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Abstract

In this thesis three possibilities of external influences in wave mechanical systems

are analyzed. In all three cases I used microwave devices to study quantum me-

chanical systems. The first analyzed property is the decay rate from states in so-

called regular islands in a billiard system to the chaotic sea. Afterwards I charac-

terize the influence of open decay channels in transport through chaotic wave sys-

tems. The last topic is the introduction of a time-dependently changed microwave

device.

In the first chapter the decay of a wave function from one classically isolated phase

space region to another is analyzed. The main interest lies on the influence of ad-

ditional states corresponding to the same original phase space region. I will show

that these states can lead to an enhancement of the decay rate. The decay rates are

measured via an indirect absorption process, leading to an increase of the corre-

sponding resonance widths. Alternatively to mode depending width properties,

which were typically analyzed in numerical calculations, a parameter depending

variation of the system is introduced to verify the demanded effect.

The experimental and numerical determination of channel correlations are the sub-

ject of the second chapter. After defining the correlation function, an experimental

demonstration is presented. The results of the experiment and the describing nu-

merics show that the correlation functions are important for the characterization of

universal conductance fluctuations.

The last chapter deals with the realization of a periodically driven microwave sys-

tem. The principal setup is a resonant circuit with a time-dependent capacity. The

properties of the setup, e.g. sideband structures for different driving signals, are an-

alyzed experimentally, theoretically and numerically. This is the first step to create

a system where a huge subset of resonances is changed. The fulfilled description

of the single resonance system is presented and the next steps to realizations of

time-dependent driven wave mechanical systems are sketched.
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Zusammenfassung

In dieser Arbeit werden drei Möglichkeiten äußerer Einflüsse auf wellenmecha-

nische Systeme analysiert. In allen drei Fällen nutze ich Mikrowellensysteme,

um quantenmechanische Systeme zu simulieren. Zuerst werden Zerfallsraten

von Wellenfunktionen, die in sogenannten regulären Inseln von Billard-Systemen

konzentriert sind, untersucht. Danach wird der Einfluss von offenen Zerfalls-

kanälen auf den Transport durch chaotische Wellensysteme charakterisiert. Das

letzte Thema ist ein zeitlich veränderliches Mikrowellen-System.

Im ersten Kapitel wird der Übergang einer Wellenfunktion eines klassisch

isolierten Bereichs des korrespondierenden Phasenraums zu einem anderen

analysiert. Das Hauptaugenmerk liegt auf dem Einfluss von zusätzlichen Zustän-

den des ursprünglichen Phasenraumbereichs. Es wird gezeigt, dass diese Zustände

zu einer Steigerung der Zerfallsrate führen können. Die Zerfallsraten werden in-

direkt über Absorption gemessen, was zu einem Anstieg der entsprechenden Re-

sonanzbreiten führt. Zusätzlich zu dem sonst üblichen modenabhängigem Tun-

nelverhalten, welches typischerweise in numerischen Berechnungen genutzt wird,

ist eine parametrische Änderung des Systems durchgeführt worden. Dadurch

wurde der Nachweis des Effekts zusätzlich untermauert.

Die experimentelle und numerische Bestimmung von Kanal-Korrelationen sind

Gegenstand des zweiten Kapitels. Nach der Definition der Korrelationsfunktion

wird das experimentelle Modellsystem vorgestellt. Die Ergebnisse des Experi-

ments und der sie beschreibenden Numerik zeigen, dass die Korrelationsfunk-

tionen bei der Beschreibung der allgemeinen Leitwertfluktuationen nicht vernach-

lässigbar sind.

Das letzte Kapitel beschäftigt sich mit der Realisierung eines periodisch angetriebe-

nen Mikrowellen-Systems. Der prinzipielle Aufbau ist ein Schwingkreis mit einer

zeitlich veränderbaren Kapazität. Analysiert werden die Eigenschaften des Sys-

tems, wie die Seitenbandstrukturen für verschiedene Treibungssignale, sowohl ex-

perimentell, als auch theoretisch und numerisch. Dies ist der erste Schritt zur Kon-

struktion eines Systems, in welchem ein großer Teil der Resonanzen durch einen

äußeren Parameter verändert werden kann. Die vollständige Beschreibung einer

einzelnen getriebenen Resonanz wird vorgestellt und die nächsten Schritte zur

Realisierung von zeitabhängig getriebenen wellemechanischen Systemen werden

gezeigt.
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Introduction

Properties of quantum mechanical systems coupled to their environment, so-

called open quantum mechanical systems, generated great attention within the last

twenty years. The main reason might be the missing understanding of the process

when a quantum mechanical system looses its phase information and is becoming

a classical mechanical system. This transition is tried to be caught with decoher-

ence models [1] and was a subject of my own former work [2, 3]. But also for pure

quantum mechanical systems the openness is a very important property. Every

measurement of a quantum mechanical system means opening it. Decay processes

of e.g. nuclei can be characterized as open channels [4]. Even a laser is nothing else

but many coherent quantum mechanical states coupled to the environment via a

partial mirror.

In this thesis I will present three wave mechanical systems which are either opened

by absorbers or coupled channels, or perturbed by an external source. All three

projects are in the progress of publication as independent works [5, 6, 7].

In addition all three studied systems are motivated by quantum chaos. Quantum

chaos might be a misleading term. The Schrödinger equation cannot produce chaos

in a meaning of trajectories which diverge exponentially fast. This is due to the

linear time derivative and the impossibility of defining trajectories in quantum

mechanics. Quantum chaos refers to the quantum mechanical properties of cor-

responding classical chaotic systems.

One can speak of wave mechanical and quantum mechanical systems up to here

synonymously, because one can mimic quantum mechanics with a flat electromag-

netic cavity. The fundamental derivation of the equivalence of the time indepen-

dent Schrödinger equation and the Helmholtz equation, which describes the elec-

tromagnetic cavity is shown in the appendix A.

Already Poincaré found out, that classical Hamiltonian systems can lead to

irregular so-called chaotic behaviors. Many problems in classical mechanics seem
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Introduction

regular, e.g. pendula and two body systems. But in fact, the next complicated

systems like a three body system can show an irregular behavior. But the physical

world is not divided into regular and chaotic systems. As we know from the

system concerning the sun, the moon and the earth, there are also in three body

systems regular solutions, otherwise life on earth would not be possible. In the

first chapter we are interested in systems, which can show both regular and chaotic

behavior. That means that in these system it depends on the initial conditions, if

the motion is regular or chaotic. Classically it is not possible to start at one region

of the phase space and end up in the other region. In quantum mechanics this is

possible due to tunneling. I will introduce the effect of dynamical tunneling from

one classical phase space region to another which is separated due to its classical

dynamics in this chapter. As it will be shown, this effect can be enhanced by the

presence of additional states in the original phase space region. The enhancement

is called resonance-assisted tunneling and its experimental observation will be

the topic of the first chapter. Until now, only the coupling between two regular

resonances for a nearly integrable system was measured before [8].

In the second chapter of the thesis I will deal with the results of properties which

are typical for random matrix theory. This theory is suited to calculate both ana-

lytically and numerically spectral properties of fully chaotic systems [9]. Mainly

spectral correlations like nearest neighbor distance distribution of the eigenener-

gies can be calculated exact within this theory [10]. I will show experimental data

and numerical calculations for the correlation of the cross sections (σab) between

different channels (a, b, c, d) like C = 〈σabσcd〉 − 〈σab〉〈σcd〉.
We call this correlation function “channel correlation” to distinguish it from al-

ready analyzed correlations [11]. A complete definition will be given in the main

part (section II.2).

The correlation function is firstly interesting by itself. Would one expect that the

cross section between two different channels, which is in our case the transport

probability, is correlated with the cross section between two other channels? Espe-

cially if one is interested in the correlation as function of the channel coupling in a

regime, where the transport is not generated by a single mode of the system.

It turns out that the correlation with one index in common (either a = c or b = d)

is anticorrelated to the correlation with no index in common.

In the context of universal conductance fluctuations [12, 13] for the transmission

2



Introduction

through a chaotic medium, correlation functions of this type play an important

role. Continuum shell model calculations [14, 15, 16] show that the correlation

functions contributes in a non negligible way [17]. A discrepancy by a factor of 2

appears if one neglects these two correlation functions. I will give a short overview

in section II.1.2 of the universal conductance fluctuations and their relation to Eric-

son fluctuations.

I will present experimental results and compare them with numerics of random

matrices. A good agreement is found.

The third chapter deals with periodically driven wave systems. Periodically driven

or kicked quantum systems attract significant interest due to the substantial differ-

ence from their classical analogs. Already a simple model of the kicked rotor [18]

shows a saturation of the linear raise of energy of a particle as a function of the

number of kicks. This phenomenon was called dynamical localization due to its

similarity to Anderson localization [19, 20]. There were a few experimental demon-

strations using either highly excited hydrogen atoms (Rydberg atoms) in strong

microwave fields [21] or ultra-cold atoms within optical traps [22, 23]. However,

these experiments require a rather complicated experimental setup and usually do

not provide a possibility for a large variation of parameters. The main and also

future goal is to introduce a microwave experiment, where an intuitive and com-

prehensible description of dynamical localization is possible.

Up to now only time-independent systems have been studied with microwave

techniques. To realize time-dependent microwave cavities one has to vary either

the physical shape, i.e. moving a wall or inset, or its electrical properties. The

introduction of a device being the first step of a realization of time-dependent mi-

crowave setups is the subject of the third chapter. I will show that a simple circuit

with an integrated changeable capacity obeys all basic requirements. The setup

was started to be analyzed already in my Diploma thesis [3]. There arose a lot

of problems with an adequate description of the setup and also teething troubles

with new measurement equipment had to be overcome. Meanwhile these prob-

lems could be solved.

Since the changeable capacity is performed by a varicap, nonlinear effects can arise.

Firstly, I will restrict myself to the linear regime, but the nonlinear regime will be

introduced in a later section.

The chapter is structured in the following way: At first I introduce the experimental

resonance circuit and characterize its properties by static measurements. In section

3
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III.2.2 I give hand waving arguments for some of the expected results. Thereafter,

I derive theoretically the sideband structure characteristics for different drivings in

the single resonance approximation and compare them to numerical calculations.

In section III.2.4 I present the experimental Floquet results and compare them to the

theoretical predictions (see III.2.3) and numerics. The investigation and theoretical

as well as numerical comparison of the experimental results are in the process of

publishing [7].

As future works I will present the investigation of nonlinear effects for the single

driven system. At the end I will show the next and probably the most complicated

step to construct two setups, where more than one resonance can be varied by an

external parameter. This opens up the field of time-dependent wave mechanical

systems.

4
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I. Experimental observation of resonance-assisted tunneling

I.1. Motivation

The investigation of resonance-assisted tunneling is of course not the first step to

understand quantum mechanical systems with a mixed phase space [24]. During

the last 30 years many publications with great relevance appeared on this topic.

From statistical properties like amplitude distributions [25], autocorrelation func-

tions [26] and trace formulas [27, 28] to Weyl law characterizations [29, 30] many

questions were asked and answered. Also microwave experiments were used to

investigate this topic [31, 32], mainly on direct tunneling from regular islands to

the chaotic sea.

I.1.1. Dynamic tunneling in systems with mixed phase space

Tunneling through a potential barrier is one of the first examples physicists tell peo-

ple without an education in physics to demonstrate counterintuitive propositions

in quantum mechanics. Also in the basic lectures on quantum mechanics it plays an

important role due to its easy applicability in many fields of modern physics (scan-

ning tunneling microscopy [33], radioactive decay [34], etc.). The main issue is that

the quantum mechanical wave function decays exponentially in a potential barrier

with a higher energy than the considered state and if the barrier is ending, the state

has a remaining probability density proportional to e−cd. Here d is the length of

the wall and c is the so-called tunneling rate, which depends on the height and

the width of the barrier. This means a quantum particle can tunnel through such a

barrier, hence one speaks from a tunneling process.

Going one step further in a quantum mechanics lecture, one can see that the tun-

neling effect leads to a break down of degeneracy if two identical potential wells

are coupled via a finite barrier [35, 36]. Sometimes students have to calculate the

spectrum of the double-well-potential to test semiclassical methods, namely the

WKB-approximation [37], where one can see the connection between the tunneling

rate c and the level repulsion of the ground state. The tunneling effect is leading to

mixed wave functions due to a non vanishing overlap.

In 1981 Davis and Heller discovered in numerical calculations of vibrational modes

of molecules exactly such a mixing of modes [38]. The surprising new finding was

that the two mixing modes belonged to two different parts of the classical phase

6



I. Experimental observation of resonance-assisted tunneling

space. This means in analogy to the double-well potential that tunneling from one

classically isolated area to another is possible. They called this effect “dynamic

tunneling” to distinguish it from tunneling through a potential barrier, which is

not existing in this context. From the mixing of the modes and the level repulsion

of the concerned eigenenergies a tunneling rate can be extracted.

As a conclusion to the similarity to the double-well potential, the tunneling rate γ

determines the exponential decay for one state placed at one part of the phase space

towards another classical region of the phase space. In theoretical investigations of

this tunneling effect typically the tunneling from a state inside a regular island to

the surrounding chaotic sea is analyzed.

A natural question is now, how this tunneling rate behaves as a function of 1/heff.

Here heff is the effective Planck constant and means the ratio h
S of the Planck con-

stant and the typical action of the system. Typically this means that for increasing

energies, 1/heff goes to zero. Since one is going to the semiclassical regime it is clear

that the tunneling rate has to decrease, because tunneling is impossible in classi-

cal mechanics. In fact Hansen, Ott and Antonsen showed some years after Davis

and Hellers finding that the tunneling rate decreases exponentially as a function of

1/heff [39].

I.1.2. Resonance-assisted tunneling

It took almost twenty years until deviations were found, now in the dependence of

the tunneling rate γ on 1/heff, in numerical calculations of maps with mixed phase

space. The observed deviations showed sharp peaks and plateaus at certain values

of 1/heff and could thus not be explained by a simple correction of the exponent.

In figure I.1 an overview of this effect is given (with kind permission of the authors

of [40], here the standard map is used). In the lower left corner one can see the

classical phase space with one regular island (red) and the chaotic sea (blue). The

blue points correspond to the numerically evaluated tunneling rates for different

modes. At the beginning one can see the overall exponential decay (predicted by

[39]) of the tunneling rates for the different modes (blue points) as a function of

1/h, in particular for the first seven or eight resonances. The main deviations are

manifested in the relatively sharp peaks e.g. at 1/h ∼ 30 (note that the authors are

using dimensionless units).

7



I. Experimental observation of resonance-assisted tunneling
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Figure I.1.: Tunneling rates for an one dimensional kicked system as a function of
1/h (with kind permission of the author of [40]). In the lower left cor-
ner the corresponding classical phase space representation (red regu-
lar islands, blue chaotic sea) is shown. The points are the numerical
results. The grey lower solid line corresponds to semiclassical calcula-
tions. The dashed line is predicted by only considering direct dynam-
ical tunneling. The solid line, which is in nearly perfect agreement
with the numerical points, is quantum mechanical theory consider-
ing resonance-assisted tunneling. The phase space sketched above the
lines symbolizes the pathways of resonance-assisted tunneling (Copy-
right 2010 by the American Physical Society).

Heuristically, these peaks can be understood as possible enhancement of the tun-

neling if the eigenstate in the center of the island is coupled to a regular state which

is living closer to the boundary of the two areas (see for example the sketch above

the peak at 1/h ∼ 30). This second regular state can tunnel much faster to the

chaotic sea. Of course these two regular states need to have nearby energy levels.

The enhancement could be described semiclassically some years ago [41, 42]. In

this system the grey solid line corresponds to the semiclassical calculations. As this

system is the standard map, it is even possible to find an expression for the tun-

neling rate (solid black line, [40]), which combines direct and resonance-assisted

tunneling.
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I. Experimental observation of resonance-assisted tunneling

Up to now it is not possible to find such an expression for an arbitrary billiard

system. The problem is that one needs a fictitious integrable system to calculate

the overlap of the regular modes with the chaotic sea. There are a few examples

where it seems to be not so hard to find an adequate fictitious integrable system

[43]. This is the main reason why in the following chapter experimental data can

be compared only to numerical results. Nevertheless, time will show if there will

be an adequate analytical expression for resonance-assisted tunneling in billiard

systems.

9



I. Experimental observation of resonance-assisted tunneling

I.2. Experimental proof of the existence of

resonance-assisted tunneling

I.2.1. Model system, experimental realization and its

characterization

In the following part of this thesis an introduction to the model system and its

experimental realization is given.

First one should clarify which requirements have to be fulfilled by the experiment.

Afterwards one can think about optimizations and issues that might improve the

recognizability of resonance-assisted tunneling.

Model system

To show resonance-assisted tunneling in a billiard system it is necessary to have a

system with a mixed phase space. Additionally one needs a periodic orbit structure

which couples better to the continuum. For simplicity, a sharp boundary between

the regular islands and the chaotic sea without a hierarchical structure of smaller

islands is preferable. Then in the best case only one periodic orbit near the bound-

aries can enhance the quantum mechanical tunneling rate.

In collaboration with my colleagues in Dresden we decided to use a desymmetrized

cosine shaped billiard. In figure I.2 (a) the boundary of the billiard is plotted, in

(c) and (e) the phase spaces are shown (for aesthetic reasons the phase space of

the fully symmetrized billiard (mirrored at the left boundary) is plotted). Every

point in the phase space (precisely one should speak about the Poincaré section)

corresponds to a collision of a point-like ball with the boundary. The abscissa refers

to the place at the boundaries (circumference scaled to 1; started at the right lower

corner) and the ordinate represents the sine of the incidence angle of the incoming

ball to the boundary. The blue points mark the chaotic sea. In red and orange one

can see the regular island structure.

The parameters of the billiard (amplitude of the cosine and distance to the bottom

wall) are chosen in such a way that the period 3 orbit (see figure I.2 (c),(e) in orange,

notice that for the symmetric billiard the period 3 orbit becomes a period 6 one,

10



I. Experimental observation of resonance-assisted tunneling

(a)

(c)

(e)

(b)

(d)

(f)

Figure I.2.: Sketch of cosine shaped billiards (a) and (b) and their classical phase
space representations (for aesthetic reasons the Poincaré plot of the
symmetrized billiard (mirrored on the left wall) is plotted). The phase
spaces (c) and (d) correspond to the billiards (a),(b) respectively, where
(e), (f) show zooms to the black boxes in (c), (d).
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I. Experimental observation of resonance-assisted tunneling

thats why one can see 6 orange islands in (c) and (d)) of the regular island cover a

huge area in the island.

To avoid the hierarchical structure and to give the modes corresponding to the

period 3 orbits a sufficient high direct tunneling rate we placed a half circle on the

bottom boundary (figure I.2 (b)). One can see that this does not affect the regular

orbits up to a critical value. At that value there is now a clear boundary between the

regular island and the chaotic sea. It can be seen that now the hierarchical island

structure in the chaotic sea is destroyed (compare figure I.2 (e) and (f)) and in the

wave mechanical situation only via the period three orbit an enhancement of the

tunneling rate is expected.

The main advantage of this system is the simplified extraction of the tunneling

rates. In former experiments [31] one had to analyze the avoided crossings of reg-

ular modes with chaotic ones. This complicated extraction of tunneling rates is in

the current device not longer necessary. The wave functions belonging to the two

different parts of the classical phase space are differently distributed in position

space and thus the tunneling can be extracted by introducing an absorber.

Therefore in figure I.3 (a) and (b) regular and chaotic classical orbits are plotted.

Below (figure I.3 (c) and (d)) one can see typical quantum mechanical wave func-

tions 1. The wave functions corresponding to the regular orbits show a nice similar-

ity to wave functions of a rectangular billiard (infinite high two dimensional rect-

angular potential well). To classify these wave functions we introduce a horizontal

(n) and vertical (m) wave number. In the case of figure I.3 (c) it is n = 2, m = 17. We

will call resonances with a horizontal wave number n = 1 up to now first modes,

with n = 2 second modes and so on. Only the chaotic modes are spread over the

whole billiard, whereas the regular modes are concentrated near the left wall. This

can be understood from a semiclassical point of view. Regular classical orbits like

in figure I.3 (a) are concentrated near the left wall. The focussing first part of the

cosine is leading to stable periodic orbits. An arbitrary chaotic orbit (figure I.3 (b))

shows that the corresponding wave function should also spread over the whole

billiard (compare figure I.3 (d)). This is in accordance with the so called semiclassi-

cal eigenfunction hypothesis which predicts, that the eigenstates only concentrate

on one part of the divided phase space, either the regular islands or the chaotic

1At this place I want to thank Steffen Löck for his procedures to calculate the quantum mechanical
wave functions in Python.
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I. Experimental observation of resonance-assisted tunneling

(a)

(c)

(b)

(d)

Figure I.3.: Regular (a) and chaotic (b) periodic orbits. Arbitrary wave functions
from the regular island (c) and from the chaotic sea (d).

sea [44, 45]. This hypothesis can be understood as a consequence of the correspon-

dence principle. In the limit of classical mechanics states have to concentrate along

the classical orbits.

This spatial separation of the regular wave function is directly leading to the idea of

placing an absorber at the right part of the billiard. Thereby we identify the chaotic

sea with the continuum. If the absorber is working well, the chaotic modes should

not be observable anymore. In addition the tunneling rate which predicts the time

constant of the exponential, now predicts the decay to the absorber. Under the

assumption that the absorber works perfectly, the tunneling rate can be identified

directly with the time constant of the decay of the whole wave function itself. By

a Fourier transformation the decaying exponentials in the time domain transform

to Lorentz curves in frequency domain [46, 47]. The decay rates are thus related to

the widths of the measured microwave resonances.

The modes belonging to the inner part of the regular island (red lines in figure I.2

(f), right bottom) have horizontal wave numbers of n = 1, 2 or 3. The horizon-

tal fourth, fifth, and sixth modes are corresponding to the period three orbits (in

orange in figure I.2 (d) and (f)). Thinking of a situation like in figure I.1 the tunnel-

ing rate of the first modes can be enhanced by the fourth, the tunneling rate of the

second modes by the fifth and so on.

13



I. Experimental observation of resonance-assisted tunneling

(a) (b)

Figure I.4.: Photograph of cosine shaped billiard (a) and typical spectra (b).
On the photograph one can see the copper cavity with a size of
60 cm×30.96 cm×1 cm and the absorber (grey foam mat right). In
(b) in black the spectrum for the closed cavity without absorbers, in
red the spectrum for the open system (with absorbers) and in the
blue dashed lines the numerically calculated positions for the regu-
lar states.

Experimental setup and data evaluation

A photograph of the setup is shown in figure I.4 (a). The resonator is fabricated

by the mechanical workshop with a precision of 0.1 mm out of oxygen free copper,

which has a high conductivity to minimize the Ohmic losses (compare figure I.6

and corresponding text passage (equation (I.6))). The height of the cavity is 1 cm

so by equation (A.3) for frequencies up to 15 GHz only TM0 modes are excited

and the describing Helmholtz equation is fully equivalent to the two dimensional

Schrödinger equation (compare appendix A).

The length of the resonator is 60 cm and the width is on the left side 30.96 cm

and on the right side 24 cm. At the bottom boundary one can see the movable

half circle with a radius of 18 cm. The black foam mat is the absorber. With a

rough estimate one can see, that the absorber works in a frequency range from
speed of light

length of absorber ∼ 300000 km/s
20 cm ∼ 1.5 GHz (the absorber should be at least as long as

the wavelength) to speed of light
mean free path ∼ 300000 km/s

1 cm ∼ 30 GHz (the substructure of the

absorber should be at least of the order of the wavelength). In figure I.4 (b) one

can see how good the absorber is working. In red the spectrum with absorber is

plotted. In the background the black curve is a spectrum without the absorber and

a closed right end (the left end is of course every time closed). The vertical blue
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I. Experimental observation of resonance-assisted tunneling

dashed lines indicate the numerically calculated regular resonances. One can see a

very good agreement according to our argumentation. The regular modes are min-

imally affected, whereas modes not related to the islands are so much broadened

that they cannot be observed in the red spectrum anymore. Indirectly the regular

modes should be affected by resonance-assisted tunneling, but in this plot (figure

I.4 (b)) this is not observable.

It is known for years that for microwave billiards with a cylindric dipole antenna

the so called billiard-Breit-Wigner formula describes the scattering matrix similar

to nuclear physics [9, 48, 49, 50]:

S11(ν,~r1) = 1 − i ∑
n

Re(λ)ψn(~r1)ψ∗
n(~r1)

ν2 − ν2
n − i

2Γn

; Γn = 2Re(λ)ψn(~r1)ψ∗
n(~r1). (I.1)

The widths Γn of these resonances are just appearing by opening the system due

to the measurement. That is why they are also called the antenna widths. The

width depends on the coupling parameter λ of the antenna (typically frequency

dependent) and on the magnitude of the wave function at the position of the an-

tenna. In principle the coupling is additionally leading to a shift of the resonance

position. Due to the fact, that we do not want to compare the position with theo-

retically or numerically evaluated positions, we neglect this shift. The constant 1

in equation (I.1) is not realizable in the experiments. Due to the finite length of the

dipole antenna and the occurring capacity by the passing of the antenna through

the top plate there is an additional phase response of the reflection signal. This

phase response can be either calibrated by a phase calibration (as it will be done

in the experiments in chapter II, compare appendix H) or considered by fitting the

underground of the reflection signal and taking the modulus of the amplitude. In

this special situation we are interested in the properties of sharp resonances and a

phase calibration cannot be performed in an accuracy of the order of the widths of

the resonances. So taking the modulus of the amplitudes should be more suited

and is chosen in this chapter.

In our case the resonances νn are not just real numbers. Two additional effects are

contributing to an imaginary part. The first is the broadening due to the tunneling

to the chaotic area of the billiard and the connected absorption. The second contri-

bution is the Ohmic loss caused by the skin effect of the electromagnetic waves in

the metallic boundaries. In order to minimize the Ohmic loss a copper cavity was
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I. Experimental observation of resonance-assisted tunneling

chosen due to its good conductivity compared to the price (silver e.g. has only a

better conductivity by 2-3%). Therefore equation (I.1) now looks like [49]

S11(ν,~r1) = 1 − i ∑
n

Re(λ)ψn(~r1)ψ∗
n(~r1)

ν2 − (νn − i
2 γWall − i

2 γAbs)2 − i
2Γn

. (I.2)

The Breit-Wigner formula can be transformed to a Lorentzian line shape by using

the binomial law and the assumption, that the real part of ν̃n = νn − i
2γWall − i

2γAbs

is large compared to its imaginary part (typical ratio of the order 103),

S11(ν,~r1) = 1 − i ∑
n

Re(λ)ψn(~r1)ψ∗
n(~r1)

(ν − ν̃n)(ν + ν̃n)− i
2 Γn

(I.3)

∼= 1 − i ∑
n

Re(λ)ψn(~r1)ψ∗
n(~r1)

(ν − ν̃n) · 2 · νn − i
2Γn

(I.4)

= 1 − i ∑
n

Re(λ′)ψn(~r1)ψ∗
n(~r1)

ν − νn − i
2γn

; γn = γAnt + γWall + γAbs , (I.5)

where γAnt = Γn/2νn as well as λ′ = λ/2νn.

In all measurements the antenna is placed at the left part of the billiard near the

boundary (see crosses in figure I.2 (b)). The goal is to excite all regular modes

of at least one horizontal wave number. The neighborhood to the boundaries is

meaningful because the wave functions of the regular modes do not have a nodal

line in this region and are of the same order of magnitude. Also in order to excite

modes with higher vertical mode number an antenna position near the boundary

is suitable, because the wave function amplitudes do not change as fast as for an

antenna position in the center.

To justify the chosen antenna positions in figure I.5 the amplitudes of the wave

function at the position of the antenna are plotted. The contribution of the wave

function to the width is declared in equation (I.1). As one can see the amplitude

oscillates much faster for an antenna position just a few centimeter further in the

middle of the cavity (black curve).

In textbooks for electrodynamics (compare e.g. chapter 8.8 in [47], an application in

[3]) it is shown that the skin effect (γWall) is leading to Lorentzian line shapes, where

the width depends on the frequency, the type of the mode (TM or TE modes) and
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I. Experimental observation of resonance-assisted tunneling

Figure I.5.: Modulus square of amplitude of wave function for different places in
the cavity. The curve of each color corresponds to the antenna posi-
tion in the inset of the same color. With respect to a coordinate system
on the lower left corner of the billiard, the antenna positions are: posi-
tion 1 (28.8 mm,11.4 mm) - blue, position 2 (37.8 mm,299.4 mm) - red,
position 3 (150 mm,283.3 mm) - yellow, position 4 (84 mm,27.9 mm) -
black.

the value of the derivative of the wave function in normal direction to the boundary

of the billiard. The formulas are available for rectangular cavities with a justifiable

effort, but not for numerically calculated wave functions. A non perfect closing of

the billiard due to the finite number of screws, and the resulting not well defined

contact between side walls and top respectively bottom plate leads to deviations

from the theory. Another aspect is the surface corrosion. This effect might just lead

to deviations in the order of some percents (typically the skin depth of copper is

∼ 1 µm, the width of copper oxide is ∼ 5 nm [51]). To identify the Ohmic losses in

the analysis of the experimental results I took the overall frequency dependence of

the resonance width

γWall(ν) ∼
√

ν (I.6)

into consideration. In order to determine the proportionality constant various mea-

surements were performed with different antennas and at different antenna posi-
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I. Experimental observation of resonance-assisted tunneling

tions, to get rid of the effect of the antenna coupling. The billiard was closed and

no absorber was inside. In figure I.6 the width of all fitted resonances are plotted

as crosses (width as function of resonance frequency). One can clearly see huge

fluctuations of the widths of different modes at nearby frequencies. This is due to

the antenna coupling and the absorption of the side walls. The absorption induced

by the top and bottom plate should not fluctuate and could be understood as an

overall offset. This offset is taken into account by the square-root function plotted

in red.

Figure I.6.: Width of resonances as function of resonance positions (black crosses).
Different antennas at different positions were taken to eliminate γAnt

and no absorber was placed in the cavity to cancel γAbs. As solid red
line, the square root dependence of width as function of frequency
with reasonable proportional constant is plotted.

The consideration of the antenna coupling will be performed by using the direct

correspondence of the width (Γn in equation (I.1)) and the resonance amplitude

(Re(λ)ψn(~r1)ψ∗
n(~r1) also in equation (I.1)), which also holds under the assumptions

from equation (I.5). But this cannot be done as easy as for the width due to the

Ohmic losses. In the case of two resonances coming close in frequency, equation

(I.1) does not hold. The reason is the assumption of non-overlapping resonances

in the scattering theory derivation of equation (I.1) (see e.g. chapter 6.1 in [9]).

The spectrum can still be described by the same Breit-Wigner like line shapes but

now the relation of the amplitude (2Re(λ)ψn(~r1)ψ∗
n(~r1)) and the width γAnt is more
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I. Experimental observation of resonance-assisted tunneling

complicated. This will be explained by the help of figure I.7.

(a) (b)

Figure I.7.: (a) The coupling to the billiard in black, in yellow extracted values
for the resonance positions and in blue dashed a cubic approxima-
tion. (b) top: experimental distance of the first modes to the nearest
fourth. bottom: the amplitude of the Lorentz fits for only first hori-
zontal modes (n = 1; antenna position 1 (blue in figure I.2)(b)) in black
pluses, in red the amplitude of the wave function (numerics, scaled).
In yellow the product of the blue curve and the red curve in (a) (to
mimic the amplitude as 2Re(λ)ψn(~r1)ψ∗

n(~r1); no scaling factor). The
blue dashed line is an approximation for the amplitude of the form of
∼ ν3 sin2(dν) as one would expect it from the dependencies in (a) and
(b), whereas the black solid line corresponds to a linear approximation
for the values with nearby resonance.

In figure I.7 (a) the coupling as a function of the frequency is plotted. The coupling

can be extracted by 1−〈S11〉
1+〈S11〉 ([11, 50], see also chapter II). The average is taken over

different systems of the same size. I placed the movable half circle on all plane

sidewalls of the billiard at different positions and measured at different antenna

positions. The cavity was closed and no absorber was placed inside. After av-

eraging over approximately twenty systems and frequency windows of 100 MHz

the black curve in figure I.7 (a) arises. The slow increase of the coupling can be

explained by the short antenna (l ∼ 0.3 cm) in comparison to the wavelength of

the microwave signal (∼ 3 cm at 10 GHz, so l < λ/2) and the isolated sharp reso-

nances. Additionally a cubic function is plotted (yellow dashed line) to mimic the

frequency dependence in this range.

In figure I.7 (b) the modulus of the measured resonance amplitude is plotted

against the position of the mode in black pluses. To make the diagram meaningful,

only modes with the wave number 1 in horizontal direction are considered (n = 1).
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To explain the dependence, also the numerical values for the modulus squared am-

plitude of the wave function at the position of the antenna (blue point in figure I.5

(b)) are plotted in red. The red curve in figure I.7 (b) was multiplied with the cubic

behavior of (a) and the yellow curve arises.

To consider γAnt in the evaluation of the experimental data, there are three possibil-

ities. The first possibility is to directly subtract the measured amplitudes from the

experimental widths. This is the easiest way but not the best due to the critical ex-

traction of the antenna width for two nearby resonances. The next possibility is to

lay a straight line (black line in figure I.7 (b)) between the amplitudes you trust be-

cause of the sufficient distance to the corresponding fourth mode (compared to the

width). This avoids the non monotonic behavior in the case of resonance-assisted

tunneling (therefore on top of I.7 (b) the distance of the first mode to the nearest

fourth mode is plotted). The last possibility is motivated by the qualitative agree-

ment of the yellow curve in figure I.7 (b). One can assume that the amplitude as a

function of the frequency is given by ∼ ν3 sin2(dν). The squared sine is extracted

from the similarity to the red curve and in analogy to wave functions of rectan-

gular cavities. The cubic function is chosen because it fits best to the coupling.

Without any scaling parameter one can adapt this dependence to the experimental

data and gets the blue dashed line. One has to mention that the last procedure is

not automatically the most accurate. It is only an attempt to mimic the functional

dependence between 5 and 8 GHz. Especially for higher frequencies there might be

deviations due to the missing consideration of the real wave functions (for higher

frequencies the wave function compresses in x−direction) at the position of the an-

tenna. Nevertheless I decided to use this last possibility in this work. But in fact

it turns out that all three possibilities show a similar quantitative agreement (see

appendix C).

The main message of this section so far is that a quantitative examination of the

width of modes over several GHz is not suitable. I showed that one can extract

the two additional width contributions in principle. But a comparison to numeri-

cal data makes only sense by comparing the order of magnitude. Nevertheless it

is obvious, that one should minimize the two contributions as much as possible

(compare appendix B).

As it can be observed in figure I.4 (b) the resonances are quite sharp. In the case

of resonance-assisted tunneling the modes are coming so close in frequency that
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simple fit routines fail in trying to fit two resonances. In figure I.8 (a) a spectrum

with very close resonances and two fits are shown. The problem is that the rou-

tines need good starting points to find the global minimum. Otherwise only one

resonance will be fitted.

Due to the fact that a double line fit,

S11 ∼ aν + b − d1

ν − ν1
− d2

ν − ν2
(I.7)

has up to 6 complex parameters (complex background b with slope a, and

Lorentzian amplitudes d1, d2 and resonance position including widths ν1, ν2) it

is not manageable to find good starting positions by hand. There is another tool,

called harmonic inversion, to extract complex resonances out of a strongly overlap-

ping spectrum. In recent publications it has been shown that this tool is very useful

to extract statistical properties like counting functions [52] of eigenfrequencies or

width distributions [53]. I performed the harmonic inversion with a huge set of

parameters (up to 1000 parameter sets per fit). For each parameter I took the reso-

nances out of the harmonic inversion and used them in an additional double-line

Lorentz fit (see figure I.8 (a)). By comparing the deviations from the experimental

(a) (b)

Figure I.8.: (a) Measured spectrum in black double, line fit performed with start-
ing points from the harmonic inversion (red dashed) and single line
fit performed by Lorentz fit with insufficient starting parameters. (b)
Deviations of the two fits from the experimental data.

data one gets for the double line fit clearly better agreements to the experimental

data (in the case of figure I.8 about 60%). In the plotted deviations of the fits one

can see the not fitted second resonance (figure I.8 (b)). If the harmonic inversion
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found more than two resonances an additional fit with every pair of these reso-

nances was performed. Afterwards the χ-square tests (χ2 = ∑
N
n∈data

|datan− f itn|2
N )

were compared and the fit with the best reconstruction was chosen.

I.2.2. Brief description of numerically calculated result s

As the numerical calculations are performed by my colleagues in Dresden, I will

just give a brief introduction to the calculation of the numerical values we will

compare to the experimental data.

As it is very difficult to handle the open billiard system numerically, it was pre-

ferred to simulate the closed system. To extract tunneling rates one has to change

the system. As it was shown in the introduction, the tunneling rate can be extracted

from the avoided crossing between a chaotic and a regular mode (compare e.g.

[31]). Therefore instead of the half circle a piston downwards was attached in the

simulations. The piston begins at the starting point of the half circle and ends at the

right billiard boundary. By changing the depth of the piston, only chaotic modes

can be parametrically changed in such a way that they perform avoided crossings

with the stable regular modes (the regular modes are not affected by the piston due

to their vanishing wave function at the half circle (piston)). From the level repul-

sion one can calculate the tunneling rate Γqm. To transform the numerical tunneling

rate Γqm [54] into a width of a microwave resonance, one has to take the dispersion

relation into account. By going to the quantum mechanical case one has to consider

all solutions of the Helmholtz equation. In addition to every frequency νn also the

negative frequency −νn is a solution. Within a complete derivation (see e.g. section

4.1 in [55] or [56]) one gets for the quantum mechanical energy a proportionality

with the square to the frequency

E
qm
n ∼ ν2

n. (I.8)

The quantum mechanical width corresponds to

Γ
qm
n ∼ νnγn. (I.9)
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As the numerical calculations were not performed by myself, I do not go into detail

concerning the employed units and scalings. In the numerics everything is scaled

to the so-called typical length which is the length of the billiard, i.e. 0.6 m. For

simplicity h̄2

2m = 1 and thats why the energy in the numerics has the unit of 1
m2 .

I.2.3. Frequency dependent tunneling rates

From figure I.4 (b) it is clear that one can identify the modes which were analyzed

numerically. The numerically calculated widths are plotted in figure I.9 with red

empty circles. Let us shortly discuss the numerical expectations. For the first four

resonances of the first modes (figure I.9 (a) and (b)) an exponential decay of the

tunneling rate as a function of the resonance position is found. At approximately

4-5 GHz the influence of the corresponding fourth mode seems to start to become

relevant. This is not surprising by looking at figure I.7 (b) on the top. There at

5 GHz, the fourth mode is getting closer to the first. After having a high and sharp

peak at 6.5 GHz the widths are decaying very fast by loosing nearly two orders of

magnitude to the next resonance.

The experimental data is plotted in black plus symbols. In this section the results

for the antenna position 1 (blue point in figure I.2) are presented. The results for

the second antenna position and also the diagram to extract γAnt can be seen in

the appendix C. As it was mentioned before, the effect is superposed by two other

effects that broaden the resonances. It was shown in section I.2.1, that this effects

can be considered in an approximative way. To visualize them in figure I.9 (a)

the frequency dependence of the wall absorption (γWall) and the antenna coupling

(γAnt) are shown.

For the wall absorption (dotted in blue) the square root behavior of figure I.6 was

used. The antenna coupling could be considered by the dashed yellow line which

is the same as in figure I.7 (b).

The results of the corrections can be seen in figure I.9 (b) for the first mode (black

crosses). A good agreement between the numerical predictions and the experi-

mental results is found. The peak of the enhanced tunneling rate due to resonance-

assisted tunneling might be shifted a little bit to lower frequencies. This is due to

experimental imperfections, mainly coming from the uncertainty of the half circle
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(a) (b)

(c) (d)

Figure I.9.: Experimental and numeric resonance width (in the case of numerics
calculated out of tunneling rates) as function of the resonance posi-
tion. In (a) pure data with contributions of partial widths (blue dashed
and yellow dotted line). In (b) (first), (c) (second) and (d) (third) hori-
zontal mode series with modified experimental data.

position. Numerically it was tested that for deviations of the order of the position

uncertainty of the half circle a shift of the order of 1 MHz is possible. We will see in

section I.2.4 that even this shift can change the situation of the tunneling slightly.

As it was mentioned before in appendix C the results for the other two modification

possibilities are shown.

In the case of second (figure I.9 (c)) or third (figure I.9 (d)) horizontal modes it

was not possible to find such a good quantitative agreement. Qualitatively the

exponential decay of the tunneling rate can be seen. The resonance-assisted tun-

neling is not observable any more. The rapid increase around 9 GHz in figure I.9

(c) might be an indicator for resonance-assisted tunneling. After 9.5 GHz the in-

crease becomes lower, so in between these two slopes there could be a peak-like

structure on a smoother background. But because of the missing decrease of the
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widths afterwards this cannot be taken as an example for resonance-assisted tun-

neling. At least for the third horizontal modes the increase for the tunneling rate

at the numerically predicted frequency position is not observable any longer. In

both cases the underground structure of the width does not allow an observation

of the enhancing effect. This problem can be explained by the complex correction

procedure. The modification was performed for second and third modes like for

the first. In the case of the second mode the resonance-assisted tunneling takes

place at the maximum of the amplitude dependence, so no suitable approximation

for this dependence can be found (compare figure C.3 in appendix C). In case of

the third mode the overall exponential decay can be found as predicted but for

higher frequencies the absorption correction might fail. So this nearly constant

width distribution is too high to extract the enhanced tunneling effect. Even for

the first modes one can see that for resonances above 8 GHz the widths are staying

constant. In fact the parameters were chosen in a reasonable way but there were

too many free scaling parameters to trust them overall. E.g. a small error in the

square-root behavior of the wall absorption is leading to a large effect for higher

frequencies. For all three series of modes a deviation for the exponential decay is

found. Especially for lower frequencies the resonances should be much broader.

This deviation can be explained by the non perfect absorber. The absorber qual-

ity is frequency depending and as I have shown in the beginning it starts working

around 1.5 GHz. Nevertheless the absorber is not perfect and so a lower resonance

width is possible. In addition the wall absorption is also mode depending (com-

pare [47] for rectangular modes), which cannot be taken into account.

After finding this good agreement with the numerical predictions for the first

modes one has to admit that the deviations for the second and third modes allow

not yet a clear proof of resonance-assisted tunneling. There are several parame-

ters with uncertainties in the correction process. The overall problem is that the

correction terms depend too much on the features of every single mode.

The solution is to focus on only one resonance and try to eliminate the cause of the

resonance-assisted tunneling.
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I.2.4. Parametric proof of resonance-assisted tunneling

In the previous section we discussed the results of mode dependent tunneling rates.

As mentioned at the end it is necessary to vary our system such that the resonance-

assisted tunneling effect is eliminated. Remembering the trick to simplify the struc-

ture of the phase space in section I.2.1, one finds a relatively easy way to manage

that. By including a half circle on the lower boundary one introduces a well defined

border between the two phase space regions. By shifting the half circle to the left

boundary one can vary the outer border of the island. The quantum mechanical

states living on the outer part of the islands are influenced most. As one can see

in figure I.2 the period three orbits are comparatively close to the boundary. They

are affected more than the states in the inner part (the 1st, 2nd and 3rd modes). This

can be also understood by the approximation of the regular modes as rectangular

wave functions. If one thinks about a hard wall instead of the beginning of the half

circle shifting to the left, it is obvious that wave functions of higher horizontal wave

numbers are affected more than those with lower ones. For both wave functions it

might lead to a larger frequency because of the smaller wavelength in the direction

to the half circle/hard wall.

To verify resonance-assisted tunneling the peak in the widths of the first mode in

figure I.9 (b) (at approx. 6.4 GHz) was analyzed. By shifting the half circle in units

of 0.6 mm to the left wall it was tried to eliminate the resonance-assisted tunnel-

ing effect. The presented measurements were performed at antenna position 2 (red

point in figure I.2 (b)). There were also measurements performed at antenna posi-

tion 1. But for these measurements a slightly different dipole antenna with a higher

coupling was used. The results are presented in appendix B.

In figure I.10 (a) - (d) one can see the behavior of the two resonances as a function of

the half circle positions (in the lower left corner a sketch of the positions is plotted).

One can clearly see that one resonance is nearly immobile and the other resonance

is shifted to higher frequencies as predicted. One should now take a closer look at

the behavior of the resonances as a function of the shift of the half circle.

In figure I.11 the dependence on the half circle position is plotted. The first impor-

tant fact is that the resonances get very close in the real parts. The distance is only

one order of magnitude higher than the frequency resolution of the measurement

device and of the order of the width of the resonance. At 0.5 in dimensionless units
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(a) (b)

(c) (d)

Figure I.10.: Spectra including double Lorentzian fits for 4 different half circle po-
sitions. Black curves are data, red dashed lines fits and blue solid
lines fitted positions of the resonances.

the setup is at its original condition (see figure I.2 (b)). If one shifts the half circle in

the direction of the left wall, that means going to the left in the diagram, the fourth

mode is shifted to a higher frequency, whereas the first mode is stable. The fourth,

which is living in the phase space near the boundary to the chaotic sea, is also af-

fected in the width. For higher perturbations (the half circle is coming closer to

the left wall) the width is increasing. This seems to be an obvious relation, but we

will see later that the dependence of the width on the tunneling enhancing mode

is not trivial. The most important observation is the clear decrease of the width of

the first mode. While the fourth mode is getting away from the first in real part,

the first mode is losing width. Thinking in the other direction that means, if the

two modes are coming close in frequency (position) the width of the observed first

mode is becoming larger. Because of the identification of the width in our setup

with the tunneling rate in the corresponding quantum mechanical billiard, this is

the proof of resonance-assisted tunneling. The width of the first mode is decreasing
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Figure I.11.: Resonance positions and widths of the two interacting modes near
6.42 GHz as a function of the half circle position. On top resonance
positions of the first (black pluses) and fourth (red diamonds) mode.
In the middle the width of the fourth mode and on the bottom the
width of the first mode.

from 1.6 MHz to 1.2 MHz. The difference is of the order of the height of the peak in

the numerical data.

To understand the effect in our setup in more detail and also to verify the found

resonance-assisted tunneling quantitatively it is reasonable to look for a more sig-

nificant situation, where two modes are coming close in resonance position. There

is no reason why only these two modes (figure I.11) should come close in en-

ergy. One can even create resonance-assisted tunneling parametrically. Each fourth

mode should be affected by the shift of the half circle more than the first modes. If

we take a closer look at the first and the fourth modes around 5 GHz one can see a

clear crossing of the two modes just next to the original circle position (see figure

I.12).

In figure I.12 the parametrically dependence of the two modes at 4.97 GHz are vi-

sualized like in figure I.11. In the upper part one can see a clear crossing of the
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Figure I.12.: Resonance positions and widths of the two interacting modes near
4.97 GHz as a function of the half circle position. On top resonance
positions of the first (black pluses) and fourth (red diamonds) mode.
In the middle the width of the fourth mode and on the bottom the
width of the first mode. In all three diagrams underlying numerical
results from a (3 × 3)-matrix model are shown as lines.

two modes, at least in the order of the experimental resolution. The corresponding

fourth mode is crossing the stable first mode under a higher angle than the fourth

mode did in figure I.11 (note the different scales on the y-axis in the upper plots in

figures I.11 and I.12). This is why the peak in the half circle position-width plot is

much sharper. Also here one can see clearly the signatures of resonance-assisted

tunneling. It is not the only example for such a clear crossing behavior (compare

appendix D). But as mentioned in the last example, the width dependence of the

fourth mode is not easily explainable. A simple explanation for this is given in the

next paragraph.

To quantify the parametrical dependence of the tunneling rate an approximation of

the Hamiltonian by a matrix is suitable (see e.g.[57]). As we want to understand the

crossing behavior, the matrix has to contain a (2 × 2) sub matrix with the first and
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the fourth mode on the diagonal. For the first mode the stable position is appro-

priate, whereas the fourth mode should show a linear drift in the position. For the

widths one should take the values far away from the crossing. From calculations

with (2 × 2)-matrices one can see that only if the off diagonal matrix elements are

either real or purely imaginary the modes can cross in the real part (resonance posi-

tion). As it is known from semiclassics [41, 42] and also from quantum mechanical

calculations [40] the two modes are coupled via a so-called Vr:s term (here r = 3

and s = 1). This is a property which can be extracted from the classical phase space

[40, 58, 59]. In our case it is a real number, only depending on the horizontal mode

number. As the trace of the matrix is invariant, one needs at least one additional

state to create the asymmetric width dependence of the two modes. The easiest

possibility is to use a (3 × 3)-matrix.

In scattering through an open quantum mechanical system the openness can be

described by open channels. Especially in nuclear physics effective Hamiltonians

have been used to simulate open systems (for a detailed description see chapter

6.1.3 in [9] or [60], typical examples [4, 61]). In the case of a billiard opened by an

absorber the effective Hamiltonian is of the form

H = H0 − iWW†, with wnk =
∫

ψn(~r)u∗
k (~r)d~r. (I.10)

Here ψn(~r) is the wave function in the billiard, but now with modified boundary

conditions due to the open channels (can be understood as an open wall, at the line

where the absorber begins) and uk(~r) is the wave function of the kth channel (in

this case the wave function of a wave guide). For simplicity the absorber would

be represented by the number of wave channels of width λ/2 covering the line the

absorber starts (here approximately 18 cm in top of the half circle).

The principle ansatz was e.g. used to calculate width distributions of the eigenval-

ues of H, where interesting effects like resonance trapping [62] appears. Resonance

trapping means in simple words that in case of strong coupling to open channels

actually not all resonances are becoming broader. Only a few resonances are taking

so to say the main part of the width and the rest is becoming sharper. This is similar

to our situation. Due to the invariance of the trace of our (3 × 3)-matrix the third

mode has to become broader. This similarity was the motivation of the application

of the WW† ansatz.
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Since the third mode represents the chaotic sea it should be really broad. The

coupling to the regular modes is, according to equation (I.10), proportional to the

overlap of the regular modes and the channels. In our case the channels are the

absorber, so the coupling should be of the order of the direct tunneling rate of the

modes. This is leading to nearly no coupling of the first mode to the chaotic mode

(so H13 = H31 ∼ 0). As we are measuring the poles of the Helmholtz equation one

firstly has to calculate the quantum mechanical energies (E) and tunneling rates (Γ)

from the resonances like in equations I.8 and I.9. Now the assumed Hamiltonian is

in detail

H =




E1 − i
Γnat,1

2
V3:1 0

V3:1 E4(d) − i
Γnat,4

2
−i

Γdir,4

2
0 −i

Γdir,4

2
Echaos(d) − i

Γcont

2




. (I.11)

To verify the numerical found V3:1, the values of Γdir,4, Echaos(d) (with offset and

slope) and Γcont were used as free fitting parameters. The values E1 = 10833 1
m2 ,

Γnat1 = 2.4 1
m2 and Γnat4 = 53 1

m2 are extracted from figure I.12 and transferred to the

energy axis (equations (I.8) and (I.9)). The results can be seen in figure I.12 (blue

and yellow lines, the quantum mechanical energies and widths were calculated

back into a frequency axis) for the two sharpest resonances. An amazing agree-

ment with the experimental results is observed. The fitted parameters are on the

energy scale Γdir,4 = 151 1
m2 , Γcont = 305 1

m2 , what corresponds on the frequency axis

to a width of about γcont = 70 MHz. The chaotic mode crosses the first mode near

the other crossing point with a slope, which is approximative the same as E4(d)

but in the opposite direction. The main output is that the used V3:1 is just deviating

about 10 % from the numerically calculated one (the fitted value is V3:1 = 2.2 1
m2 in

comparison to the numerically evaluated V3:1 = 2.0 1
m2 [54]). Using the simplifying

(3 × 3)-matrix approach for an open system one can extract the resonance-assisted

tunneling rate Vr:s sufficiently. Also if one takes the frequency dependence of Γdir,4

as given from the open system and solves just a (2 × 2)-matrix model, the same

good agreement for V3:1 can be found (see appendix E). But what is the physical

origin of this third mode, which is necessary for our model? The first surprising

fact is the width of this resonance. For a chaotic nearly completely absorbed reso-

nance one would perhaps expect a width of the order of some hundreds of MHz.
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In fact, it turns out that for a non perfect absorber the widths of the affected res-

onances are going with γ = −∆ ln |R| (appendix F). Here ∆ is the mean level

spacing of the whole system and R is the reflection coefficient for the amplitudes.

Due to the logarithmic dependence of the widths and a reflection coefficient of ap-

proximatively 2-3 percent, the widths are just of the order of three to four times

the mean level spacing. The Weyl law [63] for the half resonator (only the part

starting from the left wall to the beginning of the half circle is considered) predicts

a number of resonances of N(ν) ∼ A·π
c2 · ν2, which is leading to an approximate

mean level spacing of ∆ ∼ c2

2A·π·ν which is 32 MHz at 5 GHz. So the width of the

expected channel/chaotic resonance might be of the order of 125 MHz. The real

origin of this resonance could not yet be found. One only can suppose where these

resonances come from. One possibility is given by the fractal repeller between the

half circle and the upper cosine shaped wall (for an introduction in fractal repellers

see [64, 52]). A second possibility are standing waves between the left wall and the

absorbers.

32



I. Experimental observation of resonance-assisted tunneling

I.3. Conclusion

In the last chapter I presented the experimental observation of resonance-assisted

tunneling.

First modes corresponding to one regular periodic orbit were analyzed. There, for

one series of modes, a very good agreement to the numerical expectations was

found (figure I.9 (b)). For the other two possible series of modes the agreement was

not convincing (figure I.9 (c),(d)). This was caused by a complicated procedure to

extract the tunneling rates from the experimental data, which obviously fails for

higher frequencies. To proof the found enhancement of tunneling, the origin of

the effect, i.e. the nearly degeneracy of two regular modes was destroyed by para-

metrically changing the system. Here a clear proof was presented (figure I.11). To

extract the coupling parameter between two regular modes a situation was pre-

sented where a clear crossing appears (figure I.12). In this case a good agreement

with the numerically predicted value was found. Additionally another aspect con-

cerning the width of the second mode was found. This could be explained by

an extended matrix model (equation (I.11)) in the context of resonance trapping.

As discussed in the last section the question of the origin of the third mode re-

mains open. Nevertheless, it was shown that this does not affect the quantitative

and qualitative agreement of the resonance-assisted tunneling effect. As only for a

nearly integrable system the coupling between two regular modes was measured

before [8], this work is the first experimental proof of resonance-assisted tunneling

for a system with mixed phase space.
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II. Channel correlation in transport through chaotic wave mechanical systems

II.1. Motivation

In this chapter I will show experimentally and numerically determined correlation

functions of the transport through a chaotic microwave cavity. In the context of

quantum chaos many models are known among which random matrix theory is

suited to calculate correlation functions as the past has shown [11]. That is the

motivation for a short introduction into random matrix theory. Then I will show

the importance of the chosen correlation function and explain why we can use mi-

crowave devices to study results from nuclear physics.

In the main part I will stepwise define the correlation function, introduce the setup1

and show the analyzing procedure. Since the numerical results, which were com-

pared to the experimental ones, were performed by myself I will explain their basic

components. At the end, I will show the good agreement of the experimental data

with the numerics. After concluding the state of the art I will show preliminary

results for the understanding of imperfections of the microwave setup.

II.1.1. Random matrix theory

Random matrix theory was originally developed to describe spectral properties of

heavy nuclei. One assumes that the Hamiltonians for such systems are so com-

plex that one can model them by random matrices. That means that the matrix

has randomly chosen entries, where the distribution considers the remaining sym-

metries like time-reversal symmetry. From random matrix results both analytical

or approximative derivations as well as numerical calculations are often available.

For calculating analytic results super symmetry techniques are often suitable, but

also hard to understand. For a comprehensive treatment in random matrix theory

[10] is suited. The main results and calculations are summarized in [65] or [9]. As

it was shown in the very beginning of quantum analog microwave experiments,

these devices are qualified to test random matrix theory [66]. It was expected from

the conjecture of Bohigas and coworkers [67] that random matrix theory might be

applicable to all chaotic systems. Besides nearest neighbor distance distributions

[66], spectral auto- and cross-correlation functions [11] are just one example for the

1All the experiments for the channel correlations were performed in Nice, France. At this place, I
want to thank Prof. Dr. U. Kuhl and Prof. Dr. F. Mortessagne for the opportunity to perform the
experiments.
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II. Channel correlation in transport through chaotic wave mechanical systems

test of random matrix theory approaches with microwave setups. Also open mi-

crowave systems were described by random matrices e.g. the fidelity decay [68].

II.1.2. From Ericson to conductance fluctuations

In the early sixties of the last century, just at the time when random matrix theory

was developed, Ericson described spectra of strongly overlapping resonances in

nuclei [69, 70, 71]. In the regime where the life time of states in the nucleus are so

short that the widths become larger than the mean level spacing, it becomes im-

possible to identify individual resonances. Ericson found that the auto correlation

function of the cross section is proportional to a Lorentzian curve whose width is

the mean width of the contributing resonances. Thus, he could estimate the mean

width of the resonances without identifying one certain resonance. In this context

he performed a splitting of the averaged cross section (from a channel a to a channel

b) into a direct and a fluctuating part:

〈σab(E)〉E = σdir
ab + 〈σ f luct

ab 〉. (II.1)

Ericson fluctuations appear in a wide range of physical systems. In the literature

the term is mainly used to describe transmission properties of chaotic systems with

strongly overlapping resonances.

The point, on which we should focus is described in [17]: the transition from one

cross section between two different channels (as Ericson described) to universal

conduction properties. Introducing many channels describing an incoming wave

and the same number of channels describing an outgoing wave, one can describe

conductance as a sum of all cross sections between the channels corresponding to

the in and outgoing waves. Celardo and coworkers used a continuum shell model,

where the interplay of intrinsic dynamics and coupling to the continuum has to

be taken into account. For an introduction to such techniques and assumptions

see [14, 15]. The model of Celardo and coworkers is presented in [16]. In [17] it

is pointed out very clearly that going strictly from the Ericson ansatz of splitting

the average cross section, one gets for the variance of the conductance for perfect

coupled channels a value twice as large as the correct one. The mistake is that by

splitting the cross sections no correlations of the type
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C = 〈σijσi′ j′〉 − 〈σij〉〈σi′ j′〉 (II.2)

were considered. As Ericson pointed out in 1963 [70], this is due to the assumption

that direct interactions in the nucleus are independent from compound reactions.

These correlations appear, if one calculates the variance of the conductivity as de-

fined in [17]:

G =
N/2

∑
i=0

N

∑
j=N/2+1

σij. (II.3)

The consideration of this neglected dependence is the merit of Celardo and cowork-

ers.

II.1.3. How do microwave cavities mimic nuclei scattering?

The transition from properties of nucleus scattering can be understood by looking

at the model of Celardo and coworkers in reference [16]. They model the Hamilto-

nian as

H = H0 −
i

2
W . (II.4)

H0 is the unperturbed Hamiltonian. In the nuclear physics situation this is the

many body Hamiltonian, for example described by a shell model. In the microwave

setup this is the Hamiltonian describing the chaotic quantum mechanical billiard.

The additional part − i
2W is giving the coupling to the continuum or so to say

to the decay channels and is often of the form − i
2WW†. In nuclear physics this

exactly corresponds to the interaction of the bound states with the continuum [4].

In microwave experiments this part is due to the coupling of the antenna channels

and the absorption of the walls.

Until the shell model arises in [16] the calculations are similar to them in e.g.

[9], where one considers open decay channels in an unperturbed Hamiltonian. It

is thus not surprising that for overlapping resonances the same behavior of the

widths arises as in [62]. In this context the effect of resonance trapping (compare
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also equation (I.10) in this work, section 6.1 in [9] or [72]) was rediscovered and

described in more detail but now denoted as superradiance.

A short description of scattering theory and the derivation of the scattering matrix

from the perturbed Hamiltonian will be given in the appendix G.
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II.2. Definition of channel correlations

In the context of quantum chaos much attention was payed to correlation functions.

Nearest neighbor distance distributions, auto correlation functions, two or n-point

correlation functions are just a part of the huge amount of measured, simulated

and calculated correlation functions.

In our case the correlations are related to transport between different channels (see

sketch in figure II.1 (a)) as function of coupling. That is why one should strictly

distinguish between spectral correlations and channel correlation functions (which

is how we call this correlation).

The cross section and the elements of the scattering matrix are related by [17]

σab(ν) = |Sab(ν)|2 (II.5)

We are interested in the cross section (II.5) as a function of the coupling κ and not as

a function of the frequency, so one defines the transmission in the attached channel

as

Ti = 1 − |〈Sii(ν)〉|2, (II.6)

where 〈· · · 〉 denotes an average over different systems (same size) and suitable

frequency windows. Now we introduce the coupling κi to the channels indirectly

via

Ti =
4κi

(1 + κi)2 . (II.7)

If 〈Sii(ν)〉 is real, the coupling has to be of the form

κi =
1 − 〈Sii(ν)〉
1 + 〈Sii(ν)〉 , (II.8)

which can be seen by inserting κi into equation (II.7). But the mean scattering am-

plitude 〈Sii(ν)〉 is not always real. In a recent work it has been shown [50] that for
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this situation the real part of equation (II.8) plays the role of coupling. Neverthe-

less one has to pay attention to the global phase shift due to the antennas. For the

principles of how the phase calibration works, see appendix H. All these properties

and relations are well known in the community of scattering through nuclei [73].

(a) (b)

Figure II.1.: (a) Sketch of an arbitrary chaotic scattering system with more than 4
channels. (b) The two channel correlation function CΣ in black and C∆

in red. The combined symbols are taken out of [17], the dotted lines
are from random matrix numerics, without any absorbing channels.
The numerics were scaled by a factor of 30.

The channel correlation function is defined as

C(κ) = 〈σab(κ)σcd(κ)〉 − 〈σab(κ)〉〈σcd(κ)〉, with a 6= b and c 6= d. (II.9)

The 〈· · · 〉 represents an average over energy/frequency and the · · · over different

combinations of the indices. As motivated in the introduction we distinguish be-

tween two different possibilities for II.9. The so-called CΣ-correlation is defined as

II.9 with exactly one identical index in the first and second factor. So either a = c or

b = c (a = d or b = d respectively). The C∆-correlation forbids any equal index.

Exemplarily the channel correlations as a function of the coupling are plotted in

figure II.1 (b).

Here one can see the predicted dependence of CΣ (black empty circles) and CΛ

(red crosses) as functions of the channel coupling κ. The combined symbols are

taken from [17]. The dotted lines are results from random matrix numerics as it
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will be sketched in section II.3.2. In this figure no absorption is considered, which

corresponds to the absence of additional channels in the model (see appendix G).

One can clearly see the antiphased behavior of the two correlation functions in

both predictions. On the logarithmic coupling scale there is approximately an axial

symmetry around κ = 1 in both models. The dashed curves had to be scaled

by a factor of 30 to match the data. The quantitative discrepancies could not be

clarified until today. The main reason is the missing absorption in the continuum

shell model. As absorption plays a non-negligible role in the experimental results,

I will only compare the experimental data with random matrix calculations.

II.3. Experimental setup and data evaluation

II.3.1. Experimental setup - characteristics

Looking for an experimental verification of the predicted channel correlation, I per-

formed microwave measurements using the billiard shown in figure II.2. In (a) one

can see a photograph of the setup with a raised top plate, made out of aluminium.

As we do not have to take care of Ohmic losses, we can chose a cheaper and lighter

material as in the experiments of chapter I. In (b) one can see the shape of the bil-

liard, which generates a classical chaotic behavior. The four circle insets with vari-

able positions were introduced to avoid direct processes between the four antennas

(a, b, c, d). For the ensemble average, different positions of the circles and rotations

of the ellipse in the center (in the photograph left the brass ellipse in the middle

of the top plate) were chosen. For each configuration of the circles I measured the

scattering matrix for 200 different angles (in steps of 1.8◦).

For these measurements a four port vector network analyzer (Agilent E5071C)

was used, which allows to measure all components of the (4 × 4) scattering ma-

trix (S−matrix) within one measurement without the need of a permanent change

of cables between the different antennas. The S−matrix was determined in a fre-

quency range from 2 to 18 GHz in steps of 0.2 MHz. The height of the billiard is

h = 8 mm and so for frequencies ν < c
2·h ∼ 18.7 GHz only TM0 modes are excited

and the Helmholtz equation is fully equivalent to the two dimensional Schrödinger

equation (compare appendix A). The four attached antennas were chosen to be as

similar as possible. In this chapter I present data with antenna sets of 5 and 8 mm
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(a) (b)

Figure II.2.: (a) A photograph of the setup and (b) sketch of the microwave res-
onator with a height of 8 mm.

length inside the resonator (note: 8 mm is already the height of the resonator). With

shorter antennas one cannot reach couplings of the order of 1, therefore one cannot

gain further information by using more antenna lengths.

Typical spectra are shown in figure II.3. On the left-hand side one can see a typical

reflection spectrum in the frequency range of 4 to 5 GHz and on the right-hand side

one can see the corresponding transmission spectrum. In the insets one can see the

whole spectra.

(a) (b)

Figure II.3.: (a) Reflection and (b) transmission spectrum of a measurement of the
experiment shown in figure II.2 with antennas of 5 mm length. The
insets show the whole measured spectra.

In the spectrum of figure II.3 (b) it is approximately the situation where Ericson

fluctuations appear. The mean level spacing (according to the Weyl formula [63])
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is of the order ∆ ∼ c2

2Aπν ∼ 15 MHz. The widths of the resonances might be at least

of the same order or even higher. Hence the requirement for Ericson fluctuations

are met. Auto-correlation functions of these kind of spectra and other properties

were calculated a couple of years ago, even for microwave devices [74, 75, 76]. In a

former work of our group it was shown that from the spectral autocorrelation func-

tion of the reflection spectra one can calculate the absorption due to the resonator

walls [11]. Precisely one would speak of the auto-correlation function (C[σaa, σaa])

of the cross sections σaa (for a complete definition see [11]). In that work the same

expressions for the calculations of the scattering matrix and for the coupling pa-

rameters were used as in this thesis (compare section II.2 and appendix G). Using

the procedure of this publication I extracted the frequency dependence of the wall

absorption from the reflection spectra. In figure II.4 (a) the Fourier transform of

the auto-correlation function for the frequency range of 13 to 14 GHz is plotted. In

yellow a fit in accordance to the results from [11] is plotted. From the exponential

decay one can extract the coupling to the wall channels, which is necessary for the

numerics.

(a) (b)

Figure II.4.: (a) Auto-correlation function of the reflection signal scaled by the
transmission to the antenna. The yellow line corresponds to an ex-
ponential function to determine absorption (see [11]). (b) Wall ab-
sorption (TW is the transmission to the wall channels) as a function
of the frequency for both antenna types, averaged over all antennas
and all performed measurement sets.

Figure II.4 (b) shows the dependence of wall absorption (TW) of the used alu-

minium billiard extracted from the exponential decay of the auto-correlation func-

tions like the one presented in figure II.4 (b). The data points in the right figure are

averaged over 1000 measurements each (per antenna type) and for all four anten-
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nas.

Before one can take a look at the channel correlation, the transformation of the

frequency depending scattering matrix elements to a coupling dependence needs

to be performed. One assumes that the coupling is a local parameter depending

on the length of the antenna and local resonator properties like the distance to the

next wall or symmetries. For example the primed antenna positions in figure II.2

(b) are expected to have other resonator properties than the ones not primed, which

are quite close to the walls and on a symmetry point. By averaging over windows

of 100 MHz the coupling is extracted according to equation (II.8). The results are

plotted in figures II.5 (a) (5 mm long antenna) and (b) (8 mm long antenna).

(a) (b)

Figure II.5.: Coupling κ as a function of the mean frequency 〈ν〉100 MHz. The
graphic shows the coupling for the channels a (black), b (blue), c (or-
ange) and d (red). On the left-hand side (a) the 5 mm long antennas
are shown, on the right the 8 mm antennas.

In both diagrams one can see that the coupling is changing similarly for the four

antennas for each antenna set overall. Nevertheless the difference between the four

antennas is comparatively strong. As we suppose that the coupling is similar for

each antenna, we also average over the four antennas. With this averaged coupling

dependence we have a mapping between the frequency axis and the coupling axis.

Obviously the situation is easier manageable for the 5 mm long antenna as there

the mapping is bijective until κ = 1.
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II.3.2. Numerical calculations

In previous works of our group [77, 78] scattering matrix properties were calculated

from random matrices numerically. As scattering theory predicts one can calculate

the scattering matrix with the so-called Heidelberg ansatz. This is done in appendix

G. The scattering matrix is calculated by

S(E) = 1− 2iW† 1
E −H0 + iWW† W. (II.10)

and has to be a quadratic matrix with the rank of 4 antenna channels plus a suit-

able number of wall channels. For all calculation I chose 50 wall channels, so S is

of the size of 54 × 54. Later we just take the upper left (4 × 4) sub matrix to com-

pare with the experiment. To make the numerics as simple as possible I chose the

Hamiltonian to be a matrix of the same size. As it is shown in [9] the elements

of H0 have to be Gaussian distributed. We do not break time-reversal symmetry.

Therefore the variance for the off-diagonal elements has to be twice the variance

of the non-diagonal elements (compare [9]). In the matrix W (see equation (G.24))

the coupling to the different channels has to be inserted. For both couplings we

take a constant number for every channel reproducing the values of the experi-

ment. As we are interested in the scattering matrix as a function of the coupling

and not as a function of the energy we choose E = 0. The rest is matrix calculation,

performed by standard procedures. To cancel out effects of the finite Hamiltonian

size and distributions of single resonances I performed 10000 realizations for ev-

ery coupling and treated them like different experimental realizations (see section

II.3.1).

II.3.3. Experimental results

In the last three sections I discussed the definition of the channel coupling, the ex-

perimental properties of this system and the numerical calculations. Now it is time

to take a look at the experimental data. For both antennas I measured the scatter-

ing matrix and calculated the cross sections (equation (II.5)). After rearranging σ

as a function of the coupling I calculated the correlation functions (equation (II.9)).

Than I averaged them in a grid of step size ∆κ = 1/50. Afterwards I averaged over
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the 200 rotation positions (steps of 1.8◦) and several positions of the circle. At last

I averaged over all possible antenna combinations. The results can be seen in fig-

ures II.6 (a) for the 5 mm antenna and (b) for the 8 mm antenna. Whereas the 8 mm

long antennas were placed at the positions (a, b, c, d), the 5 mm long antennas had

been attached at the primed positions (a′, b′, c′, d′). The two sets of antenna posi-

tions were used for two reasons. The first is that due to a construction fault a direct

classical path between the antennas was possible, we will later see the reason why

one would like to avoid this. The second effect was that the coupling has an unex-

pected local maximum at approximately 4 GHz (see figure II.5 (b)). The reason for

this might be the local structure of the nearly symmetric distance to the two walls.

Therefore I used the second measurements with the shorter antennas.

(a) (b)

Figure II.6.: Correlation functions CΣ (black) and CΛ (red) as a function of the mean
coupling κ for a frequency average of 100 MHz. Combined symbols are
experimental date, dotted curves numerics.

To compare the results to the theory it is not sufficient to assume a constant absorp-

tion. As it was prepared in the last sections, it is possible to extract the absorption

not only as a function of the frequency, but also as a function of the coupling. As we

know the frequencies which contributes to one coupling, we can estimate a mean or

effective absorption for each coupling value. This was considered in the numerical

calculations presented as dotted lines in figure II.6.

For both antenna sets we can see a clearly antiphased behavior between the C∆ and

the CΣ correlation. The experimental data is in good agreement with the numer-

ical predictions. Especially at κ = 1, i.e. a perfect coupling of the channels, both

correlations do not vanish.
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Quantitative deviations are found which are of the form of an additional oscillating

function. This can be seen between κ = 0.1 and κ = 0.3. It might be an interesting

observation and the basis for a future analysis. The other discrepancy is the nearly

vanishing correlation functions between κ = 0.3 and κ = 0.8 for the long anten-

nas (figure II.6 (b)). The disappearance of the correlations is caused by the huge

frequency range (10 − 18 GHz) of the corresponding κ values and the high absorp-

tion differences in this frequency range. E.g. at 12 GHz the coupling of the four

antennas is differing between 0.15 and 0.8. Also this inconsistency of equivalent

antennas within one set is a reason for the discrepancies.

The basic idea to understand the additional oscillations of figure II.6 is that remain-

ing direct classical paths between the antennas can lead to artifacts in the frequency

dependence and afterwards also in the coupling dependence. In measurements

without the circles direct classical pathways should be less perturbed, at least for

the primed antenna positions (compare figure II.2 (b)). Here the correlation func-

tions have the form shown in figure II.7.

Figure II.7.: Correlation function for 5 mm antennas with direct pathways between
antennas (a′, b′, c′, d′).

Up to a value of approximatively κ = 0.4 the CΣ and the C∆ correlation are over-

all similar. Oscillations on the κ-axis occur similarly to those found in figure II.6

(a) and (b) between κ = 0.1 and κ = 0.3. After κ = 0.4 both correlations become

clearly different and a good agreement with the numerics is visible. Their clear os-

cillations are the reason why one would try to avoid direct classical paths between

the antennas. If one wants to get rid of these artificial structures one could think of

more complicated billiard systems where also indirect classical paths with only on
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reflection are impossible.

Although the consideration of absorption within the random matrix calculation

seems to work really good, one can try to construct correlation functions where the

absorption is canceled by itself. The correlation function

C =
〈σabσcd〉 − 〈σab〉〈σcd〉√
〈σaa〉〈σbb〉〈σcc〉〈σdd〉

, (II.11)

might be a candidate. The idea is to get rid of the absorption dependence and in

that way make experimental results comparable also with continuum shell model

calculations. Results of such correlation functions are shown in figure II.3.3.

(a) (b)

Figure II.8.: (a) The same experimental data as in II.6 (a) now with the modified
correlation function (compare equation (II.11)). (b) Zoom into the κ
range up to 0.35.

In the numerics absorption is present as a constant absorption. Here one can see

also a good qualitative and quantitative agreement. A profound theoretical un-

derstanding of this type of correlations is necessary. Nevertheless this correlation

function seems to be suited to eliminate the frequency dependence of the former

analyzed ones.
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II.4. Conclusion

In this chapter I presented results on channel correlation functions I defined in

section II.2. It was shown that these types of correlations are very important for

understanding the relation of Ericson and universal conductance fluctuations. The

qualitative behavior of the two different types of analyzed channel correlations are

in accordance with continuum shell model calculations.

With random matrix numerics I considered the frequency depending absorption

and found a very good agreement with the experimental results. On the one hand

I showed that the channel correlations do not vanish and have a typical antiphased

coupling dependence. On the other hand this manifests the mistake of neglecting

channel correlations in the transition from Ericson to universal conductance fluc-

tuations.

Quantitative deviations with oscillating character could be explained with a not

completely complicated channel to billiard correspondence as remaining direct

classical pathways between the antennas.

For comparison to continuum shell model calculations another correlation function

is introduced. As it is shown the effect of frequency depending absorption could

be considered within the derivation of the correlation. A good agreement of this

correlation function with the numerics was presented.

This chapter gave the first experimental proof of the existence of channel corre-

lation in transport through chaotic wave mechanical systems. It was possible to

catch the difference between the Ericson ansatz for universal conductance fluctua-

tions and the coupled channel Hamiltonian ansatz (Heidelberg ansatz) within this

presentation.
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III.1. Motivation

In previous chapters only time-independent microwave systems were studied. In

the correspondence to quantum mechanics this means a static Hamiltonian H.

In the introduction it is illustrated that the investigation of time-dependent mi-

crowave systems is a promising goal. Mainly dynamical localization would be

analyzed and understood by microwave experiments in a new quality.

For a realization of a microwave cavity showing, e.g. dynamical localization it is

necessary that time-dependent changes care for a complete rearrangement of the

spectrum. This means that the eigenvalues have to be shifted at least by the order

of the mean level spacing and the variation of the frequency should also be of the

same order of magnitude.

For a physical change of the system this would mean wall shifts of centimeters with

frequencies of several 100 kHz, which is not realizable mechanically. An alternative

approach is a variation of its electrical properties. One possibility is to induce vari-

able capacities, e.g. varicaps, which can operate up to a few GHz. The varicaps can

be either positioned inside the cavity or a varicap outside the system can be cou-

pled via an antenna to the system. In both cases this will be a local perturbation. By

using several varicaps the effect might be increased. A third possibility is to attach

a system with a variable resonance frequency via an antenna which can be tuned

over a broad frequency range.

In all this cases one starts from a local coupling, e.g. a point-like perturbation. To

this end, a theory which had been developed previously for time-independent lo-

cal perturbations [79, 80] had been extended to perturbations with time-dependent

couplings [81]. In the limit of isolated resonances this theory reduces to a basic dif-

ferential equation, which also describes a resonance circuit.

I will firstly investigate a setup, where a single resonance can be changed paramet-

rically. The properties of the measured setup will be analyzed both analytically and

numerically. The peculiarities of the setup can also be seen in the light of semiclassi-

cal calculations, as I will show. The single driven resonance setup will be described

completely, so the next steps to the goal of establishing a microwave setup which

is able to illustrate dynamical localization can be presented.
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III.2. Single driven resonance - linear regime

III.2.1. Experimental setup

(a) (b) (c)

~

U U

R

C

ACDC

ab

v

Ra

b CC

Figure III.1.: A photograph of the experimental tin (a), a sketch of the experimental
setup (b), a schematic of the varicaps actuation (c). The varicap is
shown as the capacitor with an arrowhead (Cv).

As discussed above the basic requirement on the setup is that it has a resonance of

a typical microwave cavity (≈ 1 GHz) which can be shifted electronically via a var-

icap. In addition one must be able to couple to the system with typical microwave

devices to avoid a bad matching.

These requirements are ideally met by the tin cup shown in figure III.1 (a) in a

photograph and figure III.1 (b) in a corresponding sketch.

The tin cup with a metallic core can be described as a cylindrical capacitor with

a capacitance of the order of some pF and an inductance of about 45 nH [82, 83]

(see appendix I). As the core is connected to the tin cup only at the bottom, one

can describe it by a parallel connection of an inductor and capacitor. Its resonance

frequency is of the order of some hundred MHz and a modern UHF-varicap (here

infineon BB833) can change its capacitance in the pF-regime.

To excite and measure this system two antennas (white in figure III.1 (b)) were

placed at the tin cup. The upper antenna forms a capacitor with the core of the

tin cup, thus couples capacitively. This is in contrast to the lower antenna, which

couples inductively to the magnetic field of the core, as the last part of the antenna

is parallel to the core. Because of these two different couplings there is no direct

communication between the two antennas.

Figure III.1 (c) shows the circuit in more detail, including the capacities Ca = 100 nF,

Cb = 22 pF, and the resistances Ra = Rb = 47 kΩ.
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III. Realization of a microwave Floquet system

Figure III.2.: Approximate equivalent electric circuit of the whole setup is shown.
The varicap (Cv in figure III.1 (c)) reduces to a changeable capacitor
(C1).

A simplified equivalent circuit diagram for the whole setup is shown in figure III.2.

Due to the description of the tin cup as a parallel circuit L, C0, C1, and RL depend

slightly on frequency. In the following these dependencies are neglected. Feeding

a signal u0(t) from a source (Anritsu 68047C) to the upper antenna one applies

to the circuit an external sinusoidal AC voltage with an angular carrier frequency

ωc = 2πνc. One can apply to the terminals of the varicap either a DC voltage

(UDC - for the static measurement) or an AC voltage (UAC) with frequency ωd =

2πνd. For the major measurements a signal generator (HP 33120A, constant bias

voltage adjustable) was used to achieve a periodic modulation of the resonance

frequency. Via the lower antenna the current through the inductor is measured by

the spectrum analyzer (Rohde&Schwarz FSU), which measures the intensities of

the different frequency components of the applied signal.

Let us describe the electric circuit shown in the figure III.2. By i0, i1, i2 we denote

currents on the corresponding transmission lines. The application of Kirchhoff’s

first law gives

i0 = i1 + i2. (III.1)

The charging current at the capacitor C0 is i0 = q̇0, where q0 is the charge of the

capacitor, and i1 = q̇1, where q1 is the charge of the capacitor C1(t).
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The application of Kirchhoff’s second law for the two loops gives

L
di2
dt

+ RLi2 + q0/C0 = u0(t), (III.2)

q1/C1(t) + q0/C0 = u0(t). (III.3)

Integrating equation (III.1) we obtain

q1 = q0 − q2, q2 =
∫

i2(t) dt. (III.4)

On the other hand, we have from equation (III.3):

q1 = u0(t)C1(t) − q0C1(t)/C0 . (III.5)

From equation (III.4) and equation (III.5) we find

q0 =
C0C1(t)

C0 + C1(t)
u0(t) +

C0

C0 + C1(t)
q2. (III.6)

Substituting equation (III.6) into equation (III.2) we obtain

Lq̈2 + RL q̇2 +
1

C0 + C1(t)
q2 =

C0

C0 + C1(t)
u0(t). (III.7)

Experimentally the change of the varicap capacity is comparatively small, i.e.

C1(t) = C1 + δC1(t), |δC1(t)| ≪ C1. Introducing the notation C = C0 + C1 we

rewrite equation (III.7) as

Lq̈2 + RLq̇2 +
1

C + δC1(t)
q2 =

C0

C + δC1(t)
u0(t). (III.8)

We consider u0(t) = u0e−iωct, where ωc is the carrier frequency. We restrict our-

selves to the case when the sideband structure is generated by a single driven res-

onance. In this case we expect that current i2 is modulated with a carrier frequency

ωc. Therefore we write q2(t) = −e−iωctu0C0 f (t)/2,

(
ω2

c

ω2
0
− C

C + δC1(t)
+

2iγωc

ω2
0

)
f +

2(iωc − γ)

ω2
0

ḟ − f̈

ω2
0

=
2C

C + δC1(t)
. (III.9)
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where γ = RL/2L and ω2
0 = 1/LC. The first two terms in the brackets can be

written as
ω2

c

ω2
0
− C

C + δC1(t)
=

ω2
c − ω2

0

ω2
0

+
δC1(t)

C + δC1(t)
. (III.10)

Supposing δC1(t) ≪ C we find

(
2(ωc − ω0)

ω0
+

δC1(t)

C
+

2iγ

ω0

)
f +

2i

ω0
ḟ − f̈

ω2
0

= 2. (III.11)

Let us estimate the magnitude of f . Neglecting derivatives we find f ∼ ω0/∆ω,

where ∆ω = ω0(δC1/C1) is the width of the modulation band. From the require-

ment that the term, containing the first derivative, is comparable to ∆ω f /ω0 we

conclude that ḟ ∼ ∆ω f . Hence f̈ ∼ (∆ω)2 f ∼ (∆ω)ω0 and f̈ /ω2
0 ∼ (∆ω)/ω0 .

Therefore the term containing the second derivative in equation (III.11) can be ne-

glected. Finally we obtain

(
i

d

dt
+ ωc − ω0 + d1(t) + iγ

)
f = ω0, d1(t) =

δC1(t)

2C
ω0. (III.12)

Experimentally one measures the current i2 = q̇2 flowing through the coil. In the

considered case one can use the approximation

i2 =
i

2
ωcu0C0e−iωct f (t). (III.13)

Thus the spectrum measured by the spectral analyzer is given by the Fourier trans-

form of f (t).

To characterize the values of the devices in figure III.2, measurements with a time-

independent d1(t) = d1 were performed. In these static measurements the ampli-

tude f as a function of the carrier frequency ωc has a resonant behavior

f =
ω0

ωc − ω0 + d1 + iγ
. (III.14)

The power of the transmitted signal is proportional to | f |2, i.e. it is described by

a Lorentzian function. The dependencies of the transmitted power on the carrier

frequency for different values U of the voltage on the terminals of the varicap are

shown in figure III.3 (a). The increase of the resonance height is due to the ω0 de-
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(a)

(b) (c)

Figure III.3.: (a) Experimentally measured resonances for different DC voltages
UDC applied to the diode. Voltage values from the left to the right:
UDC= 1 V, 2.2 V, 4 V, 6 V, and 9 V. Resonance position and width as a
function of the applied DC voltage are shown in (b) and (c).

pendence in the nominator in equation (III.14). The resonance frequency is given

by ω0 − d1. In figure III.3 (b) the dependence of the resonance frequency is shown,

from which the dependence of d1 = dDC(U) can be extracted. The width of the res-

onance, associated to 2γ = 2γDC(U), depends only weakly on the applied voltage

as can be seen from figure III.3 (c).

Replacing U by U(t) in the case of the dynamic measurement one obtains

d1(t) = dAC

(
U(t)

)
, γ(t) = γAC

(
U(t)

)
. (III.15)
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III.2.2. Preliminaries

Let us take a heuristic look at the introduced setup. If one applies an AC-voltage

with driving frequency ωd at the terminals of the varicap, then the properties of the

circuit are changing in time periodically. The shape of the AC-signal can be chosen

arbitrarily, shape restrictions are imposed only by the available signal generator.

The periodically driven circuit is excited at a given carrier frequency ωc, which

means an additional AC-voltage applied to the circuit. ωc is assumed to be close

to the resonance frequency of the circuit. Since the system is changing in time

periodically, it will respond at the frequencies ωc, ωc ±ωd, ωc ± 2ωd, . . . leading to

a sideband structure (see figure III.4). Experimentally the amplitudes of sidebands

can be detected by a spectrum analyzer. The analysis of these structures is the main

subject of this section.

(a) (b)

Figure III.4.: (a) Schematic illustration of the expected sideband structure. The up-
per part corresponds to the sideband structure of two different AC
driving frequencies, one outside and the other one within the al-
lowed region. Below the DC resonance structure for the maximal
and minimal AC voltage is shown, defining the classically allowed
range (shaded in blue). (b) A typical eigenfunction of the harmonic
oscillator.

The circuit shown in figure III.2 assumes a linear dependence of the response on

the strength of the carrier signal. However I found that a seemingly weak signal

can already lead to a nonlinear dependence of the shape of sideband structures on
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the applied power. To avoid complications associated with non-linear character-

istics of the setup the strength of the signal was lowered to −20 dBm. If one now

slightly changes the power (∼ 1 dBm), only the overall amplitude of the peaks will

be altered. As we are also interested in the investigation of non-linear effects we

will come to that point again in section III.3.

What do we expect in the linear regime? In figure III.4 (a) it is summarized schemat-

ically what happens when one changes the voltage on the varicap terminals in the

static regime between two limiting values (solid resonances, lower half-plane) and

in the dynamic regime (upper half-plane). In the static measurement of the trans-

mitted signal one sees the peak at the resonance frequency which depends on the

voltage on the terminals. Changing the voltage the resonance is shifted. The mod-

ulation band between two limiting positions of the resonance peak (filled range in

figure III.4 (a)), corresponding to two limiting values of the voltage on the termi-

nals, forms the “classically allowed” range of frequencies. Analogously the range

outside this interval is called “classically forbidden”. These notations will be moti-

vated below in III.2.3.

Let us turn to the sideband structures observed in the dynamic regime. Periodically

changing the voltage within the range corresponding to the “classically allowed”

frequencies, and exciting the setup at some carrier frequency, a transmitted signal

is generated. The characteristic Fourier spectrum of the transmitted signal is shown

in figure III.4 (a), upper part. As long as the carrier frequency is taken within the

classically allowed region, a large number of sidebands is observed. The situation

is qualitatively different if the carrier frequency is taken in the classically forbidden

region. Now there is only a small number of sidebands visible decaying rapidly

with the sideband number. With the carrier frequency taken close to one of the

turning points, peculiar asymmetric sideband structures are observed. All these

features will be discussed in detail in section III.2.4.

In the next section I go on with a more detailed theoretical description.

III.2.3. Sidebands generated by a single driven resonance

In this section I consider sideband structures generated by a single driven reso-

nance within the approximation of equation (III.12). The equation is inhomoge-
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neous, i.e. it has a non-zero right hand side associated with a source. Let us intro-

duce a solution

ψ(t) = exp


i(ωc − ω0)t − γt + i

t∫

0

dt′d1(t′)


 (III.16)

of the homogeneous equation

[
i

d

dt
+ ωc − ω0 + d1(t) + iγ

]
ψ = 0. (III.17)

Then the periodic solution of equation (III.12) reads

f (t) = −iω0ψ(t)

t∫

−∞

dt′ψ−1(t′). (III.18)

Now we can expand f (t) in a Fourier series. To this end we write

exp



i

t∫

0

dt′d1(t′)



 =
∞

∑
n=−∞

an exp(−inΩt), (III.19)

with

an =
Ω

2π

T/2∫

−T/2

dt exp


inΩt + i

t∫

0

dt′d1(t′)


 , (III.20)

where Ω = 2π/T. Then

f (t) = ω0

∞

∑
n,m=−∞

ana∗m
e−i(n−m)Ωt

ωc − ω0 − mΩ + iγ
=

∞

∑
n=−∞

fne−inΩt, (III.21)

with

fn = ω0

∞

∑
m=−∞

an+ma∗m
ωc − ω0 − mΩ + iγ

. (III.22)

The coefficients fn correspond to the amplitudes of sidebands shown in figure III.4

(a). In the experiment the Fourier analysis was performed by a signal analyzer, as

was mentioned above, yielding, however, only the moduli of the sideband ampli-

tudes but not their phases.
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Calculation of harmonics

To determine fn from equation (III.22) one has to compute coefficients an from

equation (III.20) first. Let us consider two examples, where an can be calculated

exactly.

For the sinusoidal driving

d1(t) = Z cos(Ωt), (III.23)

we obtain

an = (−1)n Jn

(
Z/Ω

)
, (III.24)

where Jn is the Bessel function of the first kind. In case of rectangular driving

d1(t) =

{
−Z, for − T/2 < t < 0,

Z, for 0 < t < T/2,
(III.25)

we find

an =





Z

iπΩ

1 − (−1)neiπZ/Ω

n2 − (Z/Ω)2 , if n 6= ±Z/Ω,

1/2, if n = ±Z/Ω.
(III.26)

In figures III.5 (a) and (b) the moduli of coefficients an are shown for sinusoidal

and rectangular driving for Z/Ω = 100. A rise of amplitudes near the points

n = ±Z/Ω is found in both cases. Figure III.5 (a) shows an exponential decay of

amplitudes outside of the region −Z/Ω < n < Z/Ω (see inset), while in figure

III.5 (b) the decay is algebraic (see inset). Using equation (III.22) the corresponding

sideband structures have been calculated. They are shown in figure III.5 (c) and (d).

In case of the sinusoidal driving an exponential decay is observed, whereas in case

of the rectangular driving an algebraic decay was found. As usual, exponential and

algebraic decays of sidebands correspond to an analytic and a step-wise driving

respectively. One can notice a peculiar behavior of the sideband structure close to

the turning points in figure III.5 (c). An intuitive argument explaining this behavior

is given in the next paragraph.
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Figure III.5.: Coefficients |an| without external excitation with Z/Ω = 100 for sinu-
soidal (a) and rectangular (b) driving (see equation (III.24) and equa-
tion (III.26)). The inset in (a) shows a corresponding semi-logarithmic
plot, where the dotted line ∝ e−n. The (−1)n in the upper equation
(III.26) results in an odd-even staggering of the amplitudes an, for
that reason the inset in (b) shows the odd n in a double-logarithmic
plot, where the dotted line ∝ n−2. The resulting sideband structures
fn (equation (III.22)) are plotted for sinusoidal (c) and rectangular (d)
driving. The carrier frequency was chosen to be at the center of the
modulation band. The insets show the corresponding data in a linear
plot. In (c) the orange dashed line corresponds to ∝ e−n and the blue
dotted line to ∝ e−2nΩ/Z. In (d) the orange dashed line corresponds to
∝ n−1 and the blue dotted line to ∝ n−2.

62



III. Realization of a microwave Floquet system

Figure III.6.: Envelops of sideband structures fn for the sinusoidal driving with
Z/Ω = 100, γ/Ω = 2 at different driving frequencies. The blue lines
correspond to equation (III.22), the dashed red lines represent the ap-
proximation equation (III.28). The dashed-dotted curve is an envelope
of the main peaks equation (III.29).

The features of sideband structures

In the last subsection an analytical solution of equation (III.12) is presented. How-

ever this solution is not convenient for further analysis due to the infinite sum in

equation (III.22). For this reason we will simplify the solution.

Let us first neglect the time derivative in equation (III.12). Then the solution

reads

f (t) =
ω0

ωc − ω0 + d1(t) + iγ
(III.27)

and

fn =
Ω

2π

T/2∫

−T/2

ω0einΩtdt

ωc − ω0 + d1(t) + iγ
. (III.28)

Approximation of equation (III.27) fails when the derivative f ′(t) becomes large

and therefore cannot be neglected in equation (III.12). For an analytic signal this

happens only in the case of a weak absorption if the carrier frequency lies within

a modulation band. Then close to the time t∗, with d1(t∗) = ω0 − ωc, expression
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(III.27) is no longer valid. A precise behavior of the function f (t) close to t∗ is the

origin of the peculiar behavior of sidebands close to the turning points.

Figure III.6 shows envelops of sideband structures for different carrier frequencies

for the case of sinusoidal driving (equation (III.23)) and weak absorption. Sideband

structures generated by equation (III.22) are compared with approximative results

equation (III.28) gives. One can see that equation (III.28) generates sideband struc-

tures with a smooth profile and a width dependent on the location. Within the

modulation band sideband structures are broader while outside this range they are

narrower. Amplitudes of harmonics beyond the classically allowed range decay

much faster than those inside.

Far from the two turning points equation (III.28) works well. In the vicinity of a

turning point equation (III.22) produces oscillations on top of smooth profiles given

by equation (III.28). These oscillations appear due to the localized singularities of

f (t) which are not reproduced by equation (III.27).

The amplitude of the main peak f0 for the sinusoidal driving in the framework of

equation (III.28) can be calculated analytically. One finds

f0 =
ω0√

(ωc − ω0 + iγ)2 − Z2
. (III.29)

In figure III.6 the envelope f0(ωc) is shown by the dashed-dotted line.

Semiclassical analysis of the spectrum

The direct numerical calculation of harmonics an for an arbitrary driving function

d1(t) requires the computation of integrals of the rapidly oscillating function in

equation (III.20). This leads to a hardly controllable accuracy. A proposal to avoid

this problem in practice is to use an analytical approximation for an. The first step

in the approximation is to use the stationary phase method [84, 85] to compute

equation (III.20). It gives

an = ∑
i

Ω√
2πd′1

(
t
(i)
n

) exp


inΩt

(i)
n + i

t
(i)
n∫

0

d1(t)dt +
iπ

4
sgn
(
d′1(t

(i)
n )
)

 , (III.30)
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where stationary points t = t
(i)
n are solutions of the equation

nΩ + d1
(
t
(i)
n

)
= 0 (III.31)

within the interval −T/2 < t
(i)
n < T/2 and the summation in equation (III.30)

should be performed over all solutions. If equation (III.31) does not have solutions,

the corresponding harmonics an are exponentially small. In the frame of the con-

sidered approximation one can put an = 0 if equation (III.31) has no solutions and

the frequency nΩ is far outside the classically allowed region.

If t
(i)
n lies in the vicinity of a stationary point t∗, where d′1(t∗) = 0, the denominator

equation (III.30) becomes small and the approximation equation (III.30) fails. To

overcome this problem one can expand the exponent in equation (III.20) in a Taylor

series

inΩt +i

t∫

0

dt′d1(t′) ≃

inΩt∗ +i

t∗∫

0

dt′d1(t′) + i(t − t∗)
(
nΩ + d1(t∗)

)
+

i

6
(t − t∗)3d′′1 (t∗) (III.32)

and perform the integration replacing the limits of integration ±T/2 by ±∞. This

gives

an =
21/3Ω

(d′′1 (t∗))1/3 exp


inΩt∗ + i

t∗∫

0

d1(t)dt


Ai

(
21/3

(
nΩ + d1(t∗)

)
(
d′′1 (t∗)

)1/3

)
, (III.33)

where Ai(x) is an Airy function. The last equality is valid provided that

21/3
(
nΩ + d1(t∗)

)
(
d′′1 (t∗)

)1/3 . 1, (III.34)

i.e. within the frequency range much smaller than the size of the modulation

band.

The situation is very similar to the quantum-mechanical treatment of the move-

ment of a particle in a potential well. Let us take for the sake of simplicity a har-

monic oscillator potential, V(x) = D
2 x2. Its eigenfunctions (figure III.4 (b)) are
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obtained as solutions of the Schrödinger equation

ψ′′
n(x) = −2m

h̄2 (En − V(x))ψn(x) (III.35)

with En = h̄ω(n + 1
2) and ω =

√
D/m. The WKB approximation yields for the

eigenfunctions in the classically allowed region (see e.g. section 3.2.3 of [9])

ψn(x) = Re
1√

2π|pn(x)|
e

i(
x∫

0
pn(z)dz− nπ

2 )
(III.36)

where pn(x) =
√

2m
h̄2 (En − V(x)). Outside the classically region the eigenfunc-

tions become exponentially small. At the classical turning points corresponding to

pn(x) = 0 the WKB approximation fails, but just as in equation (III.33) again the

transition regime can be covered in terms of Airy functions.

This close analogy in particular of equation (III.30) and equation (III.36) was the

motivation to transfer terms like “classically allowed”,“classically forbidden” etc.

to the Floquet system.

III.2.4. Experimental results

Now we can turn to the analysis of the experimental spectra and compare them

with predictions based on equation (III.12). Figure III.7 (a) shows a typical exper-

imental sideband structure for sinusoidal driving. As expected the sidebands are

equidistant with a distance corresponding to the driving frequency. The base value

of −100 dBm is the noise threshold of the spectrum analyzer. The input power of

the carrier wave is -20 dBm for all shown experimental results. I carefully checked

that a change of the input power in this regime leads only to the same shift for

all sideband structures. Figure III.7 (b) shows the frequency range covered by the

modulation, i.e. the allowed region, shaded in red. For a better visualization sim-

ilar plots as insets in the following figures are included. The vertical solid lines

correspond to carrier frequency values νc selected for the plots in figure III.8 and

figure III.11.

In the time-dependent driving experiments the AC-voltage is limited to the range

between 1.5V and 2.5V. Within this range the position of the resonance depends
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(a) (b)

Figure III.7.: (a) Experimentally measured spectrum for sinusoidal driving with a
driving frequency νd = Ω/2π = 100 kHz and a carrier frequency of
νc = 259 MHz is shown. The distance between the sidebands is ex-
actly the driving frequency νd. (b) Sketch of the measured frequency
range. Red shaded region corresponds to the range of eigenfrequen-
cies covered by the modulation (extracted by DC measurements) and
vertical black lines to several values of carrier frequency νc used to
probe the spectrum.

linearly on the voltage and the width stays approximately constant, see figure III.3

(b) and (c). From figure III.3 (b) one can conclude that turning points lie at 248 MHz

and 267.5 MHz.

I used several functional dependencies U(t) to drive the varicap. In this section

I will discuss cases of the sinusoidal and the rectangular driving. The theoretical

model predicts a fundamental difference in the shapes of sideband structures in

these two cases (see figures III.5 (c) and (d)), as it was discussed in section III.2.3.

Sinusoidal driving

In figure III.8 spectra for three different situations are shown. On the left hand side

experimental results and on the right hand side numerical results are presented.

For the numerics I performed a fourth order Runge-Kutta algorithm to solve equa-

tion (III.7). The parameters of the circuit were determined by the DC measurements

(see section III.2.1). I decided to perform the numerical computation for two main

reasons. The first is the complicated analytical procedure to obtain the amplitudes

of the sidebands. The second reason is that the numerical calculation of equation
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Experiments Numerics

(a)

(b)

(c)

Figure III.8.: Experimental (left) and numerical (right) sideband structures ob-
served for sinusoidal driving with νc= 259 MHz (a), near turning point
(νc= 252 MHz) (b) and at νc= 236 MHz (c), for a driving frequency of
νd = Ω/2π = 100 kHz. The left insets show the position of the driving
frequency with respect to the band of the eigenfrequencies covered by
the modulation. The right inset shows the envelope of the decay of
the right (red solid) and left (black dashed) sidebands vs |νc − νn| by
connecting the data points.
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(III.7) can test the simplification of the setup as circuit in figure III.1 (d). On the

y-axis the output power is given in dBm, corresponding to a logarithmic scale.

Both in the experiment and the numerics the expected exponential decay of side

harmonics is clearly observed. Additionally one avoids uncertainties due to the

neglects between equation (III.7) and equation (III.12).

For the spectra shown in figure III.8 (a) the carrier frequency is close to the cen-

ter of the modulation band. A zoom of this spectrum has already been shown in

figure III.7 (a). A broad sideband structure is found in accordance with the the-

oretical expectation. In figure III.8 (b) the carrier frequency is close to one of the

turning points. This gives rise to a narrower asymmetric sideband structure. The

asymmetry can be seen in the inset on the right. Due to the comparatively large

absorption the observed asymmetry is small compared to the ones shown in figure

III.6. Figure III.8 (c) corresponds to the carrier frequency outside the modulation

band. Here the sideband structure is very narrow. For the sake of convenience the

abscissa in figure III.8 (a)-(c) is the same.

The comparison of experimental and numerical data shows a minor quantitative

discrepancy in the decay of harmonics. This discrepancy shows the drawback of

the reconstruction procedure: the damping γ has been obtained from the time-

independent measurement, while the sideband structures have been measured

with a driven varicap. As one will see in the next paragraph the numerical side-

band structures are very sensitive to a change of the damping and I decided to use

the extracted value (∼ 20 MHz) instead of trying different γ-values systematically,

until the discrepancies vanish, but no further physical knowledge is generated.

In figure III.6 an oscillating band structure close to the turning points is obtained,

which is not observed in figure III.8. This is an effect of the strong damping, which

is illustrated by the numerics shown in figure III.9. The damping is reduced by a

factor of three from figure III.9 (a) to (d), respectively. The reduction of the damping

transforms the slightly asymmetric triangle-like structure (figure III.9 (a)) to a very

asymmetric one with a periodic modulation of the shape close to the turning point

(figure III.9 (d)). It was not possible to resolve these oscillations experimentally due

to the significant minimal damping that characterizes the setup.

In figure III.10 experimental sideband structures for five different carrier frequen-

cies are superimposed. The solid black line is the envelope of the amplitude of the

main peaks. The distance between main peaks was chosen to be 1 MHz for the
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(a) (b)

(c) (d)

Figure III.9.: Numerical sideband structures observed for sinusoidal driving with
νc = 252 MHz, νd = Ω/2π = 0.1 MHz near the turning point. From
(a) to (d) the resistance is reduced so that (a) γ = 6.4 MHz, (b) γ =
2 MHz, (c) γ = 0.6 MHz, and (d) γ = 0.2 MHz.
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Figure III.10.: Superposition of sideband structures for five different car-
rier frequencies (sinusoidal driving as in figure III.8, νc =
238; 249; 258; 269; 281 MHz). The black solid line corresponds to the
envelop of the amplitude of the main peaks. The red dashed lines
correspond to the turning points, the blue solid line to the envelop of
the amplitude of the main peaks in the numerical calculation

envelope. The blue curve is the numerically found envelope. Red dashed lines

indicate the turning points determined from the DC measurement (see figure III.3

(b)). The figure shows the highest amplitude of the main peak close to the turn-

ing points. This can be traced back to the divergency of the semiclassical wave

function at the turning point, as already discussed in detail in section III.2.3. Since

the envelope is symmetric with respect to the center of the modulation band the

assumption that the absorption is approximately constant in case of the dynamic

measurement is justified.

Rectangular driving

The realization of a rectangular driving was limited by the unavoidable distortion

of the signal on the slopes at high driving frequencies. Therefore the experiments

have been executed at a comparatively low frequency νd = Ω/2π = 1 kHz.

Due to the low frequency, solving equation (III.7) numerically by a Runge-Kutta

method is leading to two different time scales, one has to attend. One needs small

71



III. Realization of a microwave Floquet system

(a) (b)

(c) (d)

(e) (f)

Figure III.11.: Experimentally measured sideband structure for rectangular driving
are shown in logarithmic (left) and double logarithmic (right) scale.
The blue crosses corresponds to the weights of the Fourier compo-
nents obtained from the analytic solution of equation (III.7). On the
right side the blue dashed lines corresponds to a decay with an expo-
nent of -2.
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Figure III.12.: Overlay of sideband structures for different carrier frequencies (rect-
angular driving as in figure III.11), the black solid line corresponds to
the envelop of the amplitude of the main peaks. The red dashed lines
corresponds to the turning points, the blue solid line to the envelop
of the amplitude of the main peaks for the analytical calculation

time steps due to the fast carrier frequency and long time intervals to simulate the

slow driving frequency. Therefore numerical calculations are time consuming and

inaccurate. Fortunately it is possible for the rectangular driving to solve equation

(III.7) for the two different applied voltages individually (for a complete derivation

see appendix J). The solution of each harmonic oscillator needs only to be matched

at the switching times, i.e. leading only to a boundary value problem.

In figure III.11 (a)-(f) sideband structures for three different carrier frequencies are

plotted. The right spectra are plotted on a logarithmical frequency scale which

allows us to verify the expected algebraic decay. In figure III.11 (d) and (f) the

power of the decay was found to be equal to −2 in accordance with the theoretical

prediction. In the left column the theoretical values of the Fourier components

are marked by the blue crosses. One can see a good qualitative agreement, but

discrepancies in quantity. Besides the fact that the damping is extracted in the same

way like in the sinusoidal driving case, the signal generator is not able to generate a

precise rectangular signal. Another explanation of the observed discrepancies can

be the validity of the simplified circuit in figure III.1 (d) when this description is

applied to the rectangular driving.
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The amplitude of the main peaks (see figure III.12) shows a behavior like in the si-

nusoidal driving case, but now the minimum between the turning points is signifi-

cantly deeper than in the sinusoidal case. The main peak of the sideband structure

may even be smaller than the first harmonic. This was not observed in the analytic

results. Theoretically even harmonics vanish, experimentally they are substantially

damped. The quantitative discrepancy may result from the non-perfect rectangular

signal.
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III.3. Single driven resonance - nonlinear regime

In the last section I presented a device for a microwave Floquet system, where a

single resonance is perturbed periodically. This device is suited to introduce non-

linearities in the field of Floquet systems in a controlled way.

In fact, the system is nonlinear by its construction. A varicap is an electronic

component, which is nonlinear by it self. As mentioned in section III.2.1, the ca-

pacitance is defined by the applied voltage at the varicap δC1 = g(U) ∼ s · U.

Due to the high offset voltage of the driving frequency (∼ 2 V) in comparison

to the applied carrier signal (0 dBm= 1 mW yields at a perfect 50 Ω matching

U =
√

R · P ∼ 0.2 V), which is more than twice the value applied on the vari-

cap due to Cb > 2 · CV in figure III.1 (c)), this nonlinearity could be neglected for

the powers chosen in section III.2. But if one increases this power, δC1(t) becomes

dependent on the applied voltage, which is synonymic with a dependence of f .

Thus the tin cup is descried by

(
2(ωc − ω0)

ω0
+

δC1(t, f )

C
+

2iγ

ω0

)
f +

2i

ω0
ḟ − f̈

ω2
0

= 2, (III.37)

or in accordance to equation (III.12)

(
i

d

dt
+ ωc − ω0 + d1(t, f ) + iγ

)
f = ω0. (III.38)

Let us take a closer look at d1(t, f ):

d1(t, f ) =
δC1(t, f )

2C
ω0 =

s · (Ucarrier + Udriving)

2C
ω0. (III.39)

The change in the nominator implies a linear characteristic of the varicap, which

is always acceptable in first order. Udriving corresponds to the applied voltage by

the signal generator. The more interesting part is performed by Ucarrier, which is

associated with the applied carrier signal by the source. To write d1(t, f ) in terms

of f (t) we start with equations (III.5), (III.6),
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Ucarrier =
q1

C1
= u0(t) − q0

C0
(III.40)

= u0(t) − C1

C0 + C1
u0(t) − q2

C0 + C1
(III.41)

=
C0

C0 + C1
u0(t) − q2

C0 + C1
, (III.42)

and now insert the definition q2(t) = −e−iωctu0C0 f (t)/2 = −u0(t)C0 f (t)/2:

Ucarrier =
C0 · u0(t)

C0 + C1

(
1 +

1
2

f (t)

)
. (III.43)

A direct consequence of this short calculation is that now the high frequency ωc

is not separable from f (t). The second observation is that equation (III.38) got a

quadratic nonlinearity

(
i

d

dt
+ ωc − ω0 + d1(t) + he−iωct(1 +

1
2

f ) + iγ

)
f = ω0. (III.44)

We introduced h = C0·s·ω0
2C(C0+C1)

u0 for the reason of clarity. In the paragraph after

equation (III.11) we estimated the magnitude of f as f ∼ ω0/∆ω. As shown in the

last sections this is of the order of 10, so we can write equation (III.44) in the form

(
i

d

dt
− ω0 + d1(t) +

g

2
+ iγ

)
g = κ. (III.45)

where g is introduced as g = he−iωct f and κ = ω0he−iωct. As we measure the cur-

rent through the coil we can derive the measured quantity as in equation (III.13)

i2 =
i

2
ωcC0g(t). (III.46)

If we first ignore the time dependence of d1(t), we have one of the easiest possi-

ble equations to study deterministic chaos. It is very similar to the logistic map

(compare [86]), which is perhaps the most used example to study bifurcation, pe-

riod doubling, intermittence and many other characteristics, which are important
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to understand deterministic chaos. Because of the fact that such systems were stud-

ied theoretically, numerically and also experimentally many years ago ([86, 87]) I

do not want to focus on this system. A really similar system even with a varicap

(at that time called varactor diode) was studied in 1981 by Linsey [88]. There he

studied the period doubling route into chaos. In appendix K one example for a

typical nonlinear behavior generated by this equation is shown.

A second possibility to generate nonlinearities is to consider the nonlinear charac-

teristics of the used varicap. In principle, the dependence of the capacitance as a

function of the voltage is exponential. If the range of the applied voltage is small,

this does not affect the description of the circuit. If we choose a larger area, this

assumption fails and d1(t) is now of the form

d1(t) =
s̃ · exp[−Udriving]

2C
ω0 =

s̃1Udriving + s̃2U2
driving + . . .

2C
ω0. (III.47)

The deviation from the linear regime can be seen in figure III.3. From 0 V to 5-

6 V a linear dependence of the resonance position as a function of the DC-voltage

is found. Afterwards the curve flattens. This becomes clear in correspondence to

equation (III.14), where the resonance position is shifted by d1 .

In the case of sinusoidal driving this leads to additional terms in equation (III.12)

(
i

d

dt
− ω0 + z1 sin (ωdt) + z1 sin2 (ωdt) + . . . + iγ

)
f = ω0. (III.48)

If one thinks about trigonometric relations, for example sin2 (α) = 1
2(1 − cos (2α)),

one can see that this leads just to additional contributions for sidebands of higher

numbers. E.g. for sinusoidal driving this might only lead to a deviation of the

exponent, due to the exponentially fast decaying Taylor series of the exponential

function describing the varicaps characteristics.

Obviously it is possible to combine both nonlinear dependencies if the voltage

Ucarrier in equation (III.39) becomes too large for a linear description of the vari-

caps characteristics. This leads to higher orders of g(t) in equation (III.45).
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III.3.1. Nonlinear microwave Floquet system

Let us now consider the time dependence of d1(t) in equation (III.45). Up to now

such systems were not studied, at least not in this context and to my knowledge.

The investigation of this nonlinear system is a future work. I will present two ex-

perimentally found effects, which are typical for nonlinear systems. First I will

show a hysteresis effect. The second effect is associated with period doubling

[86].

Both effects can be seen in the context of a nonlinear forced oscillator. A physical

pendulum is an example as well as the in principle equivalent RLC circuit (compare

e.g. sections 11 and 24 in [89]).

Hysteresis effects in nonlinear microwave Floquet systems

In appendix K it is shown for the non-driven system, how nonlinearities can be-

come manifest in hysteresis effects. In the driven situation this is not as clear as

in the non-driven case. There might be a memory effect not only for the carrier

frequency, but also for the driving frequency and maybe for the carrier power as

well. In addition the third parameter (νd) makes an easy discovery of a hysteresis

impossible. In figure III.13 sideband structures for the tin cup at an input power of

15 dBm and with a driving frequency of νd = 400 kHz are presented. With this ad-

justments the carrier frequency was applied in a range from 266 to 290 MHz. In the

left column one can see four sideband structures chosen from a measurement se-

ries in steps of 1 MHz with increasing driving frequencies. Beginning at 290 MHz

the same series was measured, but now with driving frequencies decreasing un-

til 268 MHz. Sideband structures for the same carrier frequencies are plotted in

the right column. The two sideband structures for 268 MHz are very similar as

well as the two sideband structures at 290 MHz. For driving frequencies between

approximately 271 MHz and 283 MHz the two sideband structures are completely

different, as one can see in the two middle spectra. This is a clearly observable

hysteresis effect. One can also find this effect for lower carrier powers, but then it

is not as precise and obvious. By tests with lower input powers and attenuators at

the signal generator it could be nearly excluded that these effects were produced

by the signal generator.
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Figure III.13.: Illustration of hysteresis effect for a sinusoidal driving of 400 MHz
and a carrier power of 15 dBm. The parameters for the measured
spectra next to each other are identical except for the direction of the
applied carrier signals. In the left column sideband structures for
raising carrier frequencies in the right column for decreasing carrier
frequencies.
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Period doubling in nonlinear microwave Floquet system

In typical systems leading to chaos it is known since years that the so-called pe-

riod doubling route to chaos can appear [86]. It was, as already mentioned, ana-

lyzed e.g. in nonlinear RLC circuits [88]. In a dirven nonlinear circuit besides the

driving frequency additional frequencies with the one-half frequency, the one-third

frequency and so on occurs as steps to a fully chaotic behavior.

By analyzing Floquet spectra with high input powers characteristics were found,

which could be associated with this scenario. As it is not easy to extend the period

doubling behavior to time-dependent nonlinear systems and this was not manage-

able in the context of this work I will show only two examples where these effects

were found. In figure III.14 (a) and (b) spectra are plotted with two different carrier

powers but with respect to the other possible parameters with the same adjust-

ments.

In figure III.14 (a) it is clearly observable that in the spectrum for a higher applied

carrier power (black) between the expected sidebands at νc, νc ± νd, νc ± 2νd, . . . ad-

ditionally sidebands occur with frequencies of νc ± νd
2 , νc ± 3νd

2 , . . .. As a second

example one can see that in figure III.14 (b) between the typical sidebands now

two equidistant sidebands occur. Up to now it was not observed that between

the “new” sidebands another generation of sidebands (e.g. in figure III.14 (a) three

black sidebands between the yellow ones) appear. For that reason this is not a proof

of the observation of period doubling in nonlinear Floquet systems. But neverthe-

less there is an obvious similarity to this effect and this system can be seen as the

first step of testing a period doubling scenario for nonlinear Floquet systems.
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(a)

(b)

Figure III.14.: (a) Sideband structures for νc =253 MHz, νd =1 Mhz and carrier
powers of 16 dBm for the black spectrum and 14 dBm for the yellow
spectrum. (b) sideband structures for νc = 268 MHz, νd = 400 kHz
and carrier powers of 15 dBm for the black spectrum and 12 GHz for
the yellow spectrum.

81



III. Realization of a microwave Floquet system

III.4. Driven systems with several resonances

In the introduction the overall working schedule was presented. In sections III.2.1-

III.2.4 I presented the introduction, analysis and understanding of one single driven

resonance. The next step is to construct a system, where more than one resonance

can be changed parametrically. Recapitulating the basic ingredients of dynamic

localization the setup must have a certain frequency range, where the resonances

can be shifted at least of the order of the mean level spacing. The frequency of the

attached driving signal should be also by the order of the mean level spacing. It

would give a big gain insight, if we could change the order of magnitude of the

mean level spacing, the driving frequency and the shift of the system resonances

with respect to each other.

In the following sections I will present two possibilities fulfilling the basic require-

ments. The first is in direct correspondence with the single driven resonant circuit

and the schedule presented in the introduction. The second way was developed

in a Bachelor thesis in our working group concerning the realization of quantum

graphs by microwave measurements [90].

For both possibilities a proof of principle will be presented.

III.4.1. Microwave cavity

The first attempt of coupling the resonant circuit to a cavity might be a cavity with

four antennas. One for the incoming signal from the signal generator and one for

the outgoing signal to the spectrum analyzer. The third and fourth should lead

to the channels of the tin cup. But in a basic DC measurement, which means an

additional attached RLC circuit, the resonance of the circuit was not comparable

with the cavity resonances. The coupling of the RLC circuit is not manageable in

a way that one can think of one additional resonance in the spectrum of the whole

cavity coming from the circuit.

The solution is to place the whole circuit inside the cavity. In figure III.15 (a) a

sketch of the setup is presented. The RLC circuit is integrated in a wire connected

to the grounding via a varicap. The circuit will now be called wire resonator,
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because it is mainly a λ/4-resonator on the wire, with one effective changed capac-

itive termination (here to the top). A photograph of the wire resonator is given in

figure III.15 (b). For preliminary measurement the cavity is cuboid with a length of

a ∼ 50 cm, a width of b ∼ 20− 100 cm (changeable) and a height of h ∼ 10 cm. The

height is essential for an adequate coupling to the wire resonator. Additionally the

eigenfrequency of the wire resonator can be shifted in a suited frequency range. A

length of l = 10 cm leads to a resonance frequency of about ν = c
λ = c

4l ∼ 0.75 GHz.

(a) (b)

Figure III.15.: (a) Schematic illustration of the cuboid-formed resonator with the cir-
cuit in form of a wire resonator. (b) Photograph of the wire resonator

A DC- or AC-voltage can be applied at the varicap via the red cable. For static

measurements the left antenna in figure III.15 (a) was used to measure the reflec-

tion signal with a vectorial network analyzer. If the wire resonator is driven the

incoming signal is applied on the left cable (SG) and the spectral analyzer (SA)

analyze the signal coming to the horizontal backmost antenna. The antenna were

placed in this way to have a principle similarity to the tin cup (compare figure III.1

(b)). A comprehensive description and experimental analysis of this setup is an

open task. Optimizations like connecting the wire antenna to the bottom plate and

more suited antenna arrangements are possible and would make the description

easier.

In figure III.16 spectra are presented with different applied DC voltages at the vari-

cap. In figure III.16 (a) the width of the resonator is b ∼ 30 cm in (b) b ∼ 50 cm. The

applied voltages are in a range of 1 V to 7 V.

In the case of lower density of states (a) one can see that all three measurable modes

are shifted with respect to the applied DC voltage. The shift of each mode is of the
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(a) (b)

Figure III.16.: Reflection spectra for the setup shown in figure III.15 with a width
of (a) b = 30 cm and (b) b = 50 cm. In both figure black lines corre-
sponds to 1 V, blue dashed to 3 V, red dotted to 5 V and green dash-
dotted to 7 V applied at the varicap.

order of 50 MHz. The mean level spacing is according to ∆ ∼ c2

2A·π·ν approximative

100 MHz. As the mean level spacing is inverse proportional to the width b of the

resonator it becomes comparable to the shift at approximatively b ∼ 60 cm. This is

experimentally feasible. Even if the widths of the modes are already smaller than

the shift, they could be decreased by better connecting the side walls with the top

plate. The quality factor Q = 〈 νn
Γn
〉 is about 10 in the presented measurements,

for microwave cavities it is typically 500-1000. In figure III.16 (b) spectra with a

higher density of states are presented. One can see very well that now some of the

modes are shifted whereas others do not seem to be affected. In contrast to (a) not

all modes are shifting in the same way dimension. This suggests that modes of

the wire resonator couples to the modes of the cavity. For the two modes between

0.7 and 0.8 GHz one can extract the crossing behavior of the two modes and by

averaging over many of such avoided crossings the coupling could be extracted.

To proof the principle working of a driven wire resonator, I present in figure III.17

a sideband structure for the setup shown in figure III.15.

The sideband structure is observable as one would expect from the similarity to

the single driven system. The sidebands decay exponentially due to the sinusoidal

driving of the varicap. This is a clear hint that after a comprehensive understand-

ing of the wire resonator all peculiarities found for the single driven microwave

Floquet system should be expandable to this setup. This is the point where the step
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Figure III.17.: Sideband structure for the setup shown in figure III.15 with a sinu-
soidal AC voltage applied at the varicap. The input power is 0 dBm,
νc = 848 MHz and νd = 1 MHz.

from a single driven resonance presented in section III.2 to a system with several

driven resonances can be performed.

III.4.2. Graphs

In the context of developing an optimal wire resonator device for the setup in sec-

tion III.4.1 an intermediate solution was a variable reflection termination for a long

antenna (a photograph of the termination is shown in figure III.18 (c)). The termi-

nation determines the phase difference between the incoming and outgoing wave.

For this setup the shift of the resonance frequency was not large enough. But the

principle operating of such terminations leads to the idea to use a coaxial cable

terminated with such a reflection terminator. Coaxial cables can be used to form

microwave graphs which are fully equivalent to quantum graphs. In figure III.18

(a) a photograph of such a device and in (b) a sketch is shown.

An introduction to quantum graphs can be found in [91, 92]. Their realization with

microwave equipment was firstly investigated by Hul, Sirko and coworkers [93]

and is still an active field [94].
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(a) (b)

(c) (d)

Figure III.18.: (a) Photograph of a microwave analog to quantum graph and in (b)
a sketch o it. (c) a photograph of the termination using the varicap.
(d) photograph of the termination using a switching diode.

The coaxial cables are connected with T-junctions giving several transmission and

reflection probabilities to the other attached cables or backwards respectively. The

idea for the introduction of Floquet systems is to attach at least one additional coax-

ial cable (in figure III.18 (b) bottom right) with the variable termination. The differ-

ent phase relations for different applied voltages at the varicap can be transformed

in an effective length modification. If the change of the varicap is large enough,

the spectrum of the graph might be changed. In figure III.19 (a) the spectra for the

same graph (see figure III.18 (a)) but with different applied voltages at the varicap

are presented.

One can see that some of the modes are affected very much, whereas for example

the mode at 0.66 GHz is nearly stable. Also not every shifting mode is affected in

the same way. This can be understood from a semiclassical point of view, where

one can see how different classical periodic orbits contribute to the spectrum. As

an analysis of the spectrum is not the aim of this section, I will not go into detail.

To enlarge the observed effect of changing the spectra, instead of the varicap a

switching diode was used. A photograph of the termination can be seen in figure

III.18 (d). The switching diode can change from a high capacity to a nearly short

circuit between inner and outer line. The spectra for the two possibilities can be

seen in figure III.19 (b). In black the switching diode is operating as a conductor

and in red it is operating as a short circuit. One can see two different spectra.
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III. Realization of a microwave Floquet system

(a) (b)

Figure III.19.: Reflection spectra for the setup shown in figure III.18 (b) with (a)
the varicap and (b) the switching diode. In (a) black corresponds
to 1 V, blue dashed to 3 V, red dotted to 5 V and green dash-dotted
to 7 V applied at the varicap. In (b) is the black spectrum for the
switching diode operating as a conductor and in red as a short
circuit.

They may have some resonances in common but most resonances are completely

different. The advantage of the switching diodes is that they are easy available for

high frequencies (> 1 GHz), which is not the case for varicaps.

In figure III.19 (a) it is observable that the shift of the resonances is large enough to

think of graphs with a mean level spacing of the order of the shift. So one can state

that graphs might also be suited to perform a microwave Floquet experiment in a

multi-frequency regime.
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III. Realization of a microwave Floquet system

III.5. Conclusions

In this chapter I have first presented the realization of a tunable microwave sys-

tem. The properties of the generated sideband structures were understood within

the model of a resonance circuit with a single excited resonance. I have demon-

strated the essentially different sideband structures produced by sinusoidal and

rectangular driving. The decay of the sidebands could be verified as well as the

expected amplitude height of the main peaks. Theoretically I have shown that

for sinusoidal driving close to the borders of the modulation band sideband struc-

tures can display large oscillations. However, due to rather strong resistance of the

current setup such structures have not been yet verified experimentally. The com-

paratively large resistance is not affecting a realization of systems which should

show dynamical localization. The shown algebraic decay for sidebands generated

by rectangular driving is suited to show a transition to an exponential localization

in the time domain.

Then I studied non-linear effects and showed the principle arising of nonlinear

equations caused by a nonlinear voltage-current characteristic of the varicap. In

association with typical nonlinear systems I showed one hysteresis effect for the

driven system, where the sideband structure completely changes if one changes

the direction of the applied carrier frequency. Additionally a first hint of the pe-

riod doubling route to chaos for driven microwave systems was presented, where

additionally sidebands between those of the linear regime occur.

Until here the studies were restricted to a particular simple situation, namely one

resonance circuit with just one eigenfrequency. As a next step a system with a high

density of states within the modulation band was presented in two different real-

izations. The coupling of a wire resonator to a cavity is established and a sufficient

number of modes in a wide range can be perturbed. The second idea is a more

controllable setup. By changing the effective length of one edge of a microwave

analogue quantum graph an easily manageable system is introduced, where also

resonances at high frequencies (up to 3 GHz) could be varied in a controlled way.

This opens up the field of a controllable analysis of dynamical localization. Addi-

tionally one can think of e.g. the investigation of noisy graphs [95].
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A. Mimicking quantum mechanics with microwave

equipment

In the following a brief derivation of the equivalence of the Helmholtz equation

for a flat cylindrical cavity and the two dimensional Schrödinger equation is given.

The calculation is very similar to [9] and can be seen there more detailed.

Starting from Maxwell’s equations for an electromagnetic field in three dimensions

with a periodic time dependence of the ~E and ~B-field, one obtains the Helmholtz

equation (see e.g. section 8 [47])

(∆ + k2)~E = 0, (A.1)

(∆ + k2)~B = 0. (A.2)

The coordinate system should be chosen now in such a way, that the z-axis is per-

pendicular to the top and bottom plate. The z-component of the electric field are

now 0 as well as the derivative in normal direction of the z-component of the mag-

netic field. The boundary conditions are in principle obtained by two different

types of electromagnetic modes. Transverse magnetic (TM) and transverse elec-

tric (TE) modes have a vanishing z-component of the magnetic respectively electric

field. The z-component of the electric field (TE-modes) respectively of the mag-

netic field (TM-mode) can be separated by a cosine (TE) or sine (TM) function (so

e.g. Ez(x, y, z) = E(x, y) · cos(nπz/d)). Only TM modes with mode number 0 in z-

direction exist. That means if the half of the wavelength λ is larger than the height

d of the resonator

λ > 2 · h, (A.3)

only the so-called TM0 modes can be excited. The Helmholtz-equation for the z-

component of the electrical field reduces than to

−
(

∂2

∂x2 +
∂2

∂y2

)
Ez(x, y) = k2Ez(x, y). (A.4)
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This equation is fully equivalent to the two-dimensional stationary Schrödinger-

equation

− h̄2

2m

(
∂2

∂x2 +
∂2

∂y2

)
ψ(x, y) = Eψ(x, y) (A.5)

if one identifies

ψ(x, y) = Ez(x, y) ; E = k2 ;
h̄2

2m
= 1. (A.6)

Therefore quantum mechanical effects can be investigated by microwave experi-

ments if one considers equation (A.4) [9].

If one is interested in the time-dependent behavior one has to take the different

dispersion relations for the electromagnetic case

w(ed) ∝ k(ed) (A.7)

and the quantum mechanical case

w(qm) ∝ k2
(qm) (A.8)

into account.

B. Spectra for stronger couplings

As it was mentioned at the end of section I.2.1, it is useful to minimize the coupling.

To illustrate that, reflection spectra for two different couplings are plotted in figure

B.1.

The black curve is for small coupling (Re(λ) ∼ 0.002) and the red dashed line for

strong coupling (Re(λ) ∼ 0.08). The coupling was increased by using a longer and

teflon coated antenna. One can see broader resonances with a higher amplitude.

The regular modes seem to vanish and between them a quasi regular structure ap-

pears. The quasi degeneracy (in the neighborhood of every 1st mode is a 4th, etc.)
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Figure B.1.: Two different reflection spectra for the same antenna position but
with different antenna lengths. The black is for an antenna which
extends 1 mm into the cavity. The red dashed spectrum is for a 8 mm
long antenna with an additional 0.5 mm thick teflon film surrounding
it.

for the weak coupling (black) is probably canceled by the antenna. One resonance

became broad and deep and the other stays at its position and form Fano like pro-

files [96, 97, 2] like at 5.6 GHz. This can also be understood by resonance trapping as

the strongly coupled antenna mimics an additional decay channel and some of the

resonances take the main part of the widths and the rest stays relatively sharp [9].

Now the importance of adjusting the minimal possible coupling for the measure-

ments in chapter I is obvious. There are a few additional resonances, which might

be a hint for the third modes in the (3 × 3)-model presented in equation I.11.

C. Frequency depending tunneling rates - alternative

analysis; other antenna position

For a clear, readable and comprehensive argumentation only one possibility to

modify the experimental data was presented in the main part. For the sake of

completeness, here the results for the other modification possibilities are presented
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(figure C.2). In the main part the antenna coupling was considered by an approxi-

mative functional frequency dependence. In figure C.2 (a) the linear interpolation

discussed in figure I.7 (b) was used. In (b) the measured amplitudes were sub-

tracted directly.

(a) (b)

Figure C.2.: Modified experimental data by subtracting γWall and γAnt, where
γAnt are the linear fitted amplitudes (compare figure I.7 (b) black
solid line) in (a) or the direct measured amplitudes (b). These mea-
surements are performed at antenna position 1.

In both cases one can see the increase of the width at the numerical predicted po-

sition. As it is expected, for the direct subtract (figure C.2 (b)) one can see a shift

to lower frequencies of the maxima, because of the high measured amplitude at

6.4 GHz. Both procedures show too small amplitudes above 6.4 GHz. Due to the

very small tunneling rate the experimental uncertainties cannot resolve them, es-

pecially as the tunneling rates are becoming smaller than the measuring frequency

increment the widths cannot be resolved and it is not surprising that they can be

slightly negative after the modification (in the order of 0.02 MHz).

For the second and the third horizontal mode the amplitudes as function of the

resonances position are plotted in figure C.3. One can clearly see the decrease of

the amplitudes at 8.5-9.0 GHz for the second mode. This is in agreement with our

expectation. In figure I.9 (c) one can see that this is nearly the frequency position

where we expect an enhancement of the tunneling rate. In the extracted experi-

mental widths this effect might not be noticeable due to the failing of the correction

procedure. If one would pay more effort in better correction parameters, it might be

possible to see the effect. It is also not useful to try to observe the resonance-assisted

tunneling effect at the chosen antenna position. The amplitudes of the wave func-
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(a) (b)

Figure C.3.: Amplitude as function of the resonance frequency for second (a) and
third (b) horizontal modes. In yellow dashed lines are the correction
for the diagrams in figure I.9 (c) and (d).

tion reach their maximal value here and thus the coupling to the antenna is strong.

Already in this situation the antenna coupling might lead to mode splitting (for an

overview see [55], calculations in [79]).

In section I.2.3 all presented measurements are performed at the antenna position 1

(blue point in I.2 (b), upper right corner). To show that the agreement presented in

figure I.9 is independent of the position in figure C.4 the same series is shown, now

excited at antenna position 2 (red point in I.2 (b), close to lower left corner). Here

once again all three corrections are plotted. In comparison to the measurements

presented in the main part the cavity was opened in between. Thus the absorber

and half circle was position have changed within the precision of the experiment.

That is why slight differences are expected.

In this compilation one can see that the different correction possibilities are lead-

ing to very similar results. In every situation one can see a very good agreement

with the theory, only for the direct subtracting, the peak at 6.4 GHz is affected

strongly. Nevertheless this is also showing a good agreement to the numerical

expectations.

D. Parametric dependence of divers modes

In section I.2.4 the experimental setup was changed parametrically to analyze the

effect of resonance assisted tunneling. Only evaluations for measurements at the
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(a) (b)

(c) (d)

Figure C.4.: All measurements performed at antenna position 2 (red point in fig-
ure I.5). (a) amplitude of the Lorentz fits as function of the fitted
resonance position. In red the amplitude of the numerical wave func-
tions at the position of the antenna, multiplied with the coupling (as
in figure I.7). The red dashed lines corresponds to an approximation
like in figure I.7. In (b), (c) and (d) the modified experimental data is
plotted. In (b) the measured amplitudes were subtracted directly. In
(c) the approximative functional dependence (yellow dashed line) is
subtracted and in (d) the linear fitted points and the other direct mea-
sured amplitudes were subtracted. Blue dotted lines corresponds to
the wall absorption.
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antenna position 2 are plotted. The main reason is that only there measurements

were performed with the most suitable antenna. At antenna position 1 I measured

with a slightly different antenna, which couples a little bit better to the system.

Hence the widths are a little bit broader. In the following the same modes are

presented that were shown in section I.2.4 but now at antenna position 1.

In figure D.5 it is noticeable that the crossing of the two modes happens at a slightly

different position of the half circle. At this position a clear increase of the width of

the first mode is seen. For the description with a (3 × 3)-model like in equation

(I.11) the grey dashed and the yellow solid lines are plotted. In this situation de-

viations are found. The main reason is the changing amplitude as a function of

the parameter. It changes in the order of 0.05 MHz which is 50% of the height of

the enhancement of the first mode. This variation might be caused by the stronger

coupling to the billiard. Such an enhancement was also found for the measurement

series for antenna position 2, but not to the same extend. It is also noticeable that

the last three points of the diagram (above 0.503) showed deviations in every evalu-

ation of single modes (here noticeable in figure D.6). Although a clear enhancement

in the case of the crossing of the two regular modes is presented.

I also present the parametrical dependence of the mode at approximately 6.4 GHz.

Remembering that by starting at the half circle position of 0.5 and decreasing this

value we would expect a decrease of the width of the first mode.

Figure D.6 shows clearly another resonance, which in this case also shows a width

decrease of about 0.4 GHz.

To clarify that the chosen crossing is not an individual case, in the following addi-

tional parametrically changed modes are presented for excitations at antenna posi-

tion 1.

Figure D.7 (a) to (d) show four different crossing behaviors. In (a) another simple

and clear crossing is observable. As the angle of the crossing of the real part is

smaller, the range of the increase of the width of the first mode is larger. Figure D.7

(b) shows that also the dependence of the 4th mode do not have to be monotonic.

One can think of an interaction with left chaotic modes, which are performing an

additional avoided crossing. It is very interesting that if the real part of the fourth

mode is increasing the width of the first mode is not affected. Therefor I assume

that in this part this is not a 4th mode any more and thats why the coupling is very

XII



Appendix

Figure D.5.: Resonance positions and widths of the two interacting modes near
4.97 GHz as a function of the half circle position. On top resonance
positions of the first (black pluses) and fourth (red diamonds) mode.
In the upper middle the width of the fourth mode and on lower mid-
dle the width of the first mode. In all three diagrams underlying nu-
merical results out of the 3-matrix model. To explain the deviations
the amplitudes of the modes are plotted on the bottom.
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Figure D.6.: Resonance positions and widths of the two interacting modes near
6.42 GHz as a function of the half circle position. On top resonance
positions of the first (black pluses) and fourth (red diamonds) mode.
In the middle the width of the fourth mode and on the bottom the
width of the first mode.
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(a) (b)

(c) (d)

Figure D.7.: Resonance positions and widths of the two interacting modes near
5.46 GHz; 5.94 GHz; 6.91 GHz and 6.1 GHz (now second and fifth
modes) as a function of the half circle position. On top resonance po-
sitions of the first (2nd) (black pluses) and fourth (5th) (red diamonds)
mode. In the middle the width of the fourth mode and on the bottom
the width of the first mode. In (a), (b) and (d) a logarithmic scale in
the middle, in (c) a linear.
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different. In (c) a situation is presented where the real parts do not cross and so no

enhancement of the width of the first mode is expected. This example was chosen

to clarify that such sharp resonant like enhancements of the first modes only arises

in the case of a crossing of the two regular modes. Additionally in figure D.7 (d) a

crossing of a second and a fifth mode is presented, as we also expect a resonance-

assisted tunneling effect if these two mode are coming close in energy.

E. Resonance-assisted tunneling description by

(2 × 2)-model

In section I.2.4 it was mentioned that one could also model the resonance as-

sisted tunneling by a (2 × 2)-model. Again we calculate the quantum mechanical

energies(E) and widths(Γ) out of the electromagnetic ones. The Hamiltonian is then

of the form

H =




E1 − i
Γnat,1

2
V3:1

V3:1 E4(d) − i
Γnat,4(d)

2


 (E.9)

The frequency dependence of the fourth mode has to be considered by an appropri-

ate function. For the real part again a linear slope was used, whereas the imaginary

part (γnat,4(d)) was reproduced by a cosine shaped function. Only the coupling is

now a free parameter and can be found with nearly no deviations (just 2-3%) of the

theoretical value. The experimental data with the fits are presented in figure E.8.

For the width I used the dependence γnat,4(d) = 14.8 −
cos ((d − 0.4945) · 100) MHz, with the half circle position d. To verify that the

functional dependence of the width of the broad mode is not important for the

extraction of the enhancement of the tunneling process, I plotted in the middle and

bottom part an additional grey dashed line. This lines corresponds to a constant

width of the broad mode γnat,4(d) = 5.2 MHz. One can clearly see that also this

assumption for the second mode is leading to a similar agreement as the curved

dependencies.
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Figure E.8.: Resonance positions and widths of the two interacting modes near
4.98 GHz as a function of the half circle position. On top resonance
positions of the first (black pluses) and fourth (red diamonds) mode
are plotted. In the middle the width of the fourth mode and on the
bottom the width of the first mode. In addition the numerical values
due to a (2× 2)-model are plotted for the first mode in yellow and for
the fourth mode in blue.
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F. Width characteristics by opening an one

dimensional potential well by one realistic

absorbing wall

In the context of the chosen parameters for the (3 × 3)-model in section I.2.4 (equa-

tion (I.11)) it was mentioned that the width of the channel resonance is surprisingly

small (∼ 70 MHz). To understand this characteristics one can reduce the problem

to a one dimensional situation [98]. One considers an one dimensional system with

one absorbing wall and one hard reflecting wall at a distance of L (compare figure

F.9). In the sketch the left wall represents the absorber (marked as hatched line)

and the right solid line represents the hard wall.

Figure F.9.: Sketch of a one dimensional potential well with one absorbing wall
(left).

As in the sketch symbolized the wave function is of the form

ψ(x) = ae−ikx + beikx . (F.10)

The reflection coefficient R is defined as

R =
a

b
= |R|eiφ. (F.11)
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The reflection at the right wall (ψ(L) = 0) is leading to

b = −ae−2ikL (F.12)

⇒ R = −e−2ikL = |R|eiφ (F.13)

⇒ − e−2ikL−iπ−ln |R|−iφ = 1 (F.14)

⇒ 2iknL + iπ + ln |R| + iφ = 2πin (F.15)

⇒ knL =
π

L

(
n − 1

2
− φ

2π

)
iγ (F.16)

with

γ = − 1
2L

ln |R|. (F.17)

The level distance for this one dimensional situation is

∆ =
π

L
(F.18)

and so we end up with

γ = − ∆

2π
ln |R|. (F.19)

In the situation of section I.2.4 we can mimic the two dimensional system by a

quasi one dimensional model with M open channels, where M is the number of

half wavelengths corresponding to the length of the absorber. For a frequency of

5 GHz this means by a length of the absorber of approximately l = 20 cm

M =
l

λ/2
=

2 · l · ν

c
=

2 · 0.2m · 5 · 1091/s

3 · 108m/s
∼ 7. (F.20)

For that reason we can estimate the width of the modes as

γ ∼ −∆ ln |R|. (F.21)
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G. Scattering theory for open quantum mechanical

systems

As the calculation of scattering matrices out of the so-called Heidelberg-ansatz is

well known from multiple publications, also from our group, I will just give a short

introduction. For a complete derivation see e.g. [9].

As it was shown in appendix A there is a complete correspondence between the

electromagnetic Helmholtz equation and the quantum mechanical Schrödinger

equation. Therefor we use technics well known from scattering in nuclear physics.

In addition of the excitation and measuring of the antennas we want also to model

the wall absorption. Similar to nuclear physics we mimic them by decay chan-

nels. A nice picture for that is, if one imagine the walls of the cavity as paral-

lel attached channels with a certain reflection and transmission coefficient. The

derivation starts at the general definition of the scattering matrix

b = Sa. (G.22)

Here the vector a denotes the amplitudes of the incoming waves and b of the out-

going. As we handle the antennas as equal channels like the walls a and b corre-

sponds to i antenna channels and j wall channels. As we use dipole antennas we

have to solve a boundary value problem which matches the incoming waves in the

antenna with the field inside the cavity (calculated by the unperturbed Hamilto-

nian) and in addition with the outgoing antennas. In the same manner we have

to match the wave function of the cavity with the boundary conditions of the wall

channels. This can be done by a Green function method. The scattering matrix is

now of the form

S =
1− W†GW

1+ W†GW
. (G.23)

The matrix G is the quantum mechanical Green function of the unperturbed sys-

tem and W contains the information of the coupling of the channels to the quantum

mechanical wave functions. This is considered by the overlap of the nth wave func-
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tion in the cavity ψn(r) with the wave function in the kth channel uk(r) (a channel

can be either an antenna or a wall channel!)

Wnm =
∫

ψn(r)uk(r)dr. (G.24)

After some mathematics one ends up with

S(E) = 1− 2iW† 1
E −H0 + iWW† W. (G.25)

That means that now the poles of the scattering matrix are the eigenvalues of the

Hamiltonian

H = H0 − iWW†, (G.26)

which one can call an effective Hamiltonian. As already mentioned these calcula-

tions are well known and for reasons of comparability to the more complete deriva-

tions I used the same notations as in [9].

H. Global phase calibration

In theory e.g. equation (G.25) it is assumed that 〈Im(S)〉 = 0 and Saa = 1 if there is

no resonance. For that reason one should take attention to the global phase of the

reflection spectra.

With modern calibration devices for vectorial network analyzer (VNA) it is pos-

sible to calibrate nearly every effect performed by the cables connecting the VNA

with the dipole antennas. Unfortunately the dipole antenna and its component

coupling the cable (engineers call them chassis jack) have a phase development.

This is caused by the conductivity while passing the top plate and an unperfect

attachment of the cable to the chassis jack. In figure H.10 (a) the real and imaginary

part of the reflection signal are plotted.

To consider this effect in the data one measurement was performed without any

cavity. This free radiation contains mainly only the phase effect of the chassis jack.
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(a) (b)

Figure H.10.: Real and imaginary part of the reflection spectrum before (a) and
after the phase calibration (b). In (a) the global phase measured by
a free radiance in plotted in yellow.

This is illustrated by the yellow dashed line in H.10 (a). A so-called phase calibra-

tion can be performed which rotates the measured spectrum in the complex plane

in such a way that the real and imaginary part of the reflection spectrum are of

the form represented in figure H.10 (b). The main advantage is, that the reflection

spectrum is now mainly real.

I. Capacity and inductivity of the tin cup

The capacity of the tin can be estimated by the assumption of a cylindrical capacitor.

Its capacity is given by [83]

C = 2πǫ0ǫrh
1

ln(D/d)
, (I.27)

where d is the diameter of the inner cylinder (d = 1.5 cm) and D of the outer one

(D = 10 cm). The height h of the tin cup is 12 cm. The capacity is then

C = 2π8.85410−121 · 0.12
1

ln(10/1.5)
F ∼ 3.5 pF. (I.28)
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The inductivity can be calculated analogously to a cylindrical capacitor and is cal-

culated in many electrical engineering text books for a coaxial cable (see e.g. section

2.1 in [82]). As we are in a high frequency regime only the inductivity of the outer

cylinder is contributing

L =
µ0µrh

2π
ln(D/d). (I.29)

With the diameters of the tin cup it is

L =
4π · 10−7 · 1 · 0.12

2π
ln(10/1.5) ∼ 45 nH. (I.30)

For a resonance circuit the eigenfrequency is calculated by

ν =
1

2π
√

(CL)
∼ 400 MHz, (I.31)

which is the expected range and leads to the measured eigenfrequency of the whole

circuit if one considers the varicap, which has an capacity of ∼ 10 pF.

J. Analytic calculation of sidebands generated by

rectangular driving

If one would like to solve the differential equation (compare equation (III.7))

C(t)Q̈ +
RLC(t)

L
Q̇ +

1
L

Q = C0u0 cos(ωct), (J.32)

where C(t) is a rectangular function, which means that

C(t) =

{
CA, for 0 < t < T/2 (interval A)

CB, for T/2 < t < T (interval B).
(J.33)

That means in particular that the converted equation (J.32) which is now

Q̈ +
RL

L
Q̇ +

1
LC(t)

Q =
C0u0

LC(t)
cos(ωct), (J.34)
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becomes just an universal oscillator equation in two different intervals (A and B).

These equations

Q̈A +
RL

L
Q̇A +

1
LCA

QA =
C0u0

LCA
cos(ωct) (J.35)

Q̈B +
RL

L
Q̇B +

1
LCB

QB =
C0u0

LCB
cos(ωct) (J.36)

can be solved and have to be conformed with the boundary conditions:

QA(T/2) = QB(T/2) (J.37)

QA(0) = QB(T) (J.38)

Q̇A(T/2) = Q̇B(T/2) (J.39)

Q̇A(0) = Q̇B(T). (J.40)

For the solution of equation (J.35) and equation (J.36) one needs the general so-

lution of the homogeneous differential equation and one special solution of the

inhomogeneous differential equation. The inhomogeneous solutions are

QA,inh =
fA√

(ω2
A − ω2

c )
2 + ω2

c /τ2
cos (ωct − αA) (J.41)

QB,inh =
fB√

(ω2
B − ω2

c )
2 + ω2

c /τ2
cos (ωc(t − T/2) − αB), (J.42)

where τ = L/R, fK = C0u0/(LCK), ωK = 1/
√

LCK and αK = arctan ωc/τ
ω2

K−ω2
c

for

K = A, B. Possible representations of the full homogeneous solutions are

QA,hom = Ac cos (ωAt)e−τt +

As sin (ωAt)e−τt (J.43)

QB,hom = Bc cos (ωB(t − T/2))e−τ(t−T/2) +

Bs sin (ωB(t − T/2))e−τ(t−T/2). (J.44)

Now it is only a question of studiousness to determine Ac, As, Bc and Bs in such a

way that the boundary conditions (equation (J.37) to equation (J.40)) are fulfilled. A

complete expression of these pre-factors is not manageable due to the big amount

of parameters. For the analytic results presented in section III.2.4, Ac, As, Bc and
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Bs were calculated for the concrete parameters for each measurement. To get the

amplitude of the sidebands one has just to calculate

cn =

T/2∫

0

(QA,in + QA,hom)ei( 2πn
T )t +

T∫

T/2

(QB,in + QB,hom)ei( 2πn
T )t, (J.45)

due to the periodicity in T. To see the overall behavior we just perform the real part

of the first integral in equation (J.45)

Re[cn,A] =

T/2∫

0

(QA,in + QA,hom) cos (
2πn

T
t)

=

T/2∫

0

f̃A cos (ωct − αA) cos (
2πn

T
t) +

T/2∫

0

[
Ac cos (ωAt)e−τt + As sin (ωAt)e−τt

]
cos (

2πn

T
t), (J.46)

where f̃A is the whole pre-factor of equation (J.41). The first integral in equation

(J.46) can be calculated for n 6= ωcT/(2π) to

T/2∫

0

f̃A cos (ωct − αA) cos (
2πn

T
t) =

1
2

T/2∫

0

f̃A cos ((ωc +
2πn

T
)t − αA) +

1
2

T/2∫

0

f̃A cos ((ωc −
2πn

T
)t − αA) =

1
2(ωc + 2πn

T )

[
sin ((ωc +

2πn

T
)T/2) − 1

]
+ (J.47)

1
2(ωc − 2πn

T )

[
sin ((ωc −

2πn

T
)T/2) − 1

]
. (J.48)

The first part (equation (J.47)) can be neglected, because it is relatively small (see

the sum in the denominator). The second part (equation (J.48)) shows a pole for

n = ωcT/(2π) and decays in an algebraic way, where the power is minus one.
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Since this is the leading term it is the reason for the algebraic decay with the power

of -2 due to the fact that one measures the power which is proportional to the

square of the current. All the other terms are performing an offset or an additional

algebraic decay with the power of -2.

K. Foldover in a nonlinear RLC-circuit

In the textbook of Landau and Lifschitz (compare section 29 in [99]) it is shown that

for a nonlinear driven pendulum an effect called foldover can occur. The resonance

curve is becoming a wave like form. That means that the amplitude of the driven

pendulum can have more than one possible value for one driving frequency. It

is determined by the starting condition which amplitude arises. In our specific

situation this condition is the frequency range from which the system is coming.

Either it is coming from frequencies higher than the resonance frequency or from

lower frequencies. In this context I want to use the term hysteresis. It is a memory

effect, because the system is choosing its amplitude depending on its past.

(a) (b)

Figure K.11.: Amplitudes of the excited oscillation as a power output. (a) for dif-
ferent powers of the driving signal, (b) for one special input power.
black plusses/line for increasing frequencies, yellow crosses/line
for decreasing frequencies.

To find this effect I measured the non driven Floquet system (figure III.1, equation

(III.45)). The system was excited by the signal generator, to excite only one fre-

quency without any drift in the frequency range. Comparable experiments with

a vector network analyzer are not suited due to the fixed frequency direction (the

signals are created in a different way in the two devices). The outcoming signal
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is measured with the spectrum analyzer where just the amplitude of the peak was

extracted. In figure K.11 (a) and (b) the results are presented.

In (a) one can see that for higher excitation powers the resonance structure is be-

coming asymmetric and at the end a fold over occurs. In the left figure resonance

curves for input powers of -4,-2,0,2,4,6,8,10 dBm are plotted in the same window.

The lowest two curves are nearly just shifted by the difference of their excitation

power. For higher powers the difference is becoming non-uniform. Up to a certain

value of the input power the resonance curve seems to become discontinuous and

for the highest two curves there is a clear difference between the increasing driving

frequency and the decreasing driving frequency. To visualize the effect better in

figure K.11 (b) only the two resonances curves are plotted for the same setup, but

with different directions the frequencies are coming.
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