-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Publikations- und Dokumentenserver der Universitatsbibliothek Marburg

Efficient bulk-loading methods
for temporal

and multidimensional index structures

Dissertation zur Erlangung des Doktorgrades

der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universitat Marburg

vorgelegt von

Daniar Achakeev
aus Kharkov (Ukraine)

Marburg an der Lahn 2013

https://core.ac.uk/display/161974179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Erstgutachter: ~ Prof. Dr. Bernhard Seeger
Zweitgutachter: Prof. Dr. Peter Widmayer

Zusammenfassung

Nahezu alle naturwissenschaftlichen Bereiche profitieren von neuesten Analyse- und Verarbeitungs-
methoden fiir grofen Datenmengen. Diese Verfahren setzten eine effiziente Verarbeitung von geo-
und zeitbezogenen Daten voraus, da die Zeit und die Position wichtige Attribute vieler Daten
sind. Die effiziente Anfrageverarbeitung wird insbesondere durch den Einsatz von Indexstruk-
turen ermoglicht. Im Fokus dieser Arbeit liegen zwei Indexstrukturen: Multiversion B-Baum
(MVBT) und R-Baum. Die erste Struktur wird fiir die Verwaltung von zeitbehafteten Daten,
die zweite fiir die Indexierung von mehrdimensionalen Rechteckdaten eingesetzt.

Stéandig- und schnellwachsendes Datenvolumen stellt eine grofle Herausforderung an die Infor-
matik dar. Der Aufbau und das Aktualisieren von Indexen mit herkommlichen Methoden (Daten-
satz fiir Datensatz) ist nicht mehr effizient. Um zeitnahe und kostenefliziente Datenverarbeitung
zu ermoglichen, werden Verfahren zum schnellen Laden von Indexstrukturen dringend benotigt.
Im ersten Teil der Arbeit widmen wir uns der Frage, ob es ein Verfahren fiir das Laden von MVBT
existiert, das die gleiche I/O-Komplexitit wie das externe Sortieren besitz. Bis jetzt blieb diese
Frage unbeantwortet. In dieser Arbeit haben wir eine neue Kostruktionsmethode entwickelt und
haben gezeigt, dass diese gleiche Zeitkomplexitéit wie das externe Sortieren besitzt. Dabei haben
wir zwei algorithmische Techniken eingesetzt: Gewichts-Balancierung und Puffer-Baume. Unsere
Experimenten zeigen, dass das Resultat nicht nur theoretischer Bedeutung ist.

Im zweiten Teil der Arbeit beschéftigen wir uns mit der Frage, ob und wie statistische Informatio-
nen iiber Geo-Anfragen ausgenutzt werden kénnen, um die Anfrageperformanz von R-Bidumen zu
verbessern. Unsere neue Methode verwendet Informationen wie Seitenverhéltnis und Seitenlén-
gen eines reprisentativen Anfragerechtecks, um einen guten R-Baum beziiglich eines haufig einge-
setzten Kostenmodells aufzubauen. Falls diese Informationen nicht verfiigbar sind, optimieren
wir R-Baume beziiglich der Summe der Volumina von minimal umgebenden Rechtecken der Blat-
tknoten. Da das Problem des Aufbaus von optimalen R-Baumen beziiglich dieses Kostenmafles
NP-hart ist, fithren wir zunéchst das Problem auf ein eindimensionales Partitionierungsproblem
zuriick, indem wir die Daten beziiglich optimierte raumfiillende Kurven sortieren. Dann 16sen
wir dieses Problem durch Einsatz vom dynamischen Programmieren. Die I/O-Komplexitit des
Verfahrens ist gleich der von externem Sortieren, da die I/O-Laufzeit der Methode durch die
Laufzeit des Sortierens dominiert wird.

Im letzten Teil der Arbeit haben wir die entwickelten Partitionierungsvefahren fiir den Aufbau
von Geo-Histogrammen eingesetzt, da diese dhnlich zu R-Bdumen eine disjunkte Partitionierung
des Raums erzeugen. Ergebnisse von intensiven Experimenten zeigen, dass sich unter Verwen-
dung von neuen Partitionierungstechniken sowohl R-Béume mit besserer Anfrageperformanz als
auch Geo-Histogrammen mit besserer Schitzqualitét im Vergleich zu Konkurrenzverfahren gener-

ieren lassen.

Abstract

The recent increase of spatial and temporal data requires efficient algorithms for index construc-
tion and for bulk updates. Many big data applications exhibit not only a high volume of static
data but also inherit data growth. Moreover, some of them display high update rates. Incoming
collected or produced data arrive in batches in order to reduce transportation and update costs.
Therefore, updating an index using one record at a time is found to be inefficient for sufficiently
large batch sizes. In this work, we investigate the problem of efficient bulk-loading of temporal
and spatial index structures. We design novel loading strategies for multiversion B-tree (MVBT)
and R-tree.

We introduce a novel loading algorithm for MVBT with the asymptotic optimal I/O complexity.
We show that the previously developed technique based on the buffer tree solves the loading
problem only for the special case (if an input file consists only of insert operations). In this
work, we propose the first loading algorithm for MVBT that meets the lower-bound of external
sorting. We also proposed an efficient algorithm for bulk updates. These results are achieved by
a combination of two algorithmic techniques: buffer tree and weight balancing.

In this work, we designed a loading algorithm for the R-tree that optimizes it according to a
widely used cost model. Extensive experimental results show that R-trees built using our novel
approach exhibit substantially better query performance than sort-based counterparts. The
novelty of our technique is that if a query profile is available the algorithm is able to build better
R-trees. We proposed the following heuristic: first, we define the best sorting order using the
average shape of the query rectangle. Second, we reduce the bulk-loading problem to a one-
dimensional partitioning problem by sorting the input set. Third, we find an optimal solution
for this problem according to the proposed cost models. The motivation of our heuristic is
NP-hardness of the optimization problem. Based on the result obtained from query adaptive
loading, we observed that construction of spatial histograms resembles the problem of optimal
loading of R-trees. Therefore, we developed a spatial histogram construction method based on
the partitioning framework developed for R-tree loading. Spatial histograms built using our
novel method exhibit high accuracy for different data and query distributions. Our method has
only one parameter, minimal page capacity. Moreover, our extensive experimental results show

robustness of our method for different query and data distributions.

iii

Acknowledgments

Foremost, I would like to thank my adviser Prof. Bernhard Seeger. I am very grateful for his
guidance, invaluable advise, patience and encouragement.

I would like to thank members of the database group. I would like to express special thanks to
Marc Seidemann for helpful comments, discussions and reviewing. I would like to thank Daniel
Schiéfer, Philip Schmieglt and Johannes Dronner for invaluable discussions and advise. I am very
grateful to my RTM colleagues Michael Cammert, Christoff Heinz, Jiirgen Kriamer and Tobias
Riemenschneider for their support and for the opportunity to work in a great team. I am thankful
for the chance to work with Peter Widmayer on the problem of optimal bulk loading of R-trees.
I would like to express my sincere gratitude to Ben Mills, Eugen Walter, Yannick Stein and
Tobias Ebert for their helpful comments and discussions. I would like to thank Ben for his
patience during the reviewing of this work.

T am extremely thankful to Anne Sophie Knéller for her invaluable support, for her understanding
and patience.

Finally, I would like to thank my family. I am grateful to my parents Gulbara and Kulmuhamed,

to my brother Emil and my sister Lia for all their love, for their encouragement and support.

v

Contents

Introduction
Preliminaries
21 I/OModel.
2.2 Partially Persistent B-tree (MVBT)
2.3 R-tree
Related Work
3.1 Buffer Trees
3.2 Weight Balancing o
3.3 Multiversion B-tree Loading Algorithms
3.4 R-tree Loading Algorithms
MVBT™" Loading Approach for Multiversion B-trees
4.1 Preliminaries L
4.2 Basic Ideas of Bulk Loading
4.2.1 The Problems of Buffer Trees
4.2.2 A Case for Weight Balancing
4.3 Bulk-Loading Details o
4.3.1 Buffer Tree Loading
4.3.2 Weight Balancing oo
43.3 Runtime
4.4 Bulk Update
4.5 Practical Considerations Lo
46 A Classof MVBTTTrees oo i ittt e
4.7 Experiments Lo
4.7.1 Workload Generation
4.7.2 Experimental Setup Lo
4.7.3 Bulk-Loading Results
474 Bulk Update Results

10
14

19
20
26
29
30

Contents

4.7.5 Query Workload Results 59

4.8 Conclusions e 60

5 Query Adaptive Loading of R-trees 61
5.1 Preliminaries 63
5.2 R-tree Bulk-Loading Framework 66
5.3 Sorted Set Partitioning o oo 67
5.3.1 Practical Considerations, 75

5.4 Optimization of Sort Order 75
5.0 Experiments. Lo 78
5.5.1 Data File and Query Profiles 79

5.5.2 Examined Algorithms 80

5.5.3 Sorted Set Partitioning 0oL 81

5.5.4 Order Optimization 85

5.5.5 R-tree for Intervals in Two-Dimensional Space 87

5.6 Conclusions L 89

6 Construction of R-tree-Based Histograms 91
6.1 Introduction. e 91
6.2 Preliminaries 93
6.3 Related Work 95
6.4 R-tree Framework 99
6.4.1 R-tree Histogram 101

6.5 Experiments. 102
6.5.1 Query Models 103

6.5.2 Studied Methods 104

6.5.3 Experimental Results 108

6.6 Conclusions e 114

7 Conclusions and Future Work 117

1 Introduction

Large-scale data analysis allows new insights for research in fields of natural science as
well as social science and humanities. Interdisciplinary research teams and practitioners
use frameworks for big data analysis to understand and explain natural phenomena [117,
16], to predict, prevent and monitor natural and social catastrophes. As the majority of
collected data has two additional dimensions space and time, temporal and spatial index
structures as well as selectivity estimation methods are core components of large-scale
analytic frameworks. They enable efficient query processing.

The recent increase of spatial and temporal data requires efficient algorithms for index
construction and for bulk updates. Many big data applications exhibit not only a high
volume of static data but also inherit data growth. Moreover, some of them display high
update rates [60]. Incoming collected or produced data arrive in batches in order to
reduce transportation and update costs. Therefore, updating an index using one record
at a time is found to be inefficient for sufficiently large batch sizes. For one-dimensional
index structures, there are efficient solutions to cope with high update rates and index
bulk loading from scratch [49, 62, 41].

In this work, we investigate the problem of efficient bulk-loading of temporal and
spatial index structures. We design novel loading strategies for multiversion B-tree
(MVBT) [35] and R-tree [65]. Due to demand for efficient temporal data process-
ing [75, 3, 2, 18, 78, 112], different temporal index structures have been proposed in
the last three decades [105, 112]. Many of them are extensions of B+tree [82, 35, 116].
The multiversion B-tree (MVBT) [35] is the first partially persistent index structure
with optimal worst-case guarantees for inserts, updates, deletes and temporal key-range
queries. Recently, Haapsalo et al. [66] introduced recovery and transactional support for
this structure. Thus, MVBT can be fully integrated in transactional systems. However,
efficient algorithms for bulk loading and bulk updates are available for neither the MVBT
nor for other partially persistent B-trees, e.g. the time-split B-tree [82, 85]. The design
of efficient bulk algorithms for partially persistent B-trees is still challenging [82, 35].

The R-tree is an index structure for indexing multidimensional sets of rectangles [65, 38,

39] and is available in almost all modern database and geographic information systems.

1 Introduction

There are many I/O efficient bulk-loading approaches for R-trees, e.g. [104, 73, 80, 58,
44, 27], yet all of them disregard knowledge of query profiles. We aimed to design a
loading strategy that optimizes average query performance and considers query profile if
it is available. If the query profile is not present then we minimize the volume of minimal
bounding rectangles of the R-tree nodes according to cost models developed by [73, 115,
95]. In this work we show that statistical information about the average shape of a query
rectangle can be used to generate better R-trees. Although the method proposed by [25]
builds an R-tree with worst-case optimal query performance, this method is difficult
to integrate into practical systems. In this work, we are interested in algorithms that
exhibit low system integration cost and are conceptually simple. Therefore, we consider
as a groundwork a sort-based R-tree loading approach.

We summarize our contribution as follows:

e We introduce a novel loading algorithm for MVBT with the asymptotic optimal
I/O complexity. We show that the previously developed technique based on the
buffer tree [24, 44] solves the loading problem only for the special case (if an input
file consists only of insert operations). The general case (a mix of insert, delete
and update operations) cannot be solved using this previous approach [44]. We
also proposed an efficient algorithm for bulk updates. These results are achieved
by a combination of two algorithmic techniques: buffer tree [27] and weight bal-

ancing [28].

e We designed a loading algorithm for the R-tree that optimizes it according to a
widely used cost model [73, 115, 95]. Extensive experimental results show that R~
trees built using our novel approach exhibit substantially better query performance
than sort-based counterparts. The novelty of our technique is that if a query profile
is available the algorithm is able to build better R-trees. We proposed the following
heuristic: firstly, we define the best sorting order using the average shape of the
query rectangle; secondly, we reduce the bulk-loading problem to a one-dimensional
partitioning problem by sorting the input set; thirdly, we find an optimal solution
for this problem according to the cost models proposed by [73, 115, 95]. The

motivation of our heuristic is NP-hardness of the optimization problem [7].

Based on the result obtained from query adaptive loading, we observed that con-
struction of spatial histograms resembles the problem of optimal loading of R-
trees. In both cases, a disjoint partitioning of input rectangles should be produced.
Therefore, we developed a spatial histogram construction method based on the par-

titioning framework developed for R-tree loading. Spatial histograms built using

1 Introduction

our novel method exhibit high accuracy for different data and query distributions.
Our method has only one parameter, minimal page capacity. Moreover, our exten-
sive experimental results show robustness of our method for different query and

data distributions.

This work is organized as follows. In Chapter 2, we briefly review and introduce problem
definitions, the computational model and multiversion B-tree and R-tree index structures.
Chapter 3 presents related work where we describe the essential algorithmic techniques
such as buffer trees and weight balancing in detail. A thorough understanding of these
concepts is required in the following Chapter 4. In this chapter, we present a novel solu-
tion for loading partial persistent B-tree in asymptotic optimal I/O complexity. Chapter
5 introduces a solution for query adaptive loading of R-trees. Here, we present our novel
partitioning framework for R-tree loading and show in Chapter 6 how it is used for con-
struction of spatial histograms. At the end of Chapters 4, 5 and 6 we conclude with our
results for the given techniques. Chapter 7 summarizes future work.

The major parts of this work were published in the following publications [4, 5, 6, 7, 8].

2 Preliminaries

In this section we review multiversion B-tree (MVBT) and R-tree index structures. We
introduce important notations and the computational model. The focus of this work is
the design of efficient loading techniques for MVBT and R-tree (see Chapters 4 and 5).
We assume that the reader is familiar with concepts of tree-based index structures. We
also refer the interested reader to very good surveys on temporal and multidimensional
structures by Salzberg et al. [105] and Gaede et al. [57] as well as the book by Hanan
Samet [106]. David B. Lomet presents in his work a detailed overview of index structures
implementation approaches [83].

In this work, we consider two types of index structures: partial persistent and ephemeral
structures [52]. In contrast to ephemeral structures (ordinary index structures), persis-
tent structures manage both previous and current object versions. If the updates are
allowed on any version we have a general concept of full persistence. For partial per-
sistence, the previous versions are read-only and updates are allowed only on the most
recently created version. The versions produced in the case of partial persistence are rep-
resented as a list and in the case of full persistence a version tree [52]. From a database
perspective “version list” is equivalent to the notion of transaction time. The inserted
items are not physically deleted. They are marked as deleted and are not accessible
at the current state. Partial persistent index structures allow an efficient access either
to past or current states of the database. [35, 26, 116]. Ephemeral structures such as
B—+tree or R-tree manage only the current state.

For brevity, we assume that the input is a sorted set of N triples [ops, item, t;]. Triples
are sorted according to t; € {1,... N} versions. After processing a triple, we transfer
the index structure to a new state. The first element ops € {insert, delete, update} is a
flag. We do not associate any particular algorithm with ops for the underlying structure.
After the processing of a triple [insert,item,t;] an item is assumed to be present in all
subsequent states of a data structure until it is deleted. Processing of [delete, item, t;]
removes an item from the current state and update updates the item value in the current

state. Thereby, we assume that the input set fulfills the following constraints:

e For each triple with a delete flag there must be a preceding triple with an insert

2 Preliminaries

flag and same item.

e For each triple with an update flag there must be a preceding triple with an insert

flag and same item.

e For each triple with an insert flag there are zero triples with the same item or the

most recent triple has flag delete with the same item.

The type of the second element depends on the underlying index structure (e.g. rect-
angle or key-value pair). This allows us to introduce the following notions: bulk loading,
bulk update, bulk insert and bulk delete independently from the underlying data struc-
ture. For example in the case of R-trees, items are axis parallel rectangles. Therefore, the
bulk operation is defined as processing of N triples [ops,item,t;]. The bulk processing
algorithm uses flag ops and version number t; to decide if the items have to be included
in the current state or not. In the following sections, we will see that this corresponds
to a partial persistent file. We introduce problem definitions of bulk operations from
this perspective. Note that this is an abstract definition of the problem and must not
correspond to a real physical representation. Yet it allows us to define problems in a
very generic way, as we assume that we can convert each item from the real input set in

a constant time.

- Bulk loading is the problem of constructing an index structure from scratch using

N triples [ops, item, t;].

- Bulk update is the problem of processing N triples [ops, item, t;] on a non-empty in-
dex structure. Additionally, we define the problem of processing N [insert, item, t;]
or [delete,item,t;] triples on non-empty index structures as Bulk insert or Bulk

delete, respectively.

The first problem that we tackle in this work is an efficient bulk loading and bulk
update of the MVBT structure. In this case the assumption of the input set is fully
compliant with our generic definition. In the second problem addressed in this work, we
study R-tree bulk loading. The input set of loading problem, in this case, consists of
triples with insert flag only. As an R-tree is an ephemeral structure and all flags are
insert, after bulk loading all data is present in a current state. Therefore, we can use
arbitrary ordering for efficient loading of R-trees. Hereafter we use the term loading to

refer to the creation of an index for a given input.

2 Preliminaries

2.1 1/0 Model

The RAM (random-access machine) model does not sufficiently reflect the performance
of I/O dominant algorithms [17]. The main downside of this model regarding external
memory algorithms is the unified memory assumption. The complexity of the algorithm
is expressed in the number of instructions. Each instruction is processed by CPU in
the same amount of time. The model assumes a random access unbounded memory
layout. The time penalty of accessing any memory location is identical [17]. This model
is more or less realistic for small problem sizes that can be processed in main memory. In
I/O dominated external memory algorithms, I/O requests take considerably more time
than other instructions [17]. Moreover, the modern hardware architecture implements
memory as a hierarchy. On top we have fast but small sized CPU caches as well as main
memory and on the bottom we have magnetic disks, SSD and tapes with significantly
larger capacity. Their access time is also orders of magnitude larger in comparison to
cache or main memory access. The actual processing time of the algorithms is often
dominated by disk accesses [17]. In this work we will use the I/O model by Aggarwal
and Vitter [13] as a default measure of the algorithm complexity. Further, we will use
the notion CPU costs for costs obtained using the RAM model for problems that can be
processed in memory.

In the I/O model, the memory hierarchy is simplified by two-level memory architecture.
The main memory is a volatile bounded random access memory with an access time
orders of magnitude smaller than external memory access. External memory is non-
volatile random access memory. For brevity, hereafter we call this memory the disk. It
is partitioned in fixed size blocks (or pages) that are the smallest transfer units between
external and main memory. The problem size considered in the I/O model is assumed
to be substantially larger than the size of the main memory. The model also assumes a
single CPU. However, it allows reasonable performance comparison to external memory
algorithms. In this work we assume that only one block at a time is transported from
disk to main memory (this is complaint with the assumption in [13, 119, 118]). At the
beginning of the algorithm we always assume that the data is located on a disk.

We express the size of the main memory in the number of records M. A disk block
contains B records. By fetching a single block from a disk, we always transport B records
from disk to main memory. Table 2.1 summarizes notations used in this work. We assume
that the input problem occupies n = N/B blocks on a disk. The space complexity is
also expressed in the number of blocks needed on a disk to solve the problem. In the
following we assume that 2- B < M and M << N.

2 Preliminaries

’ Symbol ‘ Description ‘
N problem size (in number of records)
M memory capacity (in number of records)
B block capacity
m = M/B | memory capacity (in number of blocks)
n=N/B problem size (in number of blocks)

Table 2.1: Important notations

In their seminal work [13], Aggarwal and Vitter showed non-trivial lower bounds of
external memory algorithms. One of the major results is that the least number of block
transfers for external sorting is equal to @(% log i %) Other important bounds are
the worst-case 1/O bound for searching in unsorted file is O(%) and the worst-case I/0O
bound for searching in a sorted file is ©(logz N), e.g. using BT tree.

The I/O model does not ideally reflect the processing time of the algorithms in real
world applications. For example, for a magnetic disk there is a substantial time difference
for accessing the set of blocks randomly or sequentially. Therefore, algorithm engineers
should also consider hardware characteristics for performance improvement. In addition,
emerging non-volatile memory technology such as solid state disk or flash devices pose
new challenges for algorithm engineers [15], since there is no gap between random and
sequential access time, yet read access is in general faster than write. Nevertheless, the
I/O model is still a good performance indicator for the I/O intensive external memory
algorithms.

Another interesting computation model that encapsulates memory hierarchy is the
cache-oblivious model by Frigo et al. [55]. On different memory levels data is trans-
ported in different units. For example, from disk to main memory it is about 4KB and
between CPU cache and main memory it is multiple machine words. Parameters such
as available main memory M, block size B are tuned in order to achieve the best perfor-
mance of external memory algorithms in practical application [17]. Additional knowledge
about cache sizes is also used to obtain the best results. External memory algorithms
need an explicit knowledge of particular hardware characteristics. In contrast, the goal
of the cache-oblivious model is to allow algorithm engineers to design algorithms that
exhibit optimal numbers of block transfers on any memory hierarchy without tuning the
parameter M and B for each memory level.

As in the I/O model [13], it assumes a two-level memory hierarchy. Additionally, it
assumes that the data moved between the memory levels using optimal replacement

strategy in memory units of the particular level, and caches, are fully associative [55].

2 Preliminaries

The asymptotic optimal cache-oblivious algorithm exhibits an optimal number of cache-
misses and an asymptotic optimal number of data movements on any memory hierar-
chy [40, 55]. Regardless of the optimal replacement strategy and fully associative cache
assumption, algorithms developed for this model achieve very good performance in real
world applications such as write-optimized index structures for one-dimensional range

searches [41].

2.2 Partially Persistent B-tree (MVBT)

In this section we tackle the problem of managing records in a partially persistent file
consisting of multiple versions. Partial persistence is a well-known concept in compu-
tational geometry [107, 61, 26]. In databases partial persistence is used to manage old
object versions [84, 122] and to enable efficient history querying. Recently, partial per-
sistence has also played a key role in developing robust transactional file systems [102]
and key-values stores [1].

Here the term version describes a record given by the following tuple < k, ts, te,inf >
where k is a key. [ts,tc) represents a version interval in which the key is valid, and in f
is the payload. A versioned record is alive in the most recent version if its t. field carries

“*¥7 Otherwise the versioned record is dead. Versioned records

the special character
can be depicted as intervals in a two-dimensional space, consisting of a time dimension
(x-axis) and a key dimension (y-axis). The i-th version of the partially persistent file
consists of all versioned records < k,ts,t.,inf > with ¢ € [ts,t.). Update operations
are allowed only on the most recent version, but queries are supported on any version.
Whenever an update operation (insert, delete) is posed, a new time stamp now is created
and a new record with version interval [now,*) is inserted (in the case of insert) or a
live record is deleted (in the case of delete). Note that a deletion corresponds to closing
the interval of a live entry by assigning now to the t. field. An update on a versioned
record is simply a concatenation of insert and delete (without incrementing the version
number before delete).

Due to the excellent worst-case performance, a partial persistent B-tree, e.g. MVBT [35],
is used as underlying structure for supporting queries on any version. The leaves of the
MVBT consist of versioned records. In addition, the version concept is also carried over
to the index entries, i.e., an index entry also comprises a time interval [ts;, te;).

MVBT (multiversion B-tree) is an asymptotically optimal partial persistent Bt tree.
It has O(NV) space complexity and supports (key range) queries at version ¢ with the

same asymptotic complexity as an ordinary BTtree that only stores the i-th version.

10

2 Preliminaries

Figure 2.1: MVBT structure

I/O time for the i-th update is O(logg N;). Construction of MVBT is performed by
update and requires O(N logg N) I/Os in the worst case. MVBT is actually a direct
acyclic graph (DAG), providing a condensed physical representation of N Bttrees (one
for each version) [35]. As proposed by Discroll et al. [52], MVBT stores pointers to
historical roots in a separate (BT tree) termed root*. The DAG and root* of an MVBT
are illustrated in Figure 2.1.

The asymptotic bounds on query and update time are achieved by preserving the so-

called weak-version condition: a linear fraction of the capacity d = % in a live node is

reserved for live data. The remaining portion % can be used for historical (dead) entries.
For the sake of simplicity, we use these specific settings throughout this thesis without
loss of generality. We refer to [35] for a detailed discussion on parameter settings.

Reorganization of a live node is triggered if there are not enough live entries in the
node (i.e., the weak version condition is violated) or the physical capacity B is exceeded.
In order to use only linear space, the so-called strong-version condition has to be satisfied:
the number of live entries is to be between % and % for nodes that have just been
involved in a reorganization. Therefore, such a node accepts at least ©(B) updates
(insertions, deletions) before its next reorganization will be triggered.

We discuss the specific reorganization operations of MVBT using the four two-dimen-
sional partitionings of the time-key space shown in Figures 2.2 and 2.3. Each (leaf) node
of an MVBT corresponds to a rectilinear rectangle. Intervals represent the versioned
records; black and red ones refer to dead and live entries, respectively. We assume that
an update at version t; triggers a reorganization. Reorganization of a node always starts
with a time split where live entries at version t; are copied from node v to a new live
node v; (see Figure 2.2(a)). If the strong version condition is violated for v;, additional
reorganization steps are triggered. If v; has more than % live entries, a key-split is
performed first; see Figure 2.2(b). Similar to a split in a BTtree, entries are evenly
distributed among two nodes using a split value from the key dimension.

If v; contains fewer than % live entries, a merge with a live key sibling node v,, is

11

2 Preliminaries

[ta»' t,) [t[»'*) 0?;‘ [to’ t,) [t,"*)
21y ;
vl ~ 11
ks_] Vl
— kv,
I, L, Time l 2 Time
(a) Time split (b) Key split
Figure 2.2

triggered. We can find live siblings by accessing the parent node. After a time split on

Un, live entries from v,, are inserted into v;, as seen in Figure 2.3. If the number of live
7B

8 7
is illustrated in Figure 2.3(b). Thus, the two new live nodes satisfy the strong-version

entries in v; is greater than an additional key-split has to be performed on v;. This

condition. Hereafter we use the term node reorganization to refer to time split, merge or

key-split. Note that at most two new nodes can be created during one reorganization.

°>)\ [to’ t,) [ti’*) 5\ [to’ tl) [ti’*)
= vrr \% = v V”
/ 0 —
v k. = == v,
kv | — I —] i kv — =
io ii Time to ti Time
(a) Merge (b) Merge-Key-Split
Figure 2.3

Algorithm 1 describes the insert procedure of MVBT given a record e =< k,inf > at
time t5. The path to a live leaf node is computed in lines 1-4. In each level chooseSubTree
searches for the matching live index entry using key k. Afterwards, the versioned record is
inserted in the leaf node. If either the weak version condition or the capacity constraint
is violated, a reorganization of the leaf node will be triggered (lines 5-7). After the
reorganization process is finished, we update time interval(s) of the deleted node and
insert the new live index entry or entries in the parent node (lines 8-18). Then we
recursively check if a reorganization of the parent node is needed.

If the live root is reorganized, a new live root is created (lines 10-15) and a correspond-
ing index entry is inserted in root*. In the case of an additional key-split, the height of

the live MVBT tree increases (lines 12-13). Otherwise, the height remains the same and

12

2 Preliminaries

the live root is replaced by its temporal successor (line 14-15).

We can arrange entries in an MVBT node either according to the key or to the time
dimension. Sorting according to the time dimension seems to be the natural choice,
since we can simply append new records after reorganizations. The search cost during
the insert procedure is linear in B. Additionally, in the case of a split we also need to
find a median in a current live set with at least linear CPU costs. Alternatively, we
can manage two lists, one for dead entries and one for live (this would not increase the
amount of space of the node needed for entries on a disk, as only a constant amount of
memory is needed to represent both lists such as number of elements). With this second
arrangement only the dead entries list is appended and sorted according to the time
dimension with the live list being sorted by the key dimension. If a key is deleted we
remove it from the live list and append it to the dead list. This would enable us to search
the node with only logarithmic CPU cost. Additionally, logical delete of an entry can
be implemented using logarithmic CPU cost, for example using a balanced search tree
for live entry list. This organization also improves CPU costs of key-splits and a sibling
search in the case of merge operation. Although the node layout does not influence
theoretical I/O cost, we can improve CPU performance in practical applications.

The root structure is organized as a BTtree. We use end time stamp of the time
interval to index dead root entries. This allows us to efficiently insert entries into root™*,
since the entries are indexed by the order of deletion time. We append a deleted root
entry to the rightmost leaf node of the tree. Thus, we build root* bottom-up with
amortized I/O cost of O(1) per deleted root entry. root* yields a time partitioning of
the input set. These are then used for an efficient query processing on old versions.

In order to support efficient key-range queries over a given time interval a leaf is
linked with its predecessor(s); see line 7 in Algorithm 1. Every leaf manages up to two
backward pointers to its temporal predecessor(s). This allows us to start the processing
at the right border of the search rectangle and to traverse backwards through the leaf
level. First, the root is determined that is responsible for the most recent version of the
time-range. Thereafter, we find all leaves within the key-range that belong to the most
recent version of the time-range. Starting from these leaves, we use the backward links
to locate all the other required leaves. The details for query processing are given in [50].

Haapasalo et al. [66] introduced transaction and recovery algorithms for MVBT. They
called their structure transactional multiversion B-tree (TMVBT). In order to support
transactions on MVBT node reorganization algorithms were modified. The authors show
that TMVBT allows one write and multiple read transactions at a time while maintain-

ing all worst-case performance guarantees of MVBT. They developed their algorithms

13

2 Preliminaries

for multiversion concurrency-control protocol (MVCC) [45]. MVCC assigns versions
incrementally to a transaction, such that transactions are allowed to see the data of
transactions that were committed before. All the records updated by the transaction
are assigned the version number of this transaction. To this end, the first modification
of an MVBT is to support multiple records with the same version.

As only one write transaction at a time is allowed, TMVBT nodes are partitioned
into groups. The active nodes are alive, contain data of a current write transaction
and their start time is equal to the version of the write transaction. The non-active
nodes contain data of committed and uncommitted transactions. TMVBT enforces
the rule that active nodes have only a single parent. The authors introduced modified
reorganization operations for active and non-active pages. For example, for the set of
active pages standard B+tree algorithms are used, while for non-active nodes modified
MVBT node reorganizations are applied. All records of the current write transaction
are copied to a new live node and deleted from the dead node. Since there are two types
of nodes, merge operations between two type of nodes are also introduced. We refer
the reader to [66] for details of TMVBT. Therefore, MVBT can be fully integrated in

modern transactional database systems.

2.3 R-tree

The R-tree index structure owes its popularity to its conceptual simplicity, good average
query performance and its broad application field. Since the seminal work of Antonin
Guttman [65], R-tree has attracted researchers both from theoretical and applied fields.
In the last three decades, scientists and engineers have done large amount of work to
improve the R-tree query performance. There are several milestones in the research
history of R-tree, for example the popular R-tree variant R*-tree [38], the first R-tree
with asymptotically worst-case bound on window queries [25], cost models for query
performance prediction [73, 115, 95|, and sort-based as well as top-down bulk-loading
algorithms [104, 73, 80, 58, 44, 27].

An R-tree is a balanced tree, proposed by Guttman et al. [65], for indexing d-
dimensional set of rectangles. Figure 2.4 displays an R-tree built for a set of two-
dimensional axis parallel rectangles. In the I/O model nodes of R-tree are mapped
to pages. Therefore, except for the root node, R-tree nodes have a capacity between
B and minimum occupation b < [B/2]. All leaf nodes are on the same level. Leaf
nodes contain input records. This can be object reference (disk address, RID or TID) or

the object itself. Additionally, we provide a function that maps input record to an axis

14

2 Preliminaries

Algorithm 1: Insert
Input: Entry e, Time Stamp ts
cR < root;
while cR does not point to leaf do
node < GetNode (cR) and push node in Path;
L cR <— ChooseSubTree (node, e, ts)//search live index entry;

W N =

9]

InsertLeaf (leaf < GetNode (cR) , e, ts);

idz[] + SplitNode (leaf, ts)// perform reorganization if needed, if merge or
merge-key-split then find neighbor;

7 link created successor nodes with leaf;

8 while idx[] is not null do

=]

get parent node, logically delete cR, parent <— pop Path;
10 if parent is null then
11 store cR as historical root ;
12 if was key-split then
13 L create new root node and insert new live successors idx[] in it;
14 else
15 L replace root with new created live successor;
16 else
17 insert new live successors idz[| in parent;
18 idz[] - SplitNode (ParentNode, ts);

parallel rectangle. Further, record sets belonging to leaf nodes are disjointed. An index
entry stores a node address and a minimal bounding rectangle (MBR). The MBR of an
internal node is a union of child node MBRs. The leaf node MBR is computed over the
set of leaf records using data-dependent map function. Without loss of generality, we
assume that this function is the identity such that the input records are axis parallel
rectangles or MBRs.

The basic query types supported by R-tree are point and multidimensional range
query (aka window query). The point query computes all record MBRs that contain a
d-dimensional query point g,. A window query computes, for a given axis parallel query
rectangle g, all record MBRs that overlap query ¢. Since g, is a special rectangle, we treat
point query as a special case of window query. To answer a window query we start at the
root of the tree. We compute, for example in depth first manner, all child rectangles that
overlap q. We process this step recursively until all overlapping nodes have been visited.
In the worst case all nodes can be visited. Therefore, a query should visit only nodes

that contribute to the query result. The method of node MBR generation influences the

15

2 Preliminaries

A B C
Ir3,r4,r1 I I r2,r5,r9 | | r7,16,18 I
r2 9
] =3 m] (1=, ©
= L=
5 7
O O
6 A C
3
1 ==

Figure 2.4: An R-tree with page capacity B = 3 and minimal page capacity b = 2 build
for a set of rectangles ry,...,rg

query performance. Guttman [65] noticed that node MBR area should be minimized to
achieve good average query performance, since this would minimize the probability of
overlap with a query rectangle. Later, this was confirmed by [73, 115, 95].

The authors in [12, 74, 68, 25] show that the lower I/O bound for a given window query
is Q((%)l_l/ 4t r/B) where r is the number of results. However, in practical application
R-tree exhibits better average 1/O cost. The average good query performance is owed to
sophisticated heuristics applied during updates on the R-tree [65, 38, 39, 104, 73, 80, 58|.

The single update operation delete or insert is applied in top-down fashion. The worst-
case insert and delete cost is equal to O(logg N). Generic insert procedures start at the
root of the tree. Then the best child is chosen for descent according to some heuristic.
These steps are repeated recursively until a leaf node is reached. If applicable, node
MBRs on the path are adjusted, for example if the node MBR only partially contains
the record MBR. Guttman in [65] proposed selection of a child entry such that its MBR
would have the smallest area increase. In the case of tie breaks a child node with the
smallest MBR area is chosen. Beckmann et al. [38] also consider the sum of the overlap
areas.

Similar to BTtree, node overflow is handled by a split. However, the way the node
records are distributed between the two new nodes has a larger impact on query perfor-
mance. The goal of a split algorithm is to partition B + 1 entries into two partitions
such that each partition has at least b entries. Not all possible splits are good. We define
the MBR of a partition as union of entry MBRs of this partition. Guttman proposed
generating such partitions that minimize MBR area [65]. He introduced two algorithms,
one with a linear CPU complexity O(B) and one with a quadratic O(B?). The idea
of both algorithms is to find two extreme MBRs, so-called seeds. They will build two

16

2 Preliminaries

partitions. The quadratic algorithm finds two MBRs with the largest value of the area
of their union MBR subtracting the two MBR areas. Then it assigns the remaining rect-
angles to the partitions in a manner similar to inserting algorithm; for example, entry is
assigned to a partition with a minimum enlargement of partition MBR area. The linear
algorithm finds two extreme MBRs for all dimensions with the highest lower left point
and lowest upper right point along the particular dimension. Then the distance between
extreme corners is normalized by the side length of MBR computed over B + 1 entries
for a particular dimension. The pair with a highest value are chosen as seeds [65].

Beckmann et al. [38] introduced the most popular split variant used in modern
database systems. It has O(Blog B) CPU complexity and their variant of R-tree called
R*-tree exhibits very good query performance. The idea is to sort MBRs for each
dimension and quantify (B — 2b + 2) possible splits for each dimension. The MBRs
are sorted twice for each dimension using the lower left and the upper right corners. The
authors proposed three metrics to quantify the split quality: 1. the sum of partition
MBR area, 2. the perimeter of partition MBR and 3. the overlap of partition MBR.
Their method is a heuristic, yet R-trees built with their method display good query
performance in comparison to counterparts. Becker et al. [34] proposed algorithms
for computing optimal split partitioning according to one of these metrics with a CPU
complexity equal to polynomial with a degree proportional to the number of dimensions.
They also derive a lower bound (B log B) for a computation of this partitioning.

The authors in [38] also considered minimizing perimeters of the MBR. This gives
a preference to square-shaped node MBRs resulting in compact representation of tree
nodes, since for a given area a square shaped rectangle minimizes the perimeter [38, 57].
Beckmann et al. [38] investigated different strategies for defining the best split. The
following strategy exhibits the best result. Firstly, the best dimension is defined. The
best dimension is one with the smallest sum of perimeter metric (all possible splits are
considered for this dimension). Among the splits on this dimension the one with the
smallest overlap is chosen; in the case of tie breaks area metric is considered. The split
is then performed using a hyper plane perpendicular to the sorting dimension. The
authors also proposed other techniques for query performance improvements such as
forced reinsert. Instead of performing a split in the case of node overflow a fraction of
node entries are reinserted in the R-tree. We refer the interested reader to [38, 57] for
details. In practical applications this option is often skipped due to high CPU and I/0O
costs as well as negative impact on concurrent transaction processing.

Delete operation finds records using its MBR and if it is present deletes from a leaf

node. If applicable, node MBRs on the way from leaf to root are adjusted. However, in

17

2 Preliminaries

the case of node underflow, in contrast to BT-tree, delete operations in R-trees originally
proposed by Guttman [65] do not execute merge or share reorganization. If a leaf node
has fewer than b entries we remove its index entry from its parent. Then the remaining
entries are added to a “re-insert” set. We recursively go up the path and check for an
underflow. At the end of the procedure, we insert all entries from the re-insert set in a
tree using insert procedure. We place entries in their original levels. Since this operation
causes CPU and I/O overhead, we opt for local merge and if applicable subsequent split
operation instead (or we apply the global rebuilding). The merge neighbor is defined
using MBR of the underflow node as if we insert this MBR in the parent node. We refer
to Bercken et al. [42] for implementation details. The works by [76, 77, 67] introduce

algorithms for transaction and recovery support for R-trees.

18

3 Related Work

In this section we review bulk-loading techniques for multiversion B-trees and R-trees.
Loading algorithms can be roughly classified into three groups: tuple-by-tuple, bottom-
up loading and top-down loading. First, we present the core generic loading algorithms.
Afterwards, we discuss related work for specialized loading approaches for MVBT and
R-trees. We refer the interested reader to Jeffry Vitter’s book [118] as well as the survey
by Arge et al. [30]. They present many algorithmic techniques for external memory
used in this work.

Although more I/O efficient loading techniques exist, the simplest loading method is
to execute insert procedure for each input object [49, 35, 65]. If the time complexity of
the insert procedure is O(logg N), then N input objects are inserted using O(N logg N)
I/0Os. Hereafter we call this type of loading tuple-by-tuple. Both R-tree and MVBT can
be loaded using this approach. In practical applications, time efficiency of this method
can be improved by utilizing a page (node) buffer. However, the improvement rate
depends on page replacement policy and on an ordering of insert operations.

A more I/0O efficient technique, known from B-trees [49, 63], is to build an index in
bottom-up fashion, starting from the leaf nodes. For now, we assume that an input
data set is sorted according to an appropriate criterion. A core variant of this technique
creates a leaf node and its associated index entry for each B (or a fraction of B) elements
from a sorted set. In the next step, these index entries are used as an input set for the
next index level generation. Index entries are processed according to the order of their
generation in the previous step. These steps are recursively repeated until fewer than
B elements remain. Finally, a root node is created. The loading I/O time is equal to
O(N/B). Each iteration reduces the input set by a factor B. However, if the data is
not sorted, we need at least @(%logM/B &) [13] 1/Os for sorting. Thus, the overall
I/O costs are dominated by the I/O cost of external sorting. We consider sort-based
bottom-up loading as a two-step approach: first, we sort the input data and afterwards
level-by-level recursive construction is applied. Sort-based bottom-up loading of B-trees
reduces the build time by at least factor B compared with tuple-by-tuple solution. The

advantage of this technique is its conceptual simplicity. Moreover, since an external

19

3 Related Work

sort algorithm is available in most database systems, we regard implementation and
integration costs as very low. This approach is also applicable to R-trees. It has been
found that a sorting according to space-filling curves leads to R-trees with good query
performance [104, 73].

Unfortunately, this technique is not directly applicable for bulk-loading MVBT. In
partial persistence we need to preserve strict temporal order of input records. Con-
structing MVBT can be seen as a two-dimensional sweep line algorithm, where at each
event on the x-axis (time axis) one of the operations insert, delete and update is exe-
cuted [61]. Although input entries are already sorted according to their time stamps,
we need to manage a dynamic ordered set of live keys in order to build correct MVBT.
However, we can still use the tuple-by-tuple approach that corresponds to the described
sweep line analogy. However, we are at least a factor B away from our desired com-
plexity. To tackle this problem, we adapt top-down loading technique based on buffer
trees [22, 23, 24, 44, 27].

3.1 Buffer Trees

Arge developed an external memory data structure called buffer tree for off-line (batched)
problems that efficiently utilizes available memory of size M [22, 23, 24]. The general idea
is to process and push down elements in batches. For this purpose, buffers of size equal
to the portion of available memory are attached to the internal nodes. This technique
transports ©(M) elements with 1/O costs of ©(M/B) between two levels. This yields
% amortized I/O cost per transported entry.

The buffer tree algorithm empties the buffer only after they are filled completely, in
order to amortize I/O cost for a set of operations. In contrast to a BTtree, a record
is pushed towards the leaf node “lazily” after several buffer emptying processes. This
defers execution of a single operation such as insertion of an entry. To solve off-line
problems efficiently, delete and update of an entry are also processed “lazily”. Lars
Arge modeled this by attaching the time stamp of the operation ¢ and operation type
ops € {insert,delete,update} to an entry managed by the buffer tree. Hereafter we
assume records have the following format < ops, k,inf,t >: k is a key of the record, t
time stamp of operation, ops operation type and inf information payload (see Section
2). For brevity, we consider insert and delete operations.

One of Arge’s main results is that input data can be sorted using an optimal number of
I/Os only using the insert procedure of the buffer tree. In this way, the technique is also

applicable for problems where the complete input is not present at the start of loading,

20

3 Related Work

since the input is processed in sufficiently large batches iteratively. He also proposed
and devised I/O-efficient solutions based on buffer trees for off-line (batched) problems
in the fields of computational geometry and graph problems. Later, the buffer tree ideas
were used for designing I/O-efficient loading approaches for R-trees by Bercken et al.

[44] and Arge et al. [27].

A

Fanout O(M/B)

Logi(N/B)

v

Figure 3.1: Buffer Tree Architecture [23]

The basic variant of the buffer tree is a height balanced (a,b) search tree [23, 69]
(as shown in Figure 3.1). Each internal node has a fanout between a = M/4B and
b = M/B (number of routing elements). However, leaf nodes have a capacity of B
elements. Hence, the height of a tree is equal to O(logy; p N/B). Each internal node
has a buffer of capacity M/B pages attached. Additionally to leaf and internal nodes,
we define the parent nodes of leaf nodes as “leaf buffer nodes”. As a buffer tree is an
(a, b)-tree [69], violation of a node capacity invariant is repaired by a series of rebalancing
operations such as fuse, share and split. If a node has fewer than a children, depending
on the child number of neighbor node either a fuse or share operation is executed. The
fuse merges two neighbor nodes. The share operation redistributes entries between two
neighbors. If a node has more than b children the split is then executed creating one more
node. As the buffer tree manages buffers, rebalancing operations are slightly modified.
We will now review the insert algorithm of the buffer tree presented in [23].

The insert procedure starts at the root of the tree. A buffer is defined as full if it
contains more than M /2 records. After collecting B records in memory in a single block,
if a root buffer is not filled completely, we append a block to a buffer. Otherwise, we
trigger the buffer emptying process. Except for nodes that reference leaves, we first load
M /2 records into memory and sort them according to the key. As both delete and insert
operation with the same key can be present in the same buffer, we delete corresponding
insert delete pairs (according to their time stamps). Then we iterate through the record
sequence and append them to child node buffers according to the keys. Since the number
of child nodes is ©(M/B), we load one non-full block in the memory of each child buffer
and ©(M/B) index entries associated with child nodes. If all child buffer blocks are full

21

3 Related Work

we allocate a new one. For all child nodes with more than M /2B full buffer blocks we
start the buffer emptying process recursively. In contrast to a root buffer, the buffer of
an internal node can contain more than M /2 records, for example, all records of a parent
buffer are pushed to single child buffer. The cost of buffer emptying on internal nodes
is bounded by O(M/B).

We do not empty “leaf node buffers” until all of the internal nodes with full buffers
above are processed. The buffers of “leaf node buffers” are completely emptied. The
buffer emptying process sorts the buffer records and deletes corresponding insert delete
pairs. Let k be the number of leaf nodes of node v. The process loads and merges leaf
node records with sorted buffer records in a single list of blocks.

Then for each corresponding block we create a leaf node. At this point, routing
elements are modified in the parent node. If the number of resulting leaves is greater
than k then split rebalancing is executed. If applicable we continue splits on the way
from the leaves to the root. The buffer of the internal node can be redistributed between
the new and old node. The I/O cost of split rebalancing is bounded by O(M/B) 1/0s,
as the node buffers on the path from new leaves to root have no more than M /2 records.

If the number of resulting leaves is less than &, then a list of “dummy” blocks (that
correspond to deleted leaf pages) is created such that the number of leaves and dummy
blocks is k. Dummy blocks of node v are processed one by one, executing the following
steps. The buffer emptying process deletes one dummy block of v and checks balancing
condition on v. In contrast to (a,b)-tree rebalancing, the buffers of the neighbor node
and the violated node buffer are emptied before share or fuse operations. If applicable,
rebalancing is applied on the way from v to root. As we push buffer records of sibling
nodes, we cannot prevent buffer overflow of other leaf buffer nodes. In this way, other
buffer leaf nodes could overflow due to buffer emptying. In this case, we execute the
emptying process on this node first. Therefore, after deleting one dummy block we
need to wait until all rebalance operations are complete, in order to synchronize buffer
emptying processes.

Recall, since buffer leaf nodes are processed only after buffer emptying processes on
internal nodes are finished, internal node buffers are not full (have fewer than M /2B
blocks). Each rebalancing operation has costs bounded by O(M/B), since we need to
process M /B buffer blocks of two nodes, modify routing entries and post changes to a
parent node.

Arge showed that a buffer tree sorts N records using asymptotic optimal numbers of
I/Os. To sort the data using a buffer tree the data is loaded into an empty buffer tree

and then all buffers are emptied in a breadth first manner. The cost of loading of N

22

3 Related Work

records is bounded by O(% log M X). The cost of buffer emptying is O(4%). On each
node on level | we pay O(2%) 1/Os after each M /2 operation. I/O costs for all levels are
then O(% log i X). The cost of any rebalancing operation is also bounded by O(%).
As the buffer tree is an (a,b)-tree, the number of rebalancing operations is bounded by
O(N/B + M/B = N/M) [23, 69]. Thus, the I/O cost of all rebalancing operations is
O(N/B). The emptying of all buffers is bounded by O(N/B), as there are O(N/M)
buffers and single buffer emptying I/O cost is bounded by O(M/B).

Inserting NV records in a buffer tree and subsequent emptying of all buffers produces
a sequence of sorted blocks. The block size is O(B). This fact is used by Bercken et
al. [44]. The authors developed a generic loading algorithm using the buffer tree of Arge.
The index structure for example the R-tree is built recursively level by level. The loading
approach first builds the leaf node level using a buffer tree technique in the same manner
as if it were used for sorting. The associated index entries of the leaf nodes are then used
for index level generation. These steps are repeated until fewer than B records remain.
At this point, we create a root node of the index. The proposed algorithm is applicable
for loading only; bulk updates are not supported.

In each step, a modified buffer tree is used for constructing the current level’s entries
for the index structure. The loading algorithm loads entries into an empty buffer tree
and subsequently empties all buffers. The buffer tree uses a routing algorithm of the
underlying structure for pushing elements one level down. The leaf node level is built
using O(%log% %) At each round of the loading, the input set of a buffer tree is
reduced by a factor B. In this way, we obtain a geometric series for the overall I/O cost
that is also bounded by O(% log% 2.

Their loading approach can be applied for a wide range of index structures. However,
loading of MVBT is possible for the limited case of insertions only. We discuss problems
of buffer trees for MVBT loading later in Chapter 4.

Arge et al. [27] proposed an improved version of the buffer tree loading algorithm
for R-trees. This supports loading as well as bulk insertion, deletes and updates. In
contrast to buffer trees [23, 44], it does not use nodes with a high fan-out (0(m)). Their
loading approach solves the loading problem more elegantly by attaching the buffers into
internal nodes of the R-tree as and when required. This allows us to execute efficient
bulk operations without changing the node layout of the tree. Due to these buffers,
the R-tree insert procedure is slightly modified. Their approach follows the same idea
of processing elements in batches. Conceptually the proposed structure is a buffer tree
with a fan-out ©(B) and buffer size M /2. However, the buffers are attached to the nodes

on levels i - |logg 2%].

23

3 Related Work

o)

fanout O(B) g
=
_@m O N\ g
: ¢
g
ot
T
C 1][]

Figure 3.2: Buffer tree by Arge et al.

Figure 3.2 depicts the architecture of the proposed method. The basic idea is to to
load a sub-tree in memory to route records from a buffer to the next buffer level. Thus,
records are pushed logp % levels down without any I/O. As in a buffer tree, buffers are
emptied only after they are completely filled. Except for the lowest buffer nodes, buffer
emptying pushes records in batches of size M /4. This guarantees that there is no buffer
with more than M /2 records present. The lowest buffer nodes (nodes on level |logp %J)
are always completely emptied. The sub-tree of height |logp 2% | has O(M/2B) nodes.
Thereby, a buffer size M /2 and a sub-tree fit in main memory of size M. The I/O costs
of buffer emptying is equal to O(M/B) 1/Os, since we load M /2B buffer pages and
M /2B nodes for routing.

The loading process is similar to buffer tree loading. However, the R-tree routing
algorithm is used. As in the buffer tree, rebalancing is executed in a bottom-up fashion
after emptying lowest buffer nodes. For bulk loading an R-tree, only the split rebalancing
operation is considered. Similar to the buffer tree, the split operation on buffer node
redistributes buffer content between old and newly created buffer nodes.

The I/0O cost of split operation is again bounded by O(M/B) 1/Os. The overall R-tree
bulk loading is executed in two steps. N spatial elements are inserted into the R-tree
with buffers. Then all buffers are emptied. Arge et al. showed that this technique builds
an R-tree using the same number of 1/Os as external sorting. Similar to buffer tree cost,
it follows from buffer emptying and rebalancing costs.

The advantage of the new buffer technique is support for bulk updates, inserts and
deletes. For brevity, we review bulk insert and delete procedures only. Bulk insert is a
minor modification of a bulk-loading procedure. Instead of starting with an empty tree,
bulk update attaches empty buffers to an existing R-tree. Then N records are inserted
in an existing tree similar to the first step of bulk loading. After the last entry is inserted

in a root buffer, all buffers are emptied in a breadth first manner. Let N’ be a number

24

3 Related Work

of records present in R-tree before bulk insert, then the worst-case I/O cost is equal to
N N'+N | N’

With R-tree bulk loading and bulk insert, emptying the lowest buffer nodes is handled

recursively. There is no need to wait before all above buffer nodes are emptied, since
only split rebalancing is considered. After buffer emptying of the lowest buffer node each
buffer contains at most M /4 records on the way to it; redistributing of buffer contents
does not trigger buffer emptying processes. Bulk delete on buffer R-tree introduces a
merge rebalancing operation. After delete operation reaches the leaf nodes, changes are
posted to the parent nodes. If the buffer node violates the capacity condition it is merged
with its neighbor. The neighbor is computed using the routing algorithm for R-trees.
Additionally, for buffer nodes buffer content is also merged. Merging of buffer nodes
could also trigger buffer emptying, as two neighbor nodes can contain M /4 records. In
this case the buffer emptying processes could interfere with each other. Arge proposes
modification of buffer emptying on the lowest buffer nodes. Similar to a buffer tree [23],
lowest buffer nodes are emptied only after all buffer nodes above are emptied. After
emptying all upper buffer nodes, we process buffer emptying of the lowest buffer nodes
one by one. If rebalancing causes buffer overflow on upper levels then all affected buffer
nodes are emptied before the next lowest buffer is processed. Arge also presents in his
work other bulk operations; we refer the interested reader to [27].

The buffer tree technique [22, 44, 27] solves the index-loading problem for a wide
range of index structures with the same asymptotic costs as for external sorting. In
the case of loading, in general, they introduce implementation and execution overhead
due to buffer management, bookkeeping of buffer emptying processes and bottom-up
rebalancing operations. However, buffer tree [27] is applicable for a wide range of bulk
operations such as insert, update and delete. Moreover, authors propose hybrid methods
mixing sort-based and buffer tree techniques [27]. Recently, the buffer tree technique
has been adapted for the design of efficient index structures optimized for flash and solid
state drives [15].

In our work, we consider both techniques; we propose novel sort-based loading ap-
proach for R-trees. The algorithm takes a query profile into account to build better
R-trees according to a widely used cost model. For MVBT we designed a novel loading
algorithm. It uses the buffer tree of Arge et al. [27] as a groundwork. However, we
designed a novel buffer tree technique that not only solves the loading problem efficiently,

but also gives other advantages related to implementation complexity and concurrency.

25

3 Related Work

3.2 Weight Balancing

Our approach for loading MVBT uses a combination of buffer tree and weight balancing
technique. Weight balancing is an algorithmic technique and is used for example to
amortize the costs of reorganization operations on data structures. Mark Overmars
presents generic algorithmic techniques for the design of data structures in his excellent
work [94]. Firstly, we present the application of this technique in the case of partial
rebuilding of search trees. Let us consider a binary search tree structure that enforces
some node balancing condition using local rebalancing operations (rotations). In some
cases, it is beneficial to defer (or not to execute) local rebalancing operations and rebuild
the sub-tree of a highest node that ran out of balance [94]. Sub-tree rebuilding is done
by constructing a perfectly balanced tree (using the sub-tree nodes) in a bottom-up
fashion. This can be done in a linear number of operations. Weight-balanced binary
search trees proposed in [91] allow us to amortize the cost of partial rebuilding. The
average insertion cost of such trees using this approach is logarithmic.

To the best of our knowledge weight balancing was first proposed by Nivergelt and
Reingold [91]. They introduced a class of balanced binary search tree BB[a]-tree. Let
w(v) be a number of nodes in a tree with root v (inclusively v). Further, we define v
and v, as a left and right child of v. They define the balance p(v) = wlv)

- w(v)
by the fraction of the number of nodes in a left sub-tree of v to the number of nodes in a

of tree node v

sub-tree with root v [91, 94]. The node balance is bounded by parameter «. Each node
of a BB[a]-tree fulfills balance constraint a@ < p(v) < 1 — a.. The tree has a logarithmic
height for o > 0. If the node balance is violated due to insert or delete operation, local
rebalancing operations such as rotation or double-rotation are performed. Blum and
Mehlhorn showed that for % <a<l- ? [46, 94] at most two rebalancing operations
are needed after insert or delete.

Although the worst-case time to insert an element is bounded by O(log N), Overmars
showed that for 0 < a < 3 BB[a]-trees the average cost of insert is equal to O(log N”)
operations using the partial rebuilding technique. N’ denotes a maximal number of
entries in a tree at some point of time [94]. If a sub-tree with root v is perfectly balanced
then Q(w(v)) inserts and deletes can be performed on a sub-tree of v before it violates the
weight condition. As rebuilding costs are also bounded by ©(w(v)), we obtain the upper
bound. This can be shown using the accounting method. Every time an entry passes
through the node we put one cost unit to a bank account to pay a future rebuilding. Per
operation we put at most O(log N') cost units [94]. Therefore, BB[a]-tree can be built

without implementing standard rebalancing operations very efficiently.

26

3 Related Work

Inspired by the ideas of partial rebuilding on BB|a]-trees, Lars Arge and Jeffrey Vit-
ter [28, 29] designed an elegant structure: weight-balanced B-Tree (WB-tree) for the
I/O model. Their goal was to design an I/O efficient dynamic structure for interval
managing. The proposed external interval tree efficiently answers stabbing queries [54].
For a given set of intervals a stabbing query returns all intervals that contain a query
point [29]. Using WB-tree Arge et al. achieve amortized worst-case bound for update
operation on the dynamic version of an external interval tree.

WB-tree is a weight-balanced variant of the B-tree. WB-tree maintains weight infor-
mation for each node. In contrast to B-tree, the insert procedure additionally updates
node weights. Node splits are triggered based on the node’s weight information. For
now we consider insertion only.

The weight w(v;) of a leaf node is defined as the number of elements stored in it.
Function p(v) returns the parent node of node v. The weight of internal node v is
defined recursively as w(v) = > (,_,) w(c) the sum of its child weights. Thereby,
internal node weight w(v) is equal to the number of elements in descendant leaves of v.
The ratio of the node weights on the same level is constant. Node weight w(v) increases
exponentially with each level.

WB-tree guarantees that the split operation (rebalancing) on node v occurs after w(v)
insert operations. In this way, if the rebalancing operation costs are bounded by the node
weight O(w(v)) then the amortized cost is equal to O(1). We use this crucial property for
developing our solution, since this allows us to estimate the least number of operations
needed before the next rebalancing operation occurs. For example, in combination with
a buffer tree we estimate the number of operations that can be pushed down without
violation of MVBT conditions.

In the following we review WB-tree in detail. Node weight w(v) is defined using the
so-called branching parameter a > 4. WB-tree leaves are on the same level and have
weights between k and 2k — 1. Internal node v on level [has a weight less than 2a’ - k.
Except for the root, the internal node on level [has a weight larger than 1/2a'k. The
root has more than one child.

Crucial properties of WB-tree are (the interested reader is referred to [28] for details):
1. Except for the root, all nodes have between a/4 and 4a children. The root has between
2 and 4a children. 2. The height is equal to (log,(N/k). 3. After a split of node v on
level [into two nodes v and vy , at least a'k/2 inserts have to be performed below vy (or
vg) before it splits again. After a new root r in a tree containing N elements is created,
at least 3V insertions have to be performed before r splits again.

A WB-tree can be implemented on top of a B-tree, for example by attaching a weight

27

3 Related Work

counter to index entries. Although this technique is conceptually simple, we need to
slightly modify the insert and split procedures. Firstly, the insert procedure updates
node weights. We increase the weight counter of a node by one during the descent
from a root to a leaf. This introduces a constant I/O overhead in comparison to I/O
complexity of B-tree insert algorithm. Secondly, the split procedure is also modified. Let
us consider node v on level [. The split decision is made using child weights instead of
the number of entries. We iterate through the sequence of child entries (sorted according
to the key domain) and sum up their weights. We stop iteration if the current sum is
greater than 2w(v) (half of the node weight). Then, we split node v at the child position
where we stopped. The WB-tree properties guarantee that for branching parameter
a > 4 an almost balanced split can always be computed.

Delete operation on a WB-tree is implemented using the global rebuilding strategy [29,
94]. We illustrate the key idea of global rebuilding using the following example. We refer
interested readers to [94, 29| for details. Using this global rebuilding we achieve worst-
case bounds for delete operation without handling local rebalancing. Instead of physical
deletion we mark elements as deleted. Say we allow at most N/2 elements to be deleted
before we reorganize the tree. After a certain fraction of elements are marked as deleted,
say 1/4N, we start to construct a second tree lazily containing 3/N/4 elements from the
first one. We still use the first tree for queries as well as insert and delete operations.
However, for the following 1/6-(3N/4) insert/delete operations we insert 6 elements in a
new tree using the insert procedure. Additionally, we store these new operations. They
need to be performed on a new structure after it is completely built, since we cannot use
the new structure until these operations are executed. We use the next 1/6-(1/6-(3N/4))
operation on the old structure to insert 1/6 - (3N/4) temporarily stored operations with
continuing to store incoming operations. This process continues recursively until all
temporarily stored operations are executed on the new structure. At this point the
new structure can be used and the old one discarded. Using these parameters it can
be shown that only one tree is under construction at a time, since the last temporarily
stored operation is executed within 1/4 - (3/4N) operations [94, 29].

Arge et al. uses WB-tree to amortize split costs of proposed interval tree resulting
O(logp N) insert costs. One variant of their interval tree is a WB-tree with a branching
parameter a equal to @ and leaf capacity 2k = B. Similar to the main memory interval
tree [54], interval end points are used to index intervals. Nodes have associated secondary
structures that contain up to w(v) intervals. For a detailed discussion of the external
interval tree we refer to [29]. A split cost and subsequent update of secondary structures

of new and old nodes as well as posting changes to a parent is bounded by O(w(v)/vB)

28

3 Related Work

I/Os. Due to the fact that at least O(w(v)) has been executed on the node since the last
split, the cost of a split is amortized.

Gioara and Kaplan also use a WB-tree variant for developing an I/0O efficient solution
of the vertical ray shooting problem [59]. Recently, weight balancing has been used for
devising efficient cache-oblivious index structures, e.g. cache-oblivious B-tree [40]. As

in Arge’s interval tree, weight balancing is used for amortizing the reorganization costs.

3.3 Multiversion B-tree Loading Algorithms

To the best of our knowledge, the first solution for bulk loading a partial persistent B-
tree in I/O model was proposed by Goodrich et al. [61]. They built a persistent B-tree
with branching degree \/% in I/O complexity of external sorting to solve a geometric
off-line problem. To solve the problem they used the distribution sweeping paradigm.
The main idea is a recursive partitioning of a set of N operations in s = % stripes of
roughly N/s size. This setting allows us to hold VM - B elements of each partition in
memory. Data is partitioned according to the y-axis (key dimension) in s partitions at
each recursive step in a top-down fashion, since we represent data as horizontal intervals
in two-dimensional time-key space. No key partitions overlap. Partitioning steps are
applied until a partition fits in the main memory. Afterwards, a persistent B-tree with
a fan-out s is built on this partition. Each recursive call returns a list of historical roots
of s-way persistent B-trees. Note that each list is sorted according to the time stamp.
Afterwards, each s-th element from root lists is taken as a bridge element and merged
in a single result list Y. The merging procedure is done by recursively constructing
lists of bridge elements. Additionally, pointers to all bridge predecessors in recursively
constructed lists are stored with bridge elements. The list Y together with pointers
defines roots for a persistent structure [61].

To find an element alive at time point ¢ an alive root at time 7 is located. The structure
is then traversed in a top-down fashion always searching in nodes whose time stamp is
the largest value smaller than or equal to ¢. In contrast to MVBT, the time for locating
an element at time ¢ in this structure depends on the value of s = \/% . Our problem
differs in that we address the loading of an online persistent B-tree with branching degree
B, a problem that is so far unsolved [61].

Bulk loading of the MVBT was already addressed by Bercken et al. [44]. The authors
used a generic buffer tree framework [24, 44, 27]. Although this approach is applicable to
loading R-trees, loading of MVBT is only possible for insertions. For mixed workloads

consisting of insertions, deletions and updates, this approach cannot be used. We will

29

3 Related Work

show major problems of this approach in Section 4.2. Our new loading algorithm is
applicable to arbitrary workloads while all asymptotic performance guarantees of the
MVBT are fully maintained.

An interesting loading algorithm for R-trees is presented in [27] (see Section 3.1),
using the buffer tree framework. This algorithm loads the leaf level and index levels
simultaneously. The advantage is that this approach is not limited to bulk loading only,
but also suitable for bulk update. Unfortunately, the loading approach cannot be used
for partially persistent B-trees. However, our new bulk-loading algorithm also loads all
levels simultaneously. Therefore, our loading algorithm can also be used for bulk updates
as well, with very few changes.

Recently, Zhang et al. [122] presented a memory optimized tuple-by-tuple on-line load-
ing algorithm for the HV-tree, an advanced version of the Time-Split B-tree (TSBT) [85].
The primary goal was to provide fast access to recent data in memory and to move old
data efficiently to secondary storage. In contrast to our problem, the HV-tree assumes
that all live nodes can be kept in memory. This assumption is not always valid, as the
size of databases can still be larger than the available main memory. As a consequence,
no worst-case performance guarantees are given. In addition, the loading algorithm still
relies on executing one update at a time, while our approach achieves substantially higher
improvements of the bulk update time from processing updates in batches.

Due to the continuously growing size of a versioned database, distributing this data
among multiple nodes is becoming more and more important. In [79], a new method is
presented for determining splitters for a set of versioned records (represented as intervals
in a two-dimensional space). This method could be easily combined with our loading
algorithms to obtain a distributed loading technique. In this work, however, we focus on
the centralized case and leave a detailed discussion on distributed techniques for future

work.

3.4 R-tree Loading Algorithms

The most generic method for loading R-trees is to apply standard insertion algorithms
to each of the input rectangles. The loading time is then O(N logg N), while the query
performance solely depends on the underlying insertion algorithm. Insertion algorithms
are designed in such a way that a goal function should be optimized for a split. In
[95, 73], a cost model was introduced revealing that the perimeter and the area are the
two crucial performance indicators. However, [34] shows that an optimal split of a node

does not lead to globally optimal R-trees. This cost model provides the basis for our

30

3 Related Work

investigations.

Roussopoulos and Leifker [104] introduced the problem of loading an R-tree from
scratch and presented a sort-based loading technique with complexity O(% logs/B %),
where M denotes the available main memory. After sorting the rectangles according
to a one-dimensional criterion, an R-tree can be built bottom-up as it is known from
BTtrees. Because the sorting order has a considerable impact on the search efficiency,
Kamel and Faloutsos [73] proposed a double transformation: first a rectangle is mapped
to a multidimensional point and then a space-filling curve like the Hilbert curve is used
to generate a one-dimensional value. In order to improve query performance, heuristics
like the one proposed in [51] can be used for local data reorganization.

STR [80] is also a sort-based loading algorithm that is conceptually different from the
simple sort-based algorithms mentioned above. d different sort and partitioning phases
are used, one for each dimension. The partitions after the last sort correspond to the
leaf pages of the target R-tree.

The advantages of sort-based loading strategies are their simplicity of implementation
yet a good query performance. Therefore, they are the only methods currently used
in DBMS and GIS. However none of these methods can guarantee the quality of the
generated R-tree regarding a cost model.

The Top-down Greedy Splitting (T'GS) bulk-loading method [58] constructs the tree
in a top-down manner by applying cost-optimized binary splits in a greedy manner.
The cost function with the best experimental results [58] minimizes the area of the
bounding boxes. The partitioning is performed by iterative binary steps where in each
step multiple sorting orders are examined to detect the split with minimum area. In
[25], it has been confirmed in experiments that the average search performance of R-
trees generated by TGS are almost always better than the ones generated by other
loading methods. Only for artifical data sets with highly varying aspect ratio has the
priority R-tree been superior to TGS. A main disadvantage of TGS is its high loading
cost (due to the binary partitioning) that can be substantially higher than the cost for
external sorting. Due to its binary steps, it is difficult to parallelize TGS in a scalable
manner. Other top-down partitioning techniques like QuickLoad [43] avoid expensive
binary partitioning steps, but the design of an efficient parallel version is still an open
problem.

Loading techniques based on buffer trees [44, 27] can be considered as a hybrid of
top-down and bottom-up strategies. The basic idea is to delay insertions by temporarily
storing input rectangles in buffers attached to the nodes. If buffers are filled up, the

batch of insertions is reactivated and the rectangles continue their traversal down to the

31

3 Related Work

leaves. In order to achieve better search quality it is suggested using a sort-based loading
strategy for buffer emptying above the leaves. While the loading efficiency is the same as
for external sorting, the underlying split algorithm (except for the leaf level) determines
the query performance.

The priority R-tree (PR-tree) [25] is the first loading method whose target R-trees
provide worst-case guarantees for window queries, while the loading can be performed
with the same complexity as external sorting. It also has been shown [25] that the
practical performance of the PR-tree is also good for two-dimensional data. However,
in most cases it is not as good as for the R-trees of TGS, which is the only cost-model-
sensitive loading technique so far. In fact, the PR-tree is not primarily designed for
improving the average-case performance according to a cost model and a query profile.
Moreover, its high implementation complexity might prevent it from being considered
in a real system.

The theoretical foundations of the loading problem have been addressed in [96], where
the NP-hardness of the bucket optimization problem has been proven, but only for a
specific artificial cost function that substantially differs from the ones that are commonly
used for R-trees [95, 73, 115]. This is contrary to our work, where NP-hardness is shown
for the cost function [95, 73] minimizing the area of bounding boxes.

None of the previous methods have been designed for query-adaptive loading of R-trees.
Query-adaptive loading refers to the problem of generating R-trees whose average per-
formance is minimized regarding a given static profile. This is in contrast to adaptive
indexing techniques like splay-trees [110] and database cracking [70], which apply struc-
ture adaptations during runtime of the queries. Different adaptive R-trees have been
proposed in the literature [36, 114, 37], but all of them require a mix of queries and
insertions to obtain the full benefits of adaptivity.

One of our approaches to query-adaptive loading relies on space-filling curves (SFCs)
to obtain a one-dimensional ordering of the rectangles and on an optimal assignment
of rectangles to pages. Most of the other approaches to using SFCs for sorting multidi-
mensional data like [73] shuffle the bits in a symmetric manner, which is most suitable
when every dimension provides the same selectivity. Orenstein and Merett presented a
more flexible framework for shuffling bits that allows the definition of different sorting
orders [93]. Based on their framework, we present shuffling strategies that adapt to
the underlying query profile. A theoretical foundation for generation of query-adaptive
space-filling curves was developed in [31], but without considering the specific problem
of bulk loading. In addition to sorting, we also address the problem of data partitioning

over a set of pages. The common packing strategy [73] to fill up pages to the maximum

32

3 Related Work

leads to suboptimal query performance. In contrast, our new partitioning strategy relies
on the dynamic programming framework used for generating optimal histograms [72].
The dynamic programming scheme proposed in [72] is also used in [120] for computing
a set of k& minimal bounding rectangles (MBR) from a two-dimensional point set. The
goal was to reduce communication costs for mobile devices by approximating the spatial
query result by a set of MBRs with a minimal information loss f;. The authors showed
that computing such representations is NP-hard even for d=2. One of their heuristics
first sorts the query output using the Hilbert order and then applies the partitioning
method of [72]. In contrast to bulk loading, space constraints are disregarded. In this

work, we show that these constraints allow for the design of more efficient algorithms.

33

4 MVBT" Loading Approach for
Multiversion B-trees

In this chapter we study bulk operations on partial persistent structures in external
memory and address offline and online problems. The first problem is bulk loading:
for a given operation set the goal is to build an index efficiently. The second problem
is efficient support of bulk operation on an existing index. Our objective is to design
an algorithm for a multiversion B-tree (MVBT) [35] construction with the same I/0O
complexity as external sorting. To the best of our knowledge, this problem has not been
solved so far.

Unfortunately, design of sort based bottom-up solution similar to the B-tree loading
is difficult, as the strict temporal order of operations needs a dynamic management of
an ordered key set for each time stamp. Therefore, we consider other techniques such
as buffer tree loading [24, 44, 27]. This generic technique assigns buffers to the nodes
and builds trees in top-down fashion through the sequence of buffer emptying processes.
Data is moved down towards leaves lazily in batches.

Although, the early version of MVBT loading approach [44] uses buffer trees. It has
several downsides. In fact, it is applicable for insertions only. For general case of mixed
workloads (insert, update and delete operations), it does not solve the bulk-loading prob-
lem correctly. Due to the temporal disorder of structure reorganizations, the invariants
of the MVBT cannot be maintained anymore. Moreover, the problem of bulk-insertion
was not addressed. In this work, we present an efficient algorithm for a bulk-loading
MVBT that meets the lower bound of external sorting. The novelty of the approach is
a combination of the buffer tree [27] and weight balancing [28] technique. The buffer
tree technique allow to process data in batches using available memory efficiently. We
use weight balancing to maintain MVBT constraints and to synchronize buffer emptying
processes and structure reorganizations according to the temporal order of operations.
Moreover, the new solution also supports bulk updates and can be used for online prob-
lems.

This chapter is organized as follows: In Section 4.1, we introduce preliminaries and

34

4 MVBT" Loading Approach for Multiversion B-trees

important notations. In Section 4.6, we describe a class of partial persistent B-trees that
can be constructed in the asymptotic optimal time. Before we present theoretical results
in Section 4.6, we outline the basic idea of our new bulk loading algorithm in Section
4.2. In addition, we show that it is impossible to use the original buffer tree for loading
the MVBT. In Section 4.3, we present the details of our asymptotically optimal bulk
algorithms for a concrete partial persistent B-tree. We outline the theoretical results on
runtime for this tree in Section 4.3.3. In Section 4.4 we present our algorithm for bulk
update. We discuss our experimental result in Section 4.7. Section 4.8 concludes the

chapter.

4.1 Preliminaries

In the following, we consider the bulk loading and bulk update problem for the MVBT.
Let us consider a sequence of input records e; =< k,inf,ops >, 1 <i < N, where ops €
{insert,delete, update}. For i = 1,..., N, the operation of e; is performed on the most
recent version of the MVBT using tuple < k,inf > as input. For bulk loading we assume
the initial tree to be empty, while the tree already consists of N’ live records for the bulk
update problem. These problems differ from the equivalent ones on ephemeral indexes,
e.g. B-tree and R-trees, in the sense that the partial persistent semantics requires a strict
ordering of the update operations. In fact, this renders a direct application of traditional

loading techniques impossible.

’ Symbol ‘ Description ‘
N’ number of live records
N problem size (in number of operations)
N; number of entries live at version %

By

memory capacity
block capacity
minimal live entries per block

Table 4.1: Important notations

For the MVBT we use the following notation: N is the number of updates, N; denotes
the number of records live at version i. Parameter d € ©(B) denotes the minimum
number of live records in a page. We count tree levels [= 0,1, ..., bottom-up starting

from the leaf level. Our notations are summarized in Table 4.1.

35

4 MVBT" Loading Approach for Multiversion B-trees

4.2 Basic ldeas of Bulk Loading

In this section, we outline our approach to bulk loading a partial persistent B-tree,
which is closely related to MVBT. Our goal is to provide a loading solution that requires
O(% log i %) I/Os. In fact, this is the lower bound for loading because external sorting
and loading of ordinary B-trees cannot be faster.

In order to design an efficient loading algorithm, we use two techniques in combination
with the MVBT. The one is the buffer tree technique [27] (see Section 3.1) and the other
is weight balancing [28] (see Section 3.2). We call this MVBT extension MVBT* because
it maintains the worst-case performance properties of MVBT and additionally supports
efficient loading in asymptotically optimal number of I/Os. Each of these two techniques
contributes to the efficiency of MVBT*:

1. The buffer tree yields the same I/O time as external sorting. The key idea of this
technique is to transport data in batches between levels (see Section 3.1 and Figure
3.2).

2. Weight balancing controls the synchrony of buffer emptying processes. It guaran-
tees that the MVBT™ still maintains the MVBT invariants without giving up its

worst-case performance.

The buffer tree attaches buffers to the nodes on each ¢ - LlogB /4 M%J with ¢ =

1,2,...@(%) level, see Figure 3.2. The buffer size is limited to % pages.
This allows us to keep all live nodes of a sub-tree of height logp 4 16% in memory using
at most % I/0. In Section 4.3.2 we explain the choice of these parameters in detail. We
use the following terminology hereafter: a leaf (node) is the node on level 0, an index
node is on level [> 0, a buffer node is the node on levels % - LlogB/él %J withi=1,....

A buffer is associated to a buffer node.

4.2.1 The Problems of Buffer Trees

In the following, we show that is not sufficient to use the buffer tree only for loading
a MVBT. In fact, synchronization of buffer emptying is required; As reorganizations
within the MVBT are temporally ordered according to the time stamps of the updates.
If the buffers are emptied only after they are filled completely, some subtrees will evolve
uncontrolled in time. Moreover, the node reorganizations of the child nodes can force
the parent node also to evolve in time. This becomes a serious problem when other child

nodes still contain historical data in their buffers. When these buffers are emptied later

36

4 MVBT" Loading Approach for Multiversion B-trees

in time, the parent node as well as siblings could already be dead. As a consequence, an
insertion of their index entries in the parent node is not allowed, and a required merge
with a sibling is impossible. In both cases, the MVBT invariants are violated.

The first problem termed parent-child problem is illustrated in Figure 4.1. Initially,
there are one parent node p and two child nodes u and v. A time-split of u also leads
to a split of parent p. The new parent node p’ is created with time interval [tg, *), while
its child v is already vaild at time t5. Later the buffer emptying of node v creates two
nodes v" and v”. The time interval of v’ is [t4,tg) which does not fit to the time interval
of parent node p’. Therefore, it would be required to insert an index entry (referring
to v') into the dead node p. However, an insertion into a dead node is not allowed for
MVBT.

1) [t,,% 2) f,t) [t,")
(@) @ @ @
0T Y|) () [0

3) 1) 1Y

(@)

c—
[tot) () [1,%) ltpt) [1,%)

Figure 4.1: Parent-Child problem

The second problem termed sibling problem is illustrated in Figure 4.2. Initially, there
are one parent p and two child nodes uw and v. Further, node u is a key sibling of v.
Node u evolves much faster than its sibling v. This causes a time-split at t19 and a new
node u' is created with a time interval [t1g,*). Later in time, the buffer of node v is
emptied. Due to the historical data in the buffer, a time split is performed at time t3.
Therefore, the interval of v is closed and a new node v' with a time interval [t3, x) is
created. Because v’ contains less than % records, a merge is triggered with a node that
is alive at t3. This would be the key sibling node u, but w is already dead. However, a

merge with a dead node is not allowed for the MVBT.

4.2.2 A Case for Weight Balancing

In order to avoid the parent-child problem and the sibling problem, we applied the weight

balancing technique [28]. The idea is to prevent these problems even without knowing

37

4 MVBT" Loading Approach for Multiversion B-trees

1) f*)

[, *)
— / @\ (:)
] -
[11'*) [t *) [t]’tm) [2’t3) [IS *) t”’

Figure 4.2: Sibling problem

the precise closing time of an entry time interval. Instead, we introduce a so-called
safe interval where the closing time is estimated by the lower-bound of the number
of operations required until the next reorganization will happen. Only if there is no
overlap among two safe intervals (belonging either to siblings or to a parent and child),
an additional reorganization step will be triggered. The larger the safe intervals, fewer of
these forced reorganizations are necessary. Similar to B-tree, MVBT requires only ©(B)
operations to trigger the next reorganization after the last was performed. Unfortunately,
this causes very short safe intervals and many forced reorganization steps. In contrast,
weight balancing allows much more operations until the next reorganization step has to
be triggered. More precisely, the number of operations is asymptotically equal to the
number of records in the associated subtree. This leads to very long safe intervals and
a very low probability that there is no overlap among safe intervals. Moreover, when a
buffer of a subtree has to be emptied and the time interval of the associated entry moves
to the future, the safe interval of the sibling is forced to overlap. If necessary, the buffer
of the sibling has to be emptied first.

Similar to [28], weight information has to be maintained for each node. However, we
use two different weight counters for a node v. The live weight w(v) tracks the live records
in the associated subtree (including its root buffer), whereas the operation weight ¢(v)
tracks the number of update and insert operations. The live weight is used to preserve
the MVBT invariants, e.g. weak version condition. The operation weight ¢(v) allows to
estimate the closing time of the safe interval.

Both weights capture the temporal progress of a node. We constrain the ratio of node
weights on the same level by a constant. With each level the weights w(v) and #(v)
increase exponentially. Further, at least O(w(v)) operations are needed to reorganize
node v on level [again.

Weight balancing requires a weight information attributed to each node and main-
tained during the loading process. This results in the following modifications of the

original buffer tree emptying process:

e Weight information is updated during buffer emptying process.

38

4 MVBT" Loading Approach for Multiversion B-trees

e Buffer emptying is triggered either if the buffer is full or the weight conditions of

the node are violated.

e Buffer emptying is forced if the node safe intervals do not overlap. However, as we

apply weight balancing, I/O costs will not asymptotically increase.

e Node reorganization is performed in a top-down manner only. By this, the new
entries can be stored in the parent node without causing any overflow again. This
facilitates the implementation of the buffer tree (in comparison to its original coun-

terpart).

Due to this top-down node reorganizations and emptying of buffers, we avoid parent-
child problem and the sibling problem. As a consequence, the loading time of our ap-

proach is asymptotically optimal. The details are given in the next section.

4.3 Bulk-Loading Details

In this section we explain our MVBT™ bulk loading methods. We first discuss the
loading process using three procedures Bulkload, ClearBuffer and PushDownEntry (see
Algorithms 2, 3 and 4). We also discuss how to apply the weight-balancing technique to

loading. The main theorem proof is outlined at the end of the section.

Algorithm 2: Bulkload

Input: InputData
1 initialize S, rootBuffer, root points to first leaf node;
2 foreach FEntry e in InputData do
3 if rootBuffer size > % then
4
5

for i =1 to % do
L PushDownEntry (dequeue entry, root, null, S, ts(entry));

6 foreach idx in S do ClearBuffer (idx) ;

7 | append e to rootBuffer;
8 ClearAllBuffers ();

4.3.1 Buffer Tree Loading

Loading starts at the root of a tree (see Algorithm 2). Data is pushed towards the leaf
nodes in batches if either the root buffer is full or a node weight condition is violated.
MVBT™ points to a buffer of the current live root (see line 1). The batch size is % (see

39

4 MVBT" Loading Approach for Multiversion B-trees

line 3). Buffer nodes pointers with buffer sizes greater than % are stored in stack S.

Buffers of the buffer nodes stored in S are emptied right after the root buffer. Finally,
function ClearAllBuffers (line 10) is called to empty the buffers of all buffer nodes in

breadth-first manner (level-by-level).

Algorithm 3: PushDownEntry
Input: Record e, Index Entry idx, Parent Node v,, Stack S, Time Stamp ts
cR « idzx ;
if cR wiolates weight condition then
splitType < ComputeSplitType () ;
if cR is not root and has buffer then

remove cR from S and ClearBuffer (cR) ;

if splitType is merge or merge-key-split then

nR < find neighbor of cR;
L remove nR from S and ClearBuffer (nR);

® N O A W N

9 idz[] - SplitNode (v <—GetNode (cR) , vy, ts, splitType) ;
10 if splitType is key-split then

11 L reassign cR depending on key split ;

12 if v, is null then

13 L new root node handling ... // see Algorithm 1 lines 10-15 ;
14 else

15 L ExpandParent (idx[]);

16 UpdateWeight (cR);
17 if cR has buffer and buffer size > % and not yet in S then
18 L push cRin S ;

19 if cR is not root and has buffer then
20 Enqueue (e, buffer of cR) ;
21 return,;

22 if cR points to leaf node then
23 load leaf node and insert entry e into leaf node;
24 return;

25 v <GetNode (cR) and cR < ChooseSubTree (v, €) ;
26 PushDownEntry (e, cR, v, S) //recursive call ;

For the % entries of the root buffer PushDownFEntry is called, see Algorithm 3. This
function has the following parameters: record to be inserted, root entry of the subtree,
its parent node and the pointer to stack S. It routes the entries to the next buffer nodes
or leaf nodes using the original MVBT routing algorithm (see line 25). Routing through

llog B/4 wﬂBJ levels of the subtree is done in memory. Note that we consider only live

40

4 MVBT" Loading Approach for Multiversion B-trees

index nodes for routing. In Lemma 2, we show that the live nodes of a subtree of height
log s % always fit in memory.

\ife also update weight information of the nodes in line 16 of Algorithm 3. The weight
information is recorded in the corresponding index entries. Moreover, buffer nodes are
pushed into § if the size of their buffer is greater than % (see lines 17-18).

Before we route a record one level down, the weight conditions of the node are checked
(see line 2, Algorithm 3). If the conditions are violated, node reorganization is triggered
(merge, time-split, key-split or merge-key-split). For buffer nodes, we empty their buffers
first, since we need to enforce an overlap of the safe intervals. This ensures that there is
no entry in the buffer with a time stamp smaller than that of the entry to be inserted.
Otherwise, some records could lie outside the lower interval boundaries.

Thereafter, the node is reorganized in a top-down fashion (see call SplitNode, line 9,
Algorithm 3). For the routing, only the live part of a tree is considered. Logically deleted
nodes are released from memory. Index entries of the newly created nodes are posted
to the parent node (see function ExpandParent). It is crucial for our algorithm that
this function does not trigger recursive parent splits towards the root node due to weight
balancing. If we perform a key-split or a merge-key-split, we adjust the node pointer
according to the key of the entry (line 10, Algorithm 3). The root node split is handled
in line 12 of Algorithm 3 similar to Algorithm 1 lines 10-15.

The procedure ClearBuffer (see Algorithm 4) is executed if either one of the following

cases occur:

1. The buffer has more than M /4 records.
2. The buffer node has to be reorganized (e.g. due to weight violation).

3. The procedure ClearAllBuffers is executed (see line 8, Algorithm 2, lines 4-8 Al-
gorithm 3).

In case 2. or 3., buffers are emptied completely. We push records in two batches of
maximal size M /4. After processing each batch, we clear all child buffers with more
than M /4 (see line 8 and 13, Algorithm 4). In addition, buffers belonging to the lowest
buffer nodes are also completely emptied (even if they contain more than M /4 records).
In all other cases, only the first M /4 records of a buffer are pushed down to the next
buffer node. By this, we ensure that no buffer will have more than M /2 records and we

avoid cascading buffer emptying processes [27].

41

4 MVBT" Loading Approach for Multiversion B-trees

Algorithm 4: ClearBuffer

Input: Index Entry idz

buffer < load buffer of idzr ;

v + load the node of idx ;

initialize S;

for i = 1 to min(&, buffer size) do
e < Dequeue (buffer) ;
cRoot <+ ChooseSubTree (v, €) ;
PushDownEntry (e, cRoot, v, S, ts(e)) ;

foreach ¢ in S do ClearBuffer (i) ;
9 if idx has weight violation or level == [logg M/lGBJ or ClearAllBuffers then
4

10 foreach e in buffer do
11 L cRoot < ChooseSubTree (v, €) ;

b = IS, NV VI

®

12 PushDownEntry (e, cRoot, v, S, ts(e)) ;

13 foreach i in S do ClearBuffer (i) ;

4.3.2 Weight Balancing

Recall that we use two weight counters to track the temporal progress of a node v. Live
weight w(v) is used for live records. ¢(v) tracks the number of update and insert records
pushed to a node v (or to its buffer) on level [since its creation. We need this weight
counter to properly estimate the safe interval as execution of the update operation (logical
delete followed by insert) on a leaf node does not change the number of live entries.
The original index entries of MVBT are extended with two weight counters, w and t.
MVBT™ maintains w and t for each live node in its associated live index entry. Both
counters are updated in a top-down fashion (see Algorithm 3 line 21). Every time a

record is passed one level down, we update the node weight information as follows:

w(v) +1 if insert
w) =19 w) -1 if delete
w(v) if update

t(v) +1 if insert
t(v) = ¢ t(v) if delete
t(v) +1 if update
Recall that the original MVBT triggers time splits and further reorganizations like

merges or key-splits only with respect to the number of physical entries. This occurs if a

42

4 MVBT" Loading Approach for Multiversion B-trees

’ Setting Description
a= % branching factor
a- 2 <wk)<d B valid live weight
w(t) <t(v) <d - B valid operation weight
a - % <w(v) <tw) <ad- % strong weight condition
x Llogg 16]‘%} i=1,... buffer levels
4
5 maximal buffer capacity

Table 4.2: MVBT™ settings

node has not enough live entries or the physical bound is achieved (see Section 2.2). We
carry over the same idea to weight balancing. Thus, we limit live and operation weights
w(v) and t(v) (length of safe interval) for each node. The allowed ranges exponentially
increase with each level. The ratio of the minimal and the maximal value of w(v) and
t(v) for level [is a constant.

We adapt weight balancing as follows: the branching factor a is set to a = %. The

valid live weight of node v on level [is between:

B
live-condition: a' - 1 <w(v)<d-B (4.1)
The valid operation weight ¢(v) of the node v on level [is between:

operation-condition: w(v) < t(v) < a'- B (4.2)

Immediately after node reorganization, the live weight and operation weight of the

newly created node should fulfill the following Strong-weight-condition: (see Table 4.2):
al- = <w) <tlv) <d-— (4.3)

Node reorganization is triggered in two cases: if either

B
<d. .=
w(v) <a 1
or
tiv)>d - B

These two conditions are checked in line 2 of Algorithm 3. In line 9 of the algorithm
function SplitNode is called. It runs the node reorganization and logically deletes the

current index entry in the parent node. Each reorganization of node v on level [starts

43

4 MVBT" Loading Approach for Multiversion B-trees

’ w ‘ t wy, neighbor live weight ‘ Operation
d(ZB)<w<d(B)[t>dB time-split
w > al(%) t>daB key-split
w < a'(38) t>dB wy, +w < al(T2) merge
w < al(%) t>d'B Wy +w > al(%) merge-key-split
w < al(2) t<a'B wy, +w < al(T2) merge
w < al(%) t<aB Wy, +w > al(%) merge-key-split

Table 4.3: MVBT™ node reorganization conditions

with a time split. It creates a new node v; and copies live entries into vy.

The new live weight w(v;) and operation weight ¢(v;) are set to value of w(v). If w(vy)
violates strong-weight-condition (see Condition 4.3) one of the following operations are
executed: merge, key-split and merge-key-split (see Table 4.3). In the case of a merge,
the live weight w,, of siblings have to be considered to choose the type of reorganization
(see Table 4.3). We release the dead node from memory and use the free space for a
new live node. In the case of a merge operation we update w(v;) and t(v;) as follows
w(ve) <= w(v) + wy, and t(vy) < t(ve) + wp.

The original key-split and merge-key-split of MVBT are also adapted to weight bal-
ancing. Key-splits on leaf nodes are identical to MVBT key-splits. This is different for
index nodes. For these nodes, we iterate over the sequence of index entries and sum up
their weights until the sum is at least equal to (5 - a' - %) (3 of the upper bound of
strong-weight-condition). Then, we split at the child entry where the iteration stopped.
Afterwards, we adjust the weight counters of the created nodes. Since the maximal
weight of this child is limited by o'~ B, we find an almost balanced split. The branching
factor a should be greater than 16. This follows from the following inequality [28, 35]:

3B

7B
ad—=)-d'B> al? (4.4)

. (S

1
2
Hence, this inequality ensures that a balanced split can be always found.

The lower bound of the live weight is al% This ensures that after merging, the live
weight of a new node is always greater than the lower bound of strong-weight-condition
(since 2 - alg > al%). The weight constraints and our reorganization operations guar-

f “lTB operations (inserts, deletes, updates) have to occur before

antee that a minimum o
node v on level [is reorganized again.

In line 15 of Algorithm 3, the newly created index entries are posted to the parent
node (function call ExpandParent). Recall again that the insertions of these new entries

do not cause a split of the parent node. Let us sum important properties in the following

44

4 MVBT" Loading Approach for Multiversion B-trees

lemata; their proofs can be found in the appendix.

Lemma 1. Fora = %, the number of entries in a MVBTY node is at most 6B = O(B).

Proof of Lemma 1: For [= 0 we have the same settings as MVBT leaves. Let v
be node on level [> 0. To proof the lemma we compute the maximal number of entries

that can be pushed before next reorganization. Since the minimal live weight of the node

is a' - % (see equations 4.3) we can perform up to a' - % inserts (Operation-condition)
and a' - % deletes (Live-condition) on this node. In total we can push up to a' - %
operations until ¢(v) overflows or the minimal bound of w(v) is achieved. According to
the weight constraints, a child node of the node v is reorganized after at least o'~ - %
operations. After each child split we produce 2 new entries in worst. Thus, after a' - %

o1 11B

——=8 = 22a new entries. The maximal number of entries stored

operations we create: ——
a1
8

1.3B
. a’ =5

l-% s =5 = 30 Thus, total number
T

of entries stored in the node is 22a + 37“ < 24a = 6B for a = % O

According to Lemma 1, index nodes can occupy up to 6 pages in worst case. These

in the node with weight a'- % before inserting a

pages are simply organized as a linked list. The function FxpandParent lazily appends
new pages to the index node in at most constant time. At first glance, this seems to
affect the practical performance of the loading algorithm. However, we did not observe
this worst case of 6 pages in our experiments. In only one of our experiments we observed
a list of two pages. In all other cases, the index node corresponds to one physical page.

Lemma 2. The number of live entries in the node on level | > 0 of MVBTY is between

% and B. The number of live nodes in a subtree of height LlogBM mMBJ 18 bounded by

M

28"

Proof of Lemma 2: (the proof is similar to weight property [28]) We consider node
v on level [. The maximal live weight is a'B. The minimal weight of the live child is
al_l% Thus, the maximal number of live entries is a' B/ al_lg = 4a. Since a = % we
get the bound. The minimal live weight of the node is a'£ (also operation weight t(v),
since w(t) < t(w)). The maximal live weight of the child is a'~!B. Thus, the minimal
number of entries is a'£/a!"'B = a/4 = B/16. We consider a sub-tree T of height

(X Llog B/4 M%J on level 7. Without loss of generality, we assume that logg 4 16% is an
. M
integer value. The maximal live weight of T is a*'°®5/4 165 - B. Since the minimal weight
. M
of the tree on level (i —1)-logp 4 % is @""11°85/4 765 . B/4 . Using the same argument
as above, we obtain maximal number of buffer nodes %, referenced by 1. Thus, the

overall number of live nodes is bounded by 2 - %. O

45

4 MVBT" Loading Approach for Multiversion B-trees

Lemma 2 ensures that the live part of a subtree fits always in memory, since for the rout-
ing only live nodes are considered. This explains also the choice of height Llog B/4 %J
for the buffer-tree configuration.

Before a node reorganization is executed, we check if the node has a buffer (see lines
4-8 in Algorithm 3). The buffer of the buffer nodes is emptied if the weight condition of
the node is violated. The maximum number of entries in the buffer is limited to % We
call the ClearBuffer function and if the node should be merged we call also this function
for a neighbor node. Buffers are always emptied before node reorganization to enforce an
overlap of safe intervals (we synchronize nodes according to the time dimension). This
operation must not happen frequently, since stopping the process and buffer emptying
have worst case O(M/B) 1/0 costs per buffer level. At least after each ©(M) operation,

a weight violation on the buffer nodes occurs.

Lemma 3. MVBT" nodes on level i - {logBM MMBJ with i = 1,... are reorganized again

after at least ©(M) operations (insertions, deletions, updates).

Proof of Lemma 3: We consider the lowest buffer node v. The lowest level is

{log B/4 wMBJ . According to weight conditions the minimal number of entries needed for

next reorganization is alg. Thus, the node v is reorganized after al°85/4 168 % operations.
. _ B M B_ M _
Slncea—zwegetﬁ'g—m—@(M). O]
After the buffer is emptied completely, we continue with node reorganization. Finally,
we assign a new buffer to a live node and drop buffers of temporal predecessors.
MVBT™ has the same asymptotic I/O bounds on update and space as a MVBT loaded

by tuple-by-tuple method. The following lemma holds for MVBT™.

Lemma 4. The MVBT" height loaded with N records is O(logg N) and its space is
O(N).

Proof of Lemma 4: A sub tree with a root node on level [references O(a! - B) live

elements in the live leaf nodes. After insertion of N operation entries at most N entries

-1,

are alive. The minimal live weight of the live root node is at least N > 2-a % Since

a = £ level of the root node is O(logg N).

A leaf node (level = 0) is reorganized at least after performing g operations. In worst

B
8

operations. In worst we create also two new nodes. Thus, after N operations we create
up to: 2- NZ}‘E‘;N 5 <16-N/BY.°, % nodes. Since a > 16 and the node capacity

al —

we create two new leaf nodes. Node v node on level [is reorganized after at least a'

8
is O(B) according to lemma 1 we obtain the result of O(IV) space. O

46

4 MVBT" Loading Approach for Multiversion B-trees

4.3.3 Runtime

In this section, we outline the proof of the following theorem:

Theorem 4.1. The cost for loading N records in an initially empty MVBTY with branch-
ing parameter a = B/4 > 16 is O(% logm %) 1/Os.
B

First, we consider the costs of emptying buffer of node v on level [=i - Llog B/4 M%J
and the node reorganization. Thereafter, we discuss the emptying of all buffers after
insertions of N records (see function ClearAllBuffers in Algorithm 2). Records are
pushed down in batches of size % towards leaves starting from the root node. We
consider two cases of buffer emptying, caused either by buffer overflow or by the node
weight violation.

Buffer-Overflow: 1/O costs of loading a subtree of height Llog B/4 M%J in memory
is O(M/2B) 1/Os (see Lemma 2). The overall split costs are limited by O(M/B) 1/0O
between two buffer levels, since the weight of the subtree root is not violated (see Lemma
2). Thus, & entries routed one level down causing O(%) I/Os. The I/O cost per entry
is O(%). Entries pass O(logg N/B) nodes before they are inserted in the leaf nodes. Yet,
we pay 1/Os only on each [=i L logp /4 IG%J level. Thus, the overall I/O cost per entry

1S O(% . l()‘z/;il%) = O(% . log% N/B)

Weight-Violation: Reorganization of a buffer node stops the buffer emptying process
and triggers up to two buffer emptying processes. In the case of merge or merge-key-split
we also empty the buffer of the sibling node. In the worst case, we write dirty subtree
nodes to the disk using at most O(%) I/Os (see Lemma 2). The buffers of both nodes
contains up to % entries each, since we push data in portions of % records. For emptying
both buffers we pay up to O(%) I/0s. Total 1/O costs are bounded by O(%). In worst
case, we pay O(M/B) I/O for buffer node reorganization after each ©(M) operations
(see Lemma 3). The total worst case costs of lower buffer nodes splits are O(N/B). The

costs for all remain buffer levels are:

logMB N/B
16 1 M N N
" (Byosies 5 Olp) = Ol s)
i=1 4 8

Thus, after insertion of N entries in an empty MVBTT we pay O(%log M %) for
emptying full buffers and buffer node reorganizations.
Finally, we show that the emptying of all buffers after insertion of N operation entries

is bounded by O(%logﬂ %) I/Os. As shown above, costs for emptying full buffers
B

47

4 MVBT" Loading Approach for Multiversion B-trees

and for emptying due to weight violation is bounded by O(% log M %) I/Os. The costs
of emptying the remaining non-full buffers is bounded by O(N/B). Since the lowest
buffer node level is | = Llog B M/ 1GBJ, the number of buffer nodes after insertion of N
operation entries is limited by O(%/(M/B)). The worst-case-cost of the buffer emptying
process is O(M/B). Therefore, on each O(% /(M/B)) we pay O(M/B) 1/O resulting the
O(N/B) bound. Combining this result with buffer emptying caused by buffer overflow
and weight violations before ClearAllBuffers yields the desired asymptotic bounds.

4.4 Bulk Update

In this section, we briefly describe how to insert a sequence of records efficiently into a
non-empty MVBT™ whose buffers are entirely empty. To implement a bulk update, we
follow the ideas presented in [27] with a minor modification of algorithm 2: we use the
current live root and its buffer instead of a pointer to an empty leaf node. Bulk update
appends records to a current root buffer and if applicable pushes entries towards leaf
nodes. We call function ClearAllBuffers by the end of procedure. Since we load records
into existing MVBT™, the records are routed only through the live nodes. By this, we
obtain the following I/O cost for a bulk update:

Theorem 4.2. The cost for a bulk update of N records on an existing MVBT" with N’
live records and empty buffers is O(% log% N+TM + %) I/Os.

Analogous to the proof of Theorem 4.3, we obtain the I/O bound.

4.5 Practical Considerations

We designed memory and weight-balancing settings from a worst case perspective. With
memory M > 4B? we have buffers at least on each index level. However, according to
our experimental results less memory is sufficient to achieve the desired performance. In
practical applications we assume that at least M > B? memory is available. Therefore,
we set buffers on each 7 - max { LlogB/Zl(M/lGB)J , 1} level.

Note that the introduced weight-balancing can be used without the buffer tree tech-
nique. According to Lemmas 2 and 4 a weight-balanced MVBT has the same asymptotic
bounds on space, query and update time as the MVBT. However, update and query op-
erations have a constant overhead. Since in general we store the weights in index entries,
on update we need always to write back the index nodes to a disk. In contrast, this

overhead is amortized over a batch of update operations while bulk-loading.

48

4 MVBT" Loading Approach for Multiversion B-trees

Nevertheless, MVBT* can be used for normal updates using O(logg N) I/Os per
update. Consequently, we need to manage weight information in the nodes, similar to a
bulk loading case. Yet, we do not attach buffers for a single update operation. To insert
a single update record, we slightly modify the bulk update algorithm. We do not attach
buffers to the live nodes and do not call ClearBuffer function. The modified Algorithm 3
pushes an update record down to the leaf level, while updating node weight information
and if applicable performing node reorganizations.

In the case of the bulk update, buffers are attached to an existing by MVBT™ with
very small overhead, as all information such as the weight and the level of a node is
available. Thus, we can lazily attach buffers during the bulk update. The live weight of
the live root displays the number of live records stored in a tree. Since the worst case cost
of a bulk update also depends from the number of currently stored live records, we can
directly derive the upper I/O bound of a bulk update from the live weight information.

If the size of a batch N is known in advance, we have two options:

1. The first option is: inserting records without attaching the buffer yields worst case
cost Nlogg(N + N') I/Os (This can be speed up by using e.g. LRU-Buffer).

2. The second option is an executing the bulk update procedure. We attach buffers

on demand and subsequently empty all buffers.

We can choose the update strategy based on the estimated worst case cost. This hybrid
strategy yields min{N logz(N + N'), & log% NE,N/ + %’} I/O cost.

4.6 A Class of MVBT "Trees

In this section we present a class T, of multiversion B-trees. T,, has worst case 1/O
bounds for bulk loading and bulk update as well as for space, update and query time.

We define T' € T, as a MVBT™ from a class of T}, using the following parameters
B,d,e,a: B is page capacity. d € ©(B) is the minimal number of live records per page.
€ is defined as a fraction of parameter d such that 0 < ¢ < 1 and d- € operations is needed
to trigger next leaf node reorganization. a is a branching factor of internal nodes. Table
4.4 summarizes notations used in this section.

Further, we assume T, uses Algorithms 2, 4 and 3 (see Section 4.3.1) for bulk loading
and bulk update, respectively. It uses also a modified insert algorithm for a single update.

T belongs to T, if the following conditions are fulfilled:

49

4 MVBT" Loading Approach for Multiversion B-trees

’ Setting ‘ Description

d € ©(B) | minimal number of live entries per leaf node
a€O(B) branching factor of internal nodes
0<e<l1 fraction of d

Table 4.4: MVBT™ settings

1. capacity-condition: The value of branching parameter a¢ and the minimal number

of live records per leaf node d = a are equal and bounded by ©(B)*.
2. tree-consistency-conditions: Node v valid weights w(v) and ¢(v) fulfills
live-condition: a' - d < w(v) <a'- B (4.5)

and

operation-condition: w(v) < t(v) <a'-B (4.6)

Immediately after node reorganizations w(v) and t(v) fulfills strong-weight-condition:

at - (d+d-e) <w() <tlv)<d - (B—d-e) (4.7)

Reorganizations are performed as described in Section 4.3.2. Table 4.5 summarizes

operations triggered based on node weights.

3. split-inequality: Parameters a, d and e satisfy the following inequality:

(@(B—d-€)—d 'B>d(d+d-e) (4.8)

N

4. merge-inequality: Parameter a, d and € satisfy the following inequality:

2-ald > d'(d+d-e) (4.9)

5. buffer-node-condition: Buffers of size M /2 are assigned to nodes on level [

"We introduce both parameters, as d is inherited from MVBT and «a is by weight-balancing technique.
Both have different meanings, however, in order to achieve the desired 1/O complexity we initialize
them with the same value.

50

4 MVBT" Loading Approach for Multiversion B-trees

M -d
Buffers are emptied as described in Section 4.3.1.

The I/O model enforces capacity-condition. Due to tree-consistency-conditions the
next node reorganization on node v on level | occurs at least after d - € - a! operations
(insert, delete and update records) since it creation. In order to guarantee that a balanced
split of internal nodes can be computed, parameters d,€,a must fulfill split-inequality,
as MVBT™ key-split splits internal nodes based on the node weights instead of number
of entries. Further, parameters d, ¢, a must fulfill merge-inequality, since after the merge
the new node live weight should be at least a!(d +d - €).

The update records (operations) are routed through the set of live nodes. According

to the buffer-node-condition we have M /2 memory space to hold this live node set. The
a'B
al—1d"

branching parameter a and parameter d with the same value, the number of live entries is

As we initialize

maximal number of live entries of node v on level [is given by

equal to page capacity B. By this, the live child number of internal node is also bounded
by B. To this end, the number of live entries per internal nodes should be bounded by
B.

Since each live node stores up to B live entries, the maximal number of live nodes
loaded for routing in main memory is bounded by %. Attaching buffers on levels
l=1i-|log, %j fori=1,... allows us to load up to % live nodes. This follows from

the following lemma:

Lemma 5. The number of live nodes of a sub tree with height |log, %} 1s bounded by
M/2B

Proof. Without loss of generality, the value log, % is an integer. Consider sub tree

root node v on level ¢ - log, %. Let v be a buffer node. Let vq be a descendant

M-d
4.B2"

- B. The minimal live weight of a node on level (i — 1) - log,

buffer node on the next buffer level level (i — 1) - log,

The maximal live weight

M-d
4-B2

-d. The maximal number of live nodes on level (i — 1) - log, 224 is given
by a8 57 B/a(i_l)'log“ i57) . = M/4AB. Hence, the overall number of live nodes
is bounded by M/2B. O

Remain M /2 memory is used for buffers. Buffers are emptied in batches of size M /4

is

w(v) is a

: M-d
CL(z—l)-loga el

as described in Section 4.3.1. In Section 4.3.1 we parameterized d, e and parameter a

with d = %, €= % and a = %. These parameters fulfill 7}, conditions.

o1

4 MVBT" Loading Approach for Multiversion B-trees

’ w ‘ t wy, neighbor live weight ‘ Operation
al(d-(1+e))<w<ad(B—d-¢)|t>dB time-split
w>a(B—d-e) t>dB key-split
w<a(d-(1+e€)) t>a'B| w,+w<a(B—d-e) merge
w<da(d-(1+e¢) t>a'B | wy,4+w>d(B—d-€) | merge-key-split
w < ald t<aB | w,+w<a(B—-d-e) merge
w < ald t<aB | wy,4+w>d(B—d-€) | merge-key-split

Table 4.5: MVBT™ node reorganization conditions

Theorem 4.3. T € T,, is asymptotically optimal multiversion B-tree (linear space, log-
arithmic update and query time). The 1/O cost for the bulk loading T is O(% log% X

Niog . N+N' N’ .
and the bulk update O(3 log% = +) respectively.

Proof. Firstly, we obtain space and height bounds in manner similar to the proof of
Lemma 4. The height of T}, trees is bounded by O(logg), since the value of branching
parameter a is equal to minimal live record capacity d and bounded by ©(B). Due to
the fact that d - e parameter is bounded by ©(B), we obtain the space bound.
Secondly, the I/O complexity of a single update operation is bounded by O(logg N).
The algorithm computes a path from a live root to a live node. As the maximal number
of entries of internal node is bounded by ©(B), update procedure always loads up to
O(1) nodes per level and writes them back due to the node weights. In order to show
that internal node contains maximal up to ©(B) entries, we use the same arguments
as in Lemma 1: the node minimal live weight is a'(d 4 d - €), by this, we can perform
up to a'(B — ((d + d - €))) inserts and a!(B — d) deletes. In total we can push up
to a'(2B — 2d — d - €) operations until ¢(v) overflows or the minimal bound of w(v) is
achieved. According to the weight constraints, a child node of the node v is reorganized

after at least a'~'(d - €) operations. After each child split we produce 2 new entries in
2-a'(2B—2d—d-¢) _ 4B—4d—d-e
al=1(d-e) - €
new entries as d = a. The maximal number of entries stored in the node with weight
!(d+d-
a'(d+d - €) before inserting a! (2B —2d —d - €) is & iﬁlidde) = d+d-e. Thus, total number

of entries stored in the node is (%‘i_d'e +d+d-€) € OB) for a =d € O(B) and
d-e € ©(B). The I/O complexity of the node reorganization per level is bounded by

worst. Thus, after a!(2B — 2d — d - €) operations we create:

O(1) (there are up to four nodes involved, node to be reorganized, its neighbor and two
new created live nodes). Therefore, since the overall I/O time per level is O(1), the
single update on Ty, is performed in O(logz N) I/O time.

Thirdly, we show the bounds for the bulk loading and the bulk update. The lowest

M-d
4-B2?

buffer node v level is |log, |. Without loss of generality, we consider this value

92

4 MVBT" Loading Approach for Multiversion B-trees

log,, i‘g‘é to be integer. Then, the minimal number of operations needed to trigger next

S . . log,, M4 2.
node reorganization for node v after its creation is equal to a *®* 452 -d-¢ = %.%26 € O(M).

Combining this result with arguments from Theorem 4.3 we obtain the I/O bounds. [

4.7 Experiments

In this section, we report the main results of our algorithms for bulk loading and bulk
update. We discuss the MVBT' and MVBT query performance and compare the results
to those of a bulk-loaded R-trees.

4.7.1 Workload Generation

Workloads used in our experiments are designed similarly to other experimental studies
with versioned databases [85, 86, 122]. We consider two different types of workloads:
one for index loading and the other for queries.

Our loading workload consists of six files: d50, u0, u25, ©u50, 475, ©100. Each of them
contains 10’000'000 operations[42]2. For all data sets, the first 1’000’000 operations are
insertions (10% of the data set). The remaining 90% of the file consists of a mix of
insertions, deletions and updates. Data sets are named after these specific operations.
For example the file d50 consists of 1’000’000 insertions followed by a mix of insertions
(4’500°000) and deletions (4'500'000). File u75 consists of 1’000’000 initial insertions
followed by a mix of insertions (2/250'000) and updates (6'750°000). Inserted record
keys are obtained from a permutation of 1,..., k, where k denotes the total number of
insertions in the particular workload. Deletions and updates randomly select one from all
live records. In the following, we use the term update to refer to all of these operations.

For each file from the loading workload we consider three query files ¢r1, qro, gr3. Each
query file contains two-dimensional range queries (key range and time range) of the same
absolute selectivity. qry consist of 10’000 queries with 100 answers. gry consists of 1000
queries with 1’000 answers and grs contains 1’000 queries with 10’000 answers. Queries

are uniformly distributed in the two-dimensional space.

4.7.2 Experimental Setup

All algorithms are implemented in Java using the XXL library®. MVBTT is implemented

on top of the existing MVBT by associating two additional weight counters w and ¢ to

2All files are available online http://dbs.mathematik.uni-marburg.de/Home/Downloads
3xxl.googlecode.com

93

4 MVBT" Loading Approach for Multiversion B-trees

MVBT™* MVBT-LRU
B leaf | B index ‘ B leaf ‘ B index
4KB 97 97 97 121

8KB 197 197 197 245
16KB | 397 397 397 493

Table 4.6: Node capacity

an index entry.

We conducted our experiments on a system running Windows 7 equipped with an Intel
I7 CPU, 8GB of main memory, a magnetic disk (WD Caviar Black 1002FAEX, 1TB)
and a SSD (Corsair Force 3 SSD, 120 GB). To avoid an impact of the operating system
on our experiments, we used only the raw device interface.

We ran our experiments with pages of different sizes: 4KB, 8KB and 16KB. Table
4.6 reports the page capacities in the number of tuples. Each page contains header
information that occupies 102 bytes (like the level, number of entries, and pointers to
temporal predecessors). The size of a versioned record in a leaf occupies 41 bytes (17
bytes for the time interval, 8 bytes for the key and 16 bytes for the payload). The size of
an MVBT index entry is 33 bytes (8 bytes for the node pointer, 8 bytes for the key, 17
bytes for a time interval), whereas the size of a MVBT™ index entry is 41 bytes (because
of the additional weight counters w and t).

The available main memory varied from 0.8 MB up to 16 MB. These numbers sound
very small, however the size of the memory has only a marginal impact (base in the log-
factor) on the loading performance. We assigned buffers to each i-max { Llog B/a(M/16B)J
MVBTT level. Thus, one buffer is assigned to each internal live node. Buffer size varied
from 200 KB up to 4MB because it equals to i of the available memory.

Wall clock time and number of I/Os were employed to measure loading performance.
The query performance was measured by the number of I/Os and the number of leaf

accesses.

4.7.3 Bulk-Loading Results

In this section, we compare the performance of our new bulk loading method to iterative
MVBT loading (update by update). MVBT-LRU and MVBT refer to iterative loading
with and without a LRU-Buffer, respectively. MVBT-LRU and MVBT™ always received
an equal amount of memory.

Figure 4.3 reports the total number of 1/Os required for loading MVBT* and MVBT
for each workload file. We used a page size of 8 KB and a fixed memory size of 1.6 MB.

54

4 MVBT" Loading Approach for Multiversion B-trees

S 10000 BEMVBT+ OMVBT-LRU
S 1000
: 100
o 10
= 1

dso ul u25 us0 u75 uloo
Loading Workload

Figure 4.3: Loading performance (logarithmic scale) of MVBT-LRU and MVBT* (page
size = 8 KB, memory size = 1.6 MB)

—-d50 —=u0 -—-=u25 —ous50 —u75 ——ul00

50

2 40
E “0 /——.\.‘.ﬁ.
3 % % i —

g 20
— M + + —+

10

0

100 200 400 600 800 1000
m

Figure 4.4: I/O Ratio of MVBT-LRU and MVBT™ as a function of the memory size(page
size = 8KB)

Results (number of 1/0s) are given on a logarithmic scale. MVBT™ clearly outperforms
MVBT by a factor between 18 and 40.

Figure 4.4 depicts the ratio of I/Os required to load MVBT-LRU and MVBT™ as a
function of memory size. The best results for MVBT™ are achieved for 200 pages. For
larger memory sizes, I/O performance of MVBT-LRU improves slightly faster than the
one of MVBT™. The (relative) number of I/Os of MVBT™ also increases with a growing
number of updates. Due to a smaller number of live versions, the buffer of MVBT-LRU
becomes more effective. For updates only (file ©100), the LRU buffer contains all internal
MVBT nodes, while a lot of reorganization steps are triggered for MVBT™. Thus, the
MVBT™ performance improvements are only a factor of 15.

In Figure 4.5, the I/O ratio is depicted as a function of the page size for loading the data
set u50. The memory capacity is set to 400 pages in total. The lower curve displays the
ratio between I/Os required for loading MVBT-LRU and the ones required for loading
MVBT™T. As expected from our theoretical results, we observe a linear improvement of

the I/O performance with an increasing page size. For 16 KB pages, MVBT™ runs faster

95

4 MVBT" Loading Approach for Multiversion B-trees

e MVBT-LRU/MVBT+ = MVBT/MVBT+

140
120
100
80
60
40
20

01 ‘ ‘ :

4 6 8 10 12 14 16

Page Size in KB

1/O Ratio

Figure 4.5: I/O ratio as a function of the page size (u50 data set, memory size m =
M/B = 400)

than MVBT by a factor of 58. The upper curve illustrates the worst-case for MVBT
when no LRU buffer is used. The curve shows the relative performance gains of MVBT

in comparison to MVBT™.

BEMVBT+ OMVBT-LRU
10000

1000 -
100 -
10 -

min

(a) Magnetic Disk

100

min
—
=]

dso ul u25 us0 u75 uloo
Loading Workload

(b) SSD

Figure 4.6: Loading times (logarithmic scale) of MVBT-LRU and MVBT™ (page size =
8KB, memory size = 1.6 MB)

Figure 4.6 a and 4.6 b depict loading time in minutes, using either magnetic disk or
SSD for all workload files. For the magnetic disk, loading MVBT™ takes between 30 and
60 minutes, while MVBT-LRU requires between 30 and 40 hours. Greater performance

o6

4 MVBT" Loading Approach for Multiversion B-trees

improvements (in comparison to the pure I/O numbers) are due to MVBT uses a larger
number of sequential I/Os than MVBT-LRU. For SSD, loading times of MVBT™ are
between 3 and 5 minutes, while MVBT-LRU requires between 64 and 82 minutes.

300 BEMVBT+ OMVBT

ds0 ul u2s us0 u7s ul00
Loading Workload

Figure 4.7: Loading times of MVBT-LRU and MVBT™ in main memory

Figure 4.7 displays the wall clock time when the entire loading is performed in main
memory. All nodes of the trees are kept in memory (without the need for serialization)
and a LRU-buffer was not used anymore. The page capacity was set to 4 KB (B = 97).
The MVBT+ still used buffers for all internal nodes and the buffer capacity was set to
100 pages. Though the entire loading runs in main memory, MVBT™ still runs faster
than iteratively calling the ordinary insertion algorithm of the MVBT by at least a factor
of 1.37. The reason is that the higher locality of computation is not only important for
disks, but also on the upper levels of the memory hierarchy.

Figure 4.9 depicts the average space utilization of index and leaf nodes. The leaf node
utilization of MVBT™ does not differ from the original MVBT. According to Lemma 1
the utilization of an index node is limited by O(B). More precisely, an index node of
MVBT™ contains at most 6 - B and at least % entries. In our experiments, we observed
that on average there are B/2 entries in one index node. This is less than for the original
MVBT. We did not observe more than B per index node except very rarely for data set
1100.

Figure 4.8 depicts the number of buffer node reorganization and the overall buffer
emptying calls. As expected, with increasing number of update operations, there are
more time splits than key-splits. Therefore, the number of operations needed to trig-
ger node reorganization on level [is always roughly worst case alg. At least after
each a% = %2 = 1225 entries the lowest buffer node should be reorganized (in our
experimental setup). The number of the lowest buffer node reorganizations is limited
by 10'000'000/1225 = 8164. In all our experiments the overall number of buffer node
reorganization was less than this number.

Table 4.7 shows space consumption of the resulting trees. The total space required

o7

4 MVBT" Loading Approach for Multiversion B-trees

B Buffer Node Splits OBuffer Emptyin
10000 P phyme

5000

Number

dso ul u2s us0 u75 uloo
Loading Workload

Figure 4.8: Average number of data pages needed to trigger buffer emptying process
(8KB pages, M/B=200)

File | d50 | w0 | w25 | wb0 | w75 | ul00
MVBT* [629 [1157 | 1241 | 1253 | 1261 | 1239
MVBT | 605 | 1153 | 1215 | 1223 | 1235 | 1196

Table 4.7: Storage utilization of MVBT™ and MVBT

for MVBT™ increases only slightly in comparison to MVBT. This is due to the larger
index entries in which the weight counters w and ¢ have to be kept. Moreover, weight
balancing results in a lower storage utilization in the index nodes as shown in Figure
4.9 b.

4.7.4 Bulk Update Results

In addition to loading, we also conducted a series of experiments to measure the I/O
efficiency of bulk updates on a given MVBTT and MVBT-LRU, respectively. For each
data set we first executed 5'000'000 updates (50% of the total updates). Thereafter,
we processed the remaining updates with a sequence of bulk updates (with a given
batch size). Bulk updates on MVBT-LRU are again implemented by calling the update
function one by one. Figure 4.10 depicts the I/O ratio of MVBT-LRU and MVBT™ as
a function of batch size. The memory size was set to 200 pages. MVBT-LRU required
slightly less I/Os than MVBT™ for batch sizes with less than 10’000 updates. The reason
is that after the updates of the entire batch are performed many buffers contains only one
or very few update operation. However, these buffers are forced to be emptied because
this has to be performed after the batch. Note that these results are still in agreement
with the asymptotically optimal worst-case bounds of Theorem 4.2. For batch sizes with
more than 10’000 updates, the situation is different and MVBT™ is still superior. For a
batch size of 400K , for example, the MVBT™ improvements over the MVBT-LRU are
between 9 (for file i0) and 18 (for file d50).

o8

4 MVBT" Loading Approach for Multiversion B-trees

B live Oall
100% -+

50% -

0% -
(a) Leaf nodes storage utilization

100%
50%

0%
ds0 ul u2d us0 u7s ul00
Loading Workload

(b) Index nodes storage utilization

Figure 4.9: Average storage utilization of leaf and index nodes (MVBT™, 8KB pages
B=197=100%)

4.7.5 Query Workload Results

Workload file u50‘ qri ‘ qr ‘ qrs

I/O | 475 | 11.98 | 85.23

+

MVBT leafs | 1.78 | 8.88 | 80.62
I/O | 418 | 11.33 | 83.74

MVBT-LRU leafs | 1.79 | 8.89 80.8
I/O | 116.3 | 124.92 | 197.34

R-TREE leafs | 104.2 | 112.8 | 184.8

Table 4.8: I/Os and leaf accesses for query workload qri,qra, qrz and for MVBTT,
MVBT and R-tree

We conducted a series of experiments running the query workloads on each data file.
As expected, we observed almost the same number of leaf accesses for MVBT™ and
MVBT. There are marginal differences, as merging of leaves might differ for MVBT and
MVBT™. Due to different split strategies for index nodes, the original sibling of a leaf
might belong to a different parent node in the case of MVBT™. The number of accesses
to index nodes is higher for MVBT™ in comparison to MVBT (Table 4.8). The average

99

4 MVBT" Loading Approach for Multiversion B-trees

,0<>-d50 -2y ——u25 -e-u50 —+u75 —+-ul00

1/O ratio
=

10K 100K 200K 400K 600K 800K 1M
Batch Size

Figure 4.10: Bulk update, I/O Ratio MVBT-LRU / MVBT* 8 KB pages

number of I/Os per query are reported for the three query files on data file u50. However,
only for small queries (gry) the increase in the number of I/Os for MVBT™ over MVBT
is close to 10%.

Additionally, we also report the query performance of an R-tree in Table 4.8. We
built the R-tree using STR bulk loading algorithm [80], a popular loading method that
is also utilized in commercial systems. Our results clearly show that the R-tree query
performance is inferior to the MVBT performance. The reason is simply the high overlap

among the nodes of the R-tree. This is particularly noticeable for small queries.

4.8 Conclusions

In this chapter we presented MVBT™, which is the first partially persistent BT tree that
supports bulk loading in an asymptotically optimal number of I/Os and maintains all
worst-case performance guarantees of the multiversion B-tree (MVBT). The results of
our experimental studies showed that excellent loading times can also be achieved for
various storage devices (magnetic disks, SSD, main memory). In comparison to previous
loading approaches, i.e., loading by iterative updates, MVBT™ loading is substantial
faster by a factor linear to the page capacity. As MVBTT uses a weight balancing
technique, fill degree of non-leaf nodes is slightly lower than for the original MVBT, but
this leads to only a slight deterioration of the MVBT™ query performance.

60

5 Query Adaptive Loading of R-trees

In this work we investigate the problem of efficient R-tree bulk loading techniques. The
novelty of our work is that we consider a query profile for loading R-trees, since cur-

rent loading approaches for R-trees disregard this. The query profile consists of a set

(a) Input set (b) Query set

Figure 5.1: Figure depicts minimal bounding rectangles of California streets data set and
a set of query ranges ()

of query rectangles. Figures 5.1(a) and 5.1(b) depict set of minimal bounding rectan-
gles (MBRs) of California streets with a query set (profile)!. Based on the statistical
information about queries such as average size and their shapes, we are able to build
R-tree minimizing the costs according to a widely used cost model for R-tree query per-
formance [73, 115, 95]. Knowledge of a query profile influence the structure or R-tree
nodes e.g. firstly, average query size influence the average capacity of R-tree nodes. Sec-
ondly, consider extreme example depicted in Figure 5.2. The query set for California
streets with a high aspect ratio (ratio of side lengths) is plotted in Figure 5.2(a). Figure
5.2(b) displays leaf MBRs of R*-tree. The R*-tree disregards query profile and produces
square shaped MBRs. Figure 5.2(c) depicts leaf MBRs of R-tree build using our query
adaptive approach. It is beneficial to adapt the shape of leaf MBR, to the average query
shape.

!TIGER Data: http://www.census.gov/geo/www/tiger/

61

5 Query Adaptive Loading of R-trees

int
!
| wm |" | s
[-~
i Vi §
LT
W . N
(a) Query set (b) Leaf MBRs R*tree (c) Leaf MBRs R-tree

Figure 5.2: Impact of query shape

Our research goal was to design a loading approach that fulfills the following require-

ments:

1. The algorithm should consider statistical information obtained from a query set
to build R-trees that minimizes a cost model proposed by [73, 115, 95]. If there
no query profile available, algorithm should minimize area of minimal bounding

rectangles of the R-tree nodes.
2. The I/O costs of the algorithm should be bounded by the costs of external sorting.
3. The algorithms should be conceptual simple.
4. Devising a parallel and distributed version of the algorithms should be possible.

Regardless of the query profile knowledge our developed loading strategy substantially
improves average query performance. Yet, if query profile is available our approach
yield more better R-trees. The second requirement is motivated by the general trade-off
between query performance and the R-tree construction time. Moreover, according to
the results in [7] the problem of construction R-tree that minimizes the sum of node
MBR areas is NP-hard. In order to fulfill second requirement, we reduce the complexity
of multidimensional sets by sorting according to a space filling curve(SFC). This allows
us to apply efficient dynamic programming scheme to find an optimal solution for the
one-dimensional problem. As external sorting is an integral part of databases systems,
we believe that the implementation and integration costs of our loading approach are
low. The fourth requirement is motivated by recent volume growth of a processing data.
Our bulk loading approach allows us developing efficient parallel and distributed version

e.g. [97, 48, 9], as it based on sorting data according to SFC.

62

5 Query Adaptive Loading of R-trees

Major parts of this chapter are based on the following publications [8, 7, 4]. The chap-
ter is organized as follows: In Section 5.1 we review the cost model used for optimization
of R-trees. In Section 5.2 we present our loading framework. We discuss the crucial
steps of our loading approach in Sections 5.3 and 5.4. Section 5.3 presents dynamic
programming scheme for partitioning a sorted rectangle set. In Section 5.4 we introduce
a query adaptive space filling curve based on Z-Curve. We report results of extensive

experiments in Section 5.5.

5.1 Preliminaries

Query profile QP provides a (statistical) model that is derived from a collection of
representative queries (). For brevity, we assume input data set R = {ry,...,ry} as
well as set () of range queries are represented by d-dimensional rectangles. For example
QP contains representative shape of a query defined by average side lengths and aspect
ratios. We also consider the case where QP is unknown (arbitrary range queries). Our
goal is to obtain an R-tree that minimizes average I/O costs for a class of ranges queries

defined by QP. Our default query profile derived from set @ is defined as follows:

Definition 1. The default query profile QP = s1,...,8q derived from the non-empty set
of range queries Q is defined as follows: QP[i] = s; where s; is an average side length

for dimension i obtained from the set of range queries Q.

For d = 2, QP = [sz, sy|, where sx and sy is the average size of the range query in
the first and second dimension, respectively. For the sake of simplicity, we consider a
two-dimensional space (d = 2) throughout this chapter. We will discuss the generalized
case for d > 2 when necessary.

In order predict the average query performance of R-tree without constructing the
index, the following cost models were proposed in a literature [73, 115, 95]. We briefly
introduce the most common one [95]: The authors classified range queries according to
the indicators aspect ratio, location and size. The query size is defined by either area
(relative to the entire data space) or the number of qualified objects. Query location
can follow either a uniform distribution or the distribution of the underlying data. The
aspect ratio equals the width-to-height ratio of the query rectangle, which we assume to

be 1 (quadratic windows) in the following. This yields in four different query models:
e WQM;: size = area, location = uniform distribution,

e WQMs: size = area, location = data distribution,

63

5 Query Adaptive Loading of R-trees

(a) WQM;
oF SR
o oo e
] 2 ==

0 D{Q %8
DD I
D"HDD L
FBgE
[u)

i op, %o
1

3%

I
FEQ

(c) WQMs (d) WQM,

Figure 5.3: Figures a-d illustrate query models WQM; — WQM, for California strees
data set

o W(QMs: size = number of answers, location = uniform distribution,
e WQM,: size = number of answers, location = data distribution.

Figure 5.3 displays four query models for a rectangle set California streets (see Figure
5.1). Hereafter we assume WQM; model as default: We assume that the domain cor-
responds to the two-dimensional unit square [0,1)2. A rectangle r; = (cx;, cyi, dz;, dy;)
is represented by its center (cz;,cy;) and its extension (dz;,dy;). For a window query
WQq.s given by its center ¢ = (¢qx,qy) and its extension s = (sz, sy), the probability
of a rectangle r; intersecting the window is (dz; + sz) - (dy; + sy) (see Figure 5.4 where
a rectangles r; is extended with query side length). More precisely: the probability of
intersecting the rectangle r; is a fraction of extended area to the area of the space, since

the area of the unit cube is equal to one we obtain the result. The average number of

64

5 Query Adaptive Loading of R-trees

_______ -
I Avg. Query |
sy | N
. |
ax.qy |
dy cx..,cy sX |
|
dx <—>_ —

Figure 5.4: Figure illustrates Cop model

rectangles intersecting the query window is then given by:

N

Cop =Y (dz; + sx) - (dy; + sy) (5.1)
i=1

Note that for point queries with s = (0,0), the equation computes the sum of MBR
volumes. We obtain the expected number of leaf accesses, which is a typical performance
indicator for R-trees, by applying the equation to the set of bounding boxes of the leaves.
The essence of the cost model presented above is that minimizing the sum of area of the
leaf nodes MBR induces less query I/O costs. We define the problem of query adaptive

loading of R-trees as follows:

Definition 2. Query adaptive loading: for a given query profile QP construct an R-tree

such that Cgop is minimized.

The leaf level nodes of an R-tree correspond to a partitioning of an input set. The
partitioning consists of non overlapping buckets with capacity constraint. The minimal
allowed number of entries per bucket corresponds to a minimal page capacity b and the
maximal allowed number of entries to a page capacity B, respectively. According to a
cost model a partitioning with the minimal cost yields better I/O performance. Thus,
the problem of query adaptive loading is the problem of computing such partitioning.

Let us consider the case s = (0,0) (e.g. the query set is empty or unknown). Thus,
we need to compute a partitioning such that the sum of MBR areas is minimized. Peter
Widmayer showed that computing such partitioning is NP-hard [7]. We briefly review
the main result. Let P, g := p1,...,pmn be a partitioning consisting of m buckets. The
capacity of bucket p is constrained by b < |p;| < B rectangles. Let M BR(p) be a
minimal bounding rectangle (box) of bucket p. We define w : p; — RT a weight of
bucket p. According to the cost model, the weight function w := V(M BR(p)) is an
MBR(p)’s volume (for d = 2 its area). Thus,

65

5 Query Adaptive Loading of R-trees

Theorem 5.1. The problem of partitioning P, g for N given rectangles that minimizes

i V(MBR(p;)) is NP-hard.
i=1

The proof considers the special case of B = 3,b = 2 (as b = [B/2]) and a 2-
dimensional space. Widmayer uses a polynomial time reduction from the version of
planar 3SAT [81, 120] problem in which for each variable, also an edge can be embedded
in the plain, to show NP-hardness of the problem. We refer for details of the proof
to [7]. Based on these results, we develop a heuristic approach that optimally solves the
partitioning problem for a given sorting order and V(M BB(p)). The justification for a
heuristic approach lies in the NP-hardness of the problem.

As the target optimization function is obtained from WQM; query model, we assume
that queries, more precisely their centers, are uniformly distributed in the underlying
domain. This assumption is obviously not satisfied in a real application. The standard
approach to overcome this deficiency is to use multidimensional histograms and to main-
tain these parameters for each histogram cell independently [10, 99]. This approach has

already been used successfully for the analysis of R-trees [115].

5.2 R-tree Bulk-Loading Framework

For a given query profile QP = (sz, sy), our goal is to generate R-trees whose average
number of leaf accesses is minimized for queries derived from)P, as they dominate the
overall cost for sufficiently large range queries. Moreover, upper levels of the trees are
often located in memory, while leaf pages are generally not.

Our goal is to create optimal R-trees level by level, bottom-up. However, as shown
in [7], the problem of generating optimal R-trees is NP-hard and, therefore, sort-based

heuristics are examined traversing the following five steps:

1. Determination of Sort Order: For a given QP determine a sort order that

minimizes the cost.
2. Sorting: Sort the rectangles with respect to the determined order.

3. Partitioning: Partition the sorted sequence into subsequences of size between b

and B and store each of them in a page.

4. Generation of Index Entries: For each page, compute the bounding box of its

partitions and create the corresponding index entry.

66

5 Query Adaptive Loading of R-trees

5. Recursion: If the total number of index entries is less than B, store them in
a newly allocated root. Otherwise, start the algorithm with the generated index

entries (bounding boxes) from Step 4.

Step 2 and Step 4 are very similar to the traditional sort-based loading of R-trees
[104]. The crucial optimization occurs in the first and third step. Step 1 computes a
sort order from the query profile. We exploit the fact that a space-filling curve (SFC)
does not require a symmetric treatment of dimension, but allows more flexibility [93].
As an example, consider partial exact match queries orthogonal to the z-axis. Then the
sort order should be only influenced by the z-value. This corresponds to a SFC where
all bits of the z-axis should precede the bits of the y-axis. In step 4, the rectangles are
then assigned to pages such that the capacity constraints of the R-tree are met. Filling
up pages to the maximum (or as generally suggested to a constant degree) does not lead
to R-trees optimized in respect to the given query profile. High storage utilization is
only useful for fairly large queries, while the performance of smaller queries suffer. In
Section 5.3, we present a heuristic partitioning algorithm that is optimized according to
the underlying query profile. Step 3 as well as Step 4 make use of a cost model that is

derived from our query profile.

5.3 Sorted Set Partitioning

In this section we consider the problem of query-adaptive partitioning a sorted sequence
ri,...,ry of rectangles such that each bucket of the partition corresponds to a page
of the R-tree. This approach is a heuristic that is based on the specific sorting order,
since the computation of an optimal partition is NP-hard for V(M BR(p)). Every bucket
corresponds to a contiguous subsequence p; ; = r;,...,7j suchthat b <j—i4+1< Bis
satisfied. A valid partition P consists of the subsequences p; ; such that each rectangle
belongs to exactly one of them. Let Sy denote the set of all valid partitions and let
SN,m be the partitions that consist of exactly m buckets. While the standard sort-based
loading strategy stores a fixed number of rectangles per page, we do not require equal
numbers of objects per pages in our approach. This gives us flexibility to optimize
the partition according to a given query profile QP. Let MBR(p; ;) be the minimal
bounding rectangle of a contiguous sequence p; ; of rectangles.

Based on the cost model (see Equation 5.1) we consider the following optimization

problems:

1. Storage-bounded partitioning: Compute a partition Smey, € Snm that
minimizes the cost function for the set {MBR(p)|p € S,S € Snm}-

67

5 Query Adaptive Loading of R-trees

’ notations description

S a partitioning obtained from sorted sequence
r1...7N such that each rectangle belongs to
exactly one bucket p; ; € S. Each bucket p;; €
S corresponds to a contiguous subsequence
Pij = Ti,...,rjsuchthat b<j—i+1<Bis
satisfied.

M BR(p; ;) minimal bounding box (rectangle) of a bucket
Dij € Sp.B

SN set of all valid partitions obtained from a
sorted sequence 71 ...7N

SNm a set of valid partitions with exact m buckets
obtained from a sorted sequence r1...7xN

fw:pij — RT weight function for buckets p; ; € Sy B

VT (MBR(p;;),QP) M BR volume extended with the average side
length from QP, for k = 2: QP = (sz, sy) and
VH(MBR(pi;), QP) = (dz + sz) - (dy + sy)

cS)= > fuwlpij) cost function of partitioning S

pijES
Cor(S)= > VT(MBR(pi;),QP) | default cost function C(S)
pi, ;€S

Table 5.1: Important notations

2. Query-optimal partitioning:

Compute a partition Sy, € Sy that minimizes

the cost function for the set {M BR(p)|p € S, S € Sn}.

Figure 5.5 depicts two possible partitioning with different C(S) = > V(M BR(p;;))

p@jES

costs (sum of MBRs areas) with parameters b = 2, B = 3. Note, that this cost function

corresponds to the case where the index should be optimized for a point queries. The cen-

ter point of rectangle is used for mapping to the Hilbert key. Input rectangles (7, ..

'7T9)

(see Figure 5.5(a)) are processed according to Hilbert curve (see Figure 5.5(b)). Figures

5.5(c) and 5.5(d) show partitioning obtained by applying standard fixed sized parti-

tioning and Query-optimal partitioning, respectively. The partitioning in Figure 5.5(c)

68

5 Query Adaptive Loading of R-trees

] = "o =1] - ER=E 3
| L3
ilg= ﬁﬂ[} ol MRS lES

— 1

[0 == | (=2 —= —— =]

(a) (b) (c) (d)

Figure 5.5: Sorted set partitioning

consists of three buckets (rs,r4,7r1), (r2,75,79) and (r7,7r6,78). The partitioning with
four buckets (rs,r4), (r1,72), (r5,79,77) and (r6,78) in Figure 5.5(d) display lower C
costs (the sum of MBRs areas). Therefore, the partitioning with the same number of
rectangles per bucket not always lead to a minimal cost partitioning. Though, the parti-
tioning in Figure 5.5(d) has more buckets, it displays better costs. Moreover, the worst
case number of produced buckets is still limited by N/b.

Note that query-optimal partitioning results in a better partitioning, but the worst-
case, storage utilization of the resulting R-trees can be as low as b/B. Storage-optimal
loading allows us to choose the desired storage utilization (N/(m - B)) in advance by
setting m.

Let QP = (sz,sy) be a given query profile and Cgp(S) = Zpes VT (MBB(p),QP)
be the sum of areas extended with average side length from query profile QP. More
formally, V*(r, QP) = (dz + sx) - (dy + sy) for a rectangle r = (cz, cy, dz,dy). Cop(9S)
denotes denotes the cost of a partition S € Sy for a given query profile QP. This
function has a nice property, it allows us designing of an efficient algorithm to compute
the optimum. Consider a split of a partition S into two arbitrary partitions .S; and S,.

Then, the following property holds for our cost function:
C(5) =C(S) +C(Sr)

In particular, equality is satisfied for the optimal partition S,,;. Note that, S; and S,
must also be optimal partitions of their associated rectangles. In fact, this observation
allows us to use the paradigm of dynamic programming in a similar way as for computing
optimal histograms [72, 120].

For partitioning the first ¢ rectangles into k£ contiguous sequences, the computation of

69

5 Query Adaptive Loading of R-trees

the minimum cost opt*(i, k) can be expressed by the following recursion:

Opf(@k)=:é§g%{0pﬁ(i—j,k—-U-%fwwnﬁ+L0} (5.2)

Algorithm 5: opt*(i, k)

=W N =

© W N o W

10
11
12
13
14
15
16
17

18
19

20

21

Input: R]] array of rectangles of size N, f,, weight function, m, b, B
Output: cost[l...N]|[1...m] cost array

allocate cost array, and initialize for one node;
cost[][] ;
for i=10to B do
| costli][1] = fu(MBR(p1,));

compute best costs for m nodes starting from 2 ;
for y =2 tom do
assignment to y pages ;
for =y -btomin(y-B,N) do
slb...B] = 0;
max number of entries per node;
mazrp =(x—B>0)?B:x—B+1;
R,[| + precompute MBRs costs for t-B to t-b ;
r < rectangle ;
for : =1 to maxp do

r U R[z — i] compute MBR ;

if i > b then

| Ryli] fulr);

for [= b to maxp do
L s[l] = costlx —][y — 1] + Rp[l — b+ 1];

| cost[z][y] = min(s);

return cost| || |;

In general, the opt*(i, k) function corresponds to the optimal one-dimensional his-

tograms computation proposed by [72] if we use set b = 1 and B = N —m — 1. In

o
1

rder to compute opt*(IN,m), we apply the recursive formula for all 1 < ¢ < N and

< k < m, in increasing order of k, and for any fixed k, in increasing order of i. We

store all computed values of the opt*(i,k) in a table (see Alg. 5). Thus, when a new

opt*(i', k') is calculated using Equation 5.2, any opt*(i, k) that may be needed can be

read from the table. After computation of the optimal cost, we can read the contiguous

sequences of the input rectangles out from the dynamic programming table. From this

70

5 Query Adaptive Loading of R-trees

procedure, we obtain the following result.

Theorem 5.2. An optimal partition Sy, of N rectangles into m buckets, each of them
containing between b and B contiguous rectangles, can be computed in O(N -m - B) time
and O(N -m) space for weight function fy, := VT (MBR(p;;),QP).

Proof For each k- buckets we have k - (B — b) subproblems. Thus, the overall number is
Z k-(B-b)<B E k < O(B-m?) = O(N -m), since in our settings m € O(N/B).

Therefore we need at least m € O(N/B) space in order to obtain the optimal partitioning
via backtracking. Once we have computed optimal solution for £ — 1 buckets, we have
B —b = O(B) choices to extended our optimal solution with k-th bucket. Thus, at least
O(N - m - B) time we need to fill up the dynamic programming table. Since our weight
function is an extended area, it can be computed in O(1) time for a given rectangle
(MBR). Yet, we need to compute f,, for a B —b = O(B) MBRs for each subproblem.
Since B MBRs for B choices are computed in O(B) time (by executing MBR union
operation iteratively), we obtain our overall time costs.]

Algorithm 5 provides details of opt*(i, k) computation. For each k we consider k-(B—b)
positions in the input array. Therefore, we compute B MBRs for each position i several
times, since position intervals can overlap for different & values. Although we do not
improve asymptotically O(NN-m-B) time, Authmann [32] proposed runtime improvement
of the algorithm using additional N - (B — b) space by precomputing for each i the costs
of MBRs of B — b buckets p; i ...pii—B-

Next, we consider query-optimal loading, the problem of computing the optimal parti-
tion without user-defined storage utilization. At first glance, the problem appears to be
harder because the solution space is larger. However, the opposite is true because the
parameter m has no effect on the optimal solution anymore. This results in the following

simplified recursion:
gopt™(i) = min_{gopt” (i —j) + fu(pi-j+1i)} (53)

In order to compute gopt*(N), we compute the recursive formula for all 1 <i < N in
increasing order of i. We store all computed values of gopt*(i) in a table (see Algorithm
6). Thus, when a new gopt*(i) is calculated using Equation 5.3, any opt*(i) that may
be needed can be read from the table. As in the case for opt*, we obtain the result

sequences from the table. Thus, the following theorem holds:

Theorem 5.3. An optimal partition Sy of N rectangles into buckets, each of them

containing between b and B contiguous rectangles, can be computed in O(N - B) time

71

5 Query Adaptive Loading of R-trees

Algorithm 6: gopt*(i)
Input: R[] array of rectangles of size N, f,, weight function, b, B
Output: cost[l...N] cost array

cost[| allocate cost array, precompute costs for 1 to B elements ;
for t=2bto N do
cost[t] < oo ;
Ry[] < precompute MBRs costs for t-B to t-b ;
r < rectangle ;
fort=1to B do
r U R[x — i] compute MBR ;
if ¢ > b then
L Rpli] < fu(r);

10 for | =B tobdo

© W N O A W N =

11 compute cost for last b to B elements if t-1 > b;
12 ¢p < get MBR costs Ryl — b+ 1];

13 cp < costlt =]+ ¢ ;

14 if ¢, < cost[t] then

15 L cost[t] = cp;

16 return cost] |;

and O(N) space for weight function f,, := VT (MBR(p;;), QP).

Proof. An optimal solution for position ¢ uses only one supbroblem that is at most B and
at least b positions away. Thus, the overall number of subroblems is O(N). Therefore,
we need at least O(NV) space in order to obtain an optimal partitioning via backtracking.

At each position i we have to make B — b choices to extend an optimal solution. Since
our weight function is an extended area, it can be computed in O(1) time for a given
rectangle (MBR). Yet, we need to compute f,, for a B —b = O(B) MBRs for each
subproblem. Since B MBRs for B choices are computed in O(B) time (by executing
MBR union operation iteratively), we obtain our overall time costs.]

Theorem 5.3 shows that optimal loading is possible in as little as linear time. The
required CPU-time is much lower compared to the optimal solution of space-bounded
loading. Note that storage utilization of R-trees generated by query-optimal loading
largely depends on the underlying query profile. If the query size is large, the optimal
partitioning also causes high storage utilization.

Note, that opt*™ and gopt* compute only the best partition for a given sequence for one

level at time. To build an optimal R-tree that include all levels, we can generalize gopt*

72

5 Query Adaptive Loading of R-trees

for k—levels. As for gopt we compute the best partitioning for subsequences of size ©(B!)
for levels [= 1,.... To limit the processing time and bound number of entries per node
in upper tree levels, we adapt the approach known from weight balanced B-trees [28].
We define parameter a as a branching parameter. Let b=1/3B,a=1/4Band [=1...

then following function computes partitioning:

fopiy) 2 <(j—i)<Band0<i<j<N
~omin - {g"(,j k) +g"(G —k+1,7) + fulPjkr1y)} fO<i<j<N
§BU) <k<iplzy

a

g (i,5) =
oo otherwise

(5.4)

As for gopt* and opt* we use a table to hold intermediate costs. Thus, the following

theorem holds?

Theorem 5.4. An optimal weight-balanced R-tree with capacity parameters B,b and

branching parameter a = iB can be computed from a sorted sequence of rectangles in
O(N3.1B% (1)lees (M) time and O(N?) space for weight function f,, :== V(M BR(p;;), QP).

Proof. The space needed for a dynamic programming table is O(IN?), since we need to
get level partitioning via backtracking. As the number of sub-sequences is bounded by
O(N?) for N elements, all (i, j) interval costs belonging to sub roots of particular level
are obtained from this table.

The computation time can be derived as follows: first we derive the complexity of
minimal cost computation from a table (inner loop see Algorithm 7) depending on the
level. For the level 0 the inner loop has the complexity B — %B < B. For the level [> 0
the inner loop has the following complexity %B(%B)l — 1B(3B)! = B(:B)!. Summing
up over all levels we get O(B - 22:0 (1B)"). Since i and j define valid partition bounds
of size O(B') for each level [we invest at most O(N?) operations per level. Then we have
following overall costs since [< logg N O(NQ-B-(%B)lH) < O(N?’&BZ-(%)IOgB(N)). O

If we use a non-weight balanced variant then the inner loop for a level [has at least
complexity B! — (%B)Hl. The computation time increases almost by a factor four
compared with a weight-balanced variant per level, since: B'** — (1B)!*1/(B(;B)") =
(1- (%)Z) / (%)l Thus, for [<logg N weight-balancing decreases the overall computation

time by almost factor 4°85(N)

?In [7] we devised O(logy N - N?) space bound. As we can decode each partition interval 4,5 for each
level using N2 space, we provide more tight space bound in this work.

73

5 Query Adaptive Loading of R-trees

Algorithm 7: g*(i, j)

N O Ok W N

o]

10
11
12
13
14
15
16
17

18
19
20
21
22

23

Input: N rectangles, f,, weight function, b, B, a
Output: cost[l...N] cost array

cost]][] allocate cost array;
precompute F,[][| array ;
fori=1to N—-0bdo
r < rectangle ;
for j =i to N do
L r U R[j] compute MBR ;
Fulill]) fulr) ;

F,[][] contains the costs of MBRs for all 4, j ;

for each level compute best partitioning ;

for [=0 to < [log,N] do

s« b-a;

e+~ B-d;

fori=0to N—b-a do

for j=i+b-a* to N do

for k=stoedo

if [== 0 then

| clilli] + Fulillj] ;

else
¢ Fulj — k+1][j] :
¢ < clillj — K +c[j — k+ i) + ¢y
if ¢, < c[i][j] then

L clillj] = ¢ ;

return cost| |;

As a result, a subtree on level [> 0 holds [%B(%)l, %B(%)l] elements in its leaf nodes

and [B B] entries per index node. However, we need at least a quadratic space and time

16°

for a computation, since all possible subsequences should be considered. Consequently,

the solution is not practical anymore. In our experiments we observed only a marginal

improvement in comparison to gopt™, since only a small subset of a data can be processed

efficiently at time.

74

5 Query Adaptive Loading of R-trees

5.3.1 Practical Considerations

In the following, we provide some useful information for processing a large set of rect-
angles. Because computing opt* requires quadratic space, it is unlikely that the whole
intermediate data sets can be processed in memory. In this case, the data set is pro-
cessed as follows: we cut the data in sufficient big equi-sized chunks and apply opt* on
each of them independently. In our experiments, we observed that B? (where B is equal
the number of rectangles in a page) is sufficient to obtain near-optimal results. For the
computation of gopt*, the same strategy can be applied. However, since only the last B
entries are required by gopt*, a buffer of B entries is sufficient for processing.

After the first level has been constructed, the index entries of the next level can be re-
sorted again. However, we noticed that for a given query profile, the produced sequence
of MBRs already preserves the order of the input rectangles so that we skip the extra

sorting step to reduce the total build-up time.

5.4 Optimization of Sort Order

The quality of our partitioning algorithms depends on the chosen sorting order. Our
experiments show that traditional Hilbert and Z-Curve perform very well in combination
with the proposed partitioning for square query rectangles. In this section we provide an
algorithm for determining the sorting order of our bulk-loading framework for the cases
where the average query shape is non-square. The sorting order is defined by a SFC
whose input corresponds to an appropriate shuffling of d bit sequences, where each of
them of constant length L represents a dimension of the d-dimensional unit cube [0, 1).
As before, we assume two-dimensional data and discuss the general case only if necessary.
Due to its flexibility, we use the Z-curve as our SFC in the following.

Our goal is to adapt to the underlying query profile QP = (sz, sy). In order to model
non-square window queries, we introduce here the aspect ratio given by a = sy/sx. The
effect of the aspect ratio is illustrated in Fig. 5.2(a) where a set of range queries with
a high aspect ratio is plotted. The bounding boxes of the R*-tree leaves are plotted in
Fig. 5.2(b), while the plot of the boxes obtained from our sort-order optimized algorithm
is given in Fig. 5.2(c). The R*-tree does not take any query profile into account and
attempts to generate boxes with a quadratic shape, while our new loading algorithm
adapts its boxes to the shape of the query. This query-adaptive partition causes an
substantial improvement in performance compared to the standard R*-tree.

The basic idea is to introduce a two-part SFC. The first part corresponds to a SFC

being defined on a non-symmetric binary grid. Each dimension of a grid is partitioned

75

5 Query Adaptive Loading of R-trees

in binary manner into equi-sized intervals. The grid resolution GR is given by the total
number of bits required for determining whether a point belongs to a cell. Note that the
volume of the cell is 2-¢%. The second part combines the remaining d - L — GR bits in
lexicographic order. Consider an example shown in Figure 5.6. We assume that we use
four bits to represent a singe dimension, and we have 256 rectangles. We can represent
256 Z-addresses corresponding to a one cell. We assume that each object is mapped to
exactly one distinct address. Now let us assume that a capacity of a page is four objects.
For quadratic queries with volume of four cells, the sorting order that corresponds to

symmetric Z-Curve xyzryzryxry, minimizes number of the node access. Symmetric Z-curve
N——

GR=
enforces generation of square shaped MBRs. In the case of non-square query shapes with
same volume, the asymmetric Z-curve xyxy rxyy enforces generation of MBRs with the

~——

GR=4
same aspect ratio as the query rectangle. Note that this design of the two-part SFC

allows us adapting to the common cases discussed previously. In the case of a = 1, we
fully exploit the first part of our SFC, i.e., GR = d - L, while for partial match queries,
we only use the second part with an appropriate lexicographic order (given priority to

the most selective dimensions). The fundamental questions are how the asymmetry of

aspect ratio 1:1 aspect ratio 1:4 avg. volume 4
MNENA N NN AT r\]I
AR ENEA RN
O AN N AN r‘l\r]l
LHY oY SRR NI
O RN RO N RS rjl A
QN LI
' N RIATA] \rql
LN Y 1 \| L _‘__\l TNy — —
ML VRO A (Lp WQI W W
LA VENA TN Ny
NIRRT \r«h,l
NN DR ORI SN Y
NN Al N
LNV AUNY AN |
I:I AR \
OV TN NIRRT
ZSIring: Xyxyxyxy ZString: XyxXyxxyy

Figure 5.6: Left a grid with GR = 8, right a grid with GR = 4.

the grid is determined and how GR has to be set for a given query profile. Our goal is
to design a grid such that the number of grid cells is minimized given that the volume
V =z-y =29 is fixed. Here, z and y denotes the size of bounding intervals of the
cell. Let a query profile be @ = (sz, sy), with sy = a - sz. These simplified assumptions

allows us to use Equation 5.1 for estimating the average number of cells intersecting a

76

5 Query Adaptive Loading of R-trees
window query. The LC2(z,y) expresses the number of cells as a function of z and y.
LO2(z,y) =29F . (z-y+x-sy+y-sec+sz-sy) (5.5)

Equation 5.5 can be rewritten by substituting = by V/y, sz by 2! and z -y by the
constant V. Note that the average utilization is constant for different sort orders. This

provides the following cost function:

LO(y) =29 . (V + sy - (Z+z)+sy2~a) (5.6)
LC () =27 sy (= 1) (57)

Computing the root of the derivative of equation 5.6 yields the minimum. It directly
follows that yop: = VV - a minimizes LC (y). In addition, we obtain xqy; = \/g and that
the aspect ratio of the optimal cells is also equal to a again. Note that we ignore here
that our optimum is not realized on the grid and some rounding is actually necessary.

In the case of d > 2, we introduce d — 1 aspect ratios a1, ...,aq_1 with a; = S;—tl Let
V = [l <;<q4xi be the average volume of a page region and z; be the length of the i-th
side of t}_le_page region. Then, LC is minimized for x4 = (V -ag_1)"/4, z; = (V - afl—;l)l/d
for1 <i<dandz = (%)1/”[.

Let us now discuss how to set the parameter GR or equivalently the concrete size
of a grid cell. There are at least two intuitive options. One is to set the average query
volume equal to the average query size. Then a query hits at most four cells. As shown in
[31], this minimizes the number of contiguous pieces of the SFC that intersect the query
region. However, our goal is to minimize node accesses, thus we use the average size
of the optimal bounding boxes of R-tree leaves (which means the optimal one obtained
from the cost function 5.1) to determine the grid cell (see Fig 5.6). The results of
our experiments indicate that this option is superior to the first option. Note that the
optimal bounding box offers the same aspect ratio as the window query. We use this
property to initialize our algorithm with this box rather than using d — 1 aspect ratios
and the parameter GR (see Alg. 8 for details). The input of AdaptiveShuffle consists of
a d-dimensional array A of bit sequences of fixed length L and a d-dimensional array len
representing the shape of the optimized boxes. A; denotes the value of the i-th dimension.
In order to simplify the description of the algorithm, we assume that len; < len;;1 is
satisfied, 1 < ¢ < d, without loss of generality. Each part of the two-step SFC consists

of a for-loop. In the first for-loop, the routine SymShuf fle shuffles a certain number

77

5 Query Adaptive Loading of R-trees

Algorithm 8: Algorithm AdaptiveShuffle
Input: Average edge lengths of the boxes of the leaves (leny,...,leng) with
len; < len;t1, d-dimensional array A of bitstrings with L bits per bitstring
Output: bitstring of length L - d

=

from = L,resString = 0;
2 fork=d,...,1do
3 to=1L— [log2 ﬁ—‘,
resString = +SymShuf fle(A, k, from — 1,to);
| from = to;
6 for k=1,...,ddo
7 resString = +Suf fixString(Ay, L — {logQ ﬁ-‘);

8 return resString ;

of bits of the first £ dimensions in a symmetric manner until the selectivity of the k-th

dimension is fully exploited. The symbol "=+" denotes appending the right string to

the result string. This loop is iteratively performed for k = d,d — 1,...,1. Note that

the parameter GR can be computed by GR = Zlg k<d {logg ﬁ—‘ The second for-loop

simply calls Suf fizString to append the unused bits of the k-th dimension to the result

string, k = 1,...,d. Let us consider an example for d = 3, L = 6, 41 = (x5,...,x0),
111

Az = (y5,..-10), A3 = (25,...,20) and len = (55, 5, 3). From these settings, we obtain

the following result string:

T5,Ys5, 25, L4, Y4, 23, Y3, L2, T1,T0,Y2, Y1, Y0, 24, 23, 22, 21, 20

Note that we first interleave bits from all dimensions. After the first cycle, the z-
dimension is not involved anymore. After three cycles, the asymmetric grid with res-
olution GR = 8 is generated and the remaining bits are then simply appended to the

result.

5.5 Experiments

In this section, we compare different sort-based loading algorithms in a set of experiments
and show the improvements of our query-adaptive technique. We first describe data files
and query sets used in our experiments. Then, we present improvements achieved by
our algorithms and compare the influence of order optimization and the partitioning

strategies on both our and also related loading algorithms. In addition, we discuss the

78

5 Query Adaptive Loading of R-trees
validity of our assumptions, which have influenced the design of our loading algorithms.

5.5.1 Data File and Query Profiles

In our experiments, we adapted the test framework developed for RR*-tree evaluation
[39]. The framework consists of 28 different data sets, either points or rectangles, that
belong to eight groups abs, bit, dia, par, ped, pha, uni, rea. Each of the first seven groups
contain three artificially generated data sets with 2,3, and 9-dimensional data following
the same distribution in each dimension. Each of the artificial data sets contains at
least 1 million objects from [0, 1]d. For example, the group uni consists of 3 files of
17000000 two-, three- and nine-dimensional uniformly distributed points. We give a
brief overview about the data sets; 2-dimensional data sets can be roughly grouped in
two groups point sets and rectangular sets. Data set abs consists of equal sized squares
generated from equidistant distribution. Data set bit is a point distribution generated
according the power low and closely related to Zipf-distribution. Data set dia consists
of rectangles distributed along the main diagonal. Data set par represents a rectangular
distribution with a high variance of the size and the shape of rectangles. ped is a point
distribution of a thin stripped clusters obtained from a data set par. Data set pha is a
set of a ellipse shaped clusters of points generated from data set par. Data set uni is
a uniform point distribution. The eighth group rea contains seven real data sets with
2,3,5,9,16,22, and 26 dimensions, respectively. For example, the 2-dimensional data set
consists of 1’888’012 bounding boxes of streets of California. The 3-dimensional data set
is contains 11°958’999 points from a biological application. The data sources as well as
a full description of the data sets are available from [39].

In the original test framework, three range-query sets qrl, ¢r2 and ¢r3 were considered
for each data set. Except for the group ped, the query sets were generated as follows:
The queries of grl, qr2 and ¢r3 refer to square-shaped windows and deliver 1, 100 and
1000 results on average, respectively. Note that in difference to previous performance
comparisons, the cardinality of the response sets is limited (at most twice the average) to
avoid the dominating influence of a few queries with very large response sets. All queries
followed the underlying data distributions. According to the query taxonomy [95], these
query sets are of type WQM, (queries follow data distribution and query size is based
on answer number). For group ped, queries were generated in a more traditional way.
The square-shaped range of ¢rl, ¢gr2 and ¢r3 cover k/1’000'000 of the entire data space,
k =1, 100, 1000. In addition, ped queries were uniformly distributed (type WQM;).

In order to examine the query-adaptivity of our techniques, we modified the generation

of 2-dimensional query profiles qr2 and ¢r3 by introducing the aspect ratio a as a new

79

5 Query Adaptive Loading of R-trees

parameter. There are now ¢r2, and qr3,, a = 1,...,20, where a = 1 refers to the
original profiles. We retain the original methodology for generating query profiles ¢r2,
and gr3, limiting the response set cardinality to 100 and 1000, respectively.

Except for ped, the generation process is based on posing nearest neighbor queries with
the weighted distance measure Lo (pl,p2) = max(|plz — p2z|, % Iply — p2y|), pl,p2 €
[0,1]%. For ped, we considered range queries with query profile (+/(k/(a - 170007000))
,+/(a - k/17000000)).

5.5.2 Examined Algorithms

Table 6.2 provides a summary all methods used. As a reference method, we used the
traditional sort-based loading termed Z-loading and H-loading using Z-ordering and H-
ordering, respectively. Both of the loading techniques are parameterized with storage
utilization set to 80%. Note that in our experiments, higher storage utilization did not
improve the query performance. ZAS-loading refers to Z-ordering combined with our
adaptive shuffling technique. Z-GO stands for globally optimized partitioning technique
applied to Z-ordered input, whereas H-GO is based on H-ordering. H-SO uses our
partitioning with a guaranteed storage utilization of 80%.

We also examined STR [80] and TGS [58] because of their popularity. Storage uti-
lization was again set to 80%. In addition, we also present an improved version of STR,
termed STR-GO, which combines STR, with our globally optimized partitioning method.
STR-GO performs as STR for the first d — 1 dimensions, but uses our partitioning tech-
nique for the last dimension. This is directly applicable because the data objects are
distributed among the leaf pages regarding the d-the dimension. The performance of
bulk loaded R-trees and tuple-by-tuple loaded R*-trees[38] is also compared.

All algorithms are implemented in Java. Experiments were conducted on a 64 bit
Intel Core2Duo (2 x 3.33 Ghz) machine with 8 Gb memory running Windows 7. In
order to illustrate the performance on several different storage devices, we conducted
experiments on a magnetic disk (Seagte ST35000418As), SSD (Intel X25) and in main
memory. For experiments on disk and SSD, we used 4KB pages with a capacity B = 128
and minimum occupation b = 42 for d=2. For sorting, we used 10 MB of main memory.
The raw I/O device interface is used to avoid the interference with other system buffers.
For our in-memory experiments, we used different settings for the page capacity that
was found to be the overall optimum: B= 12 and b = 4.

Algorithm efficiency is measured by I/O and CPU time. We consider the number of
leafs touched during query traversal as a default I/O metric, however, we do not count

repeated accesses to the same leaf. As confirmed in our experiments, this is a good

80

5 Query Adaptive Loading of R-trees

Shortcut ‘ Sorting Order Partitioning
Z symmetric Z-order naive

H H-order naive
ZAS adaptive Z-order naive
Z-GO symmetric Z-Order | gopt*(i)
ZAS-GO adaptive Z-order gopt* (i)
H-GO H-order gopt* (i)
H-SO Hilbert-Order opt*(i, k)
STR not applicable naive
STR-GO not applicable gopt* (1)
TGS not applicable n/a

Table 5.2: Algorithms

performance indicator, since index nodes are located in large main memories.

4,15
4.1 —+—H-GO —e—H-SO

4,05

Leaf Accesses
=

3_.9 T T T T T T T T T T T 1
IK 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K

Chunk Size

Figure 5.7: Query performance of partitioning algorithms for varying the chunk size

In Section 4.2 we introduced a simple approximation scheme for our partitioning algo-
rithms. Rather than running the algorithm on the entire data set, we prepartition the
data into equi-sized chunks and apply the algorithms to each of the chunks. Figure 5.7
depicts quality of the approximation as a function of chunk size for the California data
set using qr2. We observed that a chunk size of B? (= 16384) is sufficient to obtain
near-optimal results. Similar results are achieved for other data sets. Note that the
function is not decreasing strictly monotonically because the queries do not obey the
uniform assumption of the query model. This also explains that for a chunk size of 1K
the SO strategy is slightly superior to GO. For the rest of the experiments, we use chunks

of size B2 for our partitioning methods.

5.5.3 Sorted Set Partitioning

This section discusses the improvements achieved by our partitioning strategies. We

consider square-shaped queries with aspect ratio a = 1 only. In addition to the methods

81

5 Query Adaptive Loading of R-trees

based on space-filling curve, we also report the results of TGS, STR and STR-GO. Figure
5.8 depicts the I/O performance for eight 2-dimensional data sets and query files grl,
qr2 and qr3. Note that all loading methods that use our partitioning strategies are
superior to H-loading. Moreover, STR-GO performs better than its original counterpart.
For TGS we observed similar effects as reported in [58]. TGS performs well for point
queries qrl, but its performance deteriorates with an increasing query region. It is
noteworthy that there is no significant difference between H-GO and Z-GO except for
dia, where Z-GO is clearly superior. The most significant improvements over H-loading
are achieved for point queries on the 2-dimensional data set ped. This data set is the
only for which the queries are uniformly distributed. Note that this is in full agreement
with the goal function used in our optimization. This also explains the large difference
in performance between STR and STR-GO. We observed that the impact of the query
size is marginal for storage bounded algorithms H-SO and Z-SO in comparison to the
H-GO and Z-GO counterparts. Thus, minimizing the area (which is only optimal for
point queries) achieves already good results for all query profiles ¢rl, ¢gr2 and ¢r3.

The query size influences the relative R-tree performance. This is not surprising, as
for larger regions, the storage utilization will have greater impact (than the clustering
capability of the loading techniques). This is also in agreement with the analytical re-
sults obtained from the cost model. For example, R-trees generated from H-GO-loading
perform small queries on the California data set (rea) with only 60% of the disk accesses
compared to H-loaded R-tree. For queries gr3 with 1000 results the performance differ-
ence is only 20%. We achieved similar results for the 3-dimensional data sets. H-loading
is superior to STR-GO for only some of the data files, but inferior to Z-GO and H-GO in
all cases. The average normalized results for two, three and nine dimensions are reported
in Table 5.3 (performance is expressed as the ratio of average number of leaf accesses
for the specific and the H-loaded R-tree). The results indicate slight improvements for
higher dimensions.

As expected, the number of leaf pages occupied by our R-trees generated from Z-GO
and H-GO in relation to the number of leaves of H-loaded R-trees is higher for small
queries. For larger queries, it is typically below 100%, i.e., the storage utilization is
higher than 80% for the R-trees generated by Z-GO and H-GO.

Further, we analyzed average query execution time for d=2 and query file grs. Figure
5.9 shows the average time per query for disk, SSD and main memory. Query time
measured for a disk includes the I/O time for leaf accesses, while the index nodes are
likely to reside in memory or disk cache. In particular, we observed a positive effect of

sort-based loading using H-loading combined with our partitioning on the average dis

82

5 Query Adaptive Loading of R-trees

mll ®mZ-GO mH-GO =H-SO mTGS mSTR mSTR-GO

(a) qrl
10

Leaf Accesses
[==J S T C N = N)

(b) ar2

abs bit dia par ped pha uni rea

(c) ar3

Figure 5.8: Avg. number of leaf accesses per query for d=2

access cost. The way how data is written to disk exhibits high clustering within a level,
since blocks are written according to the SFC order. Therefore, there are fewer random
I/Os than for TGS and STR (see Fig. 5.9). In order to illustrate the impact of physical
clustering, we also compared the query performance with the R*-tree (see Fig. 5.10). As
illustrated, significant improvements of up to factor of five can be achieved particularly
because of the clustering when indexes are bulk-loaded. Moreover, we observed also sim-
ilar effects for in memory R-trees. For SSDs, however, there are no positive effects from
sequential I/O patterns. As a consequence, the average query time is highly correlated
to the number of node accesses, see the plots in the mid of Figure 3 and 4.

In the following we discuss the effects of the uniformity assumptions of our cost model.
Recall that except for ped the query distributions follow the data distribution. The

question is therefore how our simplified analytical cost model is related to the real cost.

5 Query Adaptive Loading of R-trees

BH mZ-GO mH-GO ®mH-SO mTGS mSTR mSTR-GO
20

15
10

(a) magnetic disk

(b) SSD
0,06 -

0,04

0,02

abs bit dia par ped pha uni rea

(¢) main memory

Figure 5.9: Avg. time per query for ¢gr2 and d=2

In Fig. 6, the cost of our analytical model is plotted as a function of the number of
leaf accesses required for processing the queries from profile ¢rl, ¢r2 and gr3 on the 2-
dimensional data sets (both graph dimensions are normalized to H-loading). The graph
shows a clear correlation between the cost measures . This supports that our cost model
is indeed a good predictor for the actual cost. There are only three outliers corresponding
to the extreme dia dataset, for which the real cost of the queries is substantially lower
than the estimated costs model of our model.

Finally, the average total loading time of the algorithms for d=2 is depicted in Table 5.4.
The cardinality of the data sets was limited to 1’000°000 rectangles. The total loading
times of H/Z-loading, STR, H-GO, H-SO exhibit low standard deviation (see column
std), while TGS is sensitive to the data distribution. H-GO loading time was clearly

dominated by the time of external sort while the partitioning step itself has only little

5 Query Adaptive Loading of R-trees

d=2 |d=3 |d=9 d=2,3,9
7-GO | 755% | 71.6 % | 66.45 % | 71.2 %
H-GO | 762 % | 733 % | 683 % | 72.6 %

Table 5.3: Avg. query performance of Z-GO and H-GO-loaded R-trees over square-
shaped queries for different dimensionalities in leaf accesses (results are nor-
malized to H-loaded R-trees)

50
40 mR* H-GO
£ 30
22
il
0 - .
grl qr2 qr3

Figure 5.10: Avg. time per query for R*-tree and H-GO for California set (d=2)

impact (see build time). This differs from H-SO, where the time for the partitioning step

dominates sorting, also STR is more expensive as data has to be sorted twice for d = 2.

5.5.4 Order Optimization

In this section, we primarily discuss the benefits of adaptive shuffling for better adaptivity
to the underlying query profile. For the following discussion, we consider the results
obtained from R-trees generated for the 2-dimensional uniformly distributed data set
and query sets qr2,, a = 1,...,20. Fig. 5.12 shows the average number of leaf accesses
for gqr2, queries as a function of the aspect ratio a. For each setting of a, we present
the performance of five loading techniques ZAS, Z-GO, ZAS-GO, H-GO and H. Note
that @ = 1 represent the case of square-shaped queries. For ¢ = 1 the performance
of ZAS is identical to Z-loading. In agreement with previous experiments found in
the literature, H-ordering is superior to Z-ordering. However, Z-GO and ZAS-GO are
superior to H-loading and only slightly inferior to H-GO. For a = 20, the situation has
changed dramatically. The performance of H-ordering has slightly decreased to 75% of
Z-ordering, while ZAS-GO is clearly the most efficient technique. It is also evident from
the comparison of ZAS, Z-GO and ZAS-GO that both of our techniques contribute to the
substantial improvements that are observed for ZAS-GO. Moreover, GO in combination
with Z-ordering provides slightly better results than H-ordering with GO.

The average volume V of leaf box is to be known in order to design our two-part

space-filling curve. Assuming a uniform data distribution we can estimate the average

85

5 Query Adaptive Loading of R-trees

100 -
[]

X

2 50

=]

O

0 |

100

Leaf Accesses %

Figure 5.11: Correlation between the number of leaf accesses and the analytical costs

alg. ‘ sort time | build time | total time std
H 25,64 0.68 26.4 2.09
H-GO 25,64 7.40 33.12 2.03
H-SO 25,64 77.67 103.11 2.56
TGS n/a n/a 245.18 124.33
STR n/a n/a 55.47 7.76

Table 5.4: Avg. loading time (in sec.) of 1°000’000 2-dimensional rectangles.

leaf box volume by using the ratio of B and N. For ¢r2s, the empirically determined
optimal global value GR is compared with the estimated one. Our cost model returns
GR = 12 for uniformly distributed data in all cases, which is in agreement with half of
our experimental results (abs, pha and uni). The optimal value GR = 14 for bit slightly
deviates from the estimated one. For dia, GR = 0 is the best value as the data records
are located on the diagonal (it is sufficient to organize the data according to one of the
axes). For par, ped and rea, the optimal value for GR was greater than 12 because the
distributions are clearly non-uniform. In particular, data sets par and ped have a very
high variance of volume and perimeter. This kind of data distributions is difficult to
deal with and query adaptivity often yields no improvement.

To address this issue and verify our assumption, we used histograms as an option
for deriving the values for sorting parameter GR. Histograms were also used for ap-
proximating dx; value distributions for non-uniform data and query distributions. For
each bucket p;, our sort-based two step algorithm is processed independently with lo-
cal parameters GR as well as average dx; for p;. Data summaries are held in memory
and serve as a look-up function during the sorting and partitioning steps. We used the
MinSkew-Histogram[10] with 100 buckets to represent the 2-dimensional data distribu-
tion. We observed that using histograms improves substantially the performance over
global estimated parameter GR for qr2g profile (e.g. by 35% for par, by 15% for ped

and by 46% for rea), while the degree of improvement depends not only on the chosen

86

5 Query Adaptive Loading of R-trees

15
uz mZAS =Z-GO ZAS-GO = H-GO =H

10

Leaf Accesses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5.12: Query results for uni set (d=2)

histogram method but also on a histogram parameter settings. Therefore, we want to

study more deeply the histogram and bulk-loading interaction in our future work.

5.5.5 R-tree for Intervals in Two-Dimensional Space

Here, we report experimental results with two-dimensional interval data sets. Our goal
is to show that proposed framework improves performance of R-trees used for manag-
ing multiversion (partial persistent) data. As partial persistent records are mapped to
intervals in two-dimensional space, they can be indexed using R-tree structure [105].
We map the end time stamp of live records to the maximal time stamp from an input
file incremented by one. According to the convention, the time dimension is mapped
to the X-axis and the key dimension to the Y-axis, respectively. This yields a set of
two-dimensional intervals that are parallel to the X-axis.

In our experimental results presented in Chapter 4.7, we observed that MVBT+ gives
substantially better query performance than an R-tree that is loaded using STR loading
approach. In this section, we show that an R-tree loaded using the technique proposed
for query adaptive loading combined with the adaptive Z-curve exhibit better query
performance than R-tree loaded using STR algorithm.

In our experiments we used interval data sets obtained from the partial persistent files
10, u50, ©100 used in MVBT experiments (see Chapter 4.7). For querying we used query
files from the MVBT experiments. Query files consists of 10’000 uniformly distributed
rectangles. Each query rectangle have the same response set cardinality of 100 intervals.
The aspect ratio is roughly 1:4. We used 8 KB pages for R-tree and MVBT in our
experiments.

For indexing intervals we used the following steps. For generation a sorting order, we
applied the adaptive Z-curve algorithm. In contrast to experiments previously reported
in this section, we used the input intervals (a data set) instead of a query set for gen-

erating a sorting order. Both symmetric and asymmetric part of a Z-string starts with

87

5 Query Adaptive Loading of R-trees

Y-axis (key-dimension), as the key dimension has no extension. We used the average
length of time interval (X-axis extension) for generating GR parameter (the length of
symmetric prefix). We experimented with different sorting orders. We noticed that the
best results are obtained using lexicographical ordering on the key and time dimensions
(Y-axis and then X-axis) for this data sets. As there is at least 10% of the data is live,
the average interval length is also very large. This also yields lexicographical order using
our adaptive Z-Curve approach. The impact of interval length and Z-curve orientation
on the indexing interval data requires more detailed investigation.

After sorting the data we applied our gopt™ partitioning optimizing the volume. We
summarize our used approach for indexing static set of intervals in two-dimensional space

as follows:

1. We compute an average interval length (time duration) from a data set. We use
AdaptiveShuffle algorithm to generate a sorting order. The input of AdaptiveShuf-
fle is always a pair Y-axis (key-dimension) and X-Axis (time-dimension). The

length of symmetric prefix is computed based on the average interval length.
2. We sort intervals using sorting order obtained from step 1.
3. We bulk load R-tree using gopt*™ partitioning method.

For sorting in step 2. we use start point of the interval.

Table 5.5 displays results of query experiments. MVBT™ is weight balanced MVBT
loaded using our new loading procedure. MVBT-LRU is standard MVBT loaded using
tuple by tuple method. R-TREE is a sort based loaded R-tree using lexicographic
ordering on key and time dimension. R-TREE GOPT is a sort based loaded R-tree using
our gopt* optimized approach (also lexicographic ordering on key and time dimension).
H is an R-tree loaded using Hilbert curve. H-GO is gopt* optimized R-tree loaded using
Hibert curve.

According to our preliminary results we observe that well tuned R-trees exhibit a good
average 1/O performance for interval data. R-trees loaded using lexicographical order
display at most roughly a factor of two more 1/Os in comparison to MVBT. For a data
set u0, optimized R-TREE GOPT requires less average I/Os per query and almost the
same number of average leaf accesses. The height difference is due to the smaller number
of live records in nodes of MVBT-LRU and MVBT™ in comparison to the page capacity
of the R-tree. Additionally, both MVBT-LRU and MVBT™ need to access root* for
historical queries. In general, we observed greater influence of sorting order on query

performance than the optimal partitioning. Other orderings than the lexicographical

88

5 Query Adaptive Loading of R-trees

order were inferior. We observed that R-trees loaded with Hilbert o exhibit a high MBR

overlap.

Workload file ‘ ‘ u0 ‘ u50 ‘ 1100 ‘

I/0 4.69 4.75 4.8
leafs | 1.72 1.78 1.83
I/0 4.3 4.18 3.83
leafs 1.72 1.79 1.82
I/0 4.97 5.75 8.94
leafs | 1.97 2.75 5.91
I/0 3.79 4.41 6.93
leafs | 1.79 2.4 4.94
I/O 108.33 | 144.39 | 128.51
leafs | 96.55 | 128.91 | 112.6
I/O 74.15 | 102.76 95.1
leafs | 64.5 90.47 | 82.42

MVBT*

MVBT-LRU

R-TREE

R-TREE GOPT

H

H-GO

Table 5.5: I/Os and leaf accesses for two-dimensional interval data

Our preliminary results, are very promising. R-trees offer a similar query performance
like a MVBT if query-adaptive loading techniques are used for their generation, but the

loading of R-trees is substantially faster.

5.6 Conclusions

In this work, we reconsidered the problem of sort-based bulk-loading of R-trees. We
demonstrate the importance of query profiles for search efficiency of generated R-trees.
We designed new loading algorithms based on two innovative techniques. The first con-
sists of a new sorting technique of rectangles based on non-symmetric Z-order curve
design, while the second generates an optimal partitioning for a given sequence of rect-
angles. Both techniques are optimized according to a commonly used cost model for
range queries. Our optimal partitioning techniques are broadly applicable and benefi-
cial. They can be easily integrated into other loading techniques like STR, which is a
popular loading method in commercial database systems. They can also be combined
with standard Hilbert-loading even when the query profile is unknown. In this case, we
suggest to use the partitioning that minimizes the area of the bounding boxes of the
leaves.

Our experimental results obtained from a standardized test framework clearly reveal
the advantages of our techniques in comparison to standard loading techniques (STR,

Hilbert-loading, Z-loading, TGS). Our techniques creates R-trees with consistently better

89

5 Query Adaptive Loading of R-trees

search efficiency than those created by pure Hilbert-loading, while for some data files
large improvements in query performance (about factor 5) were achieved. Interestingly,
due to our new partitioning methods, there is no noticeable differences anymore in the
performance of R-trees build form rectangles sequences following either Hilbert-ordering

or Z-ordering. Thus, we suggest using Z-ordering because of its conceptual simplicity.

90

6 Construction of R-tree-Based Histograms

In this chapter, we present methods for spatial histograms construction using the query
adaptive partitioning framework presented in Chapter 5. Spatial histograms are integral
part of an efficient spatial query processing and are used for the result estimating of
spatial queries. We show that the task of generating spatial histogram of a high quality
is very similar to generating R-trees with a good query performance. Both of them rely on
partitioning of a set of rectangles into disjoint subsets. The computation of the optimal
spatial histograms is a non-trivial task and in general it is NP-hard [90]. Therefore, we
investigated heuristic methods for fast histogram construction. Our major research goals

are:
1. A high estimation accuracy of resulting histograms.
2. The low I/O and CPU costs of histogram construction.
3. Robustness for different query and data distribution.
4. Avoiding performance sensitive parameters.

The groundwork of our histogram construction methods is a query adaptive loading
algorithm for R-trees (see Chapter 5). We generate spatial histograms in the I/O com-
plexity of external sort simultaneously with a bulk-loading of R-trees. Major parts of

this chapter were published in [4, 5].

6.1 Introduction

Histograms are important data structures primarily used in database systems for esti-
mating the selectivity of queries. They are also applied to obtaining quick approximate
response for aggregate queries. While one-dimensional histograms are widely available in
almost all database system, only a very few systems offer multidimensional histograms.
Most of them are simple grid-based methods that are applicable to two-dimensional point
data only. These methods perform poorly on rectangle data or when the independence

assumption of the attributes is violated.

91

6 Construction of R-tree-Based Histograms

The design of efficient multidimensional histograms turns out to be much harder al-
ready for the two-dimensional case. In fact, the problem of designing optimal multidi-
mensional histograms is known to be NP-hard. Therefore, many heuristics have been
developed and evaluated in various experimental settings. In general, these heuristics
result in fairly complex parameterized algorithms with a runtime often substantially
higher than the runtime of the one-dimensional counterparts. This is often not accept-
able because histograms have to be rebuilt quite frequently. In addition, the algorithms
are often quite sensitive to small variances of the parameter values.

We revisit the problem of designing efficient multidimensional histograms from the
perspective of bulk-loading spatial index-structures, e.g., R-trees. Similar to R-trees, a
histogram is viewed as a set of bounding boxes, but each of them is associated with
statistical information e.g. the number of spatial objects that are assigned to the box.
Rather than directly generating histogram buckets, our method relies on a two-step
approach: First, the leaf level of an R-tree is generated and second, adjacent leaves are
merged into larger histogram buckets. Crucial and sensitive parameters are avoided;
instead both steps rely on the optimization of a widely accepted cost function. This
makes our approach very appealing to an end-user.

Even though our optimization bases on minimizing a cost function, it still remains a
heuristics like it is for all other multidimensional histograms. It is therefore of utmost
importance to use a thoroughly designed experimental setup to provide a meaningful
and fair comparison with competitors. So far, there is no commonly agreed experimen-
tal setup for spatial and multidimensional histograms. In particular, we found serve
deficiencies in current experimental work, e.g., small data sets, low selectivity of queries,
uniformly distributed queries.

Our contributions are summarized as follows:

1. We present a uniform rectangle partitioning framework for R-tree loading and
histogram construction. Derived from this framework, we present an efficient two-

step approach to generating multidimensional histograms.

2. We introduce query models for workload generation and examine the accuracy of

histograms under these workloads.

3. We present an experimental performance comparison of a large number of multidi-

mensional histograms.

92

6 Construction of R-tree-Based Histograms

6.2 Preliminaries

In this chapter, we investigate the problem of R-tree based histogram construction for
a d-dimensional set of N rectangles {r1,...,ry}. The groundwork of our method is the
sort-based bulk loading algorithm for R-tree presented in Chapter 5. We assume that R-
trees have the node capacity B and the minimum occupation b < [B/2]. Our description
will address the case d = 2; the generalization for d > 2 is only discussed when necessary.
In addition to notations introduced in Table 5.1 Chapter 5, we summarize notations used
in this chapter in Table 6.1.

We define the output histogram H as a set of buckets h1, ..., h,. The bucket h; con-
tains statistical information about the set of spatial objects (rectangles) R; = ri,...,7y.
These are [10]: M BR(h;) of set R;, number of elements n;, average rectangle side length
dxévg,dyfwg over set R; and spatial density information s; = Area(h;)/Area(M BRy,).
Where, Area(h;) is defined as a sum of rectangle areas in R; and Area(MBRp,) is
defined as an area of bucket MBR.

Hereafter we use notion bucket and MBR as synonyms depending on the context.
Further, our goal is to build the histogram in such way that the number of elements
referenced in each bucket varies only by a small constant factor, so that H is close to an
equi-depth histogram. Both spatial histogram buckets and R-tree nodes are associated
with a disjoint subsets of an input rectangle set. Hence, R-tree can be extended to
a spatial histogram by attributing additional statistical information [10, 71, 53, 21] to
R-tree nodes.

The selectivity estimation est(q) for range ¢, and point queries g, is computed based
on the uniform distributions assumption [10]. The selectivity estimation of a point query
is computed as follows: Let M BRj,, be the bucket MBR containing a query point gp.

Then s; is an average number of rectangles hit by given point query in the bucket h;.

Figure 6.1: Range query estimation.

Consider a range query q,. Let MBRj, be a bucket MBR overlapping with the
query q,. Let rs = MBRy,, N WQ, s be an intersection rectangle. ry is represented by

93

6 Construction of R-tree-Based Histograms

its center (cz,,,cy,,) and its extensions (dz,,,dy,,). We extend then (dz,,,dy,,) with
2dxfwg, 2dyfwg in both dimensions with a constraint that the extended sides cannot cross

the boundaries of M BRy,, (see Figure 6.1). Then

Area(rs)

' Area(M BRy,) (6.1)

est(hi, qw) = n;
is the estimated number of rectangles intersecting g, for a single bucket h; [10]. By this,

the overall estimation for g, is defined by the sum of est(h;, qy):

est(qy) = Zest(hi,qw) (6.2)

i=1
Similar to R-trees, the average estimation error depends on the number of rectangles
that overlap the query ¢, and the rate of uniform distribution of objects in the buckets.
The histogram space consumption is a crucial design aspect, as histograms reside in
main memory. We consider the space consumption in terms of allocated machine words.
Let w be a size of machine word in bytes. Each bucket h; manages MBR and the

i

following statistical values: n;, dx’,

vy dyfwg, s;. Thus, storage amount of a bucket h; is
d-w+2-w+d-2-w

where d - w bytes are average length information, 2 - w bytes are used for number of
objects and spatial density and d -2 - w bytes to represent MBR, of h; (k is the number
of dimensions). This storage scheme is also used in MinSkew approach [10].

Our goal is to achieve a compact representation of a data set with a high estimation
quality for a given space budget. The motivation for our for heuristic method is by the
results presented in [90]. In order to quantify and predict the estimation accuracy of
histogram H, we introduce weight function f,(h;) that returns a numerical value for a
bucket. We define the cost of a histogram H as the sum of f,,(h;) weights. The space
budget in terms of machine words yields the number of allowed number of buckets m for

histogram H.

Definition 3. For a given space budget m in terms of number of buckets our task is to
build a histogram H such that

Ch = fulhi)
=1

1s minimized for a given rectangle set.

94

6 Construction of R-tree-Based Histograms

notations description

H=hy,....,hpn a spatial histogram obtained from a set of in-
put rectangles.

h; a histogram bucket. Each bucket h; refers to a
disjoint subset of input rectangles. Addition-
ally, to each bucket is a statistical information
obtained from this subset attributed.

R; A disjoint subset of input rectangles referred
by bucket h;

n; = | Ryl Number of rectangles in R;.

MBR(h;) minimal bounding box (rectangle) of bucket
h;, computed over set R;.

Area(h;) sum of rectangles areas is R;.

Area(M BR(h;)) area of M BR(h;).

da;fwg, dyfwg average side lengths of rectangles in set R;.

s; = Area(h;)/Area(M BR(h;)) | spatial density of bucket h;.

fuw :hi = RT weight function for buckets h;

m

Ch(H) =" fu(hi) cost function of histogram H

i=1

Table 6.1: Important notations

Intuitively, we want to quantify the spatial distribution within a bucket and choose

histogram H with a lowest sum of weights.

6.3 Related Work

During the last three decades one-dimensional histograms have been used widely for the

purpose of selectivity estimation and with a fair amount of success [98, 72]. Nevertheless,

95

6 Construction of R-tree-Based Histograms

in the case of multidimensional histograms, we are still facing many challenges, that
need to be solved [71]. To tackle these problems, many different heuristic based methods
were proposed. All of them aim to partition the multi-dimensional data in rectangular
buckets for a given space budget. The data within buckets is uniformly distributed,
since the query estimation relies on uniform data distribution assumption. The heuristic
methods are motivated by the results in [90]. The authors show that computing the non-
overlapping rectangular partitioning with near-uniform data distribution within buckets
is NP-hard [90, 71, 53, 103].

One of the first methods proposed for multidimensional data is hTree [88]. It constructs
non-overlapping partitioning of multidimensional space based on a frequency as source
parameter. Only one dimension is approached at a time and partitioned in buckets
with an identical number of objects, resulting in a equi-depth histogram [88, 53]. The
advantage of h'Tree is its low construction cost. However, the partitioning rule is too rigid
for highly skewed data [88, 103]. In contrast, mHist uses space partitioning [100]. Space
is partitioned along the dimension that benefits most from a split. The split decision
is made based on a marginal frequency distribution [100, 71, 53]. This approach was
developed for relational data and focuses mainly on approximating point frequencies.
However, selectivity estimation for spatial data differs from traditional one [10]. The
object frequencies may be uniform, but the locations can be highly skewed, and the
objects vary in sizes and shapes.

To provide accurate estimation for spatial objects and also /0 efficiency, the MinSkew-
Histogram method was proposed [10]. The authors proposed two construction strategies.
The basic variant works as follows: in the first phase, the algorithm computes a regu-
lar grid and stores the number of intersecting spatial objects for each cell. Based on
the computed grid, the recursive binary space partitioning (BSP) is used for histogram
computation. The buckets are picked for further processing based on a split value that
will lead to greatest reduction of data skew. The decision is local, so that for all di-
mensions, all possible cuts based on marginal objects frequencies are considered. The
authors observed that a fixed grid size is sensitive to the size of queries [10] (high grid
resolution favors small sized queries and small resolution large queries). To lessen this
effect the second construction strategy MinSkew-Progressive-Refinement utilizes grids
with different resolutions. Each grid resolution is used to construct the equal portion of
histogram buckets. The computation is processed in top-down fashion starting with a
low resolution grid applying BSP in each step. The downside of both strategies is that
the performance is sensitive to the grid resolutions.

GenHist proposed by [64] tries to identify high density regions. In contrast to the

96

6 Construction of R-tree-Based Histograms

previous methods, the bucket rectangles may overlap. Moreover, the buckets can be con-
tained in other buckets. GenHist finds regions with high object density, excises them but
leaves enough data in the parent bucket so that the parent buckets distribution flattens.
Again, the method uses a regular grid as a starting point for histogram construction.
The recently proposed method STHist [103] applies the idea of GenHist to 2-3-dimensional
spatial objects. In the basic variant decision about whether the region is dense is made by
applying a sliding window over all dimensions, approximating the frequency distribution
by a marginal distribution. The dense regions called Hot-Spots build hierarchies, so that
the Histogram is represented as an unbalanced R-tree. In the advanced variant called
STForest, the algorithm first computes coarse partitions according to the object skew,
and then applies a sliding window algorithm to them. The idea behind this is that if the
region is already uniformly distributed further partitioning is unnecessary. Moreover, the
coarse regions merge together if the skew of merged bucket decrease. The experiments
conducted in [103] show that STHist is superior to other proposed methods. However,
STHist has time complexity O(n?) for 2-dimensional and O(n?) for 3-dimensional data.
Recently, the class of self-tuning histograms like STHoles and ISOMER were proposed
[47, 111]. In general these methods incrementally update buckets and their frequency
information, using query feedback. These kind of methods is very appealing, because
the incremental modification the histogram adapts to the real distribution of a data.
Moreover, the methods can be applied independently on top of different approaches.
Another way to obtain a spatial histogram is to generate it using a spatial index
structure like R-tree [10, 21, 71, 53, 33]. Paul Aoki in his work [21] introduced a generic
approach for selectivity estimation for a wide range of tree base index structures [20].
He proposed to combine tree based index and histogram in one structure. His work
is inspired by previous work of Antoshenkov [19] where BTtrees is used to obtain a
random sample. For this purpose, tree nodes manage additional information about the
leaf node cardinalities. The cardinality of the internal node is defined by a sum of child
cardinalities. The managed information allows to compute the upper and lower bounds.
Aoki designed top-down traversal algorithm that uses this information for the selectivity
estimation [21]. In his experiments, he reported that bulk loaded R-trees exhibit a high
estimation accuracy. In contrast to our work, in [20] the standard sort based loading
technique such as STR [80] method was used. In our work we show that this yields not
always a good partitioning.
The recently proposed approach rKHist [53] is also based on R-tree bulk-loading proce-
dure [73]. The data is presorted according the Hilbert space-filling-curve. After the leaf

nodes are generated, one possibility to generate a histogram is to pack nodes according

97

6 Construction of R-tree-Based Histograms

to the sorting order in equi-sized histogram buckets. This leads not always to a good
partitioning. Especially, for near-uniformly and uniformly distributed data equi-sized
partitioning wastes buckets for regions with a high object density and yield high overlap,
despite the fact that the regions have uniform distribution [10]. Therefore, the authors
proposed a greedy algorithm that utilizes a sliding window of pages along the Hilbert or-
der. The algorithm is parametrized with a number of buckets that should be considered
for a splitting. A bucket-split is applied if it leads to an improvement according to the
proposed cost function.

Our approach differs from rKHist in that we tune the R-trees according to the widely
used R-tree cost model. Our generic sort-partition framework computes optimal par-
titioning for a given cost function according to the sorting order of rectangles. The
framework relies on the dynamic programming scheme proposed by [72] for generating
one dimensional V-optimal histograms.

A recent approach [33] uses also R-tree for spatial histogram generation. The initial
histogram bucket is obtained from a predefined leaf node set. Their basic variant reads
predefined number of leaf nodes as well as stored object geometries using depth-first
top-down traversal. Their general idea is a binary recursive partitioning of the initial
bucket. They apply equi-count as well as equi-area partitioning rules. An equi-area
heuristic splits a bucket along the dimension with longest side in two equal area buckets.
Then it distributes spatial object using their centers among the new buckets. Large
object geometries that overlap both buckets are attached to a both buckets. They
update statistical information stored in a bucket such as average extents and number of
objects while splitting a bucket. Similarly, equi-count rule splits bucket based along the
dimension with the maximal number of distinct projected center values. The bucket with
a most gain according to the split rule is chosen at each step. Additionally, only buckets
with a predefined number of elements are considered for a split. The each split need
to access actual object geometries, this yields high I/O overhead. Therefore, authors
proposed to use for the initial bucket an MBR of a sub tree such that all referenced
geometries can be processed in memory. Our approach differs from [33] that we rely
on R-tree bulk loading procedure. Moreover, even for existing R-tree our new approach
requires only one pass through the input data.

The scheme proposed in [72] is also used in [120] for computing a set of k£ minimal
bounding rectangles (MBR) from a 2-dimensional point set. The goal was to reduce
communication costs for mobile devices by approximating the spatial query result by a
set of MBRs with a minimal information loss f;. The authors showed that computing

such representations is NP-hard even for d=2. One of their heuristics first sorts the

98

6 Construction of R-tree-Based Histograms

query output using the Hilbert order and then apply the partitioning method of [72].
Multi-dimensional histograms and representation with a minimal information loss f;
are related, since both techniques are considered as data summarization methods. In
contrast to histograms the optimization function is different and space constraints are
disregarded.

In this work, we adapt the dynamic programming scheme [72] for a R-tree based his-
togram generation introducing the space constraints on bucket capacity size. This allows
us to generalize the partitioning scheme and to design new more efficient algorithms for
R-tree and R-tree based histogram generation. We show that especially for highly skewed
data, the R-tree methods return more accurate results. Moreover, R-tree histograms con-
structed using our dynamic programming framework display good estimation accuracy

for near-uniform and uniform data sets.

6.4 R-tree Framework

In order to obtain a high-quality histogram H, the data should be partitioned in such way
that the data within each histogram bucket is near-uniformly distributed. Computing
such partitionings is a non-trivial task and in general NP-hard [90]. Furthermore, the
way how data is partitioned also influences the quality of the R-tree (see Chapter 5).
Partitionings minimizing sum of MBR volumes yield better R-trees according to the
cost model [73, 95, 115]. In order to obtain a partitioning in polynomial time, we use
a heuristic method based on SFC. Our approach can be summarized as follows: reduce
the complexity of multidimensional partitioning by sorting the data according to a SFC,
and solve the partitioning problem optimally for the sorted set. In the following, we

present a high level description of the building blocks of our framework:

e Sort-Partitioning: Sort the rectangles with respect to a SFC. Partition the sorted
sequence optimally according to a cost function into subsequences of size between
b and B.

e Bulk-Loading R-tree:

— Step 1. Node Generation: Run Sort-Partitioning with parameter settings for

b and B according to a given page size.

— Step 2. Generation of Index Entries: For each page, compute the bounding

box of its partitions and create the corresponding index entry.

99

6 Construction of R-tree-Based Histograms

— Step 3. Recursion: If the total number of index entries is less than B, store
them in a newly allocated root. Otherwise, start the algorithm with the index

entries (bounding boxes) from Step 2.

e Construction of Histogram H: Run step Node Generation of bulk-loading.

Collect and store statistics. Run Sort-Partitioning on generated leaf nodes.

Sort-Partitioning is the crucial step in the algorithm for bulk-loading indexes and gen-
erating histograms. The first step uses SFC to sort the data. If query profile is unknown
we consider Hilbert ordering otherwise we apply adaptive Z-Curve (see Chapter 5). The
second step partitions the sorted sequence of rectangles in optimal way according to a
cost function. Note that our approach is a heuristic and rely on the specific sorting order.
The difference between loading indexes and generating histograms is that histograms do
not require a recursive processing.

Sort-Partitioning uses partitioning algorithms presented in Chapter 5. They are:

1. Query-optimal partitioning:
S0 — i s o
gopt™ (i) bglgnB{gop (i = 3) + fw(pi—j+14)}
2. Storage-Bounded partitioning:

opt*(i, k) = bgignB {opt™ (i — 4,k = 1) + fu(Pi—j+14)}

Since the gopt*(i) has lower CPU and I/O costs than opt*(i, k) as well as it produces
better R-trees, we apply this partitioning scheme in Step 1. (Node Generation) and Step
2. (Generation of Index Entries). As a weight function for Query-optimal partitioning
we use V (volume of MBR) and if applicable V't (extended volume of MBR obtained
from query profile).

Storage-Bounded partitioning is applied in Step 3. (Construction of Histogram H),
as our goal to build a histogram for a given space budget. Our framework allows us to
choose weight function f,, to quantify the spatial distribution within bucket h;. There
are four factors that contribute to the CPU costs of opt*(i, k) partitioning, they are:

1. The number of input rectangles.
2. The maximal number of rectangles per bucket.

3. The target number of histogram buckets m.

100

6 Construction of R-tree-Based Histograms

4. The computation costs of weight function f,.

By this, we consider weight functions with low CPU costs. In Chapter 5 we used
fw = V(MBR(pi—j+1,)) and f, := VT (MBR(p;;),QP), both functions are com-
puted in O(1) (more precise O(d)) for a given MBR. Similarly, for a histogram con-
struction, we consider volume of MBR (for d = 2 area) as a default weight function
fw = V(MBR(pi—j+1,)). The combination of sorting the data according to SFC and
opt*(i, k) partitioning with V(M BR(p;—;j+1,)) as a weight function yields a tight repre-
sentation of an input set consisting of m buckets. Intuitively, the partitioning with the
lowest sum of volumes influence the spatial distribution of input rectangles in histogram

buckets, as the objects are more spatially clustered within them.

6.4.1 R-tree Histogram

Here, we discuss the histogram construction in detail. We construct histogram H using

our framework as follows:

1. Micro-Clustering Step: (we use the same terminology as in [14]) First, the leaf
pages of an R-tree are generated using partitioning gopt*. The following parameters
needs to be set: space-filling curve, bucket capacity parameters b and B, and
weight function f,,. As a default space-filling curve, we use the Hilbert curve.
The parameters B and b of the initial step are adjusted to the system physical
page size. The default weight function is V' (minimizing the area of the bounding
boxes). For each leaf, also termed micro-cluster, we compute the required statistical
information (number of objects per leaf, average side lengths dz, dy and the density

s). Let m; denote the number of leaves.

2. Histogram-Generation Step: Given the number m of required buckets and
assume m < mqp, we apply opt* to the bounding boxes of the leaf pages generated
in the micro-clustering step. Thereby, we obtain the final m buckets of histogram
H. The minimal occupation by and the capacity By are set in the following way:
by = max(|mi/2m]|,1), Bs = [mi/m] + ba.

Finally, we compute the statistical information (number of objects, averages side
lengths, density) by aggregating the statistical information in the associated leaves.

As a weight function we use V' (minimizing the area of the bounding boxes).

Although the first step could be skipped, it is important to use it for the following

reasons: Firstly, it reduces the time complexity of the final histogram construction.

101

6 Construction of R-tree-Based Histograms

Secondly, the histogram is generated simultaneously with R-tree index. Thirdly, it can
be implemented within the same bulk loading routine.

Let us discuss the total CPU and I/0O costs of our two-step method in more detail. The
I/0O costs for sorting the input set is O(% log a %) Micro-clustering step is computed
using O(N/B) I/Os as well as histogram-generation step. Thus, the total I/O costs are
bounded by the costs of external sorting.

The CPU cost of the micro-clustering step is O(N - B) (see Chapter 5.3). For now we
assume that m; buckets corresponding to m; leaves generated in Step 1. can be hold
in memory. The CPU cost of the histogram generation step is equal to O(my - By - m).
Because By = O(my/m), it follows that the final cost is O(m?). From m; = O(N/B),
we obtain O((N/B)?) CPU costs for Step 2. The direct application of the Histogram-
generation step would be O(N?), a factor of B? more expensive than the two-step ap-
proach. According to our experimental results, this method shows high accuracy and
robustness of selectivity estimation for different data and query distributions [4]. If there
is not enough memory to apply storage-bounded partitioning, we first generate chunks
of equal size and apply opt* to every chunk. Similar strategy we used for generating
query adaptive R-trees in Chapter 5.

In the histogram generation step we use opt*(i, k) partitioning to find a best parti-
tioning according to the sum of MBR volumes. In general, the bounded partitioning
scheme allows us to use other weight functions. However, our experimental results show
that histogram built using this weight function displays high accuracy and is computed
with low CPU overhead. opt*(i, k) partitioning scheme can be adapted also for other
cost function than sum of weights e.g. if we consider the cost of a histogram H by a
maximal weight Cer(H) 1= I?T_glx fw(h;) we replace the summation with the maximum
computation. However, experimental results show that combination of C), 4, and volume
of MBR produces histograms with an inferior estimation accuracy than default cost func-
tion according to used error metrics. We let the investigation of other cost and weight

functions and their performance for different error metrics for a future work.

6.5 Experiments

In this section, we present summarized results obtained from a set of experiments under
different query workloads. First, we describe the underlying query models, and then
we provide details about our data sets and query files. Finally, we present a detailed

discussion of the results.

102

6 Construction of R-tree-Based Histograms

6.5.1 Query Models

For experimental settings we followed a methodology for generating workloads based
on query models originally proposed in [95] for the design of multidimensional index
structures. The authors classified range queries according to the indicators aspect ratio,
location and size. The query size is defined by either area (relative to the entire data
space) or the number of qualified objects. Query location can follow either a uniform
distribution or the distribution of the underlying data. The aspect ratio equals the width-
to-height ratio of the query rectangle, which we assume to be 1 (quadratic windows) in

the following. This yields in four different query models:

e Mj: size = area, location = uniform distribution,
e M5: size = area, location = data distribution,
e M3: size = number of answers, location = uniform distribution,

e My: size = number of answers, location = data distribution.

Data and Query Sets

For our experiments we use 2- and 3-dimensional data sets originally developed for RR*-
tree evaluation [39] and used in experiments with query adaptive loading of R-trees.
Detailed description of data sets is given in Chapter 5.5.1.

According to query models My, ..., My, we generated two workloads for each data set
and each query model. Two query sets are generated from model M;. The first one
consists of 10’000 uniformly distributed quadratic query rectangles with average volume
V = 0.01% (so that under uniform distribution approximately 100 objects qualify for
a data set with 1’000'000 objects). The side length of the rectangles are uniformly
distributed in range [%Vl/ d %Vl/ d]. The second query set is generated in the same way
with an average volume of 0.1% and consists of 3'164 query rectangles.

The location of the queries from model My follow the underlying data distribution.
Again the average volume of the query sets were set to 0.01% and 0.1%, respectively.
For the production of queries of model M3 we first generated uniformaly distributed
points and used them for issuing k-nearest neighbor queries with the maximum norm
Loo. The bounding boxes of these k-NN queries, k = 100 and k = 1’000, are used for two
sets of window queries with 100 and 1’000 answers per query, respectively. For model
My, we used the underlying data distribution for producing the reference points for the
nearest neighbor queries. Thus, the location of the window queries also follows the data

distribution. Again two query sets are generated with 100 and 1’000 answers per query.

103

6 Construction of R-tree-Based Histograms

6.5.2 Studied Methods

In our experiments, we study the performance of different histograms. As a reference
method we used MinSkew. Histograms produced by MinSkew perform well [64, 10,
103]. We implemented both MinSkew with fixed grid and progressive refinement strategy
respectively, as described in [10]. We refer to the first as MinSkew and the second as
MinSkewProg. For each data and query set we always used the best parameter setting
for the grid size. For d=2, we used a grid with 2'* cells. This was the the best setting
according to accuracy and build-up time in our experiments. For a MinSkewProg we
used four grids with 24,212 210 28 cells; again this was the best setting. For d=3, we
used 215 cells for MinSkew and four grids with 2%, 212,29 26 cells for MinSkewProg.

Other examined methods are listed in Table 6.2.

’ Histograms ‘ Description ‘
MinSkew minSkew, fixed grid
MinSkewProg minSkew, prog. refinement
rkHist rK-Hist with a = 0.1
R-tree fixed sized partitioning, Hilbert Curve
R-V V', Hilbert Curve
R-VQP VT, Hilbert Curve
R-RK RK, Hilbert Curve
R-SK S K, Hilbert Curve
FST STHist forest

Table 6.2: Studied Methods

R-tree Methods

Methods with prefix R (R-V, R-VQP, R-RK, R-SK) are derived from R-trees and our
Sort-Partition algorithms. For R-tree methods we set B = 100 and b = 40 for d = 2 and
B =72 and b = 28 for d = 3. Recall that B denotes the leaf capacity and b the minimum
leaf occupation. Leaf nodes are generated using gopt* algorithm. In general, this results
in more buckets than m (the desired number of buckets). In a second step, we apply opt*
to the leaf bounding boxes to yield exactly m buckets. The chunk size was set to 20’000
rectangles; larger chunk sizes did not yield significantly better histograms. The methods
R-V, R-VQP, R-RK, R-SK only differ in their weight function used in gopt* and opt*
(see Table 6.3). For example, V refers to the cost function minimizing the volume of
the bounding boxes. Additionally, we implemented rKHist as described in [53] using an

underflow rate with v = 0.1 (again this was the best setting in our experiments).

104

6 Construction of R-tree-Based Histograms

. 11
D D . 0 1 1 1
T o/ 0 0 1 2

Figure 6.2: k-Uniformity metric and spatial skew of MBR

We also studied the quality of other weight functions (R-RK, R-SK). RK is a k-
Uniformity metric proposed in [53]. SK minimizes the skew within a bucket. For a
detailed description, see [53, 10]. Figure 6.2 illustrates how these functions are computed.

The left figure shows a bucket region with five rectangles.

’ Weight Func. \ Description
\% volume of MBR
VT V extended by avg. query side lengths
RK k-Uniformity metric
SK spatial skew of MBR

Table 6.3: Studied Methods

The k-Uniformity function RK is based on a rectangular subdivision of a bucket region.
The last is built using the associated point objects [53]. For rectangles we only considered
their centers. This subdivision is computed in kd-tree manner. This representation is
constructed using the recursive binary splits of a point set. Each dimension of the
rectangular bucket split into two, in a round-robin fashion. The median is used as the
spit point, see center plot of Figure 6.2. The RK returns the standard deviation of areas
of the resulting rectangles. Note that, the processing cost for a bucket with n elements
is O(nlogn). This is a drawback in comparison to other cost functions discussed above.

The function SK is based on a regular grid [10]. First, the regular grid is computed for
a bucket region (see left side of Figure 6.2). Then, the frequency of objects intersecting
a cell is computed for each cell (see right side of Figure 6.2). The function then returns
the standard squared error (SSE) of frequencies. The drawback of the last method is
that the grid resolution has to be set as an additional parameter.

We also implemented STHist method [103]. We call it FST, because we used the
so-called forest-strategy. The build-up cost for FST is very high, particularly for data
sets with skewed data distributions. For example, the build-up time was a factor 100
higher for the rea data set than for other methods, due to its O(n?) runtime. In order

to conduct all the experiments for FST, we applied FST to a random sample of 10%.

105

6 Construction of R-tree-Based Histograms

Space Allocation

Recall that each bucket h; maintains the MBR and the following statistical values:
i
a

n;, dx vg,dyévg,si. Let w be a size of machine word in bytes. Thus, storage amount
of abucket isd-w+2-w+d-2-w (d-w bytes are average length information, 2 - w
byte for number of objects and spatial density and d -2 -w for MBR). It is possible to
save storage for MinSkew bucket MBR. Because the MinSkew histogram can be stored
as a kd-tree. We assume that the leaf node of kd-tree stores statistical information. We
implemented MinSkew using a grid with resolution of power 2. For 29 cells we need
log k bits to decode the split position. Additionally we store information about the split
dimension [logd| bits and one bit to decode whether a node is a leaf [56].

Thus, for d=2 and d=3, the MinSkew Histogram can keep almost twice as many
buckets as R-tree histograms. This is reflected in our experiments. If an R-tree histogram
consists of m buckets, we allow MinSkew to use 2-m buckets. In our experiments, space
allocation is expressed by the number of buckets m for R-tree Histogram.

All methods are implemented within the XXL-library [42]. The experiments are con-
ducted with a 64 bit Intel i7-2600 (2 x 3.4 Ghz), 8 Gb memory machine running Win-
dows 7. For external sort we used 10 MB memory buffer. We examined histograms with
m = 500, 1000, 2000, 3000, 4000 and m = 5000 buckets. Note that previous experiments
considered only a small number of buckets. Due to large main memories available, we

see the necessity to investigate large histograms.

Error Metrics

Performance quality of the proposed methods was evaluated using different error metrics.

We use workload error F,, as default metric. E,, is defined as follows:

E, = Z lact; — est;| / Z act;
i i

Here, act; is the actual number of answers of the i-th query, and est; is the estimated
number. Note that this measure is commonly used in other experiments [10]. We also

considered the average absolute error Ey,s = |act; — est;| and the average relative error

— lacti—esti|
Erer = max(1,act;)

Ms and My, because all queries offer the same selectivity.

(as in [103]). They are considered for workloads derived from models

106

6 Construction of R-tree-Based Histograms

’ Method \ Time ms \ std. ‘
MinSkew 34089 6781
MinSkewProg | 24648 3504
rKHist 23950 2408
R-V 27434 685
FST 41321 56370

Table 6.4: Build time d=2 data sets for 1’000 buckets

800

—%—R-tree ~ —@—R-tree opt™® Array

« 600
E

")

= 400
= 200

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Buckets

Figure 6.3: Total estimation time as a function of histogram size for the California data
and My query set

Build and Estimation Time

All methods except FST were able to build a 1’000 bucket histogram for 1’000’000 data
objects for all data sets in less than 1 minute. Average build time in milliseconds is given
in table 6.4 for d=2 data sets for 17000 bucket histograms. The cardinality of the data
sets was limited to 17000’000 objects. The column std. shows the standard deviation. In
general, the rKHist and R-V method are less sensitive to a data distribution compared
to MinSkew and MinSkewProg counterparts. Recall that we construct FST histogram
using random sampling of 10%. The FST method is very sensitive to data distribution,
especially for non-uniform data sets. The build time for a rKhist and R-V method was

dominated by external sort. The MinSkew and MinSkewProg were CPU dominated.

—w—b=] =—e=b=8 b=15 ememb=23
_ 06
£ 0,58
m
2 0,56 -
S — -’-—_,’i—""‘wm ™
Zos4 "
2 0,52 +

32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
max capacity B

Figure 6.4: Function of E, and capacity parameter b = {1,8,15,23} and B for the
Histogram-Generation Step (California data, My)

107

6 Construction of R-tree-Based Histograms

The estimation time may become an issue if the number of histogram buckets is too
high. The resulting histogram in a simple variant is represented as an array of buckets.
To decrease the estimation time, histograms can be represented as main memory R-
trees. Figure 6.3 depicts the function of bucket size and total workload time for different
representation of a histogram. The first two are R-trees. The third one is an array of
buckets. For R-tree, we used main memory setting and set the fan-out to 12 entries per
node (again it was the best setting in our experiments). Additionally, we build an R-tree
using histogram buckets with a opt* partitioning method and Cy, as a cost function. We
constructed histograms on California data set and measured the overall estimation time
of 10’000 queries from My query set with selectivity 100. We observed that if the bucket

number exceeds 100, the R-tree organization displays better results.

Impact of Bucket Capacity Parameter

The bucket capacity parameters b = max(|N1/2m|,1), B = [N1/m] + b in Histogram-
Generation step are set depending on desired bucket number m. We examine parameter
sensitivity to show that this setting displays a good accuracy. For each data set we
run opt* with different bucket capacities. Figure 6.4 shows four opt* configurations
applied on leaf nodes of the California data set generated after the Micro-Clustering.
There are N; = 30’398 leaf nodes generated from 1’888'012 rectangles. We then gen-
erate histograms for m = 1’000. On average, histogram buckets have capacities about
| N1/m| = 30 leafs. For each fixed b, we computed a E,, under query model My with
selectivity 100 as a function of parameter B. The values b = 15, B = 46 exhibit a good
performance. We observed that increasing the parameter B does not lead to better his-
tograms especially for a non-uniform data sets. In general, high B — b values do not
significantly improve histogram quality and even increase time complexity. In contrast,

small B — b values exhibit poor results for uniform and near-uniform data distributions.

6.5.3 Experimental Results

In this section we present a detailed discussion about accuracies of different histograms.
First we describe general trends observed in our experiments. Further, we discuss results
obtained for small sized queries (d=2,3). We focus on M, workload. Subsequently, we
report results for large sized queries. For the sake of brevity, we only present results
of rKHist, R-V, MinSkew and MinSkewProg. Other method accuracies are presented if
necessary.

We observed several trends: first, although R-tree methods are build based on a M;

108

6 Construction of R-tree-Based Histograms

0.3 mrkHist mR-V =MinSkew mMinSkew Prog

(a) abs

(b) dia

(c) par

500 1000 2000 3000 4000 5000
Buckets
(d) rea

Figure 6.5: F,, for rectangular data and query set My

model, they exhibit also good estimation results for other query workloads.

Workload M,

Second, R-tree based methods yield better accuracies for non-uniform data distributions
than MinSkew and MinSkewProg for all data and query workloads. Their selectivity

109

6 Construction of R-tree-Based Histograms

mrkHist mR-V wMinSkew mMinSkew Prog

(a) bit

(b) ped

(c) pha

0,1
0
500 1000 2000 3000 4000 5000
bucktes
(d) uni

Figure 6.6: E,, for point data and query set My

accuracies increase more significantly with an increasing number of buckets than for
MinSkew and MinsSkewProg. We also observed that with increased number of buckets,
the quality of MinSkew improves marginally (as reported in [10]). In contrast, the quality
of MinSkewProg increases more significantly. Using several different grid resolutions

prevents MinSkewProg from allocating many buckets in a single highly skewed cluster,

110

6 Construction of R-tree-Based Histograms

since the number of buckets produced per grid is equally balanced [10]. For a large
number of buckets, MinSkewProg is the better choice than MinSkew.

Third, the general deficiency of R-tree methods for uniform and near-uniform data
distribution is corrected using our proposed partitioning methods. This can be explained
by the fact that the produced MBRs display almost no overlap, thus, this partitioning
minimizes the estimation error.

In this section, we present result for query model My (query follow data distribution
and query size is expressed by the number of results). Since the workload My is more
realistic and more difficult to handle, we report results for this model. Results for other
models are discussed if necessary.

Figure 6.5 and 6.6 show results of rKhist, R-V, MinSkew and MinSkewProg for a d=2
data sets and query workload My with selectivity 100. We bundle results for rectangular
data sets in Figure 6.5 and for point data in Figure 6.6. Best results are achieved on
ped data set. This data set consists of thin shaped clusters of points. Minimizing the
MBR volume using dynamic programming scheme leads also to a thin shapes of MBRs,
thus minimizing the estimation error. The rKHist method as well as the simple R-tree
method (fixed size partitioning) have problems with uniform and near-uniform data sets.
The rKHist greedy split strategy does not lead to a partitioning with small overlap
introducing high estimation error. In contrast, R-V method yields better partitioning
and its accuracy is comparable with MinSkew and MinSkewProg accuracies. R-V and
rKHist perform better for non-uniform data sets bit, dia, par, ped and rea than MinSkew
and MinSkewProg with increasing number of buckets. For par data set, we observed
almost no difference between rKHist and R-V method. This data set has a high variance
in shapes and sizes of rectangles and is difficult to handle either by R-tree histogram
and index.

Figures 6.8 and 6.7 depicts results of R-tree methods compared with a fixed size par-
titioning strategy (R-tree) for d=2 point and rectangular data. In general, we observed
that all methods using our optimized sort-partition framework display better accuracy
than R-tree. Estimation accuracies of R-V, R-VQP, R-RK and R-SK do not differ signif-
icantly for non-uniform data distributions. However, C'y, function exhibit better results
for uniform data sets than other cost functions.

For d=3 we obtain similar results as for d=2 for all data and query sets. In general,
estimation quality are slightly better for non-uniform data sets than for d=2. Figure 6.9
reports results for d=3 rea data set.

In Figure 6.10, we report the E,, for FST method compared with R-V and MinSkew-

Prog for rea data set. FST Performance was very poor for all data and query sets, as

111

6 Construction of R-tree-Based Histograms

0.3 1 mR-tree mR-V mR-VQP mR-RK =mR-SK
0,2 -
0,1 -
0
(a) abs
(b) dia
0,9
0,6
0.3
0
(c) par
0,6
0,4
0,2
0
500 1000 2000 3000 4000 5000
buckets
(d) rea

Figure 6.7: E,, for rectangular data and query set My

we used random sampling for input data. Although applying this method on whole data
set does not display better results than rKHist, R-V and MinSkewProg methods.

112

6 Construction of R-tree-Based Histograms

ER-tree mR-V ®R-VQP =R-RK ®R-SK

(a) abs

(b) dia

(c) par

0,1
0
500 1000 2000 3000 4000 5000
buckets
(d) rea

Figure 6.8: F,, for point data and query set My

Results for Large Queries

Figure 6.11 shows results for the California (rea) data set for all query workloads. For
large queries R-tree based methods yield even better accuracy then MinSkew counter-
parts in comparison with small sized queries. Similar to small sized queries best result

are achieved for non-uniform data sets. rKHist performs for two uniform uni, abs sets

113

6 Construction of R-tree-Based Histograms

0.4 m rkHist mR-V mMinSkew mMinSkew Prog

500 1000 2000 3000 4000 5000
Buckets

Figure 6.9: F,, for d=3 data set rea and query set My

ER-V mMinSkew Prog M®FST

0.8
0.4
0
500 1000 2000 3000 4000 5000
Buckets

Figure 6.10: F,, for d=2 data set rea and query model My

very poor in comparison with R-V, MinSkew and MinSkewProg. Although for large
queries on the California data set accuracy difference between rKHist and R-V was not
that significant, with a high number of buckets R-V method was superior to other meth-
ods. Best results for R-V we achieve for synthetic data sets abs, bit, dia, ped, pha. Again
results for par data set are comparable with a small sized query results. One possible
solution is to partition such data distribution according to the object size and shape and

construct histograms or index for each partition independently.

6.6 Conclusions

Spatial histograms are becoming increasingly important for modern GIS applications.
They provide a first inexpensive view on large spatial data sets; and therefore are ideally
suited for visualization and approximate query processing. In this chapter, we introduce
a novel histogram method derived from a bulk-loading algorithm of R-trees. It largely
eliminates the cumbersome need for setting parameters; the only ones (page capacity B
and minimum occupation b) are set in the same manner as it is known for R-trees. In
general, our histogram method is fairly easy to implement because it combines elementary
building blocks like sorting and dynamic programming. Our method also overcomes the
weak performance of R-tree histograms in the case of uniformly distributed records. Until

now, it has been considered to be an open problem whether accurate R-tree histograms

114

6 Construction of R-tree-Based Histograms

mMinSkew Prog

500 1000 2000 3000 4000 5000
buckets

(d) My

Figure 6.11: E,, for the California data set; M7, My with volume 0.1 and M3, M4 with
selectivity 1000

can be developed for uniformly distributed data. For real data sets that are known to
be highly non-uniform our method generates histograms of high quality, generally much
better than the ones generated by other methods.

This work also introduces a new kind of experimental setup for spatial histograms. In-

115

6 Construction of R-tree-Based Histograms

spired by cost models for spatial indexes, we consider different kind of workload scenarios
rather than putting the focus only on uniformly distributed queries. This gives a more
meaningful interpretation of the advantages and disadvantages of spatial histograms. In
addition, we also examine the performance of histograms with a rather large number of
buckets. Despite the fact of the availability of large main memories, there have been only
a very few results available for histograms with more than 1000 buckets. In fact, our
experiments reveal that not all of the state-of-the-art histograms can improve quality

with an increasing number of buckets.

116

7 Conclusions and Future Work

In this work, we achieved three main results. Firstly, we showed for the first time that
the loading a partial persistent B-tree is possible with I/O complexity of external sort.
We developed a new kind of partial persistent B-tree that maintains all asymptotic per-
formance guarantees of the MVBT and achieves the lower bound for loading. Secondly,
we revised standard sort based bottom up loading algorithm for R-trees. We proposed
the partitioning scheme that produces substantially better R-trees without increasing
I/O complexity of standard sort based loading algorithms. Our algorithm improves R~
trees according to the widely used cost model [73, 115, 95]. The novelty of our work
is that our proposed dynamic programming algorithm considers statistical information
about the query profile. We showed that knowledge about the average query side lengths
and the average aspect ratio allow us to generate better R-trees. If the knowledge of
the query profile is not available, we optimize R-trees according to the sum of area de-
rived from the MBR of nodes. In both cases, we generate better R-trees than naive sort
based counterparts. We also showed that for query profiles that exhibit high aspect ratio,
an asymmetric Z-Curve in a combination with our partitioning scheme provides better
query performance. Moreover, our preliminary experimental results with R-trees tuned
using our query adaptive framework for interval data in two-dimensional space are very
promising. These results show that R-trees built using the ordering derived from the
average interval length exhibit good query performance. Thirdly, we showed that the pro-
posed dynamic programming scheme allows us the generation of spatial histograms that
exhibit a high accuracy and robustness for different data and query distributions. To
this end, we proposed a unified framework for the R-tree bulk loading and the histogram
generation.

The results in this work pose new research questions and challenges. One of the
promising applications our new loading algorithm are partial persistent structures that
derived from the multiversion B-tree such as the historical R-tree proposed by Tao et
al. [113] or the structure for temporal range aggregates proposed by Zhang et al. [121].
In our future work, we want to investigate the combination of the bulk update approach
and TMVBT proposed by Hapsaalo et al. [66]. TMVBT allows single write and multiple

117

7 Conclusions and Future Work

read transactions at a time. Therefore, after commit the set of new live records could
be inserted in a bulk rather than tuple by tuple.

The computational model that we considered for devising our MVBT™ solution as-
sumes a single disk and a single CPU. The continuously growth of historical data requires
scalable data partitioning techniques over multiple disks or machines for the efficient
query processing. Therefore, the design of parallel and distributed algorithms becomes
more and more important. In our future work, we are interested in the developing of
parallel and distributed version of our loading technique. Recently, Le et al. [79] pro-
posed an algorithm that partitions a multiversion file in almost equi-sized partitions in
the I/O complexity of external sorting. They considered a distributed case where the
set of machine manages historical data. They partition an input interval set using the
time dimension. By this, we can solve an offline problem in a distributed case using
a combination of techniques proposed in [79] and our bulk loading technique. We first
split the input using a single machine, distribute data and execute our loading technique
on each machine in parallel. The approach proposed by Goodrich et al. [61] also par-
titions partial persistent file, yet, according to the key dimension. Therefore, we need
to investigate efficient partitioning techniques for devising a solution in the distributed
scenario.

Both works [79, 61] tackle an offline problem. If an MVBT has already been distributed,
we need to manage new arriving data efficiently. In order to achieve a load balance, in
some cases, parts of the index should be shipped to other machines [108]. Similarly, in
the case of a space overflow in a current memory hierarchy, there is a demand for efficient
migration policies of old data [122, 92, 89].

In general, the design of loading approaches for parallel computational models [119,
118, 109] is of interest. E.g. the computational model of Shriver and Vitter assumes D
disks and P CPUs. This is a still realistic setting in modern hardware architecture. Due
to the recent breakthrough in non-volatile memory technology, we need to rethink the
design of external memory index structures [15], in order to improve performance in a
practical setting. Algorithms designed for the cache oblivious model [55, 40] are inde-
pendent from memory hardware parameters and seem to be a general solution pattern.
However, not all problems can be solved in the same asymptotic I/O bounds as for the
traditional I/O model [40, 11]. Among those is the problem of partial persistence search
structures. Therefore, the design of loading algorithms for alternative external memory
models as well as their lower I/O bounds is important for the further investigations.

We also aim to investigate alternative techniques for managing partial persistent data.

Experimental evaluation of average query performance of MVBT, R-tree as well as tech-

118

7 Conclusions and Future Work

nique proposed in [101] is also of interest. We are also interested in further developing
of R-tree frameworks based on our query adaptive technique for managing interval data.
Therefore, we are also interested in computing the expected average interval length ana-
lytically, based on update model.

Our query-adaptive loading strategies for R-trees highly depend on the accuracy of
cost models. It is still challenging to develop better cost models that allow reorganizing
indexes according to an anticipated workload in a proactive manner. Our preliminary
experimental results show that a combination of spatial density histograms with our
partitioning framework achieve good results for non-uniform data distributions. In order
to achieve a better partitioning of the data for a given query workload, the specific way
of bit shuffling in a Z-curve can also have a substantial impact on the query performance.
In our future work, we are interested in further development of adaptive Z-Curve. E.g.
bit shuffling could be computed in dependency of location, such that the aspect ratio
from this region influence the Z-Curve orientation and symmetry. Also a combination
of techniques proposed by Markl could be interesting [87]. In our future work, we
are interested in the construction of such adaptive Z-curves. Further, as our proposed
technique for R-tree is a heuristic (the quality depends on sorting order), designing an
approximate algorithm for cost models [115, 95] is very challenging.

Our work on spatial histograms shows that R-tree based histograms derived from our
partitioning framework exhibit high accuracy for different kind of data distributions.
While our focus was primarily on two- and three-dimensional data, we are currently
interested in the design of histograms for high-dimensional data. Similar to our design
of accurate spatial histograms,the question is whether that the design principles of high-

dimensional indexing can be effectively reused for high-dimensional histograms.

119

Bibliography

1]
2]

Apache hbase. http://hbase.apache.org/.

Ibm: A matter of time: Temporal data management in db2 for
7/ 0s. http://www.ibm.com/developerworks/data/library/techarticle/dm-
1204db2temporaldata/.

Oracle: Total recall. http://www.oracle.com/technetwork/database/application-

development /total-recall-1667156.html.

D. Achakeev and B. Seeger. A class of r-tree histograms for spatial databases.
Technical report, Philipps-Universitiat Marburg, 2012.

D. Achakeev and B. Seeger. A class of r-tree histograms for spatial databases. In
SIGSPATIAL, pages 450-453, New York, NY, USA, 2012. ACM.

D. Achakeev and B. Seeger. Efficient bulk updates on multiversion b-trees. In
accepted PVLDB Vol. 6 No. 14, 2013.

D. Achakeev, B. Seeger, and P. Widmayer. Sort-based query-adaptive loading of
r-trees. Technical report, Philipps-Universitiat Marburg, 2012.

D. Achakeev, B. Seeger, and P. Widmayer. Sort-based query-adaptive loading of
r-trees. In CIKM, pages 2080-2084, New York, NY, USA, 2012. ACM.

D. Achakeev, M. Seidemann, M. Schmidt, and B. Seeger. Sort-based parallel
loading of r-trees. In BigSpatial, BigSpatial, pages 62-70, New York, NY, USA,
2012. ACM.

S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial
databases. In SIGMOD 99, pages 13-24, New York, NY, USA, 1999. ACM.

P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious range reporting with optimal
queries requires superlinear space. Discrete Comput. Geom., 45(4):824-850, June
2011.

P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H. J. Haverkort.
Box-trees and r-trees with near-optimal query time. In Proceedings of the seven-

teenth annual symposium on Computational geometry, SCG ’01, pages 124-133,
New York, NY, USA, 2001. ACM.

A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116-1127, 1988.

120

[14]

[15]

[16]

Bibliography

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In VLDB 03, pages 81-92. VLDB Endowment, 2003.

D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and S. Singh. Lazy-adaptive
tree: An optimized index structure for flash devices. PVLDB, 2(1):361-372, 20009.

A. Aji, F. Wang, and J. H. Saltz. Towards building a high performance spatial
query system for large scale medical imaging data. In Proceedings of the 20th In-
ternational Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL ’12, pages 309-318, New York, NY, USA, 2012. ACM.

D. Ajwani and H. Meyerhenke. Chapter 5. realistic computer models. In M. Miiller-
Hannemann and S. Schirra, editors, Algorithm Engineering, volume 5971 of Lecture
Notes in Computer Science, pages 194-236. Springer Berlin Heidelberg, 2010.

M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. P.
Pakala. Temporal query processing in teradata. In EDBT, pages 573-578, 2013.

G. Antoshenkov. Random sampling from pseudo-ranked b+ trees. In Proceedings
of the 18th International Conference on Very Large Data Bases, VLDB 92, pages
375-382, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

P. M. Aoki. Generalizing “search” in generalized search trees (extended abstract).
In ICDE, pages 380-389, 1998.

P. M. Aoki. How to avoid building datablades(r) that know the value of every-
thing and the cost of nothing. Scientific and Statistical Database Management,
International Conference on, 0:122, 1999.

L. Arge. The buffer tree: A new technique for optimal i/o-algorithms (extended
abstract). In WADS, pages 334-345, 1995.

L. Arge. Efficient External-Memory Data Structures and Applications. PhD thesis,
1996.

L. Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1-24, 2003.

L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority r-tree: A practically
efficient and worst-case optimal r-tree. ACM Trans. Algorithms, 4:9:1-9:30, March
2008.

L. Arge, A. Danner, and S.-M. Teh. I/o-efficient point location using persistent
b-trees. In ALENEX, pages 82-92, 2003.

L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations on
dynamic r-trees. Algorithmica, 33(1):104-128, 2002.

121

[28]

[29]

[30]

Bibliography

L. Arge and J. S. Vitter. Optimal dynamic interval management in external mem-
ory. In FOCS, pages 560—, Washington, DC, USA, 1996. IEEE Computer Society.

L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM
J. Comput., 32(6):1488-1508, June 2003.

L. Arge and N. Zeh. Algorithms and theory of computation handbook. chap-
ter External-memory algorithms and data structures, pages 10-10. Chapman &
Hall/CRC, 2010.

T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves
and their use in the design of geometric data structures. Theor. Comput. Sci.,
181:3-15, July 1997.

C. Authmann. Evaluierung sortierbasierter verfahren fuer den komplettaufbau
eines index, bachelorarbeit. Technical report, Philipps-Universitdt Marburg, 2008.

B. Bamba, S. Ravada, Y. Hu, and R. Anderson. Statistics collection in oracle spa-
tial and graph: Fast histogram construction for complex geometry objects. PVLDB,
6(11), 2013.

B. Becker, P. G. Franciosa, S. Gschwind, T. Ohler, G. Thiemt, and P. Widmayer.
Enclosing many boxes by an optimal pair of boxes. In Proceedings of the 9th
Annual Symposium on Theoretical Aspects of Computer Science, pages 475486,
London, UK, 1992. Springer-Verlag.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically
optimal multiversion b-tree. VLDB J., 5(4):264-275, 1996.

B. Becker, H.-W. Six, and P. Widmayer. Spatial priority search: An access tech-
nique for scaleless maps. In J. Clifford and R. King, editors, SIGMOD ’91, pages
128-137. ACM Press, 1991.

L. Becker, H. Partzsch, and J. Vahrenhold. Query responsive index structures. In
GIScience 08, pages 1-19, 2008.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient
and robust access method for points and rectangles. In SIGMOD ’90, pages 322—
331, New York, NY, USA, 1990. ACM.

N. Beckmann and B. Seeger. A revised r*-tree in comparison with related index
structures. In SIGMOD ’09, pages 799-812. ACM, 2009.

M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious b-trees. In
FOCS, pages 399-409, 2000.

M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul,
and J. Nelson. Cache-oblivious streaming b-trees. In SPAA, pages 81-92, 2007.

122

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Bibliography

J. V. d. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Kramer, T. Schifer, M. Schneider,
and B. Seeger. Xxl - a library approach to supporting efficient implementations of
advanced database queries. In VLDB 01, pages 39-48, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

J. V. d. Bercken and B. Seeger. An evaluation of generic bulk loading techniques.
In VLDB 01, pages 461-470, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

J. V. d. Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading
multidimensional index structures. In VLDB ’97, pages 406-415, 1997.

H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil.
A critique of ansi sql isolation levels. In SIGMOD Conference, pages 1-10, 1995.

N. Blum and K. Mehlhorn. On the average number of rebalancing operations in
weight-balanced trees. Theoretical Computer Science, 11(3):303 — 320, 1980.

N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: a multidimensional workload-
aware histogram. SIGMOD Rec., 30:211-222, May 2001.

A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial
data with mapreduce. In SSDBM 2009, pages 302-319, Berlin, Heidelberg, 2009.
Springer-Verlag.

D. Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121-137, June 1979.

J. V. den Bercken and B. Seeger. Query processing techniques for multiversion
access methods. In VLDB, pages 168-179, 1996.

D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu. Client-server paradise.
In VLDB ’9/, pages 558-569, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. J. Comput. Syst. Sci., 38(1):86-124, 1989.

T. Eavis and A. Lopez. Rk-hist: an r-tree based histogram for multi-dimensional
selectivity estimation. In CIKM 07, pages 475-484, New York, NY, USA, 2007.
ACM.

H. Edelsbrunner. A new approach to rectangle intersections part i. International
Journal of Computer Mathematics, 13(3-4):209-219, 1983.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS 99, pages 285—, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

123

[56]

[61]

[62]

[63]

[64]

[65]

[66]

Bibliography

F. Furfaro, G. M. Mazzeo, D. Sacca, and C. Sirangelo. Hierarchical binary his-
tograms for summarizing multi-dimensional data. In Proceedings of the 2005 ACM
symposium on Applied computing, SAC 05, pages 598-603, New York, NY, USA,
2005. ACM.

V. Gaede and O. Giinther. Multidimensional access methods. ACM Comput. Surv.,
30(2):170-231, June 1998.

Y. J. Garcia R, M. A. Lépez, and S. T. Leutenegger. A greedy algorithm for bulk
loading r-trees. In GIS 98, pages 163-164, New York, NY, USA, 1998. ACM.

Y. Giora and H. Kaplan. Optimal dynamic vertical ray shooting in rectilinear
planar subdivisions. ACM Trans. Algorithms, 5:28:1-28:51, July 2009.

L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream warehousing with
datadepot. In SIGMOD, pages 847-854, 2009.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry (preliminary version). In FOCS, pages 714-723, 1993.

G. Graefe. B-tree indexes for high update rates. SIGMOD Rec., 35(1):39-44, Mar.
2006.

G. Graefe. Modern b-tree techniques. Foundations and Trends in Databases,
3(4):203-402, 2011.

D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating
multi-dimensional aggregate range queries over real attributes. SIGMOD Rec.,
29:463-474, May 2000.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIG-
MOD ’84: Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, pages 47-57, New York, NY, USA, 1984. ACM.

T. Haapasalo, 1. Jaluta, B. Seeger, S. Sippu, and E. Soisalon-Soininen. Transactions
on the multiversion b+-tree. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology, EDBT 09,
pages 1064-1075, New York, NY, USA, 2009. ACM.

T. Haapasalo, 1. Jaluta, S. Sippu, and E. Soisalon-Soininen. On the recovery of
r-trees. IEEE Trans. Knowl. Data Eng., 25(1):145-157, 2013.

J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, and
V. Samoladas. On a model of indexability and its bounds for range queries. J.
ACM, 49(1):35-55, Jan. 2002.

S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Inf., 17:157-184, 1982.

124

[70]

[71]

[72]

[73]

[74]

[75]

Bibliography

S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR, pages
68-78, 2007.

Y. Ioannidis. The history of histograms (abridged). In VLDB ’2003, pages 19-30.
VLDB Endowment, 2003.

H. V. Jagadish, V. Poosala, N. Koudas, K. Sevcik, S. Muthukrishnan, and T. Suel.
Optimal histograms with quality guarantees. In In VLDB, pages 275-286, 1998.

I. Kamel and C. Faloutsos. On packing r-trees. In CIKM 93, pages 490-499, New
York, NY, USA, 1993. ACM.

K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proceedings of the 7Tth International Conference
on Database Theory, ICDT ’99, pages 257-276, London, UK, UK, 1999. Springer-
Verlag.

M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Farber,
and N. May. Timeline index: a unified data structure for processing queries on
temporal data in sap hana. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’13, pages 1173-1184, New
York, NY, USA, 2013. ACM.

M. Kornacker and D. Banks. High-concurrency locking in r-trees. In Proceedings
of the 21th International Conference on Very Large Data Bases, VLDB 95, pages
134-145, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency and recovery in
generalized search trees. In Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, SIGMOD ’97, pages 62-72, New York, NY,
USA, 1997. ACM.

K. Kulkarni and J.-E. Michels. Temporal features in sql:2011. SIGMOD Rec.,
41(3):34-43, Oct. 2012.

W. Le, F. Li, Y. Tao, and R. Christensen. Optimal splitters for temporal and
multi-version databases. In SIGMOD, 2013.

S. Leutenegger, M. A. Lopez, and J. Edgington. Str: A simple and efficient algo-
rithm for r-tree packing. In ICDFE, pages 497-506, 1997.

D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329-343,
1982.

D. Lomet and B. Salzberg. Access methods for multiversion data. In SIGMOD,
pages 315-324, 1989.

125

[83]

[84]

[85]

[36]

[96]

Bibliography

D. B. Lomet. Grow and post index trees: Roles, techniques and future potential.
In O. Ginther and H.-J. Schek, editors, SSD, volume 525 of Lecture Notes in
Computer Science, pages 183-206. Springer, 1991.

D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and Y. Zhu.
Immortal db: transaction time support for sql server. In SIGMOD Conference,
pages 939-941, 2005.

D. B. Lomet, M. Hong, R. V. Nehme, and R. Zhang. Transaction time indexing
with version compression. PVLDB, 1(1):870-881, 2008.

D. B. Lomet and F. Li. Improving transaction-time dbms performance and func-
tionality. In ICDE, pages 581-591, 2009.

V. Markl. MISTRAL: Processing Relational Queries using a Multidimensional
Access Technique, volume 59 of DISDBIS. Infix Verlag, St. Augustin, Germany,
1999.

M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional histograms.
SIGMOD Rec., 17:28-36, June 1988.

P. Muth, P. E. O’Neil, A. Pick, and G. Weikum. Design, implementation, and
performance of the ITham log-structured history data access method. In Proceedings
of the 24rd International Conference on Very Large Data Bases, VLDB 98, pages
452-463, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity, and applications. In ICDT ’99, pages 236—
256, London, UK, 1999. Springer-Verlag.

J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. In
Proceedings of the fourth annual ACM symposium on Theory of computing, STOC
72, pages 137-142, New York, NY, USA, 1972. ACM.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree
(Ism-tree). Acta Inf., 33(4):351-385, June 1996.

J. A. Orenstein and T. H. Merrett. A class of data structures for associative
searching. In PODS ’84, pages 181-190, New York, NY, USA, 1984. ACM.

M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes in Computer Science. Springer, 1983.

B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range
query performance in spatial data structures. In PODS 93, pages 214-221, New
York, NY, USA, 1993. ACM.

B.-U. Pagel, H.-W. Six, and M. Winter. Window query-optimal clustering of spatial
objects. In PODS 95, pages 86-94, New York, NY, USA, 1995. ACM.

126

[97]

[98]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Bibliography

A. Papadopoulos and Y. Manolopoulos. Parallel bulk-loading of spatial data. Par-
allel Comput., 29(10):1419-1444, 2003.

V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved histograms
for selectivity estimation of range predicates. SIGMOD Rec., 25:294-305, June
1996.

V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In VLDB, pages 486-495, 1997.

V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In VLDB ’97, pages 486495, San Francisco, CA, USA,
1997. Morgan Kaufmann Publishers Inc.

S. Ramaswamy. Efficient indexing for constraint and temporal databases. In
Proceedings of the 6th International Conference on Database Theory, ICDT 97,
pages 419-431, London, UK, UK, 1997. Springer-Verlag.

O. Rodeh. B-trees, shadowing, and clones. TOS, 3(4), 2008.

Y. J. Roh, J. H. Kim, Y. D. Chung, J. H. Son, and M. H. Kim. Hierarchically
organized skew-tolerant histograms for geographic data objects. In SIGMOD ’10,
pages 627-638, New York, NY, USA, 2010. ACM.

N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using
packed r-trees. In SIGMOD Conference, pages 17-31, 1985.

B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving
data. ACM Comput. Surv., 31(2):158-221, June 1999.

H. Samet. Foundations of Multidimensional and Metric Data Structures (The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Commun. ACM, 29(7):669-679, 1986.

A. Silberstein, B. F. Cooper, U. Srivastava, E. Vee, R. Yerneni, and R. Ramakrish-
nan. Efficient bulk insertion into a distributed ordered table. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, SIGMOD
'08, pages 765—778, New York, NY, USA, 2008. ACM.

N. Sitchinava and N. Zeh. A parallel buffer tree. In Proceedinbgs of the 24th
ACM symposium on Parallelism in algorithms and architectures, SPAA 12, pages
214-223, New York, NY, USA, 2012. ACM.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652—686, 1985.

127

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Bibliography

U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. Isomer: Consistent
histogram construction using query feedback. In ICDE 06, pages 39—, Washington,
DC, USA, 2006. IEEE Computer Society.

A. U. Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, and R. T. Snod-
grass, editors. Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access method for times-
tamp and interval queries. In VLDB, pages 431-440, 2001.

Y. Tao and D. Papadias. Adaptive index structures. In VLDB 02, pages 418-429,
2002.

Y. Theodoridis and T. Sellis. A model for the prediction of r-tree performance. In
PODS 96, pages 161-171, New York, NY, USA, 1996. ACM.

P. J. Varman and R. M. Verma. An efficient multiversion access structure. IEEE
Trans. Knowl. Data Eng., 9(3):391-409, 1997.

R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and S. Shekhar.
Spatiotemporal data mining in the era of big spatial data: algorithms and appli-
cations. In Proceedings of the 1st ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data, BigSpatial 12, pages 1-10, New York, NY,
USA, 2012. ACM.

J. S. Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305-474, 2006.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory i: Two-level
memories. Algorithmica, 12(2/3):110-147, 1994.

K. Yi, X. Lian, F. Li, and L. Chen. The world in a nutshell: Concise range queries.
IEEE Trans. Knowl. Data Eng., 23(1):139-154, 2011.

D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger. On com-
puting temporal aggregates with range predicates. ACM Trans. Database Syst.,
33(2):12:1-12:39, June 2008.

R. Zhang and M. Stradling. The hv-tree: a memory hierarchy aware version index.
PVLDB, 3(1):397-408, 2010.

128

