
Efficient bulk-loading methods

for temporal

and multidimensional index structures

Dissertation zur Erlangung des Doktorgrades

der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik

der Philipps-Universitat Marburg

vorgelegt von

Daniar Achakeev

aus Kharkov (Ukraine)

Marburg an der Lahn 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikations- und Dokumentenserver der Universitätsbibliothek Marburg

https://core.ac.uk/display/161974179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Erstgutachter: Prof. Dr. Bernhard Seeger
Zweitgutachter: Prof. Dr. Peter Widmayer

Zusammenfassung

Nahezu alle naturwissenschaftlichen Bereiche profitieren von neuesten Analyse- und Verarbeitungs-

methoden für großen Datenmengen. Diese Verfahren setzten eine effiziente Verarbeitung von geo-

und zeitbezogenen Daten voraus, da die Zeit und die Position wichtige Attribute vieler Daten

sind. Die effiziente Anfrageverarbeitung wird insbesondere durch den Einsatz von Indexstruk-

turen ermöglicht. Im Fokus dieser Arbeit liegen zwei Indexstrukturen: Multiversion B-Baum

(MVBT) und R-Baum. Die erste Struktur wird für die Verwaltung von zeitbehafteten Daten,

die zweite für die Indexierung von mehrdimensionalen Rechteckdaten eingesetzt.

Ständig- und schnellwachsendes Datenvolumen stellt eine große Herausforderung an die Infor-

matik dar. Der Aufbau und das Aktualisieren von Indexen mit herkömmlichen Methoden (Daten-

satz für Datensatz) ist nicht mehr effizient. Um zeitnahe und kosteneffiziente Datenverarbeitung

zu ermöglichen, werden Verfahren zum schnellen Laden von Indexstrukturen dringend benötigt.

Im ersten Teil der Arbeit widmen wir uns der Frage, ob es ein Verfahren für das Laden von MVBT

existiert, das die gleiche I/O-Komplexität wie das externe Sortieren besitz. Bis jetzt blieb diese

Frage unbeantwortet. In dieser Arbeit haben wir eine neue Kostruktionsmethode entwickelt und

haben gezeigt, dass diese gleiche Zeitkomplexität wie das externe Sortieren besitzt. Dabei haben

wir zwei algorithmische Techniken eingesetzt: Gewichts-Balancierung und Puffer-Bäume. Unsere

Experimenten zeigen, dass das Resultat nicht nur theoretischer Bedeutung ist.

Im zweiten Teil der Arbeit beschäftigen wir uns mit der Frage, ob und wie statistische Informatio-

nen über Geo-Anfragen ausgenutzt werden können, um die Anfrageperformanz von R-Bäumen zu

verbessern. Unsere neue Methode verwendet Informationen wie Seitenverhältnis und Seitenlän-

gen eines repräsentativen Anfragerechtecks, um einen guten R-Baum bezüglich eines häufig einge-

setzten Kostenmodells aufzubauen. Falls diese Informationen nicht verfügbar sind, optimieren

wir R-Bäume bezüglich der Summe der Volumina von minimal umgebenden Rechtecken der Blat-

tknoten. Da das Problem des Aufbaus von optimalen R-Bäumen bezüglich dieses Kostenmaßes

NP-hart ist, führen wir zunächst das Problem auf ein eindimensionales Partitionierungsproblem

zurück, indem wir die Daten bezüglich optimierte raumfüllende Kurven sortieren. Dann lösen

wir dieses Problem durch Einsatz vom dynamischen Programmieren. Die I/O-Komplexität des

Verfahrens ist gleich der von externem Sortieren, da die I/O-Laufzeit der Methode durch die

Laufzeit des Sortierens dominiert wird.

Im letzten Teil der Arbeit haben wir die entwickelten Partitionierungsvefahren für den Aufbau

von Geo-Histogrammen eingesetzt, da diese ähnlich zu R-Bäumen eine disjunkte Partitionierung

des Raums erzeugen. Ergebnisse von intensiven Experimenten zeigen, dass sich unter Verwen-

dung von neuen Partitionierungstechniken sowohl R-Bäume mit besserer Anfrageperformanz als

auch Geo-Histogrammen mit besserer Schätzqualität im Vergleich zu Konkurrenzverfahren gener-

ieren lassen.

Abstract

The recent increase of spatial and temporal data requires efficient algorithms for index construc-

tion and for bulk updates. Many big data applications exhibit not only a high volume of static

data but also inherit data growth. Moreover, some of them display high update rates. Incoming

collected or produced data arrive in batches in order to reduce transportation and update costs.

Therefore, updating an index using one record at a time is found to be inefficient for sufficiently

large batch sizes. In this work, we investigate the problem of efficient bulk-loading of temporal

and spatial index structures. We design novel loading strategies for multiversion B-tree (MVBT)

and R-tree.

We introduce a novel loading algorithm for MVBT with the asymptotic optimal I/O complexity.

We show that the previously developed technique based on the buffer tree solves the loading

problem only for the special case (if an input file consists only of insert operations). In this

work, we propose the first loading algorithm for MVBT that meets the lower-bound of external

sorting. We also proposed an efficient algorithm for bulk updates. These results are achieved by

a combination of two algorithmic techniques: buffer tree and weight balancing.

In this work, we designed a loading algorithm for the R-tree that optimizes it according to a

widely used cost model. Extensive experimental results show that R-trees built using our novel

approach exhibit substantially better query performance than sort-based counterparts. The

novelty of our technique is that if a query profile is available the algorithm is able to build better

R-trees. We proposed the following heuristic: first, we define the best sorting order using the

average shape of the query rectangle. Second, we reduce the bulk-loading problem to a one-

dimensional partitioning problem by sorting the input set. Third, we find an optimal solution

for this problem according to the proposed cost models. The motivation of our heuristic is

NP-hardness of the optimization problem. Based on the result obtained from query adaptive

loading, we observed that construction of spatial histograms resembles the problem of optimal

loading of R-trees. Therefore, we developed a spatial histogram construction method based on

the partitioning framework developed for R-tree loading. Spatial histograms built using our

novel method exhibit high accuracy for different data and query distributions. Our method has

only one parameter, minimal page capacity. Moreover, our extensive experimental results show

robustness of our method for different query and data distributions.

iii

Acknowledgments

Foremost, I would like to thank my adviser Prof. Bernhard Seeger. I am very grateful for his

guidance, invaluable advise, patience and encouragement.

I would like to thank members of the database group. I would like to express special thanks to

Marc Seidemann for helpful comments, discussions and reviewing. I would like to thank Daniel

Schäfer, Philip Schmieglt and Johannes Drönner for invaluable discussions and advise. I am very

grateful to my RTM colleagues Michael Cammert, Christoff Heinz, Jürgen Krämer and Tobias

Riemenschneider for their support and for the opportunity to work in a great team. I am thankful

for the chance to work with Peter Widmayer on the problem of optimal bulk loading of R-trees.

I would like to express my sincere gratitude to Ben Mills, Eugen Walter, Yannick Stein and

Tobias Ebert for their helpful comments and discussions. I would like to thank Ben for his

patience during the reviewing of this work.

I am extremely thankful to Anne Sophie Knöller for her invaluable support, for her understanding

and patience.

Finally, I would like to thank my family. I am grateful to my parents Gulbara and Kulmuhamed,

to my brother Emil and my sister Lia for all their love, for their encouragement and support.

iv

Contents

1 Introduction 3

2 Preliminaries 6

2.1 I/O Model . 8

2.2 Partially Persistent B-tree (MVBT) . 10

2.3 R-tree . 14

3 Related Work 19

3.1 Buffer Trees . 20

3.2 Weight Balancing . 26

3.3 Multiversion B-tree Loading Algorithms 29

3.4 R-tree Loading Algorithms . 30

4 MVBT+ Loading Approach for Multiversion B-trees 34

4.1 Preliminaries . 35

4.2 Basic Ideas of Bulk Loading . 36

4.2.1 The Problems of Buffer Trees . 36

4.2.2 A Case for Weight Balancing . 37

4.3 Bulk-Loading Details . 39

4.3.1 Buffer Tree Loading . 39

4.3.2 Weight Balancing . 42

4.3.3 Runtime . 47

4.4 Bulk Update . 48

4.5 Practical Considerations . 48

4.6 A Class of MVBT+Trees . 49

4.7 Experiments . 53

4.7.1 Workload Generation . 53

4.7.2 Experimental Setup . 53

4.7.3 Bulk-Loading Results . 54

4.7.4 Bulk Update Results . 58

1

Contents

4.7.5 Query Workload Results . 59

4.8 Conclusions . 60

5 Query Adaptive Loading of R-trees 61

5.1 Preliminaries . 63

5.2 R-tree Bulk-Loading Framework . 66

5.3 Sorted Set Partitioning . 67

5.3.1 Practical Considerations . 75

5.4 Optimization of Sort Order . 75

5.5 Experiments . 78

5.5.1 Data File and Query Profiles . 79

5.5.2 Examined Algorithms . 80

5.5.3 Sorted Set Partitioning . 81

5.5.4 Order Optimization . 85

5.5.5 R-tree for Intervals in Two-Dimensional Space 87

5.6 Conclusions . 89

6 Construction of R-tree-Based Histograms 91

6.1 Introduction . 91

6.2 Preliminaries . 93

6.3 Related Work . 95

6.4 R-tree Framework . 99

6.4.1 R-tree Histogram . 101

6.5 Experiments . 102

6.5.1 Query Models . 103

6.5.2 Studied Methods . 104

6.5.3 Experimental Results . 108

6.6 Conclusions . 114

7 Conclusions and Future Work 117

2

1 Introduction

Large-scale data analysis allows new insights for research in fields of natural science as

well as social science and humanities. Interdisciplinary research teams and practitioners

use frameworks for big data analysis to understand and explain natural phenomena [117,

16], to predict, prevent and monitor natural and social catastrophes. As the majority of

collected data has two additional dimensions space and time, temporal and spatial index

structures as well as selectivity estimation methods are core components of large-scale

analytic frameworks. They enable efficient query processing.

The recent increase of spatial and temporal data requires efficient algorithms for index

construction and for bulk updates. Many big data applications exhibit not only a high

volume of static data but also inherit data growth. Moreover, some of them display high

update rates [60]. Incoming collected or produced data arrive in batches in order to

reduce transportation and update costs. Therefore, updating an index using one record

at a time is found to be inefficient for sufficiently large batch sizes. For one-dimensional

index structures, there are efficient solutions to cope with high update rates and index

bulk loading from scratch [49, 62, 41].

In this work, we investigate the problem of efficient bulk-loading of temporal and

spatial index structures. We design novel loading strategies for multiversion B-tree

(MVBT) [35] and R-tree [65]. Due to demand for efficient temporal data process-

ing [75, 3, 2, 18, 78, 112], different temporal index structures have been proposed in

the last three decades [105, 112]. Many of them are extensions of B+tree [82, 35, 116].

The multiversion B-tree (MVBT) [35] is the first partially persistent index structure

with optimal worst-case guarantees for inserts, updates, deletes and temporal key-range

queries. Recently, Haapsalo et al. [66] introduced recovery and transactional support for

this structure. Thus, MVBT can be fully integrated in transactional systems. However,

efficient algorithms for bulk loading and bulk updates are available for neither the MVBT

nor for other partially persistent B-trees, e.g. the time-split B-tree [82, 85]. The design

of efficient bulk algorithms for partially persistent B-trees is still challenging [82, 35].

The R-tree is an index structure for indexing multidimensional sets of rectangles [65, 38,

39] and is available in almost all modern database and geographic information systems.

3

1 Introduction

There are many I/O efficient bulk-loading approaches for R-trees, e.g. [104, 73, 80, 58,

44, 27], yet all of them disregard knowledge of query profiles. We aimed to design a

loading strategy that optimizes average query performance and considers query profile if

it is available. If the query profile is not present then we minimize the volume of minimal

bounding rectangles of the R-tree nodes according to cost models developed by [73, 115,

95]. In this work we show that statistical information about the average shape of a query

rectangle can be used to generate better R-trees. Although the method proposed by [25]

builds an R-tree with worst-case optimal query performance, this method is difficult

to integrate into practical systems. In this work, we are interested in algorithms that

exhibit low system integration cost and are conceptually simple. Therefore, we consider

as a groundwork a sort-based R-tree loading approach.

We summarize our contribution as follows:

� We introduce a novel loading algorithm for MVBT with the asymptotic optimal

I/O complexity. We show that the previously developed technique based on the

buffer tree [24, 44] solves the loading problem only for the special case (if an input

file consists only of insert operations). The general case (a mix of insert, delete

and update operations) cannot be solved using this previous approach [44]. We

also proposed an efficient algorithm for bulk updates. These results are achieved

by a combination of two algorithmic techniques: buffer tree [27] and weight bal-

ancing [28].

� We designed a loading algorithm for the R-tree that optimizes it according to a

widely used cost model [73, 115, 95]. Extensive experimental results show that R-

trees built using our novel approach exhibit substantially better query performance

than sort-based counterparts. The novelty of our technique is that if a query profile

is available the algorithm is able to build better R-trees. We proposed the following

heuristic: firstly, we define the best sorting order using the average shape of the

query rectangle; secondly, we reduce the bulk-loading problem to a one-dimensional

partitioning problem by sorting the input set; thirdly, we find an optimal solution

for this problem according to the cost models proposed by [73, 115, 95]. The

motivation of our heuristic is NP-hardness of the optimization problem [7].

Based on the result obtained from query adaptive loading, we observed that con-

struction of spatial histograms resembles the problem of optimal loading of R-

trees. In both cases, a disjoint partitioning of input rectangles should be produced.

Therefore, we developed a spatial histogram construction method based on the par-

titioning framework developed for R-tree loading. Spatial histograms built using

4

1 Introduction

our novel method exhibit high accuracy for different data and query distributions.

Our method has only one parameter, minimal page capacity. Moreover, our exten-

sive experimental results show robustness of our method for different query and

data distributions.

This work is organized as follows. In Chapter 2, we briefly review and introduce problem

definitions, the computational model and multiversion B-tree and R-tree index structures.

Chapter 3 presents related work where we describe the essential algorithmic techniques

such as buffer trees and weight balancing in detail. A thorough understanding of these

concepts is required in the following Chapter 4. In this chapter, we present a novel solu-

tion for loading partial persistent B-tree in asymptotic optimal I/O complexity. Chapter

5 introduces a solution for query adaptive loading of R-trees. Here, we present our novel

partitioning framework for R-tree loading and show in Chapter 6 how it is used for con-

struction of spatial histograms. At the end of Chapters 4, 5 and 6 we conclude with our

results for the given techniques. Chapter 7 summarizes future work.

The major parts of this work were published in the following publications [4, 5, 6, 7, 8].

5

2 Preliminaries

In this section we review multiversion B-tree (MVBT) and R-tree index structures. We

introduce important notations and the computational model. The focus of this work is

the design of efficient loading techniques for MVBT and R-tree (see Chapters 4 and 5).

We assume that the reader is familiar with concepts of tree-based index structures. We

also refer the interested reader to very good surveys on temporal and multidimensional

structures by Salzberg et al. [105] and Gaede et al. [57] as well as the book by Hanan

Samet [106]. David B. Lomet presents in his work a detailed overview of index structures

implementation approaches [83].

In this work, we consider two types of index structures: partial persistent and ephemeral

structures [52]. In contrast to ephemeral structures (ordinary index structures), persis-

tent structures manage both previous and current object versions. If the updates are

allowed on any version we have a general concept of full persistence. For partial per-

sistence, the previous versions are read-only and updates are allowed only on the most

recently created version. The versions produced in the case of partial persistence are rep-

resented as a list and in the case of full persistence a version tree [52]. From a database

perspective “version list” is equivalent to the notion of transaction time. The inserted

items are not physically deleted. They are marked as deleted and are not accessible

at the current state. Partial persistent index structures allow an efficient access either

to past or current states of the database. [35, 26, 116]. Ephemeral structures such as

B+tree or R-tree manage only the current state.

For brevity, we assume that the input is a sorted set of N triples [ops, item, ti]. Triples

are sorted according to ti ∈ {1, . . . N} versions. After processing a triple, we transfer

the index structure to a new state. The first element ops ∈ {insert, delete, update} is a

flag. We do not associate any particular algorithm with ops for the underlying structure.

After the processing of a triple [insert, item, ti] an item is assumed to be present in all

subsequent states of a data structure until it is deleted. Processing of [delete, item, ti]

removes an item from the current state and update updates the item value in the current

state. Thereby, we assume that the input set fulfills the following constraints:

� For each triple with a delete flag there must be a preceding triple with an insert

6

2 Preliminaries

flag and same item.

� For each triple with an update flag there must be a preceding triple with an insert

flag and same item.

� For each triple with an insert flag there are zero triples with the same item or the

most recent triple has flag delete with the same item.

The type of the second element depends on the underlying index structure (e.g. rect-

angle or key-value pair). This allows us to introduce the following notions: bulk loading,

bulk update, bulk insert and bulk delete independently from the underlying data struc-

ture. For example in the case of R-trees, items are axis parallel rectangles. Therefore, the

bulk operation is defined as processing of N triples [ops, item, ti]. The bulk processing

algorithm uses flag ops and version number ti to decide if the items have to be included

in the current state or not. In the following sections, we will see that this corresponds

to a partial persistent file. We introduce problem definitions of bulk operations from

this perspective. Note that this is an abstract definition of the problem and must not

correspond to a real physical representation. Yet it allows us to define problems in a

very generic way, as we assume that we can convert each item from the real input set in

a constant time.

- Bulk loading is the problem of constructing an index structure from scratch using

N triples [ops, item, ti].

- Bulk update is the problem of processing N triples [ops, item, ti] on a non-empty in-

dex structure. Additionally, we define the problem of processing N [insert, item, ti]

or [delete, item, ti] triples on non-empty index structures as Bulk insert or Bulk

delete, respectively.

The first problem that we tackle in this work is an efficient bulk loading and bulk

update of the MVBT structure. In this case the assumption of the input set is fully

compliant with our generic definition. In the second problem addressed in this work, we

study R-tree bulk loading. The input set of loading problem, in this case, consists of

triples with insert flag only. As an R-tree is an ephemeral structure and all flags are

insert, after bulk loading all data is present in a current state. Therefore, we can use

arbitrary ordering for efficient loading of R-trees. Hereafter we use the term loading to

refer to the creation of an index for a given input.

7

2 Preliminaries

2.1 I/O Model

The RAM (random-access machine) model does not sufficiently reflect the performance

of I/O dominant algorithms [17]. The main downside of this model regarding external

memory algorithms is the unified memory assumption. The complexity of the algorithm

is expressed in the number of instructions. Each instruction is processed by CPU in

the same amount of time. The model assumes a random access unbounded memory

layout. The time penalty of accessing any memory location is identical [17]. This model

is more or less realistic for small problem sizes that can be processed in main memory. In

I/O dominated external memory algorithms, I/O requests take considerably more time

than other instructions [17]. Moreover, the modern hardware architecture implements

memory as a hierarchy. On top we have fast but small sized CPU caches as well as main

memory and on the bottom we have magnetic disks, SSD and tapes with significantly

larger capacity. Their access time is also orders of magnitude larger in comparison to

cache or main memory access. The actual processing time of the algorithms is often

dominated by disk accesses [17]. In this work we will use the I/O model by Aggarwal

and Vitter [13] as a default measure of the algorithm complexity. Further, we will use

the notion CPU costs for costs obtained using the RAM model for problems that can be

processed in memory.

In the I/O model, the memory hierarchy is simplified by two-level memory architecture.

The main memory is a volatile bounded random access memory with an access time

orders of magnitude smaller than external memory access. External memory is non-

volatile random access memory. For brevity, hereafter we call this memory the disk. It

is partitioned in fixed size blocks (or pages) that are the smallest transfer units between

external and main memory. The problem size considered in the I/O model is assumed

to be substantially larger than the size of the main memory. The model also assumes a

single CPU. However, it allows reasonable performance comparison to external memory

algorithms. In this work we assume that only one block at a time is transported from

disk to main memory (this is complaint with the assumption in [13, 119, 118]). At the

beginning of the algorithm we always assume that the data is located on a disk.

We express the size of the main memory in the number of records M . A disk block

contains B records. By fetching a single block from a disk, we always transport B records

from disk to main memory. Table 2.1 summarizes notations used in this work. We assume

that the input problem occupies n = N/B blocks on a disk. The space complexity is

also expressed in the number of blocks needed on a disk to solve the problem. In the

following we assume that 2 ·B ≤M and M << N .

8

2 Preliminaries

Symbol Description

N problem size (in number of records)
M memory capacity (in number of records)
B block capacity
m = M/B memory capacity (in number of blocks)
n = N/B problem size (in number of blocks)

Table 2.1: Important notations

In their seminal work [13], Aggarwal and Vitter showed non-trivial lower bounds of

external memory algorithms. One of the major results is that the least number of block

transfers for external sorting is equal to Θ(NB logM
B

N
B). Other important bounds are

the worst-case I/O bound for searching in unsorted file is Θ(NB) and the worst-case I/O

bound for searching in a sorted file is Θ(logB N), e.g. using B+tree.

The I/O model does not ideally reflect the processing time of the algorithms in real

world applications. For example, for a magnetic disk there is a substantial time difference

for accessing the set of blocks randomly or sequentially. Therefore, algorithm engineers

should also consider hardware characteristics for performance improvement. In addition,

emerging non-volatile memory technology such as solid state disk or flash devices pose

new challenges for algorithm engineers [15], since there is no gap between random and

sequential access time, yet read access is in general faster than write. Nevertheless, the

I/O model is still a good performance indicator for the I/O intensive external memory

algorithms.

Another interesting computation model that encapsulates memory hierarchy is the

cache-oblivious model by Frigo et al. [55]. On different memory levels data is trans-

ported in different units. For example, from disk to main memory it is about 4KB and

between CPU cache and main memory it is multiple machine words. Parameters such

as available main memory M , block size B are tuned in order to achieve the best perfor-

mance of external memory algorithms in practical application [17]. Additional knowledge

about cache sizes is also used to obtain the best results. External memory algorithms

need an explicit knowledge of particular hardware characteristics. In contrast, the goal

of the cache-oblivious model is to allow algorithm engineers to design algorithms that

exhibit optimal numbers of block transfers on any memory hierarchy without tuning the

parameter M and B for each memory level.

As in the I/O model [13], it assumes a two-level memory hierarchy. Additionally, it

assumes that the data moved between the memory levels using optimal replacement

strategy in memory units of the particular level, and caches, are fully associative [55].

9

2 Preliminaries

The asymptotic optimal cache-oblivious algorithm exhibits an optimal number of cache-

misses and an asymptotic optimal number of data movements on any memory hierar-

chy [40, 55]. Regardless of the optimal replacement strategy and fully associative cache

assumption, algorithms developed for this model achieve very good performance in real

world applications such as write-optimized index structures for one-dimensional range

searches [41].

2.2 Partially Persistent B-tree (MVBT)

In this section we tackle the problem of managing records in a partially persistent file

consisting of multiple versions. Partial persistence is a well-known concept in compu-

tational geometry [107, 61, 26]. In databases partial persistence is used to manage old

object versions [84, 122] and to enable efficient history querying. Recently, partial per-

sistence has also played a key role in developing robust transactional file systems [102]

and key-values stores [1].

Here the term version describes a record given by the following tuple < k, ts, te, inf >

where k is a key. [ts, te) represents a version interval in which the key is valid, and inf

is the payload. A versioned record is alive in the most recent version if its te field carries

the special character “*”. Otherwise the versioned record is dead. Versioned records

can be depicted as intervals in a two-dimensional space, consisting of a time dimension

(x-axis) and a key dimension (y-axis). The i-th version of the partially persistent file

consists of all versioned records < k, ts, te, inf > with i ∈ [ts, te). Update operations

are allowed only on the most recent version, but queries are supported on any version.

Whenever an update operation (insert, delete) is posed, a new time stamp now is created

and a new record with version interval [now, ∗) is inserted (in the case of insert) or a

live record is deleted (in the case of delete). Note that a deletion corresponds to closing

the interval of a live entry by assigning now to the te field. An update on a versioned

record is simply a concatenation of insert and delete (without incrementing the version

number before delete).

Due to the excellent worst-case performance, a partial persistent B-tree, e.g. MVBT [35],

is used as underlying structure for supporting queries on any version. The leaves of the

MVBT consist of versioned records. In addition, the version concept is also carried over

to the index entries, i.e., an index entry also comprises a time interval [tsi, tei).

MVBT (multiversion B-tree) is an asymptotically optimal partial persistent B+tree.

It has O(N) space complexity and supports (key range) queries at version i with the

same asymptotic complexity as an ordinary B+tree that only stores the i-th version.

10

2 Preliminaries

Figure 2.1: MVBT structure

I/O time for the i-th update is O(logB Ni). Construction of MVBT is performed by

update and requires O(N logB N) I/Os in the worst case. MVBT is actually a direct

acyclic graph (DAG), providing a condensed physical representation of N B+trees (one

for each version) [35]. As proposed by Discroll et al. [52], MVBT stores pointers to

historical roots in a separate (B+tree) termed root*. The DAG and root∗ of an MVBT

are illustrated in Figure 2.1.

The asymptotic bounds on query and update time are achieved by preserving the so-

called weak-version condition: a linear fraction of the capacity d = B
4 in a live node is

reserved for live data. The remaining portion 3B
4 can be used for historical (dead) entries.

For the sake of simplicity, we use these specific settings throughout this thesis without

loss of generality. We refer to [35] for a detailed discussion on parameter settings.

Reorganization of a live node is triggered if there are not enough live entries in the

node (i.e., the weak version condition is violated) or the physical capacity B is exceeded.

In order to use only linear space, the so-called strong-version condition has to be satisfied:

the number of live entries is to be between 3B
8 and 7B

8 for nodes that have just been

involved in a reorganization. Therefore, such a node accepts at least Θ(B) updates

(insertions, deletions) before its next reorganization will be triggered.

We discuss the specific reorganization operations of MVBT using the four two-dimen-

sional partitionings of the time-key space shown in Figures 2.2 and 2.3. Each (leaf) node

of an MVBT corresponds to a rectilinear rectangle. Intervals represent the versioned

records; black and red ones refer to dead and live entries, respectively. We assume that

an update at version ti triggers a reorganization. Reorganization of a node always starts

with a time split where live entries at version ti are copied from node v to a new live

node vl (see Figure 2.2(a)). If the strong version condition is violated for vl, additional

reorganization steps are triggered. If vl has more than 7B
8 live entries, a key-split is

performed first; see Figure 2.2(b). Similar to a split in a B+tree, entries are evenly

distributed among two nodes using a split value from the key dimension.

If vl contains fewer than 3B
8 live entries, a merge with a live key sibling node vn is

11

2 Preliminaries

(a) Time split (b) Key split

Figure 2.2

triggered. We can find live siblings by accessing the parent node. After a time split on

vn, live entries from vn are inserted into vl, as seen in Figure 2.3. If the number of live

entries in vl is greater than 7B
8 , an additional key-split has to be performed on vl. This

is illustrated in Figure 2.3(b). Thus, the two new live nodes satisfy the strong-version

condition. Hereafter we use the term node reorganization to refer to time split, merge or

key-split. Note that at most two new nodes can be created during one reorganization.

(a) Merge (b) Merge-Key-Split

Figure 2.3

Algorithm 1 describes the insert procedure of MVBT given a record e =< k, inf > at

time ts. The path to a live leaf node is computed in lines 1–4. In each level chooseSubTree

searches for the matching live index entry using key k. Afterwards, the versioned record is

inserted in the leaf node. If either the weak version condition or the capacity constraint

is violated, a reorganization of the leaf node will be triggered (lines 5–7). After the

reorganization process is finished, we update time interval(s) of the deleted node and

insert the new live index entry or entries in the parent node (lines 8–18). Then we

recursively check if a reorganization of the parent node is needed.

If the live root is reorganized, a new live root is created (lines 10–15) and a correspond-

ing index entry is inserted in root∗. In the case of an additional key-split, the height of

the live MVBT tree increases (lines 12–13). Otherwise, the height remains the same and

12

2 Preliminaries

the live root is replaced by its temporal successor (line 14–15).

We can arrange entries in an MVBT node either according to the key or to the time

dimension. Sorting according to the time dimension seems to be the natural choice,

since we can simply append new records after reorganizations. The search cost during

the insert procedure is linear in B. Additionally, in the case of a split we also need to

find a median in a current live set with at least linear CPU costs. Alternatively, we

can manage two lists, one for dead entries and one for live (this would not increase the

amount of space of the node needed for entries on a disk, as only a constant amount of

memory is needed to represent both lists such as number of elements). With this second

arrangement only the dead entries list is appended and sorted according to the time

dimension with the live list being sorted by the key dimension. If a key is deleted we

remove it from the live list and append it to the dead list. This would enable us to search

the node with only logarithmic CPU cost. Additionally, logical delete of an entry can

be implemented using logarithmic CPU cost, for example using a balanced search tree

for live entry list. This organization also improves CPU costs of key-splits and a sibling

search in the case of merge operation. Although the node layout does not influence

theoretical I/O cost, we can improve CPU performance in practical applications.

The root structure is organized as a B+tree. We use end time stamp of the time

interval to index dead root entries. This allows us to efficiently insert entries into root*,

since the entries are indexed by the order of deletion time. We append a deleted root

entry to the rightmost leaf node of the tree. Thus, we build root* bottom-up with

amortized I/O cost of O(1) per deleted root entry. root* yields a time partitioning of

the input set. These are then used for an efficient query processing on old versions.

In order to support efficient key-range queries over a given time interval a leaf is

linked with its predecessor(s); see line 7 in Algorithm 1. Every leaf manages up to two

backward pointers to its temporal predecessor(s). This allows us to start the processing

at the right border of the search rectangle and to traverse backwards through the leaf

level. First, the root is determined that is responsible for the most recent version of the

time-range. Thereafter, we find all leaves within the key-range that belong to the most

recent version of the time-range. Starting from these leaves, we use the backward links

to locate all the other required leaves. The details for query processing are given in [50].

Haapasalo et al. [66] introduced transaction and recovery algorithms for MVBT. They

called their structure transactional multiversion B-tree (TMVBT). In order to support

transactions on MVBT node reorganization algorithms were modified. The authors show

that TMVBT allows one write and multiple read transactions at a time while maintain-

ing all worst-case performance guarantees of MVBT. They developed their algorithms

13

2 Preliminaries

for multiversion concurrency-control protocol (MVCC) [45]. MVCC assigns versions

incrementally to a transaction, such that transactions are allowed to see the data of

transactions that were committed before. All the records updated by the transaction

are assigned the version number of this transaction. To this end, the first modification

of an MVBT is to support multiple records with the same version.

As only one write transaction at a time is allowed, TMVBT nodes are partitioned

into groups. The active nodes are alive, contain data of a current write transaction

and their start time is equal to the version of the write transaction. The non-active

nodes contain data of committed and uncommitted transactions. TMVBT enforces

the rule that active nodes have only a single parent. The authors introduced modified

reorganization operations for active and non-active pages. For example, for the set of

active pages standard B+tree algorithms are used, while for non-active nodes modified

MVBT node reorganizations are applied. All records of the current write transaction

are copied to a new live node and deleted from the dead node. Since there are two types

of nodes, merge operations between two type of nodes are also introduced. We refer

the reader to [66] for details of TMVBT. Therefore, MVBT can be fully integrated in

modern transactional database systems.

2.3 R-tree

The R-tree index structure owes its popularity to its conceptual simplicity, good average

query performance and its broad application field. Since the seminal work of Antonin

Guttman [65], R-tree has attracted researchers both from theoretical and applied fields.

In the last three decades, scientists and engineers have done large amount of work to

improve the R-tree query performance. There are several milestones in the research

history of R-tree, for example the popular R-tree variant R∗-tree [38], the first R-tree

with asymptotically worst-case bound on window queries [25], cost models for query

performance prediction [73, 115, 95], and sort-based as well as top-down bulk-loading

algorithms [104, 73, 80, 58, 44, 27].

An R-tree is a balanced tree, proposed by Guttman et al. [65], for indexing d-

dimensional set of rectangles. Figure 2.4 displays an R-tree built for a set of two-

dimensional axis parallel rectangles. In the I/O model nodes of R-tree are mapped

to pages. Therefore, except for the root node, R-tree nodes have a capacity between

B and minimum occupation b ≤ dB/2e. All leaf nodes are on the same level. Leaf

nodes contain input records. This can be object reference (disk address, RID or TID) or

the object itself. Additionally, we provide a function that maps input record to an axis

14

2 Preliminaries

Algorithm 1: Insert

Input: Entry e, Time Stamp ts
1 cR ← root;
2 while cR does not point to leaf do
3 node ← GetNode (cR) and push node in Path;
4 cR ← ChooseSubTree (node, e, ts)//search live index entry;

5 InsertLeaf (leaf ← GetNode (cR) , e, ts);
6 idx[]← SplitNode (leaf, ts)// perform reorganization if needed, if merge or

merge-key-split then find neighbor;
7 link created successor nodes with leaf;
8 while idx[] is not null do
9 get parent node, logically delete cR, parent ← pop Path;

10 if parent is null then
11 store cR as historical root ;
12 if was key-split then
13 create new root node and insert new live successors idx[] in it;

14 else
15 replace root with new created live successor;

16 else
17 insert new live successors idx[] in parent;
18 idx[]← SplitNode (ParentNode, ts);

parallel rectangle. Further, record sets belonging to leaf nodes are disjointed. An index

entry stores a node address and a minimal bounding rectangle (MBR). The MBR of an

internal node is a union of child node MBRs. The leaf node MBR is computed over the

set of leaf records using data-dependent map function. Without loss of generality, we

assume that this function is the identity such that the input records are axis parallel

rectangles or MBRs.

The basic query types supported by R-tree are point and multidimensional range

query (aka window query). The point query computes all record MBRs that contain a

d-dimensional query point qp. A window query computes, for a given axis parallel query

rectangle q, all record MBRs that overlap query q. Since qp is a special rectangle, we treat

point query as a special case of window query. To answer a window query we start at the

root of the tree. We compute, for example in depth first manner, all child rectangles that

overlap q. We process this step recursively until all overlapping nodes have been visited.

In the worst case all nodes can be visited. Therefore, a query should visit only nodes

that contribute to the query result. The method of node MBR generation influences the

15

2 Preliminaries

Figure 2.4: An R-tree with page capacity B = 3 and minimal page capacity b = 2 build
for a set of rectangles r1, . . . , r9

query performance. Guttman [65] noticed that node MBR area should be minimized to

achieve good average query performance, since this would minimize the probability of

overlap with a query rectangle. Later, this was confirmed by [73, 115, 95].

The authors in [12, 74, 68, 25] show that the lower I/O bound for a given window query

is Ω((NB)1−1/d+r/B) where r is the number of results. However, in practical application

R-tree exhibits better average I/O cost. The average good query performance is owed to

sophisticated heuristics applied during updates on the R-tree [65, 38, 39, 104, 73, 80, 58].

The single update operation delete or insert is applied in top-down fashion. The worst-

case insert and delete cost is equal to O(logB N). Generic insert procedures start at the

root of the tree. Then the best child is chosen for descent according to some heuristic.

These steps are repeated recursively until a leaf node is reached. If applicable, node

MBRs on the path are adjusted, for example if the node MBR only partially contains

the record MBR. Guttman in [65] proposed selection of a child entry such that its MBR

would have the smallest area increase. In the case of tie breaks a child node with the

smallest MBR area is chosen. Beckmann et al. [38] also consider the sum of the overlap

areas.

Similar to B+tree, node overflow is handled by a split. However, the way the node

records are distributed between the two new nodes has a larger impact on query perfor-

mance. The goal of a split algorithm is to partition B + 1 entries into two partitions

such that each partition has at least b entries. Not all possible splits are good. We define

the MBR of a partition as union of entry MBRs of this partition. Guttman proposed

generating such partitions that minimize MBR area [65]. He introduced two algorithms,

one with a linear CPU complexity O(B) and one with a quadratic O(B2). The idea

of both algorithms is to find two extreme MBRs, so-called seeds. They will build two

16

2 Preliminaries

partitions. The quadratic algorithm finds two MBRs with the largest value of the area

of their union MBR subtracting the two MBR areas. Then it assigns the remaining rect-

angles to the partitions in a manner similar to inserting algorithm; for example, entry is

assigned to a partition with a minimum enlargement of partition MBR area. The linear

algorithm finds two extreme MBRs for all dimensions with the highest lower left point

and lowest upper right point along the particular dimension. Then the distance between

extreme corners is normalized by the side length of MBR computed over B + 1 entries

for a particular dimension. The pair with a highest value are chosen as seeds [65].

Beckmann et al. [38] introduced the most popular split variant used in modern

database systems. It has O(B logB) CPU complexity and their variant of R-tree called

R∗-tree exhibits very good query performance. The idea is to sort MBRs for each

dimension and quantify (B − 2b + 2) possible splits for each dimension. The MBRs

are sorted twice for each dimension using the lower left and the upper right corners. The

authors proposed three metrics to quantify the split quality: 1. the sum of partition

MBR area, 2. the perimeter of partition MBR and 3. the overlap of partition MBR.

Their method is a heuristic, yet R-trees built with their method display good query

performance in comparison to counterparts. Becker et al. [34] proposed algorithms

for computing optimal split partitioning according to one of these metrics with a CPU

complexity equal to polynomial with a degree proportional to the number of dimensions.

They also derive a lower bound Ω(B logB) for a computation of this partitioning.

The authors in [38] also considered minimizing perimeters of the MBR. This gives

a preference to square-shaped node MBRs resulting in compact representation of tree

nodes, since for a given area a square shaped rectangle minimizes the perimeter [38, 57].

Beckmann et al. [38] investigated different strategies for defining the best split. The

following strategy exhibits the best result. Firstly, the best dimension is defined. The

best dimension is one with the smallest sum of perimeter metric (all possible splits are

considered for this dimension). Among the splits on this dimension the one with the

smallest overlap is chosen; in the case of tie breaks area metric is considered. The split

is then performed using a hyper plane perpendicular to the sorting dimension. The

authors also proposed other techniques for query performance improvements such as

forced reinsert. Instead of performing a split in the case of node overflow a fraction of

node entries are reinserted in the R-tree. We refer the interested reader to [38, 57] for

details. In practical applications this option is often skipped due to high CPU and I/O

costs as well as negative impact on concurrent transaction processing.

Delete operation finds records using its MBR and if it is present deletes from a leaf

node. If applicable, node MBRs on the way from leaf to root are adjusted. However, in

17

2 Preliminaries

the case of node underflow, in contrast to B+-tree, delete operations in R-trees originally

proposed by Guttman [65] do not execute merge or share reorganization. If a leaf node

has fewer than b entries we remove its index entry from its parent. Then the remaining

entries are added to a “re-insert” set. We recursively go up the path and check for an

underflow. At the end of the procedure, we insert all entries from the re-insert set in a

tree using insert procedure. We place entries in their original levels. Since this operation

causes CPU and I/O overhead, we opt for local merge and if applicable subsequent split

operation instead (or we apply the global rebuilding). The merge neighbor is defined

using MBR of the underflow node as if we insert this MBR in the parent node. We refer

to Bercken et al. [42] for implementation details. The works by [76, 77, 67] introduce

algorithms for transaction and recovery support for R-trees.

18

3 Related Work

In this section we review bulk-loading techniques for multiversion B-trees and R-trees.

Loading algorithms can be roughly classified into three groups: tuple-by-tuple, bottom-

up loading and top-down loading. First, we present the core generic loading algorithms.

Afterwards, we discuss related work for specialized loading approaches for MVBT and

R-trees. We refer the interested reader to Jeffry Vitter’s book [118] as well as the survey

by Arge et al. [30]. They present many algorithmic techniques for external memory

used in this work.

Although more I/O efficient loading techniques exist, the simplest loading method is

to execute insert procedure for each input object [49, 35, 65]. If the time complexity of

the insert procedure is O(logB N), then N input objects are inserted using O(N logB N)

I/Os. Hereafter we call this type of loading tuple-by-tuple. Both R-tree and MVBT can

be loaded using this approach. In practical applications, time efficiency of this method

can be improved by utilizing a page (node) buffer. However, the improvement rate

depends on page replacement policy and on an ordering of insert operations.

A more I/O efficient technique, known from B-trees [49, 63], is to build an index in

bottom-up fashion, starting from the leaf nodes. For now, we assume that an input

data set is sorted according to an appropriate criterion. A core variant of this technique

creates a leaf node and its associated index entry for each B (or a fraction of B) elements

from a sorted set. In the next step, these index entries are used as an input set for the

next index level generation. Index entries are processed according to the order of their

generation in the previous step. These steps are recursively repeated until fewer than

B elements remain. Finally, a root node is created. The loading I/O time is equal to

O(N/B). Each iteration reduces the input set by a factor B. However, if the data is

not sorted, we need at least Θ(NB logM/B
N
B) [13] I/Os for sorting. Thus, the overall

I/O costs are dominated by the I/O cost of external sorting. We consider sort-based

bottom-up loading as a two-step approach: first, we sort the input data and afterwards

level-by-level recursive construction is applied. Sort-based bottom-up loading of B-trees

reduces the build time by at least factor B compared with tuple-by-tuple solution. The

advantage of this technique is its conceptual simplicity. Moreover, since an external

19

3 Related Work

sort algorithm is available in most database systems, we regard implementation and

integration costs as very low. This approach is also applicable to R-trees. It has been

found that a sorting according to space-filling curves leads to R-trees with good query

performance [104, 73].

Unfortunately, this technique is not directly applicable for bulk-loading MVBT. In

partial persistence we need to preserve strict temporal order of input records. Con-

structing MVBT can be seen as a two-dimensional sweep line algorithm, where at each

event on the x-axis (time axis) one of the operations insert, delete and update is exe-

cuted [61]. Although input entries are already sorted according to their time stamps,

we need to manage a dynamic ordered set of live keys in order to build correct MVBT.

However, we can still use the tuple-by-tuple approach that corresponds to the described

sweep line analogy. However, we are at least a factor B away from our desired com-

plexity. To tackle this problem, we adapt top-down loading technique based on buffer

trees [22, 23, 24, 44, 27].

3.1 Buffer Trees

Arge developed an external memory data structure called buffer tree for off-line (batched)

problems that efficiently utilizes available memory of size M [22, 23, 24]. The general idea

is to process and push down elements in batches. For this purpose, buffers of size equal

to the portion of available memory are attached to the internal nodes. This technique

transports Θ(M) elements with I/O costs of Θ(M/B) between two levels. This yields
1
B amortized I/O cost per transported entry.

The buffer tree algorithm empties the buffer only after they are filled completely, in

order to amortize I/O cost for a set of operations. In contrast to a B+tree, a record

is pushed towards the leaf node “lazily” after several buffer emptying processes. This

defers execution of a single operation such as insertion of an entry. To solve off-line

problems efficiently, delete and update of an entry are also processed “lazily”. Lars

Arge modeled this by attaching the time stamp of the operation t and operation type

ops ∈ {insert, delete, update} to an entry managed by the buffer tree. Hereafter we

assume records have the following format < ops, k, inf, t >: k is a key of the record, t

time stamp of operation, ops operation type and inf information payload (see Section

2). For brevity, we consider insert and delete operations.

One of Arge’s main results is that input data can be sorted using an optimal number of

I/Os only using the insert procedure of the buffer tree. In this way, the technique is also

applicable for problems where the complete input is not present at the start of loading,

20

3 Related Work

since the input is processed in sufficiently large batches iteratively. He also proposed

and devised I/O-efficient solutions based on buffer trees for off-line (batched) problems

in the fields of computational geometry and graph problems. Later, the buffer tree ideas

were used for designing I/O-efficient loading approaches for R-trees by Bercken et al.

[44] and Arge et al. [27].

Figure 3.1: Buffer Tree Architecture [23]

The basic variant of the buffer tree is a height balanced (a, b) search tree [23, 69]

(as shown in Figure 3.1). Each internal node has a fanout between a = M/4B and

b = M/B (number of routing elements). However, leaf nodes have a capacity of B

elements. Hence, the height of a tree is equal to O(logM/B N/B). Each internal node

has a buffer of capacity M/B pages attached. Additionally to leaf and internal nodes,

we define the parent nodes of leaf nodes as “leaf buffer nodes”. As a buffer tree is an

(a, b)-tree [69], violation of a node capacity invariant is repaired by a series of rebalancing

operations such as fuse, share and split. If a node has fewer than a children, depending

on the child number of neighbor node either a fuse or share operation is executed. The

fuse merges two neighbor nodes. The share operation redistributes entries between two

neighbors. If a node has more than b children the split is then executed creating one more

node. As the buffer tree manages buffers, rebalancing operations are slightly modified.

We will now review the insert algorithm of the buffer tree presented in [23].

The insert procedure starts at the root of the tree. A buffer is defined as full if it

contains more than M/2 records. After collecting B records in memory in a single block,

if a root buffer is not filled completely, we append a block to a buffer. Otherwise, we

trigger the buffer emptying process. Except for nodes that reference leaves, we first load

M/2 records into memory and sort them according to the key. As both delete and insert

operation with the same key can be present in the same buffer, we delete corresponding

insert delete pairs (according to their time stamps). Then we iterate through the record

sequence and append them to child node buffers according to the keys. Since the number

of child nodes is Θ(M/B), we load one non-full block in the memory of each child buffer

and Θ(M/B) index entries associated with child nodes. If all child buffer blocks are full

21

3 Related Work

we allocate a new one. For all child nodes with more than M/2B full buffer blocks we

start the buffer emptying process recursively. In contrast to a root buffer, the buffer of

an internal node can contain more than M/2 records, for example, all records of a parent

buffer are pushed to single child buffer. The cost of buffer emptying on internal nodes

is bounded by O(M/B).

We do not empty “leaf node buffers” until all of the internal nodes with full buffers

above are processed. The buffers of “leaf node buffers” are completely emptied. The

buffer emptying process sorts the buffer records and deletes corresponding insert delete

pairs. Let k be the number of leaf nodes of node v. The process loads and merges leaf

node records with sorted buffer records in a single list of blocks.

Then for each corresponding block we create a leaf node. At this point, routing

elements are modified in the parent node. If the number of resulting leaves is greater

than k then split rebalancing is executed. If applicable we continue splits on the way

from the leaves to the root. The buffer of the internal node can be redistributed between

the new and old node. The I/O cost of split rebalancing is bounded by O(M/B) I/Os,

as the node buffers on the path from new leaves to root have no more than M/2 records.

If the number of resulting leaves is less than k, then a list of “dummy” blocks (that

correspond to deleted leaf pages) is created such that the number of leaves and dummy

blocks is k. Dummy blocks of node v are processed one by one, executing the following

steps. The buffer emptying process deletes one dummy block of v and checks balancing

condition on v. In contrast to (a, b)-tree rebalancing, the buffers of the neighbor node

and the violated node buffer are emptied before share or fuse operations. If applicable,

rebalancing is applied on the way from v to root. As we push buffer records of sibling

nodes, we cannot prevent buffer overflow of other leaf buffer nodes. In this way, other

buffer leaf nodes could overflow due to buffer emptying. In this case, we execute the

emptying process on this node first. Therefore, after deleting one dummy block we

need to wait until all rebalance operations are complete, in order to synchronize buffer

emptying processes.

Recall, since buffer leaf nodes are processed only after buffer emptying processes on

internal nodes are finished, internal node buffers are not full (have fewer than M/2B

blocks). Each rebalancing operation has costs bounded by O(M/B), since we need to

process M/B buffer blocks of two nodes, modify routing entries and post changes to a

parent node.

Arge showed that a buffer tree sorts N records using asymptotic optimal numbers of

I/Os. To sort the data using a buffer tree the data is loaded into an empty buffer tree

and then all buffers are emptied in a breadth first manner. The cost of loading of N

22

3 Related Work

records is bounded by O(NB logM
B

N
B). The cost of buffer emptying is O(MB). On each

node on level l we pay O(MB) I/Os after each M/2 operation. I/O costs for all levels are

then O(NB logM
B

N
B). The cost of any rebalancing operation is also bounded by O(MB).

As the buffer tree is an (a, b)-tree, the number of rebalancing operations is bounded by

O(N/B ÷M/B = N/M) [23, 69]. Thus, the I/O cost of all rebalancing operations is

O(N/B). The emptying of all buffers is bounded by O(N/B), as there are O(N/M)

buffers and single buffer emptying I/O cost is bounded by O(M/B).

Inserting N records in a buffer tree and subsequent emptying of all buffers produces

a sequence of sorted blocks. The block size is O(B). This fact is used by Bercken et

al. [44]. The authors developed a generic loading algorithm using the buffer tree of Arge.

The index structure for example the R-tree is built recursively level by level. The loading

approach first builds the leaf node level using a buffer tree technique in the same manner

as if it were used for sorting. The associated index entries of the leaf nodes are then used

for index level generation. These steps are repeated until fewer than B records remain.

At this point, we create a root node of the index. The proposed algorithm is applicable

for loading only; bulk updates are not supported.

In each step, a modified buffer tree is used for constructing the current level’s entries

for the index structure. The loading algorithm loads entries into an empty buffer tree

and subsequently empties all buffers. The buffer tree uses a routing algorithm of the

underlying structure for pushing elements one level down. The leaf node level is built

using O(NB logM
B

N
B). At each round of the loading, the input set of a buffer tree is

reduced by a factor B. In this way, we obtain a geometric series for the overall I/O cost

that is also bounded by O(NB logM
B

N
B).

Their loading approach can be applied for a wide range of index structures. However,

loading of MVBT is possible for the limited case of insertions only. We discuss problems

of buffer trees for MVBT loading later in Chapter 4.

Arge et al. [27] proposed an improved version of the buffer tree loading algorithm

for R-trees. This supports loading as well as bulk insertion, deletes and updates. In

contrast to buffer trees [23, 44], it does not use nodes with a high fan-out (Θ(m)). Their

loading approach solves the loading problem more elegantly by attaching the buffers into

internal nodes of the R-tree as and when required. This allows us to execute efficient

bulk operations without changing the node layout of the tree. Due to these buffers,

the R-tree insert procedure is slightly modified. Their approach follows the same idea

of processing elements in batches. Conceptually the proposed structure is a buffer tree

with a fan-out Θ(B) and buffer size M/2. However, the buffers are attached to the nodes

on levels i · blogB
M
4B c.

23

3 Related Work

Figure 3.2: Buffer tree by Arge et al.

Figure 3.2 depicts the architecture of the proposed method. The basic idea is to to

load a sub-tree in memory to route records from a buffer to the next buffer level. Thus,

records are pushed logB
M
4B levels down without any I/O. As in a buffer tree, buffers are

emptied only after they are completely filled. Except for the lowest buffer nodes, buffer

emptying pushes records in batches of size M/4. This guarantees that there is no buffer

with more than M/2 records present. The lowest buffer nodes (nodes on level blogB
M
4B c)

are always completely emptied. The sub-tree of height blogB
M
4B c has O(M/2B) nodes.

Thereby, a buffer size M/2 and a sub-tree fit in main memory of size M . The I/O costs

of buffer emptying is equal to O(M/B) I/Os, since we load M/2B buffer pages and

M/2B nodes for routing.

The loading process is similar to buffer tree loading. However, the R-tree routing

algorithm is used. As in the buffer tree, rebalancing is executed in a bottom-up fashion

after emptying lowest buffer nodes. For bulk loading an R-tree, only the split rebalancing

operation is considered. Similar to the buffer tree, the split operation on buffer node

redistributes buffer content between old and newly created buffer nodes.

The I/O cost of split operation is again bounded by O(M/B) I/Os. The overall R-tree

bulk loading is executed in two steps. N spatial elements are inserted into the R-tree

with buffers. Then all buffers are emptied. Arge et al. showed that this technique builds

an R-tree using the same number of I/Os as external sorting. Similar to buffer tree cost,

it follows from buffer emptying and rebalancing costs.

The advantage of the new buffer technique is support for bulk updates, inserts and

deletes. For brevity, we review bulk insert and delete procedures only. Bulk insert is a

minor modification of a bulk-loading procedure. Instead of starting with an empty tree,

bulk update attaches empty buffers to an existing R-tree. Then N records are inserted

in an existing tree similar to the first step of bulk loading. After the last entry is inserted

in a root buffer, all buffers are emptied in a breadth first manner. Let N ′ be a number

24

3 Related Work

of records present in R-tree before bulk insert, then the worst-case I/O cost is equal to

O(NB logM
B

N ′+N
B + N ′

B).

With R-tree bulk loading and bulk insert, emptying the lowest buffer nodes is handled

recursively. There is no need to wait before all above buffer nodes are emptied, since

only split rebalancing is considered. After buffer emptying of the lowest buffer node each

buffer contains at most M/4 records on the way to it; redistributing of buffer contents

does not trigger buffer emptying processes. Bulk delete on buffer R-tree introduces a

merge rebalancing operation. After delete operation reaches the leaf nodes, changes are

posted to the parent nodes. If the buffer node violates the capacity condition it is merged

with its neighbor. The neighbor is computed using the routing algorithm for R-trees.

Additionally, for buffer nodes buffer content is also merged. Merging of buffer nodes

could also trigger buffer emptying, as two neighbor nodes can contain M/4 records. In

this case the buffer emptying processes could interfere with each other. Arge proposes

modification of buffer emptying on the lowest buffer nodes. Similar to a buffer tree [23],

lowest buffer nodes are emptied only after all buffer nodes above are emptied. After

emptying all upper buffer nodes, we process buffer emptying of the lowest buffer nodes

one by one. If rebalancing causes buffer overflow on upper levels then all affected buffer

nodes are emptied before the next lowest buffer is processed. Arge also presents in his

work other bulk operations; we refer the interested reader to [27].

The buffer tree technique [22, 44, 27] solves the index-loading problem for a wide

range of index structures with the same asymptotic costs as for external sorting. In

the case of loading, in general, they introduce implementation and execution overhead

due to buffer management, bookkeeping of buffer emptying processes and bottom-up

rebalancing operations. However, buffer tree [27] is applicable for a wide range of bulk

operations such as insert, update and delete. Moreover, authors propose hybrid methods

mixing sort-based and buffer tree techniques [27]. Recently, the buffer tree technique

has been adapted for the design of efficient index structures optimized for flash and solid

state drives [15].

In our work, we consider both techniques; we propose novel sort-based loading ap-

proach for R-trees. The algorithm takes a query profile into account to build better

R-trees according to a widely used cost model. For MVBT we designed a novel loading

algorithm. It uses the buffer tree of Arge et al. [27] as a groundwork. However, we

designed a novel buffer tree technique that not only solves the loading problem efficiently,

but also gives other advantages related to implementation complexity and concurrency.

25

3 Related Work

3.2 Weight Balancing

Our approach for loading MVBT uses a combination of buffer tree and weight balancing

technique. Weight balancing is an algorithmic technique and is used for example to

amortize the costs of reorganization operations on data structures. Mark Overmars

presents generic algorithmic techniques for the design of data structures in his excellent

work [94]. Firstly, we present the application of this technique in the case of partial

rebuilding of search trees. Let us consider a binary search tree structure that enforces

some node balancing condition using local rebalancing operations (rotations). In some

cases, it is beneficial to defer (or not to execute) local rebalancing operations and rebuild

the sub-tree of a highest node that ran out of balance [94]. Sub-tree rebuilding is done

by constructing a perfectly balanced tree (using the sub-tree nodes) in a bottom-up

fashion. This can be done in a linear number of operations. Weight-balanced binary

search trees proposed in [91] allow us to amortize the cost of partial rebuilding. The

average insertion cost of such trees using this approach is logarithmic.

To the best of our knowledge weight balancing was first proposed by Nivergelt and

Reingold [91]. They introduced a class of balanced binary search tree BB[α]-tree. Let

w(v) be a number of nodes in a tree with root v (inclusively v). Further, we define vl

and vr as a left and right child of v. They define the balance ρ(v) = w(vl)
w(v) of tree node v

by the fraction of the number of nodes in a left sub-tree of v to the number of nodes in a

sub-tree with root v [91, 94]. The node balance is bounded by parameter α. Each node

of a BB[α]-tree fulfills balance constraint α ≤ ρ(v) ≤ 1− α. The tree has a logarithmic

height for α > 0. If the node balance is violated due to insert or delete operation, local

rebalancing operations such as rotation or double-rotation are performed. Blum and

Mehlhorn showed that for 2
11 ≤ α ≤ 1−

√
2
2 [46, 94] at most two rebalancing operations

are needed after insert or delete.

Although the worst-case time to insert an element is bounded by O(logN), Overmars

showed that for 0 < α < 1
2 BB[α]-trees the average cost of insert is equal to O(logN ′)

operations using the partial rebuilding technique. N ′ denotes a maximal number of

entries in a tree at some point of time [94]. If a sub-tree with root v is perfectly balanced

then Ω(w(v)) inserts and deletes can be performed on a sub-tree of v before it violates the

weight condition. As rebuilding costs are also bounded by Θ(w(v)), we obtain the upper

bound. This can be shown using the accounting method. Every time an entry passes

through the node we put one cost unit to a bank account to pay a future rebuilding. Per

operation we put at most O(logN ′) cost units [94]. Therefore, BB[α]-tree can be built

without implementing standard rebalancing operations very efficiently.

26

3 Related Work

Inspired by the ideas of partial rebuilding on BB[α]-trees, Lars Arge and Jeffrey Vit-

ter [28, 29] designed an elegant structure: weight-balanced B-Tree (WB-tree) for the

I/O model. Their goal was to design an I/O efficient dynamic structure for interval

managing. The proposed external interval tree efficiently answers stabbing queries [54].

For a given set of intervals a stabbing query returns all intervals that contain a query

point [29]. Using WB-tree Arge et al. achieve amortized worst-case bound for update

operation on the dynamic version of an external interval tree.

WB-tree is a weight-balanced variant of the B-tree. WB-tree maintains weight infor-

mation for each node. In contrast to B-tree, the insert procedure additionally updates

node weights. Node splits are triggered based on the node’s weight information. For

now we consider insertion only.

The weight w(vl) of a leaf node is defined as the number of elements stored in it.

Function p(v) returns the parent node of node v. The weight of internal node v is

defined recursively as w(v) =
∑

(v=p(c))w(c) the sum of its child weights. Thereby,

internal node weight w(v) is equal to the number of elements in descendant leaves of v.

The ratio of the node weights on the same level is constant. Node weight w(v) increases

exponentially with each level.

WB-tree guarantees that the split operation (rebalancing) on node v occurs after w(v)

insert operations. In this way, if the rebalancing operation costs are bounded by the node

weight O(w(v)) then the amortized cost is equal to O(1). We use this crucial property for

developing our solution, since this allows us to estimate the least number of operations

needed before the next rebalancing operation occurs. For example, in combination with

a buffer tree we estimate the number of operations that can be pushed down without

violation of MVBT conditions.

In the following we review WB-tree in detail. Node weight w(v) is defined using the

so-called branching parameter a > 4. WB-tree leaves are on the same level and have

weights between k and 2k − 1. Internal node v on level l has a weight less than 2al · k.

Except for the root, the internal node on level l has a weight larger than 1/2alk. The

root has more than one child.

Crucial properties of WB-tree are (the interested reader is referred to [28] for details):

1. Except for the root, all nodes have between a/4 and 4a children. The root has between

2 and 4a children. 2. The height is equal to (loga(N/k). 3. After a split of node v on

level l into two nodes v1 and v2 , at least alk/2 inserts have to be performed below v1 (or

v2) before it splits again. After a new root r in a tree containing N elements is created,

at least 3N insertions have to be performed before r splits again.

A WB-tree can be implemented on top of a B-tree, for example by attaching a weight

27

3 Related Work

counter to index entries. Although this technique is conceptually simple, we need to

slightly modify the insert and split procedures. Firstly, the insert procedure updates

node weights. We increase the weight counter of a node by one during the descent

from a root to a leaf. This introduces a constant I/O overhead in comparison to I/O

complexity of B-tree insert algorithm. Secondly, the split procedure is also modified. Let

us consider node v on level l. The split decision is made using child weights instead of

the number of entries. We iterate through the sequence of child entries (sorted according

to the key domain) and sum up their weights. We stop iteration if the current sum is

greater than 1
2w(v) (half of the node weight). Then, we split node v at the child position

where we stopped. The WB-tree properties guarantee that for branching parameter

a > 4 an almost balanced split can always be computed.

Delete operation on a WB-tree is implemented using the global rebuilding strategy [29,

94]. We illustrate the key idea of global rebuilding using the following example. We refer

interested readers to [94, 29] for details. Using this global rebuilding we achieve worst-

case bounds for delete operation without handling local rebalancing. Instead of physical

deletion we mark elements as deleted. Say we allow at most N/2 elements to be deleted

before we reorganize the tree. After a certain fraction of elements are marked as deleted,

say 1/4N , we start to construct a second tree lazily containing 3N/4 elements from the

first one. We still use the first tree for queries as well as insert and delete operations.

However, for the following 1/6 · (3N/4) insert/delete operations we insert 6 elements in a

new tree using the insert procedure. Additionally, we store these new operations. They

need to be performed on a new structure after it is completely built, since we cannot use

the new structure until these operations are executed. We use the next 1/6·(1/6·(3N/4))

operation on the old structure to insert 1/6 · (3N/4) temporarily stored operations with

continuing to store incoming operations. This process continues recursively until all

temporarily stored operations are executed on the new structure. At this point the

new structure can be used and the old one discarded. Using these parameters it can

be shown that only one tree is under construction at a time, since the last temporarily

stored operation is executed within 1/4 · (3/4N) operations [94, 29].

Arge et al. uses WB-tree to amortize split costs of proposed interval tree resulting

O(logB N) insert costs. One variant of their interval tree is a WB-tree with a branching

parameter a equal to
√
B
4 and leaf capacity 2k = B. Similar to the main memory interval

tree [54], interval end points are used to index intervals. Nodes have associated secondary

structures that contain up to w(v) intervals. For a detailed discussion of the external

interval tree we refer to [29]. A split cost and subsequent update of secondary structures

of new and old nodes as well as posting changes to a parent is bounded by O(w(v)/
√
B)

28

3 Related Work

I/Os. Due to the fact that at least O(w(v)) has been executed on the node since the last

split, the cost of a split is amortized.

Gioara and Kaplan also use a WB-tree variant for developing an I/O efficient solution

of the vertical ray shooting problem [59]. Recently, weight balancing has been used for

devising efficient cache-oblivious index structures, e.g. cache-oblivious B-tree [40]. As

in Arge’s interval tree, weight balancing is used for amortizing the reorganization costs.

3.3 Multiversion B-tree Loading Algorithms

To the best of our knowledge, the first solution for bulk loading a partial persistent B-

tree in I/O model was proposed by Goodrich et al. [61]. They built a persistent B-tree

with branching degree
√

M
B in I/O complexity of external sorting to solve a geometric

off-line problem. To solve the problem they used the distribution sweeping paradigm.

The main idea is a recursive partitioning of a set of N operations in s =
√

M
B stripes of

roughly N/s size. This setting allows us to hold
√
M ·B elements of each partition in

memory. Data is partitioned according to the y-axis (key dimension) in s partitions at

each recursive step in a top-down fashion, since we represent data as horizontal intervals

in two-dimensional time-key space. No key partitions overlap. Partitioning steps are

applied until a partition fits in the main memory. Afterwards, a persistent B-tree with

a fan-out s is built on this partition. Each recursive call returns a list of historical roots

of s-way persistent B-trees. Note that each list is sorted according to the time stamp.

Afterwards, each s-th element from root lists is taken as a bridge element and merged

in a single result list Y. The merging procedure is done by recursively constructing

lists of bridge elements. Additionally, pointers to all bridge predecessors in recursively

constructed lists are stored with bridge elements. The list Y together with pointers

defines roots for a persistent structure [61].

To find an element alive at time point i an alive root at time i is located. The structure

is then traversed in a top-down fashion always searching in nodes whose time stamp is

the largest value smaller than or equal to i. In contrast to MVBT, the time for locating

an element at time i in this structure depends on the value of s =
√

M
B . Our problem

differs in that we address the loading of an online persistent B-tree with branching degree

B, a problem that is so far unsolved [61].

Bulk loading of the MVBT was already addressed by Bercken et al. [44]. The authors

used a generic buffer tree framework [24, 44, 27]. Although this approach is applicable to

loading R-trees, loading of MVBT is only possible for insertions. For mixed workloads

consisting of insertions, deletions and updates, this approach cannot be used. We will

29

3 Related Work

show major problems of this approach in Section 4.2. Our new loading algorithm is

applicable to arbitrary workloads while all asymptotic performance guarantees of the

MVBT are fully maintained.

An interesting loading algorithm for R-trees is presented in [27] (see Section 3.1),

using the buffer tree framework. This algorithm loads the leaf level and index levels

simultaneously. The advantage is that this approach is not limited to bulk loading only,

but also suitable for bulk update. Unfortunately, the loading approach cannot be used

for partially persistent B-trees. However, our new bulk-loading algorithm also loads all

levels simultaneously. Therefore, our loading algorithm can also be used for bulk updates

as well, with very few changes.

Recently, Zhang et al. [122] presented a memory optimized tuple-by-tuple on-line load-

ing algorithm for the HV-tree, an advanced version of the Time-Split B-tree (TSBT) [85].

The primary goal was to provide fast access to recent data in memory and to move old

data efficiently to secondary storage. In contrast to our problem, the HV-tree assumes

that all live nodes can be kept in memory. This assumption is not always valid, as the

size of databases can still be larger than the available main memory. As a consequence,

no worst-case performance guarantees are given. In addition, the loading algorithm still

relies on executing one update at a time, while our approach achieves substantially higher

improvements of the bulk update time from processing updates in batches.

Due to the continuously growing size of a versioned database, distributing this data

among multiple nodes is becoming more and more important. In [79], a new method is

presented for determining splitters for a set of versioned records (represented as intervals

in a two-dimensional space). This method could be easily combined with our loading

algorithms to obtain a distributed loading technique. In this work, however, we focus on

the centralized case and leave a detailed discussion on distributed techniques for future

work.

3.4 R-tree Loading Algorithms

The most generic method for loading R-trees is to apply standard insertion algorithms

to each of the input rectangles. The loading time is then O(N logB N), while the query

performance solely depends on the underlying insertion algorithm. Insertion algorithms

are designed in such a way that a goal function should be optimized for a split. In

[95, 73], a cost model was introduced revealing that the perimeter and the area are the

two crucial performance indicators. However, [34] shows that an optimal split of a node

does not lead to globally optimal R-trees. This cost model provides the basis for our

30

3 Related Work

investigations.

Roussopoulos and Leifker [104] introduced the problem of loading an R-tree from

scratch and presented a sort-based loading technique with complexity O(NB logM/B
N
B),

where M denotes the available main memory. After sorting the rectangles according

to a one-dimensional criterion, an R-tree can be built bottom-up as it is known from

B+trees. Because the sorting order has a considerable impact on the search efficiency,

Kamel and Faloutsos [73] proposed a double transformation: first a rectangle is mapped

to a multidimensional point and then a space-filling curve like the Hilbert curve is used

to generate a one-dimensional value. In order to improve query performance, heuristics

like the one proposed in [51] can be used for local data reorganization.

STR [80] is also a sort-based loading algorithm that is conceptually different from the

simple sort-based algorithms mentioned above. d different sort and partitioning phases

are used, one for each dimension. The partitions after the last sort correspond to the

leaf pages of the target R-tree.

The advantages of sort-based loading strategies are their simplicity of implementation

yet a good query performance. Therefore, they are the only methods currently used

in DBMS and GIS. However none of these methods can guarantee the quality of the

generated R-tree regarding a cost model.

The Top-down Greedy Splitting (TGS) bulk-loading method [58] constructs the tree

in a top-down manner by applying cost-optimized binary splits in a greedy manner.

The cost function with the best experimental results [58] minimizes the area of the

bounding boxes. The partitioning is performed by iterative binary steps where in each

step multiple sorting orders are examined to detect the split with minimum area. In

[25], it has been confirmed in experiments that the average search performance of R-

trees generated by TGS are almost always better than the ones generated by other

loading methods. Only for artifical data sets with highly varying aspect ratio has the

priority R-tree been superior to TGS. A main disadvantage of TGS is its high loading

cost (due to the binary partitioning) that can be substantially higher than the cost for

external sorting. Due to its binary steps, it is difficult to parallelize TGS in a scalable

manner. Other top-down partitioning techniques like QuickLoad [43] avoid expensive

binary partitioning steps, but the design of an efficient parallel version is still an open

problem.

Loading techniques based on buffer trees [44, 27] can be considered as a hybrid of

top-down and bottom-up strategies. The basic idea is to delay insertions by temporarily

storing input rectangles in buffers attached to the nodes. If buffers are filled up, the

batch of insertions is reactivated and the rectangles continue their traversal down to the

31

3 Related Work

leaves. In order to achieve better search quality it is suggested using a sort-based loading

strategy for buffer emptying above the leaves. While the loading efficiency is the same as

for external sorting, the underlying split algorithm (except for the leaf level) determines

the query performance.

The priority R-tree (PR-tree) [25] is the first loading method whose target R-trees

provide worst-case guarantees for window queries, while the loading can be performed

with the same complexity as external sorting. It also has been shown [25] that the

practical performance of the PR-tree is also good for two-dimensional data. However,

in most cases it is not as good as for the R-trees of TGS, which is the only cost-model-

sensitive loading technique so far. In fact, the PR-tree is not primarily designed for

improving the average-case performance according to a cost model and a query profile.

Moreover, its high implementation complexity might prevent it from being considered

in a real system.

The theoretical foundations of the loading problem have been addressed in [96], where

the NP-hardness of the bucket optimization problem has been proven, but only for a

specific artificial cost function that substantially differs from the ones that are commonly

used for R-trees [95, 73, 115]. This is contrary to our work, where NP-hardness is shown

for the cost function [95, 73] minimizing the area of bounding boxes.

None of the previous methods have been designed for query-adaptive loading of R-trees.

Query-adaptive loading refers to the problem of generating R-trees whose average per-

formance is minimized regarding a given static profile. This is in contrast to adaptive

indexing techniques like splay-trees [110] and database cracking [70], which apply struc-

ture adaptations during runtime of the queries. Different adaptive R-trees have been

proposed in the literature [36, 114, 37], but all of them require a mix of queries and

insertions to obtain the full benefits of adaptivity.

One of our approaches to query-adaptive loading relies on space-filling curves (SFCs)

to obtain a one-dimensional ordering of the rectangles and on an optimal assignment

of rectangles to pages. Most of the other approaches to using SFCs for sorting multidi-

mensional data like [73] shuffle the bits in a symmetric manner, which is most suitable

when every dimension provides the same selectivity. Orenstein and Merett presented a

more flexible framework for shuffling bits that allows the definition of different sorting

orders [93]. Based on their framework, we present shuffling strategies that adapt to

the underlying query profile. A theoretical foundation for generation of query-adaptive

space-filling curves was developed in [31], but without considering the specific problem

of bulk loading. In addition to sorting, we also address the problem of data partitioning

over a set of pages. The common packing strategy [73] to fill up pages to the maximum

32

3 Related Work

leads to suboptimal query performance. In contrast, our new partitioning strategy relies

on the dynamic programming framework used for generating optimal histograms [72].

The dynamic programming scheme proposed in [72] is also used in [120] for computing

a set of k minimal bounding rectangles (MBR) from a two-dimensional point set. The

goal was to reduce communication costs for mobile devices by approximating the spatial

query result by a set of MBRs with a minimal information loss fi. The authors showed

that computing such representations is NP-hard even for d=2. One of their heuristics

first sorts the query output using the Hilbert order and then applies the partitioning

method of [72]. In contrast to bulk loading, space constraints are disregarded. In this

work, we show that these constraints allow for the design of more efficient algorithms.

33

4 MVBT+ Loading Approach for

Multiversion B-trees

In this chapter we study bulk operations on partial persistent structures in external

memory and address offline and online problems. The first problem is bulk loading:

for a given operation set the goal is to build an index efficiently. The second problem

is efficient support of bulk operation on an existing index. Our objective is to design

an algorithm for a multiversion B-tree (MVBT) [35] construction with the same I/O

complexity as external sorting. To the best of our knowledge, this problem has not been

solved so far.

Unfortunately, design of sort based bottom-up solution similar to the B-tree loading

is difficult, as the strict temporal order of operations needs a dynamic management of

an ordered key set for each time stamp. Therefore, we consider other techniques such

as buffer tree loading [24, 44, 27]. This generic technique assigns buffers to the nodes

and builds trees in top-down fashion through the sequence of buffer emptying processes.

Data is moved down towards leaves lazily in batches.

Although, the early version of MVBT loading approach [44] uses buffer trees. It has

several downsides. In fact, it is applicable for insertions only. For general case of mixed

workloads (insert, update and delete operations), it does not solve the bulk-loading prob-

lem correctly. Due to the temporal disorder of structure reorganizations, the invariants

of the MVBT cannot be maintained anymore. Moreover, the problem of bulk-insertion

was not addressed. In this work, we present an efficient algorithm for a bulk-loading

MVBT that meets the lower bound of external sorting. The novelty of the approach is

a combination of the buffer tree [27] and weight balancing [28] technique. The buffer

tree technique allow to process data in batches using available memory efficiently. We

use weight balancing to maintain MVBT constraints and to synchronize buffer emptying

processes and structure reorganizations according to the temporal order of operations.

Moreover, the new solution also supports bulk updates and can be used for online prob-

lems.

This chapter is organized as follows: In Section 4.1, we introduce preliminaries and

34

4 MVBT+ Loading Approach for Multiversion B-trees

important notations. In Section 4.6, we describe a class of partial persistent B-trees that

can be constructed in the asymptotic optimal time. Before we present theoretical results

in Section 4.6, we outline the basic idea of our new bulk loading algorithm in Section

4.2. In addition, we show that it is impossible to use the original buffer tree for loading

the MVBT. In Section 4.3, we present the details of our asymptotically optimal bulk

algorithms for a concrete partial persistent B-tree. We outline the theoretical results on

runtime for this tree in Section 4.3.3. In Section 4.4 we present our algorithm for bulk

update. We discuss our experimental result in Section 4.7. Section 4.8 concludes the

chapter.

4.1 Preliminaries

In the following, we consider the bulk loading and bulk update problem for the MVBT.

Let us consider a sequence of input records ei =< k, inf, ops >, 1 ≤ i ≤ N , where ops ∈
{insert, delete, update}. For i = 1, . . . , N , the operation of ei is performed on the most

recent version of the MVBT using tuple < k, inf > as input. For bulk loading we assume

the initial tree to be empty, while the tree already consists of N ′ live records for the bulk

update problem. These problems differ from the equivalent ones on ephemeral indexes,

e.g. B-tree and R-trees, in the sense that the partial persistent semantics requires a strict

ordering of the update operations. In fact, this renders a direct application of traditional

loading techniques impossible.

Symbol Description

N ′ number of live records
N problem size (in number of operations)
Ni number of entries live at version i
M memory capacity
B block capacity
d minimal live entries per block

Table 4.1: Important notations

For the MVBT we use the following notation: N is the number of updates, Ni denotes

the number of records live at version i. Parameter d ∈ Θ(B) denotes the minimum

number of live records in a page. We count tree levels l = 0, 1, . . . , bottom-up starting

from the leaf level. Our notations are summarized in Table 4.1.

35

4 MVBT+ Loading Approach for Multiversion B-trees

4.2 Basic Ideas of Bulk Loading

In this section, we outline our approach to bulk loading a partial persistent B-tree,

which is closely related to MVBT. Our goal is to provide a loading solution that requires

O(NB logM
B

N
B) I/Os. In fact, this is the lower bound for loading because external sorting

and loading of ordinary B-trees cannot be faster.

In order to design an efficient loading algorithm, we use two techniques in combination

with the MVBT. The one is the buffer tree technique [27] (see Section 3.1) and the other

is weight balancing [28] (see Section 3.2). We call this MVBT extension MVBT+ because

it maintains the worst-case performance properties of MVBT and additionally supports

efficient loading in asymptotically optimal number of I/Os. Each of these two techniques

contributes to the efficiency of MVBT+:

1. The buffer tree yields the same I/O time as external sorting. The key idea of this

technique is to transport data in batches between levels (see Section 3.1 and Figure

3.2).

2. Weight balancing controls the synchrony of buffer emptying processes. It guaran-

tees that the MVBT+ still maintains the MVBT invariants without giving up its

worst-case performance.

The buffer tree attaches buffers to the nodes on each i ·
⌊
logB/4

M
16B

⌋
with i =

1, 2, . . .Θ(logB N/B
logB/4M/16B) level, see Figure 3.2. The buffer size is limited to M

2B pages.

This allows us to keep all live nodes of a sub-tree of height logB/4
M
16B in memory using

at most M
2B I/O. In Section 4.3.2 we explain the choice of these parameters in detail. We

use the following terminology hereafter: a leaf (node) is the node on level 0, an index

node is on level l > 0, a buffer node is the node on levels i ·
⌊
logB/4

M
16B

⌋
with i = 1,

A buffer is associated to a buffer node.

4.2.1 The Problems of Buffer Trees

In the following, we show that is not sufficient to use the buffer tree only for loading

a MVBT. In fact, synchronization of buffer emptying is required; As reorganizations

within the MVBT are temporally ordered according to the time stamps of the updates.

If the buffers are emptied only after they are filled completely, some subtrees will evolve

uncontrolled in time. Moreover, the node reorganizations of the child nodes can force

the parent node also to evolve in time. This becomes a serious problem when other child

nodes still contain historical data in their buffers. When these buffers are emptied later

36

4 MVBT+ Loading Approach for Multiversion B-trees

in time, the parent node as well as siblings could already be dead. As a consequence, an

insertion of their index entries in the parent node is not allowed, and a required merge

with a sibling is impossible. In both cases, the MVBT invariants are violated.

The first problem termed parent-child problem is illustrated in Figure 4.1. Initially,

there are one parent node p and two child nodes u and v. A time-split of u also leads

to a split of parent p. The new parent node p′ is created with time interval [t8, ∗), while

its child v is already vaild at time t2. Later the buffer emptying of node v creates two

nodes v′ and v′′. The time interval of v′ is [t4, t6) which does not fit to the time interval

of parent node p′. Therefore, it would be required to insert an index entry (referring

to v′) into the dead node p. However, an insertion into a dead node is not allowed for

MVBT.

Figure 4.1: Parent-Child problem

The second problem termed sibling problem is illustrated in Figure 4.2. Initially, there

are one parent p and two child nodes u and v. Further, node u is a key sibling of v.

Node u evolves much faster than its sibling v. This causes a time-split at t10 and a new

node u′ is created with a time interval [t10, ∗). Later in time, the buffer of node v is

emptied. Due to the historical data in the buffer, a time split is performed at time t3.

Therefore, the interval of v is closed and a new node v′ with a time interval [t3, ∗) is

created. Because v′ contains less than 3B
8 records, a merge is triggered with a node that

is alive at t3. This would be the key sibling node u, but u is already dead. However, a

merge with a dead node is not allowed for the MVBT.

4.2.2 A Case for Weight Balancing

In order to avoid the parent-child problem and the sibling problem, we applied the weight

balancing technique [28]. The idea is to prevent these problems even without knowing

37

4 MVBT+ Loading Approach for Multiversion B-trees

Figure 4.2: Sibling problem

the precise closing time of an entry time interval. Instead, we introduce a so-called

safe interval where the closing time is estimated by the lower-bound of the number

of operations required until the next reorganization will happen. Only if there is no

overlap among two safe intervals (belonging either to siblings or to a parent and child),

an additional reorganization step will be triggered. The larger the safe intervals, fewer of

these forced reorganizations are necessary. Similar to B-tree, MVBT requires only Θ(B)

operations to trigger the next reorganization after the last was performed. Unfortunately,

this causes very short safe intervals and many forced reorganization steps. In contrast,

weight balancing allows much more operations until the next reorganization step has to

be triggered. More precisely, the number of operations is asymptotically equal to the

number of records in the associated subtree. This leads to very long safe intervals and

a very low probability that there is no overlap among safe intervals. Moreover, when a

buffer of a subtree has to be emptied and the time interval of the associated entry moves

to the future, the safe interval of the sibling is forced to overlap. If necessary, the buffer

of the sibling has to be emptied first.

Similar to [28], weight information has to be maintained for each node. However, we

use two different weight counters for a node v. The live weight w(v) tracks the live records

in the associated subtree (including its root buffer), whereas the operation weight t(v)

tracks the number of update and insert operations. The live weight is used to preserve

the MVBT invariants, e.g. weak version condition. The operation weight t(v) allows to

estimate the closing time of the safe interval.

Both weights capture the temporal progress of a node. We constrain the ratio of node

weights on the same level by a constant. With each level the weights w(v) and t(v)

increase exponentially. Further, at least O(w(v)) operations are needed to reorganize

node v on level l again.

Weight balancing requires a weight information attributed to each node and main-

tained during the loading process. This results in the following modifications of the

original buffer tree emptying process:

� Weight information is updated during buffer emptying process.

38

4 MVBT+ Loading Approach for Multiversion B-trees

� Buffer emptying is triggered either if the buffer is full or the weight conditions of

the node are violated.

� Buffer emptying is forced if the node safe intervals do not overlap. However, as we

apply weight balancing, I/O costs will not asymptotically increase.

� Node reorganization is performed in a top-down manner only. By this, the new

entries can be stored in the parent node without causing any overflow again. This

facilitates the implementation of the buffer tree (in comparison to its original coun-

terpart).

Due to this top-down node reorganizations and emptying of buffers, we avoid parent-

child problem and the sibling problem. As a consequence, the loading time of our ap-

proach is asymptotically optimal. The details are given in the next section.

4.3 Bulk-Loading Details

In this section we explain our MVBT+ bulk loading methods. We first discuss the

loading process using three procedures Bulkload, ClearBuffer and PushDownEntry (see

Algorithms 2, 3 and 4). We also discuss how to apply the weight-balancing technique to

loading. The main theorem proof is outlined at the end of the section.

Algorithm 2: Bulkload

Input: InputData
1 initialize S, rootBuffer, root points to first leaf node;
2 foreach Entry e in InputData do

3 if rootBuffer size ≥ M
4 then

4 for i = 1 to M
4 do

5 PushDownEntry (dequeue entry, root, null, S, ts(entry));

6 foreach idx in S do ClearBuffer (idx) ;

7 append e to rootBuffer;

8 ClearAllBuffers ();

4.3.1 Buffer Tree Loading

Loading starts at the root of a tree (see Algorithm 2). Data is pushed towards the leaf

nodes in batches if either the root buffer is full or a node weight condition is violated.

MVBT+ points to a buffer of the current live root (see line 1). The batch size is M
4 (see

39

4 MVBT+ Loading Approach for Multiversion B-trees

line 3). Buffer nodes pointers with buffer sizes greater than M
4 are stored in stack S.

Buffers of the buffer nodes stored in S are emptied right after the root buffer. Finally,

function ClearAllBuffers (line 10) is called to empty the buffers of all buffer nodes in

breadth-first manner (level-by-level).

Algorithm 3: PushDownEntry

Input: Record e, Index Entry idx, Parent Node vp, Stack S, Time Stamp ts
1 cR ← idx ;
2 if cR violates weight condition then
3 splitType ← ComputeSplitType () ;
4 if cR is not root and has buffer then
5 remove cR from S and ClearBuffer (cR) ;
6 if splitType is merge or merge-key-split then
7 nR ← find neighbor of cR;
8 remove nR from S and ClearBuffer (nR);

9 idx[]← SplitNode (v ←GetNode (cR) , vp, ts, splitType) ;
10 if splitType is key-split then
11 reassign cR depending on key split ;

12 if vp is null then
13 new root node handling . . . // see Algorithm 1 lines 10–15 ;

14 else
15 ExpandParent (idx[]);

16 UpdateWeight (cR);

17 if cR has buffer and buffer size ≥ M
4 and not yet in S then

18 push cR in S ;

19 if cR is not root and has buffer then
20 Enqueue (e, buffer of cR) ;
21 return;

22 if cR points to leaf node then
23 load leaf node and insert entry e into leaf node;
24 return;

25 v ←GetNode (cR) and cR ← ChooseSubTree (v, e) ;
26 PushDownEntry (e, cR, v, S) //recursive call ;

For the M
4 entries of the root buffer PushDownEntry is called, see Algorithm 3. This

function has the following parameters: record to be inserted, root entry of the subtree,

its parent node and the pointer to stack S. It routes the entries to the next buffer nodes

or leaf nodes using the original MVBT routing algorithm (see line 25). Routing through⌊
logB/4

M
16B

⌋
levels of the subtree is done in memory. Note that we consider only live

40

4 MVBT+ Loading Approach for Multiversion B-trees

index nodes for routing. In Lemma 2, we show that the live nodes of a subtree of height

logB
4

M
16B always fit in memory.

We also update weight information of the nodes in line 16 of Algorithm 3. The weight

information is recorded in the corresponding index entries. Moreover, buffer nodes are

pushed into S if the size of their buffer is greater than M
4 (see lines 17–18).

Before we route a record one level down, the weight conditions of the node are checked

(see line 2, Algorithm 3). If the conditions are violated, node reorganization is triggered

(merge, time-split, key-split or merge-key-split). For buffer nodes, we empty their buffers

first, since we need to enforce an overlap of the safe intervals. This ensures that there is

no entry in the buffer with a time stamp smaller than that of the entry to be inserted.

Otherwise, some records could lie outside the lower interval boundaries.

Thereafter, the node is reorganized in a top-down fashion (see call SplitNode, line 9,

Algorithm 3). For the routing, only the live part of a tree is considered. Logically deleted

nodes are released from memory. Index entries of the newly created nodes are posted

to the parent node (see function ExpandParent). It is crucial for our algorithm that

this function does not trigger recursive parent splits towards the root node due to weight

balancing. If we perform a key-split or a merge-key-split, we adjust the node pointer

according to the key of the entry (line 10, Algorithm 3). The root node split is handled

in line 12 of Algorithm 3 similar to Algorithm 1 lines 10–15.

The procedure ClearBuffer (see Algorithm 4) is executed if either one of the following

cases occur:

1. The buffer has more than M/4 records.

2. The buffer node has to be reorganized (e.g. due to weight violation).

3. The procedure ClearAllBuffers is executed (see line 8, Algorithm 2, lines 4–8 Al-

gorithm 3).

In case 2. or 3., buffers are emptied completely. We push records in two batches of

maximal size M/4. After processing each batch, we clear all child buffers with more

than M/4 (see line 8 and 13, Algorithm 4). In addition, buffers belonging to the lowest

buffer nodes are also completely emptied (even if they contain more than M/4 records).

In all other cases, only the first M/4 records of a buffer are pushed down to the next

buffer node. By this, we ensure that no buffer will have more than M/2 records and we

avoid cascading buffer emptying processes [27].

41

4 MVBT+ Loading Approach for Multiversion B-trees

Algorithm 4: ClearBuffer

Input: Index Entry idx
1 buffer ← load buffer of idx ;
2 v ← load the node of idx ;
3 initialize S;

4 for i = 1 to min(M4 , buffer size) do
5 e← Dequeue (buffer) ;
6 cRoot ← ChooseSubTree (v, e) ;
7 PushDownEntry (e, cRoot, v, S, ts(e)) ;

8 foreach i in S do ClearBuffer (i) ;

9 if idx has weight violation or level ==
⌊
logB

4
M/16B

⌋
or ClearAllBuffers then

10 foreach e in buffer do
11 cRoot ← ChooseSubTree (v, e) ;
12 PushDownEntry (e, cRoot, v, S, ts(e)) ;

13 foreach i in S do ClearBuffer (i) ;

4.3.2 Weight Balancing

Recall that we use two weight counters to track the temporal progress of a node v. Live

weight w(v) is used for live records. t(v) tracks the number of update and insert records

pushed to a node v (or to its buffer) on level l since its creation. We need this weight

counter to properly estimate the safe interval as execution of the update operation (logical

delete followed by insert) on a leaf node does not change the number of live entries.

The original index entries of MVBT are extended with two weight counters, w and t.

MVBT+ maintains w and t for each live node in its associated live index entry. Both

counters are updated in a top-down fashion (see Algorithm 3 line 21). Every time a

record is passed one level down, we update the node weight information as follows:

w(v) =

w(v) + 1 if insert

w(v)− 1 if delete

w(v) if update

t(v) =

t(v) + 1 if insert

t(v) if delete

t(v) + 1 if update

Recall that the original MVBT triggers time splits and further reorganizations like

merges or key-splits only with respect to the number of physical entries. This occurs if a

42

4 MVBT+ Loading Approach for Multiversion B-trees

Setting Description

a = B
4 branching factor

al · B4 ≤ w(v) ≤ al ·B valid live weight
w(t) ≤ t(v) ≤ al ·B valid operation weight

al · 3B8 ≤ w(v) ≤ t(v) ≤ al · 7B8 strong weight condition

i ·
⌊
logB

4

M
16B

⌋
, i= 1, . . . buffer levels

M
2 maximal buffer capacity

Table 4.2: MVBT+ settings

node has not enough live entries or the physical bound is achieved (see Section 2.2). We

carry over the same idea to weight balancing. Thus, we limit live and operation weights

w(v) and t(v) (length of safe interval) for each node. The allowed ranges exponentially

increase with each level. The ratio of the minimal and the maximal value of w(v) and

t(v) for level l is a constant.

We adapt weight balancing as follows: the branching factor a is set to a = B
4 . The

valid live weight of node v on level l is between:

live-condition: al · B
4
≤ w(v) ≤ al ·B (4.1)

The valid operation weight t(v) of the node v on level l is between:

operation-condition: w(v) ≤ t(v) ≤ al ·B (4.2)

Immediately after node reorganization, the live weight and operation weight of the

newly created node should fulfill the following Strong-weight-condition: (see Table 4.2):

al · 3B

8
≤ w(v) ≤ t(v) ≤ al · 7B

8
(4.3)

Node reorganization is triggered in two cases: if either

w(v) ≤ al · B
4

or

t(v) ≥ al ·B

These two conditions are checked in line 2 of Algorithm 3. In line 9 of the algorithm

function SplitNode is called. It runs the node reorganization and logically deletes the

current index entry in the parent node. Each reorganization of node v on level l starts

43

4 MVBT+ Loading Approach for Multiversion B-trees

w t wn neighbor live weight Operation

al(3B8) < w < al(7B8) t ≥ alB time-split

w ≥ al(7B8) t ≥ alB key-split

w ≤ al(3B8) t ≥ alB wn + w < al(7B8) merge

w ≤ al(3B8) t ≥ alB wn + w ≥ al(7B8) merge-key-split

w ≤ al(B4) t < alB wn + w < al(7B8) merge

w ≤ al(B4) t < alB wn + w ≥ al(7B8) merge-key-split

Table 4.3: MVBT+ node reorganization conditions

with a time split. It creates a new node vt and copies live entries into vt.

The new live weight w(vt) and operation weight t(vt) are set to value of w(v). If w(vt)

violates strong-weight-condition (see Condition 4.3) one of the following operations are

executed: merge, key-split and merge-key-split (see Table 4.3). In the case of a merge,

the live weight wn of siblings have to be considered to choose the type of reorganization

(see Table 4.3). We release the dead node from memory and use the free space for a

new live node. In the case of a merge operation we update w(vt) and t(vt) as follows

w(vt)← w(vt) + wn and t(vt)← t(vt) + wn.

The original key-split and merge-key-split of MVBT are also adapted to weight bal-

ancing. Key-splits on leaf nodes are identical to MVBT key-splits. This is different for

index nodes. For these nodes, we iterate over the sequence of index entries and sum up

their weights until the sum is at least equal to (12 · a
l · 7B8) (12 of the upper bound of

strong-weight-condition). Then, we split at the child entry where the iteration stopped.

Afterwards, we adjust the weight counters of the created nodes. Since the maximal

weight of this child is limited by al−1B, we find an almost balanced split. The branching

factor a should be greater than 16. This follows from the following inequality [28, 35]:

1

2
· (al 7B

8
)− al−1B ≥ al 3B

8
(4.4)

Hence, this inequality ensures that a balanced split can be always found.

The lower bound of the live weight is al B4 . This ensures that after merging, the live

weight of a new node is always greater than the lower bound of strong-weight-condition

(since 2 · al B4 ≥ al 3B8). The weight constraints and our reorganization operations guar-

antee that a minimum of alB
8 operations (inserts, deletes, updates) have to occur before

node v on level l is reorganized again.

In line 15 of Algorithm 3, the newly created index entries are posted to the parent

node (function call ExpandParent). Recall again that the insertions of these new entries

do not cause a split of the parent node. Let us sum important properties in the following

44

4 MVBT+ Loading Approach for Multiversion B-trees

lemata; their proofs can be found in the appendix.

Lemma 1. For a = B
4 , the number of entries in a MVBT+ node is at most 6B = Θ(B).

Proof of Lemma 1: For l = 0 we have the same settings as MVBT leaves. Let v

be node on level l > 0. To proof the lemma we compute the maximal number of entries

that can be pushed before next reorganization. Since the minimal live weight of the node

is al · 3B8 (see equations 4.3) we can perform up to al · 5B8 inserts (Operation-condition)

and al · 6B8 deletes (Live-condition) on this node. In total we can push up to al · 11B8
operations until t(v) overflows or the minimal bound of w(v) is achieved. According to

the weight constraints, a child node of the node v is reorganized after at least al−1 · B8
operations. After each child split we produce 2 new entries in worst. Thus, after al · 11B8
operations we create:

2·al· 11B
8

al−1·B
8

= 22a new entries. The maximal number of entries stored

in the node with weight al · 3B8 before inserting al · 11B8 is
al· 3B

8

al−1 B
4

= 3a
2 . Thus, total number

of entries stored in the node is 22a+ 3a
2 ≤ 24a = 6B for a = B

4 .

According to Lemma 1, index nodes can occupy up to 6 pages in worst case. These

pages are simply organized as a linked list. The function ExpandParent lazily appends

new pages to the index node in at most constant time. At first glance, this seems to

affect the practical performance of the loading algorithm. However, we did not observe

this worst case of 6 pages in our experiments. In only one of our experiments we observed

a list of two pages. In all other cases, the index node corresponds to one physical page.

Lemma 2. The number of live entries in the node on level l > 0 of MVBT+ is between
B
16 and B. The number of live nodes in a subtree of height

⌊
logB/4

M
16B

⌋
is bounded by

M
2B .

Proof of Lemma 2: (the proof is similar to weight property [28]) We consider node

v on level l. The maximal live weight is alB. The minimal weight of the live child is

al−1B4 . Thus, the maximal number of live entries is alB/al−1B4 = 4a. Since a = B
4 we

get the bound. The minimal live weight of the node is al B4 (also operation weight t(v),

since w(t) ≤ t(w)). The maximal live weight of the child is al−1B. Thus, the minimal

number of entries is al B4 /a
l−1B = a/4 = B/16. We consider a sub-tree T of height

i ·
⌊
logB/4

M
16B

⌋
on level i. Without loss of generality, we assume that logB/4

M
16B is an

integer value. The maximal live weight of T is ai·logB/4
M
16B ·B. Since the minimal weight

of the tree on level (i−1) · logB/4
M
16B is a(i−1)·logB/4

M
16B ·B/4 . Using the same argument

as above, we obtain maximal number of buffer nodes M
4B , referenced by T . Thus, the

overall number of live nodes is bounded by 2 · M4B .

45

4 MVBT+ Loading Approach for Multiversion B-trees

Lemma 2 ensures that the live part of a subtree fits always in memory, since for the rout-

ing only live nodes are considered. This explains also the choice of height
⌊
logB/4

M
16B

⌋
for the buffer-tree configuration.

Before a node reorganization is executed, we check if the node has a buffer (see lines

4–8 in Algorithm 3). The buffer of the buffer nodes is emptied if the weight condition of

the node is violated. The maximum number of entries in the buffer is limited to M
2 . We

call the ClearBuffer function and if the node should be merged we call also this function

for a neighbor node. Buffers are always emptied before node reorganization to enforce an

overlap of safe intervals (we synchronize nodes according to the time dimension). This

operation must not happen frequently, since stopping the process and buffer emptying

have worst case O(M/B) I/O costs per buffer level. At least after each Θ(M) operation,

a weight violation on the buffer nodes occurs.

Lemma 3. MVBT+ nodes on level i ·
⌊
logB/4

M
16B

⌋
with i = 1, . . . are reorganized again

after at least Θ(M) operations (insertions, deletions, updates).

Proof of Lemma 3: We consider the lowest buffer node v. The lowest level is⌊
logB/4

M
16B

⌋
. According to weight conditions the minimal number of entries needed for

next reorganization is al B8 . Thus, the node v is reorganized after alogB/4
M
16B B

8 operations.

Since a = B
4 we get M

16B ·
B
8 = M

128 = Θ(M).

After the buffer is emptied completely, we continue with node reorganization. Finally,

we assign a new buffer to a live node and drop buffers of temporal predecessors.

MVBT+ has the same asymptotic I/O bounds on update and space as a MVBT loaded

by tuple-by-tuple method. The following lemma holds for MVBT+.

Lemma 4. The MVBT+ height loaded with N records is O(logB N) and its space is

O(N).

Proof of Lemma 4: A sub tree with a root node on level l references O(al ·B) live

elements in the live leaf nodes. After insertion of N operation entries at most N entries

are alive. The minimal live weight of the live root node is at least N ≥ 2 ·al−1 · B4 . Since

a = B
4 level of the root node is O(logB N).

A leaf node (level = 0) is reorganized at least after performing B
8 operations. In worst

we create two new leaf nodes. Node v node on level l is reorganized after at least al B8
operations. In worst we create also two new nodes. Thus, after N operations we create

up to: 2 ·N
∑logaN

l=0
1

B
8
·al ≤ 16 ·N/B

∑∞
l=0

1
al

nodes. Since a ≥ 16 and the node capacity

is O(B) according to lemma 1 we obtain the result of O(N) space.

46

4 MVBT+ Loading Approach for Multiversion B-trees

4.3.3 Runtime

In this section, we outline the proof of the following theorem:

Theorem 4.1. The cost for loading N records in an initially empty MVBT+ with branch-

ing parameter a = B/4 ≥ 16 is O(NB logM
B

N
B) I/Os.

First, we consider the costs of emptying buffer of node v on level l = i ·
⌊
logB/4

M
16B

⌋
and the node reorganization. Thereafter, we discuss the emptying of all buffers after

insertions of N records (see function ClearAllBuffers in Algorithm 2). Records are

pushed down in batches of size M
4 towards leaves starting from the root node. We

consider two cases of buffer emptying, caused either by buffer overflow or by the node

weight violation.

Buffer-Overflow : I/O costs of loading a subtree of height
⌊
logB/4

M
16B

⌋
in memory

is O(M/2B) I/Os (see Lemma 2). The overall split costs are limited by O(M/B) I/O

between two buffer levels, since the weight of the subtree root is not violated (see Lemma

2). Thus, M
4 entries routed one level down causing O(MB) I/Os. The I/O cost per entry

is O(1
B). Entries pass O(logB N/B) nodes before they are inserted in the leaf nodes. Yet,

we pay I/Os only on each l = i
⌊
· logB/4

M
16B

⌋
level. Thus, the overall I/O cost per entry

is O(1
B ·

logB/4Ni/B

logB
4

M
16B

) = O(1
B · logM

B
N/B).

Weight-Violation: Reorganization of a buffer node stops the buffer emptying process

and triggers up to two buffer emptying processes. In the case of merge or merge-key-split

we also empty the buffer of the sibling node. In the worst case, we write dirty subtree

nodes to the disk using at most O(M2B) I/Os (see Lemma 2). The buffers of both nodes

contains up to M
2 entries each, since we push data in portions of M4 records. For emptying

both buffers we pay up to O(MB) I/Os. Total I/O costs are bounded by O(MB). In worst

case, we pay O(M/B) I/O for buffer node reorganization after each Θ(M) operations

(see Lemma 3). The total worst case costs of lower buffer nodes splits are O(N/B). The

costs for all remain buffer levels are:

N ·

log M
16B

N/B∑
i=1

1

(B4)i·logB/4M/16B · B8
·O(

M

B
) = O(

N

B
logM/B

N

B
)

Thus, after insertion of N entries in an empty MVBT+ we pay O(NB logM
B

N
B) for

emptying full buffers and buffer node reorganizations.

Finally, we show that the emptying of all buffers after insertion of N operation entries

is bounded by O(NB logM
B

N
B) I/Os. As shown above, costs for emptying full buffers

47

4 MVBT+ Loading Approach for Multiversion B-trees

and for emptying due to weight violation is bounded by O(NB logM
B

N
B) I/Os. The costs

of emptying the remaining non-full buffers is bounded by O(N/B). Since the lowest

buffer node level is l =
⌊
logB

4
M/16B

⌋
, the number of buffer nodes after insertion of N

operation entries is limited by O(NB /(M/B)). The worst-case-cost of the buffer emptying

process is O(M/B). Therefore, on each O(NB /(M/B)) we pay O(M/B) I/O resulting the

O(N/B) bound. Combining this result with buffer emptying caused by buffer overflow

and weight violations before ClearAllBuffers yields the desired asymptotic bounds.

4.4 Bulk Update

In this section, we briefly describe how to insert a sequence of records efficiently into a

non-empty MVBT+ whose buffers are entirely empty. To implement a bulk update, we

follow the ideas presented in [27] with a minor modification of algorithm 2: we use the

current live root and its buffer instead of a pointer to an empty leaf node. Bulk update

appends records to a current root buffer and if applicable pushes entries towards leaf

nodes. We call function ClearAllBuffers by the end of procedure. Since we load records

into existing MVBT+, the records are routed only through the live nodes. By this, we

obtain the following I/O cost for a bulk update:

Theorem 4.2. The cost for a bulk update of N records on an existing MVBT+ with N ′

live records and empty buffers is O(NB logM
B

N+N ′

B + N ′

B) I/Os.

Analogous to the proof of Theorem 4.3, we obtain the I/O bound.

4.5 Practical Considerations

We designed memory and weight-balancing settings from a worst case perspective. With

memory M ≥ 4B2 we have buffers at least on each index level. However, according to

our experimental results less memory is sufficient to achieve the desired performance. In

practical applications we assume that at least M ≥ B2 memory is available. Therefore,

we set buffers on each i ·max
{⌊

logB/4(M/16B)
⌋
, 1
}

level.

Note that the introduced weight-balancing can be used without the buffer tree tech-

nique. According to Lemmas 2 and 4 a weight-balanced MVBT has the same asymptotic

bounds on space, query and update time as the MVBT. However, update and query op-

erations have a constant overhead. Since in general we store the weights in index entries,

on update we need always to write back the index nodes to a disk. In contrast, this

overhead is amortized over a batch of update operations while bulk-loading.

48

4 MVBT+ Loading Approach for Multiversion B-trees

Nevertheless, MVBT+ can be used for normal updates using O(logB N) I/Os per

update. Consequently, we need to manage weight information in the nodes, similar to a

bulk loading case. Yet, we do not attach buffers for a single update operation. To insert

a single update record, we slightly modify the bulk update algorithm. We do not attach

buffers to the live nodes and do not call ClearBuffer function. The modified Algorithm 3

pushes an update record down to the leaf level, while updating node weight information

and if applicable performing node reorganizations.

In the case of the bulk update, buffers are attached to an existing by MVBT+ with

very small overhead, as all information such as the weight and the level of a node is

available. Thus, we can lazily attach buffers during the bulk update. The live weight of

the live root displays the number of live records stored in a tree. Since the worst case cost

of a bulk update also depends from the number of currently stored live records, we can

directly derive the upper I/O bound of a bulk update from the live weight information.

If the size of a batch N is known in advance, we have two options:

1. The first option is: inserting records without attaching the buffer yields worst case

cost N logB(N +N ′) I/Os (This can be speed up by using e.g. LRU-Buffer).

2. The second option is an executing the bulk update procedure. We attach buffers

on demand and subsequently empty all buffers.

We can choose the update strategy based on the estimated worst case cost. This hybrid

strategy yields min{N logB(N +N ′), NB logM
B

N+N ′

B + N ′

B } I/O cost.

4.6 A Class of MVBT+Trees

In this section we present a class Tm of multiversion B-trees. Tm has worst case I/O

bounds for bulk loading and bulk update as well as for space, update and query time.

We define T ∈ Tm as a MVBT+ from a class of Tm using the following parameters

B, d, ε, a: B is page capacity. d ∈ Θ(B) is the minimal number of live records per page.

ε is defined as a fraction of parameter d such that 0 < ε ≤ 1 and d ·ε operations is needed

to trigger next leaf node reorganization. a is a branching factor of internal nodes. Table

4.4 summarizes notations used in this section.

Further, we assume Tm uses Algorithms 2, 4 and 3 (see Section 4.3.1) for bulk loading

and bulk update, respectively. It uses also a modified insert algorithm for a single update.

T belongs to Tm if the following conditions are fulfilled:

49

4 MVBT+ Loading Approach for Multiversion B-trees

Setting Description

d ∈ Θ(B) minimal number of live entries per leaf node
a ∈ Θ(B) branching factor of internal nodes
0 < ε ≤ 1 fraction of d

Table 4.4: MVBT+ settings

1. capacity-condition: The value of branching parameter a and the minimal number

of live records per leaf node d = a are equal and bounded by Θ(B)1.

2. tree-consistency-conditions: Node v valid weights w(v) and t(v) fulfills

live-condition: al · d ≤ w(v) ≤ al ·B (4.5)

and

operation-condition: w(v) ≤ t(v) ≤ al ·B (4.6)

Immediately after node reorganizations w(v) and t(v) fulfills strong-weight-condition:

al · (d+ d · ε) ≤ w(v) ≤ t(v) ≤ al · (B − d · ε) (4.7)

Reorganizations are performed as described in Section 4.3.2. Table 4.5 summarizes

operations triggered based on node weights.

3. split-inequality : Parameters a, d and ε satisfy the following inequality:

1

2
· (al(B − d · ε))− al−1B ≥ al(d+ d · ε) (4.8)

4. merge-inequality : Parameter a, d and ε satisfy the following inequality:

2 · ald ≥ al(d+ d · ε) (4.9)

5. buffer-node-condition: Buffers of size M/2 are assigned to nodes on level l

1We introduce both parameters, as d is inherited from MVBT and a is by weight-balancing technique.
Both have different meanings, however, in order to achieve the desired I/O complexity we initialize
them with the same value.

50

4 MVBT+ Loading Approach for Multiversion B-trees

l = i · bloga
M · d
4 ·B2

c for i = 1, . . . (4.10)

Buffers are emptied as described in Section 4.3.1.

The I/O model enforces capacity-condition. Due to tree-consistency-conditions the

next node reorganization on node v on level l occurs at least after d · ε · al operations

(insert, delete and update records) since it creation. In order to guarantee that a balanced

split of internal nodes can be computed, parameters d, ε, a must fulfill split-inequality,

as MVBT+ key-split splits internal nodes based on the node weights instead of number

of entries. Further, parameters d, ε, a must fulfill merge-inequality, since after the merge

the new node live weight should be at least al(d+ d · ε).
The update records (operations) are routed through the set of live nodes. According

to the buffer-node-condition we have M/2 memory space to hold this live node set. The

maximal number of live entries of node v on level l is given by alB
al−1d

. As we initialize

branching parameter a and parameter d with the same value, the number of live entries is

equal to page capacity B. By this, the live child number of internal node is also bounded

by B. To this end, the number of live entries per internal nodes should be bounded by

B.

Since each live node stores up to B live entries, the maximal number of live nodes

loaded for routing in main memory is bounded by M
2B . Attaching buffers on levels

l = i · bloga
M ·d
4·B2 c for i = 1, . . . allows us to load up to M

2B live nodes. This follows from

the following lemma:

Lemma 5. The number of live nodes of a sub tree with height bloga
M ·d
4·B2 c is bounded by

M/2B

Proof. Without loss of generality, the value loga
M ·d
4·B2 is an integer. Consider sub tree

root node v on level i · loga
M ·d
4·B2 . Let v be a buffer node. Let vd be a descendant

buffer node on the next buffer level level (i − 1) · loga
M ·d
4·B2 . The maximal live weight

w(v) is a(i·loga
M·d
4·B2) · B. The minimal live weight of a node on level (i − 1) · loga

M ·d
4·B2 is

a(i−1)·loga
M·d
4·B2 · d. The maximal number of live nodes on level (i− 1) · loga

M ·d
4·B2 is given

by a(i·loga
M·d
4·B2) · B/a(i−1)·loga

M·d
4·B2) · d = M/4B. Hence, the overall number of live nodes

is bounded by M/2B.

Remain M/2 memory is used for buffers. Buffers are emptied in batches of size M/4

as described in Section 4.3.1. In Section 4.3.1 we parameterized d, ε and parameter a

with d = B
4 , ε = 1

2 and a = B
4 . These parameters fulfill Tm conditions.

51

4 MVBT+ Loading Approach for Multiversion B-trees

w t wn neighbor live weight Operation

al(d · (1 + ε)) < w < al(B − d · ε) t ≥ alB time-split
w ≥ al(B − d · ε) t ≥ alB key-split
w ≤ al(d · (1 + ε)) t ≥ alB wn + w < al(B − d · ε) merge
w ≤ al(d · (1 + ε)) t ≥ alB wn + w ≥ al(B − d · ε) merge-key-split

w ≤ ald t < alB wn + w < al(B − d · ε) merge
w ≤ ald t < alB wn + w ≥ al(B − d · ε) merge-key-split

Table 4.5: MVBT+ node reorganization conditions

Theorem 4.3. T ∈ Tm is asymptotically optimal multiversion B-tree (linear space, log-

arithmic update and query time). The I/O cost for the bulk loading T is O(NB logM
B

N
B)

and the bulk update O(NB logM
B

N+N ′

B + N ′

B) respectively.

Proof. Firstly, we obtain space and height bounds in manner similar to the proof of

Lemma 4. The height of Tm trees is bounded by O(logB N), since the value of branching

parameter a is equal to minimal live record capacity d and bounded by Θ(B). Due to

the fact that d · ε parameter is bounded by Θ(B), we obtain the space bound.

Secondly, the I/O complexity of a single update operation is bounded by O(logB N).

The algorithm computes a path from a live root to a live node. As the maximal number

of entries of internal node is bounded by Θ(B), update procedure always loads up to

O(1) nodes per level and writes them back due to the node weights. In order to show

that internal node contains maximal up to Θ(B) entries, we use the same arguments

as in Lemma 1: the node minimal live weight is al(d + d · ε), by this, we can perform

up to al(B − ((d + d · ε))) inserts and al(B − d) deletes. In total we can push up

to al(2B − 2d − d · ε) operations until t(v) overflows or the minimal bound of w(v) is

achieved. According to the weight constraints, a child node of the node v is reorganized

after at least al−1(d · ε) operations. After each child split we produce 2 new entries in

worst. Thus, after al(2B − 2d − d · ε) operations we create: 2·al(2B−2d−d·ε)
al−1(d·ε) = 4B−4d−d·ε

ε

new entries as d = a. The maximal number of entries stored in the node with weight

al(d+ d · ε) before inserting al(2B− 2d− d · ε) is al(d+d·ε)
al−1d

= d+ d · ε. Thus, total number

of entries stored in the node is (4B−4d−d·εε + d + d · ε) ∈ Θ(B) for a = d ∈ Θ(B) and

d · ε ∈ Θ(B). The I/O complexity of the node reorganization per level is bounded by

O(1) (there are up to four nodes involved, node to be reorganized, its neighbor and two

new created live nodes). Therefore, since the overall I/O time per level is O(1), the

single update on Tm is performed in O(logB N) I/O time.

Thirdly, we show the bounds for the bulk loading and the bulk update. The lowest

buffer node v level is bloga
M ·d
4·B2 c. Without loss of generality, we consider this value

52

4 MVBT+ Loading Approach for Multiversion B-trees

loga
M ·d
4·B2 to be integer. Then, the minimal number of operations needed to trigger next

node reorganization for node v after its creation is equal to aloga
M·d
4·B2 ·d·ε = M ·d2·ε

4·B2 ∈ Θ(M).

Combining this result with arguments from Theorem 4.3 we obtain the I/O bounds.

4.7 Experiments

In this section, we report the main results of our algorithms for bulk loading and bulk

update. We discuss the MVBT+ and MVBT query performance and compare the results

to those of a bulk-loaded R-trees.

4.7.1 Workload Generation

Workloads used in our experiments are designed similarly to other experimental studies

with versioned databases [85, 86, 122]. We consider two different types of workloads:

one for index loading and the other for queries.

Our loading workload consists of six files: d50, u0, u25, u50, u75, u100. Each of them

contains 10′000′000 operations[42]2. For all data sets, the first 1′000′000 operations are

insertions (10% of the data set). The remaining 90% of the file consists of a mix of

insertions, deletions and updates. Data sets are named after these specific operations.

For example the file d50 consists of 1′000′000 insertions followed by a mix of insertions

(4′500′000) and deletions (4′500′000). File u75 consists of 1′000′000 initial insertions

followed by a mix of insertions (2′250′000) and updates (6′750′000). Inserted record

keys are obtained from a permutation of 1, ..., k, where k denotes the total number of

insertions in the particular workload. Deletions and updates randomly select one from all

live records. In the following, we use the term update to refer to all of these operations.

For each file from the loading workload we consider three query files qr1, qr2, qr3. Each

query file contains two-dimensional range queries (key range and time range) of the same

absolute selectivity. qr1 consist of 10′000 queries with 100 answers. qr2 consists of 1′000

queries with 1′000 answers and qr3 contains 1′000 queries with 10′000 answers. Queries

are uniformly distributed in the two-dimensional space.

4.7.2 Experimental Setup

All algorithms are implemented in Java using the XXL library3. MVBT+ is implemented

on top of the existing MVBT by associating two additional weight counters w and t to

2All files are available online http://dbs.mathematik.uni-marburg.de/Home/Downloads
3xxl.googlecode.com

53

4 MVBT+ Loading Approach for Multiversion B-trees

MVBT+ MVBT-LRU
B leaf B index B leaf B index

4KB 97 97 97 121
8KB 197 197 197 245
16KB 397 397 397 493

Table 4.6: Node capacity

an index entry.

We conducted our experiments on a system running Windows 7 equipped with an Intel

I7 CPU, 8GB of main memory, a magnetic disk (WD Caviar Black 1002FAEX, 1TB)

and a SSD (Corsair Force 3 SSD, 120 GB). To avoid an impact of the operating system

on our experiments, we used only the raw device interface.

We ran our experiments with pages of different sizes: 4KB, 8KB and 16KB. Table

4.6 reports the page capacities in the number of tuples. Each page contains header

information that occupies 102 bytes (like the level, number of entries, and pointers to

temporal predecessors). The size of a versioned record in a leaf occupies 41 bytes (17

bytes for the time interval, 8 bytes for the key and 16 bytes for the payload). The size of

an MVBT index entry is 33 bytes (8 bytes for the node pointer, 8 bytes for the key, 17

bytes for a time interval), whereas the size of a MVBT+ index entry is 41 bytes (because

of the additional weight counters w and t).

The available main memory varied from 0.8 MB up to 16 MB. These numbers sound

very small, however the size of the memory has only a marginal impact (base in the log-

factor) on the loading performance. We assigned buffers to each i·max
{⌊

logB/4(M/16B)
⌋
, 1
}

MVBT+ level. Thus, one buffer is assigned to each internal live node. Buffer size varied

from 200 KB up to 4MB because it equals to 1
4 of the available memory.

Wall clock time and number of I/Os were employed to measure loading performance.

The query performance was measured by the number of I/Os and the number of leaf

accesses.

4.7.3 Bulk-Loading Results

In this section, we compare the performance of our new bulk loading method to iterative

MVBT loading (update by update). MVBT-LRU and MVBT refer to iterative loading

with and without a LRU-Buffer, respectively. MVBT-LRU and MVBT+ always received

an equal amount of memory.

Figure 4.3 reports the total number of I/Os required for loading MVBT+ and MVBT

for each workload file. We used a page size of 8 KB and a fixed memory size of 1.6 MB.

54

4 MVBT+ Loading Approach for Multiversion B-trees

Figure 4.3: Loading performance (logarithmic scale) of MVBT-LRU and MVBT+ (page
size = 8 KB, memory size = 1.6 MB)

Figure 4.4: I/O Ratio of MVBT-LRU and MVBT+ as a function of the memory size(page
size = 8KB)

Results (number of I/Os) are given on a logarithmic scale. MVBT+ clearly outperforms

MVBT by a factor between 18 and 40.

Figure 4.4 depicts the ratio of I/Os required to load MVBT-LRU and MVBT+ as a

function of memory size. The best results for MVBT+ are achieved for 200 pages. For

larger memory sizes, I/O performance of MVBT-LRU improves slightly faster than the

one of MVBT+. The (relative) number of I/Os of MVBT+ also increases with a growing

number of updates. Due to a smaller number of live versions, the buffer of MVBT-LRU

becomes more effective. For updates only (file u100), the LRU buffer contains all internal

MVBT nodes, while a lot of reorganization steps are triggered for MVBT+. Thus, the

MVBT+ performance improvements are only a factor of 15.

In Figure 4.5, the I/O ratio is depicted as a function of the page size for loading the data

set u50. The memory capacity is set to 400 pages in total. The lower curve displays the

ratio between I/Os required for loading MVBT-LRU and the ones required for loading

MVBT+. As expected from our theoretical results, we observe a linear improvement of

the I/O performance with an increasing page size. For 16 KB pages, MVBT+ runs faster

55

4 MVBT+ Loading Approach for Multiversion B-trees

Figure 4.5: I/O ratio as a function of the page size (u50 data set, memory size m =
M/B = 400)

than MVBT by a factor of 58. The upper curve illustrates the worst-case for MVBT

when no LRU buffer is used. The curve shows the relative performance gains of MVBT

in comparison to MVBT+.

(a) Magnetic Disk

(b) SSD

Figure 4.6: Loading times (logarithmic scale) of MVBT-LRU and MVBT+ (page size =
8KB, memory size = 1.6 MB)

Figure 4.6 a and 4.6 b depict loading time in minutes, using either magnetic disk or

SSD for all workload files. For the magnetic disk, loading MVBT+ takes between 30 and

60 minutes, while MVBT-LRU requires between 30 and 40 hours. Greater performance

56

4 MVBT+ Loading Approach for Multiversion B-trees

improvements (in comparison to the pure I/O numbers) are due to MVBT+ uses a larger

number of sequential I/Os than MVBT-LRU. For SSD, loading times of MVBT+ are

between 3 and 5 minutes, while MVBT-LRU requires between 64 and 82 minutes.

Figure 4.7: Loading times of MVBT-LRU and MVBT+ in main memory

Figure 4.7 displays the wall clock time when the entire loading is performed in main

memory. All nodes of the trees are kept in memory (without the need for serialization)

and a LRU-buffer was not used anymore. The page capacity was set to 4 KB (B = 97).

The MVBT+ still used buffers for all internal nodes and the buffer capacity was set to

100 pages. Though the entire loading runs in main memory, MVBT+ still runs faster

than iteratively calling the ordinary insertion algorithm of the MVBT by at least a factor

of 1.37. The reason is that the higher locality of computation is not only important for

disks, but also on the upper levels of the memory hierarchy.

Figure 4.9 depicts the average space utilization of index and leaf nodes. The leaf node

utilization of MVBT+ does not differ from the original MVBT. According to Lemma 1

the utilization of an index node is limited by O(B). More precisely, an index node of

MVBT+ contains at most 6 ·B and at least B
16 entries. In our experiments, we observed

that on average there are B/2 entries in one index node. This is less than for the original

MVBT. We did not observe more than B per index node except very rarely for data set

u100.

Figure 4.8 depicts the number of buffer node reorganization and the overall buffer

emptying calls. As expected, with increasing number of update operations, there are

more time splits than key-splits. Therefore, the number of operations needed to trig-

ger node reorganization on level l is always roughly worst case al B8 . At least after

each aB8 = B2

32 = 1225 entries the lowest buffer node should be reorganized (in our

experimental setup). The number of the lowest buffer node reorganizations is limited

by 10′000′000/1225 = 8164. In all our experiments the overall number of buffer node

reorganization was less than this number.

Table 4.7 shows space consumption of the resulting trees. The total space required

57

4 MVBT+ Loading Approach for Multiversion B-trees

Figure 4.8: Average number of data pages needed to trigger buffer emptying process
(8KB pages, M/B=200)

File d50 u0 u25 u50 u75 u100

MVBT+ 629 1157 1241 1253 1261 1239
MVBT 605 1153 1215 1223 1235 1196

Table 4.7: Storage utilization of MVBT+ and MVBT

for MVBT+ increases only slightly in comparison to MVBT. This is due to the larger

index entries in which the weight counters w and t have to be kept. Moreover, weight

balancing results in a lower storage utilization in the index nodes as shown in Figure

4.9 b.

4.7.4 Bulk Update Results

In addition to loading, we also conducted a series of experiments to measure the I/O

efficiency of bulk updates on a given MVBT+ and MVBT-LRU, respectively. For each

data set we first executed 5′000′000 updates (50% of the total updates). Thereafter,

we processed the remaining updates with a sequence of bulk updates (with a given

batch size). Bulk updates on MVBT-LRU are again implemented by calling the update

function one by one. Figure 4.10 depicts the I/O ratio of MVBT-LRU and MVBT+ as

a function of batch size. The memory size was set to 200 pages. MVBT-LRU required

slightly less I/Os than MVBT+ for batch sizes with less than 10′000 updates. The reason

is that after the updates of the entire batch are performed many buffers contains only one

or very few update operation. However, these buffers are forced to be emptied because

this has to be performed after the batch. Note that these results are still in agreement

with the asymptotically optimal worst-case bounds of Theorem 4.2. For batch sizes with

more than 10′000 updates, the situation is different and MVBT+ is still superior. For a

batch size of 400K , for example, the MVBT+ improvements over the MVBT-LRU are

between 9 (for file i0) and 18 (for file d50).

58

4 MVBT+ Loading Approach for Multiversion B-trees

(a) Leaf nodes storage utilization

(b) Index nodes storage utilization

Figure 4.9: Average storage utilization of leaf and index nodes (MVBT+, 8KB pages
B=197=100%)

4.7.5 Query Workload Results

Workload file u50 qr1 qr2 qr3

MVBT+ I/O 4.75 11.98 85.23
leafs 1.78 8.88 80.62

MVBT-LRU
I/O 4.18 11.33 83.74
leafs 1.79 8.89 80.8

R-TREE
I/O 116.3 124.92 197.34
leafs 104.2 112.8 184.8

Table 4.8: I/Os and leaf accesses for query workload qr1, qr2, qr3 and for MVBT+,
MVBT and R-tree

We conducted a series of experiments running the query workloads on each data file.

As expected, we observed almost the same number of leaf accesses for MVBT+ and

MVBT. There are marginal differences, as merging of leaves might differ for MVBT and

MVBT+. Due to different split strategies for index nodes, the original sibling of a leaf

might belong to a different parent node in the case of MVBT+. The number of accesses

to index nodes is higher for MVBT+ in comparison to MVBT (Table 4.8). The average

59

4 MVBT+ Loading Approach for Multiversion B-trees

Figure 4.10: Bulk update, I/O Ratio MVBT-LRU / MVBT+ 8 KB pages

number of I/Os per query are reported for the three query files on data file u50. However,

only for small queries (qr1) the increase in the number of I/Os for MVBT+ over MVBT

is close to 10%.

Additionally, we also report the query performance of an R-tree in Table 4.8. We

built the R-tree using STR bulk loading algorithm [80], a popular loading method that

is also utilized in commercial systems. Our results clearly show that the R-tree query

performance is inferior to the MVBT performance. The reason is simply the high overlap

among the nodes of the R-tree. This is particularly noticeable for small queries.

4.8 Conclusions

In this chapter we presented MVBT+, which is the first partially persistent B+tree that

supports bulk loading in an asymptotically optimal number of I/Os and maintains all

worst-case performance guarantees of the multiversion B-tree (MVBT). The results of

our experimental studies showed that excellent loading times can also be achieved for

various storage devices (magnetic disks, SSD, main memory). In comparison to previous

loading approaches, i.e., loading by iterative updates, MVBT+ loading is substantial

faster by a factor linear to the page capacity. As MVBT+ uses a weight balancing

technique, fill degree of non-leaf nodes is slightly lower than for the original MVBT, but

this leads to only a slight deterioration of the MVBT+ query performance.

60

5 Query Adaptive Loading of R-trees

In this work we investigate the problem of efficient R-tree bulk loading techniques. The

novelty of our work is that we consider a query profile for loading R-trees, since cur-

rent loading approaches for R-trees disregard this. The query profile consists of a set

(a) Input set (b) Query set

Figure 5.1: Figure depicts minimal bounding rectangles of California streets data set and
a set of query ranges Q

of query rectangles. Figures 5.1(a) and 5.1(b) depict set of minimal bounding rectan-

gles (MBRs) of California streets with a query set (profile)1. Based on the statistical

information about queries such as average size and their shapes, we are able to build

R-tree minimizing the costs according to a widely used cost model for R-tree query per-

formance [73, 115, 95]. Knowledge of a query profile influence the structure or R-tree

nodes e.g. firstly, average query size influence the average capacity of R-tree nodes. Sec-

ondly, consider extreme example depicted in Figure 5.2. The query set for California

streets with a high aspect ratio (ratio of side lengths) is plotted in Figure 5.2(a). Figure

5.2(b) displays leaf MBRs of R*-tree. The R*-tree disregards query profile and produces

square shaped MBRs. Figure 5.2(c) depicts leaf MBRs of R-tree build using our query

adaptive approach. It is beneficial to adapt the shape of leaf MBR to the average query

shape.

1TIGER Data: http://www.census.gov/geo/www/tiger/

61

5 Query Adaptive Loading of R-trees

(a) Query set (b) Leaf MBRs R*tree (c) Leaf MBRs R-tree

Figure 5.2: Impact of query shape

Our research goal was to design a loading approach that fulfills the following require-

ments:

1. The algorithm should consider statistical information obtained from a query set

to build R-trees that minimizes a cost model proposed by [73, 115, 95]. If there

no query profile available, algorithm should minimize area of minimal bounding

rectangles of the R-tree nodes.

2. The I/O costs of the algorithm should be bounded by the costs of external sorting.

3. The algorithms should be conceptual simple.

4. Devising a parallel and distributed version of the algorithms should be possible.

Regardless of the query profile knowledge our developed loading strategy substantially

improves average query performance. Yet, if query profile is available our approach

yield more better R-trees. The second requirement is motivated by the general trade-off

between query performance and the R-tree construction time. Moreover, according to

the results in [7] the problem of construction R-tree that minimizes the sum of node

MBR areas is NP-hard. In order to fulfill second requirement, we reduce the complexity

of multidimensional sets by sorting according to a space filling curve(SFC). This allows

us to apply efficient dynamic programming scheme to find an optimal solution for the

one-dimensional problem. As external sorting is an integral part of databases systems,

we believe that the implementation and integration costs of our loading approach are

low. The fourth requirement is motivated by recent volume growth of a processing data.

Our bulk loading approach allows us developing efficient parallel and distributed version

e.g. [97, 48, 9], as it based on sorting data according to SFC.

62

5 Query Adaptive Loading of R-trees

Major parts of this chapter are based on the following publications [8, 7, 4]. The chap-

ter is organized as follows: In Section 5.1 we review the cost model used for optimization

of R-trees. In Section 5.2 we present our loading framework. We discuss the crucial

steps of our loading approach in Sections 5.3 and 5.4. Section 5.3 presents dynamic

programming scheme for partitioning a sorted rectangle set. In Section 5.4 we introduce

a query adaptive space filling curve based on Z-Curve. We report results of extensive

experiments in Section 5.5.

5.1 Preliminaries

Query profile QP provides a (statistical) model that is derived from a collection of

representative queries Q. For brevity, we assume input data set R = {r1, . . . , rN} as

well as set Q of range queries are represented by d-dimensional rectangles. For example

QP contains representative shape of a query defined by average side lengths and aspect

ratios. We also consider the case where QP is unknown (arbitrary range queries). Our

goal is to obtain an R-tree that minimizes average I/O costs for a class of ranges queries

defined by QP . Our default query profile derived from set Q is defined as follows:

Definition 1. The default query profile QP = s1, . . . , sd derived from the non-empty set

of range queries Q is defined as follows: QP [i] = si where si is an average side length

for dimension i obtained from the set of range queries Q.

For d = 2, QP = [sx, sy], where sx and sy is the average size of the range query in

the first and second dimension, respectively. For the sake of simplicity, we consider a

two-dimensional space (d = 2) throughout this chapter. We will discuss the generalized

case for d > 2 when necessary.

In order predict the average query performance of R-tree without constructing the

index, the following cost models were proposed in a literature [73, 115, 95]. We briefly

introduce the most common one [95]: The authors classified range queries according to

the indicators aspect ratio, location and size. The query size is defined by either area

(relative to the entire data space) or the number of qualified objects. Query location

can follow either a uniform distribution or the distribution of the underlying data. The

aspect ratio equals the width-to-height ratio of the query rectangle, which we assume to

be 1 (quadratic windows) in the following. This yields in four different query models:

� WQM1: size = area, location = uniform distribution,

� WQM2: size = area, location = data distribution,

63

5 Query Adaptive Loading of R-trees

(a) WQM1 (b) WQM2

(c) WQM3 (d) WQM4

Figure 5.3: Figures a-d illustrate query models WQM1 −WQM4 for California strees
data set

� WQM3: size = number of answers, location = uniform distribution,

� WQM4: size = number of answers, location = data distribution.

Figure 5.3 displays four query models for a rectangle set California streets (see Figure

5.1). Hereafter we assume WQM1 model as default: We assume that the domain cor-

responds to the two-dimensional unit square [0, 1)2. A rectangle ri = (cxi, cyi, dxi, dyi)

is represented by its center (cxi, cyi) and its extension (dxi, dyi). For a window query

WQq,s given by its center q = (qx, qy) and its extension s = (sx, sy), the probability

of a rectangle ri intersecting the window is (dxi + sx) · (dyi + sy) (see Figure 5.4 where

a rectangles ri is extended with query side length). More precisely: the probability of

intersecting the rectangle ri is a fraction of extended area to the area of the space, since

the area of the unit cube is equal to one we obtain the result. The average number of

64

5 Query Adaptive Loading of R-trees

Figure 5.4: Figure illustrates CQP model

rectangles intersecting the query window is then given by:

CQP =

N∑
i=1

(dxi + sx) · (dyi + sy) (5.1)

Note that for point queries with s = (0, 0), the equation computes the sum of MBR

volumes. We obtain the expected number of leaf accesses, which is a typical performance

indicator for R-trees, by applying the equation to the set of bounding boxes of the leaves.

The essence of the cost model presented above is that minimizing the sum of area of the

leaf nodes MBR induces less query I/O costs. We define the problem of query adaptive

loading of R-trees as follows:

Definition 2. Query adaptive loading: for a given query profile QP construct an R-tree

such that CQP is minimized.

The leaf level nodes of an R-tree correspond to a partitioning of an input set. The

partitioning consists of non overlapping buckets with capacity constraint. The minimal

allowed number of entries per bucket corresponds to a minimal page capacity b and the

maximal allowed number of entries to a page capacity B, respectively. According to a

cost model a partitioning with the minimal cost yields better I/O performance. Thus,

the problem of query adaptive loading is the problem of computing such partitioning.

Let us consider the case s = (0, 0) (e.g. the query set is empty or unknown). Thus,

we need to compute a partitioning such that the sum of MBR areas is minimized. Peter

Widmayer showed that computing such partitioning is NP-hard [7]. We briefly review

the main result. Let Pb,B := p1, . . . , pm be a partitioning consisting of m buckets. The

capacity of bucket p is constrained by b ≤ |pi| ≤ B rectangles. Let MBR(p) be a

minimal bounding rectangle (box) of bucket p. We define w : pi → R+ a weight of

bucket p. According to the cost model, the weight function w := V (MBR(p)) is an

MBR(p)’s volume (for d = 2 its area). Thus,

65

5 Query Adaptive Loading of R-trees

Theorem 5.1. The problem of partitioning Pb,B for N given rectangles that minimizes
n∑
i=1

V (MBR(pi)) is NP-hard.

The proof considers the special case of B = 3, b = 2 (as b = dB/2e) and a 2-

dimensional space. Widmayer uses a polynomial time reduction from the version of

planar 3SAT [81, 120] problem in which for each variable, also an edge can be embedded

in the plain, to show NP-hardness of the problem. We refer for details of the proof

to [7]. Based on these results, we develop a heuristic approach that optimally solves the

partitioning problem for a given sorting order and V (MBB(p)). The justification for a

heuristic approach lies in the NP-hardness of the problem.

As the target optimization function is obtained from WQM1 query model, we assume

that queries, more precisely their centers, are uniformly distributed in the underlying

domain. This assumption is obviously not satisfied in a real application. The standard

approach to overcome this deficiency is to use multidimensional histograms and to main-

tain these parameters for each histogram cell independently [10, 99]. This approach has

already been used successfully for the analysis of R-trees [115].

5.2 R-tree Bulk-Loading Framework

For a given query profile QP = (sx, sy), our goal is to generate R-trees whose average

number of leaf accesses is minimized for queries derived from QP , as they dominate the

overall cost for sufficiently large range queries. Moreover, upper levels of the trees are

often located in memory, while leaf pages are generally not.

Our goal is to create optimal R-trees level by level, bottom-up. However, as shown

in [7], the problem of generating optimal R-trees is NP-hard and, therefore, sort-based

heuristics are examined traversing the following five steps:

1. Determination of Sort Order: For a given QP determine a sort order that

minimizes the cost.

2. Sorting: Sort the rectangles with respect to the determined order.

3. Partitioning: Partition the sorted sequence into subsequences of size between b

and B and store each of them in a page.

4. Generation of Index Entries: For each page, compute the bounding box of its

partitions and create the corresponding index entry.

66

5 Query Adaptive Loading of R-trees

5. Recursion: If the total number of index entries is less than B, store them in

a newly allocated root. Otherwise, start the algorithm with the generated index

entries (bounding boxes) from Step 4.

Step 2 and Step 4 are very similar to the traditional sort-based loading of R-trees

[104]. The crucial optimization occurs in the first and third step. Step 1 computes a

sort order from the query profile. We exploit the fact that a space-filling curve (SFC)

does not require a symmetric treatment of dimension, but allows more flexibility [93].

As an example, consider partial exact match queries orthogonal to the x-axis. Then the

sort order should be only influenced by the x-value. This corresponds to a SFC where

all bits of the x-axis should precede the bits of the y-axis. In step 4, the rectangles are

then assigned to pages such that the capacity constraints of the R-tree are met. Filling

up pages to the maximum (or as generally suggested to a constant degree) does not lead

to R-trees optimized in respect to the given query profile. High storage utilization is

only useful for fairly large queries, while the performance of smaller queries suffer. In

Section 5.3, we present a heuristic partitioning algorithm that is optimized according to

the underlying query profile. Step 3 as well as Step 4 make use of a cost model that is

derived from our query profile.

5.3 Sorted Set Partitioning

In this section we consider the problem of query-adaptive partitioning a sorted sequence

r1, . . . , rN of rectangles such that each bucket of the partition corresponds to a page

of the R-tree. This approach is a heuristic that is based on the specific sorting order,

since the computation of an optimal partition is NP-hard for V (MBR(p)). Every bucket

corresponds to a contiguous subsequence pi,j = ri, . . . , rj such that b ≤ j − i+ 1 ≤ B is

satisfied. A valid partition P consists of the subsequences pi,j such that each rectangle

belongs to exactly one of them. Let SN denote the set of all valid partitions and let

SN,m be the partitions that consist of exactly m buckets. While the standard sort-based

loading strategy stores a fixed number of rectangles per page, we do not require equal

numbers of objects per pages in our approach. This gives us flexibility to optimize

the partition according to a given query profile QP . Let MBR(pi,j) be the minimal

bounding rectangle of a contiguous sequence pi,j of rectangles.

Based on the cost model (see Equation 5.1) we consider the following optimization

problems:

1. Storage-bounded partitioning: Compute a partition Smopt ∈ SN,m that

minimizes the cost function for the set {MBR(p)|p ∈ S, S ∈ SN,m}.

67

5 Query Adaptive Loading of R-trees

notations description

S a partitioning obtained from sorted sequence
r1 . . . rN such that each rectangle belongs to
exactly one bucket pi,j ∈ S. Each bucket pij ∈
S corresponds to a contiguous subsequence
pi,j = ri, . . . , rj such that b ≤ j − i+ 1 ≤ B is
satisfied.

MBR(pi,j) minimal bounding box (rectangle) of a bucket
pi,j ∈ Sb,B

SN set of all valid partitions obtained from a
sorted sequence r1 . . . rN

SN,m a set of valid partitions with exact m buckets
obtained from a sorted sequence r1 . . . rN

fw : pi,j → R+ weight function for buckets pi,j ∈ Sb,B

V +(MBR(pi,j), QP) MBR volume extended with the average side
length fromQP , for k = 2: QP = (sx, sy) and
V +(MBR(pi,j), QP) = (dx+ sx) · (dy + sy)

C(S) =
∑

pi,j∈S
fw(pi,j) cost function of partitioning S

CQP (S) =
∑

pi,j∈S
V +(MBR(pi,j), QP) default cost function C(S)

Table 5.1: Important notations

2. Query-optimal partitioning: Compute a partition Sopt ∈ SN that minimizes

the cost function for the set {MBR(p)|p ∈ S, S ∈ SN}.

Figure 5.5 depicts two possible partitioning with different C(S) =
∑

pi,j∈S
V (MBR(pi,j))

costs (sum of MBRs areas) with parameters b = 2, B = 3. Note, that this cost function

corresponds to the case where the index should be optimized for a point queries. The cen-

ter point of rectangle is used for mapping to the Hilbert key. Input rectangles (r1, . . . , r9)

(see Figure 5.5(a)) are processed according to Hilbert curve (see Figure 5.5(b)). Figures

5.5(c) and 5.5(d) show partitioning obtained by applying standard fixed sized parti-

tioning and Query-optimal partitioning, respectively. The partitioning in Figure 5.5(c)

68

5 Query Adaptive Loading of R-trees

(a) (b) (c) (d)

Figure 5.5: Sorted set partitioning

consists of three buckets (r3, r4, r1), (r2, r5, r9) and (r7, r6, r8). The partitioning with

four buckets (r3, r4), (r1, r2), (r5, r9, r7) and (r6, r8) in Figure 5.5(d) display lower C

costs (the sum of MBRs areas). Therefore, the partitioning with the same number of

rectangles per bucket not always lead to a minimal cost partitioning. Though, the parti-

tioning in Figure 5.5(d) has more buckets, it displays better costs. Moreover, the worst

case number of produced buckets is still limited by N/b.

Note that query-optimal partitioning results in a better partitioning, but the worst-

case, storage utilization of the resulting R-trees can be as low as b/B. Storage-optimal

loading allows us to choose the desired storage utilization (N/(m · B)) in advance by

setting m.

Let QP = (sx, sy) be a given query profile and CQP (S) =
∑

p∈S V
+(MBB(p), QP)

be the sum of areas extended with average side length from query profile QP . More

formally, V +(r,QP) = (dx+ sx) · (dy + sy) for a rectangle r = (cx, cy, dx, dy). CQP (S)

denotes denotes the cost of a partition S ∈ SN for a given query profile QP . This

function has a nice property, it allows us designing of an efficient algorithm to compute

the optimum. Consider a split of a partition S into two arbitrary partitions Sl and Sr.

Then, the following property holds for our cost function:

C(S) = C(Sl) + C(Sr)

In particular, equality is satisfied for the optimal partition Sopt. Note that, Sl and Sr

must also be optimal partitions of their associated rectangles. In fact, this observation

allows us to use the paradigm of dynamic programming in a similar way as for computing

optimal histograms [72, 120].

For partitioning the first i rectangles into k contiguous sequences, the computation of

69

5 Query Adaptive Loading of R-trees

the minimum cost opt∗(i, k) can be expressed by the following recursion:

opt∗(i, k) = min
b≤j≤B

{opt∗(i− j, k − 1) + fw(pi−j+1,i)} (5.2)

Algorithm 5: opt∗(i, k)

Input: R[] array of rectangles of size N , fw weight function, m, b, B
Output: cost[1 . . . N][1 . . .m] cost array

1 allocate cost array, and initialize for one node;
2 cost[][] ;
3 for i = b to B do
4 cost[i][1] = fw(MBR(p1,i));

5 compute best costs for m nodes starting from 2 ;
6 for y = 2 to m do
7 assignment to y pages ;
8 for x = y · b to min (y ·B,N) do
9 s[b . . . B] = 0;

10 max number of entries per node;
11 maxB = (x−B > 0)?B : x−B + 1 ;
12 Rp[]← precompute MBRs costs for t-B to t-b ;
13 r ← rectangle ;
14 for i = 1 to maxB do
15 r ∪R[x− i] compute MBR ;
16 if i ≥ b then
17 Rp[i]← fw(r);

18 for l = b to maxB do
19 s[l] = cost[x− l][y − 1] +Rp[l − b+ 1];

20 cost[x][y] = min(s);

21 return cost[][];

In general, the opt∗(i, k) function corresponds to the optimal one-dimensional his-

tograms computation proposed by [72] if we use set b = 1 and B = N − m − 1. In

order to compute opt∗(N,m), we apply the recursive formula for all 1 ≤ i ≤ N and

1 ≤ k ≤ m, in increasing order of k, and for any fixed k, in increasing order of i. We

store all computed values of the opt∗(i, k) in a table (see Alg. 5). Thus, when a new

opt∗(i′, k′) is calculated using Equation 5.2, any opt∗(i, k) that may be needed can be

read from the table. After computation of the optimal cost, we can read the contiguous

sequences of the input rectangles out from the dynamic programming table. From this

70

5 Query Adaptive Loading of R-trees

procedure, we obtain the following result.

Theorem 5.2. An optimal partition SN,m of N rectangles into m buckets, each of them

containing between b and B contiguous rectangles, can be computed in O(N ·m ·B) time

and O(N ·m) space for weight function fw := V +(MBR(pi,j), QP).

Proof. For each k-buckets we have k · (B − b) subproblems. Thus, the overall number is
m∑
k=1

k · (B − b) ≤ B
m∑
k=1

k ≤ O(B ·m2) = O(N ·m), since in our settings m ∈ O(N/B).

Therefore, we need at leastm ∈ O(N/B) space in order to obtain the optimal partitioning

via backtracking. Once we have computed optimal solution for k − 1 buckets, we have

B− b = O(B) choices to extended our optimal solution with k-th bucket. Thus, at least

O(N ·m ·B) time we need to fill up the dynamic programming table. Since our weight

function is an extended area, it can be computed in O(1) time for a given rectangle

(MBR). Yet, we need to compute fw for a B − b = O(B) MBRs for each subproblem.

Since B MBRs for B choices are computed in O(B) time (by executing MBR union

operation iteratively), we obtain our overall time costs.

Algorithm 5 provides details of opt∗(i, k) computation. For each k we consider k·(B−b)
positions in the input array. Therefore, we compute B MBRs for each position i several

times, since position intervals can overlap for different k values. Although we do not

improve asymptotically O(N ·m·B) time, Authmann [32] proposed runtime improvement

of the algorithm using additional N · (B− b) space by precomputing for each i the costs

of MBRs of B − b buckets pi,i−b . . . pi,i−B.

Next, we consider query-optimal loading, the problem of computing the optimal parti-

tion without user-defined storage utilization. At first glance, the problem appears to be

harder because the solution space is larger. However, the opposite is true because the

parameter m has no effect on the optimal solution anymore. This results in the following

simplified recursion:

gopt∗(i) = min
b≤j≤B

{gopt∗(i− j) + fw(pi−j+1,i)} (5.3)

In order to compute gopt∗(N), we compute the recursive formula for all 1 ≤ i ≤ N in

increasing order of i. We store all computed values of gopt∗(i) in a table (see Algorithm

6). Thus, when a new gopt∗(́i) is calculated using Equation 5.3, any opt∗(i) that may

be needed can be read from the table. As in the case for opt∗, we obtain the result

sequences from the table. Thus, the following theorem holds:

Theorem 5.3. An optimal partition SN of N rectangles into buckets, each of them

containing between b and B contiguous rectangles, can be computed in O(N · B) time

71

5 Query Adaptive Loading of R-trees

Algorithm 6: gopt∗(i)

Input: R[] array of rectangles of size N , fw weight function, b, B
Output: cost[1 . . . N] cost array

1 cost[] allocate cost array, precompute costs for 1 to B elements ;
2 for t = 2b to N do
3 cost[t]←∞ ;
4 Rp[]← precompute MBRs costs for t-B to t-b ;
5 r ← rectangle ;
6 for i = 1 to B do
7 r ∪R[x− i] compute MBR ;
8 if i ≥ b then
9 Rp[i]← fw(r);

10 for l = B to b do
11 compute cost for last b to B elements if t-l > b;
12 cp ← get MBR costs Rp[l − b+ 1];
13 cp ← cost[t− l] + cp ;
14 if cp < cost[t] then
15 cost[t] = cp;

16 return cost[];

and O(N) space for weight function fw := V +(MBR(pi,j), QP).

Proof. An optimal solution for position i uses only one supbroblem that is at most B and

at least b positions away. Thus, the overall number of subroblems is O(N). Therefore,

we need at least O(N) space in order to obtain an optimal partitioning via backtracking.

At each position i we have to make B− b choices to extend an optimal solution. Since

our weight function is an extended area, it can be computed in O(1) time for a given

rectangle (MBR). Yet, we need to compute fw for a B − b = O(B) MBRs for each

subproblem. Since B MBRs for B choices are computed in O(B) time (by executing

MBR union operation iteratively), we obtain our overall time costs.

Theorem 5.3 shows that optimal loading is possible in as little as linear time. The

required CPU-time is much lower compared to the optimal solution of space-bounded

loading. Note that storage utilization of R-trees generated by query-optimal loading

largely depends on the underlying query profile. If the query size is large, the optimal

partitioning also causes high storage utilization.

Note, that opt∗ and gopt∗ compute only the best partition for a given sequence for one

level at time. To build an optimal R-tree that include all levels, we can generalize gopt∗

72

5 Query Adaptive Loading of R-trees

for k−levels. As for gopt we compute the best partitioning for subsequences of size Θ(Bl)

for levels l = 1, To limit the processing time and bound number of entries per node

in upper tree levels, we adapt the approach known from weight balanced B-trees [28].

We define parameter a as a branching parameter. Let b = 1/3B, a = 1/4B and l = 1 . . .

then following function computes partitioning:

g∗(i, j) =

fw(pi,j) if B

3 ≤ (j − i) ≤ B and 0 ≤ i < j ≤ N
min

1
3
B

(j−i)
a
≤k≤ 4

3
B

(j−i)
a

{g∗(i, j − k) + g∗(j − k + 1, j) + fw(pj−k+1,j)} if 0 ≤ i < j ≤ N

∞ otherwise

(5.4)

As for gopt∗ and opt∗ we use a table to hold intermediate costs. Thus, the following

theorem holds2

Theorem 5.4. An optimal weight-balanced R-tree with capacity parameters B, b and

branching parameter a = 1
4B can be computed from a sorted sequence of rectangles in

O(N3·14B
2·(14)logB(N)) time and O(N2) space for weight function fw := V +(MBR(pi,j), QP).

Proof. The space needed for a dynamic programming table is O(N2), since we need to

get level partitioning via backtracking. As the number of sub-sequences is bounded by

O(N2) for N elements, all (i, j) interval costs belonging to sub roots of particular level

are obtained from this table.

The computation time can be derived as follows: first we derive the complexity of

minimal cost computation from a table (inner loop see Algorithm 7) depending on the

level. For the level 0 the inner loop has the complexity B− 1
3B ≤ B. For the level l > 0

the inner loop has the following complexity 4
3B(14B)l − 1

3B(14B)l = B(14B)l. Summing

up over all levels we get O(B ·
∑l

k=0 (14B)l). Since i and j define valid partition bounds

of size O(Bl) for each level l we invest at most O(N2) operations per level. Then we have

following overall costs since l ≤ logB N O(N2 ·B ·(14B)l+1) ≤ O(N3 · 14B
2 ·(14)logB(N)).

If we use a non-weight balanced variant then the inner loop for a level l has at least

complexity Bl+1 − (13B)l+1. The computation time increases almost by a factor four

compared with a weight-balanced variant per level, since: Bl+1 − (13B)l+1/(B(14B)l) =

(1− (13)l)/(14)l Thus, for l ≤ logB N weight-balancing decreases the overall computation

time by almost factor 4logB(N).

2In [7] we devised O(logB N ·N2) space bound. As we can decode each partition interval i, j for each
level using N2 space, we provide more tight space bound in this work.

73

5 Query Adaptive Loading of R-trees

Algorithm 7: g∗(i, j)

Input: N rectangles, fw weight function, b, B, a
Output: cost[1 . . . N] cost array

1 cost[][] allocate cost array ;
2 precompute Fw[][] array ;
3 for i = 1 to N − b do
4 r ← rectangle ;
5 for j = i to N do
6 r ∪R[j] compute MBR ;
7 Fw[i][j]← fw(r) ;

8 Fw[][] contains the costs of MBRs for all i, j ;
9 for each level compute best partitioning ;

10 for l = 0 to ← dlogaNe do
11 s← b · al ;

12 e← B · al ;

13 for i = 0 to N − b · al do
14 for j = i+ b · ak to N do
15 for k = s to e do
16 if l == 0 then
17 c[i][j]← Fw[i][j] ;

18 else
19 cp ← Fw[j − k + 1][j] ;
20 cp ← c[i][j − k] + c[j − k + 1][j] + cp ;
21 if cp < c[i][j] then
22 c[i][j] = cp ;

23 return cost[];

As a result, a subtree on level l > 0 holds
[
1
3B(B4)l, 43B(B4)l

]
elements in its leaf nodes

and
[
B
16 , B

]
entries per index node. However, we need at least a quadratic space and time

for a computation, since all possible subsequences should be considered. Consequently,

the solution is not practical anymore. In our experiments we observed only a marginal

improvement in comparison to gopt∗, since only a small subset of a data can be processed

efficiently at time.

74

5 Query Adaptive Loading of R-trees

5.3.1 Practical Considerations

In the following, we provide some useful information for processing a large set of rect-

angles. Because computing opt∗ requires quadratic space, it is unlikely that the whole

intermediate data sets can be processed in memory. In this case, the data set is pro-

cessed as follows: we cut the data in sufficient big equi-sized chunks and apply opt∗ on

each of them independently. In our experiments, we observed that B2 (where B is equal

the number of rectangles in a page) is sufficient to obtain near-optimal results. For the

computation of gopt∗, the same strategy can be applied. However, since only the last B

entries are required by gopt∗, a buffer of B entries is sufficient for processing.

After the first level has been constructed, the index entries of the next level can be re-

sorted again. However, we noticed that for a given query profile, the produced sequence

of MBRs already preserves the order of the input rectangles so that we skip the extra

sorting step to reduce the total build-up time.

5.4 Optimization of Sort Order

The quality of our partitioning algorithms depends on the chosen sorting order. Our

experiments show that traditional Hilbert and Z-Curve perform very well in combination

with the proposed partitioning for square query rectangles. In this section we provide an

algorithm for determining the sorting order of our bulk-loading framework for the cases

where the average query shape is non-square. The sorting order is defined by a SFC

whose input corresponds to an appropriate shuffling of d bit sequences, where each of

them of constant length L represents a dimension of the d-dimensional unit cube [0, 1)d.

As before, we assume two-dimensional data and discuss the general case only if necessary.

Due to its flexibility, we use the Z-curve as our SFC in the following.

Our goal is to adapt to the underlying query profile QP = (sx, sy). In order to model

non-square window queries, we introduce here the aspect ratio given by a = sy/sx. The

effect of the aspect ratio is illustrated in Fig. 5.2(a) where a set of range queries with

a high aspect ratio is plotted. The bounding boxes of the R*-tree leaves are plotted in

Fig. 5.2(b), while the plot of the boxes obtained from our sort-order optimized algorithm

is given in Fig. 5.2(c). The R*-tree does not take any query profile into account and

attempts to generate boxes with a quadratic shape, while our new loading algorithm

adapts its boxes to the shape of the query. This query-adaptive partition causes an

substantial improvement in performance compared to the standard R*-tree.

The basic idea is to introduce a two-part SFC. The first part corresponds to a SFC

being defined on a non-symmetric binary grid. Each dimension of a grid is partitioned

75

5 Query Adaptive Loading of R-trees

in binary manner into equi-sized intervals. The grid resolution GR is given by the total

number of bits required for determining whether a point belongs to a cell. Note that the

volume of the cell is 2−GR. The second part combines the remaining d · L−GR bits in

lexicographic order. Consider an example shown in Figure 5.6. We assume that we use

four bits to represent a singe dimension, and we have 256 rectangles. We can represent

256 Z-addresses corresponding to a one cell. We assume that each object is mapped to

exactly one distinct address. Now let us assume that a capacity of a page is four objects.

For quadratic queries with volume of four cells, the sorting order that corresponds to

symmetric Z-Curve xyxyxyxy︸ ︷︷ ︸
GR=8

, minimizes number of the node access. Symmetric Z-curve

enforces generation of square shaped MBRs. In the case of non-square query shapes with

same volume, the asymmetric Z-curve xyxy︸ ︷︷ ︸
GR=4

xxyy enforces generation of MBRs with the

same aspect ratio as the query rectangle. Note that this design of the two-part SFC

allows us adapting to the common cases discussed previously. In the case of a = 1, we

fully exploit the first part of our SFC, i.e., GR = d · L, while for partial match queries,

we only use the second part with an appropriate lexicographic order (given priority to

the most selective dimensions). The fundamental questions are how the asymmetry of

Figure 5.6: Left a grid with GR = 8, right a grid with GR = 4.

the grid is determined and how GR has to be set for a given query profile. Our goal is

to design a grid such that the number of grid cells is minimized given that the volume

V = x · y = 2−GR is fixed. Here, x and y denotes the size of bounding intervals of the

cell. Let a query profile be Q = (sx, sy), with sy = a · sx. These simplified assumptions

allows us to use Equation 5.1 for estimating the average number of cells intersecting a

76

5 Query Adaptive Loading of R-trees

window query. The LC2(x, y) expresses the number of cells as a function of x and y.

LC2(x, y) = 2GR · (x · y + x · sy + y · sx+ sx · sy) (5.5)

Equation 5.5 can be rewritten by substituting x by V/y, sx by sy
a and x · y by the

constant V . Note that the average utilization is constant for different sort orders. This

provides the following cost function:

LC(y) = 2GR · (V + sy · (V
y

+
y

a
) + sy2 · a) (5.6)

LC
′
(y) = 2GR · sy · (1

a
− V

y2
) (5.7)

Computing the root of the derivative of equation 5.6 yields the minimum. It directly

follows that yopt =
√
V · a minimizes LC(y). In addition, we obtain xopt =

√
V
a and that

the aspect ratio of the optimal cells is also equal to a again. Note that we ignore here

that our optimum is not realized on the grid and some rounding is actually necessary.

In the case of d > 2, we introduce d− 1 aspect ratios a1, . . . , ad−1 with ai = si+1

si
. Let

V =
∏

1≤i≤d xi be the average volume of a page region and xi be the length of the i-th

side of the page region. Then, LC is minimized for xd = (V · ad−1)1/d, xi = (V · ai−1

ai
)1/d

for 1 < i < d and x1 = (Va1)1/d.

Let us now discuss how to set the parameter GR or equivalently the concrete size

of a grid cell. There are at least two intuitive options. One is to set the average query

volume equal to the average query size. Then a query hits at most four cells. As shown in

[31], this minimizes the number of contiguous pieces of the SFC that intersect the query

region. However, our goal is to minimize node accesses, thus we use the average size

of the optimal bounding boxes of R-tree leaves (which means the optimal one obtained

from the cost function 5.1) to determine the grid cell (see Fig 5.6). The results of

our experiments indicate that this option is superior to the first option. Note that the

optimal bounding box offers the same aspect ratio as the window query. We use this

property to initialize our algorithm with this box rather than using d − 1 aspect ratios

and the parameter GR (see Alg. 8 for details). The input of AdaptiveShuffle consists of

a d-dimensional array A of bit sequences of fixed length L and a d-dimensional array len

representing the shape of the optimized boxes. Ai denotes the value of the i-th dimension.

In order to simplify the description of the algorithm, we assume that leni < leni+1 is

satisfied, 1 ≤ i < d, without loss of generality. Each part of the two-step SFC consists

of a for-loop. In the first for-loop, the routine SymShuffle shuffles a certain number

77

5 Query Adaptive Loading of R-trees

Algorithm 8: Algorithm AdaptiveShuffle

Input: Average edge lengths of the boxes of the leaves (len1, . . . , lend) with
leni ≤ leni+1, d-dimensional array A of bitstrings with L bits per bitstring

Output: bitstring of length L · d
1 from = L, resString = ∅;
2 for k = d, . . . , 1 do

3 to = L−
⌈
log2

1
lenk

⌉
;

4 resString = +SymShuffle(A, k, from− 1, to);
5 from = to;

6 for k = 1, . . . , d do

7 resString = +SuffixString(Ak, L−
⌈
log2

1
lenk

⌉
);

8 return resString ;

of bits of the first k dimensions in a symmetric manner until the selectivity of the k-th

dimension is fully exploited. The symbol ”=+” denotes appending the right string to

the result string. This loop is iteratively performed for k = d, d − 1, . . . , 1. Note that

the parameter GR can be computed by GR =
∑

1≤k≤d

⌈
log2

1
lenk

⌉
. The second for-loop

simply calls SuffixString to append the unused bits of the k-th dimension to the result

string, k = 1, . . . , d. Let us consider an example for d = 3, L = 6, A1 = (x5, . . . , x0),

A2 = (y5, . . . y0), A3 = (z5, . . . , z0) and len = (1
16 ,

1
8 ,

1
2). From these settings, we obtain

the following result string:

x5, y5, z5, x4, y4, x3, y3, x2, x1, x0, y2, y1, y0, z4, z3, z2, z1, z0

Note that we first interleave bits from all dimensions. After the first cycle, the z-

dimension is not involved anymore. After three cycles, the asymmetric grid with res-

olution GR = 8 is generated and the remaining bits are then simply appended to the

result.

5.5 Experiments

In this section, we compare different sort-based loading algorithms in a set of experiments

and show the improvements of our query-adaptive technique. We first describe data files

and query sets used in our experiments. Then, we present improvements achieved by

our algorithms and compare the influence of order optimization and the partitioning

strategies on both our and also related loading algorithms. In addition, we discuss the

78

5 Query Adaptive Loading of R-trees

validity of our assumptions, which have influenced the design of our loading algorithms.

5.5.1 Data File and Query Profiles

In our experiments, we adapted the test framework developed for RR*-tree evaluation

[39]. The framework consists of 28 different data sets, either points or rectangles, that

belong to eight groups abs, bit, dia, par, ped, pha, uni, rea. Each of the first seven groups

contain three artificially generated data sets with 2,3, and 9-dimensional data following

the same distribution in each dimension. Each of the artificial data sets contains at

least 1 million objects from [0, 1]d. For example, the group uni consists of 3 files of

1′000′000 two-, three- and nine-dimensional uniformly distributed points. We give a

brief overview about the data sets; 2-dimensional data sets can be roughly grouped in

two groups point sets and rectangular sets. Data set abs consists of equal sized squares

generated from equidistant distribution. Data set bit is a point distribution generated

according the power low and closely related to Zipf-distribution. Data set dia consists

of rectangles distributed along the main diagonal. Data set par represents a rectangular

distribution with a high variance of the size and the shape of rectangles. ped is a point

distribution of a thin stripped clusters obtained from a data set par. Data set pha is a

set of a ellipse shaped clusters of points generated from data set par. Data set uni is

a uniform point distribution. The eighth group rea contains seven real data sets with

2,3,5,9,16,22, and 26 dimensions, respectively. For example, the 2-dimensional data set

consists of 1’888’012 bounding boxes of streets of California. The 3-dimensional data set

is contains 11’958’999 points from a biological application. The data sources as well as

a full description of the data sets are available from [39].

In the original test framework, three range-query sets qr1, qr2 and qr3 were considered

for each data set. Except for the group ped, the query sets were generated as follows:

The queries of qr1, qr2 and qr3 refer to square-shaped windows and deliver 1, 100 and

1000 results on average, respectively. Note that in difference to previous performance

comparisons, the cardinality of the response sets is limited (at most twice the average) to

avoid the dominating influence of a few queries with very large response sets. All queries

followed the underlying data distributions. According to the query taxonomy [95], these

query sets are of type WQM4 (queries follow data distribution and query size is based

on answer number). For group ped, queries were generated in a more traditional way.

The square-shaped range of qr1, qr2 and qr3 cover k/1′000′000 of the entire data space,

k = 1, 100, 1000. In addition, ped queries were uniformly distributed (type WQM1).

In order to examine the query-adaptivity of our techniques, we modified the generation

of 2-dimensional query profiles qr2 and qr3 by introducing the aspect ratio a as a new

79

5 Query Adaptive Loading of R-trees

parameter. There are now qr2a and qr3a, a = 1, . . . , 20, where a = 1 refers to the

original profiles. We retain the original methodology for generating query profiles qr2a

and qr3a limiting the response set cardinality to 100 and 1000, respectively.

Except for ped, the generation process is based on posing nearest neighbor queries with

the weighted distance measure L∞(p1, p2) = max(|p1x− p2x| , 1a |p1y − p2y|), p1, p2 ∈
[0, 1]2. For ped, we considered range queries with query profile (

√
(k/(a · 1′000′000))

,
√

(a · k/1′000′000)).

5.5.2 Examined Algorithms

Table 6.2 provides a summary all methods used. As a reference method, we used the

traditional sort-based loading termed Z-loading and H-loading using Z-ordering and H-

ordering, respectively. Both of the loading techniques are parameterized with storage

utilization set to 80%. Note that in our experiments, higher storage utilization did not

improve the query performance. ZAS-loading refers to Z-ordering combined with our

adaptive shuffling technique. Z-GO stands for globally optimized partitioning technique

applied to Z-ordered input, whereas H-GO is based on H-ordering. H-SO uses our

partitioning with a guaranteed storage utilization of 80%.

We also examined STR [80] and TGS [58] because of their popularity. Storage uti-

lization was again set to 80%. In addition, we also present an improved version of STR,

termed STR-GO, which combines STR with our globally optimized partitioning method.

STR-GO performs as STR for the first d− 1 dimensions, but uses our partitioning tech-

nique for the last dimension. This is directly applicable because the data objects are

distributed among the leaf pages regarding the d-the dimension. The performance of

bulk loaded R-trees and tuple-by-tuple loaded R*-trees[38] is also compared.

All algorithms are implemented in Java. Experiments were conducted on a 64 bit

Intel Core2Duo (2 x 3.33 Ghz) machine with 8 Gb memory running Windows 7. In

order to illustrate the performance on several different storage devices, we conducted

experiments on a magnetic disk (Seagte ST35000418As), SSD (Intel X25) and in main

memory. For experiments on disk and SSD, we used 4KB pages with a capacity B = 128

and minimum occupation b = 42 for d=2. For sorting, we used 10 MB of main memory.

The raw I/O device interface is used to avoid the interference with other system buffers.

For our in-memory experiments, we used different settings for the page capacity that

was found to be the overall optimum: B= 12 and b = 4.

Algorithm efficiency is measured by I/O and CPU time. We consider the number of

leafs touched during query traversal as a default I/O metric, however, we do not count

repeated accesses to the same leaf. As confirmed in our experiments, this is a good

80

5 Query Adaptive Loading of R-trees

Shortcut Sorting Order Partitioning

Z symmetric Z-order naive
H H-order naive
ZAS adaptive Z-order naive
Z-GO symmetric Z-Order gopt∗(i)
ZAS-GO adaptive Z-order gopt∗(i)
H-GO H-order gopt∗(i)
H-SO Hilbert-Order opt∗(i, k)
STR not applicable naive
STR-GO not applicable gopt∗(i)
TGS not applicable n/a

Table 5.2: Algorithms

performance indicator, since index nodes are located in large main memories.

Figure 5.7: Query performance of partitioning algorithms for varying the chunk size

In Section 4.2 we introduced a simple approximation scheme for our partitioning algo-

rithms. Rather than running the algorithm on the entire data set, we prepartition the

data into equi-sized chunks and apply the algorithms to each of the chunks. Figure 5.7

depicts quality of the approximation as a function of chunk size for the California data

set using qr2. We observed that a chunk size of B2 (= 16384) is sufficient to obtain

near-optimal results. Similar results are achieved for other data sets. Note that the

function is not decreasing strictly monotonically because the queries do not obey the

uniform assumption of the query model. This also explains that for a chunk size of 1K

the SO strategy is slightly superior to GO. For the rest of the experiments, we use chunks

of size B2 for our partitioning methods.

5.5.3 Sorted Set Partitioning

This section discusses the improvements achieved by our partitioning strategies. We

consider square-shaped queries with aspect ratio a = 1 only. In addition to the methods

81

5 Query Adaptive Loading of R-trees

based on space-filling curve, we also report the results of TGS, STR and STR-GO. Figure

5.8 depicts the I/O performance for eight 2-dimensional data sets and query files qr1,

qr2 and qr3. Note that all loading methods that use our partitioning strategies are

superior to H-loading. Moreover, STR-GO performs better than its original counterpart.

For TGS we observed similar effects as reported in [58]. TGS performs well for point

queries qr1, but its performance deteriorates with an increasing query region. It is

noteworthy that there is no significant difference between H-GO and Z-GO except for

dia, where Z-GO is clearly superior. The most significant improvements over H-loading

are achieved for point queries on the 2-dimensional data set ped. This data set is the

only for which the queries are uniformly distributed. Note that this is in full agreement

with the goal function used in our optimization. This also explains the large difference

in performance between STR and STR-GO. We observed that the impact of the query

size is marginal for storage bounded algorithms H-SO and Z-SO in comparison to the

H-GO and Z-GO counterparts. Thus, minimizing the area (which is only optimal for

point queries) achieves already good results for all query profiles qr1, qr2 and qr3.

The query size influences the relative R-tree performance. This is not surprising, as

for larger regions, the storage utilization will have greater impact (than the clustering

capability of the loading techniques). This is also in agreement with the analytical re-

sults obtained from the cost model. For example, R-trees generated from H-GO-loading

perform small queries on the California data set (rea) with only 60% of the disk accesses

compared to H-loaded R-tree. For queries qr3 with 1000 results the performance differ-

ence is only 20%. We achieved similar results for the 3-dimensional data sets. H-loading

is superior to STR-GO for only some of the data files, but inferior to Z-GO and H-GO in

all cases. The average normalized results for two, three and nine dimensions are reported

in Table 5.3 (performance is expressed as the ratio of average number of leaf accesses

for the specific and the H-loaded R-tree). The results indicate slight improvements for

higher dimensions.

As expected, the number of leaf pages occupied by our R-trees generated from Z-GO

and H-GO in relation to the number of leaves of H-loaded R-trees is higher for small

queries. For larger queries, it is typically below 100%, i.e., the storage utilization is

higher than 80% for the R-trees generated by Z-GO and H-GO.

Further, we analyzed average query execution time for d=2 and query file qr2. Figure

5.9 shows the average time per query for disk, SSD and main memory. Query time

measured for a disk includes the I/O time for leaf accesses, while the index nodes are

likely to reside in memory or disk cache. In particular, we observed a positive effect of

sort-based loading using H-loading combined with our partitioning on the average dis

82

5 Query Adaptive Loading of R-trees

(a) qr1

(b) qr2

(c) qr3

Figure 5.8: Avg. number of leaf accesses per query for d=2

access cost. The way how data is written to disk exhibits high clustering within a level,

since blocks are written according to the SFC order. Therefore, there are fewer random

I/Os than for TGS and STR (see Fig. 5.9). In order to illustrate the impact of physical

clustering, we also compared the query performance with the R*-tree (see Fig. 5.10). As

illustrated, significant improvements of up to factor of five can be achieved particularly

because of the clustering when indexes are bulk-loaded. Moreover, we observed also sim-

ilar effects for in memory R-trees. For SSDs, however, there are no positive effects from

sequential I/O patterns. As a consequence, the average query time is highly correlated

to the number of node accesses, see the plots in the mid of Figure 3 and 4.

In the following we discuss the effects of the uniformity assumptions of our cost model.

Recall that except for ped the query distributions follow the data distribution. The

question is therefore how our simplified analytical cost model is related to the real cost.

83

5 Query Adaptive Loading of R-trees

(a) magnetic disk

(b) SSD

(c) main memory

Figure 5.9: Avg. time per query for qr2 and d=2

In Fig. 6, the cost of our analytical model is plotted as a function of the number of

leaf accesses required for processing the queries from profile qr1, qr2 and qr3 on the 2-

dimensional data sets (both graph dimensions are normalized to H-loading). The graph

shows a clear correlation between the cost measures . This supports that our cost model

is indeed a good predictor for the actual cost. There are only three outliers corresponding

to the extreme dia dataset, for which the real cost of the queries is substantially lower

than the estimated costs model of our model.

Finally, the average total loading time of the algorithms for d=2 is depicted in Table 5.4.

The cardinality of the data sets was limited to 1’000’000 rectangles. The total loading

times of H/Z-loading, STR, H-GO, H-SO exhibit low standard deviation (see column

std), while TGS is sensitive to the data distribution. H-GO loading time was clearly

dominated by the time of external sort while the partitioning step itself has only little

84

5 Query Adaptive Loading of R-trees

d=2 d=3 d=9 d=2,3,9

Z-GO 75.5 % 71.6 % 66.45 % 71.2 %

H-GO 76.2 % 73.3 % 68.3 % 72.6 %

Table 5.3: Avg. query performance of Z-GO and H-GO-loaded R-trees over square-
shaped queries for different dimensionalities in leaf accesses (results are nor-
malized to H-loaded R-trees)

Figure 5.10: Avg. time per query for R*-tree and H-GO for California set (d=2)

impact (see build time). This differs from H-SO, where the time for the partitioning step

dominates sorting, also STR is more expensive as data has to be sorted twice for d = 2.

5.5.4 Order Optimization

In this section, we primarily discuss the benefits of adaptive shuffling for better adaptivity

to the underlying query profile. For the following discussion, we consider the results

obtained from R-trees generated for the 2-dimensional uniformly distributed data set

and query sets qr2a, a = 1, . . . , 20. Fig. 5.12 shows the average number of leaf accesses

for qr2a queries as a function of the aspect ratio a. For each setting of a, we present

the performance of five loading techniques ZAS, Z-GO, ZAS-GO, H-GO and H. Note

that a = 1 represent the case of square-shaped queries. For a = 1 the performance

of ZAS is identical to Z-loading. In agreement with previous experiments found in

the literature, H-ordering is superior to Z-ordering. However, Z-GO and ZAS-GO are

superior to H-loading and only slightly inferior to H-GO. For a = 20, the situation has

changed dramatically. The performance of H-ordering has slightly decreased to 75% of

Z-ordering, while ZAS-GO is clearly the most efficient technique. It is also evident from

the comparison of ZAS, Z-GO and ZAS-GO that both of our techniques contribute to the

substantial improvements that are observed for ZAS-GO. Moreover, GO in combination

with Z-ordering provides slightly better results than H-ordering with GO.

The average volume V of leaf box is to be known in order to design our two-part

space-filling curve. Assuming a uniform data distribution we can estimate the average

85

5 Query Adaptive Loading of R-trees

Figure 5.11: Correlation between the number of leaf accesses and the analytical costs

alg. sort time build time total time std

H 25,64 0.68 26.4 2.09
H-GO 25,64 7.40 33.12 2.03
H-SO 25,64 77.67 103.11 2.56
TGS n/a n/a 245.18 124.33
STR n/a n/a 55.47 7.76

Table 5.4: Avg. loading time (in sec.) of 1’000’000 2-dimensional rectangles.

leaf box volume by using the ratio of B and N . For qr28, the empirically determined

optimal global value GR is compared with the estimated one. Our cost model returns

GR = 12 for uniformly distributed data in all cases, which is in agreement with half of

our experimental results (abs, pha and uni). The optimal value GR = 14 for bit slightly

deviates from the estimated one. For dia, GR = 0 is the best value as the data records

are located on the diagonal (it is sufficient to organize the data according to one of the

axes). For par, ped and rea, the optimal value for GR was greater than 12 because the

distributions are clearly non-uniform. In particular, data sets par and ped have a very

high variance of volume and perimeter. This kind of data distributions is difficult to

deal with and query adaptivity often yields no improvement.

To address this issue and verify our assumption, we used histograms as an option

for deriving the values for sorting parameter GR. Histograms were also used for ap-

proximating dxi value distributions for non-uniform data and query distributions. For

each bucket pi, our sort-based two step algorithm is processed independently with lo-

cal parameters GR as well as average dxi for pi. Data summaries are held in memory

and serve as a look-up function during the sorting and partitioning steps. We used the

MinSkew-Histogram[10] with 100 buckets to represent the 2-dimensional data distribu-

tion. We observed that using histograms improves substantially the performance over

global estimated parameter GR for qr28 profile (e.g. by 35% for par, by 15% for ped

and by 46% for rea), while the degree of improvement depends not only on the chosen

86

5 Query Adaptive Loading of R-trees

Figure 5.12: Query results for uni set (d=2)

histogram method but also on a histogram parameter settings. Therefore, we want to

study more deeply the histogram and bulk-loading interaction in our future work.

5.5.5 R-tree for Intervals in Two-Dimensional Space

Here, we report experimental results with two-dimensional interval data sets. Our goal

is to show that proposed framework improves performance of R-trees used for manag-

ing multiversion (partial persistent) data. As partial persistent records are mapped to

intervals in two-dimensional space, they can be indexed using R-tree structure [105].

We map the end time stamp of live records to the maximal time stamp from an input

file incremented by one. According to the convention, the time dimension is mapped

to the X-axis and the key dimension to the Y-axis, respectively. This yields a set of

two-dimensional intervals that are parallel to the X-axis.

In our experimental results presented in Chapter 4.7, we observed that MVBT+ gives

substantially better query performance than an R-tree that is loaded using STR loading

approach. In this section, we show that an R-tree loaded using the technique proposed

for query adaptive loading combined with the adaptive Z-curve exhibit better query

performance than R-tree loaded using STR algorithm.

In our experiments we used interval data sets obtained from the partial persistent files

u0, u50, u100 used in MVBT experiments (see Chapter 4.7). For querying we used query

files from the MVBT experiments. Query files consists of 10′000 uniformly distributed

rectangles. Each query rectangle have the same response set cardinality of 100 intervals.

The aspect ratio is roughly 1:4. We used 8 KB pages for R-tree and MVBT in our

experiments.

For indexing intervals we used the following steps. For generation a sorting order, we

applied the adaptive Z-curve algorithm. In contrast to experiments previously reported

in this section, we used the input intervals (a data set) instead of a query set for gen-

erating a sorting order. Both symmetric and asymmetric part of a Z-string starts with

87

5 Query Adaptive Loading of R-trees

Y-axis (key-dimension), as the key dimension has no extension. We used the average

length of time interval (X-axis extension) for generating GR parameter (the length of

symmetric prefix). We experimented with different sorting orders. We noticed that the

best results are obtained using lexicographical ordering on the key and time dimensions

(Y-axis and then X-axis) for this data sets. As there is at least 10% of the data is live,

the average interval length is also very large. This also yields lexicographical order using

our adaptive Z-Curve approach. The impact of interval length and Z-curve orientation

on the indexing interval data requires more detailed investigation.

After sorting the data we applied our gopt∗ partitioning optimizing the volume. We

summarize our used approach for indexing static set of intervals in two-dimensional space

as follows:

1. We compute an average interval length (time duration) from a data set. We use

AdaptiveShuffle algorithm to generate a sorting order. The input of AdaptiveShuf-

fle is always a pair Y-axis (key-dimension) and X-Axis (time-dimension). The

length of symmetric prefix is computed based on the average interval length.

2. We sort intervals using sorting order obtained from step 1.

3. We bulk load R-tree using gopt∗ partitioning method.

For sorting in step 2. we use start point of the interval.

Table 5.5 displays results of query experiments. MVBT+ is weight balanced MVBT

loaded using our new loading procedure. MVBT-LRU is standard MVBT loaded using

tuple by tuple method. R-TREE is a sort based loaded R-tree using lexicographic

ordering on key and time dimension. R-TREE GOPT is a sort based loaded R-tree using

our gopt∗ optimized approach (also lexicographic ordering on key and time dimension).

H is an R-tree loaded using Hilbert curve. H-GO is gopt∗ optimized R-tree loaded using

Hibert curve.

According to our preliminary results we observe that well tuned R-trees exhibit a good

average I/O performance for interval data. R-trees loaded using lexicographical order

display at most roughly a factor of two more I/Os in comparison to MVBT. For a data

set u0, optimized R-TREE GOPT requires less average I/Os per query and almost the

same number of average leaf accesses. The height difference is due to the smaller number

of live records in nodes of MVBT-LRU and MVBT+ in comparison to the page capacity

of the R-tree. Additionally, both MVBT-LRU and MVBT+ need to access root* for

historical queries. In general, we observed greater influence of sorting order on query

performance than the optimal partitioning. Other orderings than the lexicographical

88

5 Query Adaptive Loading of R-trees

order were inferior. We observed that R-trees loaded with Hilbert o exhibit a high MBR

overlap.

Workload file u0 u50 u100

MVBT+ I/O 4.69 4.75 4.8
leafs 1.72 1.78 1.83

MVBT-LRU
I/O 4.3 4.18 3.83
leafs 1.72 1.79 1.82

R-TREE
I/O 4.97 5.75 8.94
leafs 1.97 2.75 5.91

R-TREE GOPT
I/O 3.79 4.41 6.93
leafs 1.79 2.4 4.94

H
I/O 108.33 144.39 128.51
leafs 96.55 128.91 112.6

H-GO
I/O 74.15 102.76 95.1
leafs 64.5 90.47 82.42

Table 5.5: I/Os and leaf accesses for two-dimensional interval data

Our preliminary results, are very promising. R-trees offer a similar query performance

like a MVBT if query-adaptive loading techniques are used for their generation, but the

loading of R-trees is substantially faster.

5.6 Conclusions

In this work, we reconsidered the problem of sort-based bulk-loading of R-trees. We

demonstrate the importance of query profiles for search efficiency of generated R-trees.

We designed new loading algorithms based on two innovative techniques. The first con-

sists of a new sorting technique of rectangles based on non-symmetric Z-order curve

design, while the second generates an optimal partitioning for a given sequence of rect-

angles. Both techniques are optimized according to a commonly used cost model for

range queries. Our optimal partitioning techniques are broadly applicable and benefi-

cial. They can be easily integrated into other loading techniques like STR, which is a

popular loading method in commercial database systems. They can also be combined

with standard Hilbert-loading even when the query profile is unknown. In this case, we

suggest to use the partitioning that minimizes the area of the bounding boxes of the

leaves.

Our experimental results obtained from a standardized test framework clearly reveal

the advantages of our techniques in comparison to standard loading techniques (STR,

Hilbert-loading, Z-loading, TGS). Our techniques creates R-trees with consistently better

89

5 Query Adaptive Loading of R-trees

search efficiency than those created by pure Hilbert-loading, while for some data files

large improvements in query performance (about factor 5) were achieved. Interestingly,

due to our new partitioning methods, there is no noticeable differences anymore in the

performance of R-trees build form rectangles sequences following either Hilbert-ordering

or Z-ordering. Thus, we suggest using Z-ordering because of its conceptual simplicity.

90

6 Construction of R-tree-Based Histograms

In this chapter, we present methods for spatial histograms construction using the query

adaptive partitioning framework presented in Chapter 5. Spatial histograms are integral

part of an efficient spatial query processing and are used for the result estimating of

spatial queries. We show that the task of generating spatial histogram of a high quality

is very similar to generating R-trees with a good query performance. Both of them rely on

partitioning of a set of rectangles into disjoint subsets. The computation of the optimal

spatial histograms is a non-trivial task and in general it is NP-hard [90]. Therefore, we

investigated heuristic methods for fast histogram construction. Our major research goals

are:

1. A high estimation accuracy of resulting histograms.

2. The low I/O and CPU costs of histogram construction.

3. Robustness for different query and data distribution.

4. Avoiding performance sensitive parameters.

The groundwork of our histogram construction methods is a query adaptive loading

algorithm for R-trees (see Chapter 5). We generate spatial histograms in the I/O com-

plexity of external sort simultaneously with a bulk-loading of R-trees. Major parts of

this chapter were published in [4, 5].

6.1 Introduction

Histograms are important data structures primarily used in database systems for esti-

mating the selectivity of queries. They are also applied to obtaining quick approximate

response for aggregate queries. While one-dimensional histograms are widely available in

almost all database system, only a very few systems offer multidimensional histograms.

Most of them are simple grid-based methods that are applicable to two-dimensional point

data only. These methods perform poorly on rectangle data or when the independence

assumption of the attributes is violated.

91

6 Construction of R-tree-Based Histograms

The design of efficient multidimensional histograms turns out to be much harder al-

ready for the two-dimensional case. In fact, the problem of designing optimal multidi-

mensional histograms is known to be NP-hard. Therefore, many heuristics have been

developed and evaluated in various experimental settings. In general, these heuristics

result in fairly complex parameterized algorithms with a runtime often substantially

higher than the runtime of the one-dimensional counterparts. This is often not accept-

able because histograms have to be rebuilt quite frequently. In addition, the algorithms

are often quite sensitive to small variances of the parameter values.

We revisit the problem of designing efficient multidimensional histograms from the

perspective of bulk-loading spatial index-structures, e.g., R-trees. Similar to R-trees, a

histogram is viewed as a set of bounding boxes, but each of them is associated with

statistical information e.g. the number of spatial objects that are assigned to the box.

Rather than directly generating histogram buckets, our method relies on a two-step

approach: First, the leaf level of an R-tree is generated and second, adjacent leaves are

merged into larger histogram buckets. Crucial and sensitive parameters are avoided;

instead both steps rely on the optimization of a widely accepted cost function. This

makes our approach very appealing to an end-user.

Even though our optimization bases on minimizing a cost function, it still remains a

heuristics like it is for all other multidimensional histograms. It is therefore of utmost

importance to use a thoroughly designed experimental setup to provide a meaningful

and fair comparison with competitors. So far, there is no commonly agreed experimen-

tal setup for spatial and multidimensional histograms. In particular, we found serve

deficiencies in current experimental work, e.g., small data sets, low selectivity of queries,

uniformly distributed queries.

Our contributions are summarized as follows:

1. We present a uniform rectangle partitioning framework for R-tree loading and

histogram construction. Derived from this framework, we present an efficient two-

step approach to generating multidimensional histograms.

2. We introduce query models for workload generation and examine the accuracy of

histograms under these workloads.

3. We present an experimental performance comparison of a large number of multidi-

mensional histograms.

92

6 Construction of R-tree-Based Histograms

6.2 Preliminaries

In this chapter, we investigate the problem of R-tree based histogram construction for

a d-dimensional set of N rectangles {r1, . . . , rN}. The groundwork of our method is the

sort-based bulk loading algorithm for R-tree presented in Chapter 5. We assume that R-

trees have the node capacity B and the minimum occupation b ≤ dB/2e. Our description

will address the case d = 2; the generalization for d > 2 is only discussed when necessary.

In addition to notations introduced in Table 5.1 Chapter 5, we summarize notations used

in this chapter in Table 6.1.

We define the output histogram H as a set of buckets h1, . . . , hm. The bucket hi con-

tains statistical information about the set of spatial objects (rectangles) Ri = r1, . . . , rn.

These are [10]: MBR(hi) of set Ri, number of elements ni, average rectangle side length

dxiavg, dy
i
avg over set Ri and spatial density information si = Area(hi)/Area(MBRhi).

Where, Area(hi) is defined as a sum of rectangle areas in Ri and Area(MBRhi) is

defined as an area of bucket MBR.

Hereafter we use notion bucket and MBR as synonyms depending on the context.

Further, our goal is to build the histogram in such way that the number of elements

referenced in each bucket varies only by a small constant factor, so that H is close to an

equi-depth histogram. Both spatial histogram buckets and R-tree nodes are associated

with a disjoint subsets of an input rectangle set. Hence, R-tree can be extended to

a spatial histogram by attributing additional statistical information [10, 71, 53, 21] to

R-tree nodes.

The selectivity estimation est(q) for range qw and point queries qp is computed based

on the uniform distributions assumption [10]. The selectivity estimation of a point query

is computed as follows: Let MBRhi be the bucket MBR containing a query point qp.

Then si is an average number of rectangles hit by given point query in the bucket hi.

Figure 6.1: Range query estimation.

Consider a range query qw. Let MBRhi be a bucket MBR overlapping with the

query qw. Let rs = MBRhi ∩WQq,s be an intersection rectangle. rs is represented by

93

6 Construction of R-tree-Based Histograms

its center (cxrs , cyrs) and its extensions (dxrs , dyrs). We extend then (dxrs , dyrs) with

2dxiavg, 2dy
i
avg in both dimensions with a constraint that the extended sides cannot cross

the boundaries of MBRhi (see Figure 6.1). Then

est(hi, qw) = ni ·
Area(rs)

Area(MBRhi)
(6.1)

is the estimated number of rectangles intersecting qw for a single bucket hi [10]. By this,

the overall estimation for qw is defined by the sum of est(hi, qw):

est(qw) =
m∑
i=1

est(hi, qw) (6.2)

Similar to R-trees, the average estimation error depends on the number of rectangles

that overlap the query qw and the rate of uniform distribution of objects in the buckets.

The histogram space consumption is a crucial design aspect, as histograms reside in

main memory. We consider the space consumption in terms of allocated machine words.

Let w be a size of machine word in bytes. Each bucket hi manages MBR and the

following statistical values: ni, dx
i
avg, dy

i
avg, si. Thus, storage amount of a bucket hi is

d · w + 2 · w + d · 2 · w

where d · w bytes are average length information, 2 · w bytes are used for number of

objects and spatial density and d · 2 · w bytes to represent MBR of hi (k is the number

of dimensions). This storage scheme is also used in MinSkew approach [10].

Our goal is to achieve a compact representation of a data set with a high estimation

quality for a given space budget. The motivation for our for heuristic method is by the

results presented in [90]. In order to quantify and predict the estimation accuracy of

histogram H, we introduce weight function fw(hi) that returns a numerical value for a

bucket. We define the cost of a histogram H as the sum of fw(hi) weights. The space

budget in terms of machine words yields the number of allowed number of buckets m for

histogram H.

Definition 3. For a given space budget m in terms of number of buckets our task is to

build a histogram H such that

Ch =

m∑
i=1

fw(hi)

is minimized for a given rectangle set.

94

6 Construction of R-tree-Based Histograms

notations description

H = h1, . . . , hm a spatial histogram obtained from a set of in-
put rectangles.

hi a histogram bucket. Each bucket hi refers to a
disjoint subset of input rectangles. Addition-
ally, to each bucket is a statistical information
obtained from this subset attributed.

Ri A disjoint subset of input rectangles referred
by bucket hi

ni = |Ri| Number of rectangles in Ri.

MBR(hi) minimal bounding box (rectangle) of bucket
hi, computed over set Ri.

Area(hi) sum of rectangles areas is Ri.

Area(MBR(hi)) area of MBR(hi).

dxiavg, dy
i
avg average side lengths of rectangles in set Ri.

si = Area(hi)/Area(MBR(hi)) spatial density of bucket hi.

fw : hi → R+ weight function for buckets hi

Ch(H) =
m∑
i=1

fh(hi) cost function of histogram H

Table 6.1: Important notations

Intuitively, we want to quantify the spatial distribution within a bucket and choose

histogram H with a lowest sum of weights.

6.3 Related Work

During the last three decades one-dimensional histograms have been used widely for the

purpose of selectivity estimation and with a fair amount of success [98, 72]. Nevertheless,

95

6 Construction of R-tree-Based Histograms

in the case of multidimensional histograms, we are still facing many challenges, that

need to be solved [71]. To tackle these problems, many different heuristic based methods

were proposed. All of them aim to partition the multi-dimensional data in rectangular

buckets for a given space budget. The data within buckets is uniformly distributed,

since the query estimation relies on uniform data distribution assumption. The heuristic

methods are motivated by the results in [90]. The authors show that computing the non-

overlapping rectangular partitioning with near-uniform data distribution within buckets

is NP-hard [90, 71, 53, 103].

One of the first methods proposed for multidimensional data is hTree [88]. It constructs

non-overlapping partitioning of multidimensional space based on a frequency as source

parameter. Only one dimension is approached at a time and partitioned in buckets

with an identical number of objects, resulting in a equi-depth histogram [88, 53]. The

advantage of hTree is its low construction cost. However, the partitioning rule is too rigid

for highly skewed data [88, 103]. In contrast, mHist uses space partitioning [100]. Space

is partitioned along the dimension that benefits most from a split. The split decision

is made based on a marginal frequency distribution [100, 71, 53]. This approach was

developed for relational data and focuses mainly on approximating point frequencies.

However, selectivity estimation for spatial data differs from traditional one [10]. The

object frequencies may be uniform, but the locations can be highly skewed, and the

objects vary in sizes and shapes.

To provide accurate estimation for spatial objects and also I/O efficiency, the MinSkew -

Histogram method was proposed [10]. The authors proposed two construction strategies.

The basic variant works as follows: in the first phase, the algorithm computes a regu-

lar grid and stores the number of intersecting spatial objects for each cell. Based on

the computed grid, the recursive binary space partitioning (BSP) is used for histogram

computation. The buckets are picked for further processing based on a split value that

will lead to greatest reduction of data skew. The decision is local, so that for all di-

mensions, all possible cuts based on marginal objects frequencies are considered. The

authors observed that a fixed grid size is sensitive to the size of queries [10] (high grid

resolution favors small sized queries and small resolution large queries). To lessen this

effect the second construction strategy MinSkew-Progressive-Refinement utilizes grids

with different resolutions. Each grid resolution is used to construct the equal portion of

histogram buckets. The computation is processed in top-down fashion starting with a

low resolution grid applying BSP in each step. The downside of both strategies is that

the performance is sensitive to the grid resolutions.

GenHist proposed by [64] tries to identify high density regions. In contrast to the

96

6 Construction of R-tree-Based Histograms

previous methods, the bucket rectangles may overlap. Moreover, the buckets can be con-

tained in other buckets. GenHist finds regions with high object density, excises them but

leaves enough data in the parent bucket so that the parent buckets distribution flattens.

Again, the method uses a regular grid as a starting point for histogram construction.

The recently proposed method STHist [103] applies the idea of GenHist to 2-3-dimensional

spatial objects. In the basic variant decision about whether the region is dense is made by

applying a sliding window over all dimensions, approximating the frequency distribution

by a marginal distribution. The dense regions called Hot-Spots build hierarchies, so that

the Histogram is represented as an unbalanced R-tree. In the advanced variant called

STForest, the algorithm first computes coarse partitions according to the object skew,

and then applies a sliding window algorithm to them. The idea behind this is that if the

region is already uniformly distributed further partitioning is unnecessary. Moreover, the

coarse regions merge together if the skew of merged bucket decrease. The experiments

conducted in [103] show that STHist is superior to other proposed methods. However,

STHist has time complexity O(n2) for 2-dimensional and O(n3) for 3-dimensional data.

Recently, the class of self-tuning histograms like STHoles and ISOMER were proposed

[47, 111]. In general these methods incrementally update buckets and their frequency

information, using query feedback. These kind of methods is very appealing, because

the incremental modification the histogram adapts to the real distribution of a data.

Moreover, the methods can be applied independently on top of different approaches.

Another way to obtain a spatial histogram is to generate it using a spatial index

structure like R-tree [10, 21, 71, 53, 33]. Paul Aoki in his work [21] introduced a generic

approach for selectivity estimation for a wide range of tree base index structures [20].

He proposed to combine tree based index and histogram in one structure. His work

is inspired by previous work of Antoshenkov [19] where B+trees is used to obtain a

random sample. For this purpose, tree nodes manage additional information about the

leaf node cardinalities. The cardinality of the internal node is defined by a sum of child

cardinalities. The managed information allows to compute the upper and lower bounds.

Aoki designed top-down traversal algorithm that uses this information for the selectivity

estimation [21]. In his experiments, he reported that bulk loaded R-trees exhibit a high

estimation accuracy. In contrast to our work, in [20] the standard sort based loading

technique such as STR [80] method was used. In our work we show that this yields not

always a good partitioning.

The recently proposed approach rKHist [53] is also based on R-tree bulk-loading proce-

dure [73]. The data is presorted according the Hilbert space-filling-curve. After the leaf

nodes are generated, one possibility to generate a histogram is to pack nodes according

97

6 Construction of R-tree-Based Histograms

to the sorting order in equi-sized histogram buckets. This leads not always to a good

partitioning. Especially, for near-uniformly and uniformly distributed data equi-sized

partitioning wastes buckets for regions with a high object density and yield high overlap,

despite the fact that the regions have uniform distribution [10]. Therefore, the authors

proposed a greedy algorithm that utilizes a sliding window of pages along the Hilbert or-

der. The algorithm is parametrized with a number of buckets that should be considered

for a splitting. A bucket-split is applied if it leads to an improvement according to the

proposed cost function.

Our approach differs from rKHist in that we tune the R-trees according to the widely

used R-tree cost model. Our generic sort-partition framework computes optimal par-

titioning for a given cost function according to the sorting order of rectangles. The

framework relies on the dynamic programming scheme proposed by [72] for generating

one dimensional V-optimal histograms.

A recent approach [33] uses also R-tree for spatial histogram generation. The initial

histogram bucket is obtained from a predefined leaf node set. Their basic variant reads

predefined number of leaf nodes as well as stored object geometries using depth-first

top-down traversal. Their general idea is a binary recursive partitioning of the initial

bucket. They apply equi-count as well as equi-area partitioning rules. An equi-area

heuristic splits a bucket along the dimension with longest side in two equal area buckets.

Then it distributes spatial object using their centers among the new buckets. Large

object geometries that overlap both buckets are attached to a both buckets. They

update statistical information stored in a bucket such as average extents and number of

objects while splitting a bucket. Similarly, equi-count rule splits bucket based along the

dimension with the maximal number of distinct projected center values. The bucket with

a most gain according to the split rule is chosen at each step. Additionally, only buckets

with a predefined number of elements are considered for a split. The each split need

to access actual object geometries, this yields high I/O overhead. Therefore, authors

proposed to use for the initial bucket an MBR of a sub tree such that all referenced

geometries can be processed in memory. Our approach differs from [33] that we rely

on R-tree bulk loading procedure. Moreover, even for existing R-tree our new approach

requires only one pass through the input data.

The scheme proposed in [72] is also used in [120] for computing a set of k minimal

bounding rectangles (MBR) from a 2-dimensional point set. The goal was to reduce

communication costs for mobile devices by approximating the spatial query result by a

set of MBRs with a minimal information loss fi. The authors showed that computing

such representations is NP-hard even for d=2. One of their heuristics first sorts the

98

6 Construction of R-tree-Based Histograms

query output using the Hilbert order and then apply the partitioning method of [72].

Multi-dimensional histograms and representation with a minimal information loss fi

are related, since both techniques are considered as data summarization methods. In

contrast to histograms the optimization function is different and space constraints are

disregarded.

In this work, we adapt the dynamic programming scheme [72] for a R-tree based his-

togram generation introducing the space constraints on bucket capacity size. This allows

us to generalize the partitioning scheme and to design new more efficient algorithms for

R-tree and R-tree based histogram generation. We show that especially for highly skewed

data, the R-tree methods return more accurate results. Moreover, R-tree histograms con-

structed using our dynamic programming framework display good estimation accuracy

for near-uniform and uniform data sets.

6.4 R-tree Framework

In order to obtain a high-quality histogram H, the data should be partitioned in such way

that the data within each histogram bucket is near-uniformly distributed. Computing

such partitionings is a non-trivial task and in general NP-hard [90]. Furthermore, the

way how data is partitioned also influences the quality of the R-tree (see Chapter 5).

Partitionings minimizing sum of MBR volumes yield better R-trees according to the

cost model [73, 95, 115]. In order to obtain a partitioning in polynomial time, we use

a heuristic method based on SFC. Our approach can be summarized as follows: reduce

the complexity of multidimensional partitioning by sorting the data according to a SFC,

and solve the partitioning problem optimally for the sorted set. In the following, we

present a high level description of the building blocks of our framework:

� Sort-Partitioning: Sort the rectangles with respect to a SFC. Partition the sorted

sequence optimally according to a cost function into subsequences of size between

b and B.

� Bulk-Loading R-tree:

– Step 1. Node Generation: Run Sort-Partitioning with parameter settings for

b and B according to a given page size.

– Step 2. Generation of Index Entries: For each page, compute the bounding

box of its partitions and create the corresponding index entry.

99

6 Construction of R-tree-Based Histograms

– Step 3. Recursion: If the total number of index entries is less than B, store

them in a newly allocated root. Otherwise, start the algorithm with the index

entries (bounding boxes) from Step 2.

� Construction of Histogram H: Run step Node Generation of bulk-loading.

Collect and store statistics. Run Sort-Partitioning on generated leaf nodes.

Sort-Partitioning is the crucial step in the algorithm for bulk-loading indexes and gen-

erating histograms. The first step uses SFC to sort the data. If query profile is unknown

we consider Hilbert ordering otherwise we apply adaptive Z-Curve (see Chapter 5). The

second step partitions the sorted sequence of rectangles in optimal way according to a

cost function. Note that our approach is a heuristic and rely on the specific sorting order.

The difference between loading indexes and generating histograms is that histograms do

not require a recursive processing.

Sort-Partitioning uses partitioning algorithms presented in Chapter 5. They are:

1. Query-optimal partitioning:

gopt∗(i) = min
b≤j≤B

{gopt∗(i− j) + fw(pi−j+1,i)}

2. Storage-Bounded partitioning:

opt∗(i, k) = min
b≤j≤B

{opt∗(i− j, k − 1) + fw(pi−j+1,i)}

Since the gopt∗(i) has lower CPU and I/O costs than opt∗(i, k) as well as it produces

better R-trees, we apply this partitioning scheme in Step 1. (Node Generation) and Step

2. (Generation of Index Entries). As a weight function for Query-optimal partitioning

we use V (volume of MBR) and if applicable V + (extended volume of MBR obtained

from query profile).

Storage-Bounded partitioning is applied in Step 3. (Construction of Histogram H),

as our goal to build a histogram for a given space budget. Our framework allows us to

choose weight function fw to quantify the spatial distribution within bucket hi. There

are four factors that contribute to the CPU costs of opt∗(i, k) partitioning, they are:

1. The number of input rectangles.

2. The maximal number of rectangles per bucket.

3. The target number of histogram buckets m.

100

6 Construction of R-tree-Based Histograms

4. The computation costs of weight function fw.

By this, we consider weight functions with low CPU costs. In Chapter 5 we used

fw := V (MBR(pi−j+1,i)) and fw := V +(MBR(pi,j), QP), both functions are com-

puted in O(1) (more precise O(d)) for a given MBR. Similarly, for a histogram con-

struction, we consider volume of MBR (for d = 2 area) as a default weight function

fw =: V (MBR(pi−j+1,i)). The combination of sorting the data according to SFC and

opt∗(i, k) partitioning with V (MBR(pi−j+1,i)) as a weight function yields a tight repre-

sentation of an input set consisting of m buckets. Intuitively, the partitioning with the

lowest sum of volumes influence the spatial distribution of input rectangles in histogram

buckets, as the objects are more spatially clustered within them.

6.4.1 R-tree Histogram

Here, we discuss the histogram construction in detail. We construct histogram H using

our framework as follows:

1. Micro-Clustering Step: (we use the same terminology as in [14]) First, the leaf

pages of an R-tree are generated using partitioning gopt∗. The following parameters

needs to be set: space-filling curve, bucket capacity parameters b and B, and

weight function fw. As a default space-filling curve, we use the Hilbert curve.

The parameters B and b of the initial step are adjusted to the system physical

page size. The default weight function is V (minimizing the area of the bounding

boxes). For each leaf, also termed micro-cluster, we compute the required statistical

information (number of objects per leaf, average side lengths dx, dy and the density

s). Let m1 denote the number of leaves.

2. Histogram-Generation Step: Given the number m of required buckets and

assume m < m1, we apply opt∗ to the bounding boxes of the leaf pages generated

in the micro-clustering step. Thereby, we obtain the final m buckets of histogram

H. The minimal occupation b2 and the capacity B2 are set in the following way:

b2 = max(bm1/2mc , 1), B2 = dm1/me+ b2.

Finally, we compute the statistical information (number of objects, averages side

lengths, density) by aggregating the statistical information in the associated leaves.

As a weight function we use V (minimizing the area of the bounding boxes).

Although the first step could be skipped, it is important to use it for the following

reasons: Firstly, it reduces the time complexity of the final histogram construction.

101

6 Construction of R-tree-Based Histograms

Secondly, the histogram is generated simultaneously with R-tree index. Thirdly, it can

be implemented within the same bulk loading routine.

Let us discuss the total CPU and I/O costs of our two-step method in more detail. The

I/O costs for sorting the input set is O(NB logM
B

N
B). Micro-clustering step is computed

using O(N/B) I/Os as well as histogram-generation step. Thus, the total I/O costs are

bounded by the costs of external sorting.

The CPU cost of the micro-clustering step is O(N ·B) (see Chapter 5.3). For now we

assume that m1 buckets corresponding to m1 leaves generated in Step 1. can be hold

in memory. The CPU cost of the histogram generation step is equal to O(m1 · B2 ·m).

Because B2 = O(m1/m), it follows that the final cost is O(m2
1). From m1 = O(N/B),

we obtain O((N/B)2) CPU costs for Step 2. The direct application of the Histogram-

generation step would be O(N2), a factor of B2 more expensive than the two-step ap-

proach. According to our experimental results, this method shows high accuracy and

robustness of selectivity estimation for different data and query distributions [4]. If there

is not enough memory to apply storage-bounded partitioning, we first generate chunks

of equal size and apply opt∗ to every chunk. Similar strategy we used for generating

query adaptive R-trees in Chapter 5.

In the histogram generation step we use opt∗(i, k) partitioning to find a best parti-

tioning according to the sum of MBR volumes. In general, the bounded partitioning

scheme allows us to use other weight functions. However, our experimental results show

that histogram built using this weight function displays high accuracy and is computed

with low CPU overhead. opt∗(i, k) partitioning scheme can be adapted also for other

cost function than sum of weights e.g. if we consider the cost of a histogram H by a

maximal weight Cmax(H) :=
m

max
i=1

fw(hi) we replace the summation with the maximum

computation. However, experimental results show that combination of Cmax and volume

of MBR produces histograms with an inferior estimation accuracy than default cost func-

tion according to used error metrics. We let the investigation of other cost and weight

functions and their performance for different error metrics for a future work.

6.5 Experiments

In this section, we present summarized results obtained from a set of experiments under

different query workloads. First, we describe the underlying query models, and then

we provide details about our data sets and query files. Finally, we present a detailed

discussion of the results.

102

6 Construction of R-tree-Based Histograms

6.5.1 Query Models

For experimental settings we followed a methodology for generating workloads based

on query models originally proposed in [95] for the design of multidimensional index

structures. The authors classified range queries according to the indicators aspect ratio,

location and size. The query size is defined by either area (relative to the entire data

space) or the number of qualified objects. Query location can follow either a uniform

distribution or the distribution of the underlying data. The aspect ratio equals the width-

to-height ratio of the query rectangle, which we assume to be 1 (quadratic windows) in

the following. This yields in four different query models:

� M1: size = area, location = uniform distribution,

� M2: size = area, location = data distribution,

� M3: size = number of answers, location = uniform distribution,

� M4: size = number of answers, location = data distribution.

Data and Query Sets

For our experiments we use 2- and 3-dimensional data sets originally developed for RR*-

tree evaluation [39] and used in experiments with query adaptive loading of R-trees.

Detailed description of data sets is given in Chapter 5.5.1.

According to query models M1, . . . ,M4, we generated two workloads for each data set

and each query model. Two query sets are generated from model M1. The first one

consists of 10′000 uniformly distributed quadratic query rectangles with average volume

V = 0.01% (so that under uniform distribution approximately 100 objects qualify for

a data set with 1′000′000 objects). The side length of the rectangles are uniformly

distributed in range
[
1
2V

1/d, 32V
1/d
]
. The second query set is generated in the same way

with an average volume of 0.1% and consists of 3′164 query rectangles.

The location of the queries from model M2 follow the underlying data distribution.

Again the average volume of the query sets were set to 0.01% and 0.1%, respectively.

For the production of queries of model M3 we first generated uniformaly distributed

points and used them for issuing k-nearest neighbor queries with the maximum norm

L∞. The bounding boxes of these k-NN queries, k = 100 and k = 1′000, are used for two

sets of window queries with 100 and 1′000 answers per query, respectively. For model

M4, we used the underlying data distribution for producing the reference points for the

nearest neighbor queries. Thus, the location of the window queries also follows the data

distribution. Again two query sets are generated with 100 and 1′000 answers per query.

103

6 Construction of R-tree-Based Histograms

6.5.2 Studied Methods

In our experiments, we study the performance of different histograms. As a reference

method we used MinSkew. Histograms produced by MinSkew perform well [64, 10,

103]. We implemented both MinSkew with fixed grid and progressive refinement strategy

respectively, as described in [10]. We refer to the first as MinSkew and the second as

MinSkewProg. For each data and query set we always used the best parameter setting

for the grid size. For d=2, we used a grid with 214 cells. This was the the best setting

according to accuracy and build-up time in our experiments. For a MinSkewProg we

used four grids with 214, 212, 210, 28 cells; again this was the best setting. For d=3, we

used 215 cells for MinSkew and four grids with 215, 212, 29, 26 cells for MinSkewProg.

Other examined methods are listed in Table 6.2.

Histograms Description

MinSkew minSkew, fixed grid
MinSkewProg minSkew, prog. refinement
rkHist rK-Hist with α = 0.1
R-tree fixed sized partitioning, Hilbert Curve
R-V V , Hilbert Curve
R-VQP V +, Hilbert Curve
R-RK RK, Hilbert Curve
R-SK SK, Hilbert Curve
FST STHist forest

Table 6.2: Studied Methods

R-tree Methods

Methods with prefix R (R-V, R-VQP, R-RK, R-SK) are derived from R-trees and our

Sort-Partition algorithms. For R-tree methods we set B = 100 and b = 40 for d = 2 and

B = 72 and b = 28 for d = 3. Recall that B denotes the leaf capacity and b the minimum

leaf occupation. Leaf nodes are generated using gopt∗ algorithm. In general, this results

in more buckets than m (the desired number of buckets). In a second step, we apply opt∗

to the leaf bounding boxes to yield exactly m buckets. The chunk size was set to 20′000

rectangles; larger chunk sizes did not yield significantly better histograms. The methods

R-V, R-VQP, R-RK, R-SK only differ in their weight function used in gopt∗ and opt∗

(see Table 6.3). For example, V refers to the cost function minimizing the volume of

the bounding boxes. Additionally, we implemented rKHist as described in [53] using an

underflow rate with α = 0.1 (again this was the best setting in our experiments).

104

6 Construction of R-tree-Based Histograms

Figure 6.2: k-Uniformity metric and spatial skew of MBR

We also studied the quality of other weight functions (R-RK, R-SK). RK is a k-

Uniformity metric proposed in [53]. SK minimizes the skew within a bucket. For a

detailed description, see [53, 10]. Figure 6.2 illustrates how these functions are computed.

The left figure shows a bucket region with five rectangles.

Weight Func. Description

V volume of MBR
V + V extended by avg. query side lengths
RK k-Uniformity metric
SK spatial skew of MBR

Table 6.3: Studied Methods

The k-Uniformity function RK is based on a rectangular subdivision of a bucket region.

The last is built using the associated point objects [53]. For rectangles we only considered

their centers. This subdivision is computed in kd-tree manner. This representation is

constructed using the recursive binary splits of a point set. Each dimension of the

rectangular bucket split into two, in a round-robin fashion. The median is used as the

spit point, see center plot of Figure 6.2. The RK returns the standard deviation of areas

of the resulting rectangles. Note that, the processing cost for a bucket with n elements

is O(n log n). This is a drawback in comparison to other cost functions discussed above.

The function SK is based on a regular grid [10]. First, the regular grid is computed for

a bucket region (see left side of Figure 6.2). Then, the frequency of objects intersecting

a cell is computed for each cell (see right side of Figure 6.2). The function then returns

the standard squared error (SSE) of frequencies. The drawback of the last method is

that the grid resolution has to be set as an additional parameter.

We also implemented STHist method [103]. We call it FST, because we used the

so-called forest-strategy. The build-up cost for FST is very high, particularly for data

sets with skewed data distributions. For example, the build-up time was a factor 100

higher for the rea data set than for other methods, due to its O(n2) runtime. In order

to conduct all the experiments for FST, we applied FST to a random sample of 10%.

105

6 Construction of R-tree-Based Histograms

Space Allocation

Recall that each bucket hi maintains the MBR and the following statistical values:

ni, dx
i
avg, dy

i
avg, si. Let w be a size of machine word in bytes. Thus, storage amount

of a bucket is d · w + 2 · w + d · 2 · w (d · w bytes are average length information, 2 · w
byte for number of objects and spatial density and d · 2 · w for MBR). It is possible to

save storage for MinSkew bucket MBR. Because the MinSkew histogram can be stored

as a kd-tree. We assume that the leaf node of kd-tree stores statistical information. We

implemented MinSkew using a grid with resolution of power 2. For 2dk cells we need

log k bits to decode the split position. Additionally we store information about the split

dimension dlog de bits and one bit to decode whether a node is a leaf [56].

Thus, for d=2 and d=3, the MinSkew Histogram can keep almost twice as many

buckets as R-tree histograms. This is reflected in our experiments. If an R-tree histogram

consists of m buckets, we allow MinSkew to use 2 ·m buckets. In our experiments, space

allocation is expressed by the number of buckets m for R-tree Histogram.

All methods are implemented within the XXL-library [42]. The experiments are con-

ducted with a 64 bit Intel i7-2600 (2 x 3.4 Ghz), 8 Gb memory machine running Win-

dows 7. For external sort we used 10 MB memory buffer. We examined histograms with

m = 500, 1000, 2000, 3000, 4000 and m = 5000 buckets. Note that previous experiments

considered only a small number of buckets. Due to large main memories available, we

see the necessity to investigate large histograms.

Error Metrics

Performance quality of the proposed methods was evaluated using different error metrics.

We use workload error Ew as default metric. Ew is defined as follows:

Ew =
∑
i

|acti − esti| /
∑
i

acti

Here, acti is the actual number of answers of the i-th query, and esti is the estimated

number. Note that this measure is commonly used in other experiments [10]. We also

considered the average absolute error Eabs = |acti − esti| and the average relative error

Erel = |acti−esti|
max(1,acti)

(as in [103]). They are considered for workloads derived from models

M3 and M4, because all queries offer the same selectivity.

106

6 Construction of R-tree-Based Histograms

Method Time ms std.

MinSkew 34089 6781
MinSkewProg 24648 3504
rKHist 23950 2408
R-V 27434 685
FST 41321 56370

Table 6.4: Build time d=2 data sets for 1′000 buckets

Figure 6.3: Total estimation time as a function of histogram size for the California data
and M4 query set

Build and Estimation Time

All methods except FST were able to build a 1′000 bucket histogram for 1′000′000 data

objects for all data sets in less than 1 minute. Average build time in milliseconds is given

in table 6.4 for d=2 data sets for 1′000 bucket histograms. The cardinality of the data

sets was limited to 1′000′000 objects. The column std. shows the standard deviation. In

general, the rKHist and R-V method are less sensitive to a data distribution compared

to MinSkew and MinSkewProg counterparts. Recall that we construct FST histogram

using random sampling of 10%. The FST method is very sensitive to data distribution,

especially for non-uniform data sets. The build time for a rKhist and R-V method was

dominated by external sort. The MinSkew and MinSkewProg were CPU dominated.

Figure 6.4: Function of Ew and capacity parameter b = {1, 8, 15, 23} and B for the
Histogram-Generation Step (California data, M4)

107

6 Construction of R-tree-Based Histograms

The estimation time may become an issue if the number of histogram buckets is too

high. The resulting histogram in a simple variant is represented as an array of buckets.

To decrease the estimation time, histograms can be represented as main memory R-

trees. Figure 6.3 depicts the function of bucket size and total workload time for different

representation of a histogram. The first two are R-trees. The third one is an array of

buckets. For R-tree, we used main memory setting and set the fan-out to 12 entries per

node (again it was the best setting in our experiments). Additionally, we build an R-tree

using histogram buckets with a opt∗ partitioning method and CV as a cost function. We

constructed histograms on California data set and measured the overall estimation time

of 10′000 queries from M4 query set with selectivity 100. We observed that if the bucket

number exceeds 100, the R-tree organization displays better results.

Impact of Bucket Capacity Parameter

The bucket capacity parameters b = max(bN1/2mc , 1), B = dN1/me + b in Histogram-

Generation step are set depending on desired bucket number m. We examine parameter

sensitivity to show that this setting displays a good accuracy. For each data set we

run opt∗ with different bucket capacities. Figure 6.4 shows four opt∗ configurations

applied on leaf nodes of the California data set generated after the Micro-Clustering.

There are N1 = 30′398 leaf nodes generated from 1′888′012 rectangles. We then gen-

erate histograms for m = 1′000. On average, histogram buckets have capacities about

bN1/mc = 30 leafs. For each fixed b, we computed a Ew under query model M4 with

selectivity 100 as a function of parameter B. The values b = 15, B = 46 exhibit a good

performance. We observed that increasing the parameter B does not lead to better his-

tograms especially for a non-uniform data sets. In general, high B − b values do not

significantly improve histogram quality and even increase time complexity. In contrast,

small B − b values exhibit poor results for uniform and near-uniform data distributions.

6.5.3 Experimental Results

In this section we present a detailed discussion about accuracies of different histograms.

First we describe general trends observed in our experiments. Further, we discuss results

obtained for small sized queries (d=2,3). We focus on M4 workload. Subsequently, we

report results for large sized queries. For the sake of brevity, we only present results

of rKHist, R-V, MinSkew and MinSkewProg. Other method accuracies are presented if

necessary.

We observed several trends: first, although R-tree methods are build based on a M1

108

6 Construction of R-tree-Based Histograms

(a) abs

(b) dia

(c) par

(d) rea

Figure 6.5: Ew for rectangular data and query set M4

model, they exhibit also good estimation results for other query workloads.

Workload M4

Second, R-tree based methods yield better accuracies for non-uniform data distributions

than MinSkew and MinSkewProg for all data and query workloads. Their selectivity

109

6 Construction of R-tree-Based Histograms

(a) bit

(b) ped

(c) pha

(d) uni

Figure 6.6: Ew for point data and query set M4

accuracies increase more significantly with an increasing number of buckets than for

MinSkew and MinsSkewProg. We also observed that with increased number of buckets,

the quality of MinSkew improves marginally (as reported in [10]). In contrast, the quality

of MinSkewProg increases more significantly. Using several different grid resolutions

prevents MinSkewProg from allocating many buckets in a single highly skewed cluster,

110

6 Construction of R-tree-Based Histograms

since the number of buckets produced per grid is equally balanced [10]. For a large

number of buckets, MinSkewProg is the better choice than MinSkew.

Third, the general deficiency of R-tree methods for uniform and near-uniform data

distribution is corrected using our proposed partitioning methods. This can be explained

by the fact that the produced MBRs display almost no overlap, thus, this partitioning

minimizes the estimation error.

In this section, we present result for query model M4 (query follow data distribution

and query size is expressed by the number of results). Since the workload M4 is more

realistic and more difficult to handle, we report results for this model. Results for other

models are discussed if necessary.

Figure 6.5 and 6.6 show results of rKhist, R-V, MinSkew and MinSkewProg for a d=2

data sets and query workload M4 with selectivity 100. We bundle results for rectangular

data sets in Figure 6.5 and for point data in Figure 6.6. Best results are achieved on

ped data set. This data set consists of thin shaped clusters of points. Minimizing the

MBR volume using dynamic programming scheme leads also to a thin shapes of MBRs,

thus minimizing the estimation error. The rKHist method as well as the simple R-tree

method (fixed size partitioning) have problems with uniform and near-uniform data sets.

The rKHist greedy split strategy does not lead to a partitioning with small overlap

introducing high estimation error. In contrast, R-V method yields better partitioning

and its accuracy is comparable with MinSkew and MinSkewProg accuracies. R-V and

rKHist perform better for non-uniform data sets bit, dia, par, ped and rea than MinSkew

and MinSkewProg with increasing number of buckets. For par data set, we observed

almost no difference between rKHist and R-V method. This data set has a high variance

in shapes and sizes of rectangles and is difficult to handle either by R-tree histogram

and index.

Figures 6.8 and 6.7 depicts results of R-tree methods compared with a fixed size par-

titioning strategy (R-tree) for d=2 point and rectangular data. In general, we observed

that all methods using our optimized sort-partition framework display better accuracy

than R-tree. Estimation accuracies of R-V, R-VQP, R-RK and R-SK do not differ signif-

icantly for non-uniform data distributions. However, CV function exhibit better results

for uniform data sets than other cost functions.

For d=3 we obtain similar results as for d=2 for all data and query sets. In general,

estimation quality are slightly better for non-uniform data sets than for d=2. Figure 6.9

reports results for d=3 rea data set.

In Figure 6.10, we report the Ew for FST method compared with R-V and MinSkew-

Prog for rea data set. FST Performance was very poor for all data and query sets, as

111

6 Construction of R-tree-Based Histograms

(a) abs

(b) dia

(c) par

(d) rea

Figure 6.7: Ew for rectangular data and query set M4

we used random sampling for input data. Although applying this method on whole data

set does not display better results than rKHist, R-V and MinSkewProg methods.

112

6 Construction of R-tree-Based Histograms

(a) abs

(b) dia

(c) par

(d) rea

Figure 6.8: Ew for point data and query set M4

Results for Large Queries

Figure 6.11 shows results for the California (rea) data set for all query workloads. For

large queries R-tree based methods yield even better accuracy then MinSkew counter-

parts in comparison with small sized queries. Similar to small sized queries best result

are achieved for non-uniform data sets. rKHist performs for two uniform uni, abs sets

113

6 Construction of R-tree-Based Histograms

Figure 6.9: Ew for d=3 data set rea and query set M4

Figure 6.10: Ew for d=2 data set rea and query model M4

very poor in comparison with R-V, MinSkew and MinSkewProg. Although for large

queries on the California data set accuracy difference between rKHist and R-V was not

that significant, with a high number of buckets R-V method was superior to other meth-

ods. Best results for R-V we achieve for synthetic data sets abs, bit, dia, ped, pha. Again

results for par data set are comparable with a small sized query results. One possible

solution is to partition such data distribution according to the object size and shape and

construct histograms or index for each partition independently.

6.6 Conclusions

Spatial histograms are becoming increasingly important for modern GIS applications.

They provide a first inexpensive view on large spatial data sets; and therefore are ideally

suited for visualization and approximate query processing. In this chapter, we introduce

a novel histogram method derived from a bulk-loading algorithm of R-trees. It largely

eliminates the cumbersome need for setting parameters; the only ones (page capacity B

and minimum occupation b) are set in the same manner as it is known for R-trees. In

general, our histogram method is fairly easy to implement because it combines elementary

building blocks like sorting and dynamic programming. Our method also overcomes the

weak performance of R-tree histograms in the case of uniformly distributed records. Until

now, it has been considered to be an open problem whether accurate R-tree histograms

114

6 Construction of R-tree-Based Histograms

(a) M1

(b) M2

(c) M3

(d) M4

Figure 6.11: Ew for the California data set; M1,M2 with volume 0.1 and M3,M4 with
selectivity 1000

can be developed for uniformly distributed data. For real data sets that are known to

be highly non-uniform our method generates histograms of high quality, generally much

better than the ones generated by other methods.

This work also introduces a new kind of experimental setup for spatial histograms. In-

115

6 Construction of R-tree-Based Histograms

spired by cost models for spatial indexes, we consider different kind of workload scenarios

rather than putting the focus only on uniformly distributed queries. This gives a more

meaningful interpretation of the advantages and disadvantages of spatial histograms. In

addition, we also examine the performance of histograms with a rather large number of

buckets. Despite the fact of the availability of large main memories, there have been only

a very few results available for histograms with more than 1000 buckets. In fact, our

experiments reveal that not all of the state-of-the-art histograms can improve quality

with an increasing number of buckets.

116

7 Conclusions and Future Work

In this work, we achieved three main results. Firstly, we showed for the first time that

the loading a partial persistent B-tree is possible with I/O complexity of external sort.

We developed a new kind of partial persistent B-tree that maintains all asymptotic per-

formance guarantees of the MVBT and achieves the lower bound for loading. Secondly,

we revised standard sort based bottom up loading algorithm for R-trees. We proposed

the partitioning scheme that produces substantially better R-trees without increasing

I/O complexity of standard sort based loading algorithms. Our algorithm improves R-

trees according to the widely used cost model [73, 115, 95]. The novelty of our work

is that our proposed dynamic programming algorithm considers statistical information

about the query profile. We showed that knowledge about the average query side lengths

and the average aspect ratio allow us to generate better R-trees. If the knowledge of

the query profile is not available, we optimize R-trees according to the sum of area de-

rived from the MBR of nodes. In both cases, we generate better R-trees than naive sort

based counterparts. We also showed that for query profiles that exhibit high aspect ratio,

an asymmetric Z-Curve in a combination with our partitioning scheme provides better

query performance. Moreover, our preliminary experimental results with R-trees tuned

using our query adaptive framework for interval data in two-dimensional space are very

promising. These results show that R-trees built using the ordering derived from the

average interval length exhibit good query performance. Thirdly, we showed that the pro-

posed dynamic programming scheme allows us the generation of spatial histograms that

exhibit a high accuracy and robustness for different data and query distributions. To

this end, we proposed a unified framework for the R-tree bulk loading and the histogram

generation.

The results in this work pose new research questions and challenges. One of the

promising applications our new loading algorithm are partial persistent structures that

derived from the multiversion B-tree such as the historical R-tree proposed by Tao et

al. [113] or the structure for temporal range aggregates proposed by Zhang et al. [121].

In our future work, we want to investigate the combination of the bulk update approach

and TMVBT proposed by Hapsaalo et al. [66]. TMVBT allows single write and multiple

117

7 Conclusions and Future Work

read transactions at a time. Therefore, after commit the set of new live records could

be inserted in a bulk rather than tuple by tuple.

The computational model that we considered for devising our MVBT+ solution as-

sumes a single disk and a single CPU. The continuously growth of historical data requires

scalable data partitioning techniques over multiple disks or machines for the efficient

query processing. Therefore, the design of parallel and distributed algorithms becomes

more and more important. In our future work, we are interested in the developing of

parallel and distributed version of our loading technique. Recently, Le et al. [79] pro-

posed an algorithm that partitions a multiversion file in almost equi-sized partitions in

the I/O complexity of external sorting. They considered a distributed case where the

set of machine manages historical data. They partition an input interval set using the

time dimension. By this, we can solve an offline problem in a distributed case using

a combination of techniques proposed in [79] and our bulk loading technique. We first

split the input using a single machine, distribute data and execute our loading technique

on each machine in parallel. The approach proposed by Goodrich et al. [61] also par-

titions partial persistent file, yet, according to the key dimension. Therefore, we need

to investigate efficient partitioning techniques for devising a solution in the distributed

scenario.

Both works [79, 61] tackle an offline problem. If an MVBT has already been distributed,

we need to manage new arriving data efficiently. In order to achieve a load balance, in

some cases, parts of the index should be shipped to other machines [108]. Similarly, in

the case of a space overflow in a current memory hierarchy, there is a demand for efficient

migration policies of old data [122, 92, 89].

In general, the design of loading approaches for parallel computational models [119,

118, 109] is of interest. E.g. the computational model of Shriver and Vitter assumes D

disks and P CPUs. This is a still realistic setting in modern hardware architecture. Due

to the recent breakthrough in non-volatile memory technology, we need to rethink the

design of external memory index structures [15], in order to improve performance in a

practical setting. Algorithms designed for the cache oblivious model [55, 40] are inde-

pendent from memory hardware parameters and seem to be a general solution pattern.

However, not all problems can be solved in the same asymptotic I/O bounds as for the

traditional I/O model [40, 11]. Among those is the problem of partial persistence search

structures. Therefore, the design of loading algorithms for alternative external memory

models as well as their lower I/O bounds is important for the further investigations.

We also aim to investigate alternative techniques for managing partial persistent data.

Experimental evaluation of average query performance of MVBT, R-tree as well as tech-

118

7 Conclusions and Future Work

nique proposed in [101] is also of interest. We are also interested in further developing

of R-tree frameworks based on our query adaptive technique for managing interval data.

Therefore, we are also interested in computing the expected average interval length ana-

lytically, based on update model.

Our query-adaptive loading strategies for R-trees highly depend on the accuracy of

cost models. It is still challenging to develop better cost models that allow reorganizing

indexes according to an anticipated workload in a proactive manner. Our preliminary

experimental results show that a combination of spatial density histograms with our

partitioning framework achieve good results for non-uniform data distributions. In order

to achieve a better partitioning of the data for a given query workload, the specific way

of bit shuffling in a Z-curve can also have a substantial impact on the query performance.

In our future work, we are interested in further development of adaptive Z-Curve. E.g.

bit shuffling could be computed in dependency of location, such that the aspect ratio

from this region influence the Z-Curve orientation and symmetry. Also a combination

of techniques proposed by Markl could be interesting [87]. In our future work, we

are interested in the construction of such adaptive Z-curves. Further, as our proposed

technique for R-tree is a heuristic (the quality depends on sorting order), designing an

approximate algorithm for cost models [115, 95] is very challenging.

Our work on spatial histograms shows that R-tree based histograms derived from our

partitioning framework exhibit high accuracy for different kind of data distributions.

While our focus was primarily on two- and three-dimensional data, we are currently

interested in the design of histograms for high-dimensional data. Similar to our design

of accurate spatial histograms,the question is whether that the design principles of high-

dimensional indexing can be effectively reused for high-dimensional histograms.

119

Bibliography

[1] Apache hbase. http://hbase.apache.org/.

[2] Ibm: A matter of time: Temporal data management in db2 for
z/os. http://www.ibm.com/developerworks/data/library/techarticle/dm-
1204db2temporaldata/.

[3] Oracle: Total recall. http://www.oracle.com/technetwork/database/application-
development/total-recall-1667156.html.

[4] D. Achakeev and B. Seeger. A class of r-tree histograms for spatial databases.
Technical report, Philipps-Universität Marburg, 2012.

[5] D. Achakeev and B. Seeger. A class of r-tree histograms for spatial databases. In
SIGSPATIAL, pages 450–453, New York, NY, USA, 2012. ACM.

[6] D. Achakeev and B. Seeger. Efficient bulk updates on multiversion b-trees. In
accepted PVLDB Vol. 6 No. 14, 2013.

[7] D. Achakeev, B. Seeger, and P. Widmayer. Sort-based query-adaptive loading of
r-trees. Technical report, Philipps-Universität Marburg, 2012.

[8] D. Achakeev, B. Seeger, and P. Widmayer. Sort-based query-adaptive loading of
r-trees. In CIKM, pages 2080–2084, New York, NY, USA, 2012. ACM.

[9] D. Achakeev, M. Seidemann, M. Schmidt, and B. Seeger. Sort-based parallel
loading of r-trees. In BigSpatial, BigSpatial, pages 62–70, New York, NY, USA,
2012. ACM.

[10] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial
databases. In SIGMOD ’99, pages 13–24, New York, NY, USA, 1999. ACM.

[11] P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious range reporting with optimal
queries requires superlinear space. Discrete Comput. Geom., 45(4):824–850, June
2011.

[12] P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H. J. Haverkort.
Box-trees and r-trees with near-optimal query time. In Proceedings of the seven-
teenth annual symposium on Computational geometry, SCG ’01, pages 124–133,
New York, NY, USA, 2001. ACM.

[13] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988.

120

Bibliography

[14] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In VLDB ’03, pages 81–92. VLDB Endowment, 2003.

[15] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and S. Singh. Lazy-adaptive
tree: An optimized index structure for flash devices. PVLDB, 2(1):361–372, 2009.

[16] A. Aji, F. Wang, and J. H. Saltz. Towards building a high performance spatial
query system for large scale medical imaging data. In Proceedings of the 20th In-
ternational Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL ’12, pages 309–318, New York, NY, USA, 2012. ACM.

[17] D. Ajwani and H. Meyerhenke. Chapter 5. realistic computer models. In M. Müller-
Hannemann and S. Schirra, editors, Algorithm Engineering, volume 5971 of Lecture
Notes in Computer Science, pages 194–236. Springer Berlin Heidelberg, 2010.

[18] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. P.
Pakala. Temporal query processing in teradata. In EDBT, pages 573–578, 2013.

[19] G. Antoshenkov. Random sampling from pseudo-ranked b+ trees. In Proceedings
of the 18th International Conference on Very Large Data Bases, VLDB ’92, pages
375–382, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[20] P. M. Aoki. Generalizing “search” in generalized search trees (extended abstract).
In ICDE, pages 380–389, 1998.

[21] P. M. Aoki. How to avoid building datablades(r) that know the value of every-
thing and the cost of nothing. Scientific and Statistical Database Management,
International Conference on, 0:122, 1999.

[22] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms (extended
abstract). In WADS, pages 334–345, 1995.

[23] L. Arge. Efficient External-Memory Data Structures and Applications. PhD thesis,
1996.

[24] L. Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1–24, 2003.

[25] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority r-tree: A practically
efficient and worst-case optimal r-tree. ACM Trans. Algorithms, 4:9:1–9:30, March
2008.

[26] L. Arge, A. Danner, and S.-M. Teh. I/o-efficient point location using persistent
b-trees. In ALENEX, pages 82–92, 2003.

[27] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations on
dynamic r-trees. Algorithmica, 33(1):104–128, 2002.

121

Bibliography

[28] L. Arge and J. S. Vitter. Optimal dynamic interval management in external mem-
ory. In FOCS, pages 560–, Washington, DC, USA, 1996. IEEE Computer Society.

[29] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM
J. Comput., 32(6):1488–1508, June 2003.

[30] L. Arge and N. Zeh. Algorithms and theory of computation handbook. chap-
ter External-memory algorithms and data structures, pages 10–10. Chapman &
Hall/CRC, 2010.

[31] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves
and their use in the design of geometric data structures. Theor. Comput. Sci.,
181:3–15, July 1997.

[32] C. Authmann. Evaluierung sortierbasierter verfahren fuer den komplettaufbau
eines index, bachelorarbeit. Technical report, Philipps-Universität Marburg, 2008.

[33] B. Bamba, S. Ravada, Y. Hu, and R. Anderson. Statistics collection in oracle spa-
tial and graph: Fast histogram construction for complex geometry objects. PVLDB,
6(11), 2013.

[34] B. Becker, P. G. Franciosa, S. Gschwind, T. Ohler, G. Thiemt, and P. Widmayer.
Enclosing many boxes by an optimal pair of boxes. In Proceedings of the 9th
Annual Symposium on Theoretical Aspects of Computer Science, pages 475–486,
London, UK, 1992. Springer-Verlag.

[35] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically
optimal multiversion b-tree. VLDB J., 5(4):264–275, 1996.

[36] B. Becker, H.-W. Six, and P. Widmayer. Spatial priority search: An access tech-
nique for scaleless maps. In J. Clifford and R. King, editors, SIGMOD ’91, pages
128–137. ACM Press, 1991.

[37] L. Becker, H. Partzsch, and J. Vahrenhold. Query responsive index structures. In
GIScience ’08, pages 1–19, 2008.

[38] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient
and robust access method for points and rectangles. In SIGMOD ’90, pages 322–
331, New York, NY, USA, 1990. ACM.

[39] N. Beckmann and B. Seeger. A revised r*-tree in comparison with related index
structures. In SIGMOD ’09, pages 799–812. ACM, 2009.

[40] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious b-trees. In
FOCS, pages 399–409, 2000.

[41] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul,
and J. Nelson. Cache-oblivious streaming b-trees. In SPAA, pages 81–92, 2007.

122

Bibliography

[42] J. V. d. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer, M. Schneider,
and B. Seeger. Xxl - a library approach to supporting efficient implementations of
advanced database queries. In VLDB ’01, pages 39–48, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[43] J. V. d. Bercken and B. Seeger. An evaluation of generic bulk loading techniques.
In VLDB ’01, pages 461–470, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[44] J. V. d. Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading
multidimensional index structures. In VLDB ’97, pages 406–415, 1997.

[45] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil.
A critique of ansi sql isolation levels. In SIGMOD Conference, pages 1–10, 1995.

[46] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in
weight-balanced trees. Theoretical Computer Science, 11(3):303 – 320, 1980.

[47] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: a multidimensional workload-
aware histogram. SIGMOD Rec., 30:211–222, May 2001.

[48] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial
data with mapreduce. In SSDBM 2009, pages 302–319, Berlin, Heidelberg, 2009.
Springer-Verlag.

[49] D. Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, June 1979.

[50] J. V. den Bercken and B. Seeger. Query processing techniques for multiversion
access methods. In VLDB, pages 168–179, 1996.

[51] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu. Client-server paradise.
In VLDB ’94, pages 558–569, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[52] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989.

[53] T. Eavis and A. Lopez. Rk-hist: an r-tree based histogram for multi-dimensional
selectivity estimation. In CIKM ’07, pages 475–484, New York, NY, USA, 2007.
ACM.

[54] H. Edelsbrunner. A new approach to rectangle intersections part i. International
Journal of Computer Mathematics, 13(3-4):209–219, 1983.

[55] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, pages 285–, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

123

Bibliography

[56] F. Furfaro, G. M. Mazzeo, D. Saccà, and C. Sirangelo. Hierarchical binary his-
tograms for summarizing multi-dimensional data. In Proceedings of the 2005 ACM
symposium on Applied computing, SAC ’05, pages 598–603, New York, NY, USA,
2005. ACM.

[57] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput. Surv.,
30(2):170–231, June 1998.

[58] Y. J. Garćıa R, M. A. López, and S. T. Leutenegger. A greedy algorithm for bulk
loading r-trees. In GIS ’98, pages 163–164, New York, NY, USA, 1998. ACM.

[59] Y. Giora and H. Kaplan. Optimal dynamic vertical ray shooting in rectilinear
planar subdivisions. ACM Trans. Algorithms, 5:28:1–28:51, July 2009.

[60] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream warehousing with
datadepot. In SIGMOD, pages 847–854, 2009.

[61] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry (preliminary version). In FOCS, pages 714–723, 1993.

[62] G. Graefe. B-tree indexes for high update rates. SIGMOD Rec., 35(1):39–44, Mar.
2006.

[63] G. Graefe. Modern b-tree techniques. Foundations and Trends in Databases,
3(4):203–402, 2011.

[64] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating
multi-dimensional aggregate range queries over real attributes. SIGMOD Rec.,
29:463–474, May 2000.

[65] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIG-
MOD ’84: Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, pages 47–57, New York, NY, USA, 1984. ACM.

[66] T. Haapasalo, I. Jaluta, B. Seeger, S. Sippu, and E. Soisalon-Soininen. Transactions
on the multiversion b+-tree. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology, EDBT ’09,
pages 1064–1075, New York, NY, USA, 2009. ACM.

[67] T. Haapasalo, I. Jaluta, S. Sippu, and E. Soisalon-Soininen. On the recovery of
r-trees. IEEE Trans. Knowl. Data Eng., 25(1):145–157, 2013.

[68] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, and
V. Samoladas. On a model of indexability and its bounds for range queries. J.
ACM, 49(1):35–55, Jan. 2002.

[69] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Inf., 17:157–184, 1982.

124

Bibliography

[70] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR, pages
68–78, 2007.

[71] Y. Ioannidis. The history of histograms (abridged). In VLDB ’2003, pages 19–30.
VLDB Endowment, 2003.

[72] H. V. Jagadish, V. Poosala, N. Koudas, K. Sevcik, S. Muthukrishnan, and T. Suel.
Optimal histograms with quality guarantees. In In VLDB, pages 275–286, 1998.

[73] I. Kamel and C. Faloutsos. On packing r-trees. In CIKM ’93, pages 490–499, New
York, NY, USA, 1993. ACM.

[74] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proceedings of the 7th International Conference
on Database Theory, ICDT ’99, pages 257–276, London, UK, UK, 1999. Springer-
Verlag.

[75] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Färber,
and N. May. Timeline index: a unified data structure for processing queries on
temporal data in sap hana. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’13, pages 1173–1184, New
York, NY, USA, 2013. ACM.

[76] M. Kornacker and D. Banks. High-concurrency locking in r-trees. In Proceedings
of the 21th International Conference on Very Large Data Bases, VLDB ’95, pages
134–145, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[77] M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency and recovery in
generalized search trees. In Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, SIGMOD ’97, pages 62–72, New York, NY,
USA, 1997. ACM.

[78] K. Kulkarni and J.-E. Michels. Temporal features in sql:2011. SIGMOD Rec.,
41(3):34–43, Oct. 2012.

[79] W. Le, F. Li, Y. Tao, and R. Christensen. Optimal splitters for temporal and
multi-version databases. In SIGMOD, 2013.

[80] S. Leutenegger, M. A. Lopez, and J. Edgington. Str: A simple and efficient algo-
rithm for r-tree packing. In ICDE, pages 497–506, 1997.

[81] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,
1982.

[82] D. Lomet and B. Salzberg. Access methods for multiversion data. In SIGMOD,
pages 315–324, 1989.

125

Bibliography

[83] D. B. Lomet. Grow and post index trees: Roles, techniques and future potential.
In O. Günther and H.-J. Schek, editors, SSD, volume 525 of Lecture Notes in
Computer Science, pages 183–206. Springer, 1991.

[84] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and Y. Zhu.
Immortal db: transaction time support for sql server. In SIGMOD Conference,
pages 939–941, 2005.

[85] D. B. Lomet, M. Hong, R. V. Nehme, and R. Zhang. Transaction time indexing
with version compression. PVLDB, 1(1):870–881, 2008.

[86] D. B. Lomet and F. Li. Improving transaction-time dbms performance and func-
tionality. In ICDE, pages 581–591, 2009.

[87] V. Markl. MISTRAL: Processing Relational Queries using a Multidimensional
Access Technique, volume 59 of DISDBIS. Infix Verlag, St. Augustin, Germany,
1999.

[88] M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional histograms.
SIGMOD Rec., 17:28–36, June 1988.

[89] P. Muth, P. E. O’Neil, A. Pick, and G. Weikum. Design, implementation, and
performance of the lham log-structured history data access method. In Proceedings
of the 24rd International Conference on Very Large Data Bases, VLDB ’98, pages
452–463, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[90] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity, and applications. In ICDT ’99, pages 236–
256, London, UK, 1999. Springer-Verlag.

[91] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. In
Proceedings of the fourth annual ACM symposium on Theory of computing, STOC
’72, pages 137–142, New York, NY, USA, 1972. ACM.

[92] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree
(lsm-tree). Acta Inf., 33(4):351–385, June 1996.

[93] J. A. Orenstein and T. H. Merrett. A class of data structures for associative
searching. In PODS ’84, pages 181–190, New York, NY, USA, 1984. ACM.

[94] M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes in Computer Science. Springer, 1983.

[95] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range
query performance in spatial data structures. In PODS ’93, pages 214–221, New
York, NY, USA, 1993. ACM.

[96] B.-U. Pagel, H.-W. Six, and M. Winter. Window query-optimal clustering of spatial
objects. In PODS ’95, pages 86–94, New York, NY, USA, 1995. ACM.

126

Bibliography

[97] A. Papadopoulos and Y. Manolopoulos. Parallel bulk-loading of spatial data. Par-
allel Comput., 29(10):1419–1444, 2003.

[98] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved histograms
for selectivity estimation of range predicates. SIGMOD Rec., 25:294–305, June
1996.

[99] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In VLDB, pages 486–495, 1997.

[100] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In VLDB ’97, pages 486–495, San Francisco, CA, USA,
1997. Morgan Kaufmann Publishers Inc.

[101] S. Ramaswamy. Efficient indexing for constraint and temporal databases. In
Proceedings of the 6th International Conference on Database Theory, ICDT ’97,
pages 419–431, London, UK, UK, 1997. Springer-Verlag.

[102] O. Rodeh. B-trees, shadowing, and clones. TOS, 3(4), 2008.

[103] Y. J. Roh, J. H. Kim, Y. D. Chung, J. H. Son, and M. H. Kim. Hierarchically
organized skew-tolerant histograms for geographic data objects. In SIGMOD ’10,
pages 627–638, New York, NY, USA, 2010. ACM.

[104] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using
packed r-trees. In SIGMOD Conference, pages 17–31, 1985.

[105] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving
data. ACM Comput. Surv., 31(2):158–221, June 1999.

[106] H. Samet. Foundations of Multidimensional and Metric Data Structures (The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[107] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Commun. ACM, 29(7):669–679, 1986.

[108] A. Silberstein, B. F. Cooper, U. Srivastava, E. Vee, R. Yerneni, and R. Ramakrish-
nan. Efficient bulk insertion into a distributed ordered table. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, SIGMOD
’08, pages 765–778, New York, NY, USA, 2008. ACM.

[109] N. Sitchinava and N. Zeh. A parallel buffer tree. In Proceedinbgs of the 24th
ACM symposium on Parallelism in algorithms and architectures, SPAA ’12, pages
214–223, New York, NY, USA, 2012. ACM.

[110] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985.

127

Bibliography

[111] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. Isomer: Consistent
histogram construction using query feedback. In ICDE ’06, pages 39–, Washington,
DC, USA, 2006. IEEE Computer Society.

[112] A. U. Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, and R. T. Snod-
grass, editors. Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

[113] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access method for times-
tamp and interval queries. In VLDB, pages 431–440, 2001.

[114] Y. Tao and D. Papadias. Adaptive index structures. In VLDB ’02, pages 418–429,
2002.

[115] Y. Theodoridis and T. Sellis. A model for the prediction of r-tree performance. In
PODS ’96, pages 161–171, New York, NY, USA, 1996. ACM.

[116] P. J. Varman and R. M. Verma. An efficient multiversion access structure. IEEE
Trans. Knowl. Data Eng., 9(3):391–409, 1997.

[117] R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and S. Shekhar.
Spatiotemporal data mining in the era of big spatial data: algorithms and appli-
cations. In Proceedings of the 1st ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data, BigSpatial ’12, pages 1–10, New York, NY,
USA, 2012. ACM.

[118] J. S. Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305–474, 2006.

[119] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory i: Two-level
memories. Algorithmica, 12(2/3):110–147, 1994.

[120] K. Yi, X. Lian, F. Li, and L. Chen. The world in a nutshell: Concise range queries.
IEEE Trans. Knowl. Data Eng., 23(1):139–154, 2011.

[121] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger. On com-
puting temporal aggregates with range predicates. ACM Trans. Database Syst.,
33(2):12:1–12:39, June 2008.

[122] R. Zhang and M. Stradling. The hv-tree: a memory hierarchy aware version index.
PVLDB, 3(1):397–408, 2010.

128

