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ABSTRACT 

In most bacteria, cell division requires assembly of FtsZ, the tubulin homologue, into a ring-like 

structure, the so-called Z-ring. The Z-ring acts as a scaffold for the cell division machinery and 

marks the future division site. To precisely localize the Z-ring, bacteria have evolved different 

regulatory mechanisms. In the model organism Caulobacter crescentus, Z-ring positioning 

depends on a P-loop ATPase, MipZ. 

MipZ forms bipolar gradients within the cell and acts as an inhibitor of FtsZ polymerization, 

thereby restricting assembly of the Z-ring to the midcell region. Gradient formation is driven by 

the alternation of MipZ between a monomeric and dimeric state with distinct interaction 

patterns and diffusion rates. This alternation results in a dynamic localization cycle, in which 

MipZ continuously oscillates between non-specific chromosomal DNA and the polarly 

localized ParB protein. 

In this study, we investigated the function of MipZ by mapping its interaction interfaces with 

FtsZ, ParB and DNA. We systematically exchanged surface-exposed residues using alanine-

scanning mutagenesis. Analyzing the subcellular distribution of the mutant proteins as well as 

their ability to support division site placement, we identified four clusters of residues that are 

important for MipZ activity. Two of them are likely responsible for contacting FtsZ and 

chromosomal DNA, respectively, whereas the other two appear to be involved in the interaction 

with ParB. Notably, the DNA-binding and FtsZ-binding interfaces of MipZ comprise residues 

from both monomeric subunits and are located on opposite sides of the dimer. This result is 

consistent with the previous finding that the regulatory effect of MipZ is specific for its dimeric 

form and that only the dimeric form contacts DNA and FtsZ. We also found that the DNA-

binding region mainly consists of positively charged arginine and lysine residues. In vivo and in 

vitro studies showed that mutation of these residues impairs the DNA-binding activity of MipZ 

to different extents; moreover, mutation of R194 and R198 abolished the MipZ-DNA 

interaction. These results provide the first detailed analysis of the interaction determinants of 

MipZ and deepen our knowledge of the molecular mechanism underlying the function of this 

intriguing cell division regulator.  
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ZUSAMMENFASSUNG 

In den meisten Bakterien wird die Zellteilung durch die Assemblierung des Tubulin-Homologs 

FtsZ in eine ringähnliche Struktur, den sogenannten „Z-Ring“ eingeleitet. Der Z-Ring markiert 

die zukünftige Teilungsebene und rekrutiert direkt oder indirekt alle weiteren 

Zellteilungsproteine. Bakterien haben unterschiedliche regulatorische Mechanismen entwickelt, 

um die korrekte Positionierung des Z-Rings sicherzustellen. Im Modellorganismus 

Caulobacter crescentus ist die Positionierung des Z-Rings von der P-loop ATPase MipZ 

abhängig. 

MipZ bildet einen bipolaren Gradienten in der Zelle und agiert als Inhibitor von FtsZ, welches 

dadurch ausschließlich in der Zellmitte polymerisieren kann. Die Bildung des Gradienten beruht 

auf einem Wechsel von MipZ zwischen einem monomeren und dimeren Zustand, welche 

unterschiedliche Interaktionspartner und Diffusionsraten aufweisen. Aus diesem Verhalten 

ergibt sich ein dynamischer Lokalisationzyklus, in dem die MipZ-Moleküle zwischen 

unspezifischer chromosomaler DNA und polar lokalisiertem ParB oszillieren.  

In dieser Studie wurde die Funktion von MipZ untersucht, indem die Bindestellen von FtsZ, 

ParB und chromosomaler DNA auf MipZ kartiert wurden. Dazu wurden systematische 

oberflächenexponierte Reste mit Hilfe von ortsgerichteter alanine-scanning Mutagenese 

ausgetauscht. Die mutierten Proteine wurden anschließend auf ihre zelluläre Verteilung sowie 

auf ihre Fähigkeit, die Zellteilungsebene korrekt zu platzieren, untersucht. Es konnten vier 

Aminosäuren-Cluster identifiziert werden, welche eine entscheidende Rolle für die Aktivität 

von MipZ hatten. Zwei von ihnen sind für die Bindung von FtsZ und chromosomaler DNA 

verantwortlich, die anderen zwei vermitteln die Interaktion mit ParB. Bemerkenswert ist, dass 

sich die DNA- und die FtsZ-Bindetasche aus Resten von beiden monomeren Untereinheiten 

zusammensetzen und einander gegenüber liegen. Diese Beobachtung steht in Einklang mit 

bisherigen Ergebnissen, welche darauf hindeuten, dass die Zellteilung auschließlich durch die 

dimere Form reguliert wird und nur diese zur Interaktion mit DNA und FtsZ fähig ist. Es zeigte 

sich zudem, dass die DNA-Binderegion zum Großteil aus positiv geladenen Arginin- und Lysin-

Resten besteht. In vivo und in vitro Experimente zeigten, dass Mutationen in diesen Resten die 

DNA-Bindekapazität von MipZ in unterschiedlichem Maß verringern. Mutationen in R194 und 

R198 führten darüberhinaus zur vollständigen Inhibition der MipZ-DNA-Interaktion. Diese 

Ergebnisse liefern erstmals detaillierte Einblicke in die Interaktionsdeterminanten von MipZ 

und erweitern unser Verständnis des molekularen Mechanismus, der der Aktivität dieses 

faszinierenden Zellteilungsregulators zu Grunde liegt. 
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1 INTRODUCTION 

Nowadays, it is well-accepted that bacterial cells are not simply bags of enzymes. Bacterial cell 

division is a good example to show the complexity of bacteria. Although the general idea is that 

bacteria undergo binary fission for division, there are an increasing number of studies that focus 

on asymmetric and even irregular cell division mechanism. Caulobacter crescentus, the 

organism used in this study, is intensively studied for its asymmetric division and tightly 

regulated cell cycle (1). C. crescentus, an α-proteobacterium, is ubiquitous in fresh water (2). It 

undergoes an asymmetric cell division, which gives birth to two distinct daughter cells, a 

smaller motile, flagellated swarmer cell and a bigger sessile stalked cell (Figure 1.1) (3). The 

stalked cell is able to start the cell cycle immediately, whereas the swarmer cell needs to 

differentiate into a stalked cell before it can enter a new cell cycle. In every cell cycle, 

C. crescentus only replicates its chromosome once (4).  

 

Figure 1.1 Cell cycle of C. crescentus. The two daughter cells, the swarmer cell and the stalked cell, enter the cell cycle differently. 
The swarmer cell needs to transform to a stalked cell to start the cell cycle, while the stalked cell can start replication immediately. 

Figure adapted from M. Thanbichler (unpublished). 

1.1 Chromosome segregation in bacteria 

Bacteria evolved a variety of delicate mechanisms to ensure precise and faithful chromosome 

segregation. Unlike eukaryotic cells, which separate chromosome replication and segregation in 

time, bacteria usually replicate and segregate their chromosome concomitantly (5-7). How 

bacteria manage to regulate and coordinate the complicated processes is still poorly understood. 

However, owing to advances in microscopy technology, some mechanisms and many proteins 
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involved in bacterial chromosome segregation have been discovered in recent years. 

Surprisingly, even though chromosome segregation is a crucial step for bacterial survival, only a 

small set of highly conserved proteins have been discovered; moreover, these proteins are not 

essential in most bacteria (6). In the following section, bacterial chromosome segregation is 

reviewed with a focus on three chromosome segregation-related components: the ParAB-parS 

system, the SMC (structural maintenance of chromosomes) complex, and FtsK.  

1.1.1 Important components involved in bacterial chromosome segregation 

Generally, bacterial chromosome segregation can be divided into three steps: the segregation of 

the replication origins, the segregation of the bulk of the chromosome, and the segregation of 

the terminus region (5). Both the SMC complex and ParAB-parS system are mainly involved in 

separating the newly replicated origins, while FtsK segregates the terminus region (5, 6, 8-10).  

The ParAB-parS system was found to mediate the segregation of both low-copy number 

plasmids and chromosomes (11), although the plasmid-encoded ParAB-parS system is 

relatively well-studied (12), here I mainly focus on the chromosome-encoded system. The 

ParAB-parS system consists of three parts: the two proteins ParA and ParB, as well as a DNA 

sequence, parS (6). ParA, an ATPase, is generally believed to form dimers or polymers in a 

nucleotide-dependent manner (13, 14). ParA binds non-specifically to chromosomal DNA and 

drives the separation of the duplicated sister origin regions (5). ParB specifically binds to parS 

sequences; simultaneously it also interacts with ParA and stimulates the ATPase activity of 

ParA, thereby disassembling ParA (6, 14, 15). parS, the centromere-like DNA element, is 

usually close to the origin and present in multiple copies (6). It is generally accepted that ParA 

moves the ParB-parS complex together with the newly replicated origin to the opposite cell pole 

(6). However, the mechanism underlying the process is still under debate. One model suggests 

that ParA forms filaments, which pull the two newly replicated origins apart (14, 16). By 

contrast, the diffusion-ratchet model, although proposed for ParAB-parS mediated plasmid 

segregation, explains the segregation by the directed movement of the ParB-parS complex along 

local gradient of ATP-bound ParA, in this model, ParA does not form filaments but dimmers 

that cover the nucleoid (17, 18). The formation of the ParA gradient is dependent on the non-

specific binding of ParA to chromosomal DNA, its ParB-stimulated ATPase activity, and the 

different binding affinities of the ADP-bound and ATP-bound ParA for chromosomal DNA (17-

19). Besides mediating chromosome segregation, the ParAB-parS system also contributes to 

other aspects of cellular organization in different bacterial species. In C. crescentus and 

Corynebacterium glutamicum, ParAB-parS system plays a role in division site placement (20-

23). The system is also involved in the regulation of sporulation in Bacillus subtilis and 

Streptomyces coelicolor (24, 25). Over 65% of sequenced bacterial genomes encode parAB loci 

(6, 26) while E. coli belongs to the other 35% that do not have a ParAB-parS system. However, 

in most of the species that have a ParAB-parS system, the system is not essential (6). The 

essentiality of ParAB-parS has only been shown in C. crescentus (27) and Myxococcus xanthus 

(7, 28).  

The SMC complex is found in eukaryotes, prokaryotes, as well as archaea (10). The bacterial 

SMC complex (or its analogue MukBEF in many γ-and δ-proteobacteria, including Escherichia 

coli) consists of three parts: the V-shaped SMC homodimer with ATPase activity and the two 
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accessory proteins ScpA and ScpB that bridge between the dimer and participate in the 

regulation of the ATPase activity of the SMC dimer (10). Mutations in the SMC complex 

usually increase the fraction of anucleate cells (29-31), suggesting that SMC has a chromosome 

segregation-related function. Microscopy studies show that SMC fluorescent protein fusions are 

associated with the chromosome (10). Moreover, some of the E. coli MukB foci are colocalized 

with the origin region (32). In B. subtilis, ParB loads SMC onto the origin region from where it 

is distributed over the chromosome (33). A recent study (34) revealed that in B. subtilus the 

SMC complex plays a central role in resolving and segregating the newly replicated origins, 

particularly, in conditions of fast growth.  In C. crescentus, a SMC fluorescent protein forms 

multiple foci in the cell but rarely colocalizes with ParB (29), and the ATPase activity of C. 

crescentus SMC is crucial for its function in segregating newly replicated origins (35).  

It is still unclear what mechanisms drive the separation of the bulk of the chromosome. 

However, it was proposed that chromosome condensation and entropic effects, as well as DNA 

replication and transcription drive the separation process (5, 36). Moreover, the SMC complex 

is also proposed to contribute to segregating the bulk of the chromosome by introducing 

lengthwise condensation (37, 38). 

FtsK, a multifunctional protein is involved the chromosome segregation and cell division (39). 

FtsK is conserved in many bacterial species, and it consists of an N-terminal domain, a linker 

domain with variable length and a C-terminal ATPase domain (39). The N-terminal region 

contains several trans-membrane domains that anchor FtsK to the septum, whereas the C-

terminal domain is responsible for DNA binding and translocation (40). FtsK assembles into a 

hexameric complex at the septum, and pumps the chromosome toward dif site, which is located 

in the terminus region of chromosome. The direction of DNA translocation is determined by 

multiple copies of KOPS (FtsK-Orienting Polar Sequences), an 8-bp DNA sequence motif, 

oriented toward the dif site (40, 41). Upon reaching the dif site, FtsK activates the XerCD 

mediated homologous recombination at the dif site, which resolves dimeric chromosomes 

resulting from an odd number of homologous recombination events between the two sister 

chromosomes (42, 43). Moreover, FtsK activates topoisomeriase IV to decatenate the two sister 

chromosomes of the replication (44). Finally, as a component of divisome, FtsK also interacts 

with other cell division proteins to mediate the proper cell division (45). 

1.1.2 The ParAB-parS system of C. crescentus 

The ParAB proteins are essential for the viability of C. crescentus, the depletion of ParB or 

overexpression of ParA results in smooth filamentation. However, co-overexpression of both 

proteins suppresses the filamentous phenotype and partially restores cell division, although it 

leads to many anucleate cells, suggesting the cell division and chromosome segregation-related 

function of ParAB (27, 46). The parS sequence is crucial for the initiation of chromosome 

segregation in C. crescentus (36). Due to the essentiality of the ParAB-parS system, 

C. crescentus has evolved delicate mechanisms, involving the scaffold protein PopZ and the 

polar landmark protein TipN, to regulate this system (Figure 1.2) (47, 48). Before the initiation 

of chromosome replication ParB-parS complex localizes at the flagellated pole (old pole) of the 

swarmer cell and the stalked pole (old pole) of the stalked cell, mediated by its tethering to the 

polarly localized PopZ matrix (49). During the initiation of chromosome replication and 
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segregation, the newly formed ParB-parS complex is quickly translocated to the opposite pole 

in a ParA-dependent manner, and captured by the newly accumulated PopZ at the new pole (47, 

50). PopZ, a multimeric polar scaffolding protein, recruits and interacts with many proteins 

involved in chromosome segregation, such as ParA and ParB and cell cycle signaling, such as 

CckA and DivJ (47). A popZ null mutant displays a stalkless, filamentous phenotype, and ParB 

foci are no longer attached to the cell pole, indicating an important role in cell morphology, cell 

division and chromosome segregation (22). ParA is the main player to translocate the ParB-parS 

complex to the new pole. Moreover, it has been shown that the transition of PopZ from unipolar 

to bipolar localization is dependent on the accumulation of ParA at the new pole (47). The 

direction and dynamics of ParA-mediated DNA segregation relied on another protein, TipN (48, 

51). TipN, a membrane-bound protein, is considered to act as the landmark of the new pole (51). 

In tipN null mutants, ParA structures regenerate behind the ParB-parS complex, so that the 

partition complex stalls and even moves back-and-forth (48). TipN is shown to directly interact 

with ParA at the new cell pole and regulate ParA-dependent movement of ParB-parS complex 

toward the new pole by recruiting the monomeric form of ParA to the new pole, thus preventing 

its dimerization and relocalization on the nucleoid (48). Except for regulating the dynamics of 

the ParAB-parS system, TipN also determines the cell polarity (51, 52). The tipN null mutant 

exhibits several cell polarity defects, including mislocated flagella and a reverse asymmetry of 

the daughter cells (51).  

In C. crescentus, the ParAB-parS system also plays a crucial role in Z-ring positioning (Figure 

1.2) (21). Z-ring positioning in C. crescentus is regulated by MipZ, a negative regulator of FtsZ 

polymerization, whose distribution is dependent on its interaction with ParB (20, 21). Thus 

proper cell division in C. crescentus relies on a functional ParAB-parS system. A more detailed 

explanation of the MipZ-mediated Z-ring positioning system is given in section 1.3.3.  

 

Figure 1.2 ParAB-parS-mediated cellular organizations in C. crescentus. The roles of the ParAB-parS system in origin 

segregation and Z-ring positioning are illustrated on the left and right side, respectively. More details are given in section 1.1.2. 
Figure adapted from (53). 



                                                                                                                                      Introduction 

5 

 

1.2 FtsZ and the Z-ring 

FtsZ, a tubulin homologue, is the central component of the cell division machinery in the 

majority of bacteria, many archaea, some mitochondria, and all chloroplasts (54). Although the 

amino acid sequence similarity between tubulin and FtsZ is very low, the two proteins share 

similar structure (55, 56). FtsZ consists of four domains: a short, unstructured N-terminal region; 

a globular core domain responsible for nucleotide binding; an unstructured linker of variable 

length; and a highly conserved C-terminal peptides involved in the interaction with some 

important FtsZ regulators (57).  

In most bacteria, the initial step of cell division requires FtsZ polymerization into the so-called 

Z-ring at the future division site. The Z-ring is a dynamic structure and the half time for Z-ring 

subunits turnover is 8-10 s (58). The in vivo structure of the Z-ring is still under debate, and 

different architectures have been proposed, dependent on the species investigated and the 

visualization technology used. In E. coli, the Z-ring was visualized as a loose bundle of 

randomly overlapping protofilaments by photo-activated localization microscopy (PALM) (59). 

In B. subtilis, the Z-ring was observed to be a bead-like structure with 3D-structured illumination 

microscopy (3D-SIM) (60), and in C. crescentus, it was imaged as sparse, short, non-

overlapping protofilaments by  cryo-electron tomography (61) or as a patchy and open band 

with 3D high-throughput photoactivated localization microscopy (HTPALM) (62). It has been 

proposed that the Z-ring provides the force for membrane constriction; however, the mechanism 

of force generation is unclear (63, 64). There are two popular models proposed: the sliding and 

the bending model. In the sliding model, FtsZ polymerizes into short overlapping protofilaments. 

These protofilaments slide along each other increasing the number of lateral contacts, thereby 

decreasing the circumference of the Z-ring (65). The bending model, by contrast, suggests that 

FtsZ protofilaments change from a straight to a curved form by hydrolyzing GTP to GDP (66), 

and this conformational change generates the force for constriction. Remarkably, a recent study 

challenged the force generation function of the Z-ring during cell membrane constriction in 

E. coli. Based on fluorescence microscopy data, Söderström et al (67) claimed that in fact the Z-

ring disassembled before the inner membrane was sealed during constriction. Therefore, they 

proposed that during the final stage of constriction instead of the Z-ring, fusion of the lipid 

bilayer and the inward growth of peptidoglycan might be the force-generating processes (67). 

The Z-ring needs to be tethered to the membrane for proper function. An important Z-ring 

membrane-anchor protein is FtsA, a widely conserved membrane-associated protein, interacting 

with the extreme C-terminus of FtsZ. FtsA influences the dynamics and the organization of the 

Z-ring (68, 69). In E. coli and B. subtilis, FtsA is recruited to the Z-ring at the early division 

stage, whereas in C. crescentus FtsA is a late division protein (68). This finding suggests that 

C. crescentus has an alternative mechanism to tether the Z-ring to the membrane in the early 

division stage, which may involve the divisome components FtsE and FtsX (57). Interestingly, a 

recent in vitro study showed that FtsA has two opposing effects on FtsZ, tethering the FtsZ 

polymers to the membrane and disassembling the polymers, which regulate the treadmilling 

dynamics of FtsZ polymers (70, 71). In E. coli and other γ-proteobacteria, tethering of the Z-

ring to the membrane is also mediated by ZipA, a protein that stabilizes the Z-ring structure by 

stimulating FtsZ proteofilament bundling. In B. subtilis, which lacks ZipA, the proteins EzrA 

and SepF are considered to be the functional analogues of ZipA (57, 72, 73). In C. crescentus 
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another protein, FzlA, although not acting as a Z-ring membrane anchor, is considered to 

stimulate FtsZ protofilament bundling (74). ZapA, another important Z-ring regulator, which is 

intensively-studied in E. coli and also encoded by C. crescentus, binds directly to FtsZ and 

promotes the bundling of FtsZ protofilaments (75, 76). The Z-ring serves as a scaffold that 

recruits more than 20 other cell division proteins to form the divisome at the division site (57). 

The precise role of every divisome component is not fully understood; however, in general, they 

are involved in the following roles: stabilizing the Z-ring, synthesizing and remodeling 

peptidoglycan, coordinating division with chromosome segregation, and stabilizing the whole 

divisome (76). 

Due to the crucial function that the Z-ring plays in cell division, it is an attractive target for 

antibiotic development. There are already a number of synthetic compounds found to be the 

inhibitors of the Z-ring (65). These inhibitors target at different pathways to disturb Z-ring 

formation (77). For instance, some small molecules target at the positive Z-ring regulator ZipA 

(78); acyldepsipeptide antibiotics enhance the degradation of FtsZ by activating the protease 

ClpP (79); and GTP analogues inhibit the assembly and dynamics of the Z-ring (80). However, 

none of the Z-ring inhibitors has been used in clinical applications yet (81). 

FtsZ is conserved in the majority of bacteria, and it is essential in most of these bacteria; 

however, several groups of bacteria divide without FtsZ. Planctomycetes do not encode ftsZ in 

their genomes (82), and in S. coelicolor FtsZ has been shown to be dispensable during 

vegetative growth (83). Moreover L-form proliferation of B. subtilis is also independent of FtsZ 

(84). However, the mechanisms underlying FtsZ-independent bacterial cell division remain 

elusive (83). 

1.3 Z-ring positioning in bacteria 

How does the Z-ring find the future division site? This question has been puzzling researchers 

for many years. It is still not completely solved, but the underlying mechanisms are starting to 

become clearer. Most  data on this subject have been obtained in five model organisms (Figure 

1.3), namely E. coli, B. stubilis, C. crescentus, S. coelicolor and M. xanthus. In general, the Z-

ring needs specialized regulators to direct its positioning to the division site. Although FtsZ is a 

widely conserved protein, the mechanisms that regulate Z-ring positioning vary significantly in 

different bacteria (85). Before 2010, only negative cell division regulators were reported 

including the MinCD system and nucleoid occlusion in E. coli and B. subtilis, as well as MipZ 

in C. crescentus (85). However, in recent years, two positive regulators, SsgB and PomZ were 

discovered in S. coelicolor and M. xanthus, respectively (86, 87). Interestingly, some of these 

regulators, including, MinD, MipZ and PomZ, belong to the Mrp/MinD family of P-loop 

ATPases (85, 87), which may indicate a common origin of the different Z-ring positioning 

systems (85, 87).  
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1.3.1 Positive regulators of Z-ring positioning 

Streptomycetes are Gram-positive soil bacteria with complex life cycles, which resemble 

filamentous fungi in their apical growth (88). In contrast to cell division in rod bacteria, the 

vegetative growth of Streptomycetes is based on polar growth of the vegetative hyphae (88). 

During sporulation, Streptomycetes produce long chains of spores in aerial hyphae. In this step, 

they require a similar cell division machinery as rod shaped bacteria (86).  Streptomycetes do 

not encode any well-known FtsZ regulators, such as the Min, Noc and SlmA proteins (86). 

However, in S. coelicolor, a positive regulator, SsgB, was found to control Z-ring positioning 

during sporulation. SsgB has been shown to directly interact with FtsZ and tether the Z-ring to 

the membrane. Moreover, it promotes FtsZ polymerization and stabilizes the Z-ring. The 

division site localization of SsgB is directed by another protein, called SsgA (86). 

Another positive regulator of Z-ring positioning, PomZ, is found in the δ-proteoabacterium 

M. xanthus (87). PomZ directs the Z-ring to the midcell (87). A ΔpomZ mutant exhibits both 

filamentous and minicell phenotype, suggesting the Z-ring positioning related function of PomZ 

(87). Moreover, PomZ locates to the midcell independently of FtsZ and before Z-ring formation, 

and it induces the polymerization of M. xanthus FtsZ in vitro (87). 

1.3.2 Negative regulators of Z-ring positioning 

Z-ring positioning systems were first discovered and studied in E. coli. In this organism, two 

systems, the Min system and nucleoid occlusion, cooperate to ensure the proper Z-ring 

placement (89-91). The Min system consists of three proteins, encoded from one operon. MinC, 

the FtsZ inhibitor, which directly interacts and disrupts the Z-ring formation; MinD, a 

Mrp/MinD P-loop ATPase, which anchors MinC to the membrane and interacts with MinE; and 

MinE the topological regulator of the Min system, disassembles the MinCD complex from the 

membrane, and thus directing the pole-to-pole oscillation of MinCD (91). The oscillation leaves 

the time averaged concentration of MinC lowest at the midcell and highest at the poles, 

allowing the Z-ring formation at the midcell and preventing division at the cell poles (91). Loss 

of the Min system leads to filamentation and anucleate minicells, but overexpression of FtsZ 

can partially rescue this phenotype (92). MinC has two similar-sized domains, and both of the 

two domains interact with FtsZ (93). The C-terminal domain is the dimerization domain, is also 

responsible for MinD binding. Furthermore, it interacts with the C-terminal region of FtsZ and 

interrupts the lateral interactions between FtsZ, FtsA and ZipA (94, 95); by contrast, the N-

terminal domain interrupts the interaction between FtsZ molecules, thereby shortening the FtsZ 

protofilaments (93, 96). MinD, the link between MinC and MinE, is the central protein 

regulating the dynamics of the Min system by its distinct affinities to its binding partners in 

different forms (53). MinD forms dimer after binding ATP, and only ATP-bound dimeric MinD 

binds to the membrane and recruits MinC to the cell pole (97). Notably, on MinD dimer, the 

binding regions for MinC and MinE overlap and locate at the MinD dimer interface, which 

indicates that the MinD dimer is the active form for MinC and MinE interaction, and that MinE 

competes with MinC for binding to the MinD dimer (98). MinD is dissembled and released 

from the membrane by MinE stimulated ATP hydrolysis (98). The topological regulator MinE 

is a small membrane-bound protein consisting only 88 amino acids. It binds to the membrane-
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bound MinD dimer, undergoes a conformational change, disassembles MinD, and then, releases 

the MinCD complex from the membrane (96).  

The central component of E. coli nucleoid occlusion system is SlmA, a sequence-specific DNA-

binding protein belonging to the TetR family (99). SlmA acts as an antagonist of FtsZ 

polymerization, and prevents division over the unsegregated chromosome (99). It does so by 

binding to specific palindromic DNA sequences: SlmA-binding sequences (SBS), which are 

spread all over the chromosome except for the terminus region (99). Tonthat et al., suggested 

that SBS binding induces SlmA to assemble into higher-order oligomers that interact with FtsZ 

protofilaments and disrupt their proper arrangement into the Z-ring (100). Neither the Min 

system nor SlmA is essential in E. coli, but the combination of min
-
 and slmA

-
 mutations was 

shown to be synthetic lethal (92, 99).  

Both the Min system and nucleoid occlusion are present in the Gram-positive bacterium 

B. subtilis (101). The Min system of B. subtilis comprises four proteins, MinC, MinD, MinJ and 

DivIVA. The functions of MinC and MinD are similar in E. coli and B. subtilis. Moreover, a 

study showed that E. coli MinD can partially substitute for B. subtilis MinD (102). B. subtilis 

does not encode the topological regulator minE. Instead, it regulates the positioning of MinCD 

by DivIVA (103). DivIVA, a conserved protein in Gram-positive bacteria, is considered to be a 

scaffold protein, which is involved in many cellular processes including cell division, cell wall 

biosynthesis, secretion, genetic competence, or chromosome segregation; strikingly, the 

localization of DivIVA is determined by the shape of the membrane (104). It binds to the 

membrane, senses membrane curvature, and accumulates at the membrane regions with high 

negative curvature, which are the cell poles and the constriction site (104). DivIVA does not 

directly interact with MinD, but the interaction between MinD and DivIVA is bridged by 

another protein, MinJ (103). In contrast to the dynamic pole-to-pole oscillation observed in 

E. coli, the Min system in B. subtilis is more static (105). A model, based on the results from 

structured illumination microscopy suggests that DivIVA forms two rings that flank the 

divisome; MinCD is recruited to the two DivIVA rings at the beginning of membrane 

constriction. The division machinery between the two rings is not affected, but the FtsZ 

assembly outside the two rings is interrupted by MinC (106). The main function of the Min 

system in B. subtilis, unlike in E. coli, may be to disassemble the divisome, to prevent the 

reinitiation of Z-ring formation adjacent to recently completed division sites, ensuring that cell 

division occurs only once per cell cycle (107, 108).  

The DNA-binding protein mediating nucleoid occlusion in B. subtilis is called Noc (109). 

Similar to SlmA, Noc also binds to specific sequences, which are widely distributed on the 

chromosome but excluded from the terminus region, thereby interrupting Z-ring formation over 

the chromosome (110). However, Noc, a ParB-like protein, shares no sequence similarity with 

SlmA (100). Furthermore, no direct interaction has been reported between Noc and FtsZ in vitro 

(110). 

It is generally accepted that the Min system and nucleoid occlusion are the two systems that 

regulate Z-ring positioning in B. subtilis and E. coli. However, several recent studies indicate 

that other mechanisms besides the Min system and nucleoid occlusion could be involved in Z-

ring positioning in these two bacteria (97). Rodrigues et al showed that in outgrown spore of 

B. subtilis, the Z-ring is still positioned correctly at midcell, without both the Min and Noc 
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proteins, although Z-ring formation was delayed and less efficient (97). In E. coli, it has been 

proposed that passive mechanisms such as the incompletely replicated or unsegregated 

chromosome also contributes to Z-ring positioning in addition to the Min and SlmA proteins 

(111). 

 

Figure 1.3 Z-ring positioning systems in bacteria. Z-ring positioning systems from E. coli, B. subtilis, C. crescentus, S. coelicolor 
(during sporulation) and M. xanthus are shown, More details are given in section 1.3. Figure modified from (85). 

Apart from the relatively well-studied Z-ring positioning systems in rod-shaped bacteria, the 

mechanisms adapted in coccoid bacteria have also been characterized (112, 113).  The Min 

system and nucleoid occlusion are also found in some coccoid bacteria, such as Staphylococcus 

aureus which encodes Noc, Neisseria gonorrhoeae, which possesses the Min system (112, 114, 

115). However a big challenge of coccoid bacteria is to select a midcell plane as the future 

division site in the absence of a longitudinal axis. For example S. aureus has three alternative 

division planes and N. gonorrhoeae has two (112). Although the mechanisms behind Z-ring 

positioning in coccoid bacteria are still not clear, it has been proposed that the cell wall 

architecture and components are involved in division site positioning (112). 

1.3.3 MipZ regulates Z-ring positioning in C. crescentus 

In C. crescentus, both the Min system and nucleoid occlusion are absent, but another Mrp/MinD 

P-loop ATPase, MipZ, regulates Z-ring positioning (21). MipZ is conserved in many α-

proteobacteria. Interestingly, several α-proteobacteria encode both the Min system and MipZ in 

their genomes, but it is unknown how these bacteria coordinate these two systems. MipZ is 
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essential in C. crescentus, and its depletion causes the formation of both minicells and 

filamentous cells, whereas MipZ overexpression induces smooth filamentous growth (21). The 

mechanism of Z-ring positioning by MipZ is shown in Figure 1.4. MipZ interacts with FtsZ 

both in vivo and in vitro (21). In vitro studies showed that MipZ stimulates the GTPase activity 

of FtsZ and turns the straight FtsZ protofilaments into an arc-like form (21).  

Remarkably, MipZ displays a gradient-like distribution in predivisional cell, with a 

concentration maximum in the two polar regions and a concentration minimum at the midcell 

(20). Due to this gradient-like distribution, Z-ring formation is only allowed at the midcell, 

where the concentration of MipZ is the lowest (21). C. crescentus has evolved a unique way to 

control the MipZ distribution, which is closely linked with chromosome segregation. Before 

chromosome segregation, MipZ binds to the ParB-parS complex at the stalked pole (old pole), 

while FtsZ is located at the opposite pole (new pole). After replication of the origin region and 

the parS sequences, the replicated parS-ParB-MipZ complex is translocated to the opposite pole 

in a ParA-dependent manner, and FtsZ is forced to reassemble to the midcell by the inhibitory 

function of MipZ (21). 

ParB recruits MipZ to the polar regions of the cell, but how does MipZ form a concentration 

gradient? The gradient-like distribution of MipZ depends on a nucleotide-induced monomer-

dimer switch and on its interaction with ParB and non-specific chromosomal DNA (20). MipZ 

forms dimers, with each monomer binding one molecule of ATP. Because of an intrinsic 

ATPase activity, MipZ eventually hydrolyzes ATP, and the dimer disassembles (20). The 

monomeric and dimeric forms of MipZ have different affinities to FtsZ and chromosomal DNA. 

Both in vivo and in vitro studies indicate that only the MipZ dimer interacts with FtsZ and DNA, 

but ParB interacts with both MipZ forms. In addition, ParB has been suggested to stimulate 

MipZ dimerization (20). Based on the facts above, MipZ gradient formation can be explained 

by the following model (Figure 1.4) (20): ParB recruits monomeric MipZ to the cell poles and 

stimulates MipZ dimerization. The ATPase activity of MipZ is rather low, with a turnover 

number of 0.4 /min, retaining most MipZ proteins in the dimeric form. After release from ParB, 

chromosomal DNA interacts with the MipZ dimer and slows down its diffusion; MipZ dimmers 

accumulate close to the cell poles, and their concentration decreases towards midcell. This 

bipolar gradient ensures that the Z-ring is precisely placed at the midcell region of C. crescentus 

(20). 

1.4 Scope 

The correct placement of the Z-ring is crucial for bacteria to produce viable progeny. Since the 

discovery of the Min and nucleoid occlusion systems in the late 1980s (89), Z-ring positioning 

systems have been studied intensively for almost three decades. Many mechanisms were 

clarified, and several new systems were discovered, including MipZ, SsgB and PomZ. However, 

more questions are raised by these new discoveries. This study aims to provide more 

information about the regulatory function of MipZ in C. crescentus. 

A remarkable feature of MipZ is its gradient-like distribution in the C. crescentus cell. Previous 

studies (20, 21) revealed that this distribution is achieved through the dynamic interaction of 
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MipZ with ATP, ParB, DNA and FtsZ. Except for the conserved nucleotide-binding region of 

P-loop ATPases, it is unclear which regions of MipZ are involved in ParB, DNA and FtsZ 

binding. Moreover, the mechanisms underlying these interactions have remained incompletely 

understood. Although it is clear that MipZ interacts with DNA, there is no known DNA-binding 

motif found in the crystal structure of MipZ. How does MipZ interact with DNA? How does 

ParB interact with MipZ and stimulate its dimerization? How does MipZ interact with FtsZ and 

stimulate the GTPase activity of FtsZ?  

 

 

Figure 1.4 MipZ regulated Z-ring positioning in C. crescentus. The upper panel shows the gradient distribution of MipZ in 

C. crescentus. The lower panel shows the detailed interactions between MipZ and its interaction partners, nucleotide, ParB, 
chromosomal DNA and FtsZ. More details are given in section 1.3.3. Figure adapted from (20). 

To address these questions, we set out to map the interaction regions on the MipZ surface. 

Taking the advantage of the crystal structure of MipZ, we performed a site-directed alanine-

scanning-mutagenesis of MipZ focusing on residues that are exposed at the surface and carry 

charged or bulky hydrophobic side chains. To this end, we constructed a series of MipZ mutants, 

and analyzed the subcellular distributions of the MipZ variants and cell division phenotypes of 

these mutants by microscopy. According to the different phenotypes displayed by the mutants, 

we were able to identify candidate residues responsible for FtsZ, ParB, and DNA interaction, 

respectively. The roles of these residues were further characterized by cell biological and 
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biochemical methods. To this end, we are able to map the FtsZ-, ParB- and DNA-binding 

regions on the MipZ dimer surface. 
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2 RESULTS 

2.1 Alanine-scanning mutagenesis of the MipZ surface 

Previous studies (20, 21) revealed that MipZ mediates Z-ring positioning in C. crescentus and 

that the regulatory function of MipZ depends on its interaction with FtsZ, ParB and 

chromosomal DNA. However the exact mechanisms behind these interactions and the regions 

of MipZ responsible for these interactions are still unknown. In order to further investigate the 

regulatory mechanisms of MipZ, we started to map the MipZ interaction regions using site-

directed alanine scanning mutagenesis, an approach in which candidate amino acids are 

substituted one after another by alanine. Due to the crucial role of MipZ in C. crescentus cell 

division (21), a defective interaction caused by the substitution of an interactive residue with an 

alanine should be reflected by a cell division defect of the respective mutant strain. Moreover, 

the interaction defect with FtsZ, ParB or chromosomal DNA should cause distinct phenotypes, 

because these interactions have different roles in MipZ function and localization. It should, 

therefore, be possible to pin-point the MipZ residues involved in FtsZ, ParB or chromosomal 

DNA interaction based on the phenotypes and localization patterns observed from the MipZ 

mutant proteins 

To test the function of mutant MipZ variant, we constructed experimental strains (Figure 2.1A) 

that carried an in-frame deletion (amino acids 37-801) in the endogenous mipZ gene, a wild-

type copy of mipZ under the control of the vanillate inducible promoter PvanA, and a mipZ 

variant fused with eyfp (enhanced yellow fluorescent protein) inserted at the chromosomal xylX 

locus downstream of the xylose-inducible promoter PxylX. In these constructs the synthesis of 

wild-type (WT, henceforth) MipZ or the mutant MipZ-eYFP fusion can be easily controlled by 

adding vanillate or xylose into the culture. Upon growth in medium only containing xylose, 

MipZWT is depleted and replaced with the fluorescent protein fusion, making it possible to 

analyze both the functionality and the localization of the mutant proteins. To ensure the validity 

of this screening approach, we first analyzed a strain (BH64) producing MipZWT-eYFP in place 

of the native protein. Analysis of BH64 showed that the protein was fully functional, producing 

normal cell shape and the characteristic unipolar or bipolar gradient-like YFP pattern in 

swarmer and predivisional cells, respectively (Figure 2.1C).  

Based on the different roles of the interactions in the function of MipZ, we expected mutations 

to cause distinct phenotypes in the experimental strains (Figure 2.1A). Functional MipZ is able 

to control the Z-ring positioning, yielding cells with normal cell lengths and constriction in the 

midcell region (21). Cells producing FtsZ-binding defective MipZ would divide randomly at 

mis-localized Z-rings. However, FtsZ is not involved in MipZ distribution, thus the FtsZ-

binding defective mutants should still display the WT-like distribution. ParB recruits MipZ to 

the cell poles and stimulates MipZ dimerization, mutants defective in ParB binding would have 

less MipZ in the polar regions and more freely diffusive monomeric MipZ in the cell, indicated 

by fainter polar foci and a higher YFP background. Because only dimeric MipZ has inhibitory 
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effect on FtsZ, a mutant with less dimeric MipZ should display a similar cell division defect as 

FtsZ-interaction defective mutants. However, it is possible that despite a decrease in the 

concentration of dimeric MipZ, the inhibitory effect of MipZ is still enough to support the 

normal cell division, therefore, the mutants would have normal cell length. MipZ interacts with 

chromosomal DNA, which prevents MipZ from free diffusion and thus enabling the gradient-

like distribution of MipZ. If the interaction between MipZ and chromosomal DNA were 

impaired, the MipZ dimers would freely diffuse in the cell, disassembling the Z-ring, and thus 

blocking cell division throughout the cell, thereby inducing filamentous growth.

 

 

Figure 2.1 Expected phenotypes of binding defective MipZ mutants and construction of the experimental strains. (A) The 

expected phenotypes of the WT, FtsZ-, ParB-, and DNA-binding defective MipZ mutants of C. crescentus. (B) Construction of the 
experimental strain. The white box indicates the in-frame deletion of the native mipZ (amino acids 37-801). A copy of mipZWT  was 

placed under the control of the chromosomal PvanA promoter and a mutant allele of mipZ fused with eyfp was placed under the 

control of the chromosomal PxylX promoter. (C) Phenotype of a C. crescentus strain producing MipZWT-eYFP. C. crescentus strain 
BH64 (CB15N ΔmipZ PvanA-mipZ PxylX- mipZ-eyfp) was grown overnight in PYE medium containing 0.5 mM vanillate. The cells 

were washed twice with PYE medium and grown for 8 h in PYE containing 0.3% xylose, and then were then visualized by phase 

contrast and fluorescence microscopy. An enlargement of the area in the white box is given on the right side. Bar: 5 µm 
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Taking advantage of the crystal structure of MipZ dimer (20) (PDB 2XJ9) we picked 35 

surface-exposed amino acids with either charged or bulky hydrophobic side chains (Figure 2.2). 

We reasoned that these residues were likely to be involved in specific interactions. We only 

selected residues that were not located in the MipZ dimerization interface or the nucleotide 

binding region, to avoid adverse effects on nucleotide binding and dimerization (20, 21).  

 

Figure 2.2 Surface-exposed residues of MipZ targeted by site-directed mutagenesis. The MipZ homodimer (PDB 2XJ9) 

structure is shown one monomer in green and the other in orange. The amino acids selected for alanine substitution are highlighted 

in blue. The structures were rendered in PyMOL. 

2.1.1 Screening for MipZ interaction defective mutants 

To analyze whether the selected residues were involved in contacts with MipZ interactors, 39 

conditional MipZ mutants carrying mutant mipZ*-eyfp integrated at the xylX locus were 

constructed (Figure 2.1B). The fusion proteins studied included 35 variants obtained in the 

alanine scanning mutagenesis, as well as MipZWT and variants of MipZ defective in ATP 

binding and hydrolysis (MipZK13A, MipZD42A and MipZG14V) (20) as controls (Table 2.1). The 

sorting of different mutations into different binding-defective groups was based on their distinct 

phenotypes, which largely fit our expectations. All the MipZ variants and their phenotypes are 

listed in Table 2.1. In summary, during the screening we identified sixteen mutants without 

obvious phenotypes. Three mutants showed the phenotype expected for a defect in FtsZ-

binding: a broad spectrum of cell lengths but a WT-like subcellular MipZ distribution. Seven 

mutants had the expected ParB-binding defective phenotype: diminished or even invisible eYFP 

foci and a higher eYFP background. Nine mutants showed the expected DNA-binding defective 

phenotype: filamentous cells and higher eYFP background. Three mutants displayed both a 

ParB and the DNA binding defective phenotype: filamentous cells, diminished eYFP foci and 

higher YFP background. In addition, three mutant constructs were unstable (Figure 2.3B).  
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Table 2.1 MipZ point mutations and their phenotypes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stability of the different MipZ*-eYFP variants was tested by immunoblot analysis with an 

antibody raised against MipZ. As shown in Figure 2.3, most of the fusion proteins were stable, 

Point mutation Phenotype 

E53A  

FtsZ-binding defect K155A 

E165A 

W58A  

ParB-binding defect 

 

D147A 

L172A 

V246A 

R194A  

 

DNA-binding defect 

 

K197A 

R198A 

R219A 

L237A 

R242A 

D236A  

ParB and DNA binding defect 

 

 

L248A 

R221A 

E3A  

 

 

 

 

 

 

 

 

WT 

 

K35A 

R55A 

E65A 

D76A 

R84A 

E86A 

R99A 

E103A 

R125A 

E152A 

W164A 

E200A 

R213A 

H262A 

Y269A 

R5A  

unstable 

 

E94A 

L161A 

K13A Monomeric MipZ Control, broadly distributed cell lengths higher 

YFP background signal (20) 

D42A Dimeric MipZ Control, filamentous cells, patchy YFP signal(20) 

G14V Monomeric MipZ Control, broadly distributed cell lengths,higher 

YFP background signal (20) 
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except for those carrying the R5A, E94A, L161A, and R221A mutations. Interestingly, in 

contrast to the other three unstable variants, the R221A variant exhibited two bands in the 

immunoblot, a fainter band at the size of MipZ-eYFP, and a more pronounced product band at 

the size of MipZ. This result indicates that although the eYFP fusion of MipZR221A is cleaved in 

the linker region that connects MipZ with its eYFP fusion tag, MipZR221A itself is a stable 

protein. The instability of the MipZR5A, MipZE94A, MipZL161A fusions was also reflected by their 

much fainter YFP signals and broadly distributed cell lengths, which correspond to the typical 

phenotype of MipZ depletion (21) (Figure 2.3 B). On the other hand, R221A displayed a DNA 

and ParB-binding defective phenotype (Figures 2.3B, 2.7, and 2.10), with filamentous growth 

and evenly distributed YFP signal in the cell. It is not clear whether the even distribution of the 

YFP signal is the consequence of a ParB-binding defect or rather caused by the diffusing eYFP 

protein, which was cleaved from MipZR221A-eYFP fusion. However, a bacterial two-hybrid 

assay, which is explained in more detailed in section 2.3, indicated a defective interaction 

between MipZR221A and ParB (Figure 2.8). Therefore, we assume that MipZR221A is defective in 

both DNA and ParB-binding. The three residues R5, E94 and L161 may be involved in 

stabilization of the MipZ structure. Mutations in these residues may therefore cause local 

rearrangements in MipZ that result in MipZ degradation.  

2.2 Residues involved in FtsZ interaction 

Three mutants, BH68 (MipZE53A), BH82 (MipZE165A), and BH97 (MipZK155A) caught our 

attention by displaying broadly distributed cell lengths but a WT-like MipZ distribution (Figure 

2.4). We reasoned that the mutant proteins were probably defective in FtsZ interaction. It has 

been revealed that the MipZ dimer can stimulate the GTPase activity of FtsZ approx. two fold, 

concomitant with a change in the conformation of the FtsZ polymers that disrupts Z-ring 

formation (21). In order to verify whether the three residues modified in these mutant MipZ 

varaints were involved in FtsZ regulation, I determined the GTPase activity of FtsZ in the 

presence of MipZE53A, MipZK155A, MipZE165A, or with MipZWT, MipZD42A, and MipZK13A as 

controls. MipZK13A is deficient in ATP hydrolysis and ATP-triggered dimerization, which keeps 

the protein in the monomeric state. A previous study (20) showed that only MipZ dimers but not 

the monomers can interact with FtsZ. MipZK13A was, therefore, used as a negative control. In 

contrast, MipZD42A is blocked in the dimeric state because of a defect in ATP hydrolysis and 

thus hyper-active, serving as a positive control (20, 21). The results of GTPase assay (Figure 

2.5) showed that the three mutant variants MipZE53A, MipZK155 and MipZE165A did not stimulate 

the GTPase activity of FtsZ to the same extent as MipZWT or MipZD42A. MipZK155A and 

MipZE165A displayed significant lower GTPase activity compared with MipZWT, while MipZE53A 

only displayed a minor decrease. Consistant with these data, the cell length phenotype caused 

by MipZE53A is also not as dramatic as that observed for the other two variants, with less 

minicells and filamentous cells (Figure 2.4). Therefore, it appears that MipZE53A is only slightly 

defective in FtsZ-binding. 

The results from both the in vivo phenotype analysis (Figure 2.4) and the in vitro GTPase assay 

(Figure 2.5) suggest that the three residues E53, K155 and E165 are involved in FtsZ 

interaction. The location of these three residues is highlighted on the MipZ dimer in Figure 2.6. 
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Remarkably, they form a cluster consisting of residues from each monomeric subunit, which is 

in line with the previous finding that MipZ dimerization is a prerequisite for FtsZ interaction 

(19).  

 

Figure 2.3 Stability of the MipZ*-eYFP fusion proteins. (A) Immunoblot analysis of strains producing mutant MipZ variants. All 

MipZ mutants were cultivated as described in Figure 2.1 C. Samples were withdrawn from the cultures and subjected to immunoblot 

analysis with anti-MipZ antibody. (B) Phenotype of mutants producing unstable MipZ-eYFP variants. Strains BH64 (WT), BH66 

(R5A), BH74 (E94A), BH80 (L161A) and BH118 (R221A) were cultivated and visualized as described for Figure 2.1C. 
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2.3 Residues involved in ParB interaction 

C. crescentus mutants producing potential ParB-binding defective MipZ variants were expected 

to show fainter polar foci and a higher YFP background, because ParB recruits MipZ to the cell 

poles and stimulates MipZ dimerization (20, 21). A defect in the interaction with ParB would 

decrease MipZ accumulation at the cell poles and, consequently, reduce the abundance of MipZ 

dimer in the cell. Considering that only the MipZ dimer is active in the regulation of cell 

division, and that the monomer does not inhibit Z-ring formation nor interact with chromosomal 

DNA, mutants producing ParB-binding defective MipZ may also display broadly distributed 

cell lengths. Seven mutants, BH70 (MipZW58A), BH78 (MipZD147A), BH83 (MipZL172A), BH90 

(MipZD236A), BH93 (MipZV246A), BH94 (MipZL248A) and BH118 (MipZR221A) showed the 

described phenotypes (Figure 2.7A), indicating the respective MipZ variants were probably 

defective in ParB interaction. Among them, BH78 (MipZD147A) and BH83 (MipZL172A) displayed 

normal cell lengths, while the other five mutants exhibited broadly distributed cell lengths 

(Figure 2.7 A). The YFP signal of these strains was further characterized by plotting 

fluorescence intensity against the distance from the cell pole (Figure 2.7 B). Due to its 

instability, the MipZR221A-eYFP fusion was excluded from this analysis, leaving a total of six 

potential ParB-binding defective mutants analyzed. Note that, only cells with WT cell lengths 

were selected for this analysis in order to compare the YFP intensity distribution throughout the 

whole cell. Compared with BH64, which produces MipZWT -eYFP, all six mutants exhibited a 

lower fluorescence intensity at the cell poles and a higher intensity in the pole-distal region 

(Figure 2.7B). It should be noted that mutants BH90 (MipZD236A), BH94 (MipZL248A) and 

BH118 (MipZR221A) also exhibited a DNA-binding defective phenotype, with most cells 

growing filamentously (Figure 2.7A). 

The interaction between these seven MipZ mutant variants and ParB was further characterized 

by bacterial two-hybrid analysis. To this end, the mutated mipZ alleles were fused with the gene 

encoding the T-25 fragment of the Bordetella pertussis adenylate cyclase, whereas the gene 

encoding the corresponding T-18 fragment was fused with C. crescentus parB. The resulting 

plasmids were co-transformed into the adenylate cyclase-deficient reporter strain E. coli 

BTH101. A positive interaction between MipZ variants and ParB would result in the 

reconstitution of a functional adenylate cyclase synthesizing 3', 5'-cyclic AMP, which would in 

turn facilitate the transcription of lacZ (116). The protein product of lacZ is able to utilize 

lactose and the metabolism of lactose decreases the pH value in the surrounding of the cells and 

thus turning neutral red containing MacConkey indicator agar red. Therefore, red colonies 

indicate a positive interaction between ParB and MipZ variants. The MipZ variants D147A, 

L172A, D236A, V246A, W58A, R221A, and L248A clearly exhibited a ParB-binding defect, 

because the coloration of the corresponding colonies was reduced compared to the colony 

producing MipZWT (Figure 2.8A). As a control, the mutant MipZ variants were also tested for 

interaction with the T18 fraction alone. As expected, there was no interaction detected between 

them (Figure 2.8). The defective interactions between the different MipZ variants and ParB 

were further indicated by lower β-galactosidase activity in the corresponding E. coli BTH101 

strains (Figure 2.8 B). The results of β-galactosidase activity assay largely fit to the coloration 

of the corresponding colonies on the MacConkey agar. However, MipZL248A exhibited a 
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pronounced red color, only yielded a very low β-galactosidase activity. The reason for the 

differences is unclear, but it may be due to the limited sensitivity of the plate assay. 

 

 

Figure 2.4 Phenotype of C. crescentus mutants producing FtsZ-binding defective MipZ variants. (A) Microscopic analysis of 

mutants producing FtsZ-binding defective MipZ variants. BH64 (WT), BH68 (E53A), BH82 (E165A) and BH97 (K155A) were 

cultivated and visualized as described in Figure 2.1 C. (B) Cell length distribution of mutants producing MipZWT and FtsZ-bindng 
defective MipZ variants. The strains were cultivated in PYE supplemented either with 0.3% xylose to induce the synthesis of 

MipZ*-eYFP fusion or with 0.5 mM vanillate to induce the synthesis of MipZWT for 8 h. Cells were visualized by phase contrast 

microscopy. „Van‟ indicates a vanillate-induced culture, and „xyl‟ indicates a xylose induced culture. The cell lengths of strains 
BH64 (van, n=747; xyl, n=343), BH68 (van, n=317; xyl, n=690), BH82 (van, n=680; xyl, n=891) and BH97 (van, n=429, xyl, 

n=429) were determined using MicrobeTracker. 
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Figure 2.5 Effect of MipZ and its variants on the GTPase activity of FtsZ. 3 µM FtsZ was incubated with 2 mM GTP and 1 mM 

ATP in the presence of 6 µM MipZWT or the indicated mutant variants. The turnover numbers (kcat) represent the averages (±SD) of 

two independent measurements, each measurement was performed in triplicate.  

 

Figure 2.6 FtsZ interaction region of MipZ. The three residues E53, K155 and E165, which are involved in FtsZ interaction, were 

highlighted on MipZ dimer structure in blue.  

The bacterial-two hybrid results suggest that all the seven MipZ mutations analyzed caused a 

defect in ParB-binding, indicating that the corresponding residues W58, D147, L172, R221, 

D236, V246 and L248 are involved in ParB interaction. Interestingly, these residues form two 

separated interaction regions on the MipZ dimer (Figure 2.9A) the five residues W58, R221, 

D236A, V246 and L248 are located at the front face of MipZ (Figure 2.9A left), close to the 

edge of dimer interface, while the other two, D147 and L172 are located a considerable distance 

at the back face of MipZ (Figure 2.9A, right). Since both monomeric and dimeric MipZ interact 

with ParB, we also highlighted these seven residues on the MipZ monomeric structure in Figure 

2.9 B. These residues do not assemble into an obvious cluster, but are scattered along the rim of 

MipZ.  
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Figure 2.7 Phenotype of C. crescentus mutants producing ParB-binding defective MipZ variants. (A) Microscopic analysis of 
mutants producing ParB-binding defective MipZ variants. Strains BH64 (WT), BH70 (W58A) BH78 (D147A), BH83 (L172A), 

BH90 (D236A), BH93 (V246A), BH94 (L248A) and BH118 (R221A) were cultivated and visualized as Figure 2.1 C. (B) 

Subcellular distribution of MipZ and its ParB-binding defective mutant variants. The fluorescence intensity profiles of strain BH64 
(n=75), BH70 (n=60), BH78 (n=39), BH83 (n=49), BH90 (n=10), BH93 (n=45), and BH94 (n=38) were analyzed by 

MicrobeTracker, and the fluorescence intensity values from each strain were averaged and plotted against the distance from the cell 

pole to the midcell. Note that only cells with WT morphology were analyzed. 
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Figure 2.8 Interaction of MipZ variants with ParB. (A) Bacterial two-hybrid assay to detect the interaction between MipZ or its 

ParB-binding defective variants and ParB. E. coli BTH101 was transformed with pairs of plasmids encoding T18-ParB or only the 
T18 fragment and fusion of T25 to MipZWT or its mutant derivatives. Red color indicates a positive interaction. Positive control (+): 

T25-zip: T18-zip, negative control (-): T25: T18. (B) Quantification of the ParB-MipZ interactions. E.coli BTH101 strains used in 

(A) were subjected to a β-galactosidase assay. MU values indicate the β-galactosidase activity. The results shown are the averages 
from two independent measurements, each performed in triplicate. 

2.4 Residues involved in DNA interaction 

Several mutants that showed filamentous growth (Figure 2.10) displayed the phenotype 

expected for DNA-binding defective MipZ mutants. DNA-binding is the basis for the formation 

of the MipZ gradient in C. crescentus (20). Chromosomal DNA retains the MipZ dimer in the 

polar regions, so that the MipZ dimer concentration decreases as a function of distance from the 

cell pole, which leaves midcell free of MipZ and allows Z-ring assembly. DNA-binding 

defective MipZ variants fail to establish the gradient-like distribution pattern and the freely 

diffusing MipZ dimers interrupt the Z-ring formation in the whole cell, resulting in 

filamentation (Figure 2.10). These potential DNA-binding defective MipZ mutants result in 

different extents of filamentous growth (Figure 2.10). The strains BH84 (MipZ R194A), BH86 

(MipZR198A) and BH89 (MipZR219A) appeared to mainly form filamentous cells, whereas the 

other strains exhibited mixed cell lengths ranging from WT-like cells to filamentous cells. 

Remarkably, mutants BH118 (MipZR221A), BH90 (MipZD236A) and BH94 (MipZL248A) displayed 
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largely diminished or even invisible YFP foci, suggesting a concomitant ParB-binding defect 

(Figure 2.7). In the case of BH118 (MipZR221A), this effect could be due to the release of YFP 

from the fusion protein (Figure 2.3) 

 

 

 

Figure 2.9 ParB interaction region of MipZ. (A) Location of the ParB interaction region on the MipZ dimer structure. W58, 

D147, L172, R221, D236, V246, L248 are highlighted in magenta. (B) Location of the ParB interaction region on the MipZ 
monomer structure. The same residues as in (A) are highlighted and indicated on the MipZ monomer, D236 is invisible in this view. 

ATP is indicated in red. 
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Figure 2.10 Phenotype of C. crescentus cells producing DNA-binding defective MipZ variants. C. crescentus strains BH64 

(WT), BH84 (R194A), BH85 (K197A), BH86 (R198A), BH89 (R219A), BH118 (R221A), BH90 (D236A), BH91 (L237A), BH92 

(R242A), and BH94 (L248A) were cultivated and analyzed as in Figure 2.1 C. 

2.4.1 Verification of the DNA-binding defective MipZ variants in vivo 

A previous study showed that heterologously overproduced MipZD42A-eYFP colocalizes with 

the E. coli nucleoid (20), because it is largely trapped in the DNA-binding proficient dimeric 

state. Upon introduction of a mutation conferring a DNA-binding defect into the D42A variant, 

the resulting double-mutant MipZ variant should no longer colocalize with the E. coli nucleoid. 

Based on this expectation, I constructed E. coli strains producing MipZ double-mutant 

derivatives under the control of an arabinose-inducible promoter. After induction, the 

localization of the fusion proteins and the nucleoid were analyzed microscopically. To facilitate 

the analysis, the cells were treated with cephalexin and chloramphenicol to induce the 

filamentous growth and nucleoid condensation. The results (Figure 2.11) showed that MipZD42A-

eYFP carrying the R194A, K197A, R219A and L248A mutations still colocalized with the 

nucleoid, suggesting that the DNA-binding activities of these proteins are unaffected. MipZK197A 

and MipZL248A displayed weak filamentation in the corresponding C. crescentus mutants. 

However, the MipZR194 and MipZR219 caused completely filamentous growth in C. crescentus 

(Figure 2.10). Moreover, in vitro assays (Figure 2.15, 2.16, 2.17) strongly suggested that 

MipZR194A, MipZR219A and MipZK197A are defective in DNA-binding. Due to these contradictory 

results, I closely examined the E. coli strains by immunoblot analysis using an anti-MipZ 
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antibody. C. crescentus strain BH64, which produces MipZ-eYFP under the control of PxylX, and 

CB15N, the WT C. crescentus strain, were included as controls. The results showed that MipZ-

eYFP fusions were cleaved in the linker connecting MipZ with its eYFP fusion partner. 

Moreover, a pronounced band corresponding to a shortened MipZ-eYFP fusion is detected 

(Figure 2.12), whereas only a very small faction of the full-length fusion proteins was detected. 

Furthermore, an immunoblot analysis with the same samples but an anti-GFP antibody showed 

multiple bands, indicating the degradation of the eYFP tag (data not shown). These results 

suggest that production of MipZ-YFP fusions in E. coli may not be a reliable method to 

investigate the DNA-binding activity of MipZ. 

Due to the fact that the results from the heterologous production of MipZ variants in E. coli 

were not conclusive, I went on to study the interaction of the mutant MipZ variants and DNA in 

vitro. To start these analyses, I set out to purify all the potentially DNA-binding defective 

variants in C-terminally hexahistidin-tagged form (Figure. 2.13). Surprisingly, the purification 

of MipZD236A-His6 failed. Although MipZD236A-eYFP was stable in C. crescentus, its 

hexahistidin-tagged form was hardly overproduced in E. coli Rosetta (DE3)pLysS. Moreover, 

after purification, it was barely detected in the elution fractions. Due to the instability of 

MipZD236A-His6, we wondered whether the D236A mutation in fact impaired the interaction with 

ParB and DNA or rather acted by changing the structure of MipZ. The C. crescentus cell 

producing MipZD236A-eYFP displayed a broad spectrum of cell lengths and the YFP signal was 

almost evenly distributed throughout the whole cell. Although the filamentous cells and the 

diminished YFP foci speak for a DNA and ParB interactions defect, it is also possible that these 

phenotypes are caused by the instability of MipZD236A. Moreover, in the MipZ structure, D236 is 

not fully exposed to the surface but hiding in a cleft (Figure 2.13 C), suggesting that it may not 

be directly involved in the interactions. Altogether, the function of residue D236 is not clear. 

Nevertheless, it was still provisionally counted as a ParB-binding residue in Figure 2.9. 

However, it is not included in the DNA-binding residue because we are unable to determine its 

DNA-binding activity with in vitro methods due to the lack of purified protein. Moreover, the 

negatively charged aspartic acid is unlikely to be involved in non-specific DNA-binding.  

2.4.2 DNA-binding defective MipZ variants  

After purifying the eight potentially DNA-binding defective MipZ variants, I started to 

determine the ATPase activity of these proteins. Because production of the ATPase defective 

mutant MipZD42A in C. crescentus also leads to a filamentous phenotype similar to that of the 

DNA-binding defective mutants, it is important to distinguish the origin of the observed 

phenotype (20, 21). 
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Figure 2.11 Co-localization of heterologously produced MipZ double mutant variants and nucleoid in E. coli. E. coli TOP10 

was transformed with overproduction plasmids encoding the indicated MipZD42A-eYFP double mutation variants, together with the 

two control strains, which contained plasmids producing either MipZWT-eYFP or the single mutant MipZD42A-eYFP variant. Cells 
were treated with 5 μg/ml cephalexin and 10μg/ml chloramphenicol to induce filamentous growth and nucleoid condensation, 

respectively. The nucleoid was stained with DAPI. 

 

In order to rule out the possibility that the observed filamentation was due to a defect in MipZ 

ATPase activity, I analyzed the ATPase activity of all purified MipZ variants. As showed in 

Table 2.2, all the DNA-binding defective MipZ variants had kcat values that were similar to that 

of MipZWT, and about 10-times higher than that of the ATP hydrolysis-defective MipZD42A 

variant. It can be concluded that all the MipZ variants tested are not deficient in ATPase 

activity, indicating that the filamentous growth of the corresponding mutants is likely due to the 

impaired DNA-binding activity. 
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Figure 2.12 Immunoblot of E. coli cells heterologously overproducing the double mutant MipZ-eYFP derivatives. The 
corresponding E. coli cells used in Figure 2.11 and the C. crescentus control strain CB15N and BH64 (MipZ-eYFP) were subjected 

to immunoblot analysis using an anti-MipZ antibody. 

Table 2.2 ATPase activity of purified MipZ and its variants 

MipZ kcat (min-1) 

WT 0.40 ± 0.05 

D42A 0.034 (21) 

R194A 0.39 ± 0.03 

K197A 0.62 ± 0.08 

R198A 0.56 ± 0.08 

R219A 0.50 ± 0.05 

R221A 0.33 ± 0 

L237A 0.46 ± 0.06 

R242A 0.60 ± 0.05 

L248A 0.51 ± 0.05 

 

The DNA-binding activities of the MipZ mutant variants were tested by a gel shift assay (Figure 

2.14). Different MipZ variants were incubated with the linearized plasmid pMCS-2 in a buffer 

containing the slowly hydrolysable ATP analogue ATPγS, which blocks MipZ in the dimer 

form. MipZWT and MipZD42A were used as positive controls; MipZK13A and BSA were employed 

as negative controls. The monomeric variant MipZK13A displayed only weak DNA binding 

activity in this assay by showing a DNA smear in the lane (Figure 2.14). MipZK13A still contains 

many of the residues constituting the DNA-binding site of the dimer and may therefore still be 

able to weakly interact with the phosphate backbone of the plasmid. Interestingly, the eight 

potential DNA-binding defective variants displayed different band-shift patterns. The R194A, 

K197A, R198A, R219A and L237A variants barely shifted the DNA bands. In particular, the 

R194A and R198A variants exhibited a similar pattern as BSA, implying that R194 and R198 

play crucial roles in the MipZ-DNA interaction. MipZR242A caused a smear, indicating a higher 

DNA-binding activity than the previous five variants. MipZR221A displayed a smear pattern along 

half of the lane, indicating a defect but even better DNA-binding activity than MipZR242A. 

Notably, MipZL248A exhibited a similar pattern as MipZWT, although not all of the plasmid DNA 

was shifted. The different gel shift patterns suggest that the different variants are defective in 
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DNA-binding to varying extents: the DNA-binding defect of the R194A, K197A, R198A, 

R219A and L237A variants is more severe than that of the R242A and R221A. By contrast, 

L248A showed only a subtle defect in binding to the linear plasmid. 

 

 

Figure 2.13 Purification of MipZ and its variants in C-terminal hexahistidine-tagged form and location of D236 on the 

surface of MipZ. (A) SDS-PAGE of purified MipZ*-His6. 5 µM of purified MipZ and its indicated variants were subjected to SDS-
PAGE and stained with InstantBlue. (B) Location of D236 on MipZ dimer surface. D236 is highlighted in white. 

 

Figure 2.14 Gel shift assay of MipZ and its variants. 10 µM WT MipZ or its variants were incubated with 10 nM linearized 

plasmid pMSC-2 and 0.46 mM ATPγS at room temperature for 15 min and then subjected to agarose gel electrophoresis. 

To further characterize the interaction of the eight DNA-binding defective MipZ variants, I 

performed surface plasmon resonance (SPR) analysis. To this end, a double stranded (ds, 

henceforth) oligonucleotide (rand-1-biotin and rand-rev, 26 bp) was immobilized on a sensor 
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chip and probed with MipZWT or one of its mutant variants. Interaction between the MipZ 

variant and the oligonucleotide leads to a response signal, and a higher response value suggests 

a better binding. The result (Figure 2.15) showed that MipZWT and its dimeric variant MipZD42A 

exhibited a much higher response than the eight MipZ variants and the monomeric variant 

MipZK13A. The SPR results also indicate that the eight variants are defective in DNA binding to 

different extents (Figure 2.15). R221A, L248A and K197A displayed moderate responses, 

although the values were much lower than that obtained for the MipZWT. These data imply that 

R221A, L248A and K197A can still interact with dsDNA albeit weakly. This result largely fits 

with the gel shift assay, which suggests that R221A and L248A still interact weakly with the 

plasmid. The L248A variant, however, showed a very low response in the SPR analysis, only 

about 1/6 of the MipZWT response, whereas it displayed a pronounced band shift in the gel shift 

assay.  

The results from the gel shift assay and the SPR analysis suggest that, except for MipZL248A, all 

of the other seven potential DNA-binding defective variants indeed have a significantly reduced 

affinity for DNA. I continued the study by assessing the binding affinities between MipZ 

variants and the ds-oligonucleotide using MST analysis.  

MST is short for microscale thermophoresis, a method that detects the motion of molecules in a 

temperature gradient (117, 118). MST is a new technology to quantify biomolecular interactions 

based on binding-induced changes of molecular properties, such as size, charge, hydration shell, 

or conformation (117, 118). In the MST assays, a temperature gradient is induced by an infrared 

laser, and the motion of the biomolecule to be analyzed along this gradient is monitored by 

changes of fluorescence, which requires fluorescent labeling of one of the interacting 

biomolecules (117, 118). Given the dynamic equilibrium between MipZ monomers and 

dimmers, the optimal way to measure the MipZ-DNA binding affinity would be to label the 

MipZ variants with a fluorescent dye and keep their concentration constant, while titrating with 

different concentrations of ds-oligonucleotide. Unfortunately, we were unable to detect any 

interaction after labeling of the MipZ proteins with a fluorescent dye; the labeling might impair 

the interaction between MipZ and DNA or even denature the proteins. Therefore, we had to 

change the titration scheme, by using a constant concentration of labeled ds-oligonucleotide and 

titrating with varying concentrations of MipZ proteins. The drawback of this approach is that 

increasing the concentration of MipZ variants shifts the equilibrium of MipZ dimerization 

toward the dimer form. Therefore, the reaction observed is the result of both dimerization and 

DNA-binding. We tried to diminish the influence of MipZ dimerization by using the slowly 

hydrolyzing ATP analogue ATPγS, which keeps MipZ in its dimeric form, but we are unable to 

completely exclude an influence of MipZ dimerization on the measured values for the MipZ- 

DNA interaction.     
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Figure 2.15 SPR analysis of the interaction of MipZ or its variants with a 26 bp double-stranded oligonucleotide. A 26 bp 
double-stranded oligonucleotide was immobilized on an SA sensor chip, and 6 µM WT MipZ or its variants were injected one by 

one in the SPR buffer containing 0.46 mM ATPγS. The measurements were performed triplicate, similar results were obtained 

throughout. 

For the measurements, the DNA oligonucleotide was labeled with Cy3 at the 5‟end and kept at a 

constant concentration of 50 nM in a buffer containing ATPγS, and varying concentrations of 

the MipZ variants. The binding curves and Kd values obtained are listed in Figure 2.16 and 

Table 2.3. The binding curves of the proteins MipZWT, MipZD42A, MipZL248A and MipZR219A were 

almost reached saturation and accurate Kd values were determined. The variants K197A, L237A 

and R242A exhibited unsaturated binding curves, which indicate lower binding affinities 

between these three variants and the oligonucleotide. As for R194A, R198A and R221A, the 

interactions were barely detected, suggesting the abolishment of their DNA-binding activities. 

As expected, DNA binding was also very low for the monomeric MipZK13A variant, in 

accordance with the SPR result.  MipZL248A has a very similar Kd (6.8 µM) as MipZWT (6.3 µM) 

implying a normal DNA-binding activity. The result of the SPR analysis (Figure 2.15), 

however, suggests a defective DNA-binding activity of L248A. The ds-oligonucleotide, used in 

the SPR and the MST experiments, had the same sequence and only differed in the kind of label 

attached to them: the one in the SPR analysis was biotin-labeled, whereas the one used in the 

MST assay was Cy3-labeled. Based on these contradictory results, it is still unclear if MipZL248A 

is defective in DNA-binding. Nevertheless, L248 is for the moment still regarded as part of the 

DNA-binding region (Figure 2.18). MipZR219A displayed mainly filamentous cells in the 

C. crescentus BH89 and almost abolished DNA binding ability in the gel shift and SPR assays, 

whereas it exhibited the best binding affinity to the ds-oligonucleotide among all the binding 

defective MipZ mutant variants in the MST assay. This may be due to the differences in the 

assay conditions. In general, the apparent Kd values obtained from MST measurements, 
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although semi-quantitatively due to the influence of dimerization, demonstrated that monomeric 

MipZ as well as the variants R194A, K197A, R198A, R219A, R221A, L237A and R242A are 

defective in DNA binding to different extents. Taking together all results from the three in vitro 

assays, we can conclude that R194 and R198 play crucial roles in the DNA binding, with 

mutations in these two residues abolishing the interaction. Residues K197, R219, R221, L237 

and R242 are also important for the interaction, but their mutation still allows for some DNA 

binding. The L248 residue might be involved in DNA interaction, albeit possibly indirectly.  

 

Figure 2.16 MST analysis of the binding of MipZ and its variants to a 26bp double-stranded oligonucleotide. The MipZ 
variants were categorized into three groups according to the different shapes of binding curves namely, almost saturated curves 

(high affinity binding), unsaturated curves (low affinity binding) and almost undetectable binding 50 nM Cy3-labeled ds-

oligonucleotide was titrated with MipZ variants, every measurement was repeated three times with standard deviation indicated. 

 

Table 2.3 Apparent dissociated constants (Kd) for the interaction of MipZ variants with a 26 bp 

ds-oligonucleotide 

MipZ* Kd (µM) 

WT 6.32 ± 0.56 

K13A u.d 

D42A 5.49 ± 0.95 

R194A u.d 

K197A >40 

R198A u.d 

R219A 21.8 ± 1.76 

R221A u.d 

L237A >40 
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                                                 u.d: undetectable 

Based on the above results, we mapped the DNA-binding region on the MipZ dimer (Figure 

2.17). The interaction region is close to the dimer interface and only the dimer has a complete 

DNA binding region, consistent with the importance of MipZ dimerization for DNA interaction. 

Among the eight DNA-binding residues, six are positively charged, including five arginine 

residues and one lysine, and the other two are leucine residues including the ambiguous L248. 

This composition strongly suggests that the interaction of MipZ with DNA is largely based on 

electrostatic forces between positively charged MipZ residues and the negatively charged DNA 

phosphate backbone. This is also in agreement with the previously studied non-specific DNA-

binding manner of MipZ (20). Taking a closer look at the DNA-interaction region, we found 

that the DNA interaction region and one of the ParB interaction regions are close to each other, 

with two residues overlapping (Figure 2.18). This overlapping binding region may explain the 

competition between ParB and DNA for binding to MipZ observed in a previous study (20). 

Given that the affinities of MipZ for ParB (20) and DNA appear to be similar and that there are 

considerably more DNA target sites than ParB molecules in a cell, the MipZ dimer will 

preferentially associate with the chromosome rather than ParB. These findings support the 

model that, after dimerization, MipZ dissociates from ParB and binds to chromosomal DNA 

(20). 

 

Figure 2.17 DNA interaction region of the MipZ dimer. Residues R194, K197, R198, R219, R221, L237, R242 and L248, which 
are involved in DNA interaction, are highlighted in gray color on the MipZ dimer structure. 

In summary, based on the results from this study, we were able to map the interactive regions of 

MipZ, which are illustrated in Figure 2.19. The front face of the MipZ dimer (Figure 2.19, left) 

is responsible for DNA and ParB binding. The DNA binding region is mostly composed of 

positively charged residues and is close to the dimer interface in line with the non-specific DNA 

binding activity of MipZ and the importance of dimerization for DNA binding. The overlapping 

ParB and DNA-binding regions help the MipZ dimer form a gradient-like distribution: after 

dimerization, the MipZ dimer relocates from ParB to the chromosomal DNA, and the filter 

effect of the chromosomal DNA leads to the typical gradient-like distribution of MipZ, with the 

MipZ* Kd (µM) 

R242A >40 

L248A 6.81 ± 0.60 
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highest concentration at the two polar regions and the lowest at midcell. The back face of MipZ 

(Figure 2.19 right) interacts with ParB and FtsZ. Although we have no clear explanation for the 

existence of two separated ParB interaction regions, the different oligomeric states of MipZ and 

the complexity of the ParB structure at the cell poles may require multiple models of 

interaction. For the FtsZ binding region we have so far been able to identify only three residues 

on each monomer. However, the complete binding site consisting of residues from both 

monomers, is in agreement with the observation that dimerization is a prerequisite for FtsZ 

interaction (20). Although the precise effect of MipZ on FtsZ polymerization is not clear, we 

can show that this cluster is required for stimulating the GTPase activity of FtsZ. Moreover, the 

separation of the DNA and FtsZ binding regions on the MipZ surface is in agreement with the 

observation that DNA and FtsZ interact independently with MipZ (20), with the DNA-bound 

dimer representing the active form of MipZ that is able to productively interact with FtsZ to 

prevent Z-ring formation close to the poles. 

 

Figure 2.18 Partial overlap of the DNA- and ParB-binding regions. Residues involved in DNA binding are highlighted in gray, 

residues involved in ParB interaction are highlighted in magenta, and the two residues R221 and L248 involved in both interactions 
are highlighted in pink.  

 

Figure 2.19 Mapping of the DNA, ParB and FtsZ binding regions on the MipZ dimer. Residues involved in FtsZ (blue), ParB 

(magenta), DNA (gray) interaction and residues contacting both ParB and DNA (pink) are highlighted on MipZ dimer structure.
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3 DISCUSSION 

3.1  The interactive map of MipZ 

MipZ negatively regulates Z-ring positioning in C. crescentus by disrupting FtsZ 

polymerization and thus restricting Z-ring formation to the midcell, the point of lowest MipZ 

concentration in the cell (21). MipZ has been shown to directly interact with FtsZ in vitro, 

stimulating its GTPase activity and changing the straight FtsZ protofilaments into an inactive 

curved form (21). We continued the study of the MipZ-FtsZ interaction and identified a putative 

FtsZ interaction region on the MipZ dimer surface (Figure 2.6), which consists of three residues 

per monomer: K155, E165 and E53. Notably, these three residues form a cluster across the 

dimer interface (Figure 2.6), in line with the previous observation that MipZ dimerization is 

crucial for FtsZ interaction.  

MipZ, as a member of the MinD/Mrp P-loop ATPase family, shares structural and functional 

similarities with ParA and MinD. However, in contrast to MipZ, neither ParA nor MinD 

interacts with FtsZ, and this distinct function of MipZ may be reflected in its structure. A 

comparison of the structures of MipZ, ParA and MinD revealed that MipZ has several unique 

features that have been speculated to be involved in FtsZ interaction (20). Interestingly, K155, 

one of the FtsZ interactive residues identified in this study, is located in a unique loop. 

Moreover, this loop changes its conformation dramatically upon dimerization (Figure 3.2), 

suggesting that it may be responsible for contacting FtsZ. However, the C. crescentus mutant 

producing the MipZΔD147-E152 variant, in which this loop is largely deleted, exhibited a 

dimerization defect instead of an FtsZ interaction defect (119). However, this observation does 

not exclude an FtsZ-binding function for this loop, because the deletion of six amino acids may 

severely change the structure of MipZ, which may result in a pleiotropic phenotype. The 

complexity of the MipZ-FtsZ interaction is also reflected by results from FtsZ sedimentation 

assays (120), which indicate that these three FtsZ-binding defective variants MipZE53A, 

MipZK155A, MipZE165A can still interact with FtsZ in vitro, raising the possibility that MipZ might 

use different regions for FtsZ binding and GTPase stimulation. However to verify this idea, 

further investigations are needed. 

In this study, we identified seven MipZ residues putatively involved in ParB interaction. 

Surprisingly, these residues are separated into two clusters, with a cluster of five residues (W58, 

R221, D236, V246 and L248) located on the front face of MipZ close to the dimer interface, 

and a cluster of two residues located on the back side of MipZ (Figure 2.9). Why does MipZ 

possess two ParB interaction regions, and how does ParB stimulate MipZ dimerization? These 

two questions are still open. In contrast to most bacteria, the ParAB-parS system is essential in 

C. crescentus, possibly due to its multiple roles in chromosome segregation, Z-ring positioning 

and cell pole organization (6, 21, 46, 47). In C. crescentus, ParB interacts with several 

components, including ParA, the parS sequence, MipZ, and PopZ. How does ParB, a relatively 

small protein, manage to interact with all these different components? One possibility is that 

ParB forms oligomers or even higher-order structures, which extends its interaction surface and 
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establishes an interaction platform for all the interacting components. Although ParB was 

reported to form dimers in C. crescentus (121), both plasmid- and chromosome-encoded ParB 

proteins have been shown to form oligomers in other bacteria (122, 123). The separated ParB-

binding regions on MipZ may be important for interaction with oligomeric ParB. Moreover, the 

two ParB-binding regions may help MipZ to compete with other ParB-binding components. As 

another possibility, the two distinct forms of MipZ may use different modes to interact with 

ParB. It is important to note that unlike for the DNA and FtsZ interaction, both monomeric and 

dimeric MipZ interact with ParB; furthermore, ParB was proposed to stimulate MipZ 

dimerization (20), suggesting that the split interaction regions may be differentially used by 

monomeric and dimeric MipZ. In support of this idea, we found that the two residues D147 and 

L172 that locate at the back side of MipZ, (Figure 2.19; Figure 2.9) display conformational 

changes upon dimerization (Figure 3.2).  

The eight DNA-binding residues of MipZ identified in this study (R194, K197, R198, R219, 

R221, L237, R242 and L248) are mostly positively charged arginines and lysine, as well as two 

leucines. Except for the residues identified in this study, there are two more arginines R196 and 

R258, probably also involved in DNA-binding (120). These findings support the previous result 

showing that MipZ binds to DNA in a sequence non-specific manner (20), suggesting that the 

binding of MipZ to DNA is mainly mediated through interaction of positively charged residues 

with the negatively charged DNA phosphate backbone. Moreover, these DNA-binding residues 

span the MipZ dimer interface, indicating an important role of MipZ dimerization in DNA 

interaction. It has been shown for many non-specific DNA-binding proteins, including 

chromosome-encoded ParA and ParA-like proteins, that positively charged residues play a 

central role (124, 125) in the binding process. Hester and Lukenhaus revealed that two arginines 

R189 and R218, are essential for the DNA-binding activity of the B. subtilis ParA homologue 

Soj; moreover, these two arginines are conserved among chromosomal ParA proteins, including 

C. crescentus ParA (125). It has been characterized that a variant of C. crescentus ParA carrying 

a mutation in one of these residues (ParAR195E) has a severe defect in DNA-binding (14). Similar 

to ParA proteins, the DNA-binding region of MipZ identified here also mainly consist of 

positively charged residues. Moreover, one of the two most important DNA-binding residues, 

R198, is conserved among MipZ proteins (Figure 3.1). The other two residues involved in 

DNA-binding, R221 and L237 are even more conserved (Figure 3.1). R221 is not only involved 

in DNA binding but also implicated in ParB binding. In addition, the MipZR221A-eYFP fusion is 

partially instable in C. crescentus, suggesting a possible structural role of R221. The mutation of 

L237, on the other hand, caused severe defects in DNA binding in all the experiments tested in 

this study. Although positively charged residues are favored for DNA binding, non-charged 

residues, such as L237, may also contribute to DNA binding, for instance, through interaction 

with the aromatic rings of nucleotides. It appears that MipZ employs a flexible mode of 

interaction with DNA, involving both positively charged and uncharged residues. 

The DNA-binding region comprises residues from both monomeric subunits, suggesting that 

only dimeric MipZ possesses a complete DNA-binding region. This result is in agreement with 

our previous observation that only dimeric MipZ is able to interact with DNA (20). In the gel 

shift assay, the monomeric MipZK13A also displayed a weak DNA binding activity, suggesting 

that under certain conditions, a partial binding site may still have some affinity to DNA. 

However, this interaction is rather weak compared with MipZWT and the dimeric MipZD42A. 
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Furthermore, in both the SPR and MST assays, which used short oligonucleotide as target DNA, 

and a higher salt concentration, the monomeric mutant MipZK13A barely exhibited any binding 

activity. Notably, several DNA-binding residues, including R194, K197, R198 and L248 

(Figure 3.2), undergo slight conformational changes upon dimerization, which may facilitate the 

access of these residues to DNA. 

An alignment of MipZ homologues from selected α-proteobacteria (Figure 3.1) shows that 

seven residues (W58, D147, R198, R221, D236, L237, and L248) implicated in the interaction 

with FtsZ, ParB or DNA are conserved. Strikingly, three residues, R221, D236 and L248, which 

showed both ParB- and DNA-binding defective phenotype during the mutation screening, are 

conserved. The conservation of D236 and R221 may be due to their important role in ParB 

or/and DNA interaction, although it is also possible that they are crucial for stabilizing the MipZ 

structure, because MipZD236A and MipZR221A are somehow unstable (Figures 2.3 and 2.13). 

Notably, the residues located between R221 and L237 are quite conserved, implying an 

important function of this region. Characterization of MipZL248A led to ambiguous results, and it 

is still unclear whether D236 and L248 are in fact involved in the interaction with DNA. 

Nevertheless, it appears that the overlapping ParB- and DNA-binding region may have 

important functional roles, in regulating the oscillation of the MipZ dimer between ParB and 

DNA and stabilizing MipZ structure. 

3.2 MipZ as a member of the Mrp/MinD family 

Phylogenetic analysis suggests that MipZ belongs to a distinct subfamily of the Mrp/MinD 

family of P-loop ATPases (20, 126). Proteins in this family are involved in many cellular 

processes, including chromosome or plasmid segregation (ParA), chemoreceptor and 

carboxysome segregation (PpfA and ParA), Z-ring positioning (MipZ and MinD), or the polar 

positioning of proteins (ParC, TadZ/CpaE) (53, 127, 128). A common feature of proteins in this 

family is that presence of a KGGh motif in the P-loop and retention of N in the NKXD motif 

(126). It has been shown that mutations in the KGGh motif (K13A and G14V) severely impact 

regulatory function of MipZ (20). ATP binding and hydrolysis determine the oligomeric states 

of Mrp/MinD proteins (53). ATP binding usually triggers the dimerization of these proteins, 

whereas hydrolysis disassembles the dimers (53). Notably, ATP binding and hydrolysis not only 

change the oligomeric state of these proteins but also serve to alter their affinities to their 

corresponding binding partners (19, 129). ParA and MipZ dimers have higher affinity to 

chromosomal DNA, whereas the MinD dimer binds to the cytoplasmic membrane. Importantly, 

binding a largely immobile scaffold, such as the membrane or chromosomal DNA for MinD and 

ParA/MipZ respectively, limits the diffusion rate of the dimmers, thereby establishing their 

specific cellular localization (19). In addition, dimerization of MinD generates the binding 

regions for MinE and MinC (20, 53, 98). Similarly, as shown in this study, the MipZ dimer also 

harbors binding regions for chromosomal DNA and FtsZ.  

MipZ has a unique feature compared with other Mrp/MinD proteins, it does not depend on other 

proteins to trigger its ATPase activity (20, 53). As mentioned above, ParB stimulates the 

ATPase activity of ParA, thereby regulating the dynamics of ParA (6). MinD, similar to ParA, 

relies on MinE to stimulate its ATPase activity, which drives the pole-to-pole oscillation of 
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MinD (53). Interestingly, ParB triggers MipZ dimerization but stimulates ParA disassembly. 

However, the mechanism underlying the positive effect of ParB on MipZ dimer formation is 

still unclear. 

Both chromosome and plasmid-encoded ParA proteins were shown to bind chromosomal DNA 

non-specifically (125, 130, 131). In some cases, DNA binding was proposed to induce the 

polymerization of ParA proteins, such as SopA from the F plasmid and ParA2 from Vibrio 

cholerae (131, 132). However, so far there is no evidence suggests that MipZ can form higher-

order structures upon DNA binding. Another difference between ParA and MipZ is their DNA-

binding specificity. Some ParA proteins have been shown to bind specifically to certain DNA 

sequences to control gene expression. For instance, E. coli P1 plasmid-encoded ParA in the 

ADP-bound form can bind specifically to the parAB promoter region and regulate the 

expression of parAB, whereas in the ATP-bound form, it interacts non-specifically with the 

chromosome to segregate newly replicated plasmids (133). In the case of P1, ParA contains an 

extended N-terminal region, which is responsible for specific DNA-binding but not encoded by 

chromosome-encoded ParA (124). Some chromosome-encoded ParA also bind to specific DNA 

sequences, even though they lack this N-terminal DNA-binding domain, as exemplified by Soj, 

which was shown to regulate the expression of several sporulation-related genes by specific 

DNA binding (13, 134). There are several sequence-specific DNA binding proteins once were 

considered non-specifically bound to DNA, for instance, the nucleoid occlusion proteins Noc 

and SlmA. The DNA-binding specificities of the two proteins were revealed recently by ChIP–

Seq (Chromatin Immuno-Precipitation DNA-Sequencing) (110, 135). Moreover, some bacterial 

nucleoid-associated proteins (NAPs) also demonstrate a bias for certain binding motifs. For 

instance, H-NS prefers AT-rich sequences and the TCGATAAATT motif, HU has a mild 

preference for AT-rich sequences and distorted DNA regions (136). Up to date, there is no 

evidence suggesting that MipZ binds to specific DNA sequences. However, our ongoing ChIP-

Seq analysis may provide deeper insights into the interaction between MipZ and chromosomal 

DNA. In particular it will reveal whether the MipZ monomer (MipZK13A) or the dimer 

(MipZD42A) interact preferentially with specific DNA sequences, or have a bias for sequences 

with certain properties such as a skewed base composition. 

3.3 Gradient formation of MipZ and remarks 

In eukaryotes, the formation of protein concentration gradient is a common strategy to regulate 

biological processes, and Morphogen gradients serve as a good example. Morphogens are 

produced and secreted by certain types of cells, they diffuse to neighboring cells and trigger 

gene expression in these cells in a concentration dependent manner (19, 137). Protein 

concentration gradients are also used by multicellular bacteria, such as filamentous 

cyanobacteria, in which a gradient of protein regulators control the development of heterocysts 

(19, 138). Although protein gradients that range over long distance are a widespread 

phenomenon, there are very few examples of steady state intracellular protein concentration 

gradients. The MipZ system in C. crescentus is a relatively well-studied example for this type of 

gradient. 
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Figure 3.2. Dimerization induced conformational changes in MipZ. The monomeric structure of MipZ is shown in purple and 
the structure of a single subunit of dimeric MipZ is shown in yellow. Residues that are both involved in interaction and undergo 

conformational changes upon dimerization are highlighted in red color. The positions of DNA-binding residues are indicated in 

gray, ParB-binding residues are in red, bifunctional ParB and DNA-binding residue is in purple, and FtsZ-binding residue is in blue.  

The mechanism of gradient formation by C. crescentus MipZ relies on the following facts. First, 

MipZ molecules are recruited to cell pole regions through direct interaction with polarly 

localized ParB. Previous studies revealed that there are approx. 1000 MipZ molecules in a cell. 

Most of them are probably in the dimeric form, based on the high cellular ATP/ADP ratio and 

the low ATP hydrolysis activity of MipZ dimers (20, 21). Second, the diffusion of MipZ dimers 

is restricted by chromosomal DNA. The MipZ concentration decreases with increasing distance 

from the poles, which is due to the retention of dimers by chromosomal DNA (20). Upon 

dimerization, MipZ forms the DNA binding region, which overlaps with one of the ParB 

interaction regions. Non-specific chromosomal DNA competes with ParB for the overlapping 

binding sites, leading to the release of newly formed dimers from the polarly localized ParB and 

relocalize to chromosomal regions in the vicinity of the poles. Third, ATP binding and 

hydrolysis regulate the different affinities of MipZ for its interaction partners and the dynamics 

of the whole regulatory network. 

Figure 3.1 Amino acids sequence alignment of MipZ proteins from 23 α-proteobacteria species. The bacteria listed in the 

alignment are Caulobacter crescentus, Roseobacter litoralis, Octadecabacter antarcticus, Rhodobacter capsulatus, Zymomonas 

mobilis, Brevundimonas diminuta, Rhodopseudomonas palustris, Parvibaculum lavamentivorans, Hirschia baltica, Sphingomonas 

wittichii, Asticcacaulis excentricus, Magnetospirillum gryphiswaldense, Phaeospirillum fulvum, Ketogulonicigenium vulgare, 

Celeribacter baekdonensis, Asticcacaulis biprosthecum, Thalassiobium sp. R2A62, Ahrensia sp. R2A130, Dinoroseobacter shibae, 

Novosphingobium sp. AP12, Ruegeria pomeroyi, Rickettsia monacensis and Hyphomonas neptunium respectively. The interaction-

implicated C. crescentus MipZ residues identified in this study are highlighted with red colors.The positions of conserved and ParB-

binding, DNA-binding and bifunctional ParB and DNA-binding implicated residues are highlated in pink, purple and orange, 

respectively. The alignment was generated with Clustal omega available at https://www.ebi.ac.uk/Tools/msa/clustalo/ 
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Upon ATP binding, MipZ forms dimer, which results in the completion of the DNA- and FtsZ- 

binding regions, thereby allowing concomitant interaction of MipZ with both DNA and FtsZ. 

On the other hand, the MipZ dimer disassembles after hydrolyzing ATP spontaneously. The 

resulting monomers can diffuse back to ParB efficiently without retention by the chromosome. 

In summary, the recruitment by polarly localized ParB, the oscillation between ParB and 

chromosomal DNA, the interaction with chromosomal DNA, as well as the intrinsic ATPase 

activity coordinate and regulate the bipolar concentration gradient of MipZ in C. crescentus.   

In this study, we further explored the regulatory function of MipZ by mapping its interaction 

regions. We showed that FtsZ and DNA have distinct binding regions on MipZ dimer, and their 

binding regions are close to the dimer interface but remote from each other. Notably, ParB has 

two separate binding regions, one of which overlaps the DNA binding region. These data 

support a model in which only the dimeric MipZ interacts with chromosome and FtsZ, and in 

which ParB and chromosomal DNA compete for MipZ. However, several questions remained 

unsolved. The FtsZ interaction region of MipZ may not yet be complete. Moreover, the effect of 

MipZ on FtsZ should be further characterized. What is the reason behind the split ParB-binding 

regions and how is ParB involved in MipZ dimerization? The on-going ChIP-Seq analysis may 

also raise new questions about the interaction of MipZ with chromosomal DNA. Obtaining a 

more detailed and clearer picture of the MipZ regulatory network will provide new insights into 

the spatial regulation of protein localization and thus understanding the regulation of cell 

division in bacteria better. 
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4 MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Chemicals and enzymes 

Common chemicals used in this study were acquired from Bioline (Germany), Carl-Roth 

(Germany), Difco (Spain), GE Healthcare (Germany), Invitrogen (Germany), Merck 

(Germany), Nanotemper (Germany), Perkin Elmer (USA), Peqlab (USA), Qiagen (Germany), 

SIGMA-Aldrich (Germany) and Thermo Scientific (USA). Radioactive [α-
32

P]-ATP and [α-
32

P]-GTP were produced by Hartmann Analytic (Germany) 

Enzymes used for DNA cloning were acquired from Fermentas (Canada) or New England 

Biolabs (USA). KOD hot start DNA polymerase used for standard PCR (Polymerase Chain 

Reaction) and BioMix Red for colony PCR were from Merck (Germany) and Bioline 

(Germany), respectively. 

4.1.2 Buffers and solutions 

Buffers and solutions were prepared in deionized water. If necessary, buffers and solutions were 

autoclaved at 121 °C for 20 min or sterilized by filtration through a 0.2 µm filter (Sarstedt, 

Germany) 

4.1.3 Media 

Media used in this study were autoclaved at 121 °C for 20 min unless mentioned otherwise. The 

antibiotics, carbohydrates or amino acids were first filter-sterilized and then add to the cooled 

down (approx. 60 °C) media. The solid media were supplemented with 1.5% (w/v) agar before 

autoclave. 

LB (Lysogeny broth)     1.0% (w/v) Tryptone 

         0.5 % (w/v) Yeast extract 

       1.0% (w/v) NaCl 

 

McConkey agar      1.7% (w/v) Peptone 

       0.3% (w/v) Casein peptone  

1% (w/v) Lactose  

       0.15% (w/v) Bile salts 
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       0.5% (w/v) NaCl 

       0.003% (w/v) Neutral red 

       0.0001% (w/v) Crystal violet  

       1.35% (w/v) Agar  

 

PYE (peptone yeast extract)    0.2% (w/v) Bacto Peptone 

       1.0% (w/v) Yeast extract 

       1 mM MgSO4 

       0.5 mM CaCl2 

 

Additives 

Antibiotics, carbohydrates and other additives were prepared as stock solutions. 

Table 4.1 Antibiotics 

 

Table 4.2 Carbohydrates  

 

 

Antibiotics Stock concentrations 

(mg/ml) 

Final concentrations (µg/ml) 

 

E. coli 

 liquid          

E. coli 

 solid 

C. crescentus 

liquid 

C. crescentus 

solid 

Ampicillin 100 50 200 - - 

Chloramphenicol 

(in 70% ethanol) 

10 20 30 - - 

Gentamicin 10 - - 0.5 5 

Kanamycin 20 30 50 5 25 

Spectinomycin 20 50 100 25 50+Sreptomycin 5 

Streptomycin 10 30 30 5 5 

Carbohydrate Stock concentrations (w/v) Final concentrations (w/v) 

D(+)-arabinose 15% 0.2% 

D(+)-glucose 20% and 40% 0.2%, 0.5% or 2% 

Isopropyl-β-D-thiogalactopyranoside 

(IPTG) 

1 M 0. 5 mM 

Vanillate 50 mM 0.5 mM 

D(+)-xylose 20% 0.3% 
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4.1.4 Oligonucleotides  

Oligonucleotides used in this study were designed with the softwares GeneTool Lite 1.0 

(BioTools Inc., Canada) and QuickChange Primer Design tool (Agilent Technologies, 

Germany) and synthesized either by SIGMA-Aldrich (Germany) or Eurofins MWG Operon 

(Germany). All oligonucleotides used in this study are listed in the Appendix. 

4.1.5 Strains 

C. crescentus CB15N (NA1000) was used as wild-type strain. E. coli host strains are listed in 

Table 4.3.  

Table 4.3 E. coli host strains 

 

4.2 Microbiological methods 

4.2.1 Cultivation of E. coli 

E. coli strains was aerobically grown in liquid LB medium at 37°C with shacking speed of 210 

rpm or grown on LB agar plates, supplemented with corresponding antibiotics or carbohydrates 

listed in Table 4.1 and 4.2. Only the single colonies grown on the plates were used for the 

further experiments. BTH101 cells were cultivated on MacConkey agar plates at 28 °C for 

bacterial two-hybrid assay.  

4.2.2 Cultivation of C. crescentus 

 C. crescentus strains was aerobically grown in PYE medium at 28 °C with shacking speed of 

210 rpm or grown on PYE agar plates, supplemented with the corresponding antibiotics and 

carbohydrates listed in Table 4.1 and 4.2. 

Strains Application Genotype 

TOP10 Molecular cloning F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15  

ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK 

rpsL (StrR) endA1 nupG 

Rosetta™2(DE3)pLysS Protein overproduction F– ompT hsdSB (rB- mB-) gal dcm (DE3) pLysSpRARE2 

(CamR) 

BTH101 Bacterial-two hybrid assay F–  cya-99  araD13  galE15 galK16 rpsL1 (StrR) hsdR2 

mcrA1 mcrB1 
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4.2.3 Storage of bacteria 

For the short period storage (one or two weeks), bacteria were kept on agar plates and stored at 

4°C. For the long term storage, the overnight cultures of bacteria were supplemented with sterile 

DMSO (dimethy sulfoxid) to final concentration of 20% (v/v) and stored at -80°C.  

4.2.4 Bacterial Adenylate Cyclase Two-Hybrid (BACTH) assay  

The BACTH system was performed as described by Ladant and coworkers (116), with the 

modification according to the instruction of BACTH System Kit (Euromedex, France). BACTH 

was used to detect the interaction between MipZ or its mutant variants and ParB. C. crescentus 

parB was inserted into pUT18 to produce a T18-ParB fusion protein, and sequences of mipZ or 

its mutant variants were inserted into pKNT25 to form MipZ*-T25 fusion proteins after co-

transformation and synthesis in host strain BTH101. The resulting strains were streaked on 

McConkey agar plates supplemented with ampicillin and kanamycin. Positive interactions were 

indicated by red color of the colonies. Moreover the interactions of the corresponding colonies 

can be quantified by analyzing β-galactosidase activity. 

To measure the β-galactosidase activity, three single colonies of one resulting transformant were 

inoculated separately in LB medium supplemented with ampicillin and kanamycin. The cultures 

were grown to mid-log phase, and the OD values were recorded. 3 ml of each culture was 

pelletized and resuspended in 1 ml Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 

1 mM MgSO4, pH 7.0), and then 50 µl chloroform and 25 µl 0.1% SDS buffer were added to 

lyze the cells, followed by a 10 s vigorously vortex, and a 30 min incubation at room 

temperature. 500 µl lysate from last step and 500 µl of Z buffer supplemented with 50 mM β-

mercaptoethanol were transferred into a new tube as a reaction system. A tube containing 1 ml 

Z buffer supplemented with 50 mM β-mercaptoethanol was used as the blank control. The 

reaction was started by adding 200 µl 4 mg/ml O-nitrophenyl β-D-galactopyranoside (ONPG) 

into the 1 ml reaction system. When the samples turn yellow, 400 µl of 1 M Na2CO3 was added 

in immediately to stop the reaction. The reaction time was recorded. The reaction samples were 

then pelletized, the clear supernatant was collected and the A420 was measured against the blank 

control. The β-galactosidase activity (MU) can be calculated according to the equation:  

MU=       420       600  

t: Reaction time in minutes 

V: applied culture volume in ml 

4.2.5 Protein overproduction in E. coli 

Hexahistidine-tagged forms of MipZ and its mutant variants were overproduced in 

Rosetta2(DE3)/pLysS which was transformed with pET21a (+) backbone plasmids carrying the 

corresponding mipZ variants. Protein overproduction was induced by adding 0.5 mM IPTG into 

cell culture when the OD600 reached 1. Cells was cultivated for another 3 h and then harvested 

and stored in -80 °C freezer.   
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MipZ*-eYFP fusion proteins were overproduced in TOP10 strain, which was transformed with 

pBAD24-CB backbone plasmids carrying respective mipZ double mutation alleles. Protein 

overproduction and cell filamentation were induced by 1% arabinose and 5 µg/ml cephalexin 

respectively, when cells were grown to early exponential phase. Cells were cultivated for 

another 2.5 h and 20 µg/ml chloramphenicol was added to induce nucleoid condensation. After 

30 min cultivation, samples were subjected to microscopy. 

4.3 Molecular biological methods 

4.3.1 Construction of plasmids  

Plasmids containing mipZ point mutation alleles 

These plasmids were constructed containing different mutations in mipZ allele. The wild-type 

mipZ was amplified from pMT182 by primers CC2165-uni2 and CC2165-rev2 (21), the PCR 

product was inserted into the blunt end plasmid pJET1.2 (Thermo Scientific, USA) and the 

resulting plasmid was named pBH8. And then, pBH8 was used as the template for the site-

directed mutagenesis PCR with the corresponding primers to introduce different point mutations 

in mipZ alleles. 

Plasmids for production mipZ or its derivatives C-terminal eyfp fusions in C. crescentus 

These plasmids would integrate into C. crescentus chromosome at xylX locus by single 

homologous recombination.  pXYFPC-2 was used as the backbone vector and was digested 

with endonuclease NdeI and SacI. The insertion genes were amplified by PCR from pBH8 and 

its derivative plasmids containing mipZ point mutation alleles, using CC256uni-2 and MipZ-rev 

as primers, followed by digestion with NdeI and SacI. Finally, the resulting digested vector and 

insertions were ligated as described in 4.3.4. 

Plasmids for production of mipZ or its derivatives C-terminal eyfp fusions in E. coli 

TOP10 

These plasmids replicate and overproduce MipZ or its derivative eYFP fusion protein in TOP10 

upon induction with arabinose. pDK3 (20) was used as backbone vector and introduced an extra 

mutation in mipZD42A sequence by using mutagenesis PCR (4.3.3) with corresponding primers. 

The resulting PCR product was digested with endonuclease NdeI and SacI, the small fragment 

containing mipZ mutation allele was then ligated with pDK3 whose mipZD42A gene was released 

by restriction with NdeI and SacI. 

Plasmids for overproduction mipZ or its derivatives in C-terminal hexahistidine-tagged 

forms in E. coli Rosetta2(DE3)/pLysS 

These plasmids were used to synthesis MipZ or its derivative in C-terminal hexahistidine tagged 

form in Rosetta2(DE3)/pLysS. pET21a (+) was used as backbone vector and digested with 

endonuclease NdeI and HindIII, the insertion genes were amplified from corresponding 

templates, which are the pXYFPC-2 backbone plasmid with corresponding mipZ mutation 
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alleles, with CC2165 uni-2 and CC2165-HindIII rev as primers, followed by digestion with 

NdeI and HindIII. The digested vector and insertions were ligated as described in 4.3.4. 

Plasmids for bacterial two-hybrid analysis 

These plasmids were constructed to detecting the interaction between MipZ mutant variants and 

ParB. pKNT25 was used as backbone vector and digested with EcoRI and BamHI. Insertion 

genes were amplified from corresponding templates with MipZ-BACTH-for and MipZ-

pKNT25-rev as primers, followed by digestion with EcoRI and BamHI. The digested vector and 

insertion were ligated as described in 4.3.4. 

4.3.2 DNA extraction and sequencing 

 Plasmids from E. coli were extracted using GenElute™ Plasmid Kit (SIGMA-Aldrich, 

Germany) following the instruction provided by the manufacturer. The concentration of 

extracted plasmids was measured by Nanodrop ND-1000 (Nanodrop,USA). 

Sequencing was performed by Eurofins MWG Operon (Germany) with providing 50-100 ng/µl 

DNA samples and the corresponding primers. 

4.3.3 Polymerase Chain Reaction (PCR) 

To amplify a specific DNA fragment, KOD PCR was performed with following reagents: 10- 

200 ng template plasmids, a pair of 1 µM specific DNA primers, KOD Hot Start DNA 

Polymerase, the supplied MgSO4 solution and the reaction buffer (Merk, Germany), plus 5% 

DMSO.  

To introduce a point mutation into the wild-type mipZ gene, a site-directed mutagenesis PCR 

was performed with following reagents: 10 ng template plasmids, a pair of 0.4 µM specific 

primers, the rest was the same as KOD PCR. The product of site-directed mutagenesis PCR was 

incubated with 1 µl restriction enzyme DpnI (Fermantas, Canada) at 37 °C for 1 h to digest the 

template. 

To confirm plasmids uptaken or insertion into the chromosome loci correctly, a colony PCR 

was performed. The reaction system contained 1× BioMix™Red (bioline,Germany), 5% 

DMSO, a pair of 1 µM primers and a tip of E. coli or C. crescentus cells from a corresponding 

colony. 

All the PCR reactions were carried out in a thermocycler (Biometra, Germany) with parameters 

listed in Table 4.4. 

Table 4.4 Standard PCR cycling parameters 

Steps Temperature Time 

Initial denaturation 95°C 5  min 

Denaturation 95°C 45 s 
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4.3.4 Restriction digestion and ligation of DNA fragments 

Plasmids or PCR products were digested with proper restriction enzymes to remove certain 

parts and generate matched ends to ligate into new plasmids. DNA fragments were incubated 

with proper FastDigest restriction enzymes (Fermantas, Canada) in the supplied buffer at 37°C 

for 0.5-2 h. For plasmids restriction shrimp alkaline phosphatase (SAP; Fermentas, Canada) was 

added into the digestion solution to prevent the re-ligation of the digested plasmid by 

dephosphorylating 5‟-end. 

The DNA fragments were ligated by T4 DNA ligase in the supplied buffer (Fermentas, Canada) 

and incubated at room temperature for 1- 2 h. 

4.3.5 Agarose gel electrophoresis 

DNA samples were separated and visualized by agarose gel electrophoresis. The samples was 

mixed with 10 times diluted 10× DNA loading buffer (50% glycerin, 0.2% bromophenol blue, 

0.2% xylene cyanol, 0.2 M EDTA), loaded on the agarose gel, and run the electrophoresis at 

160 volt for 20 min. The agarose gel was prepared with 1% agarose in 0.5× TAE buffer (20 mM 

Tris, 0.175% acetic acid, 0.5 mM EDTA) and supplemented with 0.005% ethidium bromide. 

After electrophoresis, the agarose gel was visualized under the UV light of the UV-

Transilluminator (UVP-BioDoc-IT™ Imaging System, UniEquip, Germany).  

4.3.6 Preparation and transformation of chemically competent E. coli 

To prepare chemically competent cells, E. coli was routinely cultivated overnight, and diluted 

100 times into fresh LB medium, cultivated till an OD600 of 0.6. The culture was placed on ice 

for 10 min. In the following steps the cell culture, solutions and equipments were kept on ice or 

at 4 °C. Cell culture was centrifuged at 3000× g for 10 min, afterwards the pellet was 

resuspended with 0.1 M CaCl2 and incubated on ice for 30 min. Cells were centrifuged again 

with the same condition and the pellet was resuspended with 1/50 original culture volume of 

solution containing 0.1 M CaCl2 and 15% glycerol. Aliquots of 100-150 µl cells were snap-

frozen in liquid nitrogen and stored at -80 °C. 

Transformation of E. coli was performed as following steps: the competent cells were thawed 

on ice, added with approx. 5 ng plasmids followed by 30 min incubation on ice, 90 s heat shock 

at 42 °C, and 2 min on ice. Subsequently, cells were cultivated with 500 µl LB medium at 37 °C 

for 1 h, and then spread on agar plates with the respective resistant antibiotics. 

Steps Temperature Time 

Annealing 50-65°C (depending on the primers) 45 s 

Elongation 72°C 30 s/kb 

Final elongation 72°C 4 min 
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4.3.7 Preparation and transformation of electrocompetent C.crescentus 

The overnight culture of C. crescentus cells was diluted 50 times into fresh 2x PYE medium, 

cultivated till an OD600 of 1. In the following steps the cell culture, solutions and equipment 

were kept on ice or at 4 °C. The culture was first centrifuged at 6500× g, 10 min and washed 

with the 1× culture volume of 10% glycerol, pelletized at 8600× g for 10 min, and repeated this 

step once. After resuspension with 1/10 culture volume of 10% glycerol, cells were harvested 

by centrifugation at 11000× g for 10 min. Subsequently, cells were resuspended with 1/50 

culture volume of 10% (v/v) glycerol and first snap-frozen in liquid nitrogen and stored at -80°C 

in 80 µl aliquots.    

Transformation of C. cresentus was performed as following steps: the competent cells were 

thawed on ice, added with 5-10 µg plasmid solution and transferred into an ice-cold 

electroporation cuvette (bio-Red, Germany), followed by an electroporation with a pulse of 

1500 V, 400 Ω, 25 µF. Afterwards, cells were cultivated with 900 µl 2× PYE at 28°C for 2 h 

and then spread on PYE plates with the respective resistant antibiotics. 

4.4 Biochemical methods 

4.4.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to separate proteins according to their sizes (139).This method is suitable 

for both purified protein and cell lysate. For purified protein samples, they were diluted with 1× 

SDS buffer [300 mM Tris base, 50% (v/v) glycerol, 5% (w/v) SDS, 500 mM dithiothreitol, 

0.05% bromophenol blue, pH6.8] to 5-10 µM. For cell lysate samples, the OD600 of cell culture 

was recorded. Cell culture was pelletized and resuspended with 1× SDS buffer to its original 

OD600 of 10. The prepared samples were first heated at 95 °C for 5 or 15 min for purified 

protein and cell lysate samples, respectively. After cooling down, the samples can be subjected 

to SDS-PAGE directly or stored at -20 °C. 10-15 µl samples were usually loaded into the SDS 

gel and subjected to electrophoresis. The SDS-PAGE electrophoresis was run with 15 mA/ gel 

for the upper layer and 30 mA/ gel for the lower gel layer in SDS running buffer [25 mM Tris 

Base, 192 mM glycine, 0.1 % (w/v) SDS] using PerfectBlue™ Twin S system (Peqlab, USA). 

After electrophoresis, SDS gel was either stained for visualization or transferred to a PVDF 

(polyvinylidene fluoride) membrane for immunoblot analysis (4.4.2). The staining of SDS gels 

was either with coomassie solution [40 % methanol, 10 % acidic acid, 0.1 % (w/v) Brilliant 

Blue R 250] for 1 h or with Instant Blue™ (Gentaur, Germany) for 20-60 min. Coomassie 

staining was destained with a solution containing 20 % ethanol and 10 % acidic acid, by gently 

shacking the SDS gels in the detaining solution for approx. 10 min, repeated for 3-4 times. 

Instant blue was destained with tap water till excess dye washed away. 
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Table 4.5 Composition of a SDS gel 

 

4.4.2 Immunoblot analysis 

Immunoblot analysis was used for detecting specific proteins. Proteins were first separated by 

SDS-PAGE and transferred onto a PVDF membrane (Millipore, USA) using semi-dry westen-

blot transfer by the PerfectBlue™ Semi-Dry-Elektro Blotter (Peqlab, USA). The PVDF 

membrane was first activated in methanol for 15 s, washed in water for 2 min followed a 5 min 

incubation in western-blot transfer buffer [25 mM Tris Base, 192 mM glycine, 10% (v/v) 

methanol]. The SDS gel was laid upon the activated PVDF membrane and transferred by 

PerfectBlue™ Semi-Dry-Elektro Blotter (Peqlab, USA) at 2 mA/cm² for 1.5 h. The transferred 

membrane was then incubated with blocking buffer, which is the TBST buffer [10 mM Tris 

Base, 150 mM NaCl, 0.1% (w/v) Tween20, pH 7.5 ]containing 1.5% (w/v) non-fat milk power, 

for 1-2 h at room temperature or overnight at 4 °C. Subsequently, the membrane was incubated 

with a specific antibody in blocking buffer for 1.5 h at room temperature. After three times 

washing in TBST buffer each time 5 min, the membrane was then incubated with the secondary 

antibody, an anti-rabbit IgG conjugated with horseradish perioxidase (HRP), in blocking buffer 

for 2 h at room temperature. Subsequently, the membrane was washed five times with TBST 

buffer, followed by 1 min incubation in 0.8 ml chemiluminescence substrate (Western 

Lightning™ Chemiluminescence Reagent Plus; Perkin Elmer, USA). The detected protein 

signal was visualized by exposing the membrane to Amersham Hyperfilm™ ECL-

Chemiluminenscence films (GE Healthcare, Germany), which were developed in an LAS-4000 

Luminescent Image Analyzer (Fujifilm, Germany). 

4.4.3 Protein purification 

MipZ and its mutant variants in hexahistidine-tagged forms were synthesized in 

Rosetta™2(DE3)pLysS (4.2.7) and the cell pellets were collected and frozen at -80 °C. To 

purify the proteins, the pellet was thawed and resuspended in buffer B3 (50 mM NaH2PO4, 300 

mM NaCl, 20 mM imidazole, 1 mM -mercaptoethanol, pH8.0) with 3-5×pellet volume, 

supplemented with 100 µg/ml PMSF (phenylmethylsulfonyl fluoride) and 10 U/ml DNase I. 

Afterwards, cells were lyzed by passing through French press two times at 16000 psi, and the 

cell debris were removed by centrifugation at 3000× g for 30 min, the supernatant was then 

Component Upper gel (5% stacking gel) Lower gel (11% resolving gel) 

H2O 1.43 ml 1.9 ml 

Upper gel buffer [500 mM Tris Base pH6.8 0.4 % 

(w/v) SDS] 

625 µl - 

Lower gel buffer [1.5 M Tris Base pH 8.8 0.4 % 

(w/v) SDS] 

- 1.25 ml 

N,N,N,N-Tetramethylethylenediamine (TEMED) 1.9µl 3 µl 

10% (W/V)  Ammonium persulfat (APS)   

30% NR-Acrylamide/Bis- (29:1) 417 µl 1.9 ml 
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passed through a 0.2 µm filter (Sarstedt, Germany) and then loaded onto a HisTrap column (GE 

Healthcare, Germany), and followed by a step of equilibrium with B3, subsequently, the protein 

was eluted with linear gradient of imidazole buffer (50 mM NaH2PO4, 300 mM NaCl, 20-

250 mM imidazole, pH8). The elution fractions were collected in 2 ml aliquots, the fractions 

containing interesting protein were collected and dialyzed against 3 L B6 buffer (50 mM 

HEPES, pH 7.2, 50 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 10% glycerol) overnight at 4˚C. 

The resulting protein sample was centrifuged at 3000× g for 30 min to remove the percipient. 

To this end, the protein was snap frozen in liquid nitrogen and stored at -80˚C in 100 µl 

aliquots. 

4.4.4 Nucleotide hydrolysis assays 

The ATPase activity of hexahistidine-tagged form of MipZ or its derivatives, and the GTPase 

activity of tag-free FtsZ were analyzed as described (20, 21). Briefly, to determine the 

nucleotide hydrolysis activity, 6 µM MipZ or its variants were pre-incubated in P buffer (50 

mM Hepes/NaOH, pH 7.2, 50 mM KCl, 10 mM MgCl2) at 30 °C for 10 min. Afterwards 1 mM 

ATP containing 25 Ci/mmol [α-32P]-ATP was added into the protein samples, time was 

recorded. In every 10 min interval, 2 µl samples were taken and immediately spotted onto PEI 

cellulose F thin-layer chromatography plates (Merck, Germany) samples were taken and spotted 

for 60 min. The plates were then subjected to the chromatography in a solvent system 

containing 0.5 M LiCl and 1 M formic acid. To this end, the air-dried plates were expose to a 

storage phosphor screen (GE Healthcare, Germany) and scanned with a Storm 840 

PhosphorImager (GE Healthcare, Germany), the amount of [α-32P]-ADP present in the samples 

was quantified using ImageQuant 5.2. The GTPase activity of FtsZ was measured the same way 

but with 3 µM FtsZ as the starting sample, 2 mM GTP containing 25 Ci/mmol [α-32P]-GTP in 

every starting sample, and the reaction sample was taken in 5 min interval till 30 min. 

4.4.5 Gel shift assay 

Gel shift assay is a method to detect DNA binding activities of MipZ and its variants. 10 µM 

proteins together with 20 nM super coiled plasmid pMCS-2 or 10 nM EcoRI linearized pMCS-2 

were incubated with 1 mM ATP or 0.46 mM ATPγS in SPR buffer (10 mM Hepes/NaOH pH 

7.2, 150 mM NaCl, 10 mM MgCl2, 0.05% Tween 20) at room temperature for 15 min and then 

samples were applied for a standard DNA agarose gel electrophoresis (4.3.5). 

4.4.6 Surface Plasmon Resonance (SPR) 

SPR is used to detect the interactions between MipZ or its mutant variants and oligonucleotide. 

The experiment was performed in Biacore T100 System (GE Healthcare, Germany) at 10 °C in 

SPR buffer with flow rate of 30 µl/min. To detect the interaction a pair of oligonucleotide 

(rand1-biotin and rand1-rev), was first annealed and immobilized on a streptavidin coated SA 

sensor Chip (GE Healthcare, Germany) following the manufacturer‟s instruction. 6 µM proteins 

supplemented with 1 mM ATP/ADP or without nucleotide were diluted in SPR buffer and 

loaded onto the Biacore T100 System, after the protein binding step, the chip was washed with 
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the SPR buffer. After that, the chip was regenerated by injecting the buffer (2M NaCl in SPR 

buffer). To correct the unspecific binding, a mock-treated cell in the chip without 

oliogonucleotides was used as the reference.  

4.4.7 MicroScale Thermophoresis (MST) analysis 

Using microscale thermophoresis to determine biomolecules interaction was developed by 

Baaske et al (140).  This method is used to determine the binding affinities between 

oligonucleotide and MipZ or its variants. We had two different titration approaches to determine 

the dissociation constants (kd): either titrated the constant concentration of the fluorescently 

labeled oligonucleotide with increased concentration of proteins or titrate the constant 

concentration of fluorescently labeled proteins with increased concentration of oligonucleotide. 

For the first approach, oligonucleotide, a 5‟ end Cy3 labeled oligonucleotide cy3-rand1 and an 

unlabeled oligonucleotide rand1-rev was annealed and diluted to a final concentration of 50 nM. 

Proteins were serially diluted 16 times with the SPR buffer supplemented with 1 mM ATP or 

0.46 mM ATPγS and mixed with the double stranded-oligonucleotide. The reaction solution 

was loaded into hydrophilic capillaries (NanoTemper, Germany), which were arranged into 

Monolith NT.115 (NanoTemper, Germany). The MST measurements were performed with 20-

40% LED power, 20% MST power. For the second titration approach, the two unlabeled 

oligonucleotides strands rand1 and rand1-rev were annealed. The proteins were either labeled at 

amine with protein labeling Kit RED-NHS (NanoTemper, Germany) or at cysteine with protein 

labeling Kit RED-MALEIMIDE (NanoTemper, Germany) following the manufacturer‟s 

instruction. The double-stranded oligonucleotide was serially diluted 12-16 times in SPR 

running buffer supplemented with 1 mM ATP or 0.46 mM ATPγS with the maximum 

concentration of 200 µM. Proteins were mixed with the serially diluted double-stranded DNA, 

and loaded into hydrophilic capillaries and then subjected to MST measurements with 60-80% 

LED power and 20% MST power.  

4.5 Microscopy 

Microscopy was used to visualize C. crescentus and E. coli cells and their cellular fluorescently-

labeled proteins. Cell samples were immobilized by 1.5% agarose pads and imaged by an Axio 

Imager.M1 microscope (Zeiss, Germany) having a Photometrics Cascade: 1K CCD camera or a 

Zeiss Axio Imager Z1 microscope having a pco.edge sCMOS camera. DIC (differential 

interference contrast) images, Ph (phase contrast) images were acquired via Zeiss Plan- 

Apochromat 100x/1.40 Oil DIC objective and Objective Plan-Apochromat 100x/1.40 Oil Ph3 

M27 respectively. Fluorescent images were taken via the X-Cite®120PC metal halide light 

source (EXFO, Canada) and ET-DAPI, ET-CFP, ET-YFP, ET-GFP or ET-TexasRed filter 

cubes (Chroma, USA). The acquired images were analyzed with Metamorph 7.7 (Universal 

Imaging Group). 

To detect the localization of MipZ*-eYFP fusion proteins, the corresponding C. crescentus cells 

were induced with 0.3% xylose for 6-8 h. To visualize nucleoid of E. coli, the cells were stained 

with 0.5 µg/ml DAPI (4', 6-diamidino-2-phenylindole) for 30 min in dark. 
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4.6 Bioinformatic analysis 

Amino acid sequences of MipZ proteins were obtained either from the national center for 

biotechnology information (NCBI) (http://www.ncbi.nlm.nih.gov/) or Pfam 

(http://pfam.sanger.ac.uk/). Sequence alignments were conducted by Clustal Omega at 

https://www.ebi.ac.uk/Tools/msa/clustalo/, and the alignment results were analyzed by 

GeneDoc. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
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APPENDIX 

Table 4.6 oligonucleotides 

Name Sequence (5’ to 3’) 

CC2165-uni2 ttttcatatggccgaaacgcgcgttatcgtcg 

CC2165-rev2 ttgagctcctgcgccgccagcatcgtctcgcc 

CC2165-rev-HindIII ccgcaagcttgtcgacggcctgcgccgccagcatcgtctcgcc 

eGYC-down gctgctgcccgacaaccactacctgag 

eGYC-up cttcccgtaggtggcatcgccctcg 

IntSpec-1 (RecUni-1) atgccgtttgtgatggcttccatgtcg 

IntXyl-2 (RecXyl-2) tcttccggcaggaattcactcacgcc 

MipZE53A- for cgcggttcttcgcgaaccgccgcgc 

MipZE53A -rev gcgcggcggttcgcgaagaaccgcg 

MipZR55A- for gttcttcgagaacgcccgcgcgtggctg 

MipZR55A-rev cagccacgcgcgggcgttctcgaagaac 

MipZW58A-for gaaccgccgcgcggcgctggacaacaag 

MipZW58A-rev cttgttgtccagcgccgcgcggcggttc 

MipZE65A-for caacaagaagatcgcgcttcccgagccgc 

MipZE65A-rev gcggctcgggaagcgcgatcttcttgttg 

MipZD76A-for cttgaacctcagcgccaacgacgtcgccc 

MipZD76A-rev gggcgacgtcgttggcgctgaggttcaag 

MipZE94A-for tggccggtttcgcagccgccttcgc 

MipZE94A-rev gcgaaggcggctgcgaaaccggcca 

MipZR99A-for gccgccttcgccgcggccatggccga 

MipZR99A-rev tcggccatggccgcggcgaaggcggc 

MipZE103A-for cagggccatggccgcatgcgacttcatcc 

MipZE103A-rev ggatgaagtcgcatgcggccatggccctg 

MipZL161A-for cccagcctctattcggcgaccgtctgggaagg 

MipZL161A-rev ccttcccagacggtcgccgaatagaggctggg 

MipZE165A-for ctgaccgtctgggcaggtcgcaagcag 

MipZE165A-rev ctgcttgcgacctgcccagacggtcag 

MipZL172A-for aagcagcgcgccgcgtcgggccagcg 

MipZL172A-rev cgctggcccgacgcggcgcgctgctt 

MipZR213A-for cgcgtcggcttcgcgatcgggcccgg 

MipZR213A-rev cgcggttcttcgcgaaccgccgcgc 

MipZD236A-for gcgcggcggttcgcgaagaaccgcg 

MipZD236A-rev gttcttcgagaacgcccgcgcgtggctg 

MipZL237A-for cagccacgcgcgggcgttctcgaagaac 

MipZL237A-rev gaaccgccgcgcggcgctggacaacaag 

MipZR242A-for cgccgcaggtggccccggtcccgg 
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Name Sequence (5’ to 3’) 

MipZR242A-rev ccgggaccggggccacctgcggcg 

MipZV246A-for cccggtcccggcgtcgctgcagc 

MipZV246A-rev gctgcagcgacgccgggaccggg 

MipZL248A-for ggtcccggtgtcggcgcagcatctggcg 

MipZL248A-rev cgccagatgctgcgccgacaccgggacc 

MipZY269A-for gggtctgtcggccgcttccggcgagacg 

MipZY269A-rev cgtctcgccggaagcggccgacagaccc 

MipZK35A-for gtacggcggcgccgcggtcgctgtcatc 

MipZK35A-rev gatgacagcgaccgcggcgccgccgtac 

MipZE86A-for gctgaaaggccggcggaggagcaggtg 

MipZE86A-rev cacctgctcctccgccggcctttcagc 

MipZR125A-for catggcccacggcgctgcggacctggtg 

MipZR125-rev caccaggtccgcagcgccgtgggccatg 

MipZD147-for ctgggcaccgttgctcccgtcaccctg 

MipZD147-rev cagggtgacgggagcaacggtgcccag 

MipZE152A-for ccgtcaccctggcgctgaccaagcc 

MipZE152-rev ggcttggtcagcgccagggtgacgg 

MipZW164A-for ctattcgctgaccgtcgcggaaggtcgcaagcag 

MipZW164A-rev ctgcttgcgaccttccgcgacggtcagcgaatag 

MipZR194 A-for caccaccgaggcggcgaaccgcaagcgt 

MipZR194A-rev acgcttgcggttcgccgcctcggtggtg 

MipZK197A-for ggcgcggaaccgcgcgcgtctggaggac 

MipZK197A-rev gtcctccagacgcgcgcggttccgcgcc 

MipZR198A-for gcggaaccgcaaggctctggaggaccgc 

MipZR198A-rev gcggtcctccagagccttgcggttccgc 

MipZE200A-for cgcaagcgtctggcggaccgcctcaac 

MipZE200A-rev gttgaggcggtccgccagacgcttgcg 

MipZR219A-for ggcccggcctggccgaccgcgtga 

MipZR219A-rev tcacgcggtcggccaggccgggcc 

MipZH262A-for ctgcgtgctctgatggccagcctgggtctgtc 

MipZH262A-rev gacagacccaggctggccatcagagcacgcag 

MipZK155A-for accctggagctgaccgcgcccagcctctattc 

MipZK155A-rev gaatagaggctgggcgcggtcagctccagggt 

MipZE3A-for gaccatatggccgcaacgcgcgttatc 

MipZE3A-rev gataacgcgcgtttcggccatatggtc 

MipZR5A-for gaccatatggccgaaacggccgttatcgtcgtc 

MipZR5A-rev gacgacgataaccggcgtttcggccatatg 

MipZR221A-for ccggcctgcgcgacgccgtgatctatcgc 

MipZR221A-rev gcgatagatcacggcgtcgcgcaggccgg 

MipZ rev-EcoI ttgaattcttactgcgccgccagcatcgtctc 

MipZ-rev ttgagctcgcgccgccagcatcgtctcgccgga 

MipZ-BACTH-for ttttggatcccatggccgaaacgcgcgttatcgtcg 

MipZ-KT25-rev aaaagaattctttactgcgccgccagcatcgtctcgcc 

MipZ-KNT25-rev aaaagaattcgactgcgccgccagcatcgtctcgcc 
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Name Sequence (5’ to 3’) 

pBAD24-rev accgcttctgcgttctgatttaatc 

pBAD24-uni cctacctgacgctttttatcgcaac 

pET-for cacgatgcgtccggcgtagaggatc 

PvanA-for gacgtccgtttgattacgatcaagattgg 

Pxyl-1 cccacatgttagcgctaccaagtgc 

rand1-Cy3 Cy3-gaggcagactagatcttctagttcgg 

rand1-biotin Biothin-gaggcagactagatcttctagttcgg 

rand1-rev ccgaactagaagatctagtctgcctc 

 

 

Table 4.7 plasmids 

Plasmid Description Reference 

pET21a+ Vector for overexpression of C-terminally His6-tagged proteins, AmpR Novagen 

pXYFPC-2 Integration plasmid fuse 3‟ end of a target gene to eyfp under the 

control of Pxyl, KanR 

(141) 

pVCERN-1 Integration plasmid fuse 5‟ end of a target gene to venus under the 

control of Pvan, SpecR 

 

pUT18 Plasmid for constructing C-terminal fusions to T18, AmpR (142) 

pKNT25 Plasmid for constructing C-terminal fusions to T25, KanR (142) 

pUT18C-zip Derivative of pUT18C in which the leucine zipper of GCN4 is fused in 

frame to the T18 fragment , AmpR 

(142) 

pKT25-zip Derivative of pKT25 in which the leucine zipper of GCN4 is fused in 

frame to the T25 fragment, KcanR 

(142) 

pGADT7 Plasmid for constructing N-terminal fusion of activation domain of 

Gal4 

Clontech 

pGBKT7 Plasmid for constructing N-terminal fusion of DNA-binding domain of 

Gal4 

Clontech 

pBAD24-CB 

 

Plasmid for the expression of genes in E. coli under the control of 

PBAD, AmpR 

(143) 

pDK3 pBAD24-CB carrying mipZD42A (20) 

pJET1.2 Plasmid for blunt end ligation Thermo scientific 

pMT182 pMR31carrying mipZ  (21) 
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Plasmid Description Reference 

pBH8 pJET1.2 carrying mipZ This study 

pBH46 pXYFPC-2 carring mipZK35A This study 

pBH47 pXYFPC-2 carring mipZE53A This study 

pBH48 pXYFPC-2 carring mipZR55A This study 

pBH49 pXYFPC-2 carring mipZW58A This study 

pBH50 pXYFPC-2 carring mipZD76A This study 

pBH51 pXYFPC-2 carring mipZR84A This study 

pBH52 pXYFPC-2 carring mipZE86A This study 

pBH53 pXYFPC-2 carring mipZE94A This study 

pBH54 pXYFPC-2 carring mipZR99A This study 

pBH55 pXYFPC-2 carring mipZE103A This study 

pBH56 pXYFPC-2 carring mipZR125A This study 

pBH57 pXYFPC-2 carring mipZD147A This study 

pBH58 pXYFPC-2 carring mipZE152A This study 

pBH59 pXYFPC-2 carring mipZL161A This study 

pBH60 pXYFPC-2 carring mipZW164A This study 

pBH61 pXYFPC-2 carring mipZE165A This study 

pBH62 pXYFPC-2 carring mipZL172A This study 

pBH63 pXYFPC-2 carring mipZR194A This study 

pBH64 pXYFPC-2 carring mipZK197A This study 

pBH65 pXYFPC-2 carring mipZR198A This study 

pBH66 pXYFPC-2 carring mipZE200A This study 

pBH67 pXYFPC-2 carring mipZR213A This study 

pBH68 pXYFPC-2 carring mipZR219A This study 

pBH69 pXYFPC-2 carring mipZD236A This study 

pBH70 pXYFPC-2 carring mipZL237A This study 
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Plasmid Description Reference 

pBH71 pXYFPC-2 carring mipZR242A This study 

pBH72 pXYFPC-2 carring mipZV246A This study 

pBH73 pXYFPC-2 carring mipZL248A This study 

pBH74 pXYFPC-2 carring mipZH262A This study 

pBH75 pXYFPC-2 carring mipZY269A This study 

pBH76 pXYFPC-2 carring mipZK155A This study 

pBH77 pXYFPC-2 carring mipZE65A This study 

pBH78 pXYFPC-2 carring mipZ This study 

pBH79 pXYFPC-2 carring mipZK13A This study 

pBH80 pXYFPC-2 carring mipZG14V This study 

pBH81 pXYFPC-2 carring mipZD42A This study 

pBH100 pVCERN-1  carring mipZ This study 

pBH103 pXYFPC-2 carring mipZ3EA This study 

pBH104 pXYFPC-2 carring mipZR5A This study 

pBH135 pXYFPC-2 carring mipZR221A This study 

pBH82 pGADT7 carring mipZ This study 

pBH83 pGADT7 carring mipZR194A This study 

pBH84 pGADT7 carring mipZR219A This study 

pBH85 pGADT7 carring mipZR242A This study 

pBH105 pGADT7 carring mipZL248A This study 

pBH121 pGADT7 carring mipZK13A This study 

pBH122 pGADT7 carring mipZG14V This study 

pBH123 pGADT7 carring mipZD42A This study 

pBH124 pGADT7 carring mipZR198A This study 

pBH125 pGADT7 carring mipZD236A This study 

pBH126 pGADT7 carring mipZL237A This study 
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Plasmid Description Reference 

pBH89 pGADT7 carring mipZK197A This study 

pBH90 pGADT7 carring mipZL248A This study 

pBH91 pGADT7 carring mipZR194A This study 

pBH92 pGADT7 carring mipZR219A This study 

pBH98 pGADT7 carring mipZL237A This study 

pBH101 pGADT7 carring mipZR242A This study 

pBH102 pGADT7 carring mipZV246A This study 

pBH107 pGADT7 carring mipZD147A This study 

pBH108 pGADT7 carring mipZW58A This study 

pBH109 pGADT7 carring mipZR198A This study 

pBH110 pGADT7 carring mipZD236A This study 

pBH132 pGADT7 carring mipZR221A This study 

pBH94 pET21a+ carring mipZL237A This study 

pBH95 pET21a+ carring mipZR219A This study 

pBH97 pET21a+ carring mipZR194A This study 

pBH117 pET21a+ carring mipZR198A This study 

pBH118 pET21a+ carring mipZD236A This study 

pBH119 pET21a+ carring mipZR242A This study 

pBH120 pET21a+ carring mipZL248A This study 

pBH130 pET21a+ carring mipZR221A This study 

pBH106 pBAD24-CB carrying mipZD42AR194A-eyfp This study 

pBH111 pBAD24-CB carrying mipZD42AR198-eyfp This study 

pBH112 pBAD24-CB carrying mipZD42AR219A-eyfp This study 

pBH113 pBAD24-CB carrying mipZD42AL237A-eyfp This study 

pBH114 pBAD24-CB carrying mipZD42AR242A-eyfp This study 

pBH115 pBAD24-CB carrying mipZD42AL248A-eyfp This study 
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Plasmid Description Reference 

pBH116 pBAD24-CB carrying mipZD42AD236A-eyfp This study 

pBH131 pBAD24-CB carrying mipZD42AR212A-eyfp This study 

pBH88 pKNT25 carrying mipZL172A This study 

pBH89 pKNT25 carrying mipZK197A This study 

pBH90 pKNT25 carrying mipZL248A This study 

pBH91 pKNT25 carrying mipZR194A This study 

pBH92 pKNT25 carrying mipZR219A This study 

pBH98 pKNT25 carrying mipZL237A This study 

pBH101 pKNT25 carrying mipZR242A This study 

pBH102 pKNT25 carrying mipZV246A This study 

pBH107 pKNT25 carrying mipZD147A This study 

pBH108 pKNT25 carrying mipZW58A This study 

pBH109 pKNT25 carrying mipZR198A This study 

pBH110 pKNT25 carrying mipZD236A This study 

pBH132 pKNT25 carrying mipZR221A This study 

 

 

Table 4.8 Strains 

strains Description/ genotype Reference 

CB15N  Wild-type strain of C. crescentus (144) 

Rosetta2(DE3)pLysS E.coli Strain for protein overproduction Invitrogen 

TOP10 E.coli strain for general cloning strain/MipZ *-YFP production 

strain 

Invitrogen 

BTH101 E.coli strain for bacterial two-hybrid Euromedex 
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strains Description/genotype Reference 

BH64 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZ-eyfp This study 

BH65 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE3A-eyfp This study 

BH66 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR5A-eyfp This study 

BH67 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZK35A-eyfp This study 

BH68 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE53A-eyfp This study 

BH69 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR55A-eyfp This study 

BH70 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZW58A-eyfp This study 

BH71 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZD76A-eyfp This study 

BH72 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR84A-eyfp This study 

BH73 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE86A-eyfp This study 

BH74 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE94A-eyfp This study 

BH75 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR99A-eyfp This study 

BH76 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE103A-eyfp This study 

BH77 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR125A-eyfp This study 

BH78 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZD147A-eyfp This study 

BH79 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE152A-eyfp This study 

BH80 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZL161A-eyfp This study 

BH81 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZW164A-eyfp This study 

BH82 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE165A-eyfp This study 

BH83 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZL172A-eyfp This study 

BH84 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR194A-eyfp This study 

BH85 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZK197A-eyfp This study 

BH86 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR198A-eyfp This study 

BH87 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE200A-eyfp This study 

BH88 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR213A-eyfp This study 

BH89 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR219A-eyfp This study 
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strains Description/ genotype Reference 

BH90 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZD236A-eyfp This study 

BH91 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZL237A-eyfp This study 

BH92 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR242A-eyfp This study 

BH93 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZV246A-eyfp This study 

BH94 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZL248A-eyfp This study 

BH95 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZH262A-eyfp This study 

BH96 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZY269A-eyfp This study 

BH97 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZK155A-eyfp This study 

BH98 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZE65A-eyfp This study 

BH99 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZD42A-eyfp This study 

BH100 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZK13A-eyfp This study 

BH101 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZG14V-eyfp This study 

BH118 CB15N ΔmipZ PvanA::PvanA-mipZ PxylX::PxylX-mipZR221A-eyfp This study 
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