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Summary 

Methanotrophs associated with the rhizosphere of rice plant oxidize CH4 with molecular 

oxygen and use it as the sole source of carbon and energy. Thus, methanotrophs play an 

important role in global CH4 budget by reducing CH4 emissions from the rice ecosystems 

to the atmosphere. Rice plant ecosystems may exhibit different niches for methanotrophs 

as characterized by spatiotemporal variation of CH4 and O2 in the rice rhizosphere. 

Besides major limiting factors i.e., methane and oxygen, nitrogen (N) one of the limiting 

factors for rice yields, can also play an important role in methane oxidation. Therefore, in 

my Ph.D. research, I carried out a detailed study of the methanotrophic community 

structure and its activity in rice microcosms, which is important for the mechanistic 

understanding of CH4 oxidation in soil.  

The major two experiments were focused on methane oxidation process and 

methanotrophic community structure using planted rice microcosms that were incubated 

under controlled conditions in the greenhouse for 55 days (first experiment) and 88 days 

(second experiment). Methane oxidation process was determined by measuring the CH4 

flux in the presence and absence of difluoromethane as a specific inhibitor for methane 

oxidation. Composition of the methanotrophic community structure was investigated on 

the roots and in the rhizospheric soil by analyzing pmoA gene based on terminal 

restriction fragment length polymorphism (T-RFLP), and cloning and sequencing. pmoA 

gene encodes a subunit of the particulate methane monooxygenase, the key enzyme of 

methanotrophs. Abundant T-RFs were affiliated to cloned pmoA sequences. The 

metabolically active methanotrophs were analyzed by stable isotope probing of microbial 

phospholipids fatty acids (PLFA-SIP) and mRNA expression in the first and second 

experiment, respectively. 

The first experiment was focused on the temporal variation of the methane oxidation 

process in rice microcosms. The active methanotrophs in the rice rhizosphere were 

identified by adding 13C-CH4 directly to the rhizosphere of planted rice microcosms. Root 

and rhizospheric soil samples were collected after labelling to investigate changes in the 

total and active methanotrophic community. Both pmoA gene analyses based on T-RFLP, 

and cloning/ sequencing, and PLFA-SIP showed that type I and type II methanotrophic 

populations changed over time. However, PLFA-SIP showed that type I methanotrophs 



Summary 

 xxi 
 

were more active than type II methanotrophs indicating they were of particular 

importance on the roots as well as in the rhizospheric soil.  

The second experiment was mainly focused on possible effects of different ammonium-N 

fertilizers on methane oxidation and composition of the methanotrophic community. For 

this purpose, planted rice microcosms were fertilized in three different ways; with only 

phosphorus and potassium (PK) as control, with urea (UPK) as N source, and ammonium 

sulphate (SPK) as N source. Methane fluxes were measured during the entire rice-

cropping season and roots and rhizospheric soil samples were collected from six different 

growth stages of the rice plant. Methane oxidation rates in PK and UPK treatments were 

quite similar during most of the cropping season, revealing no nitrogen effect on 

methanotrophic activity. Ammonium sulphate largely suppressed methanogenesis 

providing an unfavorable environment for methanotrophs in SPK treatment. Canonical 

correspondence analysis ordination techniques were applied to investigate the correlation 

of treatments, environmental factors and process rates with pmoA-based T-RFLP profiles 

both on the roots and in the rhizospheric soil. On the roots, the methanotrophic 

community was significantly affected by different N-fertilizer treatments, whereas in the 

rhizospheric soil it was not affected. Overall, the community associated with rice roots 

was dominated by type I methanotrophs while community in rhizospheric soil was 

dominated by type II methanotrophs. In summary, I found that different nitrogen 

fertilizers affected the methanotrophic community structure without significantly 

affecting the rates of methane oxidation 

Samples from the second experiment was in addition used to investigate the expression of 

pmoA mRNA and characterize the metabolically active methanotrophs that were 

responsible for in situ methane oxidation in the rhizospheric soil. No strong influence of 

N-fertilization was observed on active methanotrophs when comparing PK and UPK 

treatments. Instead, the temporal variation in substrate or nutrient concentrations seemed 

to play a relatively important role for the expression of pmoA genes in the treatments. 

Overall, I found that in rhizospheric soil type II methanotrophs were predominant in 

pmoA gene based study whereas type I methanotrophs were predominant in pmoA 

transcript analysis. Hence, type I methanotrophs apparently play an active role for 

methane oxidation, while type II methanotrophs constitute a background community that 

also persists under unfavorable conditions, such as in the SPK treatment. 
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Finally, I isolated methanotrophs from roots and rhizospheric soil samples of the 

microcosms. In total 11 isolates were obtained from roots (6 isolates) and rhizospheric 

soil (5 isolates). All the isolates were closely affiliated to type II methanotrophs, 

indicating that type II methanotrophs were the dominant culturable fraction of 

methanotrophs both on the roots and in the rhizospheric soil. 
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Zusammenfassung 

Methanotrophe in der Rhizosphäre der Reispflanze oxidieren CH4 mit molekularem 

Sauerstoff und verwenden es als einzige Kohlenstoff- und Energiequelle. Im globalen 

CH4-Haushalt spielen Methanotrophe durch die Reduzierung der CH4-Emissionen aus 

Reis-Ökosystemen eine wichtige Rolle. Das Reis-Ökosystem stellt für Methanotrophe 

verschiedene Nischen zur Verfügung, die vor allem durch die räumliche und zeitliche 

Variation von CH4 und O2 charakterisiert sind. Neben den limitierenden Faktoren CH4 

und O2 kann auch Stickstoff (N) – das ist auch ein limitierender Faktor für den Reis-

Ertrag – für die Methanoxidation von Bedeutung sein. Im Rahmen meiner Doktorarbeit 

habe ich in Reis-Mikrokosmosmen die Struktur der methanotrophen 

Lebensgemeinschaften und deren Aktivität im Detail untersucht, da diese für unser 

Verständnis des Methanoxidationsprozesses im Boden sehr wichtig sind. 

Die beiden wichtigsten Experimente konzentrierten sich auf den Prozess der 

Methanoxidation und die Struktur der methanotrophen Lebensgemeinschaft: Im 

Gewächshaus wurden unter kontrollierten Bedingungen - 55 Tage (1. Experiment), 88 

Tage (2. Experiment) – Reispflanzen in Mikrokosmen gezüchtet. Methanoxidationsraten 

wurde durch Messung des CH4-Flusses mit und ohne Zugabe von Difluormethan 

(spezifischer Hemmstoff für die CH4-Oxidation) bestimmt. Die Zusammensetzung der 

methanotrophen Lebensgemeinschaft wurde an den Wurzeln und in der Rhizosphäre 

durch „terminal restriction fragment length polymorphism“ (T-RFLP) der pmoA-Gene 

analysiert, welche auch kloniert und sequenziert wurden. Das pmoA-Gen kodiert für eine 

Untereinheit der partikulären Methanmonooxygenase, dem Schlüsselenzym der 

Methanotrophen. Die häufigsten T-RFs konnten klonierten pmoA-Sequenzen zugeordnet 

werden. Die Analyse der metabolisch aktiven Methanotrophen erfolgte durch „stable 

isotope probing“ von mikrobiellen Phospholipidfettsäuren (PLFA-SIP) und durch 

Expression von mRNA der pmoA Gene im ersten bzw. zweiten Experiment. 

Das erste Experiment konzentrierte sich auf die zeitliche Veränderung des 

Methanoxidationsprozesses iin Reismikrokosmosmen. Die Methanotrophen, welche in 

der Rhizosphäre des Reises aktiv waren, wurden durch Zugabe von 13C-CH4 direkt in die 

Rhizosphäre der Reismikrokosmen identifiziert. Dabei wurden Wurzeln und 
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Rhizosphärenboden nach Markierung mit 13C beprobt und mit Hilfe von T-RFLP und 

PLFA-SIP analysiert. Sowohl T-RFLP bzw. Klonieren/Sequenzieren der pmoA-Gene als 

PLFA-SIP zeigten, dass sich die Populationen von Typ I und Typ II Methanotrophen mit 

der Zeit änderten. PLFA-SIP zeigte weiterhin, dass Typ I Methanotrophe aktiver als Typ 

II Methanotrophe waren, sowohl an den Wurzeln als auch im Rhizosphärenboden. 

Das zweite Experiment konzentrierte sich im Wesentlichen auf die möglichen 

Auswirkung von verschiedenen Ammonium-Düngern auf die Methanoxidation und die 

Zusammensetzung der methanotrophen Lebensgemeinschaft. Zu diesem Zweck wurden 

die Reismikrokosmen auf drei verschiedene Arten gedüngt: nur mit Phosphor und Kalium 

(PK) zur Kontrolle, mit Harnstoff (UPK) als Stickstoff-Quelle und mit Ammoniumsulfat 

(SPK) als Stickstoff-Quelle. Während der gesamten Reis-Wachstumsperiode wurde der 

Methanfluß gemessen. Die Wurzeln und der Rhizosphärenboden wurden zu sechs 

verschiedenen Zeitpunkten beprobt. Die Methanoxidationsraten unter Zugabe von PK und 

UPK waren über die Wachstumssaison hinweg sehr ähnlich und die methanotrophe 

Aktivität zeigte keine Veränderung aufgrund der N-Düngung. Ammoniumsulfat hingegen 

unterdrückte die Methanogenese weitgehend, so dass die SPK-Behandlung für die 

Methanotrophen ungünstig war. Die Korrelation zwischen Behandlung, Umweltfaktoren 

und Prozessraten einerseits und T-RFLP Profilen der pmoA-Gene andererseits wurde mit 

Hilfe der „Canonical Correspondence Analysis“ als statistischem Ordinationsverfahren 

sowohl an den Wurzeln als auch in der Rhizosphäre untersucht. Auf den Wurzeln wurde 

die methanotrophe Gemeinschaft signifikant von den verschiedenen Stickstoffdüngern 

beeinflusst. Dagegen wurde sie in der Rhizosphäre nicht beeinflusst. Die 

Lebensgemeinschaft auf den Reiswurzeln wurde von Typ I Methanotrophen, dagegen in 

der Rhizosphäre von Typ II Methanotrophen dominiert. Zusammenfassend kann man 

feststellen, dass die unterschiedliche Stickstoffdüngung zwar die methanotrophe 

Lebensgemeinschaft beeinflusste, aber nicht zu einer signifikanten Veränderung der 

Methanoxidationsaktivität führte. 

Das zweite Experiment wurde auch benutzt, um die Expression von pmoA-mRNA zu 

untersuchen und so die metabolisch aktiven Methanotrophen zu charakterisieren, die 

verantwortlich sind für die in situ Methanoxidation in der Rhizosphäre. Beim Vergleich 

von PK- und UPK-Behandlung wurde kein starker Einfluß der Stickstoffdüngung auf die 

aktiven Methanotrophen festgestellt. Stattdessen war die zeitliche Variation der Substrat- 
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oder Nährstoffkonzentrationen anscheinend relativ wichtiger für die Expression der 

pmoA-Gene. Zusammenfassend kann man feststellen, dass im Rhizosphärenboden Typ II 

Methanotrophe dann vorherrschend waren, wenn die pmoA-Gene untersucht wurden, aber 

Typ I Methanotrophe vorherrschend waren, wenn die pmoA-Transkripte analysiert 

wurden. Daher scheinen Typ I Methanotrophe eine aktive Rolle bei der Methanoxidation 

zu spielen, während Typ II Methanotrophe mehr eine Grundgemeinschaft bilden, die auch 

unter ungünstigen Umständen (z.B. SPK-Behandlung) überdauert. 

Schließlich habe ich Methanotrophe in Kultur genommen, die an der Wurzeln und im 

Rhizosphärenboden der Mikrokosmen leben. Insgesamt wurden 6 Isolate von der 

Wurzeln und 5 Isolate aus der Rhizosphäre erhalten. Alle Isolate waren eng verwandt mit 

Typ II Methanotrophen, was darauf hinweist, dass die kultivierbare Fraktion der 

Methanotrophen  auf den Wurzeln und in der Rhizosphäre in erster Linie aus Typ II 

Methanotrophen besteht. 
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Chapter 1 

General introduction 

1.1 Greenhouses gases and global warming 

The average global temperature is determined by the equilibrium between incoming 

energy from the sun and outgoing energy as heat from the earth. Greenhouse gases 

produce a warming effect by allowing incoming solar radiant energy to penetrate to the 

Earth’s surface. Part of the outgoing infrared radiation is trapped by greenhouse gases in 

the lower atmosphere and then re-emitted. This process is referred to the “greenhouse 

effect”, which adds to the net energy input of the lower atmosphere and thus leads to an 

increased global temperature (“global warming”) (IPCC, 1990).  

 

Fig. 1.1: (a) Global annual emissions of anthropogenic GHGs from 1970 to 2004 (b) Share of 

different anthropogenic GHGs in total emissions in 2004 in terms of CO2-eq. (c) Share of 

different sectors in total anthropogenic GHG emissions in 2004 in terms of CO2-eq. (Forestry 

includes deforestation) (IPCC, 2007). 

Global greenhouse gas emissions due to human activities have grown since pre-industrial 

times, with an increase of 70% between 1970 and 2004 (Fig.1.1). The key greenhouse 

gases responsible for the enhanced greenhouse effect are carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O) and the man made chlorofluorocarbons (CFC’s), which are 
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associated with the economic activities and food production (IPCC, 1996; Denier van der 

Gon, 1996).  

Methane is an important greenhouse gas as it can absorb infrared radiation 25 times more 

effectively than carbon dioxide (Schlesinger, 1997). Due to this, methane is of great 

concern as a greenhouse gas. Although, the tropospheric CH4 concentration is very low as 

compared to CO2, methane accounts for 15 to 20% of global warming (IPCC, 2001). The 

global atmospheric concentration of methane has increased from a pre-industrial value of 

about 715 ppb to 1732 ppb in the early 1990s, and is 1774 ppb in 2005 (IPCC, 2007). 

Various anthropogenic methane sources are presented in Fig. 1.2. 

 

Fig. 1.2: Global anthropogenic methane budget. Total CH4 emission due to anthropogenic activity 

in 2000 = 282.6 Tg CH4 (U.S. EPA compilation, 2006). 

1.2 Wetland rice fields as a source of methane  

Rice fields are the most significant contributors of atmospheric CH4 accounting for 11-

13% of the World’s total anthropogenic CH4 emission (Lelieveld et al., 1998; Wang et 

al., 2004). According to the International Rice Research Institute statistics, World rice 

harvested area increased by approximately 33% from 115.5 Mha in 1961 to 153.3 Mha in 

2004 (http://www.irri.org/science/ricestat/pdfs/WRS2005-Table02.pdf). According to an 
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estimate, rice production will need to expand by around 60% over the next 25 years to 

meet the demand of the World’s growing human population (Cassman et al., 1998; 

Dubey, 2001; Neue, 1997), making rice cultivation a potential major cause of increasing 

atmospheric methane.  

1.2.1 Methane formation in rice fields 

In flooded rice fields, methane (CH4) is produced by anaerobic bacteria (methanogens) as 

the terminal step of the anaerobic degradation of organic matter (Conrad, 1993; Denier 

van der Gon, 1996; Neue, 1993; Schütz et al., 1989). The anaerobic degradation of 

organic matter involves four main steps: a) hydrolysis of polymers by hydrolytic 

organisms, b) acid formation from simple organic compound by fermentative bacteria, c) 

acetate formation from metabolites of fermentations by homoacetogenic or syntrophic 

bacteria, and d) CH4 formation from H2/CO2, acetate, simple methylated compounds or 

alcohols and CO2 (Yao and Conrad, 2001). CH4 is produced in rice fields after the 

sequential reduction of O2, nitrate, manganese, iron and sulphate, which serve as electron 

acceptors for oxidation of organic matter to CO2 (Yao et al., 1999). In paddy soil, acetate 

and H2 are the two main intermediate precursors for CH4 formation (Yao and Conrad, 

1999). The rate of CH4 produced in soil is controlled by several factors such as organic 

materials, temperature, pH and other soil factors.  

1.2.2 Methane emission from rice fields 

The net amount of CH4 emitted from rice fields to the atmosphere is the balance of two 

opposite processes, production and oxidation. CH4 emissions mainly consist of three 

closely coupled steps (Fig. 1.3) (Khalil and Shearer, 2006). First, the leftover soil carbon 

from previous years, straw, roots and organic compounds supplied by root exudation will 

supply the carbon needed for methane production. This carbon has to go through a 

number of decomposition steps involving various types of bacteria before it can be 

utilized by methanogens that produce methane in anaerobic environments. The second 

step is the transport of this deeper methane and its oxidation on the way to the 

atmosphere. The oxidation is found to take place mostly in the root zone, which has a 

supply of oxygen from the plant. In this root zone, or possibly just inside the root, are 

methanotrophic bacteria that utilize methane as a source of energy. The final step is the 

transport of methane out of the paddy system and into the atmosphere via several 
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pathways: bubbles, diffusion through the soil and water, and the transport of the methane 

through the root aerenchyma system of the plant. Of these the bubbles are important only 

in the early stages of rice growth (Denier et al., 1995; Li, 2000). Later, a very large 

fraction is the transport through the plant. This is in part because the oxidation creates 

strong gradients that move methane through the root zone while other pathways are less 

efficient. What gets out into the atmosphere through the plant is the rest of the methane 

that is not oxidized by the methanotrophs.  

 

Fig. 1.3: Conceptual schematic diagram of methane production, oxidation and emission from 

paddy field (Dubey et al., 2005). 

1.2.3 Methane oxidation in rice fields 

In rice fields, methane oxidation greatly limits diffusion of methane to the atmosphere. 

Estimates of methane oxidation in the rice rhizosphere are reported as a range from 7 to 

90% of the transported methane (EPP and Chanton, 1993; Denier van der Gon et al., 

1996; Gilbert and Frenzel, 1998; Holzapfel-Pschorn et al., 1985) and a range from 7 to 

52% if only data obtained from specific inhibitor studies are included.  

Methanotrophic bacteria play an important role in global methane budget by consuming 

the potential amount of methane in rice fields. Methanotrophs associated with the 

- -
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rhizosphere of rice plants oxidize CH4 with molecular O2 and use it as the sole source of 

carbon and energy. Methanotrophic bacteria are present in the aerobic soil layer, the 

roots, the soil surrounding the roots, so-called rhizosphere (Dubey and Singh, 2000; 

Gilbert and Frenzel, 1998; Joulian et al., 1997) and on the stem bases of flooded rice 

plants (Watanabe et al., 1997). The rice rhizosphere appears to be a very heterogeneous 

habitat for methanotrophs because both methane concentrations and oxygen released by 

roots are highly variable (Armstrong, 1970; Gilbert and Frenzel, 1995).  

Overall methane dynamics in the paddy field is controlled by a complex set of parameters 

linking the biological and physical characteristics of soil environment like temperature, 

carbon source, nutrients, Eh, pH, soil microbes and properties of rice plants.   

1.3 Anaerobic methane oxidation 

Methane oxidation can occur in both aerobic and anaerobic environments, however, these 

are completely different processes involving different groups of prokaryotes. Aerobic 

methane oxidation is carried out by aerobic methanotrophs, and anaerobic methane 

oxidizers, discovered recently, thrive under anaerobic conditions and use sulfate or nitrate 

as electron donors for methane oxidation (Boetius, et al., 2000; Raghoebarsing et al., 

2006). 

Anaerobic methane oxidation associated with sulphate or iron reduction has been 

suggested to operate in rice fields (Murase and Kimura, 1994). However, there is no 

report of the isolation or molecular identification of bacteria, which affect anaerobic 

methane oxidation in rice fields. 

1.4 Methane oxidising bacteria (Methanotrophs) 

The methane oxidising bacteria are commonly known as methanotrophs. They are 

ubiquitous in nature and represent the important biogenic sink for the greenhouse gas 

methane. Since methanotrophs use methane and utilize methanol and other 1-carbon 

compounds as intermediates in their energy metabolism, they are members of larger 

group of bacteria called the methylotrophs. The methylotrophs are obligate 1-carbon 

utilizers. The first well-described methane oxidising bacterium was isolated from plant 

material in 1906 by Söhngen (Hanson et al., 1991). However, the habitats of 
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methanotrophs are numerous and include most freshwater, marine and terrestrial 

environments. The most methanotroph-rich communities are typically found in organic 

rich soils and sediments, sewage sludge and calcareous swamps (Hanson and Hanson, 

1996).  

 

Fig. 1.4: Transmission electron micrographs of the type II methanotroph, Methylocystis parvus 

OBBP (left), and the type I methanotroph, Methylomonas methanica S1 (right). The micrographs 

illustrate the different intracytoplasmic membrane arrangements: paired membranes aligned to the 

periphery of the cell in type II methanotrophs, and bundles of vesicular discs in type I 

methanotrophs. The scale bars represent 200 nm (Binnerup et al., 2005). 

Methanotrophs are strictly aerobic and gram-negative bacteria, and can be divided into 

two distinct physiological groups that are designated as type I and type II (Hanson and 

Hanson, 1996) on the basis of phylogeny, physiology, morphology and biochemistry, 

including characteristic phospholipid ester-linked fatty acids (PLFA) in their cell 

membranes (Fig. 1.4, Table 1.1).  There are 13 recognized genera of methanotrophs 

(Bodrossy et al., 1997; Bowman et al., 1997; Dedysh et al., 2000, 2002; Hanson and 

Hanson, 1996; Heyer et al., 2005; Tsubota et al., 2005; Wise et al., 2001) consisting of 

both type I and type II methanotophs. Phylogenetic studies of 5S rRNA and 16S rRNA 

have confirmed the distinction between type I and type II methanotrophs and have placed 
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Table 1.1:  List of characteristics for the differentiation of methanotrophs (Murell et al., 1998). 

 

them, respectively, in the gamma and alpha subdivisions of the proteobacteria (Bowman, 

2000; Bratina et al., 1992). Type I methanotrophs belong to the gamma subgroup of the 

proteobacteria, and include the species Methylomonas, Methylosphaera, 

Methylomicrobium, Methylosarcina, Methylobacter, Methylocaldum, Methylococcus 

capsulatus, Methylohalobius, and Methylosoma. They assimilate the formaldehyde 

produced from the oxidation of methane by using the ribulose monophosphate pathway 

(Fig 1.6). They contain predominantly 16-carbon fatty acids and possess bundles of 

intracytoplasmic membranes. The type II methanotrophs belong to the alpha subunit of 

the proteobacteria and include the species Methylocystis, Methylocella, Methylocapsa and 

Methylosinus. They assimilate formaldehyde by the serine pathway (Fig 1.6). They 

contain 18-carbon phospholipid fatty acids and possess paired intracellular membranes 

aligned to the periphery of the cell (Hanson and Hanson, 1996). Recently, two 

filamentous methane oxidizers, belonging to gammaproteobacteria, have been described, 

Crenothrix polyspora (Stoecker et al., 2006), which has a novel pmoA, and Clonothrix 

fusca (Vigliotta et al., 2007), which has a conventional pmoA. All of these methanotrophs 

that are belonging to Alphaproteobacteria and Gammaproteobacteria grow well at either 

neutral pH or slightly alkaline pH. However, there are two moderate acidophiles, 

Methylocella and Methylocapsa, which have pH optima of 5.0–5.5 and a lower limit of 

4.0-4.5 (Dedysh et al., 1998, Dedysh, 2002). Quite recently, a new group of bacteria 

possessing methane monoxygenase gene has been cultured and fully sequenced. This new 

group of bacteria belonged to phylum Verrucomicrobia (Dunfield et al., 2007; Islam et 

al., 2008; Pol et al., 2007) and were extremely thermoacidophilic (optimum growth pH is 

below 2; optimum temperature is 55 °C).The phylogenetic positions of methanotrophs 
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belonging to α and γ-proteobacteria, β-proteobacteria (amoA), Crenothrix and 

Verrucomicrobium, and other cultured groups are shown in Fig. 1.5.  

 

 
 
 

Fig. 1.5: Phylogenetic tree constructed from derived amino acid sequences encoded by pmoA and 

amoA genes (subunits of particulate methane monooxygenase or ammonia monooxygenase) and 

three sequences from Verrucomicrobia isolate V4 (Dunfield et al., 2007). 

 

Methanotrophic communities occur mainly in two types of terrestrial ecosystems, where 

they have different functions (Conrad, 1996). The first ecosystem is well aerated upland 

soils where they occur and oxidize the CH4 that is supplied from the atmosphere at low 

concentrations (<2.4 nM). The second ecosystem is wetland soils (e.g., rice fields) where 

they occur within oxic-anoxic interphase and oxidize CH4 that is generated from the 

anoxic site of the soil at saturating concentrations (>1.2 mM). 

Wetland soils, on one hand, are found to contain mostly cultivated taxa of methanotrophs 

including both type I and type II methanotrophs (Eller and Frenzel, 2001; Henckel et al., 

2001; Shrestha et al., 2008). These genera generally have relatively high Km values (>1 

µM). Upland soils, on the other hand, are often dominated by as yet-uncultured 

methanotrophs. These are represented by the pmoA sequence clusters USCα and USCγ 

(Ricke et al., 2005). Besides USCα and USCγ, the methanotrophs active in upland soil 

may also involve Methylocystis species (Knief et al., 2005) that express low Km values 
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after prolonged adaptation to low methane concentrations (Dunfield and Conrad, 2000; 

Dunfield et al., 1999). 

1.4.1 Physiology, biochemistry and molecular biology of methanotrophs 

The ability of methanotrophs to oxidize methane is due to the possession of the enzyme 

called methane monooxygenase (MMO). This enzyme oxidizes methane to methanol. The 

reaction uses reducing power to break the O-O bound in oxygen (O2). One oxygen atom 

is incorporated into methanol (CH3OH), while the other is converted to water (H2O). The 

reducing power required for the oxidation of methane to methanol and for bacterial 

growth is derived from further oxidation of methanol, via formaldehyde (HCHO) and 

formate (HCOOH) to carbon dioxide (CO2) (Fig. 1.6). Approximately 50% of the 

formaldehyde produced is assimilated into cell carbon and the remainder is oxidized to 

CO2 and lost from the cell (Anthony, 1982).  

The MMO enzyme has been the subject of extensive biochemical and molecular research. 

There are two distinct forms of this enzyme, the membrane-bound particulate methane 

monooxygenase (pMMO) and the cytoplasmic soluble methane monooxygenase (sMMO) 

(Hanson and Hanson 1996). The particulate methane monooxygenase (pMMO) is 

integrated into the inner membrane of the bacterial cell wall and is a copper protein (Zahn 

and DiSpirito 1996). The other methane monooxygenase is present within the cellular 

fluid (cytoplasm) and is therefore called the soluble methane monooxygenase (sMMO). 

This enzyme differs bio-chemically from the pMMO by having a di-ion center at the 

active site for methane oxidation (Rosenzweig et al., 1993). This enzyme is only 

expressed when copper deficiency prevents expression of pMMO. Methanotrophs 

expressing pMMO have higher growth yield, as pMMO is more specific and has a higher 

affinity for methane than sMMO (Hanson and Hanson, 1996). Only the pMMO is found 

universally in methanotrophs, except in the genus Methylocella (Dedysh et al., 2000; 

Theisen et al., 2005), and can therefore be used as a functional marker.  

However, the pMMO enzyme complex shares many similarities with the ammonia 

monooxygenase (AMO) enzyme complex found in ammonia-oxidizing bacteria (Klotz 

and Norton, 1998). These similarities include a high degree of amino acid sequence 

identity, similar protein complex structures, and broadly similar substrate and inhibition 

profiles, while each play a crucial role in cell metabolism (Gilbert et al., 2000; Holmes et 
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al., 1995; Semrau et al., 1995). Methanotrophs and ammonia-oxidizing bacteria can 

oxidize both methane and ammonia; however, they can obtain energy only from the 

oxidation of methane and ammonium, respectively (Bedard and Knowles, 1989).  

 

 

 

 

 

 

 

 

Fig. 1.6: Pathways for methane oxidation and formaldehyde assimilation in type I and type II 

methanotrophs (Murell, 1994, slightly modified). 

1.4.2 16S rRNA phylogeny of methanotrophs 

Yet uncultured methanotrophs can be detected with nucleic acid probes or by sequencing 

genes amplified by PCR directly from environmental samples (Giovannoni et al., 1988; 

Liesack and Stackebrandt, 1992; Olsen et al., 1986). These methods are useful for 

identification of taxa and for determination of the phylogenetic positions of microbes. 

Classification schemes (Hanson et al., 1991) have been strengthened because of the 

comparative sequence analysis of both the 5S and the 16S ribosomal RNA (rRNA) from a 

large number of methanotrophs and methylotrophs (Bowman, 1990; Bratina et al., 1992; 
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Tsuji et al., 1990). The position of different groups of methanotrophs based on 16S rRNA 

sequence and pmoA sequence are given in Fig. 1.7. Large numbers of 16S rRNA gene 

probes have been designed to amplify methanotrophs. To date, quite a few of these sets of 

methanotroph specific 16S rRNA probes have been used in environmental studies 

(Table1.2).  

1.4.3 Functional gene phylogeny of methanotrophs 

Study of functional genes is valuable because it leads to a better understanding of the 

activity of bacteria in different environments and their role in the cycling of 

biogeochemically important compounds, such as methane in the case of the 

methanotrophs. An advantage of using functional genes instead of 16S rRNA to study 

bacterial diversity is that they enable the potential functional diversity within an 

environment to be investigated. Although sMMO-based approaches are useful for 

studying methanotroph diversity in copper-depleted environments such as wetlands or 

contaminated aquifers, these genes, however, are not present in all known methanotrophs. 

A better approach is based on the pMMO, present in all known methanotrophs.  

The first oligonucleotide primers designed to amplify internal fragments of the genes 

encoding pMMO and AMO (ammonia monooxygenase) enzyme complexes were the 

A189f/A682r primer set (Holmes et al., 1999) (Table 1.3). The phylogeny of pmoA/amoA 

is reasonably congruent with the 16S rRNA gene phylogeny of the organisms from which 

the gene sequences were retrieved (Holmes et al., 1999; Kolb et al., 2003) (Fig. 1.7). 

Therefore, retrieval of pmoA and amoA sequences provides information on the 

phylogenetic position of these organisms. The A189f/A682r primers have been used 

extensively in environmental studies to provide a molecular profile and the diversity of 

the methanotrophs in various environments (Bourne et al., 2001; Holmes et al., 1999; 

Horz et al., 2002, 2001; Kolb et al., 2003) and have proved useful in detecting novel 

sequences (Holmes et al., 1999; Knief et al., 2003;). However, a new reverse pmoA-

specific primer mb661r, used in conjunction with the A189f primer was designed and 

demonstrated specificity in amplifying pmoA sequences but not amoA sequences (Bourne 

et al., 2001; Costello and Lidstrom, 1999; Shrestha et al., 2008;). List of pmoA specific 

primer sets that were designed to study methanotrophic diversity is listed in Table 1.3. 
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Another potentially useful marker is the mxaF gene. PCR primers that specifically 

amplify a 550-bp fragment of mxaF sequences from methanotrophs have been used to 

extend the database of mxaF genes of methanotrophs and methylotrophs and to identify 

mxaF sequences in marine, soil and wetland samples (Holmes et al., 1995; McDonald et 

al., 1997; McDonald et al., 1995). However, the mxaF gene is not specific for 

methanotrophs but also occurs in methylotrophs unable to use CH4. A list of all the 

currently available functional gene based primers for methanotrophs are listed in table 

1.3, and 1.4. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7: Comparison of the phylogenies of the 16S rRNA gene and pmoA/amoA genes of 

methanotrophic bacteria. The dendogram of the 16S rRNA gene was calculated with Tree-Puzzle 

algorithm and confirmed with FstDNA-ML. The dashed line indicates a cluster that was inserted 

with the parsimony tool of the ARB software. The pmoA/amoA tree was calculated with Tree-

Puzzle algorithm and confirmed with ProtML. The scales give 10% sequence distance (Kolb, 

Dissertation, Philipps University of Marburg, 2003). 
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Table 1.2. List of 16S rRNA gene probes targeting methanotrophs (McDonald et al., 2008). 

Type and probe Sequence (5'-3') Target  

 

Type I 
methanotroph 
probes 

   

    10  GGTCCGAAGATCCCCCGCTT RuMP pathway methylotrophs  

    1035-RuMP GATTCTCTGGATGTCAAGGG RuMP pathway 
methanotrophs 

 

    Mb1007a CACTCTACGATCTCTCACAG Methylobacter 
(Methylomicrobium)a 

 

    Mc1005 CCGCATCTCTGCAGGAT Methylococcus  

    Mm1007 CACTCCGCTATCTCTAACAG Methylomonas  

    MethT1dF CCTTCGGGMGCYGACGAGT Type I methanotrophs  

    MethT1bR GATTCYMTGSATGTCAAGG Type I methanotrophs  

    Type 1b GTCAGCGCCCGAAGGCCT Type I methanotrophs  

    Gm633 AGTTACCCAGTATCAAATGC Methylobacter and 
Methylomicrobium 

 

    Gm705c CTGGTGTTCCTTCAGATC Gamma methanotrophs except 
Methylocaldum 

 

    Mlb482 GGTGCTTCTTCTAAAGGTAATGT Methylobacter  

    Mlb662d CCTGAAATTCCACTCTCCTCTA Methylobacter  

    Mmb482 GGTGCTTCTTCTATAGGTAATGT Methylomicrobium  

    Mlm482 GGTGCTTCTTGTATAGGTAATGT Methylomonas  

    Mlm732a GTTTTAGTCCAGGGAGCCG Methylomonas group A  

    Mlm732b GTTTGAGTCCAGGGAGCCG Methylomonas group C  

    Mlc123 CACAACAAGGCAGATTCCTACG Methylococcus  

    Mlc1436 CCCTCCTTGCGGTTAGACTACCTA Methylococcus  

    Mcd77 GCCACCCACCGGTTACCCGGC Methylocaldum  

    M 84 CCACTCGTCAGCGCCCGA Type I methanotrophs  

    M 669d GCTACACCTGAAATTCCACTC Methylobacter and 
Methylomonas 

 

    M 983 TGGATGTCAAGGGTAGGT Type I methanotrophs  

    M 993 ACAGATTCTCTGGATGTC Type I methanotrophs  

    M 1004a TACGATCTCTCACAGATT Methylomicrobium  

    Mh996r CACTCTACTATCTCTAACGG Methylosphaera  

    Type IF ATGCTTAACACATGCAAGTCGAACG Type I methanotrophs  

    Type IR CCACTGGTGTTCCTTCMGAT Type I methanotrophs  
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Type II 
methanotroph 
probes 

    9  CCCTGAGTTATTCCGAAC Serine pathway methylotrophs  

    1034-Ser CCATACCGGACATGTCAAAAGC Serine pathway methanotrophs  

    Ms1020 CCCTTGCGGAAGGAAGTC Methylosinus  

    Type 2b CATACCGGRCATGTCAAAAGC Type II methanotrophs  

    MethT2R CATCTCTGRCSAYCATACCGG Type II methanotrophs  

    Am455b CTTATCCAGGTACCGTCATTATCGTCCC Alpha methanotrophs  

    Am976 GTCAAAAGCTGGTAAGGTTC Alpha methanotrophs  

    Ma464 TTATCCAGGTACCGTCATTA Type II methanotrophs  

    Mcell-1026 GTTCTCGCCACCCGAAGT Methylocella palustris  

    AcidM-181 TCTTTCTCCTTGCGGACG Methylocella palustris and 
Methylocapsa acidiphila 

 

    Mcaps-1032 CACCTGTGTCCCTGGCTC Methylocapsa acidiphila  

    Msint-1268 TGGAGATTTGCTCCGGGT Methylosinus trichosporium  

    Msins-647 TCTCCCGGACTCTAGACC Methylosinus sporium  

    Mcyst-1432 CGGTTGGCGAAACGCCTT All Methylocystis spp.  

    Type IIF GGGAMGATAATGACGGTACCWGGA Type II methanotrophs  

    Type IIR GTCAARAGCTGGTAAGGTTC Type II methanotrophs  

 
a Also called Mmb1007 (Gulledge et al., 2000). Primer Mg1004 (Eller et al., 2001) has an identical 15-
bp overlap with Mb1007. 
b Primer Ma450 is identical to part of Am455 (Eller et al., 2001). 
c Primer Mg705 is identical to Gm705 (Eller et al., 2001). 
d Primer Mg669 has an identical 15-bp overlap with Mlb662 (Eller et al., 2001).
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 Table 1.3. List of PCR primers used for amplification of pmoA genes from environmental samples (McDonald et al., 2008). 

Primer(s) Sequence (5'-3') Product size (bp)b  

 

A189fa/A682r GGNGACTGGGACTTCTGG/GAASGCNGAGAAGAASGC 525  

mb661 CCGGMGCAACGTCYTTACC 510*  

pmof1/pmor GGGGGAACTTCTGGGGITGGAC/GGGGGRCIACGTCITTACCGAA 330  

pmof2/pmor TTCTAYCCDRRCAACTGGCC 178  

pmoA206f/pmoA703bd GGNGACTGGGACTTCTGGATCGACTTCAAGGATCG/GAASGCNGAGAAGAASGCGGCGACCGGAACGACGT 530  

A650r ACGTCCTTACCGAAGGT 478*  

mb661r_nd CCGGCGCAACGTCCTTACC 510*  

pmoAfor/pmoArev TTCTGGGGNTGGACNTAYTTYCC/CCNGARTAYATHMGNATGGTNGA 281  

f326/r643 TGGGGYTGGACCTAYTTCC/CCGGCRCRACGTCCTTACC 358  

Mb601 Rc ACRTAGTGGTAACCTTGYAA 432*  

Mc468 Rc GCSGTGAACAGGTAGCTGCC 299*  

II 223 Fc/II646 Rc CGTCGTATGTGGCCGAC/CGTGCCGCGCTCGACCATGYG 444  

Mcap630c CTCGACGATGCGGAGATATT 461*  

Forest675 Rc CCYACSACATCCTTACCGAA 506*  
 
a Primer A189f is also known as A189gc. 
b *, that is, when used in PCR with the primer A189f. 
c Primers designed for real-time PCR quantification of subsets of methanotrophs. 
d Primer set that enables the simultaneous detection of pmoA1 and pmoA2 at an annealing temperature of 60°C but only enables detection of pmoA2 at 66°C (Tchawa et al., 

2003). 
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Table 1.4. List of PCR primers used for amplification of mmoX genes from environmental samples (McDonald et al., 2008). 

Primer(s)a Sequence (5'-3') Product size (bp)  

 

mmoXf882/mmoXr1403 GGCTCCAAGTTCAAGGTCGAGC/TGGCACTCGTAGCGCTCCGGCTCG 535  

mmoX1/mmoX2 CGGTCCGCTGTGGAAGGGCATGAAGCGCGT/GGCTCGACCTTGAACTTGGAGCCATACTCG 369  

536f/877r CGCTGTGGAAGGGCATGAAGCG/GCTCGACCTTGAACTTGGAGCC 341  

mmoXr901b TGGGTSAARACSTGGAACCGCTGGGT 396c  

A166f/B1401r ACCAAGGARCARTTCAAG/TGGCACTCRTARCGCTC 1,230  

534f/1393r CCGCTGTGGAAGGGCATGAA/CACTCGTAGCGCTCCGGCTC 863  

met1/met4 ACCAAGGAGCAGTTC/TCCAGAAGGGGTTGTT   

mmoX206f/mmoX886r ATCGCBAARGAATAYGCSCG/ACCCANGGCTCGACYTTGAA 719  
 
a Primer mmoX1 was located at positions 2008 to 2037, and primer mmoX2 was located at positions 2347 to 2376. Primers A166f and B1401r are also known as mmoXA 

and mmoXD. 
b mmoXr901_GC is also used for DGGE analysis with primer mmoX1(Iwamoto et al., 2000). 
c When used in PCR with the primer mmoX1. 
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1.4.4 Methods to study methanotrophs 

Several approaches have been adopted in molecular ecological studies for the detection 

and characterization of methanotrophs in the various ecosystems (McDonald et al., 2008). 

Culture-based techniques have successfully been used to isolate methanotrophs from 

environmental samples. However, culture-based methods are limited because either many 

methanotrophs do not grow on conventional media or it is very difficult to get them as a 

pure culture. Methanotrophs isolated from media or pure cultures constitute only a small 

fraction of the viable species diversity and the fraction of cells recovered from 

environmental samples is also believed to be a small fraction of those present (Bone et 

al., 1986; Hanson and Wattenburg, 1991). In particular, the slow growth of 

methanotrophs, associated with non-methanotrophs that scavenge on nutrients on agar 

isolation plates, has hampered the studies. The physiological types of methanotrophs 

isolated from environmental samples may reflect the conditions used for enrichments and 

isolation attempts and thus may not be the dominant organisms in the original population 

(Amaral and Knowles, 1995; Bussman et al., 2006; Hanson and Wattenburg, 1991).  

Another method for the identification of methanotrophs in natural environmental samples 

is phospholipids fatty acid analysis. Ester-linked phospholipid fatty acids (PLFAs) are a 

diverse group of cell membrane lipids and are known to degrade rapidly after cell death 

and, therefore, are representative of the living bacteria in soils or sediments (Vestal and 

White, 1989; White et al., 1979). They are polar lipids of which some are specific for 

subgroups of microorganisms, e.g. gram-negative or gram-positive bacteria, 

methanotrophic bacteria, fungi, mycorrhiza, and actinomycetes (Zelles, 1999). Individual 

PLFAs can thus be related to specific microbial populations. PLFAs are extracted from 

soil samples and subsequently analysed by gas chromatography (Frostegard et al. 1993; 

Zelles, 1999). Specific PLFAs are then identified and/or quantified and the result is 

evaluated by multivariate statistics. PLFA profiles of soil samples offer sensitive 

reproducible measurements for characterizing the numerically dominant portion of soil 

microbial communities without cultivating the organisms (Zelles, 1999). The technique 

gives estimates of both microbial community composition and biomass size, and the 

results represent the in situ conditions in soil. This approach has been particularly useful 

for detecting populations of type I and type II methanotrophs, allowing differentiation 

between type I and type II methanotrophs and also from all other organisms (Bowmann et 
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al., 1993).  Type I methanotrophs produce C16 fatty acids as their most abundant PLFAs, 

whereas type II methanotrophs produce a higher concentration of C18 fatty acids 

(Bowman et al., 1993; Hanson and Hanson, 1996). However, a recent study showed that 

Methylocystis heyeri strains (type II methanotrophs) contained large amounts of 16:1ω8c, 

a PLFA that was previously thought to be associated with type I methanotrophs only. The 

major disadvantage of PLFA analysis is that it is not precise enough to identify bacteria to 

the species level. The specificity of PLFA profiling of bacterial populations can be 

significantly enhanced by applying isotopically labeled substrates to soils or sediments.  

Stable isotope probing (SIP) of PLFA and nucleic acids is a novel technique to 

characterize structure and function of active microbial populations. Stable isotope probing 

(SIP) is a method, which attempts to link an organism’s identity with its biological 

function under conditions approaching those in situ. The principle of SIP is based on the 

natural abundance of 13C being approximately 1%. Consequently, addition of 13C labelled 

substrate to an environmental sample will result in 13C labelling of actively dividing 

bacteria when 13C labelled substrate is used as a carbon source and incorporated into 

PLFA and nucleic acids (DNA/RNA) during their synthesis and replication. Phospholipid 

fatty acids stable isotope probing (PLFA-SIP) has become a popular approach for linking 

microbial community structure with its activity in the environment. In this approach, 

active soil microbial populations utilizing a 13C-labeled substrate will readily incorporate 
13C into membrane lipid components such as PLFAs. The resulting incorporation of label 

into specific PLFAs provides a “fingerprint” for the bacteria utilizing that substrate. There 

are many examples for the application of PLFA-SIP approach employed in an effort to 

characterize methanotrophs from different environment ( Bodelier et al., 2000; Bull et al., 

2000; Boschker et al., 1998; Crossman et al., 2006, 2005; Knief et al., 2005, 2003). 

Similarly, Bodelier et al. (2000) carried out 14C-labeled PLFA slurry incubation study to 

characterize active methanotrophs from soil samples collected from rhizosphere 

compartment of rice microcosms with different fertilizers treatments.  

Nucleic acids stable isotope probing (NA-SIP) is based on the incorporation of 13C-

labelled substrates into nucleic acids, separation of labeled from unlabeled nucleic acids 

by density gradient centrifugation, and molecular identification of active populations 

carrying labeled nucleic acid. NA-SIP provides a very useful tool for studying active 

populations of methane oxidising bacteria in environmental samples, enabling active 
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members of a very diverse methanotroph community to be identified. The use of SIP has 

been potentially applied to study methanotrophic community by 16S rRNA gene analysis 

(Hutchens et al., 2004; Morris et al., 2002; Lin et al., 2004; Radajewski et al., 2002), 

mmoX (Hutchens et al., 2004; Lin et al., 2004), mxaF (Hutchens et al., 2004), and to a 

lesser extent pmoA (Radajewski et al., 2002) and mxaF (Morris et al., 2002). NA-SIP is 

limited by the necessity to assimilate a sufficiently large amount of 13C into the nucleic 

acids so that density is significantly higher than that of unlabelled nucleic acids to allow 

differentiation by density gradient centrifugation. Detection and quantification of a 

specific mRNA molecule by reverse transcription PCR (RT-PCR) is a more promising 

tool to identify active microorganisms in the environment (see also the below section). 

Other methods like pmoA-based microarray analysis (Bodressy et al., 2003, 2006) have 

also been increasingly being used these days. Microbial diagnostic microarrays (MDMs) 

consist of nucleic acid probe sets, with each probe being specific for a given strain, 

subspecies, species, genus, or higher taxon (Bodressy et al., 2003, 2006).  

1.4.5 Functional diversity of methanotrophs 

The diversity of functions within a microbial population is important for the multiple 

functions of a soil. The functional diversity of microbial communities has been found to 

be very sensitive to environmental changes (Kandeler et al., 1996; 1999; Zak et al., 

1994). Functional diversity of microbial populations in soil may be determined by either 

expression of different enzymes (carbon utilization patterns, extra-cellular enzyme 

patterns) or diversity of nucleic acids (mRNA, rRNA) within cells.  

mRNA molecules are gene copies used for synthesis of specific proteins by the cell and 

diversity of mRNA reflects the diversity and type of enzymes synthesized. Concentration 

of mRNA is correlated with the protein synthesis rate and as such with the activity of the 

microorganism. Therefore, the content and diversity of mRNA molecules will give a quite 

accurate picture of the in situ function and activity of the microbial community. A 

number of recent studies have focused on the analysis of expression of methane 

monooxygenase in the environment using pmoA-specific primer sets. This included the 

analysis of soil (Han and Semrau, 2004; Kolb et al., 2005), fresh water sediment (Cheng 

et al., 1999; Nercessian et al., 2005), landfill (Chen et al., 2007) and peatlands (Chen et 

al., 2008), providing direct in situ evidence of active methanotrophs.  
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1.4.6 Fingerprinting methods for the study of methanotrophic diversity 

In the last decade molecular fingerprinting techniques such as denaturing gradient gel 

electrophoresis (DGGE; Muyzer et al., 1993), terminal restriction fragment length 

polymorphism (T-RFLP; Liu et al., 1997) or single strand conformation polymorphism 

(SSCP; Schwieger and Tebbe, 1998) became important and frequently used tools in 

microbial ecology in order to understand the spatial and temporal variability of microbial 

community structure and functions, e.g., in response to different treatments, agricultural 

practices, to pollution or to climate at a community level. These three techniques can be 

used to generate fingerprints not only of rRNA gene fragments but also of other 

functional genes PCR-amplified from total community DNA or cDNA (Prosser, 2002; 

Liesack and Dunfield, 2002). The general principle of most molecular fingerprinting 

techniques is based on the electrophoretic separation of marker gene fragments PCR-

amplified from nucleic acids directly extracted from soil samples, due to differences in 

their nucleotide sequence. 

Terminal restriction fragment length polymorphism (T-RFLP) is currently one of the 

most powerful methods in microbial ecology. T-RFLP analysis has been shown to be a 

consistent, high-resolution, and high-throughput cultivation-independent technique for 

rapidly comparing the diversity of bacterial DNA sequences amplified from PCR from 

environmental samples (Braker et al., 2001; Bremer et al., 2007; Buckley and Schmidt, 

2001; Dunbar et al., 2001; Hartmann et al., 2007; Leuders and Friedrich, 2003; Marsh, 

2005,1999; Noll et al., 2005; Osborn et al., 2000; Shrestha et al., 2008; Widmer et al., 

2006). It is based on PCR amplification of 16S rRNA or functional gene with specific 

primers. The primers are labelled with a fluorescent tag at the terminus resulting in 

labelled PCR-products. The PCR products are digested with tetrameric restriction 

enzymes. The digested PCR products are subsequently loaded on an automated DNA 

sequencer where the labelled fragments are separated by high-resolution gel or capillary 

based electrophoresis. The output includes the fragments with different size and quantity 

and then these output data will be further normalized and analysed with multivariate 

analysis (Bremer et al., 2007; Noll et al., 2005).  
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Fig. 1.8: A) Distance dendrogram constructed for partial pmoA and amoA gene sequences in relation to pmoA-based T-RFLP (B). Here different T-RFs can 

be affiliated to respective pmoA sequences as shown by arrow direction. (Horz et al., 2001). 
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1.4.7 Quantification of methanotrophs 

The traditional method for enumerating methanotrophs in environmental samples has 

been most-probable-number (MPN) cultivation. Several studies have measured 

methanotroph numbers in the rice root rhizosphere and found 104 - 106 per g of soil (e.g., 

Bosse and Frenzel, 1997). Methanotroph numbers have also been determined by MPN in 

trichloroethylene-contaminated aquifers (103 - 105 per g) (Takeuchi et al., 2001); swamp 

sediment (106 - 107 per ml) (Miller et al., 2004); and wet meadow soil consuming 

atmospheric CH4 (105 to 107 per g) (Horz et al., 2002). 

Fluorescence in situ hybridization (FISH) targeting the 16S rRNA gene has been used to 

identify (Eller and Frenzel, 2001) and enumerate (Dedysh et al., 2001, 2003) 

methanotrophs. The disadvantages of using FISH to enumerate methanotrophs are that it 

can only be used when the population is numerous enough to be counted under the 

microscope and when the 16S rRNA genes of the target organisms are known. Due to the 

many diversity studies of methanotrophs using pmoA phylogeny, many novel groups of 

methanotrophs can only be identified by pmoA sequence; hence, FISH cannot be used to 

enumerate these organisms. Therefore, other techniques have been developed that target 

the pmoA gene, including competitive reverse transcriptase PCR (Han and Semrau, 2004) 

and real-time PCR (Kolb et al., 2005, 2003) assays. The competitive reverse 

transcription-PCR approach was developed for both pmoA and mmoX using internal RNA 

standards and capillary electrophoresis and was successfully used to quantify the amount 

of mRNA transcript in both whole cells and a model soil slurry system (Han and Semrau, 

2004). So far, this technique has not yet been applied to environmental samples. The 

quantitative real-time PCR assay for methanotrophs was developed from a method using 

SYBR green, previously used for detecting other bacteria, and pmoA specific primers 

designed to target five different groups of methanotophs in real-time PCR (Kolb et al., 

2003). This assay was successfully used to quantify the methanotroph community in a 

number of environments, including a flooded rice field soil (Kolb et al., 2003) and forest 

soils (Kolb et al., 2005).  
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1.5 Effect of nitrogen fertilization on methane production and methane oxidation 

Nitrogen fertilization is essential for achieving high rice yields and is widely practiced in 

rice cultivation. It has been assumed that an increase of rice production by 60% is the 

most appropriate way to sustain the estimated increase of the human population during 

the next three decades and for this reason, intensified global fertilizer application will be 

necessary. However, there is an ongoing discussion on the possible effects of nitrogen 

application on methane emission from the rice fields. Methane emission is a net 

consequence of methane production and oxidation, and both these processes are 

influenced by methane transport from the soil in which methane is produced and 

remained. Both methane production and oxidation are biological processes and affected 

by nitrogen fertilizer directly or indirectly (Schimel, 2000). Nitrogen application would 

also affect the methane transport through the effect of rice growth as rice plants are the 

main pathways for transporting methane from the anoxic soil to the atmosphere (Le Mer 

and Roger, 2001). 

1.5.1 Effects of nitrogen on methane production 

Nitrogen fertilizers are supposed to stimulate methane production by enhancing rice plant 

growth, thus increasing the carbon supply for methanogens (Schimel, 2000; Fig. 1.9). 

Under flooded conditions, the growth of rice plant enhances methane emission by 

providing carbon sources and by favoring methane transport to the atmosphere 

(Dannenberg and Conrad, 1999). A direct stimulatory effect of nitrogen fertilization was 

also observed on methane production (Dan et al., 2001). Recently, Shan et al. (2008) 

observed that nitrogen application played an important role in the transformation of 

acetate to methane, indicating that N fertilizers might also affect methane production at 

the level of microbial community. Probably, nitrogen application might have stimulated 

the growth and activities of methanogens and conversion of acetate into methane by 

methanogens, thus leading to a decrease of acetate and an increase in methane emission. 

1.5.2 Effects of nitrogen on methane oxidation 

There is an ongoing discussion on the possible effects of ammonium based nitrogen 

fertilizer on consumption of methane by methanotrophs depending on which 

environments, it has been applied (Bodelier and Laanbroek, 2004). Currently, there are 
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many contradictory results, reporting inhibition effects (Banik et al., 1996; Bosse et al., 

1993; Cicerone and Shetter, 1981; Hütsch et al., 1994; Steudler 1989), stimulation effects 

(Bodelier et al., 2000; Dan et al., 2001; Krüger and Frenzel, 2003; Krüger et al., 2002 ; 

Mohanty et al., 2006) or no effects (Delgado and Mosier, 1996; Dunfield et al., 1995) of 

ammonium-based N-fertilization on methane oxidising bacteria. Schimel (2000) 

suggested these three different effects happen at different levels such as inhibitory effect 

at the biochemical level and stimulatory effect at the microbial level (Fig. 1.8). 

 
 

Laboratory and field studies have demonstrated that NH4
+ addition inhibits CH4 oxidation 

in forest, grassland, arable and paddy soils (Cai and Yan, 1999; Hütsch et al., 1993; 

Mosier et al., 1991; Nesbit and Breitenbeck 1992; Steudler et al., 1989). Because of the 

similarity in shape and size of CH4 and NH3 molecules, and the relatively low specificity 

of the monooxygenase enzymes responsible, besides the oxidation of methane, the MMO 

convert ammonia to nitrite, and ammonia (Bedard and Knowles, 1989). Thus, it will 

reduce the amount of methane consumed by methanotrophic bacteria and it is 

hypothesized that the competition between NH4
+ and CH4 is the mechanism for the 

inhibitory effect of NH4
+ on CH4 oxidation (Schimel et al., 1993). The intermediates and 

end products of ammonia oxidation, i.e. hydroxylamine and nitrite, can be toxic to 

methanotrophic bacteria and will also lead to inhibition of methane consumption (Schnell, 

and King, 1995). Nitrite was found to inhibit CH4 oxidation in the cultures of 

Fig. 1.9: Effects of ammonium fertilizer on 
methane dynamics in a rice ecosystem. A. At 
the plant/ecosystem level, nitrogen increases 
plant growth and carbon supply to the methane 
producers, stimulating methane flux from the 
soil. B. As Bodelier et al (2000) have shown, 
at the level of the microbial community, 
nitrogen stimulates the growth and activity of 
methane-oxidising bacteria (methanotroph), 
leading to reduced net efflux. C. At the 
biochemical level, ammonium inhibits methane 
consumption because of competition for 
methane monoxygenase, and so increases 
efflux. The balance between these processes 
may vary. But Bodelier et al. (2000) find that 
effects at the level of the microbial community 
dominated the rice ecosystem response to 
ammonium fertilization (Taken from Schimel, 
2000). 
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Methylomonas albus BG8 and M. trichosperium OB3b (King and Schnell, 1994). 

Furthermore, the addition of high amounts of ammonium salts to laboratory incubations 

may also affect methane oxidation due to osmotic stress (Whalen, 2000).  

However, Bodelier et al. (2000) reported the stimulation of methanotrophic activity in 

paddy soil slurries after addition of N-fertilizers. Further, Eller and Frenzel (2000) 

showed that in situ rhizospheric methane oxidation, determined by the use of specific 

inhibitor CH2F2, decreased to zero upon depletion of ammonium in the soil. Identical 

results were found in natural rice paddies (Krüger, and Frenzel, 2003; Krüger et al., 

2002). De Visscher and Cleemput (2003) published the first study that anticipated both 

inhibitory and stimulatory effects of ammonium on methane oxidation. They reported that 

NH4
+ stimulates methane oxidation at high CH4 concentrations and inhibit at low CH4 

concentrations. Nevertheless, experimental proof for a mechanism of nitrogen-based 

stimulation of methane oxidation in soil is still missing. Detailed knowledge on soil 

physicochemical parameters and on the type of methane oxidizers present in any 

particular environment is necessary to understand the modes of action of fertilizer 

application.  

1.6 Objectives 

• To study the spatial and temporal change on the activity and composition of 

methanotrophic community in the rice rhizosphere. 

• To study the temporal variation in methane oxidation and methane concentration 

due to the application of different N-fertilizer treatments during different growth 

stages of the rice plants.  

• To study the effect of different ammonium-N fertilizer treatments on the 

community structure of methanotrophs on the rice roots and in the rhizospheric 

soil during different growth stages of the rice plants. 

• To study the effect of different ammonium-N fertilizer treatments on methane 

oxidation potential activity and metabolically active methanotrophs in the 

rhizospheric soil during different growth stages of the rice plants. 

• To isolate the methanotrophs from rhizospheric soil and roots from rice 

microcosms treated with three different N-fertilizer treatments. 
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Chapter 2 

Materials and methods  

2.1 Materials 

2.1.1 Microcosm Experiment 

Rhizon soil sampler (Rhizosphere Research Products, The Netherlands) 

Venoject blood collecting tubes (Terumo Europe N.V., Belgium) 

Foil grab bags with stainless steel fitting (Analyt-MTC Messtechnik, Germany) 

Perforated pipe (The Netherlands) 

1.59 mm × 1.27 mm stainless steel tubing (Alltech GmbH, Germany) 

3.00 mm ID isoversenic tubing (Gilson International, Germany) 

Teflon tubing (Germany) 

Rice field soil (used in experiment of chapter 3) from Italian Rice Research Institute in 

Vercelli, Italy, collected in 1998 

Rice field soil (used in experiment of chapter 4) from Italian Rice Research Institute in 

Vercelli, Italy, collected in 2006 

Rice seeds (Oryza sativa var. KORAL type japonica) 

Urea, (NH2)2CO (Sigma, Germany) 

Ammonium sulphate, [(NH4)2SO4] (Sigma, Germany) 

Potassium chloride, (KCL) (Fluka, Germany) 

Potassium dihydrogen phosphate, (KH2PO4) (Roth, Germany) 

Demineralized water (MPI, Marburg, Germany) 
13C-labeled CH4 (99 atom-% 13C, Isotec, USA)  

pH meter (Microprocessor pH-Meter 539, WTW) 

Peristaltic pump (Gilson International, Germany) 

Gas Chromatography (Shimadzu GC-8A, Japan) 

Ion Chromatography (Sykam, Germany) 

SAFIRE microplate reader (TECAN, Germany)  
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2.1.2 PLFA extraction method 

CHCl3 (Merck, Germany) 

Methanol (Merck, Germany) 

KOH (Fluka, Germany) 

Acetone (Merck, Germany) 

Toluene (Merck, Germany) 

Hexane (Merck, Germany) 

Acetic acid (Merck, Germany) 

Sep pak cartridges (Waters, Ireland) 

Folded filters (Schleicher and Schuell, USA) 

Pasteur pipettes (Germany) 

Glass pipettes (Germany) 

Round bottom flask (Ochs, Germany) 

Furnace (Heraeus Instruments, Germany) 

Centrifugation machine (Hettich EBA 8S, USA) 

Rotary Evaporator (Laborta 4000, Heidolph, Germany) 

2.1.3 Ammonium concentration analysis 

o-Phthalaldehyde (Merck, Germany) 

2-Mercaptoethanol (Merck, Germany) 

Potassium dihydrogen phosphate (Roth, Germany) 

Dipotassium hydrogen phosphate (Roth, Germany) 

Ethyl acetate (Merck, Germany) 

t-Butylmercaptan (2-Methyl-2-propanethiol) (Merck, Germany) 

Pentane (Merck, Germany) 

Fresh double distilled water (MPI, Marburg, Germany) 

Separatory funnel (Ochs Germany) 

 

 

 



Materials and methods 

 28

2.1.4 Total nucleic acids extractions 

Chloroform-isoamyl alcohol [24:1 (v/v)] (Sigma-Aldrich Chemie GmbH, Germany) 

Phenol–chloroform–isoamyl alcohol [25:24:1 (v/v/v)] (Sigma-Aldrich Chemie GmbH, 

Germany) 

Phenol (Water-saturated, Stabilized) (Applichem GmbH, Germany) 

DEPC-pretreated water (Ambion, Europe) 

Zirconium beads (0.1mm diameter) (Biospec Products Inc. Carl Roth, Germany) 

Tris-HCl (Merck, Germany) 

Na2EDTA (Merck, Germany) 

Sodium dodecyl sulfate, 6% (v/v) (Merck, Germany) 

TE buffer [10 mM Tris-HCl, 1 mM EDTA (pH 8.0)] (Promega, Germany) 

Absolute Ethanol (Applichem GmbH, Germany) 

RNAlater ® (Ambion, Europe) 

Phase Lock Gel Heavy 2 ml (Eppendorf vertrieb, Germany) 

2.1.5 PCR and RT-PCR 

Methylocystis strain H-17 (Culture collection from Prof. Dr. Peter Frenzel’s Laboratory) 

Primers (MWG-Biotech AG, Germany) 

GoTaq ® Flexi DNA Polymerase (Promega, Germany)  

Wizard ® SV Gel and PCR Cleanup System (Promega, Germany)  

GenEluteTM PCR Clean-up Kit (Sigma, Germany) 

Nuclease-free water (Promega, Germany)  

ImProm-II™ Reverse Transcription System (Promega, Germany)  

RQ1 RNase-free DNase (Promega, Germany)  

RNasin ® Ribonuclease Inhibition (Promega, Germany)  

RNeasy MinElute Cleanup Kit (250) cat no. 74204(Qiagen, Germany) 

Oligonucleotide primers (MWG Biotech, Germany) 
Cycler Primus 96

plus 
(MWG Biotech, Germany) 

2.1.6 Cloning and sequencing 

pGEM-T Easy Vector System I (Promega, Germany)  

Taq DNA polymerase, Recombinant (Invitrogen GmbH, Germany) 

Micro Amp Fast Reaction Tube with cap (Applied Biosystems, Germany) 



Materials and methods 

 29

2.1.7 Terminal restriction fragment length polymorphism (T-RFLP) 

SigmaSpinTM Post-Reaction Clean-Up Columns (Sigma, Germany) 

HiDi-formamide (Applera, Germany)  

Internal DNA fragment length standard (X-Rhodamine MapMarker® 30-1000 bp; 

BioVentures, USA) 

ABI 310 automated sequencer (Applied Biosystems, USA)  

GeneScan 3.71 software (Applied Biosystems, USA) 

ABI 3130 automated sequencer (Applied Biosystems, USA) 

GeneScan 5.1 software (Applied Biosystems, USA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and methods 

 30

2.2 Methods 

This Ph.D. research was based on two major experiments which were carried out as 

planted rice microcosm experiments in the greenhouse, MPI, Marburg, Germany. The soil 

used for these experiments was taken from drained paddy fields of the Italian Rice 

Research Institute, Vercelli, Italy in 1998 and 2006, stored in MPI, Marburg, Germany, 

under dry conditions and was used for the experiments of chapters 3 and 4, respectively. 

The experimental set up and microcosm experiments have been explained in detail in the 

relevant chapters. Sequential preparation of microcosm set up and sample collection of 

roots and rhizospheric soil are illustrated in appendix. The other laboratory analyses 

methods have been described as below: 

2.2.1 Measurement of CH4 flux 

Rates of CH4 emission and oxidation were measured as described by Krüger and Frenzel 

(2003). Measurement of CH4 emission and CH4 oxidation rates were carried out 

once/twice a week. For the measurement of rates of CH4 emission, triplicate microcosms 

were covered by static flux chambers made of plexi glass with 10 cm internal diameter 

and 40 or 82 cm height, depending on the height of the rice plants. The lower edge of the 

chambers was dipped into the floodwater to seal the chambers, while a built-in fan mixed 

the atmosphere inside the chambers and prevented the formation of gradients of gases 

present inside (see appendix). Gas samples were taken every 30 minutes for 3 hours. The 

rates of methane emission from rice soil microcosms were calculated by following the 

equation (Rolston, 1986):  

f  = (V/A) (∆C /∆t) 

Where ‘f ’is the methane emission rate (mg m-2 h-1), ‘V’ is the volume of chamber above 

the surface water (m3), ‘A’ is the cross-section area of pot (m2), ‘∆C’ is the concentration 

difference between zero and time t (mg m-3), and ‘∆t’ is the time duration between the 

two sampling times (h). 

Rates of CH4 oxidation were measured in triplicate microcosms by adding 1% 

diflouromethane (CH2F2 99%, ICI Chemicals, UK), a gaseous inhibitor specific for CH4 

oxidation (Miller et al., 1998), to the headspace of the flux chambers. This resulted in the 



Materials and methods 

 31

in situ inhibition of rhizospheric methane oxidation by introducing CH2F2 via the plant 

stem-rhizome-root aerenchyma system. Diflouromethane is a reversible inhibitor and 

promotes rapid recovery of methanotrophs after dissipation of the gas, thereby allowing 

repeated assays on the same microcosm. The gas samples were immediately analysed for 

CH4, CO2 and CH2F2 on a Shimadzu GC-8A gas chromatograph equipped with a flame 

ionization detector and a methanizer (Krüger et al., 2002). CH2F2 was analyzed to ensure 

the presence of sufficient inhibitor concentration. Production of methane is not affected 

by CH2F2 (Miller et al., 1998). The day after the measurement, the concentration of 

CH2F2 was again analyzed in order to confirm the complete removal of CH2F2 from the 

microcosms. 

Methane oxidation rates were calculated from the differences in emission with and 

without inhibitor. 

Methane oxidation rate = Methane emission rate with inhibitor - Methane emission rate 

without inhibitor 

Stable isotope analysis of 13C/12C in gas samples was done using a gas chromatograph 

combustion-isotope ratio mass spectrometry (GCC-IRMS) system as described by Conrad 

et al. (2002) (refer to section 2.2.3.1) 

2.2.2 Soil pore water 

Pore water samples were collected weekly into Venoject blood collecting tubes 

(TERUMO EUROPE N.V., Belgium) from the rhizosphere (3 cm depth from the soil 

surface) and bulk (10 cm depth from the soil surface) regions of rice microcosms by using 

Rhizon pore water samplers (Rhizosphere Research Products, The Netherlands) (Fig 3.1 

and Appendix Fig. C, D and E). Immediately after sampling, the tubes were heavily 

shaken by hand and an aliquot of gas sample from the headspace was collected with a 

pressure lock syringe and analyzed for CH4 using a gas chromatograph equipped with 

FID detector as described in section 2.2.1. Then, the pore water was stored frozen (–20 

°C) for determination of 13C-CH4, pH, NH4
+, NO2

-, NO3
- and SO4

2-. The CH4 

concentration (CCH4) in the soil pore water was calculated as described (Krüger et al., 

2001) below: 
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CCH4 = (m Gv)/(Gl Mv) [µM] 

where m is the mixing ratio gas phase (ppmv), Mv is the gas volume of an ideal gas 

(24.78 L mol-1, at 25 °C), Gv is the volume of gas headspace of the tube [L], and Gl is the 

volume of liquid in the tube [L]. 

2.2.3 Analytical methods 

2.2.3.1 Measurement of 13CH4 dissolved in the pore water 

Stable isotope analysis of 13C/12C in gas samples (dissolved CH4 in frozen pore water) 

was performed using a gas chromatograph combustion isotope ratio mass spectrometer 

(GC-C-IRMS) system (Conrad and Claus, 2005). The CH4 and CO2 in the gas samples 

(10–400 µl) were first separated in a Hewlett Packard 6890 gas chromatograph operating 

with a Pora Plot Q column (27.5 m length; 0.32 mm internal diameter; 10 µm film 

thickness; Chrompack, Frankfurt, Germany) at 25 °C and He (99.996% purity; 2.6 ml 

min-1) as carrier gas. After conversion of CH4 to CO2 in the Finnigan Standard GC 

Combustion Interface III the gases were transferred into the IRMS. The working 

standards were CO2 (99.998% purity; Messer-Griesheim, Germany) and methylstearate 

(Merck, Germany). The latter expressed in the delta notation versus PDB carbonate: 

                                          δ13C =103(Rsa/Rst -1) 

with R=13C/12C of sample (sa) and standard (st), respectively.  

2.2.3.2 Analysis of NH4
+, NO2

-, NO3
-, and SO4

2- concentration, and pH in the pore 

water 

Ammonium concentration was analysed fluorometrically by microscale analysis using a 

SAFIRE microplate reader (TECAN-Xfluor4, Germany) as described by Murase et al. 

(2006). The pore water sample was diluted to 100 times and 100 µl of diluted sample was 

mixed with 100 µl of 2 N KCl into 96-wells microtiter plates. Then 50 µl of reaction 

buffer [mixture of 15 mM o-phthalaldehyde (0.080g) and 50 mM 2-mercaptoethanol (137 

µl) in 20 ml of 500 mM purified phosphate buffer (pH 6.8) and 20 ml fresh double 

distilled water (Corbin,1984)] was added to the 96-well microtiter plates and incubated at 

63 °C for 10 min. After cooling to room temperature, the fluorescence intensity was 
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determined at an excitation wavelength of 410 nm and an emission wavelength of 470 nm 

with a SAFIRE microplate reader (TECAN, Germany). The resulting value was 

calculated in milli molar concentration after comparison with a standard curve prepared 

from known concentrations of ammonium sulphate. 

Nitrate, nitrite and sulphate concentrations in the soil pore water samples were analysed 

by ion chromatography on an HPLC equipped with an LCA KSP column (Sykam, 

Germany) using Na2CO3 as the eluent using a refractive index detector and an UV-

detector as described by Bak et al. (1991).  

pH was measured using a pH meter.  

2.2.4 Collection of soil and root samples 

Rhizospheric soil and root samples were collected in triplicate from each of triplicate 

microcosms from all treatments and all sampling points. Before harvesting the plant, the 

upper 2-3 cm soil from all the rice microcosms was removed and discarded because this 

soil layer might have received oxygen from the overlaying water and not only from the 

rice roots. In the center of each rice microcosm (pot), a self-made nylon bag (25 µm 

mesh; 6 cm length and 9 cm radius) was placed through which water and nutrients could 

pass freely while roots were not able to penetrate, isolating the rhizospheric soil (soil 

from inside the bag and adhered to the roots) from the bulk soil (soil from outside the 

bag) (see Fig. 3.1 and appendix). Rhizospheric soil samples were homogenized in a sterile 

beaker with a sterile spatula and then put in aliquots of 500 mg into triplicate 2.0 ml 

Eppendorf cups. Subsequently, the roots were separated from the soil, were washed in 

deionized and sterile water and then collected in Falcon tubes. Immediately after 

sampling, roots and rhizospheric soil were stored at –80 oC for PLFA and molecular 

analyses.  

2.2.5 Moisture content determination  

Approximately 1 g of soil was accurately weighed and then dried at 105 °C for 24 h 

(Janssen et al., 2002). The samples were reweighed after they were allowed to cool in a 

desiccator to room temperature. The drying and cooling procedure was repeated until 

constant mass (± 0.005 mg) was obtained.  
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The moisture content was calculated using following formula: 

% moisture content =  (Iw – Fw)/ Fw × 100 

where Iw= wet weight of the soil and Fw= dry weight of the soil  

2.2.6 Methane oxidation potential assay  

The methane oxidation potential activity was determined (chapter 5) for the rhizospheric 

soil and roots samples collected from plants harvested on 29, 40, 57, 62, 67, and 88 days 

after transplantation from all treatments. Soil slurries were prepared by mixing one part of 

soil and one part of demineralized and sterile water (grams per fresh weight gram). 2 ml 

of this slurry was placed into triplicate pressure tubes (25 ml), and tubes were closed with 

butyl stoppers. Similarly, triplicate tubes were prepared for washed and cut roots. The 

prepared tubes were flushed with synthetic air (21% O2 in N2) for 1 minute and 

subsequently, head space was supplemented with 50,000 ppmv CH4. The tubes were then 

incubated horizontally on a roller at 30 °C in dark and depletion of CH4 concentration was 

monitored over time for 72 hours. Headspace CH4 was sampled with a pressure lock 

syringe and measured by GC. From the CH4 depletion of the two parallel samples, linear 

regressions were calculated and CH4 oxidation rates were calculated from the slope of 

these regression lines.  

2.2.7 Molecular analyses of the methanotrophic community 

2.2.7.1 Total nucleic acids extraction 

All solutions and glassware were made RNase-free by treatment with diethyl 

pyrocarbonate and the working area was cleaned with 2% AbsolveTM (Perkin, USA). 

Total nucleic acids (chapter 3, 4, and 5) from the soil and root samples was extracted 

using a nucleic acids extraction protocol reported previously (Shrestha, Dissertation, 

2007; Noll et al., 2005). The frozen roots were pulverized with a mortar and pestle after 

freezing in liquid N2 and followed with extraction. Before the extraction, samples 

(rhizospheric soil and roots samples) were mixed with 700 µl of pre-cooled TPM buffer 

[50 mM Tris-HCl (pH 7.0), 1.7% (wt/vol) polyvinylpyrrolidon, 20 mM MgCl2], and 0.5 g 

of zirconium beads (0.1 mm diameter). The mixture was shaken for 45 s at maximum 

speed in a bead beater (Fast Prep FP120, Bio 101, Thermo Savant, USA). Zirconium 
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beads, cell debris and soil particles were pelleted by centrifugation (5 min at 14,000 rpm 

at 4 °C), and the supernatant was transferred to a new reaction tube. The pellet was 

resuspended in 700 µl of a phenol-based lysis buffer [5 mM Tris-HCl (pH 7.0), 5 mM 

Na2EDTA; 0.1% (wt/vol) sodium dodecyl sulfate, 6% (v/v) water-saturated phenol], 

followed by a second round of bead beating. After centrifugation at 14,000 rpm, the 

supernatants of the two bead-beating treatments were pooled and were extracted with 500 

ml of water-saturated phenol, phenol–chloroform–isoamyl alcohol [25:24:1 (v/v/v)], and 

finally chloroform–isoamyl alcohol [24:1 (v/v)]. The total nucleic acids were precipitated 

from the aqueous phase with 1 volume of isopropanol and 3 M sodium acetate, pH 5.7 

(1/10 volume of total sample solute). Finally, the total nucleic acid sample was washed 

twice with 70% ethanol, then air-dried, and resuspended in two tubes with 50 µl of TE 

buffer [10 mM Tris-HCl, 1 mM EDTA (pH 8.0)], one as a DNA extract and the other one 

for subsequent RNA isolation. Then, nucleic acids were checked for quality by 

electrophoresis in agarose gels after staining with ethidium bromide solution followed by 

gel documentation (photography using INTAS, Gel Jet Imager, Göttingen, Germany). Then, 

DNA purification was done by using the Wizard® DNA Clean-up System (Promega, 

Germany). Assessment of nucleic acid purity was done by determining the ratios of 

spectrophotometric absorbance of sample at 260/230 and 260/280.  

2.2.7.2 Total RNA isolation 

Total RNA isolation was carried out for rhizospheric soil (chapter 5). For the removal of 

coextracted DNA, total nucleic acids after extraction was treated with 5 U DNase 

(Promega, Germany), 10 × DNAse buffer (Promega, Germany), in combination with 10 

U RNasin (Promega, Germany), and incubated at 37 °C for 60 min. Finally, total RNA 

from the soil sample was recovered by using RNeasy kit (Qiagen, Germany). However, 

RNA from the roots sample could not be recovered. The integrity of the 16S and 23S 

rRNA was checked by electrophoresis on a 1% agarose gel. The gel was stained with 

ethidium bromide and photographed (INTAS, Gel Jet Imager, Germany). 

2.2.7.3 PCR amplification of pmoA gene 

PCR amplification of the pmoA gene from rhizospheric soil and roots samples was done 

using primers sets A189f/A682r (Holmes et al.,1995), A189f/mb661r (Costello and 

Lidstrom, 1999), and A189f/nmb650r (see in section 5.3.7). The reaction was carried out 
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in 50 µl (total volume) mixtures containing 1 µl of template DNA, 10 µl of 5× reaction 

buffer (Promega, Germany), 1.5 mM MgCl2, 200 µM each dNTP, 0.33 µM (each) primer 

(MWG-Biotech, Germany), and 2.5 U of Taq DNA polymerase (Promega, Germany). For 

the primer set A189f/mb661r, the thermal PCR profile was as follows: initial denaturation 

at 94 °C for 5 min; 15 cycles consisting of denaturation at 94 °C for 1 min, primer 

annealing at 62 °C for 45 s, and elongation at 72 °C for 60 s, followed by another twenty 

cycles consisting of denaturation at 94 °C for 1 min, primer annealing at 55 °C for 45 s 

and elongation at 72 °C for 60 s. The final elongation step was extended to 7 min at 72 

°C. For the primers sets A189f/A682r and A189f/nmb650r, a touchdown thermal program 

was performed and consisted of an initial denaturation step of 3 min at 94 °C, followed by 

11 touchdown cycles consisting of denaturation at 94 °C for 1 min, primer annealing at 

64–55 °C (with -1 °C step) for 1 min and 24 further cycles at 55 °C for 1 min followed by 

72 °C for 1 min extension. Final elongation step was extended to 7 min at 72 °C. A 

positive control was performed using genomic DNA of Methylocystis strain H-17, while a 

negative control was performed using H2O instead of DNA template. Amplification was 

performed in 0.2-ml reaction tubes using a DNA thermal cycler. Aliquots of the 

amplicons (5 µl) were checked by electrophoresis on a 1% agarose gel after staining with 

ethidium bromide solution for 30 minutes. PCR products were purified with GenEluteTM 

PCR Clean-up Kit (Sigma, Germany) and used for further cloning and sequencing 

purpose. 

2.2.7.4 RT-PCR of pmoA transcripts 

This analysis was carried out for the experiments described in chapter 5. RT-PCR was 

carried out using a two step RT-PCR kit according to the manufacturer’s instructions 

(ImProm-II™ Reverse Transcription System, Promega, Germany). In the first step, 

cDNA synthesis was carried out in total volume of 20 µl containing 2 µl of template RNA 

and 20 pmol of A682r primer. Thus each RNA was reverse-transcribed to cDNA that was 

used as a template for PCR as the second step. In this step, primer set A189f/682r was 

used and a touchdown PCR program was performed as: initial denaturation step of 3 min 

at 94 °C, followed by 11 touchdown cycles consisting of denaturation at 94 °C for 1 min, 

primer annealing at 64–55 °C (with -1 °C step) for 1 min and 24 further cycles at 55°C 

for 1 min followed by 72 °C for 1 min extension. The final elongation step was extended 

to 7 min. An aliquot (1µl) of the PCR product from A189f/A682r primer set was used for 
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a second round of PCR with primer set A189f/mb661r. The PCR program was performed 

as: initial denaturation at 94 °C for 2 min; fifteen cycles consisting of denaturation at 94 

°C for 1 min, primer annealing at 62 °C for 30 s, and elongation at 72 °C for 60 s 

followed by another twenty cycles consisting of denaturation at 94 °C for 1 min, primer 

annealing at 55 °C for 30 s and elongation at 72 °C for 60 s. The final elongation step was 

extended to 7 min. A negative control experiment was performed for all the samples as 

described above but after excluding reverse transcriptase enzyme. Also, a positive RT-

PCR experiment was performed with control RNA provided in the kit (Promega, 

Germany) with all RT-PCR steps. Aliquots (5 µl) of the amplicons were checked by 

electrophoresis on a 1% agarose gel after staining with ethidium bromide solution for 

about 30 minutes and photographed. 

2.2.7.5 Cloning and sequencing 

pmoA Clone libraries were constructed by using purified DNA or cDNA amplicons by 

using the pGEM-T Easy cloning kit (Promega, Germany). Several clones from 

rhizospheric soil samples and root samples were randomly selected for comparative 

sequence analysis. Cloned inserts were sequenced at the Max Planck Institute for Plant 

Breeding in Cologne, Germany, using the primers M13f and M13r targeting vector 

sequences. The partial pmoA gene sequences (from chapter 3) have been deposited in the 

EMBL, GenBank, and DDBJ nucleotide sequence databases under the following 

accession numbers: AM849616-AM849659 (RS-8); AM849660-AM849716 (RS-18); 

AM849717-AM849753 (RT-8); AM849754-AM849804 (RT-18). The partial pmoA gene 

sequences that were generated in fertilizer treatment study (chapter 4.3.6 and chapter 

5.3.9) are still to be deposited in a nucleotide sequence database. 

2.2.8 Phylogenetic analysis 

The identities of the pmoA gene sequences were confirmed by searching the sequence 

databases using nucleotide blast (http://www.ncbi.nlm.nih.gov/BLAST/). Phylogenetic 

analyses of the pmoA gene and deduced amino acid sequences were carried out using the 

ARB program package (developed by O. Strunck and W. Ludwig; Technische Universität 

München [http://www.arb-home.de]). Sequences were manually aligned with the pmoA 

sequences obtained from the GenBank database. Regions of sequence ambiguity and 

incomplete data were excluded from the analyses. Results were depicted as a consensus 
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tree, combining the results of Tree-Puzzle, neighbor-joining approach, and maximum 

likelihood analyses of the data sets in chapter 3. 

2.2.9 T-RFLP analysis 

Analysis of terminal restriction fragment length polymorphism (T-RFLP) was performed 

for each DNA extract or cDNA samples in triplicate. The pmoA was amplified by PCR as 

described above (section 2.2.6.3) except a FAM (6- carboxyfluorescein)-labeled forward 

primer was used and the concentration of both forward and backward primers was 

increased to 0.66 µM for each reaction. For T-RFLP analysis, PCR products were run on 

the gel and the correct size was excised from the agarose gel and purified with Wizard ® 

SV Gel and PCR Cleanup System (Promega, Germany). After gel purification, 

approximately 100 ng of the amplicons were digested with 10 U of the restriction 

endonuclease MspI (Promega, Germany). The digestion was carried out in a total volume 

of 10 µl for 6 h at 37 °C followed with incubation at 65 °C for 20 min. The product was 

purified by using SigmaSpinTM Post-Reaction Clean-Up Columns (Sigma, Germany) 

following the manufacturer's instructions.  Then aliquots (2.5 µl) of purified digested 

amplicons were mixed with 12-11 µl of deionized formamide (Applera, Germany) and 

0.2-0.3 µl of an internal DNA fragment length standard (X-Rhodamine MapMarker® 30-

1000 bp; BioVentures, USA). The mixtures were denatured at 94 °C for 3 minutes and 

then chilled on ice and finally loaded into an automated gene sequencer (ABI 310/ABI 

3130, Applied Biosystems, Germany) fitted with ABI prism where the terminal restriction 

fragments (T-RFs) were separated by capillary electrophoresis. The length of 

fluorescently labeled T-RFs was determined by comparison with the internal standard 

using GeneScan 3.71/5.1 software (Applied Biosystems, Germany). Terminal restriction 

fragments between 50 and 550 bp with peak heights of >30 fluorescence units were used 

for T-RFLP analysis. Since T-RFs can vary slightly in size, T-RFLP patterns were 

inspected visually and peak size differences of up to 1-7 base pairs were confirmed by 

comparing the relative peaks of all patterns in all replicates and were considered identical 

and were clustered into a single TRF.  
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2.2.9.1 Analysis of TRF profiles (Dunbar et al., 2001) 

i) Normalization of DNA quantity between replicate profiles. 

The sum of all peak heights of >30 fluorescence units (i.e., the total fluorescence; 30 

fluorescence units is the baseline noise threshold) in each replicate profile was calculated 

as an indication of the total DNA quantity represented by each profile. DNA quantity was 

normalized between replicate profiles to the smallest quantity by proportionally reducing 

the height of each peak in largest profiles. To accomplish this, the proportion of the 

smallest DNA quantity (i.e., total fluorescence) and a larger DNA quantity was calculated 

and used as a correction factor to adjust each peak height in the profile representing the 

larger DNA quantity. This procedure often eliminated peaks from larger profiles by 

reducing some peak heights below the baseline noise threshold (30 fluorescence units). 

Therefore, after adjustment of a profile, the new sum of peak heights of >30 fluorescence 

units was calculated, and the normalization procedure was repeated until, by iteration, the 

DNA quantity (i.e., total fluorescence) of the larger profile was equal to the quantity of 

the smaller profile. 

ii) Creation of a derivative, reproducible sample profile.  

For each sample, a derivative profile containing only the most conservative and reliable 

TRF information was created by identifying the subset of TRFs that appeared in all 

replicate profiles of a sample.  

2.2.9.2 Calculation of relative abundance of T-RFs (Dunbar et al., 2001; Liesack and 

Dunfield, 2004) 

After normalization of peak heights, the relative abundance (Ai) of T-RFs in a sample, 

given in percent, were calculated as  

                                                Ai = ni/N  

where ni  represents the peak height of a T-RF (i) and N is the sum of all peak heights in a 

given T-RFLP pattern. To reduce data noise, only T-RFs with Ap values ≥1% were 

considered for further analysis. 
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2.2.10 Phospholipid fatty acids-stable isotope probing (PLFA-SIP) 

PLFA-SIP was carried out for the experiments described in chapter 3. Lipids were 

extracted from 3 g dry weight of rhizospheric soil and roots (n=3), taken from both 

control and 13C-labeled microcosms, using a modified Bligh and Dyer extraction method 

(Knief et al., 2003a). The frozen root samples were pulverized with a mortar and pestle 

after freezing in liquid N2. The soil and roots samples were weighed in 30 ml glass bottle 

and 6 ml 50 mM phosphate buffer, 18 ml methanol and 7.5 ml chloroform were added to 

it and the bottles were shaken on a shaker at 300 rpm at room temperature under the hood 

for two hours. Then equal volumes (6 ml) of distilled water and of chloroform were added 

and the two phases were allowed to separate overnight at 4 °C. Next day the chloroform 

phase was dried by filtration through a sodium sulfate-containing phase separation filter 

and reduced in volume by rotary evaporation. The volume was reduced to about 1 ml and 

was fractionated on silicic acid column (Water, Ireland) into different polarity classes by 

sequential elution with chloroform, acetone and methanol (Zelles and Bai, 1993). The 

columns were pre-eluted with 2 ml of chloroform, and the sample was transferred to the 

column with three 2-ml washes of chloroform. Neutral lipids were eluted with 6 ml of 

chloroform, glycolipids were eluted with 6 ml of acetone, and polar lipids were eluted 

with 15 ml of methanol. The polar lipids were collected into a round-bottomed flask and 

the solvent was reduced with a rotary evaporator. The polar lipid extract was dissolved in 

1 ml of methanol/toluene (1:1), 1 ml of methanolic KOH (0.2N) was added, and the 

mixture was incubated at 37 °C for 15 min. Finally 2 ml hexane, 0.3 ml 1 M acetic acid 

and 2 ml fresh double distilled water were added. The mixture was thoroughly mixed and 

centrifuged and fatty acid methyl esters were recovered from the organic phase of the 

sample. These resulting fatty acid methyl esters (FAME) were then sent to Braunschweig 

for further analysis by GC-C-IRMS in collaboration with Dr. Wolf Rainer Abraham, 

Braunschweig, Germany. 

The fatty acid methyl esters were separated by gas chromatography (GC) and identified 

by their retention time compared to standards; peak identification was verified using mass 

spectrometry (MS). Fatty acids are designated by the total number of carbon atoms. The 

degree of unsaturation is indicated by a number separated from the chain length by a 

colon and is followed by ωxc, where x indicates the position of the double bond nearest to 

the aliphatic end (ω). The c indicates a cis-position of the double bond on the molecule. 
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Then the stable carbon-isotope compositions of the PLFA were determined using a 

Finnigan MAT Model 252 isotope ratio mass spectrometer coupled to HP 5890 GC with a 

Finnigan standard combustion interface (Abraham et al., 1998). To calculate isotope 

ratios (δ13C) for the PLFAs, δ13C values of the FAMEs were corrected for the 13C-content 

of the carbon atom of the methyl group (δ13C = -37.6‰) that was added during 

methanolysis  

δ13CPLFA = [(Cn + 1) × δ 13CFame - δ 13CMeOH]/Cn 

where δ13CPLFA  is the δ13C of the fatty acid, Cn is the number of carbons in the fatty acid, 

δ13CFame is the δ13C of the fatty acid methyl ester (FAME), and δ13CMeOH is the δ13C of the 

methanol used for the methylating reaction (-37.6‰) to calculate the isotope ratios of the 

fatty acids (Abraham et al., 1998).  

 

Total PLFAs were estimated based on peak areas in gas chromatograms with 16:0 as 

internal standard. From the difference in δ13C values of the PLFA extracted from the 13C-

labeled soils and those from the unlabeled soils (control), the amount of 13C incorporation 

into each PLFA was calculated as ng 13C incorporated per gram of soil or roots (Nold et 

al., 1999) as: 

13C incorporation = (Fl-Fc) [PLFA]l 

where  Fl = fraction of 13C in the 13C-labeled samples;  

           Fc = fraction of 13C in the unlabeled control sample; and  

          [PLFA]l = PLFA concentration in the 13C-labeled sample.  

F was given by 

                                            F = 13C/(13C+12C) = R/(R+1)  

where R= (δ13C/1000+1) RVPDB 
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The standard notation for expressing high-precision gas isotope ratio MS results in δ 

being defined as follows: 

                                      δ (‰) = [(RFAME/RVPDB) -1] × 103  

where RFAME and RVPDB are the 13C/12C isotope ratios corresponding respectively to the 

sample and to the international internal standard Pee Dee Belemnite, a South Carolinian 

carbonate rich in 13C (RVPDB = 0.0112372 + 0.0000090). 

2.2.11 Statistical analyses 

2.2.11.1 Statistical analyses for chapter 3 

Statistical analyses were performed using Microsoft Excel software. The two-sample t-

test was used for comparing the means of relative abundances of (sum) T-RFs affiliated 

with type I and type II methanotrophs. Significant differences in 13C incorporation into 

PLFAs obtained from rhizospheric soil and root samples and between groups of PLFAs 

representing type I and type II methanotrophs were also tested.  

2.2.11.2 Statistical analyses for chapter 4 

All the statistical analyses were performed with R software package (Venables, Smith and 

the R Development Core Team, Version 2.6.2, 2008) in collaboration with Prof. Dr. Peter 

Frenzel, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. R is a 

free software environment and provides a wide variety of statistical and graphical 

techniques, and is highly extensible. In addition to R software, several other packages 

such as locfit (Clive Loader, 1999), vegan (Oksanen, 2005), labdsv (Roberts, 2007) are 

included which can be applied for different analyses as described below. 

All the raw data from environmental (CH4 and NH4
+ concentration, pH and plant 

characteristic) and functional data (CH4 oxidation rate) were analyzed by non-linear 

interpolation using R package locfit (Clive Loader, 1999). The interpolated data thus 

obtained were used for further statistic analyses. 

T-RFs of different length were considered to be indicative of different pmoA operational 

taxonomic units (OTUs) present in a sample, and the relative peak heights were used as a 
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measure for the relative abundance of pmoA-OTUs. The effects of treatments, 

environmental factors and function on T-RFLP-profiles were explored by ordination 

techniques. An ordination based correspondence analysis (CA) was applied to analyze the 

treatment effects on community structure of methanotrophs from all six different growth 

periods. It uses the individual T-RFs obtained from each replicate microcosm and their 

relative abundance as input variables and calculates the position of all the T-RFs in a two-

dimensional ordination. Samples with a similar community composition are placed closer 

together and samples with a dissimilar community composition are positioned further 

apart. Here in this study, CA ordination was used to plot the samples from different 

fertilizer treatments and fragments represented by different OTUs, using R package vegan 

(Oksanen, 2005).  

To further identify OTUs (T-RFs) that differentiated methanotrophic communities by 

treatments, indicator species analysis was carried out as one of the visual techniques using 

R package labdsv (Roberts, 2007, http://ecology.msu.montana.edu/labdsv/R). The 

calculation of indicator value ‘d’ of a  species was done as the product of the relative 

frequency and relative average abundance in clusters (Dufrene and Legendre, 1997). In 

this study, the indicator values were plotted as a range of different color codes in a heat-

map for different nitrogen fertilizer treatments.  

Canonical or constrained correspondence analysis (CCA) allows relating community 

variation to environmental variation. Environmental variables (CH4 and NH4
+ 

concentrations and pH along with plant characteristics i.e., tiller and leaves number) and 

functional data (CH4 oxidation rates) were graphically correlated by CCA ordination 

using the above CA plots to evaluate relationships between overall community 

composition and environmental and functional variables. In this case, environmental 

variables were fitted with vectors while function data were fitted with contour lines. The 

fitted vectors are the arrows that tell about the direction (arrow points) of the most rapid 

change in the environmental variable. The length of the arrows indicates the correlation 

between ordination and environmental variable. Similarly, the contours are isolines, 

which are fitted as surfaces of environmental variables (functional factors) to ordinations. 

If the response is linear and vectors are appropriate, the fitted surface is a plane whose 

gradient is parallel to the arrow, and the fitted contours are equally spaced parallel lines 

perpendicular to the arrow (Oksanen, 2005). 



Materials and methods 

 44

Analysis of similarity (ANOSIM) was applied to test for significant differences in 

community composition among the treatments and also for significant effect of methane 

oxidation rates on community structure from three different treatments. This non-

parametric procedure tests for significant differences between two or more groups, based 

on distance measures (Clarke, 1993). This method compares the ranks of distances 

between the groups and within the groups. The means of these two types of ranks are 

compared, and the resulting R test measures whether separation of community is found 

(R=1), or whether no separation occurs (R=0). The significance is based on permutation 

tests. 

2.2.11.3 Statistical analyses for chapter 5 

One-way analysis of variance (ANOVA, P<0.01) was applied to test for the significant 

differences in methane oxidation potential rates for different treatments using SPSS 

software (version 11.5).  

2.2.12 Media preparation for the isolation of methanotrophs 

The protocol for preparation of nitrate mineral salts medium (NMS medium) (Bowmann,  

2006) used is given below: 

 

 

 

 

 

 

 

 

 

Nitrate Mineral Salts Medium (NMS medium)
MgSO4·7H2O 1 g 
KNO3 1 g 
Na2HPO4·12H2O 0.717 g 
KH2PO4 0.272 g 
CaCl2·6H2O 0.2 g 
Ferric ammonium EDTA 5 mg 
Trace element solution 1 ml 
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In the first step, trace element solution was prepared by adding above components to 

distilled water and was brought to a volume of 1 litre and mixed thoroughly. In the 

second step, NMS medium was prepared by adding components to 1 litre of distilled 

water and thoroughly mixed. pH of the medium was adjusted to 6.8 using 0.1M KOH and 

then was distributed to culture tubes or serum bottles as specified. For solid media, agar 

(Difco, France) was added to a concentration of 1.5% (w/v) and boiled gently to dissolve 

the agar. Finally, the medium was autoclaved at 15 psi pressure (121 °C) for 15 min to 

sterilize. 

Trace Element Solution 
Disodium EDTA 0.5 g 
FeSO4·7H2O 0.2 g 
H3BO3 0.03 g 
CoCl2·6H2O 0.02 g 
CuSO4·5H2O 0.03 g 
ZnSO4·7H2O 0.01 g 
MnCl2·4H2O 3 mg 
Na2MoO4·2H2O 3 mg 
NiCl2·6H2O 2 mg 
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Chapter 3 

Activity and composition of methanotrophic bacterial communities in 

planted rice soil studied by flux measurements, analyses of pmoA gene 

and stable isotope probing of phospholipid fatty acids 
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3.1 Introduction 

Methane is a trace gas in the earth’s atmosphere with important global warming 

implications. Rice fields are an important source for atmospheric CH4 contributing about 

40 Tg y-1 (Wang et al., 2004; Lelieveld et al., 1998). Methane, which is produced in the 

soil, enters the roots of the rice plants and is transported through the gas vascular system 

of the plants to the atmosphere and oxygen is transported from the atmosphere into the 

roots. Hence, rice roots are partially oxic and thus allow methanotrophic bacteria to be 

active in the rhizosphere (Conrad, 2004). Aerobic methanotrophs associated with the 

rhizosphere of rice plants oxidize CH4 with molecular O2 and use it as the sole source of 

carbon and energy. Thus aerobic methanotrophs play an important role in the global CH4 

budget by reducing CH4 emissions from the rice ecosystems to the atmosphere (Groot et 

al., 2003). Therefore, a better knowledge of the methanotrophic community structure and 

its activity in paddy fields is important for the mechanistic understanding of CH4 

oxidation in soil. 

Methanotrophs are classified as type I (belonging to the Gammaproteobacteria) and type 

II (belonging to the Alphaproteobacteria), based on several characteristics including 

phylogeny, guanine and cytosine content of their DNA, intracellular membrane 

arrangement, carbon assimilation pathways and phospholipid fatty acids (PLFAs) 

composition (Hanson and Hanson, 1996; Whittenbury et al., 1970). At present, there are 

13 recognized genera of methanotrophs (Hanson and Hanson, 1996; Bowman et al., 

1997; Bodrossy et al., 1997; Dedysh et al., 2000, 2002; Wise et al., 2001; Heyer et al., 

2005; Tsubota et al., 2005) consisting of both type I and type II methanotophs. Both type  

I and type II methanotrophs have been detected in rice field soil and on rice roots using  

cultivation techniques (Gilbert and Frenzel, 1998) as well as cultivation-independent 

techniques that include PLFA analyses, fingerprinting techniques (T-RFLP, DGGE), and 

cloning and sequencing of 16S rRNA genes and functional genes (pmoA, mmoX, mxaF), 

(Bosse and Frenzel, 1997; Henckel et al., 1999, 2000; Bodelier et al., 2000; Eller and 

Frenzel, 2001; Horz et al., 2001; Macalady et al., 2002; Mohanty et al., 2006).  

Methanotrophs are known to be sensitive to variation in CH4 and O2 concentrations 

(Bender and Conrad, 1995; Henckel et al., 2000), and it has been suggested that the 

amount of available CH4 influences the competition between type I and type II 

methanotrophs. Type I methanotrophs seem to outcompete type II species under low CH4    
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and high O2 conditions, whereas type II species tend to dominate under the opposite 

conditions ( Graham et al., 1993; Amaral and Knowles, 1995). Rice plant ecosystems 

may exhibit different niches for methanotrophs as characterized by spatiotemporal 

variation of CH4 and O2 in the rice rhizosphere (Gilbert and Frenzel, 1995). Oxygen 

availability increases with plant age because of higher root-oxygen-releasing activity and 

higher root densities. Furthermore, methane availability increases with distance from the 

rice root, while oxygen availability decreases with distance (Gilbert and Frenzel., 1998). 

Thus, the rhizosphere appears to be a very heterogeneous habitat for methanotrophs. As a 

consequence, methanotrophic community structure in rice soil may shift with changing 

conditions and over the season (Eller et al., 2005; Eller and Frenzel, 2001). Macalady and 

colleagues (2002) quantified the temporal and spatial dynamics of methanotroph 

populations in a California rice field using PLFA biomarker analyses, evaluating the 

relative importance of type I and type II methanotrophs with depth and in relation to rice 

roots. However, the temporal change of activity and active methanotrophic populations in 

the rice rhizosphere has not yet been studied. 

Currently, phospholipid fatty acids stable isotope probing (PLFA-SIP) has become a 

popular approach for linking microbial community structure with its activity in the 

environment. In this approach, active soil microbial populations utilizing a 13C-labeled 

substrate will readily incorporate 13C into membrane lipid components such as 

phospholipid fatty acids (PLFAs). The presence of particular PLFAs is a distinct 

characteristic of methanotrophic bacteria allowing differentiation between type I (16 

carbon fatty acids: 16:0, 16:1) and type II methanotrophs (monounsaturated 18 carbon 

fatty acids: 18:1ω9c, 18:1ω8) and also from all other organisms (Bowmann et al., 1993). 

PLFA-SIP methodology has been successfully applied in several soils and sediments to 

identify active CH4-oxidizing bacteria (Boschker et al., 1998; Bull et al., 2000; Knief et 

al., 2003b; Crossman et al., 2006). Similarly, Bodelier et al. (2000) carried out 14C-

labeled PLFA slurry incubation study to characterize active methanotrophs from soil 

samples collected from rhizosphere compartment of rice microcosms with different 

fertilizers treatments. However, the temporal change in the active methanotrophic 

community structure in the rice rhizosphere has not yet been studied using PLFA-SIP 

methodology. Furthermore, labeled CH4 has not yet been applied to the rice roots under 

close to in situ conditions. Therefore, in this part of the study, I conducted labeling 

experiments where 13CH4 was directly added to the rhizosphere of planted and fertilized 



Introduction 

 49

rice microcosms mimicking in situ conditions, and the total and active methanotrophic 

community was investigated with respect to time by analyzing pmoA gene analyses and 

using PLFA-SIP, respectively.  

3.2 Objectives 

• To study the spatial and temporal change on the composition of methanotrophic 

community in the rice rhizosphere. 

• To study the temporal change of activity and active methanotrophic population in 

the rice rhizosphere. 
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3.3 Methods 

 

3.3.1 Experimental setup 

 

 

 

 

 

 

Fig. 3.1: Rice microcosm experimental set up. 

3.3.2 Microcosm experiment  

3.3.2.1 Planted rice microcosms 

Soil was taken from drained paddy fields of the Italian Rice Research Institute in Vercelli, 

Italy, in 1998 and was air-dried and stored at room temperature. The soil characteristics 

are described in Table 3.1. Immediately prior to its use, the soil was ground with a 

mechanical grinder and passed through a 2 mm sieve. Then the soil slurry was prepared 

with 1.8 kg soil, 940 ml demineralized water, and 60 ml of fertilizer solution [2.3 g 

nitrogen (N) as urea, 0.87 g phosphorous (P) as KH2PO4, and 1.85 g potassium (K) as 

KCl per liter], and finally filled into each microcosm pot with a volume of 2.5 L (height 

16 cm, diameter 17 cm). The fertilizer composition corresponds per ha to 160 kg N as 

urea or ammonium sulphate, 140 kg P2O5 and 155 kg K2O as practically applied in rice 

fields. In the center of each pot, a self-made nylon bag (25 µm mesh; 6 cm length and 9 

cm radius) was placed through which water and nutrients could pass freely while roots 

were not able to penetrate, isolating the soil inside the bag as rhizospheric soil from the 

bulk soil outside the bag (Fig. 3.1 and appendix). A ring of permeable tubing (7.5 cm 

diameter) was placed into the lower part of the nylon bag and was connected to a

Pump 13CH4Pump 13CH4Pump 13CH4

Nylon mesh bag 
Rhizospheric soil 
Permeable ring 
Bulk soil 

Rice plant 
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reservoir foil grab bag (Analyt-MTC, Germany) containing demineralized water saturated 

with 13C-labeled CH4 (99 atom-% 13C, Isotec, USA) and circulated directly to the 

microcosms with the help of peristaltic pumps (Fig. 3.1, appendix). 

 

Table 3.1: Soil characteristics of rice field soil collected in year 1998. 

Variable Portion  

C (%) 2.5 

N (%) 0.15 

C/N 17 

Texture (%) (clay/silt/sand) 12/42/46 

  

 

 

 

 

 

 
 

 

 

 

Fig 3.2: Schematic diagram of the experiment. dap indicates days after transplantation and      

indicates the sampling point for rhizospheric soil and roots samples. 

In total, 18 microcosms were prepared among which 9 were for 13C-CH4 labeling and 

another 9 were used as control without labeling (12C-CH4-labeling was not done), and 

were flooded with demineralized water giving a water depth of 5 cm above the soil 

surface and were incubated in the greenhouse with a relative humidity of 70%, 12 h 

photoperiod, and 30/22 ºC day/night temperature. After five days of flooding, one 14-day 

old rice seedling (Oryza sativa var. KORAL type japonica) germinated on moist filter 

paper at room temperature was transplanted into the center of the nylon bag in each pot, 

and 20 ml of fertilizer solution (same as above) was added. The day of transplantation 

was taken as day zero and the following incubation experiment was then conducted from 

May 29, 2005 till July 22, 2005 for a total of 55 days (Fig 3.2) under flooded conditions. 

0 dap 

Rice seedlings 
transplantation 
& fertilization

Soil: water (2:1) + fertilizer (NPK) 

Flooding 

13CH4 
addittion

37 dap

Fertilization 

44 dap

13CH4    
stop 

54 dap 
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The 13C-labeled CH4 solution was continuously circulated in the soil between day 37 and 

54 after transplantation. On day 44, 20 ml of fertilizer solution was added a third time to 

the microcosms (Fig 3.2). In this study, fertilizer solution was added as a mixture of 

ammonium, phosphorous and potassium sources in order to fulfill the nutrient 

requirements for rice plant growth. Water lost due to evapotranspiration was daily 

replaced by addition of demineralized water to maintain a 5 cm water depth. 

3.3.2.2 Measurement of CH4 flux 

Rates of CH4 emission and CH4 oxidation were measured as described in chapter 2.2.1. 

Stable isotope analysis of 13C/12C in gas samples (methane flux) was performed using a 

gas chromatograph combustion isotope ratio mass spectrometer (GCC-IRMS) system as 

described in 2.2.3.1.   

3.3.2.3 Soil pore water 

Pore water samples were collected weekly into Venoject blood collecting tubes from the 

rhizosphere (3 cm depth from the soil surface) and bulk (10 cm depth from the soil 

surface) regions of rice microcosms as described in 2.2.2.  

3.3.2.4 Analytical methods 

The gas samples from the pore water were analyzed for CH4 using gas chromatography 

equipped with FID detector as described in section 2.2.2. Stable isotope analysis of 
13C/12C in gas samples (dissolved CH4 in frozen pore water) was performed using a gas 

chromatograph combustion isotope ratio mass spectrometer (GC-C-IRMS) system as 

described in 2.2.3.1.   

pH was measured using a pH meter.  

3.3.3 Collection of soil and root samples 

Rhizospheric soil and root samples were collected 44 (8 days after the beginning of 13C-

labeling) and 55 (18 days after the beginning of 13C-labeling) days after transplantation 

from the 13C-labeled and control (unlabeled) microcosms in triplicate as described in 

chapter 2.2.4. The samples were designated as RS-8 and RS-18 for the rhizospheric soil, 
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and RT-8 and RT-18 for the roots, respectively where the numbers 8 and 18 stood for 8 

and 18 days of incubation period after the beginning of 13C-labeling. The roots were 

washed in deionized sterile water. The soil and root samples were stored at –80 °C for 

molecular and PLFA-SIP analyses. 

3.3.4 DNA extraction, PCR, cloning, and sequencing 

Total DNA from the soil and root samples was extracted using total nucleic acids 

extraction protocol described in chapter 2.2.7.1. The frozen roots were pulverized with a 

mortar and pestle after freezing in liquid N2. After extraction, DNA was checked for 

quality and quantity by electrophoresis in agarose gels stained with ethidium bromide, 

followed by gel documentation and then DNA purification was carried out using the 

Wizard® DNA Clean-up System (Promega, Germany). 

PCR amplification of the pmoA gene was done using primers A189f and mb661 (Costello 

and Lidstrom, 1999) as described in chapter 2.2.7.3. Aliquots of the amplicons (5 µl) 

were checked by electrophoresis on 1% agarose gel including positive and negative 

controls. 

Two clone libraries each of pmoA gene from DNA amplicons retrieved from rhizospheric 

soil and root samples were constructed using the pGEM-T Easy cloning kit (Promega, 

Germany). A total of 101 clones from rhizospheric soil samples (44 and 57 clones from 

RS-8 and RS-18 days samples, respectively) and of 88 clones from root samples (37 and 

51 clones from RT-8 and RT-18 days samples, respectively) were randomly selected for 

comparative sequence analysis and proceeded as described in chapter 2.2.7.5.  

3.3.5 Phylogenetic analysis 

Refer to chapter 2.2.8. 

3.3.6 T-RFLP analysis 

Analysis of terminal restriction fragment length polymorphism (T-RFLP) was performed 

for each DNA extract in triplicates as described in chapter 2.2.9. The normalization 

procedure of each TRF profile was done as described in chapters 2.2.9.1 and followed 
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with calculation of relative abundance as described in chapters 2.2.9.2 and for statistical 

analysis. 

3.3.7 Phospholipid fatty acids-stable isotope probing (PLFA-SIP) 

Refer to chapter 2.2.10.  

3.3.8 Statistical analysis 

Refer to chapter 2.2.11.1.  
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3.4 Results  

A microcosm experiment with rice plant was conducted for 55 days in the greenhouse. 

The rhizosphere of rice microcosms was directly supplied with 13C-labeled CH4 by 

circulating 13C-CH4-saturated water through permeable tubing buried in the soil (Fig. 

3.1). The total community of methanotrophs and the incorporation of 13C in PLFA of 

methanotrophs were analysed for two different incubation periods. The methane emission 

and methane oxidation rates were measured weekly throughout the period.  

3.4.1 Rates of CH4 emission and oxidation 

The rates of CH4 emission and oxidation were similar in control and 13C-labeled 

microcosms during the experimental period of 55 days after transplantation of rice 

seedlings (Fig. 3.3a and 3.3b). The CH4 emission rates (in absence of inhibitor) gradually 

increased from the beginning and reached an average value of 31 and 28 mg CH4 m-2 h-1 

on day 45 for the control (Fig. 3.3a) and the 13C-labeled microcosms (Fig. 3.3b), 

respectively.  

Methane oxidation rates were calculated as the difference between CH4 emission rates in 

the presence and absence of diflouromethane (CH2F2), a specific inhibitor of CH4 

oxidation (Miller et al., 1998). Methane oxidation started on day 24 and reached the 

maximum on day 32 (Fig. 3.3a, 3b), when nearly 60% of the anaerobically produced 

methane was oxidized prior to its emission to the atmosphere (Fig. 3.4). However, this 

percentage value decreased rapidly afterwards. After the addition of 13C-labeled CH4, the 

δ13C values of the emitted CH4 substantially increased in comparison to the background 

δ13C-CH4 values emitted from the control (unlabeled) microcosms. The maximum δ13C 

was 1610‰ (2.85 atom-%) on day 38, decreased to 525‰ (1.68 atom-%) on day 46 and 

increased slowly again and reached to 1588‰ (2.82 atom-%) on day 54 (Fig. 3.5). 
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Fig. 3.3: Methane emission and methane oxidation rate in (a) control (unlabeled) and (b) labeled 

microcosms; CH4 emission in the presence of inhibitor (□), in the absence of inhibitor (○), and 

CH4 oxidation rate (  ); mean ± SD (n=3). 
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Fig. 3.4: Percent of CH4 flux attenuated by CH4 oxidation in the control (∆) and the 13C-labeled 

microcosms (□); mean ± SD (n=3).  
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Fig. 3.5: δ13C values of emitted CH4 in the control (  ) and 13C-labeled microcosms (  ); mean ± 

SD (n=3) and 13C CH4atom-% values in 13C-labeled microcosms (  ), mean ± SD (n=3). 

3.4.2 CH4 in the pore water  

Concentrations of CH4 in pore water samples were similar in both the control and the 13C-

labeled microcosms (Fig. 3.6a, 6b). On average, CH4 concentrations were lower in 

rhizospheric region (at 3 cm depth from the soil surface) than in bulk region (at 10 cm 

C
H

4 o
xi

da
tio

n 
%

 
δ 



Results 

 58

depth from the soil surface). Until 17 days after transplantation, CH4 concentrations were 

800-900 µM at both regions in the control and the 13C-labeled microcosms. After 17 days, 

CH4 in rhizospheric soil rapidly decreased to 400-500 µM and then gradually decreased 

to 200 µM until the end of the experiment. In the bulk soil, on the other hand, CH4 

concentrations increased up to 1100-1300 µM and later slowly decreased to about 300 

µM after 52 days of transplantation.  
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Fig. 3.6: Temporal variation in CH4 concentrations obtained in a) control and b) labeled 

microcosms: in rhizospheric region (  ) and in bulk region (□); mean ± SD (n=3). 
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Fig. 3.7: δ13C values of CH4 in emitted flux (  ) and in the pore water (  ); mean ± SD (n=3).  
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Fig. 3.8: Pore water pH in a) control and b) labeled microcosms: in rhizospheric region (  ) and in 
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The δ13C values of CH4 in pore water were similar as those in the emitted CH4. The initial 

δ13C was 1624‰ (2.86 atom-%) on day 38, i.e., immediately after the beginning of the 

circulation of the 13C-labeled CH4 solution in the soil, and decreased to 525‰ (1.68 atom-

%) on day 46, and again gradually increased to 3272‰ (4.58 atom-%) on day 54 (Fig 

3.7). 

3.4.3 pH in the pore water  

The pH of the pore water in the control and labeled microcosms varied between pH 6.8 

and 7.6 at rhizospheric and bulk regions (Fig. 3.8). 

3.4.4 T-RFLP analysis of methanotrophic community 

 
 

Fig. 3.9: Comparison of pmoA based (a) T-RFLP profiles (mean ± SD; n=3) and (b) clone 

frequencies obtained from rhizospheric soil and root samples. A total of 45, 56, 39, and 56 

randomly selected clones were analysed from samples RS-8, RS-18, RT-8, and RT-18, 

respectively (RS = rhizospheric soil; RT = roots; numbers indicate time after beginning of 13C-

labeling). 

 

The methanotrophic community was investigated by T-RFLP analysis targeting the pmoA 

gene in DNA extracts from rhizospheric soil (RS) and root samples (RT) collected at 44 

and 55 days after transplantation, i.e., 8 (RS-8, RT-8) and 18 (RS-18, RT-18) days after 

the beginning of 13C-labeling (fig 3.9a). Since the physiological data were similar in both 

control and labeled rice microcosms, molecular analyses were performed in labeled rice 

microcosms only. T-RFLP analysis produced highly reproducible patterns with T-RFs of 

76, 227, 245, 347, 437, 457 and 510 bp lengths in all samples. All of these T-RFs were 
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assigned by my own clone analysis to the following methanotrophic genera, some of 

which, however, exhibited T-RFs that were slightly different from those determined by 

in-silico analysis: Methylococcus/Methylocaldum (80 vs. 76 bp); 

Methylocystis/Methylosinus (245 bp); Methylomicrobium album (350 vs. 347 bp and 457 

bp); Methylomonas (438 vs. 437 bp), and Methylobacter (506 vs. 510 bp) (Fig 3.9a, 9b).  

 

The comparison of T-RFLP community profiles obtained from the rhizospheric soil and 

root samples showed similar T-RF patterns but different relative abundances of the major 

T-RFs (Fig 3.9a). Furthermore, two different sampling points were also conferred to the 

different relative abundances of the T-RFs in both rhizospheric soil as well as in root 

samples (Fig. 3.9a). The relative abundance of T-RFs belonging to type I and type II 

methanotrophs in rhizospheric soil and root samples collected at different time points are 

summarized in Table 3.2. The T-RFs affiliated with type I methanotrophs were 

significantly (P<0.05) more abundant than those affiliated with type II methanotrophs in 

all samples with exception of RS-8, and in addition, they were more abundant on the 

roots than in the rhizospheric soil (Table 3.2). The T-RFs affiliated to type II 

methanotrophs decreased with incubation time in the rhizospheric soil but increased on 

the roots.  

3.4.5 Cloning and sequence analysis of pmoA gene 

Sequences of pmoA genes retrieved from rhizospheric soil (Fig. 3.10) and root samples 

(Fig. 3.11) were analysed by constructing phylogenetic trees. Phylogenetic analysis of 

pmoA-derived amino acid sequences revealed the presence of both type I methanotrophs 

(genera Methylomonas, Methylobacter, Methylococcus, Methylocaldum and 

Methylomicrobium) and type II methanotrophs (genera Methylocystis and Methylosinus) 

in rhizospheric soil as well as on root samples. In rhizospheric soil samples, 63 among 

101 clones (63%) were affiliated with type I methanotrophs (Fig. 3.10) and on root 

samples, 65 among 88 clones (74%) were affiliated with type I methanotrophs (Fig. 3.11) 

while the remainder, i.e. 37% and 28%, respectively, were affiliated with type II 

methanotrophs being less abundant than those of type I methanotrophs. The pmoA-

sequences affiliated to Methylomonas sp. were dominant among type I methanotrophs in 

all samples. The number of pmoA-sequences affiliated to Methylocystis sp. was 4-fold 

higher in RT-18 samples compared to those of RT-8, indicating an increase of clone  
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Fig. 3.10: Maximum likelihood tree showing the phylogenetic analysis of the derived amino acid 

sequences encoded by pmoA genes from rhizospheric soil samples. The numbers at the branch 

points are tree puzzle support values. Only values >60 are shown. Theoretical T-RF lengths using 

MspI are shown next to the sequences. The scale bar represents 10% sequence divergence. 
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Fig. 3.11: Maximum likelihood tree showing the phylogenetic analysis of the derived amino acid 

sequences encoded by pmoA genes from root samples. The numbers at the branch points are tree 

puzzle support values. Only values >60 are shown. Theoretical T-RF lengths using MspI are 

shown next to the sequences. The scale bar represents 10% sequence divergence.  
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frequency over time (Fig. 3.11). Some clusters of type I methanotroph pmoA sequences 

were retrieved from rhizospheric soil (sequences corresponding to T-RF size of 80) and 

root (sequences corresponding to T-RF size of 80 and 227) samples, which could not be 

assigned to any sequence types that are deposited in public domain database (Fig. 3.10 

and 3.11). Also sequences related to Methylomicrobium album were retrieved that 

exhibited a T-RF of 457 bp (Fig. 3.10 and 3.11) along with 350 bp that was reported 

previously (Horz et al., 2001). 

T-RFLP analysis of individual clones mostly confirmed the assignment of the different T-

RFs to the different genera of methanotrophs. The relative clone frequency  of pmoA-

sequences with the respective affiliated T-RFs, which were retrieved from rhizospheric 

soil and root samples (Fig. 3.9b), were similar to the relative abundance of the same T-

RFs detected in the DNA extracts (Fig. 3.9a). 

3.4.6 Incorporation of 13C into PLFA of methanotrophs 

To gain more information on the metabolically active methanotrophic community in 

rhizospheric soil and on root samples I applied a 13C-CH4 labeling approach. Figure 3.12 

shows the total abundance of  phospholipid fatty acids (Fig. 3.12a) and the 13C 

incorporation into phospholipid fatty acids (Fig. 3.12b) extracted from the rhizospheric 

soil and the roots incubated with 13C-CH4 for 8 days (RS-8 and RT-8) and 18 days (RS-18 

and RT-18), i.e., 44 and 54 days after transplantation. Total PLFA concentrations cannot 

be compared between rhizospheric soil and root samples, since they are expressed per 

gram dry soil versus gram dry root, respectively. However, total PLFA abundance 

increased over time in rhizospheric soil samples (RS-8 and RS-18), whereas it decreased 

on root samples (Fig. 3.12a). Incorporation of 13C into PLFA, on the other hand increased 

over time in both cases (Fig. 3.12b), indicating the increased activity of methanotrophs.  

 

On average, 16:1ω7, 16:1ω6, 16:0, 18:1ω7, 18:1ω9 and 18:0 were the dominant PLFAs 

labeled with 13C in both rhizospheric soil and root samples (Fig. 3.12b). The PLFAs 

representing type I methanotrophs (16:1ω7, 16:1ω6 and 16:0) were significantly (P<0.05) 

more labeled with 13C in all samples than those representing type II methanotrophs 

(18:1ω7, 18:1ω9 and 18:0). The incorporation of 13C increased in most of the PLFAs  
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Fig. 3.12: PLFA abundance given as (a) total PLFA), and (b) 13C incorporation into PLFA per 

gram of dry soil or root (RS = rhizospheric soil; RT = roots; numbers indicate time after 

beginning of 13C-labeling); mean ± SD (n=3).  

 

 

 

 

 

 

 

 

Fig. 3.13: Ratio of 13C incorporation into PLFA (sum of type I and type II methanotrophs based 

on Fig 3.12; Table 3.2) between 8 and 18 days of labeling; mean ± SD (n=3); (P<0.05). 

after 18 days compared to 8 days of incubation. However, it decreased in some PLFAs 

(Fig. 3.12b), for example, in 18:1ω7 PLFA on the root samples. The percent distribution 

of phospholipid fatty acids present in type I and type II methanotrophs in terms of 13C 

incorporation per gram soil or gram root is summarized in Table 3.2. Furthermore, the 

ratio of 13C incorporation between 8 and 18 days of 13C-labeling (Fig. 3.13) showed that 

after 18 days of incubation, type I methanotrophs exhibited a 2.7-fold higher 13C 

incorporation than type II methanotrophs on the roots, whereas type II methanotrophs 
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exhibited a 1.5-fold higher 13C incorporation than type I methanotrophs in the 

rhizospheric soil. The incubation experiments with 13C-CH4 labeling furthermore showed 

that 15:0i and 18:2ω6,9 also became labeled with 13C. In samples retrieved from the RS-

18, PLFA of 15:0i, a biomarker of Gram-positive bacteria (O´Leary and Wilkinson, 

1988), represented 4% of total 13C incorporation in PLFA. Similarly, PLFA of 18:2ω6,9, 

a biomarker of Eukaryotes (Frostegard and Baath, 1996), represented 2% and 6% of total 
13C incorporation in rhizospheric soil and root samples, respectively. 

 

Table 3.2. Relative abundance of T-RFs  and 13C incorporation  into phospholipid fatty acids 

(PLFA), characteristic for type I and II methanotrophs in rhizospheric soil (RS) and on rice roots 

(RT) sampled after 8 and 18 days of 13C-labeling, i.e., 44 and 54 days after transplantation. 

Sample RS-8 RS-18 RT-8 RT-18 

                                                         Relative abundance of T-RFs (%) 

Type I † 47a 55c 68e 59g 

Type II‡ 53b 45d,m 32f 41h,m 

                                                                                     13C incorporation into PLFA (%) 

Type I § 73a 62c 58e 71g 

Type II ¶ 16b 20d 28f 15h 
†Sum of T-RFs 76, 227, 347, 437 and 457 bp, which were affiliated to type I methanotrophs in 
phylogenetic assignment. 
‡Terminal restriction fragments (T-RFs) 245 bp, which were affiliated to type II methanotrophs in 
phylogenetic assignment. 
§Sum of percent values of 16:0, 16:1w6 and 16:1w7 shown in Fig. 3.12b. 
¶Sum of percent values of 18:0, 18:1w7 and 18:1w9 shown in Fig. 3.12b. 

Numbers with different letters were statistically different (P<0.05). 
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3.5 Discussion 

In this study, I combined both physiological and biomolecular analyses to elucidate the 

role of methanotrophs in the rhizospheric soil and on the roots of rice plants. To 

characterize the physiological state of methanotrophs, I calculated the rates of CH4 

oxidation over the incubation period. As biomolecular tools, I used T-RFLP and sequence 

analysis of the pmoA gene to assess the structure of the resident methanotroph 

community, and PLFA-SIP to determine the extent to which type I and type II 

methanotrophs actively assimilated 13C-CH4.  

Rates of CH4 oxidation reached a maximum 32 days after transplantation. During this 

period, the overall CH4 concentrations in the pore water had decreased. In addition, CH4 

concentrations were lower in the rhizospheric soil samples than in those of the bulk soil 

samples indicating increased methanotrophic activity in the rhizosphere and/or increased 

CH4 loss by ventilation through the rice plant (Conrad and Klose, 2005; Gilbert and 

Frenzel, 1998). Rates of CH4 oxidation decreased after reaching a maximum with 60% of 

the produced CH4 being oxidized on day 32 following transplantation. Similar results 

have been obtained previously (Bodelier et al., 2000; Xu et al., 2004), demonstrating that 

CH4 oxidation in rice fields is a dynamic process that seems to be regulated by various 

factors, including the age of the rice plant and nutrient availability for the microorganisms 

and/or plants. In particular, the decrease of CH4 oxidation activity with the progress of the 

season has been observed previously (Dan et al., 2001; Eller and Frenzel, 2001; Krüger 

and Frenzel, 2003). Methanotrophic activity in the rice rhizosphere can be limited by 

available nitrogen (Bodelier et al., 2000; Dan et al., 2001; Krüger and Frenzel, 2003). 

Indeed, I found that a second fertilisation stimulated CH4 oxidation albeit only briefly, 

similarly to the previous observations (Dan et al., 2001; Krüger and Frenzel, 2003). In 

order to better understand the dynamics of CH4 oxidation in the context of microbial 

community, the methanotrophic community was analysed during this phase. 

 

The resident populations of methanotrophs in the rhizospheric soil and on the roots were 

determined by targeting the pmoA gene, a functional gene marker for methanotrophs. 

Sequence analysis of several clone libraries showed the presence of both type I and type
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II methanotrophs including the genera Methylomonas, Methylobacter, Methylomicrobium, 

Methylococcus, Methylomicrobium, Methylocystis and Methylosinus in both rhizospheric 

soil and on the roots. Such a diversity has been found previously in rice field ecosystems 

from Vercelli, Italy (Eller et al., 2005; Henckel et al., 2001; Horz et al., 2001) and 

elsewhere (Hoffmann et al., 2002; Jia et al., 2007). Most of the detected methanotrophic 

genera exhibited the characteristic size of the T-RFs reported by Horz et al. (2001). 

However, some of the T-RFs sizes observed in this study exhibited 2-4 base pairs 

difference to the theoretical T-RF size determined in-silico. A certain amount of variation 

between observed and predicted T-RF length remains that could be explained due to the 

application of different sequencing machines, dye labels, or fluctuations in laboratory 

temperature (Kaplan and Kitts, 2003), and even sometimes such variations appear to be 

sequence dependent (Kitts, 2001). Notable is the detection of a few sequences clustering 

with Methylomicrobium sp. and having a T-RF of 457 bp size, which has not been 

observed before. Furthermore, a few sequences were detected that clustered within the 

type I methanotrophs and have a T-RF of 227 bp size. Horz and colleagues (2001) had 

also detected sequences having a T-RF of 227 bp size from rice root samples but could 

not assign them to either pmoA or amoA sequences. This study showed that this T-RF 

belongs to type I methanotrophs because I used pmoA specific primers (A189f/mb661r) 

that do not amplify amoA sequences (Bourne et al., 2001; Costello and Lidstrom, 1999). 

Due to relatively clear assignment of different T-RFs to the different methanotrophic 

genera, I was able to calculate the relative abundance of the different methanotrophic 

populations by using T-RFLP analysis of the pmoA genes. Additionally, I was able to 

quantify the number of pmoA sequences which could be unambiguously assigned to 

respective T-RFs. Despite both approaches showed that the general composition of the 

methanotrophic community was quite similar in the rhizospheric soil and on the roots, the 

relative abundance of individual methanotrophic genera was different and in addition, 

exhibited a shift between 44 and 54 days after transplantation. Thus, while the relative 

abundance of type II methanotrophs (T-RF of 245 bp) decreased in the rhizosphere soil, it 

increased on the roots. The reverse was observed for type I methanotrophs (Table 3.2). 

This result indicated that the different methanotrophic genera responded differently to 

spatiotemporal variations in the rice microcosms, which in turn gave a hint that different 

methanotrophic genera may have different CH4, O2 or nutrient requirements (see 
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Discussion below). Thus it was remarkable that type I methanotrophs were more 

abundant on the roots while type II methanotrophs were more abundant in the 

rhizospheric soil. Note, however, that the abundance of methanotrophic groups were only 

relative numbers within the total community of methanotrophs. The total community of 

methanotrophs might have most probably increased over time in the rhizospheric soil and 

decreased on the roots as indicated by the temporal change of the PLFA concentrations 

(Fig. 3.12a). PLFA biomarkers ideally provide information on microbial identity and 

biomass of living bacteria (Tunlid and White, 1992). However, this biomass also 

represents inactive bacteria and only a minor part of the PLFA detected belongs to 

methanotrophs, which occur on the order of <107 per gram dry rice soil, i.e., about 1% of 

total biomass (Eller et al., 2005; Joulian et al., 1997). Therefore, it was not possible to 

calculate the temporal change of the methanotrophic biomass from the T-RFLP and total 

PLFA analyses. Moreover, since I used DNA samples for the amplification of pmoA, I 

could not ascertain that the amplified pmoA product represented the metabolically active 

methanotrophs. 

Therefore, I used PLFA-stable isotope probing method and supplied the rhizosphere of 

the rice microcosms with 13C-CH4 between 37 and 54 days after transplantation. 

Although the labeled CH4 consisted of 99 atom-% 13C, the CH4 in the pore water and in 

the CH4 flux contained only 3-5 atom-% 13C. This result showed that the CH4 added 

through the permeable tubing into the rhizosphere became highly diluted by 

endogenously produced CH4. However, the resulting 13C-content of the CH4 allowed the 

detection of specifically 13C-labeled PLFA. PLFA-SIP had previously been used to 

characterize active methanotrophs in aquatic sediments (Boschker et al., 1998; Nold et 

al., 1999), but has so far not been applied in planted rice fields or planted rice 

microcosms. In this study of planted rice microcosms, mainly the PLFA (16:1ω7, 16:1ω6, 

16:0, 18:1ω7, 18:1ω9, 18:0) became labeled with 13C derived from CH4. Although these 

PLFA are found in many different prokaryotes and eukaryotes (Spring et al., 2000) the 

labeling of them strongly indicated that type I and type II methanotrophs were active in 

rhizospheric soil and on root samples, and incorporated 13C during the 8 and 18 days of 

incubation into 16:1ω7, 16:1ω6, 16:0 and 18:1ω7, 18:1ω9, 18:0 PLFA, respectively. 

However, I would not expect that any other organisms than methanotrophs assimilated 
13C-CH4. Unexpectedly, I detected small amounts (1-6%) of PLFA representing Gram-

positive bacteria (15:0i) and eukaryotes (18:2ω6,9) that became labeled with 13C, 
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probably by cross-feeding. These PLFAs have been reported previously from rice paddy 

fields (Kimura and Asakawa, 2006). Recently, Raghoebarsing et al. (2005) showed that 

eukaryotic Sphagnum moss can be cross-fed by the CO2 derived from methanotrophs 

living inside the moss. A peak for PLFA 18:1ω8 was not detected, which would be 

characteristic for Methylocystis sp. This might have been due to methodological 

limitations using a non-polar separation column as suggested by Knief et al. (2003b). 

Consistent with my study, the PLFA 18:1ω8 had also not been detected in rice fields by 

other researchers (Bai et al., 2000; Bossio and Scow, 1998; Reichardt et al., 1997). 

During the 8 and 18 days of 13C-CH4 labeling incubation, i.e., after 44 and 54 days of 

transplantation, the PLFA of methanotrophs became increasingly 13C-labeled, 

demonstrating their activity in the rhizospheric soil and on the roots. The incorporation of 
13C was significantly higher in the rhizospheric soil than on the roots (P<0.05), which is 

consistent with the relatively higher most probable number counts of methanotrophs 

(Eller and Frenzel, 2001). However, type I methanotrophs incorporated significantly more 
13C into their PLFAs than type II methanotrophs, in both soil and roots, indicating that 

type I methanotrophs were the more active population. In addition, 13C-incorporation into 

type I methanotrophs relatively increased with respect to time, while 13C-incorporation 

into type II methanotrophs decreased, albeit only on the roots. In the soil, on the other 

hand, it seemed to be opposite, i.e. the PLFA of type II methanotrophs became slightly 

more 13C-labeled with respect to time than PLFA of type I methanotrophs. These results 

indicated that type I and type II methanotrophs became increasingly more active on the 

roots and in the rhizospheric soil, respectively. These findings agreed with previous 

studies (Amaral and Knowles, 1995; Graham et al., 1993), which reported that 

competition between type I and type II methanotrophs depends upon the concentrations of 

CH4 and O2 and also the presence of nitrogen. Type I methanotrophs seem to prefer 

environments with plentiful O2 and limited CH4 concentrations, whereas type II 

methanotrophs dominate in environments with high concentrations of CH4 and limited 

O2. In my results, temporal changes in the activity of both type I and type II 

methanotrophs could be observed, with type I methanotrophs eventually exhibiting higher 

activity on the roots, while type II methanotrophs became more active in the rhizospheric 

soil. I speculated that type I methanotrophs were not be able to cope with the low O2 

concentrations in rhizospheric soil and thus became less active with time as O2 

availability decreases with distance from the roots. As a consequence, type II 
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methanotrophs became dominant instead. Consistent to my study, Macalady et al. (2002) 

suggested that both type I and type II methanotrophs coexist in rice paddies, but 

nevertheless occupy different niches with type I methanotrophs being more important in 

drained fields where O2 reaches deeper soil layers and type II methanotrophs being more 

important in flooded fields where CH4 availability is high.  

In conclusion, I could effectively differentiate metabolically active methanotrophic 

community from the total methanotrophic community resident in the rhizospheric soil as 

well as on the roots from planted rice microcosms using the PLFA-SIP approach and 

community analysis approach. Both approaches demonstrated that type I and type II 

methanotrophic populations in the rhizospheric soil and on the rice roots changed 

differently over time with respect to activity and population size and that type I 

methanotrophs played a particularly important role in the rice field ecosystem. 

Furthermore, PLFA-SIP showed that the active methanotrophic populations exhibit a 

pronounced spatial and temporal variation in rice microcosms. This variation is probably 

due to different concentrations of methane, oxygen and probably nutrients, which provide 

different niches for the methanotrophs. 
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Chapter 4 

 

Effect of different ammonium-N fertilizers on methane oxidation and 

methanotrophic community structure in rice rhizosphere at different 

growth stages of rice plant 
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4.1 Introduction 

Nitrogen (N) fertilization is one of the essential factors for achieving high rice yields. 

Rice production has to be increased by 60% in next decades to meet the demands of the 

growing human population (Cassman et al., 1998). It has been thought that increasing 

amounts of N-fertilizer will have to be applied to maximize rice yields as per the 

estimation of rice production. As a consequence, the expected intensification of rice 

production will most likely lead to increased atmospheric methane emissions in the near 

future, if the proper mitigation strategies are not applied. 

 
Methanotrophic bacteria (methane oxidising bacteria, MOB), the only biological sink of 

methane, play an important role by reducing the potential amount of emitted methane 

from rice fields into the atmosphere. Approximately 10-30% of the methane produced by 
methanogens in rice paddies is consumed by aerobic methane-oxidising bacteria 

associated with the roots of rice. Factors that limit or even inhibit the activities of 

methane oxidising bacteria have major effects on the global methane budget. Besides 

major limiting factors i.e., methane and oxygen, nitrogen (N) one of the limiting factor for 

rice yields, can also play an important role in methane oxidation and may become an 

inhibiting or stimulating factor for growth of methanotrophs. There is ongoing discussion 

on the possible effects of ammonium based nitrogen fertilizer on consumption of methane 

by methanotrophs depending on which environment it has been applied (Bodelier and 

Laanbroek, 2004). Currently, there are many contradictory results, reporting inhibition 

effects (Banik et al., 1996; Bosse et al., 1993; Cicerone and Shetter, 1981; Hütsch et al., 

1994; Steudler 1989), stimulation effects (Bodelier et al., 2000; Dan et al., 2001; Krüger 

et al., 2002; Krüger and Frenzel, 2003) or no effects (Delgado and Mosier, 1996; 

Dunfield et al., 1995) of ammonium-based N-fertilization on methane oxidising bacteria. 
Interestingly, De Visscher and Cleemput (2003) have anticipated for the first time that 

NH4
+-N inhibits CH4 oxidation at low CH4 concentrations and stimulates CH4 oxidation 

at high CH4 concentrations. So far many mechanisms have been proposed for stimulation 

and inhibition effects on methane oxidation and methanotrophs but none of them have yet 

been experimentally verified. 
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Schimel (2000) proposed that at the level of the microbial community, nitrogen stimulates 

the growth and activity of methane-oxidising bacteria and at the biochemical level, 

ammonium inhibits methane consumption because of competition for methane 

monoxygenase. Because of similarity in size and structure of CH4 and NH3 molecules, 

and the relatively low specificity of the monoxygenase enzymes responsible, both 

methanotrophs and ammonia oxidizers can oxidize CH4 and NH4
+ (Bedard and Knowles, 

1989). Furthermore, the intermediates and end products of ammonia oxidation, i.e., 

hydroxylamine and nitrite can be toxic to methanotrophic bacteria and may also lead to 

inhibition of methane consumption (Schnell and King, 1995). However, in rice fields 

methanotrophs have to compete with other different microorganisms and also with the 

rice plant itself for nitrogen. Therefore, methanotrophs may undergo severe nitrogen 

limitation as the plants grow, and application of nitrogen fertilization may relieve 

nitrogen limitation and stimulate methanotrophic growth and activity (Bodelier et al., 

2000; Dan et al., 2001).  

Different fertilizer types were reported to affect methane production and methane 

emission differently (Yao and Chen, 1994; Schutz et al., 1989). Urea is the most common 

N-fertilizer and widely used in rice cultivation. Ammonium sulphate is also used in many 

places and this fertilizer is generally used as a possible mitigation strategy for methane 

emission. Ammonium sulphate has been found to reduce methane emission in rice fields 

due to competitive inhibition of methanogens by sulphate reducers for hydrogen and 

acetate substrates (Minamikawa et al., 2005; Cai et al., 1997; Denier van der Gon and 

Neue, 1994; Lindau, 1994). 

Although, there are an increasing number of studies related to the effects of N-

fertilization on the methane oxidation process, the effects on the process-governing 

actors, i.e. the methanotrophic community, have not been studied in detail. The question 

arises whether the methanotrophic community structure plays any role in the response of 

the methanotrophs to different nitrogen availability.  

Bodelier et al. (2000) and Mohanty et al. (2006) showed that type I methanotrophs are 

stimulated while type II methanotrophs are inhibited by ammonium-based nitrogen 

fertilizers. However, these results were obtained in rice field soil slurry incubation. So far, 

no detailed study has yet been carried out to investigate the effect of available 

ammonium-N fertilizer on methane oxidation and methanotrophic community structure 
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under in situ condition during the entire rice-growing season. Furthermore, in rice 

agriculture the common practice is application of fertilizers in split doses before flooding, 

at tillering stage and before panicle initiation, thus creating different ammonium-N 

environments at different growth stages of the rice plant. It is possible that the nitrogen 

availability will shape the methanotrophic community structure differently at different 

growth stages of the rice plant. Therefore, this research was mainly focused on the study 

of the effect of different ammonium based-nitrogen fertilizers (urea and ammonium 

sulphate) on methane oxidation and methanotrophic community structure at different 

growth stages of rice plant using rice microcosms under controlled conditions in the 

greenhouse. 

4.2 Objectives 

• To study the temporal variation in methane oxidation and methane concentration 

due to the application of different N-fertilizer treatments during different growth 

stages of the rice plants.  

• To study the effect of different ammonium-N fertilizer treatments on the 

community structure of methanotrophs on the rice roots and in the rhizospheric 

soil during different growth stages of the rice plants. 
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4.3 Methods 

4.3.1 Experimental setup 

The experimental set up is as shown in Fig. 4.1. 

 

 
                                         

 

 

 

 

 

 

 

Fig. 4.1: Rice microcosm experimental set up. 
 

4.3.2 Microcosm experiment  

4.3.2.1 Planted rice microcosms 

Soil was taken from drained paddy fields of the Italian Rice Research Institute in Vercelli, 

Italy, in 2006 and was air-dried and stored at room temperature. The soil characteristics 

are described in table 4.1. Immediately prior to its use for preparing the microcosms, the 

soil was ground with a mechanical grinder and passed through a 2 mm sieve. Then the 

soil slurry was prepared with 1.6 kg soil, 900 ml demineralized water, and 50 ml of 

fertilizer solution [2.3 g nitrogen (N) as urea/ ammonium sulphate, 0.87 g phosphorous 

(P) as KH2PO4, and 1.85 g potassium (K) as KCl per liter], and filled into each microcosm 

pot with a volume of 1.6 L (height 11 cm, diameter 16 cm). This fertilizer composition 

corresponds per ha to 160 kg N as urea or ammonium sulphate, 140 kg P2O5 and 155 kg 

K2O as practically applied in rice fields. In the center of each pot, a self-made nylon bag 

(25 µm mesh; 6 cm length and 9 cm radius) was placed through which water and 

nutrients could pass freely while roots were not able to penetrate, isolating the soil inside 

the bag as rhizospheric soil from the bulk soil outside the bag (Fig.4.1 and appendix). 

Rice plant 
 
 
 
Nylon mesh bag 
Rhizospheric soil 
Bulk soil
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Table 4.1: Soil characteristics of rice field soil collected in year 2006. 

Variable Portion  

C (%) 1.43 

N (%) 0.13 

C/N 11 

Texture (%) (clay/silt/sand/stones >2mm) 14/61/25/2 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.2: Schematic diagram of the experiment. dap indicates days after transplantation and    

indicates the soil sampling point. 

In this study, three different ammonium-N fertilizer treatments were applied: i) PK as 

control treatment without N source, ii) UPK with urea as N source, and iii) SPK with 

ammonium sulphate as N source. All three N-fertilizer treatments were accompanied with 

phosphorous (P) and potassium (K) and thus a mixture of fertilizer solution was added in 

split doses as applied in rice fields in order to fulfill the nutrient requirements for rice 

plant growth. In total, 75 microcosms were prepared with 25 for each treatment. The 

prepared microcosms were flooded with demineralized water giving a water depth of 5 

cm above the soil surface and were incubated in the greenhouse with a relative humidity 

of 70%, 12 h photoperiod, and 28/22 ºC day/night temperature. After five days of 

flooding, one 12-day old rice seedling (Oryza sativa var. KORAL type japonica) 

germinated on moist filter paper at room temperature was transplanted into the center of 

the nylon bag in each pot, and 20 ml of fertilizer solution (same as above) was added. The 

day of transplantation was taken as day zero and the following incubation experiment was 

0 dap 

Rice seedlings 
transplantation 
and fertilization

Flooding 

29 dap

Fertilization 

57 dap 62 dap 40 dap 67 dap 88 dap

Soil: water (2:1) + fertilizer (PK/UPK/SPK) 
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then conducted from September 20, 2006 till December 12, 2006 for a total of 88 days 

under flooded conditions (Fig. 4.2). On dap 57, 20 ml of fertilizer solution was added a 

third time to the microcosms. Water lost due to evapotranspiration was daily replaced by 

addition of demineralized water to maintain a 5 cm water depth. 

4.3.2.2 Plant parameters 

Once every week total plant height, tiller number and leave number were determined. 

Plant height was defined as the distance from the soil surface to the uppermost part of the 

canopy. 

4.3.2.3 Measurement of CH4 flux 

Rates of CH4 emission and CH4 oxidation were measured as described in chapter 2.2.1. 

From the 19th day of transplantation, measurements of methane emission rates and 

methane oxidation rates were carried out once/twice a week. For the measurement of CH4 

emission rates, triplicate microcosms were covered by static flux chambers made of plexi 

glass with 10 cm internal diameter and 40 or 82 cm height, depending on the height of the 

rice plants as described in chapter 2.2.1. Gas samples were taken from all three treatments 

(PK, UPK and SPK) in every 30 minutes for 3 hours. CH4 oxidation rates were measured 

as the flux in the presence and absence of inhibitor by adding 1% diflouromethane to the 

headspace of the flux chambers in triplicate microcosms. The gas samples were 

immediately analysed for CH4 and CH2F2 on a Shimadzu GC-8A gas chromatograph as 

described previously in chapter 2.2.1.  

4.3.2.4 Soil pore water 

Pore water sampling was carried out once/twice a week from the very first day after 

transplantation. Pore water samples were collected into Venoject blood collecting tubes 

from the rhizosphere and bulk regions of rice microcosms by using Rhizon pore water 

samplers and further treated as described in chapter 2.2.2.  

4.3.3 Analytical Methods 

The gas samples from the pore water were analyzed for CH4 using gas chromatography 

equipped with FID detector as described in section 2.2.1. 
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Ammonium, nitrate, nitrite and sulphate concentrations were analyzed as described in 

chapter 2.2.3.2. pH was measured using a pH meter.  

4.3.4 Collection of soil and roots samples 

Rhizospheric soil and root samples were collected 29, 40, 57, 62, 67, and 88 days after 

transplantation in triplicate samples from each of the triplicate microcosms as described 

in 2.2.4. In this study, a total of 9 replicates was sampled at each sampling date for each 

treatment. The rhizospheric soil samples were assigned as PK-RS-X, UPK-RS-X, and 

SPK-RS-X, and roots samples were assigned as PK-RT-X, UPK-RT-X, and SPK-RT-X 

for PK, UPK and SPK treatments, respectively. In these notations, X varies according to 

different sampling times (29, 40, 57, 62, 67, and 88), e.g. PK-RS-29, UPK-RS-29, and 

SPK-RS-29. The roots were washed in deionized sterile water and were stored at –80 oC 

for molecular analyses.  In addition to chapter 2.2.4, rhizospheric soil samples were 

mixed with 1 ml of RNAlater® immediately after sampling. After 24 h of incubation at 4 
oC, soil samples were stored at –80 oC for molecular analyses. 

4.3.5 Moisture content determination  

Refer to chapter 2.2.5. 

4.3.6 Total nucleic acids extraction, PCR, cloning and sequencing 

Before extraction of total nucleic acids from roots and rhizospheric soil, soil samples 

were thawed and RNAlater® was removed by centrifuging at 5000 × g for 5 minutes. The 

samples were washed twice with one-quarter-strength Ringer solution in order to remove 

the remaining RNAlater® (Shrestha, Dissertation, 2007) and immediately used for 

extraction of nucleic acids as described in chapter 2.2.7.1. Finally, the pmoA gene was 

amplified using primers set A189f/mb661r (Costello and Lidstrom, 1999) and  

A189f/nmb650r (detail in chapter 5.3.7) as described in chapter 2.2.7.3.  

For cloning, a pool of 9 replicate samples was done representing one sample for each 

treatment from 57 dap. Six clone libraries of pmoA genes were constructed using DNA 

amplicons retrieved from root samples (57 dap) and rhizospheric soil (57 dap) from each 

of three fertilizer treatments. The clone libraries were constructed using the pGEM-T 

Easy cloning kit (Promega, Germany). A total of 97 clones from root samples (47, 37 and 
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13 clones from PK-57, UPK-57 and SPK-57 samples, respectively) and 83 clones from 

rhizospheric soil samples (33, 24 and 26 clones from PK-57, UPK-57 and SPK-57 

samples, respectively) were randomly selected for comparative sequence analysis and 

proceeded as described in chapter 2.2.7.5. 

4.3.7 Phylogenetic analysis 

Refer to chapter 2.2.8. 

4.3.8 T-RFLP analysis 

Analysis of terminal restriction fragment length polymorphism (T-RFLP) was performed 

for each DNA extract in replicates as described in chapter 2.2.9. The pmoA was amplified 

using FAM (6-carboxyfluorescein)-labeled forward primer as described in chapter 2.2.9. 

However, using reverse primer mb661 in conjunction with labeled forward primer 

(A189), the amplified products from SPK-57 and SPK-88 dap of roots samples could not 

be obtained. Therefore, these samples were amplified using the newly designed reverse 

primer nmb650 (explained in chapter 5.3.8) in conjunction with labeled forward primer 

(A189). All PCR amplified products were gel purified with Wizard ® SV Gel and PCR 

Cleanup System (Promega, Germany) and then proceeded for T-RFLP analysis as 

described in chapter 2.2.9. The normalization procedure of each TRF profile was done as 

described in chapters 2.2.9.1 and followed with calculation of relative abundance as 

described in chapters 2.2.9.2 and for statistical analysis. 

4.3.9 Statistical analyses 

Refer to chapter 2.2.11.2. 
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4.4 Results  

A microcosm experiment with rice plant was conducted for 88 days under controlled 

conditions in the greenhouse. Three different treatments were applied to investigate the 

effect of different nitrogen fertilizers on methane oxidation and total methanotrophic 

community structure on the roots and in the rhizospheric soil. The methane oxidation 

process was studied during the whole incubation period along with the analysis of pore 

water profile. The total community of methanotrophs was analyzed using terminal 

restriction fragment length polymorphism (T-RFLP) for six different time points during 

the rice-growing season. Further, the effect of treatments, environmental factors and 

functions were investigated using statistical ordination techniques. 

4.4.1 Plant parameters 

The vegetative growth of rice plants (plant height, number of tiller, and the number of 

leaves) was more pronounced in SPK treatment than in UPK and PK treatments (Fig. 

4.3). The plant growth was similar in PK and UPK till 57 dap, but after 57 dap, i.e., after 

fertilizer addition, number of tillers and leaves increased in UPK treatment as compared 

to PK treatment. 

4.4.2 Rates of CH4 emission and oxidation 

The CH4 emission rates (in absence of inhibitor) gradually increased from the beginning 

and reached to a maximum value of 19 mg CH4 m-2 h-1 on day 48 and 21 mg CH4 m-2 h-1 

on day 65 for PK (control) and UPK treatments, respectively (Fig. 4.4a). In SPK 

treatment, the emission rate remained always lower than 1 mg CH4 m-2 h-1 for most of the 

rice-growing season. The CH4 emission rates were higher in PK treatment till day 57 after 

transplantation and after that values decreased and remained lower for the rest of the 

cropping period, while in UPK treatment CH4 emission rates significantly increased after 

57 dap as compared to earlier days and fluctuated for rest of the late period. The same 

trend of increase in methane emission rates after 57 dap was observed in SPK treatment 

but at much lower rates. However, no differences were observed in methane emission 

rates between PK and UPK treatments except on 43 dap and 65 dap.  
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Fig. 4.3: Rice plant growth parameters a) number of tiller, b) number of leaves, and c) plant 

height (cm) in three treatments:                                                  ; mean ± SD (n=3-20). 
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Fig. 4.4: a) Methane flux (CH4 emission in the absence of inhibitor) and b) methane flux CH4 

emission in the presence of inhibitor, and c) methane oxidation rates in three treatments:         

                                                  ; mean ± SD (n=3-9).                                                                 
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Methane oxidation started to increase after day 30 and reached the maximum value of 7 

mg CH4 m-2 h-1 on day 48 and of 11 mg CH4 m-2 h-1 on day 43 in PK and UPK treatments, 

respectively (Fig. 4.4c). These values contributed to nearly 28% and 50% of the 

anaerobically produced methane that were oxidized prior to its emission to the 

atmosphere. In SPK treatment, methane oxidation rates were less than 1 mg CH4 m-2 h-1 

during the whole incubation period. However, high methane emission and methane 

oxidation rates were observed on day 88, the end of incubation, in SPK treatment (Fig. 

4.4a, 4.4b, and 4.4c). 

4.4.3 CH4 in the pore water  

The CH4 concentration dissolved in the pore water rapidly increased in both rhizospheric 

and bulk regions 15 days after transplantation in PK and UPK treatments, while in SPK 

treatment the values did not change much (Fig. 4.5a and 4.5b). On average, CH4 

concentration was lower in the rhizospheric region (at 3 cm depth from the soil surface) 

than in the bulk region (at 10 cm depth from the soil surface). The maximum value of 

CH4 concentration in the rhizospheric region (Fig. 4.5a) was around 400 µM on 20 and 30 

days after transplantation in PK and UPK, respectively. These values decreased and 

remained at around 200 µM between 30 and 60 days and then again increased in the late 

rice-growing season. In the bulk soil (Fig. 4.5b), CH4 concentration increased up to 800 

µM on around 40 dap and later slowly decreased to about 500 µM on 48 dap and 

remained between 300-400 µM for the rest of the time. There were no major differences 

in CH4 concentrations between PK and UPK treatments in the rhizospheric as well as in 

the bulk region during most of the incubation period.  

In SPK treatment, the maximum CH4 concentration in the pore water of the rhizospheric 

region was 112 µM on 37 dap, otherwise it remained lower to an average of 50-60 µM 

during most of the time (Fig. 4.5a). Similarly in the bulk region (Fig. 4.5b), the maximum 

CH4 concentration in pore water was 170 µM on 37 dap. However, 54 days after 

transplantation, CH4 concentration in pore water started to increase slowly in both 

rhizospheric and bulk regions. 
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Fig. 4.5: Porewater CH4 concentrations in a) rhizospheric region and b) bulk region in three 

treatments;                                                  ; mean ± SD (n=3-9).  

4.4.4 NH4
+, NO2

-
, NO3

-
, SO4

2- and pH in the pore water  

Ammonium concentrations dissolved in the pore water showed a similar pattern of 

ammonium consumption in the N-fertilizer treatments (Fig. 4.6a and 4.6b). Initially, NH4
+ 

concentration remained constant but 20 days after transplantation it started to rapidly 

decrease both in rhizospheric region and bulk regions in all three treatments, indicating 

rapid consumption by rice plant. In PK treatment, where no nitrogen source was added, 

NH4
+ concentration was around 2 mM, probably due to the residual nitrogen fertilizer or 

organic material source from rice field, and was undetectable after 40 days of 

transplantation. In the N-fertilizer treatments, i.e., in UPK and SPK treatments,  
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Fig. 4.6: Porewater NH4
+ concentrations in a) rhizospheric region and b) bulk region in three 

treatments;                                                    , and c) porewater SO4
2- concentrations in rhizospheric 

region (        ) and in bulk region (        ); mean ± SD (n=3-9). F indicates addition of fertilizer on 

the following day. 
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where ammonium as nitrogen was added, NH4
+ concentration depleted on 57 dap. After 

fertilizer addition on 57 dap (Fig. 4.6a), a small peak was observed in UPK and SPK 

treatments at about 2-3 mM concentration, which after a short time, completely 

disappeared from the rhizospheric region indicating high consumption by plants. In bulk 

region, NH4
+ concentration slowly decreased over time and reduced to less than 0.1 mM 

on 88 dap (Fig. 4.6b). UPK and SPK treatments provided similar trend of NH4
+ 

consumption pattern during whole incubation period. 

The NO2
- and NO3

- concentrations in the pore water were below the detection limit (5 

µM) during the entire experimental period.  
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Figure 4.7: Pore water pH in a) rhizospheric region, and b) bulk region in three treatments.   

                                                 , mean ± SD (n=3-9). 
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In SPK treatment (Fig. 4.6c), sulphate concentration was found at an average of 13 mM in 

rhizospheric region and 10 mM in bulk region till 57 days after transplantation. The 

values increased to 29 mM after fertilizer addition on 57 dap in the rhizospheric region 

and started to decrease again after 64 days. Finally, sulphate concentration decreased to 

less than 1 mM and 0.1 mM in the rhizospheric and bulk regions, respectively. 

The pH of the pore water in PK treatment varied between pH 6.5 - 7.1 and 6.5 - 7.5 in 

rhizospheric and bulk regions, respectively (Fig. 4.7a, b). Similarly, the pH of pore water 

in UPK treatment varied between pH 6.8 - 7.5 and 7.2 - 7.6 in rhizospheric and bulk 

regions, respectively (Fig. 4.7a, b). In SPK treatment, pH varied between 6.7 - 7.5 in bulk 

region. However, in the rhizospheric region, where it was initially around pH 6.5, it 

decreased after 57 dap to around pH 4 and subsequently slowly recovered back to pH 5.9 

on 88 dap (Fig. 4.7a, b). 

4.4.5 Moisture content determination 
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Fig. 4.8: Moisture content determined from rhizospheric soil samples collected from different 

sampling dates; mean ± SD (n=3). 

Moisture content was determined for the rhizospheric soil after sampling at different time 

points (Fig. 4.8). The moisture content was in the range of 42-56% in all treatments and 

on all sampling days and there was no significant change among the treatments during the 

entire rice-growing season 
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4.4.6 Methanotrophic community structure based on pmoA gene on roots and in 

rhizospheric soil samples 

Methanotrophic community structure was investigated on roots (RT) and in rhizospheric 

soil (RS) samples from six different time points of rice-growing season, i.e., 29, 40, 57, 

62, 67 and 88 days after transplantation. The pmoA gene was successfully amplified from 

three replicates of three rice microcosms from three different fertilizer treatments for each 

sampling day (3 replicates × 3 microcosms × 3 treatments = 27 samples per sampling 

day) using pmoA gene specific primers. pmoA gene-based methanotrophic community 

was subsequently resolved by T-RFLP analysis. T-RFLP analysis produced highly 

reproducible T-RFLP patterns with T-RFs of 80, 113, 210, 227, 242, 245, 264, 350, 438, 

448, 457 and 507 base pairs (bp) lengths in almost all replicate samples (Fig. 4.9 and 

4.12).  

4.4.6.1 Methanotrophic community structure on roots  

T-RFLP profiles obtained from the roots-associated methanotrophic community revealed 

a diverse pattern among the three treatments as well as at the different growth stages of 

rice plants (Fig. 4.9a, b, c). T-RFLP pattern in UPK treatment seemed to be constant 

throughout the season with high relative abundances of T-RF of 438 bp except on 88 dap, 

while T-RFLP pattern in PK and SPK treatments were different at different sampling 

points. For example, in PK treatment, relative abundance of T-RFs of 80, 245 and 438 bp 

changed at almost all sampling time points. Similarly, in SPK treatment, relative 

abundance of T-RF of 438 bp was initially high on 29 dap, decreased with time and then 

completely disappeared on 62 dap (Fig. 4.9c). However, this T-RF appeared again on 67 

dap and the relative abundance increased on 88 dap. Similarly, relative abundance of T-

RF of 245 bp size was low on 29 dap, increased afterwards and remained almost constant 

during 4 consecutive sampling points and again decreased on 88 dap (Fig. 4.9c). Overall, 

T-RFs of 80, 245, and 438 bp were quite common in all treatments as well as throughout 

the rice growing season (Fig. 4.9a, b, and c). On 88 dap, T-RFLP pattern generally lead to 

a higher number of T-RFs as compared to early growth stages in all treatments indicating 

highest diversity. 
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Fig. 4.9: pmoA gene based T-RFLP profiles from root samples from a) PK treatment, b) UPK 

treatment, and c) SPK treatment from different sampling points; mean ± SD (n =5-9). 
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Fig. 4.10: Neighbor-joining tree showing the phylogenetic analysis of the derived amino acid 

sequences encoded by pmoA genes from rhizospheric soil and roots samples. Blue, red and green 

color indicates representative clones from PK, UPK and SPK treatments. Similarly, name of 

clones starting from RS belongs to rhizospheric soil samples and name of clones starting from RT 

belongs to roots samples. Theoretical T-RF lengths using MspI are shown next to the sequences. 

The scale bar represents 10% sequence divergence. Figure at the right hand side indicates a T-

RFLP profile from RS-UPK29, pmoA transcript (refer to chapter 5) with different peak positions.  
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Fig. 4.11: Comparison of pmoA based (a) T-RFLP profiles (mean ± SD; n=5-9) and (b) clone 

frequencies obtained from root samples. A total of 47, 37, and 13 randomly selected clones were 

analysed from root samples of PK, UPK and SPK treatments, respectively.  

Three clone libraries were generated from roots samples on 57 dap as PK-57, UPK-57, 

and SPK-57 (Fig. 4.10a and 4.11b). The T-RFs were assigned to respective genera of 

methanotrophs by using the clone libraries obtained from PCR products from roots 

samples as 80 bp – Methylococcus and Methylocaldum, uncultured type I methanotrophs, 

and USC α,  245 bp – Methylocystis and Methylosinus (type II methanotrophs), 438 bp –

Methylomonas, 457 bp – Methylomicrobium, 506 bp – Methylobacter, and 227, 243, 264 

and 350 bp – uncultured type I methanotrophs (Fig. 4.10). However, T-RFs of 113, 210, 

278, and 448 could not be assigned to any of the sequences obtained from the clone 

libraries. Instead, 11% of clones could be assigned to T-RF of 374 bp that was not 

represented in the T-RFLP profiles (Fig. 4.11a and 4.11b), as it was only present as a 
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minor peak that was removed due to the normalization procedure (chapter 2.2.9). The 

relative clone frequency of pmoA-sequences with the respective affiliated T-RFs that 

were retrieved from root samples (Fig. 4.11b), were similar to the relative abundance of 

the same T-RFs detected in the DNA extracts (Fig. 4.11a). After affiliation of T-RFs to 

the respective sequences, root samples revealed a diverse community pattern, 

representing both type I and type II methanotrophs, on the basis of relative abundance and 

composition, in all three treatments as well as in all growth stages. Overall, type I 

methanotrophs were predominant in most of the roots samples. 

4.4.6.2 Methanotrophic community structure in rhizospheric soil  

T-RFLP profiles obtained from rhizospheric soil samples comprised a total of 10 T-RFs 

after normalization procedure as described in chapter 2.2.9. All treatments exhibited T-

RFLP patterns with similar composition with few changes in relative abundance during 

different growth stages. T-RF of 245 bp comprised up to 60% of the total relative 

abundance in each T-RFLP profile in all treatments and sampling points, except for PK 

treatment on 29 dap (Fig. 4.12a, b, c) indicating the importance of this T-RF in 

rhizospheric soil. Further details indicated that methanotrophs affiliated to other T-RFs 

behaved differently in different treatments. For example, T- RF of 438 bp was present in 

all samples of PK (Fig. 4.12a) and UPK (Fig. 4.12b) treatments, while in SPK treatment 

(Fig. 4.12c) this T-RF was present only on 29 and 40 dap and absent in the rest of the 

sampling time points indicating a shift in composition of type I methanotrophic 

community. Similarly, T-RF of 506 bp on 57 dap and T-RF of 350 bp on 29, 62, 67 and 

88 dap were more abundant in SPK treatment as compared to PK and UPK treatments. 

Among all T-RFs, T-RFs of 80, 350, 438, 242 and 245 bp seemed to be stable in PK and 

UPK treatments whereas T-RFs of 350, 242 and 245 bp seemed to be stable in SPK 

treatment. Overall, rhizospheric soil on 29 dap represented the highest number of T-RFs 

in all treatments indicating highest diversity. T-RFs of 350, 242 and 245 bp were found to 

be stable and common T-RF among all treatments during the entire rice growing season 

(Fig. 4.12a, b, c). 

In total, three clone libraries were generated from rhizospheric soil on 57 dap as PK-57, 

UPK-57, and SPK-57. These clone libraries and other clone libraries from another 

experiment (chapter 3) were used to further assign the T-RFs, obtained from T-RFLP 

analysis, to respective genera of methanotrophs as 80 bp – Methylococcus and  
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Fig. 4.12: pmoA gene based T-RFLP profiles from rhizospheric soil samples from a) PK 

treatment, b) UPK treatment, and c) SPK treatment from different sampling points; mean ± SD (n 

=5-9). 
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Fig. 4.13: Comparison of pmoA based (a) T-RFLP profiles (mean ± SD; n=5-9) and (b) clone 

frequencies obtained from rhizospheric soil samples. A total of 33, 24, and 26 randomly selected 

clones were analyzed from rhizospheric soil samples of PK, UPK and SPK treatments, 

respectively.  

Methylocaldum and uncultured type I methanotrophs, 245 bp – Methylocystis and 

Methylosinus (type II methanotrophs), 438 bp – Methylomonas, 457 bp – 

Methylomicrobium, 507 bp – Methylobacter, and 227, 242, and 350 bp – uncultured type 

I methanotrophs as shown in Fig. 4.10. However, no representative clones could be 

assigned to T-RFs of 210 and 448 bp sizes. The relative clone frequency of pmoA-

sequences with the respective affiliated T-RFs (Fig. 4.13b), were similar to the relative 

abundance of the same T-RFs detected in the DNA extracts (Fig. 4.13a). Cloning and 

sequencing analyses of samples from 57 dap revealed that among type II methanotrophs, 

Methylosinus could be distinguished as 6% and 27% from all type II methanotrophs, 

which made up 87% and 96% of all methanotrophs in PK and SPK treatment, 
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respectively (Fig. 4.13b). However, no clones from Methylosinus were obtained from 

UPK treatment. 

The affiliation of T- RFs to the respective sequences indicated that the rhizospheric soil 

consisted of both type I and type II methanotrophs in all three treatments as well as in all 

growth stages. However, type II methanotrophs were predominant in all samples from 

PK, UPK, and SPK treatment, consisting of 81%, 79%, and 69% respectively.  

4.4.7 Effect of nitrogen fertilizer treatments on methanotrophic community 

structure 

The raw data (environmental and functional data) were first introduced to local regression 

method using R package locfit and interpolated data thus obtained from smoothing curves 

were used for further statistical analyses. Examples of the smoothed curves of NH4
+ 

concentrations (at 3 cm depth) and CH4 concentrations (at 10 cm depth) are shown in Fig. 

4.14a and 4.14b, respectively. 

 

        
Fig. 4.14: Smoothing curves for a) NH4

+ concentration in rhizospheric region (at 3 cm depth) and 

b) CH4 concentration in bulk region (at 10 cm depth) obtained by local regression fit using locfit. 

Blue, red and green color codes for PK, UPK, and SPK treatments. The solid circles in different 

colors indicate raw values and color lines (blue, red and green) indicate smooth fit from 

interpolated data. The grey lines above and below the smooth curve are 95% confidence bands. 

The dashed line indicates the additions of fertilizers on 57 dap. 

 

a) b) 
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The T-RFLP data was further analyzed by ordination-based correspondence analysis 

(CA) to obtain the treatment effects on the composition of the methanotrophic community 

structure on the roots and in the rhizospheric soil. The results of CA can be visualized in 

an ordination diagram for roots and rhizospheric soil samples (Fig. 4.15a and 4.15b). On 

the roots (Fig. 4.15a), methanotrophic community composition based on T-RFLP profiles 

were significantly affected by different nitrogen fertilizer treatments (ANOSIM statistic 

R: 0.3696; P<0.001; based on 1000 permutations). This can also be seen from the CA 

ordination plot (Fig. 4.15a) that methanotrophic communities from three treatments were 

separately clustered except in few of the samples. 

       

Fig. 4.15: CA ordination plot, based on Chi-squared distance, for the samples and T-RFs based on 

pmoA T-RFLP data from a) roots and b) rhizospheric soil samples. Triangles indicate different 

OTUs, i.e., T-RFs with different lengths. Colored circles code for samples from different 

treatments: blue, red and green circles for PK, UPK, and SPK treatments. The size of circles is 

proportional to the plant age. Three dashed arrows directing towards to the circles of early plant 

age (29 dap) indicates a separate cluster from other samples. The eigenvalues of the 1
st 

and 2
nd 

axes in the ordination diagram are as follows: λ1 = 0.22, λ2 = 0.06 for diagram ‘a’ and λ1 = 0.07, λ2 

= 0.05 for diagram ‘b’.  

 

In the rhizospheric soil, methanotrophic community composition based on T-RFLP 

profiles were little affected by different nitrogen fertilizer treatments (ANOSIM statistic 

R: 0.06128; P<0.001; based on 1000 permutations). CA ordination plot (Fig. 4.15b) 

showed that methanotrophic communities from three treatments were closely clustered in 

the centroid. Only few samples from early plant age (29 dap), as represented  

a) b) 
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Fig. 4.16: Heat map showing species indicator values obtained for OTUs (T-RFs) for different 

treatments from a) roots, and b) rhizospheric soil. The color key bar on the top indicates the range 

of indicator values as blue to red where red color indicates the maximum value for each OTU. 

Different pmoA-OTUs are on the right hand side and dendogram on the left hand side shows the 

grouping of OTUs.  
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by smallest size of the circles, seemed to cluster separately for different treatments 

(indicated by dashed arrows in Figure 4.15b). 

Indicator species analysis was further used to identify the T-RFs that were more prevalent 

and specific to different treatments in both roots and rhizospheric soil (Fig. 4.16a and 

4.16b). This procedure examines the relative abundances and presence or absence of 

individual T-RFs in a predefined group compared to those expected to occur by chance 

(Dufrene and Legendre, 1997). On the roots samples (Fig. 4.16a), OTU affiliated to 

Methylococcus, Methylocaldum, and uncultured type I methanotrophs (type I 

methanotrophs, T-RF of 80 bp) had high indicator value for PK (control) treatment, OTU 

affiliated to Methylomonas (type I methanotrophs-TRF of 438 bp) had high indicator 

value for UPK treatment, and OTU affiliated to Methylocystis and Methylosinus (type II 

methanotrophs T-RF of 245 bp) had high indicator value for SPK treatment. In 

rhizospheric soil samples (Fig. 4.16b), OTU affiliated to Methylocystis and Methylosinus 

(type II methanotrophs, T-RF of 245 bp) had indicator value for PK, UPK, and SPK 

treatments while OTU affiliated to Methylomonas (type I methanotrophs T-RF of 438 bp) 

had additionally high indicator value for UPK treatment. 

In Fig. 4.17, the two major indicator species were overlaid on the CA ordination plot 

shown in Figure 4.15a. The new plot (Fig. 4.17) shows the OTUs affiliated to 

Methylomonas (T-RF of 438 bp) and to Methylococcus, Methylocaldum and uncultured 

type I methanotrophs (T-RF of 80bp) as isolines with their relative abundance, 

demonstrating that UPK and PK treatments clustered separately because of the respective 

dominance of the two different indicator species.  
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Fig. 4.17: CCA ordination plot from Fig. 4.15a with overlay of two indicator species 

Methylomonas and uncultured type I methanotrophs (T-RF 80 bp) as depicted by red and blue 

isolines with relative abundance values (shown in numbers) indicating separate clusters with 

different treatments. 

4.4.8 Effect of environmental and functional factors on methanotrophic community 

structure 

The T-RFLP data were further analyzed by ordination-based CCA to investigate the 

influence of environmental factors i.e., ammonium and methane concentrations, pH and 

tiller number, and functional factor i.e., methane oxidation rates, on the composition of 

the methanotrophic community structure. Environmental and functional variables were 

overlaid as constraints on CA ordination plots shown in Figures 4.15a and 4.15b. Some 

variables were removed from the ordination plot by the software itself because they were 

collinear (redundant) (e.g., pH at 10 cm in Fig. 4.18a). The correlation of treatment and 

most of the environmental factors were significant (P<0.001) with CCA ordination as 

shown in Table 4.2. 

[T-RF 80 bp] 
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Fig. 4.18: CCA ordination plots based on Chi-squared distance for the effect of environmental 

variables (as shown by vectors) on the composition of methanotrophic community on a) roots and 

b) in rhizospheric soil, based on the samples from replicate microcosms of different treatments. 

The angles between the species vectors indicate correlation among species. Colored open circles 

indicate the samples from different treatments as blue, red and green circles code for PK, UPK, 

and SPK treatments. CH4_03 and CH4_10 indicate CH4 concentrations at rhizospheric and bulk 

regions, respectively. NH4_03 and NH4_10 indicate NH4
+ concentrations at rhizospheric and bulk 

regions, respectively. Isolines with numbers indicate different CH4 oxidation rates. The 

a) 

b) 
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eigenvalues of the 1
st 

and 2
nd 

axes in the ordination diagram are as follows: λ1 = 0.22, λ2 = 0.06 for 

diagram ‘a’ and λ1 = 0.07, λ2 = 0.05 for diagram ‘b’. 

CCA ordination plot created from roots samples (Fig. 4.18a) showed that CH4 

concentration at bulk region (10 cm depth) and high CH4 oxidation rates plotted as 

isolines separated UPK from PK and SPK treatments and NH4
+samples at rhizospheric 

region (3 cm depth) seemed to separate SPK treatment from PK and UPK treatments. 

This is also seen from the correlation of the vectors with the ordination (Table 4.2). 

However, CH4 oxidation rates did not play significant role on the community level (Table 

4.3). CCA ordination plot from soil samples (Fig. 4.18b) showed that almost all 

environmental variables lay far apart from all samples since all the samples from different 

treatments were clustered together in the centroid.  

Table 4.2: Effect of vectors on CCA ordination plot for roots. 
Vectors CCA1 CCA2 r2 Pr (>r) P-value 
NH4_03 -0.58761 -0.80915 0.2270 <0.001 *** 

NH4_10 -0.25613 -0.96664 0.2021 <0.001 *** 

CH4_03   0.52359   0.85197 0.1431 <0.001 *** 

CH4_10   0.82229   0.56906 0.1033   0.002 **  

pH_03    0.89206   0.45192 0.0745   0.015 *   

pH_10    0.92540 -0.37899 0.3369 <0.001 *** 

tiller   0.57393 -0.81890 0.0508   0.057 . 

leave 0.25993    -0.96563 0.0411   0.093 . 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The named axes give direction cosines of the vectors and r2 gives the squared correlation 

coefficient. For plotting, the axes should be scaled by the square root of r2 .The significances Pr 

(>r), or P-values are based on 1000 permutations. 

 

Table 4.3: Analysis of similarities (ANOSIM) tested for different methane oxidation rates on 
roots associated methanotrophic community. 
CH4 oxidation rate ANOSIM statistic R Significance value 

1 0.106 0.001 

2 0.0104 0.3 

3 0.00393 0.5 

4 -0.044 0.8 

Significance values are based on 1000 permutations. 
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4.5 Discussion 

The previous part of my study (chapter 3) indicated that the activity and population size 

of methanotrophs differed between the rice roots and rhizospheric soil as well as between 

two different sampling points. Such variation was assumed to be due to different 

concentrations of methane, oxygen and probably nutrients, which provide different niches 

for the methanotrophs. Therefore, this part of my research was mainly focused on the 

study of the effect of different nitrogen fertilizer treatments (PK, UPK, and SPK) on 

methane oxidation and methanotrophic community structure on the rice roots and in the 

rhizospheric soil during six different growth stages of rice plant. For this purpose, 

methane oxidation rates were compared among the different nitrogen fertilizer treatments 

and the methanotrophic communities in these treatments were studied based on the pmoA 

gene analysis using T-RFLP fingerprinting method. T-RFLP data were analyzed using 

CCA ordination techniques in order to investigate the effect of treatments, and 

environmental and functional factors. 

Fertilization of rice plants with different ammonium-N fertilizers along with phosphorous 

and potassium, resulted in more healthy and dense plants (highest number of tiller and 

leave). The root development was better in SPK treatment followed by UPK treatment as 

compared to PK treatment (a control without nitrogen addition). These findings were 

supported by the rapid depletion of ammonium in both UPK and SPK treatments during 

most of the rice-growing season indicating the rapid consumption of ammonium by rice 

plant. Therefore, it could be assumed that increased plant growth might have affected 

plant ventilation (via better roots development) and roots exudation, which might have 

affected methane turnover. This assumption was supported here by the increased methane 

flux in UPK and SPK treatment after fertilization on 57 dap, while such response was 

absent in PK treatment indicating the influence of nitrogen fertilizer compared to other 

fertilizers. 

CH4 flux and CH4 oxidation rates were similar in PK and UPK treatments for most of the 

time during the cropping period indicating no N-fertilizer treatment effects on methane 

oxidation in this study. Similar effect was observed in previous studies (Bykova et al., 

2007; Cai et al., 1997; Delgado and Mosier, 1996; Dunfield et al., 1995). This might be
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explained by the proposed mechanism given by Schimel (2000). According to Schimel 

(2000), at the plant/ecosystem level, nitrogen fertilizers stimulate CH4 production by 

increasing rice plant growth and increasing the carbon supply for methanogens thus 

stimulating methane flux from the soil (Dan et al., 2001; Bodelier et al., 2000). Similarly, 

at the level of the microbial community, nitrogen stimulates the growth and activity of 

methanotroph, leading to reduced net efflux (Bodelier et al., 2000). Therefore, in my 

study, where high amount of nitrogen fertilizer was applied in UPK treatment, it could be 

assumed that increased methane production by methanogens at the same time, might have 

been counter balanced by methane oxidation by methanotrophs. As a consequence, no 

effect could be observed in either methane production or methane oxidation process. 

However, a transient positive influence was observed for methane oxidation in UPK 

treatment after fertilizer addition on 57 dap. Similar result was also reported by Krüger 

and Frenzel (2003).  

Consistent to other studies (Minamikawa et al., 2005; Cai et al., 1997; Kesheng and 

Zhen, 1997; Denier van der Gon and Neue, 1994; Lindau, 1994), my study also 

demonstrated that in the SPK treatment, low methane concentrations and low methane 

flux were observed. This was because of suppression of methanogenesis by high sulphate 

concentrations. Therefore, SPK treatment was not comparable with PK and UPK 

treatments. There was no decrease in sulphate concentration as observed in rhizospheric 

region till 57 dap, which indicated regeneration of sulphate by the oxidation of reduced 

sulfur. The dense roots in SPK treatment might have released sufficient amounts of O2 

required for this process. After fertilization on 57 dap (Fig. 4.6c), sulphate concentration 

increased by a factor of three and resulted in a decrease of pH in the pore water of the 

rhizospheric region (Fig. 4.7a). pH value slowly recovered back consistent with a 

decrease of the sulphate concentration. The decreased sulphate concentration probably 

improved the conditions for CH4 production, and might be the explanation for the 

increased pore water methane concentrations, methane flux, and methane oxidation rates 

in the late period. Similar increase of methane flux in the late period was reported by 

Minamikawa et al. (2005).  

The determination of pmoA-based T-RFLP profiles and subsequent affiliation to clone 

sequences and CA ordination indicated that the methanotrophic community structure was 

significantly affected by different treatments; however, the effect was stronger on the 
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roots and weaker in the rhizospheric soil (Fig. 4.12 and 4.15b). This indicated that the 

roots and rhizospheric soil provided two completely different environments for 

methanotrophs (Henckel et al., 2000).  

The methanotrophic community associated with the roots and the rhizospheric soil 

contained both type I and type II methanotrophs. This finding was consistent to the 

experiment described in chapter 3 and to the reports by Eller and Frenzel (2001) and 

Henckel et al (2000), all using the soil from the same rice-field. However, type I 

methanotrophs were dominant on the root samples (except few samples of SPK 

treatment) (Fig. 4.9). The methanotrophic community composition as well as relative 

abundance consistently changed in PK and SPK treatments at all sampling time points, 

but in UPK treatment a relatively stable methanotrophic community existed throughout 

the period except on 88 dap (Fig. 4.9). In further detail, the relative abundance of type I 

and type II methanotrophs changed a lot in PK and SPK treatments, while in UPK 

treatment type I methanotrophs were predominant consisting of more than 75% 

(especially Methylomonas with more than 50%) of the total community at all sampling 

time points except on 88 dap. These findings indicated a strong temporal variation in PK 

and SPK treatment while not in UPK treatment. My result showed that PK and SPK 

treatments suffered from NH4
+ (Fig. 4.6) and CH4 (Fig. 4.5) limitation, respectively, 

during most of the times of rice-growing season. Furthermore, NH4
+ concentration at 

rhizospheric region (at 3 cm depth) seemed to be responsible for the change in 

methanotrophic community in SPK treatment in comparison to PK and UPK treatments 

as revealed by CCA ordination (Fig 4.18a and Table 4.2). This indicated a response of 

low CH4: NH4
+ ratio on methanotrophic community in SPK treatment.  

In UPK treatment CH4, O2 and NH4
+ concentrations were probably sufficient allowing a 

relatively consistent and stable methanotrophic community throughout the entire rice-

growing season except on 88 daps. Moreover, CH4 concentration at bulk region (at 10 cm 

depth) and high methane oxidation rates seemed to be responsible for separating 

methanotrophic community from that of other treatments as revealed by CCA ordination 

(Fig. 4.18a and Table 4.2). However, there was no significant effect of methane oxidation 

rates on methanotrophic community in UPK treatment (Table 4.3). Another explanation 

of a consistent methanotrophic community with dominant type I methanotrophs 

(especially genus Methylomonas) in UPK treatment might also be due to their adaptability 
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to urea-N fertilizer. The rice fields in Vercelli, Italy (the source of soil that was used in 

my experiments) have been continuously fertilized with urea as N source for many years. 

Therefore, urea-N on the roots might lead to a selection of adapted methanotrophic 

community from the soil around the roots since rice field soil may serve as a seed bank 

for methanotrophs (Eller and Frenzel, 2001).  

Interestingly, indicator species for each treatment (Fig. 4.16a and 4.17) revealed that on 

the roots, OTUs (T-RF of 80 bp) affiliated to uncultured type I methanotrophs (separate 

cluster deeply branched from Methylocaldum and Methylococcus), Methylomonas and 

Methylocystis were the important species for PK, UPK and SPK treatments, respectively. 

Besides these indicator species, there were few other genera that seemed also to be 

important for respective treatments. For instance, five sequences of uncultured type I 

methanotrophs (T-RF of 374 bp) was obtained only in PK treatment on 57 dap and none 

in other treatments. Another example was the presence of a single clone that was closely 

related to high-affinity methanotrophs belonging to upland soil cluster alpha (USCα) on 

the roots samples of SPK treatment on 57 dap (Fig. 4.10). The appearance of USCα 

which harbors in low methane concentrations (Henckel et al., 2000; Holmes et al., 1999; 

Knief et al., 2003; Kolb et al., 2005) could be attributed to low CH4 concentration in SPK 

treatment. Thus, all of these findings suggested that on the roots, methanotrophic genera 

responded differently to different N-fertilizer treatments as evidenced by statistical 

analysis revealing significant effect of treatments on methanotrophic community. 

Nevertheless, the inhibition effect of SO4
2- fertilizer resulting in low CH4 concentration, 

might have selected a different methanotrophic community in SPK treatment.  

In case of rhizospheric soil, all treatments (PK, UPK and SPK) were dominated by a 

relatively stable type II methanotrophic community at almost all sampling time. This 

indicated that type II methanotrophic community structure appeared to be stable and did 

not change with time. Similar findings were reported by Henckel et al. (1999, 2000) and 

Bodelier et al. (2000). Indicator species for each treatment (Fig. 4.16b) showed that in the 

rhizospheric soil, OTUs affiliated to Methylocystis (type II methanotrophs) were the 

important species for PK, UPK, and SPK treatments while Methylomonas was an 

additional important species for UPK treatment. Analysis of the genus level of type I 

methanotrophs revealed further differences among the treatments, based on pmoA T-

RFLP profiles and pmoA sequences. For instance, T-RF of 438 bp, affiliated to 
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Methylomonas was dominant on 29 dap in PK treatment while it was dominant on 57 dap 

in UPK treatment. As an another examples, in SPK treatment, T-RF of 506 bp, affiliated 

to Methylobacter, was increasingly dominant on 57 dap which was quite rare in PK and 

UPK treatments. Thus, these findings suggested that methanotrophs, especially type I 

methanotrophs, in rhizospheric soil responded differently to different N-fertilizer 

treatments. Nevertheless, weak but significant effect of nitrogen fertilizer was observed in 

overall methanotrophic community in the rhizospheric soil, probably due to high relative 

abundance of type II methanotrophs.  

In conclusion, different nitrogen fertilizers affected methanotrophic community structure 

without significantly affecting the rates of methane oxidation.   
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Chapter 5 
 

Study of metabolically active methanotrophs in the rice rhizosphere 

using pmoA transcripts at different growth stages of rice plant  
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5.1 Introduction 

In the last few decades, cultivation-independent molecular techniques have been 

intensively applied to investigate the microbial diversity and quantify predominant 

organisms in natural microbial communities (Neufeld and Mohn, 2006). Some of the 

widely used techniques for studying the methanotrophic community diversity include 16S 

rRNA gene and functional gene (pmoA, mmoX, mxaF) targeted polymerase chain reaction 

(PCR) based cloning and sequencing (Miller et al., 2004; Uz et al., 2003), microarray 

analysis (Bodrossy et al., 2006), degenerating gradient gel electrophoresis (DGGE) 

(Bodelier et al., 2000; Bourne et al., 2001; Eller et al., 2005; Jia et al., 2007: Wise et al., 

1999) and terminal restriction fragment length polymorphism (T-RFLP) (Horz et al., 

2005; 2001; Pester et al., 2004; Shrestha et al., 2008). Although these DNA-based 

approaches provide the genetic potential of methanotrophic community present in 

different environments, they do not give information about metabolically active 

methanotrophs. One of the possibilities to overcome this limitation is to study the mRNA 

transcripts, for instance, pmoA transcripts in case of methanotrophs. 

In addition to PCR-based gene detection, analysis of mRNAs of indicator genes should 

significantly enhance our understanding of active functional groups in the environment. 

Detection of mRNAs, which have a short half-life (Robinson et al., 1998), is the best 

indicator of metabolically active cells or specific activity in a complex microbial 

community. Although detection of mRNAs has been hindered by difficulties in the 

extraction of intact RNA from environmental samples (Saleh-Lakha et al., 2005), recent 

advances in extraction methods for mRNA (Bürgmann et al., 2001; Griffiths et al., 2000; 

Shrestha, Dissertation, 2007) may facilitate the direct analysis of functional gene 

expression of active methanotrophs in the environment. A number of recent studies have 

focused on the analysis of expression of methane monoxygenase in different environment 

using pmoA specific primer sets. These include the analysis of soil (Han and Semrau, 

2004; Kolb et al., 2005), fresh water sediment (Cheng et al., 1999; Nercessian et al., 

2005), landfill (Chen et al., 2007) and peatlands (Chen et al., 2008), providing direct in 

situ evidence of active methanotrophs. However, expression of pmoA in rice rhizosphere 

under in situ conditions has not yet been investigated. 
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Therefore, in this part of my research, I have compared the methanotrophic community 

composition and diversity, related to different fertilizer treatment and different growth 

stages, based on pmoA gene and pmoA transcripts. This approach shall distinguish total 

diversity of methanotrophs from that of metabolically active methanotrophs in the 

rhizospheric soil at the time of sampling, and the latter might then be correlated with the 

physiological conditions. 

5.2 Objectives 

• To study the effect of different ammonium-N fertilizer treatments on methane 

oxidation potential activity and metabolically active methanotrophs in the 

rhizospheric soil during different growth stages of the rice plants. 

• To compare the effect of different N-fertilizer treatments on total and 

metabolically active methanotrophs in rhizospheric soil. 
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5.3 Methods 

This part of study was based on the experimental setup and microcosm experiment that 

was used in chapter 4. 

5.3.1 Experimental setup 

Refer to chapter 4.3.1. 

5.3.2 Microcosm experiment  

Refer to chapter 4.3.2. 

5.3.3 Collection of soil and root samples 

Rhizospheric soil and root samples used were collected from the microcosm experiment 

described in chapter 4.3.2.  

5.3.4 Methane oxidation potential assay  

Refer to chapter 2.2.6. 

5.3.5 Total nucleic acids extraction 

Total nucleic acids from the soil and root samples was extracted using total nucleic acids 

extraction protocol as described in chapter 2.2.7.1.  

5.3.6 Total RNA isolation 

Total RNA isolation was carried out as described in chapter 2.2.7.2.  

5.3.7 RT-PCR of pmoA transcripts 

Refer to chapter 2.2.7.4. 

5.3.8 Terminal restriction fragment length polymorphism (T-RFLP)  

As described in chapter 2.2.7.4, a semi-nested approach was used for analysis of terminal 

restriction fragment length polymorphism (T-RFLP) of pmoA gene transcripts. T-RFLP
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of pmoA gene transcripts was performed by using cDNA products from the rhizospheric 

soil samples in triplicate as described in chapter 2.2.9. In the first PCR step, cDNA 

products were amplified using the primer set A189f/A682r. In the second PCR step, an 

aliquot (1 µl) of the amplified product from the first step was used for PCR amplification 

using the primer set A189f/mb661r where a FAM (6-carboxyfluorescein)-labeled forward 

primer was used. However, for a few samples, RT-PCR with the primer set 

A189f/mb661r did not work. Therefore, a degenerate reverse primer, nmb650r, was 

designed based on the 650 reverse primer (Bourne et al, 1999) and was used in the second 

round of PCR (mentioned in chapter 4.3.8). Before performing these amplifications, this 

new reverse primer was tested against mb661 reverse primer on few of the samples which 

were successfully amplified using A189f/mb661r primer set for T-RFLP analysis to 

check the primer performance. The result showed that both A189f/mb661r and 

A189f/nmb650r primer sets gave the similar T-RFLP patterns (Fig.5.1). Therefore, the 

nmb650 was used as reverse primer in conjunction with the forward primer A189 for the 

rest of the samples to amplify the PCR products for T-RFLP analysis.  

All PCR amplified products were purified using gel purification with Wizard ® SV Gel 

and PCR Cleanup System (Promega, Germany) and then used for T-RFLP analysis as 

described in chapter 2.2.9. The normalization procedure of each TRF profile was done as 

described in chapter 2.2.9.1 and followed with calculation of relative abundance as 

described in chapter 2.2.9.2. 

5.3.9 Cloning and sequencing 

To affiliate the different TRFs and to analyze the clone frequency, three clone libraries 

were generated from mRNA extracts of rhizospheric soil samples (PK-40, UPK-40, and 

SPK-40 dap).  

5.3.10 Phylogenetic analysis 

Refer to chapter 2.2.8. 
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Fig. 5.1: Comparison of T-RFLP patterns based on pmoA gene as revealed by primer sets 

A189f/nmb650r and A89f/mb661r on few samples. T-RFLP analysis was carried out to check 
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reproducibility in different samples. Name of samples at right hand side indicate different DNA 

samples from rhizospheric soil (DNA-soil), roots (DNA-root) and mRNA sample from 

rhizospheric soil (mRNA-soil) with two different primer sets. The numbers in T-RFLP profiles 

indicate the length (bp) of the different T-RFs. 
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5.4 Results  

5.4.1 Methane oxidation potential 

In this study, methane oxidation potential was determined on the roots (Fig. 5.2) and in 

the rhizospheric soil (Fig. 5.3) using different treatments from six different growth stages 

i.e., 29, 40, 57, 62, 67, and 88 days after transplantation except for root samples from 29 

dap. 
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Fig. 5.2: Oxidation of CH4 at a mixing ratio of 50,000 ppmv in tubes containing roots from six 

different sampling time points (40, 57, 62, 67 and 88 dap as shown at top of each plot) were 

observed at different incubation period (hour). Blue, red and green colors code for PK, UPK, and 

SPK treatments; mean ± SD (n=3). 
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Fig. 5.3: Oxidation of CH4 at a mixing ratio of 50,000 ppmv in tubes containing rhizospheric soil 

from six different sampling time points (29, 40, 57, 62, 67, and 88 dap as shown at top of each 

plot) were observed at different incubation period (hour). Blue, red and green colors code for PK, 

UPK, and SPK treatments; mean ± SD (n=3). 

On the roots, methanotrophs exhibited immediate and fast potential activities on 40 dap. 

After 40 dap, roots samples exhibited much less activity with a long lag phase (Fig. 5.2). 

Methane oxidation potential rates were not calculated for the roots samples. Methane 

oxidation started immediately in all rhizospheric soil samples (PK, UPK, and SPK 

treatments) without any lag phase (Fig. 5.3). Methane oxidation potential rates were 
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significantly (P<0.01) different among the treatments on 62 and 88 dap. The methane 

oxidation potential (MOP) rates were significantly lower (P<0.01) in control than in UPK 

treatment during entire rice growing season. There was no significant differences 

(P>0.01) in MOP rates of two nitrogen fertilizer treatments until 57th days of 

transplantation. However, MOP rates dropped significantly (P<0.01) in SPK treatment 

after 62 dap and remained significantly lower than in control and UPK treatments.  
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Fig. 5.4: Methane oxidation potential measured in rhizospheric soil samples (calculated from 

result shown in Fig. 5.3) from different sampling periods in PK, UPK, and SPK treatments; mean 

± SD (n=3). Different letters indicate significant difference (P<0.01) between the means of the 

different treatments. 

5.4.2 Amplification of pmoA transcripts in rhizospheric soil 

Total RNA was isolated using the same nucleic acids extract obtained from chapter 4.3.6. 

High quality of total nucleic acids (absorbance ratio of 280/260 = 1.83) and total RNA 

was obtained (Fig. 5.5a and Fig. 5.5b). cDNA synthesized from total RNA extract from 

rhizospheric soil samples was successfully amplified for pmoA transcripts of 509 bp 

length by using a semi-nested approach using primer sets A189f/A682br (Fig. 5.6, Lanes 

1-3) in the first step and then A189f/mb661r or A189f/nmb650r (Fig. 5.6, Lanes 4-6) in 

the second step. To ensure complete removal of genomic DNA, a negative control of 

same RNA template was also simultaneously run with all RT-steps excluding the reverse 

transcriptase enzyme (Fig. 5.6, Lanes 7-9). 
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Figure 5.5: Gel electrophoresis of a) total nucleic acids obtained from rhizospheric soil (Lanes 1-

16; M is size marker and b) total RNA after DNA digestion (Lanes 1-16; M is size marker).  

 

Figure 5.6: Gel electrophoresis of RT-PCR products of mRNA transcripts obtained using the 

primer set A189f /A682r (Lanes 1-3), primer set A189f /mb661r (Lanes 4-6), negative control as 

RNA templates without RT-step (Lanes 7-9), positive control (RNA control provided in RT-PCR 

kit) for RT-PCR (Lane 10), negative control (without template) (Lane 11), and M is the size 

marker. 
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5.4.3 T-RFLP and cloning/sequencing of pmoA transcripts in rhizospheric soil 

pmoA transcripts that were presumably responsible for in situ methane oxidation were 

successfully retrieved from rhizospheric soil samples from six different growth stages of 

the rice plant (Fig 5.7). Here, T-RFLP patterns of transcripts from three replicates from 

the same microcosm as well as from three replicate microcosms of each treatment were 

analysed for tube to tube and pot to pot variations. Variation among the replicates was 

checked for major T-RF peaks, which were highly reproducible. Therefore, the relative 

abundances of T-RFs of all the replicates (5-9 replicates) were averaged for each 

treatment and time point.  

T-RFLP analysis produced highly reproducible patterns with T-RFs of 80, 113, 210, 227, 

242, 245, 264, 278, 350, 364, 440, 448, 457 and 506 base pairs (bp) lengths in most of the 

samples. T-RFLP profiles obtained from rhizospheric soil, revealed a highly diverse 

pattern of the active methanotrophic community at the different sampling times (Fig. 5.7 

a, b, c). Furthermore, PK and UPK treatment revealed similar T-RFLP patterns, while 

SPK treatment showed a different one.  

In PK treatment (Fig. 5.7a), composition and relative abundances of major T-RFs, (T-RFs 

of 80, 245, 350, and 438 bp) changed with sampling times. For example, T-RF of 438 and 

245 bp were dominant with relative abundance of 52% and 16% on 29 dap and adversely 

changed to 12% and 74% on 40 dap (Fig. 5.7a). Similarly in UPK treatment (Fig. 5.7b), 

composition and relative abundances of major T-RFs, (T-RFs of 80, 245, 350, and 438 

bp) changed with sampling times. T-RF of 264 bp appeared at all sampling time points 

except on 67 dap. T-RF of 506 bp was obtained in almost all samples except on 40 dap. 

Additionally, small changes in composition and abundance in T-RFs of 113, 210, 227, 

242, 375 bp sizes could be observed in UPK treatment at different sampling time points.  

In SPK treatment (Fig. 5.7c), two major T-RFs i.e. 245 and 350 bp size were abundant at 

all sampling time points and the relative abundance of these two T-RFs consecutively 

changed during the four initial sampling time points. The T-RF of 245 bp was 

predominant, while the T-RF 350 bp was less dominant. The other T-RFs, however, 

appeared and disappeared sporadically. 
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Fig. 5.7: Relative abundance calculated for pmoA transcripts from rhizospheric soil samples from 

a) PK treatment, b) UPK treatment, and c) SPK treatment from different sampling points; mean ± 

SD (n = 5-9). 
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Fig. 5.8: Neighbor-joining tree showing the phylogenetic analysis of the derived amino acid 

sequences encoded by pmoA genes from rhizospheric soil. Blue, red and green color indicates 

representative clones from PK, UPK and SPK treatments, respectively. The scale bar represents 

10% sequence divergence.  
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Fig. 5.9: Comparative analysis between a) Relative abundance, and b) clone frequency for pmoA 

transcripts retrieved from rhizospheric soil samples from PK, UPK, and SPK treatment from 40 

dap; mean ± SD (n = 5-9) for T-RFLP analysis. 

Cloning and sequencing of pmoA transcripts was carried out for rhizospheric soil samples 

from 40 dap (Fig. 5.8 and 5.9b). The T-RFs were assigned to the respective genera of 

methanotrophs by using the clone libraries obtained from PCR products from 

rhizospheric soil samples as 80 bp – uncultured type I methanotrophs, 245 bp – 

Methylocystis (type II methanotrophs), 438 bp – Methylomonas, and Methylosarcina, and 

506 bp – Methylobacter. However, using these clone libraries none of the obtained 

sequences could be affiliated to the unknown T-RFs (113, 210, 278, and 448). Clone 

frequency revealed a similar pattern as the relative abundance of T-RFs, however, clone 

frequency provided a less diverse transcription pattern than that obtained by T-RFLP 

analysis (Fig. 5.9a and 5.9b).  
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After affiliation of T-RFs to the respective sequences, rhizospheric soil samples revealed 

a diverse transcription pattern, representing both type I and type II methanotrophs, on the 

basis of relative abundance and composition, in all treatments as well as at all growth 

stages. Overall, relative abundance of type I methanotrophs transcript was high in most of 

the PK and UPK treatment samples whereas, relative abundance of type II methanotrophs 

transcript was high in most of the SPK treatment samples. 
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5.5 Discussion 

In the previous part of my study (chapter 4), pmoA gene-based T-RFLP profiles did not 

show any strong effect of different nitrogen fertilizer treatments on the methanotrophic 

community structure in the rhizospheric soil. Instead, a relatively stable community 

pattern was observed. In the present part, my research mainly focused on pmoA 

expression and the metabolically active methanotrophs that were responsible for in situ 

methane oxidation in rhizospheric soil under different fertilizer treatments and at different 

growth stages of the rice plant. Furthermore, the metabolically active diversity of 

methanotrophs was compared with the total methanotrophic diversity.  

5.5.1 Methane oxidation potential 

Methane oxidation potential tests were performed to assess the effect of different fertilizer 

treatments (PK, UPK, and SPK) on methanotrophic activity associated with roots and 

rhizospheric soil. Lower methane oxidation rates with long lag phase were obtained on 

the roots as compared to rhizospheric soil, indicating a quite different physiological state 

of methanotrophs between roots and rhizospheric soil. However, a direct comparison of 

the rates in soil and roots is not possible, because of the reference to either root mass or 

soil mass, respectively (Eller and Frenzel, 2001). Quick response in the methane 

oxidation potential measurement throughout all the growth stages indicated the presence

of active methanotrophs in rhizospheric soil for all treatments. This result was further 

confirmed by the detection of pmoA expression in all samples. Methane oxidation 

potential rates were significantly lower in control treatment than in UPK treatment during 

entire rice growing season and than in SPK treatment at least initial three growth stages 

thus indicating the stimulating effect of nitrogen fertilizer on methanotrophic community. 

This result was in consistent to the findings reported by Bodelier et al (2000) where they 

have also found the higher potential activity in nitrogen fertilizer (urea or (NH4)2HPO4) 

added soil slurry as compared to unfertilized soil slurry. However, the pattern of methane 

oxidation potential activity was not consistent to in situ methane flux measurements result 

(chapter 4) where methane oxidation rate or methane flux were almost similar between 

control and UPK treatments for most of the rice growing season. Probably, the presence 

of rice plant or roots exudates might play a role in the process that occurred in the rice 

microcosms, which could not be retrieved in soil slurry rather than the direct effect of any
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factor like nitrogen fertilizer on 0.25 g of dry soil per ml (Bodelier et al, 2000). 

5.5.2 Gene expression of methanotrophs in rhizospheric soil  

The T-RFLP analysis of pmoA transcripts showed a diverse pattern of expression that 

corresponded to the potentially active genera observed in the community fingerprints of 

methanotrophs in the different treatments. The transcription pattern also indicated rapid 

changes of transcriptional activity over time, indicating a strong temporal variation in all 

treatments. This suggested that metabolically active methanotrophs responded fastly and 

actively to changing environments (Henckel et al., 2000) responding to temporal 

variation in CH4 and NH4
+ concentrations (chapter 4.4.3 and chapter 4.4.4) and probably 

to variation in O2 concentrations released by roots, during rice-growing season (Frenzel et 

al., 1992).  

Interestingly, the number of T-RFS of pmoA transcripts retrieved from PK and UPK 

treatments was higher than those retrieved from SPK treatment (Fig. 5.7). This indicated 

that PK and UPK treatment revealed a higher diversity of active methanotrophs than SPK. 

A complete overview of T-RFLP pattern revealed that pmoA transcripts retrieved from 

PK and UPK treatments were similar, whereas pmoA transcripts retrieved from SPK 

treatment were quite different. Nevertheless, some differences among the transcripts in 

PK and UPK treatments were evident at different sampling times (Fig. 5.7a and 5.7b).  

Type I methanotrophs were dominant in all rhizospheric soil samples of PK and UPK 

treatments except at some time points (40 dap in PK, and 40 and 88 dap in UPK 

treatment) (Fig. 5.7a and 5.7b). This result revealed that in PK and UPK treatments, type I 

methanotrophs were mainly responsible for in situ methane oxidation in rhizospheric soil 

during most of the time of rice-growing season. Recently, Noll et al. (2008) and Qiu et al. 

(2008) also reported that type I methanotrophs were metabolically active in urea-treated 

soil slurry and in rice field experiments, respectively, using RNA based-stable isotope 

probing of 16S rRNA.  

Type II methanotrophs were dominant in rhizospheric soil samples of SPK treatment 

(Fig. 5.7c) indicating that type II methanotrophs were mainly responsible for in situ 

methane oxidation under those conditions. The predominance of type II methanotrophs in 
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SPK treatment was supported by the previous findings (Henckel et al., 2000, Hanson and 

Hanson, 1996) which suggested that type II methanotrophs survive better than type I 

methanotrophs under adverse conditions. Conditions in SPK treated soil were probably 

adverse since CH4 production was inhibited by high sulphate concentrations and CH4 

concentrations were low (see chapter 4). 

5.5.3 Comparative diversity of total and active methanotrophs in rhizospheric soil  

Total methanotrophic community structure revealed a similar pattern of T-RFs at all 

growth stages of plant development in all treatments whereas active methanotrophic 

structure revealed a more diverse and changeable pattern of T-RFs. This result is 

reasonable since the total community consists of both live (active and inactive) and dead 

cells, whereas the active community only consists of metabolically active cells, which 

respond to changing environmental conditions. 

Total methanotrophic diversity in rhizospheric soil samples consisted of mainly type II 

methanotrophs with more than 60% relative abundance. This result is quite consistent 

with previous studies (Eller and Frenzel, 2001; Henckel et al, 2000; Gilbert and Frenzel., 

1995) which repeatedly reported the predominance of type II methanotrophs in rice field 

soils. In contrast, the active methanotrophic diversity consisted mainly of type I 

methanotrophs in most of the samples of PK and UPK treatments, while mainly of type II 

methanotrophs in most of the samples of SPK treatment. However, higher relative 

abundance of type I methanotrophs revealed from pmoA transcripts compared to that 

obtained from pmoA gene could be due to higher background of type II methanotrophs in 

pmoA gene-based T-RFLP profile.  

On the genus level, T-RFLP profiles and subsequent phylogenetic analysis indicated that 

not all of the methanotrophs detected as pmoA gene were also detected as pmoA mRNA 

and vice versa. For example, the T-RF of 242 bp was present in almost all pmoA gene-

based T-RFLP patterns whereas, it was not found in transcription patterns. By contrast, 

the T-RF of 264 bp was found as transcript in almost all samples but was not detectable in 

the pmoA gene-based T-RFLP patterns. Another example was the presence of four 

sequences affiliated to Methylosarcina (type I methanotrophs) in the rhizospheric soil 

samples of UPK treatment on 40 dap (Fig. 5.11), which could not be obtained from the 
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mRNA-based clone library of PK and SPK treatments, and pmoA gene-based clone 

libraries. 

5.5.4 Conclusions 

Methane oxidation potential assays indicated the methanotrophic activity in all 

treatments, which was also indicated by the successful mRNA extraction. Expression of 

pmoA transcripts did not reveal any significant influence of N-fertilization on 

metabolically active methanotrophs when comparing control and UPK treatments. 

Instead, the composition of active methanotrophic communities did change over time and 

probably a temporal variation in substrate or nutrient concentrations played a more 

important role for expression of the pmoA genes of methanotrophs in all treatments. In 

total, the addition of different fertilizers affected significantly both the activity and the 

composition of the metabolically active methanotrophs in rhizospheric soil during entire 

rice growing season.  However, the treatments in which the active methanotrophic 

community composition differed most did not correspond to treatments with the most 

different activities, showing that potential activity was uncoupled to composition of active 

methanotrophs. Probably, going one step further by quantifying pmoA transcript numbers 

may provide positive (great) relevance with methane oxidation potential rates, which 

unfortunately was not performed for this study. Overall, type I methanotrophs were 

predominant in pmoA transcript analysis thus apparently playing an active role for 

methane oxidation in rhizospheric soil, while type II methanotrophs persists under 

unfavorable conditions, such as in the SPK treatment. Hence, type I methanotrophs 

apparently play an active role for methane oxidation in rhizospheric soil, while type II 

methanotrophs constitute a background community that also persists under unfavorable 

conditions, such as in the SPK treatment. 
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Chapter 6 
 

Isolation of methanotrophs from rhizospheric soil and roots of planted 

rice microcosms 
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6.1 Introduction 

It is clear from the studies described so far (chapter 3, 4 and 5) that the molecular 

analyses tools are very useful for studying methanotrophic community structure and 

diversity. However, to understand the physiology and function of the methanotrophs 

in detail, one has to do isolation, purification and multiplication of cells to provide 

sufficient biomass. However, cultivation on the basis of the presently described media 

generally resulted in the isolation of less than 1% of the viable species. 

Methanotrophs have been isolated from a variety of environments including rice 

fields (Dianou and Adachi, 1999; Gillbert and Frenzel, 1998; Heyer et al., 2002), 

freshwater lakes (Heyer et al., 2002), wetlands (Dedysh et al., 1998, 2000, 2002), hot 

spring (Tsubota et al., 2005). However, there is a relatively small number of 

methanotrophic species that were isolated from rice fields in comparison to the high 

diversity of methanotrophs retrieved by using molecular tools. 

In this part of my PhD research, I have isolated methanotrophs from the roots and 

rhizospheric soil samples collected on 57 dap.  

6.2 Objectives 

      Isolation of methanotrophs from rhizospheric soil and roots from rice microcosms 

treated with three different N-fertilizer treatments. 
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6.3. Methods 

6.3.1 Isolation of methanotrophs 

For the isolation of methanotrophs, rhizospheric soil slurry and roots samples were used 

after measurement of methane oxidation potentials in samples from 57 dap. The soil 

slurry in the tube was provided with 5% CH4 and 20% O2 and was incubated horizontally 

on a roller at 30 °C as described in chapter 2.2.6 in dark. In case of root samples, 1 g of 

roots was transferred to a 250-ml serum bottle containing nitrate mineral salts (NMS) 

medium (see chapter 2.2.12 for composition). The head space contained 5% CH4 and 

20% O2. The bottles were incubated on a shaker at 30 °C in dark. After four weeks of 

incubation, the medium containing soils or root samples was serially diluted up to a 

dilution of 10-6. From the terminal dilution step (10-6), a 100 µl aliquot was streaked on 

NMS agar plates (see chapter 2.2.6 for composition). The plates were placed into an 

anaerobic jar filled with 5% CH4 and 20% O2 and incubated at 30 °C in dark. When the 

colonies became visible, they were continuously transferred to fresh agar plates until a 

pure culture was obtained indicated by uniform colony morphology. Purity was 

confirmed by sequencing the 16S rRNA and pmoA genes using cells of a single colony. 

6.3.2 Genomic DNA extraction 

Individual colonies were scrapped out using sterile toothpicks and were mixed with 200 

µl of a 1/4th ringer solution and 100 µl of a 10% (wt/vol) solution of sodium dodecyl 

sulfate. About 0.5 g of sterile zirconium beads (0.1mm diameter) was added, and the 

suspension was shaken for 1 min at 5.5m/s in a bead beater (Fast Prep FP120, Bio 101, 

Thermo Savant, USA). Then two freeze thaw cycles were conducted by rapidly cooling in 

liquid nitrogen for 20 s followed by heating in a 100 °C water bath for 10 min. Cell debris 

was pelleted at 14,000 rpm for 10 min at 4 °C, and the supernatant was mixed with 0.5 

vol of ammonium acetate buffer pH 7.2. Centrifugation was carried out at 14,000 rpm for 

5 min at 4 °C. The supernatant was mixed with 2.5 volumes of absolute ethanol and then 

incubated at –80 °C for 60 min. DNA was then precipitated by centrifuging at 14,000 rpm 

for 30 min at 4 °C. DNA thus obtained was washed once with 70% ethanol and dried in a 

vacuum dryer. Finally, the DNA was resuspended in 50 µl TE buffer (10 mM Tris-HCl, 1 

mM EDTA [pH 8.0]) and stored at –20 °C. 
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6.3.3 Polymerase chain reaction (PCR) of bacterial 16S rRNA genes 

PCR was carried out using primers 27f and 1492r (Lane, 1991), which amplify 16S rRNA 

genes of a wide range of members of the domain Bacteria from positions 28 through 

1491 (E. coli numbering [Brosius et al., 1978]). The reaction mixture contained 1 µl of 

template DNA, 10 µl of 5× reaction buffer (Promega, Germany), 3 µl of 25 mM MgCl2 

(Promega, Germany), 5 µl of 10 mM dNTP mix (Promega, Germany) 0.5 µl of 33 pmol 

(each) primer (MWG-Biotech, Ebensburg, Germany), and 2.5 U of Taq DNA polymerase 

(Promega, Germany). Finally, the total volume was made up to 50 µl with sterile water. 

Amplification was performed in 0.2 ml reaction tubes using a DNA thermal cycler (ABI 

9600; PE Applied Biosystems). The thermal PCR profile was as follows: initial 

denaturation for 2 min at 94 °C; 30 cycles, consisting of denaturation at 94 °C for 45 s, 

primer annealing at 48 °C for 60 s, and elongation at 72 °C for 120 s. The final elongation 

step was extended to 12 min. Aliquots of the 16S rRNA gene amplicons (5 µl) were 

checked by electrophoresis on a 1% agarose gel.  

6.3.4 Polymerase chain reaction (PCR) of pmoA gene 

PCR was carried out using the pmoA gene specific primers A189f and mb661r as 

described in chapter 2.2.7.1. 

6.3.5 PCR purification 

The PCR products thus amplified from 16S rRNA gene and pmoA gene were purified by 

using GebEluteTM PCR clean-up kit (Sigma, Germany) following the instructions of the 

manufacturer.  

6.3.6 Cycle sequencing 

For cycle sequencing, the BigDye Terminator kit v3.1 (Applied Biosystem, Germany) 

was used. The PCR reagent mix was prepared by combining the following reagents (on 

ice) in a 0.5-ml microcentrifuge tube: 2 µl Ready Reaction Premix, 1 µl BigDye 

Sequencing Buffer, 3.2 pmol (forward or reverse) primer, 60 - 80 ng (2 µl) of purified 

PCR product and distilled water to make the volume 10 µl. Tubes were placed in a 

thermal cycler (Applied Biosystems - 9600) preheated to 104 oC. The program used was 
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as follows: initial denaturation at 96 °C for 30s; 25 cycles, consisting of denaturation for 

10 s at 94 °C, primer annealing at 50 °C for 5 s, and final elongation at 60 oC for 4 min. 

The product was then kept at 4 °C until and purified by using SigmaSpinTM post-reaction 

clean-up columns (Sigma, Germany) as described in the manufacturer’s protocol. 

Sequences were generated with an ABI-3130 sequencer (Applied Biosystems) and 

analyzed with the sequence analysis software version 5.1 (MPI, Marburg). 

6.3.7 Phylogenetic analysis 

Identities of the 16S rRNA gene sequences were confirmed for methanotrophs by 

searching the sequence databases using nucleotide blast 

(http://www.ncbi.nlm.nih.gov/BLAST/). The partial 16S rRNA gene sequences (~600 

base pairs) were added to a database consisting of about 50,000 complete or partial 

bacterial 16S rRNA sequences. This database was part of the ARB program package 

(Ludwig et al., 2004). The 16S rRNA gene sequences were integrated into the database 

with the automated alignment tool of the ARB program package. The resulting 

alignments were manually checked and corrected, if necessary. In addition, if needed for 

comparison, 16S rRNA gene sequences were obtained from the NCBI database 

(www.ncbi.nlm.nih.gov) and inserted into the ARB database. Phylogenetic dendrograms 

were constructed by using neighbor-joining and the ARB program package. 

Similarly, identities of the pmoA gene sequences were confirmed by searching the 

sequence databases using nucleotide blast (http://www.ncbi.nlm.nih.gov/BLAST/). 

Phylogenetic analyses of the DNA and deduced amino acid sequences were carried out 

using the ARB program package (developed by O. Strunck and W. Ludwig; Technische 

Universität München [http://www.arb-home.de]). Sequences were manually aligned with 

the pmoA sequences obtained from the GenBank database. Regions of sequence 

ambiguity and incomplete data were excluded from the analyses. 
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6.4. Results and discussion 

The 57 dap samples were chosen for isolation of methanotophs as ammonium-N 

concentration was very low in these samples (Fig. 4.6a). For the isolation of predominant 

methanotrophic bacteria, highest positive dilution step was used for the isolation process. 

Pure isolates were obtained after repeated sub-culturing of a colony. Some of the enriched 

microbes were lost during the colony transfer process and some could not be obtained in 

the pure form, especially those belonging to type I methanotrophs (purification is still in 

progress). This is normal, as isolation of methanotrophs is problematic due to slow 

growth rates and also due to the growth of other non-methane utilizing bacteria during 

cultivation (Escoffier et al., 1997; Hanson et al., 1992; Bowman, 2006).  

Until now, I have obtained twelve pure methanotrophic isolates. 16S rRNA partial gene 

and pmoA gene sequences showed that all 12 isolates belonged to type II methanotrophs 

(Fig. 6.1 and 6.2). Therefore, members of type II methanotrophs represented the 

culturable fraction of dominant methanotrophs in both rhizospheric soil and roots. Type I 

methanotrophs have so far not been isolated from the rice field ecosystem, though their 

abundance has been shown by molecular approaches in previous (Eller and Frenzel, 2001; 

Horz et al., 2001) and my own studies (chapter 3, 4, and 5).  

Out of eleven isolates analysed, in total six isolates (I-RT-PK2, I-RT-PK3, I-RT-PK10, I-

RT-UPK1, I-RT-PK2, and I-RS-SPK19) exhibited 16S rRNA gene sequence similarities 

of >98% with the taxonomically described methanotrophic species (Table 6.1). These 

isolates were thus identified to the species level (Stackebrandt and Goebel, 1994). Two 

Out of eleven isolates analysed, in total six isolates (I-RT-PK2, I-RT-PK3, I-RT-PK10, I-

RT-UPK1, I-RT-PK2, and I-RS-SPK19) exhibited 16S rRNA gene sequence similarities 

of >98% with the taxonomically described methanotrophic species (Table 6.1). These 

isolates were thus identified to the species level (Stackebrandt and Goebel, 1994). Two 

isolates (I-RS-SPK16 and I-RT-PK1) exhibited 16S rRNA gene sequence similarities 

of>96% and <98% with taxonomically described methanotrophic species (Table 6.1) and 

thus were assigned to the genus level, which is either Methylocystis or Methylosinus. 

Three isolates (I-RS-PK19, I-RS-PK21, and I-RS-SPK17) showed 16S rRNA gene 

sequence similarities of <95% with the taxonomically described methanotrophic species 

(Figure 6.1 and Table 6.1) and thus are probably novel at the genus level. 
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Fig. 6.1: Phylogenetic relationship between 16S rRNA gene sequences of isolates from roots (I-

RT) and rhizospheric soil samples (I-RS) and representatives of the methanotrophs. Blue, red and 

green color indicates representative isolates from PK, UPK and SPK treatments, respectively. The 

scale bar represents 10% sequence divergence.  

 

Methylocystis parvus, AF150805
Methylosinus pucelana, AF107461

type II methanotroph AML−A3, AF177298
type II methanotroph AML−A6, AF177299

Methylosinus trichosporium, Y18947
Methylosinus trichosporium, AF150804

Methylosinus trichosporium, AJ458496
Methylosinus species, M95664

Methylosinus sporium, Y18946

Methylocystis sp., U81595

Mesorhizobium genosp. U, Z94819
Mesorhizobium loti, U50166

uncultured methylomicrobium , AF150783
uncultured methylomicrobium, AF150776

Methylomicrobium  album, M95659
Methylobacter sp., AY007295
Methylobacter sp., AY007296

Methylobacter psychrophilus, AF152597
Methylobacter sp., AF131868

Methylobacter sp., AF016981
Methylocaldum szegediense, U89300
Methylocaldum tepidum, U89297
Methylocaldum gracile, U89298

Methylocaldum sp., AJ868426
uncultured bacterium, AJ617834

0.10
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Fig. 6.2: Phylogenetic relationship between the pmoA gene sequences of isolates from roots (I-

RT) and rhizospheric soil samples (I-RS) and representatives of the methanotrophs. Blue, red and 

green color indicates representative isolates from PK, UPK and SPK treatments, respectively. The 

scale bar represents 10% sequence divergence.  

 

Table 6.1: Analysis of isolates based on partial 16S rRNA gene sequences, including the closest 

taxonomically described relatives as identified by using ARB program package. 

Isolates Seq. length (bp) Close relative Accession no.  % 
identity 

I-RT-PK1 679 Methylocystis parbus AF150805 96.5 
I-RT-PK2 679 Methylosinus trichosporium MTR458496 99.8 
I-RT-PK3 638 Methylosinus trichosporium MTR458496 99.5 
I-RT-PK10 639 Methylosinus trichosporium MTR458496 99.8 
I-RT-UPK1 619 Methylosinus trichosporium MTR458496 99 
I-RT-UPK2 740 Methylosinus trichosporium MTR458496 99.3 
I-RS-PK19 809 Methylosinus pucelana AF107461 91.5 
I-RS-PK21 825 Methylosinus pucelana AF107461 93.7 
I-RS-SPK16 801 Methylosinus sporium Y18946 96 
I-RS-SPK17 829 Methylosinus sporium Y18946 94 
I-RS-SPK19 500 Methylosinus pucelana AF107461 99 

 

Methylocystis parvus, U31651.1

Methylosinus sporium, AJ868409
Methylosinus trichosporium  , AJ868409

Methylocapsa acidiphila , AJ278727
Methylomonas methanica, U31653

Methylomicrobium pelagicum str. IR1, U31652.1
Methylomicrobium album , U31654
Methylobacter sp. BB5.1, AF016982.1

Methylocaldum gracile, U89301
Methylococcus capsulatus, L408040.10
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Chapter 7 

General discussion 

Methanotrophs, inhabitants of the rice rhizosphere, play an important role in the reduction 

of methane emissions from rice fields. In rice fields, they are subjected to many 

environmental and field management parameters, which may have a significant impact on 

their function, activity and community composition. To study this in greater detail, I have 

investigated methane oxidation and the community structure of methanotrophs in planted 

rice microcosms under controlled conditions in the greenhouse. However, in such 

greenhouse studies, not all parameters can be simulated. Eller et al (2005) have compared 

the field and microcosm experiments and shown that activity patterns of methanotrophs 

agreed well between both experiments excluding the quantity data. 

I have carried out two major experiments in consecutive years. The first experiment 

(labelling experiment, in short - ‘LE’) was conducted from May 29 till July 22, 2005 for 

total 55 days. The second experiment (fertilizer experiment, in short - ‘FE’) was 

conducted from September 20 till December 12, 2006 for total 88 days. However, the 

controlled temperature was different for these two experiments as the day/night 

temperature was maintained at 30/22ºC for LE, while at 28/22ºC for FE. The major 

difference between these two experiments was that in LE, I applied two treatments, i.e., 

with (labelled rice microcosms) and without addition of 13C-CH4 (control rice 

microcosms), and both types of rice microcosms were given similar treatments (e.g. 

fertilization). In FE, on the other hand, I applied three different nitrogen fertilizer 

treatments i.e., PK (without nitrogen source), UPK (with urea as nitrogen source) and 

SPK (with ammonium sulphate as nitrogen source). Fertilization was carried out in both 

experiments in the similar manner but on different dates (on 43 dap for LE and on 57 dap 

for FE). In both LE and FE-UPK, urea was added as ammonium nitrogen fertilizer, so 

that these two experiments are comparable in this aspect to each other. 

In both experiments, I had carried out physiological analyses to investigate the dynamics 

of methane oxidation process over time during the rice growing season. For this purpose, 

I had measured the methane emission rates and methane oxidation rates and analyzed the 

pore water chemistry at different growth stages of rice plant. Pore water samples were 
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collected from rhizospheric region (3 cm) and bulk region (10 cm depth) to analyze CH4 

concentration, NH4
+ concentration, and pH. However, analysis of NH4

+ concentrations 

and plant characteristics were not done for LE.  

Both experiments showed a temporal variation in CH4 emission rates, CH4 oxidation 

rates, and CH4 concentrations dissolved in the pore water, which correlated well with 

other field and rice microcosm studies (Eller and Frenzel, 2005; Krüger and Frenzel, 

2001; Schütz et al., 1989). CH4 oxidation rates started after 20 dap, reached a maximum 

between 30 and 40 dap, and decreased during the rest of the period (till 55 dap) in both 

experiments (Fig. 3.3 and Fig. 4.4a). In particular, the decrease of CH4 oxidation activity 

with the progress of the season has been observed previously (Dan et al., 2001; Eller and 

Frenzel, 2001; Krüger and Frenzel, 2003). However, CH4 emission rates (Fig. 3.3 and 

4.4a), CH4 oxidation rates (Fig. 3.3 and 4.4b) and CH4 concentrations (Fig. 3.6 and 4.5), 

were higher in LE than in FE (UPK treatment). This could be due to longer day light 

exposure to plants in LE. After a third fertilization on 43 and 57 dap in LE and FE, 

respectively, a transient positive influence of ammonium was observed for methane 

oxidation in both experiments, similar to previous observations (Dan et al., 2001; Krüger 

and Frenzel, 2003). In summary, a temporal variation of CH4 oxidation occurred as a 

general trend which indicated that methane oxidation is a dynamic process that seems to 

be regulated by various factors, including the age of the rice plant, substrate and nutrient 

availability for the microorganisms and/or plants. 

The role and composition of methanotrophs in rice rhizosphere was investigated after 

collecting the roots and the rhizospheric soil from different growth stages of rice plants. 

In LE, roots and rhizospheric soil samples were collected from two time points i.e., 43 

and 55 dap whereas, in FE, roots and rhizospheric soil samples were collected from six 

time points i.e., 29, 40, 57, 62, 67 and 88 dap. I used pmoA gene analyses based on T-

RFLP fingerprinting method and cloning and sequencing to assess the structure of the 

methanotroph community in both experiments.  

T-RFLP analysis produced highly reproducible T-RFLP patterns with major T-RFs of 80, 

226, 245, 350, 438, 457 and 506 base pairs (bp) lengths in almost all replicate samples 

(Fig. 3.9a, 4.9, and 4.11). Exceptionally, T-RF of 113, 210, 242, 264, 278, 448 bp length 

which represented minor T-RFs (with relatively low relative abundance) were not,



General discussion 

 
 

138

detected in LE. The T-RFs were assigned to respective genera of methanotrophs by 

sequence analysis of several clone libraries obtained from PCR products of respective 

roots and rhizospheric soil samples. T-RFs were assigned to Methylococcus and 

Methylocaldum (80 bp), Methylocystis and Methylosinus (245 bp), Methylomicrobium 

(350 and 457 bp), Methylomonas (438 bp), Methylobacter (506 bp), and five different 

clusters of uncultured I methanotrophs (80 bp, 227 bp, 243 bp, 264 bp, 350 bp) Fig. 3.10, 

3.11, and 4.10). However, T-RFs of 113, 210, 278, and 448 bp could not be assigned to 

any of the sequences obtained from the clone libraries. 

Thus, phylogenetic analysis of pmoA-derived amino acid sequences revealed the presence 

of both type I methanotrophs (genera Methylomonas, Methylobacter, Methylococcus, 

Methylocaldum, Methylomicrobium and uncultured type I methanotrophs with T-RF of 80 

bp size) and type II methanotrophs (genera Methylocystis and Methylosinus) on root 

samples as well as in rhizospheric soil in all samples. Such a diversity has been found 

previously in rice field ecosystems from Vercelli, Italy (Eller et al., 2005; Henckel et al., 

2001; Horz et al., 2001) and elsewhere (Hoffmann et al., 2002; Jia et al., 2007). Notable 

is the detection of sequences having T-RF of 350 and 457 bp size clustering with 

Methylomicrobium sp. in LE (Fig. 3.10 and 3.11) and sequences having T-RF of 350 bp 

size clustering together with uncultured type I methanotrophs having T-RF of 80 bp in FE 

(Fig. 4.10). Similarly, sequences having T-RF of 374 bp were detected in FE only (Fig. 

4.10) clustering separately in type I methanotrophs. Interestingly, sequences having T-RF 

of 80 bp size representing a separate cluster deeply branched from Methylococcus and 

Methylocaldum were repeatedly observed in both experiments. 

The general composition of the methanotrophic community was quite similar on the roots 

and in the rhizospheric soil referring to both LE and FE-UPK experiments. Furthermore, 

type I methanotrophs were dominant on the roots, while type II methanotrophs were 

dominant in the rhizospheric soil. Interestingly, Methylomonas (type I methanotrophs) 

was the most dominant genus found on the roots samples from both UPK experiments 

(LE and FE) suggesting that Methylomonas might play an important role in urea treated 

roots. This was further supported by the indicator species test using R software with 

labdsv package that was carried out for FE. However, the relative abundance of 

individual methanotrophic genera (especially type I methanotrophs) was different and in 

addition, exhibited a shift between/among the different sampling time points in both the 
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roots and the rhizospheric soil from both experiments. Nevertheless, in case of FE-UPK, 

the observed shift in the relative abundance of individual methanotrophic genera was not 

pronounced. The root samples in FE exhibited a relatively stable community structure 

with exception on 29 and 88 dap as compared to other two treatments (PK and SPK have 

not yet been discussed here). The shift observed in the rhizospheric soil could be related 

to type I methanotrophs which were not easily visible due to high relative abundance of 

type II methanotrophs at all sampling points. This result indicated that the different 

methanotrophic genera responded differently to spatiotemporal variations in the rice 

microcosms, which in turn gave a hint that different methanotrophic genera may have 

different CH4, O2 or nutrient requirements.  

Note, however, that the abundance of methanotrophic groups were only relative numbers 

within the total community of methanotrophs as they were based on T-RFLP analyses 

only. The quantitative determination of methanotrophic biomass using real-time PCR 

quantification method would be interesting, but has not yet been done. Moreover, since I 

used DNA samples for the amplification of pmoA, I could not ascertain that the amplified 

pmoA product represented the metabolically active methanotrophs. For this purpose, 

PLFA-SIP was used in LE and mRNA approach was used in FE to determine the extent 

to which type I and type II methanotrophs perform actively by assimilating 13C-CH4 

(added directly to the rice microcosms) and by pmoA gene expression. Notably, the 

analysis of PLFA-SIP was obtained for roots and rhizospheric soil, while mRNA analysis 

could only be achieved for the rhizospheric soil. 

For PLFA-stable isotope probing method, 13C-CH4 was supplied to the rhizosphere of the 

rice microcosms between 37 and 54 days after transplantation. Although the labeled CH4 

consisted of 99 atom-% 13C, the CH4 in the pore water and in the CH4 flux contained only 

3-5 atom-% 13C. This result showed that the 13C-CH4 added through the permeable tubing 

into the rhizosphere became highly diluted by endogenously produced CH4. However, the 

resulting 13C-content of the CH4 allowed the detection of specifically 13C-labeled PLFA. 

This indicated that the idea of adding labelled substrate directly to the rhizosphere, while 

mimicking in situ condition was successful and such kind of labelling experiment can be 

performed in the future.  
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In this study, mainly the PLFA 16:1ω7, 16:1ω6, 16:0, 18:1ω7, 18:1ω9, and 18:0 became 

labeled with 13C derived from CH4. The PLFA of methanotrophs became increasingly 
13C-labeled at two subsequent sampling times, demonstrating the activity of the 

methanotrophs in the rhizospheric soil and on the roots. However, type I methanotrophs 

incorporated significantly more 13C into their PLFAs than type II methanotrophs, in both 

soil and roots, indicating that type I methanotrophs were the more active population. In 

addition, type I and type II methanotrophs became increasingly more active on the roots 

and in the rhizospheric soil with respect to time (Fig 3.12 b and 3.13). Thus, the temporal 

changes in the activity of both type I and type II methanotrophs was observed. Although 

the above  PLFAs are found in many different prokaryotes and eukaryotes (Spring et al., 

2000), labelling of them strongly indicated that type I and type II methanotrophs were 

active in rhizospheric soil and on root samples. Thus, such specificity of addition of 

labelled substrate 13C-CH4 for methanotrophs is the main key idea behind using the 

PLFA-SIP method to investigate the metabolically active methanotrophs. Every technique 

has its own pros and cons. One of the limitation of such kind of labelling technique is that 

the labelling amount, generally needed to be assimilated by the microorganism, is not 

known and there is always a possibility of cross-feeding in case of labelling for long 

incubation period. Moreover, PLFA-SIP method does not give any information on species 

level of microorganisms. 

To overcome such limitation, T-RFLP and cloning/sequencing was carried out by 

targeting pmoA mRNA of rhizospheric soil in FE. This approach was proven a powerful 

tool for investigation of the metabolically active methanotrophs that were responsible for 

methane oxidation in rhizospheric soil. Although detection of mRNAs has been hindered 

by difficulties in the extraction of intact RNA from environmental samples (Saleh-Lakha 

et al., 2005), recent advances in extraction methods for mRNA may facilitate the direct 

analysis of functional gene expression of active methanotrophs in the environment 

(Shrestha, Dissertation, 2007; Bürgmann et al., 2001; Griffiths et al., 2000). A number of 

recent studies have focused on the analysis of expression of methane monoxygenase in 

different environment using pmoA primer sets (Han and Semrau, 2004; Kolb et al., 2005; 

Cheng et al., 1999; Nercessian et al., 2005; Chen et al., 2007; Chen et al., 2008), 

providing direct evidence of active methanotrophs. In this study, for the first time, I had 

successfully used pmoA mRNA to study the metabolically active methanotrophic 

communities that were present in the rhizospheric soil sample under in situ conditions. 
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The T-RFLP analysis of pmoA mRNA showed a diverse pattern of transcripts that 

corresponded to the potentially active genera observed in the community fingerprints for 

methanotrophs. The transcription pattern also indicated rapid changes of transcriptional 

activity over time, indicating a strong temporal variation in all treatments. mRNA 

approach based on T-RFLP pattern after affiliation to sequence analysis, revealed that 

active methanotrophic diversity consisted mainly of type I methanotrophs in rhizospheric 

soil samples (UPK treatment) at most of the sampling time points of the rice-growing 

season. 

In conclusion, I could effectively detect the metabolically active methanotrophic 

community in the rhizospheric soil as well as on the roots from planted rice microcosms 

using the PLFA-SIP and pmoA mRNA approaches (not applied on the roots). In addition, 

I could further differentiate these community from the total methanotrophic community 

using pmoA gene based community analysis. All three approaches demonstrated the 

presence of both type I and type II methanotrophic populations in the rhizospheric soil 

and on the rice roots. Furthermore, pmoA gene based community analysis revealed that 

type II methanotrophs were dominant in the rhizospheric soil whereas type I 

methanotrophs were dominant on the roots thus indicating that rhizospheric soil and the 

roots constitute two different environments probably providing different ecological niches 

for methanotrophs (Henckel et al., 2000). However, for the first time, both PLFA-SIP and 

pmoA mRNA analyses strongly revealed that despite the dominance of type II 

methanotrophs in rice rhizospheric soil, type I methanotrophs were the metabolically 

active ones and responsible for in situ methane oxidation in the rice rhizosphere. 

Importantly, these two approaches corresponded quite well with each other. In addition, 

dominance of type I methanotrophs on the roots was revealed from two independent 

experiments (LE and FE-UPK), and PLFA-SIP analysis showed that the metabolically 

active methanotrophs were type I. pmoA mRNA analysis, which unfortunately could not 

yet be achieved with root material, will further clarify this result. The isolation of 

methanotrophs (11 isolates) from the roots and rhizospheric soil samples indicated that 

the culturable fraction of dominant methanotrophs does not necessarily be metabolically 

active or dominant one. 
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Appendix 
 

                    

Fig. A: Set up for experiment 1 and 2.                                       Fig. B: Set up for experiment 1. 
 

                             
Fig. C:  Set up for experiment 1 and 2.                                   Fig. D: Set up for experiment 1. 
 
 

 
                               Fig. E: Set up for experiment 1 and 2.
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                                Fig. F:  Set up for experiment 1.                             
 
 

                 
Fig: G: Set up with flux chambers                          Fig. H: Set up for experiment 1 and 2. 
 
 
 

peristaltic pump 

tubing connected with 
pump and microcosms 

teflon tubing connecting 
CH4 reservoir with the pump 

Flux chambers for 
flux measurements 



Appendix 

 
 

165

 

 
        Fig. I: Set up for experiment 2. 
 

 
       Fig. J: Set up for experiment 2 
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Sampling time: 
 

 
Fig. K: Rice plant with nylon bag was separated out from the rest of bulk soil.  
     

                        
 Fig. L: UPK treated rhizosphere (Expt. 2)                   Fig. M: SPK treated rhizosphere (Expt. 2)  
 

               
Fig. N: Rhizospheric soil isolated from bulk soil         Fig. O: Rhizospheric soil collected from SPK      
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Fig. P: Washed roots from PK   Fig. Q: Washed roots from UPK Fig. R: Washed roots from SPK 
 

 
                                        Fig. S: Plant growth at the end of the experiment 2. 

 

             
                 Fig. T: Grain filling stage.                            Fig. U: Grain filling stage.
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