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Acknowledgements

Bernd Freisleben is a wonderful adviser. Open-minded, supportive, resourceful,
and caring. We had countless long discussions and he always read my paper drafts
thoroughly, giving constantly invaluable advice in content, structure, and style. If
today I am a better conveyer of my research ideas, I owe it to him. All the remaining
faults, of course, are only failures of mine.

I have learned from Martin Hoof all I know about the real-world task/domain
that triggered my research. He did a remarkable work, looking at my domain
ontology sketches and getting them straight, as well as answering all my questions
very clearly. Furthermore, he organized a research stay at Alstom Power in Birr,
during which, we also had the opportunity to visit that beautiful country that
Switzerland is.

My lack of formal instruction in computational linguistics was compensated by
two things: the wonderful book of Chris Manning and Heinrich Schütze, as well as
frequent communication with many linguistics researchers, who patiently listened
to my requests and kindly answered. Katrin Erk and Sebastian Padó helped me
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Abstract

People mostly store and share their knowledge by means of written natural lan-
guage. Nowadays, a large quantity of this knowledge is available in the form of
digital text documents, accessible by computers. However, computers cannot un-
derstand natural language such as English and German, so that the degree to which
computers can make use of the knowledge stored in such documents is very limited.
Nevertheless, computers need not really understand human language, in order to
process text documents to fulfill some concrete user goals. All a computer needs
are instructions on what kind of processing to perform. In order to make these
instructions available, it is necessary to know what the users’ goals might be and
what kind of knowledge sources are available.

Case-Based Reasoning (CBR) is an Artificial Intelligence (AI) technique that
has been successfully used for building knowledge systems for tasks/domains where
different knowledge sources are easily available, particularly in the form of prob-
lem solving situations, known as cases. Cases generally display a clear distinction
between different components of problem solving, for instance, components of the
problem description and of the problem solution. Thus, an existing and explicit
structure of cases is presumed. However, when problem solving experiences are
stored in the form of textual narratives (in natural language), there is no explicit
case structure, so that CBR cannot be applied directly.

This thesis presents a novel approach for authoring cases from episodic textual
narratives and organizing these cases in a case base structure that permits a better
support for user goals. The approach is based on the following fundamental ideas:

• CBR as a problem solving technique is goal-oriented and goals are realized by
means of task strategies.

• Tasks have an internal structure that can be represented in terms of partici-
pating events and event components.

• Episodic textual narratives are not random containers of domain concept
terms. Rather, the text can be considered as generated by the underlying
task structure whose content they describe.

The presented case base authoring process combines task knowledge with Nat-
ural Language Processing (NLP) techniques to perform the needed knowledge ex-
traction and summarization.
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Knowledge extraction is regarded as a machine learning (ML) problem of learn-
ing to annotate textual narratives with elements of the task structure (e.g., knowl-
edge roles).

Knowledge summarization makes a novel use of probabilistic content modeling
(we refer to this variant as Probabilistic Task Content Modeling) to group together
pieces of knowledge with similar meaning.

These two steps were implemented and the approach was tested by building a
case base out of a repository of episodic textual narratives from a real-world scenario.
The performed experiments that compare the proposed approach to existing Textual
CBR approaches demonstrate its advantages in improving the user experience with
a textual case-based reasoning system by reducing the information overload on the
user side.

The proposed event-oriented representation of episodic textual narratives as well
as the related processing techniques can be applied to other similar tasks/domains
commonly used in CBR-based knowledge systems, because the approach itself is
largely domain-independent.



Zusammenfassung

Wissen wird meistens in Form von in natürlicher Sprache verfassten Texten auf-
bewahrt und weitergegeben. Heutzutage wird eine grosse Menge dieses Wissens in
elektronischen Textdateien abgelegt und ist daher für Computer zugreifbar. Allerd-
ings können Computer Texte in natürlicher Sprache wie etwa Englisch oder Deutsch
nicht verstehen, deshalb ist das in solchen Dokumenten enthaltene Wissen durch
Computer nur sehr begrenzt nutzbar. Jedoch brauchen Computer natürliche Spra-
che nicht zu verstehen, um Textdokumente so zu verarbeiten, dass bestimmte
konkrete Ziele eines Benutzers erfüllt werden können. Alles was ein Computer dazu
benötigt, sind Anweisungen über die Art der auszuführenden Verarbeitungsschritte.
Um diese Anweisungen zu erstellen, ist es notwendig, die Ziele eines Benutzers und
die verfügbaren Wissensquellen zu kennen.

Case-Based Reasoning (CBR)1 ist eine Methode der Künstlichen Intelligenz, die
für die Entwicklung von Wissensverarbeitungssystemen erfolgreich eingesetzt wor-
den ist, wenn verschiedene Wissensquellen verfügbar sind, insbesonders in Form von
Problemlösungen, bekannt als Fälle. Fälle sind dadurch charakterisiert, dass sie eine
klare Trennung zwischen den verschiedenen Komponenten einer Problemlösungssi-
tuation aufweisen, wie beispielsweise die Komponenten Problembeschreibung und
Problemlösung. Daher wird oft angenommen, dass eine explizite Struktur für die
Fälle existiert. Wenn aber Problemlösungen als Erfahrungen in Form von Texten
in natürlicher Sprache verfasst wurden, gibt es keine definierte Struktur für Fälle,
so dass CBR nicht direkt eingesetzt werden kann.

Diese Arbeit stellt ein neues Verfahren für die Erstellung von Fällen aus episodis-
chen Texten und ihre Organisation in einer Fallbasis-Struktur vor, welches eine
bessere Unterstützung von Benutzerzielen in diesem Kontext ermöglicht. Das Ver-
fahren basiert auf den folgenden grundlegenden Ideen:

• CBR als eine Problemlösungsmethode orientiert sich an bestimmten Zielen,
und diese Ziele werden mittels bestimmter Strategien hinsichtlich der zu lö-
senden Aufgaben verwirklicht.

• Aufgaben haben eine innere Struktur, die mittels der beteiligten Ereignisse
und deren Komponenten dargestellt werden können.

• Episodische Texte sind keine zufälligen Sammlungen von domänenspezifis-
chen Begriffen. Vielmehr können solche Texte so betrachtet werden, als

1Fall-basiertes Schließen
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wären sie von der zugrunde liegenden Aufgabenstruktur (deren Inhalt im Text
beschrieben wird) erzeugt worden.

Das vorgeschlagene Verfahren zur Erstellung der Fallbasis kombiniert Wissen
über die zu lösenden Aufgaben mit Methoden des Natural Language Processing
(NLP)2, um die Extraktion und die Zusammenfassung von Wissen durchzuführen.

Die Wissensextraktion wird als ein Problem des maschinellen Lernen betrachtet,
mit dem Ziel, die Annotation von Texten mit Elementen einer Aufgabenstruktur zu
erreichen.

Die Zusammenfassung von Wissen wird mittels einer neuen Variante der prob-
abilistischen Modellierung von Inhalten erzielt, in der Wissenskomponenten mit
gleicher Bedeutung gemeinsam gruppiert werden.

Diese beiden Schritte wurden im Rahmen der vorliegenden Arbeit implementiert
und getestet. Dafür wurde eine Fallbasis bestehend aus episodischen Textdoku-
menten aus einem realen Szenario verwendet. Die durchgeführten Experimente,
die das vorgeschlagene Verfahren mit existierenden Verfahren vergleichen, demon-
strieren die Vorteile des neuen Ansatzes hinsichtlich der Reduktion der Informa-
tionsüberlastung des Benutzers eines textuellen CBR-Systems.

Die vorgeschlagene Ereignis-orientierte Darstellung von episodischen Texten und
die hierfür entwickelten Verarbeitungsmethoden können in ähnlicher Weise auch in
anderen Aufgabengebieten eingesetzt werden, da der vorgestellte Ansatz grundsätz-
lich unabhängig von einer bestimmten Anwendungsdomäne ist.

2Verarbeitung natürlicher Sprache
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Chapter 1

Introduction

Information retrieval systems in general and search engines like Google in particular
have changed the way we look for and find information. However, we still suffer
from a major drawback: if there is more than one fact related to our query, we
have to read several documents to collect them all. Clearly, when the number of
documents is large and the facts are scattered in many documents with different
rankings, we face the problem of information overload, which forces us to settle for
incomplete information. Thus, a much desired situation would be a system that not
only finds all the documents, but also summarizes the requested information in a
single page. Actually, the quest for automated document summarization has been
a topic of research as early as 1958, [Luhn, 1958]. The problem is still unsolved due
to the fact that handling natural language automatically is a very hard task.

Nevertheless, while this issue has not been solved as a generic problem (inde-
pendently of domains and user needs), focused solutions have started to appear.
Particularly successful have been systems that summarize news articles related to
one event or topic. NewsBlaster1 developed at Columbia University is such an
example. Other solutions are dedicated to summarizing scientific articles [Kupiec
et al., 1995] or medical reports [Elhadad and McKeown, 2001].

Primarily, the success of such systems can be explained by two factors:

• the expectations of the users from a specific type of text
• the content/document structure that depends on the nature of communicated

information

User Expectations:

When we read a typical, informative news article (not an editorial, opinion, or
analysis), we expect to receive answers to the following questions: What happened?
Where? Why? Who was involved? Is the situation still going on? . . .

When we read a research paper, we want to know: What is the problem be-
ing addressed? Why is this problem important? What is the contribution of the
paper?. . .

1http://newsblaster.cs.columbia.edu

1
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1. Introduction

Because users have expectations when reading text, an automated summariza-
tion system will be deemed as successful even if it does not try to understand a
document in its wholeness, but it only retrieves and offers those text parts that
meet user expectations.

Content/Document Structure:

A research paper has an elaborated document structure. Its content is divided into
different sections and subsections, each with a title referring to the topic treated in
the section. Furthermore, the text contains several rhetorical cues that hint at the
subsequent content, for example: “the novelty of the paper is . . . ”, “the purpose of
this article is . . . ”, or “our contribution consists in . . . ”. News articles, given their
nature, are much shorter and more concise than other types of documents. However,
even if they do not have a division in titled sections, the ordering of sequences and
paragraphs in their text is not random. Mostly, communication of facts follows the
logic of temporal and causal relationships in an event or series of related events. To
exemplify, consider the two news articles in Figure 1.1.

ROME (Reuters)—The 24-hour news channel did not give any sources
for its report. The supreme court was due to announce the final results
for the April 9–10 ballot later on Wednesday. Prime Minister Silvio
Berlusconi has refused to concede defeat in the election, saying the
vote was hit by widespread fraud. Italy’s supreme court has confirmed
that centre-left leader Romano Prodi won last week’s general election,
Sky TG24 television said on Wednesday.

ROME (Reuters)—Italy’s supreme court has confirmed that centre-
left leader Romano Prodi won last week’s general election, Sky TG24
television said on Wednesday. The 24-hour news channel did not give
any sources for its report. The supreme court was due to announce
the final results for the April 9–10 ballot later on Wednesday. Prime
Minister Silvio Berlusconi has refused to concede defeat in the elec-
tion, saying the vote was hit by widespread fraud.

Figure 1.1: Two news articles with different sentence ordering

The random order of sentences in the first article only causes confusion to the
reader, while, in the second article, where information appears in the expected
order, everything makes sense.

Recapitulating, both user expectations and content/document structure present
themselves as knowledge sources that cannot be neglected when it comes to the task
of generating automatic summaries of information.
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In this work, we make use of these two knowledge sources, to build an approach
that satisfies the following scenario:

• a user needs information/knowledge while performing a knowledge task
• the task is performed by the principles of case-based reasoning
• the needed information/knowledge is contained in text documents that de-

scribe previous episodes of solving the same task

In the context created by these constraints, generic user expectations translate
into concrete user goals, whereas the content structure of texts can be regarded
as imposed by the task structure that fulfills the user’s goals. Before we go on to
elaborate on the proposed approach, it is important to clarify what is meant by user
goals.

Our focus is not on abstract or generic goals such as: being knowledgeable,
being healthy, or being rich. The goals considered are very concrete and arise
within the frame of professional activity. Examples are: the goals of a physician
during a diagnosis task, of an engineer during a maintenance task, or of an architect
during a design task. All these professionals share the goal of performing their tasks
successfully, however, during their activity, they have different needs for knowledge
that depend on the domain of expertise and the task at hand.

The concern with domains and tasks (as well as approaches for modeling them)
lies at the heart of knowledge engineering. When a domain is not very well under-
stood or its knowledge is hard to model, methodologies like case-based reasoning
(CBR) offer a successful alternative to more traditional rule-based knowledge sys-
tems.

The underlying idea of case-based reasoning is simple and intuitive: similar
problems could have similar solutions. Thus, if we have access to a previous problem
solving situation similar to a current problem, we can either directly reuse the
previous solution or use it as a starting point for constructing a new solution to the
new problem.

In this thesis, problem solving situations that have been stored in textual form
are considered. CBR research that works with text documents is known as Textual
CBR (TCBR). Because such text documents are often unstructured, an elaborate
processing of text is needed, in order to extract valuable case knowledge for per-
forming case-based reasoning. The goal of this thesis is to present a novel knowledge
extraction and summarization approach for TCBR.

1.1 Knowledge Extraction and Summarization for TCBR

In CBR, there are in general two possible ways to reuse an exisiting solution. These
two possible ways are related to two senses of the word solution:
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• solution as the final result
• solution as the process to achieve the result

Thus, one can either reuse a previous final result or reuse the reasoning process
to produce the final result. Most of the commonly used approaches in CBR fall into
the first category, although influential work exists in the second category too (e.g.,
the PRODIGY framework by [Veloso and Carbonell, 1993].

The viewpoint of this thesis is a middle way. We envision a CBR approach
that is interested in a solution both as a final result and a process. Such a solution
corresponds to the knowledge engineering concept of the task. A task is a reasoning
process that needs knowledge to accomplish a final goal (the result). At different
points during task performance, users might encounter situations for which they lack
the knowledge or experience to make the right decision. At these points, knowledge
in the form of previous cases can offer options that the users might consider in
satisfying the current subgoals.

In summary, the depicted CBR approach takes place in the following context:

• a user is perfoming a known task, whose execution follows a known path
• at different points in this path, the user might need knowledge to act further
• the required knowledge will be offered in the form of past cases

A known task could be one of the well-studied tasks in knowledge engineering,
such as diagnosis, planning, or design. The task considered in this thesis is a
combined task, to which we refer to as MONITOR-and-DIAGNOSE. Such tasks
have a known path of execution, because they have an inherent structure and a
strategy for achieving their goal. We regard task structure as a series of events
(actions or processes) that take place according to some unknown probabilistic
model. It is because of this probabilistic nature of the task structure that especially
inexperienced users, at some point during task execution, might need knowledge
to continue performing the task, because they will encounter situations they have
never experienced before.

Now, it remains to explain where past cases come from.
Past cases have their origin in past experiences. Every user who has performed

the task, has also written a narrative, describing the execution of the task. If every
task execution situation is recorded, after a period of time, there will exist a large
corpus of narratives, where many experiences are repeated. Such a repetition is ac-
tually one of the reasons why case-based reasoning is successful: many situations in
the world keep recurring. However, repetition of experiences results in redundancy
of information.

While redundancy causes problems on the computational aspect (if the CBR
approach is built as a nearest-neighbor search, the more instances there are, the more
costly the search is), it can offer some advantages, too. The fact that a situation
appears frequently is an indicator of its prototypical nature. Then, interesting cases
in CBR would be those cases that differ from the prototypical situation in one aspect
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or another. Consequently, the approach proposed in this thesis if founded upon this
rationale:

Redundant information is used to create prototypical cases. Interest-
ing cases are discovered by their degree of difference to the prototyp-
ical cases.

A prototypical case is not itself important for the case-based reasoning approach.
Indeed, when something occurs very often, the execution of the task becomes a
routine, and no new knowledge is needed. Unexpected situations that differ from
the prototypical situation are the source for the interesting cases, which the CBR
approach would offer during task execution when a user needs knowledge. However,
if there are no prototypical cases to which to compare, it is very difficult to detect
the interesting cases in a large corpus of narratives. Thus, our approach benefits
from the positive aspect of redundancy.

But are the mentioned narratives ready-to-use cases in the sense of CBR? In
general, the majority of text documents are in their original form far away from
being a case. In such situations, previously to anything else, cases and the case
base have to be constructed.

The work presented in this thesis is primarily concerned with constructing cases
and a case base out of a corpus of task content narratives. The proposed approach
consists of a two-step strategy:

a) Knowledge Extraction: this step uses the task structure to extract knowledge
from text

b) Knowledge Summarization: this step uses the task structure to group to-
gether pieces of similar and related knowledge

In our view, the task structure probabilistically generates the text of the task
content. If the task structure is the underlying model for the narratives, then
the elements of the task correspond to text phrases in the narratives. It is the
knowlegde extraction step that performs such a mapping between task structure
and text. Because natural language is very expressive, the result of this mapping
will be several one–to–many relations (one task element to many textual phrases).
For this reason, the step of knowledge summarization is needed, in order to reduce
the variability of such mapping, by collapsing together all phrases that have a similar
meaning. The final result of such a two-step procedure is the creation of a compact
case base of textual cases.

1.2 Contributions of the Thesis

The work presented in this thesis is a departure from the traditional and contem-
porary TCBR research in many aspects.
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1. We apply an event-oriented perspective to text processing. Contrary to all
other TCBR approaches that consider text merely as a container for some
information entities of interest, we regard text as the probabilistic output of
some underlying, interconnected event types.

2. We regard a case not as a fixed tuple of (problem description, problem solution),
but as a chain of related entities that are participants of the events that
generated the text.

3. We construct cases and the case base not by acquiring domain-specific knowl-
edge (as it is common in CBR), but by applying task-specific knowledge which
is either ready available or can be automatically acquired.

4. We envision a CBR approach where cases not only offer assistance in solving
a concrete new problem, but also serve as the constitutive elements of the
summarized knowledge that is needed to solve the whole class of problems.

By implementing these novel aspects, we have also identified and solved some
issues that have not been previously discussed in the TCBR research, such as:

• event-based annotation of text
• probabilistic task content modeling of narratives
• redundancy reduction via summarization
• automatic lexical knowledge acquisition for resolving paraphrases and identi-

fying semantic orientation of phrases

These solutions have been implemented in two separate frameworks:

1. LARC (Learning to Assign Roles to Cases)
2. PTCM (Probabilistic Task Content Modeling)

By using them together, we are able to perform knowledge extraction and sum-
marization for constructing a compact case base.

Finally, in contrast to the wide-spread opinion in TCBR research that natural
language processing (NLP) methods are brittle and inefficient for TCBR purposes,
our approach is a testimony that despite some problems, Statistical NLP opens wide
opportunities for sophisticated text processing, from which TCBR can only benefit.

1.3 Outline of the Thesis

In Chapter 2, the foundations of case-based reasoning in general and those of tex-
tual case-based reasoning (TCBR) in particular are discussed. Existing TCBR
approaches are analyzed by dividing them in two groups: knowledge-lean and
knowledge-rich approaches. Then, our event-oriented perspective to TCBR is pre-
sented, giving examples of its applicability.

Chapter 3 is dedicated to the foundations of knowledge modeling according
to the established methodology of CommonKADS. After presenting the methodol-
ogy components, with the principal focus on task knowledge modeling, a concrete
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scenario to exemplify the inherent difficulties of knowledge modeling and formal
knowledge representation is analyzed.

A broad overview of our novel approach of probabilistic task content modeling
is presented in Chapter 4. Furthermore, the task MONITOR-and-DIAGNOSE that
serves as a running example for the TCBR approach is outlined in this chapter, to
facilitate the explanation of the approach by using concrete examples. The chapter
also summarizes the theoretical principles of probabilistic modeling used in bulding
the PTCM framework.

The knowledge extraction component of the proposed approach is described in
Chapter 5. A detailed description of the active learning strategy for the annota-
tion of text documents with knowledge roles is presented, as well as an empirical
evaluation of its efficiency.

Chapter 6 discusses in detail several issues related to knowledge summarization,
necessary for the creation of compact case base. The focus is on two important
problems: resolving paraphrases of known concepts and identifying the semantic
orientation of textual phrases. It is shown that these two problems can be addressed
successfully by using the PTCM framework.

The evaluation of the presented approach in the context of TCBR is the topic
of Chapter 7. After explaining in detail the evaluation components, the results of
comparing the presented approach to a baseline system and to a state-of-the-art
system are presented and discussed.

In Chapter 8, the major contributions of the thesis are initially summarized.
Then, some new research fields that we consider as potential areas for cross-breeding
with TCBR are discussed as possible areas of future work.

Finally, Appendix A offers a summary of the real-world task domain that has
generated the corpus of documents used in the experiments of this thesis.

1.4 Limitations of the Thesis

In the course of this work, our novel ideas on TCBR are combined and realized
with ideas, models, and tools from the fields of knowledge engineering, natural
language processing, and machine learning. Due to the diversity of these fields and
the empirical nature of our approach, we have refrained from a theoretical treatment
or extensive mathematical/logical proofs of the considered issues. In general, the
working concepts are described informally, and the reader is directed to specialized
literature for a more formal treatment where necessary.

We consider the work in this thesis as a major contribution to the field of Textual
Case-Based Reasoning only. Although the problem presented in the thesis is clearly
of concern to TCBR, we show that previous TCBR research, due to simplistic
assumptions, has avoided considering it. We make no claims that our approach
contributes to any of the previously mentioned fields, because we have not tested
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any hypotheses in that direction. The only claim that we have empirically tested
is that our knowledge extraction/summarization approach based on probabilistic
task-content modeling is a novel contribution to the field of TCBR.

1.5 Previous Publications

Some of the ideas or results presented in this thesis have been previously published
in the same or a similar form. The initial idea on a more flexible CBR approach
for knowledge tasks such as diagnosis appeared in [Mustafaraj et al., 2003]. Issues
in building a CBR system based on numerical data and the difficulties of capturing
domain knowledge were presented in [Mustafaraj et al., 2004, 2005]. A treatment
on the importance of task knowledge and knowledge roles in capturing and repre-
senting previous experience was published in [Mustafaraj et al., 2006b]. A slightly
different version of Chapter 5 on the automatic annotation of knowledge roles can
be found in [Mustafaraj et al., 2006c]. The importance of task-based annotations for
TCBR tasks as well as parts of the LARC approach were discussed in [Mustafaraj
et al., 2005, 2006a]. An analysis of the need for an event-oriented representation for
TCBR was published in [Mustafaraj and Freisleben, 2006], while the probabilistic
task content modeling approach appeared in [Mustafaraj et al., 2007b]. Finally,
a summary of the knowledge extraction and summarization approach applied to
TCBR can be found in [Mustafaraj et al., 2007a].
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Chapter 2

Textual Case-Based Reasoning

2.1 Introduction

Textual Case-Based Reasoning (TCBR) is a type of CBR that is concerned with
cases represented in text form. Due to this close relation to CBR, the foundations
of CBR are briefly introduced in Section 2.2, while in Section 2.3, the nature and
organization of knowledge in CBR systems is discussed. The chapter continues in
Section 2.4 with a summary of the most important lines of TCBR research, by
particularly emphasizing the distinction between knowledge-lean and knowledge-
rich approaches. In the detailed analysis of TCBR presented in Section 2.5, the
focus is on several aspects that have not been addressed sufficiently in the existing
TCBR literature. Finally, in Section 2.6 we present our alternative, event-oriented
perspective1 to TCBR, highlighting its advantages with respect to the automatic
extraction of case knowledge from text documents.

2.2 What is Case-Based Reasoning?

In general, any process of drawing a conclusion from a set of premises is regarded
as reasoning. Reasoning, as studied formally in the discipline of logic, is concerned
with inference mechanisms that deduce valid conclusions from true premises. How-
ever, do people in real life reason as formal logic systems do? According to the
cognitive scientist Roger Schank, people are usually lazy to think (i.e., to reason)
and most of the time they just remember what they have done or thought before
[Schank, 1983]. Elaborating this idea of “reasoning by remembering”, Schank with
his AI research group at Yale University established in the ’80s the foundations of
case-based reasoning—a type of reasoning where previous experiences are remem-
bered, retrieved, and reused when needed. Indeed, as Chris Risbeck (one of Schank’s
colleagues) formulates it [Riesbeck, 1996]: “The original point of CBR—the radical
point—was to replace reasoning with the recall and adaptation of episodic knowl-
edge.”

1This material has been previously published in [Mustafaraj and Freisleben, 2006].
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Actually, an overloading of the term CBR can be noticed throughout the liter-
ature. In its narrow sense, CBR is just a reasoning technique, namely, a technique
that in practice could replace, for example, deductive inference. In the broader
sense, CBR is a methodology that encompasses the whole process of designing and
implementing a system that realizes the principles of the CBR technique.

As a reasoning technique, CBR is based on the two tenets formulated by David
Leake and shown in Figure 2.1.

The CBR approach is based on two tenets about the nature of the
world.

1. The world is regular: similar problems have similar
solutions. Consequently, solutions for similar prior
problems are a useful starting point for new problem-
solving.

2. The types of problems an agent encounters tend to
recur. Consequently, future problems are likely to be
similar to current problems.

When the two tenets hold, it is worthwhile to remember and reuse cur-
rent reasoning: case-based reasoning is an effective reasoning strategy.

Figure 2.1: Foundation of CBR as a reasoning strategy [Leake, 1996]

When implemented, the CBR technique follows the cycle captured by the model
of 4-REs [Aamodt and Plaza, 1994]: Retrieve, Revise, Reuse, and Retain.

As shown in Figure 2.2, the process starts with the formulation of a new problem.
In the Retrieve step, the case base—containing previous problem solving situations—
is searched, in order to find the most similar cases to the new problem. This search
and comparison process results in the retrieval of the most similar cases. Then,
during the Reuse step, the solution of the retrieved cases is used to create the
proposed solution for the new problem. If this solution cannot solve the problem
directly, it is then revised during the Revise step. Finally, the updated solution that
solved the problem is stored in the case base during the Retain step.

As a methodology, CBR faces questions similar to those of many knowledge
engineering endeavors: what is in a case, where to find cases, how to represent
cases, how to store cases for a fast retrieval, how to measure similarity between two
cases, how to adapt previous solutions, and others more. It is thus clear that the
primary construct as well as the primary concern of CBR are the cases.

According to Janet Kolodner, credited as one of the principal founders of case-
based reasoning, the concept of a case can be defined as follows:
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CASE BASE

Solution Proposed
Solution

Similar
CasesRETRIEVE

RETAIN

REVISE

REUSE

Problem

Updated

PRIOR
CASES

Figure 2.2: The CBR Cycle. Source [Mantaras et al., 2005]

A case is a contextualized piece of knowledge representing an experi-
ence, and any case worth recording in a case library (whether human
or machine) teaches a lesson fundamental to achieving the goals of the
reasoner who will use it [Kolodner, 1993, p. 30].

It is worth highlighting some aspects of this definition:

1. A case is knowledge in a context.
2. A case is something that has been experienced.
3. A case teaches a lesson.
4. A case contributes to the goals of a reasoner.

These four points are related to four other important concepts within CBR.
They are:

1) the domain of the problem, 2) the previous problem solving experience, 3) the
previous solution, and 4) the task (problem) at the focus of reasoning.

Especially the nature of the domain and the nature of the task will influence
the nature and content of the case. When the domain has to do with concrete
entities of the world and the task is relatively simple, it is possible to define a struc-
ture for the cases. Indeed, many of real-world CBR systems work with structured
cases, something that has contributed to the creation of the subdiscipline known
as Structural CBR [Bergmann, 2002]. An example of a structured case is shown in
Figure 2.3. The case consists of a product description (namely, a digital camera)
used in a case-based product recommendation system.
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Attribute Value

Manufacturer Kodak

Optical Zoom (x) 4

Memory (MB) 256

Weight (Grams) 292

Resolution (M Pixel) 4.6

Size Medium

Case Magnesium

Price 250

Figure 2.3: Example of a structured case. Source [Reilly et al., 2005]

However, in many other situations, the domain and the task contain abstract
entities which are either difficult or inconvenient to express in terms of enumerable
attributes with discrete (or quantifiable) values. In these occasions, it is typical to
register an experience in written natural language, that is, as a text. Building a
CBR approach based on cases represented in textual form is the focus of TCBR,
which is discussed in detail in the successive sections. Despite the nature of the cases
(structural, textual, or conversational), knowledge is present in all CBR approaches,
therefore, its contribution is addressed in the following section.

2.3 Knowledge in CBR Systems

Informally, knowledge can be regarded as something that is needed during prob-
lem solving or decision making. Several types of knowledge can be distinguished
with respect to its nature or use. Particularly important to CBR systems is the
distinction based on the nature of knowledge, a distinction made by [Richter, 1998]:

Background knowledge – general and problem independent knowledge.
Contextual knowledge – domain specific knowledge.
Episodic knowledge – a narrative of something that happened in the
past.

A unique characteristic of CBR (not shared by other types of knowledge systems)
is that it incorporates episodic knowledge in the form of cases.

In order to use these types of knowledge within a CBR system, knowledge needs
to be accessible. By structuring and storing knowledge in the so-called knowledge
containers [Richter, 1995], it is possible to make knowledge reusable for several
applications.

In general, there are four knowledge containers in a CBR system:

• the vocabulary,
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• the similarity measures,
• the case base, and
• the adaptation knowledge.

Similarity
Measures

Case Base

Vocabulary

V
oc

ab
ul

ar
y

Adaptation V
ocabulary

Knowledge

Figure 2.4: The four knowledge containers of a CBR system. Source [Roth-
Berghofer and Cassens, 2005]

A graphical representation of the relations among these containers is shown in
Figure 2.4. Vocabulary, shown as the outer layer, serves as a basis for all the other
containers. Indeed, the vocabulary defines objects of a domain, their attributes2

and values, as well as different types of relationships among these objects. A case
will be represented by using attributes, values, and relations that are part of the
vocabulary.

To better understand the nature of the knowledge containers, consider the CBR
system CHEF, described in broad lines in Figure 2.5. The vocabulary for this sys-
tem will contain knowledge that describes objects and relationships in the culinary
domain, necessary for representing the cases (i.e., the recipes). An example is a hier-
archy that categorizes ingredients according to their substantial nature: beef, pork,
and lamb are kinds of meat; broccoli, green bean, and egg-plant are kinds of veg-
etables; or mango, avocado, and pineapple are kinds of exotic fruits. Another part
of the domain knowledge consists in the measurement units for the different types
of ingredients: lb. (pound), tablespoon, piece, or chunk; which can be regarded as
attributes of ingredients.

In order to retrieve an existing recipe when a new query is presented to the
system, the retrieval process needs similarity measure knowledge, stored in the

2Often, attributes are referred to as features.
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CHEF - A case-based reasoning system [Hammond, 1989].

CHEF is one of the earliest and more sophisticated CBR systems reported in the literature. The
following description is based on [Kolodner, 1993].

General Description:

CHEF’s goal is the creation of culinary recipes by taking into account the ingredients and dish
qualities desired by the user. CHEF has at its disposal a library of existing recipes, which are
used as basis for creating new recipes. Furthermore, CHEF has a simulator that “tries out” the
recipe, in order to detect possible failures and adapt the recipe accordingly.

Case-base:

The case-base contains recipes. The recipe Broccoli with Tofu follows:

Problem:
(include tofu)
(taste hot)
(style stir-fry)

Solution:
(ingredients

ingr1 (tofu lb 0.5)
ingr2 (soy-sauce tablespoon 2)
...
ingr7 (red-pepper piece 6))

(actions
act1 (chop object (ingr1) size (chunk))
...
act6 (stir-fry object (result act5) time (2)))

(style stir-fry)

CHEF at Work

RETRIEVER:
Searching for plan that satisfies --

Include beef in the dish.
Include broccoli in the dish.
Make a stir-fry dish.

Found recipe -> REC2 BEEF-WITH-GREEN-BEANS

Recipe exactly satisfies goals ->
Make a stir-fry dish.
Include beef in the dish.

Recipe partially matches
Include broccoli in the dish.

in that the recipe satisfies:
include vegetables in the dish.

MODIFIER:
...
REPAIRER:
...

Figure 2.5: Some details on the CBR system CHEF
14
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corresponding container. Depending on the type of the attributes used for case
representation, different kinds of local similarity3 measures might be needed. If the
attributes are numerical, some domain-independent similarity measures, such as the
Euclidean distance, can be used. However, if the attributes have symbolic values,
a domain-dependent similarity measure is needed. Such a measure could be based
upon a semantic taxonomy like the hierarchy of ingredients mentioned previously.
Indeed, the retrieval scenario shown in Figure 2.5 indicates that, when a request
for a “beef and broccoli” recipe is presented, the system retrieves a “beef and green
beans” recipe, because both broccoli and green beans are vegetables. Moreover, the
similarity measure container can also store knowledge that defines the importance
(weight) of each attribute in the global similarity measure. For example, when
preparing the recipe of a main dish, the presence of a meat ingredient in a retrieved
recipe can be weighed more than the presence of a vegetable ingredient.

Very often, the retrieved case cannot be used in its original form. That is,
the old solution needs to be adapted to the new problem. The knowledge needed
for transforming the solution is known as adaptation knowledge and is stored in a
separate container. There are several types of adaptation knowledge, in accordance
with the goals of the CBR system. For the scenario in Figure 2.5, the simplest
adaptation is to replace everywhere in the recipe the ingredient ‘green been’ with
‘broccoli’. However, because CHEF is a sophisticated system, it uses other types
of adaptation, too. For example, to the ingredient ‘broccoli’ is attached a so called
critique (a kind of rule), which fires up when ‘broccoli’ is included in a recipe. In
such a situation, the critique adds a new step to the recipe, which for the mentioned
ingredient is: “Chop broccoli into pieces the size of chunks.” Then, if during the
simulation of the recipe, some failures occur, this piece of knowledge is also added
to the repository, in order to anticipate that kind of failure during successive uses
of the recipe.

As it can be noticed from this brief description of the CHEF system, a complete
CBR system requires many kinds of knowledge besides the cases in the case base.
Providing this knowledge is not always easy, therefore, many CBR systems try to
succeed with that much knowledge that is already available. This is particularly
true for TCBR systems, where knowledge for the knowledge containers is more
difficult to obtain, as it will become clear in the course of the following Section 2.4.

2.4 TCBR: A Summary of Existing Approaches

Looking back at the first TCBR workshop [Lenz and Ashley, 1998], it is possible
to identify three different research agendas coming together with the intention to

3 Local similarity refers to the similarity measure for the values of a single attribute. Global
similarity refers to the similarity for the whole case and is derived by some combination of the local
similarity measures.
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advance research within TCBR:

1. the enhanced information retrieval (IR) approach,
2. the knowledge engineering approach developed for customer support scenarios

in technical domains, and
3. the machine learning approach of handling textual legal opinions.

However, in the decade that has passed since then, limited cross-breeding among
these lines of research has taken place. Several reasons are responsible for this
situation. On the one hand, there is the different nature of the documents available
for the TCBR approach. On the other hand, there is the different way in which
the developers of TCBR systems prioritize the goals at stake. While the first point
might be understandable, the second point is more subtle. Consider that there are
always two parties involved in the life of TCBR system: its developers and its users.
Developers are interested in building TCBR systems by using domain-independent
tools and approaches, that is, by considering as less as possible the details of the
specific domain in question. Meanwhile, the users are interested in having a system
that is tailored to their needs, that is, as near as possible to their problem domain.
The goal of the developers is to minimize their efforts for domain-specific knowledge
engineering; the goal of the users is to minimize their information load during the
problem solving situation.

What is the way to minimize knowledge engineering efforts? A possible one is
to confine the efforts to the existing documents repository, trying to automatically
extract all knowledge that can be automatically extracted and avoid any other type
of knowledge modeling.

What is the way to minimize information overload? A possible one is to incorpo-
rate into the information system as many sources of external knowledge as possible:
knowledge of the domain, knowledge of the context in which an information request
is submitted, knowledge of the user’s level of expertise, knowledge of the reasoning
task, etc.

Understandably, these two goals are in conflict.
A way to see how this conflict manifests itself in the different TCBR approaches

or systems described in the literature is by looking at what kind of features are used
for representing cases and how these features are acquired. We distinguish between
knowledge-lean and knowledge-rich features.

Knowledge-lean features are actually no features in the sense of CBR. That is,
they do not correspond to chosen attributes of the cases; rather, they are part of the
vector-based representation4 of documents, where every term of the vocabulary can
be a simple feature. More sophisticated features can be created by combinations of
simple features. A characteristic of all these features is that they are automatically
acquired by IR and/or ML techniques. The used techniques are independent of the
domain of the TCBR system.

4This representation is discussed in detail in Section 2.4.3.1.
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Knowledge-rich features are features in the sense of CBR. They describe some
aspects either of the domain objects that serve as cases or of the reasoning task
that the cases describe. Valuable features are often “handcrafted”, that is, they are
a product of domain experts. Because the denotation of features is often different
from their verbalization in the documents, a process of mapping these features to
text phrases is necessary. For this mapping, several techniques from ML, NLP,
and KE might be used. The final goal is to replace the documents with the set of
respective features.

Figure 2.6 shows how different TCBR approaches/systems relate to the features’
nature and their acquisition techniques. The approaches/systems can be found
in: SOPHIA [Patterson et al., 2005], Boosted Decision Stumps [Wiratunga et al.,
2004], PSI [Wiratunga et al., 2005], FALLQ [Lenz and Burkhard, 1997], SIMATIC
[Lenz et al., 1998], FACIT [Gupta and Aha, Gupta and Aha], and SMILE+IBP
[Brüninghaus and Ashley, 2005].

Knowledge lean
(automatic)

Knowledge rich
(handcrafted)

SOPHIA

PSI

FACIT

KE

NLP

ML

IR

Nature of Features

Dec. Stumps
Boosted

FALLQ
SIMATEC

SMILE+
IBP

Figure 2.6: TCBR approaches/systems and feature characterization

In the following, three different approaches to TCBR are presented in detail: the
machine learning approach for legal reasoning; the knowledge engineering approach
for know how documents in the technical domain; and the generic knowledge-lean
approach.

2.4.1 TCBR in the Legal Domain

CBR has been a frequent research methodology for building AI Law systems, due to
the fact that the legal system in the U.S. is based on precedents. A legal precedent
can be regarded as a case, because it usually contains a problem solving situation,
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namely, resolving a legal dispute between two parties. Since legal court decisions are
stored as written text documents, research on legal CBR systems is strongly con-
nected to TCBR. One of the most long-lived lines of research in legal CBR started
with the work of Edwina Rissland and Kevin Ashley in the 80’s and had as a result
the HYPO system that introduced case-based argumentation [Ashley, 1991]. The
work was continued by Aleven and Ashley, who created the CATO system [Aleven
and Ashley, 1994], a tutoring system that used the argumentation model of HYPO
to help law students learning to use and create legal arguments. Both HYPO and
CATO used manual knowledge engineering to assign to legal text documents a set of
features (known as factors) that are used for case representation. Because manual
knowledge engineering is time and resource consuming, the research was contin-
ued by Brünninghaus & Ashley into the development of the SMILE (Smart Index
Learning) system, with the goal of using machine learning and other techniques
for the task of assigning factors to text automatically. During a period of many
years, Brünninghaus & Ashley have tested several novel hypotheses that have con-
tributed to the research of TCBR. In the following, we will look in detail at the
most important findings of their research.

In order to understand what it means to assign factors to text, an excerpt of a
legal document, together with the factors that apply to it, is shown in Figure 2.7.
Factors are domain-specific expert knowledge of stereotypical collections of facts,
which tend normally to strengthen or weaken a conclusion that a side should win a
particular kind of legal claim [Ashley, 1991]. Factors can be organized in a hierarchy
that displays the relationships of factors to issues, which represent the normative
concerns of a particular body of law [Aleven and Ashley, 1996]. For each factor
(or issue) in Figure 2.7, the letters (p) and (d) indicate whether a factor (or issue)
favors the plaintiff or the defendant. The contribution of each factor to its parent
issue is depicted through the different thickness of the connecting links.

In their first effort to assign factors to the legal cases, [Brüninghaus and Ashley,
1997] tested a combination of IR and ML techniques. IR techniques were used to
transform full-text opinion texts into vector-space representations. Further, this
vector representation and the set of factors from the factors model of the case were
used to train different ML algorithms in learning to assign the factors to the vectors.
Because the results of the learning were not satisfying, the following problems were
identified:

• The vectors created from the full-text opinions contain a large number of
terms that are not related to the factors and that differ from case to case (the
factual description of the cases).
• For many factors, there are only a few cases in the case base. This makes the

classifiers biased towards learning the negative class (no factor applies), which
has the majority of training examples.

To overcome these shortcomings, the authors formulated two research problems:
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Factors:

Semiconductor Division resigned to accept employment 
with Fairchild, one of the Motorola’s competitors. The 
employees received substantial salaries and bonuses 
from Fairchild. Each employee had entered into a non−
disclosure agreement with Motorola. The agreements 
did not specifically indicate, and Motorola took no steps
to advice the employees, what information Motorola 
deemed confidential. No employee took with him any
blueprints, customer lists, etc. to Fairchild. Motorola did 
not take any other steps to protect security of trade  
secrets. The public (including some competitors) had  
access to the manufacturing area on tours. Motorola 
claimed trade secrets in two devices, the TO−92 and 
TO−3. Motorola made disclosures about these devices 
in a magazine article and movie. Other competitors used 
a similar process to create similar devices. The process

different process.
had been disclosed in various patents. Fairchild used a 

Is plaintiff’s information
a trade secret?

Was there a confidential
relationship between
plaintiff and defendant?

Did defendant acquire
plaintiff’s information
through improper means?

(p) − factor favors plaintiff
(d) − factor favors defendant

Legend:

F4 Agreed−Not−To−Disclose (p)

F6 Security−Measures (p)

F27 Disclosure−In−Public−Forum (d)

F20 Info−Known−To−Competitors (d)

F2 Bribe−Employee (p)

F5 Agreement−Not−Specific (d)

Issues:Motorola, Inc. vs. Fairchild Camera and Instrument Corp.

In August, 1968, eight executives of Motorola’s 

(a) Excerpt from the case Motorola vs. Fairchild, annotated with factors

_

To−Disclose (p)
F1 Disclosure−In−
Negotiations (d)

F12 Outsider−
Disclosures−Restricted (p)

F10 Secrets−Disclosed−
Outsiders (p)

F122 Efforts−To−
Maintain−Secrecy−Vis−
A−Vis−Defendant (p)

F123 Efforts−To−
Maintain−Secrecy−Vis−
A−Vis−Outsiders (p)

F27 Disclosure−In−
Public−Forum (d)

F19 No−Security−
Measures (d)

F23 Waiver−Of−
Confidentiality (d)

F6 Security−
Measures (p)

F102 Efforts−To−
Maintain−Secrecy (p)

F101 Info−Trade−Secret (p)

+

+
+

+

+ + __

_

_

F4 Agreed−Not−

(b) A branch of the CATO factors hierarchy

Figure 2.7: Assigning factors to legal cases. Source: [Aleven and Ashley, 1996]
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• How to represent the cases in a way that the representation contributes to the
process of learning to assign the factors?
• How to include domain knowledge into the learning process so that to cope

with concepts with a small number of positive instances?

A first set of solutions to these problems were presented in [Brüninghaus and
Ashley, 1999], where their machine learning based approach SMILE was also intro-
duced. An important step in improving the learning situation was to:

• use summaries of text (named squibs) instead of full-text opinions. These
summaries contained sentences that can be directly related to factors.
• try to assign factors directly to sentences of the squib, instead of assigning

them to the whole document.

Then, in order to address the problem of having only a limited number of positive
instances for learning, the following decisions were taken:

• use a learning algorithm that learns rules from instances based on the existing
features, instead of learning algorithms that work with the whole space of
features.
• add domain knowledge by extending the set of features with terms from a

domain-specific thesaurus.

The authors were able to use the available WestLaw thesaurus, which contained
synomym sets of words for terms used in the legal domain. Some examples of such
sets are:

• {clandestine, concealed, disguised, hidden, secret, undisclosed, unrevealed}
• {commodity, goods, inventory, material, merchandise, product, stock, supplies}
• {admission, disclosure, discovery, revelation}

The learning proceeds in the following way. The sentences in the set of squibs
are manually annotated with one of the factors of the factor hierarchy shown in Fig-
ure 2.7. Then, every sentence is represented by its set of non-stop words, augmented
with words from the thesaurus. For every factor a separate classifier is learned, us-
ing as positive instances the sentences annotated with the respective factor and as
negative instances all the other remaining sentences. The ID3 decision tree learner
algorithm [Quinlan, 2003] was used as the learning algorithm.

Experiments were performed by trying to learn 6 factors of the hierarchy. Re-
sults of 5-fold cross validation demonstrated precision values ranging from 30% to
80.55% and recall values ranging from 50% to 81.69%. Although these values can
be regarded as very encouraging, the analysis of the learned rules showed different
kinds of problems that resulted from the poor representation of learning instances,
representation that was based merely on single words. Therefore, in their subse-
quent work, the authors experimented with the use of IE and NLP techniques to
achieve a better representation of text.

In [Brüninghaus and Ashley, 2001], the authors formulated the hypothesis that:
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1. abstracting from the individual actors and events in cases,
2. capturing actions in multi-word features, and
3. recognizing negation,

can lead to a better representation of legal case texts for automatic indexing.
To justify point (1), the authors reason that an underlying situation containing

the same elements can be ascertained in all trade secret legal cases, as shown in
Figure 2.8.

In every case there is a plaintiff, a defendant, and product-related information
that is considered as a trade secret by the plaintiff.

The plaintiff accuses the defendant of having made inappropriate and not
permitted use of this secret for his own advantage.

Figure 2.8: The typical script of a trade secret legal case

Thus, because the elements plaintiff, defendant, and product appear in every
case, their occurrences in the text can be substituted by the abstract terms that
denote their abstract meaning. However, the authors recognize that this step is not
sufficient for capturing the information of sentences, and that a structure is needed
that is able to represent the relations among different elements in events such as
“who did what?” or “what was it done to?”. For that purpose, the construct of
Propositional Patterns (ProPs) was proposed, which contains pairs of noun phrases
and predicates extracted from the sentence. An example is shown in Figure 2.9:

Original sentence: Forcier disclosed information to Aha!
Replace roles: Plaintiff disclosed information to defendant.
Representation with ProPs: [(plaintiff disclosed), (disclosed information)

(disclosed to defendant)]

Figure 2.9: Text representation with ProPs, proposed in [Brüninghaus and Ash-
ley, 2001]

In order to automatically recognize instances of roles and perform the represen-
tation with ProPs, the authors used the framework AutoSlog5 [Riloff, 1996], which
in combination with its accompanying Sundance parser, performs shallow NLP and
automatic IE.

The process of learning to assign indices to text was then repeated for the three
types of text representation: a) bag-of-words (BOW), b) roles replaced (RR), and c)

5AutoSlog works with text in English language only.
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ProPs. Learning results for these three types of representation, using three different
types of machine learning algorithms: a) nearest neighbor, b) decision tree, and c)
näıve bayes were presented in [Brüninghaus and Ashley, 2005].

For a training set of 146 cases, with 26 factors to be learned, and a leave-one-out
validation scheme, the following results for the F-measure6 were observed:

ProPs RR BOW

Nearest Neighbor 0.261 0.280 0.211

Decision Tree 0.147 0.167 0.168

Näıve Bayes 0.085 0.072 0.121

Table 2.1: Average F-measure for experiments of SMILE framework.
Source: [Brüninghaus and Ashley, 2005]

The results, while demonstrating that ProPs and RR representations are more
advantageous than a BOW representation when learning is performed with a Near-
est Neighbor algorithm, considered in their entirety are still not satisfying for an
automatic index assignment approach. The authors have listed several reasons for
these unexpected results.

1. The heuristic Sundance parser is not always able to perform correct parsing,
and as a result, many valuable ProPs do not get created at all.

2. The training corpus has a skewed distribution. In the total set of 2000 sen-
tences, fewer than 10 positive instances exist for some of the factors. This
fact especially hurts the Näıve Bayes learning.

3. The vocabulary size is large, there are up to 2000 features for each represen-
tation, which, coupled with the relatively small size of the training set, leads
to a really sparse representation.

On the positive side, when the automatically created case representations were
used in an experiment for automatically predicting the outcome of a legal case
(based on the IBP7 algorithm developed by the authors), it was shown that the
ProPs representation of cases permits a high prediction F-measure of 0.703, the
highest among the three representations. Such a good result is explained by the
fact that in making a prediction, the contribution of several factors is counted. So
even when SMILE is not able to assign all factors to a case, those factors that are
assigned seem to be able to achieve a good prediction rate.

6F-measure is the harmonic mean of retrival and recall, the two basic metrics of IR. Its values
range in the interval [0, 1].

7IBP stands for Issue-Based Prediction.
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2.4.2 The Knowledge Layers Approach

Mario Lenz with his colleagues at the Humboldt University of Berlin largely con-
tributed to establishing TCBR as a distinct subdiscipline. Their research was con-
cerned with offering decision support to users in technical domains. For this purpose
they developed a TCBR approach, which has at its focus the so-called know how
documents. Such documents are, for example:

• collections of Frequently Asked Questions,
• news group files,
• handbook, manuals, and program documentations, or
• informal notes.

In [Lenz, 1999, p. 123] the know how documents are characterized in the follow-
ing way:

1. They discuss in general problems related to a specific domain.
2. They are given in major parts as natural language text.
3. In addition to the text, however, they typically also contain structured data.
4. They usually have some kind of pre-defined internal structure.

Furthermore, Lenz hypothesizes that “know how documents appear to be par-
ticularly useful in so-called help desks and hotlines that are installed in many com-
panies, in order to help customers having problems with products and services
purchased from that company”. As an example, Lenz provides the domain analysis
of documents used to build the SIMATIC Knowledge Manager system for Siemens,
as shown in Figure 2.10.

Frequently Asked Questions: contain question-answer pairs for problems
solved by the hotline.

User Infos: provide up-to-date information about new versions of prod-
ucts.

News: contain descriptions of new products and their properties for
company-internal purposes.

Problem Books: contain detailed descriptions of problems that occurred
and how these can be overcome.

Problem Reports: list recently observed problems and errors without de-
tailed information and usually without hints for solving these.

Figure 2.10: Examples of know how documents of the SIMATIC system.
Source: [Lenz, 1999, p. 133]
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The SIMATIC Knowledge Manager was built to serve as an automatic hotline,
so that users can find on their own solutions to problems that have been previously
solved, without having to wait for the real hotline operators to answer their calls.

The TCBR approach developed by Lenz and colleagues stresses out the impor-
tance of knowledge engineering for domain modeling, because, as they express it:
“the major advantage of TCBR is the ability to make use of domain-specific exper-
tise in order to go beyond pure keyword matching and thus improve the problem
solving behavior” [Lenz et al., 1998].

Due to the importance they put to the knowledge engineering aspect, they were
also the first to establish a connection with the concept of knowledge containers,
which was introduced in Section 2.3. For example, in [Lenz, 1999, p. 125] it is argued
that in building knowledge containers for a TCBR system, the following questions
need to be answered:

1. How to determine an appropriate vocabulary for case representation?
2. How to (automatically) convert documents into cases?
3. How to assess similarity of cases?

In answering these questions, Lenz proposes the organization and encoding of
knowledge in several components, to which he refers to as knowledge layers, pre-
sented and explained in Figure 2.11.

The three layers: keyword layer, phrase layer, and feature value layer contribute
knowledge to the vocabulary knowledge container, important for case represen-
tation, while the remaining layers provide knowledge for the similarity measure
container.

Lenz’s proposal contains two steps:

a) The creation of knowledge layers.
b) The use of knowledge layers to build the TCBR system.

The creation of every knowledge layer requires specific techniques for acquiring
different types of domain concepts. Meanwhile, manual contribution from domain
experts is needed for providing similarity measures for these concepts.

Then, to use the knowledge layers, some other tools (for example, parsers, which,
however, Lenz does not further describe) are needed to recognize the concepts in
the documents. The final aim is to transform every document in a set of so-called
information entities (IEs), a construct that Lenz defines as “an atomic knowledge
item in the domain, i.e., the lowest granularity of knowledge representation for
cases” [Lenz, 1999, p. 28]. The interest of transforming documents to sets of IEs is
related to another construct introduced and implemented by Lenz, the case retrieval
net (CRN). CRN is a graphical structure, where nodes correspond to IEs, while some
of the edges stand for similarity measures among IEs and the other for the relevance
measure of each IE to the belonging case. CRN is considered as a case memory,
which, due to its flexible representation of cases, offers fast and reliable retrieval.
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Layer
Glossary

Domain
Structure

LayerKeyword
Layer

Thesaurus Information
Layer Extraction

Feature
Value
Layer

Phrase
Layer

Keyword Layer: contains some kind of keyword dictionary which is
used for recognizing simple keywords, for ignoring stop-words etc.;
Phrase Layer: contains a dictionary of domain-specific expressions
used for recognizing more complex phrases not normally used in general-
purpose documents, such as names of modules and devices;
Thesaurus Layer: contains information about how various keywords
relate to each other in terms of (linguistic) similarity;
Glossary Layer: contains information about how elements of the key-
word and phrase layers relate to each other in terms of domain-specific
similarity;
Feature Value Layer: contains a set of features and their values as
they might occur in the specific domain, such as names and release
numbers of operating systems, physical measures etc.;
Information Extraction Layer: contains an Information Extraction
module which is used to automatically extract structured information,
feature values, etc. from the textual descriptions;
Domain Structure Layer: contains a description of the domain
structure allowing some clustering of documents, an example would
be the distinction of printers in laser and ink-jet printers.

Figure 2.11: Knowledge Layers for TCBR. Source: [Lenz, 1999, p. 127]
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Returning to the issue of creating the knowledge layers, Lenz admits that this
process requires considerable efforts of knowledge engineering. The reason is that
the layers are different, and each of them requires a different approach for ac-
quiring and organizing the knowledge items. Lenz argues that in many domains,
several knowledge sources (different from the documents from which the cases will
be constructed) are readily-available, and such sources can be used into creating
the knowledge layers. Examples are:

• documentation and manuals of software products, containing names of mod-
ules, components, menus, etc.
• product catalogues containing descriptions of products, releases, versions, etc.
• general dictionaries containing expressions not specific to a particular appli-

cation but to some application area.

Nevertheless, because such documents do not generally contain how similar the
different knowledge items are to one another, domain experts need to be consulted
to acquire this information.

As an example of how the knowledge layers are filled with information, Fig-
ure 2.12 summarizes the information used in building the SIMATIC system.

As Figure 2.12 shows, most of the layers require manual intervention from both
knowledge engineers and domain experts. Despite the high knowledge engineering
cost, Lenz believes that this is necessary, due to the advantages for the case retrieval
process that such a careful modeling offers compared to IR techniques. The exper-
iments, which Lenz has performed with the SIMATIC system, support his claim
[Lenz, 1999, p. 142–144].

2.4.3 Knowledge-Lean Approaches

In Section 2.4, we distinguished between knowledge-rich and knowledge-lean fea-
tures. Based upon this distinction on the nature of the features, we address the
approaches used for acquiring these features and performing case representation as
knowledge-lean and knowledge-rich approaches. We already presented two lines of
research that belong to the knowledge-rich approaches, and this section is dedicated
to the presentation of three knowledge-lean approaches. However, before present-
ing them, we discuss two important issues common to all TCBR approaches: the
representation of cases with features and similarity knowledge in text.

2.4.3.1 Representation with Features

In Section 2.3, an example of a structured case (Figure 2.4) was presented, de-
picted in the common form used for case representation, namely, as a vector of
attribute–value pairs. In fact, attribute–value pairs are the most common form of
representation in all machine learning approaches. The basic idea is that all kind
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Keyword Layer: derived by analyzing a document collection, using
statistics about term frequencies etc., plus linguistic tools (part-of-speech
tagger) and tables to include various word forms;

Phrase Layer: filled by manually analyzing product catalogues available
electronically;

Thesaurus Layer: mainly derived from analyzing German composite
nouns plus manual insertions;

Glossary Layer: partly derived from product catalogues which also in-
clude a clustering of products, partly built by SIMATIC customer support
staff;

Feature Value Layer: obtained from product catalogues and additional
databases containing product descriptions, unique product and version
numbers etc., also by analyzing document collections and searching for
feature value patterns;

Information Extraction Layer: Information Extraction module directly
built on top of feature value layer;

Domain Structure Layer: built in discussion with SIMATIC customer
support staff.

Figure 2.12: Example of knowledge layers from the SIMATIC system. Source:
[Lenz, 1999, p. 135]

of entities (either objects or reified events) can be characterized by a set of some
attributes (or properties) which are common to all instances of the conceptualized
entity. However, different instances of the same concept will display different values
for each attribute. The positive aspect of having instances represented by sets of
attribute–value pairs is the resulting uniformity. Every instance will have exactly
the same number of attributes, and attributes of the same type will have compara-
ble values of the same nature. Then, the similarity between two different instances
can be calculated as the sum of similarity between each pair of attribute values.

Consider now a text document. Certainly, one can think of a document as an
entity with some attributes: length, title, format, author, date-of-creation, topic8,
etc. Then, each document will have different values for these attributes. However,

8The fact that two documents share the same topic or/and the same author could hint to some
similarity in the style, content, and the used language. For example, opinion writers of famous
newspapers (e.g., New York Times) are recognizable by their style and language, however, even
when they write on the same topics (e.g., politics) the articles refer to different events or particular
developments.
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these are unlikely the kind of attributes that will be useful in comparing the content
of two documents. Actually, when it comes to content, it is difficult to come up with
a set of generic attributes whose values can be easily determined. Two possible ways
have been investigated in Textual CBR. The first one tries to capture the meaning
of the text by assigning to it a set of features that apply to the content of the
text. The work of Brüninghaus & Ashley in the domain of trade secret law tries
to achieve this goal. Their features are abstract concepts such as: Info-Known-
To-Competitors, Agreement-Not-Specific, or Bribe-Employ which do not necessarily
appear in the text verbalized using the words in the features. When all documents
are represented by such features, two similar documents can be found by comparing
the number of the shared features.

The other method, which is common to almost all approaches found in the
text mining domain, considers text as an enumeration of all terms present in it.
A term is usually equaled to a word. Therefore, this kind of representation is
also known as the bag-of-words approach (for more details, refer to Figure 5.1).
An important characteristic of this representation is that it does not preserve the
order of words in the text. The bag-of-words approach is still insufficient for many
purposes, therefore, several ways to transform this representation to a numerical
representation exist. A possibility is a simple binary representation, 1 if the term
is present, 0 otherwise. However, the most used representation is that based on
the weight of terms, known as tf · idf , where tf stands for term frequency and idf
for inverse document frequency. A more formal definition for tf · idf is given in
Figure 2.13.

By representing each document as a vector of numeric values, a simple way
to calculate the similarity between two documents is the calculation of the cosine
similarity (the dot product of the two vectors), as shown in Equation (2.1).

sim(D1, D2) =
∑t

i=1w1,i · w2,i√∑t
i=1(w1,i)2 ·

∑t
i=1(w2,i)2

(2.1)

Due to the interaction between the fields of IR and ML, instead of the denotation
term that of feature has been commonly used, which in ML is synonymous to
attribute. Therefore, it is common to refer to a vector of weights that represents a
document as the feature vector. A characteristic of the feature vector is its sparsity,
so that for ML approaches to be applicable (many ML approaches cannot work with
a number of features that amounts to hundred of thousands), a process of reducing
the number of features is necessary.

In the literature on Text Categorization (TC)—the activity of labeling natural
language texts with thematic categories (topics)—the problem is known as dimen-
sionality reduction of the feature space [Sebastiani, 2002]. The goal of dimensionality
reduction is to reduce the number of features in the vocabulary from |V | to |V ′|, so
that |V ′| � |V |.
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Given:

C = {D1, D2, . . . , DN} , N = |D|
C is the collection of documents Di

V = {T1, T2, . . . , Tt} , t = |V |
V is the vocabulary of all unique terms Tk in C

Tk = term k in document Di

tfik = frequency of term Tk in document Di

idfk = inverse document frequency of term Tk in C
N = total number of documents in the collection C
nk = the number of documents in C that contain Tk

idfk = log
(

N
nk

)
The weights wik will be calculated as follows:

wik = tfk · idfk

wik =
tfik · idffk√∑t
k=1 [tfik · idfk]

2
(normalized form)

Then, a document will be represented as: Di = (wi,1, wi,2, . . . , wi,t)

Figure 2.13: Calculation of tf · idf weights for document representation

There are two different approaches commonly applied to the dimensionality
reduction problem:

• Feature Selection (in this case, |V ′| will be a subset of |V |)
• Feature Extraction (in this case, |V ′| will not be a subset of |V |)

Feature selection is a process that chooses the most informative features (terms)
containing predictive power. In TC, for instance, predictive power means that the
selected features are predictive of the topic of the document. [Yang and Pedersen,
1997] compared five different term-goodness criteria for feature selection: document
frequency, information gain, mutual information, χ2 statistic, and term strength.
Only document frequency (the number of documents where a term appears) can
be calculated without class information (in this case the topic), while all the other
approaches are supervised, that is, at least for a part of the corpus the pairings
(document, topic) must be known. The experiments presented in [Yang and Peder-
sen, 1997] indicated that the best criteria: information gain and χ2 statistic could
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reduce the dimensionality space by a factor of 100 without losing the efficiency of
classification.

Feature Extraction is a process that creates new features from the existing ones.
The features do not need to correspond to words of the documents as in feature
selection. The goal of feature extraction is to tackle the common problems encoun-
tered in word-based representations such as synonymy, polysemy, or homonymy.
The basic idea is to create new dimensions, which capture the semantic relatedness
among different terms. Common approaches to perform feature extraction are La-
tent Semantic Indexing [Deerwester et al., 1990] or term clustering (in NLP also
known as distributional clustering) [Pereira et al., 1993], [Baker and McCallum,
1998]. Although the approaches for feature extraction are often more effective than
those for feature selection, they also have disadvantages, most notably, the lack of
transparency, since the new features are not understandable to human users.

2.4.3.2 Similarity Knowledge

In the previous section, it was shown that for two documents represented as vectors
of numeric weights, their similarity could be calculated by the cosine function given
in Equation (2.1). This similarity calculation can be explained in the following
way: find out how many terms are shared by the two documents, weigh each term
with a coefficient based on the term’s relevancy to the corpus of documents, and
calculate the sum of the products of the weighted terms. As this descprition makes
clear, two documents that do not share any term are not similar (i.e., the outcome
of the similarity function is 0). Such a mathematical perspective to the similarity
of two text documents is often unsatisfying, particularly when it is generally ac-
cepted that natural language is very rich and ambiguous, so that the same meaning
might be conveyed by completely different terms. As an example, consider the two
hypothetical documents in Figure 2.14:

Original Documents:

Doc 1: “Stock buying is in increase.”
Doc 2: “Acquisition of shares is in rise.”

Term Vectors:
Doc 1: (‘buying’, ‘increase’, ‘stock’)
Doc 2: (‘acquisition’, ‘rise’, ‘share’)

Figure 2.14: Examples of similar documents

After stop-word removal (stop-words are functional words such as prepositions
and articles or very frequent words), it can be verified that the two documents
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contain no terms in common, thus,they will not be similar according to the cosine
similarity function. However, for a human reader it is clear that the two documents
mean exactly the same, because of the synonymy of the pairs: ‘buying’-‘acquisition’,
‘increase’-‘rise’, ‘stock’-‘share’.

We have already mentioned that knowledge-lean approaches do not employ
sources of knowledge outside the corpus of documents, such as, for instance, lex-
icons that contain synonymy information. Therefore, a way is needed to capture
the synonymy information within the corpus. A theory has been suggested as early
as 1960 by Zelig Harris, who introduced the thesis: “language has a distributional
structure”. One of the elements of this thesis is concerned with similarity, con-
cretely:

“. . . some elements are similar to others [. . . ] in the sense that if we group
these similar elements into sets (‘similarity groupings’), the distribution
of all members of a set (in respect to other sets) will be the same . . . ”

This description is usually paraphrased as: “similar words share a similar con-
text” and is at the basis of many approaches used in computational linguistics,
particularly of distributional clustering [Pereira et al., 1993; Lee and Pereira, 1999].

2.4.3.3 Sophia: Unsupervised Feature and Case Clustering

The first knowledge-lean approach that we will discuss is that of Sophia [Patterson
et al., 2005], an approach that can be used for both textual case-based retrieval and
discovery of similarity knowledge.

The approach incorporated in Sophia, although not specifically mentioned in
the paper, is an instance of distributional clustering and Harris’ idea, because in
order to discover similarity knowledge, the conditional probability distributions of
terms are compared. A formal summary of Sophia is presented in Figure 2.15.

Initially, it must be mentioned that the assumption of Sophia is to consider
every document as one case. The goal is to discover at each step of the approach a
different kind of knowledge. In the first step, case discovery knowledge, every case
is represented by its term distribution p(Y |x), which is estimated by the counts of
terms in the case. In the second step, global similarity knowledge discovery, every
term is represented by its context distribution p(Y |z), where as context is seen the
set of all terms with which a given term co-occurs. Then, as a metric to assess
the uniformity of each distribution, its entropy value H(Y |z) is calculated. At this
point, Sophia performs dimensionality reduction by assuming that useful terms are
those that have non-uniform distribution, that is, terms whose context has low
entropy. In order to find terms with low entropy, the vocabulary of terms is divided
in r subsets Ψi, according to the document frequency df of terms. Then, from each
subset, |Zi| terms with the lowest entropy value are selected. Each of the subsets
Zi is considered as a narrow context and will serve as an attractor (a compound
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Notation:

Ξ is the set of all documents
Ψ is the vocabulary for the set Ξ
x is an element of Ξ
tf is the function that returns the term frequency for a case
z is an element of Ψ
Y is a random variable that takes values from Ψ
H is the entropy of a distribution
df is the function that returns the document frequency for a term
p, p, p1, p2 are probability distributions

1. Case Knowledge Discovery

p(y|x) =
tf(x, y)∑
t∈Ψ tf(x, t)

2. Global Similarity Knowledge Discovery

p(y|z) =

∑
x∈Ξ(z) tf(x, y)∑

x∈Ξ(z),t∈Ψ tf(x, t)

H(Y |z) = −
∑

y

p(y|z) log(p(y|z))

Ψi = {z : z ∈ Ψ, dfi ≤ df(z) < dfi+1} , where i = 1, . . . , r, dfi+1 = αdfi, α > 1

For every i = 1, . . . , r, select Zi ⊂ Ψi such as:

|Zi| =
N · |Ψi|∑
i=1,...,r|Ψi|

and z1 ∈ Zi, z2 ∈ Ψi − Zi → H(Y |z1) ≤ H(Y |z2)

3. Cluster Level Similarity Knowledge Discovery

JS{0.5,0.5} [p1, p2] = H [p]− 0.5H [p1]− 0.5H [p2]

z = arg min
t∈Z

JS{0.5,0.5} [p(Y |x), p(Y |t)]

4. Localized Similarity Knowledge Discovery
For each cluster: Build a graph, where each vertex is a case and each edge

expresses the similarity between two cases as calculated by JS divergence.

Figure 2.15: A summary of the Sophia approach
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feature) of similar cases. It can thus be noticed that Sophia uses feature extraction
to perform dimensionality reduction.

In the third step, cluster level similarity knowledge discovery, a process of clus-
tering takes place. For each of the attractors, the distance between its context dis-
tribution and the distribution of a case is calculated by using the Jensen-Shannon
divergence formula. Then, hard clustering is performed in that each case is assigned
to the attractor whose distribution is less divergent from the case distribution. At
the end of this step, similar cases will be collected together under the label of a
cluster attractor. In the final step, localized similarity knowledge discovery, the
knowledge within each cluster is structured by creating a graph where similar cases
are placed close to each other.

The authors of Sophia have evaluated the approach using the Reuters-21578
corpus9, which is routinely used for text categorization. In the paper, it is shown
that the approach is successful in the task of discovering similarity knowledge (by
clustering together cases that have the same topic) as well as in the task of query-
by-example retrieval. In the authors’ words, the advantages of Sophia lie in its
domain and language independency, the low knowledge engineering overhead, the
transparency, the automatic discovery of several types of knowledge, etc. As recog-
nized drawbacks of the approach the authors mention the need for a heterogeneous
corpus of documents (documents should not have the same content), neglect of word
order in documents, lack of capturing negation, etc.

2.4.3.4 Latent Semantic Indexing

Latent semantic indexing (LSI) is basically a feature extraction approach. The goal
is the same as for all feature extraction approaches: to reduce the dimensionality
of the feature vector space, in order to overcome the problem of sparsity. LSI
was initially proposed in the field of information retrieval and was devised as a cure
against two natural language phenomena that undermine the success of information
retrieval, namely, synonymy and polysemy. Indeed, synonymy (the phenomenon of
referring to the same concept with different words) directly affects the recall of an
IR system; while polysemy (the phenomenon of referring to different concepts with
the same word) directly affects the precision of an IR system.

Ultimately, the question is: how to capture the real meaning of a query (or
document) independently of the concretely used words? If this were possible, then
an IR system would be able to retrieve relevant documents in response to a query
even when they will have no words in common.

For this purpose, the authors of LSI formulated the following assumption: “there
is some underlying latent semantic structure in the data that is obscured by the
randomness of word choice”. If this latent semantic structure will be uncovered

9http://www.davidlewis.com/resources/testcollections/reuters-21578
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(that is, its dimensions), the new created space will be a better and more reliable
representation of the data, and will permit to fulfill the posed objectives.

To discover the new latent semantic space, LSI borrows a technique from Linear
Algebra: Singular Value Decomposition (SVD). SVD takes as input a regular matrix
and decomposes it into a set of so-called singular values and singular vectors. The k
largest singular values can be then chosen as dimensions for the new space and the
documents and terms can be expressed by the extracted singular vectors. Important
in this representation is that both terms and documents co-exist in the same space.

Concretely, the approach proceeds in the following way. Initially, a collection of
documents is represented in the vector space, that is, every document is represented
as a vector of term frequency counts. Combined, the vectors create a matrix A, of
t× d dimensionality (t – the number of terms of the vocabulary; d – the number of
documents). Then, SVD decomposes the matrix A as shown in Equation (2.2):

A = USVT (2.2)

where S is a diagonal matrix, containing the singular values of A; U and V are
orthogonal matrices, (i.e., UUT = I, VVT = I) known as the matrices of left and
right singular vectors.

The number of non-zero elements in the diagonal of S is known as the rank of
A. By choosing (mostly arbitrarily or by trial-and-error) a value k for the rank, the
matrix A can be approximated as in Equation (2.3):

A ≈ Â = UkSkVT
k (2.3)

where Uk is of size t× k, Sk of size k × k and VT
k of size k × d.

As a result of the creation of the new k-dimension space, the documents (repre-
sented by the columns of matrix Â) are not sparse anymore. What has happened
is that the weight of the few terms in the original representation is re-distributed
among all terms in the new vector, making in this way the comparison of those
documents that do not share terms in the original space possible.

The new dimensions (also referred as factors) can be regarded as artificial con-
cepts that collect together many terms that have a related meaning. However, in
the LSI approach no efforts are made to determine what this meaning could be.

If a query is presented to an IR system that uses an LSI-based indexing, it is
necessary to transform the query to the dimensions of the new feature space. Only
afterwards the query can be compared to all documents (represented by their new
dimensions, too), by using the cosine similarity function, in the same way as for
the normal vector space representation. However, here lies the disadvantage of the
LSI method. Because there are no terms, based on which to select from the corpus
only those documents that contain the terms in the query, LSI must compare all
documents with the query. This makes LSI computationally expensive and as a
result not appropriate for large IR systems.
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2.4.3.5 Propositional Semantic Indexing

Propositional Semantic Indexing (PSI) [Wiratunga et al., 2004, 2005] is a knowledge-
lean approach for automatically acquiring indexing vocabulary for case representa-
tion. PSI was inspired by LSI, but with the clear purpose to be useful to TCBR.
As it was shown in the previous chapter, LSI extracts new features as a linear com-
bination of existing ones. Although the created features contribute to a less sparse
representation of documents, they are not easily interpretable by human users.

Similar to LSI, PSI aims to extract features that are able to capture more of the
semantics of a case than singular unrelated features. However, differently from LSI,
these features will not be linear combinations of the original features, but rather
logical combinations, referred to as propositional features. Propositional features
are features represented in disjunctive normal form (DNF), such as: (“mac” ∨
“apple” ∨ “powerbook” ∨ “macintosh”). The hope is that such features will not
only be advantageous to case representation (alleviating sparsity), but might be
understandable to human users, too.

The PSI approach consists of two parts: feature selection and feature general-
ization. First, the most informative features are selected; then, they are combined
in order to generate non-repetitive and orthogonal features. It was mentioned in
Section 2.4.3.1 that the best approaches for feature selection, such as information
gain, are supervised, that is, class information is needed. In the context of TCBR
systems, this translates into knowing the different problem types described in cases.
Then, a supervised feature selection approach will select those terms that better
predict the problem type.

Wiratunga et al. observe that features selected with a metric such as infor-
mation gain (IG), despite being able to discriminate among different classes, are
often redundant. To see that, consider the following example. In the corpus
of 20 Newsgroups10, there are two newsgroups comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware that contain messages with problems related to two type
of hardware: PC and Mac. There are 982 messages for the PC topic and 961 mes-
sages for the Mac topic. Suppose a user presents a request to a TCBR system to
retrieve the most similar case that could solve the user problem. The vocabulary
size for all 1943 messages amounts to around 20.000 terms, while every message has
in average around 58 terms. Clearly, a representation using all the terms of the
vocabulary will be very sparse. Now, if the topics of the messages, PC and Mac, are
seen as classes, by calculating information gain, it will be possible to find the most
discriminative features. Concretely, the best 10 features for the given data are:

[’mac’, ’apple’, ’centris’, ’ide’, ’dos’, ’isa’, ’quadra’,
’control’, ’bios’, ’bus’]

As it can be seen, there are several terms in this list that are semantically related

10http://www.ai.mit.edu/~jrennie/20Newsgroups/
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and not orthogonal, e.g., (‘mac’, ‘apple’) or (‘ide’, ‘bus’, ‘isa’). Therefore,
where necessary, such terms should be grouped together to create new features.

In order to achieve this, PSI operates in the following way:

1. Create decision stumps with the help of IG and generalize them to
create propositional features with the help of association rules.

2. Perform a process of boosting in order to promote the selection of
non-redundant stumps.

Decision stumps are simple decision trees that contain only the root node. An
example is shown in Figure 2.16. Initially, only one term is selected as the root for
the stump, in the figure this is the term ‘mac’, which has the highest information
gain value for the vocabulary of terms in the corpus of the two newsgroups PC
and Mac. The decision stump shows that when ‘mac’ is not present in a document
(i.e, it has the value 0), the class ‘+’ (PC) is predicted with a high accuracy (the
numbers in brackets in the leaf node show the distribution of messages between
the two classes). When this feature w

′
is generalized to w

′′
, by combining several

semantically similar terms, the accuracy improves for the ‘-’ (Mac) class, too.

mac V apple V powerbook V macintosh

[+388, −573]
961 cases

[+591, −370]
982 cases
[+957, −25]

generalize
node

Legend:

−:"comp.sys.mac.hardware"
+: "comp.sys.ibm.pc.hardware"

982 cases
[+949, −33]

0 1 0 1

mac

w’ w’’

961 cases

Figure 2.16: Creation of decision stumps

The extension of the node is performed by discovering association rules [Agrawal
et al., 1996] that contain as head the feature w

′
. Examples of such rules are shown

in Figure 2.17, where each rule has a head (consequent) and a body (antecedent).
The numbers in parentheses belong to the two metrics support and confidence. The
rules were extracted with the well-known Apriori algorithm11.

11We used the implementation available at http://fuzzy.cs.uni-magdeburg.de/~borgelt/

apriori.html
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mac ← apple (14.3%, 41.5%)
mac ← quadra (6.3%, 47.9%)
powerbook ← apple (14.3%, 11.2%)
macintosh ← apple ∧ mac (5.9%, 14.8%)

Figure 2.17: Some association rules used for feature generalization

Because the number of rules can be very large, PSI calculates the improvement
on the information gain that results from adding clauses during the creation of
feature w

′′
.

In order for the created w
′′

features to be orthogonal, PSI performs feature
selection via boosting, or as the authors refer to it, by boosted decision stumps.
Usually, boosting is an approach for constructing an ensemble of classifiers, by
performing subsampling of the training examples and learning a classifier for each
subsample [Dietterich, 1997]. The most well-known boosting algorithm is the AD-
ABOOST family [Freund and Schapire, 1999]. Subsampling in boosting is achieved
by reweighing differently the instances of the training set.

Then, a boosted decision stump is the approach that during boosting uses a
decision stump as the learning algorithm. However, boosted decision stumps are
not used by Wiratunga et al. to build an ensemble classifier, but rather to select
the best features. This usage has been adapted from [Das, 2001], where it was
shown that when boosted decision stumps are used for feature selection, the new
document distribution discourages the selection of a redundant feature given the
previously selected feature. Boosting is an iterative process that will return as
many generalized features as requested. Then, these new features will be used to
represent all documents of the corpus.

In [Wiratunga et al., 2005], the benefits of feature extraction with PSI and LSI
are compared for the task of case retrieval for 6 different datasets. In general, LSI
performed better, by using a compact document representation of only 10 features.
PSI was significantly better only in one of the datasets. However, the fact that
the features of PSI are understandable to human users makes it a more interesting
approach than LSI for TCBR. Unfortunately, PSI is a supervised approach. That is,
for all cases it must be known to which problem class they belong (class information
is needed in order to calculate the information gain). This class information is
usually not available in many real-world corpora, and PSI does not address how this
information might be acquired. Furthermore, PSI has been tested with two-class
corpora only, and it is unclear how successful it might be in multi-class situations.
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2.5 TCBR: A Detailed Analysis

As it can concluded from the previous section, TCBR is an active area of research,
with many open research issues. Some of these issues, which are strongly related
to the design and development phase of a TCBR system, were summarized in the
most recent overview of the field [Weber et al., 2005]:

1. How to identify problem solving experiences to populate the case base?
2. What representation for cases to adopt?
3. How to define the indexing vocabulary?
4. Which retrieval method to adopt?
5. How to extract and represent reusable components?

Indeed, we encountered some of these issues in the review of existing TCBR
approaches in the previous section. An example is the on-going rivalry between
knowledge-lean and knowledge-rich approaches for case representation and acquisi-
tion of indexing vocabulary.

However, if we look at the listed issues, they are actually very generic, that is,
not specific to TCBR, but common to the whole CBR domain. Actually, text doc-
uments, which are considered as cases in the TCBR context, are very different from
the cases with which CBR works. Thus, simply trying to reduce a text document
to a feature vector (without considering the unique nature of text), so that existing
CBR techniques can be directly used, is not always beneficial to the goals of a TCBR
system. Furthermore, in the TCBR research, several implicit assumptions lie in the
foundations of many approaches, limiting in this way the coverage of problems to
which they may be applied or the range of tools and techniques that can be used to
tackle those problems. Therefore, this section is dedicated to the analysis of several
issues, which have yet to meet the merited interest of the TCBR community, but
which we regard as relevant in building a novel perspective to the problematic of
TCBR.

2.5.1 Identifying Problem Solving Experiences

In the definition of a case in Section 2.2, we highlighted the fact that a problem
solving experience is tightly coupled with a domain and the user goal. On purpose, a
user goal is left ambiguous, in order to encompass a large quantity of goals. However,
in a more technical sense, what is really meant by a user goal is the procedure by
which this goal is accomplished. Consider the following example: John feels sick. He
has fever, pain, and dizziness. John’s goal is to feel better again. For that he goes to
seek a physician. Now John’s goal becomes the physician’s goal. Physicians use an
established procedure to achieve the goal of making a person healthy again. Such
a procedure is commonly known as diagnosis. Performing diagnosis is physicians’
most important task.
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Nowadays, many of the daily problems we face can be solved only by specialists.
If we feel sick, we might need one of the hundreds of specialized doctors; if we have
a legal problem, we might need one of the hundreds of specialized law advisers; if
our car does not start, we might need someone specialized in the specific model of
the car; etc.

The specialists of a given domain can be characterized as follows:

• They have considerable knowledge of the domain (medicine, legislation, cars).
• They know (at least theoretically) the procedure for solving a problem (diag-

nosis, argumentation, maintenance).
• They have a differing amount of practical experience in solving problems.

A problem solving situation has been concisely represented by the artificial in-
telligence (AI) researchers Simon & Newell as: formulate the goal, formulate the
problem, search for a solution.

However, because at any point in the (sometimes long) path to the solution sev-
eral options might appear, problem solving can become very laborious. It is then
the practical experience that comes handy to many specialists during problem solv-
ing in their respective domains. They do not need to search among several options,
because their experience has shown them some shortcuts from some subgoals to
subsolutions, which they might use directly. It is this kind of experience that cases
in CBR contain.

In this thesis, the experience accumulated by practitioners of a given task within
a given domain is considered as a problem solving experience.

Our primary concerns are knowledge tasks that need a multi-step procedure to
accomplish a goal. The most common of such tasks are diagnosis, classification, de-
sign, planning, monitoring, assessment, etc. We will elaborate more on the concept
of knowledge tasks in Chapter 3.

While several of the TCBR problems described in the literature handle a specific
task in a specific domain, the only TCBR systems that have been implemented
belong to a line of TCBR research that is concerned with the goal of satisfying
the information need of a user. Typical sources of information in these occasions
are the Frequently-Asked-Questions (FAQ) lists or newsgroup (topic-based) email
repositories. Examples of systems in this line of research are FAQFINDER [Burke
et al., 1997], SIMATIC [Lenz et al., 1998], or EXPERIENCE BOOK [Minor, 2006].

The examples of Figures 2.18 reveal that there are at least two categories of
questions: request for information to satisfy curiosity (questions 1, 4, 5, 7, 8) and
request for help in doing something (questions 2, 3, 6, 9). Both types of questions
are derived from the lack of knowledge in a given domain.

In order to better understand the nature of collections of user requests, we
randomly chose 100 emails from the comp.sys.ibm.pc.hardware repository of the
20 Newsgroups12 [Lang, 1995] and analyzed their content (this repository is often

12http://www.ai.mit.edu/~jrennie/20Newsgroups/
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System Questions

EXPERIENCE BOOK

1. What does O(logN) mean?

2. How to show the content of a UNIX file?

3. How to redirect the standard input?

SIMATIC

4. Is it possible to run the CP5412 A2 with the DP-
5412/MS-DOS/Windows software as a slave in a DP
system?

5. At how many milliseconds can I correctly work with
a CPU928 without watch dog failures?

6. How can a COM ET200 V4.X be installed at a
PG720?

FAQFinder

7. What is the best style for writing Lisp programs?

8. What are intelligent agents?

9. How to change miles to kilometers?

Figure 2.18: Examples of questions for some TCBR systems

used for experiments in TCBR). The findings are summarized in Table 2.2.

Question Type Count

Request for information 46

Request for help 24

Answer to request 18

Miscellaneous 12

Table 2.2: Distribution of question types in a sample of 100 emails

By inspecting the nature of questions in every group, we found that emails within
a group do not have much more in common than the category label (that is, the
question type identified in Table 2.2). One of the users expresses his disappointment
at the heterogeneity of problems in the following way:

Mail 58909

I checked the other post in this group about Maxtor, and I don’t seem
to be the only one who has problems. However, no one describes the
same problem, and I also have a different configuration.

The disappointment of this user can be explained with the strategy of (or pres-
sure upon) product manufacturers to continuously release new products that have
neither been adequately tested nor thoroughly documented. Most of the requests
for help that users send to newsgroups have directly to do with badly designed and
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engineered products. As a result, even the answers are ad hoc, depending on a
specific version of a product (hardware or software). This information will become
outdated by the time the next improved release appears.

In our work, we do not consider questions and answers related to specific prod-
ucts as a source of cases for TCBR. Such domains change very rapidly and do not
allow that any kind of regularity emerges. Without world regularity and recurrence
of problems, a CBR approach makes no sense (refer to Figure 2.1).

Continuing with the analysis of question types in Table 2.2, when it comes to
the generic requests for information (e.g., questions 1, 4, 5, 7, 8 in Figure 2.18),
which make also for the majority of questions in Table 2.2, we consider the type
of requested information mostly as the background information of every domain.
The more specialized a domain is, the larger this background information needs to
be. Because acquiring information is a more generic concern than specific problem
solving, many other approaches have arisen, which (more or less) adequately fulfill
such a need. Some examples are:

• search engines
• methods for classifying text according to the contained topics
• collaborative wikis with user contributions (e.g., Wikipedia13)

In our view, finding the answer to a question is a topic for answer finding [Berger
et al., 2000; Soricut and Brill, 2004]. Because the retrieval step of CBR is similar
to the step of finding something in a large amount of data/information/knowledge,
answer finding might seem the same as CBR. There is, however, a great difference
between the two. CBR searches for problem solving experiences, not for generic
information. Therefore, this subsection is concluded by clarifying again what cases
in CBR are:

An experience (thus, a case) is the knowledge acquired during a concrete problem
solving situation. Other type of information related to problem solving is simply
background knowledge.

2.5.2 Aspects of Written Text

There are many aspects to written text, and each of them, either alone or in combi-
nation, can exercise influence over the choices that need to be made while designing
a TCBR system. In the following, we discuss those aspects that can be regarded as
the most influential.

Domain of Text: The domain of text documents is responsible to a large degree
of the kind of vocabulary used in text. While differences in the vocabulary are
evident at a generic level, for example, technical domain text versus legal domain

13http://en.wikipedia.org
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text, the differences exist at deeper levels of specificity even within the same generic
domain. For example, in the legal domain there is a different vocabulary for trade
secret law [Ashley, 1991], tax law [Branting, 1991], or juvenile criminality [Weber
et al., 1998]. In the same way, in the technical domain there is a different vocabulary
for problems with printer devices [Gupta et al., 2002], problems with software for
mobile phone services [Lenz and Burkhard, 1997], or problems with hardware at
the European Space Agency [Wiratunga et al., 2006]. The dependence on domain
vocabulary reflects one of the weak points of all CBR approaches: the knowledge
acquisition problem. Because the domains are very different and many of them very
specialized, in practice, it is difficult to find ready-available resources that represent
organized and categorized domain vocabulary.

User Expertise: The quality and content of documents will depend on the ex-
pertise of the users responsible for generating the documents. Inexperienced users
will ask questions, because they do not know very much about a topic. The lan-
guage used in formulating these questions would be rather imprecise, containing
more generic than specific domain terms. However, if the questions and answers are
reformulated by domain experts (as it happens in the FAQ documents of compa-
nies), then there will be no direct match of vocabulary between user questions and
expert answers. The phenomenon of vocabulary chasm between the different users
participating in the creation of documents for TCBR systems has been addressed by
different CBR researchers [Göker et al., 2006; Rissland, 2006]; however, a solution
is yet to appear.

Document Structure: The explicit structure of text documents has been par-
ticularly exploited by TCBR researchers. For example, [Lenz, 1999] considers the
titles of documents as the problem description and the body of the document as
the problem solution, following in this way the paradigm “one document = one
case”. Other researchers have experimented with considering each document para-
graph as a subtopic on its own, storing them as individual cases [Minor, 2006]. The
communication structure of documents (as in email correspondence) has been also
used for purposes of case adaptation [Lamontagne and Lapalme, 2004]. However,
none of the existing approaches has tackled the issue of implicit content structure
of text documents, an issue that is important to our CBR approach, and therefore
is treated in more detail in further sections.

2.5.3 Grammatical Quality of Written Text

The previously discussed aspects of written text, while very important, can be un-
dermined in their contribution by the aspect of text grammaticality, particularly
when it comes to the selection of a text processing approach. To see that, con-
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sider the two groups of documents in Table 2.3, which contain documents that are
commonly used in TCBR systems.

Group 1: Non-grammatical Text Group 2: Grammatical Text

Notes written by technicians for inter-
nal use.

Official documents (e.g., law court
decisions, incident reports).

Discussion in emails. Manuals of products.

Logs of phone calls in a costumer help
hotline.

Reports for business partners.

Table 2.3: Examples of documents with different grammaticality

To be more concrete in this discussion of grammaticality, refer to the examples
of text shown in Figure 2.19 and Figure 2.20.

By considering many examples like those shown in Figure 2.19, the following
characteristics of documents become evident:

• sentences are not complete, they often lack verbs
• punctuation and capitalization is often missing
• unexplained acronyms or other forms of noun truncation are used commonly
• sentences are entangled among them (especially in email answers)
• misspelling of words is very common

On the other hand, an analysis of documents as those in Figure 2.20 identifies
opposite features:

• sentences are very elaborated, often containing several related clauses
• sentences are organized to follow a temporal and logical order
• grammar and syntactical rules are observed most of the time

Lack of grammaticality deprives TCBR approaches from the use of NLP tech-
niques, because important elements such as punctuation, capitalization, articles or
verbs, which serve as cues for most of the statistic NLP approaches, are missing.
In such situations, researchers are confined to using purely symbolic representation
techniques such as n-grams14 [Varma, 2001], which are able to contribute to simple
decisions only, such as classifying text notes in “good” or “bad” notes, but alone,
cannot offer more to the process of creating useful knowledge structures for the
TCBR system.

Meanwhile, grammatically correct and homogenous text permits the use of many
NLP approaches, such as part-of-speech tagging, named entity recognition, syntactic
parsing or chunking, semantic parsing, co-reference resolution, capture of negation
forms, or even textual entailment. All these processing steps add new layers of

14The n-grams used in [Varma, 2001] are character-based. For example, from the word ‘diagnose’
the following set of trigrams is generated: (dia, iag, agn, gno, nos, ose).
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Symptom Text: KEYBOARD IS NOT WORKING/TIME OUT MEASUREMENT ERROR
QUE OVERRUN ERROR.

Solution Text: SYSTEM HAD COMMUNICATION INTERFERENCE LIKE BEFORE BE-
TWEEN FUNCTION KEYS AND HOST COMPUTER SWAPPED FIBER OPTIC
COMMLINES BETWEEN KEYBOARD AND FUNCTION KEYS. PROBLEM FIXED.

(a) A text note written by technicians of GE Medical Systems, used in a TCBR system described
in [Varma, 2001]

From: cannon@mksol.dseg.ti.com (Christopher Cannon)
Subject: Re: Help with 24bit mode for ATI

In article <WONG.93Apr15111623@ws13.webo.dg.com>
wong@ws13.webo.dg.com (E. Wong) writes:
>I finally got the vesa driver for my ATI graphics ultra plus (2M).
>However,

Where did you get this driver. Please, please, please !!!!
I’ve been waiting months for this.

>when I tried to use this to view under 24bit mode, I get lines on the
>picture. With 16bit or below, the picture is fine. Can someone tell
>me what was wrong?
>Is it the card, or is it the software?

(b) An email from the comp.sys.ibm.pc.hardware newsgroup discussion, used in [Wiratunga et al.,
2004]

Figure 2.19: Examples of non-grammatical text for TCBR systems

knowledge to text representation and offer the kind of advantages that will be
highlighted throughout this thesis.

We recognize that one cannot choose the level of grammaticality in a collection
of text documents to be used for a TCBR system. Users cannot be forced to write
in a way that is beneficial to computer systems on the one hand, but against their
habitual manner of expression on the other hand. However, completely dismissing
NLP methods, because users often disregard grammaticality, cannot be right either.
At least in those occasions when their employment duties require it, users do follow
grammatical rules (as the examples of Figure 2.20 demonstrated). This kind of text
is suitable to the use of NLP methods, and it is the kind of text that we consider
in this thesis.

2.5.4 Knowledge-Lean versus Knowledge-Rich

When we discussed existing approaches in the TCBR literature, we distinguished
between knowledge-rich approaches (those that incorporate domain knowledge from
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Determined Cause

1. The speed at which the aircraft entered the turning area exceeded the speed at
which a 180 degree turn could be executed, giving the friction conditions prevailing
in that area at the time.

2. The cause of the aircraft skidding off the end of the runway was the low friction
of the surface of the threshold markings, which covered the turning area of the
turnaround at the end of the runway.

3. The low friction of the turnaround surface was due to inappropriate painting and
maintenance of the threshold markings, exacerbated by rainwater being retained
in depressions in the markings.

4. The limited size of the turning area gave inadequate safety margin in the event of
skidding.

5. The constraints of the design of Runway 24 in Shannon resulted in ATC placing
some pressure on the pilot to expedite his clearance of the runway.

(a) Excerpt from an aviation Incident Report, used in a TCBR system described in [Wilson et al.,
2003]

Since the 1940’s, National was practically the sole supplier of coin-handling devices,
which are used in vending machines, amusement machines, and coin-operated washing
machines. National developed its products (rejectors and changers) through “many
years of trial and error, cut and try and experimentation.” In 1957, National employees
including defendant Trieman, a sales manager, and Melvin, an engineer, started their
own business for producing coin-handling devices. . . .Melvin, working at his home,
designed two rejectors that were as close as possible to the comparable National rejectors.
. . . He also used some National production drawings, as well as a few parts and materials
obtained, without consent, from National. However, none of defendants’ drawings was
shown to be a copy of a drawing of National. The resulting rejector improved on the
National product in certain ways. Melvin and Trieman resign from National. National’s
vice-president testified that the National rejectors could be taken apart simply and the
parts measured by a skilled mechanic, who could make drawings, from which a skilled
modelmaker could produce a handmade prototype. The shapes and forms of the parts, as
well as their positions and relationships, were all publicized in National’s patents as well
as in catalogs and brochures and service and repair manuals distributed to National’s
customers and the trade generally. National did not take any steps at its plant to keep
secret and confidential the information claimed as trade secrets.
It did not require its personnel to sign agreements not to compete with National. It did
not tell its employees that anything about National’s marketed products was regarded
as secret or confidential. Engineering drawings were sent to customers and prospective
bidders without limitations on their use.

(b) Excerpt from a legal case, used by the SMILE+IBP system described in [Brüninghaus and
Ashley, 2005]

Figure 2.20: Example of grammatical text for TCBR systems
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outside the corpus of documents) and knowledge-lean approaches (those that do not
use outside sources of knowledge besides the corpus of documents). The analysis
made clear that knowledge-lean approaches are domain-independent and can be
applied to every document type, while knowledge-rich approaches often require
sophisticated knowledge engineering and can be only applied to documents of a
confined domain.

However, the domain-independence of knowledge-lean approaches, when trans-
lated to usage scenarios, results in information overload for the users of the TCBR
system. For example, while the cluster attractors in the Sophia approach (Sec-
tion 2.4.3.3) are able to attract a group of similar cases, the set of attractors remains
a set of independent unordered features, for which it is very difficult to guess what
they have in common. The same is true for the propositional features created in
the PSI approach (Section 2.4.3.5. That is, although the extracted features could
stand for an underlying concept, users might not be able to guess what the concept
is. Thus, users will be forced to read a few documents, in order to understand what
the documents might have in common, so that to be perceived as similar by the
respective TCBR approach. One might argue that important it is only that the
TCBR system retrieves the most similar case to a given request, independently of
the internal mechanisms that retrieve a particular case. However, a system that be-
sides retrieval is also transparent in its retrieval mechanisms will be more accepted
by users, particularly by the group of inexperienced users, who need to be supported
during their task performance by acquiring problem-solving knowledge.

Recalling the concept of knowledge containers introduced in Section 2.3, it is
also clear that another difference between knowledge-rich and knowledge-lean ap-
proaches lies in the way they acquire knowledge for two containers: indexing vo-
cabulary and similarity knowledge. A completely automatic approach is noticed
for the knowledge-lean approaches and either a manual or mixed approach for the
knowledge-rich approaches.

What is then the best approach? A knowledge-lean or a knowledge-rich one?
Probably, it is not accidental that the approach of Brüninghaus & Ashley, the

most complex representative of the knowledge-rich family, is also the only approach
that represents its cases in a way that enables automatic reasoning with cases, for
instance, the prediction of the outcome of a new legal dispute. Meanwhile, all the
other discussed approaches are limited to the retrieval of the most similar cases,
leaving the reasoning task completely to users.

In the light of this fact, the question is not anymore what the best approach is,
but what approach can be afforded in the context of the desired goals. If the goal is
simply the retrieval of some documents of interest, then knowledge-lean approaches
should be preferred, due to their domain and language independence. It should be
noted however that the discussed knowledge-lean approaches have yet to prove their
value to TCBR scenarios, because the reported evaluations have been performed
with corpora of documents specifically collected for text categorization tasks. On
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the other hand, if domain-specific knowledge sources exist or may be acquired, a
knowledge-rich approach based upon them will offer a better service to the users of
the TCBR system. As common in the framework of developing knowledge systems,
the conflict is between the expressivity of representation and the complexity of
computation. The solution is finding the right compromise, without compromising
usability.

2.5.5 Assumptions in TCBR

Several explicit or implicit assumptions lay at the roots of TCBR research. Many
of them are inherited by CBR, but others are unique to TCBR. A list of some of
the most common assumptions is listed in the following:

• Each case has at least a problem description and a problem solution part.
• One document is equal to one case.
• A document is a bag of unordered words.
• One relevant document is sufficient if it answers a query.

Typically, these assumptions are accepted because they simplify both the de-
velopment as well as the evaluation of TCBR systems. The question, however, is
whether they are always true and whether replacing them by other assumptions
might lead to new and different approaches.

Concretely, is it true that every case has a problem description and a problem
solution? Actually, because during the years the concept of a case has evolved (it has
been extended to cover different types of situations, where the principles of CBR
can be applied), this assumption becomes rather a burden than a simplification.
We already encountered in Figure 2.3 the example of a product (a digital camera)
considered as a case, where every attribute can be used as part of the problem
description and where the problem solution is the whole product description. This
kind of retrieval is also what is performed in IR, given a query of a few words; the
whole document that contains the word of the query is retrieved. Because TCBR
aims at being a better retrieval approach than IR, often a contrived division in a
problem description and problem solution is undertaken. Some examples of such
a division are: in a FAQ, the question and the answer; in an email or document
the title and the body. However, it seems that this kind of division it is more of a
syntactic than of a semantic nature. While such a division can have a practical value,
because it focuses the indexing process to the elements of the problem description,
it might be also detrimental, because text used in questions or document titles is
often insufficient to index the content of the whole document. Therefore, we do not
consider it important that a document should have either an explicit or implicit
division in a problem description and solution.

Closely related to the discussed assumption is the other assumption that every
document is a case. This assumption has again only practical reasons, mostly

47



2. Textual Case-Based Reasoning

because a document can be easily represented by a vector of word weights, and
vectors can be easily compared. However, if one is not bound to use a vector
representation, it also becomes unnecessary to assume that a document equals a
case. Actually, the assumption “one document = one case” was introduced by Lenz
and colleagues at the dawn of TCBR, even if they did not use a vector representation
for the cases. Nevertheless, they regarded a document as a container of some unique
information entities, which were nothing else than single unrelated words or phrases,
leading to the same view adopted when creating a vector representation.

By dismissing the assumption of “one document = one case”, the other assump-
tion that a document is a bag of unordered words becomes unnecessary. In fact,
viewing a document as a bag-of-words makes sense when one wants to compare
documents to one-another using the cosine function. If another way of representing
and comparing cases is adopted, the cosine function is not needed. The necessity
for using another representation than that of bag-of-words was also documented in
Section 2.4.1, where some of its disadvantages were identified: failing to capture
negation, ignoring term relations, collapsing all senses of a polysemous word in one,
etc.

The assumption that one relevant document is sufficient was initially introduced
by [Burke et al., 1997] and later embraced by [Lenz, 1999], too. This assumption is
clearly limiting, because presupposes that an answer or a solution can be unique and
self-contained. Actually, it is often true that there could be more than one answer
to a question, and that the solution of a problem might need to be composed out
of pieces available in several cases. For example, this is what happens in case-
based interpretation, where in order to create an argument, several case-pieces are
combined within the compare-and-contrast strategy. An excellent example for that
is the HYPO system [Ashley, 1991] that builds legal arguments. A more recent
example of the idea of combining pieces of several cases to create a problem solution
can be found in [Hüllermeier, 2005].

Another problem that we see with current TCBR research is the fact that in
general it does not consider the circumstances in which a case is created and will be
reused. This can be noticed in the processes used for acquiring indexing vocabulary.
In our view, the majority of the existing TCBR approaches considers only two of
the three characteristics that an indexing vocabulary should have, characteristics
that have been described in [Kolodner, 1993, p. 195]:

1. Indexing has to anticipate the vocabulary a retriever might use.
2. Indexing has to be by concepts that are normally used to describe the items

being indexed, whether they are surface features or something abstract.
3. Indexing has to anticipate the circumstances in which a retriever is likely to

want to retrieve something (i.e., the task context in which it will be retrieved).

Indeed, by using the documents itself as the source of knowledge, and by as-
suming that they have been written by a large group of users over an extended
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period of time, it can be ensured that almost the whole surface vocabulary of a
given domain is captured. However, by failing to consider the specific task contexts
in which users need to use the TCBR system, the problem of information overload
on the user side is not handled. One of the goals of our research is to propose a
balanced approach, which does not aim at decreasing knowledge engineering efforts
at the cost of increasing information overload for users. Therefore, we explicitly
consider task knowledge as a knowledge source for building knowledge containers
for the TCBR approach.

In conclusion to this section, we reformulate the initial TCBR assumptions in a
relaxed form, the form in which we consider them:

• one document needs not necessarily be equaled to one case
• documents might display no explicit division in a problem description and a

problem solution
• reuse of case knowledge needs not to be confined to a singular case

However, more important than these relaxed assumptions, is the necessity to
include knowledge of task context into the modeling of the TCBR approach. A task
has always to do with the goals of a user and the strategy for achieving them. A
strategy can be usually seen as a series of actions undertaken by a rational agent. In
a larger context, actions can be regarded as types of events. Thus, our central claim
in this thesis is that task context can be captured by adopting an event-oriented
perspective to TCBR.

2.6 TCBR: An Event-Oriented Perspective

There are two opposed perspectives in which the world can be seen and modeled:
an object-oriented (OO) and an event-oriented (EO) perspective. A description of
each perspective can be summarized as shown in Table 2.4.

Analyzing the statements in Table 2.4, it becomes clear that an object-oriented
perspective of the world is concerned with objects, their properties and values,
their parts, and their relations. On the other hand, the event-oriented perspective
considers events, states, and processes.

Although this duality in perspectives is commonly acknowledged in many re-
search circles, a dominance or preference for the OO view is noticed in the reality.
As it was shown in the previous sections, research in TCBR is not an exception to
that.

Actually, the two perspectives are not exclusive; rather, both can be conflated
into one another. In this way, events, processes, and states can be considered as
objects through the process of reification. Equally, objects and their relations can
be subordinated as participants in events and processes. However, we believe that
there are many occasions, in which one of the perspectives can be preferred over the
other, due to the advantages it offers in knowledge representation and reasoning.
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Object-Oriented View

There are objects in the world;
These objects have properties that can take values;
Objects may have parts;
Objects may exist in various relations with each other;
The properties and relations may change over time.

Event-Oriented View

There are events that occur at different time instants;
There are processes in which objects participate and that occur over time;
The world and its objects can be in different states;
Events may cause other events as effects.

Table 2.4: Two different perspectives of the world (adapted from [Chan-
drasekaran et al., 1998])

In adopting an event-oriented perspective, we were inspired by work in the
philosophy of language and linguistics. For instance, the philosopher of language
Donald Davidson argued during several decades that it is necessary to treat events
as independent entities. He wrote in [Davidson, 1980]:

“I do not believe we can give a cogent account of action, of explanation,
of causality, or of the relation between the mental and the physical,
unless we accept events as individuals.”

With time, his arguments were recognized and embraced by several research
communities, such as natural language semantics and knowledge representation.
So, the linguist Terence Parsons, based on the theory of Davidson that: “verbs
explicitly stand for kinds of events, so that a sentence containing such a verb states
implicitly that an event of that sort took place”, constructed an elaborated theory
of subatomic semantics [Parsons, 1990], that claims to explain a large quantity of
linguistic phenomena based on the thesis of underlying events and states. With
Parsons’s semantics, the sentence “Mary sees the tree” is not represented as usual
in predicate logics:

See(mary, tree) (2.4)

but with flexible structure:

(∃e)[Seeing(e) ∧ Experiencer(e, mary) ∧ Theme(e, tree)] (2.5)
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which can be read as: there exists an event e such as this event is of type Seeing
and it has an Experiencer and a Theme. Notice also how this kind of representation
allows other types of information to be added by simply appending other conjuncts;
something impossible in predicate logics, where one would have to write several
relations of different arity.

While in the EO perspective there is a distinct place for events, processes, and
states, throughout this thesis we will refer to them commonly as events. This is in
compliance with Parson’s theory on events. So, Parson uses the concepts of culmi-
nating and holding to distinguish among events, states, and processes. An event
is an eventuality that holds an instant and culminates; a state is an eventuality
that just holds; and a process is an eventuality that holds for some period and then
eventually culminates. This explains why states and processes can be (for repre-
sentational purposes) regarded as events, which either do not culminate (states) or
hold longer (processes).

There is a specific reason why we believe that adopting an EO perspective can
be beneficial to TCBR. The answer is to be found in the last line of Table 2.4:
“events may cause other events as effects”, that is, causal relationships could be
explained in terms of events. Since many of the problem-solving situations faced in
the real-world are concerned with causal relationships, an event-oriented perspective
would constitute the right ontological commitment level on modeling the world and
reasoning about it.

In the following section, we present two concrete scenarios from two completely
different domains, where events play the major role in the reasoning process.

2.6.1 Examples of EO in TCBR

In this section, two domains will be described, the textual documents of which, on
the one hand, lend themselves naturally to an EO perspective, and on the other
hand, are common material for TCBR approaches, as it was shown previously in
this chapter.

2.6.1.1 Aviation Incident Reports

The American National Transportation Safety Board (NTSB) maintains a large
database of aviation incidents/accidents. The database is organized around events
(incidents or accidents), which are at the top of the data model hierarchy. All
other tables: aircraft, cabin crew, engines, injury, etc., have as primary key
the event id, so that the information they contain can be combined together to
create the whole picture of an event. There is a table narratives where the textual
descriptions of the registered incidents/accidents are stored. An incident description
is given in Figure 2.21.
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Storing incidents/accidents is very important for the evolvement of safety pro-
cedures, especially when the causes of such events and their relationships are in-
dividuated. Human experts that maintain the NTSB database use a taxonomy of
controlled vocabulary to assign causes and factors to the described events. For ex-
ample, the information in Figure 2.22 has been assigned to the report of Figure 2.21.

On August 8, 1996, about 1300 Alaska daylight time, a Piper PA-18 air-
plane, N9730P, sustained substantial damage while landing at an off air-
port site approximately 45 miles northwest of Arctic Village, Alaska. The
private pilot and sole passenger aboard were not injured. The personal, 14
CFR Part 91 flight operated in visual meteorological conditions without
a flight plan. The flight originated at Arctic Village, Alaska, about 1215.

During a telephone conversation with the NTSB investigator-in-charge on
August 16, the pilot related that he allowed the airplane’s airspeed to
become too slow while on short final approach to a gravel bar. He said
he added power, but was too late to keep the airplane from sinking and
landing hard and short of his intended touchdown point. The airplane
traveled a short distance and nosed over.

Figure 2.21: An incident report from the NTSB database

Occurrence 1: Occ code = ’Undershot’; Phase of flight = ’Approach - VFR pattern - final approach’

Group Code Cause/Factor Subject Code Modifier Code Person Code

1 Human Performance Cause Airspeed Low Pilot-in-command

2 Human Performance Cause Remedial action Delayed Pilot-in-command

Occurrence 2: Occ code = ’Hard landing’; Phase of flight = ’Landing - flare/touchdown’

Occurrence 3: Occ code = ’Nose over’; Phase of flight = ’Landing - roll’

-

Figure 2.22: Describing the sequence of events in Figure 2.21 with controlled
vocabulary

The information in Figure 2.22 shows that the incident comprises three occur-
rences: Undershot, Hard landing, and Nose over. The occurrence Undershot is
further decomposed in two subevents: low airspeed and delayed remedial action
which are considered as the causes of the incident and are attributed to the pilot-
in-command (Human Performance).
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2.6.1.2 Legal Arguments

In Section 2.4.1, TCBR in the legal domain was extensively discussed, when consid-
ering the work of Kevin Ashley and his group. To see that legal disputes can also
be viewed in terms of events, consider the excerpt in Figure 2.23, an example of a
trade secret dispute published in [Ashley, 1991]:

Amexxco, a major oil company, complains about the actions of its former
employee named G. Whiz. While working for Amexxco, Mr. Whiz had
developed a computer program, called Dipper, for analysing drilling logs
of oil wells. Although on the Amexxco payroll since 1980, Whiz devel-
oped the program on his own initiative and without Amexxco’s support.
In fact, for four years, Amexxco had repeatedly directed Whiz to drop
the Dipper in favor of another approach. Then in a trial experiment con-
ducted by Whiz, the Dipper discovered a major oil well. A year ago in
1987, in a salary dispute, Whiz quit Amexxco’s employ and entered into
an employment contract with Amexxco’s competitor, Exxssinc, to work on
computerized analysis of oil drilling logs. Whiz had signed a nondisclosure
agreement with Amexxco in which he undertook to maintain confidential-
ity with respect to all of Amexxco’s trade secrets. Amexxco wants to know
what legal rights it has against its former employee, Whiz, and against
Exxssinc.

Figure 2.23: A dispute narrative that appears in [Ashley, 1991]

According to Ashley, the dispute can be summarized with the factors in Ta-
ble 2.5.

Factor Dimension Favors

f1 Security-Measures Plaintiff
f2 Agreed-Not-To-Disclose Plaintiff
f3 Employee-Sole-Developer Defendant
f4 Nondisclosure-Agreement-Specific Defendant

Table 2.5: Factors for the dispute in Figure 2.23

These factors are assigned based on the following reasoning:

• (f1) Security-Measures: Amexxco adopted some measures to protect its trade
secrets, since it has secured a nondisclosure agreement from at least one em-
ployee.
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• (f2) Agreed-Not-To-Disclose: Whiz has signed a nondisclosure agreement with
Amexxco.
• (f3) Employee-Sole-Developer: Whiz developed the program on his own ini-

tiative without Amexxco’s support.
• (f4) Nondisclosure-Agreement-Specific: although the employee had signed the

nondisclosure agreement, the agreement did not specifically refer to the Dipper
program.

It can be noticed that the factors (f2) and (f3) are based on events directly
described on the text, while factors (f1) and (f4) are only implied by the text,
logically following from factor (f2).

2.6.2 Episodic Textual Narratives

In Section 2.3, it was mentioned that CBR systems are unique among other types of
knowledge systems, because they make use of episodic knowledge. According to the
Oxford vocabulary of English language, an episode is a happening that is distinctive
in a series of related events. An example of an episode was shown in Figure 2.21,
another one is found in Figure 2.24. Episodes such as the one in Figure 2.24 are
the ones that are used in this thesis to illustrate our EO approach.

The loss factor and capacitance measurement was carried out by the com-
pany Icemenerg, Bucarest. Because of the short-circuit to ground on the
phase W, this measurement could only be performed on the phases U and
V. The curves show higher first-step values, indicating that the contact of
the slot anti-corona protection is no more perfect. On the phase U, higher
loss factor values are recorded on the whole measuring voltage range. On
the phase V, a largely normal curve shape was obtained again from 0.3UN .
This means that the insulation is more weakened on the phase U as on
the phase V, due to an insufficient anti-corona protection. This is also in-
dicated by the capacitance curves, showing a more irregular curve shape
and smaller capacitance values than during the last measurement in year
1991 (also more important deviation for phase U).

Figure 2.24: An episodic textual narrative for the task MONITOR-and-
DIAGNOSE

What is evident in such examples of episodes is that they contain no explicit
problem description and problem solution. Rather, each text is a snapshot. It
narrates something in a particular time and place, giving explanations for what
has been observed. We refer to this category of text documents as episodic textual
narratives. It is the category of documents that we consider as the mostly adept
for the EO perspective.
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The episodic narratives have several interesting characteristics that can be ex-
ploited during the design of a TCBR approach. First, they always consider the same
type of entities (events or states), again and again, so that they contain repetitive
information. Second, the narration follows the temporal and causal order of the de-
scribed events. Thus, each episode can be represented in a concise form by the list
of participating events. Finally, because events themselves can be decomposed in a
series of related participants, the vocabulary used in a narrative can be abstracted
in terms of these participants (an example was shown in Equation 2.5).

2.6.3 An outline of the EO perspective to TCBR

In the object-oriented perspective to document representation that is often adopted
in TCBR, as some of the assumptions discussed in Section 2.5.5 show, every docu-
ment is regarded as an object and all the words of the document as the features (or
properties) of this object. Then, two objects are similar when they share a num-
ber of properties. Such a perspective is intuitive and computationally simple, and
furthermore, it has been successful in many tasks: information retrieval, document
clustering, or text categorization. In general, the OO perspective to document rep-
resentation can be thought of as contributing in answering the question: “What is
this document about?”

In the EO perspective to document representation instead, the focus is on an-
swering the questions: “What has happened?” or “Why has it happened?” This
kind of questions requires a richer representation of text, a representation that
permits to extract the desired answers. Therefore, something more than single,
unordered sequences of words is needed. The EO perspective commits itself to a
representation based on a combination of event types and participants with phrases
of text. Furthermore, since language like cognition itself is regarded in AI as a
probabilistic phenomenon, we attach to the EO perspective a probabilistic aspect
as well.

Therefore, in addition to the relaxed assumptions discussed in Section 2.5.5, we
bring the following assumptions into attention, too:

• A text document can be considered as the probabilistic output of some un-
derlying, interconnected event types or topics, instead of being regarded as a
mere container of some information entities.

• A case can be considered as a chain of interconnected participants in related
events. Thus, a document will contain as many cases as there are groups of
related events that do not intersect.

• Redundancy of information that results from describing the same events again
and again can be exploited to distinguish among prototypical and exemplar
cases.

All these assumptions that lie at the foundation of our TCBR approach will be
addressed in more detail in Chapter 4.
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Another important aspect of the EO perspective has to do with the acquisition
of knowledge for the knowledge containers. On the one hand, our primary goal is
not to fall back to domain-specific, knowledge-rich approaches, which are associated
with high costs of knowledge engineering. On the other hand, another important
goal is to do better than knowledge-lean approaches, particularly in alleviating the
information overload on the users’ side. In order to achieve these goals, we take
several types of domain-independent knowledge sources that are readily-available
into consideration. These knowledge sources contribute in the implementation of the
event-oriented perspective by helping in processing textual narratives, something
that will become clear throughout this thesis.

2.7 Summary

Case-based reasoning is both a problem-solving technique and a methodology for
building knowledge systems. Differently from other knowledge systems, CBR sys-
tems exploit episodic knowledge represented in the form of cases. While cases are
the most important piece of knowledge in a CBR system, other types of knowledge
might also be needed, such as indexing vocabulary, similarity measures, or adap-
tation knowledge. These knowledge sources are known as knowledge containers.
When cases are originally in a textual form, a separate CBR subdiscipline, namely
Textual CBR (TCBR), is concerned with the process of building the knowledge
containers and developing the CBR approach.

In this chapter, we discussed two major research directions in TCBR: knowledge-
lean and knowledge-rich approaches. After analyzing several exemplars of such
approaches, we identified some assumptions, which need not to be considered as
the only and the whole truth. As a result, we formulated a novel perspective to
TCBR, an event-oriented perspective, which also permits to consider the episodic
narratives as generated by a probabilistic process. Based on this perspective, our
approach can be considered as a knowledge-enhanced approach and can be ordered
between knowledge-lean and knowledge-rich approaches.

A knowledge-enhanced approach utilizes generally available, domain-indepen-
dent knowledge sources that can contribute to the development of a TCBR system.
The following chapter is dedicated to the analysis of one of such sources: task
knowledge.
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Chapter 3

Knowledge Modeling

3.1 Introduction

Wise people do not accumulate knowledge just for the sake of it. Knowledge is
acquired because its bearer intends to use it in achieving some goals. While people
may not be aware of the how-s and when-s knowledge is acquired and stored in
their brains, pursuing a concrete goal provides constraints that serve as filters for
knowledge that might be useful in achieving the goal. In knowledge engineering,
task knowledge is the type of knowledge that describes a goal and the strategy to
realize it [Schreiber et al., 1999]. By studying tasks of different knowledge-based
systems, knowledge engineers concluded that there are some tasks that appear quite
frequently across different domains. Performing such tasks requires both domain
knowledge and task knowledge. However, in order to represent these tasks and
their execution strategy, an abstract modeling is possible, which can be used as a
starting point for any knowledge-based system design, independently of the applica-
tion domain. These generic tasks are commonly known as knowledge tasks. Their
discussion, based on the CommonKADS methodology [Schreiber et al., 1999], is
presented in Section 3.2. However, we argue1 in Section 3.3 that a formal approach
to domain/task knowledge as proposed by CommonKADS is often neither possible
nor desirable, because knowledge might be incomplete, uncertain, or heuristic.

3.2 Knowledge Modeling, Knowledge Tasks, and Task Templates

The success of the first expert systems such as DENDRAL [Feigenbaum et al.,
1971] and MYCIN [Shortliffe, 1976] contributed towards the increase of interest
of the large AI research community in knowledge modeling and representation.
In the successive years, researchers advanced many theories and frameworks for
building knowledge-based systems. CommonKADS is such a methodology, built
upon the principles of modeling those aspects of knowledge that serve to the goals

1A part of this chapter has been previously published in the EJKM journal [Mustafaraj et al.,
2006b]
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of knowledge-based systems. The discussion that follows is entirely based on the
CommonKADS methodology.

3.2.1 Knowledge Modeling

A knowledge model can be regarded as composed of three components: domain
knowledge, inference knowledge, and task knowledge. Figure 3.1 schematically
shows the relations among these three components. Each of these components can
be decomposed further into a series of smaller knowledge constructs. Concretely, the
domain knowledge component consists of the domain schema(s) and the knowledge
base(s). A domain schema itself includes concepts, relations, and rule types (com-
monly known as domain knowledge types); a knowledge base contains instances of
these knowledge types.

Base
Domain
Schema

role mapping

define control over

Task & Methods

Inference Structure

Knowledge

Figure 3.1: The three layers of a knowledge model: task knowledge, inference
knowledge, and domain knowledge

The second component, inference knowledge, contains inferences, knowledge
roles, and transfer functions. The construct of knowledge roles is particularly inter-
esting, because it is the link connecting domain knowledge constructs (like concepts
and rules) to the inferences (primitive functions that perform reasoning tasks on
the data mapped to the knowledge roles).
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The last component, task knowledge, consists of the task—also known as the
“what” view (what needs to be done) and the task method—the “how” view (how
is it done) on the reasoning task. A task is understood as a knowledge-intensive,
reasoning process that usually is iteratively decomposed into smaller tasks (until
primitive functions like inferences are encountered), whereas the task method defines
how this decomposition is realized and carried out.

The four following figures show concrete examples of the three components,
reproduced from examples published in [Schreiber et al., 1999].

             blown}

fuse

status: {normal,
             low}

battery

status: boolean

gas in engine

status: universal
observable: boolean

car state

car state
invisible

observable: {false}

visible
car state

observable: {true}

status: {on, off}

power

status: {normal,
             does not start,
             stops}

engine behavior

fuel tank

status: {full,

      empty}
      almost−empty,

status: {normal,

Figure 3.2: Domain knowledge component: Graphical Domain Schema

Concretely, Figure 3.2 shows a domain schema for an application of car diag-
nosis, where several domain concepts (such as fuel tank, battery, or fuse) and their
relations are depicted. Then, in Figure 3.3 we find an example of a knowledge base
related to the domain schema of Figure 3.2. The knowledge base contains the causal
relationships among the different instances of domain concepts. Further, Figure 3.4
shows an example of mapping domain concepts to knowledge roles (e.g., visible car
state to complaint or invisible car state to hypothesis). And finally, Figure 3.5

59



3. Knowledge Modeling

KNOWLEDGE-BASE car-network;
USES:

state-dependency FROM car-diagnosis-schema,
manifestation-rule FROM car-diagnosis-schema;

EXPRESSIONS:
/* state dependencies */

fuse.status = blown CAUSES power.status = off;
battery.status = low CAUSES power.status = off;
power.status = off CAUSES

engine.behavior.status = does-not-start;
fuel-tank.status = empty CAUSES

gas-in-engine.status = false;
gas-in-engine.status = false CAUSES

engine.behavior.status = does-not-start;
gas-in-engine.status = false CAUSES

engine.behavior.status = stops;

/* manifestation rules */

fuse.status = blown HAS-MANIFESTATION
fuse-inspection.value = broken;

battery.status = low HAS-MANIFESTATION
battery-dial.value = zero;

fuel-tank.status = empty HAS-MANIFESTATION
gas-dial.value = zero;

END KNOWLEDGE-BASE car-network;

Figure 3.3: Domain knowledge component: Knowledge Base

indicates a possible way of decomposing the task of diagnosis in task methods.

3.2.2 Knowledge Tasks

Knowledge tasks (or knowledge-intensive tasks) are those tasks in which knowledge
plays the primary role. Indeed, the most famous of knowledge tasks, diagnosis
(from Greek: dia=by, gnosis=knowledge) literally means “to arrive at a conclusion
by knowledge”. During many years of research in cognitive science and knowledge
engineering, a categorization of task types has emerged, which is shown in Figure 3.6.
The division in analytic and synthetic tasks is based on the nature of the object in
focus.

If we consider as system the object to which a task is being applied, then for
analytic tasks the system preexists; while for synthetic tasks it does not, and the
goal of these tasks is to produce a system description.

The further subcategorization of analytic and synthetic tasks in Figure 3.6 is
based on the problem type solved by the task. In the literature, the notions of prob-
lem type and task are used interchangeably. For example, [Lenz et al., 1998] discuss
analytic problem solving in the framework of CBR. Because CBR is a problem solv-
ing methodology and tasks are strategies for solving problems, many denotations
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static role

complaint cover hypothesis

causal model

state
dependency

visible
car state

invisible
car state

inference−domain
mapping

inference−domain
mapping

inference−domain
mapping

inference
knowledge

domain
knowledge

dynamic output roledynamic input role inference

concept rule type concept

Figure 3.4: An example of mapping between domain knowledge and inference
knowledge through knowledge roles

task

through
generate−and−test

cover

predict compare
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inferences transfer function

task method

diagnosis

diagnosis

decomposition

Figure 3.5: An example of a schematic representation of task knowledge

61



3. Knowledge Modeling

diagnosis predictionclassification design planning assignment

configuration
design

knowledge−
intensive

task

analytic
task

synthetic
task

assessment monitoring modelling scheduling

Figure 3.6: A hierarchy of knowledge task types

exist that highlight the connections between CBR and task type, such as case-based
design [Leake and Wilson, 2001; Börner, 1998], case-based diagnosis [Lenz et al.,
1998], case-based planning [Bergmann et al., 1998], etc. Two of the tasks we are
interested in, diagnosis and monitoring, are discussed in detail in the next sections.

3.2.3 Task Templates

There is always a goal behind a reasoning process, or actually, it is the goal of
achieving something that we want, that guides the reasoning process. The knowl-
edge for describing such goals and the strategy for realizing them is referred in
CommonKADS as task knowledge (as mentioned in Section 3.2.1). As we saw, the
task (goal of reasoning) is tightly bound to the problem that is faced. Meanwhile,
the strategy for achieving the goal (task method) can be regarded as an iterative
decomposition of the task into other sub-tasks until arriving at simple inferences
and transfer functions as those seen in Figure 3.4 and Figure 3.5. Inferences and
transfer functions are routines that need input and output data. Such input and
output data will usually depend on the nature of the task. Therefore, it makes sense
to have a general vocabulary, which, independently of specific domain vocabulary,
refers to the input and output data that are processed during task execution.

In the CommonKADS methodology, the vocabulary needed to describe task
knowledge is organized in task templates. In the following, task templates for
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two analytic tasks that are important to the goals of this thesis (monitoring and
diagnosis) are presented in Figure 3.7 and Figure 3.8.

DIAGNOSIS

Goal Find the fault that causes a system to malfunction.

Typical Example Diagnosis of a technical device, such as a copier.

Terminology
(Knowledge Roles)

Complaint/symptom: the data that initiate a diag-
nostic process.

Hypothesis: a potential solution (thus a fault).

Differential: the active set of hypotheses.

Finding(s)/evidence: additional data about the sys-
tem being diagnosed.

Fault: the solution found by the diagnostic reasoning
process.

Input Symptoms and/or complaints.

Output Fault(s) plus the evidence gathered for the fault(s).

Features In principle, a diagnosis task should always have some
model of the behavior of the system being diagnosed. An
example could be a casual model of system behavior.

Figure 3.7: General characterization for the Diagnosis task template

Clearly, these two templates are very abstract at this level of description; nev-
ertheless, the given details are sufficient for starting task modeling in any desired
domain. Still, problems might arise from the fact that domain experts do not con-
ceptualize their domains using the constructs described here, so that considerable
efforts are needed from the knowledge engineers to establish a mapping between
modeling constructs and real sources of knowledge for a given application2.

In the next section, we analyze a document, which would be usually used by
a knowledge engineer to create a task model for an application, and point out the
difficulties of such an undertaking. We also question the feasibility of creating for-
mal representations as those promoted by many knowledge engineering approaches
for knowledge systems. In our regard, knowledge systems that perform automatic
deductive reasoning are difficult to build and maintain and do not offer flexibility in
problem-solving situations. For that reason, we propose and develop a case-based
reasoning approach in this thesis, which offers the needed flexibility, as we will
demonstrate in further chapters. For the moment, we continue this chapter with
the analysis of available knowledge sources for knowledge modeling.

2An application is considered as the process of applying a given task in a given domain.
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MONITORING

Goal Analyze an ongoing process to find out whether it behaves
according to expectations.

Typical Example Monitoring an industrial plant.

Terminology
(Knowledge Roles)

Parameter: an entity for which the current value can
be relevant for the purpose of detecting abnormal be-
havior.

Norm: the expected value or value range of parameter
in the case of normal behavior.

Discrepancy: this indicates abnormal behavior of the
system being monitored; sometimes it is an ordered list
of the potential discrepancies, e.g., small-deviation,
medium-deviation, etc.

Input Historical data about the system being monitored, usually
gathered during prior monitoring cycles.

Output The discrepancy found (if any).

Features The crucial distinction between monitoring and diagnosis
lies in the nature of the output. Monitoring “just” ob-
serves a discrepancy, without any exploration of the cause
of fault underlying the deviant system behavior. However,
in many domains monitoring and diagnosis are tightly cou-
pled tasks: when monitoring leads to a discrepancy, a di-
agnosis task is started using the monitoring information as
its input.

Figure 3.8: General characterization for the Monitoring task template

3.3 Understanding and Expressing Application Knowledge

Within a given domain, there are always some parties that need to communicate. In
the application example explained in Appendix A, the parties are on the one hand
the service providers of diagnostic services and on the other hand the operators of
large electrical machines. One of the advantages of operating in the same domain is
the fact that the participants share considerable background (domain) knowledge,
so that in the process of communication, a great deal of things can be left unstated,
because they are implicitly understood. However, this advantage for the participants
within a domain becomes a burden for knowledge engineers that do not know the
specific application, as it will be shown in the course of this section.

Consider, for example, Figure 3.9, which contains text extracted from a doc-
ument written by a service provider (a diagnostic engineer) for a customer that
has required a diagnostic service. The aim of the text is to explain the meaning
of a specific diagnostic procedure to a customer. The text takes for granted that
the communicators share the meaning of a large number of domain entities such
as: ‘leakage current’, ‘d.c. voltage’, ‘fault current’, ‘insulation system’, ‘winding’,

64



Understanding and Expressing Application Knowledge

‘phase’, etc. A schematic view of the practical procedure described by the text can
be found in Appendix A, Figure A.3.

One of the recommendations of the CommonKADS methodology is that instead
of trying to extract knowledge from the mind of experts, one should try to model
the process where knowledge is needed by creating separate models for the domain
knowledge or task knowledge as described previously in Section 3.2. Good places to
start looking for concepts and relations that would participate in such models are
always existing documents concerning the domain and task (i.e., the application).
Thus, the text in Figure 3.9 is a potential source information.

Measurement of the leakage current

1. The object of the leakage current measurement, as a function of
d.c. voltage, is the recognition of unusual fault currents and thus of
possible weak spots in the insulation system.

2. The test is carried out phase by phase, whereby a d.c. voltage is
applied across the winding of one phase and the current flowing in
this phase (I1) and also the current flowing via the other two phases
(I2) to earth are measured.

3. The test is performed in accordance with a defined time program,
whereby the test voltage is increased in increments and current read-
ings are taken after precalculated intervals of time.

4. The resulting curves of the total and leakage currents, measured
phase by phase, are evaluated together with some characteristic val-
ues derived therefrom.

5. The results yield information with regard to possible inhomogeneities
in the winding insulation system.

Figure 3.9: The description of a diagnostic measurement. Sentences in italic
are interpreted in the text.

But what kind of help can such documents offer to the modelling efforts? In
the following, we will look at every sentence one by one, trying to decode their
meaning and sketch a model along the way. Clearly, a lot of background knowledge
of different kinds (language, mathematics, physics, common-sense) as well as the
application context will be needed.

The first sentence of Figure 3.9 formulates the purpose of measuring leakage
current, which is one of the diagnostic procedures in the application described in
detail in Appendix A. The two terms ‘leakage current’ and ‘d.c. voltage’ are unam-
biguously domain entities, even if it is not mentioned what they mean. What is not
clear from the sentence is the way these two entities are related. Concretely, what is
‘a function of d.c. voltage’: the measurement, the leakage current, or the object of
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the measurement? From the linguistic construction of the sentence it follows that
it is the measurement, but that cannot be correct. A measurement is an act, an
activity, while the word function has in this context the meaning of a mathematical
function. A mathematical function expresses the dependency of a quantity’s values
on varying values of quantities. Thus, ‘a function of d.c. voltage’ refers to ‘leakage
current’ because they are both quantities. But are ‘current’ and ‘voltage’ quantities?
WordNet3 classifies them both in the same category of: {electrical phenomenon,
physical phenomenon, natural phenomenon, phenomenon}, that is, no quantities.
Actually, a quantity is just an abstraction that characterizes an entities’ property
of being measured. And since the sentence is about “measuring the leakage current
as a function of d.c. voltage”, the words ‘current’ and ‘voltage’ will be implicitly
overloaded with the meaning of ‘quantity’ or more precisely ‘physical quantity’, be-
cause ‘current’ and ‘voltage’ are physical phenomena that can be measured. All
this explanation produces the following sketch:

current is a physicalQuantity
voltage is a physicalQuantity
leakage current is a current
d.c. voltage is a voltage
leakage current plays the role of dependentQuantity
d.c. current plays the role of independentQuantity
leakage current plays the role of quantityToBeMeasured
leakage current depends on d.c. current

Continuing with the first sentence, the purpose of the measurement is stated
as: the recognition of fault currents and thus of possible weak spots in the insulation
system.

The word recognition is a very ambiguous one, and Wordnet contains 8 meanings
for it. However, in the given context its meaning can be described by the category:
{identification, memory, remembering, basic cognitive process, process,
cognitive process, mental process, operation, cognitive operation}. From
this description it follows that recognition is a process that takes place in the mind
of the observer. On the other hand, the name recognition is derived from the verb
recognize, which means “know again from one’s previous experience”, that is, one
can recognize only something that has already experienced before. This highlights
the importance of experience and the necessity of collecting and making previous
experience available to inexperienced users, a goal that we pursue in this thesis.

Turning back to recognition and its meaning as identification, a connection to
diagnosis can be established, because diagnosis is regarded as: identification of a
disease or condition after observing its signs. Moreover, the signs of the existence
of a condition are considered as symptoms. That is, if the ‘fault currents’ is a sign

3WordNet is a freely available lexical database that organizes English words in groups with
similar meaning. This resource can be found at http://wordnet.princeton.edu
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or a symptom, what it points to is the existence of the condition ‘possible weak
spots in the insulation system’.

More formally, we could define diagnosis as the implication relation between
symptom and condition, with symptom as the precedent and condition as the an-
tecedent:

Diagnosis: Symptom⇒ Condition

The question is now to define what entities constitute a symptom and what a
condition.

In the given sentence, we equated symptom with ‘fault currents’. What does
that mean? The intended sense of fault here is that expressed by the Wordnet
category: {defect, flaw, imperfection, imperfectness, state}. Imperfection
and perfection are controversial concepts in philosophy; however, if perfection is the
state in which a concept adheres to all of its ideal properties, imperfection is the
state where some of these properties are not fulfilled. This would imply for ‘fault
current’ that there exist some properties of ‘current’ that permit to characterize a
‘current’ as either ‘faulty’ or ‘faultless’. As a consequence, the task of the knowledge
engineer is to identify these properties.

The rest of the sentence, ‘possible weak spots in the insulation system’ was
matched to the condition concept in the diagnosis relation. This is also a very
generic expression. Notice first the world ‘possible’. It conveys the idea that
the observed symptom is not exclusively related to this condition, their relation
is only likely; it is a stochastic relation. Then, there are the phrases ‘weak spots’
and ‘insulation system’. The meaning of ‘spot’ in this context is given by the
category: {topographic point, place, point, location, entity}; the mean-
ing of ‘insulation’ by: {insulating material, insulant, building material,
artifact, object, physical object, entity}; and the meaning of system by:
{whole, whole thing, unit, object, physical object, entity}. Based on
such definitions, with ‘insulation system’ is meant the wholeness of insulation, so
that it is meaningful to talk about spots (or locations) in it, where the system shows
‘weaknesses’, or vice versa lack of ‘robustness’, lack of the capacity to endure strain
or distress. Finally, knowing that the meaning of condition in the context of diag-
nosis is that of ‘a state in a particular time’, where ‘state’ is “the way something is
with respect to its main attributes”, it can be concluded that weakness/robustness
is a main attribute for the insulation system.

Thus, the analysis of the second part of the first sentence contributed the fol-
lowing additions to the modeling effort:

Diagnosis: symptom ⇒ condition
Diagnosis is a stochastic relation
Fault current is a symptom
Which properties of current make it faulty?
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Weakness/Robustness is a property of the insulation system, that express
its condition in a diagnostic process.

Continuing the analysis of the text of Figure 3.9, sentences 2 and 3 that describe
how the measurement is performed need not to be thoroughly analyzed, because the
procedure of performing the measurement is an automatic procedure without human
intervention. New terms that appear in these sentences: ‘phase’ and ‘winding’ are
again unambiguously domain entities.

In the sentence 4, the phrase “The resulting curves of the total and leakage
currents” needs again to be analyzed. A decoding in the given context would be:

• Total current and leakage current are types of current.
• A current can be measured in function of some other quantity (in this case, d.c.

voltage).
• The measured values can be represented as points in a two-dimensional plane

with each quantity in one axis.
• By connecting these points, a shape in the form of a curve is created.

While this explanation might seem obvious, it is also necessary, due to the im-
portance in understanding further information. As it will become clear in the course
of this work, human experts put an equation sign between the physical quantities
(e.g., currents) and their numerical or spatial representation. This means that a
‘faulty current’ could be represented, for example, by a curve that displays a different
slope than the curves representing the ‘faultless’ currents, and instead of speaking
of properties of the ‘current’, one refers exclusively to geometrical properties of its
representing curve.

In the remainder of sentence 4, the phrase ’measured phase by phase’ means that
the procedure of measuring the values for total current (I1) and leakage current (I2)
is repeated for each of the phases. The last phrase “are evaluated together with some
characteristic values derived therefrom” states new things. First, from the curves
some characteristic values are derived (although it is not stated which ones and how
they are derived), second, all the curves and their characteristic values are evaluated
together, that is, the information they convey is gathered by considering them in
combination and not separately. It should be mentioned too, that evaluation is also
a cognitive process (like recognition), a process that according to Wordnet is similar
to assessment, classification, or categorization.

Finally, the last sentence states: “The results yield information with regard to
possible inhomogeneities in the winding insulation system.” Thus, by evaluating the
properties of the curves (which represent the ‘currents’) it is possible to get infor-
mation on the condition of the object of diagnosis (‘insulation system of winding’).
Then, the latest addition to the model are:

Total current (I1) is a current
Leakage current (I2) is a current
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I1 and I2 are quantitiesToBeMeasured
Characteristic value is a derivedQuantity
Insulation system is part of Winding
Inhomogeneity is property of insulation system (like robustness)

Bringing together all the information gathered up to this point, it is possible
to summarize different types of extracted knowledge. Initially, the following can be
stated on the topic of diagnosis:

Diagnosis is a human activity. It encompasses cognitive processes like recog-
nition, identification, evaluation, or classification.

The diagnosis goal is to find a relation between symptoms and conditions.

Symptoms are empirically detectable properties of some measurable entities.

Condition is a proposition about the state of being of some (not directly mea-
surable) properties of a desired entity.

Then, based on this general model of the diagnosis, a series of questions can
be formulated, whose answer will contribute to creating accurate knowledge models
needed for the application. Some of the most important questions are listed in the
following:

• Which entity is the object of diagnosis?

• What are its relevant properties? (These could be either quantitative or qual-
itative.)

• What measurable entities would be measured?

• How are these entities represented?

• What properties of the representatives would play the role of symptoms?

• What kind of propositions can be made about the condition of an entity?

While it could be feasible to identify the set of entities and their properties, the
fact that many of these properties are not measured directly during a task, but by
means of other entities, and the latter are represented by yet other entities, results
in the creation of chains of representations that are difficult to follow.

Concretely, consider the example analyzed up to this point, summarized in the
following:
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Object of diagnosis: Insulation System

Properties: Robustness/Weakness,
Homogeneity/Inhomogeneity, etc.

Measurable quantities: electrical currents flowing in the phases
of the winding of the stator, where
the winding has as part the insulation
system, whose properties are being as-
sessed by the means of these electrical
currents.

Properties of measurable
quantities:

value, physical unit,
explicitlyDependsOnQuantity, etc.

Representation for the measured quantities:
Point: a pair of two values (one of the dependentQuantity

(e.g., current), one of the independentQuantity (e.g.,
d.c. voltage))

Curve: a set of ordered, connected points over a two-
dimensional plane

Properties of curves: what is the relative position to axes,
what is the relative position to other
curves, how it progresses, what shape
it has, etc.

The list can be continued with the properties of points, values, or of the space
(area) where points and curves are situated.

As it can be noticed, we started with only one entity and ended up with a whole
set of representative entities and their properties, which seem to have nothing more
in common with the entity that started the chain. Trying to capture such relations
with logical propositions is a daunting task, and the perspective for automatic
inference from such propositions is very gloomy. Actually, one needs to raise the
question to what degree automatic reasoning in a system is needed or desired by the
users of a knowledge system, and more importantly, whether the available knowledge
and its nature permit formal, logical knowledge representation.

In general, after having analyzed some knowledge sources (like the document of
Figure 3.9), it seems reasonable to pause and reflect on the nature of the knowledge
that one is trying to model. It could be helpful to take a list such as the one in
Table 3.1 and try to characterize the nature of knowledge in consideration. The
more “Yes”-es in the list, the more difficult it would be to follow a strict rule-based,
logical approach for knowledge representation and reasoning.

70



Summary

Nature of Knowledge Yes No

Empirical, quantitative

Heuristic, rules of thumb

Highly-specialized, domain-specific

Experience-based

Action-based

Incomplete

Uncertain, maybe incorrect

Quickly changing

Hard to verify

Tacit, hard to transfer

Table 3.1: Characteristics to be considered when modeling knowledge

However, we do not claim that a formalized approach is not possible at all in such
circumstances. The point we are trying to make is that the knowledge engineering
burden for modeling and implementing a system with such knowledge characteristics
is very high, while the modeled knowledge is unfortunately not reusable.

In such situations, case-based reasoning offers a successful alternative, because it
does not try to capture formally the required domain knowledge. Of course, domain
and task knowledge will still be needed; however, the biggest role in the system will
be played by the cases that contain experience-based knowledge, directly targeted
to problem solving situations; instead of definitions and rules capturing domain
entities and their relations in a formal way.

3.4 Summary

Knowledge engineering methodologies such as CommonKADS offer strategies and
principled guidelines for tackling the problem of building knowledge systems. Their
major contribution is a clear distinction among domain knowledge, inference knowl-
edge, and task knowledge modeling steps, a distinction that contributes to the cre-
ation of abstract models with high reusability potential.

However, one can adhere to the principles of separate modeling steps, without
having to build a knowledge system in the tradition of rule-based systems, where
knowledge is represented by logical expressions in a knowledge base. This is neces-
sary, because knowledge is often difficult to be captured in logical rules, especially
when it is of stochastic nature, incomplete, context-based, etc., as it was shown in
the analysis of this chapter.

The ready-available constructs of task knowledge (e.g., the task templates of
CommonKADS) will serve as a source of knowledge for building the case base in the

71



3. Knowledge Modeling

approach presented in this thesis. Therefore, the notions of knowledge tasks, task
templates, and especially of knowledge roles explained in this chapter are important
in designing a CBR approach that flexibly maps these knowledge constructs to
experiences stored in text documents.
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Chapter 4

Probabilistic Task Content Modeling

4.1 Introduction

A knowledge task solves a problem by following a predefined strategy. The events
(actions) of the strategy as well as their participants create a task structure that
serves as a schema for generating the task content every time the task is executed.
In the narratives of such generated instances, although the explicit presence of the
task elements is missing, their underlying presence can still be clearly noticed. In
this chapter, we propose an approach for automatically processing task content nar-
ratives based on the hidden elements of task structure: events and knowledge roles.
The chapter1 starts with some definitions in Section 4.2 and continues with a de-
tailed description of the knowledge task MONITOR-and-DIAGNOSE in Section 4.3,
the task that serves as the running example for the TCBR approach described in
this thesis. Section 4.4 is dedicated to the analysis of task content narratives for the
MONITOR-and-DIAGNOSE task. The theoretical aspect of probabilistic modeling
is discussed in some detail in Section 4.5, while the concrete instance of probabilis-
tic task content modeling is defined and analyzed in Section 4.6. A sketch of the
knowledge extraction and summarization approach, which will be fleshed out in the
further chapters, is then presented in Section 4.7.

4.2 Definitions

During the modeling of task knowledge for building a knowledge system, the knowl-
edge engineer has to be careful to make every necessary detail explicit, so that the
system can carry out the task automatically. For example, Figure 3.5 of Chap-
ter 3 shows how the task method “generate-and-test” (for the diagnosis task) needs
to be decomposed in a series of functions (inference and transfer functions) that
accomplish the following things:

1. cover - takes as input a symptom and uses the causal domain model to output
one hypothesis that represents a candidate solution.

1Some parts of this chapter have appeared in [Mustafaraj et al., 2007a].

73



4. Probabilistic Task Content Modeling

2. predict - takes as input the hypothesis and uses the causal domain model to
output the expected finding.

3. obtain - requests the actual finding from the external agent (the user).

4. compare - takes as input the actual and expected finding and outputs a result.

However, when modeling the task method, one does not consider what the symp-
toms, hypotheses, or findings are. Their values (as shown in Figure 3.4) should come
from the mapping between knowledge roles and domain entities and rules. Such a
mapping is otherwise known as knowledge acquisition, a process that routinely is
described as the bottleneck of knowledge engineering [Turban and Aronson, 2001,
p. 437]. Knowledge acquisition is particularly difficult, when knowledge possesses
many of the characteristics listed in Table 3.1 uncertain, experience-based, incom-
plete, etc. Such characteristics impede the creation of a well-formed and valid
knowledge-base that permits automatic reasoning.

The appropriateness of a CBR approach to situations when a correct domain
model is difficult to build or acquire has already been hinted to. However, it remains
to explain why it is so. To see that, consider how the “generate-and-test” task
method—implemented as the shown sequence: cover, predict, obtain, and compare—
works. The two first steps cover and predict need a causal domain model in order
to relate symptoms with hypotheses and vice-versa. This causal domain model is
that kind of domain knowledge that is difficult to acquire and represent formally.
What CBR does in these situations is simple. First, it does not require that such
a causal model exists (although, if there is one, CBR can make use of it, like in
the case-based diagnosis system CASEY [Koton, 1989]. Second, cases contain as
part of their representation a symptom and a hypothesis (among other features).
Then, when a symptom is presented to the system, a case with the same (or a
similar) symptom is retrieved, and its value for the hypothesis feature is presented
as a candidate solution. Thus, CBR solves a new problem by circumventing the
necessity of having a causal domain model. However, it can be seen that CBR
cannot succeed without domain knowledge too. Because, how would the CBR
system know whether two different symptoms are similar or not? It turns out that
this kind of knowledge can be easier acquired than having to build a causal model,
and this is the reason why CBR is advantageous in many situations.

What is understood from this analysis is that independently of the fact whether
the internals of the knowledge system are implemented as rule-based or as CBR:
for the same input type, the same output type is produced by the system. At
this point, we remind that in the CommonKADS methodology, inputs and outputs
were occupied by knowledge roles. Now, if CBR accomplishes the same thing as a
rule-based system, it then follows that CBR has to work with knowledge roles too.
And because in CBR, knowledge is contained in the cases; it is easy to see that
knowledge roles cannot be but features of the case representation.
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In summary, if a task can be decomposed in constituents such as knowledge
roles, and a case can be composed of such constituents as the knowledge roles, then
task knowledge can be captured by case knowledge. Because cases are real-world
experiences, whereas task knowledge is basically an abstraction, it derives that cases
do not relate directly to the task structure, but to real-world task instantiations.

To better understand the following discussion in this chapter, we formulate two
working definitions:

Task structure is the sequence of events necessary to accomplish the task goal.
In the context of a task, events are actions or processes initiated by an agent.
Each event has a series of participants (the knowledge roles) that are depen-
dent on the event type.

Task content is an instantiation of the task structure. Every time a task is exe-
cuted, the different events of the task structure are instantiated with different
values for their participants. The wholeness of all these instantiations consti-
tutes the task content. The task content can be represented either formally by
knowledge structures such as frames [Brachman and Levesque, 2004, p. 136]
or informally in the form of textual narratives. In this thesis, narratives of
task content are considered as sources of episodic knowledge for building a
TCBR approach.

To exemplify the nature of task structure and task content, the next section
describes a common knowledge task in detail.

4.3 The MONITOR-and-DIAGNOSE Task

When the task of monitoring was described in Section 3.2.3, Figure 3.7, it was
noticed that in practice, monitoring is often followed by diagnosis, because the
discovery of discrepancies in the monitored data asks for further exploration and
explanation. Actually, the task of diagnosis has traditionally received more atten-
tion in the research community in general, and in that of case-based reasoning in
particular. However, the premises for performing the diagnosis task are often not
desirable, especially from an economic point of view. In diagnosis, it is presumed
that either a complaint is available or worse, a failure of some kind has already
occurred. For many complex and valuable systems, such a situation cannot be
accepted.

With the technological advances in sensor technology and data storage, it be-
comes economically feasible to put systems that cannot be allowed to fail during
operation time under continuous monitoring. Then, only when monitoring values
make possibly damaging changes in the system evident, a process of diagnosis can
be started. That is, in practice, the tasks of monitoring and diagnosing will be con-
nected, such that it makes sense to regard the both tasks in combination. Therefore,
in the following, we always refer to the composite task MONITOR-and-DIAGNOSE.
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What happens during the execution of a MONITOR-and-DIAGNOSE task?
Basically, the following events take place, which constitute the skeleton of the task
structure:

1. The values of some measured (or calculated) parameters are observed and
compared to those of previous measurements or to some theoretical norm.

2. If discrepancies are found, these are explained and evaluated.
3. If findings are evaluated as negative, actions for maintenance are recom-

mended.

We refer to these events as Observe, Explain, and Recommend respectively.
The most important thing that can be noticed in the given task structure is the

temporal ordering of the events. It is clear that generally Explain or Recommend
events cannot occur before an Observe, because they depend on information from
this event.

From the task content description, it becomes also evident that each event has
several participants that contribute to the event’s inner structure. An insight to
this structure can be gained by inspecting these participants, which in the termi-
nology of CommonKADS are referred to as knowledge roles. Based on the two task
templates of Monitoring and Diagnosis (shown in Figure 3.7 and Figure 3.8), the
most important knowledge roles are as follows:

• parameter - a measured or calculated quantity whose value can
detect abnormal behavior
• norm - expected values of a parameter for normal condition
• discrepancy - a quantified difference to the norm
• finding (or evidence) - something that can be observed or detected
• symptom (or complaint) - a negative finding
• hypothesis - a potential solution
• fault - the final solution (i.e., the cause for a symptom)
• location - where a symptom or fault is found
• action - an activity to eliminate a fault or to improve a situation

Figure 4.1: A list of knowledge roles for the task MONITOR-and-DIAGNOSE

This more detailed structure makes the nature of domain knowledge that is
needed to be fed to a knowledge system clearer. However, knowing what is needed
does not make the task of acquiring and representing this knowledge easier.

In the practice of knowledge modeling, we have noticed that a factor that makes
knowledge acquisition from experts difficult is their different conceptualization of
task knowledge. Experts do not think of their reasoning as a process of generating
and testing hypotheses and cannot rationally explain why they prefer one hypothesis
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over another. In such situations, the phenomenon referred to as “embodiment of
knowledge” [Denning, 2002] has happened. While experts can manage to perform
their tasks with their tacit reasoning models, the same cannot be said for novices
in a field.

Interviews with users of our task domain have revealed that the two most com-
mon difficulties that novices of the field face while performing the MONITOR-and-
DIAGNOSE task, are:

• Missing the symptoms.
• Not being able to generate plausible hypotheses that can explain recognized

symptoms.

Understandably, novices face these difficulties because they do not have accumu-
lated sufficient field experience, which would have resulted in encountering enough
different situations upon which to build a more accurate basis of knowledge. Again,
CBR offers itself as a technique that could be intuitively useful in such situations,
because previous problem-solving situations would compensate for the lack of expe-
rience of novice users. In order to help novice users not only to solve the problem
at hand, but also to grasp and understand domain knowledge, we have envisioned
a CBR approach that does not present to the user only one piece of knowledge
(extracted from only one problem solving situation), but all relevant pieces, ranked
according to their frequency of occurrence in a large group of episodic experiences.

When such experiences are stored in text, besides analyzing the task/domain of
an application, a knowledge engineer needs to analyze how task/domain knowledge
is communicated. Our claim is that the task structure is responsible for generating
task content narratives that store episodic knowledge. The next section is dedicated
to the analysis of such narratives.

4.4 Analysis of Task Content Narratives

There are two types of narratives that can be considered as describing task content:

1. narratives that describe how to carry out the steps of a task
2. narratives that describe what happened during a concrete situation of task

execution

An example narrative of the first type was shown in Figure 3.7 of the previous
chapter. However, we do not regard that narrative as a description of task content,
but only as a master-plan for the task structure. In our view, task content is
captured by the narratives of the second type, which we proceed to analyze more
thoroughly in this section.

Because a specific task is always carried out within a known domain, the users
communicating via narratives share a large amount of domain knowledge. Such
a shared understanding of the domain means that the narratives will not contain
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information that explains either domain entities or domain processes to which the
narrative content refers. Generally, one would expect that the narratives contain
only text generated specifically for communicating the results of each task step
execution. Thus, our working assumption is that a task content narrative only
contains information strictly concerned with the task structure and its elements.

In Figure 4.1, a list of task elements for the MONITOR-and-DIAGNOSE task
was defined. However, if we do not strive after a knowledge representation as that
of CommonKADS, do we still need to acquire domain knowledge for each of these
knowledge roles? Because it is clear, the larger the number of these roles, the more
difficult becomes the knowledge acquisition process. Thus, a way should be found
to determine the most important roles. Our assumption is that such a choice will
depend on the user goals for the task at hand. Everything that fulfills a user’s need
for knowledge will be important to acquire. In the concrete context, we must raise
the question: What are a user’s needs during the MONITOR-and-DIAGNOSE task?
A way to assess the needs is to learn what a user cannot do well. As mentioned in
Section 4.3, novices face the problems of “missing the symptoms” and “not being
able to generate explanatory hypotheses”.

Thus, a concrete goal for knowledge acquisition from the narratives would be
to extract knowledge that corresponds to symptoms and hypotheses. However, this
is not as easy as it sounds. When writing free text, people do not formulate their
thoughts in the following way:

We found symptom X.
A possible hypothesis (explanation, cause, etc.) is Y.

Actually, all the terms denoting knowledge roles (symptom, finding, discrepancy,
etc.) are abstract terms that do not occur in natural text written by domain experts.
Thus, we need to find ways that make recognizing verbalizations of these concepts
in the narratives possible. However, a few issues need to be discussed before.

Initially, a symptom was described in Figure 4.1 as a negative finding, and
discrepancy seems to be a type of finding, too. Thus, both a symptom and a
discrepancy are a kind of finding. Meanwhile, a finding is something that is observed.
In this way, we can assume to identify symptoms, discrepancies, and findings as
participants in the Observe event.

Additionally, a hypothesis is regarded as a possible solution. But, what kind of
solution? We assume that the solution is to find the cause of a finding. Because
people are not always sure whether a causal relation exists between two things that
co-occur, a more generic term for a hypothesis would be that of explanation.

An interesting fact related to the process of generating hypotheses can be noticed
in practice. While a user might test several hypotheses in the course of problem
solving, when writing down the problem solution, the failed hypotheses will not be
mentioned at all. There are several reasons for this omission:

• the desire to not overload the audience with information
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• the desire to protect domain knowledge from competitors
• the desire to hide the uncertainty related to preferring one hypothesis over

others

From the point of view of building a decision support system that assists users
with broad information, having access over the failure rates of generated hypotheses
would be a great source of information. Unfortunately, this information remains
part of the knowledge people keep for themselves, for the reasons we mentioned,
or others too. What remains is that a hypothesis as a form of explanation would
generally be a participant in an Explain event.

Another issue to discuss is that of parameters. We know that a finding is related
to a parameter, whereas a parameter measures an attribute (property) of an entity
that is at the focus of the task. As an example, recall the discussion in Section 3.3,
where the entity was the insulation system, a property was its robustness, a param-
eter was the leakage current. However, we saw that the findings in that occasion
were expressed as qualities of the representatives such as curves and points. The
situation then is the following:

An observed object has properties.
The condition of such properties is measured by parameters.
Parameters are represented in some form.
The representatives are analyzed in to detect irregular findings.

From such a description, it follows that is possible to find occurrences of all the
mentioned terms in the narratives. To exemplify, consider the following sentences,
where finding is a placeholder (i.e., it stands for something that has been observed):

1. [All the phases] show finding.
2. [The total currents of all measured phases] show finding.
3. [The curves] show finding.

In the first sentence the observed object ‘phase’ appears; in the second sentence
the parameter ‘total current’ appears, and in the third sentence the representative
‘curve’ appears.

Such a scenario (the use of different concepts) is possible due to the common
speech phenomenon of metonymy. People like to refer to things by terms that some-
how have a relation (part-of, participant-in, property-of, etc.) to the true concept
being described. The use of metonymy makes an automatic distinction between the
semantic categories of the true observed object, its properties, its parameters, and
their representatives difficult. For this reason, in this thesis we opt for a functional
categorization of these concepts. Because they all appear to play the role of being
observed, we refer to all of them collectively as observed objects.

The final issue is related to the number of observed objects in one narrative.
If the true observed object has several properties, whose condition is being mea-
sured by some parameters, in a narrative there would appear several sequences of
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observations or explanations that are not directly related to one another. This is
something to be taken into consideration during the case base creation process, as
it will be discussed in Section 6.3.

Having discussed the elements related to task content, we direct now our atten-
tion to its probabilistic aspect. However, such an elaboration cannot be understood
outside the theoretical framework of probabilistic modeling for natural language,
which we proceed to present in the following section.

4.5 Background on Probabilistic Modeling

It was mentioned in Chapter 2 that a common stance in AI is to consider cognition
and language as probabilistic phenomena [Manning and Schütze, 1999, p. 15]. As
a result, it is natural to try to formalize them in terms of probabilistic processes.
In fact, if every text is regarded as the probabilistic output of an unknown process
and a considerable amount of data generated by this process is available, it is then
possible to build a probabilistic model that approximates the process of generating
the data, using the following generic steps, as in [McCallum and Nigam, 1998].

1. Make strong assumptions about how data is generated.
2. Posit a probabilistic model that embodies these assumptions.
3. Use a collection of training data to estimate the parameters of the generative

model.

The shown three-step procedure results in the creation of a parametric proba-
bilistic model. A parametric model corresponds to a probability distribution that
can be represented in a concise form by a set of relations containing a few param-
eters. An example of a parametric model is the Gaussian distribution, where the
parameters are the mean and the standard deviation.

In practice, it is very common to choose a parametric distribution to model the
unknown process of data generation. The reason is simple: the characteristics of
such distributions are very well studied and there exist techniques for estimating
their parameters directly from a sample of data. However, more often than not it is
unreasonable to assume that data was generated from a simple parametric model.
Therefore, the nature of data should be considered with care. Concretely, regarding
a document as an atomic occurrence would not be very valuable in terms of creating
a model for explanation and prediction, because almost all documents (as a whole)
will be different from one another. In these cases, it is better to see a document as
a set of words, consider words as the atomic events2, and as a result the document
as a composite event.

When it comes to text documents, or other types of composite data, a common
assertion is to presume that the data was generated by a mixture distribution P .

2Here the term event is used in the probabilistic sense and not in the sense used in Section 2.6.
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Such a distribution has k components, each of which is itself a distribution. A
data point is generated by initially choosing a component and then generating a
sample from that component [Russell and Norvig, 2003, p. 725]. Formally, the
mixture distribution is expressed as follows. Suppose that the parameters of all
distributions are known as the set θ. Then, let C = {c1, . . . , ck} be the set of k
components, where every component cj is parameterized by a disjoint subset of θ.
If the prior probability of choosing a component cj is P (cj |θ) and the probability
that cj has generated the document di is P (di|cj ; θ), then the probability that di is
generated from the mixture of the k components, will be calculated by the law of
total probability, as shown in Equation 4.1:

P (di|θ) =
k∑

j=1

P (cj |θ)P (di|cj ; θ) (4.1)

Then, if we need to use Equation 4.1 for some purpose, we need to estimate the
two factors on the right side. However, to do that, we still need to be aware of the
nature of data. For instance, what does it mean that there is a mixture component
cj that generates the document di? It was mentioned previously that a document
di is composed of word events, e.g., di = (w1, . . . , wt, . . .), where words are drawn
from the same vocabulary V . Then, every generation probability P (di|cj ; θ) defines
how the words are drawn from V in order to compose di. The components cj
can be regarded as biased, that is, as having a preference for some words. In more
concrete terms, a component cj can be thought of as a content topic that is strongly
associated with some of the vocabulary words, as the examples in Table 4.1 show:

Topic Words

birthday happy, birthday, song, cake, candles, presents, etc.
children kids, play, jump, toys, noise, cry, etc.
party clown, face-painting, music, balloons, pizza, lemonade, etc.

Table 4.1: Examples of topics generating words

If a document describes “a children birthday party”, then we will expect the
document to contain many of the words shown in Table 4.1, generated by the
respective topics.

Furthermore, by assuming that every word is independent of the other words
and of its position in the document, the document can be thought of as generated
by repeating |di| independent draws from a multinomial distribution3 of words. A

3A multinomial distribution is a generalization of a binomial distribution. If for a binomial
distribution one of the two possible outcomes is drawn in every trial, for a multinomial distribution
one of the n outcomes is drawn.
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model of a document where words are considered independent from their context
is known as a unigram model. The use of unigram models is common in tasks of
document classification or clustering. However, for more sophisticated NLP tasks,
n-gram models are used, meaning that a word depends on the history of its n
previous words.

By looking carefully at Equation 4.1, it can be noticed that there is another
implicit assumption in the mixture distribution, namely, that the components cj
are independent from one-another. This assumption is usually done in classification
problems, in order to consider each component cj as the class that has generated
the document. However, for NLP tasks such an assumption is again simplistic,
therefore, another parametric model is used in place of the mixture distribution,
concretely, the Hidden Markov Model.

What is a Hidden Markov Model (HMM)? First, it is a Markov Model. A
Markov Model is named after Andrei Markov, who was the first to describe a Markov
chain or a Markov process, while trying to model sequences of letters in a text of
Russian literature [Manning and Schütze, 1999, p. 317]. Markov formulated the
assumption that only the few last letters influence the choice of the next letter, and
this assumption is known as the Markov Assumption of limited horizon.

Applied to a sequence of n words, this assumption makes possible that instead
of formulating the probability of the n-th word as a conditional probability on all
previous words, as shown by Equation 4.2:

P (wn|w1, w2, . . . , wn−1) (4.2)

to use the simplifications represented by Equation 4.3 and 4.4:

P (wn|w1, w2, . . . , wn−1) = P (wn|wn−1) (4.3)

P (wn|w1, w2, . . . , wn−1) = P (wn|wn−1, wn−2) (4.4)

Commonly, these models are referred to as n-grams, where n is the number of
events being considered. A more formal reference is as Markov models of (n-1)th
order, because a new event depends on the previous (n-1) events. Concretely, Equa-
tion 4.3 shows a first order Markov model, simply known as a bigram, and Equa-
tion 4.4 shows a second order Markov, simply known as a trigram.

Although Andrei Markov used Markov chains to model sequences of characters
in natural language text, Markov Models are a generic formalism that can model
every stochastic process that results in a sequence of events. To exemplify, consider
an example for modeling the weather, presented in [Rabiner, 1989].

In the Rabiner example, weather is modeled with a three-state Markov model,
where every state corresponds to an observable physical event: rainy, sunny, cloudy,
and is referred with the notation s1, s2, and s3 respectively. The weather is observed
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Rain
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Figure 4.2: A three-state Markov Model

once a day, recording the observed state. The three-state system can be represented
graphically as in Figure 4.2, indicating that every state can be reached by any
other state. The coefficients a11, . . . , aij are known as state transition probabilities,
because they indicate the probability of reaching state sj from the previous state si,
that is, aij = P (sj |si). In order to complete the model, besides the number of states
and the aij coefficients, the initial state probabilities πi = P (si) are needed, which
indicate the probability that at the start of an observation sequence the system is
at state si.

Now that we have the whole model, we can use it for different types of inferences.
For instance, knowing that at the first observation day the weather is cloudy (state
s3), we can ask to calculate the probability that for the next 4 days the weather
will be: [rainy-cloudy-sunny-sunny]. The observed sequence of 5 days will be: O =
[s3, s1, s3, s2, s2]. Then, the required probability will be:

P (O|Model) = P (s3, s1, s3, s2, s2|Model)
= P [s3] · P [s1|s3] · P [s3|s1] · P [s2|s3] · P [s2|s2]
= π3 · a31 · a13 · a32 · a33

(4.5)

The Markov model described up to this point is considered a Visible Markov
Model (VMM), because its states are known and the outcome of the process is simply
a sequence of these known states. In the case that the states are hidden (i.e., not
observed directly) and the outcome of the process is a probabilistic function of the
states, the model will be referred to as a Hidden Markov Model. An HMM is more
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generic and interesting than a VMM, therefore it is used frequently to model the
probability of linear sequences of events. What does it mean for a system that
the states are hidden? To continue with the previous weather example, think of a
situation in which a person is closed inside a building without windows and cannot
observe whether outside is sunny or rainy. There is, however, a second person that
informs the first one whether the grass in the garden is wet or dry. Then, the
first person tries to infer the weather state from the information “wet grass” or
“dry grass”. These two observations are probabilistic because neither of the hidden
states (sunny or rainy) generates them deterministically. In fact, grass can be wet
not only when it rains but also when the watering pump is working; or grass can
be dry even if it rains but the sliding roof of the garden has been closed. However,
the first person will not receive any other information besides the two observations,
and this is one of these situations in which a probabilistic modeling is advantageous,
because it can cope with incomplete knowledge.

To summarize, an HMM is a “doubly embedded stochastic process” [Rabiner,
1989], because it has one underlying hidden stochastic process that can be observed
only through another stochastic process that generates observations.

4.5.1 HMM Representation and Inference

In a formal way, an HMM consists of the following elements [Manning and Schütze,
1999, p. 324], [Rabiner, 1989]:

Set of states S = {s1, . . . , sN}
Output Vocabulary V = {v1, . . . , vM}
Initial state probabilities Π = {πi} , where πi = P (si) for 1 ≤ i ≤ N

State transition probabilities A = {aij} , where aij = P (sj |si) for 1 ≤ i, j ≤ N

Symbol emission probabilities B = {bj(k)} , where bj(k) = P (vk|sj) for 1 ≤ j ≤ N, 1 ≤ k ≤ M

The set of states S and the vocabulary of symbols V are part of what is called
the structure of the model. In most problems this structure is given and the task is
to estimate the remaining three elements, which are referred together as the model
λ = (Π, A,B). Once this model is also defined, the HMM can be used for generating
sequences of observations as well as for recognizing such sequences.

However, from all possible things that can be done with an HMM, the three
most important inference problems treated in the literature are:

1. Given a model λ and an observation sequence O, how to efficiently compute
P (O|λ), that is, the likelihood of the observation O given the model λ?

2. Given a model λ and an observation sequence O, what is the optimal state
sequence that has generated O?

3. How to find the model λ that best explains the observed data?
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Going into the details of solving these problems is outside the scope of this
thesis. Therefore, only short summaries will be provided, which are sufficient to
understand other discussions in the thesis. Detailed elaborations of the procedures
are found in [Manning and Schütze, 1999; Rabiner, 1989].

Finding the probability of an observation: Suppose that the observation
sequence O = o1 o2 . . . oT is given, which can be assumed as generated from the
state sequence Q = q1 q2 . . . qT , where ot and qt are two random variables taking
values from V and S respectively. Theoretically, P (O|λ) could be calculated by
summing over all possible state sequences as in Equation 4.6:

P (O|λ) =
∑
Q

P (O|Q,λ)P (Q|λ) (4.6)

The practice has, however, shown that such a calculation has a very high com-
putational cost (because there are NT possible state sequences), therefore, a more
efficient procedure has been invented. This is the forward algorithm, which has also
a sibling named the backward algorithm. Together they form the forward-backward
algorithm used in solving problem 3.

Initially, a forward variable is defined as αt(i) = P (o1o2 . . . ot, qt = i|λ). The
forward algorithm consists then in the three following steps:

1. Initialization: α1(i) = πibi(o1) for 1 ≤ i ≤ N (4.7)

2. Induction: αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(ot+1) for 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

(4.8)

3. Termination: P (O|λ) =
N∑

i=1

αT (i) (4.9)

The backward algorithm follows the same philosophy, only that instead of the
forward variable, a backward variable is defined as βt+1(i) = P (ot+1ot+2 . . . oT |qt =
i, λ).

Finding the best state sequence: The second problem is concerned with find-
ing a state sequence Q which has the highest probability of having generated the
observation sequence O, thus, we are looking for:

arg max
Q

P (Q|O, λ) (4.10)

To find the desired Q, the Viterbi algorithm is used, which is also a dynamic
programming method, similar to the forward algorithm. For its calculation the
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Viterbi algorithm introduces two new variables: δt(i) that stores the highest prob-
ability along a path and the array ψt(j) that stores the best states. The algorithm
is summarized in the following:

1. Initialization:
δ1(i) = πibi(o1) 1 ≤ i ≤ N (4.11)
ψ1(i) = 0

2. Induction:
δt(j) = arg max

1≤i≤N
[δt−1(i)aij ] bj(ot) (4.12)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ] 2 ≤ t ≤ T and 1 ≤ j ≤ N

3. Termination and state sequence readout:

P (Q̂) = max
1≤i≤N

[δT (i)] (4.13)

Q̂T = arg max
1≤i≤N

[δT (i)]

Q̂t = ψt+1(Q̂t+1) t = T − 1, T − 2 . . . , 1

Parameter Estimation: The third problem is about finding the values of the
model parameters which maximize the probability of the observed data. That is,
we are looking for:

arg max
λ

P (Otraining|λ) (4.14)

This is performed by the Baum-Welch algorithm, which is an instance of the
more generic Expectation-Maximization (EM) algorithm [Russell and Norvig, 2003,
p. 724]. The Baum-Welch algorithm is an iterative algorithm that iterates between
the two steps:

1. Use the estimated values of the parameters to calculate the probability of the
observed data.

2. Reestimate the parameters values so that the probability of the observed data
is maximized.

The first iteration is usually based on random values for the parameters. Then,
the iterations continue till a predefined stopping criterion is reached. The Baum-
Welch algorithm, as an iterative hill-climbing algorithm, can find a local maximum
only. It has been theoretically proved that the following update rules 4.15–4.17
produce however the most optimal parameters. As in the two previous problems,
it is necessary first to define two new variables: ξ(i, j), the probability of being in
state i at time t and in state j at time t+ 1, and γt(i), the probability at being in
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state i at time t given the observed sequence. These new variables can be expressed
in terms of variables introduced before:

ξ(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

γt(i) =
N∑

j=1

ξt(i, j)

Then, the three parameters of the model λ = (Π, A,B) are estimated by the
following rules:

π̂i = γ1(i) (4.15)

âij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(j)
(4.16)

b̂j(k) =

T∑
t=1,Ot=νk

γt(j)

T∑
t=1

γt(j)
(4.17)

At the end of this section, it should be mentioned that HMM-s have been suc-
cessfully used in many tasks: speech recognition, statistical part-of-speech tagging,
statistical syntactic parsing, etc. However, our interest is in a novel use of HMM
for probabilistic content modeling, which we follow to discuss.

4.5.2 Probabilistic Content Modeling

Barzilay & Lee [Barzilay and Lee, 2004] have introduced an approach for automati-
cally building a computational model that captures one dimension of text structure,
namely, content. In their work, content is regarded as consisting of topics and topic
changes. The goal is to capture the content in a computational model, which then
can be used for different tasks, such as information ordering (e.g., define the order
in which sentences should appear in a document generated with multi-document
summarization) or extractive summarization (select those sentences that best sum-
marize the content of a long document).

The central idea of Barzilay & Lee is to rely on the distributional thesis of
Harris, in order to learn content models from un-annotated texts by exploiting
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word distribution patterns. As they stress out, the success of such an approach will
depend on the existence of recurrence patterns, and that such recurrence patterns
can be found in collections of documents within the same domain.

A content model is thought of as an HMM, where states are the information
types characteristic to the domain of interest, and state transitions correspond to
information ordering in that domain. The procedure for learning the model consists
in alternating between two steps:

1. creating clusters of text spans with similar word distributions that will serve
as representatives of within-document topics;

2. computing models of word distributions and topic changes from the clusters.

Barzilay & Lee have considered sentences as text spans in their approach, how-
ever, they hypothesize that other spans, like clauses or paragraphs might be equally
meaningful. Text documents are treated as sequences of sentences, and each sen-
tence is presumed to convey information about a single topic. The base assumption
is that all the documents have been generated from the same content model. The
content model is an HMM, where every state s corresponds to one topic and gen-
erates sentences relevant to that topic according to a state-specific emission proba-
bility distribution ps. The state transition probabilities will give the probability of
changing from a topic to another.

The HMM problems discussed in the previous section apply in this way to the
content modeling:

• The forward algorithm can be used to calculate the probability that a docu-
ment was generated from the content model.

• The Viterbi algorithm can be used to find the most likely sequence of states
(the topics in the content model) that generated the document.

The emission probabilities for every state are considered as bigram language
models4, thus, the probability that a sentence x = w1w2 . . . wn with n words was
generated from the state s will be:

ps(x) =
n∏

i=1

ps(wi|wi−1) (4.18)

where the bigram probabilities ps(w
′ |w) need to be estimated from the data.

As it has become clear up to this point, the number of states for a content model
is not known a priori. In order to induce the topics (i.e., the states), Barzilay & Lee
perform an unsupervised clustering of all sentences, using word bigrams as features.
The purpose is to select every cluster as a possible state, because a cluster will
contain similar sentences, which can be thought of as generated by the underlying

4A n-gram language model is a probability distribution that assigns a probability value to every
n-gram from a vocabulary of words.
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topic. If there are clusters with less than T sentences, then, all these clusters will be
merged together to create an “etcetera” cluster, that contains “outlier” sentences.
At the end there will be m initial clusters, thus, m initial states.

After having decided the number of states, the corresponding emission and state-
transition probabilities remain to be defined. For that, suppose that for the m
clusters c1, c2, . . . , cm, where cm is the “etcetera” cluster, a content model with
m states s1, s2, . . . , sm is created. Then, for each state, the corresponding bigram
probabilities are estimated with the following formula:

psi(w
′ |w) =

fci(ww
′
) + δ1

fci(w) + δ1 |V |
(4.19)

where δ1 is a smoothing coefficient, so that to unseen bigrams will not be assigned
a 0 probability, |V | is the size of the vocabulary of words, and fci(·) is the frequency
of an occurrence in the cluster ci. For the sm state that corresponds to the “etcetera”
cluster, Barzilay & Lee propose a novel way to calculate the language model, in order
to make it complementary to that of all other states, simulating in this way a state
for unseen topics. Concretely,

psm(w
′ |w) =

1−maxi:i<m psi(w
′ |w)∑

u∈V (1−maxi:i<m psi(u|w))
(4.20)

In order to calculate the state transition probabilities, recall that the sentences
of a document are generated by different states, therefore, are distributed across
different clusters. Given two clusters c and c

′
, let D(c, c

′
) be the number of doc-

uments where a sentence from c precedes a sentence from c
′
, and let D(c) be the

number of documents containing sentences from the cluster c. Then, for any two
states si and sj , the state transition probabilities can be estimated as follows:

p(sj |si) =
D(ci, cj) + δ2
D(ci) + δ2m

(4.21)

where δ2 is another smoothing coefficient.
The modeling process does not finish here. Since clustering does not take into

account ordering information, it might happen that sentences that are lexically
similar still belong to different events and might have been generated from different
states. Therefore, an iterative process for re-estimating the parameters takes place.
Barzilay & Lee refer to this re-estimation process as an EM-like Viterbi approach,
because it follows the EM strategy, but it does not use the Baum-Welch algorithm
used generally for re-estimating the HMM parameters. The Viterbi re-estimation
works in this way: After the content model has been initialized, for each document
the most likely underlying state-sequence is calculated by applying the Viterbi al-
gorithm. Every sentence is then assigned to the new state (cluster), to which the
authors refer to as a Viterbi topic or V-topic. Based on these new clustering, the
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parameters are estimated again based on the Equations 4.20 and 4.21. The algo-
rithm keeps alternating between these two states as usual in the EM approach, till
the stopping criterion is met. In this way, a content model is learned for a collection
of documents from the same domain. Once learned, the content model can be used
for different tasks.

Barzilay & Lee view their approach for building the content model as knowledge-
lean, since it uses only knowledge inherent to the documents collections. They admit
that compared to knowledge-rich approaches, which use different types of knowl-
edge for building models of content representation, content models are a “relatively
impoverished representation”, but this is what makes the content models also easy
to learn.

Inspired from the model of Barzilay & Lee, we have built a similar content model,
tailored to the episodic textual narratives. Since we described the narratives in
terms of task content, we refer to the approach as probabilistic task content modeling.
Our approach is however different from Barzilay & Lee, because it uses text that
has been previously annotated with the task elements (event types and knowledge
roles). The reason for annotating text is that we need the explicit meaning of the
text, which the V-topics in the content model of Barzilay & Lee leave implicit in
the cluster of the similar sentences.

4.6 The Probabilistic Task Content Modeling Approach

Previously in this chapter, task content was described as an instantiation of task
structure, informally represented in episodic narratives written in natural language.
Both the task structure and the natural language used in the narratives are proba-
bilistic phenomena: The task structure because it has to adapt to different situations
in the real world, and natural language because of its inherent ambiguity and rich-
ness of expression. By considering the elements of the task structure as hidden
states that generate the natural language phrases that fill the narratives, the pro-
cess of generating the narratives can be regarded as a “doubly embedded stochastic
process” that might be formally represented with an HMM. Indeed, we will use
an HMM to model the process of generating the episodic narratives, which will be
built by customizing the approach of Barzilay & Lee. However, because our final
purpose is to perform TCBR, we need to create a connection between cases and the
probabilistic modeling. For this purpose, we compile the following assertions.

4.6.1 Assertions

Recall the previous discussion on the knowledge role observed object, where it was
explained that a narrative could contain observations on several observed objects.
Then, for each observed object, there is a set of finding-s, explanation-s, or action-s.
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Based on the event-oriented viewpoint on TCBR, every single event or group
of events that is self-contained can be considered as a unique case. Therefore, if a
narrative consists of many events, then:

One narrative might contain many cases.

As mentioned earlier on in Chapter 2, one of the CBR tenets is that “the world is
regular”. Based on this tenet, it is possible to claim that, similar situations will have
similar outcomes. The other tenet is that “the same situations keep recurring”. As
a result of this tenet, we would expect that many of the narratives would describe
events that have occurred previously, although at a different time and place. Thus:

A collection of narratives will contain redundant cases.

Is redundancy bad? The answer is yes and no, depending on the task. In all
retrieval tasks such as information retrieval or the retrieval step of CBR, redundancy
causes problems, because it increases the computational cost without contributing
new information. However, in the context of probability, when an event keeps
repeating more frequently than the others, such information is not considered as
redundant. It only reflects the true nature of the process. In fact, if we think of the
cases as outcomes from an experiment in a setting of normal distribution, the cases
that will appear frequently will be considered as normal outcomes, while the cases
that appear rarely will be considered as abnormal outcomes. In the context of CBR,
one is usually interested in having in the case base cases that are different from one
another, so that each of them contributes a new problem-solving situation. In this
sense, those cases seen as abnormal outcomes are more useful than the ones seen as
normal outcomes. However, since it is not possible to know a priori the nature of
the case, the following assertion is needed:

Redundant cases can be used to build prototypical cases.
Cases that differ from the prototypical cases in some aspect serve as
useful cases in the sense of CBR.

By building a probabilistic model that simulates the process of generating the
cases, it will be possible to distinguish between prototypical and unique cases, since
a prototypical case will have a high probability (of being generated by the model),
while a unique case will have a low probability.

4.6.2 Representations

By adopting the event-oriented perspective, it is possible to have two different sets
of elements for representing the task structure: the set of events and the set of
event participants. The elements of both these sets can play the role of states in
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the probabilistic task content model. Actually, we will use events for representing
narratives and event participants (i.e., knowledge roles) for representing cases.

To exemplify, consider the structure of the MONITOR-and-DIAGNOSE task
described in Section 4.3. There are three events: Observe, Explain, and Recommend.
These events can be regarded as the topics that generate sentences (or clauses)
according to their inherent meaning. To comply with Barzilay & Lee, we can add
an unknown topic X, which will be responsible for generating those sentences that
are not generated from one of the known topics. Using the abbreviations Obs,
Exp, and Rec for the original events, we could represent narratives as sequences of
states that generated the text. Based on the parameters of the probabilistic model,
different kind of sequences will be possible:

[Obs, Obs, Obs, Obs],
[Obs, Exp, Obs, Exp, Rec],
[X, Obs, Exp, Rec], etc.

In a similar way, a case can be regarded as generated from a sequence of event
participants that corresponds to knowledge roles in a task. Using the abbreviations
OO for observed object, FI for finding, EX for explanation, EV for evaluation, and AC
for action, different kind of cases can be represented:

[OO, FI],
[OO, FI, EX, EV],
[OO, FI, EX, AC], etc.

Actually, both events and knowledge roles should be considered as the hidden
states of the PTCM model, since they are not observed in reality. All we have is
a narrative that contains a sequence of natural language sentences, and neither the
event types nor the knowledge roles are apparent. However, by supposing that they
exist and that the observed sentences or phrases are generated from them, we can
think of a PTCM model consisting of these hidden states. It is possible to build two
different models, one for the narratives, and one for the cases. Once the number
and nature of the states is decided, it remains to estimate the parameters of the
models. The procedure is the same for both models.

4.6.3 Estimating Model Parameters

If the number of states and the vocabulary of output symbols (i.e., the words) are
known, the situation is that of Problem 3 discussed in Section 4.5.1: estimating the
parameters of the model λ = (Π, A,B), namely estimating the initial probabilities
Π, the state transition probabilities A and the emission probabilities B. By inserting
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a dummy state as the initial state, it is possible to incorporate the values of Π in
the A distribution, so that only A and B need to be estimated. Instead of following
the parameter estimation approach described in Section 4.5.1 (i.e., the Baum-Welch
algorithm), we employ the strategy of Barzilay & Lee, described in Section 4.5.2.

Concretely, Equation 4.21 serves to estimate the state transition probabilities,
while for the emission probabilities are used Equations 4.19 and 4.20.

After this initialization, an EM Viterbi-style optimization as described in Sec-
tion 4.5.2 can take place.

While the learned model is basically an HMM model, throughout this thesis we
refer to it as the PTCM model, for identification purposes. Actually, the PTCM
model is different from the probabilistic content model build by Barzilary & Lee in
Section 4.5.2, because it uses known states. Indeed, it was shown that the model
of Barzilay & Lee performed an initial clustering of sentences in order to have
each cluster as a possible state. After the parameter estimation, these were called
V-states (Viterbi states), containing similar sentences, but having no established,
explicit meaning. For purposes of CBR, we decided to have a previous process of
annotating the narratives with event types and knowledge roles, so that the PTCM
model serves better to these purposes. In order to build the PTCM model, a process
of knowledge extraction is needed, then, in order to build the case base, a process
of knowledge summarization based on the PTCM model is needed. These two
processes, to which two separate chapters are dedicated, are sketched briefly in the
following section.

4.7 Knowledge Extraction and Summarization

Our final goal is to create a case base that contains unique cases (i.e., no redundant
cases), which, however will be associated with their frequency of appearance in the
corpus of narratives. This information is important in deciding about the ranking
of cases during retrieval, something we discuss later on in this thesis.

A schematic view in the whole process of constructing the case base is shown in
Figure 4.3. The primary input are the episodic narratives, but several other external
knowledge sources, such as task knowledge, are also used. The process of knowledge
extraction will be performed by the LARC framework, which is explained in detail
in Chapter 5.

The output of LARC will be sentences (or clauses) and text phrases annotated
with event types and knowledge roles. This data will serve as input for the process
of knowledge summarization, which is performed with the help of the PTCM mod-
els. As it will be explained during the course of Chapter 6, it is possible to build
different kinds of PTCM models, to serve as probabilistic classifiers in solving some
of the issues involved in knowledge summarization. Some of these issues need lexical
knowledge, which can be inferred from the PTCM models. Finally, the output is
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Figure 4.3: The Knowledge Extraction and Summarization Process

the desired case base, where only unique information (together with the frequency
of appearance) is present.

In Section 2.7, we categorized our approach as knowledge-enhanced, inserting
it between knowledge-lean and knowledge-rich approaches. The reason is that dif-
ferently from knowledge-lean approaches, our approach exploits several knowledge
sources outside the corpus of the documents. However, differently from knowledge-
rich approaches, these knowledge sources are domain-independent and ready-availa-
ble. The external knowledge sources are shown in Figure 4.3 with colored boxes.

4.8 A simple scenario for TCBR

What does knowledge extraction and summarization has to do with TCBR? The
short answer is: In TCBR there are no real cases, only textual documents. Because
text is not structured, an approach is needed to make knowledge from these docu-
ments available to the TCBR system. Knowledge extraction and summarization is
the approach we use to transfer knowledge from the documents to the TCBR sys-
tem. A longer answer would include giving a concrete scenario of how this approach
looks like. Since giving an example with the narratives of a specific MONITOR-and-
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DIAGNOSE task might require going into details of an unknown domain, we will
build a hypothetical and in some aspects very simplistic scenario, understandable
for everyone. The scenario is described in Figure 4.4 and 4.5.

Fred is a young man that has never traveled before and does not know much
about geography, history, or culture. He wants to travel, but does not like reading
travel guides. There is, however, a thing that he does very well: programming.
In fact, it has been awhile since he set up a website where different people write
short narratives about their vacations: which places they visited, what they did,
whether they liked it, and so on. In the course of some months, several hundreds
of such narratives have been collected. Then, Fred has an idea. Why not write a
program, which exploit the knowledge in the narratives to assist him in planning
his first tour of the world.

As a first thing, Fred writes a program to automatically extract information from
the narratives. The program, besides the narratives, accesses other knowledge
sources: an ontology of geography (which contains city names, their respective
countries and continents, and other geographic places), a travel lexicon, a hierarchy
of verb meanings, etc. Using the narratives and these external sources, the program
extracts sets of data tuples from each narrative, as the following examples show:

<city, Genoa>, <time, May>, <activity, sailing in the gulf>, <activity, visited medieval church>, etc.

<city, Frankfurt>, <time, October>, <activity, went to book fair>, <activity, bar hoping>, etc.

. . .

Since this is a fictional example, we can suppose that Fred lives in a planet that has
only two dozens of countries, each with a handful of cities, so that many people
would have visited the same places and done more or less similar things. Fred
finds a way to exploit the repetitive information to his advantage by creating a
summary of all narratives, organizing them in a network of typed nodes containing
facts and their frequency.

(to be continued in Figure 4.5)

Figure 4.4: A simple scenario for TCBR—Part 1

Indeed, the scenario is not realistic, because traveling is one of the topics for
which there is no shortness of information neither in quantity nor in quality, so that
one does not need creating a case base like the one in Figure 4.5. However, the
scenario conveys the basic ideas for the knowledge extraction and summarization
approach: (a) subjective, episodic knowledge, such as “where people like to go or
what they like to do” is found in the textual narratives; (b) the narratives are pro-
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The content of the network will depend on the content of the narratives. Its
structure, however, can reflect Fred’s needs in using the information. For example,
Fred needs to know about possible travel targets before making his plan. Then
he needs to know whether the locations are near to each other (e.g., in the same
continent?), or when is the best time to visit them. All in all, because Fred lacks
knowledge in this topic, he is more an explorer than a query-maker user type.

One possible way to structure the network might be as in the following.

(150)
(Country, India)

(100)

(Continent, Asia)
(250)

All narratives
(750)

(liked it?, yes)
(65)

(liked it?, no)
(5)

(City, Genoa)
(70)

(City, Rome)
(80)

(City, Venice)
(100)

(activity, sailing)
(60)

(Country, Italy)
(250)

(Country, Germany)
(100)

(Country, France)
(150)

(Continent, Europe)
(500)

(Country, Japan)

The rationale behind this form of representation of information is simple. Users
that are not familiar with a topic and its vocabulary might not be able to formulate
good queries to find information. A remedy to this problem could be a synthesized,
top-down hierarchical view to information.

Figure 4.5: A simple scenario for TCBR—Part 2

cessed automatically in order to extract interesting information; (c) this information
is summarized, because in this way it facilitates better decision making.

Someone might argue that this kind of decision making has nothing in common
with the way case-based reasoning works. In fact, as we saw in Chapter 2, a CBR
system works differently: it receives a query, it compares it with existing cases in the
case base, and then retrieves the most similar case(s) to the query. However, such
a procedure is based on the assumption of a fixed case structure, where the parts
of problem description and problem solution are strictly exclusive. Our approach
instead does not assume that one of the case parts is strictly the problem solution.
Actually, each of the case features in a problem solving situation might be an answer
to the query of the user. To see that, consider the following examples:
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Example 1: I have decided to go to Italy for sailing. Show me the
best deal for the travel and stay arrangement.

Example 2: I would like to go to Italy, but I have no idea where to
go or what to do. Show me some possibilities of cities to visit and
things to do.

Example 1 (which is a typical example in traditional CBR systems) uses the
attribute values “Italy” and “sailing” as problem description, retrieves all cases
that might contain these values and ranks them according to the values in the
“price” attribute.

Example 2 instead uses the attribute value “Italy” as a starting point for search
in the case base, retrieves all cases that contain this value, finds the unique values for
the attribute “city”, and then ranks them according their frequency of appearance
in the case base. In order to answer the question “what things to do”, the attribute
“activity” instead of “city” is used.

As the two examples show, the only distinction between how the questions are
answered is that in Example 1 the ranking is based on the concept of minimal (max-
imal) attribute value, while in Example 2 the ranking is based on the concept of the
frequency of attribute values. This cannot be deemed as a substantial distinction,
therefore, our proposed approach can be regarded as a CBR approach. Its added
value is that is uses redundancy in the case base to offer decision making even for
types of questions that were not originally designed to be a part of the problem
solving scenario.

Before concluding, a last clarification is needed. The network in Figure 4.5 is
only a hypothetical data structure. In the reality, one can use that or any other
known network structure. In fact, graph-like data structures, graph traversal, or
spreading activation techniques are well studied topics both in CBR and AI (for
example, [Kolodner, 1993, Chap. 8]). Therefore, the formal internal structure of
the case base or methods for accessing and searching it are not topics in this thesis.
We tackle a single problem, namely, case base authoring from unstructured text
documents, a problem that precedes all other issues related to storage and access
of the case base.

4.9 Summary

A probabilistic task content model (PTCM) is a probabilistic model that represents
the process that generates narratives of task content. Our hypothesis is that the
structure of the model can be based on the task structure. With task structure, a
series of related events as well as their participants to which we refer as knowledge
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roles is understood. In order to exemplify the process of building and using the
PTCM model, the chapter presented a detailed description of a knowledge task,
MONITOR-and-DIAGNOSE, identifying the event types and knowledge roles that
constitute its structure. Additionally, characteristics of episodic narratives gener-
ated from the task were analyzed.

The PTCM model is an instance of an HMM model, where event types (or
knowledge roles) can be considered as the hidden states and sentences (or phrases)
of the narratives as the symbols generated from these states. By knowing the
structure of the model and having a training corpus of narratives, it is possible to
estimate the parameters of the models with the procedures described in this chapter.
Although our PTCM model is based on the probabilistic content model of Barzilay
& Lee, it is more compact than the latter, because it uses a small and known number
of states. Furthermore, the narratives used as training instances for estimating the
parameters are previously annotated with event types and knowledge roles. This
annotation is part of the knowledge extraction process, which is the topic of the
following chapter.
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Chapter 5

Knowledge Extraction: The LARC Framework

5.1 Introduction

Knowledge extraction from text documents is commonly regarded as a text mining
problem. In practice, the majority of text mining problems can be reduced to clas-
sification problems, where the goal is to classify unknown entities as instances of
some pre-chosen classes. To build a classifier, at least two things are needed: train-
ing data and a machine learning algorithm that will induce the classifier from the
training data. A truism in machine learning is the fact that the more training data
available, the better the quality of the induced classifier. However, unfortunately,
acquiring training data is a costly process. Thus, it is often necessary to design
a learning approach that is tightly connected to the process of acquiring training
data, in order to keep the number of manually labeled instances low.

In this chapter1, we view the knowledge extraction problem as the postprocessing
step of the process of annotating text documents with a set of labels (e.g., the
knowledge roles). Then, it is the text annotation process that is regarded as a
classification problem. By establishing a relationship between our task structure
model and the Frame Semantics theory, as discussed in Section 5.3, we regard
Semantic Role Labeling (SRL) as an analogical approach to ours, from which we can
borrow useful ideas, especially for the step of feature creation. However, differently
from the SRL practice, we take the novel step of incorporating an active learning
strategy into the learning framework, which contributes in keeping the number of
manually labeled data low, while not degrading the accuracy of the classifier. A
general view of our learning framework LARC is presented in Section 5.4, while
details of its implementation and examples from the output of its components are
discussed in Section 5.5. The evaluation of LARC’s classification results and its
active learning strategy can be found in Section 5.6. Finally, problems related to
the completion of the knowledge extraction step are discussed in Section 5.7.

1A slightly different version of this chapter has appeared as a book chapter [Mustafaraj et al.,
2006c].
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5.2 Knowledge Extraction as a Text Mining Problem

The field of research concerned with the extraction of valuable knowledge from text
documents is known as text mining. While the name of text mining has been in use
for only 10 years, nowadays this discipline encompasses techniques used by all those
old and new research tasks that operate with text documents. Several of such tasks,
like text categorization, document clustering, or information retrieval, operate on
the document level, making use of the so called bag-of-words representation. Other
tasks, like document summarization, information extraction, or question answering,
have to operate on the sentence level, in order to fulfill their specific requirements.
While both groups of text mining tasks are typically affected by the problem of
data sparsity (Figure 5.1 gives an overview of the bag-of-words representation and
the data sparsity problem), this is more accentuated for the latter group of tasks.
Thus, while the tasks of the first group can be tackled by statistical and machine
learning methods based on a bag-of-words representation alone, the tasks of the
second group need natural language processing (NLP) at the sentence or paragraph
level in order to produce more informative features.

Another issue, common to all previously mentioned tasks, is the availability of
labeled data for training. Usually, for documents in real world text mining projects,
training data do not exist and are also expensive to acquire. In order to still satisfy
the text mining goals while making use of a small contingent of labeled data, several
machine learning approaches have been developed and tested: different types of
active learning [Jones et al., 2003], bootstrapping [Ghani and Jones, 2002], or a
combination of labeled and unlabeled data [Blum and Mitchell, 1998]. Thus, the
issue of the lack of labeled data turns into the issue of selecting an appropriate
machine learning approach.

There is a strong interdependency between the learning approach, data repre-
sentation, and classification task. Consider, for example, text categorization. Here,
the goal is to categorize documents according to some chosen content topics, such as
politics, culture, sport, etc. Research has shown that a bag-of-words representation
of the documents is sufficient to learn accurate classifiers for assigning topic labels
to documents [Nigam et al., 2000]. In contrast, consider the task of information
extraction. Here, the goal is to find instances of concepts such as location, people,
or organization in text. Because a document may contain many such instances,
it is not possible to use a bag-of-words representation of the whole document for
learning. Indeed, the document needs to be divided into smaller parts that could
be either sentences or text portions created by sliding a fixed-size window over the
document. Then, differently from the text categorization task, the representation
features cannot be the mere terms (because of data sparsity). Instead, many other
features need to be constructed for every phrase that is a candidate for classifi-
cation, for example, whether the words of a phrase are capitalized, which words
appear on the left or the right of a phrase, what are the part-of-speech tags, and so
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Bag-of-words Representation

Consider the (short) document: “The old man wears an old hat. The young woman has an old
shawl.” A bag-of-words representation considers only the occurrence of terms in the document
and not their order of appearance. Therefore, the bag-of-words for the given document will be:

{‘an’, ‘an’, ‘has’, ‘hat’, ‘man’, ‘old’, ‘old’, ‘old’, ‘shawl’, ‘the’, ‘the’, ‘wears’, ‘woman’, ‘young’}

The informal term bag corresponds to the concept of multiset in Set Theory. In a multiset, an
item can occur multiple times. Because a bag-of-words representation is not compact, a better
way is to create a set of tuples:

{(‘an’, 2), (‘has’, 1), (‘hat’, 1), (‘man’, 1), (‘old’, 3), (‘shawl’, 1),

(‘the’, 2), (‘wears’, 1), (‘woman’, 1), (‘young’, 1)}
(5.1)

where the second element of each tuple is the term frequency. Then, such a representation
suggests an even more formal representation, known as the vector space representation.

Vector Space Representation

Given a large collection C of documents Di:

C = {D1, D2, . . . , DN}with size N = |D| (5.2)

it is possible to create the set of unique terms appearing in the collection; a set that is referred
to as the vocabulary V :

V = {T1, T2, . . . , Tt}with size t = |V | (5.3)

Based on this vocabulary, every document can then be represented by the vector:

Di = (wi,1, wi,2, . . . , wi,t) (5.4)

where wk (k = 1, . . . , t) is a numeric value corresponding to the kth position in the vocabulary
V . If a binary encoding scheme is chosen, the value of wk can be either 1 (term is present in
document) or 0 (term is not present).

Data Sparsity

If we consider the two sentences of the previous document as two separate documents, for a
vocabulary with the ordering of terms as in 5.1 and a binary encoding, their vector representations
will be:

Doc1 : [1, 1, 0, 1, 1, 1, 0, 1, 0, 0]

Doc2 : [1, 1, 1, 0, 0, 1, 1, 0, 1, 1]
(5.5)

The two chosen documents are very short and have many common terms. By adding documents
to the collection, the vocabulary will become larger, so that the number of 0 in every vector will
increase, because the size of documents remains the same. This phenomenon of large vectors
with only few non-zero values is known as the data sparsity problem.

Figure 5.1: Details on the bag-of-words representation and the data sparsity
phenomenon
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on. In general, the more demanding the classification task, the more sophisticated
the representation features should be.

Actually, the knowledge extraction task that we consider in this chapter is sim-
ilar to the generic information extraction task described in the literature [Weiss
et al., 2005; Mooney and Bunescu, 2005; McCallum, 2005]. We choose to refer to
it as knowledge extraction, because of the nature of the extracted entities (knowl-
edge roles) and the context where these are situated (narratives of knowledge task
episodes).

In designing a learning framework that performs the labeling of phrases with
knowledge roles, we were inspired by ideas from research in computational linguis-
tics. The discussion of such ideas and a way to connect them to the knowledge roles
is the topic of the next section.

5.3 Background on Knowledge Extraction

5.3.1 Domain Terms and Knowledge Roles

In TCBR, as well in some text mining applications such as text categorization or
information retrieval, often, an important goal is to discover terms specific to the
domain, which could then be used as indices for organizing or retrieving information.
Indeed, by examining the excerpts of Figure 5.2 (extracted from narratives of our
application domain) several such domain-specific terms can be noticed: insulation,
discharge, slot anti-corona protection, conductivity, or winding.

At 1.9UN (= 30kV ), an insulation
breakdown occurred on the upper
bar of the slot N◦18, at the slot exit
on the NDE side. The breakdown
indicates that the bar insulation is
seriously weakened. This may be
caused by intense discharges due
to a malfunction of the slot anti-
corona protection.

The measured leakage currents are
in a relatively high range indicat-
ing a certain surface conductivity.
This is due to the fact that the mo-
tor was stored in cold area before
it was moved to the high voltage
laboratory, where the temperature
and humidity was much higher, so
that a certain degree of condensa-
tion could occur on the surface of
the winding.

Figure 5.2: Excerpts from two narratives of the application domain

However, just discovering such terms is in our view not enough, because many
of such terms will appear almost in every document—so that a query consisting
of them will retrieve many documents; while, on the other hand, those terms that
appear rarely can be very unexpected, and a user (especially an inexperienced user)
might not think of using them in formulating the query.
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Furthermore, the relevance of the retrieved documents can be only determined
by the goal of the user, which in our context is the completion of the knowledge
task. To exemplify, consider the sentences in Figure 5.3.

1. The calculated insulating resistance values lie in the safe op-
erating area.

2. Compared to the last examination, lower values for the insulat-
ing resistance were ascertained, due to dirtiness at the surface.

Figure 5.3: Two sentences with the same domain concept shown in boldface

We see that the domain term insulating resistance is found in both sentences.
However, the two sentences are very different, if we consider them from the viewpoint
of task content modeling. The first sentence is an instance of the Observe event,
while, the second sentence was generated by the EDHObserve event followed by the
Explain event. Moreover, the first sentence is an example of a prototypical case,
while the second sentence is an interesting case in the sense of TCBR. We would
represent the first case as

[OO=’insulating resistance’, FI=’safe operating area’]

and the second as

[OO=’insulating resistance’, FI=’low value’, EX=’dirtiness at the surface’]

using the terminology of knowledge roles. As a result, the second sentence is
more relevant to the user goals, because it contains more valuable knowledge for
the MONITOR-and-DIAGNOSE task.

Because knowing which knowledge roles are verbalized with which domain terms
and how they relate to other knowledge roles and their phrases contributes to a
more accurate retrieval of information than domain terms alone, it is better to
look simultaneously for pairs of knowledge roles and their verbalizations in text.
Otherwise, we can view this process as one of annotation, namely, the annotation
of text with knowledge roles. Understandably, we are interested in performing such
an annotation with knowledge roles automatically. To accomplish this, we turn for
inspiration to the task of semantic role labeling, which itself is grounded upon the
theory of Frame Semantics. These two topics will be discussed in Section 5.3.2.

As a last note, it remains to discuss why such an annotation is necessary. In-
deed, one might argue that it is possible to retrieve information from documents by
formulating some more advanced queries than simple keywords, that is, by avoiding
the burden of annotation. For example, for sentences like those in Figure 5.3, one
might write a query as below:

[low | small | high | large] && [value] && [insulating resistance]
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for retrieving finding phrases. Or one can search for:

[due to] | [caused by] | [as a result of] . . .

to retrieve sentences containing explanation phrases. While this approach may
be appealing and in some occasions even successful, there are several reasons why
it is limited:

• A large number of words (adjectives, nouns, adverbs, or verbs) can be used
to describe findings, and no one can know beforehand which of them is used
in the text.
• While verbs are very important for capturing the meaning of a sentence, they

also abound in language. For example, to express an observation, any of the
following verbs can be used: observe, detect, show, exhibit, recognize, deter-
mine, result in, indicate, etc. Furthermore, adverbs and negations can change
their meaning and therefore need to be considered. Thus, instead of using
verbs as query keywords, we use them to bootstrap the annotating process,
as it will be shown in the next sections of this chapter.

• Often, meaning emerges from the relation between different words, instead
of the words separately, and a context is needed to capture such a relation.
Frame Semantics offers an example of using context to assign meaning to
several components of a sentence.

We now turn our attention to Frame Semantics and Semantic Role Labeling.

5.3.2 Frame Semantics and Semantic Role Labeling

5.3.2.1 Frame Semantics

In Frame Semantics theory [Fillmore, 1976], a frame is a “script-like conceptual
structure that describes a particular type of situation, object, or event and the
participants involved in it” [Ruppenhofer et al., 2005]. Based on this theory, the
Berkeley FrameNet Project2 is creating an online lexical resource for the English
language by annotating text from the 100 million words British National Corpus.

The structure of a frame contains lexical units (pairs of a word with its meaning),
frame elements (semantic roles played by different syntactic dependents), as well as
annotated sentences for all lexical units that evoke the frame. An example of a
frame with its related components is shown in Figure 5.4.

Annotation of text with frames and roles in FrameNet has been performed manu-
ally by trained linguists. An effort to handle this task automatically is being carried
out by research in semantic role labeling, as described in the next subsection.

2http://framenet.icsi.berkeley.edu/
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Frame Evidence

Definition: The Support, a phenomenon or fact, lends support to
a claim or proposed course of action, the Proposition, where the
Domain of Relevance may also be expressed.

Lexical units: argue.v , argument.n, attest.v , confirm.v , contradict.v ,
corroborate.v , demonstrate.v , disprove.v , evidence.n, evidence.v , evince.v ,
from.prep, imply.v , indicate.v , mean.v , prove.v , reveal.v , show.v ,
substantiate.v , suggest.v , testify.v , verify.v

FrameElements:
Proposition [PRP] This is a belief, claim, or proposed course of

action to which the Support lends validity.
Support [SUP] Support is a fact that lends epistemic support

to a claim, or that provides a reason for a
course of action.

. . . . . .

Examples:
• And a [SUP sample tested] revealed [PRP some inflammation].
• It says that [SUP rotation of partners] does not demonstrate

[PRP independence]

Figure 5.4: Information on the frame Evidence from FrameNet

5.3.2.2 Semantic Role Labeling

Automatic labeling of semantic roles was introduced in [Gildea and Jurafsky, 2002].
In their paper, the authors highlight the suitability of semantic frames for capturing
the meaning of text independently of a given domain, and envision that the semantic
interpretation of text in terms of frames and roles would contribute to many appli-
cations, like question answering, information extraction, semantic dialogue systems,
as well as statistical machine translation or automatic text summarization.

After this seminal work, research on semantic role labeling (SRL) has grown
steadily, and in the years 2004 [Carreras and Màrques, 2004] and 2005 [Carreras and
Màrquez, 2005] a shared task at the CoNLL3 was defined, in which several research
institutions competed with their systems. In the meantime, besides FrameNet,
another corpus with manually annotated semantic roles has been prepared, Prop-

3Conference of Natural Language Learning
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Net [Palmer et al., 2005], which differs from FrameNet in the fact that it adopts
generic semantic roles not related to specific semantic frames. PropNet is also the
corpus used for training and evaluation of research systems on the SRL shared task.
A similar corpus to FrameNet for the German language is being created by the Salsa
project [Erk et al., 2003], and a discussion on the differences and similarities among
these three projects can be found in [Ellsworth et al., 2004].

SRL is approached as a learning task. For a given target verb in a sentence, the
syntactic constituents expressing semantic roles associated to this verb need to be
identified and labeled with the right roles. SRL systems usually divide sentences
word-by-word or phrase-by-phrase and for each of these instances calculate many
features creating a feature vector. The feature vectors are then fed to supervised
classifiers, such as support vector machines, maximum entropy, or memory-based
learners. Although modifying such classifiers to perform better on this task could
bring some improvement, better results can be achieved by constructing informa-
tive features for learning. We discuss the features used by our learning framework
LARC in Section 5.5.4, while a more extensive discussion on the process of designing
features for SRL can be found in [Gildea and Jurafsky, 2002] and [Pradhan et al.,
2005].

5.3.3 Frames and Roles for Representing Events

On the one hand, in knowledge engineering there are knowledge tasks and knowledge
roles to represent knowledge; on the other hand, in natural language understanding
there are semantic frames and semantic roles to represent meaning. When knowl-
edge related to a knowledge task (like MONITOR-and-DIAGNOSE) is represented
by natural language, it is reasonable to expect some kind of relation between knowl-
edge roles and semantic roles.

We saw in Chapter 4 that a task structure can be regarded as a series of events,
whereas, previously in this chapter, we defined frames as conceptual structures
describing (among others) events and their participants. From that, it follows that
we can consider frames as representational constructs for our task events. In this
way, a direct mapping can also be established between the knowledge roles (of the
task structure) and the semantic roles (of the frame).

Such a mapping is important, because it suggests an approach to automatically
discover instances of knowledge role concepts in text, namely, an approach simi-
lar to semantic role labeling, which does the same thing for the frames and their
semantic roles. Furthermore, the frames of FrameNet can be used as a source of
lexical knowledge in preparing the annotation process, since they contain examples
of lexical units, roles and their definitions, as well as annotated sentences, as shown
in Figure 5.4. However, because the number of frames in FrameNet is large4, it is

4On April 2007, the number of semantic frames in FrameNet was 825.
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difficult to determine at which frames to look at for information. The solution to
this problem comes in the form of the lexical units related to each frame, usually
verbs. Starting with the verbs, one gets to the frames and then to the associated
roles. This is also the approach we follow. We initially look for the most frequent
verbs in our corpus, and by consulting several sources (since the verbs are in Ger-
man), such as [im Walde, 2003], VerbNet5, and FrameNet, we connect every verb
with a frame, and try to map between semantic roles in a frame and knowledge
roles we are interested in. In this way, we get accustomed with the different syntac-
tical variations in which semantic roles (and as a result, knowledge roles, too) are
verbalized in natural speech.

In conclusion of this section, it should be pointed out that the theory of Frame
Semantics with its lexical knowledge resource FrameNet, as well as the automatic
approach of semantic role labeling offer a sound foundation for building the LARC
approach, which will identify and annotate expressions of the desired knowledge
roles in the task content narratives. In the following section, we present a general
view of the LARC framework, while in Section 5.5, we discuss concrete choices in
implementing the LARC framework for knowledge extraction from the task content
narratives.

5.4 LARC: A General View

There is a fundamental difference between our learning framework LARC and sim-
ilar frameworks that perform SRL, presented in Section 5.3.2. Existing SRL ap-
proaches make use of the ready available corpora of FrameNet or PropNet, where
hundred of thousands sentences have been manually annotated with semantic roles
by linguists. That is, such approaches do not need to consider how the training
data are acquired.

When working with text outside the scope of such available corpora, acquir-
ing training data becomes a big concern. Therefore, our whole approach is built
around this concern, with the explicit intention of keeping the number of manually
annotated instances as low as possible.

The architecture of the LARC framework is shown in Figure 5.5. The numbers
in every box indicate the order of execution within the context of LARC. In the
following, we briefly describe the functionality of each LARC component. More
details in each of these components will be given in Section 5.5.

Tagging: The purpose of tagging is to get part-of-speech tags and stemming infor-
mation (if available) for the words of the documents. Tags, by assigning a syntactic
category (e.g., verb, noun, adjective, pronoun, etc.) to words, provide useful knowl-
edge in processing text. Based on such knowledge, sometimes it can be sufficient to

5http://www.cis.upenn.edu/~{}bsnyder3/cgi-bin/search.cgi
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Figure 5.5: LARC Architecture

retain for text representation only the nouns and verbs of a document. Or, in the
context of our event-oriented representation, one can replace a whole sentence (or
clause) by the event type (or frame name) to which the corresponding verb belongs.
All in all, tagging is a text processing step that cannot be omitted.

Parsing: The purpose of syntactic parsing is to uncover inherent syntactic rela-
tions among different components of a sentence. A parser will divide the sentence
into many phrases, e.g., NP (noun phrase), VP (verb phrase), or PP (prepositional
phrase), and will show how these phrases relate to one another. Because we expect
that knowledge roles will be generally expressed by phrases and not by individ-
ual words, the parsing step is very important for the learning approach, since it
produces the phrases that will be labeled with knowledge roles during classifica-
tion. Furthermore, parsing information is a good source of knowledge for creating
informative features for the learning process.

Tree Representation: Tagging and parsing information produced in the previ-
ous two steps cannot be used directly, because of formatting differences. Thus, it is
advisable to normalize and conflate their outputs by creating a tree data structure,
where nodes store several data pieces (part-of-speech, stem, grammatical function,
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phrase type, etc.), useful for the process of feature creation. A tree data structure is
created, because parsing naturally displays a tree structure. For an example, refer
to Figure 5.8.

Feature Creation: A learning approach needs learning instances. In Machine
Learning, instances are commonly represented as vectors of some feature values.
When available data in their original form do not have a structure of feature–
value pairs, two things are needed. (1) designing a set of features that would
contain as much information as possible in representing the concepts to be learned;
(2) assigning to every instance their corresponding feature values. In the process
of feature design, feature functions are created, so that the second step of value
assignment can take place automatically. Thus, during LARC execution, the Feature
Creation component will use its feature functions to calculate feature values from
the given input data.

Corpus Statistics and Clustering: In order to guide the process of selecting
the most informative instances for manual annotation, we need statistics from the
available text. A useful statistics is, for instance, the distribution of verbs in the cor-
pus. Furthermore, we can cluster together sentences that display the same syntactic
structure, in order to simplify the further annotation process.

Selection and Annotation: The learning algorithm needs instances that already
have a value for the class feature, so that it can learn to recognize the class, based
on the other feature values. Up to this point, the feature vectors created in the
Feature Creation step do not contain a value for the class. That is, it is not known
whether an instance is the verbalization of a knowledge role or not. The annotation
step provides such information, by requiring from a human user (the oracle) to
assign knowledge roles to some sentences that are selected automatically by the
selection step. The selection step needs a strategy for selecting the most informative
instances, so that the number of instances that the user needs to annotate manually
remains low. The selection strategy used by us is part of our active learning strategy
discussed in Section 5.5.6, however, one can think of other selection strategies to
use at this step, which suit the nature of available data.

Bootstrap Initialization: A benefit of having a corpus with inherent redun-
dancy (that is, the same type of information is conveyed again and again, although
using different wording) is that one can use this characteristic to bootstrap the
initialization process. That is, if a human user assigns labels to some sentences
manually, and the corpus has other sentences structurally similar to those, then it
is possible to spread labels to these unannotated sentences, in order to increase the
size of the training set.
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Learning Algorithms In a traditional, passive learning setting, a learning sys-
tem learns on the set of training instances supplied from outside. Contrary to that,
in an active learning setting, the learning system has control over the set of instances
that can be used for training. How does the learning system decide what instances to
choose for training? Two approaches have crystallized over many years of research:
uncertainty sampling [Cohn et al., 1994] and query by committee [Argamon-Engelson
and Dagan, 1999].

In the uncertainty sampling approach, the learner asks from an oracle (the hu-
man annotator) to provide labels for instances on which it is uncertain. In the query
by committee approach, there are several learners that learn independently on the
same set of instances. Then, the decision to ask for new labels is based on the
disagreement set, that is, the set of instances, to which the learners have assigned
different labels.

The common way of performing active learning in Machine Learning is by ap-
plying direct control into the internals of the learning algorithms. Such an approach
makes it difficult for outsiders of this field to use active learning in real-world prob-
lems. Therefore, for the LARC framework, we have chosen an alternative approach.
We implement the query-by-committee approach using three off-the-shelf learning
algorithms. The active learning strategy is then a separate module that takes into
account the results of the learners, without interfering with their internal imple-
mentation.

5.5 LARC: A Concrete View

The description of LARC in Section 5.4, while generic enough to leave free choice
in the implementation of the separate components, also shows that design choices
influence the operation of subsequent components. For that reason, the version of
LARC framework that we have implemented for our knowledge extraction purposes
will be described in detail. In order to make the discussion more concrete, several
examples from the corpus of task content narratives, upon which we build the
textual case base in this thesis are given along the way.

5.5.1 Tagging

The part-of-speech (POS) tagger (TreeTagger6) that we use [Schmid, 1995] is a
probabilistic tagger with parameter files for tagging several languages: German,
English, French, or Italian. The author of the tool was also very cooperative in
providing fixes for some small problems we encountered. TreeTagger is particularly
helpful, because besides POS tags, it additionally produces stem information. Since
the German language (the language of the narratives) has a very rich morphology,

6http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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stemming contributes to the normalization of text and reduces the size of the vo-
cabulary. An example of the tagger output is shown in Figure 5.6, while detailed
information on the meaning of the used POS tags can be found online7.

Es PPER es
liegt VVFIN liegen
insgesamt ADV insgesamt
ein ART ein
guter ADJA gut
äusserer ADJA äuβer
Wicklungszustand NN <unknown>
vor PTKVZ vor
. $. .

Figure 5.6: A German sentence tagged with POS tags by TreeTagger

A problematic issue in the tagger output is that of words marked with the stem
<unknown>. Actually, their POS tag is usually correctly induced; only the stem
information is missing. The two reasons for an <unknown> label are a) the word
has been misspelled or b) the word is domain specific. In both cases, the word has
not been seen during the training of the tagger, and thus, its stemming information
is not available. On the positive side, selecting the words with the <unknown> label
directly creates the list of domain specific words, useful in creating a domain lexicon.
For instance, this is one of the methods that can be used within the knowledge layers
approach of Lenz (Section 2.4.2).

A handy solution for correcting spelling errors is to use a string similarity func-
tion, available in many programming language libraries. For example, the Python
language has the function get_close_matches in its difflib library. An advan-
tage of such a function is having as a parameter the degree of similarity between
strings (values vary from 0 to 1). By setting this value very high (near 1), one is
sure to get really similar matches if any at all.

Stem information is not only good for text normalization, but also in discovering
instances of word composition, a phenomenon typical of the German language. For
example, all the words in the left column of Figure 5.1 are compound words that
belong to the same semantic category identified by their last word ‘wert’ (value),
i.e., they all denote values of different measured quantities, and as such have a
similar meaning. This similarity cannot be induced if one compares the words in
their original form. However, a word representation as that of the right column
makes such a comparison possible (e.g., by counting the number of common stems)

7http://www.ims.uni-stuttgart.de/projekte/corplex/TagSets/stts-table.html
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and enables finding words of the same semantic category, something that comes
handy to the goals of TCBR.

Original words Words composed of stems

Ableitstromwerte Ableit-Strom-Wert

Gesamtstromwerte Gesamt-Strom-Wert

Isolationswiderstandswerte Isolation-Widerstand-Wert

Isolationsstromwerte Isolation-Strom-Wert

Kapazitätswerte Kapazität-Wert

Ladestromwerte Lade-Strom-Wert

Stromwerten Strom-Wert

Verlustfaktoranfangswert Verlustfaktor-Anfang-Wert

etc.

Table 5.1: Original words and words composed of stems

Unfortunately, there are only a few tools available for morphological analysis of
German words. We tried Morphy [Ims, 2000], which is publicly available, but it was
not able to analyze any of our domain-specific words. For evaluation purposes, we
have manually provided stemming information for many of the composed words of
the corpus. Thus, whenever in this thesis hyphenated words such as ‘‘Strom-Wert”
are encountered, keep in mind that this is a denotation for German compound
words.

5.5.2 Parsing

Syntactical parsing is one of the most important steps in the learning framework,
because it serves two important purposes. First, it divides the sentences in self-
contained phrases, which will be candidates for the labeling with knowledge roles.
Second, it provides information for feature creation, because the parse tree cap-
tures contextual relationships. Since we are interested in getting qualitative parsing
results, we experimented with three different parsers: the Stanford parser [Klein,
2005], the BitPar parser [Schmid, 2004; Schiehlen, 2004], the Sleepy parser [Dubey,
2004]. What these parsers have in common is that they all are based on unlexi-
calized probabilistic context free grammars (PCFG) [Manning and Schütze, 1999];
trained on the same corpus of German text, Negra8 (or its superset Tiger9); and
their source code is publicly available. Still, they do differ in the degree they model
some structural aspects of the German language, their annotation schemas, and the
information included in the output. Figure 5.7 shows the output of each parser

8http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
9http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/
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for the same German sentence. In the following, the features of each parser are
discussed.

Stanford Parser
(ROOT
(NUR
(S
(PP (APPR Auf) (CARD NS))
(VAFIN wurden)
(VP
(AP (ADV ca.)
(NM (CARD 5)
(CARD gerissene)
(CARD Keilsicherungsbandagen)))

(VVPP festgestellt)))
(\$..)))

BitPar Parser
(utt:
(S.fin:
(PP: (APPR: Auf)
(NN: NS))

(VWFIN: wurden)
(AP: (AVP-MAD: (ADV-MAD: ca.))
(CARD: 5))

(NP.nom: (AP: (ADJA%: gerissene))
(NN.nom: Keilsicherungsbandagen))

(VVPP%: festgestellt)))
($..))

Sleepy Parser
(TOP
(S
(PP-MO (APPR-AD Auf)
(NE-NK NS) )

(VAFIN-HD wurden)
(NP-SB
(ADV-MO ca.) (CARD-NK 5)
(ADJA-NK gerissene)
(NN-NK Keilsicherungsbandagen))

(VP-OC (VVPP-HD festgestellt)))
($..))

Auf NS wurden ca. 5 gerissene   Keilsicherungsbandagen festgestellt.
On  NS were     ca. 5 torn            wedge’s safety bands      detected.

Figure 5.7: Parsing output of the same sentence from the three parsers
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Stanford Parser: The Stanford parser is an ambitious project that tackles the
task of generating parse trees from unlabeled data independently of the language.
For the moment, the parser is distributed with parameter files for parsing English,
German, and Chinese. We tested the parser on our data and noticed that the POS
tags were often induced erroneously (in the sentence with only 8 words of Figure 5.7
there are 3 such errors—CARD (cardinal) tags for 2 nouns and 1 adjective), errors
that then have erroneous parse trees as result. However, in those cases when the
tagging was performed correctly, the parse trees were also correct. Still, the parser
could not parse long sentences, perhaps due to the fact that it was trained with a
part of the Negra corpus with sentences of a maximal length of 10 words. Trying
the parser with long English sentences instead, produced very good results. We
concluded that at this phase of implementation, the Stanford parser could not be
used with our corpus of German sentences that contain an average of up to 18 words
per sentence.

BitPar Parser: This parser is composed of two parts, the parser itself [Schmid,
2004] and the parameter files (chart rules, lexicon, etc.) from [Schiehlen, 2004].
Published experimental results claim robust performance, due to the use of sophis-
ticated annotation and transformation schemata for modeling grammars. Another
advantage of the parser is that its lexicon can be extended very easily with triples
of domain-dependent words, their tags, their frequency counts in corpus, avoiding
in this way the tagging errors typical for unlexicalised parsers. These tagging errors
damage the parse results, as can be seen from the results of the Stanford parser. Our
critique for the described BitPar is that it usually produces trees with more nodes
than the other parsers and the annotation of nodes contains specialized linguistic
information, not very appropriate for creating features for learning.

Sleepy Parser: This parser has been specifically tuned for the German lan-
guage, and while it is a statistical parser like the others, it uses different annotation
schemas and incorporates grammatical functions (SB–subject, OC–clausal object,
MO–modifier, HD–head, etc.) or long-distance dependencies between terms. In
constrast to the two other parsers, it also has a highly tuned suffix analyzer for
guessing POS tags [Dubey, 2005], which contributes to more accurate tagging re-
sults than the other parsers, although some domain-dependent words are not always
correctly tagged. Erroneous parsing is also encountered for very long sentences.

5.5.2.1 Choosing a Parser

All the tested parsers make errors during parsing. In the end, the criteria upon which
we based our choice of the parser were: speed and output information. Sleepy was
the fastest and had the most informative output (it prints the log value expressing
the likelihood of parsing, and it labels the majority of nodes with their grammatical
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function). Actually, choosing a parser upon these criteria instead of the accuracy
of parsing could be regarded as inappropriate. Our justification is that a metric to
measure the accuracy of parsing on new data does not exist. These parsers have
all been trained on the same corpus, and at least the two German parsers tuned up
to the point where their results are almost the same. Thus, a priori their expected
accuracy in a new corpus should be equal, and the expected accuracy only cannot
be a criterion for choosing one over the other. Given the difficulty of evaluating
the accuracy of the parse trees and their presumed similarity, we based the choice
of parser on the qualities that contributed most to our task, namely speed and
informative output.

5.5.3 Tree Representation

As discussed previously, the output of the tagger (see Figure 5.6) and the output
of the parser (see Figure 5.7) cannot be used as they are. Thus, these outputs are
combined to create a tree data structure. The tree is composed of terminals (leaf
nodes) and non-terminals (internal nodes), all of them referred to as constituents of
the tree. For export purposes as well as for performing exploration or annotation
of the corpus, the tree data structures are stored in an XML format, according
to a schema defined in the TigerSearch10 tool. The created tree, when visualized
in TigerSearch, looks like the one shown in Figure 5.811. The terminal nodes are
labeled with their POS tags and also contain the corresponding words and stems;
the internal nodes are labeled with their phrase types (NP, PP, etc.); and the tree
branches have labels too, corresponding to the grammatical functions of the nodes.
The XML representation of a portion of the tree is shown in Figure 5.9. However,
such an XML representation is adequate for export and visualization purposes only.
In order to use the tree for feature creation purposes, one needs a tree representation
in some programming language such as Java or Python.

5.5.4 Feature Creation

The more challenging component of the LARC framework is that of feature creation.
The purpose of this component is simple: it takes as input a node of the parse tree
and it returns as output a vector of feature values. For example, for the terminal
node Spannungssteuerung of the parse tree shown in Figure 5.8 the feature creation
component outputs the vector:

[NN, NK, 1, uSdPPd, uHDdMOdNK, 3, uPPuS, left, PP, hindeuten, VVFIN, 0,
none, Spannung-Steuerung, ADJA, ...]

10http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
11English translation for the shown sentence: “. . . irregularities, which point to a not anymore

continuous steering of voltage in the area of the winding head.”
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hindeuten
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die auf eine mehrnicht kontinuierliche Spannugssteuerung im WickelkopfbereichUnregelmässigkeiten
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Figure 5.8: Representation of a parse tree in the TigerSearch tool. Due to space
reasons, only a branch of the tree is shown.

...
<t lemma="Spannung-Steuerung" word="Spannungssteuerung" pos="NN"

id="sentences._108_28" />
<t lemma="in" word="im" pos="APPRART"

id="sentences._108_29" />
<t lemma="Wickel-Kopf-Bereich" word="Wickelkopfbereich" pos="NN"

id="sentences._108_30" />
<t lemma="hindeuten" word="hindeuten" pos="VVFIN"

id="sentences._108_31" />
</terminals>
<nonterminals>
<nt id="sentences._108_500" cat="PP">
<edge idref="sentences._108_3" label="NK" />
<edge idref="sentences._108_2" label="DA" />
<edge idref="sentences._108_1" label="DA" />
</nt>
...

Figure 5.9: XML representation of a portion of the parse tree from Figure 5.8
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with the remaining values shown in Figure 5.10, together with the names of the
features.

The challenges of the feature creation process are twofold: a) the feature design,
and b) the implementation of feature functions. During the design process, one has
to come up with features that are able to capture as much relevant knowledge as
possible that could contribute to the learning process. To this purpose, we looked for
features at several existing computational linguistics frameworks. Concretely, the
features implemented in LARC are based on the semantic role labeling framework
SHALMANESER12 [Erk and Pado, 2006], while other possible features, commonly
used for the SRL task, can be found in [Pradhan et al., 2005].

In order to calculate feature values, a feature function is implemented for every
feature. For example, there are functions that identify the sibling nodes, the com-
mon path to the highest ancestor, whether a verb is passive or active, the headword
of a non-terminal node, and so on. This clarifies the need for storing the parse tree
and tagging information as a tree data structure, so that different tree-traversal
techniques can be used for calculating the desired features.

It should also be explained at this point, that most of the features of a constituent
are calculated with respect to a target node. The target node is (usually) the verb
that evokes the frame, whose different roles will be assigned to different sentence
constituents by the classifier. If a sentence has several clauses, and every verb of
a clause evokes a frame, the feature vectors are calculated for each evoked frame
separately and all the vectors participate in the learning.

Because a tree contains terminal nodes (corresponding directly to words of a
sentence) and non-terminal nodes (corresponding to phrases in the sentence struc-
ture), the number of created feature vectors is larger then the number of words in a
sentence. However, in a sentence there will be rarely more than 3 or 4 constituents
(either words or phrases) that will be labeled with a role. All the other constituents
will have the label none.

Finally, preparing the feature vectors is not enough for the learning process. We
additionally need examples of instances annotated with the different types of roles
as well as those that have simply no role (that is, will receive the label none). The
process of assigning roles to sentence constitutents is performed by the annotation
tool, described in the following section.

5.5.5 Annotation

To perform the manual annotation, the Salsa annotation tool (publicly available)
[Erk et al., 2003] was used. The Salsa annotation tool reads the XML representation
of a parse tree and displays it as shown in Figure 5.11. The user has the opportunity
to add frames and roles as well as to attach them to a desired target verb. In the

12http://www.coli.uni-saarland.de/projects/salsa/shal/
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Phrase type NN

Grammatical function NK

Terminal (is the constituent a terminal or non-terminal node?) 1

Path (path from the target node to the constituent, denoting u(up) and d(down)
for the direction) uSdPPd

Grammatical path (like Path, but instead of node labels, branches labels are
considered) uHDdMOdNK

Path length (number of branches from target to constituent) 3

Partial path (path to the lowest common ancestor between target and con-
stituent) uPPuS

Relative Position (position of the constituent relative to the target) left

Parent phrase type (phrase type of the parent node of the constituent) PP

Target (lemma of the target node) hindeuten

Target POS (part-of-speech of the target) VVFIN

Passive (is the target verb passive or active?) 0

Preposition (the preposition if the constituent is a PP) none

Head Word (for rules on headwords refer to [Collins, 1999]) Spannung-
Steuerung

Left sibling phrase type ADJA

Left sibling lemma kontinuierlich

Right sibling phrase type none

Right sibling lemma none

Firstword, Firstword POS, Lastword, Lastword POS (in this case, the con-
stituent has only one word, thus, these features get the same values: Spannung-
Steuerung and NN. For non-terminal constituents like PP or NP, first word and
last word will be different.)
Frame (the frame evoked by the target node) Evidence

Role (this is the class label that the classifier will learn to predict. It will be one
of the roles related to the frame or none, for an example refer to Figure 5.11.)
none

Figure 5.10: Set of features used by LARC for representation of learning in-
stances. In italics are given the feature names, in bold are given
feature values for the terminal node Spannungssteuerung.
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example of Figure 5.11 (the same sentence of Figure 5.8), the target verb hindeuten
(point to) evokes the frame Evidence, and three of its roles have been assigned to
constituents of the tree. Such an assignment can be easily performed per point-and-
click. After this process, an element <frames> is added to the XML representation
of the sentence, containing information about the frame, namely which role was
paired with which sentence constituent. Excerpts of the XML code are shown in
Figure 5.12.

PP

Find Symptom

Cause

Loc

 , die auf eine nicht mehr kontinuierliche im Wickelkopfbereich

AP

PP

S

NP

Evidence

Unregelmässigkeiten

Manner

Spannugssteuerung

Risk

hindeuten

Figure 5.11: Role annotation with the Salsa tool

We can notice some interesting things in Figure 5.11 that are of concern to
the knowledge extraction process. For example, while the knowledge role Cause
is paired with a prepositional phrase (PP) containing six words, thus being self-
contained with respect to its meaning, the role Symptom is paired with a single
word, which happens to be a relative pronoun (German: ’die’, English: ’which’)
and has no meaning on its own. It is for this reason that we have considered
knowledge extraction as a post-processing process to role annotation, because such
role annotations occupied by meaningless words need to be discovered and resolved.
For the sentence shown in Figure 5.11, the meaning of Symptom is that of the phrase
annotated with the role Find, which belongs to an Observation frame not shown as
part of the figure.

Although the annotation process with the Salsa tool is easy, it is still unexcept-
able for a user to annotate hundreds of sentences before the learning process takes
place. Moreover, we do not want that the annotated sentences are selected ran-
domly from the corpus, because this might compromise the quality of the learned
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<frames>
<frame name="Evidence" id="sentences._108__f1">
<target><fenode idref="sentences._108_31"/></target>
<fe name="Symptom" id="sentences._108_f1_e1">
<fenode idref="sentences._108_22"/>
</fe>
<fe name="Cause" id="sentences._108__f1_e2">
<fenode idref="sentences._108_509"/>
</fe>
<fe name="Loc" id="sentences._108__f1_e5">
<fenode idref="sentences._108_510"/>
</fe>

...

Figure 5.12: XML Representation of an annotated frame

classifier. Therefore, even the selection of the initial sentences for annotation is part
of our active learning strategy, described in the following.

5.5.6 Active Learning Strategy

Research in information extraction has indicated that using an active learning ap-
proach for acquiring labels from a human annotator has advantages over other ap-
proaches of selecting instances for labeling [Jones et al., 2003]. The possibilities for
designing an active learning strategy are manifold; the one we have implemented
uses a committee-based classification scheme that is steered by corpus statistics.
The strategy consists of the following steps:

a) Divide the corpus into clusters of sentences with the same target verb. If a
cluster has fewer sentences than a given threshold, group sentences with verbs
evoking the same frame into the same cluster.

b) Within each cluster, group the sentences (or clauses) with the same parse sub-
tree together.

c) Select sentences from the largest groups of the largest clusters and present them
to the user for annotation.

d) Bootstrap initialization: apply the labels assigned by the user to groups of sen-
tences with the same parse sub-tree.

e) Train all the classifiers of the committee on the labeled instances; apply each
trained classifier to the unlabeled sentences.

f) Get a pool of instances where the classifiers of the committee disagree and present
to the user the instances belonging to sentences from the next largest clusters
not yet manually labeled.

g) Repeat steps d)–f) a few times until the classification results appear acceptable.

In the following, the rationale behind choosing these steps is explained.
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Steps a), b), c): In these steps, statistics about the syntactical structure of the
corpus are created, with the intention of capturing its underlying distribution, so
that representative instances for labeling can be selected.

Step d): This step has been regarded as applicable to our corpus, due to the
repetitive nature of the text. Because the narratives of the corpus always contain
descriptions of the same task, they will be structurally similar to one another,
because they are generated from the same task structure. Actually, this does not
mean that the same words are repeated (although often standard formulations are
used). Rather, the kind of sentences used to describe the task has the same semantic
structure and as as a result (very often) the same syntactic structure too. As an
example, consider the sentences shown in Figure 5.13.

[PP Im Nutaustrittsbereich] wurden [NP stärkere Glimmentladungsspuren] festgestellt.

In the area of slot exit stronger signs of corona discharges were detected.

[PP Bei den Endkeilen] wurde [NP ein ausreichender Verkeildruck] festgestellt.

At the terminals’ end a sufficient wedging pressure was detected.

[PP An der Schleifringbolzenisolation] wurden [NP mechanische Beschädigungen] festgestellt.

On the insulation of slip rings mechanical damages were detected.

[PP Im Wickelkopfbereich] wurden [NP grossflächige Decklackablätterungen] festgestellt.

In the winding head area extensive chippings of the top coating were detected.

Figure 5.13: Examples of sentences with the same structure

S

PP VAFIN NP VP

Figure 5.14: Parse tree of the sentences in Figure 5.13

From the syntactical point of view, what the sentences of Figure 5.13 have in
common is the passive form of the verb feststellen (wurden festgestellt), and due to
the subcategorization of this verb, the parse tree on the level of phrases is identical
for all sentences, as indicated by 5.14. From the semantic point of view, in all
sentences the verb feststellen evokes the frame Observation, and the assigned roles
are in all cases: NP—finding, PP—observed object. Therefore, we ask the user to
annotate manually only one of these sentences, and then assign the same roles to
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the other sentences with the same sub-tree. In this way, the size of the training set
is automatically increased, bootstraping the initialization phase.

Step e): The committee of classifiers consists of a maximum entropy (MaxEnt)
classifier from Mallet [McCallum, 2002], a Winnow classifier from SNoW [Carlson
et al., 2004], and a memory-based learner (MBL) from TiMBL [Daelemans et al.,
2004]. For the MBL, we selected k=5 as the number of the nearest neighbours. The
classification is performed as follows: if at least two classifiers agree on a label, the
label is accepted. If there is disagreement, the cluster of labels from the five nearest
neighbours is examined. If the cluster is not homogenous (i.e., it contains different
labels), the instance is included in the set of instances to be presented to the user
for manual labeling.

Step f): If one selects new sentences for manual annotation only based on the
output of the committee-based classifier, the risk of selecting outlier sentences is
high [Tang et al., 2002]. Thus, from the instances’ set created by the classifier,
we select those belonging to large clusters of sentences that have yet to be labeled
manually.

Step g) shows that the active learning approach is recursive. The cycle—learn
from the training instances, classify the unlabeled instances, vote on the label of an
instance, select instances where the committee disagrees, select sentences containing
disagreement instances, manually annotate them—will be repeated a few times.
Notice here the distinction between sentences and instances. Instances that are used
during the learning are the feature vectors we created in Section 5.5.4. Each vector
represents one constituent of the parse tree of the sentence. As we have already
mentioned, a sentence can have a large numbers of constituents. During the manual
annotation, a user annotates 3–4 constituents with a role and all others receive
automatically the label none. Thus, it does not make sense to select individual
instances for annotation, but rather, sentences that contain constituents represented
by these instances.

At the end, after the annotation process has been concluded, the results of
annotation can be stored in the XML format shown in Figure 5.12, in order to
prepare in this way the input for the knowledge extraction step.

5.6 Evaluation of LARC Performance

While the main goal of the thesis is the design of a combined approach of knowledge
extraction and summarization for case base authoring—a goal that we evaluate
in Chapter 7, it is also possible to evaluate the LARC performance separately,
measuring in this way the success of the knowledge extraction process. Thus, this
section discusses the performance of LARC.

Two are the questions of interest in this evaluation:

• How accurate is the classification process (i.e., the process of assigning roles
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to text)?
• Does the active learning strategy contribute in keeping the number of anno-

tated sentences low?

In order to answer these questions, we need two other things besides the learning
framework LARC, namely, a corpus of data and a gold standard. The corpus of
data will contain all sentences that will participate in the classification process. The
gold standard is the set of sentence constituents that have been labeled manually
with the correct knowledge roles. In the following, we first explain the creation of
the corpus, and then the results of the evaluation.

5.6.1 Corpus Preparation

For the task/domain presented in Appendix A, a collection of approximately five
hundred documents was made available to us. The documents contain descriptions
of performing the MONITOR-and-DIAGNOSE task. In the described task/domain
of maintenance for electrical machines, two parties are involved: the service provider
(the company that has the know-how to perform diagnostic procedures and to rec-
ommend maintenance actions) and the customer (the operator of the machine). As
part of their business agreement, the service provider submits an official diagnostic
report to the customer. Such a report follows a predefined structure template and is
written in syntactically correct and parsimonious language. For the given document
collection, the language is German.

A report is organized into many sections: summary, reason for the inspection,
data of the inspected machine, list of performed tests and measurements, evaluations
of measurement and test results, overall assessment and recommendations, as well as
several attachments with graphical plots of numerical measurements or photographs
of damaged parts.

Not all the information contained in such a report is interesting for knowledge
extraction purposes and the creation of a case base. Therefore, we need to extract
from the reports only those sections that are directly related to task description.
Because the reports are written with MS R©Word, extracting text from the desired
sections only, is not easy. In fulfilling this goal, we were fortunate twice. First, with
MS R©Office 2003, the XML based format WordML was introduced, which permits
storing MS R©Word documents directly in XML. Second, the documents were origi-
nally created using a MS R©Word document template, so that the majority of them
had the same structure. Still, many problems needed to be handled. MS R©Word
mixes formatting instructions with content very heavily and this is reflected in its
XML format, too. In addition, information about spelling, versioning, hidden tem-
plate elements, and so on are also stored. Thus, one needs to explore the XML
output of the documents to find out how to distinguish text and content structure
from unimportant information. Such a process will always be a heuristic one, de-
pending on the nature of the documents. We wrote a program that reads the XML
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document tree, and for each section with a specified label (from the document tem-
plate) it extracts the pure text storing it in a new XML document, as the excerpt
in Figure 5.15 shows.

<section title="Measurements">
<subsection title="Stator_Winding">
<measurement title="Visual_Control">
<submeasurement title="Overhang_Support">
<evaluation>
Die Wickelkopfabst\"{u}tzung AS und NS befand sich
in einem ...

</evaluation>
<action>Keine</action>

</submeasurement>
...

Figure 5.15: Excerpt of the XML representation of the documents

Based on such an XML representation, we create subcorpora of text containing
measurement evaluations of the same type. Whenever narratives are mentioned
in this thesis, remember that they are nothing else but descriptions of the same
measurement type, that were extracted automatically from the more heterogeneous
reports, as described here. The narratives for which we create a case base in this
thesis are those belonging to the measurement type of Isolation Current.

5.6.2 Evaluating Classification Results

There are two things to consider when evaluating the results of classification. The
first is the evaluation metric; the second is the evaluation strategy. A decision on
both of these issues can be taken best by exploring the nature of the data to be
classified. Therefore, we first consider the nature of the corpus Isolation Current
that is used during the annotation process.

The 490 narratives of the corpus contain 1654 sentences in total. After their
normalization (tokenization and stemming) and removal of duplicate sentences, 660
unique sentences remained. 575 of them contain events of type Observe and Explain.
We only chose these sentences for annotation. Using the Salsa annotation tool, we
manually annotated all sentences, so that we can have a gold standard for evaluation
purposes.

After the process of feature creation for these 575 sentences, it turns out that
only 1919 out of 27670 instances have received one of the knowledge roles as a label.
If we consider the labeled instances as positive instances and all the others (those
that receive the label none) as negative instances, it is clear that the distribution
of instances is in favor of the negative instances. Indeed, only 7% of instances are
positive. For such a skewed distribution, a common evaluation metric such as the
accuracy of the classifier (the proportion of correctly classified instances) is not
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appropriate. The reason is simple. The classifier will learn to classify the negative
instances correctly, and because they are in majority, the accuracy of classification
will be very high. Indeed, for the set of instances in examination, the classifier
accuracy amounts to 98.5%.

Because we are interested in how well the classifier recognizes positive instances,
and not in its overall accuracy, we use the metrics of precision and recall. For the
given classification problem, these two metrics can be defined in this way:

precision =
number of instances whose assigned role is correct

number of instances labeled with a role by the classifier

recall =
number of instances whose assigned role is correct

number of instances labeled with a role by the human annotator

The nominator of both formulas refers to instances that are assigned a role by
the classifier. A metric that summarizes the values of precision and recall in one
value is the F-measure, which is calculated as their harmonic mean.

Now that the question of the evaluation metrics is decided, we have to choose
an evaluation strategy. The norm is to have at least two sets: a training set and a
testing set. However, because the manual annotation of roles is laborious, we opt for
the strategy of cross-validation. In this strategy, the total set of instances is divided
into equal proportions (for example, in 10 subsets). Then, alternately, 9/10 of the set
is used for training and the remaining 1/10 for testing. By repeating this procedure
10 times, we make sure that all subsets have been used as the testing set once.
Such a strategy is commonly known as the 10-fold cross-validation. Additionally,
we must make sure that the distribution of labels in every subset is proportional to
the total distribution. This is especially important for such a skewed distribution
as the one we are examining.

The last point we need to discuss is the distribution of roles within the set of
positive instances. During the annotation with the two frames, 9 different roles
were annotated. However, these roles do not appear equally frequently in the cor-
pus. For example, the most frequent role is that of finding with 662 occurrences,
while the least frequent role is that of risk with only 32 occurrences. We take into
consideration this disproportion by calculating two set of metrics: one for instances
annotated with all 9 roles, and one for instances annotated with the 4 most impor-
tant roles for the TCBR approach, namely: observed object, finding, symptom, and
cause. Instances of these four roles together amount to 1424 from a total of 1919
instances.

The results for the 10-fold cross-validation on the whole instances set for the
corpus of Isolation Current are summarized in Table 5.2. It can be noticed that the
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results for the 4 most important roles are only slightly better than for all 9 roles,
which shows that the approach does not depend on a large number of training
instances.

Nr. of Roles Recall Precision F-measure

9 Roles 0.903 0.929 0.916

4 Roles 0.915 0.928 0.921

Table 5.2: 10-Fold Cross-Validation Results of Learning

Discussion of results: Is an F-measure of 0.916 (or 0.921) a good result? As
a reference scale to understand these results, we summarize here the results of a
state-of-the-art system on the SRL task, described in [Pradhan et al., 2005]. This
is the best available system on the SRL task, trained on the PropNet corpus, which
as of February 2004 contained 85000 annotated sentences in the training set and
5000 sentences in the testing set. The results on the combined task of identification
and classification (this is also what we perform), for the 5 core roles (the most
important and frequent semantic roles), and for automatically parsed sentences
(as in our framework) are: precision = 0.864, recall = 0.784, F-measure = 0.822
([Pradhan et al., 2005], Table IX).

The first thing to notice is that even with a very large corpus of manually
annotated sentences, the results are not as good as for other learning tasks, such as
named entity recognition, for which commercial systems such as IdentiFinder and
NetOwl report F-measures of 0.904 and 0.916 in the MUC-7 evaluation [Weiss et al.,
2005, p. 154]. The reason is that SRL is inherently a hard task, much more complex
than other types of classification problems. In the light of the best results of SRL,
we can view the results of LARC as good results. In our view, the reason for this
good performance is the homogeneity of the narratives as well as the structural and
semantic redundancy of text.

5.6.3 Evaluating the Active Learning Strategy

The reason for adopting an active learning strategy for the LARC framework is
the lack of training data. Therefore, the goal of the active learning strategy is to
achieve the best possible annotation results by using the least amount of training
data. The active learning strategy that we have implemented is based on the claim
that not all instances are equally informative to the learning process. Thus, the
natural way to test this claim is by comparing it with the null hypothesis that all
instances are equally informative to the learning process. The null hypothesis in
this situation translates to a strategy of the uniform random selection of instances
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from the available set. Simply stated, every instance has the same chance of being
selected for annotation.

To test the two opposite hypotheses, we performed the following experiment.
In each iteration, we choose 10 sentences: once according to the active learning
strategy and once according to the uniform random selection. The sentences are
annotated by the user, the training set is created, and the learning process takes
place. Then, the learned classifiers are put to label the remaining of the available
data set. The precision and recall metrics are then calculated according to the for-
mulas in Section 5.6.2. The results for the two strategies are presented in Table 5.3
and Table 5.4. From the results, we see that as the size of the training set keeps
growing by ten sentences every iteration; the learning results start to improve. Fur-
thermore, the active learning strategy achieves good results with only 40 annotated
sentences. This is in accordance with our goal of keeping the number of manually
annotated sentences low.

Sentences No. Recall Precision F-measure

10 0.508 0.678 0.581

20 0.601 0.801 0.687

30 0.708 0.832 0.765

40 0.749 0.832 0.788

Table 5.3: Learning Results for Random Selection

Sentences No. Recall Precision F-measure

10 0.616 0.802 0.697

20 0.717 0.896 0.797

30 0.743 0.907 0.817

40 0.803 0.906 0.851

Table 5.4: Learning Results for Active Selection

5.7 Completing Knowledge Extraction

By automatically annotating text with knowledge roles, we have accomplished the
most important part of knowledge extraction, although not to completeness. Indeed,
we already indicated in Section 5.5.5, that not all annotated expressions have a
meaning on their own, because they refer to entities mentioned previously in the
text. Such a problem is a well known problem in the literature of many research
fields. [McCallum, 2005] lists the different names with which this problem is known:
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record linkage or record deduplication in the database community; co-reference or
anaphora resolution in natural language processing, and identity uncertainty or
object correspondence elsewhere. In the context of this thesis we refer to this
problem as co-reference resolution.

The problem has two aspects: a) identify which are the expressions that need
resolution; and b) perform the resolution. For the identification step, we use a
simple heuristic function that counts the number of content words in an annotated
expression. Content words are words tagged with the POS tag: noun, adjective,
adverb, and verb. If an expression does not contain any of such words, then it is a
reference to some other entity in the text.

In order to perform the resolution, knowledge from the task structure model is
used. We know that if an observed object is mentioned by a reference in a sentence,
it must have been mentioned in its full form in the previous sentence. Therefore,
the resolution is performed by formulating some simple heuristic rules based on the
knowledge of task structure, so that phrases with the same role are paired.

Although sophisticated approaches on the topic of co-reference resolution can
be found in the NLP literature, as in [Ng and Cardie, 2002; Bean and Riloff, 2004],
we think that the two low-cost heuristics we have used are sufficient in the context
of our task.

5.8 Summary

In this chapter, we considered the process of knowledge extraction as a post-
processing step to the process of annotating text with knowledge roles. To perform
the annotation, we have built an active learning framework, LARC, which combines
ideas and tools from research developments in the field of computational linguis-
tics. However, in contrast to existing frameworks for semantic role labeling, LARC
adopts the novel step of incorporating an active learning strategy for coping with
lack of training data.

How does LARC operate? Initially, every sentence is processed by a tagger and
a parser. The processing results are then represented as a tree data structure. For
every node of the tree (i.e. a constituent), a series of features is calculated by some
sophisticated (linguistically-based) feature functions. The active learning strategy
of LARC iteratively chooses sentences that will be manually annotated by a user
with the help of the Salsa annotation tool. After only a few iterations, LARC
is able to produce good classification results for the unlabeled sentences, as our
experiments demonstrate.

As a result of knowledge extraction with the LARC framework, we receive a
corpus enriched with semantic information—information that captures the elements
of task structure. In this way, we have laid the foundations for the successive step
of knowledge summarization, described in the successive Chapter 6.
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Chapter 6

Knowledge Summarization: Building the Case
Base

6.1 Introduction

After annotating the narratives with knowledge roles, as described in Chapter 5,
several issues need to be considered for creating the case base. Redundancy of
information will be our source of knowledge in achieving this goal. As discussed in
previous chapters, due to the regularity of the world, we expect that a large number
of narratives will describe the same or very similar situations, while a small number
of narratives will differ in some aspects and to some extent from the prototypical
situation. In this chapter1, we explain how to make use of redundancy, task content,
and annotated text to create a compact case base. In Section 6.2, the structure of
the case base is described and all problems that need to be solved for its automatic
creation are identified. The two most important problems: distinguishing among
observed objects (OO) phrases and identifying the orientation of finding phrases are
discussed in Section 6.3 and 6.4 respectively. Then, in Section 6.5, it is demonstrated
how the probabilistic task content modeling approach contributes to solving some
of these problems.

6.2 The Case Base

How will the case-base look like? Our vision is that of a compact case base, where
cases are chains of pieces of knowledge extracted from different narratives. Fig-
ure 6.1 presents a schematic portion of the envisioned case base. While this portion
resembles a tree, the case base itself will be a graph, because all trees will share
nodes at all levels, except for the level of OO nodes.

The labels of the nodes in Figure 6.1 are dummy labels that stand for different
values of the knowledge roles: observed object (OO), finding (FI), explanation (EX),
evaluation (EV) and action (AC). We have used different indices (from 1..n, 1..k,
etc.), in order to make clear that there are no one-to-one correspondences among

1Parts of this chapter appear in [Mustafaraj et al., 2007b,a].

129



6. Knowledge Summarization: Building the Case Base

...
OO_1

FI_1

FI_2

EX_1

EX_2

EX_k

EV_1

EV_2

EV_m

AC_1

AC_rFI_n

...
...

...

...

Figure 6.1: A schematic portion of the case base. A case is composed by moving
from left to right following the connecting links between nodes.

the different roles and that the sets of values connected with each role will have
different sizes.

The narratives were annotated by LARC with different knowledge roles: OO,
FI, EX, etc. We know that each of these roles is verbalized by different phrases.
Are these phrases really different in meaning, or do they just differ in the used
words, but still refer to the same thing? If we are to create a compact case base,
the problem of paraphrasing needs to be addressed first. Failing in appropriately
handling this problem will result in a case base that does not offer much more than
a conventional information retrieval system.

While the paraphrasing problem is relevant for the phrases of all roles, there is
one problem that is related only to the finding role, which reflects the nature of the
MONITOR-and-DIAGNOSE task. This is the problem of the semantic orientation
of the phrases, that is, whether the phrases express something positive or negative.
Such a distinction is important, because the step of DIAGNOSIS depends on cor-
rectly identifying the negative findings (symptoms). Is the problem of identifying
the orientation of phrases different from that of paraphrasing? Yes. Does the so-
lution of the paraphrasing problem helps in identifying the orientation of phrases?
Not really, rather, it could hurt. To see that, consider the following two sentences:

The current values have hardly changed.
The current values have considerably changed.

These two sentences share everything but one word. Furthermore, they have the
same syntactic parse trees. Every machine learning framework that uses all kinds
of features (like e.g., LARC) but does not have access to lexical knowledge will
consider these two sentences as highly similar, that is, like paraphrases. However,
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the sentences are diametrically different in their meaning. Which one of the words is
positive or negative will depend on the nature of the application; the only important
thing is their different orientation in meaning. The entire Section 6.4 is dedicated
to the problem of identifying the orientation of finding phrases. In the meantime,
we direct our attention to the paraphrasing problem. The problem is analyzed in
detail by considering phrases belonging to OO roles, because in order to create the
case base we need to start from them. However, the resulting approach can then be
easily adapted to the other roles.

6.3 Distinguishing Among Observed Objects

At the heart of the MONITOR-and-DIAGNOSE task are the observed objects. In
Section 4.4 the complex nature of identifying the true observed objects was analyzed.
To circumvent this complexity, we decided to annotate everything that was observed
in the event of Observe with the OO label, in order to simplify the learning process
described in Chapter 5. Now we are faced again with the problem of identifying
observed objects whose condition is described in the narratives. So, which are the
observed objects? Instead of having a human expert deciding on this issue, we turn
to the narratives for empirical evidence. What are those phrases that were labeled
by LARC with the OO label? How often do they appear? Are they the same? If
not, how they differ?

We start the analysis by extracting the headword of all phrases annotated with
OO and counting their occurrences in the corpus of narratives. The results are
summarized in Table 6.1, with only occurrences appearing more than five times
displayed:

Count Headword

478 Strom-Wert

474 Kennwert

461 Kurve

416 Kurve-Verlauf

11 Gesamt-Strom

9 Absolut-Wert

8 aus2

6 bei

6 Mess-Wert

. . .

Table 6.1: Occurrences of headwords for OO phrases

2Prepositions like ‘aus’ (from) and ‘bei’ (at) are headwords in prepositional phrases.
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It can be noticed that the four most frequent headwords occur very often (recall
that the corpus has 490 narratives). Thus, these four terms can be considered as
some of the OO terms we are looking for. While it might seem that it was fairly
easy to arrive at concrete OO terms, the success should be attributed to the use of
headwords (which are extracted from the syntactic parse trees, see Figure 6.2, using
the heuristic rules described in [Collins, 1999]).

NP

CNP

NN KON NN

VU und

Phasender

NNART

NP

StromwertegemessenenDie

ART ADJA NN

(a) Parse tree for Phrase 4 in Table 6.2, headword is ‘Strom-Wert’.

NP

Funktionin NN

Messspannung

ART

der

NNAPART

NNAPPRStromwertenaus den

NNARTAPPR

PP

PP

NP

Die

aufgezeichneten

ADJA Kurven

(b) Parse tree for Phrase 4 in Table 6.4, headword is ‘Kurve’.

Figure 6.2: Examples of parse trees, generated with the Stanford Parser

Consider, for example, the Table 6.2, where all 478 different occurrences of
headword ‘Strom-Wert’ are tabulated. Now, consider Table 6.3 where the 461 dif-
ferent occurrences of headword ‘Kurve’ are tabulated. It can be noticed that the
word ‘Strom-Wert’, which appears in all rows of Table 6.2, is also present in 458
occurrences of Table 6.3. Had we not used parse trees for headword extraction,
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it would have been very difficult to automatically distinguish between all phrases
were ‘Strom-Wert’ is present. Indeed, a clustering approach based on a bag-of-words
representation of phrases would be inappropriate in this situation3. Thus, the sim-
plicity of identifying the prototypical terms for referring to OOs can be dedicated to
the power of the NLP constructs, such as lexicalized syntactic trees. Additionally,
the stemming of the words has also contributed to the normalization of phrases, a
necessity for the highly variable German words.

Nr. Count Observed Object Phrases

1 419 d gemessen Strom-Wert

2 36 d absolut Strom-Wert

3 4 d gemessen absolut Strom-Wert

4 3 d gemessen Strom-Wert d Phase U und V

5 3 d Strom-Wert

6 2 d maximal Strom-Wert

7 2 d gemessen Strom-Wert (Gesamt-Strom und Ableit-Strom)

8 1 d in d Anlage gemessen Strom-Wert

9 1 d hoch absolut Strom-Wert

10 1 d hoch Strom-Wert mit knapp NUM µA

11 1 d gemessen Strom-Wert messen an d Phase U und W

12 1 d gemessen Strom-Wert an d gesamt Stator-Wicklung

13 1 d gemessen Strom-Wert alle Phase

14 1 d Strom-Wert d Phase V und W

15 1 d Strom-Wert d Phase U

16 1 d Strom-Wert beziehen auf ein Temperatur von NUM

Table 6.2: Text phrases for OOs with headword ‘Strom-Wert’

What happens with the other phrases in Table 6.1 that do not have one of the
four selected terms as headword? There are two possibilities. Some of them might
be paraphrases of one of the four selected OOs and some of them might be OOs on
their own. How should we distinguish between these two possibilities? A way to
handle this problem would be to cast it as a classification problem.

There are some instances for which we know the category (the type of OO) and
some others which have an unknown category. A nearest neighbor approach could
then select a category among the available ones for the unlabeled instance or refrain
from such a decision, depending on whether the unlabeled instance is a paraphrase
of a known category or a new category. To see what is needed for implementing
such an approach, consider the instances in Table 6.4. A decision based on counting
overlapping terms of the instances (a common technique for detecting paraphrases,

3We make this assertion, because we tried out such a clustering and it did not work.
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Nr. Count Observed Object Phrases

1 438 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet Kurve

2 8 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet
Kurve d einzeln Phase

3 3 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet
Kurve d einzeln Halb-Phase

4 2 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet
Kurve d Phase V und W

5 1 d in Funktion d Mess-Spannung aufgezeichnet Kurve

6 1 d aus d bis dahin aufgenommen Strom-Wert in Funktion d
Mess-Spannung aufgezeichnet Kurve

7 1 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet
Kurve d beide Phase

8 1 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet
Kurve d Phase U und W

9 1 d aus d Strom-Wert in Funktion d Mess-Spannung aufgezeichnet
Kurve d Phase U und V

10 1 d aus d Strom-Wert d einzeln Phase in Funktion d Mess-Spannung
aufgezeichnet Kurve

11 1 d aus d Strom-Wert d Gesamt-Strom in Funktion d Mess-Spannung
aufgezeichnet Kurve

12 1 d aus d Strom-Wert aufgezeichnet Kurve

13 1 d aus d Mess-Wert in Funktion d Spannung aufgezeichnet Kurve d
einzeln Phase

14 1 d Kurve

Table 6.3: Text phrases for OOs with headword ‘Kurve’

e.g., [Barzilay and Lee, 2003] will not be decisive in this situation, because the terms
(‘d’, ‘Phase’, ‘U’) of the unknown instance appear in two training instances with
different labels.

OO Phrase

Strom-Wert d gemessen Strom-Wert d Phase U und V

Kurve d aufgezeichnet Kurve d Phase U und V

? d Phase U

Table 6.4: Instances of the OO assignment problem

Therefore, it will be required to select other features that can contribute in
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performing a classification. When it comes to classifying text, the context where
a word (or phrase) is embedded can play an important role. An example is the
agreement <Subject, Main Verb> or <Main Verb, Direct Object>, which is a
common method to cluster together similar nouns (e.g., [Hindle, 1990; Pereira et al.,
1993]. While experiments described in the literature refer to corpora of generic text
(news articles), there is no reason to believe that technical text (as that of our
corpus) would behave differently.

Indeed, as the examples of Table 6.5 show, when the subject of a sentence is the
OO with headword ‘Strom-Wert’, the most common verb agreeing with this subject
is the verb ‘liegen’ (lie). Statistics of the corpus show that 460 out of 499 occurrences
of verb ‘liegen’ serve as the main verb for the phrases with headword ‘Strom-Wert’.
So, the governing verb seems to be a strong indicator of the category of a phrase.
However, how accurate is a classification based only on the governing verb? To test
that, the following experiment was performed. The four most frequent headwords:
‘Strom-Wert’, ‘Kennwert’, ‘Kurve’, ‘Kurve-Verlauf’ were selected as lables, and the
verbs occurring with these phrases on the corpus were counted. The most frequent
verb for each label were respectively: ‘liegen’, ‘verändern’, ‘sind’, ‘ableiten’. The
remaining phrases (whose headword is not one of the four selected above) will then
participate in the classification. In total, there are 72 such instances. The classi-
fication process is simple: if an unlabeled instance appears with a verb connected
to a label, it will be classified with the respective label; otherwise, it will not be
labeled at all. The results of the experiment are summarized in Figure 6.3.

The first thing to notice in Figure 6.3 is the low value for the coverage. Actually,
while only the four most frequent verbs were used as features, there were 24 different
verbs represented in the 72 instances of the testing set. So, a way needs to be found
to include the other instances in the classification. A possibility is the grouping
of verbs in semantic classes. For example, the verbs [‘normalisieren’ (normalize),
‘erhöhen’ (rise), ‘steigen’ (rise), ‘ändern’ (change), ‘sinken’ (fall), ‘verbessern’ (im-
prove), ‘zurückgehen’ (fall)] indicate a type of change, so they can be grouped
together with the verb ‘verändern’ (change). However, if this information is not
available, it needs to be acquired from the corpus. A common way of clustering
verbs in semantic classes is by comparing the context where they appear [im Walde,
2003]. The underlying assumption is that verbs with similar meaning appear in
similar context, that is, they can replace each other in the same context. While
such an assumption is not universally true, it is acceptable for practical purposes.
Thus, in order to cope with the limited coverage of verb information, it will be
necessary to include context information in the classifier.

The second important observation in Figure 6.1 is that the accuracy is not
satisfying, too. By analyzing the positive and negative results of the classification,
we were able to gain a few important insights.

1. Correctly classified phrases are paraphrases of known headword phrases. So,
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Coverage: 30/72 = 0.42

Coverage measures the proportion of instances that were able to par-
ticipate in the classification, because they have as a feature a verb from
the group [‘liegen’, ‘verändern’, ‘sein’, ‘ableiten’].

Accuracy for each label:

Label Feature Accuracy

‘Strom-Wert’ ‘liegen’ 12/16 = 0.75
‘Kennwert’ ‘verändern’ 1/5 = 0.20
‘Kurve’ ‘sein’ 2/3 = 0.67
‘Kurve-Verlauf’ ‘ableiten’ 4/6 = 0.67

Total Accuracy: 19/30 = 0.63

Accuracy measures the proportion of correctly labeled instances out of
all instances that were eligible for classification.

Figure 6.3: Results of a simple classifier for OO instances

it seems that a classifier might be helpful in solving the paraphrasing problem.
This is good news, because the paraphrasing ability of the German language
is particularly powerful, due to the language’s inherent support for exten-
sive word composability. Some examples of correctly labeled paraphrases for
‘Strom-Wert’, are:

‘d gemessen Gesamt-Strom- und Ableit-Strom-Wert’
‘d Absolut-Wert d Strom
‘d gemessen Gesamt-Strom-Wert’

2. Verbs alone cannot distinguish between classes, because they do not occur
exclusively with one class. For example, in Table 6.5 (later on in this chapter)
we see that the verbs ‘liegen’, ‘sein’, and ‘verändern’ (selected as features of
different classes) appear all with class ‘Strom-Wert’. Thus, verbs on their
own are ambiguous features. The ambiguity of verbs is exacerbated by the
similar semantic categories of the OO terms. For example, ‘Strom-Wert’ and
‘Kennwert’ are both types of ‘Wert’ (value), although they denote two different
physical quantities in the application in consideration. A ‘Wert’ is possible to
change (‘verändern’), so that both ‘Strom-Wert’ and ‘Kennwert’ are equally
likely to appear with this verb.

3. The other source of classification error has to do with the ambiguity of the
OO phrases itself, due to metonymy. Examples are phrases such as: ‘Messung’
(measurement), ‘Mess-Wert’ (measured values), ‘Messung-Ergebnis’ (result of
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measurement). Such phrases cannot be assigned to one of the four classes,
because they are generic terms that apply to all of them.

The problem of metonymy is a serious one that needs further discussion. Con-
sider the following sentences (the English translation in parentheses):

1. Aus der Messung sind keine Schwachstellen abzuleiten. (From
the measurement no weak spots can be derived.)

2. Aus der Kurvenverläufen und der daraus ermittelten Kennwerte
sind keine Schwachstellen abzuleiten. (From the curves’ shapes
and the characteristic values calculated thereof no weak spots
can be derived.)

From the verb agreement and the whole sentence structure, it should be con-
cluded that “measurement = curve shape + characteristic value”. While in this
context such a conclusion would be true, this is one of those dangerous local truths.
In its primary meaning, a measurement is a process where something is measured.
Then, by means of metonymy, people refer to both the process and its products as
a measurement. Thus, all our OOs are in their generic sense kinds of measurement.
While the context in the previous situation permits to distinguish to which OO the
generic term measurement refers, this is not possible in the three sentences that
follow:

1. Die Messwerte haben sich nicht verändert. (The measured val-
ues have not changed.)

2. Die Stromwerte haben sich nicht verändert. (The current values
have not changed.)

3. Die Kennwerte haben sich nicht verändert. (The characteristic
values have not changed.)

The term ‘Mess-Wert’ can indeed apply to both ‘Strom-Wert’ and ‘Kennwert’.
Thus, a classifier that outputs more than one possible label is required, for example,
a probabilistic classifier that ranks labels according to their probability of applying
to an instance. Then, the final decision whether to choose only one label or to keep
them both, needs to be taken in the context of the application where these labels
are needed.

This analysis showed that the following things are important when looking for
a solution to the paraphrasing problem:

• We need a probabilistic classifier to assign a phrase to more than a class or to
no class at all.

• Verbs alone are no good features, because they are ambiguous.

137



6. Knowledge Summarization: Building the Case Base

• We need a more extended context than <Subject, Verb> or <Object, Verb>,
in order to handle verb ambiguity.

Finally, we are able to sketch a strategy for handling paraphrasing as a classifi-
ation problem:

• Use the redundancy of information to select prototypical values as class labels.
• Create a training set consisting of prototypical instances.
• Use a classifier to estimate how probable it is that the unlabeled instances

belong to one of the chosen classes.
• Instances that are not probable of being paraphrases of some known class

label will be labeled as unique exemplars.

An example of a probabilistic classifier that can be applied to the resolving of
paraphrases and it is based on the PTCM framework developed in Chapter 4 will
be presented in Section 6.5.

6.4 Identifying the Semantic Orientation of finding Phrases

Semantic orientation is related to the polarity of textual phrases. To exemplify
the problem of identifying the semantic orientation, a summary of the context for
the phrases of Table 6.2 that have as headword the term ‘Strom-Wert’ is presented
in Table 6.5. The table contains values for the FI role phrases (words have been
previously stemmed), their respective part-of-speech (POS) tags, and the governing
verb relating the OO phrase with the FI phrase. As expected, there are a few phrases
that occur very often in the corpus, the kind of information redundancy that will
be stimulating to our purpose of creating prototypical cases. The problem now is to
decide whether the other phrases that appear less frequently are only paraphrases
of the prototypes or state new and different information.

Table 6.5: Finding phrases for OOs with headword ‘Strom-Wert’
.

Nr Count Finding POS Governing Verb

1 346 in normal Bereich PP liegen

2 58 in normal nieder Bereich PP liegen

3 7 in nieder Bereich PP liegen

4 6 in hoch Bereich PP liegen

5 5 in niedrig Bereich PP liegen

6 5 in erwartet nieder Bereich PP liegen (4), sein (1)

7 4 in unter Bereich PP liegen

8 4 in erwartet Bereich PP liegen

9 4 in ein niedrig Bereich PP liegen

Continued on next page
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Nr Count Finding POS Governing Verb

10 4 in ein nieder Bereich PP liegen

11 3 relativ hoch AP sein

12 2 in ein normal Bereich PP liegen (4), sein (1)

13 2 in erwartet niedrig Bereich PP liegen

14 2 in normal niedrig Bereich PP liegen

15 2 in normal sehr niedrig Bereich PP liegen

16 2 in tief Bereich PP liegen

17 2 leicht ADV verändern (1), erhöhen (1)

18 1 in ein hoch aber dennoch er-
wartet Bereich

PP liegen

19 1 in ein sehr niedrig Bereich PP liegen

20 1 in etwas hoch Bereich PP liegen

21 1 in etwas tief Bereich PP liegen

22 1 in normal sehr nieder Bereich PP liegen

23 1 in normal unter Bereich PP liegen

24 1 in relativ nieder Bereich PP liegen

25 1 in sehr hoch Bereich PP liegen

26 1 deutlich hoch AP liegen

27 1 etwas PIS steigen

28 1 etwas stark AP ansteigen

29 1 geringfügig ADV erhöhen

30 1 nur unwesentlich AP erhöhen

31 1 relativ niedrig AP sein

32 1 stark ADV steigen

33 1 stark Unterschied NP zeigen

34 1 - - reduzieren

35 1 - - erhöhen

Once again, we remind that our intention is to extract as much knowledge as
possible from the task content and the narratives, without having to use external
linguistic resources. Our corpus is in German and we are not in the possession of any
resource similar to WordNet for the English language, which might assist us with
the kind of lexical knowledge on synonymous or antonymous words—knowledge that
could help in the semantic orientation problem. To appreciate the difficulty of the
undertaking, we will analyze in detail the nature of data in Table 6.5.

The first difficulty is related to the differences in the amount of content expressed
by the verbs. In Table 6.5, two types of verbs can be distinguished:
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Neutral Verbs: liegen (lie), sein (be), zeigen (show), erkennen
(recognize).

Meaningful verbs: verändern (change), erhöhen (rise), steigen and
ansteigen (rise), reduzieren (reduce).

For neutral verbs, the finding phrases are composed of many words (either PP
or NP). For meaningful verbs, the finding phrases are simple adverbs or adverbial
phrases, or as in the lines 35 and 36 there is no finding phrase at all, because the
whole meaning is expressed by the verb. Thus, for neutral verbs the meaning of the
finding phrase is self-contained, while for meaningful verbs the meaning of finding is
divided between the verb and its modifier (or composed by the combination of the
two). Meaningful verbs pose two problems with respect to orientation identification.
First, it needs to be decided how adverbial phrases modify their meaning, that is,
do the following phrases mean the same or different things:

nur unwesentlich erhöht (only insignificantly risen)
stark erhöht (strongly risen)

Second, it needs to be decided how the meaningful verbs and their modifiers
relate to neutral verbs with their finding phrases. That is, is there any similarity in
meaning between “slightly changed” and “show small changes”?

The second difficulty has to do with the composition of finding phrases. That
is, how will it be decided whether the phrases4:

(3) in nieder Bereich (in lower area)
(4) in hoch Bereich (in high area)
(7) in unter Bereich (in lower area)

are similar or different, if everything in their context (as Table 6.5 shows) is the
same, and they differ in only one word?

From these examples one thing is clear. The sentence, where an OO and FI
appear related by a verb, is not sufficient to decide about the semantic orientation
of FI phrases. Therefore, we need to turn to the task structure for additional
knowledge that might provide distinguishing cues.

For that, consider the schematic representation of two narratives in Figure 6.4,
one for the finding value ‘‘in hoch Bereich” and one for the finding value ‘‘in nieder
Bereich”.

The first thing to notice in the two narratives of Figure 6.4 are the different
sequences of event types. For the narrative shown in 6.4(a) the sequence is [OBS,
OBS, EXP, OBS, OBS, REC], for the narrative shown in 6.4(b) it is [OBS, OBS,
OBS, OBS]. Even if we don’t know anything about the domain, that is, we don’t
know the polarity for ‘in nieder Bereich’ or ‘in hoch Bereich’, the mere knowledge of

4The numbers in parentheses indicate the line number in Table 6.5.

140



Identifying the Semantic Orientation of finding Phrases

Sent 1: OBS ([OO 1 = ‘Strom-Wert’] liegen [FI 1 = ‘in hoch Bereich’]) AND
OBS ([OO 2 = ‘Kurve’] sein [FI 2 = ‘nicht gleichmässig’])

Sent 2: EXP

Sent 3: OBS

Sent 4: OBS

Sent 5: REC
(a) Narrative for the FI phrase ‘in hoch Bereich’

Sent 1: OBS ([OO 1 = ‘Strom-Wert’] liegen [FI 3 = ‘in nieder Bereich’]) AND
OBS ([OO 2 = ‘Kurve’] sein [FI 4 = ‘weitgehend identisch’])

Sent 2: OBS

Sent 3: OBS
(b) Narrative for the FI phrase ‘in nieder Bereich’

Figure 6.4: Schematic representation of narratives

the MONITOR-and-DIAGNOSE task and the sequence of events in the narrative
permits us to hypothesize that ‘in hoch Bereich’ is a negative finding, because the
narrative contains events of EXP (explanation) and REC (reccomendation), which
are connected with the DIAGNOSE step of the task. On the other hand, the nar-
rative for ‘in nieder Bereich’ contains only a sequence of OBS (observation) events,
which means that during the MONITOR step nothing of concern was observed.

Based on this task knowledge and the annotation of narratives with event types
and knowledge roles, we formulate the following hypotheses:

Hypothesis 1. All finding phrases that appear in narratives containing only OBS
events have a positive orientation

Hypothesis 2. Some of the finding phrases that appear in narratives containing
EXP and REC events might have a negative orientation.

The first hypothesis permits us to formulate another hypothesis:

Hypothesis 3. The positive finding phrases belonging to the same OO can be
considered as paraphrases of one another.

Especially Hypothesis 3 helps us in creating a compact case base, because it
groups together many finding phrases that differ in their verbalization, while ex-
pressing the same positive evaluation for an observed object.

We tested these three hypotheses for the finding phrases of Table 6.5. For that,
we divided the narratives in two groups: one group containing narratives that consist
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only of a series of OBS events, and the other containing all remaining narratives
consisting of mixed events. Table 6.6 presents the finding phrases according to their
group membership.

Phrases in narratives with
only OBS

Phrases in narratives
with mixed events

in ein nieder Bereich in tief Bereich

in ein niedrig Bereich in etwas tief Bereich

in erwartet Bereich in normal niedrig Bereich

in erwartet nieder Bereich in normal unter Bereich

in erwartet niedrig Bereich in relativ nieder Bereich

in nieder Bereich relativ niedrig

in niedrig Bereich in hoch Bereich

in normal Bereich in sehr hoch Bereich

in normal nieder Bereich etwas stark

in normal sehr nieder Bereich deutlich hoch

in normal sehr niedrig Bereich relativ hoch

in unter Bereich stark Unterschied

Table 6.6: Groups of finding phrases according to the structure of narratives

The phrases of the first column verify Hypothesis 1 that phrases in narratives
with only OBS events have positive orientation. Furthermore, the phrases are also
consistent with Hypothesis 3, because they are clearly paraphrases of one another.

The second column is divided into two parts: in the first half are the positive
phrases and in the second half the negative phrases. The phrases of this column
verify Hypothesis 2 that only some of phrases in narratives with mixed events (with
EXP and REC besides OBS) will have negative orientation. It is normal to ask why
only some of the phases have negative orientation. The answer lies in the relation-
ship: “one narrative = many cases”. Because in every narrative the condition of
several observed objects is analyzed, they do not happen to have all simultaneously
some kind of problem. Concretely, OO 1 (‘Strom-Wert’) might be in a positive
state, while OO 2 (‘Kurve’) might show a negative tendency. Therefore, positive
and negative phrases (belonging to different types of OO) will occur together in one
narrative.

Although we were not able to clearly distinguish between phrases with positive
and negative orientation, the performed experiment suggests the following strategy:

• Narratives containing only OBS events can be used to create a prototypical
model of a narrative consisting of positive findings related to every OO.

• The presence of EXP and REC events in a narrative contributes in identifying
possible negative findings.
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This strategy can be implemented with the help of the PTCM modeling, as
demonstrated in the following section.

6.5 The Probabilistic Task Content Model in Action

The two problems that were discussed in the previous sections, resolving paraphrases
and identifying semantic orientation, can be both casted into classification problems,
which can be solved by making use of the PTCM modeling. These solutions are
discussed in the following two subsections.

6.5.1 Resolving paraphrases

In Section 6.2, with the help of parse trees, four terms (headwords) for representing
four different observed object concepts were selected. The next problem was to decide
whether the remaining phrases with different headwords were paraphrases of the
selected observed object concepts or referred to new concepts. It was shown that two
baseline methods commonly used for recognizing paraphrases (counting the number
of shared terms, or using the context of a phrase) were not very successful. Here we
describe a successful classifier for the paraphrasing problem based on the PTCM
modeling. The basic idea of is to use the Viterbi decoding (refer to Section 4.5.1)
for the classification. The solution has two steps:

a) estimate the PTCM model using data from the training set
b) use the model to calculate the sequence of states that might have generated a

sentence containing a classification candidate (Viterbi decoding)

Training set: In order to create the training set, we take into consideration the
classification task. The goal is to classify the unknown phrases as one of the four
concepts: OO 1 (“Strom-Wert”), OO 2 (“Kurve”), OO 3 (“Kennwert”), and OO 4
(“Kurve-Verlauf”). Therefore, it is important that the model has a separate state for
each of these concepts. The other states will be reserved to the other knowledge roles
annotated in the episodic narratives: FI, EX, EV, etc. The creation of the training
set takes place as follows: Each annotated narrative is considered separately. If all
phrases annotated with the role observed object can be automatically assigned to
one of the four classes, the narrative enters in the training set, otherwise it is left
aside to be part of the testing set. Then, the annotated phrases of the narratives
in the training set will be grouped into clusters according to their roles.

Estimate the model: Once the phrases are grouped in different clusters, the sit-
uation is the same with that described in Section 4.5.2. Every cluster corresponds
to one state and the equations 4.19, 4.21 can be used to estimate the parameters
of the model. The EM-like Viterbi approach of parameter re-estimation can follow.
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Actually, this is not strictly necessary, because the states are already known. How-
ever, it can serve to improve some decisions of the role assignment task, by moving
some phrases from a state to another.

Classification: In order to perform the classification of the unknown observed
object phrases, a sequence of phrases is extracted from the narratives in the test set.
We used sequences of 3 phrases, where the phrase of interest is found in the middle.
An example is shown in Figure 6.5, with the phrase of interest pointed out.

narr_21−4 haben erwartungsgemäss verbessern

narr_21−3

narr_21−2 sein weitgehend identisch gleichmässig

aufgenommen Mess−Wert

phrase_ID phrase

Figure 6.5: Example of a sequence of phrases to be decoded

The phrases have been cleaned from stopwords and the words are normalized.
Given this observed sequence of phrases and the estimated PTCM model, by using
the Viterbi decoding process described in the Equations 4.11, 4.12 and 4.13 it is
possible to identify the most probable state sequence that has generated the ob-
served sequence. A useful modification of the Viterbi decoding is to store a few
of the possible best state sequences, and not only the best one. This turns out to
be useful when examining results, especially in verifying whether there are almost
equally probable state sequences.

The result of the Viterbi decoding is a sequence of states, for instance, in the
example shown in Figure 6.5 it is the sequence [FI, OO 3, FI]. The algorithm also
calculates the probability of the whole sequence and that of each of its elements.
Then, because the phrase of interest is in the middle of the observed sequence,
the state in the middle of the state sequence is the class we are looking for. The
algorithm proceeds in this way assigning a class to all unknown phrases in the test
set.

To see the effectiveness of such a classification approach, compare the accuracy
results shown in Table 6.7, calculated for a set of 72 test instances.

The first classifier is a baseline classifier that randomly assign to the phrases
one of the four classes. Every class has the same chance of being chosen, since the
four classes appear uniformly throughout the corpus. The shown result is averaged
over 100 trials of random assignment. The second classifier is the one described in
Figure 6.3, which used verbs as context features. The third classifier is the one we
just described, based on the PTCM model.
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Classifier Accuracy

Random 0.25
Verb context5 0.63
PTCM 0.85

Table 6.7: Results of classifiers for resolving paraphrases

The reason that the PTCM classifier is more successful than the baseline clas-
sifiers (i.e., those taking into account the words of the phrase and its context), can
be explained by the different kind of knowledge used in these classifiers. In fact,
the baseline classifier uses only local knowledge to make the classification decision,
while the PTCM classifier exploits global knowledge that was compiled from the
behavior of the whole corpus of narratives in the PTCM model. A higher accuracy
is impeded from the ambiguity of the context phrases, a topic discussed in detail
previously in this chapter. However, even in the case when errors were made, the
correct class appeared in the second best sequence, will a small divergence in the
probability score from the first best sequence.

6.5.2 Semantic Orientation

The problem of identifying the semantic orientation of the finding phrases can also
be represented as a classification problem to be solved with the help of the PTCM
model. For this purpose, the corpus is divided into two training sets: one contain-
ing the cases with instances of finding phrases believed to be non-negative and the
other containing the cases with instances of finding phrases believed to be negative.
All the other cases will constitute the test set. A separate PTCM model for every
training set is built by estimating the parameters of λ+ and λ− (the symbols + and
- indicate the non-negative and negative semantic orientation). The classification
itself consists in identifying the model with the higher probability of having gener-
ated a sequence O containing the phrase FI with the unknown orientation, as shown
in Equation 6.1.

max [P (O|λ+), P (O|λ−)] (6.1)

As for the procedure described in Section 6.5.1, three steps are needed: the
creation of the training sets, the estimation of the models, and the classification
itself.

5Recall that this value of accuracy was paired with a small value of coverage.
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Training Sets: Two training sets need to be created: one with non-negative
phrases and one with negative phrases. In order to prepare these training sets,
we exploit the hypotheses formulated in Section 6.4. More importantly, instead
of the narratives, we use the cases as instances for the training set. In creating a
case all events concerned with a unique observed object are grouped together. It
was for this reason important to identify all unique observed object concepts and
their corresponding phrases, so that they can be the starting points for creating
new cases. Concretely, the two training sets and the test set (which is created from
the instances that cannot belong to any training set) will have instances as the
examples shown in Figure 6.6. The ‘Training Set 1’ will contain only basic cases
which consist of the components of a single Observe event. The ‘Training Set 2’ will
contain composed cases which consist of the components or related events. These
cases must contain the Action component of the Recommend event. Then, the ‘Test
Set’ will contain all other cases that do not fall in one of the previous sets.

OO_1

OO_2

FI

FI

...

(a) Training Set 1

...

FI

OO_2 FI EX EV AC

ACOO_3

(b) Training Set 2

OO_4

OO_1

FI EX

EVFI

...

(c) Test Set

Figure 6.6: Different case structures serving as instances for classification

Estimate Models: Each PTCM model will have as many states as there are
annotated knowledge roles in the training sets. The parameters of the models will
be estimated as in the previous section, with the help of the Equations 4.19 and
4.21.
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Classification: The classification task is as follows. Given a new case for which
it is not known whether is contains a non-negative or a negative finding, calculate
for each of the models λ+ and λ− the probability that it has generated the case.
The probabilities P (O|λ+) and P (O|λ+) are calculated with the forward algorithm,
using the formulas 4.7, 4.8, and 4.9. Then, the model with the higher probability
score is chosen and its corresponding label (+ or -) is assigned to the phrase.

In order to have a competitive comparison scale for our classification approach
to the problem of semantic orientation, we turn to the fields of computational lin-
guistics and text mining, where this is a commonly studied problem. Actually, there
is a large literature on the topic, because semantic orientation is a component of
the analysis for discovering the subjectivity of a document. This problem has lately
become known under the label “sentiment analysis” and is concerned with finding
positive or negative reviews of products and items on the Web, such as movie and
book reviews, or reviews of other commercial offers. The difference between se-
mantic orientation and sentiment analysis is that the first applies only to words or
phrases while the second applies to a whole document [Cui et al., 2006].

Existing approaches, such as [Hatzivassiloglou and McKeown, 1997; Hatzivas-
siloglou and Wiebe, 2000] build classifiers that exploit lexical knowledge, concretely,
a set of adjectives that have been previously tagged as positive, negative or neutral.
Based on this idea, we have built an informed classifier that exploits domain-specific
lexical knowledge. All single words that contain polarity orientation (within the
given context) are manually labeled as positive (for example, words such as ‘nor-
mal’, ‘low’, ‘identical’) or as negative (e.g., ‘irregular’, ‘high’, ‘scattered’). The
classifier performs a majority vote among the words of a phrase; in case of ties, it
decides for the positive class (the most frequent in the whole corpus of narratives).

As a baseline classifier, we built a simple random classifier which assigns classes
to the phrases randomly.

Results: Following the procedures for building the training set, we create two
training sets containing 1571 cases with non-negative findings, and 66 cases with
negative findings, respectively. The test set has 239 cases that need to be classified.
The results of the classification for the three classifiers are summarized in Table 6.8.
The accuracy values are averaged over 10 trials. The PTCM classifier performs
significantly better than the informed classifier, according to the Wilcoxon signed-
rank test (p < 0.05).

Actually, one would expect for the informed classifier to perform better than
the others, since it uses domain-specific lexical knowledge. However, this lexical
knowledge is at the level of single words and not at the level of phrases. As it
turns out, the orientation of phrases does not depend only on the orientation of
the words, but also on the way they are combined in building the whole meaning
of the phrase. A usual phenomenon that is encountered often in the corpus of the
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Classifier Accuracy

Random 0.47
Lexically-informed 0.76
PTCM 0.83

Table 6.8: Results of classifiers for semantic orientation

narratives is that of “negation of negation producing a positive meaning”. Expres-
sions like ‘‘keine Unregelmässigkeiten” (“without irregularities”) or ‘‘Schwachtellen
sind nicht abzuleiten” (“weaknesses cannot be inferred”) are examples of such a
phenomenon.

Once again, the PTCM classifier performed better than the other classifiers,
because of its use of global knowledge concerning language phrases and their com-
bination in expressing related meaning.

6.6 Summary

This chapter was concerned with the creation of a compact case base. The kind of
connected case base that we build is also known as a case memory, since elements
of cases are connected to one another independently of case membership. Two
important problems that could undermine the compactness of the case memory
were identified and analyzed in detail. The first problem is that of paraphrasing,
i.e., referring to the same concept with a different wording. Discovering the true
concepts described in the narratives is important to bringing together events that
are concerned with one single concept. The second problem is more subtle and is
present in all those documents where opinions or evaluations are formulated. In
the context of our narratives it is known as semantic orientation and concerns the
polarity of the phrases that express finding concepts in the task MONITOR-and-
DIAGNOSE. Such phrases could be negative and non-negative, and we are very
interested in distinguishing between these two categories, because negative findings
(otherwise known as symptoms) are of great importance to the MONITOR-and-
DIAGNOSE task.

We were able to solve these two inherently difficult problems by building clas-
sifiers based on the PTCM modeling. Both described solutions constitute novel
uses of probabilistic content modeling. The results of the evaluations are very sat-
isfactory for the nature of the problems. Additionally, the PTCM-based classifiers
performed significantly better than the baseline and informed classifiers.
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Chapter 7

Evaluation

7.1 Introduction

To demonstrate that our knowledge extraction and summarization approach is suc-
cessful, we must show that it significantly improves the performance of the intended
task, which in our case is Textual Case-Based Reasoning (TCBR). To measure the
claimed improvements, at least four things are needed:

1. A gold standard.
2. Scenarios of testing situations.
3. Measures of evaluation.
4. A baseline system and a state-of-the-art system, against which to compare

our approach.

These four issues will be discussed in separate sections, explaining choices and
implementation. After this infrastructure for the evaluation has been set in place,
the results of the compared systems will be presented and analyzed.

7.2 Gold Standard

The long tradition of system evaluation in AI starts with the Turing test [Turing,
1950], which presupposes that if an evaluator (a human being) who is not in direct
contact with two task performers—a human being and a computer system—is not
able to distinguish between the two performers, then the computer system can be
deemed as successful.

Consequently, in the case the performance of a computer system needs to be
evaluated, it is reasonable to use as a standard of comparison the performance of
human beings, rather than an ideal performance.

The computer approach we have built is aimed at performing knowledge extrac-
tion and summarization. Thus, the gold standard should consist in the performance
of human experts in this task. We can think of two different situations of how ex-
perts can perform the task that is under scrutiny.

Situation A: A few domain experts write down in summarized form their knowl-
edge on the requested topic.
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Situation B: A few domain experts read all the documents and extract pieces of
knowledge while updating a summary of the extracted facts.

However, both situations have their disadvantages.
For situation A:

• Not all domain experts possess the same knowledge, due to their different level
and kind of experience.
• Human experts have difficulties to prioritize facts by supplying quantitative

information.

For situation B:
• People get bored by reading even dozens of documents, so that a range of

hundreds or thousands of documents (the quantity the computer system will
process) is not feasible.
• It is difficult to find just one expert that would participate in the task. A few

of them is unrealistic.
The participation of more than one expert in such evaluation efforts is important

in order to get an idea of the difficulty of the task. Since not all people have the
same abilities and knowledge, they usually perform differently at the same task.
Especially in computational linguistics, where there is no absolute knowledge and
the subjectivity is high, it is common to measure the degree of inter-annotator
agreement.

This agreement degree serves also as an upper bound for the success of the com-
puter system, because it is expected that the computer will generally not perform
better than humans1. The higher the value of the upper bound, the easier the task
is, so that one can hope for good results from computer systems, too. The opposite
is also true. For instance, when discussing the upper bound for the task of word
sense disambiguation, [Manning and Schütze, 1999, p. 234] report an upper bound
of 95% for words with clearly distinct senses, but an upper bound of only 65–70%
for words with many related senses.

Unfortunately, we cannot engage 2 or 3 experts in extracting and summarizing
knowledge from documents. The reason is simple: the time of domain experts is
very precious, while the process of manual annotation is labor-intensive and time-
consuming. Therefore, we are not able to identify the difficulty of the task. Fur-
thermore, it is also not possible to have a golden standard created directly from
human experts. To lift this burden, we did the following. After all documents were
annotated with the LARC framework, we manually checked and corrected the re-
sults of the annotation. Using a series of heuristics with regular expressions and
pattern matching, paraphrases for the selected concepts of observed object were de-
tected, classified, and normalized. The semantic orientation of the finding phrases

1There are of course a lot of tasks where computers perform better than humans. However,
those are tasks where precise algorithms and not heuristic search (as in AI problems) are used.
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was also identified. All the pairs 〈knowledge role, text phrase〉 within a narrative
were automatically chained for creating cases. The cases were checked for errors
and corrected when necessary. Then, the case base was created by connecting to-
gether the components of cases according to their type. Finally, a domain expert
was presented with the created case base in order to approve its content and suggest
corrections.

As it can be noticed, in creating the gold standard we used our automatic
approach and then manually corrected all errors. This means that the created gold
standard is nearer to the ideal standard than human performance (i.e., having to
create the case base entirely manually).

7.3 Testing Scenarios

TCBR is not a well-studied discipline as IR, so that there are no established pro-
cedures for the evaluation of TCBR approaches. In this section, we initially look
at the different TCBR approaches that were discussed in Chapter 2, to make clear
how much they differ in the evaluation procedures. Then, we describe the testing
scenario that will be used in our evaluation.

7.3.1 Existing Evaluation Procedures

In the following, four evaluation procedures used in four TCBR approaches discussed
in Chapter 2 are shortly summarized.

Brünninghaus & Ashley (Section 2.4.1): The primary goal in this approach is
to represent documents of legal cases with a set of factors that capture their meaning.
To assign the factors, the text is automatically transformed into a representation
with ProPs (propositional patterns). Although the tests showed that the accuracy
of this task on its own is not adequate, Brünnighaus & Ashley proceeded with the
evaluation by using the cases represented automatically with factors as input for
an algorithm that could predict the outcome of the legal cases (whether the legal
case was won or lost). The predicted outcomes are compared to the real outcomes
in a leave-one-out evaluation scheme that calculates values for the measures of
accuracy and coverage. These values are combined in one F-measure for predictions:
Fpred = 2∗accuracy∗coverage

accuracy+coverage , which is similar to the F-measure used in information
retrieval and calculated based on precision and recall. Although the automatic
assignment of factors to cases was not successful on its own, the predictions based
on the set of assigned factors are still successful (Fpred = 0.703).

Knoweldge Layers (Section 2.4.2): In this approach, the focus is on the rich
representation of cases that would improve case retrieval beyond that of an IR
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system that uses the simple bag-of-words representation. In order to prove the
contribution of the knowledge layers, Lenz envisioned the following scenario. He
took 25 documents in the form of question/answer pairs, reformulated each question,
and used the reformulated questions as queries to the TCBR system. If the system
retrieved the document containing the original question, the retrieval was counted as
a success. Based on the results of retrieval, a precision–recall curve was built. Then,
Lenz performed an ablation study, removing one by one the knowledge layers used
for the case representation. He plotted all precision-recall curves together to show
that the best performance was achieved when a case representation used the most
knowledge layers. The best result of these curves were at the point: precision = 0.7
and recall = 0.9.

Sophia (Section 2.4.3.3): To test the case retrieval efficiency of the Sophia
approach, its authors use a scenario known as “query-by-example”. Concretely, to
Sophia an entire document is presented, instead of a query of some key words as
usual, and for this test document Sophia finds a cluster of training documents that
share a context with it. From the items of the clusters, a minimum spanning tree is
created. The node (the document) that it is the most similar to the query (called
the nearest neighbor, NN) serves as a starting point to explore the tree and retrieve
other similar documents. Since the evaluation is performed on the documents of
Reuter-21578 corpus, in which all documents are annotated with the set of topics
that apply to each document, then, the relevancy of a retrieved document will be
based on the number of topics this document shares with the query document. If
the two documents share all topics the relevancy is high, when the shared number
decreases, so does the relevancy. Since often retrieving only one document (the
NN) is insufficient, documents at a distance of k edges from NN are retrieved. The
experiments showed that the best retrieval results were achieved when the definition
for the relevancy was not stringent (the two documents share at least 1 topic) and
the distance k was set equal or higher than 3.

PSI (Section 2.4.3.5): The testing procedure of PSI also depends on the concept
of the nearest neighbor. PSI uses a set of documents where each one has a label:
its class (for instance, the class was “PC” or “Mac” for the corpus of documents
described in Section 2.4.3.5). The retrieval process works in the following way: for
each document in the testing set, the k most similar documents are retrieved (by
comparing their feature vectors). The class of the test documents is predicted as a
majority vote among the labels of the k retrieved documents. The accuracy of this
prediction is calculated as the ratio of the correctly predicted labels to the total
number of test documents. Since the principal goal of PSI is to find an appropriate
representation of cases, the accuracy of the approach is plotted against the number
of features used in representing each case (from 10 to 120 features). The results
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showed that 20 features per documents was a representation that could compete
with the 10-features representation of LSI, however, the accuracy values changed
widely among different data sets (from 59.9% to 95.8%.

7.3.2 Describing Testing Scenarios

The testing scenarios described in the previous section show clearly how much the
evaluation procedures depend on the information available with the documents.
For instance, both Sophia and PSI (which are domain-independent), although are
knowledge-lean approaches and don’t use external resources for processing text,
when it comes to evaluation rely on information external to the documents, such
as their topic or class labels, which were assigned by domain experts. Because
these approaches use corpora that were prepared for text classification tasks by
community efforts (e.g. the Reuters corpus or the 20 Newsgroups), such kind of
information is readily available. Instead, the other two knowledge-rich approaches
use corpora of documents for which such an information neither exists nor it makes
sense, because the corpora are very homogeneous (e.g., all the documents used by
Brünninghaus & Ashley are legal cases in the domain of trade secret, thus they share
the same topic). On the other hand, these two knowledge-rich approaches depend
on information inside the documents: the fact that the document is composed as a
pair of question and answer or that the legal case has a defined outcome.

Since we are interested in case-based reasoning and not case-based classification
(which is what the knowledge-lean approaches do), we will follow a strategy which
is nearer to that used for the evaluation of knowledge-rich approaches. Such an
evaluation can be regarded as goal-based. As an example, consider the approach
of Brünninghaus & Ashley, where the final goal is to be able to predict in advance
whether a new case can be won or lost based on the available facts. One can then
try to build an argumentation strategy that brings in evidence those factors that
contribute to a win.

The goal in our TCBR approach is to assist inexperienced users in successfully
performing the task of MONITOR-and-DIAGNOSE. Based on the discussion of the
previous chapters, the more relevant questions in the context of this task are:

1. Given an observed object, what are all possible types of findings for it?
2. Given a finding, what are all possible hypotheses for its presence?

The first question contributes to avoiding the problem of “missing the symp-
toms”, that is, failing to notice types of findings which are not very obvious or very
common. The second question is important in the context of the DIAGNOSE task.
As it is known especially from medical diagnosis, the presence of a symptom can
be explained in different ways2. Diagnosis proceeds by checking one by one every
hypothesis, starting from the most probable to the least probable.

2For instance, high fever is related to different underlying causes.
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At this point it is necessary to stress out again that the TCBR approach for
the task of MONITOR-and-DIAGNOSE is different from others discussed till now.
These other approaches limit themselves in retrieving only a few cases that are
similar to the query, because they implicitly assume that there is only one solution
to a given problem. However, this is not true for the DIAGNOSE task, where
several hypotheses might be possible, and it is the task of the human user to choose
the one that applies to the situation by ruling out the others3. But in order to do
that, these several hypotheses should be known to the user. This is what TCBR
does: it supplies the user with different findings or hypotheses from the case base
of episodes it has stored. The important role that our knowledge extraction and
summarization approach plays in this scenario is that it takes care to supply only
unique answers and presents them ordered according to the frequency of occurrence
in the corpus. In this way, redundancy turns out to play a positive role by supplying
information to the ranking procedure.

Recapitulating the discussion of this section, there will be two testing scenarios
for the TCBR approach:

1. Retrieve all finding information related to some type of observed object.
2. Retrieve all explanation information related to some type of finding.

To measure the success in these experiments, evaluation measures are needed,
a topic discussed in the following section.

7.4 Measures of Evaluation

In the summaries of evaluation approaches in Section 7.3.1, several measures were
encountered: accuracy and coverage for classification tasks, or recall and precision
for retrieval tasks.

The described testing scenarios involve retrieval; therefore, recall and precision
are good candidates for measuring performance. However, differently from other
approaches that retrieve whole documents, we are interested only in retrieving pieces
of case knowledge. For that reason, we formulate precision and recall in the following
way:

precision =
number of retrieved items that are correct

number of all retrieved items

recall =
number of retrieved items that are correct

number of all correct items

3This is the task of the human user and not of the computer system for two reasons: a) the
computer system might not have access to the object under monitoring, and b) a causal domain
model might either not be available or not be known at all.
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In these formulas, the fact whether an item is “correct” or the “number of all
correct items” is established from the gold standard that was created as described
in Section 7.2.

Having in mind the nature of the testing scenarios, the following two points are
very important to the success of the approach:

1. Are all correct knowledge items retrieved?
2. How does the process of summarization affect user information overload?

Naturally, a typical way to measure and compare the succes of retrieval is to plot
the values of precision and recall against each other, as shown in Figure 7.1. The
precision–recall curves in this figure belong to three hypothetical, different retrieval
systems. Based on the meaning of precision and recall, the presented curves reveal
that the best retrieval system is System 1. This is so, because when each system has
retrieved a total number of items equal to the predefined correct items, System 1
has among its results 90% correct items compared to only 52% or 17% of the other
two systems.

Although the curves in Figure 7.1 help in answering the first question, they
do not clearly estimate the information overload a system puts on the user. As
information overload (within the context of TCBR) is considered the amount of
documents a user has to inspect in order to collect all unique facts related to a
query. It is considered as an overload, because many of the retrieved documents will
not contribute new information on the query, forcing the user to continue reading
other documents. This is an effect that a system that performs summarization tries
to avoid.

Therefore, in order to estimate the information overload, we will plot the values
of recall against the increasing number of retrieved items. In this way, it will be
possible to know after how many retrieval steps the systems was able to retrieve
all correct items. The curves in Figure 7.2 demonstrate the situation for the three
systems that were also shown in Figure 7.1. The results of Figure 7.2 show that
System 1 not only has a better precision–recall ratio that the two other systems (as
depicted in 7.1), but it also puts a very small overload on the user (the user has to
read far fewer documents than for the two other systems).

7.5 Reference Systems

The evaluation of a new approach is not complete if its performance is not compared
to that of existing approaches. In fact, it is not sufficient that the system achieves a
good performance with the gold standard, because a good performance is a relative
concept: “good compared to what?” What is needed is that the performance is
statistically better than that of other approaches.

At least two kinds of comparison are necessary: the comparison with a baseline
system and the comparison with a state-of-the-art system. The basic idea under
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Figure 7.1: An example of precision-recall curves
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Figure 7.2: An example of recall curves
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these choices is simple. A baseline (the simplest approach in performing the task)
is needed as a lower bound. A new system that performs worse than the baseline
cannot be considered successful. A state-of-the-art system is needed as an upper
bound of efficiency. A new system that performs better than the state-of-the-art
contributes in pushing the state-of-the-art further. In the following, we discuss our
choices for the baseline and state-of-the-art reference systems.

7.5.1 Baseline System: Probabilistic IR

The simplest form of TCBR is plain retrieval with an IR system. It is the simplest
form, because it does not consider any kind of text processing that is related to the
specific domain or task of the corpus of documents. In fact, an IR system proceeds in
a straightforward way: given a corpus of documents, it creates an inverted index of
the terms. Then, at query time, it compares the entered query with the documents
(represented in some chosen format) and presents the most similar documents to
the user according to some established ranking procedure.

No domain or task knowledge, no special similarity functions are needed. In-
deed, many TCBR systems use initially an IR system to collect a group of relevant
documents, and only later perform domain-specific processing.

There are different types of IR systems in use. The easiest to build are those
systems that use a vector representation based on the “bag-of-the-words” approach.
An example is Lucene4, an open-source API that is routinely used for building
customized IR systems. However, research in IR has shown that other models of
indexing and retrieval perform better than the vector space representation used by
Lucene. An example is language modeling, an instance of probabilistic IR, described
in [Ponte and Croft, 1998].

The basic idea in [Ponte and Croft, 1998] is to regard every document as a
probabilistic distribution (language model) and the query as an event that might
be generated from this distribution. When a new query is presented to the system,
the conditional probabilities of the query given every document distribution are
calculated. Then, the documents with the higher probability of having generated
the query are retrieved and ranked from the highest to the lowest probability score.

The reason for choosing this approach is that it has a similar theme to the one
used in this thesis, that is, probabilistic modeling. We will refer to this approach in
the following as P-IR (for probabilistic information retrieval).

7.5.2 State-of-the-art System

In Chapter 2, we discussed two types of approaches for TCBR: knowledge-rich and
knowledge-lean approaches. Then, we argued in this thesis that our approach can
be considered as knowledge-enhanced, falling in-between these two approaches. The

4http://jakarta.apache.org/lucene
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compromise we strike has to do with the amount of knowledge engineering versus
user information overload. A knowledge-rich approach is knowledge engineering
intensive (because the specific domain needs to be modeled), while a knowledge-lean
approach has a minimum knowledge engineering cost. For our knowledge-enhanced
approach it can be said that it has a moderate knowledge engineering cost (e.g., we
model the task as well as use lingustic constructs).

Actually, a knowledge-rich approach, which is usually tailored to the specifics of
the domain, would be the best approach in fulfilling user needs for problem solving.
However, since its cost of implementation is often prohibitive, it cannot be a feasible
solution for common use. Thus, the important question that our approach needs to
answer is:

Does the extra-cost of knowledge engineering in the knowledge-enhanced
approach justifies its use versus the use of some knowledge-lean approach?

We discussed three knowledge-lean approaches in Chapter 2: Sophia, LSI, and
PSI. As mentioned previously in this chapter, both Sophia and PSI depend on infor-
mation that should be available outside the corpus of documents (topics associated
to a document or class labels). Such information is generally not available for real-
world corpora of documents. Furthermore, it is unclear how it can be assigned to
homogenous corpora, where all documents share the same topic. Therefore, the
only knowledge-lean approach that does not put any constraints to the corpus of
documents is LSI. Actually, using LSI as the state-of-the-art approach makes sense
for two other reasons. First, LSI was considered as a better approach than PSI in
the discussion of Section 2.4.3.5. Second, and most importantly, LSI is based on
the idea of latent concepts that generate the text in a probabilistic fashion, an idea
which is central to our approach, too.

7.6 Results of Evaluation

In Section 7.3.2, we argued that a TCBR approach, which is aiming for more than
case-based classification, needs to look closely at the task for which the system will
support the user, in order to determine an evaluation procedure. Based on the
knowledge about the task MONITOR-and-DIAGNOSE described in this thesis, the
following scenarios were deemed as the most important in evaluating how well the
TCBR system will support the user:

1. Retrieve all finding information related to some type of observed object.
2. Retrieve all explanation information related to some type of finding.

What do these scenarios mean concretely? For the first scenario, phrases for the
concept of observed object should be presented to the the system, while expecting
to get as an answer either documents or pieces of knowledge that contain finding
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phrases. The second scenario works in the same way except for the use of finding
phrases as queries and and of explanation phrases as answers.

There are three systems whose output will be evaluated: P-IR, LSI, and KES
(an abbreviation for knowledge extraction and summarization). The P-IR system
is built using a unigram language model, while the LSI system uses a representation
of documents with 10 features. Though we use the label KES to refer to our system,
the system itself is the TCBR system that was created by using the KES approach.

In the prepared gold standard, cases contain information about their respective
knowledge roles: observed object, finding, explanation, etc. Therefore, phrases for
querying the three systems are chosen from the gold standard. We have built an
inverse index file where for each pair 〈knowledge role, text phrase〉 the list of file
names where the text phrase appears is stored. This is necessary, in order to evaluate
the retrieval results of the two systems P-IR and LSI, which return file names as
retrieval results.

What will exactly happen during the evaluation process? The process will be
very similar to a real experience in using every system. Concretely, if the user wants
to know about explanations for the appearances of deviations on the measurement
curves, she will submit a query to the system containing the words “Kurve” (curve)
AND “Abweichung” (deviation). Both P-IR and LSI (despite their different internal
implementations) will produce as a result of this query a list of ranked documents,
which are relevant to the query according the used retrieval method. The user
will have then to read the documents, in order to find the answer to her implicit
question: “What are the reasons for deviations of curves?” Instead, the KES-based
system will produce a list of knowledge items, as shown in Table 7.1.

% Headword of the EX phrase

0.43 Verschmutzung (dirtiness)

0.21 Glimm-Schutz (corona protection)

0.07 Ankopplung (coupling)

0.07 Veränderung (change)

0.07 Potential-Steuerung (potential steering)

0.07 -- (empty phrase)

0.04 Isolation-Schwachstelle (insulation weakness)

0.04 Temperatur (temperature)

Table 7.1: An example of results from the KES-based system

Items in Table 7.1 are ranked according their frequency of appearance in the case
memory. For example, at the first row we find an EX phrase with “Verschmutzung”
as headword, because it appears in 43% of cases where the FI phrase contains the
term “Abweichung” of the query.
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The KES-based system provides in this way a summarized view of the knowledge
contained in the documents, by anticipating the user needs for a type of knowledge,
based on the explicit model of the task embedded in the system.

From a usage point-of-view, the phrases of the table are connected to the docu-
ments from which there were extracted, so that the user can retrieve and read the
whole document if necessary. The advantage of a representation of the results as
shown in Table 7.1 lies in its compactness. The user is met with several possible
choices that could answer her question and can decide what further actions to take,
without feeling the pressure of having to settle for incomplete information, because
of the burden of information overload.

Having explained what kind of queries and results we expect from the evaluation
procedure, we describe in the following the nature of the retrieval experiments. We
performed 5 runs of retrieval experiments. In every run, 5 phrases of observed
object and 5 phrases of finding are selected randomly from the phrases in the golden
standard. The results for precision and recall of the query phrases in one run
are averaged, and the same is done for the overall results of the 5 runs. From
the averaged results, two types of plots are built: the precision–recall curves (see
Figure 7.3) and the recall versus number or documents curves (see Figure 7.4).

The graphs show that on average our KES-based system answers a query with
a list of 16 items, while showing a constant precision-recall ratio. Differently from
that, the precision values for the two retrieval systems, P-IR and LSI, deteriorate
very quickly. This is the result of the redundancy in the corpus. The fact that a
document contains the words of the query does not mean that it contributes new
information to the user in terms of the knowledge task.

A result that is important to our approach is what can be found in Figure 7.4.
For the same recall value of roughly 80%, the information overload for the KES-
based system is 10 times lower than for the next best system.

7.7 Discussion of Results

In order to understand the better results of the KES-based system, we need to look
at the kind of information that is stored in the created case base and how it is
organized. For that, refer to Figure 7.5.

The figure shows that the case base can be thought of as composed of two
layers. The upper layer is the one that contains the states of the PTCM model (or
the knowledge roles of the task structure, such as OO, FI, etc.). Each of these states
serves as a steering-wheel towards the expected information. To understand this
concept, recall that the formulation of a query always contains known information to
the user and that the goal is to exploit this known information to retrieve unknown
information. For instance, when in the context of the MONITOR-and-DIAGNOSE
task a query containing terms related to the concept of OO is presented, the interest
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Figure 7.5: A Partial View of Case Base Structure

of the user is not in the OO concept itself, but in information related to it, which
is momentarily unknown to the user. In the case of Figure 7.5, this information
can be found in the state directly connected to OO, namely the state FI. The same
can be said for queries with FI phrases. Indeed, if we already know that a type of
finding (a symptom) is present, then our interest is in learning an explanation for
it.

The second layer of the case base could be seen as represented by the language
models of the PTCM model. Within them, the phrases which were found to be
paraphrases (see Section 6.5.1) are grouped together. Groups of such phrases from
different states are linked together according to the fact that they appear together
in cases. Once during the query we have found one of such nodes, the results of
the retrieval are the adjacent nodes of the successive state, ranked according their
frequency of appearance. In this way, we make sure that only the anticipated,
relevant information is retrieved in answer to a query.

What makes the case base retrieval really effective is the fact that the queries
are directed to the respective state. Actually, when a query is presented to the
system, the latter does not know to which state the query corresponds. However,
the PTCM-based classifiers are used to predict the state that has generated the
query and the query is directed to that corresponding part of the network. This
procedure can be seen as a kind of compression of text. This is the case, because
while in the P-IR and LSI systems it is looked after all document appearances of
the query terms, in the KSE-based system instead, all phrases containing a query
concept are collected together in one node. For one example, recall that in Chapter 6
it was shown that there are at least 4 instances of the observed object concept in the
corpus. If they are selected as the root nodes for the case base, they will achieve
compression ratios (the number of times a words appear in the corpus versus the
number of nodes connected with the word) as shown in Table 7.2. Concretely, the
first row means that even if there are 1003 appearances of the word ‘Strom-Wert’
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in the corpus, when it comes to the KES-based system, the query containing this
term will be directed to a single node.

Table 7.2: Compression rate for the root nodes of the case memory.

Node Type Compression Ratios

OO 1 = ‘Strom-Wert’ 1003 : 1
OO 2 = ‘Kurve’ 969 : 1
OO 3 = ‘Kennwert’ 702 : 1
OO 4 = ‘Kurve-Verlauf’ 485 : 1

Although the KES-based system performs better than the other systems, still
precision–recall curves are in the levels of 80−85%. So, why does KES not perform
nearer to the 100% mark? The answer lies in the composite nature of the approach,
that is, the fact that its results depend on the results of all steps that contributed
in creating the case base. We saw in Chapter 5 and Chapter 6 that none of the
tasks such as text annotation, paraphrase resolution, or semantic orientation could
perform better than 85%. If we will be able to push these results beyond this level,
the results of the whole system will also improve. Important is the fact that the
results of the KES-based TCBR approach are in the same level of other knowledge-
rich approaches (results that were discussed in Section 7.3.1), although no specific
domain-dependent modeling was used, and that the results are better than those
of knowledge-lean approaches, because incorporating additional (automatically ex-
tracted) knowledge to a TCBR approach positively affects the performance, while
not increasing significantly the burden of knowledge engineering. Finally, the event-
oriented perspective, which permeats the whole KES method, endows our TCBR
approach with abilities to go beyond the simple retrieval of documents performed by
knoweledge-lean approaches, as exemplified in the ability to anticipate information
by using the relationships within event structures.

7.8 Summary

At the very beginning of this thesis, in Chapter 1, we described our approach as
one that will satisfy the following scenario:

• a user needs information/knowledge while performing a knowledge task
• the task is performed by the principles of case-based reasoning
• the needed information/knowledge is contained in text documents that de-

scribe previous episodes of solving the same task

During the course of the thesis, we described the knowledge task MONITOR-
and-DIAGNOSE, determined what kind of knowledge an inexperienced user might
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need during the performance of this task, and continued by representing this need
in terms of events and knowledge roles constituting the task structure. Then, we
argued that CBR is an appropriate choice even when the process of problem solving
will be performed by a user and not a software system, because CBR gives direct
access to previous problem solutions that are relevant to a current problem setting,
without the need for having a formalized domain model. Especially new users lack
the wealth of experience that will suggest possible paths for solving a problem;
therefore, CBR will enable bridging such a gap. Finally, by using our knowledge
extraction and summarization (KES) approach, we transformed a corpus of episodic
textual narratives in a case memory that organizes knowledge according the task
structure.

In this chapter, we were able to demonstrate empirically that the KES-based
system was able to perform successfully in offering CBR support during the per-
formance of the MONITOR-and-DIAGNOSE task, by simultaneously fulfilling two
goals: reducing information overload and anticipating information needs related to
the task. The shown results could improve in the future, if the distinct processes
of knowledge extraction and knowledge summarization, which were described and
evaluated separately in Chapter 5 and Chapter 6, will benefit from further advances
in natural language processing and machine learning.
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Chapter 8

Conclusions

At the conclusion of this thesis, we return to the list of contributions anticipated in
Chapter 1 and summarize them in the light of the discussions and results presented
in the preceding chapters.

8.1 Contributions

Event-oriented perspective: Contrary to existing TCBR approaches that re-
gard every text document as a single case that can be represented by a set of
features, we regard a text documents as the output of an underlying probabilistic
model. Although such a model is often unknown, we hypothesize that for episodic
textual narratives (documents that contain episodic knowledge, the kind of knowl-
edge which is fundamental to the CBR approach) this model corresponds to a set
of related events and their participants that are components of the structure of the
task described in the narratives. In fact, based on this hypothesis, we were able to
annotate automatically a corpus of episodic narratives with event types and knowl-
edge roles, an annotation that allowed us to combine knowledge pieces with the
same meaning but from different narratives in creating a compact case base that
supports users in performing the task in question.

Flexible case structure: Differently from the majority of TCBR approaches,
where a case is represented by a fixed set of binary features, the representation
structure used in our approach is not fixed. Rather, in conformance with the prob-
abilistic aspect of the representation, the structure of each case is flexible and will
depend on the kind of events present in a narrative. Although there is a case tem-
plate consisting of the knowledge roles representing the task structure, issues such
as which of the case slots will be filled and with what value display a stochastic
nature. Actually, this stochastic nature, which is reflected in either redundant or
rare occurrences of information, was one of the sources of knowledge that made it
possible to extract valuable pieces of domain knowledge for the case base.

165



8. Conclusions

Domain-independent, task-dependent: Knowledge-rich approaches in TCBR
are clearly domain-dependent, a characteristic that usually contributes to a large
knowledge engineering overhead. The proposed approach avoids such a burden by
following an established principle of knowledge modeling: distinguishing between
the domain and the task of an application. In general, tasks transcend domains,
and due to their transversal applicability their structure is often generally known.
Furthermore, task knowledge is much more concise and focused than domain knowl-
edge. These facts make the automatic extraction of task-based knowledge by means
of machine learning much easier than the extraction of domain-based knowledge.

Synthesis of case knowledge: Existing TCBR approaches are more about re-
trieval than reasoning. We were able to introduce a first degree of implicit reasoning
because of the causal model inherent in the structure of the knowledge task. Our
TCBR approach, instead of retrieving all documents containing the given query,
presents a list of facts that are related to the entered query according to some
relationship. The retrieved facts are also ranked according to their frequency of
appearance in the corpus of narratives. All this was made possible by removing
some of the implicit assumptions of existing TCBR approaches, such as: “one doc-
ument = one case = one problem solving situation” or that of “one retrieved case
is sufficient”.

The aforementioned characteristics are all contributions on the conceptual level.
While attempting to fulfill them concretely, we came up with two software solutions:
the LARC framework (Section 8.1.2) and the PTCM model (Section 8.1.3). What
makes these solutions appealing compared to existing solutions is the fact that they
can be regarded as knowledge-enhanced approaches, as discussed in the following.

8.1.1 A Knowledge-Enhanced Approach

In Chapter 2, two existing methodological approaches to TCBR were analyzed:
knowledge-lean and knowledge-rich. We then argued that our approach is on the
one hand different from knowledge-rich approaches, because it does not perform
domain-dependent modeling, and on the other hand different from knowledge-lean
approaches, because it uses domain-independent knowledge sources, available out-
side the corpus of narratives. For the latter reason, we denoted our approach as
knowledge-enhanced, ordering it in-between knowledge-lean and knowledge-rich ap-
proaches. The most important characteristic of the knowledge-enhanced approach
is that is strives towards two apparently conflicting goals: reducing the information
overload on the user side and reducing the knowledge engineering overhead on the
developer side.

166



Open Questions

8.1.2 The LARC Framework

The knowledge extraction part of our TCBR approach was performed with the help
of the LARC framework, which was designed and implemented with the purpose of
accomplishing the annotation of narratives with event types and event participants:
knowledge roles. Although LARC is largely based on computational linguistics ap-
proaches for semantic role labeling, it has a novel characteristic—an active learning
strategy—that makes it appropriate to be used with corpora of domain specific
narratives, the kind of corpora used in TCBR systems.

8.1.3 The PTCM Model

The knowledge summarization part of our TCBR approach was performed with the
help of the PTCM model. Although the PTCM model is simple (compared to other
probabilistic models), the fact that we used annotated data to build it, turned the
model into a flexible knowledge source for solving several classification problems.
Indeed, we used it successfully for two difficult problems: resolving paraphrases of
underlying concepts and identifying the semantic orientation of textual phrases.

By applying the combined approach of knowledge extraction and summariza-
tion, we built a compact case base from a corpus of task-content narratives. The
experiments in Chapter 7 supported our hypothesis that a case base built with
the knowledge extraction and summarization approach achieves the reduction of
information overload on the user side.

8.2 Open Questions

Interesting questions start appearing once some of the accepted assumptions are
relaxed or lifted. Since many of such questions fall outside the specific focus of this
thesis, we will only formulate them to serve as a reminder of future work.

• What happens when the corpus of narratives is not grammatical? Clearly, in
such situations, statistical NLP tools such as the POS taggers or the syntactic
parsers will be not applicable and the LARC approach cannot work in the
described way, since it cannot use the features extracted from the output of
the before-mentioned tools. Thus, it would be interesting to test whether
other “lightweight” linguistic technologies can perform text processing with
comparable results.

• What happens when there is no known task structure? In fact, it could be that
the episodic narratives describe a task, for which a known structure (as for
the task MONITOR-and-DIAGNOSE) is not available. Another possibility is
that the narratives were not generated as a response to a knowledge task but
to some other source of events or processes. In these situations, inducing the
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structure of the generating source from the available data is needed. Currently,
this is still an unsolved problem [Russell and Norvig, 2003, p. 733].
• If some knowledge sources as those described in the Knowledge Layer approach

are available (that is, the knowledge engineer need not to create them man-
ually from the domain in question), how could they be incorporated into the
probabilistic modeling process? Knowing that our knowledge-enhanced ap-
proach was successful from exploiting existing domain-independent sources,
incorporating domain-dependent knowledge sources to the automatic process-
ing of the narratives could be even more beneficial.

8.3 Limitations

The major limitation of this thesis is that the proposed approach has been tested
with a corpus of data belonging to one domain only: episodic narratives from the
task MONITOR-and-DIAGNOSE in the domain of electrical engineering. While
in the tests shown throughout the thesis only one subcorpus1 was used, we have
also tested the approach for the other available subcorpora and the quality of the
results is equal to the shown ones. However, quantitative evaluations have not been
included, because in order to do that, we need to manually prepare the case base
so that a comparison can take place. Such a manual process has a high cost and
does not contribute new information, since the subcorpora have the same nature.

The ideal situation would have been to either have data from another domain
where the MONITOR-and-DIAGNOSE task applies, such as for instance medical
data, or even better, data from a new knowledge task. We were, however, not able
to come into the possession of such data.

On the other hand, many of the TCBR approaches described in the literature,
especially those known as knowledge-rich approaches, have also been tested in one
domain only.

However, although we used data from one domain only, we made almost no use
of domain knowledge (with the exception of having a domain user to annotate a
few sentences with knowledge roles during the active learning approach), so that
the approach can be directly transferred to another corpus of narratives describing
the task MONITOR-and-DIAGNOSE coming from a completely different domain.

8.4 Future Work: Connect to Other Research Fields

One of the disadvantages of TCBR research is its limited relationship to other
current research topics. Historically, TCBR has been related with Information
Retrieval, Information Extraction, and lately with Text Categorization. We tried
to extend the group of related fields, by making as a central theme of this thesis the

1We have used narratives belonging to a single diagnostic test.
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contribution that recent NLP research directions can give to TCBR. However, in the
last years, a proliferation of other text-related research directions can be noticed,
as a response to the fact that the largest part of information and knowledge in the
Web is in textual form. While such fields refrain from following the clear goals of
TCBR, they are often interested in reasoning with text in a larger, generic context;
therefore, TCBR can only gain by trying to include ideas and tools from these fields
in its spectrum.

In fact, we see it as an important goal of our work to establish connections
between TCBR topics and topics from several of the fields discussed in the following.

Machine Reading: Machine Reading (MR) is a new research subfield that is
concerned with “the automatic, unsupervised understanding of text” [Etzioni et al.,
2006]. It has as one of its inspirations the research of Roger Schank on story
understanding, a research which also gave birth to CBR, as mentioned in Chapter 2.
Differently from IE, in which the set of entities and relations to extract is fixed in
advance and is relatively small, in MR there is no such limitation. An important
aspect of MR is that it is interested in the creation of a set of coherent beliefs based
on the corpus and a background theory, which would update the machine’s existing
knowledge and permit probabilistic inference. Most importantly, MR will make
use of self-supervised methods, which will enable the learner to discover concepts
on the fly and automatically label examples. A first prototype that implements
some of the ideas of MR is the system TextRunner, developed at the University
of Washington [Cafarella et al., 2006]. TextRunner performs searches on a large
extraction graph that is created with information from a huge number of Web pages
(approximately 90 million pages). The information is in the form of triples of
phrases that correspond to a relation between two entities. For instance, a triple
could be: (“Albert Einstein”, “discovered”, “the Theory of Relativity”). The first
and third items of the triple will be nodes (that is, entities) and the second item
(the relation) will be an edge that points from the first to the second node. Because
of the size of the corpus, the graph will bring together a large number of related
pieces of knowledge extracted from different sources.

As it can be noticed, redundancy of information on the Web is important to MR,
a fact that was also very important to the TCBR approach developed in this thesis.
As a new research field, MR faces some of the same problems that we encountered
throughout this thesis, but also many others that can be attributed to its large
scale and domain independence. A similar theme to our work can also be seen
in the attempt to capture relations instead of having to work with bag-of-words
representation. Indeed, what it is considered as a triple relation in MR is an event
structure with its participants in our approach. Furthermore, MR is in the same
way concerned with resolution of identity in paraphrases or synonyms as well as
with semantic orientation or sentiment analysis.
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Textual Entailment: Recognizing textual entailment (TE) is a new research
direction, concerned with truth inference from textual facts [Glickman and Dagan,
2005]. Concretely, given two pieces of text T and H, T is said to entail H if
H is most likely true. Examples of true and false pairs of entailments are given in
Figure 8.1. TE is important to many text-related tasks such as Question Answering,
Information Extraction, Machine Translation, etc. It is important, because it tries
to address some of the most difficult problems of natural language understanding,
such as richness of expression (the fact that the same meaning can be conveyed
in different ways); recognition of negation; implicit inference based on common
knowledge, etc. Since these problems are inherent to any kind of text, it makes
sense to look at them independently of the concrete text-based applications.

T: Three days after PeopleSoft bought JD Edwards in June 2003,
Oracle began its offer for PeopleSoft.

H: JD Edwards belongs to PeopleSoft.

a) Example of a true entailment

T: German Chancellor-designate Angela Merkel and Social
Democrat leaders reached a coalition agreement calling for a
higher value-added tax.

H: Angela Merkel leads the Social Democrats.

b) Example of a false entailment

Figure 8.1: Examples of textual entailments

Research in TE is stimulated in the course of the PASCAL challenges [Dagan
et al., 2005; Bar-Haim et al., 2006], and the results of 2006 show an accuracy ranging
from 53% to 75%. The systems with the best results were those using several types
of knowledge, contributed from outside the corpus of the training documents.

Since TE is regarded as a base component for the framework of many text-
related tasks, it might be possible that it can contribute to TCBR, too. Concretely,
TE can be used to test whether a new textual problem description is entailed from
an old description, contributing in this way in retrieving relevant cases, when other
types of similarity measurements do not work. To date, none of the existing TCBR
studies has tried to include TE in its framework.
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Probabilistic Relational Models: Probabilistic relational models are a large
class of graphical models that represent in a compact form joint probability distri-
butions for relational data. Learning such models from data is the goal of statistical
relational learning [Getoor et al., 2007]. Although probabilistic models have been
around for a while, for instance, Bayesian networks [Heckerman, 1995], new and im-
proved versions have only recently begun to be used in text-related tasks. Actually,
the probabilistic content model and the probabilistic task-content model discussed
in this thesis can be regarded as simple instances of the large class of probabilistic
relational models. However, the class itself contains many other instances which
are more sophisticated and powerful, such as relational Bayes networks [Friedman
et al., 1999], relational Markov networks [Taskar et al., 2002], conditional random
fields [Lafferty et al., 2001], relational dependency networks [Neville and Jensen,
2007], etc. The need for such sophisticated models arises from the large quantity
of relational data that have started to become available: the World Wide Web, ge-
nomic structures, fraud detection data, citations graphs, data on interrelated people,
places, and events extracted from text documents [Neville and Jensen, 2007]. Some
of these relational data types are the kind of data used in CBR systems, thus, it
could be useful to look at probabilistic relational models as a possible means for
organizing a case memory of non-independent instances.

The selection of these research fields as candidates for a fruitful cross-breeding
with TCBR is not random. We believe that by developing a TCBR approach in
harmony with these fields, it is possible to come nearer to that original vision that
lies in the roots of CBR: the pioneering work of Roger Schank on story under-
standing. Nevertheless, it needs to be said that such a goal will be attempted with
completely different means than those used by Schank. In this way, TCBR will not
remain a small and isolated player, but it will be transformed into an important
component of the bigger and generic solution to the difficult problem of natural
language understanding.
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Appendix A

A Real-World Task Domain

Many physical complex systems are intentionally designed and manufactured to
have a long service life. To mention but a few, oil/gas processing and transportation
plants, commercial/military aircrafts and ships, or power generation facilities are
some of the most prominent, whose availability and operation considerably impact
the quality of our economic and social life. Proportional to this impact is the
care needed to secure their continuous, reliable, and safe operation, a task usually
known as maintenance. Many activities are commonly understood as being part of
maintenance: monitoring and diagnostic measurements, safety tests, adjustments,
or component replacements. Their goal is to prevent the in-operation failure, an
event that for some of the previously mentioned systems would mean catastrophic
environmental damages or even worse, unacceptable human lives’ loss. As a result,
maintenance is a very important task of high responsibility.

Actually, the considered systems are assemblies of several, separately engineered
systems. The more complex a system, the more demanding the task of maintenance.
The knowledge required in such occasions encompasses the wide range of design
features, materials’ characteristics, manufacturing processes, and in-operation be-
havior. In many occasions, it is impossible to possess all this knowledge for a system
in its entirety. The maintenance task, as the other tasks of design and manufactur-
ing, is therefore divided among several maintenance service providers, each of them
specialized in the maintenance of a particular system component or of an aspect
of the system operation. This division of labor does not make the task easier, just
more manageable. The service provider (e.g., an engineer) still needs to possess
knowledge about design, materials, manufacturing, and operation in order to suc-
cessfully perform the task of maintenance. Acquiring such knowledge requires time
and field practice.

The purpose of this chapter is to present a concrete scenario of the kind of knowl-
edge needed in performing the maintenance of only one component (the insulation
system) of one complex system (rotating electrical machines). Even from the range
of maintenance tasks for this component, only one subtask (the diagnostic test of
the leakage current measurement) is described.
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A.1 The Model of a Domain

Putting the domain of our application—rotating electrical machines—in a larger
context creates a hierarchy as shown in Figure A.1, where the ordering of items
does not mean only subsumption, but other kinds of relation (“is-part-of”, “uses”,
“contains”) too.

Power engineering, as a branch of electrical engineering, is concerned with the
generation, transmission, and distribution of electrical energy. As it is known from
the physical laws, energy is not created from nothing; instead, it is transformed
from some kind of energy to another kind, by means of some physical processes.

...

Rotating Machines
Generators

Stator
Insulation System

Rotor
Insulation System

Motors

Electricity Generation
Power Engineering

Nuclear Reactors

Electrical Engineering

Electrical Machines

Electricity Transmission
Electricity Distribution

Figure A.1: A hierarchy of concepts for the domain. Concepts directly related
to the application scenario are in boldface.

Thus, the generation of electrical energy consists in the transformation of some
other energy to electrical energy. In a simplified way, the process of generating
electrical energy will be composed of:

• a primary source of energy (water, oil, gas, coal, wind, nuclear material)
• a system that uses these primary sources to accumulate the energy associated

with the physical process were these primary sources participate
• a system that turns the primary energy to electrical energy

However, besides machines that generate electricity, all machines that have as
their input or output electrical energy are commonly known as electrical machines.
They can be grouped as follows:

• generators (machines that convert mechanical energy to electrical energy)
• motors (machines that convert electrical energy to mechanical energy)
• transformers (machines that modulate the power of electrical energy)
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The terms of generator and motor are in fact broadly used in common speech,
encompassing every machine performing the function of a generator or a motor.
However, in this discussion of power engineering, the interest is only in those gen-
erators or motors—known as high-voltage, rotating electrical machines—that are
primarily operated in power plants. The machines are called rotating, because they
consist of two parts, a stator (a stationary part) and a rotor (a rotating part that
rotates within the cavity of the stator). More specifically:

• Stator is a stationary, cylindrical housing of stacked metal sheets. Electricity
is inducted in the coils of its winding, as a result of the rotating magnetic field
of the rotor.

• Rotor is a rotating, cylindrical, forged one-piece of steel-alloy with high mag-
netic permeability. During its rotation (driven, e.g., by a turbine) it produces
a magnetic field.

The most used rotating electrical machines are hydro- and turbo-generators:

Hydrogenerators: Hydrogenerators are used in water operated power stations.
They achieve a nominal power from some hundreds kVA1 to 860 MVA. Fur-
thermore, they are driven by special water powered turbines and rotate 60–
1200 times/minute.

Turbogenerators: Turbogenerators are used in heat operated power stations (in
which heat is generated, for example, by burning coal or oil). They achieve
a nominal power from 10–1700 MVA. Furthermore, they are driven by fast-
rotating steam or gas turbines and rotate up to 3000 times/minute.

When explaining a domain, the amount of information increases fastly. Thus,
instead of continuing with further details about rotating electrical machines, we
refer to Figure A.2 for a visual representation of a model of such machines. The
model is meant to convey to some degree, how more complex the modeling task
becomes when going deeper and deeper in a domain.

Finally, it must be said that the financial cost of such hydro or turbo generators
amounts to several millions US$, an investment that machine operators try to fully
exploit. To ensure a long in-service life for the machines, regular maintenance service
is necessary, a service offered by specialized providers that possess the knowledge
for performing and interpreting activities related to maintenance. In the following
section, we discuss why maintenance is necessary, and what knowledge is needed
for successfully performing it.

1kVA = kiloVoltAmpere, MVA = MegaVoltAmpere. Actually, the unit of power, Watt, is
calculated as the production of current (Ampere) and voltage (Volt).
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Figure A.2: Model of an electrical machine

A.2 The Need for Maintenance

Machines are exposed to different types of strain during their operation. The most
important ones are thermal stresses, electrical field influences, ambient effects, and
mechanical forces, all together referred to as TEAM stress factors. The combined
exposure to these factors causes damage and ageing in different components of the
machine. To prevent such situations that could cause component failures during
machine operation, maintenance services pursue several goals, such as:

• early detection of condition changes
• early application of corrective maintenance actions
• prolongation of the total service life with optimized availability and reliability
• reduction of the total life-cycle costs

To achieve these goals, several on- and off-line diagnostic procedures have been
invented. Each procedure is designed to recognize a distinct type of potential failure.
In general, the following steps are necessary for performing the maintenance process:

• carrying out several diagnostic tests and procedures
• interpreting the results of these diagnostic tests
• taking actions if necessary (fixing, repair, or replacement of components, etc.)

In order to perform these steps, different types of knowledge are needed.

Declarative knowledge
• what is the object of the diagnostic test
• what physical processes take place during the test
• what are the results of the test
• etc.
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Procedural knowledge
• how to perform the diagnostic procedures
• how to perform maintenance actions

Analytical (reasoning) knowledge
• what do the obtained diagnostic results reveal
• what is the cause for some observed symptoms
• how does the environment where the object of diagnosis is located influence

the diagnostic results
• etc.
In the following section, these types of knowledge will be exemplified in the

scenario of a real task for the maintenance of a machine’s insulation system.

A.3 A MONITOR-and-DIAGNOSE Task Example

The first step in a MONITOR-and-DIAGNOSE task is the collection of data from
the observed object. This process is automatic, as Figure A.2 shows. In this figure, a
generator G with three phases U, V, W; a measuring instrument (inside the dashed-
line box, where amperemeters and a voltmeter are found); as well as a computer
are depicted.

The measurement proceeds in the following way:

• The measuring instrument is connected to the electrical machine (e.g. gener-
ator) and to a computer via an analog/digital interface.

• A computer program controls the measuring instrument.
• The measurement is carried out phase by phase, whereby a d.c. voltage is

applied across the winding of one phase. The current flowing in this phase
(I1) and also the current flowing via the other two phases (I2) to ground are
measured.

The test is performed in accordance with a defined schedule, in which the test
voltage is incrementally increased from 5kV up to 2 times the nominal voltage of
the machine (Un) and current readings are taken after pre-established intervals of
time. The resulting curves of the total and leakage currents, measured phase by
phase, are evaluated together with some characteristic values derived from them.
The six measured currents are plotted together against the voltage, as shown in
Figure A.3.

The goal of performing this measurement is to provide information on:

• stress grading
• local deficiencies, mechanical weaknesses
• contamination
• ageing state
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Figure A.3: Schematic view of measuring leakage currents

• phase separation issues

of the winding insulation system.
The task of the human expert is then to evaluate the results of the measurements.

To do that:

• properties of the measured quantities and their representations are analyzed
• if unexpected signs are observed, an explanation for their appearance is given
• based on the nature of the underlying causes, appropriate actions are recom-

mended

The three scenarios of the next section illustrate this analytical process.

A.4 Instances of Task Execution

In the following, three instances of task execution at electrical machines are pre-
sented. The first instance shows a prototypical situation of good condition. The
other two instances show situations of problematic condition and their correspond-
ing explanations.

By comparing the graph in Figure A.4 with those in Figure A.5 and Figure A.6,
one may conclude that irregularities of the curves are symptoms for a problem
of the insulation. However, from the evaluation of the graph in Figure A.5, we
learn that the cause of the observed irregularities is the influence of a high-voltage
cable nearby the machine and not something connected with the insulation itself. In
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Figure A.6, almost the same type of irregularities in the curves indicates the presence
of conducting dirtiness in the winding. That is, two similar types of irregularities
have resulted from different causes. Such a situation makes clear why it is important
to have, for each symptom type, a list of possible hypotheses that can explain
symptoms.
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Figure A.4: Registered curves for the first machine

1. Die gemessenen Stromwerte liegen im normalen Bereich.
2. Die aus den Stromwerten in Funktion der Messspannung aufgezeichneten Kurven sind weit-

gehend gleichmäig.
3. Im Vergleich zur früheren Messung haben sich die Kennwerte nicht wesentlich verändert, was

auf eine gleichmäige Isolationsstruktur hindeutet.
4. Schwachstellen in der Isolierung sind sowohl aus den Kurvenverläufen wie auch aus den

ermittelten Kennwerten nicht abzuleiten.

Evaluation of the graph in Figure A.4 in German.

1. The measured current values lie in the normal area.
2. The recorded curves (current values as a function of the measuring voltage) are mainly

uniform.
3. Compared to previous measurements, the characteristic values have not changed significantly,

which indicates a uniform structure of the insulation.
4. Weak points in the insulation cannot be derived neither from the curves nor from the calcu-

lated characteristic values.

Evaluation of the graph in Figure A.4 in English.
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Figure A.5: Registered curves for the second machine

1. Die gemessenen Stromwerte liegen für das vorliegende Isoliersystem bis 1,5 UN im normalen,
niederen Bereich.

2. Die in Funktion der Messspannung aufgezeichneten Kurven sind weitgehend identisch und
gleichmäig.

3. Die höheren Stromwerte ab 1.5 UN sind auf Einflüsse der Hochspannungskabel (kurze Luft-
strecke) zurückzuführen und haben keinen Einfluss auf die Isolationsqualität.

4. Schwachstellen in der Isolierung sind sowohl aus den Kurvenverläufen wie auch aus den
ermittelten Kennwerten nicht abzuleiten.

Evaluation of the graph in Figure A.5 in German.

1. The measured current values lie for the present insulation system up to 1.5 UN in the normal,
lower area.

2. The recorded curves (as a function of the measuring voltage) are mainly identical and uniform.
3. The higher current values from 1,5 UN are attributed to the influence of the high-voltage

cable (short air path) and have no influence on the insulation quality.
4. Weak points in the insulation can neither be derived from the curves nor from the calculated

characteristic values.

Evaluation of the graph in Figure A.5 in English.
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Figure A.6: Registered curves for the third machine

1. Die gemessenen Gesamt- und Ableitstromwerte liegen im erwarteten Bereich für das vor-
liegende Isoliersystem.

2. Die aus den Stromwerten in Funktion der Messspannung aufgezeichneten Kurven der einzel-
nen Phasen sind bis zur 1.5-fachen Nennspannung praktisch identisch und weisen einen gle-
ichmäigen, linearen Verlauf auf.

3. Im höheren Spannungsbereich ist bei allen Phasen ein stärkerer Anstieg des Gesamtstromes
und bei Phase W auch des Ableitstromes festzustellen, was auf leitende Wicklungsver-
schmutzung, bei Phase W insbesondere auch im Bereich der Phasentrennungen, hindeutet.

Evaluation of the graph in Figure A.6 in German.

1. The measured total and leak current values lie in the expected area for the present insulation
system.

2. The recorded curves (current values as a function of the measuring voltage) of the individual
phases are up to 1.5 times the nominal voltage practically identical and show a uniform,
linear course.

3. In the higher voltage area, at all phases a stronger increase of the total current and of the leak
current at phase W as well is detected, which indicates a conducting dirtiness of winding, at
phase W particularly in the area of phase separation.

Evaluation of the graph in Figure A.6 in English.
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Lenz, M., A. Hübner, and M. Kunze (1998). In Case-Based Reasoning Technology,
From Foundations to Applications, Volume 1400 of Lecture Notes In Computer
Science, London, UK, pp. 115–138. Springer-Verlag.

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal
of Research and Development 2, 159–165.

Manning, C. D. and H. Schütze (1999, June). Foundations of Statistical Natural
Language Processing. Cambridge, MA, USA: The MIT Press.

Mantaras, R. L. D., D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B. Falt-
ings, M. L. Maher, M. T. Cox, K. Forbus, M. Keane, A. Aamodt, and I. Watson
(2005). Retrieval, reuse, revision and retention in case-based reasoning. The
Knowledge Engineering Review 20 (3), 215–240. Cambridge University Press.

McCallum, A. (2002). MALLET: A machine learning for language toolkit. http:
//mallet.cs.umass.edu/).

McCallum, A. (2005, November). Information extraction: Distilling structured data
from unstructured text. ACM Queue 3 (9), 48–57.

McCallum, A. and K. Nigam (1998). A comparison of event models for näıve
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