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1 Introduction 

1.1 Neuronal cell death mechanisms 

Neuronal viability is maintained through a complex interactive network of signaling pathways 

and can be disturbed in response to multiple cellular stress factors and pathologies. Although 

neuronal death is required for the normal development of the central nervous system (CNS), 

as well as for the removal of dysfunctional cells in pathological conditions, excessive loss of 

neurons underlies the symptoms of many human neurological disorders, including acute 

brain injury as well as neurodegenerative diseases, such as Alzheimer´s disease (AD), 

Parkinson´s diseases (PD), Huntington´s disease (HD) and amyotrophic lateral sclerosis 

(ALS)1, 2. Oxidative stress and perturbed calcium homeostasis are environmental factors of 

neuronal death that ultimately compromise mitochondrial function, energy metabolism and 

nuclear integrity2. Although extensive research has provided insights into several key factors 

and targets that play important roles in mediating neuronal injury, and recent advances have 

improved the management of the neurological diseases mentioned above, there is no 

effective treatment available so far that prevents neuronal death. Since current treatments 

are mostly symptomatic and achieve only mild to moderate effects in patients, it is 

indispensable to further explore the biological pathways of neuronal disorders and to validate 

novel therapeutic perspectives against the progressive loss of brain function in both acute 

and chronic brain injury3, 4.  

Although it is well recognized that neurons die after acute brain damage and in 

neurodegenerative diseases, the mode of cell death is not always clear. Neuronal cell death 

has been commonly delineated into two distinct categories: apoptosis and necrosis. 

However, limitations of such nomenclature became apparent when apoptotic mechanisms 

were associated with necrotic cell death features, leading to an expanding number of 

additional neuronal cell death classifications based on morphological and biochemical 

considerations5. Therefore, neuronal cell death has also been described in terms of regulated 

necrosis or necroptosis and authophagy. 

Necrosis is an acute and passive form of cell death associated with the loss of ATP, loss of 

ionic homeostasis, membrane disruption, and organelle and cell swelling. Thus, necrosis 

causes inflammation in the surrounding region due to the release of cellular contents into the 

environment6. As there is no defined biochemical pathway, necrosis is not termed as a 

programmed form of cell death in contrast to the recently identified forms of regulated 

necrosis or necroptosis that occur in a RIP1 and/or RIP3-dependent manner5, 7. However, 

both pathways are described in neurons and have been associated to several 

neurodegenerative diseases, indicating their relevance for further therapeutic interventions8-

11.  
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In contrast to necrosis, apoptosis is a highly conserved and uniform type of programmed cell 

death, characterized by nuclear condensation and DNA fragmentation as well as membrane 

blebbing and formation of apoptotic bodies12. Cells undergoing apoptosis secrete signals that 

initiate their phagocytic removal by macrophages or neighboring cells, thereby preventing 

cell lysis and inflammatory response1. Thus, apoptosis serves as an important physiological 

function in the replacement of senescent and excessive cells. In the nervous system, 

apoptosis is essential during development, removing unnecessary cells thereby controlling 

the formation of synapses and neuronal plasticity1, 13. In contrast to its physiological role, 

pathological pathways of apoptosis have been associated with the progressive neuronal loss 

during several neuronal disorders including AD and PD as well as with delayed cell death 

after acute brain damage caused by cerebral ischemia or traumatic brain injury (TBI)2, 14-16.  

Apoptosis can result from the activation of two biochemical cascades, which are known as 

the extrinsic pathway and the intrinsic mitochondrial pathway (Figure 1). The extrinsic 

apoptotic pathway is initiated by the activation of specific cell surface receptors, specifically 

by the members of the tumor necrosis factor (TNF) family. Fas-ligand (FasL) activation of the 

Fas receptor leads to the association with the adaptor protein FADD (Fas-associated protein 

death domain) and the initiator caspases 8 or 10 to form a complex known as DISC (death-

inducing signaling complex)17. The activation of downstream effector caspases (3, 6, or 7) 

triggers the proteolytical cleavage of many cellular substrates and the activation of nucleases 

like caspase-activated desoxyribonuclease (CAD), thereby mediating DNA cleavage and cell 

death5, 18. While extrinsic apoptosis can occur irrespective of any contribution by 

mitochondria, caspase-8 can also cleave and activate the pro-apoptotic protein Bid to its 

active truncated form tBid. tBid in turn causes changes in mitochondrial permeability, thereby 

initiating the cascade of intrinsic apoptosis5, 17. 

In contrast, intrinsic apoptosis involves a cascade of molecular events occurring within the 

cells, independent of plasma membrane receptor stimulation. Various conditions trigger 

intrinsic cell death pathways, including accelerated oxidative stress, intracellular [Ca2+] 

deregulation and DNA damage, but converge at mitochondria where the permeabilization of 

the mitochondrial outer membrane (MOMP) is considered as the ´point of no return´ in the 

cell’s commitment to die5, 19. Breakdown of the mitochondrial membrane potential (Δψm) is 

associated with impaired oxidative phosphorylation and diminished energy supplies, 

enhanced production of reactive oxygen species (ROS), and the release of mitochondrial 

proteins, such as cytochrome c, Omi/HtrA2, Smac/DIABLO, and apoptosis-inducing factor 

(AIF)5, 17, 20-24. Upon mitochondrial release, AIF rapidly translocates to the nucleus and 

induces chromatin condensation and large-scale DNA fragmentation, resulting in the final 

execution steps of caspase-independent intrinsic cell death25. 
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In contrast, intrinsic apoptotic pathways can also occur in a caspase-dependent manner as 

cytosolic cytochrome c might interact with the apoptosis protease-activating factor-1 

(APAF-1) as well as with pro-caspase-9 to form the apoptosome. This results in the 

sequential activation of execution caspases 3, 6 and 7, which in turn induce the breakdown 

of the framework through degradation of several substrates, executing the final cell death 

process5, 18. Alternatively, caspase activation is mediated by the mitochondrial release of 

Omi/HtrA2 or Smac/DIABLO, which are capable of blocking the anti-apoptotic protein XIAP 

(x-chromosomal linked inhibitor of apoptosis) and other IAPs (inhibitors of apoptosis), 

thereby releasing caspase-3 from its physiological inhibitors17.  

 

Figure 1: Intrinsic and extrinsic pathways of apoptotic cells death. 

Apoptosis can result from the activation of two biochemical cascades, the extrinsic pathway and the intrinsic 

(mitochondrial) pathway. The extracellular extrinsic pathway is initiated at the plasma membrane: The death 

receptor Fas is activated by its ligand (FasL), which in turn leads to the association of the Fas associated death 

domain (FADD). Procaspase-8 is bound by the death effector domain (CED) and activated through FADD 

complex binding. Activation of caspase-8 triggers the cleavage and activation of downstream effector caspase-3, 

inducing the release of CAD (caspase-activated desoxyribonuclease) from its inhibitory ligand ICAD. This induces 

the CAD-mediated nuclear DNA fragmentation, accelerating cell death. The intrinsic mitochondrial pathway is 

triggered by intracellular stimuli such as Ca
2+

 overload and increased generation of reactive oxygen species 

(ROS). Caspase-8 mediated cleavage of the pro-apoptotic protein Bid into its active truncated form tBid links the 

extrinsic and intrinsic pathway. tBid translocation to the mitochondria induces the detrimental mitochondrial outer 

membrane permeabilization (MOMP), which marks the point of no return in the intrinsic cell death machinery.  

Permeabilization of MOM allows the mitochondrial release of death promoting proteins such as AIF, 
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Smac/DIABLO (Smac), Omi /HtrA2 and cytochrome c (C) in the cytosol. Smac/DIABLO or Omi/HtrA2 scavenge 

the inhibitors of apoptosis (IAPs) such as XIAP, thereby enhancing the activation of caspase-3. Further, cytosolic 

cytochrome c, APAF-1 and procaspase-9 interact to form the apoptosome that additionally drives the activation of 

caspase-3. Upon mitochondrial release, AIF translocates into the nucleus where it induces chromatin 

condensation and DNA fragmentation thereby resulting in caspase-independent cell death. 

 

1.1.1 Oxidative stress, mitochondria and the point of no return 

In humans, oxidative stress has been associated with a variety of pathologies, including 

chronic inflammatory processes, cancer, type II diabetes or arteriosclerosis, as well as 

ischemic injury, brain trauma and several neurodegenerative diseases26. Under physiological 

conditions, low levels of ROS are involved in signaling processes mediating cellular growth 

and adaptation responses27. However, the imbalance of excessive ROS production over 

antioxidant defense can lead to oxidation of macromolecules and has been implicated in the 

damage of intracellular structures, mitochondrial dysfunction and cell death28. In neurons, 

enhanced production of ROS occurs in both, developmental apoptosis as well as in various 

neuropathological conditions29-34, indicating the relevance of oxidative stress in neuronal 

damage. Given the importance of mitochondria as the prime source of intracellular ROS, 

mainly generated at complex I and III of the respiratory chain, mitochondria are at the same 

time important targets of ROS-mediated damaging effects and placed in the focus of cell 

death regulation1, 35, 36. Extensive formation of ROS and lipid peroxides affect vital 

mitochondrial functions, such as respiration and oxidative phosphorylation and perturb the 

maintenance of the mitochondrial membrane potential (Δψm)28. Thus, besides their essential 

role in the cells` ATP supply and their involvement in several metabolic reactions20, 37, 

mitochondria play a central role in intrinsic pathways of apoptosis triggered by oxidative 

stress38. Furthermore, increasing evidence points to a crucial role of mitochondrial dynamics 

and integrity for the maintenance of cellular viability. Mitochondrial fission and fusion defects 

limit mitochondrial motility, decrease energy production and enhance oxidative stress, 

thereby promoting cell death20, 24. Thus, it is obvious, that the preservation of mitochondrial 

integrity and function, called mitoprotection, is essential for cell survival. 

Mitochondria consist of two membranes, the outer and the inner membrane, composed of 

phospholipid bilayers and proteins. While the mitochondrial outer membrane (MOM) is freely 

permeable to small molecules such as ions and sugar, the inner mitochondrial membrane 

(IMM) is highly impermeable. The permeabilization of MOM allows the release of protein 

from the intermembrane space (IMS), such as cytochrome c, Smac/DIABLO and AIF, which 

immediately initiate the cell death machinery21. While it is likely, that the permeabilization is 

achieved by the formation of membrane-spanning pores, the involvement of appropriate 

pore-forming proteins as well as the correlation between MOMP and the breakdown of Δψm is 

not well defined.  
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It is well described that MOMP is initiated by multi-domain pro-apoptotic members of the 

Bcl-2 family, such as Bax and Bak as well as BH3-only proteins, such as tBid or Bim, that 

directly activate Bax or Bak21, 23, 39. However, the precise mechanisms of how Bcl-2 family 

proteins trigger MOMP and subsequent mitochondrial impairment are still not fully 

understood. An alternative model for the initiation of MOMP is the opening of the 

mitochondrial permeability transition pore (mPTP), consisting of the voltage-dependent anion 

channel (VDAC) present in the outer membrane, the adenine nucleotide transporter (ANT) 

located in the inner membrane and the matrix protein cyclophilin D (CypD), among other 

proteins23, 40. Under normal conditions, CypD is reported to reside in the mitochondrial matrix 

and the mPTP remains closed. Opening of the mPTP upon cell death stimuli such as calcium 

overload or intracellular oxidative stress, results in a sudden increase in the IMM 

permeability, loss of Δψm, mitochondrial swelling and rupture of the MOM41, 42. The present 

thesis addresses the disputed question, how these proposed mechanisms of MOMP are 

related to each other. 

 

1.2 Bcl-2 family proteins – regulators of life and death 

An important regulatory mechanism of mitochondrial integrity and function is represented by 

the B-cell lymphoma-2 (Bcl-2) family proteins36. An imbalance between multiple pro- and anti-

apoptotic members of this family has been explored for their involvement in the underlying 

mechanisms of diverse pathologies such as tumor formation as well as autoimmune 

pathologies, infectious diseases and neurological disorders43. The Bcl-2 family includes more 

than 20 members and is subdivided into three groups on the basis of their pro- or anti-

apoptotic action and the presence of conserved Bcl-2 homology (BH1-BH4) domains (Figure 

2)44. The first group includes the anti-apoptotic proteins (e.g. Bcl-2, Bcl-xl, Bcl-w, Mcl-1, and 

A1/Bfl-1), which contain all four Bcl-2-homology domains (BH1-4) and preserve MOM 

integrity by directly binding and inhibiting either pro-apoptotic Bax/Bak or activator BH3-

proteins. They are generally integrated within the MOM, but also displaced in the cytosol or 

ER membranes36, 45. In contrast, the second and third group contain the pro-apoptotic 

members, which are divided into multi-domain proteins with all four homology regions (e.g. 

Bax, Bak and Bok) and those that contain only the BH3 domain (e.g tBid, Bim, Bad, Bik/Nbk, 

Noxa, Puma)46. While the multi-domain proteins Bax and Bak are thought to undergo 

conformational changes and oligomerization thereby promoting pore-formation and MOMP, 

the BH3-only proteins are described to either interact with anti-apoptotic proteins to inhibit 

their function and/or to directly interact with the effector proteins Bax/Bak to provoke their 

apoptotic activity21, 44, 47. In healthy cells pro-apoptotic Bcl-2 family members are cytosolic, 

whereas cell death stimuli can trigger their translocation (e.g Bid or Bim) to membranes. In 
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contrast to the BH3-only protein tBid, full-length Bid shares structural similarities with the 

multi-domain family members as described in detail below44. Opposed to their abundant 

presence in non-neuronal cells, neuronal cells reveal highly dynamic expression of the main 

family members Bcl-xl, Bcl-2, Bax, Bak, Mcl-1 and Bid during neuronal development. While 

Bid, Bax and Bcl-xl continue to be highly expressed in the adult brain, significant expression 

levels of Bcl-2 and Mcl-1 as well as full-length Bak have not been observed48-52. In contrast, 

neurons express an unusual splice variant of Bak depicting anti-apoptotic functions when 

over-expressed52. In regard to the expanding interest in the BH3-only proteins and their pro-

apoptotic effects within neurons, this thesis focuses on the pro-apoptotic protein Bid and 

addresses Bid-dependent mechanisms of neuronal cell death. 

 

 

Figure 2: Simplified overview of the Bcl-family proteins. 

Bcl-2 family proteins can be classified into three subtypes based on structural and functional features. To date, 

four Bcl-2 homology (BH)-domains have been identified (BH1-BH4). The anti-apoptotic family members Bcl-2, 

Bcl-xl, A1, MCL-1 and Bcl-w contain four BCL-2 homology domains and are thought to exert their effect at the 

mitochondrial outer membrane where they contribute to maintenance of membrane integrity. The pro-apoptotic 

proteins are subdivided into the multi-domain proteins Bax, Bak, Bok and the BH3-only proteins e.g. tBid, Bim, 

Bad, Bik, Noxa, Puma, Bik and Bnip3. Pro-apoptotic members such as Bax and Bak oligomerize and 

permeabilize the MOM, whereas tBid, Bim, Bad or Noxa are thought to either activate Bax or Bak or inhibit the 

anti-apoptotic proteins. In contrast to tBid, full-length Bid shares structural and functional similarities to the pro-

apoptotic protein Bax. Most members of the Bcl-2 family consist of a carboxy-terminal membrane-binding region 

(MBR) that triggers the translocation and binding of the proteins to membranes. (modified from Chikpuk et al., 

2010 and Shamas-Din et al., 2013)
53, 54

.  
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1.2.1 The BH3-only protein Bid 

The BH3-interacting domain death agonist, Bid, first reported by Wang et al. 199655, is a 

widely expressed cytosolic pro-apoptotic protein, consisting of 195 amino acid residues 

(22 kDa) in its full length form. Although Bid has been reported to participate in a mitosis 

checkpoint and maintenance of genomic stability56, 57, the main function of Bid appears to be 

its crucial involvement in the regulation of mitochondrial cell death pathways. Even though 

some pro-apoptotic function is reported for full-length Bid58, 59, detrimental activation of Bid is 

accelerated by proteolytic cleavage of the native protein to a truncated C-terminal p15 

fragment (tBid), which translocates to the mitochondria60. There, tBid mediates mitochondrial 

membrane permeabilization and the subsequent release of apoptotic factors from the 

mitochondrial intermembrane space to the cytosol61-63. 

The structure of Bid, which has been elucidated using NMR spectroscopy64, 65, consists of 

eight α helices arranged in three layers, with two central hydrophobic helices (α 6 and α 7) 

surrounded by the amphipatic helices on either side66. Beside this highly ordered core 

structure, Bid contains a large unstructured loop between the helices α 2 and α 3 (amino 

acids 42-79), as well as a disordered N-terminal region (Figure 3 A).The structural 

arrangement of Bid shares high similarity to the structure of multi-domain Bcl-2 family 

proteins, such as Bcl-2, Bcl-xl, Mcl-1 and Bax, and is thereby contrasting the unstructured 

composition of almost all BH3-only proteins44, 66, 67. In accordance to the structures of Bax 

and Bak, recent studies further suggested a redefined BH4 region at the N-terminus of Bid, a 

feature that was previously observed only by the anti-apoptotic Bcl-2 family proteins61. 

Further, the structural arrangement of Bid is similar to that of bacterial toxins such as the 

colicins and diphtheria toxin65, 68 and implies the role of Bid in pore-formation. This suggestion 

has been substantiated by reports describing high similarities between Bid and Bax 

regarding their migration to and insertion into the MOM, thereby indicating Bid as a ´Bax-like 

protein´ 61. While the BH3-domain of Bid, located in helix 3, is required for its interactions with 

the Bcl-2 family proteins Bax and Bcl-xl, the unstructured loop contains a variety of sites that 

are subjected to post-translation modifications regulating Bid localization and apoptotic 

function (Figure 3 B)66, 68.  
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Figure 3: Molecular structure and protease-cleavage sites of Bid. 

A, NMR- solution structure of mouse Bid (PDB entry 1DDB)
65

. The flexible loop region between helix α 2 and α 3 

and the flexible N-terminal region are marked in red. The core structure consisting of 8 α-helices is stained in 

grey. The schematic drawing reveals one of 20 NMR solution structures of mouse Bid. B, Human Bid (hu) and 

mouse Bid (mu) consists of 195 amino acids and 8 α-helices. Numbers below each α-helix indicates the starting 

and ending amino acid sequence of the helix. The BH3-domain is domain is required for interactions with other 

Bcl-2 family members, whereas helix α 2 is thought to interact with membrane lipids, particularly cardiolipin. 

Mostly all proteases cleave Bid in the loop region, cleavage sites are indicated with black arrows (modified from 

billen et al 2009)
61

. 

Within this highly flexible region, proteolytic activation and cleavage of Bid can be exerted by 

different proteases (Figure 3 B). The first mentioned and best studied example of Bid 

activation is its cleavage by caspase-860, which itself is activated by the engagement of 

Fas/TNF death receptors. Caspase-8 cleavage of Bid, resulting in the C-terminal p15 tBid 

fragment, triggers the exposure of the BH3-domain and drives the membrane binding of tBid 

by relieving its auto-repression mediated by the un-cleaved N-terminal p7 fragment61, 64, 65, 69. 

Upon cleavage, the smaller p7 fragment of tBid is not necessarily completely separated from 

the active C-terminal moiety66, as both fragments are held together by hydrophobic 

interactions70. However, recent studies revealed that in the presence of a membrane, both 

fragments of caspase-8 cleaved Bid (cBid) spontaneously dissociate, thereby exposing 

sufficient hydrophobicity to drive the insertion of tBid into membranes71, 72. Beside caspase-8, 

Bid can also be cleaved by the effector caspase-361, as well as by caspase-1066, caspase-2 

and caspase-1. In addition, Bid cleavage has also been shown to be exerted by several non-

caspase proteases, namely granzyme B73, calpains74, 75 or lysosomal hydrolases such as 

cathepsins76, and finally by a JNK-dependent unknown protease61. Mostly all of them cleave 

Bid in the loop region between helices α 1 and α 2 and notably all proteases trigger the 

accumulation of the C-terminal cleavage product at mitochondria44, 61.  
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1.2.1.1 Bid interactions with lipids and proteins - recruitment to mitochondrial 
membranes  

There are several hypotheses proposed to explain the recruitment of Bid and tBid to 

mitochondrial membranes and the subsequent MOMP. While protein-protein interactions are 

discussed in being involved in the specific translocation of Bid and tBid to mitochondria66, 

increasing evidence indicates that mitochondrial lipids might play an important role in the 

molecular cell death pathway driven by pro-apoptotic Bcl-2 family members culminating with 

MOMP and the release of apoptogenic factors77.  

For example it has been postulated that post-transcriptional myristinylation of tBid enhances 

its targeting to mitochondria70, and many in vitro studies revealed Bid-lipid binding and a 

membrane destabilization or even a pore-forming ability of tBid on artificial lipid 

membranes66, 69. Furthermore, a relevance of a Bid-lipid interaction was also suggested for 

the activation of mitochondria and a tBid-induced mitochondrial dysfunction in the absence of 

Bak or Bax78. In particular, the glycerol-based phospholipid cardiolipin (CL) has been shown 

to play a crucial role for the specific targeting of tBid to mitochondria79, 80. Cardiolipin is 

synthesized and exclusively present in the IMM, but also found in the MOM and even more 

at the contact sites connecting the outer with inner mitochondrial membrane. A Bid-

cardiolipin interaction was initially demonstrated by in vitro studies, revealing the necessity of 

CL in liposome membranes for the effective tBid-induced release of trapped indicators71, 79 

and confirmed by cell based assays demonstrating the requirement of CL for tBid-induced 

cytochrome c release80-82. In accordance to the mitochondrial localization of CL, it has been 

suggested that tBid binds to CL at the contact sites of the IMM and MOM81, 83 and further 

studies have linked the Bid-CL interaction to mitochondrial cristae reorganization, 

permeability transition and the subsequent release of CL-bound cytochrome c84, 85. Notably, 

also full-length Bid as well as the non-separated cBid retain the capacity of binding tightly to 

CL and display interactions with other Bcl-2 family proteins and lipid membranes86-89. 

Therefore it is obvious, that CL plays a role in the modulation of the pro-apoptotic action of 

Bid90, 91, although it remains unclear whether the pro-apoptotic action of Bid is directly 

dependent on CL. 

Despite the apparent important role of mitochondrial lipids, it is well accepted that the pro-

apoptotic activity of Bid, and in particular tBid-mediated membrane permeabilization and the 

release of cytochrome c, is based on its interactions with other Bcl-2 family members or 

mitochondrial proteins. tBid can interact with the anti-apoptotic proteins Bcl-2 and Bcl-xl, 

thereby releasing Bax to promote Bax activation, but is also able to directly activate the 

apoptotic effector proteins Bax and Bak to trigger their oligomerization and mitochondrial 

activation61, 92. Besides the necessity of other Bcl-2 family members, it has also been shown 
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that the voltage-dependent anion channel 2 (VDAC2) is required for tBid-induced 

mitochondrial apoptosis by inducing Bak translocation to mitochondria66, 93. Furthermore, the 

mitochondrial carrier homolog 2 (Mtch2) has been recently reported as a binding partner for 

tBid and appears to be important for its mitochondrial recruitment72, 94, 95. After cleavage of 

Bid and the spontaneous separation of the p7 and p15 fragment upon the initial binding of 

tBid to MOM, Mtch2 is thought to act as a direct receptor for tBid, catalyzing its 

conformational change and anchoring the membrane binding helices of tBid in the 

membrane72. Finally, latest reports demonstrated a direct interaction of tBid with caspase-

cleaved arrestin-2, which does not induce tBid recruitment to mitochondria but enhances the 

ability of tBid to induce cytochrome c release96.  

These studies suggest the importance of both, mitochondrial lipids and other proteins for the 

crucial role of Bid in the mitochondrial cell death machinery. However, it is not clear if the 

described Bid-lipid and –protein interactions depend on each other, occur in parallel or if 

there are multiple mechanisms for the mitochondrial recruitment of Bid and its apoptotic 

function depending on cell type and cell death stimuli. It is therefore of interest to address the 

precise mechanism of Bid participation in MOMP and especially to explore the essential 

binding partners that facilitate the mitochondrial recruitment and pro-apoptotic action of Bid in 

neurons.  

1.2.1.2 Involvement of Bid in neuronal cell death 

In contrast to other cells where Bax and Bak are reported to be the key players of intrinsic 

cell death pathways, recent studies highlighted a pivotal role of Bid in mitochondrial demise, 

the subsequent acceleration of oxidative stress and neuronal cell death. It has been shown 

that Bid-deficient neurons are highly resistant to cell death stimuli including oxygen-

glucose deprivation (OGD), glutamate-induced excitotoxicity or oxidative stress in vitro97, 98. 

Pharmacological Bid inhibition and Bid gene silencing using small interfering RNA (siRNA) 

provides neuroprotective effects by inhibiting tBid-induced mitochondrial fragmentation, 

loss of mitochondrial membrane integrity, mitochondrial AIF release, and cell death 97, 99. 

In vivo, a pivotal role for Bid in mechanisms of delayed neuronal death has been 

confirmed in models of cerebral ischemia and brain trauma, where Bid knockout mice 

revealed significantly reduced brain damage compared to wild-type controls98, 100, 101. In 

addition, activation of Bid and tBid translocation to mitochondria has been detected in 

seizure-induced neuronal death and in human brain tissue after temporal lobe 

epilepsy102, 103, indicating a key role of Bid in neurological disorders.  
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1.2.2 Pharmacological Bid inhibition – a strategy for mitoprotection 

The findings above highlight the pivotal role of Bid in the control point of life and death and 

identified Bid as a key regulator of mitochondrial injury and mitochondrial pathways of 

neuronal cell death. The transactivation of Bid to mitochondria, Bid-induced mitochondrial 

fragmentation and MOMP and the accelerated production of reactive oxygen species (ROS) 

mediate the release of death promoting factors into the cytosol that trigger the final steps of 

the mitochondrial cell death machinery. Bid deficiency and pharmacological Bid inhibition 

were shown to provide protection against such mitochondrial demise, indicating Bid as a 

target for mitoprotection and cell survival. Therefore, inhibition of Bid may serve as a 

promising strategy for the development of novel therapeutic approaches for neuroprotection 

with high relevance for the treatment of age-related diseases of the nervous system, where 

intrinsic death pathways cause impaired mitochondrial integrity and neuronal death.  

While several selective inhibitors for other members of the Bcl-2 family proteins, such as Bcl-

2, Bcl-xl or Mcl-1 have been described104-113, so far, only a few small molecules targeting Bid 

have been developed by Becattini et al.99, 114. While the discovery of Bcl-2 and Bcl-xl 

inhibitors has been based on the structural knowledge of their molecular function104, 106, 115, 

analogous strategies for Bid were missing so far as the molecular basis for its function is not 

fully understood99. In contrast, the design of small-molecules targeting Bid was based on the 

abovementioned NMR-solution structure of mouse Bid (PDB entry, 1DDB)65, revealing the 

presence of a deep hydrophobic crevice on the surface of the Bid protein. First Bid-targeting 

ligands (1-3), capable of occupying this hydrophobic pocket, were identified by an NMR-

based approach named “structure-activity relationships by interligand-Nuclear-Overhauser 

Effects” (SAR-by-ILOE) (Figure 4). Combination of these small Bid-binding fragments (1-3) 

resulted in several substances with diverse potentials for Bid-binding and inhibition of 

mitochondrial Smac/DIABLO release99, 114. The most promising substances obtained from 

this strategy were the 4-phenylsulfanyl-phenylamine derivatives BI-11A7 (4) and BI-6c9 (5) 

(Figure 4). Both BI-6c9 and BI-11A7 demonstrated protective efficiency, positively influencing 

cell survival and mitochondrial integrity. Furthermore, these small-molecule Bid inhibitors 

provided protection against neuronal cell death in models of glutamate toxicity and oxygen-

glucose deprivation (OGD) in neuronal cell lines in vitro24, 97, 99, 114, 116 and attenuated gentoxic 

drug induced apoptosis in HeLa cells117, 118. However, the protective activities of the Bid-

inhibiting compounds developed so far, were only achieved at high micromolar 

concentrations and the small-molecules were only applicable in enzyme assays and in cell 

culture. Applications of BI-6c9 in model systems of neuronal degeneration in vivo have failed 

so far, likely due to a limited affinity and bioavailability of the compound. Based on these 

findings the first part of this thesis focused on Bid as a molecular druggable target and the 
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screening of novel small Bid inhibitors which were developed based on further optimization of 

the available Bid-targeting molecules. 

 

 

 

Figure 4: Structures of Bid-binding fragments and the resulting Bid inhibitors. 

By the combined approaches of NMR-fragment-based screening and in vitro assays, Becatiini et al. identified the 

fragments BI-2A7, BI-2A2 and BI-2A1 as binding ligands for Bid. Combinations of these fragments yielded in the 

Bid inhibitors BI-11A7 and BI-6c9 
99, 114

 

Another aspect in the demanding development of novel small-molecules that selectively 

target Bid is the absence of an appropriate crystal structure of isolated Bid. It is well accepted 

that elucidation of the atomic structure of proteins is not only a powerful tool for 

understanding the macromolecular function but has undoubtedly an important role in drug 

discovery and pharmacological research119, 120. So far, only small Bid-BH3 peptides have 

been crystallized in complex with the Bax protein and were used to explore the pro-apoptotic 

activation of Bax121, but no crystal structure of the Bid helical core has been obtained to date. 

However, deep structural knowledge would enable the structure-guided drug design as it has 

been performed for the related Bcl-2 family proteins Bcl-xl or Mcl-1109, 122-124. Thus, a crystal 

structure of Bid would facilitate the rational design of lead candidates with acceptable 

physicochemistry, selectivity, and affinity properties.   
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1.3 Voltage-dependent anion channels (VDAC) and their role in 

mitochondrial apoptosis 

Voltage-dependent anion channels, also known as mitochondrial porins, are the most 

abundant proteins in the outer mitochondrial membrane and can be subdivided into three 

isoforms: VDAC1, VDAC2 and VDAC3. All three proteins have a similar molecular weight 

(30-35 kDa) and are highly conserved across species, albeit in different amounts, with 

VDAC1 being the most prevalent sub-type and the least common form being VDAC3125, 126. 

While so far very little is known about the three-dimensional structure of VDAC2 and VDAC3, 

intensive structural investigations were performed on the isoform VDAC1 in recent years127-

129. X-ray structures revealed VDAC1 as an atypical 19 stranded β-barrel with a 25 residue-

long N-terminal α-helical region spanning the middle of the pore which is supposed to be 

involved in channel gating behavior127-129. Beside their abundant presence in the MOM, 

VDACs are also localized in compartments other than mitochondria, such as plasma 

membranes and the endoplasmatic reticulum (ER), yet the exact functions of extra-

mitochondrial VDAC remain unclear125. The physiological function of mitochondrial VDACs is 

their involvement in the cross-talk between mitochondria and the cytosol by regulating the 

exchange of energy carrying molecules like ATP, ADP, pyruvate or succinate and other small 

molecules130-132. Further reports connect VDACs to many physiological and 

pathophysiological processes, including Ca2+ homeostasis133-136 or energy metabolism135-140 

and increasing evidence points to VDAC as a key protein in the regulation of intrinsic cell 

death pathways130, 135, 136, 138, 141-144. Several lines of experimental data suggested the isoform 

VDAC1 as the most likely candidate involved in mitochondrial apoptosis, as siRNA mediated 

VDAC1 gene silencing efficiently prevented Bax activation, cytochrome c release and cell 

death induced by various stimuli, such as cisplatin145, endostatin146 or selenite147. In contrast, 

VDAC1 over-expression triggers apoptotic cell death132, 141, 148, 149, and release of cytochrome 

c could be induced by purified VDAC1 reconstituted into cytochrome c containing 

liposomes132, 150. Although these data indicate the critical involvement of VDAC1 in cell death, 

the precise mechanisms of how VDAC1-mediated apoptosis is regulated is a matter of 

controversial discussion126, 130, 131, 151.  

VDAC1 is regarded as the major pore-forming component of the mPTP, suggesting that its 

activation by apoptotic stimuli, such as over-production of Ca2+ and ROS, results in mPTP 

opening and subsequent cell death125, 130, 131, 152. Another hypothesis indicates that VDAC1 

closure prevents the efficient exchange of ATP and ADP between mitochondria and cytosol, 

thereby leading to osmotic matrix swelling, rupture of MOM and the non-specific diffusion of 

intermembrane proteins that trigger cell death132, 153. Alternatively, it has been suggested that 

VDAC1 oligomerization mediates the release of apoptogenic factors154-156, as an increase in 
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VDAC1 homo-oligomers was observed upon STS-induced apoptosis and could be blocked 

by the anion channel blocker 4,4´-diisothiocyanostilbene-2,2´-disulfonic acid (DIDS)136, 155. 

Finally, both VDAC1 and VDAC2 have been reported as key functional targets of the Bcl-2 

family proteins and increasing evidence indicates that both anti- and pro-apoptotic proteins 

are involved in the regulation of VDAC mediated apoptosis142, 157-160. Although a close 

interplay of VDAC with Bcl-2 family proteins such as Bcl-xl, Bax or Bid has been proposed157, 

159, 161, 162, a direct interaction of VDAC with any of these Bcl-2 family members has not yet 

been demonstrated at the cellular level. Furthermore, the relationship between Bcl-2 family 

proteins and the VDAC gating behavior is contradictious. While it has been described that 

the pro-apoptotic proteins triggers VDAC channel closure thereby leading to MOM rupture 

and cell death, and anti-apoptotic proteins maintains the functional open state of VDAC 

channels153, 161, other reports claim, that the pro-apoptotic members Bax and Bak induce 

VDAC channel opening and the formation of a large pore permeable for cytochrome c144, 159 

in contrast to the anti-apoptotic proteins Bcl-xl and Bcl-2 which facilitate the close state of 

VDACs144, 160. Despite all abovementioned indications, it should be noted, that VDAC 

isoforms were also reported to be dispensable for mitochondria-dependent cell death163, 

suggesting that multiple pathways and mechanisms of mPTP opening and cytochrome c 

release can co-exist within the proposed cell death models depending on the cell type and 

death stimulus151, 163. 

The particular involvement of VDAC1 and VDAC2 in intrinsic cell death pathways and 

especially their connection to the pro-apoptotic activity of the Bcl-2 family protein Bid will be 

elucidated in the last part of the present thesis. 
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1.4 HT-22 cells – a model for and Bid-mediated cell death 

In order to investigate the mechanisms of Bid-mediated neuronal cell death, immortalized 

mouse HT-22 neurons were used as a well established model system to study intrinsic cell 

death pathways triggered by oxidative stress. Since HT-22 cells lack functional ionotropic 

glutamate receptors, glutamate induced cell death occurs independently of NMDA-receptor 

stimulation through competitive inhibition of the glutamate/cystine antiporter system Xc
-, 

which exchanges extracellular cystine and intracellular glutamate across the plasma 

membrane. High extracellular glutamate concentrations at millimolar ranges consequently 

reduce the intracellular cystine levels required for glutathione (GSH) synthesis164-167. As 

glutathione serves as a radical scavenger that sequesters free radicals and ROS, GSH 

depletion results in a pronounced and significant increase in free radicals and detrimental 

reactive oxygen species (ROS) within a few hours after glutamate treatment of cells164. The 

dramatic GSH depletion leads to the loss of function of glutathione peroxidase 4 (GPX4) and 

an increased activity of 12/15-lipoxygenases (12/15-LOX), resulting in ROS-mediated lipid 

peroxidation. Upon 12/15-LOX activation, the pro-apoptotic protein Bid translocates to 

mitochondria, induces mitochondrial fragmentation and mitochondrial membrane 

permeabilization and thereby accelerates the glutamate-induced ATP depletion, the second 

pronounced increase in ROS production and, finally, the release of death-promoting factors, 

such as AIF in the cytosol. Nuclear translocation of AIF induces the DNA fragmentation and 

nuclear condensation, ultimately triggering the final execution step of caspase-independent 

cell death within a few minutes97. 

This delayed form of glutamate-induced toxicity is clearly different from glutamate-induced 

excitotoxicity in primary neurons, where excessive or even prolonged physiological 

glutamate-mediated activation of ionotropic NMDA-receptors leads to a massive calcium 

influx and rapid neuronal cell death168, 169. However, despite the absence of functional NMDA-

receptors, it has also been shown that glutamate-induced cell death signaling is 

accompanied with increases in cyclic GMP and cytosolic calcium levels34, 170, 171. Although the 

initial signaling of glutamate-induced cell death in primary neurons and HT-22 cells are 

different, they both share a high similarity in the downstream cell death pathways. Since 

enhanced ROS formation, increased Ca2+ levels as well as Bid-mediated mitochondrial 

dysfunction are well established features of neuronal toxicity, the glutamate-treatment of the 

present HT-22 cells serves as a valuable and applicable in vitro model for studying molecular 

mechanisms of PCD triggered by oxidative stress and the activation of the pro-apoptotic 

protein Bid. 
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Figure 5: Simplified model of glutamate-induced toxicity in HT-22 cells. 

In HT-22 cells, the xCT- antiporter mediates the import of extracellular cystine and the export of intracellular 

glutamate. Exposure to high concentrations of glutamate triggers oxidative stress by a competitive inhibition of the 

cystine import, resulting in a GSH depletion, which reduces GPX4 activity and increases the 12/15-LOX 

activation. These events enhance the generation of highly detrimental ROS and increase the formation of lipid 

peroxides. Downstream of the first ROS formation, the pro-apoptotic protein Bid is activated to its truncated form 

tBid, which subsequently translocates to mitochondria, where tBid induces the permeabilization of the 

mitochondrial outer membrane, mitochondrial dysfunction and the accelerated ROS production, consequently 

releasing death promoting factors, such as AIF, into the cytosol. AIF in turn immediately translocates to the 

nucleus, leading to DNA fragmentation and nuclear condensation, thereby causing the final execution of caspase-

independent cell death. Red arrows indicate the increases and decreases in cellular molecule levels caused by 

the exposure of HT-22 cells to glutamate. (modified from Tobaben et al., 2011).  
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1.5 Aims of the thesis 

The pivotal role of the pro-apoptotic Bcl-2 family protein Bid in intrinsic cell death pathways 

has become increasingly apparent over the last couples of years, as Bid has been identified 

as a key regulator of mitochondrial integrity and function and detrimental accumulation of 

reactive oxygen species (ROS). Previous studies revealed an important role of Bid in 

delayed neuronal death after oxygen-glucose-deprivation, glutamate-induced excitotoxicity or 

oxidative stress in vitro. In vivo, major roles of Bid-dependent cell death mechanisms were 

confirmed in models of cerebral ischemia and traumatic brain injury. These data highlight Bid 

as a potential target for novel therapeutic strategies aiming at preserved mitochondrial 

function and neuronal survival with high relevance for the treatment of age-related diseases 

of the nervous system, where mitochondrial injury and associated neuronal dysfunction are 

prominent.   

To achieve efficient pharmacological strategies to inhibit Bid-mediated cell death pathways, 

novel drug discovery campaigns are required to overcome the limitations of the few Bid 

inhibiting compounds developed so far. While other Bcl-2 family members are intensively 

investigated in various structure-guided drug development approaches, until now similar 

strategies for Bid were hampered by the absence of appropriate crystal structures of isolated 

Bid. Moreover, a better knowledge of mechanisms involved in Bid activation and Bid-

dependent impairments of mitochondrial membrane integrity are mandatory for sustaining 

the therapeutic potential of Bid inhibition. 

Therefore, the present thesis is aimed to bridge crucial gaps of knowledge regarding the 

precise mechanisms of Bid-dependent mitochondrial demise and cell death and to initiate 

important requisites for Bid crystallization with the principal purpose of identifying novel Bid-

targeting compounds for mitoprotection and cell survival: 

 

1) Evaluation of new chemical compounds that target Bid for mitoprotection and cell 

survival  

The first aim of the present thesis was the identification of novel Bid-targeting molecules that 

provide protection against mitochondrial cell death. Based on the structure of available Bid 

inhibitors, compounds of three chemical classes of were developed. These molecules were 

screened in this thesis for their protective efficiency in the model of glutamate toxicity in HT-

22 neurons. In order to investigate the interference with the pro-apoptotic activities of Bid, the 

effects of the novel structures were further examined after tBid over-expression. Moreover, 

the work addresses the ability of the most promising compounds to prevent Bid-mediated 

impairments in mitochondrial integrity and function. 
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1) Design, expression and purification of different Bid constructs for crystallization 

and functional assays 

In order to provide insights into the structural properties of Bid and its pro-apoptotic activities, 

the second aim of this thesis was the design of different Bid constructs and the establishment 

of protocols for expression and purification of recombinant Bid protein. Highly pure protein 

was used for initiation of the first Bid crystallization studies and the development of primary 

assays of Bid activity, and Bid-interactions with other proteins. 

 

2) Development of model systems for membrane permeabilization 

Since Bid was identified as a key trigger of apoptotic cell death via detrimental effects at the 

mitochondrial membrane, the third goal of the project was to investigate the effect of 

recombinant full length Bid and cBid on artificial lipid bilayer structures which mimic the 

mitochondrial membrane. For this approach, a liposome channel activity assay was validated 

as a screening system for membrane permeabilization. As many previous studies claimed 

the pro-apoptotic protein Bax as the main pore-forming protein required for MOMP, a further 

purpose during this research was to examine the role of Bax in Bid/cBid-mediated 

permeabilization of fluorescent liposomes. Another question of interest was the role of 

cardiolipin in Bid-mediated membrane integration and permeabilization. 

 

3) Mechanisms of Bid mediated mitochondrial dysfunction and cell death and the link 

to the voltage-dependent anion channel VDAC 

So far, the precise mechanism by which Bid initiates MOMP and the subsequent 

mitochondrial demise is not fully understood. Therefore, the thesis was proposed to 

investigate whether the voltage-dependent anion channel VDAC1 is a direct mitochondrial 

receptor for activated Bid at the control point of life and death. The approach of the anion 

channel blocker DIDS as well as VDAC1 gene silencing was used to explore the impact of 

VDAC in glutamate-induced and Bid-accelerated cell death pathways in cultured neurons. 

The interplay between Bid and VDAC was additionally verified in a model of ischemic brain 

injury in vivo as well as by in vitro studies using recombinant proteins.   

As previous studies reported a direct interplay between the isoform VDAC2, tBid and Bak in 

non-neuronal cells, the last part of the work was aimed at the role of VDAC2 in glutamate-

induced cell death in HT-22 neurons. 
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2 Materials and methodes 

2.1 Chemicals and reagents 

All standard chemicals were obtained from Sigma-Aldrich (Taufkirchen, Germany) and Roth 

(Karlsruhe, Germany), if not described otherwise. All buffers and solutions were prepared 

using demineralized, ultrapure water that was prepared with the SG Ultra Clear UV plus pure 

water system (VWR, Darmstadt, Germany).  

Ultrapure, demineralized water for aseptic preparation of solutions was sterilized before use 

by a steam autoclave (Systec V-40, Systec GmbH, Wettenberg, Germany). In addition, all 

media and solutions that were used in cell culture were sterilized by filtration using 0.22 μm 

filter sets (Sarstedt, Nümbrecht, Germany). 

2.1.1 Transfection reagents  

Opti-MEM I (Invitrogen, Karlsruhe, Germany) was used to allow formation of DNA- or siRNA 

transfection complexes. For siRNA transfections, the cationic lipid formulation Lipofectamine 

RNAiMax (Invitrogen, Karlsruhe, Germany) was used. Transfection of plasmid vectors were 

performed using the attractene transfection reagent (Qiagen, Hilden, Germany).  

2.1.1.1 Plasmid vectors 

Plasmid pCDNA 3.1+ was obtained from Invitrogen (Karlsruhe, Germany). The mitoGFP 

(mGFP) vector was a kind gift from Andreas Reichert (Goethe University Frankfurt, Frankfurt, 

Germany). The tBid vector (pIRES-tBid) was generated as previously described172. The 

ApoAlert® pDSRed2-Bid vector which encodes a biologically active fluorescent fusion protein 

of Bid and DsRed monomer was derived from Clontech (Palo Alto, California, USA). The 

mouse VDAC1 plasmid (mVDAC1) was kindly provided by Dr. Jeff Abramson (University of 

California LA). For the generation of Flag-VDAC1, full-length mouse VDAC1 was amplified 

with two primers (VDAC1-fwd and VDAC1-Flag-rev, see 2.1.2) of which the C-terminal one 

encoded also a Flag epitope. The PCR product was subcloned into pcDNA3 (Invitrogen) 

using the inserted BamHI and NotI sites. Plasmids containing either the gene sequence for 

full length Bid or truncated Bid were ordered from Addgene (Cambridge, MA): pET15b Bid 

p22 (Addgene plasmid 8784) encodes full-length mouse Bid, pET15b Bid p15 (Addgene 

plasmid 8782) encodes mouse tBid173. A plasmid containing the caspase 8 gene was also 

purchased from Addgene in a pET15b vector (Addgene plasmid 11827, pET15b-Casp8 delta 

DED). The plasmid vector encoding the Bax sequence was ordered from Addgene in a 

pCEP4-HA vector (Addgene plasmid 16587, pCEP4-HA-Bax). The construction of plasmids 

encoding GST fusion proteins of various Bid constructs is described in more detail in section 
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2.14.3. The following plasmids were constructed: pGEX Δ12-Y47 (also called Bid 1), 

pGEX Δ12-D51 (Bid 2), pGEX Δ13-Y47 (Bid 3) and pGEX Δ13-D51 (Bid 4).  

All plasmids were amplified using a Quiagen Plasmid Plus Midi kit (Quiagen, Hilden, 

Germany) according to the manufacturer´s protocol. Prior to use, the plasmid DNA-

concentrations were determined using the NanoVue Plus Spectrophotometer (Implen, GE 

Healthcare Europe GmbH, Freiburg, Germany), and digestion by restriction enzymes with 

subsequent gel electrophoresis analysis was performed. Additionally all plasmid constructs 

were verified by sequencing. 

2.1.1.2 SiRNA  

VDAC1 and VDAC2 siRNA sequences were synthesized by Eurofins MWG Operon (Eurofins 

MWG Operon, Ebersberg, Germany). Specific VDAC1 knockdown was achieved by the 

following siRNA sequences: 5´-GAUUGGCUUAGG GUACACUCA- 3´ (VDAC1 siRNA 1) and 

5´-GUGAAUGACGGGACAGAGUUU-3´ (VDAC1 siRNA 2). For specific knockdown of 

VDAC2 the following siRNA sequences were used: 5´-UGAUAUUCGUUCCCAGAGGUU-3´ 

(VDAC2 siRNA a) and 5´-AGAGUGUUAUCGGUGUUCCUU-3´ (VDAC2 siRNA b). For 

knockdown of Bid two siRNA sequences were purchased from Sigma-Aldrich 

(Taufkirchen, Germany): 5´-GAGUGUAUCUAAGAGUUU[dT][dT]-3´ (SASI_Mm01_0011519) 

and 5´-AAACUCUUCAGAUACACUC[dT][dT]-3´ (SASI_Mm01_00115200). Non-functional 

scrambled siRNA (scr siRNA, 5’-AAGAGAAAAAGCGAAGAGCCA-3’) was purchased from 

Dharmacon (Thermo Scientific, Bonn, Germany). 
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2.1.2 PCR-primer 

For RT-PCR all primers were synthesized at by Eurofins MWG Operon (Eurofins MWG 

Operon, Ebersberg, Germany). Primer sequences were used as listed in Table 1: 

 

Table 1: Primers used for RT-PCR 

Primers Sequences 

VDAC1 fwd 5´-GGACTGAGTATGGGCTGACG -3´ 

VDAC1 rev 5´-AAGTTGCTCTGGGTCACTCG-3´ 

VDAC2 fwd 5´-ACTTTGCAGTCGGCTACAGG-3´ 

VDAC2 rev 5´-CTCTTCCCGTCTACCAGAGC-3´ 

Bid fwd 5´-GGGAACTGCCTGTGCAAGCTTAC-3´ 

Bid rev 5´-CAGTGAGGCCTTGTCTCTGAA-3´ 

GAPDH fwd  5′-AGGCCGGTGCTGAGTAT-3′ 

GAPDH rev 5′-TGCCTGCTTCACCACCTTCT-3′ 

Primers used for the construction of expression vectors: 

Primer Sequence 

mVDAC fwd 5´-TTA ATA CTC GAG TTA TGC TTG AAA TTC CAG TCC TAG GC-3´ 

mVDAC rev 5´-ATA AAT CAT ATG GCC GTG CCT CCC AC-3´ 

VDAC1 fwd 5´-AAA TAA _GGA TCC_ ATG GCC GTG CCT CCC-3´ 
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VDAC1-Flag 
rev 

5´-AAA ATT _GCG GCC GC_T TAC TTA TCA TCA TCA TCC TTA TAA 
TC_T CTA GA_T GCT TGA AAT TCC AGT CC-3´ 

G12-mBid fwd 5´-AAAAAAGGATCCGGGGCCGAGCACATCACAGACC-3´ 

A13-mBid fwd 5´-AAAAAAGGATCCGCCGAGCACATCACAGACCTGCTGG-3´ 

mBid-EcoRI 5´-AAAAAAGAATTCTCAGTCCATCTCGTTTCTAACCAAGTTCC-3´ 

Y47-mBid fwd 
5´-AAAAAAAAGCTTACAGTCAGGAAGAAATCATCCACAACATTGCC-
3´ 

D51-mBid fwd 
5´-AAAAAAAAGCTTACTGGGAGGCAGACAGTCAGGAAGAAATCATC
CACAACATTGCC-3´ 

KpnI-M13Bid 5’-AAAAAA GGTACC ATG GCCGAGCACATCACAGACCTGCTGG-3’ 

 

 

2.1.3 Primary antibodies 

All primary antibodies were diluted in Tris-buffered saline containing 0.05 % Tween 20 

(TBST) and 5 % skim milk powder or Tris-buffered saline containing 5 % BSA (all Sigma-

Aldrich) as indicated in the company´s protocol. For Western blot analysis in this study, the 

VDAC1-antibody (VDAC1-N18, polyclonal, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

was diluted 1:200, of monoclonal and polyclonal Flag-antibody (Flag M2 monoclonal, Flag 

polyclonal both Sigma-Aldrich, Munich, Germany) 1:1000. VDAC2-, Bid-, Bax and Bak- 

antibodies (all polyclonal, Cell Signaling, Danvers, Massachusetts, USA, and New England 

Biolabs GmbH, Frankfurt, Germany) were diluted 1:1,000. The dilution of the Drp1-antibody 

(BD Bioscience Laboratories, Heidelberg, Germany) was 1:500 and the anti-actin antibody 

(Cell Signaling, Danvers, Massachusetts, USA, and New England Biolabs GmbH, Frankfurt, 

Germany) was used at a dilution of 1:10,000. 

For immunoprecipitation experiments the Bid-antibody (polyclonal, Cell Signaling, Danvers, 

Massachusetts, USA) and Flag-antibody (polyclonal Sigma-Aldrich, Munich, Germany) were 

used at concentrations of 7.5 µg/sample and the VDAC1(N18)-antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) was used at concentrations of 10 µg/sample (see also 

2.8.4) 
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2.1.4 Secondary antibodies 

All secondary antibodies were purchased from Vector Labs (Burlingame, California, USA), if 

not otherwise described. Horse radish peroxidase (HRP) labeled anti-mouse IgG (H+L), anti-

goat IgG (H+L) and anti-rabbit IgG (H+L) secondary antibodies were used for Western blot 

analysis at dilutions of 1:2,500 - 1:5,000 in Tris-buffered saline with 0.05 % Tween 20 and 

5 % skim milk powder (Sigma-Aldrich). For immunocytochemistry biotinylated anti-rabbit IgG 

(H+L) antibody was used in a 1:200 dilution in phosphate buffered saline (1 x PBS, Table 5) 

containing 3 % horse serum (Invitrogen, Karlsruhe, Germany) and DyLight 649 anti-mouse 

antibody (Merck Millipore, Darmstadt, Germany) in a dilution of  1:200 in phosphate buffered 

saline (1 x PBS) containing 3 % heat inactivated fetal calf serum (FCS).  

 

2.2 Supplies 

2.2.1 Kits  

All kits used in this work are provided in Table 2 and were applied following the 

manufacturer´s instructions: 

Table 2: Kits 

Kit Company 

Annexin-V-FITC Detection Kit Promokine, Heidelberg, Germany 

 BODIPY (581/591 C11) Invitrogen, Karlsruhe, Germany 

MitoPTTM TMRE kit 
Immunochemistry Techonolgies, Hamburg, 
Germany 

ViaLightTM Plus-Kit Lonza, Verviers, Belgium 

XF Cell Mito Stress Kit Seahorse Biosciences ,North Billerica, MA 

Pierce BCA Kit Perbio Science, Bonn, Germany 

NucleoSpin RNA II Kit Machery & Nagel, Düren, Germany 

SuperScript III One Step RT-PCR System 
with Platinum® Taq 

Invitrogen, Karlsruhe, Germany 

QIAGEN Plasmid Plus Midi Qiagen, Hilden, Germany 

QIAGEN Gel Extraction Kit Qiagen, Hilden, Germany 

Ultra Free DNA Extraction Kit Millipore, Schwalbach, Germany 



24 | Materials and methodes 

 

 
 

2.2.2 Materials for recombinant proteins 

Consumables used for purification and concentration of recombinant proteins are provided in 

Table 3.  Materials for crystallographic methods are depicted in Table 4.  

Table 3: Materials for protein purification 

Columns and filters Company  

His-Catcher Nickel Gravity columns PJK GmbH, Kleinbittersdorf, Germany 

HisTrapTM FF, 1 ml and 5 ml column 
GE Healthcare Bio-Science AB, Uppsala, 
Sweden 

GSTrapTM FF, 5 ml column 
GE Healthcare Bio-Science AB, Uppsala, 
Sweden 

Glutathione HiCap Cartridge, 5 ml Qiagen, Hilden, Germany 

HiTrap Q HP, 1 ml and 5 ml column 
GE Healthcare Bio-Science AB, Uppsala, 
Sweden 

HiLoad 16/600 Superdex 75 prep grade 
GE Healthcare Bio-Science AB, Uppsala, 
Sweden 

Collection tubes 14 ml, 105x16 mm, 
Polystyrol 

Sarstedt, Newton, NC, USA 

Poly-Prep® Chromatography column BioRad Laboratories, Munich, Germany 

PD MidiTrap G-25 column 
GE Healthcare Europe GmbH, Freiburg, 
Germany 

3 kDa Amicon® Ultra Centrifugal Filter  
Units – 4 ml 

Millipore, Schwalbach, Germany 

3 kDa and 10 kDa Amicon® Ultra 
Centrifugal Filter  Units – 15 ml 

Millipore, Schwalbach, Germany 

0.22 μm Whatman PuradiscTM sterile-filter Whatman, Dassel, Germany 
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Table 4: Materials for protein crystallization 

Crystal equipment  Company 

MRC2 96-well crystallization plate  Jena Bioscience GmbH, Jena, Germany 

24-well EasyXtal plate Quiagen, Hilden Germany 

VIEWseelTM adhesive sheets Greiner Bio-one, Frickenhausen, Germany 

96-Deep well plate Abgene,  Schwerte, Germany 

CrystalWand MagneticTM Hampton Research, Aliso Viejo, CA, USA 

CrystalCapHTTM Hampton Research, Aliso Viejo, CA, USA 

Mounted CryoLoop™ - 10 and 20 micron 
with EasySnap Micro Tube 

Hampton Research, Aliso Viejo, CA, USA 

CrystalCap™ Copper MagneticTM  Hampton Research, Aliso Viejo, CA, USA 

CrystalCap MagneticTM Hampton Research, Aliso Viejo, CA, USA 

Micro-Tools Hampton Research, Aliso Viejo, CA, USA 

 

2.2.3 Cell culture materials  

Sterile plastic ware was used as indicated in Table 5. 

Table 5: Sterile plastic ware 

Plastic ware Company  

T75 flasks Greiner, Frickenhausen, Germany  

T175 flasks  Greiner, Frickenhausen, Germany 

6-well plates Greiner, Frickhausen, Germany 

24-well plates Greiner, Frickenhausen, Germany 

96-well plates Greiner, Frickenhausen, Germany 

IbiTreat 8-well Ibidi, Munich, Germany  

6 cm dishes Sarstedt, Newton, NC, USA 

10 cm dishes Sarstedt, Newton, NC, USA 
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96-well plates white  Greiner, Frickenhausen, Germany 

96- well plates black  Greiner, Frickenhausen, Germany 

XF96-well microplates Seahorse Biosciences, North Billerica, MA 

E-plate 96 well Roche, Applied Science, Penzberg, Germany 

15 ml tubes  Greiner, Frickenhausen, Germany  

50 ml tubes  Greiner, Frickenhausen, Germany  

0.5, 1.5, 2 ml tubes Sarstedt, Nümbrecht, Germany  

0.22 μm Whatman PuradiscTM sterile-
filter 

Whatman, Dassel, Germany 

0.45 μm filter   Whatman, Dassel, Germany 

Cell scraper Sarstedt, Nümbrecht, Germany  

1, 5, 10 ml Injekt® Braun, Melsungen, Germany 

 

2.3 Cell culture  

2.3.1 Cell culture media and cultivation of HT-22 cells  

HT-22 cells were obtained from Gerald Thiel (Homburg/Saar) with kind permission of David 

Schubert (Salk Institute, San Diego, California, USA). The HT-22 cell line was originally 

selected from HT-4 cells based on glutamate sensitivity. HT-4 cells were immortalized from 

primary hippocampal neurons using a temperature-sensitive SV-40 T antigen174.  

HT-22 cells were cultured in Dulbeccos´s modified Eagle medium (DMEM, Invitrogen, 

Karlsruhe, Germany) supplemented with 10 % heat-inactivated fetal calf serum, 100 U/ml 

penicillin, 100 µg/ml streptomycin and 2 mM glutamine (all from PAA Laboratories GmbH, 

Germany) as indicated in Table 6. For standard cultivation HT-22 cells were kept in 75 cm2 

culture flasks in a standard unified incubator at 37°C and 5 % CO2. Cells were split twice per 

week in a ratio 1:10 - 1:20. Splitting of HT-22 cells was perfomed as follows: Growth medium 

was removed and cells were washed once with 2 ml phosphate buffered saline (1 x PBS, 

Table 7) to fully remove the growth media. For detachment of cells from the bottom of the 

flasks, 2 ml of trypsin/EDTA solution (Table 8) was added and cells were incubated 2-5 min. 

at 37°C. After detaching of the cells, the protease activity was stopped by adding the 3-fold 

amount of DMEM growth medium (Table 6). Afterwards, the cell suspension was centrifuged 

at 1.000 x rpm for 5 minutes and the cell pellet resuspended in fresh growth medium. For 
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determination of cell number a counting chamber (Neubauer Zählkammer, Brand, Wertheim, 

Germany) was used. Afterwards, cells were seeded into the appropriate culture dishes with a 

cell density of 6 x 103 – 6 x 104 cells per well or 5 x 105 – 1.5 x 106 cells per dishes, 

depending on the respective experiments (Table 9). 

 

 

Table 6: HT-22 standard growth medium 

DMEM-medium with 4.5mg/l glucose and 110 mg/l sodium pyruvate 440 ml 

Heat inactivated fetal calf serum (FCS) 50 ml 

L-alanyl-L-glutamine 200 mM 5 ml 

Penicillin 10.000 U/ml / Streptomycin 10 mg/ml (Pen/Strep) 5 ml 

 

 

Table 7: Phosphate buffered saline (PBS), pH 7.4 

NaCl 9 g 

Na2HPO4 0.527 g 

KH2PO4 0.144 g 

HCl (0.1M) q.s. for pH adjustment 

Aqua demin add to a final volume of 1,000 ml 

 

 

Table 8: Standard Trypsin/EDTA solution 

Trypsin (7.500 U/mg) 100 mg 

Ethylenediamine-tetra-acetic acid (EDTA) 40 mg 

PBS Table 3 
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Table 9: HT-22 cells – cell densities 

Cell culture format cell density cells/cm2 (cells/well) 

96-well plate ~ 6,000 – 12,000 cells/well 

24-well plate ~ 40,000 – 60,000 cells/well 

6-well plate ~ 180,000 cells/well 

ibidi μ-slide 8-well plates ~ 16,000 – 20,000 cells/well 

6 cm dish ~ 500,000 cells/dish 

10 cm dish ~ 1,000,000 – 1,500,000 cells/ dish 

XF96-well microplates ~ 10,000 cells/well 

E-Plate 96-well ~ 10,000 cells/well 

 

2.3.2 Cell culture medium and cultivation of primary mouse embryonic cortical 

neurons  

For culturing of primary mouse embryonic cortical neurons, cell culture dishes were coated 

one day before preparation with 5 % polyethylenimine (PEI, Table 10). Coating was 

performed by incubation with 5 % PEI for 2-3 h at 37°C. Afterwards the dishes were washed 

three times with sterile bidest water and dried for 30 min under UV-light. Cell dishes were 

filled up with MEM+ and incubated overnight in the cell incubator at 37 °C and 5 % CO2. 

 

Table 10: 5% PEI 

Borac acid 3.1 g 

Borax  9.0 g 

PEI 1 ml 

Aqua demin add to a final volume of 1,000 ml 

 

Cortices were removed from embryonic day 14-16 wild type C57BL/6 mice (Charles River 

Laboratories, Sulzfeld, Germany) and dissociated by trypsinization and trituation as followed: 

Isolated cortices were incubated in Hank’s balanced salt solution (HBSS, diluted from 

10 x HBSS, Invitrogen, Karlsruhe, Germany, Table 12 ) containing 1 mg/ml trypsin (Sigma-
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Aldrich,Taufkirchen, Germany) for 15 min. at 37°C. Afterwards, DNAse was added for 30 

seconds and the cortices were washed with HBSS and mixed with HBSS containing 1 mg/ml 

trypsin inhibitor (Sigma-Aldrich,Taufkirchen, Germany), and the cell suspension was 

incubated for further 2 min. at room temperature. Afterwards, the cortices were washed once 

with HBSS, and triturated in MEM+ obtained from Eagle’s minimum essential medium 

(Invitrogen, Germany, Table 13) by addition of 1 mM HEPES (Biomol, Hamburg, Germany), 

26 mM NaHCO3, 40 mM glucose, 20 mM KCl, 1.2 mM L-glutamine (each Sigma-Aldrich, 

Taufkirchen, Germany), 1 mM sodium pyruvate (Biochrom, Berlin, Germany), 10% (v/v) fetal 

calf serum (FCS) (Invitrogen, Karlsruhe, Germany) and 10 mg/l gentamicin sulfate (Sigma-

Aldrich, Taufkirchen, Germany). The titurated cells were centrifuged at 1,000 x g for 5 min. at 

room temperature. The supernatant was removed and cells cultured in neurobasal medium 

supplemented with 2 % (v/v) B-27 (Table 11). Afterwards, cells were counted in a cell 

counting chamber (Neubauer Zählkammer) and seeded into T75 flasks with a density of 10 

to 15 x 106 cells per flask containing 20 ml MEM+. One day after incubation, the medium was 

exchanged with neurobasal medium (Table 11) containing 0.5 µM cytosine 

arabinofuranoside (CAF) to avoid glia cell growth. On day 5 and 7 after seeding of cells, half 

of the medium was exchanged with fresh neurobasal medium, respectively. Since cultures of 

primary neurons develop functional NMDA receptors after 6-8 days in culture and are 

therefore susceptible to glutamate-induced excitotoxicity, experimental treatments were 

performed with 7-9 day old cultures.  

All mediums were obtained from Invitrogen (Karlsruhe, Germany), if not described otherwise. 

Chemical substances were obtained from Sigma-Aldrich (Taufkirchen. Germany). 

 

Table 11:  Neurobasal medium 

Neurobasal medium (Gibco®) 490 ml 

2 % (v/v) B-27 (Gibco®) 10 ml 

1 % (v/v) L-glutamine 5 ml 

1 % (v/v) Pen/Strep 5 ml 
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Table 12: Hank´s balanced salt solution (1 x HBSS) ph 7.2 

10 x HBSS 50 ml 

HEPES 1.2 g 

1 % (v/v) Pen/Strep 5 ml 

Aqua demin add to a final volume of 500 ml 

 

 

Table 13: Eagle´s minimum essential medium (MEM) 

MEM- Phenolrot 4.695 mg 

1 mM HEPES 4.75 mg 

26 mM NaHCO3 1.1 g 

40 mM Glucose 5.0 g 

20 mM KCL 0.605 g 

1 mM Na-pyruvate 0.6 g 

1.2 mM L-glutamine 0.088 g 

10 % (v/v) FCS 50 ml 

1% (v/v) Pen/Strep 5 ml 

Aqua demin add to a final volume of 500 ml 
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2.3.3 Induction and inhibition of cell death in HT-22 neurons 

2.3.3.1 Induction of neuronal cell death 

Neuronal cell death was induced 24 – 48 h after seeding of the HT-22 cells. Induction of cell 

death was either performed by glutamate-induced toxicity or by tBid over-expression. 

2.3.3.1.1 Glutamate-induced toxicity 

Glutamate-induced toxicity in HT-22 cells was performed when cells reached about 70-80 % 

confluency. For induction of cell death, glutamate solution at a final concentration range from 

3-7 mM was used. For glutamate stock solution, D,L-glutamic acid monohydrate (Sigma-

Aldrich, Taufkirchen, Germany) was dissolved in Dulbeccos´s modified eagle medium 

(DMEM; PAA Laboratories GmbH; Cölbe, Germany) to a stock concentration of 1 M. The pH 

was adjusted to 7.2 with concentrated sodium hydroxid solution (NaOH). The stock solution 

was stored at -20°C. For measuring glutamate toxicity the stock solution was diluted in 

DMEM to final concentrations of 3 mM to 7 mM instantaneously before treatment, and cell 

growth medium was removed and replaced by the final glutamate solution. To investigate 

neuroprotective properties of the inhibitors used in this study (0), growth medium of HT-22 

cells was exchanged with cell culture medium containing glutamate and/or substances in the 

final concentrations, respectively. Between 4 h and 24 h after treatment, cells were analyzed 

following the the described procedures for protein or RNA analysis, cell viability, flow 

cytometry, epi- and confocal microscopy or immunoprecipitation and immunoblots.  

2.3.3.1.2 tBid induced-toxicity 

For induction of tBid-mediated cell death, HT-22 cells were seeded in 24-well plates with a 

density of 40,000 cells per well. Twenty-four hours after seeding, tBid overexpression was 

induced by transfection of cells with a tBid- encoding plasmid (pIRES-tBid, 2.3.5.1). Between 

17 h to 24 h after tBid overexpression cell morphology, cell viability and mitochondrial 

membrane potential (Δψm) was analyzed as described below.  
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2.3.3.2 Inhibition of neuronal cell death 

To inhibit neuronal cell death in HT-22 cells, the Bid inhibitor BI-6c9 (Sigma-Aldrich, 

Taufkirchen, Germany; Figure 6) was dissolved in dimethyl sulfoxide (DMSO) to a stock 

concentration of 10 mM. The stock solution was stored at -20°C. To achieve neuroprotection 

against glutamate- and tBid-induced toxicity BI6c9 was used at final concentrations of 10 µM 

in DMEM (Table 6). The Bid inhibitor BI-6c9 was used as a positive control for 

neuroprotection in all experiments performed in this study. 

 

                    

                    Figure 6: Chemical structure of the Bid inhibitor BI-6c9 

 

Novel small-molecule Bid inhibitors used in this study (3.1.3) were dissolved in dimethyl 

sulfoxide (DMSO) to a stock concentration of 100 mM and stored at -20°C, respectively. To 

screen the newly synthesized structures for their ability to provide neuroprotection against 

glutamate- and tBid-induced toxicity, compounds were diluted in cell culture medium to final 

concentration ranges of 0.1 µM to 100 µM. Chemical structures of all novel small-molecule 

inhibitors are provided in Table 67 - Table 70 (Appendix). 

The unspecific anion channel blocker and VDAC inhibitor 4,4´- Diisothio-cyanatostilbene-

2,2´-disulfonic acid (DIDS; Figure 2) was dissolved in DMSO to a stock concentration of 

100 mM. The stock solution was stored at -20°C and diluted with cell culture medium prior to 

each experiment to final concentrations of 100 µM up to 1 mM.  

 

                                               

Figure 7: Chemical structure of 4,4´- Diisothio-cyanatostilbene-2,2´-disulfonic acid (DIDS).  

DIDS was used to analyze the impact of the voltage-dependent anion channel (VDAC) in glutamate- and tBid-

induced toxicity in HT-22 cells.  
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In order to exclude specific effects of the solvent of the different chemical substances and 

inhibitors, vehicle controls (DMSO controls) were always treated with medium containing the 

highest concentration of the solvent that was present at the highest applied concentration of 

the active compounds during the experiment. 

 

2.3.4 Induction of cell death in primary cortical neurons (PCN) 

Cell death in primary cortical neurons was performed by glutamate-induced excitotoxicity via 

activation of NMDA receptors that are functionally expressed at 6-8 days in vitro (DIV). 

Therefore treatments of primary cortical neurons were performed with 7-9 old cell cultures 

and excitotoxicity was induced by glutamate (20-25 µM) in neurobasal medium 

supplemented with 2 % B-27 (Table 11). Cultured neurons were harvest 4 h and 22- 24 h 

after glutamate exposure, and 30-45 x 106 cells per treatment condition were analyzed 

following the described procedures for immunoprecipitation studies. 

 

2.3.5 Transfection protocols 

HT-22 neurons were transfected either in 96-well plates, 24-well plates, ibidi µ-slide 8-well 

plates, 6 cm2 or 10 cm2 dishes, depending on the respective experiments. Plasmid 

transfections were performed 24 h after seeding of cells and siRNA transfections were 

performed as reverse transfections instantaneous prior to seeding of cells. 

2.3.5.1 Plasmid and gene transfection 

For plasmid transfections HT-22 cells/well were seeded in 24-well plates at a density of 

4 x 104 or in ibidi µ-slide 8-well plates (Ibidi, Munich, Germany) at a density of 

16.000 cells/well 24 h before transfection, and incubated under normal growth conditions 

(37°C, 5% CO2). On the day of transfection growth medium was replaced with 500 µl fresh 

standard growth medium and substance pre-treatment (BI-6c9, DIDS, novel Bid inhibitors) 

was performed 1 h before the following plasmid transfection. The plasmids pIRES-tBid, 

pDSRed2-Bid, pc-mBid13-y47, pc-mBid13-D51,FLAG-VDAC1, FLAG-control or empty vector 

pcDNA 3.1+ were dissolved separately in antibiotic- and serum-free medium and Attractene 

transfection reagent (Qiagen, Hilden, Germany) was added to the DNA solution. To allow 

complex formation samples were incubated for 10 to 15 minutes at RT. 24-60 µl of the 

transfection mixture was added to the cell culture medium to a final concentration of 0.5-2 µg 

DNA/well and 0.75-4.5 µl Attractene/well. Controls were treated with 24-60 µl antibiotic- and 

serum-free cell culture medium only and vehicle controls additionally with 0.75-4.5 µl 

Attractene/well. Cells were incubated under normal growth conditions until further 
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experiments. Cell morphology and cell viability was analyzed 16 h to 20 h after over-

expression tBid or novel Bid constructs, respectively. Immunostaining and 

immunoprecipitation of FLAG-VDAC1 was performed 24 h – 48 h after over-expression of 

FLAG-VDAC1. Immuno-analysis of pDSRed2-Bid was performed 24 h – 48 h after 

transfection. 

2.3.5.2 SiRNA transfection 

For siRNA transfections Lipofectamine RNAiMax (Invitrogen, Karlsruhe, Germany) was used. 

VDAC1 siRNA (VDAC1 siRNA1 and VDAC1 siRNA2), VDAC2 siRNA (VDAC2 siRNA a and 

VDAC2 siRNA b), Bid siRNA (SASI 115198 and SASI 115200) or non-functional scrambled 

siRNA were separately dissolved in Opti-MEM I (Invitrogen, Karlsruhe, Germany). After 10 

min. of equilibration at RT, each siRNA solution was combined with the respective volume of 

the Lipofectamine RNAiMax solution and mixed gently. For reverse transfection the 

transfection mixture was filled into the cell culture wells or dishes, depending on the 

respective experiments, and allowed to form siRNA liposome complexes for further 20 min. 

at room temperature. After addition of antibiotic-free cell suspension, a final concentration of 

20 nM to 80 nM siRNA and 2 µl/ml Lipofectamine was reached. Controls were treated with 

100 µl/ml Optimem only, and vehicle controls additionally with 2µl/ml Lipofectamine 

RNAiMax. SiRNA sequences see 2.3.5.2.  

SiRNA transfections were performed in 10 cm2 dishes for protein analysis or in 24-well plates 

for RNA analysis. Gene silencing was verified by RT-PCR and Western blotting. For 

functional analysis of protein depletion, siRNA transfections were carried out in cell culturing 

formats depending on the respective experiment. 
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2.4 Cell viability assays 

2.4.1 Analysis of cell morphology 

After different cell death stimuli, such as glutamate- or tBid-induced toxicity, HT-22 neurons 

show excessive alterations in cell morphology: Cells clearly appear shrunken, rounded up 

and detached from the bottom of the culture plate. Therefore, analysis of cell morphology can 

be used for estimating cell viability of HT-22 cells. 

For analysis of cellular morphology, transmission light microscopy of living HT-22 cells, 

growing as monolayers, was performed using an Axiovert 200 microscope (Carl Zeiss, Jena, 

Germany) equipped with a Lumenera Infinity 2 digital camera (Lumenera Corporation, 

Ottawa, Canada). Light was collected through a 10 x 0.25 NA objective (Carl Zeiss, Jena, 

Germany), and images were captured using phase contrast. The INFINITY ANALYZE 

software (Lumenera Corporation, Ottawa, Canada) was used for digital image recording and 

image analysis. Images were captured using phase contrast. 

2.4.2 MTT assay 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is a well 

accepted colorimetric method to determine cell proliferation, cell viability and cytotoxicity. The 

cellular reduction of the yellow colored monotetrazolium salt MTT to purple colored formazan 

is performed by either a lyosomal/endosomal cell compartment or active mitochondria in 

living cells175. Since only viable cells with active metabolism convert MTT into a purple 

formazan product with an absorbance maximum near 570 nm that can be easily detected by 

absorptive spectroscopy, color formation serves as a useful and convenient marker of the 

metabolic activity in viable cells. 

                         

                  Figure 8: Reduction of yellow MTT to purple colored formazan
 

 

Cell viability of HT-22 cells was evaluated 16-24 h after glutamate- or tBid-induced toxicity 

and respective substance pre-or co-treatments. Quantification of cell viability in HT-22 cells 

was performed either in standard 96-well plates or standard 24-well plates. MTT (Sigma-

Aldrich, Munich, Germany) was dissolved in 1 x PBS at a concentration of 2.5 mg/ml. When 
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morphological changes of the cells indicated cell death, the MTT reagent was added to the 

media at final concentrations of 0.25 mg/ml, followed by 1 h incubation at 37°C. After 

terminating the reaction was terminated by removing the media from cells and freezing the 

plate at -80 °C for at least 1 h. The formazan crystals were dissolved in dimethyl sulfoxide 

(DMSO) and absorbance was determined at 570 nm (FluoStar OPTIMA, BMG Labtech, 

Offenburg, Germany). Background was detected at 630 nm and subtracted accordingly. Cell 

viability levels were demonstrated as percentage of absorption levels in untreated control 

cells (100 % cell viability). A DMSO control was used as solvent control. For statistical 

analysis the experiments were repeated at least three times. 

2.4.3 Real-time measurements of cell impedance (xCELLigence) 

Impedance-based real-time detection of cellular events was conducted using the 

xCELLigence system Real-Time Cell Analyzer RTCA-MP (Roche Diagnostics, Penzberg, 

Germany), which measures the electrical impedance between gold micro-electrodes 

integrated into the bottom of custom made tissue culture plates (E-plates 96)176. Due to a 

high electrical resistance of cells, the electrical impedance is the higher the more cells are 

attached to the bottom of the E-plates. Therefore this system allows for monitoring changes 

in cell proliferation, cell viability and morphology as well as alterations in cell number and cell 

adhesion, and especially the kinetics of these processes in a large number of tissue culture 

wells simultaneously throughout the experiments. Differences in the electrical impedance of 

cells are displayed as cell index (CI) as function of time.  

HT-22 cells were cultured with a density of 10,000 – 12,000 cells/well in 96- well E-plates 

and recordings were started immediately after seeding. At twenty-four hours after seeding of 

cells, when the cell index exceeded a value of about one, cells were treated with glutamate 

(3-7 mM) and/or with different inhibitor substances dependent on the experiment. Since the 

system is very sensitive to changes in temperature, a complete removal of the medium was 

avoided to prevent a persistent breakdown of the impedance. Recording of cell index (CI) 

values and normalization was performed using the RTCA Software 1.2 (Roche Diagnostics, 

Penzberg, Germany). Background impedance caused by the media was recorded before 

seeding of the cells and subtracted automatically by the RTCA software.  

After concluding each experiment, E-plates were recycled by removing media, washing the 

plates twice with aqua demin. and adding standard Trypsin/EDTA for 15-20 minutes. 

Afterwards 1xTE was removed, plates were washed 3 times. To reassure sterility the plates 

were irradiated with UV light for 30 minutes. For statistical analysis the experiments were 

repeated at least three times. 
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2.4.4 ATP- luminescence measurements 

Adenosinetriphosphate (ATP) can be used to assess the functional integrity of living cells 

since all cells require ATP for survival and their energy-dependent specialized functions. Any 

form of cell injury results in a rapid decrease in cytoplasmic ATP-levels. The detection of 

cellular ATP is based on a bioluminescent assay, which utilizes an enzyme, luciferase, to 

catalyze the formation of light from ATP and luciferin according to the following reaction: 

 

               

 

 

 

Figure 9: Formation of light from ATP and luciferin 

 

The emitted light intensity is linearly related to the cellular ATP concentration and can be 

easily detected by a plate reader measuring the luminescence. As each individual cell 

contains ATP, the method can not only be used for detection of cellular ATP-levels, but also 

for the direct assessment of cell numbers.  

For analysis of total ATP levels, HT-22 neurons were seeded in white 96-well plates 

(Greiner, Frickenhausen, Germany) for luminescence measurements. Twenty four hours 

after seeding, cells were treated with 5 mM glutamate and when indicated additionally with 

the Bid inhibitor BI-6C9 (10 µM), novel compounds (20 µM) or the VDAC inhibitor DIDS 

(500 µM – 1000 µM) respectively. Cellular ATP levels were detected approximately 20 h after 

glutamate exposure using the ViaLightTM Plus-Kit (Lonza, Verviers, Belgium) according to the 

manufacturer’s protocol. Briefly, the culture plate was allowed to cool down to room 

temperature for at least 5 minutes. In this time all reagents were prepared following the 

manual instructions. Afterwards, cells were treated with the nucleotide releasing reagent, and 

incubated for 5 min. at room temperature. The ATP monitoring reagent was then injected into 

each well and luminescence was detected immediately by the FluoStar plate reader (BMG 

Labtech, Offenburg, Germany). The emitted light intensity was recorded for quantification of 

ATP-levels and values were given as relative values in % to control cells. The experiments 

were repeated at least three times with an n=8 per treatment condition.  

 

ATP + Luciferin + O2 Oxyluciferin + AMP + PPi + CO2 + LIGHT 

Mg
2+ 

Luciferase
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2.4.5 Measurements of oxygen consumption (Seahorse Bioscience) 

Measurement of oxygen consumption form intact cells enables evaluation of mitochondrial 

bioenergetics and metabolism under conditions that are more physiologically realistic 

compared to isolated mitochondria. Metabolic substrate uptake (oxygen, glucose, fatty acids) 

and energy conversion through oxidation and reduction reactions are executed by several 

intracellular biochemical processes (glycolysis, Krebs cycle, electron transport, OXPHOS) 

that result in the production of ATP and the release of heat and chemical by-products (lactate 

and CO2) into the extracellular environment. Using the Extracellular Flux Analyzer (Seahorse 

Bioscience, North Billerica, MA, USA) the uptake and excretion of metabolic end products 

can be measured in real-time. The XF Cell Mito Stress Test Kit (Seahorse Bioscience) was 

used to detect extracellular flux changes of oxygen and protons in the media immediately 

surrounding adherent cells by using fluorescent biosensors (oxygen and pH) and a sensor 

cartridge coupled to a fiber-optic waveguide177. From this waveguide light at various 

excitation wavelength (oxygen = 532 nm, pH = 470 nm) is delivered and a fluorescent signal 

is transmitted to a set of highly sensitive photodetectors177. In cells, oxygen consumption and 

proton extrusion cause rapid but measurable changes in oxygen tension and pH which are 

detected within a transient micro chamber in each well of a microplate. Additionally, each 

sensor cartridge is equipped with four reagent delivery chambers per well for injection of 

different reagents to analyze the respective mitochondrial bioenergetics Thereby, four key 

parameters of mitochondrial function, namely basal respiration, ATP production, proton leak, 

and maximal respiration, were measured in a microplate (Figure 10). Thus a complete 

mitochondrial stress profile can be recorded: 

 

                            

Figure 10: Mito Stress Profile 

Key parameters of mitochondrial function: basal respiration, ATP turnover, proton leak, and maximal respiration, 

and spare respiratory. (Picture from Seahorse Bioscience, www.seahorsebio.com) 
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Measurements of oxygen consumption rate (OCR) in HT-22 cells were assessed using an 

XF96 Extracellular Flux Analyzer (Seahorse Biosciences, North Billerica, MA, USA), which 

directly records the OCR in cells that remain attached to the culture plate by using calibrated 

optical sensors. The OCR recordings were carried out as previously described with minor 

modifications178. Briefly, HT-22 cells were seeded in XF96-well cell culture microplates 

(Seahorse Bioscience, North Billerica, MA) at a density of 10,000 cells/well in standard 

growth medium and incubated at 37°C and 5 % CO2 for ~24 h. For measuring effects of 

gene depletion on OCR of HT-22 cells, siRNA transfections were performed in the XF96-well 

microplates instantaneously prior to seeding of cells. Twenty-four hours after seeding, cells 

were treated with glutamate (5-7 mM) and/or BI-6c9 (10 µM), novel compounds (20 µM) or 

DIDS (500 µM and 1000 µM) for 20 h, respectively. Before starting the measurements, the 

growth medium was washed and replaced with ~180 μl of assay medium (with 4.5 g/L 

glucose as the sugar source, 2 mM glutamine,  1 mM pyruvate, pH 7.35) and cells were 

incubated at 37°C for 60 min. Three baseline measurements were recorded before the 

addition of compounds. To assess mitochondrial dysfunction, respiratory chain poisons were 

used. The ATP synthase inhibitor Oligomycin was injected in Port A at a final concentration 

of 3 µM to measure OCR in the absence of oxidative phosphorylation. The protonophore 

FCCP was subsequently injected in Port B at a concentration of 0.4 µM to dissipate the 

proton gradient across the inner mitochondrial membrane and thereby to assess maximal 

respiratory capacity (MRC). Co-injection of the complex I/III inhibitors Rotenone/Antimycin A 

in Port C at concentrations of 1 µM, respectively, was used to inhibit O2 consumption by the 

mitochondrial electron transport chain and thus to address non-mitochondrial respiration. 

Three measurements were performed after the addition of each compound by a 4-minute mix 

cycle used to oxygenate the medium and 3-minute measurement cycle to asses respiration. 

For comparing OCR after compound exposure to OCR in non-treated cells, the absolute cell 

number is insignificant since the same population of cells is compared. Therefore, most of 

the results are indicated as normalized OCR (% baseline rate) for each individual cell 

population to minimize variability due to slight differences in plating and viability during 

culture and treatment time (~48 h). The experiments were independently repeated at least 

three to five times. 
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2.5 Flow cytometric measurements (FACS) 

For Fluorescence-activated cell sorting (FACS) the Guava Easy Cyte 6-2 L system (Merck 

Millipore, Schwalbach, Germany) was used. For FACS measurements cells were treated 

with glutamate (3-5 mM) or transfected with pIRES-tBid 24 h after seeding in 24-well plates. 

SiRNA transfections were directly performed in the 24-well plates. Treatment of cells with the 

Bid inhibitor BI-6c9 (10 µM), novel compounds (20 µM) or DIDS (500 µM, 1000 µM) was 

performed simultaneously or 1 h prior to the cell death stimulus, dependent on the respective 

experiments. Seventeen to twenty hours after treatment, cells were analyzed as further 

described. Data were always collected from 10,000 cells per sample and 3-4 samples per 

condition were measured for each experiment. For quantitative analysis the GuavaSoft 

Software package was used. Measurements shown in this thesis are representative of at 

least three to five independent experiments, each with n = 3-4.  

2.5.1 Analysis of apoptotic and necrotic cell death with Annexin-V-FITC 

staining 

To determine apoptotic and necrotic cell death, cells were stained with Annexin-V-FITC and 

propidium iodide (PI) and subsequently analyzed by flow cytometry. In apoptotic cells, the 

membrane phospholipid phosphatidylserin (PS) is translocated from the inner to the outer 

leaflet of the plasma membrane, thereby exposing PS to the external cellular environment. 

Annexin-V (AV) is a calcium dependent phospholipid-binding protein with high affinity for PS 

on the cell surface in early phases of apoptosis. The conjugation of annexin-V to the green-

fluorescent FITC dye allows for flow cytometric analysis of cells that undergo apoptosis. The 

red-fluorescent propidium iodide dye (PI) is used to stain late apoptotic or necrotic cells. 

Viable cells with intact membranes exclude PI, whereas the membranes of dead and 

damaged cells are permeable to PI. After treatment of cells with both AV and PI, apoptotic 

cells show green fluorescence (AV+), dead cells show red and green fluorescence (AV+/PI+) 

and viable cells depict no fluorescence. 

After respective treatments, HT-22 cells from 3 wells per condition were harvest using 

trypsin/EDTA, washed once with 1 x PBS and loaded with 2 ul of annexin V-fluorescein 

isothiocyanate (FITC) and 2 µl of propidium iodide (PI) according to the manufacturer´s 

protocol (Annexin-V-FITC Detection Kit, Promokine, Heidelberg, Germany). After incubation 

for 5 min. at RT in the dark, cells were analyzed by FACS. Annexin-V-FITC was excited at 

488 nm and emission was detected with the green filter at 525/530 nm. Fluorescence of PI 

was excited at 488 nm and fluorescence emission was detected with the red filter at 

690/650 nm. To exclude cell debris and doublets, cells were appropriately gated by forward 

versus side scatter and pulse width, and 10,000 gated events per sample were collected.  
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2.5.2 Analysis of lipid peroxidation with BODIPY 

For detection of cellular lipid peroxidation, BODIPY 581/591 C11 (Invitrogen, Karlsruhe, 

Germany) was used. BODIPY is a sensitive fluorescent reporter for lipid peroxidation, 

undergoing a shift from red to green fluorescence emission upon oxidation of the 

phenylbutadiene segment of the fluorophore. This oxidation-dependent emission shift 

enables fluorescence ratio imaging of lipid peroxidation in living cells. For detection of cellular 

lipid peroxidation cells were stained with 2 mM BODIPY 581/591 C11 (Invitrogen, Karlsruhe, 

Germany) for 60 minutes in standard growth medium at indicated time points after glutamate-

or tBid-induced toxicity and/or substance treatment. Afterwards, cells were harvest by using 

trypsin/EDTA, washed once with 1 x PBS and resuspended in 1 x PBS. Flow cytometry was 

performed using 488 nm UV line argon laser for excitation, and BODIPY emission was 

recorded at 530 nm (green) and 585 nm (red) by flow cytometry (FACS). Data were collected 

from at least 10,000 events per sample at three independent experiments each with n = 3-4. 

Increases in green fluorescence indicated formation of lipid peroxides.  

2.5.3 Analysis of mitochondrial membrane potential with TMRE 

For detection of mitochondrial membrane potential (Δψm) in whole cells the MitoPTTM TMRE 

kit (Immunochemistry Technologies, Hamburg, Germany) followed by flow cytometric 

measurements (FACS) was used. The kit contains tetramethylrhodamin ethyl ester (TMRE) 

which is a lipophilic, cationic fluorescent redistribution dye. This dye has a delocalized 

positive charge dispersed throughout its molecular structure, and due to its lipophilic 

solubility TMRE is able to penetrate into living cells. As the mitochondrial membrane potential 

collapses and cells enter apoptosis or other oxidative stress driven mechanism, the amount 

of fluorescence will drop as the concentrated TMRE dye equilibrates back out of the 

mitochondria and into the cytosol, where it is diluted to a lower dye concentration. Therefore, 

cells with healthy mitochondria appear red (high TMRE fluorescence), whereas dead cells 

are depicted by a reduced magnitude of red fluorescence, indicating loss of Δψm. 

When cell death occurred after the respective treatments (see outlined above), HT-22 cells 

were collected and washed with 1 x PBS. After incubation of cells with 0.2 µM TMRE for 

30 min at 37 °C, cells were washed and resuspended in assay buffer. As a positive control 

for a complete loss of Δψm, the protonophore carbonyl cyanide m-chlorophenylhydrazone 

(CCCP, 50 µM) was applied to intact cells 30 min. prior to harvesting. To exclude auto-

fluorescence of the cells a non-treated negative control, which was not stained by TMRE, 

was prepared. Flow cytometry was performed using fluorescence excitation at 488 nm and 

TMRE emission at 680 nm. To exclude cell debris and doublets, cells were appropriately 

gated by forward versus side scatter and pulse width, and 10,000 events were gated per 
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sample and data were collected from 3-4 independent samples per treatment condition and 

the experiments were repeated at least three times.  

 

2.6 Immunocytochemistry 

2.6.1 Visualization of mitochondria 

For detection of mitochondrial morphology changes during cell death, HT-22 neurons were 

seeded in ibidi μ-slide 8-well plates (Ibidi, Munich, Germany) at a density of 16,000 – 20,000 

cells per well 24 hours before treatment. For visualization of mitochondria, cells were 

transfected with the green fluorescent mGFP plasmid. Alternatively, mitochondria were 

visualized by MitoTracker Green/DeepRed according to the manufacturer’s protocol 

(Invitrogen, Karlsruhe, Germany). Nuclei were stained with DAPI (4´,6- diamidino-2-

phenylindole dihydrochloride) for endpoint analysis on a fluorescence microscope 

(DMI6000B, Leica, Wetzlar, Germany). MitoTracker DeepRed was dissolved in DMSO at a 

final stock concentration of 50 μM and kept protected from light. For applications on cells the 

MitoTracker reagent was diluted 1:250 in culture medium (final working concentration 

200 nM) together with DAPI (1 μg/ml) for counterstaining of the nuclei. Staining solution was 

added to the cells and incubated for 20-30 minutes at 37°C before starting the respective 

treatment. After completing the experiment, cells were washed with 1 x PBS, fixed with 4 % 

paraformaldehyde (PFA) and washed again twice with PBS. Mitochondria were visualized by 

epiflourescence microscopy (DMI6000B Leica, Wetzlar, Germany) for characterization and 

counting of mitochondria (see 2.6.2). Images were taken using a confocal laser scanning 

microscope (Leica SP5, Leica, Wetzlar, Germany). 

2.6.2 Characterization of mitochondrial morphology 

For evaluation and classification of mitochondrial morphology, mitochondria of HT-22 cells, 

cells were seeded in ibidi μ-slide 8-well plates (Ibidi, Munich, Germany) at a density of 

16,000 – 20,000 cells per well. Twenty-four hours after seeding, cells were treated with 

glutamate (3-5 mM) and/or BI-6c9 (10 µM) or DIDS (500 µM and 1000 µM) for 17-20 h, 

respectively. Mitochondria and nuclei were visualized as described before (2.6.1). Endpoint 

pictures were taken after fixation of cells with 4% paraformaldehyde (PFA) using confocal 

fluorescence microscopy (Leica SP5, Leica, Wetzlar, Germany). Three categories of 

mitochondrial morphology were defined as follows: Healthy cells display category I: 

elongated tubulin-like mitochondria, which are equally distributed throughout the cytosol. 

Category II mitochondria are defined as intermediate and round mitochondria, the cells do 

not show apoptotic features, e.g. shrunken nuclei, and are not detached. In contrast, 

damaged and dying cells contain category III mitochondria, which are strongly fragmented. In 
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these cells, mitochondrial fragmentation is accompanied by an apoptotic phenotype, showing 

nuclear condensation and the peri-nuclear arrangement of the mitochondrial fragments. For 

quantification of mitochondrial morphology, at least 500 cells per condition were counted by 

two investigators blinded towards the treatment condition in at least three independent 

experiments. 

2.6.3 Immunocytochemistry of Bid and VDAC1 

For detection of Bid and VDAC1 localization in healthy cells and during cell death, HT-22 

neurons were seeded in ibidi μ-slide 8-well plates (Ibidi GmbH, Munich, Germany) at a 

density of 16,000-20,000 cells/well and transfected with the pDSRed2-Bid or the FLAG-

VDAC1 plasmid. Twenty-four hours after transfection cells were treated with glutamate 

(5 mM) or in case of Flag-VDAC1 transfection with BI-6c9 (10 µM). To visualize 

mitochondria, cells were co-transfected with mGFP or alternatively, mitochondria were 

stained with MitoTracker Green as described before. For fixation of cells, culture medium 

was removed, cells were washed once with 1x PBS and fixed with 4 % PFA for 20 min. and 

washed again with 1 x PBS. After fixation, pDSRed2-Bid and mGFP-transfected cells were 

instantaneously analyzed by confocal fluorescence microscopy. In contrast, membranes of 

cells transfected with Flag-VDAC1 were permeabilized by exposure for 5 min. to 0.4 % Triton 

X-100 (Sigma-Aldrich, Taufkirchen, Germany) in 1x PBS. After fixation, cells were placed in 

blocking solution (3 % horse serum (Invitrogen, Karlsruhe, Germany) in 1x PBS) for 30-60 

minutes. To visualize FLAG-VDAC1, cells were exposed to a monoclonal anti-FLAG antibody 

(1:200 in block solution, Sigma-Aldrich, Munich, Germany), for 2 h at room temperature. 

Afterwards, cells were washed three times with 1 x PBS followed by incubation for 1-2 hours 

with the secondary Dylight 649 anti-mouse antibody (1:200, Merck Millipore, Darmstadt, 

Germany). After washing of cells three times with 1 x PBS, cells were analyzed by confocal 

fluorescence microscopy. For immunocytochemistry of endogenous Bid, cells were exposed 

to a polyclonal anti-Bid antibody (1:200, Cell signaling, Danvers, Massachusetts, USA) 

overnight at 4°C and subsequent 2.5 h at room temperature, followed by an incubation for 2 

hours with a secondary biotinylated anti-rabbit IgG antibody (1:200, Vector Labs, 

Burlinghame, CA. USA) and 30 min. in the presence of streptavidin oregon green 514 

conjugate (Invitrogen, Karlsruhe, Germany) according to the manufacturers protocol. The 

specificity of the respective Bid or FLAG-VDAC1 immune reactivity was controlled by 

emission of the primary antibody in parallel staining of negative controls. Images were 

acquired using a confocal laser scanning microscope (Leica SP5, Leica, Wetzlar, Germany) 

as described below.  
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2.7 Epifluorescence and confocal laser scanning microscopy (CLSM) 

2.7.1 Epifluorescence microscopy 

Imaging of mitochondrial morphology or TMRE stained HT-22 neurons was performed using 

a Leica DMI6000B fluorescence microscope, equipped with a DCF360FX-camera (both 

Leica, Wetzlar, Germany). TMRE red fluorescence and MitoTracker Deep Red fluorescence 

were excited using a 620 ± 60 nm band pass filter and fluorescence emission was collected 

using a 700 ± 75 nm band pass filter (Filter Cy5, Leica, Wetzlar, Germany). DAPI 

fluorescence was excited using 360 ± 40 nm band pass filter, and emission was collected 

using a 470 ± 40 nm band pass filter (Filter A4, Leica, Wetzlar, Germany). MitoTracker Green 

and mGFP fluorescence was excited at a wavelength of 488 nm and emission was detected 

using a 560 nm long pass filter. For digital imaging the software LAS AF (Leica, Wetzlar, 

Germany) was used. 

2.7.2 Confocal laser scanning microscopy 

For detection of mitochondrial morphology changes, VDAC1-induced toxicity as well as 

VDAC1 and Bid localization in healthy and dead cells, HT-22 neurons were immunostained 

as described before. Images were acquired using a confocal laser scanning microscope 

(Leica SP5, Leica, Wetzlar, Germany) equipped with a diode (405 nm), an argon laser 

(458/476/488/496/514 nm) and two helium-neon lasers (543 nm and 633 nm). An Acousto-

Optical-Beam-Splitter (AOBS) serves as tunable dichroic for all lasers.  Light was collected 

through a 63 x 1.4 NA, oil immersion objective. MGFP, MitoTracker Green and oregon green 

fluorescence was excited at 488 nm and emissions were detected between 500 nm and 

535 nm bandwidth. DyLight-stained Flag-VDAC1 was excited at 543 nm and  emission was 

detected between 555 nm and 620 nm. MitoTracker DeepRed fluorescence was detected by 

excitation at 633 nm and emission between 640 nm and 750 nm. For digital imaging the 

software LSM Image Browser 4.2.0 (Carl Zeiss, Jena, Germany) was used. 
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2.8 Protein analysis 

2.8.1 Protein sample preparation from HT-22 cells 

For obtaining total protein extracts from HT-22 cells, cells were seeded either at a density of 

7 x 104 cells per well in 24-well plates or at a density of 1-1.5 x 106 cells per dish in 10 cm2 

dishes for western blot analysis, and at a density of 1.5 x 106 cells per flask in T75 flask or at 

a density of 4 x 106 cells per T175 flask for immunoprecipitation experiments. After 

respective treatments, cells were washed with cold 1 x PBS, lysed with protein lysis buffer 

(Table 14) supplemented with 1 mM DTT, 1% Triton-X-100,  Complete Mini Protease 

Inhibitor Cocktail and Phosstop Phosphatase Inhibitor Cocktail (1 tablet per 10 ml, both 

Roche, Mannheim, Germany) and detached with a cell scraper. For immunoprecipitation 

studies, cells from 3 flasks per condition were pooled. All steps were performed at 4°C. After 

centrifugation at 15.000 x g for 15 min at 4 °C supernatants were stored at -80 °C until further 

use.  

 

Table 14: Protein lysis stock-buffer for HT-22 cells; pH 7.8 

0.25 M D-Mannitol 4.56 g 

0.05 M Tris 0.788 g 

1 M EDTA 0.038 g 

1 M EGTA 0.038 g 

Bidest H2O ad 100 ml 

 

2.8.2 Protein sample preparation from primary mouse cortical neurons (PCN)  

For total protein extracts form primary mouse cortical neurons (PCN), neurons were cultured 

in PEI-coated T75 flask at a density of 10-15 x 106 cells per flask. For immunoprecipitation 

studies and western blot analysis, neurons from three flasks per conditions were pooled. 

After respective glutamate treatment, cells were washed in warm 1 x PBS, and lysed in lysis 

buffer for primary neurons and brain tissue samples (Table 15) supplemented with Complete 

Mini Protease Inhibitor Cocktail and Phosstop Phosphatase Inhibitor Cocktail (1 tablet per 

10 ml, both Roche, Mannheim, Germany). Lysis and scratching of cells was performed at 

4°C. Protein extracts were frozen 3 times with liquid nitrogen and thawed again at room 

temperature before extracts were centrifuged at 13.000 g for 10 min at 4°C. The supernatant 

was placed in a new tube and stored at -80°C until further use.  
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Table 15: Protein Lysis Buffer for primary neurons and brain tissue; pH 7.4 

50 mM HEPES  119.15 mg 

150 mM NaCl 87.66 mg 

4 mM EGTA 80 µl (0.5 M EGTA-stock solution) 

10 mM EDTA 100 µl (1 M EDTA-stock solution) 

15 mM Na4O7P2 75 µl (2 M Na4O7P2 -stock solution) 

50 mM NaF 20.99 mg 

5 mM Na3VO4 25 µl (2 M Na3VO4-stock solution) 

1 mM DTT 100 µl (100 mM DTT-stock solution) 

1 mM PMSF 100 µl (100 mM PMSF-stock solution) 

0.2% NP-40 20 µl 

Bidest H2O ad 10 ml 

Lysis buffer was always prepared fresh before starting the experiment and stored at 4°C in 

the dark during use.  

2.8.2 Protein sample preparation from cortex and hippocampal mice brain 

tissue  

For obtaining total protein extracts from mice brain tissue, brains were isolated from 

untreated control C57BL/6 mice and from male C57BL/6 mice subjected to transient middle 

cerebral artery occlusion (MCAo, see 2.10). Cortex homogenates for immunoprecipitation 

and western blot analysis were generated from 4 mm sections of the ipsi-and contralateral 

parietal cortex (2 mm +/- bregma) respectively at 2 h, 6 h and 24 h after the onset of 

ischemia. Hippocampal homogenates were generated from approximately half of the 

hippocampus of the respective mice. After isolation of brain tissue, brain slices were 

separately transferred in a pre-cooled clean glas-douncer filled with 500 µl lysis buffer for 

brain tissue (Table 15), supplemented with Complete Mini Protease Inhibitor Cocktail and 

Phosstop Phosphatase Inhibitor Cocktail (1 tablet per 10 ml, both Roche, Mannheim, 

Germany), respectively. Each tissue sample was homogenized by douncing it 10 times 

followed by centrifugation at 800 x g for 5 min. at 4°C. Tissue homogenates were stored on 

ice until further use. For immunoprecipitation and western blot analysis, samples were used 

immediately without freezing at -80°C.  
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2.8.3 Determination of protein amount in cell lysates 

For determination of protein amounts, the principle of the bicinchoninic acid (BCA) assay, 

which is well accepted for colorimetric detection and quantification of total protein, was used. 

This method is based on the reduction of Cu2+ ions to Cu+ ions by the peptide bonds in 

proteins in an alkaline medium (Biuret-reaction). The amount of reduced Cu2+ is proportional 

to the amount of protein present in the solution. The following purple-colored reaction product 

of this assay is formed by the chelation of two molecules of BCA with on cuprous ion. This 

water-soluble complex exhibits a strong absorbance at 562 nm that is nearly linear with 

increasing protein concentrations in ranges up to 2,000 µg/ml. The macromolecular structure 

of the protein, the amount of peptides, and the four amino acids cysteine, cystine, tryptophan 

and tyrosine are reported to be responsible for the color formation with BCA. This provides a 

basis to monitor the reduction of alkaline Cu2+ by proteins and, thus determine the protein 

concentration in biochemical samples and cell extracts 179. 

Using the Pierce BCA kit (Perbio Science, Bonn, Germany) protein amounts in extracts were 

determined as follows: 5 μl of each sample were diluted in 95 μl 1x PBS. A standard curve 

containing 0-150 μg bovine serum albumin (Perbio Science, Bonn, Germany) per 100 μl, 5 μl 

of the respective lysis buffer and 1 x PBS add to 100 μl was prepared. Next, 200 μl of a 1:50 

mixture of reagent B : reagent A (Perbio Science, Bonn, Germany) was added to each 

sample. Samples were incubated for 30 minutes at 60 °C.  At this temperature, peptide 

bonds assist in the formation of the reaction product, so the assay sensitivity is increased 

since the variances caused by unequal amino acid composition are minimized. One hundred 

micro liter of each sample were added into a 96-well plate (Nunc, Wiesbaden, Germany). 

Absorption was determined at 590 nm using a plate reader (FluoStar OPTIMA, BMG 

Labtech, Offenburg, Germany) and protein amounts of the test samples were calculated from 

the standard curve. 

2.8.4 Immunoprecipitation of Bid, VDAC1 and FLAG-VDAC1 

Immunoprecipitation of Bid, VDAC1 and Flag-VDAC1 was performed by pull-down of the 

proteins from total protein lysates of HT-22 cells exposed to glutamate at the indicated time 

points 0 h to 16 h, primary mouse cortical neurons exposed to glutamate (0 h, 4 h and 22 h) 

and tissue homogenates of mice subjected to MCAo (see 2.8.2 and 2.10), according to the 

manufacturer´s protocol (Invitrogen, Karlsruhe, Germany). Briefly, magnetic Dynabeads 

Protein A were prepared for each condition for effective binding of the respective antibodies: 

anti-Bid antibody (7.5 µg, polyclonal, Cell Signaling, Danvers, Massachusetts, USA), anti-

VDAC1 (N18) antibody (7.5 µg to 10 µg, polyclonal, Santa Cruz, Biotechnology, Santa Cruz, 

CA, USA) or anti-Flag antibody (7.5 μg, polyclonal, Sigma-Aldrich, Munich, Germany). The 

respective antibodies were separately added to the Dynabeads Protein A for 30 min. to bind 
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the Dynabeads via their Fc-region. For all washing steps the tube was placed on a 

Dynamagnet, where the beads migrate to the side of the tube facing the magnet and allow 

for removal of the supernatant. A cross linking reaction with BS3 was performed according to 

the manufacturer’s protocol to avoid co-elution of the antibodies. 

For each immunoprecipitation of Bid, VDAC1 or Flag-VDAC1, 2.5 mg of total protein lysate 

from HT-22 cells and 1-2 mg of total protein lysates from primary neurons and brain tissue 

samples of each treatment condition was incubated with the respective bead-bound 

antibodies for one hour at room temperature followed by a second hour at 4 °C. To elute the 

proteins with their binding partners, 70 μl of 2.5x sodium dodecyl sulfate (SDS)-sample buffer 

was added to each condition and the Dynabead-protein lysate-mix was boiled for 10 min. at 

95 °C. Afterwards the Dynabeads were removed and the supernatant was stored at -80 °C 

until further use. To detect protein-interaction partners of Bid and VDAC1, 30 µl of the eluat 

was analyzed by electrophoresis followed by western blot analysis. The regular protein 

extract with 30-150 μg of total protein lysate per treatment condition was used as a control in 

the SDS-PAGE. 

2.8.5 Gel electrophoresis and western blot  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a well 

established technique to separate proteins according to their different electrophoretic mobility 

depending on their molecular mass. SDS is an anionic detergent that is applied to the protein 

sample and binds to polypeptide chain, imparting an identical protein charge per unit mass 

and thereby allowing a fractionation by size. Gels were prepared using a polyacrylamide 

separation gel with a concentration of 12.5 % and a stacking gel with 3.5 % and casting of 

gels was performed using BIO-RAD gel casting stands and frames. The specific buffers used 

for gels preparation, subsequent electrophoresis and western blot analysis are provided in 

Table 16 – Table 24: Stripping buffer, pH 2Table 24. 

Prior to electrophoresis, an amount of 30-150 μg of each protein extract samples was mixed 

with 5 x SDS sample buffer and samples were filled up to an equal sample volume with 

bidest water. Afterwards, samples were boiled at 95°C for 10 minutes, cooled down to room 

temperature and loaded onto the gel. For comparative evaluation of molecular-mass, 5 μl of 

PageRulerTM Plus Prestained Ladder (Fermentas, St. Leon-Rot, Germany) were loaded 

next to the samples. Electrophoresis was performed initially at 60 V for about 30 minutes to 

allow for sample collection and subsequently at 125 V in electrophoresis buffer. Following 

electrophoretic separation, proteins were blotted on a polyvinylidenfluorid membrane (PVDF, 

Bio-Rad, Munich, Germany) by Semi-Dry blotting according to the Bio-Rad protocol at 15 V 

for 90 minutes. PVDF-membranes were first activated in methanol and then incubated for 10 

minutes in 1 x transfer buffer before blotting. Meanwhile, Whatman blotting paper and the 
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acrylamide gel were incubated for 10 minutes in transfer buffer. Blotting was carried out by 

stacking one layer of Whatman paper on top of the anodic plate, followed by the PVDF 

membrane, the acrylamide gel as the third, and another final layer of Whatman paper on top. 

Blotting was carried out in a Trans-Blot SD semi-dry transfer cell (Bio-Rad, Munich, 

Germany) using extra thick Whatman filter paper (Bio-Rad, Munich, Germany) and 1x 

transfer buffer. Alternatively, proteins were blotted on a PVDF membrane by Tank-Blotting 

(wet-blotting) at 20 mA per Gel for approximately 20 h over night according to the Bio-Rad 

Tank-Blotting protocol. Therefore, a Mini-Trans-Blot Cell (Bio-Rad, Munich, Germany), in 

which the gel and membrane sandwich was entirely submerged under 1 x transfer buffer 

within a buffer tank, was used. Blotting was performed over night and temperature controlled 

by cooling the system with one ice pack per buffer tank.  

After blotting, the PVDF-membranes were transferred directly into 5 % blocking buffer and 

incubated for 1 h at RT. The blots were then probed with the respective primary antibodies 

(2.1.3) at 4 °C overnight, followed by 1 h incubation at RT. The next day, membranes were 

washed three times with TBST for 5 minutes and exposed to the appropriate HRP-

conjugated secondary antibody (2.1.4) in 5 % blocking solution for 1 h at RT. After washing 3 

times with TBST for 15 minutes, membranes were incubated with chemiluminescence 

substrate solution HRP-Juice (PJK GmbH, Kleinblittersdorf, Germany) at RT in the dark. 

Chemiluminescence signals were recorded and quantified by densitometric analysis using 

the semi-automated Chemidoc-XRS Imaging System and the dedicated Quantity One 

software package (both, Bio-Rad, Munich, Germany). Equal protein loading and quality was 

controlled by re-probing the membranes with the anti-actin antibody (1:10.000, MB 

Biomedicals, Illkirch Cedex, France) and the respective anti-mouse HRP-conjugated 

secondary antibody.  

For SDS gel electrophoresis following solutions were used: 

Table 16: Stacking gel 3.5 % 

0.5 M Tris-HCl solution pH 8.8 2.5 ml 

Acrylamide/bisacrylamide (37.5 : 1) 30% 1.2 ml 

Sodium dodecyl sulfate solution 10% 0.1 ml 

Ammoniumpersulfate solution 10% 0.05 ml 

Tetramethylethylenediamine TEMED 0.01 ml 

Aqua demin.    ad 10 ml 
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Table 17: Running gel 12.5 % 

1.5 M Tris-HCl solution pH 8.8 2.5 ml 

Acrylamide/bisacrylamide (37,5:1) 30 % 3.34 ml 

Sodium dodecyl sulfate solution 10 % 0.1 ml 

Ammoniumpersulfate solution 10 %   0.05 ml 

Tetramethylethylenediamine TEMED 0.01 ml 

Aqua demin. ad 10 ml 

 

Table 18: 5 x SDS-loading buffer 

1 M Tris-HCl pH 6.8   7 ml 

Glycerol 3 ml 

D,L-dithiotreitol (DTT) 0.93 g 

SDS 1 g 

β-Mercaptoethanol 0.1 ml 

Bromophenol blue sodium salt 1.2 mg 

 

Table 19: 1 x Electrophoresis buffer 

Tris base   3 g 

Glycine   14.4 g 

Sodium dodecyl sulfate (SDS) 1 g 

Aqua demin.   ad 1,000 ml 
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For western blot analyses following buffers were used: 

Table 20: 1 x 10 % Transfer buffer (Semi-Dry-Blotting), pH 8.3 

Tris base 3 g 

Glycine 14.4 g 

Methanol   100 ml 

HCl 0.1 M q.s. 

Aqua demin.    ad 1,000 ml 

 

Table 21: 1 x 20% Transfer buffer (Tank-Blotting), pH 8.3 

Tris base 3 g 

Glycine 14.4 g 

Methanol   200 ml 

HCl 0.1 M q.s. 

Aqua demin.    ad 1,000 ml 

 

Table 22: 1 x TBS/Tween 20, pH 7.5 

Tris Base   2.4 g 

Sodium chloride    29.2 g 

Tween 20 0.5 ml 

HCl 0.1 M q.s. 

Aqua demin.   ad 1,000 ml 

 

Table 23: 5 % Blocking buffer 

Skim milk powder   25 g 

TBST    ad 500 ml 
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Table 24: Stripping buffer, pH 2 

Glycine 15 g 

Sodium dodecyl sulfate (SDS) 1 g 

Tween 20   10 ml 

HCl conc. q.s. 

Aqua demin.    ad 1,000 ml 

 

2.8.6 Dot blot analysis 

Dot blotting is a technique similar to the western blot technique but differing in that protein or 

antibody samples are not separated electrophoretically but are spotted directly onto the 

membrane. Therefore a grid was drawn by pencil on a PVDF membrane to indicate the 

region for sample point plotting. The membrane was activated in methanol and then 

incubated for 5 minutes in 1 x 20 % transfer buffer. Afterwards 0.5-2 µl of the respective 

sample was spotted on the wet membrane at the center of the grid. The area that the 

solution penetrates was minimized by applying the sample slowly. The membrane was dried 

and then reactivated in methanol followed by 5 min. of TBST incubation. To block non-

specific sites the membrane was incubated in 5 % blocking solution for 1 h at room 

temperature and afterwards incubated with the appropriate primary antibody in blocking 

solution for 1-2 h at room temperature. After washing three times with TBST for 5 min., the 

HRP-conjugated secondary antibody was added to the membrane for 1 h at room 

temperature. Detection of proteins was performed by chemiluminescence as described in 

2.8.5.  

2.8.7 Coomassie staining 

To investigate the purity of recombinant proteins (2.14.1) and for determining protein-protein 

interactions after pull down experiments using recombinant proteins, gel electrophoresis 

(SDS-PAGE) was followed by staining the gels with Coomassie Blue R250, which binds 

nonspecific to all proteins. The detection limit is 0.3-1 ug/protein band. For protein staining 

the gels were incubated for 1 h in coomassie staining solution containing 0.1 % R250, 45 % 

methanol, 45 % aqua bidest. and 10 % pure acetic acid. Afterwards, the gels were discolored 

at least 1 h - overnight in destaining solution containing 30 % methanol, 10 % pure acetic 

acid and 60 % aqua bidest., until single blue proteins bands were visible. Images of 

coomassie stained gels were taken using the semi-automated Chemidoc-XRS Imaging 

System (Bio-Rad, Munich, Germany) using white transmission light. The gels were stored in 

7 % acetic acid.  
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2.8.8 Ponceau S staining 

Ponceau S is a rapid and reversible stain for detecting proteins bands on cellulose acetate, 

PVDF or nitrocellulose membranes, and is especially used to check for success of transfer 

after western blotting. The negative stain binds to the positively charged amino groups of a 

protein and also non-covalently to non-polar regions in the protein. Microgram quantities of 

transferred protein can be detected with Ponceau S stain, which generates reddish pink 

protein bands with a clear background. Since staining with Ponceau S is reversible it allows 

further immunological detection. To detect proteins after blotting on a PVDF membrane, the 

blotted membranes were washed shortly in TBST and immersed in a sufficient amount of 

Ponceau S Staining solution (5 ml, AppliChem, Darmstadt, Deutschland) for 5-10 min. at 

room temperature. After staining, the membranes were washed with water until the water 

was clear and the reddish pink protein bands were well-defined and visible. For imaging, 

membranes were subsequently scanned. For further immunological detection, the 

membranes were discolored completely by repeated washing in water and TBST. Afterwards 

the membrane was re-activated with methanol and washed again in TBST before blocking in 

5 % blocking solution and the following standard protocol for western blotting (2.8.5).  

 

2.9 RNA analysis 

For RNA extraction HT-22 cells were grown either in 24-well plates at an average density of 

60,000 cells/well and 2-4 wells per condition were pooled for RNA preparation. Alternatively, 

cells were grown in 6 well plates at a density of 180,000 cells/well and 4 wells per condition 

were pooled. For RNA extraction of HT-22 cells transfected with siRNA, cells were harvest 

48 h after siRNA transfection. For determination of mRNA amount in glutamate-treated cells, 

cells were grown in T75 flask at a density of 1 x 106 cells/flask and harvest 15 h after 

glutamate treatment. 

2.9.1 RNA preparation and determination of RNA amount 

Total RNA was extracted from HT-22 cells using the NucleoSpin RNA II kit (Macherey-Nagel, 

Düren, Germany) according to the manufacturer´s instructions. Briefly, HT-22 cells were 

washed with 1 x PBS and harvested in 350 µl cell lysis buffer RA1 supplemented with 1 % 2-

Mercaptoethanol. Before continuing with the extraction, all samples were shock-frozen in 

liquid nitrogen and left to thaw slowly on ice. Next, the raw extracts were filtered through 

NucleoSpin-RNA II columns to remove cellular debris. The supernatant was supplemented 

with ethanol, mixed carefully and loaded on a NucleoSpin RNA II column to extract nucleic 

acids by adsorption to the silica matrix of the column. Excessive electrolytes were removed 

by washing with MDB buffer (supplied with the kit). To remove possible contaminations with 
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genomic DNA, recombinant DNAse was added. Further, purification of the column-bound 

RNA was achieved by subsequent purification, using RA2 and RA3 buffers. RNA was eluted 

in 70 µl RNAse free water supplied with the NucleoSpin Kit II. RNA-concentration was 

determined by UV-Vis absorption spectroscopy, using the NanoPhotometerTM (Implen, GE 

Healthcare Europe GmbH, Freiburg, Germany) at a wavelength of 260 nm. For intermediate 

storage, RNA-extracts were transferred to the -80°C freezer. 

2.9.2 One Step reverse transcriptase polymerase chain reaction (RT-PCR) 

Following RNA purification, mRNA was amplified by one-step RT-PCR using the SuperScript 

III One Step PCR kit with Platinum Taq (Invitrogen, Karlsruhe, Germany). Sequence specific 

primers were used as described in Table 1 in section 0. Sample preparation was performed 

according to the following scheme given in Table 25 and Table 26. For amplification of PCR 

products the respective cycler programs provided in Table 27 - Table 30 were used. The RT-

PCR products were visualized under UV illumination after electrophoresis on a 1.5 % 

agarose gel containing ethidium bromide or SYBR Gold (Invitrogen Karlsruhe). The resulting 

gen products had a length of 400 (GAPDH), 316 (VDAC1), 289 (VDAC2), 1250 (Bid) base 

pairs, respectively. 

 

Table 25: PCR sample preparation: VDAC1, VDAC2, Bid 

2x reaction buffer  12.5 µl 

Sample (0.1 μg)  x µl 

fwd primer (10μM)  0.5 µl 

rev primer (10μM)  0.5 µl 

SuperScript III enzyme (Platinum Taq) 0.5 µl 

Nuclease free water ad 25 µl 

 

Table 26: PCR sample preparation GAPDH 

2x reaction buffer  12.5 µl 

Sample (0.1 μg)  x µl 

fwd primer (5 μM)  1.0 µl 

rev primer (5 μM)  1.0 µl 

SuperScript III enzyme (Platinum Taq) 0.5 µl 

Nuclease free water ad 25 µl 

For amplification the following cycler programs were used: 

 



Materials and methodes | 55 

 

 
 

Table 27: RT-PCR cycler program – murine GAPDH 

60° C 30 min  

95° C 2 min 

95° C 30 sec 

57° C 1 min 

70° C 2 min 

70° C 10 min 

4° C ∞ 

 

Table 28: RT-PCR cycler program – murine VDAC1 

60° C 30 min  

95° C 2 min 

95° C 30 sec 

59,3° C 1 min 

70° C 2 min 

70° C 10 min 

4° C ∞ 

 

Table 29: RT-PCR cycler program – murine VDAC2 

60° C 30 min  

95° C 2 min 

95° C 30 sec 

60,4° C 1 min 

70° C 2 min 

70° C 10 min 

4° C ∞ 

 

 

 

 

 

30 cycles 

25 cycles 

27-28 cycles 
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Table 30: RT-PCR cycler program – murine Bid 

60° C 30 min  

95° C 2 min 

95° C 30 sec 

53° C 1 min 

70° C 2 min 

70° C 10 min 

4° C ∞ 

 

 

2.9.3 Agarose gel electrophoresis 

Analysis of PCR products were performed by agarose gel electrophoresis and subsequent 

fluorescence detection of ethidium bromide or SYBR Gold (Invitrogen), both intercalating 

agents that increase their fluorescent emission upon DNA binding.  For gel preparation, 

1.5 % agarose (Sigma-Aldrich) was suspended in Tris/Borate/EDTA (TBE) buffer (10 x stock, 

Invitrogen) and dissolved by heating up the suspension in a microwave oven. After 

dissolving, 2 µl of SYBR Gold or 5 µl of stock solution ethidium bromide (1 % in water) was 

added into 100 ml suspension, stirred carefully and the solution was filled into the gel 

cartridge to allow gel formation. For subsequent gel loading, a comb was inserted in the gel, 

to generate the pockets. Samples were loaded using 1-5 μl of PCR product, 2 μl of Blue 

Juice sample buffer (Sigma Aldrich) added with nuclease-free water up to a total volume of 

7 μl. In addition to the samples, 4 μl of a pre-prepared 100 bp reference marker (Fermentas, 

St. Leon-Roth, Germany) was loaded on the gel. Electrophoresis was conducted at 100 V for 

about 1 hour. Stained PCR-products were detected by UV light excitation and fluorescent 

emission using the Chemidoc Imaging System (Bio-Rad, Munich, Germany). Pictures were 

taken and analyzed using Quantity One software (Bio-Rad, Munich, Germany). 

 

 

 

 

 

 

 

27 cycles 



Materials and methodes | 57 

 

 
 

2.10 Transient focal cerebral ischemia in mice 

The middle cerebral artery occlusion (MCAo) experiments were kindly performed by Uta 

Mamrak (Ludwig-Maximilians-University, Munich, Germany). Male C57BL/6 mice (n = 6) 

(body weight, 18–22 g; Charles River Laboratories, Sulzfeld, Germany) were subjected to 60 

min transient MCAo as described previously180, 181. Surgery was performed in isoflurane/N2O 

anesthesia (1.5% isoflurane, 68.5% N2O, 30% O2) with controlled ventilation. A silicon coated 

nylon monofilament was inserted into the internal carotid artery and gently pushed forward 

until blood flow in the MCA territory decreased to less than 20 % of baseline. Ischemia and 

reperfusion were verified by laser Doppler measurements. Tissue homogenates for 

immunoprecipitation and western blot analysis were generated from 4 mm sections of the 

ipsi- and contralateral parietal cortex (2 mm +/- bregma) respectively at 2 h, 6 h and 24 h 

after the onset of ischemia. For each experimental group, six animals were used. Statistical 

analysis was performed using the Kruskal-Wallis test. All procedures described are in 

accordance with local laws and were approved by the animal protection committee of the 

Government of Upper Bavaria. 

 

2.11 Concentration-response curves and EC50 values 

Half maximal effective concentrations (EC50) for all thiazolidindiones provided in Table 69 

(Appendix) were determined based on the concentration-response curves for each 

compound (see also 0). To determine the concentration required to achieve maximal 

neuroprotective effects, initially all compounds were screened by their ability to prevent 

glutamate-induced cell death at concentrations of 10, 20, 30, 40 and 50 µM. Since 

quantification of cell viability (MTT assay) revealed maximal protective effects of the 

compounds in a concentration of 20 µM and higher, generation of concentration ranges for 

these measurements were not satisfying. Therefore compounds with an EC50 < 10 µM were 

screened in lower concentrations of 0.1 µM up to 50 µM for maximum protection. Cell viability 

data were normalized between untreated control conditions (0 %) and maximum amplitude at 

50 µM (100 %). Using OriginPro8.5 Software, the resulting data were fitted with a sigmoid 

function following the equation y=A1+(A2-A1)/(1+10^((LOGx0-x)*p)) and EC50 values for all 

substances were calculated.  
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2.12 Molecular docking 

Molecular docking is a method used in the field of molecular modeling, to predict the 

preferred orientation of one molecule to another molecule when bound to each other to form 

a stable complex. It is frequently used to reveal the binding orientation of small-molecule 

drug candidates to their protein targets. Thereby, the affinity and activity of novel compounds 

can be predicted, and, hence docking plays an important role in the rational design of novel 

drugs. In this thesis, docking analyses were performed to investigate the possible binding 

mode of novel small-molecule inhibitors to the pro-apoptotic protein Bid. 

Molecular docking analyses were kindly performed by Dr. Wegscheid-Gerlach 

(Pharmaceutical chemistry, Philipps-University Marburg, Marburg, Germany). According to 

Becattini et al.114 docking studies were conducted using the NMR solution structure of mouse 

BID from the PDB entry 1DDB65. All compounds were converted from SMILES notation into 

Sybyl mol2 format using CORINA. Protein preparation and docking was performed using 

FlexX182, available within the LeadIT version 2.1.3 from BioSolveIT. All obtained docking 

solutions were re-ranked with HYDE-score183, 184. Pictures for 2D-representation of the 

docking solution were generated with pose view185, as implemented in LeadIT, and exported 

in the same way as the 3D representation, from the program.  

 

2.13 Statistical analysis 

All data are given as means ± standard deviation (SD). For statistical comparison between 

two groups Mann-Whitney-U-test was used. Multiple comparisons were performed by 

analysis of variance (ANOVA) followed by Scheffé's post hoc test or Kruskal-Wallis test, as 

indicated. Calculations were performed with the Winstat standard statistical software 

package (R. Fitch Software, Bad Krozingen, Germany). 
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2.14 Molecular Biology 

2.14.1 Recombinant proteins 

Human recombinant caspase 8, mouse recombinant tBid and mouse recombinant His-Bax 

were kindly provided by Prof. Dr. Jean-Claude Martinou (University of Geneva, Switzerland). 

In addition human recombinant full-length Bax with an N-terminal GST-tag was ordered from 

Abnova (Heidelberg, Germany). Mouse recombinant VDAC1, VDAC1 Δ11 and mouse 

recombinant VDAC2 were kindly provided by Barbara Mertins (Group of Prof. Essen, 

Department of Chemistry, University of Marburg). Full-length mouse Bid, truncated Bid (tBid) 

as well as different Bid constructs were expressed and purified in this thesis as described 

below.  

2.14.2 Competent cells 

For bacterial expression of recombinant proteins Escherichia coli RosettaTM2 (DE3) single 

competent cells (Novagen/Merck Millipore, Darmstadt, Germany) were used. Rosetta™2 

host strains are BL21 derivatives designed to enhance the expression of eukaryotic proteins 

that contain codons rarely used in E. coli. The original Rosetta strains supply tRNAs for 7 

rare codons (AGA, AGG, AUA, CUA, GGA, CCC, and CGG) on a compatible 

chloramphenicol-resistant plasmid. The tRNA genes are driven by their native promoters. 

DE3 indicates that the host is a lysogen of λDE3, and therefore carries a chromosomal copy 

of the T7 RNA polymerase gene under control of the lacUV5 promoter (see Novagen User 

protocol TB009). Such strains are suitable for protein production from target genes cloned in 

pET vectors amongst others by induction with IPTG.  

2.14.3 Culture medium for bacteria 

For bacterial growth Luria-Bertani (LB) broth medium was used, which is the most widely 

used medium for the growth of bacteria. For liquid LB medium 100 g Luria Broth Base 

powder (AppliChem, Darmstadt, Germany), containing 10 g peptone 140, 5 g yeast extract 

and 5 g sodium chloride per liter, was dissolved in 5 l Aqua demin. and aliquoted in 500 ml 

bottles. Afterwards, LB bottles were autoclaved for 21 min and stored at room temperature. 

For preparation of LB Agar plates, 7.5 g of agar powder (Lennox L agar, AppliChem, 

Darmstadt, Germany) was added to 500 ml of LB medium. After autoclaving 0.5 ml of 

ampicillin (100 mg/ml) and/or 0.5 ml of chloramphenicol (30 mg/ml, dissolved in ethanol) was 

added to 500 ml LB agar and the LB agar was poured into petri-dishes. After hardening, 

petri-dishes were inverted and stored at 4°C in the dark.   
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2.14.4 Cloning and site-directed mutagenesis of Bid constructs 

Different Bid constructs were expressed as GST fusion proteins. Based on the NMR 

structure of Bid, we reasoned that crystallization could be facilitated by removing the mobile 

N-terminus and loop. This was accomplished by first cloning N-terminally truncated mouse 

Bid constructs starting with Gly12 or Ala13 (designated 12 and 13, respectively), 

respectively, into pGEX1λT (GE Healthcare Bio-Science AB, Uppsala, Sweden) by PCR. The 

loop was removed in a second step by employing an endogenous HindIII site spanning 

Gln45 to Tyr47. The distal part of mouse Bid before Ser78 was amplified using primers 

encoding the HindIII site (and sometimes bases encoding for amino acids 49-52) followed by 

bases encoding for Ser78 and beyond. This part was then cloned into the constructs made in 

the first step. Detailed cloning procedure was performed as follows.  

For the first step PCR samples were prepared and amplified in a Sensoquest-Cycler as 

described in Table 31- Table 34. Primer sequences are provided in Table 1. 

 

Table 31: PCR sample preparation - G12-mBid, A13-mBid 

5x Phusion HF reaction buffer  10 µl 

Template (pET15b-Bid-p22, 50 ng)  1.0 µl 

G12-mBid / A13-mBid fw primer (1 μM)  0.5 µl 

mBid-EcoRI rev primer (1 μM)  0.5 µl 

dNTP (10 mM) 1.0 µl 

Phusion 0.5 µl 

Nuclease free water 35.5 µl 

 

Table 32: PCR sample preparation - Y47-mBid, D51-mBid 

5x Phusion HF reaction buffer  10 µl 

Template (pET15b-Bid-p22, 50 ng)  1.0 µl 

Y47-mBid / D51-mBid fw primer (1 μM)  0.5 µl 

mBid-EcoRI rev primer (1 μM)  0.5 µl 

dNTP (10 mM) 1.0 µl 

Phusion 0.5 µl 

Nuclease free water 35.5 µl 
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Table 33: RT-PCR Cycler program – G12-mBid and A13-mBid 

Pre-heating  

94° C   5 sec 

95° C 30 sec 

66° C 30 sec 

72° C 2 min 

72° C 15 min 

4° C ∞ 

 

Table 34: RT-PCR Cycler program – Y47-mBid and D51-mBid 

Pre-heating  

94° C   5 sec 

95° C 30 sec 

60° C 30 sec 

72° C 2 min 

72° C 15 min 

4° C ∞ 

 

The obtained PCR products were analyzed by agarose gel electrophoresis and subsequent 

fluorescence detection with ethidium bromide (Promega, Mannheim, Germany) as described 

in 2.9.  

Afterwards PCR products were purified using the QIAquick Gel Extraction Kit (Quiagen, 

Hilden, Germany) according to the manufacturer’s protocol. Briefly, PCR samples were filled 

up with 3 volumes (150 µl) of QG buffer, respectively, and incubated at 50°C for 10 min. 

Afterwards 50 µl of isopropanol was added and samples mixed gently. Samples were 

transferred to a QIAquick spin column in a provided 2 ml collection tube and centrifuged for 

1 min. at 13,000 rpm. After discarding the flow-through, 750 µl PE buffer was added and 

samples centrifuged twice at 13,000 rpm for 1 min. To elute DNA, 50 μl of Buffer EB (10 mM 

Tris-HCl, pH 8.5) was added to the center of the QIAquick membrane and columns 

centrifuged at 13,000 rpm for 1 min. 

Digestion and ligation of DNA products: 

The eluted G12-mBid and A13-mBid were digested with BamHI-HF and EcoRI-HF in NEB4 

buffer overnight at 37°C and products were isolated by agarose gel electrophoresis followed 

by gel extraction with Ultra Free DNA gel extract kit (Millipore, Darmstadt, Germany) 

30 cycles 

30 cycles 
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according to the manufacturer’s protocol. Products were cloned into the pGEX1λT vector to 

obtain the pGEX-Δ12-Bid and pGEX-Δ13-Bid constructs by DNA ligation for 5 h at 16°C. The 

pGEX-Δ12-Bid, pGEX-Δ13-Bid, Y47-mBid and D51-mBid products were digested with HindII-

HF and EcoRI-HF in NEB4 buffer overnight at 37°C and the digestion products isolated as 

described above. In the last step Y47-mBid and D51-mBid were cloned into the pGEX-Δ12-

Bid and pGEX-Δ13-Bid, respectively by DNA ligation for 2 h at 16°C. After DNA ligation all 

constructs were transformed into competent cells186 and afterwards plated on appropriate 

agar plates containing ampicillin (Amp). Amplification of the obtained plasmids was 

performed using the Quiagen Plasmid Plus Midi kit (Qiagen, Hilden, Germany) according to 

the manufacturer´s protocol. Plasmid DNA-concentrations were determined using the 

NanoPhotmeterTM (Implen, Freiburg, Germany). 

To confirm the successful cloning of all constructs, the plasmids were digested with Pstl 

(Fermentas) for 1 h at 37°C and digestion products analyzed by agarose gel electrophoresis. 

Furthermore, all constructs were verified by sequencing. Thereby, four different Bid 

constructs were obtained, namely pGEX Δ12-Y47 (Bid1), pGEX Δ12-D51 (Bid2), pGEX Δ13-

Y47 (Bid 3) and pGEX Δ13-D51 (Bid 4). 

2.14.4.1 Cloning of Bid constructs for expression in eukaryotic cells 

The A13-mBid constructs were also expressed in eukaryotic cells. To this end, a KpnI site 

followed by a start codon was introduced in front of Ala13 by PCR using the KpnI-M13Bid 

primer (Table 1). mBid-EcoRI was used as the reverse primer (see Table 1). PCR conditions 

are described in Table 35 and Table 36. PCR products were digested with KpnI and EcoRI 

and ligated into pcDNA3 that had been digested with the same enzymes. 

 

Table 35: PCR sample preparation- A13-mBid constructs 

5x Phusion HF reaction buffer  10 µl 

Template (100 ng)  1.0 µl 

Kpn-M13Bid fw primer (100 mM)  1.0 µl 

mBid-EcoRI rev primer (100 mM)  1.0 µl 

dNTP (10 mM) 1.0 µl 

Phusion 0.5 µl 

Nuclease free water 35.5 µl 
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Table 36: RT-PCR Cycler program A13-mBid constructs 

Pre-heating  

94° C   5 sec 

95° C 30 sec 

55° C 30 sec 

72° C 1 min 

72° C 15 min 

4° C ∞ 

 

Cloning and site-directed mutagenesis were performed together with Cornelius Krasel. 

 

2.14.5 Transformation of plasmids in Rosetta2 (DE3) 

For the expression of the recombinant proteins full-length Bid, tBid, Bid constructs Bid1-4, 

Bax and caspase 8, Escherichia coli Rosetta2 (DE3) singles were transformed with the 

respective plasmids provided in 2.1.1.1. All plasmids contain an Ampicillin-resistance gene. 

Rosetta2 (DE3) singles carry a chloramphenicol resistance. Transformation of Rosetta2 

(DE3) singles was performed according to the protocol recommended by Novagen (User 

protocol TB009 Rev.G0609), with an appreciated transformation efficiency of 2x106 cfu/µg 

plasmid. Bacteria and plasmids were thawed on ice for 2-5 min. and gently resuspended. 

Afterwards, 20 µl of Rosetta2 (DE3) were transferred to a 1.5 ml tube for each plasmid 

sample, respectively and 0.5-1 µl of the purified plasmid DNA was added directly to the cells. 

The samples were stirred gently and the tubes incubated on ice for 5 min. to allow 

transformation. The mixture of DNA and cells was afterwards heated for exactly 30 s to 42°C 

in a water bath without shaking. After heating, the tubes were placed on ice for another 2 

min. before adding 250 µl room temperature SOC medium to each tube. The mixtures were 

incubated at 37°C while shaking at 250 rpm for 60 min. Before plating the bacteria on LB-

Amp agar plates, the plates were treated with 50 µl of chloramphenicol (30mg/ml in ETOH). 

Then 50 µl of each transformation was spread on the LB agar plates, now containing the 

appropriate antibiotics, chloramphenicol and ampicillin. The agar plates were incubated at 

37°C overnight until bacterial colonies were grown.  

2.14.6 Inoculating a liquid bacterial culture 

The LB agar plates prepared as described in 2.15 were frequently used to isolate individual 

colonies of bacteria carrying the specific plasmid. To support a higher density of bacteria a 

liquid culture was used to grow up sufficient numbers of bacteria necessary to isolate enough 

30 cycles 
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plasmid DNA for experimental use, for generating cryo-stocks for long term storage of 

plasmid as well as for further expression of the recombinant proteins.  

For inoculating an overnight culture of liquid LB with Rosetta2 (DE3), 2.5 ml liquid LB 

medium was added into a 15 ml falcon for each plasmid and each bacterial colony and 

supplemented with 2.5 µl chloramphenicol (30 mg/ml in ETOH) and 2.5 µl ampicillin 

(100 mg/ml in H2O), respectively. Afterwards a single bacterial colony was picked from the 

LB agar plate using a sterile pipette tip, transferred to the liquid LB medium containing the 

appropriate antibiotics and swirled gently. The bacterial culture was incubated at 37°C in a 

shaking incubator overnight. After incubation, bacterial growth was characterized by turbidity 

of the media. The liquid LB culture containing bacteria, transformed with the respective 

plasmids, was used for preparing cryo-stocks (2.14.7) and for further expression of specific 

recombinant protein (2.14.9).  

2.14.7 Long-term storage of plasmids via Cryo-stocks 

For long-term storage of plasmids bacterial cryo-stocks, containing the respective bacterial 

culture and the cryo-protectant dimetyolsulfoxid (DMSO), were prepared. The optical density 

(OD600) of the liquid bacterial culture used for the cryo-stocks should not exceed 0.6 AU. For 

each stock 930 µl of the respective bacterial overnight culture were mixed with 70 µl sterile 

DMSO and transferred into sterile cryo-vials, labeled with the bacterial strain and the 

plasmid, respectively. Afterwards, the cryo-vials were frozen in liquid nitrogen and stored 

at -80°C.  

2.14.8 Determination of optical density of bacteria (OD600) 

Optical density was measured using the BioRad SmartSpecTM Plus spectrophotometer 

(BioRad laboratories, Munich, Germany) to determine the concentration of bacteria in a 

suspension. To measure bacteria which are in their mid-log phase of growth, the bacterial 

suspension was measured at a wavelength of 600 nm (OD600). All samples were measured 

in BioRad trUViewTM cuvets (single use). The spectrophotometer was blanked to zero using 

100 µl fresh LB medium. Afterwards, OD600 of each bacterial suspension was determined 

using 100 µl sample volume, respectively. Determination of OD600 was repeated until an 

OD600 of 0.6 AU was reached and protein expression was induced.  

2.14.9 Expression of recombinant proteins 

Recombinant proteins with a hexa-histidine tag at the N-terminus (His6-Bid, His6-tBid, His6-

caspase 8) and GST-tagged Bid constructs (Bid1-Bid4) were expressed in competent 

Escherichia coli Rosetta 2 (DE3) cells (Novagen). After transformation of bacteria with the 

respective plasmids (2.14.5) and generation of a liquid bacterial culture (2.14.6), 5 ml of 

overnight culture was inoculated into 400 ml of standard LB medium containing ampicillin 
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(100 μg/ml) and chloramphenicol (100 μg/ml) in 1 L flasks. Three to four cultures were 

prepared in parallel. Bacteria were grown at 37°C in a shaking incubator for approximately 

4.5 h and the optical density (OD600) was checked at regular intervals to evaluate cell growth. 

At an OD600 of 0.6, 400 μl of isopropyl ß–D-1-thiogalactopyranoside (IPTG) was added to 

each 400 ml culture to induce protein production. IPTG is a molecular mimic of allolactose 

and allows the transcription of gens in the lac-operon and is thereby commonly used as 

effective inducer of protein expression, where genes are under control of the lac-operator. 

Protein expression was induced for 4-6 h at 37 °C while shaking. Afterwards cells were 

harvest by centrifugation (Sorvall GSA rotor, 5000 g, 15 min, 4 °C) using the Sorvall RC 5B 

Plus centrifuge (Sorvall, Bad Homburg, Deutschland). All pellets of a 1.2-1.6 L culture were 

pooled and resuspended in 20 ml standard protein lysis buffer (Table 37). For GST-tagged 

proteins cells were resuspended in 20 ml protein lysis buffer provided in Table 38. Bacterial 

lysates were frozen in liquid nitrogen, and stored at -80 °C until further use. 

2.14.10 Expression tests 

Before large-scale expression of recombinant proteins, every protein construct was checked 

for expression efficiency and protein solubility. For this approach, 200-500 µl of the bacterial 

overnight culture was inoculated into 5-10 ml of standard LB medium containing ampicillin 

(100 μg/ml) and chloramphenicol (100 μg/ml) in a 15-100 ml flask. The bacterial culture was 

grown at 37°C until an OD600 > 0.6 was reached and protein expression was induced by 1 M 

IPTG addition. Afterwards, 1 ml samples were taken at different time points from 0 h up to 

19 h after IPTG induction. Samples were centrifuged at 15,300 rpm for 15 min. at 4°C, the 

supernatant discarded and the cell pellet resuspended in 20 mM Tris buffer (pH 7.5). Cells 

were lysed without detergent by sonication using the Sonifier Cell Disrupter S-450D (Branson 

Ultrasonics, Dietzenbach, Deutschland) equipped with a 3 mm micro-tip. Sonication of each 

sample was performed on ice for 15-20 times using 10% amplitude in pulses of 1 sec with 

1 sec break between pulses. To separate soluble and membrane bound proteins, cells were 

centrifuged at 15,300 rpm for 15 min. at 4°C. The supernatant of each sample was 

transferred into a new sample tube and protein concentration was determined by the 

Bradford assay (2.20.1). All supernatant samples were acetone precipitated according to the 

pierce protocol (2.21). The cell pellets were resuspended in 20 mM Tris buffer (pH 7.5), 

respectively. Afterwards, all samples were analyzed for protein expression by gel 

electrophoresis followed by coomassie staining. In addition, respective protein expression 

was confirmed by western blot.  
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2.15 Purification of recombinant proteins  

For purification bacterial cell lysates (either recently centrifuged and resuspended in lysis 

buffer or thawed) were subjected to sonication (Branson Sonifier Cell Disrupter S-450D, 

Branson Ultrasonics, Dietzenbach, Deutschland).For 20 ml bacterial cell lysate a macro-tip 

was used and sonication was performed at 20% maximum power (20 % amplitude). To avoid 

protein degradation due to heat produced by the sonicator’s sound waves, samples were 

treated using a sonication interval of 1 sec. puls on and 2 sec. puls off for 7-10 min. total 

time. The solution was then centrifuged at 30,000 rpm for at least 30 minutes (Beckman 

Optima XE-90, Ti70 rotor, Beckman Coulter, Krefeld, Deutschland) at 4°C. All proteins 

purified in this thesis were recovered in the soluble bacteria fraction. The supernatant was 

subsequently filtered through a 0.45 μm filter (Whatman, Dassel, Germany) and stored on ice 

until further purification. 

2.15.1 Buffers for protein purification 

Buffers used for purification of recombinant proteins are provided in Table 37–Table 43. 

 

Table 37: Protein standard lysis buffer 

20 mM Tris base 1.21 g 

250 mM NaCl 7.3 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin. ad 500 ml 

Complete Mini Protease Inhibitor Cocktail 
(Roche, Mannheim, Germany)  

2 tablets per 20 ml instantaneously prior to 
use 

 

Table 38: Protein lysis buffer for GSTrap purification 

20 mM Tris base 1.21 g 

100 mM NaCl 2.92 g 

1 mM EDTA 0.15 g 

1 mM DTT 0.5 ml DTT stock solution (1 M DTT) 

Aqua demin. ad 500 ml 

Complete Mini Protease Inhibitor Cocktail 
(Roche, Mannheim, Germany) 

2 tablets per 20 ml instantaneously prior to 
use 
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Table 39: Buffer for His-Catcher Nickel Gravity Columns (PJK GmbH) 

IMAC binding buffer, pH 7.5 

20 mM Tris base 1.21 g 

200 mM NaCl 5.84 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin. ad 500 ml 

Wash buffer, pH 7.5 

20 mM Tris base 1.21 g 

20 mM NaCl 0.584 g 

10 mM Imidazole 0.34 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin.  ad 500 ml 

Elution buffer, pH 7.5 

20 mM Tris base 1.21 g 

20 mM NaCl 0.584 g 

250 mM Imidazole 8.51 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin.  ad 500 ml 

 

For purification of proteins by chromatography using the ÄKTAprime plus (GE Healthcare 

Bio-Science AB, Uppsala, Sweden) the following buffers were used: 
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Table 40: Buffer for HisTrap affinity columns (HisTrapTM FF 5 ml) 

Buffer A: Binding buffer, pH 7.5 

20 mM Tris base 1.21 g 

250 mM NaCl 7.3 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin.  ad 500 ml 

Buffer B: Elution buffer pH 7.5  

20 mM Tris base 1.21 g 

20 mM NaCl 0.584  g 

400 mM Imidazole 13.62 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin.  ad 500 ml 

 

Table 41: Buffer for GSTrap affinity columns and Glutathione and HiCap Cartridges  

Buffer A: Binding buffer, pH 7.5 

20 mM Tris base 1.21 g 

100 mM NaCl 2.92 g 

1 mM EDTA 0.15 g 

1 mM DTT 0.5 ml DTT stock solution (1 M DTT) 

Aqua demin.  ad 500 ml 

Buffer B: Elution buffer pH 8.0 

50 mM Tris base 3.92 g 

10 mM L-Glutathione red. 1.54 g 

1 mM EDTA 0.15 g 

1 mM DTT 0.5 ml DTT stock solution (1 M DTT) 

Aqua demin.  ad 500 ml 
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Table 42: Buffer for HiTrap ion exchange columns (HiTrap Q HP, 5 ml) 

Buffer A: Binding buffer, pH 8.0 

20 mM Tris base 1.21 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin.  ad 500 ml 

Buffer B: Elution buffer pH 8.0 

20 mM Tris base 1.21 g 

500 mM NaCl 14.61 g 

10 mM β-Mercaptoethanol 0.39 g (eq. 11 drops) 

Aqua demin.  ad 500 ml 

 

Table 43: Buffer for HiLoad gel filtration columns (HiLoadTM 16/600 Superdex 75 pg) 

Buffer A; pH 7.5 

20 mM Tris base 2.42 g 

50 mM NaCl 2.92 g 

Aqua demin.  ad 1000 ml 

 

To avoid bacterial growth, all buffers were supplemented with 0.03 % sodium azide. After 

buffer preparation, all buffers were sterile filtered through a 0.22 µM cellulose filter and 

completely degassed under vacuum for at least 1-2 hours before use. All buffers were stored 

at 4°C.  

2.15.2 Protein purification using the ÄKTA prime plus  

ÄKTA prime plus is a compact liquid chromatography system used for one-step purification 

of proteins at laboratory scale. All methods applied for protein purification using the ÄKTA 

prime plus system where extensively established during this thesis and respectively 

customized for each of the purified protein constructs. The methods were programmed line-

by-line using the PrimeView 5.0 software. Using this software all purification runs were 

monitored and results were presented by the respective chromatograms. 
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Prior to start of the protein purification the system was pre-equilibrated. Since the system and 

columns were stored in 20% ethanol, all components had to be flushed with water before 

working with buffers or protein. Therefore, the system, inlet tubing, sample loops and 

columns were purged 2-3 times with degassed aqua demin using the “system wash” 

program. Afterwards the system was rinsed with water for at least 2 volumes of the required 

column (CV) by manual run using a flow rate of 1-1.5 ml/min. For equilibrating the system for 

the intended purification method, it was subsequently purged with the appropriate binding 

buffer, followed by a manual buffer wash with 2 CV of binding buffer. The system was then 

ready for the following protein purification (2.15.3 and 2.15.4). The maximum pressure was 

fixed to 0.3 kPa for all purification methods. 

At the end of the purification run, the system was rinsed with at least 2-3 CV of aqua demin. 

to remove all buffers in order to avoid precipitations. For storage, the system as well as 

sample loops and columns were rinsed with 20% ethanol. The washing procedure was 

performed either by manual run with a flow rate of 1-2 ml/min or by the programmed wash 

method provided in Table 44 overnight. 

 

Table 44: Programmed method for ÄKTA- wash and storage 

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow rate 
[ml/min] 

Fraction 
size [ml] 

Inject 
valve 

position 

Equilibration 1 0 0 2 0 Load 

Water wash (A) 2 10 0 1 0 Load 

Water wash End 3 130 0 1 0 Load 

Priming B 4 130.1 100 1 0 Load 

20% ETOH wash (B) 5 250 100 1 0 Load 

Method end 6 260 100 1 0 Load 

 

2.15.3 Purification of recombinant His6-tagged proteins  

Purification of His6-tag proteins was performed by three consecutive chromatography steps 

as described below.   

2.15.3.1 Nickel-Affinity chromatography  

Immobilized metal ion affinity chromatography (IMAC) is based on the specific binding 

properties of amino acids, particularly histidines, towards immobilized metals for purification 

purposes. Nickel-nitriloacetic (Ni-NTA) contains chelated nickel, which is able to specifically 

bind to poly-histidine in proteins and therefore used in this thesis for purification of His6-

tagged proteins. For elution, an excess amount of a compound able to act as a metal ion 

ligand, such as Imidazole, is used and displaces the tagged protein from column resin. 
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Recombinant full length Bid with a hexa-histidine tag at the N-terminus was initially purified 

manually using His-Catcher Nickel Gravity Columns (PJK GmbH, Kleinbittersdorf, Germany) 

according to the manufacturer’s protocol. Before starting, all buffers provided in Table 39 

were prepared and the required buffer volumes as well as protein solution filtered through a 

0.45 µm filter (Whatman, Dassel, Germany). The column was released from storage buffer 

and equilibrated twice with 3 ml aqua demin. followed by three times equilibration with 6 ml of 

IMAC binding buffer. Afterwards 6 ml of protein solution was applied to the column by gravity 

flow to allow binding of His6-tagged proteins. Sample application was repeated until the entire 

sample had been processed. For subsequent analysis, an unprocessed sample as well as a 

sample of the effluent was stored at 4°C until further use. After sample loading, the column 

was washed three times with 6 ml wash buffer, containing 10 mM imidazole to elute 

unspecifically bound proteins. Elution of the specifically bound protein was achieved by 

adding 4 volumes of 1.5 ml elution buffer, containing 250 mM imidazole thereby displacing 

the His6-tagged protein from the nickel ions. Elution fractions were collected drop-wise and 

stored at 4°C for further processing. All purification steps were performed on ice. Protein 

purity was confirmed by analyzing collected samples by SDS-PAGE. 

Alternatively, affinity chromatography purification of His6-tagged full-length Bid was 

performed using a HisTrapTM FF column (GE Healthcare Bio-Science AB, Uppsala, Sweden) 

connected to the ÄKTA prime plus instrument. All buffers used for the following method are 

provided in Table 40. Before equilibration with binding buffer, the system was pre-

equilibrated as described in 2.15.2. Depending on the protein sample size, chromatography 

was performed using either a 1 ml or 5 ml HisTrap TM FF column, which was likewise pre-

equilibrated with binding buffer prior to sample loading. Final equilibration, sample injection, 

wash, sample elution as well as re-equilibration of the system were performed automatically 

by the applied program provided in Table 45. Protein sample was applied to the respective 

column by repeated injections using a 5 ml sample loop. During sample loading, flow through 

was collected in volumes of 8 ml. Elution of His6-tagged protein was performed using a 

continuous gradient of 0-300 mM imidazole followed by a wash out step up to concentrations 

of 400 mM imidazole. Elution fractions were collected in volumes of 1-5 ml and stored at 4°C 

until further use. The respective purification run was monitored using PrimeView5.0 and the 

resulting chromatogram was analyzed for elution peaks. Elution fractions collected within 

peak areas were analyzed by SDS- gel electrophoresis followed by coomassie staining. 

Afterwards, Bid-containing fractions were pooled and stored at 4°C until further purification 

by ion exchange.  
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Table 45: Programmed method for ÄKTA - IMAC- Ni-Affinity chromatography 

                 (1 ml HisTrap column, 5 ml sample loop, < 25 ml sample volume) 

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size 
[ml] 

Inject 
valve 

position 

Equilibration 1 0 0 1 0 Load 

Sample injection 1 2 5 0 1 8 Inject 

Equilibration/Buffer A wash 3 13 0 1 0 Load 

Sample injection 2 4 15 0 1 8 Inject 

Equilibration/Buffer A wash 5 23 0 1 0 Load 

Sample injection 3 6 25 0 1 8 Inject 

Equilibration/Buffer A wash 7 33 0 1 0 Load 

Sample injection 4 8 35 0 1 8 Inject 

Equilibration/Buffer A wash 9 43 0 1 0 Load 

Sample injection 5 10 55 0 1 8 Inject 

Wash 7% imidazole 11 63 0 1 5 Load 

Elution  12 73 5 1 1 Load 

Elution wash out 13 93 75 1 1 Load 

End wash 14 103 75 1 5 Load 

Re-equilibration 15 113 100 1 5 Load 

End method 16 123 0 1 0 Waste 

 

2.15.3.2 Ion exchange chromatography 

Ion exchange chromatography is based on electrostatic properties of proteins, which can 

bind to the charged groups exposed on the surface of the exchanger. In this thesis anion 

exchange chromatography was performed by using HiTrap columns containing Q-

Sepharose, which is composed of cross-linked 6% agarose beads with quaternary 

ammonium (Q) strong anion exchange groups. Q-Sepharose is commonly used for 

separation of proteins during purification.  

Ion exchange chromatography was performed using pre-packed 5 ml HiTrap Q HP columns 

(GE Healthcare Bio-Science AB, Uppsala, Sweden) and the ÄKTA prime plus system. The 

appropriate buffers are provided in Table 42. To ensure ionic binding of full-length Bid, the 

total ionic strength of the protein buffer (Table 39; Buffer B, Table 40) needed to be reduced. 

Therefore, the Bid-containing fractions achieved by Ni-affinity chromatography were pooled 

and either four-times diluted with binding buffer A or desalted using ZebaTM Spin Desalting 

columns (Thermo Scientific, Langenselbold, Germany).  After equilibrating the system 

(2.15.2) and connection of the column to the ÄKTA, ion exchange was started by applying 

the programmed method depicted in Table 46. During the process, the protein sample was 

applied to a 5 ml sample loop and sample injection was repeated 3-5 times depending on the 

particular sample volume. Throughout purification, elution fractions were collected in 2-5 ml 
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sizes and stored at 4°C until further use. Elution fractions collected within peak areas were 

analyzed by SDS- gel electrophoresis followed by coomassie staining. Bid-containing 

fractions were pooled and stored at 4°C. 

 

Table 46: Programmed method for ÄKTA – Ion Exchange Gradient elution 

                    (5 ml HiTrap column, 5 ml sample loop, < 25 ml sample volume)  

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size  
[ml] 

Inject 
valve 

position 

Equilibration 1 0 0 5 0 Load 

Sample injection 1 2 25 0 5 5 Inject 

Equilibration/Buffer A wash 3 30 0 5 2 Load 

Sample injection 2 4 32 0 5 5 Inject 

Equilibration/Buffer A wash 5 37 0 5 2 Load 

Sample injection 3 6 39 0 5 5 Inject 

Equilibration/Buffer A wash 7 44 0 5 2 Load 

Sample injection 4 8 46 0 5 5 Inject 

Equilibration/Buffer A wash 9 51 0 5 2 Load 

Sample injection 5 10 53 0 5 5 Inject 

Buffer A wash 11 58 0 5 5 Load 

Elution  12 85 0 5 2.5 Load 

Elution wash out 13 185 100 5 2.5 Load 

End wash 14 205 100 5 2.5 Load 

Re-equilibration 15 210 0 5 0 Waste 

End method 16 215 0 5 0 Waste 

 

When indicated, the Bid-containing fractions were subjected to proteolytic cleavage of the 

His6-tag (see 2.16) and in either case concentrated prior to the subsequent size exclusion 

chromatography. 

2.15.3.3 Gel filtration 

Gel filtration (size exclusion chromatography, SEC) is used for fractionation of proteins by 

their size and/or molecular weight. The macromolecule solution is separated by flowing 

through porous, inert matrices which are characterized by an exclusion limit indicating the 

molecular weight of the largest protein that is still delayed in the column.  

In this thesis a HiLoad 16/600 column (GE Healthcare Bio-Science AB, Uppsala, Sweden) 

was used with a Superdex 75 prep grade matrix composited of dextran and highly cross-

linked agarose. Due to different pore sizes within the matrix, molecules of different sizes 

elute through the stationary phase at different rates. The column allows for separation of 

proteins in the molecular weight range of 3,000 up to 70,000 Da.  
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Since separation efficiency increases with smaller sample volumes, the pooled Bid-

containing fractions were concentrated using 3-kDa cut-off Amicon filters (Millipore, 

Schwalbach, Germany) up to a sample volume < 2 ml (2.18) and filtered through a 0.45 µm 

filter.  Afterwards, gel filtration was performed using the ÄKTA prime plus system. After pre-

equilibrating the system and column (2.15.2) with aqua demin. followed by gel filtration buffer 

(Table 43), the sample was applied to a 2 ml sample loop and the programmed method 

depicted in Table 47 was started. Elution fractions were collected in volumes of 2 ml. Due to 

gel filtration, highly pure Bid protein was yielded as shown by gel electrophoresis and 

coomassie staining. The protein was finally concentrated with 3-kDa cut-off Amicon filters 

(Millipore, Schwalbach, Germany) up to concentrations required for respective functional 

experiments or crystallization studies. Protein samples were stored at 4°C until use, or 

supplemented with 30% glycerol for long-term storage. 

 

Table 47: Programmed method for ÄKTA – Gel filtration (full-length Bid) 

                 (HiLoad 16/600 Superdex 75 pg column, 2 ml sample loop, < 2 ml sample volume) 

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size [ml] 

Inject 
valve 

position 

Equilibration 1 0 0 1 0 Load 

Sample injection 2 10 0 1 0 Inject 

Buffer wash 3 12 0 1 0 Load 

Elution 4 35 0 1 2 Load 

Re-equilibration 5 140 0 1 2 Load 

 

2.15.4 Purification of recombinant GST-tagged proteins 

2.15.4.1 GSH-Affinity chromatography 

Glutathione S-transferase (GST) is a 26 kDa protein, which is used as N-terminal tag of 

target proteins to allow simple purification by affinity chromatography based on the high 

affinity of GST for immobilized glutathione. When applied to the affinity medium, GST-tagged 

proteins bind to the glutathione ligand, and impurities can be removed by washing with 

binding buffer. Elution of tagged proteins from chromatography medium is performed under 

mild, non-denaturing conditions that preserve both protein structure and function. Due to the 

positive influence of the GST-tag on protein solubility, expression efficiency and detection 

especially of small proteins, GST-tags are commonly used to generate proteins for 

crystallization and molecular immunology studies involving protein-protein interactions. 

Therefore, in this thesis, all truncated Bid constructs were fused to GST to allow highly pure 
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protein purification. To avoid interference of the GST-tag during crystallization, the tag was 

removed after affinity purification by proteolytic (thrombin) cleavage (2.16). 

GSH-affinity chromatography was performed with the ÄKTA prime plus system using pre-

packed 5 ml columns containing a matrix composed of highly cross-linked 4-6% agarose 

beads and a glutathione ligand. Depending on the protein amount, either GSTrapTM FF 

columns (GE Healthcare Bio-Science AB, Uppsala, Sweden) with a binding capacity of 

approximately 11 mg GST-tagged protein/ml, or Glutathione HiCap Cartridges (Quiagen, 

Hilden, Germany) with a binding capacity up to 100 mg GST-tagged protein were used.  

To increase binding capacity, usually two 5 ml HiCap Cartridges were connected on after 

another. All buffers used for this method are provided in Table 41. After pre-equilibration of 

columns and the ÄKTA system (2.15.2), protein sample was loaded to the column through 

tube B using the programmed method provided in Table 48. Afterwards GSH-affinity 

chromatography was performed using the ÄKTA installed application template “GST-tag 

purification GSTrap”, as provided in Table 49. Elution was performed with buffer containing 

10 mM glutathione and fractions were collected and stored at 4°C until SDS-gel 

electrophoresis. Fractions containing the respective Bid construct were pooled and subjected 

to further cut-off concentration and buffer exchange followed by proteolytic cleavage of the 

GST-tag. 

Alternatively, sample application and purification of Bid construct 4 was performed in a one-

step process by applying the programmed method in Table 50 to the ÄKTA system. Using 

this method, application of 25 ml sample volume was performed by repeated injection steps 

using a 5 ml sample loop. Fractions were collected in volumes of 2-5 ml. Elution and fraction 

analysis was performed as outlined above. 

 

Table 48: Programmed method for ÄKTA – sample application  

Action Breakpoint 
Volume 

[ml] 

Sample 
tube B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size 
[ml] 

Inject valve 
position 

Equilibration 1 0 0 1 0 Load 

Sample injection 2 2 100 1 5 Load 

Buffer wash 3 44 100 1 0 Load 

Re-equilibration 4 50 0 1 0 Load 

End method 5 65 0 0 0 Load 
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Table 49: ÄKTA installed method – GST-tagged purification GSTrap  

                    (5 ml GSTrapTM column) 

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size 
[ml] 

Inject 
valve 

position 

Priming A1 0 0 0 40 0 Waste 

Equilibration 1 35 0 1 0 Load 

Autozero 2 45 
    

Sample injection 2 45 0 0.3 0 Inject 

Buffer wash 3 50 0 1 0 Load 

End wash 4 60 0 1 0 Load 

Priming B 5 60.1 100 40 0 Waste 

Elution 6 95 100 1 1 Load 

End elution 7 105 100 1 0 Laod 

Priming A1 8 105.1 0 40 0 Waste 

Re-equilibration 9 120 0 1 0 Load 

End method 10 125 0 0 0 Load 

 

Table 50: Programmed method for ÄKTA – GST-affinity chromatography 

                (2 x 5 ml HiCap Catridge, 5 ml sample loop, < 25 ml sample volume) 

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size 
[ml] 

Inject 
valve 

position 

Pre-equilibration 1 0 0 1 0 Load 

Equilibration 2 10 0 1 0 Load 

Sample injection 1 3 12 0 1 5 Inject 

Equilibration/Buffer A wash 4 17 0 1 2 Load 

Sample injection 2 5 19 0 1 5 Inject 

Equilibration/Buffer A wash 6 24 0 1 2 Load 

Sample injection 3 7 26 0 1 5 Inject 

Equilibration/Buffer A wash 8 31 0 1 2 Load 

Sample injection 4 9 33 0 1 5 Inject 

Equilibration/Buffer A wash 10 38 0 1 2 Load 

Sample injection 5 11 40 0 1 5 Inject 

Equilibration/Buffer A wash 12 45 0 1 2 Load 

Sample injection 6 13 47 0 1 5 Inject 

Buffer A wash 14 52 0 1 2 Load 

Pre-elution 15 72 0 1 2 Load 

Elution 16 74 100 1 2 Load 

Elution wash out 17 104 100 1 2 Load 

Reequilibration 18 110 0 1 2 Load 

Method end 19 120 0 1 0 Load 
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2.15.4.2 Gel filtration 

To achieve highly pure recombinant Bid constructs suitable for further crystallization studies, 

Bid construct-containing fractions were finally purified by gel filtration. After buffer exchange 

to gel filtration buffer, provided in Table 43, and cleavage of the GST-tag (2.16), protein 

samples were concentrated using 3-kDa cut-off Amicon filters (Millipore, Schwalbach, 

Germany) up to a sample volume < 5 ml and filtered through a 0.45 µm filter. Gel filtration 

was performed as described above following the programmed methods provided in Table 47 

and Table 51, depending on the particular sample volume. Purity of the elution fractions was 

confirmed by SDS- gel electrophoresis and Bid construct-containing fractions were pooled, 

concentrated and subjected to further crystallization studies.  

 

Table 51: Programmed method for ÄKTA – Gel filtration (Bid constructs) 

                 (HiLoad 16/600 Superdex 75 pg column, 5 ml sample loop, ≤ 5 ml sample volume) 

Action Breakpoint 
Volume 

[ml] 

Conc 
Buffer B 

[%] 

Flow 
rate 

[ml/min] 

Fraction 
size [ml] 

Inject 
valve 

position 

Equilibration 1 0 0 1 0 Load 

Sample injection 2 10 0 1 0 Inject 

Buffer wash 3 16 0 1 5 Load 

Elution 4 20 0 1 2 Load 

Elution wash out 5 45 0 1 2 Load 

Re-equilibration 6 160 0 1 2 Load 

 

2.16 Thrombin cleavage of His6- and GST-fusion proteins 

Thrombin is a protease used to digest fusion proteins prepared from pGEX or pET15b 

vectors, which include the thrombin recognition sequence (LeuValProArg↓GlySer). By 

cleaving the peptide bond between Arg and Gly, thrombin enables site-specific cleavage of 

recombinant fusion proteins and the removal of the purification His6- and GST-tag.  

After purifying the recombinant proteins by affinity and ion exchange chromatography, 

protein concentration was determined by photometry to calculate the required volume of 

thrombin (GE Healthcare, Bio-Science AB, Uppsala, Sweden). According to the 

manufacturer´s protocol, the lyophilized thrombin was solved in 1 x PBS to final solutions of 1 

U/µl or 0.1 U/µl. In order to preserve thrombin activity, aliquots were stored at -80°C. 

Generally, one unit thrombin will cleave ≥ 90 % of 100 µg GST-protein and cleavage should 

be complete following overnight treatment at 22°C with ≤ 10 units/mg fusion protein. For 

cleavage of His6-tagged full-length Bid one unit thrombin was used to cleave 50 µg of His6- 

protein. After addition of thrombin, the mixture was incubated at 37°C for 16 h and the 
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digestion was stopped by adding 1 mM of the serine protease inhibitor phenylmethylsulfonyl 

fluoride (PMSF). The cutting efficiency was controlled by SDS- gel electrophoresis followed 

by coomassie staining. In addition, MALDI-TOF analyses were performed by Jörg Kahnt at 

the Max-Planck-Institute of Terrestrical Microbiology, Marburg, Germany to confirm the 

cutting efficiency and to exclude further cleavage within the Bid protein sequence. For 

MALDI-TOF analysis, a buffer exchange of protein samples was performed prior to thrombin 

cleavage. Protein desalting was performed using ZebaTM Spin Desalting columns (Thermo 

Scientific, Langenselbold, Germany) according to the manufacturer´s protocol.  

GST- tagged Bid constructs (Bid1-Bid4) were cleaved after affinity chromatography in GST-

elution buffer (Table 41). For effective removal of the GST-tag, a thrombin concentration of 

3.5 U/ml was used, and to enhance thrombin activity, the digestion was carried out in the 

presence of 10-12 mM calcium chloride for 16 h at 37°C. Afterwards, thrombin activity was 

inhibited by addition of 1 mM PMSF. Alternatively, removal of GST-tag from GST-fused Bid 

constructs was performed using the thrombin protease provided from Novagen®, with the unit 

definition of 1U/mg protein. Cleavage efficiency was controlled by SDS- electrophoresis.  

2.17 Dialysis of recombinant proteins 

Dialysis is a process used to separate molecules in solution by the differences in their rates 

of diffusion through a semi permeable membrane. Due to the pore size of the membrane 

large molecules in the sample, such as proteins, cannot pass through the membrane, 

thereby restricting their diffusion from the sample chamber. In contrast, small molecules, 

such as salt molecules, will freely diffuse across the membrane and obtain equilibrium across 

the entire solution volume. In this study dialysis was used to decrease the salt concentration 

and to remove the imidazole content of the protein samples after purification by Ni-affinity 

chromatography.  

For dialysis a flexible Spectra/Por® cellulose membrane tube with a molecular weight cut-off 

of 7kDa (Serva electrophoresis, Mannheim, Germany) was used. Prior to sample dialysis, 

the dialysis tube was cut to a size dependent on the respective sample volume. Afterwards 

the membrane was incubated in the dialysis buffer (20 mM Tris pH 8, 10 mM β-

Mercaptoethanol) for 1-2 hours prior to sample addition. The tubing was closed at the end by 

a locking clamp and loaded with the protein solution and closed with a second locking clamp. 

The sample-filled tubing was placed into a chamber containing 5 liter of dialysis buffer and 

incubated at 4°C overnight with gentle stirring of the buffer. The day after the sample was 

transferred to a new sample tube and protein concentration was determined by Bradford 

assay or UV photometry before concentration of the protein when indicated.  
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2.18 Cut-off concentration of recombinant proteins 

To achieve the final concentration of recombinant proteins required for the respective 

experiments and to reach high concentration of pure protein for crystallographic studies 3-

kDa cut-off ultra-filtration was used. Therefore the respective samples were filled into 3-kDa 

cut-off Amicon concentrators (Amicon® Ultra-4/ Amicon Ultra-15, Millipore, Schwalbach, 

Germany) for volumes up to 4 ml or up to 15 ml, respectively. Afterwards the samples were 

centrifuged at 4,000 rpm at 4°C until the required protein concentration was reached. In the 

meantime of centrifugation, protein concentration was determined by absorption at 280 nm 

with the NanoPhotometerTM (Implen, Munich, Germany). 

2.19 Cleavage of full length Bid with Caspase 8 

Cleavage of full-length Bid with recombinant caspase 8 was performed as previously 

described69. Therefore, 200 µl of pure recombinant Bid in 20 mM Tris (ph 7.4), 50 mM NaCL, 

was 1:1 diluted with 200 µl of caspase-cutting buffer (50 mM Hepes, 100 mM NaCL, 10 mM 

DTT, 1 mM EDTA, 10% sucrose, ph 7.5) and incubated with 1 µl of recombinant caspase 8 

(7.6 mg/ml) for 2-4 h at room temperature. The cutting efficiency was estimated to be over 

95% by SDS-polyacrylamide gel electrophoresis and coomassie staining and additionally by 

western blot. After 1h, Bid was cleaved providing the insoluble C- and N-terminal fragment. 

For functional analysis of tBid, the mixture was applied to fluorescence liposomes (2.22.1.2). 

For thermophoresis measurements and analyzing the effect of tBid on VDAC1 channels the 

cleaved Bid fractions were separated from excess of caspase 8. Therefore, the solution was 

diluted 1:1 with SEC-buffer (25 mM HEPES/NaOH pH 7.5, 300 mM NaCl, 0.2 mM DTT, 2% 

OG) to resolve tBid and applied onto a Superdex 200 (GE Healthcare Bio-Science AB, 

Uppsala, Sweden) column, yielding both fragments of cleaved Bid protein as shown by SDS-

PAGE. tBid was concentrated with a 3-kDa cut-off Amicon concentrator (Amicon Ultra-15, 

Millipore, Darmstadt, Deutschland). The protein concentration was measured by absorption 

at 280 nm with the NanoPhotometerTM (Implen, Munich, Germany). The samples were stored 

at 4 °C until use.  
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2.20 Determination of protein concentration 

The concentration of recombinant proteins was determined either by the Bradford assay or 

by UV spectroscopy using the NanoPhotometerTM (Implen, GE Healthcare Europe GmbH, 

Freiburg, Germany). 

2.20.1 Bradford assay 

Total protein concentrations of expressed recombinant full-length Bid and different Bid 

constructs, were determined by the Bradford assay according to the manufacturers protocol 

(AppliChem, Darmstadt, Germany). The Bradford method is a fast procedure for 

determination of protein concentrations in solutions that depends on quantifying the binding 

of a dye, Coomassie Brilliant Blue G-250, to an unknown protein. The Coomassie blue G250 

binds most readily to arginyl and lysyl residues of the respective proteins and the binding is 

proportional to the protein amount present. When binding to a protein occurs, the 

absorbance maximum for the acidic solution of Coomassie Brilliant Blue-G250 shifts from 

465 nm to 595 nm, causing a visible color change in a linear range of the assay from 5 to 

25 µg/ml protein amount. The protein concentration of a test sample was determined by 

comparison to that of a standard protein, bovine serum albumin (BSA). 

For standard, a serial dilution of a BSA stock (10 mg/ml) was prepared by diluting the stock 

with protein buffer (20 mM Tris base, pH 7.4, 50 mM NaCl) to final concentrations of 0, 2, 4, 

6, 8, 10 µg BSA. To each sample 1 ml of Bradford reagent (AppliChem, Darmstadt, 

Germany) was added and mixed gently by vortexing. The reagent blank (0 µg BSA) was 

used to zero the spectrophotometer (BioRad laboratories, Munich, Germany). After 

transferring the samples to disposable trUViewTM cuvets (BioRad laboratories, Munich, 

Germany) the absorbance of each sample was measured at 595 nm using the Lambda 

595 nm assay. For sample preparation, 10 µl of each sample was filled up with protein buffer 

to a final volume of 100 µl. After adding 1 ml of Bradford reagent, samples were mixed gently 

by vortexing and transferred to cuvets. Using the BSA standard curve, the protein 

concentration of each sample was determined. Since samples were diluted 1:10 before 

measuring, the calculated protein concentration was multiplied by 10 to get the amount of 

protein in 100 µl. 

2.20.2 Nanodrop photometry 

For determining the protein amount of recombinant protein samples after chromatography 

purification, the absorbance of protein samples was measured using the NanoPhotometerTM 

(Implen, GE Healthcare Europe GmbH, Freiburg, Germany). The protein concentration was 

determined at 280 nm due to absorption by tyrosine, tryptophan and phenylalanine amino 

acids. Since the Abs 280 varies greatly for different proteins due to their amino acid content, 
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the specific absorption value for a particular protein must be determined. Therefore, a 

specific A280 factor was determined for each protein, according to the Implen 

NanoPhotometerTM User manual. The A280 factor is based on the extinction coefficient of the 

respective protein [molecular weight/molar extinction coefficient]. The molar extinction 

coefficients for each protein were determined based on the amino acid sequence data as 

described by Gill at al.187. Molar extinction coefficients were calculated as provided in Table 

52. Before measuring the protein concentration of each sample, A260 Factor was set to zero 

for direct λ280 UV protein measurement and A280 factor was set to the value calculated for 

the respective protein construct (Table 52). Afterwards the system was blanked using protein 

buffer (20 mM Tris base, pH 7.4, 50 mM NaCl) and each sample was measured using a 

sample volume of 4 µl. The respective protein concentrations were calculated as mean of at 

least three measurements. 

 

Table 52: Molar extinction coefficients and A280 factors 

Protein Molecular weight  
Molar extinction 
coefficient 

A280 Factor 

Full-length His6-Bid 24,114.75 g/mol 8250 mol/l*cm-1 2,923 

Full-length Bid 22,232.04 g/mol 8250 mol/l*cm-1 2,695 

Bid construct 1 17,626.22 g/mol 2560 mol/l*cm-1 6,885 

Bid construct 2 18,127.72 g/mol 8250 mol/l*cm-1 2,197 

Bid construct 3 17,569.17 g/mol 2560 mol/l*cm-1 6,863 

Bid construct 4 18.070,67 g/mol 8250 mol/l*cm-1 2,190 

 

2.21 Acetone precipitation 

To increase the concentration of soluble protein fractions after bacterial expression and pull-

downed proteins from protein-protein interaction studies, the protein samples were acetone 

precipitated according to the pierce protocol for acetone precipitation (Thermo Fisher 

Scientific, Schwerte, Germany). Briefly, samples were gently mixed with the 4-fold amount of 

cold acetone (Roth, Karlsruhe, Germany), and incubated at -20°C for at least 120 min. or 

overnight. Afterwards, the solution was centrifuged at 15,300 rpm, 4°C for 15-30 minutes. 

After removing the supernatant the acetone was evaporated from the uncapped tube at room 

temperature for 30 minutes without over-drying the pellet. The pellet was then resuspended 

in the respective protein buffer and supplemented with 5 x SDS buffer to control the samples 

by gel electrophoresis followed by coomassie staining or western blot analysis. 
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2.22 Functional analysis of recombinant proteins 

In order to investigate the functional activity of recombinant proteins, recombinant full-length 

Bid and its truncated form tBid were applied to in vitro assays addressing the effect of the 

proteins on lipid membranes and to investigate protein-protein interactions.  

2.22.1 Models of membrane permeabilization 

To explore the effect of full-length Bid, tBid and Bax on artificial lipid bilayer structures, which 

mimic the mitochondrial membrane, two in vitro assays for membrane permeabilization were 

established in this thesis.  

All lipids used for liposome and planar lipid bilayer preparations were derived from Avanti 

Polar lipids (Avanti Polar lipids, Alabaster, AL, USA) and provided in Table 53.  

 

Table 53: Lipids (Avanti Polar lipids) 

Lipid Origin Concentration Physical state 

L-α-Phosphatidylcholine (PC) Egg, Chicken 25 mg/ml Chloroform 

L- α-Phosphatidylethanolamine 
(PE) 

Egg, Chicken 25 mg/ml Chloroform 

Cardiolipin (CL) 
Heart, Bovine-
Disodium Salt 

25 mg/ml Chloroform 

 

2.22.1.1 Preparation of liposomes 

5,6-carboxyfluorescein (CF) containing liposomes, with a lipid composition reflecting that of 

the mitochondrial outer membrane (MOM), were prepared by extrusion using the Avanti-Mini-

Extruder (Avanti Polar lipids, Alabaster, AL, USA). Lipids used for liposome preparation are 

provided in Table 53. For cardiolipin-containing liposomes (PC/PE/CL: 54/20/26), 66.67 µl 

phosphatidylcholin (PC), 23.82 µl phosphatidylethoanolamine (PE) and 62.16 µl cardiolipin in 

chloroform were mixed. For comparison, liposomes without cardiolipin (PC/PE: 80/20) were 

prepared using a mixture of 98.76 µl PC and 23.82 µl PE in chloroform. For purification 

purposes, both liposome mixtures were supplemented with 1 % of rhodamine DHPE 

(LissamineTM rhodamine B 1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine, 

Triethylammonium Salt, Invitrogen, Karlsruhe, Germany). After stirring the liposome mixtures, 

the organic solvent was removed by evaporation under a nitrogen stream for 15 min. at room 

temperature or for 5-10 min. at 30°C using the EVA-EC1-24 evaporator (VLM GmbH, 

Bielefeld, Germany). Subsequently, lipid samples were incubated in an exsiccator under 

vacuum for 1-2 h at room temperature for complete removal of the chloroform. To avoid 
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drying out of the lipid film, samples were consistently inspected in between. Dry lipid films 

were resuspended in 1 ml 1 x PBS, pH7.4 containing 20 mM 5,6-carboxyfluorescein (CF, 

Invitrogen), respectively. Large multi-lamellar vesicles (LMV), obtained by hydration, were 

further downsized by subjection to several freeze/thaw (F/T) cycles followed by extrusion. 

For preparation of large uni-lamellar vesicles (LUV), samples were frozen in liquid nitrogen 

for 1 min. and thawed at 37°C in a water bath. After 20 F/T cycles, liposomes were extruded 

15 times through two polycarbonate filters with pores of 200 nm diameters using the Avanti-

Mini-Extruder. Prior to sample application, the extruder was prepared according to the 

manufacturer’s protocol. After extrusion, samples were stored at 4°C until all liposome 

samples were prepared. Liposomes were isolated and untrapped CF was removed by gel 

filtration using a pre-packed Sephadex-G25 column (PD MidiTrap G-25, GE Healthcare 

Europe GmbH, Freiburg, Germany). According to the manufacturer’s gravity protocol, the 

columns were three-times equilibrated with 15 ml of 1 x PBS. Afterwards 1 ml liposome 

sample was applied to the column and finally eluted with 1.5 ml 1 x PBS. Untrapped CF 

appeared as yellow band whereas rhodamine-stained liposomes were visualized as pink-

colored band in the gel-packed bed. 

Since the phase transition temperature (Tm) of all required phospholipids was approximately 

2°C, the whole procedure could be performed at room temperature.  

2.22.1.2 Liposome channel activity assay 

The liposome channel activity assay was performed in black 96-well plates (Greiner, 

Frickenhausen, Germany) on a fluorescence plate reader (FluoStar OPTIMA, BMG Labtech, 

Offenburg, Germany). Fluorescence was recorded as a function of time with excitation at 485 

nm and emission at 520 nm and fluorescence values were given every 5 seconds. Twenty µl 

of purified 5,6-carboxyfluorescein-containing liposomes were diluted in 80 µl PBS to give a 

suitable fluorescence value. For baseline fluorescence, liposomes were initially measured at 

room temperature without addition of proteins every 5 seconds for at least 3 minutes. 

Afterwards, recombinant proteins were added and the change in fluorescence was monitored 

every 5 seconds for at least 20 min. up to 1 hour. If proteins were able to induce channel 

formation or disrupture of the liposome membrane, 5,6-carboxyfluorescein was released as 

indicated as an increase in fluorescence over time. In detail, caspase 8- cleaved Bid (tBid) 

was added at final concentrations of 10 nM up to 6 µM for dose-dependence studies. 

Recombinant Bax was used in final concentrations of 100 nM and 500 nM when applied to 

liposomes alone. For investigation of the pore-forming activities of both proteins in 

combination, 100-500 nM Bax was mixed with 50 nM-6 µM tBid and the protein mixture was 

incubated 3 min. prior to adding the mixture to the liposomes. Addition of the appropriate 

protein buffer to the liposomes was used as negative control.  
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For comparison of fluorescence release, 20 µl of aqua demin. was added to the liposomes 

and the recorded fluorescence was set to 0 % release of CF. To reach 100 % release of CF, 

liposomes were incubated with 3-4% of TritonX-100. 

To establish the liposome channel activity assay as an in vitro assay to screen novel small-

molecules for their ability to inhibit Bid-channel activity,  recombinant Bid/tBid, in presence or 

absence of recombinant Bax, was pre-incubated with different concentrations of the Bid 

inhibitor BI6c9 at room temperature for 1-3 min. The mixture was afterwards added to the 

CF-containing liposomes and change in fluorescence (excitation 485 nm and emission 

520 nm) was recorded every 5 seconds for at least 20 min. up to 1 h.  

 

2.22.2 Analysis of protein-protein interactions 

2.22.2.1 In vitro Bid/tBid – VDAC1 binding assay 

Binding of VDAC1 to purified His6-tagged Bid or tBid was assayed by His-tag pull-down using 

Ni-NTA resin (Quiagen, Hilden, Germany). Therefore, 50 µg of recombinant full-length His6-

Bid (His-rBid) and 50 µg of caspase 8-cleaved Bid (His-rtBid) were mixed separately with 

50 µg of recombinant mVDAC1 (rVDAC1) or with 50 µg of a VDAC1 deletion mutant 

(rVDAC1 Δ11). Afterwards protein mixture were incubated with 150 µl of nickel-nitrilotriacetic 

acid-agarose (Ni-NTA) in binding buffer (10 mM Tris HCl pH 8.0, 100 mM NaCl, 0.05 % 

LDAO) at 4 °C with gentle rotation for 1-2 h, respectively. His-rBid without incubation with 

mVDAC1 and sample containing only mVDAC1 or rVDAC1 Δ11 were used as negative 

controls. The protein-Ni-NTA suspensions were loaded on a Poly-Prep® Chromatography 

column (BioRad Laboratories, Munich, Germany) and washed 2-3 times with 2 ml wash 

buffer (10 mM Tris HCl pH 8.0, 100 mM NaCl, 0.05 % LDAO, 20 mM imidazole) to remove 

unbound protein amounts. His-rBid and His-rtBid together with their binding partners bound 

to Ni-NTA, were finally eluted with 0.5 ml elution buffer containing 200 mM imidazole (10 mM 

Tris HCl pH 8.0, 100 mM NaCl, 0.05 % LDAO, 200 mM imidazole). The washing fractions 

(W) and elution fractions (E) for each sample were collected and acetone precipitated 

following the pierce manufacturer´s protocol for acetone precipitation. To determine protein-

protein interactions, the protein samples were analyzed by SDS-PAGE followed by 

coomassie staining. Alternatively, the SDS-PAGE was followed by western blot and proteins 

detected using specific antibodies as described before. Samples containing only one protein 

served as controls for non-specific binding.  
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2.22.2.2 Thermophoresis measurements 

Microscale thermophoresis is based on the direct movement of biomolecules in a 

microscopic temperature gradient and is used to determine binding affinities or surface 

modifications of molecules. The method enables the quantitative analysis of molecular 

interactions in solution at a microliter scale. Changes of the hydration shell of small 

molecules or proteins due to structural or conformational alterations result in a relative 

change of movement along the temperature gradient. To study protein-protein interaction 

one proteins is fluorescently labeled and used under constant concentration and buffer 

condition, while the binding partner is titrated in serial dilution experiments. Thermophoresis 

of the fluorescent labeled protein differs significantly from the protein-target complex due to 

changes in size, charge and salvation entropy.  Therefore protein-protein interactions can be 

measured and sigmoid binding curves are obtained using different concentrations of the  

dilution series, resulting in dissociation constants KD. 

Thermophoresis experiments were performed by Barbara Mertins from the group of Prof. 

Essen (Philipps-University Marburg, Department of Chemistry, Marburg, Germany).For 

thermophoresis measurements of mVDAC1 and Bid/tBid, mVDAC1 was labeled using Alexa 

Fluor® 532 C5-maleimide (Invitrogen). 1mM TCEP (AppliChem) were added to 100 µM 

protein solution and incubated for 30 min at 4°C. After incubation 1 mM label was added and 

incubated over night at 4°C and 350 rpm in a Thermomixer (Eppendorf). Excess label was 

removed by using a Sephadex G25 column (GE Healthcare Bio-Science AB, Uppsala, 

Schweden). Protein concentration and label efficiency were measured at 280 nm and 532 

nm with a Nanodrop ND-1000 (peqLab). Microscale thermophoresis (MST) measurements 

were performed using the Monolith NT.115 instrument (NANO TEMPER). mVDAC1 

concentration was kept constant at 50 nM and Bid / tBid were added to the solution ranging 

from 15 nM to 500 µM. Protein solution was incubated in the dark for 20 min at RT and 

centrifuged (25402 g, 5 min) to remove precipitated proteins. Standard capillaries (NANO 

TEMPER) were filled with 8-10 µL of the protein solution and MST curves were recorded. KD 

values were calculated using the NT-Analysis software.  Fluorescently labeled OmpG was 

used to rule out unspecific interactions of Bid/tBid with β-barrels.  
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2.22.2.3 Single channel conductance recordings of mVDAC1 ion channels 

Single channel conductance recordings were performed using the black lipid membrane 

(BLM) technique188. The planar lipid membranes were prepared by painting or rising the 

solution surface over a 200 μm hole in a two chamber apparatus (polystyrene cuvette: CP2A, 

bilayer chamber: BCH-22A, Warner Instruments) filled equally with BLM buffer (10 mM 

Tris/HCl, pH 7.4, 1 M KCl, 5 mM CaCl2). As membrane mixture a solution of 

diphytanoylphosphatidylcholin (Avanti Polar Lipids, No.341601) in n-decane (25 mg/mL) was 

used. The porin was added beside the BLM, the bilayer was reconstituted and a voltage-

gradient was imposed across the membrane while waiting for insertion of single channels. 

Once a stable single VDAC1 channel was inserted, recombinant Bid or tBid were added to 

the cis side, respectively. For current detection voltages from +40 mV to −40 mV were 

applied and current was detected using the Multipatch 700B patch-clamp amplifier combined 

with a Digidata 1440A A/D converter with pClamp 10.2 software (Axon Instruments). The 

data were collected at 5 kHz and sampled at 200 Hz for further analysis. For each 

measurement the differences from the baseline to the stable high conductance state (S0) 

and the low conductance states (S1, S2, S2´) were determined with the software. Each data 

point of the U/I-curve was taken in account to determine the conductivity via the slope 

derived by linear regression. The BLM measurements were performed by Philip Reiß 

(Philipps-University of Marburg, Department of Chemistry, Marburg, Germany). 
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2.23 Crystallographic methods 

2.23.1 Protein crystallization 

To provide a basis for the structural understanding of molecular functions of Bid in cell death 

signaling and to allow the determination of protein-ligand complexes, the purified 

recombinant Bid constructs were subjected to extensive crystallization screening. Crystal 

structure analysis was performed using X-ray diffraction, which is the most advanced method 

available for obtaining high-resolution structural information about biological 

macromolecules.  

Crystallographic studies were performed at the MarXtal crystallization lab (SYNMICRO, 

University of Marburg, Germany) with the support of Ralf Pöschke.  

The integrity of Bid constructs was verified by MALDI-TOF analysis, which was kindly 

performed by Jörg Kahnt at the Max-Planck-Institute of Terrestrical Microbiology, Marburg 

(MPI, Marburg, Germany). 

Beside various crystallization screens using purified full-length Bid, slightly modified 

truncated Bid constructs were subjected to the described crystallization procedures 

2.23.1.1 Protein sample preparation 

For X-ray crystallization, the protein sample should be as pure as practically possible (>95%) 

and free of amorphous and particulate material. Highly pure protein has to be obtained in 

concentrations of 5-25 mg/ml, commonly approximately 10 mg/ml. Such high protein 

concentrations enable a faster crystal growth than less concentrations of protein. 

Therefore, recombinant full-length Bid as well as recombinant Bid constructs (Bid1- Bid4) 

were purified as outlined above. After gel-filtration, purity of the proteins was confirmed by 

SDS-PAGE and estimated about 98%. Proteins were concentrated using 3-kDa cut-off 

Amicon concentrators (Amicon® Ultra-4/ Amicon Ultra-15, Millipore, Schwalbach, Germany) 

to concentrations as high as possible. Notably, a concentration of 10 mg/ml could not always 

be reached due to limitations in protein sample amount and protein absorption on filter 

membranes. Therefore, protein concentrations of 4.5 mg/ml up to 15 mg/ml were subjected 

to the following crystallographic methods. To avoid bacterial growth during crystallization all 

proteins samples were sterile-filtered using a 0.2 µm filter (Whatman PuradiscTM 4 mm 

Syringe filter, Whatman, Dassel, Germany). All proteins were subjected to crystallization 

screens in buffer containing 20 mM Tris, ph 7.4, 50 mM NaCl, and 0.03% Na-azide.  
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2.23.1.2 Crystal growth techniques 

In this study, crystallization screens were performed utilizing the vapor-diffusion technique, 

which is the most common used crystallization technique, due in part to the simplicity of the 

experiments and the diversity of variables that can be manipulated. Vapor-diffusion 

experiments undergo a dynamic equilibration process. At the beginning of the crystallization 

experiment a crystallization drop is sealed into an airtight chamber with a reservoir solution. 

The difference in concentration between the drop and the reservoir drives the system 

towards the equilibrium by diffusion through the vapor phase. Thereby the experiment drop 

dehydrates and reduces its volume, driving the protein toward a state of supernaturation 

where crystallization may occur189. 

Using this technique, a small droplet of the respective Bid protein (1µl using 24 well-plates, 

0.3 µl using 96-well plates), was mixed with an equal volume of the appropriate precipitating 

solution. For all initial crystallization screens the sitting-drop technique was performed 

(Figure 11A), thus sitting drops are more mechanically stable and more resistant to 

temperature changes than hanging drops. However, it can be hard to mount crystals from 

sitting drops. Therefore, some optimization screens were performed in 24-well plates using 

hanging-drop vapor-diffusion by placing a small droplet of sample mixed with crystallization 

reagent on a screw cap (EasyXtal tool, Qiagen, Hilden Germany) inverted over the reservoir 

in vapor equilibration with the reagent (Figure 11B). 

 

            

             Figure 11: Vapor-diffusion techniques: A) sitting-drop, B) hanging-drop. 
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2.23.1.3 Crystallization screens 

To obtain crystals for determination the three-dimensional structure of a protein, a wide array 

of crystallization conditions has to be screened. Since many factors, such as protein 

concentration, precipitant concentration, pH value, buffer composition, presence of salt 

anions and/or additives, influences the crystallization of a protein, initial screening was 

performed using the Quiagen NeXtal-screening suites (Qiagen, Hilden, Germany). These 

screening suites utilize the sparse matrix screening strategy that typically maps a wide sector 

of the chemical space using many different reagents selected from known and published 

crystallization conditions. Each screening suite consists of a set of 96 precisely defined 

chemical solutions and differs in pH, buffer material, salt and precipitant. Starting with 

different sets of initial screening conditions, the search for a suitable condition can be 

narrowed down by further developing conditions surrounding a promising “hit” condition that 

provides crystalline forms (see 2.23.2).  

All initial trials were performed by “automated sitting-drop crystallization in 96-well plates” 

using the MarXtal crystallization equipment. Prior to protein sample application, each of the 

96 screening suite solutions was transferred automatically into a 2.2 ml 96-deep-well plate 

(Abgene, Thermo Fischer Scientific, Schwerte, Germany) using the Lissy-system (Zinsser 

Analytic GmbH, Frankfurt, Germany). Afterwards 80 µl of each of the reservoir solutions was 

pipetted into the corresponding reservoir of a MRC2 2-drop-chamber 96-well crystallization 

plate (Jena Bioscience, Jena, Germany), which was then loaded on the Cartesian MicrosysTM 

SQ4000 crystallization robot (Genomic Solutions, Huntingdon, UK, USA). Using this robot, 

300 nl drops of the respective reservoir were transferred into each of the two corresponding 

wells on the plate. Afterwards, 300 nl of either protein or buffer solution were pipetted into the 

freshly prepared reservoir drops. Finally, the setup was isolated by sealing the plates with 

ViewSealTM (Greiner Bio-one, Frickenhausen, Germany) adhesive transparent plastic 

sheets.  

The procedure was repeated for each screening suite and the finished crystallization plates 

were stored at 18°C or 4°C in the Formulatrix Rock ImagerTM (MarXtal, Department of 

Chemistry, University of Marburg), which is a fully automated documentation system for 

crystallization experiments. Within this Rock Imager, each well of the respective screening 

plates was automatically monitored by microscopy and images were taken in continuous 

time-lags. Screening results were scored by analyzing the taken photomicrographs using the 

Rock Maker Web provided by MarXtal (Department of Chemistry, University of 

Marburg).Using this setup, the respective recombinant Bid constructs, expressed and 

purified in this thesis, were initially subjected to 13 different screenings suites, respectively. 

Since temperature does affect crystal growth most of the screens were duplicated at 4°C and 
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18°C. Table 54 predicts the initial standard setup for the different Bid constructs tested for 

crystallization during this work.  

 

Table 54: Initial screens and set ups tested for the different Bid constructs 

Parameter His6-Bid Bid-22 
Bid 1 

(12-47) 
Bid 2 

(12-51) 
Bid 4  

(13-51) 

Drop 1 Protein Protein Protein Protein Protein 

Drop 2 Buffer Buffer Buffer Buffer Buffer 

Protein 
concentration 
(mg/ml) 

4.5 mg/ml  9.9 mg/ml 9.5 mg/ml  8.5 mg/ml 10.0 mg/ml 

Protein buffer Tris 20 mM, 50 mM NaCl, pH 7.4 

Screening 
temperature 

18°C 18°C 18°C 18°C 4°C + 18°C 

Screening 
Suites tested 

1-13* 1, 3, 5, 7-9, 
11, 13* 1-13* 1-13* 1-13* 

* Screening 
Suites 
(Qiagen) 

1. AmSO4 Suite, 2. Anions Suite, 3. Classics Suite, 4. Classics Lite 
Suite, 5. Cryos Suite, 6. JSCG+ Suite, 7. JCSG Core Suite I, 8. JCSG 
Core Suite II, 9. JCSG Core Suite III, 10. JCSG Core Suite IV, 11. 
MBClass I Suite, 12. MBClass II Suite and 13. PACT Suite 

 

Following this strategy, Bid construct 4 was additionally applied to screening suites Classic, 

Cryos, JSCG+, JCSG Core suite I-IV and PACT suite in concentrations of 15.2 mg/ml at 

18°C.  Initial screens were repeated at 18°C and 4°C using the Bid construct 1 in 

concentrations of 10.5 mg/ml. In duplicate screens, Bid1-containing protein drops were 

supplemented with nanoparticles. Hit conditions found during initial screening were optimized 

as described below. Additionally, co-crystallization of Bid1 with the Bid inhibitor BI-6c9 was 

attempted using the screening suites JCSG Core I-IV, PACT and JCSG+. 

2.23.2 Optimizing and reproducing crystallization 

Optimization of crystallization aims to enlarge the crystal size and to enhance the occurrence 

of single crystals obtained in the initial crystallization screen. Conditions where initial 

crystallization was observed, referred to as “hit” conditions, were manually set up and 

adjusted in a grid screen. In contrast to the sparse matrix screen, in a grid screen the 

precipitant type of the “hit” condition is screened systematically in a separate tray, varying pH 

and precipitant concentration. Optimization of hit conditions was initially performed using the 

hanging-drop technique in 24-well plates with a screw cap (EasyXtal tool, Qiagen, Hilden 

Germany). Protein solution was added in volumes of 2 µl to an equal volume of the 

respective reservoir solution. Optimizations of Bid 22 crystals were performed in 24-VDX 
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plates by sitting-drop vapor diffusion. To initialize crystal growth some optimization grids 

were additionally supplemented by heterogeneous or homogeneous seeding (2.23.2.2). 

Since small differences in drop and reservoir volumes can affect crystal growth, optimizations 

performed in 24-well plates were additionally transferred to 96-well crystallization plates. 

Reservoir conditions in 24-well plates were prepared using customized buffers and reagents, 

while 96-well optimizations were mostly performed with the original NeXtal stock solutions 

(Quiagen, Hilden, Germany). Final buffer compositions were manually pipetted and 

transferred into 96-deep well plates. Pipetting of 0.3 µl protein solution and 0.3 µl reservoir 

solution was performed either manually or using the Cartesian MicrosysTM SQ4000 

crystallization robot. Table 55 et sqq. show the optimization steps of most promising hit 

conditions performed for the different Bid constructs, respectively.  

 

24-well plate optimization grids: 

Table 55: Optimization of Bid 22 crystals I, 4°C + 18°C 

                 (based on condition 21 from the Classic Suite) 

Composition Original Optimization steps 

0.1 M Tris (pH) 8.5 7.5/8.0/8.5 

2-Methyl-2,4 pentanediol (% in v/v) 50 50/55/60/65 

Ammonium di-hydrogenphosphat (M) 0.2 0.2 

 

Table 56: Optimization of Bid 22 crystals II, 4°C + 18°C 

                (based on condition 12 from JCSG Core I Suite) 

Composition Original Optimization steps 

Polyethyleneglycol (PEG) 3,350  
(% in v/v) 

20 20/23/26/29 

0.2 M Magnesiumacetat (pH) -- 7.5/8.0/8.5 
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Table 57: Optimization of Bid construct 1 I, 21°C 

                (based on condition 5 from Cryos Suite) 

Composition Original Optimization steps 

0.085 M Hepes sodium salt (pH) 7.5 7.0/7.25/7.5/8.0 

PEG 4,000 (% in v/v) 17 13/15/17/19/21/23 

Isopropanol (% in v/v) 8.5 8.5 

Glycerol (% in v/v) 15 15 

Heterogenous seeding 5% nanoparticles 

 

Table 58: Optimization of Bid construct 1 II, 21°C 

                (based on condition 79 from JCSG+ Suite ) 

Composition Original Optimization steps 

0.1 M succinic acid (pH) 7.0 6.5/7.0/7.5/8.0 

PEG 3,3500 (% in v/v) 15 11/13/15/17/19/21 

Homogenous micro-seeding -- After 3 days 

 

96-well plate optimization grids: 

Table 59: Opti-Grid 96 of Bid construct 1 I, 4°C + 18°C 

                (based on condition 5 from Cryos Suite) 

Composition Original Optimization steps 

0.085 M Hepes sodium salt (pH) 7.5 6.5/7.0/7.5/8.0 

PEG 4,000 (% in v/v) 17 9/11/13/15/17/19/21/23/25 

Isopropanol (% in v/v) 8.5 8.0/8.5/9.0/9.5/10 

Glycerol (% in v/v) 15 13/15/17/19/21 
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Table 60: Opti-Grid 96 of Bid construct 1 II, 4°C + 18°C 

                (based on condition 79 from JCSG+ Suite) 

Composition Original Optimization steps 

0.1 M succinic acid (pH) 7.0 6.5/7.0/7.5/8.0/8.5 

PEG 3,3500 (% in v/v) 15 11/13/15/17/19/21/23/25 

 

Screens with both opti-grids 96 were performed under three conditions: once without any 

addition, once with seeding of nanoparticles and once with seeding from old crystal stocks. 

Optimizations were performed with two batches of Bid1 protein (9.5 mg/ml and 10.5 mg/ml) 

and screens were always duplicated for crystal growth at 4°C and 18°C.  

2.23.2.1 Additive screen 

Another strategy for crystal fine-tuning used in during this work was the application of 

additives to the most promising screening conditions yielding crystals in the initial and 

optimization screens. A number of additives have been identified as useful for enhancing 

crystallization. According to their chemical properties, additives are divided into different 

classes. For example, salts, co-factors, multivalent cations, linker, amino acids, reducing 

agents, polymers, detergents and non-detergents as well as chelators and organics are 

common.  

To investigate a wide array of additives, the commercial Additive Screen HTTM (Hampton 

Research, Aliso Viejo, CA, USA) was used to fine-tune the hits based on condition 5 from 

cryos suite and condition 79 from the JSCG+ suite. The Additive Screen HTTM consists of 96 

unique additives pre-formulated in deionized water and sterile filtered. Additive screens were 

performed in 96-well sitting-drop crystallization plates. First, 90 µl of the respective hit 

condition was transferred into each of the 96 reservoir wells. Afterwards 10 µl of the 

appropriate additive was pipetted into the corresponding reservoir and mixed gently. For drop 

setup, 0.3 µl of Bid 1 protein (10.5 mg/ml) was mixed with 0.3 µl of crystallization 

reagent/additive mixture from the reservoir. The procedure was repeated for each of the 

remaining additives. After finishing for all 96 additives, the plates was sealed with ViewSealTM 

(Greiner Bio-one, Frickenhausen, Germany) and stored in the Rock Imager. In addition to the 

additive applications, the protein solution was supplemented with nanoparticles prior to 

pipetting. Additive screens for cryos condition 5 and JSCG+ condition 79 were duplicated 

and the crystallization plates stored and imaged at 18°C and 4°C, respectively.  
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2.23.2.2 Seeding  

Crystals obtained in initial screens that did not have the desired diffraction properties, 

because they were too small or grew together, were used as seeds in new experiments to 

optimize the original growth conditions or to explore other crystallization conditions. Two 

seeding procedures were performed, streak seeding and modified micro-seeding. For streak 

seeding, a 24-well crystallization plate was prepared with the respective reservoir conditions 

for reproducing crystal growth or optimization of hit conditions. Before seeding, the protein/ 

crystallization reagent drop was prepared as described above and the sealed plate was 

stored for at least 12 h to allow drop equilibration and first drop concentration. Afterwards, 

the plate was resealed for the seeding procedure. A cat whisker was used as a seeding tool 

to touch and stroke the surface of the parent crystal in the old mother liquor. Thereby small, 

not visible seeds of the old crystal adhered at the surface of the whisker. The whisker was 

then transferred into the fresh crystallization drops by drawing the tip along the surface of 

each drop in a straight line. Four to six drops were seeded sequentially without redipping the 

whisker on the old crystal. The procedure was repeated until all 24 drops were seeded. The 

plate was sealed again and stored at 21°C or 4°C.  Crystal growth was observed along the 

streak line within a few days.  

For seeding of 96-well crystallization plates, modified micro-seeding was performed. 

Therefore, a micro-seed stock was prepared by breaking a parent crystal with a thorn. A 

previously obtained crystal was transferred into a tube containing a small volume of mother 

liquor solution (respective reservoir solution) and broken as much as possible using the 

thorn. The generated microcrystal solution was then diluted 1:10 in reservoir solution. 1-2 µl 

of the seeding solution was mixed with 50 µl of fresh protein solution. The protein/seeding 

solution was used for preparation of 96-well crystallization plates using the Cartesian 

MicrosysTM SQ4000 crystallization robot as outlined above.  

 

2.23.3 Scoring and interpretation of crystallization drop results 

For scoring of crystallization conditions and crystal growth, the screening plates were 

monitored by microscopy. 96-well crystallization plates were automatically imaged in the 

Formulatrix Rock ImagerTM (MarXtal, Department of Chemistry, University of Marburg) and 

photomicrography analyzed using the Rock Maker Web. After initialization of the screening 

plates, pictures of every well were taken every day during the first week, then once every 

week and finally at exponentially increasing times after dispensing. 24-well crystallization 

plates were analyzed manually by microscopy.  
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For interpretation of drop results, a non-Q scoring system was used, as recommended by 

Bergfors T.M.189. Table 61 shows the scoring system used for interpretation of crystallization 

drop results. Pictures reveal examples of drop results that were obtained in the crystallization 

screens performed during this work. 

 

Table 61: Scoring system used for interpretation of crystallization drop results 

                 (Modified by Bergfors T.M.189, pictures were obtained from crystallization screens 

                  performed within this work)  

Score Phenomenon Drop example 

Protein is not precipitated 

0 clear drop 

 

1 artifacts (dust, fiber) 

 

Precipitate shows no birefringence and has no edges 

2 partial precipitation 

 

3 heavy precipitates, skin 

 

4 
Gelatinous and white 

precipitants 

 

5 phase separation 
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Precipitate shows birefringence and has edges 

6 spherulites, microcrystals 

 

Crystals 

7 needles 

 

8 plates (2D crystals) 

 

9 3D crystals 

 

 

2.23.4 Differentiation between of protein and salt crystals  

Observing a crystal in an initial or optimization screen does not necessarily indicate a protein 

crystal. Many of the typical components in the crystallization mother liquor, besides the 

protein, can crystallize, such as salts and detergents. Although, the only definitive test to 

distinguish between salt and protein is to put the crystal into the X-ray beam, it is not always 

possible, since crystals could be too small for mounting. During this thesis, three methods for 

distinguishing salt and protein crystals were performed prior to X-ray diffraction. In addition, 

all crystallization screens were controlled by comparing protein drops and buffer solution 

drops on the 2-drop chamber crystallization plate. 

2.23.4.1 Polarized light 

During storage of the crystallization plates in the Rock Imager, imaging was additionally 

performed using polarized light. Anisotropic protein crystals show a double refraction that 

causes color effects while viewed with polarized light. The obtained color of a crystal is 

different to that of the background and i.e. different from the color reflection from the plastic 

tray in phase separation. Notably, most crystals obtained from salt or detergent have also 
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strong optical properties and show extensive birefringence under a cross polarizer. In 

general, protein crystals have a weaker birefringence than salt and detergent crystals. 

2.23.4.2 Dye-test 

Protein crystals can be stained using different dyes, such as Izit (methylene blue) or 

coomassie blue dye. Protein, peptide and nucleic acid crystals typically have large solvent 

channels which will accommodate the small molecule dye, and thereby color the crystal. In 

contrast, inorganic crystals do not posses such solvent channels and will not absorb the dye 

thereby remaining uncolored. Notably, some screening conditions in a high relative 

supersaturation can precipitate or even crystallize the dye. Crystallized dyes typically appear 

as dark colored needles or whiskers within a few minutes after adding the dye.  

To differentiate between protein and salt crystal, methylene blue solution (Izit Crystal DyeTM, 

Hampton Research, Aliso Viejo, CA, USA) was used. Methylene blue is a cationic organic 

dye that binds to negative charges on the protein. The crystals were transferred into a 4-10 µl 

mother liquid drop on a cover slide. Afterwards 0.5-1 µl Izit was pipetted into the drop 

containing the crystals. For purposes of comparison, 0.5-1 µl Izit was pipetted into a 4-10 µl 

reservoir solution drop containing salt crystals. The uptake of the dye was observed with the 

microscope immediately, after few hours and then overnight. Protein crystals appeared blue, 

whereas salt crystals did not become blue. The blue color of the protein crystals was typically 

intensified within the crystal over time.  

2.23.4.3 Snap-test 

Physical manipulation of crystals can be used to differ between protein and salt crystals, 

since a biological crystal behaves more like an ordered gel than a hard crystal. Because of 

the high solvent content of protein crystals, they are soft, and powder, crumble or break 

easily when touched with a micro tool or a needle. In contrast, salt crystals are very hard and 

require more force to break apart. Typically one can hear a snap or crunching sound when 

inorganic crystals breaking apart under the force of a micro tool. For the Snap-test, crystals 

were transferred to a cover slide and crashed using a micro tool (Hampton Research, Aliso 

Viejo, CA, USA). The hardness of the crystals and the sound while breaking apart were 

analyzed subjectively. Once a crystal is broken, it cannot be used for X-ray diffraction 

anymore. Therefore, the snap-test was only performed with small crystals that were not 

mountable, or when many crystals were grown in the respective screening condition. 
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2.23.5 Mounting crystals and diffractometric measurements 

For collecting X-ray data on the obtained crystals, cryo-crystallography was performed. 

Protein crystals were measured at very low temperatures, such as that of liquid nitrogen 

(boiling point -196°C) to avoid radiation damage during the diffraction experiment. However, 

freezing crystals might result in damage of crystals due to formation of ice crystals. For cryo-

protection, the crystals were placed into mother liquor containing a cryo-protectant such as 

PEG 400, glycerol or MPD for 5-30 seconds. Crystals that were already grown in cryo-

conditions, as crystals obtained from the cryo suite or from optimization screens containing 

MPD or glycerol, were native frozen and mounted directly. For sample preparation, the 

crystals were picked out of the mother liquor using a Cryo-loop (Hampton Research, Aliso 

Viejo, CA, USA) with the required loop size. If necessarily, the loop containing the crystal 

was transferred into the cryo-solution for 10-15 seconds. Afterwards, the crystals were flash 

frozen by dipping the loop into liquid nitrogen. Crystals were stored in a dewar container filled 

with liquid nitrogen until X-ray data collection.  

2.23.6 Data collection and processing 

Data were collected by Synchrotron measurements of the respective protein crystals either at 

the Helmholtz-Zentrum Berlin using the MX Beamline 14.1, BESSY II (Berliner 

Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, Berlin, Germany)190 or at the 

DESY Hamburg, using the EMBL MX1 and MX2 beamline at the PETRA III ring (Deutsches 

Elektronen Synchrotron, Hamburg, Germany). Data processing was performed by Holger 

Steuber (Core Facility Structural Biology, LOEWE Center of Synthetic Microbiology 

(SYNMIKRO)) using XDS191 as implemented in XDSAPP192.  Molecular replacement (MR) 

trials were attempted using Phaser193 with search models from various sources (e.g. Bid 

NMR structures obtained from the PDB, poly-Ala models) 
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3 Results 

3.1 Targeting Bid for mitoprotection 

The first anti-apoptotic small molecules targeting Bid were developed by Becattini et al. and 

inhibited tBid-induced Smac/DIABLO release, caspase-3 activation and cell death99, 114, 

suggesting that pharmacological Bid inhibition could provide a protective benefit against 

several disorders, such as neurodegenerative diseases, mood disorders, liver inflammation 

and other pathologies, where Bid has been implicated as a major trigger of the underlying 

cell death63, 98, 99, 194-196.  

In order to confirm that pharmacological inhibition of Bid is sufficient to provide 

mitoprotection, the specific Bid inhibitor BI-6c9 (5) was used to validate the model of 

glutamate-induced cell death in the HT-22 cell-line as suitable model for the initial screening 

of novel Bid-targeting molecules. In line with previous studies97, 116, Bid inhibition by BI-6c9 

resulted not only in the preservation of cell morphology and cell viability of glutamate-treated 

HT-22 cells but also prevented several hallmarks of Bid-mediated mitochondrial dysfunction. 

Recent studies supposed Bid as an upstream mediator of mitochondrial impairments and the 

associated neuronal death signaling63, 197, 198, and further revealed a pivotal role of Bid in the 

balance of mitochondrial fission and fusion and a Bid-mediated permeabilization of the outer 

mitochondrial membrane24, 97, 199, 200. As shown previously, pharmacological Bid inhibition 

using BI-6c9 was sufficient to prevent the glutamate-induced Bid translocation to 

mitochondria97 as well as mitochondrial demise downstream of Bid activation. Further, Bid-

mediated mitochondrial fission, the associated accelerated production of highly detrimental 

ROS as well as the breakdown of Δψm  and impairments in mitochondrial ATP production and 

oxygen consumption were significantly prevented by BI-6c9, as shown below (see 3.1.3 et 

sqq.), confirming the pivotal role of the pro-apoptotic protein Bid in the regulation of 

mitochondrial integrity and function.  

 

3.1.1 Neuroprotective potency of BI-6c9 

In order to achieve a better classification of the neuroprotective potency of BI-6c9, the Bid 

inhibitor was titrated in HT-22 cells at concentration ranges from 0.1 µM up to 10 µM and cell 

viability was analyzed by MTT assay 14 h after exposure to glutamate (3 mM) (Figure 12 A). 

Notably, slightly protective effects against glutamate-induced cell death were already 

achieved by BI-6c9 at low concentrations of 1 µM, while cell viability was completely restored 

at concentrations of 2.5 µM and higher (Figure 12 A). To calculate the half maximal effective 

concentration (EC50) of BI-6c9 at the applied concentration ranges, cell viability data were 

normalized between 0 % for glutamate only treated cells (vehicle) to 100 % protection at 

10 µM and a concentration-response curve was fitted with a sigmoid function (dose response 
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fit). Revealing an EC50 of 2.5 µM, BI-6c9 emerges as a potential Bid-targeting molecule, 

suitable for further structure optimizations and investigations of Bid-dependent cell death 

features.  

 

 

Figure 12: Neuroprotective potency of BI-6c9 – half maximal effective concentration.  

A, Determination of cell viability 14 h after co-treatment with glutamate (3 mM) and BI-6c9 in a concentration-

range of 0.1 µM up to 10 µM. BI-6c9 prevents glutamate-induced toxicity in a concentration-dependent manner. 

Cell viability is completely preserved by BI-6c9 in concentrations of 2.5 µM and higher. The experiment was 

independently repeated three times with an n = 8 per treatment condition. Results are presented as mean ± SD 

(***p < 0.001 compared to glutamate treated vehicle controls, ANOVA, Scheffé’s test). B, Based on this data, a 

concentration-response curve and an EC50 value was calculated for BI-6c9. Cell viability data were normalized 

between un-treated control conditions (0%) and maximum amplitude at 10 µM (100%). Using OriginPro8.5 

Software, the resulting data were fitted with a sigmoid function following the equation y=A1+(A2-

A1)/(1+10^((LOGx0-x)*p)) and EC50 values were generated from three independent experiments.  

 

3.1.2 tBid-induced cell death in HT-22 cells  

The abovementioned data confirmed the important role of Bid in glutamate-induced cell 

death, indicating its apparent direct action at the level of mitochondria to regulate the control 

point of life and death. To further confirm, that the cleaved and active protein tBid is the main 

mediator downstream of glutathione depletion and the activation of lipoxygenases116 and 

sufficient to induce cell death in the present neuronal cell line, a model of tBid-induced cell 

death was validated in order to examine the specific Bid-targeting of novel small-molecules 

that were screened within this thesis. Therefore, HT-22 cells were transfected with a tBid-

expression vector (pIRES-tBid) and cell morphology as well as cell viability were addressed 

17-24 h after tBid-transfection. Over-expression of tBid resulted in excessive alterations in 

cell morphology, similar to the glutamate-induced phenotype of cell death. tBid transfected 

cells clearly appear shrunken, rounded up and detached from the bottom of the culture plate 

(Figure 13 A). To exclude that these cytotoxic effects were a result of the transfection 
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process itself, control cells were transfected with an empty control vector (pcDNA3.1+) or 

only treated with the transfection reagent attractene (vehicle), revealing the normal spindle-

like cell morphology (Figure 13 A). It is important to note, that the sensitivity of HT-22 to tBid-

induced toxicity is highly dependent on the cell density (Figure 13), even more than the 

sensitivity to glutamate toxicity. While cells seeded at a density of 40,000 to 50,000 cells per 

well (24-well plate) respond with severe damage to tBid over-expression, seeding densities 

of 60,000 to 70,000 cells per well results in a resistance of cells to tBid-induced cell death, 

indicating that confluent cell growth prohibits either the efficient transfection of the cells with 

the tBid-encoding plasmid or permits protective strategies via cell-cell contacts (Figure 13). 

Quantification of cell viability by MTT assay confirmed, that over-expression of tBid reduces 

cell viability by approximately 75 % depending on the respective cell density (Figure 13 B). It 

should be noted, that the mechanisms of Bid-mediated cell death signaling might only be 

partly reflected in the model of tBid over-expression as Bid truncation to tBid was not 

detectable in glutamate-exposed HT-22 cells by western blot analysis. However, in 

consideration of the fact that tBid is well accepted to be the active death promoting form of 

Bid, the model system is appropriate to mimic mechanisms that occur downstream of Bid 

activation and further provides a suitable screening model to examine the effect of novel 

compounds on tBid-mediated neurotoxicity.  

In order to confirm that tBid-induced toxicity is accompanied by detrimental effects on 

mitochondria, mitochondrial membrane potential of tBid over-expressing HT-22 cells was 

investigated. TMRE-FACS recordings revealed that tBid over-expression causes a 

remarkable drop in red fluorescence by approximately 40 % of control cells, indicating a tBid-

induced loss of mitochondrial membrane permeability, which was clearly prevented by 

pharmacological Bid inhibition (Figure 14 A). Notably, tBid-toxicity was similarly effective as 

CCCP treatment (Figure 14 B), while pre-treatment of cells with BI-6c9 significantly restored 

Δψm almost to control levels (Figure 14 B).  
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Figure 13: tBid-induced cell death in HT-22 cells. 

HT-22 cells were cultured in 24-well plates at densities of 40,000; 50,000; 60,000 and 70,000 cells per well and 

transfected with a tBid-encoding plasmid (pIRES-tBid) 24 h after seeding. Transfection of cells with an empty 

vector (pcDNA3.1+) was used as control. Vehicle cells were treated only with the transfection reagent attractene. 

20-24 h after plasmid transfection, tBid-induced toxicity was determined by microscopy (A) and measurements of 

cell viability using the MTT assay (B). A, tBid-induced cell death is detectable by typical alterations in cell 

morphology of HT-22 cells, indicated by rounded and shrunken cells detached from the bottom of the cell culture 

plate, as shown by photomicrographs (10 x 0.25 NA objective). Of note, sensitivity of HT-22 cells to tBid-induced 

toxicity depends on the cell density. Cells seeded at density of 40,000 cells per well are more sensitive against 

tBid-over-expression than cultures of ≥ 50,000 cells. Cells seeded at a density of 70,000 cells per well show 

almost complete confluent growth and are not responding to tBid-over-expression. B, MTT assay reveals, that 

tBid over-expression reduces cell viability of HT-22 cells up to 74 % compared to control cells depending on the 

cell density. The experiments were repeated three times with n = 4 per treatment condition and the results 

provided as mean ± SD, (***p < 0.001 compared to vehicle controls, ANOVA, Scheffé’s test). 
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Figure 14: tBid-induced loss of Δψm is prevented by BI-6c9 

Mitochondrial membrane potential was analyzed by FACS recordings of HT-cells stained with MitoPT
TM

 TMRE 

dye and transfected with a tBid-encoding plasmid. A, Eighteen hours after tBid over-expression a remarkable 

breakdown of mitochondrial membrane potential (Δψm) was detectable, indicated by a significant drop of red 

fluorescence up to 40 % of control cells. Pre-treatment (1 h before tBid transfection) of cells with BI-6c9 (10 µM) 

prevents tBid-induced loss of Δψm. Numbers are mean percentages ± SD with n = 4 per treatment group, 

indicating loss of Δψm (left side) or intact Δψm (right side). Pictures are representatives of at least three 

independent experiments. B, Quantification of TMRE fluorescence confirms, that tBid over-expression decreases 

mitochondrial membrane potential, which was restored by BI-6c9 (10 µM) pretreatment. tBid over-expression was 

almost as effective as the positive damage-control CCCP, which causes a fast breakdown of the mitochondrial 

membrane potential. The experiments were repeated at least three times with n = 4 and data presented as mean 

± SD (***p < 0.001 compared to tBid-transfected vehicle, ANOVA, Scheffé’s test). 

 

The presented data fortify the current model of glutamate- and tBid-induced cell death in the 

HT-22 cell line as suitable model systems to screen newly-synthesized compounds for their 

ability to prevent Bid-mediated cell death. Since BI-6c9 was shown to target and inhibit Bid 

and provided a sustained protection against several hallmarks of neuronal intrinsic cell death 

pathways, the Bid inhibitor was used as a positive control for neuroprotection throughout the 

following experiments and was always applied at a concentration of 10 µM as shown before 

to provide 100 % protection (Figure 12). 
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3.1.3 Synthesis strategy for development of novel small Bid inhibitors 

The data above point to the pivotal role of Bid in the regulation of intrinsic neuronal cell death 

pathways that are relevant also in brain injury caused by acute brain damage and 

neurodegenerative diseases63, 97, 114. Major roles of Bid-dependent mitochondrial cell death 

mechanisms were also substantiated in models of cerebral ischemia and traumatic brain 

injury in vivo, thereby encouraging to focus on Bid as a molecular drug target for the 

development of novel small molecule Bid inhibitors that are needed for treatment of 

pathologies associated with mitochondrial demise and neuronal dysfunction.  

As mentioned before, the Bid inhibitor BI-6c9 was discovered as one of the first small Bid-

targeting molecules. The structure of BI-6c9 (5) was derived by Becattini et al. through 

combinations of the Bid-binding fragments BI-2A7 (1) and BI-2A1 (3) and described as the 

compound with the most active binding to Bid (Figure 4)99, 114. Despite the promising 

neuroprotective properties of this available Bid inhibitor BI-6c9 in vitro, it failed, however, in 

model systems of neuronal degeneration in vivo. Possible reasons for the lack of efficacy in 

vivo are limited affinity to the target and/or a poor bioavailability. It should be noted, that a 

major disadvantage of BI-6c9 is based on the poor solubility limiting its application to cell 

culture models, as it is only soluble in serum-containing medium or in high DMSO 

concentrations. Therefore BI-6c9 was chosen as a template for further development of 

structurally novel small-molecules aiming to provide protection against neurotoxic insults by 

targeting the pro-apoptotic protein Bid. Key structural elements of BI-6c9 were identified by 

the chemical department using ligand-based virtual screening and are depicted in Figure 15 

(marked in red). Chemical modifications based on the structure of BI-6c9 resulted in three 

structurally diverse classes of small-molecule compounds, namely N-aryl substituted 

phenoxyanilines, N-phenyl substituted thiazolidine-2,4-diones and N-aryl substituted 

pyrazolopyrimidindiones (Figure 15). The former two chemical structure classes were 

synthetically optimized, yielding in approximately 120 small chemical compounds that were 

screened in this thesis for their ability to provide neuroprotection, with the aim to identify 

novel highly potent Bid inhibitors suitable for applications in model systems of brain damage 

in vivo.  
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Figure 15: Synthesis strategy for development of novel Bid inhibitors 

Key structural elements of the available Bid inhibitor BI-6c9, marked in red, were identified by ligand-based virtual 

screening, which was performed by S. Glinca (Pharmaceutical Chemistry, University of Marburg, Marburg, 

Germany). By replacement of pharmacophors and reduction of the molecular structure of BI-6c9, three 

structurally diverse classes of compounds were developed, one of which was synthetically optimized. Syntheses 

of novel compounds were performed by the group of Prof. Schlitzer (Pharmaceutical Chemistry, University of 

Marburg, Marburg, Germany). 

 

The following chapters reveal the development of the most promising compounds and focus 

on their protective properties in the respective screening assays. Depicted results of 

functional analysis of the compounds effects on cell viability, proliferation and mitochondrial 

function are only a few examples and represent the most potent compounds for the 

respective class.   

In general, all newly synthesized structures were initially screened for their protective effects 

in the model of glutamate-toxicity in HT-22 cells. Therefore, the compounds were applied to 

the cells in concentration ranges of 1 µM up to 100 µM and analyzed in the presence and 

absence of toxic glutamate levels (3-5 mM). After 14-16 h treatment, cell viability of HT-22 

cells was determined by the MTT assay. The neuroprotective properties of the most 

promising compounds were additionally confirmed by real-time analysis of cell impedance 

using the xCELLigence system (Roche). In order to investigate the intended interference of 

the synthesized compounds with the pro-apoptotic activities of Bid, the protective efficiency 

of the target molecules was further examined in the described model of Bid-induced toxicity 

in the present neuronal cell line. Most potent compounds were further analyzed for their 

ability to prevent glutamate-induced Bid-mediated impairments in mitochondrial integrity 
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and function. Results of the initial screening (MTT assay) of all synthesized and tested 

compounds as well as their chemical structures are provided in Table 67-Table 70 

(appendix).  

Chemical syntheses of all novel compounds were performed by the group of Prof. Schlitzer 

(Dept. Pharmaceutical Chemistry, University of Marburg, Marburg, Germany).  MTT assays 

of the first screening in the glutamate-toxicity model were kindly supported by Katharina 

Elsässer.  

 

3.1.4 N-acyl derivatives of 4-phenoxyaniline as neuroprotective agents 

The development of alternative Bid-inhibitors was based on the structure of BI-6c9 (5) 

identified above as the potential Bid-targeting compound. Since structural analogues of BI-

6c9 (5), having a similar molecular size, revealed no protective activities in the model of 

glutamate toxicity, further structure modifications were based on a fragment similar to BI-2A7 

(1). This fragment (1) was shown to reduce Bid-mediated Smac/DIABLO release and chosen 

by Becattini et al. as a scaffold for their inhibitors99, 114. The first synthetic modification of BI-

2A7 (1) was the replacement of the metabolically unstable 4-(4-aminophenyl)sulfanylaniline 

substructure by simple 4-phenoxyaniline (6) (Figure 16).  

 

 

 

Figure 16: Structures of fragment BI-2A7 and the replacement 4-phenoxyaniline. 

Based on the fragment BI-2A7
99

 (1), the metabolically unstable 4-(4-aminophenyl)sulfanylaniline substructure was 

replaced by simple 4-phenoxyaniline (6). Synthesis of compound 6 was performed by the group of Prof Schlitzer 

(Pharmaceutical Chemistry, University of Marburg, Marburg, Germany). 

 

Further modifications were aimed at avoiding structure toxicity. Therefore the second amino 

group of compound 6 was omitted since 4-(4-aminophenoxy)aniline is known to be highly 

toxic201. Thus, the subsequent development included the enlargement of compound 6 by 

acylation of the aromatic amino group of the 4-phenoxyaniline with small acyl residues 

addressing the remaining areas of the presumed inhibitor binding site. Following this 

synthesis strategy 32 N-acyl-4-phenoxyaniline derivatives were generated by the chemistry 

department (group of Prof Dr Schlitzer) and screened in this thesis to prevent Bid-mediated 

neuronal cell death.  
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Table 62 depicts the chemical structure and the neuroprotective activities of representative 

compounds obtained within this development. Further derivatives and their screening results 

are provided in appendix Table 67 and Table 68. 

 

        

Table 62: Neuroprotective properties of N-acyl phenoxyanilines. 

Chemical structures and neuroprotective activities of representative N-acyl 4-phenoxyanilines against glutamate-

induced toxicity as achieved by the first screening and determined by MTT assay. Results are representatives of 

3-8 independent experiments each with n = 8 (*p < 0.05; ** < p 0.01; *** p < 0.001 compared to glutamate treated 

controls, ANOVA Scheffé´s test; N/A
α
, not active: compound revealed no toxic effects in HT-22 cells at 

concentrations from 1 µM up to 100 µM). 

 

3.1.4.1 Neuroprotective activity of N-acyl phenoxyanilines in the model of 
glutamate-induced cell death 

The first screening of compound 6 in the model of glutamate-induced toxicity affirmed the 

hypothesis that the 4-phenoxyanilin is a potent scaffold for further structure optimizations. 

Photomicrographs of HT-22 cells treated with 20 µM of compound 6 in the presence and 

absence of toxic glutamate solution revealed its ability to prevent the phenotype of 

glutamate-induced cytotoxicity (Figure 17 A). MTT assay confirmed the considerable 

neuroprotective activity of compound 6 against glutamate-induced toxicity (Figure 17 B). Cell 
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viability of glutamate-treated HT-22 cells was significantly reduced up to 20% compared to 

un-treated control cells, whereas co-treatment of cells with compound 6 in concentration 

ranges of 10 µM up to 50 µM preserved cell viability 15 h after glutamate exposure (Figure 

17 B).  

 

Figure 17: Neuroprotective activity of compound 6 in HT-22 cells exposed to glutamate. 

HT-22 cells were co-treated with SCHL 28001 (6) in application ranges of 10 µM up to 50 µM and toxic glutamate 

solution (3 mM). BI-6C9 was applied at 10 µM and used as a positive control for neuroprotection. DMSO was 

applied to cells as a solvent control. A, Photomicrographs (10 x 0.25 NA objective) show protective effects of 

compound 6 (20 µM) against glutamate-induced morphological changes of HT-22 cells. B, 16 h after treatment, 

cell viability of HT-22 cells was determined by MTT assay. Compound 6 significantly prevents glutamate-induced 

cell death in concentrations of 20 µM to 50 µM. Data are normalized to untreated control (100% cell viability). The 

experiment was independently repeated at least three times with n = 8 per treatment condition. Data are predicted 

as mean ± SD (*p < 0.05, ***p < 0.001 compared to glutamate treated vehicle, ANOVA, Scheffé`s test).  

 

To investigate the compound`s ability to provide neuroprotection in low concentrations and 

additionally to examine if large doses cause toxic effects, all substances were further 

screened in concentration ranges from 1 µM up to 100 µM. Structure-activity relationships 

that were derived from the first screening results suggested that high structure flexibility, 

accompanied for example with long side chains (compound 7), might hamper the binding of 

the compounds to the target protein Bid. Therefore, more rigid 4-phenoxyanilines derivatives, 

with a terminal nitrogen incorporated in a cyclic system, were investigated in the following. 

The most potent compounds emerged from these developments were compound 8 and 9, 

which significantly prevented glutamate-induced toxicity of HT-22 cells. While compound 8 

revealed significant protective effects at concentrations as low as 1 µM, sufficient protection 

by compound 9 was achieved at concentrations of 10 µM and higher as determined by MTT 

assay (Figure 18 A, B). Of note, both compounds caused slightly toxic effects under control 

conditions, when applied at high concentrations of 100 µM, although a protection against 

glutamate-toxicity was still detectable (Figure 18 A, B). 
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Figure 18: Neuroprotective activities of compounds 8 and 9 against glutamate-induced cell 
death. 

MTT assay reveals neuroprotective properties of the SCHL 24519 (8) (A) and SCHL 24543 (9) (B) against 

glutamate-induced cell death in a concentration-dependent manner and predicts slightly toxic effect of 

compounds in applications of 100 µM. HT-22 cells were treated with compound 8 and 9 in concentrations of 1 µM 

up to 100 µM as indicated, or BI-6C9 (10 µM) in the presence or absence of glutamate (3 mM). A DMSO 

treatment was used as solvent control. Cell viability was analyzed by MTT assay 14.5 h after glutamate exposure. 

The presented data are normalized to untreated control. For statistical analysis, the experiments were repeated at 

least 6 times with n = 8 and results presented as mean ± SD (#p < 0.05 compared to untreated controls, 

***p < 0.001 compared to glutamate treated vehicle, ANOVA, Scheffé`s test). 

 

Based on these results, compound 8 was used for further investigations resulting in a series 

of 4-piperidin carboxylic acid derivatives and identifying an important role of the terminal 

amino moiety and the rigidity of the piperidin as critically involved in the positioning and 

interaction with the Bid protein (Table 67). In a last series, N-alkylated substances were 

synthesized, revealing the apparent trend that neuroprotective activity is increased by short 

hydrophilic chains, possibly due to specific interactions via hydrogen bonds with the terminal 

Asp195 of Bid. 

For example, compound 11, containing a terminal hydrophilic chain, significantly provided 

protection against glutamate-induced cell death at concentrations of 1 µM up to 100 µM, 

although slightly toxic effects were observed at concentrations of 100 µM (Figure 19). 
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Figure 19: Compound 11 provides neuroprotection against glutamate-induced cell death. 

SCHL 24521 (11) was screened for its ability to prevent glutamate-induced cell death in HT-22 cells. Cell viability 

of HT-22 cells was determined by MTT assay 14.5 h after treatment of cells with compound 11 in application 

ranges of 1 µM up to 100 µM as indicated. The Bid inhibitor BI-6C9 (10 µM) was used as positive control for 

neuroprotection. Compound 11 provides strongest protection against glutamate-induced cell death at 

concentrations of 25 µM. The experiment was independently repeated at least 4 times and data are provided as 

mean ± SD (###p < 0.001 compared to untreated controls, ***p < 0.001 compared to glutamate treated vehicle, 

ANOVA, Scheffé`s test). 

 

As compound 8, 9 and 11 were identified as the most potent structures obtained from the 

series of N-acyl-phenoxyanilines, they were subjected to further analyses in order to gain 

more insight into their neuroprotective effects and their ability to specifically target Bid.   

Therefore, molecular docking analyses of the compounds into the three-dimensional 

structure of Bid (PDB code 1DDB) were kindly performed by Dr Wegscheid-Gerlach 

(Pharmaceutical Chemistry, University of Marburg, Marburg, Germany). Virtual docking 

solutions of compound 8 (Figure 20 A) and compound 11 (Figure 20 C) into a deeply buried 

pocket of the Bid protein show that the inhibitors fit nicely into the presumed binding site 

(Figure 20) and reveal for both compounds a possible interaction between the C-terminal 

Asp195 of Bid and the terminal basic amino function of compound 8 and accordingly the 

terminal hydroxyl group of compound 11, possibly by forming a salt bridge (Figure 20 B, D).  
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Figure 20: Molecular docking of compounds 8 and 11 into the 3D-structure of Bid. 

A, C, Molecular docking of compound 8 (A) and compound 11 (C) into the three-dimensional structure of Bid 

(PDB code 1DDB). The compounds fit into the hydrophobic crevice on the surface of Bid. The solvent-accessible 

surface of Bid is represented with formal charges (red negative; blue positive). For the inhibitor compounds the 

carbon atoms are shown in grey, oxygen in red and nitrogen in blue. B, D, 2D-representation of the docking 

solutions of compound 8 (B) and compound 11 (D) and the suggested interactions with amino acids of Bid shown 

in green. Docking analyses were kindly performed by Dr. Wegscheid-Gerlach (Pharmaceutical Chemistry, 

University of Marburg, Marburg, Germany). 

 

For a better evaluation of the compounds’ potency to achieve neuroprotection and to 

distinguish between transient and persistent effects of the individual structures, the most 

potent compounds 8 and 11 were investigated by real-time analysis of cell impedance using 

the xCELLigence system. In accordance with our findings determined by MTT assay, 

treatment of cells with compound 8 or compound 11 restored cell proliferation and viability in 

a concentration-dependent manner, indicated by the prevention of the glutamate-induced 

decline of NCI (Figure 21 A, B). While both compounds provided only transient protective 

effects at concentrations of 1 µM and 10 µM, a sustained protection over approximately 10 h 

was achieved by adding compound 8 at concentrations of 50 µM (Figure 21 A). In 

comparison, compound 11 provided almost persistent protection even at lower 

concentrations of 25 µM, while higher concentrations of 50 µM decreased cell proliferation 

even though a complete breakdown of NCI was still prevented (Figure 21 B). These data 
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confirm that the glutamate-induced loss of NCI and cell death can be prevented by N-acyl-

phenoxyanilines derivatives in a concentration-dependent manner, and further accentuate 

real-time monitoring of the glutamate-induced cytotoxicity as a useful tool to generate 

compound-specific profiles allowing to modulate the effective time window of the 

neuroprotective compounds.  

 

 

Figure 21: Real-time detection of cellular impedance confirms neuroprotective properties of N-
acyl-phenoxyanilines. 

Cell proliferation of HT-22 cells was monitored for 24 h before treatment (0 h). Compound 8 (A) and 11 (B) were 

applied to cells at concentrations of 1 µM up to 50 µM, as indicated, in the presence and absence of 3 mM 

glutamate. BI-6C9 was applied at 10 µM and used as positive control for persistent protection. Cellular impedance 

was continuously monitored using the xCELLigence systeme (Roche) for another 16-18 h after treatment. Cell 

index was normalized at 0 h (treatment-time). NCI of HT-22 cells revealed reduction of cell viability around 4-6 h 

after glutamate treatment. Compounds 8 and 11 provided a dose-dependent transient protection against 

glutamate-induced toxicity. Results are predicted as mean ± SD with n = 8 per treatment group. The experiments 

were independently repeated at least three times. 

 

3.1.4.2 Specificity of 4-phenoxyaniline scaffolds against tBid-induced toxicity 

Although the glutamate-induced oxidative cell death has been linked to Bid transactivation to 

mitochondria, Bid-mediated breakdown of Δψm and subsequent release of AIF and 

Smac/DIABLO97, 99, 202 as described above, and the delayed neuronal cell death, occurring in 

a constant and small time window as shown by the xCELLigence measurements (Figure 21), 

is well correlated with time frames of glutamate-induced Bid translocation to mitochondria97, it 

is not mandatory, that the protective effects of compounds in this glutamate-toxicity model 

are mediated by the specific inhibition of the pro-apoptotic protein Bid. Even though the 

targeting of Bid was suggested by the docking analysis (Figure 20), the specificity of the 

N-acyl-phenoxyanilines to inhibit Bid, had to be confirmed in a further study.  
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Therefore, the molecules were further screened in HT-22 cells transfected with a tBid-

encoding plasmid (Figure 22). As shown above (Figure 13), over-expression of Bid resulted 

in characteristic alterations in cell morphology (Figure 22, pIRES-tBid). In contrast, 

application of compound 8 (10 µM), compound 9 (10 µM) or compound 11 (10 µM) 1 h 

before tBid-transfection clearly preserved the spindle shaped morphology of cells 

comparable to control conditions (Figure 22 A). In addition, MTT assay confirmed that cells 

pre-treated with the compounds 8, 9 or 11 at concentrations of 10 µM were significantly 

protected from tBid-induced cell death (Figure 22 B, C, D).  

Furthermore, the model of tBid-induced toxicity was used for cellular dose-response studies. 

Pre-treatment of cells with the compounds at concentrations as low as 1 µM attenuated tBid-

induced cell death to a slightly lesser extent as revealed for concentrations of 10 µM (Figure 

23), while at concentrations higher than 40 µM the compounds showed toxic effects in this 

cell death model. Figure 24 represents an example of the toxic effect of compound 8, 9 and 

11 obtained in application ranges of 50 µM. Applying high doses of the compounds under 

control conditions caused a severe cytotoxic damage of HT-22 cells as shown by 

photomicrographs (Figure 24 A) and thereby a reduction of cell viability as determined by 

MTT assay (Figure 24 B). Similar toxic results were detected for all three compounds applied 

in doses ranges from 40 µM up to 100 µM. Overall, the protective activities of the N-acyl-

phenoxyanilines against tBid-mediated toxicity at concentrations lower than 10 µM strongly 

indicate the compounds specific mode of action and confirm their ability to target and inhibit 

Bid 
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Figure 22: Neuroprotective activities of N-acyl-phenoxyanilines against tBid-induced neuronal 
cell death. 

HT-22 cells were pre-treated with novel compounds 1 h before transfection with a tBid-encoding plasmid (pIRES-

tBid). 20-22 h after tBid over-expression cell morphology (A) was analyzed by microscopy and cell viability (B, C, 

D) was determined by MTT assay. Novel compounds were applied at concentrations of 10 µM and BI-6C9 

(10 µM) was used as a positive control for prevention of tBid-induced toxicity. A, tBid over-expression induces 

typical changes in cell morphology, while compounds 8, 9, 11 preserved spindle shaped cell morphology as 

shown by photomicrographs (10 x 0.25 NA objective). B, C, D, Cell viability was quantified by MTT assay, 

confirming the compounds ability to prevent tBid-induced toxicity (B; SCHL 24519 (8), C; SCHL 24543 (9), D; 

SCHL 24521 (11)). The presented data are normalized to un-transfected controls (100% cell viability). The 

experiments were independently repeated at least three times with n = 3 per treatment condition. Results are 

predicted as mean ± SD (***p < 0.001 compared to tBid-transfected vehicle, ANOVA, Scheffé`s test). 
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Figure 23: N-acyl-phenoxyanilines provide slightly protective effects against tBid-induced 
toxicity in low concentrations as 1 µM. 

MTT assay was used to determine protective effects of compound 8, 9 and compound 11 at low concentrations of 

1 µM. HT-22 cells were pre-treated with 1 µM of each compounds 1 h prior to tBid transfection. Cell viability was 

analyzed 20-24 h after tBid over-expression. All compounds show moderate protection against tBid-induced cell 

death. The experiments are representatives of 3-6 experiments with n = 3 per treatment condition. Data are 

presented as mean ± SD (***p < 0.001 compared to tBid-transfected vehicle, ANOVA, Scheffé`s test). 

 

 

Figure 24: Concentration-dependent toxic effects of N-acyl-phenoxyanilines 

HT-22 cells were pre-treated with novel compounds 1 h before transfection with a tBid-encoding plasmid (pIRES-

tBid). 20-22 h after tBid over-expression cell morphology (A) was analyzed by microscopy and cell viability (B, C, 

D) was determined by MTT assay. For analysis of doses limitations, novel compounds were applied at 

concentrations of 50 µM. A, Photomicrographs (10 x 0.25 NA objective) reveal cytotoxic effects of the compounds 

8, 9, 11 when applied to HT-22 cells at concentrations of 50 µM compared to un-treated control cells. Cells 

treated with high doses of the compounds show already typical cell death features without tBid over-expression. 

B, C, D, Cell viability was quantified by MTT assay, which confirms the concentration-dependent toxicity, thereby 

doses limitations of the applied compounds (B; SCHL 24519 (8), C; SCHL 24543 (9), D; SCHL 24521 (11). 

Compound 9 was still slightly protective against tBid-induced toxicity, while compound 8 and compound 11 reveal 

no protective activity in concentrations of 50 µM. Similar results were obtained by compound treatment in 

concentrations of 40 µM and 100 µM. The presented data are representatives for compound-toxicity studies. The 
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experiments were independently repeated at least three times with n = 3 per treatment condition (*p < 0.05 

compared to tBid-transfected vehicle, ###p < 0.001 compared to un-transfected control, ANOVA, Scheffé`s test). 

 

In conclusion, these data predict a novel type of neuroprotective agents based on a 

4-phenoxyaniline scaffold, and displayed significant neuroprotective activities of the 

compounds at concentrations as low as 1 µM. The results, obtained from the docking of the 

molecules into the three-dimensional structure of Bid, and more considerable the findings 

emerged from the compound-screening in the model of tBid-induced toxicity indicated that 

these small-molecule agents indeed target the Bid protein and represent a significant step in 

the ongoing development of therapeutically useful neuroprotective agents.  
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3.1.5 N-phenyl substituted thiazolidindiones provide protection against tBid-

mediated cell death pathways 

Upon the basis of the promising neuroprotective effects achieved by the N-aryl substituted 

phenoxyanilines, presented above, structural optimizations were continued resulting in a 

series of N-phenyl substituted thiazolidinedions, which are presented in the following.  

These optimizations were again accorded to the lead compound BI-6c9 (5) and further 

advanced based on the N-propionyl-derivative of p-phenoxyaniline (12). In order to reduce 

the conformational flexibility and thereby to enhance the binding affinity to the target Bid, the 

acylamid partial structure of 12 was incorporated into a thiazolidine-2,4-dione (13) (Figure 

25), giving the core structure of about 36 novel compounds depicted in Table 69.  

 

Figure 25: Development of thiazolidine-2,4-dione structure 13 based on the structure of BI-6C9 
(5). 

Based on the structure of BI-6c9 (5), the N-propionyl-derivate of 4-phenoxyaniline (12) was synthesized. The 

acrylamide partial structure of compound 12 was incorporated into a thiazolidine-2,4-dione (13), concurrently 

reducing the conformational flexibility. Structure syntheses and estimation of structure-activity relationships were 

performed by the group of Prof Schlitzer (Pharmaceutical Chemistry, University of Marburg, Marburg, Germany). 
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3.1.5.1 N-phenyl substituted thiazolidinediones provide neuroprotection 
against glutamate-induced toxicity 

To investigate the protective and toxic properties of this compound class, the thiazolidine-

2,4-diones were subjected to the first screening approach using the present model of 

glutamate-induced toxicity. All substances were applied in concentration ranges of 0.1 µM up 

to 50 µM and cell viability of HT-22 cells was determined 14 h after co-treatment with 3 mM 

glutamate solution. Table 63 depicts the results of representative structures of the N-phenyl 

substituted thiazolidinediones (all provided in appendix Table 69), which will be characterized 

more in detail in this chapter. 

 

Table 63: Neuroprotective properties of N-phenyl substituted thiazolidinediones. 

Chemical structures of newly synthesized compounds are shown. Neuroprotective activity of the compounds 

against glutamate-toxicity in HT-22 cells was determined within the first screening approach by MTT assay. EC50 

are given as the mean drug concentration required for inhibiting cell death by 50 % compared to controls. Toxicity 

values indicate toxic drug concentrations found to induce cell death without co-treatment with glutamate. (***p < 

0.001 compared to glutamate treated control, ANOVA Scheffé´s test; N/A
α
, not active – substance revealed no 

toxic properties at concentrations of 0.1 µM up to 100 µM; N/D
β
, not determinable – EC50 values could not be 
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calculated due to lack of protective effects. The results presented are representatives of 4-6 independent 

experiments (MTT assay). 

 

Notably, the first screening set up, examining substance concentrations between 10 µM and 

50 µM, revealed maximal neuroprotection for most of the compounds at a concentration of 

20 µM, while concentrations higher than 30 µM and up to 50 µM could not further increase 

the protective properties (Figure 26) 

 

 

Figure 26: N- phenyl substituted thiazolidinediones provide maximal neuroprotection at 
concentrations of 20 µM and higher. 

Initially all thiazolidindiones were analyzed by their ability to prevent glutamate-induced cell death in 

concentrations of 10 µM up to 50 µM. HT-22 cells were cultured in 96-well plates with 10.000 cells per well and 

cell viability was determined 14 h after co-treatment with glutamate (3 mM) and novel compounds. BI-6C9 

(10 µM) was used as a positive control for neuroprotection. SCHL 24277 (14) (A), SCHL 24213 (15) (B) as well 

as SCHL 24292 (16) (C) reveal maximum protective effects against glutamate- induced toxicity at concentrations 

of 20 µM and higher. The presented data are normalized to un-treated controls. For statistical analysis, the 

experiments were independently repeated at least three times with an n = 8 per treatment condition. Results are 

presented as mean ± SD (***p < 0.001 compared to glutamate- treated control (vehicle), ANOVA, Scheffé´s test). 
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In order to examine the doses required to achieve maximal protection, thiazolidine-2,4-

diones were further tested in concentration ranges between 0.1 µM and up to 10 µM, and the 

concentration of 50 µM was set as steady state dose providing 100 % protection. Figure 27 

shows the protective effects of three representative 3-aryl substituted thiazolidinedione 

derivatives, which significantly preserved cell viability of glutamate-treated HT-22 neurons in 

a concentration-dependent manner between 5 µM up to 50 µM (Figure 27 A, C, E). 

Impressively, the compounds 14, 15 and 16 achieved full protection against glutamate-

induced toxicity at concentrations higher than 20 µM (Figure 27 A, C, E). This pronounced 

protective effect was comparable to the protective effect of the available Bid inhibitor BI-6C9 

(10 µM) that was always applied in the screening experiments as a reference for maximal 

protection in this cell death model. Importantly, treatment of cells with the newly synthesized 

substances alone revealed no toxic effects in concentrations up to 50 µM (Figure 26 A, B, C 

and Figure 27 A, C, E). Similar results were obtained for further synthesized thiazolodin-2,4-

diones depicted in appendix Table 69. 

To further compare the neuroprotective potency of all tested compounds, half maximal 

effective concentrations (EC50) were calculated from the cell viability data at the applied 

concentration ranges. Since the MTT data revealed full protective effects of the compounds 

at concentrations of 50 µM (positive control for highest protection), cell viability data were 

normalized between 0 % for glutamate only treated cells (vehicle) to 100 % protection at 

50 µM and concentration-response curves were fitted with a sigmoid function (Dose 

Response Fit). Concentration-response curves for compound 14, 15 and 16, which represent 

highest therapeutic potency within the series of thiazolidin-2,4-diones, are shown in Figure 

27 (Figure 27 B, D, F) and calculated EC50 values of all structures are provided in Table 63 

and Table 69. The EC50 values calculated for the newly synthesized thiazolidinediones were 

almost as good as the EC50 value obtained for BI-6c9 (Figure 12).  
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Figure 27: N-Phenyl substituted thiazolidinediones provide neuroprotection against glutamate-
induced toxicity. 

MTT assay was used to determine cell viability of HT-22 cells 14 h after co-treatment with glutamate (3 mM) and 

respective small molecules in different concentrations from 0.1 µM to 50 µM. BI-6C9 (10 µM) was used as a 

positive control for neuroprotection. SCHL24277 (14) (A), SCHL 24213 (15) (C) and SCHL 24292 (16) (E) 

attenuates glutamate-induced toxicity in a concentration-dependent manner. For statistical analyses, experiments 

were independently repeated at least three times with an n = 8 per treatment condition. Results are presented as 

mean ± SD (***p < 0.001 compared to glutamate-treated control (vehicle), ANOVA, Scheffé´s test). B, D, F, 

Based on this data concentration-response curves and EC50 values were calculated for each substance. Cell 

viability data were fitted from 0 for glutamate-treated control (vehicle) to 100 for highest protection at 50 µM and 

dose response fits for compound 14 (B), 15 (D) and 16 (F) are shown. 
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As described for the N-aryl substituted phenoxyanilines above, real time analysis of cell 

impedance (xCELLigence) were reapplied in order to substantiate the neuroprotective 

properties of the N-phenyl substituted thiazolidinediones that were determined by MTT assay 

(Figure 28). While cellular impedance significantly decreased in cell populations exposed to 

glutamate (3 mM) 5 h to 8 h after treatment, NCI was fully preserved to control levels by co-

treating the cells with glutamate (3 mM) and compounds 16, 14, or 15 at a concentration of 

50 µM, respectively (Figure 28 A-C). Compound 16 and 15 revealed transient 

neuroprotection at concentrations of 5 µM, 10 µM and 25 µM (15) while a sustained 

protection over time was revealed at concentrations of 50 µM (Figure 28 B, C). Similarly, 

compound (14) was only transiently protective at concentrations lower than 5 µM, but 

attenuated the complete decline of NCI already at concentrations of 10 µM, although not to 

levels of control cells. However, persistent neuroprotection against glutamate-induced toxicity 

was achieved at a concentration of 50 µM (Figure 28 A). Concluded, these RTCA-

measurements could not only confirm the findings detected by MTT assay, but further 

provided a better estimation of the protective potential of the novel small-molecules.  

 

 

Figure 28: Real time monitoring of cell impedance confirms concentration-dependent 
neuroprotection mediated by thiazolidindiones.  

The indicated cell groups were co-treated with glutamate (3 mM) and the novel compounds SCHL24277 (14) (A), 

SCHL 24213 (15) (B) and SCHL 24292 (16) (C) in concentrations of 1 µM to 50 µM. Cellular impedance was 

continuously monitored by the xCELLigence system (Roche) and cell index was normalized at 0 h (treatment 

time-point). Co-treatment with glutamate and BI-6C9 (10 µM) was used as a positive control for persistent 
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protection. Each compound revealed a dose-dependent transient protection at concentrations from 10 µM to 

25 µM yet a sustained protection over time at 50 µM. Results are provided as mean ± SD with n = 8 per treatment 

group. All experiments were independently repeated three times. 

 

3.1.5.2 Specificity of the thiazolidinediones 

3.1.5.2.1 N-phenyl substituted thiazolidinediones target Bid to prevent cell death in 

HT-22 cells 

To investigate the compound`s ability to target Bid, the role of the newly developed N-phenyl 

substituted thiazolidinediones was examined in the current tBid-mediated cell death model 

(see 3.3.5). 

Compound 14, compound 15 and compound 16, as representatives of the thiazolidinediones, 

clearly attenuated tBid-induced cell damage and morphologic shape changes already at low 

concentrations of 1 µM (Figure 29 A), and significantly prevented the tBid-induced reduction 

in cell viability of HT-22 cells assessed by the MTT assay (Figure 29 B, C, D). Similar results 

were observed pre-treating the cells with the indicated compounds at higher concentrations 

of 10 µM and 50 µM, while, in contrast to the N-aryl phenoxyanilines, no toxic effects of the 

thiazolidine-2,4-diones were detected when applied under control conditions (data not 

shown). These findings show that the new N-phenyl substituted thiazolidinedione compounds 

are able to rescue HT-22 cells after tBid-over-expression thereby providing strong evidence 

that the newly synthesized compounds indeed provided neuroprotection by targeting the pro-

apoptotic protein Bid. 

The compound´s ability to specifically inhibit Bid was further confirmed by virtual docking 

analysis into the three-dimensional structure of Bid, kindly performed by Dr Wegscheid-

Gerlach (Pharmaceutical Chemistry, University of Marburg, Marburg, Germany) (Figure 30). 

Thereby a possible binding mode of compound (14), which revealed the highest protective 

potency (EC50 = 6.78), was derived: the thiazolidinedione moiety points into a deeply buried 

pocket on the surface of Bid, like BI-6C9, and allows interactions with the amino acids VAL 

186 and ILE86 of Bid. Further, a hydrophobic interaction between the aromatic ring of 

compound 14 with the side chain of TYR 185 of Bid is suggested (Figure 30 B) and 

substantiate the intended specific targeting of the Bid protein.  
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Figure 29: N-Phenyl substituted thiazolidinediones attenuate tBid-induced neuronal cell death. 

tBid-induced toxicity was determined 21-23 h after transfection of HT-22 cells with a tBid-encoding plasmid 

(pIRES-tBid). Cell morphology was analyzed by microscopy (A) and cell viability was determined by MTT assay 

(B, C, D) Pre-treatment with the novel compounds SCHL 24277 (14), SCHL 24213 (15) and SCHL 24292 (16) 

(1 µM) was performed 1 h before tBid-transfection. A, Photomicrographs (10 x 0.25 NA objective) show typical 

alterations in cell morphology of HT-22 cells 20 h after tBid over-expression (pIRES-tBid, control). Compound 14, 

15 and 16 preserves cell morphology of HT-22 cells. B, C, D, Quantification of cell viability confirms significant 

protective effects against tBid-induced toxicity mediated by compound 14 (B), compound 15 (C) and 

compound 16 (D).The presented data are representatives of concentration-dependent studies. Similar protective 

effects were obtained when compounds were applied in concentrations of 10 µM and 50 µM. No toxic effects 

were observed. The presented data are normalized to un-transfected control (100% cell viability). For statistical 

analysis, experiments were independently repeated at least three times with n = 3 per treatment condition and 

results are reported as mean ± SD (***p < 0.001 compared to t-Bid treated control cells, ANOVA, Scheffé´s-test).  
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Figure 30: 2D and 3D-representation of the binding mode of compound 13 for inhibition of Bid.  

A, 3D-Docking of SCHL 24277 (14) in the hydrophobic groove of Bid. B, 2D-representation of the docking solution 

of A reveals interaction of compound 14 with VAL186 and ILE86 and TYR185 of Bid. A, B, For the inhibitor 

compound the carbon atoms are shown in gray, oxygen in red, nitrogen blue and sulphur in yellow. The solvent-

accessible surface of Bid is represented with formal charges (red- negative; blue positive). Docking analyses were 

kindly performed by Dr. Wegscheid-Gerlach (Pharmaceutical Chemistry, University of Marburg, Marburg, 

Germany). 

 

3.1.5.3 Thiazolidine-2,4-diones prevent glutamate-induced Bid-mediated 
mitochondrial impairments 

As the protective effects of the N-phenyl substituted thiazolidinediones in the models of 

glutamate- and tBid-induced toxicity were convincing, it should be further investigated 

whether these compounds are also able to prevent impairments in mitochondrial integrity and 

function that are shown to be Bid-dependent and precede the final execution of intrinsic 

caspase-independent cell death24, 58, 63, 97, 98. 

Therefore, the effect of compound 14, 15 and 16 on mitochondrial membrane potential (Δψm) 

was investigated. As described above, glutamate causes a significant drop in red TMRE 

fluorescence, indicating a glutamate-induced loss of Δψm (Figure 31 A, B). In contrast, the 

application of 20 µM of the compounds 14, 15 or 16 did not affect Δψm under control 

conditions, but almost completely attenuated the pronounced breakdown of Δψm after 

glutamate challenge (Figure 31 A, B). The protective effects mediated by the novel 

compounds were comparable to that of the available Bid inhibitor BI-6C9, suggesting that the 

thiazolidinediones preserve Bid translocation to mitochondria thereby maintaining Δψm. To 

further address whether the N-phenyl thiazolidinediones are also able to prevent the 

functional integrity of mitochondria, ATP levels of compound-treated HT-22 cells were 

examined in the presence and absence of glutamate (Figure 31 C). Indeed, the rapid 

depletion in cytoplasmic ATP caused by glutamate-induced cell injury, was completely 
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attenuated by compound 14, 16 and 15, whereas ATP levels of control cells were not altered 

(Figure 31 C). Therefore, these data confirmed at a functional level that the predicted N-

phenyl substituted thiazolidinedione derivatives preserve mitochondrial integrity and energy 

production of glutamate-treated HT-22 cells. 

 

 

Figure 31: N-Phenyl substituted thiazolidinediones preserve mitochondrial integrity and 
function. 

A, Mitochondrial membrane potential (Δψm) was determined by TMRE-FACS recordings. HT-22 cells were treated 

with glutamate (5 mM) alone or co-treated with glutamate (5 mM) and thiazolidinedione derivates (20 µM). Twenty 

hours after treatment, cells were stained with MitoTM
TM

 TMRE dye and red fluorescence of 10,000 cells per 

treatment condition was analyzed. Glutamate-treated cells (vehicle) show significant reduction of red fluorescence 

(loss of Δψm) compared to control vehicle, while SCHL 24277(14), SCHL 24292 (16) and SCHL 24213 (15) 

prevent breakdown of Δψm. Numbers are mean percentages ± SD of TMRE fluorescence of the indicated cell 

groups with n = 3. High red fluorescence indicates intact mitochondria (right side), drop of red fluorescence 

depicts loss of Δψm (left side). Pictures are representatives of three independent experiments. B, Quantification of 

TMRE fluorescence (A) confirms the breakdown of Δψm in glutamate exposed vehicle cells, which is significantly 

prevented by the compounds 14, 16 and 15. The uncoupler CCCP, which causes a fast breakdown of the 

mitochondrial membrane potential, was used as a positive damage-control. The experiment was independently 

repeated four times with n = 3 and data are presented as mean ± SD. C, ATP-levels of HT-22 cells, treated with 

20 µM of the compounds 14, 16 or 15 as indicated, were analyzed in the presence or absence of glutamate 

(5 mM, 20 h) by ATP-luminescence measurements. Compound treatment does not affect basal ATP levels, but 

significantly prevents ATP depletion after glutamate exposure. Experiment was repeated three times with n = 8 

per treatment condition and results are provided as mean ± SD (***p < 0.001 compared to glutamate-treated 

vehicle, ANOVA, Scheffé test (B, C)). 

 



Results | 127 

 

 
 

Broader insights into the compounds ability to rescue metabolic functions were derived from 

from measurements of oxygen consumption rate (OCR) of intact HT-22 cells, enabling the 

evaluation of mitochondrial bioenergetics and metabolism under conditions that are more 

physiologically realistic compared to isolated mitochondria203. O2-consumption of HT-22 cells 

was analyzed in the presence and absence of glutamate using the Extracellular Flux 

Analyzer (Seahorse Bioscience) designed for the exposure of mitochondria to defined 

substrates and inhibitors to modulate mitochondrial respiration in adherent cells204. In 

accordance with previous studies reporting that glutamate-induced mitochondrial dysfunction 

involves changes in mitochondrial acidification and oxygen consumption205, glutamate 

exposure of HT-22 cells decreased oxygen consumption rate (OCR) indicating a glutamate-

induced reduction in mitochondrial respiration (Figure 32). After recording the basal 

mitochondrial respiration, the ATP synthase inhibitor oligomycin was added to uncouple 

mitochondrial respiration from ATP production. While OCR of control cells was decreased 

after oligomycin injection, glutamate-treated cells responded less to oligomycin, (Figure 32). 

This indicates a glutamate-induced decrease in ATP production, which is in line with the ATP 

luminescence measurements described above. In comparison, OCR measurements similarly 

confirmed the preservation of ATP-generation by the compound 14, 16 and 15 at 

concentrations of 20 µM, respectively and BI-6c9 at concentrations of 10 µM (Figure 32 A till 

B).The further application of the protonophor FCCP increased OCR to a maximum extent 

allowing the examination of the maximum oxygen flux (MOF) and mitochondrial respiratory 

capacity (MRC) of cells. After glutamate treatment both, MOF and MRC were significantly 

decreased, but notably restored by co-treatment of cells with compound 14, 16 and 15 or BI-

6c9 (Figure 32). Finally, the mitochondrial respiratory chain was inhibited by the application 

of the complexes I and III inhibitors, rotenone and antimycin A. While rotenone/antimycin A-

sensitive OCR specifically indicates respiration in mitochondria, rotenone/antimycin A-none-

resistant rate identifies non-mitochondrial respiration203 and allows for calculation of 

mitochondrial maximum respiration. The remarkable reduction in mitochondrial maximum 

respiration in glutamate-treated HT-22 cells was significantly prevented by the compounds 

14, 16 and 15 and the Bid inhibitor BI-6c9 (Figure xx A, B). The ability of BI-6c9 and the 

newly synthesized compounds to prevent the glutamate-induced reduction in mitochondrial 

respiratory capacity and maximum respiration provides additional evidence that inhibition of 

Bid emerges as potential strategy for maintaining mitochondrial metabolic functions. 

In conclusion, the N-phenyl substituted thiazolidinediones rescued metabolic functions and 

maintained energy metabolism in mitochondria of HT-22 cells challenged with glutamate. Of 

note, the fact that the compounds do not affect mitochondrial maximum respiration, providing 

a full protection against respiratory dysfunctions, presumes that all three molecules 
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(compound 14, 15 and 16) act upstream of mitochondria, thereby supporting the hypothesis 

that the protective effects are mediated by inhibiting Bid. 

 

 

Figure 32: N-Phenyl substituted thiazolidinediones preserve mitochondrial respiration 

A-C, Time course of oxygen consumption rate (OCR) in HT-22 cells in the presence and absence of glutamate. 

HT-22 cells were seeded in XF96-well micro plates (Seahorse Bioscience) at a density of 10,000 cells per well 

and treated with glutamate (5 mM) and/ or the indicated thiazolidindiones SCHL 24277 (14) (A), SCHL 24213 

(15) (B), SCHL 24292 (16) (C), or the Bid inhibitor BI-6c9 (D), respectively. Twenty hours after treatment, 

mitochondrial respiration was analyzed using the XF Mito Stress kit and recorded as the rate of OCR by the 

Extracellular Flux Analyzer (Seahorse Bioscience). As controls, Oligomycin (3 µM) was used to inhibit ATP-linked 

OCR, FCCP (0.4 µM) to measure uncoupled respiration and Rotenone/Antimycin (1 µM) to inhibit complex I/III-

dependent respiration. Glutamate exposure of HT-22 cells decreases oxygen consumption rate and thereby 

mitochondrial respiration. Co-treatment of cells with the indicated thiazolidindiones in concentrations of 20 µM 

respectively, restores mitochondrial maximum respiration as well as respiratory capacity. Data were depicted as 

normalized OCR (% baseline rate) for each individual populations of cells and representative of four independent 

experiments, each with n = 8 for all treatment groups, respectively.  

 

In summary, these data demonstrate, that the screened N-phenyl substituted 

thiazolidindiones, showed a pronounced potency against glutamate toxicity and indicate the 

specific inhibition of Bid as the underlying key mechanism of their protective properties. 
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3.1.6 N-aryl substituted pyrazolopyrimidinones promise a novel class of 

neuroprotectants 

Several other small-molecules differing in their chemical structure, size and solubility were 

screened within this thesis revealing variable efficiency in protecting the cells against 

glutamate- and tBid-induced toxicity (appendix Table 70). 

 

 

Table 64: Neuroprotective properties of N-aryl substituted pyrazolopyrimidinone (19) 

Chemical structure of the 1-(4-Aminophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-on is shown. The 

pyrazolopyrimidinone provided significant protection against glutamate-toxicity in HT-22 cells at concentrations of 

25 µM up to 100 µM and revealed no toxic effects as determined by MTT assay  (***p < 0.001 compared to 

glutamate treated control, ANOVA Scheffé´s test; N/A
α
, not active – substance revealed no toxic properties at 

concentrations of 1 µM up to 100 µM). The result presented is a representative of 5 experiments (MTT assay). 

 

It is noteworthy that one compound (19) (Table 64) representing the chemical class of N-aryl 

substituted pyrazolopyrimidindiones emerged as potent neuroprotectant and indicates this 

structure type as promising scaffold for the ongoing development of neuroprotective 

compounds..  

This compound 19 attenuated glutamate-induced cell death of HT-22 cells in a 

concentration-dependent manner from 25 µM up to 100 µM as revealed by MTT assay 

(Figure 33 A) and further confirmed by the RTCA-measurements, showing a transient 

protective effect of compound 19 in concentrations of 30 µM up to 100 µM (Figure 33 B).  

Interestingly, despite this moderate protection against glutamate-toxicity, the compound 19 

was highly potent against tBid-mediated cell injury and provided significant protection already 

at low concentrations of 1 µM (Figure 34). Noteworthy, compound 19 did not reveal toxic 

effects in any of the applied model systems at concentrations up to 100 µM, which is an 

advance of this structure type compared to the N-aryl phenoxyanilines described above.  
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Figure 33: N-aryl substituted pyrazolopyrimidinone protects against glutamate-induced toxicity 
in a concentration dependent manner. 

SCHL 24394 (19) reveals protective effects against glutamate-induced toxicity in a concentration dependent in 

from 1 µM up to 100 µM. A, Cell viability of HT-22 cells was determined by MTT assay 16 h after co-treatment 

with glutamate (3 mM) and compound 19. BI-6C9 (10 µM) was used as a positive control for neuroprotection. 

Substance treatment alone shows no toxic effects and attenuates against glutamate toxicity at concentration of 

25 µM and higher. Results are presented as mean ± SD (***p < 0.001 compared to glutamate- treated control, 

ANOVA, Scheffé´s test). B, Real-time analysis of cellular impedance with the xCELLigence system (Roche) 

confirms the concentration-dependent protective effect of compound 19. While concentrations of 30 µM and 

50 µM obtained only slightly protection, a more pronounced protection is revealed at concentrations of 100 µM. 

Cell index was normalized at 0 h (treatment time-point). Results are provided as mean ± SD with n = 8 per 

treatment group. All experiments were independently repeated three times. 

 

As this compound represents the first structure of the class of N-aryl substituted 

pyrazolopyrimidindiones, further chemical modifications are warranted in order to further 

explore structure-activity relationships of this structure for developing highly potent and 

specific Bid inhibitors that may provide neuroprotection in a low and in vivo applicable 

concentration range.  

In summary, these studies revealed the development and screening of a series of novel 

small-molecules designed to inhibit the pro-apoptotic molecule Bid in neurons. Based on the 

structure of the available Bid inhibitor BI-6c9, three diverse compound classes were 

developed and structurally optimized by the chemistry department (group of Prof Dr 

Schlitzer) in order to explore the structure-activity relationships of the small-molecules 

targeting Bid. Seven compounds, belonging to the class of N-acyl substituted 4-

phenoxyanilines, N-phenyl substituted thiazolidindiones and accordingly N-aryl substituted 

pyrazolopyrimidindiones, were identified as novel small-molecules with promising potential 

for neuroprotection in a range of cellular model systems, including glutamate- as well as tBid-

induced cell injury. Therefore, the compounds presented in this work are not only potent 

scaffolds for future structure optimization resulting in compounds with favorable 

pharmaceutical properties, but might indicate already promising drug candidates for first trials 

in model systems of brain damage in vivo. 
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Figure 34: Compound 19 prevents tBid-induced neuronal cell death. 

tBid-induced toxicity was determined 18-20 h after transfection of HT-22 cells with a tBid-encoding plasmid 

(pIRES-tBid). Compound 19 was applied to cells 1 h before pIRES-tBid-transfection. A, Photomicrographs 

(10 x 0.25 NA objective) reveal the preservation of the spindle-like morphology of HT-22 cells after tBid over-

expression by the application of compound 19 at concentrations of 1 µM up to 100 µM. B, Quantification of cell 

viability by the MTT assay confirms significant protective effects of SCHL 24394 (19) against tBid-induced toxicity, 

while no toxic effects of the compound 19 was observed. For statistical analysis, experiments were independently 

repeated at least three times with n = 3 per treatment condition and results are reported as mean ± SD 

(***p < 0.001 compared to t-Bid treated control cells, ANOVA, Scheffé´s-test). 
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3.2 Expression, purification and crystallization of recombinant Bid 

constructs 

The molecular mechanism by which the pro-apoptotic protein Bid regulates mitochondrial cell 

death pathways, and in particular how Bid mediates impairments in mitochondrial membrane 

integrity and function is still far from being explained. Structural and functional studies are 

required for a more thorough understanding of Bid action, and thereby for the development of 

target-directed perspectives of therapies for neuronal diseases. 

While the first part of this work could already demonstrate promising Bid-targeting 

compounds that provide protection in various approaches of cell death models, the exact 

mechanism of their inhibitory activity remains to be clarified, and further structural 

optimization is required to improve their binding affinities to low nanomolar concentrations. 

The determination of protein-ligand structures and the facilitation of a rational and structure-

guided design of novel compounds that selectively target the protein of interest, Bid, is a 

challenge. The three-dimensional structures of biological macromolecules are not only often 

the key to gaining a deep understanding in the proteins function, but, beyond doubt, they are 

the necessary tool for target-specific drug development. While crystal structures of other Bcl-

2 family proteins, such as Bcl-xl, Mcl-1 or Bax68, 105, 109, 121, 122, provided the basis for the 

design of selective inhibitors, up to now there is no report on a crystal structure determination 

of Bid from any species. In an effort to gain more insights in the structural properties of Bid 

and to explore the binding affinities of novel compounds, the further part of this work includes 

the establishment of a suitable pipeline from construct design and cloning to expression and 

purification of recombinant Bid required for the first Bid crystallization set up.  

The approach of recombinant proteins further aimed at the development and validation of in 

vitro assay systems suitable to address the physical action of Bid on artificial membranes 

(3.3) and to generate a basis for primary screening of small-molecule Bid inhibitors. Lastly, 

purified Bid protein should be used for determining its functional interactions with other 

proteins involved in the mechanisms of intrinsic cell death. 

 

3.2.1 Expression of recombinant full-length Bid and its active form tBid 

The first step towards crystallization is the high-yield expression and purification of the target 

protein. Therefore, full-length mouse Bid as well as its truncated, active form tBid were 

cloned as fusion proteins with a hexa-histidin-tag into the pET15b vector and tested for 

effective expression in Escherichia coli Rosetta2 (DE3).  
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3.2.1.1 High-yield expression of full-length Bid 

To investigate the expression efficiency and solubility of His6-tag full-length Bid, Rosetta2 

(DE3) singles were transformed with the pET15b-Bid 22 vector and grown at 37°C in LB 

medium. When bacterial growth reached an optical density (OD600) of 0.6 AU, protein 

expression was induced by addition of 1 M IPTG solution. Gel-electrophoresis and western 

blot analysis confirmed the effective expression of full-length Bid in E.coli and its recovery in 

the soluble protein fraction (Figure 35 A, B). An increasing 22 kDa Bid-band was detected 

2 h to 6 h after IPTG induction, while no Bid protein appeared at time point 0 and in the 

bacterial overnight culture (control) (Figure 35 B). Notably, large amounts of Bid were already 

produced 2 h after IPTG induction, indicating the protein is suitable for large-scale 

production. In addition, full-length Bid was also found in the membrane-bound protein 

fractions 2 h after expression induction, but in a less amount compared to the soluble 

fractions (Figure 35 C).  

 

 

Figure 35: Effective expression of full length Bid. 

Expression efficiency and solubility of His6-tag full length Bid was analyzed by expression tests in Rosetta2 (DE3). 

A, Coomassie stained SDS-PAGE predicts soluble protein fractions after expression of His6-tag full length Bid in 

Rosetta2 (DE3). Full length Bid is efficiently expressed and recovered in a high amount in the soluble fraction 2 h 

after IPTG expression.  B, Western blot analysis confirms the successful expression of full length Bid recovered in 

the soluble fraction after cell lysis. C, Coomassie stained SDS-PAGE of the membrane-bound proteins after 

expression of His6-tag full length Bid in Rosetta2 (DE3). Bid is predicted after 2 h IPTG induction. Note that the 

amount of Bid protein in the soluble protein fractions is much more pronounced than in the membrane-protein 

fractions.  

As Bid is described as a soluble and cytosolic protein in healthy cells61, the detection of Bid in 

the bacterial membrane fractions (Figure 35 C) might be due to adsorbance of the soluble 

protein to bacterial membranes. Notably, in contrast to the highly effective expression of full-

length Bid, no expression could be detected for the truncated and active form tBid, indicating 

that E. coli. strains avoid the expression of the toxic construct. 
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3.2.2 Purification of full length Bid yields reasonable protein amounts 

For large-scale production and purification of full-length Bid, the His6-tagged protein was 

expressed in E. coli. Rosetta2 (DE3) as described above. The determination of an 

exponential growth curve for E. coli. indicated that the bacterial culture reached an OD600 of 

0.6 AU 4-5 h after growth induction. Therefore, Bid expression was mostly induced 4.5 h 

after inoculating the bacterial overnight culture to fresh LB medium for large-scale protein 

production.  

His6-tagged full-length Bid could be readily purified from raw cell lysates following expression 

and three chromatography steps. The initial purification step was performed manually by 

nickel-affinity chromatograph yielding a protein recovery from the initial purification set of 

7.2 mg per liter bacterial culture, or by Ni-affinity chromatography using the Äkta prime plus 

system, allowing for large-scale purification of volumes up to 25 ml bacterial lysate within one 

purification run (Figure 36). His6-tagged Bid was sufficiently eluted between 200 mM and 250 

mM imidazole (Figure 36 A). Gel-electrophoresis of the elution fractions revealed the highest 

amount of Bid in fraction E10 and E11 (Figure 36 B). Of note, the elution profile was almost 

constant for all further affinity purifications of novel protein batches. The Bid-containing 

fractions were subjected to the second purification step performed by ion exchange 

chromatography (Figure 36 C, B). Within a continuous NaCl gradient, the elution of Bid was 

observed at approximately 250 mM NaCl, as shown in the ion exchange chromatogram 

(Figure 36 C). Gel-electrophoresis confirmed the purity of the eluted protein in the fractions 

E42-E48 (Figure 36 D). Although the chromatogram revealed two peaks, SDS-PAGE 

confirmed that both peaks (E40-44 and E48) belong to the full-length Bid protein and no 

degradation products were detected (Figure 36 D). Notably, protein-containing fractions 

could be stored at 4°C over several weeks until further use.  

SDS-PAGE followed by western blot (Figure 37 A, B) confirmed the identity of the purified 

Bid protein. Even though high amounts of Bid achieved by affinity chromatography were 

decreased after ion exchange, probably due to exceeding the column binding affinity, the 

highly pure Bid was finally recovered in amounts of about 15-20 mg per liter bacterial culture. 

Since the purity of the His6-tagged Bid was already approximately 90-95 % after ion 

exchange chromatography (Figure 37 A), protein samples were suitable for functional 

analysis as described below. 
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Figure 36: Purification of full length Bid by Äkta-chromatography. 

Successful purification of one of full length Bid by chromatography using the Äkta prime plus. A, Elution profil of 

Nickel-affinity chromatography is shown. B, The elution-fractions within the peak area were analyzed by SDS-

PAGE followed by coomassie staining. Fraktions E8 – E12 were pooled for further purification by ion exchange 

(TL=cellular lysate, FT= Flow through). C, Second step purification: Ion exchange chromatography. The protein 

was eluted at 250 mM NaCl. D, Confirmation of high purified Bid protein by gel electrophoresis and coomassie 

staining.  M = protein size ladder, FT = Flow through, E13-E48 = elution fractions within the peak area of C.  

 

 

Figure 37: Purified His6-Bid. 

A, Coomassie-stained SDS-PAGE reveals purity of recombinant His6-Bid after Affinity chromatography (Affinity) 

and ion exchange. TL = Total lysate, soluble protein fractions; FT = Flow through; M = protein size ladder. B, 

Western blot analysis confirms the identity of Bid. Final recovery of Bid was 15-20 mg/ml bacterial culture.  
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Since X-ray crystallization requires the highest purity and homogeneity of the protein as 

practically possible (≥ 95-98%)189, the final purification step of all recombinant proteins was 

performed by gel filtration. Highly pure Bid was eluted in 20 mM Tris (ph 7.4), 50 mM NaCl as 

confirmed by the gel filtration chromatogram (Figure 38 A). The second peak was confirmed 

as the Bid absorbance peak as gel-electrophoresis revealed high yields of Bid protein in the 

elution fractions E17 and E18 (Figure 38 B), revealing a purity of about 98 %.  

 

 

Figure 38: Gel filtration of full length His6-Bid. 

A, Gel filtration chromatogram of full-length His6-Bid. Bid was eluted in 20 mM Tris (pH 7.4), 50 mM NaCl in the 

fractions E17-E19. B, Coomassie-stained SDS-PAGE confirms the purity of Bid  ( > 98 %). 

 

Crystallization requires to bring the macromolecule to supersaturation189, 206. Therefore, pure 

protein batches were concentrated to the highest possible concentration without causing 

aggregation or precipitation of the macromolecule206. Concentrations between 5-25 mg/ml, 

sometimes even up to 100 mg/ml are recommended with the commonly used concentration 

of 10 mg/ml. Notably, the required concentration for obtaining crystals that diffract to high 

resolution always depends on the behavior of each individual protein and has to be 

established during the initial crystallization screens.  

Even though high yields of protein were obtained after gel filtration (~10-15 mg protein per 

liter culture), concentration of His6-tagged full-length Bid was limited to a concentration of 

4.5-5 mg/ml. In an effort to improve the concentration of full-length Bid and due to the fact, 

that purification-tags might interfere with the crystallization of proteins, an alternative 

purification set up for full-length Bid was scaled up, including the proteolytic cleavage of the 

His-tag. Initial purification was performed by Nickel-affinity chromatography followed by ion 

exchange as described above. Separation of the thrombin-cleaved His-tag and full-length Bid 

was finally achieved using gel filtration. 
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The high recovery and purity of full-length Bid was confirmed by determining the respective 

yields of protein after the particular purification runs within one SDS-PAGE (Figure 39 A). 

Notably, affinity chromatography provided yields of 65 % compared to the total lysate (TL), 

which was retained by ion exchange without loss of protein. The final gel filtration step 

achieved the highest purity of the Bid protein, up to 99%, but in fewer yields (50 % compared 

to affinity chromatography, Figure 39 A). The successful cleavage of the His-tag and integrity 

of full-length Bid was finally confirmed by MALDI-TOF analysis, which was kindly performed 

by Jörg Kahnt at the Max-Planck-Institute of Terrestrial Microbiology, Marburg, Germany 

(Figure 39 B).  

 

 

Figure 39: Recovery of full-length Bid during chromatography purification and MALDI-TOF 
analysis.  

A, 12.5 % coomassie stained SDS-Page predicts the results from each purification step. Pooled fractions which 

contained the purified Bid protein after Ni-affinity chromatography (affinity), Ion exchange and gel filtration, 

respectively were analyzed to estimate the protein recovery and purity. Cleavage of the His6-tag was performed 

after ion exchange and separation of the purification tag and full-length Bid was achieved by gel filtration. The 

final yield was 10-15 mg protein per liter bacterial culture. M = protein size ladder, TL = Total lysat before 

purification, FT = Flow through during affinity chromatography, FT2 = Flow through during ion exchange. B, Maldi 

analysis of the produced recombinant full length Bid after Thrombin- cleavage of the His-tag, confirms the 

production of Bid with a molecular weight of 22.256 kDa. 

 

Notably, cleavage of the His6-tag benefitted the final concentration step of full-length Bid 

resulting in concentrations of up to 9.5-10.0 mg/ml compared to 4.5-5 mg/ml for full-length 

Bid containing the His6-tag.  
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3.2.3 Crystallization of full-length Bid 

Crystal structure determination is regarded as the preferred method to obtain insights into the 

structural understanding of the molecular function of proteins as well as into the interaction 

geometry of protein-ligand complexes. To date, 86 % of the Protein Data bank (rcsb-PDB) 

entries are macromolecular structures that were determined using X-ray crystallography. The 

successful determination of the crystal structure of a protein requires the preparation of 

crystals suitable for X-ray analysis, usually single crystals characterized by a high degree of 

homogeneity, long-range order and suitable size with an optimum between 10-4 and 10-3 mm3 

189, 206-209, causing the process of obtaining crystals as cumbersome and not trivial.  

As the purity, homogeneity and monodispersity of the respective Bid protein sample was 

evaluated at the purification stage, the protein was introduced to precipitating agents that can 

promote the nucleation of protein crystals in the solution. All crystallization screens 

throughout this thesis were performed using the vapor-diffusion technique as the main 

commonly used method for obtaining crystals. Initial crystallization screenings for the 

respective Bid protein constructs were performed using typical protein crystallization screens 

purchased from Qiagen (see Table 54) thereby testing about 1300 different conditions at two 

different temperatures (4°C and 18°C) respectively, as temperature can influence protein 

solubility and thereby crystallization. The crystallization screens were carried out at the Core 

Facility Structural Biology, LOEWE Center of Synthetic Microbiology (SYNMICRO), 

University of Marburg, using a HoneyBee crystallization robot and 96-well plates with 600 nL 

mother liquor and protein (1:1) and 80 µl reservoir volume incubated, and continuously 

imaged using a Formulatrix RockImager (see methods for detail). For scoring and 

interpretation of crystallization drop results, a non-Q scoring system was used189, which is 

shown in Table 61 (2.23.3). 

3.2.3.1 Highly flexible regions eliminate crystallization of full-length Bid 

Purified His6-tagged full-length Bid was subjected to crystallization screening at a 

concentration of 4.5 mg/ml. Despite of 1300 crystallization conditions, the first crystallization 

screens failed to yield Bid crystals, although some tendencies for initial crystal nucleation and 

micro-crystallization could be observed. The formation of heavy precipitates (score 2-3) was 

often observed in the presence of cadmium, nickel or zinc ions, while microcrystals and 

needles (score 6-7) could be obtained in the presence of cryoprotectants, such as 2-Methyl-

2,4 pentanedion (50% MPD) or different polyethyleneglycols (PEG 3350, PEG 4000). 

However, reproduction and optimization failed to identify a clear “hit”-condition for the 

crystallization of His6-tagged full-length Bid. 
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Full-length Bid lacking the His6-tag was subjected to a selection of 8 screening suites (Table 

54) at higher concentrations of 9.9 mg/ml and monitored at 18°C which was found to be the 

more promising temperature. Two conditions are worth mentioning, condition 21 from the 

classic suite and condition 12 form JCSG Core I suite, revealing small micro-crystals (score 

6) approximately 25-30 days upon drop incubation. Both conditions were optimized as 

presented in Table 55 and Table 56. Although, crystal growth could be slightly improved, the 

obtained microcrystals were still too small for mounting and appeared to be overlapping each 

other, forming small and amorphous crystal clusters. 

As these observations demonstrated that crystallization screening of full-length Bid failed to 

yield crystals suitable for diffraction measurements, further work included the design of novel 

Bid constructs which should facilitate the crystallization procedure.  

 

3.2.4 Design of modified truncated Bid constructs promise successful 

crystallization 

Structures of mouse and human Bid proteins generated so far by nuclear magnetic 

resonance (NMR) techniques provide insights into the structural mobility of Bid: consisting of 

20 NMR solutions differing in their energy (PDB entry, 1DDB)65, the three-dimensional 

solution structure of Bid predicts the arrangement of the eight α helices, building the core of 

Bid,  and two strongly disordered regions with a high conformational mobility (Figure 40, 

marked in red). The conformation of the unstructured N-terminal region and the highly 

flexible loop located between α2 and α3 predicted in Figure 40 A are only two of many that 

satify the NMR-derived restraints. Thus, the presence of these highly mobile regions might 

explain the failure of obtaining crystals using full-length Bid as a conformational mobility 

interfere with the generation of severe ordered crystal packages. As shown in Figure 40 B 

revealing an overlay of the NMR structure of mouse Bid (1DDB)65 and the X-ray structure of 

mouse Bcl-xl (1MAZ)68, the overall tertiary fold derived for Bid is similar as that observed for 

the Bcl-xl structure68, 113. Therefore, further strategies for Bid crystallization were based on 

previous experiences collected for the construct design and crystallization of Bcl-xl and other 

related proteins such as Bcl-2 and Mcl-168, 122, 210, indicating that crystallization of Bid could 

be facilitated by removing the mobile N-terminus and loop. 
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Figure 40: Highly flexible regions of full-length Bid 

A, Overlay of two NMR structure of full-length mouse Bid (PDB entry, 1DDB)
65

. Ribbon depiction reveals, that the 

protein Bid consists of a eight-helix core shown in grew and turquoise, respectively and two strongly disordered 

regions located at the N-terminus and between helices α2 and α3 (both marked in red). The schematic drawing 

illustrates the size and two possible conformations of the flexible N-terminus and the loop. As the 1DDB structure 

solution of full-length mouse Bid consist of 20 NMR solutions 
65

, the predicted orientations of the loop are only two 

of many that satisfy the NMR-derived restraints. In contrast, the core conformation is almost consistent. B, 

Overlay of one NMR structure solution of mouse full-length Bid in grey (PDB entry, 1DDB) and x-Ray structure of 

mouse Bcl-xl (PDB entry, 1MAZ)
68

 in yellow. The Bcl-xl protein consists of two central hydrophobic α-helices 

surrounded by amphipathic helices and a highly flexible 60-residue loop connecting helices α1 and α2. Since the 

removal of this loop was essential for obtaining crystals, it is not predicted in the yellow Bcl-xl structure.  

 

Based on these considerations211, four different Bid constructs lacking the highly flexible 

regions of mouse Bid were designed as GST-fusion proteins following the strategy predicted 

in Figure 41 A, namely pGEX Δ12-Y47 (Bid 1), pGEX Δ12-D51 (Bid 2), pGEX Δ13-Y47 

(Bid 3) and pGEX Δ13-D51 (Bid 4). 

 

        

Figure 41: Strategy for design of novel truncated Bid constructs. 

A, Schematic drawing of the NMR solution structure of mouse full-length Bid (PDB entry, 1DDB)
65

, revealing the 

structure core of Bid in grey and unstructured regions in red. Highlighted amino acids (black) predict the cleavage 

points for generation of four Bid construct. First cleavage was performed at the N-terminus at either Glycin 12 

(G12) or Alanin 13 (A13). Secondly, the loop was cleaved from either Thyrosin 47 (Y47) or Aspartat 51 (D51) up 

to Glutamate 77 (E77). The combination of both cleavages resulted in four truncated Bid constructs. B, PCR 

analysis confirms successful cloning of the truncated Bid constructs: pGEX Δ12-Y41 (Bid 1), pGEX Δ12-D51 (Bid 

2), pGEX Δ13-Y47 (Bid 3) and pGEX Δ13-D51 (Bid 4).  

A B
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The successful cloning of the N-terminal truncated Bid constructs starting with Glycin 12 or 

Alanin 13 (designated Δ12 and Δ13, respectively) into the pGEX1λT vector and the removal 

of the unstructured loop from either Thyrosin Y47 or Aspartat D51 to glutamate 77, was 

analyzed by PCR (Figure 41 B) and finally confirmed by multiple alignment of the four 

generated Bid constructs and mouse full-length Bid (Table 65).  

 

Table 65: Gene alignment of novel Bid constructs and mouse full-length Bid 

 

Multiple Alignment of Bid constructs 
 

12          GAEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAYWEADLEDELQTDGSQAS  64 

„12-47“   GSGAEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAY----------------- 

„12-51“   GSGAEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAYWEAD------------- 

„13-47“   GS-AEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAY----------------- 

„13-51“   GS-AEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAYWEAD------------- 

 

65      RSFNQGRIEPDSESQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSEEDKR  124 

„12-47“ -------------SQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSEEDKR 

„12-51“ -------------SQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSEEDKR 

„13-47“ -------------SQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSEEDKR 

„13-51“ -------------SQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSEEDKR 

 

125     NCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQNLFS  184 

„12-47“ NCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQNLFS 

„12-51“ NCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQNLFS 

„13-47“ NCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQNLFS   

„13-51“ NCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQNLFS   

 

185     YVRNLVRNEMD  195 

„12-47“ YVRNLVRNEMD 

„12-51“ YVRNLVRNEMD 

„13-47“ YVRNLVRNEMD   

„13-51“ YVRNLVRNEMD 
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3.2.5 Effective expression of GST-tagged Bid constructs 

As GST-tags positively influence protein solubility and expression efficiency of small proteins, 

the designed Bid constructs were expressed in E. coli. as GST-fusion proteins. For 

evaluation of gene expression, Rosetta2 (DE3) singles were transformed with the respective 

designed plasmids and protein expression was succeeded 5 h to 19 h after IPTG induction 

(Figure 42 A, B). Expression tests revealed an increased protein expression from 2 h up to 

5 h, while the amount of protein decreased again 19 h after expression induction (Figure 

42 A, B). Notably, all four Bid constructs were easily expressed in high amounts, as 

confirmed by gel-electrophoresis revealing just soluble extracts without purification (Figure 

42 A, B). To ensure the maximal yield of protein expression, protocols for expression of the 

respective Bid constructs were scaled up and bacteria were harvested 4.5-6 h after IPTG 

induction to avoid deficiencies due to protein degradation.   

 

 

 

Figure 42: Effective expression of truncated Bid constructs. 

Effective expression of the truncated Bid constructs was analyzed by expression tests in Rosetta 2 (DE3). E. coli 

were transformed with the respective pGEX-1λT vectore encoding the truncated Bid construct as GST-fusion 

protein. Samples were taken after 0 h – 19 h after induction of protein expression by 1 M IPTG. Soluble protein 

fractions were analyzed by gel-electrophoresis followed by coomassie staining. Protein expression of all four Bid 

constructs was significantly increased from 2 h up to 5 h, while slightly less protein was detected after 19 h 

bacterial growth. The molecular weight of the GST- tagged constructs is about 40 kDa. Note that the gels show 

just soluble extracts without purification. 
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3.2.6 Purification of the Bid construct pGEX Δ12-Y47 (Bid 1) 

The GST-fusion protein pGEX Δ12-Y47 (Bid 1) was highly expressed in Rosetta2 (DE3) and 

recovered in the soluble protein fraction (TL) 4.5-6 h after IPTG induction, as confirmed by 

gel-electrophoresis followed by coomassie staining (Figure 43 B (TL)). Purification of 

pGEX Δ12-Y47 was performed by two chromatography steps using the Äkta prime plus 

system. GSH-affinity chromatography yielded high amounts of GST-Bid 1, eluted with 10 mM 

glutathione in the fractions E7-E9 (Figure 43 A, B). Notably, the chromatogram revealed only 

one clear absorbance peak for Bid 1, already indicating a high purity of the recovered protein 

(Figure 43 A), which was confirmed by the related SDS-PAGE which estimated a purity of 

90-95% (Figure 43 B). Due to this high purity after affinity chromatography the Bid construct 

was directly subjected to further gel filtration without ion exchange in between. To avoid 

interference of the relatively large GST-tag (24 kDa) during crystallization, the GST-tag was 

effectively cleaved using thrombin (3.5 U/ml) as confirmed by gel-electrophoresis revealing 

the GST-tag at 24 kDa and the pure Bid 1 below (Figure 43 C). The following gel filtration 

successfully separated the purification-tag from the cleaved Bid 1, as shown by the diverse 

peaks in the purification run profile (Figure 43 D). Notably, compared to high absorbance up 

to 500-800 AU for the GST-tagged protein, the Bid 1 absorbance peak shown in the 

chromatogram (second peak) is relatively small as only a few aromatic amino acids are 

present in the Bid 1 sequence (Table 65). The related coomassie stained SDS-PAGE 

confirmed a purity of >98%, enabling the subjection of the batch to crystallization screenings. 

A final yield of 15-20 mg Bid 1 per liter culture could be obtained (Figure 43 E).  

Based on the sequence of the pGEX Δ12-Y47 (Bid 1) construct a molecular mass of 18 kDa 

(17.626 kDa) was calculated. However, purification SDS-PAGEs revealed the eluted protein 

between 11 and 15 kDa (Figure 43 C, E). In order to investigate the identity of the construct, 

the final purification batch was subjected to MALDI-TOF analysis (Figure 44), confirming the 

actual mass of ≈ 18 kDa (17.645 kDa). Markedly, the sample subjected to MALDI-TOF had 

been stored for a couple of weeks, explaining the appearance of additional peaks that might 

be due to protein aggregations or reagent adsorptions during purification.  

For crystallization studies, the purified Bid 1 construct was concentrated up to concentrations 

of 9.5-10.5 mg/ml. In particular, the removal of the flexible N-terminus and loop benefitted the 

concentration procedure, which was more effective compared to the concentrations 

performed for full-length Bid. 
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Figure 43: Purification of Bid 1 (pGEX-Δ12-Y47). 

Bid 1 was expressed as a GST-fusion protein in E. coli (Rosetta 2 (DE3)) and recovered in the soluble protein 

fraction. A, GSH-affinity chromatography using the Äkta prime plus system connected to a GSTrap FF column 

(GE Healthcare). Protein elution was performed with buffer containing 10 mM glutathione. B, Coomassie stained 

12.5 % SDS-PAGE revealing the analyzed elution fractions within the peak area shown in A (TL = total lysate 

before purification, FT = flow through, E7-E10 = elution fractions). Fractions E7 to E19 were pooled and subjected 

to the following thrombin cleavage. C, The GST-tagged Bid 1 construct was digested with thrombin (3.5 U/ml) for 

16 h at 37°C. The successful removal of the GST-tag was confirmed by 12.5 % gel-electrophoresis and 

coomassie staining. D, Separation of GST-tag and Bid1 by gel filtration. The chromatogram shows 5 peaks, 

predicting GST-Bid1 fusion protein at 40-50 min. and cleaved GST-tag at 60 min. The cleaved Bid 1 was eluted 

between 70 min. and 80 min. Other peaks indicate thrombin and PMSF. E, Highly pure Bid 1 protein was 

recovered in elution fractions E32-E34 (second chromatogram peak) as confirmed by 12.5 % coomassie stained 

SDS-PAGE. Fractions E20-E26 were recovered from the first chromatogram peak predicting GST-Bid1, fractions 

E26 and E27 show the GST-tag. 
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Figure 44: MALDI-TOF analysis of Bid1 (pGEX-Δ12-Y47). 

A, Purified Bid 1 was subjected to MALDI-TOF analysis, performed by Jörg Kahnt at the Max-Planck-Institute of 

Terrestrical Microbiology, Marburg, Germany. The molecular mass of Bid 1 represents 17645 Da in the predicted 

MALDI-TOF spectrum and fits to the theoretically calculated mass of 17626 Da.  Additional peaks in the mass 

spectrum might be due to storage or glutathione adsorption during purification.  

 

3.2.7 Crystallization screening of pGEX Δ12-Y47 (Bid 1) 

The purified Bid 1 construct was subjected to an extensive crystallization screening at 

concentrations of 9.5 mg/ml as well as at concentrations of 10.5 mg/ml. Initial crystallization 

screens were performed as described above (0). As crystallization from solution generally 

occurs via the sequential steps of nucleation of the phase, destined by the compositions of 

the solution, followed by growth of the nuclei to larger sizes by incorporation of the solution 

material189, 209, a common method for promoting nucleation is to supplement the protein-

reservoir drops with nanoparticles. Therefore, duplicate crystallization screens of Bid 1 were 

performed in the presence of 2 % nanoparticles. The first crystals of pGEX Δ12-Y47 (Bid 1) 

were finally obtained upon drop incubation at 277 K after mixing 300 nL protein solution with 

300 nL reservoir solution of two different conditions: (a) Cryo suite condition 5, containing 90 

mM HEPES pH 7.5, 15 % (V/V) glycerol, 8.5 % (V/V) 2-propanol and 17 % (V/V) PEG 4000 

(Figure 45 A), and (b) JCSG+ suite condition 79, consisting of 0.1 M di-sodium succinat 

pH 7.0 and 15 % (V/V) PEG 3350. (Figure 45 B). While first crystals obtained from condition 

(a) were observed 20 days after drop incubation showing an increasing growth up to day 35, 

crystals yielded from condition (b) were debuted on day 9 with an increasing growth up to 

day 23.  Figure 45 shows the continuous growth of crystals obtained from the respective 

conditions.  
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Figure 45: Successful result of Bid 1 crystallization. 

Highly pure Bid 1 protein (construct Δ12-Y47) was subjected to extensive crystallization screening using the 

Quiagen NeXtal screening suites. A, Successful crystallization was obtained using the cryo suite condition 5, 

containing. First crystal growth was obtained 90 mM HEPES (pH 7.5), 15 % Glycerol, 8.5 % 2-propanol and 17 % 

PEG 400020 days after screening start and mounted after 38 days. Cross polarized light was used on day 35 to 

confirm that the crystal is a protein crystal. B, Successful crystallization was obtained using the JCSG+ condition 

79, containing 0.1 M di-Sodium succinat (pH 7.5), 15 % PEG 3350. First crystal growth was obtained at day 9 

after initial screening set up and a continuous growth was observed up to day 23. Crystals were frozen at day 26. 

 

The relatively slow growth of the crystals as well as their three-dimensional shape strongly 

indicated protein crystals rather than salt crystals. This was further suggested as the buffer 

control, always performed in drop 2 (Table 54), obtained no crystal growth. However, as 

many compounds, not just the protein, can crystallize in the crystallization drop189, further 

tests to distinguish between protein and salt crystals were performed. Both crystals were 

stainable with methylene blue and physical manipulation using a micro tool indicated a soft 

and easy breaking behavior of both crystals. These results strongly indicated the presence of 

a protein crystal as a salt crystal would not be stainable with dyes and would break apart with 

a snap or crunching sound under the force of a micro tool (2.23.4.3). Additional evidence for 

the presence of protein crystals was derived from viewing the crystals with polarized light 

which revealed color effects due to a double refraction of the anisotropic protein crystal as 

shown for crystal_11 of the cryo suite condition 5 (Figure 45 A, cross polarizer). However, 

the only definitive test to confirm the identity as a protein crystal is the X-ray diffraction 

pattern, which was finally obtained by synchrotron measurements described below for 

crystals obtained from both conditions (a) and (b). 
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3.2.8 Optimization strategies of Bid 1 crystals 

Several optimizations rounds were performed in order to optimize the respective 

crystallization hit conditions (a) and (b) as described in Table 57 et sqq.. It is worth 

mentioning that in protein crystal growth, the formation of crystals is often hard to reproduce 

even by scrupulously following the original conditions207. Therefore, optimization experiments 

were also used to improve the reproducibility of crystal growth in the abovementioned hit 

conditions. Notably, reproduction and optimization of condition (a) was even more 

cumbersome than optimizations of condition (b). Figure 46 A predicts a representative result 

obtained from the cryo suite condition 5 opti-grids, revealing crystals which are larger in 

length compared to the original hit crystals (Figure 46 A), but with a shape of  thin needles 

(score 7) rather than 3D crystals (score 9).  In contrast, optimizations of hit condition (b) 

succeeded in producing several crystals that were grown in conditions consisting of 0.1 M di-

sodium succinat and different concentrations of PEG 3350 in a range of 11 % up to 21 % 

(V/V), respectively. Although crystal growth was observed in conditions with low pH of 6.5 

(Figure 46 B), the preferred pH for crystal growth within these conditions was obviously pH 

8.0 revealing the most crystals during optimization (Table 56 et sqq.). In addition to seeding 

strategies, the abovementioned hit conditions were supplemented with additives using the 

commercial Additive Screen HTTM (Hampton Research) performed in the 96-well format at 

both temperatures of 4°C and 18°C. Using this approach, crystals were obtained from 

condition (b) supplemented with 5 % (W/V) n-dodecyl-β-D-maltoside (Additive screen 

condition 72 (F12)), 40 % (V/V) 2,5-hexanediol (mixture of isomers, Additive screen condition 

78 (G6)) and 40 % (V/V) formamide (Additive screen condition 89 (H5)).  

 

 

 

Figure 46: Bid 1 crystals obtained form opti grid conditions. 

Bid 1 (10.5 mg/ml) was subjected to optimization grids of condition cryo A5 and condition JCSG+ G7. To 

examples of the obtained crystals are shown. A, Bid 1 crystal obtained from cryo opti-grid condition A9 consisting 

of 90 mM HEPES (ph 7.5), 30 % Glycerol, 21 % 2-propanol and 17 % PEG 4000 at 18°C. B, Bid 1 crystal 

obtained from JCSG+ opti-grid condition A3, consisting of 0.1 M di-Sodium succinat (ph 6.5), 15 % PEG 3350 at 

4°C. Of note, further crystals were obtained during optimization of the JCSG+ G7 condition at ph 8 and a range of 

11 % to 21 % PEG 3350. 
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3.2.9 Data collection and processing  

Crystals obtained for the indicated hit conditions, as well as crystals obtained from the 

respective optimization grids and additive screens were harvested from mother liquor, frozen 

in liquid nitrogen in the presence of a cryoprotectant if necessary, and transferred to the 

synchrotron. Data were collected at 100 K at BESSY II (Helmholtz-Zentrum Berlin, 

Germany), Beamline 14.1190 or at PETRA III (DESY, Hamburg, Germany) and processed 

using XDS191 as implemented in XDSAPP192. From all crystals measured, the best results 

were recorded for crystals obtained from the original hit conditions (a) and (b). Figure 47 

reveals the typical diffraction pattern obtained throughout data collection on the respective 

Bid 1 crystals shown above and recorded at BESSY II under cryoconditions. Although 

crystals obtained from condition (a) were the larger and better-looking crystals, best data 

were produced from the smaller and ´uglier´ crystals of condition (b) as in line with plenty of 

reports mentioning that the best data are often derived from the most unimpressive crystal 

shapes189, 207, 209. Table 66 depicts the results of data processing for the most promising data 

collection that was obtained for Bid 1 crystal_11 derived from the abovementioned condition 

(b). Indexing of the initial diffraction data revealed unit cell constants as expected for crystals 

of this protein size. Data processing suggests a crystal form in space group C2221 with two 

monomers per asymmetric unit, as indicated by the Matthews coefficient of 2.2 Å³/Da and an 

estimated solvent content of 44.1%.  
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Figure 47: Bid 1 crystals used for data collection and typical diffraction pattern 

The Bid 1 crystals, obtained by initial crystal screening for Bid 1 (10 mg/ml) and grown in condition 5 from cryo 

suite (A) an appropriate 79  from JCSG+ suite (B) were frozen in liquid nitrogen and transferred to the 

synchrotron. B, D, Typical diffraction pattern obtained throughout data collection on the respective Bid 1 crystals 

shown above and recorded at BESSY II. Crystal A: 3.63 Ǻ, Crystal B: 3.28Ǻ. 

 

Despite extensive molecular replacement (MR) trials using Phaser193 with search models 

from various sources, such as Bid NMR structures obtained from the PDB (PDB entry, 

1DDB, 2BID), homology models and poly-Ala models with different domain boundaries, no 

unique MR solution could be identified so far, implying a preliminary status to the space 

group assignments given in Table 66. Data indexing and molecular replacement trials were 

performed by Holger Steuber (LOEWE Center of Synthetic Microbiology (SYNMICRO), 

University of Marburg). 

 

Table 66: Statistics for data collection and processing for Bid 1. 

Crystal Bid_11 was obtained from JCSG+ suite, condition 79 

Data collection and processing Crystal Bid_11 

Radiation Source    Bessy MX 14.1 

No. of crystals used 1 

Wavelength [Å] 0.91841 

possible Space group C222/C222(1) 

Unit cell parameters  

    a, b, c [Å] 
63.4; 128.2; 78.0 

     ,  
90 ; 90 ; 90 

Matthews coefficient [Å³/Da] 2.2 

Solvent content [%] 44.1 

Diffraction data  

Resolution range [Å] 22.0 – 3.75 (3.95-3.75) 

Unique reflections 3 442 (487) 

R(I)sym [%] 15.9 (61.3) 

Completeness [%] 99.4 (100.0) 

Redundancy 6.3 (6.5) 

   I/(I) 
12.7 (3.5) 
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3.2.10 Purification and crystallization of pGEX Δ12-D51 (Bid 2) and pGEX Δ13-

D51 (Bid 4) 

The Bid constructs pGEX Δ12-D51 (Bid 2) and pGEX Δ13-D51 (Bid 4) were analogously 

expressed as GST-fusion proteins in Rosetta2 (DE3) and purified using the optimized and 

scaled up expression and purification protocol for construct pGEX Δ12-Y41 (Bid 1), with 

minor changes. Figure 48 reveals the purification profiles and related SDS-PAGEs for 

purification of the Bid 2 construct. Gel-electrophoresis of the bacterial total lysate (TL, Figure 

48 B) confirmed the recovery of Bid 2 in the soluble protein fraction and the high purity of the 

construct achieved by elution during GSH-affinity purification (Figure 48 B (E)). The 

subsequent cleavage of the GST-tag was further improved by the use of 1 U thrombin 

(Novagen) per mg protein succeeding in a complete removal of the purification-tag (Figure 

48 B, (+thrombin)). The final gel filtration yielded large quantities of Bid 2 (20 mg protein per 

liter culture) with a high purity of > 98 % (Figure 48 C, D). Bid 2 containing fractions were 

pooled, concentration and subjection to the crystallization approach.  

 

 

Figure 48: Purification of Bid 2 (pGEX-Δ12-D51). 

The fusion protein GST-Bid 2 was successful expressed in E. coli (Rosetta 2 (DE3) after IPTG induction for 4.5 h. 

A, GSH-Affinity chromatography of Bid 2 was performed using a glutathione HiCap Cartridge. 20 ml of Bid 2 

protein lysate was injected four times via a 5 ml sample loop. Elution of the protein was performed with buffer 
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containing 10 mM glutathione. B, The purity of the elution fraction (peak area) was confirmed by 12.5 % gel- 

electrophoresis and coomassie staining. Note that the elution fraction reveals already pure protein compared to 

the total lysate (TL) before purification and flow through (FT). For removal of the GST-tag, the recovered elution 

fraction, containing 22 mg protein, was supplemented with 22 U thrombin (+ Thrombin) and incubated for 16 h at 

37°C. Notably, the cleavage of the GST-tag was almost completely. C, To separate the cleaved GST and to yield 

highly pure protein, gel filtration was performed and the pure protein eluted in 20 mM Tris, 50 mM NaCl buffer (pH 

7.4). D, The elution fractions within the peak area predicted in the gel filtration chromatogram (C) were analyzed 

by 12.5 % SDS-PAGE. While elution fraction 26 (E26) contains the GST-tag, pure Bid 2 protein was recovered in 

the fractions E32-E35. 

 

The high purity and integrity of pGEX Δ12-D51 (Bid 2) indicated by the clear and improved 

chromatography profile (Figure 48), was further confirmed by MALDI-TOF analysis, revealing 

only one peak at the expected molecular mass of 18 kDa (Figure 49). 

 

 

Figure 49: MALDI-TOF analysis of purified Bid 2 (pGEX-Δ12-D51). 

Purified Bid 2 was subjected to MALDI-TOF analysis, performed by Jörg Kahnt at the Max-Planck-Institute of 

Terrestrical Microbiology, Marburg, Germany. The molecular mass of Bid 2 represents 18130 Da in the predicted 

MALDI-TOF spectrum as expected by theoretically calculated mass of 18127 Da.  Note, that the well defined 

peak, indicating highly pure and intact Bid 2 protein. 

 

 

Finally, the pGEX Δ13-D51 (Bid 4) construct was subjected to the described purification 

procedure, as shown in Figure 50. Notably, gel electrophoresis after GSH-affinity 

chromatography revealed a relatively high amount of Bid 4 in the flow through fractions (FT, 

FT2, Figure 50 B), indicating an even more pronounced high-yield expression of this 

construct compared to construct Bid 2. This was confirmed by determining the protein 

amount after the first purification step, predicting a mentionable yield of 86 mg protein per 1.2 

liter bacterial culture. Admittedly, cleavage of the GST-tag was probably not completely due 

to undercharged amounts of thrombin (Figure 50 C). Nevertheless, the fractions that 

revealed Bid 4 completely separated from the GST-tag (E31-E35, Figure 50 D) contained 

high amounts of pure Bid 4 protein (> 98%), that could be concentrated up to values of 
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15.2 mg/ml.  The following MALDI-TOF analysis confirmed the molecular mass of 18 kDa for 

Bid 4, although additional peaks at higher values (18.381 kDa and 18.689 kDa) were 

observed and might indicate a contamination with remains of GST-Bid 4 fusion protein 

(Figure 51).  

 

 

Figure 50: Purification of highly pure Bid 4 protein (pGEX-Δ13-D51). 

Bid 4 was expressed as a GST-fusion protein in E. coli (Rosetta 2 (DE3)) and recovered in the soluble protein 

fraction. A, GSH-affinity chromatography. 25 ml of protein solution was loaded and protein elution was performed 

with buffer containing 10 mM glutathione. B, Coomassie stained 12.5 % SDS-PAGE (TL = total lysate before 

purification, FT = flow through, flow through end method, E34-E39 = elution fractions). The fractions E34-E39 

were pooled, containing 7.2 mg/ml pure protein (total amount 86 mg). Note that FT2 contains high amounts of Bid 

4, indicating that the binding capacity of the column was exceeded. C, The GST-tagged Bid 2 construct was 

digested with thrombin (Novagen) for 16 h at 37°C. Separation of GST-tag and Bid 4 was achieved by gel 

filtration. The chromatogram shows 3 peaks, predicting GST-Bid 4 fusion protein at 50-60 min. and cleaved GST-

tag at 60 min. The cleaved Bid 4 was recovered in the elution fractions E31-E36. D, Gel-electrophoresis confirms 

the purity of Bid 4 in elution fractions E31-E36. Fractions E22 and E26 were recovered from the first 

chromatogram peak predicting the GST-tag. 



Results | 153 

 

 
 

 

Figure 51: MALDI-TOF analysis of purified Bid 4 (pGEX-Δ13-D51). 

Purified Bid 4 was subjected to MALDI-TOF analysis, performed by Jörg Kahnt at the Max-Planck-Institute of 

Terrestrical Microbiology, Marburg, Germany. The molecular mass of Bid 4 represents 18071 Da in the predicted 

MALDI-TOF spectrum as expected by theoretically calculated mass of 18070 Da. The protein sample might 

contain remains of GST-Bid 4 fusion protein as indicated by the peak with the mass 18381 Da. 

 

Constructs pGEX Δ12-D51 (Bid 2) and pGEX Δ13-D51 (Bid 4) were analogously subjected 

to the abovementioned crystallization screenings at a concentration of 8.5 mg/ml for Bid 2 

and at concentrations of 10.0 mg/ml and 15.5 mg/ml for Bid 4. The tested screening suites 

are quoted in Table 54. So far no crystals suitable for X-ray diffraction were obtained for any 

of the construct Bid 2 and Bid 4. As crystallization screenings are still ongoing only some 

tendencies can be mentioned up to date. Both constructs immediately precipitate if ions such 

as cadmium or zinc are present in the crystallization screening conditions, as it was similarly 

observed for full-length Bid and construct Bid 1. Promising conditions observed for Bid 2 

were conditions 14, 38 and 58 from the JCSG+ suite and conditions 38, 39 and 61 from the 

JSCG core I suite. Crystallization screens performed for Bid 4 obtained similar results, but 

with a more pronounced tendency for precipitations and phase separations. In general, more 

promising results were observed when crystallization screening was performed at 18°C 

compared to the drop results obtained at 4°C. Further screenings and optimizations have to 

be conducted to improve the crystallization of both constructs.  
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3.2.11 Functional analysis of Bid constructs in HT-22 cells 

It is well accepted, that the pro-apoptotic activity of Bid is mainly mediated by its truncated 

active form tBid61, 66, 173, rapidly accumulating at the mitochondrial membrane and initiating 

cytochrome c release and cell death. As described above, beside the caspase-8 mediated 

cleavage of full-length Bid, cleavage can also be mediated by granzyme B, calpains or 

cathepsins that all cleave Bid in the unstructured loop region between helices α1 and α260, 61, 

74, 76, 212. Since the Bid constructs Bid 1-Bid 4 lack the flexible loop region, a cleavage 

mediated by any of the abovementioned proteases is unlikely and thereby a pro-apoptotic 

function of the novel Bid constructs is not expected. However, a death-promoting nature of 

full-length Bid was also reported by previous studies, showing that apoptosis could be 

induced by over-expression of full-length Bid55 or a Bid mutant lacking the caspase-8 

cleavage site213. Furthermore, it has been described that the N-terminal sequence of Bid 

ensures its cytoplasmic localization and negatively regulates the binding of Bid to 

membranes thereby inhibiting the exposure of the BH3 region and its apoptotic function61. To 

investigate, if the designed Bid constructs, that lack the first 12 and accordingly 13 amino 

acids of the N-terminus, procure a pro-apoptotic activity in cellular systems, over-expression 

of the respective constructs was examined in the present HT-22 cell line. To this aim, the 

constructs were cloned into the pcDNA3.1 vector suitable for expression in eukaryotic cells 

(2.14.4.1). In accordance to the tBid-toxicity assay, HT-22 cells were transfected with the 

plasmids encoding the sequence of the truncated Bid construct 3 and 4, respectively, and 

cell viability was analyzed 24 h to 48 h after over-expression. To compare the toxic or non-

toxic activity of Bid 3 and Bid 4 with the tBid-induced cell death features, controls were 

transfected with the tBid-encoding plasmid as outlined above. Photomicrographs revealed 

that any of the truncated Bid constructs induced alterations in cell morphology, as they were 

observed in tBid-over-expressing HT-22 cells (Figure 52 A). Cells over-expressing Δ13-Y47 

and Δ13-D51, respectively, retained the normal spindle-shaped morphology comparable to 

pcDNA3.1 transfected cells (Figure 52 A). Quantification of cell viability determined by MTT 

assay, confirmed that none of the both constructs induced cell death in HT-22 cells, 

indicating a “full-length Bid like behavior” of Δ13-Y47 and Δ13-D51 rather than a tBid-like 

function when over-expressed in HT-22 cells. 
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Figure 52: Functional analysis of Bid constructs. 

HT-22 cells were transfected with a plasmid containing either Bid 3 sequence (pc-Δ13-Y47) or the Bid 4 sequence 

(pc-Δ13-D51). Controls were treated with attractene only (vehicle) or transfected with an empty control vector 

(pcDNA3.1). Transfection of cells with the tBid-encoding plasmid (pIRES-tBid) was used as positive control for 

tBid-induced toxicity. A, Cell morphology was analyzed by microscopy. Photomicrographs show the typical 

phenotype of tBid-induced cell death in cells transfected with the pIRES-tBid vector, but no alterations in cells 

transfected with the truncated Bid concstructs, comparable to control pc-DNA3.1. B, Cell viability was analyzed by 

MTT assay 48 h after over-expression of the respective Bid constructs. Note that cell viability is not affected by 

any of the novel truncated Bid constructs (Bid 3 and Bid 4), yet significantly decreased by over-expression of tBid.  

 

To summarize, the work above provides the basis for a suitable pipeline form Bid construct 

design, cloning, expression up to protein purification and first Bid crystallization approaches. 

Protocols for recombinant expression and purification were optimized and scaled up not only 

for full-length Bid, but also for diverse truncated Bid constructs, yielding high amounts of 15-

50 mg Bid variant per liter culture, depending on the respective Bid variant. The pure protein 

batches were subjected to extensive crystallization screenings, including initial screens using 

1300 different crystallization conditions at two temperatures respectively, as well as several 

optimization strategies such as opti-grids, seeding or additive screenings. The construct Δ12-

Y47 (Bid 1) was successfully crystallized and yielded diffraction data of 3.75 to 3.95 Ǻ 

resolution under X-ray exposure at the BESSY II synchrotron. In addition, constructs Δ12-

D51 (Bid 2) and Δ13-D51 (Bid 4) also promise successful crystallization, although further 

optimizations have to be performed with both Bid variants. Lastly, the constructs were over-

expressed in the HT-22 cell line confirming the non-apoptotic function of the truncated 

variants as expected from the structural modifications. Further optimizations of crystallization 

and diffraction properties of the Bid crystals, which were obtained during this work, promise a 

successful structure determination of Bid as an indispensable tool for a deeper 

understanding of the molecular mechanisms of Bid and the further structure-guided 

development of Bid-targeting compounds. 
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3.3 Functional analysis of recombinant Bid and Bax – a model system 

for membrane permeabilization 

Although previous studies demonstrated that Bid mediates apoptotic cell death via 

detrimental effects at the mitochondrial membranes24, 63, 97, the precise mechanism by which 

Bid or tBid trigger MOMP is still not fully understood. Several studies point to the caspase 8 

cleaved C-terminal fragment tcBid as the pro-apoptotic form with activity for membrane 

binding and permeabilization69, 214 and suggest a tBid-mediated Bax activation and 

subsequent MOMP69, 71, 77, 82, 215-219. A well accepted tool for investigating the pore-forming 

abilities of diverse proteins is the use of artificial lipid bilayer structures which mimic the 

mitochondrial membrane69, 72, 77, 82, 218, 219. To investigate the effect of the newly synthesized 

recombinant Bid and caspase-8 cleaved cBid on lipid membranes, in the presence and 

absence of recombinant Bax, continuing work included the validation of a model systems for 

membrane permeabilization, namely the liposome channel activity assay (3.3.1). The system 

was further used to examine the role of cardiolipin (CL) in Bid-mediated membrane 

permeabilization as many previous reports suggest CL as mitochondrial receptor for Bid77, 220-

225.   

3.3.1 Liposome channel activity demonstrates cBid- and Bax-mediated 

membrane permeabilization to be dependent on the presence of 

cardiolipin  

To investigate the effect of Bid and Bax on artificial membranes, 5,6-carboxyfluorescence-

containing liposomes were prepared using phosphatidylcholin (PC) and 

phosphatidylethanolamine (PE) as the most abundant lipids of the mitochondrial outer 

membrane (MOM). For investigation of the role of cardiolipin, PC/PE liposomes were 

compared to liposomes containing CL in addition. For baseline fluorescence, liposomes were 

initially measured at RT without the addition of proteins for 3-5 min. To rule out unspecific 

destabilization effects caused by protein buffer compositions, buffer containing 20 mM Tris 

(ph 7.4), 50 mM NaCl was added to act as a 0 % CF-release control (Figure 53 A), while the 

addition of Triton X-100 was used to induce 100 % CF release (Figure 53 B). Liposome 

stability as well as permeabilization ability was further investigated over a period of 60 min. 

(Figure 53 C), revealing that no CF was released in the absence of Triton X or when 

liposomes were just measured in PBS without compound addition, indicating that the system 

is suitable for investigating the pore-forming abilities of the recombinant proteins Bid and 

Bax. 
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Figure 53: Liposome channel activity assay as model system for membrane permeabilization. 

Liposomes with a lipid composition of phosphatidylcholin (PC), phosphatidylethanolamin (PE) and cardiolipin (CL) 

(PC/PE/CL: 54/20/26) stained with 1 % rhodamine DHPE and containing 20 mM 5,6 carboxyfluorescein (CF) 

were incubated in PBS and measured at RT without proteins. A, B, Change in fluorescence was measured over 

time after addition of H20 as negative control (A) or addition of 4% Triton-X as positive control for 100 % CF-

release (B). C, Stability of liposomes was determined over 60 min and 4 % Triton-X was added 12 min and 40 

min after initial measurement, respectively, revealing 100 % CF-release in both cases. Note the stability of 

liposomes after addition of H20 (A) and without any addition of Triton-X (C). Experiments show a measurement 

with n=3 (blue, green, red line, respectively) as a representative series of five independent measurements.  

 

As mentioned above, cleavage of full-length Bid is necessary for induction of its apoptotic 

function. In order to simulate the activation of Bid by caspase 8 and thereby to compare the 

pore-forming or membrane destabilizing abilities of full-length Bid and cleaved Bid, purified 

full-length Bid was modified through proteolysis by recombinant caspase 8 (Figure 53 A-C). 

Full-length Bid was already efficiently cleaved 0.5 h after caspase 8 incubation, as confirmed 

by gel-electrophoresis followed by coomassie staining (Figure 53 A) and western blot 

analysis (Figure 53 B), revealing the C-terminal fragment (tc Bid) and the 6.5 kDa N-terminal 

fragment (tnBid). As both, cBid and tBid are described to be pro-apoptotic and have been 

used in recently published mechanistic studies72, 77, 221, the following experiments were 

performed using cBid, without octylglucoside-mediated dissociation of the tcBid and tnBid 

fragment. The purity and integrity of the cleaved Bid samples S1 and S2 used for these 

studies was confirmed by gel-electrophoresis as shown in Figure 53 C.  
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Figure 54: Cleavage of full-length Bid with caspase 8. 

Purified recombinant full-length was cleaved with recombinant caspase 8 to obtain cleaved Bid (cBid). A, 

Recombinant Bid in 20 mM TRis (ph 7.4), 50 mM NaCl was diluted 1:1 with caspase-cutting buffer (50 mM 

HEPES (ph 7.5), 100 mM NaCl, 1 mM EDTA, 10 mM DTT, 10 % sucrose) and incubated with caspase 8 (7.6 

mg/ml) at RT. To determine the cutting efficiency, samples were taken at the indicated time points between 0 h 

and 2 h after caspase 8 incubation and analyzed by 12.5 % SDS-PAGE followed by coomassie staining. 

Complete cleavage was obtained already after 0.5 h. Control predicts full-length Bid without caspase 8 addition. 

B, western blot analysis confirms the successful production of tBid. C, Coomassie stained 12.5 % SDS-PAGE 

confirms the complete cleavage of full-length Bid 1.5 h after caspase 8 incubation. S1 and S2 indicate two 

different samples of cleaved Bid (cBid) that were used for membrane permeabilization assays.  

 

As cleaved Bid has been described as the protein with the more pronounced permeabilizing 

properties especially in the presence of CL, the effect of cBid was initially analyzed by adding 

increasing concentrations of cBid to cardiolipin-containing liposomes filled with 20 mM of CF. 

Upon protein addition, a clear concentratrion dependence of permeabilization rates for cBId 

could be detected (Figure 55 A). While no release of CF was observed using 10 nM of cBid, 

high concentrations of 6 µM increased the fluorescence values even though in slow kinetics 

(Figure 55 A). Of note, the cBid mediated fluorescence release did not reach 100 % 

compared to the Triton X release (Figure 55 B), resulting in an undervaluation of the 

liposome permeabilization. Experiments performed in parallel revealed a further increase in 

CF-release due to post-treatment of liposomes with Triton X. This is in line with recent 

reports observing similar results, when comparing the tBid- and cBid-induced fluorescence 

release to detergent-solubilization of liposomes72. As these results revealed the dose-

dependent membrane permeabilization mediated by cBid, the next step was to examine if 

the pore-forming ability of cBid is dependent on the presence of cardiolipin. In contrast to the 

reproducible CF-releasing effect of cBid on liposomes containing cardiolipin (Figure 55 C), no 

change in fluorescence was recorded when cBid was added to CF-incorporated liposomes 

lacking cardiolipin (Figure 55 B), confirming the previous reported importance of the 

phospholipid for Bid-mediated liposome permeabilization77, 91, 219. While these results 

revealed that cleaved Bid itself was able to induce CF release of liposomes at a 

concentration above 100 nM, full-length Bid showed no membrane destabilizing properties 
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as no change in fluorescence could be recorded after subjection of full-length Bid to the 

liposome channel activity assay (Figure 55 D, E). Notably, the absence of CF-release after 

Bid addition was independent of the presence or absence of cardiolipin (Figure 55 D, E).  

 

Figure 55: Permeabilization of cardiolipin-containing liposomes is induced by Bid in a 
concentration dependent manner, but not by full-length Bid. 

CF-containing liposomes with a lipid composition of PC/PE/CL: 54/20/26 were compared to liposomes lacking 

cardiolipin (CL) with a composition of PC/PE of 80/20. Both liposomes were stained with 1 % rhodamine DHPE, 

diluted in PBS and measured at RT for 3-5 min prior to protein addition. A, After addition of caspase 8 cleaved 

cBid in concentrations of 10 nM, 100 nM and 6 µM, change in fluorescence was measured over time. While 10 

nM of cBid was not sufficient to release CF and 100 nM showed slight increases in fluorescence, high 

concentrations of 6 µM increased fluorescence up to 600 RFU. B, cBid (6µM) was added to PC/PE liposomes 

lacking cardiolipin and fluorescence was measured at RT for further 25 min. No release of CF was detected. C, 
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Addition of cBid (6µM) to cardiolipin-containing induced the release of CF as indicated by increase in 

fluorescence. D, E, Addition of full-length Bid (6µM) to CF-liposomes containing PC and PE (D) and CF-liposomes 

containing cardiolipin in addition (E) did not induce release of CF as indicated by stable values of fluorescence. All 

experiments were performed with n=3 independent prepared liposome (green, blue, red line, respectively) 

samples and present a representative series of measurements from three independent experiments. cBid, 

caspase 8 cleaved Bid without dissociation of the t
c
Bid and t

n
Bid fragment. 

 

Since several previous reports described a Bax-induced lipidic pore formation that is 

accelerated by tBid71, 72, 77, 82, 91, 217-219, 225, the effect of recombinant Bax was examined on 

both, PC/PE- and PC/PE/CL-liposomes. In line with the abovementioned reports, no CF 

release was observed when Bax (100-500 nM) was added alone to the liposomes (Figure 

56 A, B). Intriguingly, post-addition of cBid to the Bax-liposome mixture had no effect on the 

liposome stability (Figure 56 A, B), while fluorescence release was clearly increased when 

both proteins, Bax and cBid, were pre-incubated prior to co-addition to the liposomes (Figure 

56 C).  These results indicate that either both proteins have to interact before recruitment to 

membranes, or that the sequential arrangement of cBid- and Bax- membrane association is 

essential for the subsequent permeabilization. The effects of the recombinant proteins Bid, 

cBid and Bax on lipid membranes obtained by the fluorescent liposome preparations were 

could be confirmed by preliminary data revealing the pore forming properties of cBid and Bax 

on CL-containing black lipid membranes (BLMs) produced by the Ionovation Compact 

system and measured by the Ionovation GmbH, Osnabrück, Germany. 

In order to examine, if the established liposome channel activity assay is a suitable system 

for testing the direct inhibitory effects of the Bid inhibitors, preliminary experiments were 

performed using the available Bid inhibitor BI-6c9 (Figure 56 D). As the cBid/Bax mixture 

induced the most prominent CF release of cardiolipin-containing liposomes, this set up was 

chosen to test the effect of BI-6c9 (10 µM).  Although BI-6c9 is well established to sufficiently 

inhibit Bid, addition of this inhibitor to the cBid/Bax mixture prior to co-addition to the CF-

containing liposomes resulted in only one of three measurements in a decrease of the 

cBid/Bax-induced fluorescence release (Figure 56 D). However, it should be noted, that the 

addition of BI-6c9 to the protein buffer immediately caused the partial precipitation of the 

compound, so that its effective concentration in solution cannot be estimated. Therefore, the 

failure of BI-6c9 to completely inhibit the cBid/Bax-induced fluorescence release might be 

due to undercharged concentration rather than to its failure to inhibit. Nevertheless, the 

results indicate that the CF-liposome channel activity assay is a well validated model system 

for mitochondrial membrane permeabilization and in general suitable as a primary in vitro 

screen for examining the effects of novel Bid inhibitors.  
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Figure 56: cBid-mediated permeabilization of cardiolipin-containing liposomes is increased by  
pre-incubation with Bax, and slightly reduced by the Bid inhibitor BI6c9.  

A, B, CF release of PC/PE- and PC/PE/C-containing liposomes was measured prior and after addition of Bax 

(100 nM) and cBid (10 nM), respectively. Bax alone was not able to permeabilize both types of liposomes and 

post-incubation with cBid did not increase the fluorescence values. C, Bax (500 nM) and cBid (6 µM) were pre-

incubated 5 min. prior to addition to cardiolipin- containing CF-liposomes. Changes in fluorescence were 

measured for 60 min after protein incubation. cBid-mediated permeabilization was increased in presence of Bax 

up to 1000 RFU. D, Cardiolipin-containing CF-liposomes were incubated with the cBid/Bax mixture in presence of 

the Bid inhibitor BI6c9 (10 µM). Only one of three samples revealed a decrease in fluorescence release 

(green line). Experiments reveal representative series of 2-3 measurements with n=3 (green, blue, red 

line). cBid, caspase 8 cleaved Bid without dissociation of the t
c
Bid and t

n
Bid fragment. 
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3.4 Role of VDAC1 in Bid-mediated mitochondrial demise and cell death 

In conditions of lethal stress increasing evidence points to a crucial role of mitochondrial 

dynamics and integrity for the decision between cellular life and death20, 24. The widely 

accepted role of the pro-apoptotic protein Bid in mediating mitochondrial injury and 

subsequent cell death24, 116, was elaborately substantiated in the abovementioned part of this 

thesis. While the sequences of Bid transactivation to mitochondria and the subsequent Bid-

dependent cell death pathways are well established, the precise mechanism by which Bid 

mediates MOMP and mitochondrial dysfunction is unknown. An alternative model to the Bcl-

2 family involvement in MOMP, is the opening of the mitochondrial permeability transition 

pore (mPTP) consisting of the voltage-dependent anion channel (VDAC), the adenine 

nucleotide transporter (ANT) and the matrix protein cyclophilin D, among other proteins23, 40. 

VDAC1 is proposed as the main channel-forming protein of the mPTP and it is reported to be 

involved in the regulation of mitochondrial apoptosis participating in the release of death 

promoting factors and interacting with anti-apoptotic proteins21, 125, 126, 131, 132, 157, 161. However, 

how these different mechanisms lead to MOMP and in particular whether Bcl-2 family 

proteins and VDAC are related to each other is widely discussed126, 130, 131, 151.  

Therefore, the next part of the present thesis addressed the question, whether the voltage-

dependent anion channel VDAC1 might serve as a rational target for Bid or its active form 

tBid to mediate MOMP and mitochondrial impairments in in vitro and in vivo paradigms of 

intrinsic cell death.  

 

3.4.1 Expression of VDAC1 and VDAC2 in HT-22 cells 

In mammals, three homologues genes encode three VDAC isoforms, namely VDAC1, 

VDAC2 and VDAC3132. The three proteins have similar molecular weights (30-35 kDa), each 

shares approximately 70 % identity, and all are highly conserved across species and can be 

found in most tissues125, 132, albeit in different amounts. VDAC1 is reported as the most 

abundant isoform in most cells, being ten times more prevalent than VDAC2 and 100 times 

more abundant than VDAC3 in HeLa cells226. Since a pore-forming activity and thereby a 

possible involvement in apoptosis has been discussed for VDAC1 and VDAC2, but not for 

VDAC3, further work focused on these two isoforms. To confirm, that both proteins are 

expressed in the neuronal HT-22 cell line, and to further determine the more prominent 

isoform, mRNA levels of VDAC1 and VDAC2 were verified by RT-PCR (Figure 57). 

Compared to the high and equable expression levels of VDAC1 in control and glutamate 

exposed HT-22 cells, VDAC2 is expressed in a less amount, confirming VDAC1 as the most 

abundant sub-type in this cell line (Figure 57). Notably, mRNA levels of VDAC2 apparently 
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decreased after glutamate exposure of HT-22 cells as determined by RT-PCR (Figure 57). 

However, this decrease could not be confirmed on the protein level by western blot. 

 

Figure 57: Expression levels of VDAC1 and VDAC2 in HT-22 cells. 

Expression levels of VDAC1 and VDAC2 in HT-22 cells in the absence and presence of glutamate exposure were 

examined by RT-PCR using specific primers for VDAC1 and VDAC2, respectively. RT-PCR with primers specific 

for glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was used as control. Note, that the isoform VDAC1 is 

much more higher expressed than VDAC2, indicating VDAC1 as the most abundant isoform in HT-22 cells. 

VDAC1 levels in HT-22 control cells are not altered after glutamate-induced cell death of cells.  

 

Since these data confirmed the expression of VDACs in HT-22 neurons, revealing VDAC1 as 

the most prominent voltage-dependent anion channel, further study addressed the role of 

VDACs in glutamate- and Bid-mediated neuronal cell death pathways. 

 

3.4.2 The anion channel blocker DIDS provides neuroprotection in HT-22 cells 

The anion channel blocker DIDS was used in order to gain an initial insight to the question of 

whether VDAC1 plays a relevant role in Bid-dependent mechanisms of neuronal cell death. 

Due to the lack of specific inhibitors for the subunit VDAC1, the existence of several side 

effects of the abused VDAC inhibitor König´s polyanion227-229, and the apoptosis-inducing 

ability of the VDAC targeting phosphorothioate (PS) oligonucleotide G3139230, the anion 

channel blocker and well accepted VDAC inhibitor 4,4´-diisothio-cyanatostilbene-2,2´-

disulfonic acid (DIDS)148, 158, 231 was subjected to the following experiments. 

3.4.2.1 DIDS protects against glutamate-induced toxicity 

According to other studies reporting a protective role of DIDS against neuronal injury, 

particularly preventing penumbral cell death232 and accordingly delayed neuronal death in 

hippocampal neurons after transient forebrain ischemia233, a significant neuroprotective effect 

of DIDS could be revealed in the model of glutamate-induced toxicity in HT-22 cells. 
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The morphological phenotype of glutamate-induced injury was clearly prevented by DIDS in 

applications of 500 µM up to 1 mM, respectively, preventing the retraction of cellular 

processes and shrinking of glutamate-exposed HT-22 cells (Figure 58 A). In addition, DIDS 

was able to enhance cell viability in glutamate-treated cells (3 mM, 17 h) in a concentration-

dependent manner as detected by the MTT assay (Figure 58 B, C). Real-time impedance 

measurements (Figure 58 D) confirmed a transient protective effect of DIDS in concentration 

ranges from 250 µM up to 750 µM, yet a persistent protection at 1 mM (Figure 58 C, D). 

Notably, low micromolar concentrations of DIDS revealed no protective properties against 

glutamate-induced reduction in cell viability and proliferation (Figure 58 B, C). This is in line 

with other studies, using DIDS mostly in the upper micromolar range231, 232, 234, presumably 

due to the high polar structure of DIDS possibly hampering its passage through hydrophobic 

cell membranes. Therefore, further examinations were mostly performed using 500 µM and 

1 mM of DIDS in parallel. 

Although increasing evidence has suggested that DIDS provides protection in a variety of 

experimental preparations, including the inhibition of neuronal cell death induced by several 

apoptotic factors235-238, it was reported in contrast that DIDS acts as an apoptotic inducer in 

hippocampal HT-22 neurons234. To address this confounding finding, FACS analysis of 

apoptotic cells after annexin-V/propidium iodide-staining of HT-22 neurons were performed. 

Therefore, HT-22 cells were treated with DIDS at concentrations of 500 µM and 1 mM in the 

absence and presence of glutamate (3 mM) and cell death was detected 16-18 h after 

treatment. In contrast to the reports of Pamenter et al.234, a DIDS-induced apoptosis was not 

detectable in any concentration (Figure 59 A, B). DIDS treatment of HT-22 neurons neither 

increased annexin V binding to cells, which would indicate apoptosis induction, nor induced 

the uptake of propidium iodide in necrotic cells. In fact, both concentrations of DIDS were 

sufficient to significantly abolish the glutamate-induced cell death (63 ± 3 %) up to control 

levels (6 ± 1 %) (Figure 59 A, B). Thus, these data confirm the neuroprotective effects of 

DIDS in HT-22 cells and might indicate a critical involvement of VDACs in the mechanisms of 

glutamate-induced intrinsic cell death. 
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Figure 58: DIDS protects against glutamate-induced toxicity. 

A, Photomicrographs (10 x 0.25 NA objective) of HT-22 cells. The anion channel blocker DIDS (500, 1000 µM) 

preserves the spindle-like cell morphology of HT-22 cells after glutamate treatment (3 mM, 17 h). B, C, Cell 

viability of HT-22 cells was analyzed by MTT assay 17 h after glutamate exposure (3 mM). DIDS provides 

significant protection against glutamate-induced cell death in a concentration-dependent manner. D, Real-time 

analysis of cell impedance for 22 h after glutamate treatment (3 mM) confirmed the transient protection of DIDS 

against glutamate toxicity. While concentrations of 250 µM reveal only slightly protective effects, high 

concentrations of 1 mM prohibit cell injury about 10 h after glutamate challenge. The Bid inhibitor BI-6c9 (10 µM) 

is used as positive control for protection against glutamate- induced toxicity. All experiments were independently 

repeated at least three times with n = 8 per treatment condition. Data are predicted as mean ± SD (*p < 0.05, 

***p < 0.001 compared to glutamate treated vehicle, ANOVA Scheffé´s test). 
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Figure 59: DIDS attenuates apoptotic and necrotic cell death. 

A, B, HT-22 cells were co-treated with DIDS and 3 mM toxic glutamate solution. A, FACS analysis of annexin-

V/propidium iodide-stained HT-22 cells depicts dead cells in the upper right corner and healthy cells in the lower 

left corner. Note that glutamate- induced cell death (61±3 %) is completely prevented by DIDS in a concentration 

of 500 µM and 1000 µM. Numbers are mean percentages ± SD for three cell groups treated as indicated in the 

corresponding quadrants. Glut, Glutamate, 3 mM. B, Quantification of AV
+
/PI

+
- cells (A), indicated as percentage 

of dead cells. The Bid inhibitor BI-6c9 (10 µM) is used as positive control for neuroprotection. All Experiments 

were independently repeated at least three times. (***p < 0.001 compared to glutamate treated vehicle and 

control, #p<0.05 compared to control, n=8, ANOVA, Scheffe´test). 
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3.4.2.2 DIDS preserves mitochondrial integrity and function 

In order to investigate the potential mechanisms behind the protection mediated by DIDS, 

mitochondrial integrity and function was assessed. 

3.4.2.2.1 Mitochondrial energy metabolism and respiratory activity is maintained by 

the anion channel blocker DIDS 

Mitochondrial dysfunction, with the resulting compromise of cellular ATP supply and 

impairments in the respiratory chain, is an essential event described to ultimately trigger cell 

death6. As an important role of VDAC1 in the exchange of ATP/ADP and other metabolites 

into and out of the mitochondria as well as its involvement in oxidative phosphorylation has 

been described previously39, 138, 141, the effect DIDS on mitochondrial energy metabolism and 

respiratory activity was investigated to determine if DIDS might act on mitochondrial VDAC1. 

Notably, high doses of DIDS (750 µM and 1 mM) decreased basal cellular ATP levels of HT-

22 cells, but significantly restored the further rapid ATP decline after the onset of glutamate 

exposure (Figure 60 A), indicating that VDAC inhibition by DIDS is sufficient to rescue 

metabolic functions in mitochondria. These findings were further substantiated by 

measurements of oxygen consumption rate (OCR). In accordance to previous experiments 

using this method, glutamate induced a remarkable reduction in mitochondrial maximum 

respiration and respiratory capacity (Figure 60 B, C). Concentrations of 500 µM DIDS 

preserved both impairments (Figure 60 B), though high concentrations of 1 mM DIDS 

affected mitochondrial respiration already under control conditions (Figure 60 C).  

These data accentuate VDAC inhibition as a suitable tool for further investigations of 

mechanisms that trigger mitochondrial demise and point to VDAC as a possible target for 

neuroprotection against glutamate-induced cell injury.  
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Figure 60: The anion channel blocker DIDS maintains mitochondrial energy metabolism and 
respiratory activity.  

HT-22 cells were co-treated with glutamate (4-5 mM) and DIDS (500 µM or 1000 µM) or BI-6c9 (10 µM). 

Seventeen to twenty hours after the onset of glutamate mitochondrial integrity was analyzed. A, ATP-

luminescence measurements of HT-22 cells. High concentrations of DIDS (750 µM and 1000 µM) reduced basal 

ATP level, but prevented glutamate-induced ATP-depletion. The Bid inhibitor BI-6c9 was used as a positive 

control for restored ATP level after glutamate challenge( ### p < 0.001 compared to control, *** p < 0.001 

compared to glutamate treated vehicle (ANOVA, Scheffé´s test). Experiments were independently repeated 3 to 5 

times. B, Oxygen consumption rate (OCR) of HT-22 cells, treated as indicated, was measured by using the 

Seahorse Bioscience system. Glutamate-induced reduction in mitochondrial maximum respiration and respiratory 

capacity was prevented by co-treatment with DIDS (500 µM). Treatment of cells with high concentrations of 1 mM 

DIDS were less protective against impairments in mitochondrial respiration. The results are representatives of 3-4 

experiments. 

 

3.4.2.2.2 DIDS is sufficient to prevent lipid peroxidation, mitochondrial fission and 

permeabilization of the mitochondrial outer membrane of HT-22 cells 

The suspicion that plays a crucial role in the mechanisms of glutamate-induced Bid-mediated 

mitochondrial demise was substantiated as a pronounced protection against increases in 

detrimental ROS formation was achieved by DIDS (Figure 61 A, B). BODIPY-FACS analysis 

revealed a significant production of lipid peroxides in HT-22 cells 18 h after glutamate 

exposure, indicated by increases in green fluorescence (Figure 61 A). This late and 
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secondary boost in lipid peroxides, previously shown to be caused by Bid-mediated 

mitochondrial dysfunction116, was not affected by DIDS in concentrations of 500 µM, but 

completely blocked when applied at concentrations of 1 mM (Figure 61 A, B).  

 

 

Figure 61: DIDS prevents glutamate-induced ROS formation. 

A,B, BODIPY-FACS analysis of lipid peroxides. HT-22 cells were treated with DIDS (500 µM or 1000 µM) or BI-

6c9 (10 µM) 24 h after seeding. Lipid peroxide formation was determined 17 h after the onset of glutamate 

(4 mM). A, Values in the corresponding quadrants predict mean percentages ± SD for three indicated treatment 

groups. Note, that formation of lipid peroxides is completely preserved by DIDS (1000 µM) and comparable to the 

preservation of ROS by Bid inhibition (BI-6c9). B, Quantification of lipid peroxides in HT-22 cells after glutamate 

and DIDS co-treatment. The experiment was repeated four times with n = 3-4 and results provided as mean ± SD 

(*** p < 0.001 compared to glutamate treated vehicle, ANOVA, Scheffé test).  
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Analyses of mitochondrial morphology confirmed the protective potential of DIDS in the 

model of glutamate-induced toxicity. Application of DIDS (500 µM and 1 mM) preserved the 

tubular mitochondrial morphology and completely rescued HT-22 cells from glutamate-

induced mitochondrial fission (Figure 62 A, B). Quantification of mitochondrial morphology 

substantiated the potent effect of DIDS, revealing that the anion channel blocker increased 

the overall mitochondrial length thereby shifting the majority of mitochondria into category I in 

glutamate-treated HT-22 cells (Figure 62 B).   

Previous reports described a VDAC1 mediated breakdown of the mitochondrial membrane 

barrier and the subsequent cell death through mitochondrial dysfunction143, 144. Since the loss 

of mitochondrial membrane potential (Δψm) is a major feature of glutamate-induced cell death 

that is associated with mitochondrial fragmentation24, 97, the further experiments addressed 

the impact of DIDS, as a tool for VDAC inhibition, on the functional integrity of mitochondrial 

membranes. TMRE-FACS staining of HT-22 neurons revealed a glutamate- induced 

reduction in red fluorescence in glutamate-treated cells (Figure 62 C) indicating a decrease 

in Δψm 17 h after glutamate challenge. In contrast, DIDS prevented the pronounced 

depolarization of the mitochondrial membrane and showed significantly higher Δψm than 

glutamate exposed control cells (Figure 62 C, D).  

Notably, the pronounced protection against various hallmarks of glutamate-induced toxicity 

achieved by DIDS was similar to the protective effects of the Bid inhibitor BI-6c9, which was 

always applied in the experiments as a positive control for neuroprotection (Figure 58 - 

Figure 62). This finding strongly assumes a close relationship between the mechanisms 

behind both protective effects, mediated by Bid inhibition or DIDS, and might indicate a close 

interrelationship among mitochondrial anion channels and the BH3-only protein Bid. 
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Figure 62: DIDS prevents mitochondrial fission and loss of Δψm. 

A, HT-22 cells were stained with Mitotracker red and co-treated with glutamate (4 mM) and DIDS (500 µM) or 

BI6c9 (10 µM). Confocal fluorescence photomicrographs reveal mitochondrial fission 17 h after glutamate 

challenge, which is preserved by DIDS and BI-6c9. B, Quantification of mitochondrial morphology: Category I: 

elongated, category II: intermediate, category III: fragmented mitochondria. Data represent the mean ± SD of 

three independent experiments, each with 500 cells per treatment condition (###p < 0.001 compared to category 

I, ***p < 0.001 compared to category III in glutamate treated vehicle, ANOVA, Scheffé test). C, Mitochondrial 

membrane potential (Δψm) of HT-22 cells treated with DIDS (500 µM and 1000 µM) was analyzed by TMRE-

FACS recordings 17 h after glutamate treatment (4 mM). Numbers are mean percentages ± SD of TMRE 

fluorescence for n = 3 indicated treatment groups. Glutamate treated HT-22 cells showed significantly reduced 

red fluorescence compared to controls, whereas DIDS treatment prevented the breakdown of the mitochondrial 

membrane potential as indicated by preservation of the red TMRE-fluorescence. D, Quantification of TMRE 

fluorescence of HT-22 cells co-treated with DIDS (500 µM or 1000 µM) in the presence and absence of 

glutamate. The experiment was independently repeated three times with n = 3 per treatment group, data are 

provided as mean ± SD (*** p < 0.001 compared to glutamate treated vehicle, ANOVA, Scheffé test). 

 

3.4.2.3 DIDS prevents tBid-induced mitochondrial depolarization and cell death 

To further clarify whether DIDS provides protection downstream of Bid activation, the anion 

channel blocker was applied to the model of tBid-induced toxicity (3.1.2). As described 

above, over-expression of tBid induced characteristic alterations in cell morphology indicating 

cytotoxicity, such as retraction of cell processes, rounding up and detaching from the culture 

dish (Figure 63 A). These morphological changes were clearly preserved in cells pre-treated 

with DIDS (500 µM and 1 mM). The tBid-induced toxicity in HT-22 cells was further detected 

by FACS analysis of tBid-expressing cells after annexin V/propidium iodide staining (Figure 

63 B, C) and cell viability measurements by MTT assay (Figure 63 D). DIDS was sufficient to 

prevent both, the tBid-induced increases in AV/PI positive cells (ptBid, Figure 63 B, C) as 

well as tBid-induced reduction in cell viability (Figure 63 D). Notably, application of DIDS was 

as effective against tBid toxicity as Bid inhibition by the Bid inhibitor BI-6c9 (Figure 

63 A, C, D), confirming DIDS´action downstream of tBid activation. The fact, that DIDS 

achieved an even more pronounced protection than BI-6c9 might be allegeable through 

additional unspecific effects of DIDS on the level of mitochondria (Figure 63 B-D). 

 



Results | 173 

 

 
 

 

Figure 63: tBid-induced toxicity in HT-22 cells is prevented by DIDS. 

HT-22 cells were pre-treated with the anion channel blocker DIDS (500 µM and 1000 µM) or the Bid inhibitor 

BI6c9 (10 µM, positive control for protection) 1 h before transfection with a tBid-encoding plasmid (ptBid/pIRES-

tBid). A, Photomicrographs (10 x 0.25 NA objective) show morphological changes of HT-22 cells 18 h after tBid 

over-expression. B, C, Annexin-V/propidium iodide-FACS analysis of tBid-over-expressing cells. Numbers are 

mean percentages ± SD for three cell groups treated as indicated in the corresponding quadrants. C, 

Quantification of AV
+
/PI

+
- cells (b), indicated as percentage of dead cells. D, tBid-induced reduction in cell viability 

was significantly prevented by DIDS (500 µM) as determined by MTT assay. (***p < 0.001 compared to tBid over-

expressing vehicle) Experiments were independently repeated 3 to 5 times with n = 4 per treatment group. 

Results are predicted as mean ± SD. 
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Final evidence that DIDS attenuates tBid-mediated mitochondrial dysfunction was achieved 

from TMRE-FACS measurements (Figure 64 A, B). tBid over-expression induced a reduction 

in red TMRE fluorescence up to approximately 50 % of control cells, which was fully restored 

by pre-treatment of cells with DIDS (500 µM and 1 mM, Figure 64 A, B).  As these data 

reveal that tBid-induced loss of Δψm and cell death was significantly attenuated by DIDS-

mediated VDAC inhibition, they do not only substantiate the hypothesis that VDACs are 

involved in glutamate- and tBid-induced cell death pathways, but also leads to the 

assumption that VDAC- and Bid-associated MOMP mechanisms are related to each other. 

 

Figure 64: DIDS prevents tBid-induced loss of Δψm. 

HT-22 cells were pre-treated with the anion channel blocker DIDS in concentrations of 500 µM and 1000 µM 1 h 

before tBid-transfection. A, TMRE-FACS analyses reveal a tBid-induced loss of Δψm, which is prevented by DIDS. 

Drop in red TMRE fluorescence indicates loss of Δψm (left side), high red fluorescences indicate intact 

mitochondria (right side). Numbers are mean percentages ± SD of TMRE fluorescence of three indicated 

treatment groups. B, Quantification of TMRE fluorescence confirmed the protective effects of DIDS against tBid- 

induced breakdown of Δψm. (*** p < 0.001 compared to tBid over-expressing vehicle) Experiments were 

independently repeated five times and data presented as mean ± SD. 
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3.4.3 Direct and functional interaction between Bid/tBid and VDAC1  

Based on the data above, a close interplay between Bid and mitochondrial anion channels, 

likely VDACs, relating to intrinsic mitochondrial cell death pathways was suggested. This 

implication was supported by previous reports suggesting that Bid reduces metabolic 

exchanges between mitochondria and the cytosol through interactions with VDACs thereby 

leading to impaired mitochondrial function161. Although a close interplay of VDAC with Bcl-2 

family proteins such as Bcl-xl, Bax or Bid has been proposed157, 159, 161, 162, a direct interaction 

of VDAC1 with any of these Bcl-2 family members had not yet been demonstrated on the 

cellular level. Therefore, the further effort of this thesis was to prove the assumed interaction 

between both proteins and to scrutinize whether a disturbance of the Bid-VDAC interplay 

might be the underlying mechanism of the protective effects achieved by VDAC inhibition.   

Since determining protein-protein interactions within living cells is challenging as the 

detection might depend on several circumstances, including cell type, cell death stimuli as 

well as buffer and reagents used for the different binding studies, a possible interplay 

between Bid and VDAC1 was first examined in vitro using recombinant proteins.  

 

3.4.3.1 In vitro Bid-VDAC1 binding assays confirm the direct interaction of 
both proteins   

The first evidence of a direct interaction of Bid and its active form tBid with VDAC1 was 

derived from in vitro Bid- VDAC pull down assays. (Figure 65 A, B) Purified recombinant 

VDAC1 (mVDAC1) bound to recombinant His6-tagged Bid (His-rBid) as well as to 

recombinant truncated Bid ((His)-rtBid) as shown by SDS-PAGE and western blot analysis 

(Figure 65 A, B).  

 

Figure 65: Direct interaction between recombinant Bid/tBid and VDAC1. 
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Direct interaction between rVDAC1 and rBid was confirmed by in vitro Bid/tBid-VDAC1 binding assays. A, Purified 

recombinant His-rBid and rVDAC1 were incubated for 2 h before incubation with NTA- Agarose (2 h) on a poly-

prep
®
 chromatography column. Elution fractions (E) and wash fractions (W) were aceton precipitated and 

analyzed by SDS-Page and coomassie staining. Recombinant rBid and rVDAC1 were used as protein size 

controls. E: Elution fractions, W: wash fractions. B, The direct interaction between purified rBid and rVDAC1 was 

confirmed by western blot analysis. For generation of tBid, recombinant full-length Bid was incubated with 

recombinant caspase 8 for 2 h at RT. Pull down of His-rBid and His-rtBid was done as described in A. Elution-

fractions (E) and wash-fractions (W) were analyzed by SDS-PAGE followed by western blot. Anti-Bid antibody 

was used to detect full-length Bid as well as tBid (upper panel).  Direct binding of VDAC1 to full-length Bid and 

tBid was indicated by clear VDAC1 bands in His-rBid and His-rtBid elution-fractions. For comparison, deletion of 

the N-terminal helix of VDAC1 (rVDAC1 Δ11) did not affect co-IP with Bid. 

 

3.4.3.2 Thermophoresis analysis results in different binding affinity 
coefficients (KD) for tBid and Bid binding to VDAC1 

Although a crucial role of tBid for VDAC1 activity was proposed previously161,  a convincing 

characterization of the direct interaction between these proteins was missing. To address this 

problem, thermophoresis measurements of AlexaFluor 532 C5 maleimide-labeled 

recombinant mVDAC1 with purified Bid and tBid were performed and revealed apparent 

dissociation constants (KD) of 37.1 ± 1.12 µM for tBid- and 1420 ± 3.04 µM for Bid binding to 

VDAC1, respectively (Figure 66 C). These KD values indicated a 38-fold stronger binding of 

tBid to VDAC1 compared to the binding of full length Bid. Nonspecific binding of Bid/tBid to β-

barrels or detergent micelles was ruled out since no tBid/Bid binding was detected in 

experiments using either the Escherichia coli outer membrane protein G (OmpG) or empty 

detergent micelles. In consequence these in vitro observations suggested a highly specific 

mode of interaction between VDAC1 and tBid (Figure 66 A). 

 

Figure 66: Thermophoresis measurements revealed KD values for Bid/tBid binding to VDAC1. 

Thermophoresis measurements confirmed the specific and direct interaction between Bid/tBid and VDAC1 and 

revealed KD values of 37.1 µM for tBid- (dots, blue line) and 1420 µM for Bid- (squares, red line) binding to 

fluorescently labeled mVDAC1. The concentration of Bid/tBid was varied from 15 nM to 500 µM, whereas a 

constant concentration of 50 nM for mVDAC1 and OmpG was used. After 20 min incubation at RT in the dark the 

mixtures were loaded to MST-grade capillaries and thermophoresis studies were performed using the Monolith 
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NT-115. Fluorescently labeled OmpG was used as a negative control to exclude unspecific interaction between 

tBid and β-barrels: Addition of Bid to OmpG leads to no significant change in the thermophoretic signal (triangle, 

green line). Bars represent SD of three independent measurements. Thermophoresis measurements were kindly 

performed by Barbara Mertins (Group of Prof Essen, Department of Chemistry, University of Marburg, Marburg, 

Germany). 

 

3.4.3.3 tBid facilitates a reduction in the VDAC1 channel´s conductance, while 
DIDS addition promotes a VDAC1 channel closure 

Based on this data, showing that tBid and Bid both bind to VDAC1, the impact of this 

interaction on VDAC1 channel activity was further examined. It was previously described that 

addition of tBid to membrane reconstituted VDAC1 leads to a reduced conductivity state of 

VDAC1 in black lipid membrane (BLM) measurements and a Bid-induced VDAC closure was 

hypothesized even though a physical interaction of VDAC with tBid had not been 

demonstrated161.  

Indeed, the addition of tBid to mVDAC1-containing planar lipid bilayers (BLM), facilitated a 

reduction in the channel´s conductance but did not promote formation of the expected 

VDAC1 sub-conducting closed states. Native mVDAC1 exhibited the expected gating 

behavior, responding linearly to the application of both positive and negative potentials, and 

alternating between high and low conducting states128, 129, 154. In line with previous findings188,  

in voltage ranges of -40 to +40 mV native-like mVDAC1 occupied the fully open S0 state with 

a conductance of 3.94±0.04 nS  and the closed S1 and S2 states with conductances of 

2.61±0.01 nS and 1.90±0.06 nS respectively (Figure 67 A). Following the addition of 

recombinant tBid, the channel´s conductance suffered a 23% reduction (3.05±0.24 nS, 

N=131) with respect to that of the S0 state (unpaired T-test: P=10-4) (Figure 67 A, blue 

squares, B). Furthermore, tBid induced minor yet atypical fast channel switching transitions 

(Figure 67 C). Since the tBid-lowered conductance differed significantly from the closed-state 

S1 and S2 conductances (unpaired T-test: P=10-4) it seems highly likely that the tBid-VDAC1 

interaction promotes a conformational change of the VDAC1 channel rather than its full 

closure. The effect of tBid addition on VDAC1 channels was further compared with the 

VDAC1 channel behavior after addition of the VDAC inhibitor DIDS. Notably, addition of 

DIDS to reconstituted mVDAC1 resulted in a 1.6-fold reduction of VDAC1 conductance 

(2.47± 0.03 nS, N = 50) (Figure 67 D), and no switching transitions were recorded for up to 

one hour. Since the lowered conductance mediated by DIDS is between the closed S1 and 

S2 states of VDAC1, it suggests that DIDS directly alters VDAC1 gating and affects channel 

closure. Based on this observation, it is highly likely that DIDS occupies the same biniding 

side as tBid albeit with higher affinity, since tBid assumedly fails to interact with mVDAC1 in 

DIDS presence. 
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In conclusion, these data clearly demonstrated not only a highly specific interaction between 

recombinant Bid/tBid and VDAC1 but also indicate the impact of this interaction on the 

VDAC1 channel´s behavior in vitro. 

 

 

Figure 67: tBid promotes a reduction in the VDAC1 channel´s conductances, while DIDS 
triggers VDAC1 closure 

A, The conductance values of the corresponding VDAC1 channel states were determined by using Ohm-plots 

Reconstituted native mVDAC1 responded linearly to application of both positive and negative potentials, 

alternating between an open (S0; grey) and two major (S1; red and S2; green) closed states. After tBid addition to 

the cis-side of the BLM chamber, the overall conductance of the channel drops to 77% compared to S0 (blue). 

Determined conductances: S0; 3.9±0.0 nS, S1; 2.6±0.0 nS; S2; 1.9±0.1 nS and after tBid addition; 3.0±0.2 nS. 

Bars represent standard errors of a minimum of 10 replicates per measurement. B, Representative traces of 

mVDAC1 (black), mVDAC1 after tBid (red) and DIDS (green) addition at +10 mV. Addition of tBid resulted in a 

reduced VDAC1 channel conductivity by approximately 23% compared to the open state of mVDAC1 (S0). C, A: 

representative trace of the mVDAC1 gating activity at +40 mV. The observed S0, S1 and S2 states, in the + 

40 mV trace, are indicated by blue, red and green lines respectively. B: representative trace of mVDAC1 after 

addition of tBid at +40 mV. The channel shows minor yet atypical fast channel switching events. D, Ohm-plots 

were used for determining the VDAC1 channel conductance before and after addition of the VDAC inhibitor DIDS. 

Reconstituted native mVDAC1 responded linearly to application of both positive and negative potentials and 

revealed the expected gating behavior as described in A. DIDS addition to the cis-side exhibited a 1.6-fold 

reduction in its conductance (2.47±0.03 nS, N=50 , blue). BLM measurements were kindly performed by the 

group of Prof Essen (Department of Chemistry, University of Marburg, Marburg, Germany). 
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3.4.4 Direct interaction of Bid and VDAC1 in cultured neurons  

Encouraged by the findings above, a further aim was to examine if the Bid-VDAC1 

interaction measured in vitro can be transferred to cell culture and in vivo models. Initially this 

goal was probed in the hippocampal HT-22 neurons subjected to the toxic effects of 

glutamate thereby analyzing the proposed interplay between Bid and VDAC1 in relationship 

to intrinsic cell death mechanisms. Indeed, immunoprecipitation studies using protein 

extracts from this neuronal cell line provided the first evidence of the interaction of Bid and 

VDAC1 in living cells, as western blot analysis revealed an increased binding of VDAC1 to 

Bid after glutamate challenge (Figure 68 A). Notably, 12 h after glutamate exposure, a 70 

kDa protein bound to Bid was detected by the applied anti-VDAC1 antibody (Figure 68 A), 

indicating that activated Bid binds to VDAC1 dimers that may form upon glutamate treatment. 

This finding is consistent with previous studies showing that VDAC1 dimerization and 

oligomerization increase substantially upon apoptosis induction239, 240. As VDAC1 is 

discussed as a component of the permeability transition pore (PTP), which is a multi-protein 

complex consisting of VDAC, the adenine nucleotide transporter (ANT), the matrix protein 

cyclophilin D, and likely other proteins23, 40, 241, 242, co-immunoprecipitations of Bid with VDAC1 

from HT-22 cells did not necessarily indicate the direct association of these two proteins as 

other proteins may also be involved in a higher complex. The proposed direct interaction of 

Bid and VDAC1 was finally confirmed by co-immunoprecipitations of endogenous VDAC1 

and FLAG-VDAC1 expressed in the HT-22 cells (Figure 68 B, C). Both, VDAC1- and FLAG-

VDAC1 immune complexes revealed an increasing binding of Bid between 6-15 h after 

glutamate exposure (Figure 68 B, C). The fact that a direct binding of Bid and VDAC1 only 

occurred after glutamate exposure indicates that this interaction is an essential step in 

mitochondrial death pathways. 

As immortalized HT-22 hippocampal neurons, lack ionotropic NMDA and AMPA/kainate 

receptors, cell death is initiated through glutathione depletion after glutamate-induced 

inhibition of the glutamate-cystine antiporter243. Consequently, the HT-22 model of glutamate-

induced oxidative stress only partly reflects the mechanisms of neuronal death after acute 

brain injury. In primary cortical neurons, glutamate-induced excitotoxicity involves an 

immediate increase in the intracellular Ca2+-concentration through activation of NMDA 

receptors. However, this initial calcium overload triggers the increase of reactive oxygen 

species and the subsequent mitochondrial damage as it occurs likewise in the HT-22 cells. 
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Figure 68: Direct interaction of Bid and VDAC1 after the onset of glutamate exposure in HT-22 
cells. 

Immunoprecipitation analyses of Bid and VDAC1 protein revealed a direct interaction between Bid and VDAC1 6-

15 h after glutamate exposure of HT-22 cells. A, Immunoprecipitation of Bid protein was prepared from 2.5 mg 

total protein lysate of HT-22 cells exposed to 3 mM glutamate at the indicated time points of 8-12 h. Western blot 

panels on the left side show results from the Bid pull down and on the right side total protein lysates with 30 µg 

protein. Eight hours after the onset of glutamate a pronounced binding of VDAC1 to Bid is detected.  12 h after 

glutamate exposure a 70 kDa protein was detected by the applied VDAC1 antibody (Santa Cruz, VDAC1-N18), 

indicating VDAC1 dimerization. B, Immunoprecipitation of endogenous VDAC1 protein confirmed the direct 

interaction between VDAC1 and Bid in glutamate-treated HT-22 cells. Western blot panels on the left side reveal 

an increasing Bid binding to pull downed VDAC1 between 6 h to 15 h after the glutamate challenge. Total protein 

lysates, depicted on the right side, were used as controls. C, HT-22 cells were transfected with a FLAG-VDAC1 

encoding plasmid and treated with glutamate 24 h after transfection. Western blot analysis of Flag-

immnoprecipitations of FLAG-VDAC1 protein from HT-22 cells exposed to 5 mM glutamate at the indicated time 

points of 0 h-15 h confirm the increasing Bid binding to VDAC1 during cell damage. To rule out unspecific binding 

of Bid to the FLAG-tag, a negative control containing only a FLAG-plasmid without VDAC1 sequence was used as 

control. Western blot panels on the right side show total protein lysates, confirming an equal expression of FLAG-

VDAC1 in the indicated protein samples. All western blots are representatives of at least 3-4 independent 

experiments. 

 

To confirm, the relevance of the described Bid-VDAC1 interplay as an essential key in the 

mechanisms of neuronal death after brain injury and to exclude a cell type specific 

appearance, the proposed interaction was confirmed in the model of glutamate-induced 

excitotoxicity in primary cortical neurons (PCN) (Figure 69). Therefore, primary mouse 

cortical neurons were exposed to 25 µM glutamate solution after 7-9 days in culture, when 

ionotropic glutamate receptors were expressed and the neurons are highly sensitive to 

glutamate. Immunoprecipitations were performed 4 h to 22 h after excitotoxicity and 

confirmed the direct interaction between Bid and VDAC1 (Figure 69). In line with our findings 

in HT-22 cells, the Bid-VDAC1 interaction was also clearly detected at later time points after 

glutamate-induced excitotoxicity in PCNs, while no binding was detected under control 

conditions (Figure 69). 
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Figure 69: Direct interaction between Bid and VDAC1 in primary cortical neurons. 

Immunoprecipitations of endogenous Bid and VDAC1 protein (left side) and total protein lysates (right side) from 

primary cortical neurons exposed to 25 µM glutamate at the indicated time points. Bid and VDAC1 

immunoprecipitations were prepared from 1 mg to 1.5 mg total protein lysat from PCNs 0 h, 4 h and 22 h after the 

induction of glutamate-induced excitotoxicity. PCNs were treated on day 7-9 after culturing to ensure NMDA 

receptor expression. While no interaction was detected in controls and after 4 h excitotoxicity, a direct interaction 

was revealed 22-24 h after treatment. Total lysates confirm the equal expression of both proteins in all samples. 

The data are representative western blots from 4 independent experiments. 

3.4.5 Direct interaction of Bid and VDAC1 during ischemic brain damage in 

vivo 

The described cell culture findings on both a neuronal cell line and primary neurons led to 

further examinations in whole organisms, in a model of cerebral ischemia (Figure 70 A, B, C). 

The model of transient middle cerebral artery occlusion (MCAo) was conducted by Uta 

Mamrak and the following immunoprecipitations were performed together with Lilja Meissner 

at the Ludwig-Maximilians-University in Munich, Germany. 

The C57BL/6 mice were subjected to 60 min of transient focal ischemia by introducing a 

silicon-coated nylon filament into the internal carotid artery to occlude the middle cerebral 

artery (MCA), followed by reperfusion. Co-immunoprecipitation studies were performed from 

tissue homogenates of the cortical penumbra 2 h, 6 h and 24 h after the onset of ischemia, 

respectively. In these homogenates, Bid–VDAC1 interaction became detectable at 6 h and 

24 h after ischemia in all mice subjected to transient MCAo. While the interaction significantly 

increased over 6-24 h in the ischemic brain tissue, no interaction was found at early time-

points, i.e. 2 h after ischemia or in the contralateral controls (Figure 70 A, B, C).  

Consequently, these data confirmed the importance of the Bid-VDAC1 association in 

glutamate-induced cell death in HT-22 cells and primary neurons, further highlighting the 

relevance of this interaction in an in vivo model for human disease. 
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Figure 70: Direct interaction of Bid and VDAC1 during ischemic brain damage in vivo. 

A, Western blot analyses reveal results from immunoprecipitation studies of Bid (left panel) and VDAC1 protein 

(middle panel) and total protein lysates (right panel) from control (ctr) and ischemic (MCAo) brain tissue of mice 

2 h, 6 h, and 24 h after transient middle cerebral artery occlusion (MCAo). 6 h and 24 h after transient ischemia a 

direct interaction of Bid and VDAC1 was detected, while no interaction was observed at early time points (2 h) 

after MCAo. Contralateral controls showed no interaction at all, confirming the relevance of the Bid-VDAC1 

binding during neuronal injury. B, C, Box-blots reveal significant VDAC1-Bid binding (B) and Bid-VDAC1 binding 

(C) in brain tissue of mice 6 h and 24 h after ischemia (MCAo). Data were collected from 6 mice per time-point. 

(Bottom and top of the box represent first and third quartile (25-75%), band inside the box predicts median and 

whiskers are shown from minimum to maximum, *** p < 0.001, ANOVA, Kruskal-Wallis test). 

 

3.4.6 Interaction of Bid and VDAC1 determines mitochondrial demise and cell 

death in HT-22 cells 

Combining the data above, a specific and direct interaction between tBid and VDAC1 is 

clearly demonstrated, with the protective effects of the VDAC inhibitor DIDS in the present 

cell death models (3.4.2), it is highly likely that both proteins, Bid and VDAC1, interfere 

together in the mechanisms of intrinsic cell death triggered by oxidative stress and indeed 

point to VDAC1 as a possible target for Bid and its active form tBid to regulate mitochondrial 

integrity and function. Although DIDS is well accepted as a VDAC inhibitor158, 231, which may 

also inhibit VDAC2 and VDAC3, as well as other anion channels244, it cannot achieve 

sufficient specificity for inhibition of the isoform of interest, i.e. VDAC1.  

To gain further insight in the signaling events downstream of the Bid-VDAC1 interplay, the 

impact of VDAC1 in Bid-mediated hallmarks of cell death in HT-22 cells was analyzed by 

using siRNA-mediated VDAC1 silencing. 
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3.4.6.1 VDAC1 gene silencing attenuates glutamate-induced cell death in HT-22 
cells 

Specific down regulation of VDAC1 was achieved by two different sequences of VDAC1- 

targeting siRNA (VDAC1 siRNA1 and VDAC1 siRNA2). Both siRNA sequences significantly 

reduced the expression of VDAC1 whereas control scrambled siRNA (scr siRNA) did not 

alter VDAC1 levels in HT-22 cells as assessed by RT-PCR and Western blot analysis (Figure 

71 A). In contrast, expression levels of VDAC2 were not altered by VDAC1 gene silencing 

(Figure 71 B), confirming the specific targeting of the isoform VDAC1. To investigate the 

effect of reduced VDAC1 protein levels, cell morphology as well as cell viability of glutamate 

exposed cells were analyzed. Unlike control cells, VDAC1- depleted cells sustained their 

normal spindle-shaped morphology (Figure 71 C) and were rescued from glutamate-induced 

toxicity as revealed by MTT assay (Figure 71 D,E) and fluorescence-activated cell sorting 

(FACS) analysis of annexinV/propidium iodide-stained HT-22 cells (Figure 72 A, B). 

Moreover, real-time cell analysis (RTCA) of cellular impedance, depicted as normalized cell 

index (NCI) over at least 22 h, indicated a significant reduction in cell viability within a small 

time window of 2-4 h for glutamate-exposed control and non-functional scrambled 

(scr) siRNA-treated cells, yet a sustained protection over time in cells pre-treated with 20 nM 

of VDAC1 siRNA (Figure 72 C, D). Notably, RTCA-recordings revealed, that siRNA cells 

proliferate slower than un-transfected control cells, which is in line with siRNA mediated 

reduction in cell viability detected by the MTT assay (Figure 72 C, D and Figure 71D, E)   
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Figure 71: VDAC1 knockdown by different VDAC1 sequences attenuates glutamate-induced 
toxicity in HT-22 cells. 

A, VDAC1 knockdown by two different VDAC1 siRNA sequences was verified by RT-PCR analysis of VDAC1 

mRNA (upper panels) and western blot analysis of VDAC1 protein (lower panels) 48 h after application of 20 nM 

VDAC1 siRNA 1 or siRNA 2. B, RT-PCR analysis of VDAC2 mRNA levels ruled out unspecific knockdown by 

VDAC1 siRNA1 and siRNA2 in concentrations of 20 nM to 80 nM. C, Morphological phenotype from glutamate-

induced apoptosis is preserved by VDAC1 silencing. Photomicrographs (10 x 0.25 NA objective) reveal 

morphological chances of non-transfected HT-22 cells (vehicle) and cells transfected with scr siRNA (20 nM) 16 h 

after the glutamate (3 mM) challenge. D, E, Cell viability was determined by MTT assay 16 h after glutamate 

treatment (3 mM) of HT-22 cells transfected with the respective VDAC1 siRNA sequences (VDAC1 siRNA 1, 
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20 nM, D and VDAC1 siRNA 2, 20 nM, E). D, MTT assay confirmed the protective effect of VDAC1 siRNA 1 

against glutamate toxicity. E, Likewise siRNA 1, VDAC1 siRNA 2 provided significant protection against glutamate 

toxicity. All experiments were repeated at least three times and data are provided as mean ± SD (**p < 0.01, 

***p < 0.001 compared to glutamate treated vehicle and scr siRNA, ANOVA, Scheffé´s test). 
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Figure 72: VDAC1 depletion prevents glutamate-induced cell death 

VDAC1-depleted HT-22 cells are resistant to cell death induced by glutamate. A, HT-22 cells were transfected 

with either VDAC1 siRNA 1 or VDAC1 siRNA 2 (both 20 nM) and exposed to toxic glutamate solution (5 mM, 

17.5 h) 24 h after transfection. FACS-analysis of annexin-V/propidium iodide-stained HT-22 cells depicts dead 

cells (AV+/PI+)  in the upper right corner and healthy cells (AV-/PI-) in the lower left corner. Percentages of cells 

are provided as mean values ± SD for three cell groups treated as indicated in the corresponding quadrants. Glut, 

glutamate 5 mM, 17.5 h. VDAC1 depleted cells show significantly lower percentages of AV+/PI+ cells compared 

to vehicle control and scrambled (scr) siRNA treated cells. B, Quantification of AV/PI-FACS analyses (A) 

confirmed significant prevention of cell death by both VDAC siRNAs. C, D, VDAC1 siRNA transfected HT-22 cells 

were seeded in 96-well E-plates at a density of 8,000-10,000 cells per well and cell proliferation and cell death 

was monitored by the real-time cell analyzer (RTCA, xCELLigence) over 23 h after exposure of cells to 4 mM 

glutamate. C, Note the persistent protective effect of VDAC1 siRNA 1 transfected cells (dark blue circle) against 

glutamate- induced cell death (Glut, 4 mM) compared to control (Ctrl) or scr siRNA treated cells. D, VDAC1 

siRNA 2 transfected cells (dark green circle) are similarly protected against glutamate- induced cell death (Glut, 4 

mM) as VDAC1 siRNA 1-treated cells. For statistical analysis all experiments were independently repeated three 

to five times with n=3-4 (A, B) or n=8 (C, D) per treatment condition. Data are provided as mean ± SD (***p < 

0.001 compared to glutamate treated vehicle and scr siRNA, ANOVA, Scheffe´test). 

 

3.4.6.2 Preservation of mitochondrial integrity and function by VDAC1 gene 
silencing 

3.4.6.2.1 VDAC1 deficiency maintains mitochondrial energy metabolism and 

respiration and prevents glutamate-induced ROS formation  

Further investigations on the impact of VDAC1 in pathways of intrinsic death included 

measurements of ATP-levels, mitochondrial oxygen consumption rate (OCR) and ROS 

formation. Consistent with recent studies, revealing that down-regulation of VDAC1 

decreases ATP production and cell growth39, 141, and in line with the results obtained by 

DIDS-mediated VDAC inhibition (Figure 60), VDAC1 depleted cells revealed reduced ATP 

levels under control conditions compared to vehicle or scr siRNA-treated cells (Figure 

73 A, B). This reduction in basal ATP generation observed upon silencing of VDAC1 

confirms the major role of VDAC1 for nucleotide transport and might be attributed to limited 

transport of ADP into the mitochondria followed by impaired ATP synthesis141. However, the 

further accelerated ATP depletion after glutamate-induced cell injury was significantly 

prevented by both VDAC1 siRNAs (Figure 73 A, B), confirming preserved mitochondrial 

integrity and active energy metabolism in VDAC1 deficient cells. Additional evidence for 

rescued metabolic functions in mitochondria by VDAC1 silencing was derived from OCR 

measurements (Figure 73 C-F). Glutamate exposure significantly reduced mitochondrial 

maximum respiration as well as mitochondrial respiratory capacity in control cells (non-

treated and scr siRNA treated cells), whereas mitochondrial respiration remained unaffected 

in VDAC1-depleted cells (Figure 73 C-F). Notably, the preservation of mitochondrial energy 

production and respiration achieved by both VDAC1 siRNA sequences was much more 

pronounced than the effects obtained by DIDS (Figure 60). This might indicate that inhibition 
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of VDAC by DIDS is reversible and causes a transient protection, while VDAC1 gene 

silencing is sufficient to provide a sustained protection over time (Figure 71). 

 

Figure 73: VDAC1 deficiency maintains mitochondrial energy metabolism and respiration. 

HT-22 cells were transfected with scr siRNA (20 nM) or either VDAC1 siRNA 1 or VDAC1 siRNA 2 (20 nM) and 

treated with glutamate (4-5 mM, 17-20 h). A, B, Alteration of ATP levels by VDAC1 gene silencing were 

determined by ATP-luminescence measurements. ATP-levels from VDAC1 siRNA 1 (A) and VDAC1 siRNA 2 (B) 
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transfected HT-22 cells were analyzed in the presence or absence of glutamate (5 mM, 20 h). VDAC1 knockdown 

decreased ATP levels under control conditions, but restores ATP production after glutamate exposure. The 

experiment was repeated three times with n = 8 and results are predicted mean ± SD (###p < 0.001 compared to 

vehicle and scr siRNA controls, ***p < 0.001 compared to glutamate treated vehicle and scr siRNA treated cells, 

ANOVA, Scheffé´s test). C-F, VDAC1 siRNA preserves mitochondrial maximum respiration and respiratory 

capacity. Mitochondrial respiration, indicated as oxygen consumption rate (OCR) was analyzed by the Seahorse 

Bioscience system using the XF Mito Stress kit. D, E, Quantification of OCR revealed percentages of 

mitochondrial maximum respiration and respiratory capacity in VDAC1 depleted HT-22 cells compared to un-

transfected controls and scrambled (scr) siRNA transfected cells. VDAC depletion does not affect mitochondrial 

respiration under control conditions and preserves mitochondrial respiratory function after the onset of glutamate 

exposure. Experiment was independently repeated 5 times with n = 6 and data are provided as mean ± SD (***p 

< 0.001 compared to scr siRNA treated cells, ANOVA, Scheffé´s test). 

 

Furthermore, VDAC1 deficiency protected against increases in ROS as shown by the 

determination of lipid peroxides 18 h after the onset of glutamate (Figure 74 A, B), 

suggesting a strong impact of VDAC1 on Bid-dependent irreversible mitochondrial damage 

and the subsequently accelerated ROS formation116. Overall, these data indicate a clear 

involvement of VDAC1 in intrinsic death pathways established at the level of mitochondria in 

the applied model of glutamate toxicity. It appeared that a disturbed interaction between 

VDAC1 and Bid was the underlying mechanism of the protective effects mediated by VDAC1 

silencing. 
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Figure 74: Glutamate-induced ROS production is prevented by VDAC1 silencing. 

A, B BODIPY-FACS analysis of lipid peroxidation in HT-22 cells transfected with VDAC1 siRNA 1 or VDAC1 

siRNA 2 (both 20 nM) in comparison to control and scrambled (scr) siRNA transfected cells. The pronounced 

formation of lipid peroxides 18 h after the onset of glutamate exposure (4 mM) was significant prevented by 

VDAC1 silencing as fluorescence detection of ROS revealed a significant reduction in green fluorescence in 

VDAC1 depleted cells compared to vehicle and scr siRNA transfected cells. Values are averages (%) ± SD for 

three indicated treatment groups, each with 10,000 cells per flow measurement. Low green fluorescence 

represents healthy cells without lipid peroxidation (upper left corner) whereas high values of green fluorescence 

indicate increased formation of lipid peroxides in apoptotic cells (upper right corner). B, Quantification of lipid 

peroxides in in VDAC1-depleted HT-22 cells confirms that VDAC1 deficiency completely prevents the formation of 

ROS 18 h after the onset of glutamate (4 mM).The experiments were repeated three times and the results 

presented as mean ± SD (***p < 0.001 compared to scr siRNA treated cells, ANOVA, Scheffé´s test). 
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3.4.6.2.2 VDAC1 is required for Bid-mediated mitochondrial injury 

Recent studies revealed a pivotal role of Bid in the balance of mitochondrial fission and 

fusion, and a Bid-mediated permeabilization of the outer mitochondrial membrane24, 97, 200 

The channel porin VDAC1 is also thought to participate in mitochondrial-membrane 

permeabilization, loss of Δψm, and the release of pro-apoptotic mitochondrial proteins, such 

as cytochrome c, AIF and Smac/DIABLO143, 144, 159, 160, 245. The precise mechanism of VDAC1 

activation towards mitochondrial impairment, however, is not yet clarified and remains highly 

controversial144, 151. To further investigate whether the direct interaction between Bid and 

VDAC1 provides a convergence point in the aforementioned mechanisms, it should be 

examined whether the protective effect of pharmacological VDAC inhibition and VDAC1 

depletion in the model of glutamate-induced toxicity was associated with preserved 

mitochondrial morphology and membrane potential. 

In agreement with previous findings and the results presented above, glutamate exposure 

triggered detrimental mitochondrial fission (Figure 75 A)24, 200 in HT-22 cells, whereas VDAC1 

gene silencing sustained the native-like mitochondrial morphology (category I) and prevented 

the peri-nuclear accumulation of the fragmented organelles (category III) (Figure 75 A). 

Quantification of changes in mitochondrial morphology confirmed the glutamate-induced shift 

from cells containing long elongated mitochondria (category I) to damaged cells containing 

highly fragmented organelles (category III) that was significantly prevented by both VDAC1 

siRNAs (Figure 75 B, C). 

These findings are in line with further effects of VDAC1 siRNA towards the integrity of 

mitochondrial membranes. FACS analysis of TMRE-stained HT-22 cells revealed that both 

VDAC1 siRNAs prevented the loss of Δψm (Figure 76 A, B), a key event of glutamate- and 

tBid-induced cell injury24, 246. 
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Figure 75: VDAC1 depletion prevents glutamate-induced mitochondrial fission. 

A, Confocal fluorescence photomicrographs reveal protection against glutamate-induced mitochondrial 

fragmentation in VDAC1 siRNA 1 and VDAC1 siRNA 2 (both 20 nM) transfected HT-22 neurons. Cells were 

stained with MitoTracker red 30 min before glutamate treatment (5 mM, 17 h). Glutamate induced mitochondrial 

fission in control vehicle and scr siRNA transfected cells, which is prevented by VDAC1 gene depletion. B, C, 

Quantification of mitochondrial morphology: Category 1: elongated, fused mitochondria distributed throughout the 

whole cytosol, category II: intermediate, slightly fragmented mitochondria and category III strongly fragmented 

mitochondria and peri-nuclear accumulation of the organelles. Data represent the mean ± SD of three 

independent experiments (
###

p < 0.001 compared to category I glutamate treated control and scr siRNA ; ***p < 

0.001 compared to category III glutamate treated control and scr siRNA, ANOVA, Scheffè´s test). 
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Figure 76: Preservation of mitochondrial membrane potential by VDAC1 gene silencing. 

HT-22 cells were cultured in 24-well plates at a density of 33,000 cells per well and transfected with either VDAC1 

siRNA 1 or VDAC1 siRNA 2 (both 20 nM). A, TMRE-FACS recordings of mitochondrial membrane potential (Δψm) 

were performed 17 h after glutamate treatment (4 mM) and staining of HT-22 cells with MitoPT
TM

 TMRE dye. 

Glutamate exposed vehicle and scr siRNA transfected HT-22 cells showed significant reduction of red 

fluorescence, indicating loss of Δψm, while both VDAC1 siRNAs prevented breakdown of Δψm as indicated by 

preservation of red fluorescence comparable to control cells. Numbers are mean percentages ± SD of TMRE 

fluorescence for n=3 indicated treatment groups. High red fluorescences indicate intact mitochondria (right side), 

drop of red fluorescence depict loss of Δψm (left side). B, Quantification of TMRE fluorescence (A) confirms the 

preservation of Δψm in VDAC1 depleted HT-22 cells. CCCP was used as the positive damage-control for a fast 

depolarization of the mitochondrial membrane. The experiment was independently repeated four times and values 

are given as mean ± SD (***p < 0.001 compared to glutamate-treated vehicle and scr siRNA treated cells, 

ANOVA, Scheffé´s test). 
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3.4.6.3 tBid is not able to induce loss of Δψm  and cell death without functional 
VDAC1 

The observation that the pronounced protection against various hallmarks of glutamate 

toxicity achieved by DIDS (3.4.2) as well as by VDAC1 gene silencing was similar to the 

protective effects of the Bid inhibitor BI-6c9 (3.1)24, 116, 200 and comparable to the sustained 

protective effects of Bid gene silencing as shown in previous studies63, 97, strongly 

strengthened the hypothesis that the direct interaction between both proteins represents the 

mechanism behind Bid-mediated impairments of mitochondrial integrity and function. To 

confirm that both Bid and VDAC1, are indeed equally involved in the mechanisms of intrinsic 

cell death, HT-22 cells were transfected with a tBid-encoding plasmid (ptBid), and various 

endpoints of cell death were investigated in the presence or absence of VDAC1 protein 

expression. Over-expression of tBid induced the described characteristic alteration in the 

morphology (vehicle, scr siRNA, see also 3.1.2), contrary to VDAC1-silenced cells whose 

morphology remained unaffected (Figure 77 A). FACS analysis after annexin-V/propidium 

iodide-staining confirmed the protective effect of VDAC1 deficiency against tBid-induced 

toxicity (Figure 77 B, C).  

VDAC1 could finally be confirmed as a required target for tBid-mediated loss of Δψm (Figure 

78 A, B). TMRE staining of tBid-over-expressing HT-22 cells (ptBid, scr siRNA + ptBid) 

revealed a tBid-induced decline in Δψm by approximately 40 % of control cells, which was 

completely prevented by VDAC1 gene silencing (Figure 78 A, B). The fact that tBid caused 

neither breakdown of Δψm nor cell death at all in VDAC1 depleted cells confirmed that a 

direct interplay between tBid and VDAC1 is required to induce toxicity. 
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Figure 77: VDAC1 siRNA 1 and siRNA 2 prevent tBid-induced toxicity. 

HT-22 cells transfected with VDAC1 siRNA 1 or VDAC1 siRNA 2 (both 20 nM) were post-transfected (24 h) with a 

tBid encoding plasmid (ptBid). Cells treated only with attractene (vehicle) or scr siRNA transfected cells were 

used as controls. Seventeen to eighteen hours after tBid over-expression cell morphology (A) and cell death (B, 

C) were analyzed. A, Photomicroscopy (10 x 0.25 NA objective) reveals, that VDAC1-depletion preserves the 

spindle-shape morphology of HT-22 cells 17 h after tBid over-expression (ptBid) compared to vehicle and scr 
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siRNA treated cells which show extensive morphological alterations: cells appear shrunken, rounded up and 

detach from the bottom of the culture dishes. B, FACS-recordings of annexin-V/propidium iodide stained HT-22 

cells show resistance of VDAC1-depleted cells to tBid-induced cell death. HT-22 cells were stained with AV/PI 

and 10,000 cells per treatment condition were analyzed for cell death by flow cytometry (AV
+
/PI

+ 
: dead cells, 

upper right corner, AV
-
/PI

- 
: healthy cells, lower left corner) Numbers are mean values (%) ± SD for three indicated 

treatment groups in the corresponding quadrants. C, Quantification of AV
+
/PI

+
 cells confirmed that VDAC1 

depleted cells (VDAC siRNA 1 and 2) are protected against tBid- induced cell death. All experiments were 

independently repeated three to five times and results are reported as mean ± SD (***p < 0.001 compared to 

pIRES-tBid transfected vehicle and scr siRNA treated cells, ANOVA, Scheffé´s test). 

 

 

Figure 78: VDAC1 silencing prevents tBid-induced loss of Δψm. 

TMRE-FACS measurements of mitochondrial membrane potential 18 hours after tBid over-expression. A, HT-22 

cells were transfected with VDAC1 siRNA 1 or VDAC1 siRNA 2. Cells transfected with an empty pcDNA3.1+ 

vector were used as control (vehicle). After tBid-induced cell death was morphological detectable, all treatments 

groups were stained with MitoPT
TM

 TMRE dye and fluorescence was detected by FACS measurements. Numbers 

are mean percentages ± SD of n = 3 per treatment group, indicating loss of Δψm (left side) or intact Δψm (right 

side). The tBid-induced drop in red fluorescence was prevented in VDAC1-depleted cells compared to cells 

transfected with scramble (scr) siRNA. B, Quantification of TMRE fluorescence revealed significant loss of Δψm in 

cells over-expressing tBid which was restored by both VDAC1 siRNA sequences. The experiment was 
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independently repeated five times and data are reported as mean ± SD (***p < 0.001 compared to pIRES-tBid 

transfected vehicle and scr siRNA, n=3, ANOVA, Scheffé test). 

 

3.4.6.4 VDAC1 induced cytotoxicity requires Bid 

Vice versa, it was previously reported that VDAC1 over-expression induces depolarization of 

the inner membrane147 and thereby apoptotic cell death characterized by enhanced nuclear 

fragmentation141, 149. Such VDAC1 induced toxicity could be blocked by different agents 

shown to inhibit VDAC channel activity, e.g. DIDS148, ruthenium red (RuR) or hexokinase 

(HK)149, substantiating that VDAC1 expression levels appear to be critical for mitochondria 

mediated apoptosis. Nevertheless, it was still questioned how the enhanced VDAC1 

expression causes cell death. To further investigate whether the proposed interaction 

between Bid and VDAC1 is important for VDAC1 induced cytotoxicity, HT-22 cells were 

transfected with FLAG-tagged VDAC1 and analyzed by fluorescent confocal microscopy 

(Figure 79 A, B, Figure 80 A, B). Although VDAC1 is present in high abundance in the 

mitochondrial outer membrane (OMM), various studies have revealed that VDAC is also 

localized at low abundance to cell compartments other than mitochondria247-249. To confirm 

the mitochondrial localization of the over-expressed FLAG-VDAC1, mitochondria of HT-22 

cells were visualized by co-transfection of cells with mito-GFP or by staining with MitoTracker 

red. Confocal microscopy pictures revealed the co-localization of FLAG-VDAC1 and mito-

GFP as well as the VDAC1 co-localization with MitoTracker red stained mitochondria, both 

confirming the localization of FLAG-VDAC1 in the OMM (Figure 79 A, B, merge, Figure 

80 A, B). Of note, co-localization was not completely observed, indicating the partial 

exposure of VDAC1 to the cytoplasm as also expected by previous studies137, 250.  
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Figure 79: Mitochondrial localization of FLAG-VDAC1  

Localization of FLAG-VDAC1 in the mitochondrial outer membrane was confirmed by confocal fluorescence 

microscopy. A, HT-22 cells were co-transfected with plasmids encoding FLAG-VDAC1 and mito-GFP. 24 h- 48 h 

after transfection, FLAG-VDAC1 was immunostained using the primary anti-FLAG antibody and the secondary 

Dylight 648 antibody. Confocal fluorescence microscopy revealed the co-localization of FLAG-VDAC1 and mito-

GFP (merge), indicating the mitochondrial localization of over-expressed VDAC1. B, Co-localization of VDAC1 

and mitochondria was confirmed by immunostaining of FLAG-VDAC1 with the Alexa Fluor 488 antibody (green) 

and visualization of mitochondria by MitoTracker red. Note, that co-localization appears not completely, indicating 

the localization of VDAC1 in the outer mitochondrial membrane with the C-terminus outside of mitochondria.  

 

Twenty four to forty eight hours after plasmid transfection, VDAC1 over-expression resulted 

in cell death, as characterized by fragmented mitochondria and rounded cells (Figure 80 A, 

upper panel, Figure 80 B, lower panel), indicating that mitochondrial injury and cell death was 

triggered by VDAC1 expression levels. In contrast, control cells only transfected with mito-

GFP showed elongated mitochondria and spindle-like cell morphology (Figure 80 B, upper 

panel). In continuation, it was examined, if the VDAC1-induced cytotoxicity is linked to the 

pro-apoptotic effects of Bid. Interestingly, pre-incubation of cells with 10 µM of the Bid 

inhibitor BI6c9 preserved cell morphology and prevented death of VDAC1 transfected cells 

(Figure 80 A, lower panel). Since mitochondria of FLAG-VDAC1 over-expressing cells 

appeared highly fragmented, whereas mitochondria in mito-GFP transfected cells remained 

elongated, it is likely that VDAC1 over-expression causes toxicity via detrimental effects at 

the level of mitochondria. The results substantiated the required association of both proteins 

and suggested that the Bid inhibitor BI6c9 interfered with VDAC1-Bid interactions thereby 

protecting the cells against cell death induced by VDAC1 over-expression.  

In conclusion, these data demonstrate a direct interaction of tBid and Bid with the 

mitochondrial porin VDAC1, which is obviously highly relevant for determining mitochondrial 

demise and intrinsic cell death in cultivated cells and in vivo. The results predict that neither 

tBid nor VDAC1 alone are able to trigger mitochondrial injury and cell death without their 
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respective binding partner. This finding strongly indicates that the proposed Bid-VDAC1 

interaction provides a converging point for the mechanisms of MOMP that were previously 

considered separately, as they were either contributed solely to the Bcl-2 family proteins or to 

VDACs. 

 

 

Figure 80: VDAC1 induced cytotoxicity is inhibited by the Bid inhibitor BI6c9. 

HT-22 cells were co-transfected with FLAG-VDAC1 and mito-GFP in the presence and absence of the Bid 

inhibitor BI6c9 (10µM). Localization of VDAC1 and cell morphology was analyzed by confocal fluorescence 

microscopy 24-48 h after plasmid transfection and immunostaining of FLAG-VDAC1 using the anti-FLAG antibody 

followed by incubation with Dylight 648. Pictures were taken immediately after immunostaining. A, Localization of 

VDAC1 in the mitochondrial outer membrane was confirmed by co-localization of VDAC1 with mito-GFP. Note, 

that over-expression of FLAG-VDAC1 resulted in highly fragmented mitochondria, the perinuclear accumulation of 

the organelles and rounded cells (A, upper panel, B, lower panel). Pre-incubation of HT-22 cells with the Bid 

inhibitor BI-6c9 (10 µM) prevented the VDAC1-induced cytotoxicity (A, lower panel).  B, Confocal fluorescence 

microscopy of control cells transfected only with mito-GFP (upper panel) or FLAG-VDAC1 (lower panel), 

respectively. Note, that mito-GFP-transfected control cells show elongated mitochondria distributed through the 

whole cytosol (B, upper panel), whereas cells transfected with FLAG-VDAC1 revealed category II to category III 

mitochondria (B, lower panel).  
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3.5 VDAC2 plays a minor role in neuronal intrinsic cell death pathways 

Besides the involvement of VDAC1 in the regulation of mitochondrial membrane 

depolarization and the following apoptotic pathways, the mitochondrial outer membrane 

protein VDAC2, a VDAC isoform present in low abundance251, has been recently described 

as a crucial component in mitochondrial cell death signaling93, 251, 252, recruiting pro-apoptotic 

Bcl-2 family proteins to the outer mitochondrial membrane (OMM)93. Interestingly, in non-

neuronal mouse embryonic fibroblasts (MEFs) a regulatory function of VDAC2 in the Bak-

mediated cell death cascade has been described by linking the isoform to tBid-mediated loss 

of Δψm and cell death93. These studies suggested that a direct association between VDAC2 

and Bak inhibits Bak activation and apoptosis and further reported a tBid-mediated Bak 

displacement from the VDAC2-Bak complex and thereby a tBid-induced recruitment of Bak 

to the mitochondria93. While these studies revealed a specific involvement of VDAC2 in non-

neuronal apoptosis, the role of VDAC2 in neuronal cell death is unknown so far. Therefore, 

the further work addressed the question, if a regulatory role of VDAC2 can be also 

determined in the neuronal Bid-mediated death signaling, or if the described Bid-VDAC1 

interaction might be the neuronal mirror of the emerging non-neuronal tBid-VDAC2-Bak 

concepts of apoptosis. 

 

3.5.1 VDAC2 gene silencing provides only transient protective effects against 

glutamate-induced toxicity 

To investigate the role of VDAC2 in neuronal cell death, the impact of VDAC2 gene depletion 

was analyzed in the model of glutamate-induced toxicity in HT-22 cells. 

Specific down-regulation of VDAC2 in HT-22 neurons was achieved by transfection of cells 

with two different sequences of VDAC2-targeting siRNA (VDAC2 siRNA a and VDAC2 

siRNA b) at concentrations of 20 nM, 40 nM and 80 nM (Figure 81 A-D). Both sequences of 

VDAC2 siRNA were sufficient to reduce cellular VDAC2 mRNA- as well as VDAC2 protein-

levels as verified by RT-PCR (Figure 81 A, C) and western blot analysis (Figure 81 B, D). Of 

note, concentrations of 20 nM siRNA reduced VDAC2 mRNA-levels by approximately 40% 

compared to vehicle and scramble siRNA-treated cells, whereas a complete deficiency of 

VDAC2 mRNA was obtained at siRNA-concentrations of 40 nM and 80 nM (Figure 81 A). 

Therefore, further functional analyses were performed using 40 to 80 nM of siRNA approach. 

Determination of VDAC1 mRNA expression levels confirmed a specific targeting of VDAC2 

by both VDAC2 siRNAs at concentrations of 40-80 nM (Figure 81 E).  
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Figure 81: VDAC2 gene silencing by two different VDAC2 siRNA sequences. 

HT-22 cells were transfected with two different sequences of VDAC2 siRNA (siRNA a and siRNA b) at 

concentrations of 20 ng, 40 ng and 80 ng. Specific knockdown of VDAC2 was verified by RT-PCR (A) and 

western blot analysis (B) 48 h after transfection of HT-22 cells. VDAC2 expression of VDAC2 siRNA transfected 

cells was compared to non-transfected cells (control), cells treated with the transfection reagent Lipofectamin 

RNAiMax (vehicle) and cells transfected with non-functional scrambled siRNA (scr siRNA). C, Quantification of 

VDAC2 mRNA amount 48 h after transfection of  HT-22 with 20 nM VDAC2 siRNA a and VDAC2 siRNA b. D, 

Quantification of VDAC2 protein amount 48 h after transfection of  HT-22 with 20 nM VDAC2 siRNA a and 

VDAC 2 siRNA b. E, Unspecific knockdown of VDAC1 by VDAC2 siRNA was ruled out by PCR analysis. Data are 

representatives of 3-5 independent transfection experiments. 

 

The effect of VDAC2 deficiency upon apoptosis was investigated by analyses of cell 

morphology and cell viability of HT-22 cells 16-18 h after the onset of glutamate exposure. In 

contrast to the reported results in VDAC2-depleted MEF cells93, revealing a resistance of 

VDAC2-/- cells to tBid-mediated apoptosis, VDAC2 deficiency was only slightly protective in 

HT-22 neurons. After glutamate exposure, HT-22 cells showed their typical morphological 

phenotype, which was only partly protected by VDAC2 silencing using VDAC2 siRNA a. 

However, a more pronounced protection against glutamate cytotoxicity was achieved by 

transfection of cells with VDAC2 siRNA b, preserving the spindle shape cell morphology 
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(Figure 82 A). This observation could be confirmed by FACS-analysis of annexin-

V/propidium iodide-stained HT-22 neurons (Figure 82 B, C), depicting no significant 

protection of cells treated with VDAC2 siRNA a. In contrast, VDAC2-depletion by VDAC2 

siRNA b attenuated glutamate-toxicity by approximately 40% compared to glutamate-treated 

control cells (Figure 82 B, C). Quantification of cell viability determined by MTT assay finally 

substantiated the lack of protection by VDAC2 siRNA a, yet a concentration-dependent 

enhancement of cell viability in cells transfected with VDAC2 siRNA b (Figure 82 D). Since 

control scrambled siRNA could not attenuate cell viability after glutamate-induced damage in 

HT-22 cells, un-specific effects of the siRNA approach were ruled out (Figure 82 A-D).  

Since potency and time of protection varies in different experiments depending on the cell 

passage, density and thereby glutamate-sensitivity of HT-22 cells, the protective potential of 

VDAC2 silencing was further analyzed by real-time detection of cell death using the 

xCELLigence system (Figure 83 A, B). Therefore, cell impedance of HT-22 neurons, 

transfected as indicated, was monitored over at least 18 h after glutamate-treatment, 

revealing a delayed cell death in VDAC2 siRNA b transfected cells (Figure 83 B) up to a 

persistent protection at a siRNA concentration of 80 nM. In line with the cell viability data 

obtained by FACS and MTT analysis, transfection of cells with VDAC2 siRNA a achieved 

only a short and transient protective effect with a delay of cell death of 1-3 hours compared 

to controls exposed to glutamate (Figure 83 A).   
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Figure 82: VDAC2 knockdown by different VDAC2 siRNA sequences provides slight protection 
against glutamate toxicity. 

HT-22 cells were transfected with VDAC2 siRNA a and VDAC2 siRNA b (40 nM and 80 nM) and challenged with 

glutamate (4 mM) 48 h after transfection. A, Photomicrographs (10 x 0.25 NA objective) reveal the phenotype of 

glutamate-induced cell death, which is slightly prevented by VDAC2 siRNA a and VDAC2 siRNA b (both 40 nM). 

B, FACS analysis of annexin-V/propidium iodide-stained HT-22 cells depicts dead cells in the upper right corner 
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and healthy cells in the lower left corner. Glutamate induced cell death of about 47-48% in vehicle and scr siRNA 

treated cells, which is only prevented by knockdown of VDAC2 using VDAC2 siRNA b. Numbers are mean 

percentages ± SD for three cell groups treated as indicated in the corresponding quadrants. Glut, Glutamate, 4 

mM. C, Quantification of AV
+
/PI

-
-stained HT-22 cells 48 h after transfection with 40 nM of either VDAC2 siRNA a 

or VDAC2 siRNA b and the onset of glutamate exposure (4 mM, 16-18 h) confirms slightly protective effects of 

VDAC2 siRNA a, that are achieved more pronounced by VDAC2 siRNA b (*p < 0.05; ***p < 0.001; n=4, compared 

to glutamate-treated vehicle and scrambled (scr) siRNA). D, MTT assay 65 h after transfection with both VDAC2 

siRNA sequences at concentrations of 40 nM and 80 nM confirms a concentration-dependent protection of 

VDAC2 siRNA b, while no significant protection was obtained by VDAC2 siRNA a (**p < 0.01; ***p < 0.001; n=8, 

compared to glutamate-treated vehicle and scrambled (scr) siRNA). All experiments were repeated at least three 

times and data are provided as mean ± SD with n=4-8. All statistics were obtained using ANOVA, Scheffé´s test. 

 

 

 

Figure 83: VDAC2 siRNA attenuates glutamate-induced cell death in a concentration-dependent 
manner. 

A, B, HT-22 cells were cultured in 96-well E-plates at densities of 8,000- 10,000 cells per well and transfected 

with VDAC2 siRNA a and VDAC2 siRNA b 48 h prior to glutamate exposure (Glut, 4 mM). A, VDAC2 siRNA a 

revealed only short and transient protection against glutamate-induced cell death compared to cells transfected 

with scrambled (scr) siRNA (n=8). B, VDAC2 siRNA b predicts stronger protection at concentrations of 40 nM and 

a persistent protection over time at concentrations of 80 nM (n=8).  

 

Interestingly, although a more pronounced and complete depletion of VDAC2 protein 

expression levels was achieved by specific VDAC2 knockdown using the VDAC2 siRNA a 

sequence, almost no protective effects could be observed in any of the endpoint or real-time 

analyses of cell viability. Transfection of HT-22 neurons with the siRNA sequence b exerted 

less reduction in the VDAC2 protein expression levels (Figure 81 B), yet a significant, even 

though slight protection against glutamate-induced cell death. Notably, the protection 

achieved with relative high concentrations of VDAC2 siRNA b (40 nM and 80 nM) was still 

not as pronounced as the protective effects achieved by knockdown of the isoform VDAC1 

using less siRNA concentration of 20 nM. In addition, preliminary data obtained from VDAC2 

knockdown experiments using 20 nM of VDAC2 siRNA revealed no protection at all in the 

model of glutamate-induced toxicity, suggesting a minor role of VDAC2 in neuronal cell death 

compared to the crucial and essential role of VDAC1. 
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3.5.2 Mitochondrial membrane potential is not affected by VDAC2 silencing 

To gain broader insight into the question if Bid-mediated mitochondrial demise and cell death 

could be regulated by VDAC2, as proposed by previous studies93, the impact of VDAC2 

deficiency on mitochondrial membrane potential (Δψm) was investigated, since the previous 

experiments clearly confirmed a Bid/tBid-mediated breakdown of Δψm in the present HT-22 

cell line.  

Again in contrast to the findings of Roy et al.93, a VDAC2 dependence of Bid/tBid-induced 

MOMP could not be revealed in HT-22 neurons. TMRE-FACS analysis predicted that 

glutamate-induced toxicity in non-silenced control and scr siRNA treated cells is 

accompanied with a pronounced loss of Δψm, which could be only slightly prevented by 

transfection of cells with VDAC2 siRNA b (Figure 84 A, B). In line with the findings above, 

VDAC2 siRNA a was not sufficient to preserve the breakdown of Δψm and did not exert 

protection against glutamate induced mitochondrial injury (Figure 84 A, B), demonstrating 

that Bid-mediated glutamate-induced MOMP is not dependent on VDAC2 expression levels. 

These data strongly indicate that VDAC2 does not play a major role in Bid-mediated 

mitochondrial demise and cell death signaling in neurons, although VDAC2 might be 

important for non-neuronal apoptotic pathways that are triggered by the Bak/Bax assembly. 

This hypothesis is substantiated by several previous studies, reporting the absence of 

functional Bak in neurons, indicating separate pathways for non-neuronal and neuronal 

apoptosis253-255. However, further analyses are required to investigate whether neuronal 

VDAC2 is dispensable for mitochondrial injury and cell death at all or if there might be a 

regulatory function of VDAC2 in the neuronal death signaling that hasn´t been investigated 

so far.  
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Figure 84: Mitochondrial membrane potential is only slightly affected by VDAC2 silencing. 

Mitochondrial membrane potential (Δψm) of HT-22 cells was analyzed 72 h after transfection with VDAC2 siRNA a 

and b (40 nM) and glutamate treatment (6 mM, 17 h). A, TMRE-FACS recordings reveal loss of Δψm 17 h after 

the onset of glutamate exposure. Numbers are mean percentages ± SD of TMRE fluorescence for n = 3 indicated 

treatment groups. High red fluorescence indicates intact mitochondria (right side), drop of red fluorescence 

depicts loss of Δψm (left side). Glutamate-induced reduction in red fluorescence was detected in vehicle and 

scrambled (scr) siRNA treated cells as well after transfection with VDAC2 siRNA a. VDAC2 siRNA b was only 

slightly protective against this breakdown of the mitochondrial membrane potential. B, Quantification of TMRE 

fluorescence of VDAC2 depleted HT-22 cells in the presence and absence of glutamate. CCCP was used as a 

positive damage-control which causes a fast breakdown of the mitochondrial membrane potential. Glutamate-

induced loss of Δψm was only prevented by VDAC2 siRNA b (40 nM), while VDAC2 siRNA a showed no 

protective effects. The experiment was independently repeated three times with n = 3 per treatment group, data 

are provided as mean ± SD (**p < 0.01 compared to glutamate treated vehicle, ANOVA, Scheffé test). 
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4 Discussion 

The present thesis highlights the pro-apoptotic protein Bid as a druggable target for 

mitoprotection and suitable for crystal structure analysis. Furthermore, the data of this study 

provided new insights in the underlying mechanisms of Bid-dependent mitochondrial injury 

that is a convergence point for different proposed mechanisms of MOMP which were 

previously attributed either to the activity of apoptogenic Bcl-2 family proteins or to protein 

complexes containing the voltage-dependent anion channel VDAC. 

Key decision points in the sequence of glutamate-induced impairments in mitochondrial 

integrity and function, such as MOMP, disturbed mitochondrial energy production and 

respiration, the accelerated production of ROS as well as imbalance in mitochondrial fission 

and fusion occur in a Bid-dependent manner. As inhibition of Bid protects against such 

mitochondrial demise, the present thesis focused on Bid as a target for mitoprotection. To 

this aim, the first part of the study addressed the identification of small-molecule ligands 

targeting Bid. Seven compounds obtained from three structural diverse chemical classes 

were identified as highly protective against glutamate- and tBid-induced toxicity in the 

present HT-22 neurons. The results provide strong evidence that inhibition of Bid was the 

underlying mechanism of the observed protective effects. The most promising compounds 

prevented not only cell death, but also restored Δψm, ATP levels as well as mitochondrial 

respiration after induction of oxidative stress and over-expression of tBid in HT-22 cells. 

Overall, this part of the study indicated these compounds as potent scaffolds for future 

optimizations and further applications in model systems of brain damage in vivo. 

The second part of the work provides important requisites for the use of recombinant Bid 

proteins for the first Bid crystallization trials and further structure-guided drug design. 

Protocols for effective expression and purification of different recombinant Bid constructs 

were optimized and scaled up, yielding 15-50 mg Bid variant per liter culture thereby 

providing sufficient amounts for crystallization screening. One of the designed Bid constructs 

was successfully crystallized and X-ray diffraction data of 3.75 to 3.95 Ǻ resolution could be 

obtained, confirming that the appropriate constructs of Bid are suitable for crystal structure 

analysis. Optimizations in construct design and crystallization approach were explored in 

order to improve the diffraction properties of the Bid crystals obtained in this thesis. Over-

expression of the diverse Bid constructs in HT-22 cells revealed their non-apoptotic function, 

indicating their behavior as a ´full-length Bid like protein´, in contrast to the detrimental 

effects of tBid over-expression.  

In addition, the work here included the validation of a model system for membrane 

permeabilization in order to analyze the effect of recombinant Bid proteins and Bid inhibitors 

on artificial lipid membranes that mimic the mitochondrial outer membrane. A particular focus 
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here was on the role of cardiolipin in Bid-mediated MOMP. The data demonstrated that only 

cleaved Bid, but not full-length Bid was able to induce pore formation and membrane 

destabilization of CF-containing liposomes and planar lipid bilayers and that membrane 

targeting of Bid was dependent on the presence of CL. The combination of cBid and Bax was 

sufficient to increase fluorescence release and pore-opening, whereas Bax alone showed no 

effect. These results indicate an ordered series of events that occur on mitochondrial 

membranes to induce MOMP and the release of death promoting proteins.  

Lastly, the present thesis demonstrates for the first time a direct interaction of Bid with the 

voltage-dependent anion channel VDAC1 as an essential key for mitochondrial damage in 

cultured neurons and in vivo. Co-immunoprecipitation experiments, thermophoresis, and lipid 

bilayer measurements revealed VDAC1 as a binding partner for Bid. Most intriguingly, Bid-

VDAC1 interaction significantly increased over 6-24 h in ischemic brain tissue of mice 

subjected to transient focal cerebral ischemia, indicating the relevance of this interaction in 

neuronal cell death. To investigate the role of VDAC1, the anion channel blocker DIDS as 

well as siRNA-mediated VDAC1 gene silencing was applied in the present models of 

glutamate- and tBid-induced toxicity. Both, DIDS and VDAC1 siRNA, significantly attenuated 

Bid-mediated impairments in mitochondrial oxygen consumption and ATP production, as well 

as hallmarks of intrinsic death pathways, such as mitochondrial fission, increased 

mitochondrial ROS production and breakdown of the mitochondrial membrane potential. 

These data highlight a critical role for VDAC1 as a mitochondrial receptor for activated Bid 

and indicate the Bid-VDAC interaction as a major control point of life and death at the level of 

mitochondria in vitro and in vivo. In contrast, only a minor role in neuronal cell death was 

suggest for the isoform VDAC2, as VDAC2 gene silencing provided only transient protective 

effects against glutamate-induced toxicity and could not restore Δψm. Therefore, the data 

implicate the observed Bid-VDAC1 interaction as a new mechanism in neuronal cells that 

might mirror the emerging concepts of the Bid-VDAC2-Bak interplay in cell death pathways 

of non-neuronal cells.  
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4.1 Targeting Bid for protection against mitochondrial injury and 

neuronal cell death  

The present thesis confirmed the pro-apoptotic protein Bid as a key player in mitochondrial 

pathways of neuronal cell death triggered by oxidative stress and thereby substantiated the 

detrimental involvement of Bid in neurological diseases associated with impairments in 

mitochondrial integrity and function. The involvement of Bid in the neuronal cell death 

cascade was mainly characterized in immortalized mouse hippocampal HT-22 neurons 

exposed to toxic glutamate concentrations. As these neuronal cells lack ionotropic glutamate 

receptors, glutamate-induced cell death is mediated by inhibition of the cellular cystine 

import, subsequent glutathione depletion, enhanced formation of reactive oxygen 

species (ROS) through increased lipid peroxidation and Bid-dependent mitochondrial 

damage165, 166. Furthermore, it was shown that glutamate-induced Bid transactivation to 

mitochondria triggers the release of AIF, which in turn translocates to the nucleus and 

induces a nuclear condensation and DNA fragmentation97. The crucial role for Bid in the 

model of glutamate-induced oxidative stress was confirmed by the approach of siRNA-

mediated Bid gene silencing and pharmacological Bid inhibition24, 97, 116. The fact that 

inhibition of Bid as well as Bid depletion were sufficient to protect against various features of 

mitochondrial injury, including the breakdown of the Δψm, mitochondrial fission, impaired 

energy supply and mitochondrial ROS formation, indicates Bid as a target for mitoprotection. 

Previous studies demonstrated an involvement of Bid in neuronal injury revealing that 

reduced Bid expression prevented cell death in a model of oxygen glucose deprivation 

(OGD) in primary cultured neurons, and genetic depletion of Bid also reduced brain damage 

in models of cerebral ischemia and brain trauma in vivo98, 202. Moreover, recent reports 

showed that both proteins, full-length Bid as well as its truncated form tBid, are sufficient to 

induce mitochondrial dysfunction and cell death in neurons and only differ in kinetics and cell 

death pathways58. While tBid is suggested to induce rapid mitochondrial damage in a 

caspase-dependent manner, full-length Bid is thought to be involved in caspase-independent 

apoptosis with slower kinetics59. In the currently applied model system of glutamate toxicity in 

HT-22 cells, activated full-length Bid as well as tBid may both contribute to neuronal cell 

death pathways. Pharmacological Bid inhibition was sufficient to prevent the glutamate-

induced translocation of full-length Bid to mitochondria and the subsequent accumulation of 

the fragmented organelles and additionally attenuated mitochondrial injury and cell death 

after over-expression of tBid. It should be noted, that the p15 tBid fragment was hardly 

detectable in cytosolic or mitochondrial fractions of glutamate-exposed HT-22 cells. 

However, this does not necessarily indicate the absence of tBid in the model of glutamate-

induced cell death, but suggests that upon glutamate exposure the caspase-8 cleaved Bid 
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(cBid) translocates to the mitochondria where the separation of the p7 and p15 Bid (tBid) 

fragment could occur rapidly and in a small time window after membrane targeting72.   

Overall, these findings in model systems of neuronal death in vitro and in vivo strongly 

suggested that targeting Bid is a promising approach to develop pharmaceutical drugs for 

mitoprotection with high relevance for novel therapeutic strategies in neurological diseases 

where mitochondrial demise is prominent. Indeed, it was recently demonstrated, that 

pharmacological inhibition of Bid with the available inhibitor BI-6C9, which was used as 

positive control for protection in the present study, strongly reduced tBid-induced release of 

Smac/DIABLO from isolated mitochondria at concentrations as low as 20 µM in vitro and 

prevented effectively tBid-mediated cell death in mitochondria- and cell-based assays of 

caspase-dependent cell death99. In particular, the available Bid-inhibitors developed by 

Becattini et al. reduced caspase-3 activity in tBid-transfected HeLa cells at 50 µM and 

persistently blocked caspase activity at 100 µM99. This thesis revealed that the key events of 

glutamate-induced caspase-independent cell death, such as MOMP, mitochondrial fission 

and ATP depletion as well as impairments in mitochondrial respiration were apparently Bid-

dependent and could be prevented by BI-6c9 at concentrations of 10 µM. However, despite 

the pronounced neuroprotective potency of BI-6c9 in vitro, it failed so far to protect brain 

tissue in vivo. Since the solubility of BI-6c9 is dependent on the serum-content of the culture 

media, BI-6c9 is not applicable to serum free conditions in cell culture models. A further 

aspect is the relatively high molecular weight of BI-6c9 that might hamper the penetration of 

the blood-brain barrier, and metabolically unstable substructures, such as the 4-(4-

aminophenyl)sulfanylaniline structure, might cause a fast peripheral metabolism resulting in 

molecules with less activity.  

The small-molecule compounds that were developed in this thesis based on the structure of 

BI-6c9, provided protective effects against glutamate-induced cell death at concentrations of 

5 µM up to 50 µM, and attenuated tBid-induced toxicity even at concentrations as low as 

1 µM. The observed protective effect in the model of oxidative stress is promising, since the 

screened compounds may provide a protective benefit against pathological pathways 

occurring in neurodegenerative diseases where oxidative stress triggers the onset of 

neuronal cell death. The finding that the newly synthesized structures preserved cell viability 

in HT-22 cells after tBid over-expression strongly support the specificity of the small-

molecules to provide mitoprotection by targeting the pro-apoptotic protein Bid. Key features 

of mitochondrial dysfunction, such as impairments in energy metabolism and loss of 

mitochondrial membrane potential described as ´point of no return´ in the cells` commitment 

to die19 were effectively prevented by the most promising thiazolidin-2,4-diones. Further, the 

data demonstrated the compounds` ability to preserve oxygen consumption rate of HT-22 

cells and thereby mitochondrial respiration and bioenergetics, described to be defective in 
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neurodegenerative disorders204. The fact that the compounds provided almost full protection 

against mitochondrial dysfunction indicated that the molecules acted upstream of 

mitochondria. This supports even more the hypothesis that the protective effects are 

mediated by inhibiting Bid. The specific targeting of Bid was further substantiated by virtual 

docking analysis revealing that the compounds fitted nicely into the hydrophobic grove on the 

surface of the Bid protein. Indeed, the Bid-ligand binding could be confirmed very recently by 

fluorescence based assays and label-free EnSpire analysis (data not shown)256. 

Furthermore, latest investigations revealed that these compounds are able to inhibit the 

translocation of Bid to mitochondria and were also protective against glutamate-induced 

excitotoxicity in cultured primary cortical neurons (data not shown). Therefore, the data 

obtained from this thesis indicate that Bid is a druggable target that promises novel strategies 

for future therapeutic perspectives for treatment of diseases associated with mechanisms of 

Bid-dependent mitochondrial cell death. The relevance of targeting Bid in the brain has been 

further confirmed by recent studies, reporting that chemical inhibition of Bid exerted 

antidepressant-like effects in behavioral models in vivo, such as the forced swim test, 

the tail suspension test and learned helplessness paradigms, indicating that Bid might 

be also a target of a new class of antidepressants257-259. However, it remains to be 

validated whether Bid inhibitors are suitable for long-term systemic use and whether Bid-

antagonists can alleviate neurodegenerative or depressive symptoms in human patients. 

It is further an open question whether these compounds cause side effects due to 

inhibition of apoptosis pathways, albeit Bid-deficient mice are viable and develop 

normally260, 261. In addition, side effects caused by the chemical structure of the 

thiazolidindiones comparable to that observed by the thiazolidinediones (TZDs) used for 

treatment of type II diabetes is unlikely. Those anti-diabetic compounds, also known as 

glitazones (e.q. Rosiglitazone) act through activation of peroxisome proliferator-activated 

receptors (PPARγ). The PPARγ-binding was responsible for several side effects, such as 

increased risk of cardiovascular events, hepatitis and potential liver failure causing the 

withdrawn of some glitazones. In contrast to those thiazolidinedione-based PPAR ligands 

that need to possess a free N-H, all of the Bid-targeting thiazolidinediones screened here are 

N-substituted, and thus a binding to PPAR’s and the resulting side effects are not expected. 

However, one should keep in mind that the data obtained in this thesis are preclinical and 

have to be transferred to in vivo studies. Further optimizations should be performed in order 

to improve the protective potency of the compounds to nanomolar concentrations required 

for first PK studies and observations in vivo.  

In conclusion, this part of the thesis identified seven small-molecules as potent inhibitors 

against neuronal cell death and indicates the inhibition of Bid as the key mechanism of their 

protective properties. In particular, the compounds provided significant protection against 
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glutamate toxicity and tBid-over-expression in hippocampal HT-22 cells, and further 

prevented detrimental impairments of mitochondrial integrity and function, thereby inhibiting 

the final execution of intrinsic cell death. Future optimization of the structures should result in 

compounds with favorable pharmaceutical properties that are applicable in model systems of 

cell death in vivo and furthermore in pharmaceutical drugs that are suitable for therapeutic 

strategies not only in the treatment of neurodegenerative diseases, such as Alzheimer´s 

disease and Parkinson´s disease, but also for therapeutic interventions in ischemic stroke, 

mood disorders e.g. major depression, liver inflammation, or other diseases where a role of 

Bid has been implicated. 

 

4.2 Bid protein crystallization – a pipeline for structural knowledge and 

structure-guided drug design 

The atomic resolution structures of a protein provides not only a deep and unique 

understanding of the molecular protein function and sheds light on chemical interactions and 

the inner working of the cells206, but is also an indispensable tool for the development of 

highly selective inhibitors of a target protein. Since X-ray crystal structures can account for 

geometric properties of ligand-protein complexes, they enable a rational and structure-guided 

drug design that facilitates the further improvement of physico-chemistry and affinity 

properties of small-molecule compounds. Thus, crystal structures serve as the basis for 

developing pharmaceuticals against diseases where the target protein plays a major role in 

the underlying pathology262, 263. While several previous studies, reported the advantage of 

crystal structures for the development of selective inhibitors of other Bcl-2 family proteins, 

such as Bax, Bcl-xl, or Mcl-168, 105, 109, 121, 122, to date similar drug discovery campaigns for the 

pro-apoptotic protein Bid were hampered by the absence of appropriate crystal structures of 

isolated Bid. So far only small Bid BH3-peptides were co-crystallized in combination with the 

pro-apoptotic protein Bax and used to explore the activation of Bax121. However, an atomic 

resolution structure of full-length Bid is not available. Figure 85 depicts the general workflow 

which has been pursued within this thesis for obtaining a basis for Bid protein crystallization.  

Since every protein has its own distinctive chemical properties and there is no 

comprehensive theory to guide a successful crystallization, macromolecular crystal growth is 

largely empirical in nature, demanding patience, perseverance and intuition189, 207, 209, starting 

not at the stage of the obtaining crystals, but much earlier at the selection of the protein. It 

has been described, that full-length protein constructs versus truncations, chemical 

modifications and mutations can dramatically influence the crystal formation207, a 

phenomenon that was also observed in the present thesis. Although purification of full-length 

Bid allowed for harvesting reasonable amounts of the protein, several crystallization screens 
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failed to yield Bid crystals. Based on previous experiences collected for the construct design 

and crystallization of the related proteins, Bcl-2, Bcl-xl and Mcl-168, 121, 122 it was suggested 

that flexible regions in the structure of the Bid protein interfere with the crystallization 

process. Indeed, the present study revealed that truncation of the disordered N-terminus and 

loop region of full-length Bid enhanced the ability to reach high protein concentration as well 

as the tendency for obtaining crystals within the first screens. Therefore, the truncation of full-

length Bid is an important advance, absolutely essential for obtaining the first diffracting Bid 

crystals. Notably, the choice of an appropriate protein construct may already cause 

differences in the expression efficiency, as it was observed in case of the tBid plasmid. While 

the expression of the active and pro-apoptotic truncated Bid in E. coli. was completely 

refused, bacterial expression of the newly designed Bid constructs (Bid 1-Bid 4) succeeded 

in high protein amounts (Step1).  

 

Figure 85: Workflow from construct design to protein crystallography. 

Pipeline from Bid construct design, cloning, expression and protein purification to Bid protein crystallography. 

Step 1: The pro-apoptotic protein Bid was selected for purification and crystallization studies. Different Bid 

constructs were designed and respective plasmids were cloned suitable for protein expression in E. coli. Large 

scale production yielded in high protein amount suitable for step 2. Step 2: Protein purification: Depending on the 

protein construct and the respective purification tag, protein purification was performed by 2-3 chromatography 

steps as indicated. The purity of the protein was estimated by SDS-PAGE followed by coomassie staining and 
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western blot analysis. To guarantee the identity of the protein Maldi-Tof analysis were performed. The proteins 

were concentrated to approximately 10 mg/ml. Step 3: Protein crystallization was performed by the vapor-

diffusion technique and initial screening was conducted using the Quiagen NeXtal-screening suites containing a 

wide sector of different crystallization conditions differing in ph, precipitants, buffer and salts. Hit conditions, 

yielding the first protein crystals were further optimized by additive screening, seeding or grid screens. Hit 

conditions were further reproduced. Step 4: Obtained protein crystals were analyzed by X-ray diffraction. 

Synchrotron measurements of protein crystals took place either at the Helmholtz-Zentrum Berlin using the MX 

Beamline 14.1, BESSY II or at the DESY Hamburg using the EMBL MX1 and MX2 beamline at the PETRA III 

ring.  Step 5: First molecular replacement trials were performed using Phaser with search models from various 

sources (Bid NMR structures (PDB), homology models and poly-Ala models). So far no MR solution could be 

identified.  Of note, if protein purification, crystallization screens or data processing was not satisfying, all steps 

were repeated beginning at step 1. Pictures predict protein expression and protein analysis (step 1), the first Bid 

crystal obtained during this work, and the NMR solution structure of Bid (1DDB) used for molecular replacement.  

 

The second step in the crystallization pipeline included the preparation of a pure 

homogenous protein sample, which is often a key factor in obtaining crystals that diffract to 

high resolution189, 264. As recommended for the initial crystallization screening, highly pure 

protein (> 98%) could be achieved for all of the designed and purified Bid constructs and 

concentration efficiency could be clearly increased by cutting the His-tag of full-length Bid 

and further by removal of the flexible loop and N-terminal region, confirming the protein itself 

as an important variable during the crystallization approach. The most important parameters 

that affect protein solubility and thereby crystallization are reported to be protein 

concentration, precipitant type and concentration, pH and temperature189, 265-268. Notably, it is 

essential to carefully review the screening outcomes within the first crystallization process, 

bearing in mind that even negative results provide precious information207, 264. Initial 

crystallization screens revealed that all Bid constructs tended to heavy precipitates in the 

presence of cadmium, zinc or nickel ions, while most promising conditions often consisted 

cryoprotectans such as PEGs (PEG 3350, PEG 4000) or higher concentrations of MPD (20-

50 % (V/V)).  

Regardless of the screening condition, temperature was an important variable to evaluate. 

As Bid is temperature stable protein, crystallization screens could be performed at 4°C and 

18°C, revealing even the most promising results at the higher temperature.  

Beside these chemical and physical parameters, the choice of the crystallization method can 

affect the crystallization result189, 269, 270. In accordance to the PDB, the present thesis utilized 

the vapor diffusion technique as the most popular method used in obtaining the majority of 

the X-ray structures for which the crystallization method was reported189. A couple of 

promising conditions with crystalline material as well as 3D crystals were observed within the 

initial Bid crystallization trials, but unfortunately they were often not suitable for X-ray 

diffraction analysis or diffracted only at low resolution. This was not surprising, as it has been 

estimated, that only 10 %-20 % of the crystals produced in the first level of screening are 

diffracting crystals, while the majority requires further refinement189. Optimizations performed 
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for Bid crystallization included not only the variation of parameters such as buffer and 

precipitant concentration as well as pH, but also contained the approach of crystal seeding 

and addition of diverse additives. Compared to the initial screening, which is generally 

fraught with the greater risk, as many proteins refuse to form crystals, the systematic 

alteration of the initial conditions proves the more demanding and more time consuming 

step120, 267. Crystallization screens performed with full-length Bid succeeded only in 

microcrystals and could not be optimized to 3D-crystals. So far, crystallization trials for Bid2 

and Bid4 yielded only microcrystals and further optimizations have to be performed for those 

constructs. In contrast, diffracting crystals of Bid construct 1 were already observed within 

the initial crystallizations screenings, indicating two promising conditions which were used for 

further optimization trials.  

However, despite all performed optimization trials, the best diffracting pattern (step 4 data 

collection) were observed from the initial “hit” crystals obtained from JSCG+ condition 79 and 

cryo condition 5. While those initial crystals yielded resolution ranges between 3.75 Ǻ–

3.95 Ǻ, several other crystals obtained from optimization trials were recorded with lower 

resolutions between 3.8 Ǻ and 6 Ǻ and indexing of diffraction data was not always possible. 

Data collection of the both “hit” crystals, obtained from the abovementioned conditions, 

reached a high redundancy (6.3) and completeness (99.4 %) and the X-ray diffraction signal-

to-noise ratio (I/σI) was > 2, which is in general required for good-quality structures119. 

However, no unique X-ray structure solution for Bid could be obtained so far. It should be 

noted, that many protein crystals do not diffract to atomic resolution as a result of inherent 

mobility and solvent content surrounding the protein molecule. Additionally, significant 

amounts of solvents, which were ~44 % for the present Bid crystals, cause the susceptibility 

of crystals to damage by X-rays, although such radiation damage was reduced by collecting 

the data at 100 K. Of note, successful structure elucidation for related proteins has been 

achieved from crystals obtained from similar conditions as those for the Bid crystals. As 

recently reported, Bax crystals were grown from conditions consisting of 10 % PEG3350, 

20 % MPD, 0.5 % CHAPS and 0.1 M Tris (pH 8.0)121 and the first diffracting Bcl-xl crystals 

were obtained from 28-31 % PEG 4000, 0.2 M ammonium acetate, 0.1 sodium citrate (pH 

7.5)68. In consideration of the fact, that the truncated Bid constructs share a high structural 

similarity to the crystallized Bcl-xl- and Bax protein and considering that the most promising 

Bid crystals were as well obtained in similar conditions containing either PEG3350/PEG4000 

or MPD and at pH values of 7.5 to 8.0, it might be likely that further optimizations of the 

presented conditions yield high resolution crystals of Bid.  

Beside further structure elucidation trials using the here obtained Bid diffraction data via 

molecular replacement, further optimization trials could include the following ideas: In 

addition to variations of temperature, pH and concentration of precipitants, the concentration 
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of the respective Bid constructs is a significant variable. It has been described that the 

protein concentration can differ from as low as 2 mg/ml to as much as 100 mg/ml for 

successful crystallization outcomes120, 264, 266, 268. Moreover, the presence or absence of 

ligands, inhibitors, metal ions or coenzymes are relevant considerations, even though the 

influence of those has to be empirically defined for the particular Bid construct209. As 

substrates and inhibitors are reported to maintain a protein in a more compact and stable 

form209, it might be possible to achieve a greater degree of structural homogeneity by 

complexing the protein with a ligand before attempting its crystallization189. Thus, it is 

worthwhile to explore complexes of the Bid protein with the newly synthesized Bid inhibitors 

or the addition of cofactors271 at these early stages of Bid crystallization, as such complexes 

could be inherently even more interesting as the apo-Bid protein. However, co-crystallization 

of the Bid 1 protein with the available BI-6c9 failed to yield crystals so far, probably reasoned 

by the poor solubility of the inhibitory compound rather than by the general impossibility of 

protein-ligand crystal growth. Furthermore, ligand binding could be associated with more or 

less severe changes in the arrangement of the helical organization of Bid as well as in the 

Bid crystal form as it was also suggested by similar approaches crystallizing the Bcl-xl 

protein in complex with inhibitors (PDB entries 1MAZ versus 2YXJ)68, 272. However, previous 

reports substantiate the advantage of such crystallization approaches for the identification 

and improvement of selective protein-binding compounds272-274, and are thereby 

indispensable for further optimization of the here presented Bid inhibitors. Therefore, it would 

be worthwhile to address the crystallization of diverse protein-ligand complexes, even if 

those might require additional screening campaigns to find suitable conditions in dependence 

on the ligand chemotype to be analyzed. Beside these considerations, further Bid protein 

engineering approaches are desirable, since length and type of the truncation or further 

mutations may significantly influence the crystallization and diffraction ability of the Bid 

protein.  

Although, further crystallization studies have to be performed to finally elucidate the crystal 

structure of Bid allowing for a campaign of structure-based development of Bid inhibitors, the 

present thesis provided already a suitable pipeline from Bid construct design to Bid 

crystallization. The presented work gained insights in the chemical behavior of the Bid 

protein by identifying the removal of disordered and flexible regions of the Bid structure as 

essential for protein solubility and crystal growth. Indicating the crucial importance of 

construct design, the performed crystallization screenings succeeded in the first diffracting 

Bid crystals reported so far. Overall, these results reveal the Bid crystallization approach as a 

powerful tool for a better understanding of Bid activation and function as well as a promising 

set up for further Bid-inhibiting drug discovery and pharmaceutical research.  
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4.3 Mechanisms of Bid-mediated MOMP and mitochondrial impairments 

The present thesis substantiates the crucial involvement of Bid in the regulation of MOMP 

and mitochondrial injury. Several previous studies reported that upon its activation and 

translocation to mitochondria, Bid provokes impaired mitochondrial integrity and disturbed 

mitochondrial dynamics and function24, 63, 97, 116, but the precise mechanism how Bid triggers 

mitochondrial dysfunction is not fully understood. Mitochondrial outer membrane 

permeabilization (MOMP) is considered as the most critical event and ´point of no return´ in 

the mitochondrial apoptotic pathway5, 18, 19 promoting apoptosis by releasing IMS pro-

apoptotic proteins such as cytochrome c and AIF to the cytosol. However, so far, the 

mechanisms of MOMP are still elusive and several models have been proposed. Recently, it 

has been suggested that MOMP might be closely linked to the molecular machinery involved 

in mitochondrial fission24, 275, 276, reporting that mitochondrial fragmentation occurs 

concomitantly with cytochrome c release276. 

Alternatively, MOMP has been proposed to be initiated at the inner mitochondrial membrane 

(IMM) by an increase in permeability to small molecules, a subsequent osmotic swelling and 

distension of the IMM followed by rupture of the MOM. This phenomenon is promoted by 

increases in cytosolic Ca2+ and/or ROS23, 277.  

A further model of MOMP refers to the mitochondrial permeability transition pore (mPTP). 

The permeability transition pore complex (PTPC) is described as a large multi-protein 

complex constituted of several components. Major components of the PTPC are the voltage-

dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin 

D (CypD), although their precise involvement in MOMP is not yet clear23. Both, opening and 

closing of the mPTP are discussed to trigger MOMP. On the one hand closure of the mPTP 

is thought to result in osmotic swelling, mitochondrial membrane rupture and the non-specific 

release of intermembrane space proteins. On the other hand opening of the mPTP or 

oligomerization of VDAC is reported to be important for cytochrome c release19, 130.  

Last but not least, MOMP has been related to the members of the Bcl-2 family proteins5, 44. 

The pro-apoptotic multi-domain proteins Bax and Bak are thought to be directly responsible 

for MOMP by creating protein-permeable pores in the outer mitochondrial membrane. Pro-

apoptotic BH3-only proteins, such as activated Bid or Bim can directly induce conformational 

changes in Bax/Bak, which triggers their oligomerization and pore-formation. Furthermore, a 

pivotal role for the mitochondrial lipid cardiolipin (CL) has been shown for Bcl-2 family-

mediated MOMP80, 82, 91, 278.  

CL is described to act as an anchor for cytochrome c at the inner mitochondrial membrane 

(IMM) and CL peroxidation is thought to be required for weakening of this interaction and full 

release of cytochrome c279. Thus, CL seems to play an active role in MOMP as substantiated 
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by the finding that inhibition of CL peroxidation prevents Smac/DIABLO release279. CL is 

prominently found in the IMM within cristae, but has been also described to be located at the 

contact sites between MOM and IMM80. Notably, also tBid and Bcl-2 have been reported to 

cluster at the same contact points81 and further studies showed that the mPTP spans the 

IMM and MOM in close proximity to the IMM/MOM contact sites23. In particular, a CL affinity 

for VDAC has been reported suggesting that the specific lipid composition of the 

mitochondrial membrane and/or contact sites influence MOM permeability by regulating 

VDAC and mPTP gating131. However, it is discussed whether MOMP is mainly mediated by 

the PTPC, conformation changes of the Bcl-2 family proteins and pore-formations and/or 

protein-protein and protein-membrane-interactions.  

Although it might depend on the cellular model, the apoptotic stimulus and the experimental 

conditions85, 277, it seems to be likely that the abovementioned mechanisms underlying 

MOMP might work in a coordinated manner. The present thesis reveals that Bid-mediated 

MOMP and mitochondrial demise seem to require both the mitochondrial lipid CL as well as 

a component of the PTPC, namely VDAC1. In vitro studies revealed the essential role of CL 

for cBid-mediated membrane destabilization and cell culture and in vivo studies highlighted 

the direct interaction between Bid and VDAC1 as essential for mitochondrial demise. Thus 

this thesis connects the proposed mechanisms of MOMP, as discussed below. 

 

4.3.1 Role of cardiolipin in cBid/Bax mediated pore formation – a model 

system of membrane permeabilization 

It was an aim of the present study to address the function of recombinant Bid and Bax on 

artificial lipid membranes and to explore the participation of Bid in MOMP. While attempting 

to establish the use of liposomes as model system for Bid-mediated membrane 

permeabilization and the screening of Bid-targeting compounds, the lipid constitution of the 

mitochondrial outer membrane was recreated. As a particular focus of the applied membrane 

assay was on the specific role of cardiolipin (CL) in Bid-mediated membrane integration and 

membrane permeabilization, the studies were performed in the presence and the absence of 

CL. It was previously reported that Bid and its truncated form tBid preferentially associate 

with liposomes containing CL levels comparable to those found in mitochondrial 

membranes81, 91, and the absolute requirement of CL for tBid binding was reported by studies 

involving CL-deficient yeast strains280, 281. Previous reports revealed that liposomes require 

the presence of at least 7 mol % CL in their membranes to undergo optimal permeabilization 

induced by cleaved Bid and Bax 91, 219, 282, and other groups reported even the requirement of 

20 mol % CL for tBid binding to liposomes80. However the physiological relevance of CL and 

the nature of tBid/Bax-mediated permeabilization remained controversial. While several 
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studies reported that CL facilitates Bax insertion, oligomerization and permeabilization of the 

membranes in liposomes82, 91, 219, 283, the physiological role of CL in Bax-mediated cell death 

was questioned by reports concluding that the apoptotic function of Bax occurs independent 

of CL, revealing the ability of Bax to trigger MOMP in mutants lacking CL synthase280, 284, 285. 

In contrast to the controversial requirement of CL for Bax, several studies suggest CL as a 

direct mitochondrial receptor for activated Bid77, 80, 219, 220, 286. It has been shown that CL 

increases the binding of both cBid and tBid to pure lipid vesicles as well as to MOM and 

thereby suggested the direct involvement of CL for Bid mediated apoptosis80, 281, 286. The work 

here reveals the role of cardiolipin for the specific targeting of activated Bid to lipid 

membranes by comparing the pore-forming ability of Bid, cBid and Bax in liposomes 

containing PE and PC to the protein-induced permeabilization of liposomes consisting 26 mol 

% CL in addition. Noteworthy, in accordance to several other studies using artificial 

mitochondrial membranes69, 91 the relatively high CL concentration was related to the 

enhanced content of CL at the IMM/MOM contact sites reported to be approximately 20 %221, 

and might not necessarily reflect the physiological conditions 4-6 % CL of in the IMM. tBid is 

thought to bind to the outer mitochondrial membrane at both contact and non-contact sites81, 

88, but also reported to preferentially insert into the negative lipids of the mitochondrial 

contact sites between IMM and MOM287. Previous studies reported that the tBid-CL binding 

occurs at the mitochondrial contact sites and is accompanied with a remodeling of the 

mitochondrial crystae, permeability transition and cytochrome c release85, 220.  

In line with the abovementioned findings, a cBid-induced permeabilization of CF-containing 

liposomes was only obtained in the presence of CL, while liposomes lacking CL were not 

disturbed. The cBid mediated CF-release was observed at relatively high concentrations up 

to micromolar ranges compared to the required concentrations for truncated tBid used in 

previous studies generating tBid by OG-induced separation of the p7 and p15 fragment of 

caspase-8 cleaved Bid (cBid)215, 219. This suggests that both cBid and tBid differ in their 

catalytical efficiency dependent on the exposed hydrophobicity which is increased in the 

case of tBid61. Furthermore, a membrane-destabilizing ability for full-length Bid could not be 

detected in any liposomes containing and lacking CL. Although this is in opposite to previous 

studies reporting a CL-binding and pro-apoptotic activity for full-length Bid86, 87, 89, the 

observed failure of full-length Bid for membrane permeabilization substantiates the 

hypothesis that the hydrophobic structures of Bid have to be exposed for Bid recruitment to 

membrane. The important role of CL for cBid activity on artificial lipid membranes could be 

further confirmed by preliminary studies using planar lipid bilayers, revealing a pore-forming 

ability of cBid dependent on the CL-content.  

In contrast to the necessity of CL for the recruitment of activated Bid to lipid membranes, CL 

seems not to be required for the pro-apoptotic protein Bax. Bax alone was not able to induce 
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pore-formation of BLMs or destabilization of liposomes independent on the presence or 

absence of CL. In contrast, the data clearly revealed the important presence of activated Bid 

on lipid membranes prior to Bax addition. A cBid/Bax-mediated increase in fluorescence 

release was observed when both proteins were incubated before co-addition to liposomes 

and conductance of BLMs was enhanced after addition of both proteins to the cis chamber. 

These results are in line with several other studies reporting the necessity of activated Bid for 

Bax induced liposome permeabilization71, 215, 218, 288. Intriguingly, a cBid/Bax-induced CF-

release could not be detected when Bax was the first protein in the assay.  

These results indicate that the described events, resulting in efficient pore formation, occur in 

an ordered sequence, requiring the initial binding of activated Bid to lipid membranes, 

particularly to CL, and the subsequent activation of Bax. That both, Bid-lipid binding and 

protein-interaction can occur in parallel is substantiated by previous observations, revealing 

that activated Bid targets mitochondrial membranes independent of the BH3-domain which is 

required for its interactions with Bax or Bak220. These studies revealed that the helix αH6 of 

Bid was responsible for targeting Bid to mitochondrial CL and for the subsequent 

reorganization of mitochondrial cristae. A key property of CL could be the ability to alter the 

membrane curvature and to promote the formation of non-bilayer structures. tBid was found 

to induce negative membrane curvature289 and structural distortion of the lipid bilayer 

following its interaction with CL290. Cristae reorganization and disruption of mitochondrial 

membrane organization might facilitate either Bax oligomerization or pore formation, or both, 

as an enrichment of Bax oligomers has been found at the mitochondrial fission sites, where 

CL may also be enriched225. Further reports additionally described the relevance of Bid-CL 

binding for disruption of mitochondrial bioenergetics220, 286, thereby supporting the importance 

of the Bid-CL interaction for both, mitochondrial targeting and pro-apoptotic activity of Bid. 

The suggested specificity of CL for Bid binding has been further substantiated by studies 

using proteo-liposomes revealing that the CL dependence was only seen when Bax was 

activated by cleaved Bid, but not by other activator BH3-only proteins such as Bim77. 

Interestingly, these studies further suggested the importance of at least one factor other than 

CL that facilitated the Bid/Bax-induced membrane permeabilization77, and assumed that 

other mitochondrial proteins are required. The idea that CL might not be the only receptor for 

targeting of activated Bid to mitochondria was in line with previous studies revealing that tBid 

binds only to CL in presences of membranes but not to free CL80. Further reports suggested 

that under physiological conditions the formation of protein-channels by tBid or Bax 

molecules might occur together with and/or in dependence of MOM-resident membrane 

proteins, such as VDACs or Mtch272, 94, 95, 142, 159. Therefore, CL may be a physiological 

receptor for tBid although its function may overlap or synergize with Mtch2 or other 

mitochondrial proteins that target Bid to membranes.  
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However, it remains to be shown whether CL is absolutely required for Bid-mediated 

apoptosis. It has to be determined if a tBid/cBid-CL interaction functions by changing 

membrane structure and curvature thereby promoting Bax oligomerization and release of 

proteins from the IMS, or if CL is just a membrane receptor for cBid/tBid to promote further 

protein-protein interaction that trigger MOMP. Either way, it is likely that tBid might act as a 

bi-functional molecule, first binding to mitochondrial membranes through interaction with the 

mitochondrial lipid cardiolipin, destabilizing mitochondrial membrane structure and interacting 

with other proteins such as Mitch2, VDAC and/or Bax to trigger AIF and cytochrome c 

release as the final execution of intrinsic apoptotic cell death.  

Although these considerations remain to be determined at the cellular level, the presented 

liposome channel assay is an appropriate model system to investigate Bid-mediated 

mitochondrial membrane permeabilization. Further studies should address the effect of 

activated Bid on liposomes and BLM with reconstituted Mitch2 or VDACs in the presence 

and absence of CL to investigate if the suggested mechanisms occur in parallel or depend 

on each other. Furthermore, the assay is a suitable model system for analyzing the inhibitory 

effects of small-molecules targeting activated Bid, as for example shown for the Bid inhibitor 

BI-6c9 which decreased the cBid/Bax-induced CF-release. Therefore the system allows the 

screening of novel compounds that selectively target Bid and inhibit membrane integration 

and pore formation of activated Bid and/or Bax in a cell free system. Thus, the liposome 

assay is a useful method to identify compounds which should block mitochondrial membrane 

depolarization and related intrinsic pathways of cell death.  

 

4.4 The role of the voltage-dependent anion channel VDAC1 in Bid-

mediated mitochondrial demise and cell death 

The present study demonstrated a pivotal role for the voltage-dependent anion channel 1 

(VDAC1) in Bid-mediated mitochondrial apoptotic pathways. The data revealed that Bid-

mediated mitochondrial fission, loss of mitochondrial membrane integrity, accumulation of 

detrimental ROS as well as impairments in mitochondrial energy metabolism and respiration 

depend on VDAC1 activity. Thus it is indicated that both proteins Bid and VDAC1 are equally 

involved in the mechanisms of mitochondrial intrinsic cell death signaling. VDACs have been 

proposed as important regulators of the intrinsic apoptotic pathway and increasing evidence 

indicates that both anti- and pro-apoptotic proteins, such as Bcl-2, Bcl-xl, Bax and Bid 

interact with VDAC to regulate mitochondrial pathways of apoptosis157, 159, 160, 162. However, 

published reports about whether and how Bcl-2 family proteins interact with VDAC and how 

they might alter VDAC channel activity, towards closure or opening, are highly 

controversial157, 161-163, 291, 292. For instance, Bcl-xl has been reported to facilitate the open 
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configuration of VDAC channels thereby maintaining the permeability of the mitochondrial 

outer membrane to ATP and ADP153, but Bcl-xl has also been shown to induce VDAC 

channel closure and thus to prevent apoptosis154, 157. Moreover, Bax has been discussed to 

interact with VDAC1 to induce channel opening159 and is further reported to form a 

heteromeric complex with VDAC1 to promote cytochrome c release142, 159, 293. In contrast, 

others showed that Bid but not Bax modulates VDAC channel conductance161, yet it is further 

discussed that tBid/Bax-mediated cytochrome c release occurs independently of VDAC163. 

The presented thesis now highlights new insights into the mechanisms of Bid-dependent cell 

death and the involvement of VDAC1 in mitochondrial apoptosis. VDAC1 function can be 

modulated by various physiological ligands, such as adenine nucleotides or NADH as well as 

non-physiological compounds, such as Koenig´s polyanion227, ruthenium red (RuR), 4,4´-

diisothiocyanatostilbene-2,2´-disulfonic acid (DIDS)135 or the PS oligonucleotide G3139230.  

However, specific inhibitors for the subunit VDAC1 are missing. In the present thesis, the 

commonly-used non-specific anion channel blocker DIDS232, 294 was used in order to gain an 

initial insight to the question whether VDACs might play a role in Bid-mediated intrinsic cell 

death pathways. Previous studies reported protective effects of DIDS against various 

pathologies, including for example STS-induced apoptosis in leukemia cells, neuronal 

volume-dependent apoptosis and delayed neuronal death in hippocampal neurons233, 234. The 

protective effects achieved by DIDS are usually attributed to inhibition of anion channels or 

anion exchangers and associated reductions of Cl- or ROS flux that regulate cell volume and 

diverse downstream cell death pathways234 mediated by toll-like receptors, protein kinase C 

and matrix metalloproteinases among others232, 234, 295. Furthermore, DIDS has been used as 

a well accepted VDAC inhibitor in several in vitro and cell-based assays, revealing that DIDS 

blocks VDAC channel conductance and VDAC-induced apoptosis158, 231. In contrast to the 

protective effects mediated by DIDS, it has been also reported that DIDS inhibits cellular 

proliferation in some cell types and induces apoptosis in tumor cells as well as in 

hippocampal neurons234. However, the effects of DIDS and their underlying mechanisms 

might depend on the cell type and the nature of the cell death stimuli.  

The present thesis demonstrated that DIDS exerted significant protective effects in the 

currently used model systems of glutamate- and tBid-induced toxicity in hippocampal HT-22 

cells and indicated that these effects might be mainly mediated through pathways 

downstream of Bid activation. This suggestion is based on the findings showing that that 

DIDS preserved not only cell viability but also mitochondrial morphology, Δψm, ATP levels 

and mitochondrial respiration after induction of oxidative stress in HT-22 cells, and further 

prevented the secondary increase in lipid peroxidation, which was associated with 

mitochondrial damage. All of these cellular features, indicating intact mitochondria, were 

shown to be defective in Bid-induced toxicity and were further reported to be affected by 
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VDACs143, 144. In addition, the data revealed that DIDS was also sufficient to prevent tBid-

induced loss of Δψm and cell death, substantiating that DIDS acts at the level of mitochondria 

and provides protection through inhibition of anion channels localized in the MOM, likely 

VDACs. The fact that the protective effect of DIDS against several hallmarks of glutamate-

induced Bid-mediated toxicity was comparable to the protective effects achieved by the Bid 

inhibitor BI-6c9 further suggested that the respective mechanisms behind both substances 

are correlated to each other, although DIDS might exert additional unspecific effects. 

Therefore it was assumed that DIDS acts via inhibition of mitochondrial VDACs and that 

there might be a close relationship between the involvement of Bid and VDAC in apoptosis. 

This hypothesis was finally substantiated by the finding that VDAC1 gene silencing exerted 

pronounced protection against glutamate- and tBid-induced cell death comparable to the 

effects achieved by DIDS. 

4.4.1 Direct interaction of Bid and VDAC1 determines mitochondrial demise 

Based on the abovementioned considerations, the present thesis addressed the suggested 

interplay between Bid and VDAC and demonstrated, for the first time, a direct interaction of 

tBid and Bid with VDAC1, a process with high relevance for mitochondrial integrity and 

intrinsic cell death signaling. The proposed interaction was not only observed at the physical 

and functional level using recombinant proteins, but also occurs in cell-based death models 

of glutamate-induced toxicity in HT-22 cells and primary neurons, and in vivo. Therefore, the 

data suggested that the proposed Bid/tBid-VDAC1 interaction is essential for mitochondrial 

demise and cell death in cultivated cells as well as during pathological conditions in whole 

organisms. This conclusion was substantiated by the observation that pronounced 

VDAC1/Bid interaction occurs only after glutamate exposure of HT-22 cells and primary 

neurons and significantly increased over 6-24 h in ischemic brain tissue of mice subjected to 

transient focal cerebral ischemia. Therefore, the data suggested that both proteins, Bid and 

VDAC1, interfere together in neuronal cell death signaling, and pointed to VDAC1 as a 

mitochondrial receptor for activated Bid to regulate mitochondrial integrity and function. This 

hypothesis was confirmed by the findings that VDAC1 gene silencing was sufficient to 

prevent Bid-mediated impairments in mitochondrial morphology and Δψm as well as disturbed 

mitochondrial bioenergetics and attenuated glutamate toxicity in neuronal cells. Indicating a 

clear involvement of VDAC1 in the applied cell death models, the data suggested that a 

disturbed interaction between Bid and VDAC1 is the underlying mechanisms of the protective 

effects mediated by DIDS and VDAC1 gene silencing. This was affirmed by the data 

demonstrating that neither glutamate nor tBid were able to trigger mitochondrial dysfunction, 

MOMP and cell toxicity without functional VDAC1, and, vice versa VDAC1 over-expression 

did not induce mitochondrial fragmentation and cytotoxicity without Bid. Thus, the present 

thesis indicated that the association of both proteins is a key decision point for promoting 
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mitochondrial dysfunction and cell death thereby combining the abovementioned and long-

standing debate whether MOMP is regulated by the Bcl-2 family members or by the PTPC. 

However, what is the precise mechanism of this interaction and how does it affect the 

downstream signaling cascades? 

In agreement with previous studies reporting the oligomeric assembly of VDAC1 coupled to 

cell death stimuli with increasing conformational changes upon apoptotic signaling239, 240, the 

data revealed dimeric VDAC1 around 12 h of glutamate treatment, i.e. when mitochondrial 

demise marks the final execution phase of intrinsic cell death. Interestingly, this dimeric 

assembly still interacted with Bid, indicating that the Bid-VDAC1 interaction might trigger the 

formation of VDAC1 oligomers. Furthermore, the presented in vitro data revealed that the 

binding affinity of tBid to VDAC1 is 38-fold higher than for the binding of full length Bid to 

VDAC1 and suggested that tBid is the more effective partner for a direct interaction with 

VDAC1. In cells exposed to toxic glutamate levels, cleavage of full-length Bid to its active 

form tBid, or dissociation of the cleaved Bid fragments likely takes place at the mitochondrial 

membrane nearby the VDAC channel.  In fact, earlier observations suggested that tBid most 

likely affects VDAC following its association with lipid membranes161 and recent reports 

showed that separation of the N- and C-terminal tBid fragments occurs rapidly upon initial 

binding of tBid to the mitochondrial outer membrane72. Thus after dissociation of the N-

terminal p7 tBid fragment, tBid could bind to VDAC1 with high affinity to regulate its gating 

behavior. While it has been described that tBid induces VDAC1 channel closure161,  the 

mechanism by which Bid alters channel gating, either directly or indirectly, was not reported. 

The data here revealed that the VDAC1 channel can adopt two major closed states at 40% 

and 60% of its original conductance188. Following tBid/Bid binding a reduction of the overall 

current was observed in BLM measurements, indicating that Bid-VDAC1 interaction induces 

a conformational change of the VDAC1 channel, rather than its full closure.  In line with 

previous studies suggesting the importance of the N-terminus of VDAC for its channel gating 

and protein-interactions188, 242, deformations of the VDAC channel may squeeze the N-

terminal α-helix out of the hydrophilic cavity and therefore enable helix-mediated interactions 

with certain substrates and protein effectors. In accordance, a simplified model for the 

Bid/tBid-VDAC1 interaction can be suggested: upon cell death stimuli full-length Bid targets 

VDAC1 to induce a first conformational change of the channel. Cleavage of Bid and the 

dissociation of the cleaved p7 Bid fragment, which occurs rapidly upon initial binding of cBid 

to the mitochondrial outer membrane72, may promote a tighter binding of tBid to VDAC1. The 

tBid-VDAC1 complex with a reduced channel current further enables the exposure of the N-

terminal α-helix of VDAC1 to the inner mitochondrial space (IMS). Since tBid binding reduces 

the overall pore diameter of VDAC1, the tBid-VDAC1 complex might reflect a transitional 

state that further catalyzes the formation of VDAC1 homo-oligomers or hetero-oligomers with 
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other pro-apoptotic proteins, e.g. Bax, to sequester a pore formation enabling the release of 

death promoting factors into the cytosol and the subsequent cell death (Figure 86). 

Interestingly, the addition of DIDS to reconstituted VDAC1 in BLMs resulted in a completely 

dysfunctional VDAC1 channel and no opening or closing events could be detected once 

DIDS was added. The fact that in the presence of DIDS, tBid fails to interact with BLM 

reconstituted mVDAC1, and additionally was not able to induce loss of Δψm  and cell death at 

all in HT-22 cells, indicates that DIDS induces the closed state of the VDAC channel thereby 

prohibits channel deformation by tBid. As DIDS facilitates a channel state that is likewise a 

nonfunctional VDAC1 channel, it is not surprising that in cells VDAC1 gene depletion and 

DIDS promote similar protective effects against various features of Bid-dependent cell death 

pathways.  

 

Figure 86: Proposed model of the direct interaction of Bid and VDAC1. 

Upon apoptotic stimuli, Bid and VDAC1 interact in a direct manner. The association of full length Bid with VDAC1 

induces a first conformational change of VDAC1 resulting in a reduction of the pore diameter. The initial binding of 

Bid with membrane integrated VDAC1 facilitates Bid cleavage and the separation of the p7 tBid fragment, which 

benefits the tighter binding of the cleaved p15 tBid fragment to VDAC1. The tBid-VDAC1 complex might reflect a 

transitional state with a reduced overall current that enables the exposure of the VDAC1 α-helix to the inner 

mitochondrial space (IMS). The exposure of the α-helix to the IMS allows for further associations with several 

substrates including Ca
2+

, ATP/ADP or even other proteins present in the IMS. The partially closed state of 

VDAC1 together with the exposed α-helix catalyzes the further formation of VDAC1 oligomers or hetero-oligomers 

to sequester a pore diameter that enables the release of death promoting factors, such as apoptosis inducing 

factor (AIF), cytochrome c (c) and Smac/DIABLO (Sm), into the cytosol and the subsequent cell death. 

 

If other proteins are involved in the interplay between Bid/tBid and VDAC1 remains to be 

determined, although the nature of the more complex interactions may be dictated by cell 

type and the nature of the apoptotic stimulus. Although Bax and Bak are discussed to 

physically interact with VDACs, they might not necessarily be involved in the tBid-VDAC1 

complex. Since neurons do not express full-length Bak and in non-neuronal cells an 
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interaction of Bak and VDAC has been only demonstrated for the VDAC2 isoform296, it is 

likely that the proposed tBid-VDAC1 complex occurs independently of Bak. In contrast, Bax 

is widely expressed in neurons and discussed to interact with VDAC1, but so far no direct 

interaction between Bax and VDAC1 could be detected on the cellular level155. Although 

further studies are required to investigate whether the here proposed interaction might 

involve or even depends on Bax, a prerequisite role of Bax in the current cell death models is 

not expected, since previous studies revealed that Bax inhibitory peptides were not 

protective and Bax siRNA exerted only slightly protective effects in the model of glutamate-

toxicity in HT-22 cells297. In vitro and in vivo studies using Bax-/- knockout cells and mice 

would be required to gain a deeper insight if Bax might be involved in the Bid-VDAC1 

interplay. In any case, the direct interaction between tBid and VDAC1 seems to be essential 

for the subsequent impaired mitochondrial function and cell death, since deficiency of either 

Bid or VDAC1 is sufficient to provide protection, even if Bax is involved in the complex. Co-

crystallization of recombinant Bid and VDAC1 is subject of the current studies to provide a 

more detailed understanding of the proposed Bid-VDAC1 interaction and to determine 

structural sequences of both proteins that mediate their association and the subsequent 

conformational changes of the VDAC1 channel. Determining the respective residues of Bid 

that are required for VDAC1 binding is further worthwhile to examine if a Bid-Bax interaction 

could take place in parallel or if a Bid-Bax interplay would be competitive to the Bid-VDAC1 

interaction. Structural insights into the Bid-VDAC1 complex would further enabling for 

structure-guided drug campaigns and suggest a rationale for discovering antagonists that 

hinder the association of both proteins thereby inhibiting the subsequent mitochondrial 

demise.  

In conclusion, the presented data highlight VDAC1 as a mitochondrial receptor for Bid and its 

cleaved form tBid following introduction of apoptotic stimuli in neuronal cells (Figure 87). This 

interaction provides a convergence point for the proposed mechanisms of MOMP which were 

previously attributed solely to either the activity of apoptogenic BH3-only proteins or to 

VDACs. Targeting the tBid-VDAC1 interaction has high impact for therapeutic perspectives 

for neurological diseases, where mitochondrial demise is a major feature. 

 

4.5 Bid-mediated mitochondrial demise in neurons is independent on 

VDAC2 

In addition to the crucial involvement of VDAC1 in Bid-mediated neuronal cell death 

pathways, the present thesis addressed the role of the isoform VDAC2 in the current model 

of glutamate-induced toxicity. Similar to VDAC1, VDAC2 is a mitochondrial outer membrane 

protein with channel forming ability but present in low abundance251. Previous studies 
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indicated a specific the role of VDAC2 in mitochondrial cell death signaling describing the 

association of VDAC2 with pro-apoptotic Bak251 and providing evidence for VDAC2 

dependence of Bak targeting to the mitochondria252. Those studies revealed that VDAC2 

binds to Bak in un-stimulated mouse embryonic fibroblasts (MEFs) and that this 

sequestration is disrupted upon apoptotic signals, releasing Bak to carry out its pro-apoptotic 

function251. In line with these reports, Roy and colleagues linked the isoform VDAC2 to the 

apoptotic activity of tBid revealing that VDAC2-/- MEFs are insensitive to tBid-induced loss of 

Δψm, cytochrome c release and apoptosis298. These studies suggested that VDAC2 is 

needed for tBid-mediated cell death by recruiting Bak to mitochondria and suggested that the 

Bak-VDAC2-tBid axis is more efficient at initiating apoptosis than the Bax-tBid pathway93. 

Further reports demonstrated a direct interaction between VDAC2 and Bak in un-stimulated 

HCT116 cells which was reduced after Fas- and STS-stimulation296, although the specific 

response to tBid was not addressed. Thus, in non-neuronal cells, VDAC2 seems to have a 

specific role in tBid-mediated cell death. However, in neuronal cells, the apoptotic 

mechanism might differ from that in non-neuronal cells, since a neuroprotective function for 

Bak and a specific role of VDAC2 in neuronal cell death has not been reported so far. The 

present thesis revealed that in contrast to the essential role of VDAC1, VDAC2 might be 

dispensable for Bid-mediated mitochondrial demise in neurons. This conclusion was drawn 

based on the findings that VDAC2 gene silencing achieved only minor protective effects in 

the model of glutamate-induced toxicity. Furthermore, the data demonstrated that in neurons 

Bid-mediated MOMP was not dependent on VDAC2, revealing that glutamate-induced loss 

of Δψm was not prevented by VDAC2 depletion. Although VDAC2 might be important for non-

neuronal cell death mediated by the tBid/Bak/Bax assembly, the data suggest a minor role of 

VDAC2 in neuronal cells. In regard to the reported absence of full-length Bak in neurons, 

indicating different non-neuronal and neuronal cell death mechanisms, the present thesis 

suggest that the proposed Bid-VDAC1 interaction in neurons mirrors the emerging non-

neuronal tBid-VDAC2-Bak pathway of apoptosis.  
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Figure 87: Proposed role of VDAC1 and Bid in neuronal apoptosis based on the findings in the 
glutamate-toxicity model in HT-22 cells. 

The model of glutamate-induced toxicity in HT-22 cells was demonstrated as a suitable model to investigate 

neuronal apoptosis. In this model system, oxidative stress, as it is induced by different neurodegenerative 

diseases, cerebral ischemia and others, leads to a detrimental increase of reactive oxygen species that trigger the 

following cleavage and activation of the pro-apoptotic protein Bid. Upon transactivation Bid initiates the point of no 

return in the mitochondrial cell death pathway: the depolarization of mitochondrial outer membrane (MOMP). The 

present thesis revealed an essential role for the voltage-dependent anion channel VDAC1 in the model of 

glutamate-induced toxicity and points to VDAC1 as a mitochondrial receptor for Bid to trigger mitochondrial 

demise and cell death. Both, over-expression of tBid as well as over-expression of VDAC1 induced mitochondrial 

fragmentation, loss of Δψm and cell death in HT-22 neurons. Upon the Bid/tBid–VDAC1 interaction, breakdown of 

the mitochondrial membrane potential, ATP depletion, impairments in mitochondrial respiration and finally the 

release of AIF and Cyt C trigger the final execution of mitochondrial apoptosis. Inhibition of either factor, VDAC1 

and Bid, is sufficient to block the other’s detrimental effect on mitochondria and execution of neuronal cell death. 

The Bid inhibitor BI-6c9 and Bid siRNA prevented the translocation of both, full-length Bid and tBid, to the 

mitochondria. Down-regulation of VDAC1 by siRNA as well as the anion channel blocker DIDS significantly 

preserved mitochondrial integrity and function, MOMP and reduced glutamate toxicity in neuronal cells.In contrast 

to VDAC1, VDAC2 down-regulation was not sufficient to provide protection against glutamate-induced Bid-

mediated apoptosis. Therefore, inhibition of the Bid/VDAC1 interaction is a promising therapeutic target to prevent 

mitochondrial demise, a crucial hallmark of neuronal cell death in acute and chronic neurodegenerative diseases, 

where glutamate toxicity and oxidative stress are prominent. 
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5 Summary 

Mitochondrial demise is a key feature of the progressive neuronal death in age-related 

neurodegenerative diseases such as Alzheimer’s disease or Parkinson’s disease and after 

acute brain injury. Oxidative stress or impaired calcium homeostasis converge at 

mitochondria where the permeabilization of the mitochondrial outer membrane (MOMP) are 

considered as ´point of no return´ in the cell’s commitment to die. The pro-apoptotic Bcl-2 

family protein Bid has been identified as a key regulator of mitochondrial injury and 

mitochondrial pathways of neuronal cell death. Upon its transactivation to mitochondria, Bid 

induces mitochondrial fragmentation and MOMP thereby accelerating the production of 

reactive oxygen species (ROS) and the release of death promoting factors into the cytosol 

that trigger the final steps of intrinsic cell death. The pivotal role of Bid in neuronal cell death 

has been further shown in models of cerebral ischemia and traumatic brain injury in vivo. 

Since it has been shown that inhibition of Bid maintains mitochondrial integrity and function 

thereby preventing mitochondrial cell death, Bid serves as a target for mitoprotection and 

neuronal cell survival. However, the precise mechanisms how Bid triggers mitochondrial 

impairment and disruption are still unknown and have to be explored to achieve efficient 

strategies for inhibition of Bid-mediated cell death pathways. 

Therefore, the present study was aimed to elucidate the mechanisms of Bid-dependent 

mitochondrial demise and addressed the associated Bid-protein interactions. Furthermore, 

the thesis focused on Bid crystallization campaigns and the development of Bid-inhibiting 

compounds with high impact for novel therapeutic perspectives in neurological diseases. Bid-

mediated cell death pathways were mainly addressed in immortalized mouse hippocampal 

HT-22 neurons exposed to toxic glutamate concentrations that induce oxidative stress 

through glutathione depletion. The findings were additionally confirmed in a model of tBid-

induced toxicity by over-expressing tBid in the HT-22 cell line and in vitro studies using 

recombinant proteins.  

The first part of the present study focused on the development of small-molecule ligands that 

target Bid for mitoprotection and neuronal cell survival. Seven compounds, obtained from 

three diverse chemical structure classes, were identified as effective inhibitors against 

glutamate- and tBid-induced cell injury. Most promising compounds were obtained from the 

class of thiazolidin-2,4-diones, revealing EC50 values in the lower micromolar range between 

6.78 µM and 13.27 µM. The compounds prevented not only cell death, but also preserved 

mitochondrial membrane potential, ATP levels as well as mitochondrial respiration after 

induction of oxidative stress in HT-22 neurons. The data further indicated the inhibition of Bid 

as the key mechanism behind their neuroprotective properties as substantiated by docking 

analysis and the compound´s protective effect against tBid-induced toxicity. Thus, the 
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identified compounds indicate potent scaffolds for future structure optimization which should 

result in small-molecules with favorable pharmaceutical properties, applicable also in model 

systems of cell death in vivo and further promise pharmaceutical perspectives for various 

neuronal and non-neuronal pathologies where Bid-mediated mitochondrial injury has been 

implicated.  

The second part of the thesis provided a basis for the use of recombinant Bid constructs 

suitable for Bid crystallization campaigns and further structure-guided drug design. Protocols 

for the design, expression and purification of different Bid constructs were scaled up, yielding 

reasonable amounts of Bid protein sufficient for crystallization screening. One of the 

designed Bid constructs was successfully crystallized obtaining diffraction data of 3.75 to 

3.95 Ǻ resolution under synchrotron-X-ray exposure. This observation indicates the 

appropriate Bid constructs as suitable for Bid crystal structure analysis. In addition, the 

activity of the novel Bid constructs was verified in the HT-22 cell line. Over-expression of 

those proteins revealed their non-apoptotic function and indicated their behavior as a ´full-

length Bid- like protein´, in contrast to toxic effects of tBid-over-expression. The further work 

investigated the effect of recombinant full-length Bid, caspase-8 cleaved Bid (cBid) and Bax 

on fluorescence-containing liposomes which mimic the mitochondrial membrane and focused 

on the role of cardiolipin (CL) in Bid-mediated membrane integration and permeabilization. 

The results indicated an ordered series of events that occur at mitochondrial membranes to 

induce MOMP and the release of death promoting proteins, revealing the requirement of CL 

for the recruitment of cBid to membranes and the role for Bax to enhance cBid-induced 

fluorescence release.  

The last part of the thesis demonstrated for the first time a direct interaction of Bid and 

VDAC1 with high relevance for Bid-mediated mitochondrial demise and neuronal cell death. 

The Bid-VDAC1 interaction significantly increased after glutamate-exposure of HT-22 cells 

and primary cortical neurons in vitro and after transient focal cerebral ischemia in vivo. The 

role of VDAC1 in Bid-dependent cell death signaling was verified by the protective effects of 

the anion channel blocker DIDS and VDAC1 siRNA in the present models of glutamate- and 

tBid-induced toxicity. Functional analysis revealed that both, Bid and VDAC1, cooperate 

during neuronal apoptosis to mediate impairments in mitochondrial oxygen consumption and 

ATP production, as well as mitochondrial fission, increased mitochondrial ROS production 

and the breakdown of the mitochondrial membrane potential. Inhibition of either factor, Bid or 

VDAC1, was sufficient to block the other’s detrimental effect on mitochondria and the 

execution of intrinsic cell death. These findings strongly indicated the proposed Bid-VDAC1 

interaction as a converging point for the mechanisms of MOMP that were previously 

contributed solely to either Bcl-2 family proteins or to VDACs. In contrast, only a minor role in 

Bid-mediated cell death signaling was suggested for the mitochondrial porin VDAC2, as 
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VDAC2 gene silencing could not protect against glutamate-induced injury. Therefore the data 

implicate a specific role for VDAC1 as mitochondrial receptor for activated Bid at the control 

point of life and death at the level of mitochondria in vitro and in vivo.  

Overall, the present thesis highlights the pro-apoptotic protein Bid as a promising druggable 

target for mitoprotection and neuronal survival and indicates recombinant Bid constructs as 

suitable for Bid crystal structure analysis. Furthermore, the data gained new insights in the 

mechanisms of Bid-dependent mitochondrial injury and the involvement of VDAC1 in 

mitochondrial apoptosis, connecting the controversial hypothesis of MOMP initiated by Bid 

and Bcl-2 family proteins or VDAC-mediated mPTP, respectively. Targeting the Bid-VDAC1 

interaction serves as a promising therapeutic approach aiming at preserved mitochondrial 

function and neuronal survival with high relevance for the treatment of neurological disorders, 

where oxidative stress and mitochondrial demise are prominent. 
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6 Zusammenfassung  

Mitochondriale Prozesse des Zelltods spielen eine entscheidende Rolle für den progressiven 

Verlust von Neuronen bei neurodegenerativen Erkrankungen (M. Alzheimer, M. Parkinson) 

und nach akuter Hirnschädigung durch Schädel-Hirn-Trauma oder zerebraler Ischämie. Eine 

Schlüsselfunktion nimmt hierbei das pro-apoptotische Bcl-2 Protein Bid ein. Durch die 

Aktivierung und mitochondriale Translokation von Bid kommt es zur Schädigung und 

Fragmentierung von Mitochondrien und letztlich zur Freisetzung von weiteren pro-

apoptotischen Faktoren (AIF, Cytochrom C, Smac/DIABLO), die den Untergang der Neurone 

steuern. Um in Zukunft Bid als potentielles Target für die Therapie von akuten und 

chronischen neurologischen sowie nicht neurologischen Erkrankungen nutzen zu können, 

müssen die bisher ungeklärten Mechanismen der Bid-induzierten mitochondrialen 

Schädigung, sowie die Interaktionen von aktiviertem Bid mit weiteren am Zelltod beteiligten 

Proteine aufgeklärt werden.  

Ziel dieser Arbeit war daher die Untersuchung Bid-abhängiger, mitochondrialer Zelltod 

Mechanismen und beteiligter Protein-Wechselwirkungen. Darüber hinaus stand die 

Entwicklung neuer Leitstrukturen für protektive Bid-Inhibitoren sowie die Etablierung erster 

Kristallisationsansätze verschiedener Bid Konstrukte im Fokus dieser Arbeit. Als 

Modellsyteme mitochondrialer Prozesse des Zelltods dienten vor allem immortalisierte 

hippokampale Neurone (HT-22 Zellen), in denen eine Behandlung mit Glutamat den durch 

oxidativen Stress gekennzeichneten Zelltod induziert. Als weiteres Schädigungsmodell 

wurde die Überexpression von aktiviertem Bid (tBid) eingesetzt. Zum Nachweis von 

Proteininteraktionen wurden weiterhin eine primäre neuronale Zellkultur und ein in vivo-

Modell der zerebralen Ischämie verwendet, sowie verschiedene Untersuchung mit 

rekombinanten Proteinen durchgeführt.  

Im ersten Teil der vorliegenden Arbeit wurden neue niedermolekulare Bid-Inhibitoren aus 

drei strukturell verschiedenen Substanzklassen mittels Zellviabilitätsmessungen auf 

neuroprotektive Effekte geprüft. Sieben Substanzen zeigten nicht nur deutliche Protektion 

gegenüber dem Glutamat- und tBid-induzierten Zelltod, sondern konnten ebenso die Bid-

abhängige mitochondriale Schädigung verhindern. Durch die Applikation dieser Substanzen 

konnten HT-22 Zellen vor dem Verlust des mitochondrialen Membranpotentials, dem Abfall 

intrazellulärer ATP Level sowie vor Störungen der mitochondrialen Atmung nach oxidativem 

Stress geschützt werden. Die hier gezeigten Verbindungen stellen daher wichtige 

Leitstrukturen für die Weiterentwicklung potenzieller Bid-Inhibitoren als Neuroprotektiva dar. 

Der zweite Teil dieser Arbeit beschäftigte sich mit der Kristallisation von rekombinantem Bid 

Protein, welche als Basis für ein grundlegendes Verständnis der molekularen Proteinfunktion 

sowie der Struktur-basierten Wirkstoffentwicklung dient. Hier wurde die Expression und 
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Reinigung verschiedener rekombinanter Bid Konstrukte etabliert und hoch gereinigtes Bid 

Protein für erste Kristallisationsätze verwendet. Durch Verfolgung wichtiger Strategien im 

Konstruktdesign konnte eines der verwendeten Bid Konstrukte erfolgreich kristallisiert 

werden und lieferte eine Strukturauflösung von 3.75 bis 3.95 Ǻ unter Synchrotronstrahlung. 

Die Arbeit konnte somit eine grundlegende Basis für die weitere Optimierung der hier 

erhaltenden Kristalle legen und sollte eine zukünftige Aufklärung der Kristallstruktur von Bid 

ermöglichen. Eine Überprüfung der verschiedenen Bid-Konstrukte im Zellsystem zeigte ein 

nicht-apoptotisches Verhalten im Gegensatz zur Überexpression von toxischem tBid. Im 

weiteren Rahmen dieser Promotionsarbeit wurde der Effekt der rekombinanten Proteine Bid, 

cBid und Bax auf Fluoreszenz-Liposomen getestet, um die Mechanismen der Bid-

abhängigen mitochondrialen Membranpermeabilisierung zu untersuchen. Es konnte hier eine 

Schlüsselrolle für das mitochondriale Lipid Cardiolipin gezeigt werden, in dessen 

Abhängigkeit Caspase-8 aktiviertes Bid (cBid) eine Membrandestabilisierung vermittelte, 

welche durch die Koexistenz von Bax gesteigert werden konnte.  

Der letzte Teil der Arbeit konnte erstmals eine direkte Interaktion zwischen Bid und dem 

mitochondrialen Porin VDAC1 in kultivierten Neuronen sowie in einem in vivo Modell der 

zerebralen Ischämie nachweisen. Die Inhibition von VDAC1 mittels Einsatz des Anionen-

Kanal-Blockers DIDS sowie der Verwendung von VDAC1 siRNA konnte sowohl die Funktion 

als auch die Integrität der Mitochondrien nach Glutamat- und tBid-induzierter Schädigung 

schützen und bestätigte somit die essentielle Rolle von VDAC1 im Bid-abhängigen Zelltod. 

Weitere Untersuchungen zeigten erstmalig, dass beide Proteine, Bid und VDAC1, 

gleichermaßen im neuronalen Zelltod involviert sind und offensichtlich zusammen eine 

Schädigung der mitochondrialen Membran induzieren. Die Hemmung eines der beiden 

Proteine war ausreichend, um die toxischen Effekte des Partnerproteins zu hemmen und so 

den Funktionsverlust der Neurone zu verhindern. Im Gegensatz dazu konnte gezeigt 

werden, dass die Isoform VDAC2 nur eine untergeordnete Rolle im Bid-induzierten Zelltod in 

Neuronen spielt.  

Die nachgewiesene Bid-VDAC1 Wechselwirkung besitzt hohe Relevanz für die 

mitochondrialen Prozesse des Zelltods. Damit verbindet die vorliegende Arbeit die bisher 

kontrovers betrachten Mechanismen der mitochodrialen Membranschädigung, die zuvor 

entweder auf die alleinige Aktivität der Bcl-2 Proteine oder auf VDACs zurückgeführt wurde. 

Mit der Identifizierung neuer potentieller Bid-Inhibitoren sowie durch Etablierung wichtiger 

Grundlagen für die Aufklärung der Kristallstruktur von Bid, stellt die Arbeit einen wesentlichen 

Beitrat für die strukturbasierte Wirkstoffentwicklung und Therapie verschiedener 

neurologischer und nicht neurologischer Erkrankungen dar, in welchen Bid-abhängige 

mitochondriale Prozesse des Zelltods eine wesentliche Rolle spielen. 
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7 Abbreviations 

A1 Bcl-2 related gene A1 

AD Alzheimer’s disease 

AIF Apoptosis inducing factor 

ALS Amyotrophic lateral sclerosis 

AMP Adenosine monophosphate 

ANOVA Analysis of variance 

APAF-1 Apoptosis protease-activating factor-1 

ATP Adenosinetriphosphate 

Bad Bcl-2 antagonist of cell death  

Bak Bcl-2 antagonist/killer 1  

Bax Bcl-2 associated protein X  

BCA  Bicinchonic acid 

Bcl-2 B-cell lymphoma-2 

Bcl-xl Bcl-2-releated gene, long isoform 

BH Bcl-2 homology  

BI Bid inhibitor 

Bid Bcl-2 interacting domain death antagonist  

Bim Bcl-2-interacting mediator of cell death 

BLM Black lipid bilayers 

BSA Bovine serum albumin 

BODIPY 
4,4-Difluoro-5-(4- phenyl-1,3-butadienyl)-4-
bora 3a,4a-diaza-sindacene-3-undecanoic 
acid 

Bp Base pairs 

°C Grad Celcius 

Ca2+ Calcium 

CAD Caspase-activated deoxyribonuclease 

cBid Caspase-8 cleaved Bid 

CCCP Carbonyl cyanide 3-chlorophenylhydrazone 

CL Cardiolipin 

Cl- Chlorid 

CNS Central nervous system 

CO2 Carbon dioxide  

Cu1+ Copper 

Cyp D Cyclophilin D 
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Cyt C Cytochrome C 

DAPI 4',6-Diamidino-2-phenylindole 

DED Death effector domain  

DIDS 
4,4-diisothio-cyanatostilbene-2,2´-disulfonic 
acid 

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT D,L-Dithiotreitol 

EDTA Ethylenediamine-tetra-acetic acid 

EGTA 
Ethylene glycol-bis(2-aminoethylether)-
N,N,N’,N’- tetraacetic acid 

FACS Fluorescence-activated cell sorting 

FasL Fas-ligand 

FCS Fetal calf serum 

GAPDH 
Glyceraldehyde-3-phosphate-
dehydrogenase  

GFP Green fluorescence protein  

GSH Gluthatione  

Glut Glutamate 

Gpx 4 Glutathione peroxidase 4 

GSH Glutathione 

h hour 

HCL Hydrochloric acid  

HEPES 
4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid  

HD Huntington’s disease 

HRP Horseradish peroxidase 

IAP Inhibitors of apoptosis  

ICAD 
Inactive caspase-activated 
desoxyribonuclease  

IMM Inner mitochondrial membrane 

IPTG Isopropyl-β-D-thiogalactopyranosid 

kDa Kilo Dalton 

12/15 LOX 12/15 Lipoxygenase 

MCA Middle carotid artery  

MCAO  Middle carotid artery occlusion  

Mcl-1 Myeloid cell leukemia 1 

MEF Mouse embryonic fibroblast 
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MEM+  Eagle’s minimum essential medium  

mGFP 
Mitochondrial targeting green fluorescent 
protein  

mM Millimolar 

MOM Mitochondrial outer membrane 

MOMP 
Mitochondrial outer membrane 
permeabilization 

mPTP Mitochondrial permeability transition pore  

mtDNA Mitochondrial DNA  

MTT 
3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide 

NADH Nicotinamide adenine dinucleotide 

NaHCO3  Sodium hydrogen carbonate  

NaOH Sodium hydroxide 

nM Nanomolar 

NMDA  N-methyl-D-aspartic acid  

OG Octylglucosid 

OGD Oxygen-glucose deprivation 

Omi/HtrA2 High temperature requirement protein A2 

PBS Phosphate buffered saline  

PC Phosphatidylcholin 

PCR Polymerase chain reaction 

PCD Programmed cell death 

PD Parkinson’s disease 

PDB Protein data bank 

pDsRed2-Bid 
Plasmid encoding for a fusion protein of red 
fluorescent protein and Bid under control of 
the CMV promoter/enhancer 

PE Phosphatidylethanolamin 

PEG Polyethyleneglycole 

PEI Polyethylenimine  

PFA Paraformaldehyde 

PH Potentia hydrogenii  

PI Propidium iodide  

PS Phosphorothioate 

PTP  Permeability transition pore 

PTPC Permeability transition pore complex 

PVDF Polyvinylidenfluorid  
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ROS Reactive oxygen species 

RT Room temperature  

RuR Ruthenium red 

Scr Scrambled 

SD Standard deviation  

SDS Sodium dodecyl sulfate 

SDS-PAGE 
Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis 

siRNA Small interfering ribonucleic acid 

Smac/DIABLO 
Second mitochondria – derived activator of 
caspase/direct IAP binding protein with low 
pI 

STS Staurosporin 

TBE Tris/borate/EDTA 

TBI Traumatic brain injury 

tBid truncated Bid 

TBS Tris-buffered solution  

TBST Tris-buffered solution with Tween 20 

TE Trypsin-EDTA 

TEMED Tetramethylenethylendiamin 

TMRE Tetramethylrhodamin ethal ester 

TNF Tumor necrosis factor 

U Unit(s) 

V Volt 

VDAC Voltage-dependent anion channel 

xCT glutamine-cystine antiporter 

XIAP X-chromosomal linked inhibitor of apoptosis 

µ Micro 

µM Micromolar 

 

  



Appendix | 237 

 

 
 

8 Appendix 

Table 67: Neuroprotective properties of 4-phenoxyanilines 

Chemical structures and neuroprotective activities of representative N-acyl 4-phenoxyanilines against glutamate-

induced toxicity as achieved by the first screening and determined by MTT assay. Results are representatives of 

3-8 independent experiments each with n = 8 (*p < 0.05; ** < p 0.01; *** p < 0.001 compared to glutamate treated 

controls, ANOVA Scheffé´s test; N/A
α
, not active: compound revealed no toxic effects in HT-22 cells at 

concentrations from 1 µM up to 100 µM). 

Compound 

name 

Structure 

 

Neuroprotective 

activity 

compound concentration (µM) 

Cytotoxicity 

(µM, p < 0.001) 

  1. 10 25 50 100  

SCHL 24366 

 

--- --- --- --- --- N/Aα
 

SCHL 24370 

 

--- --- *** *** *** ≥ 100 

SCHL 28131 

 

--- --- --- --- --- N/Aα
 

SCHL 28132 

 

--- --- --- --- *** N/Aα
 

SCHL 24388 

 

--- --- --- *** *** ≥ 100 

SCHL 24395 

 

--- --- --- --- *** ≥ 100 

SCHL 24396 

 

--- --- --- --- --- N/Aα
 

SCHL 24382 

 

--- --- --- --- --- ≥ 100 

SCHL 28073 

 

--- --- * ** *** N/Aα
 

SCHL 28074 

 

--- --- --- --- *** ≥ 100 
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SCHL 24365 

 

--- --- --- --- --- N/Aα
 

SCHL 24375 

 

--- *** *** *** *** N/Aα
 

SCHL 24390 

 

--- --- --- ** *** N/Aα
 

SCHL 24368 

 

--- --- --- --- --- ≥ 10 

SCHL 28138 

 

--- *** *** *** *** N/Aα
 

SCHL 28153 

 

--- --- --- --- --- N/Aα
 

SCHL 28076 

 

--- --- *** *** *** ≥ 100 

SCHL 28127 

 

--- --- --- --- --- ≥ 100 
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Table 68: Neuroprotective properties of isonipecotic acid derivatives 

Chemical structures and neuroprotective activities of representative isonipecotic acid derivatives against 

glutamate-induced toxicity as achieved by the first screening and determined by MTT assay. Results are 

representatives of 3-8 independent experiments each with n = 8 (*p < 0.05; ** < p 0.01; *** p < 0.001 compared to 

glutamate treated controls, ANOVA Scheffé´s test; N/A
α
, not active: compound revealed no toxic effects in HT-22 

cells at concentrations from 1 µM up to 100 µM). 

 

Compound 

name 

Structure 

 

Neuroprotective 

activity 

compound concentration (µM) 

Cytotoxicity 

(µM, p < 0.001) 

  1. 10 25 50 100  

SCHL 28001 
 

--- *** *** *** *** ≥ 50 

SCHL 28002 
 

* *** *** *** *** N/Aα
 

SCHL 24519 

 

*** *** *** *** *** N/Aα 

SCHL 24017 

 

--- --- --- *** *** ≥ 100 

SCHL 28025 

 

--- --- *** *** --- ≥ 100 

SCHL 28049 

 

--- *** *** *** --- ≥ 100 

SCHL 28069 

 

--- --- *** --- --- ≥ 100 

SCHL 28038 

 

--- *** *** *** *** ≥ 100 

SCHL 28052 

 

--- *** *** *** *** N/Aα
 

SCHL 28146 

 

--- --- --- *** *** ≥ 100 
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SCHL 24543 

 

--- *** *** *** --- ≥ 100 

SCHL 24537 

 

--- *** *** *** --- ≥ 100 

SCHL 24062 

 

--- --- *** * --- ≥ 100 

SCHL 24545 

 

--- --- *** *** *** N/Aα
 

SCHL 24546 

 

--- ** *** *** --- ≥ 100 

SCHL 24553 

 

--- * *** *** *** N/Aα
 

SCHL 24518 

 

--- ** *** *** *** ≥ 100 

SCHL 24551 

 

--- --- * *** *** ≥ 100 

SCHL 24555 

 

--- --- --- *** *** N/Aα
 

SCHL 28086 

 

--- *** *** --- --- ≥ 100 

SCHL 28119 

 

--- *** *** *** *** N/Aα
 

SCHL 24520 

 

--- --- * * *** ≥ 100 

SCHL 24524 

 

--- *** *** *** *** ≥ 100 
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SCHL 24522 

 

** *** *** --- --- ≥ 100 

SCHL 28129 

 

--- --- --- --- --- ≥ 10 

SCHL 24379 

 

--- --- --- --- --- N/Aα
 

SCHL 24380 

 

--- --- --- --- --- N/Aα
 

SCHL 24381 

 

--- --- --- --- *** N/Aα
 

SCHL 28037 

 

--- --- --- --- --- N/Aα
 

SCHL 28045 

 

--- --- * * * N/Aα
 

SCHL 28053 

 

--- *** *** *** *** ≥ 100 

SCHL 28047 

 

--- *** *** *** *** ≥ 100 

SCHL 24540 

 

--- --- --- --- --- ≥ 100 
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SCHL 28120 

 

--- --- --- --- --- N/Aα
 

SCHL 28121 

 

--- --- --- --- --- ≥ 100 

SCHL 28117 

 

--- *** *** --- --- ≥ 100 

SCHL 24538 

 

--- --- *** *** *** ≥ 100 

SCHL 28048 

 

--- --- *** *** --- ≥ 100 

SCHL 24521 

 

*** *** *** *** *** N/Aα
 

SCHL 28041 

 

--- --- --- *** *** ≥ 100 

SCHL 28050 

 

--- *** *** *** *** ≥ 100 

SCHL 28028 

 

--- --- *** *** --- ≥ 100 

SCHL 28031 

 

--- --- --- --- --- ≥ 100 

SCHL 28032 

 

--- --- --- --- --- ≥ 100 
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SCHL 28023 

 

--- 
*** *** *** --- ≥ 100 

SCHL 24535 

 

--- --- *** *** --- ≥ 100 

SCHL 28115 

 

*** *** *** --- --- ≥ 100 

SCHL 28155 

 

--- --- --- --- *** N/Aα
 

SCHL 28152 

 

--- --- *** *** *** ≥ 50 

SCHL 24542 

 

--- 
*** *** *** *** ≥ 100 

SCHL 24526 

 

--- --- --- *** * ≥ 100 

SCHL 24523 

 

*** *** *** *** --- ≥ 100 

SCHL 28118 

 

--- --- --- --- --- ≥ 100 

SCHL 28116 

 

--- --- --- --- --- N/Aα
 

SCHL 24527 

 

--- --- --- --- --- ≥ 100 
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Table 69: Neuroprotective properties of N-phenyl substituted thiazolidindiones. 

Neuroprotective activity of the compounds against glutamate-toxicity in HT-22 cells was determined within the first 

screening approach by MTT assay. EC50 are given as the mean drug concentration required for inhibiting cell 

death by 50 % compared to controls. Toxicity values indicate toxic drug concentrations found to induce cell death 

without co-treatment with glutamate. (***p < 0.001 compared to glutamate treated control, ANOVA Scheffé´s test; 

N/A
α
, not active – substance revealed no toxic properties at concentrations of 0.1 µM up to 100 µM; N/D

β
, not 

determinable – EC50 values could not be calculated due to lack of protective effects. The results presented are 

representatives of 4-6 independent experiments (MTT assay). 

 

Compound 

name 

 
Structure 

 

EC50 

(µM) 

Neuroprotective 

activity 

compound concentration (µM) 

Cytotoxicity 

(µM, p < 0.001) 

    0.1 1 5 10 50  

SCHL 30049 

 

 

N/Dβ --- --- --- --- --- N/Aα
 

SCHL 24292 

 

 

9.87 --- --- *** *** *** N/Aα
 

SCHL 30042 

 

 

18.10 --- --- --- *** *** N/Aα 

SCHL 24277 

 

 

6.78 --- --- *** *** *** N/Aα
 

SCHL 30026 

 

 

19.30 --- --- --- --- *** N/Aα
 

SCHL 24262 

 

 

11.87 --- --- ** *** *** N/Aα
 

SCHL 24258 

 

 

18.10 --- --- --- *** *** N/Aα
 

SCHL 24310 

 

 

9.59 --- --- *** *** *** N/Aα
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SCHL 24324 

 

 

20.85 --- --- --- * ** N/Aα
 

SCHL 24309 

 

 

9.60 --- --- --- *** *** N/Aα
 

SCHL 24338 

 

 

9.28 --- --- * *** *** N/Aα
 

SCHL 30024 

 

 

19.98 --- --- --- * *** N/Aα
 

SCHL 30037 

 

 

19.73 --- --- --- --- *** N/Aα
 

SCHL 24293 

 

 

13.20 --- --- *** *** *** N/Aα
 

SCHL 24305 

 

 

15.71 --- --- *** *** *** N/Aα
 

SCHL 30021 

 

 

19.50 --- --- --- --- *** N/Aα
 

SCHL 30025 

 

 

19.46 --- --- --- * *** N/Aα
 

SCHL 24386 

 

 

13.68 --- --- * *** *** N/Aα
 

SCHL 24213 

 

 

9.39 --- --- *** *** *** N/Aα
 

SCHL 24239 

 

 

14.94 --- --- --- *** *** ≥ 50 
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SCHL 24320 

 

 

14.14 --- --- --- *** *** N/Aα
 

SCHL 24317 

 

 

13.5 --- --- --- *** *** N/Aα
 

SCHL 24279 

 

 

N/Dβ NSγ NSγ NSγ NSγ NSγ N/Dβ
 

SCHL 24387 

 

 

13.42 --- --- * *** *** N/Aα
 

SCHL 24270 

 

 

13.27 --- --- * *** *** N/Aα
 

SCHL 24385 

 

 

N/Dβ --- --- --- --- --- ≥ 10 

SCHL 24363 
 

 

14.5 --- --- --- *** *** N/Aα
 

SCHL 30005 

 

 

N/Dβ --- --- --- --- --- ≥ 50 

SCHL 30004 

 

 

N/Dβ --- --- --- --- --- ≥ 50 

SCHL 30001 

 

 

N/Dβ --- --- --- --- --- ≥ 50 
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SCHL 24296 

 

 

N/Dβ --- --- *** *** *** ≥ 50 

SCHL 24298 

 

 

N/Dβ --- --- --- --- --- ≥ 50 

SCHL 24291 

 

 

N/Dβ --- --- *** *** *** ≥ 50 

SCHL 24216 

 

 

N/Dβ --- --- *** *** *** ≥ 50 

SCHL 30013 

 

 

N/Dβ --- --- --- --- --- ≥ 50 

SCHL 30014 

 

 

N/Dβ --- --- --- --- --- ≥ 50 

SCHL 30006 

 

 

N/Dβ --- --- --- --- --- ≥ 50 
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SCHL 30011 

 

 

N/Dβ --- --- --- --- --- N/Aα
 

SCHL 30010 

 

 

N/Dβ --- --- --- --- --- ≥ 100 

SCHL 30008 

 

 

N/Dβ --- --- --- * * ≥ 50 

SCHL 24100    

 

 

N/Dβ --- --- --- --- --- N/Aα
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Table 70: Neuroproctive properties of miscellaneous chemical compounds. 

Structures and neuroprotective activities of novel chemical compounds against glutamate-induced toxicity as 

achieved by the first screening and determined by MTT assay. Results are representatives of 3-8 independent 

experiments each with n = 8 (*p < 0.05; ** < p 0.01; *** p < 0.001 compared to glutamate treated controls, ANOVA 

Scheffé´s test; N/A
α
, not active: compound revealed no toxic effects in HT-22 cells at concentrations from 1 µM up 

to 100 µM). 

Compound 

name 

Structure 

 

Neuroprotective 

activity 

compound concentration (µM) 

Cytotoxicity 

(µM, p < 0.001) 

  1. 10 25 50 100  

SCHL 30032 

 

--- --- --- --- --- N/Aα
 

SCHL 30040 

 

--- --- --- --- --- N/Aα
 

SCHL 30002 

 

--- --- --- --- --- N/Aα
 

SCHL 30027 

 

--- --- --- --- *** N/Aα
 

SCHL 24398 

 

--- --- --- --- --- N/Aα
 

SCHL 24401 

 

--- --- --- --- --- N/Aα
 

SCHL 24394 

 

--- --- *** *** *** N/Aα
 

SCHL 24552 

 

--- --- --- --- --- N/Aα
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SCHL 24554 

 

--- --- --- --- --- N/Aα
 

SCHL 24549 

 

--- --- --- --- --- N/Aα
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