, if the following inequality is valid for all labeled instances:

∀i 1 ≤ i ≤ n yi ·
(
〈ω∗,xi〉+ b

)
≥ 1 . (2.12)

In spite of this formulation, the instances with property 〈ω∗,xi〉 + b ≥ 1, belong
to class +1, and the instances with property 〈ω∗,xi〉 + b ≤ −1 belong to class
−1. Accounting for the fact that there are infinite hyperplanes, which can satisfy
the above inequality, this reveals that there is a great deal of flexibility for existing
solutions. To cope with this flexibility, which certainly contributes to the overfitting
problem, Vapnik proposed to use the idea of SRM. The core idea is to find a trade-
off between the goodness of generalization and complexity of model. To this end,
he proposed the following risk:

n∑
i=1

l
(
yi, 〈ω,xi〉

)
+ C||ω||2

Here l is the loss function and C is the trade-off parameter. Since we assumed
that the instances can be classified by a linear hyperplane, it can be concluded, a
set of hyperplanes exist {ωq}q∈Q, where for all q ∈ Q,

∑n
i=1 l(yi, 〈ωq,xi〉) = 0.

Therefore the problem boils down to minimizing the following term:

C||ω||2

with additional constraints

yi·
(
〈ω,xi〉+ b

)
≥ 1 .

More formally the hyperplane can be determined as follows:

min
ω,b

1

2
||ω||2

s.t.

yi ·
(
〈ω,xi〉+ b

)
≥ 1 ∀ i ∈ {1, . . . , n}
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This in essence is a quadratic programming optimization. In the light of above
notations, the set of support vectors can be determined as follows:{

xS ∈ D
∣∣∣ |〈ω∗,xS〉+ b| = 1

}
,

where ω∗ is the solution of the optimization problem above. The vector ω∗ is also
called the decision boundary. In this case, the decision boundary is linear, however
it can be quite non-linear. Then following, discuss in greater detail how to construct
non-linear decision boundaries.

Figure 2.3: The illustration of separation of two classes by hyperplane 〈ω,x〉+ b = 0. The
objects on boundary, which showed by dot circles, called the support vectors.

In Figure 2.3, the position of hyperplane is shown and as well the support vec-
tors. Since the above equality holds for support vectors, the distance between sup-
port vectors and hyperplane can be computed as follows:

d(xS ,P) =
ω>xS + b

||ω||
=
±1

||ω||
, (2.13)

where P =
{
x ∈ Rm | 〈ω,x〉 + b = 0

}
. Therefore, the magnitude of margin is

equal to 2
||ω|| , and hence the solution to the above constrained optimization problem,
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is the hyperplane, which maximizes the distance between the instances of two dif-
ferent classes.

So far the assumption was, that the instances are linearly separable. One may
also consider the case, in which the instances are not linearly separable, although
the goal is to separate them by a linear hyperplane. This case is addressed as a soft
margin. The core idea is to allow the classifier to make some mistakes, albeit as low
as possible. In Figure 2.4 the idea is illustrated. This idea is again referred to as the
structural risk minimization. To this end, assume the loss function is given. Then

Figure 2.4: The illustration of separation of two classes by soft margin 〈ω,x〉 + b = 0.
The objects on boundary, which showed by dot circles, called the support vectors.

the structural risk can be formulated as follows:

n∑
i=1

l(yi, 〈ω,xi〉) + C||ω||2

=
n∑
i=1

ψi + C||ω||2 .

The first term in the second equation, indeed, is considered for mistakes. Hence the
linear soft margin can be formalized as follows:
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min
ω,ψ,b

{ n∑
i=1

ψi +
C

2
||ω||2

}
s.t.

yi ·
(
〈ω∗,xi〉+ b

)
≥ 1− ψi ∀ i ∈ {1, . . . , n}

ψi ≥ 0 ∀ i ∈ {1, . . . , n}

This is again a constraint optimization problem, and the optimal solution can be
found by quadratic programming optimization.

2.4.3 Kernel Methods

It is apparent that if the instances are not linearly separable, then linear SVM can-
not solve the problem properly, i.e., some instances are miss-classified. In order to
prevent miss-classification, the basic idea is to transfer the data (instances) to an up-
per space, of course with higher dimensionality, where the labeled instances can be
separated linearly without any mistake. To this end, the core idea is to use kernels
which can model the non-linear decision boundaries.

Before going into detail, we shall introduce some preliminaries. Assume the
function k(·, ·) on domain X × X is defined as follows:

k : X × X → R
(x,x

′
) 7→ k(x,x

′
) .

In order to establish the concept of the kernel, the following definitions and nota-
tions are needed as taken from “Kernel methods in Machine Learning” by Hofmann
et al. in [57].

Definition 2.1 (Gram matrix) Given a function k(·, ·) and inputs x1, . . . ,xn ∈
X ⊂ Rm, the n× n matrix

K :=
(
k(xi,xj)

)
ij

is called Gram matrix of k(·, ·) with respect to x1, . . . ,xn.
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Definition 2.2 (Positive definite matrix) A real n × n symmetric matrix Kij satis-
fying ∑

i,j

hihjKij ≥ 0

for all hi ∈ R is called positive definite. If equality only occurs for h1 = . . . =

hn = 0, then we shall call the matrix strictly positive definite.

Definition 2.3 (Positive definite kernel) LetX ⊂ Rm be a nonempty set. A function
k : X ×X → R which for all n ∈ N,xi ∈ X , i ∈ {1, . . . , n} gives rise to a positive
definite Gram matrix is called a positive definite kernel. A function k : X ×X → R
which for all n ∈ N and distinct xi ∈ X gives rise to a strictly positive definite
Gram matrix is called a strictly positive definite kernel.

Theorem 2.2 (Mercer’s Theorem) A symmetric function k(·, ·) is a kernel if and
only if for any finite sample S = {x1, . . . ,xn} the Gram matrix for S is positive
semidefinite.

If for a given kernel k(·, ·), there is a mapping ϕ : Rm → Rp such that for all
x,x∗ ∈ Rm, k(x,x∗) = 〈ϕ(x), ϕ(x∗)〉, the map ϕ(·) is called feature mapping
with respect to the kernel k(·, ·).

Given n training examples
{
xi
}n
i=1

the optimal weights for a kernel is computed
by the so-called dual form [107]. The setting in a large margin case is called the
primal form. In fact from the primal form, the dual form can be derived [87]. So in
this case, the goal is to findα = {αi}ni=1 parameters, which minimize the following
objective function under constraints:

min
α

{
1

2

n∑
i=1

n∑
j=1

yiyjαiαjk(xi,xj)−
n∑
i=1

αi

}
s.t.
n∑
i=1

yiαi = 0

0 ≤ αi ≤ C ∀ i, i ∈ {1, . . . , n}

Here C is a typical SVM trade-off parameter. This problem actually can be solved
by quadratic programming (QP), which given n instances has a computational com-
plexity of O(n3). Interestingly, from α = (α1, . . . , αn) and training examples, ω
can be computed as follows:
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ω =
n∑
i=1

αiyiϕ(xi) ,

where ϕ(·) is the feature mapping corresponding to the kernel. In the following
discussion, the kernels used in this thesis are introduced.

Polynomial Kernel

Let x,y be two elements in Rm. The polynomial kernel is defined as follows:

k(x,y) =
(
〈x,y〉+ λ

)d
,

where d ∈ N is the degree of polynomial kernel and also λ ∈ R. This corresponds to
the feature map ϕ(·) including all monomials xi11 . . . x

im
m where ij ∈ N,

∑m
i=1 ij = s

and 0 ≤ s ≤ d . For d = 1 it is called the linear kernel.

Gaussian Kernel (RBF)

Let x,y be two elements in Rm. The Gaussian kernel given parameter σ is defined
as follows:

kσ(x,y) = exp

(
−||x− y||

2
2

2σ2

)
,

This kernel is also called the radial basis function (RBF).

2.5 Monotone Classifiers

The problem of monotone classification has received increasing attention in the
machine learning community in recent years [7, 29, 35], despite having been in-
troduced in the literature much earlier [11]. Meanwhile, several machine learning
algorithms have been modified so as to guarantee monotonicity in attributes, includ-
ing nearest neighbor classification [33], neural networks [91], decision tree learning
[10, 85], rule induction [29], as well as methods based on isotonic regression [22]
and piecewise linear models [28]. From a monotone learning point of view, specifi-
cally for classification purpose, the monotone classifiers are trained in a way that the
learned classifiers satisfy monotonicity properties. In general, monotonicity means
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that by increasing the magnitude of attributes jointly or separately, the correspond-
ing class also increases or at least stays at the same level. More precisely, assume
the classifier is given as follows:

CL : X1 × . . .×Xm → Y = {−1,+1} ,

where X1 × . . .×Xm ⊆ X ⊂ Rm. The classifier CL(·) is a monotone classifier, if

∀xi,xj ∈ X s.t. xi � xj then CL(xi) ≤ CL(xj) .

This definition can be extended to the ordinal classes, where there is a total order
between classes. More concretely, assume the classes Y = {y1, . . . , yk} with the
following order are given:

y1 ≺ y2 ≺ . . . ≺ yK .

Note that,
{
yi
}n
i=1

are not necessarily real numbers. In that case the above
definition can be extended as follows:

If xi � xj then CL(xi) � CL(xj) .

It is worth mentioning that usually enforcing monotonicity to specific model can be
accomplished in light of extra constraints [67, 98]. For instance, every linear SVM
with positive parameters for ω is a monotone classifier. Needless to say, it is not
always possible to enforce the monotonicity to an arbitrary model.
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3
The Choquet Integral as an Aggregation

Function

In this chapter, the main ideas of Multi Criteria Decision Making (MCDM) and
aggregation functions are presented. The aggregation functions are mostly used
in the Multi Criteria Decision Making community. Loosely speaking, the task in
multi criteria decision making is to select an object or an action between several
alternatives. In this regard, each object or action can be characterized by its proper-
ties. Ultimately such properties can be aggregated, and the final decision (selection,
ranking) is made. This chapter begins by giving the core ideas in multiple criteria
decision making. Then the aggregation functions as powerful tools in MCDM are
introduced in 3.1.3. Specifically the Choquet integral as an aggregation function in
Section 3.4 is presented and its properties will be described. As it has been men-
tioned in introduction of thesis, the Choquet integral provides sound information in
terms of interpretation. This issue is addressed as well in Section 3.6 in more the
detail .
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3.1 Multiple Criteria Decision Making

3.1.1 Introduction

To the best of our knowledge the initial idea of MCDM comes from philosophy,
where the problem was to evaluate a premise by its pro and contra reasons [36]. In
this regard, the pro (advantages) and contra (disadvantages) reasons were weighted,
and finally the weights were compared. If the weights of advantages compared to
the weights of disadvantages were larger, the premise would be accepted, otherwise
it would be rejected. In fact, the issue was to select an alternative among of several
alternatives, where every alternative can be assessed by its advantages and disad-
vantages. Generally, the selection of one alternative among all alternatives is not
always a trivial task. The basic reason is, that it is quite rare that an alternative can
cover all advantages, whereas it does not have any disadvantage. From this perspec-
tive, the task in MCDM is to rank the alternatives in a preferable way. This chapter
starts by an simple example to give the main idea of MCDM:

Assume a company wants to employ a programmer. Since the company is op-
erating in the U.S. and China, it needs a person, who is proficient in a foreign
language. Also 70% of the projects are done using Java, 30% using C+ and know-
ing SQL is preferable. Finally since the company faces complex problems, more
educated employees are preferred. In addition, the company would not like to pay
more than 60k $ as salary to the employee. Accordingly every alternative can be
described as a member of the following Cartesian product:

{
P({Eng., Chin.})

}
×
{
P({Java, C+, SQL})

}
×
{
B.Sc., M.Sc., PhD

}
×
{
M, L
}
,

where P is assigned to the powerset. Here M stands for more than 60k$ and L stands
for less than 60k $ income. Note that here an empty set means the candidate cannot
satisfy any preconditions regarding the specific condition. Needless to say, every
alternative expects different amounts of income with respect to his/her qualifica-
tions. The task here is to find a programmer who can satisfy as much as possible
the prerequisites and moreover expects an income less than 60k $ as a salary.

3.1.2 General Idea

MCDM has been received considerable attention, especially from 50 years ago.
This is indeed a subfield of operations research, which attempts to make a proper
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choice among the given choices or to find the proper ranking/sorting among of the
given choices. From an application point of view, the MCDM is used extensively
in banking [6], transportation [27], urban management [113], energy and resource
management [72], economy [71], energy planning [32] and financial management
[23]. The task in MCDM can be summarized as choosing an alternative among
given alternatives or sorting the alternatives. This task can be quite complex and
confusing due to the fact that, every alternative can cover the benefits partially,
i.e., usually an alternative cannot fully satisfy all expectations. Specifically in real
applications, usually the criteria are conflicting, namely, increasing the satisfaction
of certain criterion leads to decrease in the satisfaction of another criterion. In this
regard, there is a need to make a choice in a transparent and consistent way. In
general, every MCDM can be described by the following components:

• Alternative: An alternative is an object or an action which has a potential to
be chosen.

• Criteria: In order to evaluate each alternative and to make them comparable,
each alternative is characterized by some predefined criteria. Note that all
alternatives are characterized by the same criteria.

• Make a Decision: Given the alternatives characterized by criteria, the deci-
sion is made by evaluating the alternatives and giving them scores, and ul-
timately by choosing an alternative, sorting the alternatives or ranking the
alternatives (total or partial) among several alternatives.

Therefore, regarding the above definitions, given the set of criteria
C = {c1, . . . , cm} each alternative can be evaluated as follows:

a = (a1, . . . , am) ,

where ∀i, 1 ≤ i ≤ m, ai = fi(a). The function fi(·) is called the evaluation
function w.r.t the criterion ci, and indicates how high the alternative a can satisfy
the criterion ci. Commonly it is assumed that the range of the evaluation function
is [0, 1]. 0 means the alternative cannot satisfy anything regarding criterion ci and 1

means the alternative satisfies perfectly the criterion ci. Hence,

a = (a1, . . . , am) =
(
f1(a), . . . , fm(a)

)
∈ [0, 1]m
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In order to make a choice or rank the alternatives, the existing methods in literature
can be divided into three main sub-methods:

Outranking methods: The main idea in outranking methods is to define a pref-
erence relation (partial order) of alternatives in a pairwise manner. More precisely
A ≺ B, implies the alternativeB is at least as good as the alternativeA. To this end,
the core idea is to consider the criteria which support the assertion (A ≺ B) and
the criteria which are against this. The initial idea has been proposed by Bernard
Roy [86]. Multiattribute utility: The multiattribute methods usually consider the
classical aggregation functions (we will describe the aggregation functions in the
next section) and assign real numbers to each alternative. Therefore, they produce
a total order given alternatives. Non classical methods: Finally the non-classical
approaches mainly covered in the scholarly literature decision rules [55] and fuzzy
integrals [50].
In this regard, while several well established methods such as ELECTRE (elimina-
tion and choice expressing reality) [37], PROMETHEE (preference ranking orga-
nization method for enrichment of evaluations) [18], TOPSIS (technique for order
preference by similarity to ideal solution) [82, 112] and the MUTA (multi attribute
utilities theory) [34] are counted as classical approaches, the aggregation functions
underlying fuzzy measures are taken into consideration as a non-classical approach
[42, 36]. In the following sections, these kind of aggregation functions will be de-
scribed more in the details. Before continuing the topic, a new notation should be
introduced.

So far the term attribute(s) was mentioned to characterize the feature space. Ba-
sically every instance is characterized by some given attributes. We shall make a
distinction between attribute and criterion. From a MCDM point of view, criteria
characterize the decision space. Every criterion is not a number, however, for each
instance the evaluation of each criterion, namely, how good the alternative can sat-
isfy specific criterion, is computed by its evaluation function (real value function).
The term “criterion” is indeed often used in the decision making literature, where it
suggests a monotone “the higher the better” influence. In the light of this definition,
this fact comes down, that the higher the criterion, the higher the benefit is. Note
that from now to the end of this thesis, the set of criteria are shown as follows:

C =
{
c1, . . . , cm

}
,
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where m is the number of criteria.

3.1.3 Aggregation Functions

As mentioned several times, one of the powerful tools from a decision making point
of view is an aggregation function. The main duty of aggregation functions is to ag-
gregate all advantages and disadvantages together and finally deliver them as a real
(positive) number. Before going into details, we shall introduce the definition of
aggregation functions.

Formally a function A : [0, 1]m → [0, 1] is an aggregation function if it satisfies
the following conditions [21, 51]:

• monotonicity: ∀ai,aj ∈ [0, 1]m, if ai ≺ aj then A(ai) ≤ A(aj)

• Unanimity: ∀a = (a, . . . , a) ∈ [0, 1]m, A(a, . . . , a) = a

The second condition immediately boils down to the following equalities:

A(0, . . . , 0) = 0

A(1, . . . , 1) = 1

An aggregation function is symmetry, if for any permutation σ on {1, . . . ,m},
A(a1, . . . , am) = A(aσ(1), . . . , aσ(m)).

In the following some important aggregation functions are presented:

Definition 3.1 (Weighted Mean): Given the weights ω = (ω1, . . . , ωm), where
ωi ≥ 0 and

∑m
i=1 ωi = 1, the weighted mean operator is defined as follows:

WM(a1, . . . , am) =
m∑
i=1

ωiai .

Specifically, when ∀i, ωi = 1
m

, it is called the arithmetic mean of dimension m.
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Definition 3.2 (Ordered Weighted Averaging): Given the weightsω = (ω1, . . . , ωm),
where ωi ≥ 0 and

∑m
i=1 ωi = 1, and moreover a decreasing permutation π (aπ(i) ≥

aπ(i+1) for a given a), the OWA operator is defined as follows:

OWA(a1, . . . , am) =
m∑
i=1

ωiaπ(i) .

In the following sections, we give the preliminaries for introducing an important
aggregation function underlying fuzzy measure.

3.2 The Choquet Integral as an Extension of Lebesgue
Integral

Henri Lebesgue proposed the extension of the Riemann integral, where instead of
considering the length of an interval as the weight, he presented the concept of
measure to construct the integral. Such measures have a specific property, namely,
countable additivity. More precisely, the measure of union of two distinctive sets is
equal to the sum of measures of each set. Later on Gustave Choquet proposed the
generalization of the Lebesgue integral in a way that he suggested corresponding
measure can be non-additive measures. More formally, assume function f : S →
R is measurable with respect to measure ν. The Choquet integral for function f
respect to measure ν is defined as follows:

(c)

ˆ
S
fdν :=

ˆ ∞
0

ν
(
{s | f(s) ≥ x}

)
dx+

ˆ 0

−∞

[
ν
(
{s | f(s) ≥ x}

)
− ν(S)

]
dx

It is worth mentioning that if ν is a σ-additive measure, the above definition comes
down to the Lebesgue integral.

3.3 Fuzzy Measures

Before describing the details, some preliminaries about non-additive measures and
especially fuzzy measure are introduced. As mentioned earlier, the crucial differ-
ence between the Choquet integral and the Lebesgue integral is the type of measure.
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3.3.1 Non-Additive Measures

In this section the properties of non-additive measures are investigated in greater de-
tail. Generally, non-additive measures do not satisfy the additive property. Hence,
non-additive measures obviously are more flexible and can model a larger class of
measures as well. In the following discussion, the main properties of such kind of
measures are introduced.

Let C = {c1, . . . , cm} be a finite set of criteria and µ(·) a measure 2C → [0, 1].
For each A ⊆ C, we interpret µ(A) as the weight or, say, the importance of the set
of elements A. As an illustration, one may think of C as a set of criteria (binary
features) relevant for a job, like “speaking French” and “programming Java”, and
of µ(A) as the evaluation of a candidate satisfying criteria A (and not satisfying
X \ A).

A standard assumption of a measure µ(·), which is at the core of probability the-
ory is additivity: µ(A∪B) = µ(A) + µ(B) for all A,B ⊆ X such that A∩B = ∅.
Unfortunately, additive measures cannot model any kind of interaction between el-
ements: Extending a set of elements A by a set of elements B always increases the
weight µ(A) by the weight µ(B), regardless ofA andB. Suppose, for example, that
the elements of two setsA andB are complementary in a certain sense. For instance,
A = {French, Spanish} and B = {Java} could be seen as complementary, since
both language skills and programming skills are important for the job. Formally, this
can be expressed in terms of a positive interaction: µ(A ∪ B) > µ(A) + µ(B). In
the extreme case, when language skills and programming skills are indeed essential,
µ(A∪B) can be high although µ(A) = µ(B) = 0 (suggesting that a candidate lack-
ing either language or programming skills is completely unacceptable). Likewise,
elements can interact in a negative way: If two sets A and B are partly redundant
or competitive, then µ(A ∪ B) < µ(A) + µ(B). For example, B = {Java} and
C = {C, C#}might be seen as redundant, since one programming language does in
principle suffice.

3.3.2 Fuzzy Measures and their Möbius Transforms

As mentioned before, non-additive measures are characterized by different proper-
ties. Among all non-additive measures, there is a specific kind of measure called
fuzzy measures. They have a unique property called monotonicity. This property
guarantees, that the measure of each subsets of a set S have the magnitude smaller
than (or equal to) the measure of S ⊂ C.
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Definition 3.3 (Fuzzy measure) Let C = {c1, c2, . . . , cm} be a finite set. A dis-
crete fuzzy measure (also called capacity) is a set function µ : 2C → [0, 1] which
is monotonic (µ(A) ≤ µ(B) for A ⊆ B ⊆ C) and normalized (µ(∅) = 0 and
µ(C) = 1). A fuzzy measure µ is called additive if µ(A ∪ B) = µ(A) + µ(B) for
all A,B ⊂ C such that A ∩ B = ∅. Obviously, in the case of an additive measure,
µ(A) is simply obtained as follows [95]:

µ(A) =
∑
i∈A

µ({i}) (3.1)

Definition 3.4 (Möbious transform) The Möbius transform mµ of a fuzzy mea-
sure µ is defined as follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B)

for all A ⊆ C.

A useful property of the Möbius transform, that we shall exploit later on for
learning the Choquet integral, it allows for reconstructing the underlying fuzzy mea-
sure:

µ(B) =
∑
A⊆B

mµ(A)

for all B ⊆ C.

3.3.3 Monotonicity Constraints

Given an arbitrary measure µ : {c1, . . . , cm} → [0, 1], with additional assumption
µ({c1, . . . , cm}) = 1, one natural question is, whether the measure µ(·) is a fuzzy
measure or not. In order to check this issue, the basic idea is to check the following
inequalities:

µ(L) ≤ µ(K) ∀L,K L ⊂ K ⊆ {c1, . . . , cm} .

Since each subset of {c1, . . . , cm} is compared with all its subsets 3m − 2m con-
straints must be checked,

m∑
i=1

(
m

i

)
(2i − 1) =

m∑
i=1

(
m

i

)
2i −

m∑
i=1

(
m

i

)
= 3m − 2m .
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Fortunately, the last two constraints can be represented in a more compact way,
exploiting a transitivity property:

µ(L) ≤ µ(K) ∀L,K L ⊂ K ⊆ {c1, . . . , cm}, |K| = |L|+ 1 .

Respectively in terms of Möbius transform the above constraints can be reformu-
lated as follows: ∑

B⊆A\{ci}

m
(
B ∪ {ci}

)
≥ 0 ∀A ⊆ C, ci ∈ C

This representation reduces the number of constraints tom2m−1, which, despite still
being large, is a significant reduction in comparison with the original formulation.

3.3.4 k-additivity

There is a close connection between a fuzzy measure and the Möbius transform;
given a fuzzy measure the so-called Möbius transform can be constructed con-
versely as well. From a computational point of view, there is a complexity re-
duction, so that instead of considering all values for the Möbius transform only a
subset of values are taken into account. This reduction is called k-additivity, where
k is referred to the level-complexity.

Definition 3.5 (k-Additivity) A fuzzy measure µ is said to be k-order additive or
simply k-additive if k is the smallest integer such that m(A) = 0 for all A ⊆ C

with |A| > k.

Thus, while a Choquet integral is determined by 2m coefficients in general, the
k-additivity of the underlying measure reduces the number of required coefficients
to at most

k∑
i=1

(
m

i

)
.

3.4 The Discrete Choquet Integral

In previous section, the general idea of the Choquet integral was introduced. In this
section we restrict ourselves to discrete cases, where the measure ν acts solely on
finite domain in terms of cardinality.
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So far, the criteria ci were simply considered as binary features, which are either
present or absent. Mathematically, µ(A) can thus also be seen as an integral of the
indicator function of A, namely the function fA given by fA(c) = 1 if c ∈ A and
= 0 otherwise. Now, suppose that f : C → R+ is any non-negative function
that assigns a value to each criterion ci; for example, f(ci) might be the degree
to which a candidate satisfies criterion ci. An important question, then, is how to
aggregate the evaluations of individual criteria, i.e., the values f(ci), into an overall
evaluation, in which the criteria are properly weighted according to the measure µ.
Mathematically, this overall evaluation can be considered as an integral Cµ(f) of
the function f with respect to the measure µ.

Indeed, if µ is an additive measure, the standard integral just corresponds to the
weighted mean

Cµ(f) =
m∑
i=1

wi · f(ci) =
m∑
i=1

µ({ci}) · f(ci) , (3.2)

which is a natural aggregation operator in this case. A non-trivial question, however,
is how to generalize (3.2) in the case when µ is non-additive.

This question, namely how to define the integral of a function with respect to a
non-additive measure (not necessarily restricted to the discrete case), is answered
in a satisfactory way by the Choquet integral, which has first been proposed for ad-
ditive measures by [109] and later on for non-additive measures by [24]. The point
of departure of the Choquet integral is an alternative representation of the “area”
under the function f , which, in the additive case, is a natural interpretation of the
integral. Roughly speaking, this representation decomposes the area in a “horizon-
tal” instead of a “vertical” manner, thereby making it amenable to a straightforward
extension of the non-additive case. More specifically, note that the weighted mean
can be expressed as follows:

m∑
i=1

f(ci) · µ({ci}) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)(
µ({c(i)}) + . . .+ µ({c(m)})

)
=

m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f(c(1)) ≤ f(c(2)) ≤ . . . ≤
f(c(m)) (and f(c(0)) = 0 by definition), and A(i) = {c(i), . . . , c(m)}; see Figure 3.1
as an illustration.

Now, the key difference between the left and right-hand side of the above ex-
pression is that, whereas the measure µ is only evaluated on single elements ci on
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Figure 3.1: Vertical (left) versus horizontal (right) integration. In the first case, the height of
a single bar, f(ci), is multiplied with its “width” (the weight µ({ci})), and these
products are added. In the second case, the height of each horizontal section,
f(c(i))− f(c(i−1)), is multiplied with the corresponding “width” µ(A(i)).

the left, it is evaluated on subsets of elements on the right. Thus, the right-hand side
suggests an immediate extension to the case of non-additive measures, namely the
Choquet integral, which, in the discrete case, is formally defined as follows:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

In terms of the Möbius transform of µ, the Choquet integral can also be expressed
as follows:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

=
m∑
i=1

f(c(i)) · (µ(A(i))− µ(A(i+1)))

=
m∑
i=1

f(c(i))
∑
R⊆T(i)

m(R)

=
∑
T⊆C

m(T )×min
i∈T

f(ci) (3.3)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.
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3.5 An Application of the Choquet Integral in MCDM

Back to the last question about hiring an employee, let us assume the applications
of some candidates are given. Moreover, suppose the task is to find the optimal
candidate and also rank the candidates based on their qualifications. To this end,
the Choquet integral can be taken into consideration. As mentioned, the space of
criteria can be described as follows:

{
P({Eng., Chin.})

}
×
{
P({Java, C+, SQL})

}
×
{
B.Sc., M.Sc., PhD

}
×
{
M, L
}

Let us call the criteria as follows:

c1 : Eng. c3 : Java c6 : B.Sc. c9 : L

c2 : Chin. c4 : c+ c7 : M.Sc.

c5 : SQL c8 : PhD

Then the set of criteria is C = {c1, . . . , c9}. Note that the criterion L is a dichoto-
mous criterion {0, 1}, therefore, the criterion M can be defined in the absence of
criterion L. So given the qualification of the applicant, the goal is to find an evalua-
tion. Assume three applicants with the following qualifications already applied:

A1 Eng.(.8) Java(.9) B.Sc.(.7) L(1)

A2 Eng.(.5) Java(.7) B.Sc.(.4) M.Sc.(.6) L(1)

A3 Eng.(.5) Java(.3) B.Sc.(.6) M.Sc.(.7) PhD(.8) L(0)

The number in parentheses are assigned to the degree that the applicant can satisfy a
specific criterion. The degree in this case ranges from [0, 1]. As can be seen, the first
applicant can cover only 4 criteria, although, by a high degree. The next applicant
can cover more criteria, however the degrees of satisfaction are not high. Obviously
the third applicant also covers 5 out 9 criteria, but at the cost of lower degrees, and
he demands an income more than 60k. As is clear, finding the optimal applicant,
even for this small set, is not an easy task. In order to aggregate all qualifications
together and quantify a score to represent these qualifications, the Choquet integral
as a powerful aggregation function can be used. Before employing the Choquet in-
tegral, the fuzzy measure must be given or determined by some experts. In addition
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suppose the weight of each criterion and the joint weights of criteria are given as
follows in addition:

µ
(
{cl, . . . , cm}

)
:=
(∣∣{cl, . . . , cm}∣∣

9

)2

.

Since µ(∅) = 0, µ(C) = 1 and µ(A) < µ(B), when A ⊂ B, hence, essentially µ(·)
is a fuzzy measure. Therefore it is possible to apply the Choquat integral underlying
µ(·). The following scores are associated with the qualifications of each candidate
computed by the Choquet integral.

Cµ(A1) = .7× 16

81
+ .1× 9

81
+ .1× 4

81
+ .1× 1

81
= .1556

Cµ(A2) = .4× 25

81
+ .1× 16

81
+ .1× 9

81
+ .1× 4

81
+ .3× 1

81
= .1630

Cµ(A3) = .3× 25

81
+ .2× 16

81
+ .1× 9

81
+ .1× 4

81
+ .1× 1

81
= .1494

So as can be seen, the second applicant received an obviously better score. With
respect to the scores, the candidates are ranked as follows:

A2 � A1 � A3

Note that, this is only an example to show, how the evaluation procedure by the
Choquet integral can be carried out. What are more desirable in real applications
are the values of the fuzzy measure. We assumed here, the values are given, however
from an application point of view, it is more expected to estimate the values from
some observations. To this end, in Chapters 4, 5 and 6 these issues are addressed in
more detail.

Commensurability

In the last example, although the criteria are not comparable, there is a gradation
possible that shows how well a candidate can satisfy a specific criterion. These de-
grees are shown in parentheses. In general, the criteria are not comparable, e.g.,
foreign language and income. In order to make the criteria comparable, it is nec-
essary to use same scale for all of them. To this end, instead of criteria, the degree
of satisfaction, that means, how good an instance can satisfy a specific criterion,
should be taken into account. In order to have a consistent scale, this degree should
range in interval [a, b]. Specifically the Choquet integral should be in [0, 1]. The
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simple reason is, the Choquet integral as an aggregation function has domain on
[0, 1]m. The extreme cases, namely, 0 means the instance satisfies nothing, and 1

means the instance satisfies perfectly the criterion. In practice, it is common to use a
utility (aggregation) function U : D(ci)→ [0, 1], where D(ci) is referred to domain
of criterion ci. This utility function is usually determined by an expert.

3.6 Interpretability of the Choquet Integral

One of the key features of the Choquet integral is interpretability. In particular, the
Choquet integral (or, more specifically, the underlying fuzzy measure) provides nat-
ural measures of the importance of individual attributes and the interaction between
pairs (or even groups) of attributes. Such measures are not only useful to understand
the model, but can also be seen as a kind of feature selection process.

3.6.1 Shapley Index

From an interpretation point of view, a natural question is how high is the influ-
ence of criteria ci. In the linear case, the answer is pretty simple. The influence of
each criterion corresponds to the strength of the corresponding coefficient. In addi-
tion, the sign of each coefficient shows in which direction they are effective. More
precisely, given the linear function f(·) as follows:

f(x) = ω1x1 + . . .+ ωmxm

the magnitude of each coefficient, namely |ωi| demonstrate the influence of criterion
ci. Also sign(ωi) corresponds to effective direction.
Seen from this point of view, measuring the importance of a criterion ci becomes
obviously more involved if µ is non-additive. In the literature, measures of this kind
have been proposed. Lloyd Shapley proposed in 1953 the so-called Shapley value
[90]. From a game theory point of view, a Shapley value computes the distribution
to each cooperative game. Given a fuzzy measure µ on C, the Shaply value (or
importance index) of ci is defined as follows:

ϕ(ci) =
∑

A⊆C\{ci}

1

m

(
m− 1

|A|

)(µ(A ∪ {ci})− µ(A)
)

The Shaply value of µ is the vector ϕ(µ) =
(
ϕ(c1), . . . , ϕ(cm)

)
. One can show

that 0 ≤ ϕ(ci) ≤ 1 and
∑m

i=1 ϕ(ci) = 1. Thus, ϕ(ci) is a measure of the relative
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importance of ci. Obviously, ϕ(ci) = µ({ci}) if µ is additive.

The Concept of Importance of Criteria (Shapley Index)

The basic idea of importancy is to assign a real positive value to each criteria. This
value can be seen as a weight or let us say importancy for each criterion. The fuzzy
measure itself does not describe anything about importancy, although from an in-
terpretation and an application point of view, it is a crucial question how important
the criterion {ci} is. To this end, the basic idea which originally comes from game
theory, is to add criteria {ci} to other existing criteria, and check how the score has
changed. More precisely, the following values can demonstrate such change:

δAi (µ) := µ(A ∪ {ci})− µ(A) ∀A ⊆ C \ {ci}

Additionally, since δAi (µ) is defined for each subset of C \ {ci}, and all of them
should be taken into consideration, the idea is taking on an average, which also is
in agreement with weighted arithmetic mean. Moreover, since these values should
indicate the importance of each criterion, they necessarily should be comparable.
Therefore, for averaging of these values a normalization factor is needed, which
guarantees all values ranging between two given bounds. Since for coalition A ⊆
C \ {ci}, there are

(
m−1
|A|

)
subsets, which have cardinality |A|, therefore for nor-

malization
(
m−1
|A|

)
factor is assumed. More precisely, Lloyd Stowell Shapley (1953)

proposed an index for each criterion. Given a fuzzy measure µ on C, the Shaply
value (or importance index) of ci is defined as follows:

ϕ(ci) =
∑

A⊆C\{ci}

1

m

(
m− 1

|A|

)(µ(A ∪ {ci})− µ(A)
)

3.6.2 Interaction Index

The interaction index between criteria ci and cj , as proposed by Murofushi and
Soneda [78], is defined as follows:
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I(ci, cj) =
∑

A⊆C\{ci,cj}

µ(A ∪ {ci, cj})− µ(A ∪ {ci})− µ(A ∪ {cj}) + µ(A)

(m− 1)

(
m− 2

|A|

) .

This index ranges between −1 and 1 and indicates a positive (negative) interaction
between criteria ci and cj if Ii,j > 0 (Ii,j < 0).

The interaction index can also be expressed in terms of the Möbius transform:

I(ci, cj) =
∑

K⊆C\{ci,cj},|K|=k

1

k + 1
m
(
{ci, cj} ∪K

)
.

Furthermore, as proposed by Grabisch [46], the definition of interaction can be
extended to more than two criteria, i.e., to subsets T ⊆ X:

I(T ) =

m−|T |∑
k=0

1

k + 1

∑
K⊆C\T,|K|=k

m
(
T ∪K

)
.

Interestingly, the Shaply value for a 2-additive case can also be expressed in
terms of the interaction index [46]:

ϕ(ci) = m({ci}) +
1

2

∑
cj∈C\{ci}

I(ci, cj) .

The Concept of Interaction (Interaction Index)

The so-called Shapley index quantifies the weight of an individual criterion. How-
ever from an interpretational point of view, quantifying the weight of two criteria
jointly is also useful. To quantify this weight, the main idea is the same as the Shap-
ley index. Let us define the δAi (µ), δAj (µ), δAi,j(µ) as follows:

δAi (µ) := µ(A ∪ {ci})− µ(A) ∀A ⊆ C \ {ci}
δAj (µ) := µ(A ∪ {cj})− µ(A) ∀A ⊆ C \ {cj}
δAi,j(µ) := µ(A ∪ {ci, cj})− µ(A) ∀A ⊆ C \ {ci, cj}

Here the idea is to compare the value of a fuzzy measure after adding criteria {ci, cj}
to coalition A with the value of a fuzzy measure after adding criterion {ci} to coali-
tion A and as well adding criterion {cj} to coalition A. More formally for every
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coalition of criteria A, the following value can measure such change:

δAi,j(µ)− δAi (µ)− δAj (µ)

= µ(A ∪ {ci, cj})− µ(A ∪ {ci})− µ(A ∪ {cj}) + µ(A)

In general, since there are several coalitions, the idea is to consider the averaged
value of all coalitions. To this end, for each coalition, the normalization value can
be computed as the number of all subsets of C \ {ci, cj} which has cardinality |A|
(A is coalition), namely

1(
m− 2

|A|

) .

The above value refers to one coalition; A, however in total there are m − 1 coali-
tions. Therefore, for a normalization factor we should take into account all of them,
namely (m− 1)−1 factor. This normalization is also completely in agreement with
weighted arithmetic mean. More formally: The interaction index between criteria
ci and cj , as proposed by Murofushi and Soneda [78], is defined as follows:

I(ci, cj) =
∑

A⊆C\{ci,cj}

ϑA ·
(
µ(A∪ {ci, cj})− µ(A∪ {ci})− µ(A∪ {cj}) + µ(A)

)
with

ϑA =
1(

m− 2

|A|

) .
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4
Monotone Learning by Using the

Choquet Integral - Maximum
Likelihood Approach

This chapter is devoted mainly for monotone classifiers. As mentioned earlier in
2.5, the duty of monotone classifier is to assure monotonicity. In general, the classi-
fiers cannot assure monotonicity properties. Usually the ensuring the monotonicity
for a classifier can be done in light of auxiliary constraints. Such constraints restrict
the hypothesis space into a sub hypothesis space, where all candidates (hypotheses)
are monotone classifiers. So in the case of the Choquet integral, our model satis-
fies monotonicity properties. Seen from this view, the hypothesis space is already
restricted to the monotone functions, and each of which can satisfy monotonicity
properties. However, from a learning point of view, one natural question is, which
of them should be taken into account as a proper monotone classifier given some ob-
servations. To this end, the maximum likelihood estimation can provide the optimal
solution. The general idea of maximum likelihood principle was given in Section
2.3. Actually the main idea is to define the posterior probability using the Choquet
integral. Then immediately it is possible to employ maximum likelihood princi-
ple. In this regard, this chapter presents a framework to learn a family of monotone
classifier underlying the Choquet integral with means of maximum likelihood esti-
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mation. This chapter starts by describing our approaches to tackle the problem of or-
dinal classification in binary case. In this regard, the so-called choquistic regression
is presented. Then in Section 4.2 the approaches for monotone ordinal classifiers
are described. Specifically in Subsection 4.2.3 the ordinal choquistic regression as a
generalization of ordinal logistic regression is proposed. Finally, in Section 4.3 the
related works and researches basically respect to the Choquet integral are presented.
Parts of this chapter were already published in [97, 98, 99, 100, 101]

4.1 Algorithms for Learning Monotone Binary Classi-
fiers

One of the classical problem from a machine learning perspective is classifying the
instances, which are defined by some attributes and labeled by two different labels.
This problem is addressed as binary class classification in Section 2.2.3. Basically,
the goal is to predict the class of a new query while some samples were already seen.
For instance, assume some articles in the field of mathematics are given. Moreover
assume each article is characterized by some criteria, e.g., impact factor and imme-
diacy index and the output is whether the article is accepted or rejected. The goal
here is, to predict the status (accept/reject) for a new article, characterized by given
criteria.
As mentioned, the goal is to learn a monotone classifier. By the definition, a classi-
fier CL(·) is a monotone classifier, if

x �P x∗, then CL(x) � CL(x∗)

Here CL(·) is referred to as the output of classifier CL(·) given an observation.
What immediately follows down from the definition is, that the classes are compa-
rable and hence there is an order between two classes. Loosely speaking, in binary
case the assumption is class 1 (positive) is better than class 0 (negative).

4.1.1 Linear Logistic Regression

The basic idea of linear logistic regression is to learn a dependency between input
variables and their responses. More precisely, linear logistic regression modifies
linear regression for the purpose of predicting (probabilities of) discrete classes in-
stead of real-valued responses. To this end, the posterior probability of the positive
class (and hence of the negative class) is modeled as a linear function of the input
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attributes. Since the model has a probabilistic structure, it can be interpreted in a
probabilistic way. In the conventional linear regression, one of the key assumptions
is that errors of prediction y − ŷ are normally distributed. When y only takes the
values 0 and 1, this assumption is impossible to justify.

As mentioned in Section 2.4, the idea of linear logistic regression is to model the
dependency between input variables and their responses. For this purpose, linear
logistic regression takes advantages of the sigmoid function. More specifically,
since a linear function does not necessarily produce values in the unit interval, the
response is defined as a generalized linear model, namely in terms of the logarithm
of the probability ratio:

log

(
P(y = 1 |x)

P(y = 0 |x)

)
= ω0 + ω>x , (4.1)

where w = (w1, . . . , wm)> ∈ Rm. A positive regression coefficient ωi > 0 means
that an increase of the predictor variable xi will increase the probability of a pos-
itive response, while a negative coefficient implies a decrease of this probability.
Besides, the larger the absolute value |ωi| of the regression coefficient, the stronger
the influence of xi. Since P(y = 0 |x) = 1 − P(y = 1 |x), a simple calculation
leads to the posterior probability

πl := P(y = 1 |x) =
1

1 + exp(−ω0 − ω>x)
. (4.2)

The linear logistic regression also has several advantages. It is interpretable, i.e.,
the strength of each coefficient indicates how important the corresponding attribute
can be. Also the direction of each coefficient (−/+) can indicate in which direction
the attribute has direct influence. In addition, it is easy to assure monotonicity for a
linear logistic regression by enforcing positive coefficients. These advantages make
linear logistic regressions more desirable from an application point of view.

Although the linearity of the above model is a strong restriction from a learn-
ing point of view, the possibility of interactions between predictor variables has of
course also been noticed in the statistical literature [65]. A standard way to handle
such interaction effects is to add interaction terms to the linear function of predictor
variables. The simplest type of dependency is a linear relationship:

y =
m∑
i=1

αixi + ε , (4.3)
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where α1, . . . , αm are real coefficients and ε is an error term. Monotonicity can
be guaranteed quite easily for (4.3), since monotonicity in xi is equivalent to the
constraint αi ≥ 0. Another important advantage of (4.3) as mentioned already, is
its comprehensibility. In particular, the direction and strength of influence of each
predictor xi are directly reflected by the corresponding coefficient αi.

Perhaps the sole disadvantage of a linear model is its inflexibility and, along
with this, the supposed absence of any interaction between the variables: The ef-
fect of an increase of xi is always the same, namely ∂y/∂xi = αi, regardless of
the values of all other attributes. In many real applications, this assumption is not
tenable. Instead, more complex, non-linear models are needed to properly capture
the dependencies between the inputs xi and the output y.

Increased flexibility, however, typically comes at the price of a loss in terms
of the two previous criteria: comprehensibility is hampered, and monotonicity is
more difficult to assure. In fact, as soon as an interaction between attributes is
allowed, the influence of an increase in xi may depend on all other variables, too.
As a simple example, consider the extension of (4.3) by the addition of interaction
terms, a model which is often used in statistics:

Y =
m∑
i=1

αixi +
∑

1≤i<j≤m

αijxixj + ε . (4.4)

For this model, ∂y/∂xi is given by αi+
∑

j 6=i αijxj and depends on the values of all
other attributes, which means that, depending on the context as specified by these
values, the monotonicity condition may change from one case to another. Conse-
quently, it is difficult to find simple global constraints on the coefficients that assure
monotonicity. For example, assuming that all attributes are non-negative, it is clear
that αi ≥ 0 and αij ≥ 0 for all 1 ≤ i ≤ j ≤ m will imply monotonicity. While
being sufficient, however, these constraints are non-necessary conditions, and may
therefore impose restrictions on the model space that are more far-ranging than de-
sired; besides, negative interactions cannot be modeled in this way. Quite similar
problems occur for commonly used non-linear methods in machine learning, such
as neural networks and kernel machines. Seen from this view, a linear logistic
regression detects dependencies poorly. Actually, it considers the relationship be-
tween attributes and responses indeed quite independent.

Maximum Likelihood Estimation

In order to find the optimal generalization given some observations, one possibility
is to employ the maximum likelihood estimation. Assume some observations with
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corresponding responses are given, where the observations are assumed indepen-
dent identically distributed:

D =
{

(xi, yi)
}n
i=1
⊂ Rm ×

{
0, 1
}
.

The main idea of the maximum likelihood estimation was introduced in Subsection
2.3.1. In this section, it is used for a specific case, namely, binary classification. To
this end, the optimal parameters can be found by the approach presented in Section
2.4.

4.1.2 Choquistic Regression

The linear logistic regression has several advantages, e.g., it is interpretable and
comprehensible. It is extensively used in many scientific fields, like economics,
psychology and sociology. Moreover it is easy to enforce monotonicity to linear
logistic regression model by enforcing positive coefficients. But since the base line
model is linear, it is not possible to model any dependency between attributes and
response. Also it is not possible to model non-linear decision boundaries by using
a linear model. Those disadvantages are core motivations to propose the extended
model (extension) for linear logistic regression. However one non-trivial question
is, how is it possible to extend the linear logistic model while preserving these ad-
vantages.
In order to model non-linear dependencies between predictor variables and response,
and to take interactions between predictors into account, it is proposed to extend the
logistic regression model by replacing the linear function by the Choquet integral.

πc := P(y = 1 |x) =
1

1 + exp
(
− γ
(
Cµ(fx)− β

)) , (4.5)

where Cµ(fx) is the Choquet integral (with respect to the measure µ) of the eval-
uation function fx : {c1, · · · , cm} → [0, 1] that maps each attribute ci to a value
xi = fx(ci); β, γ ∈ R are constants.
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From Linear Logistic Regression to Choquistic Regression

In order to see that our model (4.5) is a proper generalization of standard logistic
regression, recall that the Choquet integral reduces to a weighted mean (3.2) in
the special case of an additive measure µ. Moreover, consider any linear function
x 7→ g(x) = ω0 +ω>x with ω = (ω1, . . . , ωm)>. This function can also be written
in the form

g(x) = ω0 +
m∑
i=1

(ωipi + |ωi|(Mi −mi)zi)

= ω0 +
m∑
i=1

ωipi +
m∑
i=1

|ωi|(Mi −mi)zi

= ω′0 +

(
m∑
i=1

ui

)−1 m∑
i=1

u′izi

= γ

(
m∑
i=1

u′izi − β

)
,

where pi = mi if ωi ≥ 0 and pi = Mi if wi < 0, ui = |ωi|(Mi − mi), γ =

(
∑m

i=1 ui)
−1, u′i = ui/γ, ω′0 = ω0 +

∑m
i=1wipi, β = −ω′0/γ. By definition, the u′i

are non-negative and sum up to 1, which means that
∑m

i=1 u
′
izi is a weighted mean

of the zi that can be represented by a Choquet integral.

Probabilistic Thresholding

The model (4.5) can be seen as a two-step process: The first step consists of an
assessment of the input x in terms of a utility degree

u = U(x) = Cµ(fx) ∈ [0, 1].

Then, in the second step, a discrete choice (yes/no decision) is made on the basis of
this utility. Roughly speaking, this is done through a “probabilistic thresholding” at
the utility threshold β. If U(x) > β, then the decision tends to be positive, whereas
if U(x) < β, it tends to be negative. The precision of this decision is determined
by the parameter (see 4.1): For large γ, the decision function converges toward
the step function u → I(u > β), jumping from 0 to 1 at β. For small γ, this
function is smooth, and there is a certain probability to violate the threshold rule
u → I(u > β). This might be due to the fact that, despite being important for
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decision making, some properties of the instances to be classified are not captured
by the utility function. In that case, the utility U(x), estimated on the basis of the
given attributes, is not a perfect predictor for the decision eventually made. Thus,
the parameter γ can also be seen as an indicator of the quality of the classification
model.

1
utility u estimated by the Choquet integral
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Figure 4.1: Probability of a positive decision, P(y = 1 |x), as a function of the estimated
degree of utility, u = U(x), for a threshold β = 0.7 and different values of γ.

4.1.3 Maximum Likelihood Estimation

Like the previous case, assume some observations with corresponding responses are
given, where the observations are independent identically distributed:

D =
{

(xi, yi)
}n
i=1
⊂ Rm ×

{
0, 1
}
.

So the goal is to find the parameters with respect to the choquistic regression model
to derive a proper generalization. As in the case of a linear logistic regression we
are interested in optimal parameters. The likelihood function is the same in (2.8),
where in this case the probability function is given by (4.5). The log likelihood
function for the choquistic regression case can be formulated as follows:
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l(m, γ, β) = logP(m, γ, β) = log

(
n∏
i=1

P(y(i) |x(i);m, β, γ)

)
(4.6)

=
n∑
i=1

{
y(i) log π(i)

c +
(
1− y(i)

)
log
(
1− π(i)

c

)}
. (4.7)

In this case again the log-likelihood (4.6) is convex with respect to w, γ and β.
The basic reason is that, the log likelihood function can be considered the same
like in the linear case, but with more attributes. Indeed the inner function namely,
(Cm(xi)− β) can be written in a linear form by transferring the parameters. There-
fore referring to [15, 96] the log likelihood function has a semidefinite Hessian
matrix. Hence the unique solution can be found with a conventional constrained
optimization procedure. The parameters can be found by the maximum likelihood
principle as follows:

max
m,γ,β

{
− (1− y) γ

n∑
i=1

(Cm(xi)− β)−
n∑
i=1

log
[
1 + exp (−γ Cm(xi)− β))

]}
(4.8)

s.t.

0 ≤ β ≤ 1 (4.9)

0 < γ (4.10)∑
T⊆C

m(T ) = 1 (4.11)∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ci ∈ C (4.12)

However, the function in (4.8) is convex but additionally there are several linear
constraints to assure monotonicity. Theses constraints make the optimization prob-
lem certainly more difficult. To solve this convex constrained optimization problem,
the Lagrangian method or interior-point methods [81] can be employed.
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4.2 Algorithms for Learning Monotone Ordinal Clas-
sifiers

Now suppose that aside from two opportunities possible, namely accept and reject
for the assessing of articles, there is also another opportunity, namely reject with
encouragement to resubmit. As can be seen clearly, such cases cannot be modeled
by a simple binary logistic regression. In order to extend the idea of binary logistic
regression, ordinal logistic regression comes into play.

In many applications in machine learning inheritably, there is a natural order,
i.e., there is a total order between classes. So this kind of problem can be taken into
account as a special kind of multinomial case and called ordinal class classification.
From a machine learning point of view, taking into consideration such information,
so called prior knowledge, sometimes improves the quality of generalization and
hence enhances the accuracy of prediction. So the crucial question is how one can
apply such information to improve the precision of the model? In the following dis-
cussion, one common approach to tackle the ordinal classification problem, called
ordinal logistic regression, will be introduced.

4.2.1 Ordinal Logistic Regression

In the binary case, as mentioned in Subsection 4.1.1, the logistic regression models
the probability of the positive class (and hence of the negative class) as a linear
(affine) function of the input attributes. More specifically, since a linear function
does not necessarily produce values in the unit interval, the response is defined as a
generalized linear model, namely in terms of the logarithm of the probability ratio:

log

(
P(y = 1 |x)

P(y = 0 |x)

)
= ω0 + ω>x , (4.13)

where ω = (ω1, . . . , ωm)> ∈ Rm is a vector of regression coefficients and ω0 ∈ R
a constant bias (the intercept).

Now, consider the case of an ordinal classification, where K ordered classes
are given, namely y1 ≺ . . . ≺ yK . The idea of ordinal logistic regression is to
reduce the corresponding classification problem to the binary case while taking into
account (and actually exploiting) the class order. To this end, it models a probability
ratio similar to (4.13), but this time for the cumulative distribution:
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log

(
πk(x)

1− πk(x)

)
= βk + ω>x (4.14)

for k ∈ [K − 1] = {1, . . . , K − 1}, where

πk(x) = P(y > yk | x) (4.15)

is the (conditional) probability that the class y observed for x is at least yk; corre-
spondingly,

1− πk(x) = P(y ≤ yk | x) (4.16)

is the probability that the class y is less than yk. Obviously, the left-hand side in
(4.14) is nondecreasing in k. Therefore, since the right-hand side only differs in the
intercepts (thresholds) βk, we need to impose the condition

β1 ≤ β2 ≤ . . . ≤ βK−1 .

From (4.14), one derives

πk(x) = P(y > yk | x) =
exp(βk) exp(ωTx)

1 + exp(βk) exp(ωTx)

Moreover, exploiting the definition of the cumulative distribution, the class proba-
bilities can be derived as

P(y = yk | x)

= P(y > yk−1|x)−P(y > yk|x)

= πk−1(x)− πk(x)

for k ∈ [K] (where πk(x) = 1 and π0(x) = 0 by definition).
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Figure 4.2: Illustration of the ordinal logistic regression model for Y = {y1, y2, y3, y4}
: Class assignment via hard thresholding (left) versus probabilistic classification.
The cumulative distribution yk 7→ πk(x) is shown in the middle, the probability
distribution yk 7→ P(y = yk | x) = πk(x)− πk−1(x) on the right.

4.2.2 Maximum Likelihood Estimation

The model (4.14) has several degrees of freedom: The weights parameters (ω)
and intercepts parameters (β). The goal of learning is to identify these degrees
of freedom on the basis of the training data. Assume some observations with cor-
responding responses are given, where the observations are independent identically
distributed as follows:

D =
{

(xi, yi)
}n
i=1
⊂ Rm ×

{
y1, . . . , yK

}
.

Like in the case of a standard logistic regression, it is possible to harness the maxi-
mum likelihood (ML) principle for this purpose. Given a set of training data, the es-
timation of the parameters β = (β1, . . . , βK−1) and ω is then accomplished through
maximum likelihood estimation, i.e., by maximizing the log-likelihood

l(β,ω) =
n∑
i=1

logP(yi | xi) (4.17)

=
n∑
i=1

K∑
k=1

I(yi = yk) log
(
πk(xi)− πk−1(xi)

)
, (4.18)

where I : Y → {0, 1} is the indicator function. Furthermore β1 ≤ . . . ≤ βK−1.
More precisely, the constrained optimization problem can be formalized as follows:
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max
ω,β

n∑
i=1

K∑
k=1

I(yi = yk) log
(
πk(xi)− πk−1(xi)

)
(4.19)

s.t.

0 ≤ β1 ≤ β2 ≤ . . . ≤ βK−1 .

Note that the function in (4.19) is concave with respect to ω = (ω1, . . . , ωm) and to
β = (β1 . . . , βK−1). In the following, we show that the Hessian matrix is negative
semi-definite with respect to the (ω,β). Actually the basic idea is to show that all
second partial derivatives are negative with respect to the (ω,β). This follows to
conclude that Hessian matrix is negative semi-definite with respect to the (ω,β).
To this end assume

πk(x) =
1

1 + exp(−ω>x− βk)
,

and also

F (ω,β) = πk(x)− πk−1(x)

=
1

1 + exp(−ω>x− βk)
− 1

1 + exp(−ω>x− βk−1)
.

Since the sum of convex functions are convex, it is enough to show that the− log
(
F (ω,β)

)
is convex. Let simplify the log

(
F (ω,β)

)
:

G(ω,β) = log
(
F (ω,β)

)
= −ω>x+

{
exp(−βk−1)− exp(−βk)

}
− log

{
1 + exp(−f(ω)− βk−1) + exp(−f(ω)− βk)

+ exp(−2f(ω)− βk−1 − βk)
}
.

Note that the function G(ω,β) is well defined if and only if βk > βk−1. Without a
loss of generality, one can consider βk = βk−1 + θ2. In the first step we show that
G(ω,β) is concave with respect to (ω1, . . . , ωm). Note that in addition, we assume
x ∈ Rm

+ . In the following calculations, the first partial derivative with respect to ωi
is computed as follows:

∂G(ω,β)

∂wi
= −xi

+
xi exp(−f(ω)− βk−1) + xi exp(−f(ω)− βk) + 2xi exp(−2f(ω)− βk−1 − βk)

1 + exp(−f(ω)− βk−1) + exp(−f(ω)− βk) + exp(−2f(ω)− βk−1 − βk)
,
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where in addition f(ω) = ω>x. Assuming

D(ω,β) :=1 + exp(−f(ω)− βk−1) + exp(−f(ω)− βk)
+ exp(−2f(ω)− βk−1 − βk)

N(ω,β) :=xi exp(−f(ω) + βk−1)− xi exp(−f(ω)− βk)
+ 2xi exp(−2f(ω)− βk−1 − βk)

Expk(ω,β) := exp(−f(ω)− βk)
Expk,k−1(ω,β) := exp(−2f(ω)− βk−1 − βk) ,

the second partial derivative with respect to ωj is equal to:

∂2G(ω,β)

∂wi∂wj
=

−

{
xixjExpk−1(ω,β) + xixjExpk(ω,β) + 2xixjExpk,k−1(ω,β)

}
·D(ω,β)

D(ω,β)2

−

{
xjExpk−1(ω,β) + xjExpk(ω,β) + 2xjExpk,k−1(ω,β)

}
·N(ω,β)

D(ω,β)2
.

Hence

∀ i, j ∂2G(ω,β)

∂wi∂wj
≤ 0 .

Note that x ∈ Rm
+ .

For the variables βk, βk−1 (2 ≤ k ≤ K − 1) the first and second derivatives are as
follows:

∂G(ω,β)

∂βk
= exp(−βk)

+
exp(−f(ω)− βk) + exp(−2f(ω)− βk−1 − βk)

1 + exp(−f(ω)− βk−1) + exp(−f(ω)− βk) + exp(−2f(ω)− βk−1 − βk)
.
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∂2G(ω,β)

∂β2
k

=− exp(−βk)

−

{
exp(f(ω)− βk) + exp(−2f(ω)− βk−1 − βk)

}
·D(ω,β)

D(ω,β)2

−

{
− exp(f(ω)− βk)− exp(−2f(ω)− βk−1 − βk)

}2

D(ω,β)2

∂2G(ω,β)

∂βk∂βk−1

=− exp(−2f(ω)− βk−1 − βk) ·D(ω,β)

D(ω,β)2

−
{{− exp(f(ω)− βk−1)− exp(−2f(ω)− βk−1 − βk)

}
D(ω,β)

×
{
− exp(f(ω)− βk)− exp(−2f(ω)− βk−1 − βk)

}
D(ω,β)

}
.

Hence

∀ k 1 ≤ k ≤ K − 1,
∂2G(ω,β)

∂β2
k

≤ 0

∀ k 2 ≤ k ≤ K − 1,
∂2G(ω,β)

∂βk∂βk−1

≤ 0 .

Also

∂2G(ω,β)

∂ωi∂βk
=

−
{
xi exp(−f(ω)− βk) + 2xi exp(−2f(ω)− βk−1 − βk)

}
·D(ω,β)

D(ω,β)2

−
{

exp(−f(ω)− βk) + exp(−2f(ω)− βk−1 − βk
}
·N(ω,β)

D(ω,β)2

It is easy to show that,

∀k k ∈ {1, . . . , K − 1}, ∀ i i ∈ {1, . . . ,m}, ∂2G(ω,β)

∂βk∂ωi
≤ 0 .

Since all second derivatives with respect to (ω,β) are negative then, the Hessian
matrix is negative semi definite, and therefore the logarithm of the likelihood func-
tion is concave with respect to (ω,β). On the contrary, the function −G(ω,β) is
minimized, therefore is convex respect to (ω,β).
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4.2.3 Ordinal Choquistic Regression

In order to model non-linear dependencies between predictor variables and response
and to take interactions between predictors into account, it is proposed to extend
the ordinal logistic regression model by replacing the (affine) linear function x 7→
βk + wᵀx in (4.14) by the Choquet integral. More specifically, we propose the
following model

log
( πk(x)

1− πk(x)

)
= γ

(
Cµ(fx)− βk

)
,

where Cµ(fx) is the Choquet integral (with respect to the measure µ) of the evalua-
tion function

2 
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Figure 4.3: The Illustration of the ordinal choquistic regression for 4 ordinal classes, with
same γ value and different β values

fx :
{
c1, . . . , cm

}
→ [0, 1]

that maps each attribute ci to a value xi = fx(ci); γ ≥ 0 and β1, . . . , βK−1 are real
constraints such that 0 = β1 ≤ β2 ≤ . . . ≤ βK−1 ≤ 1. In Figure 4.3, the probability
of ordinal classes for a given instance x is shown.
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4.2.4 Maximum Likelihood Estimation

Assume some observations with corresponding responses are given, in which the
observations are independent identically distributed:

D =
{

(x(i), y(i))
}n
i=1
⊂ Rm ×

{
y1, . . . , yK

}
.

So the goal is to find the proper generalization.
The model (4.17) has several degrees of freedom: The fuzzy measure µ (Möbius

transformm = mµ) determines the (latent) utility function, while the utility thresh-
olds β = (β1, . . . , βK−1) and the scaling parameter γ determine the discrete choice
model. The goal of learning is to identify these degrees of freedom on the basis of
the training data. Like in the case of standard logistic regression, it is possible to har-
ness the maximum likelihood (ML) principle for this purpose. The log-likelihood
of the parameters can be written as

l(m, γ, β) = logP(D |m, γ,β) = log

(
n∏
i=1

P(y(i) |x(i);m,β, γ)

)

=
n∑
i=1

K∑
k=1

I
(
y(i) = yk

)
log π∗k

(
x(i),m,β, γ

)
,

where

π∗k(x,m,β, γ) =
exp(−γβk) exp(γCµ(fx))

1 + exp(−γβk) exp(γCµ(fx))

− exp(−γβk−1) exp(γCµ(fx))

1 + exp(−γβk−1) exp(γCµ(fx))
.

The log likelihood function also in this case can be taken into account as a log like-
lihood function in an ordinal logistic regression case. Seen from this view, the log
likelihood is indeed a concave function, however, in the presence of several con-
straints as well. Therefore, it is counted as a constrained optimization problem. In
principle, maximization of the log-likelihood can hence be accomplished by means
of standard gradient-based optimization methods. However, since we have to assure
that µ is a proper fuzzy measure and, hence, that m guarantees the corresponding
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monotonicity and boundary conditions, we actually need to solve a constrained opti-
mization problem. Namely, the optimization under the following conditions (recall
that C = {c1, . . . , cm} denotes the set of predictor variables):

max
m,γ,β

{
n∑
i=1

K∑
k=1

I
(
y(i) = yk

)
log π∗k

(
x(i),m,β, γ

)}
(4.20)

s.t.

0 ≤ β1 ≤ β2 ≤ . . . ≤ βK−1 ≤ 1 (4.21)

0 < γ (4.22)∑
T⊆C

m(T ) = 1 (4.23)∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ci ∈ C (4.24)

Note that, the log likelihood function with respect to (ω,β) is concave. The rea-
son is the same as in the previous section. One can easily imagine, the ordinal
choquistic regression without constraints has exactly the same structure as an ordi-
nal logistic regression. However, in addition there are several constraints (linear) to
assure monotonicity. Theses constraints make the optimization problem certainly
more difficult. To this end, we used the fmincon function implemented in the
optimization toolbox of MATLAB. This method is based on a sequential quadratic
programming (SQP) approach.

4.3 Related Researches

However, the binary classifiers and ordinal classifiers in essence are used for differ-
ent goals, but since this chapter solely focuses on monotone classifiers, the ordinal
classifiers can be seen as an extension of binary classifiers. Seen from this point of
view, the approaches related to ordinal classifiers can also tackle the binary classi-
fication problem. In order to investigate in more detail monotone classifiers, this
section is allocated to present existing methods and approaches, mainly with re-
spect to the Choquet integral. In this regard, this section begins by describing the
approaches for the binary case.

Before continuing the topic, note that from a model class point of view, one can
distinguish between deterministic and probabilistic predictions. In deterministic
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predictions the range of classifiers is {0, 1}, namely classifier CLd is assumed as
follows:

CLd : X → {0, 1}

however at probabilistic case, the range of classifier CLp is [0, 1], namely

CLp : X → [0, 1] ,

where X is domain of attributes. In this regard, we take into consideration rule
models [38], which consider conjunctive statements as rules; k-nearest neighbor
[25, 40], which makes prediction based on k closest seen samples; decision trees
[38, 89], which go down (up) a tree successively and make the prediction at the
end of a leaf; support vector machines [108], in which the so-called hyper plane
maximizes the distance between two different classes, as deterministic approaches,
whereas the logistic regression model [16, 58], Bayesian regression [38], models the
dependency between input/output in a probabilistic way; kernel logistic regression
[114], which uses the logistic regression idea in a kernel framework as probabilistic
approaches. In the following discussion, we start with the approaches based on the
Choquet integral for binary classification in a deterministic framework.
Although the Choquet integral has been widely applied as an aggregation operator in
MCDM [42, 47, 52, 104], it has been used much less in the field of machine learning
so far. There are, however, a few notable exceptions. First, the problem of extracting
a Choquet integral (or, more precisely, the non-additive measure on which it is
defined) in a data-driven way has been addressed in the literature. Essentially, this
is a parameter identification problem, which is commonly formalized as a constraint
optimization problem, for example using the sum of squared errors as an objective
function [48, 105]. To this end, [77] proposed an approach based on the use of
quadratic forms, while an alternative heuristic, gradient-based method called HLMS
(Heuristic Least Mean Squares) was introduced in [43]. Besides, genetic algorithms
have been used as a tool for parameter optimization [63, 64]. Some mathematical
results regarding this optimization problem can be found in [61, 62]. In particular
methods for binary classification based on the Choquet integral were developed in
[53] and [111]. In [53], Grabisch et al. essentially employed the Choquet integral
as a fusion operator in this context. For an instance x = (x1, . . . , xm), let φ(j)

i (x)

express a measure of confidence (provided by feature ci) that x belongs to class
j ∈ {0, 1}. Grabisch defines the global confidence for class j as an aggregation of
these confidence degrees:

φµ(j)(x)
df
= Cµ(j)

(
φ

(j)
1 (x), . . . , φ(j)

m (x)
)
,
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where Cµ denotes the discrete Choquet integral with respect to the fuzzy measure µ.
Eventually, the class with the highest global confidence is predicted as an output.
Here, the fuzzy measures µ(0) and µ(1) express the importance of the features and
groups of features in the classification process. The φ(j)

i are assumed to be derived
by means of a conventional parametric or nonparametric probability density estima-
tion method, subsequent to suitable normalization. The identification of the fusion
operator is then reduced to the identification (or learning) of the fuzzy measures µ(0)

and µ(1) with 2(2m− 2) coefficients. To this end, Grabisch minimizes the empirical
squared error loss

J =
∑
x∈T0

(
φµ(0)(x)− φµ(1)(x)− 1

)2

+
∑
x∈T1

(
φµ(1)(x)− φµ(0)(x)− 1

)2
,

(4.25)

i.e., the sum of squared differences between predicted and given output values, us-
ing standard optimization routines (T0 and T1 denote, respectively, the set of ob-
served negative and positive examples). However, taking the fact into account that,
this model provides finally two different fuzzy measures (µ(0), µ(1)) causing diffi-
culties from an interpretational point of view. Assume the Shapley index and in-
teraction index for each measure are already computed. Since they are considered
with respect to the specific classes, namely positive and negative classes individu-
ally, they are not representative for whole observations. However, from a choquistic
regression point of view, the model provides a unique fuzzy measure given obser-
vations. Therefore the interpretation is also valid for whole data.
Yan, Wang and Chen [111] tackle a quite similar problem, albeit using another
optimization criterion (which can be seen as a kind of relaxed class separability
criterion). Besides, the authors define the Choquet integral based on a so-called
signed non-additive measure [79]. A signed non-additive measure µ defined on
C = {c1, . . . , cm} is a set function µ : P (C) → (−∞,∞) satisfying µ(∅) = 0. In
other words, signed non-additive measure does not satisfy monotonicity constraints.
Based on signed non-additive measure, the Choquet integral can be computed as
follows:

(c)

ˆ
fdµ =

2m−1∑
j=1

zj.µj ,
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where

zj =

 min f(xi)i:aij −max f(xi)i:bij if > 0 or j = 2m − 1

0 otherwise

with aij = frc(j/2i) ∈ [0.5, 1) and bij = frc(j/2i) ∈ [0, 0.5). Here, frc(j/2i) is
the fractional part of j/2i and the maximum operation on the empty set is zero. For
binary classification purposes they assumed the following setting:

max
β,µ

n∑
i=1

βi

such that

(c)

ˆ
fdµ− b ≤ β if the case belongs to the first class

(c)

ˆ
fdµ− b ≥ −β if the case belongs to the second class

βi ≥ 0

where β =



β1

β2

...

βn


and there are in total n records. The obvious advantage is that

here there are not any monotonicity constraints.

So far it was assumed that the classes are binary. In the following discussion,
the approaches with respect to ordinal class classification are presented. Ordinal
classification, a special type of multi-class classification in which the class labels
are linearly ordered (e.g., a paper submitted for publication can be labeled as accept,
weak accept, weak reject, or reject). The main idea of the ordinal class classification
problem has been introduced in Section (4.2). Note that in this case K classes are
given as follows:

y1 ≺ . . . ≺ yK .

Frank and Hall in [39] proposed a meta approach based on a decomposition idea.
Basically in order to tackle the ordinal class classification problem, they decompose
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theK - ordinal classes intoK−1 independent binary class problems and solve them
fully separately. Needless to say, after decomposition all (ordinal) binary classifiers
can tackle the problem, which can be seen as an advantage. However the approach
ignores some of the dependencies between ordinal classes, due to the decomposi-
tion step, i.e., there is a danger to loses some of information and interdependencies.
The ordinal logistic regression (OLR) is the most common approach, which solves
the problem in a probabilistic framework. This approach was described in detail in
Section 4.2.1. The two mentioned approaches are common approaches to tackling
the ordinal class classification problem. In the following discussion, we will focus
more on the approaches based on the Choquet integral. Historically the Choquet
integral was mostly used as an aggregation operator in decision making, and in par-
ticular as a tool for preference elicitation [2, 4, 42, 104], while it is less applied
for the purpose of learning. However, while for ordinal classification purposes, the
Choquet integral has not been used a great deal, there are a few notable exceptions:
For ordinal class classification purposes, Grabisch et al. [49, 52, 54] consider in-
put data of the following kind: A reference set of objects A = {O1, . . . ,Ol} and
a set of criteria C = {c1, . . . , cm}; a table of individual scores (performances) zki
(Ok ∈ A, ci ∈ C); a partial preorder �A on A (partial ranking of the objects on a
global basis); a partial preorder �C on C (partial ranking of the criteria); a partial
preorder �P on the set of pairs of criteria (partial ranking of interaction); the sign
of interaction between selected pairs of criteria, reflecting synergy, independence
or redundancy. All this information can be translated into linear equalities or in-
equalities between the weights of the underlying fuzzy measure µ. This measure
is then identified based on a constraint optimization problem, using as an objec-
tive function a criterion that resembles very much the so-called margin principle in
machine learning. The method itself, however, is more oriented towards decision
making and less suitable for machine learning applications. In particular, it is not
tolerant toward noise in the data, and, in terms of complexity, does not scale well
with the size of the data. In addition, specifically for (ordinal) binary classification
purposes, the whole constraints with respect to different classes must always be
considered, which makes the optimization problem more sophisticated. In (ordinal)
choquistic/logistic regression, the information about classes is a part of the objec-
tive function (4.20), and there is no need to add auxiliary constraints. This is indeed
a profit to reduce the complexity of the learning problem.
Torra also in [104] used the above setting to tackle the ordinal class classification
problem. To this end, he supposed that the observations are ranked. Namely instead
of considering ordinal classes he assumes the ordering for observations. Then the
approach tries to estimate the suitable parameters by minimizing the square error
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with additional constraints to ensuring monotonicity and can be solved by quadratic
programming. This ordering can be substituted by ordinal classes, hence the ap-
proach can tackle the ordinal class classification problem too. Let us have a look
at OLR more precisely. The OLR has two types of parameters; weight parame-
ters ω = (ω1, . . . , ωm) and intercept parameters β = (β1, . . . , βK−1). The weight
parameters and intercept parameters are estimated in the OLR case during the learn-
ing process, whereas in the model proposed by Torra the intercept parameters are
given in advance. It is clear that if in advance they are determined wrongly, the
corresponding results are not truthworthy. Especially for each dataset the intercept
parameters must be determined in advance.
In [2, 4] the Choquet integral has been used as a tool for preference elicitation. To
this end, particularly in [4], the following setting are assumed:

• pairwise preference on the alternatives,

• the comparison in terms of intensity between pair of alternatives,

• the joint comparison between importancy of criteria and their differences with
each other,

• enforcing negative and positive interaction expressing redundancy or synergy,

• the joint comparison of interaction intensity among couples of criteria and
their differences between each other.

Then they used linear programming to find the corresponding fuzzy measure, with
respect to the above constraints. In [3], the proposed solution to the problem of
learning an optimal classification function is framed through margin-maximization.

In [8], Beliakov and James develop a method for classifying journals in the field
of pure mathematics, which are rated on an ordinal scale with categories A+, A,
B and C (C ≺ B ≺ A ≺ A+). The classification is done on the basis of five
criteria serving as input attributes, namely the number of citations per year, the im-
pact factor, the immediacy index, the total number of articles published, and the
cited half-life index (we shall use the same data set in our experiments later on).
As a loss function, the authors use the absolute difference between the predicted
class and the target (i.e., the loss is |i− j| if the i-th class is predicted although the
j-th class would be correct). Basically the authors in this paper used the Choquet
integral as a tool for modeling information that may be correlated. The authors
applied FMTools, which used the least absolute deviation criterion in order to find
the weights of a fuzzy measure. In this case, the obvious disadvantage is the effect
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of the class, which has the majority of instances. In an extreme case, the optimal
solution has a high tendency for the class that has the majority of instances, which
indeed is a wrong bias.
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5
Kernel-Based Learning and Support

Vector Machines

This chapter is mainly devoted to the learning the Choquet integral in a support
vector machines framework. The main advantage of a support vector machine is
to solve the problem by linear programming (with additional constraints). Hence,
simpler solvers also can solve the problem. Besides, the parameters for the Choquet
integral are learnt in a kernel-based framework. To this end, the Choquet kernels in
Section 5.2 will be introduced. The Choquet kernel is less complex. In this regard,
we discuss exhaustively on the usefulness of the Choquet kernel for classification
purposes and corresponding to the k-additivity, different kernels are presented. The
basic idea is to learn the weights in dual form. In contrast to primal form (2.4.2)
there is no way to guarantee the monotonicity in dual form; in general, the learned
weights for the Choquet kernel do not satisfy monotonicity constraints. To over-
come this inconsistency several algorithms in Chapter 6, Section 6.4 are introduced.
Roughly speaking, the core idea is to modify the learned weights, so that finally they
can satisfy monotonicity constraints. As will be clear in the following discussion,
defining the Choquet integral in a kernel framework has several advantages, partic-
ularly in terms of computational complexity-reduction. In Chapter 7, Subsection
7.8.2 the comparison in terms of running time, regarding the complexity reduction
is demonstrated.
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Parts of this chapter were already published in [102].

5.1 Learning the Choquet Integral by Employing SVM

5.1.1 Primal Form

In this section we focus on the integration of the Choquet integral into support vector
machines. Let us assume some labeled instances, labeled by two different classes,
which in addition are assumed be i.i.d. given as follows:{

(xi, yi)
}n
i=1
⊂ Rm ×

{
− 1,+1

}
.

Here the main idea refers to learn the Möbius transform parameters by using support
vector machines. The basic idea of support vector machines was given in Subsection
2.4.2. Here the idea is referred to representation in (3.3). Basically this representa-
tion can be seen as an inner product between Möbius transform vector and the basis
functions. The set of basis functions are:{

min
i∈T
{xi}

∣∣ T ⊆ C

}
This representation allows us to consider a mapping called ϕ : Rm → R2m−1 as
follows:

ϕ(x) = ϕ(x1, . . . , xm) =
(
x1, . . . , xm,min{x1, x2}, . . . ,min{xm−1, xm},

min{x1, x2, x3}, ...,min{x1, . . . , xm}
)

Seen from this view, given the Möbius transform mI the discrete Chqouet integral
is equal to:

CmI
(x) =

〈
mI, ϕ(x)

〉
,

where in addition mI denotes the Möbius transform vector with the following or-
ders:(
m({c1}), . . . ,m({cn}),m({c1, c2}), . . . ,m({cn−1, cn}), . . . ,m({c1, . . . , cn})

)
.

Note that the order in mI is exactly the same in ϕ(x). Moreover, note that here
solely the pure definition of the discrete Choquet integral is assumed, and therefore
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instead of evaluation function f(·), we consider the instance x. The inner product
representation allows us to consider ϕ(x) as a feature mapping in SVM. Therefore
the main goal is to learn the Möbius transform parameters. Remember that in or-
der to ensure monotonicity for fuzzy measure (µ) or correspondingly the Möbius
transform (m) the constraints in (4.12) must be considered. Finally the Möbius
transform parameters can be estimated as follows:

min
ω,ξ,b

{
1

2
ω>ω +

C

n

n∑
i=1

ξi

}
s.t.

yi

(
〈ω, ϕ(xi)〉+ b

)
≥ 1− ξi, ∀ i ∈ {1, . . . , n}

ξi ≥ 0 ∀ i ∈ {1, . . . , n}∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ∀ci ∈ C (5.1)

where the vector ω is equal to:

(
m({c1}), . . . ,m({cn}),m({c1, c2}), . . . ,m({cn−1, cn}), . . . ,m({c1, . . . , cn})

)

corresponding to feature mapping ϕ(x). As can be seen, besides of constraints for
classes, there are additionally m2m−1 constraints in order to guarantee monotonic-
ity. Also the feature mapping itself has 2m − 1 components. In fact the complexity
of the problem is of course exponential and frankly speaking, for n ≥ 20 com-
putationally infeasible. Note that, in our setting

∑
B⊆Xm(B) = 1 is omitted on

purpose (such constraints can be assumed at the end of the learning process).
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Figure 5.1: Decision boundary for the Choquet integral in the case
of

{
(x, y) ∈ [0, 1]2 | x+ y −min{x, y} = max{x, y} > .5

}
,{

(x, y) ∈ [0, 1]2 | .5x+ .5min{x, y} > .5
}

and{
(x, y) ∈ [0, 1]2 | min{x, y} > .5

}
respectively.

Figure 5.1 shows the flexibility of the Choquet integral facing binary class clas-
sification problem.

5.1.2 Dual Form

The basic idea of kernel-based learning and the dual form setting have been pre-
sented in Subsection 2.4.3. The main idea here is to embed the Choquet integral
in a kernel-based framework. To this end, the so-called Choquet kernel comes into
play. Basically the core idea is to reduce the complexity of the problem (from 2m

to m2 logm) by defining a new kernel. In this case, we seek the {αi}ni=1, which
minimize the following objective function under constraints.

min
α

{
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK
k=p
C (xi,xj)−

n∑
i=1

αi

}
s.t.
n∑
i=1

yiαi = 0

0 ≤ αi ≤ C ∀i ∈ {1, . . . , n}

Here C is a typical SVM trade-off parameter and Kk=p
C is referred to the Choquet

kernel of degree p. In this new setting, so far we did not consider the constraints
in (5.1). At this point, it should be clarified, that the setting underlying the SVM
is quite different compared to the setting underlying the kernels method in terms of
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ensuring monotonicity constraints. In SVM-setting all monotonicity constraints are
taken into consideration, whereas in kernel-based learning there is no monotonicity
constraint at all. Roughly speaking, in this case, we do not want to enforce the
monotonicity constraints artificially in our setting. Accounting for the fact that,
satisfying monotonicity constraints can be done partially by training examples, the
hope is, due to the monotonicity property of training example (of course depends on
the training examples), such a property can be inherited by the the model-parameters
at least partially.

Such expectations are not at all unrealistic, and in the following we show how
empirically those expectations can be satisfied. It should be once again emphasized
that if the training examples hold monotonicity property related to input and output
spaces, this kind of properties can be captured by the model inheritably. In general,
the core idea of learning is to bias the observations, although such expectations can
be satisfied partially.

Main Motivation

As discussed earlier, the complexity of learning the Choquet integral, more pre-
cisely estimating parameters for the Möbius transform, even for small k- additive
case is expensive. Actually what makes the learning process more sophisticated, are
the monotonicity constraints; which so far always had to be considered. Loosely
speaking, one also can think on learning the Choquet integral without any mono-
tonicity constraints (relax optimization) and after estimating the parameters try to
fix/correct the inconsistencies. Basically the expectation is that during the learning
process, the monotone data can enforce monotonicity behavior (at least partially) to
our model. Of course we cannot expect the extracted model to be quite monotone,
but at least there is a hope to satisfy monotonicity constraints partially. Finally,
the algorithm fixes the inconsistencies in the fuzzy measure. To this end, several
algorithms to fix the inconsistencies are presented in Chapter 6.

5.2 The Choquet Kernels

In this section we consider solely the feature mapping built by basis functions in
equation (3.3). More precisely, the expression in (3.3) can also be written in terms
of an inner product 〈

mI, ϕ(f(x))
〉
,
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with the mapping ϕ : Rm → R2m−1 defined as follows:

ϕ(x) = ϕ(x1, . . . , xm) =
(
x1, . . . , xm,min{x1, x2}, . . . ,min{xm−1, xm},

min{x1, x2, x3}, . . . ,min{x1, . . . , xm}
)

and in additionmI denotes the vector(
m({c1}), . . . ,m({cn}),m({c1, c2}), . . . ,m({cn−1, cn}), . . . ,m({c1, . . . , cn})

)
.

Let us investigate more in the details feature mapping ϕ(·). Basically ϕ(·) can
be seen as a mapping, which maps the elements from Rm to R2m−1. Assuming
x,x∗ ∈ Rm, this notation allows us to define an inner product between ϕ(x) and
ϕ(x∗) as follows:

〈
ϕ(x), ϕ(x∗)

〉
= x1x

∗
1 + . . .+ xmx

∗
m+ min{x1, x2}min{x∗1, x∗2}+ . . .

+ min{x1, x2, . . . , xm}min{x∗1, x∗2, . . . , x∗m}

We write
〈
ϕ(x), ϕ(x∗)

〉
as Kk=m

C (x,x∗), and claim that Kk=m
C (x,x∗) is a kernel.

This claim is validated for the well-known kernel properties; it is defined on the
inner product of feature mapping ϕ(·).

So farKk=m
C (x,x∗) has a computational complexity ofO(2m), because of 2m−

1 summands. Our idea refers to computing the kernel, which we call it henceforth
the Choquet kernel, in the most efficient way. Loosely speaking, the idea is to
compute Kk=m

C in a way that the computational complexity is reduced to O(m2).

Full Choquet Kernel

Proposition 5.1 Kk=m
C (x,x∗) can be reformulated as follows:

Kk=m
C (x,x∗) =

〈
x,x∗

〉
+

m−1∑
i=1

xσi ·

{
m−1−i∑
j=0

2m−1−i−j min
{
x∗σi , x

∗
Ψ∗i,j+1

}}
,

where σ sorts the values of first instance in increasing way, namely, xσ1 ≤ ... ≤
xσm , namely

xσ1 ≤ ... ≤ xσm

↓ ...... ↓
x∗σ1 ........ x∗σm
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and x∗Ψ∗i,l indicates the l-th ordered value in subset
{
x∗σi , ..., x

∗
σm

}
.

Proof 5.1 We start first with
〈
ϕ(x), ϕ(x∗)

〉
. With out loss of generality assume

that there are two permutations, namely σ, where

xσ1 ≤ ... ≤ xσm

↓ ...... ↓
x∗σ1 ...... x∗σm

In general,
〈
ϕ(x), ϕ(x∗)

〉
can be written as follows:

〈
ϕ(x), ϕ(x∗)

〉
=
〈
ϕ(σ(x)), ϕ(σ(x∗))

〉
= xσ1x

∗
σ1

+ . . .+ xσmx
∗
σm + min{xσ1 , xσ2}min{x∗σ1 , x

∗
σ2
}

+ . . .+ min{xσ1 , xσ2 , . . . , xσm}min{x∗σ1 , x
∗
σ2
, . . . , x∗σm} (5.2)

=
〈
x,x∗

〉
+

m−1∑
i=1

xσi ·

{
m−i∑
s=1

℘(i, s)

}
,

where additionally

℘(i, s) =
∑

i<j<k<...<p≤m

min
{
x∗σi , x

∗
σj
, x∗σk , . . . , x

∗
σp

}
=

m∑
j=i+1

m∑
k=j+1

. . .
m∑

p=o+1︸ ︷︷ ︸
s-summations

min
{
x∗σi , x

∗
σj
, x∗σk , . . . , x

∗
σp

}

It is also easy to check that when ξ is a permutation such that

xξ1 ≤ . . . ≤ xξp

then ∑
T⊆{xξ1 ,...,xξp}

min
{
T
}

=

p−1∑
i=0

2p−1−ixξi+1
(5.3)

Note that, here 1 ≤ |T | ≤ p. Let us assume that given instance x∗ = (x∗1, . . . , x
∗
p),

x∗Ψ∗j is j-th ordered value among {x∗1, . . . , x∗p}. Moreover assume x∗∆∗ is a different
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value for which we do not know the order of this value among {x∗1, . . . , x∗p}. The
goal is to compute

∑
T⊆{x∗1,...,x∗p}

min{x∗σ, T}. Since we do not know the position of
x∗σ we use the following trick:

min
{
x∗σ, T

}
= min

{
x∗σ,min{T}

}
Using equation 5.3 and the previous line, we get the following equation:

∑
T⊆{x∗1,...,x∗p}

min{x∗σ, T} =

p−1∑
j=0

2p−1−j min
{
xσ, xΨ∗j

}
,

where x∗Ψ∗j is j-th ordered value among {x∗1, . . . , x∗p}. In other words∑
T⊆{xξ∗

k
|k>r}

min{xσ, xξ∗r , T} = 2|T |min{xσ, xξ∗r} ,

where T = ∅ is as well considered and

x∗ξ∗1 ≤ . . . ≤ x∗ξ∗p .

Then

m−i∑
s=1

℘(i, s) =
m−1−i∑
j=0

2m−1−i−j min
{
xσi , xΨ∗i,j+1

}
.

Substituting the above equation in (5.2), we get the compact form of the Choquet
kernel. �

For instance assume x = (2, 1, 3),x∗ = (1, 9, 7). Then
〈
ϕ(x), ϕ(x∗)

〉
=

(2+9+21)+(1+2+7+1) = 43. Based on our definition σ(x) = (1, 2, 3), σ(x∗) =

(9, 1, 7) and finallyKk=3
C (x,x∗) = (2+9+21)+1×{21×1+20×7}+2×{20×1} =

43.

Remark 5.1 (complexity Issue) In order to show that the complexity of the Choquet
kernel is quadratic, first of all the elements of x are sorted. Assume the elements
of x are already sorted by permutation σ. Then suppose the Choquet kernel as
follows:
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m−1∑
i=1

xσi ·

{
m−1−i∑
j=0

2m−1−i−j min
{
x∗σi , x

∗
Ψ∗i,j+1

}}
.

The inner summation has complexity of O(m) and since there are two summands
the whole complexity is O(m2). Moreover, the complexity of sorting the elements is
O(m logm). Considering these facts together, in the end the computational com-
plexity of full Choquet kernel is O(m2 +m logm) = O(m2).

2-additive Choquet Kernel

Corollary 5.1 For k = 2 the Choquet kernel can be reformulated as follows:

Kk=2
C (x,x∗) =

〈
X,X∗

〉
+

m−1∑
i=1

xσi ·

{
m∑
j=i

min

{
x∗σi , x

∗
σj

}}
.

3-additive Choquet Kernel

Corollary 5.2 For k = 3 the Choquet kernel can be reformulated as follows:

Kk=3
C (x,x∗) =

〈
X,X∗

〉
+

m−1∑
i=1

xσi ·

{
m−i∑
j=1

(m− i− j) min

{
x∗σi , x

∗
Ψ∗i,j

}}
.

Proof 5.2 The idea of proof is the same as proposition 1, with the following equa-
tion: ∑

T⊆{x1,...,xp}
|T |<3

min
{
x∗σi , T

}
=

p∑
k=0

(p− k) min
{
x∗σi , x

∗
Ψ∗k

}
.

�

4-additive Choquet Kernel

Corollary 5.3 For k = 4 the Choquet kernel can be reformulated as follows:

Kk=4
C (x,x∗) =

〈
x,x∗

〉
+

m−1∑
i=1

xσi ·

{
m−i−1∑
j=0

{(
m− i+ 1− j

2

)
+ 1

}
min

{
x∗σi , x

∗
Ψ∗i,j+1

}}
.
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Proof 5.3 The idea of proof is the same as proposition 1, with the following equa-
tion:

∑
T⊆{x1,...,xp}
|T |<4

min

{
x∗σi , T

}
=

p−1∑
k=1

{(
p+ 1− k

2

)
+ 1

}
min

{
x∗σi , x

∗
Ψ∗k

}
.

�
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6
Capacity Control

So far two different inductive principles were taken into consideration to establish
monotone classifiers based on the powerful aggregation function, namely the Cho-
quet integral. From a machine learning point of view, of course a natural question
is, how flexible are the proposed classifiers? This question is addressed as the so-
called VC dimension. This chapter begins by exploiting some theoretical results
regarding the VC dimension of the Choquet integral. The theoretical results con-
firm that the VC dimension of the model class regarding of the Choquet integral
is high. As discussed earlier, the high degree of flexibility exposes several disad-
vantages, e.g., the overfitting problem. As can be seen, there is indeed a demand
to reduce this flexibility with respect to different training examples. To this end,
the typical approach is to regularize the model, which is addressed as regularization
methods. Considering the overfitting issue, we propose two types of regularization
and we introduce the algorithms in Section 6.2.

Since the Choquet integral generally for full case and particularly for k−additive
case has an exponential number of constraints to ensure monotonicity, learning this
kind of model is indeed highly complex. Therefore, one common question is how
can the related complexity be reduced? In particular, how is it possible to reduce
the number of monotonicity constraints? For this purpose, in this chapter several
algorithms for the complexity reduction issue are presented. Regarding the com-
plexity issue, there are many types of measurement to quantify the complexity, e.g.,
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in terms of running time or in terms of capacity. For instance, two algorithms can
have the same computational complexity from a theoretical point of view, but in
practice they are different from a running time point of view. In this view, we take
into consideration both aspects and the related results are presented.

The reduction of computational complexity is usually considered for supervised
learning. The computational complexity reduction also can be investigated under
unsupervised learning. In particular, in the Choquet integral case, since in the fea-
ture space there are an exponential number of features, it is quite necessary to ex-
ploit some dependencies in the feature space. This kind of reduction is addressed in
Section 6.3.1.

As mentioned, the level of complexity of the Choquet integral can be chosen
under k-additivity (3.3.4) in advance. In this Chapter, the 2-additive case is con-
sidered, and two different computational complexity reductions are shown. In fact,
there are several reasons to consider the 2-additive case. The 2-additive case is the
first non-linear level complexity from the Choquet integral. In the 2-additive case,
solely the interactions in a pairwise manner are taken into account, which are more
interpretable and comprehensive. Note that, although in the 2-additive case, only
the pairs are considered, the number of constraints to ensure monotonicity are ex-
ponential. It is shown in Subsection 6.3.2 that the exponential complexity can be
reduced to the quadratic complexity.

So far, we always considered the monotonicity constraints during learning pro-
cess. In general, one may also think about learning the weight parameters without
any monotonicity constraints. The expectation is that the constraints can be satisfied
at least partially. In Section 6.4 we present the core idea to fix the inconsistencies
among the weights for fuzzy measure. Remember that the ultimate goal in this
thesis is to estimate the proper fuzzy measure given some observations. As men-
tioned earlier, the goal is to learn the Choquet integral as an aggregation function
in our approaches. Loosely speaking, the learning problem comes down to learning
the fuzzy measure. In Section 6.4 the core idea to monotonize the non-monotone
measure is discussed. Before continuing the topic, it should be emphasized that by
capacity we mean the flexibility of a classifier and should not be confused with the
concept of capacity of a measure in Chapter 3.
Parts of this chapter were already published in [59, 60, 98, 101].
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6.1 Under VC Dimension of the Choquet Integral

The basic definition and idea of the VC dimension has been discussed in Subsec-
tion 2.3.2. In this section, we discuss the VC dimension of the Choquet integral.
Advocating the Choquet integral as a novel tool for machine learning immediately
begs an interesting theoretical question, namely the question regarding the capacity
of the corresponding model class. In fact, since the Choquet integral in its general
form (not restricted to k-additive measures) has a rather large number of parame-
ters, one may expect it to be quite flexible and, therefore, to have a high capacity.
On the other hand, the parameters cannot be chosen freely. Instead, they are highly
constrained due to the properties of the underlying fuzzy measure.

In this section, we are going to analyze the capacity of the Choquet integral
in terms of the VC dimension [108]. To this end, we consider a setting in which
the Choquet integral is used to classify instances represented in the form of m-
dimensional vectors x = (x1, x2, . . . , xm) ∈ Rm

+ , where xi = f(ci) can be thought
of as the evaluation of the criterion ci. More specifically, we consider the model
classH consisting of all threshold classifiers of the form

x = (x1, x2, . . . , xm) 7→ I
(
Cµ(x) > β

)
, (6.1)

where I maps truth degrees {false, true} to {0, 1} and as usual, µ is the fuzzy mea-
sure, Cµ(x) is the Choquet integral of the (normalized) attribute values x1, x2, . . . , xm
and β ∈ [0, 1] is a threshold value (since this part is responsible for the classifica-
tion decision, results on the VC dimension of H directly apply to the choquistic
regression, as well). Note that the classH is parametrized by µ and β.

Theorem 6.1 For the model class H as defined above, V C(H) = Ω(2m/
√
m).

That is, the VC dimension ofH grows asymptotically at least as fast as 2m/
√
m.

Proof 6.1 In order to prove this claim, we construct a sufficiently large data set D
and show that, despite its size, it can be shattered by H. In this construction, we
restrict ourselves to binary attribute values, which means that xi ∈ {0, 1} for all
1 ≤ i ≤ m. Consequently, each instance x = (x1, . . . , xm) ∈ {0, 1}m can be
identified with a subset of indices Sx ⊆ X = {1, 2, . . . ,m}, namely its indicator set
Sx = {i |xi = 1}.

In combinatorics, an antichain of X = {1, 2, . . . ,m} is a family of subsets
A ⊂ 2X such that, for all A,B ∈ A, neither A ⊆ B nor B ⊆ A. An interesting
question related to the notion of an antichain concerns its potential size, that is,
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the number of subsets in A. This number is obviously restricted due to the above
non-inclusion constraint on pairs of subsets. An answer to this question is given by
a well-known result of Sperner [92], who showed that this number is

(
m

bm/2c

)
. (6.2)

Moreover, Sperner has shown that the corresponding antichain A is given by
the family of all q-subsets of X with q = bm/2c, that is, all subsets A ⊂ X such
that |A| = q.

Now, we define the data set D in terms of the collection of all instances x =

(x1, . . . , xm) ∈ {0, 1}m whose indicator set Sx is a q-subset of X . Recall that, from
a decision making perspective, each attribute can be interpreted as a criterion.
Thus, each instance in our data set satisfies exactly q of the m criteria, and there
is not a single “dominance” relation in the sense that the set of criteria satisfied
by one instance is a superset of those satisfied by another instance. Intuitively, the
instances inD are therefore maximally incomparable. This is precisely the property
we are now going to exploit in order to show that D can be shattered byH.

Recall that a set of instances D can be shattered by a model classH if, for each
subset P ⊆ D, there is a model H ∈ H such that H(x) = 1 for all x ∈ P and
H(x) = 0 for all x ∈ D \ P . Now, take any such subset P from our data set D as
constructed above, and recall that the Choquet integral in (6.1) can be written as

Cµ(x) =
∑
T⊆C

m(T )× fT (x) , (6.3)

where fT (x) = 1 if T ⊆ Sx and fT (x) = 0 otherwise. We define the valuesm(T ),
T ⊆ C, of the Möbius transform as follows:

m(T ) =

 |P|
−1 if T = Sx for some x ∈ P

0 otherwise
.

Obviously, this definition of the Möbius transform is feasible and yields a proper
fuzzy measure µ: The sum of masses is equal to 1, and since all masses are non-
negative, monotonicity is ensured right away. Moreover, from the construction of
m and the fact that, for each pair x 6= x′ ∈ D, neither Sx ⊆ Sx′ nor Sx′ ⊆ Sx, the
Choquet integral is obviously given as follows:
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Cµ =

 |P|
−1 if x ∈ P

0 otherwise
.

Thus with β = 1/(2|P|), the classifier (6.1) behaves exactly as required, that is,
it classifies all x ∈ P as positive and all x 6∈ P as negative.

Noting that the special case where P = ∅ is handled correctly by the Möbius
transformm such thatm(C) = 1 andm(T ) = 0 for all T ( C (and any threshold
β > 0), we can conclude that the data set D can be shattered by H. Consequently,
the VC dimension of H is at least the size of D, whence (6.2) is a lower bound of
V C(H).

For the asymptotic analysis, we make use of Sterling’s approximation of large
factorials (and hence binomial coefficients). For the sequence (b1, b2, . . .) of the
so-called central binomial coefficients bn, it is known that

bn =

(
2n

n

)
=

(2n)!

(n!)2
≥ 1

2

4n√
π · n

.

Thus, the fact that V C(H) grows asymptotically at least as fast as 2m/
√
m imme-

diately follows by setting n = m/2 and ignoring constant terms.

Remark 6.2 Recall the expression (3.3) of the Choquet integral in terms of its
Möbius transform. This expression shows that the Choquet integral corresponds
to a linear function, albeit a constrained one, in the feature space spanned by the
set of features

{
fT |T ⊆ {1, 2, . . . ,m}

}
(already used in (6.3)) , where each fea-

ture is a min-term

fT = fT (x) = fT (x1, . . . , xm) = min
i∈T

xi . (6.4)

The dimensionality of this feature space is 2m − 1. Thus, it follows immedi-
ately that V C(H) ≤ 2m (the class of linear hyperplanes in Rm has VC dimension
m + 1). Together with the lower bound 2m/

√
m, which is not much smaller (de-

spite the restriction to binary attribute vectors), we thus dispose of a relatively tight
approximation of V C(H).

Remark 6.3 Interestingly, the proof of Theorem 6.1 does not exploit the full non-
additivity of the Choquet integral. In fact, the measure we constructed there is
bm/2c-additive, since m(T ) = 0 for all T ⊆ C with |T | > bm/2c. Consequently,
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the estimation of the VC dimension still applies to the restricted case of k-additive
measures, provided k ≥ bm/2c. For smaller k, it is not difficult to adapt the proof
so as to show that

V C(H) ≥
(
m

k

)
. (6.5)

In this regard, it is also quite interesting to compare the above results with prac-
tical results in [13, 84].

6.2 Regularization

One of the common problems, which can occur during the learning process is the
overfitting problem. The problem usually occurs when the number of attributes (in
the feature space of the model) compared to the number of samples are relatively
high. In order to overcome this problem, so far we have considered the reduction
in terms of model-restriction. Specifically, given a k, k-additive Choquet integral
and particularly the k = 2, 2-additive Choquet integral, has been chosen in ad-
vance. This means, we restricted our model to a certain degree of interaction. More
precisely, considering a k-additive model, automatically implies that the l-way in-
teractions, for l > k, are not taken into account. In fact, selecting the model in
advance causes to ignore some interactions unwillingly.

There is also another way to overcome the over-fitting problem. From a machine
learning point of view, typically the regularization technique is used to prevent over-
fitting. Roughly speaking, the regularization technique is to add artificially more
constraints on parameters in order to restrict the model in a sound way. The selec-
tion or design of the constraints are mainly related to the structure of model. For
instance, while a specific regularization for a certain model can improve the perfor-
mance, it can decline the performance of other models. In this section, two types of
regularizations are presented and discussed in the more detail the properties of each
regularization.

6.2.1 L1-Regularization

From a machine learning point of view, one traditional way to prevent overfitting
is to use L1-regularization. Basically L1-regularization is added to an objective
function as the following form:

86



min(max)
{
OF (ν)

}
+ min(−max)

{ p∑
i=1

|νi|
}
,

where ν =
{
νi
}p
i=1

are the model parameters andOF (·) is assigned to the objective
function. As can be seen, the L1-regularization prevents unnecessary weights.

For our setting, namely, the choquistic regression we proposed the following
form:

max
m,γ,β

{
− γ

n∑
i=1

(1− y(i))
(
Cm(x(i))− β

)
(6.6)

−
n∑
i=1

log
(
1 + exp(−γ (Cm(x(i))− β))

)
− η

∑
T⊆C

|m(T )|
}

s.t.

η, γ > 0, 0 ≤ β ≤ 1∑
T⊆C

m(T ) = 1,∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ∀ci ∈ C.

The last part of the objective function (6.6) is a standard L1-regularizer on the
Möbius transform, which is added as a means to prevent over-fitting; moreover,
since many weights are typically set to 0 under L1-regularization, it also serves as
a feature selection mechanism [70]. Of course this idea also can be applied to other
learning problem. The corresponding results for choquistic regression are shown in
Chapter 7 Table 7.3.

6.2.2 Hierarchical Regularization

As mentioned previously, the concept of regularization is absolutely related to the
model class assumption. In this section we proposed a specific kind of regular-
ization, which takes to the consideration different levels of complexity. Indeed,
the idea is to use different regularization terms for different levels of complexity.
Roughly speaking the core idea is to weight different parameters from different lev-
els by different weights. More precisely, we make a distinction between parameters
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when the parameters do not belong to same level of k-additivity. More formally, the
regularization term is formalized as follows:

l = γ
(∑
A⊆C

f(|A|)
∣∣m(A)

∣∣) , (6.7)

where f(·) is a strictly increasing function. Defining f(·) as a strictly increasing
function, this term encourages m(A) = 0 for larger subsets of criteria A; in other
words, it encourages a restriction to measures with a low level of non-additivity.
We note that (6.7) can be seen as a specific instance of the idea of “hierarchical
regularization” as introduced in [5], with a hierarchy on the power set 2C defined
through subset cardinality (i.e., the first level of the hierarchy are the singletons
{ci}, the second level the two-subsets {ci, cj}, etc.).

Also the magnitude of γ and f indicate the complexity of the model. The higher
the γ and larger the f , the less complex the model, whereas the lower the γ and the
smaller the f , the more complex the model.

Figure 6.1: Illustrative of Hierarchical Regularization for 4 criteria; the dicker the length
of box, the more penalization of the joint weights

The corresponding results are shown in Chapter 7 Table 7.10 as OCR+R.
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6.3 Complexity Reduction

6.3.1 Complexity Reduction by Exploiting Dependency

Obviously, the Choquet integral can be interpreted as fitting a (constrained) linear
function in the feature space spanned by the set of features fT defined by (6.4), with
one feature for each subset of criteria T ⊆ {c1, c2, . . . , cm}. Since the dimensional-
ity of this feature space is 2m − 1, the method is clearly critical from a complexity
point of view. To reduce this complexity in we propose in this section an idea which
takes into consideration the data. In other words, the data can be used as a hint to
reduce the complexity.

In this regard, one may wonder whether some of the features from (6.4) could
not even be eliminated prior to solving the actual optimization problem. Specifi-
cally interesting in this regard is a possible restriction of the Choquet integral to k-
additive measures, for a suitable value of k < m. Besides, a restriction to k-additive
measures may also have advantages from a learning point of view, as it reduces the
capacity of the underlying model class and thus may prevent over-fitting the data in
cases where the full flexibility of the Choquet integral is actually not needed. Of
course, the key problem to be addressed concerns the question of how to choose k
in the most favorable way.

Exploiting Equivalence of Features for Dimensionality Reduction

In the following, we shall elaborate on the following question: Is it possible to find
an upper bound on the required level of complexity of the model, namely the level of
additivity k, prior to fitting the Choquet integral to the data? Or, more specifically,
can we determine the value k in such a way that fitting a k-additive measure is
definitely enough, in the sense that each labeling of the training data produced by
the full Choquet integral (k = m) can also be produced by a Choquet integral based
on a k-additive measure?

In this regard, it is noticeable that, for a given instance x = (x1, . . . , xm), many
of the min-terms (6.4) will assume the same value (in fact, there are 2m − 1 such
terms but only m possible values). Consequently, in the expression

Cµ(x) =
∑
T⊆C

m(T )× fT (x) (6.8)

of the Choquet integral, many coefficients m(T ) can be grouped and, in principle,
be replaced by a single one. The groups thus defined solely depend on the order of
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the values x1, . . . , xm of the original attributes. The number of terms in (6.8) will
thus reduce from 2m − 1 to at most m. However, since the order may change from
instance to instance, different groupings may be obtained for different instances.

Now, imagine that a subset of features F = {fT1 , . . . , fTr} assumes the same
value, not only for a single instance, but for all instances in the training data. Then,
this set can be said to form an equivalence class. Thus, one of the features could
in principle be selected as a representative, absorbing all the weights of the others;
more specifically, the weight of this feature would be set tom(T1)+m(T2)+ . . .+

m(Tr), while the weights of the other features in F would be set to 0.
Note, however, that this “transfer of Möbius mass” will in general not be feasi-

ble, as it may cause a violation of the monotonicity constraint on the fuzzy measure
µ. As a side remark, we also note that, from a learning point of view, the equiv-
alence of features may obviously cause problems with regard to the identifiability
of coefficients; due to the monotonicity constraints just mentioned, however, this is
not necessarily the case.

More generally, for two features fA and fB (A,B ⊆ C), denote by v(A,B) ∈
[0, 1] the fraction of training examples on which they assume the same value. We say
that fA covers fB (and, vice versa, fB covers fA) if v(A,B) = 1. Moreover, for a
feature fA, we denote byC(fA) ⊆ 2C the set of features it covers. A straightforward
way to find a sufficiently large k then consists of finding the smallest k such that⋃

T⊆C, |T |≤k

C(fT ) = 2C . (6.9)

From the above construction, it follows that working with the corresponding k-
additive measure, for k thus defined, is theoretically sound and guarantees that there
is no loss in terms of the expressivity of the model on the training data. We summa-
rize this finding in terms of the following proposition.

Proposition 6.1 Consider a set of training instances x(1), . . . ,x(n) and let k∗ be
the smallest value in {1, . . . ,m} satisfying (6.9). Moreover, let µ be any measure
on the set of criteria {c1, . . . , cm}, and Cµ the Choquet integral with respect to this
measure. Then, there exists a k-additive measure µ∗ such that

Cµ∗(x(i)) = Cµ(x(i)) (6.10)

for all i ∈ {1, . . . ,m}.

We like to emphasize that k∗ is only an upper bound on the complexity needed
to fit the training data. Thus, it is not necessarily the optimal k from the point of
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view of model induction (which might be figured out by the regularizer in (6.6)).
In particular, note that the computation of k∗ does not refer to the output values
y(i). Instead, it should be considered as a measure of the complexity of the training
instances. As such, it is obviously connected to the notion of the VC dimension.

Since the exact reproducibility (6.10) may appear overly stringent or, stated dif-
ferently, a small loss may actually be acceptable, we finally propose a relaxation
somewhat in line with the idea of probably approximately correct (PAC) learning
[106]. First, noting that the Choquet integral may change by at most ε when com-
bining features fA and fB such that |fA − fB| < ε, one may think of relaxing the
definition of equivalence as follows: fA and fB are ε-equivalent (on a given training
instance x) if |fA(x) − fB(x)| < ε. Second, we relax the condition of coverage.
Denoting by v(A,B) ∈ [0, 1] the fraction of training examples on which fA and fB
are ε-equivalent, we say that fA ε-δ-covers fB if v(A,B) ≥ 1− δ.

Algorithm 1 k∗ - algorithm

Inputs: ε, δ, C = {c1, . . . , cm}, training data: TR = {xi}ni=1 and
features F = {fT | T ⊆ C}

k = |C|
while k > 1 do
Gk =

{
fT | |T | = k

}
for fT ∈ Gk do

for S ⊆ C, |S| ≤ k, S 6= T do

if
∣∣{x∈TR∣∣|fT (x)−fS(x)|<ε

}∣∣
|TR| > 1− δ then

Gk = Gk \ {fT}
end if

end for
end for
if Gk = ∅ then
k = k − 1

else
break
return k

end if
end while
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Roughly speaking, for a small ε and δ close to 0, this means that, with only a
few exceptions, the values of fA and fB are almost the same on the training data
(we recommend ε = δ = 0.05 are reasonable default parameters). In order to find
a proper upper bound k∗, the principle (6.9) can be used as before, just replacing
coverage with ε-δ-coverage. The corresponding results are presented in Table 7.11.
These results can be compared with the results in Table 7.3.

In order to find the proper k the Algorithm 1 is used in the experimental setup:
Basically, the algorithm in each step constructs a set of features corresponding to
k-additivity level (Gk). In the first step it starts with the features which were de-
rived from biggest subset of C, namely in starting it considers only fC . Then the
algorithm searches in all features, which have cardinality smaller than |C|. If a fea-
ture that satisfies the ε, δ property is found, the algorithm removes fC and goes one
level deeper, namely to level |C| − 1. Then it checks, whether for all features fT in
G|C|−1, there a feature fS , exists with |S| ≤ |T | and S 6= T , so that can satisfy ε, δ
property. Iteratively algorithm updates the set G|C|−1 and in the end checks whether
G|C|−1 = ∅. If it is the case, the algorithm goes one level deeper and performs the
same procedure, otherwise it terminates and returns k.

6.3.2 2-additive Choquet Integral

In this section, we propose two approaches for reducing this complexity in the spe-
cific though practically relevant case of the 2-additive Choquet integral. Apart from
theoretical results, we also present an experimental study in which we compare the
two variants with the original implementation of choquistic regression. In the fol-
lowing, we restrict ourselves to the specific case of 2-additive fuzzy measures. This
restriction is interesting for several reasons. In particular, one may of course hope
for a gain in terms of computational efficiency. Besides, however, let us mention
that a restriction of this kind is also interesting from a learning point of view: By
allowing one to capture pairwise interactions between attributes, the 2-additive case
is a proper generalization of the linear model, while at the same time, it is still rea-
sonable in terms of the number of degrees of freedom. In fact, while the number of
parameters to be estimated is exponential (in the number of attributes) in general,
it is only quadratic in the 2-additive case. Practically, we could observe that the
high flexibility of the general model is rarely needed; on the contrary, it often leads
to problems of over-fitting the data, thereby compromising generalization perfor-
mance.
Coming back to the computational aspect, the number of parameters to be estimated

92



is indeed reduced, since m(A) = 0 for all A ⊆ C such that |A| > 2. On the other
hand, it is important to observe that the number of constraints does not reduce: Al-
though the number of summands in each of the constraints (4.12) becomes smaller
(since many of them are now 0), the number of constraints themselves remains the
same. In the following, we shall therefore look for ways to exploit the simplified
structure of the 2-additive case in order to reduce the number of constraints.

Alternative Formulation I

Like before let C = {c1, . . . , cm} and let M denote the class of nonnegative mono-
tone set functions on C, i.e., the class of functions ν : 2C → [0,+∞) such that
ν(A) ≤ ν(B) for all A ⊆ B ⊆ C; for the time being, we neglect the normalization
condition, as it is less important for our purpose (it constitutes a single constraint
that must be added to the optimization problem in order to turn a monotone measure
into a fuzzy measure). More specifically, we are interested in the subclass M2 ⊂M

of 2-additive measures ν, i.e., whose Möbius transform satisfies mν(A) = 0 for all
A ⊆ C such that |A| > 2.
The following characterization is well-known (see, e.g., Proposition 1 in [75]):
ν ∈ M2 if and only if the following constraints Ci,X are satisfied for all ci ∈ C

and X ⊆ Ci = C \ {ci}:

Ci,X : mi +
∑
cj∈X

mi,j ≥ 0 , (6.11)

where mi = mν({ci}) and mi,j = mν({ci, cj}). Note that the number of con-
straints (6.11) is still exponential in m. Yet, we can show that they can be expressed
equivalently in terms of a smaller number of constraints (albeit at the expense of
introducing additional variables).

Proposition 6.2 Condition (6.11) is equivalent to the following condition: For all
ci ∈ C, there exist αi,j ∈ R, cj ∈ Ci, such that

αi,j ≥ 0∑
{j|cj∈Ci}

αi,j ≤ 1

mi ≥ 0

mi,j ≥− αi,j ·mi

(6.12)
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Proof 6.2 Let ν ∈ M2 and suppose (6.11) to hold. For ci ∈ C, (6.11) with X = ∅
implies mi ≥ 0. Now, define C−i = {j | cj ∈ Ci,mi,j < 0}, C+

i = {j | cj ∈
Ci,mi,j ≥ 0}, and let

f(n) =

{
0, if j ∈ C+

i
|mi,j |
mi

, if j ∈ C−i
(6.13)

Since (6.11) holds with X = C−i , we have∑
j∈C−i

|mi,j| ≤ mi (6.14)

and therefore

∑
j∈Ci

αi,j =
∑
j∈C−i

αi,j =
∑
j∈C−i

|mi,j|
mi

=
1

mi

∑
j∈C−i

|mi,j| ≤ 1

Moreover,mi,j ≥ −αi,j ·mi holds by definition, both for j ∈ C+
i and j ∈ C−i . Thus,

condition (6.12) holds, and hence (6.11) implies (6.12). Now, suppose that (6.12)
holds. Then, mi ≥ 0 and for any ∅ 6= X ⊆ Ci,

mi +
∑

{j|cj∈X}

mi,j ≥ mi +
∑

{j|cj∈X}

−αi,j ·mi

= mi −mi

∑
{j|cj∈X}

αi,j

= mi(1−
∑

{j|cj∈X}

αi,j) ≥ 0

(6.15)

Thus, condition (6.11) holds, and hence (6.12) implies (6.11). �

As a consequence of the above result, the constraints (6.11) can be replaced by
the equivalent constraints (6.12). Thus, the number of constraints can indeed be
reduced from exponential to quadratic, namely to 2m2 inequalities. On the other
hand, (6.12) also comes with a disadvantage:While the constraints (6.11) are all lin-
ear, some of the constraints (6.12) are nonlinear (albeit convex); indeed, recall that
the αi,j are introduced as new variables that need to be determined simultaneously
with the mi and mi,j .

Alternative Formulation II

Our second reformulation of the problem is based on a theoretical result showing
that the class M2 or, more specifically, the class of normalized measures in M2
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(i.e., those ν whose Möbius function additionally satisfies

m∑
i=1

mi +
∑

1≤i<j≤m

mi,j = 1 , (6.16)

forms a convex polytope. The extreme points of this polytope are exactly those
{0, 1}-valued measures whose Möbius transforms are of the form

mA(X) =

1, if X = A

,A ∈ E0, otherwise
(6.17)

or of the form

m
′

B(X) =


1, if ∅ 6= X ⊂ B

−1, ifX = B ,A ∈ E ′

0, otherwise

(6.18)

where E =
{
A ⊆ C

∣∣ 1 ≤ |A| ≤ 2
}

and E ′ =
{
B ⊆ C

∣∣ |B| = 2
}

[73]. In other
words, each feasible solutionm can be written as a convex combination of thesem2

extreme points:

m =
∑
A∈E

αA ·mA +
∑
B∈E ′

α′B ·m′B (6.19)

Consequently, the constraints (6.11), (6.16) can be replaced by (6.19) in conjunction
with the following constraints:

αA ≥ 0

α′B ≥ 0∑
A∈E

αA +
∑
B∈E ′

α′B = 1

Like in our first reformulation, the number of constraints is thus significantly re-
duced, this time even without introducing nonlinearities, albeit again at the cost of
a quadratic number of additional variables. More concretely, we end up with m2

additional variables while reducing the number of constraints to m2 + 1.
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6.4 Measure Correction - From non Monotone Mea-
sure to Monotone Measure

Thus far the algorithms proposed in this thesis, consider monotonicity, i.e., the al-
gorithms enforce monotonicity by auxiliary constraints. Since there are m2m−1

constraints for assuring monotonicity (given m attributes), for large number of at-
tributes solving the optimization problem indeed is quite difficult and time con-
suming. Chapter 1 clearly states that this thesis provides several algorithms and
approaches to deal with monotone data. Since monotonicity in our case is a prereq-
uisite, the datasets which are desirable are monotone. This means that, they have
monotone structures. The ultimate goal of learning is to bias the observations. In
this regard, the expectation is that the model can capture the properties of data.
Since monotonicity is a kind of data-property, the model can capture such proper-
ties. Note that there is no guarantee, that the model can capture whole monotonicity
property, but at least there is a chance to capture it partially. To this end, this section
serves the idea of learning the monotone models underlying the Choquet integral
without any monotonicity constraints. This problem in the literature is addressed
under “relaxation”. Basically the core idea of relaxation is to learn the optimal pa-
rameters for a fuzzy measure without enforcing any monotonicity constraints and
finally making corrections for the optimal learned parameters. It is quite obvious,
that there is no guarantee, that learned parameters satisfy monotonicity. Now the
non trivial question is, how is possible to monotonize the learned parameters in the
end? Let us consider more in the details the structure of fuzzy measure. Basically,
the structure of a fuzzy measure can be seen as a DAG (directed acyclic graph)
structure (S), where V = {V1, . . . , Vp}, the vertices, correspond to the elements
of P({c1, . . . , cm}), and moreover E = {(Vi, Vj) | Vi ⊂ Vj} is the set of directed
edges from Vi to Vj . We use the notation Vi � Vj if (Vi, Vj) ∈ E. Henceforth
we assign to each vertex Vi the optimal learned parameter µ∗(Vi) (which does not
necessarily obey monotonicity constraints) and the goal is to find the fuzzy measure
µ∗∗(·), where has a minimal distance to the original measure given a metric space.
More precisely, the goal is as follows

arg min
µ∗∗

{
d(µ∗∗, µ)

∣∣µ∗∗ is a fuzzy measure on C
}
,

where the distance function d(·, ·) is already given.
Generally three types of metrics are taken into account in the literature, namely,
L1, L2 and L∞. In general, the solution of a DAG structure problem is widely
addressed in the literature. The problem is to find a set of values which are in ac-
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cordance with the structure of a DAG (if (Vi, Vj) ∈ E then v(Vi) ≤ v(Vj)), and also
has a minimal distance to the original values. Note that in general there is no unique
solution to this problem.

Figure 6.2: Directed acyclic graph structure representing the monotone relationship for
three criteria. The directed edges show the direction of monotonicity, meaning
the measure of the subset is smaller than the measure of the set.

In this regard, Jewell in [66] proposed the initial solution regarding the isotonic
optimization. Assume we are given Y = {y1, . . . , yp} as p input values correspond-
ing to the structure S. Moreover suppose f = {f1, . . . , fp} is the optimal solution
in terms of distance. For every set f, which is in agreement with structure S, the
different distances can be expressed as follows:

Errz(Y, f) =

p∑
i=1

Lz(yi − fi) z ∈ {1, 2}

and for L∞

Errz(Y, f) = max
i=1,...,p

L1(yi − fi) z =∞
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Additionally he assumed a more general form for domination by presuming the
following bounds for the optimal solutions:

yj − yi ≥ Rij

yj − yi ≤ Sij

Ai ≤ yi ≤ Bi

Then the optimal solution f∗ for L1 as well as the L2 norm is equal to:

f∗ = min
f
Errz(Y, f) z ∈ {1, 2}

s.t.

Rij+fi + fj ≤ vj − vi ≤ Sij + fi − fj (vi, vj) ∈ E
Ai − fi ≤ vi ≤ Bi − fi i ∈ {1, . . . , p}

Where A =
{

(i, j) | (vi, vj) ∈ E
}

.

Additionally for L∞ the optimization problem is defined as follows:

f∗ = min
f
e

s.t.

e− L1(yi, fi) ≥ 0 i ∈ {1, . . . , p}

This kind of optimization is called flow network optimization.
With respect to our setting assume the measure µ is given. Then the goal is to find
µ∗∗ as follows:

arg min
µ∗∗

Errz(µ
∗∗, µ) z ∈ {1, 2,∞}

s.t.

µ∗∗(Vj)− µ∗∗(Vi) ≥ Rij ∀(Vi, Vj) ∈ E
µ∗∗(Vj)− µ∗∗(Vi) ≤ Sij ∀(Vi, Vj) ∈ E
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Referring to the Subsection 3.3.3, there are 3m − 2m (m is the number of criteria)
constraints in total. Note that, without loss of generality the Rij, Sij can be consid-
ered as Rij = 0 and Sij =∞.
Stout in [93] proposed the idea for reduction the complexity of the flow framework
above. The basic idea is to embed the DAG structure S to a larger space, where
there are fewer edges needed for representing the original structure S. He proved,
by using this embedding that given p points in d−dimensional space (d ≥ 3), the
isotonic regression has a computational complexity of

• O(p2 logd p) for L1 metric

• O(p3 log2d−1 p) for L2 metric

• O(p logd p) for L∞ metric

Note that in our setting, p = 2m, where m is the number of criteria.
In particular, the isotonic regression for unweighted data and L∞ metric, is com-
puted as follows [94]:

f∗i =
max

{
y(Vj) | Vj � Vi

}
+ min

{
y(Vk) | Vi � Vk

}
2

,

where y(Vi) is the response value for the vertex Vi. Moreover, the above algorithm
has complexity of O(e), where e is the number of edges. In our setting, given set
C = {c1 . . . , cm}, each ci ∈ C is connected to {ci, T}, where T ⊆ C \ {ci}. There-
fore for each ci, there exist

∑m−1
k=1

(
m−1
k

)
edges. In total there are m

∑m−1
k=1

(
m−1
k

)
edges, i.e., our setting has a computational complexity of O

(
m
∑m−1

k=1

(
m−1
k

))
.

Burdakov et al. proposed in [19, 20] an algorithm based on a PAV (Pool-
Adjacent-Violator) algorithm. They proposed the generalization of PAV called a
GPAV for the purpose of multidimensional isotonic regressions. The basic idea is
to collect the vertices by some clusters and update the cluster by adding the vertex,
which violates the monotonicity constraints. They claim that the GPAV algorithm
has computational complexity of O(p2), where p is the number of vertices. In our
setting, there are 2m vertices in total.
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In [41] an idea based on PAV for multidimensional cases has been proposed.
Since every finite set of d-dimensional points can be represented by a union of
DAG structures (by a Pareto dominance relation), in this case, the core idea is to
decompose DAG structures into several maximal sub structures, in which each sub
structure can be represented by the total order in terms of Pareto dominance. Then
the PAV algorithm can be used for each sub structure, and after modification of the
values, the next sub structure will be again modified by updated values. For our pur-
poses since we are interested in all maximal the total orders, m! total orders should
be taken into consideration. Hence, the algorithm has a computational complexity
of O(m!), where m is the number of criteria. For instance, the following order can
be seen as a sub structure for a given C = {c1, c2, c3}:

{c1} ≺ {c1, c2} ≺ {c1, c2, c3}

Block et al. also proposed an algorithm in [17] for a partially ordered isotonic
regression under an L2 norm.The basic idea is to change the partial order to a linear
extension (which is not necessarily unique). Then they start with the first element
and go successively through the sequence and in each step check whether for a
given element Vi the magnitude of adjacent of Vi is in agreement with Vi. If it is
not the case, the algorithm unifies Vi with its adjacent, makes it as one block and
recomputes the corresponding value of this block. The algorithm terminates when
there is no inconsistency in the sequence. Also in [83] Pardalos and Xue presented
the IRT-BIN algorithm to tackle the isotonic regression problem for DAG structure.
In this case, the core idea is the same as in [17]. Roughly speaking they start with
a linear ordering of partial order, which is not necessarily unique. For each node
Vi, they defined a block B(Vi) = {Vi} and a binomial heap Hi. They start with
the first element in this order and go through the sequence successively. For step
i, the algorithm checks, whether Av(B(xi)) < Maximum(Hi). If it is the case,
let B(xk) be the corresponding value to argmaxi(Hi). Then the algorithm unifies
blocks B(xi) and B(xk) together as block B(xi) and assigns value Av(B(xi)) to
this block. Moreover, the algorithm merges heaps Hi and Hk to Hi heap. In each
step, the algorithm updates the keys of blocks, heaps and Av(·). Finally the output
is an isotonic regression. The time complexity of this algorithm isO(p log p), where
p is the number of nodes. Hence for our setting has computational complexity of
O(m2m log 2).

The above approaches are addressed as solutions to the isotonic regression prob-
lem. However, from another point of view, the correction of the inconsistencies in
the measure can be addressed in the literature by minimal reassignment under the
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L1 norm. Traditionally the minimal reassignment problem comes from the ordinal
classification, in which some instances and their labels are given, and the task is to
monotonize the data through minimal changing of labels. In essence, the task is to
find new classes for given instances by minimum changing. In this regard, Dem-
bczyński [30] and Feelder [35] proposed two approaches to tackle this problem.
Before going into details, the following theorem should be introduced:

Theorem 6.4 Assume µ is an arbitrary measure on set C. Moreover assume

Γ =
{
µ•
∣∣µ• is closest monotone measure to µ in terms of L1 metric

}
.

Then there exists µ∗ ∈ Γ, which has following property:

Im(µ∗(.)) ⊆ Im(µ(.))

This means that by rearranging the original values of response, the optimal
solution can be found.

Proof 6.3 (proof by negation) Assume there is no such measure. Let us assume
A ⊂ C is the smallest subset (minimal, note that the subset A is not unique) in
terms of cardinality, such that

∀E ⊆ C µ∗(A) 6= µ(E)

Therefore, we have

max
K⊂A

µ∗(K) < µ∗(A) ≤ min
A⊂L

µ∗(L)

The proof can be followed in following steps:

• If
µ(A) ≤ max

K⊂A
µ∗(K)

then by defining

µ�(S) :=

{
µ∗(S) S 6= A

maxK⊂A µ
∗(K) S = A

the updated measure µ� is closer to the µ, which apparently is a contradiction.
The reason is |µ�(A) − µ(A)| < |µ∗(A) − µ(A)|. Note that in this case
µ(A) ≤ maxK⊂A µ

∗(K) < µ∗(A).
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• If
max
K⊂A

µ∗(K) < µ(A) < min
A⊂L

µ∗(L)

then by defining

µ�(S) :=

{
µ∗(S) S 6= A

µ(A) S = A

the updated measure µ� is closer to the µ, which surely is in contradiction to
the assumption.

• If
max
K⊂A

µ∗(K) < µ∗(A) < min
A⊂L

µ∗(L) < µ(A)

then by defining

µ�(S) :=

{
µ∗(S) S 6= A

minS⊂L µ
∗(L) S = A

the measure µ� is closer to the µ. Hence there is apparently a contradiction
again.

• If
max
K⊂A

µ∗(K) < µ∗(A) = min
A⊂L

µ∗(L) < µ(A)

then there exists Ã, A ⊂ Ã s.t. µ∗(A) = µ∗(Ã). Assume AU is the largest
(maximal) subset in terms of cardinality (note that the subset AU in general
is not unique), which has the above property. In other words:

∀F s.t. AU ⊂ F ⇒ µ∗(AU) < µ∗(F )

Moreover let T = {T ⊆ C | A ⊆ T ⊆ AU}.

It is easy to check that, it is not possible that ∀B ∈ T

µ(B) < µ∗(B)

It is also easy to check that, it is not possible that ∀B ∈ T

µ∗(B) < µ(B)
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(Otherwise, by defining µ∗(A) := maxB∈T µ(B) and µ∗(A) := minB∈T µ(B)

respectively, is in contradiction to our assumption.) Additionally∑
B∈T

|µ(B)− µ∗(B)| =
∑
B∈T

|µ(B)− C|

Suppose B∗ = argminB∈T|µ(B)− C|. By defining µ�(.) as follows:

µ�(S) :=

{
µ∗(S) S ∈ C \ T
µ(B∗) S ∈ T

the measure µ�(.) contains only the values from the original measure, and has
the minimal distance to the original measure, which means it is in agreement
with measure µ∗.

Note that in last step there is no contradiction. The core idea, is to shift a subset
of optimal monotone measure, by preserving the distance. In other words, the new
measure is redefined, in a way that has same distance to original measure µ, where
the redefined values belong to original measure µ. �

The above theorem shows, from an application point of view, that the values
of an optimal monotone measures can be chosen among the values of the original
measure. The aforementioned property allows us to use methods like minimal reas-
signment labeling proposed in [30, 35]. More precisely, the core idea is to rearrange
the values in the original measure so that the new measure is monotone and also has
a minimal distance to the original measure under the L1 norm. In the following we
use an example to show how the optimal solution looks under L1 for 2 different
approaches:

µ({c1}) = .2 µ∗({c1}) = .2 µ∗∗({c1}) = .2

µ({c2}) = .5 µ∗({c2}) = .4 µ∗∗({c2}) = .45

µ({c3}) = .5 µ∗({c3}) = .4 µ∗∗({c3}) = .45

µ({c1, c2}) = .4 µ∗({c1, c2}) = .4 µ∗∗({c1, c2}) = .45

µ({c1, c3}) = .4 µ∗({c1, c3}) = .4 µ∗∗({c1, c3}) = .45

µ({c2, c3}) = .6 µ∗({c2, c3}) = .6 µ∗∗({c2, c3}) = .6

µ({c1, c2, c3}) = 1 µ∗({c1, c2, c3}) = 1 µ∗∗({c1, c2, c3}) = 1
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Here the µ is referred to as a non monotone measure, µ∗ is the optimal solution
by minimal reassignment labeling approach and µ∗∗ is referred to as the optimal
solution by the PAV algorithm. As it can be seen d(µ, µ∗) = d(µ, µ∗∗) = .2.
Now assume a measure µ is given which does not obey monotonicity properties. In
order to use minimal reassignment labeling, the basic idea is to order values, and
label them by {1, . . . , L}. In the next step, the following transformation is used:

t : P({c1 . . . , cm})→
{

0, 1
}m

t(A) =
(
t1(A), . . . , tm(A)

)
Where

ti(A) =

 1 if ci ∈ A

0 otherwise

It is easy to show that the mapping t(·) is well-defined. Note that the transformation
holds the information of monotonicity dependencies, which in essence is necessary.
After transforming the measure and values, one can deal with the following setting:{

(t(A), LA)
}
A∈C
⊂
{

0, 1
}m × {1, . . . , L

}
This is indeed the structure, that is used in minimal reassignment labeling. Suppose
the optimal solution is computed by minimal reassignment labeling as follows:{

(t(A), L∗A)
}
A∈C
⊂ {0, 1}m × {1, . . . , L}

Then it is needed to use the inverse function t−1(·) and inverse ordering function
o−1(·) to get the fuzzy measure as follows:{

(t−1(t(A)), o−1(L∗A))
}
A∈C

=
{

(A, µ∗(A))
}
A∈C

Heuristic Approach

Thus far all mentioned approaches present the optimal solutions under predefined
metrics. However, one can also imagine, when the majority of measure are fulfilled
monotonicity constraints, some heuristic methods can also solve the problem in a
meaningful manner. In the following, we introduce a method, to tackle this prob-
lem in an approximate manner. Before going into details we should introduce some
preliminaries.
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Let µ be an arbitrary measure. Then µmineclo and µmaxeclo , the strict min and max

closure for measure µ are defined as follows:

µmineclo
(A) := min

{
µ(B) | A ⊆ B

}

µmaxeclo
(A) := max

{
µ(B) | B ⊆ A

}
As can be seen, µmineclo

and µmaxeclo
are monotone. The following theorem shows

that min and max closure are bounds for the optimal monotone measure.

Theorem 6.5 Let µ be an arbitrary measure on set C (not necessarily monotone
measure) and moreover let

µ∗ ∈
{
d(µ, µ

′
)|µ′ is a monotone measure on C

}
, (6.20)

where d(·, ·) is a distance function. Then ∀ A ⊆ C

µmineclo(A) ≤ µ∗(A) ≤ µmaxeclo(A) , (6.21)

where µmineclo
and µmaxeclo

are lower and upper closures with respect to measure µ.

Proof 6.4 (Proof by negation) Before going into the details, first of all note that
measures µmineclo

and µmaxeclo
are monotone. Also for every subset A of C, the fol-

lowing inequality is valid:

µmineclo(A) ≤ µorig(A) ≤ µmaxeclo(A). (6.22)

Suppose µ∗ ∈
{
d(µ, µ

′
)|µ′ is a monotone measure on C

}
and the assumption in

6.21 is not valid for measure µ∗. Let us define measure µ• as follows:

µ• =


µmineclo

(A), if µ∗(A) < µmineclo
(A)

µmaxeclo
(A), if µ∗(A) > µmaxeclo

(A)

µ∗(A) otherwise

(6.23)
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In the first case, we say that µ∗(A) is up-corrected, in the second case, that
µ∗(A) is down-corrected. Obviously, µmineclo

≤ µ• ≤ µmaxeclo
.

We claim that µ• thus defined is a monotone measure. To see this, consider a
path from the empty set to C in the form of a chain

∅ ⊂ A0 ⊂ A1 ⊂ . . . ⊂ Am = C ,

where |Ak| = k. Suppose µ• is not monotone along the chain.Then there is a k such
that µ•(Ak) > µ•(Ak+1). Since µ∗ is monotone, µ∗(Ak) ≤ µ∗(Ak+1). Therefore,
either µ∗(Ak) has been up-corrected or µ∗(Ak+1) has been down-corrected. In the
first case,

µ•(Ak) = µmineclo
(Ak) ≤ µmineclo

(Ak+1) ≤ µ•(Ak+1)

which is a contradiction. In the second case,

µ•(Ak+1) = µmaxeclo
(Ak+1) ≥ µmaxeclo

(Ak) ≥ µ•(Ak)

which is again a contradiction. Therefore, µ• is monotone.
Now, suppose that (6.22) does not hold. Then, there will be at least one up- or down-
correction according to (6.23), and since each correction moves µ•(Ai) closer to
µ(Ai) (as compared to µ∗(Ai), it follows that d(µ, µ•) < d(µ, µ∗). In conjunction
with the monotonicity of µ•, this contradicts (6.20). �

So as mentioned earlier, satisfying monotonicity constraints in proposed method
has two phases. First the majority of constraints will be satisfied through the struc-
ture of data. Then in next step, we make a correction to have a monotone measure.
To this end, given a measure we propose its approximation, namely

• lower closure by min operator

• upper closure by max operator

A non-trivial question however is, which correction should be taken into ac-
count? To this end, we take a convex combination of these two corrections and try
to minimize the distance between the convex combination and the original measure;
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P ∗ = min
0≤P≤1

D
(
µorig, Pµmineclo + (1− P )µmaxeclo

)
(6.24)

The last constraint can be omitted, since can be adjusted manually. This means if
the output is larger than 1 or less than 0, we put it to 1 and 0 respectively. Obvi-
ously this convex combination is also a monotone measure and by a value of P we
can minimize the distance to the original measure. After correcting the measure,
the obtained fuzzy measure can be used by the support vector machine in primal
form. This optimization problem has computational complexity of O(p) under L2

norm, where p is the number of vertices (in this case 2m). The basic reason is,
computing µminclo and µmaxclo is linear in the number of vertices and also for the
optimization step, since there is only one parameter, the optimization needs linear
time complexity. More precisely, the optimal P for L2 norm can be determined as
follows:∑

A⊆C

{
µmaxeclo(A) + µorig(A)− µorig(A)µmaxeclo(A)− µmaxeclo(A) · µmineclo(A)

}
∑

A⊆C

(
µmineclo(A)− µmaxeclo(A)

)2

In cases, when P > 1 or P < 0, values 1 and 0 are taken respectively. In our
experiments we take the L2 norm as distance D. The corresponding results for the
heuristic method as well IRT-BIN algorithm are presented in Table 7.8. Additionally
the optimization setting in (6.24), is completely in agreement with L∞ norm, where
the optimal value P is equal to 0.5; however as mentioned the optimal solution is
not unique.

The Usefulness of Measure Correction

As mentioned the core idea is to learn the parameters without any monotonicity con-
straints. To this end, both setting, with respect to maximum likelihood and kernel-
based learning approaches are taken into consideration. For maximum likelihood
setting the following objective function and constraints are considered:

max
m,γ,β

{
− (1− y) γ

n∑
i=1

(Cm(xi)− β)−
n∑
i=1

log
[
1 + exp (−γ Cm(xi)− β))

]}
(6.25)

s.t.

0 ≤ β

0 < γ
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in which the Cm(·), β and γ are refer to the notations in Section 4.1.2.
For the kernel-based approach the following setting is taken into account:

min
α

{
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK
k=p
C (xi,xj)−

n∑
i=1

αi

}
(6.26)

s.t.
n∑
i=1

yiαi = 0

0 ≤ αi ≤ C ∀i ∈ {1, . . . , n} ,

where Kk=p
C (·, ·) is assigned to the Choquet kernel of degree p. More details about

the setting can be found in Subsection 2.4.3. Note that although for the choquistic
regression setting there is a possibility of ensuring monotonicity, for the Choquet
kernel with dual from setting there is no way to assure monotonicity. Therefore,
such a correction is quite desirable. The corresponding results are shown in Chapter
7, Table 7.8.
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7
Data Sets and Experimental Parts

In this chapter, the data sets, which have been used during the experiments are
introduced and the results related to each approach are presented. In the following,
we describe the datasets that were primarily, from UCI repository 1 and WEKA
[56]. The collection of data for experimental evaluation is a bit hindered by the fact
that our models are monotone models. Data sets for which monotonicity of this
kind is a reasonable assumption are less frequent than standard classification data.
Parts of the results in this chapter were already published in [60, 97, 99, 98, 101].

7.1 Data Description

• Employee Selection (ESL): This data set contains profiles of applicants for
certain industrial jobs. The values of the four input attributes were determined
by expert psychologists based upon psychometric test results and interviews
with the candidates. The output is an overall score on an ordinal scale between
1 and 9, corresponding to the degree of suitability of each candidate to this
type of job. For binary classification purpose, we binarized the output value
by distinguishing between suitable (score 6− 9) and unsuitable (score 1− 5)
candidates, whereas for ordinal classification purpose the original labels were

1http://archive.ics.uci.edu/ml/
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taken into account.

• Employee Rejection/Acceptance (ERA): This data set originates from an
academic decision-making experiment. The input attributes are features of
a candidate such as past experience, verbal skills, etc., and the output is the
subjective judgment of a decision-maker, measured on an ordinal scale from
1 to 9, to which degree he or she tends to accept the applicant for the job. For
binary classification purpose, we binarized the output value by distinguishing
between acceptance (score 5− 9) and rejection (score 1− 4).

• Lecturers Evaluation (LEV): This data set contains examples of anonymous
lecturer evaluations, taken at the end of MBA courses. Students were asked
to score their lecturers according to four attributes such as oral skills and
contribution to their professional/general knowledge. The output was a total
evaluation of each lecturer’s performance, measured on an ordinal scale from
0 to 4. In the case of binary classification, we binarized the output value by
distinguishing between good (score 3− 4) and bad evaluation (score 0− 2).

• Mammographic (MMG): This data set is taken from breast cancer screening
by mammography. The goal is to predict the severity (benign or malignant)
of a mammographic mass lesion from BI-RADS attributes (mass shape, mass
margin, density) and the patient’s age.

• CPU: This is a standard benchmark data set from the UCI repository. It
contains eight input attributes, two of which were removed since they are ob-
viously of no predictive value (vendor name, model name). The problem is to
predict the (estimated) relative performance of a CPU (binarized by thresh-
olding at the median) based on its machine cycle time in nanoseconds, mini-
mum main memory in kilobytes, maximum main memory in kilobytes, cache
memory in kilobytes, minimum channels in units and maximum channels in
units.

• Car Evaluation (CEV): This data set contains 6 attributes describing a car,
namely, buying price, price of maintenance, number of doors, capacity in
terms of persons to carry, the size of the luggage boot and estimated safety of
the car. The output is the overall evaluation of the car: unacceptable, accept-
able, good, very good. For binary classification purpose, we binarized this
evaluation into unacceptable versus acceptable and (very) good.

• Breast Cancer (BCC): This dataset was obtained from the University Med-
ical Center, Institute of Oncology in Ljubljana, Yugoslavia. There are 7
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attributes, namely, menopause gain, tumor-size, inv-nodes, node-caps, deg-
malig, breast cost and irradiat gain. The output is a binary variable, namely,
no-recurrence-events and recurrence-events.

• DenBosch (DBS): This data set contains 8 attributes describing houses in
the city of Den Bosch: district, area, number of bedrooms, type of house,
volume, storeys, type of garden, garage, and price. The output is a binary
variable indicating whether the price of the house is low or high (depending
on whether or not it exceeds a threshold).

• Auto MPG: This data set was used in the 1983 American Statistical Asso-
ciation Exposition. The attributes are: mpg, cylinders, displacement, horse-
power, weight, acceleration, model year and origin. The data concerns city-
cycle fuel consumption in miles per gallon, to be predicted in terms of 3

multivalued discrete and 5 continuous attributes. We removed incomplete
instances and additionally for binary classification purpose we binarized the
output by applying the median.

• Social Workers Decisions (SWD): The data set is about risk assessment of
social workers facing the children at home, when their families stayed at
home. It contains 10 ordinal input attributes and one ordinal output. For
binary classification purpose we binarized the output by grouping labels 2, 3

as negative class and 4, 5 as a positive class.

• Color yield: Finally, we took data from an industrial polyester dyeing pro-
cess that was also analyzed in [80]. Here, the output variable is the color yield,
which has been measured as a function of three important factors: disperse
dyes concentration, temperature and time of dyeing. Corresponding exper-
iments have been made for seven different colors, giving rise to seven data
sets. Each of these data sets was binarized by thresholding the color yield at
its median value.
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data set #instances #attributes source

Yield Color 1-7 120 3 [80]

Employee Selection (ESL) 488 4 WEKA

Employee Rejection \ Acceptance (ERA) 1000 4 WEKA

Lecturers Evaluation (LEV) 1000 4 WEKA

Mamographic (MMG) 830 5 UCI

CPU 209 6 UCI

Car Evaluation (CEV) 1728 6 UCI

Breat-Cancer(BCC) 286 7 UCI

DenBosch 120 8 [26]

Auto MPG 398 8 UCI

SWD 1000 10 [9]

Table 7.1: Data sets and their properties

7.2 Normalization

Since the Choquet integral originally is constructed based on a combination of cop-
ulas, here namely min and the copula’s domain is [0,1], it is necessary to normalize
the input values. Note that, big difference in terms of magnitude (scale) for differ-
ent features can effect on results (bias). First of all the normalization is meant to
turn each predictor variable into a criterion, i.e., a “the higher the better” attribute,
and to assure commensurability between the criteria [76]. As mentioned earlier, the
criteria should range between 0 and 1. To this end, in the following we propound
two types of normalization:

• The first normalization method is based on linear transformation, namely,
given by the mapping zi = fi(xi) = (xi − mi)/(Mi − mi), where mi and Mi

are lower and upper bounds for xi (perhaps estimated from the data); if the influ-
ence of xi is actually negative (i.e., wi < 0), then the mapping zi = fi(xi) =

(Mi − xi)/(Mi −mi) is used instead.
• The second normalization method is based on a cumulative distribution function,
which is more robust to outliers and produces a more uniform distribution of nor-
malized values. We therefore propose the mapping

zi = F−1(xi) , (7.1)

where F is the cumulative distribution function x 7→ P(Xi ≤ x). Of course, since
this function is in general not known, it has to be replaced by an estimate F̂ ; to this
end, we simply adopt the empirical distribution of the training data (i.e., F̂ (x) is
the relative frequency of instances x = (x1, . . . , xm) in the training data for which
xi ≤ x).
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7.3 Methods

All methods (and their abbreviations) which are used for the experiments are pre-
sented in Table 7.2.

Abbreviation Method

CR Choquistic Regression

LR Logisitc Regression

KLR-Ply Kernel Logistic Regression d=2

KLR-rbf Kernel Logistic Regression RBF

MORE MOnotone Rule Ensembles

LMT Logistic Monotone Tree

CR-AI Choquistic Regression (Nonlinear Monotonicity Constraints)

CR-AII Choquistic Regression (Convex Combination Representation)

CK + CC Choquet Kernel with Convex Combination (Measure Correction)

CK + IRT-BIN Choquet Kernel with IRT-BIN (Measure Correction)

CR∗ Choquistic Regression without Monotonicity Constraints

CR∗ + CC Choquistic Regression with Convex Combination (Measure Correction)

CR∗ + IRT-BIN Choquistic Regression with IRT-BIN (Measure Correction)

PLY d=a Polynomial Kernel with Degree a

CK k=b b-additive Choquet Kernel

CK K=n + CC Choquet Kernel with Convex Combination (Measure Correction)

RBF rbf kernel

OLR Ordinal Logistic Regression

OCR Ordinal Choquistic Regression

OCR + R Ordinal Choquistic Regression with Hierarchical Regularization

Table 7.2: The methods which are used in this thesis for the experiments

7.4 Experimental Results Regarding Binary Class Clas-
sification

In this section, the results with respect to binary classification as well as setting are
demonstrated.

Binary Classification by Choquistic Regression (Evaluation & Re-
sults)

Several experiments regarding the binary classification problem have been con-
ducted using different settings and normalization methods in [98, 97, 99]. In this
section only one of them is chosen thus allowing for comparisons.
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• The experiment has been done by using a normalization method based on
the cumulative distribution function. We assumed the following methods for
comparison:

Since choquistic regression (CR) can be seen as an extension of standard lo-
gistic regression (LR), it is natural to compare these two methods. Essentially,
this comparison should give an idea of the usefulness of increased flexibility.
On the other side, one may also ask for the usefulness of assuring monotonic-
ity. Therefore, we additionally included two other extensions of LR, which
are flexible but not necessarily monotone, namely kernel logistic regression
(KLR) [114] with polynomial and Gaussian kernels. The degree of the poly-
nomial kernel was set to 2, so that it models low-level interactions of the
features. The Gaussian kernel, on the other hand, is able to capture interac-
tions of a higher order. For each data set, the width parameter of the Gaussian
kernel was selected from {10−4, 10−3, 10−2, 10−1, 100} in the most favorable
way. Likewise, the regularization parameter η in choquistic regression was
selected from
{10−3, 10−2, 10−1, 100, 101, 102}. Finally, we also included two methods that
are both monotone and flexible, namely the MORE algorithm for learning
rule ensembles under monotonicity constraints [29] and the LMT algorithm
for logistic model tree induction [69]. Following the idea of forward stage-
wise additive modeling [103], the MORE algorithm treats a single rule as a
subsidiary base classifier in the ensemble. The rules are added to the ensem-
ble one by one. Each rule is fitted by concentrating on the examples that
are most difficult to classify correctly by rules that have already been gener-
ated. The LMT algorithm builds tree-structured models that contain logistic
regression functions at the leaves. It is based on a stagewise fitting process
to construct the logistic regression models that can select relevant attributes
from the data. This process is used to build the logistic regression models at
the leaves by incrementally refining those constructed at higher levels in the
tree structure.
As performance measures, we determined the standard misclassification rate
(0/1 loss). Estimates of this measure were obtained by randomly splitting the
data into two parts, one part for training and one part for testing. This pro-
cedure was repeated 100 times, and the results were averaged. In order to
analyze the influence of the amount of training data, we varied the proportion
between training and test data from 20 : 80 over 50 : 50 to 80 : 20. In these
experiments, we used a variant of CR in which the underlying fuzzy measure
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is restricted as to be k-additive, with k determined by means of an internal
cross validation. Compared with other variants, this one performed best in
terms of accuracy. A possible improvement of CR over its competitors, in
terms of predictive accuracy, may be due to two reasons: First, in comparison
to standard LR, it is more flexible and has the ability to capture nonlinear de-
pendencies between input attributes. Second, in comparison to non-monotone
learners, it takes background knowledge about the dependency between input
and output variables into consideration. An overview of the results of the
experiments is given in Table 7.3.
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dataset CR LR KLR-ply KLR-rbf MORE LMT

ESL .0682±.0129(1) .0733±.0107(2) .1488±.0278(6) .0756±.0167(3) .0838±.0241(5) .0771±.0148(4)

ERA .2889±.0273(1) .2902±.0317(2) .3001±.0130(5) .2934±.0112(3) .3155±.0150(6) .2963±.0126(4)

LEV .1499±.0122(1) .1655±.0082(3) .1627±.0119(2) .1691±.0125(5) .1707±.0186(6) .1672±.0140(4)

MMG .1725±.0120(1) .1729±.0122(2) .1960±.0160(6) .1791±.0133(4) .1764±.0137(3) .1803±.0171(5)

CPU .0811±.0103(3) .0711±.0312(1) .0996±.0231(6) .0802±.0292(2) .0829±.0379(4) .0850±.0256(5)

CEV .0448±.0089(3) .1410±.0079(6) .0663±.0130(5) .0618±.0151(4) .0339±.0076(1) .0432±.0116(2)

BCC .2775±.0335(2) .2893±.0240(6) .2760±.0243(1) .2787±.0237(3) .2827±.0255(4) .2884±.0306(5)

DBS .1713±.0424(2) .2124±.0650(6) .1695±.0437(1) .1883±.0536(4) .1932±.0511(5) .1779±.0420(3)

MPG .0709±.0193(1) .0832±.0151(6) .0788±.0097(4) .0772±.0107(2) .0811±.0119(5) .0773±.0148(3)

avg. rank 1.67 3.78 4 3.33 4.33 3.89

ESL .0601±.0126(1) .0704±.0113(4) .1023±.0225(6) .0682±.0121(2) .0695±.0139(3) .0709±.0135(5)

ERA .2844±.0306(1) .2851±.0303(2) .2926±.0151(4) .2882±.0142(3) .3037±.0180(6) .2956±.0148(5)

LEV .1372±.0125(1) .1651±.0133(6) .1520±.0160(4) .1493±.0165(3) .1486±.0157(2) .1545±.0142(5)

MMG .1667±.0144(1) .1701±.0158(5) .1721±.0164(6) .1693±.0130(4) .1691±.0140(3) .1671±.0167(2)

CPU .0464±.0281(1) .0626±.0247(4) .0835±.0264(6) .0547±.0233(3) .0489±.0226(2) .0674±.0243(5)

CEV .0376±.0059(4) .1360±.0101(6) .0328±.0057(3) .0463±.0086(5) .0215±.0053(2) .0174±.0069(1)

BCC .2687±.0282(4) .2799±.0245(6) .2591±.0287(1) .2599±.0301(2) .2640±.0288(3) .2717±.0295(5)

DBS .1572±.0416(4) .1708±.0380(6) .1333±.0333(1) .1692±.0382(5) .1457±.0413(3) .1473±.0406(2)

MPG .0577±.0251(1) .0654±.0150(2) .0728±.0159(4) .0744±.0151(5) .0751±.0178(6) .0672±.0164(3)

avg. rank 2 4.56 3.89 3.56 3.33 3.67

ESL .0542±.0218(1) .0660±.0203(3) .0922±.0279(6) .0657±.0229(2) .0661±.0219(4) .0691±.0228(5)

ERA .2813±.0280(1) .2843±.0302(2) .2918±.0290(5) .2905±.0312(3) .2988±.0276(6) .2910±.0290(4)

LEV .1314±.0176(1) .1627±.0249(6) .1472±.0231(3) .1496±.0233(5) .1397±.0214(2) .1474±.0232(4)

MMG .1584±.0251(1) .1657±.0232(4) .1741±.0246(6) .1696±.0271(5) .1645±.0235(3) .1595±.0283(2)

CPU .0212±.0301(1) .0640±.0335(5) .0754±.0372(6) .0405±.0284(3) .0412±.0299(4) .0338±.0352(2)

CEV .0273±.0089(4) .1328±.0173(6) .0286±.0075(5) .0239±.0066(3) .0190±.0070(2) .0089±.0047(1)

BCC .2496±.0485(1) .2773±.0548(6) .2569±.0506(2) .2598±.0529(4) .2570±.0463(3) .2707±.0554(5)

DBS .1416±.0681(4) .1616±.0743(6) .1265±.0663(2) .1343±.0672(3) .1242±.0609(1) .1433±.0667(5)

MPG .0551±.0160(1) .0611±.0263(2) .0727±.0268(4) .0740±.0284(6) .0737±.0269(5) .0614±.0251(3)

avg. rank 1.67 4.44 4.33 3.78 3.33 3.44

Table 7.3: Classification performance in terms of the mean and standard deviation of 0/1
loss. From top to bottom: 20%, 50%, and 80% training data. (Average ranks
comparing significantly worse with CR at the 90% confidence level are put in bold
font.)

Moreover, a summary in terms of pairwise win statistics is provided in Table
7.4. As can be seen, CR compares quite favorably with the other approaches,
especially with the non-monotone KLR methods, both in terms of 0/1 loss.
It also outperforms LR, at least for sufficiently extensive training data; if the
amount of training data is small, however, LR is even better, probably be-
cause CR will then tend to overfit the data. This is indeed a general trend
that can be observed both for performance in terms of average ranks and the
number of wins in pairwise comparison with another method: The more train-
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CR LR KLR-ply KLR-rbf MORE LMT

CR – 8 | 9 | 9 7 | 6 | 8 8 | 8 | 7 8 | 6 | 7 8 | 7 | 8

LR 1 | 0 | 0 – 4 | 5 | 5 5 | 2 | 3 5 | 2 | 3 5 | 4 | 3

KLR-ply 2 | 3 | 1 5 | 4 | 4 – 3 | 4 | 4 5 | 4 | 3 3 | 4 | 3

KLR-rbf 1 | 1 | 2 4 | 7 | 6 6 | 5 | 5 – 7 | 4 | 3 6 | 5 | 4

MORE 1 | 3 | 2 4 | 7 | 6 4 | 5 | 6 2 | 5 | 6 – 4 | 4 | 4

LMT 1 | 2 | 1 4 | 5 | 6 6 | 5 | 6 3 | 4 | 5 5 | 5 | 5 –

Table 7.4: Win statistics (number of data sets on which the first method was better than the
second one) for 20%, 50%, and 80% training data for 0/1 loss case.

ing data is available, the better CR becomes, arguably because its flexibility
is then becoming more and more advantageous. Needless to say, statistical
significance is difficult to achieve due to the limited number of data sets. In
terms of pairwise comparisons, for example, a standard sign test will not re-
port a significant difference (at the 10 % significance level) unless one of the
methods wins at least 7 of the 9 data sets. For the 0/1 loss, this is indeed
accomplished by CR in all cases except two (comparison with KLR-ply and
MORE on 50 % training data); see Table 7.4. We also applied the two-step
procedure recommended by Demsar [31], consisting of a Friedman test and
(provided this one rejects the null-hypothesis of overall equal performance of
all methods) the subsequent use of a Nemenyi test in order to compare meth-
ods in a pairwise manner; both tests are based on average ranks. For 0/1 loss,
the Friedman test finds significant differences among the six classifiers (at the
10 % significance level) when all three different proportions of data are used
for training. The critical difference of ranks in the Nemenyi test is 2.28 for
the 0/1 measure. In Table 7.3, the average ranks for which this difference is
exceeded are highlighted in bold font.

Binary Classification by Choquistic Regression (2-additive
case)

• Experimentally, we compared three versions of the 2-additive choquistic re-
gression the original formulation (CR-orig), the first reformulation (CR-AI),
and the second reformulation (CR-AII) from Subsection 6.3.2. To make the
implementations as comparable as possible, we applied the same solver to the
different optimization problems, namely the fmincon function implemented
in the optimization toolbox of MATLAB. This function provides a method for
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constrained nonlinear optimization based on sequential quadratic program-
ming. In terms of classification accuracy, the different implementations of
choquistic regression should perform exactly the same, at least theoretically,
because they seek to maximize the same likelihood function under differ-
ent but equivalent constraints. Practically, of course, different formulations
of the optimization problem will yield slightly different solutions, although
these differences should be small. This expectation is confirmed by the result
of a 5-fold cross validation, which is summarized in Table 7.5; this table also
shows results with standard logistic regression (LR) as a baseline.

data set CR-orig CR-AI CR-AII LR

ESL .0655±.0255 .0668±.0227 .0639±.0208 .0678±.0255

ERA .2908±.0312 .2880±.0292 .2907±.0312 .2873±.0275

LEV .1478±.0202 .1491±.0222 .1530±.0213 .1686±.0240

MMG .1685±.0240 .1697±.0232 .1661±.0232 .1712±.0268

CPU .0241±.0223 .0244±.0197 .0196±.0236 .0672±.0346

CEV .0743±.0127 .0835±.0120 .0726±.0135 .1382±.0170

BCC .3041±.0581 .2840±.0556 .3065±.0524 .3079±.0586

DBS .1413±.0715 .1330±.0648 .1130±.0645 .1472±.0573

MPG .0663±.0244 .0644±.0281 .0636±.0254 .0627±.0277

SWD .2186±.0187 .2169±.0276 .2143±.0225 .2202±.0244

Table 7.5: Classification accuracy for 2-additive choquistic regression respect to differ-
ent methods (mean ± standard derivation derived from 10 repeats of 5-fold cross-
validation).

Binary Classification by the Choquet kernel (Evaluation &
Results)

• Finally, the last experiment for binary classification has been conducted in
a kernel framework. First of all, the comparison has been accomplished be-
tween the Choquet kernel, polynomial kernel (d = 1, 2, 3) and RBF kernel.
In this case, the setting was as follows:

To measure the performance of the approach, conventional 0/1 loss is used. In
addition the experimental setup randomly splits the data into two parts, 80%

for training and 20% for testing. The model which induced from training
data is then evaluated on the testing data. This procedure is repeated 100
times, and the results are averaged. The C-parameter, namely the trade-off
parameter has been chosen among {10−5, . . . , 105} with step 10. The width
parameter of the Gaussian kernel was selected from {10−4, . . . , 100} with
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step 10. Both parameters were selected by internal nested cross validation.
The results overview is given by Table 7.6. For the methods we considered
the polynomial kernels for d = 1, 2, 3, RBF kernel, Choquet kernel for k =

1, 2, 3, n and Choquet kernel modification and as well the original Choquet
integral underlying SVM method.

A summary in terms of pairwise win statistics is provided in Tables 7.7.
As can be seen, CK k=n+MM compares quite favorably with the other ap-
proaches, especially with the other kernel methods, in terms of the 0/1 loss.
Note that in this case, in order to make the correction the heuristic approach
(convex combination) is taken into account. The Friedman test finds signifi-
cant differences among of the eight methods (at the 1 % significance level).

7.5 Experimental Results Related to Measure Correc-
tion

In section 6.4, the approaches to find the closest monotone measure for an arbitrary
measure have been widely discussed. Here the results for two methods, namely
Pardalos method [83] and convex combination method, are presented. We used
maximum likelihood and kernel based approaches to learn the optimal parameters
(setting in (6.25) and (6.26) ). As discussed, the Pardalos method gives the opti-
mal solution under an L2 norm, which in our case has computational complexity of
O(2m log 2m). Additionally the convex combination provides the approximate so-
lution, at computational complexity cost of O(2m). Tables 7.8 and 7.9 show these
comparisons in terms of performance and distance. The results also confirm the
above fact; IRT-BIN provides the optimal solution. In terms of performance, in the
case of Choquet kernel there is no significant gain for IRT-BIN although the corre-
sponding results in terms of distance are slightly closer to the original measure. In
the case of maximum likelihood the results are slightly different. Here the reason
is that for maximum likelihood approach there is no way to control the capacity,
whereas due to the SRM idea, the goal is always to find a trade-off between the
quality of fit and complexity of classifier. Thereforethe overfitting problem is ex-
pected to occur during learning. Specifically in the DenBosch data this can be seen
obviously. To measure the performance, the conventional 0/1 loss is used. The
experimental setup is as follows: the data is randomly split into two parts; 80% for
training and 20% for testing. The model which induced from the training data, is
then evaluated on the testing data. This procedure is repeated 100 times, and the
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data
set

PLY
d=1

PLY
d=2

PLY
d=3

C
K

k=2
C

K
k=3

C
K

K
=n

+
M

C
C

I+
SV

M
R

BF

ESL
.1100±

.0585(8)
.0505±

.0206(2)
.0546±

.0154(5)
.0495±

.0208(1)
.0531±

.0251(4)
.0510±

.0191(3)
.0671±

.0252(6)
.0711±

.0278(7)

ER
A

.2952±
.0243(5)

.3052±
.0280(8)

.2892±
.0347(3)

.2869±
.0271(1)

.2961±
.0255(6)

.2900±
.0383(4)

.3005
±

.0263(7)
.2887±

.0332(2)

LEV
.1638±

.0259(7)
.1563±

.0291(6)
.1475±

.0292(3)
.1698±

.0190(8)
.1503±

.0292(4)
.1461±

.0208(1)
.1464

±
.0244(2)

.1512±
.0233(5)

M
M

G
.1715±

.0234(8)
.1612±

.0215(5)
.1664±

.0339(7)
.1594±

.0360(2)
.1600±

.0313(3)
.1608±

.0225(4)
.1585±

.0162(1)
.1636±

.0175(6)

C
PU

.0797±
.0417(8)

.0573±
.0435(4)

.0768±
.0390(7)

.0569±
.0407(3)

.0598±
.0331(5)

.0451±
.0402(1)

.0488±
.0501(2)

.0732±
.0349(6)

C
EV

.1601±
.0099(8)

.0478±
.0081(5)

.0305±
.0096(1)

.0533±
.0133(6)

.0763±
.0180(7)

.0416±
.0093(4)

.0386±
.0100(3)

.0335±
.0087(2)

BC
C

.3091±
.0257(8)

.2736±
.0612(5)

.2655±
.0544(2)

.2582±
.0588(1)

.2691±
.0400(3)

.2809±
.0499(6)

.2709±
.0570(4)

.2867±
.0507(7)

D
BS

.1409±
.0700(8)

.1322±
.0654(6)

.1217±
.0572(3)

.1348±
.0571(7)

.1174±
.0667(2)

.1130±
.0711(1)

.1304±
.0435(5)

.1283±
.0498(4)

M
PG

.0904±
.0287(4)

.0917±
.0261(5)

.0936±
.0336(7)

.0901±
.0334(3)

.0932±
.0278(6)

.0897±
.0380(2)

.0801±
.0203(1)

.0962±
.0347(8)

average
rank

7.11
5.11

4.22
3.55

4.44
2.88

3.44
5.22

Table
7.6:

A
verage

errors±
standard

deviation
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PLY d=1 PLY d=2 PLY d=3 CK k=2 CK k=3 CK k=n + MM CI + SVM RBF

PLY d=1 — 2 1 1 2 0 1 1

PLY d=2 7 — 4 3 3 2 1 5

PLY d=3 8 5 — 3 4 3 5 6

CK k=2 8 6 6 — 7 4 3 6

CK k=3 7 6 5 2 — 2 4 7

CK k=n + MM 9 7 6 5 7 — 5 7

CI +SVM 8 8 4 6 5 4 — 6

RBF 8 4 3 3 2 2 3 —

Table 7.7: Win statistics (number of data sets on which the first method was better than the
second one) for 80% training data for 0/1 loss case.

results are averaged. The C-parameter, namely the trade-off parameter has been
chosen among {10−5, . . . , 105} with step 10 by internal nested cross validation.

data set Orig. Err. CK + CC - Err. CK + IRT-BIN Err. CR∗ + CC - Err. CR∗ + IRT-BIN Err.

ESL .0510±.0191 .0510±.0191 .0510±.0191 .0794± .0361 .0728± .0266

ERA .2975±.0237 .2905±.0292 .2905±.0292 .2868± .0300 .2865± .0306

LEV .1467±.0209 .1503±.0348 .1503±.0348 .1447± .0319 .1463± .0285

MMG .1648±.0316 .1600±.0276 .1648±.0279 .1915± .0412 .2297± .0457

CPU .0601±.0326 .0621±.0514 .0592±.0575 .0768± .0748 .0988± .0753

CEV .0484±.0250 .0438±.0311 .0451±.0302 .0603± .0181 .0553± .0088

BCC .2703±.0404 .2491±.0478 .2491±.0478 .3555± .0539 .3082± .0491

DBS .1232±.0656 .1348±.0694 .1435±.0768 .4233± .0532 .4167± .0567

MPG .0726±.0335 .0718±.0260 .0692±.0269 .0779± .0300 .0810± .0471

Table 7.8: The comparison results for two different approaches for fuzzy measure correc-
tion for 0/1 loss.

data set L2(Orig, CK + CC ) L2(Orig, CK + IRT-BIN) L2(Orig, CR∗ + CC) L2(Orig, CR∗ + IRT-BIN )

ESL 0 0 .4868 .4847

ERA 2.3549 2.3325 .3935 .3990

LEV .6080 .6080 .6738 .2974

MMG 6.8476 6.4883 5.6876 5.4539

CPU 11.7060 11.6679 2.0853 2.0518

CEV 3.0984 3.0883 2.7439 2.2647

BCC 22.5812 21.5944 31.8797 27.3302

DBS 9.7976 9.1888 53.3094 49.1792

MPG 3.1719 2.9410 8.6131 8.4596

Table 7.9: The comparison results for two different approaches for fuzzy measure correc-
tion in terms of L2 distance.
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7.6 Experimental Results Regarding Ordinal Class Clas-
sification

Ordinal Classification by Ordinal Choquistic Regression (Evalu-
ation & Results)

In the case of ordinal classification, the ordinal choquistic regression (OCR) was
compared with ordinal logistic regression (OLR). As mentioned before, it is ex-
pected, that ordinal choquistic regression, due to its flexibility, namely the ability to
capture nonlinear dependencies between predictor values and response, can improve
the accuracy. Additionally in order to decrease the effect of overfitting, the OCR
version with hierarchal regularization is equipped, which in Table 7.10 is shown as
OCR+R. The experiments for ordinal choquistic regression referred to in Section
4.2.3, have been performed as follows: the data is randomly is split into two parts,
one half for training and one half for testing. The model induced from training data
is then evaluated on the test data. In order to measure performance, the L1 loss
was taken into account. This procedure is repeated 100 times, and the results are
averaged.
The function f(·) in the regularization term was defined as f(k) = kα. Thus two
hyper-parameters need to be tuned for OCR+R, namely ρ and α. This tuning was
done by searching the grid

(α, ρ) ∈
{

2, 4, 6, 8
}
×
{

10−4, 10−3, · · · , 104
}

and evaluating parameter combinations by means of a (nested) cross validation of
the training data. Table 7.10 provides a summary of the results in terms of aver-
age L1 loss. As can be seen, OCR often achieves clear improvements over OLR,
especially in those data sets for which the response is known to depend on the pre-
dictors in a non-linear way. Moreover, our regularization method has payed off, as
well, since the results of OCR+R are often even better than those of OCR. Once a
choquistic model has been learned on a given set of training data, it can be used to
predict the class of a new query instance x ∈ X . This prediction, however, is not
straightforward, since does not produce a class prediction directly. Instead, it maps
x to a probability distribution(

P(y1 | x), . . . ,P(yk | x)
)
∈
[
0, 1
]Y
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from which a class prediction has to be derived. The most obvious prediction, of
course, is the mode of this distribution:

ŷ = arg max
(
P(y1 | x), . . . ,P(yk | x)

)
(7.2)

Indeed, this prediction minimizes the risk with respect to the 0/1 loss. The risk
minimizer with respect to the L1 loss, however, is the median of the distribution:

ŷ = arg med
(
P(y1 | x), . . . ,P(yk | x)

)
(7.3)

data set OLR OCR OCR + R

ESL .3094±.0325(1) .3504±0.0939(3) .3361±.0427(2)

ERA 1.2520±.0393(1) 1.2770±0.0279(3) 1.2617±.0292(2)

LEV .4264±.0148(3) .4184±0.0187(1) .4224±.0242(2)

CEV .2310±.0075(3) .1097±.0361(1) .1097±.0361(1)

MPG .3648±.0324(1) .3916±0.0349(2) .4005±.0438(3)

CYD-1 .3167±.0441(3) .1778±0.0536(2) .1611±.0509(1)

CYD-2 .7722±.0712(3) .3500±0.0810(2) .3472±.0885(1)

CYD-3 .4667±.0471(3) .2722±0.0360(2) .2694±.0386(1)

CYD-4 .5133±.0414(3) .2833±0.0583(2) .2783±.0634(1)

CYD-5 .3100±.0465(3) .2633±0.0477(2) .2500±.0373(1)

CYD-6 .5083±.0874(3) .2556±0.0750(2) .2500±.0667(1)

CYd-7 .7150±.0541(3) .3867±0.0628(2) .3850±.0739(1)

average rank 2.5 2 1.41

ESL .3400±.0504(1) .3488±.0464(3) .3456± .0184(2)

ERA 1.2824±.0648(2) 1.292±.0552(3) 1.2712±.0384(1)

LEV .4372±.0344(3) .4164±.0140(1) .4204±.0148(2)

CEV .2205±.0096(3) .1203±.0291(2) .1137±.0246(1)

MPG .3365±.0375(3) .3105±.0335(2) .3045±.0310(1)

CYD-1 .3479±.0490(3) .1952±.0498(2) .1896±.0493(1)

CYD-2 .8167±.1017(3) .3483±.0644(2) .3425±.0698(1)

CYD-3 .4167±.0786(3) .2700±.0375(1) .2733±.0425(2)

CYD-4 .4633±.0576(3) .3000±.0437(2) .2933±.0432(1)

CYD-5 .3067±.0562(3) .2833±.0360(2) .2724±.0410(1)

CYD-6 .5583±.0748(3) .2867±.0461(2) .2783±.0409(1)

CYD-7 .7711±.0727(3) .3289±.0682(1) .3380±.0610(2)

average rank 2.75 1.91 1.33

Table 7.10: Average L1 loss ± standard deviation (in brackets the rank). The results above
refer to the median predictor ( 7.3), the results below to the model predictor( 7.2).

The critical distance of ranks in the Nemenyi test (α = .10) is .82 for the 0/1

measure. In Table 7.3, the average ranks for which this difference is exceeded are
highlighted in bold font.

123



7.7 Experimental Results for Complexity Reduction

The core idea of exploiting the correlation issue and ignoring high correlated fea-
tures has been discussed in Subsection 6.3.1. In order to show how efficient the
complexity reduction method is, some experiments on datasets were undertaken.
In our setup the algorithm tries to find the smallest k-additivity at which the ε − δ
property can hold.

Table 7.11: Performance in terms the average Error± standard deviation for dimensionality
reduction case (ε = δ = .1).

dataset mode of selected k’s 0/1 loss

ESL 3 .0737±.0103

ERA 4 .2981±.0158

LEV 4 .1526±.0146

%

CPU 4 .0998±.0347

0

MMG 3 .1761±.0107

2

CEV 6 .0448±.0089

BCC 3 .2888±.0578

DBS 4 .2286±.0549

MPG 4 .0719±.0108

ESL 3 .0727±.0148

ERA 4 .2930±.0162

LEV 4 .1421±.0142

%

CPU 4 .0361±.0432

0

MMG 3 .1667±.0130

5

CEV 6 .0376±.0059

BCC 3 .2838±.0448

DBS 4 .1944±.0631

MPG 4 .0570±.0080

ESL 3 .0603±.0236

ERA 4 .2899±.0191

LEV 4 .1370±.0162

%

CPU 4 .0244±.0531

0

MMG 3 .1620±.0250

8

CEV 6 .0273±.0089

BCC 3 .2755±.0404

DBS 4 .1939±.0615

MPG 4 .0597±.0126

More precisely, the algorithm starts with the highest k, in this case k = number
of attributes, and if the ε − δ property can be held for k, the algorithm tries it
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recursively for k−1. If the algorithm cannot hold, then the ε−δ property algorithm
stops, and as an output indicates the smallest k in terms of the ε− δ property. In our
experiments, we used ε = δ = .1 and for five datasets the algorithm can apparently
reduce the complexity (7.11). Needless to say, that using different ε − δ we could
reduce the complexity for other datasets. Note that the algorithm to find the k∗ was
proposed in Subsection 6.3.1.

7.8 Experimental Results with Respect to Running Time

The Choquet integral in general, and the Möbius transform in particular an exponen-
tial number of constraints are needed for assuring the monotonicity issue. Learning
this kind of model for such a high number of attributes is indeed a challenging prob-
lem. To overcome the complexity issue, several algorithms have been proposed in
chapter 6. Also, several experiments were performed to exhibit the advantages of
the proposed algorithms in chapter 6. In the following discussion, the corresponding
results in terms of running time are presented.

7.8.1 2-additive Choquet Integral

Experimentally, three different versions of the choquistic regression proposed in
6.3.2 have been compared, the original formulation (CR-orig), the first reformula-
tion (CR-I) and the second reformulation (CR-II) (See Subsection 6.3.2). To make
the implementations as comparable as possible, the same solver to the different opti-
mization problems was applied, namely the fmincon function implemented in the
optimization toolbox of MATLAB. This method is based on a sequential quadratic
programming approach. In terms of classification accuracy, the different implemen-
tations of choquistic regression should perform in exactly the same manner, at least
theoretically, because they seek to maximize the same likelihood function under
different, but equivalent constraints. Practically, of course, different formulations
of the optimization problem will yield slightly different solutions, although these
differences should be small. This expectation is confirmed by the result of a 5-fold
cross validation, which is summarized in Table 7.5.
What we are of course most interested in is the runtime performance of the different
implementations, which we measured in terms of CPU usage 1. The results, which
are summarized in Table 7.12, convey a quite clear picture: While the original im-
plementation CR-orig is superior, or at least competitive, for data sets with up to

1Experiments were carried out on an Intel Core(TM) i7-2600 CPU with 3.40GHz and 8

GB RAM under Windows 7.
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6 attributes, it is visibly outperformed by the alternative formulations for m > 6

attributes, and the difference in runtime rapidly increases with m.

data set method 20% 40% 60% 80% 100%

CR-orig 0.26± 0.05 0.31± 0.02 0.38± 0.02 0.45± 0.13 0.63± 0.05

ESL CR-I 0.41± 0.13 0.50± 0.07 0.68± 0.13 0.80± 0.17 1.05± 0.18

CR-II 0.31± 0.09 0.39± 0.07 0.50± 0.06 0.61± 0.04 0.70± 0.04

CR-orig 0.2312± 0.03 0.3699± 0.01 0.5093± 0.02 0.6366± 0.01 0.7812± 0.02

ERA CR-I 0.5368± 0.10 0.9053± 0.08 1.068± 0.16 1.2012± 0.20 1.3559± 0.18

CR-II 0.3181± 0.05 0.5273± 0.07 0.7097± 0.09 1.1253± 0.14 1.3255± 0.16

CR-orig 0.34± 0.04 0.55± 0.05 0.71± 0.04 0.88± 0.07 1.03± 0.07

LEV CR-I 0.96± 0.23 1.41± 0.21 1.84± 0.24 2.25± 0.18 2.5± 0.19

CR-II 0.49± 0.07 0.76± 0.05 1.04± 0.10 1.68± 0.15 1.90± 0.14

CR-orig 0.39± 0.15 0.56± 0.06 0.79± 0.12 0.95± 0.09 1.07± 0.11

MMG CR-I 1.19± 0.24 1.77± 0.47 2.06± 0.61 2.71± 1.60 3.24± 1.96

CR-II 0.52± 0.13 0.83± 0.11 1.13± 0.10 1.54± 0.18 1.78± 0.19

CR-orig 0.77± 0.18 1.95± 3.39 3.37± 5.42 6.9± 8.97 14.23± 11.33

CPU CR-I 1.85± 0.22 2.56± 0.52 2.79± 0.71 3.42± 0.18 6.11± 2.71

CR-II 0.50± 0.31 1.28± 0.24 1.33± 0.29 1.68± 0.56 2.06± 0.66

CR-orig 2.45± 0.24 3.84± 0.38 5.09± 0.41 5.79± 0.51 6.74± 0.41

CEV CR-I 5.36± 0.55 7.53± 1.00 9.89± 0.96 11.93± 2.83 13.72± 2.56

CR-II 2.11± 0.33 3.68± 0.31 5.23± 0.52 6.88± 0.59 7.88± 0.58

CR-orig 1.22± 0.56 1.10± 0.27 1.19± 0.23 1.47± 0.38 1.47± 0.25

BCC CR-I 2.29± 1.09 2.04± 1.52 2.16± 0.95 2.88± 2.5 2.97± 2.3

CR-II 0.47± 0.24 0.47± 0.06 0.55± 0.55 0.66± 0.11 0.78± 0.07

CR-orig 5.68± 1.11 5.36± 1.23 5.61± 1.02 5.59± 0.72 5.47± 1.05

DBS CR-I 2.51± 1.81 2.88± 1.29 3.03± 1.42 3.17± 0.96 4.08± 1.10

CR-II 0.71± 0.19 0.78± 0.34 0.76± 0.18 0.82± 0.12 0.91± 0.13

CR-orig 1.83± 0.71 2.15± 0.62 2.69± 0.59 3.18± 0.54 3.45± 0.65

MPG CR-I 2.58± 0.32 2.54± 0.66 3.46± 0.89 3.84± 0.75 4.15± 0.92

CR-II 0.61± 0.21 0.72± 0.12 0.95± 0.24 1.02± 0.19 1.3± 0.13

CR-orig 292.41± 31.11 382.82± 42.24 371.32± 12.67 394.00± 36.62 427.54± 36.62

SWD CR-I 17.92± 13.43 27.82± 12.13 32.11± 10.10 32.35± 10.05 33.14± 10.77

CR-II 4.71± 0.71 8.80± 1.34 13.01± 1.44 18.24± 2.21 22.66± 1.73

Table 7.12: Runtime complexity of the different methods measured in terms of CPU time
(mean± standard deviation) for different sample sizes (in % of the complete data
set).

This is in agreement with our expectations: An exponential number of con-
straints is no big obstacle provided the number of attributes is small. In this case,
a reduction from exponential to quadratic does not compensate for the additional
overhead caused by introducing new variables. Due to the exponential growth of
the number of constraints in CRorig, however, this situation quickly changes in fa-
vor of CR-AI and CR-AII with an increasing number of attributes; indeed, as can
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be seen from the SWD data, the runtime of CR-orig becomes unacceptable as soon
as m > 9. This is also confirmed by another experiment we did with this data set:
From the total of 10 attributes, we randomly sampled m ∈ {5, 6, ..., 10}, trained a
CR model on the data set reduced to these k attributes (using the tree methods CR-
orig, CRAI and CR-AII) and measured the runtime. This was repeated 100 times
and the runtime was averaged. Figure 7.1 shows this average runtime as a function
of m. Comparing the two alternatives CR-AI and CR-AII, it seems that the latter is
consistently faster, although the growth of the runtime as a function of m is in both
cases much more moderate than for CR-orig. Again, this is not unexpected against
the background of the results from the previous section.
Our experimental results are in complete agreement with the theoretical complex-
ity (in terms of the number of constraints and the number of variables involved) of
the optimization problems. Thus, learning the Choquet integral for classification
can indeed be made more efficient by exploiting the special structure of the prob-
lem in the case of 2-additive fuzzy measures, essentially reducing the complexity
from exponential to quadratic in the number of attributes. In order to compare the
different variants of the problem (CR-orig, CR-AI, CRAII), we decided to use a
rather general optimization method that can handle all of them without the need for
specific adaptations. An interesting alternative, of course, is to implement each of
the variants individually and as efficiently as possible, seeking for a more special-
ized solver that allows for exploiting the respective problem structure in an optimal
way. In particular, this appears to be important for a more thorough comparison of
the two alternatives we proposed, respectively, in Subsections 6.3.2. Theoretically,
CR-AII seems to be advantageous to CR-AI, and indeed, the experimental results
are in agreement with this presumption. Nevertheless, the reformulation in Section
6.3.2 should not be abandoned rashly. First, as just mentioned, it might be possible
to improve its efficiency by means of specialized optimization techniques; one may
think, for example, of an alternating optimization scheme in which, repeatedly, the
αi,j are fixed while themi,j are optimized and vice versa, thereby circumventing the
issue of nonlinearity. Moreover, CR-AII might be more amenable for a generaliza-
tion to the case of k-additive measures, k > 2. In this regard, the second approach is
arguably difficult: Firstly, it is known that for k > 2, the extreme points of the convex
polytope of k-additive measures are not all {0, 1}-valued. Secondly, and more im-
portantly, the number of these extreme points is expected to grow extremely quickly,
knowing that the number of extreme points of the polytope of additive measures on
m variables grows like the sequence of Dedekind numbers [74].
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Figure 7.1: Average runtime on the SDW data as a function of the number of attributes
included

7.8.2 The Choquet Kernel

The compact form of kernel representation of the Choquet integral exhibits more
advantages, especially in terms of complexity reduction. Hence it is expected that
the kernel representation, specifically for binary classification purpose, has a lower
run time compared to the original form. To this end, several experiments have been
conducted to show this fact. An overview of results are demonstrated in Figure 7.2
and correspond toCKk = n+MC. In fact, the run time involves the measure mod-
ification part (convex combination) to assure monotonicity. The results recommend
that if the number of attributes are small while the number of training examples
are high the primal setting has an advantage, whereas by having a high number of
attributes and low number of training examples our proposal is preferred. However
there is no exact definition for such a comparison. As it can be seen, for the data
sets CPU, DenBosch and CarMPG the compact representation of the Choquet ker-
nel with a dual form is dramatically faster than the original form. As discussed,
these data sets meet the mentioned property, i.e., here the number of attributes are
fairly large, whereas the number of instances are low.

128



E
S

L

E
R

A

L
E

V

M
a
m

m
o

C
P

U

C
E

V

B
C

C

D
en

B
o
sc

h

C
a
r 

M
P

G

S
J
-0

S
J

-1

S
J

-2

S
J

-3

S
J
-4

S
J
-5

S
J

-6

S
J
-7

S
J

-8

S
J

-9

S
J

-1
0

S
J

-1
1

S
J
-1

2

S
J

-1
3

S
J

-1
4

S
J

-1
5

S
J

-1
6

Figure 7.2: Illustration of run time with respect to primal and dual setting for different data
sets. The dark parts correspond to the fraction of run time for primal setting to the
run time of primal setting plus run time of dual setting with our proposed setting
for each data sets individually. The dash line cuts the rectangles in the middle,
which means if the dark part ends on the dash line both methods would have the
same run time.

7.9 Interpretation and Illustration

One of the key features of our approaches, which we already mentioned in Section
3.6 is the aspect of interpretability. In particular, the Choquet integral (or, more
specifically, the underlying fuzzy measure) provides natural measures of the impor-
tance of individual attributes and the interaction between pairs (or even groups) of
attributes [45]. In fact, in many practical applications, this type of information is at
least as important as the prediction accuracy of the model. These information can
be exploited to understand the model better. In the following discussion, we show
some real cases regarding the Shapley index and interaction index.

Shapley Index

As described earlier, the Shapley index measures the importancy of each criterion
(attribute) and such information can be used to interpret the model. In many prac-
tical applications, this type of information is at least as important as the prediction
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accuracy of the model. So here we just give a few examples showing the plausibil-
ity of the results. The results are related to the choquistic regression model (binary
classification case).

Regarding the Shapley index, the (average) values on the Car MPG data are as
follows:

cylinders ≈ 0.13

displacement ≈ 0

horsepower ≈ 0.25

weight ≈ 0.46

acceleration ≈ 0.03

model year ≈ 0.13

origin ≈ 0

In terms of attribute importance, this conveys the following picture:

I(weight) � I(horsepower) � I(cylinders)|I( model year)

� I(acceleration) � I(displacement)|I(origin)

Recalling the meaning of the data set, these weights should reflect the influence
on the fuel consumption, and seen from this point of view, they appear to be fully
plausible.

For the CPU data, the following Shapley values are obtained:

machine cycle time in nanoseconds ≈ 0.07

minimum main memory in kilobytes ≈ 0.24

maximum main memory in kilobytes ≈ 0.30

cache memory in kilobytes ≈ 0.20

minimum channels in units ≈ 0.10

maximum channels in units ≈ 0.09

Thus, the most important properties are those concerning the memory (main and
cache). The influence of the other properties (channels, cycle time) is not as strong,
although they are not completely unimportant either.
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Interaction Index

Apart from the importance of individual attributes, it is interesting to look at the
interaction between different attributes. A detailed analysis of this type of infor-
mation is difficult and beyond the scope of this paper. Yet, just to give an example
as an illustration, 7.3 visualizes the (pairwise) interaction between attributes for
the car evaluation data, for which CI performs significantly better than WM. Recall
that, in this data set, the evaluation of a car (output attribute) depends on a number
of criteria, namely (a) buying price, (b) price of the maintenance, (c) number of
doors, (d) capacity in terms of persons to carry, (e) size of the luggage boot, and (f)
safety of the car. These criteria form a natural hierarchy: (a) and (b) form a sub-
group PRICE, whereas the other properties are of a TECHNICAL nature and can
be further decomposed into COMFORT (c–e) and SAFETY (f). Interestingly, the
interaction in our model nicely agrees with this hierarchy: Interaction within each
subgroup tends to be smaller (as can be seen from the darker colors) than interaction
between criteria from different subgroups, suggesting a kind of redundancy in the
former and complementarity in the latter case.

Figure 7.3: Visualization of the interaction index for the car evaluation data (numerical
values are shown in terms of level of gray, values on the diagonal are set to 0).
Groups of related criteria are indicated by the black lines.

In addition, Figure (7.4) visualizes the interaction between the three attributes in
the color yield data sets, namely for CLR-1 and CLR-7. Degrees of interaction are
shown as levels of gray, which means that light and dark fields strongly silhouetted
against the color of the diagonal indicate a high degree of interaction. Obviously,
the interaction is not very strong in the case of CYD-1, but more pronounced for
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CYD-7. This is in agreement with the improvement in terms of accuracy, which is
much higher in the latter case.
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Figure 7.4: Visualization of the interaction index. In terms of the 0-1 loss, the improvement
brought by the Choquet integral over the weighted sum is 0.067 on the left and
0.133 on the right (TE: temperature, TI: time, CO: concentration).

Illustration of PCA Kernel

From a k-additivity point of view, we conducted one experiment to demonstrate the
advantages of different levels of complexity regarding the k-additive Choquet ker-
nel. In this case, we plotted the scatter plot for the data set DenBosch for different
levels of the Choquet kernels. As can be seen in Figure (7.5), a lower order of
the Choquet kernel (k = 2) tends to produce overlapping data regions for the two
classes, whereas by using a higher order of the Choquet kernel, namely k = 3 or
even the complete attribute dependency structure for k = 8 an improvement obvi-
ously exists. In other words, for higher orders of the Choquet kernel, there is an
opportunity to separate two classes more precisely. Note that, this observation does
not imply that for higher orders of the Choquet kernel, a sound improvement always
exists. Of course this depends on the data from the optimal setting with respect to
the complexity of kernel chosen.
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Figure 7.5: Illustrative scatterplot visualizations of the data under the Choquet kernels of
different orders k are obtained by using kernel principal component analysis [88].

The Illustration of Monotonicity Constraints Satisfaction by Mono-
tone Datasets

The Choquet kernel representation brings some advantages in terms of complexity.
As mentioned earlier, the scenario is to adapt the Choquet kernel by given monotone
data as training data in advance. Then the learned parameters should be modified
by some modification methods. In this regard, the satisfaction of monotonicity con-
straints was measured, in the sense that the satisfied constraints was compared to
the unsatisfied constraints. That is we computed the proportion of satisfied and un-
satisfied constraints, respectively, to the whole number of monotonicity constraints.
As is shown in Figure (7.6), expanding the number of training data can improve the
satisfaction of monotonicity constraints in a meaningful way.
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Figure 7.6: The illustration of satisfying monotonicity constraints by expanding the number
of training data. It shows that adding the number of instances reduces the number
of unsatisfied constraints.

Evaluation of Precision Parameter

As mentioned earlier, one may expect a close connection between the scaling pa-
rameter γ in the choquistic model and the prediction accuracy of the model. More
specifically, the better the model performs on a particular data set, the higher γ it is
expected to be. It is worth mentioning that our experimental results are in perfect
agreement with this expectation. Indeed, comparing the ranking of the nine data
sets in terms of accuracy and in terms of the average values of γ (shown in Table
7.13), we obtain a (Kendall tau) correlation of more than 0.8 throughout.

DBS CPU BCC MPG ESL MMG ERA LEV CEV

36.69 691.81 15.30 23.87 45.12 19.05 8.07 15.13 69.23

Table 7.13: Average values of the scaling parameter γ in the choquistic regression model.
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8
Conclusion & Outlook

8.1 Conclusion

The learning of predictive models that guarantee a monotonic relationship between
the output (response) and input (predictor) variables has received increasing atten-
tion in machine learning in recent years. [7, 10, 12, 14, 29, 33, 35, 60, 67, 68, 85,
98]. From a machine learning point of view, monotonicity usually is defined with
respect to supervised learning, in which a kind of dependency between input at-
tributes and output is taken into account. Roughly speaking, monotonicity means,
the increase (decrease) of a certain input variable can only produce an increase in
the output variable. Since such dependency is not necessarily linear, exploiting non-
linear models which guarantee monotonicity provide benefits. From this perspec-
tive, this thesis focuses on non-linear models which also guarantee monotonicity.
Interestingly, monotonicity is not easily guaranteed for a number of well-known
classification methods like, for example, decision trees. Thus, for a decision tree
it may easily happen that, depending on the values of the remaining attributes, in-
creasing the value of an attribute (e.g., tobacco consumption) may change the class
prediction from positive to negative in one case (e.g., no heart attack) and from neg-
ative to positive in another case (e.g., heart attack). In this regard to use the so-called
background knowledge, the parameters of the learner should be tuned under certain
conditions. These conditions restrict the optimal solution to a sub-optimal solution,
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in which the monotone model can be assured. Needless to say, such constraints are
designed for each learner individually.

In this thesis we advocated the usefulness of the Choquet integral, specifically
from a machine learning point of view. First in Chapter 3, the idea of MCDA and
common approaches were discussed in general, whereas in particular the fuzzy inte-
grals, especially the Choquet integral were presented. In order to employ the Cho-
quet integral into a machine learning framework, several algorithms for (ordinal)
classification were proposed. In Chapter 4, the algorithms for binary/ordinal clas-
sification were introduced and meanwhile the (ordinal) choquistic regression as a
generalization of common (ordinal) linear regression was offered. In Chapter 5, the
(ordinal) classification problem was considered from a kernel-based learning per-
spective as well. In this regard, the concept of the Choquet kernel was introduced.
Since the learned parameters in the kernel framework do not obey monotonicity
properties necessarily, we presented several approaches to repair such inconsisten-
cies as well.
As discussed several times in thesis, there are always computational difficulties in-
volved with estimating parameters for the Choquet integral, underlying the Möbius
transform. This issue is addressed as a complexity issue. In Chapter 6, several
algorithms were proposed to reduce the complexity of such models. Specifically
several reductions for the case of a 2-additive Choquet integral case were presented.
Additionally the Choquet integral underlying the fuzzy measure provides promis-
ing information about the interpretability of the model, namely, the index which
measures the importancy of each criteria and the index which measures the depen-
dency between criteria in terms of positive or negative synergies. In Chapter 7, the
interpretability of the Choquet integral and the corresponding results for proposed
algorithms were shown. In this regard, through some experiments, the reliability of
such indicators was demonstrated.

8.2 Outlook

As discussed in the very beginning of the thesis, the main challenge for monotone
learner is to enforce the monotonicity. Here the proposed models underlying the
Choquet integral luckily ensure monotonicity, although at a cost of exponentially
many constraints. However, in Chapter 6 the idea of learning without monotonic-
ity constraints was presented, but one crucial question is, how it is possible to re-
duce the number of constraints? For the 2-additive Choquet integral, this issue was
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widely discussed. In fact, for the general case such reductions make perfect sense.
Such reductions are not only useful in terms of computational complexity but also
make the interpretation simpler. These reductions are fully independent to the data,
however one can imagine that sometimes data hints to remove some unnecessary
weights. This issue was addressed in Subsection 6.3.1 as “Complexity Reduction
by Exploiting Dependency”. This method provides an upper bound of k-additivity.
In an advanced version, the idea is to detect unnecessary weights and omit them.
Indeed omitting the useless weights besides of lessen a computational complexity,
can improve quality of fit, because certainly the risk of overfitting problem can be
reduced.
In this thesis, a family of kernels underlying the Choquet integral was introduced,
and several benefits of employing these kernels were shown. For the Choquet ker-
nel is not any monotonicity constraint considered, in fact the kernel based learning
only consider constraints with respect to instances and their classes. The number
of these constraints corresponds to the number of training examples. The learning
problem can be tackled by kernelized logistic regression too, where the information
of classes and instances are involved in objective function. Indeed by kernelized
logistic regression the learning procedure can be carried out without any constraint,
which is perhaps, a way to reduce the complexity too. Hence from a computational
complexity point of view there exists a benefit.

As one of useful information, that the proposed models provide is the infor-
mation about joint weights of attributes, which are called interaction index. The
interaction index are derived from a fuzzy measure, means, derived from learned
weights. However another problem of interest is to estimate these values, or at
least the sign of them, in advance. This could be done by considering dependencies
between attributes (unsupervised learning). The estimation, even in basic phase,
namely, sign of interactions, may then decrease the complexity (in terms of run-
ning time). In fact, any information derived from unsupervised learning, which
can reduce the complexity in general, and omit the useless weights in particular is
desirable.
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monotone nonlinear models using the Choquet integral. Machine Learning,
89(1-2):183–211, 2012.

[99] A. Fallah Tehrani, W. Cheng, and E. Hüllermeier. Choquistic regression:
Generalizing logistic regression using the Choquet integral. In Proceedings
of the 7th conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-2011) and LFA-2011, volume 1 - 1 of Advances in Intelligent
Systems Research, pages 868 – 875, July 2011.

[100] A. Fallah Tehrani, W. Cheng, and E. Hüllermeier. Preference learning using
the Choquet integral: The case of multipartite ranking. Fuzzy Systems, IEEE
Transactions on, 20(6):1102 –1113, dec. 2012.

[101] A. Fallah Tehrani and E. Hüllermeier. Ordinal choquistic regression. In
EUSFLAT Conf. Atlantis Press, 2013.

[102] A. Fallah Tehrani, M. Strickert, and E. Hüllermeier. The Choquet kernel
for monotone data. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, April 2014.

[103] R. J. Tibshirani, T. J. Hastie, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2001.

[104] V. Torra. Learning aggregation operators for preference modeling. In Pref-
erence Learning, pages 317–333. Springer, 2011.

[105] V. Torra and Y. Narukawa. Modeling Decisions: Information Fusion and
Aggregation Operators. Springer, 2007.

[106] L. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

148



[107] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

[108] V. N. Vapnik. Statistical Learning Theory. A Wiley-Interscience Publication,
October 1998.

[109] G. Vitali. Sulla definizione di integrale delle funzioni di una variabile. Annali
di Matematica Pura ed Applicata, 2(1):111–121, 1925.

[110] A. Wald. Note on the consistency of the maximum likelihood estimate. The
Annals of Mathematical Statistics, 20(4):595–601, 1949.

[111] N. Yan, Z. Wang, and Z. Chen. Classification with Choquet integral with
respect to signed non-additive measure. Seventh IEEE International Confer-
ence on Data Mining Workshops, ICDMW, pages 283–288, 2007.

[112] Z. Yue. Extension of TOPSIS to determine weight of decision maker for
group decision making problems with uncertain information. Expert Systems
with Applications, 39:6343–6350, 2012.

[113] M. Zarghami, A. Abrishamchi, and R. Ardakanian. Multi-criteria decision
making for integrated urban water management. Water Resources Manage-
ment, 22(8):1017–1029, 2008.

[114] J. Zhu and T. Hastie. Support Vector Machines, Kernel Logistic Regression
and Boosting. In Proceedings of the Third International Workshop on Multi-
ple Classifier Systems, MCS ’02, pages 16–26, London, UK, 2002. Springer-
Verlag.

149



150



Erklärung

Ich versichere, dass ich meine Dissertation „Learning Nonlinear Monotone Classi-
fiers Using The Choquet Integr“ selbständig, ohne unerlaubte Hilfe angefertigt und
mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und
Hilfen bedient habe. Die Dissertation wurde in der jetzigen oder einer ähnlichen
Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonsti-
gen Prüfungszwecken gedient.

151


